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GENERAL INTRODUCTION AND AIMS 

 

Long considered as a hormone with exclusive function in the regulation of 

vertebrate red blood cell production, erythropoietin (Epo) is today 

acknowledged as a pleiotropic cytokine that stimulates a wide spectrum of 

cellular responses in non-hematopoietic tissues providing protection against a 

variety of damaging stimuli. Beneficial functions of Epo outside of the 

hematopoietic system, especially in the nervous system, have been documented 

in many mammalian model systems (Sargin et al. 2010). Consequently, the 

neuroprotective potential of recombinant human Epo (rhEpo) has been probed 

in clinical pilot studies of human brain disorders, such as ischemic stroke 

(Ehrenreich et al. 2002; Ehrenreich et al. 2009) chronic schizophrenia 

(Ehrenreich et al. 2007; Wüstenberg et al. 2011) and chronic progressive 

multiple sclerosis (Ehrenreich et al. 2007), in which its beneficial effect was 

confirmed. However, chronical application of rhEpo was often accompanied 

with adverse side effects resulting from increased stimulation of erythropoiesis, 

such as thrombosis (Corwin et al. 2007). Over the last decade researchers 

invested enormous effort in understanding the cellular mechanisms that allow 

separation of tissue-protective from erythropoietic properties of Epo to enable 

the safe use of Epo as a therapeutic agent. The exact mechanism of the non-

erythropoietic function of Epo however still remains to be clarified.  

Orthologues of epo genes have been identified in vertebrates from fish to 

mammals (Chu et al. 2008) suggesting that Epo signaling was already 

established when vertebrates emerged approximately 420 million years ago. 

Hence, tissue protection against invading pathogens and other damaging 

stimuli may have been the original function of ancient Epo-like signaling 

(Brines & Cerami 2005) common to vertebrates and probably some 

invertebrates. When adaptive immunity emerged in the vertebrate lineage, this 

system adapted an additional function in the regulation of erythropoiesis 

(Buchmann 2014).  
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Studying invertebrate model systems in which erythropoiesis is absent might 

be advantageous in investigating the features of this evolutionary old tissue-

protective Epo-like system. Insects typically use fewer different molecules for 

the regulation of their body functions, including adaptation of cellular 

processes to changing environments. Still, the involved molecules often have 

orthologues in vertebrates. Thus, with networks of signaling pathways that are 

usually less complex and less redundant compared to the pathways present in 

mammalian cells, insects might serve as a valuable model system to study 

intracellular mechanisms involved in Epo-mediated tissue-protection, 

independently of any erythropoiesis-mediated side effects. Studies on insects 

could provide important insights into the evolution of this tissue-protective 

system towards the one present in extant vertebrates. The understanding of 

differences between hematopoietic and tissue-protective properties of Epo is 

essential for the clinical translation of Epo-mediated beneficial treatments of 

central nervous damage and nervous system disorders.  

Previous studies on acridid grasshoppers demonstrated neuroprotective and 

neuroregenerative effects of rhEpo. Namely, rhEpo increased the survival of 

primary cultured neurons from Locusta migratoria brains under normoxic and 

hypoxic conditions and accelerated neurite regeneration in vitro. In addition, 

rhEpo improved the reestablishment of sound localisation in the grasshopper 

Chorthippus biguttulus after transection of auditory nerve axons in vivo 

(Ostrowski et al. 2001).  

The purpose of the present doctoral thesis was to study (in more detail) the 

cellular mechanisms of Epo-mediated protection of insect neurons.  

The specific aim of the first part of the thesis was to characterize Epo-initiated 

transduction pathways involved in the protection of locust brain neurons 

exposed to apoptosis-inducing stimuli. In particular, I have studied whether 

these pathways are similar to those required for neuroprotection in mammals.  
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The second aim of the thesis was to study functional characteristics of the Epo-

binding receptor on locust brain neurons. The main goal of this part was to 

examine whether activation of the receptor by rhEpo stimulates endocytosis in 

locust brain neurons. In addition, to obtain more information on the functional 

property of the Epo-binding receptor in locust neurons, I have studied whether 

the neuroprotective but non-hematopoietic human Epo splice variant EV3 can 

activate the receptor. The respective results are described in the second chapter 

of the thesis. 

The third part of the project aimed to establish a suitable insect model system 

and protocols to study the potential involvement of Epo in insect neurogenesis. 

The objective was to analyse the ability of rhEpo to stimulate proliferation of 

stem-like progenitors and their differentiation into neurons. Three different 

insect preparations were analyzed in this respect. The results of these attempts 

are described in the third chapter of this thesis.   
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I Signaling pathways involved in erythropoietin-

mediated neuroprotection in Locusta migratoria in 

vitro 

 

I.1 Introduction 

Erythropoietin (Epo) is the primary humoral mediator of hypoxic induction of 

vertebrate erythropoiesis (Bunn 2013). Apart from regulating erythropoiesis, 

evidence emerging over the last decade underlined the importance of Epo in 

mediating adaptive cellular responses triggered by diverse harmful stimuli in 

various non-hematopoietic mammalian tissues including the nervous system. 

Acting in a paracrine manner (Ruscher et al. 2002), Epo induces a wide range of 

cellular responses in the nervous system to protect and repair physiologically 

challenged or injured tissue. Beneficial functions include protection of neurons 

from apoptosis (Sirén et al. 2001a; Wen et al. 2002), glutamate excitotoxicity 

(Morishita et al. 1996) and oxidative damage (Chong et al. 2003; Kumral et al. 

2005; Wu et al. 2007a), prevention of inflammatory responses (Agnello et al. 

2002; Villa et al. 2003; Sättler et al. 2004; Chen et al. 2007a), promotion of 

angiogenesis (Wang et al. 2004) and neurogenesis (Shingo et al. 2001). Thus, by 

targeting not only injured mature neurons directly, but also neural progenitors, 

astrocytes, oligodendrocytes, microglia and endothelial cells (Byts & Sirén 

2009), Epo coordinates and orchestrates differential cell type-specific responses 

to promote healing and repair of injured  nervous tissues.    

As in the kidney, Epo production in the mammalian brain was observed to be 

hypoxia-inducible (Marti et al. 1996) and regulated via hypoxia-inducible factor 

(HIF) (Semenza & Wang 1992). In addition to hypoxia other potentially harmful 

stimuli, such as hypoglycemia, insulin release and reactive oxygen species 

activate HIF and lead to increased expression of Epo (Masuda et al. 1997; 

Chandel et al. 1998). Epo exerts its physiological role by binding to a cell surface 

receptor. Epo receptor (EpoR) expressed on the surface of erythroid progenitor 
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cells is a homodimeric cytokine class I receptor (Youssoufian et al. 1993). Signal 

transduction in erythropoiesis involves binding of one Epo molecule to an 

EpoR homodimer which leads to the activation of intracellular signaling 

cascades (Constantinescu et al. 1999). In contrast, tissue-protective functions of 

Epo are suggested to be mediated by binding to a heteromeric receptor, 

consisting of one hematopoietic EpoR monomer and another, probably cell-

specific, receptor subunit. Potential heteromeric partners in non-hematopoietic 

tissues include one or more units of the beta common receptor chain (Brines et 

al. 2004) and the ephrine B4 receptor (Jackson et al. 2012; Debeljak et al. 2014).  

The signaling pathways involved in neuroprotection overlap partially with 

those engaged in erythropoiesis. Both, neuroprotection and erythropoiesis are 

initiated by trans-phosphorylation and activation of receptor-associated 

tyrosine kinases of the Janus kinase 2 (JAK2) type as a result of conformational 

change in the receptor induced upon Epo binding (Witthuhn et al. 1993). Three 

principal downstream signaling pathways are subsequently activated. These 

include signal transducer and activator of transcription 5 (STAT5), 

phosphoinositol-3-kinase/protein kinase B (PI3K/Akt)  and mitogen-activated 

protein kinase (MAPK) (Sirén et al. 2001a). STAT5 contributes to an universal 

antiapoptotic pathway activated in erythroid precursors (Silva et al. 1999; 

Socolovsky et al. 2001), neuronal cells (Sirén et al. 2001a) and other cell types. 

The PI3K/Akt pathway has been demonstrated to be involved in neural 

progenitor cell migration to the area of injury (Wang et al. 2006a) and regulation 

of endothelial responses (Chong et al. 2002). The MAPK pathway has been 

implicated in proliferation (Sui et al. 1998; Lawson et al. 2000) and 

differentiation of erythroid precursors (Klingmüller et al. 1997), as well as in 

reduction of inflammation (Brines 2014). All three pathways contribute to 

antiapoptotic effects of Epo through interference with apoptotic processes, 

accomplished either directly (e.g. via Akt that regulates the activity of caspases) 

(Digicaylioglu et al. 2004; Wu et al. 2007) or via activation of transcription 

factors that either suppress transcription of pro-apoptotic genes (e.g. bad) 

(Ruscher et al. 2002) or activate transcription of anti-apoptotic genes (e.g. bcl-XL) 
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(Wen et al. 2002). Epo-mediated neuroprotection in mammals additionally 

involves signaling pathways different from those involved in erythropoiesis, 

such as the NF-kB pathway (Digicaylioglu & Lipton 2001; Liu et al. 2005).  

The fact that Epo initiates similar transduction pathways to stimulate 

erythropoiesis and tissue protection suggests a common evolutionary origin of 

Epo signaling for both systems in vertebrates. Epo signaling seems to be 

common to all vertebrates since homologues of the human epo gene have been 

identified in various mammalian (Wen et al., 1993), amphibian (Nogawa-

Kosaka et al. 2010) and fish species (Chou et al. 2004; Chu et al. 2007; Chu et al. 

2008; Ostrowski et al. 2011). In contrast, orthologues of epo and epor genes could 

so far not be identified in any invertebrate species, while downstream 

components of mammalian Epo signaling pathways, namely JAK, STAT, PI3K, 

Akt, NF-κB are present in invertebrates, including various insect species (Ghosh 

et al. 1998; Scanga et al. 2000; Arbouzova & Zeidler 2006). The significance of 

these signaling networks in insect cells is reflected by their requirement for 

normal developmental processes (Bina & Zeidler 2009) and for innate immune 

responses against invading pathogens (Agaisse et al. 2003). Despite the absence 

of Epo and EpoR orthologues in insects, a previous study on grasshoppers 

found neuroprotective and neuroregenerative effects of rhEpo in vitro and in 

vivo (Ostrowski et al. 2011). Hence, neuroprotection or even general tissue 

protection might have been the original function of an ancient Epo/EpoR-like 

signaling system that evolved in a common ancestor of vertebrates and insects 

as a part of innate immunity. With the evolution of specialized oxygen carrying 

erythrocytes at the basis of the vertebrate lineage the Epo/EpoR system was 

subsequently adapted for its role in vertebrate erythropoiesis (Svoboda & 

Bartunek 2015). 

Although orthologues of mammalian components of Epo-stimulated 

intracellular transduction pathways have been described in insects (most 

completely in Drosophila melanogaster), their requirement for Epo-mediated 

protection of insect neurons have not been studied so far. Therefore, the aim of 
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the first part of this thesis was to examine whether signaling pathways involved 

in Epo-mediated protection of insect (locust) neurons are similar to those 

required for neuroprotection in mammals. Similarities in signaling cascades 

leading to Epo-mediated neuroprotection between mammals and insects would 

thus provide further support for the hypothesis of a pre-vertebrate evolution of 

Epo/EpoR-like signaling with an original function in cell and tissue protection.  
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I.2 Material and Methods 

I.2.1 Animals 

Experiments were carried out with fourth-instar nymphs of Locusta migratoria 

purchased from a commercial breeder (Hintze, Berlin, Germany). Until usage, 

animals were maintained in colonies at 22–25°C on a 12/12-hours day/night 

cycle.  

 

I.2.2 Preparation of primary cultures of locust brain cells 

Before experimental preparation of locust brains, round coverslips ( 11mm, A. 

Hartenstein, Würzburg) were placed carefully with forceps into sterile plastic 

culture dishes ( 35mm, Corning, NY, USA) and coated with a solution of 

Concanavalin A (ConA, Sigma-Aldrich Chemie, Schnelldorf, Germany; 100 

μl/coverslip). ConA is a lectin that binds specifically to carbohydrate fractions 

of cell membrane glycoproteins and glycolipids facilitating the adhesion of the 

cells to the substrate (Hardman & Ainsworth 1972). After approximately 2 h 

and shortly before the plating of the cell suspension, ConA was removed and 

coverslips were carefully washed 3 times with autoclaved phosphate-buffered 

saline (PBS, pH 6.9).  

Brain dissection was carried out under a stereo microscope (Olympus, Mod. 

SZ61, Tokyo, Japan). Locust heads were separated from their bodies and pinned 

to the surface of a sylgard-coated plate. The frontal head cuticle was cut in three 

directions using fine scissors (from mouth region towards the eyes in dorsal 

direction, followed by two diagonal cuts towards the eyes in lateral direction, 

Figure 1). The head capsule was opened using fine forceps to carefully separate 

connective tissue lying just beneath the cuticle. Locust brains without optic 

lobes were dissected out from head capsules, collected in sterile culture dishes 

filled with Leibovitz`s L-15 Medium (L15, Gibco, Life Technologies, Thermo 

Fisher Scientific, Braunschweig, Germany) supplemented with 0.5% gentamicin 

(GM, BioReagent, Sigma-Aldrich) and cleared from remaining trachea under 

sterile conditions. All following steps were carried out in a clean bench (Thermo 
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Fisher Scientific, Mod. Safe 2020). Cleaned brains were pooled into a single 

culture dish and rinsed three times with L15/0.5% GM. For enzymatic digestion 

of extracellular matrix proteins, brains were incubated in L15/0.5% GM 

containing a 1 mg/ml mixture of collagenase/dispase (Sigma-Aldrich) for 15 

minutes (min) in an incubator (model B6120, Heraeus Instruments, Hanau, 

Germany) at 27°C. After three short washings with Hanks` Balanced Salt 

Solution (HBSS, Gibco, Thermo Fisher Scientific), cells were mechanically 

dissociated by gentle trituration of the brain tissue via repeated passages 

through the tip of a 1 ml Eppendorf pipette (20 times), followed by further 

repeated passages through the tip of a 100 μl Eppendorf pipette (again for 20 

times). After 1 min spinning of triturated tissue at 3000 x g with a bench rotor 

(Quick Spin QS7000, Süd-Laborbedarf, Gauting, Germany), the supernatant 

was discarded and the pellet of dispersed brain cells resuspended in L15/0.5% 

GM (50 μl per brain). The cell suspension (consisting of the pooled cells from a 

larger number of locust brains) was equally distributed onto previously 

prepared ConA-coated coverslips (100 μl/coverslip). This procedure assured 

that each of the cultures used in the same experiment contained an equal 

density of cells (around 2 brains/coverslip) that originated from the same pool 

of dissociated brains. Cells were allowed to adhere to the coverslips for 2 h at 

room temperature (RT), (under the clean bench), before L15/0.5% GM medium 

supplemented with fetal bovine serum gold (FBSG, PAA laboratories, GE 

Healthcare Life Sciences, Freiburg, Germany) at a final concentration of 5% 

(v/v) (L15/0.5%GM/5%FBSG) was added to the culture dishes (2 ml/culture 

dish). The primary cultures of locust brain cells were placed in an incubator at 

27°C in a humidified atmosphere and maintained (usually for 5 days) until 

experiments were performed. The medium was replaced with fresh 

L15/0.5%GM/5%FBSG every 2 days and cultures were inspected for their 

growth, viability and possible contamination every day with an inverted light 

microscope with phase-contrast (CKX41, Olympus).  
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Figure 1. Establishment of primary cell cultures from locust brains. Locust brains were 
dissected, pooled and their dissociated cells plated onto coverslips and cultured in dishes with 

medium. 

 

I.2.3 Induction of apoptosis 

Apoptosis of primary cultured brain cells was induced by hypoxia or H-7 

treatment. For hypoxia experiments cultures were placed in airproof chambers 

(22.5 x 4.5 x 4 cm, workshop of our institute), equipped with an oxygen 

analyzer (Greisinger GOX 100, Conrad Electronics, Hirschau, Germany). 

Oxygen (O2) was removed by floating the chamber with nitrogen (N2). O2 level 

was maintained at ≤ 2%. Hypoxia was applied to the cell cultures for 36 h at RT. 

Control cultures were kept under normoxic conditions for the same period. To 

chemically induce apoptosis, cells were incubated with 1-(5 

isoquinolinesulfonyl)-2-methylpiperazine (H-7, Sigma-Aldrich) at a final 

concentration of 50 μM for 18 h at 27°C. Untreated control cultures were 

maintained at the same temperature for the same period.    

 
 

I.2.4 Pharmacological treatment 

To examine Epo-initiated intracellular signaling pathways that mediate 

protection from experimentally induced apoptosis, cell cultures were treated 

with combinations of 4 U/ml rhEpo (NeoRecormon, Roche, Welwyn Garden 

City, UK) and membrane permeable inhibitors of particular transduction 
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mechanisms diluted in serum-free medium. 4 U/ml  rhEpo has previously been 

determined as being most effective to support the survival of locust brain 

neurons in vitro (Ostrowski et al. 2011), with both higher and lower 

concentrations being less beneficial. Stock solutions of the JAK2 inhibitor AG-

490 (Cayman Chemicals, MI, USA), the STAT5 inhibitor sc-355979 (New 

England BioLabs, Frankfurt am Main, Germany) and the PI3K inhibitor 

LY294002 (New England BioLabs) were first dissolved in dimethyl sulfoxide 

(DMSO, Sigma-Aldrich) (final concentration of DMSO in cultures was < 1%; 1% 

DMSO does not affect the viability of the primary cultured brain cells; see Fig. 

7) and then diluted with culture media to give final experimental 

concentrations of 5 μM. The NFκB/IκB inhibitor, pyrrolidine dithiocarbamate 

(PDTC, Sigma-Aldrich), was directly dissolved in culture media to a final 

concentration of 100 μM. All inhibitors (except PDTC) were applied 1 h before 

(hypoxia experiments) or together with (H-7 experiments) the addition of 

rhEpo. To secure efficient inhibition of NFκB/IκB activation PDTC was applied 

at least 1,5 h before addition of rhEpo (Schreck et al. 1992). Additional control 

experiments were performed with the rhEpo solvent (3 mg polysorbate 80, 50 

mg glycine, 43.8 mg NaCl, 5.13 mg NaHPO4 x 2H2O, 22.3 mg Na2HPO4 x 2H2O 

in 10ml H2O) added in the same volume as rhEpo in experimental treatment 

groups.  

 

I.2.5 Experimental design and timeline 

Two approaches were used to study intracellular signaling pathways involved 

in Epo-mediated protection from experimentally induced apoptosis (Fig. 2). 

Five days after establishment of primary neuronal cultures full medium was 

replaced with serum-free medium supplemented with or without rhEpo and 

with or without an inhibitor of a particular signaling molecule (see I.2.4). In the 

first approach, cultures were maintained for 12 h in normoxia and thereafter 

exposed to hypoxic atmosphere for 36 h. After reoxygenation, cell cultures were 

maintained for 12 h in normal atmosphere before fixation and subsequent 

analysis of cell survival. In the second approach, after application of rhEpo 
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and/or a specific inhibitor or serum-free medium only (control) (see I.2.4) cells 

were maintained for 10 h at 27°C. Subsequently they were exposed to H-7 

treatment for 18 h at 27°C. Afterwards cells were fixed and labeled for analysis.  

 

Figure 2. Schematic drawing of the experimental procedures to study the contribution of JAK, 

STAT, PI3K and NFκB to Epo-mediated protection of primary cultured locust brain neurons.  
Inhibitors are: AG490, sc355979, LY294002 and PDTC. 

 
 

I.2.6 Assessment of neuronal survival 

To analyze the survival of primary cultured neurons the cultures were fixed 

with 4% paraformaldehyde in 0.1 M phosphate buffer for 30 min at RT. After 

three 5-min washes with PBS (pH 6.9) and two 5-min washes with PBS 

containing 0.1% Triton-X-100, the cells were incubated with 4,6-diamidino-2-

phenylindole dihydrochloride (DAPI, Sigma-Aldrich) dissolved in PBS at a 

final concentration of 100 μg/ml for 30 min at RT in the dark. Excess dye was 

removed by several washes with PBS and the cell-containing coverslips were 

mounted on microscopic slides in 1, 4-diazobicyclo [2.2.2] octane (DABCO, Carl 

Roth, Karlsruhe, Germany). Analysis of DAPI fluorescence was performed 

using an epifluorescence microscope (Zeiss Axioskop; 40x objective) equipped 

with a Spot CCD camera (Invisitron, Puchheim, Germany). From each culture, 

two continuous rows of non-overlapping photographs (usually 50-70 per 

5 days 10 hours 18 hours DAPI

H-7 ..

rhEpo ⁺₋ inhibitor

5 days 12 hours 36 hours 12 hours DAPI

.. NormoxiaNormoxia. . Hypoxia ..

rhEpo ⁺₋ inhibitor
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culture) to the right and the left of the center along the entire coverslip were 

taken. Post-treatment survival of the cells was assessed based on the DAPI 

staining pattern (Fig. 3), from which the proportion of living cells relative to the 

total cell number was determined. DAPI is a fluorescent stain that preferentially 

attaches to A-T rich sequences in the minor grove of double-stranded DNA 

(Kapuściński & Szer 1979). One molecule of dye usually extends along three 

base-pairs, resulting in characteristic discontinuous staining pattern of 

chromatin in viable cell nuclei. Unlike viable cells, dying cells are characterized 

by bright, compact DAPI staining, reflecting condensed chromatin structure 

(Gocht et al. 2009).  

 

 

Figure 3. Assessment of neuronal survival. Left: after experimental treatment and nuclear 

labeling with DAPI, two continuous rows of non-overlapping photographs (usually 60 per 
culture) extending over the entire coverslip were recorded. Right: nuclei of living cells are 

characterized by a discontinuous patchy pattern of DAPI staining (*), whereas nuclei  of late 
apoptotic or dead cells are condensed and uniformly labeled with DAPI (>). Scale bar: 10 μm. 

 

I.2.7 Statistical analysis 

In order to compare different experiments of the same type, the portion of 

living cells in different treatment groups of one experiment was normalized to 

the portion of living cells in the untreated control culture (set as 100%). The 

relative portion of living cells in [%] is displayed in typical box plot graphs. 

Boxes contained 50% of values around the median. Spread of upper and lower 

25% of values is displayed in the whiskers. The software package OriginPro 

(version 8.5, Origin Lab Corporation) was used to generate initial diagrams and 

to perform statistical analyses. Data sets of most experiments were not normally 

**

*

*
*

*

**
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distributed (Shapiro–Wilk-Test). Therefore, all experiments were evaluated 

with (more conservative) non-parametrical tests. The Kruskal–Wallis test was 

used to identify differences in data population distributions and the Mann–

Whitney U test for unmatched samples was used to evaluate the differences 

between two selected groups. P values were corrected with the Benjamini–

Hochberg procedure (Benjamini & Hochberg, 1995; Groppe et al., 2011). For 

calculations we used the Matlab implementation of Benjamini and Hochberg’s 

procedure by David M. Groppe, Dept. of Cognitive Science, University of 

California, San Diego (http://www.mathworks.com/matlabcentral/ 

fileexchange/29274-mass univariate-erp-toolbox/content/fdr_bh.m). P values 

smaller than 0.05 were considered as significantly different. 

 
 

I.2.8 Anti-cleaved caspase 3 immunocytochemistry 

Primary cell cultures from locust brains were fixed with 4% paraformaldehyde 

dissolved in 0.1 M phosphate buffer for 15 min at RT. After three washes in PBS 

and three washes in PBS with 1% Triton-X-100 (each for 5 min), cells were 

incubated for 1 h with blocking solution containing 5% normal goat serum (GE 

Healthcare Life Sciences) and 0.25% bovine serum albumin (MP Biomedicals, 

Heidelberg, Germany) dissolved in PBS with 0.1% Triton. Primary antibody 

anti-cleaved caspase 3 from rabbit (Calbiochem Merck, UK, dilution 1:300, v/v, 

in blocking buffer) was incubated over night at 4°C. After several washes in 

PBS, cells were treated with RNase (Sigma–Aldrich, 100 μl/ml PBS for 10 min at 

37°C) to degrade cytosolic RNA. After several washes with PBS, secondary 

antibody Cy2-coupled goat anti rabbit (Dianova, Hamburg, Germany, dilution 

1:200 in blocking buffer) together with propidium iodide (Sigma–Aldrich, 

1:1000) was applied for 2 h at RT. After washing away excess antibody and 

propidium iodide, coverslips with labeled cells were treated with 1:1 

PBS/glycerol and mounted on microscopic slides. Stainings were analyzed by 

confocal fluorescence microscopy (Leica TCS SP2, Leica Microsystems, Wetzlar, 

Germany). 

http://www.mathworks.com/matlabcentral/
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I.3 Results 

I.3.1 Characteristics of primary cultured locust brain cells in first five days 

upon establishing  

As previously demonstrated (Gocht et al. 2009), chemical and mechanical 

dissociation of locust brain tissue during the preparation of locust brain cell 

cultures causes disruption of cellular processes and extensive cell loss during 

the first days of culturing. The remnants of irreversibly damaged cells 

disintegrate, detach from the substrate and are removed from the cultures 

during the procedure of medium exchange. Neurons which were not 

irreversibly damaged regenerate their neurites in vitro, a process that is 

supported by trophic factors contained in the serum. In contrast, survival of glia 

is not supported by the type of serum used in our studies and the number of 

glial cells rapidly decreases with culturing time. Consequently, after 5 days in 

vitro primary cell cultures from locust brains contain almost exclusively 

neurons (Fig. 4).  

 

Figure 4. Primary cultured locust brain cells  in first five days of culturing. (A) Left: phase-

contrast image of a culture 24 hours  after establishment. Viable cells have adhered to the 

substrate, while severely damaged cells have shrunk and reduced their size. Remnants of dead 

cells are present throughout the culture. Right: anti-HRP immunostaining (red) 24 hours after 

establishment of primary locust brain cells  culture. Six viable cells are positive for the pan -

neuronal marker HRP (*), and two viable cells are anti HRP-negative (▼). Blue: DAPI staining 

of nuclei. (B)  Phase-contrast image (left) and fluorescent image (right) of primary cultured 

locust brain cells five days after establishment. Left: viable cells  have extended their neurites 

and established anatomical contacts. Right: six viable HRP -positive cells (*) surrounding one 

dead cell (°). Scale bars: 10 μm.  
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As previously shown, after 4 days in vitro less than 5% of surviving cells are 

negative to anti-HRP immunolabeling indicating their non-neuronal type 

(Gocht et al. 2009). To exclude potential interference of glia-derived factors on 

neuronal survival and to allow comparison between independent experiments, 

all experiments were conducted 5 days after establishment of primary locust 

brain cell cultures.   

 

I.3.2 Epo prevents hypoxia- and H-7-induced cell death of locust brain 

neurons 

After 5 days in vitro, full medium was replaced with serum-free medium to 

eliminate effects mediated by factors from the serum. Cell cultures were 

subjected to the experimental treatments described by schematic drawings in 

the upper parts of the respective figures. To initiate apoptotic cell death 

primary cultured locust brain cells were either exposed to hypoxic atmosphere 

(O2 level < 2%, 36 h) or chemically treated with H-7 (50 μM, 18 h).  Both stimuli 

have previously been demonstrated to induce apoptosis in vertebrate and 

invertebrate cells. The process of programmed cell death, apoptosis, is 

characterized by activation of caspases and distinct morphological features that 

include DNA fragmentation accompanied with chromatin condensation and 

ultimately loss of the entire cytosolic compartments (Elmore 2007). The most 

prominent feature of apoptosis, chromatin condensation, was detected in 

primary cultures of locust brain cells using DAPI staining (Figs. 3, 4). This 

detection strongly agreed with the results of analysis of other signs of apoptosis 

obtained upon propidium iodide staining and anti-cleaved caspase 3 

immunostaining (Fig. 5). Activated caspase 3 was only detected in apoptotic 

cells that still contained intact cytomembranes to enclose the cytoplasmic 

compartment that contained the caspase. 
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Figure 5.  H-7 induces apoptosis in  cultured locust brain neurons. Left: propidium iodide labels 

chromatin DNA structures in large nuclei of intact cells (*), condensed nuclei with fragmented 
DNA in apoptotic cells (>) and nuclear remnants with completely fragmented DNA (°). Middle: 

Anti-cleaved caspase 3 immunoreactivity in the cytoplasm of 3 apoptotic cells (>). Right: 

overlay of propidium iodide labeling (red) and anti-cleaved caspase 3 immunofluorescence 
(green). Apoptotic cells (>) contain condensed nuclei with largely fragmented DNA along with 

the presence of activated caspase 3 in their cytosol. In  contrast, cytoplasm of intact cells (*) with 
discontinuous propidium iodide labeling is free of activated caspase 3. Nuclear remnants of late 

apoptotic cells with completely fragmented DNA (°) have lost their cytosolic compartments. 
Scale bar: 15 μm. 

 

As shown in Figure 6A, compared to control cultures that were kept under 

normoxic conditions (neuronal survival normalized to 100%), hypoxic 

treatment reduced the portion of surviving neurons (median of surviving cells: 

61.34%; difference to control P=2*10-6). Similarly, compared to untreated control 

cultures, treatment with H-7 reduced neuronal survival (median of surviving 

cells: 77.93%; difference to control P=0.0029) (Fig. 6B). Pre-treatment with rhEpo 

starting before induction of apoptosis by hypoxia or H-7 completely prevented 

these deleterious effects. RhEpo increased neuronal survival in both, hypoxia-

exposed (median: 111.88%, P=2*10-6) and H-7-exposed (median: 108.19%, 

P=0.0029) locust cultures to levels that were similar to those detected in 

untreated control cultures. In contrast, solvent of rhEpo exerted no beneficial 

effect on cell survival during H-7 treatment (median: 76.5%) (Fig. 6B), indicating 

that the neuroprotection was exclusively achieved through rhEpo and not by 

ingredients of its solvent. Moreover, rhEpo did not significantly affect cell 

survival in cultures that were not challenged by apoptosis-inducing stimuli 

(median:  96.71%) (Fig. 6B).   
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Figure 6. RhEpo (4 U/ml) protects primary cultured locust brain neurons from hypoxia - (A) 

and H7- (B) induced apoptotic cell death. Cell viability was normalized to untreated conditions 

(=100%). While neuronal survival decreased upon exposure to hypoxia (***P<0.001) and H-7 

(**P<0.01), application of rhEpo suppressed both hypoxia- (***P<0.001, N=8) and H-7- (**P<0.0, 

N=7) -induced apoptosis. RhEpo has no beneficial effect on cultures not exposed to apoptotic 

stimuli. RhEpo’s solvent (Eprex) has no neuroprotective effect. Statistics: Kruskal -Wallis 

ANOVA with Mann-Whitney U-test and Benjamini-Hochberg-correction. **P<0.01, ***P<0.001.  

Schematics of the experimental procedures are illustrated in the upper parts of the figure.  

  
 

I.3.3 Epo-mediated neuroprotection depends on JAK/STAT activity 

To explore the contribution of different signaling pathways to Epo-mediated 

antiapoptotic effects in locust neurons, we used a pharmacological approach in 

which a component of a particular signaling pathway was selectively inhibited. 

Membrane permeable inhibitors of particular signaling pathways were 

dissolved in DMSO and thus it was necessary to test first whether DMSO 

applied in the amount corresponding to the amount of soluble inhibitor (less 

than 1%) affects cellular survival. As it has been determined that 1% DMSO 

does not affect viability of primary cultured locust brain cells (Fig. 7), we 

proceeded with pharmacological treatments.   
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Figure 7. DMSO has no effect on the survival of primary cultured locust brain neurons. 

Cultures  were exposed to DMSO for 60 hours. Concentration of DMSO in culture media: 1%. 

(P=0.36, Mann-Whitney U test. N.s. not significant.) 

 

It has been shown that binding of Epo to its preformed dimeric receptor on the 

cell surface of both erythropoietic and non-hematopoietic mammalian cells 

leads to a conformational change that causes activation of receptor-associated 

tyrosine kinase JAK2 (Digicaylioglu & Lipton 2001; Remy 1999; Witthuhn et al. 

1993) by transphosphorylation. To examine whether rhEpo-mediated protection 

of locust neurons requires JAK, the membrane permeable JAK inhibitor AG-490 

was used. As described above, hypoxia reduced the survival of cultured 

neurons and hypoxia-induced cell death was prevented in the presence of Epo 

(Fig. 8A). Application of 5 μM AG-490 did not further reduce the number of 

surviving neurons under hypoxic conditions (median: 49.54 %) compared to the 

survival of neurons exposed to hypoxia only (median: 60.16 %, P= 0.39, n.s.), 

but completely abolished antiapoptotic effects of rhEpo on hypoxia-exposed cell 

cultures. Neuronal survival in cultures that were co-incubated with AG-490 and 

rhEpo and subjected to hypoxia was significantly reduced (median: 55.84%) 

compared to the survival of hypoxia-treated neuronal cultures rescued with 

rhEpo (median: 110.55%, P=8.65*10-6) and to neuronal survival under normoxia 

(P=1.92*10-7), but did not differ from viability of neurons exposed to hypoxia 

only (median: 60.16%, P=0.69). A similar effect of AG-490 was obtained when 

apoptosis was induced by H-7. As shown in Figure 8B, upon induction of 
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apoptosis by H-7 (median: 68.89%), rhEpo supported the survival of primary 

cultured locust neurons (median: 107.13%, P=0.046). The neuroprotective effect 

of rhEpo was blocked by the presence of AG-490, as neuronal survival 

significantly decreased in cultures treated with the combination of H-7, AG-490 

and rhEpo (median: 25.03%), in comparison to cultures treated with H-7 and 

rhEpo (P=0.0089), but was not significantly different from the survival of 

neurons in cultures treated with H-7 only (P=0.058). In summary, these results 

indicate that the antiapoptotic effects of rhEpo on cultured locust brain neurons 

are mediated by AG-490-sensitive JAK activation.  

 

Figure 8. RhEpo supports survival of locust neurons exposed to apoptosis -inducing stimuli via 

AG-490-sensitive Janus kinase activity. (A) Apoptosis induced by hypoxia was completely 

prevented by pretreatment with 4  U/ml  rhEpo (***P<0.001), while the protective effects of 

rhEpo was  blocked by 5  μM AG-490 (***P<0.001). N=13. (B ) Similarly, H-7 induced apoptosis 

was prevented by rhEpo (*P<0.05), but not when AG490 (5 μM) was incubated together with 

rhEpo (**P<0.01). N=7. Statistics: Kruskal-Wallis ANOVA, Mann-Whitney U-test with 

Benjamini-Hochberg-correction. *P<0.05, **P<0.01, ***P<0.001. Schematics in the upper parts 

indicate experimental procedures. 

 

Once activated, JAK2 phosphorylates intracellular tyrosine residues of EpoR 

that serve as docking sites for intracellular signaling proteins with Src 

homology 2 (SH2) domains. Upon their binding to the phosphotyrosyl residues 
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of EpoR, these proteins are phosphorylated by JAK2. Phosphorylation of STAT5 

by JAK2, which allows STAT5 dimerization and its activation as transcription 

factor, was demonstrated to be essential for Epo-mediated erythropoietic and 

tissue-protective activity (Sirén et al., 2001; Chateauvieux et al. 2011). To 

investigate a potential involvement of STAT proteins in locust neuroprotection, 

the membrane permeable STAT inhibitor sc-355979 was used.  

  
 

 

 
 

 
Figure 9. Activation of sc-355979-sensitive STAT phosphorylation is required for the 

antiapoptotic effects  of rhEpo in primary cultures of locust neurons. H -7 induced apoptosis 
(**P<0.01) was efficiently suppressed by 4 U/ml rhEpo (**P<0.01). Co-application of 5 μM sc-

355979 prevented the antiapoptotic effect of rhEpo (*P<0.05).  N=7. Statistics: Kruskal-Wallis 
ANOVA, Mann-Whitney U-test with Benjamini-Hochberg-correction. *P<0.05, **P<0.01. 

Experimental timeline is illustrated in the upper part of the figure.    
 

Apoptosis-induced by H-7 reduced neuronal survival (median of surviving 

neurons: 79.83%) compared to untreated controls (P=0.0058), while rhEpo fully 

protected locust neurons from H-7-induced apoptotic cell death (median: 

101.98%, difference to H-7-treated group P=0.00699) (Fig. 9). This 

neuroprotective effect of rhEpo against H-7-induced apoptosis was completely 

blocked by simultaneous incubation of neuronal cultures with sc-355979 
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(median: 82.79%, P=0.0483), leading to a reduction of neuronal survival to a 

level that did not differ from survival of neuronal cultures treated with H-7 

only (P=0.5349). Co-incubation of neuronal cultures with H-7 and sc-355979 did 

not cause an additional reduction of neuronal survival compared to H-7 treated 

cultures (median: 83.52%, P=0.5349). This suggested that sc-355979 

predominantly interfered with protective pathways initiated by rhEpo rather 

than reducing cell viability by a different mechanism not related to Epo. 

Therefore, the neuroprotective effect of Epo on H-7-treated locust neurons 

seems to be transduced via the activation of STAT transcription factors.  

 

Taken together, these results suggest that the JAK/STAT signaling pathway is 

critical for the antiapoptotic activity of rhEpo signaling in locust neurons in 

vitro.  

 

I.3.4 Epo-mediated neuroprotection does not require PI3K and NF-κB activity 

One of the signaling molecules with a SH2 domain that is attracted by the 

phosphotyrosyl residues of the cytoplasmic domain of EpoR is the regulatory 

subunit of PI3K. The PI3K pathway regulates apoptosis in various tissues 

through phosphorylation of its cellular target Akt. The ATP-binding site of 

PI3K can be blocked with LY294002, preventing the PI3K-mediated activation 

of Akt (Vlahos et al. 1994). As shown in Figure 10A, the capability of rhEpo to 

protect locust neurons against H-7 induced apoptosis was not compromised by 

application of 5 μM LY294002. RhEpo increased survival of neurons exposed to 

H-7 in both conditions, when applied alone (median: 105.08%, P=0.0022) and 

upon co-application with LY294002 (median: 100.69%, P=0.0303), and there was 

no difference in neuronal survival between these two groups (P=0.3939). 

Survival of neurons exposed to H-7 (median: 72.94%) was not further reduced 

by incubation with 5 μM LY294002 (median: 77.02%, P=0.3095), indicating that 

LY294002 had no negative effect on neuronal survival. To confirm these results, 

the ability of LY294002 to affect the neuroprotective action of rhEpo was tested 
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in primary cultures of locust neurons exposed to hypoxia (Fig. 10B). Like in H-7 

treated cultures, rhEpo-mediated neuroprotection against hypoxia-induced cell 

death persisted in the presence of LY294002 (median: 89.54%), and did not 

differ from rhEpo-mediated protection of locust neurons exposed to hypoxia 

(median: 94.13%, P=0.3095). Neuronal survival in cultures threated with 

LY294002 and exposed to hypoxia (median: 64.08%) did not differ from the 

survival of neurons subjected to hypoxia only (median: 61.12%, P=0.5476), 

indicating that 5 μM LY294002 had no detrimental effect on neuronal viability.  

 

 

Figure 10. RhEpo-mediated protection of primary cultured locust brain neurons is independent 

of LY294002-sensitive PI3K activity. Both, H-7- (**P<0.01) and hypoxia- (**P<0.01) induced 

apoptosis were prevented by 4 U/ml  rhEpo (**P<0.01, A, B), and application of 5 μM LY294002 

did not prevent neuroprotective effects of rhEpo (hypoxia: n.s.; H-7 : n.s.). LY294002 was added 

to primary cultured locust neurons either at the same time as rhEpo (H-7 experiments, N=7, A) 

or 2h before application of rhEpo (hypoxia experiments, N = 5, B). Statistics: Kruskal-Wallis 

ANOVA, Mann-Whitney U-test with Benjamini-Hochberg-correction. *P<0.05, **P<0.01. 

Experimental procedure is schematically illustrated in the upper part of the figure. 

 

However, when applied in higher concentrations (50 μM and 100 μM), 

LY294002 reduced neuronal survival in primary cell cultures from locust brains 

(Fig. 11). This suggests (assuming a specific action of LY294002 on PI3K) that a 

certain basal activity of PI3K/Akt signaling is required for cell survival.  
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Figure 11. Effects  of different concentrations of LY294002 on the survival of primary cultured 

locust brain neurons. Cultures were exposed to LY294002 for 60  hours.  Concentration of DMSO 

in culture media was 1% and corresponds to the concentration of DMSO in the cell cultures 

treated with 100 μM LY294002. N=2. 

 

Digicaylioglu and Lipton demonstrated that EpoR-mediated activation of JAK2 

in mammalian neurons leads to phosphorylation of the inhibitor of NF-κB (IκB), 

which leads to the release  of NF-κB and its translocation into the nucleus where 

it activates transcription of anti-apoptotic genes (Digicaylioglu & Lipton 2001). 

To investigate a potential contribution of NF-κB signaling to rhEpo-mediated 

protection of locust neurons, we used pyrrolidine dithiocarbamate (PDTC) to 

block the dissociation of IκB from the cytoplasmic NF-κB dimer. As in the 

previously described experiments, hypoxia reduced the survival of locust 

neurons (mean of neuronal survival: 71.11%), while rhEpo protected neurons 

from hypoxia-induced apoptosis (mean: 94.57%) (Fig. 12). This neuroprotective 

effect of rhEpo was not abolished by simultaneous incubation with PDTC 

(mean: 92.45%). Unexpectedly, PDTC alone partially reduced pro-apoptotic 

effects of hypoxia (mean: 83.89%). This anti-apoptotic action of PDTC was not 

observed in locust neurons cultured under normoxic conditions (mean: 88.55%).   

N=2

LY294002

re
la

ti
v
e
 p

o
rt

io
n
 o

f 
liv

in
g
 c

e
lls

 [
%

]

0           DMSO        1μM         5μM        10μM       50μM      100μM



                                                                                                                           Chapter I – Results 

26 
 

 

Figure 12. RhEpo-mediated neuroprotection of locust neurons is independent of PDTC-

sensitive IκB/NF-κB activity. RhEpo (4  U/ml) applied 12 h before onset of hypoxia prevented 

hypoxia-induced apoptosis. PDTC (100 μM) partially supressed hypoxia-induced apoptosis and 

did not abolish neuroprotective effects of rhEpo. PDTC was applied 2h before application of 

rhEpo. Each bar represents mean ± SED. N=3. No statistics. Schematic of experimental 

procedure is shown in the upper part of the figure. 

 

Altogether, these results suggest that rhEpo may not use PI3K/Akt and NF-κB 

pathways to suppress apoptosis and promote protection of locust brain neurons 

in vitro.  

PDTC (100μM)
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I.4 Discussion 

I.4.1 Epo-mediated protection of locust brain neurons from hypoxia- and H-7 

induced apoptosis 

Epo-mediated neuroprotection following exposure to a variety of mechanical 

and physiological insults has been documented in a number of in vivo and in 

vitro studies on mammalian nervous systems. Epo protects mammalian neurons  

from hypoxia, ischemic brain injury, inflammation, oxidative stress, metabolic 

stress, glutamate toxicity (Morishita et al. 1997; Bernaudin et al. 1999; Lewczuk 

et al. 2000; Sirén et al. 2001a; Chong et al. 2003) and other damaging conditions. 

The protective effects of Epo are accomplished by prevention of neuronal 

apoptosis and promotion of cell survival. The programmed cell death apoptosis 

consists of a highly regulated series of events that lead to the cleavage of 

genomic DNA, membrane blebbing, cell shrinkage and fragmentation into 

membrane-enclosed vesicles called apoptotic bodies. These irreversible cellular 

changes  are initiated by the proteolytic activity of the conserved family of 

cysteinyl aspartate-specific proteases, the caspases (Green 1998; Cooper et al. 

2009). The core components and molecular mechanisms of the cell death 

machinery are conserved through evolution, from worms to mammals, 

including insects (Richardson & Kumar 2002). Seven caspases (three initiator 

and four effector caspases) have been identified in Drosophila melanogaster. 

Drosophila Dredd, Dronc and Strica are homologues of mammalian caspase-8, -

9, -10 that function as initiator caspases (Cooper et al. 2009). In mammalian 

cells, activation of caspase-9 is stimulated by Apaf-1 upon the release of 

cytochrome c from mitochondria into the cytoplasm. In fruit flies, Dark 

(Drosophila Apaf-1-related killer) is the functional orthologue of mammalian 

Apaf-1 required for Dronc activation (Rodriguez et al. 1999). Following the 

transmission of a cell death signal, the initiator caspases proteolitically activate 

downstream effector caspases, which then cleave the substrates responsible for 

the dismantling of the cell. In mammals, the effector caspases are caspase-3, -6 

and -7, and respective homologues in Drosophila are Drice, Dcp-1, Decay and 

Damm (Manji & Friesen 2001; Cooper et al. 2009). In insects, apoptosis plays a 
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critical role in development, tissue homeostasis and defense against pathogens 

(Bergmann et al. 1998).  

One of the two stimuli that have been used to induce apoptosis of primary 

cultured locust brain neurons was exposure to hypoxic conditions for 36 hours. 

Hypoxia is a condition of limited availability of oxygen to the cells. The optimal 

functioning of most cells is tightly linked to the availability and usage of oxygen 

as an acceptor of electrons during oxidative phosphorylation to generate ATP 

(Loiacono & Shapiro 2010). Hence, the ability to sense and adapt cellular 

metabolism to changes in oxygen levels is essential for the functioning of tissues 

and the survival of an organism. In order to maintain homeostasis cells and 

tissues have developed different oxygen-sensing mechanisms and various 

strategies to adapt to reduced environmental oxygen levels (Giaccia et al. 2004). 

The ability of an organism to withstand hypoxia critically depends on the 

sensitivity of its nervous system to an interrupted oxygen supply. While 

mammalian neurons are extremely vulnerable to ischemia and in the absence of 

oxygen undergo irreversible damage leading to cell death in just a few minutes 

(Dowling 2007), some insects exhibit a remarkable tolerance to oxygen 

deprivation (Hoback & Stanley 2001). Cockroaches (Periplaneta americana) are 

able to survive several hours under anoxia, recovering fully upon returning to 

normoxic conditions (Pitman 1988). Like cockroaches, fruit flies (Drosophila 

melanogaster) are extremely tolerant to oxygen deprivation and after a period of 

exposure to levels and durations of hypoxia that induce irreversible injury and 

death in rodents the brain of fruit flies does not suffer any damage (Zhao & 

Haddad 2011). The natural habitats of locusts (Locusta migratoria) are semi-arid 

regions of the world (Scanlan et al. 2001) including regions of Africa that are 

periodically flooded (Rainey 1951). Adult locusts can survive several hours of 

anoxia that results from suffocation during the flooding (Hochachka et al. 1993; 

Hoback & Stanley 2001; Greenlee & Harrison 2004; Brust et al. 2007). 

At least some of the mechanisms underlying hypoxia-tolerance seem to be 

conserved across invertebrate and vertebrate species. The hypoxic responses are 
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primarily mediated by a family of highly conserved transcription factors named 

hypoxia inducible factors (HIFs) (Gorr et al. 2006). HIF forms heterodimers of α- 

and β-subunits (Wang & Semenza 1995). In response to low oxygen partial 

pressure HIF specifically binds target gene sequences, so-called hypoxia-

response elements (HREs) (Firth et al. 1995), inducing transcription of genes 

that mediate adaptation to oxygen deprivation such as the epo gene (Maxwell et 

al. 1993). Homologs of α and β HIF subunits have been reported in D. 

melanogaster, in which Sima is the fly orthologue of mammalian HIF-α (Nambu 

et al. 1996) and Tango is the fly orthologue of HIF-β (Lavista-Llanos et al. 2002; 

Dekanty et al. 2010). To withstand oxygen deprivation insects and mammals 

employ notably different strategies that are governed by HIF. In insects, HIF-

driven regulation of target genes mediates adaptation to hypoxia by directing 

the cellular metabolism to energy conservation mode, rather than energy 

compensation mode, which prevails in mammals (Gorr et al. 2006). To conserve 

energy insect cells are able to reversibly enter a state of a regular metabolic 

depression, characterized by a drastically reduced consumption of ATP (Gorr et 

al. 2006). 

The second approach that has been used to induce apoptosis in primary 

cultured locust brain neurons was treatment with the chemical H-7. Though H-

7 has been shown to inhibit cAMP-dependent protein kinase, protein kinase C, 

cGMP-dependent protein kinase, myosin light chain kinase, and casein kinase I, 

studies on a Drosophila neuronal cell line (Nagano et al. 1998) and on human 

neuroblastoma cells reported that H-7 induces apoptosis by unidentified 

mechanisms that are independent of protein kinase inhibition (Ronca et al. 

1997). Moreover, H-7 seems to initiate apoptosis through cell type-specific 

targets, since Schneider cells were not affected by H-7 incubation (Nagano et al. 

1998). In addition, the structure and biological activities of H-7 have been 

shown to differ depending on their commercial supplier (Quick et al. 1992), 

which might partially explain the discrepancies between observations obtained 

from independent studies. Similarly to Drosophila neuronal cell cultures, H-7 

has induced cell death in primary cultures of locust brain neurons that 
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displayed typical apoptotic features including the activation of caspase-3, DNA 

fragmentation, nuclear condensation and the ultimate disintegration of 

cytoplasmic membranes, leaving nuclear remnants (pyknotic bodies) (Kroemer 

et al. 2009; Miljus et al. 2014). Both, hypoxia- and H-7-induced apoptosis of 

locust neurons was efficiently prevented by rhEpo. This suggests that Epo 

interfered with certain components of the apoptotic cascade to counteract cell 

death. 

 

I.4.2 Requirement of JAK/STAT signaling for Epo-mediated protection of 

locust brain neurons 

Epo mediated neuroprotection in mammals is governed by transduction 

pathways that have similarities to, as well as differences from, those operating 

during erythropoiesis. Both, neuroprotection and erythropoiesis are initiated by 

receptor-associated JAK2 tyrosine kinases that transduce signals from activated 

receptors to downstream cellular effectors. Hence, binding of Epo to either 

classical homodimeric EpoR or heterodimeric EpoR induces a conformational 

change in the receptor (Remy et al. 1999) that brings receptor associated JAK2 

molecules into close proximity enabling their reciprocal interaction and 

activation by trans-phosphorylation (Witthuhn et al. 1993). Once activated, 

JAK2 phosphorylates specific tyrosine residues on the cytoplasmic domain of 

the receptor, creating docking sites for signaling molecules with SH2 domains. 

The best known effector molecules (with SH2 domain) that are recruited to 

phosphotyrosyl residues of EpoR and phosphorylated by JAK2 are the 

members of the signal transducer and activator of transcription (STAT) family 

(Yamaoka et al. 2004). Especially STAT5 and STAT3 have been implicated in 

Epo-stimulated erythropoiesis and protective mechanisms in various non-

hematopoietic mammalian tissues including the nervous system (Sirén et al. 

2001a; Chateauvieux et al. 2011). Phosphorylated STATs reorient into 

antiparallel dimers, in which the phosho-tyrosine residue of one STAT binds 

the SH2 domain of the other STAT (Schindler et al. 2007). STAT dimers 

http://www.sciencedirect.com/science/article/pii/S0306452213009603
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activated in this manner translocate to the nucleus where they bind specific 

enhancer elements inducing transcription of anti-apoptotic genes. 

In mammals four members of the JAK and seven members of the STAT family 

have been described (Schindler et al. 2007). In the fruit fly a single JAK 

homologue, Hopscotch (Perrimon & Mahowald 1986; Binari & Perrimon 1994) 

and a single STAT homologue STAT94E (Hou et al. 1996; Yan et al. 1996) have 

been identified. Drosphila’s Hopscotch is most similar to mammalian JAK1 and 

JAK2, while STAT92E is most similar to mammalian STAT3 and STAT5. The 

canonical JAK/STAT signaling pathway in Drosophila is activated by three 

related ligands called Unpaired (Harrison et al. 1998; Boulay et al. 2003), 

Unpaired 2 (Hombría et al. 2005) and Unpaired 3 (Agaisse et al. 2003) that bind 

to the Domeless receptor (Brown et al. 2001). According to Wang and colleagues 

(Wang et al. 2014) genes coding  for six orthologues of JAK/STAT pathway 

members have been identified in Locusta migratoria genome. The JAK/STAT 

pathway in Drosophila is required for embryonic segmentation, tracheal 

development, larval hematopoiesis, stem cell maintenance (Bina & Zeidler 2009) 

and innate immune responses to injury (Agaisse et al. 2003).  

JAK2 is sensitive to the membrane permeable tyrphostin AG-490. AG-490 has 

been used to block both mammalian JAK2- (Digicaylioglu & Lipton 2001; 

Witthuhn et al. 1993) and insect JAK-initiated signaling cascades (Hamshou et 

al. 2012). We demonstrated that AG-490 completely abolished the 

neuroprotective effects of rhEpo on primary cultured locust brain neurons in 

the presence of two different apoptotic stimuli. This indicates the presence of a 

receptor that, similar to the mammalian hematopoietic and non-hematopoietic 

EpoR, initiates anti-apoptotic mechanisms through JAK-mediated 

phosphorylation of intracellular domains. 

The membrane permeable compound sc-355979 binds to the SH2 domain of 

STAT and prevents its activation through association with the receptor/JAK 

complex. Sc-355979 has been demonstrated to suppress Epo-initiated STAT5 

activation in mammals (Tramontano et al. 2003; Kittilson et al. 2011; Dieudonne 
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et al. 2013). The STAT inhibitor also suppressed rhEpo-mediated 

neuroprotection during H-7-induced apoptosis in locust brain neurons, 

indicating that Epo regulates the expression of beneficial genes via JAK/STAT 

signaling in both mammals and insects.  

 

I.4.3 Contribution of PI3K and NF-κB pathways to Epo-mediated protection 

of locust brain neurons 

PI3K/Akt signaling has been identified as the major transduction pathway for 

Epo-mediated cell protection in various mammalian non-hematopoietic tissues, 

including the nervous system (Sirén et al. 2001a; Ruscher et al. 2002; Chong & 

Maiese 2005; Chateauvieux et al. 2011). PI3Ks are heterodimers composed of a 

regulatory subunit  P85 and a catalytic subunit P110 (Cantrell 2001). The 

regulatory subunit P85 binds to phosphorylated tyrosine residues of the 

activated EpoR via its SH2 domain (Witthuhn et al. 1993). Once bound, it 

recruits the catalytic subunit P110 to form the fully active PI3K enzyme. 

Activated PI3K converts plasma membrane phosphoinositides to 

phosphatidylinositols, which serve as membrane docking sites for proteins with 

pleckstrin-homology (PH) domains. An important downstream effector 

activated by the PI3-kinase signaling pathway is the serine/threonine kinase 

Akt, also known as protein kinase B (Zhao et al. 2006). Akt is recruited to 

phosphatidylinositol-rich membranes via its PH domain. At the membrane, Akt 

is activated after being phosphorylated at two positions by two distinct kinases, 

phosphatidylinositol dependent kinase 1 (at Thr308) and mammalian target of 

rapamycin complex 2 (mTORC2) (at Ser474) (Bao et al. 1999). Once active, Akt 

translocates from the plasma membrane to the cytosol, where it modulates the 

function of key regulatory proteins and enzymes by phosphorylation. In the 

nucleus Akt inhibits transcription factors that promote the expression of cell 

death genes and enhances transcription of anti-apoptotic genes.   

The PI3K/Akt signaling pathway is conserved among eukaryotic organisms 

(Scanga et al. 2000). Drosophila PI3K (dPI3K) (Leevers et al. 1996) and Drosophila 
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Akt (dAkt) (Franke et al. 1994) have been shown to be involved in various 

physiological responses in flies including anti-apoptotic mechanisms (Staveley 

et al. 1998). Genes coding for PI3K (LOCMI07824) and Akt (LOCMI16427) have 

also been identified in the genome of Locusta migratoria (Wang et al. 2014).  

The membrane permeable compound LY294002 has been described to act as a 

specific inhibitor of PI3K (Vlahos et al. 1994). LY294002 has been used 

previously to prevent the PI3K-induced phosphorylation of Akt and abolish the 

protective effects of Epo in mammals (Nakazawa et al. 2003; Trincavelli et al. 

2013). Several studies on insects successfully employed LY294002 to suppress 

PI3K signaling (Lizcano et al. 2003; Kim et al. 2004; Mounir et al. 2011; Gu et al. 

2012; Roy & Raikhel 2012), indicating that the compound also effectively 

inhibits insect orthologues of PI3K. In our study, co-application of LY294002 did 

not reduce the neuroprotective effects of Epo on hypoxia-exposed and H-7-

treated locust brain neurons, suggesting that no PI3K homolog contributes to 

Epo-mediated protection of locust neurons. Since higher concentrations of 

LY294002 (10 μM or more) reduced the viability of locust brain neurons under 

normal conditions, LY294002-sensitive PI3K seems to be present and its activity 

required for cellular survival. Although PI3K is the major mode of Akt 

activation, Akt can also be activated directly by other tyrosine or 

serine/threonine kinases, even when PI3K activity is inhibited by LY294002 

(Mahajan & Mahajan 2013). Similarly, one study in insects reported that 

LY294002 was not potent at inhibiting dAkt activation (Lizcano et al. 2003). In 

addition, LY294002 may also inhibit the activity of other kinases, such as mTOR 

(Brunn et al. 1996) and dTOR (Lizcano et al. 2003), with similar potency as on 

PI3K.  

The NF-κB pathway has been reported to play an important role in Epo-

mediated protection of mammalian neurons (Digicaylioglu & Lipton 2001; Liu 

et al. 2005) but does not contribute to Epo-mediated effects in the hematopoietic 

system. NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) 

proteins comprise a family of structurally related and evolutionarily conserved 
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transcription factors that regulate the expression of genes involved in cellular 

responses to infection, stress and injury (Ghosh et al. 1998). In mammals five 

members of NF-kB proteins associate with each other to form various 

transcriptionally active homo- and hetero-dimeric complexes (Hoffmann & 

Baltimore 2006; Manavalan et al. 2010). In unstimulated cells, the NF-κB dimers 

are bound and inhibited by inhibitors of κappa B proteins (IκBs) (Baeuerle & 

Baltimore 1988). By virtue of their ankyrin repeat domains, the IκB proteins 

mask the nuclear localization signals of NF-κB proteins and keep them 

sequestered in an inactive state in the cytoplasm (Jacobs & Harrison 1998). 

Signals arising from external ligands lead to the activation of the IκB kinase 

(IKK) that phosphorylates the IκB protein. Phosphorylation of IκB leads to its 

rapid ubiquitination and proteasomal degradation, resulting in its dissociation 

from the NF-κB dimer. The liberated NF-κB dimer then translocates to the 

nucleus and induces transcription of target genes, such as cytokine genes, stress 

response genes, pro-survival genes, anti-apoptotic genes, antioxidant enzyme 

genes and other transcription factors (over 150 target genes in vertebrates) (Pahl 

1999). NF-κB positively regulates the expression of its own repressor, IκB. The 

newly synthesized IκB then re-inhibits NF-κB  forming thus an auto feedback 

loop, which results in oscillating levels of NF-κB activity (Nelson 2004). 

All five members of the NF-κB family described in mammals share a 

conservative Rel homology (RH) domain, responsible for DNA-binding, 

dimerization and interaction with IκB (Ghosh et al. 1998). Dif, Dorsal and Relish 

are Drosophila NF-κB homologues (Steward 1987; Ip et al. 1993; Dushay et al. 

1996) with conserved RH domains contained in their structures (Minakhina & 

Steward 2006). Dif and Dorsal are retained in the cytoplasm of resting cells by 

Cactus, the Drosophila homolog of mammalian IκB proteins (Tanji & Ip 2005). 

Degradation of Cactus, which is mediated by Drosophila kinase Pelle in an as yet 

undefined manner (Towb et al. 2001; Huang et al. 2010), releases Dif and Dorsal 

that subsequently translocate to the nucleus and activate the expression of 

antimicrobial peptide genes (Tanji & Ip 2005). The third NF-κB Drosophila 

homologue, Relish, in addition to its N-terminal RH domain contains a C-

https://en.wikipedia.org/wiki/Nuclear_localization_signal
https://en.wikipedia.org/wiki/I%CE%BAB_kinase
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terminal IκB-like region (Basith et al. 2013). The Drosophila IKK complex directs 

the site-specific proteolytic cleavage and activation of Relish (Stöven et al. 2000; 

Stöven et al. 2003). In addition to flies, orthologues of NF-κB are found in a 

number of other insects (Minakhina & Steward 2006), such as mosquitoes 

(Waterhouse et al. 2007), moths (Sun & Faye 1992), beetles (Sagisaka et al. 2004), 

and locusts, whose genome contains genes that code for three Rel like NF-κB 

proteins (Wang et al. 2014). The ancient origin of NF-κB proteins is supported 

by their presence in the most archaic arthropod, the horseshoe crab Limulus 

(Wang et al. 2006a). 

The requirement of NF-κB for Epo-mediated protection of rat cerebrocortical 

neurons has been investigated using the membrane permeable compound 

pyrrolidine dithiocarbamate (PDTC) to inhibit NF-κB activation (Digicaylioglu 

& Lipton 2001). PDTC has also been used to block the activity of insect 

orthologues of NF-κB (Luo et al. 2013). The mechanism through which PDTC 

inhibits NF-κB involves the suppression of IκB release from the cytoplasmic 

form of NF-κB through the interaction with reactive oxygen species (ROS). This 

ability of PDTC presumably relies on its chelating and antioxidative properties 

(Schreck et al. 1992). Application of PDTC two hours before introducing rhEpo 

did not suppress neuroprotective effects of rhEpo on hypoxia-exposed locust 

brain neurons, indicating that the NF-κB pathway may not be implicated in 

Epo-mediated protection of locust neurons. As application of PDTC alone on 

otherwise non-treated locust brain neurons reduced their survival, the activity 

of locust NF-κB orthologues has been most likely suppressed and its basal 

activity seems to be required for cellular survival. Even though it seems that 

application of PDTC alone under hypoxic condition increased the viability of 

locust brain neurons, this effect may not be significant, since there is a high 

variation between individual experiments. Due to the low number of 

experimental trials, the significance levels were not statistically analyzed.  

Nevertheless, it should be noted that intracellular levels of ROS play an 

important role in regulating the activity of NF-κB (Morgan & Liu 2011). As 

mentioned above, it is believed that the thiol-containing compound PDTC 
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prevents the dissociation if IκB from NF-κB and subsequent activation of the 

NF-κB transduction cascade by scavenging ROS (Schreck et al. 1992). Hypoxia 

may lead to increased generation of ROS (Chandel et al. 2000). Under these 

conditions scavenging of ROS by PDTC might have contributed to both, 

suppression of NF-κB activation and reduction of cellular damage induced by 

ROS. Indeed, some reports suggested  that PDTC can act as an anti-oxidant that 

promotes cellular survival (Moellering et al. 1999; Lee et al. 1999; La Rosa et al. 

2004). Protective effects of PDTC against brain ischemia have been also reported 

(Nurmi et al. 2004). However, it is more likely that PDTC is affecting the overall 

cellular balance between oxidants and antioxidants (Haddad et al. 2000). The 

ultimate consequence of cell injury hence depends on the level at which the 

cell’s antioxidative defense mechanisms are compromised by hypoxic stress. 

Whether the NF-κB pathway will promote neuronal death or survival depends 

as well on the cell type, the timing of the NF-κB activation (Pizzi et al. 2002) and 

the type of NF-κB dimers that are activated (Mattson & Meffert 2006; Sarnico et 

al. 2009). An alternative approach to study the requirement of NF-κB for Epo-

mediated neuroprotection can be for instance the determination of cytoplasmic 

and nuclear levels of NF-κB. If Epo uses the NF-κB pathway to transmit pro-

survival signals nuclear translocation of NF-κB would be expected 

(Digicaylioglu & Lipton 2001; Shingo et al. 2001). 

 

Finally, the exact nature of the NF-κB response to specific stimuli depends on 

the cross-talk between different transduction pathways and their integration 

with other cellular processes (Manning & Cantley 2007). NF-κB signaling can be 

modulated for instance by Akt that can phosphorylate and activate IKK to 

allow expression of pro-survival genes (Romashkova & Makarov 1999; Chong 

et al. 2005). In specific types of cells, STAT5 also plays a role in regulating the 

NF-κB signaling pathway (Nakamura et al. 2002). Since Akt can be activated 

even when the activity of PI3K is blocked by LY294002 (Mahajan & Mahajan 

2013), a certain level of Akt and NF-κB involvement in Epo-mediated protection 

of locust brain neurons cannot be completely excluded.     
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Taken together, the experimental results described in this chapter document 

that Epo-mediated protection, comparable to that known for mammalian cells, 

can also be observed in insect neurons subjected to apoptotic stimuli. Moreover, 

pathways that are critical for Epo protection of locust brain neurons are partly 

identical with the pathways involved in Epo effects on mammalian neurons. 

The results demonstrate the requirement of JAK and STAT, but not necessarily 

of PI3K and NF-κB for Epo-mediated beneficial mechanisms that interfere with 

apoptotic processes. The effects reported in this study suggest the presence of a 

receptor with ligand binding properties that enable its activation by rhEpo 

followed by the activation of JAK/STAT signaling to initiate anti -apoptotic 

cellular responses. These results support the hypothesis of a phylogenetically 

old role for Epo-like signaling in tissue protection that was already present in 

the last common ancestor of insects and vertebrates.  
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II Studies on the receptor that mediates neuroprotective 

properties of erythropoietin in Locusta migratoria 

 

II.1 Introduction 

Both hematopoietic and non-hematopoietic effects of Epo in mammals are 

mediated through its binding to a cell surface membrane receptor. 

Hematopoietic EpoR is a member of the type I superfamily of single-

transmembrane chain cytokine receptors. These receptors share several 

common structural motifs: an N-terminal domain with conserved fibronectin 

III-like subdomains, a WSXWS motif with conserved cysteines that is important 

for protein folding; a single hydrophobic transmembrane segment; and a 

cytoplasmic domain with conserved regions termed Box1 and Box2 that 

associate with members of the Janus kinase family. Type I cytokine receptors 

may bind several ligands and trigger intracellular signaling events as 

homodimers (Youssoufian et al.  1993; Boulay et al. 2003). EpoR  is expressed on 

the cell surface as a pre-formed receptor homodimer (Livnah et al. 1999) 

connected by the leucine zipper of the transmembrane domains 

(Constantinescu et al. 2001). The abundance of EpoR on the surface of erythroid 

progenitor cells is very low, with approximately one thousand receptors 

present per cell (Youssoufian et al. 1993; Lacombe & Mayeux 1998) while the 

majority of receptor proteins reside in intracellular pools (Yoshimura et al. 

1990). Non-hematopoietic cell types have been demonstrated to express even 

lower numbers of functional receptors in their cytomembranes (Um & Lodish 

2005; Becker et al. 2010; Elliott et al. 2014). Gross and Lodish (2006) showed that 

upon binding to hematopoietic EpoR, Epo is internalized via receptor-mediated 

endocytosis and subsequently degraded in lysosomes. Receptor-mediated 

endocytosis in bone marrow, liver and kidney contributes to the clearance of 

circulating Epo from the serum (Jelkmann 2002). The rates of intracellular Epo 

degradation are determined by binding, dissociation and trafficking properties  

of its receptor (Gross & Lodish 2006). It remains, however, unclear whether or 
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not Epo is internalized and degraded in the same way by Epo-responsive non-

hematopoietic cells, such as neurons. 

Even though hematopoietic EpoR is clearly expressed in various cell types of 

the mammalian nervous system, including neurons, astrocytes, microglia, 

oligodendrocyte progenitor cells, and endothelial cells (Digicaylioglu et al. 1995; 

Marti et al. 1996; Liu et al. 1997; Nagai et al. 2001; Sugawa et al. 2002; Ott et al. 

2015) and upregulated during ischemia/hypoxia (Sakanaka et al. 1998; Sirén et 

al. 2001b; Ott et al. 2015), whether or not it is involved in conveying the 

neuroprotective properties of Epo is still controversial. Some studies have 

shown that affinities of Epo binding sites on PC12 rat neuronal cells (Masuda et 

al. 1993) and brain endothelial cells (Yamaji et al. 1996) are much lower than 

those on erythroid cells. Moreover, it has been shown that brain-derived Epo 

has less sialic groups (Masuda et al. 1994). These observations indicated that the 

endogenous Epo/EpoR system mediating tissue protective properties might 

have a distinct bioactivity and regulatory system that differs from the 

erythropoietic Epo/EpoR system. Further studies showed that different Epo 

derivatives made by chemical modifications of rhEpo, such as asialo-Epo 

(Erbayraktar et al. 2003), carbamylated Epo (cEpo) (Leist et al. 2004), Epobis 

(Pankratova et al. 2012), ARA290 - an 11 amino acid peptide derived from a 

tertiary structure of Epo- (Brines et al. 2008) exerted neuroprotection, without 

stimulating erythropoiesis. This substantiated the idea that neuroprotective 

effects of Epo and Epo derivatives could be mediated through a specific 

receptor. The enigmatic tissue-protective receptor has been postulated to be a 

heterodimeric receptor complex consisting of a monomer of classical EpoR and 

another class I cytokine receptor monomer, for instance beta common (βc) chain 

(Brines et al. 2004). However, Epo-mediated neuroprotection of rat 

hippocampal neurons (Nadam et al. 2007) and a neuron-like cell line (Um & 

Lodish 2005) was accomplished in the absence of functional β common chain 

receptor. Thus, if EpoR forms a functional tissue-protective receptor by 

association with βc chain, it may only be the case in particular cell types and/or 

under particular conditions. Ephrine B4 receptor has been proposed as another 
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partner of the EpoR monomer to form a heteromeric tissue-protective receptor 

(Jackson et al. 2012; Debeljak et al. 2014). The alternative receptor that 

specifically mediates tissue protection could also be a heterodimer or homomer 

formed by yet unidentified subunits.   

Recently a splice variant of the human epo gene that lacks intron 3 of full-length 

epo has been identified (Bonnas 2009). The recombinant human protein EV3 had 

no stimulatory effect on mouse erythropoiesis but was similarly 

neuroprotective as rhEpo in primary cultures of rat cortex neurons that were 

challenged by glucose and oxygen deprivation. This reaffirmed the hypothesis 

of a specific, tissue protection-mediating receptor. Evidences for the implication 

of another heterodimeric receptor complex, consisting of an α-chain of the 

leukemia inhibitory factor receptor (LIFRα) and  interleukin-6-transducer-chain 

gp130, a LIFR/gp130 complex, in EV3-mediated neuroprotective effects were 

provided (Bonnas 2009). This finding together with results from Brines and 

colleagues (Brines et al. 2004) suggest that different tissues or cell types may 

respond to Epo through different receptors.  

The concept of distinct heterodimeric receptors expressed in different tissues to 

convey protective messages from Epo-like molecules in response to harmful 

stimuli is in agreement with the hypothesis of a pre-vertebrate evolution of a 

tissue protective Epo/EpoR-like signaling system. It was shown that rhEpo 

increased the viability of primary cultured locust brain neurons in the presence 

of apoptosis-inducing stimuli (Ostrowski et al. 2011). The presence of a receptor 

that can be activated by Epo in invertebrates was confirmed by subsequent 

pharmacological studies. Epo-mediated neuroprotection of locust brain neurons 

required activation of the JAK/STAT transduction pathway (Miljus et al. 2014), 

which is also involved in Epo-induced responses of mammalian neurons. The 

molecular identity of the receptor through which neuroprotective effects of 

rhEpo are transmitted in insect neurons is not known yet. In addition to its 

association with JAK, the insect receptor may share more characteristics with 

vertebrate EpoR, e.g. receptor-mediated endocytosis of the ligand/receptor 

http://www.sciencedirect.com/science/article/pii/S0306452213009603
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complex after binding of Epo. Many cytokine receptors, including EpoR (Becker 

et al. 2010), are internalized constitutively even in the absence of their ligands. 

However, cytokine-induced endocytosis is usually faster and more pronounced 

than the constitutive endocytosis (Basquin & Sauvonnet 2013; Becker et al. 2010; 

Hémar et al. 1994). Epo-stimulated endocytosis could be detected as the 

difference in endocytosis rate of rhEpo-stimulated primary cultures compared 

to the endocytosis rate of non-stimulated primary cultures. Alternatively, 

detection of labeled Epo molecules in endocytotic vesicles would be indicative 

for Epo-stimulated endocytosis. 

In order to advance the characterisation of the yet unidentified neuroprotective 

Epo receptor, I have studied Epo-stimulated endocytosis in primary cultured 

locust brain neurons. Locust brain neurons were incubated with the fluorescent 

dye FM1-43 to quantify endocytotic activity. In addition, I have undertaken 

attempts to label rhEpo with a fluorescent probe using the N-

hydroxysuccinimide ester-mediated chemical reaction and detect its presence in 

endocytotic vesicles of locust brain neurons. To obtain further information 

about the functional structure of the insect Epo-binding receptor, I have 

exposed hypoxia-subjected locust brain neurons to the non-erythropoietic 

human splice variant EV3. Shared neuroprotective potency of EV3 in mammals 

and insects, in the absence of erythropoietic effects, would suggest a greater 

similarity of the unidentified nervous Epo receptors across phyla than between 

mammalian hematopoietic and neuroprotective receptors. 
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II.2 Material and Methods  

II.2.1 Examining the effect of the human Epo splice variant EV3 on neuronal 

survival during hypoxia-induced apoptosis 

Primary cultures of locust brain cells were established from fourth-instar 

nymphs of Locusta migratoria (Hintze, Berlin, Germany) as described in chapter I 

(I.2.2). The pooled and dissociated cells from 12 locust brains were equally 

distributed to 6 culture dishes. Cell cultures were maintained for 5 days under 

normal growing conditions. Afterwards, culture medium was removed and 

replaced with serum-free medium (L15/0.5%GM) with or without rhEpo 

(4U/ml) or EV3. Final concentrations of applied EV3 in a first experiment were 

0.33 ng/ml, 3.33 ng/ml, 33.30 ng/ml corresponding to 0.04, 0.4 and 4 U/ml 

rhEpo, whereas in the following series of experiments final concentrations of 

2.08, 4.17 and 8.33 ng/ml corresponding to 0.25, 0.5 and 1 U/ml rhEpo were 

chosen. A stock solution of the non-erythropoietic human Epo variant EV3 (Iba 

Technologies, Göttingen, Germany) (Bonnas 2009) with the concentration of 

0.194 mg/ml was maintained in PBS and diluted with culture media to achieve 

the desired final concentrations. After 12 h of incubation with rhEpo or EV3 or 

with L15 medium only (control cultures) under normoxic conditions, cell 

cultures were exposed to hypoxia (O2 level ≤ 2%) for 36 h. Subsequently, cells 

were maintained for another 12 h in normal atmosphere (Fig. 13). Control 

cultures were kept under normoxic conditions for the whole period (12 h + 36 h 

+ 12 h). Finally, cells were fixed with 4% paraformaldehyde in 0.1 M phosphate 

buffer for 30 min at RT, rinsed five times with PBS (pH 6.9) and incubated with 

DAPI (Sigma-Aldrich Chemie, Schnelldorf, Germany) dissolved in PBS at a 

final concentration of 100 μg/ml for 30 min in the dark. Excess dye was 

removed by several washes with PBS and cell-containing coverslips were 

mounted on microscopic slides in DABCO (Carl Roth, Karlsruhe, Germany). 
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Figure 13. Schematic drawing of the experimental procedure to evaluate a potential 
neuroprotective effect of EV3 on primary cultured Locusta migratoria brain neurons. 

 

 

Analysis of neuronal survival was performed using an epifluorescence 

microscope (Zeiss Axioskop; 40x objective) equipped with a Spot CCD camera 

(Invisitron, Puchheim, Germany). Two continuous rows of non-overlapping 

photographs (usually 60 per culture) to the right and the left of the center 

extending over the entire coverslip were taken from each culture. Nuclear 

morphology was used to distinguish viable from non-viable cells. Nuclei of 

living cells contain a discontinuous patchy DAPI labeling, reflecting intact 

chromatin structure, while nuclei of late apoptotic or dead cells are 

characterized by condensed continuous DAPI labeling. Total numbers of nuclei 

and numbers of intact nuclei were counted on each photograph and the portion 

of living cells determined for each culture.  

Statistical analysis: In order to compare different experiments, the portions of 

living cells in different treatment groups of one experiment were normalized to 

the portion of living cells in the untreated control culture (set as 100%), giving 

the relative portion of living cells in percentages displayed in typical box plot 

graphs. The software package OriginPro (version 8.5, OriginLab Corporation) 

was used to generate initial diagrams and to perform statistical analyses. The 

non-parametric Kruskal-Wallis test was used to identify differences in data 

population distributions and the Mann-Whitney U test for unmatched samples 

was used to evaluate the differences between two groups. P values were 

..
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corrected with the Benjamini-Hochberg procedure (Benjamini & Hochberg 

1995; Groppe et al. 2011).   

 

II.2.2 FM1-43 dye loading protocol and rhEpo-induced endocytosis 

To study potential effects of rhEpo on endocytotic vesicle formation, cultured 

locust brain cells were exposed to FM1-43 dye (Biomol, Hamburg, Germany). 

The chemical structure of FM dyes makes them soluble in polar solvents, like 

water (hydrophilic, positively charged head group), but also ensures that the 

fluorescent signal of the fluorophore is emitted only in a hydrophobic 

environment (lipophilic tail) (Fig. 14). The lipophilic tail region facilitates the 

incorporation of the dye into phospholipids of the outer leaflet of the plasma 

membrane. The vesicles that are subsequently endocytosed will contain dye 

molecules inserted into their inner membrane leaflet. Polar head groups of the 

dye will prevent the dye from flipping over to the opposite leaflet of the 

membrane. This assures that, once trapped in endocytotic membrane 

compartments via endocytosis, a dye cannot escape the vesicles (the dye can 

only escape by exocytosis of the vesicles) (Gaffield & Betz 2006). 

 

 

 
   
Figure 14. Structure of the FM1-43 dye molecule. The lipophilic tail region of the dye  (right) 

causes its insertion into membrane phospholipid layers. Two aromatic rings connected with  a 
double bond (middle) create the fluorophore. The positively charged head group (left) prevents 

the dye from flipping across the membrane. Adapted by permission from Macmillan Publishers 
Ltd: Nature Protocols (Gaffield & Betz 2007), copyright (2007).    

 

 

Primary cultures of locust brain neurons were prepared as described in chapter 

I (1.2.2). The pooled and dissociated cells from 8 locust brains were equally 

distributed to 4 culture dishes and grown for 5 days under normal culturing 
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conditions. Before exposure to FM1-43 dye cell cultures were pre-incubated for 

15 min with L15 medium containing 10 mM of the calcium chelator 

ethylenediaminetetraacetic acid (EDTA, AppliChem, Darmstadt, Germany) at 

RT to suppress calcium dependent exocytosis (L15/10 mM EDTA). 

Subsequently cultures were treated with rhEpo (8U/ml) dissolved in L15/10 

mM EDTA containing diluted FM1-43 dye at a final concentration of 8 μM 

(L15/10mM EDTA/FM1-43) for 2 and 10 min at RT, protected from light. 

Control cultures were incubated with L15/10mM EDTA/FM1-43 for the same 

period of time. From this step on throughout the whole further procedure 

cultures were kept in the dark, taking care to minimize their exposure to the 

light. After 2 min/10 min treatment, cell cultures were rinsed shortly three 

times (each time for few seconds) with fresh L15/10 mM EDTA medium to 

wash away extracellular FM dye and rhEpo and fixed with 4% 

paraformaldehyde dissolved in 0.1 M phosphate buffer for 30 min at RT (Fig. 

15). After two 5-minute washes with PBS (pH 6.9) cultures were rinsed several 

times with PBS containing 0.1% Triton-X-100. This step improved visualization 

of endocytotic vesicles during imaging, reducing the amount of nonspecific 

staining coming from membrane remnants of dying cells within cultures 

(Gaffield & Betz 2006). To stain nuclei cultures were incubated with DAPI 

dissolved in PBS at a final concentration of 100 μg/ml for 30 min at RT. Finally, 

excess dye was removed by several washes with PBS and cell-containing 

coverslips were mounted on microscopic slides in DABCO. Preparations were 

stored for at least two days at 4°C in the dark, which increased the intensity of 

FM1-43 fluorescence.  

 

 

 
Figure 15. Schematic drawing of the experimental procedure to study rhEpo-stimulated 

endocytosis in primary cultures of Locusta migratoria brain neurons. 
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II.2.3 Analysis of endocytotic vesicles in primary cultured locust brain cells 

Analysis of FM1-43 dye-containing intracellular vesicles was performed using 

laser scanning confocal microscopy (Leica TCS SP2, Leica Microsystems, 

Wetzlar, Germany) with a 63x oil immersion objective. Without prior 

examination of FM1-43 fluorescence (to prevent bias in the selection of 

evaluated neurons), DAPI-fluorescence was used to select regions of the 

coverslip that contained at least 10 neurons that were physiologically intact at 

the time of fixation. At least 10 selected regions (on average 126 individual 

neurons) were analyzed in each culture. For each preselected region of the 

culture FM1-43 fluorescence was scanned at step sizes of 1 µm throughout the 

entire extension of the neurons along the z-axis (24-28 individual scans), at 

1024x1024 pixel resolution. The 514-nm line of an argon laser was used to excite 

the FM1-43 dye and emitted fluorescent signals were collected from 530 to 700 

nm. The number of FM1-43 labeled vesicles was counted for each neuron. Each 

optical section from the stacks along the z-axis through the neurons was 

analyzed to determine vesicle numbers. Exact determination of vesicle numbers 

in neurons of all sizes was possible up to 15 vesicles per cell. High densities of 

vesicles prevented exact counting due to overlap in the microscopic scans. 

Neurons were therefore categorized into classes with ≤ 5, 6-10, 11-15 and > 15 

vesicles and the percentage of neurons in each class was calculated for each 

culture. Statistical comparison between control and rhEpo-treated neurons was 

performed with two sample T-tests.  

To confirm the results of manual vesicle counting the same confocal scans were 

subjected to automatic quantification of labeled vesicles. The method was 

established by Dr. Bart Geurten (Department of Cellular Neurobiology, 

University of Göttingen). The first step of analysis included the detection of 

individual cells. The source image was converted into binary image format with 

an 8% contrast threshold. The binary image was then processed with a two 

dimensional Gaussian filter ( 10 pixels) and subjected to Hough 
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transformation (for a review on Hough transformations see (Mukhopadhyay & 

Chaudhuri 2015)). Imfindcircles algorithm of Matlab (Mathworks, USA) was 

used for detection of the cells as circles with radii of 3.5 to 23.3 µm (equivalent 

to 15-100 pixels). If more than 9.3 µm2 (equivalent to 40 pixels2) were black the 

cell was regarded as being damaged or dead and discarded from further 

evaluation. Furthermore, cells whose centers were located inside the radius of 

another cell were also excluded from analysis. The second step of analysis 

detected labeled vesicles. For this purpose an 80% threshold filter was applied 

to the source image resulting in a binary image that displayed labeled vesicles. 

Gaps between labeled pixels were closed by image morphology (4 pixels) (for a 

review on image morphology techniques see (Soille 2003)). Vesicles were 

detected as ellipses via Hough transform that was described by Basca and 

colleagues (Basca et al. 2005; Xie & Ji 2002) and implemented in Matlab by 

Martin Simonovsky. The algorithm to detect ellipses was set to a major axis of 

0.4 to 1.6 µm (equivalent to 3 to 7 pixels). Overlying vesicles and fluorescent 

objects lying outside of detected cells were discarded. The third step of analysis 

involved combining optical sections of the detected cells to three dimensional 

objects and assignment of detected vesicles. Positions of centers of all cells in 

two frames were treated like the vertices of a bipartite graph in a minimum cost 

matching problem that was solved with the Hungarian algorithm (Kuhn 1955; 

Kuhn 1956). Labeled vesicles were associated with the volume of single cells, 

and assignments with distances larger than the radius of the respective cells 

were discarded. Finally, total volumes of vesicles per individual cell were 

calculated and plotted in box-whisker plots. For statistical analysis total 

volumes of vesicles per cell in control and Epo-treated cultures were compared 

by permutation tests (Fisher’s exact test) on the differences between the 

medians of different experimental groups (Fisher 1954; Ernst 2004).  
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II.2.4 Anti-HRP immunocytochemistry and FM1-43 staining 

FM1-43 dye was applied to cell cultures according to the above described 

protocol. In brief, after preincubation in L-15/10 mM EDTA medium for 15 

minutes cell cultures were treated with rhEpo (8 U/ml) dissolved in L-15/10 

mM EDTA medium containing diluted FM1-43 dye at a final concentration of 8 

μM for 2 and 10 min at RT, protected from light. After several short washes (3 

times for few seconds) with fresh L-15/10 mM EDTA medium cell cultures 

were fixed with 4% paraformaldehyde dissolved in 0.1 M phosphate buffer for 

30 min at RT. Following three washes with 0.1 M Phosphate Buffer, three 

washes in PBS and three washes in PBS with 0.1% Triton-X-100 (each for 5 min), 

cells were incubated for 1 h with blocking solution containing 5% normal goat 

serum (Jackson Immuno Research Laboratories, West Grove, Pennsylvania, 

USA) and 0.25% bovine serum albumin (MP Biomedicals, Heidelberg, 

Germany) dissolved in PBS with 0.1% Triton-X-100. Primary antibody anti-HRP 

from rabbit (Sigma-Aldrich, dilution 1:500, v/v, in blocking buffer) was 

incubated over night at 4°C. After several washes in PBS with 0.1% Triton-X-100 

a secondary antibody Cy5-coupled goat anti rabbit (Jackson Immuno Research 

Laboratories, dilution 1:300 in PBS containing 0.1% Triton-X-100) together with 

DAPI (1:1000) was applied for 1 h at RT. After washing away excess antibody 

and DAPI (5 washes in PBS with 0.1% Triton-X-100), coverslips with labeled 

cells were mounted on microscopic slides using a drop of DABCO.  

Anti-HRP staining in conjunction with FM1-43 staining was analyzed by 

confocal fluorescence microscopy (Leica TCS SP8, Leica Microsystems, Wetzlar, 

Germany) using a 63x glycerol immersion objective. FM1-43 fluorescence was 

exited with the 514 nm line of an argon laser, while Cy5 fluorescence was 

excited with the 633 nm line of a HeNe laser. The emitted fluorescence was 

collected from 530 to 600 nm and 680 to 790 nm respectively. The nuclear dye 

(DAPI) was excited using the 405 nm line from a diode laser and the emission 

was detected from 420 to 480 nm. Each stack was sequentially scanned (DAPI 

and Cy5 fluorescence in one sequence and FM 1-43 fluorescence in a second 
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sequence) in z-direction with 1024x1024 pixel resolution in the xy-plane, 400 Hz 

scanning speed and ~1 μm distance between each two of 25 to 35 optical 

sections along the z-axis.  

 

II.2.5 Labeling of rhEpo 

N-hydroxysuccinimide (NHS) ester reaction chemistry (Fig. 16) was used to 

fluorescently label rhEpo. NHS esters are reactive groups formed by 

carbodiimide-activation of carboxylate molecules. NHS ester-activated groups 

react strongly with primary amino groups present in the side-chain of lysine 

amino acid residues and at the amino terminus of the protein. This reaction 

leads to the formation of a stable amide bond between the primary amino 

group and the flourophore group of the NHS ester-fluorophore complex, while 

NHS is released (Nanda & Lorsch 2014).  

 

Figure 16. N-hydroxysuccinimde (NHS) ester-mediated chemical reaction between  the amine-

reactive group of the NHS ester-fluorophore complex and the primary amino group of a 

protein. F-fluorophore; P-protein. Adapted and used with permission from Thermo Fisher 

Scientific, copyrighted 2016.  

 

A spin concentrator (Corning Spin-X UF 500 μl Concentrator, Sigma-Aldrich), 

an ultrafiltration device with a polyethersulfone membrane, was used to 

concentrate rhEpo (NeoRecormon, Roche, Welwyn Garden City, UK) to the 

desired concentration. The procedure of concentrating consisted of filling the 

concentrator with up to 500 μl of rhEpo solution, centrifuging the solution in a 

centrifuge with a fixed angle rotor (Heraeus, Fresco 21 centrifuge, Thermo 

Fisher Scientific, Braunschweig, Germany) at a speed of 14000 x g for 5-10 min 
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at 20°C, and discarding the filtrate solution from the filtrate container. By 

repeating this procedure several times the starting volume of rhEpo was 

reduced by approximately 50 times. Given that the solvent of rhEpo contained 

glycine, a primary amine that competes with primary amino groups of proteins 

for the NHS ester-mediated chemical reaction, it needed to be replaced with a 

more suitable buffer. To achieve this, the spin concentrator that contained the 

concentrated rhEpo was filled with PBS (pH 7.4), centrifuged as described 

above and the filtrate was discarded. The process was repeated 10 times with 5 

min pauses between cycles during which the rhEpo sample was kept on ice. 

Finally, the sample with rhEpo was recovered from the bottom of the 

concentrate pocket and its concentration determined spectrophotometrically by 

measuring the absorbance of the sample at 280 nm using a NanoDrop analyzer 

(ND-1000-v 3.7.1, Thermo Fisher Scientific). 

To fluorescently label rhEpo a Monolith NTTM protein labeling kit red-NHS 

(NanoTemper Technologies, Munich, Germany) was used. Following 

manufacturer’s instructions, the solvent of rhEpo was exchanged with labeling 

buffer using a spin column with resin bed (both provided with the kit). RhEpo 

was diluted with labeling buffer to approximately 10 μM and a volume of 100 

μl. Fluorescent dye (NT-647) was dissolved in dymethylformamide (DMF, 

Sigma-Aldrich) and diluted with labeling buffer to 240 μM concentration and a 

volume of 100 μl. Solutions of rhEpo and dye were mixed in 1:1 volume ratio 

(200 μl final volume) and incubated for 60 min at RT in the dark on a slowly 

rotating platform (Shaker DOS-10L, Neo Lab, Heidelberg, Germany), followed 

by overnight incubation at 4°C in the dark. Using a purification column 

provided with the kit, remaining free dye was retained in a column and thereby 

removed from the sample, while labeled rhEpo was collected from a column 

using PBS (pH 6.9) as an elution buffer.   

To ensure complete elimination of the free dye, the sample was transferred to a 

spin concentrator and subjected to a buffer exchange process with PBS (pH 6.9) 

applying the above described procedure. The process for buffer exchange was 
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repeated 10 times with at least 5 min pauses between centrifugation cycles 

during which the sample with the labeled rhEpo was kept on the ice. After the 

last centrifugation cycle, the sample volume was adjusted to 100 μl using PBS 

(pH 6.9).  

 

II.2.6 Assessment of the labeling efficiency and purity of the rhEpo-

fluorophore conjugate 

The concentration of labeled protein product and labeling efficiency were 

subsequently determined spectrophotometrically using a NanoDrop analyzer. 

To confirm that the labeled product was indeed rhEpo and that the sample was 

completely free of unbound dye, sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) was performed and gels fluorescently scanned. 

Furthermore, the same gels were blotted and analyzed with western blotting 

technique. 

For SDS-PAGE, samples were mixed with equal volumes of protein sample 

buffer (2x, 1M tris-HCl, pH 6.8, 4% SDS, 20% glycerol, 0.02% bromophenol 

blue) containing 5% β-merkaptoethanol (AppliChem), heated for 3 min at 95°C 

(Eppendorf Thermomixer Compact, Sigma-Aldrich) and loaded onto 12% 

polyacrylamide gels. The gels were prepared by layering a stacking gel (tris 

buffer, pH 6.8; 5% polyacrylamide) (30% acrylamide/bis-acrylamide, Sigma-

Aldrich) on top of a separating gel (tris buffer, pH 8.8; 12% polyacrylamide). 

The PageRuler Plus prestained protein ladder (Thermo Fisher Scientific) was 

used as a molecular weight marker. The electrophoresis was run at 120 V in 

Laemmli buffer (1x, 25mM tris, 190 mM glycine, 0.1% SDS) for approximately 

100 minutes (PowerPac™ Basic Power Supply, Bio-Rad Laboratories, Munich, 

Germany) and stopped when samples reached the end of the gel. The gels were 

subsequently scanned using a Typhoon Scanner FLA 9500 (GE Healthcare Life 

Sciences, Freiburg, Germany) with a 635-nm laser excitation and the LPR-Ch2 

filter (665 nm long pass). 
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After fluorescent scanning, a semi-dry blotting system was used for the 

electrophoretic transfer of proteins from the polyacrylamide gels to 

nitrocellulose membranes (Roti NC, Carl Roth). Before assemblage into a 

„sandwich“, gels, membranes and Whatman sheets (Protean XL, Bio-Rad 

Laboratories) were soaked in transfer buffer (25mM tris, 192 mM glycine, 20% 

methanol) for at least 15 min. The transfer was performed for 70 min at 15 V 

(Transblot SD transfer cell, Bio-Rad Laboratories). After one hour blocking of 

the membranes in blocking buffer containing 1% bovine serum albumin 

dissolved in tris buffered saline (TBS, 20 mM tris, 137 mM NaCl, pH 7.5) with 

0.05% Tween (TBS-T) at RT on a shaker, the membranes were incubated with 

anti-Epo antibody from goat (1:1000, v/v, N-19, Santa Cruz Biotechnology, 

Heidelberg, Germany) dissolved in TBS-T overnight at 4°C. Following 5 washes 

with TBS-T for 5 min at RT on a shaker, membranes were incubated with the 

secondary peroxidase-conjugated antibody (rabbit anti-goat, 1:1000, v/v, 

Jackson Immuno Research Laboratories) for 1 hour at RT on a shaker. 

Membranes were afterwards rinsed 5 times with TBS-T for 5 min at RT on a 

shaker and developed using a Peroxidase/Luminol-Enhancer reagent (Super 

Signal West Pico Chemiluminescence Substrate, Thermo Fisher Scientific). 

Solution A (Peroxide) and solution B (Luminol/Enhancer) were mixed in 1:1  

ratio and applied to the membranes, followed by 5 min incubation at RT in the 

dark, as instructed by the manufacturer. Immunoreactive protein bands were 

visualized using the enhanced chemiluminescence detection system (ECL, Fluor 

Chem FC2, Cell Biosciences, Protein Simple, San Jose, California, USA), 

according to  manufacturer’s instructions.  

 

II.2.7 Ligand-receptor binding and internalization assay in primary cultures 

of locust brain neurons using fluorescently labeled rhEpo 

Primary cultures of locust brain neurons were prepared and maintained as 

described in chapter I (1.2.2). After 5 days in vitro, the culture medium was 

replaced with serum-free medium (L15/0.5%GM) and cell cultures left for 2 h 
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at 27°C in a humidified normal atmosphere (Incubator, Heraeus Instruments). 

A ligand-receptor binding assay was performed by incubating locust neuronal 

cultures with L15/0.5% GM containing 0.023 μM fluorescently labeled rhEpo 

for 10 min at 27°C in an incubator. Cells were washed by transferring the cell-

containing coverslips to a new culture dish filled with fresh L15/0.5% GM. Cell-

containing coverslips were transferred in this way 3 times (each time to a new 

culture dish filled with fresh L15/0.5% GM) and finally fixed with 4% 

paraformaldehyde in 0.1 M phosphate buffer for 40 min on ice protected from 

light. Control cultures were treated in the same way but instead of fluorescently 

labeled rhEpo, non-labeled rhEpo was incubated. After several washes with 0.1 

M phosphate buffer and 2 washes with PBS, each for 5 min at RT in the dark, 

the cells were incubated with DAPI dissolved in PBS at a final concentration of 

100μg/ml for 20 min in the dark, to counterstain nuclei. Following several 

washes with PBS, cell-containing coverslips were mounted on microscopic 

slides in DABCO.  

Analysis of fluorescence was performed by confocal microscopy (Leica TCS-

SP8) with a 63x glycerol immersion objective. As the fluorophore conjugated to 

rhEpo has an absorption maximum of 650 nm and an emission maximum at 670 

nm, the 633 nm line of HeNe laser was used to excite the fluorophore of the 

labeled rhEpo and emitted fluorescence signals were detected from 650 to 790 

nm. To ensure comparability of cultures treated with fluorescently labeled 

rhEpo and untreated cultures, identical settings for laser intensity, gain and 

offset were used (for every preparation). Each region was scanned at steps of 1 

µm throughout the entire extension of the neurons along the z-axis, at 

1024x1024 pixel resolution. The same regions were afterwards scanned through 

a differential interference contrast (DIC) prism to obtain bright-field images 

with increased contrast. Images of individual optical sections from the stacks 

were processed and overlaid using ImageJ software (National Institute of 

Health, Bethesda, USA).  
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II.3 Results  

II.3.1 The non-erythropoietic Epo splice variant EV3 protects locust neurons 

from hypoxia-induced cell death 

The ability of the non-erythropoietic human Epo splice variant EV3 to protect 

locust brain neurons was studied after 5 days in vitro. Cell cultures derived 

from identical sets of locust brains were pretreated with rhEpo or EV3 for 12 h 

before exposure to hypoxic conditions. In a preliminary experiment a wider 

concentration range of EV3 was applied (0.33 ng/ml, 3.33 ng/ml, 33.30 ng/ml) 

to test for potential protective effects and determine the dose leading to a 

maximal effect.  

 

Figure 17.  Dose-dependent effect of the human Epo splice variant EV3 on the viability of 

primary cultured locust neurons exposed to hypoxia. Initial experiment to determine a suitable 

range of EV3 concentraions for subsequent quantitative analysis  (see Fig. 18). 

 

Incubation of primary cultures for 36 h in a hypoxic environment (O2 ≤ 2%) 

initiated apoptotic cell death and decreased the survival of cultured neurons to 



                                                                                                                          Chapter II – Results 

55 
 

70% compared to the control culture that was grown for the same duration 

under normoxic conditions (Fig. 17). Treatment of the locust primary neuronal 

cultures with EV3 for 12 h before onset of hypoxia reduced apoptotic cell death 

and supported cell survival. The protective effect of EV3 was dose-dependent, 

with best neuroprotection achieved with 3.33 ng/ml EV3, while 

neuroprotective effects of both, lower (0.33 ng/ml) and higher (33.30 ng/ml) 

EV3 concentrations were weaker.  

  

Figure 18. The human Epo variant EV3 protects primary cultured locust neurons  from hypoxia-

induced cell  death. The neuroprotective effect of EV3 in  three different concentrations (2.08,  

4.17, 8.33 ng/ml corresponding in weight to 0.25, 0.5, 1.0 U/ml rhEpo respectively)  is 

comparable to the neuroprotective effect of 4U/ml rhEpo.  Statistics: Kruskal-Wallis ANOVA 

with Mann-Whitney U-test for unmatched samples and Benjamini-Hochberg-correction of P  

values. ** P<0.01, ***P<0.001.  
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After 12 h of incubation in growth medium only (two control cultures), in a 

medium supplemented with 4 U/ml rhEpo, and medium containing three 

different concentrations of EV3 (2.08, 4.17 and 8.33ng/ml), locust neuronal 

cultures (except one control culture that was kept under normoxia during the 

whole experimental procedure) were subjected to hypoxia (O2 level ≤ 2%) for 36 

h. At the end of the hypoxic period, cells were allowed to reoxygenate in 

normoxia for 12 h after which they were fixed and processed for analysis. The 

effects of rhEpo and EV3 on neuronal survival in eight individual experiments 

are summarized in the Figure 18. Continuous hypoxia for 36 h is a strong 

stressor that induced apoptosis and reduced the number of intact neurons. 

Compared to control cultures maintained under normoxic conditions, whose 

viability was normalized to 100%, only 78.03% of neurons survived hypoxic 

treatment. Incubation of cell cultures with rhEpo (4 U/ml) completely 

prevented cell death, increasing the portion of surviving neurons (median: 

110.90 %). A similar neuroprotective effect was observed with EV3 treatment in 

all three different concentrations, namely 2.08 ng/ml, 4.17 ng/ml and 8,33 

ng/ml (corresponding to 0.25, 0.5 and 1.0 U/ml of Epo), which increased the 

portion of surviving neurons (medians: 105.74%, 104.42% and 102.49%, 

respectively). Like rhEpo, EV3 completely prevented hypoxia-induced cell 

death of locust neurons. Full protection was accomplished even with the lowest 

EV3 concentration tested, which corresponds to approximately 6.25% of the 

most beneficial concentration of rhEpo in cultured locust brain neurons. 

 

II.3.2 Epo stimulates endocytosis in locust neurons 

To study the effect of rhEpo on endocytotic vesicle formation, primary cultured 

locust brain neurons were exposed to FM1-43 fluorescent dye for 2 min and 10 

min. FM dyes bind to plasma membrane lipids and are internalized within 

vesicles that are formed during endocytosis. The neurons containing vesicles 

with incorporated FM1-43 dye were analyzed with confocal microscopy. 

Individual neurons contained between none and approximately 50 FM1-43 



                                                                                                                          Chapter II – Results 

57 
 

labeled vesicles that were typically distinct from vesicles carrying strong anti -

HRP immunolabeling (Fig. 19). Anti-HRP labels a neuron-specific membrane 

protein (identified as an ATPase coded by the nervana gene in Drosophila) that is 

transported from the endoplasmic reticulum to the plasma membrane in 

strongly labeled vesicles. The absence of FM1-43 and anti-HRP co-labeled 

vesicles indicates distinct labeling of export- and endocytosed vesicles by the 

two markers.  

 

Figure 19. Physiologically intact locust brain neurons in vitro with endocytosed FM1-43 labeled 

vesicles (green in the summary on the right), granular nuclear  DAPI staining (blue) and anti-

HRP positive “export” vesicles (red) after 10 minutes exposure to 8 U/ml rhEpo. A Single 

optical section. B Maximal projection of a  series of optical sections through the same two 

neurons shown in A. Scale bars: 10μm. 

 

To study a potential stimulatory effect of rhEpo on endocytosis, two different 

approaches were used for analysis of the same confocal scans, an observer-

based and an unsupervised software-based approach. In the first approach, 

physiologically intact neurons were identified based on nuclear DAPI staining 

and selected for analysis, prior to examination of FM1-43 fluorescence. The 

number of FM1-43 labeled vesicles was counted for each neuron. Neurons were 

categorized into four classes depending on the number of FM1-43 labeled 

vesicles and the percentage of neurons in each class was calculated. Data 

derived from 6 experiments with 2 min and 6 experiments with 10 min 

exposure to FM1-43 and a total number of 3029 evaluated neurons. The results 

are presented in Figure 20.  
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Figure 20: RhEpo stimulates endocytosis in cultured locust brain neurons. A, B Proportion of 

neurons with ≤ 5, 6-10, 11-15 and > 15 labeled endocytotic vesicles after exposure to FM1-43 

with or without rhEpo for 2 min (A) and 10 min (B).  C, D Differences of average proportions of 

neurons within each class between cultures treated with rhEpo and untreated cultures (rhEpo-

treated minus control). With both incubation times Epo leads to a reduction of neurons with 

lower numbers and an increase of neurons with higher numbers of endocytotic vesicles. E, F 

Control (X-axis) versus rhEpo-treated (Y-axis) average proportions of neurons with ≤ 5, 6-10, 11-

15 and > 15 endocytotic vesicles after exposure to FM 1-43 for 2 min (E) and 10 min (F). 

Standard deviations that do not overlap with the angle bisector indicate significant differences 

between control and rhEpo-treated neuronal cultures. Data derive from each 6 experiments 

with 2 and 10 min exposure to FM1-43 and a total of 3029 evaluated neurons. 
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Untreated neuronal cultures displayed a basal rate of endocytosis. After 10 min 

incubation with FM1-43 solution, the proportion of cells within 4 different 

classes changed insignificantly compared to 2 min exposure to FM1-43 (Fig. 

20A, B, round symbols). There was a slight tendency towards a decrease of the 

average proportion of neurons  with < 5 vesicles  in the untreated cultures 

exposed to FM1-43 for 10 min (53.3% vs. 58.8%) compared to the untreated 

cultures exposed to FM1-43 for 2 min. Untreated cultures exposed to FM1-43 for 

10 min showed also a slight increase of the average proportion of neurons with 

>15 vesicles compared to the untreated cultures exposed to FM1-43 for 2 min 

(21.8% vs. 18.9%) and even less pronounced increase of the average proportion 

of neurons with 6-10 vesicles and with 11-15 vesicles compared to the cultures 

exposed to FM1-43 for 2 min (17.3% vs. 15.7% and 7.7% vs. 6.6%). Statistical 

comparison of average proportions of neurons of each category between control 

cultures exposed to FM1-43 for 10 min and control cultures exposed to FM1-43 

for 2 min showed that the observed differences were not significant.  The data 

indicate that a portion of cultured neurons performs endocytosis independent 

from rhEpo stimulation.  

Simultaneous incubation of cultures with rhEpo and FM1-43 for 2 min 

decreased the average proportion of neurons with < 5 vesicles (P=0.0057) 

compared to the untreated cultures exposed to FM1-43 for 2 min, while the 

average proportion of neurons with 11-15 vesicles (P=0.0200) and the average 

proportion of neurons with > 15 vesicles (P=0.0178) (Fig. 20A, E) was 

significantly increased. A similar shift towards neurons containing higher 

numbers of vesicles was observed after 10 min co-exposure of cultures to FM1-

43 and rhEpo (Fig. 20B). Here, rhEpo decreased the average proportion of 

neurons with < 5 vesicles (P=0.0057) compared to untreated cultures, while the 

increase of the average proportion of neurons with > 15 vesicles stimulated by 

rhEpo was highly significant compared to untreated cultures (P=0.0005) (Fig. 

20F).  
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Therefore, during both 2 min and 10 min exposure to FM1-43, rhEpo decreased 

the average proportion of neurons with < 5 vesicles and increased the average 

proportion of neurons with > 15 vesicles. Differences in average proportions of 

neurons within each category between cultures treated with rhEpo and 

untreated cultures are displayed in Figures 20C and 20D. Significance levels of 

the observed differences are presented in Figures 20E and 20F in which the 

average proportions of neurons in each category are plotted with their standard 

deviations, using the x-axis for untreated cultures and y-axis for rhEpo–treated 

cultures. Standard deviations that do not cross the angle bisector indicate 

significant differences, confirming the calculated statistical differences 

mentioned above.  

The same stacks of confocal microscopic scans were also subjected to a 

software-based detection of neurons and vesicles, followed by automatic 

quantification of the total vesicle volume per cell in the four experimental 

situations. In contrast to the observer-based analysis described above, in which 

physiologically intact neurons were identified based on nuclear DAPI staining, 

here, neurons were identified on the basis of round shape with algorithm-

assisted exclusion of irregularly-shaped cells from the analysis. The quality of 

cell- and FM1-43-labeled-vesicle detection is shown for 4 (out of 15) optical 

sections of one cultured neuron (Fig. 21A). The reconstruction of the cells 

detected in multiple optical sections of a stack to three dimensional objects and 

their association with labeled vesicles is shown exemplary for one stack in 

Figure 21B. The total volumes of vesicles per individual neuron obtained from 

automatic quantification are displayed in box-whisker plots (Fig. 21C). Data 

derived from 6 experiments and a total number of 1573 evaluated neurons. 

Comparison of averages of total endocytotic vesicle volume per neuron 

between untreated cultures exposed to FM1-43 for 2 and 10 min showed a time-

dependent accumulation of endocytosed vesicles (10.23 µm3 vs. 10.93 µm3, 

different with P=0.0491). Co-incubation of rhEpo with the fluorescent dye FM1-

43 significantly increased the total endocytotic vesicle volume after both 2 min 
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(P=0.0001) and 10 min (P=0.0335) compared to control cultures exposed to FM1-

43 only (Fig. 21C).  

 

 

Figure 21: Automatic detection and quantification of FM1-43 labeled endocytotic vesicles.  A 

Optical sections  through one cultured locust brain neuron with automatically defined cellular 

borders (green) and labeled vesicles (blue). B  Reconstructed neurons with associated vesicles 

from optical sections of one stack. C rhEpo increases the total volume of FM1-43 labeled vesicles 

per neuron after 2 and 10 min incubation. Data derived from 6 experiments and a total of 1573 

evaluated neurons. Fisher’s exact test, *** P<0.001, * P<0.05. 

 

 

II.3.3 Determining the concentration of the rhEpo-fluorophore conjugate and 

the degree of labeling 

The concentration of rhEpo after labeling, purification and concentrating was 

calculated using the Beer-Lambert Law, which can be written as: A = ε* d * c , 

where A is the measured absorbance, ε is the wavelength-dependent molar 

absorptivity coefficient or extinction coefficient, d is the path length and c is the 

unknown concentration of the absorbing species (Gilbert-Kawai & Wittenberg 

2014). Since proteins absorb at 280 nm and the absorption maximum of the 

fluorophore is 650 nm, both values needed to be included in the equation in 

order to determine the concentration of labeled rhEpo. The absorbance of the 

rhEpo-fluorophore conjugate solution was measured at 280 nm (A280) and at 650 

nm (A650) using a NanoDrop spectrophotometer (module „Proteins and 

Labels“). To eliminate the contribution of the fluorophore absorption at 280 nm, 

the correction factor (CF) was included into the equation. The extinction 

coefficient of the protein (ε280), an intrinsic property of each protein, is the 
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absorbance of the protein at 280 nm in a 1 cm path length at a concentration of 1 

mg/ml. Information about the extinction coefficient of rhEpo was obtained 

from the ExPASy Proteomic Server (ExPASy, 2011). Thus, the molar 

concentration of the rhEpo-conjugate was calculated as follows:  

c[rhEpo-fluorophore] = A280 - A650 xCF/ ε280 = 6.1 x 10-6 [M] 

The labeling efficiency or degree of labeling (DOL) represents an estimated 

number of fluorophore molecules conjugated to each protein molecule. In order 

to determine DOL, in addition to already known and previously determined 

numbers, the molar extinction coefficient of the fluorophore (ε650) had to be 

included into the equation. The DOL of the rhEpo-fluorophore conjugate was 

subsequently calculated using the following equation:  

DOL = A650/ε650 x c[rhEpo-fluorophore] [M]  = 1.4 

Hence, the determined degree of labeling suggested that on average rhEpo 

molecules were labeled with one or two molecules of fluorophore. 

 

 

II.3.4 Fluorescent scanning gel analysis and western blot analysis of the 

conjugate 

The purity of the labeled rhEpo was checked by fluorescence scanning of a 

separation gel and subsequent western blotting. RhEpo-fluorophore conjugate, 

non-labeled rhEpo and free fluorophore were subjected to one-dimensional 

SDS-PAGE. After separation of the protein markers, electrophoresis was 

stopped and the gel scanned at 635 nm using a Typhoon TM Scanner. A single 

fluorescent band at the molecular weight expected for rhEpo (~ 38 kDa) was 

detected in the lane in which sample containing rhEpo-fluorophore conjugate 

was resolved (Fig. 22). This indicates that rhEpo has been labeled and that there 

were no free flourophores in the sample. As expected, an additional fluorescent 

band of a low molecular weight was detected in the lane in which free 

fluorophore was resolved via SDS-PAGE.  
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Figure 22. Fluorescent scanning gel analysis (A) and western blot analysis (B) of the rhEpo-

fluorophore conjugate. The type of sample is indicated at the top of each lane. Numbers indicate 

the size in  kDa and position of prestained molecular weight markers. Non-labeled rhEpo was 

resolved in the separate lane as a negative control fo r fluorescent scanning detection and 

positive control for immunochemical detection. Free fluorophore solution  was resolved as  a 

positive control for conjugate detection . A single fluorescent band in the sample containing the 

rhEpo-fluorophore conjugate indicates that rhEpo has been labeled and that there were no free 

fluorphores in the sample (A). RhEpo was detected by the Western blotting technique using 

anti-Epo antibody (B). The molecular weight of the labeled rhEpo (rhEpo-fluorophore 

conjugate) is similar to the molecular weight of non-labeled rhEpo.  

 

To confirm that the fluorescent band with the molecular weight of 38 kDa was 

indeed rhEpo, the proteins were subsequently transferred to a nitrocellulose 

membrane, incubated with anti-Epo antibody and peroxidase-conjugated 

secondary antibody, and developed with the ECL detection system. Western 

blot analysis of the sample containing purified rhEpo-fluorophore conjugate 

showed the presence of one positive band (signal). Immuno-detection of 

unlabeled rhEpo with the same molecular weight (~ 38 kDa) confirmed that the 

labeled molecule was rhEpo (Fig. 22B).  
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II.3.5 Confocal microscopy analysis of primary cultured locust brain neurons 

exposed to labeled rhEpo 

To study the association of rhEpo with a cell surface receptor and subsequent 

endocytosis, primary cultures of locust brain neurons were incubated with 

growth medium containing fluorescently labeled rhEpo for 10 min at 27°C. 

Control cultures were treated in the same way, but were exposed to non-labeled 

rhEpo. After fixation, fixative removal and mounting, the cells were inspected 

with confocal microscopy.  

 

Figure 23. Visualization of receptor-mediated endocytic uptake of fluorescently labeled rhEpo 

by primary cultured locust neurons using confocal microscopy. Individual optical sections are 

presented. The fluorescence images are overlaid with differential interference contrast images of 

the same scanning field (middle and right). Nuclei  are counterstained with DAPI (blue, right). 

A Neurons with fluorescently labeled vesicles (red) a fter being incubated with labeled rhEpo.  

B Neurons from control culture treated with non-labeled rhEpo without prominent vesicle-

associated fluorescence. Both locust cultures, incubated with fluorescently labeled rhEpo and 

non-labeled rhEpo, were scanned with the same settings of the confocal microscope. Scale bars: 

10μm. 

 

Cultures treated with labeled rhEpo contained neurons with fluorescently 

labeled vesicles of different diameters (Figs. 23A, 24A, 25). Vesicles could be 

clearly identified in phase contrast images. Within individual neurons only 

some, but not all, vesicles contained fluorescent label, suggesting that labeled 

rhEpo was not unspecifically incorporated with the extracellular fluid into all 
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endocytotic vesicles. Furthermore, fluorescent vesicular structures were not 

detected in all physiologically intact cells within the culture, suggesting that 

only particular cell types (presumably those expressing an Epo-binding 

receptor) effectively incorporated labeled Epo. Control cultures occasionally 

exhibited background fluorescence that sometimes seemed to be associated 

with small cellular compartments (Figs. 23B, 24B). Such unspecific 

autofluorescence was sporadically detected in both, control cultures treated 

with non-labeled rhEpo and cultures treated with labeled rhEpo. However, cells 

containing weak, vesicle-associated autofluorescence were rare.  

 

Figure 24. Three individual optical sections (upper, middle and bottom line of the panels) from 

one stack of primary cultured locust brain neurons incubated with fluorescently labeled rhEpo 

(A) and non-labeled rhEpo (B). Endocytotic vesicles possibly containing fluorescently labeled 

rhEpo are visualized by red fluorescence (A). Cellular autofluorescence is rather diffuse and not 

clearly associated with vesicles (red) (B). Nuclei are counterstained with DAPI (blue). 

Fluorescent images and differential interference contrast images  of the same field are overlaid 

(right sides of the panels A and B). Scale bars: 10μm.  

 

The observations indicate that some (but not all) L. migratoria brain neurons 

possess the capacity to endocytose Epo, probably together with the Epo-binding 

receptor as a consequence of ligand-receptor binding.  
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Figure 25. Six individual optical sections from one stack of primary cultured locust brain 

neurons incubated with fluorescently labeled rhEpo. Fluorescent images and differential 

interference contrast images  of the same field are overlaid. Figure shows a neuron containing 

fluorescently labeled vesicles and a cell  (possibly glia) displaying no fluorescence. Not all 

vesicles of the neuron that incorporated labeled rhEpo are associated with fluorescent label. 

Scale bar:  10μm. 
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II.4 Discussion 

II.4.1 Endocytosis of rhEpo-stimulated receptor 

The first part of this thesis characterized the transduction pathway implicated 

in rhEpo-mediated protection from apoptotic cell death of locust neurons in 

vitro. The results indicated that the receptor involved in the propagation of 

rhEpo's neuroprotective properties is associated with Janus kinase activity. This 

finding suggested that an insect orthologue of a class I cytokine receptor, which 

are generally associated with Janus kinases, could be responsible for the 

observed effects of rhEpo. The aim of the second part of my PhD thesis was to 

continue the functional characterization of the locust Epo-binding receptor. 

First, it was studied whether rhEpo is internalized and endocytosed by locust 

neurons in vitro, as it has been described for mammalian EpoR-expressing cells 

(Sawyer et al. 1987; Gross & Lodish 2006; Becker et al. 2010). To study 

endocytotic vesicle formation stimulated by rhEpo, locust primary cultured 

neurons were exposed to FM1-43 dye. FM dyes have frequently been used to 

image synaptic vesicle exocytosis and endocytosis. They are specifically 

developed for synaptic vesicle imaging in living preparations (Gaffield & Betz 

2006). We adopted protocols from previous studies to monitor endocytosis 

related to stimulation with the cytokine rhEpo. 

Endocytosis is a dynamic process that involves internalization of the plasma 

membrane along with its constituent membrane proteins and lipids. Multiple 

internalization processes are taking place simultaneously at the cell surface. 

Through these processes cells are sampling information about their 

extracellular milieu, which is essential for their proper functioning (Kumari et 

al. 2010), and adjust the presence of functional membrane proteins to the 

physiological state. As a consequence of constant sampling and metabolite 

uptake from the medium, we observed a basal rate of endocytosis in both 

unstimulated control and rhEpo-stimulated neuronal cultures. Previous studies 

also demonstrated that receptors can be internalized in the absence of their 

ligands (Hémar et al. 1994; Basquin & Sauvonnet 2013). Ligand-independent 
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endocytosis of cytokine receptors plays a role in receptor turnover, a complex 

mechanism that regulates the number of receptors present on the cell surface 

available for interaction with ligands. This mechanism was shown to be 

important for information processing of a broad range of cytokine 

concentrations. It especially applies to cells expressing erythropoietic EpoR, 

which is generally expressed on external cellular membranes in very low copy 

numbers (Becker et al. 2010).  

Several mechanisms of endocytosis have been described in mammals. Receptor-

mediated endocytosis through clathrin-coated pits and vesicles is especially 

well characterized (McMahon & Boucrot 2011; McPherson et al. 2000). Using a 

„flash-and-freeze“ approach, it was recently revealed that endocytosis of 

vesicles at presynaptic membranes under physiological conditions is an 

extremely fast process and most likely clathrin-independent (Watanabe et al. 

2013a; 2013b). Clathrin-independent endocytosis induced by cytokines has also 

been identified (Lamaze et al. 2001). In all forms of endocytosis the formation of 

vesicles critically depends on the activity of actin and dynamin. Most aspects of 

receptor-mediated endocytosis, particularly those requiring intimate contact 

with actin and other cytoskeletal elements, seem to be conserved across phyla 

(Galletta & Cooper 2009). In D. melanogaster, the genes that are implicated in 

crucial steps of vesicle formation and transport, dynamic cytoskeletal 

organization and protein sorting pathways have been identified and most of 

them are orthologues of vertebrate genes involved in identical functions 

(reviewed in: Fischer et al. 2006; Narayanan & Ramaswami 2001; Li et al. 2015). 

Some examples are the Drosophila orthologues of mammalian clathrin coated pit 

components, such as clathrin heavy chain (Bazinet et al. 1993), dynamin forms 

(coded by shibire gen) (Chen et al. 1991), alpha-adaptin (Dornan et al. 1997) and 

beta-adaptin (Camidge & Pearse 1994).  

  „Flash and freeze“ studies on synaptic vesicles also provided a satisfying 

answer to often contradictory observations obtained from studies on the 

kinetics of endocytosis in mammalian cells. While clathrin-independent fast 
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endocytosis requires higher (mammalian typical) temperatures, clathrin-

mediated endocytosis also takes place at lower temperatures (Watanabe et al. 

2013b). Without specifying the endocytosis mechanism that led to vesicle 

formation in locust neurons we observed a basal endocytotic activity that was 

independent of rhEpo stimulation. 

Our results clearly demonstrated that, in addition to the basal endocytotic 

activity, application of rhEpo stimulated endocytosis in primary cultured locust 

brain neurons. Two different approaches were used to evaluate the same set of 

data from experiments with the dye FM1-43. The observer-based method 

selected physiologically intact neurons, using nuclear DAPI staining as a 

criterion, for subsequent quantification of endocytotic vesicles. Since FM1-43-

associated fluorescence was only inspected after choosing regions with a 

sufficiently high number of intact neurons, a bias to select neurons with 

particular amounts of endocytotic vesicles for the analysis was excluded. In 

contrast, the unsupervised software-based evaluation of the same confocal 

scans selected cells for evaluation on the basis of round shape, using criteria 

defined by an algorithm to exclude irregularly-shaped and presumably 

compromised single cells and cells whose borders overlapped from the 

analysis. Both methods, observer-based and unsupervised software-based 

evaluation, selected different populations of cells for endocytotic vesicle 

quantification from the same confocal images. Additionally, endocytosis was 

quantified in two different ways. In the observer-based evaluation, vesicles 

were counted for each neuron. Reliable counting was only possible for up to 15 

vesicles per neuron since higher numbers of vesicles per cells could not be 

clearly separated for individual recognition. Therefore, neurons were 

categorized into four groups containing ranges of labeled endocytotic vesicles. 

Overlap of individual vesicles in confocal scans was not problematic in the 

software-based evaluation, since in this case the total volume of labeled vesicles 

per individual neuron was determined. Despite the differences in the selection 

of evaluated neurons and the measured parameters (numbers versus total 

volume of endocytotic vesicles) both ways of data analysis documented a 



                                                                                                                    Chapter II – Discussion 

70 
 

significant stimulatory effect of rhEpo on the endocytotic activity during both 

incubation times tested (2 and 10 min). Hence, similar to mammalian 

homodimeric EpoR of erythrocyte progenitor cells, the tissue-protective Epo-

binding receptor on locust brain neurons is also endocytosed upon ligand 

binding. To my knowledge, this has not been shown in any non-hematopoietic 

cell type.  

 

II.4.2 Chemical labeling of rhEpo to study its endocytosis after binding to its 

receptor 

Following binding to a membrane receptor, Epo stimulates endocytosis of 

locust neurons. The destiny of the Epo-receptor complex remains unknown. 

There are multiple possibilities. Epo could be degraded by extracellular 

enzymes. For instance, dipeptidyl peptidase-4 that is expressed on the surface 

of most cell types cleaves various cytokines, including Epo, within N-terminal 

regions. This truncation typically decreases subsequent cytokine activity 

(Broxmeyer 2013). Alternatively, Epo could be internalized together with its 

receptor (Sawyer et al. 1987). If internalized, sorting mechanisms may direct 

both Epo and its receptor to degradation in lysosomes, as demonstrated in 

mammals (Gross & Lodish 2006; Neumann et al. 1993; Walrafen et al. 2005) or 

lead to re-introduction of recycled receptor into the cytoplasmic membrane.  

Different approaches can be used to study ligand-receptor binding. 

Traditionally, receptor–ligand interactions have been monitored using 

radiolabeled ligands. However, there are multiple drawbacks to the use of 

radioactivity, including production, delivery, and disposal of the radioactive 

materials, relatively short shelf life, and the long signal acquisition times 

required to reach the desired sensitivity (Handl et al. 2005). Fluorescence-based 

binding assays emerged as promising alternatives to radioactive assays. Direct 

measurement of fluorescent intensity of ligand bound to receptor-containing 

membranes presents probably one of the simplest approaches to study ligand-

receptor interaction (Kubala et al. 2004). 



                                                                                                                    Chapter II – Discussion 

71 
 

The sensitivity of binding assays critically depends on the number of cell 

surface receptors and their affinity for the labeled ligand. Epo-binding receptors 

generally have low expression levels on the cell surface, making it difficult to 

distinguish receptor-bound ligand from unspecific association with the cell 

membrane.  Human Epo-responsive erythroblasts for instance exhibit only 100-

1000 cell-surface EpoR per cell (Broudy et al. 1991) and the number of tissue-

protective Epo receptors expressed on the surface of non-hematopoietic cells is 

thought to be even lower (Um & Lodish 2005; Sanchez et al. 2009; Elliott et al. 

2014).  

Human Epo is a single polypeptide of 166 amino acids (Lin et al. 1985; Jacobs et 

al. 1985) containing four antiparallel amphipathic α-helices (A,B, C and D) 

connected by loops (AB, CD and BC) that lack a particular secondary structure 

(Lai et al. 1986). From its primary structure it was predicted that four 

antiparallel α-helices form a globular three-dimensional structure that is 

stabilized by two disulphide bridges between cysteines 6 and 161 and between 

cysteines 29 and 33 (Bazan 1990; Boissel et al. 1993). This prediction was 

confirmed by nuclear magnetic resonance microscopy of Epo in solution 

(Cheetham et al. 1998) and by X-ray crystallographic analysis of Epo bound to 

EpoR (Syed et al. 1998). The primary structure of rhEpo was shown to be 

identical to that of the endogenous hormone except for the in vivo 

posttranslational cleavage of an arginine at the carboxy-terminus, resulting in a 

165 amino acid long polypeptide. The protein content of endogenous hormonal 

human Epo and rhEpo contributes approximately 60% to their total molecular 

mass of approximately 30.4 kDa (Lai et al. 1986; Bunn 2013). The remainder 

consists of carbohydrates that include one O-linked and three N-linked 

oligosaccharide side chains in human Epo molecules. The carbohydrates are not 

required for receptor binding but increase the half-life of the circulating 

hormone (Tsuda et al. 1990; Takeuchi et al. 1990). Eight lysine residues are 

contained within the primary structure of Epo. Together with one free amino-

terminus, nine amino groups per rhEpo molecule are available for a chemical 

reaction with the NHS-fluorophore complex. The efficiency of protein labeling, 
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however, depends critically on the number of primary amino groups that are 

solvent accessible (Patil et al. 2013). The NMR structure of human Epo revealed 

that Lys 45 for example is located in a solvent-accessible position at the D 

helix/AB loop interface. Due to the kink that is introduced in the D helix at the 

position Gly 151, Lys 152 is brought into hydrophobic contact with Val 63, Trp 

51, and Phe 148 and is therefore most likely not readily solvent accessible for 

chemical modification (Cheetham et al. 1998). However, after the labeling 

reaction and subsequent removal of free dye, the determined degree of labeling 

(DOL=1.4) suggested that on average only one to two fluorophore molecules 

have been cross-linked to each rhEpo molecule. Fluorescent scanning at 650nm 

of the SDS-polyacrylamide gel containing the labeled rhEpo sample showed a 

single fluorescent band at the expected molecular weight for rhEpo confirming 

that rhEpo has been labeled. As there were no other fluorescent signals detected 

in the sample, free dye must have been effectively removed and other 

fluorescent contaminants were not present. The same gel was afterwards used 

for protein transfer onto a nitrocellulose membrane and immunoreaction with 

anti-Epo antibodies. Western blot analysis confirmed the existence of only one 

immunoreactive band in the sample, with the expected molecular weight of 

rhEpo. RhEpo that was subjected to NHS ester reaction of labeling had 

approximately the same size as non-labeled rhEpo.   

 
Even though the usage of fluorescent probes is relatively safe compared to 

radioactive probes and fluorescently labeled proteins could be easier 

implemented into ligand-receptor binding assays, fluorescent ligand-based 

binding assays have two main drawbacks. Cross-linking of the fluorophore to 

the polypeptide may add steric hindrance as well as hydrophobic modifications 

which can significantly alter the pharmacological properties of the ligand. Its 

affinity may be diminished to such an extent that it cannot be used for 

pharmacological studies (Cottet et al. 2011). However, protein carbamylation, a 

reaction that leads to the conversion of all lysine residues into homocysteines, 

led to the generation of an Epo derivative (cEpo) that had lost its erythropoietic 
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properties, but retained tissue-protective activity (Leist et al. 2004). Similarly to 

carbamylation, the labeling reaction used in our study typically targets lysine 

residues, implying that labeled Epo will not necessarily lose its tissue-protective 

properties. Since on average only two of nine possible sites have been altered by 

the labeling reaction the overall structure of rhEpo is expected to be only 

slightly changed. However, whether labeled rhEpo retains its ability to protect 

locust brain neurons has not yet been tested. 

The second drawback that makes the implementation of fluorescence-based 

ligand-receptor binding assays difficult, is the background signal that can result 

from autofluorescence of biological tissues (Kubala et al. 2004). Biomolecules 

that have intrinsic fluorescence tend to autofluoresce under the same 

illumination conditions used for the excitation of the fluorophore-ligand 

conjugate. The main sources of autofluorescence in mammalian cells are 

nicotinamide adenine dinucleotide phosphates (NADPH) at wavelengths 

between 400 and 500 nm and flavins and flavoproteins at wavelengths between 

500 and 600 nm (Knight & Billinton 2001). One challenge for successful 

detection of fluorescently labeled molecules at the cellular level is to enhance 

the signal-to-noise ratio. This can be achieved by decreasing the intrinsic 

cellular fluorescence background or increasing the intensity of the specific  

fluorescent signal (Handl et al. 2005). To avoid excitation of NADPH and 

flavins, a fluorophore (NT-647) that is excited by and emits light in the red 

portion of the spectrum was used, with the excitation maximum at 630 nm and 

emission maximum at 650 nm. Typically, longer excitation wavelengths contain 

too little energy for the excitation of shorter wavelength-emitting molecules and 

hence cause lower intensities of background fluorescence. Still, primary 

cultured locust brain cells occasionally emitted autofluorescence. Careful 

analysis showed that this unspecific autofluorescence can be distinguished from 

the fluorescence of vesicles containing labeled rhEpo.  

In contrast to untreated control cultures, neurons exposed to labeled rhEpo 

contained fluorescently labeled vesicles. Fluorescence was exclusively 
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associated with vesicles, which were identified by differential interference 

contrast scans that were overlaid with fluorescent images. Importantly, not all 

cells in the cultures treated with labeled rhEpo displayed vesicle-associated 

fluorescence. Hence, only certain neurons had the ability to internalize labeled 

rhEpo. This suggests that the Epo-binding receptor is expressed in the cellular 

membranes of some, but not all, locust neurons. Furthermore, in neurons that 

incorporated labeled rhEpo not all vesicles contained the fluorescent label. This 

indicates that even though constitutive endocytosis occurs simultaneously, only 

the endocytosis initiated upon binding of labeled rhEpo to a specific receptor 

will lead to the formation of vesicles containing labeled rhEpo. Thus, the 

detection of fluorescence in the vesicles of locust neurons exposed to the labeled 

rhEpo provides additional evidence that labeled rhEpo is endocytosed by locust 

neurons as a consequence of binding to an unidentified receptor. 

Upon binding to the classical homodimeric EpoR and subsequent endocytosis 

of the ligand/receptor complex, Epo is degraded in lysosomes (Gross & Lodish 

2006). Ubiquitination at the membrane-proximal cytoplasmic domain of EpoR is 

required for efficient Epo-induced internalization and lysosomal degradation 

(Gamze et al. 2011) and thereby regulates the temporal characteristics of 

intracellular signaling (Mayuzumi 2010; Gamze et al. 2013). Whether 

endocytosed insect Epo-binding receptors are degraded or recycled and 

relocated to the plasma membrane cannot be deduced from our experiments. A 

chase in growth medium without ligand for different periods of time following 

endocytosis of labeled rhEpo may provide information about the temporal and 

spatial distribution of internalized labeled rhEpo. For instance, if the cells 

become depleted of internalized labeled rhEpo after a chase, this would indicate 

that the ligand/receptor complex is recycled to the plasma membrane and the 

ligand resecreted. Decreased numbers of labeled vesicles after a chase and 

larger sizes of remaining vesicles in comparison to the size of vesicles detected 

immediately after incubation with labeled ligand may indicate the maturation 

of endosomes into lysosomes and subsequent degradation of labeled ligand. 
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II.4.3 Protective effects of the non-erythropoietic Epo variant EV3 on the 

survival of primary cultured locust brain neurons challenged with hypoxia 

Many derivatives of Epo exert neuroprotection without stimulating 

erythropoiesis. Therefore, homodimeric EpoR that stimulates erythropoiesis 

and Epo-binding receptors that mediate neuroprotection in vertebrates must 

have structural and functional characteristics that allow differential activation 

by different ligands and the separation of erythropoietic from cytoprotective 

functions. Although multiple transcription start sites that could be used 

differentially in the liver, kidney, and brain in response to anemia have been 

identified in the human epo gene (Semenza et al. 1990), until recently 

alternatively spliced forms were not detected in human organs. A brain-specific 

alternatively spliced transcript of the epo gene was detected in a teleost fish, the 

puffer fish Fugu rubripes, whose erythropoietic Epo molecule shares around 32% 

homology with human Epo. It remains to be determined whether this brain-

specific epo transcript, that includes an alternate first exon, has properties 

different from those of the erythropoietic Fugu Epo variant (Chou et al. 2004). 

During her PhD thesis Christel Bonnas discovered several alternative splice 

variants of the murine and human epo gene. A variant of human Epo (EV3) that 

was isolated from fetal human brain did not stimulate erythropoiesis in mice. 

Similar to many other Epo derivatives the EV3 variant mediated cytoprotective 

effects, including neuroprotection, in different mammalian in vitro systems 

(Bonnas 2009).  

Alternative splicing, the inclusion of different exons into mRNA, leads to the 

generation of different protein isoforms from a single gene, permitting new 

functions to be established without eliminating the original function of a 

protein. Not all of alternatively generated transcripts are functional on the 

protein level. It has been proposed that selection against deleterious isoforms 

prevents their increase in frequency and assures their eventual disappearance 

from the gene pool, while inert isoforms that can be tolerated by cells might 

eventually acquire new functions which may provide a future evolutionary 

advantage to the organism. Once a new functional transcript is established, the 
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frequency of its inclusion into a proteome of the species increases (Keren et al. 

2010). While more than 90% of human genes undergo alternative splicing 

(Wang et al. 2008), the frequency of alternatively spliced genes is rather low in 

insects (Kim et al. 2007). Unlike most insect species exceptionally large introns 

have been detected in locusts contributing to the large size of their genome 

(Wang et al. 2014). Locusts seem to share some characteristics of their introns 

with vertebrates, rather than with other insects, such as the abundance of U12-

type introns (minor-class intron) and the ratio of ratcheting point sites (Wang et 

al. 2014), indicating the possibility of convergent evolution of splicing 

mechanisms associated with genome size expansion in animals. 

We hypothesized that, if a tissue-protective receptor in locust neurons is 

evolutionarily closer related to the mammalian tissue-protective non-

hematopoietic receptors than to mammalian erythropoietic EpoR, the human 

splice variant EV3 should support the survival of locust neurons exposed to 

apoptosis-inducing stimulus. Similar to neuroporotective properties of rhEpo 

observed in an oxygen-glucose deprivation model studied in mice (Bonnas 

2009), the EV3 variant showed a dose-dependent positive effect on the survival 

of hypoxia-challenged locust neurons, with a concentration optimum around 

3.33 ng/ml (corresponding to ~ 0.4 U/ml), and with ten times lower and higher 

concentrations being less effective. Even though only one experiment was 

performed with a wider concentration range of EV3 (from 0.33 to 33 ng/ml), it 

provided an approximate estimation of the concentration range being most 

effective for protection of primary cultured locust neurons from hypoxia-

induced apoptotic cell death. The estimated optimum concentration was 

confirmed in the next series of experiments with three different concentrations 

of EV3 covering a narrower range around this estimated optimum, namely 2.08, 

4.17 and 8.33 ng/ml. These concentrations were applied in comparison with 4 

U/ml rhEpo, which has previously been shown to be most beneficial in 

protecting locust brain neurons from apoptosis induced by hypoxia (Ostrowski 

et al. 2011). In all three tested concentrations EV3 showed protection of locust 

neurons, with at least equal potency as rhEpo.  
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With respect to EV3 binding the locust receptor responsible for transducing 

neuroprotective effects is more similar to the mammalian non-hematopoietic 

tissue-protective receptor, than to the classical homodimeric erythropoietic 

EpoR of mammals. Whether the same receptor type is involved in the 

propagation of neuroprotective properties of rhEpo and EV3 in locusts and 

other species, as it could be assumed, remains to be studied. This could be 

achieved by demonstrating that EV3 initiates the same intracellular 

transduction pathways or in studies showing that the stimulating effect of Epo 

on endocytosis could be suppressed by preincubation with EV3 and vice versa.  

 

Table 1. Comparison of characteristics of Epo-binding receptors in invertebrates and  

vertebrates.   

 Tissue-protective 
locust receptor 

Tissue-protective 
vertebrate receptor 

Hematopoietic 
vertebrate EpoR 

Association with 

JAK-STAT 
            +             +             + 

Epo-stimulated 

endocytosis  
of receptor 

             

            + 
               

              ? 
           

            + 

Activation  
by EV3 

            +               + ― 

 

 

 

II.4.4 Pre-vertebrate evolution of a tissue-protective ligand-receptor system 

with structural and functional similarity to the mammalian Epo/Epo-receptor 

system 

We characterized two properties of insect (Locusta migratoria) Epo-binding 

neuroprotective receptors: (1) Endocytosis of the receptor following stimulation 

with rhEpo, similar to mammalian homodimeric EpoR; (2) Activation of the 

receptor by the Epo splice variant EV3, which does not stimulate erythropoiesis 

(Table 1). Our results suggest that Epo-binding receptors involved in 

mammalian and insect neuroprotection have evolved from a common ancestral 

prototype that was later, after vertebrates evolved, adapted for the regulation of 
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red blood cell production. Since both neuroprotective and erythropoietic Epo 

receptors typically transduce the information of ligand binding into 

cytoplasmic signals through JAK/STAT transduction pathways, their common 

predecessor was presumably a member of the type I receptor superfamily, 

which also includes the classical EpoR. 

Type I cytokine receptors are characterized by cytokine receptor homology 

domains (CHD) in the extracellular region containing a conserved WSXWS 

motif that is required for interaction with the ligand. They all bind ligands with 

a spatial „four α-helix bundle“ organization and employ intracellular signaling 

molecules of the JAK and STAT families (Boulay et al. 2003). Despite these 

common structural features, type I cytokine receptor chains share little primary 

sequence homology (Bazan 1990). Their structural relatedness was deduced 

from similar intron/exon structures and gene clustering observed for certain 

cytokine and cytokine receptor families, rather than from sequence alignment 

approaches (Boulay & Paul 1992). Individual type I cytokine receptor chains 

assemble into functional receptor complexes by forming either homodimers or 

various heterocomplexes, that bind one or multiple specific ligands (Liongue & 

Ward 2007). Due to their tendency to form different heterocomplexes, type I 

cytokine receptors are often activated by several ligands. Individual cytokines 

typically activate multiple receptor complexes, which contributes to functional 

redundancy of this receptor superfamily (Ozaki & Leonard 2002). 

Concordantly, a number of structurally different Epo derivatives have been 

demonstrated to activate the mammalian tissue-protective Epo receptor without 

stimulating erythropoiesis. Among them, a 11 amino acid long peptide, that 

was synthesized to mimic a particular feature of Epo’s three-dimensional 

structure, has a primary sequence completely unrelated to Epo's primary 

sequence (Brines et al. 2008). These observations imply that the spatial 

organization of a few critical amino acid residues of a ligand, rather than its 

primary amino acid sequence is the crucial factor for its differential binding to 

the tissue-protective receptor.   
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Although epo and epor gene have been identified in vertebrate species, from fish 

(Chu et al. 2008) to mammals (Wen et al. 1993), alignment of nucleotide 

sequences of several insect species (Drosophila melanogaster, Tribolium castaneum, 

Gryllus bimaculatus and Manduca sexta) with Epo and EpoR sequences from 

vertebrates (Mus musculus, Xenopus tropicalis and Danio rerio) did not reveal any 

sequence similarity to identify potential insect orhologues of vertebrate Epo and 

EpoR (Hahn 2014). Similarities in amino acid sequence of human Epo protein 

and deduced amino acid sequences of Epo proteins from other mammals range 

from 80 to 91%  (Wen et al. 1993; Suliman et al. 1996) while Epo proteins from 

the puffer fish Fugu rubripes (Chou et al. 2004) and the zebrafish Danio rerio 

(Chu et al. 2007) share an overall identity of only 32% with human Epo protein. 

Interestingly, two years before the Fugu epo gene was cloned and characterized, 

a homology search of the Fugu genome using protein sequence of human Epo 

as a query revealed no orthologues of human Epo, misleading to the conclusion 

that Epo is either absent in fish or has evolved rapidly since the divergence of 

the mammalian and fish lineages (Aparicio et al. 2002). Hence, a genome or 

protein sequence comparison across phyla may be the easiest, but not the most 

accurate method for the identification of potential insect orthologues of human 

tissue-protective peptides and their receptors.  

Tissue-selective effects of Epo and Epo derivatives together with differences in 

ligand binding affinities (Collino et al. 2015) suggested that alternative receptor 

complexes are mediating tissue protection in non-hematopoietic tissues. For 

instance, a heterodimer composed of one EpoR monomer and βc chain has been 

shown to be involved in the protection of murine cardiomyocites and murine 

spinal cord neurons (Brines et al. 2004). βc chain is a non-specific signal-

transduction chain that contributes a receptor subunit to interleukin-3 receptor, 

interleukin-5 receptor and granulocyte-macrophage colony stimulating factor 

receptor converting the low affinity interaction between ligand and α-chain of 

these receptors to higher affinity (Scott & Begley 1999). Another signal 

transducer that is a commonly shared component of many interleukin-6 family 

receptors, such as oncostatin M receptor (OSMR) and leukemia inhibitory factor 
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receptor (LIFR), is archetypal glycoprotein 130 (gp130). Gp130 is highly 

conserved among vertebrates and is thought to represent an ancestral form of 

type 1 cytokine receptors (Boulay et al. 2003; Liongue & Ward 2007). A 

heteromeric receptor complex consisting of an α-chain of LIFR and gp130 chain 

is involved in EV3-mediated protection of primary cultured rat cortical neurons 

challenged by glucose and oxygen deprivation (Bonnas 2009). Another tissue 

protective receptor, including the ephrine B4 receptor, either in a homodimeric 

form or a heterodimer associated with one EpoR molecule, has also been 

proposed and patented (Jackson et al. 2012; Debeljak et al. 2014). Ephrine 

receptors are single-pass transmembrane proteins with highly conserved 

extracellular and intracellular domains and belong to the family of receptor 

tyrosine kinases (Yamaguchi & Pasquale 2004). Ephrine B4 receptor has been 

demonstrated to mediate survival signals in cancer cells (Jackson et al. 2012). 

Finally, the orthologues of human orphan receptor, cytokine receptor like factor 

3 (CRLF3), identified in several insect species, but not in Drosophila melanogaster 

(Wyder et al. 2007; Hahn 2014) are promising candidates for the binding 

partners of unidentified tissue-protective receptors present in invertebrate and 

vertebrate species in which Epo-mediated neuroprotection has been 

demonstrated. CRLF3 essentially consists of just a CHD domain, a minimal 

domain required for the classification into type 1 receptor superfamily. The 

high conservation of CRLF3 across vertebrate and invertebrate species indicates 

an essential conserved function for this protein (Liongue & Ward 2007). Hence, 

differential tissue-protective responses are likely mediated by different receptor 

complexes, some of them formed by yet unidentified partners.  

Invertebrates and vertebrates possess common mechanisms underlying innate 

immunity. However, unlike vertebrates, invertebrates lack acquired immunity 

(Rowley & Powell 2007). It has been hypothesized that type I cytokines and 

their receptor chains involved in pre-vertebrate innate immune functions 

adopted new functions, in addition to their original function during the 

emergence of adaptive immunity in the vertebrate lineage (Ozaki & Leonard 

2002; Boulay et al. 2003; Buchmann 2014). Although the function of cytokines in 
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insect innate immunity has not been intensively studied, molecules similar to 

vertebrate cytokines, cytokine receptors and intracellular pathways they 

activate, have been identified in insects. These include cytokine-like proteins 

that have been functionally characterized in D. melanogaster, such as for 

example Spaetzle, the Drosophila ligand for Toll receptor (Weber et al. 2003), 

Unpaired (Agaisse et al. 2003), which is closely related to the vertebrate leptins 

(Boulay et al. 2003), and Eiger, the Drosophila TNF orthologue (Mabery & 

Schneider 2010). In addition, many insect peptides, such as sex peptide (Peng et 

al. 2005), growth-blocking peptide (GBP) (Hayakawa 1991), hemocyte 

chemotactic peptide (Nakatogawa et al. 2009), plasmocyte spreading peptide 

(Strand et al. 2000) and stress-responsive peptide (Yamaguchi et al. 2012) are 

acknowledged as cytokine-like factors. Corresponding insect cytokine-like 

receptors have also been reported, including the Dome protein from D. 

melanogaster (Brown et al. 2001), growth-blocking-peptide receptor (Watanabe et 

al. 2006) and the putative receptor for plasmocyte spreading peptide (Clark et 

al. 2004). In vertebrates, cytokines are common mediators of immune-neural 

interactions (Maier 2003) and cytokine-like molecules in insects may play a 

similar role (Adamo 2008). For example, GBP, which is believed to be an insect 

orthologue of vertebrate EGF, was found in both immune cells and glial cells of 

the CNS (Hayakawa & Noguchi 1998). Genes known to be involved in insect 

immunity have also been reported in locusts (Wang et al. 2014).  

In summary, functional similarity of the receptor that mediates neuroprotective 

properties of Epo in locust neurons with the mammalian neuroprotective Epo 

receptor is reflected by the fact that both receptors are activated by the non-

hematopoietic Epo splice variant EV3. In addition, both receptors transduce 

neuroprotection via the evolutionary conserved JAK/STAT intracellular 

pathway. This suggests that the evolutionary origin of Epo-like signaling might 

have been related to tissue protection. Subsequent evolution has shaped the 

ancestral pre-vertebrate ligand/receptor pair as an answer to different selection 

pressures that different lineages had to encounter. In the vertebrate lineage this 

system has acquired an additional function in the regulation of erythropoiesis. 
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The importance of this system is underlined by the fact that though it might 

have evolved in different directions, it still retained the ability to mediate what 

is most important for a cell (and for the whole organism) – an adaptive self-

preserving response to unfavorable conditions or harmful stimuli.  
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III Potential effects of erythropoietin on insect 

neurogenesis  

 

III.1 Introduction 

The best characterized role of Epo is the control of red blood cell production 

that takes place within fetal liver and adult bone marrow of mammals 

(Jelkmann 2013). Red blood cells are formed continuously from pluripotent 

hematopoietic stem cells via generation of erythroid progenitors. The earliest 

erythroid progenitors are slowly proliferating burst-forming unit-erythroids 

(BFU-E), which are not responsive to Epo and do not express the EpoR. They 

develop into mature BFU-E that start to express EpoR and are weakly 

responsive to Epo. These cells give rise to late erythroid progenitors, colony-

forming units-erythroids (CFU-E). CFU-E  are highly responsive to Epo and 

develop further into erythroblast colonies (Wu et al. 1995). Thus, Epo and EpoR 

are crucial for the proliferation and salvaging of late erythroid progenitors 

CFU-E from apoptosis and their irreversible terminal differentiation into 

erythroblasts (Youssoufian et al. 1993). During maturation of erythroblasts, the 

number of EpoR per cell decreases. Beyond the late basophilic erythroblast 

stage the cells are no longer dependent on Epo for continued maturation 

(Koury & Bondurant 1988).  

Apart from its effect on erythroid progenitors, Epo has the capacity to stimulate 

the production of neural stem cells (NSC) within embryonic and adult 

mammalian brains. Both Epo and EpoR are expressed in the nervous system of 

mammals  during embryonic development (Liu et al. 1997; Juul et al. 1998; Juul 

et al. 1999), suggesting that Epo signaling is required for normal brain 

development. Although their expression levels decline once the brain 

development has been completed, expression of Epo and EpoR is upregulated 

in the adult brain upon injury (Digicaylioglu et al. 1995; Marti et al. 1996; 

Morishita et al. 1997; Brines et al. 2000; Bernaudin et al. 2000; Sirén et al. 2001b) 
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and constitutes an integral part of the intrinsic host response mediating tissue 

protection and regeneration (Brines & Cerami 2005). Epo-mediated support of 

tissue repair after injury is accomplished, at least in part, via the ability of Epo 

to enhance the NSC production (Shingo et al. 2001) and promote migration and 

differentiation of progenitor cells (Hassouna et al. 2016). Infusion of an anti-

mitotic agent, which inhibits neurogenesis, abolished Epo-mediated functional 

recovery in a rat traumatic injury model (Zhang et al. 2012). Epo has been 

reported to enhance adult hippocampal neurogenesis in rodents under both, 

basal conditions (in mice) (Ransome & Turnley 2007; Hassouna et al. 2016), and 

following traumatic brain injury (in rats) (Lu et al. 2005). This property of Epo 

most likely contributes to improved cognitive performance observed in rodent 

models of neurological and psychiatric disease (Adamcio et al. 2008; Sargin et 

al. 2011) and in patients with treatment-resistant depression (Miskowiak et al. 

2014) and schizophrenia (Kästner et al. 2012). In a rodent model of stroke Epo 

enhanced neurogenesis in the subventricular zone (SVZ) and increased 

neuroblast migration to areas exposed to ischemic damage in vivo (Wang et al. 

2004). Furthermore, mice with brain-specific deletion of EpoR have a 

proliferation deficit in the adult SVZ and decreased neurogenesis (Tsai et al. 

2006). In addition to its influence on neuronal progenitors, Epo and the Epo 

derivative asialo-erythropoietin promote the differentiation of oligodendrocyte 

progenitor cells into mature oligodendrocytes both, in in vitro (in prenatal rat) 

(Jantzie et al. 2013), and in vivo (in neonatal mice) (Kako et al. 2012) rodent 

models of white matter injury.  

The role of Epo in adult genesis of neuronal and oligodendroglial progenitors 

from NSC is in agreement with the hypothesis of Epo′s original function in 

tissue protection. As a more general „signal“, Epo promotes healing and 

recovery of injured tissue not only via engagement of anti-apoptotic cellular 

mechanisms (to protect cells that have not been severely injured), but as well 

through stimulation of NSC proliferation, their migration to the site of injury 

and differentiation into new neurons and oligodendrocytes, to replace the cells 

that have been lost as a consequence of injury. Additionally, to facilitate the 
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migration of NSC, Epo stimulates remodeling of the cerebral vasculature (Wang 

et al. 2006b). Therefore, as a „master regulator“ of wound and injury (Brines 

2014), Epo can influence an array of host responses designed to promote a 

comprehensive defense against harmful stimuli. 

The aim of the third part of the thesis was to study whether Epo plays a role in 

insect neurogenesis. To study this question a prerequisite was the availability of 

a suitable model. Three different model systems have been assessed. A 

permanent cell line derived from tobacco hornworm moth Manduca sexta 

embryonic tissue (Eide et al. 1975) has been chosen as a first model system for in 

vitro studies, due to its proliferative capacity. Conditioned medium from the M. 

sexta cell line has been used previously as a medium supplement to support 

survival of primary cultured olfactory receptor neurons from M. sexta pupae 

(Stengl & Hildebrand 1990). Given that Epo-mediated neuroprotection has been 

demonstrated in Locusta migratoria, I wanted to test furthermore whether 

primary cultures established from nymphal optic lobes of the same species can 

be applied for studying a potential neurogenic effect of Epo. Neurogenesis 

taking place in the optic lobes has been demonstrated in adult moths (Dufour & 

Gadenne 2006) and recently in adult Drosophila melanogaster (Fernández-

Hernández et al. 2013). Finally, to analyze the ability of Epo to stimulate adult 

insect neurogenesis, the suitability of red flour beetle Tribolium castaneum for in 

vivo studies has been examined. Adult neurogenesis has been found in several 

insect species (Cayre et al. 1996). In adult insects neurogenesis occurs 

predominantly in the mushroom bodies. This part of the insect brain represents 

a main higher-order sensory integration center that plays a key role in olfactory 

learning and memory (Cayre et al. 2007). T. castaneum emerged recently as a 

promising model for studies of the cellular and molecular regulation of adult 

neurogenesis, since in this species mushroom body neuroblasts continuously  

proliferate during the first two months of adult life (Zhao et al. 2008). This 

capacity could be of great importance from an evolutionary perspective, given 

that in most insect species neurogenesis seems to be restricted to embryonic and 

early pupal development (Ito & Hotta 1992; Cayre et al. 1996).   
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III.2 Material and Methods 

 

III.2.1  Manduca sexta cell line 

III.2.1.1 Manduca sexta cell line maintenance 

The cell line was established from embryonic tissue of tobacco hornworm moth 

(Eide et al. 1975). The cell line was maintained in cell culture flasks (25 cm2, 

Orange Scientific, Braine-l’Alleud, Belgium) filled with Grace′s Insect Medium 

(Gibco, Life Technologies, Thermo Fisher Scientific, Braunschweig, Germany) 

supplemented with 10% FBSG (PAA Laboratories, GE Healthcare Life Sciences, 

Freiburg, Germany) (Grace′s/10%FBSG) at 20°C in an incubator (Heratherm, 

Thermo Fisher Scientific). Cells were passaged every 2 weeks together with the 

replacement of the medium. For passaging, the old medium was removed, cells 

washed once with phosphate-buffered saline (PBS) and then detached from the 

flask surface by mechanical pressure applied through a Pasteur pipette filled 

with fresh Grace′s/10% FBSG medium. The resulting cell suspension was 

collected, its amount reduced by half and replated into new flasks. Flasks with 

replated cells were filled to a volume of 10 ml with fresh Grace′s/10% FBSG 

and kept in incubator at 20°C.   

For experimental purposes, cells were detached from flasks and plated in 

required density onto poly-D-lysine (Sigma-Aldrich Chemie, Schnelldorf, 

Germany) precoated coverslips ( 11mm, A.Hartenstein, Würzburg, Germany) 

placed into multiwell plates (Nunclon, 4 wells multidish, Thermo Fisher 

Scientific). Cells were allowed to adhere to the coverslips for 1 h at RT after 

which Grace′s/10% FBSG medium was added. Cell cultures were maintained in 

the incubator at 20°C for at least 24 h before any experimental treatment to 

allow enough time for cells to settle down and flatten.  
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III.2.1.2 Experimental protocol for studying the effect of Epo on proliferation 

and differentiation in the Manduca sexta cell line  

For proliferation experiments, approximately 15000 cells per coverslip were 

plated and cultured in 500 μl of Grace′s/10% FBSG medium. After 24 h the 

medium was removed and serum-free Grace′s medium with dissolved EdU (1 

mM) (Molecular Probes, Thermo Fisher Scientific) was added. For treatment of 

cultures with Epo, the medium was additionally supplemented with rhEpo (4 

U/ml). Cells were subsequently cultured for 2 days at 20°C. Afterwards cells 

were fixed and processed to visualize EdU labeling.  

For experiments in which the influence of Epo on cell differentiation was 

studied, approximately 30000 cells per coverslip were plated and cultured in 

500 μl of Grace′s/10% FBSG medium. After 24 h the culture medium was 

removed and replaced with either serum-free medium, serum-free medium 

containing rhEpo (4 U/ml) or full medium (Grace′s/10% FBSG). Cells were 

cultured in these media for 4 days at 20°C and afterwards fixed and stained for 

anti-HRP immunofluorescence. 

 

III.2.1.3 Detection of incorporated EdU via „click“ reaction  

Cell proliferation was assessed by EdU incorporation. EdU (5-ethynyl-2’-

deoxyuridine) is a nucleoside analog of thymidine that is readily incorporated 

into newly synthesized DNA during replication and can be detected using a 

”click” chemical reaction. The click reaction involves a copper (I)-catalyzed 

formation of a stable triazole ring from a terminal alkyne group of EdU and an 

azide moiety of a modified fluorescent dye. The main advantage of the EdU-

based assay over the alternative BrdU assay is that fluorescent azides due to 

their small size have better access to terminal alkyne groups of incorporated 

EdU molecules compared to larger-sized antibodies that are used to detect 

incorporated BrdU. In addition, the EdU detection method is compatible with 

immunostaining (Salic & Mitchison 2008).  
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To detect EdU staining, after fixation with 4% paraformaldehyde in 0.1 M 

phosphate buffer for 30 minutes at RT and 3 washes for 5 minutes in 0.1 M 

phosphate buffer, followed by 3 washes for 5 minutes in tris-buffed saline 

(TBS), cell-containing coverslips were incubated with staining solution for 30 

min at RT. Staining solution was freshly made each time and consisted of 100 

mM tris (pH 8.5) (Sigma-Aldrich), 1 mM CuSO4 (Sigma-Aldrich), 10 µM 

tetrametyl rhodamine (TAMRA) azide (Molecular Probes, Thermo Fisher 

Scientific) and 100 mM sodium ascorbate (Sigma-Aldrich), which was added 

last to the mix (immediately before addition to the cells). After staining, the cells 

on coverslips were washed 3 times with TBS for 5 min. After 3 washes for 5 min 

in PBS, cells were incubated with DAPI dissolved in PBS for 30 min at RT. 

Excess of dye was removed by 3 washes with PBS for 5 min. Coverslips were 

mounted in DABCO (Sigma-Aldrich) and stored at 4°C in the dark until 

analysis with confocal microscopy.  

 

III.2.1.4 Anti-HRP, anti-RePo, anti-synapsin and anti-fasciclin II 

immunochemistry 

Cells were fixed with 4% paraformaldehyde in 0.1 M phosphate buffer for 30 

minutes at RT and rinsed 3 times for 5 minutes with 0.1 M phosphate buffer. To 

facilitate antibody penetration, cells were permeabilized by 5 washes in PBS 

containing 0.1% Triton-X-100 (0.1% PBS-T) for 5 minutes each, at RT. Cells were 

then incubated for 30 min with blocking solution before addition of primary 

antibodies. Blocking solution consisted of 0.25% bovine serum albumin (BSA) 

(MP Biomedicals, Heidelberg, Germany) and 5% normal goat serum (NGS, 

Jackson Immuno Research Laboratories, West Grove, Pennsylvania, USA) in 

0.1% PBS-T. After blocking, cells were incubated overnight at 4°C with primary 

antibodies diluted in blocking solution. The following antibodies were used: 

anti-HRP from rabbit (1:500 dilution, Sigma-Aldrich), anti-RePo from mouse 

(1:50 dilution, 8D12, Developmental Studies Hybridoma Bank, DSHB, Iowa, 

USA), anti-synapsin from mouse (1:100 dilution, nc46, DSHB) and anti-fasciclin 

II from mouse (1:50 dilution, 2F5, DSHB). After 5 washes for 5 min each in 0.1% 
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PBS-T cells were incubated with corresponding secondary antibodies diluted in 

0.1% PBS-T for 1h at RT. For anti-HRP detection a Cy2-coupled anti-rabbit 

antibody from goat (Rockland Immunochemicals, Limerick, Pennsylvania, 

USA) was used, Anti-RePo, anti-synapsin and anti-fasciclin II detection was 

achieved with an AF488-coupled anti-mouse antibody from goat (Invitrogen, 

Molecular Probes, Thermo Fisher Scientific). When needed, cells were 

incubated with DAPI (1:1000) together with the secondary antibody. After 5 

washes for 5 min in 0.1% PBS-T and 3 washes for 5 min in PBS, cells were 

mounted in DABCO. The preparations were stored in folders protected from 

light and moisture at 4°C until analysis.  

The protocol applied for double anti-HRP and anti-synapsin immunolabeling 

was similar to single immunostaining protocols, with the only difference 

related to the secondary antibodies that were applied. To detect anti-HRP a 

Cy2-coupled anti-rabbit antibody from goat (Rockland) was used, while for the 

detection of anti-synapsin an AF633 anti-mouse antibody from goat (Invitrogen, 

Molecular Probes, Thermo Fisher Scientific) was used.  

    

III.2.1.5 Analysis of proliferation and differentiation  

Analysis of proliferation rates and differentiation rates was performed with a 

confocal microscope (Leica TCS-SP8, Leica Microsystems, Wetzlar, Germany). 

For proliferation experiments, 36 non-overlapping fields from each coverslip 

were scanned with a 20x objective using two channels. In the first channel, a 

405-nm line from a diode laser was used to excite DAPI and emission was 

detected from 420 to 470 nm. In the second channel, EdU/TAMRA fluorescence 

was excited with the 561-nm line of a HeNe laser and emitted fluorescence 

collected from 570 to 680 nm. For differentiation assays, 10 fields from each 

coverslip were scanned with a 20x objective using two channels. While for the 

DAPI emission and detection the same settings were used as described above, 

in the second channel fluorescence of Cy2 bound to anti-HRP was excited with 

the 488-nm line of an argon laser and the resulting emission detected from 500 
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to 620 nm. Viable cells were identified based on their DAPI staining pattern and 

total numbers of viable DAPI-stained nuclei and EdU-positive nuclei were 

counted from each image. The results are expressed as the percentage of EdU-

positive nuclei of the total number of DAPI stained nuclei normalized to control 

values. Similarly, the rate of differentiation was quantified by counting the total 

number of both, viable anti-HRP-positive and viable DAPI-stained cells and 

determination of the percentage of anti-HRP-positive cells from the total 

number of counted cells per experimental condition. A „cell counter“ plugin of 

ImageJ software (National Institute of Health, Bethesda, USA) was used to 

count cells of different categories. Results are displayed in box graphs 

generated using the OriginPro (version 8.5, OriginLab Corporation) software 

package. The differences in data population distributions (averages of EdU-

positive cells and anti-HRP-positive cells between the control and Epo-treated 

groups) were analyzed using nonparametric Kruskal-Wallis tests followed by 

Mann-Whitney U test. P values smaller than 0.05 were considered as 

significantly different.   

 
Anti-RePo, anti-synapsin and anti-fasciclin II fluorescence was only 

qualitatively analyzed using the confocal microscope TSC SP8.   

 
 

III.2.2 Primary cultures of locust optic lobe cells 

III.2.2.1 Preparation of locust optic lobe primary cultures 

Primary cultures of locust optic lobe cells were established from fourth-instar 

nymphs of Locusta migratoria purchased from a commercial breeder (Hintze, 

Berlin, Germany) and maintained in colonies at 22–25°C on a 12/12 h 

day/night cycle. In brief, optic lobes (OL) were dissected from the brains of 

Locusta migratoria and collected in culture dishes filled with Leibovitz`s L-15 

medium (L15, Gibco, Life Technologies, Thermo Fisher Scientific) 

supplemented with 0.5% gentamicin (GM, BioReagent, Sigma-Aldrich). After 

cleaning in L15/0.5%GM, OL were incubated for 15 min with a mixture of 
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collagenase and dispase (1 mg/ml, Sigma-Aldrich) dissolved in L15/0.5%GM 

in an incubator (model B6120, Heraeus Instruments, Hanau, Germany) at 27 °C. 

After three short washings with Hanks` Balanced Salt Solution (HBSS, Gibco, 

Life Technologies), the tissue was mechanically dissociated by gentle trituration 

and spinned down with a bench rotor for 1 min. The pellet of dispersed optic 

lobe cells was resuspended in L15/0.5%GM. Dissociated cells were equally 

distributed onto ConA-coated coverslips. After 2 h the culture dishes were 

filled with L15/0.5%GM supplemented with 5% FBSG (2ml/culture dish) and 

placed in an incubator at 27 °C in a humidified atmosphere.  

 

III.2.2.2 Experimental protocol for studying the effect of Epo on locust optic 

lobe cell proliferation and differentiation 

After 24 h the medium was replaced with serum-free L15/0.15%GM and cell 

cultures returned back to the incubator at 27°C for two hours. Subsequently, the 

medium was replaced with L15/0.15%GM supplemented with 1mM EdU and 

with rhEpo (1 U/ml and 10 U/ml, Epo-treated groups) or without rhEpo 

(control groups). Cell cultures exposed to these media were further cultured for 

2 days at 27°C.  

 

III.2.2.3 EdU staining and anti-HRP immunocytochemistry 

After 2 days of culturing under above described conditions, Epo-treated and 

control cell cultures were fixed and processed for detection of incorporated EdU 

and immunodetection of HRP. Fixation was performed with 4% 

paraformaldehyde in 0.1 M phosphate buffer for 30 min at RT. After 3 washes 

in phosphate buffer (5 min each), followed by 2 washes in PBS and 3 washes in 

0.1% PBS-T, cells were incubated with blocking solution (0.25% BSA /5% 

NGS/0.1% PBS-T) for 30 min at RT. The primary antibody anti-HRP from rabbit 

(Sigma-Aldrich) diluted (1:500) in blocking buffer was applied overnight at 4°C. 

Excess antibody was removed by 3 washes in 0.1% PBS-T and 2 washes in PBS. 

Cell cultures were afterwards prepared for EdU-staining by 3 washes in TBS. 
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Staining solution (100 mM Tris, pH 8.5; 1 mM CuSO4; 10 μM TAMRA-azide; 100 

mM sodium ascorbate) was applied for 30 min at RT. After 3 washes with TBS, 

cells were washed 3 times with 0.1% PBS-T and incubated with secondary 

antibody AF488-coupled anti-rabbit antibody from goat (Invitrogen, Molecular 

Probes, Thermo Fisher Scientific) diluted (1:300) in 0.1% PBS-T for 1 h at RT. 

DAPI was diluted (1:1000) together with the secondary antibody and applied 

simultaneously. After 5 washes with 0.1% PBS-T, cells were finally mounted in 

DABCO for microscopic analysis. Until analysis, microscopic slides were kept 

at 4°C in the dark.   

 

III.2.2.4 Data analysis  

To analyze the staining, on average 60 regions of each coverslip were scanned 

in systematic order covering one line between two opposite edges of the 

coverslip using confocal microscopy (Leica TCS-SP8). A 63x objective was used. 

DAPI and EdU staining were scanned in one sequence. A 405-nm line from a 

diode laser was used to excite DAPI and emission was detected from 420 to 470 

nm, while for EdU a 561-nm line of HeNe laser was used for excitation and 

emitted fluorescence was collected from 570 to 680 nm.  Fluorescence coming 

from anti-HRP was scanned in the next sequence using a 488-nm line of argon 

laser to excite dye and range of spectra from 500 to 550 nm to detect emitted 

signals. Only viable cells (as determined by the pattern of DAPI staining; 

median of surviving cells was 49.04% in control group; 52.14% in 1U/ml Epo-

treated group; 50.57% in 10U/ml Epo-treated group) were included in the 

analysis. Total numbers of EdU-positive cells, anti-HRP-positive cells, double 

anti-HRP/EdU-positive cells and anti-HRP/EdU-negative cells are counted 

with the assistance of the „cell counter“ plugin of ImageJ software. The portions 

of EdU-positive and anti-HRP-positive cells were expressed as percentages of 

the total number of viable cells (set to 100%). Results are displayed in box-plot 

graphs generated with the OriginPro software package. Due to their sparse 

occurrence the category of double anti-HRP/EdU-positive cells was not 
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included in the graphical presentation of results. The differences in data 

population distributions (averages of EdU-positive cells and anti-HRP-positive 

cells between the control and Epo-treated groups) were analyzed using the 

nonparametric Kruskal-Wallis test followed by a Mann-Whitney U test. P  

values smaller than 0.05 were considered as significantly different.   

 

 

III.2.3 In vivo studies with Tribolium castaneum 

III.2.3.1 Animals  

Red flour beetles Tribolium castaneum (wild type strain San Bernardino) were 

reared and maintained in plastic boxes (15 cm x 15 cm x 10 cm) filled with 1-2 

cm of whole wheat flour supplemented with 5% of dried yeast powder in 

climate chambers at 26°C (and approx. 40 % humidity) on a 12/12-hours 

day/night cycle. 

 

III.2.3.2 EdU injection 

Freshly eclosed female adults (developmental stage identified based on lightly 

tanned cuticle and sex identified by size of genital papillae which are much 

larger in females than in males) were cooled down and fixed ventral side up on 

modeling clay. Using a microinjector (FemtoJet express, Eppendorf, Wesseling-

Berzdorf, Germany) animals were injected via pulled glass capillary 

(borosilicate capillary with inner filament, 1.0/0.57 mm OD/ID, KBF-110075; 

Flaming/brown micropipette puller: model P-97, Sutter Instrument, Novato, 

CA, USA) into the lateral abdomen between third and fourth segment. Each 

animal was injected with approximately 0.5 μl of injection solution, which was 

first pipetted as a drop onto an upside down Eppendorf cup and then brought 

into the glass capillary through the tip by immersing it into the drop (passively 

by capillary forces). The injection solution consisted of 10 mM EdU diluted in 

Tribolium injection buffer (1.4 mM NaCl, 0.007 mM Na2HPO4, 0.03 mM 

KH2PO4, 4 mM KCl) supplemented with 10 U/ml rhEpo (Epo-treated group) or 
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with equivalent volume of Epo solvent (control group). After injection animals 

were placed into small tubes containing flour with 5% yeast powder at RT for 

24 h until brains were dissected.  

 

III.2.3.3 EdU- and immuno- staining of whole mount brains 

Brains of EdU-injected control and Epo-treated animals were dissected out 24 h 

after injection. After chilling on ice, animals were pinned ventral side up to the 

surface of a sylgard-coated plate with insect pins through their abdomen and 

brains were dissected after removing mouth parts and joined pieces of head 

cuticle. Dissections were performed in PBS. Since the hard cuticle was firmly 

attached to the head muscles, complete removal of all pieces of cuticle at this 

stage usually led to disruption of the brain tissue. To preserve tissue integrity 

brains were exposed by opening of the head capsule, dissected in connection 

with firmly attached cuticle and fixed with 4% paraformaldehyde in 0.1 M 

phosphate buffer for 1 h at RT. After 3 washes in phosphate buffer (10 min 

each), the tissue was incubated with 10% PBS-T (pH 7.4) for 1 to 2 days at 4°C to 

induce softening of the cuticle and permeabilization of underlying tissue. 

Remnants of the head capsule were afterwards removed using forceps leaving 

clean brains. Brains were incubated for 2 h at RT with blocking solution 

containing 5% NGS and 0.25% BSA dissolved in PBS with 0.3 % Triton-X-100 

(0.3% PBS-T). Primary antibody anti-DCO from mouse (dilution 1:1000, 

provided by Prof. Dr. Daniel Kalderon, Columbia University, New York, USA) 

diluted in blocking solution was incubated with brain samples over night at 

4°C. Anti-DCO is a polyclonal antibody against the catalytic subunit of 

Drosophila melanogaster protein kinase A. This antibody has been shown to have 

a high affinity for mushroom body intrinsic neurons in a range of insect species 

(Skoulakis et al. 1993; Farris 2005) including Tribolium castaneum (Zhao et al. 

2008). After 2 h washing with 0.3% PBS-T and 30 min washing with TBS, brains 

were transferred into the staining solution for EdU-detection (100 mM tris, pH 

8.5; 1 mM CuSO4; 10 μM TAMRA-azide; 100 mM sodium ascorbate) for 1h. 
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After 30 min washing with TBS and 30 min washing with 0.3% PBS-T, brains 

were incubated with secondary antibody, Cy5 goat anti-mouse (dilution 1:300, 

Jackson Immuno Research), AF488-coupled anti-HRP from Goat (dilution 1:300, 

Jackson Immuno Research) and DAPI (1:1000) diluted in 0.3% PBS-T for 2 h at 

RT. Brains were afterwards washed in 0.3% PBS-T for 30 min at RT and 

mounted in DABCO onto slides containing spacers, followed by coverslipping.   

 

III.2.3.4 Confocal microscopy and image processing 

Stained whole mounts were analyzed with confocal microscopy (Leica TCS-

SP8) with 20x or 63x glycerol immersion objectives. The lasers used to excite 

fluorescence and detection parameters were selected according to the 

absorption and emission properties of the applied dyes. Fluorescence coming 

from anti-DCO immunostaining was used to identify the mushroom bodies 

within whole mount preparations. Once mushroom bodies have been 

identified, they were scanned using a 63x objective with a 1 μm distance 

between optical sections along the z-axis. Single optical sections or projections 

made from a small number of optical sections were selected from stacks of each 

stained brain. These images were then adjusted for brightness and contrast 

using ImageJ software.   
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III.3 Results 

III.3.1 Characterization of Manduca sexta cell line 

As not much is known about this cell line, a brief characterization was 

performed. Morphological analysis of the cell line using light microscopy with 

phase contrast revealed that most of the cells have a spindle-shaped form, with 

long bipolar processes, rather than branched extensions (Fig.28A, left). At least 

a subset of the cells were mitotically active, as demonstrated by detection of the 

nuclear thymidine analog EdU that was incorporated during DNA replication 

in the S-phase of the cell division (Fig. 28A, middle). Because most of the 

cultured cells displayed neuron-like morphology the cells were next stained for 

the insect neuronal marker anti-HRP. Anti-HRP antibodies specifically detect 

glycoproteins on the cell membrane and in membrane vesicles of insect neurons 

(Jan & Jan 1982; Sun & Salvaterra 1995) including cultured moth neurons (Lucas 

& Nagnan-Le Meillour 1997; Tucker & Tolbert 2003). Interestingly, 

immunocytochemical analysis revealed very few anti-HRP-positive cells (Fig. 

28B, right). Identified neurons displayed extensions whose patterns seemed to 

differ from the majority of the cells observed with light microscopy. There were 

anti-HRP-positive cells with one, two or more extensions and with branches of 

variable complexity. Moreover, among the anti-HRP-positive cells some cells 

displayed only weak anti-HRP immunofluorescence and had only few anti-

HRP positive vesicles, whereas other cells displayed the typical anti-HRP 

phenotype known from stainings in other insects (Fig. 26).  

 

Figure 26. Anti-HRP immunostaining of the Manduca sexta cell line. Anti-HRP-positive cells 

(green) display different patterns of cellular processes. Some anti-HRP-positive cells are only 

weakly immunostained, characterized by low number of anti-HRP-positive vesicles and 

absence of processes (last two images, right). Scale bars: 10 μm. 
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On the other hand, almost all cells were positive for anti-synapsin antibodies 

(Fig. 27, upper panel, left). These antibodies specifically detect the synapse-

associated protein of 47kDa (SAP47) expressed in both larval (Saumweber et al. 

2011) and adult insect brains (Reichmuth et al. 1995). The presence of few anti-

synapsin-negative cells in the culture cannot be completely excluded, as this has 

not been systematically investigated. Double immunostaining with antibodies 

against HRP and SAP47 (anti-synapsin) revealed that all detected anti-HRP-

positive cells of the M. sexta cell line cultures were also anti-synapsin positive 

(Fig. 27, upper panel, right). Furthermore, a large portion, but not all cells 

within the cell line were positive to anti-fasciclin II antibodies (Fig. 27, lower 

panel). Fasciclin II is a homophilic cell adhesion molecule of the 

immunoglobulin superfamily that is involved in the fasciculation and guidance 

of axons in developing insect nervous systems (Bastiani et al. 1987; Harrelson & 

Goodman 1988; Grenningloh et al. 1991). Again, all detected anti-HRP-positive 

cells were also anti-fasciclin II positive (Fig. 27, lower panel, right).  

 

Figure 27. Anti-synapsin (upper panel, green) and anti-fasciclin II (lower panel, green) 

immunostaining of the Manduca sexta  cell line in conjunction with anti-HRP immunostaining 

(upper and lower panel, red). Upper panel: while most cells  in the cell  line are positive for anti-

synapsin staining indicating their neuron fate commitment, only few cells are positive for the 

pan-neuronal anti-HRP marker (*). Lower panel: only two anti-fasciclin II-positive cells are also 

positive for anti-HRP (*). Right: overlay of two stainings. Scale bars: 10 μm. 
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Additionally, all cultured cells were negative for the glial marker anti-RePo 

(images not shown). Anti-synapsin and anti-fasciclin II staining indicated that 

the cell line consisted largely of cells with neuronal identities of which at least a 

subset had the capacity to proliferate, as indicated by EdU staining. At least 

some of the daughter cells had the ability to undergo progressive maturation 

that resulted in fully developed neuronal anti-HRP phenotype. Hence, EdU-

staining was chosen to label proliferation, while anti-HRP immunoreactivity 

was chosen to analyze neuronal differentiation in subsequent experiments.     

To determine the amount of cells displaying signs of mature differentiated 

neurons that express HRP, a preliminary experiment with different durations of 

culturing after plating, namely 2, 4, 6 and 8 days, was performed. After fixation 

and subsequent immunostaining against HRP, the portion of immunopositive 

neurons was determined. The percentage of anti-HRP-positive cells after 2 days 

of growing under standard conditions in the absence of serum was 1.01%; after 

4 days 1.76%; after 6 days 2.11% and after 8 days 1.39%. Although the portion of 

anti-HRP-positive cells slightly increased from day 2 until day 6 after plating, 

the difference was minimal, indicating that the duration of cell culture 

maintenance is not an important factor for neuronal differentiation. Since the 

total number of cells in the cultures decreased after 6 days of culturing (5922 

cells after 2 days, 5682 cells after 4 days, 2687 cells after 6 days and 575 after 8 

days), all subsequent experiments were performed within 4 days after plating 

of the cells.   

 

 

III.3.2 Epo does not stimulate Manduca sexta progenitor cell proliferation and 

their differentiation into neurons expressing the neuronal marker anti-HRP 

in vitro 

It has been shown that Epo can modulate different stages of vertebrate 

neurogenesis and therefore plays an important role during the proliferation and 

differentiation of vertebrate neural stem cells (Shingo et al. 2001; Wang et al. 
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2004; Hassouna et al. 2016). Whether Epo also acts as a regulator of insect 

progenitor cell proliferation and differentiation has not previously been 

studied. To examine a potential influence of Epo on insect neural progenitor cell 

proliferation in vitro, the cells were exposed to rhEpo (4 U/ml) in the presence 

of EdU in serum-free medium for 48 hours. Control cultures were treated in the 

same way, but without exposure to Epo. In total 35061 cells from 5 experiments 

were analyzed. Results are displayed in Figure 4B (left) as percentages of EdU-

positive nuclei from the total number of DAPI-stained nuclei which were 

normalized to 100%. It is shown that Epo did not affect the amount of EdU- 

labeled nuclei, as the percentage of EdU-positive cells (median: 23.75%) was not 

statistically different from control values (median: 25%, P = 1). These data 

suggest that Epo has no effect on the proliferation of Manduca sexta neural 

precursors in vitro.  

To determine the effect of Epo on neural progenitor cell differentiation, the cells 

were treated with rhEpo for 4 days (Fig. 28B, right). After fixation cell cultures 

were immunostained for the pan-neuronal marker anti-HRP and the number of 

stained neurons was quantified. In total 86593 cells were analyzed from 6 

experiments. The results are displayed as percentages of anti-HRP-positive cells 

relative to the total number of analyzed viable cells (set as 100%). As shown in 

Fig. 28B (right) the percentage of anti-HRP-positive cells in Epo-treated cultures 

(median: 1.2%) was not significantly different from the percentage of anti-HRP-

positive cells in control cultures (median: 1.25%; P=0.41). Serum itself (10% 

FBSG) had either no effect on cell differentiation, as percentage of anti -HRP-

positive cells in the cell cultures in medium supplemented with 10% FBSG 

(median: 1.54%; Fig.28B, right) did not significantly differ from the percentage 

of anti-HRP-positive cells in control cultures (P=0.37). Thus, if the appearance 

of anti-HRP immunoreactivity can serve as a marker for neuronal 

differentiation, Epo has no stimulatory effect on differentiation of M. sexta 

neural progenitors into mature neurons in vitro.  
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Figure 28. Assessment of the effects of Epo on proliferation and differentiation in the Manduca 

sexta cell line.   

(A) Left: Phase-contrast image of the Manduca sexta cell  line. Viable cells make anatomical 

contacts via long, mostly bipolar, processes extending from their cell bodies. Middle: 

Proliferation was analyzed by determining the portion of EdU-positive cells. Representative 

fluorescent micrography of a cell culture 2 days after treatment showing nuclei (with 

incorporated EdU) of recently proliferated cells (red). Nuclei  of both, dividing and non -dividing 

cells are stained with DAPI (gray). Right: Differentiation rate was assessed by determining the 

portion of cells positive to anti-HRP. Fluorescent micrography of a cell culture 4 days after 

treatment stained with anti-HRP antibodies (green). Nuclei are stained with DAPI (gray). Three 

cells are positive for the pan-neuronal marker HRP (asterisks), while most cells  are anti-HRP-

negative. Scale bars: 10 μm.  

(B) RhEpo (4 U/ml) does not influence proliferation or differentiation in the Manduca sexta cell  

line. Relative portion of EdU-positive cells does not differ between rhEpo-treated and untreated 

cells (left). Similarly, rhEpo did not change the portion of anti-HRP-positive cells (right). FBSG 

(10%) has no effec t on differentiation in the Manduca sexta cell line. Statistics: Kruskal-Wallis 

ANOVA with Mann-Whitney U–test. N.s. not significant. Schemes depicting the  experimental 

procedures are illustrated above box plot charts.    
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III.3.3 Epo has no effect on proliferation and differentiation of locust preadult 

optic lobe neuronal precursors in vitro 

A primary culture system established from optic lobes of locust nymphs was 

employed to investigate the effects of Epo on insect neurogenesis in vitro. After 

isolation, dissociation and plating, optic lobe cells were grown for 24 h under 

usual culturing conditions before the experimental treatments. To test whether 

Epo regulates optic lobe neural progenitor cell proliferation and differentiation 

cell cultures were incubated with serum-free medium containing EdU (control) 

or EdU and rhEpo (Epo-treated group) for 2 days (48 h) at 27°C. After fixation 

cells were immunostained with anti-HRP antibodies, incorporated EdU 

detected with „click“ reaction and all nuclei stained with DAPI (Fig. 29B). 

Analysis revealed that a very small portion of OL cells underwent mitosis 

(around 2% of the OL cells expressed the cell proliferation marker EdU) (Fig. 

29E), and over 80% of the OL cells expressed the insect pan-neuronal marker 

HRP (Fig. 29F) following 2 days of exposure to Epo.  The proportion of EdU-

positive cells in the experimental groups treated with Epo 1U/ml rhEpo (2.23%) 

and 10 U/ml (3.5%) was found to be similar to that of the non-treated (control) 

group (2.71%, P[Epo-treated (1 U/ml) vs. non-treated] = 0.49, P[Epo-treated (10 U/ml) vs. non-treated] = 

0.69) (Fig. 29C and 29E). Similarly, the proportion of anti-HRP-positive cells in 

cell cultures treated with 1 U/ml rhEpo (84.88%) and 10 U/ml rhEpo (81%) did 

not differ significantly from the proportion of anti-HRP-positive cells in non-

treated cell cultures (control group) (78.38%; P[Epo-treated (1 U/ml) vs. non-treated] = 0.34; 

P[Epo-treated (10 U/ml) vs. non-treated] = 0.69). Additionally, a few EdU/anti-HRP double-

positive cells have been detected in both, Epo-treated and control cultures, 

revealing de novo generation of neurons from descendants of proliferating 

neural progenitors following their maturation and differentiation. However, 

their contribution to the total number of analyzed cells was extremely low 

(mean: 0.66% in the non-treated group, 1.2% in the group treated with 1U/ml 

Epo, 0.45% in the group treated with 10U/ml Epo; data not shown on graphs). 

Thus, Epo (1 and 10 U/ml) did not influence OL cell proliferation and 

differentiation under conditions applied in my experiments.  
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Figure 29. Epo does not stimulate proliferation and differentiation of primary cultured locust 

optic lobe cells. (A) Schematic drawing of experimental procedure. (B ) Representative 

fluorescent micrography of a  cell culture 2 days after treatment showing viable cells positive for 

the pan-neuronal marker HRP (asterisks), nuclei  of viable anti-HRP-negative cells (arrow), 

nuclei of dead cells (rhomboids) and one nucleus of a viable, recently proliferated anti-HRP-

negative cell (arrowhead). Anti-HRP (green), EdU/TAMRA (red), DAPI (gray). Scale bar: 10 

μm. Relative portion of EdU-positive cells after 3 days of incubation with 1 U/ml and 10 U/ml 

rhEpo of four individual experiments (C) and their medians (E). The proliferation rate was 

quantified as the ratio of EdU-positive cells to DAPI-labeled nuclei  of viable cells normalized to 

100%.  Relative portion of anti-HRP-positive cells after 3 days  of incubation with 1 U/ml and 10 

U/ml rhEpo of four individual experiments (D) and their medians (F). Differentiation was 

quantified as the ratio of anti-HRP-positive cells  to total number of viable cells normalized to 

100%. Statistics: Kruskal-Wallis ANOVA with Mann-Whitney U-test. N.s. not significant.    
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III.3.4 In vivo studies on the proliferation of Tribolium castaneum neuroblasts 

Since EdU/TAMRA staining specifically labeled nuclei of proliferating cells in 

two in vitro systems studied (see above), we applied the same technique to stain 

proliferating mushroom body neuroblasts in vivo in order to assess the potential 

influence of Epo on neurogenesis in this brain region. Analysis of confocal 

images of whole mount preparations of T. castaneum brains showed however 

that EdU staining cannot be unequivocally assigned only to proliferating nuclei . 

Figure 30 illustrates a region of the mushroom body neuropile identified by 

anti-DCO immunostaining (red) where dividing neuroblasts are expected to be 

located. The Anti-DCO antibody, which has a high affinity for specific proteins 

of mushroom body-intrinsic neurons, labels mature neurons, but not 

neuroblasts. Most Tribolium brains contain two mushroom body neuroblasts per 

hemisphere, although individual variations with some animals having one or 

three neuroblasts exist (Zhao et al. 2008). In Figure 30B and 30D four EdU-

labeled nuclei (arrowheads) can be recognized. Additionally, numerous small 

round EdU/TAMRA-stained objects can be seen (arrows). However, from the 

staining pattern which does not display the clear chromatin structure revealed 

with DAPI staining (Fig. 30C and 30D) it is not possible to claim that they 

represent nuclei of dividing cells. Furthermore, in some whole mount 

preparations, EdU-positive cells within mushroom bodies could not be detected 

at all (figures not shown). Thus, EdU/TAMRA staining is not sufficiently 

reliable for proper identification and quantification of proliferating mushroom 

body neuroblasts in vivo. 
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Figure 30. In vivo EdU staining in the brain of Tribolium castaneum. A-D: One optical section of 

the whole mount brain of a newly eclosed adult after 24 h of incubation with EdU and rhEpo. E-

H: Maximum projections of four optical sections (all optical sections in which EdU staining was 

visible). (A, E) Anti-DCO immunostaining (red), (B, F) EdU staining (cyan), (C, G) DAPI 

staining (gray) and (D , I) overlay of three stainings. Progeny of dividing neuroblast have 

incorporated EdU (arrowheads), while other EdU-positive structures (arrows) cannot be 

unequivocally assigned to nuclei (B , D). Discontinuous DAPI staining reflects chromatin 

structure of nuclei (C). Images in the lower panel (E-H) show that nuclei of non-dividing cells 

can be reliably identified (G, H) based on DAPI staining, including the nuclei of the cells that 

are not clearly visible in one optical section and may thus appear as structures similar to those 

detected as false EdU-positive objects. In  contrast, small-sized EdU-stained objects  (yellow 

arrows) do not get lost in maximal z-projection of all optical sections in which they are detected. 

Even more of such staining emerges (F, H). Scale bars: 10 μm. 
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III.4 Discussion 

III.4.1 Epo-mediated regulation of neurogenesis 

There is accumulating evidence for the involvement of Epo in the regulation of 

embryonic and adult neurogenesis in mammals. The ability of Epo to promote 

genesis of neuronal and oligodendroglial progenitors from NSC has been 

demonstrated both in vitro and in vivo (Shingo et al. 2001). Following ischemic 

brain injury Epo stimulates the production of neurons (Shingo et al. 2001; Wang 

et al. 2004) and oligodendrocytes (Kako et al. 2012; Jantzie et al. 2013) 

promoting the replacement of lost cells. The regulation of neurogenesis and 

gliogenesis affects diverse mechanisms that include proliferation of progenitor 

cells through repeated divisions, differentiation  through selection and emergence 

of cell committed fate by some daughter cells and survival, which refers to the 

maintenance of newly generated cells and their functional incorporation into 

existing circuitry (Schoenfeld & Gould 2012). While some studies reported that 

the neurogenic effect of Epo occurs primarily at the level of proliferation of 

neural progenitors (Ransome & Turnley 2007; Chen et al. 2007b) other studies 

suggested that Epo selectively promotes neuronal differentiation (Shingo et al. 

2001; Hassouna et al. 2016) or enhances both, proliferation of neural progenitors 

and their differentiation into neurons (Wang et al. 2004). Reports about the 

effects of Epo on oligodendroglial genesis following brain injury are more 

consistent. Epo has been found to promote survival and differentiation of 

oligodendrocyte precursor cells, without mediating a significant proliferative 

effect (Kako et al. 2012; Jantzie et al. 2013; Hassouna et al. 2016).  

Whether Epo regulates insect neurogenesis has been examined using three 

different preparations: a permanent cell line, a primary culture and an in vivo 

preparation. I used insect species belonging to three different orders: 

Lepidoptera (Manduca sexta), Orthoptera (Locusta migratoria) and Coleoptera 

(Tribolium castaneum). The possible involvement of Epo in the regulation of 

neuroblast proliferation and differentiation into neurons at embryonic, late 

pupal and early adult developmental stages was studied. The obtained results 
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however did not provide any evidence for a role of Epo in insect development 

and adult neurogenesis. Under the applied conditions, I could not demonstrate 

Epo-induced regulation of neurogenesis neither at the level of proliferation of 

progenitor cells, nor at the level of neuronal differentiation in any of the three 

preparations.  

 

III.4.2 Epo does not induce neurogenesis in a neural cell line derived from 

embryonic tissue of Manduca sexta 

The first model system I used to study the potential influence of Epo on 

embryonic neurogenesis in insects was the cell line established by Eide and 

colleagues. This cell line was established from primary cultures of embryonic 

tissue of M. sexta and has been described as a line consisting almost entirely of 

cells of a single type that have the appearance of fibroblasts (Eide et al. 1975). 

Few cells with epitheloid shape that were also observed in the line were 

claimed to be morphological variants of the same cell type (Eide et al. 1975). The 

previously described morphological features of the cell line were confirmed in 

our analysis using phase-contrast microscopy which revealed many spindle-

shaped cells with extended bipolar processes occasionally accompanied by cells 

having a discoid shape. Although anti-RePo antibody is widely used to label 

glia in Drosophila (Xiong et al. 1994), its specificity for glia in M. sexta species has 

not yet been demonstrated and therefore the absence of anti-RePo 

immunoreactivity does not necessarily imply the absence of glial cells in this 

cell line. Nonetheless, qualitative immunocytochemical analysis of anti-

synapsin, anti-fasciclin II and anti-HRP staining suggested that the cell line 

consists of cells with neuronal identities, with several subpopulations possibly 

representing different developmental stages of neuronal lineage cells. A certain 

pool of cells within the line seems to be responsible for the self-renewal of the 

neural progenitors, as demonstrated via EdU incorporation and detection. 

However, the cells seem to have weak capacity to reach the stage of mature 

neurons that express the insect pan-neuronal marker HRP. In all experimental 
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paradigms applied not more than 2% of HRP-immunoreactive neurons were 

detectable in cell cultures. In fact, it has been shown that during postembryonic 

neurogenesis in M. sexta, the progeny of neuroblasts appear to arrest their 

differentiation soon after they elaborate axon-like processes into the neuropil. 

The cells remain arrested in this postmitotic, immature stage until the initiation 

of metamorphosis at the onset of the wandering stage during which the cells 

enter the phase of terminal differentiation and assume the morphology of 

mature functional neurons (Booker & Truman 1987). Cellular factors 

stimulating terminal differentiation of neurons in M. sexta are not known and 

they might have been absent in standard culturing conditions of the M. sexta 

cell line. It is known that normal culturing conditions for cell lines, e.g. human 

SH-SY5Y cells, support continuous proliferation and growth of undifferentiated 

cells that have a neuroblast-like morphology and express markers for immature 

but not mature neurons. Addition of specific factors that stimulate 

differentiation causes a change in the properties of the cell line that starts to 

exhibit a decrease in proliferation rate and increase in expression of neuron-

specific markers (Gordon et al. 2013). Anti-HRP labels a neuron-specific 

membrane glycoprotein coded by the nervana gene in Drosophila. However, anti-

HRP antibodies recognize a carbohydrate epitope, rather than protein. 

Although Nervana protein is synthesized very early in neurogenesis, 

glycosylation with the anti-HRP epitope occurs in later stages of neuronal 

maturation. As a consequence, while anti-Nervana immunostaining can be 

detected during the early stages of neurogenesis, anti-HRP staining is not 

observed until later stages of development (Sun & Salvaterra 1995). Drosophila 

nac (neurally altered carbohydrate) mutant, which has a defect in the 

glycosylation pathway, does not show typical anti-HRP nervous system 

staining in adults, although anti-Nervana immunoreactivity can be detected in 

all developmental stages (Katz et al. 1988; Sun & Salvaterra 1995). Therefore, 

low levels of anti-HRP immuno-detection in the M. sexta cell line can be also 

due to a decreased glycosylation of Nervana protein.  
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As the presence of neural progenitors capable of dividing has been 

demonstrated by an EdU-based assay, the question whether Epo can stimulate 

their proliferation could be studied. The exposure of cell cultures to rhEpo for 

48 hours had no significant effect on the proliferation of M. sexta neural 

progenitors compared to the proliferation of non-treated cell cultures. Thus, the 

data indicate that rhEpo does not regulate neurogenesis of the M. sexta 

progenitors in vitro at the level of proliferation. 

The specificity of the anti-HRP antibody in detection of insect neurons has been 

confirmed in numerous studies using a wide range of insect species, including 

moths (Lucas & Nagnan-Le Meillour 1997; Tucker & Tolbert 2003). Since anti-

HRP-positive cells in the M. sexta cell line displayed a staining pattern 

characteristical for other anti-HRP-positive neurons, with intensively stained 

plasma membrane, neurites and vesicles, anti-HRP immunoreactivity was used 

as a marker for neuronal differentiation. To quantify the potential effect of Epo 

on the differentiation of M. sexta progenitors into neurons, the percentage of 

anti-HRP-positive cells in the cell cultures exposed to rhEpo for 4 days was 

compared with the percentage of anti-HRP-positive cells in non-treated 

cultures. Since the percentage of anti-HRP-positive cells did not differ between 

the Epo-treated and the control group, a stimulatory effect of Epo on M. sexta 

neural progenitor differentiation into mature neurons could not be 

demonstrated.  

Given that anti-HRP antibodies labeled only small portions of cells that were 

positive for the other two neuronal markers anti-synapsin and anti-fasciclin II, 

the question arises whether this antibody is an appropriate marker of 

differentiated neurons in the M. sexta cell line. Assuming that neuron-specific 

Nervana protein is already expressed in cultured cells, but not glycosylated 

(Sun & Salvaterra 1995), the absence of anti-HRP immunoreactivity would not 

necessarily indicate that all anti-HRP-negative cells have not yet been 

differentiated into neurons. In this respect, both anti-synapsin and anti-fasciclin 

II antibodies could be more appropriate markers of neuronal differentiation in 
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the M. sexta cell line. Additionally, ELAV immunoreactivity can be used to 

detect neurons. Along with HRP, ELAV (embryonic lethal abnormal visual 

system) is the second best-characterized example of a pan-neuronal marker in 

Drosphila (Robinow & White 1991) and anti-ELAV antibodies have already been 

used to label neurons in M. sexta (Swanson et al. 2005). However, since both 

immature and mature neurons express this pan-neuronal protein (Robinow & 

White 1991) anti-ELAV immunoreactivity would not allow discrimination of 

differentiated from immature neurons. In this perspective, it would be 

advantageous to have defined markers that specify certain stages of neural 

development in M. sexta to test the influence of Epo on each of these stages 

more directly.  

To sum up, Epo does not regulate neurogenesis in M. sexta in vitro by affecting 

the proliferation of neural progenitors. The data about Epo’s differentiating 

potential are inconclusive, since it is debatable whether anti-HRP 

immunoreactivity can be used at all as a marker for neuronal differentiation in 

the M. sexta cell line.  

 

III.4.3 Epo does not support neurogenesis of optic lobe cells from nymphal 

Locusta migratoria brains in vitro 

While embryonic neurogenesis in L. migratoria has been documented already 40 

years ago (Bate 1976), hardly any evidence of neurogenesis at later 

developmental stages in this species has been reported (Cayre et al. 1996). Even 

though earlier histological studies reported the persistence of neuroblasts in the 

optic lobes of different adult insect species (Johansson 1957; Panov 1960), 

postembryonic neurogenesis occurring in the optic lobes did not receive as 

much attention as the production of new Kenyon cells in mushroom bodies. It is 

conceivable that neuroblasts of most insect species, including D. melanogaster 

(Ito & Hotta 1992), cease their proliferative activity with increasing numbers of 

divisions during early pupal development. However, a recent study using a 

modified lineage-labeling method unexpectedly provided evidence for 
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continued neurogenesis in the adult optic lobes of D. melanogaster, which could 

be further stimulated by acute brain injury (Fernández-Hernández et al. 2013). 

Hence, insect optic lobes appear to be centers of neurogenesis which continues 

into adulthood.  

To study the effects of Epo on insect neurogenesis during pupal development a 

primary culture of optic lobe cells from Locusta migratoria fourth instar nymphs 

was established. The influence of Epo on neurogenesis of primary cultured 

optic lobe cells was assessed by determining the portions of EdU-positive and 

anti-HRP-positive cells after 2 days of exposure to two different concentrations 

of rhEpo and comparisons with the portions of the same cell categories in 

untreated cell cultures. The obtained data do not support the involvement of 

Epo in the regulation of neurogenesis at the level of optic lobe neuroblast 

proliferation and their differentiation into neurons. Thus, it seems that Epo does 

not influence optic lobe neurogenesis in locust nymphs under normal 

conditions in vitro. 

Since there are no immunocytochemical markers that label locust glia, it is not 

clear whether anti-HRP-negative cells in primary cultures of locust optic lobe 

cells represent glial cells or neuronal progenitors. Likewise, EdU-positive cells 

may represent either neuroblasts or glioblasts. Nevertheless, at least a certain 

portion of cells that divide can differentiate into neurons, as demonstrated by 

detection of several double EdU-/anti-HRP-positive cells in the culture. 

Therefore, comparison of the percentages of double EdU/anti-HRP-positive 

cells between treated and untreated cultures might be a better way to analyze 

the effect of Epo on neurogenesis. However, the quantification of this cell 

category is problematic, since in some cultures no double EdU/anti-HRP-

positive cells were detected. Because of high variations between four individual 

experiments, apparently more trials are needed for an appropriate 

interpretation of the data.  
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III.4.4 The potential involvement of Epo in adult neurogenesis of Tribolium 

castaneum could not be evaluated 

One of the aims of the third part of PhD thesis was to establish an in vivo model 

system to study the potential effects of Epo on insect adult neurogenesis. As 

already mentioned, it has been widely acknowledged that adult neurogenesis is 

absent in a range of studied insect species. Many studies failed to demonstrate 

the presence of actively proliferating neuroblasts in adult brains of fruit flies 

(Ito & Hotta 1992), honeybees (Fahrbach et al. 1995), butterflies (Nordlander & 

Edwards 1970) and locusts (Cayre et al. 1996). Adult neurogenesis has been 

described for crickets (Cayre et al. 1994), cockroaches (Gu et al. 1999), migrant 

moths (Dufour & Gadenne 2006) and several coleopteran species (Cayre et al. 

1996). In the red flour beetle T. castaneum mushroom body neuroblasts 

undergoe continuous proliferation in the first two months of adult life, as 

demonstrated by BrdU staining (Zhao et al. 2008). Therefore, T. castaneum 

seemed to be suitable to address the question whether Epo regulates adult 

neurogenesis in insects.   

Successful incorporation and reliable detection of EdU obtained in our in vitro 

studies of proliferation have encouraged the decision to apply the same assay 

for in vivo studies. However, in vivo demonstration of EdU incorporated into 

nuclei of dividing neuroblasts turned out to be more challenging. It was 

difficult to detect EdU/TAMRA-stained nuclear chromatin since other 

TAMRA-stained round objects of variable size, but smaller than the size of cell 

nuclei, were also observed in whole-mount brain samples. It is unlikely that the 

TAMRA stain has a higher affinity for cellular structures other than EdU-

incorporated DNA since „click“ chemistry assures that the azide-coupled dye 

reacts only with EdU. Moreover, the distribution of unidentified TAMRA 

stained objects was not evenly throughout the whole brain tissue, which would 

be expected for unspecific staining. The staining pattern of these objects, 

however, resembled DAPI staining of late apoptotic cells, characterized by 

condensed nuclear chromatin. This indicates that some of the cells that 

incorporated EdU during S phase of cell cycle might have afterwards entered 
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apoptosis. A phenomenon of cellular senescence induced by EdU has been 

described in the literature. Cellular senescence is generally defined as an 

irreversible cell cycle arrest (Nakagawa & Opitz 2007). Once incorporated into 

DNA, EdU can perturb cell cycle progression by slowing it down or arresting it 

completely, and induce DNA damage signaling that may lead subsequently to 

apoptosis (Kohlmeier et al. 2013; Zhao et al. 2013). The degree of the cell cycle 

progression impairment induced by EdU incorporation seems to depend on the 

cell type (Diermeier-Daucher et al. 2009). While some cells are retarded in their 

cell cycle progression others die soon after the cell cycle arrest (Kohlmeier et al. 

2013).  

In conclusion, EdU/TAMRA staining is not sufficiently reliable for proper in 

vivo identification and quantification of proliferating mushroom body 

neuroblasts in T. castaneum.      

 

III.4.5 Injury-induced Epo-mediated neurogenesis 

Epo-mediated regulation of adult neurogenesis in mammals has been 

demonstrated in most studies with respect to functional recovery after ischemic 

injury. The neurogenesis-stimulating effect of Epo in mammals can be 

attributed to the elevated expression of EpoR on neural progenitor cells 

induced by injury (Sirén et al. 2001b; Tsai et al. 2006; Ott et al. 2015). Only few 

studies investigated or showed the requirement of Epo for adult neurogenesis 

under physiological conditions. One study reported that large doses of 

systemically delivered rhEpo enhanced hippocampal neurogenesis in the 

normal adult mouse brain under basal conditions in vivo. This effect was 

however transient, since Epo did not support long-term survival and 

integration of newborn neurons into the existing neural circuitry (Ransome & 

Turnley 2007). As shown by Hassouna et al., the maintenance of newly 

generated pyramidal neurons induced by Epo treatment was supported in 

healthy young mice that were continuously cognitively challenged, but  not in 

mice without cognitive challenge (Hassouna et al. 2016). This suggests that 
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newly generated neurons need to be „used“ in order to be sustained. In my 

experiments the potential effects of Epo on insect neurogenesis were 

investigated under normal conditions, in the absence of strong stressor or 

cognitive challenge. Previous studies on locusts in vitro (see chapter I) have 

shown that under normoxic conditions the effects of Epo on neuronal survival 

may not be significant. Similarly, neurogenic effects of Epo may not easily be 

demonstrated under conditions that do not require integration and „usage“ of 

newborn neurons. It would be worth to establish an insect model of acute brain 

injury and/or a learning paradigm in which the neurogenic potential of Epo 

can be more explicitly studied.   
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CONCLUSIONS AND OUTLOOK 

This study characterized several functional properties of a neuroprotective Epo-

binding receptor on locust neurons. (1) The receptor is associated with JAK, 

whose activity and subsequent STAT activation are required for anti-apoptotic 

effects of rhEpo; (2) Upon rhEpo binding the ligand-receptor complex is 

internalized by endocytosis; (3) The receptor shares similarities with the 

mammalian neuroprotective Epo receptor, since both are activated by the 

human Epo splice variant EV3, which does not stimulate the homodimeric 

hematopoietic EpoR. In order to structurally identify the neuroprotective Epo 

receptor in insects future studies should apply direct molecular approaches. 

Such approaches might require the application of genetic tools. However, the 

genetically best accessible species Drosophila melanogaster is not suitable for 

these prospective studies, since Epo-mediated neuroprotection was absent in 

this species (Pompe 2013). Furthermore, comparison of gene orthologues across 

animal phyla showed that D. melanogaster has lost a large number of ancestral 

genes common to vertebrates and more typical insects (Wyder et al. 2007). In 

this respect, Tribolium castaneum emerges as a promising alternative species for 

„receptor studies“ that is amenable to genetic manipulations. A candidate 

receptor in T. castaneum, an orthologue of a human cytokine receptor, is 

currently studied for its involvement in Epo-mediated neuroprotection in 

insects and mammals.  

Even though studies with the species Locusta migratoria are limited by the 

narrow scope of genetic approaches that can be applied to identify insect Epo-

binding receptors, alternative approaches to study ligand-receptor interactions 

are emerging lately and some of them can be used in this species, including 

fluorescence-based ligand binding assays. For example, one can study the 

binding affinity of fluorescently labeled rhEpo to a potential receptor in locust 

neurons by means of microscale thermophoresis (MST) (Wienken et al. 2010). 

Intermolecular fluorescence resonance energy transfer (FRET) from a donor 

fluorophore associated with a ligand to an acceptor fluorophore connected with 
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a receptor can be used as an alternative approach to study interaction between 

rhEpo and potential receptor candidates (De Jong et al. 2005; Ward & Milligan 

2014).  

In conclusion, this PhD study provided some important information about the 

cellular mechanisms underlying Epo-mediated neuroprotection in insects. 

Furthermore, it pointed out those underlying mechanisms that are similar for 

vertebrates and insects. Future studies on insects may provide important 

insights into the evolution of tissue-protective Epo-like signaling that still plays 

an indispensable role in higher vertebrates. The knowledge gained from „Epo 

studies“ on insects may have translational potential in the future, considering 

that successful separation of erythropoietic from tissue-protective properties of 

Epo is a prerequisite for its safe application as a therapeutic agent for treatment 

of nervous system disorders.  
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SUMMARY 

The cytokine erythropoietin (Epo) initiates adaptive cellular responses to a 

variety of mechanical and physiological insults in various non-hematopoietic 

mammalian tissues including the nervous system. Previous studies on insects 

demonstrated neuroprotective and regenerative effects of recombinant human 

Epo (rhEpo) in acridid grasshoppers in vitro and in vivo, similar to those in 

mammalian nervous system. This suggested that Epo-like signaling involved in 

tissue protection could represent an ancient cell-protective system shared by 

vertebrates and invertebrates that was later adopted for erythropoiesis in the 

vertebrate lineage. This PhD thesis provides further evidence for a pre-

vertebrate evolution of a tissue-protective Epo-like signaling system.  

In the first part of the thesis I studied intracellular transduction pathways 

involved in Epo-mediated protection of locust brain neurons. I demonstrate that 

rhEpo effectively rescues primary cultured locust brain neurons from apoptotic 

cell death induced by hypoxia or the chemical compound H-7. The protective 

effects of rhEpo on locust brain neurons were abolished by the Janus kinase 

(JAK) inhibitor AG-490 and signal transducer and activator of transcription 

(STAT) inhibitor sc-355797. In contrast, the phosphoinositol-3-kinase (PI3K) 

inhibitor LY294002 and an inhibitor of nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB) PDTC did not prevent rhEpo-mediated 

neuroprotection. The results indicate that rhEpo mediates the protection of 

locust brain neurons through interference with apoptotic pathways by the 

activation of a JAK-associated receptor and STAT transcription factors.  

In the second part of the thesis I characterized some functional properties of the 

locust Epo-binding receptor. Using the fluorescent dye FM1-43 to quantify 

endocytotic activity I demonstrated that binding of rhEpo to a surface receptor 

initiates endocytotic internalization of the ligand-receptor complex. The results 

were confirmed by the detection of fluorescently labeled rhEpo in endocytotic 

vesicles. Epo-stimulated endocytosis has been demonstrated in vertebrate 
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erythroid progenitor cells but so far not in any other tissue outside the 

erythropoietic system. In another series of experiments I could show that the 

neuroprotective but non-erythropoietic human Epo splice variant EV3 

protected locust neurons from hypoxia-induced apoptosis with equal potency 

as rhEpo. The shared neuroprotective potency of EV3 in mammals and insects 

in the absence of erythropoietic effects suggests a greater similarity of the 

unidentified nervous erythropoietin-binding receptors across phyla than 

between mammalian hematopoietic and neuroprotective receptors.  

In the third part of the thesis I studied the potential role of rhEpo in the 

regulation of insect neurogenesis using three different preparations including a 

permanent cell line from a moth, a brain region with known neurogenic activity 

in a beetle and cells from a developing brain region with proliferative activity in 

the locust. With the tools and conditions applied, I found no evidence for an 

involvement of Epo in the regulation of neurogenesis neither at the level of 

progenitor cells proliferation nor at the level of neuronal differentiation. 

In summary, the present study demonstrated three important characteristics of 

Epo–like neuroprotective signaling in locust brain neurons that underline the 

similarity of mechanisms involved in insect and mammalian Epo-mediated 

neuroprotection. The involvement of similar transduction pathways in Epo-

mediated neuroprotection, the endocytosis of Epo following its binding to a 

receptor and the capacity of EV3 to stimulate neuroprotection in mammals and 

insects, indicate that an Epo/Epo receptor-like signaling system with high 

structural and functional similarity exists in both groups of animals and may 

have originally evolved to provide tissue protection against various types of 

stressors. 
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LIST OF ABBREVIATIONS 

%    percent 
α   alpha 
βc    beta common 
ε   molar extinction coefficient 
A   absorbance 
A260   absorbance at 260 nanometer 
A280   absorbance at 280 nanometer 
A-T   adenine-thymine 
ATP   asenosine triphosphate 
AF488   Alexa flour 488 
AF633   Alexa fluor 633 
Akt    protein kinase B (a serine/threonine-specific protein kinase) 
B   path length 
bad   B-cell lymphoma 2-associated death promoter 
bcl-xL   B-cell lymphoma-extra large 
BFU-E    burst forming unit-erythroid 
BrdU   bromodeoxyuridine 
BSA    bovine serum albumin 
c   concentration 
°C   Celsius 
cAMP   cyclic adenosine monophosphate 
cEpo     carbamylated erythropoietin 
CF   correction factor 
CFU-E     colony forming unit-erythroid 
cGMP   cyclic guanosine monophosphate 
CHD   cytokine receptor homology domain 
CNS    central nervous system 
ConA   concanavalin A  
CRLF3  cytokine receptor like factor 3 
CuSO4  copper (II) sulfate 
Cy2    cyanine 2 
Cy3    cyanine 3 
Cy5   cyanine 5 
D.    Drosophila 
dAkt   Drosophila Akt 
DABCO  1,4-diazobicyclo[2.2.2]octane 
DAPI    4´-6-diamino-2-phenylindole 
DCO   catalytic subunit of Drosophila melanogaster protein kinase A 
DIC   differential interference contrast 
DMSO   dimethyl sulfoxide 
DNA    deoxyribonucleic acid 
dPI3K   Drosophila phosphatidylinositol-3-kinase  
dTOR   Drosophila target of rapamycin 
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e.g.    exempli gratia (for example) 
ECL   enhanced chemiluminescence 
EdU    5-ethynyl-2’-deoxyuridine    
EDTA   ethylenediaminetetraacetic acid 
EGF   epidermal growth factor 
ELAV   embryonic lethal abnormal visual system 
Epo    erythropoietin 
EpoR    erythropoietin receptor 
EV3                            erythropoietin human splice variant missing exon 3 
FBS    fetal bovine serum 
FBSG    fetal bovine serum gold 
Fig.   Figure 
FM1-43  N-(3-Triethylammoniumpropyl)-4-(4-(Dibutylamino) 

Styryl)   Pyridinium Dibromide   
g    gravity  
GBP   growth blocking peptide    
Gly   glycine 
GM    gentamicin 
Grace′s   Grace′s Insect Medium 
gp130   glycoprotein 130 
h   hour 
H-7    1-(5 isoquinolinesulfonyl)-2-methylpiperazine 
H2O    water 
HBBS    Hank`s balanced salt solution 
HCl   hydrochloric acid 
HeNe   helium neon 
HIF    hypoxia-inducible factor 
HRE   hypoxia-responsive elements 
HRP    horseradish peroxidase 
IκB   inhibitor of κappa B protein 
IKK   inhibitor of κappa B protein kinase 
JAK    Janus kinase 
KCl    potassium chloride 
KH2PO4  potassium dihydrogen phosphate  
kDa    kilodalton 
L.    Locusta 
L15    Leibovitz medium 
LIF    leukemia inhibitory factor 
Lys   lysine 
M   mole 
M.   Manduca 
MAPK  mitogen-activated protein kinase  
min    minute(s) 
ml    milliliter 
mm    millimeter 
mM    millimolar 
Mod.   model 
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mRNA   messenger ribonucleic acid 
mTOR  mammalian target of rapamycin 
mTORC2  mammalian target of rapamycin complex 2 
N2   molecular nitrogen 
NaCl    sodium chloride 
NADPH  nicotinamid adenine dinucleotide phosphate 
Na2HPO4   disodium hydrogen phosphate 
NaH2PO4   monosodium phosphate 
NFκB  nuclear factor kappa-light-chain-enhancer of activated B  

cells 
NGS    normal goat serum 
NHS   N-hydroxysuccimide 
nm    nanometer 
NSC    neural stem cells 
O2   molecular oxygen 
OL    optic lobe 
OSMR    oncostatin M receptor 
P              expectation value 
PBS    phosphate buffered saline 
PBS-T   tris buffered saline with Triton-X-100 
Phe   phenylalanine 
PI3K    phosphatidylinositol-3-kinase 
PH   pleckstrin-homology 
RePo    reversed polarity 
RH   Rel homology  
rhEpo    recombinant human erythropoietin 
RNA    ribonucleic acid 
RNase  ribonuclease 
ROS   reactive oxygen species 
rpm    rounds per minute 
RT    room temperature 
SAP47   synapse associated protein of 47 kilo Dalton 
SD    standard deviation 
SDS   sodium dodecyl sulfate 
SDS-PAGE   sodium dodecyl sulfate polyacrylamide gel electrophoresis 
SH2   Src homology 2 domain 
STAT    signal transducer and activator of transcription 
SVZ   subventricular zone 
T.   Tribolium 
TAMRA  tetramethylrhodamine 
TBS    tris buffered saline 
TBS-T   tris buffered saline with Tween 
TNF   tumor necrosis factor 
Trp   tryptophan 
U   units 
V   volt 
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Val   valine 
v/v   volume per volume 
μg    microgram 
μl    microliter 

μm    micrometer 
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