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Abstract 

The respiratory chain in the inner membrane of the yeast mitochondrion is 

organized as a network of individual complexes and large supercomplex structures. 

These supercomplexes are composed of dimeric complex III and one or two copies 

of complex IV (III2IV and III2IV2). Even though the existence of respiratory 

supercomplexes has been shown for a variety of organisms, it is not fully understood 

which purpose they serve and how they are assembled as well as regulated. Lipids, 

protein complexes and single proteins were proposed to take part in these intricate 

processes. To the latter group of potential supercomplex regulators belongs the Rcf 

protein family which is composed of three related proteins: Rcf1, Rcf2 and the so far 

uncharacterized YBR255C-A/ Rcf3. Rcf1 was shown to be essential for the formation 

of III2IV2. To obtain a deeper understanding of the role of the Rcf protein family in 

supercomplex formation and stability, this study aimed at an in-depth investigation 

of Rcf2 and Rcf3.  

Like Rcf1 and Rcf2, Rcf3 proved to be a constituent of supercomplexes via its 

association with complex IV*, an Rcf-specific version of complex IV. All three Rcfs 

furthermore revealed the ability to interact with complex III in the absence of 

complex IV, positioning them at the interface of both complexes. In contrast to Rcf1, 

Rcf3 and Rcf2 are dispensable for supercomplex formation. However, despite 

unchanged supercomplex organization, simultaneous deletion of RCF2 and RCF3 

leads to severely reduced respiratory growth. This indicates a functional overlap, 

which is further supported by the sequence similarities of Rcf3 with the N-terminus 

of Rcf2 and the observed processing of Rcf2. This study revealed that Rcf2 is 

subjected to limited proteolysis after import into mitochondria. The resulting 

N-terminal fragment, Rcf2N, was neither observed in individual complexes nor in 

supercomplexes. Whether it is degraded or preserved to fulfill a regulatory function 

within the respiratory chain could not be clarified on the basis of the present data. In 

contrast, the C-terminal fragment, Rcf2C, is assembled into complex IV* along with 

the remaining full-length Rcf2. It was hence found in supercomplexes. Further 

investigations will elucidate its function and the significance of the processing event 

in regard to supercomplex organization.  
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1. Introduction  

1.1. A brief history on mitochondria and their importance for 

eukaryotic life 

The establishment of intracellular membrane-enclosed compartments is one of the 

hallmarks that distinguish eukaryotes from prokaryotes. The first of these 

membrane-enclosed organelles, the nucleus, was identified as early as 1719, but also 

mitochondria had already been known since the 1840s. When in 1894 Altmann 

named them “bioblasts” (Altmann, 1894) he probably did not anticipate the 

immensely growing attention they received over the following 120 years. He 

nevertheless demonstrated a remarkable vision when he proposed them to be 

organisms that live inside the cell to fulfill vital functions. Today, the generally 

accepted endosymbiotic theory in fact states the engulfment of an 

-proteobacterium by a so far unidentified host as the origin of mitochondria 

(Andersson & Kurland, 1998; Margulis, 1970; Szklarczyk & Huynen, 2010). Several 

features of modern mitochondria can be traced back to this endosymbiosis: among 

others, the double membrane, the autonomously replicated mitochondrial genome 

and the striking similarities of mitochondrial and bacterial translation machineries. 

After receiving their name in 1898 (Benda, 1898), step by step, mitochondria were 

shown to be essential for several metabolic pathways of eukaryotic cells. They 

contain the Krebs cycle and the OXPHOS system and decisively contribute to the 

-oxidation of fatty acids and the biogenesis of amino acids and iron sulfur clusters 

(Ernster & Schatz, 1981; Lill et al., 2012). They furthermore play a role in apoptosis 

(Green & Reed, 1998) and in cellular calcium homeostasis (Rimessi, Giorgi, Pinton, & 

Rizzuto, 2008). Through the ERMES complex, mitochondria establish contact sites 

with the endoplasmic reticulum (ER) that are important for interorganellar lipid 

exchange (Rowland & Voeltz, 2012). Thus, mitochondria are essential organelles not 

only for respiring cells.  

 

1.2. The bacterial heritage: Mitochondrial morphology and DNA 

The double membrane, a consequence of the endosymbiotic event, renders 

mitochondria highly compartmentalized (Figure 1-1). The outer membrane (OM) 
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separates the organelle from the cytoplasm and represents a barrier for large 

molecules but enables diffusion of ions and small metabolites through large protein 

pores (Benz, 1994). The inner membrane (IM) is a tightly sealed barrier between the 

intermembrane space (IMS) and the mitochondrial matrix. Ions, metabolites and 

proteins cross the IM through specific and regulated transporters, carriers or 

translocases. IM and IMS are further compartmentalized by invaginations of the IM, 

so called cristae. Mainly two large protein complexes determine the cristae shape. 

The MICOS complex induces membrane curvature and the formation of cristae 

junctions at the proximal end (Barbot et al., 2015; van der Laan, Bohnert, 

Wiedemann, & Pfanner, 2012), while dimerization of the ATP synthase stabilizes the 

distal end (Paumard et al., 2002). Hence, the IM is structured into three different 

sections: cristae membrane, cristae junction and inner boundary membrane.  

 

Figure 1-1: Schematic representation of a mitochondrial cross-section. The outer membrane 

encloses the intermembrane space (including the cristae lumen), the inner membrane and the matrix. 

The inner membrane is structured into inner boundary membrane, cristae junction regions and 

cristae membranes. The matrix contains the mitochondrial genome and the inner membrane-

attached mitochondrial ribosomes.  

In contrast to the old textbook picture of a small bean-shaped organelle, in most 

cells, mitochondria exist as a dynamic network (Friedman & Nunnari, 2014). The 

mitochondrial network undergoes fission and fusion events on a regular basis in 

order to answer the cells metabolic demands, to separate damaged parts for 

mitophagy (Müller, Lu, & Reichert, 2015) but also to distribute mitochondria during 

cell division (Mishra & Chan, 2014).  

A prerequisite for this mitochondrial remodeling is a constant biogenesis of 

mitochondrial proteins. As mentioned, mitochondria still contain their own genome 
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that is replicated and transcribed in the matrix (Figure 1-1). During evolution, most 

of the original -proteobacterial DNA was lost or transferred to the nucleus 

(Gabaldón & Huynen, 2004). As a result, the modern mitochondrial genome codes 

for eight proteins in yeast and thirteen in mammals. It additionally contains the 

information for transfer RNAs (tRNA) and ribosomal RNAs (rRNA) for the 

mitochondrial translation machinery. Mitochondrially encoded proteins are 

synthesized on membrane attached mitochondrial ribosomes. Most of them are 

highly hydrophobic proteins that are cotranslationally inserted into the IM (Ott & 

Herrmann, 2010). 

The yeast mitochondrial proteome in its entity was addressed in several proteomic 

studies and comprises around 1000 proteins (Hess et al., 2009; Prokisch et al., 2004; 

Sickmann et al., 2003). Hence more than 99% of mitochondrial proteins are encoded 

by the nuclear genome, synthesized on cytosolic ribosomes and post-translationally 

imported into their respective mitochondrial location.  

 

1.3. Mitochondrial protein import and sorting 

Apart from  helical proteins of the OM, all nuclear encoded mitochondrial proteins 

are initially translocated across the OM with the help of the translocase of the outer 

membrane (TOM). The unfolded precursor proteins are chaperoned to the TOM 

complex and recognized by specific receptors (Dudek, Rehling, & van der Laan, 

2013). The majority of mitochondrial proteins contains an N-terminal targeting 

sequence that is organized as positively charged amphipatic helix of 15 to 50 

residues, named presequence (Allison & Schatz, 1986; Roise, Horvath, Tomich, 

Richards, & Schatz, 1986; Vögtle et al., 2009). This presequence is usually removed 

by the mitochondrial processing peptidase (MPP). Some proteins are also processed 

by further peptidases like MIP (mitochondrial intermediate peptidase) or IMP (inner 

membrane protease) (Käser & Langer, 2000; Koppen & Langer, 2007). In addition, 

non-cleavable C-terminal or internal targeting sequences are described (Fölsch, 

Guiard, Neupert, & Stuart, 1996; Kutik et al., 2008; C. M. Lee, Sedman, Neupert, & 

Stuart, 1999; Reinhold et al., 2012). The TOM complex is composed of the pore 

forming central subunit Tom40 and several additional subunits that mediate 

precursor binding (reviewed in Bohnert, Pfanner, & van der Laan, 2015; Dudek et al., 
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2013; Schulz, Schendzielorz, & Rehling, 2015). After translocation across the OM, the 

downstream import pathway depends on the destination of the protein (Figure 1-2).  

 

Figure 1-2: Overview of the import pathways into different mitochondrial compartments. 

Except for -helical OM proteins, all proteins are translocated across the OM with the help of TOM. 

-barrel proteins of the OM are transferred via small Tims to SAM, which then mediates membrane 

insertion. -helical OM proteins are inserted via MIM or without the help of a proteinaceous 

machinery, Cystein-containing IMS proteins are trapped by oxidative folding by MIA. Carrier proteins 

of the IM are inserted through TIM22, while presequence-containing IM proteins are laterally 

released from TIM23. Matrix proteins are imported through coordinated action of TIM23 and PAM.  

1.3.1. Proteins of the outer membrane and the IMS 

Most OM proteins are -barrel proteins that are inserted into the OM through the 

sorting and assembly machinery (SAM) after translocation into the IMS (reviewed in 

Bohnert et al., 2015; Dudek et al., 2013). -helical OM proteins do not rely on TOM 

and are inserted either through the mitochondrial import complex (MIM) (Becker et 

al., 2008; Dimmer et al., 2012) or without the help of a proteinaceous machinery 

(Kemper et al., 2008; Krumpe et al., 2012). Soluble cysteine-containing proteins are 

trapped by oxidative folding mediated by the mitochondrial intermembrane space 

import and assembly (MIA) machinery (Vögtle et al., 2012).  

1.3.2. Proteins of the inner membrane 

The inner membrane is densely packed with protein complexes, rendering it the 

most protein-rich compartment of mitochondria (Daum, Böhni, & Schatz, 1982). 

Integral IM proteins differ in structure and topology and so do their respective 



INTRODUCTION 

 6 

import pathways, even though all of them require a translocase of the inner 

membrane (TIM).  

TIM22 mediated import: Metabolite carrier proteins are multispanning inner 

membrane proteins with six transmembrane domains (TMD), which overlap with 

the internal hydrophobic targeting signals (Brix, Rüdiger, Bukau, Schneider-

Mergener, & Pfanner, 1999). These proteins are inserted into the IM with the help of 

the TIM22 complex. Carrier precursors emerging from the TOM complex are 

transferred to small Tim chaperones (Tim9-Tim10 or Tim8-Tim13) (Davis, Alder, 

Jensen, & Johnson, 2007; Sirrenberg et al., 1998). After binding of Tim12, the 

chaperone complex mediates transmission to the TIM22 complex (N. Gebert et al., 

2008). In a membrane potential-dependent step the precursor is inserted into the 

pore and then laterally released into the IM by a yet unknown mechanism (Rehling, 

Brandner, & Pfanner, 2004; Rehling et al., 2003). Positively charged residues of the 

matrix located loops of the protein are assumed to be important for the membrane 

potential-dependent translocation. Apart from carrier proteins also three TIM 

subunits with four TMDs use this pathway (Dekker et al., 1997; Dudek et al., 2013). 

TIM23SORT mediated import: IM proteins that are synthesized as presequence-

containing precursors (preprotein), are recognized by the receptors of the 

TIM23CORE complex. Once the N-terminus of a preprotein emerges from the TOM 

complex, it is transferred into the protein-conducting pore of TIM23CORE, generating 

a TOM-TIM23 supercomplex (Dudek et al., 2013). Hydrophobic stop-transfer signals 

downstream of the presequence induce an arrest and lateral release into the IM 

(Bohnert et al., 2010; Bömer et al., 1997; Glick et al., 1992; van der Laan et al., 2007).  

For the sorting process TIM23CORE associates with Tim21 via Mgr2, leading to the 

formation of TIM23SORT. Tim21 recruitment supports the membrane 

potential-dependent membrane insertion by coupling TIM23 to the respiratory 

chain (M. Gebert et al., 2012; van der Laan et al., 2006; Wiedemann, van der Laan, 

Hutu, Rehling, & Pfanner, 2007). Single spanning IM proteins commonly use the 

sorting pathway but also few multispanning proteins, like Sym1, are among the 

substrates (Reinhold et al., 2012).  
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1.3.3. Soluble proteins of the matrix 

Also soluble proteins of the mitochondrial matrix rely on the TIM23CORE complex. In 

contrast to the mechanism described above, the membrane-potential is not 

sufficient for full matrix translocation of a protein (Dudek et al., 2013). Instead of 

Tim21, the presequence translocase-associated import motor (PAM) is recruited to 

TIM23CORE. By Hsp70-mediated hydrolysis of ATP, the PAM complex provides an 

additional inward-directed force on the incoming protein (reviewed in detail in 

Schulz et al., 2015).  

 

1.4. Mitochondrial protein export 

1.4.1. Conservative sorting of inner membrane proteins 

A limited number of inner membrane proteins uses a pathway that was first 

suggested by Hartl and colleagues and comprises re-export of the protein after 

initial matrix translocation through TIM23 (Hartl, Ostermann, Guiard, & Neupert, 

1987; Hewitt, Gabriel, & Traven, 2014) (Figure 1-3). Since several aspects seem to 

be conserved from the bacterial ancestor (Rojo, Stuart, & Neupert, 1995), this 

pathway is also called conservative sorting. While conservatively sorted Rip1 

depends on the action of Bcs1 (Wagener, Ackermann, Funes, & Neupert, 2011), 

membrane insertion of Oxa1 and Cox18 is mediated by the evolutionary conserved 

Oxa1 translocase (Funes, Nargang, Neupert, & Herrmann, 2004; Hell, Herrmann, 

Pratje, Neupert, & Stuart, 1998; Herrmann, Neupert, & Stuart, 1997). Based on 

observations with the multi-spanning protein Mdl1, it was furthermore suggested 

that lateral release and conservative sorting pathways might work in concert for 

some proteins (Bohnert et al., 2010).  
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Figure 1-3: Mitochondrial protein export pathways. Conservatively sorted nuclear encoded 

proteins are fully translocated into the matrix via TOM, TIM23 and PAM. Afterwards, they are 

inserted into the IM with the help of Oxa1 or Bcs1. Mitochondrially encoded membrane proteins are 

synthesized on membrane-attached mitochondrial ribosomes and co-translationally inserted via the 

Oxa1 insertion machinery.  

1.4.2. Membrane insertion of mitochondrially encoded proteins 

In yeast, most proteins encoded by the mitochondrial genome are highly 

hydrophobic subunits of the respiratory chain located in the IM. To minimize 

contact with the hydrophilic environment in the matrix, they are translated on 

membrane-associated ribosomes and co-translationally inserted into the membrane 

(Ott & Herrmann, 2010) (Figure 1-3). As in the case of conservatively sorted 

proteins, insertion is mediated mainly by Oxa1 (Hell, Neupert, & Stuart, 2001). Oxa1 

interacts with mitochondrial ribosomes through its ribosome-binding domain (Jia et 

al., 2003; Szyrach, Ott, Bonnefoy, Neupert, & Herrmann, 2003). It furthermore 

cooperates with the inner membrane proteins Mdm38 and Mba1 (Frazier et al., 

2006; Preuss et al., 2001), the latter being proposed to spatially align ribosome and 

insertion machinery (Pfeffer, Woellhaf, Herrmann, & Förster, 2015). Oxa1 is 

responsible for N-terminal export and integration of TMDs of mitochondrial 

translation products in general. The C-terminus of mitochondrially encoded Cox2 

additionally relies on the help of the Oxa1-related protein Cox18 (Saracco & Fox, 

2002). 
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1.5. The oxidative phosphorylation system 

Among the many tasks of mitochondria, their key contribution to energy production 

is undoubtedly the most famous one. Under respiring conditions, the oxidative 

phosphorylation (OXPHOS) system, residing within the IM, provides the main 

energy supply for the eukaryotic cell. Electrons and protons from the degradation of 

acetyl-CoA in the Krebs cycle are delivered to the respiratory chain in the form of 

NADH and succinate. The respiratory chain is a series of protein complexes in the IM 

that transfer electrons from donors to acceptors via redox reactions. Mammalian 

respiratory chains are composed of four complexes: NADH dehydrogenase (I), 

succinate dehydrogenase (II), coenzyme Q : cytochrome c - oxidoreductase or 

cytochrome bc1 complex (III) and cytochrome c oxidase (IV) (Saraste, 1999) (Figure 

1-4 A). In yeast, complex I is substituted by the single proteins Nde1, Nde2 and Ndi1 

(Grandier-Vazeille et al., 2001) (Figure 1-4 B). Complex I (or its substitutes) and 

complex II are the electron-receiving units. Coenzyme Q and cytochrome c shuttle 

the electrons to complex III and complex IV, respectively. The latter complex is the 

terminal enzyme of the respiratory chain and catalyzes the reduction of oxygen to 

water. The electron transfer is coupled to a transfer of protons into the IMS, creating 

a proton motif force across the IM (Saraste, 1999). This energy is in turn used by the 

ATP synthase (V) for the phosphorylation of ADP to ATP (reviewed in Yoshida, 

Muneyuki, & Hisabori, 2001).  

The OXPHOS complexes, except for complex II, contain subunits of dual genetic 

origin. In yeast, the most hydrophobic subunits of complex III (Cob), complex IV 

(Cox1, Cox2, Cox3) and complex V (Atp6, Atp8, Atp9) are provided by the 

mitochondrion itself (Kehrein, Bonnefoy, & Ott, 2013) (Figure 1-4 B). All other 

subunits, as well as complex II and the single NADH dehydrogenases, are encoded in 

the nucleus and follow the import pathways described in sections 1.3 and 1.4. Hence, 

the spatial and temporal coordination of OXPHOS assembly is of critical importance. 

A plethora of nuclear encoded protein factors is involved in the regulation of 

mitochondrial transcription, mRNA maturation, translation, membrane insertion, 

processing and degradation (Deshpande & Patel, 2012; T. D. Fox, 2012; Kehrein et 

al., 2013; Koppen & Langer, 2007; Mick, Fox, & Rehling, 2011; Ott & Herrmann, 

2010; Rak, Zeng, Brière, & Tzagoloff, 2009; Soto, Fontanesi, Liu, & Barrientos, 2012). 

Additional assembly factors are essential for the stability and interaction of subunits 
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and assembly modules as well as the insertion of cofactors into the catalytically 

active subunits of complex III and IV (Mick et al., 2011; Soto et al., 2012; Zara, Conte, 

& Trumpower, 2009). 

 

 

Figure 1-4: Model of the respiratory chain in mammals and yeast. A) The mammalian 

respiratory chain is composed of electron-receiving units complex I and complex II, small electron 

carriers coenzyme Q and cytochrome c as well as dimeric complex III and the terminal enzyme 

complex IV. Apart from transporting electrons, complexes I, III and IV translocate protons across the 

IM into the IMS, generating an electrochemical gradient. Complex V uses the energy of the gradient to 

phosphorylate ADP to ATP. B) The yeast oxidative phosphorylation system is organized alike. 

However, single NADH dehydrogenases Nde1, Nde2 and Ndi1 replace the multimeric complex I of the 

mammalian system.  

1.5.1. Composition and structure of complex III 

Complex III is an oxidoreductase that uses electrons from the oxidation of 

coenzmy Q (ubiquinol) for the oxidation of cytochrome c. The catalytic core of the 

enzyme is composed of mitochondrially encoded cytochrome b as well as nuclear 

encoded cytochrome c1 and Rieske iron-sulfur protein (Rip1). It contains three heme 

groups (in cytochrome b and c1) and an iron-sulfur cluster (in Rip1). In addition to 

the evolutionary conserved core, yeast complex III contains seven 

mitochondria-specific proteins: Cor1, Cor2, Qcr6, Qcr7, Qcr8, Qcr9 and Qcr10 
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(Hunte, Koepke, Lange, Rossmanith, & Michel, 2000; Trumpower, 1990). It is still 

under debate how these supernumerary subunits contribute to the functionality of 

mitochondrial complex III. The assembly of the complex is thought to start with the 

membrane insertion of cytochrome b. Guided by complex III-specific assembly 

factors, cytochrome b runs through a series of assembly intermediates. The enzyme 

grows with the stepwise incorporation of nuclear encoded subunits (Gruschke et al., 

2012; Zara et al., 2009). The assembly is completed upon addition of Qcr10 and Rip1 

and the release of remaining assembly factors. In yeast, complex III is organized as a 

homodimer with each monomer carrying one copy of each subunit, as evident from 

the crystal structure (Hunte et al., 2000). 

1.5.2. Composition and structure of complex IV 

Complex IV is the terminal enzyme of the respiratory chain that oxidizes 

cytochrome c to reduce molecular oxygen to water. The evolutionary conserved core 

is composed of the membrane embedded proteins Cox1, Cox2 and Cox3, which are 

all encoded in the mitochondrial genome. Cox1 and Cox2 contain the cofactors that 

are needed for catalysis: a dinuclear CuA metal center (in Cox2), a heme a group and 

a binuclear center composed of heme a3 and CuB (in Cox1) (Soto et al., 2012). As for 

complex III, several supernumerary subunits are imported from the cytosol. In yeast, 

the mitochondria-specific part of complex IV comprises of Cox4, Cox5a/b, Cox6, 

Cox7, Cox8, Cox9, Cox12 and Cox13. All of these proteins have mammalian 

homologues and can be mapped to the respective position in the crystal structure of 

bovine complex IV (Maréchal, Meunier, Lee, Orengo, & Rich, 2012; Tsukihara et al., 

1996). More recently, further complex IV-associated proteins were described that 

are not preserved in the crystal structure: Rcf1, Rcf2 and Cox26 (Chen et al., 2012; 

Levchenko et al., 2016; Strecker et al., 2016; Strogolova, Furness, Robb-McGrath, 

Garlich, & Stuart, 2012; Vukotic et al., 2012). The assembly of complex IV is believed 

to take place in a modular way with an initially independent assembly line for each 

of the three mitochondrially encoded subunits. Cox1-, Cox2- or Cox3-specific 

assembly factors mediate proteolytic processing, insertion of cofactors and the 

interaction with early assembling supernumerary subunits. Once maturation is 

completed, the Cox2 and Cox3 modules join the Cox1 assembly intermediate in 

order to allow for incorporation of late supernumerary subunits (reviewed in Soto 
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et al., 2012). In contrast to the X-ray structure obtained from bovine complex IV, 

yeast complex IV exists in monomers composed of one copy of Cox1 to Cox12 and 

probably also Cox26 (Heinemeyer, Braun, Boekema, & Kouril, 2007; Levchenko et 

al., 2016; Maréchal et al., 2012). Beyond that, monomers may vary in their 

composition. Based on recent data, it was suggested that Rcf1, Cox13 and Rcf2 are 

added in a sequential manner to only a fraction of complex IV, resulting in a specific 

Rcf/Cox13-containing subpopulation (IV*) (Vukotic et al., 2012). The reasons for the 

establishment of different versions of complex IV remain elusive.  

 

1.6. Respiratory supercomplexes 

1.6.1. Organization of electron transport: solid versus fluid model 

During the first half of the twentieth century, the mitochondrial respiratory chain 

was discovered and described as the system mediating the redox reactions that 

account for cellular respiration. Its organization was still unknown. With their 

proposal of the respiratory chain working as a single entity, Chance and Williams 

drafted the first solid-state model early on (Chance & Williams, 1955). Based on 

several observations, among them the pool behavior of cytochrome c in mammalian 

mitochondria and the fact that isolated single complexes remain active, the view 

soon changed towards a random collision (or fluid) model (Hackenbrock, Chazotte, 

& Gupte, 1986; Hackenbrock, Schneider, Lemasters, & Höchli, 1980). This model 

envisioned single respiratory complexes that are not physically attached to each 

other, but connected by freely diffusing pools of cytochrome c and coenzyme Q 

(Figure 1-5 A). Even though yeast cytochrome c did not show pool behavior in most 

studies, the random collision model stayed the accepted model for more than two 

decades. It was questioned only when the earlier hypothesized supra molecular 

assemblies of respiratory complexes were detected biochemically in yeast and 

mammals by means of blue native (BN) PAGE analysis (Cruciat, Brunner, Baumann, 

Neupert, & Stuart, 2000; Schägger & Pfeiffer, 2000) (Figure 1-5 B). The mammalian 

supercomplexes identified by Schägger and Pfeiffer contained complexes I, III2 and 

IV (in varying amounts), rendering them able to transfer electrons from NADH to 

oxygen, hence respire. This structure was called respirasome (Schägger & Pfeiffer, 

2000). Due to the lack of multimeric complex I, yeast does not contain true 
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respirasomes as found in mammalian mitochondria. The yeast supercomplex 

structures are built up by complex III dimers interacting with either one or two 

copies of monomeric complex IV (III2IV and III2IV2) (Cruciat et al., 2000; Schägger & 

Pfeiffer, 2000).  

 

Figure 1-5: Schematic presentation of fluid and solid view of respiratory chain organization. 

A) Following the fluid model, each complex of the respiratory chain is an individual entity. Electrons 

are transferred with the help of diffusing electron carriers (coenzyme Q and cytochrome c) that are 

organized in membrane-submersed pools. B) In the solid view, all complexes interact with each other 

to form large supercomplex structures called respirasomes. In mammals, respirasomes contain 

complexes I-IV as well as coenzyme Q and cytochrome c. Yeast supercomplexes lack complex I as well 

as complex II. Schematic representations in A) and B) are based on Hackenbrock et al. (1980), 

Schägger et al. (2001) and Acín-Pérez et al (2014). 

Until now, the existence of supercomplex structures of varying compositions has 

been verified several times and for a plethora of organisms and tissues (reviewed in 

Lenaz & Genova, 2012). Acín-Pérez and coworkers succeeded in isolating 

respirasomes containing all complexes (I-IV) as well as cytochrome c and 

coenzyme Q (Acin-Perez, Fernandez-Silva, Peleato, Pérez-Martos, & Enríquez, 2008). 

This is remarkable, since no other study in yeast or mammals has found complex II 

attached to other respiratory complexes so far.  

1.6.2. The plasticity model  

There is an ongoing debate between the defenders of the solid and the fluid model. 

While the solid model cannot accommodate for the pool behavior of mammalian 

cytochrome c, the fluid model fails in the interpretation of BN-PAGE and coisolation 

studies. However, neither of the models satisfactorily accounts for the sum of kinetic 
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evidence from different species. Acín-Pérez and colleagues observed that 

metabolically labeled mammalian mitochondrial translation products first assemble 

into free complexes, followed by supercomplexes after a gap of several hours (Acin-

Perez et al., 2008). From similar results, Ugalde’s group concluded a model that 

strongly supports the solid state point of view and envisions partially assembled 

complex I as a scaffold for human supercomplex assembly (Moreno-Lastres et al., 

2012). However, this model does not go in line with the observation that single 

active complex I is detectable in complex IV-deficient mitochondria (Balsa et al., 

2012). Therefore, Acín-Pérez and Enriquez proposed a completely new model, 

which accommodates both old models (Acin-Perez et al., 2008; Acin-Perez & 

Enriquez, 2014) (Figure 1-6). The plasticity model considers the respiratory 

complexes to be a mosaic of individual complexes as well as supercomplex 

assemblies in varying compositions. Even though the model is based on 

experimental evidence in mammalian systems, it is also suitable to explain the large 

amounts of free complex IV usually detected in yeast mitochondrial extracts.  

 

Figure 1-6: Schematic representation of the plasticity model. Following the plasticity model, the 

respiratory chain exists as a network of individual complexes and supercomplexes with varying 

composition (I-III2-IVn). The existence of the complex II-containing respirasome as well as the I-III2-V 

supercomplex is not fully confirmed yet. Modified from Acín-Pérez et al. (2014). 

1.6.3. Physiological reasons for the formation of supercomplexes 

The discovery of respiratory supercomplexes inevitably led to the question for their 

physiological relevance. In his first review on the topic, Schägger summarized the 

three possible advantages of supercomplexes over individual complexes that are 

still most popular (Schägger, 2001): catalytic enhancement, complex stabilization 

and sequestration of reactive intermediates. 

Catalytic enhancement: The close association of complex III with complex IV (in 

mammals also complex I) dramatically reduces the diffusion distances for the 

soluble carriers cytochrome c and coenzyme Q. This could lead to faster kinetics. It 
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furthermore enables substrate channeling through short trajectories within the 

supercomplex structure, accounting for the lack of pool behavior in yeast (Lenaz & 

Genova, 2012). However, against this background, the mammalian respiratory chain, 

displaying pool behavior for cytochrome c, would not need supercomplex 

organization.  

Complex stabilization: In mammals, the majority of complex I is bound in either full 

respirasomes or smaller supercomplexes with complex III2 (Acin-Perez et al., 2008; 

Schägger, 2001). In the absence of complex III, complex I becomes unstable (Acin-

Perez et al., 2004; D'Aurelio, Gajewski, Lenaz, & Manfredi, 2006; Schägger et al., 

2004). Even though it was also observed for bacteria (Paracoccus denitrificans), 

complex I stabilization does not mark a common principle, since it is not conserved 

in complex I-containing fungi (Lenaz & Genova, 2012).   

Sequestration of reactive intermediates: Panov and colleagues reasoned that the 

stoichiometry and the channeling of substrates in mammalian respirasomes limits 

the generation of reactive oxygen species (ROS) (Panov et al., 2007). Since the 

terminal enzyme, complex IV, is usually found in excess in respirasomes, all 

upstream units are largely kept oxidized thus preventing the premature reduction of 

oxygen. In mammals the most critical unit in this respect is complex I, whose ROS 

production sites might be less exposed in the supercomplex state (Lenaz & Genova, 

2012). In yeast, it rather comprises complex III. Though the idea of limited ROS 

production due to facilitated electron transfer has been formulated several times 

(Panov et al., 2007; Schägger, 2001; Seelert et al., 2009), sound experimental 

evidence is still missing. 

1.6.4. Supercomplex factors: Between assembly and stabilization 

Respiratory supercomplexes are also found in bacteria such as Paracoccus 

denitrificans. Since bacterial respiratory complexes are exclusively composed of the 

catalytically active core subunits, it has been speculated that these subunits also 

mediate supercomplex formation. On the basis of the endosymbiotic theory, 

mitochondrial supercomplex formation hence might rely on interactions of core 

subunits. A structural model of the yeast III2IV2 supercomplex showed close 

association of conserved complex IV subunits with the surface of complex III and 

vice versa (Heinemeyer et al., 2007). Nevertheless, formation, maintenance and 
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regulation of mitochondrial, and probably also bacterial, supercomplexes requires 

more than pure complex core interactions.  

Membrane lipids were shown to be important players in supercomplex organization. 

Cardiolipin proved to be critical for the stabilization of both populations of yeast 

respiratory supercomplexes (III2IV2 and III2IV), probably by neutralizing charges of 

lysine residues in the presumed interaction domains (Bazán et al., 2013; Pfeiffer et 

al., 2003; Wenz et al., 2009; Zhang, Mileykovskaya, & Dowhan, 2002; 2005). Whether 

it moreover supports supercomplex assembly is still discussed controversially 

(Bazán et al., 2013; Pfeiffer et al., 2003). Apart from cardiolipin, other IM lipids are 

involved in supercomplex organization. While depletion of cardiolipin leads to a 

destabilization of supercomplexes, depletion of phosphatidylethanolamine has the 

opposite effect (Böttinger et al., 2012). Both lipids are crucial for normal enzyme 

activities (Böttinger et al., 2012) and found in the available crystal structures and 

structural models of respiratory complexes (Heinemeyer et al., 2007; Mileykovskaya 

et al., 2012; Tsukihara et al., 1996). In humans, defective biogenesis of cardiolipin 

causes Barth syndrome, a multi-system disease predominantly linked with 

cardiomyopathy, emphasizing its physiological relevance (for review see Gaspard & 

McMaster, 2015). 

In addition, the ADP/ATP carrier (AAC) complex of the IM was reported to influence 

the stability of supercomplexes in yeast (Dienhart & Stuart, 2008). At the same time, 

coupling of AAC to the proton gradient-generating supercomplex renders the 

energy-demanding ATP transport more efficient. Depletion of cardiolipin does not 

only lead to a dissociation of supercomplexes but also to a dissociation of ACC from 

the remaining supercomplexes (Claypool, Oktay, Boontheung, Loo, & Koehler, 2008). 

This illustrates the complexity of supercomplex regulation and IM organization in 

general.  

Even though cardiolipin is widely accepted as a mediator for supercomplex 

formation, researchers had been searching for an additional proteinaceous glue that 

exceeds the hypothetical catalytic core interactions. This could be envisioned as 

stabilizing factors or factors that are actually initiating or triggering supercomplex 

formation. The latter class is of special interest since the composition of 

supercomplexes seems to be liked to the enzymatic activity which in turn needs to 

be adapted to the cells demands (Lenaz & Genova, 2012; Schäfer et al., 2006; 
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Schägger, 2001). The above-mentioned factors would allow for an additional level of 

supercomplex regulation. Such a regulatory effect has also been proposed for post-

translational phosphorylations on complex I and complex IV, which demonstrably 

modify enzyme activities (reviewed in Lenaz & Genova, 2009). In yeast, so far only 

one protein factor was identified that truly affects inter-complex interactions, and 

was hence called Respiratory superComplex Factor 1 (Rcf1) (Chen et al., 2012; 

Strogolova et al., 2012; Vukotic et al., 2012). In its absence, the amounts of III2IV2 are 

reduced. However, levels of III2IV seem to be unaffected. As illustrated for 

cardiolipin, it is not clear whether this Rcf1-specific effect is based on a decreased 

stability or defective assembly of supercomplexes. In the same studies, Rcf1 was 

described to be a structural subunit of complex IV (Chen et al., 2012; Strogolova et 

al., 2012; Vukotic et al., 2012). However, a true supercomplex factor would be 

expected to exclusively associate with supercomplexes but not with individual 

complexes. Nevertheless, since Rcf1 is present in only a subset of complex IV, it is 

tempting to speculate that it primes complex IV for supercomplex assembly (Vukotic 

et al., 2012; Römpler et al., under revision). 

Rcf1 has a mammalian homologue, which is expressed in two isoforms: 

hypoxia-induced HIGD1A (RCF1A) and constitutively expressed HIGD2A (RCF1B). 

Both isoforms are present in supercomplexes due to their association with 

complex IV (Chen et al., 2012; Vukotic et al., 2012). However, only RCF1B is able to 

partially complement for yeast Rcf1 (Vukotic et al., 2012). Chen and colleagues 

showed a role for RCF1B in the formation of supercomplexes (Chen et al., 2012). In 

contrast, the RCF1A was proposed to be a regulatory component of complex IV 

without any impact on supercomplex organization (Hayashi et al., 2015). Closest to a 

yeast Rcf1-like supercomplex factor seemed to be COX7A2l, as suggested by 

Enríquez’s group (Lapuente-Brun et al., 2013), even though its role in supercomplex 

formation is highly controversial (Mourier, Matic, Ruzzenente, Larsson, & 

Milenkovic, 2014).  
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1.7. Aims of this study 

The formation of respiration-competent supercomplex structures in mitochondria 

has been extensively studied in the past decade. On this account, several factors that 

support respiratory supercomplexes have been identified. Among these are specific 

protein factors like the yeast protein Rcf1 (Chen et al., 2012; Strogolova et al., 2012; 

Vukotic et al., 2012). In addition, interactions with lipids (Böttinger et al., 2012; 

Pfeiffer et al., 2003; Zhang et al., 2005) or with other complexes, like AAC (Dienhart 

& Stuart, 2008), have proven to be important. Nonetheless, it still remains to be 

elucidated whether such interactions simply stabilize an existing supercomplex or 

whether they are the actual signal for its formation. Following the plasticity model 

(Acin-Perez et al., 2008), respiratory complexes should be able to constantly change 

between individual complex and supercomplex state depending on the cells needs. 

Therefore, a deeper understanding of the regulation of supercomplex formation is 

needed. In this regard, proteins that are expected to localize to the interface of 

complex III and IV are of special interest. In yeast, two potential candidates within 

this category are Rcf1 and Rcf2 (Cui, Conte, Fox, Zara, & Winge, 2014). Even though 

initial analysis of Rcf2, unlike Rcf1, found that this protein is not essential for 

supercomplex formation (Vukotic et al., 2012), it has uncovered additional 

properties worthy of further investigation. Rcf2 is partly processed upon import into 

mitochondria, rendering it interesting in terms of possible regulatory functions. 

Along these lines, the investigation of the nature and the timing of this processing 

step, as well as its impact on mitochondrial functions, was one of the main aims of 

this study.  

In addition, in silico analysis and alignments revealed a faint but statistically 

significant similarity between Rcf1, Rcf2 and a third, so far uncharacterized, protein 

encoded by the gene YBR255C-A. These alignments demonstrate that the two 

fragments originating from the above mentioned Rcf2 processing would resemble 

Rcf1 and YBR255C-A respectively.  Therefore, the second part of this study deals 

with a basic characterization of YBR255C-A and addresses a possible interaction 

with respiratory (super) complexes. 

Finally, the postulated Rcf protein family is analyzed in greater detail for a potential 

interplay and functional redundancy with regard to respiratory function.
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2. Results 

2.1. Maturation and assembly of the complex IV subunit Rcf2 

In initial analyses of Rcf2, the protein was described as a substoichiometric subunit 

of complex IV that is not essential for respiration or supercomplex formation under 

the tested conditions (Strogolova et al., 2012; Vukotic et al., 2012). For the published 

investigations, in vitro synthesized radiolabeled Rcf2 was imported into isolated 

mitochondria. As the main focus lay on its assembly into supercomplexes, a 

surprising effect was largely overlooked, namely the emergence of a shortened 

version of Rcf2 (Figure 2-1). Based on this finding, a second, more in-depth 

characterization of Rcf2 was initiated, predominantly focusing on a potential 

processing of the imported protein.  

2.1.1. Identification of the Rcf2 processing site 

Rcf2 precursors, radiolabelled with [35S]-methionine, translocate into isolated wild-

type mitochondria in a partially membrane potential-independent manner, as 

previously published (Vukotic et al., 2012). Upon import, a fraction of the protein is 

processed into a smaller fragment of about 21 kDa. The signal of the fragment was 

weak, but still detectable, after treatment with proteinase K and was absent from the 

input (Figure 2-1A). When mitochondrial lysates were tested with an antibody 

against the Rcf2 C-terminus, an Rcf2-specific signal was detected at the size of the 

radiolabeled fragment. The size of the cleaved sequence and the fact that only a 

small fraction of the protein is processed argue against this processing being a 

classical presequence removal. Such a presequence has also not been predicted for 

Rcf2 (Vukotic et al., 2012). It was therefore concluded that the fragment generated 

after import represents an N-terminally truncated additional version of Rcf2 (Rcf2C).  

To define the processing site, a set of radiolabeled N-terminally truncated Rcf2 

constructs was designed (Figure 2-1B), synthesized in vitro and compared to the 

endogenous Rcf2C signal detected by the antibody (Figure 2-1C). This experiment 

revealed an unexpectedly high sensitivity of the Rcf2 antibody. It was able to detect 

minor amounts of in vitro synthesized protein. Specificity was ensured by a 

comparison of rcf2 with construct f (aa1-208), which lacks the C-terminal antibody 
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epitope but gives a strong signal in the autoradiogram. Construct c1 (aa62-224) 

proved to be the closest to the endogenous Rcf2C, which narrows the processing site 

down to a region around amino acid 62. Following the predicted topology of Rcf2, 

depicted in Figure 2-1D, the site should be located within TMD2.  

 

Figure 2-1: A fraction of Rcf2 is processed upon import into mitochondria. A) Radiolabeled Rcf2 

was imported into isolated mitochondria for 15 min in the presence or absence of membrane 

potential (). Samples were treated with proteinase K (PK), where indicated and analyzed by 

SDS-PAGE and digital autoradiography. For comparison with endogenous Rcf2C, mitochondria were 

analyzed by SDS-PAGE and western blotting. B) Amino acid sequence of Rcf2 with TMDs indicated in 

green. Bold characters mark start or stop positions for the truncations. C) Non-imported radiolabeled 

N- and C-terminally truncated Rcf2 constructs were analyzed by SDS-PAGE and compared to 

endogenous Rcf2C as in A.  Construct a represents full length Rcf2. D) Predicted model of the Rcf2 

processing event.   

The corresponding N-terminal fragment, Rcf2N, is represented by construct g 

(aa1-61). It has to be noted, that endogenous Rcf2N does not contain methionine and 
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was therefore not observed in the initial import experiment. For visualization, 

several methionine residues were added to the C-terminus of construct g. 

Endogenous Rcf2N is not immunodetectable either, since it lacks the C-terminal 

antibody epitope. 

To enable detection of Rcf2N, an N-terminally FLAG-tagged Rcf2 construct (FLAGRcf2) 

was generated. Given that both parts of the protein are stable, processing of this 

construct should result in untagged Rcf2C and FLAG-tagged Rcf2N (FLAGRcf2N) that is 

detectable by an antibody directed against the FLAG tag (Figure 2-2A).  

 

Figure 2-2: FLAGRcf2 localizes to mitochondria and enables detection of Rcf2N and Rcf2C. 

A) Model visualizing the position of the FLAG tag in Rcf2 and Rcf2N. B) Wild-type (wt) and rcf2 cells 

expressing plasmid-born FLAGRcf2 were subjected to subcellular fractionation by differential 

centrifugation. Samples of homogenized cells (T), cytosolic supernatant (S) and organellar pellet (P) 

were analyzed by SDS-PAGE and western blotting. Aco and Pgk1 were used as mitochondrial and 

cytosolic controls, respectively. FLAGRcf2, Rcf2 and Rcf2C were detected using -Rcf2 antibody. C) 

Isolated mitochondria of the strains used in D were analyzed by SDS-PAGE and western blotting. Rcf2 

variants were detected using -FLAG (FLAGRcf2 and FLAGRcf2N) and -Rcf2 antibodies (FLAGRcf2, Rcf2 

and Rcf2C). Tom70 served as a loading control.  

FLAGRcf2, expressed from a centromeric plasmid in wild-type and rcf2 correctly 

localized to mitochondria as shown by subcellular fractionation in Figure 2-2B. Like 

endogenous Rcf2, FLAGRcf2 was detected in total and organellar fractions, but not in 

the cytosolic supernatant. The cytosolic control protein, Pgk1, was exclusively 

present in the supernatant. Rcf2C is too low in abundance to be detected in the total, 
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but was nicely enriched in the organellar fractions and absent in the cytosolic 

supernatant. Hence, the N-terminal tag does not interfere with correct Rcf2 

processing. Despite usage of the endogenous Rcf2 promoter, expression level of 

FLAGRcf2 slightly exceeded the level of endogenous protein, as assessed by detection 

of both proteins with the -Rcf2 antibody. Analysis of isolated mitochondria from 

FLAGRcf2-expressing strains with the -FLAG antibody confirmed the existence of 

FLAGRcf2N (Figure 2-2C). The observed signal is specific for FLAGRcf2-expressing 

strains and appeared at the expected size of about 12 kDa.  

2.1.2. Refinement of the Rcf2 topology model  

Based on the model depicted in Figure 2-1D, the processing site is situated within a 

predicted transmembrane region of Rcf2, leaving a rather limited set of potential 

proteases that could be responsible for processing. However, this model is based on 

a predicted topology that has not yet been verified. Prior to an extensive search for 

the protease, it was deemed appropriate to confirm the number and orientation of 

transmembrane domains (TMDs). From data obtained by protease protection assays 

during the initial analysis, an IMS localization of the C-terminus had already been 

postulated (Vukotic et al., 2012). To test whether the same holds true for the 

N-terminus, mitochondria isolated from a genomic RCF2 knockout expressing 

FLAGRcf2 were subjected to the same analysis. When intact mitochondria are exposed 

to proteinase K, all proteins protected by the outer mitochondrial membrane should 

remain stable. Figure 2-3A shows a slight destabilization of control proteins of the 

inner mitochondrial membrane (Tim21 and Mic10) and also FLAGRcf2. This indicates 

that the mitochondrial isolation procedure may have caused slight damage to the 

mitochondrial network. Nevertheless, a further reduction of Tim21 and Mic10 was 

observed in proteinase K-treated mitoplasts, while the inner membrane-protected 

matrix protein, Tim44, remained stable. FLAGRcf2, detected with the -FLAG 

antibody, behaved like Tim21 and Mic10, indicating that its N-terminal antibody 

epitope is protease-accessible and hence is also located in the IMS (Figure 2-3 A+B). 
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Figure 2-3: Rcf2 exhibits a four TMD conformation with its N- and C-terminus facing the IMS. 

A) Wild-type mitochondria were left untreated (M), swollen (MP) or lysed with 1% Triton X-100 

(T X-100), treated with Proteinase K where indicated and subjected to SDS-PAGE and western 

blotting. B) Model showing IMS localization of the Rcf2 N-terminus. C+D) Models indicating the 

positions of the removed/introduced cysteine residues in the amino acid sequence as well as in the 

predicted topology. E) After import of radiolabeled Rcf2, mitochondria were treated with 

proteinase K followed by either swelling (MP) or lysis in SDS (SDS). Samples were incubated in CuSO4 

and subsequently analyzed by SDS-PAGE and autoradiography, followed by immunodetection of 

Tim44.  

With its N- and C-termini facing the IMS, the protein should contain either two or 

four TMDs. In the original publication, Rcf2 was described as a protein containing 

two TMDs (Vukotic et al., 2012). In contrast, TMpred, an algorithm based on the 

statistical analysis of a database of naturally occurring transmembrane proteins 

(Hofmann & Stoffel, 1993), strongly prefers a model with four TMDs. To distinguish 

between these two possibilities, cysteines were introduced into Rcf2 and treated 

with maleimide PEG to determine their localization relative to the inner 

mitochondrial membrane. Maleimide PEG covalently binds to sulfur exposed by 

cysteine residues, thus adding a specific mass (2 kDa) to the modified protein. This 
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compound, however, cannot cross biomembranes such as the inner mitochondrial 

membrane. In mitoplasts, only cysteines facing the IMS are accessible for 

modification, while in SDS-lysed mitochondria, every cysteine should be able to 

react. A comparison of the modification pattern in mitoplasts and lysed 

mitochondria enables the discrimination between IMS and matrix cysteines. The 

mutant versions of Rcf2 used for the experiment were all based on the cysteine-free 

Rcf2C70S. Although the endogenous cysteine proved to be inaccessible to maleimide 

PEG in preliminary experiments, it was removed to fully exclude interferences. The 

additional cysteines where then introduced into the predicted inter-helix loops in 

the IMS and the matrix, as well as into the N- and the C-termini (Figure 2-3 C and D). 

Radiolabeled in vitro synthesized mutant versions of Rcf2 were imported into 

isolated mitochondria, which were subsequently lysed or used to generate 

mitoplasts, prior to treatment with maleimide PEG. Tim44 served as an intrinsic 

control and proof of principle for the experimental setup. This protein contains one 

cysteine, which is protected by the inner mitochondrial membrane in mitoplasts and 

only modified in lysed mitochondria. Figure 2-3 E shows the respective expected 

modification pattern. A similar behavior of C41 and C142 in the Rcf2 mutants 

confirmed these to have positions within the matrix, thereby confirming the first 

and fourth TMD. Unfortunately, two of the introduced cysteines were not modifiable 

in general (Figure 2-3 E – S14C and S89C). Among these was the most interesting 

cysteine at position 89. C89 is close to the endogenous cysteine C70, which could not 

be modified either. While C70 most likely resides within TMD2, which could hinder 

modification, C89 should be well away from the membrane. It was placed in the 

middle of the loop between TMD2 and TMD3 (Figure 2-3). It is therefore 

questionable whether it is in general possible to find a position accessible for 

maleimide PEG in this loop. For this reason, these experiments were not followed 

up. Nevertheless, the hydrophobicity plot used for the topology prediction showed a 

rather strong hydrophobic profile for TMD3 (data not shown). Despite incomplete 

experimental evidence, these results point towards a four TMD model and this was 

therefore adopted for the following analyses.  
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2.1.3. The role of intramembrane proteases in Rcf2 processing 

As mentioned before, processing within a TMD limits the number of proteases that 

could potentially be responsible for cleavage. In general, the helical conformation of 

a TMD makes it a rather poor protease substrate (Hubbard, 1998; Tyndall, Nall, & 

Fairlie, 2005). For this reason, substrates of several intramembrane proteases have 

been shown to contain helix-destabilizing residues, which might promote local helix 

unfolding prior to proteolysis (Akiyama & Maegawa, 2007; Urban & Freeman, 2003; 

Ye, Davé, Grishin, Goldstein, & Brown, 2000). Consistently, the second TMD of Rcf2 

contains two prolines in the vicinity of the approximated cleavage site, as well as 

several alanines, rendering it a suitable substrate. Furthermore, this region meets 

the requirements for a recognition motif identified for rhomboid proteases 

(rhomboids), one of the currently best-understood families of intramembrane 

proteases. These requirements are: a small residue in position P1, along with 

hydrophobic and large residues in P4 and P2’ (Strisovsky, Sharpe, & Freeman, 

2009). Strikovsky and colleagues showed the functional importance of this motif for 

the cleavage of different substrates (e.g. Drosophila Spitz and bacterial TatA) by a 

diverse set of rhomboids. The yeast mitochondrial rhomboid, Pcp1, is a serine 

protease that is responsible for cleavage of the dynamin-like GTPase Mgm1, 

generating a short isoform of Mgm1 that is important for the mitochondrial fusion 

machinery (Herlan, Vogel, Bornhovd, Neupert, & Reichert, 2003; McQuibban, Saurya, 

& Freeman, 2003; Sesaki, Southard, Hobbs, & Jensen, 2003). To test whether Pcp1 is 

also responsible for processing of Rcf2, mitochondria isolated from a genomic 

knockout for PCP1 were analyzed for levels of Rcf2 and Rcf2C (Figure 2-4 A). pcp1 

showed reduced amounts of several tested proteins, including Rcf2. When compared 

to full length Rcf2, the decrease in Rcf2C seemed to be slightly more prominent. 

Nevertheless, processing in general is still taking place in the absence of Pcp1. 

Despite the striking similarity of the Rcf2 processing site with known rhomboid 

substrates, Pcp1 does not seem to be the major processing enzyme of Rcf2.  

To screen for an alternative protease, the next step was to define the protease class. 

Depending on their proteolytic mechanism, proteases can be specifically inhibited 

by different substances. EDTA inhibits metalloproteases by chelating bivalent metal 

ions, while pepstatin A specifically inhibits aspartyl peptidases (Umezawa, Aoyagi, 

Morishima, Matsuzaki, & Hamada, 1970). Complete™ (Roche) is an inhibitor cocktail 
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directed against serine and cysteine proteases. To test whether one of these 

inhibitors prevents cleavage of Rcf2, radiolabeled Rcf2 or Cox13 were imported into 

isolated mitochondria pretreated with either individual or mixed inhibitors. The 

maturation of Cox13 by the metalloprotease MPP was monitored as an intrinsic 

control for the efficiency of the inhibitor pretreatment. Indeed, the signal for mature 

Cox13 was absent in samples treated with the chelating agent EDTA (Figure 2-4 B; 

lanes 4, 6 and 7). In contrast, Rcf2C was always detected, also in a sample treated 

with inhibitors against all known classes of proteases (Figure 2-4 B; lane 7).  

 

 

Figure 2-4: Deletion of PCP1 and treatment with common protease inhibitors do not affect the 

processing of Rcf2. A) Isolated mitochondria of wild-type (wt) and pcp1 were analyzed by 

SDS-PAGE and western blotting. B) Radiolabeled Rcf2 or Cox13 (lane 1) were imported into isolated 

wild-type mitochondria pretreated with the indicated inhibitors (lanes 2-7). Samples were subjected 

to SDS-PAGE and autoradiography. For separation of pre and mature Cox13, the gel was 

supplemented with urea. 

2.1.4. Rcf2C is associated with complex IV while Rcf2N is not  

Even though the protease could not be identified, the analysis so far has clearly 

shown the presence of two shortened versions of Rcf2, in addition to the full length 

protein, in mitochondria. The next step was to address the fate of both fragments, 

focusing especially on a potential complex IV and/or supercomplex association of 

Rcf2C and Rcf2N. In a two-dimensional gel analysis of isolated mitochondria, the 

endogenous full length protein usually segregates into three different pools (Figure 

2-5 A). In the first and second pool it comigrates with supercomplexes and 

monomeric complex IV respectively. The predominant version of complex IV at 

steady state is slightly smaller than the main Rcf2-containing version of complex IV. 

Nevertheless, the latter still contains Cox1 (and other structural subunits) and is 

indicated as complex IV*. The third pool migrates at roughly 100 kDa and cannot be 
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assigned to a specific protein complex. Rcf2C comigrated with the first and second 

pool, but not with the third (Figure 2-5 A). Thus it seems to be a component of 

complex IV*. To confirm the interaction predicted from the comigration pattern, 

complex III and IV were isolated and the elution fractions were tested for the 

presence of Rcf2C (Figure 2-5 B). To maintain a preferably natural protein 

environment, the experiment was first carried out in tag-free strains, using specific 

antibodies directed against structural subunits of complex IV (Cox2) and III (Qcr8). 

Both antibodies were able to isolate detectable amounts of bait from digitionin-

solubilized mitochondria and coisolated both, full length and truncated Rcf2. 

However, compared to the levels of complex III/ IV and Rcf2C that were coisolated 

with Rcf2, the isolation efficiency in general was rather poor.  

 
Figure 2-5: Rcf2C comigrates with and is coisolated by complex IV and respiratory 

supercomplexes. A) Isolated wild-type mitochondria were solubilized in 1% digitonin and analyzed 

by BN-PAGE followed by a second dimension SDS-PAGE and western blotting. Cox1 and Rip1 were 

used to mark the positions of respiratory supercomplexes (III2IV2 and III2IV), complex III2 and 

complexes IV / IV* (total: 10 µg). B) Digitonin-solubilized wild-type mitochondria were used for 

immunoprecipitation of Cox2, Qcr8 and Rcf2. Pam18 served as a negative control. Total (6%) and 

eluates (100%) were analyzed by SDS-PAGE and western blotting. 

The isolation of ZZ-tagged Cox4 on the other hand enabled efficient isolation of 

complex IV and supercomplexes (Figure 2-6 A), as evidenced by the amount of Cox1 

and Rip1 present in the elution. Despite enrichment of full length Rcf2 in 

TEV-cleaved Cox4ZZ eluates, only minor amounts of Rcf2C were detectable in the 

SDS-PAGE. Two-dimensional analysis of the eluate revealed the presence of Rcf2C in 

the Rcf2-containing complex IV* population that was coisolated with the structural 

subunit Cox4 (Figure 2-6 B).  
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Figure 2-6: Rcf2C is associated with complex IV*, a specific population of complex IV. 

A) Digitonin-solubilized mitochondria isolated from wild-type (wt) and Cox4ZZ strains were subjected 

to IgG chromatography. Upon TEV protease cleavage, elutions were analyzed by SDS-PAGE and 

western blotting (total: 5%; elution: 100%). B) TEV-cleaved Cox4ZZ eluate from A was used for 

BN-PAGE followed by a second dimension SDS-PAGE and western blotting. Cox1 and Rip1 were used 

to mark the positions of respiratory supercomplexes (III2IV2 and III2IV), complex III2 and complexes 

IV / IV*. Cox4* marks Cox4 after removal of ZZ by TEV cleavage (total: 10 µg). 

To verify association of Rcf2c with complex IV components, this analysis was 

performed reciprocally. Rcf2-containing complexes were isolated via FLAGRcf2 in the 

genomic rcf2 background. As depicted in Figure 2-7 A, the isolation via the 

N-terminal FLAG tag was extremely efficient and strongly copurified complex IV 

(Cox1) and III (Qcr8). Total, elution and unbound samples were then compared in a 

two-dimensional PAGE analysis. Figure 2-7 B demonstrates that FLAGRcf2 specifically 

copurified complex IV*, as indicated by the enrichment and comigration of Cox1 and 

Cox2 with FLAGRcf2 and Rcf2C. Based on the migration pattern of Cox1 and Cox2 in 

total and elution samples, the predominant pool of monomeric complex IV did not 

contain FLAGRcf2, which therefore remained in the unbound fraction. Remarkably, 

even though Rcf2C was coisolated along with FLAGRcf2, a considerable amount that 

associated with complex IV or supercomplexes remained in the unbound. Even 

though isolation via the FLAG tag did not lead to considerable enrichment of the 

100 kDa pool of Rcf2, it was absent in the unbound sample. At the same time, a 

strong signal for full length Rcf2 appeared in a range below 66 kDa in the eluate. 

This could hint towards a dissociation of the protein from different complexes 

during the course of the isolation. 



RESULTS 

 29 

 
Figure 2-7: Complex IV* is specifically enriched by isolation of Rcf2. A) Digitonin solubilized 

rcf2 / FLAGRcf2 mitochondria were used for immunoprecipitation via FLAG. Samples were eluted 

with FLAG peptide. Total (3%) and elution (100%) were subjected to SDS-PAGE and western blotting. 

rcf2 (-) was included as a control. B) Total, elution and unbound from A were subjected to BN-PAGE 

followed by a second dimension SDS-PAGE and probed for markers for respiratory complexes (Cox1, 

Cox2, Qcr8), as well as FLAGRcf2 (-FLAG) and Rcf2C (-Rcf2). T = 10 µg digitonin solubilized 

mitochondria. 

Figure 2-7 B also demonstrates that the N-terminal FLAG tag does not interfere with 

the protein’s association with complex IV*. It could therefore be used as a suitable 

tool for the analysis of Rcf2N migration patterns. Mitochondria isolated from 

FLAGRcf2-expressing rcf2 were subjected to two-dimensional PAGE, and probed 

with -FLAG antibody to visualize FLAGRcf2 and FLAGRcf2N (Figure 2-8 A). In contrast 

to Rcf2C, FLAGRcf2N did not comigrate with the full length protein in any of the three 

Rcf2 pools. Using a long exposure, a faint signal with a peak in the range below 

66 kDa was detected and suspected to be free FLAGRcf2N. Generally, the detection of 

digitonin-solubilized FLAGRcf2N is extremely poor, while mitochondrial lysates 

generated in regular SDS sample buffer allow for a clear, albeit weak, FLAG signal. 

To test whether this effect is based on the detergent or rather on an overall 

instability of Rcf2N, the solubilization properties of FLAGRcf2, Rcf2C and FLAGRcf2N 

were analyzed in different detergents (Figure 2-8 B). Strikingly, none of the tested 
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detergents were able to preserve FLAGRcf2N, while FLAGRcf2 and Rcf2C were always 

visible, although to different extents. FLAGRcf2N was exclusively detectable in 

mitochondria lysed in SDS sample buffer. Since isolation via the FLAG tag did not 

result in a noticeable enrichment of FLAGRcf2N either (data not shown), it can be 

assumed that this fragment is unstable.  

 

Figure 2-8: FLAGRcf2N is highly unstable and does not associate with any of the Rcf2-containing 

complexes. A) Isolated mitochondria of FLAGRcf2-expressing rcf2 were solubilized in 1% digitonin 

and analyzed by BN-PAGE followed by second dimension SDS-PAGE and western blotting. Cox1 and 

Qcr8 were used to mark the positions of respiratory supercomplexes (III2IV2 and III2IV), complex III2 

and complexes IV / IV*. Rcf2C was detected with -Rcf2 antibody (*). T = 10 µg digitonin solubilized 

mitochondria. B) The same mitochondria as in A were solubilized using the indicated detergent or 

resuspended in SDS sample buffer (Lae). Samples were analyzed by SDS-PAGE and western blotting.  

2.1.5. Assembly of Rcf2 into supercomplexes depends on its C-terminus 

Since the protease could not yet be determined, it is unclear where and when the 

processing of Rcf2 takes place. Assuming a post-import processing step, further 

dissection is required to determine whether cleavage occurs prior to, during, or after 

assembly into complex IV. In the case of co- or post-assembly processing, pre-

truncated Rcf2 might be unable to assemble into supercomplexes. To test this 

hypothesis, truncated Rcf2 constructs were used for in vitro import and assembly 

studies. All truncations were able to translocate into a protease-protected 
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mitochondrial compartment in a partially membrane potential-independent 

manner, as observed for the full length protein (Figure 2-9 lower panel). 

Furthermore, the Rcf2C-resembling construct, C1 (aa63-224), was assembled into 

supercomplexes, even more efficiently than full length Rcf2 (Figure 2-9 upper 

panel). In contrast, the Rcf2N-ressembling construct, G (aa1-62), was unable to 

assemble into any high molecular weight complexes. Likewise, every other 

C-terminal truncation, with the exception of construct F (aa1-208), failed to reach 

supercomplexes and did not assemble into any smaller complexes either. 

Construct F (aa1-208) is only shortened by the last 16 amino acids. Therefore, it still 

contains the main portion of the IMS domain following the last TMD. Unlike the 

other C-terminal truncations, it was efficiently integrated into supercomplexes. 

Hence, the assembly of Rcf2 depends on the presence of TMD3, TMD4 and at least a 

part of the C-terminal IMS domain, which roughly corresponds to Rcf2C. This 

strongly hints to a pre-assembly processing after which only Rcf2C is further 

assembled into complex IV, as is the unprocessed protein.  
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Figure 2-9: The C-terminal half of Rcf2 present in Rcf2C is essential for Rcf2 assembly into 

supercomplexes. Radiolabeled N- and C-terminally truncated Rcf2 constructs (N and C) were 

imported into isolated mitochondria for 45 min in the presence or absence of membrane potential 

(). Proteinase K treated samples were split for solubilization in 1% digitonin buffer and SDS 

sample buffer. Samples were analyzed by BN-PAGE or SDS-PAGE and digital autoradiography. 

Constructs A, C1 and G represent full length Rcf2, approximated Rcf2C and approximated Rcf2N, 

respectively. 

2.1.6. Rcf2 follows an unusual import pathway into the inner membrane 

It was puzzling that N-, as well as C-, terminal truncations of different sizes were 

imported into isolated mitochondria, often even more efficiently than full length 

Rcf2 (Figure 2-9 lower panel). This raised the question as to how Rcf2 is imported 

and integrated into the membrane. The most common import pathway for the inner 

mitochondrial membrane is through the TIM23 machinery and usually requires an 

N-terminal presequence (Chacinska, Koehler, Milenkovic, Lithgow, & Pfanner, 2009; 

Schatz & Dobberstein, 1996). Such a sequence has not been predicted for Rcf2. 

However, an alterative pathway, via the TIM22 machinery, exists for multi-spanning 
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carrier proteins of the inner membrane. Substrates of the carrier pathway usually 

contain four or six TMDs (Brix et al., 1999; Dudek et al., 2013; Moualij, Duyckaerts, 

Lamotte-Brasseur, & Sluse, 1997). Like the known substrates of this pathway, Rcf2 

contains positive charges in the matrix-exposed loops (Moualij et al., 1997; Nelson, 

Felix, & Swanson, 1998). Therefore, import and assembly of Rcf2 were monitored in 

a temperature sensitive mutant of the small Tim protein, Tim10, which is engaged in 

the transfer of carrier precursors from TOM to TIM22. Upon a shift to restrictive 

temperature, loss of Tim10 function in tim10-2 (Truscott et al., 2002) leads to less 

efficient assembly of the known substrate AAC (ADP / ATP carrier). In contrast, 

assembly of Rcf2 into complex IV and supercomplexes remained unaffected (Figure 

2-10). Hence, Rcf2 is not a substrate of the TIM22 import pathway.  

 
Figure 2-10: Import of Rcf2 does not rely on a functional carrier pathway. Radiolabeled AAC or 

Rcf2 were imported into heat-shocked isolated wild-type or tim10-2 mitochondria for the indicated 

times in the presence or absence of membrane potential (). Proteinase K treated samples were 

split for solubilization in 1% digitonin buffer and SDS sample buffer. Samples were analyzed by 

BN-PAGE or SDS-PAGE and digital autoradiography.  

Despite the absence of a presequence, a potential involvement of TIM23 was also 

tested. To this end, a genomic tim23, ectopically expressing TIM23 under the 

control of a galactose-inducible promotor was used. By elimination of galactose 

paralleled by addition of glucose to yeast media, the levels of Tim23 can be reduced 

to an amount that still allow for survival of the cell but will give a strong import 
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defect for presequence-containing proteins (Schulz et al., 2011). The import of 

classical substrates of the TIM23 machinery such as the inner membrane proteins 

Cox13 and Oxa1, and the matrix-targeted artificial construct Su9-DHFR, was 

severely reduced in this mutant (Figure 2-11 A). AAC does not rely on Tim23 and 

thus remained unaffected. For Rcf2, an initial drop in import efficiency to 

approximately 80% of wild-type was observed (Figure 2-11 A and B). Strikingly, 

after eight minutes, this reduction was completely abolished. These results do not 

argue for a clear-cut dependency on Tim23, however a general involvement of the 

presequence pathway cannot be excluded either. 

 
Figure 2-11: Import of Rcf2 does not strictly depend on the presence of Tim23. A) Radiolabeled 

precursor proteins were imported into isolated wild-type and tim23 mitochondria for the indicated 

times in the presence or absence of membrane potential (). Proteinase K treated samples were 

lysed in SDS sample buffer and analyzed by SDS-PAGE. For better separation of pre and mature 

Cox13, the gel was supplemented with urea. p = precursor; m = mature protein B) The results shown 

in A were quantified using  ImageQuant TL software. 
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2.2. YBR255C-A / Rcf3 is a novel interaction partner of complex IV 

A valuable hint towards the potential role of the Rcf2 processing event, came from 

an in silico analysis in cooperation with Kay Hofmann (Institute for Genetics, 

University of Cologne). These alignments revealed a weak, but statistically 

significant, similarity of Rcf2 to Rcf1, as well as to the putative protein YBR255C-A 

(Figure 2-12).  

 

Figure 2-12: Alignment visualizing sequence similarities among Rcf1, Rcf2 and YBR255C-A 

(Rcf3). The model (A) was based on alignments (B) provided by Kay Hofmann (Institute for Genetics, 

University of Cologne). Dark green and cyan indicate transmembrane spans (TM); light green 

indicates a possible transmembrane span or hydrophobic patch. HIG1 marks the homology region for 

Hif1 induced genes. Black and grey boxes indicate identical and similar residues, respectively. 

Asterisks mark putative transmembrane spans. Sc=Saccharomyces pombe, Ca=Candida albicans, 

Pp=Pichia pastoris, Sp=Schizosaccharomyces pombe, Nc=Neurospora crassa, Um=Ustilago maydis, 

Cc=Coprinopsis cinerea, Ro=Rhizpus oryzae, Co=Capsaspora owczarzaki 
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It had previously been suggested that Rcf1 and Rcf2 might be related to each other 

(Strogolova et al., 2012) and this data now clearly assigns the similarity region to the 

C-terminal half of Rcf2. In contrast, the similarity region for YBR255C-A falls within 

the N-terminal half of Rcf2. Since there is almost no overlap, Rcf1 and YBR255C-A 

could be envisioned as a split paralogue of Rcf2.  

Due to these observations, the so far uncharacterized protein product of YBR225C-A 

was named Rcf3. A mitochondrial targeting signal could not be predicted. 

Nevertheless, the protein had been suggested to interact with complex III / IV in a 

proteomics-based study by Helbig and coworkers (Helbig et al., 2009). Most 

interestingly, in the same study, a complex III / IV association of Rcf1 and Rcf2 was 

predicted, which was later on, confirmed biochemically (Chen et al., 2012; 

Strogolova et al., 2012; Vukotic et al., 2012). 

An in depth analysis of Rcf3 therefore seemed to be of value for understanding the 

role of the Rcf family.   

2.2.1. Rcf3 is a protein of the inner mitochondrial membrane 

Mitochondrial localization of Rcf3 was confirmed in a strain expressing a C-terminal 

GFP-tagged Rcf3. Rcf3GFP colocalized with the mitochondrial network, visualized 

using MitoTracker in living yeast cells (Figure 2-13 A). Microscopic analysis was 

kindly provided by Markus Deckers (Department of Cellular Biochemistry, 

University Medical Center Göttingen). The open reading frame furthermore contains 

an intron ranging from G64 to G157 that is removed from the mRNA prior to 

translation, leading to a protein of approximately 14 kDa. 

Based on the predicted model (Figure 2-12), Rcf3 should contain one to two TMDs. 

Consistently, it behaved like the integral inner membrane proteins Tim21 in a 

carbonate extraction analysis (Figure 2-13 B). Even in a carbonate solution of 

pH 11.5, Rcf3 exclusively remained in the membrane fraction.   

To determine in which of the mitochondrial membranes Rcf3 is located, wild-type 

mitochondria were tested for the accessibility of protease to Rcf3 in mitoplasts and 

in intact mitochondria (Figure 2-13 C). Rcf3 was stable in proteinase K-treated 

mitochondria. Only upon removal of the outer membrane the Rcf3 signal decreased 

in a similar manner to Tim23 (inner membrane) but not to Tom70 (outer 

membrane), or Tim44 (matrix). The decreasing signal indicates a protease 
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accessibility of the C-terminal antibody epitope. Hence, the protein should localize to 

the inner membrane, with its C-terminus facing the IMS. 

 
Figure 2-13: Rcf3 localizes to the inner mitochondrial membrane and exposes its C-terminus 

to the IMS. A) Distribution of Rcf3 was analyzed by fluorescence microscopy in cells expressing 

Rcf3GFP. To test for colocalization, mitochondria were visualized using MitoTracker. Scale bar, 5 µm. 

B) Mitochondria of Rcf3SF expressing cells were subjected to carbonate extraction or lysed with 1% 

Triton X-100 (TX-100). Using ultra centrifugation, samples were separated into pellet (P) and 

supernatant (S) and compared to total (T). Samples were subjected to western blot analysis with 

Tom70 and Tim21 as membrane bound controls and Tim44 as a soluble control. C) Wild-type 

mitochondria were left untreated (M), swollen (MP) or lysed with 1% Triton X-100, treated with 

proteinase K where indicated and subjected to SDS-PAGE and western blotting. Tom70, Tim23 and 

Tim44 served as controls for protease-accessible, OM-protected and IM-protected proteins, 

respectively. 

At this point, it remains elusive as to whether Rcf3 contains only one TMD, or two. 

Based on the low hydrophobic profile of TMD2 in the hydrophobicity plot, it might 

well be that this region represents a hydrophobic patch rather than a true 

transmembrane span.  

2.2.2. Rcf3 is not essential for respiration but interacts with respiratory 

supercomplexes 

The complex IV association predicted by Helbig and coworkers (Helbig et al., 2009) 

raised the question as to whether Rcf3 might be important for the cells ability to 

respire. Therefore, RCF3 was genomically deleted. The strain was tested for growth 

on non-fermentable media in comparison to a respiration-deficient cox5a strain. 

Unlike rcf1 rcf3 showed no respiratory defect on lactate medium (Figure 2-14 A), 

thereby resembling rcf2. In line with this, a BN-PAGE analysis of mitochondria 
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isolated from rcf3 did not reveal a reorganization of respiratory supercomplexes, 

especially of complex IV (Figure 2-14 B). Neither in vitro activity assays for 

complex III / IV (Figure 2-14 C), nor oxgygen consumption measurements with 

intact mitochondria (Figure 2-14 D), revealed a defect for rcf3.  

Nevertheless, the deletion strain provided a useful tool for the import and assembly 

of radiolabeled Rcf3 precursor. When energized rcf3 mitochondria were incubated 

with [35S]-Rcf3 or [35S]-Rcf1 and subsequently solubilized in digitonin, both proteins 

were strongly detectable in respiratory supercomplexes (Figure 2-15 A). 

Additionally, complexes in the range of monomeric complex IV (IVDig) were detected, 

as well as an Rcf3-specific complex of approximately 100 kDa. In contrast, in 

wild-type mitochondria analyzed in the same way, Rcf3 was barely detectable (data 

not shown). While supercomplexes are generally preserved in digitonin, the harsher 

detergent DDM disintegrates them into their individual counterparts. Upon 

solubilization in DDM, only residual amounts of both proteins remained in complex. 

In the case of Rcf1, this complex is known to correspond to complex IV, which 

migrates slightly faster in DDM (IVDDM) than in digitonin (IVDig). The barely visible 

Rcf3 complex in DDM however seemed to run slightly slower than IVDDM. 
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Figure 2-14: Deletion of Rcf3 does not affect respiration. A) rcf3 cells were tested for growth on 

minimal media supplemented with glucose or lactate at the indicated temperatures in comparison to 

wild-type and respiratory deficient cox5a. B) Digitonin-solubilized mitochondria of wild-type and 

rcf3 were analyzed by BN-PAGE and western blotting. Antibodies against Rcf2, Cox1, Cox2, Cox4, 

Cox6 and Cox13 were used to detect complex IV. Complex III was detected via Rip1, and ATPase via 

Atp5. C) Cytochrome bc1 complex and cytochrome c oxidase activity were measured in isolated 

mitochondria of wild-type, cox4∆, cyt1∆ and rcf3∆ (mean of n=6 / n=4 ± STDEV). D) Oxygen 

consumption rates were measured in isolated wild-type and rcf3∆ mitochondria using an 

Oxygraph 2 k (Oroboros) at 30°C (mean of n=4 ± STDEV). 

For a direct comparison of Rcf3- and Rcf1-containing complexes in both detergents, 

samples were loaded in adjacent lanes (Figure 2-15 B – autoradiogram). This clearly 

proved that, apart from supercomplex structures, all Rcf3 complexes were slightly 

bigger than the corresponding Rcf1-containing complexes. To ensure that the size of 
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the latter was identical with complex IV, mitochondrial lysates were probed for Cox1 

and Rip1 (Figure 2-15 B – western blot). The results thus indicate a supercomplex 

association of Rcf3. However, whether this association is mediated through 

complex IV, could not be answered using this experimental setup.  

 
Figure 2-15: Rcf3 is assembled into respiratory supercomplexes in isolated rcf3 

mitochondria. A) Radiolabeled Rcf3 or Rcf1 were imported into isolated rcf3 mitochondria for the 

indicated times in the presence or absence of membrane potential (). Proteinase K treated 

samples were then solubilized in 1% digitonin or 0.6%DDM and analyzed by BN-PAGE and digital 

autoradiography. IVDig and IVDDM indicate the size of the Rcf1-containing pool of monomeric 

complex IV when solubilized in the respective detergent. B) Radiolabeled Rcf3 or Rcf1 were imported 

into isolated rcf3 mitochondria for 45 min and analyzed as specified in A. For comparison, wild-type 

mitochondria were solubilized in 1% digitonin or 0.6% DDM and analyzed by BN-PAGE and western 

blotting. Complex III and IV containing assemblies were visualized by immunodetection of Rip1 and 

Cox1, respectively. 
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2.2.3. The supercomplex association of Rcf3 is mediated through 

complex IV and complex III 

A possibility to distinguish between complex IV and complex III-mediated 

supercomplex association is provided by the isolation of a ZZ-tagged subunit of 

either complex (Cox4ZZ or Cor1ZZ). In digitonin-solubilized mitochondria, both 

proteins reside within and hence interact with supercomplexes. In DDM however, 

Cox4 and Cor1 exclusively coisolate subunits of individual complex IV and III 

respectively. Small amounts of Rcf3 were isolated with both complexes in digitonin, 

confirming a supercomplex association of the protein that was observed in the 

previous experiment (Figure 2-16 A). Again, DDM treatment caused almost complete 

dissociation of Rcf3. Consistently only digitonin-solubilized Rcf3ZZ was able to 

copurify small amounts of both complexes  (Cox1, Cox2, Rcf1, Rcf2 as well as Rip1) 

in the inverse experiment (Figure 2-16 B). Interestingly, DDM abolished all 

interactions except the one between Rcf3ZZ and Rcf1, which was weakened but still 

detectable. 

 
Figure 2-16: Endogenous Rcf3 interacts with supercomplexes but dissociates in DDM. 

A)  Mitochondria isolated from wild-type (wt), Cox4ZZ and Cor1ZZ strains were solubilized in 1% 

digitonin or 0.6% DDM and subjected to IgG chromatography. Upon TEV protease cleavage, elutions 

were analyzed by SDS-PAGE and western blotting. Cox4* marks Cox4 after removal of ZZ by TEV 

cleavage (total: 5%; elution: 100%). B) Mitochondria isolated from wild-type (wt) and Rcf3ZZ were 

treated as in A. Cox4*/ Rcf3* mark Cox4/Rcf3 after removal of ZZ by TEV cleavage (total: 5%; elution: 

100%). 

Due to the labile nature of Rcf3 in DDM, discrimination between complex III and IV 

association was still not possible although Rcf3 seemed to be slightly more abundant 

in Cox4ZZ elutions. In summary, Figures 2-15 and 2-16 therefore prompted the 

speculation that Rcf3 is loosely associated with the oxidase. It has to be questioned 

whether such a labile interaction partner would be stably associated during other 
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analyses such as BN-PAGE. The cooperation of the neutral detergent digitonin and 

the anionic Coomassie dye had already been reported to create harsher conditions 

than originally anticipated (Schägger, 2001). To circumvent a potential dissociation 

of Rcf3-containing assemblies during BN-PAGE, a gel filtration analysis was 

performed (Figure 2-17). In digitonin-solubilized wild-type mitochondria only a 

fraction of Rcf3 comigrated with respiratory supercomplexes (indicated by Cox1 and 

Rip1), while the majority accumulated in fractions with lower molecular weight 

(Rcf3small). This result fits well into the observation that only small amounts of Rcf3 

were coisolated with Cox4ZZ and Cor1ZZ (Figure 2-16 A).  

 

Figure 2-17: C-terminal ZZ tagging alters supercomplex association of Rcf3 even though 

respiration remains unaffected. A) Digitonin-solubilized mitochondria from wild-type and Rcf3ZZ 

were subjected to gel filtration analysis. Fractions 2-15 were precipitated with the help of TCA and 

subsequently analyzed by SDS-PAGE and western blotting. Cox1 and Rip1 indicate fractions 

containing supercomplexes (SC). B) rcf3, Rcf3ZZ and Rcf3SF cells were tested for growth on minimal 

media supplemented with glucose or glycerol at indicated temperatures in comparison to wild-type 

and respiratory deficient cox5a. 

In contrast, the addition of a C-terminal ZZ tag led to increased supercomplex 

association, with almost equal amounts of Rcf3ZZ in the supercomplex and the 
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Rcf3small pool (Figure 2-17 A). This effect was surprising, especially since the 

addition of tags did not affect respiration in a growth test (Figure 2-17 B).  

In light of the tag-related reorganization of supercomplexes, the Rcf3ZZ strain is not 

an appropriate tool. Hence the antibody against the endogenous protein was tested 

for immunoprecipitation and found to be suitable for the enrichment of Rcf3 from 

digitonin-solubilized mitochondria. To distinguish between complex III and 

complex IV association in an unambiguous way, Rcf3 was precipitated from cox4 

and cyt1Mitochondria from these strains do not contain fully assembled 

complex IV and III, respectively and so all observed interactions should thus be 

independent from respiratory supercomplexes. As expected, endogenous Rcf3 

coisolated small amounts of Cox1 and Cox2 (complex IV), as well as Cyt1, Rip1 and 

Qcr8 (complex III) in wild-type (Figure 2-18). In the absence of complex III, Rcf3 still 

copurified Cox1 and Cox2 and likewise, it brought all tested complex III subunits in 

the absence of complex IV. This questions the hypothesized model, rather suggesting 

that Rcf3 localizes to an interface without clear assignment to complex III or IV.  

 

Figure 2-18: Rcf3 is able to interact with both 

complex III and complex IV. Digitonin-solubilized 

mitochondria from wild-type (wt), cox4, cyt1 and 

rcf3 were used for immunoprecipitation of Rcf3. 

Totals (3%) and elutions (100%) were analyzed by 

SDS-PAGE and western blotting. 

 

2.2.4. Rcf proteins accumulate in small complexes 

Both gel filtration (Figure 2-17) and coimmunoprecipitation experiments (Figure 

2-18) concordantly showed that only a minor fraction of Rcf3 associates with 

respiratory supercomplexes. Even though originally described as complex IV 

subunits, closer analysis of Rcf1 and Rcf2 revealed these two proteins have very 

similar characteristics. At least Rcf1 coisolates only small amounts of complex III 

and IV, as judged by detection of Cox2 and Qcr8 (Figure 2-19 A). This seems to be 
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the case for Rcf2 as well, although an estimation of the levels of coisolated proteins 

is aggravated by unequal isolation efficiency.  

 

 
Figure 2-19: All Rcf proteins accumulate in small assemblies independent of complex III / IV. 

A) Digitonin-solubilized wild-type mitochondria were used for immunoprecipitation of Rcf1, Rcf2, 

and Rcf3. Pam18 was used as a negative control. Totals and eluates were analyzed by SDS-PAGE and 

western blotting. B) Digitonin-solubilized mitochondria of wild-type, cox4 and cyt1were analyzed 

by BN-PAGE, followed by a second dimension SDS-PAGE and western blotting. Cox1 and Qcr8 

indicate the positions of respiratory supercomplexes (III2IV2 and III2IV), complex III2 and complexes 

IV / IV*.  

To examine the presence of small assemblies, similar to those observed for Rcf3, 

wild-type mitochondria were subjected to second-dimension PAGE analysis and 

probed for all three Rcf proteins. This analysis indeed revealed distinct small Rcf 

complexes in addition to the known supercomplex associations (Figure 2-19 B). 

Moreover, these complexes were also formed to the same extent and size in the 

absence of fully assembled complex III (cyt1) or complex IV (cox4) (Figure 

2-19 B). Judging from migration behavior, Rcf1 seems to form a very prominent 

100 kDa complex on its own, while Rcf2 and Rcf3 could potentially reside within a 

joint complex. The latter runs at approximately 70 kDa and contains the bulk of Rcf3. 

In contrast to data shown in Figure 2-18, the analysis shown in Figure 2-19 B once 
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again supports an exclusive complex IV association. In cyt1 Rcf3 comigrated with 

Rcf1 and Rcf2 in the range of complex IV*, but not complex IV. Compared to Rcf1 and 

Rcf2, it seemed to be low in abundance since this interaction was barely visible in 

wild-type mitochondria. In cox4 on the other hand, no Rcf2 and Rcf3 assemblies 

beyond the size of the small Rcf complexes were detected, excluding a complex III 

association. Only Rcf1 still appeared in a range up to 240 kDa. 

2.2.5. Attempts to define the role of the small Rcf-containing complexes 

Assuming that Rcf2 and Rcf3 reside within one small complex it should be possible 

to show a supercomplex-independent interaction between the two proteins. As is 

apparent in earlier experiments, most Rcf interactions are lost in DDM. Therefore, 

analysis of cox4∆ and cyt1∆ was pursued. Immunoprecipitation of Rcf1, Rcf2 and 

Rcf3 revealed interactions between these proteins that are indeed independent of 

the presence of fully assembled respiratory supercomplexes (Figure 2-20 A). Like 

Rcf3, Rcf1 and Rcf2 were both able to copurify stable, albeit reduced, amounts of 

complex III in the absence of complex IV. The absence of fully assembled complexes 

in these mutants is based on a stalled assembly due to the lack of a structural 

subunit (Cox4/ Cyt1). Remaining present, however, are assembly intermediates that 

might still provide a platform for a complex III / IV-specific interaction. Even though 

in such case an increase in Rcf-containing small complexes in Figure 2-19 B could be 

anticipated, this option was tested by an additional experiment. To prevent the 

formation of assembly intermediates, mitochondria were isolated from strains 

lacking mitochondrial DNA. Without the catalytic core subunits encoded in the 

mitochondrial genome, the assembly of respiratory complexes is entirely disrupted. 

Nevertheless, Rcf3 still coisolated small amounts of Rcf2 and even increased 

amounts of Rcf1 (Figure 2-20 B), strongly pointing towards a pre-assembly 

interaction.  
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Figure 2-20: Rcf proteins interact with each other independently of complex III or IV. 

A) Digitonin-solubilized mitochondria from wild-type (wt), cox4 and cyt1 were used for 

immunoprecipitation of Rcf1, Rcf2, and Rcf3. Totals and eluates were analyzed by SDS-PAGE and 

western blotting. B) Digitonin-solubilized mitochondria from wild-type (+) and rcf3 (-) either with 

(rho+) or without (rho0) mitochondrial DNA were used for immunoprecipitation of Rcf3 and further 

processed as in A.  

Consequentially, it had to be tested whether this interaction truly takes place within 

the observed small complexes. Loss of an interaction partner in rcf1, rcf2 or rcf3 

was assumed to trigger disintegration, or at least a size shift of small complexes. 

However, the organization of small complexes did not change in the expected way in 

a two dimensional analysis. Rcf1 and Rcf2 stably maintained their distribution 

pattern in the absence of the other respective Rcfs (Figure 2-21). Rcf3 appeared to 

be unchanged in the absence of Rcf2 but slightly rearranged in rcf1. It usually 

forms two distinct small complexes: R3a (~140 kDa) and R3b (~70 kDa). While R3b 

remained unchanged, R3a seemed to be increased (Figure 2-21 – rcf1). At the same 

time, the supercomplex association of Rcf3 was weakened. It has to be noted in this 

context that Rcf2 was strongly detected in supercomplexes in rcf1 even though it 

had been reported to assemble less efficiently in the absence of Rcf1 (Vukotic et al., 

2012).  



RESULTS 

 47 

 
Figure 2-21: The small Rcf complexes form independently of the presence of the other Rcfs. 

Digitonin-solubilized mitochondria of wild-type, rcf1 rcf2 and rcf3were analyzed by BN-PAGE 

followed by a second dimension SDS-PAGE and western blotting. Cox1 indicates the positions of 

respiratory supercomplexes (III2IV2 and III2IV) and complex IV. Dashed lines mark the small Rcf3 

complexes, R3a and R3b.  
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2.3. Investigation of a potential interplay of Rcf proteins 

The surprising sequence similarity between Rcf2N and Rcf3, as well as the 

interaction behavior described before, lead to the question of a functional overlap 

within the Rcf2 family. Given that Rcf2N is highly unstable and probably rapidly 

degraded, a regulatory function, possibly within the respiratory chain, could be 

envisioned.  

2.3.1. Overexpression of Rcf2 fragments or Rcf3 is harmless 

Based on this hypothesis, overexpression of either Rcf2N, or the related Rcf3, might 

disturb a balanced system and lead to negative effects on respiration. To test this 

possibility, Rcf2 fragments, as well as Rcf3, were expressed under control of their 

endogenous promoter, but from a multicopy plasmid (Figure 2-22). Figure 2-22 A 

illustrates that overexpression of Rcf3 does not cause a growth or respiratory 

phenotype, neither in wild-type nor in rcf3. Likewise, neither FLAGRcf2N nor Rcf2C 

affected respiration in the conditions used in Figure 2-22 B. A FLAG-tagged version 

of Rcf2N was used to enable detection of the fragment. The analysis of whole cell 

lysates in this case revealed an additional unexpected detail. The fragment 

generated in Figure 2-1, approximating the length of Rcf2C, is slightly larger than the 

one that is observed in mitochondria. Hence, the C-terminal fragment expressed in 

this experiment (Rcf2C-p) still contains the processing site and was therefore cleaved 

into the mature Rcf2C (Rcf2C-m). 
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Figure 2-22: Respiration is not affected by overexpression of Rcf3, Rcf2N or Rcf2C. A) Wild-type 

(wt) or rcf2cells overexpressing Rcf3 were tested for growth on minimal media lacking uracil 

supplemented with glucose or glycerol at the indicated temperature. Growth was compared to 

wild-type and respiratory deficient rcf1. Isolated mitochondria from the same strains were 

subjected to SDS-PAGE and western blotting. The asterisk (*) marks a non-referable reaction of the 

Rcf3 antibody. B) rcf2cells overexpressing FLAGRcf2, FLAGRcf2N or Rcf2C were tested for growth as in 

A. Growth was compared to wild-type and respiratory deficient cox4. Whole cell lysates of wild-type 

(wt) and rcf2cells overexpressing FLAGRcf2, FLAGRcf2N or Rcf2C were analyzed by SDS-PAGE and 

western blotting. The asterisk (*) marks a cross reaction of the Rcf2 antibody to an unrelated protein.  

2.3.2. Rcf2N and Rcf2C are not able to complement rcf2rcf3 

The overexpression did not point towards a regulatory function for Rcf2N, or a 

functional redundancy with Rcf3. Therefore, a means to test for the ability of 

different constructs to complement for a respiratory defect was needed. Since 

neither RCF2, nor RCF3, single deletion leads to a respiratory growth defect, a set of 

double and triple deletion mutants, representing all combinations of RCF gene 

deletion, was created (Figure 2-23 A). The results of the growth tests seemed, at first 

glance, to be quite heterogeneous. However, upon biochemical analysis, they 

revealed a common characteristic. Deletion of RCF3 in the rcf1 strain improved its 
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ability to respire, albeit without visibly restoring the missing III2IV2 supercomplex 

(Figure 2-23 A, B and C). The same holds true, to some extent, for removing RCF3 

from the severely affected rcf1rcf2. On the other hand, deletion of RCF3 in the 

unaffected rcf2 strain generated a growth defect similar to the one observed in 

rcf1 (Figure 2-23 A and B). Strikingly, the only difference observed in BN-PAGE 

analysis of supercomplexes comprised of a slight increase in III2IV2 along with a 

slight decrease in free III2. Though the principles behind these data remain elusive, 

rcf2rcf3 has provided a possibility to test for functionality of the Rcf2 fragments. 

 
Figure 2-23: Double deletion of RCF2 and RCF3 generates a strain impaired in respiration. A) 

Indicated single, double and triple deletion strains of RCF1, RCF2 and RCF3 were tested for growth on 

minimal media lacking uracil complemented with glucose or lactate at 30°C. Growth was compared to 

wild-type and respiratory deficient cox4. B) Strains indicated in A were used for a growth test in 

liquid YP supplemented with glucose or glycerol at 30°C. OD595 was measured in regular intervals 

over a course of 12 h. Glycerol growth rates were calculated relative to glucose (D) for each strain in 

quintuplicates and averaged (mean of n=5 ± STDEV). C) Isolated mitochondria of wild-type (wt) and 

indicated mutants were subjected to BN-PAGE and western blotting.  
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The Rcf2N fragment used before (Figure 2-22 B) contains an N-terminal FLAG tag. So 

far it had not been possible to fully exclude a deleterious effect of the tag itself on 

protein function. Thus, prior to the complementation test for Rcf2N and Rcf2C, it was 

first tested whether FLAGRcf2 is able to substitute Rcf2 in rcf2rcf3 In order to 

mimic endogenous protein amounts, all constructs were expressed from a single 

copy plasmid under the control of their endogenous promoter. Figure 2-24 A 

illustrates that N-terminal tagging of Rcf2 interferes with its function independent of 

its expression level (compare expression of FLAGRcf2 from pRS416 and pRS426). For 

this reason, all N-terminal tags were removed, accepting that the expression level of 

Rcf2N will not be traceable anymore via western blotting. While both untagged Rcf2 

and Rcf3 were able to restore growth in rcf2rcf3 neither Rcf2N nor Rcf2C could 

complement the phenotype (Figure 2-24 B). This argues against a functional 

relevance of the processed fragments. However, a correlation with the incorrect 

length of the constructs used, especially Rcf2N, cannot be fully excluded. 

 
Figure 2-24: Untagged Rcf2 and Rcf3 can complement rcf2rcf3 while Rcf2N and Rcf2C are 

non-functional. A) rcf2rcf3 cells expressing Rcf2 or FLAGRcf2 at endogenous (pRS416) or increased 

(pRS426) levels were tested for growth on minimal media lacking uracil, complemented with glucose 

or glycerol at 30°C. Growth was compared to wild-type and respiratory deficient shy1. B) rcf2rcf3 

cells expressing Rcf2, Rcf2N, Rcf2C or Rcf3 were tested as in A.  
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2.3.3. Attempts to define specific Rcf2 interaction partners in vivo 

The respiratory deficient rcf2rcf3 also provided means to test the cysteine 

mutants that were used for the topology studies (Figure 2-3). The cysteine-free 

Rcf2C70S, as well as all mutants with introduced cysteines, were able to complement 

(Figure 2-25) and were thus considered to be functional.  

 
Figure 2-25: All cysteine mutant versions of Rcf2 are functional. rcf2rcf3 cells expressing Rcf2, 

Rcf2C70S, Rcf2C70S S14C, Rcf2C70S R41C, Rcf2C70S S89C, Rcf2C70S T142C or Rcf2C70S S212C at endogenous levels were 

tested for growth on minimal media lacking uracil complemented with glucose or glycerol at 30°C. 

Growth was compared to wild-type and respiratory impaired rcf2rcf3. 

Copper has the ability to promote the formation of disulfide bridges between 

neighboring cysteine residues. The mutant strains thus provide a useful tool to 

determine Rcf2 interaction partners at specific positions in the proteins topology 

using a combined copper cross-linking and mass spectrometry approach. To this 

end, the different mutants were expressed in rcf2 in place of endogenous Rcf2 and 

subsequently subjected to CuSO4 treatment. Naturally, this cross-linking approach is 

limited by the requirement for a cysteine in the neighboring protein, in addition to 

the accessibility of both cysteines. Nevertheless, Figure 2-26 proved that it was 

indeed possible to cross-link interaction partners to Rcf2. When probed with the 

Rcf2 antibody, a specific pattern appeared upon the addition of CuSO4 that strongly 

differed depending on the position of the cysteine.  
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Figure 2-26: Insertion of cysteines at different positions leads to specific changes in the cross-

linking pattern. Isolated mitochondria of rcf2 cells expressing wild-type Rcf2 or the indicated 

mutant versions were incubated with CuSO4. After quenching with NEM and EDTA, samples were 

analyzed by SDS-PAGE and western blotting, and probed for Rcf2.  

However, prior to a mass spectrometric analysis it is imperative to isolate the 

observed cross-links in a clean and efficient way. Due to the antibody’s high cross 

reactivity with unrelated proteins, the elutions from Rcf2 immunoprecipitations are 

unfit for this purpose. Therefore, a two-step purification procedure was evaluated, 

focusing on the endogenous cysteine in wild-type Rcf2 in a Cox4ZZ background. Since 

Rcf2 is part of complex IV, it is likely to closely interact with one of the other 

subunits. Among these, several contain a cysteine. Thus, after cross-linking, 

complex IV was isolated via Cox4ZZ from DDM-solubilized mitochondria. The TEV-

cleaved elution provided pre-cleaned starting material for a subsequent denaturing 

Rcf2 immunoprecipitation in Triton X-100 (Figure 2-27 A).  
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Figure 2-27: Two-step purification after copper cross-linking enriches a 70 kDa cross-link in 

wild-type. A) Scheme for the cross-linking and isolation procedure used in B. B) Isolated 

mitochondria of Cox4ZZ and wild-type (wt) were subjected to copper cross-linking, followed by 

isolation of Cox4ZZ followed by immunoprecipitation of Rcf2 as indicated in A. Samples were analyzed 

by SDS-PAGE and western blotting (totals: 5%; eluates. 100%). The membrane was probed for Rcf2. 

Asterisks mark Cox4ZZ prior to TEV cleavage in the total lanes. Black arrows indicate prominent Rcf2 

cross-links enriched in both eluates. 

Figure 2-27 B demonstrates the enrichment of Rcf2 and Rcf2 cross-links after 

isolation of Cox4, suggesting that most of the interaction partners close to position 

C70 are situated within complex IV. After isolation of Rcf2, the signal intensity was 

decreased, most probably due to proteolytic events during the long isolation 

procedure. However the most prominent cross-link, with a size of approximately 

70 kDa, remained detectable.  
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Since the quality of the isolation was below the requirements for mass spectrometry, 

cross-linked samples were probed with all available antibodies against cysteine-

containing subunits of complex IV (Figure 2-28). As exemplified by 

immunodetection of the catalytic subunits, Cox1, Cox2 and Cox3, none of the tested 

proteins was responsible for the formation of the 70 kDa band (data not shown for: 

Cox4, Cox6, Cox12, Cox13). Rcf1 and Rcf3 were also tested, but neither of them could 

be shown to interact with C70 using this approach (data not shown). A possibility 

that needs to be further tested is that Rcf2 potentially forms a dimer. 

 

Figure 2-28: The 70 kDa cross-link is unlikely 

to contain another subunit of complex IV. 

Isolated wild-type (wt) mitochondria were 

incubated with CuSO4. After quenching with NEM 

and EDTA, samples were analyzed by SDS-PAGE 

and western blotting. Membranes were probed 

as indicated.  
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3. Discussion 

Extensive research in the past decade has shown that complex III and complex IV of 

the yeast respiratory chain interact to form respiratory active supercomplexes 

(III2IV2 and III2IV). To date, several factors are known to influence supercomplex 

formation and stability. These range from lipids, via metabolite carriers, to specific 

protein factors such as the yeast protein Rcf1 (Böttinger et al., 2012; Chen et al., 

2012; Dienhart & Stuart, 2008; Strogolova et al., 2012; Vukotic et al., 2012; Zhang et 

al., 2002; 2005). While Rcf1 clearly proved its importance for the stability of III2IV2, 

the related Rcf2 seems to be dispensable for respiratory supercomplexes (Vukotic et 

al., 2012). The sequence alignment presented in this study (Figure 2-12) mapped the 

Rcf1 homology region of Rcf2 to its C-terminus. The Rcf2 N-terminus resembles 

Rcf3, an uncharacterized protein encoded by the open reading frame YBR255C-A. 

Since the regulation of supercomplex formation is still not understood, this study 

aimed for a characterization of the proposed Rcf protein family in regard to their 

impact on the respiratory chain complexes.  

 

3.1. Maturation of Rcf2 comprises a proteolytic event 

3.1.1. Limited proteolysis of Rcf2 by an unknown protease 

Rcf2 is a mitochondrial protein that associates with respiratory supercomplexes 

(Strogolova et al., 2012; Vukotic et al., 2012). However, a targeting signal in the form 

of a cleavable presequence had not been predicted. The protein had also not been 

found to be N-terminally truncated in a mitochondrial N-proteome analysis (Vögtle 

et al., 2009). Hence, in size, mature Rcf2 remains indistinguishable from the non-

imported precursor protein (Vukotic et al., 2012). The present study reveals that 

mature Rcf2 is processed within mitochondria, although in an unusual way. During 

the processing event, up to 50% of Rcf2 is cleaved within the second TMD 

(section 2.1.1 and 2.1.2), resulting in at least one stable fragment, Rcf2C. Similarities 

between TMD2 of Rcf2 and the cleavage sites recognized by rhomboid proteases of 

different organisms (Strisovsky et al., 2009) led to the assumption that the 

mitochondrial rhomboid protease, Pcp1, might be responsible. Rhomboid proteases 

belong to the small group of proteases that are able to cleave a substrate within a 
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membrane, rendering this hypothesis most appealing. Even though the topology and 

hence the intramembrane cleavage site of Rcf2 was confirmed in section 2.1.2, Pcp1 

proved to be uninvolved (section 2.1.3). Via the cleavage of membrane-anchored 

proteins, rhomboids usually generate soluble active fragments (reviewed in Urban, 

2006). Rcf2C, on the other hand, contains two TMDs and most likely remains in the 

membrane, thereby challenging the rhomboid hypothesis.  

Further potential candidates are the m-AAA and i-AAA proteases of the inner 

membrane. These proteases mainly degrade non-native membrane-embedded 

polypeptides of the respiratory chain (reviewed in Koppen & Langer, 2007). 

However, there is also evidence for the specific processing of proteins into 

alternative variants (Mrpl32) (Nolden et al., 2005). As it cannot be fully excluded 

that processing takes place prior to membrane insertion, in principle also other 

proteases might play a role. However, processing of Rcf2 took place in all mutants of 

mitochondrial proteases that were analyzed in a screen, among them also mutants 

for the  m-AAA and i-AAA proteases (unpublished data; Nora Vögtle, Institute for 

Biochemistry and Molecular Biology, University of Freiburg).  

Likely, other mitochondrial proteases exist that have not yet been identified, one of 

which might be the Rcf2 processing enzyme. Alternatively, two or more proteins 

working in concert might be necessary, as described for the cleavage of Ccp1 by the 

coordinated action of m-AAA and rhomboid (Esser, Tursun, Ingenhoven, Michaelis, 

& Pratje, 2002; Tatsuta, Augustin, Nolden, Friedrichs, & Langer, 2007). In this case, 

both proteases are essential for the event. Based on the data presented in 

section 2.1.3, Rcf2 processing could rather be mediated through several enzymes 

with redundant activities. It nevertheless remains remarkable that even the 

simultaneous inhibition of metallo-, serine-, cysteine- and aspartyl peptidases did 

not prevent Rcf2 cleavage. This aspect of the Rcf2 processing event therefore clearly 

needs further investigation.  

3.1.2. From regulation to degradation – the role of Rcf2N  

There are few examples in the literature for the removal of large N-terminal 

domains (ranging from 57 to 71 amino acids) from mitochondrial proteins. Such an 

event was described for the ribosomal proteins Mrpl38/34 (Kitakawa et al., 1997) 

and Mrpl32 (Nolden et al., 2005). Further examples are Mgm1 and Ccp1, which are 
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cleaved by the mitochondrial rhomboid, Pcp1 (McQuibban et al., 2003). For neither 

of these processing events was a preservation of the N-terminal fragment reported. 

Also in the case of Rcf2, the role of Rcf2N needs to be questioned due to the highly 

unstable nature of the fragment (section 2.1.4). Only an N-terminally FLAG-tagged 

Rcf2 construct enabled detection of Rcf2N (section 2.1.1). However, further 

experiments using the N-terminal tag later on uncovered a negative effect on Rcf2 

function. Although the FLAG tag did not interfere with mitochondrial localization, 

processing or the comigration with complex IV of the full length protein 

(sections 2.1.1 and 2.1.4), it prevented complementation in the respiratory deficient 

rcf2rcf3 strain (section 2.3.2). Consequentially, a deleterious effect on the stability 

or the interactome of Rcf2N cannot be excluded.   

The small amounts of Rcf2N that remained stable after digitonin solubilization were 

not bound in complexes, but suspected to be free protein (section 2.1.4). Given that 

this is not an effect of the FLAG tag, a role for Rcf2N in the respiratory chain is hard 

to envision. The fragment might still have a regulatory function but a more likely 

hypothesis is that the N-terminal fragment is removed to liberate Rcf2C and is 

subsequently degraded (Figure 3-1), as was suggested for Mrpl32 and Mgm1 

(Herlan et al., 2003; McQuibban et al., 2003; Nolden et al., 2005; Zick et al., 2009). 

For degradation of Rcf2N, a combined action of i-AAA (extraction from the 

membrane) and oligopeptidases of the IMS (digestion of peptides) is possible (for 

review see Koppen & Langer, 2007).  

 

Figure 3-1: Cleavage of Rcf2 and possible fates of the resulting fragments, Rcf2N and Rcf2C. 

After import and membrane insertion, a fraction of Rcf2 is cleaved by an undefined intramembrane 

processing protease within the second TMD. Rcf2C is then assembled into complex IV*, which is in 

turn used for the formation of supercomplexes. Rcf2N is most likely degraded, for example through 

combined action of the i-AAA and oligopeptidases of the IMS. 
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3.1.3. The functional relevance of Rcf2 processing – the role of Rcf2C 

In contrast to Rcf2N, Rcf2C behaved more similar to the full length protein. IgG 

chromatography of Cox4ZZ, immunoprecipitation of C-terminally tagged Rcf2 and 

two-dimensional PAGE analysis demonstrated that Rcf2C is a constituent of 

complex IV* and both respiratory supercomplexes (section 2.1.4). Hence, it is 

present in all identified Rcf2-containing complexes, except for the small Rcf2 

complex of approximately 100 kDa (R2100). Small Rcf2-containing complexes had 

already been observed in the initial analysis, where they were explained as assembly 

intermediates (Vukotic et al., 2012). However, these conclusions were drawn from 

in vitro import and assembly studies, which are most likely sensitive enough to catch 

transient assembly intermediates. In the present study, R2100 was detected at steady 

state and in large quantities. This strongly argues against this complex being an 

assembly intermediate, which is usually detected at low quantities. In many studies 

assembly intermediates were hence shown after blockage of the assembly path or 

isolation through specific assembly factors (Bareth et al., 2013; Gruschke et al., 

2012; Mick et al., 2007).  

Even though, Rcf2C closely resembles full length Rcf2 in terms of supercomplex 

association, the two proteins seem to differ in function. The respiratory defect of the 

rcf2rcf3 strain is rescued by expression of Rcf2, but not Rcf2C (section 2.3.2). It 

was not possible to assign a function to Rcf2C and hence, the purpose of the 

processing, as well as the timing, remains speculative. Import and assembly of Rcf2 

truncations suggest that Rcf2C assembles into supercomplexes on its own 

(section 2.1.5), pointing towards a pre-assembly cleavage. However, since the 

truncation used as the Rcf2C (construct C1) is slightly bigger than endogenous Rcf2C 

(section 2.3.2), it is still possible that C1 is processed after assembly. To address this 

question, separation of the processed and unprocessed construct C1 using a second 

dimension PAGE would be needed. However, a clear difference between Rcf2C-p and 

Rcf2C-m, as seen for whole cell lysates in Figure 2-22, was not observed for the 

imported radiolabeled construct C1. Hence the above-mentioned experiment needs 

further revision. Interestingly, every Rcf2 truncation harboring TMD3 and 4, and at 

least a stretch of the adjacent C-terminal IMS domain, was able to assemble into 

supercomplexes (section 2.1.5). Also the amino acids of the loop connecting TMD2 

and 3 were dispensable (data not shown). Truncations starting with TMD3 do not 
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contain the processing site. Their successful assembly hence further supports a pre-

assembly processing event as shown in Figure 3-1. 

A look into the processing of subunits of the respiratory chain and the mitochondrial 

ribosome confirms that pre-assembly processing is a relatively established principle. 

However, usually such proteins are completely transformed into the shorter and 

mature version. For instance, pre-Cox2 is matured by an inner membrane protease 

prior to its assembly into complex IV (Behrens, Michaelis, & Pratje, 1991; Hell, 

Tzagoloff, Neupert, & Stuart, 2000; Pratje, Mannhaupt, Michaelis, & Beyreuther, 

1983; A. Schneider et al., 1991) and Mrpl32 has to be processed by m-AAA in order 

to associate with the ribosome (Nolden et al., 2005). An example more similar to the 

limited proteolysis of Rcf2 though, is the processing of Mgm1, a member of the 

mitochondrial fusion machinery. In contrast to Rcf2, it contains a cleavable 

presequence that is removed by the mitochondrial processing peptidase, in order to 

generate the membrane-spanning Mgm1-l (Herlan et al., 2003). Afterwards 

however, the rhomboid protease, Pcp1, processes 50-95% of Mgm1-l, liberating 

soluble but membrane-attached Mgm1-s. Mutation of the putative Pcp1 recognition 

site results in a non-cleavable Mgm1-l* (Herlan et al., 2003; McQuibban et al., 2003), 

which was used as a tool to prove the importance of processing for proper 

mitochondrial morphology (Herlan et al., 2003). These reports emphasize how a 

similar, non-cleavable, Rcf2 construct could contribute to a deeper understanding of 

the roles of Rcf2 and Rcf2C. Elimination of Rcf2 processing could have deleterious 

effects on respiration. In the case of Mgm1, it was shown that altering the ratio of the 

two forms towards Mgm1-l provokes a phenotype similar to the knockout (Zick et 

al., 2009). Due to the lack of a phenotype in rcf2, it will be necessary to undertake 

complementation assays with such a construct in the rcf2rcf3 background.  

 

3.2. Import of Rcf2 might rely on TIM23 and OXA1 

Despite the carrier-like multi-spanning topology of Rcf2, this study clearly showed 

that the import of Rcf2 does not depend on the TIM22 machinery (section 2.1.6). 

Another possibility for imported membrane proteins to reach the inner 

mitochondrial membrane is the TIM23 machinery. Most substrates of this pathway 

contain a presequence and a single TMD, followed by a stop-transfer signal, that 
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enables lateral release into the inner membrane (Botelho et al., 2011).  The multi-

spanning Rcf2 differs in both aspects. Nevertheless, there are examples of proteins 

with unusual targeting signals, such as C-terminal or internal targeting signals, that 

rely on the TIM23 machinery (C. M. Lee et al., 1999; Reinhold et al., 2012). However, 

a region serving as a targeting signal could not be identified for Rcf2 (section 2.1.5).  

Additionally, Rcf2 is partially imported in the absence of membrane potential, which 

is usually indispensible for TIM23-mediated import. Overall, Rcf2 therefore seems to 

be a rather poor substrate for TIM23. Accordingly, the results presented in 

section 2.1.6 do not argue for a clear-cut dependency on Tim23. Since the initial 30% 

reduction in import was almost abolished after eight minutes (Figure 2-11), the 

involvement of further import mechanisms is conceivable.  

A polytopic membrane protein can also be inserted by the coordinated action of the 

TIM23SORT complex and the OXA1 machinery, as was first shown for the ABC 

transporter Mdl1 (Bohnert et al., 2010). Distinct domains of this protein are inserted 

from different sites of the membrane by combining stop transfer and lateral release, 

with TIM23/PAM-mediated matrix import and conservative sorting via Oxa1 

(Bohnert et al., 2010).  The same mechanism has also recently been suggested for 

other mitochondrial transporters and subunits of the TIM22 machinery (Stiller et al., 

2016).  

 

Figure 3-2: Hypothetical import pathway of Rcf2, through the combined action of TIM23SORT, 

TIM23/PAM and OXA1. The Rcf2 N-terminus, which emerges from the TOM pore, is inserted into 

TIM23 in a hairpin structure. This enables sorting and lateral release of TMD1 by TIM23SORT with the 

N-terminus facing the IMS. TMD2 and 3 are translocated into the matrix, with the help of PAM, and 

are subsequently inserted into the inner membrane by Oxa1/Cox18. For an IMS located C-terminus, 

TMD4 is laterally released by TIM23SORT. 
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TMDs arrested in the inner membrane by a stop transfer signal are usually more 

hydrophobic than those that are imported into the matrix (Botelho et al., 2011; 

Meier, Neupert, & Herrmann, 2005; Park, Botelho, Hong, Österberg, & Kim, 2013). 

Compared to TMDs 1 and 4, TMDs 2 and 3 of Rcf2 are less hydrophobic. 

Additionally, TMD2 contains proline, which also favors matrix translocation 

(Botelho et al., 2011; Meier et al., 2005). Based on this information, it can be 

speculated that Rcf2, might enter the TIM23 complex in a hairpin loop. After stop 

transfer and the release of TMD1 into the inner membrane, TMDs 2 and 3 could be 

imported in a PAM-dependent way, followed by insertion into the membrane via 

Oxa1/ Cox18. The last TMD would then be inserted similar to the first (Figure 3-2). 

In a screen for Oxa1-dependent nuclear encoded proteins, Stiller and coworkers 

indeed identified Rcf2, but did not biochemically confirm this finding (Stiller et al., 

2016). Despite several facts speaking in favor of this hypothesis, some anomalies 

still remain, including the partial membrane potential and TIM23 independence. 

Even though evidence exists for other membrane potential-independent Tim23 

substrates (Reinhold et al., 2012; Turakhiya et al., 2016), a careful biochemical 

analysis will be required to test the import model depicted in Figure 3-2. 

 

3.3. Rcf proteins reside at the interface of complex III and IV  

3.3.1. Rcf3 is associated with, but not essential for, supercomplexes  

The analysis of Rcf3 (YBR255C-A) presented in section 2.2.1 confirmed its 

localization in the inner mitochondrial membrane and positioned the C-terminus in 

the IMS. Depending on the prediction algorithm, the number of TMDs varies from 

one to two. Since Rcf3 contains two cysteines, a maleimide PEG approach could be 

used to further investigate its topology. The TMD localization of these cysteines 

renders the approach problematic, as demonstrated for the endogenous cysteine in 

Rcf2 (section 2.1.2). Instead of a true second TMD, a hydrophobic and membrane 

associated patch could be envisioned. With this, Rcf3 would resemble Rcf2N even 

more closely. During the cleavage event, the latter loses a part of its second TMD, 

which is then probably too short to span a membrane (Hildebrand, Preissner, & 

Frömmel, 2004). 
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In vitro import and assembly, IgG chromatography and immunoprecipitation 

experiments (sections 2.2.2 and 2.2.3) confirmed the supercomplex association of 

Rcf3 predicted by Helbig and coworkers (Helbig et al., 2009). Despite its presence in 

supercomplexes, Rcf3 is not essential for respiration or individual complex function 

(section 2.2.2). The same had already been observed for Rcf2 (Vukotic et al., 2012). 

In contrast to published data on Rcf1 and Rcf2 (Strogolova et al., 2012; Vukotic et al., 

2012), supercomplex association of all three Rcfs might be mediated not only 

through complex IV, but also through complex III (sections 2.2.3 and 2.2.5). This 

would position Rcf proteins at the interface between the two complexes, which 

strongly supports a role in supercomplex organization. However, a causal 

connection with supercomplex formation or stability only exists for Rcf1. Inversely, 

not every protein with an impact on supercomplex assembly or stability necessarily 

interacts with complex III and complex IV in the same way. We have recently 

characterized Cox26 as a novel and exclusively complex IV-bound protein that 

influences respiratory supercomplexes (Levchenko et al., 2016). Of the four proteins 

discussed above, the most likely candidate for a true supercomplex-specific factor 

hence remains Rcf1. Based on this work and earlier studies, Rcf1 combines two 

characteristics assumingly important for such a factor: an influence on 

supercomplexes and an interaction with both complexes individually.  

3.3.2. How do Rcf proteins fit in the current crystal structures? 

Interestingly, none of the three Rcf proteins appear in the crystal structures 

available for respiratory complexes. However, it has to be noted that for yeast, only 

the structure of complex III is solved (Hunte et al., 2000). Nevertheless, 

crystallization has been performed for the bovine complex IV (Tsukihara et al., 

1995), but for Rcf2 and Rcf3 a mammalian homologue is not predicted. The 

mammalian Rcf1a (or Higd1a) is described as a homologue for Rcf1. However, the 

structures were obtained after purification of single complexes in decyl maltoside 

(Tsukihara et al., 1995) or dodecyl maltoside (Hunte et al., 2000). Once 

supercomplex assemblies are disrupted by dodecyl maltoside treatment, all three 

Rcfs, especially Rcf3, are largely lost (section 2.2.3) (Vukotic et al., 2012). For 

supercomplexes on the other hand, a crystal structure does not exist. Available is a 

pseudo-atomic model of the III2IV2 supercomplex which was obtained by fitting the 
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above described crystal structures into a cryo-EM three-dimensional map generated 

with digitonin-purified yeast complexes (Mileykovskaya et al., 2012). A protrusion 

facing the IMS between the cytochrome c binding sites of complex III and IV was 

speculated to contain Rcf1 and Rcf2. Along the same lines, Hayashi and coworkers 

propose a Higd1a binding close to the catalytic center of mammalian complex IV 

(Hayashi et al., 2015). Both studies thus support the hypothesis that Rcf proteins 

localize to the complex III/IV interface. 

3.3.3. Complex IV* - reasons for an Rcf-specific version of complex IV 

Even though Rcf proteins also proved to associate with complex III, their main 

interaction partner in wild type mitochondria is complex IV, based on  

immunoprecipitations and IgG chromatography (sections 2.2.3 and 2.2.5). In 

addition, second dimension PAGE analysis clearly showed comigration of all Rcfs, 

including Rcf2C, with the specific Rcf-containing version of complex IV (IV*). 

Astonishingly, in vitro import and assembly of Rcf3 and Rcf1 led to differently sized 

complexes, among which only the ones containing Rcf1 correlated with Cox1 

staining (section 2.2.2). A similar discrepancy between in vitro assembly and in vivo 

steady state analysis was also observed for Rcf2. In vitro assembly of Rcf2 was 

completely abolished in the absence of Rcf1 (Vukotic et al., 2012), however large 

amounts of Rcf2 were detected in the remaining supercomplexes of rcf1 in this 

study (section 2.2.5). This had already been observed to lesser extents by Vukotic 

and coworkers, who explained it by a less efficient but still ongoing assembly of Rcf2 

in vivo (Vukotic et al., 2012). Nevertheless, the question remains how the 

discrepancy between in vitro and in vivo data can be explained.   

What furthermore needs to be addressed in the future is the biological relevance of 

the Rcf-specific complex IV*. Based on elevated levels of reactive oxygen species in 

rcf1 and rcf2, it had been suggested to protect the respiratory chain from ROS 

(Vukotic et al., 2012). Association of Rcf1 and Rcf2 during the late steps of assembly 

was furthermore proposed to prime complex IV for the formation of 

supercomplexes (Vukotic et al., 2012; Römpler et al., under revision). Other groups 

have reported an interaction between Rcf1 and Cox3 at earlier steps and hence a 

complex IV assembly phenotype is observed rather than a defect in supercomplex 

assembly (McStay, Su, & Tzagoloff, 2013; Strogolova et al., 2012). The two 
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perceptions do not necessarily have to oppose to each other. Rcf proteins proved to 

be present in several complexes (sections 2.2.4 and 2.2.5) and hence could interact 

at different steps of complex IV assembly. To date, the stoichiometry of all three 

proteins is not known, but it has been speculated that more than one molecule of 

Rcf1 could be engaged in tethering respiratory complexes (Mileykovskaya et al., 

2012).  

 

3.4. Small Rcf complexes could serve as an interaction platform 

3.4.1. The importance of the Rcf3 C-terminus for small Rcf3 complexes 

For all three Rcf proteins, second dimension PAGE analysis revealed the existence of 

several complexes considerably smaller than complex IV. Two Rcf3-containing 

complexes of unknown composition were defined in this study: R3a (~140 kDa) and 

R3b (~70 kDa). In fact, these two complexes bind the majority of Rcf3, while only a 

small fraction of the protein is assembled into supercomplexes in vivo 

(section 2.2.5). The observation that most Rcf3 was assembled into supercomplexes 

in vitro can be traced back to the usage of rcf3 mitochondria (section 2.2.2). Weak 

in vitro supercomplex assembly of Rcf3 in wild-type mitochondria points to a limited 

number of Rcf3 binding sites within supercomplexes, which are usually occupied in 

wild-type and preferentially filled up in rcf3. Furthermore, the C-terminus of Rcf3 

seems to be crucial for maintaining the correct ratio of supercomplex and R3a/R3b 

distribution. The addition of a ZZ tag leads to an equal signal distribution in both 

pools (section 2.2.3), probably due to steric hindrance by the large protein A moiety. 

The efficiency of Rcf3 and Rcf3ZZ detection differs greatly. Hence, it is not possible to 

directly compare the overall protein amounts and to distinguish between tag-

induced increased supercomplex assembly and decreased stability of Rcf3ZZ in 

R3a/R3b. The role of the C-terminus therefore needs further investigation. 

3.4.2. Assessing complex IV-independent Rcf-Rcf interactions  

Based on their comigration pattern (section 2.2.5), the small complexes, R3b and 

R2100, could provide a platform for the complex IV-independent interaction of Rcf3 

and Rcf2 observed using immunoprecipitation experiments (section 2.2.5). On the 

other hand, Rcf3 coisolated considerable amounts of Rcf1, which is present in a 
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small complex that does not comigrate with that of Rcf3. Along the same lines, 

neither R3b nor R2100 change their running behavior or intensity in the absence of 

the other respective Rcf. This implies that the interaction takes place in another 

context. The observed decrease of supercomplex-bound Rcf3 in rcf1 is most likely 

based on the overall reduction of III2IV2, which is the major Rcf3-containing 

supercomplex. In the case of disrupted supercomplex assembly, an accumulation of 

complex IV-bound protein would be anticipated. Instead, Rcf3 seems to accumulate 

in the smaller R3a complex (section 2.2.5). Data provided in this study illustrates 

that the association of R3a, or small Rcf complexes in general, with complex IV or 

complex III assembly is unlikely. Hence, the formation of an interaction platform for 

Rcf, and potentially other proteins, remains the most appealing hypothesis for the 

function of small Rcf complexes. It cannot be excluded that the conditions in which 

protein complexes are exposed during BN-PAGE disrupted larger assemblies 

(Schägger, 2001) into the smaller modules visible in the second dimension PAGE 

analysis. If this is the case, important impacts of single deletions on complex 

organization might have been missed.  

Copper-induced disulfide bond formation, used as an alternative approach to detect 

interactions between Rcf2 and Rcf1, Rcf3 or other proteins, revealed that Rcf2 might 

interact with itself. This is especially interesting not only in light of the suggested 

functionally relevant interaction of Mgm1-l with Mgm1-s (Rujiviphat et al., 2015; 

Zick et al., 2009), but also regarding the potential involvement of Rcf2 in tethering 

respiratory complexes to each other. A similar function had been proposed for 

Tim11/Atp21, a complex V subunit that was observed to dimerize and thus mediate 

complex V dimer formation (Arnold, Pfeiffer, Neupert, Stuart, & Schägger, 1998; 

Arselin et al., 2003; Brunner, Everard-Gigot, & Stuart, 2002). To thoroughly test 

whether Rcf2 self interacts, the strategy presented in this study needs to be adjusted 

in a way that enables discrimination between two different Rcf2 versions. To omit 

the use of tags, import of an Rcf2 construct lacking the antibody epitope, followed by 

copper cross-linking and immunoprecipitation of endogenous Rcf2, will be one 

suitable approach.  
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3.4.3. Connecting Rcf2 and Rcf3 - the split paralogue hypothesis  

The homology of Rcf1 and Rcf3 with different parts of Rcf2 prompted the 

speculation that they might be split paralogues of Rcf2. In light of the Rcf2 

processing, a functional overlap of Rcf3 with Rcf2N was hypothesized. Double 

deletion of RCF2 and RCF3 did not influence the structure of respiratory complexes, 

but it did affect respiration. Hence, Rcf3 and Rcf2N might have a common function in 

regulating respiratory complexes. In contrast to the model proposed in Figure 3-1, 

the rapid degradation of Rcf2N could also be ascribed to a tight regulation of the 

fragment, leading to a high turn over rate.   

In the context of a functional redundancy, complementation of the rcf2rcf3 by 

Rcf2N was anticipated, but not observed (section 2.3.2). As discussed in section 3.1.3, 

the N-terminal fragment expressed in rcf2rcf3 is shortened by a few amino acids 

compared to the endogenous Rcf2N. This truncation might interfere with correct 

functioning of the construct. Therefore, a conclusion cannot be drawn prior to a 

repetition of the complementation studies using an adapted Rcf2N construct.
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4. Summary and Conclusion 

As the site of action of the OXPOS system, the mitochondrial network is the main 

supplier of ATP in the eukaryotic cell. Intensive research on the multisubunit 

complexes of the respiratory chain has revealed the existence of catalytically active 

and functionally advantageous respiratory supercomplexes. Even though their 

importance has been widely accepted by now, it is still under debate as to how 

respiratory supercomplexes are established and regulated. The “solid model”, 

proposing permanent supercomplex organization of respiratory complexes, cannot 

fully account for several aspects of electron transport within the ETC. Hence an 

alternative model was formulated, suggesting dynamic changes between 

supercomplex and single complex state, depending on the cells energy demand and 

environment. Over the past decade, several protein and non-protein factors, among 

them Rcf1, were described to promote the formation or stability of supercomplexes, 

however, the precise mechanisms still remain to be elucidated. 

This study aimed for a deeper understanding of supercomplex regulation by 

characterizing a group of related respiratory chain factors (Rcfs). We were able to 

show that Rcf3, the protein product of YBR255C-A, associates with supercomplexes 

via its interaction with complex IV*, as was previously described for Rcf1 and Rcf2. 

Like Rcf2, Rcf3 is not essential for respiration and the formation of supercomplexes. 

Rcf1 thus remains the only single protein factor described so far that influences 

supercomplex formation in yeast. Nevertheless, all three proteins associate with 

complex III in the absence of complex IV, suggesting that all Rcfs are more than 

exclusive complex IV subunits. Focusing on their ability to interact with either 

complex, it is tempting to envision them as the “proteinaceous glue” that holds 

supercomplexes together. Hence, an important task for the future will be to define 

the differences that render Rcf1 more important than Rcf2 and Rcf3. 

Detailed analysis of Rcf2 revealed that this multispanning membrane protein 

presumably reaches the inner membrane through an unusual import pathway. The 

presented data and recent publications prompted the speculation that Rcf2 is 

imported and inserted into the membrane by a combination of lateral release from 

TIM23 and conservative sorting. It was furthermore shown that a part of Rcf2 is 

processed after import, but presumably prior to assembly, by a protease that is yet 
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to be identified. Rcf2N and Rcf2C, the products of the cleavage, resemble Rcf3 and 

Rcf1 respectively. Based on protein alignments, Rcf1 and Rcf3 could be split 

paralogues of Rcf2, with a potential functional redundancy to Rcf2C and Rcf2N. This 

study clearly showed that Rcf2C alone is not sufficient for proper Rcf2 functioning. 

However, whether increased levels of Rcf2C can overcome loss of Rcf1 is something 

to be tested in the future.  

Due to technical issues, a role for Rcf2N cannot be assigned based on the data 

presented here. Whether or not Rcf2N is preserved, assembled into a complex or 

used as a supercomplex regulator will be revealed by further investigations. This 

will also help to determine the relevance of the processing event in general.  

In summary, this work has provided an initial insight into the function and relevance 

of the novel Rcf protein family in respiratory chain complex assembly and 

organization. 
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5. Material and Methods 

5.1. Materials 

5.1.1. Kit systems, enzymes and reagents 

Standard chemicals in analytical grade were purchased from AppliChem (Darmstadt, 

Germany), Merck (Darmstadt, Germany), Roth (Karlsruhe, Germany), Serva 

(Heidelberg, Germany), or Sigma Aldrich (Taufkirchen, Germany). DNA primers 

were synthesized by Metabion (Martinsried, Germany) and Microsynth (Lindau, 

Germany). Commercial kit systems as listed in Table 5-1 were used according to the 

manufacturers instruction. Special chemicals and enzymes used in this study are 

listed in Table 5-2. 

Table 5-1: Kit systems and enzymes used in this study 

Kit system Supplier 

Fast Digest restriction enzymes Thermo Fisher Scientific 

Gene Ruler DNA Ladder 1 kb Thermo Fisher Scientific 

KOD Hot Start DNA Polymerase Merck Millipore 

mMESSAGE mMACHINE® SP6 
Transcription Kit 

Ambion®/ Thermo Fisher Scientific 

Precision Plus ProteinTM All Blue 
Prestained Protein Standards 10-250 kDa 

BioRad (München, Germany) 

QuikChange Lightning  
Site-Directed Mutagenesis Kit 

Agilent Technologies (Santa Clara 
CA, USA) 

Rapid Ligation Kit Thermo Fisher Scientific 

TNT Flexi Translation Promega 

TNT Quick Coupled Transcription/ 
Translation SP6 

Promega 

Unstained SDS PAGE Protein Marker 
6.5-200 kDa 

Serva 

Wizard® Plus SV Minipreps DNA 
Purification System 

Promega 

Wizard® SV Gel and PCR Clean-Up System Promega 
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Table 5-2: Special reagents and enzymes used in this study 

Reagent Supplier 

[35S]-L-Methionine Hartmann Analytic (Braunschweig) 

Acrylamide, 4x crystallized Roth 

Agarose NEEO ultra quality Roth 

ANTI-FLAG M2 affinity gel Sigma Aldrich 

Antimycin A Sigma Aldrich 

ATP Roche  

CNBr activated sepharose 4B GE Healthcare 

cOmplete, EDTA free protease inhibitor  Roche 

Creatine kinase Roche  

Creatine phosphate Roche  

CuSO4 .5H2O Merck 

Cytochrome c from bovine heart Sigma Aldrich 

Digitonin Calbiochem®/ Merck Millipore 

Dimethyl pimelimidate dihydrochloride  Sigma Aldrich 

Ethidiumbromide 0.07 % AppliChem 

FLAG® peptide Sigma Aldrich 

G418 sulphate (Genitincin) PAA/ GE Healthcare 

Hering Sperm DNA Promega 

IgG from human serum Sigma Aldrich 

IgG protein standard BioRad  

Immobilion®-P PVDF membrane Merck Millipore 

Medix XBU Medical X-ray film Foma Bohemia (Hradec Králové, CZ) 

n-Dodecyl -D-maltoside (DDM) Sigma Aldrich 

N,N’-Methylene-bisacrylamide,  
2x crystallized 

Serva 

NADH Roche  

Ni2+-NTA agarose Quiagen 

Oligomycin Sigma Aldrich 

PEG maleimid, average Mn 2000 Sigma Aldrich 

Pierce® ECL Western blotting substrate Thermo Fisher Scientific 

Protein-A sepharose GE Healthcare 

Proteinase K, recombinant Roche 

Roti®-Quant Roth 

Rotiphorese® Gel 30 (37.5:1) Roth 

Streptomycin sulfate salt Sigma Aldrich 

Valinomycin Calbiochem®/ Merck Millipore 

Zymolyase-20T Seikagaku Biobusiness Corporation 
(Tokyo, Japan) and Nacalai Tesque 
Inc. (Kyoto, Japan) 
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5.1.2. Antibodies 

Polyclonal antibodies were raised in rabbit (Gramsch Laboratories, Schwabhausen, 

Germany) against C-terminal peptides, recombinant whole protein or recombinant 

protein domains. All commercially available monoclonal antibodies and probes used 

in this study are listed in Table 5-3. Antibodies and probes were diluted in Tris 

buffered saline with 0.1% Tween 20 (TBS-T) containing 5% powdered milk or 1% 

bovine serum albumin (BSA). Secondary goat antibodies directed against rabbit IgG 

were used in a dilution of 1:20,000 (HRP) or 1:10,000 (fluorescent dye). Those 

directed against mouse IgG were used in a dilution of 1:3,000 (HRP) or 1:10,000 

(fluorescent dye).  

Table 5-3: Commercially available antibodies used in this study 

Antibody Supplier 

 FLAG Sigma Aldrich 

Peroxidase Anti-Peroxidase Soluble Complex Antibody  Sigma Aldrich 

Goat  Rabbit HRP Dianova 

Goat  Mouse HRP Dianova 

Goat  Rabbit DyLight 488 Dianova 

Goat  Mouse DyLight 488 Dianova 

  

5.1.3. Plasmids 

All plasmids used or generated in this study are listed in Table 5-4. Plasmids were 

propagated in E. Coli XL1 Blue.  
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5.1.4. Microorganisms 

Escherichia coli XL1 Blue (recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac 

[F’proAB lacIqZM15 Tn10 (Tetr)] was obtained by Stratagene and used for cloning.  

The majority of Saccharomyces cerevisiae strains used in this study is based on the 

YPH499 background. Exceptions are Rcf3GFP, pcp1 (BY4741), cox1- (777-3A) and 

cbp1 (XPM-77). The wild-type strains and their derivatives are listed in Table 5-5. 

Not listed are control strains transformed with the empty plasmids pRS416 (URA3) 

or pRS426 (URA3). This was done for YPH499, rcf1, rcf2, rcf3, rcf2rcf3 shy1 

and cox4. These strains were used as URA+ controls for various mutants. 
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Table 5-4: Plasmids used in this study 

Plasmid name Purpose Features Marker Reference 

pFA6aHIS3MX6 PCR template for gene deletion by HIS3  HIS3 Amp Longtine et al., 1998 

pFA6aKANMX6 PCR template for gene deletion by KAN  KAN Amp Longtine et al., 1998 

pFA6aNATNT1 PCR template for gene deletion by NAT  NAT Amp Janke et al., 2004 

pFA6aTRP1 PCR template for gene deletion by TRP1  TRP1 Amp Longtine et al., 1998 

pRS416 yeast plasmid CEN URA3 Amp Sikorski & Hieter, 1989 

pRS426 yeast plasmid 2 µ URA3 Amp Christianson et al., 
1992 

pYM10 PCR template for C-terminal TEV-ProtA-His7 

tagging 
TEV-ProtA-His7 (ZZ) HIS3 Amp Knop et al., 1999 

pYM2.2 PCR template for C-terminal Strep-Flag tagging Strep-Flag (SF) HIS3 Amp Janke et al., 2004 

Rcf1 (pKRB2) overexpression of Rcf1 RCF1 orf + promoter  
in pRS426 

URA3 Amp this study 

FLAGRcf2(pKRB15) overexpression of N-terminally FLAG-tagged 
Rcf2 

FLAGRCF2 in pRS426 URA3 Amp this study 

FLAGRcf2N (pKRB16) overexpression of N-terminally FLAG-tagged 
Rcf2N 

FLAGRCF21-210  in pRS426 URA3 Amp this study 

Rcf2C(pKRB17) overexpression of Rcf2C RCF2211-696 in pRS426 URA3 Amp this study 

FLAGRcf2 (pKRB5) expression of N-terminally FLAG-tagged Rcf2 FLAGRCF2 in pRS416 URA3 Amp Römpler et al. (rev.) 

Rcf2 (pKRB14) expression of Rcf2 RCF2 orf + promoter  
in pRS416 

URA3 Amp this study 

Rcf2N (pKRB19) expression of Rcf2N RCF21-210 in pRS416 URA3 Amp this study 



MATERIAL AND METHODS 

 75 

Plasmid name Purpose Features Marker Reference 

Rcf2C (pKRB18) expression of Rcf2C RCF2211-696  
in pRS416 

URA3 Amp this study 

Rcf2 C70S (pKRB7) expression of cysteine-free Rcf2 C70S RCF2 C70S in pRS416 URA3 Amp this study 

Rcf2 C70S R41C (pKRB10) expression of Rcf2 C70S R41C RCF2 C70S R41C   
in pRS416 

URA3 Amp this study 

Rcf2 C70S S14C (pKRB9) expression of Rcf2 C70S S14C RCF2 C70S S14C   
in pRS416 

URA3 Amp this study 

Rcf2 C70S S212C (pKRB13) expression of Rcf2 C70S S212C RCF2 C70S S212C   
in pRS416 

URA3 Amp this study 

Rcf2 C70S S89C (pKRB11) expression of Rcf2 C70S S89C RCF2 C70S S89C   
in pRS416 

URA3 Amp this study 

Rcf2 C70S T142C(pKRB12) expression of Rcf2 C70S T142C RCF2 C70S T142C   
in pRS416 

URA3 Amp this study 

Rcf3 (pKRB4) overexpression of Rcf3 RCF3 orf + promoter  
in pRS426 

URA3 Amp this study 

AEF1 in vitro transcription/ translation of Oxa1 OXA1 orf + SP6 promoter 
in pCR-Blunt II-TOPO 

Kan Frazier et al., 2003 

A01 in vitro transcription/ translation of  
Neurospora crassa AAC  

ncAAC cDNA + SP6 
promoter in pGEM4Z 

Amp Pfanner et al., 1987 
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Table 5-5: Yeast strains used in this study 

Yeast strain Genotype Reference 

YPH499 MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 Sikorski & Hieter, 
1989 

BY4742 MATa his3-1 leu20 met150 ura30 Euroscarf 

rcf1(yMaD2) MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YML030w::loxP Vukotic et al., 2012 

rcf2(MVY2) MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YNR018w::HIS3MX6 Vukotic et al., 2012 

rcf3 (KRY1) MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YBR255C-A::HIS3MX6 Römpler et al. (rev.) 

cox4(AFY11) MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YGL187c::HIS3MX6 Frazier et al., 2006 

cyt1(AFY10) MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YOR065w::HIS3MX6 Vukotic et al., 2012 

cox5a(MVY15) MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YNL052W::HIS3MX6 Römpler et al. (rev.) 

shy1  MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YGR112W::HIS3MX6  Reinhold et al., 2012 

pcp1 MATa his3-1 leu20 met150 ura30 YGR101W::kanMX4 Euroscarf 

tim10-2 MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 tim10::tim10-2 Truscott et al., 2002 

tim23 (MB29) MATa ade2 his3 leu2 lys2 ura3 trp1 YNR017W::LYS2 + [YCplac-TIM23(URA3)] Bömer et al., 1997 

pGAL-S Tim23 (yCS4) MATa ade2 his3 leu2 lys2 ura3 trp1 YNR017W::LYS2 + [pGAL-S-TIM23(HIS3)] Schulz et al., 2011 

Cox4ZZ (HCY04) MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 cox4::cox4-ZZ-HIS3MX6 Vukotic et al., 2012 

Cor1ZZ (MVY9) MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 cor1::cor1-ZZ-HIS3MX6 Vukotic et al., 2012 

Rcf3GFP (LJY66) MATa his3-1 leu20 met150 ura30 rcf3::rcf3-EGFP-kanMX4 Römpler et al. (rev.) 

Rcf3ZZ (KRY2) MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 rcf3::rcf3-ZZ-HIS3MX6 this study 

Rcf3SF (KRY3) MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 rcf3::rcf3-SF-HIS3MX6 Römpler et al. (rev.) 
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Yeast strain Genotype Reference 

rcf1 rcf2 MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YML030w::loxP 
YNR018w::HIS3MX6 

AG Rehling 

rcf2rcf3 (KRY8) MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YNR018w::kanMX6 
YBR255C-A::HIS3MX6 

this study 

rcf1rcf2rcf3 
(KRY9a) 

MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YML030w::TRP1 
YNR018w::KANMX6 YBR255C-A::HIS3MX6 

this study 

rcf1rcf3 (KRY10a) MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YML030w::TRP1 
YBR255C-A::HIS3MX6 

this study 

rho0 (KRY11) MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801/ rho0  this study 

rcf3 rho0 (KRY12) MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YBR255C-A::HIS3MX6/ rho0 this study 

wt FlagRcf2 (KRY27) MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 + [pRS416-FLAGRCF2 (URA3)] Römpler et al. (rev.) 

wt Rcf3  
(KRY21) 

MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801  
+ [pRS426-RCF3 (URA3)] 

this study 

rcf1 Rcf1  
(KRY20) 

MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YML030w::loxP 
+ [pRS426-RCF1 (URA3)] 

this study 

rcf3 Rcf3  
(KRY24) 

MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YBR255C-A::HIS3MX6 
+ [pRS426-RCF3 (URA3)] 

this study 

rcf2FlagRcf2  
(KRY40) 

MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YNR018w::HIS3MX6  
+ [pRS426-FLAGRCF2 (URA3)] 

this study 

rcf2FlagRcf2N  
(KRY41) 

MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YNR018w::HIS3MX6  
+ [pRS426-FLAGRCF2N (URA3)] 

this study 

rcf2Rcf2C  
(KRY42) 

MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YNR018w::HIS3MX6  
+ [pRS426-RCF2C (URA3)] 

this study 
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Yeast strain Genotype Reference 

rcf2FlagRcf2  
(KRY29) 

MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YNR018w::HIS3MX6  
+ [pRS416-FLAGRCF2 (URA3)] 

Römpler et al. (rev.) 

rcf2Rcf2  
(KRY32) 

MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YNR018w::HIS3MX6  
+ [pRS416-RCF2 (URA3)] 

this study 

rcf2Rcf2C70S S14C 
(KRY35) 

MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YNR018w::HIS3MX6  
+ [pRS416-RCF2C70S S14C (URA3)] 

this study 

rcf2Rcf2C70S R41C 
(KRY36) 

MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YNR018w::HIS3MX6  
+ [pRS416-RCF2C70S R41C (URA3)] 

this study 

rcf2Rcf2C70S S89C 
(KRY37) 

MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YNR018w::HIS3MX6  
+ [pRS416-RCF2C70S S89C (URA3)] 

this study 

rcf2Rcf2C70S T142C 
(KRY38) 

MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YNR018w::HIS3MX6  
+ [pRS416-RCF2C70S T142C (URA3)] 

this study 

rcf2Rcf2C70S S212C 
(KRY39) 

MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YNR018w::HIS3MX6  
+ [pRS416-RCF2C70S S212C (URA3)] 

this study 

rcf2 rcf3Rcf2 
(KRY71) 

MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YNR018w::HIS3MX6 
YBR255C-A::HIS3MX6 + [pRS416-RCF2 (URA3)] 

this study 

rcf2 rcf3 FlagRcf2 
(KRY72) 

MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YNR018w::HIS3MX6 
YBR255C-A::HIS3MX6 + [pRS416-FLAGRCF2 (URA3)] 

this study 

rcf2 rcf3 FlagRcf2 
(KRY67) 

MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YNR018w::HIS3MX6 
YBR255C-A::HIS3MX6 + [pRS426-FLAGRCF2 (URA3)] 

this study 

rcf2 rcf3Rcf2N 
(KRY73) 

MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YNR018w::HIS3MX6 
YBR255C-A::HIS3MX6 + [pRS416-RCF2N (URA3)] 

this study 
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Yeast strain Genotype Reference 

rcf2 rcf3Rcf2C 
(KRY74) 

MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YNR018w::HIS3MX6 
YBR255C-A::HIS3MX6 + [pRS416-RCF2C (URA3)] 

this study 

rcf2 rcf3Rcf3 
(KRY75) 

MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YNR018w::HIS3MX6 
YBR255C-A::HIS3MX6 + [pRS416-RCF3 (URA3)] 

this study 

rcf2 rcf3
Rcf2C70S (KRY76) 

MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YNR018w::HIS3MX6 
YBR255C-A::HIS3MX6 + [pRS416-RCF2C70S (URA3)] 

this study 

rcf2 rcf3
Rcf2C70S S14C (KRY77) 

MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YNR018w::HIS3MX6 
YBR255C-A::HIS3MX6 + [pRS416-RCF2C70S S14C (URA3)] 

this study 

rcf2 rcf3
Rcf2C70S T44C (KRY78) 

MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YNR018w::HIS3MX6 
YBR255C-A::HIS3MX6 + [pRS416-RCF2C70S T44C (URA3)] 

this study 

rcf2 rcf3
Rcf2C70S S89C (KRY79) 

MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YNR018w::HIS3MX6 
YBR255C-A::HIS3MX6 + [pRS416-RCF2C70S S89C (URA3)] 

this study 

rcf2 rcf3
Rcf2C70S T142C (KRY80) 

MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YNR018w::HIS3MX6 
YBR255C-A::HIS3MX6 + [pRS416-RCF2C70S T142C (URA3)] 

this study 

rcf2 rcf3
Rcf2C70S S212C (KRY81) 

MATa ade2-101 his3-200 leu2-1 ura3-52 trp1-63 lys2-801 YNR018w::HIS3MX6 
YBR255C-A::HIS3MX6 + [pRS416-RCF2C70S S212C (URA3)] 

this study 
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5.1.5. Instruments and Software 

Instruments and Software used in this study are listed in Table 5-6 and Table 5-7. 

Table 5-6: Instruments used in this study 

Instrument Manufacturer 

5417 R (centrifuge) Eppendorf 

5424 (centrifuge) Eppendorf 

5804 R (centrifuge) Eppendorf 

Avanti J-26 XP (centrifuge) Beckman Coulter 

Curix 60 (developing machine) AGFA 

Fluorescence scanner FLA-9000 Fujifilm 

iMarkTM (microplate reader) BioRad 

JA-10 (rotor) Beckman Coulter 

JA-20 (rotor) Beckman Coulter 

NanoVue Plus Spectrophotometer GE Healthcare 

OptimaTM L-90K (ultracentrifuge) Beckman Coulter 

OptimaTM MAX-XP (ultracentrifuge) Beckman Coulter 

Potter S (dounce homogenisator) Sartorius 

Sorvall H-12000 (rotor) Thermo Fisher Scientific 

Sorvall RC 12BP (centrifuge) Thermo Fisher Scientific 

Speed Vac Concentrator Savant 

Storage Phosphor screens GE Healthcare 

StormTM 820 PhosphorImager GE Healthcare 

Thermomixer comfort Eppendorf 

TLA-55 (rotor) Beckman Coulter 

TPersonal (thermo cycler) Biometra 

UV Solo (UV documentation) Biometra 

Vacuum gel drier Scie-Plas 

Varian Cary® Bio UV-Visible Spectrophotometer Agilent Technologies 

Oxygraph 2 k Oroboros 

 

Table 5-7: Software used in this study 

Software Producer 

Geneious 5.3.6 Biomatters (Auckland, New Zealand) 

Illustrator CS6 Adobe Systems (San Jose CA, USA) 

ImageQuant TL GE Healthcare BioSciences AB (Uppsala, Sweden) 

Microsoft Office 2011 Microsoft Corporation (Redmond, USA) 

Papers3 Mekentosj (Aalsmeer, Netherlands) 

Photoshop CS6 Adobe Systems (San Jose CA, USA) 
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5.2. Cultivation and handling of microorganisms 

5.2.1. Growth conditions for yeast 

Unless noted otherwise, yeast were grown according to standard procedures at 30°C 

in YP medium (1% yeast extract, 2% peptone) supplemented with 2% glucose 

(YPD), 3% glycerol (YPG) or 2% galactose (YPGal) shaking at 160-220 rpm (Curran 

& Bugeja, 2006). 300 mg/L G418 sulphate was added for selection of KAN+ cells. 

Selective minimal media for transformation with auxotrophic marker genes and 

maintenance of plasmid-carrying strains contained 0.67% yeast nitrogen base 

without amino acids (YNB), 0.07% complete supplement mixture (CSM) lacking the 

appropriate metabolite and 2% glucose (SD), 3% glycerol (SG), 3% lactate (pH 5.0 

using KOH, SLac) or 2% galactose (SGal). For multiple selection CSM lacking uracil, 

tryptophan, histidine and leucine was used and supplemented with metabolites 

(0.03 g/L L-leucine, 0.02 g/L uracil/ tryptophan/ histidine) to the desired mixture. 

Temperature sensitive mutants were grown at 25°C and shifted to restrictive 

temperature (37°C) for the last 3 h of growth. Plates were supplemented with 

28 g/L agar.  

Yeast strains were preserved as cryo stocks by mixing 800 µl of an over night 

culture in YPD or SD with 200 µl sterile 80% glycerol and stored at -80°C.  

5.2.2. Growth conditions for E. coli 

E. coli XL1 Blue were grown according to standard procedures in lysogeny broth 

(LB: 1% NaCl, 0.5% yeast extract, 1% tryptone) at 37°C (Sambrook & Russell, 2001). 

Plates were supplemented with 15 g/L agar. 0.1 g/L ampicillin was added for 

selection.  Plasmid bearing E. coli were preserved as cryo stocks by mixing 800 µl of 

an over night culture with 200 µl sterile 80% glycerol and stored at -80°C. 

5.2.3. Growth tests for yeast 

In order to compare growth of different strains on solid media, cells were raised 

over night in YP or an appropriate selective medium supplemented with 2% 

galactose of 0.5% glucose. The cultures were diluted to an optical density (measured 

at 600 nm; OD600) of 0.5, grown for 2 h, washed in medium lacking a carbon source 

and finally spotted in a 10 fold serial dilution (OD600 0.5-0.00005). Glucose was used 
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as fermentable and lactate or glycerol as non-fermentable carbon sources. Plates 

were incubated at 30°C and 37° C for 2-5 days.  

In order to obtain more quantitative results, strains were compared in a growth test 

in liquid media. Here, cells were raised in YP containing 0.3% glucose over night, 

washed in YP without carbon source and diluted to OD600=0.1 in YPD and YPG 

respectively. From these dilutions quintruples of 200 µl/well were added to a 

96 well plate which was kept at 30°C and 700 rpm on a Thermomixer for 24 h and 

monitored by measurements at 595 nm in a microplate reader every 2 h. Mean 

growth rate and standard deviation were calculated for each quintruple.  

5.2.4. Generation of yeast strains lacking mitochondrial DNA (rho0) 

To obtain yeasts lacking mitochondrial DNA (rho0 strains), cells were grown in 

liquid YPD supplemented with 25 µg/ml ethidium bromide for 3 days in total, being 

diluted every day 1:60 in fresh medium (modified from Simon & Faye, 1984). 15 µl 

of the last culture were plated on YPD without ethidium bromide, grown for 2 days 

and tested for the absence of mitochondrial translation products and respiration by 

western blotting and growth tests on YPG. 

5.2.5. Whole cell lysate of yeast 

In order to analyze the protein content of whole cells, as adapteded from J. S. Cox 

(Cox, Chapman, & Walter, 1997), yeast was grown in YPD or YPGal (if appropriate in 

SD or SGal) to late log phase. An equivalent of OD600=1 was harvested, resuspended 

in water and subjected to alkaline lysis by addition of 255 mM NaOH and 148 mM 

-mercaptoethanol and 10 min incubation on ice. Proteins were precipitated using 

TCA in a final concentration of 15% and 30 min to 12 h incubation at -20°C. Proteins 

were spun down at 12000 rpm for 30 min at 4°C, washed once in acetone and 

resuspended in 50 µl 1X SDS sample buffer containing 10 mM Tris base. Samples 

were subjected to SDS-PAGE analysis (see 5.4.1). 

5.2.6. Isolation of mitochondria 

For isolation of mitochondria, yeast was grown in YPG or SG (in case of strains with 

a defect in respiration on YPGal or SGal) for at least three days, increasing the total 

volume of fresh medium every day to a final volume of 2 L per flask and a final OD600 

of 1.5-2.0. Isolation procedure was performed essentially as described previously 
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(Meisinger, Pfanner, & Truscott, 2006). Whole cultures were harvested for 15 min at 

4700 rpm (Sorvall H-12000/ Sorvall RC 12BP) and washed in water once (Avanti 

J-26 XP/ JA-10). Pellets were incubated for 20 min at 30°C in 2 ml buffer A (100 mM 

Tris/ pH 9.4 using H2SO4, 1.54 g/L dithiotreitol (DTT)) per g cell wet weight, then 

harvested at 4000 rpm for 8 min and washed in 150 ml buffer B (20 mM KPi pH 7.4, 

1.2 M sorbitol). Pellets were resuspended in 7 ml/g buffer B containing 4 mg/g 

zymolyase (Seikagaku Biobusiness Corporation/ Nacalai Tesque Inc.) and incubated 

for 60-90 min at 30°C. Spheroblasts were spun down at 3000 rpm for 8 min and 

washed in 150 ml buffer B without enzyme. Pellets were then resuspended in 7 ml/g 

cold homogenization buffer (0.6 M sorbitol, 10 mM Tris/ pH 7.4 using HCl, 1 mM 

EDTA, 2 g/L BSA, 1 mM PMSF). The suspension was homogenized using a 60 ml 

dounce homogenizer (potter) at 800 rpm for 20 strokes on ice. The homogenate was 

centrifuged for 5 min at 3000 rpm at 4°C and the resulting supernatant cleared again 

in a 10 min spin at 4000 rpm at 4°C. The crude mitochondrial fraction was pelleted 

by centrifugation for 15 min at 12,000 rpm at 4°C (Avanti J-26 XP/ JA-20). 

Mitochondria were pooled in 5 ml SEM buffer (250 mM sucrose, 20 mM MOPS/ 

pH 7.2 using KOH, 1 mM EDTA) containing 1 mM PMSF and centrifuged again 

(12000 rpm, 4°C, 15 min). Mitochondrial pellets were resuspended in a small 

amount of SEM for adjustment of protein concentration to 10 mg/ml using Bradford 

assay (see 5.4.3) and storage in small aliquots at -80°C.  

For the fractionation experiment shown in Figure 2-2, additional samples were 

taken during the isolation procedure. Total represents yeast cells after 

homogenization. The postmitochondrial supernatant represent the supernatant of 

the first 12,000 rpm spin.  

 

5.3. Molecular biology methods 

5.3.1. Plasmid isolation 

Plasmids were purified from 2 ml E. coli culture using Wizard® Plus SV Minipreps 

DNA Purification System (Promega), following the manufacturers specifications and 

resuspended in water. Concentration of nucleic acids was measured with NanoVue 

Plus Spectrophotometer (GE Healthcare). Plasmid DNA was stored at -20°C.  
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5.3.2. Yeast genomic DNA isolation 

For isolation of yeast genomic DNA, from a 10 ml over night culture in YPD an 

amount corresponding to OD=2.5 was harvested and resupended in 150 µl 

Solution A (50 mM Tris/HCl  pH 7.5, 10 mM EDTA, 0.3% β-mercaptoethanol, 

0.5-0.25 mg/ml Zymolyase), and incubated at 37°C for 1 h (slightly shaking in 

Thermomixer). Sequentially, 10 µl 10% SDS and 100 µl 8 M ammonium acetate were 

added. After 15 min at -20°C and a spin at 14000 rpm and 4°C for 15 min 180 µl of 

the supernatant was mixed with 120 µl isopropanol for precipitation of DNA. DNA 

was pelleted at 14000 rpm and 4°C for 15 min, washed once in 70% ethanol, 

resuspended in 30 µl TE buffer (10 mM Tris/HCl pH 7.5, 1 mM EDTA) and stored at -

20°C.  

5.3.3. PCR 

DNA segments were amplified from yeast genomic DNA or plasmids by polymerase 

chain reaction (PCR) with KOD polymerase (Merck Millipore). According to the 

manufacturers instructions, 1X KOD buffer, 1.5 mM MgSO4, 0.2 mM of each 

desoxynucleotide (dNTP), 0.3 µM forward and reverse primer, 10-100 ng template 

DNA and 1 U of KOD polymerase were mixed per reaction. Cycling conditions were 

2 min at 95°C for polymerase activation followed by 10 cycles of denaturation (20 s 

at 95°C), annealing (10 s at 52-56°C depending on the used primer pair) and 

extension (15-25 s/kb at 70°C depending on the target size). In the following 

20 cycles annealing temperature was lowered to 48-52°C. Reaction was completed 

by a final extension for 1 min at 70°C. PCR fragments were analyzed by agarose gel 

electrophoresis (1% agarose in 1X TAE buffer (40 mM Tris, 20 mM acetic acid and 

1 mM EDTA)) in horizontal electrophoresis cell (BioRad) at 100-120 V for 

20-30 min. DNA was isolated from the gel or purified directly from the PCR tube 

using Wizard® SV Gel and PCR Clean-Up System (Promega) as described by the 

manufacturers. Concentration was determined using NanoVue Plus 

Spectrophotometer (GE Healthcare) and fragments stored in water at -20°C.  

5.3.4. Cloning 

Cloning of plasmids listed in TABLE was carried out according to standard 

procedures (Sambrook & Russell, 2001). To this end, for insertion of purified PCR 
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products in plasmids, both were first digested using appropriate FastDigest 

restriction enzymes (Thermo Fisher Scientific). In a 30 µl reaction 1X reaction 

buffer, 1 µl of each enzyme and ~1 µg of DNA were mixed and incubated for 30 min 

at 37°C. After 5-10 min heat inactivation (depending on the enzyme), digested 

plasmids were analyzed by agarose gel electrophoresis. Linearized plasmid as well 

as insert were purified using Wizard® SV Gel and PCR Clean-Up System and used for 

ligation with Rapid Ligation Kit (Thermo Fisher Scientific). To this end, 100 ng 

plasmid, an adequate amount of insert, 4 µl DNA ligation buffer and 1 µl T4 DNA 

ligase were mixed. The amount of insert was calculated as follows: massIns [ng]= 5 x 

massVec [ng] x lengthIns [bp]/ lengthVec [bp]. After an incubation of 30 min at 21°C, 

10 µl of the reaction was used for transformation (see 5.3.7). Constructs were 

analyzed by analytical restriction digest and further confirmed by sequencing 

(Seqlab Sequence Laboratories, Göttingen, Germany).  

5.3.5. In vitro mutagenesis 

In order to introduce defined mutations into plasmids, such as mutations for amino 

acid exchanges, insertion of short sequences coding for a small tag or removal of 

whole parts of the gene, the QuikChange Lightning Site-Directed Mutagenesis Kit 

(Agilent Technologies) was used. For this PCR-based approach primers were 

designed according to the manufacturers instructions with the desired mutation in 

the middle of the primer and ~10-15 bases of correct sequence on both sides. 

125 ng of each primer were mixed with 1X reaction buffer, 10-100 ng DNA template, 

1 µl dNTP mix and 1 µl QuikChange Lightening Enzyme in a total volume of 50 µl. 

Cycling conditions were as follows: 2 min at 95°C for polymerase activation followed 

by 18 cycles of 20 s at 95°C for denaturation, 10 s at 60°C for annealing and 30 s/kb 

of plasmid length at 68°C for elongation. Reaction was completed by a final 

elongation step for 5 min at 68°C. For removal of parental DNA, incubated for 5 min 

at 37°C with 2 µl Dnp I restriction enzyme, which was directly added to the 

amplification reaction. Proceeded with transformation into competent XL1 Blue. 

5.3.6. Transformation of E. coli 

Preparation of chemically competent E. coli was adapted from D. Hanahan and 

colleagues (Hanahan, 1983). 100 ml of culture with an OD600 of 0.6 was harvested by 

centrifugation for 5 min at 3300 rpm after an incubation on ice for 5 min. Pellets 
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were resuspended in 40 ml ice cold buffer A (30 mM KAc, 100 mM RbCl, 10 mM 

CaCl2, 50 mM MnCl2, 15% glycerol, pH 5.8) and chilled on ice for another 5 min. Cells 

were harvested again, resuspended in 4 ml buffer B (10 mM MOPS, 75 mM CaCl2, 

10 mM RbCl2, 15% glycerol, pH 6.5), aliquoted to 100 µl and stored at -80°C. For 

transformation cells were defrosted on ice, mixed with 10 µl ligation mix, 10 µl of 

Dnp I treated QuickChange reaction or 200 ng plasmid DNA and incubated for 

15 min on ice. After a brief heat shock for 1 min at 42°C, cells were chilled on ice for 

another 5 min, shaken for 1 h at 37°C with 1 ml LB medium and plated on 

ampicillin-containing selective plates. 

5.3.7. Transformation of yeast 

For transformation of yeast a strongly modified protocol based on a description by 

R. D. Gietz and colleagues (Gietz & Woods, 2002) was used. To this end, an over 

night culture of yeast in YPD was diluted to OD600=0.4 in 40 ml YPD in the morning 

and further grown for at least 4 h. Cells were harvested at 3500 rpm for 3 min and 

washed in water once. Afterwards, pellets were resuspended in 5 ml 0.1 M LiAc, 

aliquoted into 100 µl and kept at room temperature (RT) for 10 min. Meanwhile, 

10 g/l herring sperm DNA was boiled at 95°C for 5 min and immediately chilled on 

ice for 5 min. 100 µl competent cells, 10 µl herring sperm DNA, 360 µl PEG 4000 

(40% (w/v)) and 1-5 µl of plasmid DNA or PCR fragment were mixed and incubated 

30 min at 30°C under mild agitation (450 rpm). After addition of 72 µl DMSO, cells 

were shifted to 42°C for 30 min, then harvested 3 min at 4000 rpm and resuspended 

in 500 µl YPD. Incubation was resumed at 30°C at 750 rpm for 30 min in case of 

transformation with plasmids and auxotrophy marker genes and for at least 60 min 

in case of antibiotic resistance genes. Cells were then harvested again 3 min at 

4000 rpm, resuspended in a small amount of water and spread on selective plates. 

Transformants had to undergo a second round of single colony selection before they 

were propagated for cryo stocks and further experiments.  

5.3.8. Chromosomal deletions and insertions in yeast 

Chromosomal deletions and insertion of C-terminal tags in yeast was achieved by a 

PCR based strategy (Janke et al., 2004; Knop et al., 1999; Longtine et al., 1998). For 

deletions, HIS3MX6, kanMX6, TRP1 (Longtine et al., 1998) or natNT1 (Janke et al., 

2004) cassettes were amplified with primers containing homology regions to up- 
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and downstream sequences of the indicated open reading frame. For insertion of ZZ 

and SF tag, pYM10 (Knop et al., 1999) and pYM2.2 (Janke et al., 2004) served as a 

template. Homology regions of the primers in this case matched the end of the 

indicated open reading frame and a downstream sequence. PCR products were used 

for transformation as described in 5.3.7. Integration into the genome was confirmed 

by PCR and wester blotting.   

5.3.9. In vitro transcription and translation 

In order to generate [35S]-labeled precursers and protein fragments, first capped 

mRNAs were produced using the mMASSAGE mMACHINE SP6 kit (Promega). PCR 

products containing a SP6 promoter in front of the ORF were used as template for 

the in vitro transcription reaction. In brief, 1x NTP/CAP, 1x reaction buffer, 1 µg PCR 

product and 2 µl enzyme mix were mixed for a 20 µl reaction and incubated for 

90 min at 37°C. For removal of DNA template, samples were subsequently incubate 

with 2U TURBO DNaseI for 15 min at 37°C. RNA was recovered by precipitation 

through addition of 30 µl nuclease-free water and 30 µl LiCl solution (7.5 M lithium 

choride, 50 mM EDTA) and incubation at -20°C for at least 30 min. RNA was pelleted 

for 15 min at 14000 rpm and 4°C, washed with 1 ml 70% ethanol, dried, 

resuspended in 50 µl RNase-free water and stored at -80°C. RNA was then used for 

translation with the Flexi® Rabbit Reticulocyte Lysate System (Promega). To this 

end, 33 µl Flexi® Rabbit Reticulocyte Lysate, 1 µl 1 mM amino acid mix without 

methionine, 1.5 µg mRNA, 70-120 mM KCl, 0-2 mM MgAc, 0-2 mM DTT (depending 

on the protein synthesized, see Table 5-8) and 50 µCi [35S]-Met were mixed and 

incubated 90 min at 30°C.  

Alternatively, transcription and translation were performed in a coupled reaction 

from plasmid templates (see Table 5-4) using TNT® Quick Coupled Transcription 

Translation kit (Promega). This reaction was carried out in 40 µl TNT® Quick Master 

Mix with 1 µg plasmid DNA and 50 µCi [35S]-Met.  
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Table 5-8: Conditions for Flexi® Rabbit Reticulocyte Lysate System  

Precursor KCl MgAc DTT 

Rcf1 70 mM 0.8 mM 2 mM 

Rcf2 (all variants) 100 mM 0.8 mM 2 mM 

Rcf3 100 mM 1 mM 0 mM 

Cox13 70 mM 0.8 mM 0 mM 

Su9-DHFR 100 mM 1 mM 0 mM 

 

 

5.4. Protein biochemistry methods 

5.4.1. SDS-PAGE 

Separation of denatured proteins by SDS polyacrylamide gel electrophoresis 

(SDS-PAGE) was carried out based on the principles described by U. K. Laemmli. 

(Laemmli, 1970) but with several changes specified below. Depending on the size of 

the analyzed proteins, separating gel were prepared with different acrylamide 

concentrations (16-10%) using a stock solution of 30%/ 0.8% acrylamide/bis-

acrylamide (Gel Mix 30, Roth), 386 mM Tris/HCl pH 8.8, 0.1% SDS, 0.0588% APS 

and 0.0588% TEMED. The stacking gel contained 5% acrylamide, 80 mM Tris/HCl 

pH 6.8, 0.1% SDS, 0.1% APS and 0.2% TEMED. The running buffer contained 25 mM 

Tris, 191 mM glycine and 0.1% SDS. In order to obtain a better resolution for 

proteins smaller than 6 kDa, gels were supplemented with urea as suggested for 

Tricine gels by H. Schägger (Schägger, 2006). The separating gel contained 

17.5% acrylamide (using a stock of 60%/0.8% acrylamide/bis-acrylamide solution), 

683 mM Tris/HCl pH 8.8, 7.77 mM NaCl, 5.4 M urea, 0.1% SDS, 0.032% APS and 

0.066% TEMED. The stacking gel contained 5.4% acrylamide (using the same stock 

solution), 108 mM Tris/HCl pH 6.8, 3.3 M urea, 0.12% SDS, 0.126% APS and 0.11% 

TEMED. The running buffer consisted of 50 mM Tris, 192 mM glycine and 0.1% SDS.  

All gels were run in custom-made midi chambers at 30 mA per gel for 3-5 h or at 

5 mA per gel for 14-16 h.  

SDS sample buffer contained 2% SDS, 10% glycerol, 60 mM Tris/HCl pH 6.8, 1% 

-mercaptoethanol and 0.01% bromphenolblue. As a molecular weight standards 
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the unstained SDS-PAGE protein marker 6.4-200 kDa (SERVA) or the All Blue 

Prestained Protein Standards 10-250 kDa (BioRad) were used. 

5.4.2. Blue native PAGE 

Separation of native protein complexes by blue native polyacrylamide gel 

electrophoresis (BN-PAGE) was performed as initially described by Schägger and 

von Jagow and adapted by Dekker and colleagues (Dekker et al., 1997; Schägger & 

Jagow, 1991). Separation gels contained 1x gel guffer (66.6 mM e-amino n-caproic 

acid and 50 mM Bis-Tris/HCl pH 7.0), acrylamide from a 48%/1.5% 

acrylamide/bis-acrylamide stock solution, 0.08% APS and 0.133% TEMED. Usually, 

gradients of 4-10 or 4-13% acrylamide were generated by mixing 4% and 10 / 13% 

separation gel solutions (the latter containing 20% glycerol) with the help of a 

gradient mixer. Gels were cast and run in the SE600 Ruby system (Hoefer, GE 

Healthcare). The cathode buffer contained 50 mM Tricine, 15 mM Bis-Tris and 

0.02% Coomassie Brilliant Blue G250. Fors subsequent western blot and 2D analysis 

the cathode buffer was exchanged after 1/3 of the run against Coomassie-free 

buffer. The anode buffer contained 50 mM Bis-Tris/HCl pH 7.0. Unless not taken 

from IP or ZZ isolation procedures (see 5.5.1; 5.5.3; 5.5.4), samples were prepared 

by solubilisation of mitochondria in a buffer containing 20 mM Tris/HCl pH 7.4, 0.1-

1 mM EDTA, 50 mM NaCl, 10% glycerol, 1 mM PMSF and either 1% digitionin or 

0.6% DDM to 1 µg/µl for 20 min on ice. After removal of insoluble material by 

centrifugation at 14000 rpm for 10 min at 4°C supernatant was mixed with 10x 

BN-loading dye (5% Coomassie Brilliant Blue G250, 500 mM  e-amino n-caproic acid 

and 100 mM Bis-Tris/HCl pH 7.0). Samples were mixed well, kept on ice for 2 min, 

spun down at 14000 rpm for 1 min and loaded on the gel. Gel run was initiated at 

15 mA per gel at 200 V and continued at 600 V after exchange of the cathode buffer. 

Gels were run at 4°C until the Coomassie front reached the bottom of the gel.  

In case of 2D analysis, whole BN lanes were separated, incubated in SDS running 

buffer containing 50 mM DTT for 30 min at RT and subsequently cast into a regular 

SDS gel following the above-described procedures for SDS-PAGE. 

5.4.3. Determination of protein concentration  

Protein concentration of mitochondrial samples was estimated following Bradford 

assay (Bradford, 1976) and using Roti®-Quant (Roth) according to the 
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manufacturers specifications. Bovine IgG was used as protein standard. Each sample 

was measured three times in different amounts from which a mean value was 

calculated.  

5.4.4. Western blotting and immunodetection 

Western blotting and immunodetection were carried out according to standard 

protocols (Gallagher, Winston, Fuller, & Hurrell, 2004). PVDF membranes 

(Immobilon-P, Merck Millipore) were rinsed in methanol for activation. Blotting 

papers (BF2 grade, 190 g/m2, Sartorius stedim), activated membrane and gel were 

soaked in transfer buffer (20 mM Tris, 150 mM glycine, 0.02% SDS, 20% ethanol) 

and assembled in a semi dry blotting chamber (Peqlab). Proteins were transferred 

to the membrane at 25 V and 250 mA for 2.5 h in case of midi-sized gels or for 3 h in 

case of BN gels. To visualize protein standard, membranes were stained in 

Coomassie (see 5.4.6). After complete destaining of membranes in methanol, they 

were blocked in a solution of 5% (or in case of BN 10%) milk powder in TBS-T 

(20 mM Tris/HCl pH 7.5, 62 mM NaCl, 0.1% Tween 20) for 1 h at room temperature 

or at 4°C over night. Sera with specific primary antibodies were diluted in 5% milk 

in TBS-T and applied to the membranes for 1-2 h at room temperature or up to 14 h 

at 4°C. Afterwards, membranes were rinsed in TBS-T three times for 10 min and 

incubated with secondary antibodies diluted in 5% milk in TBS-T for 1 h at room 

temperature of up to 14 h at 4°C. For dilutions of secondary antibodies see 5.1.2.  

5.4.5. Autoradiography 

In vitro synthesized [35S]-labeled proteins were transferred to PVDF membranes as 

described in 5.4.4. However, after Coomassie staining (5.4.6) membranes were dried 

completely. Alternatively, gels were not used for transfer but directly stained with 

Coomassie and dried between a plastic bag and two blotting papers on a vacuum gel 

drier (Scie-Plas) at 65°C for 2.5 h.  Both, dried membranes and gels were 

subsequently treated in the same way. Protein standard was marked with 

radioactive ink (standard fountain pen ink containing 100 µCi [35S]-Met per 

cartridge) and covered with adhesive tape. Gels or membranes were then exposed to 

Storage Phosphor Screens (GE Healthcare). Signals were digitized using the 

STORM820 scanner (GE Healthcare) and, if necessary, quantified with Image-

QuantTL software (GE Healthcare) using rolling ball background subtraction.  
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5.4.6. Coomassie staining of membranes and gels 

For visualization of proteins after PAGE or western blotting, gels and membranes 

were stained in Coomassie stainer (40% ethanol, 10% acetic acid, 0.15% Coomassie 

Brilliant Blue R250) and destained (30% ethanol, 10% acetic acid) until protein 

bands were clearly distinguishable from the background.  

5.4.7. Steady state analysis of mitochondrial proteins 

To analyze and compare amounts of mitochondrial proteins at steady state, isolated 

mitochondria were subjected to SDS-PAGE analysis. To this end, isolated 

mitochondria were mixed with SDS sample buffer (see 5.4.1) to a final protein 

concentration of 1 mg/ml and incubated at 30°C and 1000 rpm for 30 min. Unless 

indicated otherwise 5 and 10 µg/ lane were loaded on SDS or Urea gels. 

5.4.8. Testing solubilization properties of mitochondria proteins 

To test the solubilization properties and stability of FLAGRcf2N, mitochondrial pellets 

were resuspended in regular BN solubilization buffer (20 mM Tris/HCl pH 7.4, 0.1-

1 mM EDTA, 50 mM NaCl, 10% glycerol, 1 mM PMSF) containing either 

1% digitonin, 0.6% DDM, 0.5% Triton X-100 or 1% SDS. Samples were incubated on 

ice for 20 min and cleared at 4°C and 20,000x g for 10 min. The supernatants were 

transferred to a new tube, while the remaining pellets were again resuspended in 

solubilization buffer. Both samples were mixed with SDS sample buffer. As positive 

control for detection of FLAGRcf2N, one sample was resuspended in regular SDS 

sample buffer (see 5.4.1) and kept at room temperature for the course of the 

experiment. 10 µg of sample / lane was analyzed via SDS-PAGE.  

5.4.9. Defining sub-mitochondrial protein localization 

In order to distinguish between integral membrane, membrane-associated and 

soluble proteins, carbonate extractions were performed essentially as described 

earlier (Vukotic et al., 2012). In brief, isolated mitochondria were incubated in 0.1 M 

Na2CO3 (pH 11.5 or pH 10.8) or 1% Triton X-100 supplemented with 150 mM NaCl 

for 20 min and centrifuged at 45000 rpm at 4°C for 45 min. Samples were then 

precipitated with TCA (see 5.2.5) and subjected to SDS-PAGE analysis. For 

information on the mitochondrial compartment the protein is located in, protease 

protection assays were carried out as described by M. Vukotic and colleagues as well 
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(Vukotic et al., 2012). Here, isolated mitochondria were converted to mitoplasts by 

hypotonic swelling in EM buffer (1 mM EDTA, 10 mM MPOS [pH 7.2 with KOH]), 

kept intact in SEM buffer (additional 250 mM sucrose) or lysed in 1% Triton X-100 

and subsequently treated with Proteinase K. Samples were precipitated with TCA 

and subjected to SDS-PAGE. 

5.4.10. Gel filtration 

As an alternative, providing a higher resolution than the above-described gradients, 

gel filtration analysis was performed with digitonin-solubilized mitochondria. After 

solubilization samples of 200 µg were loaded on a Superose 6 column equilibrated 

with the same solubilization buffer containing 0.1% digitonin. Fractions of 1 ml were 

collected, precipitated with TCA (see 5.2.5), resuspended in SDS sample buffer and 

subjected to SDS-PAGE analysis (see 5.4.1).  

 

5.5. Purification of proteins and protein complexes 

5.5.1. IgG chromatography  

For native isolation of ZZ-tagged proteins IgG chromatography was performed based 

on protocol published by P. Rehling and colleagues (Rehling et al., 2003) with 

modifications as specified by B. Bareth and coworkers (Bareth et al., 2013). In brief, 

mitochondria were solubilized in a buffer (20 mM Tris pH 7.4, 0.5 mM EDTA, 

100 mM NaCl, 5% Glycerol, 2 mM PMSF) containing either 1% digitonin or 0.6% 

DDM for 40 min and unsolublized material was removed by a 10 min spin at 

14000 rpm at 4°C. After saving a small sample as a total, the protein complexes of 

the supernatant were bound to IgG sepharose (human IgGs coupled to CNBr-

activated sepharose according to the manufacturers protocol [GE Healthcare]) via 

the protein A part of the ZZ tag for 1.5 h at 4°C.  After several rounds of washing in 

wash buffer (for composition see solubilization buffer) containing 0.3% digitonin or 

0.6% DDM, complexes were eluted natively by AcTEV protease (Tobacco Etch Virus 

protease, 10 U/µl) cleavage over night at 8°C. The protease cleavage site is included 

between bait and tag, as designed in KNOP et al 1999. The protease itself, carrying a 

polyhistidine, was remove by addition of Ni-NTA (Quiagen) pre-equilibrated with 

wash buffer. TEV-cleaved native eluates were mixed either with SDS sample buffer 
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or with BN sample buffer and analysed by SDS-PAGE or BN-PAGE / 2D and western 

blotting. In case of the two-step purification after copper cross-linking, the isolation 

was performed from DDM-solubilized mitochondria and TEV eluates were used for 

subsequent Rcf2 immunoprecipitation. 

5.5.2. Crosslinking of antibodies to PA-Sepharose 

For co-immunoprecipitiation, specific antisera were bound to protein A-sepharose 

(GE Healthcare) as described earlier (Bareth et al., 2013). Antisera were diluted 1:8 

(in case of Rcf1 sera 1:4) in 0.1 M potassium phosphate buffer (pH 7.4) and 

incubated with protein A-sepharose for 1 h at room temperature. Beads were 

washed in 0.1 M sodium borate (pH 9.0) and subsequently cross-linked with 

5 mg/ml dimethyl pimelimidate (DMP) solution in 0.1 M sodium borate (pH 9.0) for 

30 min at room temperature. Reaction was quenched with 1 M Tris/HCl pH 7.4 at 

4°C over night. Finally, beads were washed in TBS-T for at least 3 times and stored 

at 4°C in TBS-T containing 2 mM sodium acid. Prior to and after each 

immunoprecipitation beads were washed at room temperature two times with 

acetate buffer (pH 3.4) followed by three times with TBS-T. All centrifugation steps 

with beads were performed at 100 x g.  

5.5.3. Immunoprecipitation 

Immunoprecipitation (IP) was performed for Rcf1, Rcf2, Rcf3, Qcr8 and Cox2 as 

described (Bareth et al., 2013; Hutu et al., 2008; Mick et al., 2010) but with minor 

changes. As specificity control either a respective deletion strain or an antibody 

against the unrelated protein Pam18 were used. In detail, mitochondria isolated 

from the indicated strains were lysed in 20 mM Tris (pH 7.4), 80 mM NaCl, 0.5 mM 

EDTA, 1% digitonin, 10% glycerol and 1 mM PMSF for 40 min under agitation. 

Lysates were cleared at 20,000x g for 10 min at 4°C and input samples (total) were 

taken. Lysates were split to indicated antibody-coupled sepharose columns and 

incubated for 1.5 h at 4°C. After eight rounds of washing in the buffer indicated 

above, containing 0.3% digitonin, precipitated protein complexes were eluted in an 

appropriate volume of 0.1 M glycine (pH 2.8). Eluates and total samples were 

analysed by SDS-PAGE and western blotting.  

In case of the two-step purification after copper cross-linking a denaturing IP of Rcf2 

was performed. 0.6% DDM-containing TEV eluates from Cox4ZZ isolation were 
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mixed with a second lysis buffer (20 mM Tris pH 7.4, 80 mM NaCl, 0.5 mM EDTA, 

10% glycerol, 2 mM PMSF, 1% Triton X-100) to a final concentration of 

0.6% Triton X-100. After 20 min on ice lysates were cleared at 20,000x g and 

subjected to the IP procedure described above. The wash buffer contained 0.3% 

Triton X-100.  

5.5.4. FLAG isolation 

For isolation of FLAG tagged Rcf2, 20 µl ANTI-FLAG M2 affinity gel (Sigma Aldrich) 

per 500 µg mitochondria was used. Conditions for solubilization, binding and 

washing were chosen as described for immunoprecipiation (see 5.5.3). Bound 

protein complexes were eluted natively by incubation with FLAG® peptide (Sigma 

Aldrich) according to the manufacturers specifications. Total, unbound and elution 

were analyzed on regular SDS-PAGE as well as on BN-PAGE followed by second 

dimension. 

 

5.6. Specialized assays  

5.6.1. In vitro protein import and assembly assay  

Radiolabeled precursor proteins (max 10% [v/v]) were imported into isolated 

mitochondria essentially as described by M. T. Ryan and coworkers (Ryan, Voos, & 

Pfanner, 2001). Mitochondria were incubated in import buffer (250 mM sucrose, 

10 mM MOPS/KOH pH 7.2, 80 mM KCl, 2 mM KH2PO4, 5 mM MgCl2, 5 mM 

methionine, 1% fatty-acid free BSA) supplemented with 2 mM ATP and NADH at 

25°C. For imports with subsequent assembly 0.1 mg/ml creatine kinase and 5 mM 

creatin phosphate were added as ATP regenerating system. As a control for 

membrane potential-depended import and to stop reactions after indicated times, 

the membrane potential was dissipated using 1 µM valinomycin, 8 µM antimycin A 

and 20 µM oligomycin (AVO). After placing samples on ice unimported precursor 

proteins were removed with 50 mg/L proteinase K for 10 min. Protease was 

inactivated with 2 mM PMSF for 10 min on ice. Samples were centrifuged for 10 min 

at 14000 rpm at 4°C and washed in SEM (see 5.2.6) containing 2 mM PMSF. For 

subsequent SDS-PAGE analysis, samples were resuspened in SDS sample buffer (see 

5.4.1). For BN-PAGE analysis, samples were solubilized in 1% digitonin or 0.6% 
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DDM as described in SEE. Both were further processed for autoradiography (see 

5.4.5). Alternatively, SEM-washed samples were used for further experiments (see 

5.6.2).  

5.6.2. Modification of cysteines using PEG maleimid 

The ability of PEG maleimid (average Mn 2000, Sigma Aldrich) to covalently bind 

cysteines, thereby increasing the mass of the modified protein by 2 kDa, was used to 

asses the oxidation state of cysteines as well as to confirm Rcf2 topology (Roberts, 

Bentley, & Harris, 2002). In general, for this treatment mitochondria, re-isolated 

after Rcf2 import, were resuspended in a buffer containing 5 mM PEG maleimid and 

incubated for 1 h. The reaction was quenched by incubation with 10 mM DTT for 

10 min on ice. Afterwards, samples were mixed with SDS sample buffer and 

subjected to SDS-PAGE analysis. The PEG maleimid-containing buffer was chosen 

adequately to the purpose of the experiment. If modification of fully denatured 

proteins was sought, it contained 50 mM Tris pH 7.4, 1% SDS, 1 mM EDTA, 1X 

cOmplete (EDTA free, Roche), 0.1 mg/ml BSA and 0.2 mM PMSF. Incubation in this 

buffer took place at room temperature. In case only IMS exposed cysteine residues 

were targeted, the buffer contained 1 mM EDTA, 10 mM MOPS (pH 7.2 with KOH) 

and incubation took place on ice.  

5.6.3. Protease inhibitor treatment of mitochondria 

In order to determine the protease class responsible for the Rcf2 processing step, 

Rcf2C was monitored after import into mitochondria pretreated with different 

inhibitors. To this end mitochondria resuspended in import buffer supplemented 

with 2 mM ATP and NADH as described in 5.6.1 were treated with individual or 

mixed inhibitors in the following concentrations: 2x cOmplete, 10 mM EDTA, 10 µM 

pepstatin A. After 15 min on ice, samples were further handled as described in 5.6.1.  

5.6.4. Copper cross-linking 

Copper mediated cross-linking of cysteine containing neighboring proteins was 

performed essentially as described earlier (Falke & Koshland, 1987; Kobashi, 1968; 

F. Y. Zeng, Hopp, Soldner, & Wess, 1999), but with several modifications. To this end, 

isolated mitochondria were incubated with 2 mM CuSO4 in SH buffer (0.6 M sorbitol, 

20 mM HEPES pH 7.5) for 30 min on ice. Reaction was quenched by addition of 
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17 mM NEM and 17 mM EDTA and incubation on ice for 15 min. Mitochondria were 

re-isolated at 14000 rpm and 4°C for 10 min and resuspended in SDS sample buffer 

without -mercaptoethanol for SDS-PAGE analysis or further processed for IgG 

chromatography and Rcf2 IP.  

5.6.5. Determination of enzyme activities in vitro 

Activity of cytochrome c oxidase was determined by assaying the oxidation of 

cytochrome c in isolated mitochondria as described earlier (Vukotic et al., 2012). 

The reaction was performed with an appropriate amount of mitochondria in 40 mM 

potassium phosphate buffer (pH 7.4) and initiated by addition of 0.1% sodium 

dithionite-reduced cytochrome c (Sigma). Decrease in absorbance at 550 nm was 

followed in a spectrophotometer. Activity of cytochrome bc1 complex was 

determined similarly by assaying the reduction of cytochrome c. Here, the buffer 

additionally contained 0.5 mM NADH and 12.5 mM KCN and reaction was started by 

addition of 0.1% oxidized cytochrome c. Increase in absorbance at 550 nm was 

followed in a spectrophotometer. Concentration of cytochrome c was calculated 

using its extinction coefficient at 550 nm (21.84 mM-1 cm-1). 

5.6.6. Determination of oxygen consumption rates 

Oxygen consumption rates were measured in isolated mitochondria in an 

Oxygraph 2 k (Oroboros) at 30°C.  Per measurement 2.1 ml buffer  (250 mM sucrose, 

80 mM KCl, 5 mM MgCl2, 2 mM KH2PO4, 5 mM methionine, 10 mM MOPS [pH 7.2 

with KOH]) were supplemented with 1 mM ATP and 1 mM NADH and equilibrated 

for 5 min to obtain a stable oxygen concentration. Reactions were started by 

addition of 100 µg of isolated mitochondria.  
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