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Speak, for your lips are yet free;
Speak, for your tongue is still your own;
Your lissom body yours alone;
Speak, your life is still your own.

Look into the blacksmith’s forge:
The flame blazes, the iron’s red;
Locks unfasten open-mouthed,
Every chain’s link springing wide.

Speak, a little time suffices
Before the tongue, the body die.
Speak, the truth is still alive;
Speak, say what you have to say.1

— Faiz Ahmad Faiz (1911-1984)

Dedicated to my family, for love and patience.

To Thomas and Peter, for opportunity and support.

1The original version is in Urdu. The english version is obtained from a website which cites Ms. Yasmin Hosain as the translator.
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1 Introduction
The general solid-state system is completely determined by its constituent particles
and their respective interactions. The electrons and the nuclei are the constituents
which interact through electro-static Coulomb interaction. Nuclei on the other hand
are made of neutrons and protons which interact via weak and strong nuclear forces.
However these short-range nuclear interactions do not contribute to the macroscopic
properties of the solid-state system. The gravitational interactions among the con-
stituent particles is also neglected because of their small mass.

With the knowledge of all the relevant interactions, the stage is set to solve the
governing equation of the quantum systems i.e. the time-dependent Schrödinger
equation. In quantum mechanics, the system is described by a many-particle wave-
function which is the solution of the Schrödinger equation. The biggest hurdle in
the evaluation of the many-particle wave-function, is the exponential growth of the
Hilbert space with the number of constituent particles. The gigantic Hilbert space
in almost all the cases of an interacting system, makes it impossible to attempt for
an exact solution.

To overcome the problem of an exponential growth of the Hilbert space with the
system size, one first proceed towards separating the degrees of freedom involved,
which in this case are the electrons and the nuclei. Due to an enormous difference
between the mass of an electron and the nuclei, Born-Oppenheimer treatment [1] is
the first step towards separating the dynamics of nuclei and the electrons. It allows
the dynamics of the nuclei to be studied separately in the presence of a potential field
(Born-Oppenheimer surface) which can be approximated by an empirical interaction
(Classical molecular dynamics) or evaluated from state of the art electronic structure
calculations (ab-initio molecular dynamics).

The second branch of approximation comes in during the treatment of the elec-
tronic degrees of freedom. The exact treatment of an interacting electron system is
again an impossible task due to a formidable Hilbert space. The electronic many-
body wave-function which depends parametrically on the nuclear degrees of freedom
can not be exactly evaluated in almost all the cases of an interacting quantum sys-
tem. The full-information of the many-particle wave-function is however inordinate.
The valuable physical properties of the electronic system is mostly obtained from the
one-body (kinetic energy, magnetization etc) or the two-body (electron-interaction,
magnetic susceptibility etc.) operators. To this end, the concept of density-matrices,
specifically the one-particle and two-particle reduced density-matrices, single parti-
cle Green’s function, self-energy etc. is paramount.
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1 Introduction

In solid-state physics, formalisms like density-functional theory (DFT) [2, 3, 4, 5],
reduced density-matrix functional theory [6, 7], many-body perturbation theory
[8, 9], dynamical mean-field theory [10, 11, 12], etc, are used to study the electronic
properties of the system.

Ab-initio calculations are dominated by density functional theory (DFT), which
provides an efficient and accurate description of the electronic structure for most
materials [13]. In the DFT framework, an interacting electron system is rigorously
mapped to a system of non-interacting particles (Kohn-Sham system) with an ef-
fective potential that reproduces the density of the original system. The effective
potential in turn depends on the density and therefore the Kohn-Sham set of equa-
tions need to be solved self-consistently. The entire complexity of the many-body
interactions is clubbed into a density-functional or the exchange-correlation energy.
The first density-functional which were used in practice were based on local den-
sity approximation (LDA). It worked surprisingly well for real materials with weak
correlations [13]. LDA was however inept for most applications in chemistry due to
its deficiency to describe bond breaking correctly. The situation was considerably
improved by the introduction of generalized gradient approximations (GGA) [14, 15]
which reproduces the bond energies to an accuracy of few tenth of an electron volt.
The most widely used GGA functional is the Perdew-Burke-Ernzerhof (PBE) func-
tional [16, 17]. Compared to GGA functionals, another class of density-functionals
which provides better estimates of binding energies, band gaps etc, are the Hybrid
functionals[18, 19, 20, 21, 22, 23]. The hybrid-functionals replace a part of exchange-
correlation energy by the exact exchange. The most widely used hybrid functional
are B3YLP [24] and PBE0 [25, 26].

For materials with strong correlations, however, many of the available density
functionals yield poor results [27, 28]. Most well known is the case of transition
metal oxides, for which most density functionals produce a qualitatively incorrect
description[29]. There is a quest to improve the description by borrowing from meth-
ods specifically designed for strongly correlated materials. One of the method which
is widely used to study strongly correlated electron system in the thermodynamic
limit is the dynamical mean-field theory (DMFT). DMFT treats the local correla-
tions explicitly by mapping a complicated lattice model to an impurity system with
an effective bath which is determined self-consistently. One of the biggest success
for DMFT was the correct description of the phase-transition between a metal and a
Mott insulator [30, 12, 31]. For calculations pertaining to real materials, approaches
like DFT+DMFT [12, 32, 33, 34, 35] are commonly used. Other methods which
are also quite extensively used to study real materials are LDA+U[36, 37, 38, 39]
and DFT-plus-Gutzwiller approximation[40, 41, 42, 43]. The guiding idea behind
these approaches is to merge density functional theory with methods developed
for the study of strong correlations for model Hamiltonians such as the Hubbard
model[44, 45, 46]. These hybrid methods are immensely successfull in the advance-
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ment of our understanding behind the physics of Mott transition, structural phase
diagrams, optical conductivity, transport etc. in the strongly correlated real mate-
rials.

We consider reduced density-matrix functional theory (rDMFT)[6, 7] to be a
useful framework for a rigorous formulation of such hybrid theories[47, 48]. Re-
duced density-matrix functional theory can be viewed as a relative of DFT, which
emphasizes orbital occupations rather than the density as basic variable. Such a
description seems to be natural for correlated materials, because the latter are dom-
inated by orbital physics. In 1975, Gilbert [6] proved that there exist a one-to-one
mapping between non-degenerate ground-state wave-function and the corresponding
one-particle reduced density matrix. This lead to construction of the ground-state
properties of the electronic system as a functional of one-particle reduced density
matrix. Further, constrained minimization in the space of N-representable one-
particle reduced density matrices leads to the state with the minimum energy or the
ground-state. The complexity of the explicit many-body effects are concealed in an
object called the reduced density-matrix functional.

The link from rDMFT to many-particle wave functions has been established by
Levy’s constrained-search algorithm [7] on the one hand. The link to many-body
perturbation theory and Green’s function, on the other hand, has been provided
recently [48] via the Luttinger-Ward functional [49]. However until half a decade ago,
the development in the field of rDMFT proceeded analogously to the development
of DFT. In order to avoid the full complexity of an explicit many-body description,
most density-matrix functionals are not extracted from the exact expressions [7,
48]. Rather, one proceeds analogously to the development of density functionals,
namely by searching models for the density-matrix functional, that capture the most
essential physical effects while having an algebraic dependence on the density matrix.
Among such models, the most prominent ones are the Müller functional[50, 51],
Goedecker-Umrigar functional [52], Sharma functional [53] and Marques-Lathiotakis
functional [54].

One of the major arguments in favor of density-matrix functionals is that one of
the most simple functionals, the Müller functional [50], seems to provide a correct
description of the bond-dissociation problem, for which common density function-
als fail [55]. Despite the successes, the common density-matrix functionals also
reproduce a number of features in a qualitatively incorrect manner [56]. Several
such discrepancies of the standard state of the art density-matrix functionals are
discussed in details in this thesis.

The objective of this thesis is to study the performance of the class of commonly
used model density-matrix functionals and to set the stage for the desire to develop
the framework for an approximate scheme to evaluate new class of functionals from
exact Green’s function based method [48]. To this end the thesis is organized as
follows.

3



1 Introduction

Chapter 2 is the introductory chapter where we discuss the basic concepts of the
rDMFT. We start with introducing the model Hamiltonian and the important static
and dynamical objects like the density matrices, Green’s function and the self-energy
etc. The notion of density-matrix functional and its evaluation via three different
methods namely the wave-function based, Green’s function based and the empirical
approaches, are discussed towards the later half of the chapter. We end the chapter
by discussing some of the exact results for the model benchmark systems.

Chapter 3 is devoted towards the numerical methodology of searching for the
ground-state. The optimization in the space of N-representable one-particle reduced
density matrices, is done in Car-Parinello [57, 58] spirit. Starting with the historical
background of the minimization algorithm, we discuss its practical implementation
suitable for our purpose. The treatment of the constraints and the issues related to
the convergence and stability of the algorithm are discussed in details.

In Chapter 4, we analyze the quality of existing state of the art parametrized
density-matrix functionals. We discuss in particular the Hartree-Fock, Müller [50,
51] and the power functionals[53]. The performance of these functionals are bench-
marked on exactly solvable system like the Hubbard dimer. Several discrepancies
like the tendency of Müller functional to produce infinite magnetic polarizability at
zero temperature, abrupt artifical transition to anti-ferromagnetic states in case of
power functionals etc are highlighted. The problems are also shown to persist in
larger systems like the Hubbard chains or the rings.

Chapter 5, is devoted towards the development of new class of functionals based on
the Green’s function based methods [48]. We develop a new framework to avoid the
complicated stationary point search in the space of Green’s function and self-energy
during the evaluation the density-matrix functional. The goal is to provide an alge-
braic form of the density-matrix functional in terms of Luttinger-Ward functional.
Using the standard perturbation theory in the interaction strength, we aim to build
a controlled scheme towards the construction of the density-matrix functional.

4



2 Reduced density matrix functional
theory

2.1 General solid state system

The full Hamiltonian which governs the static and dynamic properties of the solid
state system can be decomposed as,

Ĥ = T̂e + T̂n + Ŵe−e + Ŵn−n + Ŵe−n (2.1)

where T̂e and T̂n are the kinetic energy operators for the electrons and the nuclei
respectively. Ŵe−e is the Coulomb repulsion between the electrons, Ŵn−n is the
electro-static interaction between the nuclei and Ŵe−n is the electro-static interac-
tions between the electrons and the nuclei.

The operators in Eq. 2.1 can be written in their full glory as

T̂e =
N∑
i=1
− ~2

2me

52
i where 52

i = ∂2

∂r2
i

T̂n =
M∑
i=1
− ~2

2Mi

52
i where 52

i = ∂2

∂R2
i

Ŵe−e =
∑
i 6=j

e2

4πε0|~ri − ~rj|2

Ŵn−n =
M∑
i=1

M∑
j=1

ZiZje
2

4πε0|~Ri − ~Rj|2

Ŵe−n = −
N∑
i=1

M∑
j=1

Zje
2

4πε0|~ri − ~Rj|2
(2.2)

where e and me are the unit charge and the mass of an electron respectively. Zi
and Mi are the atomic number and the mass of i-th nucleus respectively. ε0 is the
electric permitivity of the free space.

The dynamics of the constituent particles is governed by the celebrated time-
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2 Reduced density matrix functional theory

dependent Schrödinger equation, which has the form,

i~
∂

∂t
|Φ〉 = Ĥ|Φ〉 (2.3)

where the ket |Φ〉 describes the many-body state of the electrons and the nuclei.
For a solid state system comprising of N electrons and M nuclei, the many-particle
wave-function has the following form,

Φ(~x1, ~x2, ...~xN , ~R1, ~R2, ... ~RM) (2.4)

where ~xi = (~ri, σi) is a composite index which labels an electron at position ~ri with
a spin σi. The spin index σ for the electrons can take one of the two values from
the set {↑, ↓}. The position vector of the i-th nucleus is labeled as ~Ri.

The large number of the degrees of freedom renders an exact solution for the
time-dependent Schrödinger equation impossible in almost all cases. The progress
of theoretical physics relies on proposing controlled approximations which simplifies
the calculations and yet effectively describes the important aspects of the physical
system. Several such approximation will be discussed in the following sections.

2.2 Born-Oppenheimer Approximation
To overcome the dimensional bottleneck in the simulation of large systems, a set
of approximations are proposed which captures the essential physics of the system.
One such approximation was proposed by Max Born and J. Robert Oppenheimer in
1927 [1]. This approximation treats the dynamics of the nuclei and the electrons on
a different level i.e. the motion of the electrons and the nuclei are separated. The
separation comes from the large difference between the nucleus and the electron
mass, which leads to the separation of the energy scales of the two entities in the
physical system.

The construction starts with an exact ansatz for the many-particle wave-function
in Eq. 2.4. The wavefunction is separated into a product of electronic and nuclear
wavefunction. The electronic wave function is denoted by ψ(~x; ~R) with the position
of electrons as its arguments. The position vector ~R = {~R1, ~R2, ..., ~RM} of the nuclei,
enter as a parameter. The wavefunction of the nuclei is denoted by φ(~R, t) with the
position of nuclei and time as its argument.

The many-particle wave-function in Eq. 2.4 can be written as [1, 59],

Φ(~x, ~R, t) =
∑
n

ψn(~x; ~R)φn(~R, t) (2.5)

The full Hamiltonian of the solid-state system in Eq. 2.1 can also be decomposed

6



2.2 Born-Oppenheimer Approximation

into two parts as,
Ĥ = T̂n + ĤBO(~R) (2.6)

where ĤBO is referred to as the Born-Oppenheimer Hamiltonian, which only ex-
cludes the kinetic energy of the nuclei. The Born-Oppenheimer Hamiltonian is used
to study the spectrum of the electrons. The position of the nuclei ~Ri in ĤBO is con-
sidered as a parameter and the Hamiltonian only acts on the Hilbert space of the
electrons. The Schrödinger equation for the electronic degrees of freedom is given
by [

ĤBO(~R)− EBO
n (~R)

]
ψn(~x; ~R) = 0 (2.7)

As evident from Eq. 2.7, the spectrum or the eigen-energy EBO
n (~R) of the electrons,

depend parametrically on the position vectors ~R of nuclei. EBO
n (~R) is also termed

as the Born-Oppenheimer surface which plays a crucial role in the dynamics of the
nuclei. The electronic eigenstates ψn(~x; ~R) form an orthonormal basis set, i.e.,

∑
~σ

∫
d3N~rψ∗n(~r, ~σ; ~R)ψm(~r, ~σ; ~R) = δmn (2.8)

where ~r = {~r1, ~r2, ...~rN} and ~σ = {σ1, σ2, ...σN} are the set of position vectors and
the spins of the N-electrons.

On the other hand the Schrödinger equation for the nuclei wave-functions φn(~R, t)
has the following form [[59] and See Chapter 2 of [60]]

i∂tφn(~R, t) =
[
M∑
i=1
− ~2

2Mi

~5
2
i + EBO

n

]
φn(~R, t)

+
∑
m

[
M∑
i=1

Ainm(~R)~5i +Bi
nm(~R)

]
φm(~R, t)

(2.9)

where the quantities Ainm(~R) and Bi
nm(~R) are termed as the first and second deriva-

tive couplings respectively. The derivative couplings has the form [See Chapter 2 of
[60]],

Ainm(~R) = − ~2

Mi

〈ψn|~5i|ψm〉

Bi
nm(~R) = − ~2

2Mi

〈ψn|~5
2
i |ψm〉 (2.10)

where the notation of 〈〉 denotes the integration over electronic degrees of freedom.
The derivative couplings depend parametrically on the nuclear position vectors be-
cause electronic positions ~r and spin ~σ have been explicitly integrated over.

7



2 Reduced density matrix functional theory

2.3 Solid state system in second quantization

The electronic and the nuclear degrees of freedoms have been separated through
the Born-Oppenheimer approximation. As stated earlier, the Born-Oppenheimer
surface is the electronic eigenstate of the Born-Oppenheimer Hamiltonian given by,

ĤBO = T̂e + Ŵe−e +
∑
i

v̂iext (2.11)

where v̂iext. contains the information about the electrostatic potential due to the
nuclei and any other external potential acting on the i-th electron.

It is understood that the Born-Oppenheimer Hamiltonian is for the fixed nuclear
positions {~R}. In this section we will express the Hamiltonian in second quantized
notation in the Fock space i.e. to extend the Hilbert space and allow the states with
different particle numbers. In this space different particle number states are build
by successively creating particles in the vacuum.

2.3.1 Local spin orbitals

To this direction we introduce single particle states called the local spin orbitals
χα(~x), which is a two component spinor defined as,

χα(~x) = 〈~r, σ|χα〉 :=
(
χα(~r, ↑)
χα(~r, ↓)

)
(2.12)

This wave-function has information about the contribution along the spin-up and
spin-down direction given by χα(~r ↑) and χα(~r, ↓) respectively. The amplitude of
the wave-function |χ∗α(~x)χα(~x)| gives the probability of finding a particle at position
~r with spin σ.

This is a very general notation of the orbitals where spin is treated as a quantum
number and it allows to go beyond the spin eigenstates along a particular direction.
A local spin orbital, which say is an eigenstate of Ŝz, has only one non-zero compo-
nent of the spinor. The advantage of using spin orbital is the fact that it allows to
describe orbitals that do not point along the z-direction.

The spin-direction or the magnetization ~mα(~r) at position ~r of the local spin
orbitals χα(~x), has the form,

~mα(~r) := e~
2me

〈χα|~̂σ|χα〉 (2.13)

where e and me are the charge and the mass of the electron respectively. The vector

8



2.3 Solid state system in second quantization

~̂σ = {σ̂x, σ̂y, σ̂z} is a three component vector of Pauli matrices given by

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (2.14)

2.3.2 Projector states
In the absence of orthonormal basis set, one constructs a projector state |πα〉 for
each local orbital |χα〉 such that it obeys the bi-orthogonality condition,

〈πα|χβ〉 = δαβ (2.15)

An arbitrary single particle wave-function |ψ〉 = ∑
α cα|χα〉 can be decomposed into

its contribution of the local orbitals as,

|ψ〉 =
∑
α

|χα〉〈πα|ψ〉 (2.16)

The projection of a general wave-function |ψ〉 on to a set of local orbitals |χα〉 will
be complete, if, ∑

α

|χα〉〈πα| = 1 (2.17)

The projector states are introduced to compensate for the in availability of the
complete orthonormal basis set of the local spin orbitals. The projector states are
identical to the local spin orbitals only if the local spin orbitals form a complete
orthonormal basis set.

2.3.3 Hamiltonian in second quantization
With the recipe in hand, we introduce the field operators Ψ̂†(~x) and Ψ̂ (~x) which
creates and annihilates an electron with spin σ at position ~r respectively, and rewrite
the Born-Oppenheimer Hamiltonian ĤBO as,

ĤBO =
∫
d~x Ψ̂†(~x)

[
− ~2

2me

52 +vext.(~x)
]
Ψ̂ (~x)

+ 1
2

∫
d~x
∫
d~x′ Ψ̂†(~x)Ψ̂†(~x′) e2

4πε0|~r − ~r′|2
Ψ̂ (~x′)Ψ̂ (~x) (2.18)

where ~x = (~r, σ) is as usual the composite index for the position and the spin
variable. We use the shorthand

∫
d~x = ∑

σ

∫
d~r for the integration over positions

and the sum over spin indices. The field operators obey the usual anticommutator
relations

{
Ψ̂†(~x), Ψ̂(~x′)

}
= δ(~r − ~r′)δσ,σ′ .

The creation and annihilation operators in terms of local spin orbitals can be

9



2 Reduced density matrix functional theory

expressed through field operators as,

ĉ†α =
∑
σ

∫
d~r Ψ̂†(~r, σ)πα(~r, σ)

ĉα =
∑
σ

∫
d~r π∗α(~r, σ)Ψ̂ (~r, σ) (2.19)

where the back transform for the field operators is given by

Ψ̂†(~r, σ) =
∑
α

χ∗α(~r, σ)ĉ†α

Ψ̂ (~r, σ) =
∑
α

χα(~r, σ)ĉα (2.20)

The creation and annihilation operators obey the following anti-commutation rules,{
ĉ†α, ĉβ

}
= 〈πα|πβ〉;

{
ĉ†α, ĉ

†
β

}
= 0;

{
ĉα, ĉβ

}
= 0 (2.21)

The anti-commutation between the creation and annihilation operator is not a delta
function, but the overlap between two projector states, and this is due to the fact
that the set of local spin orbitals may not necessarily be a complete orthonormal
basis set.

Substituting the field operators as defined in Eq.(2.20) into the expression of
Born-Oppenheimer Hamiltonian ĤBO in Eq.(2.18), we get,

ĤBO =
∑
αβ

hαβ ĉ
†
αĉβ + 1

2
∑
αβγδ

Wαβγδ ĉ
†
αĉ
†
β ĉδ ĉγ (2.22)

with the one-particle hamiltonian ĥ

hα,β =
∫
d~x χ∗a(~x)

(
− ~2

2me

~∇2 + vext(~x)
)
χβ(~x) (2.23)

The off-diagonal elements of h are named hopping parameters, and the diagonal
elements are named orbital energies.

The interaction matrix elements are

Wαβγδ =
∫
d~x
∫
d~x′

χ∗α(~x)χ∗β(~x′)χγ(~x)χδ(~x′)
4πε0|~r − ~r′|

(2.24)

The interaction tensor Ŵ is symmetric under the exchange of extreme indices i.e.,

Wαβ,γδ = Wβα,δγ (2.25)

10



2.4 Grand-canonical potential

which is simply obtained by interchanging the position and spin indices which are
integrated over in Eq.(2.24).

In the subsequent discussion, the nuclear positions are assumed to be fixed and
therefore for notational simplicity we will give up superscript BO for Born Oppen-
heimer in Eq. (2.22) and instead use Ĥ for the electronic Hamiltonian and En for
the Born-Oppenheimer surface. The value of reduced Planck constant has been set
to ~ = 1.

2.4 Grand-canonical potential
At finite temperature, instead of the ground state, the grand canonical potential is
an appropriate quantity. The grand canonical potential Ωĥ+Ŵ

β for the many-body
system described by the Hamiltonian H in Eq. (2.22), is derived from the partition
function Z as,

Ωĥ+Ŵ
β = − 1

β
lnZ

Z = Tr
(
e−β(ĥ+Ŵ−µN̂)

)
(2.26)

where β = 1/kBT is the inverse temperature and N̂ is the number operator which
has the form

N̂ =
∑
αβ

〈χα|χβ〉ĉ†αĉβ (2.27)

The trace in Eq.(2.26) is over any complete set of basis states of the full-Hamiltonian.
This tracing suffers from the exponential bottleneck and thus exact evaluation of
the grand potential for a many body system is hard.

The grand potential is an important quantity in thermodynamics. All the ther-
modynamic properties of a system can be derived from the grand potential, through
partial derivatives with respect to thermodynamic variables, for eg.

〈N〉 = −
∂Ωĥ+Ŵ

β

∂µ

S = −
∂Ωĥ+Ŵ

β

∂T
(2.28)

where 〈N〉 is average number of particle and S is the entropy of the system.
Since the exact evaluation of grand-canonical potential for a many-body sys-

tem is extremely hard, one proceeds towards development of approximate schemes
which can describe a many-body system effectively. To this direction, important

11



2 Reduced density matrix functional theory

formalisms like Density-Functional Theory (DFT), reduced Density Matrix Func-
tional Theory (rDMFT), many-body approaches like perturbation theory and the
Dynamical Mean Field Theory (DMFT) etc, have been proposed which provides an
approximate yet effective approach to study complicated many-body systems.

In the above mentioned formalisms, static objects like density, one-particle re-
duced density matrices, two-particle density matrices, and dynamical objects like
Green’s function and the self-energy, are used quite often. These objects are mostly
used to evaluate ground state energy or the grand-canonical potential, spectral func-
tions etc. In the following section, we briefly discuss some of these important objects
and their relation to each other.

2.5 Important quantities

2.5.1 Density matrices
The density matrices [61] are objects which encodes the same information as the
many particle wave functions. The full many particle density matrix Γ̂ for a statis-
tical ensemble {Pi,Ψi({~x})} has the form,

Γ(~x1, ~x2...~xN ; ~x′1, ~x′2...~x′N) =
∑
i

Pi Ψi(~x, ~x2...~xN)Ψ∗i (~x′1, ~x′2...~x′N) (2.29)

Γ̂ is a positive semi-definite hermitian matrix with trace equal to one.
The statistical average of any operator Â for the ensemble {Pi,Ψi({~x})} can be

evaluated from the many-particle density matrix Γ̂ as,

〈Â〉 = Tr
(
Γ̂Â

)
(2.30)

In solid-state physics, the typical operators one deal with are the one-body objects
like kinetic energy, magnetization etc. and the two-body operators like Ŵ , the
magnetic susceptibility etc. In the evaluation of the averages of such operators, the
full knowledge of many-particle density matrix is redundant and to that effect we
introduce the concept of one and two-particle reduced density matrices.

One-particle reduced density matrix

The one-particle reduced density matrix is denoted by an operator ρ̂ and is an
essential entity for the evaluation of the expectation value of one-body operators
such as kinetic energy, magnetization etc. of the electronic system.

The one-particle reduced density matrix is obtained from an ensemble {Pi,Ψi({~x})}
of an N-electron system, by systematically tracing out the positions ofN−1 electrons
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as,
ρ(~x, ~x′) :=

∑
i

Pi

(
N
∫

Ψi(~x, ~x2...~xN)Ψ∗i (~x′, ~x2...~xN)d~x2...d~xN

)
(2.31)

It is important to note that one-particle reduced density matrix has two positions
in its argument. However, these are the positions of only one electron. The diagonal
part of the one-particle density matrix gives the spatial particle density denoted by,

n(1)(~r) =
∑
σ

ρ(~x, ~x) (2.32)

The one-particle reduced density matrix can also be represented in terms of field
operators as,

ρ(~x, ~x′) :=
∑
i

Pi〈Ψi|Ψ̂†(~x′)Ψ̂ (~x)|Ψj〉 (2.33)

which, when expressed in terms of creation and annihilation operators, has the form,

ρ(~x, ~x′) =
∑
αβ

χα(~x)
(∑

i

Pi〈Ψi|ĉ†β ĉα|Ψi〉
)
χ∗β(~x′) (2.34)

where we define the matrix elements of one-particle reduced density matrix in local
orbital basis as,

ραβ =
∑
i

Pi〈Ψi|ĉ†β ĉα|Ψi〉 (2.35)

The eigen-decomposition of one particle reduced density matrix ρ(~x, ~x′) has the
form,

ρ(~x, ~x′) =
∑
n

fnφn(~x)φ∗n(~x′) (2.36)

where the eigenvalues fn are called the occupations and the eigen vectors φn(~x) are
also termed as the natural orbitals.

The one-particle reduced density matrix obtained from an anti-symmetrized N-
particle wave function is an N-representable matrix [62, 63, 64] which means that
eigenvalues follow the conditions,∑

n

fn = N, ∀n, 0 ≤ fn ≤ 1 (2.37)

The statement is more general which states that any matrix that can be represented
by an ensemble of fermionic N-particle wave functions is an N-representable matrix.

The one-particle reduced density matrix comes in handy in the evaluation of
ensemble average of one-body terms in the Hamiltonian in Eq.(2.18). Using the
definition of one-particle reduced density matrix in Eq. (2.33), it can be shown that
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the ensemble average has the form,
∫

d~x lim
~x′→~x

(
−5

2
~r

2 + Vext.

)
ρ(~x, ~x′) (2.38)

Two particle density matrix

The second important quantity for systems with two-particle interactions is the
two-particle density matrix denoted by ρ(2)(~x1, ~x2; ~x′1, ~x′2). The two particle reduced
density matrix is obtained from N-particle wave functions by integrating out the
remaining N − 2 degrees of freedom as,

ρ(2)(~x1, ~x2; ~x′1, ~x′2) = N(N − 1)
∫

Ψ(~x1, ~x2, ~x3...~xN)Ψ∗(~x′1, ~x′2, ~x3...~xN)d~x3...d~xN

(2.39)
The two particle density matrix has four arguments, two for each electron. The
two particle density operator is used to evaluate the expectation value of two-body
operators (like Coulomb interaction) in Eq. (2.18), and has the form,

1
2

∫
d~x
∫

d~x′
e2

4πε0|~r − ~r′|2
ρ(2)(~x, ~x′; ~x, ~x′) (2.40)

Hole-function
The physical quantity which is more identifiable is the two-particle density n(2)(~r, ~r′)
given by,

n(2)(~r, ~r′) =
∑
σ,σ′

ρ(2)(~x, ~x′; ~x, ~x′) (2.41)

i.e. the spin-averaged diagonal elements of two particle reduced density matrix gives
the two particle density. From the physical perspective, for an uncorrelated system,
the two particle density is the product of densities at two positions

n(2)(~r, ~r′) = n(1)(~r)n(1)(~r′) (2.42)

The conditional density n(2)(~r,~r′)
n(1)(~r) is the density at ~r′ as seen by the electron at ~r

which experiences density due to N − 1 electrons. This conditional density is given
in terms of a quantity called hole function h(~r, ~r′) as,

n(2)(~r, ~r′)
n(1)(~r) = n(1)(~r′) + h(~r, ~r′) (2.43)

The hole function has the following properties,

• Since the electron at any position sees density due to other N − 1 electrons,
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the hole function should always integrate to -1,∫
d~r′h(~r, ~r′) = −1 (2.44)

• Electrons obey Pauli principle i.e. two electrons of same spin cannot be at the
same position, which demands

n(2)(~r, ~r) = 0 (2.45)

• At large distances |~r− ~r′| → ∞, the two particle density is simply the product
of individual densities, and thus the hole function should satisfy,

h(~r, ~r′)→ 0 for |~r − ~r′| → ∞ (2.46)

A detailed discussion on the properties of the hole function can be found in the
lecture notes of P. Blöchl [See Chapter 1 of [65]]

2.5.2 Green’s function and self energy
In this subsection we will discuss important dynamical objects which are used ex-
tensively in many-body approaches to investigate solid-state systems.

Green’s function

At finite temperature, the single particle Matsubara Green’s function [66] for the
many body Hamiltonian Ĥ = ĥ+ Ŵ has the form,

Gαβ(τ, τ ′) := −〈T ĉα(τ)ĉ†β(τ ′)〉

= − 1
Z

Tr
{
e−β(ĥ+Ŵ−µN̂)T

(
ĉα(τ)ĉ†β(τ ′)

)}
Z = Tr

{
e−β(ĥ+Ŵ−µN̂)} (2.47)

where τ is the imaginary time, obtained from the real time t through the Wick’s
rotation τ = it. The time-ordering operator T orders the operator in decreasing
order of time i.e. the operators with smaller time are moved towards right.

The time-dependence of the operators are obtained as,

ĉα(τ) = e(Ĥ−µN̂)τ ĉαe−(Ĥ−µN̂)τ

ĉ†β(τ) = e(Ĥ−µN̂)τ ĉ†βe−(Ĥ−µN̂)τ (2.48)

Using the fact that the total Hamiltonian Ĥ is time-independent and the operators
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can be permuted cyclically within the trace, it can be shown that the Green’s func-
tion Gαβ(τ, τ ′) depends only on the time difference τ − τ ′ in Eq.(2.47). Therefore it
is convenient to set τ ′ = 0.

It can also be shown easily that the Green’s function Gαβ(τ) follows an important
property,

Gαβ(τ + β) = η Gαβ(τ) (2.49)

where η = ±1 for bosons and fermions respectively. This property helps in restricting
the imaginary time domain to a finite set τ ∈ [0, β].

Due to this periodicity and anti-periodicty of bosonic and fermionic Green’s func-
tion respectively, we can do the Fourier transformation of G(τ) and the back trans-
formation as,

G(iωn) = 1
2

∫ β

−β
dτ eiωnτG(τ)

G(τ) = 1
β

∑
ωn

e−iωnτG(iωn)

ωn =


(2n+1)π

β
for fermions

2nπ
β

for bosons
(2.50)

Self-energy

Another important quantity which is used quite often in the many-body approaches
for the strongly correlated electron system is the self-energy. The self energy relates
a two- particle propagator to one-particle Green’s function. The two-particle prop-
agator arises in the expression for the equation of motion of one particle Green’s
function. The equation of motion for one-particle Green’s function Gαβ(τ) has the
form,

∂

∂τ
Gαβ(τ) = ∂τ

[
−Θ(τ)〈ĉα(τ)ĉ†β(0)〉+ Θ(−τ)〈ĉ†β(0)ĉα(τ)〉

]
= δ(τ)

[
−〈ĉα(τ)ĉ†β(0)〉 − 〈ĉ†β(0)ĉα(τ)〉

]
− Θ(τ)〈∂τ ĉα(τ)ĉ†β(0)〉+ Θ(−τ)〈ĉ†β(0)∂τ ĉα(τ)〉 (2.51)

The time derivative of annihilation operator ĉα(τ) is evaluated from the Heisenberg
equation of motion as,

∂τ ĉα(τ) =
[
Ĥ − µN̂ , ĉα(τ)

]
(2.52)

The commutator [, ] in Eq.(2.52) can be evaluated, given the form of Hamiltonian
in Eq.(2.22) as,[

Ĥ − µN̂ , ĉα(τ)
]

=
∑
γ

(hαγ − µδαγ) ĉγ(τ) +
∑
γ,δ,λ

Wαγ,δλĉ
†
γ(τ)ĉλ(τ)ĉδ(τ)
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(2.53)

The equation of motion for the one particle Green’s function in Eq.(2.51), can be
expanded using Eq.(2.53) as,

∂

∂τ
Gαβ(τ) = −δ(τ)δαβ −

∑
γ

(hαγ − µδαγ)Gγβ(τ)

+
∑
γ,δ,λ

Wαγ,δλ〈T ĉ†γ(τ)ĉλ(τ)ĉδ(τ)ĉ†β(0)〉 (2.54)

As evident from Eq.(2.54), the equation of motion for a one particle Green’s func-
tion requires the knowledge of two particle correlator arisng due to the presence of
two body operator Ŵ . The two body correlator is related to one-particle Green’s
function through self-energy Σ(τ) as,

∑
η

∫ β

0
dτ ′ Σαη(τ − τ ′)Gηβ(τ ′) = −

∑
γδλ

Wαγ,δλ〈T ĉ†γ(τ)ĉλ(τ)ĉδ(τ)ĉ†β(0)〉

(2.55)

The equation of motion for the one particle Green’s function in Eq.(2.54) attains
the form,

∂

∂τ
Gαβ(τ) = −δ(τ)δαβ −

∑
γ

(hαγ − µδαγ)Gγβ(τ)

−
∑
η

∫ β

0
dτ ′ Σαη(τ − τ ′)Gηβ(τ ′) (2.56)

Using the fourier transformation for the Green’s function and the self energy the
equation of motion in Eq.(2.56) can be casted in the well known Dyson equation
which has the form,

Gαβ(iωn) =
iωn1 + µ1− h−Σ(iωn)

−1

αβ

(2.57)

2.5.3 Lehmann representation of the Green’s function
In the later discussions on the density matrix functional derived from the Green’s
function, the search for an approximate Green’s function will be a crucial task. For
that purpose, we present the most useful representation of the Green’s function,
namely the Lehmann representation. In this representation the Green’s function
has the following form,
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Gαβ(iωn) =
∑
mn

〈Φm|ĉα|Φn〉〈Φn|ĉ†β|Φm〉
e−β(Em−µNm−Ω) + e−β(En−µNn−Ω)

iωn + Em − En + µ

(2.58)

We assume that the full spectrum i.e the eigenvalues {Em} and the eigen-vectors
{|Φm〉} of the Hamiltonian Ĥ−µN are available, and the eigen-vectors are orthonor-
mal and form the complete basis set in the Fock space, i.e.∑

m

|Φm〉〈Φm| = 1

〈Φm|Φn〉 = δmn (2.59)

The Green’s function can further be written in a convenient form using the spectral
function A as,

Gαβ(iωn) =
∫ ∞
−∞

dε
Aαβ(ε)

iωn + µ− ε
(2.60)

where

Aαβ(ε) =
∑
mn

〈Φm|ĉα|Φn〉〈Φn|ĉ†β|Φm〉
(
e−β(Em−µNm−Ω) + e−β(En−µNn−Ω)

)
δ(ε− (En − Em))

=
∑
n

e−β(En−µNn−Ω)

∑
m

〈Φn|ĉα|Φm〉〈Φm|ĉ†β|Φn〉δ(ε− (Em − En))

+
∑
m

〈Φn|ĉ†β|Φm〉〈Φm|ĉα|Φn〉δ(ε− (En − Em))


= Aelec.

αβ (ε) + Ahole
αβ (ε) (2.61)

In the last part the spectral function Aαβ(ε) has been divided in two parts, first
of which represents the spectral function for the electrons and the second part rep-
resents the holes.

2.5.4 Relation between one particle density matrix and the
Green’s function

In this subsection we show the relation between the one particle Green’s function
G(τ) and physical quantities like one-particle reduced density matrix ρ. The rela-
tion between the Green’s function and one-particle reduced density matrix is also
important for our future discussion on the density matrix functionals.

The one-particle reduced density matrix ρ for the system given by Hamiltonian
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Ĥ − µN is defined as,

ραβ = Tr

e−β(Ĥ−µN−Ω)ĉ†β ĉα

 (2.62)

If we compare the expression in Eq. (2.62) with the definition of the single particle
Green’s function in Eq. (2.47), we can conclude that ρ is nothing but the Green’s
function at imaginary time τ → 0− i.e.

ρ = G(τ → 0−)

= 1
β

∑
ωn

eiωn0+G(iωn) (2.63)

The factor eiωn0+ is also important for the numerical purpose, since it ensures
convergence of the Matsubara frequency sum.

The one particle density matrix can also be obtained from the hole part of the
spectral function Ahole

αβ (ε) by integrating over the entire energy range as,

ραβ =
∫ ∞
−∞

dε Ahole
αβ (ε)

=
∑
mn

e−β(En−µNn−Ω)〈Φn|ĉ†β|Φm〉〈Φm|ĉα|Φn〉

= Tr

e−β(Ĥ−µN−Ω)ĉ†β ĉα

 (2.64)

2.5.5 Relation between self energy and the interaction energy

The additional knowledge of the self energy Σ(τ) also helps in the evaluation of the
interaction energy. The average interaction energy is,

〈Ŵ 〉 = 1
2
∑
αβγδ

Wαβγδ〈ĉ†αĉ
†
β ĉδ ĉγ〉 (2.65)

where 〈Ŵ 〉 = Tr
{
e−β(Ĥ−µN−Ω)Ŵ

}
. The self energy defined in Eq.(2.55) can be

reformulated in a way such that the time ordering operator can be evaluated,

∑
η

∫ β

0
dτ ′ Σαη(0− τ ′)Gηβ(τ ′, 0+) =

∑
γδλ

Wαγ,δλ〈ĉ†β(0+)ĉ†γ(0)ĉλ(0)ĉδ(0)〉

(2.66)
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Thus relabelling β = α on the both side of Eq.(2.66) and summing over α we get,

〈Ŵ 〉 = 1
2
∑
ηα

∫ β

0
dτ ′ Σαη(0− τ ′)Gηα(τ ′, 0+)

= 1
2β

∑
ηα

∑
ωn

eiωn0+Σαη(iωn)Gηα(iωn)

= 1
2β

∑
ωn

eiωn0+Tr
{
Σ(iωn)G(iωn)

}
(2.67)

where we have used the Fourier transformation Σ(iωn) of the self-energy, defined as,

Σ(iωn) =
∫ β

0
dτ eiωnτΣ(τ) (2.68)

2.6 Gilbert theorem and the reduced density matrix
functional

Equipped with the knowledge of all the important ingredients, the stage is set to
discuss the schemes used to evaluate the grand-canonical potential of Eq. (2.26). To
overcome the complexity of the exact evaluation of the grand canonical potential
(specifically the ground-state energy at T=0), Hohenberg and Kohn [2] in 1964,
provided an exact mapping of the interacting electrons at T = 0 to a system of non-
interacting quasi particles also referred as the Kohn-Sham system [3]. They showed
that the ground state property of the interacting system is contained in the ground
state density n0(~r). The mapping to an non-interacting Kohn-Sham system assumes
that the external potential which is a one body operator is purely local. The locality
of the external potential leads to a one-one mapping between the non-degenerate
exact ground state wave function and the density.

ΨGS(~x1, .., ~xN)↔ n0(~r) (2.69)

This one-one mapping ensures the existence of density functionals. The entire com-
plexity of the problem is encoded in the density functional for which several approx-
imations have been tested successfully on different materials.

In 1975 T. Gilbert [6] extended the Hohenberg-Kohn theorem for the non-local
external potentials. He proved that for the non-local external potential, there is one-
one mapping between the ground state wavefunction and the one particle reduced
density matrix,

ΨGS(~x1, .., ~xN)↔ ρ0(~x, ~x′) (2.70)

This one to one mapping ensures that all the ground state expectation values can
be written as a functional of the ground state one-particle reduced density matrix.
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This in principle ensures that even the expectation values of two-body operators (See
Eq. (2.40)) can be written as a functional of one-particle reduced density matrix.

The full complexity in the evaluation of the ensemble average of interaction terms
are clubbed in a quantity called reduced density matrix functional F Ŵβ [ρ] and the
grand-canonical potential is obtained by minimzation in the space of N-representable
one-particle reduced density matrix ρ as,

Ωĥ+Ŵ
β = min

ρ

[
Tr (hρ) + F Ŵβ [ρ]

]
(2.71)

The reduced density matrix functional F Ŵβ [ρ] on the other hand can formally be
defined as a Legendre transformation of grand-canonical potential as,

F Ŵβ [ρ] = max
hαβ

[
Ωĥ+Ŵ
β − Tr (hρ)

]
(2.72)

It is evident from the definition, that the density matrix functional F Ŵβ [ρ] is univer-
sal i.e. it only depends on the interaction Ŵ and not on the one particle Hamiltonian
ĥ. It also shows that the complexity to evaluate density matrix functional is same
as the evaluation of grand canonical potential.

Ways to evaluate density matrix functional
The practical evaluation of the density matrix functional is however done via three
different approaches. In Sec. 2.6.1 and Sec. 2.6.2 we discuss the wave-function and
the Green’s function based approaches respectively. These two approaches provide
an exact expression for the density matrix functional. In Sec. 2.6.3 we discuss the
state of the art parametrized density matrix functionals which are most commonly
used in the rDMFT community.

2.6.1 Wave-function based approach
The wave-function based approach [67] is the most transparent and straightforward
way to define the density matrix functional. In this approach one evaluates the
grand potential as a minimum of a functional over an ensemble of fermionic many
body wave-functions ψi〉 in the Fock space. The ensemble of wave-functions are
characterized by their respective probabilities Pj. Thus the optimization is done
over an exponentially large space of many body wave-functions and the probabilities
as [68] ,

Ωĥ+Ŵ
β = min

0≤Pj≤1,|ψj〉
stat
Λ,λ

 1
β

∑
j

Pj lnPj +
∑
j

Pj〈ψj|ĥ+ Ŵ − µN̂ |ψj〉

−
∑
ij

Λij (〈ψi|ψj〉 − δij)− λ
∑
j

∑
j

Pj − 1
 (2.73)
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The first part in Eq.(2.73) amounts to the −TS or the entropy part due to finite
temperature. The second part is the average of total energy of the system including
the particle reservoir. The third and fourth part are due to the fact that during
the course of optimization, many particle wavefunctions |ψj〉 and the respective
probabilities Pj have to follow certain constraints. The orthogonality of the wave-
functions and the constraint that the probabilities should add to unity are enforced
using the Lagrange multipliers [69] Λ and λ respectively. The stationarity with
respect to the Lagrange multipliers means either the extrema or the saddle point.

The minimization in Eq.(2.73) is a constrained search problem over many particle
wave-functions space. It is performed via two step procedure,

1. In the first step, optimization is done over a subspace of many particle wave-
functions |ψj〉 which produces the one-particle reduced density matrix ρ de-
fined as,

ραβ :=
∑
j

Pj〈ψj|ĉ†β ĉα|ψj〉 (2.74)

In this restricted space of many particle wave-functions, the search for the
minima is carried out.

2. In the second step, the optimization is done in the space of N-representable
one particle reduced density matrices.

The first step in the optimization scheme defines the central quantity of r-DMFT
called the reduced density matrix functional, which we denote by F Ŵβ [ρ], and has
the form,

F Ŵβ [ρ] = min
0≤Pj≤1,|ψj〉

stat
h′,Λ,λ

 1
β

∑
j

Pj lnPj +
∑
j

Pj〈ψj|Ŵ |ψj〉

−
∑
ij

Λij (〈ψi|ψj〉 − δij)− λ
∑
j

∑
j

Pj − 1


−
∑
αβ

h′αβ

∑
j

Pj〈ψj|ĉ†β ĉα|ψj〉 − ραβ

 (2.75)

where h′ is the Lagrange multiplier matrix which enforces the density matrix con-
straint for the many particle wavefunctions, as defined in Eq. (2.74). The reduced
density matrix functional F Ŵβ [ρ] defined in this way is a universal quantity that only
depends on the interaction tensor Ŵ . This two step optimization leads to putting
all the complexity the many-particle wave-functions in the reduced density matrix
functional.

The grand potential in the occupation and natural orbitals representation has the
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2.6 Gilbert theorem and the reduced density matrix functional

form,

Ωĥ+Ŵ
β = min

fn∈[0,1],|φn〉

∑
n

fn〈φn|ĥ|φn〉 − µ
∑
n

fn + F Ŵβ

[∑
n

fn|φn〉〈φn|
]

−
∑
mn

Λmn (〈φn|φm〉 − δmn)

 (2.76)

where the Lagrange multipliers Λ are used to enforce the orthogonality of the
natural orbitals.

The density matrix functional obtained from the constrained wave function ap-
proach described above is a convex function

F Ŵβ
[
(1− λ)ρA + λρB

]
≤ (1− λ)F Ŵβ

[
ρA
]

+ λF Ŵβ
[
ρB
]

(2.77)

and therefore it satisfies the true minimum principle. The proof of the convexity
can be found in the work of Blöchl et al [48]. The true minimum principle comes
in handy for numerical purpose too as it is far easier to search for a minima in a
multi-dimensional space than looking for a stationary point.

The formulation of density matrix functional until now is exact and it has the
same complexity as that of the grand potential for the many body system which
suffers from the exponential increase in the many body Hilbert space with the sys-
tem size. In the work of [68], first attempts were made to evaluate density matrix
functional within this constrained search formalism. They employed local approx-
imation to study finite Hubbard chains and were able to reproduce ground state
energy, occupations and spin correlations to considerable accuracy.

2.6.2 Green’s function based method
The link from rDMFT to many-body perturbation theory and the Green’s function
was provided by Blöchl et al. in 2013 [48].

They derived the density-matrix functional from the Kadanoff-Baym functional
and thereby bridged the gap between density functional community and Green’s
function based many-body community. This construction as we will show, leads to
a convex functional and therefore provides a minimum principle. The construction
will also be a starting point for further discussion in Chapter 5.

The construction starts with the Luttinger-Ward identity [70] where the grand
canonical potential Ωĥ+Ŵ

β is obtained as a stationary point of Kadanoff-Baym func-
tional ΨKB

β [G,Σ,h, Ŵ ] as,

Ωĥ+Ŵ
β = stat

G,Σ
ΨKB
β [G,Σ,h, Ŵ ] (2.78)
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where the Kadanoff-Baym functional ΨKB
β [G,Σ,h, Ŵ ] in its full glory has the form,

ΨKB
β [G,Σ,h, Ŵ ] = ΦŴ [G]− 1

β
Tr

ln
(
1 + e−β(h−µ1)

)
− 1

β

∑
ωn

Tr

ln
(

1− 1
(iωn + µ)1− hΣ(iωn)

)
+ Σ(iωn)G(iωn)


(2.79)

One difference in the above expression from the Luttinger-Ward identity of [70] is
that, the grand potential of the non-interacting part i.e. 1

β
Tr
{

ln
(
1 + e−β(h−µ1)

)}
,

is separated.
The quantity ΦŴ [G] in Eq.(2.79) is the Luttinger-Ward functional that can be

evaluated perturbatively using the skeleton diagrams as discussed in Appendix C.

Properties of Luttinger-Ward functional
The Luttinger-Ward functional by construction is a universal functional i.e. it only
depends on the interaction Ŵ and not on the one-particle part of the Hamiltonian.
Secondly, the first order variation of Luttinger-Ward functional with respect to the
Green’s function provides the self-energy as,

ΦŴ=0[G] = 0 (2.80)
δΦŴ [G]
δGαβ(iωn) = 1

β
Σβα(iωn) (2.81)

Connection between F Ŵβ [ρ] and ΦŴ [G]

The connection between Kadanoff-Baym functional ΨKB
β [G,Σ,h, Ŵ ] and the den-

sity matrix functional was derived using an important property [48] of Kadanoff-
Baym functional which states, that it is invariant under a change ∆ of the non-
interacting Hamiltonian h as,

ΨKB
β [G,Σ,h, Ŵ ] = ΨKB

β [G,Σ + ∆,h−∆, Ŵ ] + 1
β

∑
ωn

eiωn0+Tr (G(iωn)∆)

(2.82)

The invariance of Kadanoff-Baym functional in Eq.(2.82) holds not just when the
stationary conditions are satisfied, but it is valid point per point.

Using this invariance with respect to the change ∆ in the one-particle Hamilto-
nian h, the connection to the density matrix ρ was made possible. The connec-
tion proceed with the construction of a one-particle density matrix ρ[G] dependent
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Hamiltonian h̄[ρ[G]] that can be constructed using the freedom of ∆[ρ[G]] as,

h̄[ρ[G]] = h−∆[ρ[G]] (2.83)

where the one particle density matrix ρ[G] is obtained from the given Green’s func-
tion G(iωn) as,

ρ[G] = 1
β

∑
ωn

eiωn0+
G(iωn) (2.84)

The non-interacting Hamiltonian h̄ [ρ[G]] is obtained by inverting the corresponding
expression for the one particle reduced density matrix ρ,

ρ =
[
1 + eβ(h̄−µ1)

]−1
(2.85)

which when inverted has the form,

h̄[ρ] = µ1 + 1
β

ln
[1− ρ
ρ

]
(2.86)

This procedure helps in construction of one-particle reduced density matrix ρ de-
pendent ∆[ρ] which in turn makes the expression on the right hand side of Eq.(2.82)
density matrix dependent and Eq.(2.82) attains the following form,

ΨKB
β,µ [G,Σ,h, Ŵ ] =

∑
ωn

fn〈ψn|ĥ|ψn〉+ 1
β

∑
n

(
fn ln(fn) + (1− fn) ln(1− fn)

)
− µ

∑
n

fn + ΦŴ
β [G, Ŵ ]

− 1
β

∑
ωn

eiωn0+Tr
{

ln
[
1−

(
(iωn + µ)1− h̄

)−1(
h+ Σ(iωn)− h̄

)]
+

(
h+ Σ(iωn)− h̄

)
G(iωn) +G(iωn)(h̄− h)

}
+

∑
n

fn〈ψn|(ˆ̄h− ĥ)|ψn〉 (2.87)

where the first and the last line combined of Eq.(2.87) comes from the fact that the
grand canonical potential of the non-interacting Hamiltonian h̄ can be written in
terms of occupations fn and natural orbitals |ψn〉 of one-particle reduced density
matrix ρ as,

− 1
β

Tr
{

ln
(
1 + e−β(h̄−1µ)

)}
=

∑
n

fn〈ψn|ˆ̄h|ψn〉 − µ
∑
n

fn

+ 1
β

∑
n

[
fn ln(fn) + (1− fn) ln(1− fn)

]
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(2.88)

Blöchl et al. [48] performed the stationary point search in Eq.(2.78) in two steps.
1. In the first step, the stationary point search is performed in the space of Green’s

function G(iωn) and self-energy Σ(iωn) which produces a given one-particle
reduced density matrix ρ i.e. it satisfies the constraint of Eq.(2.84). This step
leads to a density matrix functional F Ŵ [ρ] which has the form,

F Ŵ [ρ] = 1
β

Tr
[
ρ ln(ρ) + (1− ρ) ln(1− ρ)

]

+ stat
h′

stat
G,Σ

{
ΦŴ
β [G, Ŵ ]

− 1
β

∑
ν

Tr
{

ln
[
1−

(
(iων + µ)1− h̄

)−1(
h′ + Σ(iων)− h̄

)]
+

(
h′ + Σ(iων)− h̄

)
G(iων)

−
[
G(iων)−

(
(iων + µ)1− h̄

)−1](
h′ − h̄

)}}
(2.89)

The last part in Eq.(2.89) vanishes when the Green’s functionG(iωn) obeys the
density matrix constraint of Eq.(2.84). This constraint is enforced using the
Lagrange multiplier h′. The remaining part of Eq.(2.89) is the Kadanoff-Baym
functional for a many body system with one particle density matrix dependent
non-interacting Hamiltonian h̄ and the self-energy replaced by h′ + Σ− h̄.
The density matrix functional F Ŵ [ρ] defined in Eq.(2.89) is also a universal
functional which is independent of the non-interacting Hamiltonian h. This
representation of the density matrix functional provides a true minimum prin-
ciple and also provides a direct link between the density-functional community
and the Green’s function based many-body community.

2. The second step is to evaluate the grand canonical potential Ωĥ+Ŵ
β by per-

forming a minimization in the space of N-representable one-particle reduced
density matrices as,

Ωĥ+Ŵ
β = min

fn∈[0,1],|φn〉

∑
n

fn〈φn|ĥ|φn〉 − µ
∑
n

fn + F Ŵβ

[∑
n

fn|φn〉〈φn|
]

−
∑
mn

Λmn (〈φn|φm〉 − δmn)

 (2.90)
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where we have used the eigen-decomposition of one particle reduced density
matrix.

Stationary point search
The expression for density matrix functional F Ŵ

β [ρ] in Eq.(2.89) involves a stationary
point search in the space of Green’s function G(iωn) and self-energy Σ(iωn). The
stationary conditions obtained from Eq. (2.89) are,

• The stationarity with respect to the Green’s function G(iωn) leads to,

1
β

Σ(iωn) = δΦŴ [G]
δG(iωn) (2.91)

• The stationarity with respect to the self energy Σ(iωn) leads to the Dyson
equation,

G(iωn) = 1
(iωn + µ)1− h′ −Σ(iωn) (2.92)

• The stationarity with respect to the Lagrange multiplier h′ leads to the density
matrix constraint,

ρ = 1
β

∑
ωn

eiωn0+
G(iωn) (2.93)

It is not an extremum search and therefore we cannot employ the usual Car-Parinello
procedure of Chapter 3. One has to rely on traditional self-consistency schemes for
the stationary point search as described in Blöchl et al. [48].

The full self-consistency scheme has not been implemented yet. In the current
work, we want to provide a framework for an approximate scheme where we can com-
pletely avoid the internal optimization in an exponentially large space of Green’s
function and self-energy. To this direction, in Chapter 5, we will discuss differ-
ent approximate schemes to obtain an algebraic expression for the density matrix
functional.

2.6.3 Parametrized density matrix functionals
The evaluation of density matrix functional from the constrained search formalism of
wave-function [68] and the statinary point search of Green’s function based methods
[48] is very recent. These methods are still in the development stage and Chapter
5 of this thesis will provide the framework for first controlled approximations in the
direction of Green’s function based methods.

Three decades ago the advancement of density matrix functional theory proceeded
in the direction of density functional approaches i.e. through constructing approxi-
mations for density matrix functional F Ŵβ [ρ] based on physical justifications. These
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methods avoid complicated many-body calculations and proceed towards provid-
ing algebraic expression of the density matrix functional motivated through certain
physical properties the functionals should obey. This approach provides a direct
mapping of the form,

ρ→ F Ŵβ [ρ] (2.94)

An enormous amount of scientific advancement has taken in the direction of ap-
proximate density matrix functionals which are parameter based and are rather
uncontrolled in the sense of treatment of correlation effects. To this date there has
been several proposals for the approximate density matrix functionals. In this sec-
tion we review a small number of density matrix functionals, a class of which will
be investigated for its validity in Chapter 4.

Review
The advancements in the direction of reduced density matrix functional theory
started to address the bond dissociation of diatomic molecules. It is an important
problem in the electronic structure calculations.

The hydrogen molecule H2 is a simple prototype for the electron bond pair. Al-
though the exact wave function of infinitely displaced hydrogen molecule is known
exactly, it is still not described exactly through density functional approaches. The
H2 dissociation problem is a long-standing problem in the field of density functional
theory. Density-functional theory (DFT), with exchange-correlation functional ap-
proximated by the local density approximation (LDA) or the generalized-gradient
approximation (GGA), fails in estimating the energy of stretched hydrogen molecule.
Spin polarised DFT however performs better in estimating the energy but produces
incorrect ground state. It produces broken spin symmetry state.

The inherent deficiency in the different approximations for the density functionals
is well explained by E J Baerands et al. in [71] and [72] through hole function based
analysis. They also provided an alternative approximation which fixes the deficiency
and enables the functional to describe the bond dissociation problem of H2 molecule
exactly within density functional based approcah.

The approximation goes into constructing suitable hole function function h(~r, ~r′)
that allows to express the two-particle density n(2)(~r, ~r′) in the form

n(2)(~r, ~r′) = n(~r)n(~r′) + n(~r)h(~r, ~r′). (2.95)

Note that the interaction-strength averaged hole function is used in DFT, while in
rDMFT, the hole function at full interaction strength is of interest.

The hole function integrates to minus one (See Eq. (2.44)), and it is always neg-
ative [73]. These conditions constrain the shape of the hole function strongly, so
that the exchange-correlation energy can be predicted reasonably well already with
simple assumptions about the hole function.

28
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The hole function describes the exchange correlation energy Uxc[ρ] as,

F Ŵβ [ρ] = 1
β

Tr [ρ ln(ρ) + (1− ρ) ln(1− ρ)] + 1
2

∫
d3r

∫
d3r′

n(2)(~r, ~r′)
4πε0|~r − ~r′|

= 1
β

Tr [ρ ln(ρ) + (1− ρ) ln(1− ρ)] + 1
2

∫
d3r

∫
d3r′

n(~r)n(~r′)
4πε0|~r − ~r′|

+ 1
2

∫
d3r n(~r)

∫
d3r′

h(~r, ~r′)
4πε0|~r − ~r′|

= 1
β

Tr [ρ ln(ρ) + (1− ρ) ln(1− ρ)] + EH [ρ] + Uxc[ρ] (2.96)

In the Hartree-Fock approximation, the hole function has the form

h(~r, ~r′) = −1
n(~r)

∑
m,n

fmfn
∑
σ,σ′

φ∗m(~x)φn(~x)φ∗n(~x′)φm(~x′).

(2.97)

As a consequence of the orthonormality of the natural orbitals, the sum rule Eq. (2.44)
is obtained as ∫

d3r′ h(~r, ~r′) = −1
n(~r)

∑
nσ

f 2
nφ
∗
n(~x)φn(~x) = −1. (2.98)

The sum-rule is fulfilled exactly, when f 2
n = fn that is for integer occupations. For

fractional occupations, however, the Hartree-Fock expression violates the sum-rule.
The exchange-correlation term in the Hartree-Fock approximation is

UHF
xc [ρ] = −1

2
∑
m,n

fmfn
∑
αβγδ

Uαβ,δγ

×〈χγ|φm〉〈φm|χα〉〈χδ|φn〉〈φn|χβ〉. (2.99)

In the exact scenario, when the two hydrogen atoms are separated by large distance,
the reference electron sees an unscreened nucleus, as described in the total hole on
the lower panel of Fig. 2.1. The Fermi/Fock hole, on the other hand, leaves an
electron density which screens the nucleus. Therefore the Hartree-Fock potential
cannot describe the dissociation problem of hydrogen molecule exactly.

Similarly LDA (local density approximation) and the GGA (generalized gradient
approximation) also fail in describing the dissociation problem of H2. The problem
with LDA and GGA lies in the fact they depend exclusively on the local information
such as density and the derivatives of density and therefore can never build the exact
delocalised (Right most plot in upper panel of Fig. 2.1) exchange correlation hole.
Therefore one has to move beyond local densities and their derivatives, and also
include natural orbitals specifically to the exchange correlation energy.
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2 Reduced density matrix functional theory

Figure 2.1: . Fermi hole, Coulomb hole and the total hole in the hydrogen molecule at
equilibrium distance R = 1.4 and R = 5.0 bohr. The reference electron is
placed at 0.3 bohr to the left of right hydrogen atom. Figure taken from [71]

Baerands et al suggested following approximation for the exchange correlation
hole h(~r, ~r′) as,

h(~r, ~r′) = −1
n(~r)

∑
m,n

f
1
2
mf

1
2
n

∑
σ,σ′

φ∗m(~x)φn(~x)φ∗n(~x′)φm(~x′). (2.100)

This particular form of exchange correlation hole makes the exchange correlation
energy Uxc[ρ], natural orbitals dependent and also the dependence on occupation is
linear unlike quadratic as in Hartree-Fock approximation. This particular form of
exchange correlation energy describes correlations remarkably well for two electrons
molecules and it describes the dissociation problem of H2 molecule exactly.

This particular form of exchange correlation hole in Eq.(2.100) was also suggested
by Müller [50] in 1984. Müller suggested following form of the exchange-correlation
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hole,

h(~r, ~r′) = −1
n(~r)

∑
m,n

f
1
2 +p
m f

1
2−p
n

∑
σ,σ′

φ∗m(~x)φn(~x)φ∗n(~x′)φm(~x′). (2.101)

This particluar form of the hole function also satisfies the sum rule of Eq. (2.44),
even for the fractional occupations as,∫

d3r′ h(~r, ~r′) = −1
n(~r)

∑
m,nσ

f
1
2 +p
m f

1
2−p
n φ∗m(~x)φn(~x)δmn

= − 1
n(~r)

∑
mσ

fmφ
∗
m(~x)φm(~x)

= −1 (2.102)

where we have used the orthonormality of naturals orbitals as,
∑
σ

∫
d3r〈φm|~r, σ〉〈~r, σ|φn〉 = δmn (2.103)

Although with the Müller hole function the two particle density matrix n(2)(~r, ~r′)
does not satisfy the Pauli principle of Eq.(2.45), i.e.,

n(2)(~r, ~r) 6= 0 (2.104)

Given the fact that for a finite value of p ≥ 0, the fractional occupation fm,
satisfies,

f
1
2 +p
m ≥ fm (2.105)

and therefore it can be shown that for a fixed finite value of p, the two particle
density matrix follows the condition,

n(2)(~r, ~r) ≤ 0 (2.106)

Müller [50] showed that the two particle density at the same position in Eq.(2.106),
has a maxima at p = 0 and therefore Pauli principle is least violated for p = 0. This
is the value used in nearly all applications.

The Müller functional was however found to be over-correlating for many systems
[74, 75, 76] and therefore several repulsive corrections were itroduced later. In the
following discussion we briefly mention few such correction.
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Corrections to Müller functional

Self interaction corrections

In 1998, Goedecker and Umrigar [52] improved on the Müller functional by removing
the self-interactions terms of the natural orbitals from the Hartree and the exchange
correlation functional. They replaced the square root dependence on occupations in
the exchange-correlation energy Uxc as,

f
1
2
mf

1
2
n → f

1
2
mf

1
2
n − δmn

(
fm − f 2

m

)
(2.107)

This particular choice of two particle density removes orbitals self-interaction but
does not completely remove the electron self-interaction due to fractional occupa-
tions. They performed calculations for atoms like H, He, Li, Be, C and Ne and
concluded that their proposed correction to Müller functional provides more ac-
curate energies and the charge densities than the LDA, GGA and Hartree-Fock
approximations.

Although the removal of self interaction terms of the natural orbitals improves
on the correlation energies, it does fail dramatically at the dissociation limit. For
homogenous electron gas, it fails to even reproduce the correct correlation energies
[76].

BBCn corrections

In 2005, Gritsenko et al. [51], proposed three physically motivated repulsive cor-
rections (termed as BBCn corrections) to compensate for the over correlating effect
of the Müller functional. The correction to BB or the Müller functional [50] in-
volves identification of weak and strongly occupied orbitals during the course of
optimization.

These corrections were tested on several diatomic molecules like H2, LiH, BH,
Li2, HF and the potential energy landscape of these molecules obtained from dif-
ferent corrections were compared with the exact obtained from full configuration
interaction method.

In Fig. 2.2, the potential energy curve of H2 molecule is plotted as a function of
inter-atomic distance. BB functional or the Müller functional on the other hand over
estimates the energy, but becomes exact at large distances. BBCn correction [51]
reproduces the CI curve for H2 excellently and at large distances converges faster to
the CI curve. Results for different molecules can be found in [51].

BBC3 correction to the Müller functional is the most precise functional for the
molecular systems which reproduces correlation energies that are around 17− 20%
from the reference results obtained from more accurate couple cluster methods [77]
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Figure 2.2: Energy curve for H2 molecule obtained from different corrections to the Müller
functional. These curves are compared with exact CI curve. Figure taken from
[51].

ML functional

Marques et al. in 2008 [54], proposed a different class of density matrix functional,
which is purely empirical and the exchange-correlation Uxc dependence on the oc-
cupations is written as a Pade approximant as,

fmfn
a0 + a1fmfn + a2(fmfn)2 + ...

1 + b1fmfn + b2fmfn)2 + ...
(2.108)

where a0, a1, b1 etc. are the Pade coefficients which are obtained by optimizing an
objective function

δ̄ = 100

√√√√ 1
N

N∑
i=1

(
EML
c − Eref

c

Eref
c

)2

(2.109)

where N is the number of molecules in the set and Eref
c is the ground state obtained

from accurate couple cluster theory. The molecules used in the reference set can have
wide range of reference energies (mili-Hartree to order of Hartree). Using the ML
functional, the correlation energies obtained for typical molecules were 60% more
accurate than the best functional available i.e. the BBC3 functional [51].
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Power functional

Most of the reduced density matrix functional studies were concentrated on atoms
and molecules. In 2008, Sharma et al. [53] proposed a Müller like functional and
implemented it on the extended system, specifically the strongly correlated mate-
rials like transition metal oxides (TMOs) which are known to be Mott insulators.
The density functional studies on TMOs produces metallic ground state in a spin
unpolarized calculations. In spin-polarised calculations density functional studies
produces a small band gap, but that is largely due to anti-ferromagnetic ordering.

Sharma et al. [53] proposed a Müller like functional where the square root depen-
dence on the occupations in exchange-correlation energy Uxc was replaced by,

f
1
2
mf

1
2
n → fαmf

α
n (2.110)

where tuning the parameter from α = 1
2 to α = 1, one can interpolate between

Müller or BB functional to Hartree-Fock functional respectively. Using a tangent
method [53] for the calculation of band gap, power functional predicted band gaps
for Si and NiO, which deviated from experimental band gaps by 9.5%. The most
advanced BBC3 [51] and Piris natural orbitals functional (PNOF) [78] which yield
results for molecular systems with accuracy comparable to more accurate coupled
cluster methods, fail miserably for extended systems. Band insulator like Si and
Mott insulator such as NiO, turns out to be metallic when studied with BBC3 and
PNOF functionals.

Lathiotakis et al. [79] also showed that power functional works equally well for
homogenous electron gas and the finite systems. The H2 dissociation problem was
reproduced with BBC3 level accuracy for α = 0.525.

In 2013, Sharma et al. [80] performed fully non-collinear calculations (spin un-
restricted) calculation to study magnetic solids. They also developed the method
to evaluate the dynamic quantity like spectral function within r-DMFT which is in
principle a theory for evaluating only ground state properties. The density of states
or the spectral function for transition metal oxides like NiO, MnO, FeO and CoO in
the presence of anti-ferromagnetic order, were found to be in good agreement with
dynamical mean field theory results.

2.7 Test systems
In our quest to benchmark the results obtained from different approximations, we
will use simplified models which are either exactly solvable or have been studied
extensively using numerically exact simulations.

One simplification which can be imposed on the general interaction tensor Ŵ
in Eq. (2.24) is to restrict its elements over a finite cluster containing only small
numbers of local spin orbitals α. This restriction can be justified using the argu-
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ments of screening in strongly correlated electron systems. One such model which
considers only local on-site Coulomb interaction was proposed independently by J.
Hubbard [45], J Kanamori [46] and by M. C. Gutzwiller [44] in 1963. It is the most
primitive model to study the properties of electrons in a solid. However simplistic,
it does exhibits almost all interesting phenomena one observes in strongly corre-
lated materials like Mott metal-insulator transition [45], magnetic ordering [81, 82],
superconductivity [83, 84] etc.

The models are generally considered on translationally invariant lattices. Such
lattices can be spanned completely through translating a unit cell. With an addi-
tional assumption of the interaction tensor Ŵ to be local, the knowledge of local
spin orbitals in a unit cell is sufficient. Due to this simplication, the size of the
interaction and the kinetic energy matrices are reduced considerably.

In order to keep ourself at the liberty of chosing a particular unit cell, we introduce
a compact index for local basis set index α ≡ (λα, ~Tα), where λα is the local orbital
in the unit cell and ~Tα is the identity of the unit cell containing the orbitals. In the
special case of one atom per unit cell, the unit cell identity ~T is simply the position
vector of the atom.

Using the compact notation defined above the sum in Eq.(2.22) translates as,∑
αβ...

→
∑
λα, ~Tα
λβ , ~Tβ
...

(2.111)

The most celebrated model is the one dimensional, one band Hubbard model.
This model has one atom per unit cell with nearest neighbor hopping only. The
local orbitals {λα} in the unit cell are the two spin orbitals {↑, ↓}. Therefore we
prefer to denote them as σα. The hopping matrix elements has the following form,

hα,β = −t(δTβ ,Tα+a + δTβ ,Tα−a)δσασβ (2.112)

where t is positive and the onsite energies are chosen to be equal to zero. The lattice
spacing is given by a.

The interaction tensor W on the other hand is local in case of 1D Hubbard model
which is given by a simple form as

Wαβγδ =

U, if α = γ and β = δ with Tα = Tβ

0, otherwise
(2.113)

With the simple form of hopping matrix in Eq.(2.112) and the interaction tensor in
Eq.(2.113), the full Hamiltonian for 1D Hubbard model with one atom per unit cell
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has the form,

H = −t
∑
T

∑
σ

(
ĉ†σT ĉσT+A + h.c

)
+ U

2
∑
T

∑
σσ′

ĉ†T,σ ĉ
†
T,σ′ ĉT,σ′ ĉT,σ (2.114)

The exact solution to one dimensional Hubbard model has been obtained from the
Bethe ansatz [85, 86]. The one dimensional Hubbard model (also bipartite lattice)
will be used as a test system for benchmarking the methods or approximations
proposed in following chapters.

2.7.1 Hubbard Dimer and the exact results

In this section we present a part of the work of Kamil, E., Schade, R.,
Pruschke, T., and Blöchl, P. E., [56], concerning the exact results of the
Hubbard dimer.

In density functional community the hydrogen H2 molecule is a protoype system
for studying the chemical bond dissociation problem. The large interaction limit of
the Hubbard dimer is essentially the same as bond dissociation limit of the hydro-
gen molecule. They differ only by the choice of energy scale. It will be essential
to benchmark the results obtained from approximations proposed in subsequent
chapters.

The Hubbard dimer is a simple system which has a one-particle basis with four
spin orbitals {|χ1,↑〉, |χ1,↓〉, |χ2,↑〉, |χ2,↓〉}, one for each site and spin. The only nonzero
matrix elements of the one-particle Hamiltonian

hα,β = −t(1− δRα,Rβ)δσα,σβ (2.115)

are those with orbitals having the same spin σα and σβ but different centers Rα

and Rβ. All nonzero elements have the value −t, where t is positive. The orbital
energies are chosen equal to zero.

Also the interaction tensor has a simple form, namely

Uαβ,γδ =

U if α = γ, β = δ and Rα = Rβ

0 otherwise
. (2.116)

Thus, the Hamiltonian for the Hubbard dimer is

H = −
∑
σ

t
(
ĉ†1,σ ĉ2,σ + ĉ†2,σ ĉ1,σ

)
+ Ŵ (2.117)
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with the interaction

Ŵ = 1
2

2∑
i=1

∑
σ,σ′

Uĉ†i,σ ĉ
†
i,σ′ ĉi,σ′ ĉi,σ. (2.118)

The two-site Hubbard model, the Hubbard dimer, can be considered as model system
for the correlation effects present in a chemical bond. If we denote the hopping
parameter between the bonded atoms with t and the on-site interaction strength
with U , bond dissociation is described by the limit t → 0 at constant U . Thus,
the system evolves from a weakly correlated state into the strongly correlated limit
U/t→∞ as the bond is broken. The large-interaction limit U →∞ of the Hubbard
model differs from the bond-dissociation limit only by the choice of the energy scale.

2.7.2 Exact energy and density matrix

−2

−1.6

−1.2

−0.8

−0.4

0 5 10 15 20

E
/t

U/t

Figure 2.3: The exact ground-state energy E from Eq. (2.126) of the half-filled Hubbard
dimer as function of interaction strength U/t.

We follow the convention commonly adopted in the solid state community of
showing the results for varying interaction strength U and fixed hopping t, so that
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2 Reduced density matrix functional theory

the hopping sets the energy scale. Considering the bond dissociation problem, the
natural choice would be to keep the interaction strength constant, while reducing
the hopping parameter.

For the non-interacting case, i.e. at U = 0, the wave function is a Slater determi-
nant of bonding states with opposite spin

|Φ(U = 0)〉 = 1
2
(
ĉ†1,↑ + ĉ†2,↑

) (
ĉ†1,↓ + ĉ†2,↓

)
|O〉 . (2.119)

With |O〉 we denote the vacuum state.
This wave function can be rewritten as superposition of two eigenstates of the

interaction operator

|Φ(U = 0)〉 = 1
2
(
ĉ†1,↑ĉ

†
1,↓ + ĉ†2,↑ĉ

†
2,↓

)
|O〉

+ 1
2
(
ĉ†1,↑ĉ

†
2,↓ − ĉ

†
1,↓ĉ
†
2,↑

)
|O〉. (2.120)

The first wave function contains contributions with two electrons on the same site,
i.e. ionic states. Its interaction eigenvalue is U . The second wave function describes
two electrons with opposite spin on different sites. Its interaction eigenvalue is zero.

The first term describes the double occupancy, that is the probability that two
electrons are on the same site, which is penalized by the electron-electron interaction.
The second term is attributed to left-right correlation, as it describes the probability
that the two electrons are on different sites.

As the interaction strength is increased, the contribution of the first wave function,
being responsible for double occupancy, is suppressed. The wave function obtains
the form [56]

|Φ(ϑ)〉 = 1√
2
(
ĉ†1,↑ĉ

†
1,↓ + ĉ†2,↑ĉ

†
2,↓

)
|O〉 cos

(
ϑ+ π

4

)
+ 1√

2
(
ĉ†1,↑ĉ

†
2,↓ − ĉ

†
1,↓ĉ
†
2,↑

)
|O〉 sin

(
ϑ+ π

4

)
. (2.121)

With a basis set in the order (|χ1,↑〉, |χ1,↓〉, |χ2,↑〉, |χ2,↓〉), the one-particle reduced
density matrix has the form [56]

ρα,β(ϑ) = 1
2


1 0 cos(2ϑ) 0
0 1 0 cos(2ϑ)

cos(2ϑ) 0 1 0
0 cos(2ϑ) 0 1

 . (2.122)
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The interaction energy is proportional to the double occupancy

〈Φ(ϑ)|Ŵ |Φ(ϑ)〉 = U cos2
(
ϑ+ π

4

)
(2.123)

and the non-interacting energy is

〈Φ(ϑ)|ĥ|Φ(ϑ)〉 = −2t cos (2ϑ) . (2.124)

The value of ϑ results from an equilibrium between the forces from the interac-
tion energy Eq. (2.123) and those from the one-particle energy Eq. (2.124), which
determines ϑ(U) as [56]

ϑ(U) = arctan
√1 +

(
U

4t

)2
+ U

4t

− π

4 . (2.125)

The value ϑ(U) varies from zero to π/4 with increasing interaction strength.
The resulting optimum energy has the form

E = −2t
√1 +

(
U

4t

)2
− U

4t

 . (2.126)

As the interaction increases, the wave function changes continuously from a Slater
determinant of bonding states Eq. (2.120) at U = 0 to a singlet state with antiferro-
magnetic correlations [56]. During this process, the bond strength is weakened and
the covalent bond vanishes completely in the limit of infinite interaction. This loss
of covalent bonding can also be described as localization of electrons on opposite
sites, which raises the kinetic energy as a consequence of Heisenberg’s uncertainty
principle.

What has been described here is what is called static correlation[28]: The states
for finite interaction can no more be described by a single Slater determinant, but
four Slater determinants are required.

2.7.3 Natural orbitals and occupations

Interestingly, the natural orbitals do not depend on the interaction strength U . They
are the bonding and antibonding states

|b, σ〉 := 1√
2

(|χ1,σ〉+ |χ2,σ〉)

|a, σ〉 := 1√
2

(|χ1,σ〉 − |χ2,σ〉) . (2.127)
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Figure 2.4: The occupations fb,σ and fa,σ from Eq. (2.128) of the half-filled Hubbard dimer
as function of interaction strength U/t

Both orbitals are spread over both atoms, and the natural orbitals are identical to
those of the non-interacting system.

The loss of bonding is, however, expressed by the fact that the occupations become
fractional. The occupations are shown in Fig. 2.4. Their exact values fb,σ for the
bonding states and fa,σ for the antibonding states are [56]

fb,σ = 1
2 + 1

2 cos(2ϑ)

fa,σ = 1
2 −

1
2 cos(2ϑ). (2.128)

In the non-interacting case, the occupations are integer, with filled bonding states
and unoccupied antibonding states. In the limit of large interaction strength the
occupations approach 1

2 for all four natural orbitals. In this limiting case with
equally occupied bonding and antibonding states, the net bond strength vanishes
completely. In the context of natural orbitals, we describe the effect as quantum
fluctuations that create electron-hole pairs. These electron-hole pairs destroy the
covalent bond with increasing interaction. [56]
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2.7.4 Correlations

In view of the following discussion, it is instructive to investigate the correlations of
the electrons. The probability for an electron to be on one site and the other on the
other site, we name it “site correlation”, is given by the expectation value of

Ĉ =
(
ĉ†2,↑ĉ2,↑ − ĉ†1,↑ĉ1,↑

) (
ĉ†2,↓ĉ2,↓ − ĉ†1,↓ĉ1,↓

)
. (2.129)

For a state where both electrons bunch on one site, the expectation value of this

-1
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-0.4

-0.2
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〈Ĉ
〉

U/t

Figure 2.5: Site correlation 〈Ĉ〉 as defined in Eq. (2.129) of the half-filled Hubbard dimer
as a function of U/t. With increasing interaction strength U/t the site corre-
lation shows the transition from delocalized electrons 〈Ĉ〉 = 0 to the left-right
correlated state with 〈Ĉ〉 = −1.

operator is one, while if they localize on opposite sites, the expectation value is minus
one. If it is zero, then the electrons are delocalized, i.e there is no correlation between
the positions of both electrons. The correlation operator Ĉ is a two-particle operator
and is not accessible from the one-particle density matrix. The exact solution for
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the correlation expectation value for the ground state is given by [56]

〈Ĉ〉 = − sin
(

2ϑ(U)
)
, (2.130)

where ϑ(U) is given by Eq. (2.125). We can see in Fig. 2.5 that the site correlation
vanishes without interaction, while the electrons anti-bunch for strong correlation
so that 〈Ĉ〉 approaches minus one. A site correlation of minus one indicates that
each electron is fully localized either at one or at the other site, while the other is
always at the other site. This is the basic notion of left-right correlation.

Of interest will also be the magnetic nature of the wave functions. The operator
for the spin on site i is

~̂Si = 1
2


ĉ†i,↑ĉi,↓ + ĉ†i,↓ĉi,↑

−iĉ†i,↑ĉi,↓ + iĉ†i,↓ĉi,↑
ĉ†i,↑ĉi,↑ − ĉ

†
i,↓ĉi,↓

 . (2.131)

For the wave function in Eq. (2.121), the total spin expectation value 〈( ~̂S1 + ~̂S2)2〉
vanishes, and consequently the spin expectation value 〈 ~̂Si〉 on each site vanishes as
well. Nevertheless, the spins on different sites are antiferromagnetically correlated,
that is [56]

〈Φ(ϑ)| ~̂S1 · ~̂S2|Φ(ϑ)〉 = −3
8 [1 + sin(2ϑ)] ≤ 0. (2.132)

An antiferromagnetic correlation is already present in the non-interacting state,
which expresses the non-vanishing contribution of the left-right correlated states to
the Slater determinant built from bonding orbitals. As the interaction increases the
left-right correlation doubles, which reflects in the increase of the antiferromagnetic
correlation expressed in Eq. (2.132). [56]
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3 Numerical optimization scheme
In this chapter, we will discuss the numerical optimization scheme used to obtain
the grand canonical potential. Throughout this chapter we assume that the density
matrix functional is available from one of the methods discussed in Chapter. 2. The
problem still persist in the evaluation of grand-canonical potential, which requires
to solve a complicated constrained optimization problem of Eq. (2.76). It involves
a search for the minima in the space of N-representable one-particle reduced den-
sity matrices. We employ the Car-Parinello optimization scheme [57] to tackle the
problem of constrained minimization.

3.1 Historical Background
Until 1985, the ab-initio molecular-dynamics simulations for large solid state system
require computationally demanding calculations for the Born-Oppenheimer surface
EBO
g (~R) (See Sec. 2.2). The state-of-the-art density functional methods provide in

most cases rather accurate description of the electronic ground state. However these
calculations for a fixed position of nuclei, are computationally extremely demanding.
Therefore ab-initio molecular dynamics was considered to be a distant dream until
1985.

In the conventional formulation of density functional theory [2, 3], for an ap-
proximate density functional one needs to solve a set of Kohn-Sham equations self-
consistently. The solution of Kohn-Sham equations involves repeated matrix diago-
nalization which scales exponentially with the system size. This makes it practically
impossible to study the dynamics of the nuclei, since the whole procedure of itera-
tive diagonalization has to be performed for every nuclei configuration in subsequent
time steps.

In 1985, Robert Car and Michelle Parinello [57] radically transformed this situa-
tion. They proposed a method where electronic structure calculation were carried
out for moving nuclei and the dynamics of nuclei is governed by classical equation
of motion.

They approached the problem of calculation of EBO
g (~R) as a complex optimiza-

tion problem which can be solved by using the concept of simulated annealing in-
troduced by Kirkpatrick et.al [87]. This involves an objective function O(β) which
is minimized with respect to parameters {β}, by generating a succession of param-
eters {β}′s with a Boltzmann type probability distribution exp(−O({β})/T ) via a

43



3 Numerical optimization scheme

Monte-Carlo procedure.
In Car Parinello approach the total energy functional E

[∑
n |φn〉f(xn)〈φn|; ~R

]
is

used as an objective function with natural orbitals |φn〉′s, the occupations f ′ns or
x′ns and the set of nuclei position vectors {~R} as the variational parameters. The
simulated annealing was based on molecular dynamics rather than on Monte Carlo
method of Kirkpatrick et.al [87]. They called this approach as dynamic simulated
annealing. The variational parameters are considered to be time-dependent and the
dynamics of variational parameters are governed by a fictitious Lagrangian

L = 1
2
∑
n

mf ẋn
2 +

∑
n

f(xn)〈φ̇n|mφ|φ̇n〉+ 1
2

M∑
i=1

Mi
~̇R2
i

− E

[∑
n

|φn〉f(xn)〈φn|; ~R
]

+
∑
mn

Λmn (〈φm|φn〉 − δmn) + µ

(∑
n

f(xn)−N
)

(3.1)

The dynamics associated with the nuclei in Eq. 3.1 has a real physical meaning
whereas the dynamics associated with the occupations and natural orbitals are fic-
titious and introduced to perform the dynamic simulated annealing. The fictitious
mass mf and mφ should ideally be zero but are chosen to be finite to help in reaching
the convergence of the simulated annealing. The occupations, wave-functions and
the nuclear coordinates are evolved using Euler-Lagrange equations of motion in the
presence of an additional friction.

To obtain convergence to a minima, velocities associated with the parameters can
be varied so that the kinetic energy part of the fictitious Lagrangian in Eq. (3.1)
decreases. This eventually reduces the associated temperature towards zero and the
minima of energy functional is reached.

The major advantage of this proposed scheme by Car and Parinello [57], over
the conventional formulation of ab-initio molecular dynamics scheme is that the
diagonalization, self-consistency and the atomic relaxations, are all achieved simul-
taneously.

Details about the material presented in this chapter can be found in
the second chapter of lecture notes from P. E. Blöchl [65].

3.2 Numerical simulation
Car-Parinello simulations being introduced as an alternative to conventional molec-
ular dynamics simulations can be used essentially for any constrained optimization
problem. We will use it extensively for evaluation of the ground state or the grand
canonical potential of an electronic system (See Eq. (2.76)), which in itself is a com-
plex minimization problem. One simplification we have in our work, is that the atom

44



3.2 Numerical simulation

positions are fixed. Therefore in the following work, we restrict ourself to a fixed
configuration of the nuclei and implement Car-Parinello like simulation for finding
the ground state of the electronic system. The nuclear position ~R is no longer a
dynamic variable in our calculation, and it is only used as a parameter which for
the subsequent discussion will be neglected.

The only dynamic variables of interest are the occupations f(xn) and the natural
orbitals |φn〉. The equation of motion for the occupations or the free variable xn
and the wavefunctions are written in a a more suitable form as,

mf ẍn = − ∂E
∂xn

+
(
〈φ̇n|mφ|φ̇n〉+ µ

) df

dxn

f(xn)mφ|φ̈n〉 = −mφ|φ̇n〉ḟ(xn)− ∂E

∂〈φn|
+
∑
m

Λmn|φm〉 (3.2)

where partial derivative of the energy functional with respect to xn and |φn〉 in
Eq. 3.2 can be written in a more convenient form as,

∂E

∂xn
= df

dxn
〈φn|D|φn〉

∂E

∂〈φn|
= fnD|φn〉

D = ∂E

∂ρ
(3.3)

where D is the derivative matrix of the energy functional E[ρ; ~R] with respect to
one particle reduced density matrix ρ and the elements of the derivative matrix are
given by Dαβ = ∂E

∂ρβα
. The derivative matrix D and the natural orbitals |φn〉 can be

written in a matrix and column vector form respectively in a convenient basis set
{|χα〉} which are usually the set of local orbitals. The density matrix elements are
defined in this local orbital set as,

ραβ =
∑
n

〈χα|φn〉fn〈φn|χβ〉 (3.4)

Generally the energy functional is calculated in terms of occupations and natural or-
bitals and therefore the derivatives available at hand are with respect to occupations
as ∂E

∂fn
and with respect to natural orbitals as ∂E

∂〈χα|φn〉 . However for Car-Parinello
simulation one needs to evaluate the derivative matrix D which requires calculation
of energy functional with respect to one particle reduced density matrix ρ. The
tranformation from derivatives with respect to occupations and natural orbitals to
derivatives with respect to one particle reduced density matrix is discussed in Ap-
pendix A.
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To implement the task of minimizing the energy functional E [∑n |φn〉f(xn)〈φn|] it
is essential to evolve the occupations and wave functions in the presence of friction
(See. Chapter 2 of [65]). The friction quench the system into the ground state
(See Chapter 2 of [65]) and it also reproduce the thermal fluctuations of a constant
temperature ensemble.

The EOM for the occupation and wavefunction under the influence of friction has
the form,

mf ẍn = −
(
〈φn|D|φn〉 − 〈φ̇n|mφ|φ̇n〉 − µ

) df

dxn
−mfaf ẋn

mφ
¨|φn〉 = −D|φn〉+ 1

f(xn)
∑
m

Λmn|φm〉 −mφaφ|φ̇n〉

(3.5)

where af and aφ are the friction coefficients for occupations and wavefunctions rep-
sectively. If we compare the above set of equations with Eq. 3.2, we notice the sign
change in the |φ̇n〉 dependent term in EOM for the occupation and the absence of
|φ̇n〉 term in the corresponding EOM for the natural orbitals. These set of equations,
in the absense of friction term af and aφ, conserve the total energy during the course
of the simulation. The total energy has the form,

E = 1
2
∑
n

mf ẋn
2 +

∑
n

f(xn)〈φ̇n|mφ|φ̇n〉+ E

[∑
n

|φn〉f(xn)〈φn|
]

−
∑
mn

Λmn (〈φm|φn〉 − δmn)− µ
(∑

n

f(xn)−N
)

(3.6)

Under the assumption that the Lagrange multiplier Λ is hermitean it can be shown
that the energy is conserved for all times i.e. dE

dt
= 0 by using the set of equations

in Eq. 3.2.

3.2.1 Time evolution

The equations of motion for the wavefunctions and the occupations in Eq. 3.5 are in-
tegrated numerically using Verlet algorithm [88]. The wavefunctions and occupation
evolve under constraint which are enforced using Lagrange multipliers Λ and the
chemical potential µ respectively. In successive time steps the Lagrange multipliers
are evaluated from the constraint conditions.

In order to the solve the EOM numerically, we discretize the time variable as
tn = n∆, where ∆ is the time step. At any time step we need the value of variable
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at three time slices as,

x(tn −∆) = x(−)
x(tn) = x(0)

x(tn + ∆) = x(+) (3.7)

The first and second order time derivatives in the Verlet algorithm [88] are ap-
proximated as,

ẋ ' x(+)− x(−)
2∆

ẍ ' x(+)− 2x(0) + x(−)
∆2 (3.8)

Using the approximation for the time derivatives in Eq. 3.8, the discretized version
of EOM for the wavefunctions in Eq. 3.5 has the form [65],

mφ
|φn(+)〉 − 2|φn(0)〉+ |φn(−)〉

∆2 = −D(0)|φn(0)〉 −mφaφ
|φn(+)〉 − |φn(−)〉

2∆
+ 1

fn

∑
m

Λmn|φm(0)〉

|φn(+)〉 = 2
1 + αφ

|φn(0)〉 − 1− αφ
1 + αφ

|φn(−)〉

− ∆2

mφ (1 + αφ)D(0)|φn(0)〉

+ 1
fn

∑
m

Λmn
∆2

mφ (1 + αφ) |φm(0)〉

(3.9)

where αφ = aφ∆
2 . The wavefunction at time tn + ∆ is evaluated in terms of wave-

function at time slice tn and tn − ∆ and the Lagrange multipliers Λ which has to
be determined independently is discussed later in this section.

The discretized version of the EOM for occupation fn or the free variable xn which
parametrizes the occupation has the form [65],

mf
xn(+)− 2xn(0) + xn(−)

∆2 = −〈φn(0)|D|φn(0)〉 −mfaf
xn(+)− xn(−)

2∆
+ µ

dfn
dxn(0)

xn(+) = 2
1 + αf

xn(0)− 1− αf
1 + αf

xn(−)
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− ∆2

mf (1 + αf )
〈φn(0)|D|φn(0)〉+ ∆2

mf (1 + αf )
µ

dfn
dxn(0)
(3.10)

where αf = af∆
2 and the lagrange multiplier µ is determined independently to enforce

the number of particles constraint.

3.3 Constraints

3.3.1 Wave function constraint

As stated in the previous section, the dynamics of wavefunctions and occupations
in Eq. 3.5 require the evaluation of Lagrange multiplieres Λ and µ at each time step
tn. The constraint condition for wavefunctions to be orthonormal at each time step
i.e 〈φn(+)|φm(+)〉 = δnm, determines the Lagrange multiplier Λ. The wavefunction
|φn(+)〉 is given by Eq. 3.9 and has the form,

|φn(+)〉 = |φ̃n〉+
∑
m

1
f(xn)Λmn|ψm〉

|φ̃n〉 = 2
1 + αφ

|φn(0)〉 − 1− αφ
1 + αφ

|φn(−)〉 − ∆2

mφ (1 + αφ)D(0)|φn(0)〉

|ψm〉 = ∆2

mφ (1 + αφ) |φm(0)〉 (3.11)

Using the fact that the wavefunctions in the current |φn(0)〉 and previous |φn(−)〉
time steps have been orthonormalized, the constraint condition 〈φn(+)|φm(+)〉 =
δnm leads to,

(
〈φ̃n|φ̃m〉 − δmn

)
+

∑
i

〈φ̃n|ψi〉
1

f(xm)Λim +
∑
i

1
f(xn)Λ∗in〈ψi|φ̃m〉

+
∑
ij

1
f(xn)Λ∗in〈ψi|ψj〉

1
f(xm)Λjm = 0

A+BX +X†B† +X†CX = 0 (3.12)

where the matrices Aij = 〈φ̃i|φ̃j〉 − δij, Bij = 〈φ̃i|ψj〉 and X ij = 1
f(xj)Λij. The fact

that X is hermitean, the matrix quadratic equation can be solved using an iterative
procedure (For more details See Chapter 2 of [65]).
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3.3.2 Occupation constraint
The number of electrons N in the system during the course of dynamics are enforced
using the Lagrange multiplier µ. Thus for all successive time steps the occupations
should add up to the number of electrons N for a given value of µ as∑

n

f(xn(+)) = N(µ) (3.13)

The optimum value of µ which enforces the constant filling can be evaluated from
Eq. 3.13 via a root search algorithm like bisection or Newton-Raphson method. We
use Newton-Raphson algorithm for root finding in our existing code.

3.4 Convergence, stability and accuracy
The stability and accuracy of Car-Parinello simulations depend on the accuracy of
the numerical integrator used to integrate the equations of motion in Eq.(3.5). We
use Verlet algorithm as an integrator which is very simple and robust but not very
accurate.

The general form of equations in the Car-Parinello simulations barring the con-
straint terms is that of a damped harmonic osscilator which will be used to analyze
the accuracy and stability of the Verlet algorithm. The damped harmonic oscilla-
tor will also be used as a prototype system to evaluate the optimium values of the
friction and the time step in the Car-Parinello simulations. The optimum time-step
is essential for the stability and accuracy of Verlet integrator whereas the friction
term is the deciding factor for the convergence of the Car Parinello simulation.

3.4.1 Accuracy and Stability of Verlet Algorithm
The prototype used to analyze the stability and convergence issues is the damped
harmonic oscillator. The equation of motion has the form,

mr̈ +mαṙ = F (t) (3.14)

where F (t) = −kr(t). The error accumulated in each time step due to the finite
discretization of equation of motion can be understood from the discretized form
of r̈ ' r(+)−2r(0)+r(−)

∆2 and ṙ ' r(+)−r(−)
2∆ . The error in this approximation of first

and second time derivative can be calculated from the Taylor expansion of r(+) and
r(−) as,

r(+) = r(0) + ṙ∆ + 1
2 r̈∆

2 + ...

r(−) = r(0)− ṙ∆ + 1
2 r̈∆

2 + ... (3.15)
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3 Numerical optimization scheme

The error in velocity and accelaration due to finite time discretization goes as,

r(+)− r(−)
2∆ = ṙ + 1

6r
(3)∆2 + ..

r(+)− 2r(0) + r(−)
∆2 = r̈ + 1

12r
(4)∆2 + .. (3.16)

The error in velocity and accelaration is O(∆2). The position in subsequent time
step of Verlet algorithm is given by,

r(+) = 2
1 + α∆/2r(0)− 1− α∆/2

1 + α∆/2r(−) + F (0)∆2

m

1
1 + α∆/2 (3.17)

Thus the evaluation of r in each time step lead to an accumulation of errors which
goes as O(∆4) since the force term itself is multiplied by ∆2. The total number of
time steps for one simulation are of the order of 1/∆, thus the total error in the
simulation is of the order of O(∆3). Since the errors in each time step depend only
on the even powers of ∆, thus the Verlet algorithm preserves the time inversion
symmetry. Hence there is no energy drift in the course of evolution and in the
absence of friction, Verlet algorithm conserves the total energy.

The stability of the Verlet algorithm depends on the time step ∆ which has the
stability limit (For details, See Chapter 2 of [65]),

∆ <
2
ω0

(3.18)

where ω0 is the maximum frequency of the modes in the system. For eg. in case
of a harmonic oscillator (F (t) = −kr(t)) the characteristic frequency has the form
ω0 =

√
k/m, where k is the spring constant. For a simple harmonic oscillator, the

simulated frequency ω of the system due to finite time-step, is given in terms of
characteristic frequency ω0 as,

ω

ω0
= 1
ω0∆ arccos

(
1− (ω0∆)2

2

)
(3.19)

For the solution to exist ω0∆ < 2. In the extreme limit of ω0∆ → 0 only, we can
recover the exact characteristic frequency of the system from the simulation. At
the stability limit of ω0∆ = 2, the frequencies are overestimated by a factor of π

2 .
Calculations have been done in great details in Chapter 2 of [65].

3.4.2 Convergence
The convergence to the minima depends on the energy dissipation of the system.
The behvaior of energy dissipation in the presence of friction can be understood
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3.4 Convergence, stability and accuracy

analytically in the simple case of damped harmonic oscillator which has the form as
in Eq.(3.14). The rate of energy dissipation dE

dt
for the damped harmonic oscillator

has the form,

dE

dt
= −α

(
dx

dt

)2

(3.20)

It is evident from the Eq.(3.20), that the rate of dissipation or consequentially the
convergence rate is directly proportional to the square of velocity and the friction. At
the first glance it seems that if the friction is large, one will reach the minima faster,
but larger friction leads to smalled velocities and the system cannot accumulate
kinetic energy and thus the motion will be extremely slow. In the other extreme
case of small friction, its obvious that system will not dissipate the kinetic energy
efficiently. Thus we have to find an optimum friction at which the kinetic energy of
the system is dissipated efficiently and leads to proper convergence to the minima.

The optimum friction for the simulation of damped harmonic oscillator can be
obtained analytically (See Chapter 2 [65]) and it has the following value,

a = α∆/2 = ω0∆ (3.21)

It can be shown [65] that due to Verlet discretization, the imaginary part of the
simulation frequency that controls the decay of the trajectory, has a maxima at the
optimum value of friction given by Eq. (3.21).

In practice the friction is chosen at a particular value, such that the total energy in
Eq. (3.6) follows an optimum damped trajectory, similar to that of damped harmonic
oscillator. When the energy change in subsequent time steps becomes negligible,
the friction is switched off and the system is allowed to evolve from its lastest
configuration. If the ground state of the system was reached when the friction
was switched off, then the further evolution in the absence of friction will lead to
oscillation with neglible amplitude around converged value. This criteria should
be used to avoid the risk of getting stuck in a local minima or the meta-stable
state. The most convenient way is to allow the friction to reduce in each successive
iteration. Also to avoid bias, the natural orbitals and occupations should be chosen
randomly and to ensure the global minima, simulations should be performed for
different initial random configurations.

In Chapter. 4, with regards to a specific model, we will discuss the criteria which
works best, to avoid bias in the simulations and increasing the possibility of landing
in a global minima.
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4 Parametrized density matrix
functionals

This chapter contains results and figures obtained from the publication
of E. Kamil, R. Schade, T. Pruschke and P. E. Blöchl [56]. All the
authors contributed equally and should be considered as co-first authors.
The results in Sec. 4.7 are obtained from the calculations done solely by
Robert Schade.

The exact formulation of density matrix functionals via wave-function (See Sec. 2.6.1)
and Green’s function (See Sec. 2.6.2) based methods has the same complexity as the
exact evaluation of grand canonical potential for the many-body system. In order to
avoid the full complexity of an explicit many-body description, one proceeds anal-
ogously to the development of density functionals, namely by searching models for
the density-matrix functional, that capture the most essential physical effects while
having an algebraic dependence on the density matrix as discussed in Sec. 2.6.3.

In this chapter we study a class of Hartree-Fock like density matrix functionals
namely Müller [50] and Power functionals [53]. The development of such model
density matrix functional relies on the benchmark system that allows one to evaluate
their quality and for this purpose we use exactly solvable system like the Hubbard
dimer as described in Section 2.7.1.

4.1 Grand canonical potential and the density matrix
functional

As discussed in Chapter 2, the grand canonical potential for finite temperature and
fixed particle number, for a many-particle system is expressed with the help of the
density-matrix functional F Ŵ

β [ρ] as

Ωĥ+Ŵ
β = min

fn∈[0,1],|φn〉

∑
n

fn〈φn|ĥ|φn〉 − µ
∑
n

fn + F Ŵβ

[∑
n

fn|φn〉〈φn|
]

−
∑
mn

Λmn (〈φn|φm〉 − δmn)

 (4.1)
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4 Parametrized density matrix functionals

where ĥ = ∑
α,β |χα〉hα,β〈χβ|.

The reduced density-matrix functional F Ŵ
β [ρ] is universal in the sense that it

depends only on the intrinsic properties of the electron gas, namely the interaction
Ŵ , while it is independent of the one-particle Hamiltonian ĥ. The chemical potential
µ is a Lagrange multiplier that constrains the electron number to N . Λmn are the
Lagrange multipliers which enforce that natural orbitals |φm〉 remain orthonormal.

It is customary to separate the Hartree contribution from the density matrix
functional as,

F Ŵ
β [ρ] = EH [ρ] + Uxc,β[ρ] (4.2)

where the exchange-correlation energy Uxc contains the complexity of the many
particle problem. It is the electrostatic interaction of each electron with its exchange-
correlation hole and the entropy term −TS.

The Hartree energy EH [ρ] is obtained from the electron density n(~r) defined in
Eq.(2.32) as,

n(~r) =
∑
σ

ρ(rσ, rσ)

=
∑
σ

∑
α,β

χα(~r, σ)ρα,βχ∗β(~r, σ) (4.3)

as

EH [ρ] = 1
2

∫
d3r

∫
d3r′

e2n(~r)n(~r′)
4πε0|~r − ~r′|

= 1
2
∑

α,β,γ,δ

Wα,β,δ,γρδ,αργ,β. (4.4)

where the interaction tensor element Wαβ,γδ is evaluated as in Eq.(2.24)
Towards the main goal of testing the quality of available approximate density

matrix functionals, we now proceed towards the discussion of hole function as defined
in Eq.(2.43), for the construction of approximate exchange-correlation energy Uxc.

4.2 Construction of density-matrix functionals
As discussed in Sec. 2.6.3, most empirical density-matrix functionals maintain the
general form of the Hartree-Fock exchange term. However the dependence on the
occupations is no longer quadratic, rather it has a general form given by,

Uxc[ρ] = −1
2
∑
m,n

cm,n
∑
αβγδ

Uαβ,δγ
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4.3 Optimization scheme for the evaluation of the grand canonical potential

Hartree-Fock approximation cHFm,n = fmfn

Müller functional[50] cMm,n = f
1
2
mf

1
2
n

power functional[53] cPm,n(α) = fαmf
α
n

Table 4.1: Dependence of the parameters cm,n on the occupations fn as defined in Eq. (4.5)
for density-matrix functionals used in this work.

×〈χγ|φm〉〈φm|χα〉〈χδ|φn〉〈φn|χβ〉, (4.5)

where we replace the factor fnfm in Eq. (2.99) by coefficients cm,n with a different
dependence on the occupations.

The coefficients cm,n for the approximate density-matrix functionals considered in
this work are summarized in table 4.1.

The power functional therefore interpolates between uncorrelated Hartree-Fock
functional (α = 1) and the over correlated Müller functional (α = 1

2)

4.3 Optimization scheme for the evaluation of the
grand canonical potential

With the different approximations of exchange-correlation energy Uxc in Sec. 4.2,
the density matrix functional in Eq.(4.2) attains a simple algebraic form. Using
the different approximations for the density matrix functional, we need to optimize
the expression on the right hand side of Eq.(4.1) over the space of natural orbitals
|φn〉 and the occulations fn under certain constraints. We employ the technique of
Car-Parinello optimization discussed in Chapter. 3. The fictitious Lagrangian has
the form,

L = 1
2
∑
n

mf ẋ
2
n +

∑
n

f(xn)mψ

∑
α

|ȧα,n|2

−
∑
n

f(xn)
∑
α,β

aα,nhβ,αa
∗
β,n − F Ŵ [

∑
n

aα,nf(xn)a∗β,n]

+
∑
n,m

Λm,n

(∑
α

a∗α,naα,m − δn,m
)

+ µ

(∑
n

f(xn)−N
)
.

(4.6)
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4 Parametrized density matrix functionals

where the constraint of occupation being 0 ≤ fn ≤ 1 is usually bypassed using the
following parametrization with free variables xn as,

fn = 1
2 (1− cosxn) (4.7)

The natural orbitals |φn〉 are represented as a linear combination of local orbitals
|χα〉 as,

|φn〉 =
∑
α

|χα〉aα,n (4.8)

The orthonormality of the natural orbitals is enforced with the Lagrange multipliers
Λm,n, which form a hermitian matrix, and the particle number is constrained with
the chemical potential µ.

In order to avoid any bias in our results, the wave functions and occupations
are initialized as random numbers between zero and one. Then the constraints,
i.e. orthonormality of the natural orbitals and total particle number, are imposed.
The Car-Parinello dynamics as discussed in Chapter. 3 is then performed on the
parameters {xn} and {aαn}.

The phase space is explored by repeating the calculation, in order to identify the
global minimum and potential degenerate ground states. To obtain an analytical
understanding of the solutions we analyse the form of the natural orbitals by the
inspection of the results obtained numerically. The resulting ansatz for the nat-
ural orbitals is then verified by optimizing the total energy in this subspace, and
comparing the energies.

With the recipe in hand we now discuss the results of E. Kamil, R. Schade, T.
Pruschke and P. E. Blöchl [56], in details. They disuss the quality of Hartree-Fock,
Müller and power density matrix functionals by benchmarking their results on an
exactly solvable system of the Hubbard Dimer (Ref. Sec. 2.7.1). They also per-
formed an indepth analytical study of these approximate density matrix functionals
and highlighted the extreme caution to be taken while implementing it for the real
systems.

4.4 Performance of density-matrix functionals

4.4.1 Hartree-Fock approximation

To begin with we study the effect of Hartree-Fock density matrix functional given
by Eq.(2.99), on the half filled Hubbard dimer and compare it with exact results
from Sec. 2.7.1.
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Figure 4.1: Ground-state energy E of the half-filled Hubbard dimer as function of inter-
action strength U/t for different density-matrix functionals. Circles: Müller
functional. Squares: power functional with α = 0.53. Triangles: Hartree-Fock
approximation. Solid line: exact ground-state energy. Müller’s functional pro-
duces the correct ground-state energy at half filling. Non-magnetic states are
indicated by open symbols and antiferromagnetic states by filled symbols.

Non magnetic solution

If the optimization over one particle reduced density matrices in Eq.(4.1) is con-
strained over a space of non-magnetic density matrices i.e. the occupations for the
up and down spins are same, then the natural orbitals turns out be interaction
strength independent. The total energy has the following form,

EHF (U) = −2t+ U

2 . (4.9)

which states that in the dissociation limit of the hydrogen molecule i.e. t = 0,
the total energy is equal to the half of the interaction strength U . This however
is not true at half-filling in the exact system, as the total energy vanishes, because
each isolated atom has single electron that does not interact with each other. This
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4 Parametrized density matrix functionals

reflects the well known difficulty of restricted, i.e. non-spin-polarized, Hartree-Fock
to describe the dissociation of chemical bonds.

Today’s electronic structure calculations should consider a spin-polarization when-
ever a magnetization provides a lower energy. Allowing for spin polarization, i.e.
as in unrestricted Hartree-Fock or spin-density functional theory, improves the de-
scription dramatically. Nevertheless, the transition from the weakly correlated to
the strongly correlated regime still differs in many ways from the correct behavior.
These differences are of interest in the following discussion.

Anti-ferromagnetic solution

As evident from Fig. 4.1, if one allows for an unbiased optimization, over a complete
space of density matrices, then the Hartree-Fock density matrix functional leads to
a transition from non-magnetic to anti-ferromagnetic solutions at a critical value
of interaction of U = 2t. To get an analytical understanding of this transition,
the natural orbitals obtained from the unbiased optimization were analysed and a
minimal ansatz for the natural orbitals is proposed.

One such ansatz for the natural orbitals has the form,

|φHF1 (γ)〉 = +|b, ↑〉 cos(γ) + |a, ↑〉 sin(γ)
|φHF2 (γ)〉 = +|b, ↓〉 cos(γ)− |a, ↓〉 sin(γ)
|φHF3 (γ)〉 = −|b, ↑〉 sin(γ) + |a, ↑〉 cos(γ)
|φHF4 (γ)〉 = +|b, ↓〉 sin(γ) + |a, ↓〉 cos(γ) . (4.10)

where |b, σ〉 and |a, σ〉 are the bonding and anti-bonding orbitals respectively defined
in terms of local orbitals |χi,σ〉 as,

|b, σ〉 := 1√
2

(|χ1,σ〉+ |χ2,σ〉)

|a, σ〉 := 1√
2

(|χ1,σ〉 − |χ2,σ〉) . (4.11)

This is the simplest ansatz for the natural orbitals for the Hartree-Fock solution
which can be parametrized by only one free parameter γ.

The first two natural orbitals are occupied and the last two are the unoccupied.
The many particle wave-function for the Hartree-Fock solution is a single Slater
determinant which can be constructed from the natural orbitals as,

|ΦHF (γ)〉 =
[
ĉ†1,↑ cos

(
γ − π

4

)
+ ĉ†2,↑ cos

(
γ + π

4

)] [
ĉ†1,↓ cos

(
γ + π

4

)
− ĉ†2,↓ cos

(
γ − π

4

)]
|O〉,

(4.12)
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With the given many particle wave-function |ΦHF (γ)〉, we can evaluate the interac-
tion energy as,

〈ΦHF (γ)|Ŵ |ΦHF (γ)〉 = 1
2U cos2(2γ) (4.13)

and the kinetic energy requires the evaluation of the one particle reduced density ma-
trix ρHF (γ) which can be obtained from the many particle wave-function |ΦHF (γ)〉
as,

ρHF (γ)αβ = 〈ΦHF (γ)|ĉ†β ĉα|ΦHF (γ)〉 (4.14)

In the local orbitals (|χ1,↑〉, |χ1,↓〉, |χ2,↑〉, |χ2,↓〉) basis, the one particle reduced density
matrix has the form,

ρHF (γ) = 1
2


1+sin(2γ) 0 cos(2γ) 0

0 1−sin(2γ) 0 cos(2γ)
cos(2γ) 0 1−sin(2γ) 0

0 cos(2γ) 0 1+sin(2γ)

 .
(4.15)

Using the one particle Hamiltonian ĥ for the Hubbard dimer as given in Eq.(2.115),
the kinetic energy has the following form,

Tr
(
ĥρHF (γ)

)
= −2t cos(2γ) (4.16)

The minimum condition for the total energy is given by,

γ(U) =

0 for U ≤ 2t
1
2 arccos

(
2t
U

)
for U > 2t.

(4.17)

For U ≤ 2t, the system remains non-magnetic and the natural orbitals are given
by bonding and antibonding orbitals as in the case of non-magnetic dimer. But for
U > 2t, the system becomes an antiferromagnet, whereas the exact many-particle
wave function is a singlet with antiferromagnetic correlations (See Sec.2.7.1).

4.4.2 Müller’s functional
It is evident from Fig. 4.1, that the ground state energy obtained from unbiased
Car-Parinello optmization using the Müller functional i.e. cmn(α = 1

2) in Table. 4.1,
is same as the exact ground state energy for the Hubbard dimer at half filling. There
is also no artificial transition to an anti-ferromagnetic solution like in Hartree-Fock
case. But Müller functional does have a major flaw in predicting the magnetic
structure of the ground state. It was found that several density matrices produces
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4 Parametrized density matrix functionals

the same ground state energy for a given interaction strength U .
To analyze this degeneracy, we examined the natural orbitals obtained from the

unbiased car-Parinello optimization. It was found that the natural orbitals differ
from the ones in Eq.(4.11), only through a global spin rotation.

With the natural orbitals of Eq. (4.11), the total energy for the half-filled dimer
obtained from Müller’s functional can be expressed solely by the occupations as

EM = −2t+ 1
2U + 2t

(∑
σ

faσ

)
− 1

2U
∑
σ

√
faσfbσ. (4.18)

The first two terms, which are independent of the occupations, are identical to the
total energy Eq. (4.9) of the spin-restricted Hartree-Fock approximation. If only the
bonding states are occupied, the remaining terms of Eq. (4.18) vanish and Müller’s
functional gives the same result as the Hartree-Fock approximation.

The minimization in this restricted space for a given interaction strength leads to
a solution for occupations which lie on a line parametrized by s as,

fMa,↑(s) = 1
1 +R2 + s,

fMa,↓(s) = 1
1 +R2 − s,

fMb,↑(s) = R2
( 1

1 +R2 + s
)
,

fMb,↓(s) = R2
( 1

1 +R2 − s
)
, (4.19)

where R = 4t/U +
√

1 + (4t/U)2. The requirement, that the occupations remain
between zero and one, limits the parameter s to the interval

s ∈
[
− 1
R2(1 +R2) ,

1
R2(1 +R2)

]
. (4.20)

The range of the occupations, which minimize the total energy Eq. (4.18), is shown in
Fig. 4.2 as a function of interaction strength U/t. In the limit of infinite interaction
strengths, we have R = 1 respectively s ∈ [−1/2, 1/2] and the possible occupations
fMa/b,σ(s) = 1/2 + σs cover the whole range from zero to one. The exact solution for
the half fillied Hubbar dimer is a non-magnetic state, whereas the Müller functional
produces a one dimensional manifold of degenerate magnetic states which have the
same energy as the exact non-magnetic solution. This degeneracy leads to infinite
susceptibility at zero temperature for the any finite interaction strength. However
the exact solution at zero temperature has zero magnetic susceptibilty due to singlet-
triplet splitting (Ref. Sec. 2.7.1).

The magnetization of each site in the ground state of the Müller functional ob-
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Figure 4.2: Occupations fb,σ and fa,σ from Eq. (4.19) of the half-filled dimer obtained with
the Müller functional as a function of interaction strength U/t. The striped
regions indicate the range of occupations in the manifold of degenerate ground-
states. The thick solid lines indicate the mean values for the pair of occupations
in the corresponding striped region. It also represents the degenerate occupa-
tions for the non-magnetic solution of the Müller functional. The occupations
of the non-magnetic solution of the Müller functional coincide with those of
the exact ground state of the Hubbard dimer.

tained with the occupations given by Eq. (4.19) has the form

mz(s) = 1
2
[
fMb,↑(s)− fMb,↓(s) + fMa,↑(s)− fMa,↓(s)

]
µB

=
(
1 +R2

)
s µB (4.21)

with the Bohr magneton µB. It can assume any value with |mz| < 1/R2 µB. The
symmetric solution (s = 0) only predicts the correct ground state which has zero
magnetic moment.
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Figure 4.3: Müller’s density-matrix functional (dashed line) and the exact functional (solid
line) as a function of the line parameter s for U = 4t. The density matrix ρ(s)
is given by Eq. (4.11) and Eq. (4.19). The values of the exact functional
have been obtained by a constrained search over an ensemble of many-particle
wave functions. The point s = 0, where Müller’s approximation and the exact
functional coincide, corresponds to the symmetric solution (mz = 0).

Comparison to exact density matrix functional

The exact density matrix functional for the Hubbard dimer at half filling for a given
density matrix ρ(s) living on the degenrate manifold of Eq.(4.19), is evaluated using
the full costrained search over an ensemble of many-particle wave functions [47] in
Eq.(2.75).

The Müller functional is constant over the range of line parameter s given by
Eq.(4.20). As evident from Fig. 4.3, the enourmous difference in the functionals
illustrates the severe problems of the Müller functional to describe the magnetic
structure properly and indicates a systematic flaw in the functional.
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Figure 4.4: Energy ∆E = E[V, s]−E[V, s = 0] of Eq. (4.23) of the Hubbard dimer obtained
with the Müller functional including an off-site interaction in first-order per-
turbation theory with U = 4t along the manifold Eq. (4.19) of ground states.
The point s = 0 indicates the non-magnetic solution.

Off site interaction and the degeneracy breaking

This severe problem of degeneracy or the infinite magnetic susceptibility raises the
question whether the findings can be extended to more realistic systems. In this
section we investigate the peculiarity of local Hubbard interaction which leads to
the problem of degeneracy. To this end we extend the interaction in the Hubbard
dimer to neighbouring site also as,

Ŵ = 1
2
∑
i

∑
σ,σ′

Uĉ†i,σ ĉ
†
i,σ′ ĉi,σ′ ĉi,σ

+ 1
2
∑
i 6=j

∑
σ

V ĉ†i,σ ĉ
†
j,σ ĉi,σ ĉj,σ . (4.22)

where V is the magnitude of interaction between same spin spin on the neighbouring
site. In realistic system we do have extended interactions and therefore keeping the
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interaction local might limit the tranferability of findings of Hubbard dimer to real
systems.

With the assumption that the interaction V is small and the natural orbitals are
the bonding and anti-bonding orbitals of Eq. (4.11), the energy landscape in the one
dimensional degenerate manifold of Eq. (4.19), has the form,

EM [V, s] = EM [0, s] + V (R2 − 1)2

2

×
[( 2

1 +R2

)2
+ s2

]
+O(V 2). (4.23)

EM [0, s] is the s-independent total energy obtained with Müller’s functional for the
Hubbard dimer in the absence of an offsite interaction. It is given by Eq. (4.18) and
Eq. (4.19).

As shown in Fig. 4.4, the energy in Eq. (4.23) due to a small offsite interaction V ,
has a minima at the s = 0 i.e. at the symmetric solution with zero onsite magnetic
moment. Therefore the artificial degeneracy or the infinite magnetic suscpetibility
will not be apparent in real systems.

Nevertheless, as evident from the comparison with the exact functional shown in
Fig. (4.3), the changes produced by the off-site term are far too small: In order to
produce an energy difference between the maximally polarized state (see Eq. 4.20)
and the unpolarized state comparable to the exact result shown in Fig. 4.3, an
unrealistically large offsite interaction parameter of order V = 10t would be required.

4.5 Power functional
The ground state energy obtained from unbiased Car-Parinello optimization, for
the power functional i.e. (cmn(α)) in the Table. 4.1, is shown in Fig. 4.1. In the
calculations the value of α was chosen to be 0.53. There is an anti-ferromagnetic
transition after certain critical value of interaction strength. The occupations of the
Hubbard dimer obtained from power functional (α = 0.53) is shown in Fig. 4.5.

Whereas the density-matrix functional in the Hartree-Fock approximation pro-
duces integer and pairwise identical occupations, the power functional produces
fractional occupations which are not identical in pairs. Near U = 6t, we observe
a transition. This transition separates the Müller-like behavior (fractional occupa-
tions) at small interactions from a Hartree-Fock-like behavior (integer occupations)
at large interactions.

• At small interactions, the solutions are analogous to those of the Müller func-
tional. However, from the manifold of degenerate ground states of the Müller
functional, the power functional favors the state with maximal ferromagnetic
moments i.e. the extreme of .
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Figure 4.5: Occupations fi as a function of U/t for the power functional with α = 0.53.
Solid dots have been obtained from an unbiased optimization of the power
functional. The solid lines are obtained from a restricted optimization using
the non-collinear natural orbitals of the ansatz Eq. (4.27). The diagonal crosses
are obtained from a restricted optimization using the collinear natural orbitals
Eq. (4.26) of the Hartree-Fock approximation.

• At larger interactions, the ground state undergoes a transition into a non-
collinear ground state. For very large interaction the state approaches the
Hartree-Fock-like antiferromagnetic state.

Ferromagnetic solution in the weakly interacting regime:

The occupations in the weakly interacting regime can be understood as follows: In
case of the Müller density-matrix functional, we have shown in Sec. 4.4.2 that there
exists a manifold of degenerate ground-state density matrices on the line given by
Eq. (4.19). If we increase the parameter α of the power functional infinitesimally
as α = 1

2 + ε where ε > 0, and restrict ourselves to interaction strengths U/t where
the natural orbitals are bonding and antibonding states, Eq. (4.11), the total energy
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along the line given by Eq. (4.19) is

EP
α= 1

2 +ε(s) = 2t
( 2

1 +R2 − 1
)

+ U (4.24)

− U

4
∑
σ=±1

(
1 +R1+2ε

)2
( 1

1 +R2 + σs
)1+2ε

,

where R = 4t/U +
√

1 + (4t/U)2. The energy in Eq. (4.24), shown in Fig. 4.6, has a
negative curvature along the line parameter s and the minima lie at the boundaries
given in Eq. (4.20).

At these boundaries, the extreme non-symmetric solutions of the Müller func-
tional, one of the states is always fully occupied (See Fig. 4.2) because this maximum
occupation limits the range of degenerate solutions. This explains the corresponding
observation in Fig. 4.5.

Unfortunately, any change of the parameter α away from the value of the Müller
functional, destroys the non-magnetic ground state in favor of an unphysical ferro-
magnetic state.

Large-interaction regime

The Hartree-Fock approximation exhibits a transition from a non-magnetic state
to an antiferromagnetic state at U = 2t. This transition is absent in the Müller
functional, but it is present in the power functional for all other values of α > 1

2 .
In order to explore, how the power functional interpolates between these two ex-

treme cases, we calculated the product 〈 ~̂S1〉 · 〈 ~̂S2〉 of the spin expectation values at
the two sites of the dimer. A positive value of 〈 ~̂S1〉 · 〈 ~̂S2〉 corresponds to a ferro-
magnetic, a negative value to an antiferromagnetic spin alignment. The maximum
absolute value is ~2/4.

For the Hubbard dimer at half filling, 〈 ~̂S1〉 · 〈 ~̂S2〉 is shown in Fig. 4.7 as function
of interaction strength U/t and the parameter α of the power functional. For the
Müller functional discussed in Sec. 4.4.2, , i.e. for α = 1/2, we consider the solution
with the strongest polarization, because this is the state that continuously matches
to the solutions of the power functional. In this ferromagnetic state, 〈 ~̂S1〉 · 〈 ~̂S2〉 is
positive. Unfortunately, the correct non-magnetic state is not a ground state of the
power functional for α > 1

2 .
At a critical interaction strength Uc(α) the power functional exhibits a transition

from this ferromagnetic state into a complex non-collinear state with a mostly an-
tiferromagnetic spin alignment. The angle between the magnetization on the two
sites is shown in Fig. 4.8.

Fig. 4.7 clearly shows the location of the transition between the ferromagnetic
and the antiferromagnetic non-collinear regime. The critical interaction strength
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Figure 4.6: Total energy difference ∆E = EPα=1/2+ε[ρ(s)]−EPα=1/2[ρ(s)] given by Eq. (4.24)
for U = 4t using the power functional approximation with ε = 10−3 as a
function of the line parameter s that parametrizes the one-particle reduced
density matrix according to Eq. (4.19).

Uc(α) of this transition is infinite for the Müller functional. As the parameter α is
increased, the critical interaction strength falls off rapidly and approaches the value
Uc(α = 1) = 2t of the Hartree-Fock approximation.

Thus, the power functional exhibits a Hartree-Fock-like transition into an anti-
ferromagnetic ground state except for the limiting case, the Müller functional. By
choosing the parameter α sufficiently close to 1/2, the transition can be shifted into
a regime that is physically less important.

Collinear approximation using the Hartree-Fock natural orbitals

In order to get a qualitative understanding of the asymmetric occupations (Ref.
Fig. 4.5) and the critical value of interaction strength Uc of the transition to anti-
ferromagnetic solutions (Ref. Fig. 4.7), we use an ansatz that covers both extreme
cases, namely the Müller functional with α = 1

2 and the Hartree-Fock approxima-
tion with α = 1. These are, one the one hand, the asymmetric natural orbitals
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4 Parametrized density matrix functionals

Eq. (4.10) that can describe the antiferromagnetic state of the Hartree-Fock ap-
proximation. On the other hand, the ansatz allows for fractional occupations to
capture the nature of the ground state of the Müller functional.

With this ansatz, the one-particle reduced density matrix ρ(f1, . . . , f4, γ) is a
function of occupations fn and the angle γ and the corresponding total energy EP,α

obtained with the power functional is

EP
α [ρ(f1, . . . , f4, γ)] = Ekin[ρ(f1, . . . , f4, γ)]

+ F P
α [ρ(f1, . . . , f4, γ)] (4.25)

where

Ekin[ρ(f1, . . . , f4, γ)] = −t cos(2γ) (f1 + f2 − f3 − f4)

F P
α [ρ(f1, . . . , f4, γ)] = U

4

[
(f1 + f2 + f3 + f4)2 − (fα1 + fα3 )2 − (fα2 + fα4 )2

]
+ U

4 sin2(2γ)
[
(f2 + f3 − f4 − f1)2 − (fα1 − fα3 )2 − (fα2 − fα4 )2

]
.

(4.26)

An approximation, which is a strict upper bound, for the total energy of the
power functional is obtained by minimizing Eq. (4.26) for a half-filled system with
occupations between zero and one.

As a characteristic example, the resulting occupations for α = 0.53 are shown in
Fig. 4.5. The properties of this ansatz with regard to the description of the transition
to the antiferromagnetic state will be investigated in the following section after a
more general discussion of the transition.

The ansatz using the collinear natural orbitals Eq. (4.10) and arbitrary occupa-
tions is, however, not able to describe the true ground state for the power functional
in the strongly interacting regime. The energy difference of the ansatz to the un-
biased solution is shown in Fig. 4.9. The deviation is largest near the transition.
The transition point is slightly displaced by the collinear ansatz, which explains the
sharp rise. For larger interactions, the error due to the collinear approximation falls
off rapidly. It should be noted that the overall error due to the restricted ansatz is
apparently small. For the parameter α = 0.53 used in Eq. (4.9), the maximum error
in the energy is less than 1 % of the binding energy.

Beyond the collinear approximation
The ansatz using the Hartree-Fock natural orbitals already gives a fairly good de-
scription of the ground state of the power functional. How do the natural orbitals
of the power functional differ from those of the Hartree-Fock solution?

In the large interaction region, the power functional produces non-collinear ground
states. The natural orbitals of the power functional can be represented as superpo-
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Figure 4.7: Scalar product 〈 ~̂S1〉 · 〈 ~̂S2〉 of the spin expectation vectors on the two sites of
the Hubbard dimer as an indicator for the transition to the antiferromagnetic
state within the power functional approximation with the parameter α for the
Hubbard dimer at various interaction strengths. A positive value indicates
a ferromagnetic state, a negative value an antiferromagnetic state. For the
Müller functional, i.e. α = 1/2, the dashed line represents the result for the
symmetric solutions and the solid line the corresponding degenerate result for
the degenerate maximally polarized state.

sitions of bonding and antibonding states,

|φP1 〉 = |b, ↑〉 cos(β1)− |a, ↓〉 sin(β1)
|φP2 〉 = |b, ↓〉 cos(β2)− |a, ↑〉 sin(β2)
|φP3 〉 = |b, ↑〉 sin(β1) + |a, ↓〉 cos(β1)
|φP4 〉 = |b, ↓〉 sin(β2) + |a, ↑〉 cos(β2) . (4.27)

The two angles β1 and β2 are free variational parameters. The natural orbitals of
the non-interacting system, respectively those of the Müller functional are obtained
with β1 = β2 = 0. The values of the two parameters are shown in Fig. 4.10 for one
example of the power functional.

In the Hartree-Fock approximation, respectively in the power functional with the
collinear ansatz, the pair of bonding and antibonding orbitals that contribute to a

69



4 Parametrized density matrix functionals

-20

20

60

100

140

180

220

1 2 3 4 5 6 7 8 9 10

6
(
〈~̂ S

1
〉,
〈~̂ S

2
〉)

[d
eg

]

U/t

Figure 4.8: Angle between the spin expectation vectors 〈~S1〉 and 〈~S2〉 on the two sites of
the Hubbard dimer as function of the interaction strength U . Dashed line:
power functional with the parameter α = 0.53; solid line: Hartree-Fock ap-
proximation. This angle is a measure of collinearity of natural orbitals.

natural orbital, given in Eq. (4.10), have the same spin direction. This results in
the localization of the electron on one or the other site of the dimer. The emerging
picture is appealing because it reflects the left-right correlations of the electrons. The
admixture of antibonding states to the natural orbitals for the two spin directions
is the same. Thus, there is no symmetry-breaking charge disproportionation.

The natural orbitals Eq. (4.27) of the power functional are composed of bonding
and antibonding orbitals with opposite spin directions. This leads to natural orbitals
with equal weight on both sites, but the spins on both sides have a finite angle
between them. The state has an intrinsically non-collinear, even though still a
coplanar spin structure.

The admixture of antibonding states in the two pairs is independent in the power
functional, so that the natural orbitals contain two independent free parameters,
namely β1 and β2.

The net magnetic moment of each of the four natural orbitals points along the
same direction. For the choice in Eq. (4.27), this is the z-direction. The parameters
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4.6 Beyond half-filling

β1 and β2 control the relative angles of the local moments on the two sites of the
dimer for each of the natural orbitals. This angle is 4β1 for the orbitals |φP1 〉 and
|φP3 〉 and it is 4β2 for the orbitals |φP2 〉 and |φP4 〉. The natural orbitals are pair-
wise antiparallel: On any given site |φP1 〉 and |φP3 〉 have local moments in opposite
directions. Similarly, this holds for |φP2 〉 and |φP4 〉.

It seems that the ground states of the power functional do not connect contin-
uously to those of the Hartree-Fock approximation, because the natural orbitals
belong to different classes. This is, however, not so: The ansatz for the natural
orbital Eq. (4.27) connects smoothly to those of the Hartree-Fock approximation
in Eq. (4.10) when the two parameters β1 and β2 become equal, and furthermore
the occupations become integer. This limit of the ansatz Eq. (4.27) for the power
functional describes, however, an antiferromagnet with the local moments aligned
along the x-direction, while the ansatz of Eq. (4.10) for the Hartree-Fock solution
is polarized along the z-direction. Thus they are related by a global spin rotation,
which is a symmetry of the Hamiltonian.

4.6 Beyond half-filling
Up to now, we considered only the half filled case of the Hubbard dimer. Here we
consider also deviations from the particle number N = 2.

To avoid mathematical complications, we define E(N) thermodynamically con-
sistent as the zero-temperature limit of the Helmholtz potential β → ∞, which in
turn is constructed from the grand potential by a Legendre-Fenchel transform

E(N) = lim
β→∞

max
µ

[
− 1
β

ln
(
Tr e−β(Ĥ−µN̂)

)
+ µN

]
. (4.28)

The trace is performed over the fermionic Fock space.
It can be shown that the total energy E(N) consists of piecewise linear segments

between integer particle numbers. Thus the slope of the total energy E(N), the
chemical potential µ = dE/dN , is usually1 discontinuous at integer occupations.
This derivative discontinuity gives the fundamental band gap which is defined as
the difference of electron affinity and ionization potential. The band gap is relevant,
not only as an estimation related to optical spectra, but, more importantly, for the
response functions and chemical equilibria. Therefore, we investigate whether the
derivative discontinuities are properly described by the approximate density-matrix
functionals.

The total energy E(N) of the exact solution and several power functionals is
shown in Fig. 4.11 and the corresponding chemical potential in Fig. 4.12. For the

1For degenerate states and when the electron addition and removal are dominated by delocalized
states the discontinuity may also vanish or become infinitesimally small.
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Figure 4.9: Energy difference ∆E of the power functional with α = 0.53 between the den-
sity matrices obtained by a constrained and an unbiased optimization. ∆E for
the case of constrained optimization with the natural orbitals of a Hartree-Fock
in Eq. (4.10) is the solid line with circle symbols, while the ∆E obtained from
constrained optimization with the non-collinear natural orbitals of Eq. (4.27)
is the dashed line with square symbols.

Hubbard dimer, the derivative discontinuity at N = 2 is due to a combination of
the one-particle gap and the interaction. The derivative discontinuity at N = 1 is,
however, entirely due to the interaction. These features are clearly visible for the
exact calculation shown in Fig. 4.11.

In the Hartree-Fock approximation, the energy for fractional occupations has a
negative curvature for 1 < N < 3. As a result, the derivative discontinuities are
larger than in the exact solution. It reflects the well known observation that Hartree-
Fock calculations overestimate band gaps. This observation can be rationalized with
a lack of screening in the Hartree-Fock approximation that reduces the effective
interaction strength.

The Müller functional, however, fails to give any derivative discontinuity. It is
surprising, that a functional that performs as well as the Müller functional for N = 2
is completely unable to capture the correct physics beyond half filling. It adds to
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Figure 4.10: Parameters β1 and β2 defining the natural orbitals Eq. (4.27) of the power
functional for α = 0.53 as function of the interaction strength.

the simplified picture that the Müller functional behaves very metal-like: It does
not have a band gap and and its magnetic susceptibility is infinite.

Except for the Hartree-Fock limit, also the power functional lacks a derivative
discontinuity. This is apparent from Fig. 4.12. For small α, that is the Müller-like
regime, the power functional behaves analogous to the Müller functional itself. In
the parameter regime of the antiferromagnetic ground state, however, the chemical
potential makes a continuous transition between two distinct linear functions of the
particle number.

This behavior of the power functional for the Hubbard dimer is analogous to that
observed earlier for finite[89, 90] and extended systems[53, 91].

In order to extract values for the band gap despite of the absence of a derivative
discontinuity, Sharma et al.[53] proposed the extrapolation method, which exploits
the behavior of E(N) further away from the Fermi level. Sharma et al. exploit
that the chemical potential makes a transition between two linear functions. The
extrapolation of these linear functions to the integer particle number yields an off-
set which is identified with the band gap. This method yields finite band gaps in
the appropriate parameter range of the power functional, where the Müller func-
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tional incorrectly predicts a vanishing band gap[53]. Surprisingly, the band gaps
obtained using the extrapolation method from the power functional agree well with
experimental results even for non-magnetic calculations.

Our results for the Hubbard dimer shown in Fig. 4.12 indicate that the band
gap obtained with the extrapolation method[53] can be tuned between zero and the
Hartree-Fock value by adjusting α. Signatures of this behavior have been observed
in studies that investigated the dependence on the power functional parameter α for
realistic systems[53, 90].

The absence of a true derivative discontinuity using the power functional and the
tunability of the band gap determined with the extrapolation method is not limited
to the antiferromagnetic ground state. As shown in Fig. 4.13, the Hubbard dimer
behaves qualitatively similar, when the spin polarization is suppressed. In the non-
magnetic calculations, the onset of a finite band gap obtained by the extrapolation
method is delayed to larger power parameters α. This finding is analogous to that
observed for NiO, for which non-magnetic calculations find a metallic ground state
for α < 0.65[92], whereas non-collinear calculations find an insulating ground state
already for α = 0.56[93].

4.7 Beyond the dimer
The question remains whether the findings for the Hubbard dimer persist in larger
systems with more degrees of freedom. This is relevant for calculations of more
complex systems having large unit cells. For this purpose we performed calculations
for the power functional for Hubbard rings and Hubbard chains.

Figure 4.14 shows the occupation numbers for a half-filled Hubbard ring at an
intermediate interaction strength of U = 5t, which like the Hubbard dimer, has an
antiferromagnetic ground state in the Hartree-Fock approximation. For the Müller
functional we obtain fractional occupations as for the dimer. While the fractional
occupations deviate from the exact result, their deviation from integer occupations
are of the same order of magnitude as in the exact solution. The power functional
exhibits abrupt transitions to an antiferromagnetic state around αc ≈ 0.58 very
analogous to the Hubbard dimer.

For a six-site Hubbard chain with seven electrons, i.e. one electron more than half
filling, the pattern of transitions is even more complex: This behavior is shown in
Figure 4.15. There are now three transitions:

1. A continuous transition between α ≈ 0.567 and α ≈ 0.569 from the non-
magnetic Müller ground state to a state with collinear spins in the pattern
↑↓↑↑↓↑, which is only stable in a small window of parameters.

2. Around α ≈ 0.576 there is a non-smooth transition to a state with an antifer-
romagnetic spin-structure, i.e. ↑↓↑↓↑↓.
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Figure 4.11: Ground-state energy E(N) of the Hubbard dimer with U = 5t in units of the
hopping parameter t as function of particle number N . The critical power
functional parameter for the transition to an antiferromagnetic state lies at
α ≈ 0.54 for the given interaction strength. Dashed line: exact solution,
crosses: Hartree-Fock approximation, open circles: power functional with
α = 0.7, filled circles: power functional with α = 0.58, triangles: power
functional with α = 0.53, squares: Müller functional.

3. Beyond α ≈ 0.75, the antiferromagnetic structure breaks up and evolves into
the HF-ground state having a spin-structure given by ↑↓↑↑↓↑.

These examples demonstrate that the power functional can generate a variety of
magnetic states even for simple systems.

4.8 Summary
The popular density-matrix functionals, the Müller functional[50], the Hartree-Fock
approximation and the power functional[53], which continuously interpolates be-
tween the other two, have been benchmarked for the Hubbard dimer.

Particular emphasis has been given to left-right correlation, the dominant correla-
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Figure 4.12: Chemical potential µ(N) of the Hubbard dimer with U = 5t in units of
the hopping parameter t as function of particle number N . The behavior
of the power functional with 1/2 < α < 1 close to half-filling is shown in
the inset. Dashed line: exact solution, crosses: Hartree-Fock approximation,
open circles: power functional with α = 0.7, filled circles: power functional
with α = 0.58, triangles: power functional with α = 0.53, squares: Müller
functional.

tion effect for bond dissociation, which is not captured in local density functionals[28].
Left-right correlation describes that electrons localize on opposite sites of the dimer.
This electron correlation, which increases with the interaction strength, avoids the
energetic cost of the Coulomb repulsion due to double occupancy of a site. In the
Hartree-Fock approximation, this left-right correlation leads to an antiferromagnetic
state with a spin-up electron mostly localized on one side and the spin-down elec-
tron on the other. This so-called broken-symmetry state disagrees with the exact
solution, which is a singlet state, having no local moments, but nevertheless anti-
ferromagnetic correlations similar to the broken symmetry state. More importantly,
however, the antiferromagnetic transition is an abrupt one and not a continuous
buildup of antiferromagnetic correlations as in the exact solution. The result is a
qualitatively incorrect shape of the total energy during bond dissociation.
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Figure 4.13: Chemical potential µ(N) of the Hubbard dimer with U = 5t in units of
the hopping parameter t as function of particle number N , when the density
matrix is restricted to be non-magnetic. The behavior of the power functional
with 1/2 < α < 1 close to half-filling is shown in the inset. Dashed line: exact
solution, crosses: Hartree-Fock approximation, open circles: power functional
with α = 0.95, filled circles: power functional with α = 0.9, triangles: power
functional with α = 0.85, squares: Müller functional.

The Müller functional[50] establishes left-right correlation in a fundamentally dif-
ferent manner: while the natural orbitals are mostly – in the Hubbard dimer exactly–
independent of the interaction, the occupations become fractional, which reflects
the creation of electron-hole pairs that screen the interaction. One of the main
successes of the Müller functional besides being able to produce fractional occupa-
tions correctly, is that it captures the continuous nature of the transition to the
left-right-correlated state.

Our calculations avoid any bias and allow for arbitrary non-collinear spin-polarized
states. This strategy shall bring all potential problems to the surface, that would
be present in large scale electronic structure calculations using these density-matrix
functionals.

Our first observation is that the ground state for the Müller functional, which does
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Figure 4.14: Occupations of the half-filled six-site Hubbard-ring with U = 5t for the power
functional as function of the parameter α (solid lines). The dashed horizontal
lines indicate the occupations of the exact many-electron description. Evident
are the rather abrupt transitions from fractional to integer occupations.

not have local moments, is degenerate with a one dimensional manifold of ferromag-
netic states. Thus the dimer has infinite magnetic susceptibility when described with
the Müller functional, in contrast to the vanishing zero-temperature susceptibility
of the exact solution of the Hubbard dimer. This large magnetic polarizability is
likely to cause severe problems in extended electronic structure calculations.

When turning to the power functional[53], we find that the system behaves anal-
ogous to the Müller functional for small interactions, while it exhibits a transition
to a Hartree-Fock-like antiferromagnetic state for large interactions. The critical in-
teraction, where this transition occurs, drops rapidly with increasing α from infinity
in the Müller functional to the Hartree-Fock value Ucrit = 2t.

In the small-interaction regime the system is weakly pinned in the ferromagnetic
state corresponding to the largest moment of the ground-state manifold of the Müller
functional.

Our calculations indicate a major deficiency in the description of magnetic prop-
erties for this class of density-matrix functionals. The problems persist in modified
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Figure 4.15: Occupations of the six-site Hubbard-chain with seven electrons and U = 5t
for ground states of the power functional as function of the parameter α
spanning the range from the Müller functional (α = 1/2) to the Hartree-
Fock approximation (α = 1). Evident are the rather abrupt transitions from
fractional to integer occupations.

form also for more general Hamiltonians, which include off-site Coulomb interac-
tions, and for more extended systems.

Besides the bond-dissociation problem, we investigated the derivative discontinuity[94,
28] with changing the number of electrons. A balanced description of the electron
affinity and ionization potential is essential for a qualitatively correct description of
charge transfer. We find that the metal-like behavior of the Müller functional per-
sists: The discontinuity of the exchange-correlation energy even offsets the one of the
kinetic energy. The Müller functional describes the Hubbard dimer with vanishing
fundamental gap.

The power functional inherits many of the problems of the Müller functional:
There is no derivative discontinuity in the entire parameter range of the power func-
tional except for the Hartree-Fock limit. In the low-interaction regime the solutions
are weakly ferromagnetic. Like the Hartree-Fock approximation, the power func-
tional exhibits an artificial abrupt magnetic transition with increasing interaction
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towards an antiferromagnetic configuration, albeit at a larger critical interaction.
These states are intrinsically non-collinear.

The absence of any derivative discontinuity also for insulating materials is ex-
pected to produce an artificial charge transfer between the constituents of large-scale
electronic structure calculations. This cast severe doubt on the performance of such
density-matrix functionals for complex systems.

While the power functional lacks a derivative discontinuity, its chemical potential
undergoes a continuous transition between two linear functions, which has been
exploited to extract a band gap from data obtained further away from the integer
particle number[53, 91, 95, 89, 90].

Our calculations indicate, however, that the band gap obtained from this extrap-
olation can be tuned by the free parameter α of the power functional between zero
and the Hartree-Fock result. The band gap opens in non-collinear calculations only
when in the antiferromagnetic regime, while it vanishes in the Müller-type regime
at low interactions. The opening of a band gap obtained by the extrapolation
method and its tunability are features that persist in non-magnetic calculations,
while the gap opens at a larger value of the power parameter than in the mag-
netic calculation. These problems or signatures of them can be observed in previous
calculations[95, 90, 80, 93, 92].

The problems presented here demonstrate potential fundamental flaws of the class
of density-matrix functionals of this study.
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In Chapter. 4, we demonstrated the fundamental flaws in the existing state of the art
density matrix functionals namely the parametrized density matrix functionals of
Sec. 2.6.3. The most prominent among all, the celebrated Müller class of functionals
had serious drawbacks in determining the magnetic structures of even simple model
systems. The quality of such functionals depends extensively on parameters which
cannot be determined in a controled way.

In Sec. 2.6.2, we briefly discussed the way to evaluate density matrix functional
from the Green’s function functional namely the Luttinger-Ward functional. The
exact relation [48] between the two requires a stationary point search in an expo-
nential space of the Green’s function and the self-energy. But nevertheless, it allows
to construct approximations in a controlled way via immensely studied techniques
of perturbation theory in the many-body community.

In this chapter, we propose several approximations to evaluate density matrix
functional from the Green’s function and assess their quality by comparing with
the performance of existing state of the art density matrix functionals. The simple
model system of Sec. 2.7, namely the Hubbard dimer will be used as a benchmark
system to test the quality of the proposed approximations.

5.1 Framework for construction of approximate
scheme

In Sec. 2.6.2, we presented the exact relation between the density matrix functional
and the Luttinger-Ward functional. The exact expression has the following form,

F Ŵ [ρ] = 1
β

Tr
[
ρ ln(ρ) + (1− ρ) ln(1− ρ)

]

+ stat
h′

stat
G,Σ

{
ΦŴ
β [G, Ŵ ]− 1

β

∑
ν

Tr
{

ln
[
1− Ḡ(iων)

(
h′ + Σ(iων)− h̄

)]

+
(
h′ + Σ(iων)− h̄

)
G(iων)−

[
G(iων)− Ḡ(iων)

](
h′ − h̄

)}}
(5.1)
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where ΦŴ
β [G, Ŵ ] is the Luttinger-Ward functional [49, 70], Ḡ(iων) =

(
(iων +µ)1−

h̄
)−1

is the non-interacting Green’s function which is a direct functional of ρ through
h̄ = µ − 1

β
ln
(

1−ρ
ρ

)
. The Lagrange multiplier h′ enforces the density matrix con-

straint,
ρ[G] = 1

β

∑
ων

eiων0+
G(iων) (5.2)

The non-interacting Green’s function Ḡ(iων), by construction satisfies the density
matrix constraint of Eq. (5.2).

As evident from Eq. (5.1), the evaluation of density matrix functional F Ŵ
β [ρ]

requires an internal optimization in the space of the Green’s function G(iωn) and
the corresponding self energy Σ(iωn) with an additional complexity of the density
matrix constrained of Eq. (5.2). The internal optimization requires solution for a
set of self-consistent equations [48].

Approximate scheme

The most desirable approximate scheme will be the one which completely avoids
the stationary point search in Eq. (5.1), but nevertheless describes the essential
physics. In order to bypass the full internal optimization, we define a mapping of
the form,

ρ→ G[ρ] (5.3)

which provides a Green’s function G(ρ) for a given one-particle density matrix
ρ. The Green’s function obtained from the mapping in Eq. (5.3), by construction
satisfies the density matrix constraint of Eq.(5.2).

The mapping also helps to avoid the stationary point search in Eq.(5.1) and
leads to an error ∆F Ŵ

β [ρ] in the calculations of density matrix functional. It can be
shown [48], that the error ∆F Ŵ

β [ρ] is quadratic in the variation of the model Green’s
function G[ρ] from true Green’s function Gtrue,

∆F Ŵ
β [ρ] = ΦLW

β [Gtrue, Ŵ ]− ΦLW
β [G[ρ], Ŵ ]

+
∑
n

Tr
{

∂ΦLW
β

∂G(iωn)G
(G[ρ](iωn)−G(iωn))

}

+ 1
β

∑
n

Tr
{ ∞∑
m=2

1
m

(
1−G[ρ](iωn)G−1(iωn)

)m}
(5.4)

With the direct mapping suggested in Eq.(5.3), the stationarity condition with
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respect to the self-energy leads to the Dyson equation of the form,

Σ(iωn) = h̄+ Ḡ−1(iωn)−G−1(iωn)− h′ (5.5)

Substituting this form of the stationary self-energy in Eq. (5.1), and using the fact
that G[ρ] satisfies the density matrix constraint which leads to dropping off the last
part in Eq (5.1), the density matrix functional F Ŵ

β [ρ] attains a simple algebraic
form,

F Ŵ
β [ρ] ≈ 1

β
Tr
[
ρ ln(ρ) + (1− ρ) ln(1− ρ)

]
+ ΦLW

β [G[ρ], Ŵ ]

− 1
β

∑
ωn

Tr

ln
[
Ḡ(iωn)G−1(iωn)

]
+ Ḡ−1(iωn)G(iωn)− 1


(5.6)

The simple mapping in Eq. (5.3), leads to the direct evaluation of density ma-
trix functional from the Luttinger-Ward functional evaluated for the model Green’s
function G[ρ]. Further approximation comes in the evaluation of Luttinger-Ward
functional which is done perturbatively by expanding in the powers of interaction
strength U . This is discussed in the next section.

5.2 Approximation for Luttinger Ward functional
ΦLW
β [G[ρ], Ŵ ]

The Luttinger-Ward functional [49, 70] is defined through a perturbative expansion
in the interaction strength. It is obtained by summing up an infinite set of skeleton
diagrams with no self energy insertions.

The density matrix functional as stated earlier is evaluated in a controlled way
by considering the diagrammatic expansion of the Luttinger-Ward functional for a
given model Green’s function G[ρ].

5.2.1 Hartree-Fock approximation
The first order skeleton diagrams in the perturbation expansion are the so called
Hartree-Fock diagrams as shown in the Fig. 5.1. The approximate Luttinger-Ward
functional ΦHF

β [G[ρ], Ŵ ] corresponding to the Hartree-Fock approximation is given
in terms of the two diagrams Da and Db in Fig. 5.1 as,

ΦHF
β [G[ρ], Ŵ ] = − 1

β

∑
D=Da,Db

V (D)
S(D) (5.7)

83



5 Density matrix functionals derived from Green’s function

The value of the diagrams V (D) is evaluated using the diagrammatic rules sketched
in Appendix C. The number of closed Fermionic loops for Hartree diagram is nf = 2
whereas for the Fock diagram is nf = 1.

Figure 5.1: The skeleton diagrams contributing to the first order in the perturbation
expansion of Luttinger Ward functional. The symmetry factor for the Hartree
diagram (a) is S = 2 and the number of fermi loops is nf = 2. The symmetry
factor for the Fock diagram (b) is S = 2 and the number of fermi loops is
nf = 1.

The complete algebraic expression for the Hartree-Fock contribution has the form,

ΦHF
β [G[ρ], Ŵ ] = 1

2
∑
ab,dc

Wab,cd
1
β2

∑
ωn1ωn2

(
Gda(iωn1)Gcb(iωn2)−Gca(iωn1)Gdb(iωn2)

)

= 1
2
∑
ab,cd

Wab,dc (ρdaρcb − ρcaρdb) (5.8)

where ωn = (2n+1)π
β

is the fermionic Matsubara frequency and we have used the
fact that 1

β

∑
iωnG(iωn) = ρ.

It is evident from Eq.(5.8), the Luttinger Ward functional in the first order is a
direct functional of one particle reduced density matrix ρ and does not depend on
the choice of the model Green’s function.
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5.2.2 Second order diagrams
Beyond the Hartree-Fock approximation, the diagrams which include non-trivial
correlation effects are the second order diagrams. In the second order of perturbation
in the interaction, there are two skeleton diagrams as shown in Fig. 5.2. The first
diagram is the bubble or the ”tad-pole” diagram whereas the second is the exchange
contribution. The value of Luttinger-Ward function Φ(2)

β [G[ρ], Ŵ ] in the second

Figure 5.2: The skeleton diagrams contributing to the second order in the perturbation
expansion of Luttinger Ward functional. The symmetry factor for the bubble
diagram (a) is S = 4 and the number of Fermi loops is nf = 2. The symmetry
factor for the exchange diagram (b) is S = 4 and the number of Fermi loops
is nf = 1.

order of the perturbation expansion can be written as a sum of two diagrams (See.
Eq. (C.16) in Sec.C.4) as,

Φ(2)
β [G[ρ], Ŵ ] = − 1

β

∑
D=Da,Db

V (D)
S(D) (5.9)

The value of the diagrams are evaluated according to the rules given in Sec. C. The
symmetry factors of both the diagrams is 4. The value of the second order diagrams
depends on the choice of the model Green’s function. Both diagrams depends on a
second rank tensorial object called the polarization χ, which has the form,

χab,cd(iνn) = 1
β

∑
ωn

Gda(iωn + iνn)Gcb(iωn)

(5.10)
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where the frequency νn = 2nπ
β

is the bosonic Matsubara frequency. The fermionic
Matsubara sum in Eq.(5.10) can be performed analytically using the multi-pole
representation of the Green’s function.

Using the polarization tensor χ(νn) it can be shown easily that the combined
mathematical expression for the two second order diagrams in Fig. 5.2 has the
following form,

Φ2
β[G[ρ], Ŵ ] = − 1

4β
∑
νn

Tr Y 2
bubble(iνn)− Tr Y 2

exch(iνn)


Y bubble
ab,cd (iνn) =

∑
ef

Wea,fbχfd,ec(iνn)

Y exch.
ab,cd(iνn) =

∑
ef

Wea,bfχfd,ec(iνn) (5.11)

As evident from the expression in Eq.(5.11), the objects Y bubble and Y exch. corre-
sponding to the bubble and exchange diagrams respectively, can be obtained from
each other by interchanging the last two indices of the interaction vertex. The neg-
ative sign in the exchange diagram comes from the fact the the number of closed
Fermi loops in diagram (b) is nf = 1.

Hugenholtz diagrams

It is worthwhile to illustrate at this stage, the importance of Hugenholtz diagrams
[9] which drastically reduces the number of diagrammatic evaluations at higher or-
ders. The Hugenholtz diagram are obtained by replacing the conventional interac-
tion vertex with an anti-symmetrized vertex as,

Below we state few important points that need to be taken care of while evaluating
the Luttinger-Ward functional in terms of the Hugenholtz diagrams,

1. The value V (D) of the Hugenholtz diagrams are also evaluated using the rules
prescribed in Appendix C, with a slight modification that for each interaction
vertex we include the factor,
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2. During the evaluation of value V (D), the number of fermion loops nf are
evaluated by replacing the Hugenholtz vertex by the conventional vertex and
counting the number of closed fermion loops as for a Feynman diagram.

3. The mathematical expression for the Luttinger-Ward functional in terms of
the Hugenholtz diagram has the form,

Φ2
β[G[ρ], Ŵ ] = − 1

β

∑
D

V (D)
2ne(D)S(D) (5.12)

where ne(D) is the number of equivalent pair of lines i.e. the number of pairs
of lines originating at the same vertex, terminating at the same vertex and
oriented in the same direction for a given diagram D.

The two skeleton diagrams each in the first (See Fig. 5.1) and second-order (See
Fig. 5.2) of the perturbation expansion can be obtained from one Hugenholtz dia-
gram each respectively as,

Figure 5.3: The Hugenholtz skeleton diagrams equivalent to the (a) Hartree-Fock and (b)
the second order ”tad-pole” and the corresponding exchange diagram.

Example diagram
Using the fact that the symmetry factor for the second order Hugenholtz diagram
in Fig.5.3(b) is S = 2, the number of fermion loops is nf = 2 and the number of
equivalent pair of lines is ne = 2, the value of the second order approximation to
the Luttinger-Ward functional has the form,

Φ2
β[G[ρ], Ŵ ] = − 1

8β
∑
νn

Tr
{(
Y RPA-PH(iνn)

)2
}

Y RPA-PH
ab,cd (iνn) =

∑
ef

(Wea,fb −Wea,bf )χfd,ec(iνn) (5.13)

The expression in Eq. (5.13) when expanded, is equal to the combined contribution
of the ”tad-pole” and the corresponding exchange diagram in Fig. 5.2. The extra
factor of 2 in Eq. (5.13) takes care of the over-counting each diagram twice.
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5.2.3 Higher order diagrams
The systematic evaluation of higher order diagrams in the weak-coupling limit (low
U) is computationally demanding and is not the best way to approximate the
Luttinger-Ward functional. The most feasible way to move beyond second order
diagrams, is to look for a class of diagrams which can be summed up analytically
to infinite orders. Inclusion of only a set of diagrams in the expansion of Luttinger-
Ward functional might lead to unphysical results due to violation of conservation
laws [96]. For example in the case of spin dependent interactions, at the second order
of perturbation, one needs to consider both skeleton diagrams of Fig. 5.2. Ignoring
the exchange diagram (b) in Fig. 5.2 will lead to violation of Pauli exclusion princi-
ple [97]. In 1989, Bickers and Scalapino [98, 99, 100] proposed fluctuation-exchange

Figure 5.4: The Hugenholtz skeleton diagrams contributing to the particle-hole channel
in random phase approximation (RPA) of the Luttinger Ward functional. For
the diagram with n interaction vertices, the symmetry factor is S(D) = 2n,
the number of closed fermi loops is nf = n and the number of equivalent pair
of line is ne = 0.

(FLEX) approximation which originated from the conserving approximation theory
proposed by Baym and Kadanoff [96]. The FLEX approximation is the simplest
infinite order conserving approximation which treats the collective particle-hole and
particle-particle excitations. It has been widely applied to single and multi-orbital
Hubbard model [98, 99], in which the spin rotational invariance is respected.

In case of the general interaction tensor which allows for the breaking of spin
rotational invariance, the infinite series of closed skeleton diagrams of Luttinger-
Ward functional within random-phase-approximation (RPA) in Fig. 5.4 and Fig. 5.5
form the body of FLEX diagrams [101]. The Hugenholtz diagrams were found to
be more suited to deal with the SU(2) broken case [101].

The infinite series of the particle-hole channel within RPA (See Fig. 5.4) can
be summed up analytically to obtain a closed expression for the random-phase-
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approximation for the Luttinger-Ward functional ΦRPA-PH
β [G[ρ], Ŵ ] given by,

ΦRPA-PH
β [G[ρ], Ŵ ] = − 1

β

∑
D∈RPA-PH

V (D)
2ne(D)S(D) (5.14)

For a diagram D in the RPA-PH series with n > 2 Hugenholtz interaction vertices
(anti-symmetrized vertex), the symmetry factor is S(D) = 2n and the number of
closed fermion loops are nf = n. Therefore the sign of each diagram with n vertices
is (−1)n+nf = 1. The number of equivalent pair of lines ne(D) = 0.

Figure 5.5: The Hugenholtz skeleton diagrams contributing to the particle-particle channel
in random phase approximation (RPA) of the Luttinger Ward functional. For
the diagram with n interaction vertices, the symmetry factor is S(D) = n, the
number of closed fermi loops is nf = 2 and the number of equivalent pair of
line is ne = n.

The building block of each diagram is the tensor Y RPA-PH(iνn), the expression for
which is given in Eq. (5.13). The series can be summed up analytically and has the
following form,

ΦRPA-PH
β [G[ρ], Ŵ ] = − 1

β

∞∑
n=3

1
2n

∑
νn

Tr
(
Y RPA-PH(iνn)

)n

= 1
2β

∑
νn

Tr

ln
(
1− Y RPA-PH(iνn)

)
+ Y RPA-PH(iνn)

+ 1
2
(
Y RPA-PH(iνn)

)2


(5.15)

The particle-particle channel within the RPA series in Fig. 5.5 is also referred to
as the T-matrix approximation (TMA) proposed by V. M. Galitskii [102] in 1958.
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The TMA was proposed in the context of non-ideal Fermi gas where the interaction
between particles is short range i.e. inter-particle distance is much larger than the
range of interaction.

For a diagram D in the RPA-PP series with n > 2 Hugenholtz interaction vertices
(anti-symmetrized vertex), the symmetry factor is S(D) = n and the number of
closed fermion loops are nf = 2. The number of equivalent pair of lines ne(D) = n.

The contribution of the particle-particle channel of the RPA series to the Luttinger-
Ward functional is denoted as ΦRPA-PP

β [G[ρ], Ŵ ] and the building block Y RPA-PP(iνn)
is used for the evaluation of the value of each diagram V (D). These quantities have
the following form,

ΦRPA-PP
β [G[ρ], Ŵ ] = − 1

β

∞∑
n=3

1
n2n

∑
νn

Tr
(
Y RPA-PP(iνn)

)n

= − 1
β

∑
νn

Tr

ln
(

1− Y
RPA-PP(iνn)

2

)
+ Y PP(iνn)

2

+ 1
2

(
Y RPA-PP(iνn)

2

)2
Y RPA-PP
ab,cd (iνn) = −

∑
ef

(Wab,ef −Wab,fe)
1
β

∑
ωn

Gce(iνn − iωn)Gdf (iωn)

(5.16)

5.2.4 Regularization
As shown in the previous section, the perturbation expansion of Luttinger Ward
functional requires summation over Matsubara frequencies which needs to be per-
formed numerically.

The algebraic expressions for each diagram or certain class of diagrams in the
perturbative expansion of Luttinger-Ward functional has the following general form,

S = 1
β

∑
iωn

F(iωn) (5.17)

where ωn can be bosonic or fermionic Matsubara frequencies. In principle, one
needs to perform this sum over infinite number of discrete Matsubara frequencies.
However, in practice, we perform a frequency cut-off where we restrict the sum to
some large frequency Ω.

It is observed that at low temperatures the value of F(iωn) converges slowly
with increasing Matsubara frequencies. Therefore, at low temperatures, the sum in
Eq.(5.17) require large number of frequencies to be included. This in turn slows
down the numerical simulations.
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Therefore, we need to come up with the scheme where we can evaluate the behavior
of the tail analytically. This requires to evaluate the behavior of F(iωn) at large
frequencies which can be obtained using Laurent expansion in ωn as,

Ftail(iωn) =
∑
j

Cj
(iωn)j (5.18)

Using the behavior of the tail, we can approximate the sum in Eq.(5.17) as,

S ≈ 1
β


Ω∑

iωn=−Ω
F(iωn) +

∑
j

Cj
∞∑

iωn=−∞

1
(iωn)j −

∑
j

Cj
Ω∑

iωn=−Ω

1
(iωn)j︸ ︷︷ ︸

Tail correction

 (5.19)

In this method of regularization we evaluate the behavior of the tail analytically
using the following formula [8],

1
β

∞∑
iωn=−∞

1
(iωn − ζ)j = − η

(j − 1)!∂
j−1
ζ nη(ζ) (5.20)

where η = ±1 for bosons and fermions respectively and

nη(ζ) =


1

eβζ−1 , for η = 1
1

eβζ+1 , for η = −1
(5.21)

The procedure in Eq. (5.19), leads to an exact evaluation of the sum at large fre-
quencies due to the availability of analytical expressions of the form in Eq. (5.20).

NOTE: An extra precaution has to be taken while performing the sum
over bosonic matsubara frequencies in the tail correction part of Eq.(5.19)
because it requires the correction to be evaluated for ωn = 0. The correc-
tion term thus assume the following form,

∑
j

Cj
∞∑

iωn=−∞
ωn 6=0

1
(iωn)j −

∑
j

Cj
Ω∑

iωn=−Ω
ωn 6=0

1
(iωn)j (5.22)

where the infinite sum can still be evaluated analytically as,

1
β

∞∑
iωn=−∞
ωn 6=0

1
(iωn)j = lim

ζ→0

(
− 1

(j − 1)!∂
j−1
ζ n(ζ)− 1

βζj

)
(5.23)

provided that limit in Eq. (5.23) exist.
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5.3 Model Green’s function

This section will be devoted towards the construction of the model Green’s function
which follows the density-matrix constraint of Eq. (5.2). Before proceeding in this
direction, we restate the most prominent representation of the Green’s function
G(iωn) i.e. the Lehmann representation of Eq.(2.58) in terms of the spectral function
A(ε) as,

Gαβ(iωn) =
∫
dε

Aαβ(ε)
iωn + µ− ε

(5.24)

where µ is the chemical potential and the integration is over the entire energy range.
The spectral function Aαβ(ε) as defined in Eq.(2.58), satisfy two important proper-
ties, ∫

dεAαβ(ε) = 〈χα|χβ〉∫
dεAαβ(ε)nF (ε) = ραβ (5.25)

where nF (ε) = 1
1+exp(βε) is the Fermi function. The Fermi-function has poles at the

imaginary Matsubara frequencies ωn = (2n+1)π
β

and has the following representation,

nF (ε) = 1
β

∑
n

eiωn0+

iωn − ε
(5.26)

We now focus on the construction of the model spectral functions which will be used
to construct the Green’s function. The spectral function provides information about
the poles and their respective weights, of the Green’s function. For an occupation f ,
provided that their exist a set of N poles at {Ai(f)}Ni=1, and their respective weights
{Pi(f)}Ni=1, the spectral function has the following form,

Aαβ(ε) =
∑
n

〈χα|φn〉〈φn|χβ〉
N∑
i=1

Pi(fn)δ (ε− Ai(fn)) (5.27)

where |φn〉 are the natural orbitals and fn are the occupations, obtained from the
eigen-representation of the one-particle reduced density matrix ρ.

Using the representation in Eq. (5.27), it can be shown that for the spectral
function to satisfy the properties of Eq. (5.25), the weights and the poles need to
satisfy the constraints,

N∑
i=1

Pi(f) = 1
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N∑
i=1

Pi(f) nF (Ai(f)) = f (5.28)

This particular representation of spectral function in Eq. (5.27) is the most appro-
priate when it comes to the practical usage. It provides a systematic way to manage
the complexity by allowing flexibility in the decision to limit the number of poles.
To this direction one proceed towards the construction of minimal models which can
reproduce the given number of poles.

5.3.1 Single-pole approximation
In this section we construct the most trivial spectral function. We consider that for
a given occupation f , there exists one pole which has the form,

A(f) = 1
β

ln
(

1− f
f

)
(5.29)

and by default the weight of this pole is one. Using the fact that nF [A(f)] = f ,
this pole satisfies the constraints of Eq. (5.28). The spectral function A(ε) has the
following form,

Aαβ(ε) =
∑
n

〈χα|φn〉〈φn|χβ〉δ
(
ε− 1

β
ln
(

1− fn
fn

))
(5.30)

and the model Green’s function is nothing but the non-interacting Green’s function
Ḡαβ(iων) in Eq. (5.1), which in the eigen-representation of ρ, has the form,

Ḡαβ(iων) =
∑
n

〈χα|φn〉
1

iων − 1
β

ln
(

1−fn
fn

)〈φn|χβ〉 (5.31)

This particluar form of the Green’s function poses a serious problem in the per-
turbation theory for the evaluation of Luttinger-Ward functional. To understand
the breakdown, let us consider the behavior of second order diagram in the series of
perturbation expansion of Luttinger-Ward functional.

Using the Green’s function of Eq. (5.31), the Matsubara sum over fermionic fre-
quencies in the evaluation of polarization tensor of Eq. (5.10) can be performed
analytically and attains the following form,

χab,cd(iνn) =
∑
mn

〈χa|φm〉〈φm|χb〉〈χc|φn〉〈φn|χd〉
nF [A(fn)]− nF [A(fm)]
iνn + A(fn)− A(fm) (5.32)

As evident from the approximate form of Luttinger-Ward functional described in
Sec. 5.2, one needs to perform the bosonic Matsubara frequency sum which also
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includes the zero frequency. At νn = 0, in the limit A(fn) − A(fm) → 0, the
polarization is proportional to,

∼ βnF [A(f)] (nF [A(f)]− 1) (5.33)

In the limit of large β i.e. at small temperatures, the pole collapse at the Fermi level
i.e. A(f) ∼ 0 and therefore the Fermi function nF [A(f)] ∼ 1

2 . Therefore the zeroth
frequency contribution becomes proportional to β, which leads to breakdown of the
series in low temperature regime.

The physical argument behind this breakdown of the perturbation expansion is
that in the limit of T = 0, the poles of the Green’s function fall at the Fermi level and
thereby leading to a system with zero band width D. Therefore any perturbation of
Luttinger-Ward functional in U/D for the model Green’s function given by Eq.(5.31)
is bound to fail. This particular model of the Green’s function can only be used
in high temperature regime, where the thermal fluctuations will be stronger than
any correlation effects. This makes it un-interesting for the electronic system with
strong correlation effects.

5.3.2 Two-pole approximation

The best way to move forward is to construct the poles in such a way, that it avoids
the collapse to Fermi level. To this direction, we consider, for a given occupations
two poles which does not fall at the Fermi level in the low temperature regime. This
requires to search for the minimal model which can enable us to construct two poles
with the required property.

The simplest prototype model which works for our purpose is the Hubbard atom.
The Hubbard atom is a quantum impurity which has two energy levels εa and εb
and and the two electrons on the impurity repel each other via Coulomb repulsion
∆. The Hamiltonian for this impurity problem has the form,

Himp. = εa ĉ
†
aĉa + εb ĉ

†
bĉb + ∆ ĉ†aĉaĉ

†
bĉb (5.34)

The single particle Green’s function which has the form,

Gij(iωn) = −
∫ β

0
dτeiωnτ

Tr
(
e−βHimp ĉi (τ)ĉ†j(0)

)
Tr
(
e−βHimp

) (5.35)

can be evaluated analytically. For the single impurity it can be shown that off-
diagonal elements of the Green’s function are zero. The diagonal element Gaa on the

94



5.3 Model Green’s function

other hand has the form,

Gaa(iωn) = P (εa; εb,∆)
iωn − (εa − µ) + 1− P (εa; εb,∆)

iωn − (εa + ∆− µ)

P (εa; εb,∆) = 1 + e−β(εa−µ)

1 + e−β(εa−µ) + e−β(εb−µ) (1 + e−β(εa+∆−µ)) (5.36)

The Green’s function has two poles situated at εa and εa + ∆ with P (εa; εb,∆) and
1− P (εa; εb,∆) as their respective weights.

The constraint equations of Eq. (5.28), attains a simple form,

f = P (εa; εb,∆)
1 + eβ(εa−µ) + 1− P (εa; εb,∆)

1 + eβ(εa+∆−µ) (5.37)

The Eq. (5.37) needs to be inverted to obtain pole εa as a function of the occupation
f . However, there exist freedom on the choice of second energy level εb.

Case of εa = εb

The most obvious choice for the second energy level εb, is εb = εa. The constraint
Eq. (5.37) can be inverted and the two poles (εa and εa + ∆) and their respective
weights attains the following form,

P1(f) = 1− f = 1− P2(f)

A1(f) = εa = µ+ 1
β

log
1− 2f +

√
((1− 2f)2 + 4f(1− f)e−β∆)

2f


A2(f) = A1(f) + ∆ (5.38)

We are in a position to analyze the behavior of two poles at low temperatures or
large β. For a finite value of interaction ∆, and assuming 2fn(1−fn)e−β∆

(1−2fn)2 ∼ 0, which
is valid for f 6= 0, we expand the square root in Eq. (5.38) to first order and obtain,

A1(f) = µ+ 1
β

log

(1− 2f) + |1− 2f |
(
1 + 2f(1−f)e−β∆

(1−2f)2

)
2f

 (5.39)

The two poles now has the following form,

A1 =


1
β

log
[

1−2f
f

]
for f < 1

2

−∆
2 for f = 1

2
1
β

log
[

1−f
|1−2f |

]
−∆ for f > 1

2
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Figure 5.6: Position of poles A1(f) (dashed line) and A2(f) (solid line) as a function
of occupation. The value of onsite interaction is ∆ = 0.25 and the inverse
temperature is β = 100. The two poles are always separated by ∆ at any
given occupation.

A2 =


1
β

log
[

1−2f
f

]
+ ∆ for f < 1

2
∆
2 for f = 1

2
1
β

log
[

1−f
|1−2f |

]
for f > 1

2

(5.40)

As evident from Fig. 5.6, one of the two poles fall are at the Fermi level for all
occupations except at f = 1

2 . The most evident choice of εb, leads to a pole structure
which does not serve our purpose.

Case of εb = µ−∆/2

In this attempt, the energy level εb is placed at half the interaction strength ∆ below
the Fermi level i.e. εb = µ− ∆

2 . With this choice of εb, the solution for the poles and
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Figure 5.7: Position of poles A1(f) (dashed line) and A2(f) (solid line) as a function
of occupation. The position of energy level εb of Eq.(5.34) has been set to
εb = µ − ∆

2 . The value of onsite interaction is ∆ = 0.25 and the inverse
temperature is β = 100. The two poles are always separated by ∆ at any
given occupation.

their respective weights in Eq. (5.37), has the form,

P (f) = f + (1− f) eβ∆
2

1 + eβ∆
2

A1(f) = µ+ 1
β

ln
(

1− f
f

)
− ∆

2

A2(f) = µ+ 1
β

ln
(

1− f
f

)
+ ∆

2 (5.41)

In Fig. 5.7, the position of two poles are plotted as a function of occupation. As
evident, at low temperatures the two poles don’t collapse at the Fermi level. They
are always separated by interaction ∆. This particular model of the Green’s func-
tion helps to avoid the polarization catastrophe in the perturbative expansion of
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Luttinger-Ward functional. We will test this model Green’s function in the evalua-
tion of density matrix functional and will further test its quality by benchmarking
against the results obtained from state of the art parametrized density matrix func-
tionals.

5.4 Performance of the density matrix functional
This section will be devoted to the quality of approximate density matrix functional
suggested in Eq. (5.6), along with the model Green’s function proposed in Sec. 5.3.2.
To keep the discussion in this chapter self-contained, we reiterate the definition of
the grand canonical potential. For a many-particle system, the grand-canonical
potential is expressed with the help of the density-matrix functional F Ŵ

β [ρ] as

Ωĥ+Ŵ
β,µ = min

fn∈[0,1],|φn〉

∑
n

fn〈φn|ĥ|φn〉 − µ
∑
n

fn + F Ŵβ

[∑
n

fn|φn〉〈φn|
]

−
∑
mn

Λmn (〈φn|φm〉 − δmn)

 (5.42)

where ĥ = ∑
α,β |χα〉hα,β〈χβ|.

The reduced density-matrix functional F Ŵ
β [ρ] which will be used in the evaluation

of the grand-canonical potential is given by Eq. (5.6). The chemical potential µ is a
Lagrange multiplier that constrains the electron number to N . Λmn are the Lagrange
multipliers which enforce the orthogonality of the natural orbitals |φm〉.

The density matrix functional F Ŵ
β [ρ] in Eq. (5.6), has an algebraic form for a given

model Green’s function. The corresponding spectral function A(ε) is given in terms
of poles and weights as described in Eq. (5.41). The optimization in Eq. (5.42),
is done in the Car-Parinello spirit using a fictitious Lagrangian as described in
Chapter. 3 and to guarantee the unbiased implementation, the method in Sec. 4.3
of Chapter. 4 is used.

As usual, the Hubbard dimer (See Sec. 2.7.1) will be used as a test system to
study the quality of approximate density matrix functional.

5.4.1 Approximate density matrix functional
The density matrix functional in Eq. (5.6), requires the evaluation of the Luttinger-
Ward functional. In this section we will approximate the Luttinger-Ward functional
through some of the important diagrams of Sec. 5.2, namely the Hartree-Fock and
higher order diagrams.

The model Green’s function to be used for the evaluation of these diagrams has
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the form,

Gαβ(iων) =
∑
n

〈χα|φn〉
2∑
i=1

Pi(fn)
iων − Ai(fn)〈φn|χβ〉 (5.43)

where the position of the poles Ai and their respective weights Pi are given by
Eq. (5.41).

As evident from Sec. 5.2, beyond the Hartree-Fock approximation, the evaluation
of the higher order approximations for the Luttinger-Ward functional requires the
knowledge of the polarization tensor χ . The fermionic Matsubara frequency sum
in the evaluation of evaluation of polarization tensor in Eq. (5.10) can be performed
analytically for the model Green’s function of Eq. (5.43). The polarization tensor χ
attains a simple form,

χab,cd(iνn) =
∑
mn

〈χa|φm〉〈φm|χb〉〈χc|φn〉〈φn|χd〉P(fm, fn)

P(fm, fn) =
N∑

i,j=1
Pi(fm)Pj(fn)nF [Aj(fn)]− nF [Ai(fm)]

iνn + Aj(fn)− Ai(fm)
(5.44)

where P(fm, fn) is the polarization coefficient which depends solely on the occu-
pations fm. The polarization tensor appears implicitly in the evaluation of the
Luttinger-Ward functional Φapprox

β [G[ρ], Ŵ ] (See Sec. 5.2) and therefore leads to its
dependence on the occupations and the natural orbitals. Here Φapprox

β [G[ρ], Ŵ ] is
the correction to the Luttinger-Ward functional beyond the Hartree-Fock approxi-
mation.

The approximate density-matrix functional, therefore can be represented in the
eigen-representation of one-particle density matrix ρ, as

F Ŵ
β [
∑
n

fn|φn〉〈φn|] = 1
β

∑
n

[
fn ln(fn) + (1− fn) ln(1− fn)

]
+ 1

2
∑
αβγδ

(Wαβ,δγ −Wαβ,γδ)
∑
mn

fmfn〈χδ|φm〉〈φm|χα〉〈χγ|φn〉〈φn|χβ〉

+ Φapprox
β [G[ρ], Ŵ ]

− 1
β

∑
ωn

∑
m

− ln
[(
iωn −

1
β

ln
(

1− fm
fm

)) 2∑
i=1

Pi(fm)
iωn − Ai(fm)

]

+
(
iωn −

1
β

ln
(

1− fm
fm

)) 2∑
i=1

Pi(fm)
iωn − Ai(fm) − 1

 (5.45)

The sum over fermionic and bosonic Matsubara frequencies in Eq. (5.45) is per-
formed numerically, employing the regularization technique as discussed in Sec . 5.2.4
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Figure 5.8: The ground-state energy for the half-filled Hubbard dimer as a function of in-
teraction strength U/t for different approximations of density-matrix function-
als. Solid line: exact ground state energy. Solid square: Hartree-Fock density
matrix functional. Crosses: power-functional with α = 0.53. Solid circles: ap-
proximate density matrix functional of Eq. (5.45) with ∆/t = 1.8. Open circles:
Approximate density matrix functional of Eq. (5.45) with ∆/t = 0.8. Solid
triangles: approximate density matrix functional of Eq. (5.45) with ∆/t = 0.2.
The value of inverse temperature is β = 1000

5.4.2 Results

With the given form of the density-matrix functional in Eq. (5.45), the grand-
canonical potential is evaluated from Eq. (5.42), for the Hubbard dimer at half-
filling. One important point to note is that the approximate density-matrix func-
tional depends parametrically on pole separation ∆ through its dependence on the
poles position Ai. In this section, the results for the grand-canonical potential will
be examined for different values of ∆. The consistent procedure to fix the value of
∆ will be discussed later.
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Case of Φapprox
β [G[ρ], Ŵ ] = Φ(2)

β [G[ρ], Ŵ ]

In this section we consider only the second-order diagrams for the approximate
Luttinger-Ward functional i.e. Φapprox

β [G[ρ], Ŵ ] = Φ(2)
β [G[ρ], Ŵ ] and use it to eval-

uate the approximate density matrix functional of Eq. (5.45).
In Fig. 5.8, the grand-canonical potential for the Hubbard dimer is plotted as

a function of the interaction strength U . Hartree-Fock and the power functional
(α = 0.53) overestimates the grand potential. The energies however obtained from
the approximate density-matrix functional of Eq. (5.45) with Φapprox

β [G[ρ], Ŵ ] =
Φ(2)
β [G[ρ], Ŵ ], are underestimated. It is also noticeable from Fig. 5.8, that by in-

creasing the pole-separation ∆, the approximate density-matrix functional leads to
better estimation of the grand potential.

Also perceptible from Fig. 5.8, is the fact that for small pole-separations, the
deviation from the exact solution, starts at very small values of interaction strength
U . The deviation can be pushed towards larger values of interaction strength by
increasing the pole-separation. This behavior can indeed be understood from the fact
that the small pole-separation leads to a Green’s function which bears resemblance
to the single-pole approximant, and therefore leads to polarization catastrophe as
discussed in Sec. 5.3.1. The breakdown of the second-order perturbation theory can
however be postponed to larger values of the interaction strength by increasing the
pole-separation.

Derivative discontinuity at half-filling
As discussed in Sec. 4.6, the quality of an approximate density-matrix functional
depends on how well it can reproduce the derivative discontinuity. The derivative
discontinuity provides an estimation of the fundamental band gap. In Fig. 5.9,
the chemical potential µ(N) = 1

t
∂E(N)
∂N

at half-filling is plotted as a function of the
particle number. The exact solution has a jump at N = 2 (half-filling).

The Müller and the power functional (α = 0.53) fails to reproduce the derivative
discontinuity. The Hartree-Fock on the other hand under-estimate the band-gap
for U = 2.5t, while it gives a very good estimation of band-gap for U = 3t. In
Fig. 4.12, calculations for U=5t shows that Hartree-Fock functional over-estimates
the band-gap.

Our proposed approximate density-matrix functional of Eq. (5.45) with the Luttinger-
Ward functional approximated by the second order diagram i.e. Φapprox

β [G[ρ], Ŵ ] =
Φ(2)
β [G[ρ], Ŵ ], fails to reproduce the derivative discontinuity. It nevertheless pro-

duces a smoothened derivative discontinuity (the chemical potential undergoes a
continuous transition between two linear functions). Thereby, using the extrapola-
tion method proposed by Sharma etal. [53], one can estimate the band-gap.

Using the extrapolation method, Müller functional still leads to a vanishing band-
gap. As discussed in Chapter 4, the power functional (α = 0.53) leads to a finite
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Figure 5.9: Chemical potential µ(N) of the Hubbard dimer with U = 2.5t (left panel) and
U = 3t (right panel) in units of the hopping parameter t as function of particle
number N . Solid line: exact solution, solid squares: Hartree-Fock approxima-
tion, open circles: power functional with α = 0.53, crosses: Müller functional,
solid circles: approximate density-matrix functional of Eq. (5.45).The value of
inverse temperature is β = 1000 and the value of pole separation is ∆ = 1.8.

band-gap only in the anti-ferromagnetic regime. The chosen value of the interaction
strength (U = 2.5t and U = 3t) in Fig. 5.9 is lower than the critical value of
the interaction Uc ∼ 6t, beyond which power functional (α = 0.53) produces anti-
ferromagnetic ground-state. This explains the absence of any smoothened derivative
discontinuity in case of the power functional in Fig. 5.9.

On the other hand, using the extrapolation method, the approximate density-
matrix functional of Eq. (5.45) will lead to a band-gap smaller than the exact value.

Case of Φapprox
β [G[ρ], Ŵ ] = Φ(2)

β [G[ρ], Ŵ ] + ΦRPA-PH
β [G[ρ], Ŵ ] + ΦRPA-PP

β [G[ρ], Ŵ ]

The next logical step to move ahead with the approximate density matrix functional
in Eq. (5.45), is to improve on the approximation for the Luttinger-Ward functional
Φapprox
β [G[ρ], Ŵ ] i.e. to move beyond the second order in perturbation theory. As

stated in Sec. 5.2, the most prominent way to include higher order diagrams is to
select a class of diagrams which can be summed to an infinite order. One such class
of diagrams forms the random-phase-approximation (RPA) series with the particle-
hole and particle-particle channel as discussed in Sec. 5.2.3.

In Fig. 5.10, the energies obtained from the different approximations for the
Luttinger-Ward functional are plotted as a function of the interaction strength U .
It is evident from Fig. 5.10, that the inclusion of higher order series like RPA-PH
and RPA-PP does not improve the estimation of energy for the half-filled Hub-
bard dimer. RPA-PH and RPA-PP series breaks down at even smaller values of
interaction strength compared to the second-order approximation.

It seems from the findings that the second-order approximation to the Luttinger-
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Ward functional performs better than the partial summations of certain classes of
diagrams like RPA-PH and RPA-PP.
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Figure 5.10: The ground-state energy for the half-filled Hubbard dimer as a function
of interaction strength U/t for different approximations of density-matrix
functionals. Solid line: exact ground state energy. Approximate den-
sity matrix functional of Eq. (5.45) with- Solid circles: Φapprox

β [G[ρ], Ŵ ] =
Φ(2)
β [G[ρ]. Crosses: Φapprox

β [G[ρ], Ŵ ] = Φ(2)
β [G[ρ+ ΦRPA-PH

β [G[ρ]. Open cir-
cles: Φapprox

β [G[ρ], Ŵ ] = Φ(2)
β [G[ρ + ΦRPA-PH

β [G[ρ] + ΦRPA-PP
β [G[ρ] . The

value of inverse temperature is β = 1000 and the poles separation is ∆ = 1.8.

5.4.3 Consistent way to fix ∆
In the previous section, the calculations for the grand-canonical potential were per-
formed for a fixed value of the pole-separation ∆. It was found that by increasing
the value of ∆, the breakdown of the perturbation theory can be postponed towards
larger values of the interaction strength. The parameter ∆, was in a way chosen
arbitrarily.
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Figure 5.11: The ground-state energy for the half-filled (left panel) and quarter-filled
(right panel) Hubbard dimer as a function of pole-separation ∆/t for dif-
ferent values of interaction strength U/t. Dashed line: exact ground state
energy. solid lines with symbols: energy from the approximate density ma-
trix functional of Eq. (5.45). The value of inverse temperature is β = 1000.

In this section, we propose a consistent way to fix the value of ∆ for the cal-
culations. As evident from Fig. 5.11, the pole-separation ∆ cannot be increased
arbitrarily to larger values, as the deviation from exact value starts to increase.

For the Hubbard dimer at quarter and half-filling, the energy obtained from the
approximate density-matrix functional of Eq. (5.45) as a function of pole-separation
∆ is concave. At the maxima, the deviation from the exact ground-state energy is
the least, as shown in Fig. 5.11.

This behavior of grand-canonical potential as a function of pole-separation ∆ pro-
vides a lead towards a consistent way to fix the value of ∆. Beside the minimization
in Eq. (5.42), one also needs to perform a stationary point search in the space of
pole-separation ∆.

Also evident from Fig. 5.11, that the second-order approximation to Luttinger-
Ward functional provides a good estimate of energy at half-filling in the given range
of interaction strength U . At quarter-filling, the approximation provides a good
estimate only for the smaller values of the interaction strength.

5.5 Summary
In this chapter, we presented the first results for an approximate density matrix
functional constructed in a controlled way from an exact relation with the Luttinger-
Ward functional [48]. The framework for this approximate scheme involves approx-
imation at two different levels. The first set of approximation comes in through
the construction or search for a reasonable model Green’s function which helps in
capturing the essential physics. The second set of approximation lies in the evalua-
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tion of the Luttinger-Ward functional for the given model Green’s function, which
is done through a perturbative approach.

The search for minimalistic model Green’s function is done through physical rea-
soning. Once the Green’s function is chosen, it leads to an extreme simplification
where one can avoid a computationally demanding stationary point search in the
space of Green’s function and self-energy.

We first discussed the most simple single-pole approximation for the model Green’s
function and demonstrated that it leads to a polarization catastrophe. The reason
for such catastrophe was the peculiar property of the pole of the Green’s function
which in the low temperature regime collapses to the Fermi level. This collapse of
the pole to the Fermi energy leads to vanishing band-width and therefore any finite
interaction strength U leads to the breakdown of perturbation theory.

Learning from the failure of the single-pole approximation for the model Green’s
function, it became evident that one needs atleast two poles which repel each other
and are situated away from the Fermi level at low temperatures for any given value
of occupations. We constructed one such model Green’s function which obeys the
density matrix constraint and its two poles avoid any such collapse to the Fermi level.
This simplest two-pole model Green’s function fixes the problem of the polarization
catastrophe.

With the minimal two-pole model for the Green’s function, we evaluated the ap-
proximate density matrix functional using different approximations for the Luttinger-
Ward functional. The approximate density matrix functional was used to study the
Hubbard dimer. It was demonstrated that the second order approximation to the
Luttinger-Ward functional provides a good estimate of the ground-state energy at
half-filling. It also leads to a smoothened derivative discontinuity at half-filling. The
extrapolation method provides a quantitative estimate of the fundamental band-gap
and it was observed that our approximate density matrix functional underestimates
the band-gap. In terms of the energy and the band-gap, our approximate functional
performs better than the power and Müller functional, which leads to a vanishing
band-gap. It however suffers from the breakdown of the perturbation theory be-
yond a certain limit of the interaction strength. Higher order approximation to the
Luttinger-Ward functional are also discussed and were not found to perform better
than the second-order approximation.
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6 Conclusion and Outlook
The broader perspective of this thesis is to present reduced density matrix func-
tional theory (rDMFT) as a useful framework for the rigorous formulation of hybrid
theories like LDA+U [36], DFT-plus-Gutzwiller approximation[40], DFT+DMFT
[12].

It has already been established that rDMFT can make contact with many-particle
wavefunction and the Green’s function based approaches [7, 48]. The exact relation
between rDMFT to the many-particle wave functions was established by Levy’s
constrained search algorithm [7] and recently efforts have been made to construct
controlled approximation [47] by using the exact link. In 2013, Blöchl et al. [48],
provided an exact link between rDMFT and the many-body perturbation theory
through Green’s function and Luttinger-Ward functional [49].

However for decades, the development in the field of rDMFT did not proceed in the
direction of providing controlled approximations based on exact relations mentioned
above. Rather, it concentrated on searching for model density matrix functionals
which can capture the essential physical effects while having an algebraic dependence
of the energy on the one-particle reduced density matrix.

The significant aspect that came to the forefront from the work presented in
this thesis was the necessity to put effort in building controlled approximations
on theories which make exact contact with the many-particle description of the
electronic system.

The two key issues that we address in this thesis are the following,

1. Performance of a class of state-of-the-art reduced density matrix functionals
namely the Hartree-Fock, Müller [50, 51] and the power functional [53].

2. Efficient framework for an approximate scheme, built on the exact relation
between density-matrix functional and the Luttinger-Ward functional [48]

The basic machinery required at the very onset of addressing the above mentioned
issues are the model systems and the optimization schemes.

We use simple model systems like the Hubbard dimer, Hubbard chains and rings
as the benchmark systems. For most cases we used Hubbard dimer as a test system
because the large interaction limit U →∞, describes the bond dissociation limit of
the hydrogen molecule and the most prominent failure of the density functionals oc-
curs during the bond dissociation. This simple system captures the essential features
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of the correlation effects present in a chemical bond. We emphasize particularly on
the left-right correlation, which is a dominant correlation effect in the dissociation
problem and which is not captured easily by density functionals [28].

An unbiased optimization scheme in the spirit of Car-Parinello was employed to
optimize the natural orbitals and the occupations and more importantly it allows for
non-collinear spin polarized states. This strategy grants flexibility in bringing out
the potential flaws of the density matrix functionals when studying the electronic
properties of real materials.

Equipped with the basic machinery, we first benchmark a class of state of the art
density matrix functionals namely the Hartree-Fock, Müller [50, 51] and the power
functional [53].

With the knowledge of the exact solution for a half-filled Hubbard dimer, we
started studying the Hartree-Fock functional for the Hubbard model[44, 45, 46].
The Hartree-Fock functional is analogous to hybrid density functionals[23], which
admix a portion of exact exchange to the exchange-correlation energy. Our results
[56] showed that the Hartree-Fock functional leads to an anti-ferromagnetic state
with non-vanishing local moments. The transition to an anti-ferromagnetic state
is abrupt in the Hartree-Fock case, unlike a smooth and continuous build up to
anti-ferromagnetic correlations in the exact scenario.

The Müller functional [50] on the other hand leads to a one-dimensional manifold
[56] of ferromagnetic solutions which are degenerate with the exact non-magnetic
solution. This degeneracy leads to an infinite magnetic susceptibility in contrast to
vanishing zero-temperature susceptibility of the exact solution.

This suggests that extreme care need to be taken when performing large scale
electronic structure calculations with Müller functional, as it has the potential to
produce incorrect magnetic properties.

The power functional [53], which interpolates between Müller and the Hartree-
Fock functional produces Müller like solutions at small interaction strength. Of the
one-dimensional manifold, power functional leads to states with maximal ferromag-
netic moment. At large interaction, the solution is a non-collinear anti-ferromagnet.
The transition to an anti-ferromagnetic state occurs at critical interaction strength
Uc(α), which falls off rapidly from Uc(α = 1

2) =∞ in case of Müller to Uc(α = 1) = 2t
for the Hartree-Fock. These problems of artificial magnetic transition and infinite
magnetic susceptibility were also shown [56] to persist in extended systems like
Hubbard rings and systems with non-local Coulomb interactions.

Besides the problem of bond-dissociation, we [56] also investigated the issue of
derivative discontinuity [94, 28]. The derivative discontinuity also gives an estimate
of the fundamental band-gap. The Müller functional [50] leads to a metal like be-
havior as it describes the Hubbard dimer with a vanishing band gap. The power
functional [53] also lacks derivative discontinuity. However in non-collinear calcu-
lations, in the anti-ferromagnetic regime, the chemical potential obtained with the
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power functional undergoes a continuous transition between two linear functions of
the particle number. The offset between the linear functions can be exploited to
extract the band-gap [53, 91, 95, 89, 90]. We demonstrated [56] that the band gap
obtained from this method can be tuned from zero to the Hartree-Fock result, by
changing the parameter α of the power functional. In non-magnetic calculations,
the band-gap opens up at larger values of the parameter α, than in the magnetic
calculations.

The tunability of the band gap is similar to other methods such as LDA+U [36]
and hybrid density functionals [23]. However, the latter methods exhibit a true
derivative discontinuity and their band gap does not shrink below the Kohn-Sham
band gap, which is analogous to the non-interacting band gap of the Hubbard dimer.

Our findings [56] demonstrate the necessity to look for approaches which make
direct contact with the many-particle description of the electronic system. To this
direction, we presented in Chapter 5, a promising approximate scheme, built on the
exact relation between density-matrix functional and the Luttinger-Ward functional
[48] .

In Chapter 5, we present a two level approximate scheme which starts with con-
structing an approximate model Green’s function that obeys the density matrix
constraint. This eliminates the computationally demanding stationary point search
in the space of Green’s function and the self-energy. The second approximation is
in the perturbative expansion of the Luttinger-Ward functional [49].

While searching for an approximate model Green’s function, we arrived at a min-
imal two-pole model Green’s function. The two-pole model Green’s function elimi-
nates the polarization catastrophe problem present for the single-pole approximation
of the Green’s function.

With the second-order approximation of the Luttinger-Ward functional evaluated
for the two-pole model Green’s function, our approximate density matrix functional
provides a good estimate of the ground state energy of the Hubbard dimer at half-
filling for small to intermediate interactions U ∼ 3t. For interaction strength larger
than 3t leads to the breakdown of second-order perturbation theory. Our approxi-
mate density matrix functional also produces a smoothened derivative discontinuity
in the permissible range of interactions where the Müller and the power functional
leads to a vanishing band-gap. Higher order approximations to the Luttinger-Ward
functional like the random-phase-approximation (RPA) surprisingly do not improve
the ground state energy.

The development of approximations through the Green’s function based method
is not yet complete. It is an ongoing project that needs more careful study to ana-
lyze and improve on the current form of the approximate density matrix functional
provided in Chapter 5. From the current status of the approximate density-matrix
functional, there are still certain open questions that need to be addressed. The most
pertinent one is the comparison of the performance of random-phase-approximation
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with the second-order approximation to the Luttinger-Ward functional. This might
also require the comparison of the exact Green’s function for the Hubbard dimer with
the two-pole model Green’s function evaluated from the ground-state one-particle
density matrix obtained from the approximate density-matrix functional presented
in Chapter 5.

To improve on the approximation of the density-matrix functional, we need a
proper understanding of the higher order approximations of the Luttinger-Ward
functional obtained from partial summations of a specific class of diagrams (RPA
etc). Once it has been accomplished, we can consider better and more sophisticated
models for the Green’s function.

We believe that the approximate density matrix functional presented in Chapter
5, can be a good starting point to study materials with weak to intermediate corre-
lations. The development in this direction is still under progress and there is lot of
room for the improvement.
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A Evaluation of derivative matrix D

The derivative matrix D = ∂E
∂ρ

is one of the important entity in the Car-Parinello
simulations (See. Chapter. 3). The energy functional is generally evaluated in the
eigen representation of the one-particle density matrix ρ and therefore the deriva-
tives are available with respect to occupations and the natural orbitals.

To obtain the derivatives with respect to ρ, we evaluate the first order variation
in occupation and natural orbital with a first order change in the density matrix.
To this effect we write the eigen decomposition of ρ as,

f = U †ρU (A.1)

where f is a diagonal matrix whose elements are the occupations fn and U is a
unitary matrix which contains the natural orbitals |φn〉 as its columns.

The first order variation of Eq. A.1 has the form

df = dU †ρU +U †dρU +U †ρdU (A.2)

Using the fact that the matrix U is a unitary matrix and hence d(U †U) = 0, we
can rewrite Eq. A.2 as

df + (U †dU )f − fU †dU = U †dρU (A.3)

Comparing the diagonal and non-diagonal elements on both sides of Eq. A.3 we
obtain,

dfi =
(
U †dρU

)
ii

(U †dU)ij =

(
U †dρU

)
ij

fj − fi
(A.4)

and therefore the first order variation of the occupation and natural orbitals has the
form,

dfi =
(
U †dρU

)
ii

dU ij =
∑
k 6=j

Uik

(
U †dρU

)
kj

fj − fk
(A.5)
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A Evaluation of derivative matrix D

The first order deviation of the natural orbital assume that the eigenvalues of density
matrix i.e. the occupations are non-degenerate. However it can be shown without
loss of generality that even in the case of degenrate occupations, the first order
correction to natural orbitals is given by Eq. A.5 with sum over non-degenerate
states only.

The first order variation of energy functional has the form,

dE =
∑
i

∂E

∂fi
dfi +

∑
ij

∂E

∂Uij
dUij +

∑
ij

∂E

∂U∗ij
dU∗ij

=
∑
i

∂E

∂fi

(
U †dρU

)
ii

+
∑
ij

∂E

∂Uij

∑
k 6=j

Uik

(
U †dρU

)
kj

fj − fk

+
∑
ij

∂E

∂U∗ij

∑
k 6=j

Uik

(
U †dρU

)
kj

fj − fk


∗

=
∑
mn

∑
k 6=j

Umk
1

fj − fk
∑
i

(
∂E

∂Uij
Uik −

∂E

∂U∗ik
U∗ij

)
Unj +

∑
i

∂E

∂fi
U∗miUni

 dρmn
(A.6)

Thus once the derivatives of energy functional with respect to occupations and
natural orbitals are available we can evaluate the elements of derivative matrix
Dnm = ∂E

∂ρmn
using the transformation given in Eq. A.6 as,

Dnm =
∑
k 6=j

Umk
1

fj − fk
∑
i

(
∂E

∂Uij
Uik −

∂E

∂U∗ik
U∗ij

)
Unj +

∑
i

∂E

∂fi
U∗miUni (A.7)

The derivative matrix D is a central entity to the Car-Parinello simulations and it
needs to be evaluated efficiently.
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The evaluation of grand-canonical potential as,

Ωĥ+Ŵ
β = min

fn∈[0,1],|φn〉

∑
n

fn〈φn|ĥ|φn〉 − µ
∑
n

fn + F Ŵβ

[∑
n

fn|φn〉〈φn|
]

−
∑
mn

Λmn (〈φn|φm〉 − δmn)

 (B.1)

is a constrained optimization problem. As shown in Chapter. 3, to fulfill the con-
straint of orthogonalization of natural orbitals in each time step, one needs to solve
iteratively, a non-linear set of matrix equations. An efficient rDMFT driver, based
on Car-Parinello optimization has been implemented, which deals with the natural
orbitals constraints efficiently.

We also use efficient multi-dimensional minimization solvers available in numerical
libraries like GNU Scientific Library (GSL) [103] and NLopt [104] . These libraries
consists of solvers based on efficient minimization algorithms like steepest descent al-
gorithm, quasi-Newton method like BFGS algorithm (Broyden- Fletcher- Goldfarb-
Shanno), Fletcher-Reeves conjugate gradient algorithms, Simplex algorithm etc.

These solvers are used to carry out unconstrained optimization in a multi-dimensional
space. To make an efficient use these solvers, we need to to reframe our problem of
finding the minima of energy functional as described in Eq. B.1. To convert the con-
strained optimization problem of Eq. B.1 to an unconstrained optimization problem
we have to get rid of the orthonormality constraint of the natural orbitals.

Using the fact that the matrix U is a unitary matrix i.e. U †U = 1, it can can
parametrized by a set of real parameters ([105, 106]).

The parametrization relies on the existence of Euler angle parametrization of
representations of SU(N) algebra. The linear independent set of N2 − 1 traceless
hermitean matrices λi forms a representation of SU(N) Lie algebra, and has the
form [106],

[λi,λj] = 2ifijkλk

fijk = 1
4iTr ([[λi,λj]λk]) (B.2)

where [, ] is the commutator and fijk are the structure constants.
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It was shown by Tilma et.al [106], that any unitary matrix of dimension N can
be parametrized using N2 − 1 real parameters {αi} as,

U =
∏

N≥m≥2

 ∏
2≤k≤m

A(k, j(m))


×eλ3αN2−(N−1) ...eλ(N−1)2−1αN2−2eλN2−1αN2−1

A(k, j(m)) = eλ3α2k−3+j(m)eλ(k−1)2+1α2k−2+j(m)

j(m) =


0, for m = N∑
0≤l≤N−m−1

2(m+ l), for m 6= N (B.3)

By construction it is evident that U is hermitean. It is also evident from Eq. (B.3)
that not all λ matrices appear in the expression. The recipe for constructing impor-
tant λ matrices used in the representation of unitary matrix U is given by Tilma
etal. [106].

For N = 2 the matrices are the simple Pauli matrices which are the representation
for generators of SU(2) algebra. For N > 2, the λ matrices are generated by the
procedure as follows,

λ3 =


1 0 ... 0
0 −1 ... 0
... ... ... ...
0 0 ... 0


N×N

λ(k−1)2+1 =


 0 ... −i
... ... ...
i ... 0


k×k

... 0

0 ... 0


N×N

for k < N

λ(N−1)2+1 =

 0 ... −i
... ... ...
i ... 0


N×N

for k = N

λN2−1 =
√

2
N2 −N


1 0 ... 0
0 1 ... 0
... ... ... ...
0 0 ... −(N − 1)


N×N

(B.4)

This method provides a recipe to parametrize the natural orbitals of an N × N
one-particle reduced density matrix, in terms of N2 − 1 real parameters {αi}N

2−1
i=1 .

The constraints on occupations 0 < fn < 1 can be fulfilled by parametrizing the
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occupations in terms of real parameters xn as,

fn = 1
2 [1− cos(xn)] (B.5)

where xn is a free parameter. Therefore we can write the grand-canonical potential
in Eq. (B.1) as an unconstrained optimization in space of real parameters {αi}N

2−1
i=1

and {xi}Ni=1.
The derivatives of the energy functional are generally available with respect to

occupations {fi}Ni=1 and the natural orbitals i.e. {Uij}Ni,j=1. The unconstrained
minimization orequires derivatives with respect to real parameters {αi}N

2−1
i=1 and

{xi}Ni=1. The energy functional derivatives are transformed as,

∂E

∂xn
= sin(xn)

2
∂E

∂fn

∂E

∂αn
= Tr

(
∂E

∂U

∂U

∂αn
+ ∂E

∂U †
∂U †

∂αn

)
(B.6)

where the matrix ∂U
∂αn

is obtained by systematic differentiation of U in Eq. (B.3)
with respect to αn which requires inserting corresponding iλ matrix at the N -th
position in the product of Eq.(B.3).
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Ward functional

In order to keep the discussion self-contained we discuss the perturbative expansion
of the grand-canonical potential. This discussion can be found in any standard
book of the many-body physics. We however closely follow along the lines of [9].
The ultimate goal of this section is to highlight the non-trivial relation between the
grand-canonical potential and the Luttinger-Ward functional [70].

The grand-canonical potential for the Hamiltonian Ĥ = ĥ+ Ŵ is defined as,

Ωĥ+Ŵ
β = −kBT lnZ

Z = Tr
(
e−β(ĥ+Ŵ−µN )

)
(C.1)

For simplicity of the notation we defined two Hamiltonians K̂ and K̂0 as,

K̂0 = ĥ− µN
K̂ = ĥ+ Ŵ − µN (C.2)

In the interaction picture the time evolution operator Û(τ) for the full Hamiltonian
K̂ has the form,

Û(τ) = eτK̂0e−τK̂ (C.3)

where the equation of motion of the Û(τ) and its formal solution has the form,

dÛ(τ)
dτ

= −Ŵ (τ)Û(τ)

Û(τ) =
∑
n

(−1)n
n!

∫ τ

0
dτ1

∫ τ

0
dτ2...

∫ τ

0
dτn Tτ

(
Ŵ (τ1)Ŵ (τ2)...Ŵ (τn)

)
= Tτ exp

(
−
∫ τ

0
dτ ′ Ŵ (τ ′)

)
(C.4)

where the time ordering operator Tτ orders the operator in decreasing order of time
τ . The partition function Z can be written in terms of time evolution operator Û(τ)
evaluated at imaginary time τ = β, as

Z = Tr
(
e−βK̂0Û(β)

)
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= Tr
(
e−βK̂0

)
〈Û(β)〉0 (C.5)

where the average 〈Û(β)〉0 is taken with the non-interacting density-matrix e−βK̂0 ,
corresponding to the Hamiltonian K̂0 as,

〈Û(β)〉0 =
Tr
(
e−βK̂0Û(β)

)
Tr
(
e−βK̂0

)
=

∑
n

(−1)n
n!

∫ τ

0
dτ1

∫ τ

0
dτ2...

∫ τ

0
dτn 〈Tτ

(
Ŵ (τ1)Ŵ (τ2)...Ŵ (τn)

)
〉0

=
∑
n

(−1)n
2nn!

∑
α1β1γ1δ1

∑
α2β2γ2δ2

...
∑

αnβnγnδn

Wα1β1γ1δ1Wα2β2γ2δ2 ...Wαnβnγnδn∫ τ

0
dτ1

∫ τ

0
dτ2...

∫ τ

0
dτn 〈Tτ

(
ĉ†α1(τ1)ĉ†β1(τ1)ĉδ1(τ1)ĉγ1(τ1)...ĉ†αn(τn)ĉ†βn(τn)ĉδn(τn)ĉγn(τn)

)
〉0

(C.6)

The average with respect to non-interacting density matrix e−βK̂0 , leads to simplicity
for evaluating terms order by order in the expansion of Z in Eq. (C.6). The simplicity
comes from the fact that one can use Wick’s theorem to evaluate each n-th order
term, which simply demands enumeration of all the contractions possible. The
contraction means pairing of all the annihilations with creation operators. Each
contraction corresponds to a non-interacting Green’s function. The n-th order term
in Eq. (C.6), has 2n creation and annihilation operators each. Therefore a total of
(2n)! contractions has to be evaluated for an n-th order term. Each of the (2n)!
terms are represented by distinct diagrams D ∈ Sn. The partition function Z can
be expressed in terms of the diagrams as,

Z = Tr
(
e−βK̂0

)∑
n

∑
D∈Sn

1
2nn!V (D) (C.7)

where the mathematical expression V (D) of the diagram D, can be obtained by
following a set of rules [9] which will be sketched in the following section.

C.1 Rules to evaluate the diagrams
The interaction vertex Wαβ,γδ is given by a wavy line with two incoming and two
outgoing lines. The outgoing lines corresponds to the creation operators ĉ†α and ĉ†β
whereas the incoming lines corresponds to annihilation operators ĉγ and ĉδ

The contraction corresponds to pairing of a creation operator ĉ†αi(τi) from one
interaction vertex, with an annihilation operator ĉαj(τj) of the same or another
interaction vertex. This contraction corresponds to a Green’s function G0

αjαi
(τj −
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τi) represented by a solid directed line with arrow originating from index αi and
terminating at the index αj.

The fourier transformation of the Green’s function as defined in Eq. (2.50), allows
the time integrals in Eq. (C.6) to be performed easily. Since for any interaction
vertex there are two incoming and two outgoing Green’s function lines and each of
these four Green’s function will have τ in common. Therefore the dependence on τ
for any diagram will be of the form,

exp(τ(iωn1 + iωn2 − iωn3 − iωn4)) (C.8)

which when integrated over the range [0, β] leads to a matsubara frequency conser-
vation rule,

iωn1 + iωn2 = iωn3 + iωn4 (C.9)

There the matsubara frequencies at each interaction vertex should be conserved, i.e.
the total frequency associated with Green’s function entering a particular vertex
should be equal to the total frequency associated with outgoing Green’s function
lines.

To sum up all the observations, one sets up a list of rules [9] to evaluate a particluar
diagram, which are listed below.

The evaluation of partition function Z in Eq.(C.7) starts with drawing all distinct
diagrams with n-vertices connected by directed lines. Two diagrams are distinct, if
they cannot be deformed so as to coincide completely. The value V (D) of each
diagram D in a set Sn of (2n)! distinct diagrams is evaluated using following rules,

• For each interaction vertex include,

• Assign a single particle non-interacting Green’s function G0
αjαi

(iωn) to a di-
rected line as,

• Restrict the number of matsubara frequecies iωn, by the conservation theorem
of Eq.(C.9). This in general limits the number of independent matsubara
frequencies. For an n-th order diagram, there are n+1 independent matsubara
frequencies.

• Green’s function lines originating and terminating at the same interaction
vertex leads to an extra factor of eiωn0+ .
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• For each fermionic loop, there is a sign factor of −1. Therefore include an
overall factor of (−1)n+nF

βn
where nF is the number of fermi loops or closed

paths in the diagram.

• Sum over all the orbitals indices α′s and the independent matsubara frequen-
cies.

C.2 Symmetry factors of the diagrams
This section summarizes the discussion about symmetry factors in [9]

The brute-force way of evaluating diagrams is practically impossible, since the
number of diagrams grow dramatically with the order n. For example for the order
n = 3, there are total of 6! = 720 diagrams. Therefore we need some additional
simplification to efficiently account for all the diagrams at a particular order n of
perturbation. It was realized that several distinct diagrams D ∈ Sn have same
numerical value V (D).

To this direction we consider set of transformations on a diagram D ∈ Sn which
leaves the value V (D) of the diagram D invariant. For a general interaction vertex
with the property

Wαβ,γδ = Wβα,δγ (C.10)

there are two types of transformations which leave the value of diagrams invariant.

• Since all the time label τ1, τ2...τn are integrated over, therefore any permutation
of time variables leave the value of diagram invariant. So for n interaction
vertex, there are n! number of such transformations available.

• Exchange of extremities of the interaction vertex also keeps the value of di-
agram invariant, since all the indices of interactions are summed up and the
interchanging the extremities does not change the value of interaction as shown
in Eq.(C.10).

Therefore for each diagram of n-th order, there are 2nn! transformations available
which leave the value of diagram unchanged. Now we consider the action of these
transformations on a diagram D ∈ Sn. Some transformations will transform the
diagram D in a deformation of itself while the rest of transformations will yield a
different diagram but with the same numerical value.

We introduce a symmetry factor of diagram D as S(D) which will be the number
of deformations produced by the transformations. Therefore the number of topologi-
cally equivalent diagrams are 2nn!

S(D) . Therefore the partition function can be rewritten
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in terms of topologically distinct diagrams as,

Z = Tr
(
e−βK̂0

)∑
n

∑
D∈Tn

1
S(D)V (D) (C.11)

where Tn is the set of topologically distinct diagrams with n interaction vertices.

C.3 Linked cluster theorem
The evaluation of the grand potential Ωĥ+Ŵ

β requires taking the logarithm of the
partition function Z and has the form,

Ωĥ+Ŵ
β = Ω0

β −
1
β

ln
∑

n

∑
D∈Sn

1
2nn!V (D)


Ω0
β = − 1

β
ln
[
Tr
(
e−βK̂0

)]
(C.12)

The set Sn in Eq.(C.12) also contain diagrams which have disconnected parts that
are not connected to other part of the diagram through Green’s function line or
the interaction vertex. The value V (D) of diagram D ∈ Sn which has say two
disconnected pieces Da and Db with na and nb interaction vertices respectively such
that n = na + nb, can be written as,

V (D = Da +Db) = V (Da)V (Db) (C.13)

The linked cluster theorem enables us to write the grand potential in terms of
only distinct connected diagrams ([9]) as,

Ωĥ+Ŵ
β = Ω0

β −
1
β

ln
∑

n

∑
D∈Cn

V (D)
S(D)


(C.14)

where Cn is the set of topologically distinct connected diagrams with n interaction
vertices.

C.4 Luttinger Ward functional ΦŴ [G]
Luttinger and Ward in their seminal work [70], derived an expression for the grand
canonical potential in terms of a universal Green’s function functional ΦŴ [G]. They
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defined a quantity Y as,

Y = − 1
β

∑
ωn

Tr

ln
(
−G−1

)
+ Σ(iωn)G(iωn)

+ ΦŴ [G] (C.15)

where G−1 is the interacting Green’s function and Σ is the self-energy defined in the
previous section. The trace of the logarithm of matrix G−1 is obtained by summing
up the logarithm of eigen-values of G−1. The Luttinger Ward functional ΦŴ [G]
is a Green’s function functional which is constructed as a sum of infinite set of
closed, connected skeleton Feynman diagrams. The skeleton diagrams are obtained
by removing the self-energy insertions in the respective diagram. In diagramatic
language, it means that by cutting any two Green’s function lines, the diagram does
not decompose into sub-diagrams.

In terms of diagrams the Luttinger Ward functional ΦŴ [G] has the following
form,

ΦŴ [G] = − 1
β

∑
n

∑
D∈Csn

V (D)
S(D) (C.16)

where Cs
n is the set of skeleton diagrams having n interaction vertices.

The Luttinger Ward functional ΦŴ [G] by its construction follows certain impor-
tant properties,

ΦŴ=0[G] = 0
δΦŴ [G]
δGαβ(iωn) = 1

β
Σβα(iωn) (C.17)

where the first property in Eq.(C.17) states that the Luttinger Ward functional
ΦŴ [G] is a universal functional that depends only on the interaction between the
electrons and not on the external potential. The second property states that the
first order variation of the Luttinger Ward functional ΦŴ [G] with respect to the
Green’s function G provides the self-energy of the interacting fermions.

Using the following properties of ΦŴ [G], Luttinger and Ward proved that the
quantity Y in Eq.(C.15) is equal to the grand potential Ωĥ+Ŵ

β and is stationary
with respect to the self-energy i.e.,

Y = Ωĥ+Ŵ
β

∂Y

∂Σαβ(iωn) = 0 (C.18)
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C.4 Luttinger Ward functional ΦŴ [G]

The stationarity condition in Eq.(C.18), leads to the celebrated Dyson equation,

G(iωn) = 1
(iωn + µ)1− h−Σ(iωn) (C.19)

The more elaborate proof of Luttinger-Ward identity can be found in lecture notes
of Robert Eder [107].
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duced density-matrix functionals applied to the hubbard dimer. Phys. Rev.
B, 93:085141, Feb 2016.

[57] Roberto Car and Michele Parrinello. Unified approach for molecular dynamics
and density-functional theory. Phys. Rev. Lett, 55:2471, 1985.

[58] R. Car and M. Parrinello. Simple Molecular Systems at Very High Density,
chapter A Unified Approach for Molecular Dynamics and Density Functional
Theory, page 455. Plenum, NY, 1989.

[59] M. Born and K. Huang, editors. Dynamical Theory of Crystal Lattices. Oxford
Clarendon Press, 1954.
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