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Abstract

In this thesis we consider the genealogy of a spatial Cannings model. This
is a population model in which individuals are distributed over a countable
set of sites GG. The reproduction of individuals at each site is panmictic
(exchangeable) and preserves the local population size. The offspring then
migrate to other sites in G, also in an exchangeable manner.

We consider the spatial coalescent introduced by sampling n individuals at
present time and tracking their ancestral lines back in time. The resulting
process is the spatial Cannings coalescent.

Our main result shows, that an appropriately time-rescaled spatial Cannings
coalescent, converges to a spatial Z-coalescent in the large population limit.

The key feature of our result is that the spatial structure is preserved into
the limit as opposed to a fast migration limit. The influence of the migration
on the local population size can yield a time-inhomogeneous limit and, in
case of sites with a small population size, our limiting process may not have
a strongly continuous semigroup.
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Chapter 1

The Forward and the Backward
Model

1.1 Introduction

Population genetics is the part of evolutionary biology which studies the
way in which alleles of genes are passed from one generation of a population
to the next over time. For instance, take a population of drosophilae and
select a particular gene in their DNA. We can consider questions about
the mutation rate of that gene or about the evolutionary advantage, the so
called fitness, of different alleles of the gene. If we had perfect information
about how the population behaved at all times it would be fairly easy to
give estimators for these things, but in practice the amount of information
available is severely limited. But especially for large populations a lot of the
“microscopic” structure may be negligible. There are two approaches to reduce
the information considered.

The forward-in-time approach tracks the frequencies of different types of
alleles in the population forward in time. Mathematically, this gives rise to a
stochastic process taking values in the space of type distributions, a so called
Flemming- Viot-process.

For the backward-in-time approach we consider a sample of n individuals
taken at present time. Each individual gives rise to an ancestral line backwards
in time by considering its (genetic) ancestor in each generation. These
ancestral lines can merge. Such a merger (also called collision) happens
whenever the affected ancestral lines find their most recent common ancestor.
Mathematically this is modelled as a stochastic process taking values in
the space of partitions of {1,...,n}. Such a partition consists of disjoint
subsets of {1,...,n} which we call blocks. We name the resulting process the
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genealogical process or also the coalescent of the population. We now explain
the connection of ancestral lines and a partition of {1,...,n} in greater detail.
We start by ennumerating the sampled individuals using the numbers 1, ..., n.
Each (non-empty) block of the partition corresponds to a common ancestor
of exactly the sampled individuals which are contained in the block. Thus
the block is also represented by a particular individual in the population at
any point in time, the common ancestor.

The two approaches are often equivalent in the sense that there is a
distribution determining duality between the forward Flemming-Viot-process
and the backward genealogical-process for n — co. In this thesis we focus on
the backwards-in-time approach and thus on the analysis of the genealogical
process. In order to answer biological questions the model has to be chosen
simple enough, such that a theoretical treatment is possible, but rich enough
such that important features of the population are still observable. To simplify
the model usually two steps are taken:

In the first step restrictions are stipulated for the reproduction in the
population. In the second step a large population limit is considered together
with a suitable time rescaling.

If the restrictions of the first step are sensible, then the large population
limit in the second step exists and yields a well understood coalescent. In
fact, it turns out that under suitable restrictions whole families of population
models may give the same type of coalescent in the large population limit.
This is usually referred to as the robustness of the coalescent.

One example for such a robustness result is when we consider the so
called Wright-Fisher-model. This is a particular reproduction mechanism
in which each individual chooses its parent uniformly at random from the
previous generation. Since multiple individuals can choose the same parent
the genalogy of this population would feature multiple mergers (mergers in
which more than 2 ancestral lines merge into one line at the same time) and
even simultaneous multiple mergers (mergers in which multiple collections
of ancestral lines merge into single lines each). But if the coalescent of the
sample is sped up linearly with the population size we see a so called Kingman-
coalescent emerge in the limit. That is a coalescent process, introduced first
by Kingman [I7], in which only pairs of ancestral lines merge independently
and with a fixed rate. In particular neither simultaneous nor multiple mergers
occur in the large population limit.

This result can be generalized to a robustness result for coalescents of so
called Cannings-models. The defining property of these population models,
which were considered by Cannings [3] and [4], is that the reproduction in
each generation leaves the population size fixed and the vector of offspring
distributions is exchangeable (i.e., invariant under permutation) in each
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generation. Biologically this means that we consider a population of stable
size and we do not have additional information about the fertility of sampled
individuals. It is commonly known that the Wright-Fisher-model is a special
case of a Cannings-model.

It was shown by Mohle and Sagitov [20] that the coalescent of these
Cannings-Models, under certain conditions on the moments of the offspring
distributions, converges in the large population limit to a so called A-n-
coalescent or (under weaker assumptions) to the more general =-n-coalescent.
In order to define the A-n-coalescent we first choose a finite measure A on
[0,1]. We set for 2 < k < m:

A = f Z¥72(1 — 2)"* dA ().

0

The A-n-coalescent is a Markov chain in continuous time (MCCT) on the
space of partitions of {1, ..., n} first independently considered by Pitman [22]
and Sagitov [23]. In this process multiple mergers may be possible. Indeed,
if m ancestral lines are present in the coalescent, then any selection of k of
these lines merges into one line independently with the rate A;*. It should
be noted that the Kingman-coalescent is given by the special case A = J,.
Simultaneous mergers, however, are still impossible. In the more general
situation considered by Mohle and Sagitov [20] the limiting process is a
=-n-coalescent, which is again a MCCT with coalescent rates given by a finite
measure = on the infinite simplex. In this coalescent simultaneous multiple
mergers are possible. The connection to a unique measure = was made explicit
by Schweinsberg [27]. Since the difference between A- and Z-n-coalescents is
mostly just additional notation we omit the detailed definition of the rates in
case of the Z-n-coalescent for the purpose of this introduction. A-or even =-
n-coalescents arise in particular if the variation of the offspring distribution is
large. This is, for example, the case in the reproduction mechanisms analysed
by Eldon and Wakeley [7] or can occur due to the presence of recurring
selective sweeps as considered by Durrett and Schweinsberg [5] and [6].

Let the aforementioned population of drosophilae be separated in colonies
that live on piles of rotting fruit on a wine orchard (example given by Wakeley
[29]). This situation introduces an additional piece of information for each
individual — its location. Since a single drosophila is unlikely to visit all of
the fruit piles in its live time, we can expect to see an impact of the spatial
structure on the genealogies of our sample. Therefore it is necessary to extend
the theory to accommodate the spatial information.

The theoretical treatment of spatial settings like this has become an
important new part of population genetics and is also the main topic of
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this thesis. We now extend our model to accomodate spatial information.
We start by generalizing the population model considered by Cannings to
a spatial model which we call the spatial Cannings-model. We consider a
population of fixed size N living on an at most countable (discrete) set of sites
G. In each generation k € N there is a reproduction and a migration step. In
the reproduction step the individuals at each site reproduce according to a
nonspatial Cannings-model. This means that the offspring distribution is be
exchangeable and the population size at each site (also called local population
size) stays constant. In the migration step the individuals can migrate freely
to another site, but they have to do so in an exchangeable manner. To be
more precise we count for each two sites x,y € G and for any generation the
number of migrants from z to y in that generation. Exchangeability in this
context means, that conditioned on all of these numbers the individuals of the
population located at x migrate in a way, such that the resulting distribution
is invariant under permutation of the individuals at x and independent of the
migration out of all the other sites.

In order to define a spatial version of the coalescent, we sample n « N
individuals at present time and look at their genealogy. The ancestral line of
individual i € {1,...,n} of the sample is, at any given time, represented by
the ancestor of 7. This ancestor has a location in G and thus we can add the
spatial information to our genealogical process by labeling every ancestral line
with that location. This gives rise to the spatial coalescent of our population.
Lines merge whenever they find a most recent common ancestor and lines
migrate due to the migration of the ancestor representing the line.

The main result of this thesis is a robustness result similar to the non-
spatial case. We give conditions on the distributions which govern the
reproduction and migration mechanisms in order to ensure convergence of
this spatial coalescent, after application of a properly chosen time rescaling,
to a time-continuous limiting process (see Theorem [3.14). In this limiting
process lines merge at each site according to a time-rescaled =-n-coalescent
(2 may depend on the location) and their labels migrate independently on G.
This migration happens according to a possibly time-inhomogeneous process,
which we call the particle tracking process. The name is chosen since the
process is reminicient of the tracking a water molecule through a discrete
system of water tanks.

To give a justification and more details for the migration, we assign a mass
of 1/N to each individual and consider the migratory behavior of the mass in
the population backwards in time. For each site x € GG and generation k € Ny
we have a total mass %,ivz € |0,1] at that site. Furthermore, for each two
sites ¢ # y € G and each generation k € Ny we can consider the total amount
of mass that has moved from z to y up to generation k. We call this the
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cumulative mass flow FY, . We assume that these discrete-time processes

converge in the large population limit, after a proper time-rescaling, to time-
continuous processes (Fipy)ter,, Hie such that t — F., , is absolutely
continuous and thus weakly differentiable. In our interpretation with water
molecules, the %, describes the amount of water in tank x at time ¢ and
1.2 describes the amount of water that has flown from tank x to tank y up
to time t. The infinitesimal rate with which the tracked molecule migrates
from z to y at time t is given by #  /%:,. Indeed this is exactly the
infinitesimal rate we use for our reproduction mechanism in the limiting
process.

Previous work on such spatial settings include results for the structured
coalescent by Herbots [I1] and a generalization to spatial A-coalescents by
Heuer and Sturm [12]. However, in those cases the migration mechanism
was assumed to be balanced and the total number of individuals at each
site as well as the total number of migrants from x to y were assumed to be
deterministic. This is no longer required in our setting. It should be noted
that in such a balanced situation the processes %, and #,  are deterministic
and constant which leads to a time-homogeneous limit.

Usually such a limiting result would be proven using the theory of Feller-
processes and martingale problems but the spatial component of our limiting
process can make simple application of this strategy problematic. It is
noteworthy, that we allow for large variations in the local population size due
to migration, in particular the paths ¢ — Z#;, may not be constant. This
may make the setup time-inhomogeneous, even in the limit. Even worse, the
local population may become very small (of order o(NN)), which would lead
to the existence of times s <t with %, > %, = 0. As a consequence, the
migration mechanism of the limiting coalescent is not a Feller-process and
indeed does not even feature a strongly continuous semigroup.

For that reason we have to take a different approach in order to show con-
vergence. We use the following steps: First, we use graphical representations
to construct our processes. Second, we show that these graphical representa-
tions converge with respect to the vague topology. Third, we show that the
mapping which maps a graphical representation to a process is continuous if
the limiting process is non-explosive. Forth, we show that our limiting process
is non-explosive by analysing distributions of time-inhomogeneous Markov
chains. There is a more detailed sketch of the proof after the limiting result
(Theorem [3.14]). The complete proof is done in Chapter [§]



6 1. The Forward and the Backward Model

1.2 The Forward Model

In this section we describe our population model in detail. Note that a tilde
over a process denotes, that the process runs forward in time. The notation for
time-reversed versions of the processes later on drops the tilde. Furthermore,
we use the notation [m] := {1,...,m} for m € N,. First, we define processes
to model the migration of the population.

Definition 1.1 (The Migration Mechanism). Let N € N, be the total number
of individuals and G a countable set of all available colonies to the population.
Let AN = (%fi)xeg be a random variable on N§ with Y _., JI%{X = N.
The number %Ji counts the individuals at site z in generation 0. For each
generation k € Ny let ./ZN = (%&7y)(z7y)eg2 be a random variable on N§*©.
We consider //Z,gy to be the total number of migrants who moved from z in
generation k to y in generation k£ + 1. In order for //ZkN to describe migration
in this way, it needs to fulfill an additional property which ensures, that all
individuals are accounted for: Define the number of individuals at site x in
generation k by

k
Niw = Mg+ 2, 2 (Mg = Mi3,), - N = (NDeecr
1=1yeG
We then only allow ./ with the property Dyec MY, = MY, for ke N,
Define the discrete time processes NN = (AN )ren, (the process of the total
numbers) and .# /N — (M) ren, (the process of the total migration). Given

AN and .#" we now define the migration process X = (X})zey, Which
tracks the migration of each 1nd1v1dual in the population. Let XY = (X N )ielN]

be a random variable in GIV. We define the process X~ by the following
procedure: define an urn with N balls which are colored, using the elements
of G. Let ¢} be the number of balls with color z € G. For each i € [N] we
draw a ball from the urn without replacement. Let )N(éVZ € GG be the result
of the i-th draw. Now assume that we have already defined X, for some
k e Ny. For x € G let Ij,, < [N] be the set of indices i with X}é\r_l;i = x.
For each z € G we define an urn with |/, | = Jﬁﬁl;x balls with colors in G.
Moreover, let 'y De the number of balls of color y € G. For each i € Iy,

we draw a ball out of the urn without replacement. We then set X ,€G to
be the result of the i-th draw. Since the procedure yields >} . lp. = N this
defines X N completely. Note that by construction each path of the migration
process X represents a migration of the population which is consistent with
the total numbers .4 and the total migrants .#".
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Remark 1.2. By symmetry, X~ run up to a time k yields the uniform dis-
tribution on all migrations that are consistent with the processes NN N,
This could be used as an alternative, shorter definition for X~. But since the
step by step definition using urns will be useful later on we chose the above
definition instead.

We now define random variables in order to describe the reproduction.

Definition 1.3 (The Reproduction Mechanism). Let N € N,. For each site
x € G, generation k € N and each potential choice of individuals I < [N] let

> B 1 sl
Upw = (Phpi)ier e an exchangeable random vector with 7., ; € Ny and

iel

Here 7., ; is the number of offspring of the i-th individual at site z in

generation k if there is a collection of individuals I present at z. Let these
random vectors be mutually independent from each other and NN AN as
well as XV. Furthermore, let ﬂ,g;x have identical distributions for k£ € Ny and
only dependent on the total number of individuals |I| (as opposed to the
specific choice of I < [N]).

We can now define the population model by combining the migration and the
reproduction mechanisms.

Definition 1.4 (The Population Model). Let N € N,. Again, we label the
individuals with numbers i € [N]. At generation k = 0 individual i of the
population is at site )N(éVZ Now whenever we reach a new generation k our
population goes through the following steps:

1. At site z € G let I, be the set of labels of individuals in z in generation
k —1 (see Definition [I.1)). Each individual ¢ € I, has a number of

offspring given by ﬂ,ﬁfjfi (see Definition . Due to
.
Z ka:;c,i = |ljal
ie[k;x

the total number of offspring at site  is equal to the number of available
parents.

2. We now label the offspring, using the collection of labels I}, of their
parents. We may do so in an arbitrary manner.

3. For each i € I}, the offspring with label 7 migrates to the site X,ivz
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Population Model Foreward in Time
Site 1 Site 2

Gen.

~
|
o

Reproduction

Migration

x
]
—
Reproduction
\ . ‘

x~

[}

N
Migration
| Do

Figure 1.1: Visualization of the reproduction and migration steps of our
population model for N =7, G = {1, 2} over two generations.

These steps are illustrated for a special case in Figure[1.1] Here we consider
the case N =7, G = {1,2} and the starting conditions JI%A{ = 4, %1; = 3.
Due to exchangeability it is not necessary to ennumerate the individuals in
the figure and it suffices to represent them using black balls. Arrows in the
reproduction step point from parent to offspring, arrows in the migration step
indicate movement of individuals.

Remark 1.5. It is noteworthy, that by Remark and since 7., does not
depend on the specific choice of I other than |I| any choice of the initial
labeling of the population as well as any choice for the labeling of the offspring
yields the same distribution. This, of course, is the reason why we did not
specify these choices further.

FExamples 1.6. Common examples for the reproduction meachanism include:

1. The Moran model in which we choose (D,Q“;i)iejk;z to be uniformly
distributed on

{z € {0,1, 2} |30, k € [|Iha]]: 2 = 0,2 = 2,2, = 1VI € [|Ina|\{7, k}}

or in words: the vector (&,f’“;z)le I, is uniformly chosen from all vectors
which have exactly one component equal to 0, one component equal to
2 and the remaining components equal to 1.
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2. The Wright-Fisher model in which we choose (D,ﬁ’“:fz)ze I, to be a vector
of i.i.d. Poisson distributed random variables conditioned on their sum
being equal |[j.,|. An alternative way of describing this distribution
would be that the vector is multinomially distributed. More precisely
we consider an urn containing one ball for each color i € Ij.,. Now we
draw |Iy.| times with replacement from the urn and set D,ﬁk;l to be the
total number of draws of color .

Examples for the migration mechanism include:

1. Balanced, time homogeneous migration where .//ZkN are identically dis-
tributed over k € Ny and we have for all x € G:

thus implying that £ — t/léN is constant. In particular there is the
special case in which the processes .Z” and A4V are also deterministic.

2. Mugration via exchangeable random walkers: We consider an indepen-
dent collection of time-homogeneous Markov chains in discrete time

(X"M)ierny on G with the same transition matrix PN such that the

starting vector (X, ..., X"") is exchangeable and set for z € G

SN | _ .
'/1{);:1: T Z ]l{Xé’N:x}
i€[N]

and for z,y € G with x # y and k € Ny:

/M ) )
’%k;x,y = Z ]I{X;,N:%X;i\’l:y}.
1€[N]

Since the vectors (X, ..., X)) stay exchangeable for all k € Ny we
can construct the migration meachanism now defined by the matrix .4
and the vector .4; by assigning the random walk X% to individual i.

1.3 The Backward Model

The goal of this section is to define the coalescent of the population model
defined in Section [[.4] First, we reverse time.
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Definition 1.7. Let [ € N and define for & € [[]
MY = (MY, )T (the transposed matrix)

as well as AN 1= AN, For x € G and I  [N] define v, = 7}, ., .
Furthermore we now define the processes A4 and X? in the same manner

in which we defined the respective tilde-processes but using .#Z" and A"
instead of .Z" and AG"N.

The next proposition shows that the construction of the migration using the

reversed processes .4 and .Z is equivalent to reversing the processes A
and XV,

Proposition 1.8. We have 4N = («/ﬁi\%)ke{o,...,l} and XN Z ()N(ﬁk)ke{07_,_7l}.

Proof.  We prove the first equality by induction over k. By definition the
processes are identical for k = 0. Assuming AN, = A% | we have for z € G

NN = NN+ MY, — )

yeG
_ 7N 7N /N
- ‘/%—k-i-l;fﬂ + Z ('%l—k-i-l;cc,y - '%l—k-i-l;y,a:)
yeG
_ N /N /N /N /N
- ‘/%fk;z + Z ('%lkarl;y,w - ‘%lkarl;m,y) + Z('%lflwrl;x,y - ‘%lkarl;y,:v)
yeG yeG

_ N
- ‘/%—k;ac

where the first equality is due to the construction of 4% and the third
equality is due to the construction of NN,

The second claim is a simple consequence from Remark Since XV
up to time [ is given by the uniform distribution on all paths belonging to
migrations that are consistent with .#Z” as well as 4V and each such path
backwards in time corresponds to a path consistent to .#Z” as well as AN
(since migration from z to y forward in time will be migration from y to z
backward in time). The claim follows since X up to time k also yields the

uniform distribution on all paths belonging to migrations that are consistent
with .Y as well as AV, O

Thus, the migration backwards in time is exchangeable if the migration
foreward in time is exchangeable. Since we are interested in the geneaology
of the population we will, from now on, only look at the dynamics of the
backwards-in-time processes AN, .#ZN, XN, Moreover, we assume that they
are given as processes on Ny instead of [[]. We also redefine out k£ = 0 time
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point as the present time at which we can sample from the population. This is
more natural for analysis of the backwards processes, than fixing a generation
0 far in the past.

Remark 1.9. Justifying the possibility to extend the time reversal infinitely far
into the past may be questionable without additional properties of the process
(NN N, I (NN, V) is a time-homogeneous, irreducible Markov chain
with transition matrix P and equilibrium distribution p = (g;), then the
backwards process can be extended to Ny as the time-reversal of the Markov
chain. More precisely we define (AN, #") as the Markov chain which has
the transition matrix P defined by the equations

:ujpj,i = ;P ;  for all states 1, j.

It should be noted though, that we do not require this Markov property in
our results. Any model for which we can define (AN, .#") for all times in a
sensible manner can be considered.

Before we define the coalescent of the population we first want to specify the
respective state space and some notation.

Definition 1.10 (The Spaces of Partitions and of Labeled Partitions). Let
n € Ny u {o}. We define &, as the set of all partitions of [n]. In the
case n = o0 we omit the subscript n. We may represent a partition = € &,
either by the equivalence relation ~ it defines on [n] or by its non-empty
equivalence classes (By)ref, also called blocks (I denotes the number of non-
empty equivalence classes in 7). We order the blocks By by their smallest
elements, writing m = (B, ..., B;). We call 7 trivial if it only has blocks of
size 1, called singletons (i.e., m = ({1},...,{n})). For a spatial setting we
have to extend this definition. Given a set G let P ,, be the set of labeled
partitions of [n], meaning that we have a partition in the above sense but
each block By also carries a label L, € G. Again, we drop the subscript n in
case of n = c0. To be precise we write m = (By, L) ke € Pa,n exactly, if we
have (By)reg € & and Ly € G for all k € [1].
For m < n we can define a restriction map
T Py — P
For m € &, we define 7 (1) to be the restriction of the equivalence relation
~x on [n] to [m]. In terms of blocks this means that if we have 7 = (B}) ke
we get 7, (m) = (Brn[m])repr] where I” € [1] is the largest natural number with
By n[m] # . As before we omit the superscript in the case n = co0. In the
same manner we can define a restriction 7¢ ,, for labeled partitions by defining
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the restriction of 7 = (By, Li)rep) € Pam to be 78, (7) = (Be 0 [m], Li)repr)
where [’ € [[] is defined as in the nonspatial case. For the case n = oo we omit
the superscript. With these restrictions we can now define metrics on &,
and P, by setting

dn(ﬂa ﬂ—/) = Su[p] 27]6]1{7]3(#);&7]3(”/)} for m, e,
e[n
and
dG,n(ﬂ-a 77,) = SEIELJ] 2_]6]1{.,-&]6(7,)#78&(#/)} for m, = {@G’n.

Again, we omit the subscript n in the case that n = co.

Remark 1.11. One can see that in case n = o0 the spaces (£, d) and (P, dg)
are Polish spaces. In the case n € N, this is trivially true since the spaces
then are even finite, discrete spaces. Since we will only consider the case
n < oo in this thesis, we omit the proof for n = co.

The following definition specifies what we mean by a coalescent mathemati-
cally.

Definition 1.12 (Collisions and Coalescent Processes). Let n,m € N, u {oo}
with n = m. Let pe &, and m € &,. Then we define the w-collision of u
as the unique partition in &, given by merging exactly the collections of
blocks in g which have their index in a mutual block of 7. More precisely let
= (A1, Ay, ...)and m = (By, By, ...) then we define the m-collision of i as
the partition given by ordering the blocks C,Cy ... given by

Cj = LJAAz

iEBj

with respect to their smallest elements.

Now let n € N;. We call a stochastic process II = (II;)er, on &, an
(n-)coalescent if it is a cadlag process and if the jumps of the paths of T
are given by m-collisions for some suitable partition . We call a stochastic
process IT = (II;)er, on & a coalescent if 7,(II) is an n-coalescent for all
neN,.

Now let G be a topological space. We call a stochastic process I = (II;)er,,
on Pe., a spatial (n-)coalescent if it is a cadlag process and if the process in
P, given by forgetting the labels of blocks in II is an n-coalescent. We call
a stochastic process I = (II;)er, on P¢ a spatial coalescent if 76 ,(II) is a
spatial n-coalescent for all n € N, .

We use analogous definitions in the discrete-time case by identifying
a process in discrete time with its right-continuous, constant extention to
continuous time.
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Coalescent Backwards in Time
Site 1 Site 2

=
1]
N

Reproduction

-
4N
o

Migration

Reproduction
-0

%
%

Migration

r—Mr—JHHr—J%r—J%
.<—
.<—
.<—
o

H.

k=0

Sample:

Figure 1.2: The population shown in Figure [I.1] with sample of size 4 taken
at present time (with one individual sampled at site 1 and 3 individuals
sampled at site 2). Red parts of the diagram show the parts that determine
the behavior of the coalescent backwards in time.

We may now define the spatial coalescent given .#Z~, 4" and all offspring
distributions u,;’l Let n € [N]. The spatial coalescent of the population
model is a stochastic process IV = (11 )ey in P, given with the following
dynamics:

we start by sampling n individuals from the population at time k = 0.
The process IV starts with the trivial partition ({k})se[,; and the labels
are chosen according to the position of the sampled individuals in G. Each
block will always have a unique representative in the current generation, the
common ancestor of all individuals in the block.

Whenever we go one generation back in time we first have a migration step.
Parts of our sample may migrate due to the migration of the population. In
facht, each block migrates according to the migration of its representative in
the population. By the definition of the migration process X we can model
the migration step by drawing without replacement from the urn defined by
the migrants .#,.

After the migration there is a coalescence step. Each representative will be
assigned a parent, again by drawing without replacement from the urn defined
by the appropriate offspring distributions u,gl All blocks which got assigned
to a mutual parent are then merged and the parent is the new representative
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of this block in the population. Applying the migration and coalescence steps
allows us to derive I}, ; from II} and thus by successive application of the
steps we can define IT"V completely.

In order to visualize this procedure we used the situation of Figure [1.1
and sampled n = 4 individuals at present time. We marked these individuals
red in our diagram and tracked them backwards through the arrows of
the diagram. This yields Figure . At present time k = 0 we have I1}} =
(({1},1), ({2},2), ({3}, 2), ({4}, 2)). Going through the diagram one generation
backwards in time (k = 1) the ancestral lines in our sample with index 1 and
2 have found a common ancestor at site 1 and the line with index 3 migrated
from site 2 to site 1, we get TIY = (({1,2},1), ({3}, 1), ({4},2)). Going back
another generation we get 1Y = (({1,2,4},1), ({3},2)).

Note that, since the construction only entails drawing without replacement
and since the offspring distributions are exchangeable, we can define the
coalescent for a smaller sample size m < n by taking the coalescent for
the sample size n and then “forgetting” the individuals m + 1,...,n. This
property is called the consistency relation. More precisely, in terms of the
notation in Definition we may get the coalescent for sample size m by
applying 7¢ ,, to the coalescent for sample size n.



Chapter 2

Basic Properties of the
—-Coalescent

Before we continue with our spatial setting we want to introduce the =-
coalescent which is arises in the nonspatial case as the large population limit.
The theory in this chapter is an excerpt of Schweinsberg [27] though our
notation will differ slightly.

Definition 2.1 (The =-(n-)Coalescent). Consider a family of rates
{\r € R, |7 € £, nontrivial for some m € N, }

such that for all m € N, and all 7 € &, nontrivial the following consistency
property holds:
Ar = Z A, (consistency). (2.1)

i ()=
Furthermore let A\, only depend on the ordered sequence of the blocksizes
of m, this is usually referred to as the exchangeability of the coalescent. In
particular, if 7 has ¢ nonempty blocks with sizes [y = [y > --- = [; we write

Ayt = Ar  (exchangeability). (2.2)

Now let IT be an n-coalescent which is also a time-homogeneous Markov
chain such that A\, is the rate with which a 7 collision happens if the chain is
currently in a state with ¢ nonempty blocks. We call II a =-n-coalescent and
if IT is started in the trivial partition we call it a standard =-n-coalescent.

Let IT be a coalescent taking values in & such that for all n € N, the
restriction 7, (I1) is a (standard) Z-n-coalescent then we call I a (standard)
=-coalescent.
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Remark 2.2. We can use the exchangeability (2.2]) to rewrite the consistency
(2.1) in the following manner:

4
>‘ll,---7li = /\ll,---7li,1 + Z Ala(l)v---vla(]’)+17"'7lo(i)' (2-3>

j=1

Where o: [i] — [i] is a permutation which reorders the parameters if neces-
sary:
O’(la(l)) Z ez O'(lg(j) +1) == lg(i).

Definition does not explain the meaning of the = in the name of the
=-coalescent. It turns out that there are 3 major equivalent ways to represent
the rates of a Z-coalescent.

Theorem 2.3. Let {\; € Ry |r € P, nontrivial for some m € N,} be a
family of rates. Then the following statements are equivalent:

1. The properties and hold.

2. There exists a unique finite measure = on the infinite simplex

o0
x1>x2>--->072xj<1}
j=1

A= {(.Tl,xg,...) S [O, 1]N

such that for allr e Ny, se Ng and allly = -+ >l with [, = 2 and
lry1 =1 the rate Ay, 4, 5 given by:

lr4s
1 : S I, PR
[ X 2 (()d e am iyt Ew. e
A |z k=0 i1 %y

Note that we used the following notations for x = (x1,2s,...) € A:

e0] o]
2
lelly == 23 =l = D)
i=1 j=1

Furthermore, the sum over iy # -+ # i,1y, is taken over all (r+k)-tuples
of mutually different indices in N, .

3. There exists a unique sequence (F,)en, such that F, is a symmetric,
finite measure on the r-simplex:

A, = {(xl, .o x) € ]0,1]7

Zrlxj<1},

j=1
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we have F1(A1) = F5(As) = -+ and for all € Ny, s € Ny and all

hz-Zliswithl, 22 and ., =1 the rate Ny, 4, 15 given by:
|r+s/2]
Z f i xff‘QTﬁfz)(xl, oy xg) dE (2, .., zp) =0, (2.5)
k=r YOk
where Tr(fz) (x1,...,2x) are polynomials given by the following formulas:
T,S?(xl, e Tg) = (1 — Z xj>
j=1

and for i€ [k]:

kit1—2 ka—2 i k—p kpy1—kp—2
T,S'i)w(xl, o) = (=) Z Z nkp (1 _ xj)

ki:2i71 k1:1 p=0
where we set kg := —1 and k;;1 := s+ 1.

Proof. The equivalence of representations follows from Lemma 18 (for con-
sistency), Theorem 2 (for the representation with =) and Proposition 8 (for
the representation with (F))en,) in [27]. Uniqueness of = follows from
Proposition 4 in [27]. Uniqueness of (F,),en, follows from Proposition 8 in
[27. O

Remark 2.4. Note that we defined the infinite simlex A to only contain
decreasing sequences. This choice is required to ensure the uniqueness of =
in Theorem 2.3

Furthermore, in order for the sequence of symmetric measures (F})en,
to define a =-coalescent, we require to only yield nonnegative numbers.
This is noteworthy since it can be hard to check. This issue does not arise
when working with = since by definition is always nonnegative.

It should be noted that a =-n-coalescent only requires makes use of rates
Ar with 7 € Z,,, m < n (see Definition [2.1). But in order to identify a
Markov chain as a =-n-coalescent it does not suffice to just check consistency
and exchangeability of the rates for m < n since the system may not be
extendable to larger n and thus not be representable by a measure = in the
sense of Theorem 2.3

Ezample 2.5. This is an example for a consistent collection of rates (A, ;)
for sample size n < 4 which can not be extended to n = 5. We define:

/\2 = 27 )\2,1 = /\3 = ]-7 )\4 = )\2,2 = )\2,1,1 = 07 )\3,1 = 1.
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It is easy to check that these rates are consistent but if we try to extend the
system to n = 5 in a consistent manner the following equations have to hold:

0= )\4 = )\5 + )\471,
0=2MX2=2A32+ Ao,
0=MX1=A311+2 01+ Aa11,1-

IR ]

Since all summands are nonnegative all rates appearing on the right hand
side of these equations would have to be zero. But if the system would be
consistent we would also have

I=MX1=M1+ X320+ A311=0

which yields a contradiction. We will see later in Proposition that for our
purposes the system always allows for the choice of a =, even if we restrict
the sample size of our setting.

Definition 2.6 (The A-Coalescent and Kingman-Coalescents). Let n e N, .

1. A =-(n-)coalescent in which no simultanious collisions are possible
(Ar = 0 whenever 7 has at least two blocks of size greater equal 2) is
called a A-(n-)coalescent.

2. A E-(n-)coalescent in which only pairs of blocks can merge and do so
with rate 1 is called a Kingman-(n-)coalescent.

The Kingman-coalescent as well as A-coalescents correspond to special choices
for the finite measure =.

Examples 2.7.

1. Let A be a finite measure on [0, 1]. Define = a the measure on A induced
by the inclusion

t:[0,1] > A, x> (21,0,0,...).

Then ([2.4)) is only non-zero if » = 1 and simplifies to

1
Al = j x_Qxll(l —z)* dA(x).
0
Thus, given n blocks any collection of k blocks merges independently
with rate

= Jl "2 (1 — )" dA(2).

0
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Alternatlvely we can define F} := A and F, := 0 for r > 2. In this case
is only non-zero if » = 1 and simplifies to

1
Aty 11,1 = J 27T dA(a)
0

which also gives the rates of a A-coalescent.

Now assume that = is not supported on ¢([0,1]) € A. Let r =2, [; = 2,
ly =2 and s = 0. Using |) and since the function z — )] 22 x?
is positive on A\i(]0, 1]), we get

11702 Ly Ly
1 —
)\272 = — .%'11.%12 d= ( ) > 0.
A HxHQ 11 7#12

Thus = allows for simultanious mergers and therefore can not define a
A-coalescent.

2. Consider the finite measure = = ady where 0 = (0,0,...) € A and a > 0.
Then is only non-zero if l; = 2 and r = 1 and we get A\y; 1 =a
for all s € N.. Thus we only see pairwise mergers and any pair of blocks
in the coalescent merges independently with rate a.

Alternatlvely we can choose F} = ady and F,. = 0 for all » > 1. In this
case is only non-zero if [; = 2 and r = 1 and yields A\y; 1 = a for
all s e N+. Thus this choice of = yields a Kingman-coalescent sped up
by a.

Now assume that = is not supported on 0. Let r =1, [; = 3 and s = 0.
Using (2.4) and since the function @ — Y~ 22 is positive on A\{0},

we get
f Z 3 d=(x
A ||37||2

Thus = allows for multiple mergers and therefore can not define a (sped
up) Kingman-coalescent.

The representation of the =-coalescent using the measure = allows for a specific
construction of the process II using Poisson point processes. This construction
also gives an interpretation for . We present this construction for the case
=2({0}) = 0 and in an informal way. For a rigorous construction in the general
case see Schweinsberg [27] Section 3. We start by considering a Poisson point
process 7 on R x A with intensity measure given by ||, dt d=(z). For
each atom (x,t) of n we choose an ii.d. sequence (Y)en,, independent
from 7, of Ny-valued random variables with P(Y} = m) = z,, where we set
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xo:=1— Z;O:;[ xj. We now construct a =-n-coalescent II using the following
recursion. Let (z,t) be an atom of 7 and II be already defined up to (but not
including) t € R, . Consider the event I, =7 € Z,. Then we color the k-th
block of 7 with the color Y}, if Y. > 1 or not at all if Y3, = 0. Afterwards we
merge all blocks with the same color in order to define II;. To see that this
procedure indeed yields the rates given in let m € &, with blocksizes
lh 210>+ >1,..5. We consider the event that the block in 7m belonging to
[y gets colored with 41, the block belonging to [, gets colored with 75 and so
on up to the block belonging to [, corresponding to the color 4,. Furthermore
we assume that k£ additional colors 4,,1,..., 4., only show up exactly once
and s — k many blocks were not colored at all. There are (Z) possibilities to
color or not color the remaining s blocks in 7 in this fashion. The probability
of the event that the i.i.d. sequence (Y} )ren, gives us a m-collision with these
colors is

S _
N

Now note that the choice of k and of the actual colors does not matter for
the merging which yields the sums in the integrand of . By the Coloring
Theorem for Poisson point processes it follows that the rate with which we
see a corresponding merger in II is given by (2.4).



Chapter 3

Main Result: Convergence to
the Limiting Coalescent

3.1 Assumptions

Our goal in this chapter is to show that the coalescent IIV of our population
model converges given the proper time rescaling and certain assumptions to a
(potentially time-inhomogenious) spatial =-coalescent in the large population
limit. Before we list our assumptions we have to make some definitions.

Definition 3.1 (The Mass Process and the Flow Process). We assign a mass
of 1/N to each individual in the population. Define the process #~ := 4V /N.
we call Z" the mass process. Note that for x € G and k € Ny the number
%,]CVI € [0,1] is the total mass at site = in time k. For x,y € G, x #y, k€ N
define

1 k
agN ._ N
Jk;a:,y = — ’%l;x,y
N
=1

and set F} = (ﬁé\fw’y)x’yeg as well as N := (FN)ren. We call FV the
(cumulative) flow process. Note that .ZY, is the total amount of mass that

has flown from x to y up to time k.
Definition 3.2.
1. For me [N], x € G and k € N we define

m . Var(ylfr;x,i)

o= (3.1)

m—1

for i € I < [N] with |I| = m. Note that by definition of the offspring
laws the right-hand side indeed only depends on x and m.
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2. For p,q € Ny we use the notation: (p), := p!/(p — q)!. Let 7 € &,
be a nontrivial partition with j blocks of sizes [y,ly,--- ,l; > 0. Note
that 7 nontrivial implies that there is a i € [j] with [; = 2. We define
(whenever the limit exists)

E(w™ ), - M,
6u(m) = Gyl ., 1) = lim Ozl - Oz )

m—a mll‘*‘""*‘lj_jcgb

(3.2)

As in the nonspatial case ¢' has an important meaning for the coalescence.

Proposition 3.3. The constant c' is the probability for two given ancestral
lines at x at time k — 1, after the migration step, to coalesce at time k if there
are m individuals present at x.

Proof. Assume that I € N with || = m is the set of indices of individuals
present at site x and time k — 1 after the migration step. Fix two ancestral
lines r,s € |n| at site x after the migration step. We first note that by
exchangeability:

m=E (Z Vé;m,i) = ZE (Vlg;m,i) = mE (Vlg;x,l)
1€l i€l
Thus we have E(v/, ) = 1 and therefore

P(Lines r and s merge in the previous generation)

=ZIP’(Lines r and s have the same parent i € I)

el
:ZE Vlg;:c,i _ Vlg;z,i —1 _ E((Vlg;x,l)Q) —1 _ Var(ylg;m,l)
, m m—1 m—1 m—1
el
O
The expressions ¢, ;(l1,...,l;) will later be connected to the event that [;

ancestral lines for each j € [i] in a sample of size n = [; + ... + [; merge
simultaneously. Therefore we expect a consistency property to hold. The first
two claims of following Proposition are results already provided by Mohle
and Sagitov [20].
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Proposition 3.4. Consider the situation of [2. of Definition and let
red.

1. We have for all j < i€ Ny and all my = --- = m; € Ny as well as
l1>"'>li€N+ wz’thllzml,...,ljij andm122:
¢x,i(l17~-ali) < gbx,j(ml,...,mj). (33)

The inequality even holds if we use limsup instead of lim in . We

have in particular

Guillty - 1) < ¢21(2) =1

and thus the sequences appearing on the right-hand side of are
always bounded.

2. LetieN,, l; = ---=1; e N, with l; = 2. If existence of the limit in
s known for all but one term in the following equation then the
limit for the remaining term also exists and the equation holds:

Goi(li -3 1) = bl 1, 1)+ ) Gai(l, - L+ 1, L), (3.4)
j=1

3. There exists a finite measure =, on the infinite simplex A such that
forallie Ny and allly = --- =1, € Ny, I} = 2 the limit ¢,;(l1,...,1;)
1S given by whenever it exists. If all the limits exist, then =, is
UNLGUE.

4. Let ¢,2(2,2) =0 and assume that the limits ¢, 1(k) exist for all k = 2.
Then all limits ¢ exist and =, corresponds to a A-coalescent.

5. Let ¢.1(3) = 0. Then all limits ¢ exist and =, corresponds to a
Kingman-coalescent.

Proof. We first note that corresponds to (18) in Mohle and Sagitov [20]
and to Lemma 3.3 in Mohle and Sagitov [20]. Note that with the 1);
in the notation of [20] we have with our notation for ¢ (we omit the spatial
index x):

Vis(l, .o l) = digs(ly, .o i 1o 1)

with Iy, ...,l; = 2. We still provide a proof for completeness’ sake and due to
these notational differences.
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24
[m],
L <

We start with some preliminary calculations. Let x € G, me N, I =
[; with [y = 2. Moreover, let n:=1; +---+

keNO,i€N+andll>"'

m — 1. We have:
E((Vlg;m,l)ll ) ) (Vlg,m,i)li ’ Vlﬁ;a:,iJrl)
ml1+~~~+li+1—(i+1)cgw
: E(( kx 1)11 et (Vlg;x,j)lj-l‘l : ’ (Vlg;x,i)li)
+ Z mbit 14l —iom
Jj=1 z
. ]E’((Vlg;m,l)ll et (Vlg;m,i)li ) Vlﬁ;x,i—}-l)
- ml1+---+li*i0;n
4 Z ka 1 ll ’ ’ (Vlg;x,i)li ’ (Vlg;:p,j - l]))
ml1+"'+li+1—ic;n
o ]E((yk;z,l)ll et (ylg;z,i)li ’ l/lg;:c,z'-‘rl)
- ml1+'--+li*i0;n
E ((Vlg;:c,l)ll ’ (Vlg;:c,i)li ) (Z;’:l(”]g;x,j - l])))
+ ml1+“'+li+17icgsn
E ((Vlg;x,l)ll ’ ’ (Vlg;x,i)li ’ Vlg;x,iJrl)

*
- ml1+~-~+li—ic7xn
E ((Vlg;x,l)ll et (Vlg;x,i)li ) (m -n- ZT:Z‘—&-l(’ﬁix,j)))

mb+ it l=iem

_l’_

*ok E ((Vlg;a:,l)ll et (Vlg;m,i)li ) Vlg;w,i-‘rl)
- ml1+'--+li*icgl

(Ve - (m—n—(m
ml1+“'+li+17icg:n

- i)ylg;x,i-‘rl))

E ((Vlg;:c,l)ll ’

+
. —-n E((Vk 3T, l)ll : : (Vlg;x,i)li)
- m ml1+ +li—icgw
+ { E ((ka 1)l ’ ’ (Vlg;x,i)li ) Vlg;x,iJrl)
E mll+--~+li*icgm :

m and *x from the

Here x follows from the the fact that 3 ., v, = |I| =
exchangeability of (V] .)ier. Rearranging terms and multiplying both sides
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with m/(m —n) yields

E((Vlg;m,l)ll et (Vlg;m,i)li)

mbh +-~~+l¢*icgn

m—1 E((Vlg;x,l)ll et (Vlg,x,i)lz‘ ’ Vlg;a:,i-‘rl)

C m—n mll+"'+li+1—(i+1)cg’L

+ m ZZ: E((Vlg;:v,l)ll et (Vlg;:v,j)ljJFl et (Vlg;:c,i)li) (3 5)
m—n = ml1+-~-+lj+1~~-+li*icgl : '

Now we can start showing the claims.

1. Since all terms in (3.5) are nonnegative and applying the limsup,, .,
we get the inequalies

E((l/lg;m,l)ll et (l/lggm,j)lijl Tt (Vlg;z,i)li)

hgljip mll+"'+lj+1"'+li_ic£n
. E((Vlgx 1)11 et (Véxl)lz)
< hTrrILljcgp ml1+"'+li_icg’b
and
lim su E((Vlg;x,l)ll et (Vlg,x,i)li ’ Vlg;x,iJrl)
msup b= ) om
E((vi, N (7 n T
< lim sup (( k,x,l)ll ( k,x,l)ll) ‘

o0 mll+"'+li7i6;n

This corresponds to the inequalities (where we use lim sup instead of
lim in the definition of ¢):

Guilly, .. L+ 1,00 00) < ¢gilly, .. 1)
and
Guilly, . 1) < @pi(lyy oL L)

The inequality (3.3) now follows from successive application of these
inequalities. In particular we get due to Iy > 2, E({ ;) = 1 and (3.1):

E(vl (Wi .—1
baslli v 1) < 6a(2) = lim hashzs 2 D)
m— o0 mcgl

. Var(ylgxi)
= lim ——>~

m—00 mcg"‘

1
— lim AT o,
m-—>o0 m
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3. Main Result: Convergence to the Limiting Coalescent

2. Assume that convergence for all but one summand in equation (3.5)) is

known. Solving for the remaining summand and letting m — oo shows
convergence of the remaining summand and we get (3.4)) since all the
limits exist.

. If all the limits A, j, := ¢n.i(l1, ..., ;) exist they yield a family of rates

fulfilling and (2.2). By Theorem [2.3| there exists a unique measure
=, on A such that ¢, ;(l1,...,1;) is given by . Now we omit the
assumption on the convergence of the ¢, ;(l1,...,l;). By the first part
of this proposition we know that the sequences defining ¢, (1, ..., ;)
have a finite limit superior. Thus by a diagonal scheme we can find a
subsequence such that all limits ¢, ;(1, . .., [;) exist for that subsequence.
Thus we can apply the previous result and again get a finite measure
E, on A such that ¢, ;(l1,...,[;) is given by . In particular all the
limits ¢, ;(l1,...,l;) which were already existing before the choice of
the subsequence are represented by =,.

. The inequality (3.3) yields ¢, ;(l1,...,1;) = 0 if there are j; # js € [i]

with [, > 2 and [;, > 2. The consistency (3.4) simplifies to

¢x,i+1(k7 17 SRR 1) = ¢x,i(k7 17 cey 1) - quﬂ,(k + 17 17 SR 1)

for all « € N, £ = 2. By induction over the number of ones in the
argument of ¢, ;41(k,1,...,1) we can show that since the limit ¢, ; (k)
exists for all £ > 2 all limits ¢,;1(k,1,...,1) have to exist as well.
Moreover, by . of Examples ¢:2(2,2) = 0 is equivalent to =,

defining a A, -coalescent.

. We note that by [2] of Examples [2.7] the only possible measure =, which

would yield ¢,1(3) = 0 is a sped up Kingman-coalescent. We have
shown in the first claim of this proposition that ¢, 1(2) = 1, thus Z, = g
is uniquely determined. This implies that all convergent subsequences
considered in the proof of 3| of this proposition have the same limit. Since
the sequences are also bounded they have to converge even without the
choice of a subsequence. As already noted, the limit has to correspond
to a Kingman-coalescent.

]
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Remark 3.5.

1. Mdhle and Sagitov [20] and Schweinsberg [27] considered a situation in
which all the limits defining ¢ exist. Our approach will generalize this a
little bit by only requiring the limits to exist up to a certain sample size
n. However, Example [2.5/ shows that it would theoretically be possible
to observe a consistent system for a small sample size, that can not be
extended to larger sample sizes and therefore does not come from a
finite measure = on A. [3| of Proposition ensures that this can not
happen for our limiting coalescent. The rates given by ¢ always come
from a measure = even if the limits only exist for small sample sizes.

2. Note that (3.4) yields the recursion

¢x,i+l(l1 s 7lia 1) = ¢x,i(l17 e all) _Z gbx,i(llv s 7lj + 17 s 7l7,) (36)
j=1

By successive application of this recursion we can get rid of all the
parameters [; = 1 without increasing the sample size considered. In
particular it suffices to show existence of the limits ¢ (1, ..., ;) for all
1eNL, ly,...,l; =2 with Z;‘=1 l[; < n in order to conclude existence of
Gup(ly, .-, 1p) forall pe Nand ly,..., 1, > 1 with 30_, [; <n.

3. Tt is worthwhile to point out that [5} of Proposition [3.4] did not require
$22(2,2) = 0. If we had ¢,2(2,2) = 0 then the consistency would
suffice to show that ¢,,;(2,1,...,1) = 1 for all i € N; and thus that
the rates belong to a Kingman-coalescent. But without ¢, 2(2,2) =0
consistency is insufficient. In fact consider for n = 4:

)\2 = 17 >\3 = 07 )\2,1 = 17 )\4 = 07 )\3,1 = 07)\2,2 = 1/27)\2,1,1 = 1/2

It is a simple calculation to check that this system is consistent but
allows for A3 = 0 and Ag2 > 0. This shows that the existence of
a Z-measure extending a given system of rates ¢ as shown in [3| of
Proposition can provide us with some additional information which
is not already implied by [I} and[2] of Proposition.
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We can now state our assumptions.

Assumptions 3.6.  All the weak convergence assumptions are actually for
the joint distribution of all appearing sequences.

1. We assume that there exists an o > 0 such that we have for z € G and
for m — oo:
c-m® — [, with 8, e R,.

2. We assume that the limit defining ¢, ;(l1,...,l;) < oo exists for all
iEN+, ll,---’lieN+ with lj > 2 for all] S [Z] and l1++l1 < n,
r e (.

3. For te R, and N € N, set k¥ := [t - N®|. We have weak convergence
of the finite dimensional distributions of the flow processes

(ygv)teﬂh - (yt)teRJr for N — oo.

We call the process % the limiting, (cumulative) flow process.

Let + # y € G. Furthermore we assume that the processes .#,,
have almost surely absolutely continuous paths. In particular weak
differentials % _ . exist almost surely.

Ty
/
AP IPIE v

2€C yeG\{z}

4. The paths

are almost surely integrable on compact subsets of R,. In words: the
total amount of mass moved in the system up to some finite time is
finite.

5. We have weak convergence of the starting masses: %} — %,. Further-
more the limit has to still be normalized:

Z Ho» =1 almost surely.
zeG

6. Let x € GG, then:
N N
20 Ty Xy Feww 2 Tiya— D, Fews
zeG\{y} zeG\{y} zeG\{y} zeG\{y}

as weak convergence of the finite dimensional distributions of the pro-
cesses. In words: The total flow in and out of a given site needs to
converge weakly.
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7. We define for x € G, t e R,:

g?t;m = %0;1 + Z gt;y,x - yt;x,y-
yeG\{z}

We call the process Z the (limiting) mass process.

Since k — Z[Y,  was nondecreasing we also have that ¢ — F,,, is

nondecreasing and thus measure generating. We assume for z,y € G,
T #Y:

o ©
J ]1{,@,5;35:0} gdt;x,y = f ]I{Qtw=0} ydt;y,w =0 (37)
0 0

almost surely. In words: There is no flow into or out of a site which
carries no mass.

Some remarks regarding the Assumptions [3.6

Remarks 3.7.

1.

. The Equation (3.7) can be rewritten as #/, = F/

Let G be finite. Then Assumptions [4] and [0 as well as the normalization
of Z, in Assumption |5 are implied by the remaining assumptions.

. The definition of k¥ = |t - N®| corresponds to a polynomial global

rescaling 1/N® which is a consequence of the limiting behavior of ¢
(see . of Assumptions . The polynomial behavior is not necessary
in order to attain a limit. However, this choice has the advantage that
it behaves particularly well when the limiting mass of sites differs (see
Remark for more details).

. It will later turn out, that the convergence of finite dimensional distri-

butions of the rescaled flows .# " extendeds to uniform convergence on
compact sets.

. The definition of ZV together with the assumptions yields a weak

convergence ZY — %, first in terms of finite dimensional distributions
and then in terms of uniform convergence on compact sets.

. We can pose an even weaker condition on the convergence of the flows

FN . Tt suffices that only a dense subset of the set {t > 0|%;.., > 0} needs
to be taken into account for the convergence of the finite dimensional
distributions of fgvx "

t

1.y = 0 for Lebesgue

almost all ¢ with %, = 0.
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3.2 Examples of Models Meeting the Assump-
tions

In this section we will present examples for which the assumptions in hold.
First, we note that the reproduction mechanism defines our time rescaling but
that the migration and coalescence mechanisms can otherwise be considered
separately.

As we already noted in Examples [1.6} one way of modeling migration
of individuals in the population model is to consider independent random
walks on GG. For the backwards-in-time spatial coalescent process we can
just reverse those random walks to get new random walks which describe the
migration of individuals backwards in time (special case of Remark [1.9).

Thus, for N € N we consider a family of i.i.d. random walks (X"");e[n
on G with transition matrix PV = (P¥(z,y))s4ec. We assume that the
random walks are irreducible and positively recurrent with stationary distri-
bution 7 = (1) ,eq. Furthermore we assume that the random walks are in
equilibrium.

In this setting .#” and 4;" are given in the following way:

N ._ _
Mo = Z ]l{Xé’N:x}
i€[N]

and for z,y € G with x # y and k € Ny:

M . ) .

///k;r,y T Z I{X;’N:I,X;’ﬁ:y}’
i€[N]

Proposition 3.8 (Migration Via Independent Random Walkers).

Set N = N~ and kY := [t/cN]. Let

PN -1
——Q, ™ o7 (3.8)

C

as entrywise convergence of real numbers, with Q@ = (Q(x,y))zyec @ stable
(i.e., finite diagonal entries), conservative (i.e. row sums are zero) generator
matriz (i.e. nonegative off diagonal entries) with Y, . —Q(z,x)m, < 0o where
7 is a distribution on G (represented as a row vector) with w- Q) = 0.

Then we have for all t e Ry and x,y € G:

Ry — Ty and ﬁgvmy — tmQ(x,y) (3.9)

almost surely as N — oo. Define Ky, 1= mp and Fiy,y = tr,Q(x,y) for all
teR., z #yeG. Then[l and[3 to[7] of Assumptions|3.6 are fulfilled. We
even achieve almost sure pointwise convergence instead of just convergence of
the finite dimensional distributions of the considered processes.
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Proof. We first show the convergence of ,@tNx for x € G, t = 0. Note that by
definition

N tz -
%t;iﬂ_ Z]]. XIN

The random variables 1,yi~_,, are mutually independent Bin(1, 7Y) dis-

tributed for i € [ V] since the random walks are in equilibrium. We consider
the array (En,;)nen,ie[n] Siven by

— . _ N
EN,’L = ]].{XZ,N:x} 7T£B .

Then the array is row-wise independent with E(Ey;) = 0 and |Ey,| < 1.
Thus we have by a strong law of large numbers for such arrays (see Theorem
4 in [28]) that

N
1
K@é\;— T :Ng En;— 0 for N — oo almost surely.

Together with 7YY — 7, for N — oo this shows the first part of (3.9).
Next we show the convergence of % kN for r,ye Gand t e R,. We

have

Dy N
o N ] 1 J .y ) )
Tl oy = - N ) Z Lo o xivoyy

i=1j4=1

It is noteworthy, that heuristically, due to the ergodic theorem for Markov
chains, the inner sum will behave asymptotically like kN 7Y PN (z,3) which
would then converge to tm,Q(x,y) for N — co. The issue with this approach
is that we cannot apply the ergodic theorem since the transition matrix P
and the stationary distribution 7V depend on N. Even worse, for large N
the Markov chain XV will move slower and therefore we cannot expect that
the ergodic theorem could be applied uniformly in N. Alternatively we could
try to apply the strong law for row-wise independent arrays again. Consider
the array (Zn,)nen,ie[n] given by

kY

Zn,i ::Z(]I{X N g X y}—ﬂiVPN(x,y)).

J=1

Due to independence of X"V the rows of (Zy;) are again independent and
since the chains are in equilibrium:

P(X;N =2, X;N = y) = 72 PN (2, y) (3.10)

J
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and thus E(Zy,;) =0 for all N € N, i € [N]. But we can no longer guarantee
the uniform stochastic boundedness of Zy; which was necessary to apply
Theorem 4 in [2§].
Thus, we have to estimate the probabilities explicitely and show conver-
gence from scratch. To ease notation we define for j € {1,...kN}:
ABN {X;_]\; = x,X;’N = y}.

13T,y -

Note that if 51, . .., jm € {1,... kN } are mutually different the event ()", A%

. J5T,Y
entails that the Markov chain X" jumpes from z to y on at least m different

occasions and thus
(ﬂ AJz,x y) = (IB, y)m

We also define for ji,...,jn, € {1,...kN}

:]3

( ﬂiVPN(x,y)) )
Jl Zy

]1: SJmiTY
=1

Moreover, if we expand this expression we get summands of the form

(1—[ ﬂA;/iy> (m PN ()"

with k£ € [m] and I < [m] a subset with |I| = m—Fk. We first consider the case,
that the j; are mutually different. Taking expectations and applying the above
estimation yields that each summand is bound by PN (z,y)!|PN(z,y)F =
PY(z,y)™. Since there are m? summands we get

E(Y5 gl < m2PY (@, )"

J1yeJmiT,Y

In the case that the summands are not mutually different we assume j; = j,,
without loss of generality. Then, since

|]1{A2N }_WiVPN( Y- |]1{Ai’N }_WiVPN(xay”

7152,y Jim;T,y
= |1{A;11jw} NPN( CU)|
< |1{A§1Afz,y} WNPN(ZE y)|

(note that the expression inside the square is a random variable taking values
n [0,1]) and thus
| i, N | | i, N |
J15eesJmixyl S J15esJm—1;52,Y
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we get ]E(|Y;Z1N ayl) < (m—1)2PN(z,y)"™'. Applying this consecutively
until there are only mutually different indeces we get

E(Y)Y wgl) < PV (2, y) .

where a € [m] is the number of mutually different j;.
We will now estimate the L* distance between .Z,% , and kNN PN (z,y).
t

We have using that the Zy; are i.i.d. in ¢ € [N] and have mean zero. We use
this to expand the 4th moment:

1
E ((gz,gvxy — kN7 PN (z, y)) )

(N)2
N4

= —E((Zn1)") + (xz)fE (Zna) -E(Zy,) +
(N)3 2 2 N(N)4
i E(Zny1) - E (ZN,l) + TNt
N 4 (N)2 2 )2
= FE ((Zv1)") + B (Z3,)".

Our goal is to show that the expectations above are bounded for N — oo
which then shows that the forth moment goes to 0 for N — oo with order
1/N2.

We have for the first expectation where the sums are always taken over
mutually different indexes in [kY] (we use multinomial coefficients):

4
]E (Z?V,l) = (17 1’ ]_7 1> Z E(lelljj\;j&jzx;x,y)

E(7%,)

_l’_

E(Zy.)*

J1,32,J3,74
4 4
+ (2 1 1> Z E(Yﬁé\;»is,jg;%y) + (2 2) Z ]E(Y;'llzjjivjmjz;x,y)
o J1:32:3 ’ J1.J2
4 4
+ (37 1) Z E(Y;’?ﬁvjhjz;%y) + (4) ZE(Y}i:ﬁvjlv]‘l%m,y)
J1,J2 J1

< (0 R = 00 -2 - 9P )

RS =D = 2P+ (4 )N - )P e’

Y
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The right hand side of this inequality is bounded in N € N, due to ¢V — 0
and since by (3.8)):

t | ¥PY(y)
N pN N )
Thus,
kN 4
limsup E Z 1o~ — 7 PY(z,y) < 0.
N—ow o

Next, we have to estimate the second moment. We get similar to the fourth
moment (again the sums are taken over mutually different indices):

E (Z3.)

2 LN LN
:(1)ZE(Y;1]2IQ ()ZE Y;uwy
J1,J2
< 2K (k) = 1)PY(2,y)* + K PN (2, y).
Again, the right-hand side is bounded in N € N,. Thus there is a constant
D > 0 that does not depend on N such that

4 D
E ((ﬁng - kivﬁa]cVPN(iE,?/)) > SNz
The Markov inequality yields for ¢ > 0:

D
N2et’
Since the probability is summable the Borel-Cantelli Lemma yields for N — oo:

P(|.F%

kt 3T,y - kt]VWiVPN(x7y)| > 6) <

|ﬁ;gv.xy — kNaN PN (2, y)| - 0  almost surely .

We have already seen in (3.11]that k¥ PV (z,y) — tQ(x,y) and together with

Ty — my we get FN — tmeQ(z,y) for N — oo almost surely. This shows

the second part of (3.9)).

We show that the Assumptions are fulfilled as claimed. [I] of As-
sumptions holds trivially. The functions ¢t — %,, = tr,Q(x,y) are
linear in ¢ and thus absolutely continuous with differential .7, = 7.Q(z,y).
Together with we get . of Assumptions with almost sure pointwise
convergence of processes. Note that we have for all ¢t > 0:

Z Z Ftay = ZZ%QDS?/ Z—m@(m,x)<oo.

z€G yeG\{z} 2€G y#x zeG
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Thus[d] of Assumptions is fulfilled. Since %, = 7, is a distribution on G
we have > %o, = 1 and thus . of Assumptions is fulfilled. Let z € G,
t = 0. Next, we show the almost sure convergence of the sum:

Z yt];\:{:,y —1 Z ﬂ-mQ(mu y) = —tﬂmQ(SC,%).
yeG\{z} y#r
Note that ' '
Z Lyn = {X;_J\; = x,X;’N # 1}
ve\lap
and
Z kY PN (z,y) = kY nl (1 — PN (2, 2)).
yeG\{z}
We can argue completely analogously to the proof of the almost sure con-

vergence .#Y — tm,Q(z,y) by simply replacing P (x,y) with 1 — PN (x,x
tx,y

and replacing “hitting y” with “avoiding x” in all events, to get D = 0 such
that for all € > 0:

D

ki sy
yeG\{x}
And again by Borel-Cantelli and due to
k:tNﬁiV(l — PN(x, ) > —tm,Q(z, )
we get for all ze G and t = 0:

Z fftﬁy — —tm,Q(z,r) for N — oo almost surely.
yeG\{z}
Due to
Rio =Rt ), Fhya= 2y Tl
yeG\{z} yeG\{z}

the almost sure convergence of %, now implies for N — oo:

Z FN =R — R+ Z FN  — —tm,Q(x,x) almost surely.

tiy,x tiy,z
yeG\{z} yeG\{z}

Since 7 - () = 0 we have

_tﬂxQ(‘T?x):t Z ﬂ—yQ(ya:E)

yeG\{z}
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and thus we have almost surely for N — oo:

Z tzy —tm,.Q(x, x) Z Foay

yeG\{x} yeG\{z}

and

Z L%A;x —tm,Q(z, ) Z Py

yeG\{z} yeG\{x}

Thus [0} of Assumptions holds in terms of almost sure pointwise conver-
gence. Due to #y, = m, > 0 for all z € G, t € R, [ of Assumptions is
also fulfilled. O]

One way to ensure that the requirements of Proposition [3.8| are met, especially
if we want to attain a specific random walk in the limit, is by using lazy
walkers.

Example 3.9 (Independent Lazy Walkers). Let Q) = (Q(,Yy))s4ec be a conser-
vative, stable generator matrix. More precisely () is a matrix with nonnegative
off-diagonal entries (interpretation as rates), row sums equal 0 (conservative)
and finite, nonpositive diagonal entries (stable). and 7 a distribution on G
(represented as a row vector) with 7+ @Q = 0 and sup,c —Q(z, ) < 0. Let
a > 0. For large N € N, we can define a stochastic matrix (a matrix with
nonnegative entries and row sums equal 1) PV = (PY(z,y),ec) via

PN(z,y) = Q. y) <1 forx+#y
N«
and
PN —1_ PN -1 Q(SL’,LL’) >
()= 1= 3 Py =1 Q0

yFT

The stochastic matrix P describes a discrete-time Markov chain and thus
a random walk on GG. We call this random walk lazy since the probability
P(z,x) to remain at a given state x converges to 1 for N — oo. In words:
for large N the random walk will stay in its current state for long periods of
time. Furthermore the random walks for different IV essentially only differ
in this holding probability in the sense that the conditional probability of
moving from = to y given that the walker does not stay in z is the same for
all N. This Markov chain has the equilibrium distribution 7 since we have



3.3. Definition of the Limiting Coalescent 37

for re G and N e N:

(W-PN)$=Z7TyPN(y,x)+7Tm 1— Z PN (x,y)

y#x yeG\{z}
=T, + N Z (ﬂ-yQ(ya x) - Wx@($>y))
yeG\{z}
=7, + N “ Z T, Q(y, x) = Ty
yeG

Note that N*PN(z,y) = Q(x,y) and

N (PV(z,2) = 1) = = Y N*PV(z,y) = Q(z, z).

y#T

Thus the assumptions of Proposition are fulfilled since we even have
NYPN —1)=Q and ¥ = 7, for all N e N,.

3.3 Definition of the Limiting Coalescent

We will now define the limiting coalescent using the limiting processes #Z and
F given by Assumptions

This definition will use the concept of infinitesimal rates to describe a
specific type of time-inhomogeneous Markov chain which we call a time-
inhomogeneous reqular jump process. Since the concept of rates can be
well enough understood on a heuristic level we will postpone some of the
technical details of how the process is derived from the rates. For the rigorous
construction see Definition [6.2

Definition 3.10 (The Limiting Coalescent). We consider a sample of n
ancestral lines at time zero. Let z; € G be the starting location of the i-th
ancestral line of the sample. We assume %,.,, > 0 for all i € [n].

Let .# and Z be given as in the Assumptions [3.60 We define the limiting
coalescent IT = (II;),er, conditioned on # and .# as a time-inhomogeneous
regular jump process (see Definition in the space of labeled partitions
P with the following properties:

1. Let S := {(t,z) € Ry x G|%, > 0} and G; := {z € G|(t,x) € S} for
t € R,. Note that it will turn out later (see Proposition or, if G
finite, |4| of Assumptions that the mapping ¢t — %, is continuous.
Thus S is an open subset of R, x G. We restrict the state space P,
at time t to labeled partitions with labels in G;. We refer to this new
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state space as the restricted state space. We will also later see that with
the proposed rates II will be a process in the restricted state space,
which is necessary for the infinitesimal rates to be finite. In the context
of Definition [6.2] the restricted state space will be the set of admissible
states for our process and S will be the set of admissible states if we
only consider the migration of the label of an individual line.

2. Iy has the form (({1},x1),...,({n},z,)). we assume that (0,z;) € S
for all i € [n] in order to ensure that I, takes values in the restricted
state space.

3. Let x # y € G and t € R, with (¢,2) € S. The infinitesimal rate with
which one ancestral line changes its label from x to y at time ¢ is given

by ozl
i ft;ﬂ%
Aoyl = %.,t.xy. (3.12)

)

4. Let x € G, t € Ry with (¢,2) € S and let there be i ancestral lines in x
at time t. Any coalescence event A for the lines at x can be considered
as at most ¢ simultaneous mergers of lines. Let [y,...,[; € Ny be the
size of the mergers. (So [; lines find a common ancestor simultaneously
another [, find a different common ancestor and so on.) By construction
[ +...+1; =i The infinitesimal rate with which such a coalescence
happens is given by

oa 52«“
0S8 = =il ., ). (3.13)

Remark 3.11. By the consistency property of the ¢ (Proposition together
with the representation of consistent rates with a measure = (Theorem the
limiting coalescent has the form of a spatial =-n-coalescent, with potentially
different =, at different sites, which additionally runs on a random timescale
sped up by B.%Z,“. Also, the migration of ancestral lines conditioned on .#
is independent.

One of the key features of our limiting process is that it is, in general, not

described by a strongly continuous semigroup. In particular it may not be a
Feller process.

Proposition 3.12. Consider the time-inhomogeneous Markov chain'Y taking
values in G which describes the motion of a single ancestral line in the limiting
coalescent from Definition [3.10. We define the set of real-valued, continuous
functions on S, vanishing at infinity as

Co(S) :={f: S — R| continuous with |f|~*([e,0)) compact for all ¢ > 0}.
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Let f € Co(S) and t = 0. We define the operator semigroup (Ty)s=o via
T;ff: S — R) (w,x) — E(f(w +1, Yw+t)|Yw = :E)

Furthermore let there be x € G and 0 < s < u with (s,z) € S but (u,z) ¢ S.
Then (T})ter, is not strongly continuous.

Proof. Since S is open we can assume without loss of generality, that u is
chosen minimal under the constraints s < v and (u,z) ¢ S. We show the
claim by contradicion. Assume that (7})er, is strongly continuous. Then for
all f e Cy(S) we have T, f — f for t — 0 in the strong topology. Let y € G
with (u,y) € S and define

Sy == {weRy|(w,y) € S}.
Furthermore we define the following function:

0 ifz#y
fy: S—>R, (w,z)— (1+u)(1Ad(w,S;))

(1+w)(1/\d(u,S§)) itz = y

where d(w, Sy) is the Euclidean distance between the point w € Ry and
the closed set S; < R,. Note that since d(e, S;) is continuous the function
fy is also continuous. Also since d(v,S5) — 0 whenever v — w € S and
since (1 +v)™' — 0 for v — o we have f, € Cy(S). Furthermore we have
fy(u,y) = 1. Consider n € N, with s < u— 1/n and thus (u —n *,z) € S
due to minimality of u. We have Ty f(u,x) = 0 and thus by strong continuity
for n — o0

P(Y, = y|Yu_n-1 = 2) < E(f,(u,Y)|Yoon =2) =T flu—n"t ) - 0.
Since this holds for all y € G with (u,y) € S we get by dominated convergence:
P((u,Y,) € S|Yy_p-1 =) — 0.

But since S is the admissible set for Y the probability on the left hand side
is always equal 1 which yields a contradiction. ]

Remark 3.13. Note that finding (u, z) ¢ S, (s,x) € S with s < w in Proposition
is equivalent to the existence of a site x which carries positive mass
Hs., > 0 at some time s but has lost all of its mass at a later time w. This
situation will usually arise if mass is not ensured to be positive at all times
and sites.
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3.4 The Limiting result

We can now state our main theorem.

Theorem 3.14. Let n € N and m € Pg,, such that ™ has no ancestral lines
labeled x with Ro.. = 0. Let TTV = (113 )ken, be the coalescent of the population
as defined in Section . Define (TN )yer, = (HZN)teRJr. Furthermore, let
II = (I1;)1er, be the limiting coalescent as defined in Deﬁmtwn and let
1) = 7 =1l for large N. Moreover, assume that Assumptions|3.6| hold.
Then we get the following weak convergence of processes in the Skorohod
topology (for a detailed description of the Skorohod topology see [§])

~

(Hz{v)tel& — (I)ter,  for N — oo.
Remark 3.15.

1. For given n, N € N, and 7 € #, with no blocks with label x € G if
Zo.. = 0 it may not be possible to start IV in 7. But due to %o, > 0
for all blocks in 7 with label z and due to G ~ N%o,, we can start

IV in 7 for sufficiently large N € N,. Thus, this poses no issue for the
limiting result in Theorem [3.14]

2. Let 2| of Assumptions hold for all n € N,.. Let N € N, and let
taN: Pan — P be a mapping with 7¢ n o tg,n = idg,, . Consider
the starting condition 7y € P¢ n given by having blocks of type {k}
which carry the location of individual k € [N] at time 0 as label and
stipulate g n(Tn) — T € P for N — 0. Note that for sample size
n = N we can start I in 7y. Then by definition of the topology of
P and since Theorem holds for all n € N with starting condition
78 (mn) we have

LG,N(ﬂ) — 11

weakly with respect to the vague topology, where II is the spatial =-
coalescent started in m,. This means that essentially convergence holds
also for large sample sizes n = O(N) though this is simply due to the
topology of ¢ which only requires all restrictions to small sample sizes
n to converge.

3. Note that in[I] of Assumptions we stipulated that the rescaling ¢
behaves polynomially in m for m — oo which led to the global rescaling
kN = |tN®|. This case is particularily interesting since, on one hand
this covers the usual population models (e.g., Wright-Fisher-Model:
¢™ = 1/m, Moran-Model: ¢™ = 1/m?) and on the other hand the local
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mass %y, will influence the rate of coalescence in the limiting process.
In fact by (3.13)) the rate of coalescence in the limiting process will
increase at sites which feature a small local mass.

Note that if the ¢ would behave logarithmically we would not see such
an influence of the local mass %, on the rate of coalescence in the
limit and if ¢ would behave exponentially the influence would be so
strong, that the limiting process would only allow for coalescence at the
site which carries the least non-zero mass.

For now we will give a sketch for the proof of Theorem For the
rigorous proof see Chapter [§ The limiting process is a time-inhomogeneous
Markov chain and thus we can consider the process (,Il;)er, which is a
time-homogeneous Markov process taking values in Ry x ¢ ,,. The problem
with this approach is that if we allow for the mass %, to drop from some
positive value to zero over time then the semigroup of the Markov process
seizes to be strongly continuous (see Proposition . In particular most
of the standard theory for showing convergence by considering generators or
martingale problems is not applicable. At the same time we want to use the
fact that we are considering a Markov chain albeit time-inhomogeneous. Since
we could not find a satisfying theory which specifically treats convergence of
time-inhomogeneous Markov chains we developed our own appoach to this
problem.

To explain said approach we first introduce the concept of graphical
representations. We consider a general discrete state space E and let O be
an open subset of R, x E. Also, we set Ey, = E U {0} to be the one-point-
compactification of F if E is infinite (and Fy, = F if E is finite). We use Eq
instead of E only for topological reasons and will not explicitely use the added
point co. For our purposes a graphical representation is an integer valued
random measure 7 on O x Fy, which is almost surely finite on compact subsets
of O x Ey, almost surely only has atoms of mass 1 and n(O x {wo}) = 0.
Each atom, also called point, of n has a location (¢, z,y) € O x E. We now
visualize (see Figure later on) such a point for  # y as an arrow pointing
from (t,z) e R, x E to (t,y) € Ry x E. We then can use such a graphical
representation to define a piecewise constant process Y = (Y})er, taking
values in F by tracking along those arrows (see Figure later on). More
precisely, if Y;_ = x and if there is an atom in n at (¢, x,y), then we require Y’
to jump to y at time ¢. Assume that Y is a time-discrete Markov chain taking
values in E (for instance II"V) and define Y using a time rescaling ¢t — EN.
We can define a graphical representation 7 for Y by using the transition
probabilities of Y:

Py = P(Yip1 = y|Ys = 2).
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For each k¥ € N, z € F there is at most one arrow out of x at time k;' and
we use the distribution on E given by the vector (pg..y)yer to determine the
state which the arrow points to. In the case that the distribution yields z
we have no arrow pointing out of x at time kY. Moreover, we consider the
distributions for different k¥ and x to be independent.

For a Markov chain in continuous time (like II) we can also use graphical
representations. Indeed, we even use graphical representations to define II
properly in the first place (see Definition . In this case the graphical
representation 7 is given as a Poisson point process on O x Ey and the
infinitesimal rates ¢, of our MCCT are densities of the intensity measure
of pon Ry x {z} x {y}.

These graphical representations are often used in population genetics to
describe and couple stochastic processes. The relevant observation in our case
is that convergence already holds in terms of the graphical representations.
A sensible choice for the topology on the space of graphical representations
is the so called vague topology. The vague topology can be defined on the
larger space of measures on O x FE,, which are finite on compact subsets of
O x Ey. Such a sequence of measures p,, converges to u if and only if

| ram— [ rau

for all f: O x Eyx — R continuous with compact support.
We start by using graphical representations for IIV (as described above)
and II (as by Definition [6.2] Here

O = {(t,m) e Ry x Pgn| 7 has only labels in G}

is our restricted state space (the labeled partitions which) and E := Pg .
We consider the mapping that maps a graphical representation to a stochastic
process. We show that this mapping is continuous at points where the
resulting process is non-explosive with respect to the vague topology on the
space of graphical representations (as a subspace of measures on O x E,
which are finite on compact subsets) and the Skorohod topology on the space
of processes (see Proposition .

A (random) graphical representation 7 also defines an intensity measure
v via

v(A) =E(n(A)) forall A< O x Ey measurable.

We show that vague convergence of the intensity measures already implies
weak convergence of the graphical representations with respect to the vague

topology (see Proposition [4.19)). Thus it is left to show that the limiting
process is non-explosive, which is the case if and only if the migration of an
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ancestral line in the limit is non-explosive, and that the intensity measures
converge in the vague topology.

For the non-explosiveness we look at general time-inhomogeneous Markov
chains and show that we can ensure this property by finding a certain solution
to the differential equation m, = m; - Q; with 7, a distribution for all ¢ €
R, (see Theorem [6.19). This result is of interest in its own right. For a
time-homogeneous setting ) = J; in which () is a bounded operator it is
known that the differential equation 7; = 7, -  determines the distribution
7 = moexp(tQ) of a time-homogeneous MCCT. But the generalization to
the time-inhomogeneous setting introduces new issues since () and (); may
not commute. Also, in the time-homogeneous setting this is a generalization
of the fact that an equilibrium distribution 7 is uniquely determined by the
property m- @ = 0.

Note that for a time-inhomogeneous Markov chain there are two different
types of explosions. On one hand, the process can explode by diverging to
infinity in a finite amount of time. This type of explosion is also possible
in the time-homogeneous setting. On the other hand a time-inhomogeneous
process allows for the possibility of explosions due to rates becoming locally
infinite. This can even occur if the state space is finite. Solving the differential
equation m, = m; - (J; not only allows us to show non-explosiveness for both
cases, but we were also able to show that, for a finite G and thus finite F,
the solution 7; captures explosions as discontinuities of the solution t —
(see Theorem [6.18).

To show convergence of the intensity measures we have to improve the
convergence of .Z to .Z to hold uniformly on compact sets (and the same
for #Y and #). This also allows us to assume that Z~ and ZV converge
almost surely (see Lemma and then Lemma [8.1)).

Using the Continuous Mapping Theorem we can then show that I
conditioned on .FV, " almost surely converges weakly with respect to the
Skorohod topology to IT conditioned on .%, Z. By dominated convergence
we can get rid of the conditioning and get that I converges to Il weakly
with respect to the Skorohod topology.

3.5 Discussion of the Result

We start by comparing with results about large population limits for spatial
coalescents. Notahara [21] considered a situation in which individuals in the
population migrate independently and at each site x € G a Wright-Fisher-type
reproduction mechanism was employed. This means, that each individual
chooses its parent independently uniformly at random from the previous
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generation. Furthermore the system was considered to be time-homogeneous.
Our scheme covers the case of independent migrators (see Proposition
and a Wright-Fisher reproduction (see Example mechanism corresponds
to ¢ = 1/m and thus a = 1 and 3, = 1 in our setting. One difference is that
in Notahara’s setting the reproduction step rebalanced the local population
size whereas we could have a situation in which the local population size is
asymptotically balanced but the reproduction keeps the number of individuals
constant. As in the nonspatial case the limiting coalescent will be a spatial
Kingman-coalescent, also referred to as the structured coalescent.

Herbots [11] and later Heuer and Sturm [12] considered balanced migration
on a finite set G. In [12] the number of migrants from x to y was n,, € Ny

with
D ngy = > g

yeG\{z} yeG\{z}

In this case the local population size N, is constant in ¢t as well as deterministic.
Furthermore the local population size N, was assumed to also be constant in
z. It was assumed that N,/N — 1/|G| > 0 as well as n,,/c¥ — p(z,y) = 0
where ¢V — 0 was a global time rescaling. Note that our result covers this
situation since for t € R, ,  # y € G we have for N — co:

t

‘%)153; = Ny/N — 1/ |G| = R0, g[t];\:fay = L:_NJ Nay = p(2,Y) = Fray.

There are also convergence results in which the spatial information does not
impact the coalescent in the limit, so called fast migration results. Heuristi-
cally, if migration happens on a faster timescale than coalescence it is possible
for the spatial distribution of the ancestral lines to become almost stationary
before coalescence happens. In such a case the limiting coalescent does no
longer see the underlying spatial structure.

Héssjer [13] provided such a limiting result for the fast migration case on a
finite space {1,..., L}. Similar to [I2] a balanced migration and exchangeable,
conservative reproduction was assumed but instead of migration happening
on the slow timescale O(cy) the migration happened on the timescale O(1).
To attain a limit only the coalescent component of the spatial coalescent is
considered. Hossjer [13] showed that under certain conditions on the moments
of the offspring distribution (similar to the convergence of the ¢, ;(l1, ..., 1)
in [2[ of our Assumptions the coalescent component of the genealogy
converges to a Kingman-coalescent with a time rescaling ¢ > 0.

Another fast migration result on a finite space was given by Sagitov et al.
[24] who considered the migration backwards in time at time u € N to be

governed by random transition matrices B%u) which converge for u — oo to a
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random stationary transition matrix P;. It is noteworthy that even though
the migration in [24] is time-inhomogeneous this is not due to change in the
local population size, which was still assumed to remain constant in time.
This is similar to the case in our setting, in which the flows .# may keep
the local total mass #Z constant but may themselves vary, thus introducing
a time-inhomogeneous component without changing the local population
size. More precisely, the (random) transition matrices for a population of N

individuals B%u) (N) are assumed to have the following asymptotics:
B"(N) = B{" + N~'D{"(N)

with D{" (N) uniformly bounded in u, N € N. Furthermore some assumptions
on the mixing property of the transition matrices B%u) were made. Sagitov
et al. [24] showed that under these assumptions the genealogy of a spatial
Wright-Fisher model, with a suitable time rescaling, converges to the standard
(nonspatial) Kingman-Coalescent.

We will now talk about applications of our result. Our scaling regime is of
particular interest since it retains the spatial information of the system. This
is useful for studying the influence of spatial structure on genealogies. There
are plenty of recent results looking at spatial A-Coalescents in particular.

In the previously mentioned paper by Heuer and Sturm [12] the resulting
large population limit was then used to derive a robustness result for the
coalescent of a population living on a large, discrete 2-dimensional torus. More
precisely it was shown that the coalescence component of a suitably time-
rescaled spatial A-coalescent in which lines migrate using simply symmetric
random walks on the discrete torus {—L,..., L}* converges for L — oo to a
time-rescaled Kingman coalescent if the lines were sampled suitably far apart
at time O.

Using the result from this thesis we can extend the application of the
paper greatly. It is no longer required for the number of migrants n,, to
be deterministic or balanced and the N, to be constant in z, instead we
only require the limiting process to be well behaved. For instance modeling
migration using independent migrators (see Examples still allows for the
same type of large population limit.

Since the core argument in [12] was that with probability 1 for L — oo only
at most two ancestral lines could meet at the same time the robustness result
in [I2] could be extended to a setting where instead of a spatial A-coalescent
one could consider a spatial Z-coalescent since both coalescents have the same
behavior for sample size 2.

Results similar to [12] but for a spatial A-coalescent on the d-dimensional
discrete torus with d > 3 were already derived by Limic and Sturm [19]. The
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transience of the simple symmetric random walk in Z? for d > 3 allowed for
nontrivial results even if the lines are not sampled far apart initially.

There are also results considering a spatial A-coalescent in a continuum.
Barton et al. [2] showed that the genealogy of a suitably time-rescaled spatial
A-coalescent on the 2-dimensional torus [—L/2, L/2] converges to the Kingman-
coalescent. In order to work with the spatial continuum small and large
reproduction events affecting the population were considered. Small events
would only require repopulation of an area with a radius » « L but they
would happen frequently. Large events would affect an area of radius ¥, with
U, — oo for L — oo but they would be rare (rate ppi;* — 0 for L — o).
These rare, large scale events lead to a A-coalescent in the limit whereas the
small events only yield a Kingman-component (an atom at 0 in A) in the
limit.

Greven et al. [9] considered a spatial A-Cannings model subject to a
mean field migration mechanism. The coalescent of such a model is a spatial
A-coalescent with migration rates qi\gi =cfor all x,y e G, t = 0. Thus this
coalescent fits into our framework if we consider a symmetric, balanced setting
Ry = 1/ |G|, Frpy = ct/ |G| for all z,y € G and assume that no simultaneous
mergers in our =Z-coalescent can happen (making it a A-coalescent).

Greven et al. [10] considered a spatial coalescent on a countable, additive
group V' (later V' = Z). Individuals were assumed to migrate (backwards
in time) with rate 1 using a transition kernel a(x,y) = a(0,y — z) and to
reproduce with rate v according to a time-continuous Moran model. More
precisely every pair of individuals would, with rate ~, be replaced with two
offspring of one individual of the pair, chosen uniformly at random. Note
that the total rate with which the considered Markoc chain moves out of
x € V does not depend on V. By Kolmogorov’s backwards equation (for
time-homogeneous Markov chains in continuous time) the assumptions of
Theorem are fulfilled and thus we can apply Proposition to see
that there exists a system of flows which yields this particular migration
mechanism. In [10] it is assumed that each step of the random walk given by
a(z,y) has zero mean and finite variance o2 € (0, 00). For a given £ > 0 time
gets rescaled via t +— €2t and space gets rescaled via z — eo™!. Fore — 0 a
limit to the genealogy of a so called continuum-sites stepping stone model
on R is attained. This genealogy can be described as a system of coalescing
Brownian motions on R.

It should be noted that all these results consider usually at least a time-
homogeneous migration for the ancestral lines. Our result of course allows
even for time-inhomogeneous limits which will usually happen due to large,
migration induced fluctuations in the local population size. Furthermore we
have seen in Proposition that severe bottlenecks can even lead to loss
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of the Feller property of the limiting coalescent. Thus our result can also
help understanding the limits in which the previusly discussed papers should
be applied. Genealogies of populations which were subject to substantial
migration in the past, for instance using migration to populate a previously
vacant location, will look significantly different than genealogies of populations
with relatively constant local population size.

3.6 Overview Over the Rest of the Thesis

The remainder of the thesis is focused on proving our main result, Theorem
[B.14] In Chapter [4] we introduce the concept of vague convergence and
conditions for weak convergence of integer valued random measures with
respect to the vague topology. Furthermore we show that vague convergence
of intensity measures of certain point processes implies weak convergence of
the point processes themselves to a Poisson point process.

In Chapter [f|we introduce the concept of (proper) graphical representations.
Furthermore, we describe how a process can be defined by tracking through
a graphical representation and show continuity of this procedure at certain,
good representations.

In Chapter [0] we define time-inhomogeneous regular jump processes with
rate matrix ¢); which are time-inhomogeneous Markov chains that can be
defined using graphical representations. We also develop a method to identify
the distribution and in particular non-explosive behavior of these jump
processes by solving the differential equation 7, = m; - Q.

In Chapter [7| we introduce the system of flows which is our limiting
migration mechanism. We show that the rate matrix Q); for a system of flows
yields a proper graphical representation and find a solution for m; = 7 - @Q; in
order to show the non-explosiveness of our migration mechanism. Moreover,
we show that the weak convergence of the finite dimensional distributions of
the flow processes .Z % and the mass processes Z" can be refined to weak
uniform convergence on compact sets.

In Chapter [§ we prove our main Theorem and in Chapter [0 we give
an outlook and ideas for future research and possible generalizations of our
results.



48 3. Main Result: Convergence to the Limiting Coalescent




Chapter 4

The Vague Topology

4.1 Definition and Basic Theory

As was outlined in the sketch of the proof for the main result the vague
topology will be important. Thus we want to give some well known results for
integer valued random measures and derive some more specific convergence
results we will need later on. This chapter mostly uses the groundwork done
by Kallenberg [16]. We start by introducing some notations.

Notation 4.1.

1. Let A; be disjoint sets with ¢ € I for some index set . We write

A=A

iel iel

2. Let A < E with E a topological space. We write A for the closure of
A, A° for the interior of A and 0A := A\A° for the boundary of A.

3. Let A c E with E a topological space. Recall that A is called compact if
every open cover of A allows for a finite subcover and relatively compact
if A is compact.

The following lemma shows some basic properties of the boundary.

Lemma 4.2. Let E be a topological space. Let A, B be subsets of E. The
following claims hold.

1. We have

as well as
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If additionally E is separable and A n B < A° U B°, then equality holds
m .
2. It holds: 0A = 0A°.

3. It holds:
0(A\B) € 0A L 0B. (4.3)

Furthermore, if E is separable, B € A and either B is closed and A is
open or A is closed and B is open, then equality holds in .

4. It holds:

(AuB)c0AudB and J(AnB)< dAuUIB. (4.4)

Proof.
1. We start by showing the first equality in (4.1)). We have on one hand:

(AuB)c(AuB)=AuUB

and on the other hand:

Ac(AuB) and B< (AuB)

which yields - o

Ac(AuB) and B< (AuB).
Thus we get A U B < (Au B). The second equality of ) can be
shown by applying complements on both sides and using A~ = (A°)°.

Now we show (4.2). We have
(AnB)c (AnB)=AnB.

The second inclusion follows by applying complements.

Now let
re AnBc A° U B°.

Without loss of generality let x € A°. Since z € B and F separable
there exists a sequence (x,)nen, S B which converges to .

Since A° is an open neighborhood of = there is an m € N with z,, € A°
for all n = m. Thus the subsequence (x,),>m lives in A n B and
converges to z. This implies z € A n B. Thus we have AnB< An B
which shows equality. The second equality in follows by applying
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complements to both sides of the first equality using A° and B¢ instead
of A, B and using that

T A T C (A% U (BE)
(AN (B c AUB°
sAnBc AU B°.

2. We have due to A¢ = (A°)°:

QA = A\(A%)° = A° A ((A9)°)° = (A°)° n (A°)c = A n (A%)° = PA.

3. We start by showing (4.3]). We have due to (4.1)) and (4.2):

AA\B) = (ABN\AB) € A~ T (47 A (B
= An B ((A)° U ((B)))
= (An B (A% U (((B9)°) n A B
c (An (A% U (B ((B9)°)) = 0A U 0B°“.

Now, [2| implies 0B = dB¢ which shows the first claim.

We continue with the second claim. Let B € A € E with B open and
A closed. Note that due to[2] we have 0B = dB¢. Thus we get, since
A\B is closed and due to (4.1)):

A(A\B) = (A\B)\(A\B)?
=An B°n ((An B9)°)°
=An B°n (A’ n (B9)%)°
S AR B A (A0 U (BY))
= (AN B°n (A%)°) U (An B n (B%)°)
— (B (A\AY) U (A (BA(BY)))
=(B°ndA)u (AndB°)
= (B°ndA)u (AndB).

Moreover, we have 0B € B € A and 0A € A¢ € B° and thus the right
hand side of the equation simplifies to dA U 0B.

Next we assume that A is open and B is closed. We first note that
A=AuU?dA and due to B < A and 2}

0A = 0A° € A° € B° = (B°)°
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as well as B¢ = B¢ U 0B° and
0B°=0Bc Bc A= A"

Thus, it holds:

AnBe=(AUdA)n (B°UdBY)C Au B¢ = A°(UB)°.
Therefore, equality holds in (4.2)) and we get
A(A\B) = (A B)\(A\B)

=AnBcn (An B¢
=AnB°n(A°U B)
=(AnA°nB)u(B°nBnA)
= (0A n B°) U (0B° n A).

The right-hand side simplifies to 0A U 0B since

0A=0A°C A°c B and 0B°=0B< BcA

4. We start by showing the first inclusion. We have due to (4.3)) and [2:
J(Au B) =0(A°n B°) = d(A°\B) € 0A° LU 0B = 0A U 0B.
The second inclusion follows in similar fashion:

O(An B) = 0(A\B°) € 0A U dB° = dA L OB.

]

Remark 4.3. The separability of £ in[2] and[3] of Lemma[£.2]can be dropped.
The proof works analogously for general topological spaces if one replaces the
concept of sequences with the concept of nets in the proof. We only presented
the results in the separable case since our spaces are always separable and
nets are not common knowledge outside of topology.

We now introduce the class of spaces considered by Kallenberg [16].

Definition 4.4. We call a topological space E equipped with its Borel o-field
PB(FE) an lescH space if:

1. F is locally compact. This means that every point z € E allows for a
relatively compact, open neighborhood.
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2. F is second countable. This means that the topology has a countable
basis, or more precisely, a countable collection of open sets {O,|n € N}
such that for each U € FE open there exists I € N with

U=U@.

el

It should be noted that for metrizable spaces this is equivalent to
separability.

3. F is a Hausdorff space. This means that for any two points x # y e F
there exist disjoint open neighborhoods of x and y.

Moreover, we define .Z.(FE) as the set of measures on (E, Z(FE)) which are
finite on (relatively) compact subsets of E.

The following proposition introduces some basic properties of lcscH spaces:

Proposition 4.5 (Properties of lescH Spaces). Let E be an lcscH space and
we M(E). The following claims hold:

1. E is metrizable and separable.

2. The system of open, relatively compact sets B < E with p(0B) = 0 is
a w-system (i.e., closed under finite intersections) which generates the
topology of E and in particular B(E).

3. E is o-compact, which means there exists a sequence C,, /" E with C,,
compact for allmn € N_. We can choose this sequence with the property
wu(0C,) =0 for alln e N, .

4. | 1s o-finite.
Proof.

1. For this part of the proof we will refer to the notation and results by
Joshi [15]. We give a short describtion of the nomenclature used in [15].
A space F is called regular if, for any point x € E and any closed subset
C <€ E with x ¢ C, we can find disjoint, open sets U,V with x € U
and C' € V. FE is called T; if for any = # y € E we can find an open
neighborhood U of x which does not contain y. E is called 75 if it is T}
and regular.

We first note that every Hausdorff space is 7. Due to Corollary (3.4) in
[15] every locally compact Hausdorff space is regular and thus 75. Now
Urysohn’s Metrization Theorem (Corollary (3.2) in [I5]) yields that a
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second countable space is metrizable if and only if it is 75. In particular
E is metrizable. Let d: E x E — R, be a corresponding metric. To
conclude the claim we note that every second countable space has to be
separable (Theorem (1.5) in [15]).

. To show that the system is a m-system consider B, C' © FE open, relatively

compact with u(0B) = u(éC) = 0. Due to D := Bn C < B the
intersection D is again relatively compact as well as open and
yields 6D € dB u 0C. Thus we have u(0D) < p(éB) + p(0C) = 0.
Therefore the system is closed under finite intersections and therefore a
m-system.

Now we show that the system generates Z(FE). We can use the metric
d to define the open ball with radius » > 0 and center x € E:

B.(z) :={y € Eld(z,y) <r}.

Since FE is locally compact for every x € E there exists an r, > 0 such
that B, (x) is relatively compact and thus B.(z) is relatively compact
for all € € (0, r,). Furthermore, we have for the closure and the boundary
of the ball:

B, (z) = {y € Eld(z,y) <r} 0B.(x) ={ye Eld(z,y) = r}.

In particular the boundaries 0B, (x) are mutually disjoint for different
r > 0. Since the set (0,7,] is uncountable and u(B,,(z)) < oo we can
find r,, > 0 with B,, (x) relatively compact and u(0B,, , (z)) = 0 for
all x € E, n € N such that r,, — 0 for n — c0. Now let U € E be
open. We have

U={JB..(x

where the union is taken over all x € F'and all n € N, with B, (z) € U.
Thus the topology of E is generated by relatively compact sets such that
1 has no mass on the boundary and in particular the Borel-o-algebra
PB(F) is generated by these sets.

. Any second countable space is also Lindelof (see Theorem (1.5) in [15]).

This means that any open cover allows for a countable subcover. We
use the construction from the previous part of the proof to write

E= |J B..W.

zeE neN 4
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Since F is a Lindelof space this open cover can be reduced to a countable
subcover

As a finite union of compact sets C, is compact and C, / E by
construction. Furthermore we have by : oC, < J;,0B;. Thus E
is o-compact and due to u(0B;) = 0 for all i € N, we have u(0C,,) =0
for all n e N,..

4. We use the sequence C,, of compact sets constructed in the previous
part of the proof. Thus u(C),) < oo by definition and C,, ,/ E. This
shows that p is o-finite.

]

Remark 4.6. Note that every locally compact, separable metric space is also
an lescH space. Thus [l of Proposition yields that lcscH spaces are
essentially the same as locally compact, separable metric spaces. The concept
of lescH spaces is helpful if it would be cumbersome to construct a metric on
a given space. For our purposes F will have the form of a countable disjoint
union of copies of open subsets of R, or R which is clearly an lcscH space.

We now introduce a topology on M (E).
Definition 4.7 (The Vague Topology). Let E be an lescH space. We say that
a sequence (fn)nen, S M (E) converges vaguely to u € M (E) if and only

if, for any functions f € C.(F) (continuous mapping £ — R with compact
support), we have

deunﬁjfd,u as n — oo.

In this case we write p,, — p. The induced topology on M. (FE) is called the
vague topology.

Definition 4.8. A subset U < B(FE) is called separating if for any compact
set K and any open set G with K < G thereis a U e Y with K < U < G.
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The following proposition gives some important examples of separating sets.

Proposition 4.9.

1.

Let E = R% with d e N and U the set of all disjoint finite unions of
half open, bounded rectangles of the form (a,b]. Then U is separating.

Let F < E be a subset equipped with the induced topology. Then the
compact sets in ' are precisely the compact sets in E which are contained
n F.

Let O < FE be an open subspace and O locally compact. Given a
separating set U with respect to E the set

Uo :={U eU|U < O compact}
s separating with respect to O.

Let C' € E be a closed subspace. Given a separating set U with respect
to ' the set
Uo ={UnC|U elU}

is separating with respect to C.

Let E = R x F x Fy with F' an at most countable, discrete set and
Foo = F U {0} the one-point compactification of F if F is infinite and
Fo = F if F is finite. Let U be the set of all finite, disjoint unions of
sets of the form (a,b] x F(V x FO S R x F x F, witha <b, FY C F
finite and F® < E,, compact. Then U is separating.

Proof.

1. Let C € U € E with C compact and U open. Let x € C. Since U is

open we can find an open rectangle set (a,,b,) such that x € (a,,b,)
and (ay,b,] € U. Since C' is compact and {(a,,b,)|z € C} is an open
cover of C' we can find an n € N and x, € K for k € [n] such that
{(az,,bs,),...,(az,,bs,)} defines a finite subcover of C'. Thus we have

C < | J(az,,br ] S U.
k=1

Since half open rectangles in R? form a semiring we can refine the
collection of rectangles to a disjoint collection.
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2. Let K < F be a compact set in F.. Any cover {O; },c; of K with open sets
(in E) O; € E yields an open cover with open sets (in F') O, n F € F
which has a finite subcover (O; n F)™_; in F. Then (O;, )", is a finite
subcover in E. Thus we have that any compact set in the subspace F'
is also a compact set in F.

Now let K € E be compact (in E) and K € F. Let (O; n F);es be
an open cover of K in F' such that O; € E is open for all 1 € I. Thus
(Oi)ier is an open cover of K in E and has a finite subcover (O;, )™ ;.

But since K < F' we have that (O;, n F)I"_, is a finite subcover in F.
Thus K is compact in F'.

3. Let K € G € O with K compact and G open in O. By the previous
part K is also compact in £ and since O is open G is open in E. We
could now already separate K and GG in E but we want the additional
condition that the separating set has a compact closure. We first note
that since O is locally compact we can find an open set H < GG with
K € H and H € O compact. To construct H in detail we use local
compactness to find for any given x € K a neighborhood B, € G with
B, < O compact. The B, yield an open cover of K and thus we can
find a finite subcover. Since the union of finitely many compact sets
is again compact this subcover has the desired property. Since U is
separating in E' we can find a U € U such that K < U € H < G. Due
to U < H < O and compactness of H we have U compact and thus
Ue Z/{O-

4. Let K < O < C with K compact (in C') and O open (in C'). Due to 2|
C' is compact as a subset of E. Moreover, since O € C' is open there
eX1stSOCEopenW1thO OnC. Thus wehave KcO<cOCE
with K compact in E and O open in E. Since U is separating for E
there exists U € U with

KcUcO andthus KnCcUnCcOnNC.
Since K nC = K and O n C = O this shows the claim.

5. Let F' be finite with cardinality n € N. The topological space R x F' x
F'F,, is coordinatewise isomorphic to

E =R x [n] x [n] € R

Furthermore E is a closed subspace of R®. Thus we can apply . together
with 4] to conclude that finite disjoint unions of bounded rectangle sets
in R? intersected with F are a separating system for F.
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Now, let F' be infinite. The topological space R x F' x F, is coordinate-
wise isomorphic to

E:=RxN, x ({-1/n|ne N,} u {0}) € R®.

Furthermore E is a closed subspace of R®. Thus we can apply . together
with {4 to conclude that finite disjoint unions of bounded rectangle sets
in R? intersected with E are a separating system for E. Note that for
a < beR the set (a,b] n ({—1/njn e N1} U {0}) is always compact and
the set (a,b] n N, is always finite. Thus the intersections of rectangles
with R? produces exactly sets of the claimed form.

[]

Theorem 4.10 (Some Basic Facts about the Vague Topology). Let E be an
lcscH space.

1.

M (E) endowed with the vague topology is a Polish space. This means
that M (E) is metrizable in a fashion that makes it a separable, complete
metric space.

pn —> 11 if and only if for all B € E relatively compact with u(0B) = 0
we have p,(B) — u(B).

The space of integer valued measures on E that are finite on compact
sets is a closed subspace of M.(E).

| am — [ ran

for all bounded, measurable f which are p-almost everywhere continuous
and have compact support.

. Let pi, = p then

Let E = Ry and let p,, p be measures in M.(Ry) with measure
generating functions F,,, F with F,(0) = 0 = F(0). The convergence of
F,(t) = F(t) for all t € Ry at which F is continuous is equivalent to
fin = i M(R).

Proof.

1.

This is part of Theorem A 2.3 in [16]. Note that in particular E itself
is a Polish space. Using this we can choose a metric d on F for which
(E,d) is separable and complete.
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2. This is also part of Theorem A 2.3 in [16]. Technically, only one direction
is stated in the theorem so alternatively consider Theorem 14.16 in [16]
which shows it for the more general case of random measures.

3. Let p, — p with pu,, integer valued measures. By the previous claim we
have p,(B) — u(B) for all B € E relatively compact with p(dB) = 0.
Furthermore we have p,(B) € Ny for all n € N, and thus p(B) € No.
Let C' € F be relatively compact with p(0C) = 0. We now use Dynkin’s
m-A-Theorem to conclude that the restricted measure pc has to be
integer valued on all measurable sets. Consider the system

9 :={Be AB(C)|u(B) € Ny}.
we show that Z is a Dynkin system over C":
e Since C is relatively compact with u(0C) = 0 we have already

shown p(C') € Ny and thus C € 2.

o Let Ae Z. Then pu(C\A) = u(C) — u(A) € Z. Now p(C\A) =0
implies C\A € 2.

o Let Ay, Ay, ... € I pairwise disjoint. Then

N(U An) = Z 1(Ay) € No u {oo}.

TLEN+ TLEN+

But due to u(C) < oo the above sum has to converge and we get

U A, € 9.

TLEN+

Thus & is a Dynkin system. We have already seen that all relatively
compact subsets B € C' with pu(éB) = 0 are contained in C. By [2| of
these sets are a m-system generating (C'). We apply Dynkin’s
m-A-Theorem to conclude 2 = #(C) and thus pc(B) € Ny for all
B e #(C). To extend this result to E we apply [3| of to find
a sequence C,, of compact sets with u(0C,) = 0 such that C,, / E.
We have for every measurable set B € #(FE) by the continuity of the
measure 4 from below:

w(B) = lim u(B n Cy) = pje, (B n Cy) € Ny U {oo}.

n—eo

Thus p is an integer valued measure on E.
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4. This follows analogously to the proof in case of weak convergence of

probability measures. Let f: £ — R bounded, measurable with compact
support C' and Ny < (' its set of discontinuities. By assumption we
have p(Ny) = 0. For now we consider the case u(0C) = 0. We start
by restricting f to C. It suffices to show convergence for the restricted
function. Let ¢ > 0. Since f is bounded we can find [ € N and a
finite sequence ag < ... < a; with ag < infieo f(2) < supgee f(z) < ag
and |ap — ag_1| < e for k € {1,...,1l}. Furthermore since the sets
f~'({a}) € C are disjoint for a € R we can choose the a; such that
p(f'({ar})) = 0 for all k € {0,...,l}. We now define f.(z) := a; for
x € C with f(x) € (ag_1, ar]. Note that

op(f ((ax—1,ax]) < F ({an1, ar}) v Ny

is a p-nullset. Thus we have due to 2| for n — oo:
!
er dpn = Z apfin (fH ((ag-1, ar])
k=1

1
= Yol (@ anl) = [ fod
k=1
Therefore, we have

lim sup deun - deu‘

n—o0

<timsup [ 1. = /] dpo + | 1. = 1] du+ Ufsdun—ffedu‘

n—o

n—a0

=2u(C)e.

< limsup (i (C) + u(C)) + \ [ e~ [ 1 du‘

We conclude the claim for € — 0.

It is left to show that it suffices to consider C' with u(0C') = 0. Since E
is locally compact we have that the e-extension C° := {x € E|d(z,C) <
e} is compact for ¢ sufficiently small. Furthermore, the boundaries
0C® < {x € E|d(z,C) = ¢} are disjoint for different €. Thus there exists
an € > 0 sufficiently small with C* compact and p(0C¢) = 0.

. The pointwise convergence of measure generating functions in case of

vague convergence of the measures is a direct consequence of [2]
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Now we show that convergence of the measure generating functions
implies vague convergence of the measures. We have for s <t with s,
continuity points of p:

p((5,1]) = Fult) = Fuls) = F(t) = F(s) = (s, 1]).

We use a standard approximation argument to show convergence of
integrals over continuous functions with compact support. Consider
f € C.(R;) supported on a compact set [0,7] with u({T'}) = 0. Since
f is uniformly continuous we can approximate it uniformly with a
sequence f, — f where f; is piecewise constant on intervals for which
1 has no mass on the boundary. The above convergence on half open
intervals yields

J‘fk’dun_)ffkdﬂ for n — oo.

The argument is from now on a similar approximation to the previous
part of the proof. Let ¢ > 0 and k£ € N be large enough such that
If — fil, < e. We have

ffdun—ffdu‘

<timsup [ 17 = il doy + Ufkdun - ffkdu‘ + 17~ il

n—0oo

lim sup
n—o0

<timsup | — il (ua((0.7]) + u((0.T]) + \ [ e~ [ 5 du‘

n—o0

n—o0

< limsupe(F,(T) — F,.(0) + F(T) — F(0)) + Ufk dpin, — jfk d,u‘
= 2¢(2F(T) — 2F(0)).

For € — 0 this yields the claim.
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4.2 Convergence of Integer Valued Random
Measures

We will need conditions for weak convergence of integer valued random
measures with respect to the vague topology. This section will show this
convergence using the results of Kallenberg [16] about weak convergence in the
vague topology. At the end of this section we will also present an alternative
approach for showing the convergence using more modern techniques involving
Wasserstein metrics.

Definition 4.11. Let € M.(E) be an integer valued random measure on
an lescH space E. This means that pu(B) € Ny u {oo} for all B € Z(FE) almost
surely. Note that p is necessarily almost surely atomic. We call p simple if
and only if

P(Each atom of p has mass 1) = 1.

Theorem 4.12 (Convergence of Integer Valued Random Measures). Let
(tn)neny € M(E) be a sequence of integer valued random measures on E and
e ME) a simple integer valued random measure. Let for a separating set

U:
1. limy, oo P(pn(U) = 0) = P(u(U) = 0) for all U e U.
2. limsup,, ., E(u,(K)) < E(u(K)) < oo for all K € E compact.
Then p, — p weakly with respect to the vague topology on M (F).
Proof. This is Proposition 14.17 in [16]. O

It is well known that a Binomial distribution Bin(n,p) for n — oo and
np — A = 0 converges weakly to a Poisson distribution Pois(\). This result is
sometimes called the law of small numbers. The above results allow us to show
a similar result for random measures. Instead of the Binomial distribution we
consider so called Bernoulli processes and the Poisson distribution is replaces
with a Poisson point process.

Proposition 4.13. Let (c,)nen be a sequence of positive real numbers with
¢n — 0 forn — o. Forn e N let p, € [0,1] such that p,/c, — X = 0 for
n — oo. Let (B,(Lm))mez be an i.i.d. sequence of Bin(1,p,) distributed random
variables. We define an integer valued random measure on R, called Bernoulli
process, via
Lo 1= Z Bflm)ém.cn.
meZ
Then p, — p weakly, where p is the Poisson point process on R with constant
intensity .
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Proof.  'We check the conditions in Theorem [4.12, Since the intensity measure
given by the constant density ¢ — A is continuous we have that the Poisson
point process p almost surely has only atoms of mass 1. Let U be the set of

finite, disjoint unions of half open intervals in R. We have seen in Proposition
that U is indeed separating.

1. We show the result for a single half open interval (a, b] with a < b. We

have:
[b/cn
un((a,0]) = > B ~ Bin(|b/ea] — la/cal, pa)
m=|a/cn|+1

Now the law of small numbers implies p,((a,b]) — Pois(A(b — a))
weakly and in particular lim,, o P(p,((a,b]) = 0) = P(u((a,b]) = 0).
We can then use independence of p, over disjoint sets (since the szm
are independent over m) and independence of the Poisson point process
over disjoint sets to extend the result to disjoint unions of half-open
intervals.

2. Let K < R be compact and £ > 0. Due to the continuity of the Lebesgue
measure Vol(e) from above and using compactness of K we can find a
finite cover of K with open intervals {(a, by)}}_, such that

M~

Vol((ag, bx)) < Vol(K) + ¢.

k=1

We have already seen in the first part that
i ((ag, b)) — Pois(A(by — ax))  weakly for n — oo.

In fact, the convergence also holds for the expectations. Thus we have

lim sup E(pt,,(K)) < limsup Y By, ((ar, bi)))

n—ao0 n—a0
k=1

= Y E(Pois(A(by — az)))

= A > Vol((ax, br))

k=1

< AVol(K) +¢) = E(u(K)) + Ae.

Letting ¢ — 0 yields limsup,,_,., E(u,(K)) < E(u(K)). Thus the
assumptions of Theorem [4.12] are fulfilled and the calim follows.
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O

In the above proposition we assume that the possible locations for atoms of
L, are on an equidistant lattice with mesh size ¢,. (In other words we rescale
time with a global factor 1/c,). We can even generalize this to allow for non-
equidistant meshes. Furthermore in the above proposition the probabilities
pn attached to each point in the mesh did not depend on the location of the
point resulting in a time-homogeneous situation. We also want to generalize
this to allow for time-inhomogeneous setups. We first need some notation.

Definition 4.14. Forn € Nlet A™: Z — R, z — A™ be a strictly increasing
map such that A™ S 40 for 2z — +o0. We may also refer to this map as
a mesh in R. Define ¢, , := A — Agi)l > 0 the mesh size. Let pi™ € [0,1]
for n € N, z € Z. Consider an independent (in z € Z) sequence of Bin(1, pgn))

distributed random variables (Bgn))nez and define the Bernoulli process u,
on R via

,u(n) = Z Bgn)(SAgn)

2€Z

Furthermore let (™ be the measure on R given by

v = Zpg”)éA(n).

2€Z

We call ™ the intensity measure or expectation measure of u™. Note that
for s <t we have
V) ((5,11) = B (1 ((s,1) )

We start by showing some general result for the above objects.

Lemma 4.15. Consider the situation of Definition[{.14 Fors <t andn e N
define

pmax

(n) ((5775]) = max{pgn)| Ai") € (s,t]}.

Now let O € R be an open set. Assume that u‘(g) = ve M(O) forn — oo
and v a continuous measure. Then for all s <t with [s,t] € O for n — oo
we have p%m((s,t]) — 0.

Proof. Let s <t with [s,t] € O. The vague convergence 1/|(g) 5 v implies

v ((s,t]) — v((s,t]) (see . in Theorem [4.10). We show pl(ff;x((s,t]) -0
by contradiction. If the convergence does not hold, then there exists an ¢ > 0
and a subsequence (ny)ren and for each k a z € Z with Al ¢ (s,t] such that

I > ¢ for all k € N. Since A™ € [s,t] for all n € N we can choose a further
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subsequence such that AU converges to some u € [s,t] for K — oo. Note that
u € [s,t] € O with O open. Thus we find 0 > 0 such that [u — d,u + ] < O.
For large k the set [A,E;j’“) —0/2, Al 4 d/2] is contained in (u — 0, u + ¢) and

pg«zk) > ¢ for all £ e N,. Thus we get for & — oco:

e < plm) < V("‘“)((u —6u+6)) - v((u—26u+d)).

2k

This implies v((u — §,u 4+ §)) > € for all § > 0 and thus v({u}) = ¢ > 0,
which is a contradiction to the continuity of v. ]

We can now show the generalization of Proposition for a possibly time-
inhomogeneous time-rescaling and time-inhomogeneous probabilities.

Proposition 4.16. We consider the situation of Lemma and thus in
particular of Definition [{.14. Let u be a Poisson point process on O with
intensity measure v.

Then we have p'™ — p weakly in the vague topology.

Proof. Since v is a continuous measure we have
P(Each atom of x4 has mass 1) = 1.

Hence it suffices to check the conditions of Theorem [£.12] Our separating set
will be the set of all disjoint finite unions of half open intervals which closures
are contained in O. Note that due to the results in Proposition this set is
indeed separating. We proceed showing the remaining conditions of Theorem

4. 12

1. It suffices to conclude the convergence of the probabilities for half open
intervals U := (s,t] € O since both the random measures f, and the
random measure j are independent over disjoint intervals and thus
equality for half open intervals yields equality for finite disjoint unions
of half open intervals. We have, using the definition of p(™:

P(u(U) =0) = [] (1=p).

AMey

We already know from Lemma m that the probabilities 1 — p,(zn) in
the product converge to 1 for n — oo uniformly in z. In particular we
have for large n that all the probabilities are positive. Thus applying
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the mean value theorem to <L log(z) = 1/z yields:

—log(IP’(,u(")(U) = O)) = Z —log(1 —p)

A§">6U
_ Z p(n)log(l) —log(1 — pt")
AMeu p e
1
_ (n)_—_
2 ©)
AMey #

for some value £ e [1 — pi™, 1]. As noted before Lemma yields

Pt = 0 uniformly in z for n — o and thus 1/ ¢ — 1 uniformly in

z for n — o0. Furthermore, we have due to E(BM™) = p{™ and . of
Theorem [4.10] that for n — oo:

E(u(")((s,t])> = Z W =™ (s,t]) = v((s,t]). (4.5)

AMe(s,t]
Thus we get

— log(IP’(u(”)(U) = O)) — v((s,t]) for n — .

Multiplying both sides with —1 and applying the exponential function
gives

]P’(,LL(”)(U) =0) - exp(—u((s,t])) =P(u(U) =0) for n — 0.

. Let C' € O be compact and consider the Euclidean metric d on O. Also,

let € > 0. We can find 0 > 0 such that
C° :={x €O x Eypld(z,C) < 0}

is relatively compact with v(0C?) = 0 such that v(C°®) — v(C) < ¢ (for
the last step we use the contiuity of the measure v from above). We
have, since v, —> v on O (see Theorem 4.10)):

limsup E(u,, (C)) < lim E(u,(C?)) = lim v,(C%) = v(C°) < v(C) +¢.

n—oo n—o0 n—0

Now we letting ¢ — 0 shows the second condition of Theorem [4.12| [J
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Remark 4.17.

1. Note that the vague convergence of the measures v % v holds if and

only if
v ((s,t]) = v((s,t])

for all [s,t] < O. To show vague convergence here we can use the same
approximation argument as in the proof of |5l in Theorem on each
connected component of O. This suffices since every compact set C' < O
is only contained in finitely many of the connected components of O.
(The connected components form an open cover of C.) Moreover, it
even suffices to check the convergence for [s,t] € O with s,t € Q by
using monotonicity of the measures (™, v and continuity of v.

2. Note that we consider open subsets of R which is not the same as
starting with R and then restricting to an open subset. Notably the
limiting measure v does not need to be finite on bounded subsets of
O but it has to be finite on compact subsets of O as a limit in the
vague topology. If we consider closed subspaces this problem does
not occur since vague convergence of measures on a closed subspace
is equivalent to vague convergence of the measures extended to the
original space (by setting them equal to zero on the complement of the
open subspace). Thus it is not necessary to restrict to closed subsets
(or here in general intersections of open and closed subsets of R). This
is in particular noteworthy since we will later consider R, instead of R
and open subspaces of R, .

We now want to generalize the previous result to a discrete, spatial situation.
First we need to extend Definition to a spatial situation.

Definition 4.18. Let E be a countable set and let Ey = E U {0} be
the one-point compactification of F if F is infinite and equal E if E is
finite. For n € Ny and z € E consider a mesh (A%)zez in R as defined in

Definition m Forne Ny, ze Z and z € F let X 5732 be E valued random
variables independent in z. Define for z € Z and x,y € E the probability
pgfz),y = IP’(X;@ = y). We now define the Bernoulli process (™ on R x E x El,

via
D ID YD IS IR ST

2€Z xeE ye E\{z}

Furthermore, we define the intensity measure (or expectation measure) v
of (™ as the following discrete measure on R x E x E:

) . Z Z Z p,(zilag,y‘s(Ai’?gZ,x,y)'

2€7Z xe E ye E\{z}
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Analogous to the nonspatial case we have for s < ¢:

v (5,1 x o} ) = B (1 ((s.1] x {2} x {y}) )

Proposition 4.19. Consider the situation of Definition[4.18. Let O € Rx E
be open. Let V‘(g)fo — v in the vague topology for measures on O x E
with v € M.(O x Ey) continuous. Then j, — pu weakly with respect to the
vague topology, where i is the Poisson point process on O x Eq, with intensity
measure v. In particular we have v(O x {0}) = 0.

Proof. We show that the assumptions of Theorem are fulfilled. Let
xr # y € FE. Since its intensity measure v is continuous the Poisson point
process v is simple.

1. Let O, := {t € R|(t,x) € O} be the z-fiber of O for a given x € E. Since
O was open in R x F we have that O, is an open subset of R. We use
of Proposition [4.9 and [3] of Proposition [4.9] to see that sets of the form

Z Z (th_1,tr] mO)x{x})xF,EQ)

zeF(1) k=1

withne N, ty < --- <t,, FU c E finite, F,§2) C E yield a separating
class in O x E.. Note that u,(R x E x {oo}) = 0 by definition. Since
s 1ndependent over disjoint sets and pu,, is independent over disjoint
sets in time and the first space component (the X 23 are independent
in z) it suffices to check the first assumption of Theorem for sets
of the form (((a,b] N O,) x {z}) x F for a <b, x € E, F < E\{z}. We
can now define the random measure fi,, on O, induced by the projection
(Ox X {:1:}) x F'— O, applied to u, and analogously we define fi as the
measure induced by p in this manner. Furthermore, we note that the
intensity measures 7(™ and ¥ of these Bernoulli processes are also the
measures induced by the projection and the intensity measures of p,
and p.

Note that since Ey, is compact we have fi,, € M.(O,) and it is given by

= 2 Lixtery 0. (A22)3,-

2€7Z

We note that the family (1 .ez 18 an independent family of

(xim eF})

random variables with 1 ~ Bin(1,> pi"g,y) Furthermore,

(x"ery
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since V|(g)>< B, — v we have for C = O compact for n — oo (using . of

Theorem :
17(”)(6’) = y(”)(C’ x{z} x F) > v(C x {z} x F) =10(C).

Hence, the intensity measures of fi,, also converges vaguely to the
intensity measure of fi. Thus, we can use our nonspatial result in
Proposition to get [, — [ weakly in the vague topology where [i
is a Poisson point process on O, with intensity measure v. In particular
we had shown the following convergence for n — oo in the proof of
Proposition [4.16}

2. The argument is analogous to the nonspatial case. Let C' <€ O x F., be
compact and choose a suitable metric d on O x Ey. Let € > 0. We use
continuity from above of v to find 6 > 0 such that

C? = {x € O x Eyp|d(z,C) < 6}

is relatively compact with v(0C?) = 0 and v(C°) — v(C) < . We have
since v, - v on O x By (see Theorem [4.10)):

lim sup E(u,(C)) < nlgrolo E(11,(C?)) = lim 1,(C%) = v(C°) < v(C) + .

n—00 n—w

Letting ¢ — 0 shows the second condition of Theorem [4.12]

[

Using the previous proposition we can show weak convergence of integer
valued random measures in good situtations by showing vague convergence
of their intensity measures. The following proposition will show that if we
consider two sequences of intensity measures which describe independent
events and which converge vaguely then the sequence of intensity measures
which describes the simultaneous occurence of the two events will converge
to zero. In other words independent events can not occur simultaneously in
the limit.
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Proposition 4.20. Consider two sequences of intensity measures (an))neN
and (X" )nen on R x E x Ey as in Definition using the same mesh
(A,(;Q)zez. In particular let

=220 20 P8 .y

2€Z e E ye E\{zx}

uén) = Z Z Z qgﬂlyé(&fﬁ,m,y)'

2€Z veE ye E\{z}

and

We can define a third sequence of intensity measures (l/én))neN:

ZZ Z pgnr)yqzw,y (A" )

2€Z veE ye E\{x}

Let O c R x E be open and restrict the measures to O x Ey,. If there are
11,2 € M (O x Eg) continuous, such that 1/§n) — vy as well as Vén) — Uy in

(n)

the vague topology, then vy~ — 0 in the vague topology.

In particular, z'f we have independent Bernoulli processes ,ugn), ,ugn) with

intensities y§">, ") then the Bernoulli process which has atoms exactly at

(n

locations where py ) and ugn) have both an atom will have the intensity measure

?()n). In the case of vague convergence of intensity measures this Bernoulli
process will converge to 0 weakly with respect to the vague topology.

Proof. Let x € E and F < Ey. Consider the set O, := {u € R|(u,z) € O}
and let [s,t] € O, be a compact interval. It holds:

7 ((s,8] o} x F) = > g (AT Y p) ),

2€Z yeF
<p$r712x((87t])21(5t AZT,L Z qz :Jc,y
2€EZ yeF

= p{ (5, ) (s, 1] x {a} x F).

where we set

o) (5.1]) = m{ T 0

yeFE

AZ’? € (s, t]}

Applying Lemma to the measure (on the open set O, < R) given by
B (B x {z} x Ey) we get pi((s,t]) — 0 for n — oo and using the
vague convergence of v{" we get

UM ((s,] x {2} x F) > w((s,t] x {2} x F) <o
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Thus we have for n — oo:
y?()”)((s,t] x {z} x F) — 0. (4.6)

Let C' € O x Ey be compact. By[p of Proposition 4.9 we can separate C' and
O with a finite union of sets of the type (s,t] x {x} x F). Thus (4.6) implies

UM (C) — 0 for all C' compact (which implies the same for all relatively

compact sets) and thus I/én) — 0 using . of Theorem . O

We will now give an alternative proof for Proposition using Wasserstein
metrics which was suggested to us by Dominic Schumacher. We start by
restricting our point processes and their intensity measures to a compact
set ' x F'x Ey, € O x Ey with F' € FE finite. Furthermore since the point
processes are independent on disjoint time intervals and since C' is contained
in finitely many connected components of O we can assume without loss of
generality C' = [a,b] € O with a,b not equal to A" for all z € Z, v € E,
n € N. Our goal is to show weak convergence of the integer valued random
measures [, — p restricted to [a,b] x F x E, with respect to the weak
topology. We start by considering the Wasserstein metrics d, and ds. Since
the definitions of dy and dy are a bit lengthy and we do not actually utilise the
definitions in our arguments we will only provide a reference where the metrics
are defined (see [26]). It holds dy < dy and dy metricizes weak convergence
(see Proposition 2.3. (ii) and (iii) in [26]). We consider the Bernoulli process
[, With intensity measure v, and the Poisson point process y with intensity
measure v as given in Definition £.18 Furthermore let fi,, be a Poisson point
process with intensity measure v,,. We have

ot 11) < da(pins fin) + do(fim, 1) < dopin, fin) + da(fin, ). (4.7)

For the first summand we want to apply Theorem 10.F in [I]. We first need
some notation, we set:

a:= (AU, 2,y) € [a,0] x F % B, Io:=Tom_ 1, Pai=E(L):

2,x)

We define the index sets

I':={alze F,ye E.\{z}, z € Z with A™ € [a,b]}

Z,x

and
fw,y) ={(t,z,w) eTwe E \{z,y}}, T2 .=T\I7.

We define the random variables

Zo = Y Ig

BeLg,
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and note that
E(Zo) = Y. Plow Zala=0.

wGE»/J\{x,y}

Proposition 4.21. We can estimate the dy distance between the Bernoulli
process [, and the Poisson point process i, in the following fashion:

do(fin, fin) < Z ((pa)2 + palB(Za) + E(IaZa)) . (4.8)

ael’

Proof. This is a consequence of Theorem 10.F in [I]. Note that our right-hand
side is essentially the first summand in the right-hand side of the Theorem.
Also, the 7, which show up in the second summand in the Theorem are
equal zero since I, is independent of {38 € I'¥}. Furthermore since the
intensity measures of p,, and fi, coincide the last summand in the Theorem
also vanishes. Furthermore, we can estimate the coefficient in front of the
first summand in the Theorem by 1 which yields the claim. ]

Now we use
Pa = va({AT)} x {z} x {y})
and
E(Za) = t({A7)} x {z} x Eg\{z,y}})

to estimate:

<Z (pa)2 + palE(Za) + E(IozZoc))

a€el’

= <Z (pa)2 + paE(Za)>

a€el’

< max Z p%ﬂ 2v,([a,b] x F x Ey)).
Ag?;e[a,b],"EEE yGEI‘\{m}

The maximum over the probabilities converges to zero due to Lemma 4.15
and due to continuity of v the second factor converges to v([a,b] x F' x Ey).
Thus the the right hand side of and therefore the right hand side of
(4.7)) converges to zero. For the second summand we first note that due to
independence in a Poisson point process we can further restrict to the set
la,b] x {x} x {y} for given x € E and y € E,\{x}. In that case the Poisson
point processes can be interpreted as Poisson point processes ji,, and g on
|a, b] and their intensity measures v,, and v yield measure generating functions
F,, and F on [a,b] with F,(a) =0 = F(a).
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Proposition 4.22. We can estimate the dy distance between the Poisson
point processes [i, and [ in the following way:

(i, 1 j E(s) — F(s)|ds + |Fa(b) — F(b). (4.9)

Proof. This is Lemma B.1. in [25]. O

Due to v, — v and using . of Theorem we get F,(s) — F(s) for n — oo
for all s € [a,b]. Together with dominated convergence this implies that the
right-hand side of converges to zero and thus the second summand on
the right-hand side in (4.7) converges to zero. This implies weak convergence
with respect to the weak topology. Since weak convergence implies vague
convergence and since it suffices to check vague convergence on arbitrarily large
compact sets (using [2] of Theorem we can conclude vague convergence
on the whole space.
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Chapter 5

The Graphical Representation
and the Tracking Map

5.1 The Space of Graphical Representations

Definition 5.1 (The Space of Graphical Representations). Let E be a
countable set and S <€ R, x E an open set. Let Ey, = E u {oo} the
one-point compactification if F is infinite and E,, = FE if E is finite. Also, let
Sp:=8n[0,T] x E for T > 0. We define REP (short for representation) to
be the space of all Ny n {0} valued measures on S x E,, which are finite on
compact sets. Any 7 € REP can be written as

n= Z Oty 25,5
j=1

with n € Ny u {o0}, (¢j,2;) € S and y; € Ey, for j € [n]. We call n € REP a
graphical representation on E with admissible states S. For (t,z,y) € S x Eq
such that  has an atom at (¢, x,y) we say that there is an arrow pointing
from x to y at time t. As the name suggests, we represent these atoms
indeed as arrows in a diagram. Figure [5.1] shows an example for a graphical
representation with F = {1,2,3,4,5,6}. The horizontal lines in the diagram
represent the set S € R, x E (which is why there are sometimes holes in the
horizontal lines) and the arrows represent atoms of 7.

Analogously, we define REP7 as the space of integer valued measures on
St x Ey which are finite on compact sets. We define REP* € REP as the
integer valued measures for which no two arrows happen at the same time and
REP}. € REPy as the integer valued measures which do not feature arrows
at the time 7" and for which no two arrows happen at the same time. Note
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Graphical Representation

time T

Figure 5.1: A graphical representation for a finite space E consisting of 6
elements

that the graphical representation in Figure |5.1] also corresponds to a measure
in n € REP7.

We now want to define a topology on REP. It turns out that we just need
the concept of vague convergence of measures that are finite on compact sets.

Definition 5.2 (The Topology on the Space of Graphical Representations).
We choose the topology on REP € M, (S x Ey) to be induced by the vague
topology. Due to Theorem [4.10] and since S x E, is a Polish space we have
that M.(S x Ey) is Polish and REF is a closed subspace and thus also Polish.
We define the topology on REP; analogously.

5.2 Tracking a Graphical Representation

Given a graphical representation we can define a process by tracking along
the arrows of the representation.

Definition 5.3 (The Tracking Process). Let E be a countable set and
S SR, x Eopen. Let 0 ¢ F be a graveyard state and n € REP a graphical
representation on E with admissible states S with almost surely no arrows
pointing to co. For a starting point x € E we define a map

d(z) = @: REP — (B U {0})™, n (tw 2(t)).
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EA

Tracking Process

!

time

Figure 5.2: The tracking process applied to Figure [5.1| started at x at time 0

We define t — z(t) as a piecewise constant map with jumptimes Ty, 71, . ..
using the following recursion:

1.

2.

Set x(0) =z and Ty = 0.

If for n € Ny T,, € R, is defined and z(T},) = y € E set T,,1 as the
infimum over all times t > T, where arrows point out of y in the
graphical representation or the times with (¢,y) ¢ S and set z(t) =y

for t € [T, Thi1)-

I (Thyr,2(T)) € S set x(t) =0 for all t = T,,44.

I T,y =T, set xz(t) =0 for all t > T,,.

. If 7,11 > T, but the infimum is not uniquely given by one arrow (either

by it not being attained or by there being multiple arrows at the same

time) set x(t) = 0 for all t = T,,,4.

. If T,,,1 > T, and there exists a unique first arrow out of y, let z be the

site to which the arrow points and set x(7,.1) = z. Then go back to

step [2

fort>=rT.

. If Steps 3| to [f| never occur but we have 7 := sup,,o T), < o0 set x(t) = 0
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We call the function t +— x(t) the tracking process of the graphical representa-
tion n started in z. For a given (s,x) € S we can generalize this procedure by
shifting the graphical representation by —s along the time axis and shifting
the resulting process by s along time. This allows us to also define the tracking
process [s,00) — E U {0} for the starting condition z(s) = x.

The case that we reach @ via step [7] is called an exzplosion and 7 the
explosion time. If for any admissible starting point (s,z) € S the tracking
process can only reach ¢ via explosion we call the graphical representation
proper. We call the set

Tri= | J [T, Toia] x {2(T0)} S R, x (B U {3})

nGNo

the track of n started in x.

For the case F = {1,2,3,4,5,6} and for the starting condition z(0) = x
we visualized the tracking procedure applied to the graphical representation
shown in Figure [5.1] with the red line in Figure[5.2] In fact the (horizontal
parts of the) red line are the track of 7 started in z. In this particular example
we can see that the tracking process will be in state y at time T (z(T") = y).
Furthermore, the graphical representation featured in this example is not
proper, since it is possible to choose a starting point (s, x) € S right before a
hole in the horizontal line corresponding to x such that there will not be an
arrow out of x before the tracking process reaches the hole. In fact the only
way how a graphical representation featuring such holes can be proper is, if
arrows cluster to the left of any hole.

Let T > 0. We also define U7 : REPr — (E U {8})[*7] as the restriction
of ¥ to REPy (alternatively due to construction we could also use the above
construction just up to time 7°). We also define Try := Trn [0, 7] x (E' L {7}).

We need some notation for upcoming function spaces.

Notation 5.4. Let E be a topological space and T' = 0. We use the following
notations:

1. We write Dg([0,00)) for the set of all cadlag functions f: [0,0) — E.
This means that for all strictly increasing sequences (2, )nen, in [0, 00)
with z,, /' = € [0, 00) the sequence (f(xy))nen, converges to some limit
f(x—) € E and for all decreasing sequences (&, )nen, in [0,00) with

xn, \, € [0,00) we have f(z,) — f(z)in E.

2. We endow Dg([0,00)) with the Skorohod topology as defined by Ethier
and Kurtz [g].
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3. We write Dg([0,77]) for the set of all cadlag functions f: [0,T] — E
which do not have a jump at time 7.

4. We endow Dg([0,T]) with the Skorohod topology induced by the inclu-
sion map ¢: Dg([0,T]) — Dg([0, o)) which maps f € Dg([0,T]) to its
constant extension to [0, o).

5. We write Cg([0,20)) for the set of all continuous functions f: [0, 00) —
E.

6. We endow Cg([0, c0)) with the topology induced by uniform convergence
on compact subsets of [0, c0).

Proposition 5.5. Let T > 0, x € E. Consider a sequence of graphical
representations (Nn)nen, S REPr and n € V21 (Dg([0,T])) with 1, — n for
n — oo in the vague topology. Then VUr(n,) € Dg([0,T]) for n sufficiently
large and Vr(n,) — Wr(n) in the Skorohod topology on Dg([0,T]). Let
t €10,T], then the mapping

fi: REPT. — Eu{d} n— ¥r(n)(t)
18 measurable.

Proof. Consider the track Trr of n for the starting condition x € E. It helps
to refer to Figure for a visualization of the track. Since the tracking
process ¥r(n) is a cadlag function which does not jump at 7" and does not
visit the graveyard state ¢ we have for (t,y) € Trp that (¢,y) € Sp. Thus
Trr and S5 := [0,T] x E\Sr are disjoint, compact subsets of [0,T] x E. In
particular Try and S§ have positive distance from another. Thus we can
find an open set A < Sy such that Trp, € A € A < S;. Note that by
of Proposition A is a compact subset of Sp. by the continuity of the
(integer valued) measure 1 from above we can choose A small enough such
that n(A x E,) = n(Tr x E,) and thus in particular n(d(A x Ey)) = 0 (note
that by definition this would not be the case for Trr itself). Consider n
restricted to A x E. Since 17(n) € Dg([0,T]) and since all arrows pointing
out of A correspond to jumps of ¥(n) the arrows pointing out of A can be
uniquely ordered and there is no arrow at time 0 or at time 7'. Also, since
Wr(n)(t) # oo for all t € [0, T] there is no arrow pointing out of A to co. Since
nn — 1 and since A x E, is compact and has no mass on the boundary with
respect to  we have in particular weak convergence of the integer valued
measures restricted to A x E. Thus, for n large enough, we will have the
same number of arrows going out of A in 7, as in 1. By choosing n even
larger we can assume that the arrows can be ordered and the order coincides
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with the order of the arrows pointing out of A in 7. By the same argument
we can also achieve that there is no arrow at time 0 or time 7'. Furthermore,
since the arrows in 7 which point out of Trp by definition also point into Try
and Trpr € A with A open we can choose n even larger such that each arrow
in 7, that converges to an arrow in Trp pointing from y to z at some time ¢
will point into a neighborhood of (y, z,t) € Try which is contained in A. Now
we note that if all these conditions are fulfilled the tracking process for n,, will
visit the same states in the same order as the tracking process for n up to time
T since only the order of arrows matters and we always only consider arrows
going out of A. In particular we never visit the graveyard state 0. Thus we
have Ur(n,) € Dg([0,T]) for n large. To see continuity we now note that
the tracking process of 7, already performs the same jumps as the tracking
process of 1 and for n — oo the jump times converge as well. Additionally
there are no jump at times 7" and 0. This implies that the tracking process
converges in the Skorohod topology. In detail: for n € N, sufficiently large,
we can find a strictly increasing, piecewise linear mapping A, : [0, 7] — [0, T]
such that A,(0) = 0,\,(T) = T and A, maps the jumptimes of ¥r(n) to
the jumptimes of Wr(n,). Thus the Skorohod distance (see (5.2) in [§]) of
the functions is bounded by the maximal, logarithmic distance between the
corresponding jumptimes of W (n) and Wr(n,) which converges to zero for
n — co. This implies Ur(n,) — Y7(n) in the Skorohod topology.

We now show that f is measurable. Let A € E. Since ¢ ¢ A and since
the domain of f is REP% we have that f~*(A) < V..'(Dg([0,T])). Let
pi: Dg(|0,T]) — E be the evaluation map p(x) = x(t). We have shown in
the previous part of the proof that Wr is continuous on W;'(Dy([0,T1])).
The projection p; is measurable and f; = p; o Ur is therefore measurable if
restricted to W' (Dg([0,T7])) n REP:.. Thus we can conclude that f~!(A)
is a measurable set. In particular we have that f~!(F) is a measurable set
and thus f~1({d}) = REPL\f~'(E) is a measurable set as well. Thus we
can conclude measurability of f~1(A) for all A € F u {d}. Therefore f is
measurable which shows the second claim. O



Chapter 6

Time-Inhomogeneous Regular
Jump Processes

In this chapter we will define time-inhomogeneous regular jump processes,
which are a class of time-inhomogeneous Markov chains which can be described
via graphical representations. Later in the chapter we will provide conditions
under which such a process does not explode.

6.1 Definitions and Basic Properties

We will use the following notation:

Notation 6.1. As before let E be a countable discrete space and S be an open
subset of R, x K. We define for z € F and t € R

T,:— {seR.|(s,1)e S} CR,, B i={ycEl(ty)e S} E.

Definition 6.2 (Time-Inhomogeneous Regular Jump Process).
For u € R, let Qu = (Quay)eyer € REXF be a matrix with the following
properties:

1. We have ¢z, € Ry for all z,y € F with  # y. We call g, the
(infinitesimal) rate of jumps from x to y at time u.

2. The matrix @), is stable. More precisely qy.» := —Qu.z, . < o0 for Lebesgue
almost all u e T},.

3. The matrix @), is conservative. More precisely g,., = Zye P\ {(a} Qusz,y for
all x € £ and Lebesgue almost all u € T,.
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4. Guzy = 01if (u,z) ¢ S or (u,y) ¢ S.

5. Let x € I, y # x. The mapping u > ¢, ., is measurable on R, and
the mapping u — ¢, is integrable on compact subsets of T,,. Also, for
all t € TS such that there is a sequence (t,)neny € T, with ¢, /7 t we
stipulate

t
J Quiw du = 00 for all 6 € (0,].
t—5

We can define a random graphical representation in REP by considering the
Poisson point processes n on R, x E x Ey with intensity measure v given by

(s8] % B x B) =3 Y] fq

e€Fy ye R\ {x}

Given this representation and any (s,z) € S we can now define the tracking
process X := (X;), started in x at time s as defined in Definition . We
call X the time-inhomogeneous reqular jump process defined by (). Note
that X will take values in F := E U {8} where @ is an additional absorbing
graveyard state and that (X, ) will either be in S or X; = 0. The properties
and [5] of @ ensure that the graphical representation is proper. Thus X
can only reach ¢ by explosion. We call S the set of admissible states of X.
Furthermore note that X depends on x and s but we will usually omit this in
the notation for X. Instead, when considering probabilities or expectations,
we will use the notation P®# and E®*) if we consider X to be started in
x at time s. Given (s,z) € S and (t,y) € S we define the transition matrix

P(s,t) := (pzy(s,t))zyer given by
Pay(s,t) = Pls) (X: =v).

Note that since we did not allow y = ¢ the probabilities may not add up to 1.
In this case there is a positive probability for explosion.

In addition, given a starting time s € R, and an initial distribution
Ts = (M) zer With 7, = 0 if 2 € ES we define for ¢ > s the subdistribution
Tt = (Tt )wep Via

T = Y TayPya(s,t). (6.1)
yeE

Note that 7., is the probability for the Markov chain X to be in x at time ¢
if it is started in the distribution 7, at time s.
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Proposition 6.3. Consider the situation of Definition[6.3 Then the graph-
ical representation defined by () is indeed proper. Furthermore, the time-
imhomogeneous reqular jump process defined by Q) is a strong, right-continuous
(time-inhomogeneous) Markov chain with respect to the filtration (F)i=s
where % is generated by the random graphical representation restricted to the
time interval s, t].

Proof. Since the rate with which arrows point in or out of S¢ x E is 0 there
are almost surely no such arrows.

Furthermore since the intensity measures are finite on compact subsets
of S x FE. the points of the Poisson point process almost surely have no
clusterpoints in S x F.

Additionally, since the intensity measures are continuous the arrows in
the graphical representation are almost surely at mutually different times.

Let x € E. Since the rate for arrows to point out of x integrates to infinity
when approaching the boundary of T, (from the left) we have almost surely
that such arrows cluster to the left of any time ¢ € 07,.

Thus it is almost surely impossible for the process X to reach the graveyard
state in finitely many steps (this corresponds to steps |3| - [5| in Definition
since there is always either a unique next arrow pointing out of the
current location of X before the time reaches the boundary of T, or no arrow
pointing out of z after some time s and [s, o) € T,. Therefore the graphical
representation is almost surely proper.

We now show that X is a time-inhomogeneous Markov chain. Since the
intensity measure of the Poisson point process is continuous we have that
the graphical representation is almost surely in REP*. We consider a version
which is surely in REP*.

Let T' > 0. We have shown in Proposition that Xr is a measurable
function of the graphical representation up to 7" and thus X is #p-measurable.
It is left to show the Markov property.

Let 0 < s <t and x € E. Let n be the graphical representation restricted
to (s,t] x E? and shifted by s to the left. Note that we have that € REP}
almost surely. For fixed s,¢ we can again find a version of our representation
such that this holds surely. Furthermore let W(x)(n) be the tracking process
which tracks through 7 and starts at state z. Again by Proposition we
have that the map n — ¥ (z)(n)(t — s) is measurable. Since 7 is independent
from %, and X, is .%,-measurable we have:

P(X; = 2|F;) = P(¥(n, X;)(t = s) = 2|.7)
=P(V(n, Xs)(t —s) = z|X;) = P(X; = 2| X,).

Thus X is a time-inhomogeneous Markov chain.
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Right continuity of the paths follows directly from the definition of the
tracking map ¥ and the fact that our graphical representation is almost surely
proper. In particular X is cadlag up to a possible explosion time and constant
after the explosion time.

Let (s,z) € S. Consider a time-inhomogeneous Markov chain X with
X = x. Ethier and Kurtz [§] point out that we can always consider the (time-
homogeneous) Markov process (t+5, Xy 4)er, with state space S U (R x{0}).
For our purposes it suffices to show that this Markov process is indeed strongly
Markov and right-continuous. We first note that we can use our graphical
representation to construct this Markov process directly for any starting
condition (s, z) € S. Asusual we denote the starting condition as a superscript
in the probabilities and expectations. Since X is right continuous this process

is right continuous as well. Now let k e N, s < s+ 7r; < --- < s+ r; and
@1, ..., ¢, bounded, continous functionals on E. Define the mapping
g: 5 = EC(01(Xopr) - 01 Xoin,)- (6.2)

We want to show right-continuity of g. Note that in the expectation
on the right-hand side depends on s in two ways. On one hand there is a
dependence due to the starting condition and on the other hand a dependence
of the times at which X is evaluated inside the expectation. We will show
right-continuity of g by showing that it is continuous in the starting condition
and right-continuous with respect to the evaluation of X. We start by showing
continuity for s + ry = t1,...,s + r = t; fixed. Let ¢ > 0. We can find a
neighborhood (s — 4, s + ) € T, of s € T, such that the probability for an
arrow out of = at any time u € (s — 0, s + 0) is smaller than . But if there is
no arrow pointing out of x at any time in u € (s — 0, s + ¢) the tracking map
produces the same result for any starting condition (u,z). Thus we have for
all ue (s —4,s+9):

B (61(X0,) - - 0n(X ) =B (01(Xe) oo Xe ) < 20l e

Here ||o|| denotes the sup-norm of a function. This shows the continuity.

Now we fix the starting condition (s,z) = (t,x) with ¢ < r;. Since
the paths of X are almost surely right-continuous and since the functionals
¢1, ..., ¢, are continuous and bounded we can use dominated convergence to
see that the mapping

[0,71 —t] > R, s> EC (o (X)) - ooo 01(Xsir))

is right-continuous. Thus g is also right-continuous. We now show the strong
Markov property of (¢ + s, X;1s)wer, . The strategy is analogous to the case
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for Feller processes (see the proof of Theorem 2.7 in [8]). We first consider a
stopping time 7 which only takes countably many values (t,)nen. We have
forO0<ry - < ry:

]E(&x) (¢1(XT+T1) et ¢k(XT+Tk)|L¢T)
= Y L O (01 (X)) -+ (X )| T

neN

= Y o BN (00(X) - (X))

neN

= E(ﬂXT)(le(X?"l) Tt ¢k(er))

Now let 7 be an arbitrary almost surely finite stopping time. We can approx-
imate 7 from above by a sequence of stopping times 7, \, 7 where 7,, only
takes countably many values. Thus we have

E(S’x)(qbl(XTn-i-m) et qsk’(X’Tn‘i"/‘k)Lng) = E(TmXW)(Qﬁl(XTl) et ¢k(X7’k>>

Now we use right continuity of the paths to conclude (7,, X, ) — (7, X,)
almost surely. Thus using dominated convergence on the left hand side and
the shown right-continuity on the right hand side (and the fact that E is
discrete) as well as %, € %, we get

E(s’x) (¢1 (XT+T1) et ¢k(XT+Tk)|gT) = E(T’XT)((bl (XTl) Tt (bk(er))

Using the monotone class theorem we can lift this property to bounded
measurable functionals of the whole path. Going back to the Markov chain
X we can now conclude that it too has to be strongly Markov. [

Our first goal is to show Kolmogorov’s backwards equation for P. Since we
weill work with the concept of absolute continuity and weak differentials we
give a short definition.

Definition 6.4. Let A € R be an arbitrary subset and f: A — R. We call
f absolutely continuous on A, if there exists a so called weak differential
g: A — R, which is integrable on compact subsets of A, such that we have
for any [s,t] < A:

Remark 6.5. It is commonly known in measure theory that absolute continuity
on A = [s,t] can be represented using an e-0-criterion in the following way.
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f:[s,t] = R is absolutely continuous if and only if for any € > 0 there exists
a 0 > 0 such that for any collection s < xqy < y; < -+ < 2 < yp < t with

(y; — ;) <6

k
=1

J

we have )
) — fla)| < 6.
j=1

Furthermore, the main theorem of calculus implies that if f is absolutely
continuous on an open set O € R then f is Lebesgue almost everywhere
differentiable (in the sense of classical calculus) and the differential coincides
Lebesgue almost everywhere with the weak differential.

Lemma 6.6. Consider the situation of Definition[6.9 Let (s,x) € S as well
as y € E\{z}. Let 7, be the first time after s for which there is an arrow
pointing from x to y in the graphical representation. 7, is an (F)i=s-stopping
time. The times are mutually independent for different y and we have for
distribution function Fy: [s,00) — [0,1] and density f, of 7,:

Fy(r) =1- €xXp (_J Qu;z,y du) ) fy(r) = Qryz,y €XP (_J Qu;z,y du) .

Now define 7 := inf ep\(2) 72, we have for r = s:

Pl@s) (1> 1) =exp (— J Quiz du)

S

and forye E:

r

]P)(x7s) (Ty =7 T) = J Qu;z,y CXP (_J Qu'z du,) du

Finally we get for the density of 7, on the event that there is at least one
arrow pointing out of x in [s,r] and that the first arrow is pointing to y:

u
g: [Sa T’] - R-ﬁ-a U — QU;x,y exXp <_ J qw;x du’) .
S
Proof. Let r = 0. The event {7, < s+ r} is the same as there being at least
one arrow in the graphical representation pointing from z to y at some time
in (s, s+ r]. In particular the event is in .%,., and thus 7, is a stopping time.
The independence of the times is a direct consequence of the independence
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of the corresponding Poisson point processes in the graphical representation.
Since the number of arrows pointing from z to y in the time interval [s, s + r]
is Poisson distributed with parameter Sj” Quizy du we get the result for F),
since it is exactly the probability for such a Poisson distribution to take a
value greater than zero.
We now apply the fundamental theorem of calculus to derive the density.
In detail we observe that the function r — S: Qu:z,y du is absolutely continuous
on T, n [s,00), nondecreasing and that it is infinite for r € TS, r = s. Let
t € (s,00] be given by t := inf T n [s,00). Then F), is absolutely continuous
n [s,t) with F,(r) / 1 for r / ¢t and F,(I) = 1 for all [ > ¢. Thus
F,: [s,0) — [0, 1] is an absolutely continuous distribution function. By the
fundamental theorem of calculus we can calculate the Lebesgue density f, by
differentiating F,, which yields the claimed result. To derive the distribution
function of 7 we use independence to get for r > s

P2 (7 > r) = PE?) (7, > r for all z € E\{z})
- n PE2) (7, > r)

zeE\{x}

= exp (—J qwdu) :
0

Note that in similar fashion we also get for y # z, r = s:

P) ( inf 7, > 7"> = €eX <_J wx — Quiz du) :
seB\{zy) PAT ), e ™ e

We use this and get by the strong Markov property:

Pls:®) (y=7<7r)= P(s:) (ry <r,7y < inf 1)
2€E\{z,y}

= f fy(u) - PED ( inf 7, > u) du

zeE\{z,y}

= f Qusz,y €XP (_J qu';x du') du.

With the same argument as for F, we can show that this function is absolutely
continuous on [s,o0) and by the fundamental theorem of calculus g is the
density of 7, on the stipulated event. ]
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We can now use these results to show Kolmogorov’s backwards equation.

Theorem 6.7 (Kolmogorov’s Backwards Equation). Consider the situation
of Definition and let (s,x) € S and t = s. The following claims hold:

1. The mapping
hy: [S,t] - [07 1]7 U — paay(uat)

is absolutely continuous on T, N [s,t].
2. We have for the Lebesque almost everywhere defined differential of hy,:

d
@hy(u) = - Z Quiz,z * pz,y(ua t)

zelE

Note that for z € EY, we have qy.,, = 0 and thus we can set the summand
to be zero even though p,,(u,t) was not defined for such z.

Proof.

1. Let s < v < w < t and v, w in the same connected component of T,.
Let 7 be the time of the first arrow out of x after time v and 7, the first
arrow pointing from x to z after time v. Consider the Markov chain
started in x € E at time v. On the event {7 > w} it will stay in = until
time w and on the event {T < w} n {7 = 7.} it will jump to z € F\{z}
at time 7. Thus we have by the strong Markov property:

P®) (Xy=vy) = Pe) (Xy =y, 7> w)
+ Z PON(X, =y, 7 S w, T, =T)

zeE\{z}
_ P(w,z) (Xt _ y)]P)(v,x) (7— > w)
+ Z E®®) (P(T’Z) (X¢ = y)]l{Téw,Tz:T})

zeE\{z}

= poy(w. )P (r > w) + 3 B (poy (7 ) L rcunr—ry)
zeE\{x}

We have by Lemma [6.6}

Pz y (Ua t) = px,y(wa t) €Xp <_ J Qu;x du)

(2

+ Z J pz,y QU:r:zeXp< J qur;xdu'> du. (63)

z€E\{x}
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Thus we get

[Py (W, 1) = Py (0, 1))

< px,y(w7 t) (1 — eXp (_ J Quix du))
+ Z f pz,y(uut)qu;z,z exp <_J Qu/;z: du,) du

ze E\{z}

< (1 — exp <— J Quz du>) + Quiz.» €XD <— J Qu' du'> du
v 2eE\{x} ¥V v
< f Qs du + f Qu;z €XP (_ f Qu/ du’) du

v
Since u +— @y, is integrable on compact subsets of T, we have that
u — pgy(u,t) is absolutely continuous on T, N [s,t] (see Remark [6.5).

2. Absolute continuity implies differentiability Lebesgue almost everywhere.
Let the function be differentiable at w € [s,t] € T,. It suffices to
calculate the left-hand differential. We observe that we can apply
Tonelli’s Theorem to exchange sum and integration in the right-hand
side of . Since u — @, is integrable on the compact set [s,?]
the the right-hand side is differentiable at v = w and we get by the
fundamental theorem of calculus:

d
d_p:r,y (Ua Zf) = Dzy (wa t)qw;x + Z —DPzy (wa t)qw;x,z
v _
v=w zeE\{x}
= - Z Qu;z,zPz,y (’LU, t)
zeE\{x}

6.2 Some Set Theory

As the title may suggest this section is mostly about a general concept we will
need in the following section where we return to analysing time-inhomogeneous
Markov chains. It should be noted that our only application of the results
in this section are [l of Theorem [6.16] and Theorem [6.18 which treat the
case that F is finite with great generality. The proof of our main result
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(Theorem is using Theorem instead, which does not require this
section. Hence, a reader who is only interested in the main result may skip
this section.

Consider a property that holds for almost all real numbers in the sense
that it holds for R\ A for A closed and countable. Furthermore assume that
we can extend the property over isolated points of A. The goal of this
section is to show that the property holds for all real numbers. (For the
actual mathematical formulation of this see Theorem [6.12]) The concept of
removing isolated points from a set is not new in set theorie. Removing all
isolated points from a set will yield the so called Cantor-Bendizson derivative
and doing so recursively yields the Cantor-Bendizson sequence. Furthermore
it is known that this recursion does terminate. It does so not necessariely
after finitely many steps but at a countable ordinal (see for example the proof
of the Cantor-Bendixson Theorem 4.6 in [I4]). In order to avoid using the
set theoretical concept of ordinals we will use an alternative line of proof
which ultimately relies on Zorn’s Lemma instead. We start with a couple of
definitions and lemmas which are already rather well known in set theorie.
We provide proofs for the convenience of the reader nonetheless in particular
to avoid delving deeper than necessary into set theoretical concepts.

Definition 6.8. Let C' < R be a subset.

1. We call x € C' an isolated point if there exists an € > 0 such that
(x—e,x4+¢)nC = {z}.

2. Let C be a closed set with no isolated points then we call C' perfect.
FExample 6.9. Here are two examples for perfect sets:

1. Let C' = [a,b] € R with a < b, then C is perfect.

2. Let C' < [0,1] be the Cantor set, then C' is perfect.
The following lemma corresponds to Theorem 4.5 in [14].

Lemma 6.10 (Perfect Sets are Uncountable). Let C' € R be perfect then C
15 either empty or uncountable.

Proof. Let C be nonempty then there is a y € C' and y can not be isolated.
Thus there has to be a sequence (y,,)nen, < C\{y} with y, — y. In particular
S can not be finite.

We now show the claim by contradiction. Assume that C' is not uncount-
able and not empty then it has to be an infinite, but countable, set. Let
C' = (%n)nen, be an ennumeration of C'. We now construct a falling sequence
of closed subsets C,, < C' by the following recursion:
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1. To define C] consider x; € C. Since x; is not isolated thereis 0 <&y < 1
such that C'n Ann,, (£1/2,¢;) is not empty where for e R, 0 < < ¢
we define the annulus:

Ann,(d,¢) := (x —e,x +e)\[z — §,x + 0].
Furthermore, since C' is countable we can choose €1 such that
0Ann,, (£1/2,61) n C = &.

We now define C := C' n Anng, (£1/2,1). Note that, since the annulus
is an open set, C; has no isolated points and, since there is no point
of C on the boundary of the annulus, (' is a closed set. Thus C is a
new countable, perfect set with x; ¢ ;. We can get an ennumeration
(x})nen of C) by removing the elements of C\C} from our original
enumeration (z,)npen-

2. Given C} € C perfect and countable with ennumeration (z%),en we
apply the same procedure as before. We choose % and an annulus
Ann,(ex/2, ;) with e, < 1/k such that

Clr1 = Cp, 0 Annge(er/2, k)

is again countably infinite and perfect. We update our ennumeration
k+1

() pen to (2FF1),eny by removing all elements that are not in Cy. ;.
This recursion yields a falling sequence of closed sets C}, with diameter 2/k — 0.
Since R is complete there is an x € R in the intersection of all Cj. But by
contruction for any n € N, there is a k € N, with z, ¢ C, and thus x # x,
for all n € N. Thus we have found an element of C' which is not part of the
ennumeration and therefore shown a contradiction. [

The first part of the following lemma is the well known intersection theorem
by Cantor (see for example Section 7.8 in [I8]). The second part yields a
variation of Cantor’s intersection theorem for totally ordered collections of
compact subsets of a compact, countable set.
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Lemma 6.11 (Cantor’s Intersection Theorem).

1. Let (Cy)ren, be a decreasing sequence of compact subsets of R with
Cy \\ &. Then there is a k € N, with C, = .

2. Let C < R be compact and at most countable and {C;}icr a collection of
compact subsets of C' (indexed over some index set I) which is totally
ordered with respect to the inclusion. Furthermore let

¢ =2

icl
Then there is an i € I with C; = (.
Proof.

1. We show this by contradiction. Let for all £k € N, C} be nonempty
and choose zj € Cy. The sequence (xy)ren, < C lives in a compact set
and thus has a convergent subsequence. Without loss of generality we
assume that (xy)ren, is already convergent to some x € C. Since Cj,
contains all x,, with n > k we have x € C} for all k € N_. This is a
contradiction to Cy \, OJ.

2. We want to apply the first part of the lemma and thus we have to find
an actual sequence of C; which falls to ¢. We construct this sequence
(C*)ken, by the following recursion. Note that in the finite setting the
recursion will simply terminate after finitely many steps so we consider a
countably infinite setting. Since C'is countable there is an ennumeration
(¢n)nen, of C. We start by choosing some ¢ € I and setting C* := C;.
Let now C* < C be given for some k € N, with C* € {C;|i € I} and
such that {ci,...,cx} N Oy = &. If cpy1 ¢ CF we just set OFFL .= CF.
Let ¢z € C*. Since the intersection over all C; is empty we can find a
j € I with ¢;11 ¢ C; and since the C; are totally ordered and cyy; € CF
we have C; < C*. Now we set Cyy1 := C;. By construction we have
cr ¢ C* and thus C* \, &¥. By the first part of the lemma we have a
k e N, with C* = @ and by construction there is an i € I with C* = C;
which shows the claim.

]

The following theorem corresponds to the concept of applying transfinite
induction to the Cantor-Bendixson sequence (see Theorem 2.14 in [14] for the
concept of transfinite induction over ordinals and the proof of Theorem 4.6
in [14] for the Cantor-Bendixson sequence).
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Theorem 6.12. Let K < R be closed and O < K be open (in K). Let
C < K be closed and countable and set U := O\C. Let ~ be an equivalence
relation on O with the following properties:

1. If x,y € U are in the same connected component of U then x ~ y.

2. Let z € O. If there is an € > 0 with x ~ y for all x,y € (z — ¢, z) then
x ~y forallx,y € (z —e,z] and if there is an € > 0 with x ~ y for all
r,y€ (2,2 +¢) thenx ~y for all x,y € |z, 2 + €).

Then x ~ y for all x,y in the same connected component of O.

Proof. We will show the result using Zorn’s Lemma. Let A be the set of all
countable and closed subsets D < C with the property that for any z,y in
the same connected component of O\D we have x ~ y. The set A is partially
ordered with respect to the inclusion of sets and by assumption C' € A. Zorn’s
Lemma states that if every totally ordered subset of A has a minimal element
then A itself has a minimal element (minimal in the sense that there is no
strictly smaller element in A)

Thus we have to consider a totally ordered subset {C;}ie; € A. Our first
claim is that

E:=()CieA.
i€l

Clearly E is an at most countable and closed subset of C' since all these
properties are inherited by intersections. Let x < y be in the same connected
component of O\E. Set C, =0 n |z, y]. Then the set {@}Ze 7 is still totally
ordered and the sets C; are compact and at most countable subsets of [z, y].
Furthermore since [z,y] € E° we have

C:cEnE =g

el

Thus by . of Lemma we can find an i € I with C; = . Therefore
[z,y] € O\C; and hence z ~ y due to C; € A.

This shows E € A and E as the intersection over all {C}};e; is a minimal
element for {C}}ies.

By Zorn’s Lemma we can now find an F' € A minimal. Now we use the
second property of our equivalence relation to show that this minimal element
has no isolated points.

Assume that O\F has an isolated point z € O. Consider F' := F\{z}.
Since z was isolated in O\F and since F' is closed the set F” is still closed.
Thus F” is an at most countable and closed subset of C'. Let z < y be in
the same connected component of O\F’. If x,y are in the same connected
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component of O\F then z ~ y due to F' € A. Otherwise we have z < z < y.
If x < z then x has to be in a connected component of O\F' neighboring z
on the left and if z < y then y has to be in a connected component of O\F
neighboring z to the right. Otherwise we have z = 2z or y = 2 respectively.
In any case we have, by the second assumption for the equivalence relation,
that x ~ z ~ y and thus F’ € A. But since F' was minimal this is impossible.
Thus F has no isolated points and is a perfect subset of R. But since F'is at
most countable Lemma yields F' = ¢# € A and the equivalence relation
holds on all connected components of O. n

Remark 6.13. Note that stipulating O € K open in K with K closed is
equivalent to O being an intersection of an open and a closed subset of R.
But Theorem can indeed be applied to a general subset O. The reason
for this is that we only make statements about connected components of O.
However, any such component U € O will be an open subset of U (the closure
of U in R). Since U was a component of O we have U n O = U. Thus we

can replace K by U and O by U to get the result for each specific connected
component of O.

The following example showcases a possible application of Theorem and
also the necessity for C' to be countable and closed.

Ezample 6.14.

1. Let f: R — R be cadlag and let the set C' of discontinuities of f be a
closed subset of R, . If f is nonincreasing on each connected component
of C¢ and if for any jump of f at some x we have f(x) < f(x—) then f
is nonincreasing on R. We can show this using Theorem by setting
S=0=Rand z ~ y for z < y if and only if f(x) > f(y). Note that
if f is nonincreasing on (a,b) and on (b,c) and if f(b—) = f(b) then
f is nonincreasing on (a,c). Hence ~ fulfills the assumptions of the
theorem.

2. Let f: R — [0,1] be the Cantor function and C' the cantor set. The
function f is nonincreasing on connected components of C¢ (even con-
stant) and f(x) = f(z—) for any x € C. However f is not nonincreasing
on R, in fact it is nondecreasing. Of course the problem is that C' is
not countable thus Theorem [6.12] can not be applied.

3. Let f: R — R be a cadlag function with set of discontinuities C' = Q and
with f(q) < f(¢—) for all ¢ € Q. Then, the connected components of C
are singletons {z} with z € Q°. So trivially f would be nonincreasing
on connected components of C° but of course f does not have to be
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nonincreasing itself. Here the problem is that C' is not closed and thus
Theorem [6.12] can not be applied.

In applications of Theorem U is usually given and C' = 0U is the
boundary of U. Thus we need a way to ensure that the boundary of the open
set U is countable.

Proposition 6.15. Let U < R, be open. Let there be a function f: U — R,
such that:

1. limsup, ; f(u) < oo for allte oU.
2. limsup, ~ f(u) = oo for all t € OU.
Then the boundary U is at most countable.

Proof. It suffices to show that the boundary of U n [0,n] is countable for
all n € N,. It suffices to consider the case n = 1, since the argument for
a general n € N, works analogously. Thus we can assume without loss of
generality U < [0, 1]. We start by showing that U does not contain a strictly
decreasing sequence. Let © <y < z € oU. Since y € oU but y ¢ U we have
(z,y) nU # Jor (y,z) nU # . Thus there is an u € U with u € (z, 2).
Let 3/ € 0U be the right boundary of the connected component of U which
contains u. We have 3/ > x and due to z ¢ U we also have 3/ < z. The second
property of f with ¢ =3/ yields that for any ¢ > 0 we can find v’ € (z,2) " U
with f(u') = c.

Now consider a strictly decreasing sequence (2, ),eny © 0U. The sequence
is bounded from below by 0 and thus convergent. Since 0U is closed we
have z,, \, x € dU for n — oo. Using the previous argument we can find a
decreasing sequence (u))ney S U with f(u],) = n and u), — = for n — co.
But this is a contradiction to the first property of f since (f(u!,))nen is not a
bounded sequence even though (u!,),en is a strictly decreasing sequence in U.

Now we show that any set 0U < [0, 1] which contains no strictly decreasing
sequences has to be countable. Let x € 0U. Since U contains no decreasing
sequences there is an £, > 0 with oU n (z,x + ¢,) = & and x + ¢, < 2. By
construction the open intervals (x, x +¢,) are disjoint for different z. Thus if
there were uncountably many different x € 0U then we would get uncountably
many £, > 0. Thus we could find € > 0 and infinitely many x € oU with
g, = € > 0. But [0,2] can not contain infinitely many disjoint intervals of
length € > 0 thus we get a contradiction. Therefore oU has to be countable
which shows the claim. [
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6.3 Identifying the Distribution of a Time-

Inhomogeneous Regular Jump Process

We now want to extend the backwards equation (Theorem to the distri-
bution m; of our time-homogeneous Markov chain X as defined in (6.1)).

Theorem 6.16 (Properties of ;). Consider the situation of Definition
and recall the definition of my (6.1). Let (s, X;) € S be a random variable. Let
x € E. The function g,: [s,0) — [0,1] given by

9o(u) = Ty 1= E (PO (X, = 7))

has the following properties:

1.

gz 18 Tight continuous on [s,00) and continuous on T, N [s,00). The
function Y, . g, is cadlag and nonincreasing.

gz(u) =0 for ueTE.

Let E be finite, x € E and g, be differentiable at v > s for all y € E.
Then

9, (u) = Z Tusy Qusy,a- (6.4)

yelE

. Let E be finite and 0T}, be countable for all x € E. Then g, is absolutely

continuous on T, with Lebesque almost everywhere existing differential

given by .

Proof.

1. Note that X has right-continuous paths. Thus dominated convergence

yields that g,(u) = 7., = E(PX)(X, = 1)) is right continuous. Let
u € T;,. Since the rate function ¢ — ¢, is integrable in a neighborhood
of u paths will almost surely only visit z finitely many times in such
a neighborhood. Furthermore almost surely no arrow in our graphical
representation is located at time u. Thus the paths of the process given
by 1;x,—, are almost all continuous at . By dominated convergence
we get the continuity of g, on T,.

Furthermore, by Proposition the graphical representation is almost
surely proper and thus the left-sided limits for a path of X almost surely
only fail at an explosion (see Definition [5.3]). Note that >, . Tix, =z}
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has cadlag paths even if X explodes and dominated convergence yields
that >, g, is cadlag. We have

D 0a(u) = 1 =PI (X, = ).
ek
Since ¢ is absorbing this function is nonincreasing.
2. This follows since (u, X,,) only takes values in S or [s, o) x {d}.
3. Let E be finite, x € E and let g, be differentiable at u > s for all y € E.
We have for s < v < u, by using Theorem [6.7}
d

0= Tz

dv &

v=u

= ( Zm,ypyxvu>
yGE
:Z e

v=u

d
5 vy + Zﬂ'u’y o — Dy (v, 0)

yeE yeE v=u
- g:): T Qusy,z zx
Y Y,
yeE zeF
- Z TusyQusy,z -
yeE

Solving for ¢/ (u) yields the claim.

4. We first show absolute continuity on the set A := (1, ;(0T,)°. Note
that, since E is finite, A is open in R, (as a finite intersection of open
sets).

Let s < v < w with [v,w] € An[s,00). This implies that for any y € F
we have [v,w] € T, or m,, = 0 and g, = 0 for all u € [v,w]. We have

due to Theorem [6.7t

Twse — Tose| < 2 Ty Pya(V, W) = 0y

yeE

= Z 7Tv;y|py,z (’U, w) — Pyx (w7 w)|
yeE
Z ﬂ-U’yJ Z |QUy, |pzx u w)
yeE YV zeE

< J 2 Z Guzy du.

yelR
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Since F is finite the integrand on the right hand side is integrable and
thus we get absolute continuity of g, on A N [s, ).

It is left to extend the absolute continuity to points in 7. We will use
the set theoretical Theorem to show this. We consider K := [s, ),
O=T,nK, C:= Uye 1 0T, n K (which has countable boundary due
to . of Lemma and v ~ w if and only if g, is absolutely continuous
on [v,w] (if v < w) or [w,v] (if w < v) and the differential of g, on
[v,w] (or [w,v] respectively) is Lebesgue almost everywhere given by
. We have already shown that the equivalence relation holds on the
connected components of O\C'. It is left to show that we can extend it
to isolated points.

Let z € T, and ¢ > 0 with g, absolutely continuous on (z—¢, z) as well as
(z,z+¢) and [z—¢, z+¢| € T, (this can be achieved since z € T, and T,
open). In particular the function u — ¢y, is integrable on [z — ¢, z +¢].
Furthermore, let ¢/, be Lebesgue almost everywhere given by on
the intervals (z —e,2) and (2,2 +¢). Let ve (z —e,2), we (2,2 + €)
and w, / z as well as v, \, z. Since u > 7,4q,, is integrable on
(z — €,z + €) the Lebesgue integral § ¢/(u) du is defined and has finite
negative part. We have since g, is continuous on (z — ¢, z + €), by the
fundamental theorem of calculus and applying monotone convergence
to the positive and negative parts of g/, respectively:

Wn,

0:(2) = 0u(0) = T g,(w) = 9.(0) = im | g2 ) du = [ gifu)du

z

Analogously we have

w

gz(w) — g.(2) = lim g,(w) — g.(v,) = lim g (u) du = J g.(u) du.
n—o0 n—o0 Un, P

w

In particular the positive part of g/ also has to be Lebesgue integrable
on [v,z]. Thus g,(w) — g.(v) = § gL (u) du for [v,w] = (z — ¢,z +¢)
which shows absolute continuity and on (z —e, z+¢) and therefore
v ~ w. Theorem implies that g, is absolutely continuous on T}.

[]

Remark 6.17. Note that since ¢ — ¢, integrates to infinity when approaching
the boundary 07T}, from the left we have in particular lim sup, » ,er, Guz =
for t € 0T, If additionally lim Sup, ; yer, Guiz < o0 for all £ € 0T, for instance

it u — @y, has a right-continuous extension to T, we can apply Proposition
to conclude that 07, has to be countable.
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Our aim is now to show that the properties of ¢ — m; shown in Theorem
already determine it uniquely.

Theorem 6.18. Let Q and m, (for a fized s € R, ) be as in Definition[6.5 Let
E be finite and 0T, be countable for all x € E. For x € E let g,: |s,0) -> R
be a function with the following properties:

1. g, is right continuous on [s, ).
g:(t) =0 forteT¢.

gz 18 absolutely continuous on T,.

e e

The differential of g, fulfills the following differential equation Lebesque

almost everywhere:
9,(t) = Z 9y (1) Gty
yeE

5. We have g,(s) =0 for allx € E and Y, 5 9.(s) < .

Then g, fulfills g.(t) = 0 for allt € [s,00), x € E. Furthermore there exists
exactly one family of functions with these properties and it is given by .
(see (6.1)) after rescaling the starting condition g,(s) to be a distribution (or
it is given by the constant zero function, if g.(s) =0 for allx € E).

Proof. We will refer to a familiy of functions (g, ).eq which fulfills |1} - . as
a solution with initial condition (g,(s))ser-

We first note that showing g¢,(t) = 0 for all ¢ € [s,0), x € E implies
uniqueness: Let gl and g2 be two solutions then gl — g% and g2 — gl are
solutions (for the zero starting condition) since it is a linear problem. Thus we
have gl —g? > 0 and g2 —g. = 0 which implies g} = ¢g2. This shows uniqueness
of solutions. If the starting condition is zero then obviously the constant zero
functions solve the problem. Otherwise we note that the properties of g,
are well behaved under multiplication with positive scalars and thus we can
assume >, - g.(s) = 1. (We can normalize due to[5}) Now Theorem [6.10]
shows that the distribution of the time-inhomogeneous regular jump process
generated by () has the appropriate properties and thus has to be the unique
solution to the problem.

It is left to show that solutions have to be nonnegative for a nonnegative
initial condition. Consider a solution g, with g,(s) = 0 for all x € E. Every
gz 1s absolutely continuous on T, N [s,00) and on the inner part of TS N [s, 00)
(due to [2]). Thus g, A 0 is also absolutely continuous on these sets with
weak differential g/ 1, <o;. Since E is finite we have that h:= > g, A0 is
absolutely continuous on (1), .5 (07%)¢ N [s, 00).
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We have for the weak differential of h:

R(t) = gu() g0y

zelE

51}
= Z Z gy(t)qty,:v]l{gx(t)<0}

zeE yeE

= Z Z (9y(Dty.e = 9o (1) dt0.y) Ligo(ty<0)

zeE y#x
> 3 29D e — 92 () L ig (<0} g, (1) <0)
zeFE y#x

= 0.

Thus h is nondecreasing on connected components of (), (073)¢ N [s, ).
Furthermore we note that if g, is not continuous at some t € [s,00) then

by 2l g.(t) =0 = g.(t) A 0 and thus

limsup g,(u) A0 <0 =g,(t) AO 2 lim g,.(u) A 0.
’U,/'t u\t

Applying the (finite) sum over E on both sides yields:

I h(u) < h(t) = lim h(u) = liminf A ().
i sp (u) < A(t) = lim h(u) = lim inf h(u)

Consider a discontinuity ¢ of h such that there is an ¢ > 0 with A being
nondecreasing on (t — ¢,t) and (¢,t + ), then h has to be nondecreasing on
(t —e,t +¢). We now apply Theorem [6.12] setting

K :=0:=][s,w), C:= U&szK

zel

and x ~ y if h is nondecreasing on [z,y] (if x < y) or on [y, z] (if y < x).
Note that since dT, is countable by assumption the set C' is also countable
(and closed by definition).

The theorem yields that A is nondecreasing on [s,0). But h(s) = 0 since
gz(s) = 0 for all x € F and h < 0 by definition. This implies h(t) = 0 for all
t = s. But A(t) = 0 can only hold if g,(t) = 0 for all x € E which shows the
claim.

[]

In the case that E is countably infinite several problems arise with this
approach. Sums can not necessarily be exchanged and J,., 07, may no
longer be closed. But under additional assumptions we can still identify the
distribution of a time inhomogeneous Markov chain by solving the differential
equation 7, = ;- Q.



6.3. Identifying the Distribution of a Time-Inhomogeneous
Regular Jump Process 101

Theorem 6.19. Let E be countable. Let Q be given as in Definition [6.3
Let g, (t) := 7. fultill the assumptions of Theorem with the additional
conditions that t — 3, 5 T..qu, is integrable on compact subsets of [s, )
and t — Ty, is absolutely continuous on [s,o0). Let y € E, then the mapping

hy: [0,t] > R, s Z TaaDay (s, 1)
xeF

s constant. In particular: If we start the Markov chain X at time s in the
distribution given by m, it will have distribution m, at time t. Furthermore,
the mapping

g R, >R, s5+— Zﬂ's;m
el

is also constant. If we can find a solution with w.o > 0 for a given (0,z) € S
then X started in x at time 0 will almost surely never hit 0 and thus it will
almost surely not explode.

Proof. We have for s < v < w <t by Theorem and since 7, fulfills @] of
Theorem [6.18}

hy(w) — hy(v) = Z TwsaDa,y (W, 1) — ToaPay(v,1)

el
= D (Tuse = Tus) Dy (0, 1) = Toia(Pay (U, 1) = Py (w, 1))
reE
— Z J ToaDay(w, 1) d J Z Quiz 2Dz y (U, w) du )
zeE v U zeE
= J Zﬂuzquzxpxth du—f Zﬂ—vauxzpz,yuw)d >
zeE U zeE U zeE
= Z Tw;zqu;z,xPx y(w t) TvaQuiz,zPz,y (U,, w) du.
zeE YV zeE

Since ) .p TuwGue 1S integrable and nonnegative we can apply Fubini’s
Theorem to exchange the above sums which yields

By () = Iy (0) = by (v) = b, (w) = 0.

Thus h,, is a constant function on [s,?] and we get (using the notation for
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matrix multiplication):

t) = (Z Ws;sz,y(‘S?t)) = (hy(s))yEE
:( yeE (Zﬂtzp”:ytt)

zeE
= WtP(t,t) = T¢.
But the left hand side is exactly the distribution of X at time ¢ if we start in
the distribution 7, at time s.

Now we show that the function g is also constant. Since u — m,, is
absolutely continuous on R. we have by ] of Theorem [6.18 for all 0 < s < t:

- S e == 3 [ e

zel zel
)] )
zeE yelE

ZJ Z (TusyQuiye — TusaGuiz,y) du.

zeE VS yeP\(a}

Since by assumption the mapping

U — Z TuaQue = Z Z TuseQuix,y

z€E zeE ye E\{z}

is integrable on [s,t] we can apply Fubini’s theorem to exchange sums thus

showing

g9(t) = g(s) = g(s) —g(t) = 0
which implies that ¢ is constant. Furthermore if 7 is a distribution on F we
have for all t € R,:

Xt?fé Zﬂ—tr: —g(O):Zﬂ'szl

el rel

This shows nonexplosiveness of the Markov chain X if started with the initial
distribution my. Now let (0, z) € S with 7y, > 0. We can condition X started
in the initial distribution my on the event {X, = x}. Due to the Markov
property of X this yields X started in the initial distribution (0, )yer. Since
the probability for the process started in 7y to hit the graveyard state ¢ is
zero the same has to be the case for the process conditioned on {X, = x}.
Since an explosion would yield a jump to the graveyard state it will almost
surely not happen. O



Chapter 7

System of Flows

7.1 Flows and Particle Tracking

Two of our goals are to ensure that the rates of the limiting process given in
Definition fulfill the conditions of Definition [6.2] and that the process is
non-explosive.

Consider the migration of a single ancestral line in the limiting process. If
S is an admissible set for the migration, then it is sensible to consider the space
of partitions with labels in S as the admissible set for the spatial coalescent.
Furthermore, we note that by the nature of coalescence processes the number
of ancestral lines can only decrease over time. Therefore non-explosiveness of
the migration of a single ancestral line implies non-explosiveness of the whole
limiting process. For that reason it makes sense to focus on the migration of
a single ancestral line. It turns out that the migration, due to the way the
rates are derived from .# and Z, follows a general concept which we will call
a system of flows.

One visualization of this, which also explains the name, is the following.
Consider a countable set G of tanks holding water. Any tank x € G holds
some nonnegative amount of water %, at any time ¢t € R, . Additionally
water can be pumped from one tank x to another y # x. The total amount
of water pumped from z to y up to time ¢ is some nonnegative number %, ,,
the total flow from x to y up to time t. Our migration now is modeled by
tracking the path of a single water molecule through this system of tanks.

Of course, we cannot choose .# and & arbitrarily and we will need some
conditions to allow for a proper setup later on.

Definition 7.1 (A System of Flows). Let G be a countable set. We call a
triplet (G, %, %), where # and .# denote collections of functions t — %,
forz #yeG,t>0andt— %, forxe G, t =0, a proper system of flows
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if the following properties hold for all t e R, z € G, y € G\{z}:

1.

2.

Only nonnegative mass: %, = 0.

Only nonnegative flows: %, , > 0 and the function ¢t — %, , is
nondecreasing.

Conservation of mass:

Rrw = Ko + Z Fryae = Pty
yeG\{z}

The mass is normalized (at time 0): Y} o %o, = 1.

Regularity of flows: the function ¢ — .%;,, is absolutely continuous

with weak differential 7/ wherever it exists.

=0and . %, =0

There is no flow through sites with zero mass: %/ by

tx,y

for all y € G and Lebesgue almost all ¢ with %, = 0.

Globally finite flow in finite time: the function

RJ'_ — R+, t— Z Z ﬂtl;a:,y
26G yeGh(x)

is integrable on compact subsets of R,.

We call Z;., the mass at x at time t and %, , the cumulative flow from x to
Yy up to time t.

We now show, that conservation of mass implies that the system stays
normalized and that absolutely continuous flows imply that the mass process
%, is also absolutely continuous.

Proposition 7.2. Given a proper system of flows (G, %#,.F) the following
properties hold:

1.

2.

The mass stays conserved: Y, o X =1 for anyte Ry,

Let x € G. The mapping t — Ry, is absolutely continuous with weak
differential:

ar!
- Jt;ﬂ?,y‘

Ly,x
yeG\{z}
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Proof.

1. We have by the conservation of mass (see [3| of Definition [7.1)):

Z %t;x = Z %O;x + Z gzt;yﬂ? - yﬁl’,y

zeG zeG yeG\{z}
= Z Row + Z ﬁt;y,w - gt;:my-
zeG zeG\{z}

The first sum is equal 1 by the normalization property . of Defini-
tion . The second sum is zero since by Fubini’s Theorem and by
integrability (see[7l of Definition [7.1):

Z Z ‘gztél’vy J u.ty

zeG y#x xeG y#T

Thus ), . %o = 1 for all t = 0 which shows the first claim.

2. Let 0 < s < t, z € G. We have by the conservation of mass and absolute
continuity of the flows:

%t;ac - g?s;x = Z fft YT sy7 (yt;x,y - Lg.s;m,y)
yeG\{z}

!
= Z f TRTR ‘g‘u :p,y
yeG\{z}

Property [7] of Definition in particular yields absolute integrability
in the above equation and thus we can apply Fubini’s Theorem, which

yields:
;95 3 T f Z u; y, u T,y du.
5 yeG\{z}
Thus t — %, is absolutely continuous with the claimed weak differen-
tial.

]
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We go back to the interpretation at the beginning of the chapter. We consider
the following question: If we sample one water molecule at time 0 in tank
x € G (assuming we actually have water in that tank at time 0, of course).
How will this molecule move through the tanks? Mathematically we want to
model the movement as a stochastic process (X;)w g, in G. It makes sense
to assume the process (X;)wer, to be Markov albeit not time-homogeneous
since our macroscopic system of flows may change in time. What should
the infinitesimal rate for moving from x to y be? Considering a small time
segment [, t + At| the amount of mass traveling from z to y in that segment
is FiyAtwy — Fiay the probability for our molecule to be part of this mass
is approximately (Fiiatoy — Fray)/Rre ~ ALF] xy/%m. By the Poisson
approximation of Binomial trials with small success probability it makes

. Indeed it turns out, that

choosing theses rates will give us the rates of a tlme-lnhomogeneous regular
jump process as given in Definition [6.2]

9
sense to assume that the infinitesimal rate is

Proposition 7.3 (Rates of the Particle Tracking Process). Let (G, %,.%) be
a proper system of flows. We define for x € G:

S:={(t,y) e Ry x G| %y, >0}, T,:={teR,|(t,z)e S}

Furthermore, fort =0 we consider the matriz Qi 1= (Qtuy)zyec defined via:

ar!
_ Tty o
Qt:xy = 7 fOT TFY and — Gtz = Qt;x = Z Qt:x,y-
t;x

; yeG\{z}

If (t,x) ¢ S we formally set qi.5, = 0.

Then t — @, fulfills the properties of Definition for the admissible set
of states S and thus defines a time-inhomogeneous reqular jump process X
for any starting condition x € G with %y, > 0.

Proof. 'We show the five properties required by Definition [6.2]

1. Since u — %, , is nondecreasing and due to Z,; = 0 we have g, , = 0.

2. Note that by 2] of Proposition [7.2) the mapping ¢ — %y, is continuous.
Thus, for any compact set K < T, there is an € > 0 such that %, = ¢
for all w € K. Therefore, we have by [7] of Definition [7.1}

| uadu< fz sz Z. du<a.
K yeG aceGy#a:

Thus u +— ¢, is integrable on compact subsets of T, and u — ¢y.z, is
integrable as well. In particular this implies stability almost everywhere.
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3. The matrix ), is conservative by definition of the diagonal entries g, ;.

4. Whenever (u,z) ¢ S or (u,y) ¢ S we have .#/ = 0 and the same

UL,y
holds for the rates (using the formal convention in the definition).

5. Let Zsp > 0 and %y, = 0. We have by 2l of Proposition [7.2}

Gusz du = Z W du
s s w;x

Yy#x

= log(Zs.x) — log(Z#y..) = 0.

Since (u,z) € S is equivalent to #,., > 0 which shows the claimed
property.

]

We can now use our general theory for time-inhomogeneous regular jump pro-
cesses to show that if we start the particle tracking process in the probability
distribution given by the mass distribution 7y, := %y, then the process will
stay in the mass distribution: 7, = %, for all t € R,.

Proposition 7.4. Let Q; be given by a proper system of flows (see Definition
and let S and T, be given as in Proposition . Define for v € G
and t = 0: g.(t) := Ty 1= Riw. Then the assumptions of Theorem
(and in particular Theorem are fulfilled for the initial condition s = 0,
Tow := Ro.z. Moreover, the particle tracking process conditioned on # and
F has distribution (Ry.)zec at time t and is almost surely non-explosive.

Proof. First we have to show that g,(u) := %, fulfills the conditions of
Theorem [6.18]

1. Due to . of Proposition the mapping u — %, is absolutely
continuous on R, and in particular right-continuous.

2. We have #,., = 0 for u € T¢ by the definition of S.

3. We have shown absolute continuity of g, on R, inf2] of Proposition [7.2]
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4. We calculated the weak differential of g, in[2] of Proposition [7.2] This
yields for u e Ry, x € G:

yqli;yw ﬁii;a:,y
2 9 (Wuya = ) S 2 Huep —
yed yeG\{z} WY yeG\{z} we
- Z ﬁé;yw - “%It;w,y
yeG\{z}

= ‘@;;x = gm(u)l'

5. We have Z,,, = 0 by definition and ), . %y, = 1 for all u = 0 due to
[ of Proposition [7.2]

Since we already noted that g, is absolutely continuous on R, the only addi-
tional assumption of Theorem is the integrability of u — Y o Tu.0Gus
on compact subsets of R,. We have for u = 0:

F!
S ustn = N X T - NS

zeG zeG Y#x ’ zeG y#x

By [7 of Definition [7.1] the right-hand side is integrable on compact subsets
of R,. Thus all conditions of Theorem [6.19] are fulfilled and application of
the theorem yields that (%;.,).ec is the distribution of the particle tracking
process at time ¢ and almost sure non-explosiveness of the process. O

It turns out, that rewriting the rate matrix ¢); in terms of a system of flows can
be done whenever we can identify the distribution of the time-inhomogeneous
regular jump process via the differential equation 7} = m; - Q.

Proposition 7.5. Let S < Ry x G be an open set and let Q; = (Guzy)wyec be
the rate matriz of a time-inhomogeneous reqular jump process X = (Xi)ter,
taking values in G with admissible set S. We define for an admissible state
(t,x) € S the probability m., := P(X; = x). Assume thatt — m., is absolutely
continuous on R and that we have w; = m;-Qy where ©' is the weak differential
of m. Then X can be modeled using a system of flows.

Proof. We consider the system of flows defined by:

gl . —
Priwy = Ttaliey, Kow ' = Tox forz#y.
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By definition the flows %, , are absolutely continuous. We have for %,
using Tonelli’s theorem:

<%t;ac = %0;:1: + Z gt;y,:v - yf/?l"vy

y#T
t
— a! a!
= Row + ) J Ty — Ty QU
y#z V0

t
= %D;x + Z J TuyyQuyy,xe — TuseQuiz,y du
0

yFT

t
= r%O;a: + J (7ru ' Qu)x du

0

¢
= Ko + J T dtt

0
= %O;w + Tte — 0z = Ttz

Thus we have

or!
twy _ Ttaltmy q
- — Y,y
%t;x ﬂ—t;x
as claimed. O

Remark 7.6. Consider the situation of Proposition and note that if Q; = @
is time-homogeneous and we are in equilibrium 7, = 7 and thus 7} = 0 = 7Q)
then the flows are time-homogeneous themselves and explicitly given as

ar! _ _
/t;m7y - ﬂqugp '@0;90 = Tg.

For instance, we could represent the rate 1, simple, symmetric random walk on

the discrete torus T¢ := {—L, ..., L}? for L,d € N, with time-homogeneous
flows

1 _ 1 | . .
Ryy = ——, F = ———— if z,y e T} are next neighbors.

2L+ 14 TE (220 + 1))

But Proposition also shows, that even when we do not have an equilibrium
distribution, for instance in the case of the simple symmetric random walk
on Z? we can still represent our time-homogeneous Markov chain using a
system of flows. However, in that case the system of flows itself can no longer
be chosen in a time-homogeneous manner even though the original Markov
chain is time-homogeneous.

It is also noteworthy, that the generality in which Proposition holds
suggests, that considering a time-inhomogeneous regular jump process given
by a system of flows is barely a restriction at all but rather a slightly different
point of view.
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7.2 Uniform Convergence of Flows

We now go back to the main Assumptions in which we stipulated conver-
gence of the finite dimensional distributions of .#¥ to .%#. The goal of this
section is to improve this to weak convergence with respect to uniform conver-
gence on compact sets. This is possible using that the processes (ﬁti\;,y)tek .
and (Z;.. 4 )er, are nondecreasing and that (Fi..,)er, is continuous.

Our first goal is to show that the concept of pointwise convergence and
uniform convergence on compact sets coincide in this case.

Proposition 7.7. Let O < R. be open. Let f,, f: R, — R with:
1. f, and f are nondecreasing on connected components of O.

2. f is continuous on O.

3. There is a dense subset Q < O, with 0 € Q) if 0 € O, such that
fnlq) — f(q)  forall qe Q.

Then f, — [ uniformly on compact subsets of O.

Proof. Since any compact subset of O is contained in a finite union of
compact intervals contained in O it suffices to show uniform convergence
on any compact interval [s,t] € O. Furthermore since @ < O is dense
and contains 0 whenever O contains 0 we can enlarge the interval such that
s,t € Q. Due to [s,t] € O the functions f,, f are nondecreasing on [s,¢] and
f is uniformly continuous on [s,¢]. Let € > 0. Since f is uniformly continuous
on [s,t] there is a 6 > 0 such that |f(v) — f(w)| < ¢ for |v —w| < . Since Q
is dense we can find k € N and a partition s = ug < uy < - < Up_1 < up =1
of [s,t] with u; € @ and |u; — u; 1| < 0 for all i € {0, ..., k}. Since we have
fa(u;)) — f(u;) for all i € {0,...,k} we can find N. € N such that for all
n = N., we have

max | fa(u) = flu)] <&

Now consider u € [s,t]. We can find i € {1,..., k} such that u € [u;_1,u;]. We
have f,(u) € [fn(ui1), fa(ui)] and fo(ui) € (f(w;) — ¢, f(u;) + €) as well as
Ja(uia) € (f(ui1) — ¢, fui1) +€). We get fo(u) € (f(ui1) — €, fu) + ).
But we also have f(u) € [f(u;—1), f(w;)] and | f(u;) — f(u;—1)| < & and thus
fug), flui—r) € (f(u) — ¢, f(u) + €). Therefore we get

fu(u) € (f(uia) =&, flw) + ) & (fu) = 2¢, f(u) + 2¢).

Thus we have |f,(u) — f(u)| < 2e for n = N, uniformly for u € [s,t], which
shows the claim. O
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We can now apply this proposition to improve the convergence of the processes
FN and Z#V,

Lemma 7.8. Let G be at most countable. For x # y € G consider real-
valued stochastic processes ﬁé\fy = (ﬁtj;\;ﬂ)te]l@_'_; Ty = (Frayer, , By =
(%ﬁc)teﬂh, Ry = Rz )ier, with the following properties:

1. Z), €Dg,[0,0), F,,€ Cg,[0,0).
2. Py = Fowy =0 for allz #y.

3. L%i\fy and #,, have nondecreasing paths.

4. Forx e G, te R, we have almost surely
> FN €D [0,:), Y. FN, €Dz, [0,x)
yeG\{z} yeG\{z}

and

> Frya € Cr[0,%), Y. Fyay € Cr.[0,00).

yeG\{z} yeG\{z}

5. We have for x € G:

Ry = R+ > Tl — T (7.1)
yeG\{z}
as well as
Ry = Row+ Y. Ty — Fray (7.2)
yeG\{z}

6. Let for x € G: Rp, — Roe weakly.

7. For x € G, y € G the finite dimensional distributions of févy converge
weakly to the finite dimensional distributions of 7,

8. For x,y € G we have

a a N a
2 Figa ™ X Fewe and ) T, o ) Ty

yeG\{z} yeG\{x} yeG\{z} yeG\{x}
as weak convergence of finite dimensional distributions.

9. All weak convergences hold in a joint fashion for all x,y € G
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Then we have (FN, ZN) — (F,%) as weak convergence with respect to
uniform convergence on compact subsets of Ry x G x G for ™ — % and of

R, x G for ZN — Z.

Proof. We start off, by showing weak convergence with respect to uniform
convergence on compact subsets for .7 . Let D{, +[0,0) < Dg4[0,0) be the
subspace of nondecreasing cadlag functions. Consider the mapping

id: Dg,[0,00) — Dz, [0,00), fw>f

where we use the product topology (which corresponds to pointwise conver-
gence) on the left hand side and topology of uniform convergence on compact
sets on the right hand side. By Proposition we know that this mapping
is continuous at any f € Dg [0, 00) which is continuous. Thus, by the Con-
tinuous Mapping Theorem, weak convergence with respect to the product
topology (which is weak convergence of finite dimensional distributions) yields
weak convergence with respect to uniform convergence on compact sets as
long as the processes are nondecreasing and the limiting process is almost
surely continuous. This shows the claim for L%ﬁ\fy. If all weak convergences
hold jointly for x,y € G so does the weak convergence with respect to the
uniform convergence on compact sets and we get . #V — .F weakly with
respect to uniform convergence on compact subsets of R, x G?.

Since the processes X, ccn (4 T o 2opec\(x} F X, > are also nondecreasing
and their finite dimensional distributions converge to a nondecreasing, con-
tinuous limit we can also achieve weak convergence with respect to uniform
convergence on compact sets of R, x G x G for these processes. Since the
convergence holds jointly for all x € G and jointly with the convergence

R — Ky we get by and (7.2)):
R, =Ky + > Fh - > TN

°:y.x ey
yeG\{x} yeG\{z}

- ‘@O;I + Z fgzo;y,x - Z JOZO;.’L',y
yeG\{z} yeG\{z}

= R,

as weak convergence with respect to uniform convergence on compact subsets
of R, x G. Since this convergence holds jointly with the convergence of the
FN we get (FN, %#N) — (F, %) weakly with respect to uniform convergence
on compact subsets (of R, x G? and R, x G respectively). ]
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Remark 7.9. Wa can consider (FV , #") and (#,%) as elements of the
product space Dg, [0,0)% x Dg[0,0)¢. Note that the weak convergence
with respect to uniform convergence on compact sets (F~, ZN) — (F, %)
implies weak convergence with respect to the product topology in the space
Dg, [0,00)" x Dg[0,0)% (we use the Skorohod topology in each factor).
This can be particularly useful since Dg, [0, 00) and Dg|0, o) are both Polish
spaces with respect to the Skorohod topology (see [§]). In particular the
countable product space Dg, [0,00)%" x Dg[0,90) is Polish. Thus we can
apply Skorohod’s Representation Theorem to find a new probability space
and versions of FV F ZN X such that (FN ZV) — (F, %) holds
almost surely in Dg, [0,0)%” x Dg[0,0)%. But since the limiting processes
are continuous Skorohod convergence .Z,  — F.,, and Z, — R,
implies uniform convergence on compact subsets of R,. Thus we have
(FN BN) — (F,#) almost surely with respect to uniform convergence on
compact subsets of Z, x G x G and R, x G respectively.

Furthermore, we can even relax the weak convergence of finite dimensional
distributions to only hold on a dense subset of R, since this was already
sufficient for applying Proposition [7.7]
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Chapter 8

Proof of the Limiting Result

In this chapter we will prove our main result, Theorem using the
Assumptions [3.6]

8.1 Verification of the Properties of .%, #

Recall Definition [3.1] for the definition of (2} reng, (Fi Jren,- We define
fort e Ry, Ne N,.: ZVN = ﬁgv and Z) = 92}?%,@ Since this is a slight
abuse of notation we will make sure to always use indexes u, s, when talking
about the time-continuous processes and indexes k,n when talking about
discrete-time processes in this proof. The only case when we plug in an actual
number will be for £ = 0 in which case both notations coincide. Furthermore,
when we suppress the time index, writing .7, or Z." we will always refer
to the time-continuous case. Our first goal is to show that the conditions of

Lemma are fulfilled. Let = # y € G.

1. ﬂgy is cadlag since it is even piecewise constant by definition and the
constant extension to R, is done in a right-continuous fashion. %, , is
even absolutely continous almost surely by assumption.

2. Z& = 0by definition and 0 = Z, , — Fo..., weakly implies F., , =
O;z,y 0;x,y T,y Y

0 almost surely.

3. ,?j\fy is nondecreasing by definition (as a cumulative expression). The
limiting process .#, , thus has to be almost surely nondecreasing due
to (FL., Fiey) = (Fewy, Fray) weakly for s < t. (Technically we
use the almost sure continuity of the paths of the limiting processes to

ensure the property holds for all s < ¢ almost surely.)
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4. The path ¢t — ZyeG\{a:} 9}];\;’3, is piecewise constant and right continuous.
Furthermore we have that since every generation every individual in
our population can migrate at most one time for k € N:

Z Z ‘gfiva - ‘?k]\il;x,y S 2N

z€G yeG\{z}

Thus the path is also real-valued. Now we want to show continuity for
the limiting sums. We can even show absolute continuity. Let ¢t > 0.
We have, using Tonelli’s Theorem and [d of Assumptions [3.6] almost
surely:

t
Y Fry= N | Flayde
yeG\{z} yeG\{z} V0

¢
:J Z ﬁ;%ydu.

0 yeG\{z}

In particular this holds for all t € Q, almost surely. Thus the paths
t— ZyeG\{w} Fi.2,y are almost surely absolutely continuous with weak
differential ¢ — >} (zy Fiiny- Analogously these arguments work as
well if we exchange the roles of x and y inside the sum.

5. The total number of individuals at a given site x and time k can be
calculated by taking the number of individuals at x at time 0 and
then adding all individuals that ever migrated to z and subtracting all
individuals that ever left x. This property still holds after normalization
and the time rescaling (here we need that the time rescaling at x is
independent from the site ). Thus equation holds by definition
of the migration. Furthermore, equation ([7.2]) is simply a consequence
of the definition of Z.

6. This is part of [f] of Assumptions [3.6]
7. This is[3} of Assumptions [3.6
8. This is[6] of Assumptions [3.6

9. It was noted in the Assumptions [3.6] that all convergences are considered
to hold joinly.

Thus we can apply Lemma and get (FN, ZN) — (F,#) weakly with
respect to uniform convergence on compact sets. Furthermore as noted in
Remark that we can use Skorohod’s Representation Theorem to find a
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probability space and versions of the stochastic processes FV, ZV, F, #
such that the convergence holds almost surely. It suffices to prove the claim
of Theorem [3.14] on this new probability space.

We now want to show that the limit (%, %) defines a proper system of
flows as in Definition [7.I] We show the necessary properties. Let x # y e G
and t e R,:

1. %, = 0 follows since %’tf\g > (0 and %’tf\g — K., almost surely. Using
continuity of %, we get %, nonnegative almost surely.

2. We have already seen that ¢ — %, , in almost surely nondecreasing.
Due to ., = 0 we also get that .%#,, , is almost surely nonnegative.

3. This is just by definition of Z.

4. This is part of fl of Assumptions

5. This is part of 3] of Assumptions [3.6

6. This is implied by [7} of Assumptions [3.6]
7. This is[4] of Assumptions [3.6]

Thus by Proposition [7.2] the mass is conserved in the limit (3, ., %, = 1 for
all ¢ € R, almost surely). Furthermore by Proposition the migration of a
singel ancestral line in the limiting process II is a time-inhomogeneous regular
jump process with admissible set of states S := {(¢,z) € Ry x G|%y., > 0}.

8.2 Non-Explosiveness of the Limiting Pro-
cess

We consider our setting conditiond on &%, .# for this section. The limiting
process II is driven by two independent mechanisms:

e Migration of ancestral lines following independent particle tracking
processes given by (#,.%) (see Definition [5.3).

e Independent coalescence at every site x with respect to the time rescaled
E-coalescent defined by the rates ¢, ;(l1,...,;) (given i lines at site x).

Since any coalescence event has to decrease the number of ancestral lines by
at least 1 we can see at most n coalescence events in any path of II. Thus
IT can only explode via migration and since migration of ancestral lines is
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independent and migration is independent from coalescence the process I1
explodes if and only if the particle tracking process for a single line explodes.
But due to Proposition this is almost surely not the case. Hence, the
limiting process II is non-explosive.

8.3 Modeling I1"V with Graphical Representa-
tions

By definition the limiting process II is obtained using graphical representations
but we have not yet obtained the coalescent of the population IIV in this
manner. We condition our setting on £, .Z for this section.

Our time rescaling kY = |N“t] translates to a mesh A, := k/N®. As
we pointed out in the definition of the population coalescent ITYV (see after
Definition the coalescent fulfills the consistency relation. This means,
that we can model coalescence and migration for a smaller sample [ < n by
modeling it for n and restricting to ! lines. We consider the following possible
events for a sample of n ancestral lines located at site x € G at time k and
define graphical representations for them:

1. We first consider the case that there are at least n individuals at site
x at time k. Thus we can sample n ancestral lines at = at time k.
Those lines will perform a migration in which line i € [n] migrates
to site y; € G at the time step k — k + 1. The possible outcomes of
such a migration can be coded using the vector ¥ := (y1,...,yn). We
also define @ := (z,...,z) € G". We denote the probability of the

aforementioned event as p, 7 We can combinatorically calculate the

probability conditioned on .Z¥, #~. We consider an urn experiment
where we have an urn with NY, = N[, balls having colors y € G such
that the number of balls with color y # x is given by N(F ., ,—F%, )
(the remaining balls have color ). Then Pria is the probability that if

we draw n balls out of the urn without replacement we get the sequence

of colors (yi,...,y,). We define an appropriate intensity measure on
R,:
NMig ,_
VJ:,V = Z pk;x775k/]\[a.
keN

To find a Bernoulli process belonging to this intensity measure in the
sense of Definition [4.18 we construct random variables X éZ’Mlg) taking
values in G™ independent in k € N, and x € G (we still work conditioned
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on FV and #") with

N,Mi N
P(Xlg,m ¥ = y) = pk;ac,g)'

We call the resulting independent integer valued random measures
N, Mig . )
14 . More precisely, we define:

NMlg Z Z Z ]I{X(NMlg) y}5(k/1va,x,7).

k€N+ G 77 y eGn

Now we consider the case that there are only k£ < n individuals at z at
time k. In this case the above apporach will yield a measure MN%/[fg with
z,

7 € G*. We simply replace i with (y1,..., ¥, ,...,x) € G" in order
to achieve the same notation as previously. Later on we will ensure
that if there only are k ancestral lines at a location then only the first
k entries of ¥ are relevant for our construction.

2. We again assume that our sample of size n is fully located at x € G and
that we have at least n individuals at = at time k£ + 1 (Note that the
migration step already happened thus we have to use k£ + 1 instead of k
here). Let A € &,. The lines can perform an A-collision (see Definition
, meaning that exactly the lines, which indices are contained in a
mutual block of A, merge. We denote the probability of the coalescence
event by pg.» 4. It should be noted that since coalescence technically
happens after the migration step of our population (backwards in
time) the effective number of individuals for the coalescence is given
by Y +1. =N K. t1..- Lhus the coalescence probability at time £ is
calculated as in the nonspatial case using the population size %Jim-
Now we define the appropriate intensity measure on R, :

N, Coal 5
Ve, A Pz, AOk/N< -
keN

Again, we consider &,-valued random variables X (Ncoal) independent
in k€ N and x € GG and independent from the random variables chosen
in the migration step, with

]P)(X]g;f,Coal) _ A) = Dhaa

N,Coal

to define independent integer valued random measures i,y similar

to Definition [4.18k

NCoal Z Z Z ]]_{X(NCoal) A}(S(k/NO‘ 7y)

keNy zeG Ae 2,
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Now we consider the case that there are only £ < n individuals at x at
time k + 1. The above construction yields a random measure (4 N,Coal
with A € &2,. We now replace A = (By, ..., B)) with (By,..., By, {k’ +
1},...,{n}) € &, in order to achieve the same notation as in the case
that we were able to sample n individuals. As is the case for migration
it will turn out that if only k ancestral lines are available for coalescence
then only 7;'(A) matters for the coalescence.

We can now combine these integer valued random measures into a graphical
representation ¥ on Ry x Pg,, x P, for 1TV using the following procedure:

Consider any grid point ¢ = k/N* with k € N,. For any labled partition
T € P, we consider independent copies of the measures 1, N.Coal and ,uN Mg

forall z € G, A e &,, ¥ € G". We order the non-empty blocks of T
with respect to their smallest elements and give each block an index i € [n]
according to the ordering (The block containing 1 gets index 1, the block
which contains the next smallest element not contained in the first block gets
index 2 and so on). Note that this particular choice of indexing the blocks
will ensure that szenarios, in which we were not able to sample n individuals
due to low sample size, will not produce any issues in the way we have treated
them above. We now want to combine the migration and the coalescence
step and apply them to w. We first consider possible migrations. For any
site z there is exactly one 7/ € G such that VN Mig has an atom at (¢, 2, 7).

We define the labeled partition 7’ € Z¢,, by havmg the block with index &
at site z move to yy, for all k € [n] and = € G. Now we consider a possible
coalescence. For any site x there is exactly one A € &, such that VN Coal )ag
an atom at (¢, 2, A). We now define 7" by considering the labeled partltlon
7’ and for any site x merging all blocks at x which have their index contained
in a block of A.

If and only if 7”7 # 7 we draw an arrow from 7 to 7" at time ¢ in our
graphical representation p”. We define the intensity measure vV of u?
according to Definition (by taking the expectation).

We now show, that the graphical representation ;% is indeed a graphical
representation for our time-rescaled population coalescent I (i.e., tracking
through v will give a process which has the same law as IV if the initial
distributions coincide). Due to consistency it does not matter that the

random measures ,uN%lg, uivfoal use the probabilities for the case that the

full sample of n lines is still intact and at x. Also, note that coalescence of
blocks in IV only depends on migration due to the change 1abels induced
by migration. Since the random measures v, AC °l and v N-Mig were chosen

mutually independent we have that the probability of an aTTOW pointing from
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7 to " at time t = k/N“ is exactly given by the probability of 1V jumping
from 7 to 7" at time ¢t. Additionally the random measures were chosen
independently for different x which fits with the concept that migration and
coalescence in IV is independent at different locations. This takes care of
the joint distribution of jump times (and jump types) of I1V and shows that
tracking through v will generate a stochastic process with the same law as
.

On a side note: the reason why we also stipulated independence for
different labeled partitions 7 is of a more technical nature and is has no
impact on the law of the tracking process. Heuristically it does not matter
how the joint distribution of arrows pointing out of different locations at the
same time is chosen since the tracking procedure can only visit any time once.
For our purposes choosing independence here fits with the concept of using
Poisson point processes to define the limit since in such a random measure
all disjoint sections are automatically independent.

8.4 Convergence of the Graphical Represen-
tations

The reason why we did not define x4V directly but by using ,uiV’Mig and g0
is that we can use independence together with Proposition to analyse

the limit of vV,
Assume, for the time being, that we have shown vague convergence of

MN%ig and 7% after removing atoms that belong to the trivial events
x, )

Y =(z,...,z) and A = {{1},..., {n}} to continuous limiting measures. By
Proposition [4.20] and using independence we can conclude that only atoms
that belong to either the migration of lines at one particular site x (and no
further migration or coalescence) or atoms that belong to a coalescence event
at one particular site x (and no other coalescence or migration) can yield a
positive intensity in the limit. Furthermore, the limiting intensity for these
) . o . . N, Mig N,Coal
events is exactly given by the limit of the intensity measure v 7 or U,

which belongs to said event. ’

Before we show the convergence we need to consider that our limiting
process will only feature blocks with admissible labeles corresponding to the
set of admissible states S := {(t,z) € Ry x G|%,, > 0}. Thus, for x € G we
will show vague convergence of intensity measures as measures in M, (T)
with T}, := {t e R, |[(t,x) € S}.
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Lemma 8.1. The following convergences of intensity measures hold almost
surely:

1. Let x € G and i € G™ such that there is exactly one entry y; of
which is not equal to x. Then

) F!
dVN,Mlg N t;x,y dt

T
? t;x

as vague convergence in M (T).

2. Let x € G and 7 € G™ such that there is more than one entry y; of §
which is not equal to x. Then

N,Mi
v ,_)1g_)0
z, Y

as vague convergence in M (Ty).

3. Letx e G and Ae P, A# {{1},...,{n}} and let ly,...,l, denote the
blocksizes of A. Then it holds for N — oo with respect to the vague

topology:

dUgJ;fACoal . 590 gbx,n(ll’ R ,ln) dt.

Proof.

1. Let y # x. For combinatorical reasons we start by showing the result
for the following sum:
Z /N Mig

7€Ay
with A, € G" being the set of all vectors for which the first entry is
equal to y = y; (the other entries can be arbitrary).

Since the migration is done using an urn experiment we can calculate
probabilities explicitly. The total number of individuals migrating from

z to y at time k is given by NAZY, = N(FY, —FY,,,) and the

total number of individuals at site x is N %,ivw Thus, we have at time
t=Fk/N
. NAZFY AFY
. N,Mig - o tzy _ tix,y

P <F11"St entry of in",w is equal yl) = NN aN

Thus for [s,t] € Ty:
N Mi bl N
Z ym”@)g((s’ t]) = W dgu;x,y'

7€Ay
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Since [s,t] € T, and since %, is continuous we have by definition of T},
that there is an € > 0 such that %, = ¢ for all u € [s,t]. Additionally
we have shown that Z,, — ., uniformly for u € [s,¢] almost surely.
Thus we have

— uniformly for u € |s, t| almost surely.
BN, R Y [5.1] Y

3

We estimate

— A7) dZ.,.
u Ty . %u;x usT,y
L _ d.ZzYN ——dzN d.7,
u;x7
%ux ua:y ux wy s%u;a: Y

The first summand converges to zero due to uniform convergence of the
integrand. The second summand converges to zero since 7.2 vy — Fuey
pointwise almost surely using . of Theorem m (Convergence of
measure generating functions implies vague convergence) and the fact
that u — ﬁﬂ[s,t] (u) is Lebesgue almost everywhere continuous and
supported on a compact set.

Thus we have for all s,t € Q, almost surely:

dF iz y-

t
Nlir(l)o Vw ( 8’ ]) s ‘%’u;x
€Ay

Note that we will use this result in the next part of the proof in order to
show that all summands which correspond to 7/ with 2 distinct entries
which differ from x converge to zero. After we have shown that we can

conclude:
. N.Mi . N Mi
lim v, 7078 ((s,t]) = lim lg Fuszy
N—oo DT N—o ,@u . ’
€Ay

almost surely. Due to exchangeability the result is the same if we consider
the k-th coordinate to differ from z instead of the first coordinate.

2. Let © # y # z # x € G. We start by showing that the following
intensity measures converge to zero:

N,Mi N,Mi
PRI SIS
753y ?Eoyz
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with B, < G" the set of all vectors for which the first two entries are
equal to y and Cy . the set of all vectors for which the first entry is
equal to y and the second entry is equal to z.

We consider the first measure. Let [s,t] € T, and u € [s,t]. Again, we
get an € > 0 such that %Z,., > ¢ for all u € [s,t]. We have, using the
urn experiment:

NAZN. (NAZY  —1)

P (X li\{;l,\iig has first and second entry y) Ngugfv y(N%N uiyl)
N N
_ Aﬁwy(NAﬁwy 1)

Riio(N iz — 1)

Let N be large enough such that eN > 2, we have
NAZYN —1 NAZYN AFN

UT,Y w;T,Y U,y

<2 -
NZY, — 1 NZY, ZY,

Thus we get
P(X ]\ has first and second entry y) < 2P(Xn VU8 has first entry y)°

and therefore, using the convergence we have shown in the previous
part (for the sum over A,) together with Proposition 4.20, we get

> e
76314
vaguely in M.(T,).
The second case can be treated similarly. With the same choices for
|s,t], e and N as before we have:

P (X ﬁV’MighaS first entry y and second entry z)

NAFN, NAZFY . AFY NAFL . AFN AFY, .

NZN(N#ZY, - 1)  ZN (NZN,—1) ~ RN RN,
< 2P (X ,?vaMlg has first entry y) P (X gv’l\fg has first entry z)

Again, the previous result (for the sum over A,) together with Proposi-

tion yields
Z VN Mig
—)
Y eCy,.
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vaguely in M (T,) almost surely. Due to exchangeability this implies
that the intensity with which any simultaneous migration happens
converges to zero.

3. We first condition on the event {m = ,/lﬁj\vfﬂ;m} for m € {n,...,N}.
Denote the probability for our sample to perform an A-collision for
Ae P, as p,a(m). Since the offspring laws only depend on the site and
the total number of individuals at that site we get for the unconditioned

probability: pg a(A N +1;a:)' Note that we use k¥ + 1 since the migration

of the population happens before the coalescence backwards in time.

This will, of course, not make a difference in the limit. For notational

convenience we will write A, := Ji{gfj\vfﬂ;x and Zf, = By

We first note that we have from the nonspatial result and sample size n

(see Equation (28) by [20]) due to 2} of Assumptions [3.6}

pac,A (m)

— Gpn(ly,... 1) for m — oo.
cy'

Now let [s,t] € T, and € > 0 with Z,., > ¢ for all u € [s,t] as before.
Since Zy, — Pu;e uniformly in u € [s,t] we have

NN = NZN. . = Ne/2

u-+;x utix =

uniformly in u € [s,t] for N large. In particular we get

pf,A(’/KLN'x)
JV—NJD - qu,n(lla s 7ln)

ut;z
X

for N — oo uniformly for u € [s, t] almost surely. Furthermore, by |1l of
Assumptions [3.6] we have as well

NN
Cor u+'x(e/VN )a _)61

u+;z

for N — oo uniformly in u € [s, t] almost surely. And of course we also
have
N« 1 1

(i)™ (Rha)r R,

for N — oo uniformly for u € [s,t] almost surely. Together we get

(e Na « L%Nmpx,A(%N;m)
N p$7A(%]X;$) = (%]Xz)a (‘/Ktj-i\{,z) Ca v %]X—,:
Be
%—a%,n(ll, ln)
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for N — oo uniformly in u € [s, t] almost surely.

Now we get for the intensity measure:

N o ki’ [eNo | N—
(s ) = Y pealH) = f Npoa(HY.) du
k=kN +1 [sNe|N=+1

Thus, the uniform convergence of the integrand yields

t

Coal B

y;:\’f;4 (s, t]) = %—z¢x7n(l1,...,ln) du
s uT

for N — oo almost surely. Since it suffices for vague convergence to

show convergence of the measures of intervalls (s, ] with s,¢ € Q. this

yields almost sure vague convergence.

]

8.5 Concluding the Proof

We now show convergence of II"V conditioned on (F~, %) to II conditioned
on (F, %) as weak convergence in the Skorohod topology. Let T' = 0. Since
all processes are in the Skorohod space it suffices to show convergence up to
time T

We use the graphical representation p’¥ and the tracking map to construct
the spatial coalescent IIV. Note that if we consider the set of admissible
states (for the labels) to be S instead of R, x G we will only get the process
IV if our tracking process never visits ¢. We have shown that the intensity
measure vV of u¥ converges vaguely to the intensity measure of the graphical
representation of our limiting process. By Proposition this implies
weak convergence of the graphical representations with respect to the vague
topology. We have already seen that the graphical representation of our limit
process yields a non-explosive, time-inhomogeneous, regular jump process for
any admissible starting condition. Furthermore, since the intensity measures
of the limiting process are continuous, we can apply the Continuous Mapping
Theorem together with Proposition to show weak convergence of the
respective tracking processes with respect to the Skorohod topology up to
time 7. In particular the tracking process for u¥ will eventually (for N large)
become a Y ,-valued cadlag process up to time 7" and then coincide with
.

Thus we get ITV — II up to time 7" weakly in the Skorohod topology
conditioned on (FV, #N) and (F,Z) respectively almost surely. As usual
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considering a sequence Ty " oo we can achieve Skorohod convergence of the
whole processes. Technically, it is important here that ITV itself is always
a Pqn-valued cadlag process. This would not necessarily be the case for
the tracking process due to the set of admissible states S (for the labels).
However, since our convergence result holds, we can conclude that the labels
of blocks in IIM will stay in the admissible set up to time 7" for sufficiently
large, random M € N, . Thus, the probability that the tracking process differs
from IV up to time 7' converges to zero for N — oo.

It is left to show convergence without the conditioning on the mass and
flow processes (Z, #N) and (F,Z%). Let Y : Dg|0,00) — R be a continuous,
bounded functional. Weak convergence of the conditional distributions implies

E(Y (Y)Y, 2Y) — E(Y (I1)|.7,%)  almost surely.
Taking expectations on both sides and using dominated convergence we get
E(Y (ITV)) — E(Y (IT))

which shows weak convergence II"V — II with respect to the Skorohod topology.
This finally completes the proof of Theorem [3.14]
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Chapter 9
Outlook

Our main result was Theorem which showed convergence of the coalescent
of a spatial Cannings model to a spatial =-coalescent. We expect that this
result as well as some results that were used in the proof and are of interest
in their own right and can be generalized in the following way.

We first consider a generalization of the main result. Our hypothesis
is that the global integrability condition in [l of Assumption can be
relieved to a local version. In fact this condition was only required for showing
non-explosiveness of the limiting process. Thus, the following conjecture
would allow us to mitigate the assumption for the main result.

Conjecture 9.1. Our limiting process as given in Definition is non-
explosive even if instead of t — Y, ZyeG\{x} Fi.ny eing integrable on com-
pact subsets of R, we only have that for each x € G the functions

t— Z F] and t— Z F]

tix,y tiy,x
yeG\{z} yeG\{z}

are integrable on compact subsets of Ry and Y, o Ko =1 for allt = 0.

Intuition for this is provided by the comparison of the particle tracking
process with the concept of tracking a water molecule through a system of
water tanks (see the beginning of Section . For this heuristics, having
a global condition on the flows like [dl of Assumption is not necessary,
it suffices that our cumulative flows are locally finite. We build upon the
heuristics by choosing a molecule uniformly at random at time zero and
tracking it through the system up to some time ¢. It makes sense, that
the location of the molecule at time ¢ has the same distribution as if we
simply sample a molecule uniformly at random at time ¢. If the system is
still conservative, in the sense that the total mass stays constant (this no
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longer guaranteed in general) this heuristics suggests that the particle tracking
process is almost surely non-explosive, since the marginal distributions of
the process have no probability on ¢. We can also give a simple example in
which global flow can be infinite but the particle tracking process would still
be non-explosive:

Example 9.2. Consider the following system of flows on G = Ny. We start
with mass 27% at even numbers 2k € Ny and no mass at odd numbers. We
also only allow for flow between 2k and 2k + 1. We choose this flow in a way
such that the total mass flown from 2k to 2k + 1 and from 2k + 1 to 2k is
equal 1 at time ¢ = 1. For example having 2¥~1 full mass exchanges (all mass
gets pumped from 2k to 2k + 1 and then all mass gets pumped back) would
yield the desired flow. Even though the local flow is still finite, the cumulative,
global flow at time 1 would be infinite since every pair (2k, 2k + 1) supplies a
cumulative flow equal 1 at time 1. But note that, if we consider the particle
tracking process started at 2k € Ny, then most of the behavior of the system
is not relevant. In fact, the process can only jump between 2k and 2k + 1.
Thus we can consider the setting to be finite for the purposes of our analysis
and in particular the process would not explode.

Next, consider that we proved non-explosiveness of our limiting process by
identifying the distribution of a time-inhomogeneous Markov chain by solving
the differential equation 7, = m; - Q;. In particular Theorem was of
special interest but it was proven only for the case of a finite state space F.
For the infinite case we needed additional assumptions (see Theorem [6.19).
This leads us to the following conjecture.

Conjecture 9.3. The result of Theorem should hold for E countable
and for arbitrary oT.

It should be noted, that this result would have its own merits since it also
allows for compuation of the explosion probability 1 — >} _. 7., in cases when
explosions are indeed possible. As intuition we can again look at a system of
flows, but include the absorbing graveyard state ¢ as a possible location for a
water molecule, which is reached if the path of the water molecule explodes.
The previous heuristics still makes sense and it should not matter whether FE
is infinite or how the boundaries of T}, look like.

We now consider a different type of generalization. It should be noted,
that we normalized our total mass at time 0 (see 5| of Assumptions [3.6).
This fits together with the idea that the global population size of our spatial
Cannings model is considered as finite N < oo. But we could relax this
condition and only require local population sizes to be finite. In terms of the
masses this would yield a situation in which erc Ry = 0 but #y., < o0 for
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x € G, t>=0. For example consider G = Z and assume a transition invariant
setting. One possibility would be to start with /N individuals at each z € G
and let all individuals perform i.i.d. simply symmetric random walks. In
this case the global mass will be infinite and thus it would not be possible
to treat such a setting with our current tools. We could, nevertheless, try a
similar appoach as in the finite case. Again, the main issue comes up when
trying to show the non-explosiveness of the limiting process. It should be
noted that a system that carries infinite mass will usually also feature infinite
global cumulative flows. So it makes sense to prove Conjectures and
for the case of finite total mass before moving on to an infinite total mass
situation. Another step that has to be taken in order to generalize to infinite
mass would be to find an analogous condition to the conservation of mass in
Conjecture [9.3]

We defined our limiting process using a time-dependent rate matrix (),
(see Definition m But the definition of a time-inhomogeneous, regular jump
process (see Definition can be generalized by using continuous intensity
measures instead of restricting to absolutely continuous measures. Thus, it
would be interesting to examine, whether our result can be generalized to a
setting with only continuous intensity measures in the limit. Though this
would mainly be of theoretical interest for getting a “bigger picture” and not
be relevant for application.

Another possible generalization would be to not consider an exchangeable
setting but rather allowing for different types of individuals in the population
that have different offspring laws. This is, for example, the case if our
population is subjected to natural selection. If we have additional information
about genetical advantages and disadvantages of individuals in our sample,
then the offspring law is no longer exchangeable. Thus, this would be needed
in order to analyse population models that feature selection and mutation in
a meaningful way.
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