
Deterministic Sparse FFT Algorithms

Dissertation

zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades
„Doctor rerum naturalium“

der Georg-August-Universität Göttingen

im Promotionsprogramm Mathematical Sciences
der Georg-August University School of Science (GAUSS)

vorgelegt von
Katrin Ulrike Wannenwetsch

aus Stuttgart

Göttingen, 2016

Betreuungsausschuss

Prof. Dr. Gerlind Plonka-Hoch
Institut für Numerische und Angewandte Mathematik
Georg-August-Universität Göttingen

Prof. Dr. Felix Krahmer
Fakultät für Mathematik
Technische Universität München

Mitglieder der Prüfungskommission

Referentin:

Prof. Dr. Gerlind Plonka-Hoch
Institut für Numerische und Angewandte Mathematik
Georg-August-Universität Göttingen

Korreferent:

Prof. Dr. Daniel Potts
Fakultät für Mathematik
Technische Universität Chemnitz

Weitere Mitglieder der Prüfungskommission:

Jun.-Prof. Dr. Anja Fischer
Institut für Numerische und Angewandte Mathematik
Georg-August-Universität Göttingen

Prof. Dr. Felix Krahmer
Fakultät für Mathematik
Technische Universität München

PD Dr. Hartje Kriete
Mathematisches Institut
Georg-August-Universität Göttingen

Prof. Dr. Tatyana Krivobokova
Institut für Mathematische Stochastik
Georg-August-Universität Göttingen

Prof. Dr. D. Russell Luke
Institut für Numerische und Angewandte Mathematik
Georg-August-Universität Göttingen

Tag der mündlichen Prüfung: 9. August 2016

Acknowledgements

This thesis has been written during the last years when I had the joy to work in a very
pleasant atmosphere at the Institute for Numerical and Applied Mathematics at the
Georg-August-Universität Göttingen.
First of all, I am much obliged to my advisor Gerlind Plonka-Hoch for her supervi-

sion, her encouraging support, many inspiring discussions, new insights and her literally
always “open door”. I am also very thankful to Felix Krahmer and Daniel Potts for their
interest in my work and for being my second advisor respectively for acting as a referee
for my thesis.
Furthermore, I want to thank my colleagues of the “Research Group for Mathemati-

cal Signal and Image Processing” for providing a comfortable and cooperative working
atmosphere, many discussions as well as the continuous coffee and tea supply.
This thesis would not have been possible without the generous financial support of

the DFG in the project “Efficient function reconstruction using eigenfunctions of lin-
ear operators” and the Research Training Groups 1023 “Identification in Mathematical
Models” and 2088 “Discovering Structure in Complex Data” which not only provided
financial support but also a great scientific program. I am furthermore very grateful for
the numerous possibilities to travel to workshops and conferences.
I am eternally thankful to my parents for their understanding, advice and uncondi-

tional support. Additionally, I want to thank Anne and Annekathrin for being part of
my life and the best “kleine Anne” and “große Anne” one could wish for.
Finally, special thanks go to Oliver for his never-ending optimism, support, patience

and love. Thank you.

Contents

List of Figures vii

List of Tables ix

Notation xi

1. Introduction 1

2. Reconstructing vectors from Fourier data 7
2.1. Discrete Fourier Transform . 7
2.2. Fast Fourier Transform . 11
2.3. Reconstructing vectors with one nonzero component from Fourier data . 16
2.4. Reconstructing sparse vectors from Fourier data: Prony’s method 17

3. Preliminaries for sparse FFT algorithms 25
3.1. Vectors with small support and vector periodization 25
3.2. Sparse vector reconstruction for other bases 30

4. A sparse FFT algorithm for vectors with small support 31
4.1. Preliminaries . 32
4.2. Reconstructing vectors with small support from exact Fourier data 33
4.3. Reconstructing vectors with small support from noisy Fourier data 40

4.3.1. Stable identification of the support interval of x(L+1) 41
4.3.2. Stable identification of the support interval of x 43
4.3.3. Evaluation of the nonzero components of x 46
4.3.4. Algorithm . 46

4.4. Numerical results . 50

5. A sparse FFT algorithm for real nonnegative vectors 61
5.1. Reconstructing real nonnegative vectors from Fourier data 62

v

Contents

5.2. Algorithm . 71
5.3. Numerical results . 75

6. An adaptive sparse FFT algorithm 81
6.1. An adaptive approach for stable reconstruction from Fourier data 82
6.2. Vandermonde matrices with knots on the unit circle 89

7. A two-dimensional sparse FFT algorithm 99
7.1. Two-dimensional FFT . 99
7.2. A sparse FFT algorithm for matrices with small support 102
7.3. Numerical results . 106

8. Conclusion 113

A. Exemplary implementations of deterministic sparse FFT algorithms 117
A.1. Implementation of Algorithm 4.12 for vectors with small support 117

A.1.1. Algorithm . 117
A.1.2. Reconstruction of deterministic sampling vectors 119
A.1.3. Reconstruction of random sampling vectors 120

A.2. Implementation of Algorithm 5.4 for real nonnegative vectors 121
A.2.1. Algorithm . 121
A.2.2. Reconstruction of deterministic sampling vectors 125
A.2.3. Reconstruction of random sampling vectors 125

A.3. Implementation of Algorithm 7.6 for matrices with small support 126
A.3.1. Algorithm . 126
A.3.2. Reconstruction of deterministic sampling matrices 127
A.3.3. Reconstruction of random sampling matrices 127

Bibliography 129

Curriculum vitae 135

vi

List of Figures

2.1. Addition, subtraction and multiplication visualized in butterfly graphs. . 13
2.2. Butterfly graph of the Cooley-Tukey algorithm for a DFT of size N = 8. 14
2.3. Butterfly graph of the Sande-Tukey algorithm for a DFT of size N = 8. . 15

4.1. Possible support change in one iteration step. 44
4.2. Reconstruction of a vector x ∈ R256 using Algorithm 4.12 resp. regular

inverse FFT. 52
4.3. Uniformly distributed noise, N = 220, m = 20: Comparison of Algorithm

4.12 and regular inverse FFT. 54
4.4. Uniformly distributed noise, N = 220, m = 216: Comparison of Algorithm

4.12 and regular inverse FFT. 55
4.5. Normally distributed noise, N = 220, m = 20: Comparison of Algorithm

4.12 and regular inverse FFT. 56
4.6. Normally distributed noise, N = 220, m = 216: Comparison of Algorithm

4.12 and regular inverse FFT. 57

5.1. Reconstruction of a vector x ∈ R256
+ using Algorithm 5.4 resp. regular

inverse FFT. 77
5.2. Uniformly distributed noise, N = 215, m = 15: Comparison of Algorithm

5.4 and regular inverse FFT. 79
5.3. Normally distributed noise, N = 215, m = 15: Comparison of Algorithm

5.4 and regular inverse FFT. 79

7.1. Reconstruction of an imageA ∈ R256×256 using Algorithm 7.6 resp. regular
inverse FFT. 110

7.2. Uniformly distributed noise, N1 = N2 = 210: Comparison of Algorithm
7.6 and regular inverse FFT. 111

7.3. Normally distributed noise, N1 = N2 = 210: Comparison of Algorithm 7.6
and regular inverse FFT. 111

vii

List of Tables

4.1. Uniformly distributed noise, N = 220, m = 20: Comparison of Algorithm
4.12 and regular inverse FFT. 54

4.2. Uniformly distributed noise, N = 220, m = 216: Comparison of Algorithm
4.12 and regular inverse FFT. 55

4.3. Normally distributed noise, N = 220, m = 20: Comparison of Algorithm
4.12 and regular inverse FFT. 56

4.4. Normally distributed noise, N = 220, m = 216: Comparison of Algorithm
4.12 and regular inverse FFT. 57

5.1. Uniformly distributed noise, N = 215, m = 15: Comparison of Algorithm
5.4 and regular inverse FFT. 80

5.2. Normally distributed noise, N = 215, m = 15: Comparison of Algorithm
5.4 and regular inverse FFT. 80

7.1. Errors for reconstruction of “cameraman” image with small support. . . 108
7.2. Maximal modulus and average modulus of components of noise matrix E

for all noise levels and different kinds of noise. 109

ix

Notation

N natural numbers (excluding 0)
Z integers
R real numbers
R+ real nonnegative numbers (including 0)
C complex numbers
e Euler’s number
i imaginary unit

√
−1

π constant pi
ωN N -th root of unity; ωN = e−

2πi
N

N vector length
ek k-th unit vector in RN

IN identity matrix of size N
J dyadic natural number; N = 2J

x vector of length N
FN Fourier matrix of size N
x̂ Fourier transform of vector x; x̂ := FNx

M sparsity of vector x; M = ‖x‖0 = |{k | xk = 0}|
m support length of vector x
µ first support index of x
x(j) j-th periodization (of length 2j) of vector x
mj support length of x(j)

bac largest integer less than or equal to a ∈ R
dae smallest integer greater than or equal to a ∈ R
Lj Lj = dlog2mje
µ(j) first support index of periodization x(j)

ε noise vector
SNR signal-to-noise-ratio
A matrix of size N1 ×N2

Â Fourier transform of matrix A; Â := FN1AFN2

m1 ×m2 support size of matrix A

(µ1, µ2) first support index of matrix A

E noise matrix

xi

1. Introduction

The discrete Fourier transform (DFT) is a common and well-known transform that
maps a finite, discrete signal to its spectrum of frequencies. It has various applications
in many fields, such as in signal processing or in data compression but it can be applied
to compute convolutions or for the solution of partial differential equations as well.
Due to this versatility in practice, it is of high interest to develop fast algorithms that

allow efficient computations of discrete Fourier transforms, as the number of arithmetical
operations which is needed to compute a DFT of length N by matrix multiplication is
proportional to N2. Reducing computational costs became more and more interesting
when machine computing came up, the first algorithm for fast Fourier transform (FFT)
was published by Cooley and Tukey in 1965 [9]. Since this time, numerous different
versions of FFT algorithms (e.g., also for nonequispaced data [43]) have been developed
and broadly applied in many fields. Charles Van Loan [53] states that:

The fast Fourier transform (FFT) is one of the truly great computational
developments of this century. It has changed the face of science and engi-
neering so much so that it is not an exaggeration to say that life as we know
it would be very different without the FFT.

This emphasizes the great importance of FFTs. Conventional FFT algorithms can be
applied to arbitrary vectors of length N and require a number of arithmetical operations
which is of the order N logN . It has been shown in [32] that the qualitative bound of
O(N logN) operations cannot be improved. Hence, one possibility to achieve a lower
complexity is to impose restrictions on the vectors such as sparsity or clustered nonzero
components.

Therefore, there has been an increasing activity in the field of sparse FFT algorithms
in recent years. Here, a signal of length N is assumed to possess only M significant
frequency components. Sparse FFT algorithms focus on the problem of computing
the M -sparse Fourier transform of these signals. In the following, we provide a short
overview on the different approaches and their underlying principles.

1

1. Introduction

The survey [16] describes the general principle of many algorithms that we want to
summarize here. The procedure typically consists of three steps. First, frequencies with
coefficients of large magnitude in the Fourier spectrum are identified. This is done by
binning the frequency band into several subsets so, with high probability, each of the
few searched frequencies is assigned to a different subset. For this step, various types of
filters can be used. Then, the significant frequencies in each bin are determined applying
search techniques as e.g. described in [16]. Subsequently, the coefficients corresponding
to the identified frequencies are estimated in a second step. Finally, the signal is updated
by subtracting the summands which where found in the preceding steps so the procedure
can be repeated for the new signal.

One of the first publications on approximate sparse FFT applying this principle with
a sublinear complexity is [15], but the algorithm is still quadratic in sparsity. This initial
approach by Gilbert et. al. was later improved in [17], where an algorithm that achieves
linear time in sparsity M , that is polynomial in logN , logM and depends also on the
accuracy as well as the probability of a successful reconstruction is presented. In [18],
the authors present a tutorial on this algorithm. Both aforementioned algorithms are
randomized which means that they only succeed with a certain probability smaller than
one. Further randomized sparse FFT algorithms following the above scheme include
[21], [22], [34] and [26]. The algorithm proposed in [34] even achieves a O(M logM)

complexity, whereas [21] needs in O(M logN) arithmetical operations.

An overview on runtimes in [16] indicates that for a sparsity of M = 50, different
implementations of [22] become to be more efficient than a standard FFT algorithm
for signal lengths larger than 217 and implementations of [17] for signal lengths > 221.
Considering sparsity, for vectors of length N = 222, the algorithms pay off for M < 100

[17] resp.M < 500 [22]. However, the runtime of [21] was better for all considered vector
lengths and sparsities.

A drawback of these randomized algorithms is that they fail with a constant probabil-
ity greater than zero. The algorithms might return a wrong result, although there is no
efficient method to check whether this solution is correct. Additionaly, samples have to
be drawn randomly for this methods which is not easily achievable in any case. There-
fore, also deterministic sparse FFT algorithms computing (approximate) sparse FFTs
without errors in the noiseless case exist. These techniques are in particular advanta-
geous for applications that are sensitive to failure. We mention publications containing
deterministic algorithms which nevertheless all follow a similar principle as described
above. In [27] and [28], a special subsampling method is used in order to identify fre-

2

quencies via a combinatorial approach using the Chinese Remainder Theorem. The
algorithm uses a large amount of samples for which the signal has to be evaluated at
certain points but the computations require only shorter DFTs than the signal length.
Its complexity is O(M2 log4N). Further deterministic approaches can be found in [1],
[2] and [29]. The latter proposes an algorithm with O(M logM) runtime, though it only
works with the a priori condition that time-shifted samples are available. In [8], this
algorithm is generalized for the noisy case.
Sparse FFT algorithms for the multidimensional case have e.g. been proposed in [25]

and [28], where the latter achieves an arithmetical complexity O(d4M2 log4(dN)), de-
pending on the dimension d.

From another point of view, the reconstruction of sparse vectors from Fourier data might
be seen as a parameter estimation problem as well. This means that techniques such
as Prony’s method can also be applied in this setting. Algorithms combining both
approaches can e.g. be found in [42] or [47] and we will discuss the connection between
sparse FFT and Prony’s method in Section 2.4 in detail.
Furthermore, compressed sensing ([12], [7]) is related to randomized sparse FFT meth-

ods. Compressed sensing aims to recover compressible signals from linear measurements,
hence it is also applicable to reconstruct a sparse frequency vector from a small number
of sampling values. However, reconstruction algorithms usually incorporate iterative
schemes to solve corresponding minimization problems with higher computational costs
than N(logN). The relationship between both approaches is described in more detail
in [29].
Finally, we discuss applications of sparse FFT algorithms. In [20], the authors con-

sider the problem of GPS synchronization, where a satellite sends signals to a GPS
receiver which can then determine its position by analyzing the signal. In order to do
so, the signal has to be processed by the receiver where sparse signals occur. The neces-
sary Fourier transforms can be performed by sparse FFT algorithms which accelerates
the GPS synchronization. Another application is spectrum sensing where spectra are
“scanned” in order to identify frequencies. Here, sparse FFT methods can be used for
a faster computation, e.g. in the field of GHz-spectra [23] or cognitive radios which can
detect vacant frequencies in order to use them for transmission [55]. Moreover, sparse
FFT methods can be applied for 2D correlation spectroscopy of in vivo data, see [51].

In this thesis, we focus on sublinear-time algorithms for sparse FFT which are determin-
istic, i.e., they produce no error (apart from potential numerical errors) in the case of
exact data. The problem considered here is the reconstruction of vectors from Fourier

3

1. Introduction

data using as few Fourier values and arithmetical operations as possible. This means
that we actually develop fast algorithms for inverse Fourier transforms. The vectors to
be reconstructed are assumed to fulfill some a priori conditions, such as being sparse or
having nonzero components only within a small interval. We present a completely new
reconstruction approach which is different from the methods described above. Instead
of applying the aforementioned binning methods, we employ the concept of periodized
vectors, which can in some sense be considered as similar, but opposed to most of the
aforementioned methods requires no randomization.

In a first approach, we assume a vector x ∈ CN to have small support of given length
m, i.e., only a small index interval of length m where nonzero components might occur.
For these vectors, we develop an iterative reconstruction procedure which achieves a
complexity of O(m logm) in the case of exact data and O(m logN) for noisy data.
The proposed algorithm can be stabilized for noisy input data and already pays off for
m < N/4. The only a priori condition for its application is the knowledge of the support
length (or an upper bound) m of the vector and its Fourier transform x̂, even though we
do not need all Fourier values for the reconstruction. This algorithm is also generalized
for the two-dimensional case and can therefore be applied to matrices and images with
small support.

Furthermore, we develop another sublinear-time algorithm for the reconstruction of
real nonnegative vectors x ∈ RN

+ from Fourier data. In this setting, we do not need the a
priori condition that the vector to be reconstructed has a small support. The proposed
algorithm automatically recognizes if a vector has only a few clustered nonzero compo-
nents and benefits from this fact. This means that the procedure can be successfully
applied to any arbitrary real nonnegative vector, even though the complexity is lower for
vectors with small support. The deterministic algorithm requires O(m logm log(N/m))

arithmetical operations for vectors of length N with support lengthm. Numerical results
show that the algorithm also works in a very stable way.

The latter algorithm is generalized to vectors with sparsity M without the need for
clustering of these nonzero components. We propose a new method for fast recon-
struction of general nonnegative M -sparse signals which involves Vandermonde type
matrices. These matrices with knots on the unit circle are investigated further and we
present bounds on the condition of the Vandermonde type matrices as well as bounds
on the minimal distances of knots on the unit circle that can occur in the reconstruction
procedure.

This thesis is organized as follows. First, we give an overview on the reconstruction of

4

signals from Fourier data in Chapter 2. The DFT is introduced as well as its efficient
implementation, the fast Fourier transform (FFT) which we analyze in detail. Subse-
quently, the recovery of vectors with only one nonzero component is considered. We
show how these vectors can be easily reconstructed from Fourier values in the case of
exact data. In this context, we discuss how the reconstruction problem can be seen as a
parameter estimation problem and therefore techniques such as Prony’s method can be
applied to solve it. We use this approach for vector reconstruction from Fourier data and
summarize recent results on this field which combine sparse FFT with Prony’s method.
In Chapter 3, we provide the underlying principles for all of our sparse FFT algorithms,
e.g. the definition of the support interval of a vector or periodizations. Additionally,
we indicate how the reconstruction of vectors in the Fourier basis can be transferred to
other bases.
Chapter 4 and 5 contain the development and the analysis of the new sublinear sparse

FFT algorithms mentioned above. Chapter 4 is devoted to the new deterministic algo-
rithm for the reconstruction of complex vectors with small support from Fourier data.
First, we develop an iterative reconstruction procedure for exact data before proposing
stabilizations for the case of noisy data. In numerical experiments, the algorithm is
applied to perturbed data and evaluated in different settings. In Chapter 5, we present
the algorithm for real nonnegative vectors which may or may not have short support.
The iterative recovering procedure for this kind of vectors is deduced and we formu-
late a corresponding algorithm. The chapter closes with a numerical evaluation of this
algorithm.
In Chapter 6, the setting of Chapter 5 is generalized to real nonnegative vectors with

sparsity M , i.e., we omit the assumption that the nonzero components of the vectors
are clustered within a short support interval. For this setting, the proposed adaptive
algorithm contains matrices depending on certain parameters. In order to guarantee a
stable reconstruction, we prove bounds on the conditions of these matrices as well as
worst case estimates.
Finally, in Chapter 7 we show that the one-dimensional algorithm in Chapter 4 can

be used to develop a 2D sparse FFT algorithm. We include numerical experiments
illustrating the application of the algorithm to matrices and images.
We summarize the thesis in Chapter 8 and give an overview on open problems and

further research. In the appendix, some exemplary Matlab implementations for the
developed algorithms are given.
Parts of this thesis have already been published in [40], [39], [38] and [41].

5

2. Reconstructing vectors from
Fourier data

The reconstruction of data from Fourier values or, equivalently, the computation of
Fourier transforms has been a widely discussed problem within the last decades.

Before presenting new results on deterministic sparse fast Fourier transform algo-
rithms, this chapter introduces the preliminaries on discrete Fourier transform as well as
some approaches to efficient reconstruction of signals from Fourier data. We study the
fast Fourier transform for general complex vectors of length N and the Prony method
for recovery of vectors with few nonzero components in the following.

2.1. Discrete Fourier Transform

We give a short introduction to the discrete Fourier transform (DFT) and present some
of its properties. Our reference for this section is [52, Chapter 2.3].

Let x = (xj)
N−1
j=0 ∈ CN . The discrete Fourier transform x̂ ∈ CN of x is defined by

x̂ := FNx,

where the discrete Fourier matrix is given by

FN =
(
ωjkN

)N−1
j,k=0

∈ CN×N

with the N -th root of unity ωN := e−
2πi
N . This means that the Fourier transform x̂ is of

the form

x̂k =
N−1∑
j=0

xjω
jk
N , k = 0, . . . , N − 1.

7

2. Reconstructing vectors from Fourier data

Consequently, we obtain the inverse Fourier transform as

x := F−1N x̂

with
F−1N :=

1

N

(
ω−jkN

)N−1
j,k=0

∈ CN×N .

Hence, the components of x can be written as

xj =
1

N

N−1∑
k=0

x̂kω
−kj
N , j = 0, . . . , N − 1.

We illustrate this by a small example.

Example 2.1 Let N = 4. Then, since e−
πi
2 = −i, we have

F4 =
(

e−
2πijk

4

)3
j,k=0

=
(
(−i)jk

)3
j,k=0

=

1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i

 .

For x =
(

1 0 0 0
)T

, the discrete Fourier transform is

x̂ = F4x =

1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i

1

0

0

0

 =

1

1

1

1

 .

Consequently, the inverse Fourier transform is given by

x = F−14 x̂ =
1

4

1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i

1

1

1

1

 =
1

4

4

0

0

0

 =

1

0

0

0

 .

An important property of the Fourier matrix FN is its symmetry, i.e., it holds that

FT
N = FN .

8

2.1. Discrete Fourier Transform

Remark 2.2 We observe that

F−1N =
1

N

(
ω−jkN

)N−1
j,k=0

=
1

N
FN

and therefore

FNF
T

N = FNFN = NFNF
−1
N = NIN ,

where IN is the unity matrix of size N . Hence, we can conclude that

1√
N
FN and

√
NF−1N

are unitary transforms.

Moreover, we have the following relation for FN and its inverse F−1N :

F−1N =
1

N
UNFN ,

where we denote by UN the “flip matrix” of size N ×N

UN =

1 0 · · · 0

0 0 1
... . .

.

0 1 0

 =
(
δ
(N)
j+k

)N−1
j,k=0

with the N -periodic Kronecker symbol

δ
(N)
` =

{
1 ` ≡ 0 modN,

0 ` 6≡ 0 modN,

for ` ∈ Z.
The above relation is particularly interesting, since it shows that the Fourier transform

and its inverse can be computed using the same algorithm. Therefore, we only need to
develop algorithms for either one of the transforms.
We summarize some properties of the DFT in the following theorem.

Theorem 2.3 (cf. Satz 2.3.1 in [52]) Let x,y ∈ CN and x̂ = FNx, ŷ = FNy ∈ CN

be the corresponding discrete Fourier transforms. Then the following properties hold:

9

2. Reconstructing vectors from Fourier data

1. Linearity:

x̂ + y = x̂ + ŷ,

α̂x = αx̂ (α ∈ C).

2. Flipping property:

x = F−1N x̂ =
1

N
UNFN x̂.

3. Symmetry:

ÛNx = UN x̂,

x̂ = UN x̂.

4. Time respectively frequency shifting:

P̂nx = Mnx̂,

M̂−nx = Pnx̂,

where n ∈ Z, P =
(
δ
(N)
j−k−1

)N−1
j,k=0

and M = diag
(
ωjN
)N−1
j=0

.

5. Parseval’s Theorem:

1

N
(x̂, ŷ) = (x,y) :=

N−1∑
k=0

xkyk.

For x = y, we obtain the conservation of energies

1

N

N−1∑
k=0

|x̂k|2 =
1

N
(x̂, x̂) = (x,x) =

N−1∑
k=0

|xk|2 ≥ 0.

The computational complexity of the discrete Fourier transform corresponds to the com-
plexity of the multiplication with a matrix of dimension N , i.e., the transform requires
N(N − 1) complex additions and N2 complex multiplications.
In the following sections we will show that the complexity of O(N2) can be improved

by both more efficient algorithms and a priori conditions on the vectors to be computed.

10

2.2. Fast Fourier Transform

2.2. Fast Fourier Transform

The fast Fourier transform (FFT) is an efficient implementation of the discrete Fourier
transform which reduces the computational complexity of the calculation of a complex
Fourier transform for a vector x ∈ CN from O(N2) to O(N logN).

The underlying principle of all considered algorithms is the divide-and-conquer tech-
nique which means that the computation can be divided into smaller problems of the
same structure that can again be decomposed in the same way.

The procedure which is probably mostly used today has been published in 1965 by
Cooley and Tukey [9] and is known as the Cooley-Tukey algorithm. We illustrate the
idea of this algorithm as well as examples for small N , following the presentations in
[52] and [33].

The algorithm is based on the fact that is it possible to decompose the vector length
N into a product of two integers N1, N2 > 1 such that N = N1N2 holds. Let

x̂k =
N−1∑
j=0

xjω
jk
N , k = 0, . . . , N − 1,

denote the components of the Fourier vector x̂. By redefining the indices as

k = k1N2 + k2, k1 = 0, . . . , N1 − 1, k2 = 0, . . . , N2 − 1,

j = j1 + j2N1, j1 = 0, . . . , N1 − 1, j2 = 0, . . . , N2 − 1,

we obtain

x̂k1N2+k2 =

N1−1∑
j1=0

N2−1∑
j2=0

xj1+j2N1ω
(j1+j2N1)(k1N2+k2)
N , kr = 0, . . . , Nr − 1 for r = 1, 2.

Evaluating

ω
(j1+j2N1)(k1N2+k2)
N = ωj1k1N1

ωj1k2N ωj2k2N2

11

2. Reconstructing vectors from Fourier data

yields

x̂k1N2+k2 =

N1−1∑
j1=0

ωj1k1N1
ωj1k2N

N2−1∑
j2=0

xj1+j2N1ω
j2k2
N2

=

N1−1∑
j1=0

ωj1k1N1
ωj1k2N uj1+k2N1 , kr = 0, . . . , Nr − 1 for r = 1, 2,

(2.1)

where the sums

uj1+k2N1 :=

N2−1∑
j2=0

xj1+j2N1ω
j2k2
N2

, k2 = 0, . . . , N2 − 1,

represent Fourier transforms of length N2. The remaining sum in (2.1) can be computed
by first multiplying the values uj1+k2N1 with the twiddle factors ωj1k2N which yields

vj1+k2N1 := uj1+k2N1ω
j1k2
N , j1 = 0, . . . , N1 − 1, k2 = 0, . . . , N2 − 1.

Finally, we compute for k2 ∈ {0, . . . , N2−1} the N2 discrete Fourier transforms of length
N1 by

x̂k1N2+k2 =

N1−1∑
j1=0

vj1+k2N1ω
j1k1
N1

, k1 = 0, . . . , N1 − 1.

This means that we can split the DFT of size N = N1N2 into N1 DFTs of size N2 and
N2 DFTs of size N1. These problems have the same structure as the original sum but
are of smaller dimension.

Compared to N(N − 1) complex additions and N2 complex multiplications for the
DFT of size N , the computation now only requires N1N2(N2 − 1) + N2N1(N1 − 1) =

N(N1 +N2− 2) additions and N1N
2
2 +N +N2N

2
1 = N(N1 +N2 + 1) multiplications. If

the factors N1 and N2 can again be factorized, we can further decompose the problem
into smaller DFTs.

We consider from now on vectors x ∈ CN with N = 2J for some J ∈ N. By our above
considerations, we can decompose the DFT for those vectors into DFTs of size 2. FFT
algorithms for vectors of length 2J are referred to as radix-2 algorithms.

Let N1 = 2 and N2 = N/2 and evaluate the above equation (2.1) of the Cooley-Tukey

12

2.2. Fast Fourier Transform

b

a

a+ b
b

a

a− b a c · ac

Figure 2.1.: Addition, subtraction and multiplication visualized in butterfly graphs.

algorithm. This yields for the components of x̂

x̂k1N/2+k2 =

N/2−1∑
`=0

x2` ω
`k2
N/2 + ω

k1N/2+k2
N

N/2−1∑
`=0

x2`+1 ω
`k2
N/2

for k1 = 0, 1 and k2 = 0, . . . , N/2 − 1. Using ωk2+N/2N = −ωk2N , we obtain the following
two expressions for the components of x̂

x̂k =

N/2−1∑
`=0

x2` ω
`k
N/2 + ωkN

N/2−1∑
`=0

x2`+1 ω
`k
N/2, k = 0, . . . , N/2− 1,

and

x̂k+N/2 =

N/2−1∑
`=0

x2` ω
`k
N/2 − ωkN

N/2−1∑
`=0

x2`+1 ω
`k
N/2, k = 0, . . . , N/2− 1.

Hence, each component of x̂ can be obtained by computation of two DFTs of size N/2.
By reiterating this principle, all entries x̂k, k = 0, . . . , N−1, can be efficiently computed.
For the case that N = 8, we illustrate the additions and multiplications which are
necessary to compute the Fourier components x̂k from xk, k = 0, . . . , N − 1, in Figure
2.2, cf. Abb. 7 in [52, Chapter 3]. The so-called butterfly graph visualizes the arithmetical
operations of the transform where addition, subtraction and multiplication are given as
in Figure 2.1, see also Abb. 1–3 in [52, Chapter 3].

The procedure of the Cooley-Tukey algorithm is referred to as decimation in time. We
also present the decimation in frequency. The corresponding algorithm which is named
after Sande and Tukey can be obtained by setting N1 = N/2 and N2 = 2. Thus, the
components of x̂ are of the form

x̂2k1+k2 =

N/2−1∑
`=0

(
x` + (−1)k2xN/2+`

)
ω
(2k1+k2)`
N

13

2. Reconstructing vectors from Fourier data

x0

x1

x2

x3

x4

x5

x6

x7 x̂7

x̂3

x̂5

x̂1

x̂6

x̂2

x̂4

x̂0

−i

−i

ω3
8

ω8

−i

Figure 2.2.: Butterfly graph of the Cooley-Tukey algorithm for a DFT of size N = 8.

for k1 = 0, . . . , N/2− 1 and k2 = 0, 1. Hence the even and the odd entries of x̂ are given
by

x̂2k =

N/2−1∑
`=0

(
x` + xN/2+`

)
ωk`N/2, k = 0, . . . , N/2− 1,

resp.

x̂2k+1 =

N/2−1∑
`=0

(
x` − xN/2+`

)
ω
(2k+1)`
N

=

N/2−1∑
`=0

((
x` − xN/2+`

)
ω`N
)
ωk`N/2, k = 0, . . . , N/2− 1.

The Sande-Tukey algorithm for N = 8 is illustrated as a butterfly graph in Figure 2.3
(cf. [52, Chapter 3, Abb. 6]).

Let us shortly comment on the computational complexity of this algorithm. The
above representation shows that the DFT of size N can be split into N/2 DFTs of size
2 of the vectors (x`, xN/2+`)

T , ` = 0, . . . , N/2 − 1 as well as N/2 multiplications with
the twiddle factors ω`N and two DFTs of size N/2 of the vectors

(
x` + xN/2+`

)N/2−1
`=0

resp.
(
x` + xN/2+`

)N/2−1
`=0

. The latter can again be decomposed in the same manner

14

2.2. Fast Fourier Transform

x0

x1

x2

x3

x4

x5

x6

x7 x̂7

x̂3

x̂5

x̂1

x̂6

x̂2

x̂4

x̂0

ω3
8

−i

ω8

−i

−i

Figure 2.3.: Butterfly graph of the Sande-Tukey algorithm for a DFT of size N = 8.

(setting N1 = N/4 and N2 = 2). Thus, we can compute the Fourier values in J =

log2N steps if we proceed in this way. At each iteration step, the splitting into smaller
DFTs requires N additions and N/2 multiplications with twiddle factors which yields
altogether N log2N complex additions and N/2 log2N complex multiplications, hence a
computational complexity of O(N logN).

For the Cooley-Tukey algorithm, we obtain the same results on computational com-
plexity based on similar considerations. The reduction in complexity is illustrated in the
following small example.

Example 2.4 Let N = 210 = 1024. The computation of a Fourier transform of length
N by matrix multiplication would require N(N − 1) additions and N2 multiplications.
We compare this to the complexity of a radix-2 FFT algorithm.

N2 +N(N − 1)
N
2

log2N +N log2N
=

2N − 1
3
2

log2N
=

2048− 1
3
2
· 10

=
2047

15
≈ 136.47

The result shows that the complexity of a matrix multiplication of size N × N with
N = 210 is by a factor 136 greater than for the FFT algorithm.

15

2. Reconstructing vectors from Fourier data

There exist various other FFT algorithms as e.g. the radix-4 algorithms for N = 4J ,
where the decomposition can be started setting N1 = N/4 and N2 = 4. The different
approaches can also be combined.

In general, the complexity achieved by FFT algorithms is O(N logN) although the
exact number of operations required by the different approaches varies. However, Mor-
genstern [32] showed that there is no linear algorithm for computing a DFT of length N
which requires less than O(N logN) operations.

2.3. Reconstructing vectors with one nonzero

component from Fourier data

Let us now assume that for given x̂ ∈ CN we know a priori that the vector x ∈ CN to be
reconstructed is sparse, i.e., it has only few nonvanishing components. To begin our con-
siderations on reconstructing vectors from Fourier data, we illustrate the reconstruction
of vectors with only one nonzero component.

Let x ∈ CN be a complex vector with one nonzero entry, i.e.,

x := xkek =

0
...

0

xk

0
...

0

,

where ej = (δj`)
N−1
`=0 , j = 0, . . . , N − 1, denote the unit vectors in CN . Then the Fourier

transform x̂ = FNx of x is given by

x̂ = xkFNek = xk

ω0
N

ωkN
...

ω
(N−2)k
N

ω
(N−1)k
N

.

Hence, the first two entries of x̂ are x̂0 = xk and x̂1 = xkω
k
N . These two components are

16

2.4. Reconstructing sparse vectors from Fourier data: Prony’s method

already sufficient to reconstruct x. From

xk = x̂0 and ωkN =
x̂1
x̂0
,

we obtain the nonzero component xk of x and its index k. Note that the determination
of k is only stable in case of exact data.

For vectors with more than one nonzero entry, reconstruction procedures are more
involved. However, there are several established methods for the efficient reconstruction
of vectors from Fourier data. The fast Fourier transform which was discussed in Section
2.2 is one of them and can be applied to any complex vector.

Moreover, there are further approaches that focus on the reconstruction of sparse
vectors which have only few nonzero components. We discuss some of them in the
following, such as the Prony method [10] or sparse fast Fourier transforms.

2.4. Reconstructing sparse vectors from Fourier data:

Prony’s method

In this section, we focus on Prony’s method and show how a complex vector with several
nonzero entries can be recovered using this method.
Let us first recall the vector reconstruction problem of the preceding section and

consider a complex vector x ∈ CN with a small number M ∈ N of nonzero components,
i.e., an M -sparse vector where the sparsity of a vector x is given by M := ‖x‖0. Then
the vector x can be written as

x =
M∑
j=1

xnjenj

with 0 ≤ n1 ≤ · · · ≤ nM ≤ N − 1. We want to reconstruct x from its Fourier transform

x̂ =
M∑
j=1

xnjFNenj =

(
M∑
j=1

xnjω
`nj
N

)N−1

`=0

.

Hence, in order to recover x, we need to find the indices nj and the coefficients xnj for
j = 1, . . . ,M .
Problems of this form can be solved with the help of Prony’s method. The first ideas

of this method trace back to G. R. de Prony and date from 1795, cf. [10]. We shortly

17

2. Reconstructing vectors from Fourier data

summarize the reconstruction procedure for exact data as it can e.g. be found in [35].

Prony’s method can be applied for the reconstruction of exponential sums of the form

f(x) :=
M∑
j=1

cje
xTj

where the complex parameters cj, Tj, j = 1, . . . ,M , are unknown with cj 6= 0 and
Tj ∈ (−∞, 0] + i[−π, π). The function f can be reconstructed from 2M function values
f(`), ` = 0, . . . , 2M − 1. We define the so-called Prony polynomial

P (z) :=
M∏
j=1

(z − λj)

with λj := eTj , i.e., the roots of the polynomial are the exponentials that we want to
determine. Let further

P (z) :=
M∑
k=0

pk z
k

be the monomial representation of P (z) such that pM = 1 holds. We observe that

M∑
k=0

pkf(k +m) =
M∑
k=0

pk

M∑
j=1

cje
(k+m)Tj =

M∑
j=1

cjλ
m
j

(
M∑
k=0

pkλ
k
j

)

=
M∑
j=1

cjλ
m
j P (λj) = 0

(2.2)

for all m ∈ N0 since the values λj, j = 1, . . . ,M , are the roots of the polynomial P (z)

and therefore P (λj) = 0. Thus, we obtain a linear Hankel system

M−1∑
k=0

pkf(k +m) = −f(M +m), m = 0, . . . ,M − 1,

which allows us to determine the coefficients pk of the Prony polynomial P (z). The zeros
of P (z) are the values λj = eTj and we hence also obtain the values Tj, j = 1, . . . ,M .

Finally, we complete the reconstruction of f by computing the coefficients cj from the

18

2.4. Reconstructing sparse vectors from Fourier data: Prony’s method

overdetermined linear system

f(`) =
M∑
j=1

cje
`Tj , ` = 0, . . . , 2M − 1

using a least-squares approach. We now want to use Prony’s method to reconstruct the
vector

x =
M∑
j=1

xnjenj

of the above example. Let us assume that we know the Fourier values

x̂` =
M∑
j=1

xnjω
`nj
N , ` = 0, . . . , 2M − 1.

The Prony polynomial is in this case of the form

P (z) :=
M∏
j=1

(z − ωnjN) =
M∑
`=0

p` z
`

with unknown parameters nj and with pM = 1. Then we obtain, in a similar way as in
(2.2), the linear Hankel system

M−1∑
`=0

p` x̂`+m = −x̂M+m, m = 0, . . . ,M − 1,

from which we recover the coefficients pk of the Prony polynomial P (z). This allows us
to determine the roots ωnjN of P (z) and hence the indices nj, j = 1, . . . ,M . Then the
components xnj are given by the overdetermined linear system

x̂` =
M∑
j=1

xnjω
`nj
N , ` = 0, . . . , 2M − 1.

We summarize the reconstruction of a vector x ∈ CN with M nonzero entries from its
Fourier transform x̂ in Algorithm 2.5.

19

2. Reconstructing vectors from Fourier data

Algorithm 2.5 (Classical Prony method for vector reconstruction from Fourier data)
Input: M and x̂`, ` = 0, . . . , 2M − 1.

1. Solve the Hankel system
x̂0 x̂1 · · · x̂M−1

x̂1 x̂2 · · · x̂M
...

...
...

x̂M−1 x̂M · · · x̂2M−2

p0

p1
...

pM−1

 = −

x̂M

x̂M+1

...

x̂2M−1

2. Compute the zeros of the Prony polynomial P (z) =
∑M

`=0 p`z
` and extract the

parameters nj from its zeros zj = ω
nj
N , j = 1, . . . ,M .

3. Compute the components xnj solving the linear system

x̂` =
M∑
j=1

xnjω
`nj
N , ` = 0, . . . , 2M − 1.

Output: Parameters nj and xnj , j = 1, . . . ,M .

Unfortunately, Prony’s method is in general numerically unstable, see [44]. Therefore,
there has been some effort to develop stabilized versions of Prony’s method. In [44]
and [45], the approximate Prony method is proposed which is based on [5]. Further
approaches to methods for parameter identification include MUSIC [49], ESPRIT [48]
or the matrix pencil method [24]. Some of these methods have shown to be Prony-like
by Potts and Tasche in [46]. Moreover, it has been shown in [37] that Prony’s method
is equivalent to the annihilating filter method, see e.g. [13], [54].

In contrast to the classical Prony method which was presented above, many of the
stabilized versions do not require the a priori knowledge of the number M of active
frequencies but detect it automatically if the number of given measurements is sufficiently
large. Error estimates for Prony-like methods can e.g. be found in [3], [14], [45].

Let us return to our above example. For many of the stabilized Prony methods, such
as e.g. ESPRIT, a singular value decomposition of the Hankel matrix has to be computed
and thereafter the eigenvalues of a suitable companion matrix of P (z). In our case, this

20

2.4. Reconstructing sparse vectors from Fourier data: Prony’s method

means that we have the Hankel matrix
x̂0 x̂1 · · · x̂M−1

x̂1 x̂2 · · · x̂M
...

...
...

x̂M−1 x̂M · · · x̂2M−2

 = VDVT

with

V =

1 1 · · · 1

ωn1
N ωn2

N · · · ωnMN
...

...
...

ω
n1(M−1)
N ω

n2(M−1)
N · · · ω

nM (M−1)
N

 and D = diag(xn1 , . . . , xnM).

The computational complexity of this approach is due to the singular value decomposi-
tion O(M3). The major difficulty arises from the fact that the condition number of the
Hankel matrix used in the Prony approach can be arbitrarily large. This can be seen
from the factorization above that incorporates a Vandermonde matrix determined by
the knots ωn1

N , . . . , ω
nM
N on the unit circle. The condition number is small if these knots

are (almost) equidistantly distributed on the unit circle, see [4]. There exist several
ideas to overcome these difficulties. First, one could apply additional Fourier compo-
nents and hence consider a rectangular Hankel matrix with a better condition. This
idea has been used e.g. in [14], [36], [44]. Bounds for the condition number of the corre-
sponding Vandermonde matrix can be found e.g. in [30]. Another possibility would be
to include a randomly chosen (odd) “sampling factor” σ ∈ N and apply the values x̂σ`
instead of x̂` for the reconstruction of x with the hope that the distribution of the new
knots ωσn1

N , . . . , ωσnMN is closer to an equidistant distribution on the unit circle. Finally,
a splitting approach can be used by examining different bands. This means that we split
the set {0, . . . , N − 1} into disjoint subsets (by applying a suitable filter) and seek for
nonzero components in these subsets. This idea has been pursued in [42], [47].

These new approaches regard the problem of Fourier transforms for sparse vectors as
a Prony-like problem. In [42] or [47], the ESPRIT and MUSIC methods are applied
for sparse FFT. In order to overcome the problems of a quite large complexity and
instability, in [42] quasi-random samples are drawn, in contrast to the procedure in
Remark 2.6 below. Additionally, the authors of [42] suggest to split the frequency set
into smaller subsets which can then be reconstructed successively.

21

2. Reconstructing vectors from Fourier data

The recent publication [47] proposes to apply a divide-and-conquer technique and
hence to split the reconstruction problem into several smaller problems of lower sparsity
with the same structure. They use the technique of shifted sampling which has also been
applied in [29], [8].

Remark 2.6 The classical Prony method has been generalized by Peter and Plonka in
[35]. The generalized Prony method can be applied to recover sums of eigenfunctions of
linear operators. Let V be a normed vector space over C and let A : V → V be a linear
operator which is assumed to have eigenvalues. A set of pairwise distinct eigenvalues of
A is denoted by Λ := {λj | j ∈ I}. We assign the eigenfunctions vj to λj, j ∈ I, then
there is a unique correspondence between eigenvalues and eigenfunctions.
Let us consider the M-sparse expansion f of eigenfunctions of the operator A,

f =
∑
j∈J

cjvj

with J ⊂ I, |J | = M and cj 6= 0 for all j ∈ J . Further, we define a linear functional
F : V → C with the property Fvj 6= 0 for all j ∈ J . Then the expansion f , i.e., the
coefficients cj ∈ C and the eigenfunctions vj, can be uniquely reconstructed from the
values F (Akf), k = 0, . . . , 2M − 1, cf. Theorem 2.1 in [35].
We show that this can be applied to our special situation by choosing a vector space

V , a linear operator D and the functional F in a suitable way, see [35, Chapter 5]. Let
V = CN and define a linear operator D : CN → CN represented by the diagonal matrix

D := diag(ω0
N , ω

1
N , . . . , ω

N−1
N),

where ωN = e−
−2πi
N is defined as before. Let F : CN → CN be a linear functional of the

form Fx = 1Tx :=
∑N−1

j=0 xj. Then Theorem 2.1 in [35] states that we can reconstruct
M-sparse vectors of the form

x =
M∑
j=1

cnjenj

with 0 ≤ n1 ≤ · · · ≤ nM ≤ N − 1 from 2M values

F (Dkx) = 1T ·Dkx = ω0·k
N x0 + ω1·k

N x1 + · · ·+ ω
(N−1)k
N xN−1

for k = 0, . . . , 2M − 1. This means that the required input values correspond exactly to

22

2.4. Reconstructing sparse vectors from Fourier data: Prony’s method

the vector y = (yk)
2M−1
k=0 given by

y = FN,2Mx

where FN,2M =
(
ωk`N
)2M−1,N−1
k,`=0

∈ C2M×N contains the first 2M rows of the Fourier matrix
FN (see also [35, Remark 5.2]). Hence, this approach also allows to reconstruct a vector
with few nonzero components from Fourier data x̂0, . . . , x̂2M−1.

23

3. Preliminaries for sparse FFT
algorithms

In this chapter we introduce the preliminaries for the sparse FFT algorithms which are
described in the following chapters.
For this general setting we consider complex vectors if not specified otherwise. Let

x = (xk)
N−1
k=0 ∈ CN . As before, the discrete Fourier transform x̂ ∈ CN of x is defined by

x̂ := FNx

with the Fourier matrix FN =
(
ωk`N
)N
k,`=0

and ωN := e−
2πi
N .

In Chapter 2 we gave an overview of conventional FFT algorithms. These algorithms
compute the discrete Fourier transform of arbitrary vectors of length N = 2J and have
a complexity of O(N logN). One way to improve these bounds is to impose further
restrictions on the considered vectors. Therefore, in the following, we develop fast Fourier
algorithms for vectors with a special structure such as sparsity or a small support, i.e.,
vectors that only have few nonzero components. These restrictions allow us to reduce
complexity compared to conventional algorithms.

3.1. Vectors with small support and vector

periodization

Let us now consider vectors that have a small support. By the support we understand
for our purposes the shortest interval of indices of the vector that corresponds to nonzero
components.

Definition 3.1 Let x = (xk)
N−1
k=0 ∈ CN . The support lengthm = |suppx| of x is defined

as the minimal positive integer m for which there exists an index µ ∈ {0, . . . , N − 1}
such that xk = 0 for all k /∈ I := {(µ+ r)modN | r = 0, . . . ,m− 1}. We call the index
set I the support interval of x and µ the first support index of x.

25

3. Preliminaries for sparse FFT algorithms

This definition implies that the first component of the support interval needs not nec-
essarily to be the index of the first nonzero entry of the vector and that the support
interval is defined modulo the vector length. In other words, the support can begin at
the end of the vector and continue at the first entry.

Note that the support interval and the first support index of a vector x are not
necessarily uniquely defined. This is only the case if m ≤ N

2
. Example 3.2 illustrates

both cases. However, the support length is unique and the first and the last component
of the support, xµ and x(µ+m−1)modN , are nonzero by definition.
We are especially interested in vectors with m� N , i.e., vectors being also sparse in

a classical sense which means that they have very few nonzero components compared to
the vector length. As we allow zero components within the support and hence indices
in I which correspond to zero entries, the support length m of a vector x is an upper
bound for its sparsity ‖x‖0 = |{k |xk 6= 0}|.

The following small examples show different types of support intervals.

Example 3.2 1. x = (0, 0, 0, 1,−1, 0, 0, 0)T ∈ C8. For this vector, the support in-
terval is uniquely defined: I = {3, 4}. The support length and the first support
index of x are m = 2 and µ = 3.

2. x = (1, 2, 0, 3, 0, 0, 4, 5)T ∈ C8. The support interval of x is unique and given
by I = {6, 7, 0, 1, 2, 3}, the support length is m = 6 and the first support index
is µ = 6. The index set I contains one index, 2, which corresponds to a zero
component of x.

3. x ∈ C1024 with two nonzero entries, x0 = 1 and x512 = 1. Then x has support
lengthm = 513, but two possible support intervals: I = {0, 1, 2, . . . , 512} with first
support index µ = 0 or I = {512, 513, . . . , 1022, 1023, 0} with first support index
µ = 512. In this example, the support length is much larger than the sparsity of
x.

Let from now on N = 2J for some J ∈ N, i.e., we consider vectors whose length is
a power of two. For this type of vectors, one can define so-called periodizations. The
principle is as follows: Let x ∈ C2J , then we have periodized vectors x(j) , j = J, . . . , 0,
where any periodization x(j) is of length 2j. Each vector x(j) is created inductively from
the vector of length 2j+1, x(j+1), by cutting x(j+1) in the middle, then putting one half
on the other and adding up coinciding entries.

26

3.1. Vectors with small support and vector periodization

Definition 3.3 Let x ∈ CN with N = 2J for some J ∈ N. Then the periodizations
x(j) ∈ C2j of x are given by

x(j) = (x
(j)
k)2

j−1
k=0 =

2J−j−1∑
`=0

xk+2j`

2j−1

k=0

for j = 0, . . . , J .

Remark 3.4 We observe the following special cases of periodizations:

1. x(0) =
∑N−1

k=0 xk is the sum of all entries of x.

2. x(1) =
(∑N/2−1

k=0 x2k,
∑N/2−1

k=0 x2k+1

)T
has in the first component the sum of all

even-indexed entries of x and in the second component the sum of all odd-indexed
entries of x.

3. x(J) = x is the original vector.

Example 3.5 Let N = 32 = 25. For simplicity, we consider here a vector with real,
nonnegative components. We choose x to be

x = (0, 0, 0, 4, 0, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T .

Then x has the periodizations

x(4) = (0, 0, 0, 4, 2, 4, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0)T

x(3) = (0, 2, 3, 4, 2, 4, 0, 0)T

x(2) = (2, 6, 3, 4)T

x(1) = (5, 10)T

x(0) = (15)

In the case of such a vector x with real components we can easily visualize the peri-
odizations of x:

27

3. Preliminaries for sparse FFT algorithms

0 3 9 10 20 21 31

x = x(5)

0 3 4 5 9 10 15

x(4)

0 1 2 3 4 5 7

x(3)

0 1 2 3

x(2)

0 1

x(1)

Remark 3.6 Consider periodizations x(j), j = 0, . . . , J , of a vector x ∈ CN , N = 2J ,
with corresponding support lengths mj and first support indices µ(j). Then we observe
that the sequence of support lengths

m0 ≤ m1 ≤ · · · ≤ mJ−1 ≤ mJ

is always increasing and never decreasing. This can also be observed in the preceding
example.

As we consider in the following the reconstruction of vectors from Fourier data, it is of
interest how the Fourier transform x̂(j) of a periodization x(j) of x can be computed. It
turns out that the components of the vector x̂(j) can already be found as entries of x̂.
This means that if the Fourier transform x̂ is given, we only have to pick the proper
components in order to obtain x̂(j).
See also the publications [40], [41] for the following lemma.

28

3.1. Vectors with small support and vector periodization

Lemma 3.7 Let x ∈ CN with N = 2J for J ∈ N, and x(j), j = 0, . . . , J , be its
periodizations, as given in Definition 3.3. Then the discrete Fourier transform x̂(j) of
x(j) is given by

x̂(j) := F2jx
(j) = (x̂2J−jk)

2j−1
k=0

where x̂ = FNx is the Fourier transform of x.

Proof. By Definition 3.3, the components x̂(j)k of x̂(j) are given by

x̂
(j)
k =

2j−1∑
r=0

ωkr2j x
(j)
r =

2j−1∑
r=0

2J−j−1∑
`=0

xr+2j` ω
kr
2j =

2j−1∑
r=0

2J−j−1∑
`=0

xr+2j` ω
2J−jkr
N

=
N−1∑
n=0

xn ω
2J−jk(nmod2j)
N =

N−1∑
n=0

xn ω
2J−jkn
N = x̂2J−jk.

This proves the assertion. �

The following example illustrates the application of Lemma 3.7 for a vector x of length
N = 4.

Example 3.8 LetN = 4 and x = (1, 1, 1, 0)T ∈ R4. Then x has periodizations x(2) = x,
x(1) = (2, 1)T and x(0) = 3.
Further, the Fourier transform x̂ of x is

x̂ = F4x =

1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i

1

1

1

0

 =

3

−i

1

i

 .

For the Fourier transforms of the periodized vectors, we compute

x̂(2) = x̂ =

3

−i

1

i

 ,

x̂(1) = F2x
(1) =

(
1 1

1 −1

)(
2

1

)
=

(
3

1

)
,

x̂(0) = x(0) = 3.

29

3. Preliminaries for sparse FFT algorithms

3.2. Sparse vector reconstruction for other bases

The above introduced problem of sparse vector reconstruction has a broad application
since it can be transferred to other finite bases replacing the discrete Fourier basis. Let
us shortly illustrate how this can be done.

One is often interested in a reconstruction of functions that are sparsely represented
in a given basis B = {b0, . . . , bN−1} that spans an N -dimensional subspace of a Hilbert
space H. Let for example z ∈ H be of the form

z =
M∑
j=1

cnj bnj ,

where M � N and 0 ≤ n1 < n2 < . . . < nM ≤ N − 1, cnj ∈ C. Further, let
B̃ = {b̃0, . . . , b̃N−1} be the dual basis to B in H, i.e., we have〈

bj, b̃k

〉
= δj,k,

where 〈·, ·〉 denotes the scalar product in H. Choosing now

g` :=
N−1∑
k=0

e2πik`/N b̃k =
N−1∑
k=0

ω−k`N b̃k, ` = 0, . . . , N − 1,

we observe that

〈z, g`〉 =

〈
M∑
j=1

cnjbnj ,
N−1∑
k=0

ω−`kN b̃k

〉

=
M∑
j=1

N−1∑
k=0

cnj ω
`k
N

〈
bnj , b̃k

〉
=

M∑
j=1

cnj ω
`nj
N = ĉ`,

where ĉ = (ĉ`)
N−1
`=0 = FN c is the discrete Fourier transform of the M -sparse vector

c ∈ CN with cj = 0 for j 6∈ {n1, . . . , nM}. Hence, the reconstruction of z from a suitable
amount of moments 〈z, g`〉 can be rewritten as the reconstruction of the sparse vector c
from the Fourier data ĉ` = 〈z, g`〉.
This allows us to apply our developed sparse FFT methods also to reconstruction

of sparse vectors represented in a basis B = {b0, . . . , bN−1} different from the discrete
Fourier basis.

30

4. A sparse FFT algorithm for
vectors with small support

After having introduced algorithms for the fast Fourier transform (FFT) in Chapter 2,
we present here a new approach to fast Fourier algorithms with a priori conditions.
Conventional FFT algorithms compute the Fourier transform of a vector of length

N with complexity O(N logN). As mentioned before, these algorithms are optimal,
an improved complexity for such algorithms can only be achieved by assuming a priori
conditions on the involved vectors. Sparsity, i.e., the a priori knowledge that the vector
merely has few nonzero components, is such a common assumption. Several approaches
to FFT for sparse vectors have been described in Chapter 1 and 2. Our setting here is
similar: we also assume complex vectors x ∈ CN with few nonzero entries compared to
the vector lengthN , but we additionally suppose that these components are concentrated
in a short interval of the vector x. We refer to vectors of this type as vectors with small
support.
We develop a sublinear algorithm that can be applied to all complex vectors x ∈ CN ,

the only a priori knowledge needed for its application is the given support length m of x
or an upper bound for it, such that x vanishes outside the support interval. Moreover,
we require the knowledge of the Fourier transform x̂ but no further special values. In
particular, we do not have to evaluate additional, very specific data as e.g. in [27] where
it is required that the function to be reconstructed can be evaluated at certain points.
In contrast, we do not even need all given Fourier values for a successful recovery.
The reconstruction procedure for x from Fourier data x̂ is generally divided into two

main parts: First, we apply an inverse FFT of relatively short length in order to get a
periodization of x which already contains the full support interval of x. Hence, further
reconstruction steps focus on identifying the support within the computed periodized
vector and on determining the right support interval of the vector x in order to shift the
support components to the right position.
For exact data, the algorithm achieves a complexity of O(m logm) whereas for noisy

31

4. A sparse FFT algorithm for vectors with small support

measurements, the stabilized algorithm requires O(m logN) arithmetical operations.
The results of this chapter have been published in [40].

4.1. Preliminaries

Throughout this chapter, we consider complex vectors x ∈ CN for N = 2J with J ∈ N.
The discrete Fourier transform is used as before as well as the periodized vectors x(j) of
length 2j, j ∈ {0, . . . , J} (see Definition 3.3).
For further considerations, two facts will be helpful: The Fourier transform x̂(j) of

a periodization x(j) as given in Lemma 3.7 can be easily obtained from x̂ by picking
appropriate components. Furthermore, we state here a Lemma on the Fourier transform
of vectors with shifted components. The Fourier transform of a vector with cyclically
shifted entries only differs from the Fourier transform of the original vector by a multi-
plication with a root of unity.

Lemma 4.1 Let x = (xk)
N−1
k=0 ∈ CN with N = 2J . Consider for some j ∈ {0, . . . , J−1}

and ν ∈ {0, . . . , 2J−j − 1} a shifted version y = (yk)
N−1
k=0 ∈ CN with components

yk := x(k+2jν)modN , k = 0, . . . , N − 1.

Then the components of the Fourier transforms x̂ = FNx of x and ŷ = FNy of the
shifted version y satisfy

ŷ` = ω−`ν
2J−j

x̂`, ` = 0, . . . , N − 1.

In particular, for j = J − 1 and ν = 1 we have yk = x(k+N/2)modN , k = 0, . . . , N − 1,
with

x̂2k = ŷ2k, x̂2k+1 = −ŷ2k+1, k = 0, . . . , N/2− 1.

Proof. Using x̂ = FNx = (x̂`)
N−1
`=0 and ŷ = FNy = (ŷ`)

N−1
`=0 we obtain

ŷ` =
N−1∑
k=0

yk ω
`k
N =

N−1∑
k=0

x(k+2jν)modN ω
`k
N =

N−1∑
k=0

xk ω
`(k−2jν)
N = ω−`ν

2J−j
x̂`.

For j = J − 1 and ν = 1 the assertion follows by

ŷ` = ω−`ν
2J−j

x̂` = ω−`2 x̂` = (−1)` x̂`. �

32

4.2. Reconstructing vectors with small support from exact Fourier data

4.2. Reconstructing vectors with small support from

exact Fourier data

We describe the reconstruction of vectors x ∈ CN from exact Fourier data x̂ = FNx. It
is assumed that, in addition to the Fourier data x̂, the support length m < N of x or an
upper bound for it is given. Then the following procedure can be applied to reconstruct
x from x̂.
As a first step, we compute L := dlog2me, i.e., L ∈ N such that 2L−1 < m ≤ 2L.

Afterwards, the periodized vector x(L+1) is determined from its Fourier transform x̂(L+1)

which, by Lemma 3.7, is a vector containing components of x̂. Hence, we compose
x̂(L+1) = (x̂2J−(L+1)k)

2L+1−1
k=0 and compute x(L+1) = F−1

2L+1x̂
(L+1) using an inverse FFT al-

gorithm.
The obtained periodization x(L+1) of length 2L+1 already contains all support compo-

nents of x in the right order and beyond that no further nonzero entries. This can be
seen as follows: The components of x(L+1) are given by

x
(L+1)
k =

2J−L−1−1∑
`=0

xk+2L+1`, k = 0, . . . , 2L+1 − 1. (4.1)

As |suppx| = m ≤ 2L holds for the support length, each of these sums for k ∈
{0, . . . , 2L+1 − 1} contains at most one nonvanishing summand. On the other hand,
as the support length can only increase and never decrease with the periodizations
x(0),x(1), . . . ,x(J), it holds that |suppx(L+1)| = mL+1 ≤ m = |suppx|. Moreover, due to
the fact that mL+1 ≤ m ≤ 2L, the support interval and the first support index µ(L+1) of
x(L+1) are uniquely defined. This means that the support of x occurs in full length in
the periodization x(L+1).
Hence, the next reconstruction step consists in the identification of this support in-

terval in x(L+1). We compute the first support index µ(L+1) of x(L+1) with the help of
local energies

ek :=
m+k−1∑
`=k

∣∣∣x(L+1)

`mod 2L+1

∣∣∣2 (4.2)

for k = 0, . . . , 2L+1 − 1. For exact data, the index µ(L+1) is then uniquely defined as the
index k for which the local energy ek is maximal, i.e., µ(L+1) = argmaxk ek. In case that
m only is an upper bound for the support length of x, we choose one of the indices with

33

4. A sparse FFT algorithm for vectors with small support

maximal local energy.

As a next step, the first support index µ = µ(J) of x has to be determined in order
to place the support at the right position in x. By (4.1) we conclude that µ(J) is of
the form µ(J) = µ(L+1) + 2L+1ν for some ν ∈ {0, 1, . . . , 2J−L−1 − 1}. Thus, the value of
the shift ν has to be computed which can be done very efficiently using one additional
Fourier value.

Provided that the first support index µ(J) of x index is known, x can be recovered
with components

x(µ(J)+k)mod N =

{
x
(L+1)

(µ(L+1)+k)mod 2L+1 k = 0, . . . ,m− 1,

0 k = m, . . . , N − 1.

The following theorem describes the reconstruction of x from x(L+1), in particular the
efficient determination of the shift ν.

Theorem 4.2 Let x ∈ CN , N = 2J for J ∈ N, have support length m ≤ N/4 (or
a support length bounded by m) with 2L−1 < m ≤ 2L. For L < J − 1, let the 2L+1-
periodization x(L+1) of x be given. Then the vector x can be uniquely recovered from
x(L+1) and one nonzero component of the vector (x̂2k+1)

N/2−1
k=0 .

Proof. Let the 2L+1-periodization x(L+1) have the support interval

{(µ(L+1) + r)mod 2L+1 | r = 0, . . . ,m− 1}.

As m ≤ 2L holds by assumption, the support interval of x(L+1) is uniquely defined.
Applying the above considerations, we conclude from (4.1) that the first support index
µ(J) = µ of x is of the form µ(J) = µ(L+1) + 2L+1ν for some ν ∈ {0, . . . , 2J−L−1 − 1}.
Hence, we aim to determine the shift ν.

First, we choose ν = 0 and consider the vector u0 ∈ CN with components

u0(µ(L+1)+k)modN =

{
x
(L+1)

(µ(L+1)+k)mod 2L+1 k = 0, . . . ,m− 1,

0 k = m, . . . , N − 1.

The vector u0 has the first support index µ(L+1) and is one of the possible solution
vectors for x in CN as it has support length m and the corresponding 2L+1-periodization
x(L+1). All further possible vectors uν in CN with 2L+1-periodization (uν)(L+1) = x(L+1)

34

4.2. Reconstructing vectors with small support from exact Fourier data

but different first support indices µ(L+1) + 2L+1ν can be written in the form

uν := (uνk)
N−1
k=0 with u0k = uν(k+2L+1ν)modN , k = 0, . . . , N − 1,

for some ν ∈ {1, . . . , 2J−L−1 − 1} and thus are shifted versions of u0. This implies that
the vector x, which we want to reconstruct, is contained in the set

{uν | ν = 0, . . . , 2J−L−1 − 1}.

We aim to find ν such that x = uν holds. In order to determine the correct ν, we
consider the Fourier transforms ûν = (ûν`)

N−1
`=0 of the shifted vectors uν . By Lemma 4.1,

the components of these vectors are given by

ûν` = ω−`ν
2J−L−1û

0
` .

Hence, for the correct ν, it holds that

x̂` = ω−`ν
2J−L−1û

0
` for all ` = 0, . . . , N − 1.

This means that one component x̂` of the Fourier transform x̂ suffices to compute ν from
this equation if we choose the index ` appropriately. For an odd-indexed component
x̂2k0+1 of x̂, the numbers (2k0 + 1) and 2J−L−1 are mutually prime, i.e., gcd(2k0 +

1, 2J−L−1) = 1, such that ν ∈ {0, . . . , 2J−L−1 − 1} can be uniquely recovered from
ω
−(2k0+1)ν

2J−L−1 .
Hence, we choose one nonzero odd-indexed Fourier value x̂2k0+1 and compare it to the

(2k0 + 1)-th component

û02k0+1 =
m−1∑
r=0

x(µ(L+1)+r)mod 2L+1 ω
(µ(L+1)+r)(2k0+1)
N

of û0. Then ν is obtained from

ω
−(2k0+1)ν

2J−L−1 =
x̂2k0+1

û02k0+1

and we recover x as x = uν . �

Remark 4.3 The existence of a nonzero component in the vector (x̂2k+1)
N/2−1
k=0 is shown

in Lemma 4.5 below.

35

4. A sparse FFT algorithm for vectors with small support

We illustrate the reconstruction of a vector x using the presented techniques in a small
example.

Example 4.4 Let N = 8 = 23, i.e., J = 3.

Choose x̂ =
(

2, 1 + ω8, 1 + ω2
8, . . . , 1 + ω7

8

)T
.

This given x̂ corresponds to x :=
(

1, 1, 0, 0, 0, 0, 0, 0
)T

with support length m = 2,
L = dlog2 2e = 1 and support interval I = {0, 1} as we will now see.
We first compose the vector

x̂(L+1) = x̂(2) =

2

1 + ω2
8

1 + ω4
8

1 + ω6
8

 =

2

1− i

0

1 + i

of length 22 = 4 and then compute

x(2) = F−14 x̂(2) =
1

4

1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i

2

1− i

0

1 + i

 =

1

1

0

0

 .

This periodization has first support index µ(2) = 0. This means that the support index µ
of x has to be of the form µ = µ(3) = µ(2) + 4ν with ν ∈ {0, 1}, i.e., µ(3) = 0 or µ(3) = 4.
We choose the first odd-indexed Fourier component x̂1 = 1 + ω8 for comparison. Using
the notation of the proof of Theorem 4.2, we compute

û01 =
m−1∑
`=0

x
(2)

(µ(2)+`)mod 22
ωµ

(2)+`
8 = 1 · 1 + 1 · ω8 = 1 + ω8.

Comparing to the Fourier value x̂1 yields

ω−ν2 =
x̂1
û01

=
1 + ω8

1 + ω8

= 1

with the unique solution ν = 0. Hence, we obtain the first support index µ = µ(2)+4ν = 0

and therefore for the reconstruction of x the correct solution

x =
(

1, 1, 0, 0, 0, 0, 0, 0
)T

.

36

4.2. Reconstructing vectors with small support from exact Fourier data

For the reconstruction, only 5 of 8 Fourier values were used.

It remains to prove that the vector (x̂2k+1)
N/2−1
k=0 has a nonzero component which can be

chosen for comparison in Theorem 4.2 in order to obtain the index µ(J).

Lemma 4.5 Let x ∈ CN \ {0}, N = 2J ≥ 4 for J ∈ N, and let x have support length
|suppx| ≤ m ≤ N/4. Then the vector (x̂2k+1)

N/2−1
k=0 , which contains all odd-indexed

components of x̂, has at least one nonzero component.

Proof. Let µ(J) be the first support index of x and thus

I = {µ(J), (µ(J) + 1)modN, . . . , (µ(J) +m− 1)modN}

is the support interval of x. We define the trigonometric polynomial

p(ω) =

∣∣∣∣∣
N−1∑
k=0

xke
−iωk

∣∣∣∣∣
2

=

∣∣∣∣∣e−iωµ(J)
m−1∑
`=0

x(µ(J)+`)modNe−iω`

∣∣∣∣∣
2

(4.3)

which is real, nonnegative and of degree ≤ m − 1. This implies that p(ω) has at most
m − 1 pairwise different roots and all of these roots occur at least twice. We observe
that

|x̂k|2 =

∣∣∣∣∣
N−1∑
`=0

x`e
− 2πik`

N

∣∣∣∣∣
2

= p

(
2πk

N

)
, k = 0, . . . , N − 1.

As p(ω) has at most m − 1 roots and m ≤ N/4, this implies that not all components
x̂2k+1, k = 0, . . . , N/2− 1, can be zero. �

Remark 4.6 An alternative proof of Lemma 4.5 is the following. Assume that all odd
components of x̂ are zero, i.e., (x̂2k+1)

N/2−1
k=0 = 0. Then we obtain for the components xk

of x

xk =
1

N

N−1∑
`=0

x̂` ω
−k`
N =

1

2J

2J−1−1∑
`=0

x̂2` ω
−k2`
2J

=
1

2J

2J−1−1∑
`=0

x̂
(J−1)
` ω−k`

2J−1

=

{
1
2
x
(J−1)
k 0 ≤ k ≤ 2J−1 − 1,

1
2
x
(J−1)
k−2J−1 2J−1 − 1 ≤ k ≤ 2J − 1.

37

4. A sparse FFT algorithm for vectors with small support

This would imply that all nonzero components of the periodization x(J−1) split up into two
entries of equal value with distance 2J−1 when reconstructing x and therefore m > N/2.
But this is a contradiction to the assumption m ≤ N/4 = 2J−2.

We have seen in Lemma 4.5 that the vector (x̂2k+1)
N/2−1
k=0 has at most m − 1 zero com-

ponents and it therefore always has several nonzero components of which we can choose
one in order to compute the first support index µ(J) of x as given in Theorem 4.2. Such
a nonzero component can be found by at most m − 1 comparisons. However, it would
be an asset to pick a Fourier value with large modulus for a stable computation.

Remark 4.7 In order to choose an odd Fourier component x̂2k0+1 of large modulus in
Theorem 4.2, it would be best to determine

k0 := argmax
{
|x̂2k+1|2

∣∣ k = 0, . . . , N/2− 1
}
.

As this would imply that we have to compare a large number of values and is therefore
very costly, we can instead first identify the index of the component of largest modulus
in the periodization x̂(L+1),

k
(L+1)
0 := argmax

{
|x̂2J−(L+1)k|

2
∣∣ k = 0, . . . , 2L+1 − 1

}
.

Recalling that 2L−1 < m ≤ 2L holds, the index k(L+1)
0 can be obtained by O(m) operations.

Using the notation of the trigonometric polynomial (4.3), we obtain for this entry

∣∣∣x̂
2J−(L+1)k

(L+1)
0

∣∣∣2 = p

(
2πk

(L+1)
0

2L+1

)
= max

k=0,...,2L+1−1
p

(
2πk

2L+1

)
> 0,

and we can assume that p
(

2πk
(L+1)
0

2L+1

)
is close to the global maximum ‖p‖∞ of p(ω). As

a Fourier value for comparison, we can now choose the odd-indexed Fourier value with
largest modulus neighboring to x̂

2J−(L+1)k
(L+1)
0

: either x̂
2J−(L+1)k

(L+1)
0 +1

or x̂
2J−(L+1)k

(L+1)
0 −1.

We give an estimate for the modulus of these two Fourier values. Assume that p(ω)

attains its global maximum at some point

ω0 ∈

[
2π(k

(L+1)
0 − 1

2
)

2L+1
,
2π(k

(L+1)
0 + 1

2
)

2L+1

)
,

then for this extremal point it holds that
∣∣∣∣ω0 − 2πk

(L+1)
0

2L+1

∣∣∣∣ ≤ π
2L+1 . If we assume that we

38

4.2. Reconstructing vectors with small support from exact Fourier data

have chosen one of the above values for x̂2k0+1, i.e., either k0 = 2J−L−2k
(L+1)
0 + 1 or

k0 = 2J−L−2k
(L+1)
0 − 1, it follows that

∣∣∣ω0 − 2π(2k0+1)
N

∣∣∣ ≤ π
2L+1 . By the Lemma of Stečkin,

which can be found e.g. in [19], we obtain the worst case estimate

|x̂2k0+1|2 = p

(
2π(2k0 + 1)

N

)
≥ ‖p‖∞ cos

(
π(m− 1)

2L+1

)
> 0

for the lower bound of the modulus of x̂2k0+1.

The procedure of recovering x from exact Fourier data x̂ is summarized in Algorithm 4.8.

Algorithm 4.8 (Sparse FFT for vectors with small support for exact Fourier data)
Input: x̂ ∈ CN , N = 2J , |suppx| ≤ m < N .

• Compute L such that 2L−1 < m ≤ 2L, i.e., L := dlog2me.

• If L = J or L = J − 1, compute x = F−1N x̂ using an inverse FFT algorithm of
length N .

• If L < J − 1:

1. Set x̂(L+1) := (x̂2J−(L+1)k)
2L+1−1
k=0 and compute

x(L+1) := F−1
2L+1x̂

(L+1)

using an FFT algorithm for the inverse discrete Fourier transform of length
2L+1.

2. Determine the first support index µ(L+1) ∈ {0, . . . , 2L+1 − 1} of x(L+1) such
that x(L+1)

µ(L+1) 6= 0 and x(L+1)
k = 0 for k /∈ {(µ(L+1)+r)mod 2L+1 | r = 0, . . . ,m−

1}.

3. Choose a Fourier component x̂2k0+1 6= 0 of x̂ and compute the sum

û02k0+1 :=
m−1∑
`=0

x
(L+1)

(µ(L+1)+`)mod 2L+1 ω
(2k0+1)(µ(L+1)+`)
N .

4. Compute the quotient b := x̂2k0+1/û
0
2k0+1 which is by construction of the form

b = ωp
2J−L−1 for some p ∈ {0, . . . , 2J−L−1−1} and find ν ∈ {0, . . . , 2J−L−1−1}

such that (2k0 + 1) ν = pmod 2J−L−1.

39

4. A sparse FFT algorithm for vectors with small support

5. Set µ(J) := µ(L+1) + 2L+1ν, and x := (xk)
N−1
k=0 with entries

x(µ(J)+`)modN :=

{
x
(L+1)

(µ(L+1)+`)mod 2L+1 ` = 0, . . . ,m− 1,

0 ` = m, . . . , N − 1.

Output: x.

The algorithm for the reconstruction of a vector x ∈ CN from exact data has an overall
arithmetical complexity ofO(m logm) ifm ≤ N/4. Let us consider the complexity of the
individual steps. Initially, the algorithm executes an inverse Fourier transform of length
2L+1 < 4m using an inverse FFT algorithm. This requires O(m logm) arithmetical
operations. The following steps require O(m) (or less) arithmetical operations each:
Determining the support interval of the periodization x(L+1) can be efficiently done using
the local energies (4.2). Computing the first local energy e0 requires O(m) arithmetical
operations. Then any other energy can be obtained by the recursion ek+1 = ek −
|xk|2 + |x(k+m)mod 2L+1|2 for k = 0, . . . , 2L+1 − 2. Thus, the overall complexity for the
identification of µ(L+1) remains O(m) since x(L+1) has at most m nonzero components.
The computation of the shift ν is done using the component û02k0+1 which is obtained

byO(m) multiplications and additions. Finally, the vector x is reconstructed by plugging
in the (at most) m support components according to the first support index µ(J).
The number of Fourier values applied for reconstruction is bounded by 4m. In partic-

ular, the first inverse Fourier transform requires 2L+1 values and one additional Fourier
value is employed for comparison in order to compute the shift ν.

4.3. Reconstructing vectors with small support from

noisy Fourier data

The newly developed algorithm can also be applied to noisy data. For this purpose,
several steps of Algorithm 4.8 have to be stabilized. Assume from now on that perturbed
Fourier data ŷ = (ŷk)

N−1
k=0 ∈ CN

ŷk = x̂k + εk

is given where ε = (εk)
N−1
k=0 ∈ CN denotes a noise vector. We want to reconstruct the

vector x ∈ CN from the perturbed Fourier data ŷ under the assumption that x has a
small support interval of length m ≤ N/4.

40

4.3. Reconstructing vectors with small support from noisy Fourier data

We recapitulate the steps of Algorithm 4.8 and propose stabilizations for the following
crucial reconstruction steps:

1. the correct identification of the support interval of x(L+1), i.e., determining the
first support index µ(L+1) of x(L+1),

2. the correct identification of the support interval of x, i.e., determining the first
support index µ(J) of x, and

3. the evaluation of the nonzero components within the support of x.

All these steps can be improved by employing more Fourier values of ŷ than in the case
of exact data.

4.3.1. Stable identification of the support interval of x(L+1)

We stabilize the determination of the support interval of x(L+1) by evaluating additional
Fourier values. Let us first define shifted vectors of Fourier data.

Definition 4.9 Let x ∈ CN , N = 2J for J > 0, and let x have support length |suppx| ≤
m ≤ N/4 with 2L−1 < m ≤ 2L. For L < J − 1, let x(L+1) = (x

(L+1)
k)2

L+1−1
k=0 be the 2L+1-

periodization of x and x̂(L+1) = (x̂2J−L−1k)
2L+1−1
k=0 be its Fourier transform. Then define

shifted versions of the vector x̂(L+1) by

ẑ(κ) := (x̂2J−L−1k+κ)
2L+1−1
k=0 , κ = 0, . . . , 2J−L−1 − 1.

In particular, this implies that z(0) = x(L+1). In case of noisy Fourier data ŷ = x̂ + ε,
we analogously define the shifted vectors

̂̃z(κ) := (ŷ2J−L−1k+κ)
2L+1−1
k=0 , κ = 0, . . . , 2J−L−1 − 1.

The following theorem states that, by considering the inverse Fourier transform of the
shifted versions ẑ(κ) of x̂(L+1), we obtain vectors whose components have the same mod-
ulus as the components of x(L+1).

Theorem 4.10 Let x ∈ CN , N = 2J for J > 0, and let x have support length |suppx| ≤
m ≤ N/4 with 2L−1 < m ≤ 2L. For L < J − 1, let ẑ(κ), κ = 0, . . . , 2J−L−1 − 1, be given
as in Definition 4.9 and particularly x̂(L+1) = ẑ(0). Then the inverse Fourier transform

41

4. A sparse FFT algorithm for vectors with small support

z(κ) =
(
z
(κ)
`

)2L+1−1

`=0
= F−1

2L+1 ẑ
(κ) of the shifted vectors ẑ(κ), κ = 0, . . . , 2J−L−1−1, satisfies

∣∣∣z(κ)`

∣∣∣ =
∣∣∣x(L+1)
`

∣∣∣ , ` = 0, . . . , 2L+1 − 1.

Proof. By definition, we obtain for the components z(κ)` of z(κ)

z
(κ)
` =

1

2L+1

2L+1−1∑
k=0

x̂2J−L−1k+κ ω
−k`
2L+1

=
1

2L+1

2L+1−1∑
k=0

N−1∑
r=0

xr ω
r(2J−L−1k+κ)
N ω−k`

2L+1 =
1

2L+1

N−1∑
r=0

xr ω
rκ
N

2L+1−1∑
k=0

ω
k(r−`)
2L+1

=
2J−L−1−1∑

j=0

x`+2L+1j ω
(`+2L+1j)κ
N = ω`κN

2J−L−1−1∑
j=0

x`+2L+1j ω
2L+1jκ
N .

For the second last equation, we have used that

2L+1−1∑
k=0

ω
k(r−`)
2L+1 =

{
2L+1 r ≡ ` mod 2L+1,

0 r 6≡ ` mod 2L+1.

Since |suppx| ≤ m < 2L+1, for each index ` the above sum contains at most one
summand, thus

∣∣∣z(κ)`

∣∣∣ =
∣∣∣x(L+1)
`

∣∣∣. �

Considering the vectors z(κ) for κ = 0, . . . , 2J−L−1 − 1, we observe that each of these
vectors is reconstructed from different Fourier components. We use this fact to stabilize

the computation of the values
∣∣∣y(L+1)
`

∣∣∣2 in case of noisy data.
Similarly to the case of exact data, we begin the reconstruction by picking the vector̂̃z(0) = (ŷ2J−L−1k)

2L+1−1
k=0 of noisy measurements and compute z̃(0) = F−1

2L+1
̂̃z(0) = y(L+1).

Then we consider the local energies

ẽ
(0)
k :=

m+k−1∑
`=k

∣∣∣y(L+1)

`mod2L+1

∣∣∣2 =
m+k−1∑
`=k

∣∣∣z̃(0)`mod2L+1

∣∣∣2 , k = 0, . . . , 2L+1 − 1,

of z̃(0). This gives us a first estimate

µ
(L+1)
0 = argmax

k
ẽ
(0)
k

for the first support index µ(L+1) of the periodization x(L+1).

42

4.3. Reconstructing vectors with small support from noisy Fourier data

For a further stabilization in case of strongly perturbed data, we now take advantage of
additional vectors with shifted Fourier values. We consider in a next step for κ = 2J−L−2

the vector ̂̃z(2J−L−2)
= (ŷ2J−L−2(2k+1))

2L+1−1
k=0 and obtain z̃(2

J−L−2) by inverse FFT. This
vector has the local energies

ẽ
(1)
k :=

m+k−1∑
`=k

∣∣∣z̃(2J−L−2)

`mod 2L+1

∣∣∣2 , k = 0, . . . , 2L+1 − 1.

Hence, we can average the results of this vector with the previous ones and obtain

µ
(L+1)
1 = argmax

k

1

2

(
ẽ
(0)
k + ẽ

(1)
k

)
as a new estimate for µ(L+1). If µ(L+1)

1 = µ
(L+1)
0 , we conclude that the estimates were

correct. Hence, we set µ(L+1) = µ
(L+1)
1 = µ

(L+1)
0 for the first support index of the

periodization x(L+1) and proceed with further reconstruction steps. Otherwise, we repeat
the procedure with an additional vector of shifted Fourier data.
Choose e.g. κ = 2J−L−3 and compute z̃(2

J−L−3) = F−1
2L+1(ŷ2J−L−3(4k+1))

2L+1−1
k=0 . For this

vector, we obtain local energies

ẽ
(2)
k :=

m+k−1∑
`=k

∣∣∣z̃(2J−L−3)

`mod 2L+1

∣∣∣2 , k = 0, . . . , 2L+1 − 1,

and hence a third estimate

µ
(L+1)
2 = argmax

k

1

3

(
ẽ
(0)
k + ẽ

(1)
k + ẽ

(2)
k

)
for µ(L+1). This procedure can be repeated for all possible choices of κ. In practice, we
stop the iteration if the same index has been obtained in two consecutive steps.

4.3.2. Stable identification of the support interval of x

After determining the correct support interval of the periodization x(L+1), the next
reconstruction step is to identify the first support index µ = µ(J) of the vector x.
We have seen in Section 4.2 that µ(J) is of the form µ(J) = µ(L+1) + 2L+1ν for some
ν ∈ {0, . . . , 2J−L−1 − 1}.
In contrast to the case of exact data, we proceed here by iteratively computing the

indices µ(j), j = L + 2, . . . , J , i.e., we use the knowledge of the first support index µ(j)

43

4. A sparse FFT algorithm for vectors with small support

First case: µ(j+1) = µ(j).

x(j)
=⇒ x(j+1)

x(j)
=⇒ x(j+1)

Second case: µ(j+1) = µ(j) + 2j.

x(j)
=⇒ x(j+1)

x(j)
=⇒ x(j+1)

Figure 4.1.: Possible support change in one iteration step.

of x(j) to compute the first support index µ(j+1) of the periodization x(j+1) of double
length for j = L+ 1, . . . , J − 1.
As m ≤ 2L+1, we know that all vectors x(j), j = L + 1, . . . , J − 1, have the same

support length as x(L+1). Additionally, for the components of the periodizations x(j)

and x(j+1), j = L+ 1, . . . , J − 1, it holds that

x
(j+1)
k + x

(j+1)

k+2j
= x

(j)
k , k = 0, . . . , 2j − 1.

This means that we only have two possibilities for the first support index when recon-
structing µ(j+1) from µ(j). Either the index stays the same or it is shifted by 2j, i.e., we
obtain either µ(j+1) = µ(j) or µ(j+1) = µ(j) + 2j. Both possible cases are illustrated in
Figure 4.1, depending on the position of the support interval in x(j).
The procedure of reconstructing x(j+1) from x(j) is described in the following theorem.

Theorem 4.11 Let x ∈ CN , N = 2J , have support of length |suppx| ≤ m ≤ N/4 with
2L−1 < m ≤ 2L. Further, denote by x(j), L + 1 ≤ j ≤ J − 1, the periodizations of
x = x(J) as given in Definition 3.3. Then, for each j = L + 1, . . . , J − 1, the vector
x(j+1) can be uniquely recovered from x(j) and one additional nonzero component of the
vector of Fourier values (x̂2J−(j+1)(2k+1))

2j−1
k=0 .

Proof. Let x(j) be the given periodization of length 2j. Its first support index is denoted
by µ(j) and hence the vector has the support suppx(j) = {(µ(j)+r)mod 2j | r = 0, . . . ,m−
1}.

44

4.3. Reconstructing vectors with small support from noisy Fourier data

In order to recover x(j+1) we need to detect if µ(j+1) = µ(j) or µ(j+1) = µ(j) + 2j. We

denote the two possible vectors for x(j+1) by u(0) =
(
u
(0)
`

)2j+1−1

`=0
with components

u
(0)

µ(j)+`
=

{
x(µ(j)+`)mod 2j ` = 0, . . . ,m− 1,

0 else,

resp. u(1) =
(
u
(1)
`

)2j+1−1

`=0
with components

u
(1)

(µ(j)+2j+`)mod 2j+1 =

{
x(µ(j)+`)mod 2j ` = 0, . . . ,m− 1,

0 else.

Thus, it holds that x(j+1) = u(0) if µ(j+1) = µ(j) and x(j+1) = u(1) if µ(j+1) = µ(j) + 2j,
i.e., if the support interval is shifted by 2j.

We observe that both vectors u(0) and u(1) only differ by a shift of all components by 2j.

Hence, we can apply Lemma 4.1 and obtain for the Fourier transforms û(0) =
(
û
(0)
`

)2j+1−1

`=0

and û(1) =
(
û
(1)
`

)2j+1−1

`=0
the relationship

û
(0)
2k+1 = −û(1)2k+1, k = 0, . . . , 2j − 1.

This implies that the Fourier transforms of both possible vectors only differ in the sign of
all odd-indexed components. By comparison with one additional odd-indexed nonzero
Fourier value x̂2J−(j+1)(2k0+1) = x̂

(j+1)
2k0+1, we can determine the correct solution for x(j+1).

For that purpose, compute one nonzero entry

û
(0)
2k0+1 =

m−1∑
`=0

x
(j)

(µ(j)+`)mod 2j
ω
(2k0+1)(`+µ(j))

2j+1

of û(0) and compare it to the Fourier value x̂2J−(j+1)(2k0+1). If∣∣∣û(0)2k0+1 − x̂2J−(j+1)(2k0+1)

∣∣∣ < ∣∣∣û(0)2k0+1 + x̂2J−(j+1)(2k0+1)

∣∣∣ ,
then we set x(j+1) = u(0) and µ(j+1) = µ(j). Otherwise, we set x(j+1) = u(1) with shifted
index µ(j+1) = µ(j) + 2j. �

45

4. A sparse FFT algorithm for vectors with small support

4.3.3. Evaluation of the nonzero components of x

The reconstruction of the vector x is now basically completed as the first support index
µ(L+1) of x(L+1) has been stably determined and the first support indices of the peri-
odizations have been identified step-by-step. However, we can still improve the accuracy
of the nonzero components by taking advantage of the vectors z̃(κ) ∈ C2L+1

that were
already computed in Subsection 4.3.1 for the determination of the support of x(L+1).
From the proof of Theorem 4.10, we can conclude that

z̃
(κ)

`mod2L+1 = ω`κN (x(`+2L+1ν)modN ω
2L+1νκ
N), ` = µ(L+1), . . . , µ(L+1) +m− 1,

holds for the components of z̃(κ). The shift ν has been iteratively computed in the
preceding subsection, such that the components xk of x are implicitly given by the
entries of the vectors z̃(κr) for each κr which was considered in Subsection 4.3.1.

Using the relation µ(J) = µ(L+1) + 2L+1ν we can reformulate the above equation to

z̃
(κ)

(µ(L+1)+k)mod 2L+1 = x(µ(J)+k)modN ω
κ(µ(J)+k)
N , k = 0, . . . ,m− 1.

We average over all measurements in order to compute the support entries x(µ(J)+k)modN ,
k = 0, . . . ,m− 1, of x̂ and obtain an improved estimate

x(µ(J)+k)modN =
1

B + 1

B∑
r=0

z̃
(κr)

(µ(L+1)+k)mod 2L+1 ω
−κr(µ(J)+k)
N , k = 0, . . . ,m− 1,

where B + 1 is the number of vectors

z̃(κr) = F−1
2L+1 (ŷ2J−L−1k+κr)

2L+1−1
k=0 , κr ∈ {0, . . . , 2J−L−1 − 1}

that are involved in the computation.

4.3.4. Algorithm

We summarize the reconstruction of a vector x from noisy Fourier data ŷ in Algo-
rithm 4.12. It includes all improvements that were proposed in Subsection 4.3.1 – 4.3.3.

Algorithm 4.12 (Sparse FFT for vectors with small support for noisy Fourier data)
Input: Noisy measurement vector ŷ ∈ CN , N = 2J , |suppx| ≤ m < N .

46

4.3. Reconstructing vectors with small support from noisy Fourier data

• Compute L such that 2L−1 < m ≤ 2L, i.e., L := dlog2me.

• If L = J or L = J − 1, compute x = F−1N ŷ by inverse FFT.

• If L < J − 1:

1. Choose ̂̃z(0) := ŷ(L+1) = (ŷ2J−(L+1)k)
2L+1−1
k=0 and compute z̃(0) = y(L+1) :=

F−1
2L+1ŷ

(L+1) using an FFT algorithm for the inverse discrete Fourier transform
(IFFT).

2. Determine the first support index µ(L+1) ∈ {0, . . . , 2L+1 − 1} of x(L+1) using
the following iteration:

• Compute the local energies

ẽ
(0)
k :=

m+k−1∑
`=k

∣∣∣z̃(0)`mod 2L+1

∣∣∣2 , k = 0, . . . , 2L+1 − 1,

and compute µ(L+1)
0 := argmaxk ẽ

(0)
k .

• Compute z̃(J−L−2) by IFFT from (ŷ2J−L−2(2k+1))
2L+1−1
k=0 , determine

ẽ
(1)
k :=

m+k−1∑
`=k

∣∣∣z̃(2J−L−2)

`mod 2L+1

∣∣∣2 , k = 0, . . . , 2L+1 − 1,

and take µ(L+1)
1 := argmaxk

1
2
(ẽ

(0)
k + ẽ

(1)
k).

• Set j := 0.
While µ(L+1)

j 6= µ
(L+1)
j+1

proceed by computing for a further κ ∈ {1, . . . , 2J−L−1−1} the vector
z̃(κ) by IFFT from (ŷ2J−L−1k+κ))

2L+1−1
k=0 , the energies

ẽ
(j+2)
k :=

m+k−1∑
`=k

∣∣∣z̃(κ)`mod2L+1

∣∣∣2 , k = 0, . . . , 2L+1 − 1,

and take µ(L+1)
j+2 := argmaxk

1
j+3

∑j+2
r=0 ẽ

(r)
k .

Set µ(L+1) := µ
(L+1)
j+2 and j := j + 1.

End (while).

47

4. A sparse FFT algorithm for vectors with small support

• Set x(L+1) = (x
(L+1)
k)2

L+1−1
k=0 with

x
(L+1)

(k+µ(L+1))mod 2L+1 :=

{
z̃
(0)

(k+µ(L+1))mod 2L+1 k = 0, . . . ,m− 1,

0 k = m, . . . , 2L+1 − 1.

3. For j = L+ 1, . . . , J − 1

Choose a Fourier component ŷ2J−(j+1)(2k0+1) = ŷ
(j+1)
2k0+1 6= 0 and compute

the following value for comparison:

A :=
m−1∑
`=0

x
(L+1)

(µ(L+1)+`)mod 2L+1 ω
(2k0+1)(µ(j)+`)

2j+1 .

If |A − ŷ
(j+1)
2k0+1| < |A + ŷ

(j+1)
2k0+1|, then set µ(j+1) := µ(j) and x(j+1) :=

(x
(j+1)
k)2

j+1−1
k=0 with entries

x
(j+1)

µ(j)+`
=

{
x
(j)

(µ(j)+`)mod 2j
` = 0, . . . ,m− 1,

0 else.

If |A − ŷ(j+1)
2k0+1| ≥ |A + ŷ

(j+1)
2k0+1|, then set µ(j+1) := µ(j) + 2j and x(j+1) :=

(x
(j+1)
k)2

j+1−1
k=0 with entries

x
(j+1)

(µ(j)+2j+`)mod 2j+1 =

{
x
(j)

(µ(j)+`)mod 2j
` = 0, . . . ,m− 1,

0 else.

End (for).

4. Assuming that z̃(κr) ∈ C2L+1

, r = 0, . . . , B, have already been evaluated in
step 2, we compute

x(µ(J)+k)modN =
1

B + 1

B∑
r=0

z̃
(κr)

(µ(L+1)+k)mod 2L+1 ω
−κr(µ(J)+k)
N ,

k = 0, . . . ,m− 1.

Output: x(J) = x.

48

4.3. Reconstructing vectors with small support from noisy Fourier data

An exemplary Matlab implementation of this algorithm is included in Appendix A.1.
The complexity of the algorithm mainly depends on the support length m of x. We

summarize the number of necessary arithmetical operations for each step. In step 1 and
2, the periodization x(L+1) has to be determined as well as further vectors z̃(κ) for a
more stable identification of the support interval of x(L+1). This includes two or more
inverse FFTs of length 2L+1 < 4m and therefore O(m logm) arithmetical operations. In
order to determine the first support index µ(L+1) of x(L+1), we compute the local energies
defined in Section 4.3.1. This requires O(m) operations. Hence, altogether steps 1 and
2 have an arithmetical complexity of O(m logm).
In step 3 of the algorithm, the first support index µ(J) is computed iteratively from

µ(L+1). This requires J−(L+1) = log2N−dlog2me−1 = blog2(N/m)c−1 reconstruction
steps where at each level a scalar product of lengthm has to be computed and then to be
compared to a suitable component of x̂. Finding such a nonzero Fourier value requires
less than m comparisons (as there are at most m − 1 nonzero components to choose
from, see Lemma 4.5). Hence, step 3 requires O(m log(N/m)) arithmetical operations.

Finally, the improvement of the (at most) m nonzero support components of x using
vectors from step 2 needs a few additional multiplications and additions, depending on
the number of vectors used in step 2.

To conclude, the overall complexity of the algorithm for reconstructing a vector x

from noisy Fourier data is O(m logm+m log(N/m)) = O(m logN).
The number of Fourier values required for reconstruction of a vector x of length N

with support length m highly depends on the number of vectors used in step 2 of the
algorithm. Step 1 requires 2L+1 Fourier values and each additional vector in step 2 again
2L+1 values. In step 3, we need one Fourier value for comparison at each iteration level,
hence J − (L+ 1) = blog2(N/m)c − 1 values for all iteration levels.

Remark 4.13 For the computation of x by the algorithm it is not necessary to recon-
struct all periodizations x(j), j = L+2, . . . , J−1, in step 3 in full length. After computing
the periodization x(L+1) by an inverse FFT algorithm, it suffices for all further periodiza-
tions x(j) to determine their first support index µ(j). This is recursively done from µ(j−1)

using the values A. The computation of any A only involves µ(j) and the periodization
x(L+1).
To finally reconstruct x, we only need the support, which was already contained in

x(L+1), and the first support index µ(J) that was reconstructed iteratively.
The intermediate periodizations x(j), j = L+ 2, . . . , J − 1, in step 3 of Algorithm 4.12

are only given for clarity but are not necessary for the reconstruction of x.

49

4. A sparse FFT algorithm for vectors with small support

4.4. Numerical results

In this chapter, we evaluate the numerical stability of Algorithm 4.12 for the reconstruc-
tion of vectors with small support from noisy data. In particular, we apply the algorithm
to noisy Fourier data ŷ := (ŷk)

N−1
k=0 ∈ CN where

ŷk = x̂k + εk.

Here, the exact Fourier data x̂ ∈ CN is perturbed by addition of a noise vector ε ∈ CN .
In numerical experiments, we want to compare the implementation of Algorithm 4.12

(see Appendix A.1) to a regular inverse FFT algorithm, where we use ifft in Matlab

2013a.
The algorithms are applied in different settings. First, we give an example for a vector

of length 256 and illustrate the results of the reconstruction in detail. Afterwards,
the algorithm is applied to larger numbers of randomly generated vectors of length
220 = 1048576. These vectors are either perturbed by uniformly distributed noise or
by normally distributed noise, where we use the standard normal distribution. As a
measure for the noise level, we introduce an SNR value.

Definition 4.14 The signal-to-noise-ratio (SNR) for the noisy input data is given by

SNR = 20 · log10

‖x̂‖2
‖ε‖2

= 20 · log10

‖x̂‖2
‖ŷ − x̂‖2

.

Using the `2-norm, we quantify the reconstruction error by

‖x− x′‖2
N

where x′ denotes the reconstruction of x by the proposed algorithm. Similarly, the
`2-error of a vector reconstruction from ŷ by an inverse FFT algorithm is given by
‖x − F−1N ŷ‖2/N . As a second measure for the reconstruction error, we introduce SNR
values

SNRalg = 20 · log10

‖x‖2
‖x− x′‖2

resp. SNRIFFT = 20 · log10

‖x‖2
‖x− F−1N ŷ‖2

.

Let us first illustrate the reconstruction by our deterministic algorithm for a small ex-
ample. Let x ∈ RN with N = 28 = 256 and support length m = 6, i.e., J = 8 and L = 3.
The vector x has the following nonzero components: x105 = 8, x107 = −3, x108 = −5

50

4.4. Numerical results

and x110 = 2. We perturb the Fourier data x̂ by a noise vector ε and reconstruct x from
ŷ = x̂ + ε. The randomly chosen vector ε contains uniformly distributed noise with
SNR = 20 and has in this example norms ‖ε‖∞ = 1.666 and ‖ε‖1/N = 0.939.
The reconstruction x′ by the proposed algorithm has only six nonzero components:

x′105 = 7.944− 0.090i, x′106 = 0.032− 0.220i, x′107 = −2.936− 0.061i,

x′108 = −5.007 + 0.089i, x′109 = −0.073− 0.005i and x′110 = 2.129− 0.141i.

We observe that our algorithm detects the correct support interval of x and only
reconstructs nonzero components within this interval. In contrast, the inverse Fourier
transform applied to the noisy vector ŷ returns a resulting vector with no zero entries.
However, the components outside of the support are very small.

The results of the reconstructions by the proposed deterministic algorithm and by an
inverse FFT applied to ŷ yield errors ‖x−x′‖2/256 = 0.00134 resp. ‖x−F−1256ŷ‖2/256 =

0.00395. Moreover, the reconstructions have SNR values SNRalg = 29.364 and SNRIFFT =

20.
In this example, the algorithm requires no additional vectors for the identification of

the first support index µ(L+1) of the periodization x(L+1) in step 2. This means that
only two vectors z̃(0) and z̃(J−L−2) = z̃(3) of length 2L+1 = 16 are evaluated. Hence,
32 + 4 = 36 of 256 Fourier values were used to recover x by our algorithm whereas the
reconstruction by an inverse Fourier transform requires all 256 Fourier values.

The results for both vector reconstructions are illustrated in Figure 4.2. It is obvious
to see that the algorithm only reconstructs the support of x and sets all remaining
components to zero whereas the reconstruction by an inverse FFT algorithm does not
recognize the relevant parts of x and therefore also recovers noisy components outside
of the support.

Remark 4.15 The `2-error of the reconstruction by an inverse Fourier transform in
this example does not depend on the instance of the noise vector ε if the vector x̂ and
the SNR value are fixed. This can be seen by the following computation:

1

N

∥∥x− F−1N ŷ
∥∥
2

=
1

N

∥∥x− F−1N x̂− F−1N ε
∥∥
2

=
1

N

∥∥F−1N ε
∥∥
2

=
1

N

∥∥∥∥ 1√
N
ε

∥∥∥∥
2

=
1

N
√
N
‖ε‖2,

where the second last equation holds as
√
NF−1N is a unitary matrix (see Remark 2.2).

51

4. A sparse FFT algorithm for vectors with small support

0 50 100 150 200 250
−10

−5

0

5

10

0 50 100 150 200 250
−10

−5

0

5

10

0 50 100 150 200 250
−10

−5

0

5

10

(a)
0 50 100 150 200 250

−10

−5

0

5

10

0 50 100 150 200 250
−10

−5

0

5

10

0 50 100 150 200 250
−10

−5

0

5

10
(b)

0 50 100 150 200 250
−10

−5

0

5

10

0 50 100 150 200 250
−10

−5

0

5

10

0 50 100 150 200 250
−10

−5

0

5

10

(c)

Figure 4.2.: (a) Original vector x ∈ R256; (b) Reconstruction of x (real part) using the
sparse FFT Algorithm 4.12; (c) Reconstruction of x (real part) using an
inverse FFT algorithm.

The norm ‖ε‖2 and hence the reconstruction error only depends on x̂ (by definition of
the SNR) resp. on x.
However, the error of the reconstruction by our algorithm directly depends on the

components of ε that are actually involved in the evaluation as not all of the entries of
the noisy vector ŷ are included in the reconstruction.

In further experiments we investigate the average reconstruction results for a large num-
ber of randomly generated vectors. The setting is as follows: We reconstruct vectors
x ∈ CN with N = 220 for which the Fourier data x̂ is perturbed either by uniformly or
normally distributed noise ε. The considered noise levels are SNR values between 0 and
50. Additionally, we vary the support length and set either a rather short support with
m = 20 or a quite long support with m = 216. For each possible setting, 100 randomly
chosen vectors x are recovered from ŷ = x̂+ε by the deterministic algorithm and by an
inverse FFT algorithm. The vectors x are chosen such that |Re(xk)| ≤ 10, |Im(xk)| ≤ 10

52

4.4. Numerical results

holds for all indices k within the support interval.
The obtained results are shown in several figures. In Figure 4.3, we compare the

average error in 100 reconstructions by both methods, by our new sparse FFT algorithm
as well as by an inverse FFT algorithm applied to ŷ. The vectors x have a support
length of m = 20 and the data ŷ is perturbed by uniform noise. The error is measured
in two different ways: either by the `2-norm ‖x− x′‖2/N or by the SNR values SNRalg

and SNRIFFT. Figure 4.4 illustrates the results for an equivalent setting where only the
support length was changed to m = 216 = 65536.
The reconstruction errors by both methods for data perturbed by normally distributed

noise are compared in Figure 4.5 and 4.6. In Figure 4.5, the `2-norm as well as the SNR
values are compared for the reconstructions of vectors x with support length m = 20

whereas in Figure 4.6, we do the same for vectors x with support length m = 216.
When looking at the figures, it is apparent that the error SNRIFFT does not depend

on the noise but seems to be equal to the SNR value of the added noise vector ε. This
is indeed the case.

Remark 4.16 Similar to the `2-error above, the error SNRIFFT for reconstruction of x
by an inverse FFT algorithm does not depend on x or the instance of the noise vector ε
itself, but only on its SNR value and both values even coincide:

SNRIFFT = 20 · log10

‖x‖2
‖x− F−1N ŷ‖2

= 20 · log10

‖x‖2
‖F−1N ε‖2

= 20 · log10

√
N‖F−1N x̂‖2
‖ε‖2

= 20 · log10

√
N 1√

N
‖x̂‖2

‖ε‖2
= 20 · log10

‖x̂‖2
‖ε‖2

= SNR.

Again, the error SNRalg of our proposed algorithm directly depends on the used compo-
nents of ŷ and therefore differs for various noise vectors.

A crucial point in the reconstruction process by our algorithm is the correct identifi-
cation of the support interval of the vector x. For this, the correct determination of the
first support index µ(L+1) of the periodization x(L+1) in step 2 of Algorithm 4.12 is of
particular importance. If µ(L+1) cannot be correctly identified, it is no longer possible
to achieve the correct support for x in further steps of the algorithm. However, the de-
termination of µ(L+1) by our algorithm works in a very stable way. In order to see this,
we evaluated further parameters in the above experiments which can be found in Table
4.1 – 4.4. The tables display the number of cases in which the first support index µ of
x has been determined correctly in the reconstruction of 100 randomly chosen vectors

53

4. A sparse FFT algorithm for vectors with small support

0 10 20 30 40 50
10−8

10−7

10−6

10−5

10−4

SNR

Er
ro

r

sparse FFT
IFFT

0 10 20 30 40 50
−10

0

10

20

30

40

50

60

SNR

SN
R

sparse FFT
IFFT

(a) (b)

Figure 4.3.: Uniformly distributed noise, N = 220, m = 20: (a) Average reconstruction
error ‖x− x′‖2/N and (b) average SNRalg resp. SNRIFFT for different noise
levels, comparing the sparse FFT Algorithm 4.12 and regular inverse FFT.

SNR correctly largest error average number of ‖ε‖∞ ‖ε‖1/Nidentified µ in µ vectors in step 2
0 84% 13 2.16 43.986 23.817
5 95% 2 2.03 24.556 13.296
10 99% 2 2.05 13.651 7.391
15 100% 0 2 7.853 4.252
20 100% 0 2 4.351 2.356
25 100% 0 2 2.389 1.294
30 100% 0 2 1.395 0.755
35 100% 0 2 0.783 0.424
40 100% 0 2 0.436 0.236
45 100% 0 2 0.226 0.123
50 100% 0 2 0.132 0.072

Table 4.1.: Uniformly distributed noise, N = 220, m = 20: Percentage of correctly
identified µ, largest error in µ, average number of used vectors in step 2 of
the Algorithm 4.12 and average norm of noise in 100 randomly chosen vectors
for different noise levels.

54

4.4. Numerical results

0 10 20 30 40 50
10−6

10−5

10−4

10−3

10−2

SNR

Er
ro

r

sparse FFT
IFFT

0 10 20 30 40 50
−10

0

10

20

30

40

50

60

SNR
SN

R

sparse FFT
IFFT

(a) (b)

Figure 4.4.: Uniformly distributed noise, N = 220, m = 216: (a) Average reconstruction
error ‖x− x′‖2/N and (b) average SNRalg resp. SNRIFFT for different noise
levels, comparing the sparse FFT Algorithm 4.12 and regular inverse FFT.

SNR correctly largest error average number of ‖ε‖∞ ‖ε‖1/Nidentified µ in µ vectors in step 2
0 82% 7 2.43 2441.806 1321.939
5 94% 7 2.14 1368.389 740.833
10 99% 1 2.04 751.915 407.071
15 100% 0 2.02 426.447 230.883
20 100% 0 2 245.649 133.006
25 100% 0 2 129.539 70.130
30 100% 0 2 76.200 41.256
35 100% 0 2 42.371 22.939
40 100% 0 2 23.163 12.540
45 100% 0 2 13.374 7.241
50 100% 0 2 7.275 3.939

Table 4.2.: Uniformly distributed noise, N = 220, m = 216: Percentage of correctly
identified µ, largest error in µ, average number of used vectors in step 2 of
the Algorithm 4.12 and average norm of noise in 100 randomly chosen vectors
for different noise levels.

55

4. A sparse FFT algorithm for vectors with small support

0 10 20 30 40 50
10−8

10−7

10−6

10−5

10−4

SNR

Er
ro

r

sparse FFT
IFFT

0 10 20 30 40 50
−10

0

10

20

30

40

50

60

SNR

SN
R

sparse FFT
IFFT

(a) (b)

Figure 4.5.: Normally distributed noise, N = 220, m = 20: (a) Average reconstruction
error ‖x− x′‖2/N and (b) average SNRalg resp. SNRIFFT for different noise
levels, comparing the sparse FFT Algorithm 4.12 and regular inverse FFT.

SNR correctly largest error average number of ‖ε‖∞ ‖ε‖1/Nidentified µ in µ vectors in step 2
0 84% 746498 2.25 96.024 22.604
5 97% 2 2.01 54.515 12.743
10 99% 1 2.02 30.107 7.007
15 100% 0 2 17.735 4.160
20 100% 0 2 9.436 2.196
25 100% 0 2 5.220 1.226
30 100% 0 2 3.122 0.729
35 100% 0 2 1.696 0.395
40 100% 0 2 0.947 0.221
45 100% 0 2 0.543 0.128
50 100% 0 2 0.302 0.070

Table 4.3.: Normally distributed noise, N = 220, m = 20: Percentage of correctly iden-
tified µ, largest error in µ, average number of used vectors in step 2 of the
Algorithm 4.12 and average norm of noise in 100 randomly chosen vectors
for different noise levels.

56

4.4. Numerical results

0 10 20 30 40 50
10−6

10−5

10−4

10−3

10−2

SNR

Er
ro

r

sparse FFT
IFFT

0 10 20 30 40 50
−10

0

10

20

30

40

50

60

SNR
SN

R

sparse FFT
IFFT

(a) (b)

Figure 4.6.: Normally distributed noise, N = 220, m = 216: (a) Average reconstruction
error ‖x− x′‖2/N and (b) average SNRalg resp. SNRIFFT for different noise
levels, comparing the sparse FFT Algorithm 4.12 and regular inverse FFT.

SNR correctly largest error average number of ‖ε‖∞ ‖ε‖1/Nidentified µ in µ vectors in step 2
0 84% 9 2.27 4917.601 1144.560
5 87% 5 2.17 3011.634 703.557
10 97% 1 2.02 1660.230 388.014
15 100% 0 2 924.087 216.056
20 100% 0 2 516.591 120.399
25 100% 0 2 292.855 68.423
30 100% 0 2 161.257 37.720
35 100% 0 2 87.879 20.313
40 100% 0 2 51.197 12.062
45 100% 0 2 28.865 6.777
50 100% 0 2 17.276 4.020

Table 4.4.: Normally distributed noise, N = 220, m = 216: Percentage of correctly iden-
tified µ, largest error in µ, average number of used vectors in step 2 of the
Algorithm 4.12 and average norm of noise in 100 randomly chosen vectors
for different noise levels.

57

4. A sparse FFT algorithm for vectors with small support

at each noise level. Additionally, we indicate the largest difference in µ as well as the
average number of vectors required by the algorithm in step 2. Furthermore, the tables
give average norms for the noise vectors ε at each noise level.

Altogether, the findings of the numerical experiments show that the proposed deter-
ministic algorithm for the reconstruction of vectors with small support is stable, even for
high noise levels. Moreover, it works almost equally well for uniformly and for normally
distributed noise. The results additionally show that the algorithm succeeds for vectors
with short support as well as for vectors with long support compared to the full length
of x. However, one can observe that the average reconstruction errors are in general
slightly larger for vectors x with support length m = 216. For those vectors with a
comparatively long support, the norm of x is essentially larger than for vectors x with
support length m = 20. Hence, also the signal energy and therefore ‖x‖2 are larger.
By the definition of the SNR values, this subsequently causes larger norms of the error
vectors ‖ε‖2.
For all possible settings, the measured `2-error is mostly about half of the error of

the reconstruction by a direct inverse FFT algorithm, whereas the complexity of our
algorithm is significantly lower. The results in Table 4.1 – 4.4 show that the first support
index µ of x can be determined very reliably, only for strong normally distributed noise,
outliers occur more frequently. Here, we have to keep in mind that according to our
settings, the nonzero components of test vectors satisfy |Re(xk)| ≤ 10, |Im(xk)| ≤ 10

while we did not fix a lower bound for |Re(xk)| and |Im(xk)|. Thus, it may happen
that by chance the component corresponding to the first support index has very small
modulus and can no longer be recognized if it is smaller than noise components.

Therefore, in particular for normally distributed noise, some very rare large outliers
can occur as we can especially see in Table 4.3. This is because, in contrast to uniform
noise, the noise vector ε might have some very large entries in this case. Our findings
show that it then can happen that not only µ(L+1) cannot be correctly determined but
also the shifts are incorrect and hence the error of µ is even larger than that of µ(L+1).
In our experiments, this only occurs for normal noise, support length m = 20 and
SNR = 0. For all other cases, the error of µ only arises from a wrongly estimated µ(L+1).
Nevertheless, the algorithm generally also works stably for normally generated noise.
The tables show that the support can be correctly identified in all cases for SNR ≥ 15.

The average number of vectors z̃(κ) required in step 2 of Algorithm 4.12 for the deter-
mination of the first support index µ(L+1) of the periodization x(L+1) (and hence µ) has
also been evaluated. Mostly, the algorithm uses the (minimal) number of two vectors z̃(0)

58

4.4. Numerical results

and z̃(J−L−2), only for high noise levels, it applies additional vectors z̃(κ). For SNR = 0,
the maximal number of vectors z̃(κ) required for reconstruction in our experiments was
six, for uniformly distributed noise and a support length of m = 216.
Table 4.1 – 4.4 also indicate average numbers for the infinity norm as well as for the `1-

norm of the noise vectors ε. We observe that the absolute noise εk can be considerably
large for a support length of m = 216. This can be explained by the larger norm of
these vectors, as seen above. In general, the maximum norm ‖ε‖∞ is larger for normally
distributed noise which is because of the normal distribution where outliers can occur.

Remark 4.17 A comparison of runtimes of our algorithm, the ifft command of Mat-

lab 2013a and a naive implementation of the Sande-Tukey algorithm shows that for
vectors of length N = 220, the proposed algorithm runs faster for support lengths ≤ 103.
For these vectors, the runtime of the sparse FFT algorithm is approximately 4 · 10−2

seconds where we use as hardware base an Apple MacBook Pro 9,2 with 8GB RAM and
an Intel i5-3210M running OSX 10.10.5. The runtimes for the ifft command and
the Sande-Tukey algorithm are approximately 6 · 10−2 seconds resp. 10 seconds, for all
support lengths.

59

5. A sparse FFT algorithm for real
nonnegative vectors

As mentioned in previous chapters, the fast Fourier transform of a vector can be improved
in complexity if we assume further constraints on the vectors. One possibility for the
structure of vectors was proposed in Chapter 4 where an algorithm for the reconstruction
of vectors with small support of known length was developed.

However, in many applications there occur vectors with small support although we
do not have any information about their support length or whether they really have
small support at all. Therefore, in this chapter we want to develop a deterministic FFT
algorithm for vectors with real nonnegative components which does not require a priori
information on the support length of the vector to be reconstructed. Our algorithm
automatically detects a small support and benefits from it and falls back on a regular
FFT algorithm if this is not the case. This means that the algorithm is suited for
the reconstruction of any real nonnegative vector, whether it has small support or not.
However, for a vector of length N with a support interval of length m, we can achieve
a computational complexity of O(m logm log(N/m)). The number of required Fourier
values in this case is bounded by O(m log(N/m)).

For the reconstruction of a real nonnegative vector x ∈ RN
+ from Fourier values we

choose a similar approach as in the case of a known support length. The vector x is
recovered iteratively by computing its periodizations step-by-step. At each iteration
level, the support interval of the periodization is determined which decides about the
further proceeding. In case that the support length is smaller than half of the vector
length, an optimized reconstruction method can be applied, whereas we fall back on a
conventional FFT algorithm otherwise.

The results presented in this chapter have been published in [41].

61

5. A sparse FFT algorithm for real nonnegative vectors

5.1. Reconstructing real nonnegative vectors from

Fourier data

Let x = (xk)
N−1
k=0 ∈ RN

+ be a vector with real nonnegative components where N = 2J

for some J > 0. We keep the definitions of the discrete Fourier transform, the support
interval and the periodized vectors as before.

In the following we develop an algorithm that recovers the vector x from its given
Fourier values x̂. The algorithm is again based on the so-called divide-and-conquer
technique and additionally detects vectors with small support length, i.e., vectors that
have a support that is significantly shorter than the vector itself. In this case, it has
a considerably lower complexity and requires a smaller amount of Fourier samples for
reconstruction.

From now on, let x ∈ RN
+ be the vector to be reconstructed and x̂ be the vector of

given Fourier samples. The support length of x is denoted by m and L := dlog2me. The
reconstruction procedure is iterative, beginning with one Fourier sample x̂0 = x(0) ∈ R+.
Each periodization x(j+1) will be computed from x(j) for j = 0, . . . , J − 1, depending
on the respective support length mj = |suppx(j)| of x(j). Therefore, we compute mj at
each reconstruction step and then distinguish two cases: if mj > 2j−1, i.e., the support
of x(j) is longer than half of the vector length of x(j), the next periodization x(j+1) is
computed by an inverse FFT of length 2j and hence with the complexity of a regular
FFT algorithm, O(2j log 2j).

If on the other hand mj ≤ 2j−1, we apply a new procedure with a reduced complexity
to recover x(j+1) from x(j). In this case, the support of x(j) is shorter than half of
the vector length 2j and hence uniquely defined in any case. The basic idea of the
reconstruction procedure is to restrict the calculations to this support interval and to
only execute an inverse FFT of length 2Lj where Lj = dlog2mje.
In both cases, the underlying principle is to recover x(j+1) by an inverse Fourier trans-

form of a certain length taking advantage of the knowledge of the periodization x(j).
Before analyzing the computations in detail in both cases, we have a closer look at the
Fourier transform x̂(j+1) of x(j+1) and its connection to the vector x(j). We introduce
the notation of partial vectors

x
(j+1)
0 =

(
x
(j+1)
k

)2j−1
k=0

and x
(j+1)
1 =

(
x
(j+1)
k

)2j+1−1

k=2j

which denote the first resp. the second half of the vector x(j+1). Hence, by Definition 3.3,

62

5.1. Reconstructing real nonnegative vectors from Fourier data

the relation

x(j) = x
(j+1)
0 + x

(j+1)
1 (5.1)

holds.

Remark 5.1 At this point, we can explain why the application of the algorithm is re-
stricted to vectors with real nonnegative components.
Equation (5.1) describes the connection between the components of x(j) and x(j+1).

Supposing that the entries of x(j) are known, the assumption that x only has real non-
negative entries now facilitates the computation of the components of x(j+1): Because of
the positivity, components can not “vanish” while adding them up in periodizations such
that the vector x(j+1) can only have nonzero entries within the same support interval as
x(j) or within this interval shifted by 2j.

Let us now deduce the reconstruction of x(j+1) from x(j) in detail. By the definition of
the discrete Fourier transform, Lemma 3.7 and (5.1) we obtain

(x̂2J−j−1k)
2j+1−1
k=0 = x̂(j+1) = F2j+1x(j+1) =

(
ωk`2j+1

)2j+1−1
k,`=0

(
x
(j+1)
0

x
(j+1)
1

)
=
(
ωk`2j+1

)2j+1−1,2j−1
k,`=0

x
(j+1)
0 +

(
ωk`2j+1

)2j+1−1,2j+1−1
k=0,`=2j

(x(j) − x
(j+1)
0)

=
(
ωk`2j+1

)2j+1−1,2j−1
k,`=0

x
(j+1)
0 +

(
(−1)kωk`2j+1

)2j+1−1,2j−1
k,`=0

(x(j) − x
(j+1)
0).

From (
x̂2J−j−1(2k)

)2j−1
k=0

= (x̂2J−jk)
2j−1
k=0 = x̂(j) = F2jx

(j)

by Lemma 3.7 and the above equation, we conclude that the even-indexed Fourier com-
ponents of x̂(j+1) only contain information on x(j) whereas the odd-indexed components
contribute new information on the vector x(j+1). Hence, we can restrict the system of
equations to the ones with odd indices without losing information and obtain(

x̂
(j+1)
2k+1

)2j−1
k=0

= (x̂2J−j−1(2k+1))
2j−1
k=0

=
(
ω
(2k+1)`

2j+1

)2j−1
k,`=0

x
(j+1)
0 −

(
ω
(2k+1)`

2j+1

)2j−1
k,`=0

(x(j) − x
(j+1)
0)

=
(
ω
(2k+1)`

2j+1

)2j−1
k,`=0

(2x
(j+1)
0 − x(j))

=
(
ωk`2j
)2j−1
k,`=0

diag
(
ω`2j+1

)2j−1
`=0

(2x
(j+1)
0 − x(j))

63

5. A sparse FFT algorithm for real nonnegative vectors

= F2j diag
(
ω`2j+1

)2j−1
`=0

(2x
(j+1)
0 − x(j)). (5.2)

This relation allows us to compute x(j+1) =

(
x
(j+1)
0

x
(j+1)
1

)
directly from x(j). In the first case

where the support length mj of x(j) exceeds half of the vector length, the periodized
vector x(j+1) is obtained in this way. For the second case we need further considerations
in order to improve the complexity of the reconstruction.

(1) First case: mj > 2j−1

In the case of a rather long support of x(j) the partial vectors of x(j+1) are obtained
directly from equation (5.2) by

x
(j+1)
0 =

1

2

(
diag

(
ω−`
2j+1

)2j−1
`=0

F−1
2j

(
x̂2J−j−1(2k+1)

)2j−1
k=0

+ x(j)
)
.

Then the second partial vector x(j+1)
1 is given by x(j) = x

(j+1)
0 + x

(j+1)
1 or, in an explicit

formulation, by

x
(j+1)
1 =

1

2

(
−diag

(
ω−`
2j+1

)2j−1
`=0

F−1
2j

(
x̂2J−j−1(2k+1)

)2j−1
k=0

+ x(j)
)
.

Finally, compose x(j+1) as x(j+1) =

(
x
(j+1)
0

x
(j+1)
1

)
. The reconstruction of x(L+1)

0 is mainly via

a Fourier transform of length 2j. Additionally, the multiplication with a diagonal matrix,
i.e., 2j complex multiplications, 2j additions and one dyadic shift by 2 are required. The
vector x(L+1)

1 is then obtained by O(2j) arithmetical operations which yields an overall
complexity of O(2j log 2j) for this reconstruction step.

(2) Second case: mj ≤ 2j−1

If the support length is shorter than or equal to half of the length of x(j), we first compute
Lj = dlog2mje. The first support index of the vector x(j) is denoted by µ(j). Then the
support of x(j) lies within an interval of length 2Lj which begins at the first support
index µ(j).

In contrast to the first case we now consider not just partial vectors but only the parts
of x(j) and x(j+1) which contain the nonzero components. Therefore, we introduce the
notation of x̃(j), x̃(j+1)

0 and x̃
(j+1)
1 that denote the vectors of length 2Lj containing the

64

5.1. Reconstructing real nonnegative vectors from Fourier data

support of x(j), x(j+1)
0 and x

(j+1)
1 respectively:

x̃(j) =
(
x
(j)

(µ(j)+r)mod 2j

)2Lj−1
r=0

,

x̃
(j+1)
0 =

(
x
(j+1)

(µ(j)+r)mod 2j

)2Lj−1
r=0

and

x̃
(j+1)
1 =

(
x
(j+1)

2j+(µ(j)+r)mod 2j

)2Lj−1
r=0

.

Using these vectors, the system of equations (5.2) can be restricted to the relevant part

(
x̂2J−j−1(2k+1)

)2j−1
k=0

=
(
ω
(2k+1)`

2j+1

)2j−1
k,`=0

(
2x

(j+1)
0 − x(j)

)
=
(
ω
(2k+1)((µ(j)+r)mod 2j)

2j+1

)2j−1,2Lj−1
k,r=0

(
2x̃

(j+1)
0 − x̃(j)

)
.

(5.3)

This system (5.3) still consists of 2j equations. But by the definition of the periodized
vectors, the relation

x̃(j) = x̃
(j+1)
0 + x̃

(j+1)
1

holds which already gives 2Lj conditions on the components of x̃(j+1)
0 (or x̃(j+1)

1). Thus,
another 2Lj linearly independent equations would be sufficient to recover x̃

(j+1)
0 and

hence x̃(j+1). Therefore, we can reduce the number of equations in (5.3) to 2Lj . We do
this in a way that will be convenient for a further matrix decomposition and choose 2Lj

indices in {0, . . . , 2j − 1} by kp = 2j−Ljp for p = 0, . . . , 2Lj − 1. This yields

(
x̂2J−j−1(2j+1−Lj p+1)

)2Lj−1
p=0

=
(
x̂2J−Lj p+2J−j−1

)2Lj−1
p=0

=
(
ω
(2j+1−Lj p+1)((µ(j)+r)mod 2j)

2j+1

)2Lj−1
p,r=0

(
2x̃

(j+1)
0 − x̃(j)

)
.

(5.4)

The structure of the matrix
(
ω
(2j+1−Lj p+1)((µ(j)+r)mod 2j)

2j+1

)2Lj−1
p,r=0

depends on the first sup-

port index µ(j) of x(j). Hence, we obtain a factorization relative to the choice of µ(j) for
this matrix.

Lemma 5.2 Let j ∈ {0, . . . , J − 1} and x(j) be a corresponding periodized vector of
length 2j. The support length of x(j) is denoted by mj and Lj := dlog2mje. Assume
that mj ≤ 2j−1. Then the matrix (ω

(2k+1)((µ(j)+r)mod 2j)

2j+1)2
j−1,2Lj−1
k,r=0 can be decomposed as

65

5. A sparse FFT algorithm for real nonnegative vectors

follows, depending on the first support index µ(j) of x(j):

(
ω
(2j+1−Lj p+1)((µ(j)+r)mod 2j)

2j+1

)2Lj−1
p,r=0

=

ωµ

(j)

2j+1 diag
(
ωµ

(j)p

2Lj

)2Lj−1
p=0

F2Lj diag
(
ωr2j+1

)2Lj−1
r=0

if µ(j) ≤ 2j − 2Lj ,

ωµ
(j)

2j+1 diag
(
ωµ

(j)p

2Lj

)2Lj−1
p=0

F2Lj diag
(
ωr2j+1

)2Lj−1
r=0

D2j−µ(j)

2Lj
if µ(j) > 2j − 2Lj ,

where

D2j−µ(j)

2Lj
:=

(
I2j−µ(j) 0

0 −I2Lj−2j+µ(j)

)
and Id denotes the identity matrix of size d.

Proof. First, we factorize
(
ω
(2k+1)((µ(j)+r)mod 2j)

2j+1

)2j−1,2Lj−1
k,r=0

as a product of Fourier and

diagonal matrices,

(
ω2j+1

(2j+1−Lj p+1)((µ(j)+r)mod 2j)
)2Lj−1
p,r=0

=
(
ω
2j+1−Lj p((µ(j)+r)mod 2j)

2j+1 ω
(µ(j)+r)mod 2j

2j+1

)2Lj−1
p,r=0

=
(
ω
p((µ(j)+r)mod 2j)

2Lj

)2Lj−1
p,r=0

diag
(
ω
(µ(j)+r)mod 2j

2j+1

)2Lj−1
r=0

=
(
ω
p(µ(j)+r)

2Lj

)2Lj−1
p,r=0

diag
(
ω
(µ(j)+r)mod 2j

2j+1

)2Lj−1
r=0

= diag
(
ωµ

(j)p

2Lj

)2Lj−1
p=0

(
ωpr
2Lj

)2Lj−1
p,r=0

diag
(
ω
(µ(j)+r)mod 2j

2j+1

)2Lj−1
r=0

= diag
(
ωµ

(j)p

2Lj

)2Lj−1
p=0

F2Lj diag
(
ω
(µ(j)+r)mod 2j

2j+1

)2Lj−1
r=0

. (5.5)

The equation
(
ω
p((µ(j)+r)mod 2j)

2Lj

)2Lj−1
p,r=0

=
(
ω
p(µ(j)+r)

2Lj

)2Lj−1
p,r=0

holds because m ≤ 2j−1 and

hence j > Lj and therefore 2j is a multiple of 2Lj .

For the diagonal matrix diag
(
ω
(µ(j)+r)mod 2j

2j+1

)2Lj−1
r=0

, we have to distinguish two cases.

First, consider µ(j) ≤ 2j − 2Lj . Then

diag
(
ω
(µ(j)+r)mod 2j

2j+1

)2Lj−1
r=0

= diag
(
ωµ

(j)+r
2j+1

)2Lj−1
r=0

= ωµ
(j)

2j+1 diag (ωr2j+1)
2Lj−1
r=0

holds since µ(j) + r ≤ 2j − 2Lj + r ≤ 2j − 1 for any r ∈ {0, . . . , 2Lj − 1}.

66

5.1. Reconstructing real nonnegative vectors from Fourier data

On the other hand, for µ(j) > 2j − 2Lj , the matrix can be written as a product of two
diagonal matrices,

diag
(
ω2j+1

(µ(j)+r)mod 2j
)2Lj−1
r=0

=

diag
(
ωµ

(j)+r
2j+1

)2j−µ(j)−1
r=0

0

0 diag
(
ωµ

(j)+r−2j
2j+1

)2Lj−1
r=2j−µ(j)

=

diag
(
ωµ

(j)+r
2j+1

)2j−µ(j)−1
r=0

0

0 diag
(
−ωµ

(j)+r
2j+1

)2Lj−1
r=2j−µ(j)

= diag

(
ωµ

(j)+r
2j+1

)2Lj−1
r=0

diag(1, . . . , 1︸ ︷︷ ︸
2j−µ(j)

,−1, . . . ,−1︸ ︷︷ ︸
2Lj−2j+µ(j)

)

= ωµ
(j)

2j+1 diag (ωr2j+1)
2Lj−1
r=0 D2j−µ(j)

2Lj

where

D2j−µ(j)

2Lj
:= diag(1, . . . , 1︸ ︷︷ ︸

2j−µ(j)

,−1, . . . ,−1︸ ︷︷ ︸
2Lj−2j+µ(j)

) =

(
I2j−µ(j) 0

0 −I2Lj−2j+µ(j)

)
.

Here, Id denotes the identity matrix of size d. Altogether, we have

diag
(
ω2j+1

(µ(j)+r)mod 2j
)2Lj−1
r=0

=

 ωµ
(j)

2j+1 diag
(
ωr2j+1

)2Lj−1
r=0

if µ(j) ≤ 2j − 2Lj ,

ωµ
(j)

2j+1 diag
(
ωr2j+1

)2Lj−1
r=0

D2j−µ(j)

2Lj
if µ(j) > 2j − 2Lj .

Plugging this into (5.5), we obtain

(
ω
(2j+1−Lj p+1)((µ(j)+r)mod 2j)

2j+1

)2Lj−1
p,r=0

= diag
(
ωµ

(j)p

2Lj

)2Lj−1
p=0

F2Lj diag
(
ω
(µ(j)+r)mod 2j

2j+1

)2Lj−1
r=0

=

ωµ

(j)

2j+1 diag
(
ωµ

(j)p

2Lj

)2Lj−1
p=0

F2Lj diag(ωr2j+1)
2Lj−1
r=0 if µ(j) ≤ 2j − 2Lj ,

ωµ
(j)

2j+1 diag
(
ωµ

(j)p

2Lj

)2Lj−1
p=0

F2Lj diag(ωr2j+1)
2Lj−1
r=0 D2j−µ(j)

2Lj
if µ(j) > 2j − 2Lj .

This proves the asserted matrix decomposition. �

67

5. A sparse FFT algorithm for real nonnegative vectors

Using Lemma 5.2, we can decompose the matrix in equation (5.4) for an efficient recon-
struction of x(j+1)

0 and hence of x(j+1) from x(j).

If µ(j) ≤ 2j − 2Lj holds for the first support index µ(j) of x(j), plugging in the decom-
position from Lemma 5.2 yields

(
x̂2J−Lj p+2J−j−1

)
2Lj−1
p=0 =

(
ω
(2j+1−Lj p+1)((µ(j)+r)mod 2j)

2j+1

)2Lj−1
p,r=0

(
2x̃

(j+1)
0 − x̃(j)

)
= ωµ

(j)

2j+1 diag
(
ωµ

(j)p

2Lj

)2Lj−1
p=0

F2Lj diag (ωr2j+1)
2Lj−1
r=0

(
2x̃

(j+1)
0 − x̃(j)

)
.

We are thus able to compute

x̃
(j+1)
0 =

1

2

(
ω−µ

(j)

2j+1 diag
(
ω−r
2j+1

)2Lj−1
r=0

F−1
2Lj

· diag
(
ω−µ

(j)p

2Lj

)2Lj−1
p=0

(
x̂2J−Lj p+2J−j−1

)2Lj−1
p=0

+ x̃(j)

)

Similar to the first case, x̃(j+1)
1 can be computed using x̃(j+1) = x̃

(j+1)
0 + x̃

(j+1)
1 or directly

as

x̃
(j+1)
1 =

1

2

(
−ω−µ

(j)

2j+1 diag
(
ω−r
2j+1

)2Lj−1
r=0

F−1
2Lj

· diag
(
ω−µ

(j)p

2Lj

)2Lj−1
p=0

(
x̂2J−Lj p+2J−j−1

)2Lj−1
p=0

+ x̃(j)

)
.

For the case that µ(j) > 2j − 2Lj , the system (5.4) factorizes in a similar way,

(
x̂2J−Lj p+2J−j−1

)2Lj−1
p=0

=
(
ω
(2j+1−Lj p+1)((µ(j)+r)mod 2j)

2j+1

)2Lj−1
p,r=0

(
2x̃

(j+1)
0 − x̃(j)

)
= ωµ

(j)

2j+1 diag
(
ωµ

(j)p

2Lj

)2Lj−1
p=0

F2Lj diag (ωr2j+1)
2Lj−1
r=0 D2j−µ(j)

2Lj

(
2x̃

(j+1)
0 − x̃(j)

)
.

Hence, we get the vectors

x̃
(j+1)
0 =

1

2

(
ω−µ

(j)

2j+1 D2j−µ(j)

2Lj
diag

(
ω−r
2j+1

)2Lj−1
r=0

F−1
2Lj

· diag
(
ω−µ

(j)p

2Lj

)2Lj−1
p=0

(
x̂2J−Lj p+2J−j−1

)2Lj−1
p=0

+ x̃(j)

)

68

5.1. Reconstructing real nonnegative vectors from Fourier data

and x̃
(j+1)
1 = x̃(j) − x̃

(j+1)
0 or, in an explicit formulation,

x̃
(j+1)
1 =

1

2

(
−ω−µ

(j)

2j+1 D2j−µ(j)

2Lj
diag

(
ω−r
2j+1

)2Lj−1
r=0

F−1
2Lj

· diag
(
ω−µ

(j)p

2Lj

)2Lj−1
p=0

(
x̂2J−Lj p+2J−j−1

)2Lj−1
p=0

+ x̃(j)

)
.

We obtain the vectors x(j+1)
0 and x

(j+1)
1 by inserting the support vectors x̃(j+1)

0 and x̃
(j+1)
1

according to the first support index µ(j). Then we set in both cases

x(j+1) =

(
x
(j+1)
0

x
(j+1)
1

)
.

The reconstruction of the vector x̃
(j+1)
0 , proceeding as described above, only requires

O(2Lj log 2Lj) arithmetical operations. The second support vector x̃
(j+1)
1 can then be

obtained by 2Lj further additions.

Example 5.3 Let N = 23 = 8 and x ∈ RN
+ be given by

x =
(

1, 1, 0, 0, 0, 0, 0, 0
)T

.

Assuming that its Fourier transform

x̂ =
(

2, 1 + ω8, 1 + ω2
8, 1 + ω3

8, 1 + ω4
8, 1 + ω5

8, 1 + ω6
8, 1 + ω7

8

)T
is given, we want to reconstruct x step-by-step, using either the method of case 1 or 2.

Let us begin with one Fourier value x(0) = x̂0 = 2. Applying the first case, we obtain

x
(1)
0 =

1

2

(
ω0
2 F
−1
1 x̂4 + x(0)

)
=

1

2
(1 + ω4

8 + 2) = 1

and
x
(1)
1 = x(0) − x

(1)
0 = 2− 1 = 1

and therefore the next periodization

x(1) =
(

1, 1
)T

.

69

5. A sparse FFT algorithm for real nonnegative vectors

It holds that m1 > 20 = 1 so we proceed computing x(2) applying case 1. This yields

x
(2)
0 =

1

2

(
diag

(
ω−`4

)1
`=0

F−12

(
x̂2(2k+1)

)1
k=0

+ x(1)
)

=
1

2

((
1 0

0 i

)
1

2

(
1 1

1 −1

)(
1− i

1 + i

)
+

(
1

1

))

=
1

2

((
1

1

)
+

(
1

1

))
=

(
1

1

)

and the second partial vector

x
(2)
1 = x(1) − x

(2)
0 =

(
1

1

)
−

(
1

1

)
=

(
0

0

)

such that
x(2) =

(
1, 1, 0, 0

)T
.

We have m2 ≤ 21 = 2 for the periodization x(2) and hence can apply the second case for
the reconstruction of x(3). We set L2 = 1 and µ(2) = 0 for the first support index of x(2).
The vector

x̃(2) =

(
1

1

)
.

contains the support of x(2). Applying the second case, we obtain

x̃
(3)
0 =

1

2

(
ω−08

(
ω−08 0

0 ω−18

)
F−12

(
ω−02 0

0 ω−02

)(
x̂1

x̂5

)
+

(
1

1

))

=
1

2

((
1 0

0 ω−18

)
1

2

(
1 1

1 −1

)(
1 + ω8

1 + ω5
8

)
+

(
1

1

))

=
1

2

(
1

2

(
1 0

0 ω−18

)(
2 + ω8 + ω5

8

ω8 − ω5
8

)
+

(
1

1

))

=
1

2

((
1

1

)
+

(
1

1

))
=

(
1

1

)

and therefore

x̃
(3)
1 = x̃(2) − x̃

(3)
0 =

(
1

1

)
−

(
1

1

)
=

(
0

0

)
.

70

5.2. Algorithm

Plugging in the support vectors x̃(3)
0 and x̃

(3)
1 yields the correct reconstruction

x(3) =
(

1, 1, 0, 0, 0, 0, 0, 0
)T

= x.

The recovery of x required 6 of 8 Fourier values and 21 arithmetical operations (14
additions, 2 multiplications and 5 dyadic shifts), where we do not count a multiplication
by −1.

5.2. Algorithm

The procedure of reconstructing a vector x ∈ RN
+ from as few Fourier values as possible

is summarized in the following algorithm. The algorithm iteratively computes x by
applying either the method of case 1 or case 2 in each reconstruction step.
If some a priori information on the vector x, such as a lower bound 2s−1 for the support

length m, is given, then the iteration procedure may be started with the vector x(s) of
length 2s. In this case, the periodized vector x(s) first has to be computed using an
inverse FFT algorithm. Once the support has been completely detected, the algorithm
can use case 2 for reconstruction as the support of x already occurs in the periodization
x(s) and only has to be shifted to its right position in x in order to reconstruct the full
vector. See also Chapter 4 for this, where the procedure is a main element of vector
reconstruction.
Note that this merely holds for exact data. For noisy data, the first case still might

apply even after the full support length is achieved at a certain periodization level.
Usually, we just start the algorithm setting s = 0.

Algorithm 5.4 (Sparse FFT for real nonnegative vectors)
Input: x̂ = (x̂k)

N−1
k=0 ∈ CN , N = 2J ;

s = 0 or s such that 2s−1 is a lower bound for m = |supp x|;
threshold parameter T .

1. Generate x̂(s) := (x̂2J−sk)
2s−1
k=0 by extracting suitable components from x̂.

2. Compute the periodized vector x(s) := F−12s x̂
(s) by inverse FFT of length 2s.

3. For j = s, . . . , J − 1 do
Compute mj :=

∣∣suppx(j)
∣∣ and find the first support index µ(j) of x(j).

71

5. A sparse FFT algorithm for real nonnegative vectors

• Case 1: If mj > 2j−1, then
Build y(j) :=

(
x̂2J−j−1(2k+1)

)2j−1
k=0

and compute

z(j) := diag
(
ω−`
2j+1

)2j−1
`=0

F−1
2j

y(j)

using an inverse FFT of length 2j.
Compute

x(j+1) :=
1

2

(
x(j) + z(j)

x(j) − z(j)

)
.

For k = 0, . . . , 2j+1 − 1, apply a threshold procedure

x
(j+1)
k :=

{
Rex

(j+1)
k if Rex

(j+1)
k ≥ T,

0 else.

End (if).

• Case 2: If mj ≤ 2j−1, then
Compute Lj := dlog2mje. Build the vectors

x̃(j) :=
(
x
(j)

(µ(j)+r)mod 2j

)2Lj−1
r=0

and y(j) :=
(
x̂2J−Lj p+2J−j−1

)2Lj−1
p=0

.

Compute

z(j) := diag
(
ω−µ

(j)p

2Lj

)2Lj−1
p=0

F−1
2Lj

diag
(
ω
−(µ(j)+r)mod 2j

2j+1

)2Lj−1
r=0

y(j)

using an inverse FFT of length 2Lj .
Compute x̃

(j+1)
0 := 1

2

(
x̃(j) + z(j)

)
and x̃

(j+1)
1 := 1

2

(
x̃(j) − z(j)

)
.

For k = 0, . . . , 2Lj − 1, apply a threshold procedure

(
x̃
(j+1)
0

)
k

:=

 Re
(
x̃
(j+1)
0

)
k

if Re
(
x̃
(j+1)
0

)
k
≥ T,

0 else,(
x̃
(j+1)
1

)
k

:=

 Re
(
x̃
(j+1)
1

)
k

if Re
(
x̃
(j+1)
1

)
k
≥ T,

0 else.

72

5.2. Algorithm

Determine x
(j+1)
0 and x

(j+1)
1 by

(
x
(j+1)
0

)
(µ(j)+k)mod 2j

:=

(
x̃
(j+1)
0

)
k

k = 0, . . . , 2Lj − 1,

0 k = 2Lj , . . . , 2j,

(
x
(j+1)
1

)
(µ(j)+k)mod 2j

:=

(
x̃
(j+1)
1

)
k

k = 0, . . . , 2Lj − 1,

0 k = 2Lj , . . . , 2j.

Set x(j+1) :=

(
x
(j+1)
0

x
(j+1)
1

)
.

End (if).

End (for).

Output: x(J) = x.

An example for the implementation of this algorithm in Matlab can be found in Section
A.2.
In the algorithm, we have introduced a threshold parameter T which makes sure that

at each iteration level, the periodized vector x(j) only has positive entries. Even in the
case of exact data, there might arise some numerical error. When processing noisy data,
the threshold parameter T plays an important role and has to be chosen suitably, see
Section 5.3.

Remark 5.5 At every iteration level the algorithm automatically decides whether the
first or the second case applies to reconstruct x(j+1) from x(j). For this decision, the
computation of the support length of x(j) is required. This can be efficiently done includ-
ing the known support indices of the preceding periodization x(j−1). This information is
useful as by definition of the periodization, the vector x(j) can only have positive entries
at the support indices of x(j−1) and at these indices shifted by 2j−1. This implies that
only 2m components have to be considered in order to find the support length mj and the
first support index µ(j) of x(j). As a result, this requires an effort of O(mj) arithmetical
operations.

Let us give an outline of the arithmetical complexity of the complete algorithm. If we
choose s = 0, i.e., we start the reconstruction with x̂0 = x(0), the complexity of the
algorithm is at most O(m logm log(N/m)). This can be seen as follows: From one

73

5. A sparse FFT algorithm for real nonnegative vectors

iteration step to the next, the support length mj of the periodized vectors x(j) only can
increase, but never decrease. Hence, it holds that m0 ≤ m1 ≤ · · · ≤ mJ−1 ≤ mJ = m.

In general, we can divide the recovery process into two general parts: After the final
support length has been achieved for the first time, say in the periodization x(L) after
the iteration step j = L − 1, then 2L−1 < mL = m ≤ 2L holds. This means that from
iteration step j = L+ 1 on, the second case can be applied as we have mj ≤ 2L ≤ 2j−1

for j = L+ 1, . . . , J − 1 then. This requires O(m logm) arithmetical operations at each
level, including three multiplications with diagonal matrices of size 2L × 2L, an inverse
Fourier transform of length 2L and 2L+1 additions.
The first L + 1 reconstruction steps for j = 0, . . . , L require either the application of

the first or of the second case, depending on the distribution of the nonzero components
of the periodization x(j). Altogether, these steps require at most O(2LL) = O(m logm)

arithmetical operations, caused by the inverse FFT of size 2j, 2j complex multiplications,
2j+1 additions and a dyadic shift by 2 computing the periodization x(j+1) at each iteration
level which is in complexity comparable to a conventional FFT algorithm of length 2L.

To sum up, the algorithm to recover x from Fourier values x̂ has an overall effort of
O((J − L)m logm) = O(m logm log(N/m)) arithmetical operations.

Remark 5.6 It is merely possible to achieve the sublinear complexity of the algorithm
in case that less than N Fourier samples of the vector x̂ are employed. The number of
required samples depends on the reconstruction case that is applied at the j-th iteration
level. For a reconstruction using the first case, 2j Fourier samples are needed whereas
recovering by the second case requires only 2Lj Fourier samples that are contained in the
vector y(j). Let us summarize the overall number of samples required for reconstruction.
We assume that we have recovered the periodization x(L) in the reconstruction step L−1

where L := dlog2me. Then 2L−1 < m ≤ 2L holds and at the remaining iteration levels
j = L+ 1, . . . , J − 1 the second case can be applied, as seen above. This procedure needs
for each step 2L additional Fourier samples, i.e., (J−L−1)2L in total. The first case of
the method for j = 0, . . . , L uses at most 2L+1 samples for reconstruction. To conclude,
the number of required Fourier samples is bounded by O(m log(N/m)).

The newly developed algorithm for the reconstruction of real nonnegative vectors from
Fourier values may be applied to any vector x ∈ RN

+ , whether or not it has small support.
In any case, it works efficiently: If the support length of x is comparatively long and
the algorithm cannot take advantage of the vector’s structure, it applies the first case,
that is more elaborate, at most of the reconstruction levels. However, the effort of

74

5.3. Numerical results

the reconstruction does not exceed O(N logN) operations which is the complexity of a
regular FFT algorithm.
In case that the support length of x is relatively small compared to its full vector

length, the algorithm automatically detects this fact and benefits from it with regard to
computational complexity. Then, under most circumstances, the second case is applied
in the algorithm.
One can even benefit from our proposed algorithm if the vector to be recovered does

not have small support but actually almost full support length instead. It may happen
that the periodizations of a sparse vector occur to have small support such that the
second case of the algorithm can be applied in intermediate steps of the reconstruction.
This occurs e.g. if the vector x ∈ RN

+ contains several small support pieces which are
distributed equidistantly and which coincide over the course of periodizations. Then
these support pieces possibly add up to one small support interval which allows to apply
case 2 for recovery and therefore implies an enhancement concerning computational
complexity.

Example 5.7 Let N = 210 = 1024 and choose x = x(10) ∈ R1024
+ with positive entries

x0 = 1, x256 = 1, x512 = 1 and x768 = 1. Then x(9) has two positive entries: x0 = 2 and
x256 = 2. All further periodizations x(8), . . . ,x(0) only have one positive entry: x0 = 4.
For this vector, the algorithm applies the second case for j = 0, . . . , 8 with Lj = 0.

5.3. Numerical results

In this section, the numerical stability of the proposed algorithm for the reconstruction
of a real nonnegative vector x ∈ RN

+ from Fourier data is considered. For this purpose,
we assume that perturbed Fourier data ŷ = (yk)

N−1
k=0 ∈ CN is given with entries

ŷk = x̂k + εk

where ε = (εk)
N−1
k=0 ∈ CN is a noise vector. The vector x will be recovered from ŷ using

as few as possible Fourier values and operations.
In the case of noisy data, it is of particular importance to identify the support interval

correctly in each reconstruction step. This assures that we are able to determine the
support interval in all further steps. As above, the identification of the support interval
of a periodized vector x(j) can be achieved by only considering the relevant components

75

5. A sparse FFT algorithm for real nonnegative vectors

which are given by the support of the preceding periodization x(j−1). The appropriate
choice of the threshold parameter T enables us to distinguish between relevant entries
of the periodized vectors and noise. Note that in the case of noisy data the probability
is higher that the support interval gets longer and shorter again in the course of the
algorithm. We will focus on the particular choice of the parameter T below as this
strongly influences the number of events in which each of case 1 oder case 2 are applied.

In the following experiments, we will compare the implementation of our newly devel-
oped algorithm (see Appendix A.2) to the inverse Fourier transform ifft of Matlab

2013a. Before we give some numerical examples, we repeat the definition of the SNR
value used as a measure for the noise vector ε = (εk)

N−1
k=0 by which the Fourier data x̂ is

perturbed. As introduced in Definition 4.14, the signal-to-noise-ratio (SNR) is given by

SNR = 20 · log10

‖x̂‖2
‖ε‖2

.

Similarly to Section 4.4, we quantify the reconstruction error by an `2-norm ‖x−x′‖2/N
where x′ denotes the reconstruction of x by the proposed algorithm. As we compare the
results of the algorithm to an inverse Fourier transform applied to ŷ, we also compute its
error ‖x−F−1N ŷ‖2/N . Moreover, the errors of the recovery by the sparse FFT algorithm
and an inverse Fourier transform are compared using the SNR values

SNRalg = 20 · log10

‖x‖2
‖x− x′‖2

resp. SNRIFFT = 20 · log10

‖x‖2
‖x− F−1N ŷ‖2

.

Let us first give an example for the reconstruction of a comparatively small vector.
We choose N = 28 = 256 and consider the vector x ∈ R256

+ with nonzero entries x50 = 5,
x53 = 8, x54 = 1, x179 = 2, x180 = 7 and x181 = 4. The Fourier data x̂ is perturbed
by a uniform noise vector ε with SNR = 20 and x is reconstructed from ŷ = x̂ + ε

using our algorithm. For the randomly chosen noise vector ε, we have ‖ε‖∞ = 2.148

and ‖ε‖1/N = 1.183.

The algorithm returns a reconstruction x′ with nonzero entries

x′50 = 5.115, x′53 = 7.973, x′54 = 0.966,

x′179 = 2.032, x′180 = 7.044 and x′181 = 3.925.

In particular, the support of x is correctly identified by the algorithm. Hence, the error
of the reconstruction x′ is ‖x − x′‖2/N = 6.014 · 10−4 whereas the error of the inverse

76

5.3. Numerical results

0 50 100 150 200 250
−10

−5

0

5

10

0 50 100 150 200 250
−10

−5

0

5

10

0 50 100 150 200 250
−10

−5

0

5

10

(a)
0 50 100 150 200 250

−10

−5

0

5

10

0 50 100 150 200 250
−10

−5

0

5

10

0 50 100 150 200 250
−10

−5

0

5

10
(b)

0 50 100 150 200 250
−10

−5

0

5

10

0 50 100 150 200 250
−10

−5

0

5

10

0 50 100 150 200 250
−10

−5

0

5

10

(c)

Figure 5.1.: (a) Original vector x ∈ R256
+ ; (b) Reconstruction of x using the sparse FFT

Algorithm 5.4; (c) Reconstruction of x using an inverse FFT algorithm.

Fourier transform is ‖x−F−1N ŷ‖2/N = 4.9 · 10−3. The SNR errors are SNRalg = 38.2659

and SNRIFFT = 20.
In this example, the threshold parameter T = 0.5 was chosen. This choice implies an

application of the first case in the first four reconstruction steps and the second case in
the remaining four steps. The computation of the reconstruction x′ required 48 Fourier
values. The results of the reconstruction by our algorithm and an inverse FFT algorithm
are illustrated in Figure 5.1.

Remark 5.8 Remark 4.15 in Section 4.4 on sparse FFT for vectors with small support
holds for this example as well. If the vector x̂ and the SNR value are fixed, the error of
the reconstruction by an inverse Fourier transform does not depend on the instance of
the noise vector ε. Solely the error of the recovery by the sparse FFT algorithm varies
for different noise vectors since not all components of the noisy data vector ŷ (and hence
also of the noise vector) may be involved in the evaluation.

77

5. A sparse FFT algorithm for real nonnegative vectors

As a next step, we compare the reconstruction by the proposed algorithm to a recon-
struction of x by an inverse FFT algorithm for a large number of vectors. The vectors
x ∈ RN

+ to be reconstructed are randomly chosen for N = 215 = 32768 and a support
length of m = 15 with real nonnegative components 0 ≤ xk ≤ 10. These vectors are
perturbed by noise vectors ε for SNR values between 10 and 50. For each noise level,
we consider 100 randomly chosen vectors x and reconstruct them from the noisy Fourier
data ŷ = x̂ + ε.

First, we add uniform noise to the Fourier data, then we repeat the experiment em-
ploying normally distributed noise (where we use the standard normal distribution). For
both kinds of noise, the reconstruction error ‖x − x′‖2/N for the reconstruction x′ by
our algorithm is compared to the error ‖x − F−1N ŷ‖2/N of an inverse FFT algorithm.
Additionally, we measure the quality of the reconstructions by the SNR values SNRalg

and SNRIFFT.

Remark 5.9 Remark 4.16 holds here similarly. The SNR value of the reconstruction
by an inverse FFT algorithm, SNRIFFT, does not depend on the instance of the noise
vector ε, but only on its SNR and it even holds that SNRIFFT = SNR.

The results of the numerical experiments can be found in Figure 5.2 and Figure 5.3. The
findings show that the algorithm is numerically stable for both uniform and normally
distributed noise and that the results are comparable. This is especially remarkable
in the sense that for normally distributed noise, single components of the noise vector
might be very large. For all settings, the measured reconstruction error is significantly
smaller for our deterministic algorithm while it also has a lower complexity, especially
in case of a small support compared to the length of x.
As already stated above, the appropriate choice of the threshold parameter T is of

particular importance for an exact and efficient reconstruction in the case of noisy Fourier
data. It decides about which entries of a periodization are relevant and which are
too small and regarded as noise. This influences the measured support length in the
reconstruction steps and hence the decision if case 1 or case 2 is applied at a certain
iteration level. The larger T is chosen, the larger is the number of cases in which case 2
can be applied. On the other side, this can be disadvantageous for the exactness of the
reconstruction. Hence, the choice of T is a trade-off between the achieved complexity of
the reconstruction and the exactness of the result.
We give the values of T used in the experiment as well as the number of reconstruction

steps in which the first resp. second case was used for reconstruction in Table 5.1 and
5.2.

78

5.3. Numerical results

10 20 30 40 50
10−7

10−6

10−5

10−4

10−3

SNR

Er
ro

r

sparse FFT
IFFT

10 20 30 40 50
0

10

20

30

40

50

60

70

SNR
SN

R

sparse FFT
IFFT

(a) (b)

Figure 5.2.: Uniformly distributed noise, N = 215, m = 15: (a) Average reconstruction
error ‖x− x′‖2/N and (b) average SNRalg resp. SNRIFFT for different noise
levels, comparing the sparse FFT Algorithm 5.4 and regular inverse FFT.

10 20 30 40 50
10−7

10−6

10−5

10−4

10−3

SNR

Er
ro

r

sparse FFT
IFFT

10 20 30 40 50
0

10

20

30

40

50

60

70

SNR

SN
R

sparse FFT
IFFT

(a) (b)

Figure 5.3.: Normally distributed noise, N = 215, m = 15: (a) Average reconstruction
error ‖x− x′‖2/N and (b) average SNRalg resp. SNRIFFT for different noise
levels, comparing the sparse FFT Algorithm 5.4 and regular inverse FFT.

79

5. A sparse FFT algorithm for real nonnegative vectors

SNR T average number average number
first case second case

10 1.4 5.09 9.91
15 0.9 4.74 10.26
20 0.6 4.53 10.47
25 0.4 4.43 10.57
30 0.3 4.60 10.40
35 0.2 4.46 10.54
40 0.1 4.34 10.66
45 0.1 4.50 10.50
50 0.05 4.48 10.52

Table 5.1.: Uniformly distributed noise, N = 215, m = 15: Threshold parameter T and
number of first/second case applied in the reconstruction of 100 perturbed
randomly generated vectors, depending on SNR value.

SNR T average number average number
first case second case

10 1.5 4.75 10.25
15 1.0 4.57 10.43
20 0.8 4.41 10.59
25 0.4 4.42 10.58
30 0.3 4.47 10.53
35 0.2 4.45 10.55
40 0.1 4.46 10.54
45 0.1 4.51 10.49
50 0.05 4.49 10.51

Table 5.2.: Normally distributed noise, N = 215, m = 15: Threshold parameter T and
number of first/second case applied in the reconstruction of 100 perturbed
randomly generated vectors, depending on SNR value.

80

6. An adaptive sparse FFT
algorithm

In this chapter, we want to present another approach to a deterministic algorithm for
the recovery of sparse vectors from a small amount of Fourier data. As in Chapter 5,
we assume the vectors x = (xk)

N−1
k=0 ∈ RN

+ , which we want to reconstruct, to be real and
nonnegative. In contrast to the prior setting, we now suppose that the vectors to be
reconstructed are M -sparse without necessarily having a small support. The support
length does not need to be known nor will it influence the complexity of the algorithm.

The only precondition for the application of the algorithm is the knowledge of the
Fourier transform x̂ ∈ CN of x, some of which will be used for reconstruction. The
(possible) sparsity M of x does not need to be known in advance. We apply an iterative
procedure for the reconstruction of x which adaptively determines the components of
x̂ needed for recovery at each level. As in previous chapters, we use the concept of
periodized vectors for the iterative reconstruction. The number of Fourier values that
are actually necessary for a stable reconstruction at an iteration level depends on the
sparsity of the respective periodization and the distribution of the nonzero components
within this vector. To ensure stability of the reconstruction, parameters have to be
chosen suitably at each iteration level. In the second part of the chapter, we give
estimates for the condition of the occuring matrices depending on these parameters.

The reconstruction procedure for a vector x ∈ RN
+ by the proposed algorithm will re-

quire at most M logN Fourier values and its complexity will not exceed the complexity
of an FFT algorithm in case that x is not sparse. Disregarding possible costs for recon-
struction parameters for stabilization, the computational complexity of the algorithm is
O(M2 log(N/M)).

81

6. An adaptive sparse FFT algorithm

6.1. An adaptive approach for stable reconstruction

from Fourier data

Let us first fix the notation for this chapter. The vector x = (xk)
N−1
k=0 ∈ RN

+ to be
reconstructed is supposed to be of length N = 2J for some J ∈ N. Its discrete Fourier

transform is given by x̂ := FNx ∈ CN where FN :=
(
ωjkN

)N−1
j,k=0

with ωjkN := e−
2πi
N is the

Fourier matrix of order N (see also Chapter 2). We keep the definitions of periodized
vectors as introduced in Chapter 3.

Moreover, we assume x to be M -sparse, where 0 ≤ M ≤ N , i.e., x possesses M
positive components. However, the sparsity M of x is not known in advance.

Using these assumptions we develop an adaptive reconstruction procedure. We start
by considering the periodization of length one, given by one Fourier value

x(0) =
N−1∑
k=0

xk = x̂0.

Since x ∈ RN
+ , we can conclude from x̂0 = 0 that the vector x is the zero vector, i.e.,

it is 0-sparse. In case that x(0) = x̂0 > 0, we proceed and consider x(1). Obviously we
have x(1) = (x

(1)
0 , x

(1)
1)T , where x(1)0 + x

(1)
1 = x(0) = x̂0 is already known. Choosing one

additional Fourier component x̂(1)1 = x̂N/2 = x
(1)
0 − x

(1)
1 and using x(1)1 = x(0) − x(1)0 , we

find that x̂N/2 = 2x
(1)
0 −x(0) and hence the two components of the periodization x(1) are

given by

x
(1)
0 =

1

2

(
x̂N/2 + x(0)

)
resp. x

(1)
1 = x(0) − x(1)0 =

1

2

(
x(0) − x̂N/2

)
.

As x(1) =
(∑N/2−1

k=0 x2k,
∑N/2−1

k=0 x2k+1

)T
, we can conclude that all even components of x

vanish if x(1)0 = 0 and we do not need to consider them further. In case that x(1)1 = 0, it
follows analogously that all odd components of x are zero.

Assume now that we have computed the periodization x(j) ∈ R2j

+ at the j-th iteration
level and let Mj ≤ 2j be the determined sparsity of x(j). Obviously, we have Mj ≤ M .
Further, let

0 ≤ n
(j)
1 < n

(j)
2 < · · · < n

(j)
Mj
≤ 2j − 1

denote the indices of the corresponding nonzero components of x(j). By definition of the

82

6.1. An adaptive approach for stable reconstruction from Fourier data

periodization, the components of x(j+1) =
(
x
(j+1)
k

)2j+1−1

k=0
satisfy the equations

x
(j+1)
k + x

(j+1)

k+2j
= x

(j)
k , k = 0, . . . , 2j − 1. (6.1)

In particular, the following holds: If x(j)k = 0 for some k ∈ {0, 1, . . . , 2j − 1}, then it
directly follows that x(j+1)

k = x
(j+1)

k+2j
= 0. Hence, in order to compute x(j+1) we only need

to consider the 2Mj components x(j+1)
nk and x(j+1)

nk+2j
for k = 1, . . . ,Mj as candidates for

nonzero entries in x(j+1) while all other components of x(j+1) can already be assumed to
be zero. Moreover, (6.1) provides Mj conditions on these values, so that we only need
Mj suitably chosen further Fourier values to recover x(j+1).
These considerations lead to the following theorem where we state that x(j+1) can be

uniquely recovered from x(j) for j = 0, . . . , J−1 usingMj additional Fourier components.

Theorem 6.1 Let x ∈ RN
+ , N = 2J with J ∈ N, and let x(j), j = 0, . . . , J , be the

periodized vectors as given in Definition 3.3.
Then, for each j = 0, . . . , J−1, we have: If x(j) ∈ R2j

+ isMj-sparse with support indices
0 ≤ n

(j)
1 < n

(j)
2 < · · · < n

(j)
Mj
≤ 2j − 1, then the vector x(j+1) can be uniquely recovered

from x(j) and Mj components x̂k1 , . . . , x̂kMj of x̂ = FNx, where the indices k1, . . . , kMj

are taken from the set
{

2J−j−1(2`+ 1)
∣∣ ` = 0, . . . 2j − 1

}
such that the matrix

(
ω
kpn

(j)
r

N

)Mj

p,r=1

=
(

e−2πikpn
(j)
r /N

)Mj

p,r=1
∈ CMj×Mj

is invertible.

Proof. Using the partial vectors x(j+1)
0 :=

(
x
(j+1)
k

)2j−1
k=0

and x
(j+1)
1 :=

(
x
(j+1)
k

)2j+1−1

k=2j
, we

have

x(j) = x
(j+1)
0 + x

(j+1)
1

such that it suffices to compute x(j+1)
0 in order to recover x(j+1). By Lemma 3.7 we find

(
x̂2J−j−1k

)2j+1−1
k=0

= x̂(j+1) = F2j+1

(
x
(j+1)
0

x
(j+1)
1

)
= F2j+1

(
x
(j+1)
0

x(j) − x
(j+1)
0

)
=
(
ωk`2j+1

)2j+1−1,2j−1
k=0,`=0

x
(j+1)
0 +

(
(−1)kωk`2j+1

)2j+1−1,2j−1
k=0,`=0

(
x(j) − x

(j+1)
0

)
.

(6.2)

We simply observe that the even indexed entries x̂(j+1)
2` = x̂

(j)
` = x̂2J−j` do not further

83

6. An adaptive sparse FFT algorithm

contribute to the recovery of the vector x
(j+1)
0 but are already determined from x(j)

which is known from the previous step. Let 0 ≤ n
(j)
1 < n

(j)
2 < · · · < n

(j)
Mj
≤ 2j − 1 denote

the indices of the nonzero entries of x(j). Then also x
(j+1)
0 can only have nonzero entries

at these indices. According to this observation, we restrict the vectors to

x̃
(j+1)
0 :=

(
x(j+1)
nr

)Mj

r=1
∈ RMj

+ , x̃(j) :=
(
x(j)nr
)Mj

r=1
∈ RMj

+ .

Further, let k1, . . . , kMj
be pairwise different indices from

{
2J−j−1(2`+ 1)

∣∣ ` = 0, . . . 2j − 1
}
,

i.e., we have kp := 2J−j−1(2κp + 1) with κp ∈ {0, . . . , 2j − 1} for p = 1, . . . ,Mj. We
now restrict the system in (6.2) to the Mj equations corresponding to these indices
k1, . . . , kMj

and find

ẑ(j+1) :=

x̂k1
...

x̂kMj

 =

x̂
(j+1)
2κ1+1

...

x̂
(j+1)
2κMj+1

 = A(j+1) x̃
(j+1)
0 −A(j+1)

(
x̃(j) − x̃

(j+1)
0

)
, (6.3)

where

A(j+1) =

(
ω
kpn

(j)
r

N

)Mj

p,r=1

=

(
ω
κpn

(j)
r

2j

)Mj

p,r=1

· diag

(
ω
n
(j)
1

2j+1 , . . . , ω
n
(j)
Mj

2j+1

)
. (6.4)

If A(j+1) resp.
(
ω
κpn

(j)
r

2j

)Mj

p,r=1

is invertible, it follows from (6.3) that

A(j+1) x̃
(j+1)
0 =

1

2

(
ẑ(j+1) + A(j+1) x̃(j)

)
,

and we can recover x̃
(j+1)
0 by solving this Mj × Mj system of equations. Hence, the

components of x(j+1) ∈ R2j+1

+ are given by

x
(j+1)
` =

(
x̃
(j+1)
0

)
`

for ` = n
(j)
` ,(

x̃(j)
)
`−2j −

(
x̃
(j+1)
0

)
`−2j

for ` = n
(j)
k + 2j,

0 else,

which yields the reconstruction of x(j+1). �

84

6.1. An adaptive approach for stable reconstruction from Fourier data

We summarize the reconstruction procedure for M -sparse vectors from Fourier data in
the following algorithm.

Algorithm 6.2 (Reconstruction of a vector from Fourier measurements)
Input: N = 2J (length of the vector x);

Fourier values x̂k, k ∈ K, where the index set K is chosen adaptively during
the algorithm;
threshold parameter T .

1. Set M := 0 and K := {0}. Choose the Fourier value x̂0.
If x̂0 < T , then x = 0 and I(J) := ∅.
If x̂0 ≥ T , then set M := 1, I(0) := {0}, and x̃(0) = x̂0.

2. If x̂0 ≥ T then
For j = 0, . . . , J − 1

• Choose M indices kp = 2J−j−1(2κp + 1) with κp ∈ {0, . . . , 2j − 1} for p =

1, . . . ,M such that

A(j+1) :=
(
ω
kp`
N

)
p=1,...,M ; `∈I(j)

is well-conditioned and set K := K ∪ {k1, . . . , kM}.

• Choose the vector of Fourier values ẑ(j+1) := (x̂kp)
M
p=1 ∈ CM and solve the

linear system

A(j+1) x̃
(j+1)
0 =

1

2
(ẑ(j+1) + A(j+1) x̃(j)).

• Set x̃(j+1)
1 := x̃(j) − x̃

(j+1)
0 and x̃(j+1) := ((x̃

(j+1)
0)T , (x̃

(j+1)
1)T)T .

• Determine the set of active indices I(j+1) ⊂
(
I(j) ∪ (I(j) + 2j)

)
by removing

all indices in I(j)∪(I(j)+2j) that correspond to entries in x̃(j+1) being smaller
than T . Set M := #I(j+1) being the number of positive entries of x(j+1).

End (for).

Output: I(J), the set of active indices in x with M = #I(J);
x̃ = x̃(J) = (xk)k∈I(J) , the vector restricted to nonzero entries;
K, the index set of used Fourier values from x̂.

85

6. An adaptive sparse FFT algorithm

It remains to answer the question how the M = Mj indices k1, . . . , kMj
should be chosen

depending on the determined set I(j) of indices which corresponds to the nonzero entries
of x(j) at the j-th iteration step. In order to obtain a numerically stable algorithm, these
indices have to be chosen in a way such that the matrix A(j+1) is well-conditioned.

Remark 6.3 Note that the situation in Chapter 5 is actually a special case of the set-
ting here. There, the vector x is assumed to have short support. Hence, we can restrict
our computations to a relatively short interval of consecutive active indices in each pe-
riodization x(j).

This makes the choice of the indices k1, . . . , kMj
comparatively easy. We set

kp = 2j−Ljp, p = 0, . . . , 2Lj − 1,

where Lj = dlog2Mje and Mj denotes the support length of the 2j-periodization x(j).
Then the matrix A(j+1) can be split into a product of diagonal matrices and a Fourier
matrix which ensures a stable reconstruction (for details, see Section 5.1).

In contrast, the active components of the periodizations x(j) in the present setting are
not necessarily clustered such that the indices k1, . . . , kMj

cannot be appropriately chosen
in this way.

We simplify the problem by restricting the adaptive search for suitable indices k1, . . . , kMj

in a special way such that the obtained coefficient matrices A(j+1) in (6.4) are given
by Vandermonde matrices with knots on the unit circle. More precisely, we consider
kp = 2J−j−1(2κp + 1) with κp := σ(p − 1)mod 2j for p = 1, . . . ,Mj, and we will choose
σ = σj ∈ {1, . . . , 2j − 1} such that A(j+1) in (6.4) is of the form

A(j+1) = VMj
diag

(
ω
n
(j)
1

2j+1 , . . . , ω
n
(j)
Mj

2j+1

)
,

where the Vandermonde matrix

VMj
:= VMj

(
ω
σn

(j)
1

2j
, . . . , ω

σn
(j)
Mj

2j

)
:=
(
ω
σ(p−1)n(j)

r

2j

)Mj

p,r=1
=

(
ω
κpn

(j)
r

2j

)Mj

p,r=1

,

being determined by the knots ωσn
(j)
1

2j
, . . . , ω

σn
(j)
Mj

2j
, is well-conditioned.

We postpone the problem of an efficient computation of a suitable parameter σ, which
ensures a well-conditioned Vandermonde matrix, to the next section. In the last part of

86

6.1. An adaptive approach for stable reconstruction from Fourier data

this section, we generalize Theorem 6.1 in order to extend a known periodization x(j) to
x(j+s) with j + s ≤ J in one step.
Let us again assume that we have already computed the periodization x(j) ∈ R2j

+ and
that x(j) possesses Mj nonzero entries with indices n(j)

k , k = 1, . . . ,Mj. This means that
the nonzero components of x = x(J) must be contained in the set{

x
n
(j)
k +2j`

∣∣∣ k = 1, . . . ,Mj, ` = 0, . . . , 2J−j − 1
}
. (6.5)

We consider the partial vectors

y(k) =
(
y
(k)
`

)2J−j−1
`=0

:=
(
x
n
(j)
k +2j`

)2J−j−1
`=0

∈ R2J−j

+ , k = 1, . . . ,Mj,

which contain the possibly nonzero components of x given in the set (6.5). For these
partial vectors, it holds that the sum of their entries equals the corresponding component
in x(j), i.e.,

2J−j−1∑
`=0

y
(k)
` =

2J−j−1∑
`=0

x
n
(j)
k +2j`

= x
(j)

n
(j)
k

.

Obviously, we only need to determine these vectors y(k) in order to compute the complete
vector x = x(J). With the objective to recover x(j+s) from x(j), we similarly consider the
vectors

y(k,s) =
(
y(k,s)r

)2s−1
r=0

:=

(
x
(j+s)

n
(j)
k +2j`

)2s−1

`=0

∈ R2s−1
+ , k = 1, . . . ,Mj,

that determine x(j+s) completely. These vectors contain the potentially nonzero compo-
nents of x(j+s) where each y(k,s) again arises from one nonzero entry x(j)

n
(j)
k

in x(j) such

that
∑2s−1

r=0 y
(k,s)
r = x

(j)

n
(j)
k

. Note that y(k,s) ∈ R2s

+ is the 2s-periodization of y(k) ∈ R2J−j

+ .

Theorem 6.4 Let x ∈ RN
+ , N = 2J with J ∈ N, and let x(j), j = 0, . . . , J , be the

periodizations as in Definition 3.3. For a given j with 1 ≤ j < J , assume that x(j) is
known. Suppose that x(j) ∈ R2j

+ is Mj-sparse with support indices 0 ≤ n
(j)
1 < n

(j)
2 <

. . . < n
(j)
Mj
≤ 2j − 1. Then the vector x(j+s) (with j + s ≤ J) can be uniquely recovered

from x(j) ∈ R2j

+ and Mj2
s components of the vector x̂ = FNx of the form

x̂2J−j−sr+2J−jkσ, r = 0, . . . 2s − 1, k = 1, . . .Mj,

87

6. An adaptive sparse FFT algorithm

where σ is chosen such that the Vandermonde matrix VMj

(
ω
σn

(j)
1

2j
, . . . , ω

σn
(j)
Mj

2j

)
is invert-

ible and well-conditioned.

Proof. Since x(j) is already known, the indices of the nonzero components of x(j+s) have
to be contained in the set

{
n
(j)
k + 2j`

∣∣∣ k = 1, . . . ,Mj, ` = 0, . . . , 2s − 1
}

and hence the

possibly nonzero components of x(j+s) are given by{
x
(j+s)

n
(j)
k +2j`

∣∣∣∣ k = 1, . . . ,Mj, ` = 0, . . . , 2s − 1

}
.

Using the definition of the vectors y(k) above, we find for r = 0, . . . , N − 1,

x̂r =

Mj∑
k=1

2J−j−1∑
`=0

x
n
(j)
k +2j`

ω
(n

(j)
k +2j`)r

N

=

Mj∑
k=1

2J−j−1∑
`=0

y
(k)
` ω2j`r

N

ω
n
(j)
k r

N =

Mj∑
k=1

ŷ
(k)

rmod 2J−j
ω
n
(j)
k r

N ,

where we use the notation ŷ(k) =
(
ŷ
(k)
r

)2J−j−1
r=0

= F2J−jy
(k). As known from Lemma 3.7,

the 2s-periodization y(k,s) of y(k) has the Fourier transform ŷ(k,s) =
(
ŷ
(k)

2J−j−sr

)2s−1
r=0

.
We consider the Fourier values x̂2J−j−sr+2J−jνσ for r = 0, . . . , 2s−1, ν = 1, . . . ,Mj and

some fixed σ ∈ {0, . . . , 2j − 1} and find

x̂2J−j−sr+2J−jνσ =

Mj∑
k=1

ŷ
(k)

2J−j−sr
ω
n
(j)
k r

2j+s
ω
νσn

(j)
k

2j
. (6.6)

Thus,

(x̂2J−j−sr+2J−jνσ)
Mj ,2

s−1
ν=1,r=0 = VMj

(σ)

(
ω
n
(j)
k r

2j+s
ŷ
(k)

2J−j−sr

)Mj ,2
s−1

k=1,r=0

, (6.7)

where the Vandermonde matrix VMj
(σ) := VMj

(ω
σn

(j)
1

2j
, . . . , ω

σn
(j)
Mj

2j
) of size Mj ×Mj is

determined by the knots ωσn
(j)
1

2j
, . . . , ω

σn
(j)
Mj

2j
on the unit circle. For determining y(k,s), we

first need to solve the system (6.7) to obtain
(
ω
n
(j)
k r

2j+s
ŷ
(k)

2J−j−sr

)Mj ,2
s−1

k=1,r=0

. This can be done

in O(M2
j 2s) operations when we apply a QR decomposition to the Vandermonde matrix

whose computation requires O(M2
j) operations, see [11]. Afterwards, we compute theMj

88

6.2. Vandermonde matrices with knots on the unit circle

vectors y(k,s) using a fast inverse Fourier transform of length 2s requiringO(Mj2
ss) arith-

metical operations. Altogether, the computation of x(j+s) requires O(Mj2
s max{Mj, s})

operations. �

Remark 6.5 The choice of Fourier values in (6.6) can be understood as shifted sam-
pling. In [47], the used function values are similar to the ones used above. In contrast
to our approach, Potts, Tasche and Volkmer use the procedure to split polynomials of
large sparsity into several polynomials of lower sparsity which can then be recovered by
applying Prony’s method. The idea of shifted sampling has originally been proposed in
[29].

Remark 6.6 Observe that for s = 1, Theorem 6.1 is a special case of Theorem 6.4
where we only need to fix one parameter σ in order to determine the coefficient matrices
A(j+1).
Assuming that x has the sparsityM = MJ with 2L−1 < M ≤ 2L, and that we can find a

σ at each iteration level such that the matrix VMj
(ω

σn
(j)
1

2j
, . . . , ω

σn
(j)
Mj

2j
) is well-conditioned,

then we need at most O(2LL+M2 log 2J−L) = O(M2 log(N/M)) arithmetical operations
to recover x not counting the effort to find σ at each iteration step.

If the condition number of the quadratic matrix VMj
(ω

σn
(j)
1

2j
, . . . , ω

σn
(j)
Mj

2j
) is not small

enough, we may add further lines and use a rectangular Fourier matrix. In this case, we
need to enlarge the system of equations (6.7) and consider

(x̂2J−j−sr+2J−jkσ)
M ′j ,2

s−1
k=1,r=0 = V

(j)

M ′j ,Mj
(σ)

(
ω
n
(j)
p r

2j+s
ŷ
(p)

2J−j−sr

)Mj ,2
s−1

p=1,r=0

with M ′
j ≥ Mj, where we need now 2sM ′

j Fourier values and apply the rectangular

Vandermonde matrix V
(j)

M ′j ,Mj
(σ) =

(
ω
σkn

(j)
p

2j

)M ′j−1,Mj

k=0,p=1

.

6.2. Vandermonde matrices with knots on the unit

circle

We now investigate the question how to find an optimal σ = σj at each iteration step in
order to ensure a well-conditioned Vandermonde system and hence a stable reconstruc-
tion in Algorithm 6.2. In this section, we present results on bounds for the condition of
the Vandermonde matrices as well as some considerations on the possible distribution
of knots on the unit circle.

89

6. An adaptive sparse FFT algorithm

For simplicity, we neglect the subscripts j in this section. Let 0 ≤ n1 < n2 < . . . <

nM < N be a known set of indices, i.e., in our case the indices of the support components
of a vector. We want to find an optimal parameter σ ∈ {1, . . . , N − 1} such that the
Vandermonde matrix VM ′,M (with N > M ′ ≥ M) of size M ′ ×M determined by the
knots ωσnkN , k = 1, . . . ,M , has a suitably bounded condition number. At the same time,
M ′ should stay in the range ofM in order to reduce the costs for solving a corresponding
Vandermonde system.

In order to efficiently find an optimal parameter σ at each iteration step, we investigate
Vandermonde matrices in more detail. It is well-known that a quadratic Vandermonde
matrix VM,M is invertible (i.e., det(VM,M) 6= 0) if and only if the support indices
(σnk modN) are pairwise distinct for k = 1, . . . ,M , see e.g. [50, Example 2.18]. Thus,
we can choose σ = 1 to ensure invertibility of VM,M . This choice is non-adaptive and
not related to the knowledge of the index set {n1, . . . , nM}. Therefore, it can lead to
large condition numbers.

Indeed, the condition of the rectangular matrix VM ′,M strongly depends on the distri-
bution of the M support indices or, equivalently, on the distribution of the values ωσnkN ,
k = 1, . . . ,M , on the unit circle. The condition number of VM,M can even be one if
and only if the values ωσnkN are equidistantly distributed on the unit circle, i.e., if M is
a divisor of N and

{ωσnkN | k = 1, . . . ,M} = {c ωrM | k = 1, . . . ,M} ,

where c is a unitary constant, see [4].

Recall that the condition number of an (M ′ × M)-matrix VM ′,M(σ) based on the
spectral norm is determined by

κ2 (VM ′,M(σ)) :=

max
u∈CM ,‖u‖2=1

‖VM ′,M(σ)u‖2

min
u∈CM ,‖u‖2=1

‖VM ′,M(σ)u‖2
.

In order to bound the condition number of VM ′,M , an observation by Moitra [30] will
be helpful. We slightly modify his result and give a different proof that directly adapts
Hilbert’s inequality from [31]. The condition number of the Vandermonde matrix VM ′,M

depends on the minimal distance dσ between two knots on the unit circle.

Theorem 6.7 Let 0 ≤ n1 < n2 < . . . < nM < N be a given set of indices. For a given

90

6.2. Vandermonde matrices with knots on the unit circle

parameter σ ∈ {1, . . . , N} let

dσ := min
1≤k<`≤M

(±σ(n` − nk)) modN (6.8)

be the smallest (periodic) distance between two indices σn` and σnk, and assume that
dσ > 0. Then the condition number κ2(VM ′,M(σ)) of the Vandermonde matrix

VM ′,M(σ) :=
(
ωσnk`N

)M ′−1,M
`=0,k=1

satisfies

κ2 (VM ′,M(σ))2 ≤
M ′ + N

dσ

M ′ − N
dσ

, (6.9)

provided that M ′ > N
dσ
.

Proof. 1. Assume that ñk := σnkmodN
N

for k = 1, . . . ,M . By assumption, the values
ñk are distinct numbers in [0, 1) and the minimal (cyclic) distance between two of
these values is dσ/N . Considering the matrix (VM ′,M(σ))∗VM ′,M(σ) = (ck`)

M
k,`=1,

we find

ck` =
M ′−1∑
r=0

e
2πiσnkr

N e−
2πiσn`r

N =
M ′−1∑
r=0

e−2πi(ñ`−ñk)r

=

{
1−e−2πi(ñ`−ñk)M

1−e−2πi(ñ`−ñk)
if ñk 6= ñ`,

M ′ if ñk = ñ`,

=

{
e−2πi(ñ`−ñk)M

′/2 sin(2π(ñ`−ñk)M ′/2)
e−2πi(ñ`−ñk)/2 sin(2π(ñ`−ñk)/2)

if ñk 6= ñ`,

M ′ if ñk = ñ`,

i.e., we have

ck` = e−2πi(ñ`−ñk)(M
′−1)/2DM ′ (2π(ñ` − ñk)) , (6.10)

where

DM ′(x) =

{
sin(M ′x/2)
sin(x/2)

if x 6= 0,

M ′ if x = 0,

denotes the Dirichlet kernel. Hence, the symmetric and positive semidefinite ma-

91

6. An adaptive sparse FFT algorithm

trix

CM = (DM ′(2π(ñ` − ñk)))Mk,`=1

possesses the same eigenvalues as (VM ′,M(σ))∗VM ′,M(σ) since (6.10) yields

(VM ′,M(σ))∗VM ′,M(σ) = diag
(

e2πiñk(M
′−1)/2

)M
k=1

CM diag
(

e−2πiñ`(M
′−1)/2

)M
`=1

.

Let us first consider the Frobenius norm ‖VM ′,M(σ)‖F . Since CM(`, `) = M ′ for
all ` = 1, . . . ,M it follows that

‖VM ′,M(σ)‖2F = tr(VM ′,M(σ))∗VM ′,M(σ)) = trCM = MM ′,

such that the spectral norm is bounded by

‖VM ′,M(σ)‖2 ≤ ‖VM ′,M(σ)‖F =
√
M ′M.

2. We consider for arbitrary u ∈ CM

uTCMu =
M∑
k=1

M∑
`=1

uku`DM ′(2π(ñ` − ñk))

= M ′
M∑
k=1

|uk|2 +
M∑

k,`=1
k 6=`

uku`
sin(M ′π(ñ` − ñk))

sin(π(ñ` − ñk))
.

We recall the following result by Montgomery and Vaughan, see [31, Theorem 1].
Let 0 ≤ x1 < x2 < . . . < xR < 1 and

δ = min {|(xk − x`)mod 1| | k, ` = 1, . . . , R, k 6= `} .

Then ∣∣∣∣∣∣∣∣
R∑

k,`=1
k 6=`

uku`
sin(π(xk − x`))

∣∣∣∣∣∣∣∣ ≤
1

δ

R∑
k=1

|uk|2. (6.11)

92

6.2. Vandermonde matrices with knots on the unit circle

Using

sin(M ′π(ñ` − ñk)) =
1

2i

(
eM
′πi(ñ`−ñk) − e−M

′πi(ñ`−ñk)
)

we now divide our sum into two parts and apply equation (6.11) to both of them,
with uk replaced by uke

−M ′jπiñk and uke
M ′jπiñk and u` replaced by u`e

M ′jπiñ` and
u`e
−M ′jπiñ` , respectively. Thus, we obtain∣∣∣∣∣∣∣∣

M∑
k,`=1
k 6=`

uku`
sin(M ′π(ñ` − ñk))

sin(π(ñ` − ñk))

∣∣∣∣∣∣∣∣ ≤
N

dσ
‖u‖2.

This observation yields

‖VM ′,M(σ)‖22 = max
u∈CM ,‖u‖2=1

uTCMu ≤ M ′ +
N

dσ
,

‖(VM ′,M(σ))−1‖22 =

(
min

u∈CM ,‖u‖2=1
uTCMu

)−1
≤
(
M ′ − N

dσ

)−1
.

Hence, we find the condition of VM ′,M(σ)

κ2 (VM ′,M(σ))2 =
‖VM ′,M(σ)‖22
‖(VM ′,M(σ))−1‖22

≤
M ′ + N

dσ

M ′ − N
dσ

which proves the assertion (6.9). �

Remark 6.8 Note that the assumption of the preceding theorem is M ′ > N
dσ
. This

means that the bounds for the condition number can only be achieved if we employ a
rectangular Vandermonde matrix VM ′,M with additional lines.

The above observations lead us to the problem to optimize the parameter σ defining the
matrix VM ′,M(σ) with knots ωσn1

N , . . . , ωσnMN for given indices 0 ≤ n1 < n2 < . . . < nM <

N . We denote by σ̃ the optimal choice for σ that satisfies

dσ̃ := max
σ∈{1,...,N}

dσ

with dσ defined in (6.8). In the following we investigate lower bounds for dσ.

93

6. An adaptive sparse FFT algorithm

Theorem 6.9 Let N be of the form N = 2J , J ∈ N, and let d = dσ̃ := max
σ∈{1,...,N}

dσ with

dσ defined in (6.8) be the distance obtained for the optimally chosen parameter σ̃. Then
we have

N

M2
≤ d ≤ N

M
. (6.12)

Proof. 1. Considering the m indices 0 ≤ n1 < n2 < . . . < nM < N and the corre-
sponding knots ˜̃nk = σ̃nk modN , the distance d is obviously maximal if the knots
˜̃nk are equidistantly distributed on the interval of length N , i.e., if d = N/M . This
proves the upper bound d ≤ N/M .

2. Let us now prove a lower bound for d. We observe that d ≥ 1 holds for any chosen
index set {nj}Mj=1. Hence, we only have to prove the assertion for cases where
M2 < N .

Let us first consider all
(
M
2

)
distances d`,k := |n` − nk| for `, k = 1, . . . ,M and

` < k. Assume that ν indices nj are odd and M − ν indices are even. This yields
ν(M − ν) odd distances d`,k and M(M−1)

2
− ν(M − ν) even distances. Since

±(N − σ)d`,k modN = (∓σd`,k) modN,

we obtain the same sets of distances for σ and σ + N/2. Hence, we can restrict
the range of the parameter σ to {1, . . . , N/2} and assume that σ̃ ∈ {1, . . . , N/2}
holds for the optimal σ̃.

We now assume to the contrary that d = dσ̃ < N/M2. Thus, dσ < N/M2 for all σ ∈
{1, . . . , N − 1}, i.e., for each σ there exists a distance dσ`,k with (±σdσ`,k) modN <

N/M2. We will show that this assumption leads to a contradiction by proving
that this cannot hold for all σ ∈ {1, . . . , N −1}. We restrict the choice of σ to odd
values in {1, . . . , N/2} and show that the assertion does not even hold for these
values.

For fixed distances d`,k we now determine the largest possible number of odd values
σ such that (±σd`,k) modN < N/M2. We distinguish between odd and even
distances d`,k and consider these two cases.

Case 1: If the fixed distance d`,k is odd, then ±σd`,k modN is again odd, and
for two pairwise different odd values σ1, σ2 ∈ {1, . . . , N/2 − 1} the corresponding
values ±σ1d`,k modN and ±σ2d`,k modN are different. This holds since σ1d`,k =

94

6.2. Vandermonde matrices with knots on the unit circle

σ2d`,k modN yields (σ1 − σ2)d`,k = 0 modN with the only solution σ1 = σ2 and
analogously, σ1d`,k = −σ2d`,k modN yields (σ1 + σ2)d`,k = 0 modN having no
solution σ1, σ2.

Observe that there are dN/(2M2)+1/2e−1 odd integers in the interval [0, N/M2].
Hence, there exist at most dN/(2M2) + 1/2e− 1 pairwise different odd values σ in
{1, . . . , N/2} such that (±σd`,k) modN < N/M2.

Since we have ν(M − ν) odd distances, there can be at most

ν(M − ν)
(
dN/(2M2) + 1/2e − 1

)
pairwise different odd values σ in {1, . . . , N/2} such that the condition

(±σd`,k) modN <
N

M2
(6.13)

is satisfied with an odd distance d`,k. Note that this upper bound can only be
achieved if all occurring odd distances d`,k are pairwise different.

Case 2: Let d`,k be a fixed even distance. Then there exists a positive integer µ
such that d`,k = 2µd̃`,k and d̃`,k is odd. Thus, the condition ±σd`,k modN < N/M2

can be simplified to

±σd̃`,k mod
N

2µ
<

N

2µM2
.

Hence, at most dN/(2µ+1M2)+1/2e−1 pairwise different odd values σ in {1, . . . , N/2}
exist such that (6.13) is satisfied.

Since we have M(M−1)
2
− ν(M − ν) even distances, it follows that at most(

M(M − 1)

2
− ν(M − ν)

)(
dN/(4M2) + 1/2e − 1

)
odd values σ in {1, . . . , N/2} can exist such that the condition (6.13) is satisfied
with an even distance d`,k. Again, note that this upper bound can be only achieved
if all occurring even distances d`,k are pairwise different and of the form d`,k = 2d̃`,k

with some odd d̃`,k.

3. We now consider the following cases and add up for each case the maximal number
of pairwise different σ such that (6.13) holds for odd or even distances.

95

6. An adaptive sparse FFT algorithm

(i) For N > 4M2 the number of odd σ satisfying (6.13) for at least one distance
d`,k is bounded by

ν(M − ν)

(
N

2M2
+

1

2

)
+

(
M(M − 1)

2
− ν(M − ν)

)(
N

4M2
+

1

2

)
= ν(M − ν)

N

4M2
+
M(M − 1)

2

(
N

4M2
+

1

2

)
≤ M2

4

N

4M2
+
N

8
− N

8M
+
M2

4
− M

4

<
N

16
+
N

8
+
N

16
− N

8M
− M

4

<
N

4
.

Here, we have used that ν(M−ν) ≤ M2

4
for all ν ∈ {0, . . . ,M}. The inequality

shows that not all values σ satisfy the condition (6.13) in the case N > 4M2.

(ii) For 3M2 < N ≤ 4M2 we have⌈
N

2M2
+

1

2

⌉
− 1 = 2,

⌈
N

4M2
+

1

2

⌉
− 1 = 1.

Hence, the number of odd values σ satisfying (6.13) is bounded by

2ν(M − ν) +
M(M − 1)

2
− ν(M − ν) = ν(M − ν) +

M(M − 1)

2

≤ M2

4
+
M2

2
− M

2
=

3M2

4
− M

2

<
N

4
,

as 3M2 < N . Thus, also in this case, not all values σ satisfy (6.13).

(iii) For 2M2 < N ≤ 3M2 it holds that⌈
N

2M2
+

1

2

⌉
− 1 = 1,

⌈
N

4M2
+

1

2

⌉
− 1 = 1.

Thus, the number of odd values σ satisfying (6.13) is bounded by

ν(M − ν) +
M(M − 1)

2
− ν(M − ν) =

M(M − 1)

2

<
M2

2
<
N

4
.

96

6.2. Vandermonde matrices with knots on the unit circle

Hence, also in the case that 2M2 < N ≤ 3M2, not all values σ satisfy (6.13).

(iv) For M2 < N ≤ 2M2 we have⌈
N

2M2
+

1

2

⌉
− 1 = 1,

⌈
N

4M2
+

1

2

⌉
− 1 = 0.

Thus, the number of odd values σ satisfying (6.13) is bounded by

ν(M − ν) ≤ M2

4
<
N

4
,

i.e., also in this case, not all values σ satisfy (6.13).

Thus, the number of odd values σ ∈ for which there exists a dσ`,k such that

(±σdσ`,k) modN <
N

M2

holds is strictly smaller than N/4 in any case. This means that the assumption
does not hold for all σ and is therefore wrong. Hence, d ≥ N

M2 . �

Remark 6.10 1. The lower bound d = N/M2 can be indeed achieved if N = 2J =

2αM2 for some α ∈ N0 (which assures that d is an integer) and if all distances of
the form

d`,k = 2α(2r + 1), r = 0, . . . ,
N

2α+2
− 1,

occur. This follows from the above proof. Choosing e.g. N = 16, M = 4, α = 0,
and the four indices n1 = 0, n2 = 1, n3 = 3, n4 = 8, then

D := {d`,k | `, k = 1, . . . , 3; ` < k} = {1, 2, 3, 5, 7, 8}

contains all odd numbers in {0, . . . , N/2}, and we find d = N/M2 = 1.

2. Note that the case d = N/M2 is actually very rare. It occurs only for very special
choices of indices {nk}Mk=1 (as well as its shifts {nk + `}Mk=1, ` = 0, . . . , N − 1,
and shifted reflections {(N − nk) + `}Mk=1, ` = 0, . . . , N − 1). In the above case
N = 16, M = 4, there are

(
N
4

)
= 1820 possibilities to fix four (ordered) indices,

where d = N/M2 = 1 only occurs in 128 cases.

97

6. An adaptive sparse FFT algorithm

In numerical experiments, one can observe that the number of cases with ill-
conditioned matrices (i.e., very small d) decreases very rapidly with increasing
vector length N . One reason for this is the fact that we have more possibilities to
choose M knots on the unit circle, but we also have more possible choices for σ.

Although we established some bounds for the condition of the occurring Vandermonde
matrices and a result on the distance of knots on the unit circle which are determined by
indices of a vectors, it remains to develop an efficient algorithm to compute the optimal
parameter σ. In practice, choosing σ = σ̃ with

dσ̃ := max
σ∈{1,...,N}

dσ

in Algorithm 6.2 already assures a good conditioned matrix in most cases.
Very small distances between knots and therefore very ill-conditioned Vandermonde

matrices rarely occur in practice as we pointed out in the above remark. This means that
in many cases, reconstruction using a Vandermonde matrix with acceptable condition is
possible.

98

7. A two-dimensional sparse FFT
algorithm

In preceding chapters we discussed sparse FFT algorithms for vectors. However, the
discrete Fourier transform is defined for matrices as well and there also exist two-
dimensional FFT algorithms. This raises the question whether our approaches can be
transferred to matrices and therefore also to discrete images.

7.1. Two-dimensional FFT

Let us first introduce the preliminaries on the two-dimensional discrete Fourier trans-
form. We follow here the notation of [52, Section 4.4].

Definition 7.1 The two-dimensional discrete Fourier transform Â ∈ CN1×N2 of a ma-
trix A ∈ CN1×N2 is given by

Â := FN1AFN2

where

FNi =
(
ωk`Ni
)Ni−1
k,`=0

∈ CNi×Ni

denotes the discrete Fourier matrix with the Ni-th root of unity ωNi := e
− 2πi
Ni for i = 1, 2.

Hence, the entries of the Fourier transformed matrix Â = (âk1k2)
N1−1,N2−1
k1,k2=0 ∈ CN1×N2 are

given by

âk1k2 =

N1−1∑
j1=0

N2−1∑
j2=0

aj1j2 ω
j1k1
N1

ωj2k2N2
, kr = 0, . . . , Nr − 1; r = 1, 2. (7.1)

99

7. A two-dimensional sparse FFT algorithm

The two-dimensional inverse discrete Fourier transform is thus defined by

A = F−1N1
ÂF−1N2

where

F−1Ni =
1

Ni

(
ω−k`Ni

)Ni−1
k,`=0

∈ CNi×Ni

is the inverse Fourier matrix for i = 1, 2. Hence, the entries of A can be written as

aj1j2 =
1

N1N2

N1−1∑
k1=0

N2−1∑
k2=0

âk1k2 ω
−j1k1
N1

ω−j2k2N2
, jr = 0, . . . , Nr − 1; r = 1, 2.

We illustrate the Fourier transform of a matrix by a small example. We choose a matrix
with very few nonzero entries which will be useful in the following.

Example 7.2 Let A ∈ C4×4 be given by

A =

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 .

Then we obtain the Fourier transform

Â = F4AF4 =

1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i

=

1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i

0 0 0 0

1 −i −1 i

1 −1 1 −1

0 0 0 0

 =

2 −1− i 0 −1 + i

−1− i 0 −1 + i 2

0 −1 + i 2 −1− i

−1 + i 2 −1− i 0

 .

By usual matrix multiplication, the computational complexity of the two-dimensional
DFT is O(N1N2(N1+N2)), caused by N2N1(N1−1)+N1N2(N2−1) = N1N2(N1+N2−2)

complex additions and N2N
2
1 +N1N

2
2 = N1N2(N1 +N2) complex multiplications.

100

7.1. Two-dimensional FFT

We follow the presentation in [33, Section 4.4] and transfer the ideas for fast al-
gorithms from the one-dimensional discrete Fourier transform to the computation of
two-dimensional discrete Fourier transforms in order to improve the complexity. For
this purpose, we rewrite the entries of Â given in (7.1) as follows

âk1k2 =

N1−1∑
j1=0

ωj1k1N1

N2−1∑
j2=0

aj1j2 ω
j2k2
N2

, kr = 0, . . . , Nr − 1; r = 1, 2.

We observe that the vectors āk2 = (āj1k2)
N1−1
j1=0 , k2 = 1, . . . , N2 − 1, with components

āj1k2 =

N2−1∑
j2=0

aj1j2 ω
j2k2
N2

, j1 = 1, . . . ,M1 − 1,

denote one-dimensional discrete Fourier transforms of the rows in A. Hence, this yields
a matrix Ā = (ā0, . . . , āN2−1) containing the Fourier transformed rows of A.

Then Â can be obtained by applying another one-dimensional Fourier transform to
each of the columns of the new matrix,

âk1k2 =

N1−1∑
j1=0

ωj1k1N1
āj1k2 , kr = 0, . . . , Nr − 1; r = 1, 2.

This procedure for the computation of the components of Â is the so-called row-column
method and it allows us to reduce the two-dimensional discrete Fourier transform to
one-dimensional transforms. In particular, for the DFT of an (N1 × N2)-matrix A,
we first apply N1 DFTs of length N2 to the rows of A and afterwards N2 columnwise
DFTs of length N1. This approach is also applicable to discrete Fourier transforms of
higher dimensions which are defined in a similar way. In consequence, it is possible
to apply algorithms developed for the one-dimensional Fourier transform also to higher
dimensional Fourier transforms, see [33] or [52].

As there exist several fast algorithms for the discrete Fourier transform of vectors (see
also Section 2.2), the two-dimensional DFT can be computed efficiently. Assuming that
N1 = 2J1 and N2 = 2J2 , J1, J2 ∈ N and applying radix-2 algorithms for both row and
column transforms, we achieve a computational complexity of O(N1N2 log(N1N2)). This
can be seen as follows: TheN1 FFTs of lengthN2 requireN1N2 log2N2 complex additions
and N1

N2

2
log2N2 complex multiplications and the N2 FFTs of length N1 equivalently re-

quire N2N1 log2N1 complex additions and N2
N1

2
log2N1 complex multiplications. Hence,

101

7. A two-dimensional sparse FFT algorithm

altogether the computation is done in N1N2 log2N2 +N2N1 log2N1 = N1N2 log2(N1N2)

complex additions and N1
N2

2
log2N2 + N2

N1

2
log2N1 = N1N2

2
log2(N1N2) complex multi-

plications.

7.2. A sparse FFT algorithm for matrices with small

support

We aim to apply the proposed algorithms of previous chapters to matrices. Therefore,
we first fix what we understand by a matrix with small support. These are matrices
which have nonzero entries only within a small (not necessarily quadratic) submatrix.
Hence, in the easiest case, the support of a matrix A ∈ CN1×N2 can be sketched as
follows

A =

 , (7.2)

where the grey submatrix of dimension m1 × m2 symbolizes the support. We give a
definition for the support size of a matrix which is equivalent to the support length of a
vector (cf. Definition 3.1).

Definition 7.3 Let A = (aj1j2)
N1−1,N2−1
j1,j2=0 ∈ CN1×N2. The support size (m1 × m2) =

|suppA| of A is defined as the pair of minimal positive integers (m1,m2) for which
there exists an index (µ1, µ2) ∈ {0, . . . , N1 − 1} × {0, . . . , N2 − 1} such that aj1j2 = 0

for all (j1, j2) /∈ I = {((µ1 + r1)modN1, (µ2 + r2)modN2) | r1 = 0, . . . ,m1 − 1, r2 =

0, . . . ,m2−1}. We call the index set I the support set of A and (µ1, µ2) the first support
index of A.

Note that similarly to the definition of the support of a vector in Chapter 3, the support
of matrices is to be understood modulo the number of rows N1 resp. the number of
columns N2, i.e., it can for instance begin in the last row of a matrix and continue in its
first row. In particular, the index of the leftmost uppermost nonzero component is not
necessarily the first support index (as it is defined above).

102

7.2. A sparse FFT algorithm for matrices with small support

Example 7.4 1. Let A ∈ C4×4 be the matrix in Example 7.2 given by

A =

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 .

Then A has a support size of 2× 2.

2. Choose another matrix A ∈ C4×4 which is of the form

A =

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 .

Then A also has a support size of 2 × 2. This example shows that the support
of A lies not necessarily in the middle of the matrix and may consist of multiple
parts. The first support index of A is (µ1, µ2) = (3, 3).

In the following, let us consider matrices of size N1 × N2 with N1 = 2J1 and N2 = 2J2

for N1, N2 ∈ N. We now want to extend Algorithm 4.12 to the recovery of matrices
A ∈ CN1×N2 with small support of size m1 × m2 from (noisy) Fourier data Â. Recall
that Algorithm 4.12 is applicable to the reconstruction of vectors with small support
from noisy Fourier data. Hence, we have to ensure that all inverse Fourier transforms of
row or column vectors, which are necessary for the reconstruction of A, result in vectors
with small support.

Let us have a closer look at the two steps of the two-dimensional DFT, first row
transforms and afterwards column transforms. We illustrate the support sets of all
occurring matrices assuming that the support of A can be sketched as in (7.2).

Â = FN1AFN2 = FN1

FN2

103

7. A two-dimensional sparse FFT algorithm

= FN1

 =

Observe that the support of the intermediate matrix Ā after the first transform is of size
m1×N2. After the second transform, the support of Â will in general be of size N1×N2,
as indicated in the above illustration. This matrix structure can be nicely recognized in
Example 7.2.

In the course of reconstruction of A from its Fourier transform Â, we first compute the
inverse Fourier transform of all columns of Â. We observe that the column vectors in the
resulting matrix all have short support of (maximal) length m1. Hence, Algorithm 4.12
can be applied to each of these transforms. In the second reconstruction step, the
inverse Fourier transforms of the rows have to be computed. Note that we have N1 −
m1 rows containing zero vectors for which no computations at all are needed. The
inverse transforms of the remaining m1 rows can again be computed efficiently using
Algorithm 4.12 as the resulting rows in A have small support of maximal length m2.

Remark 7.5 Note that Algorithm 5.4 for the reconstruction of vectors with real non-
negative entries cannot be transferred to matrices in the same way. That is because we
cannot ensure that the intermediate matrix, which results from the first reconstruction
step, only contains real nonnegative entries. Indeed, this will never be the case in practice
when we work with noisy data.

We summarize the reconstruction of a matrix A ∈ CN1×N2 from Fourier data in Algo-
rithm 7.6. For the efficient reconstruction of vectors with short support, we use Algo-
rithm 4.12. The only additional a priori information that is required by the algorithm
is the support size of the matrix A or an upper bound for it (i.e., the size of a larger
submatrix which contains the support).

Algorithm 7.6 (Sparse FFT for matrices with small support)
Input: Noisy measurement matrix Â = (Âk1k2)

N1−1,N2−1
k1,k2=0 ∈ CN1×N2 where N1 = 2J1

and N2 = 2J2 ; |suppA| ≤ (m1 ×m2) with m1 < N1, m2 < N2.

1. For k2 = 0, . . . , N2 − 1

Compute the inverse Fourier transform ãk2 of the vector (âk1k2)
N1−1
k1=0 with support

104

7.2. A sparse FFT algorithm for matrices with small support

length m1 using Algorithm 4.12.
End (for).

2. Set Ã = (ã0, . . . , ãN2−1).

3. For k1 = 0, . . . , N1 − 1

Compute the inverse Fourier transform ak1 of the vector (ãk1j2)
N2−1
j2=0 with support

length m2 using Algorithm 4.12.
End (for).

4. Set A = (a0, . . . , aN1−1)
T .

Output: A ∈ CN1×N2 .

We include an exemplary Matlab implementation in Section A.3.
From Section 4.3.4 we know that the computational complexity of the numerically

stable Algorithm 4.12 for a vector of length N with support length m is O(m logN). For
the two-dimensional reconstruction of a matrix A ∈ CN1×N2 with support size m1×m2,
in the first step N2 applications of the algorithm to vectors of length N1 with support
length m1 are needed, hence O(N2m1 logN1) arithmetical operations. The second step
requires m1 applications of Algorithm 4.12 to vectors of length N2 with support length
m2 causing O(m1m2 logN2) operations.
This results in a computational complexity of O(m1(N2 logN1 + m2 logN2)) for the

reconstruction of a matrix A ∈ CN1×N2 with support size m1×m2 from Fourier data Â.

Remark 7.7 For exact input data, we can even achieve a lower complexity. In this case,
Algorithm 4.8 can be applied which has a complexity of O(m logm) for the reconstruction
of a vector with support length m from Fourier data. For the application to matrices,
this yields a computational complexity of O(m1(N2 logm1 + m2 logm2)), caused by N2

column transforms each requiring O(m1 logm1) operations and m1 row transforms of
complexity O(m2 logm2).

In the exact case, the number of Fourier values used for each column transform is O(m1)

and O(m2) for the row transforms. Hence, O(N2m1 +m1m2) values are needed for the
complete reconstruction. The number of required Fourier values for reconstruction from
noisy data depends, as in the one-dimensional case, on the number of additional values
used for stabilization.

105

7. A two-dimensional sparse FFT algorithm

7.3. Numerical results

In this section we analyze the numerical performance of the two-dimensional sparse FFT
Algorithm 7.6. We apply the algorithm to recover a matrix A ∈ CN1×N2 from perturbed
Fourier data B̂ = (̂bj1j2)

N1−1,N2−1
j1j2=0 ∈ CN1×N2 with components

b̂j1j2 = âj1j2 + εj1j2 , j1 = 0, . . . , N1, j2 = 0, . . . , N2,

where E = (εj1j2)
N1−1,N2−1
j1j2=0 ∈ CN1×N2 denotes a noise matrix.

In order to measure the intensity of the noise E, we introduce an SNR value which is
similar to the SNR of vectors.

Definition 7.8 The signal-to-noise-ratio (SNR) for the noisy input data B̂ ∈ CN1×N2

is given by

SNR = 20 · log10

∥∥∥Â∥∥∥
F

‖E‖F
= 20 · log10

∥∥∥Â∥∥∥
F∥∥∥B̂− Â
∥∥∥
F

= 20 · log10

√∑N2−1
j2=0

∑N1−1
j1=0 |âj1j2|

2√∑N2−1
j2=0

∑N1−1
j1=0

∣∣∣̂bj1j2 − âj1j2∣∣∣2 .
The error of the reconstructed matrix A′ will be measured by the Frobenius norm

‖A−A′‖F
N1N2

.

We compare the reconstructions by the proposed algorithm to the result of an inverse
Fourier transform directly applied to the noisy data. The error of the reconstruction by
regular inverse FFT is given by

‖A− F−1N1
B̂F−1N2

‖F
N1N2

.

Additionally, the errors can be quantified by the SNR values

SNRalg = 20 · log10

‖A‖F
‖A−A′‖F

resp. SNRIFFT = 20 · log10

‖A‖F
‖A− F−1N1

B̂F−1N2
‖F
.

Let us begin with a small example. We consider the matrix A = (aj1j2)
15
j1,j2=0 ∈ C16×16

106

7.3. Numerical results

with nonzero components a21 = 8, a22 = −3, a32 = −5, a33 = 2, a41 = −1 and a43 = 4.
Hence, all nonzero entries ofA are contained in a submatrix of size 3×3, i.e., the support
size of A is m1 ×m2 = 3× 3.
In this example, the Fourier data Â is perturbed by a noise matrix E with uniformly

generated noise of SNR = 20. The noise matrix has the largest entry maxj1,j2 |εj1j2| =

1.817 and the mean modulus of its components is
∑

j1,j2
|εj1j2|/N1N2 = 1.011.

The nonzero components of the matrix A′, which was reconstructed by the proposed
algorithm, are

a21 = 8.001 + 0.052i, a22 = −3.045− 0.076i, a23 = 0.050 + 0.029i,

a31 = 0.042 + 0.062i, a32 = −5.053− 0.045i, a33 = 1.99− 0.042i,

a41 = −1.069− 0.010i, a42 = −0.004− 0.004i, and a43 = 3.933− 0.007i.

In contrast, there are no zero components in the reconstruction F−1N1
B̂F−1N2

by the inverse
FFT algorithm. However, the components outside the support are very small.
The results yield reconstruction errors of ‖A−A′‖F/256 = 7.360 · 10−4 for our algo-

rithm resp. ‖A − F−1N1
B̂F−1N2

‖F/256 = 4.261 · 10−3 for an inverse FFT algorithm. The
SNR values of the reconstructed matrices are SNRalg = 35.253 and SNRIFFT = 20.
The next example illustrates the application of the algorithm to an image with small

support. We choose the “cameraman” image [6] and consider a modified image with
small support of size 50 × 60 (i.e., we set all components to zero which are outside a
small support set). Then the Fourier transform of the image is perturbed by either
uniformly or normally distributed noise of SNR = 20 and we reconstruct the image from
the noisy Fourier data using our algorithm resp. an inverse FFT algorithm. The results
can be found in Figure 7.1 where we illustrate the real parts of the reconstructions.
There are no obvious differences which can be recognized in the images. However, the

obtained errors for the reconstruction methods are different. In particular, our algorithm
recognizes the support and sets all entries outside the support to zero. The errors are
given in detail in Table 7.1.

Remark 7.9 Similarly to the one-dimensional case (cf. Remarks 4.15 and 4.16), we
observe that for the reconstruction by an inverse FFT algorithm, the reconstruction error
resp. SNRIFFT does not depend on the chosen instance of the noise matrix E, but only
on its SNR value. This holds because the Frobenius norm is invariant under unitary
transforms, similarly to the `2-norm in the vector case. Hence, the computations in
Remarks 4.15 and 4.16 can be done analogously for the matrix case.

107

7. A two-dimensional sparse FFT algorithm

uniformly normally
distributed noise distributed noise

‖A−A′‖F/2562 0.00213 0.00209
‖A− F−1N1

B̂F−1N2
‖F/2562 0.00973 0.00973

SNRalg 33.20 33.36
SNRIFFT 20 20

Table 7.1.: Errors for reconstruction of “cameraman” image with small support.

As a last experiment, we want to investigate the behavior of the algorithm for larger
matrices. To do so, we choose the following setting. Let N = N1 = N2 = 210 = 1024. We
consider matricesA ∈ C1024×1024 with support sizem1×m2 = 10×10 and complex entries
such that |Re(aj1j2)| ≤ 10, |Im(aj1j2)| ≤ 10 holds for all (j1, j2) within the support. For
the numerical experiments the Fourier data is perturbed either by uniformly or normally
distributed noise. At each noise level between SNR = 0 and SNR = 50, we evaluate 100
randomly generated matrices A. These are reconstructed from noisy Fourier data by
the proposed algorithm and by an inverse FFT algorithm.
In order to give an idea of the applied noise level, we list the component

max
j1,j2∈{0,...,N−1}

|εj1j2|

of maximal modulus in E as well as the average modulus

N−1∑
j1,j2=0

|εj1j2|/N2

of the components of E for all noise levels and different kinds of noise in Table 7.2.
The reconstruction errors for uniformly distributed noise resp. for normally distributed

noise are illustrated in Figure 7.2 resp. Figure 7.3.
To summarize our findings, we can state that the deterministic algorithm for recon-

struction of matrices with small support is stable and works equally well for uniformly
and normally distributed noise. Moreover, the results show that our algorithm returns
good results for high noise levels whereas it always has a smaller complexity than the
regular inverse FFT algorithm.

108

7.3. Numerical results

SNR uniformly distributed noise normally distributed noise
maxj1,j2 |εj1j2|

∑
j1,j2
|εj1j2|/N2 maxj1,j2 |εj1j2|

∑
j1,j2
|εj1j2|/N2

0 141.899 76.821 310.068 72.236
5 79.928 43.274 173.118 40.488
10 44.874 24.295 99.280 23.018
15 25.148 13.615 55.457 12.903
20 14.079 7.622 31.005 7.231
25 7.920 4.288 17.475 4.064
30 4.485 2.428 9.818 2.293
35 2.517 1.363 5.455 1.278
40 1.419 0.768 3.086 0.721
45 0.792 0.429 1.745 0.406
50 0.449 0.243 0.983 0.229

Table 7.2.: Component of maximal modulus in E and the average modulus of the com-
ponents of E for all noise levels and different kinds of noise.

109

50 100 150 200 250

50

100

150

200

250
50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250
50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250
50 100 150 200 250

50

100

150

200

250

(a) (b)

50 100 150 200 250

50

100

150

200

250
50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250
50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250
50 100 150 200 250

50

100

150

200

250

(c) (d)

50 100 150 200 250

50

100

150

200

250
50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250
50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250
50 100 150 200 250

50

100

150

200

250

(e) (f)

Figure 7.1.: (a) Original imageA ∈ R256×256; (b) Image with small support of size 50×60;
(c) Reconstruction by Algorithm 7.6 for uniform noise; (d) Reconstruction
by IFFT for uniform noise; (e) Reconstruction by Algorithm 7.6 for normally
distributed noise; (f) Reconstruction by IFFT for normally distributed noise.

7.3. Numerical results

0 10 20 30 40 50
10−8

10−7

10−6

10−5

10−4

SNR

Er
ro

r

sparse FFT
IFFT

0 10 20 30 40 50
−10

0

10

20

30

40

50

60

70

SNR
SN

R

sparse FFT
IFFT

(a) (b)

Figure 7.2.: Uniformly distributed noise, N1 = N2 = 210, m1 × m2 = 10 × 10: (a)
Average reconstruction error ‖A−A′‖2/10242 and (b) average SNRalg resp.
SNRIFFT for different noise levels, comparing the sparse FFT Algorithm 7.6
and regular inverse FFT.

0 10 20 30 40 50
10−8

10−7

10−6

10−5

10−4

SNR

Er
ro

r

sparse FFT
IFFT

0 10 20 30 40 50
−10

0

10

20

30

40

50

60

70

SNR

SN
R

sparse FFT
IFFT

(a) (b)

Figure 7.3.: Normally distributed noise, N1 = N2 = 210, m1 × m2 = 10 × 10: (a)
Average reconstruction error ‖A−A′‖2/10242 and (b) average SNRalg resp.
SNRIFFT for different noise levels, comparing the sparse FFT Algorithm 7.6
and regular inverse FFT.

111

8. Conclusion

This thesis focusses on the reconstruction of vectors or matrices that have small support
or that are sparse from Fourier data. For these types of objects, we developed new
deterministic sparse FFT algorithms for efficient reconstruction.

After presenting an overview on fast Fourier transform algorithms and the reconstruc-
tion from Fourier data in Chapter 2 and introducing the concepts of a small support
and vector periodization in Chapter 3, we developed algorithms for different types of a
priori assumptions in detail.

Chapter 4 was devoted to a new sparse FFT algorithm for vectors x ∈ CN , N = 2J

for J ∈ N, with small support. This algorithm requires the knowledge of the support
length (or an upper bound) m of x and O(m) Fourier values x̂k (in the exact case; for
noisy data, additional values might be chosen for stabilization) from the set of entries of
x̂ ∈ CN , where the components x̂k are adaptively chosen in course of the reconstruction.
We developed an iterative procedure which first computes an inverse FFT of length
2L+1 with 2L ≥ m in order to obtain the periodization x(L+1). This vector x(L+1) is also
a vector with short support length m and additionally all nonzero components of the
complete vector x are already contained in x(L+1) such that we can reconstruct x from
x(L+1) step-by-step using J − (L + 1) additional Fourier values. In case of exact data,
we can even directly reconstruct x from x(L+1) using only one additional Fourier value.
The computational complexity of the algorithm for exact data is O(m logm). For noisy
data, we stabilized the algorithm which then leads to a complexity of O(m logN).

In numerical experiments, we applied uniformly and normally distributed noise and
considered vectors with very short support as well as vectors with comparatively large
support. Our newly developed algorithm turned out to be stable for very different
settings and yields better results than an inverse Fourier transform directly applied to
the noisy data.

The aforementioned algorithm can also be transferred to the two-dimensional case.
In Chapter 7, we first showed how the two-dimensional DFT can be realized efficiently
by row- resp. columnwise application of one-dimensional FFTs such that the new algo-

113

8. Conclusion

rithm developed in Chapter 4 can be used for the reconstruction of matrices with small
support. We implemented the matrix reconstruction algorithm and obtained very good
reconstruction results for different types of noise. Moreover, the algorithm is stable and
outperforms conventional inverse FFT algorithms, similar to the one-dimensional case.

In Chapter 5, we introduced a different new deterministic sparse FFT algorithm.
In this case, we restricted ourselves to the reconstruction of real nonnegative vectors
x ∈ RN

+ . The iterative reconstruction principle, which uses periodizations, is similar
to the aforementioned algorithm but we have weaker a priori conditions here. The
algorithm works for all real nonnegative vectors but it automatically detects a small
support and then employs a more efficient reconstruction method. Hence, we only
require the knowledge of the Fourier values but no bound for the support length.

The principle of this algorithm is again an iterative procedure recovering periodizations
step-by-step from x(0) to x(J) = x. Assuming a support length of m, the complexity
of the algorithm is O(m logm log(N/m)). In numerical experiments with noisy data,
we have shown that it returns better results than the regular inverse FFT, for uni-
formly distributed noise as well as for normally distributed noise whereas it merely uses
O(m log(N/m)) Fourier values. The algorithm was stable in all settings, the only cru-
cial point is to choose the threshold parameter T in a suitable way such that it balances
complexity and accuracy of the algorithm.

The approach was further generalized in Chapter 6 which covers a generalization
of the algorithm for the reconstruction of real nonnegative M -sparse vectors x ∈ RN

+

as in contrast to Chapter 5, we do not assume the components of x to be clustered.
The iterative algorithm includes the solution of a linear system with a matrix that
depends on the distribution of the nonzero entries of the respective periodization at
each reconstruction step. These matrices have to be chosen in a way, that they are
well-conditioned in order to assure stable reconstruction.

We simplified the problem using Vandermonde matrices with knots on the unit circle
that depend on the indices of nonzero entries which have already been found and on one
further parameter σ. This σ can be chosen suitably to improve the condition number of
the Vandermonde matrices. For this setting, bounds on the condition of the occurring
rectangular Vandermonde matrices have been proven. Further, we showed bounds on
the minimal distance of knots on the unit circle, which highly influences the condition
of these matrices.

Although this is a very promising approach, an efficient algorithm for the determina-
tion of the parameter σ is yet to be developed. Moreover, Vandermonde matrices on the

114

unit circle are a field of research on their own, where new results on their condition can
still be obtained. It is an open problem if there are other possibilities of choosing the
reconstruction matrices or even different simplifications than Vandermonde matrices.
The two algorithms for real nonnegative vectors presented in Chapter 5 and 6 might

also be generalized for the two-dimensional case to some extent, although they solely
could be applied for the second reconstruction step. Only here, the recovered vectors
are real and nonnegative (see also Remark 7.5). For the first step, a conventional inverse
FFT algorithm has to be used.
Furthermore, it could be investigated if the reconstruction concept introduced for real

nonnegative vectors can be generalized to complex vectors where the knowledge of the
energy of the Fourier transform could be exploited in order to decide in course of the
reconstruction whether components of x are still “hidden” in zeros.
As a conclusion, our algorithms can be used for applications in different fields. The

sparse FFT algorithms are applicable for all purposes where vectors or images with small
support occur and where the support size might be estimated in advance. In practice,
deterministic algorithms have the advantage that they succeed in any case, which is of
particular importance for applications that are sensitive to failure.

115

A. Exemplary implementations of
deterministic sparse FFT
algorithms

A.1. Implementation of Algorithm 4.12 for vectors

with small support

A.1.1. Algorithm

We show an example for a fast Matlab implementation of Algorithm 4.12 for vectors
with small support. The function xrec = detSmallSuppSparseFFT(data,m) returns
the inverse Fourier Transform xrec for given Fourier data data with noise. The recon-
struction is assumed to have small support where m is an upper bound.� �

1function xrec=detSmallSuppSparseFFT(data,m)

% compute N, L and J
N=length(data);

5J=log2(N);
L=ceil(log2(m));

if L==J || L==J−1
% inverse FFT

10disp(’Support to large! Using standard ifft.’)
xrec=ifft(data);

else
% calculate absolute value of Fourier data (for faster maximum
% calculation later on)

15absdata = abs(data);

% compute x^{(L+1)} by inverse FFT
xa=ifft(data((2^(J−L−1)∗(0:2^(L+1)−1))+1));

20% compute energies in xa
b=zeros(2^(L+1),1);

117

A. Exemplary implementations of deterministic sparse FFT algorithms

b(1)=sum(abs(xa(1:m)).^2);
for k=2:2^(L+1)

b(k)=b(k−1)+abs(xa(mod(m+k−2,2^(L+1))+1))^2−abs(xa(k−1))^2;
25end

% compute argmax e_k
muvector=zeros(2,1);
muvector(1)=find(b==max(b),1)−1;

30% "shifted" Fourier data
yL2=zeros(2^(L+1),1);
yL2(1:2^(L+1))=data((2^(J−L−2)∗(2∗(1:2^(L+1))−1))+1);
z2=ifft(yL2);
% matrix with xa, z2 as columns

35zvectors=[xa,z2];
% compute energies in z2
c=zeros(2^(L+1),1);
c(1)=sum(abs(z2(1:m)).^2);
for k=2:2^(L+1)

40c(k)=c(k−1)+abs(z2(mod(m+k−2,2^(L+1))+1))^2−abs(z2(k−1))^2;
end
c=b+c;
% compute \mu_1^{(L+1)}
muvector(2)=find(c==max(c),1)−1;

45

t=1;
while muvector(t) ~= muvector(t+1)

yLk=zeros(2^(L+1),1);
yLk(1:2^(L+1))=data(mod(2^(J−L−1)∗(0:2^(L+1)−1)+t,N)+1);

50zk=ifft(yLk);
zvectors(:,t+2)=zk;
d=zeros(2^(L+1),1);
d(1)=sum(abs(zk(1:m)).^2);
for k=2:2^(L+1)

55d(k)=d(k−1)+abs(zk(mod(m+k−2,2^(L+1))+1))^2−abs(zk(k−1))^2;
end
c=c+d;
muvector(t+2)=find(c==max(c),1)−1;
t=t+1;

60end

mu=muvector(end);
muL=mu;

65% vector xs is the support of x
xs=xa(mod(mu+(0:m−1),2^(L+1))+1);
for j=L+1:J−1

% find maximal (odd−indexed) component of \hat{x}^{(j+1)}
ind = (2^(J−j−1)+1):(2^(J−j)):(2^J−2^(J−j−1)+1);

70[~,s]=max(absdata(ind));
xhatmax=data(ind(s));
% compute a

118

A.1. Implementation of Algorithm 4.12 for vectors with small support

a=exp(−pi∗1i∗(2∗s−1)∗(mu+(0:m−1))/2^j)∗xs;
if abs(a−xhatmax)>abs(a+xhatmax)

75% if Fourier value is closer to −a, then shift mu
mu=mu+2^j;

end
end

80% improve values of support vector using additional vectors from step 2
zvectors=[zvectors;zvectors];
zvectors=zvectors((muL+1):(muL+m),:);
omegamatrix=zeros(m,t+1);
omegamatrix(:,1)=ones;

85omegamatrix(:,2)=exp(2∗pi∗1i/2^(L+2)∗(mu+(0:m−1)));
for k=3:t+1

omegamatrix(:,k)=exp(2∗pi∗1i/N∗(k−2)∗(mu+(0:m−1)));
end
zvectors=zvectors.∗omegamatrix;

90% improved support vector
xs=sum(zvectors,2)/(t+1);

% build reconstruction xres of x
xrec=zeros(N,1);

95xrec(mod(mu+(0:m−1),2^J)+1)=xs(1:m);
end
end� �
A.1.2. Reconstruction of deterministic sampling vectors

The following Matlab code generates a deterministic sampling vector and applies Al-
gorithm 4.12 to its perturbed Fourier transform.� �

1% set parameters
N = 2^10; % vector length (must be power of 2)
m = 6; % support length

% (should be at most N/4, otherwise use ifft)
5

% set vector entries
x=zeros(N,1);
x(1)=1;
x(2)=2;

10x(1021)=3;
x(1023)=4;
x(1024)=5;

%%%
15% create noisy Fourier data

SNR = 20; % set desired SNR

119

A. Exemplary implementations of deterministic sparse FFT algorithms

xhat=fft(x); % Fourier transform
20

noise=rand(N,1)−0.5+1i∗(rand(N,1)−0.5); % create random uniform noise
noise=norm(xhat)∗10^(−SNR/20)/norm(noise)∗noise; % scale according to SNR
xhatnoise=xhat+noise; % noisy input data

25%%
% apply algorithm to noisy data

xrec=detSmallSuppSparseFFT(xhatnoise,m);� �
A.1.3. Reconstruction of random sampling vectors

The following Matlab code generates a random sampling vector and applies Algo-
rithm 4.12 to its perturbed Fourier transform.� �

1% set parameters
N = 2^20; % vector length (must be power of 2)
m = 20; % support length

% (should be at most N/4, otherwise use ifft)
5

% calculate random sampling vector
x=zeros(N,1); % allocate space
L=ceil(log2(m)); % calculate L
firstsuppind=randi(N); % random first support index

10% calculate support
supp=[firstsuppind:min(firstsuppind+m−1,N),1:firstsuppind+m−1−N];
suppzeros=randi(m−2); % random number of zeros inside support
supp(randperm(m−2,suppzeros)+1)=[]; % delete number of suppzeros support

% indices (not first or last)
15x(supp)=20∗(rand(m−suppzeros,1)−0.5+1i∗(rand(m−suppzeros,1)−0.5));

% set random complex values

%%%
20% create noisy Fourier data

SNR = 20; % set desired SNR

xhat=fft(x); % Fourier transform
25

noise=rand(N,1)−0.5+1i∗(rand(N,1)−0.5); % create random uniform noise
noise=norm(xhat)∗10^(−SNR/20)/norm(noise)∗noise; % scale according to SNR
xhatnoise=xhat+noise; % noisy input data

30%%
% apply algorithm to noisy data

xrec=detSmallSuppSparseFFT(xhatnoise,m);� �
120

A.2. Implementation of Algorithm 5.4 for real nonnegative vectors

A.2. Implementation of Algorithm 5.4 for real

nonnegative vectors

A.2.1. Algorithm

In this section, we give an example for a Matlab implementation of Algorithm 5.4 for
real nonnegative vectors. The given Fourier data might be noisy and the support length
of x needs not to be given. The function xrec = detRealNonnegSparseFFT(data)

returns the inverse Fourier Transform xrec for a given noisy Fourier vector data. The
reconstruction x is assumed to be real and nonnegative.� �

1function xrec=detRealNonnegSparseFFT(data)

% compute N and J
N=length(data);

5J=log2(N);

% fix parameter for threshold
T=0.1;

10% x^{(0)}=xhat(0)
xj=data(1);

% if xhat(0)=0, then x=0
if xj<T

15xrec=zeros(N,1);
else

% set muj and support length for x^{(0)}
muj=0;
supplengthj=1;

20% compute first x^{(1)} (via case 1)
xj=0.5∗[xj+data(N/2+1);xj−data(N/2+1)];

for j=1:J−1
% compute the support length of the vector xj

25% first determine the support (xj from preceding reconstruction step
% has zeros outside the possible support interval)

%%%%%%%%%%%%%%%%%%%%%%%%%
% a = find(xj>=T); % uncomment this for using "find" command to

30% identify the indices where xj>=T
%%%%%%%%%%%%%%%%%%%%%%%%%

% determine all indices where xj>=T in case that support lies
% "modulo vector length" of the preceding periodization

35if muj>2^(j−1)−supplengthj
s11=xj(1:muj−2^(j−1)+supplengthj);

121

A. Exemplary implementations of deterministic sparse FFT algorithms

s12=xj(muj+1:2^(j−1));
a11=find(s11>=T);
a12=find(s12>=T)+muj;

40a1=[a11;a12];

s21=xj(2^(j−1)+1:muj+supplengthj);
s22=xj(2^(j−1)+muj+1:2^j);
a21=find(s21>=T)+2^(j−1);

45a22=find(s22>=T)+2^(j−1)+muj;
a2=[a21;a22];

a=[a1;a2]; % contains indices where xj>=T

50% determine all indices where xj>=T in case that support lies
% "in the middle" of the preceding periodization
else

supp1=xj(muj+1:muj+supplengthj);
supp2=xj(muj+1+2^(j−1):muj+supplengthj+2^(j−1));

55a1=find(supp1>=T)+muj;
a2=find(supp2>=T)+muj+2^(j−1);

a=[a1;a2]; % contains indices where xj>=T
end

60%%%%%%%%%%%%%%%%%%%%%%%%%

if isempty(a)
xrec=zeros(N,1);
return;

65end

b=[a(end)−2^j;a];
% compute the differences between the indices in a
c(1:length(a))=b(2:length(b))−b(1:length(a));

70% the support interval is the "complement" of the longest interval
% of zeros
supplengthj=2^j−max(c)+1;

% find last index of the longest interval of zeros; the subsequent
75% index is the first support index

d=find(c==max(c),1);
muj=b(d+1)−1;

if supplengthj>2^(j−1) % case 1
80% set entries outside the support of xj to zero and apply

% threshold within support
xj(mod(muj+supplengthj:muj+2^j−1,2^j)+1)=0;
xj=real(xj);
xj(mod(muj+(0:supplengthj−1),2^j)+1)=...

85xj(mod(muj+(0:supplengthj−1),2^j)+1).∗...
(xj(mod(muj+(0:supplengthj−1),2^j)+1)>=T);

122

A.2. Implementation of Algorithm 5.4 for real nonnegative vectors

y(1:2^j,1)=data(2^(J−j−1)∗(2∗(1:2^j)−1)+1);
z=exp(pi∗1i∗(0:2^j−1)/2^j).’.∗ifft(y);

90% (only compute the parts where support of the next periodization
% can be located)
z(mod(muj+supplengthj:muj+2^j−1,2^j)+1)=0;
xj=0.5∗[xj+z;xj−z];

95else % case 2
Lj=ceil(log2(supplengthj)); % compute L_j
% pick interval of length 2^Lj from xj which contains support
u=xj(mod(muj+(0:(supplengthj−1)),2^j)+1);
u=real(u);

100u(u<T)=0;
u(supplengthj+1:2^Lj)=0;
y=data(2^(J−Lj)∗(0:2^Lj−1)+2^(J−j−1)+1);

if muj>2^j−2^Lj
105z= exp(pi∗1i∗muj/2^j)∗...

[ones(2^j−muj,1);−ones(2^Lj−2^j+muj,1)].∗...
exp(pi∗1i∗(0:(2^Lj−1)).’/2^j).∗...
ifft(exp(2∗pi∗1i∗muj∗(0:2^Lj−1).’/2^Lj).∗y);

else
110z= exp(pi∗1i∗muj/2^j)∗...

exp(pi∗1i∗(0:(2^Lj−1)).’/2^j).∗...
ifft(exp(2∗pi∗1i∗muj∗(0:2^Lj−1).’/2^Lj).∗y);

end

115z(supplengthj+1:2^Lj)=0; % (only compute the parts where support of
% the next periodization can be located)

% two parts of support of new xj
v0=0.5∗(u+z);
v1=0.5∗(u−z);

120

% "insert" support into vectors of length 2^j
w0=zeros(2^j,1);
w0(mod(muj+(0:(2^Lj−1)),2^j)+1)=v0(1:2^Lj);
w1=zeros(2^j,1);

125w1(mod(muj+(0:(2^Lj−1)),2^j)+1)=v1(1:2^Lj);

% build xj
xj=[w0;w1];

end
130end

% determine the support of x, as in each iteration step above

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
135% a=find(xj>=T); % uncomment this for using "find" command to identify

% the indices where xj>=T
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

123

A. Exemplary implementations of deterministic sparse FFT algorithms

if muj>2^(J−1)−supplengthj
140s11=xj(1:muj−2^(J−1)+supplengthj);

s12=xj(muj+1:2^(J−1));
a11=find(s11>=T);
a12=find(s12>=T)+muj;
a1=[a11;a12];

145

s21=xj(2^(J−1)+1:muj+supplengthj);
s22=xj(2^(J−1)+muj+1:2^J);
a21=find(s21>=T)+2^(J−1);
a22=find(s22>=T)+2^(J−1)+muj;

150a2=[a21;a22];

a=[a1;a2];
else

supp1=xj(muj+1:muj+supplengthj);
155supp2=xj(muj+1+2^(J−1):muj+supplengthj+2^(J−1));

a1=find(supp1>=T)+muj;
a2=find(supp2>=T)+muj+2^(J−1);

a=[a1;a2];
160end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if isempty(a)
xrec=zeros(N,1);

165return;
end

b=[a(end)−2^J;a];
c(1:length(a))=b(2:length(b))−b(1:length(a));

170supplengthj=2^J−max(c)+1;
d=find(c==max(c),1);
muj=b(d+1)−1;

% set entries outside the support of xj to zero
175xj(mod(muj+supplengthj:muj+2^J−1,2^J)+1)=0;

xj=real(xj);
xj(mod(muj+(0:supplengthj−1),2^J)+1)=...

xj(mod(muj+(0:supplengthj−1),2^J)+1).∗...
(xj(mod(muj+(0:supplengthj−1),2^J)+1)>=T);

180

xrec=xj;

end
end� �

124

A.2. Implementation of Algorithm 5.4 for real nonnegative vectors

A.2.2. Reconstruction of deterministic sampling vectors

The following Matlab code generates a deterministic sampling vector and applies Al-
gorithm 5.4 to its perturbed Fourier transform.� �

1% set parameters
N = 2^10; % vector length (must be power of 2)

% set vector entries
5x=zeros(N,1);

x(1)=1;
x(2)=2;
x(3)=3;
x(4)=4;

10x(5)=5;

%%
% create noisy Fourier data

15SNR = 20; % set desired SNR

xhat=fft(x); % Fourier transform

noise=rand(N,1)−0.5+1i∗(rand(N,1)−0.5); % create random uniform noise
20noise=norm(xhat)∗10^(−SNR/20)/norm(noise)∗noise; % scale according to SNR

xhatnoise=xhat+noise; % noisy input data

%%
% apply algorithm to noisy data

25

xrec=detRealNonnegSparseFFT(xhatnoise);� �
A.2.3. Reconstruction of random sampling vectors

The following Matlab code generates a random sampling vector and applies Algo-
rithm 4.12 to its perturbed Fourier transform.� �

1%set parameters
N = 2^15; % vector length (must be power of 2)
m = 15; % support length

5% calculate random sampling vector
x=zeros(N,1); % allocate space
L=ceil(log2(m)); % calculate L
firstsuppind=randi(N); % random first support index

% calculate support
10supp=[firstsuppind:min(firstsuppind+m−1,N),1:firstsuppind+m−1−N];

suppzeros=randi(m−2); % random number of zeros inside support
supp(randperm(m−2,suppzeros)+1)=[]; % delete number of suppzeros support

125

A. Exemplary implementations of deterministic sparse FFT algorithms

% indices (not first or last)
x(supp)=10∗(rand(m−suppzeros,1)); % set random complex values

15

%%
% create noisy Fourier data

SNR = 20; % set desired SNR
20

xhat=fft(x); % Fourier transform

noise=rand(N,1)−0.5+1i∗(rand(N,1)−0.5); % create random uniform noise
noise=norm(xhat)∗10^(−SNR/20)/norm(noise)∗noise; % scale according to SNR

25xhatnoise=xhat+noise; % noisy input data

%%
% apply algorithm to noisy data

30xrec=detRealNonnegSparseFFT(xhatnoise);� �
A.3. Implementation of Algorithm 7.6 for matrices

with small support

A.3.1. Algorithm

The following Matlab code gives an exemplary implementation of Algorithm 7.6. The
function detSmallSuppSparseFFT used below is Algorithm 4.12 for the reconstruction
of vectors with small support whose implementation is given in Section A.1. The func-
tion xrec = det2DSmallSuppSparseFFT(data,m) returns the inverse Fourier Transform
xrec for given Fourier data data with noise. The reconstruction is assumed to have short
support where m1× m2 is an upper bound.� �

1function xrec = det2DSmallSuppSparseFFT(data,m1,m2)

[N1,N2]=size(data);

5% apply column transforms
for r=1:N2

Xa(:,r)=detSmallSuppSparseFFT(data(:,r),m1);
end

10% apply row transforms
for s=1:N1

Xrec(s,:)=detSmallSuppSparseFFT(Xa(s,:).’,m2).’;
end
end

126

A.3. Implementation of Algorithm 7.6 for matrices with small support

� �
A.3.2. Reconstruction of deterministic sampling matrices

The following Matlab code generates a deterministic sampling matrix and applies
Algorithm 7.6 to its perturbed Fourier transform.� �

1% set parameters
N1 = 2^4; % number of rows (must be power of 2)
N2 = 2^4; % number of columns (must be power of 2)
m1 = 3; % support length (should be at most N1/4)

5m2 = 3; % support length (should be at most N2/4)

% set matrix entries
X=zeros(N1,N2);
X(3,2)=8;

10X(3,3)=−3;
X(4,3)=−5;
X(4,4)=2;
X(5,2)=−1;
X(5,4)=4;

15

%%%
% create noisy Fourier data

SNR = 20; % set desired SNR
20

Xhat=fft2(X); % Fourier transform

Noise=rand(N1,N2)−0.5+1i∗(rand(N1,N2)−0.5); % create random uniform noise
% scale according to SNR

25Noise=norm(Xhat,’fro’)∗10^(−SNR/20)/norm(Noise,’fro’)∗Noise;
Xhatnoise=Xhat+Noise; % noisy input data

%%
% apply algorithm to noisy data

30

xrec = det2DSmallSuppSparseFFT(data,m1,m2);� �
A.3.3. Reconstruction of random sampling matrices

The following Matlab code generates a random sampling matrix and applies Algo-
rithm 7.6 to its perturbed Fourier transform.� �

1% set parameters
N1 = 2^10; % number of rows (must be power of 2)
N2 = 2^10; % number of columns (must be power of 2)

127

A. Exemplary implementations of deterministic sparse FFT algorithms

m1 = 10; % support length (should be at most N1/4)
5m2 = 10; % support length (should be at most N2/4)

% calculate random sampling matrix
X=zeros(N1,N2); % allocate space
fsind=[randi(N1−m1+1),randi(N2−m2+1)]; % random first support index

10

X(fsind(1):fsind(1)+m1−1,fsind(2):fsind(2)+m2−1)=...
20∗(rand(m1,m2)−0.5+1i∗(rand(m1,m2)−0.5));

%%%
15% create noisy Fourier data

SNR = 20; % set desired SNR

Xhat=fft2(X); % Fourier transform
20

Noise=rand(N1,N2)−0.5+1i∗(rand(N1,N2)−0.5); % create random uniform noise
% scale according to SNR

Noise=norm(Xhat,’fro’)∗10^(−SNR/20)/norm(Noise,’fro’)∗Noise;
Xhatnoise=Xhat+Noise; % noisy input data

25

%%
% apply algorithm to noisy data

xrec = det2DSmallSuppSparseFFT(data,m1,m2);� �

128

Bibliography

[1] A. Akavia. Deterministic sparse Fourier approximation via fooling arithmetic pro-
gressions. In Proceedings of the 23rd International Conference on Learning Theory,
pages 381–393, 2010.

[2] A. Akavia. Deterministic sparse Fourier approximation via approximating arith-
metic progressions. IEEE Transactions on Information Theory, 60(3):1733–1741,
2014.

[3] D. Batenkov and Y. Yomdin. On the accuracy of solving confluent Prony systems.
SIAM Journal on Applied Mathematics, 73(1):134–154, 2013.

[4] L. Berman and A. Feuer. On perfect conditioning of Vandermonde matrices on the
unit circle. Electronic Journal of Linear Algebra, 16:157–161, 2007.

[5] G. Beylkin and L. Monzón. On approximation of functions by exponential sums.
Applied and Computational Harmonic Analysis, 19(1):17–48, 2005.

[6] cameraman image. cameraman.tif, available in Matlab Image Processing Toolbox,
see http://www.mathworks.com/help/pdf_doc/images/images_tb.pdf.

[7] E. J. Candes, J. K. Romberg, and T. Tao. Stable signal recovery from incomplete
and inaccurate measurements. Communications on Pure and Applied Mathematics,
59(8):1207–1223, 2006.

[8] A. Christlieb, D. Lawlor, and Y. Wang. A multiscale sub-linear time Fourier algo-
rithm for noisy data. Applied and Computational Harmonic Analysis, 40(3):553–
574, 2016.

[9] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex
Fourier series. Mathematics of Computation, 19:297–301, 1965.

129

Bibliography

[10] B. G. R. de Prony. Essai éxperimental et analytique: sur les lois de la Dilatabilité
de fluides élastique et sur celles de la Force expansive de la vapeur de l’alkool, a
différentes températures. Journal de l’école polytechnique, 1(22):24–76, 1795.

[11] C. J. Demeure. Fast QR factorization of Vandermonde matrices. Linear Algebra
and its Applications, 122/123/124:165–194, 1989.

[12] D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,
52(4):1289–1306, 2006.

[13] P. L. Dragotti, M. Vetterli, and T. Blu. Sampling moments and reconstructing
signals of finite rate of innovation: Shannon meets Strang-Fix. IEEE Transactions
on Signal Processing, 55(5, part 1):1741–1757, 2007.

[14] F. Filbir, H. N. Mhaskar, and J. Prestin. On the problem of parameter estimation
in exponential sums. Constructive Approximation, 35(3):323–343, 2012.

[15] A. C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and M. Strauss. Near-optimal
sparse Fourier representations via sampling. In Proceedings of the 34th annual ACM
Symposium on Theory of Computing, pages 152–161. ACM, 2002.

[16] A. C. Gilbert, P. Indyk, M. Iwen, and L. Schmidt. Recent developments in the
sparse Fourier transform: A compressed Fourier transform for big data. IEEE
Signal Processing Magazine, 31(5):91–100, 2014.

[17] A. C. Gilbert, S. Muthukrishnan, and M. Strauss. Improved time bounds for near-
optimal sparse Fourier representations. In Optics & Photonics 2005. International
Society for Optics and Photonics, 2005.

[18] A. C. Gilbert, M. J. Strauss, and J. A. Tropp. A tutorial on fast fourier sampling.
IEEE Signal Processing Magazine, 25(2):57–66, 2008.

[19] J. J. Green. Calculating the maximum modulus of a polynomial using Stečkin’s
lemma. SIAM Journal on Numerical Analysis, 36(4):1022–1029, 1999.

[20] H. Hassanieh, F. Adib, D. Katabi, and P. Indyk. Faster GPS via the sparse Fourier
transform. In Proceedings of the 18th Annual International Conference on Mobile
Computing and Networking, pages 353–364. ACM, 2012.

130

Bibliography

[21] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Nearly optimal sparse Fourier
transform. In Proceedings of the 44th Annual ACM Symposium on Theory of Com-
puting, pages 563–578. ACM, 2012.

[22] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Simple and practical algorithm for
sparse Fourier transform. In Proceedings of the 23rd annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1183–1194. SIAM, 2012.

[23] H. Hassanieh, L. Shi, O. Abari, E. Hamed, and D. Katabi. GHz-wide sensing and
decoding using the sparse Fourier transform. In IEEE Conference on Computer
Communications, pages 2256–2264. IEEE, 2014.

[24] Y. Hua and T. K. Sarkar. Matrix pencil method for estimating parameters of expo-
nentially damped/undamped sinusoids in noise. IEEE Transactions on Acoustics,
Speech and Signal Processing, 38(5):814–824, 1990.

[25] P. Indyk and M. Kapralov. Sample-optimal fourier sampling in any constant di-
mension. In IEEE 55th Annual Symposium on Foundations of Computer Science
(FOCS), pages 514–523. IEEE, 2014.

[26] P. Indyk, M. Kapralov, and E. Price. (Nearly) sample-optimal sparse Fourier trans-
form. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 480–499. SIAM, 2014.

[27] M. A. Iwen. Combinatorial sublinear-time Fourier algorithms. Foundations of
Computational Mathematics, 10(3):303–338, 2010.

[28] M. A. Iwen. Improved approximation guarantees for sublinear-time Fourier algo-
rithms. Applied and Computational Harmonic Analysis, 34(1):57–82, 2013.

[29] D. Lawlor, Y. Wang, and A. Christlieb. Adaptive sub-linear time Fourier algo-
rithms. Advances in Adaptive Data Analysis, 5(01):1350003, 2013.

[30] A. Moitra. Super-resolution, extremal functions and the condition number of Van-
dermonde matrices. In Proceedings of the 2015 ACM Symposium on Theory of
Computing, pages 821–830. ACM, 2015.

[31] H. L. Montgomery and R. C. Vaughan. Hilbert’s inequality. Journal of the London
Mathematical Society (2), 8:73–82, 1974.

131

Bibliography

[32] J. Morgenstern. Note on a lower bound of the linear complexity of the fast Fourier
transform. Journal of the Association for Computing Machinery, 20:305–306, 1973.

[33] H. J. Nussbaumer. Fast Fourier transform and convolution algorithms, volume 2 of
Springer Series in Information Sciences. Springer-Verlag, 1981.

[34] S. Pawar and K. Ramchandran. Computing a k-sparse n-length discrete Fourier
transform using at most 4k samples and O(k log k) complexity. In IEEE Interna-
tional Symposium on Information Theory Proceedings (ISIT), pages 464–468. IEEE,
2013.

[35] T. Peter and G. Plonka. A generalized Prony method for reconstruction of sparse
sums of eigenfunctions of linear operators. Inverse Problems, 29(2):025001, 21, 2013.

[36] T. Peter, D. Potts, and M. Tasche. Nonlinear approximation by sums of exponentials
and translates. SIAM Journal on Scientific Computing, 33(4):1920–1947, 2011.

[37] G. Plonka and M. Tasche. Prony methods for recovery of structured functions.
GAMM-Mitteilungen, 37(2):239–258, 2014.

[38] G. Plonka and K. Wannenwetsch. A deterministic sparse FFT algorithm for vectors
with short support. Oberwolfach Reports, 38:41–44, 2015.

[39] G. Plonka and K. Wannenwetsch. Deterministic sparse FFT algorithms. PAMM,
15(1):667–668, 2015.

[40] G. Plonka and K. Wannenwetsch. A deterministic sparse FFT algorithm for vectors
with small support. Numerical Algorithms, 71(4):889–905, 2016.

[41] G. Plonka and K. Wannenwetsch. A sparse fast Fourier algorithm for real nonneg-
ative vectors. arXiv preprint, arXiv:1602.05444, 2016.

[42] D. Potts, S. Kunis, S. Heider, and M. Veit. A sparse Prony FFT. In 10th Interna-
tional Conference on Sampling Theory and Applications (SampTA), pages 572–575,
2013.

[43] D. Potts, G. Steidl, and M. Tasche. Fast fourier transforms for nonequispaced data:
A tutorial. In Modern sampling theory, pages 247–270. Springer, 2001.

[44] D. Potts and M. Tasche. Parameter estimation for exponential sums by approximate
Prony method. Signal Processing, 90(5):1631–1642, 2010.

132

Bibliography

[45] D. Potts and M. Tasche. Nonlinear approximation by sums of nonincreasing expo-
nentials. Applicable Analysis, 90(3-4):609–626, 2011.

[46] D. Potts and M. Tasche. Parameter estimation for nonincreasing exponential sums
by Prony-like methods. Linear Algebra and its Applications, 439(4):1024–1039,
2013.

[47] D. Potts, M. Tasche, and T. Volkmer. Efficient spectral estimation by MUSIC and
ESPRIT with application to sparse FFT. Frontiers in Applied Mathematics and
Statistics, 2:1, 2016.

[48] R. Roy and T. Kailath. ESPRIT-estimation of signal parameters via rotational
invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, 37(7):984–995, 1989.

[49] R. Schmidt. Multiple emitter location and signal parameter estimation. IEEE
Transactions on Antennas and Propagation, 34(3):276–280, 1986.

[50] I. R. Shafarevich and A. Remizov. Linear Algebra and Geometry. Springer, 2012.

[51] L. Shi, O. Andronesi, H. Hassanieh, B. Ghazi, D. Katabi, and E. Adalsteins-
son. MRS Sparse-FFT: Reducing Acquisition Time And Artifacts For In Vivo
2D Correlation Spectroscopy. In ISMRM’13, Int. Society for Magnetic Resonance
in Medicine Annual Meeting and Exhibition, 2013.

[52] G. Steidl and M. Tasche. Schnelle Fourier-Transformationen - Theorie und An-
wendungen. Lehrbriefe der FernUniversität Hagen. 1998.

[53] C. Van Loan. Computational frameworks for the fast Fourier transform, volume 10.
SIAM, 1992.

[54] M. Vetterli, P. Marziliano, and T. Blu. Sampling signals with finite rate of innova-
tion. IEEE Transactions on Signal Processing, 50(6):1417–1428, 2002.

[55] P. K. Yenduri and A. C. Gilbert. Compressive, collaborative spectrum sensing for
wideband cognitive radios. In 2012 International Symposium on Wireless Commu-
nication Systems (ISWCS), pages 531–535. IEEE, 2012.

133

Curriculum vitae

	List of Figures
	List of Tables
	Notation
	Introduction
	Reconstructing vectors from Fourier data
	Discrete Fourier Transform
	Fast Fourier Transform
	Reconstructing vectors with one nonzero component from Fourier data
	Reconstructing sparse vectors from Fourier data: Prony's method

	Preliminaries for sparse FFT algorithms
	Vectors with small support and vector periodization
	Sparse vector reconstruction for other bases

	A sparse FFT algorithm for vectors with small support
	Preliminaries
	Reconstructing vectors with small support from exact Fourier data
	Reconstructing vectors with small support from noisy Fourier data
	Stable identification of the support interval of x^(L+1)
	Stable identification of the support interval of x
	Evaluation of the nonzero components of x
	Algorithm

	Numerical results

	A sparse FFT algorithm for real nonnegative vectors
	Reconstructing real nonnegative vectors from Fourier data
	Algorithm
	Numerical results

	An adaptive sparse FFT algorithm
	An adaptive approach for stable reconstruction from Fourier data
	Vandermonde matrices with knots on the unit circle

	A two-dimensional sparse FFT algorithm
	Two-dimensional FFT
	A sparse FFT algorithm for matrices with small support
	Numerical results

	Conclusion
	Exemplary implementations of deterministic sparse FFT algorithms
	Implementation of Algorithm 4.12 for vectors with small support
	Algorithm
	Reconstruction of deterministic sampling vectors
	Reconstruction of random sampling vectors

	Implementation of Algorithm 5.4 for real nonnegative vectors
	Algorithm
	Reconstruction of deterministic sampling vectors
	Reconstruction of random sampling vectors

	Implementation of Algorithm 7.6 for matrices with small support
	Algorithm
	Reconstruction of deterministic sampling matrices
	Reconstruction of random sampling matrices

	Bibliography
	Curriculum vitae

