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Summary

Measuring vertical price transmission (VPT) has become a widespread means to evaluate the
performance of food value chain. To do so, agricultural economists employ time series methods
on spatially aggregated data of prices at a regional/ national level. The conclusions of these
studies are sometimes used to derive conclusions on the behavior of individual economic agents,
e.g. retailers. This is based on a strong (implicit) assumption that the results derived from the
studies using aggregated data apply, at least on average, at the disaggregated level. Two main
issues could result from this assumption. First, measuring VPT using aggregated data to derive
conclusions on individual behavior can be misleading on the real performance of the value chain.
For instance, the retail sector can be studied as an aggregate by using weighted averages on retail
prices to check how the sector transmits changes in prices from the upstream (wholesale) to the
downstream of the value chain. The results of such studies can only provide an imprecise picture
on how every retail store included in the weighted averages transmits its prices individually.
Second, units under statistical investigation are likely to behave very differently when studied on
different scales (e.g., aggregated/ disaggregated). For instance, while aggregated retail prices
display unit root behavior, a typical retail price at the store level tends to persist and most
deviations from the “regular” price are negative. This is often because of temporary sales prices
(TSP) or promotions. The magnitude of the use of these marketing tools varies across store
formats. For instance, hypermarket use High-Low pricing strategy, whereas the discount stores
employ everyday low pricing strategy. These differences in the pricing strategies of the chains
can lead to different outcomes on how they transmit the prices. Therefore, academic research has
recently started to use disaggregated scanner data to assess VPT, which can help to cast light on
how prices are transmitted at the individual retail chain; however, finding consistent methods to
employ is a challenge. For instance, to capture price dynamics, the most common approach is the
use of first difference in prices, which are mostly zero at the individual retail stores because at
this level retail prices are rigid.

This dissertation addresses these literature gaps by studying the VPT at the individual retail
store. Building up on three paper, each paper deals with each of the aforementioned issues. The
first paper explicitly studies the impact of TSP on VVPT processes. The results of this paper show
that TSP increase the speed and asymmetry of VPT, which add a potential cause of asymmetry to
those that have already been identified in the literature. The second paper builds on the results of
the first one. After filtering out the TSP, we investigate why VPT for the same product is
symmetric within some retail chains and asymmetric within others. We show that asymmetric
pricing depends on store membership to a specific chain and that market power expresses itself
in the adoption of a specific pricing strategy, namely: Every Day Low Pricing or High-Low,
which in turn can lead to different outcomes, including asymmetric pricing in VPT. Finally, in
the third paper of this dissertation, we provide some new insights on how prices are determined
and transmitted at the individual retail store. We employ an approach which consists in linking
dichotomous retail chains’ decision of changing prices versus displaying rigid prices to factors
such as retail marketing margins.
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1. Introduction

Food products move from farmers to consumers. The two economic agents are connected by
markets and agro-food marketing provides all functions between them. The retailing sector plays
an important role in connecting the upstream to the downstream of the same value chain.
However, retailers are often blamed for the (ab)use of market power to increase their marketing
margins and markups (Meyer & Cramon-Taubadel, 2004). Thus, the study of the dynamic
relationships of prices between two levels of the value chain are useful for a better understanding
of market functioning. A commonly used and flexible tool to measure the dynamic relationships
of prices is price transmission analysis. When employed between two levels of the same value
chain, price transmission is then referred to as vertical price transmission (VPT). Agricultural
economists study VPT processes to gain insights into the interactions between prices at different
levels of a marketing chain. The nature of VPT processes can cast light on the nature of
competition in the marketing chain. For instance, VPT allows an assessment of the degree and
the necessary time for an adjustment to a shock at one level of the value chain, e.g. wholesaler to

another level of the value chain e.g. retailer.

Measuring VPT along the food chain has become a widespread means for evaluating the
efficiency and the degree of competition in food processing and marketing. An important
measure and commonly used in the literature to assess the efficiency of value chains is the
presence or absence of asymmetries in VPT. The presence of asymmetry in VPT is of special
interest because it could have welfare implications (Meyer & Cramon-Taubadel, 2004).
Asymmetry in VPT refers to a situation where price transmission varies depending on whether
prices are increasing or they are decreasing. This phenomenon is concisely defined in Tappata
(2009, p. 673) : “prices rise like rockets but fall like feathers.” This stylized fact is found in
several empirical applications of VPT. For instance, in a meta-analysis of 70 studies, with 87
different model specifications, Frey & Manera (2007) find asymmetry is the rule with 87% of the
cases. Among factors that lead to the prevalence of asymmetries, Frey & Manera (2007) include
temporal data aggregation as an issue. That is, asymmetry is more prevalent in studies that
employ lower frequency data, i.e. monthly and weekly; thus, temporal aggregation plays an

important part.
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Typical applications of VPT, including those 70 studies surveyed in Frey & Manera (2007) link
average (wholesale) prices for an agro-food product in a region or country to average (retail)
prices for the same product or processed product in the same region or country. In addition to the
impact of temporal aggregation, the results of VPT analysis can also be influenced by cross-
sectional aggregation. The impact of cross-sectional aggregation on VPT is explicitly studied for
the first time in von Cramon-Taubadel et al (2006). The authors find that VPT analysis with
aggregated data tends to point to slower VPT processes than does analysis with disaggregated
(i.e., individual retail store) price data. They also find the prevalence of asymmetries in VPT at

the disaggregated level without going in details.

A striking difference between aggregated and disaggregated prices is in the characteristics of
time series. At store level, prices are rigid and most deviations from the “regular” is a result of
temporary sales prices (TSP). The first paper of this dissertation addresses this gap by studying
explicitly the impact of TSP on VPT processes. We hypothesize that TSP might bias the results
of VPT analysis towards findings of asymmetric price transmission. We test this hypothesis
using scanner data on retail butter prices in Germany. We first use filters to identify the
underlying “regular” retail prices; thus we remove TSP. We then compare estimates of VPT
from the wholesale to the retail level that are generated with raw and with filtered retail prices.
An earlier version of this study was presented at the 89™ Annual Conference of the Agricultural
Economics Society.

A final version of the paper is published in the Agribusiness: An International journal, with the
title: “Temporary sales prices and findings of asymmetric vertical price transmission”. The
results of the first paper confirm that TSP increase the speed and asymmetry of VPT. These
results add a potential cause of asymmetry to those that have already been identified in the
literature. Moreover, we contribute to the literature in many ways. First, we add a potential cause
of asymmetry to those that have already been identified in the literature (Meyer and von
Cramon-Taubadel, 2004; Frey and Manera, 2007). Second, we can further explain the
mechanism. More specifically, we find that the type of asymmetry caused by TSP is the same
type that is often attributed to the abuse of market power in the food chain. Third, even though
the application of VPT using scanner data are scare in the literature, we recommend for future

research to check for possible bias due to TSP, where findings of asymmetric VPT in
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disaggregated retail price data are found, before any hasty conclusions are drawn about

competition and market power.

It is often hypothesized that market power will enable retailers in the food marketing chain to
engage in asymmetric VPT. Academic research has recently started to use disaggregated scanner
data with a rich cross-sectional component to test this hypothesis. The studies of Richards et al.
(2014) and Loy et al. (2015) are pioneers, and their findings point towards considerable
variations in price dynamics and asymmetries in VPT across products, stores, and chains. The
procedure in both studies consist of testing the traditional market power hypothesis against
consumer search costs to explain the prevalence of asymmetric VPT at the disaggregated level.
The hypothesis that consumer search costs influence VPT process has its genesis in the
theoretical works of Tappata (2009), Yang & Ye (2008), and Yuan & Han (2011). The findings
of both studies point toward reconsidering market power as the only/major explanation for the
prevalence of asymmetries in VPT. The hypothesis of consumer search costs was tested with
conclusive effects in Richards et al. (2014), but with small effects in Loy et al. (2015). However,
both Richards et al. (2014) and Loy et al. (2015) do not account for an important feature of
scanner data: their hierarchical structure. This is curious because store membership in a chain
might influence VPT processes within a chain and between chains. We address this gap in the

second paper of this dissertation.

The second paper of this dissertation builds on the findings of first paper. Each retail price is first
filtered to remove TSP that would otherwise bias the results of asymmetry tests. Then we
investigate why VPT for the same product is symmetric within some retail chains and
asymmetric within others. We hypothesize that asymmetric pricing depends on store membership
to a specific chain and that market power expresses itself in the adoption of a specific pricing
strategy, namely: Every Day Low Pricing (EDLP) or High-Low (HiLo), which in turn can lead
to different outcomes, including asymmetric pricing in VPT. We employ multilevel modeling to
explore the hierarchical structure of scanner data in order to gain insights into the heterogeneity
in the prevalence of asymmetric pricing. Multilevel models allow for the systematic distinction
between the stores/chains that are likely to employ asymmetric pricing and those that employ
symmetric pricing. The results of the second paper show that when chains that employ HilLo

mimic chains that employ EDLP and display rigid prices, to avoid markup variation because they
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can, then price rigidity leads to an increase in the likelihood of asymmetric pricing. An earlier
version of this second paper has been presented at the at the 148™ seminar of the EAAE, with
title: “Factors explaining the findings of asymmetric vertical price transmission in hierarchically
structured data”.

Data characteristics are not the only challenge of VPT application at the disaggregated level.
The methods employed to capture the price dynamics are also important. Indeed, at the country
or regional scale, prices typically display unit root behavior. Hence, agricultural economists
employ time series methods such as VECMSs and non-linear variants of these models to depict
complex, regime dependent VPT processes (e.g., asymmetric, threshold VECMs). As data have
become available for academic research, recent studies employ the potential of panel data in
order to improve the power estimates of some variants of VECMs (Empen, 2014; Holm, 2013;
Loy et al., 2015; Richards et al., 2014). However, in VECMs or non-linear VECMs, price
dynamics are captured by employing first difference (AP, = P, — P,_; ) on prices. Since at
individual retail stores prices for individual food products, e.g. dairy products are rigid, most AP;
are zero. Previous studies do not provide any alternative for the information loss that could result
from using first differences on rigid prices. In the third paper of this dissertation, we apply an
alternative approach to capture dynamic relationships of prices between wholesaler and retailers
with disaggregated retail price data. An earlier version of this third paper has been presented as a
poster presentation at the 6™ EAAE PhD Workshop and the 55" Gewisola annual meeting 2015,
with title: “heterogeneity in price settings in the German butter market”.

Our approach consists of analyzing dichotomous choices of retail chains for changing their
prices or displaying rigid prices. More specifically, we try to connect the retail chains’
dichotomous decisions to some factor underling retail chain decisions, such as the effect of
marketing margins and the level of price at the competing retail chains for the same product. We
hypothesize that an increase in marketing margins would lead to a decrease in the likelihood of
introducing a price change. We also expect that retail chains that are sensitive to changes in their
marketing margins will adjust their prices more frequently than the retail chains that are
insensitive to their marketing margins. The findings of the third paper indicate that retail chains
react to the wholesale prices with temporary sales price (TSP). To changes of competing retail

prices, retail chains react with changing their regular prices. We also find that it is more likely to
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change new prices than to change old prices; thus a result that is at odds with the conventional
theories of costly price adjustment. Our approach consisting of modelling dichotomous choices
can be used to complement the standard cointegration methods that are used with aggregated

prices.

The rest of this dissertation is organized as follows. Chapter 2 presents the first paper on the
impact of TSP on the VPT processes. Chapter 3 presents the second paper, where investigate the
factors that can help to explain the prevalence of asymmetries in VPT at the smallest possible
sale. In Chapter 4, we present the findings of the third paper. The conclusions and outlook are
summarized in Chapter 5. Finally, supplementary material on how do we calculate filtered retail

prices are found in Chapter 6.
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2. Temporary sales prices and asymmetric price transmission

Abstract

We hypothesize that temporary sales might bias the results of vertical price transmission analysis
towards findings of asymmetric price transmission. We test this hypothesis using scanner data on
retail butter prices in Germany. We first use filters to identify underlying reference retail prices
and thus remove temporary sales prices. We then compare estimates of vertical price
transmission from the wholesale to the retail level that are generated with raw and with filtered
retail prices. Our results confirm that temporary sales prices increase the speed and asymmetry of
vertical price transmission. These results add a potential cause of asymmetry to those, such as

market power, that have already been identified in the literature.

Keywords: Aggregation, Vertical Price Transmission, Reference Prices, Scanner Data

7|Page



2.1. Introduction
Most empirical studies of vertical price transmission have employed regional or national average
producer, wholesale and retail prices. These studies assume, usually implicitly, that results
derived from such spatially aggregated data are representative, at least on average, of the
behavior of the individual actors (e.g., farmers, wholesalers or retailers) whose prices were
aggregated. For example, if estimation indicates that it takes ‘X’ weeks for a wholesale price
shock to be transmitted to the average retail price, then it is assumed that on average it will take
‘X” weeks for this wholesale price shock to be transmitted to the prices in individual retail stores.

Aggregation results in a loss of information, however, and it changes the time series
characteristics of the data thus processed. Using price data from a set of individual retail stores in
Germany, von Cramon-Taubadel et al.(2006) show that spatial aggregation affects the results of
vertical price transmission analysis. Specifically, they first estimate price transmission from a
wholesale price to each of the individual retail prices. Second, they estimate price transmission
from the same wholesale price to the average of the retail prices. Their results show that on
average the individual estimates of vertical price transmission are considerably faster than the

estimate generated using average retail prices.

To explain these results, von Cramon-Taubadel et al.(2006) point out that unlike spatial
averages, which typically display random walk behavior, retail prices at the individual store level
tend to change infrequently and adhere to psychological pricing rules (i.e. generally end with the
digit “9"). However, von Cramon-Taubadel et al.(2006) do not account for an additional typical
characteristic of retail food prices, which is promotional pricing. Loy, Holm, Steinhagen, &
Glauben (2015, p. 451) state that: “...price promotions are not part of the cost pass-through or
the price transmission between wholesale and retail prices”. Hence, they argue that the presence

of promotions in retail price data might affect the measurement of price transmission.

In this paper we confirm that the presence of price promotions affects estimates of vertical price
transmission. Promotional prices can take several forms®, of which temporary sales prices (TSP)
are the most prevalent in food retail (Hosken & Reiffen, 2001). We study the impact of TSP on

estimates of vertical price transmission using disaggregated retail price data. To this end we first

1 . - . .
Other forms include ‘two-for-one’ and similar discounts, as well as discounts for members of loyalty programs.
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employ several methods that have been proposed to filter out TSP by identifying underlying
"reference” retail prices (Chahrour, 2011; Eichenbaum et al., 2011; Kehoe & Midrigan, 2007; A.
O. Nakamura, Nakamura, & Nakamura, 2011; E. Nakamura, 2008). We then compare estimates
of vertical price transmission from the wholesale to the retail level that are generated with raw
and with filtered retail prices. This enables us to test whether the estimated speed and symmetry
of price transmission from the wholesale to the retail level is affected by the presence of TSP in
retail price data. Our results show that TSP in retail price data do indeed bias empirical results
towards findings of asymmetric price transmission. Asymmetric price transmission is often
considered to be a symptom of market power in the food chain, but our results suggest that
empirical findings of asymmetry in disaggregated data may be due to TSP and, thus, that caution

is required before reaching conclusions about the presence and implications of market power.

The remainder of the chapter is organized as follows. In Section 2.2 we briefly summarize
previous studies of the effects of data aggregation on vertical price transmission. In Section 2.3
we describe the methods and data that we employ. In Section 2.4 we present results, and Section
2.5 concludes.

2.2. Review of the empirical literature on data aggregation and VPT
We focus on spatial or cross-sectional data aggregation whereby price data from individual
actors such as producers or retailers is used to produce regional or national averages.? Hence, we
do not consider possible impacts of temporal aggregation on the estimation of vertical price

transmission processes.

Several studies have considered the effects of spatial data aggregation on the results of vertical
price transmission analysis. Schwartz & Schertz Willet (1994) state that the characteristics of the
data collection process, such as the timing of price data collection at different levels of the
marketing chain, and how these data are aggregated, might affect estimates of vertical price
transmission. They also speculate whether the presence of promotions in price data might affect
the estimation of vertical price transmission. Powers (1995) finds differences in the speed of

price adjustment for lettuce depending on whether national (USA) or state-level data are

2 In addition to calculating the arithmetic mean, statistical authorities sometimes apply other transformations to
raw data such as first eliminating individual observations that are deemed to be outliers or non-representative, for
example because they deviate from the mean by more than 'X' standard deviations, or because they belong to the
largest or smallest 'Y' percent of all observations.
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analyzed, and conjectures that these differences might be due to spatial aggregation. Schroeder
(1988) considers vertical price transmission for individual cuts of pork as opposed to an
aggregate of these cuts, and concludes that studies that use aggregated retail prices over-simplify
the true pricing behavior of individual retailers. In his extensive study of asymmetry in vertical
price transmission, Peltzman (2000) includes disaggregated price data from one supermarket
chain in the Chicago area. He finds that estimated price transmission is stronger at the individual
supermarket level than at the aggregated level. He also finds little evidence of asymmetric
vertical price transmission in the disaggregated supermarket level, which contrasts with his
finding that asymmetry is prevalent when aggregated prices are used. Peltzman (2000) points

out, however, that his findings are based on only one retail chain and cannot be generalized.

von Cramon-Taubadel et al.(2006)address the effects of spatial aggregation on the measurement
of wvertical price transmission theoretically and empirically. They demonstrate that key
parameters in an error correction model (ECM) that is specified with average prices are not the
arithmetic averages but rather non-linear functions of the corresponding parameters in the ECMs
that are specified with the underlying individual prices. They also present theoretical
considerations that suggest that vertical price transmission processes estimated with
disaggregated prices will on average be faster than the corresponding process estimated with the
average of these prices. Specifically, they demonstrate that the aggregation of stationary
autoregressive processes creates fractionally integrated or ‘'long memory' processes. They
confirm these theoretical considerations using retail price data for chicken and lettuce in
Germany. von Cramon-Taubadel et al.(2006) also find that while vertical price transmission
appears to be symmetric at the aggregate level, vertical price transmission from the wholesale to
the individual store level appears to be asymmetric for roughly one-quarter of stores in their

dataset.

In summary, a few studies note that spatial aggregation affects the estimated speed and
symmetry of vertical price transmission. However, most of these studies are based on
comparatively small data sets (e.g. Peltzman's analysis of a single supermarket chain).
Furthermore, no study to date has considered the possible influence of TSP on estimates of

vertical price transmission. As described below, we estimate vertical price transmission using a

10| Page



large scanner dataset of butter prices in Germany (over 1000 series of roughly 300 weekly

observations each), and we explicitly analyze the effects of TSP on this estimation.

There are theoretical reasons to expect that TSP will affect estimates of vertical price
transmission. Consider the wholesale price for a food product, and the corresponding retail price
in a specific store. In equilibrium the retail price will exceed the wholesale price by the amount
of the retail mark-up. If the retail store drops its price for a temporary sale, the margin between
the retail and the wholesale prices will be squeezed, and the two prices will no longer be in
equilibrium. When the retail price is returned to its regular level in the next period, it will appear
as if this squeezed margin has been rapidly and completely corrected. The more frequent the use
of TSP, the more such episodes of rapid and complete correction of squeezed margins will be

contained in a given sample of price data.

This could have two effects on estimates of vertical price transmission. First, we hypothesize that
episodes of TSP will make vertical price transmission appear more rapid. To test this hypothesis,
we compare the speed of vertical price transmission for raw retail prices that include TSP with
the speed of vertical price transmission for the same retail prices that have been filtered to
remove TSP. Second, since TSP by definition always involve first reducing and subsequently
increasing prices, they will add to retail price data only sharp downward spikes or ‘valleys’ in
which squeezed margins are rapidly corrected upward, and never corresponding sharp upward
spikes or ‘peaks’ in which stretched margins are rapidly corrected downward. Hence, we
hypothesize that TSP will bias the results of vertical price transmission analysis using retail
prices in favor of essentially spurious findings of asymmetric vertical price transmission. This
might help explain the higher prevalence of asymmetric vertical price transmission in
disaggregated retail price data reported by von Cramon-Taubadel et al.(2006). We test this
hypothesis by estimating asymmetric ECMs first with raw retail price data and second with
corresponding retail price data that has been filtered to remove TSP. The following section
explains our empirical strategy and data in greater detail.
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2.3. Methods and data
2.3.1. Estimating vertical price transmission and testing for asymmetry
We estimate bivariate vector error correction models between the individual retail prices (raw or
filtered as described in subsection 2.3.2 below) and a weighted average wholesale price. In this

setting the vector error correction model takes the following form:

Apf| o1 Z[ 1j Plj Pt 1 glt

+ +

] L o [ N By e e B
where PRt is the price of an item i in a given retail store, P}V is the average wholesale price at the
national level of that item, ¢t is an index of time,p, a, 8, §, and p are parameters to be estimated,
1+ and &,, are white noise disturbances. In equation (1) the expression PR, — By, — B PV,
often referred to as the error correction term (ECT), captures the deviations from the long-run
equilibrium relationship between PR* and P} . Hence, PR, — By — B P, = ECT,_, equals zero
when these prices are in equilibrium. The parameters in equation (1) which are of greatest

interest to us are the a, which measure the rates at which deviations from equilibrium are

corrected, i.e. the speed of vertical price transmission.

We estimate equation (1) using the 2-step method proposed by Engle & Granger (1987)°. This
involves first estimating the long-run relationship P = B, + P/ + u, between the wholesale
and retail prices using OLS, and second using the estimated lagged residualsu;_; from this
estimation in place of the expression PR, — B, — 1 P}Y, when estimating equation (1), again
with OLS. We assume that PY is weakly exogenous * (i.e. it does not respond to deviations from
the long-run relationship) and therefore focus exclusively on the equation forAPR in (1). Hence,
in the second step of the Engle-Granger method we estimate the following single-equation ECM:

. . (2)
APR' = ¢ + a(ETC,_,) + Z 5jAPf_‘j + Z p]-APt”_/j + &
j=1 j=1

Where ECT,_; = u,_, = PR, — Bo — B,PYY, as estimated in the first step.

3 We could also use a systems method such as Johansen’s maximum likelihood estimator. However, it is not
possible to estimate the asymmetric specifications described below using this method. We do use the Johansen
method to test for cointegration between wholesale and retail prices (see Results section).

4 Loy et al. (2015) use the same dataset that we use in this paper for the period 2005-2008. They find that in over
90% of all retail-wholesale price combinations the wholesale price is weakly exogenous.
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Asymmetric price transmission describes the situation in which prices that are linked by a long-
run equilibrium relationship react differently depending on whether they are pushed too close
together or pulled too far apart relative to that equilibrium. In our setting, asymmetry means that
the retail price responds more rapidly (or more slowly) to an increase in the wholesale price (i.e.
when the margin is squeezed) than it does to a decrease in the wholesale price (i.e. when the
margin is stretched). Following von Cramon-Taubadel (1998), we use a modification of the
vector error correction model proposed by Granger & Lee (1989) to test for asymmetry. This
modification involves segmenting the error correction termECT,_; = [PtR_i1 — Po — ﬂlPtV'_’l] into
positive and negative components ECT* = max{0,ECT} and ECT~ = min{0, ECT} and
estimating the following equation:

k l
APR = @ + a*ECT{ | + a ECT_, + Z §;APR + Z piAPY i + & 3)
j:l ]:1

Since ECT* + ECT~ = ECT, equation (2) is nested in equation (3) and an F-test can be used to
test the null hypothesis of symmetry (Ho: a* = ™). In the symmetric model in equation (2), the
adjustment parameter « is expected to lie on the interval [-1,0]. « < 0 ensures that the retail
price decreases (APR! < 0) whenever it is too large relative to the wholesale price (ECT,_; =
[PRY, = —By — B1PY1] > 0), and correspondingly that the retail price increases (APF' >
0)whenever it is too small relative to the wholesale price (ECT;-, < 0). Furthermore, a > —1
ensures that no more than 100% of any deviation from the long-run equilibrium is corrected in
each subsequent period (e.g. « = —0.5 means that 50% of any deviation from the long-run
equilibrium in period t — 1 is corrected in period t)°. In the asymmetric model in equation (3) the

same restriction applies to a™ and a~ individually, with (-1 < a* < 0) and (-1 <a” <0)
ensuring error correction as outlined above, and a* # a~ allowing the magnitude of AptRi to

differ according to whether the deviation from long-run equilibrium (ECT) is positive (margin

stretched) or negative (margin squeezed).

> Theoretically a could also take values on the interval [— 2, —1], but this would entail overshooting and error

correction in dampened oscillations, which we consider implausible in the context of wholesale-retail butter price
transmission.
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2.3.2. Reference prices

Over the last decade a large literature has emerged on the identification of TSP in retail price
data. One branch of this literature (e.g. Hosken & Reiffen, 2004) focuses on measuring the
frequency and timing of price promotions as an important dimension of retail price behavior.
Another branch (e.g. Eichenbaum et al., 2011) focuses on filtering promotional prices out of
retail price data to reveal underlying so-called “reference” prices that reflect fundamentals such
as core inflation.

Throughout this literature, a key question is how to identify TSP empirically in retail price data.
An observed retail price P, can be decomposed into a regular or reference price (r;) component
and a sales price component (S;). Two main approaches to decompose (P;) into these
components have been taken in the literature: one which filters out individual episodes of TSP
and considers all remaining price movements as part of the reference price; and another which
filters out the reference price and considers all remaining price movements as TSP and other
short term features. An example of the first approach is Kehoe & Midrigan (2007) who consider
any price decrease that is followed by a price increase in the next period to be a TSP. Nakamura
& Steinsson, 2008) modify the Kehoe & Midrigan (2007) procedure to consider only symmetric
‘valleys’ as TSP; i.e. a TSP is recorded only when a price decrease is immediately reversed by a
return to the previous price. Following Hosken & Reiffen (2001), Loy et al. (2015) consider only
symmetric valleys in which the price reduction amounts to at least 5% of the initial price.

All these procedures for identifying TSP share the main weakness that they are based on
arbitrary definitions of what constitutes a sales price (S;). This has led authors such as
Eichenbaum et al., (2011) to propose methods that fall under the second approach described
above, which is to filter out the underlying reference price ri. Specifically, Eichenbaum et al.,
(2011) calculate the reference price as the modal price over a fixed 13-week or quarterly

window:®
{r,,r,,ry,....r;; }=modal value {p,, p,, P51 P13 } 4)
where {p,,p,,Ps,--.P1z} 1S @ sequence of observed prices. Chahrour (2011) argues that this

method is too restrictive because it only allows changes in the reference price to take place at the

® Eichenbaum et al. (2011) are primarily interested in studying inflation and choose a 13-week or quarterly window
for their analysis to match the quarterly frequency of much macroeconomic data.
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beginning/end of each quarter. He therefore suggests that a moving window be used to calculate
the reference price. Specifically, Chahrour's reference price 7; is defined as the modal price in a
centred moving window of width (2w+1):

r, =modal value {p, ., , Pz r-Pras Prs Progseeos Prow s Prowet s Prow } %)
Chahrour (2011) also suggests an algorithm based on the most common price in overlapping
periods to deal with multiple modal values.

Figure 2.1: Identifying the filtered (reference) price for a typical retail butter price using
fixed and rolling window methods
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Source: Authors’ calculations
In the following we employ Chahrour’s rolling window method and a width of 13 weeks. We
refer to the observed retail prices as “raw”, and to the references retail prices produced using
Chahrour’s method as “filtered”. Figure 2.1 compares the results of applying this method and
Eichenbaum et al.’s fixed window method to a typical raw retail price series in our dataset.
Overall we find that the rolling window method produces a more plausible decomposition into
reference and sales components than the fixed window. In particular, the fixed window often
generates a filtered price that appears to lead or lag the raw retail price (see for example weeks
120 to 150 in the left panel of Figure 2.1), and that fails to follow some raw retail price
movements that are clearly not due to sales (see for example the temporary increase in raw prices
around week 260 in Figure 2.1, which the fixed window in the left panel fails to follow, unlike

the rolling window in the right panel). Experimentation with widths of 9 and 17 weeks (results
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available from authors) indicate that varying the size of the rolling window that we use to filter

the raw retail prices does not affect our main results.

2.3.3. Data
To test the hypotheses and employ the methods outlined above, we use scanner data on weekly
retail prices for 250-gram foil-wrapped packages of butter in Germany. We choose butter
because it is a very homogeneous product across space and time, and the 250-gram format

because it accounts for over 90% of the total volume of butter sales in our data. -’

The data cover 459 retail stores belonging to 41 different chains, and run from the beginning of
2005 to the end of 2010 (312 observations). Individual brands of butter are identified by
European Article Numbers (EAN), and we only include a price series in the subsequent analysis
if the brand in question was available in the retail store in question without interruption over the
entire sample period. Hence, we exclude from the analysis price series for brands that were
withdrawn from or introduced to a store’s shelves at some point between 2005 and 2010, and we
also exclude brands that were only intermittently available due to promotions or temporary
stock-outs. The result is a balanced panel of 1087 retail price series for individual store-brand

combinations.

As summarized in Table 2.1 this sample of butter prices includes series from roughly 90% of the
retail chains and 75% of the individual retail stores that are covered in the complete scanner
dataset. Together these series cover all regions of Germany and account for roughly 25% of the

total butter turnover in the complete dataset.

’ These butter price data are taken from a larger dairy product scanner dataset purchased from IRI. See Loy et al.
(2015) for more information on this dataset.
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Table 2.1 Descriptive statistics and the representativeness of the sample

Complete Subset: homogenous Subset: only
dataset product 250-gram complete series
package (no missing values)
Share of Share of
Number Number complete Number complete
dataset (%) dataset (%)
Chains 41 37 90.2 37 90.2
Stores 459 349 76.0 345 75.2
Brands 492 77 15.7 56 114
Price series 24368 1439 5.9 1087 4.5
Units sold 199,075,937 48,986,447 24.6 46,006,635 23.1
Turnover (€) 194,073,794 49,806,867 25.7 46,846,572 24.1

Source: Authors’ calculations
At the wholesale level we employ a weekly weighted average national wholesale price for butter
that is quoted by the South German Butter and Cheese Exchange: SBKB (SUDDEUTSCHE
BUTTER UND KASE BORSE) in Germany. Loy et al. (2015) explain that the SBKB's
wholesale price reflects the average price for all distributional channels, and that it can be
interpreted as a cost of production or minimum opportunity cost. We use a national weighted
average wholesale price because disaggregated wholesale prices are not available, and because
we wish to focus on the effects of aggregation and TSP at the retail level.

2.4. Results and discussion

2.4.1. Estimated vertical price transmission with aggregated retail prices
ADF and KPSS tests (Table 2.2) indicate that both the wholesale price and the average retail
price are non-stationary in levels, and stationary in first differences. Furthermore, both the trace
and the maximum eigenvalue tests proposed by Johansen (1988) and Johansen & Juselius (1990)
suggest that we can reject the null hypothesis of no cointegration between the wholesale and the

average retail butter price.
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Table 2.2 Unit root and cointegration tests for the spatially aggregated butter prices

Raw retail prices

Test Deterministic part Lags Value Critical
ADF in levels Drift 6 t=-1.90 -2.87
ADF in first difference  Drift 5 t=-7.07 -2.87
KPSS in levels Drift 7 u=0.85 0.46
KPSS in first Drift 6 u =0.054 0.46
Wholesale prices
Test Deterministic part Lags Value Critical
ADF in levels Drift 4 T=-2.31 -2.87
ADF in first difference  Drift 3 T=-6.45 -2.87
KPSS in levels Drift 5 u=0.65 0.46
KPSS in first Drift 4 u =0.086 0.46
Cointegration test
Test Ho Lags Value Critical
Johansen  trace r=0 3 51.86 19.96
r<1 3 5.24 9.24
eigenvalue r=0 3 46.62 15.67
r<l1 3 5.24 9.24

Source: Authors’ calculations
Table 2.3 presents the results of the estimation of the symmetric ECM (equation (2)) and the
asymmetric ECM (equation (3)) with the average retail price. The lag-lengths k and 1 in
equations (2) and (3) are determined by the Akaike Information Criterion (AIC). The estimated
adjustment parameter in the symmetric model equals -0.350, which indicates that deviations
from the long-run equilibrium are corrected by a factor of 35% per week. However, the null
hypotheses of symmetry can be rejected because the corresponding F statistic with 1 and 310
degrees of freedom equals 10.61 (p-value = 0.001). The estimated asymmetric ECM results

indicate that positive deviations of the average retail price from the long-run equilibrium (i.e.

stretched margins) are corrected by 10% per week (although the corresponding coefficient, & °,
does not differ significantly from 0), while negative deviations (i.e. squeezed margins) are

corrected by 54% per week.
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Table 2.3 Results of the estimation of the symmetric and the asymmetric ECM with

spatially aggregated prices

Coefficient Symmetry Asymmetry
Estimate SE Estimate SE

Bo 0.475 0.016 0.475 0.016
B1 0.723 0.021 0.723 0.021
o) -0.0002 (0.002) -0.009 (0.003)
d1 -0.370 (0.064) -0.352 (0.06)
d2 -0.245 (0.062) -0.268 (0.06)
d3 -0.086 (0.052) -0.066 (0.052)
p1 0.242 (0.108) 0.168 (0.110)
P2 -0.028 (0.209) -0.063 (0.108)
P3 0.076 (0.1207) 0.030 (0.1207)
o -0.350 (0.057) - -
ot - - -0.098 (0.101)
o - - -0.539 (0.084)

Sum Squared Residual 0.444 0.431

R’ 0.407 0.424

Source: Authors’ calculations

2.4.2. Estimated vertical price transmission with disaggregated retail prices

The typical raw retail butter price series graphed in Figure 2.1 displays many of the key

characteristics of retail prices: stickiness, psychological pricing (i.e. prices ending in “9”), and

episodes of TSP. Figure 2.2 presents the raw butter price for another randomly selected retail

store, the average retail butter price for all of the stores that belong to the same chain?, and the

average retail butter price over all stores and chains. We see that increasing aggregation

progressively masks the stickiness, psychological pricing and TSP which are characteristic of

disaggregated retail prices.

8 For each individual store in the scanner dataset, a code number indicates membership in a specific retail chain.

However, the dataset does not identify the individual chains.
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Figure 2.2 Retail butter prices at different levels of spatial aggregation
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Table 2.4 summarizes the results of unit root tests conducted on the 1087 individual raw retail
butter prices series and the corresponding filtered prices produced by applying the Chahrour’s
method. The ADF and the KPSS unit root tests indicate that most of the individual raw retail
butter prices are non-stationary in levels and stationary in first differences. This result is even
more pronounced for the filtered prices. Although we acknowledge that neither the individual
raw retail butter prices nor the corresponding filtered prices are typical random walk processes,
we conclude that they are non-stationary and candidates for cointegration with the wholesale

price.

Johansen cointegration tests indicate that most of the individual raw retail prices are cointegrated
with the wholesale price (81.3% of the raw prices according to the trace test, and 77.8%
according to the eigenvalue test). These shares fall when filtered retail prices are used (to 51.4%
and 41.6%, respectively). This is first evidence that, as hypothesized, removing TSP from retail
price data reduces the apparent speed of vertical price transmission. According to the Granger
representation theorem (Engle & Granger, 1987), if two variables are cointegrated, then the
adjustment parameter in the corresponding ECM (« in our notation above) should be
significantly different from zero. If filtering out TSP reduces the share of retail prices that are

cointegrated with the wholesale price, then it must be increasing the share of prices for which the
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adjustment parameters are not significantly different from zero, i.e. for which price transmission
appears to be slower. We confirm this finding below.

Table 2.4 Unit root test results for the individual raw and filtered retail butter prices

Raw prices Filtered prices

Unitroot  ADF in levels Reject Ho (%)° 14.6 0.5
tests ADF in first differences Reject Ho (%)° 100 100
KPSS in levels Reject Ho (%)° 84.1 91.9

KPSS first differences Reject Ho (%)° 0 0
Cointegrat  Johansen: Trace test r=0 Reject Ho (%) 81.3 51.4
ion tests r<1 RejectHo (%)’ 4.2 5.2
Johansen: Eigenvaluetest r=0  Reject Ho (%)° 77.8 41.6
r<1 Reject Hy (%)° 4.2 5.2

Notes: Lag selection for all tests based on the AIC criterion.
% Price series filtered using the Chahrour (2011) method to remove temporary sales prices.

b- The share (in %) of the 1087 price series for which the null hypothesis can be rejected at the 5%
Source: Authors’ calculations

We next estimate the ECMs in equations (2 - symmetric) and (3 - asymmetric) for each of the
1087 individual raw retail prices with the wholesale price, and for each of the corresponding
filtered prices with the wholesale price. Results are presented in Table 2.5.

Turning first to the results for the symmetric ECMs we see that the average adjustment parameter
estimated with the raw prices has a higher mean (0.257) than the average adjustment parameter
estimated with the corresponding filtered prices (0.089). Figure 2.3 shows that the distribution of
the adjustment parameters estimated with raw data not only has a higher mean, but also includes
many much larger values than the distribution of the adjustment parameters estimated with
filtered prices. For example, 50% of the adjustment parameters estimated with raw prices are
greater than 0.21; for the filtered prices this proportion is only 8%. As hypothesized therefore,
vertical price transmission appears to be more rapid when raw retail prices are used, and less

rapid when these prices are filtered to remove TSP.
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Table 2.5 Results of the estimation of symmetric and asymmetric vector error correction
models with raw and filtered retail prices

Raw prices Filtered prices
Mean coefficients (share that differ from 0 at the 5% level)
o (symmetric ECM) -0.257 (96%) -0.089 (90%)
Intercept (asymmetric ECM) -0.020 (63%) -0.002 (11%)
o’ (asymmetric ECM) -0.050 (15%) -0.053 (23%)
o (asymmetric ECM) -0.494 (93%) -0.135 (72%)
Test of symmetry (share of rejections of symmetry)
Ho: Symmetry o "= o~ 78% 26%
Diagnostic tests?
ARCH-LM (%) 62 88
Breusch—Godfrey 5 lags (%) 18 12
Box-Ljung. 15 lags (%) 7 4
Jarque-Bera (%) 100 100

Source: Authors’ calculations

Figure 2.3 The distribution of the adjustment parameters in 1087 symmetric ECMs that
link the wholesale price to raw retail prices, and in 1087 ECMs with the corresponding
filtered prices
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The results in Table 2.5 also confirm the second hypothesis formulated above, which is that TSP
bias the results of vertical price transmission analysis towards findings of asymmetry. The null

hypothesis of symmetry (a* = a~ in equation (3)) can be rejected at the 5% level in 78% of the

22 |Page



asymmetric ECM estimated with raw retail prices; this proportion falls to 26% when filtered

prices are employed instead.

How do TSP create the impression of asymmetric vertical price transmission? As argued above,
each episode of TSP adds a sharp downward spike or ‘valley’ to price data. When a TSP is
introduced, the retail price falls and the retail margin is squeezed, leading to a negative value of
ECT. When the TSP is terminated in the next period, the retail price returns to its original level
and it appears as if the negative ECT has been corrected rapidly and fully. Hence, each episode
of TSP adds to the estimation of an asymmetric ECM a negative value of ECT that is rapidly and
fully corrected. Together, these episodes will therefore bias upward the estimated value of a~,
the coefficient that measures the speed with which negative values of ECT are corrected. Since

TSP only add “valleys’ and no ‘peaks’ price data, they only affect a~ in this manner.

This effect is illustrated in Figure 2.4 for the same retail price series that is depicted in Figure
2.1. Each panel of Figure 2.4 plots the change in the raw retail price in period t (APF) against the
error correction term in the previous period (ECT;_,); the left panel for the raw retail price, and
the right panel for the corresponding filtered price. Ignoring the other terms in the ECM in
equation (3), the relationship between ECT,_, and APfdetermines the estimates of a™ and ™.
Comparing the two panels we see that the pattern of individual data points differs considerably.
In both panels observations for which AP® = 0 predominate, reflecting the stickiness of retail
prices. However, in the bottom middle of the left panel there are several larger negative APR
values corresponding to small positive and negative values of ECT;_,; these observations are
created by the introduction of a TSP. Moreover, at the top left of the left panel there are several
large positive values of AP

corresponding to large negative values of ECT;_;; these observations result when a TSP is
terminated. Together, these observations increase the likelihood of finding asymmetry by biasing
a~ upward, an effect which disappears in the right hand panel when filtered prices are used to
estimate the ECM. When a symmetric ECM is estimated with these data, the result is an estimate
of « that is a weighted average of a* and a~. This average will be larger for the raw data in the
left panel of Figure 2.4 than it is for the filtered data in the right panel. As a result, vertical price

transmission will appear to be more rapid for the raw than for the filtered data.
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Figure 2.4 The effect of temporary sales prices on estimates of asymmetric price transmission with a typical retail price series
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2.5. Conclusion
The results presented above confirm that temporary sales prices can affect the results of
empirical price transmission analysis. In particular, temporary sales prices make vertical price
transmission appear more rapid and increase the likelihood that it will appear to be
asymmetric. We demonstrate this effect using scanner data on butter retail prices in Germany,
and we propose an explanation for it. Of course, our results are limited to butter prices, and
future work will have to determine to what extent they can be generalized. For instance, if
different types of retail store (discounters and hypermarkets, for example) and different retail
chains pursue different pricing strategies, this might be reflected in hierarchical dependencies
in the relationship between temporary sales pricing and estimates of vertical price

transmission.

Our findings add a potential cause of asymmetry to those causes, such as market power, that
have already been identified in the literature (Frey & Manera, 2007; Meyer & Cramon-
Taubadel, 2004). The asymmetry that temporary sales prices create is of the ‘rockets and
feathers’ variety, i.e. it appears that retail prices shoot up rapidly when the retail margin is
squeezed, but fall less rapidly when the retail margin is stretched. Hence, the asymmetry
caused by temporary sales prices is of the same type as is often attributed to the abuse of
market power in the food chain. In the future, therefore, any findings of asymmetric vertical
price transmission in disaggregated retail price data should first be checked for possible bias
due temporary sales prices before possibly unfounded conclusions are drawn about

competition and market power.

25| Page



2.6. References

Chahrour, R. A. (2011). Sales and price spikes in retail scanner data. Economics Letters,
110(2), 143-146.

Eichenbaum, M., Jaimovich, N., & Rebelo, S. (2011). Reference Prices, Costs, and Nominal
Rigidities. American Economic Review, 101(1), 234-262.

Engle, R. F., & Granger, C. W. J. (1987). Co-Integration and Error Correction:
Representation, Estimation, and Testing. Econometrica, 55(2), 251-276.

Frey, G., & Manera, M. (2007). Econometric Models of Asymmetric Price Transmission.
Journal of Economic Surveys, 21(2), 349-415.

Granger, C. W. J., & Lee, T. H. (1989). Investigation of production, sales and inventory
relationships using multicointegration and non-symmetric error correction models.
Journal of Applied Econometrics, 4(S1), S145-S159.

Hosken, D., & Reiffen, D. (2001). Multi-Product Retailers and the Sale Phenomenon.
Agribusiness, 17(1), 115-137.

Hosken, D., & Reiffen, D. (2004). Patterns of retail price variation. RAND Journal of
Economics, 35(1), 128-146.

Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic
Dynamics and Control, 12(2-3), 231-254.

Johansen, S., & Juselius, K. (1990). Maximum Likelihood Estimation And Inference On
Cointegration — With Applications to the Demand for Money. Oxford Bulletin of
Economics and Statistics, 52(2), 169-210.

Kehoe, P. J., & Midrigan, V. (2007). Sales and the real effects of monetary policy. Working
Papers.

Loy, J.-P., Holm, T., Steinhagen, C., & Glauben, T. (2015). Cost pass-through in
differentiated product markets: a disaggregated study for milk and butter. European
Review of Agricultural Economics, 42(3), 441-471.

Meyer, J., & Cramon-Taubadel, S. (2004). Asymmetric Price Transmission: A Survey.
Journal of Agricultural Economics, 55(3), 581-611.

Nakamura, A. O., Nakamura, E., & Nakamura, L. I. (2011). Price dynamics, retail chains and
inflation measurement. Journal of Econometrics, 161(1), 47-55.

Nakamura, E. (2008). Pass-Through in Retail and Wholesale. American Economic Review,
98(2), 430-437.

Nakamura, E., & Steinsson, J. (2008). Five Facts about Prices: A Reevaluation of Menu Cost
Models. Quarterly Journal of Economics, 123(4), 1415-1464.

Peltzman, S. (2000). Prices Rise Faster than They Fall. Journal of Political Economy, 108(3),
466-502.

Powers, N. J. (1995). Sticky short-run prices and vertical pricing: Evidence from the market
for iceberg lettuce. Agribusiness, 11(1), 57-75.

SBKB. (2011). Weekly wholesale prices. Stiddeutsche Butter- und Kase-Bdrse e.V. Kempten
(Allgéu).

Schroeder, T. C. (1988). Price linkages between wholesale and retail pork cuts. Agribusiness,
4(4), 359-369.

Schwartz, L. a, & Schertz Willet, L. (1994). Price Transmission Theory and Applications To
Agroidustry:an Annotated Bibliography. New York, 04(June).

von Cramon-Taubadel, S. (1998). Estimating asymmetric price transmission with the error
correction representation: An application to the German pork market. European Review
of Agricultural Economics, 25(1), 1-18.

von Cramon-Taubadel, S., Loy, J.-P., & Meyer, J. (2006). The impact of cross-sectional data
aggregation on the measurement of vertical price transmission: An experiment with

26 |Page



German food prices. Agribusiness, 22(4), 505-522.
3. Factors explaining asymmetric price transmission from wholesale to retail prices

Abstract

Academic research has recently started to use disaggregated scanner data to assess the
vertical price transmission (VPT) from wholesale to retail prices. The current findings point
towards considerable variations in price dynamics and asymmetries in VPT across products,
stores, and chains. In this contribution, we instigate why VPT for the same product is
symmetric within some retail chains and asymmetric within others. Asymmetry in VPT is
commonly assumed to result from retailers’ exercise of market power regardless of their
heterogeneity in pricing strategies. Instead of this generic explanation, we hypothesize that
asymmetry in VPT depends on store membership to a specific chain and that market power
expresses itself in the adoption of a specific pricing strategy, namely: Every Day Low Pricing
or High-Low, which in turn can lead to different outcomes, including asymmetries in VPT.
We employ price rigidity and consumer search costs to approximate the pricing strategy for
each retail store. We employ multilevel modeling to explore the hierarchical structure of
scanner data in order to gain insight into the heterogeneity in the prevalence of asymmetries
in VPT. Multilevel models allow for the systematic distinction between the stores/chains that
are likely to employ asymmetries in VPT and those that do not. Our results show that when
consumer search costs increase within a hypermarket setting, a store format where consumers
expect to benefit from search and hypermarkets respond adequately, resulting in a decrease in
the likelihood of asymmetry in VPT. Further, we find that when chains that employ HiLo
mimic chains that employ EDLP and display rigid prices, to avoid markup variation because
they can, then price rigidity leads to an increase in the likelihood of asymmetries in VPT.

Keywords: asymmetry, vertical price transmission, hierarchical data, multilevel models and

Bayesian statistics.
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3.1. Introduction

It is common in studies of market integration to check for the presence of asymmetries in
vertical price transmission (VPT) °. Findings of asymmetries in VPT is associated to
consumer welfare loss and has important policy implications. According to Peltzman’s
conclusion, if asymmetry in VPT is the rule rather than the exception, then it is an indication
of widespread market failure or the presence of a gap in economic theory (Peltzman, 2000).
This is intriguing because there is ample evidence of the prevalence of asymmetries in VPT
in empirical VPT literature (Frey & Manera, 2007). The common explanations for the
prevalence of asymmetry include market power, menu costs (Azzam, 1999), consumer search
costs (Tappata, 2009; Yang & Ye, 2008), and other reasons such as government intervention
(Meyer & Cramon-Taubadel, 2004; Vavra & Goodwin, 2005). Nonetheless, given that most
of the previous studies have been conducted at the national/regional level, we know very little
about the reasons behind the prevalence of asymmetries in VPT at the smallest possible scale
of the value chain, i.e. the individual retail store.

It has only been recently that academic research has started to use disaggregated (scanner)
data to assess VPT from the wholesale to the retail level. This signifies the change towards
reconsidering retailers’ market power in explaining the prevalence of asymmetries in VPT
(Loy et al., 2015; Richards et al., 2014). An alternative to the retailer’s market power
explanation is considering consumer’s rational search behavior and retailers’ response to it
(Tappata, 2009; Yang & Ye, 2008; Yuan & Han, 2011). Namely, retail prices increase
rapidly when wholesale prices increase because rational consumers search more intensively,
however, retail prices fall more slowly when wholesale prices fall as retailers decrease their
prices only enough to cause consumers to not search for new prices. Richards et al. (2014)
empirically confirm this hypothesis. Retailers react to consumers’ limited information about
cost shocks by setting rigid prices, which limits their markup variation (Eichenbaum et al.,
2011). Concurrently, retailers do not change their prices every time they face cost shocks.
Moreover, the role of double marginalization and middleman costs for national brands in
explaining the prevalence of asymmetric pricing has been explained theoretically (Hong &
Li, 2015) and tested empirically (Loy et al., 2015).

%For this study we only test for the differences between the speed of adjustment toward the long rung
equilibrium of price movement that squeezes the marketing margin (i.e. an increase in retail prices or a fall in
wholesale prices) compared to the price movement that stretches it.
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In a pioneering study that investigates VPT using scanner data and focuses on a European
market, Loy et al. (2015) shed light on many aspects that explain variations in retail price
dynamics. Factors such as consumer search costs, differences between manufacturers in the
German dairy sector (cooperatives versus non-cooperatives), and branding (national brands
versus private labels) can explain the heterogeneity among the retail chains in the application
of asymmetries in VPT (Loy et al., 2015). However, Loy et al. (2015) do not account for an
important feature of scanner data, which is its hierarchical structure. This is curious because
store membership in a chain might lead to differences in outcomes of pricing dynamic within

a chain and between chains.

Working with scanner data requires specific terminology. Hereafter, a chain is defined as a
retailer with a specific trademark name, e.g. Lidl and Aldi in Germany, which manages a
given number of stores and a specific merchandise assortment. The chains are grouped into
different classes such as those who specialize only in food or those who include a variety of
non-food products. We refer to a store as being the location where different products are sold
with a self-service system, but with different search environments for their customers. Stores
can be of different formats, including, but not limited to, discount store, supermarket, and

hypermarket.

Consider a homogeneous and well-defined product P1 that is sold in four different retail
stores: X1 and X2 belonging to retail Chain X and Y1 and Y2 belonging to retail Chain Y. To
illustrate, the stores X1, Y1 could be a discount store format, and X2, Y2 could be
supermarkets; additionally, each of the retail Chain X and Chain Y could follow a specific
pricing strategy, e.g. Every Day Low Pricing (EDLP), High-Low (HiLo). The result is not
only that these differences lead to a price dispersion for P1, but also in variations in price
dynamics; thus the extent to which these stores display asymmetry in VPT for P1. While
price dispersion, when P1 is sold at different prices in different stores, is well documented in
empirical studies (Anania & Nistico, 2014), variations in retail price dynamics have not been

sufficiently explained to date (Loy et al., 2015).

Food retailing is complex, and so are the pricing strategies followed by retail chains and
stores. Food retail chains exercise different degrees of negotiation power with
processors/wholesalers, depending on the structure of the retail sector in a country, the
consolidation, and the competition (Jansik et al., 2014). Li et al. (2006) find inconsistency in

trying to link the economic models of perfect competition to the prevalence of asymmetry in
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VPT in agro-food products. Li et al. (2006) argue that market power expresses itself in the
adoption of a specific pricing strategy that can lead to different outcomes, including the
presence or absence of asymmetry in VPT. Owen & Trzepacz (2002) provide some evidence
of a link between asymmetries in the incidence and the magnitude of price changes and Every
Day Low Pricing (EDLP) and High-Low (HiLo) strategies.

This leads to two questions. First, whether the observed heterogeneity in price dynamics for
homogenous products across stores is due to the fact that stores are of different formats that
imply variant consumer search intensities and influence price dynamics. Second, to what
extent is observed heterogeneity in price dynamics across stores due to their membership in
different chains pursuing different pricing strategies.

We employ multilevel modeling to explore the hierarchical structure of scanner price data to
gain insight into the heterogeneity in use resulting in asymmetries in VPT. A specific focus is
on determining the features of retail chains that contribute to the decrease or the increase in
the likelihood of finding asymmetry in VPT. As a case study, we assess VPT for 56 well-
defined brands of 250-gram foil-wrapped butter in Germany. We measure VPT between their
respective individual retail prices at 345 different stores that belong to 37 different retail
chains and we calculate the VPT for the weighted average wholesale prices of butter in
Germany. Individual brands of butter are identified by European Article Number (EAN) data,
which is an exact identifier of each product at each store. The brand-store combinations in
our data result in 1087 different EANs. We then employ a Bayesian approach for model
estimation as a flexible tool to include random effects at each level of the hierarchy, which

can in turn explain the unobserved heterogeneity in the prevalence of asymmetries in VPT.

Unlike Owen & Trzepacz (2002), who study two chains and knew exactly which pricing
strategy was followed in each chain, we were unable to directly document pricing strategy in
our study. Nevertheless, we could approximate the pricing strategy followed in each retail
chain based on established links in the literature between EDLP and HiLo pricing strategies,
the different formats of stores combined with price rigidity for each EAN and consumer
search costs in each store. More specifically, discount stores, which typically employ EDLP,
represent a lower search cost environment than the other formats of stores, such as
hypermarkets, which typically employ HiLo. Prices are expected to be more rigid for EANs
subject to EDLP than the EANSs that are subject to HiLo, which can vary among the different

formats of stores, and between national and private brands.
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Our results confirm that an increase in consumer search costs lead to an increase in the
likelihood of asymmetry in VPT. Further, we do not find systematic differences between the
different formats of store. However, when linking consumer search costs to the different
formats of store, we find an increase in search costs within hypermarkets, where consumers
would expect to benefit from the search; and the hypermarkets respond adequately, as it leads
to a decrease in the likelihood of asymmetry in VPT. Surprisingly, high price rigidity implies
a decrease in asymmetry in VPT. However, this is the case only within chains that follow
EDLP. When hypermarkets and supermarkets keep their prices constant and do not react to
changes in the wholesale price to avoid markup variations, rigid prices lead to the increase in
likelihood of asymmetry in VPT. Moreover, the differences between the 56 products explain
51% of the variance in the occurrence of asymmetries in VPT. We find that asymmetries in
VPT are equally prevalent for both products with national brands and private labels; thus
double marginalization does not necessarily lead to asymmetries in VPT. The differences
between the 37 retail chains explain 9.25% of the variance in the occurrence of asymmetries
in VPT. The differences between stores explain only 0.22% of the variance in the occurrence
of asymmetries in VPT.

Our contributions to the literature are twofold. First, we study the reasons behind
asymmetries in VPT at the smallest possible scale, i.e., the individual retail store. This is not
the first study that focuses on disaggregated data to investigate VVPT, but to the best of our
knowledge, it is the first time that explicitly accounts for the hierarchical structure of scanner
data, which allows us to separate systematically between the chains that are likely to employ
asymmetries in VPT from the chains that are not. Second, we reveal that asymmetries in VPT
are systematically related to store membership in a chain, to the different store formats and

some other indicators of pricing strategies, such as rigid prices and consumer search costs.

The remainder of this correspondence is organized as follows. In Section 3.2, we give an
overview of the German dairy market, and show that it is concentrated both at the processing
and retail levels forming a bilateral oligopoly that can lead to asymmetries in VPT. In Section
3.3, we briefly review the literature on VPT studies that test for the presence of asymmetries
in VPT at the disaggregated level and underline some hypotheses regarding the possible
explanation of their presence. In Section 3.4, we describe the data and we explain how we
test for the presence of asymmetry in VPT. In Section 3.5, we explain our motivation for the

choice of methods that we employ to estimate whether asymmetry can be explained by store
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characteristics such as their format, search costs and degree of price rigidity. In Section 3.6,

we discuss our results and in Section 3.7 we conclude.

3.2. Processing and retailing of dairy products in Germany

The dairy processor-retail link in the milk chain is a bilateral oligopoly in Germany. This can
lead to many different outcomes, e.g. asymmetries in VPT, depending on the individual
and/or collective behavior of the actors. Dairies in Germany face low profit margins and
often find themselves in a cost-price squeeze between milk prices and output prices that are
unsatisfactory. This is due to the special structure of the German retail sector (Jansik et al.,
2014), which is highly concentrated and characterized by the dominance of discounters (Loy
et al., 2015). In addition, German consumers are price sensitive. Therefore dairy products,
including butter, are often used by retailers as loss leaders to attract customers into the stores
(Loy et al., 2015; Rondan et al, 2005).

3.2.1. Processing and manufacturing
The German dairy industry is the largest in Europe, with sale revenues exceeding 25 billion
EUR in 2014. The concentration ratio (CR4), calculated as the market share of the four
largest dairy companies is 31%. The total revenues of the ten leading dairy companies in
Germany totaled 10.95 billion Euros in 2014 and the four largest of these companies
accounted for 70% of the 10.95 billion Euros, see Figure 3.1.

Figure 3.1 Revenue of the leading dairy companies in Germany in 2014
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Source: Lebensmittel Zeitung (2014)
Dairy products, including butter which entails 30% of the processed milk in Germany (Loy et
al. 2015), are supplied by cooperatives and non-cooperatives. Four (Deutsches Milchkontor,
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Arla Foods, FrieslandCampina and Hochwald Foods) of the six leading dairy companies in
Germany in terms of revenue are cooperatives (Lebensmittel Zeitung, 2014). The majority of
the cooperatives are located in north-western regions of Germany. In general, German dairy
cooperatives focus on exploiting economies of scale and achieving cost leadership, producing
high-volumes of standard products, such as milk powder and butter, which are often sold with

private labels at low prices (Everwand et al., 2007; Loy et al., 2015).

The non-cooperatives are mostly private companies or family-owned firms, most of which
are located in Southern Germany (e.g. Bavaria). The non-cooperative dairy companies focus
more on manufacturing differentiated products with high value-added and national brands,
and sell them at higher prices than the standard products of the cooperatives (Loy et al.,
2015). However, they face higher costs (52 cents per kg) compared to the other regions (43
cents per kg in the north) (Jlrgens et al., 2013).

In terms of downstream relationships, both cooperative and non-cooperative dairies work
with supplier contracts, under exclusivity requirements, with farmers. Contracts in the case of
cooperatives last for one to two years. In the case of non-cooperatives, the length of contracts
can vary from one to five years and sometimes ten years. The middleman activity is present
downstream. It is exercised by specialized trading companies such as the Berliner
Milcheinfuhr-Gesellschaft , which collects one million kg of raw milk per year and resells it

to the dairies for processing (Jansik et al., 2014).

3.2.2. Relation to the retail sector and vertical integration
The share of dairy production which is sold directly from dairies to the retailer sector is 44%.
The remaining part is split between the hotel, restaurant and catering sector (Friedrich, 2010)
and the food processing industry. Figure 3.2 illustrates the high concentration of food
retailing in Germany. In 2014, the share of the top four food retail chains (Edeka, Rewe,
Schwarz/Lidl, Aldi) in the sector’s turnover was 57% (BVE, 2014).

Processing margins are considered to be low in the German dairy industry. Jansik et al.
(2014) compare the dairy sectors of Denmark, Estonia, Finland, Germany, Latvia, Lithuania,
Poland and Sweden, and find Germany to be characterized by the lowest profit margins in
Northern Europe. They relate these low profits to the exercise of price pressure at the retail
level, in particular via the private labels, where more than 50% of the consumed butter in
Germany carries a private label (Friedrich, 2010). Nonetheless, the advantages that retailers

might have in terms of exercising negotiation power with the dairies are not automatically
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translated into high margins at the consumer level, because of the price sensitivity of
consumers in Germany (Hellberg-Bahr et al. 2010; Jansik et al., 2014; Loy et al. 2015).

Figure 3.2 Market structure in the German food retail sector, 2014
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Moreover, the exercise of market power is linked to the format of store (Weber & Anders,
2007). The stores can be classified into different formats, according to their size and the
product assortment managed by each store. Three formats of stores are dominant in Germany:
discounters, supermarkets and hypermarkets'®. Discount stores account for 39% of German
food retail revenues in 2014 (Jansik et al., 2014), a share that has been increasing steadily
(Herrmann et al., 2009). Germany is the origin of the discount store concept (Cleeren et al.,
2010). To be classified as a discount store, the discount principle is applied irrespective of the
volume of sales (Herrmann et al., 2009). Discounters offer a limited number of SKUs; hence
limited search costs for consumers. They assure low prices by offering very basic services to
their customers (Cleeren et al., 2010; Herrmann et al., 2009; Loy et al., 2015; Morschett et
al., 2006). Supermarkets account for 28% of retail food sales in Germany. They are defined
in Herrmann et al., (2009, p. 2) as : “The smallest modern food-retailing store”. Supermarkets
specialize exclusively in food and provide more services to their customers than the
discounters (Loy et al., 2015) and their sales area size does not exceed 799 m2. Supermarkets
offer a broader number of SKUs than the discounters, which can lead to higher search costs

for the consumers. The national brands are also predominant in product assortments of

19 5ther store formats include are small (large) consumer markets, with sales area of 800-1,499m’ (1,500-
4,999 mz). Since we work with complete time series, the subsample does not include these types of stores.
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supermarkets. Hypermarkets account for 24% of food retail sales in Germany. To be
classified as a hypermarket, a store should be at least 5,000 m2. Hypermarkets offer a broad
variety of merchandise, with much higher number of SKUs than discounters. They supply
both private labels and national brands. They offer considerable customer services, including
salespeople to assist customers personally. They are usually organized into separate
departments for displaying merchandise, e.g. dairy products, but with relatively high
consumer search costs because of the large number of SKUs (Rondan et al., 2005;
Gijsbrechts et al., 2008).

The seminal paper of Hoch et al.(1994), which links generating profits in retail industry and
the adoption of EDLP versus HiLo, has generated a great interest to document these pricing
strategies in details, both theoretically (Hellberg-Bahr et al., 2010; Kaltcheva et al., 2013) and
empirically (Bolton & Shankar, 2003; Ho, Tang, & Bell, 1998; Lal & Rao, 1997). Fassnacht
& EIl Husseini (2013) provide a literature review of pricing strategies and report on the

current status of academic research in classifying the different pricing strategies.

A link between the positioning of each of the aforementioned different formats of stores
described above and a specific marketing strategy has been documented in the literature
(Gijsbrechts, Campo, and Nisol 2008, Cleeren et al. 2010). For instance, a link between the
discount stores and EDLP has been found (Gonzalez-Benito, et al., 2014, p. 118; Hoch et al.,
1994, p. 16; Weber & Anders, 2007). In contrast, supermarkets and hypermarkets tend to
follow the HilLo strategy (Rondan Catalufia et al., 2005, p. 331; Weber & Anders, 2007, p.
739). Sometimes retail chains, that employ the HiLo strategies, add discount stores that
employ the EDLP strategy to their portfolio to compete with discounters (Cleeren et al.,
2010).

To sum up, relatively few dairies sell their products to relatively few retailers in Germany,
which creates a complex bilateral oligopoly situation with potential for non-competitive price
determination. Since the food retail chains differ considerably in many aspects, including
their structure and their pricing strategies, the question is whether or not this affects the price
transmission from wholesale to retail prices. More specifically, what would be the expected
effects of EDLP employed by discount stores in comparison HiLo employed by supermarkets
and hypermarkets. The adoption of EDLP implies more of a focus on low price private labels,

with limited search costs. These are typical characteristics of the discount stores. Thus, we
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expect to find less prevalence of asymmetries in VPT within retail chains that follow EDLP

strategy than the retail chains that follow HiLo.
3.3. Related literature on the factors that explain asymmetry in VPT

3.3.1. Studies of asymmetry in the VPT at the smallest possible scale
Few papers have studied asymmetry in VPT using disaggregated retail price data. One reason
for the scarcity of studies in the literature is perhaps the lack of data available for academic
research. Even when the data are available, they cover a very limited number of chains
(Nakamura, 2008), and sometimes just only a single chain is covered based on proprietary
data with limited access. Without coverage across many store formats and chains, it is not
feasible to analyze whether differences in the prevalence asymmetries in VPT is due to

differences between store and chains.

In a seminal study, Peltzman tries to generalize the asymmetry phenomenon: “In two out of
three markets, output prices rise faster than they fall”” (Peltzman, 2000, p. 480). The data he
analyses include prices from a large supermarket chain in the Chicago area. However, in
trying to link asymmetry in VPT to the exercise of market power by retailers, he finds no
strong patterns. More recently, Richards et al. (2014) argue that there must be alternative

explanations for the pervasiveness of observing asymmetry in VPT.

Why might we expect that stores of different formats or belonging to different chains are
more or less likely to display asymmetries in VPT? We hypothesize that there are four main
factors associated with store format and chain that can influence the asymmetry of their VPT.
These factors are price rigidity, double marginalization, consumer search costs, and pricing
strategy. Additionally, the effects of the different formats of stores on findings of asymmetry
in VPT cannot be easily separated from the aforementioned factors. We consider each of

these factors in turn in the following.

There is a theoretical background to expect that price rigidity would influence VPT. Price
rigidity can be explained by retail repricing or menu costs within a competitive framework
(Levy, Bergen, Dutta, & Venable, 1997). For instance, Azzam (1999) shows that the
downward price rigidity in retail prices, which lead to asymmetry in VPT, is due to menu
costs. Price rigidity is also consistent with the exercise of market power and Powers &
Powers (2001) show that prices do not change frequently in markets characterized by high
retail concentration. Some evidence of this phenomenon has been found in the German food
retail industry, and which was linked to the pricing strategies of the retailers (Herrmann et al.,
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2005; Weber & Anders, 2007). However, Powers & Powers (2001) do not find a link
between rigidity in prices and the asymmetry in the magnitude and in the frequency of price
changes for California-Arizona lettuce. Sexton et al. (2003) graphically show how the
strategic choice of some chains to hold constant or stabilize retail prices, and not to pass on
changes in wholesale prices to attract and retain consumers, which affects retail price
dynamics. Using scanner data and being interested in the nature of the relation between retail
prices and costs, Eichenbaum et al. (2011) find that retail (reference) prices are systematically
but imperfectly related to (reference) costs, which leads to asymmetries. They indirectly

relate these findings to the duration of unchanged prices at the reference prices.

Double marginalization can affect both the speed and the nature of VPT. The introduction of
a private labels by a food retail chain aims to foster vertical integration, to avoid additional
middleman’s costs (Hoch 1996), to reduce double marginalization (Mills, 1995), and
circumvent the market power of competing national brand manufacturers (Hong and Li 2015;
Li, Sexton, and Xia 2006). Private label circumvents the middleman’s uncertainty
surrounding an interpretation of cost changes in their environment that are behind the
increases/decrease in their prices. An example would be the middleman’s reaction to
Governmental interventions to establish a floor on downstream prices and how it can lead to
asymmetry in VPT (Aramyan and Kuiper 2009; Kinnucan and Forker 1987). The national
brands are supposed to have control over the prices and do not transmit symmetrical changes
in their costs to maintain high margins (Loy et al. 2015). Hong and Li (2015) employ scanner
data of a single and multiple retail chains in the USA to investigate whether the effect of
private labels enhances vertical integration by reducing double marginalization (vertical
effect) or increases market power of the retail chains that employ them (horizontal effect).
They show that the vertical effect associated with private labels dominates the horizontal
effect. Loy et al. (2015) find higher prevalence of asymmetry in private labels than national
brands, which is not in line the hypothesis that avoiding double marginalization would lead to

less likelihood of asymmetries in VPT.

Richards, Gomez, and Lee (2014) study the asymmetries in VPT using panel data on prices
for ready-to-eat breakfast cereal of the top ten (high volume) brands sold in the top five retail
chains on the Los Angeles metropolitan market. They test traditional market power-based
explanation of the findings of asymmetry in VPT against a more compelling explanation
based on consumer search behavior. Their approach consists on allowing cost pass-through

rates to depend on market power and consumer search cost proxies. They find that the cost
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pass-through rates are higher among more powerful retail chains and those that offer low
search cost environment. Richards, Gomez, and Lee (2014, p 1066) conclude that: ““market
power causes retail prices to fall quickly and rise slowly, whereas consumer search causes
retail prices to fall quickly and rise slowly”, results that are contrary to the conventional
wisdom. Richards, Gomez, and Lee (2014) suggest some elements that are supposed to
reduce consumer search costs such as limited merchandise assortment, low price dispersion,
heavy price advertisement and more communication through social networks. Loy et al.
(2015) employ data on 1,724 EANSs to assess VPT between wholesale and retail prices for
butter in Germany for the period 2005-2008. They test whether stores with higher consumer
search costs are more likely to display asymmetries in VPT. They follow Richards, Gomez,
and Lee (2014) and approximate consumer search costs by the number of SKU in each store.
Loy et al. (2015) allow the cost pass-through rates to depend on the number of SKU in each
store. They find that asymmetry in VPT for butter prices in Germany increases with an

increase in consumer search costs, but the effect is rather small and ambiguous.

There are reasons to expect differences in the prevalence of asymmetry in VPT within and
between the different formats of stores. Loy et al. (2015) find differences in the prevalence of
asymmetry between the different formats of stores. However, these differences were not
linked to other factors that might influence asymmetry in the VPT. For instance, consumer
search costs are expected to be higher in the hypermarkets and supermarkets than in the
discounters. If prices are rising and consumers are willing to bear store-switching costs to
benefit from search within hypermarkets and supermarkets, then the VPT processes would
depend on the response of these format of stores to the consumer’s willingness to search.
Moreover, discount stores exhibit a higher degree of rigid prices than other formats of stores
in Germany (Weber and Anders 2007). Moreover, if hypermarkets and supermarkets mimic
discount stores and display rigid prices, to avoid markup variation because they can, then

price rigidity can affect the VPT processes.

To date, the effect of pricing strategy on price dispersion is well documented, but there is
little literature on the implications of different pricing strategies on retail price dynamics. Loy
et al. (2015, p. 442) suspect that pricing strategy influences the VPT process: “retail outlets
can use single-product prices strategically, which may not only result in significant price
dispersion, but also in different dynamic cost pass- through processes”. Owen & Trzepacz
(2002) compare two retail chains: one employs EDLP and the other uses the HilLo strategy,

and provide evidence of a link between pricing strategy and the asymmetries in incidence and
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the magnitude of price changes. Owen & Trzepacz (2002) conclude that the benefits of
adopting a HiLo strategy are larger than the menu costs associated with it. However, Owen &
Trzepacz (2002) do not explicitly test for asymmetry in VPT, and they employ data with a
very limited cross-sectional dimension (only two chains). Our data, which cover 37 different
chains, that may be able to generate additional insights. Li et al. (2006) consider that retail
market power manifests itself via the pricing strategies employed. They argue that in
competitive retail markets, chains that adopt EDLP and do not react to price decreases in the
wholesale prices would be undercut by chains who symmetrically transmit wholesale price
changes. They consider EDLP as an extreme case, in which incomplete price transmission
will occur, in particular when some chains hold prices constant for a specific product despite
shifts in demand and / or supply at the wholesale level. In this scenario the price must adjust
more widely for all the other chains in order for the market to clear. Moreover, some chains
quite strictly dictate the prices to their store managers; other chains give the individual store
managers more freedom. This leads to different degrees of control on pricing strategies that

chains exercise over their stores (Konur & Geunes, 2016).

The pricing strategy of a retailer is an unobservable variable, but we can approximate that
with interaction between store format and other observable variable such as duration and
consumer search costs. Hence, we expect the interaction between the duration and store
format to influence the asymmetry in VPT, such as that for a given average duration of
unchanged prices within the discount store, the supermarket and the hypermarket have more
flexibility in adjusting their expected markup and margins, which can lead to asymmetries in
the VPT. Moreover, consumer search costs may vary across store format, i.e. when the
returns to search are high, consumers would not only search actively within a store, but also
would search for formats of stores that offer low prices, or prefer stores that are known to use
EDLP strategy. Thus, an interaction between the SKU and the different formats of store can

help to explain the variation asymmetries in VPT.

In summary, a few studies have tested for asymmetries in vertical food price transmission to
individual stores using scanner data. Those that have find that asymmetry is common but not
homogenous. Some studies look at limited cross-sectional data for one or a small number of
chains and they raise an additional point related to pricing strategy (Owen & Trzepacz, 2002),
that different chains and formats of store might display different degrees of asymmetries in
VPT. Price strategies are usually not documented in the data, but they differ in many

observable aspects, such as rigidity in prices implied and the formats of store that are likely to
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employ them. Other studies employed rich cross-sectional data and considered retailer’s
market power and consumer search costs (Loy et al., 2015; Richards et al., 2014) to explain
asymmetries in VPT and that asymmetry might differ between private labels and national
brands (Hong & Li, 2015; Loy et al., 2015). To date, no study has systematically accounted
for the hierarchical structure of the data in explaining the unobserved heterogeneity in

asymmetries in VPT.

3.3.2. Hypotheses
Based on the literature reviewed above, the following hypotheses are subject for testing in
this study. First, Eichenbaum et al. (2011, p. 235) suggest that: a “ retailer chooses the
duration of reference prices so as to limit markup variation” and “prices do not always
change when the costs change”. Hence, we expect that rigid prices will increase the
prevalence of asymmetries in VPT. Second, the supply of private labels allows food retail
chains to avoid double margination. Therefore, we expect to find fewer cases of asymmetry
in VPT for products with private labels than for products with national brands. Third, the
literature shows that there is an association between the increase in consumer search costs
and an increase in the probability of asymmetries in VPT. Therefore, we hypothesize that
higher consumer search costs will increase the prevalence of asymmetries in VPT. Fourth,
we expect to find more asymmetries in VPT in supermarkets and hypermarkets than in
discount stores. This is due to the established link in the literature between the discount stores
and the EDLP strategy on the one hand, and between the HilLo strategy other formats of
stores on the other hand. Fifth, we consider two aspects of pricing strategy that could
influence VPT processes. First we hypothesize that rigid prices within hypermarket and
supermarkets would lead to the increase in the likelihood of asymmetries in VPT. Second,
since consumer search costs are high in hypermarkets and supermarkets, they are expected to
employ their potential to divert from competitive single price equilibrium and display
asymmetries in VPT. Sixth, we hypothesize that asymmetries in VPT depend on store

membership in chain.

Due to the high competition in the food retail chain in Germany, most of the chains will
display more or less similar pricing behavior, but there are chains that would deviate from
this common behavior, and as stated in Loy et al. (2015, p. 442):” ... certain retail chains
have some potential to divert from the competitive single-price equilibrium”. We are
particularly interested in investigating features of these chains, the format of store managed,

their size, their location, the product assortment and their location. Moreover, depending on
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the flexibility applied by the chains to their stores, i.e. centralized of decentralized pricing
decisions, differences between stores could be either considerable or limited, e.g. if the stores
are centrally managed, then very little variation in price dynamics between the stores is
expected.

3.4. Data

3.4.1. Measuring asymmetry in vertical price transmission
To test the hypotheses outlined above we estimate Asymmetric Vector Error Correction
Models (AVECMS) for 1087-time series of prices at the retail level and a weekly weighted
average national wholesale price for butter. We employ retail prices for 250-gram foil-
wrapped packages collected weekly starting from the first week of 2005 through the last
week in 2010. Each retail price is first filtered to remove Temporary Sale Prices (TSP) that
would otherwise bias the results of asymmetry tests (Tifaoui & von Cramon-Taubadel, 2016).

The weighted average wholesale prices of butter in Germany were collected by the Southern
German Butter and Cheese Exchange™* (SBKB) for the same period 2005-2010. In a Delphi
study conducted by (Loy et al., 2015), the interviewed experts consider the weekly weighted
average national wholesale price that is quoted by the SBKB to be the minimum opportunity
cost for retailers in Germany. In such a case, the variation in price dynamics between the
wholesale and the retail price of the different chains can be partially associated with the

store/chain specific pricing strategy and product branding (Loy et al., 2015).

In each of the 1087 AVECMs we specify the retail price to be endogenous and the wholesale
prices to be exogenous. This specification is based on Loy et al. (2015) who find Granger-
causality tests to support this assumption for 90% of the butter prices. To estimate the
AVECM, we employ a two stage procedure proposed by Engle & Granger (1987) and
Granger & Lee (1989), and first applied to price transmission by von Cramon-Taubadel
(1998). We find asymmetry in VPT in 26% of the 1087 EANs included in this study.

Before investigating the factors explaining the 26% of the cases of asymmetries in VPT that
we find in our data, understanding the structure of the data is necessary because it helps to

determine which methods to use for data analysis.

1 SBKB abrevaition for Sliddeutsche Butter- und Kase-Borse
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3.4.2. Data structure
Figure 3.3 illustrates the structure of the data for two fictive chains: Chain X and Chain Y,
which may differ in many aspects, including their pricing and marketing strategies. The
subsample of data that we use in this study covers 37 chains *2. The chains names are also
kept anonymous using identification codes, here we use “X” and “Y” for purpose of
illustration.

Figure 3.3 Hierarchical structure of the data

Wholesale
Class 1 Class 2
Chain X Chain'Y
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Source: Authors’ schematization of the SIG data
The subsample covers 345 different stores, which are also identified by additional codes. The
stores are nested into a chain and we know for instance that the stores X1, X2 and X3 belong
to the Chain X. The stores are classified into six different formats, and our subsample covers
only three formats: discount stores, supermarkets and hypermarkets. It is not necessary that
all of the stores in Chain X are of the same format, i.e. Chain X can have discounter store
(triangle in Figure 3.3), hypermarket (square) and supermarket (ellipse) formats, or just only
two formats as is with Chain Y in Figure 3.3. Other features of the store are also documented
in the data. For instance, we know each store’s size, its location and the number of products
managed (SKU).

Moreover, introducing changes in prices does not depend solely on the store's manager.

His/her decision might depend on the features of each product (e.g. national brand versus

2 The raw data purchased from the Symphony IRl Group GmbH cover 41 chains.
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private label). The data cover 56 products, which are sold in at least one of the 345 different
stores. In addition, the data contain information on the characteristics of the 56 products, i.e.
their prices, processor, brand, label, country of origin and the region where the product is

commercialized in Germany.

Sometimes the exact same product (e.g. Product 1) is displayed in more than one store.
Product 1 is identified with an EANL1 in Store X1, and with EAN7 in Store Y1. Sometimes a
product can be found only in one store, e.g. Product 4 identified with EAN13. The total
number of product-store combinations in our dataset (i.e. the number of EANS) is 1087. For
Product 1, with the same features, the observation of asymmetry in VPT for EAN1 and/or
EAN7 would depend on the store membership in a chain, e.g., symmetric pricing for EAN1
within the Chain X and asymmetry in VPT for EAN7 within Chain Y.

The cases of asymmetry in VPT may be aggregated at each of the four levels: product, store,
chain, and class. This structure can lead to scaling effects, i.e. where aggregation or
disaggregation at different levels of the hierarchy affect the statistical analysis of the factor
explaining asymmetry in VPT. There are factors that explain asymmetry in VPT that are
product specific and other factors that are chain specific. In order to avoid misleading
conclusions, it is important then to opt for consistent models when explaining variation in the
cases of asymmetry in VPT between the different EANs or the different EANs within the

same chain.

To account for the store/chain effect, we could include in generalized linear models (GLMs)
framework dummy variables for store/ chain. For instance, we could include 344 dummy
variables to capture the unobserved heterogeneity between 345 different stores, but this is
inconvenient because of the increasing number of parameters that we need to estimate, which
could be inconsistent due to incidental parameter problems (Rabe-Hesketh & Skrondal, 2012,
p. 557).

An alternative is to employ a mixed model. Mixed models are well suited to model this
particular structure of data presented in Figure 3.3 (Fahrmeir et al., 2013; Verbeke &
Molenberghs, 2000). Including random effects for each level of the hierarchy helps to
account for unobserved heterogeneity between the EANS, to detect level specific effects and
to induce correlation that could exist between the EANs (Rabe-Hesketh et al., 2005). Another
argument that justifies including individual random effects is that we use average wholesale

price at the national level as an approximation of the minimum opportunity cost in Germany;
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it could be the case that some chains could have access to lower wholesale prices by

exercising negotiation power, but we do not observe in our data.

While the simplest mixed model comprises only two hierarchical levels, e.g. product effect,
multilevel models with multiple nested and/or crossed hierarchical levels are better suited for
the data structure in Figure 3.3. Multilevel models are an extension of mixed models applied
to data structures with more than one grouping factors (Fahrmeir et al., 2013; Rabe-Hesketh
& Skrondal, 2012). The advantage that multilevel models have over mixed models is that
they allow for the decomposition of the variability of finding asymmetry in VPT at different

levels of the hierarchy, i.e. Class-Chain-Store-Product.

3.4.3. Descriptive statistics of the factors that can explain asymmetry
The response variable of interest is a binary variable that takes the value of one if we reject
the null hypothesis of symmetry in the AVECMs, or zero when not rejected. Table 3.1
summarizes the descriptive statistics of some variables that might explain why we reject the
hypothesis of symmetry in VPT for the 283 EANS.

Table 3.1 Descriptive statistics of the variables of interest

Variable Description Number of Symmetry Asymmetry Total
EAN

Test for symmetry in VPT 1087 (100%) 804 (74 %) 283 (26 %) 100%
Brand
Private labels 75 (7%) 65 (86.67%) 10 (13.33%) 100%
National brand 1,012 (93%) 739 (73.02%) 273 (26.98%) 100%
Country of origin
Germany 824 (76%) 575 (69.78%) 249 (30.22%) 100%
Ireland 239 (22%) 215 (89.96%) 24 (10.04%) 100%
Netherlands 24 (2%) 14 (58.33%) 10 (41.67%) 100%
Region
Central 348 (32%) 259 (74.43%) 89 (25.57%) 100%
North 185 (17%) 151 (81.62%) 34 (18.38%) 100%
West 249 (23%) 187 (75.10%) 62 (24.90%) 100%
South 305 (28%) 207 (67.87%) 98 (32.13%) 100%
Store format
Discounter 183 (17%) 167 (91%) 16 (9%) 100%
Supermarket 91 (8%) 58 (63.74%) 33 (36.26%) 100%
Hypermarket 813 (75%) 579 (71.22%) 234 (28.78%) 100%

Source: Authors’ calculations

Out of 1087 EANs, 93% (1,012) of EANSs carry a national brand. In addition to national
brands, chains provide their customers with their own brand and 75 (7%) EANs are identified
as private labels in our data. The Fisher's exact test, Chi-square (1) = 6.74, Pr =0.005,
indicates a statistical significant of the difference between the cases of asymmetry between
the private labels (13.33%) and the national brands (26.98%). Most EANs are produced in
44 |Page



Germany 824 (76%), and the rest are imported from Ireland 239 (22%) and the Netherlands
24 (2%). The Netherlands EANs display relatively higher cases of asymmetry compared to
the other countries and the differences are statistically significant.

The EANs can be found in four different regions in Germany: central 384 (32%); north 185
(17%), west 249 (23%) and south 305 (28%). There are differences between the four regions
and there are relatively more cases of asymmetry in the south 98 (32.13%), compared to the
north 34 (18.38%). This could be linked to the differences between the regions; the non-
cooperatives are based more in the south and the cooperatives operate mostly in the north.
Moreover, discount stores account for 183 (17%) of the 1087 unique EANS in the data, the
supermarkets represent 91 (8%), and the hypermarkets have 813 (75%) unique EANs. As
expected, there is a higher share of asymmetry cases in supermarkets (33 out of 91 EANS)
and hypermarkets (234 out of 813 EANS), than in discount stores (16 out of 183 EANS).

In addition to factors described in Table 3.1, we consider price rigidity and the number of
stock keeping units (SKU) to explain the findings of asymmetry in VPT. We follow Powers &
Powers (2001) and calculate the duration as the inverse of the frequency of price change for
each of the 1087 EANSs. Figure 3.4 illustrates the differences between the different formats of
store in terms of SKU (Panel A) and duration of unchanged price (Panel B).

The duration measures how many weeks on average the prices for a given EAN remain
unchanged. The mean duration for the subsample is 16 weeks and the median is 14 weeks,
the range goes from 1.6 to 104 weeks. Simple correlation indicates that the duration is
negatively associated with the findings of asymmetry in VPT. We also find a statistically
significant difference in mean (t =-4.52, p=0.000) between the EANs for which the
hypothesis of symmetry is rejected (mean =14.02 and SD=0.73) and the EANSs for which we
fail to reject the hypothesis of symmetry in VPT (mean=17.88 and SD=0.44).

We also find a significant difference between the different formats of stores and the duration
of unchanged prices. The prices remain constant for several months with the discount stores
and they tend to change more frequently with the supermarkets and hypermarkets. Moreover,
the duration of unchanged prices can be linked to the pricing strategies explained above. By
definition, the duration would be higher in the EDLP than in HiLo strategy. As expected, and
illustrated in Panel B of Figure 3.4, the discount stores are characterized by a higher duration
of unchanged prices compared to the supermarkets and hypermarkets, on average. This is

perhaps due to the established link between the EDLP pricing strategy and discount stores.
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Figure 3.4 also indicates that employing interactions between the variables’ duration and

format of store can help to explain asymmetry in VPT.

Figure 3.4 Stock keeping units and duration per store format
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Source : Authors’ calculations
On average, there are four SKU per store, one SKU being the minimum and eleven SKU the
maximum. As is expected, a discount store has on average 2 SKU, with a low standard
deviation (SD=0.86), followed by supermarkets with an average number of 3 SKU and
SD=1.26, and the hypermarkets have the most SKU, with an average of 5 SKU, with
SD=2.80.

3.5. Methods

3.5.1. Latent data formulation of the findings of asymmetry in VPT
Suppose that a retail manager decides to change the price of an EAN as a reaction to a change
in the average wholesale prices quoted by the SBKB. If the manager responds in the same
manner to a wholesale price increase as he/she reacts to a wholesale price decrease, then the
VPT is symmetric. In contrast, if the reaction to a wholesale price increase differs from the
reaction to a wholesale price decrease, VPT is then asymmetric. However, the retail manager
is not able to observe the reaction of other competing retailers that face the same choice
problem. Let us consider the latent utility U behind the decision of changing prices made by
the chain’s/ store’s manager. We can assign utilities U;s and U;, to the symmetric and

asymmetric reactions, respectively. The manager choses the alternative that maximize his/her
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utility, i.e., U;s > U;4 if the reaction is symmetric y; = Asymmetry; = 0 and U;g < Ujy. If

the reaction is asymmetric y; = Asymmetry; = 1.

We want to investigate what factors are behind this choice. Nevertheless, we do not observe
the latent utilities behind each decision. What we are able to observe, is the result of the
decisions after assessing VPT from the SBKB wholesale price to the retail price for each
EAN;, i = 1,...,1087, using time series analyses. We also observe a number of explanatory
variables x;4, ..., x; (explained in Table 3.1) that may influence the choice made by the
manager. Assuming that the unobserved utilities can be additively decomposed and follow a
linear model, we obtain: U;4 = x/f, + &, and U;s = x| fs + &s. With x; = (1, %1, ..., Xir.) -
The unknown coefficient vectors 8, and B determine the effect of the explanatory variables
on the utilities defined above. The errors &;, and & include the effects of the unobserved
variables, such as the pricing strategy of the chains, e.g. EDLP. The difference in the utility is
as follows:
Ji = Uia = Uis = x{(Ba — Bs) + €14 — &is = X[B + €

The connection to the observed decision is now given by y; = 1 if ; = U;j4 — U;s = 0 and

yi=0if)7i=UiA_UiS<0'

3.5.2. Model specification
Assume that all the retail chains in our data are managed by the identical managers, each with
the same flexibility in terms of introducing price changes to all the EANs, i = 1,...,1087. In
this case, a complete pooling, whereby we ignore completely store membership in chains,
would be appropriate. In this case, we could use a single pooled generalized linear model
(GLM) to fit the data. In a GLM framework we estimate the effects of a linear combination of
covariates eta (n; = Lo + B1xi1 + -+ + Brxix) on the conditional expectation of a response
E(y|n), where y are independent Bernoulli random variables with probability 7. In our case
the conditional probability m; = Pr(y; = 1) represents the probability that VPT for a given
EAN, i =1,...,1087 is asymmetric. The probabilities r; are linked to the n; via a response
function h(.), which is smooth and strictly increasing such as: h(.):R — (0,1) and m; =

h(n;). A common choice for h(.) is the logistic response function where = = h(n) =

- m
logit™*(n) = %.

B = (Bo, -, Px) and data x; = (1, x;4, ..., x;x)" IS given in equations (6)

The likelihood that we maximize conditional to vector of coefficient
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1087
Pr(y|B,x) = 1_[{ logit™'(x;B) if y; =1, VPT is asymmetric
' 1—logit~*(x;B) if y; = 0, VPT si symmetric (6)

or equivalently as expressed in equation (7):

1087

Pr(ylp,x) = H(logit_l(xiﬁ))yi (1 - logit™ (X;8))" ¥ -
i=1

We use this pooled GLM specification as a benchmark, despite the obvious drawback that it
treats the 1087 EANs as if they were all displayed in identical stores. Two alternatives to
pooled estimation are possible. First, one could estimate without pooling or with partial
pooling. A no pooling approach would be to estimate equation (7) separately for each
product, store, chain and class in our data. However, this is not suitable since some chains in
our sample have only one store and display only one EAN. Furthermore, this would only
account for one dimension of the data hierarchy at a time. Partial pooling or multilevel
modeling is a compromise between the complete pooling and the no pooling cases (Gelman
& Hill, 2007). In comparison to the pooled GLM, in multilevel modeling applied to the
logistic regression, additional parameters are affiliated to the classes, to chains, to stores, and
to products as batches and a probability distribution is assigned to each batch (Gelman &
Hill, 2007). In other words, error terms that correspond to different sources of variation in the
data and represent random effects, are added to the GLM model, which otherwise includes
solely fixed effects () parameters. The result is referred to as a Generalized Linear Mixed
Model (GLMM).

GLMMs extend the GLM, which include only fixed effects parameters (f), by adding
random effects y parameters on the linear predictor n: n;; = x{jﬂ + ulijl-. The random effects
y are assumed to have a multivariate normal distribution, with zero mean and var(y) = Q,
i.e. with y~N(0, Q). The conditional mean E(y;;|y;) of the response is also linked to the
linear predictor n through the response function logit=*(n) = (1 + e ")~ 1.

Moreover, given random effects y;, the responses y;; are conditionally independent and their
distribution is of exponential family form, i.e. y;;16;;, ~f(.), where f(.) is a member of the
exponential family. This is expressed as follows:

_ Y8 — b(6y) (8)

log (f(}’ij|6ij' ¢)) = 3 + c(ij @)
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In equation (8), b(.) depends only on 6, c(.) depend on y and ¢. The parameter 6;; is the
canonical parameter and ¢ is a common dispersion parameter independent of i (Fahrmeir et
al., 2013, p. 304).

The probability of finding asymmetry in VPT, conditioned on the random effects, is
formulated as follows:

mi; = EWijIB.Y) = Pr(yi; = 1|x;, Buuij, vi) = logit ™ (ny; = x{;B + uj;¥:) 9)

The u;; contain variables which are unique to each level, and usually it is a sub-vector of x;;.
Moreover, the choice of u;; = 1 in equation (9), i.e. n;; = Bo + BiXij1 + = + BrXijk + Yoi
defines the random intercept model (Fahrmeir et al., 2013, p. 390), where y,; contains
random deviations from the fixed intercept S, associated to EAN. We specify a simple
random intercept model for our data, where we include random effects y,,ys, v, v, for

product, store, chain and class respectively as expressed in equation (10):

Pr(yipser = 1) = logit=*(B° + X0 B™covariatemp + Vp+Vsi + Yer + Vig) (10

The distributions of the random effect y,, s v, v, are given:

yp~N(up, 05) ......... forp=1,...... ,56 products
Ys~N(ug, 62) ... ... ... fors=1,...... , 345 stores
Ye~N(ue, 62) ... ... ... forc=1,...... ,37 chains
Yi~N(u, 67) .. ... ... forl=1,...... ,6 for classes

The random intercepts capture the deviation in the conditional probability of asymmetry in
VPT that is associated to each level of the data hierarchy. If the data structure has no
influence on the asymmetries in VPT, i.e. no random effects, then the model in equation (10)

reverts to the pooled GLM model in equation (7).

3.5.3. Model estimation
To obtain the unconditional maximum likelihood estimates for the 8 and the y from equation
(10) one must integrate likelihoods over all possible values for the random effects, i.e.
random effects “integrate out”(Rodriguez & Goldman, 1995, 2001). This complicates the use
of the standard maximum likelihood estimation (Rabe-Hesketh & Skrondal, 2012, p. 537).
Moreover, Fahrmeir et al.( 2013, p. 394) point out that since the conditional likelihood is in

general non-Gaussian and the relationship between the E(y;;|y;) and n;;is nonlinear in
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GLMM, important parts of the likelihood cannot be carried out analytically, but rather

numerically or with suitable approximations.

3.5.3.1. Frequentist estimation of the GLMMs

In the literature, different ways are suggested to approximate the likelihood to estimate
GLMMs parameters in equation (10) using a frequentist approach. These include: the pseudo
(marginal) and penalized quasi-likelihood (PQL) approximation (Breslow & Clayton, 1993;
Schall, 1991; Wolfinger & O’connell, 1993); and an improved version of the PQL
approximation (Goldstein & Rasbash, 1996; Rodriguez & Goldman, 2001); Laplace
approximation (Breslow, 2004; Raudenbush et al., 2000); and Gauss-Hermite quadrature
(GHQ) approximation (Pinheiro & Chao, 2006) and adaptive quadrature (AGHQ) (Rabe-
Hesketh et al., 2005).

The PQL approximation does not compute true likelihood (Bolker et al., 2009; Rabe-Hesketh
et al., 2005) and it should not be used for inference (Pinheiro & Chao, 2006; Rabe-Hesketh et
al., 2005). Further, this approximation works poorly with dichotomous data with small cluster
sizes (Breslow, 2004) and leads to biased estimates in the case of large variance in random
effects (Browne & Draper, 2006; Rodriguez & Goldman, 1995, 2001). Laplace
approximation is more accurate than the PQL (Bolker et al., 2009; Rabe-Hesketh et al.,
2005). It allows for the calculation of the true GLMM likelihood; hence maximum likelihood
based inference is possible, and the Laplace approximation reduces the bias compared to the
PQL. An even better approximation is GHQ, which works well with moderate cluster size
data (Rabe-Hesketh et al., 2005), but it becomes complicated and slow with more than two or
three random effects (Bolker et al., 2009) and the estimates become biased with large cluster

sizes.

3.5.3.2.  Bayesian estimation of the GLMMs
Markov chain Monte Carlo (MCMC) methods (Gilks et al., 1996) in a Bayesian framework is
also used in the GLMMs literature to estimate equation (10). Unlike the PQL, Laplace
approximation and (A)GHQ, the MCMC method extends easily to include complex
multilevel structures and multiple (more than three) random effects (Gilks et al., 1996).
Moreover, the use of the MCMC algorithm to approximate the likelihood for the GLMMs
does not require integration over random effects using approximation, but it rather generates
random samples from distributions of potential parameter values for fixed and random

effects. These distributions are classified into prior and posterior distributions. MCMC
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incorporates prior information based on the previous knowledge about both fixed and random
effects, or just specifies non-informative priors in the case of lacking information. After
including the data or observation model, and updating the priors, the inference is based on
characteristics from the posterior distribution, such as mean, the variance or quantiles, or the
posterior density itself (Fahrmeir et al., 2013).

In summary, the use of the MCMC algorithm in a Bayesian framework to infer GLMMs
offers several advantages over the frequentist approach. Perhaps the most important
advantage is stated in Bolker et al. (2009, p. 133): “Markov Chain Monte Carlo (MCMC)
provides confidence intervals on GLMM parameters, and hence tests for whether those
parameters could plausibly equal zero, in a way that naturally averages over uncertainty in
both fixed and random-effects parameters avoiding many of the difficult approximations used
in frequentist hypothesis testing.”” Therefore, to estimate the model in equation (10) we have

chosen to use a full Bayesian approach.*

All the parameters from equation (10) need a prior distribution. The response variable is
binary and it cannot be over dispersed and ¢ = 1, therefore there is no need to specify a prior
for ¢ (Fahrmeir et al., 2013, p. 397). In the case of the fixed effects, we chose to assign an
(informative) prior normal distribution for [5'~N(,u3,a[§), with  hyper-parameters
(up , 0p);they are estimated from the data. As a rule of thumb, the range of uncertainty of the
prior distribution should be wider than the range of the reasonable values of the fixed effects

parameters of interest, e.g., ug = 0 and oz being very small (Gelman & Hill, 2007).

Moreover, the levels of hierarchy in multilevel modeling are treated as prior information in
Bayesian inference; hence they are also assigned a prior distribution with hyper-parameters
(Gelman & Hill, 2007). For easy interpretation, we set the prior information of hyper-
parameters (i, Us, U, ;) t0 zero so that the random effects are i.i.d with normal
distributions: y~N (0, Q). For convenience, and following (Fahrmeir et al. 2013, p. 397), we
assume a priori independent diagonal elements of the covariance matrix Q i.e. Q =

4 2 22 .2 2
diag(ty, 15,76, 7))

The posterior results depend on the choice of prior distribution. The inverse gamma is mostly
used as a prior hyper-parameter for variance parameters in the literature, but this choice is

criticized by Gelman (2006). He suggests to use the uniform distribution. In particular, when

13 There is also an empirical Bayesian approach that is not different in philosophy from the frequentist
methods.
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the variance components are near zero, Gelman & Hill, (2007, p. 346) argue that the inverse-
gamma is not the best choice as a prior for the variance parameters. Fahrmeir et al. (2013, p.
387) suggest to check for sensitivity of the results by comparing different choices of inverse
gamma parameters. We follow Gelman (2006) and use the uniform distribution as a prior for

each of the precision parameters: 75, 73, tZ, 7.

Based on the assumption outlined above, both on the prior and the observation model, and
after using the data and applying the Bayes' rule, we derive the posterior distribution as

follows:
m ni m (11)
Pr(vn @) | [ [PrOvlev) proy | [Previe e
i=1 j=1 i=1
The full conditionals are given as foliows:
prigy < | | [prOlsr) pres)
] (12)
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Since the full conditionals for g and y are not available in a known analytical form, Fahrmeir
et al. (2013) suggest to use the Metropolis—Hastings algorithm with an MCMC* approach to
draw random numbers from these full conditionals. The drawing of random numbers is based
on generating (three) Markov Chains with sufficient number of iterations (we use 100,000),
so that the transition kernel converges to the posterior of interest. In order to avoid estimates
to dependent on guesswork, we specify 2000 iterations to be discarded as burn out in each
phase to reduce the influence of the intial values of the Markov Chains. The convergence and
correlation are also important elements to assess the quality of the MCMC algorithm. The
convergence is assessed with R, which is calculated as the square root of the variance of the
mixture of all (three) the chains, divided by the average within chain variance. Usually,

R < 1.1 for all parameters is a good indicator of convergence and that the (three) Markov

1% we employ WinBugs software with R2ZWinBUGS R interface proposed in Sturtz, Ligges, & Gelman (2005).
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Chains have mixed well (Gelman & Hill, 2007). We use an autocorrelation function (AFC) of
the (three) Markov Chains, which need to converge to zero after only a few lags. We also
carry out thinning, where only the 100 ™ random number is saved for posterior analysis, such

as that the remaining random numbers in the thinned sample are uncorrelated.

We base our choice in model selection on the deviance information criterion (DIC) proposed
in Spiegelhalter et al. (2002), which is calculated as a sum of two quantities, the
unstandardized deviance: D(6) = —2log(Pr(y|0)), and the effective number of parameters

in the model: p, = D(6) — D(8), as the difference between the average posterior deviance
and the deviance evaluated at 8 = %Z{zl 6®, where T is the number of iteration and @ is the
unknown vector of parameters, such as: DIC = D(8)+pp = 2D(0) — D(0) =
2(337_,D(6@)) - D(®).

Moreover, we follow Nakagawa & Schielzeth (2013) and calculate pseudo-R-squared for

2
O'fe

GLMMs. We calculate both the marginal R-squared R?;LMM(m) = — 10 assess

afce+2}‘ alz+02+?
the contribution of the fixed effect to the explained variances and the conditional R-squared:
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— in order to assess the contribution of each random effect to the
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explained variance in model estimated from equation (10).

3.6. Results and discussion

3.6.1. Estimation results
Table 3.2 summarizes the estimation results from the GLMs and the GLMMs. The fixed
effects, i.e. the logit coefficients from GLMs, are displayed in the second column of Table

3.2. The marginal R-squared ( RELMM(m) ) indicates that the fixed effects explain 24.7% of

the variance in the prevalence of asymmetries in VPT.

On average the probability of finding asymmetry is lower with the increase of duration of
unchanged prices. The fitted probability of asymmetry in VPT for the EAN with the lowest
duration (1.64 weeks) is 34%, ceteris paribus. This fitted probability is only 2% for the EAN
with highest duration of unchanged prices (104 weeks). From the marginal effects, the third
column of Table 3.2, an increase of one week in duration implies a decrease of 3.5% in the

probability of asymmetry in VPT; thus cannot support the first hypothesis of this study.
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We do not find a systematic difference between the EANs with a national brand and EANs
with a private label in our dataset; therefore, the second hypothesis is not verified. This could
be explained by the limited middleman activity in the dairy sector in Germany as outlined
above. Moreover, the double marginalization is not an issue since the dairies often deal
directly with the retailers in Germany (Friedrich, 2010; Loy et al., 2015).
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Table 3.2 Factors that explain the asymmetry in VPT using GLMs and GLMMs

Response variable: Asymmetry in VPT
GLMs GLMMs

Fixed Effects

~

Factors Estimate  Marginal 95% CI Mean R? 95% ClI
(SE) effects (SE)
Intercept -0.26 -0.05 -2.83 264 1.06 106 -3.28 533
(1.38) (2.18)
Duration -0.19* -0.04 -0.33  -0.08 -0.22 1.02 -040 -0.07
(0.06) (0.08)
Private label -0.96 -0.18 -2.32  0.18 -0.36 1.00 -3.62 3.20
(0.63) (1.70)
SKU 0.72* 0.13 0.11 1.38 0.56 106 -0.14 1.29
(0.32) (0.38)
Supermarket -1.86 -0.34 -5.17 1.16 -2.02 1.04 -6.74 265
(1.60) (2.39)
Hypermarket -1.10 -0.02 -3.02 2.49 -0.99 105 -522 3.27
(1.40) (2.18)
Duration*Supermarket ~ 0.22*** 0.04 0.10 0.36 0.21 1.02 0.05 0.40
(0.07) (0.09)
Duration *Hypermarket  0.16** 0.03 0.06 0.30 0.18 1.02 0.03 0.35
(0.06) (0.08) 7
SKU*Supermarket -0.34 -0.06 -1.02 0.39 -0.30 1.04 -122 0.56
(0.37) (0.45)
SKU*Hypermarket -0.74* -0.14 -1.40 -0.12 -0.55 106 -129 0.17
(0.32) (0.38)
Random Effects
op - - - - 2.48 1.00 1.50 4.02
(% of total variance) (51.04%)
O - - - - 0.16 1.08 0.03 0.42
(% of total variance) (0.22%)
o - - - - 1.05 1.00 0.64 1.63
(% of total variance) (9.25%)
o - - - - 0.37 1.00 0.01 1.39
(% of total variance) (1.13%)
Explained Variance
RCZ;LMM(m) 24.71 % 10.95%
RCZ;LMM(C) 24.71 % 72.61%
Number of Null deviance =1246.6; Deviance= 942.8
observations :1087 Residual deviance=1184.3; pD =724
AlIC=1204.3 DIC =1015.2

“***7 denotes significance at 1%, ‘**’at 5% and ‘*’at 10%. *’

2 R: indicator of convergence , as a rule of thumb: R < 1.1 means convergence (Gelman & Hill, 2007)

Source: Authors’ calculations

The coefficient associated with consumer search costs (SKU) is positive and significantly

different from zero, which suggests that consumer search costs do explain asymmetry in the
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VPT. An increase of one stock keeping unit implies an increase of 13.2% in the likelihood of
asymmetry in VPT. Therefore, we verify the third hypothesis. This result is in line with

Richards et al.(2014), who provide some evidence for cereal bars in the USA.

Furthermore, we do not find that supermarkets and hypermarkets employ more asymmetries
in VPT than the discount stores. Therefore, the fourth hypothesis is not verified. However,
the interactions between the formats of store and duration are significant. They reveal that
when prices are kept unchanged for one (additional) week within the supermarkets and the
hypermarkets, to limit markup variation, the results lead to an increase of 4% and 3% in
asymmetry in VPT, respectively. This, provides initial evidence that allows us to verify the
fifth hypothesis.

We also find that the interaction between the format of store and number of SKU can explain
the differences in asymmetries in VPT. More specifically, differences are found between the
discount stores and the hypermarkets. An increase of one unit in the number of SKU within
the hypermarkets implies a decrease in the probability of finding asymmetry in VPT of
13.6%. Hypermarkets are supposed to change their prices more often due to the HilLo
strategy, and consumers expect a benefit from their search. Thus, when hypermarkets reduce
prices only enough to cause consumers not to search for new prices within the discount stores
(EDLP), and if in addition the hypermarkets use butter as a loss leader to attract consumers to
the store (Loy et al., 2015), this could lead to the decrease in asymmetry of VPT. This result
provides additional evidence that allows the verification the fifth hypothesis.

The random effects are displayed in the bottom of the third column of Table 3.2. The
conditional R-squared (R?;LMM(C)) indicates that the together with the fixed effects the random
effects explain 72.61% of the variance in the prevalence of asymmetries in VPT. In all cases,
the R < 1.1 is fulfilled, which means that the condition of convergence for the Markov
Chains is met. For further details on the quality of the convergence in the MCMC see Figure
A (Annex), where the mixtures of the three Markov Chains and the check for au-correlation
using and the ACF plots are displayed.

The variance of the random effects associated with factor product is large ( o = 6.130).
This means that 51.04% of the explained variance in the prevalence of asymmetries in VPT is
product specific. This is what we expect, because the exact same product is subject to
different pricing strategies in different stores and chains. The variance of the random effects

associated with store is small (62 = 0.027). The differences between stores explain only
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0.22% of the variance in the occurrence of asymmetries in VPT, which means that the
differences between the 345 stores have little influence on the asymmetry in VPT. This is
perhaps due to the limited flexibility the stores managers have in determining prices. The
differences between the chains are rather large, where the estimated variance of the random
effects associated to the chain is 62 = 1.110 . The differences between the retail chains
explain 9.25% of the variance in the occurrence of asymmetries in VPT. This suggests
centralized management of price indication across the stores. Last but not least, we find small
differences between the different classes of chains, where the variance of the random effects

associated with facto Class is a7 = 0.154, which explain 1.13% of the explained variance.

Figure 3.5 illustrates the effect of duration, ceteris paribus, on the fitted probabilities of
asymmetry in VPT for the 37 chains. Obviously, many chains deviate from the solid brown
line, which represents the mean model fitted with the GLMMs. Above all, we highlight two
chains (Chain A in dashed blue line and Chain C in solid blue line) whose intercept deviates
one and two standard deviations respectively below the mean intercept of GLMMs; and two
chains (Chain B in dashed red line and Chain D in solid blue line) whose intercept deviate
one and two standard deviations above the mean intercept of the GLMMs. This provides
additional evidence to validate our sixth hypothesis: that there are indeed certain retail chains
that have some potential to divert from the mean intercept. More evidence on the other
factors can be found in annex (see Figure A 3.2).

Figure 3.5 The fitted probabilities of asymmetry in VPT as a function of duration for
different chains

—_— Chain C

— Chain D

— Mean

Pr (Asymmetry in vertical price transmission)

40

Average duration in weeks

Source: Authors’ calculations
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3.6.2. Features of the chains that are distributed in the tails
Figure 3.6 illustrates, with the same four examples of chains (Chain A, Chain B, Chain C,
and Chain D) highlighted in Figure 3.5, which estimated intercepts are in the tails of the
distribution of y,.. The features of these four chains are of particular interest, because it casts
light on the discrepancies that we find in the price dynamics between the 1087 EANs. Table
3.3 presents the features of the chains that contribute to the decrease or the increase in the

probability of finding asymmetry in VPT.

Figure 3.6 Kernel density of random effects associated with the factor chain
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Source: Authors’ calculations
In Figure 3.6, the intercept for Chain A is likely to lie between one and two standard
deviations below the mean intercept, indicating that stores in Chain A are less likely to
display asymmetries in VPT. VPT is found to be symmetric in 90% of the EANSs sold by the
stores that belong to this chain. Chain A manages a relatively large number of stores (26) and
products (13). Within Chain A, the average duration of 24 weeks, which is higher than the
average duration of 16 weeks in the data. The average number of 4 SKUs is equal to the
average in the subsample. Regarding the format of store, 18% are discount stores, 16%
supermarkets and 64% hypermarkets. The intercept for Chain C is likely to lie under two
standard deviations below the mean intercept, indicating that it is very unlikely to find
asymmetry in VPT for this chain. VPT is symmetric for 100% of the EANs sold by the stores
that belong to this chain. Chain C manages a small number of stores (9), but has almost the
same number of products (12) as Chain A. The average duration (31) and average number of
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SKU (7) are higher in Chain C than Chain A. The format stores that belong to Chain C are
mostly hypermarkets (93%).

The intercept for Chain B is likely to lie between one and two standard deviations above the
mean intercept, indicating that the stores in Chain B are more likely to display asymmetries in
VPT. VPT is found to asymmetric in 88% of the EANSs sold by the stores that belong to this
chain. Chain B manages mostly supermarkets (88%) and it does not have discount stores. In
comparison to Chain A, Chain B manages fewer numbers of stores (4) and products (4).

Table 3.3 Features of the chains that are distributed in the tails of the posterior
distribution of the random effects

Chain  Class EAN SKU Duration Number Format of store Number  Region VPT
of of
stores products
A Class1 65 4 24 26 18% Discount stores 13 All 90%
16% Supermarkets regions, Symmetric
64% Hypermarkets but South
C Class1 45 7 31 9 7% Supermarkets 12 All 100 %
93% Hypermarkets regions, Symmetric
but South
B Class1 8 2 21 4 88% Supermarkets 4 South 88%
12% Hypermarkets Asymmetric
D Class1 30 4 23 11 13% Supermarket 9 South 66%
87% Hypermarket Asymmetric

% relative to EANSs in each chain, not to the total sample

Source: Authors’ calculations

Since the distribution of y, is slightly left-skewed, the choice for Chain D was not easy. The
intercept for Chain D is likely to lie two standard deviations above the mean intercept. The
Chain D is a special case though. VPT is asymmetric in 66% of the EANs sold by the stores
that belong to this chain. The results from checking for patterns that would explain why

asymmetries in VPT are important within Chain D are not conclusive.

Moreover, the region seems to influence the finding of asymmetry VPT, because all stores
that belong to Chain B and Chain D are located in the southern part of Germany. This can be
explained by the fact that geographically the dairy industry is concentrated in two major
areas: the Bavarians dairies, mostly private companies located in southern Germany, and
cooperatives-based dairies located in the northwestern regions of Germany (Jansik et al.,
2014). A link between the non-cooperatives dairies and the finding of asymmetries in VPT
has been found for the case of butter (Loy et al., 2015). We also notice that Chain B and
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Chain D do not include discount stores, whereas discount stores are present in Chain A. This
means that the difference between the formats of store in explaining the finding of asymmetry

in VPT are rather mixed.
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3.7. Conclusion
In theory, asymmetry in vertical price transmission (VPT) is explained with reference to an
individual economic agent: farmer, manufacturer, wholesaler, or retailer. Yet typically, price
aggregated data are used in empirical studies of VPT. Retail chains differ in several aspects
though, and more importantly in their pricing strategies, which might lead to variations in
price dynamics. In this study, we investigate why some chains/stores display more
asymmetries in VPT and others less for the same product defined by a European Article
Number. In a first step, we assess the nature of the price dynamics, i.e. symmetric or
asymmetric VPT at the individual retail store, from wholesale to retail prices for 56 well-
defined and homogeneous 250-gram foil-wrapped packages of butter in Germany over a 312-
week period using scanner data. In a second step, we link the variations in price dynamics to
some factors and indicators of pricing strategy that might help to explain asymmetric VPT
patterns. We also employ indicators of well-defined pricing strategies (EDLP and HiLo), such
as price rigidity and consumer search costs, combined with the format of stores that are likely

to employ them to explain the prevalence of asymmetry in VPT.

Our results complement the findings of Loy et al.(2015) in that we explicitly take the
hierarchically structured data and separate out the effects of the product, store and chain on
the variation in the price dynamics. We show that asymmetry in VPT is systematically related
to store membership in a retail chain. We also cast light on some differences between the
retail chains that employ asymmetries in VPT from those who employ symmetries in VPT.
We do not find important differences at the store level, which is explained by the limited
flexibility left to store managers in price setting. We do not no find systematic differences
between the private labels compared to the national brands; a result which is not in line with
Hong & Li (2015).

The implications resulting from our research may help both retailers and dairies to reduce
asymmetries in VPT. First, we can determine that double marginalization is not much of an
issue, since it does not necessarily lead to asymmetries in VPT. Second, rigid prices and
consumer search costs affect VPT processes; therefore, dairies and retailers who are
interested in improving market integration and avoid asymmetries in VPT might consider
reducing consumer search costs and allow prices to fluctuate to reflect the changes in the
wholesale prices. Third, rather than treating all retail chains the same, we show that there are

some retail chains that contribute to the enhancement of passing along costs. Finally, we
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document some indicators of retail chain pricing strategies that reduce asymmetries in VPT,

which may be informative for dairies.
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3.9. Annex

Figure A 3.1 Sampling path of the variance of the random effects associated with the

product, store, chain and class
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Figure A 3.2 The fitted probabilities of asymmetry in VPT as a function of duration for
different class, stores and products
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4. Vertical price transmission at the individual store level

Abstract

In this study, we model retailers’ dichotomous choice of changing retail prices against
displaying rigid prices at the retail store level as a function of time and state dependent
variables. As state dependent variables, we consider the level of wholesale prices and the
reference price, i.e. price of competing retail chains for the same product. We use the elapsed
time from the last price change to assess time dependence on retail chains’ pricing decisions.
To capture the differences that might exist between retail chains’ pricing decisions, we
employ mixed models. To specify, the marketing margins have both fixed and random effects
on the probability of changing retail prices. As a case study, we use scanner data from the
German dairy market. We hypothesize that an increase (a decrease) in marketing margins
(reference prices) would lead to a decrease (an increase) in the likelihood of introducing a
new price change. We also expect that retail chains that are sensitive to changes in their
marketing margins will more frequently adjust their prices than the retail chains that are
insensitive to their marketing margins. Our findings indicate that retail chains react to the
wholesale prices with temporary sales price (TSP). To changes of competing retail prices,
retail chains react with changing their regular prices. Moreover, we find a relationship
between retailer’s sensitivity to changes in their marketing margins and the frequency of
changing their regular prices. We also find that it is more likely to change new prices than
changing old prices; thus a result that is at odds with the conventional theories of costly price
adjustment.

Keywords: marketing margin, state dependence, time dependence, generalized linear mixed

models.
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4.1. Introduction

The study of vertical price transmission (or marketing margins) aims to measure how changes
in prices at one market level of a value chain are transmitted to another level of the same
value chain (Schwartz & Schertz Willet, 1994). The marketing margin and the factors that
may influence it have generated an abundant literature. Only few areas of agricultural
economics have received as much public attention as marketing margins (Wohlgenant, 2001).
This is because marketing margins have important implications for consumers’ welfare. Yet,
retail prices and marketing margins can be influenced by a myriad of factors, including -but
not limited to - changes in retail sector prices and upstream suppliers such as wholesalers
(Wohlgenant, 2001).

Previous empirical applications of VPT employ only one pair of time series of weighted
averages on retail prices in a country or a region, with likely no change in market conditions
over time (Loy et al, 2015), or very limited cross-sectional data (see Peltzman, 2000). Using
aggregated retail prices to measure VPT implies that all market participants respond to the
exact same change in margins and have identical conjectures about the responses of the other
participants (Hassouneh et al, 2012). However, this is a strong assumption. At the
disaggregated level, different chains follow different pricing strategies, e.g. Every Day Low
Price (EDLP) and High-Low (HiLo). The differences between the pricing strategies of the
retail chains could explain price dispersion (Loy et al., 2015). However, pricing strategies
alone are not sufficient to explain the differences in sensitivity of retail chains toward their

marketing margins.

Most of the available literature on VPT use aggregated price data. Deriving conclusions from
these studies to explain the individual economic agent behavior, e.g. individual retail store,
can be misleading (von Cramon-Taubadel et al. 2006). A more compelling alternative is the
VPT assessment at the level of the individual economic agent. Two difficulties are
encountered regarding the empirical applications of VPT at the disaggregated level: data
availability and appropriate methods. Academic research has recently started to use
disaggregated scanner data to assess VPT. This has helped to overcome the first difficultly.
However, the latter is not yet well investigated. So far, most of the available literature on VPT
use Vector Error Correction Models (VECMs), and non-linear variants of the VECMs. It has
only been recently that researchers have started to employ panel data methods to investigate
price dynamics at the disaggregated level (Empen, 2014; Holm, 2013; Hong & Li, 2015; Loy
et al., 2015; Richards et al., 2014). To assess price dynamics, previous studies have used first
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differences (AP, = P, — P,_,) of prices. However, assessing price dynamics with first
difference in prices leads to information loss and zero inflated data. This is because retail
prices at the store level are sticky. We also use panel data. However, we depart from the
previous studies in avoiding the use of first differences to assess price dynamics. This
contribution consists in analyzing dichotomous choices between introducing frequent
changes in retail prices or displaying rigid prices. As a case study we investigate homogenous
products (250-gram foil-wrapped butter) throughout the same period of time (2005-2010), in

the same country (Germany).

Retail prices are rigid at the microeconomic level (Kehoe & Midrigan, 2015). A literature
review on the theoretical models in Weiss (1993) and in Taylor (1999) and more recently in
Gautier (2009), show that there is no consensus on the theories behind the price adjustments
at the microeconomic level. Blinder (1994) for instance identifies twelve different theories,
and discusses them in detail. In general, there are two main competing families that try to
explain how a price changes at the microeconomic level: time dependent (Calvo) models and
state dependent (menu cost) models. More recently, Eichenbaum et al. (2011) challenge both
the Calvo model and menu cost models in explaining some important and recurrent features
of price data at the microeconomic level. More specifically, how reference prices adjust to

reference costs.

The study of price changes at the microeconomic level can also be considered for its intrinsic
value, (Loy & Weiss, 2002). How this intrinsic value can shed light on how prices are
determined and transmitted at the smallest possible scale is the main subject of this study.
More specifically: how do retail chains adjust their prices at the individual store level as a
response to shocks in wholesale prices? How do retail chains react to shocks in prices of a
similar product sold by other competing retail chains? Moreover, since price changes imply
repricing costs, to what extent can costs be determined at the time of adjusting the prices. We
consider a time dependent factor by introducing elapsed time from the last price change to
approximate the effect of accumulated shocks on the likelihood of introducing new price
changes.

With this study, we contribute to the literature in several ways. First, to the best of our
knowledge this is the first study that attempts to extend the intrinsic value of changing price
to research areas such as VPT. We depart from previous studies in linking the patterns of

changing retail prices to marketing margins (vertical price transmission). As a case study, we
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use scanner data from the German dairy market. Second, a particularity of this study,
compared to the previous studies, is that we explicitly check for the sensitivity of retail chains
to their marketing margins. We also check how this sensitivity is connected to the frequency
of changing retail prices. More specifically, we model the heterogeneity in price setting and
sensitivity to marketing margins within and between retail chains. This has been possible
with the use of mixed models, where the marketing margins are modelled to have both fixed

and random effects.

The rest of the study is organized as follows. In Section 4.2, we describe situations of retail
chains’ reactions in the cases of squeezed or stretched marketing margins. Then, we derive
scenarios that could explain price setting at the individual retail store. In Section 4.3, we
review the related literature on theories that have been proposed so far to explain price setting
at the smallest possible scale. In Section 4.4, we present some features of the data and
describe the methods that we employ. In Section 4.5, we present and discuss our results. In

Section 4.6, we conclude.

4.2. Background

In a pioneer study, Gardner (1975) analytically derives a relationship between retail and farm
gate prices. Gardner’s model assumes perfect competition and constant returns to scale. The
retail margin reflects marketing costs. However, perfect competition is not always maintained
(Lloyd et al, 2006). There is evidence of imperfect competition in many European countries
(McCorriston, 2002), including the German retail food sector (Herrmann et al., 2005; Weber
& Anders, 2007). McCorriston et al. (2001, 1998) and Lloyd et al. (2006) relax the perfect
competition assumption in Gardner’s model and extend it to situations of oligopoly power
and non-constant returns to scale.

Let us consider a typical time series of prices from our data. The solid black line from Figure
4.1 depicts a typical price series for a 250-gram foil-wrapped package of butter sold at a
randomly selected store on a weekly basis for the period 2005-2010. The dashed line is a time
series of regular prices for the same item filtered from temporary sales prices (TSP). The
solid grey line represents the simple average of all filtered prices series in our data set for the

same period. The dashed black line represents the wholesale prices for the same period.

Given the level of the marketing margin, i.e. the difference between the retail prices and the
wholesale prices, two scenarios are plausible. The first scenario represents the case where the

wholesale prices increase; thus the marketing margin is squeezed. Hence, there is a tension
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between the need to change prices or to display rigid prices because of the adjustment costs.
Therefore, the retail chain faces a dichotomous choice. The second scenario is opposite to the
first one; the wholesale prices decrease. The tension of changing retail prices is not the result
of the marketing margins, which are obviously stretched, but is rather the result of the
changes in the prices of other competing retail chains. More specifically, the reference prices
of others for the same product are decreasing; therefore, there is a need to adjust retail prices

again.

Figure 4.1 Factors that may explain changes in prices at the smallest possible scale
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Figure 4.1 illustrates a randomly selected time series of prices from our data. To check
whether the two scenarios above described hold for the 1,087 different time series included in
our dataset, we plot a histogram of the weekly differences between the filtered retail prices
and the wholesale prices, and between the filtered retail prices and the reference prices. The
results are displayed in Figure 4.2. The left panel from Figure 4.2 indicates that most of the
observations are above the wholesale prices (below zero). The observations that are below
wholesale prices can be explained by the fact that, when wholesale prices increase, the retail
prices need some period of time to adjust to their regular prices; therefore, the average
wholesale prices could exceed the retail prices for some weeks. The right panel from Figure
4.2, shows that there are more observations that are below zero than in the left panel. This can
be explained by the fact that some retail chains choose to set prices below the average

reference prices, e.g. if they follow an EDLP pricing strategy. Some retail chains may also
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wait to accumulate shocks in their costs and make changes in prices that cover re-pricing
Costs.

Figure 4.2 Histogram margins to wholesale and reference prices
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Despite that the analysis of evolution of marketing margins and vertical price transmission
are closely related subjects; they are not necessarily identical (Vavra & Goodwin, 2005). To
what extent and with which speed are the changes in wholesale prices transmitted to the retail
level are the kinds of questions that are answered with a VPT study. In addition to the
evolution of the margins over time, a VPT framework considers costs, which helps in
assessing the nature and the level of efficiency along the value chain. This is equivalent to
measuring the effect of the changes in margins between the raw (filtered) retail price and the
wholesale price on the odds of introducing a price change at the raw (filtered) retail price.
Obviously, price adjustments would also depend on other factors that are much more complex
than considering just these two factors. However, it is a simplification that could contribute to

the understanding of the pricing behavior of retail chains at the smallest possible scale

In this study we aim to answer the following three questions. First, how changes in wholesale
prices (changes in marketing margins) affect the changes in retail prices at the smallest
possible scale? Second, are the retailers that have recently adjusted their nominal (regular)
price likely to adjust their prices again? In this study we employ elapsed time from the last
price change to determine the time dependence in price setting. Third, are there many other
factors that may influence the changes in a retailer’s regular prices? We mainly consider the

level of prices of other competitors selling the same product. Other factors such as the
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differences between the private labels and national brand; the differences between different

store formats; and the heterogeneity between the retail chains are also considered.

To answer these questions, we consider that changes in retail prices are driven by factors that
are related to the external and internal environments of each retail chain. Therefore, several
determinants on four different dimensions can be considered. First, the external environment
is determined by the level of the wholesale prices and the level of competition of other retail
chains. Second, the internal environment is determined by the management of each store,
which can be centralized or decentralized. Third, the different format of store, and their
pricing strategy, e.g., EDLP and HiLo are also two factors related to the internal environment
of the retail chain. Fourth, the chains are different in several aspects; thus heterogeneity may
exist in their way of reacting to idiosyncratic shocks from the external environment. Hence,
the probability of a change in price Pr(APrice;; #+ 0) foran EAN i = 1, ...,1087 at a given

week t = 1,...,312 is expressed in equation (13):

Pr(APrice;; # 0) = f(State dependence, Time dependence, Control variables, (13)
Unobseved heterogeneity)
By unobserved heterogeneity in equation (13), we refer to differences between retail chains in
their price setting and their sensitivity to time and state dependent factors, e.g. marketing

margins.

Figure 4.3 provides a simple schematic of a fictive retail Chain X, which has discount stores,
supermarkets, and hypermarkets in its portfolio. Depending on the store format, a retail chain
may choose between flexible price setting, e.g. product 1 and product 2, or rigid price setting,
e.g. product 3. Exogenous shocks could originate from the external environment, e.g. changes
in the retail margin due to increase in wholesale prices or a decrease in demand because of

the decrease in prices of a competing retail chain. Our data cover 37 different retail chains.
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Figure 4.3 Simple schematic of price setting at chain level
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4.3. Related literature on the different theories of price setting
According to Kehoe & Midrigan (2015, p. 35) :“prices are sticky after all”’. This is the main
conclusion of a recent study on rigid prices at the microeconomic level. Many studies try to
come up with a reasonable theoretical explanation for price rigidity at the microeconomic
level. Taylor (1999) review the literature on the different proposed theories to explain rigid
prices at the microeconomics level. These theories are usually grouped into three main
categories: the flexible pricing in Neo-Keynesian economics, the time dependent models or
better known as the Calvo models, and state dependent models, which are also known as
menu cost models. The time dependent and state dependent theories are the two main
families that are discussed most in the literature (Eichenbaum et al., 2011; Gautier, 2009).
Weiss (1993) conducts a literature review on models that explain price rigidity in the 1980s
and 1990s. Gautier (2009) extends the literature review to include both recent theoretical and
empirical developments in the literature. In what follows we present briefly each family of
theoretical models and their empirical verification in the literature. Because of the huge
number of papers that have been published, we limit ourselves to review the most cited

papers, e.g. Cecchetti (1986), and the studies conducted in the agro-food sector.

4.3.1. Time dependent (Calvo) models and their empirical test
Time dependent models assume that only a few firms can adjust their prices at a given period
of time. Taylor (1980) and Calvo (1983) propose models where prices are not only
predetermined, but remain unchanged for several periods of time. One of the main reasons for
which firms adopt time dependent models is the existence of explicit contracts. If changes in

prices are determined according to a time dependent rule, then the question is whether
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changes in prices are staggered or synchronized. Ball & Cecchetti (1988) argue that firms
work in an uncertain environment and information on competitors’ reactions to market
shocks are collected with delay. Thus, a firm prefers to set its prices shortly after other firms
set their prices. Therefore, we consider the elapsed time from the last change in price to
assess time dependence in price setting in our data.

Lach & Tsiddon (1992, 1996) study meat and wine and show that the time dependent rules
are not empirically verified. However, their method is criticized. They use a test that does not
follow a standard distribution (Chakrabarti & Scholnick, 2005). Fisher & Konieczny (2000)
propose a test, with a 2 distribution to check for the hypotheses proposed in Calvo’s model.
Many studies use Fisher and Konieczny's approach to test for staggering prices for different
products and sectors. For instance, Loy & Weiss (2002, 2004) provide evidence of price
synchronization within retail chains and between products in the case of the food retail sector
in Germany. However, Loy & Weiss (2004) argue that common shocks explain only some
synchronization of prices and other strategic motives and state dependent factor might be
important.

Conducting surveys is another approach used in the literature to determine whether firms
follow a time dependent rule. Surveys have been conducted in different countries. Blinder
(1991) and Blinder et al. (1998) find that 40% of firms follow a time dependent model in the
USA. Fabiani et al. (2006) survey 11,000 firms in the Euro zone and find that around one-
third of firms follow time dependent pricing rules. The proportion of firms that follow a time
dependent rule is even higher in the UK with 79% (Hall et al., 2000).

4.3.2. State dependent (menu cost) models and their empirical verification
To cite only a few, Sheshinski & Weiss (1977, 1979, 1983); Danziger (1983, 1984) and
Dotsey et al (1999) are among theoretical studies that belong to this second class of models.
In a survey of 11,000 firms, Fabiani et al. (2006) find that two-thirds of firms follow state
dependence models in the Euro zone.

Since firms face costs every time they change their prices, they prefer to wait for some period
of time to accumulate shocks before changing their prices. Two main components of costs are
distinguishable: fixed and variable costs. Regarding the fixed costs, Levy et al. (1997) and
Dutta et al. (1999) find that menu costs account for between 27% and 35% of net profit
margins in the USA retail market. Rotemberg (2005) argues that menu costs are not
necessarily fixed. They depend either on the magnitude or the frequency of the price change
(Konieczny, 1993). Moreover, changing prices very often can create customer anger
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(Rotemberg, 2005). This argument was also mentioned in many surveys of companies. For
instance 55.3% of surveyed firms in Canada mention avoiding frequent price changes to

circumvent disturbing customer relations (Amirault et al., 2005).

There are also empirical studies that try to bring theoretical menu cost models into practice.
Two approaches are used in the literature: reduced form and structural models. Using reduced
form approach, Cecchetti (1986) examines the determinants of the frequency of price
adjustments in the case of magazines in Canada. Cecchetti (1986) shows that higher inflation
leads to more frequent price adjustments and real cost of nominal price change varies with
the frequency of adjustment and size of real price change. Willis (2006) argues that the
methods employed in Cecchetti’s model suffer from misspecification and proposes a model
to obtain more consistent estimates. Willis (2006) confirms state dependence in price setting
in the case of magazines, but he finds that the argument for the cost of price adjustment weak.
In the same vein, Baudry et al. (2005) show that inflation influences the increase in price, but
not a price decrease. Fougére et al. (2007) show that inflation positively influences the
duration of unchanged prices in 45% of the products included in their study. Schenkelberg
(2013) shows that in a low inflation environment, e.g. Germany, state dependent factors such
as input costs are more important determinants of adjusting prices than the inflation rate. We
follow Schenkelberg's (2013) suggestion and focus on including other factors other than
inflation rates, such as the level of reference prices, the wholesale prices and the temporary

sales prices.

Another variant to test for hypotheses of state dependence in prices is to employ semi-
structural models. The common starting point is the (S, s) model with either deterministic
inflation rates (Sheshinski & Weiss, 1977) or stochastic inflation rates (Danziger, 1983, 1984;
Sheshinski & Weiss, 1983). Sheshinski et al.(1981) provide empirical tests of semi-structural
model with data on instant coffee and noodles in Israel over the period 1965-1978. Ratfai
(2006) implements a semi-structural model and uses prices of processed meat products in
Hungary. Ratfai (2006) approximates the optimal price based on wholesale prices of
processed meat. Even though the semi-structural models are important and very informative,
the scope of this study is not building a structural model. We use a reduced form variant and

the novelty of this study is the use of mixed models.

In summary, the choice between the Calvo and the menu cost models is still the subject of
discussion (Kehoe & Midrigan, 2015). Blinder (1991) argues that it is not easy to evaluate
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adjustment costs of prices, which makes the empirical verification of the menu cost model
hard, or even impossible. Furthermore, the difficulty of accessing disaggregated prices made
early studies focus on the theoretical explanation of sticky prices. The early empirical studies
focused on a specific product or a sector. More recently as data have become available at the
disaggregated level, studies attempt to verify the hypotheses of the theoretical models. For
instance, influential papers include Bils & Klenow (2004) , Nakamura & Steinsson (2008)
and (Eichenbaum et al., 2011) for the USA, and Dhyne et al. (2006) for the euro zone. For
Germany, a recent study by Schenkelberg (2013) shows that Calvo models are not sufficient
to explain price adjustment processes in German retail businesses. Moreover, Campbell &
Eden (2014) try to assess time and state dependence of retail chains’ pricing decisions in the
USA. Campbell & Eden (2014) find evidence of both state and time dependence in price
setting. More specifically, they find that the probability of nominal price adjustment declines
with increasing time from the last price change. In addition, the probability of a nominal
adjustment increases when a chain’s price diverges from the reference price of other retail
chains. We follow the modeling strategies in Schenkelberg (2013) and Campbell & Eden
(2014) and extend their approach to consider heterogeneity in retail chains in terms of their

sensitivity to their marketing margins.

4.3.3. The role of data structure
Nakamura (2008) investigates how the pass-through patterns from the wholesale to retailer
level vary across (100) products, (7,000) stores and (33) chains in (50) cities in the USA.
Nakamura (2008) employs variance decomposition to link the frequency of price change to
product, store and chain, by including random effects associated with each level. Nakamura
(2008) finds the variability between the 33 chains is the most important factor in explaining
65% of the variation in prices, followed by products (17%) and stores (16 %). In the same
vein, Nakamura et al. (2011) use variance decomposition to explain cross-sectional variation
in price dynamics for coffee, cold cereals and soft drinks in the USA. For a given
homogenous product, Nakamura et al. (2011) find more variation in pricing dynamics across
retail chains than across stores within the same chain. They also find that the characteristics
of the chains explain a larger proportion of the variation in retail price dynamics than the
characteristics of the stores. They recommend focusing on extending the number of chains in
the data collection and with a focus on representative stores for each chain. In this study we

follow Nakamura's et al. (2011) suggestions and focus more on the differences between the
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retail chains than the differences between the stores. We also account for the data structure in

order to derive consistent modelling for the dichotomous choices in pricing decisions.

4.3.4. Hypotheses
The following hypotheses are subject for testing in this study. First, we hypothesize that high
retail margin would lead to a decrease in the likelihood of introducing a price change.
Second, we hypothesize that the increase in the difference between a chain’s price and the
average price for the same item at other competing retail chains increases the probability of a
price change. Third, we expect that an increase in the elapsed time from the last price change
would lead to an increase in the likelihood of introducing new changes in retail prices.
Fourth, we expect that retail chains that are sensitive to the changes in their marketing
margins will adjust their prices more frequently than the chains that are insensitive to

marketing margins.
4.4. Data and methods

4.4.1. Data

Our dataset is composed of weekly panel data purchased from Symphony IRI Group GmbH
(2011) containing scanner retail prices. The dataset covers 37 different retail chains and 345
different retail stores in Germany. It contains 333,144 observations on prices and quantities of
56 products. The period covered is from the first week of 2005 until the last week of 2010.
Products are identified at a highly disaggregated barcode level. Since the same product may
be sold in more than one retail store, the identification of each product at each store is made
by the European Article Number (EAN). There are 1,087 different EANs, from which 1,012
EANSs are national brands and 75 EANSs are private labels. Moreover, discount stores account
for 183 (17%) of the 1087 unique EANSs in the data, the supermarkets represent 91 (8%), and
the hypermarkets have 813 (75%) unique EANS.

The weekly prices are calculated by dividing the average unit revenues on quantities sold
each week for a given EAN at a given store. In this way, the calculation of prices in each
week may result in small price changes in the data (Eichenbaum et al., 2014; Lloyd et al.,
2014). With the use of both raw and filtered retail prices using an algorithm proposed in
Chahrour (2011), we are able to assess the effect of sales and the small changes on the overall
results. The weekly observations also allow the accurate calculation of elapsed time from the
last price change and the corresponding reference prices set by other retail chains (Campbell
& Eden, 2014).
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The wholesale prices for the same product and same period of 2005-2010 are collected by the
Butter and Cheese Exchange (SBKB), located in Kempten, Germany. These prices represent
the average opportunity cost for the retailers to acquire a 250-gram foil-wrapped package of
butter in Germany (Loy et al., 2015).

4.4.1.1. Descriptive statistics

In Table 4.1, the frequency of price change of raw retail prices (23.3%) is higher than the
frequency of price changes when the TSP are filtered out (3.4%). Surprisingly, there are no
remarkable differences between price increases 11.8% (1.7%) and price decreases 11.5%
(1.7%) for raw (filtered) retail prices. The average retail margin in the case of raw retail
prices is 45 eurocents per 250 grams of butter. Filtering out the TSP leads to higher marketing
margins than the raw retail prices, with an average margin of 47 eurocents per 250 grams of
butter. Moreover, the average difference between the raw retail prices and the reference prices
is 19 eurocents. On average, the prices remain unchanged for 16 weeks in the case of raw
retail prices and 38 weeks in the case of filtered retail prices.

Table 4.1 Summary statistics for some variables of interest

Variable Raw retail prices Filtered retail prices
Price increase 39,125 (11.8%) 5,803 (1.7%)

No change 260,079 (76.7%) 327,606 (96.6%)
Price decrease 39,940 (11.5%) 5,735 (1.7%)
Average margin 45 47

Reference Price 19 0.1

Elapsed Time 16 38

Total number of 339,144 339,144

Source: Authors’ calculation

4.4.1.2. Decomposition of price variation into regular price and sales
To what extent do regular price periods and sales periods account for price adjustment in our
data? We follow Lloyd et al. (2014) and estimate regressions in which the deviation in an
EAN’s price about its mean p;, = P;, — P, is regressed on two dummy variables, one dummy

that captures changes in the regular price and another dummy that account for TSP.

Pit = :Blregularit + Eit (14)
Dit = Psales; + &;¢ (15)
pir = P1regulary, + Bosale; + & (16)

The interest is not on the coefficients (8, ;) from the regressions in equations (14, 15,

and16), but rather on the coefficient of determination and the contribution of each dummy
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variable to the explained variance (Lloyd et al., 2014). The results of the regressions are
displayed in Table 4.2.

Table 4.2 Contribution of regular prices and sales in price variation

Filtered price Sales Total Residuals

Price 27.09% 65.70%° 92.80% 7.20%

® Note there are EANs where sales account for zero variation in prices and in others EAN sales account for

Source: Authors’ calculation

Despite occupying only15.30 % of price changes in our dataset, sales account for 65.70% of
price variation in our data, whereas the changes in regular prices account only for 27.09%.
These results are not in line with Lloyd et al. (2014) who find that price adjustment is evenly
split between sales (43%) and regular price changes (44%) for several categories of agro-food
products in the UK.

The results presented in Table 4.2 are averages of the 1087 regressions from equations (14,
15, and16). The contribution of regular price’ spells and sales to price variation varies across
chains. Figure 4.4 reports the breakdown by chain. The contribution of sales to price variation
ranges from 22 % in the case of Chain 27 ™ to 93.5% in the case of Chain 23, whereas the
contribution of regular price change to price variation ranges from 1% in the case of Chain 30
to 87% in the case of Chain 8. This provides initial evidence that allows us to verify the
fourth hypothesis of this study.

Figure 4.4 Contribution of regular price changes and sales in price variation by retail
chain

. Chain17
chah@" 190 Chaip 13 34
Chain 12 Chain 32
Chain 8 80 Chain 18
Chain 2 Chain 33
Chain 31 60 Chain 11
Chain 7 40 Chain 24
\Y A
Chain 23 20 7 Chain 20
Chain 5 S < Chain 16 = Sales
Chain 30 Chain 22 Regular
Cahin 6 / Chain 10
Chain 37 \ Chain 21
Cahin 26 Chain 3
Chain 35 Chain 1
Chain 27 Chain 9

ChaiEhzasi@@in 36 Chaiﬁh%igqaé‘m "

Source: Authors’ calculation

1> The chains are labelled from 1 to 37 only for illustration purpose.
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4.4.1.3. Variance decomposition

We follow Nakamura et al. (2011) and undertake variance decomposition of price variation
across product, store and chain. The procedure consists of a random intercepts model as
expressed in equation (17). The frequency of price change for each EANSs is regressed on
random intercepts for product, store and chain:

finse = §ip + Sis + ic + Eipsc (17)
In equation (17), fipsc » i = 1,,1087, denotes the frequency of price change, including or
excluding TSP. The &, &is, §ic, and &5, are random intercepts, which are assumed to be
identically, independently, and normally distributed. The component ¢&;,~N(0, rf,) IS
common to a given product sold in different stores. The component &;.~N(0,72) is common
to all stores selling the same product. The component &;.~N (0, t2) is common to all stores in
a given retail chain. The component &;,;.~N (0, 72), the residual, captures the remaining

variation in the frequency of price change.

Table 4.3 displays the results of two regressions using equation (17) of raw and filtered retail
prices. The percentages in Table 4.3 are based on the contribution of each level on the

ditional R d: R2 TetThritee implemented in Nak &
conditiona squared: Rz (c) = Fordededid as implemented in Nakagawa

Schielzeth (2013). The component rfe denotes the variance of the fixed effects, which is zero

because equation (17) does not include fixed effects. The results show that most of the price
variation is captured at the chain level, with 51.43% (33.95%) for raw (filtered) retail prices.
The product level accounts for 26.50% (24.93%) in raw (filtered) retail price variation. Only
2.5% (5.30%) of raw (filtered) retail prices variation is common to stores. These results are in
line with Nakamura et al. (2011) who find that stores do not account for much of the variation

in the prices.

Table 4.3 Variance decomposition of frequency of price change including and excluding
sales

Product Store Chain Residuals Conditional
fip Eis fic Sipsc Réuvuw(c)
Raw prices 26.50% 2.58% 51.43% 19.47% 0.80
Filtered prices  24.93% 5.30% 33.95% 35.80% 0.64

Source: Authors’ calculation
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4.4.2. Methods

4.4.2.1. Model specification
In order to model retailers’ dichotomous choice of changing retail prices against displaying
rigid prices, we need to construct the choices. The response variable is therefore a binary
variable recording any price change for any given EANS, i, between week t and week t — 1.
Moreover, we assume that no price change has been introduced at the first week of 2005 and

therefore the first observation is set to zero, such as expressed in equation (18):

0,fort=1
yie =41, if Pricel¢* " — Price[¢4" = APricel?"™ +0,fort =2,...,312 (18)
0, if Price[¢* — Pricel¢t4" = APrice[?*™! = 0,fort =2,..,312

The response variable consist of 312 observations for each of the 1087 EANSs included in our

dataset, i.e., a balanced panel of 339,144 observations.

Let us consider changes in retail prices for a randomly selected product “P1” that is sold in
42 different stores within Chain A and in 4 stores within Chain B. Chain A and Chain B were
selected because their contributions of the regular price to the price variation are similar in
the two chains, i.e. 22% in the case of Chain A and 20% in the case of Chain B*°. Figure 4.5
shows the fitted probabilities of introducing regular price change against the retail margin to
the wholesale prices using the generalized linear model proposed in McCullagh and Nelder
(1989).

16 The chain A is labelled Chain 17 and Chain B is labelled Chain 34
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Figure 4.5 Fitted probabilities of regular price change for same product between stores
within the same chain

Chain A Chain B
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R
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Margin between filtered retail price and the wholesale price

Source: Authors’ calculations
The probabilities of changing the regular prices appear synchronized within Chain A, i.e.,
many curves overlap. Moreover, the curves start at different intercepts and intercross,
indicating differences between the slopes for each curve, which is clearer in the case of Chain
B than in Chain A. This indicates differences in terms of sensitivity of chains in terms of their
marketing margins. In order to capture these differences, we include random effects for each
EAN and each chain.
Moreover, data have a specific structure that we consider at the time of modelling the
probabilities of price changes (y;;). Each level (products, store, and chain) contains additional
information that we capture by adding random intercepts and slopes. For instance, the
sensitivity to marketing margin for a given EAN varies between chains and within the same
chain and between the different retail chains. The probability of changing prices for each

EAN is as expressed in equation (19):
L
log(Pr(yitpse = 1)) =B° + B™* 9™ margin;, + Z B'controly; (19)
l

margi

M
+ z pMcontroly + yi"[;']"g inmargini[t] +Yere nmarginc[t] +vi
m

TV tYs T Ve
A generalized linear mixed models approach (GLMMs) is well suited to model price changes

as expressed in equation (19). Given the random effects
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margin’ _ margin’

Y= WiV Vs Ve Vi Ve ) and the data, the responses y; are conditionally
independent and their conditional mean is linked to the linear predictor (n;) via a response
function hsuch as u; = E(y;|ly) = h(n;). The conditional density of y; belongs to an
exponential family (Fahrmeir et al., 2013), which can be expressed as follows:

yi0; — b(6;) (20)

log(f (vilB8, 7)) = Y Tc0ud)

In equation (20), b(.) depends only on 6,and c(.) depends on y and ¢. The parameter 9; is
the canonical parameter and ¢ is a common dispersion parameter independent of i (Fahrmeir
etal., 2013, p. 304).

In equation (19) the controly; are time invariant covariates, such as format of store

(discount stores, supermarket and hypermarket), or whether the product has a private label or

national brand. The control,,;jdenotes time variant covariates such as TSP. The parameters

B, pmargin, gl and B™ are fixed effects. B0, 479" represent the mean intercept and the
mean slope of the retail margin respectively. To capture the deviations from the mean
intercept 8°, we add four random intercepts y;, ¥, ¥s, e, at the level of EAN, product, store
and chain to the linear predictor n. To capture the deviations from the mean slope of
marketing margin pmerdin - we add two components to the linear predictor:
margin . 4 margin margin

Yi Ye . The first component y;

: captures the deviations from ™9 for

each EAN. The second component y"*"9"" captures the deviation from the average slope

L™erdin for each chain. In addition, random intercepts and random slopes are assumed to be

identically, independently, and normally distributed. The distributions are expressed as

follows:
Yi~N(0,67) ... ... .. fori=1,...... ,1087 EAN's
¥p~N(0,02) ... ... .. forp=1,...... ,56 products
Ys~N(0,02) ... ... ... fors=1,...... 345 stores
Ye~N(0,02) ... ... ... forc=1,...... ,37 chains
Y IR N (0, 0F pmarging ) - - - fori=1, .. 1087 EANs
ycmargi"~N(0, ch[margin] ) Jforc=1,...... ,37 chains

The probability of changing retail price for an EAN at week t, conditional to the random

effects y, is formulated as follows:
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T = EWielB,Y) = Pr(yie = 1lxi, Bi tir, vi) = logit ™ (i = xi B + uiryy) (21)
The u;; contain variables which are unique to each level, and usually it is a sub-vector of x;; .
Moreover, the choice of u;; =1 in equation (21) defines the random intercept model
(Fahrmeir et al., 2013, p. 390).

4.4.2.2. Model estimation and model selection

Different methods have been suggested in the literature to approximate the likelihood to
estimate the GLMMs parameters in equation (19), including the pseudo (marginal) and
penalized quasi-likelihood (PQL) approximation (Breslow & Clayton, 1993; Schall, 1991,
Wolfinger & O’connell, 1993), and an improved version of the PQL approximation
(Goldstein & Rasbash, 1996; Rodriguez & Goldman, 2001), Laplace approximation
(Breslow, 2004; Raudenbush et al.,, 2000) and Gauss-Hermite quadrature (GHQ)
approximation (Pinheiro & Chao, 2006) and adaptive quadrature (AGHQ) (Rabe-Hesketh et
al., 2005).

The PQL approximation suffers from not computing true likelihood (Bolker et al., 2009;
Rabe-Hesketh et al., 2005), and it should not be used for inference (Pinheiro & Chao, 2006;
Rabe-Hesketh et al., 2005). Further, this approximation works poorly with dichotomous data
with small cluster sizes (Breslow, 2004) and leads to biased estimates in case of large
variance of random effects (Browne & Draper, 2006; Rodriguez & Goldman, 1995, 2001).
Laplace approximation is more accurate than the PQL (Bolker et al., 2009; Rabe-Hesketh et
al., 2005), it allows the calculation of the true GLMM likelihood, hence the maximum
likelihood based inference is possible, and reduces the bias compared to the PQL. To estimate
the model in equation (19) we employ Laplace approximation®’. The AGHQ works well with
moderate cluster size (Rabe-Hesketh et al., 2005), but it becomes complicated and slow with
more than two random coefficients (Bolker et al., 2009) and the estimates become biased

with large cluster sizes.

Our model selection is based on the pseudo-R-squared implemented in Nakagawa &
Schielzeth (2013) in the case of random intercept models and extended to the case of random
slopes in Johnson & O’Hara (2014). To assess the contribution of the fixed effect to the

explained variances we calculate the marginal pseudo R-squared

2
2 _ Ofe s _ .
RGimmm) = = Ry The conditional pseudo R-squared:
Ofetli=10] TO0e T

17 we use the function glmer function implemented in Ime4 package in R
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o?,+Y% of o
RéLMM(C) = fe =L L allows us to measure of the contribution of each random effect
2 U 2, 2,7
er+Zl oj +og+=-

to the explained variance.

4.5. Results and discussion
We follow a stepwise procedure, which consists of sequentially adding elements to equation
(19). That is, the baseline model contains %and y;. The decision of keeping an element in the

regression is based on its significant contribution to the R?;LMM(C). Using raw retail prices, the
baseline model results in R,y ) = 0.24. Adding y,improves R, from to 0.24 to
0.25. Adding y, does not lead to a significant increase in RE;LMM(C); thus we drop it from the
model. Adding y. also does not improve RéLMM(C). Since it is not recommended to add

random slope without the random intercept (Fahrmeir et al., 2013, p. 402), we keep y, in the

model.

45.1. Estimation results
The final estimation results after model selection are displayed in Table 4.4. The second
column of Table 4.4 displays estimation results from equation (19) using raw retail prices.

Based on the RéLMM(m), the fixed effects contribute with 35% to the explained variance.

All coefficient of time varying variables are significant, except the coefficient of reference
price. The main fixed effect is as expected TSP. From the marginal effects, TSP increase the
likelihood of price change by 31%. We have shown in section 4.4.1.2 that TSP contribute
with 65.70% to the raw retail price variation in our data. As expected, marketing margin
negatively influences the probability of changing retail prices. From the marginal effects, an
increase of one eurocent, per 250-gram of butter, in the margin implies a decrease in the
likelihood of changing prices by 4%. This provides initial evidence to verify the first
hypothesis of this study.

The coefficient of elapsed time is positive and significant. Therefore, the elapsed time from
the last price change positively influence the probability of introducing changes in price. The
marginal effects indicate that an increase in elapsed time of one unit implies an increase in
the probability of changing raw retail prices by 12%. This provides initial evidence to verify
the third hypothesis of this study. We do not find that the reference prices set by other
competing retail chains influence the probability of changing raw retail prices; thus, we

cannot verify the second hypothesis of the study in the case of raw retail prices.
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The coefficient of the dummy variable indicating private label is not significant; thus we do
not find a difference between private labels and national brands. The other two time invariant
variables are statistically significant. Raw retail prices change more frequently in
supermarkets and hypermarkets than in discount stores. Moving from discount store to
supermarket and hypermarket leads to an increase in the likelihood of changing retail prices

by 27% and 30%, respectively.

Together with the fixed effects, the random effects contribute 55% to the explained variance.
The random intercepts associated with EAN, product, and chain contribute 3%, 2%, and 3%
to the explained variance respectively. The random slope associated with the margin

contributes 6% to the explained variance at the EAN level, and with 6.5% at the chain level.

The estimation results with filtered retail prices are displayed in the third column of Table
4.4. Based on the RéLMM(m), the fixed effects contribute 65.91% to the explained variance in

price change. The retail margin is insignificant; thus the marketing margin does not explain
the changes in the regular prices. The main fixed effect is the elapsed time from the last price
change. From the marginal effects, an increase of one unit in the elapsed time from the last
price change implies an increase in the likelihood of price change by 17%. This provides

supplementary evidence to verify the third hypothesis of this study.

The reference prices of other competing retail chains influence the probability of changing a
chain’s regular prices. From the marginal effects, an increase in the reference prices by 1
eurocent would lead to an increase in the likelihood of changing regular prices by 0.4%. This

provide some evidence to verify the second hypothesis of this study.

Moreover, we do not find differences between private labels and national brands. We also do
not find differences between changes in the regular prices within the supermarkets and

hypermarkets compared to the discount store.

The random effects contribute very little (0.1%) to the explained variance in changes of
regular prices. This very small contribution to the explained variance is due to the differences
between the retail chains.
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Table 4.4 Estimation results of random intercepts and random slope models

Raw retail prices Filtered retail prices
Fixed Effects

Factor Estimate SE° L-ClI U-Cl Estimate SE L-ClI U-ClI
(ME?) (ME)

Intercept -3.04*** 014 -3.32 -2.76 -9.90*** 0.15 -10.21 -9.60

Margin -0.47** 0.15 -0.77 -0.16 -0.19 0.12 -0.42 0.05
(-0.04) (-0.0034)

Elapsed time  1.48*** 0.01 144 151 9.96*** 0.14 9.69 10.24
(0.12) (0.1709)

Reference 0.008 0.10 -0.11 0.30 0.24* 0.12 0.005 0.48

price (0.10) (0.0042)

Private label  -0.03 0.24 -0.82 0.13 0.01 0.06 -0.10 0.14
(-0.35) (0.0003)

TSP 3.63*** (0.01 3.60 3.67 - - - -
(0.31)

Supermarket  0.023* 0.10 0.06 0.49 0.008 0.06 -0.12 0.14
(0.27) (0.0002)

Hypermarket 0.025** 0.10 0.10 051 0.02 0.04 -0.06 0.12
(0.30) (0.0004)

R?;LMM(m) 0.35 0.65

Random Effects
Estimate Explained Estimate Explained
variance Variance

o? 0.22 3% 3.02¢™ 2.22e-"%

ag 0.15 2% 0.00 0%

o2 0.21 3% 3.266"® 0.0003%

02 marging 0.43 6% 1.47e% 1.51%1

af[margin] 0.48 6.5% 0.001 0.01%

RCZ;LMM(C) 0.55 0.66

Number of 339,144 339,144

observations

Deviance 204,400.5 33,353.3

Degrees of 339,129 339,130

freedom

Log- -102,200.3 -16,676.7

Likelihood

AIC 204430.5 33381.3

Significance: “***’1%; ‘**’5%; ‘“*” 10%

*ME: marginal Effects; ° SE: standard errors

Source: Authors’ calculations
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4.5.2. Discussion

Figure 4.6 illustrates the overall reaction by retail chains to changes in the wholesale prices.
The left panel of Figure 4.6 displays the fitted probabilities against the marketing margin in
the case of raw retail prices. On average, when retail margins are close to zero or negative,
there is a high probability (17%) of changing retail price. This probability decreases to 7%
when the marketing margins are high, i.e. above 100 eurocents. This provides supplementary
evidence to verify the first hypothesis of this study. Our first scenario described in Given the
level of the marketing margin, i.e. the difference between the retail prices and the wholesale
prices, two scenarios are plausible. The first scenario represents the case where the wholesale
prices increase; thus the marketing margin is squeezed. Hence, there is a tension between the
need to change prices or to display rigid prices because of the adjustment costs. Therefore,
the retail chain faces a dichotomous choice. The second scenario is opposite to the first one;
the wholesale prices decrease. The tension of changing retail prices is not the result of the
marketing margins, which are obviously stretched, but is rather the result of the changes in
the prices of other competing retail chains. More specifically, the reference prices of others
for the same product are decreasing; therefore, there is a need to adjust retail prices again.

Figure 4.6 Fitted probability of price change against the marketing margin
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Figure 4.1 holds only for raw retail prices though. The marketing margins, ceteris paribus,
are not sufficient to explain changes in regular retail prices. The right panel from Figure 4.6
shows that, when the TSP are filtered out, the fitted probabilities become very small, and the
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marketing margins do not explain the changes in retail prices. Therefore, we consider that
retail chains react to changes in the wholesale prices by introducing small changes in price.
The overall picture of the influence of the other factors, such as the elapsed time from the last
price change, reference prices, and differences between store format can be found in the

annex (see Figure A-4.1).

The sensitivity of retail chains to changes in their marketing margins is captured by random

margin

effects parameter y.and y, . Figure 4.7 reports the breakdown by chain of the effect of

the marketing margin on the probability of changing raw retail prices. Negative deviation of

margin

Ye from B™aT9" means high sensitivity to retail margins. Positive deviation means low

sensitivity to retail marketing margins.

Figure 4.7 Sensitivity to retail marketing margin and frequency of changing retail

prices by retail chain
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In Figure 4.7, we plot the sensitivity of retail chains alongside frequency of price changes due
to regular prices as presented in Figure 4.4. The results show that there is an association
between the two measures. From a visual inspection it can be seen that both high sensitivity
and high frequency in changing regular prices lie on the left hand of the plot. The right half of
the same plot mainly features those retail chains that manifest low sensitivity and low
frequency rates of changing regular retail prices. Note however that there are outliers that do
not allow for the generalization of these findings; thus the fourth hypothesis holds only for
some retail chains. For instance, frequency of changing regular price is the lowest (1%) in the
case of Chain 30 '® . This is translated into low sensitivity to changes in marketing margins.
More specifically, the deviation from the average slope f™%9" = —0.46 is y," % 9™ = 0.7,
which results in upward slope. In the case of Chain 8, the frequency in changing regular price
is the highest (87%), which is translated into high sensitivity to changes in marketing

margins, i.e. deviation 9" = —0.46 is y/re 9™ = —0.43. Summing up the two elements

lead to the margin 4 ™9 — _0 46 — 0.43 = —89, which results in a steeper downward

slope than the average slope.

18 The chains are labelled from 1 to 37 only for illustration purpose. The retail chains are coded the same as in
Figure 4.4.
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4.6. Conclusion

In this study, we model the odds of changing retail prices against displaying rigid prices at
the retail store level given the previously specified time and state dependent variables. We
conjecture that retail chains’ decisions to change regular prices are made under two scenarios.
The first scenario describes a situation where marketing margins are squeezed. The second
scenario describes a situation where the marketing margins are stretched. From these two
scenarios we derive four hypotheses that allow us to cast light on the determinants of price
changes and transmission at the individual retail chain.

We hypothesize that an increase (a decrease) in marketing margins (reference prices) would
lead to a decrease (an increase) in the likelihood of introducing a new price change. We also
expect that retail chains that are sensitive to changes in their marketing margins will adjust
their prices more frequently than the retail chains that are insensitive to their marketing
margins. We expect that an increase in the elapsed time from the last price change would lead

to an increase in the likelihood of introducing new changes in retail prices.

To test these hypotheses, we employ scanner data from the German dairy market to
characterize both time and state dependence of retail chains’ pricing decisions. In order to
capture the differences between the retail chains in terms of their sensitivity to marketing

margins, we employ generalized linear mixed models.

We derive three main conclusions from this study. First, retail chains react to changes in the
wholesale prices; thus they react to changes in their marketing margins with temporary sales
prices (TSP). Second, the retail chains react to changes in the prices of competing retail
chains by introducing changes in their regular price. Finally, we find that it is more likely to
change new prices than changing old prices. This last result is in line with the findings in
Campbell & Eden (2014), who challenge the conventional theories of costly price adjustment.

Last, but not least, we use the frequentist approach to model the odds of raw retail price
changes the results are acceptable. However, in the case of filtered retail prices, the result
should be interpreted with caution. Further research is needed in order to cast light on what
derive the price settings and marketing margins at the store level, such as a Bayesian

approach or duration models.
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4.8. Annex

Figure A-4.1 The overall effect of different factors on fitted probabilities of price change
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5. Concluding remarks, study limitations and outlook

As outlined in the introduction of this dissertation, empirical applications of vertical price
transmission (VPT) at the disaggregated level are quite new and they face two difficulties.
The first difficulty is related to data availability. The second difficulty is related to applying
appropriate methods given the characteristics of the data and their structure. These two
challenges are obviously important, because data must first be present as a precondition for
analysis and methods influence the outcome of such analysis. In addition, data and methods

sections are reviewed in nearly every scientific paper.

With this dissertation we contribute to the literature on VPT that employ disaggregated retail
prices mainly by showing the effects of the disaggregated retail price data characteristics on
VPT processes. For instance, the results of the first paper of this dissertation are important for
future applications of VPT at the disaggregated level. More specifically, to evaluate the
effects of agricultural policy reforms on consumers’ welfare, public institutions such the EU
Commission have asked academic researchers in the past to look into VPT on agro-food, e.g.
TRANSFOP (Transparency of Food Pricing) and ULYSSES (Food prices volatility) projects.
In the future, similar analyses could be requested again and scanner data would be employed
to assess VPT. The prevalence of asymmetric VPT in agro-food markets could be
overestimated just because the data were not treated adequately, i.e. TSP are not filtered out.
Therefore, the methods tested in this dissertation would help to improve the quality of future

analysis.

The second paper of this dissertation contributes also to the literature by explicitly
considering the data structure in the analysis. The paper tries to link chains’ particularities,
such as their pricing strategies to the prevalence of asymmetries in VPT. We show that when
chains that employ high-low pricing (HiLo) strategy mimic chains that employ everyday low
price (EDLP) strategy and display rigid prices, to avoid markup variation because they can,
then price rigidity leads to an increase in the likelihood of asymmetry in VPT. However, the
paper suffers from some limitations. The pricing strategies are not documented in the data,
but rather approximated by the level of price rigidity and consumer search costs that are
combined with the different formats of stores. Nevertheless, the novelty of this study is the
exploration of the hierarchical structure of scanner data in order to link the nature of VPT
processes to a store membership in a specific chain. We are able to separate chains displaying
asymmetry in VPT from those retail chains who do not. Rather than treating all retail chains

the same, we show that there are some retail chains that contribute to the enhancement of
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passing along costs. Thus, the argument of (ab)sue of market power applies only for some

retail chains.

In the third paper of this dissertation, we propose an approach to retailers’ dichotomous
choice of changing retail prices against displaying rigid prices at the retail store level. We
show that retail chains react to changes in wholesale prices with temporary sales price (TSP).
To changes of competing retail prices, retail chains react with changing their regular prices.
We also find that it is more likely to change new prices than changing old prices; thus a result
that is at odds with the conventional theories of costly price adjustment. We also link the
retail chains’ sensitivity to marketing margins to the frequency of changing retail prices.
However, this paper suffers from some limitations as well. In this paper we treat the same
product sold in different stores as if they were completely different products. However, it
could be the case that prices of products from the same manufacturer sold at different retail
chains are correlated. This is left for further research where the correlations between the
prices of the same manufacturer products sold at different retail chains need to be modelled
explicitly - perhaps in a Bayesian approach. Moreover, in this third paper, we model only
binomial choices of changing retail prices; we do not distinguish between increases and
decreases in prices. However, it could be the case that the factors that influence price
increases and prices decreases are different. This is left for future research, which can also
help to test for asymmetries, i.e. whether retail chains’ sensitivity to marketing margins
changes depending on when they increase their prices compared to when they decrease their

prices.

In all three studies presented in this dissertation we employ a subsample of retail scanner data
on dairy products purchased from a commercial provider: Symphony IRl Group GmbH. The
use of scanner data prices has helped applications of VPT at the individual store level.
Obviously, these data have advantages over the use of weighted averages at the regional

national level, but they also suffer from some drawbacks.

The first advantage of scanner data is that they provide detailed and highly disaggregated
information on both quantities and markups on a weekly basis for each product sold at
different stores from the surveyed retail chains by the Symphony IRl Group GmbH.
Nevertheless, the weekly prices are calculated by dividing the average unit revenues on
quantities sold each week for a given item at a given store. The calculation of weekly prices
in this way may result in small price changes in the data (Eichenbaum et al., 2014; Lloyd et

al., 2014) and fractional prices (Campbell & Eden, 2014). However, by using filtered retail
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prices we circumvent the influence of the small change and fractional prices on the overall

results.

The second advantage of the data used in this dissertation, in comparison to previous studies
that have employed scanner data, is their rich cross-sectional component. With 37 retail
chains covered in the data, it is possible to use statistical inference to test hypotheses on the
retail chains behavior, such as the prevalence in asymmetries in VPT and their sensitivity to
marketing margins. Moreover, this rich cross-sectional component has also facilitated the
application of some relevant methods that deal with aggregation issues, such as mixed

models.

Not all retail chains in Germany provide their data to the Symphony IRl Group GmbH.
Important retail chains such as ALDI and Lidl do not provide their data to the IRI. This is
considered as a drawback for the scanner data employed in this dissertation. More
specifically, this could challenge the comparisons made in this study between the discounters
and supermarkets/hypermarkets, because ALDI and Lidl are the two largest discounters in
Germany. This issue is also closely related to the testing for the effect of double
marginalization on VPT processes. The private labels in our subsample covers only 7% of the
items; however, these two retail chains supply mostly private labels. This makes the
discussion of the effect of double marginalization on VPT processes at the disaggregated

level open for further research.

Another drawback of the data is related to buying-in prices for the individual retail chains
that are not made available by the data provider. Some published studies in the USA have
access to both retail and buying-in prices, but retailers in Germany are quite reluctant in
sharing their buying-in prices and disclose their margins (Empen, 2014). In all three papers of
this dissertation we use average wholesale prices at the national level to approximate input
prices when we assess VPT. The availability of the wholesale prices for the individual retailer
chain may allow researchers to identify the exact marketing margins; thus allowing for
increased accuracy in the identification of the role of wholesalers and retailers in VPT
outcomes. However, this issue of availability of disaggregated data at the wholesale level
does not compromise the results presented in this dissertation. For instance, the issue of

asymmetric VPT that is often discussed in the literature, is at the retail level after all.

Last, but not least, the location of retail stores is only indicated by a dummy variable
indicating the location in four regions in Germany. The availability of exact spatial
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coordinates of retail store or zip code, could be explored to check spatial dependencies in
VPT, e.g. what is the effect of stores surroundings on how they change and transmit their
prices. The investigation on effects on the VPT processes of competing retail chains in a
single neighborhood is also an area of future research.

The difficulties faced while analyzing VPT at the disaggregated level in terms of methods are
even greater. In particular, how to capture price dynamics when prices are rigid. Loy et al.
(2015) suggest some jump processes without going into details. We have documented along
this dissertation different ways, e.g. graphs, duration of unchanged prices, that retail prices at
the individual retail stores are non-continuous and show some jumping processes. Thus,
developing time series models of the evolution of prices at the individual retail store level,
such as multistate duration models, might bring new insights on how prices are determined,
and more importantly how they are transmitted at the disaggregated level. However, the
challenge is then how consistent are the duration models for example with the economic
theory and with VPT analysis. For instance, VPT analysis focuses more on how prices
change, whereas duration models focus more on why an event takes places during time, such
as the duration of a regular price spell. Yet, panel data methods have been suggested and
applied in the literature because they increase the power of estimates (Empen, 2014; Holm,
2013; Loy et al., 2015; Richards, et al, 2014). However, in addition to the time and cross-
sectional dimensions that are considered in panel data, scanner data have an additional and

important component: their hierarchal structure.

Previous studies that have employed panel data techniques for the same product sold in
different stores are considered as if they were independent units to study. This is obviously
not the case because if the same product is provided to several retail chains by a
manufacturer, there might be a relationship between the price dynamics of the same product
between retail chains. Our third paper also suffers from this drawback. We try to model the
information contained in the level of the hierarchy, but only partially. We only consider
nested random effects, but not crossed random effects. A way to circumvent crossed random
effects is to study private label apart as subsample, because private labels are only sold by
only one retail chain. However, as mentioned before the private labels are limited in our
dataset; thus considering private labels would only lead to time dimensions that exceeds the

cross-sectional component of the data. This is left for future work.

Moreover, this dissertation focuses on one product in isolation, but retailers presumably

pursue linked pricing strategies for groups or assortments of food products. So whether a
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retailer changes butter prices for example in response to a wholesale price change for butter
might also depend on what prices for substitutes, e.g. margarine. This is left for further

research.

In summary, academic research that investigate how prices are transmitted at the
disaggregated level is scare. There is of course room for future developments in studies of
VPT with disaggregated retail prices, in particular in the methods aspect. We have shown in
this dissertation that there are important aspects in the data that need researcher’ attention
such as their structure. It took almost four decades for the applications of VPT using
aggregated prices to reach their level of maturity in nowadays. Perhaps in the near future, we
will see more focus of academic research on how prices are transmitted at the disaggregated

level.
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6. Annex

This annex was prepared in collaboration with Simon Kofoed-Dam from the university of
Copenhagen who wrote his master thesis when he was student assistant at the Chair of
Agricultural Policy of the university of Goettignen.

6.1. Price filter: an overview

Abstract

In this chapter, we document the preliminary work that has been conducted with the raw
scanner data before their use for the statistical analyses of the vertical price transmission
(VPT). In particular, we document some data issues that we faced and how we circumvent
them. We also document some features of the time series of prices at the smallest possible
scale of the value chain, i.e. individual retail store. We briefly introduce the potential impact
of these features on the measurement of VPT. In order to avoid misleading conclusions from
the analyses of cost-pass-through from the wholesale to the retail level, we calculate the
reference prices. Since different methods to calculate the reference prices are suggested in the
literature, we first briefly review the different methods of calculation, their advantages and
drawbacks and we justify our choice of the adequate method based on some performance

criteria.

Keywords: price filter, reference price and scanner data.

107 |Page



6.1.1. Introduction

The scanner data as collected by the SIG (2011) are not directly appropriate for statistical
analysis; therefore some preliminary work on data cleaning was necessary to deal with some
issues that we explain hereafter. For instance, SIG (2011) provide us with the data in two
subsamples 2005-2008 and 2009-2010. The items included in the scanner data are identified
with the European Article Number (EAN), and there were some changes in some EANS
between the two subsamples; therefore, we had to match up the two subsamples to get the
final sample.

Fougere et al (2007) highlight some problems that occur when raw scanner data are used for
academic research. Attrition and censoring are the most common problems. Attrition occurs
when some statistical units, in our case food items sold at a specific outlet, leave the sample
before the end of the survey. Two sources of attrition in price records are possible. First, if a
product leaves the market or got replaced by a new product, then the time series of price
records are interrupted. Second, the outlets could go in bankrupt, which leads to the
termination of the survey for some items. The second issue is related to censoring. There are
two reasons that can lead to the censoring of price spells. First, the observation period is
restricted by the data availability. For instance, our dataset starts with price records of the
first week of January 2005 through last week of December 2010, and some prices recorded at
that date were set before the beginning of the sampling. Second, outlets and firms may decide
to stop selling a product while the SIG (2011) still has it on the survey for some additional

period of time.

In addition to attrition and censoring, and since the prices provided by the SIG (2011) for a
given week are calculated by the division of revenues by units sold each week for each item,
there is the presence of small price changes. It is not easy to explain the small price changes,
and it is hard to justify them with economic motivation, in particular within the menu cost
price settings models. The vast majority of the small price changes are due to measurement
error (Eichenbaum et al., 2014). Campbell and Eden (2014) argue that the small changes in
prices might be related to the price reporting and they use the concept of fractional prices to
characterize these small price changes. Fractional prices could result either from technical
errors in price settings or from time aggregation. More specifically, the displayed price and
the price on the computer are different. Campbell and Eden (2014) provide examples on how
the fractional prices create artificial price changes.
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There is also the presence of missing values in the raw data that are due to temporary stock-
outs or holidays. Some studies choose to impute missing values or replace them with the last
observed price. Four our purpose, it was more suitable to work rather with the complete time
series of prices. This would avoid creating artificial price changes that we would further
include and compound in the VPT analyses and that might affect our results and conclusions.
Another reason for leaving incomplete time series out of the subsample that we use for the
VPT analyses is the paucity of observations, where sometimes some item is only displayed at
the surveyed outlets for some weeks and it was included in the data collection.

The extent to which retailers use promotional prices is a source of heterogeneity in price
adjustments Lloyd et al. (2014). The temporary sales prices (TSP) is the most common used
form of promotional prices. Hosken and Reiffen (2001, p. 115) define TSP: “a temporary
reduction in the price of an item which is unrelated to cost changes™. In the studies of VPT,
we are interested in looking at how changes in prices at some level of the value chain are
transmitted to another level of the value chain, i.e. it is therefore important to distinguish the
changes in the regular prices from the TSP.

Figure 6.1 graphically illustrates the distinction between the changes introduced in the
“regular price” denoted by “R” from the changes that correspond to the temporary sales
prices denoted by “S”. The two panels (A and B) from Figure 6.1 display ten observations for
two hypothetical price series from Nakamura and Steinsson (2008).

Figure 6.1 Hlustration the changes is prices due to TSP and regular price changes.

R R R R . R R S R R R R R R : R R § R R
Withsales: . 0 1 0 5 o 1 1 0 With sales: . 0 1 0 . . 0 1 1 0
No sales: 0 1 0 .. o . . 0 No sales: .0 10

A B

“R" : regular price
“S" : temporary sales price

“” : missing value

Source: Nakamura and Steinsson (2008)

To circumvent some of the data issues highlighted above, e.g., fractional prices and TSP, we
use price filters. Price filters were first introduced in the macroeconomics literature, and then

extend to other areas such as international economics and agricultural economics. Since some
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of price filters proposed in the literature are based on subjective definitions of TSP, the
choice of the adequate filter to use is ambiguous. We base our choice on the basis of criteria

of performance.

In this chapter, we aim to give an overview of the issues that researchers face when they work
with raw scanner data. In section 6.1.2, we give descriptions of the features of the price
records at the smallest possible scale and the potential of using these features to the design of
research questions. In section 6.1.3 includes some arguments to justify the use of price filters.
In section 6.1.4, we present an overview of the most commonly price filters sales filter and
reference prices. In section 6.1.5, we compare the filters by using some indicators on

performance of the different filters. Section 6.1.6 concludes.

6.1.2. Feature of the times series on price records at the smallest possible scale
Before carrying out any statistical analysis it is always useful to become familiar with the
data at hand by using graphical tools. Figure 6.2 displays the evolution of weekly prices of
three (P1, P2, P3) randomly selected price series of butter for 250-gram foil-wrapped
packages sold at a randomly selected retail store for the period 2005-2010 in Germany. The
weighted average of retail and wholesale prices for the same category of butter during the

same time period are also displayed.

Figure 6.2 Retail prices at different levels of spatial aggregation
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Source : Authors’ calculation from SIG (2011)
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Three main features are present in almost*all of the individual retail price series, which are
similar to those displayed for of P1, P2 and P3. Namely, for a typical product P1 sold at a
specific store, the time series of prices exhibit a pattern that is characterized by rigidity,
following a “staircase” like path, with sudden changes, which represent TSP for most of the
time TSP and the presence of “psychological pricing”.

The exploration of effects for these features of the data at the smallest possible scale on the
measurement of the VPT, e.g., the effect of the TSP on the speed of the VPT, is not
systematically investigated in the literature. In Chapter 2 of this thesis, we explicitly
investigate the effects of the TSP on the measurement of VPT. More specifically, our results

show that TSP biases the results toward finding more cases of asymmetry in the VPT.

Moreover, Figure 6.3 illustrates the possible link between the number of TSP and the
difference between the a™, which measures the reaction of retail prices (e.g., P1 from Figure
6.2) to the increase in wholesale prices, and a~ which measures the reaction of retail prices to
the decrease in the wholesale prices.

Figure 6.3 The link between the number of TSP and the finding asymmetries in the
VPT
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Source : Authors’ calculation from SIG (2011)
An overview of the relationship between the number of the TSP identified by the filter for a
selected sample of 800-time series and the test for asymmetry in the VPT are displayed in

Figure 6.3. The scatter plot illustrating the frequency of the TSP versus the magnitude of the

19 Exception would be time series of prices that remain constant for the whole period under study. We have
left them out the sample.
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difference between estimates of a*and a~in the VECM is estimated with raw retail data and
filtered prices. Each point corresponds to a unique item. The solid line is estimated with the
raw retail prices and it displays a positive relationship between the two variables. We can see
that the higher the frequency of TSP use, so larger is the magnitude of the difference between
estimates of a*and a~, i.e. the greater likelihood to conclude in favor of the asymmetry in
VPT. However, the dashed line estimated with the filtered retail prices is almost flat and it
does not display an evident positive relationship that with raw retail prices. The contrast
between the solid line and the dashed line illustrates and confirms our findings that the
magnitude of TSP plays a role in explaining the bias towards the rejection of the null
hypothesis of symmetric price transmission in the raw retail prices.

Moreover, Figure 6.4 displays a box plot of the total number of TSP out of 312 observations

used for each of the items in our data against the different format of stores.

Figure 6.4 The use of Temporary Sale Prices (TSP) by format of store
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Source : Authors’ calculations using data from SIG (2011)

The hypermarkets and the supermarkets use TSP more frequently than the discount stores.
This is partially due to the High-Low (HiLo) pricing strategy followed by the supermarkets
and hypermarkets in comparison to Every Day Low Price (EDLP) strategy followed by the
discount stores. After filtering out the TSP, the influence of the pricing strategy on the nature

of the VPT is explicitly investigated in Chapter 3 of this thesis.
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6.1.3. Why price filters
We have already mentioned some specific cases where it is useful to use price filters to deal
with some features of raw scanner data. Dealing with the features of the time series collected
on price records using scanner data is not new though. Interestingly, a pioneer price filter is
introduced within the macroeconomics literature to verify theoretical pricing models using
micro-data. Even though the context and the objectives of the use of scanner data in those
fields are quite different from ours, the aim remains the same, i.e., we do not want those
features, e.g. TSP, to affect our results and conclusions. Since the pioneering paper by Bils
and Klenow (2004), many papers have been published to reconcile frequent price changes in
micro-level data with sickness aggregate price indexes (Chahrour, 2011). This leads to the
studies of the stickiness of prices to becoming one of the most stylized facts about prices with
micro-level data. This is of importance because the stickiness of prices at the micro-level data

is a major assumption for an effective monetary policy (Kehoe & Midrigan, 2015).

Bils and Klenow (2004) explore data from the Bureau of Labor Statistics (BLS) for the years
1995-1997 and find that prices change every 4.3 months and they conclude that prices are
flexible at the micro-level. Nakamura and Steinsson (2008) study a more detailed data set
from the BLS, but with filtered TSP, and find prices to be stickier than reported by Bils and
Klenow (2004), namely up to 7-11 months. Bils and Klenow (2004, p. 955) argue that TSP
should not be filtered because: “the magnitude and duration of temporary sales respond to
shocks™”. Nakamura and Steinsson (2008, p. 1417) argue that TSP can be ignored because
some of them may be “orthogonal to macroeconomic conditions”. They use an algorithm to
filter the temporary sales price and do the analysis on how often price changes in the US
economy. So, the answer to the question on how frequently prices change in an economy for
instance, or other related research questions which involve the study of price changes, will
depend on how TSP are treated in the data. Particularly, when the context is such as that the
individual price series are available for the researcher but no information are available on the

actual underlying decisions of the retail manager to changing prices.

Eichenbaum et al. (2011) challenge the sticky price models by introducing the concept of
reference price to evaluate the theoretical models of price setting with micro-level data. The
first challenge regards the time dependent models (better known as Calvo models), which
assume that firms regularly adjust their prices independently of the economic environment, in
that they are inconsistent with the key features of the data available at the microeconomics

level. More specifically, the features of the micro-data on prices and costs show evidence of
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state dependence (better known as menu cost models), i.e., firms adjust their prices
accordingly to the changes in their economic environment. The second challenge is regarding
the menu cost models where they argue that the prices are more volatile than costs at the
micro-data level. Eichenbaum et al. (2011) imply that nearly all price changes are associated
with cost changes and menu cost models cannot generate both of these features
simultaneously. Moreover, menu cost models cannot generate the format of high and low

frequency price variation observed in the data.

In agricultural economics, Lloyd et al. (2014) study the retail heterogeneity in price
adjustments in the major food retailers in the UK. They employ a decomposition analysis of
price variation into sales and reference prices and they conclude that the price adjustment is

equally split between sales (43%) and the reference prices (44%).

6.1.4. An overview of the different price filters used in the literature
Different techniques to deal with TSP and fractional prices have been suggested by often
relying on some sort of price filtering process of the “raw” time series, before using the
filtered price series in the actual empirical analysis. Table 6.1 summarizes the different price

filters that we describe in this section.

Table 6.1 Overview of price filters

Type of filter Authors Characteristics of filter
Kehoe and Midrigan Sale as a drop in price followed by any price
i (2007) increase
Sales filter

Nakamura and

Steinsson (2008) V shape temporary sale

Reference Eichenbaum et al. 2011 13 weeks, fixed window
price: our filter 13 weeks, multiple modal values: max
Fixed window 13 weeks, multiple modal values: min

Chahrour 2011 13 wggks, alg'orithm to choose max in
transition periods

9 weeks, multiple modal values: max
9 weeks, multiple modal values: min
17 weeks, multiple modal values: max
17 weeks, multiple modal values: min

Reference
price:
rolling window  Our filter

Source: Authors’ summary
In general, a price filter tries to capture temporary price sales and fractional prices, which are
price decreases that are quickly reversed. But how the reverse price change is defined

depends on the author's definition.

114 |Page



6.1.4.1.  Sales filters
Different suggestions on how a temporary sales price can be defined and importantly how it
can be distinguished from a regular price change have been made. Yet there is no consensus

on a final definition in the literature.

a. Koheo and Midrigan filter
Kehoe and Midrigan (2007) use the AC Nielsen algorithm, which looks at the pattern of price
changes and classifies price reduction as sales if they are reversed sufficiently quickly and
classifies the rest as regular price changes. So the procedure is simple. The algorithm is run
throw a single time series of prices P,. For each price cut, i.e., P, < P,_q, fort = 2, the
algorithm checks if it is followed by a price increase within 5 weeks period. If the price
within these 5 weeks period does not go above the price level at the period ¢, i.e., P, =
P, = - = Ps,c, then the change is considered to be made in the regular price; therefore
the price P, would not be replaced by P,_;. In contrast, if the price within these 5 weeks

period rise above the price level in period, i.e., P.,; > P, , for at least one of the weeks
J={1,2,3,4,5}, then replace Py, P,;... and Py, ;_; With the price immediately before the price

drop: P,_;, where j denotes the minimum of J for each iteration.

b. Nakamura and Steinsson sales filter
Nakamura and Steinsson (2008) propose a filter that captures only V-shape sales, i.e., a price
decrease that is followed by a return to the price that was in effect just before the drop in the
price. Rotemberg (2011) justify the V-shape of TSP. He argues that changing the list of
prices is costly to the firms. Obviously, for this additional restriction, which consists in
detecting only V-shape sales, the Nakamura and Steinsson’ sales filter will identify fewer

temporary sales prices than the Koheo and Midrigan’s sales filter.

Nakamura and Steinsson (2008) use an algorithm to filter temporary sales prices. The
algorithm includes a function of three parameters: L, K, J. As in any function, varying these
three parameters changes the way the sales are defined and filtered. Therefore, for different
values of L, K, J, the algorithm can capture V-shaped sales only, V-shaped sales that are
followed by a different regular price, multi-period sales, etc. Nakamura and Steinsson (2008)
provide a supplement of their paper where the suggested algorithm used to filter out the
temporary sales is explained. As before, consider that p; is the raw price series, and r; is the

“regular price” or the filtered price series. The algorithm works in six steps that are carried
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out in sequence to each observation (i.e. step O has precedence over step 1, etc.). The steps

are easy to follow and to implement and they are given as follows:

Step 0: if p; =1 thenr = 1p_4.
Step L:if p, > r_y thenry > 1y
Step 2:if r,_; € { Pt+1, ..., e+ @nd the price never rises above then r,_; before
returning to r,_,, then r, = r,_;.
Step 3 if the set {p;, Pt+1, -, Pr+1 } has K or more different elements, then r, = p;
Step 4 define pax = max{pP¢s1, Pe+2, - Pear} @Nd
tmax = first_time max{pes1, Pr+2, - Pr+1}-
If Prnax € {Ptimart1s Pemax+2r -~ Ptmax+rd NN T = Prgy.
Step 5 1. =p;
In the first time period the algorithm begins at step 3 (the first step does not refer to the

previous regular price) and it looks for the first possible regular price for L periods of time.

Nakamura and Steinsson ( 2008) propose two different sales filters, A and B. For the sales
filter B the parameters are set to L=1, K=1 and J=n, where n € { 1,2, ..., 5} and it is designed
to remove only price patterns in which price returns to the previous price within a set number
of weeks without going above the original price. In the case of the sales filter A, the chosen
parameters are: L=3, K=3 and J=n, where n € { 1,2, ..., 5}. Filter A is designed to remove the

price patterns where a sale is followed by a change in the regular price, i.e. asymmetric V’s.

In both sales filters described above, one should mention that there is no restriction on how
significant the price drops (and subsequently increases) in order to be considered a temporary
sales price. Loy et al. (2015), following Hosken and Reiffen (2001), define a temporary sale
as a temporary significant drop in price, they only identify a sales price when the price
reduction is at least 5%, and that it holds that price for a maximum of 4 weeks, before it
increases again by at least 5 %. Lloyd et al. (2014) consider different sets of significant
levels, 10%, 25% and 35%, of price drops within a period of 12 time periods. Not
surprisingly, they find that 8%, 3.5% and 1.4% of the prices in their dataset were classified as
sales prices, respectively. This restriction on how much a price drops (and subsequently
increases) to be considered significant enough to be a temporary sales price results in some

small price changes, mostly fractional prices, being left unfiltered.
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In general, sales filters face two weaknesses. First, the sales filter depends on a subjective
definition of the temporary sales price. Second, the problem of fractional prices is not treated.

These issues are circumvented by the use of reference price (Lloyd et al., 2014).

6.1.4.2. Reference prices
The reference price offers an interesting alternative to overcome the problems faced by sales
filters. The introduction of the reference price concept helps authors to avoid giving a
subjective definition of what a temporary sales price is. It also allows for the explicit
treatment of fractional prices. The idea of the reference prices was introduced in Eichenbaum
et al. (2011) using the fixed window method for the calculations and it was extended by

Chahrour (2011) to the rolling window method of calculation.

a. Fixed window method

To assess menu cost models and the non-neutrality of monetary shocks, Eichenbaum et al.
(2011) argue that in terms of a firm’s pricing schedules what matters is their reference price
and not their nominal prices. They suggest thinking in terms of reference price when it comes
to assess pricing strategies of a firm in an economy. Eichenbaum et al. (2011) explain that the
individual raw retail prices are characterized by fluctuations around (both below and above)
an underlying reference price. Therefore, firms/retailers have a pricing ‘plan’ for the
individual products where they alternate between the underlying profit maximizing price (i.e.
the reference price/regular price) and the temporary sales price. Eichenbaum et al. (2011)
define the reference price as the modal price in each quarter.

As in the case of sales filters, consider p.is the raw price series, and r, is the
“reference/regular price”. In addition to these two components, a third part €.is added in order
to capture deviations of the p; from the r;, so that:

pe=rté&

Some restrictions should be made on &, in order to identify the underlying r, of p;. For
instance, in the case of the sales filter, & is assumed to be negative because of all the
deviations of p; from r, are temporary price reductions. This is the restriction that
Eichenbaum et al. (2011) relax. More specifically they take the modal value for a 13-week
fixed window and apply this modal value (one value) as the reference price for the full period

of 13 weeks. As an example for the first 13 weeks in the price series p;:

{ry, 1y, 13,...,113} = modal value {p1, p2, D3, ---, P13}
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However, Lloyd et al. (2014) argue that the fixed window method restricts the changes in the
reference price/ regular prices to taking place at the beginning of each quarter irrespective to
their actual timing. In order to circumvent this problem, they suggest a rolling reference price
that they define as the modal non-sale price six weeks either sides of each point of time.
1y = modal value{p;_, Pt—w+1, ) Pt—1, Pts Pe+ 1> - Pe4w—1, Pe+w}

where 2w + 1 is the window’s length.

It should be highlighted that the filters based on a modal value can have the problem that
there are multiple modal values within a given window (both the fixed and rolling version).
This problem is not mentioned in Eichenbaum et al. (2011). To overcome the situation of
multiple modal values, on the basis the fixed window setup, we have setup two additional
filters. The two filters differ from Eichenbaum et al.*s filter in terms of how we choose
reference price in the case of multiple modal values within a given window, namely either the

maximum or minimum of these modal values.

b. Rolling window method
Chahrour (2011) studies the impact of using different types of price filters when estimating
(stylized) facts on pricing behavior in the USA. He compares the different aforementioned
filters ((Eichenbaum et al., 2011; Kehoe & Midrigan, 2007; Nakamura & Steinsson, 2008).
He argues the sales filters constrain 7, to have no price spikes®® and that Eichenbaum et al. ‘s
filter may identify spurious sales and price spikes. To correct for these weaknesses, Chahrour

(2011) suggests a new price filter based on a rolling window method?*.

Chahrour (2011) chooses a different path than trying to use the maximum/ minimum modal
value and instead he suggests an algorithm consisting of five different sub-cases. At some
transition points, the new and old modal values appear in overlapping periods, where the
most common price appearing during the overlapping periods is chosen. In other cases, the
observed price varies among non-reference price levels just around the transition point, which
obscure its actual date. In these cases, he suggests a procedure which places the transition to

the new reference price in the first week that the new reference price occurs.

The starting point is to define a Q; = {ps_w, Pt—w+1, ---» P> --» Pe+w} SEL OF Observed prices

within a window 2w + 1 weeks, w; = {(t —w),(t —w + 1), ..., t,...,t + w}, centered at

2 price spikes are defined as deviations of p; prices both above and below from the r; prices.

2L Chahrour (2011) provides a supplement of his paper where he explains the procedure on how to calculate
reference using the rolling window method.
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time t. Then he defines a sequences, 7y, ..., 7;—;, Of possible candidates to be the reference
price, where 7; is the modal value of Q; and r; is the final reference price. The proposed
filter loops over 2w + 1 week windows with the following situations:

e Case 1: if the reference price remains unchanged between t — 1 and t, ¥, = +_,, then
increase index t by one period and repeat the procedure.

e Case 2: if 7, # f;_q, then define t¢ € w;, as the last period such that p,a = 7;_;, which
is the last occurrence of #,_; within the window, and 72 € w;, as the first period such
that p_» = 7,_1, which is the first occurrence of 7._; within the window.

0 Subcase 2a:
If t¢ > t and 2 > t, then assign 7, = 74_;
This is the case, where 7, has jumped too soon, as the old candidate reference price (;_;)
appears again at time t or later; and the new candidate reference price (#;) does not first
appear (within the window) until after time t.
0 Subcase 2b:
Otherwise, If ¢ < t and 72 < t, and t® < P then assign { f,ayq, ..., i1} =
Te
This is the case where the algorithm jumped too late, as the new candidate reference (7;)
appears before time t and after the last appearance of the old candidate reference price (7;_1).
0 Subcase 2c:
Otherwise, if 7% > 7P letting 7, be the most frequently occurring (observed)
price in the set {p,a, ..., b}
This is a case of overlap, where the first occurrence of the new candidate reference price (%)
is prior to the last occurrence of the old candidate reference price (7:_4).
0 Subcase 2d:
Otherwise, if @ < t? defined ¥ € w, as the first period where |p; — 7| <
|pz — fe—ql, thenlet {# ayq, ..., e} =Fqand {fs, ..., 7 »} =17
This is a case where there is a gap between the last occurrence of the candidate reference
price and the first occurrence and first occurrence of the new price.
0 Subcase 2e:
Otherwise, leave 7 at its original value.
The length of a 13 week window is reasonable in macroeconomics because the data are often
published on a quarterly basis by the public authorities. In order to assess the effects of the
window’s length on the performance of the filter, we have defined several price filters that
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only vary the window’s length, to include 9, 13 and 17 weeks. Similar to the fixed window
setup, for each of these windows, we have chosen to further include, in the case of multiple
modal values in a given window, both the minimum and the maximum and choose the one

with the smaller fraction of the non-filtered prices.

6.1.5. Performance of the different price filters

To compare the filters we use a retail scanner dataset?® from the SIG, (2011). The data
contain weekly scanner price observation for 1087 items from which three examples (P1, P2
and P3) are displayed in Figure 6.2. Table 6.2 summarizes some of the basic statistics*® used
in the literature to evaluate the performance of filters. The majority of the prices coincide
with the reference prices (above 70% for all filters). Consistently, most of the quantities sold
by the retailers are at their regular price. Interestingly, the increases and the decreases in
regular prices are evenly distributed. This result is not in line with the previous studies (e.g.,
Chahrour (2011) report that about two-thirds of price changes in the regular price are
increases).

Table 6.2 Performance of the different price filters

Sales Filter Fixed window Rolling window
Nakamura &  Kehoe & Eichenbaum Own calculation Chahrour
Steinsson, Midrigan, 2011 2011
2008 2007
Window’s length - - 13 13 9 17 13
Modal value - - Max  Min Max  Min Max  Min Transition
Fraction spent at the reference price ~ 92% 90% 7%  77% 85% 82% 90% 90%  90%
Fraction of quantity sold at the 81% 70% 57%  59% 65% 67% 62% 63% 65%
reference price
Fraction of non-filtered prices above 0% 0% 33%  42% 19% 39% 27% 38% 25%
the reference price
Fraction of price changes which are  49% 48% 49%  49% 49% 49% 51% 50%  50%
decreases
Fraction of price changes whichare  51% 52% 51% 51% 51% 51% 49% 50% 50%

increases

Source: Authors’ calculations

Despite the similarities between the filters, some differences are of particular interest and
need to be highlighted here. First, the striking difference between the sales filters and the
reference price filters is in the fraction of non-filtered prices above the regular price. This

fraction is per definition zero for the sales filters because of the restriction e, < 0 explained

22 . . . .
We present more details on the data in the chapters 2, 3 and 4 of this thesis.

23 Details of the calculation of the basic statistics can be found in (Chahrour, 2011) and (Eichenbaum et al., 2011).
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above. In this regard, Eichenbaum et al. ’s procedure leads to a higher fraction (42%) of non-
filtered prices above the reference prices and the Chahrour’s procedure leads to only 25%.
Therefore, for this first criterion, Chahrour’s filter shall be preferred to the other filters.
Second, Chahrour's filter performs better than the Eichenbaum et.al‘s filter in terms of
fraction spent at the reference price (90% vs 77%) and the fraction of quantity sold at the

reference price (65% vs 59%).

Now that we show that the rolling window is preferred to the fixed window method, the
question is whether the windows’ length matters. The results from varying the window’s
length from 13 weeks to 9 and to 17 weeks in comparison to the Chahrour’s method were not
conclusive. For instance, when we decrease the window length to 9 weeks 19% is the fraction
of non-filtered prices above the reference price. This is lower than the 25% in the case of the
Chahrour’s filter, but the fraction spent at the reference price is lower (90% vs 85%).
Increasing the window's length from 13 to 17 weeks improves the fraction spent at the
reference to 90%, but this does not improve the performance of the filter in terms of
capturing the price spikes.

6.1.6. Conclusion

In general, the reference price filters are preferred to the sales filters because they are less
restrictive in filtering the prices and they do not rely on a subjective definition of TSP
required in determining sales filers. To calculate the reference prices there are two
procedures: the fixed and rolling window methods. Based on some basics statistics, we show
that the rolling window performs better than the fixed window procedure for two main
reasons. First, the fixed window method restricts price changes to take place only on certain
dates, say at most once per quarter. Second, the fixed window method has a problem in
treating price spikes. We have also checked whether the window’s length affects the criteria
of choosing a filter. We do not find an impact of the window’s length to affect our choice of
the Chahrour’s filter, compared to other filters. Therefore, we decide to employ the
Chahrour’s filter for the remaining work of this thesis.
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