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3. ABSTRACT 

In bacteria, translation initiation is promoted by three initiation factors (IF1, IF2 and IF3) and 

entails three distinct steps. First, the small ribosomal subunit (30S) recruits the initiation 

factors, initiator tRNA (fMet-tRNAfMet), mRNA and GTP to form a 30S pre-initiation complex 

(IC). During the next step, the complex matures into a 30S IC upon start codon-anticodon 

recognition between the mRNA and fMet-tRNAfMet. Finally, the large ribosomal subunit (50S) 

associates with the 30S IC giving rise to a 70S IC which can participate in the first peptide 

bond formation. Here, the timing and control of reactions that occur after subunit joining are 

studied with the help of rapid kinetic techniques and fluorescence-labeled translation 

components. A detailed kinetic model, based on global fitting of time courses, obtained with 

ten different reporters, is presented. The interplay between IF1 and IF3, as well as the role of 

IF2-dependent GTP hydrolysis in promoting 70S IC formation is studied. We observe that IF1 

and IF3 together affect the rate of subunit joining, but not the following steps of 70S IC 

maturation. GTP hydrolysis does not regulate IF3 dynamics but is required for the efficient 

dissociation of fMet-tRNAfMet from IF2. The absence of GTP hydrolysis also prevents the 

dissociation of IF1 and IF2 from the 70S ribosome and the equilibrium is shifted towards a 

stable 70S–IF1–IF2–mRNA–fMet-tRNAfMet complex, suggesting that GTP hydrolysis guides 

the irreversible transition of the 70S complex into an elongation-competent state.  
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4. INTRODUCTION 

All life forms depend on critical cellular processes which are carried out by a myriad of 

proteins. Proteins are linear polymers consisting of amino acids whose sequence is encoded 

in the messenger RNA (mRNA). Protein synthesis is a fundamental process during which the 

coding sequence of the mRNA is translated by the ribosome into a corresponding 

polypeptide chain. The ribosome performs this task with the help of several translation 

factors, by recruiting the transfer RNA (tRNA) substrate which carries the respective amino 

acid. The bacterial translation apparatus is an important target for antibiotics, and 

compensatory mutations in the ribosome or translation factors lead to the generation of 

resistant strains.  In mammals, defects in any part of the translation apparatus, including but 

not limited to mRNA, tRNA, tRNA modifying enzymes, translation factors or the ribosomal 

proteins, have been implicated in neurodegenerative and autoimmune diseases as well as 

tumorigenesis. In addition, several viruses have evolved to competently hijack the translation 

machinery of their host to favor their own propagation. Due to its significance in health and 

disease, the translation process warrants in-depth study, as the resulting mechanistic or 

structural insights may help generate novel therapeutic agents. 

4.1. The Ribosome  

Ribosomes are large macromolecular complexes (2.5-4.3 MDa) responsible for protein 

synthesis inside the cell. Bacterial ribosomes consist of roughly 60% RNA and 40% proteins. 

The interior of the ribosome is composed mostly of ribosomal RNA (rRNA), while the 

ribosomal proteins are found in the exterior of the particle, nestled between the rRNA 

elements (Ban et al., 2000). Bacterial ribosomes have a sedimentation coefficient of 70S 

(Svedberg units) and consist of a small (30S) and a large (50S) subunit. The 30S subunit 

consists of 21 polypeptide chains (designated S1 – S21) surrounding a 16S rRNA (~1500 

nts). The 30S subunit binds to the mRNA template and ensures faithful decoding of mRNA 

codons. The 50S subunit consists of the 23S rRNA (~2900 nts), 5S rRNA (~120 nts), and 34 

ribosomal proteins (designated L1 - L34). It holds two important catalytic centers - the 

peptidyl transferase center (PTC) which catalyzes the peptide bond formation, and the 

GTPase-activating center that stimulates the GTPase activity of the translation factors. The 

two subunits interact with each other via inter-subunit bridges formed by proteins and rRNA 

elements at the subunit interface. The ribosome contains three binding sites for tRNA (Fig. 

1): the aminoacyl (A) site receives the incoming aminoacyl tRNA, the peptidyl (P) site holds 
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the tRNA bound to the polypeptide chain and the exit (E) site guides the release of the 

deacylated tRNA from the ribosome.  

 

Figure 1. Structure of the ribosome. Crystal structure of the 70S ribosome complex with 
the mRNA and tRNAs (Schmeing and Ramakrishnan, 2009). The 30S and 50S subunits are 
depicted in blue and orange, respectively. The tRNAs in the A, P, and E sites are shown in 
magenta, green, and yellow, respectively. The mRNA forms codon-anticodon interactions 
with the tRNAs in the decoding centre of the 30S subunit. 

Early structural information about the bacterial ribosome was derived mainly from low-

resolution cryo-electron microscopy, cross-linking and chemical footprinting studies 

(reviewed in (Fraser and Doudna, 2007; Green et al., 1998)). Advances in the field of 

crystallization, data collection and computation facilitated the determination of several crystal 

structures (Ban et al., 2000; Harms et al., 2001; Schluenzen et al., 2000; Schuwirth et al., 

2005; Selmer et al., 2006; Wimberly et al., 2000; Yusupov et al., 2001; Yusupova et al., 

2001) and gave valuable insights into the architecture of the ribosome. Recent high-

resolution cryo-EM structures (Bai et al., 2013; Fischer et al., 2015; Li et al., 2015) have 

provided a dynamic picture of conformational states occupied by the ribosome during 

translation. Biochemical and genetic approaches have been used to dissect different stages 

of the translation pathway, as well as to study the importance of various ribosomal proteins, 

rRNA, translation factors and tRNAs. Rapid kinetic and single-molecule fluorescence 

techniques have allowed us to monitor conformational changes and ligand interactions on 
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the ribosome and have given rise to detailed models of translation in bacteria (Blanchard, 

2009; Blanchard et al., 2004; Milon et al., 2008; Milon et al., 2012; Pape et al., 1998; Peske 

et al., 2005; Petrov et al., 2012; Rodnina et al., 2006; Rodnina et al., 1997; Savelsbergh et 

al., 2003; Shoji et al., 2009; Wintermeyer et al., 2004). Complementing the advances made 

in solving the ribosome structures by X-ray crystallography and cryo-EM, the biochemical 

and biophysical techniques have provided a comprehensive mechanistic insight into the 

dynamics of the ribosome and translation factors.  
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4.2. The translational cycle 

Translation by the ribosome occurs in four major stages: initiation, elongation, termination, 

and ribosome recycling (reviewed in (Ramakrishnan, 2002)) (Fig. 2). Several translation 

factors termed initiation factors (IF), elongation factors (EF) and release factors (RF) facilitate 

each step.  

 

Figure 2. Translation cycle in bacteria. Translation involves four stages - initiation, 
elongation, termination and ribosomal recycling. During translation initiation, the 30S subunit 
binds IF1, IF2-GTP, IF3, initiator tRNA (fMet-tRNAfMet) and mRNA. The 50S subunit joins this 
complex, IF2 hydrolyses GTP and all IFs are released. During elongation, EF-Tu and EF-G 
facilitate lengthening of the polypeptide chain until a stop codon is encountered (see text for 
details). RF1, RF2, and RF3 and recycling factors (RRF, EF-G) promote polypeptide release 
and subunit dissociation allowing the translation machinery to undergo subsequent initiation 
events (Agirrezabala and Frank, 2010). 

During translation initiation, the 30S subunit binds the mRNA, IF1, IF2 (a GTP-binding 

protein), IF3 and fMet-tRNAfMet to form a 30S pre-initiation complex (30S PIC). The anticodon 

of fMet-tRNAfMet base-pairs with the AUG start codon of the mRNA and the ribosomal 

complex matures into a 30S initiation complex (30S IC). Upon 50S subunit joining, GTP 
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hydrolysis by IF2 is triggered, fMet-tRNAfMet enters the canonical P/P site and all IFs are 

released to give rise to a mature 70S IC which can partake in peptide bond formation.  

In the next phase of translation elongation, EF-Tu (a GTP-binding protein) carries an 

aminoacyl-tRNA (aa-tRNAaa) to the A site of the ribosome. After correct codon-anticodon 

interaction is established between the mRNA and the aa-tRNAaa, in a process known as 

decoding, EF-Tu hydrolyses GTP and dissociates from the ribosome. The aa-tRNAaa is 

accommodated into the ribosomal A site and the peptidyl transferase center (PTC) on the 

50S subunit catalyzes peptide bond formation between the two tRNAs present in the A and P 

sites. The ribosomal subunits rotate with respect to each other, triggering the tRNAs to enter 

hybrid P/E and A/P sites, where the anticodon loops of the tRNAs remain in the P and A site 

of the 30S subunit and the respective acceptor stems move into the E and P sites of the 50S 

subunit.  Thereafter, in a process known as translocation, EF-G (a GTP-binding protein) 

binds to the ribosome and promotes the movement of the mRNA and tRNAs on the 30S 

subunit from the P and A sites to the E site and P sites, respectively. Translocation is 

coupled to GTP hydrolysis by EF-G. Subsequently, EF-G and the E-site deacylated tRNA 

dissociate from the ribosome. Multiple rounds of decoding and translocation take place until 

a stop codon (UAA, UAG or UGA) enters the A site of the ribosome.  

Stop codons are recognized by class I release factors RF1 and RF2 which enter the A site 

and promote hydrolysis of the aminoacyl ester bond of the P site peptidyl tRNA, resulting in 

the release of the nascent peptide chain from the ribosome. Another release factor, RF3, 

facilitates dissociation of RF1/2 from the ribosome. GTP hydrolysis by RF3 promotes its own 

release from the complex. Finally, the ribosomal subunits are separated to take part in further 

rounds of translation. The ribosomal release factor (RRF) perturbs the bridging interactions 

between the subunits while EF-G promotes subunit dissociation. The mRNA is released and 

IF3 binds the 30S subunit to stabilize the subunit dissociation event and promote the release 

of deacylated tRNA.  

In the following text, we will focus on translation initiation in bacteria. First, the different 

components which participate in the process are introduced. The current understanding of 

the initiation mechanism is discussed and finally, a brief summary describing the aim of the 

thesis is provided. 
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4.3. Key players involved in bacterial translation initiation 

4.3.1. mRNA 

Bacterial mRNAs are usually polycistronic and harbor a translation initiation region (TIR) 

spanning 30-35 nts which affects the efficiency of ribosome recruitment (Dreyfus, 1988). The 

highly efficient TIR is characterized by several features such as (i) the AUG start codon (ii) 

presence of the Shine-Dalgarno (SD) sequence (iii) low thermodynamic stability of RNA 

folding around the initiation site, and (iv) presence of A/U rich sequence elements in the 5’ 

mRNA leader, the average length of which is ≤ 40 nts.  

AUG is the most frequently used start codon in bacteria, although GUG and UUG are also 

commonly observed (Ma et al., 2002). 40% of all bacterial mRNAs harbor an SD sequence 

(GGAGG) upstream of the initiation codon (Shine and Dalgarno, 1974). The optimal spacing 

between the SD sequence and the start codon for E. coli mRNAs is 5-8 bases (Chen et al., 

1994). The SD sequence of the mRNA base pairs with the 3’ end of 16S rRNA (anti-SD 

sequence) in the 30S subunit, thereby positioning the start codon in the P site of the 30S 

subunit (Shine and Dalgarno, 1974).  

As noted above, a large number of mRNAs do not have an SD sequence. These mRNAs, 

divided into non-SD led and leaderless mRNA, do not follow the traditional translation 

initiation pathway (Grill et al., 2001; Moll et al., 2004). In this thesis, only SD-containing 

mRNAs have been utilized to study the canonical pathway of bacterial translation initiation. 

4.3.2. fMet-tRNAfMet  

In E. coli, there are four copies of the tRNAfMet gene; metV, metW, and metY and metZ 

(Ikemura and Ozeki, 1977). The 3’ end of fMet-tRNAfMet carries formyl-methionine, which will 

be the first amino acid incorporated into the translated polypeptide. Formylation favors the 

binding of fMet-tRNAfMet to the C-terminal domain of IF2 (the C2 domain) (Fig. 3A) which 

recruits it to the 30S subunit (reviewed in (Laursen et al., 2005)). On the 30S IC, the elbow of 

fMet-tRNAfMet contacts the N-terminal domain of IF3 (IF3N) (Julian et al., 2011) (Fig. 3B), 

while the anticodon loop of fMet-tRNAfMet base pairs with the start codon of the mRNA in the 

ribosomal P site.  
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Figure 3. Interactions of fMet-tRNAfMet on the 30S IC. (A) Cryo-EM reconstruction of fMet-
tRNAfMet-IF2 complex on the 30S IC. The 30S subunit is shown in yellow, the densities for 
fMet-tRNAfMet and IF2 in pink and green, respectively. The different sub-domains of IF2 are 
shown as ribbons - N1 (yellow), N2 (blue), G1 (pink), G2 (orange), G3 (green), C1 (grey), 
and C2 (purple). (B) Cryo-EM reconstruction of the interaction between fMet-tRNAfMet and 
IF3N on the 30S IC. Density for IF3 is shown in orange. Thumbnails show the orientation of 
the 30S subunit (Julian et al., 2011).  

Cryo-EM structures of the 30S and 70S initiation complexes have provided insight into fMet-

tRNAfMet dynamics during IC formation (Allen et al., 2005; Julian et al., 2011; Myasnikov et 

al., 2005; Simonetti et al., 2008). The positioning of fMet-tRNAfMet in the 30S IC and the early 

stages of the 70S complex formed after subunit joining differs from the ribosomal P/P site, 

where both the anticodon and the acceptor end of the tRNA are placed in the P site of the 

30S and 50S subunit, respectively. While the anticodon stem is buried in the P site of the 

30S subunit in both ICs, the position of the CCA-acceptor end changes during maturation of 

the complex. An intermediate site on the 30S IC was visualized where the acceptor stem was 

positioned in the supposed space between 50S A and P sites (Julian et al., 2011).  In 

addition, a hybrid site was identified at the early-stage 70S complex, which positioned the 

CCA-stem between the E site and P site of the 50S subunit (Allen et al., 2005). The final 

accommodation of fMet-tRNAfMet into the canonical P/P site in the mature 70S IC may require 

IF2-dependent GTP hydrolysis (Kuechler, 1971; Thach and Thach, 1971) and the 

dissociation of the fMet-tRNAfMet CCA-end from the C2-domain of IF2 (Allen et al., 2005; 

Myasnikov et al., 2005). 

4.3.3. Initiation factor 1 

IF1 is encoded by the infA gene in E. coli. It is a compact 8 kDa protein consisting of 71 

amino acids. On the 30S IC, IF1 binds in the cleft between ribosomal protein S12, the 530 

loop and helix 44 of 16S rRNA (Carter et al., 2001).  It interacts with 16S rRNA of the 30S 
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subunit by binding to the A site, thereby hindering the entry of aa-tRNAs into the A site during 

translation initiation (Moazed et al., 1995). IF1 increases the affinity of IF2 and IF3 binding to 

the 30S subunit and modulates mRNA and fMet-tRNAfMet selection (Boileau et al., 1983; 

Milon et al., 2012; Surkov et al., 2010). Along with IF3, it acts as an anti-association factor 

and prevents 50S joining by influencing the 30S conformation (Grigoriadou et al., 2007b; 

Milon et al., 2008). Despite several biochemical and genetic studies (Croitoru et al., 2004; 

Cummings and Hershey, 1994; Milon et al., 2008; Pon and Gualerzi, 1984), little is known 

about the exact function of IF1 and the timing of its release during 70S IC formation. The 

homologue of IF1 in eukaryotes is eIF1A (Kyrpides and Woese, 1998). 

4.3.4. Initiation factor 3  

IF3 is encoded by the infC gene in E. coli. It is a 20 kDa protein built of 180 amino acids. It 

consists of two domains, the N-terminal (IF3N) and C-terminal domain (IF3C), connected by 

a flexible lysine-rich linker region (Kycia et al., 1995; Moreau et al., 1997). On the 30S IC, the 

IF3C domain is placed at the 790 loop of the 16S rRNA and the IF3N domain is positioned 

near fMet-tRNAfMet (Dallas and Noller, 2001; Fabbretti et al., 2007; Julian et al., 2011; 

McCutcheon et al., 1999; Pioletti et al., 2001; Sette et al., 1999; Shapkina et al., 2000). The 

IF3C domain blocks the binding site for helix 69 of the 23S rRNA on the 50S subunit, thereby 

impeding subunit association (Dallas and Noller, 2001; Julian et al., 2011). 

The main functions of IF3 are: (i) promoting the dissociation of deacylated tRNA and 

translated mRNA from the ribosome after recycling by RRF and EF-G (Hirokawa et al., 2002; 

Karimi et al., 1999; Peske et al., 2005), (ii) preventing the premature association of the 

ribosomal subunits (Grunberg-Manago et al., 1975), (iii) facilitating adjustment of the mRNA 

into the 30S P site (La Teana et al., 1995), (iv) discriminating against mRNAs with 

unfavorable TIRs (Maar et al., 2008; Milon et al., 2008), and (v) monitoring the initiation 

fidelity by causing preferential dissociation of a non-initiator tRNA during 30S IC formation 

(Antoun et al., 2006a; Hartz et al., 1990; Meinnel et al., 1999; Sussman et al., 1996). Correct 

start codon-anticodon recognition between the mRNA and fMet-tRNAfMet results in 

destabilization of IF3 binding to the 30S subunit, allowing rapid 50S joining to occur (Milon et 

al., 2008; Milon et al., 2012). All functions attributed to the full-length IF3 can be performed 

by the IF3C domain alone. The main function attributed to the IF3N domain is the 

enhancement of affinity between IF3 and the 30S subunit (Petrelli et al., 2001). The 

functional homologue of IF3 in eukaryotes is eIF1 (Lomakin et al., 2003).   
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The timing of IF3 release from the ribosome has been much debated. On the basis of indirect 

biochemical studies with an mRNA containing an enhanced non-natural SD sequence, it was 

suggested that IF3 dissociates before 50S docking (Antoun et al., 2006b), thus freeing the 

principle inter-subunit bridge B2b which is involved in stable subunit association. However, 

rapid kinetic (Milon et al., 2008) and single-molecule FRET measurements (Elvekrog and 

Gonzalez, 2013; MacDougall and Gonzalez, 2015) showed that 30S IC, formed with mRNAs 

containing a natural SD sequence, can bind the 50S subunit before IF3 is released 

(Grigoriadou et al., 2007b; Milon et al., 2008; Pon and Gualerzi, 1986). Additionally, results of 

time-resolved chemical probing indicated that IF3 dissociates from the ribosome in a step-

wise manner during, and not before, the formation of 70S IC (Fabbretti et al., 2007).  

4.3.5. Initiation factor 2  

IF2 is encoded by the infB gene and is the largest IF involved in prokaryotic translation. The 

homologues of IF2 in archea and eukaryotes are aIF5B and eIF5B, respectively. In E. coli, it 

is a 97.3 kDa protein consisting of 890 amino acids. In the past two decades, several 

bioinformatic, biochemical and structural studies have helped to characterize the structure of 

IF2 from the archeal organism Methanobacterium thermoautotrophicum, and bacteria such 

as E. coli, Geobacillus stearothermophilus (G. staerothermophilus) and Thermus 

thermophilus (T. thermophilus) (Caserta et al., 2010; Caserta et al., 2006; Eiler et al., 2013; 

Guenneugues et al., 2000; Laursen et al., 2004; Laursen et al., 2003; Meunier et al., 2000; 

Moreno et al., 1999; Mortensen et al., 1998; Rasmussen et al., 2008; Roll-Mecak et al., 

2000; Simonetti et al., 2013; Wienk et al., 2012; Zoldak et al., 2008). IF2 consists of three 

main structural domains; the least conserved and poorly structured N-terminal domain (NTD 

is divided into N1 and N2 sub-domains), the nucleotide binding G-domain (divided into sub-

domains G1, G2 and G3), and the fMet-tRNAfMet binding C-terminal domain (CTD is divided 

into C1 and C2 sub-domains) (Fig. 4A). The G2 sub-domain of IF2 is involved in GTP 

binding, whereas the G3 sub-domain is conserved in all translation GTPases. The C1 sub-

domain is rich in helices and the C2 sub-domain interacts with the 3’ CCA-end of fMet-

tRNAfMet (Guenneugues et al., 2000; Krafft et al., 2000; Simonetti et al., 2008; Spurio et al., 

2000) (Fig. 4B). 
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Figure 4. Domain structure of IF2 and its interactions on the 30S IC. (A) Division of IF2 
peptide sequence from E. coli into its sub-domains (Caserta et al., 2006). (B) The IF2–fMet-
tRNAfMet sub-complex. Interaction of IF2 (green) from Thermus thermophilus with the fMet-
tRNAfMet (red) is shown (Simonetti et al., 2008). GTP (yellow) binds to the G2 domain. The 
tRNAfMet anticodon (light green) base pairs with the mRNA start codon (dark green) (C) Cryo-
EM reconstruction of the 30S IC lacking IF3. Positions of fMet-tRNAfMet (red), IF1 (blue), and 
IF2 (green) on the 30S are shown (Simonetti et al., 2008).  

Cryo-EM structures of the 30S IC (Fig. 4C) (Julian et al., 2011; Simonetti et al., 2008) and 

70S PIC (Allen et al., 2005; Myasnikov et al., 2005) have provided important insights into IF2 

conformational states and its placement on the ribosome. The IF2 N-domain was implicated 

in binding to the S12 protein of the 30S subunit ((Julian et al., 2011) and references therein) 

and directly interacts with IF1 (Julian et al., 2011). Domain G2 is oriented towards the sarcin-

ricin loop of the 23S rRNA on the 50S subunit (Allen et al., 2005; La Teana et al., 2001; 

Myasnikov et al., 2005; Simonetti et al., 2008) and this interaction has been implicated in 

activation of GTP hydrolysis by IF2 (Beaudry et al., 1979). Domains G3 and C1 interact with 

the 16S rRNA (Julian et al., 2011; Simonetti et al., 2008) while the C2-domain interacts with 

fMet-tRNAfMet which anchors the factor to the 30S subunit via the pairing of its anticodon loop 

with the mRNA start codon (Allen et al., 2005; Guenneugues et al., 2000; Simonetti et al., 

2008). The conformational state of IF2 differs depending on the guanine nucleotide (GTP or 

aa 
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GDP) bound to it. IF2 binds GTP with a relatively low affinity of 40 µM off the ribosome, and 

with a higher binding affinity of 2 µM on the ribosome (Antoun et al., 2003). Because the 

affinity of GTP and GDP binding to IF2 under physiological temperatures is similar (Hauryliuk 

et al., 2009), and there is no specific nucleotide exchange factor in the cell for IF2, the 

nucleotide exchange takes place due to a high rate of GDP dissociation and a high cellular 

concentration of GTP (Milon et al., 2006). It has been postulated that GTP binding by IF2 

may serve as a metabolic sensor of the nutritional state of the cell. Under optimal growth 

conditions, when GTP is abundant, binding of GTP to IF2 promotes translation. Under 

nutritional stress, the cellular concentration of a signaling molecule ppGpp increases. ppGpp 

binds to IF2 and renders the factor inactive, thus inhibiting translation (Gualerzi et al., 2001; 

Milon et al., 2006).  

Free IF2 binds fMet-tRNAfMet with a low affinity (in the micromolar range) forming an unstable 

complex that dissociates readily ((Milon et al., 2010) and references therein). In its GTP 

bound form, IF2 recruits fMet-tRNAfMet to the 30S subunit with high affinity (in the nanomolar 

range) (Milon et al., 2010) discriminating against elongator tRNAs and non-formylated Met-

tRNAfMet (Antoun et al., 2006a; Boelens and Gualerzi, 2002). Binding of both GTP and fMet-

tRNAfMet confers an ‘active’ conformation of IF2 on the 30S subunit (Pavlov et al., 2011; 

Zorzet et al., 2010) which promotes rapid subunit joining. 30S-bound IF2 interacts with the 

ribosomal stalk (consisting of ribosomal proteins L7/L12) of the 50S subunit to promote 

subunit association (Allen et al., 2005; Helgstrand et al., 2007; Huang et al., 2010; Mandava 

et al., 2012). The large surface area of IF2 shields negative electrostatic charges of the 

rRNAs at the interface of the 30S and 50S subunits, and forms rRNA-protein and protein-

protein bridges with the subunits to stabilize their interaction (Allen et al., 2005; Simonetti et 

al., 2008). 50S subunit joining to the 30S IC triggers rapid hydrolysis of GTP by IF2 into GDP 

and inorganic phosphate (Pi) (Grigoriadou et al., 2007a; Huang et al., 2010; Tomsic et al., 

2000) which may promote the adjustment of fMet-tRNAfMet into the ribosomal P site and 

subsequent release of the factor from the 70S complex.   
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4.4. Translation initiation - kinetic, thermodynamic and structural insights 

Initiation of protein synthesis establishes the reading frame of the mRNA by positioning the 

initiator tRNA (fMet-tRNAfMet) on the start codon in the P site of the ribosome. In bacteria, 

initiation is promoted by three initiation factors (IF1, IF2 and IF3) and comprises of several 

phases (Fig. 5) (Allen and Frank, 2007; Boelens and Gualerzi, 2002; Gualerzi et al., 2001; 

Laursen et al., 2005; Milon and Rodnina, 2012; Myasnikov et al., 2009; Simonetti et al., 

2009).  

 

Figure 5. Schematic of translation initiation in bacteria. Step 1: Recruitment of IF1, IF2, 
IF3, GTP, mRNA and fMet-tRNAfMet to the 30S subunit to form a 30S PIC. Step 2: 
Conversion of 30S PIC into 30S IC upon start codon recognition by fMet-tRNAfMet. Step 3: 
Association of the 50S ribosomal subunit to form the 70S PIC. Step 4: GTP hydrolysis by 
IF2; dissociation of IF1, IF2 and IF3 giving rise to an elongation competent 70S IC. Step 5: 
Binding of EF-Tu ternary complex (TC) and peptide bond formation giving rise to a 70S 
elongation complex (EC) (scheme by Prof. M.V. Rodnina). 

First, the 30S ribosomal subunit binds the IFs, fMet-tRNAfMet and the mRNA to form a 30S 

PIC. The binding of IFs to the 30S subunit is rapid (millisecond range) and follows a 

kinetically favored order of events with IF3 being the first to bind, followed by IF2 and IF1, 

respectively (Milon et al., 2012). The factors bind to the 30S subunit in a cooperative way in a 

sense that they affect the affinity of each other’s binding in the complex. IF1 increases the 

affinity of IF2 and IF3 towards the 30S subunit (Milon et al., 2012), and is in return stabilised 

on the 30S by their presence (Caserta et al., 2006; Celano et al., 1988; Milon et al., 2012; 

Stringer et al., 1977; Weiel and Hershey, 1982; Zucker and Hershey, 1986). IF3 allosterically 

controls the interaction of IF2 with the 30S IC (MacDougall and Gonzalez, 2015; Wang et al., 

2015) and together with IF1, stabilizes IF2 on the complex. Vice versa, the binding of IF3 to 
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the 30S subunit is also stabilized by the presence of IF2 (Milon et al., 2012). The timing of 

mRNA binding is variable and occurs independently of the IFs bound to the 30S subunit 

(Milon et al., 2012). mRNA recruitment to the stand-by site of the 30S subunit, its unfolding 

and transfer to the initiation site constitute important checkpoints for mRNA selection (Brandt 

and Gualerzi, 1991; de Smit and van Duin, 2003; La Teana et al., 1995; Marzi et al., 2007; 

Milon et al., 2012; Studer and Joseph, 2006; Yusupova et al., 2006). Lastly, the C-terminal 

domain of IF2 recruits fMet-tRNAfMet to the 30S complex via specific interactions with its 3’ 

CCA-end (Guenneugues et al., 2000; Milon et al., 2010; Spurio et al., 2000). 

Next, the anticodon of fMet-tRNAfMet recognizes the mRNA start codon in the P site of the 

30S subunit and the complex matures into a 30S initiation complex (30S IC) (Milon et al., 

2012; Milon and Rodnina, 2012). At this stage, the binding of mRNA, fMet-tRNAfMet, IF1 and 

IF2 to the 30S subunit is further strengthened, while the binding of IF3 is destabilised (Milon 

et al., 2012).  

Thereafter, the 50S subunit binds to the 30S IC. Synergistic positioning effect of IF2 and 

fMet-tRNAfMet on the 30S IC drives rapid subunit association (Antoun et al., 2006b; Grunberg-

Manago et al., 1975; Simonetti et al., 2008; Wang et al., 2015). One of the ways in which IF1 

and IF3 influence the kinetics of 50S docking is by modulating the orientation and dynamics 

of IF2–GTP–fMet-tRNAfMet complex on the 30S IC (Julian et al., 2011; MacDougall and 

Gonzalez, 2015; Simonetti et al., 2008). In addition, IF3 sterically hinders the formation of 

inter-subunit bridges (Dallas and Noller, 2001; Julian et al., 2011), thereby slowing down 50S 

subunit docking. Together, IF1 and IF3 help to discriminate against incorrectly formed 30S 

ICs, such as those programmed with an mRNA containing a non-optimal TIR or lacking IF2 

or fMet-tRNAfMet, by inducing a conformation of the 30S IC which impedes 50S subunit 

joining (Antoun et al., 2006b; Belotserkovsky et al., 2011; Grigoriadou et al., 2007b; Milon et 

al., 2008; Qin and Fredrick, 2009).  

The subsequent maturation of the 70S complex is a multistep process (Grigoriadou et al., 

2007a; Marshall et al., 2009; Milon et al., 2008; Qin et al., 2009; Tomsic et al., 2000). The 

current model for 70S IC formation – based on biochemical, rapid kinetic, and single-

molecule FRET studies – suggests that 50S subunit joining triggers rapid GTP hydrolysis by 

IF2, leading to a series of ribosome and IF2 conformational changes and fMet-tRNAfMet 

movements (Allen et al., 2005; Grigoriadou et al., 2007a; Huang et al., 2010; Myasnikov et 

al., 2005; Qin et al., 2009). The fMet-tRNAfMet is released from the C2-domain of IF2 into the 

canonical P/P site (Allen et al., 2005; Grigoriadou et al., 2007a; Julian et al., 2011; 
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Myasnikov et al., 2005; Simonetti et al., 2008), and the subunits rotate with respect to one 

another into the classical state, allowing the ribosome to enter an elongation-competent 

conformation (Marshall et al., 2009).  

Finally, IF2 presumably dissociates from the 70S complex (Allen et al., 2005; Antoun et al., 

2003; Lockwood et al., 1972; Luchin et al., 1999; Myasnikov et al., 2005), allowing the 

aminoacyl-tRNA in the ternary complex with EF-Tu and GTP (EF-Tu TC) to bind to the A site 

and form the first peptide bond. IF3 dissociation from the ribosome also follows subunit 

joining, as demonstrated by rapid kinetics (Milon et al., 2008), chemical probing (Fabbretti et 

al., 2007), and single molecule FRET (Elvekrog and Gonzalez, 2013; MacDougall and 

Gonzalez, 2015).  The timing of IF1 release from the ribosome is, however, not yet known. 
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4.5. Role of GTP hydrolysis by IF2  

Attempts at deciphering the significance of IF2 GTPase activity in translation initiation have 

been made using two main approaches. The first approach is to mutate conserved residues 

in the G domain implicated in the intrinsic GTPase activity of IF2. The second approach 

involves the use of non-hydrolysable GTP analogs such as GDPNP, GTPγS or GDPCP.  

It has been shown that GTP hydrolysis is not required for the IF2-fMet-tRNAfMet interaction, 

30S IC formation or 50S subunit joining (Anderson et al., 1967; Antoun et al., 2003; Qin et 

al., 2009; Tsai et al., 2012). After subunit joining and before GTP hydrolysis, the ribosome is 

in a ‘rotated’ state where the 30S subunit is found in a rotated orientation with respect to the 

50S subunit. After GTP hydrolysis, a 5° inter-subunit rotation occurs, allowing the 70S IC to 

enter an elongation-competent ‘non-rotated’ state (Allen et al., 2005; Marshall et al., 2009).  

A series of studies yielding contradictory results have made it difficult to reach a consensus 

regarding the function of GTPase activity of IF2. Evidence obtained using GTPase-deficient 

mutants of IF2 indicated that GTP hydrolysis is essential for IF2 dissociation from the 70S 

complex (Fabbretti et al., 2012; Laalami et al., 1994; Luchin et al., 1999). It was also 

proposed that the energy released by GTP hydrolysis may promote proper positioning of the 

fMet-tRNAfMet in the P site (Thach and Thach, 1971). However, on the basis of biochemical 

and kinetic data it was shown that the GTPase activity of IF2 plays no role in promoting the 

release of IF2 from the 70S IC (Tomsic et al., 2000) or the positioning of fMet-tRNAfMet (La 

Teana et al., 1996; Tomsic et al., 2000). 

Cryo-EM reconstructions have provided structural information regarding conformational 

states of IF2 and fMet-tRNAfMet on the 70S IC, in the presence of different non-hydrolysable 

GTP analogs (Allen et al., 2005; Myasnikov et al., 2005). When 70S IC was formed in the 

presence of GDPNP, all three IFs remained bound to the 70S complex and a stable 

interaction between the 3’CCA-end of fMet-tRNAfMet and IF2 was observed (Allen et al., 

2005). On the contrary, in the presence of a different GTP analog, GDPCP, IF2 was present 

on the 70S complex but no interaction between IF2 and the fMet-tRNAfMet was detected, 

leaving the role of GTP hydrolysis in triggering fMet-tRNAfMet release from IF2 unclear 

(Myasnikov et al., 2005).  

IF2 and EF-Tu occupy overlapping binding sites on the ribosome. Hence, in the absence of 

IF2 dissociation, the subsequent binding of EF-Tu TC to the A site is expected to be 

prevented (Antoun et al., 2003; Benne et al., 1973; Tsai et al., 2012). In agreement with this 

hypothesis, it was reported that the substitution of GTP on IF2 with the non-hydrolysable 



26 

 
analog, GDPNP, completely inhibited peptide bond formation (Antoun et al., 2003). 

Contradictory results were obtained in the presence of GDPCP, which lowered the extent of 

peptide bond formation to approximately half but did not abolish it (Grigoriadou et al., 2007a). 

Also, on the basis of structural and rapid-kinetic studies, it was suggested IF2 may remain 

bound to the 70S complex even after GTP hydrolysis (Grigoriadou et al., 2007a; Myasnikov 

et al., 2005), posing no hindrance to the incoming EF-Tu TC.  

Discrepancies in results from the above mentioned studies may arise from (i) the 

contamination of commercially purchased preparations of GDP or non-hydrolysable GTP 

analogs with minor quantities of GTP, (ii) the use of different non-hydrolysable GTP analogs 

which may confer different functional states on IF2 (Simonetti et al., 2009); the GDPNP-

bound state might represent the GTP form (Allen et al., 2005; Antoun et al., 2003), while the 

GDPCP-bound state may represent the functional conformation of the factor after GTP 

hydrolysis but before Pi release (Grigoriadou et al., 2007a; Myasnikov et al., 2005), (iii) the 

use of initiation components purified from different organisms; G. stearothermophilus 

(Tomsic et al., 2000), E. coli (Allen et al., 2005; Antoun et al., 2003; Milon et al., 2008; Qin et 

al., 2009) and T. thermophilus (Myasnikov et al., 2005), and (iv) the use of a heterogeneous 

translation system, which consists of ribosomal components purified from two different 

organisms, for example, from G. stearothermophilus and E. coli (Grigoriadou et al., 2007a; 

Grigoriadou et al., 2007b) or a homogeneous system (Allen et al., 2005; Antoun et al., 2003; 

Milon et al., 2008). 
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4.6. Scope of the thesis 

The timing of several reactions which occur during the transition from the 30S IC into the 

translating 70S ribosome, as well as the interplay between the IFs during this process, are to 

a large extent disputed or unknown. Kinetic data from different groups have yielded 

contradictory results regarding the sequence of events and the importance of IF2-dependent 

GTP hydrolysis In this thesis, the timing and control of several reactions which occur during 

70S IC formation were investigated by rapid kinetic techniques using a toolbox of 

fluorescence-labeled translation components. An in vitro system of translation initiation 

reconstituted with components purified from E. coli was utilized. The kinetics of IF1 and IF3 

dissociation from the 70S complex, the release of the fMet-tRNAfMet CCA-end and GDP from 

IF2, as well as the participation of IF2 in the second round of translation initiation were 

followed with the help of novel observables. Previously studied reactions such as subunit 

joining, Pi release from IF2, and peptide bond formation (Grigoriadou et al., 2007a; Milon et 

al., 2008; Tomsic et al., 2000; Wishnia et al., 1975) were also monitored to formulate a 

kinetic model inclusive of all events which occur during the maturation of 30S IC into an 

elongation-competent 70S IC. In addition, the requirement for IF1 and IF3 for every reaction, 

as well as the dependency on IF2-dependent GTP hydrolysis was examined. The effect of 

phosphate analogs on subunit joining and the IF2-tRNAfMet interaction was also checked. The 

results provide a comprehensive kinetic scheme for 70S IC formation, give insights into the 

interplay between the IFs and underscore the role of GTP hydrolysis by IF2 during translation 

initiation.  
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5. RESULTS 

5.1. Experimental setup 

The transition of the 30S IC into an elongation-ready 70S IC is a multi-step process 

consisting of several binding, chemical hydrolysis and dissociation events which occur in the 

ms – s time scale. Rapid kinetic approaches can be used to monitor these events in real-time 

before the entire process reaches completion. Hence, pre-steady state kinetics can help 

dissect the biochemical pathway and identify reaction intermediates. We monitored 70S IC 

formation by rapidly mixing 30S IC, containing a fluorescent or radioactive reporter, with 50S 

subunits in the stopped- or quench-flow apparatus. The progression of each reaction was 

followed by monitoring the changes in fluorescence or FRET (Förster Resonance Energy 

Transfer) with time. In this way, the timing of several processes which occur during 70S IC 

formation, such as (i) 50S subunit joining, (ii) changes in IF1 environment and dissociation of 

the factor from the ribosome, (iii) IF2 dissociation from the ribosome, (iv) IF3 dissociation 

from the ribosome, (v) GTPase activation of IF2, (vi) Pi release from IF2, (vii) fMet-tRNAfMet 

release from IF2, (viii) GDP release from IF2, (ix) binding of IF2 to 30S complexes during the 

next round of initiation, and (x) the first peptide bond formation, indicative of transition into 

the elongation phase of translation, was determined.  

30S IC was formed using translation initiation components purified from E. coli. 30S subunits 

were incubated with a 3-fold molar excess of IF1, IF2 and IF3 (or a 2-fold molar excess of 

fluorescent IFs) and a 5-fold molar excess of mRNA and f[3H]Met-tRNAfMet (or 3-fold molar 

excess of fluorescent Bpy-Met-tRNAfMet) in TAKM7 buffer containing 0.25 mM GTP (or 4 μM 

fluorescent  Bpy-GTP/ 10 μM mant-GTP) for 30 min at 37°C. As a model mRNA, m022 (La 

Teana et al., 1993) was chosen, because the 30S IC formed with this mRNA rapidly 

associates with the 50S subunit (Grigoriadou et al., 2007a; Milon et al., 2008), which is 

essential to resolve the individual rates of the subsequent reactions. Because fluorescence 

labeling of a protein or RNA can adversely affect its function, the activity of each labeled 

component in promoting subunit association was compared with its unlabeled counterpart.  

To help identify the biochemical reaction depicted by each reporter, the binding and 

dissociation of the observable in relation to the 30S complex was studied. To solve the 

kinetic mechanism of 70S IC formation, each reaction was monitored under pseudo-first 

order conditions, where the 30S IC was mixed with a 3-20 fold molar excess of 50S subunits. 

Time courses were obtained at increasing 50S subunit concentrations and fitted with an 

exponential function to derive the apparent rate (kapp) constant of the reaction. Bimolecular 
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events such as binding reactions show a linear dependence of apparent rates on increasing 

50S concentration, whereas subsequent monomolecular rearrangements display a 

hyperbolic dependence. However, if the reaction was preceded by a delay phase, 

exponential fitting could not be utilized. To assign the order and timing of the respective 

steps, the time courses were initially evaluated on the basis of their apparent rate constants 

and the length of the delay phase preceding the respective reaction.  Subsequently, the 

elemental rate constant of each reaction was determined from the global fitting of time 

courses for all observables with a 10-step kinetic model, to provide a comprehensive solution 

for the processes involved in 70S IC formation (section 5.8). 

The requirement for GTP hydrolysis by IF2 in promoting different reactions was examined by 

substituting GTP with a non- (or very slowly) hydrolysable GTP analog, GTPγS. Recent 

studies on eIF5B, the eukaryotic homolog of IF2, have deemed GTPγS as a suitable GTP 

analog due to its ability to correctly coordinate a monovalent cation in the active site of 

translational GTPases (Kuhle and Ficner, 2014b). Similar conclusions were reached in case 

of SelB (Paleskava et al., 2012) where GTPγS was shown to be an authentic GTP analog. 

The reactions were monitored at a fixed concentration (1 μM) of 50S subunits. 

To study the individual roles of IF1 and IF3 in actively promoting each process, the reactions 

were monitored in the presence and absence of either factor at a fixed concentration (1 μM) 

of 50S subunits. No experiments were done in the absence of IF2 because its omission 

results in impaired fMet-tRNAfMet recruitment and 50S subunit association (Grunberg-Manago 

et al., 1975).  
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5.2. Screening the activity of translation initiation components 

50S binding to 30S IC can be followed by monitoring the increase in light scattering (LS) 

which occurs when the subunits associate with each other to form a 70S complex. The rate 

and amplitude change of LS is dependent on several parameters, such as the composition of 

the mRNA TIR, the integrity of ribosomal subunits, the identity of the nucleotide bound to IF2 

and the presence and activity of different IFs and fMet-tRNAfMet. The amplitude change of LS 

reflects the amount of 30S IC in the reaction, whereas the rate indicates whether these 

complexes are in the correct conformation for entering the translation pathway.  

The results shown below provide an overview of the importance of different initiation 

components in promoting subunit joining (Antoun et al., 2004; Grunberg-Manago et al., 1975) 

and emphasize the effectiveness of monitoring changes in LS to check the activity of purified 

preparations of ribosomes, IFs, RNA and nucleotides. 30S IC was prepared in the presence 

of all components, or in the absence of individual components, to study their role in 

promoting IC formation and subunit joining (Fig. 6A).  Upon rapidly mixing 30S IC (0.05 μM) 

with 50S subunits (1 μM) in the stopped-flow apparatus, a biphasic increase in LS was 

observed (Grigoriadou et al., 2007a; Milon et al., 2008) (Fig. 6B). The predominant  rapid 

phase (>75% of the total amplitude change) is indicative of 50S joining to the majority of 30S 

ICs which are present in a ‘productive’ conformation, whereas the minor phase probably 

represents a small portion of less active (McGinnis et al., 2015) or compositionally 

heterogeneous complexes. In the presence of all components, the apparent rate of the 

predominant phase was 10 s-1. No signal change was present in the absence of 50S 

subunits. When 30S IC was formed in the absence of IF1 or IF3, the apparent rate of subunit 

joining was 2 and 5-fold faster, respectively (Fig. 6C). The absence of IF2, GTP or fMet-

tRNAfMet slowed subunit joining by more than 500-fold (0.007 - 0.02 s-1) (Fig. 6D-F), in 

agreement with previous reports that the sub-complex between IF2, GTP and fMet-tRNAfMet 

on the 30S IC drives rapid subunit association (Antoun et al., 2003; Antoun et al., 2006b).  
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Figure 6. Role of translation initiation components in promoting subunit association. 
30S IC (0.05 μM) was rapidly mixed with 50S subunits (0.05 μM) in a stopped-flow apparatus 
and the change in LS upon subunit association was monitored. (A) Schematic of 50S joining 
to 30S IC forming a 70S PIC. (B) Time courses of LS upon mixing 30S IC with 50S subunits 
or buffer (-50S). (C) Time courses of subunit joining to 30S IC in the presence of all factors 
and absence of IF1 or IF3. (D) Time courses of subunit joining to 30S IC in the presence and 
absence of IF2 or fMet-tRNAfMet. (E) Time courses of subunit joining to 30S IC in the 
presence and absence of GTP. (F) Apparent rate of the predominant phase derived from 
double-exponential fitting of time courses in (B)-(E); error bars represent standard error of 
the fit.  
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The kinetics of 50S joining to the 30S IC is a very sensitive indicator for checking the 

functionality of the translation initiation machinery and was hence used to test the activity of 

fluorescence-labeled initiation components. If the activity of the 30S, 50S, IF2, GTP or fMet-

tRNAfMet preparations is decreased, e.g. by introducing mutations, fluorescence reporters or 

inactivation during purification, the rate and/or extent of LS is expected to be lower. On the 

other hand, preparations of IF1 or IF3 with low activity would increase the rate and/or extent 

of LS (Antoun et al., 2003; Antoun et al., 2006b; Antoun et al., 2004; Grunberg-Manago et 

al., 1975; Milon et al., 2008). Slow subunit docking would rate-limit subsequent reactions 

involved in 70S IC formation; hence, only reporters competent in promoting rapid subunit 

association were utilized to study these events. 

5.2.1. Fluorescent ribosomal subunits 

30S subunits lacking the ribosomal protein S13 (30S ΔS13) or 50S subunits lacking L33 

(50S ΔL33) were purified from E. coli strain K12, and subsequently reconstituted with 

fluorescence-labeled S13 and L33 proteins, respectively. The activity of ribosomal subunits 

purified from E. coli strain K12 was compared with wild-type subunits purified from E. coli 

strain MRE600 (the standard strain used in our laboratory) (Fig. 7A). Replacement of 30S 

subunits from MRE600 with those from K12 did not significantly affect the rate of subunit 

joining (5 s-1 at 30S IC (0.05 μM) and 50S subunit (0.25 μM) concentration), but a ~20% 

lower amplitude was observed, indicating that a small fraction of the ribosomal population 

was not active in initiation. The fluorescence labeling of the 30S subunits with thiol-reactive 

dyes such as Alexa488 (30SS13(Alx488)) or Atto540Q (30SS13(Atto540Q)), also did not affect 

the kinetics of subunit joining (Fig. 7B). Thus, despite the slightly lower extent of subunit 

joining, the fluorescence-labeled 30S subunits could be used to study reaction kinetics during 

70S IC formation. When 50S subunits from E. coli strain K12 were used, the extent of 

subunit joining was similar to that observed in the presence wild-type 50S subunits from E. 

coli strain MRE600 (Fig. 7A). Similar results were obtained when fluorescence-labeled 50S 

subunits (50SL33(Alx488) and 50SL33(Atto540Q)) were tested (Fig. 7C). However, because 

the rate of subunit joining was ~10-fold slower (0.5 s-1) (Fig. 7D), the fluorescent 50S 

subunits could not be utilized to study the kinetics of reactions which take place after subunit 

association.  
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Figure 7. Effect of fluorescence-labeled ribosomal subunits on subunit association. 
30S IC (0.05 μM) was rapidly mixed with 50S subunits (0.25 μM) in a stopped-flow apparatus 
and the change in LS upon subunit association was monitored. (A) Time courses of subunit 
association using subunits purified from E. coli strain MRE600 (M) or strain K12 (K). (B) Time 
courses of subunit association using non-fluorescent (MRE600) or fluorescence-labeled 
(K12; Alexa488 or Atto540Q) 30S subunits. (C) Time courses of subunit association using 
non-fluorescent (MRE600) or fluorescence-labeled (K12; Alexa488 or Atto540Q) 50S 
subunits. (D) Apparent rate of the predominant phase derived from double-exponential fitting 
of time courses in (A)-(C); error bars represent standard error of the fit. 

5.2.2. Fluorescent initiation factors 

Cysteine residues were introduced at position 4 in IF1, position 757 in IF2 and position 166 in 

IF3 and labeled with thiol-reactive fluorescent (Alexa488 or Alexa555) or quencher 

(Atto540Q) dyes. All labeled IFs were competent in promoting rapid subunit association (Fig. 

8), and thus could be utilized to monitor timings of reactions which follow subunit joining.  
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Figure 8. Effect of fluorescence-labeled IFs on subunit association. 30S IC (0.05 μM), 
formed in the presence of non-fluorescent IFs (dark) or fluorescent IFs, was rapidly mixed 
with 50S subunits (0.25 μM) in a stopped-flow apparatus and the change in LS upon subunit 
association was monitored. (A) Time courses of subunit association in the presence of 
indicated IF1 variants. (B) Time courses of subunit association in the presence of indicated 
IF2 variants. (C) Time courses of subunit association in the presence of indicated IF3 
variants. (D) Apparent rate of the predominant phase derived from double-exponential fitting 
of time courses in (A)-(C); error bars represent standard error of the fit.   

5.2.3. Fluorescent tRNAfMet and GTP 

Fluorescent derivatives of fMet-tRNAfMet and GTP were used to monitor the interaction of 

these components with IF2 on the 70S IC. The tRNAfMet was labeled at either the α-amino 

group of methionine with the fluorophore Bodipy-FL (Holtkamp et al., 2014) or with 

fluorescein at the modified thio-U nucleotide found naturally in tRNAfMet (Milon et al., 2007). 

Fluorescent analogues of GTP, such as mant-GTP and Bpy-GTP where the fluorophore is 

attached to the sugar backbone, were purchased from commercial sources. The use of Bpy-

Met-tRNAfMet (Fig. 9A) decreased the extent of LS by almost 50%, while allowing the reaction 

to occur with the rate obtained using non-fluorescent tRNAfMet (5 s-1).  

  



35 

 

 

Figure 9. Effect of fluorescence-labeled tRNAfMet and GTP on subunit association. 30S 
IC (0.05 μM), formed in the presence of non-fluorescent (dark) or fluorescent components, 
was rapidly mixed with 50S subunits (0.25 μM) in a stopped-flow apparatus and the change 
in LS upon subunit association was monitored.  (A) Time courses of subunit association in 
the presence of Bpy-Met-tRNAfMet. (B) Time courses of subunit association in the presence of 
Bpy-GTP. (C) Time courses of subunit association in the presence of mant-GTP. (D) Time 
courses of subunit association in the presence of fMet-tRNAfMet (Fluorescein). (E) Apparent 
rate of the predominant phase derived from double-exponential fitting of time courses in (A)-
(D); error bars represent standard error of the fit.   

To minimize the fluorescence background, 30S IC was formed in the presence of Bpy-GTP 

(2 µM). The affinity of GTP to IF2 increases 20-fold (Kd = 40 μM to 2 μM) in the presence of 

the 30S subunit and fMet-tRNAfMet (Antoun et al., 2003; Fabbretti et al., 2012). Assuming that 
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the affinity of Bpy-GTP is in the same range as the natural substrate (as indicated by the fact 

that subunits joining occurs as the same rate (Fig. 9B)), this concentration would allow 50% 

of 30S-bound IF2 to bind Bpy-GTP, which is consistent with the 50% decrease in the extent 

of subunit joining observed with these complexes. Replacement of GTP with mant-GTP 

slightly decreased the rate of subunit joining; however, the subunit joining was also slower in 

the presence of non-fluorescent GTP, indicating that the activity of at least one of the 

unlabeled initiation components was not optimal in that experiment (Fig. 9C). The use of 

fluorescein-labeled fMet-tRNAfMet lowered the rate of subunit joining by 5-fold (1 s-1) (Fig. 9D). 

Hence, only the components which did not affect the rates of subunit association i.e, Bpy-

GTP, mant-GTP and Bpy-Met-tRNAfMet (Fig. 9E) were used to study the timings of tRNAfMet 

and GTP-related reactions after subunit joining. 

5.2.4. Dual-labeled 30S IC  

The interaction between two components can be studied by fluorescence-labeling both and 

monitoring the changes in FRET between them. If both dyes are fluorescent, the donor and 

acceptor fluorescence can be monitored. On the other hand, if the donor dye is fluorescent 

and the acceptor dye is non-fluorescent, only the donor fluorescence is monitored. In the 

latter case, close proximity between the two components results in a low fluorescence state, 

which in the following text will be referred to as ‘fluorescence quenching’. When the 

components move apart from each other, an increase in fluorescence (or ‘de-quenching’) is 

recorded. The dual-labeling may adversely affect initiation by perturbing interaction between 

the components on the ribosome. Therefore, the kinetics of subunit joining was tested in the 

presence of both fluorescence-labeled components. 

When 30S IC formed using 30SS13(Alx488) subunit and IF14(Atto540Q) was tested for 

subunit association, there was no effect on the kinetics or extent of subunit joining (Fig. 

10A). When 30S IC was formed with 30SS13(Alx488) subunits and IF3166(Atto540Q), a 

biphasic increase in LS was observed with the slow phase (0.05 s-1) accounting for ~40% of 

the amplitude change (Fig. 10B). In the presence of IF2757(Atto540Q) and IF3166(Alx488), the 

rate of subunit joining was slightly slower than that obtained using the non-fluorescent factors 

(Fig. 10C-D). Hence, the first FRET pair could be used to study the timing of initiation 

reactions, whereas the latter two FRET pairs could only be utilized to monitor IF3 movements 

on the 30S subunit in a qualitative manner, i.e towards or away from the respective initiation 

component. 
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Figure 10. Effect of dual-labeled 30S IC on subunit association. 30S IC (0.05 μM) formed 
in the presence of non-fluorescent (dark) or fluorescent components was rapidly mixed with 
50S subunits (0.25 μM) in a stopped-flow apparatus and the change in LS upon subunit 
association was monitored. (A) Time courses of subunit association in the presence of 
30SS13(Alx488) and IF14(Atto540Q). (B) Time courses of subunit association in the presence 
of 30SS13(Alx488) and IF3166(Atto540Q). (C) Time courses of subunit association in the 
presence of IF2757(Atto540Q) and IF3166(Alx488). (D) Apparent rate of the predominant 
phase derived from double-exponential fitting of time courses in (A)-(C); error bars represent 
standard error of the fit.   
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5.3. Dynamics of subunit association 

5.3.1. Kinetics of subunit joining 

When 30S IC was mixed with increasing concentrations of 50S subunits to form a 70S 

complex (Fig. 11A), the apparent rate constant of the first, dominant phase of LS was found 

to increase linearly with 50S concentration, indicative of a bimolecular binding reaction (Fig. 

11B).  

 

Figure 11. 50S subunit association with the 30S IC. 30S IC (0.05 μM) was rapidly mixed 
with 50S subunits in a stopped-flow apparatus and the change in LS upon subunit 
association was monitored. (A) Time courses of LS upon rapidly mixing 30S IC with 
increasing concentrations of 50S subunits (0.15 – 1 μM). Control measurements were 
performed in the absence of 50S subunits. (B) Dependence of apparent rate (kapp) values of 
the predominant phase of LS on 50S subunit concentration. The reactions were monitored in 
the presence of all factors and in the absence of IF1 or IF3 (latter experiment performed by 
Dr. C. Maracci). kapp values were derived from double-exponential fitting of time courses. 
Error bars (smaller than symbol size) represent standard error of the fit. 

In the presence of all factors, the apparent rate constant of subunit joining to 30S IC was 14 

μM-1s-1 (Table 1; Milon et al., 2008). In the absence of IF1 or IF3, the apparent rate constant 

of subunit joining was increased to 38 μM-1s-1 (Fig. 11B; Table 1). This affect is far more 

pronounced in the presence of mRNAs containing a non-optimal TIR, where IF1 and IF3 

impede subunit joining significantly (Grigoriadou et al., 2007b; Milon et al., 2008) and the 

absence either factor can accelerate subunit association by up to 100-fold.  
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Table 1. Summary of apparent rate constants of reactions during 70S IC formation. 

All rates and standard errors are derived from exponential fitting of time courses; n.d. – not 
determined; n.o. – not observed 

5.3.2. Effect of different GTP analogs on subunit joining 

30S IC, formed in the presence of different pre- and post-hydrolysis state GTP analogs, was 

rapidly mixed with 50S subunits in a stopped-flow apparatus and the time courses of LS were 

monitored. In its GTP bound state, the sub-complex formed between IF2 and fMet-tRNAfMet 

on the 30S IC promoted rapid subunit association (5 s-1 at 50S subunit concentration (0.25 

μM)) (Fig. 12A).  When GTP was replaced with GDP, the conformational dynamics of IF2 did 

not support 50S joining (Antoun et al., 2003). It should be noted that two phases were 

observed when commercially bought GDP was used for 30S IC formation. The first phase, 

which took place with a rate of 5 s-1 and occupied 25% of the total amplitude change is most 

likely representative of GTP contamination in the GDP preparation. Because the affinity of 

GTP to the 30S-bound IF2 is higher than that of GDP, even trace amounts of GTP 

contamination can result in artifacts which can lead to misinterpretation of data. Hence, GDP 

was purified using anion-exchange chromatography (Panico et al., 1990) for use in further 

experiments. In the presence of purified GDP, the first phase almost disappeared and only 

the slow phase (0.02 s-1) was observed.  

Kinetic step Observable 
All IFs 

GTP 

–IF1 

GTP 

–IF3 

GTP 

All IFs 

GTPγS 

Subunit joining, 

kapp on (µM-1 s-1) 
LS 14 ± 1 38 ± 4 37 ± 4 n.d. 

GTPase activation (s-1) Mant-GTP 9.1 ± 0.5 14 ± 1 27 ± 1 7.4 ± 0.5 

Change of IF1 

environment (s-1) 
IF14(Alx555) 4.7 ± 0.5 n.o. 9.7 ± 0.5 3.7 ± 0.5 

IF1 dissociation (s-1) 
IF14(Atto540Q) – 

30SS13(Alx488) 
1.9 ± 0.1 n.o. 2.1 ± 0.1 n.o. 

IF2 dissociation (s-1) Mant-GTP 2.5 ± 0.1 2.8 ± 0.1 2.3 ± 0.1 n.o. 

IF3 dissociation (s-1) 
IF3166(Alx488) – 

IF2757(Atto540Q) 
6 ± 0.5 37 ± 0.5  n.o. 4.4 ± 0.5 
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Figure 12. Effect of different guanosine nucleotide analogs on subunit association. 
30S IC (0.05 μM) was rapidly mixed with 50S subunits (0.25 μM) in a stopped-flow apparatus 
and the change in LS upon subunit association was monitored. (A) Time courses of subunit 
association in the presence of GTP, commercially-purchased GDP and purified GDP. (B) 
Time courses of subunit association in the presence of non-hydrolysable GTP analogs - 
GTPγS, GDPNP and GDPCP. (C) Time courses of subunit association in the presence of the 
presumed ground- and transition-state GTP analogs - GDP—BeF3 and GDP—AlF3 , 

respectively. (D) Time courses of subunit association in the presence of post-hydrolysis state 
GTP analogs - GDP—ortho-vanadate and GDP—meta-vanadate. (E) Apparent rates of the 
predominant phase derived from double-exponential fitting of time courses in (A)-(D); error 
bars represent standard error of the fit.  

In the presence of non-hydrolysable GTP analogs such as GTPγS and GDPNP, rapid 

subunit joining was observed, like in case of GTP (Fig. 12B), in agreement with earlier 

reports (Antoun et al., 2003; Antoun et al., 2004; Qin et al., 2009, Tsai et al., 2012). However, 
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in contrast to a previous study which reported slower subunit joining in the presence of the 

non-hydrolysable GTP analog, GDPCP (Grigoriadou et al., 2007a), no difference in the rate 

of subunit association was seen. These results confirm that GTP hydrolysis by IF2 is not 

required during early stages of initiation such as 30S IC formation and subunit joining 

(Anderson et al., 1967; Antoun et al., 2003; Qin et al., 2009; Tsai et al., 2012).  

The effect of different transition-state GTP analogs on 50S joining was also checked. 

Beryllium fluoride (BeF3) and aluminium fluoride (AlF3) behave as phosphate analogs and 

bind, along with GDP, in the nucleotide binding pocket of IF2 to mimic different pre-hydrolysis 

GTP transition states. For a variety of GTP-binding proteins, BeF3 mimics the ground state of 

γ-phosphate and confers a GTP-like conformation, while AlF3 represents a transition state of 

the γ-phosphate during GTP hydrolysis (reviewed in (Golicnik, 2010)). Vanadium (VO4
3−), in 

the form of ortho- and meta-vanadate, is a close structural and chemical mimic of phosphate 

which can bind to the nucleotide binding site of IF2, along with GDP, and represents a post-

hydrolysis GDP—Pi state (Goodno, 1982). Rapid subunit joining was observed in the 

presence of GDP and BeF3 but not when GDP and AlF3 were used (Fig. 12C). The time 

course of LS recorded in the presence of AlF3 was similar to that observed in the case of 

GDP alone, suggesting that either AlF3 did not bind to IF2 or the AlF3 -bound transition state 

of IF2 does not promote subunit joining. In presence of GDP and ortho-vanadate (Fig. 12D), 

the kinetics of LS was biphasic, with the first, minor phase occurring at 0.13 s-1. The second, 

major phase was slow (0.01 s-1), similar to that seen in the presence of GDP alone. When 

meta-vanadate was used instead, only the slow phase was observed. 

In summary, these results show that the IF2 conformation, when bound to pre-hydrolysis 

state analogs such as GTP, GTPγS, GDPNP, GDPCP and GDP—BeF3, promotes rapid 

subunit joining (5 s-1) (Fig. 12E). On the other hand, subunit joining is up to 500-fold slower 

when IF2 is bound to transition-state and post-hydrolysis state analogs such as GDP—AlF3, 

GDP—ortho-vanadate, GDP—meta-vanadate and GDP alone, indicating that one important 

role of GTP during translation initiation is to confer a productive conformation of IF2 on the 

30S IC which is conducive to rapid subunit association. 
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5.4. Dynamics of IF2 on the 70S IC  

Post-subunit joining events such as GTPase activation of IF2, the loss of direct interaction 

between fMet-tRNAfMet and C2-domain of IF2, as well as the dissociation of GDP from IF2 

have not yet been monitored. It is also not clear whether IF2 is released from the ribosome 

after GTP hydrolysis. Finally, the role of GTP hydrolysis by IF2 during initiation, as studied 

using different non-hydrolysable GTP analogs, has yielded inconsistent results depending on 

the nucleotide and the source of initiation components (Allen et al., 2005; Antoun et al., 2003; 

Grigoriadou et al., 2007a; Myasnikov et al, 2005; Qin et al., 2009; Tomsic et al., 2000). In this 

section, IF2-dependent reactions which take place after subunit joining were monitored using 

rapid kinetics and their dependence on GTP hydrolysis and the presence of IF1 and IF3 was 

investigated. 

5.4.1. GTPase activation and dissociation of IF2 

FRET between a fluorescent GTP analog, mant-GTP and the intrinsic Trp residue of IF2 

(Fabbretti et al., 2012; Milon et al., 2007) was followed to study the conformational dynamics 

of the IF2 G-domain. The kinetics of mant-GTP binding to and dissociation from IF2, reported 

previously, indicated that the affinity of IF2 for mant-GTP is in the same range as that for 

non-fluorescent GTP (Fabbretti et al., 2012; Simonetti et al., 2013). Upon 50S joining to 30S 

IC formed with mant-GTP, a biphasic FRET change was observed. A similar FRET signal 

was previously reported in the case of EF-Tu binding to post-translocation ribosome 

complexes (Maracci et al., 2014; Rodnina et al., 1994). Thus, in analogy with EF-Tu, the first 

upward phase was assigned to GTPase activation (Fig. 13A), during which residues in the 

G-domain of the factor rearrange themselves into a conformation which is primed to catalyze 

GTP hydrolysis, while the second downward phase most likely reflects IF2 dissociation from 

the 70S complex, although it cannot be excluded that the phase may represent the release of 

the nucleotide from IF2 or a conformational rearrangement of the factor upon dissociation 

from the ribosome. In the absence of 50S subunits (only buffer), a slow downward amplitude 

signal change was observed (Fig. 13B). Thus, the fitting of the buffer trace was subtracted 

from the time courses of all experiments conducted using mant-GTP.  
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Figure 13. GTPase activation and dissociation of the IF2 during 70S IC formation. 30S 
IC (0.15 μM), formed with mant-GTP was rapidly mixed with 50S subunits in a stopped-flow 
apparatus and the change in FRET was used to monitor GTPase activation and IF2 
dissociation during 70S IC formation. (A) Schematic of GTPase activation and dissociation of 
IF2 from the 70S complex. (B) Time courses of FRET upon rapidly mixing 30S IC with 
increasing concentrations of 50S subunits (0.45 – 1.5 μM). Control measurements were 
performed in the absence of 50S subunits. (C) Time courses of FRET upon rapidly mixing 
30S IC formed in the presence of all factors and absence of IF1 or IF3 with 50S subunits (1 
μM). (D) Time courses of FRET upon rapidly mixing 30S IC, formed in the presence of mant-
GTP or mant-GTPγS, with 50S subunits (1 μM). 

Subunit joining was followed by GTPase activation (apparent rate - 9 s-1) and subsequent IF2 

dissociation (2.5 s-1). In the absence of IF1 or IF3, GTPase activation appeared to be faster 

(14 s-1 and 27 s-1, respectively) (Fig. 13C), while the apparent rate of IF2 dissociation from 

the 70S complex was not affected (Table 1). When mant-GTP was replaced by mant-

GTPγS, only the first phase of FRET change, depicting GTPase activation was observed 



44 

 
(similar to the case of EF-Tu (Daviter et al., 2003)), suggesting that conformational 

rearrangements of the G-domain can take place in the presence of a non-hydrolysable GTP 

analog (Fig. 13D). The second phase was blocked, in agreement with previous reports that 

IF2 cannot dissociate from the 70S ribosome in the absence of GTP hydrolysis (Allen et al., 

2005; Antoun et al., 2003; Laalami et al., 1994; Lockwood et al., 1972; Luchin et al., 1999; 

Myasnikov et al., 2005).  

5.4.2. Pi release from IF2 

50S subunit joining to the 30S IC triggers GTP hydrolysis by IF2 into GDP and Pi 

(Grigoriadou et al., 2007a; Tomsic et al., 2000). Pi release from IF2 was followed by the 

increase in fluorescence which occurred upon its subsequent rapid binding to a fluorescent 

derivative of phosphate binding protein, MDCC-PBP (Fig. 14A) (Brune et al., 1994; Tomsic 

et al., 2000).  

 

Figure 14. Pi release from IF2 on the 70S IC. 30S IC (0.05 μM) was rapidly mixed with 50S 
subunits in a stopped-flow apparatus and the fluorescence change of PBP-MDCC upon its 
rapid binding to free Pi was used to monitor Pi release from IF2. (A) Schematic of Pi release 
from IF2 during 70S IC formation. (B) Time courses of Pi release from IF2 upon rapidly 
mixing 30S IC with increasing concentrations of 50S subunits (0.15 μM - 1 μM). Control 
measurements were performed in the absence of 50S subunits. (C) Time courses of Pi 
release from IF2 upon rapidly mixing 30S IC formed in the presence of all factors and 
absence of IF1 or IF3 with 50S subunits (1 μM).  
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When 30S IC was rapidly mixed with 50S subunits, Pi release took place after a lag phase 

(75 ms) (Fig. 14B). Due to the significant delay phase, the time courses could not be fit with 

an exponential function to calculate the apparent rate constant of the reaction. The initial 

increase in fluorescence was followed by a slow step (0.01 s-1), representative of the multiple 

turnover events of GTP hydrolysis and Pi release which occur due to the rebinding of IF2 to 

mature 70S IC. In the absence of 50S subunits, no change in fluorescence was observed 

due to the low levels of intrinsic GTPase activity of IF2 in the time range measured (Huang et 

al., 2010; Severini et al., 1991). When complexes lacking IF1 or IF3 were used, the rate of Pi 

release appeared slightly faster (Fig. 14C), which may be attributed to the faster rates of 

subunit joining on these complexes.  

5.4.3. Release of fMet-tRNAfMet from the C2-domain of IF2  

Direct interaction between the 3’ CCA-end of tRNAfMet and the C2-domain of IF2 on the 

ribosome was monitored using Bodipy (Bpy) FL- labeled Met-tRNAfMet (Holtkamp et al., 2014) 

An increase in Bpy-Met-tRNAfMet fluorescence was observed upon its recruitment to the 30S 

PIC by IF2. No fluorescence change occurred in the absence of IF2, 30S subunit or when a 

truncated mutant of IF2 lacking the C2-domain (IF2ΔC2) was used instead (Fig. 15A). The 

chase of Bpy-Met-tRNAfMet from the 30S IC with non-fluorescent fMet-tRNAfMet was almost 

undetectable (Fig. 15B), in agreement with previous reports that codon-anticodon interaction 

with the mRNA AUG codon greatly stabilizes tRNAfMet on the ribosome (Milon et al., 2012).  

 

Figure 15. Binding and dissociation kinetics of Bpy-Met-tRNAfMet on the 30S IC. 
Reactions were performed by rapidly mixing indicated components in a stopped-flow 
apparatus and following the fluorescence changes of Bpy-Met-tRNAfMet. (A) Time courses 
Bpy-Met-tRNAfMet binding to 30S PIC (lacking fMet-tRNAfMet) or free IF2–GTP. (B) Time 
courses of Bpy-Met-tRNAfMet dissociation from the 30S IC upon chase with 10-fold excess of 
non-fluorescent fMet-tRNAfMet. 
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Upon 50S joining to 30S IC formed with Bpy-Met-tRNAfMet, a decrease in fluorescence was 

observed, which can be attributed to the release of tRNAfMet from IF2 during 70S IC formation 

(Fig. 16A-B). The time courses were monitored at increasing 50S subunit concentrations 

and the reaction was preceded by a ~100 ms delay phase. The tRNAfMet release from IF2 

appeared faster when IF1 or IF3 was lacking from the complex (Fig. 16C). GTP hydrolysis 

was essential for tRNAfMet release from the C2-domain of IF2 because replacing GTP with 

GTPγS or GDPCP completely abolished the reaction (Fig. 16D).  

 

Figure 16. Release of tRNAfMet from IF2 during 70S IC formation. 30S IC (0.05 μM), 
formed with Bpy-Met-tRNAfMet was rapidly mixed with 50S subunits in a stopped-flow 
apparatus and the decrease in Bpy fluorescence was used to monitor tRNAfMet dissociation 
from IF2 during 70S IC formation. (A) Schematic of Bpy-Met-tRNAfMet dissociation from IF2 
during 70S IC formation. (B) Time courses of Bpy-Met-tRNAfMet dissociation from IF2 upon 
rapidly mixing 30S IC with increasing concentrations of 50S subunits (0.15 μM - 1 μM). 
Control measurements were performed in the absence of 50S subunits. (C) Time courses of 
Bpy-Met-tRNAfMet dissociation from IF2 upon rapidly mixing 30S IC formed in the presence of 
all factors and absence of IF1 or IF3 with 50S subunits (1 μM). (D) Time courses of Bpy-Met-
tRNAfMet dissociation from IF2 upon rapidly mixing 30S IC, formed in the presence of GTP, 
GTPγS or GDPCP, with 50S subunits (1 μM). 

5.4.4. Dissociation of GDP from IF2 

The fluorescence changes of Bpy-GTP and Bpy-GDP were used to monitor the direct 

interaction of the nucleotide with IF2. Binding of Bpy-GDP to free IF2 resulted in a single-
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exponential increase in fluorescence, the rates of which saturated (10 s-1) at high IF2 

concentrations, indicative of a monomolecular rearrangement which follows the binding step 

(Fig. 17A-B). Binding of Bpy-GDP to 30S-bound IF2 also showed a similar fluorescence 

change (10 s-1). In contrast, upon binding of Bpy-GTP to IF2 on the 30S IC, a biphasic 

increase in fluorescence was observed with the slow (0.05 s-1) phase accounting for >90% of 

the amplitude change and a rapid step with a very small amplitude (Fig. 17C). Binding of 

Bpy-GTP to free IF2 displayed only the first small phase which occurred with the rate of 10 s-

1 (similar to Bpy-GDP), indicating that this phase may arise due to a slight contamination of 

the Bpy-GTP preparation with Bpy-GDP or a conformational rearrangement that is common 

to the binding of both nucleotides to IF2. Bpy-GTP and Bpy-GDP could be chased from 30S 

IC-bound IF2 with the addition of excess GTP (Fig. 17D), resulting in a 12% decrease of 

fluorescence. The dissociation rate constants of Bpy-GDP and Bpy-GTP release from IF2, 

determined from the chase experiments were 10 s-1 and 0.01 s-1, respectively.  

 

Figure 17. Binding and dissociation kinetics of Bpy-GTP and Bpy-GDP. Reactions were 
performed by rapidly mixing components in a stopped-flow apparatus and following the 
fluorescence changes of the Bpy-labeled guanosine nucleotide. (A) Time courses of Bpy-
GDP binding to free IF2 or, IF2 bound to 30S PIC (formed in the absence of any nucleotide). 
(B) Apparent rates of Bpy-GDP (2 μM) binding to increasing concentrations of free IF2. 
Rates and standard errors (error bars smaller than symbol size are not visible) were derived 
from single-exponential fitting of time courses. (C) Time courses of Bpy-GTP binding to free 
IF2 or, IF2 bound to 30S PIC. (D) Time courses of Bpy-GTP or Bpy-GDP release from IF2 
bound on the 30S IC, upon chase with 125-fold excess of non-fluorescent GTP. 
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When Bpy-GTP was used to form the 30S IC, the Bpy fluorescence decreased after a lag 

phase of ~200 ms following the 50S subunit joining (Fig. 18B). The amplitude change (10%) 

was similar to that observed during the nucleotide binding and dissociation (chase) reactions. 

Hence, we concluded that the decrease in fluorescence of Bpy-GTP observed upon 70S IC 

formation corresponds to the release of Bpy-GDP from IF2 after hydrolysis of Bpy-GTP (Fig. 

18A). The absence of IF1 or IF3 did not affect the reaction (Fig. 18C).  

 

Figure 18. Release of GDP from IF2 during 70S IC formation. 30S IC (0.1 μM) formed 
with Bpy-GTP was rapidly mixed with 50S subunits in a stopped-flow apparatus and the 
decrease in Bpy fluorescence was used to monitor GDP release from IF2 during 70S IC 
formation. (A) Schematic of Bpy-GDP release from IF2 during 70S IC formation.  (B) Time 
courses of Bpy-GDP release from IF2 upon rapidly mixing 30S IC with increasing 
concentrations of 50S subunits (0.3 - 2 μM). Control measurements were performed in the 
absence of 50S subunits. (C) Time courses of Bpy-GDP release from IF2 upon rapidly 
mixing 30S IC formed in the presence of all factors and absence of IF1 or IF3, with 50S 
subunits (1 μM).  

5.4.5. Participation of IF2 in the 2nd round of initiation 

To monitor the direct interaction of IF2 with the ribosome, a fluorescence-labeled mutant of 

the factor, IF2757(Alx555) (Dr. Cristina Maracci - PhD thesis) was used. Binding of 

IF2757(Alx555) to the 30S complex resulted in a triphasic change in fluorescence (Fig. 19A). 

No fluorescence change was observed in the absence of 30S subunits, indicating that the 

fluorescence change did not arise from the interaction of IF2 with GTP or fMet-tRNAfMet, off 
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the ribosome. In the presence of 30S subunits, but in the absence of nucleotide or fMet-

tRNAfMet, only the first phase was observed (Fig.19B-C). When GTP was replaced by GDP, 

the amplitude of the third phase was lowered significantly. These results indicate that the first 

phase of fluorescence change depicts direct binding of IF2 to the 30S subunit (20 s-1), while 

the following phases represent conformational changes of the factor induced by its 

interaction with GTP and fMet-tRNAfMet. The third phase most likely depicts the conversion of 

IF2 into an ‘active’ conformational state, which promotes rapid subunit association and does 

not take place in the presence of GDP. When IF2757(Alx555) was chased from the 30S IC 

with a 20-fold excess of non-fluorescent IF2, a biphasic change in fluorescence was 

observed which may represent the reversal of IF2 conformational change, followed by 

dissociation of the factor from the 30S complex (Fig.19D). Further experiments, in the 

presence and absence of different initiation components, would help characterize the two 

phases in more detail.  

 

Figure 19. Binding and dissociation kinetics of IF2757(Alx555) on the 30S IC. Reactions 
were performed by rapidly mixing indicated components in a stopped-flow apparatus and 
following the fluorescence changes of IF2757(Alx555). (A) Time courses IF2757(Alx555) 
binding to 30S PIC (lacking IF2). (B) Time courses IF2757(Alx555) binding to 30S PIC in the 
presence of GTP, GDP or no nucleotide. (C) Time courses IF2757(Alx555) binding to 30S PIC 
in the presence or absence of fMet-tRNAfMet. (D) Time courses of IF2757(Alx555) release from 
the 30S IC, upon chase with 20-fold excess of non-fluorescent IF2.  
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After completing a single round of initiation, IF2 presumably dissociates from the 70S 

complex to participate in further initiation events (Fig. 20A). When 30S IC was formed with 

an excess of 30S subunits over IF2757(Alx555), 50S joining led to a ~15% decrease in 

fluorescence preceded by a delay phase (Fig. 20B). A similar signal change was previously 

observed upon IF2757(Alx555) binding to the 30S complex suggesting that after a delay 

phase of ~200 ms. which represents the time required for completing the first round of 

initiation, IF2757(Alx555) is released from the 70S IC and binds to the free 30S subunits in 

solution. The absence of IF1 and IF3 did not affect the reaction, although a small, undefined 

decrease in fluorescence preceding the main phase was observed, which may be caused by 

50S joining to 30S IC containing a differently positioned IF2 (Fig. 20C). GTP hydrolysis was 

a prerequisite for IF2 dissociation and the reaction was abolished with GTPγS (Fig. 20D).  

 

Figure 20. IF2 binding to 30S PIC during the 2nd round of initiation. 30S IC (0.05 μM), 
formed in the presence of 30S subunits (0.1 μM) and limiting amounts of IF2757(Alx555) (0.05 
μM), was rapidly mixed with 50S subunits in a stopped-flow apparatus and the fluorescence 
change of IF2757(Alx555) was used to monitor IF2 entry into the 2nd round of initiation. (A) 
Schematic of IF2 dissociation from the 70S IC during the 1st round of initiation and 
subsequent binding to 30S PIC during the 2nd round of initiation. (B) Time courses of 
IF2757(Alx555) binding to 30S PIC (2nd round) upon mixing 30S IC with increasing 
concentrations of 50S subunits (0.25 - 1 μM). Control measurements were performed in the 
absence of 50S subunits. (C) Time courses of IF2757(Alx555) binding to 30S PIC (2nd round) 
upon mixing 30S IC formed in the presence of all factors and absence of IF1 or IF3 with 50S 
subunits (1 μM). (D) Time courses of IF2757(Alx555) binding to 30S PIC (2nd round) upon 
rapidly mixing 30S IC formed in the presence of GTP or GTPγS with 50S subunits (1 μM).   
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5.5. Dynamics of IF1 on the 70S IC 

The binding and dissociation kinetics of IF1 on the 30S IC, as well as the interplay of IF1 with 

the other two factors, have been previously studied using fluorescence-labeled initiation 

components and rapid kinetic approaches (Milon et al., 2012). Until now, however, no studies 

have been conducted to investigate the dynamics of IF1 on the 70S IC. In the following 

section, dynamics of IF1 on the 70S complex were monitored with the help of two reporters; 

the fluorescence changes of IF14(Alx555), as well as the loss of FRET between 

30SS13(Alx488) and IF14(Atto540Q). Because IF1 is a relatively small, tightly folded protein, it 

is unlikely that the fluorescence intensity change of IF14(Alx555) reflects a conformational 

change of the factor itself. Rather, it may reflect an alteration in the environment of the 

reporter owing to a conformational rearrangement of the complex or establishment of 

alternative IF1 contacts (Qin and Fredrick, 2009) (in the following text, this step is referred to 

as ‘change of IF1 environment’). The timing of IF14(Alx555) fluorescence change preceded 

the change in FRET between IF1 and 30S. Hence, it is likely that the former observable 

represents changes in IF1 environment after subunit association, while the latter observable 

depicts the subsequent dissociation of the factor from the 70S complex. 

5.5.1. Change in IF1 environment after subunit joining 

When IF14(Alx555) was rapidly mixed with 30S complexes, a 20% increase in fluorescence 

(3 s-1) was observed (Fig. 21A). The chase of IF14(Alx555) from the complex with a 20-fold 

excess of non-fluorescent factor resulted in a corresponding 15-20% fluorescence decrease 

(Fig. 21B). During dissociation from the 30S IC, IF14(Alx555) changed fluorescence at the 

rate of 0.025 s-1 (predominant phase), when IF3 was present on the 30S complex. In the 

absence of IF3, IF1 dissociation was 7-fold faster (0.18 s-1) in agreement with previous 

reports that IF1 and IF3 stabilize each other on the 30S complex (Milon et al., 2012; Zucker 

and Hershey, 1986).  
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Figure 21. Binding and dissociation kinetics of IF14(Alx555) on the 30S IC. Reactions 
were performed by rapidly mixing indicated components in a stopped-flow apparatus and 
following the fluorescence changes of IF14(Alx555). (A) Time courses IF14(Alx555) binding to 
30S PIC (lacking IF1). (B) Time courses of IF14(Alx555) dissociation from the 30S IC, formed 
in the presence or absence of IF3, upon chase with 20-fold excess of non-fluorescent IF1.  

Change in the environment of IF1 after subunit association was followed by monitoring 

fluorescence changes of IF14(Alx555) (Fig. 22A), upon adding increasing concentrations of 

50S subunits to 30S IC (Fig. 22B). After 50S subunit joining, a biphasic decrease in 

fluorescence was observed, with the first major phase (~80% of the total amplitude change) 

occurring with the rate of 4.7 s-1. The apparent rate of the reaction was 2.5 fold faster in the 

absence of IF3 (Fig. 22C; Table 1) and may be attributed to the faster 50S subunit joining to 

30S IC. When GTP was replaced by GTPγS, the first phase of fluorescence change 

remained unaffected while the second minor phase, which represents IF1 dissociation (see 

next section) was abolished (Fig. 22D).  
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Figure 22. Change in IF1 environment during 70S IC formation. 30S IC (0.05 μM) formed 
with IF14(Alx555), was rapidly mixed with 50S subunits in a stopped-flow apparatus and the 
decrease in IF14(Alx555) fluorescence was used to monitor the change in IF1 environment 
on the 70S IC. (A) Schematic of IF1 environment change on the 70S IC. (B) Time courses of 
change in environment of IF14(Alx555) upon mixing 30S IC with increasing concentrations of 
50S subunits (0.15 - 1 μM). Control measurements were performed in the absence of 50S 
subunits. (C) Time courses of change in environment of IF14(Alx555) upon mixing 30S IC 
formed in the presence of all factors or absence of IF3 with 50S subunits (1 μM).  (D) Time 
courses of change in environment of IF14(Alx555) upon mixing 30S IC, formed in the 
presence of GTP or GTPγS, with 50S subunits (1 μM).  

5.5.2 Dissociation of IF1 from the 70S complex 

The direct interaction of IF1 with the ribosome was monitored via FRET between 

IF14(Atto540Q) and 30SS13(Alx488). The binding of quencher IF14(Atto540Q) to 

30SS13(Alx488) resulted in a ~20 % decrease of the fluorescence which occurred with the 

rate of 42 s-1 (Fig. 23A). The chase of IF14(Atto540Q) from the 30SS13(Alx488) IC, with a 20-

fold excess of non-fluorescent factor, led to a corresponding ~20 % increase of fluorescence, 

indicative of IF1 dissociation from the 30S IC which took place with the rates of 0.01 s-1 and 

0.08 s-1 from complexes formed in the presence or absence of IF3, respectively (Fig. 23B).  
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Figure 23. Binding and dissociation kinetics of IF14(Atto540Q) on the 30SS13(Alx488) IC. 
Reactions were performed by rapidly mixing indicated components in a stopped-flow 
apparatus and following the FRET between 30SS13(Alx488) IC and IF14(Atto540Q). (A) Time 
courses IF14(Atto540Q) binding to 30SS13(Alx488) PIC (lacking IF1). (B) Time courses of 
IF14(Atto540Q) dissociation from the 30SS13(Alx488) IC, formed in the presence or absence 
of IF3, upon chase with 20-fold excess of non-fluorescent IF1.  
 
Differences were observed between the binding and dissociation kinetics of IF1 on the 30S 

complex monitored using the two IF1 reporters. When IF14(Atto540Q)  was mixed with 

30SS13(Alx488) PIC, the signal change was 10-fold faster than that observed upon 

IF14(Alx555) interaction with 30S PIC (Fig. 21A), indicating that IF1 binding (depicted by the 

former reporter) is followed by rearrangements of the complex (depicted by the latter 

observable). Similarly, the rate of IF14(Atto540Q) chase from the 30SS13(Alx488) IC was 2-

fold slower than the rate of IF14(Alx555) chase from 30S PIC (Fig. 21B), indicating that IF1 

dissociation is preceded by a reversal of rearrangements of the 30S complex. 

IF1 dissociation from the 70S complex was monitored by loss of FRET between 

IF14(Atto540Q) and 70SS13(Alx488) IC (Fig. 24A). When increasing concentrations of 50S 

subunits were added to 30S IC containing the FRET couple, an increase in fluorescence was 

observed (Fig. 24B), indicating that IF1 moves away from the 30S subunit during 70S IC 

formation. The first, minor phase (~30% of the total amplitude) occurred independently of 

GTP hydrolysis (Fig. 24C) and was attributed to the change in IF1 environment which 

precedes dissociation of the factor. The second, major phase (~50% of the total amplitude) 

representing IF1 release was abolished when GTPγS replaced GTP in the system. 50S 

joining and GTP hydrolysis by IF2 dramatically stimulated IF1 dissociation from the 

ribosome, as seen by a 200-fold increase in the rate of IF1 release from the 70S complex, as 

compared with the 30S IC (apparent rates of 2 s-1 (Table 1) and 0.01 s-1 (Fig. 23B), 

respectively). 
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Figure 24. Dissociation of IF1 during 70S IC formation. 30S IC (0.05 μM) formed with 
30SS13(Alx488) and IF14(Atto540Q) , was rapidly mixed with 50S subunits in a stopped-flow 
apparatus and the loss of FRET (which resulted in fluorescence increase) was used to 
monitor IF1 dissociation from the 70S IC. (A) Schematic of IF14(Atto540Q) dissociation from 
the 70SS13(Alx488) IC. (B) Time courses of IF1 dissociation from the 70S IC upon mixing 30S 
IC with increasing concentrations of 50S subunits (0.15 μM - 1 μM). Control measurements 
were performed in the absence of 50S subunits. (C) Time courses of IF1 dissociation from 
the 70S IC upon mixing 30S IC, formed in the presence of GTP or GTPγS, with 50S subunits 
(1 μM). (D) Time courses of IF1 dissociation from the 70S IC upon mixing 30S IC, formed in 
the presence of all factors or absence of IF3 with 50S subunits (1 μM).  

In the presence of IF3, the extent of fluorescence change upon IF1 release from the 70S 

complex was slightly less than when IF1 was chased from the 30S IC (Fig. 23B), indicating 

that only ~80% of the bound IF1 dissociates from the 70 complex. A third slow phase (~20% 

of the total amplitude change, rate – 0.1 s-1), resulted from slow 50S subunit joining to 

incorrectly-formed 30S IC and accounted for the remaining amplitude change. In the 

absence of IF3, 50S rapidly associates with all 30S complexes, regardless of their 

conformation. Hence, the slow phase was not observed (Fig. 24D) and the entire amplitude 

change was equally shared between the first two phases. The first phase depicting the 

change of IF1 environment appeared faster when IF3 was lacking from the complex, while 

the rate of IF1 dissociation was not affected (Table 1). 

The dependence of IF1 release from the 70S IC on GTP hydrolysis by IF2 was a surprising 

finding. To understand the significance of this interplay, efforts were undertaken to uncouple 
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the two events. IF3 has been shown to stabilize IF1 on the 30S complex. Thus, it is possible 

that in the absence of IF3, IF1 may be destabilized enough to dissociate from the 70S 

complex even in the absence of GTP hydrolysis. 30S IC, containing GTPγS but lacking IF3, 

was mixed with 50S subunits and IF1 dissociation was monitored with time.  The absence of 

IF3 did not allow IF1 release from the 70S complex to occur when GTP hydrolysis was 

inhibited (Fig. 25A), indicating that the interplay was specific to IF1 and IF2.  

 

Figure 25. Efforts to uncouple IF1 dissociation from GTP hydrolysis. 30S IC (0.05 μM) 
formed with 30SS13(Alx488) and IF14(Atto540Q), in the presence of GTP or GTPγS, was 
rapidly mixed with 50S subunits (0.25 μM) in a stopped-flow apparatus and the loss of FRET 
(which resulted in fluorescence increase) was used to monitor IF1 dissociation from the 70S 
IC. (A) Time courses of IF1 dissociation from the 70S IC upon mixing 30S IC (lacking IF3) 
with 50S subunits. (B) Time courses of IF1 dissociation from 70S IC upon mixing 30S IC 
(formed with IF2ΔN mutant) with 50S subunits. 

On the 30S IC, IF1 contacts the NTD of the α-form (i.e. which contains the full-length N-

domain) of E. coli IF2 (Julian et al., 2011). Hence, we checked whether IF1 release can be 

uncoupled from GTP hydrolysis by using a truncated version of IF2 lacking the entire NTD 

(IF2 ΔN (Moreno et al., 1999)). In the absence of GTP hydrolysis by IF2ΔN, IF14(Atto540Q) 

was not released from the 70SS13(Alx488) complex (Fig. 25B), indicating that IF1 release 

from the 70S complex is not mediated by the loss of interaction with the NTD of IF2. Thus, it 

is possible that (i) IF1 interacts with a different domain of IF2 on the 70S IC, or (ii) the release 

of IF1 may be induced by conformational changes of the ribosome triggered by GTP 

hydrolysis.  

Based on the positioning of IF1 at the A site of the ribosome, it was suggested that IF1 may 

be involved in checking the fidelity of start codon-anticodon interaction (Antoun et al., 2006a; 

Milon et al., 2008; Qin et al., 2012). The correct base-pairing and accommodation of fMet-

tRNAfMet in the P site after GTP hydrolysis could, in turn, trigger the dissociation of IF1 from 

the 70S complex. The importance of the identity of the mRNA start codon was checked by 
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preparing 30S IC with an mRNA containing an AUG or AUU start codon (Fig. 26A). Although 

the extent of IF1 release was not affected by replacing AUG with an AUU start codon, the 

rate of the reaction decreased by 100-fold. This is because, in the presence of IF3, 50S 

joining to 30S complexes containing a non-cognate start codon is very slow, and becomes 

rate-limiting for subsequent events (Grigoriadou et al., 2007b; Milon et al., 2008). Hence, the 

complexes were formed in the absence of IF3 to promote rapid subunit joining, and the effect 

of AUU and UUG start codon on IF1 release was tested (Fig. 26B-C). The identity of the 

start codon did not affect the extent or rate of IF1 release, suggesting that correct codon-

anticodon base pairing is not a pre-requisite for, and does not trigger, IF1 dissociation from 

the 70S complex. Despite several efforts, the reason for the dependence of IF1 release on 

GTP hydrolysis by IF2 remains unknown and clearly merits further investigation.  

 

Figure 26. Effect of non-cognate start codons on IF1 dissociation. 30S IC (0.05 μM) 
formed with 30SS13(Alx488) and IF14(Atto540Q), in the presence of mRNA containing 
different start codon sequences, was rapidly mixed with 50S subunits (0.25 μM) in a stopped-
flow apparatus and the loss of FRET (which resulted in fluorescence increase) was used to 
monitor IF1 dissociation from the 70S IC. (A) Time courses of IF1 dissociation from the 70S 
IC upon mixing 30S IC (containing all factors) with 50S subunits. (B) Time courses of IF1 
dissociation from 70S IC upon mixing 30S IC (lacking IF3) with 50S subunits. (C) Apparent 
rates of the predominant phase derived from double-exponential fitting of time courses in (A)-
(B); error bars represent standard error of the fit.   
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5.6. Dynamics of IF3 on the 70S IC 

The interaction of IF3 on the ribosome was monitored by FRET between IF3166(Alx488) and 

IF2757(Atto540Q). Binding of IF3166(Alx488) to 30S IC containing IF2757(Atto540Q) resulted in 

a 20% decrease in fluorescence (Fig. 27A). IF3 (0.1 μM) associated very rapidly with the 

30S complex (100 s-1). The chase of IF3166(Alexa488) from the 30S - IF2757(Atto540Q) 

complex, with a 20-fold excess of non-fluorescent IF3, resulted in a corresponding increase 

of fluorescence by 20% (Fig. 27B). In the presence of IF1, IF3 dissociated from the 30S IC 

with a rate of 7 s-1 while, in the absence of IF1, IF3 dissociation was 8-fold faster (54 s-1). 

These results are in agreement with previous studies which suggested that IF1 stabilizes the 

interaction of IF3 with the 30S complex (Antoun et al., 2006b; Milon et al., 2012).  

 

Figure 27. Binding and dissociation kinetics of IF3166(Alx488) on the 30S IC containing 
IF2757(Atto540Q) IC. Reactions were performed by rapidly mixing indicated components in a 
stopped-flow apparatus and following the changes in FRET between IF3166(Alx488) and 
IF2757(Atto540Q). (A) Time courses IF3166(Alx488) binding to 30S - IF2757(Atto540Q) PIC 
(lacking IF3). (B) Time courses of IF3166(Alx488) dissociation from the 30S - IF2757(Atto540Q) 
IC, formed in the presence or absence of IF1, upon chase with 20-fold excess of non-
fluorescent IF3. 

Dissociation of IF3 from the 70S complex was monitored via the loss of FRET between 

IF3166(Alx488) and IF2757(Atto540Q) after 50S subunit joining (Fig. 28A). Upon 50S subunit 

joining to 30S IC containing the IF2-IF3 FRET couple, an increase in fluorescence was 

observed indicating that 50S subunit association causes IF3 to move away from IF2 on the 

ribosome (Fig. 28B). The extent of fluorescence increase was 20%, similar to that observed 

previously during the chase of IF3 from 30S IC (Fig. 27B), suggesting that the signal change 

might reflect the dissociation of IF3 from the ribosome.  
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Figure 28. Dissociation of IF3 during 70S IC formation. 30S IC (0.05 μM), formed with 
IF3166(Alx488) and IF2757(Atto540Q), was rapidly mixed with 50S subunits in a stopped-flow 
apparatus and the loss of FRET between IF3166(Alx488) IC and IF2757(Atto540Q) (which 
resulted in a fluorescence increase) was used to monitor IF3 dissociation from the 70S IC. 
(A) Schematic of IF3166(Alx488) dissociation from the 70S IC containing IF2757(Atto540Q) (B) 
Time courses of IF3 dissociation from the 70S IC upon mixing 30S IC with increasing 
concentrations of 50S subunits (0.15 -1 μM). Control measurements were performed in the 
absence of 50S subunits. (C) Dependence of apparent rates of subunit joining (monitored by 
LS in the presence of the IF3-IF2 FRET couple) and IF3 dissociation from the 70S IC (Flu) 
on 50S concentration. Rates and standard errors (error bars smaller than symbol size are not 
visible) were derived from double-exponential fitting of time courses. (D) Time courses of IF3 
dissociation from 70S IC upon mixing 30S IC, formed in the presence of GTP or GTPγS, with 
50S subunits (1 μM). (E) Time courses of IF3 dissociation from the 70S IC upon mixing 30S 
IC, formed in the presence of all factors or absence of IF1 with 50S subunits (1 μM). (F) 
Apparent rate constants of the predominant phase derived from double-exponential fitting of 
time courses in (D)-(E) and Fig. 27B; error bars represent standard error of the fit. 
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The dependence of the apparent rate of the reaction on increasing concentrations of 50S 

subunits almost overlapped with the rates of subunit joining to 30S IC formed with the IF2-

IF3 FRET couple (Fig. 28C). This suggested that IF3 is released from the 70S complex 

immediately upon subunit association. Comparison of time courses obtained in the presence 

of GTP and GTPγS showed that the reaction was entirely independent of IF2-dependent 

GTP hydrolysis (Fig. 28D). IF3 dissociation from the 70S complex was 6- fold faster in the 

absence of IF1 (37 s-1) than in its presence (6 s-1) (Fig. 28E). Interestingly, the rates of IF3 

release from the 30S and 70S complex, in the presence or absence of IF1, were very similar 

(Fig. 28F). These results indicate that 50S subunit joining does not accelerate the 

dissociation of IF3 from the ribosome, suggesting that the propensity for IF3 to dissociate is 

determined by the conformation of the 30S IC, which in turn depends upon the TIR of the 

mRNA, codon-anticodon recognition and the proper arrangement of all initiation components 

on the 30S subunit (Milon et al., 2008).  
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5.7. Formation of the 1st peptide bond. 

To study the transition of the 30S IC to an elongation-competent 70S IC, the first peptide 

bond formation was measured (Fig. 29A) using the quench-flow apparatus (Antoun et al., 

2003; Milon et al., 2008; Tomsic et al., 2000). 30S IC was rapidly mixed with increasing 

concentrations of 50S subunits and EF-Tu—GTP—Phe-tRNAPhe ternary complex (TC) (0.4 

μM), and the formation of fMet-Phe dipeptide was followed with time (Fig. 29B).  

 

 

Figure 29. Formation of fMet-Phe dipeptide. 30S IC (0.1 μM) was rapidly mixed with 50S 
subunits and EF-Tu—GTP—Phe-tRNAPhe ternary complex (TC) (0.4 μM) in a quench-flow 
apparatus and the formation of fMet-Phe was measured with time. (A) Schematic of the first 
peptide bond formation. (B) Time courses of fMet-Phe formation upon mixing 30S IC with 
increasing concentrations of 50S subunits (0.3 - 1 μM) and EF-Tu TC. (C) Time courses of 
fMet-Phe formation upon mixing 30S IC, formed in the presence of all factors and absence of 
IF1 or IF3 with 50S subunits (1 μM) and EF-Tu TC. (D) Time courses of fMet-Phe dipeptide 
formation upon mixing 30S IC, formed in the presence of GTP or GTPγS, with 50S subunits 
(1 μM) and EF-Tu TC (inset-extended time course).  

Peptide bond formation occurred after a 300 ms lag phase and the lack of IF1 or IF3 did not 

affect the timing of the reaction (Fig. 29C). In agreement with previous reports, the extent of 

fMet-Phe formation was decreased by 40% in the absence of IF3, suggesting that under 

these conditions, a certain portion of the 70S complexes formed lacked fMet-tRNAfMet 

(Antoun et al., 2006b). The replacement of GTP with GTPγS inhibited the reaction (Fig. 
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29D), indicating that GTP hydrolysis by IF2 is essential for the productive transition of 70S 

complexes into an elongation-ready state. Assuming that 70S maturation into the 70S EC is 

limited by GTPγS hydrolysis and subsequent IF2 dissociation, dipeptide formation can be 

used as an indicator to provide an estimate for the rate of hydrolysis of GTPγS by IF2 

(0.0015 s-1) (Fig. 29D (inset)). 
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5.8. Global fitting of datasets 

As mentioned previously, the apparent rate (kapp) of a reaction can be derived from the 

exponential fitting of only those time courses which do not contain a delay phase before the 

start of the reaction. The kapp of a binding reaction (such as subunit joining) is the resultant of 

its elemental association and dissociation rates, while the kapp of a monomolecular reaction 

may be influenced by the timing of preceding steps. Hence, the elemental rate constants 

describing the individual forward and backward directions of each reaction were calculated 

by global fitting. Time courses, obtained for each reaction at increasing 50S subunit 

concentrations, were collectively evaluated using the numerical integration software, KinTec 

explorer to derive the elemental rate constants of each step (k1-k10). By comparing apparent 

rate constants, delay phase of time courses and dependence of different reactions on GTP 

hydrolysis, a 10-step model was formulated to evaluate the time courses of reactions:  

 

where A and R refer to the 30S IC and 50S subunit, respectively, and B to K are 

intermediates on the pathway from the 30S IC to 70S EC formation. The kinetics of subunit 

joining are described by the elemental rates constants k1 and k-1. GTPase activation 

corresponds to the B→C transition (rate constant k2) because – based on the exponential 

fitting – it is the fastest rearrangement step which is independent of GTP hydrolysis. The 

transition C→D (k3) is assigned to the change of IF1 environment which also does not 

require GTP hydrolysis to take place. All subsequent steps of the reaction pathway are 

inhibited in the absence of GTP hydrolysis. The sequence of the following steps is assigned 

on the basis of their kinetics, in particular by the characteristic duration of the delay phase. 

Single-turnover Pi release corresponds to the step D→E (k4). The subsequent rounds of 

multiple-turnover GTP hydrolysis and Pi release, uncoupled from initiation, are described by 

a late, very slow step J→K (k10). tRNAfMet release from IF2 is given by E→F (k5). Three 

reactions occur around the same time and are described by a single step F→G (k6) - IF2 

release from the 70S complex, IF1 release from the 70S complex and GDP release from IF2. 

Binding of IF2 to the 30S complex during the second round of initiation is depicted by the 

transition G→H (k7). The final step of fMet-Phe formation (H→I) corresponds to k8.  

An additional step described by I→J (k9) was included in the model to account for the minor 

phase observed at late time points of the reactions. This step can be explained by slow 50S 

joining to incorrectly formed or “inactive” 30S IC (McGinnis et al., 2015), and is observed 
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predominantly in the presence of IF3 which confers an anti-association conformation on 

these complexes. Because the kinetics of subunit joining was slower in the presence of the 

FRET pair, IF3166(Alx488) and IF2757(Alx488), as compared to their unlabeled counterparts 

(Fig. 10C-D), the dataset for IF3 dissociation could not be incorporated into the 10-step 

kinetic model to derive elemental rates of the reaction.  

All reactions occurring after subunit joining were assumed to be quasi-irreversible, which is 

very likely for the release reactions (of Pi, IF1, IF2, GDP), and represents a simplification of 

the model, justified by the commitment of 70S complex in the forward pathway towards 

maturation, and the absence of any evidence for the existence of highly reversible steps. To 

facilitate the fitting of such large datasets, the rates of the slow steps in the model were 

assigned fixed values (0.5 s-1 for k9; 0.01 s-1 for k10). Fitting data with alternative models, i.e. 

with a larger number of steps or different order of events, was not successful.  

In the absence of IF1 or IF3, several reactions (such as subunit joining, GTPase activation, 

change in IF1 environment, Pi release and tRNAfMet release from IF2) appeared faster. To 

understand if the increased apparent rate was a result of faster 50S docking or an intrinsic 

property of the reaction, the elemental rate constant of each event was calculated. For 

complexes lacking IF1 or IF3, LS was monitored at varying 50S concentrations. For each of 

the remaining reaction observables, single time courses were obtained at a fixed 

concentration of 50S subunits (1 µM). The time courses were fitted by numerical integration 

using the 10-step model described above, with the following modifications- (i) IF1-dependent 

steps were removed from the reaction scheme when IF1 was absent, (ii) the GTPase 

activation step, which in the full system is a kinetically discrete reaction, in the absence of IF3 

becomes indistinguishable from the 50S subunit docking; hence, the two steps were 

grouped, and (iii) IF2 (and IF1) dissociation from 70S complex lacking IF1 or IF3 occurred 

around the same time as the release of tRNAfMet from IF2; hence, the three steps were 

grouped.  

Because there was no difference between the rates of subunit joining in the presence of GTP 

or GTPγS (Fig. 12B), the time courses of LS (GTP) measured at increasing 50S subunit 

concentrations were modeled with singular time courses, obtained with the remaining 

observables, in the presence of GTPγS and at a fixed 50S subunit concentration (1 µM). 

Time courses for the observables which displayed a signal change in the presence of GTPγS 

were fitted with a 4-step model (A→B (LS); B→C (mant-GTPγS); C→D (IF14(Alx555)) and 

D→E (slow subunit joining)).  
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The elemental rate constant of each reaction (Table 2), and the overall statistics of the global 

fitting (Fig. 30) are shown.  

Table 2. Summary of elemental rate constants of reactions during 70S IC formation.  

Kinetic step Observable 
All IFs 

GTP 

–IF1 

GTP 

–IF3 

GTP 

All IFs 

GTPγS 

50S association,  

k1 (µM-1s-1) 
LS 30 ± 6 43 ± 5 50 ± 5 23 ± 6 

50S dissociation,  

k-1 (s
-1) 

LS 31 ± 15 ~0 2.5 ± 1.0 13 ± 10 

GTPase activation,  

k2 (s
-1) 

Mant-GTP 36 ± 6 24 ± 5 as k1
 

37 ± 10 

Change of IF1  

environment, k3 (s
-1) 

IF14(Alx555) 19 ± 5 n.o. 17 ± 5 11 ± 3 

Pi release, k4 (s-1) Pi-PBP(MDCC) 4.0 ± 0.5 3.9 ± 0.5 4.3 ± 0.5 n.o. 

fMet-tRNAfMet release  

from IF2, k5 (s
-1) 

Bpy-Met-tRNAfMet 19 ± 5 13 ± 3 10 ± 3 n.o. 

IF2 dissociation,  

k6 (s
-1) 

Mant-GTP 5.5 ± 0.5 as k5 as k5 n.o. 

IF1 dissociation,  

k6 (s
-1) 

IF14(Atto540Q)- 

30SS13(Alx488) 
5.5 ± 0.5 n.o. as k5 n.o. 

GDP release,  

k6 (s
-1) 

Bpy-GTP 5.5 ± 0.5 7.4 ± 0.6 7.3 ± 0.6 n.o. 

IF2 binding to 30S (2nd 

round), k7 (s
-1) 

IF2757(Alx555) 20 ± 10 21 ± 10 16 ± 9 n.o. 

Peptide bond  

formation, k8 ( s
-1) 

fMet-Phe 2.6 ± 0.9 2.0 ± 0.9 2.5 ± 0.7 n.o. 

All rates and standard errors are derived from global fitting of collective time courses using 
numerical integration; n.o. - not observed. 
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Figure 30. Statistical analysis of global fitting of datasets using KinTek Explorer. Time 
courses of all observables (LS; FRET between mant-GTP and Trp residue of IF2; 
fluorescence changes of IF14(Alx555); Pi release; fluorescence changes of Bpy-Met-
tRNAfMet; fluorescence changes of Bpy-GTP; fluorescence changes of IF2757(Alx555); 
dequenching of 30SS13(Alx488) by IF14(Atto540Q) and the first peptide bond formation) were 
obtained at increasing concentrations of 50S subunits, and collectively evaluated by 
numerical integration using a 10-step kinetic model (see Results). (A) Distribution of 
amplitudes of the observables along different steps of the model. Amplitudes are presented 
as % of signal change at a given step compared to the total change. For all observables 
where the fluorescence changes go into one direction, the total amplitude is set at 0-100%. 
For mant-GTP, where the fluorescence change has an upward and downward phase, the 
amplitudes of both steps were summed up, disregarding the sign. (B) Global minima and 
confidence intervals of elemental rate constants (s-1) derived from global fitting of datasets.  
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The association and dissociation elemental rate constants of subunit joining, derived from 

numerical integration, were 30 ± 6 µM-1 s-1 and 31 ± 15 s-1, respectively (Table 2). Subunit 

joining was followed by rapid GTPase activation (elemental rate - 36 s-1) and change in IF1 

environment (19 s-1). Subsequently, Pi was released from IF2 (4 s-1), followed by tRNAfMet 

dissociation from IF2 (19 s-1). Thereafter, IF1 and IF2 dissociation, as well as dissociation of 

Bpy-GDP from the IF2 G-domain, proceeded around the same time with an elemental rate 

constant of 5.5 s-1. Finally, the mature 70S complex catalyzed the formation of the first 

peptide bond (2.5 s-1). In parallel, the released IF2 entered the second round of initiation by 

rapidly binding to free 30S subunits (~20 s-1).  

The elemental association rate constant of 50S joining to 30S complexes lacking IF1 or IF3 

was slightly higher (40 - 50 µM-1 s-1), while the elemental dissociation rate constant was very 

small (~0 - 2.5 s-1) and the reaction was rendered almost irreversible (Table 2). When IF3 

was absent, the kinetics of GTPase activation was indistinguishable from subunit joining, 

whereas in the absence IF1, the elemental rate constant of GTPase activation was slightly 

lower (24 s-1). There was no difference observed in the elemental rate constants of IF1 

environment change (17 s-1) and Pi release (4 s-1) when IF3 (or IF1) were lacking from the 

complex. The absence of either factor slightly decreased the rate of tRNAfMet release from 

IF2 (10-13 s-1), which under these conditions took place concomitantly with IF2 (and IF1) 

dissociation from the 70S complex. Subsequently, GDP release from IF2 became slightly 

faster (7.3 s-1), while events such as binding of IF2 to 30S during the second round of 

initiation (~20 s-1) and the first peptide bond formation (~2 s-1) were not affected. 

  



68 

 
5.9. Reversibility of 70S IC formation 

To further examine the role of GTP hydrolysis during 70S IC formation, we investigated 

whether a mature 70S IC can recruit IF1 and IF2 when GTP is replaced with GTPγS.  

5.9.1. Binding of IF2 to mature 70S IC  

As noted above, when 30S IC formed with GTP and Bpy-Met-tRNAfMet was rapidly mixed with 

50S subunits, a decrease in Bpy fluorescence was observed due to the release of Bpy-Met-

tRNAfMet from IF2 following GTP hydrolysis (Fig. 16 and Fig. 31A). When the same 

experiment was performed in the presence of a 20-fold excess of GTPγS added along with 

the 50S subunits, a biphasic fluorescence change was observed (Fig. 31A). The initial 

decrease in signal was followed by an increase in fluorescence caused by re-binding of IF2,  

after the exchange of GDP for GTPγS, to the mature 70S IC and subsequent capture of the 

3’ CCA-end of Bpy-Met-tRNAfMet by IF2–GTPγS. Thus, in the absence of GTP hydrolysis, the 

binding equilibrium is shifted towards the formation of the Bpy-Met-tRNAfMet–IF2–70S 

complex and the dissociation of IF2 is disfavored, thereby preventing the formation of the 

mature 70S IC which can enter the elongation phase.  
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Figure 31. Binding of IF2 to mature 70S IC in the presence of pre- and post-hydrolysis 
state GTP analogs.  (A) 30S IC formed in the presence of Bpy-Met-tRNAfMet and GTP (12.5 
μM) was rapidly mixed with 50S subunits in the presence or absence of GTPγS (0.25 mM). 
Time courses of Bpy-Met-tRNAfMet fluorescence changes were monitored. (B-C) Time 
courses of Bpy-Met-tRNAfMet interaction with IF2 C2-domain upon binding of the factor (4 μM) 
to purified 70S IC (Bpy) in the presence of different GTP analogs (≥ 100 μM). (D) Similar 
experiments were performed using an IF2 variant lacking the C2-domain (IF2 ΔC2) in the 
presence of GTPγS. Time courses were fit with a double-exponential function and the 
apparent rate constant of the predominant phase is reported (see text); error bars represent 
standard error of the fit.  

The addition of GDPNP-bound IF2 to preformed 70S IC results in the formation of a high 

affinity complex between the factor and the ribosome (Antoun et al., 2003). We used this 

approach to study the reversibility of late events of translation initiation by rapidly mixing IF2, 

bound to different pre- and post-hydrolysis state GTP analogs, with purified 70S IC 

containing Bpy-Met-tRNAfMet (70S IC (Bpy)). In the presence of GTPγS or GDPNP, an 

increase in fluorescence (0.3 s-1), depicting the binding of IF2 to Bpy-Met-tRNAfMet on the 

ribosome, was observed (Fig. 31B).  No fluorescence increase occurred upon binding of the 

full-length IF2 to 70S IC (Bpy) in the presence of GTP, owing to rapid GTP hydrolysis and 

IF2 dissociation. Control experiments performed in the presence of GDP also showed no 

fluorescence change. 

In the presence of GDP—BeF3 and GDP—AlF3 (Fig. 31C), a 7-70 fold slower fluorescence 

change, than that observed in the case of GTPγS and GDPNP, was noted (0.04 s-1 and 



70 

 
0.004 s-1, respectively). No significant increase in fluorescence was observed when GDP—

ortho-vanadate or GDP—meta-vanadate were used instead. When a truncated version of 

IF2, lacking the C2-domain (Mortensen et al., 1998), was used together with GTPγS, no 

fluorescence change was observed, confirming the loss of the direct interaction between 

tRNAfMet and IF2 (Fig. 31D).   

5.9.2. Binding of IF1 to mature 70S IC  

When 30SS13(Alx488) IC, formed with GTP and IF14(Atto540Q), was rapidly mixed with 50S 

subunits, an increase in fluorescence was observed upon release of IF14(Atto540Q) from the 

70S complex (Fig. 24 and Fig. 32A). In the presence of a 20-fold excess of GTPγS added 

along with the 50S subunits, a biphasic fluorescence change was observed (Fig. 32A) 

representing the initial release of IF1, followed by rebinding of the factor to the 70S complex. 

Whether externally-added IF1 could bind to mature 70S IC was checked by mixing unpurified 

70SS13(Alx488) IC (which contained IF2 in solution) with IF14(Atto540Q) in the presence of 

GTP or GTPγS (Fig. 32B). No binding was observed in the presence of GTP, whereas IF1 

could bind to mature 70S complexes in the presence of GTPγS  

 

Figure 32. Binding of IF1 to mature 70S IC in the presence of GTPγS. (A) 30SS13(Alx488) 
IC, formed with IF14(Atto540Q) and GTP (12.5 μM) was rapidly mixed with 50S subunits in 
the presence or absence of GTPγS (0.25 mM). Time courses of FRET were monitored. (B) 
Time courses of IF14(Atto540Q) (0.1 μM) binding to mature 70SS13(Alx488) IC in the 
presence of GTP or GTPγS (0.25 mM). 

Because IF1 does not harbor a nucleotide binding site, the recruitment of IF1 to the 70S 

complex must be indirectly mediated by the effector molecule, IF2, which binds to the mature 

70S IC in the presence of GTPγS and shifts the equilibrium towards the pre-hydrolysis state 

of the 70S complex.  
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6. DISCUSSION 

6.1. Kinetic model of 70S IC formation 

The present kinetic analysis provides a detailed mechanistic picture of the maturation of the 

canonical 30S IC to the 70S EC (Fig. 33).  

 

Figure 33. Detailed kinetic scheme of late events in bacterial translation initiation. IF1, 
IF2–GTP, IF3, mRNA and fMet-tRNAfMet bind the 30S subunit to form a 30S IC. Step 1: 
Association of the 50S subunit with 30S IC to form a 70S PIC. Step 2: GTPase activation and 
rapid GTP hydrolysis (Grigoriadou et al., 2007a; Huang et al., 2010; Qin et al., 2009; Tomsic 
et al., 2000). Step 3: Change of IF1 environment. Step 4: Pi release from IF2. Step 5: 
Release of the 3’ end of fMet-tRNAfMet from IF2 C2-domain. Step 6: Release of IF2 from the 
70S complex and GDP from IF2; release of IF1 from the 70S complex, giving rise to an 
elongation ready 70S IC. Step 7: Binding of IF2 to free 30S subunits in the next round of 
initiation. Step 8: Binding of EF-Tu–GTP–aminoacyl-tRNA (TC) to the 70S IC is followed by 
peptide bond formation to form a 70S EC. Movement of IF3 away from the subunit interface 
takes place immediately upon subunit joining; the position of IF3 is indicated by a lighter 
shade and should be considered tentative. Dissociation of IF1 and IF2 from the 70S 
complex, as well as step 5, becomes reversible in the absence of GTP hydrolysis, as 
indicated by dashed arrows. 

50S subunit joining is the first step towards the formation of the 70S complex (Antoun et al., 

2006b; Antoun et al., 2004; Grunberg-Manago et al., 1975; Milon et al., 2008). When all 

factors, fMet-tRNAfMet, and GTP are bound to the 30S subunit carrying the 022 mRNA, 

subunit joining occurs with an apparent rate constant of 14 µM-1 s-1 (Milon et al., 2008). 

However, the detailed kinetic analysis, which takes into account the steps following 50S 

subunit joining, indicates that the initial 50S subunit docking is reversible with elemental rate 
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constants of about k1 = 30 µM-1s-1 and k-1 = 31 s-1 (Table 2), consistent with previously 

published results (Grigoriadou et al., 2007a). The 70S PIC intermediate formed immediately 

upon 50S subunit joining (Fig. 33) may correspond to the short-lived state of the 70S 

complex observed by single-molecule FRET (MacDougall and Gonzalez, 2015). Further 

rearrangements of the complex are required to stabilize the interaction between the two 

subunits, leading to the formation of the 70S IC (Grigoriadou et al., 2007a; MacDougall and 

Gonzalez, 2015).  

Because IF3 binds to the principle inter-subunit bridge B2b which is essential for stable 

subunit association (Dallas and Noller, 2001), docking of the 50S subunit displaces IF3 from 

the interface between the subunits (Fig. 28C), leading to the eventual dissociation of the 

factor. These results are in agreement with previous studies conducted using rapid kinetics 

(Milon et al., 2008), chemical probing (Fabbretti et al., 2007), and single molecule FRET 

(Elvekrog and Gonzalez, 2013; MacDougall and Gonzalez, 2015) which suggest that IF3 

dissociation from the ribosome occurs during or after 50S subunit joining.   

Subunit joining is followed by rapid GTPase activation of IF2 (36 s-1) and GTP hydrolysis 

(Grigoriadou et al., 2007a; Huang et al., 2010; Qin et al., 2009; Tomsic et al., 2000), along 

with subsequent conformational rearrangements resulting in a change of IF1 environment 

(19 s-1) (Fig. 33; Table 2). Thereafter, Pi is released from the G-domain of IF2 (4 s-1) after a 

delay of ~75-100 ms, in agreement with earlier reports (Grigoriadou et al., 2007a; Tomsic et 

al., 2000).  Pi release is followed by the rapid release of fMet-tRNAfMet from the C2-domain of 

IF2 (19 s-1), leading to tRNA accommodation in the P site (Allen et al., 2005; La Teana et al., 

1996; Myasnikov et al., 2005). Previous reports showed that tRNAfMet conformational 

changes, monitored by the fluorescence change of proflavin attached to the D-loop of fMet-

tRNAfMet, precede Pi release (Grigoriadou et al., 2007a). The datasets with Bpy-Met-tRNAfMet 

could not be modeled to suit this sequence of events, suggesting that the two labels may 

report on two different tRNAfMet-dependent reactions.  

Afterwards, IF2 dissociates from the 70S complex (5.5 s-1) and exchanges its bound GDP for 

GTP to participate in further initiation events. Because the final concentration of GDP in the 

reaction, after GTP hydrolysis, is determined by the concentration of the 30S IC (0.1 µM), 

which is at least 10-fold lower than the Kd of GDP binding to free-IF2 (~ 1-2 µM (Hauryliuk et 

al., 2009)), the dissociation of GDP from IF2 is expected to be spontaneous. It has been 

reported that, after GTP hydrolysis and Pi release, IF2 may remain bound to the 70S 

complex posing no hindrance to the binding of the incoming EF-Tu ternary complex 
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(Grigoriadou et al., 2007a). However, the entry of IF2 into the 2nd round of translation 

initiation (20 s-1) (Fig. 20) indicates that IF2 completely dissociates from the 70S complex 

after release from fMet-tRNAfMet. IF2 binding to the 30S subunit does not require interaction 

with GTP (Weiel and Hershey, 1982) or fMet-tRNAfMet. However, the binding of GTP and 

fMet-tRNAfMet stimulates conformational changes in IF2 (Fig. 19B-C), conferring an ‘active’ 

conformation on the factor and promoting a productive arrangement of the 30S IC which is 

primed for rapid subunit joining.  

Until now, relatively little was known about the timing of IF1 release during 70S IC formation. 

Cryo-EM structures suggested that it remains bound to the 70S complex after 50S joining, 

positioned near IF2 helix 8, which connects the G3- and C1 domain of IF2 (Allen et al., 

2005). Release of IF1 was suggested to occur sometime after 50S joining but before Pi 

release, allowing the IF2 CTD to reposition itself near the decoding center of the ribosome 

(Allen et al., 2005; Myasnikov et al., 2005). Numerical integration analysis of time courses 

monitoring IF1 dynamics revealed that IF1 dissociates from the 70S complex after Pi release 

and around the same time as IF2 (Table 2). 

Lastly, EF-Tu TC binds to the 70S IC and peptide bond formation occurs after a 300 ms lag 

phase with the elemental rate constant of 2.6 s-1, marking the transition of initiation into 

elongation phase of translation. The delay represents the time required for the formation of 

an elongation-competent 70S complex. When pre-formed 70S IC is used instead, no delay 

phase is observed, and the time courses of peptide bond formation can be fit with a single-

exponential function which gives a rate of 2 s-1 (Milon et al., 2008; Pape et al., 1998), in 

agreement with the rates derived from the numerical integration model.  
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6.2. Role of GTP hydrolysis in maturation of the 70S complex 

The requirement for GTP hydrolysis by IF2, in promoting different reactions, was examined 

by substituting GTP with a non-hydrolysable GTP analog, GTPγS. In agreement with 

previous reports, the replacement of GTP with non-hydrolysable GTP analogs did not affect 

the rate or extent of subunit joining (Fig. 12B) (Antoun et al., 2003; Antoun et al., 2004; Qin 

et al., 2009; Tsai et al., 2012). Because 50S docking displaces IF3 from the subunit interface, 

the latter reaction was also entirely independent of GTP hydrolysis (Fig. 28D). These 

findings contradict the conclusions from cryo-EM studies of the 70S PIC, where the complex 

is stalled in the presence of non-hydrolysable GTP analog, GDPNP (Allen et al., 2005). The 

authors assign a density found near the E site to IF3, suggesting that GTP hydrolysis may be 

required for IF3 release from the 70S complex (Allen et al., 2005). Taking into account these 

observations, it is possible that the step assigned to IF3 dissociation in this work represents a 

major movement of IF3, e.g. away from the subunit interface and towards the outer surface 

of the ribosome (Fig. 33), which would free the bridge B2b (Dallas and Noller, 2001; 

Hennelly et al., 2005; Julian et al., 2011; Kipper et al., 2009) together with other inter-subunit 

bridges (Fabbretti et al., 2007), and allow stable subunit interaction to take place. 

GTPase activation of IF2 could take place even in the presence of a non-hydrolysable GTP 

analog, mant-GTPγS (Fig. 13D). In contrast, the replacement of GTP with GTPγS completely 

abolished the release of tRNAfMet from the C2-domain of IF2 (Fig. 16D). The latter finding is 

in agreement with the cryo-EM reconstruction of the 70S PIC where the physical interaction 

between fMet-tRNAfMet and IF2 remains unbroken when complexes are formed in the 

presence of GDPNP (Allen et al., 2005). In agreement with previous reports based on 

biochemical, structural and rapid-kinetic data, IF2 was unable to dissociate from the 70S 

ribosome, in the absence of GTP hydrolysis (Fig. 13D and Fig. 20D) (Allen et al., 2005; 

Antoun et al., 2003; Lockwood et al., 1972; Luchin et al., 1999; Myasnikov et al., 2005). 

Peptide bond formation was heavily dependent on GTP hydrolysis as well (Fig. 29D) (Antoun 

et al., 2003).  

The utilization of GTPγS and GDPNP (Antoun et al., 2003) conferred a higher degree of 

inhibition than was previously reported in the presence of GDPCP (Grigoriadou et al., 2007a; 

Grigoriadou et al., 2007b), or GDP/no nucleotide (Tomsic et al., 2000). In the former case, 

the authors (Grigoriadou et al., 2007a; Grigoriadou et al., 2007b) observed only a 2-3 fold 

reduction in the amplitude of tRNAfMet conformational changes and dipeptide formation, 

events that were almost completely inhibited in this work. In addition, cryo-EM structures of 
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the 70S complex, prepared in the presence of GDPCP, depicted a loss of interaction 

between IF2 and tRNAfMet, even in the absence of GTP hydrolysis (Myasnikov et al., 2005). 

To understand the discrepancy, the subunit joining and tRNAfMet release from IF2 was 

checked in the presence of the same analog, GDPCP, and very little differences were found 

when compared to GTPγS (Fig. 12B and 16D). It was also observed that the rate of subunit 

joining in the absence of any nucleotide or in the presence of GDP (0.02 s-1) was >200-fold 

slower than in the presence of GTP (Fig. 6E and Fig. 12A), in agreement with earlier reports 

(Antoun et al., 2004). These results suggest that the disparity may arise from variations in the 

susceptibility of IF2 from different organisms (E. coli (Antoun et al., 2003; Antoun et al., 

2004); this work), G. stearothermophilus (Grigoriadou et al., 2007a; Grigoriadou et al., 

2007b; Tomsic et al., 2000) and T. thermophilus (Myasnikov et al., 2005)) for different non-

hydrolysable analogs of GTP.  

It remains unknown whether Pi release is an obligatory step for the release of fMet-tRNAfMet 

from IF2. To investigate this, the effect of phosphate analogs on IF2 interaction with the 

tRNAfMet was studied. Because the phosphate analogs affected the conformational state of 

IF2 on the 30S IC, disturbances in subunit joining were observed (Fig. 12C-D). Hence, the 

reverse pathway was monitored, in the sense that when IF2, bound to different pre- and 

post-hydrolysis GTP analogs, was mixed with mature 70S IC (Bpy), it could bind to the 70S 

IC and interact with the Bpy-labeled 3’ CCA-end of tRNAfMet. In the presence of pre-

hydrolysis state GTP analogs such as GTPγS, GDP—BeF3 and GDP—AlF3, IF2 could bind 

tRNAfMet (Fig. 31C). However, when post-hydrolysis state analogs such as GDP—ortho-

vanadate and GDP—meta-vanadate were used, which should represent the GDP—Pi 

conformation of IF2, no interaction was observed between IF2 and tRNAfMet. At first glance, 

these results would indicate that tRNAfMet dissociation from IF2 is independent of Pi release 

because, in its supposed GDP—Pi conformation, IF2 could not revert the 70S complex to a 

state where tRNAfMet interacts with IF2. However, it should be kept in mind that working with 

vanadates can pose several technical challenges which may lead to ambiguous data 

interpretation. Vanadates have a tendency to form polymeric species in solution near neutral 

pH. Since the reactions were performed at the near-physiological pH of 7.4, it cannot be 

excluded that unreactive polymeric vanadate species may have resulted in the lack of a 

productive reaction. A second technical challenge is that vanadates may form a cyclic 

covalent complex with the nucleotide which does not represent the expected post-hydrolysis 
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GTP state (reviewed in (Davies and Hol, 2004)). Thus, on the basis of these results, the 

importance of Pi release for tRNAfMet dissociation from IF2 remains uncertain.  

GTP hydrolysis by IF2 and EF-G produces similar conformational changes in the respective 

factor and the ribosome. In case of EF-G, Pi release and tRNA-mRNA translocation can take 

place independently of one another (Savelsbergh et al., 2003); a similar mechanism may 

apply to Pi and fMet-tRNAfMet release from IF2. If the two factors employ a similar coupling 

mechanism, then a step preceding Pi release and tRNAfMet dissociation from IF2 may be 

rate-limiting for the remaining part of the IF2 pathway. On the other hand, if Pi release is 

necessary for fMet-tRNAfMet dissociation from IF2, it would imply that the G-domain can 

convey conformational changes to the C2-domain. It is not clear how GTP hydrolysis or Pi 

release from the G-domain can be communicated to the C2-domain of IF2. While structural 

work on the eukaryotic/archaeal IF2 homolog, e/aIF5B, suggested that the nucleotide binding 

status of the molecule may be communicated through the inter-domain interface (Kuhle and 

Ficner, 2014a; Roll-Mecak et al., 2000), IF2 might not use the same mechanism because of 

the different arrangement of its domains (Eiler et al., 2013; Wienk et al., 2012). Pi and 

tRNAfMet release from IF2 promote dissociation of the factor from the ribosome via (i) the 

conformational rearrangement of IF2 from its high-affinity state on the 70S complex to its 

low-affinity, ready-to-leave GDP conformation (Allen et al., 2005; Myasnikov et al., 2005), 

and (ii) the loss of the direct interaction with the 3’ end of fMet-tRNAfMet, which is an important 

anchor point for IF2 on the ribosome (Allen et al., 2005; Simonetti et al., 2008). In fact, it has 

been observed that a lower affinity of IF2 towards fMet-tRNAfMet ((Gualerzi et al., 2001); 

Akanksha Goyal - master thesis) or the ribosome (Fabbretti et al., 2012; Shin et al., 2002) 

can help bypass the requirement for GTP hydrolysis in promoting IF2 release from the 70S 

complex.  

The two observables used to monitor IF1 dynamics on the 70S complex, were influenced to 

different extents by the lack of GTP hydrolysis. The absence of GTP hydrolysis did not affect 

the change in IF1 environment after subunit association (Fig. 22D), but surprisingly, IF1 

dissociation from the 70S complex was largely prevented (Fig. 24C). The dissociation of IF1 

from the 70S complex may be promoted by the loss of direct interaction with IF2 or 

rearrangements of the ribosome that occur after GTP hydrolysis. It is unclear which of the 

several IF2-dependent events, such as GTP hydrolysis, Pi release, fMet-tRNAfMet release, 

inter-subunit rotation, or the dissociation of IF2 from the ribosome, is directly responsible for 

promoting the release of IF1 from the 70S IC. Because the dependence of IF1 release from 
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the 70S complex on GTP hydrolysis was not eliminated by using an IF2 variant lacking the 

NTD (Fig. 25B), it is likely that the release of IF1 is dependent on GTP hydrolysis even in 

those organisms in which IF2 does not retain its full-length NTD. 

Once released, IF1 could re-bind only to the pre-hydrolysis state of the ribosome (induced by 

IF2–GTPγS) (Fig. 32). It is likely that IF2 binding to the 70S complex in the presence of non-

hydrolysable GTP analogs confers a pre-hydrolysis conformation on the 70S complex, 

revealing an IF1 binding site. Hence, the dissociation of IF1 from the 70S complex may be 

promoted by a conformational rearrangement of the ribosome which occurs upon GTP 

hydrolysis and IF2 dissociation. The presence of a non-hydrolysable GTP analog shifted the 

equilibrium towards a stable 70S—mRNA—IF1—IF2—fMet-tRNAfMet complex, suggesting 

that GTP hydrolysis may guide the unidirectional progression of the 70S complex into an 

elongation-competent state, by rendering the dissociation of IF2 and IF1 from the ribosome 

irreversible. 
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6.3. Interplay between Initiation factors 

On the 30S IC, IF1 and IF3 strongly stabilize each other’s binding by modulating the 

conformation of the 30S subunit (Antoun et al., 2006b; Milon et al., 2012; Zucker and 

Hershey, 1986). As a result, IF1 and IF3 dissociation from the 30S complex became 4-8 fold 

faster in each other’s absence (Fig. 23B and Fig. 27B). The two factors influence the rate of 

50S subunit joining by affecting the relative arrangement of the 30S subunit, IF2 and fMet-

tRNAfMet, and conferring an anti-association conformation to the 30S, which is strengthened 

or relieved depending on the mRNA properties and codon-anticodon interaction between the 

mRNA and fMet-tRNAfMet (Antoun et al., 2006b; Milon et al., 2008). 

As mentioned previously, when an mRNA containing an optimal TIR (022 mRNA used in this 

work) is used to form complexes, subunit association occurs rapidly with an apparent rate of 

14 μM-1 s-1. Significantly slower apparent rates of subunit joining (0.2 s-1) are observed when 

complexes are formed using mRNAs containing a non-canonical TIR (Grigoriadou et al., 

2007b; Milon et al., 2008) or the 002 mRNA which contains a non-optimal TIR consisting of a 

long (9-nt) SD sequence followed by a short (5-nt) spacer between the SD sequence and the 

AUG start codon (Calogero et al., 1988; Milon et al., 2008). It is likely that the low apparent 

rate of subunit joining is due to the increased dissociation of ‘unproductive’ complexes into 

individual subunits and slow transitions towards the 70S EC (Grigoriadou et al., 2007a; Milon 

et al., 2008). In the absence of either IF1 or IF3, the elemental rate of subunit association 

was slightly higher (40-50 µM-1s-1), but the dissociation of the complex was very slow (Table 

2), giving rise to the overall higher apparent rate constants of the reaction (~40 µM-1s-1). The 

low rates of subunit dissociation indicate the formation of a longer-lived complex, explaining 

how IF1 and IF3 contribute to mRNA selection at the 50S subunit association step 

(MacDougall and Gonzalez, 2015; Milon et al., 2008).  

The faster subunit joining, in the absence of either factor, resulted in higher apparent rates of 

subsequent reactions without affecting their elemental rate constants. Under these 

conditions, the dissociation of IF2 and IF1 occurred around the same time as the release of 

tRNAfMet from IF2 C2-domain (Table 2). Other than that, the lack of IF1 did not significantly 

affect the timing or extent of the remaining IF2-dependent reactions on the 70S complex. The 

absence of IF3 from the system also did not affect the timing of these IF2-dependent 

processes. It did, however, lower the tRNA fluorescence and peptide bond formation to by 

20-40 %, suggesting that in the absence of IF3, a fraction of the 70S complexes did not carry 

fMet-tRNAfMet. Overall, the IF2 pathway followed the same sequence of events, regardless of 
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the presence of IF1 or IF3 (Fig. 34). In summary, 50S subunit joining was the only step in the 

late initiation pathway influenced by the absence of IF1 or IF3, whereas none of the following 

steps were significantly affected. 

 

Figure 34. Direct comparison of reaction time courses during 70S IC formation. Time 
courses of subunit association (grey), Pi release (gold), tRNA release from IF2 (green), GDP 
release (orange) and peptide bond formation (brown) are presented at 1 µM 50S subunit 
concentration. All traces were normalized with respect to amplitude changes to facilitate 
visual comparison of time courses. The reactions were monitored in the presence of (A) all 
factors, or (B) in the absence of IF1, or (C) in the absence of IF3.  

The frequency with which an mRNA enters the translational cycle is dependent on the 

assembly of a 30S IC with a favorable conformation which promotes facile binding of the 50S 

subunit (Milon et al., 2008; Milon et al., 2012). IF1 and IF3 act as gate-keepers during early 

stages of initiation by preventing subunit docking to unproductive 30S ICs and sustaining a 

stage in initiation during which the mRNA and tRNA interaction with the ribosome is 
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reversible. After stable subunit joining, this checkpoint is crossed and the mRNA can no 

longer freely dissociate from the complex. It appears that neither IF1 nor IF3 is essential in 

promoting 70S IC maturation after the 50S subunit docks on a correctly-formed 30S IC. 

However, the prolonged retention of IF1 and IF3 on the 70S complex, perhaps due to an 

incorrectly formed 70S complex, may hinder IF2-related reactions and prevent formation of 

key stabilizing inter-subunit bridges (Allen et al., 2005; Myasnikov et al., 2005), thus acting as 

a safeguard against formation of a mature aberrant 70S IC.  
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6.4. Comparisons with eukaryotic translation initiation and future perspectives 

In eukaryotes, the process of translation initiation is significantly more complex than in 

bacteria. The canonical pathway is a multi-step process which employs at least 11 eukaryotic 

initiation factors (eIF). Briefly, the small ribosomal subunit, carrying eIFs and initiator tRNA, is 

recruited to the 5’ end of the mRNA. The complex then scans the length of the mRNA in a 5’ 

to 3’ direction, searching for the first AUG start codon. After codon recognition, the large 

subunit joins and all eIFs are released giving rise to an elongation competent 80S IC which 

can participate in peptide bond formation (reviewed in (Jackson et al., 2010)).  

The eukaryotic homologs of IF1, IF2 and IF3 are eIF1A, eIF5B and eIF1, respectively.  In 

light of the evolutionary conservation, it is likely that certain mechanistic aspects of bacterial 

translation initiation can be extrapolated to higher eukaryotes. Even though the early stages 

of initiation are very different between the two life domains, some similarities during the late 

stages have been noted. After start codon recognition, the affinity of eIF1 towards the small 

ribosomal subunit greatly decreases, leading to the factor’s release from the complex (Maag 

et al., 2005). This situation is comparable to that in bacteria, where the affinity of IF3 to the 

30S IC is much lower after start codon selection (Milon et al., 2012), even though the factor 

only moves away from the subunit interface after being displaced by the 50S subunit 

(Elvekrog and Gonzalez, 2013; Fabbretti et al., 2007; MacDougall and Gonzalez, 2015; Milon 

et al., 2008). In eukaryotes, the initiator tRNA is recruited to the ribosome by a hetero-trimeric 

GTPase, namely eIF2 which is not homologous to the bacterial IF2. GTP hydrolysis and Pi 

release from eIF2 takes place upon start codon recognition and promotes the release of the 

factor from the complex (Algire et al., 2005), a prerequisite for rapid subunit association 

which is mediated by the GTP-bound state of eIF5B (Pestova et al., 2000). As in case of IF2, 

subunit joining triggers GTP hydrolysis by eIF5B which thereafter dissociates from the 80S 

complex, presumably due to the lower affinity of its GDP-bound form for the ribosome 

(Pestova et al., 2000; Shin et al., 2002). Finally, mimicking the dependence of IF1 

dissociation on IF2-dependent GTP hydrolysis, the absence of GTP hydrolysis by eIF5B 

lowers the rate of eIF1A release from the 80S IC by 10-fold (Acker et al., 2009).  

Until now, insights into eukaryotic translation initiation have been derived predominantly from 

genetic screens and biochemical assays performed under steady-state conditions. The large 

amount of purified components required to carry out fluorescence-based rapid kinetic 

experiments, has posed a hindrance for monitoring the process in real time. Several eIFs 

which are multi-subunit in composition can be purified only from cell-extracts and are 
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obtained in very small quantities (Pisarev et al., 2007). As such, significant progress has 

been made by Lorsch and colleagues who have not only established protocols for purifying 

multi-subunit eIFs from Saccharomyces cerevicae, expressed recombinantly in bacteria 

(Acker et al., 2007), but have also successfully utilized rapid-kinetic approaches to study pre-

steady state initiation events in lower eukaryotes. However, such procedures have not yet 

been established for mammalian eIFs and the purchase of large quantities of cell extracts 

(rabbit reticulocyte or HeLa cell lysate) is an expensive endeavor. Further efforts to 

reconstitute the mammalian multi-subunit factors from individual recombinant proteins (Sun 

et al., 2011; Suragani et al., 2006) can help overcome this hurdle and a detailed mechanistic 

understanding of mammalian translation initiation can be achieved by using fluorescence-

labeled recombinant eIFs/RNA, employing the methods described in this work.  
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7. MATERIALS 

Table 3. Chemicals 

2-Mercaptoethanol  Sigma-Aldrich – Taufkirschen, Germany  

4-(2-hydroxyethyl)-1-piperazineethane 

sulfonic acid (HEPES)  

Sigma-Aldrich – Taufkirschen, Germany  

Acetic acid Merck KGaA – Darmstatdt, Germany 

Acetonitrile  Merck KGaA – Darmstatdt, Germany 

Acrylamide (29:1) 40%  Serva – Heidelberg, Germany 

Agar BD – Le Pont de Claix, France 

Agarose Serva – Heidelberg, Germany 

Aluminium chloride (AlCl3) Sigma-Aldrich – Taufkirschen, Germany 

Ammonium chloride (NH4Cl) Merck KGaA – Darmstatdt, Germany 

Ammonium persulphate (APS)  Merck KGaA – Darmstatdt, Germany 

Ampicillin Sigma-Aldrich – Taufkirschen, Germany 

Beryllium chloride (BeCl2) Sigma-Aldrich – Taufkirschen, Germany 

Boric acid Merck KGaA – Darmstatdt, Germany 

Bovine serum albumin (BSA) Sigma – Steinheim, Germany 

Complete EDTA free protease inhibitor Roche – Indianapolis, USA 

Coomassie blue Merck KGaA – Darmstatdt, Germany 

Dimethyl sulfoxide (DMSO)  Merck KGaA – Darmstatdt, Germany 

Ethanol Merck KGaA – Darmstatdt, Germany 

Ethylenediamine tetraacetic acid (EDTA) Merck KGaA – Darmstatdt, Germany 

Formic acid Merck KGaA – Darmstatdt, Germany 

Glacial acetic acid  Merck KGaA – Darmstatdt, Germany 

Glycerol Merck KGaA – Darmstatdt, Germany 

Hydrochloric acid (HCl) J.T Baker – Daventer, Netherlands 

Imidazole  Merck KGaA – Darmstatdt, Germany 

Isopropyl β-D-1-thiogalactopyranoside (IPTG)  Roth – Karlsruhe, Germany 

Kanamycin  Calbiochem – California, USA 

Scintillation cocktail Lumasafe plus PerkinElmer – Massachusetts, USA 

Scintillation cocktail Quickszint 361 Zinsser analytic – Maidenhead, U.K 

Magnesium chloride (MgCl2) Merck KGaA – Darmstatdt, Germany 
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Millipore water   Millipore – Massechusetts, USA 

N,N,N’,N’–tetramethylethylenediamine 

(TEMED)  

Sigma-Aldrich – Taufkirschen, Germany  

Phenylmethylsulfonylfluoride (PMSF)  Sigma-Aldrich – Taufkirschen, Germany  

Phosphoenol pyruvate (PEP) Roche – Indianapolis, USA 

Potassium chloride (KCl)  Merck KGaA – Darmstatdt, Germany 

Potassium fluoride (KF) Sigma-Aldrich – Taufkirschen, Germany  

Potassium hydroxide (KOH)  Merck KGaA – Darmstatdt, Germany 

Sodium chloride (NaCl) Merck KGaA – Darmstatdt, Germany 

Sodium dodecyl sulphate (SDS) Serva – Heidelberg, Germany 

Sodium orthovanadate Sigma-Aldrich – Taufkirschen, Germany  

Sodium metavanadate Sigma-Aldrich – Taufkirschen, Germany  

Sucrose  Merck KGaA – Darmstatdt, Germany 

Trifluoro acetic acid (TFA) Merck KGaA – Darmstatdt, Germany 

Tris(hydroxymethyl)-aminomethane (Tris)  Merck KGaA – Darmstatdt, Germany 

Tryptone BD – Le Pont de Claix, France 

Yeast extract  BD – Le Pont de Claix, France 

 

Table 4. Fluorophores and radioactive compounds 

Alexa 488 maleimide (Alx488) Life Technologies – Darmstadt, Germany 

Alexa 555 maleimide (Alx555) Life Technologies – Darmstadt, Germany 

Atto 540Q maleimide (Atto540Q) Life Technologies – Darmstadt, Germany 

Bodipy FL succinimidyl ester (Bpy) Life Technologies – Darmstadt, Germany 

Iodoacetamide fluorescein (5’ IAF) Life Technologies – Darmstadt, Germany 

2'(3')-O-(N-methylanthraniloyl) (Mant)           Jena Biosciences – Jena, Germany 
3[H]Methionine 
14[C]Phenylalanine 

Perkin Elmar – Massachusetts, USA 

Perkin Elmar – Massachusetts, USA 

 

Table 5. Nucleotides 

7- methyl guanosine Sigma-Aldrich – Taufkirschen, Germany 

Deoxy- nucleotide triphosphate (dNTP)   NEB – Massachusetts, USA 

Guanosine-5'-triphosphate (GTP) Jena Biosciences – Jena, Germany 
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Guanosine-5'-diphosphate (GDP)  Jena Biosciences – Jena, Germany 

Guanosine 5'-O-[γ-thio]triphosphate 

(GTPγS) 

Jena Biosciences – Jena, Germany 

Bodipy-GTP      

Bodipy- GDP     

Bodipy- GTPγS    

Mant-GTP   

Mant-GTPγS   

Life Technologies – Darmstadt, Germany 

Life Technologies – Darmstadt, Germany 

Life Technologies – Darmstadt, Germany 

Jena Biosciences – Jena, Germany 

Jena Biosciences – Jena, Germany 

 

Table 6. Kits 

Bradfords’ assay kit  BIORAD – California, USA 

Nucleospin plasmid isolation kit Macherey Nagel – Dueren, Germany 

Phusion DNA polymerase kit NEB – Massachusetts, USA 

 

Table 7. Plasmids 

pET11a - infA 

pETM11- infB 

pET28a - infC 

pet24a - rpsM 

pet24a - rpmG       

Dept. Rodnina 

Dept. Rodnina 

Dept. Rodnina 

Dept. Rodnina 

Dept. Rodnina 

 

Table 8. DNA primers  

Truncation of infB (IF2 Δ1-294) 5’ CTG CAG CAA GGC TTC CAG AAG 

3’ 

5’ CAT GGC GCC CTG AAA ATA AAG 

ATT CTC AGT AGT GG  3’ 

Truncation of infB by site-directed 

mutagenesis (IF2 Δ791-890) 

5’ CTC CGG AAC TGA AAC AGT AAA 

TTA TCG GTC TGG CGG AAG 3’ 

5’ CTT CCG CCA GAC CGA TAA TTT 

ACT GTT TCA GTT CCG GAG 3’ 
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Table 9. mRNA 

022  5‘ GGG AAU UCA AAA AUU UAA AAG 

UUA ACA GGU AUA CAU ACU AUG 

UUU ACG AUU ACU ACG AUC UUC 

UUC ACU UAA UGC GUC UGC AGG 

CAU GCA AGC U 3’ 

 

 

Table 10. Enzymes 

DNAse Sigma-Aldrich – Taufkirschen, Germany  

Dpn1 NEB – Frankfurt, Germany 

Lysozyme Sigma-Aldrich – Taufkirschen, Germany  

Phusion DNA polymerase Finnymes – Espoo, Finland 

PNPase Dept. Rodnina 

Pyruvate kinase (PK) Roche – Indianapolis, USA 

T7 RNA polymerase Dept. Rodnina 

 

Table 11. Buffers and solutions 

Buffer A for Ni-NTA   25 mM HEPES (pH 7.5)  

 500 mM NaCl. 

Buffer B for Ni-NTA   25 mM HEPES (pH 7.5) 

 300 mM NaCl 

 6 mM 2-mercaptoethanol  

 5 % glycerol 

Buffer C for Ni-NTA   25 mM HEPES (pH 7.5) 

 300 mM NaCl 

 6 mM 2-mercaptoethanol 

 5 % glycerol  

 10 mM imidazole 

Buffer D for Ni-NTA   25 mM HEPES (pH 7.5) 

300 mM NaCl  

6 mM 2-mercaptoethanol 
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5 % glycerol 

300 mM imidazole 

Buffer E for fluorophore labeling under 

denaturing conditions 

50 mM HEPES (pH 7.1)   

300 mM KCl 

6 M urea 

10 % glycerol 

Buffer F for ribosome reconstitution 

 

50 mM HEPES (pH 7.5) 

400 mM KCl 

20 mM MgCl2 

6 mM 2-mercaptoethanol 

Buffer G for fluorophore labeling under  

native conditions 

 

50 mM Tris-HCl (pH 7.1) 

100 mM NH4Cl  

0.1 mM EDTA 

Buffer H for HPLC dipeptide 0.1 % trifluoroacetic acid 

Buffer I for HPLC dipeptide 0.1 % trifluoroacetic acid 

65 % acetonitrile 

TBE (1X) for agarose gel electrophoresis 89 mM Tris base (pH 8.1) 

89 mM Boric acid 

2 mM EDTA 

SDS-PAGE running buffer (1X) 
 

25 mM Tris base 

200 mM glycine  

0.1 % SDS  
 

Sample loading buffer for SDS-PAGE  (4x) 200 mM Tris-HCl (pH 6.8)  

8 % SDS  

40 % glycerol  

0.4 % bromophenol blue  

400 mM 2-mercaptoethanol  
 

Destaining solution for SDS-PAGE  10 % ethanol 

5 % acetic acid 

Staining solution for SDS-PAGE gels 10 % ethanol 

5 % acetic acid 

1 ml coomassie blue solution 

Coomassie Blue solution for SDS-PAGE  1 % coomassie blue in ethanol 
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Pi-MOP mixture   0.1 U/ml PNPase 

200 μM 7-methylguanosine 

Lysis buffer  25 mM HEPES (pH 7.5) 

100 mM NaCl 

10 mM MgCl2 

6 mM 2-mercaptoethanol 

Protein Storage buffer 50 mM HEPES (pH 7.5) 

70 mM NH4Cl  

30 mM KCl  

7 mM MgCl2 

10 % glycerol 

TAKM7 

 

 

 

50 mM Tris-HCl (pH 7.5) 

70 mM NH4Cl  

30 mM KCl  

7 mM MgCl2 

         

Table 12. Cell strains 

E. coli BL21 Novagen - San Diego, USA 

E. coli MRE600 UAB – Alabama , USA 

E. coli K12 ΔS13 

E. coli K12 ΔL33 

Prof. Rachel Greene 

Prof. Janine Maddock 

 

Table 13. Cell culture media 

LB broth  10 g/l NaCl 

10 g/l tryptone 

5 g/l yeast extract 

LB agar 10 g/l NaCl 

10 g/l tryptone 

5 g/l yeast extract 

15 g/l agar 
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Table 14. Chromatographic columns 

RP-8 Merck KGaA – Darmstatdt, Germany 

Ni-NTA  Qiagen – Hilden, Germany 

Hi-Trap HP SP  GE Healthcare – Uppsala, Sweden 

 

Table 15. Instruments 

Cell density meter- Ultrospec 10 GE Healthcare – Uppsala, Sweden 

Cell power supply (Mini PROTEAN Tetra) BIORAD – California, USA 

Centrifuge Beckmann Coulter – California, USA 

Electrophoresis chamber  BIORAD – California, USA 

Liquid scintillation counter PerkinElmer – Massachusetts, USA 

Quench-flow  Kintek – Texas, USA 

Rotor JA 25.50 

Rotor TLS-55 

Rotor JLA 8.1000 

Beckmann Coulter – California, USA 

Beckmann Coulter – California, USA 

Beckmann Coulter – California, USA 

Shaking incubator Eppendorf –  Hamburg, Germany 

Stopped-flow  Applied Photophysics – Leatherhead, UK 

Ultracentrifuge Beckmann Coulter – California, USA 

 

Table 16. Other materials 

Centrifugal filter units  Amicon ultra – Carrigtwohill, Ireland 

Dialysis cellulose membrane SpectrumLab – Breda, Netherlands 

DNA marker smartladder                    Eurogentec – Belgium 

Nitrocellulose membrane  Whatman – Kent, UK 

Perfect protein marker 15-150 kDa  Novagen – San Diego, USA 

Ultracentrifuge tubes (2 ml) Beckman ultraclear – California, USA 

Stopped-flow cut-off filters KV408,  

KV450, KV500, KV590 

Schott AG – Mainz, Germany 
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Table 17. Software 

Prism GraphPad – California, USA 

Kintek Explorer Kintek – Texas, USA 

Multigauge Fujifilm – Tokyo, Japan 

Prodata viewer Applied Photophysics – Leatherhead, UK 
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8. METHODS 

8.1. Basic molecular biology techniques 

8.1.1. Polymerase chain reaction (PCR)  

A reaction containing template DNA (0.5 ng/ μl), primers (0.5 µM), 1x Phusion polymerase 

HF buffer, dNTPs (0.2 mM), DMSO (3%), and Phusion Polymerase (0.2 unit/ μl) was 

subjected to 30 cycles of PCR (Mullis et al., 1986) in a thermocycler. 

Table 18. Conditions used for standard PCR reaction. 

Initial denaturation 95˚C 2 min  

Denaturation 

A 

95˚C  30 s  

Annealing 55˚C 30 s 30 cycles 

Elongation 72˚C 30 s  

Final extension 72˚C 10 min  

5 μl of the PCR product was analyzed by agarose gel (1%) electrophoresis at 100 V for 40 

min in 1X TBE buffer.  

Site-directed mutagenesis of genes encoded into plasmids was performed in a 50 μl reaction 

using methods described in the Quick-change site-directed mutagenesis kit (Stratagene – 

California, USA).  

Table 19. PCR conditions used for Site-directed mutagenesis 

Initial denaturation 95˚C 5 min  

Denaturation 

A 

95˚C  1 min  

Annealing 55˚C 1 min 18 cycles 

Elongation 72˚C 4 min  

Final extension 72˚C 10 min  

Thereafter, 20 units of Dpn1 was added and the reaction was incubated for 2 h at 37°C in 

order to digest the methylated template DNA.  
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8.1.2. Transformation and plasmid isolation  

2 μl of the plasmid was added to 100 μl E. coli BL21 chemically competent cells. The cells 

were incubated on ice for 15 mins, heat shocked at 42°C for 30 s and cooled on ice for 2 

min. 400 μl of LB broth was added and the mixture was incubated for 40 mins at 37°C in a 

shaking incubator. 100 μl of the mixture was plated on LB agar plates containing 30 μg/ml 

kanamycin or 50 μg/ml amplicillin (depending on the resistance marker within the plasmid). 

The plates were incubated overnight at 37°C. Next day, a single colony was picked and 

immersed in 5 ml LB broth containing antibiotic. The mixture was kept shaking at 37°C over 

day. The cultures were re-inoculated (1:100 v/v) in a larger volume (200 ml) of LB broth 

containing antibiotic and incubated at 37°C on a shaking incubator overnight. The plasmid 

was purified from 2 ml bacterial culture using a Nucleospin plasmid isolation kit. The gene 

sequence as well as the presence of the desired mutation was confirmed by DNA 

sequencing (Peqlab – Erlangen, Germany). 

8.1.3. Protein expression and purification  

3 liters LB broth (containing antibiotic) was inoculated with the overnight culture to a final 

optical density of 0.1 A600. Protein expression was induced using 0.5 mM IPTG when A600 of 

cells reached 0.8-0.9. Cells were harvested by centrifugation at 6000 rpm in a Beckman 

Coulter JLA 8.1000 rotor for 20 min. The cell pellet was dissolved in 2 ml cell lysis buffer per 

gram of cells. 0.1 mM PMSF and a protease inhibitor tablet were added and the cells were 

lysed with 1 mg/ml lysozyme. 5 μg/ml DNAse was added to the mixture to digest genomic 

DNA.  

The cell lysate was centrifuged at 25,000 rpm for 30 mins using a Beckmann Coulter rotor JA 

25.50. For His-tag bearing proteins, the supernatant was added to a 2 ml Ni-NTA column 

(Crowe et al., 1994) equilibrated with buffer A. The column was washed with two column 

volumes of buffer B and thereafter with buffer C. The protein was eluted using buffer D 

containing 300 mM imidazole. Protein fractions eluted from the Ni-NTA column as well as 

those proteins lacking His-tags were purified by FPLC (Fast protein liquid chromatography) 

using previously published procedures (as indicated below). 10 μl of samples collected from 

each purification step were loaded onto an SDS-PAGE gel together with a 15-150 kDa 

protein marker and run at 100 V for 2 h to visualize protein yield and purity. The purified 

protein samples were dialyzed into storage buffer using cellulose membrane. The protein 

was then concentrated using centrifugal units with appropriate cut-off filters. The protein was 

aliquoted, flash frozen in liquid nitrogen and stored at -80° C. Protein concentration was 
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determined by Bradford’s assay (Bradford, 1976) or SDS-PAGE using increasing amounts of 

BSA as a protein standard.  

8.1.4. SDS-PAGE  

Table 20. Preparation of SDS gels 

Resolving gel 10% 5ml 

40 % acrylamide (29:1)  1.25  ml  

1.5 M Tris-HCl pH 8.8  1.25  ml  

water  2.5  ml  

10 % SDS  50  μl  

10 % APS  50  μl  

TEMED  5  μl  

4x SDS-PAGE loading dye was added to protein samples and heated at 95 ºC to denature 

proteins. 10 µl of each sample was loaded onto a 10 % SDS-PAGE gel and electrophoresis 

was performed in 1x running buffer at 150 V (Shapiro et al., 1967). The gel was washed with 

distilled water, 30 ml of staining solution was added and incubated at room temperature for 4 

h. The staining solution was discarded and 40 ml destaining solution was added to the gel 

and incubated overnight on a shaking incubator at room temperature.  

8.2. Preparation of purified translation initiation components 

8.2.1. Purification of non-fluorescent components  

The below mentioned components were kindly purified by our laboratory technicians- Sandra 

Kappler (ribosomes and EF-Tu), Olaf Geitzner (fMet-tRNAfMet, Phe-tRNAPhe), Christina Kothe 

(IFs) and Tanja Wiles (mRNA). 

30S and 50S ribosomal subunits were prepared by zonal centrifugation from 70S ribosomes 

purified from E. coli MRE600 cells (Milon et al., 2007; Rodnina and Wintermeyer, 1995). 

Plasmids containing genes encoding the three IFs (IF1 (infA-pet11a), IF2 (infB-petM11) and 

IF3 (infC-pet28a)) were transformed into E. coli BL21 cells. IFs were over-expressed and 

purified using procedures described (Milon et al., 2007). Truncated mutant of IF2 (Δ1-294 

(Moreno et al., 1999)) was prepared by PCR-amplification of parts of the infB gene and 

cloning into the plasmid petM11. Truncated mutant of IF2 (Δ792-890 (Mortensen et al., 

1998)) was prepared by introducing a premature stop codon in the plasmid infB-petM11 

Stacking gel 4.4 % 2ml  

40 % acrylamide (29:1)  0.25  ml  

1 M Tris pH 6.8  0.25  ml  

water  1.5  ml  

10 % SDS  20 μl  

10 % APS  20  μl  

TEMED  2 μl  
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using site-directed mutagenesis. The truncated mutants were over-expressed in E. coli BL21 

cells and purified using Ni-NTA affinity purification as described above. Recombinant EF-Tu 

was prepared as described (Milon et al., 2007; Rodnina et al., 1994). fMet-tRNAfMet was 

purified by HPLC (Milon et al., 2007) and was 95% aminoacylated and formylated. 022 

mRNA (94 bp) was prepared by T7 RNA polymerase transcription (Milon et al., 2007).  

8.2.2. Preparation of fluorescence-labeled components 

In general, fluorescence labeling of recombinant proteins was performed by mutagenesis of 

a single, non-conserved, solvent-exposed residue to cysteine, and subsequently labeling the 

introduced cysteine residue with a thiol-reactive fluorophore (Alexa488, Alexa555 and 

Atto540Q) using maleamide chemistry. Alexa and Atto describe the name of fluorescent 

probe, while the adjacent number indicates the maximum excitation wavelength of the dye. 

To prevent labeling of the protein at multiple positions, the native cysteine residues at the 

surface of the protein were mutated to non-reactive serine residues.  

8.2.2.1. 30S and 50S subunits 

30S subunits which lacked the ribosomal protein S13 (30S ΔS13) or 50S subunits lacking the 

ribosomal protein L33 (50S ΔL33) were expressed from E. coli strain K12 (kindly provided by 

Prof. Rachel Green (Johns Hopkins University) and Prof. Janine Maddock (University of 

Michigan), respectively). 30S ΔS13 and 50S ΔL33 ribosomal subunits were purified as 

previously described (Milon et al., 2007) and subsequently reconstituted with fluorescence-

labeled ribosomal protein S13 and L33, respectively (see below). 

For fluorescence labeling of S13 (encoded by gene rpsM cloned in plasmid pET24a) and L33 

(encoded by gene rpmG cloned in plasmid pET24a), cysteine residues were introduced at 

positions 112 and 31, respectively. To prevent double-labeling of protein, the native cysteine 

residue of S13 (Cys85) was mutated to serine. The proteins were over-expressed in E. coli 

BL21 cells and subsequently purified according to procedures described (Hickerson et al., 

2005). Labeling of recombinant S13 and L33 with fluorescent dye (Alexa488) or quencher 

dye (Atto540Q) was performed under denaturing conditions with a 10-fold molar excess of 

dye in buffer E. The reaction mix was incubated for 2 h at 25° C and stopped by adding 6 

mM 2-mercaptoethanol. The excess dye was removed using a cation exchange HiTrap SP 

HP column and the proteins were refolded (Hickerson et al., 2005). The efficiency of labeling 

was assessed by SDS-PAGE and spectrophotometric analysis and was 100%.  Finally, 

30SΔ S13 and 50SΔ L33 subunits were reconstituted with 1.5–fold molar excess of 
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fluorescence-labeled S13 and L33 ribosomal proteins, respectively, in buffer F. The reaction 

mix was incubated in the dark for 1 h at 47°C. The excess fluorescent proteins were removed 

by loading the samples on a 30% sucrose cushion prepared using buffer F. The ribosomal 

pellets were suspended in TAKM7 buffer and the efficiency of reconstitution with fluorescent 

ribosomal proteins was determined as ~90-100%. The fluorescent subunits were flash frozen 

and stored at -80°C. The procedure was established in our laboratory and performed by Dr. 

Riccardo Belardinelli. 

8.2.2.2. Initiation factors 

Cysteine residues were engineered at position 4 in IF1, position 757 in IF2 and position 166 

in IF3 to enable fluorescent labeling. At the same time, the native cysteine residues in IF2 

(Cys599) and IF3 (Cys65) were replaced by serine to prevent double-labeling of the protein. 

The plasmids were transformed into E. coli strain BL21 and all IFs were over-expressed and 

purified according to procedures described (Milon et al., 2007). Fluorescent labeling of IFs 

was also performed essentially as described (Milon et al., 2007). Briefly, the purified IFs were 

dialyzed into labeling buffer G and subsequently labeled with a 5-fold molar excess of 

fluorescent dyes (Alexa488 or Alexa555) or quencher dye (Atto540Q) over the protein for 2 h 

at 25°C (Milon et al., 2007). The reaction was performed in the dark and stopped by adding a 

10-fold molar excess of 2-mercaptoethanol. The excess dye was removed using a cation 

exchange HiTrap SP HP column. The efficiency of labeling was assessed by SDS-PAGE 

and spectrophotometric analysis and was >90%. The procedure was established in our 

laboratory by Dr. Pohl Milon. The mutant IFs were purified by Christina Kothe. The 

fluorescence-labeling was performed by Dr. Riccardo Belardinelli, Dr. Pohl Milon and Dr. 

Cristina Maracci. 

8.2.2.3. tRNAfMet  

tRNAfMet was labeled at a modified base (thio-uridine) at position 8 with an iodoacetamide 

derivative of the fluorescent dye, fluorescein (5’-IAF), according to protocols described (Milon 

et al., 2007). The labeling reaction was stopped by adding 0.3 M KAc (pH 5.0) and the 

excess dye was removed by four rounds of ethanol precipitation. The efficiency of labeling 

was assessed by spectrophotometric analysis and scintillation counting of the associated 

radioactivity, and was 100%. The fluorescein-labeled tRNAfMet(Flu) was subsequently 

aminoacylated with radioactive 3[H]Met, formylated and purified according to detailed 

procedures (Milon et al., 2007). The procedure was performed by Olaf Geitzner. 
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Unformylated and purified 3[H]Met-tRNAfMet was labeled with Bodipy-FL sulfosuccinimidyl 

ester at the amino group of Met to form Bpy-3[H]Met-tRNAfMet. The procedures for labeling 

have been previously described (Holtkamp et al., 2014). The labeling reaction was stopped 

by adding 0.2 M KAc (pH 5.0) and the excess dye was removed by four rounds of ethanol 

precipitation.  The concentration of labeled Bpy-3[H]Met-tRNAfMet was determined by 

spectrophotometric analysis and the concentration of total 3[H]Met-tRNAfMet was determined 

by radioactive counting. In this way, the efficiency of labeling was determined as ~80%. The 

procedure was established in our laboratory by Dr. Wolf Holtkamp and performed by Olaf 

Geitzner and Irena Andreeva. 

8.3. Biochemical methods 

8.3.1. 30S IC formation 

30S subunits were activated in TAKM7 buffer containing an additional 14 mM MgCl2 for 30 

min at 37°C. 30S IC was prepared by incubating 30S subunits (0.1-0.3 μM; the concentration 

varied depending on the particular experiment (see results section)) with a 2-fold molar 

excess of the three IFs and a 5-fold molar excess of f3[H]Met-tRNAfMet and 022 mRNA in 

TAKM7 buffer containing 0.25 mM GTP. The reaction mix was incubated at 37°C for 30 min 

to form 30S IC and thereafter kept on ice to stabilize the complexes.  

8.3.2. Purification of 70S IC (containing Bpy-Met-tRNAfMet) 

70S IC (Bpy) were prepared by incubating 70S ribosomes (0.5 μM) with IF1 (1 μM), IF2 (1 

μM), IF3 (1 μM), Bpy-3[H]Met-tRNAfMet (1 μM) and 022 mRNA (1.5 μM) in 3 ml TAKM7 buffer 

containing GTP (0.5 mM). The reaction mix was incubated at 37°C for 1 h to form 70S IC and 

thereafter kept on ice to stabilize the complexes. 600 μl of filtered 1.1 M sucrose solution, 

prepared in TAKM7 buffer, was added to 2 ml ultracentrifuge tubes used in Beckman Coulter 

TLS-55 rotor. 1.4 ml of the 70S IC (Bpy) reaction mix was layered on top of the sucrose 

solution and centrifuged for 4 h at 55,000 rpm. The pellet, containing 70S IC (Bpy), was 

dissolved in 150 μl TAKM7 buffer and flash frozen and stored at -80 °C. The concentration of 

Bpy-3[H]Met-tRNAfMet was determined by radioactive counting and the concentration of 70S 

ribosome was determined by measuring the absorbance at 260 nm.  In this way, the 

efficiency of 70S IC (Bpy) formation was determined as ~85%. 
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8.4. Rapid Kinetics Techniques 

8.4.1. Stopped-Flow 

Stopped-flow is a technique used to study pre-steady state reaction kinetics occurring in 

msec-sec time range. The instrument records spectroscopic changes which take place after 

rapid mixing of two reactants. Often, one or two components in the reaction are fluorescent 

and change their fluorescence or FRET upon interaction. The change in fluorescence/FRET 

is recorded with time and provides information about the rate and extent of the reaction. 

Briefly, 60 μl of each reactant solution is rapidly mixed together in a mixing chamber. The 

reaction mixture is then transferred to an observation cuvette where the emitted fluorescence 

passes through an appropriate cut-off filter and is detected by a photomultiplier mounted at a 

90° angle to the excitation beam. The flow of the reaction mixture into the cuvette is then 

stopped with the help of a stop syringe and the change in fluorescence is measured as a 

function of time using a SX-18MV stopped-flow apparatus. 

1000 - 4000 time points are collected in a logarithmic time scale and the time courses are 

subsequently analyzed using exponential functions or numerical integration. Standard errors 

were calculated from fitting of the average derived from 7-10 time courses for each reaction. 

The dead-time of the instrument is about 1 ms and thus reactions occurring before this time 

cannot be monitored.  

8.4.2. Quench-Flow 

The quench-flow technique is used to study reaction kinetics occurring in msec-sec time 

range. 14 μl of each reactant is rapidly mixed together and the reaction is stopped after a 

specified period of time using a chemical quench solution such as formic acid or KOH. The 

quenched sample is collected and the product is separated from the reactants using 

chromatography. The extent of product formation is quantified by measuring the radioactivity 

associated with the reactant and the product. The time course of the reaction can be 

determined by measuring the product formation after quenching the reaction at different time 

points. The dead-time of the instrument is about 3.5 ms and thus reactions occurring before 

this time cannot be monitored. Hence, a quench-flow machine can be conveniently used to 

quench reactions between 0.004 - 20 s. For longer time periods it is more convenient to 

quench the reaction by hand.   
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8.5. Rapid kinetic experiments 

30S IC was prepared as described previously. Variations in the protocol (for example, using 

a different concentration of initiation component or replacing a non-fluorescent component 

with its fluorescent counterpart) were made as indicated. All experiments were carried out in 

TAKM7 buffer at 20° C, unless indicated otherwise. For use in the stopped-flow apparatus, 

700 μl of each reactant mix was prepared. For use in the quench-flow machine, 350 μl of 

each reactant mix was prepared to measure at least 15 time points. The concentrations 

indicated in the methods section are those in the reactant mix. Because equal volumes of the 

two reactants were mixed together, the final concentration of each component (as reported in 

the results section), is half of what is indicated here.  

8.5.1. Subunit association  

50S subunit joining to 30S IC was monitored by light scattering (LS) using the stopped-flow 

apparatus (Antoun et al., 2004; Grunberg-Manago et al., 1975). Briefly, equal volumes of 

30S IC (0.1 - 0.3 μM) and at least a 3-fold molar excess of 50S subunits were rapidly mixed 

together and the light scattered perpendicular to the excitation beam of light (434 nm) was 

monitored in the absence of a cut-off filter. When the two subunits associated with each other 

to form a 70S complex, an increase in LS was observed.  

8.5.2. Nucleotide interaction with IF2 

The interaction of GTP with the G-domain of IF2 was monitored using the fluorescent GTP 

analogs mant-GTP and Bpy-GTP. GTPase activation and dissociation of IF2 from the 70S IC 

were monitored via FRET changes between mant-GTP and the intrinsic Trp residue of the 

factor (Fabbretti et al., 2012; Milon et al., 2007). Direct excitation was at 290 nm and the 

output was monitored after passing through cut-off filter KV408.  The reaction was monitored 

by rapidly mixing 30S IC (0.3 μM) formed with mant-GTP (10 μM) with varying concentrations 

of 50S subunits (0.9 - 3 μM) in a stopped-flow apparatus.  

Binding of Bpy-GTP and Bpy-GDP to IF2 was monitored by rapidly mixing free IF2 (0.2 μM) 

or IF2 bound to 30S IC (0.2 μM), formed in the absence of any nucleotide, with Bpy-GTP or 

Bpy-GDP (4 μM) in a stopped-flow apparatus. The dissociation of Bpy-GTP or Bpy-GDP from 

IF2 on the 30S IC was monitored by rapidly mixing 30S IC (0.2 μM), formed in the presence 

of the fluorescent nucleotide (4 μM), with non-fluorescent GTP (0.5 mM).  Dissociation of 

Bpy-GDP from IF2 after 50S subunit joining and GTP hydrolysis was monitored by rapidly 

mixing 30S IC (0.2 μM), formed in the presence of 4 μM Bpy-GTP, with varying 
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concentrations of 50S subunits (0.6-4 μM) in a stopped-flow apparatus. Direct excitation of 

Bpy was at 470 nm and the output was monitored after passing through cut-off filter KV500.    

8.5.3. Pi release from IF2 

To monitor Pi release from IF2 after GTP hydrolysis, an indicator reaction was used where 

the fluorescent derivative of phosphate binding protein, MDCC-PBP, rapidly binds Pi after 

release. To remove any pre-existing inorganic phosphate (Pi), the stopped-flow apparatus 

was incubated and washed with the Pi-MOP mixture (Brune et al., 1994) for 1 h at 37 °C. 

30S IC (0.1 μM) formed in the presence of GTP (20 μM) and varying concentrations of 50S 

subunits (0.3 - 2 μM), were incubated with fluorescent MDCC-PBP protein (4 μM) and the Pi-

MOP mixture for 10 min at 37° C. The two reactants were rapidly mixed together in the 

stopped-flow machine and the Pi release from IF2 was monitored by the fluorescence 

change of MDCC-PBP upon Pi binding. Direct excitation of MDCC was at 425 nm and the 

output was monitored after passing through cut-off filter KV450. 

8.5.4. tRNAfMet interaction with IF2 

The dynamics of the 3’ end of tRNAfMet were monitored using a Bodipy-FL label attached at 

the amino group of Met (Bpy-Met-tRNAfMet) (Gite et al., 2000; Holtkamp et al., 2014). The 

position of the fluorophore allowed the monitoring of the direct interaction of the 3’ CCA-end 

of Bpy-Met-tRNAfMet with the C2-domain of IF2. Recruitment of Bpy-Met-tRNAfMet to the 30S 

complex was studied by rapidly mixing 30S IC (formed in the absence of fMet-tRNAfMet) (0.2 

μM) with Bpy-Met-tRNAfMet (0.6 μM) at 37° C in a stopped-flow apparatus. The dissociation of 

Bpy-Met-tRNAfMet from the 30S IC was studied by rapidly mixing 0.1 μM 30S IC (formed in 

the presence of Bpy-Met-tRNAfMet (0.2 μM)) with fMet-tRNAfMet (2 μM) in a stopped-flow 

apparatus. Release of Bpy-Met-tRNAfMet from IF2 after subunit joining was monitored by 

rapidly mixing 30S IC (0.1 μM), formed in the presence of Bpy-Met-tRNAfMet (0.3 μM), with 

varying concentrations of 50S subunits (0.3 - 2 μM). Direct excitation of Bpy was at 470 nm 

and the output was monitored after passing through cut-off filter KV500. 

8.5.5. IF2 interaction with the 30S subunit 

The binding of IF2 to 30S IC was checked by rapidly mixing 30S PIC (0.2 μM) lacking IF2 

with IF2757(Alx555) (0.1 μM), in a stopped-flow apparatus. The dissociation of IF2 from 30S 

IC was monitored by rapidly mixing 30S IC (0.2 μM) containing IF2757(Alx555) (0.1 μM) with 

non-fluorescent IF2 (2 μM). To monitor the binding of IF2 to 30S complex after the first round 

of initiation, 30S IC (0.2 μM) containing IF2757(Alx555) (0.1 μM) was rapidly mixed with 
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varying concentrations of 50S subunits (0.5 - 2 μM). Direct excitation of Alx555 was at 555 

nm and the output was monitored after passing through cut-off filter KV590. 

8.5.6. IF1 dynamics 

IF1 dynamics on the ribosome were monitored with the help of two observables in the 

stopped-flow apparatus: (i) the fluorescence change of IF14(Alx555); direct excitation of 

Alx555 was at 555 nm and the output was monitored after passing through cut-off filter 

KV590 and (ii) the FRET between 30SS13(Alx488) and IF14(Atto540Q); direct excitation of 

Alx488 was at 470 nm and the output was monitored after passing through cut-off filter 

KV500. In case of the latter observable, the increase in proximity between the two factors 

resulted in a decrease in fluorescence due to the fluorescence quenching of 30SS13(Alx488) 

by IF14(Atto540Q). The fluorescence/FRET changes depicted by the two observables 

represent changes in IF1 environment on the ribosome and the binding/dissociation of the 

factor from the ribosome, respectively. 

To study the binding of IF1 to the 30S IC, IF14(Alx555) or IF14(Atto540Q) (0.2 μM) was 

rapidly mixed with 30S IC or 30SS13(Alx488) IC (0.1 μM) lacking IF1, respectively. The 

dissociation of IF1 from the 30S IC was monitored by rapidly mixing 30S IC containing 

IF14(Alx555) or 30SS13(Alx488) IC containing IF14(Atto540Q) (0.1 μM), with non-fluorescent 

IF1 (2 μM). To study the dynamics of IF1 after 50S subunit joining, 30S IC containing 

IF14(Alx555) or 30SS13(Alx488) IC containing IF14(Atto540Q) (0.1 μM), was rapidly mixed 

with varying concentrations of 50S subunits (0.3 - 2 μM).  

8.5.7. IF3 dynamics 

The dynamics of IF3 on the ribosome was monitored via FRET between IF3166(Alx488) and 

IF2757(Atto540Q) in the stopped-flow apparatus. Direct excitation of Alx488 was at 470 nm 

and the output was monitored after passing through cut-off filter KV500. The increase in 

proximity between the two factors resulted in a decrease of fluorescence due to the 

quenching of IF3166(Alx488) fluorescence by IF2757(Atto540Q). The binding of IF3 to 30S IC 

was monitored by rapidly mixing IF3166(Alx488) (0.2 μM) with 30S IC (lacking IF3 and 

containing IF2757(Atto540Q) instead of non-fluorescent IF2) (0.1 μM). The dissociation of IF3 

from the 30S IC was monitored by rapidly mixing 30S IC (0.1 μM), formed in the presence of 

IF2757(Atto540Q) and IF3166(Alx488), with non-fluorescent IF3 (2 μM). To study the dynamics 

of IF3 after 50S subunit joining, 30S IC (0.1 μM) formed in the presence of IF2757(Atto540Q) 
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and IF3166(Alx488) was rapidly mixed with varying concentrations of 50S subunits (0.3 - 2 

μM).  

8.5.8. First peptide bond formation 

EF-Tu—GTP—Phe-tRNAPhe ternary complex (EF-Tu TC) was prepared by incubating EF-Tu 

(1.6 μM), phosphoenol pyruvate (2 mM), pyruvate kinase (0.1 μg/μl), [14C]Phe-tRNAPhe (0.8 

μM) and GTP (0.5 mM) in TAKM7 buffer for 15 min at 37 °C (Rodnina et al., 1994). Varying 

concentrations of 50S subunits (0.6 - 2 μM) were added to the ternary complex mix. To 

monitor the first peptide bond formation, 30S IC (0.2 μM) was rapidly mixed with 50S 

subunits and EF-Tu TC in a quench-flow machine and incubated for different times (0.01 - 10 

s). The reaction was quenched with 0.5 M KOH. The samples were incubated for 30 min at 

37°C to hydrolyze RNA and then neutralized with 1/10th sample volume of acetic acid. The 

final volume was corrected to 200 μl using 0.1 % TFA. The samples were centrifuged for 10 

min at 13000 rpm to pellet debris and then loaded onto an HPLC reverse chromatography 

column RP-8. Free amino acids and dipeptides were eluted using a linear gradient of buffer 

H and buffer I. The flow rate was 2 ml/min and the eluate was collected in 17 fractions of 1 ml 

each. 2 ml Lumasafe Plus liquid scintillation cocktail was added to each vial and [3H] and 

[14C] radioactivity in the fractions was measured in a liquid scintillation counter. 

8.5.9. (Re)-association of IF1 and IF2 with mature 70S IC 

IF2 release from, and subsequent re-association with, 70S IC was measured by rapidly 

mixing 30S IC (0.1 μM), formed in the presence of Bpy-Met-tRNAfMet (0.3 μM) and GTP (25 

μM), with 50S subunits (0.5 μM), IF2 (8 μM) and GTPγS (0.5 mM). Binding of IF2 to mature 

70S IC was measured by rapidly mixing purified 70S IC (Bpy) (20 nM) with IF2 (8 μM) bound 

to different GTP analogs (0.5 mM) such as GTP, GDP, GDPNP and GTPγS. The reaction 

was also monitored in the presence of GDP (0.1 mM) along with different phosphate analogs 

(0.1 mM) such as BeF3 (5 mM KF and 0.1 mM BeCl3 in TAKM7 buffer), AlF3 (5 mM KF and 

0.1 mM AlCl3 in TAKM7 buffer), ortho- and meta-vanadate. The fluorescence changes of Bpy-

Met-tRNAfMet were followed with time.  

IF1 release from, and subsequent re-association with, 70S IC was measured by rapidly 

mixing 30SS13(Alx488) IC (0.1 μM) containing IF14(Atto540Q) (0.2 μM)  and GTP (25 μM), 

with 50S subunits (0.5 μM) and GTPγS (0.5 mM). The 30SS13(Alx488) IC was formed in the 

absence of IF3 to promote rapid subunit joining to all complexes, regardless of composition. 

To measure the binding of IF14(Atto540Q) to mature 70SS13(Alx488) IC, 30SS13(Alx488) IC 
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(0.1 μM) was formed in the presence of GTP (12.5 μM) but in the absence of IF1 and IF3. 

70SS13(Alx488) IC was prepared by adding 50S subunits (0.15 μM) to 30SS13(Alx488) IC and 

incubating the reaction mix at 37°C for 10 min. Unpurified 70SS13(Alx488) IC (0.1 μM) was 

rapidly mixed with IF14(Atto540Q) (0.2 μM) and GTP/GTPγS (0.5 mM) in the stopped-flow 

apparatus.  

8.6. Kinetic data modeling 

To formulate a kinetic model for 70S IC formation, time courses for each observable were 

collectively evaluated by numerical integration using a 10-step model (see Results section). 

For Pi release and FRET between mant-GTP and IF2, the fit of the buffer control trace 

(obtained in the absence of 50S subunits) was subtracted from the respective time courses 

obtained in the presence of 50S subunits. All time courses which did not contain a prominent 

delay phase before the start of the reaction were evaluated using single- or double- 

exponential equations to obtain apparent rates of the reaction. Where the time courses were 

fit with a double-exponential function, the second (minor phase), in most cases, resulted from 

compositional heterogeneity of the 30S complexes and a portion of poorly-active 50S 

subunits. Because the rate and amplitude of this phase varied with different preparations of 

initiation components, only the rate constant of the relevant (predominant) phase of the 

reaction is discussed in the Results section. Exponential fitting calculations were performed 

using Prism (Graphpad Software) and numerical integration calculations were performed 

using KinTek Explorer (KinTek corporation, USA). Standard errors were calculated from 

fitting of the average derived from 7-10 time courses.  
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10. LIST OF ABBREVIATIONS 

30S IC   –  30S Initiation Complex 

30S PIC  –  30S Pre-Initiation Complex 

70S EC  –  70S Elongation Complex 

70S IC   –  70S Initiation Complex 

70S IC (Bpy)  –  70S IC containing Bpy-Met-tRNAfMet 

70S PIC  –  70S Pre-Initiation Complex 

μM   –  micromolar 

A site   –  Aminoacyl site 

A600   –  Absorbance measured at 600 nm 

aa-tRNAaa   –  aminoacyl-tRNA 

AlF3   –  aluminium fluoride 

Alx   –  Alexa dye 

BeF3   –  beryllium fluoride 

Bpy   –  Bodipy FL 

Cryo – EM   –  Cryo – Electron Microscopy 

CTD   –  C-terminal domain 

cys   –  cysteine 

dark    –  non-fluorescent  

dc   –  decoding center 

D-stem   –  Dihydrouridine stem 

E site   –  Exit site 

EF   –  Elongation Factor 

EF-Tu TC  –  EF-Tu—GTP—Phe-tRNAPhe Ternary Complex 

f-Met   –  formyl-methionine 

FPLC   –  Fast Protein Liquid Chromatography 

IF   –  Initiation Factor 

kapp   –  Apparent rate constant 

Kd   –  Dissociation rate constant 

LS   –  Light Scattering 

mRNA   –  messenger RNA 

n.d.   –  not determined 

n.o.   –  not observed 
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Ni-NTA  –  Nickel- nitrile triacetic acid 

nm   –  nanometer  

NTD   –  N-terminal domain 

OB   –  Oligonucleotide–binding domain 

P site   –  Peptidyl site 

P/I site   –  Peptidyl/intermediate site 

PCR   –  Polymerase Chain Reaction 

Pi   –  Inorganic Phosphate 

PTC   –  Peptidyl Transferase Center 

RF   –  Release Factor 

RRF   –  Ribosomal Release Factor 

rRNA   –  ribosomal RNA 

SD   –  Shine-Dalgarno sequence 

SDS-PAGE –  Sodium dodecyl sulphate- polyacrylamide gel 

electrophoresis 

TIR   –  Translation Initiation Region 

tRNA   –  transfer RNA 

tRNA (Flu)  –  Fluorescein-labeled fMet-tRNAfMet 

v/v   –  volume/volume 

wt   –  wild type  
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