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SUMMARY 

The transition phase of dairy cows is marked by severe metabolic stress resulting from a 

discrepancy of a high energy demand for rapidly increasing milk production and limited 

feed intake. Here, a failure in metabolic adaptation results in an increased susceptibility to 

health problems. However, even under the same environmental factors and production lev-

el, the variability of how each cow deals with metabolic load is substantial, leading to the 

hypothesis that there might be an underlying genetic basis. The main goal of this thesis is 

to study this genetic basis from different points of view. 

In chapter 2, we studied the genetic basis of the metabolic adaptation by means of auxilia-

ry phenotypes best characterizing the adaptive process. Blood samples were taken from 

178 cows at three critical stages: T1 = week 3 ante-partum (no metabolic load); T2 = week 

4 post-partum (lactating and high metabolic load), and T3 = week 13 post-partum (lactat-

ing and low metabolic load). Plasma concentrations of non-esterified fatty acids (NEFA), 

beta-hydroxybutyrate (BHBA) and glucose – metabolites characterizing the metabolic sta-

tus and adaptability – were measured at T1, T2, and T3. All cows were genotyped with the 

Illumina HD Bovine BeadChip. After quality control, the remaining 601,455 SNPs were 

annotated to genes (Ensembl) and pathways (KEGG). For each gene and phenotype, we 

performed a modified score test based on a linear regression model with all SNPs in the 

gene as explanatory variables, while taking into account possible environmental or breed 

effects. The results were used to identify pathways enriched for significant genes using a 

weighted Kolmogorov-Smirnov test. We found 99 genes significantly associated with the 

three metabolites. For each metabolite, we found genes that are significant at T2 but not at 

T1 and T3 or vice versa. This strongly suggests those genes to be involved in the adaptive 

regulation. We further identified three pathways (‘steroid hormone biosynthesis’, ‘ether 

lipid metabolism’ and ‘glycerophospholipid metabolism’) jointly affecting the metabolites.  
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Even though NEFA, BHBA and glucose are important metabolites describing the metabol-

ic adaptation, they may not be fully indicative for the whole process. In order to obtain a 

more complete picture of the metabolic adaptation, in chapter 3 we conducted a whole 

transcriptome analysis of the liver, since it is the key organ controlling and regulating the 

metabolic adaptation. Liver samples were taken from 6 cows at 3 time-points: T1 = week 3 

ante-partum; T2 = week 2 post-partum; T3 = week 3 post-partum. Using RNA-seq, we 

studied the transcriptomic profile of the transition cow before and after lactation. We per-

formed a differential gene expression analysis (DGE) and a combination of the gene-set 

enrichment analysis and perturbation analysis for pathways (KEGG database). Among the 

~10,000 expressed genes, we discovered ~1,000 genes to be significantly differentially 

expressed (FDR < 5%), of which ~43% and ~16% are linked to lipids and oxidative stress, 

respectively, but only ~6% to the glucose metabolism (GO database). The combined path-

way analysis further revealed seven pathways to be significantly associated with the hepat-

ic changes of the transition cow, including ‘adipocytokine signaling pathway’ and ‘steroid 

hormone biosynthesis’. The DGE and pathway analysis demonstrated that major hepatic 

changes from late pregnancy to early lactation relate to gluconeogenesis and fat mobiliza-

tion (‘adipocytokine signaling pathway’). We further found indications for immunological 

changes (GPX3, ‘steroid hormone biosynthesis’ and the associated CYP and UGT tran-

scripts) that may contribute to the impaired immune system of dairy cows during the tran-

sition period. The outcome of this study provides new insights into the metabolic adapta-

tion which should be more closely investigated in future studies. 

The main results of chapter 2 and chapter 3 indicate the possible existence of a genetic 

component of the metabolic adaptation. In other words, whether a cow is able to adapt suc-

cessfully or not may be partly determined by her genetic set up. Therefore, in chapter 4, 

we hypothesize that some cows are genetically less well suited to cope with this metabolic 

stress than others, leading to adverse follow-up effects on longevity. We thus designed a 
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reaction norm sire model linking the functional lifetime to the metabolic challenge in early 

lactation. To this end, we used either the sum of the milk yield or the accumulated 

fat/protein ratio of the first three test days to define a measure for metabolic load that a 

cow has to face during her early lactation. To assess the genetic merit and heritability of 

the metabolic adaptability, we defined a pedigree-based random regression sire model, in 

which a random regression term was estimated for each sire to reflect the genetic compo-

nent of the reaction to the challenge. The model was fitted to data of ~580,000 daughters of 

~5,000 Brown Swiss bulls with at least 10 daughters with records. We found the sire vari-

ance for the slope of the random regression to be significantly different from zero for both 

challenge variables, suggesting a genetic component for the ability to cope with metabolic 

stress. The results of the study show that the ability to cope with metabolic stress in the 

transition phase clearly has a genetic component and could be used to breed metabolically 

robust dairy cows.  

In conclusion, by assessing the genetic basis of the metabolic adaptation from a genetic, 

transcriptomic as well as a breeding point of view, we found strong evidence supporting 

this hypothesis. Despite the high complexity of metabolic adaption, we found several ge-

netic factors affecting the adaptability even across different studies. The identified factors 

as well as the newly developed measure for the metabolic robustness are not only a valua-

ble contribution to the understanding of the transition cow, but an effective tool for the 

dairy industry to breed for metabolically robust dairy cows. 
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ZUSAMMENFASSUNG 

Während der Transitphase unterliegt die Milchkuh einer enormen metabolischen Belas-

tung. Durch den ansteigenden Energiebedarf für die einsetzende Milchproduktion und die 

begrenzte Futteraufnahmekapazität entsteht ein kritisches Energiedefizit. Hierbei führt die 

unzureichende metabolische Anpassungsfähigkeit zu einem erhöhten Risiko des Auftretens 

einer Stoffwechselstörung. Unabhängig von Umweltbedingung oder Produktionsniveau 

zeigt sich, dass einzelne Kühe sehr unterschiedlich mit dieser Belastung umgehen können. 

Dies hat zu der Hypothese geführt, dass die Anpassungsfähigkeit des Stoffwechsels auch 

einen genetischen Hintergrund hat. Hauptziel dieser Arbeit ist es, die genetische Basis zu 

untersuchen.  

In Kapitel 2 wurde die genetische Grundlage der metabolischen Anpassung mittels Hilfs-

merkmalen untersucht, von denen wir annehmen, dass sie den adaptiven Prozess am besten 

charakterisieren. Es wurden Blutproben von 232 Kühen zu drei Zeitpunkten der Transitper-

iode entnommen: T1 = 3 Wochen antepartum (keine metabolische Belastung), T2 = 4 Wo-

chen postpartum (laktierend und hohe metabolische Belastung) und T3 = 13 Wochen post-

partum (laktierend und geringe metabolische Belastung). Um den Stoffwechselstatus und 

die Anpassungsfähigkeit zu charakterisieren, wurden Plasmakonzentrationen von nicht-

veresterten Fettsäuren (NEFA), beta-Hydroxybutyrat (BHBA) und Glukose, drei wichtigen 

Metaboliten des Energiestoffwechsels, an jedem der genannten Zeitpunkte bestimmt. Alle 

Kühe wurden mit dem Illumina HD Bovine BeadChip genotypisiert. Nach der Qualitäts-

kontrolle verblieben 601‘455 SNPs für die Analyse. Für diese wurden Gen (Ensembl) und 

Pathway Informationen (KEGG) annotiert. Basierend auf einem linearen Regressionsmo-

dell, das alle SNPs eines Genes als erklärende Variablen beinhaltet, und unter Berücksich-

tigung möglicher Umwelteffekte und Populationsstrukturen, führten wir für jedes Gen und 

jeden Phänotyp einen modifizierten Score-Test durch. Mit einem nachfolgenden gewichte-
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ten Kolmogorov-Smirnov-Test wurden Pathways identifiziert, die mit signifikanten Genen 

angereichert waren. Insgesamt fanden wir 99 signifikante Gene, die mit mindestens einem 

der drei Metaboliten assoziiert waren. Für jeden Metaboliten existierten Gene, die nur bei 

T2 aber nicht bei T1 und T3 signifikant waren oder umgekehrt, was darauf hindeutete, dass 

diese Gene einen Einfluss auf die metabolische Anpassungsfähigkeit haben könnten. Des 

Weiteren wurden drei Pathways (‚steroid hormone biosynthesis‘, ‚ether lipid metabolism‘ 

und ‚glycerophospholipid metabolism‘) identifiziert, die jeweils einen Effekt auf alle drei 

Metaboliten haben. 

Obwohl NEFA, BHBA und Glukose wichtige Metaboliten für die metabolische Adaptation 

darstellen, bilden sie den gesamten Prozess der Adaptation nicht umfassend ab. Um ein 

vollständigeres Bild der metabolischen Anpassung zu erhalten, führten wir eine Transkrip-

tom-Analyse der Leber durch, einem Schlüsselorgan der Umsetzung metabolischer Prozes-

se, die in Kapitel 3 dargestellt wird. Leberproben wurden von 6 Kühen zu 3 verschiedenen 

Zeitpunkten entnommen: T1 = 3 Wochen antepartum; T2 = 2 Wochen postpartum; T3 = 3 

Wochen postpartum. Mit Hilfe der RNA-sequenzierungstechnologie untersuchten wir das 

transkriptomische Profil der 6 Kühe vor und nach der Abkalbung. Wir führten eine diffe-

rentielle Genexpressionsanalyse (DGE) und eine Kombination aus der Gene-Set-

Enrichment-Analyse und Perturbationsanalyse für Pathways (KEGG Datenbank) durch. 

Unter den ~10.000 exprimierten Genen waren etwa 1.000 Gene signifikant differentiell 

exprimiert (FDR <5%). Von diesen konnten 43% mit Lipiden, 16% mit oxidativem Stress, 

aber nur 6% mit dem Glukosestoffwechsel in Verbindung gebracht werden (GO Daten-

bank). Die kombinierte Pathway-Analyse ergab sieben signifikante Pathways, die mit der 

hepatischen Adaptation der Transitkuh assoziiert waren, einschließlich der Pathways ‚adi-

pocytokine signaling pathway’ und ‚steroid hormone biosynthesis’. Die DGE und Pa-

thway-Analyse zeigten, dass die wesentlichen hepatischen Veränderungen in der Transit-

phase sich auf die Gluconeogenese und Fettmobilisierung beziehen. Des Weiteren fanden 
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wir Indizien für immunologische Veränderungen (GPX3, ‚steroid hormone biosynthesis’ 

und die damit verbundene CYP und UGT-Transkripte), die zum geschwächten Immunsys-

tem von Milchkühen während der Übergangszeit beitragen könnten. Das Ergebnis dieser 

Studie liefert neue Einblicke in den Komplex der metabolischen Adaptation, der in zukünf-

tigen Studien weiter untersucht werden sollte. 

Die Ergebnisse der Kapitel 2 und 3 deuten auf die Existenz einer genetischen Basis der 

metabolischen Adaptation hin. Ob der Stoffwechsel einer Kuh erfolgreich in der Lage ist, 

sich an die Belastungen der Transitphase anzupassen oder nicht, kann zum Teil aus ihrer 

genetischen Veranlagung abgeleitet werden. Aus diesem Grund überprüften wir in Kapitel 

4, ob es eine genetisch bedingte Variabilität gibt, die erklärt, wie Kühe mit der metaboli-

schen Stresssituation in der Frühlaktation umgehen. Dabei stellen wir die Hypothese auf, 

dass der metabolische Stress bei weniger robusten Kühen negative Auswirkungen auf die 

funktionale Nutzungsdauer hat, während dies bei robusteren Kühen ausbleibt. Zu diesem 

Zweck haben wir ein Reaktionsnorm-Vatermodell aufgestellt, in dem wir die funktionelle 

Lebensdauer mit der metabolischen Belastung in der Frühlaktation verknüpfen. Als Indika-

toren für die metabolische Belastung haben wir die kumulierte Milchleistung bzw. das ku-

mulierte Fett/Protein-Verhältnis der ersten drei Herdentesttage genommen. In dem Reakti-

onsnorm-Vatermodell wurde für jeden Bullen eine zufällige Regressionsgerade bestimmt, 

deren Steigung beschreibt, wie sensitiv oder robust die Töchter dieses Bullen auf die meta-

bolische Belastung reagieren und somit ein neues Maß für die metabolische Robustheit 

darstellt. Das Modell wurde an die Daten von ~580.000 Töchtern von ~5.000 Bullen der 

Rasse Brown Swiss angepasst. In beiden Modellen, in denen jeweils die kumulierte 

Milchleistung oder das kumulierte Fett/Protein-Verhältnis als Challenge-Variable benutzt 

wurden, konnte die Verwandtschaftsstruktur der Väter einen signifikanten Teil der Varianz 

der Regressionskoeffizienten erklären, damit sehen wir unsere Hypothese von der geneti-

schen Komponente der metabolischen Adaptationsfähigkeit bestätigt.  
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Abschließend lässt sich sagen, dass wir durch die Betrachtung der verschiedenen Aspekte 

der metabolischen Adaptation (genetische, transkriptomische und züchterische) starke 

Hinweise auf einen genetischen Hintergrund gefunden haben. Trotz der hohen Komplexität 

dieser Stoffwechselvorgänge konnten wir wesentliche genetische Faktoren, die mit der 

Anpassungsfähigkeit der Kühe assoziiert waren, identifizieren. Diese Einflussfaktoren so-

wie das neu entwickelte Maß für die metabolische Robustheit stellen einen wertvollen Bei-

trag zum Verständnis des Metabolismus der Milchkuh in der Transitphase dar und können 

für eine Zucht auf robustere Tiere genutzt werden. 
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The main goal of this thesis is the dissection of the genetic basis of the metabolic adapta-

tion of dairy cows during their early lactation. This was approached from different perspec-

tives including genetic, transcriptomic as well as breeding approaches. In this chapter, we 

give a short overview of the physiology of dairy cows during their early lactation followed 

by the introduction of relevant methodologies applied in the different studies. 

The Transition Period of Dairy Cows 

The transition phase of dairy cows is usually defined as the time frame from three weeks 

ante-partum to three weeks post-partum [1]. Within the lactation cycle, this time frame 

represents the most challenging and critical period for both dairy cows and the dairy farmer 

industry [2]. Due to the shift from a gestational non-lactating state to the onset of lactation, 

dairy cows experience abrupt changes in their physiology, metabolism as well as nutrition 

[3,4]. Insufficient food intake coupled with an increasing energy demand drives dairy cows 

into an unavoidable state of negative energy balance (NEB). Moreover, due to the selective 

breeding of high-yielding dairy cows over the last decades, the extent and duration of the 

NEB during their early lactation has even increased, making them most susceptible to pro-

duction-related diseases [5,6].  Consequently, a high prevalence of health problems and 

metabolic and infectious diseases are observed within this time frame [2].  

In order to overcome the critical state of NEB in early lactation, dairy cows need to adapt 

their metabolism. Due to the primary role of glucose for milk production that cannot be 

replaced by other fuels, alternative energy sources need to be mobilized from body fat and 

reserves for the maintenance of other vital functions [2]. This leads to the mobilization of 

non-esterified fatty acids (NEFA) into the bloodstream. The liver, as a key component of 

the metabolic adaptation, take up large amounts of NEFA to produce glucose, ketone bod-

ies (e.g. beta-hydroxybutyrate, BHBA) and other products. In addition, a number of pro-

cesses involving numerous regulatory components, metabolites and endocrine factors are 
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needed to maintain an optimal balance between fuel mobilization, processing and usage 

[2]. Therefore, a careful coordination and regulation of all the processes driving the meta-

bolic adaptation is required for a successful adaptation.  

Even though the main mechanisms of metabolic adaptation are the same for all dairy cows, 

the variability of how each individual cow deals with this situation is remarkably large 

[7,8]. Even under the same environmental factors and similar production levels, the ability 

to cope with the dramatic metabolic changes ranges substantially between cows leading to 

a hypothesis of a genetic component of the metabolic adaptation [9–11]. If this genetic 

component is existent, it should manifest itself in the fact that some cows are genetically 

better suited to cope with the metabolic changes and thus have a better metabolic adapta-

bility than other cows facing the same metabolic load. These cows are then considered 

metabolically robust. This genetic component is under scrutiny in the present dissertation. 

To this end, we performed a genome-wide association study (GWAS) in chapter 2 and a 

differential gene expression analysis (DGEA) in chapter 3 in order to identify possible 

genetic factors influencing the metabolic adaptation. In chapter 4, we used a reaction 

norm sire model to quantify the metabolic robustness and studied its genetic merit and her-

itability by exploiting relationship information among animals.  

Genome-wide Association Studies 

The concept of mapping genetic factors to phenotypic traits dates back to the 1990’s and is 

one of the major challenges in animal genetics in order to understand the genetic structure 

of complex traits [12]. Conventional mapping approaches relying on biparental crosses 

have led to the detection of numerous quantitative trait loci (QTL) [13]. However, the 

mapped regions are usually of very low resolutions making it almost impossible to detect 

causal variants or genes [13]. Recently, the invention of high-throughput genotyping tech-

nology has made it possible to survey the whole genome for genetic variants associated 
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with phenotypic traits. Such studies are referred to as genome-wide association studies 

(GWAS) and are predominantly designed for the detection of single base-pair changes in 

the DNA sequence, so called single nucleotide polymorphisms (SNPs). Compared to other 

genetic variants, such as copy number variations or insertions/deletions, SNPs are the most 

abundant type of genetic variation distributed across the whole genome. Using SNP geno-

typing arrays, we are now able to genotype many hundreds of individuals for at least many 

thousands SNPs at a reasonable cost [13]. Since the introduction of commercial SNP arrays 

covering around 6K to 777K SNPs for the species cattle a large number of studies have 

been been undertaken for several important traits in dairy cattle including milk yield (e.g. 

[14,15]), milk quality traits (e.g. [16,17]) and fertility traits (e.g. [18,19]). 

Traditionally, GWAS are carried out in a single marker setting, i.e. a statistical test is per-

formed for each genetic marker separately to test whether it has an effect on the phenotype 

considered. A SNP is regarded as being associated with the phenotype if there is a signifi-

cant phenotypic difference between individuals carrying different genotypes. Hereby, the 

method of coding the genotypes determines the underlying model, such as dominant, re-

cessive, multiplicative or additive models [20,21]. Nevertheless, it is common practice to 

perform GWAS based on an additive model, not least because of its power to also detect 

dominant effects [21].  For an additive effect model, the genotypes for each individual and 

SNP are coded as the number of copies of the reference allele, i.e. 0, 1 or 2.  The reference 

allele chosen is usually the allele that occurs less frequently in a given population.  An as-

sociation test is then performed based on a linear regression of the phenotype to the geno-

type. 

In mammals, the total number of SNPs across the whole genome was estimated to be at 

least many millions [22]. For the species Bos taurus, a query on the NCBI dbSNP database 

(http://www.ncbi.nlm.nih.gov/snp) for validated SNPs yielded about 36 million results. 
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Thus, current SNP arrays can only capture a small fraction of the whole genome, so that 

causal variants may not be covered. Nevertheless, it is still possible to detect significant 

associations if the SNP array is dense enough, so that the SNPs are in linkage disequilibri-

um (LD) with the causal variants [13]. LD refers to the correlation of two loci, i.e. when 

the joint occurrence of alleles at both loci is more frequent than would be expected by 

chance. As a general rule, SNPs in close distance to each other are in LD and thus, LD is 

an important factor which must be accounted for when performing GWAS. 

On the one hand, GWAS has opened a number of opportunities for researchers to unveil 

the genetic structure of complex traits. However, it is also accompanied by a number of 

challenges for both geneticists and statisticians. From a statistical point of view, a GWAS 

comprises the testing of many thousands of null hypotheses, simultaneously. Testing each 

single test with a significance level of 𝛼 = 0.05 would lead to an inflation of false posi-

tives or type I error. Several approaches exist to account for this multiple testing problem. 

The two most often applied methods are the Bonferroni [23,24] and the false discovery rate 

(FDR) approach [25].  

However, correcting for multiple testing always compromises the statistical power to de-

tect true effects. Therefore, a main disadvantage of GWAS in combination with the single 

marker analysis (SMA) is the low power resulting from the vast multiple testing problems. 

Considering the correlation between the tests as a consequence of LD between the SNPs, 

the problem is even worse, since the most commonly applied methods to correct for multi-

ple testing are based on the assumption of independency tests (e.g. [23–25]).  Therefore, 

especially in human genetics, there has been a major shift of GWAS to multi-marker asso-

ciation studies. In this case, the strategy is to group SNPs according to their biological 

commonalities, for example SNPs that are in high LD to each other (haplotypes, e.g. [26–

30]) or SNPs that are mapped to the same genes (e.g. [31–33]). The main idea of multi-



Chapter 1  16 

marker tests is to consider a set of SNPs as one unit, for which a statistical model is estab-

lished to test the joint effect of all SNPs to the phenotype. By doing so, we are able to re-

duce the multiple testing problem as well as account for the LD structure of SNPs, at least 

within SNP-sets [26,34]. Moreover, compared to the detection of single SNPs, the detec-

tion of genes is more useful in terms of functional interpretations, since genes and their 

corresponding proteins are the smallest unit of biological activity [35]. Last but not least, 

gene-based association studies are more powerful for complex phenotypes that are often 

affected by multiple loci with small to medium-sized effects [36]. Therefore, in chapter 2, 

we conducted a gene-based association study to identify genes associated with important 

metabolites in early lactation of the transition cow. 

RNA Sequencing and Differential Gene Expression Analysis 

The transcriptome is defined as the complete set of all transcripts in a cell. As opposed to 

the genome, which is static, the transcriptome is a dynamic system, whose composition and 

quantity is dependent of different factors including development stage or physiological 

condition of an individual [37]. As an important layer between genotypes and phenotypes, 

the analysis of transcripts is an important step towards the functional interpretation of ge-

netic studies [38]. One main goal of transcriptome analysis is to quantify the changing 

gene expression levels. Generally, this quantification is used to compare the gene expres-

sion profiles of different conditions and can be carried out for a single individual as well as 

between different individuals. The method is referred to as differential gene expression 

analysis (DGE analysis).  

RNA sequencing (RNA-seq) is a relatively new technique that has revolutionized the anal-

ysis of DGE analysis. Compared to traditional techniques based on microarrays [37,39], 

which rely upon existing knowledge about specific gene sequences and have a high level 

of background noise, RNA-seq sequences the whole transcriptome with high precision to a 
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single base resolution and is able to detect an almost unlimited range of gene expression 

changes [37]. In practice, a whole population of RNA representing the expression profile 

of a specific cell in a certain condition is converted into a library of fragmented cDNA. 

These fragments are then simultaneously sequenced from either one end (single-end se-

quencing) or both ends (paired-end sequencing) [37] using next-generation sequencing 

(high-throughput sequencing) technologies [37,40]. Figure 1.1 presents the schematic prin-

ciple of RNA-seq for an exemplary gene consisting of three exons and two introns using 

paired-end sequencing. Depending on the DNA-sequencing technology used, the read 

length may vary between 30 to 400 base pairs (bp) and each run may produce up to 80 mil-

lion reads per sample, which is referred to as the transcriptome-wide coverage [41]. How-

ever, as opposed to genome sequencing studies, the transcriptome-wide coverage is of less 

interest owing to the fact that expression levels of different transcripts are highly variable. 

Consequently, the coverages of different transcripts are also variable and depend strongly 

on their own expression levels as well as that of other transcripts [38,42]. As a rule, the 

number of reads that fall into a certain transcript should be linearly proportional to its ex-

pression level and this quantity is thus used to measure the gene expression level [37,38]. 

This measurement of gene expression level is highly accurate as has been shown by valida-

tion  using qPCR methods [37]. 

The starting point of the bioinformatic analysis of RNA-seq data are the raw reads for two 

(or more) sets of samples that we aim to compare. Subsequently, a number of data pro-

cessing steps have to be conducted, including: (1) quality control of the raw reads, (2) 

mapping to a reference genome, (3) counting the reads that fall into one transcript using a 

reference gene annotation. One major challenge of this pipeline is the second step owing to 

the unique feature of the transcriptome, which is the existence of splice junctions. Numer-

ous tools have been introduced for the alignment of RNA-seq data, for instance STAR 

[43], Tophat [44], GEM [45], MapSplice [46]. The general strategy is to first conduct a 
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temporary alignment of the reads in order to discover splice junctions before the final 

alignment is performed [47]. Further challenges arise when one read is mapped to different 

transcripts, not mapped at all, or falsely mapped to non-genic regions. The simplest strate-

gy in this situation is to discard all ambiguously mapped reads. Nevertheless, other strate-

gies based on scoring functions or statistical inferences to determine the best possible 

alignment are also in use [38]. 

 

Figure 1.1: The principle of RNA-seq illustrated for one gene consisting of three exons 

and two introns. 

 

The result of the bioinformatic analysis is usually a matrix of read counts for all samples 

and all annotated genes. However, as mentioned before, the read counts are highly depend-

ent on the sequence coverage (or the total number of reads in a sample) as well as on the 

length of their corresponding genes. Therefore, a crucial component of RNA-seq analysis 

is the normalization of the read counts to make them comparable between different sam-

ples. An important issue is that the expression of different transcripts may influence each 

other making the normalization step non-trivial [38]. Nevertheless, several robust methods 
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exist to correct for this effect [42,48] and as demonstrated on real datasets, the choice of 

the normalization method does not substantially affect the end results [49]. As for the dif-

ferent gene length, a correction is usually not necessary, since comparisons between differ-

ent genes are not of interest in DGE analysis.   

Finally, the normalized read counts are modelled within a statistical framework to test 

whether and which genes are differentially expressed between different conditions. Due to 

the nature of the RNA-seq data, the Poisson distribution seems to be the best choice for its 

approximation, since it is usually used to model count data [38]. One assumption of the 

Poisson distribution is the equality of its mean and variance. However, as observed from 

real data analysis, RNA-seq data tends to be over-dispersed [38,48]. Therefore, a common 

practice for DGE analysis of RNA-seq data is to model the read counts using the negative 

binomial distribution [38,50]. This approach coupled with a generalized linear model to 

identify genes differentially expressed before and after lactation, was applied in chapter 3. 

Reaction Norm Models 

The term reaction norm, or norm of reaction, was first introduced by Woltereck in 1909 

[51] to describe the genetically determined plasticity of phenotypes. Besides genetic varia-

tion, phenotypic plasticity has also long been recognized as an important evolutionary 

strategy for different species in order to adapt to environment changes [52,53]. The theory 

of phenotypic plasticity originates from the observation that individuals carrying the same 

genotypes (clones) may show different expression of the same phenotype when exposed to 

different environments [51,52]. The change in phenotype as a response to environmental 

changes is referred to as the phenotypic plasticity. In terms of quantitative traits, the plas-

ticity or equivalently the reaction norm of a phenotype is represented by a function describ-

ing the relationship between phenotype and environment. These functions are genotype 
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specific and depending on whether they are genetically determined or not, they may vary 

in their shapes for different genotypes [52]. 

Even though the theory of plasticity is not constrained to any kind of function, in genetics 

it is common practice to assume a linear relationship between phenotype and environment 

[52,54]. In this context, the rate of phenotypic change reflected by the slope of the linear 

function is a measure for the phenotypic plasticity [54]. In Figure 1.2, we present examples 

of two different linear reaction norm models. In both panels of Figure 1.2, the two dashed 

lines represent the linear reaction norms of two different genotypes exposed to the same 

environment. In the left panel, the change in phenotype represented by the slopes of the 

two curves does not differ between the two genotypes and thus, in this example, the plas-

ticity is not genetically determined. In contrast to the first example, the right panel of Fig-

ure 1.2 illustrates the case when the slope of the reaction norm is dependent of the geno-

type. This kind of effect is also referred to as genotype by environment interaction effect.  

 

Figure 1.2:  The principle of linear reaction norm models. In both graphs, the two lines 

depict the linear reaction norm of two different genotypes for a specific phe-

notype in response to environment change. In the left case, the phenotypic 

plasticity reflected by the slopes is equal between genotypes and thus, there is 

no genotype by environment interaction effect. In the right case, the pheno-

type plasticity is genetically determined, which is reflected by different slopes 

of the two reaction norms. 
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In cattle, the conventional and simplest way to model genotype by environment interaction 

is to consider the same phenotype expressed in different environments as different traits, 

for which a genetic correlation is estimated [55–57]. However, not least because of global-

ization, which increases the range of environments that the daughters of sires encounter 

[58], modelling genotype by environment interaction effects using reaction norm models is 

becoming a more popular approach in dairy cattle [55,58–61]. This applies a random re-

gression model to model the reaction norms of different genotypes [61]. Such a model usu-

ally includes two sets of regressions: (1) a fixed regression consisting of a fixed slope and 

intercept that is common for all genotypes and (2) a random regression consisting of a ran-

dom slope and intercept that is specific to each genotype [61]. Here, we purposely use the 

term genotype instead of individual to clarify the basis concept of reaction norm models. In 

this context, a genotype is referred to as an individual animal with its specific genetic con-

stellation. However, in order to fit such a model an appropriate number of observations for 

each individual animal are needed, for which the variable environment is varied. This 

would mean that the same genotype and thus the same individual has to be exposed to a 

range of environments, which is practically impossible for the majority of phenotypes. 

Therefore, in animal breeding, a general strategy in this situation is to exploit relationship 

structures between animals and to make use of the genetic information shared between 

related individuals. For instance, in chapter 4, we suggested the use of a reaction norm sire 

model, in which a linear reaction norm is estimated for each bull using the data of his 

daughters exposed to different challenges and, thus, exhibit different reactions. 
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Abstract 

The metabolic adaptation of dairy cows during the transition period has been studied inten-

sively in the last decades. However, until now, only few studies have paid attention to the 

genetic aspects of this process. Here, we present the results of a gene-based mapping and 

pathway analysis with the measurements of three key metabolites, (1) non-esterified fatty 

acids (NEFA), (2) beta-hydroxybutyrate (BHBA) and (3) glucose, characterizing the meta-

bolic adaptability of dairy cows before and after calving. In contrast to the conventional 

single-marker approach, we identify 99 significant and biologically sensible genes associ-

ated with at least one of the considered phenotypes and thus giving evidence for a genetic 

basis of the metabolic adaptability. Moreover, our results strongly suggest three pathways 

involved in the metabolism of steroids and lipids are potential candidates for the adaptive 

regulation of dairy cows in their early lactation. From our perspective, a closer investiga-

tion of our findings will lead to a step forward in understanding the variability in the meta-

bolic adaptability of dairy cows in their early lactation. 

Introduction 

Selective breeding of dairy cows during the last decades has led to the modern high-

yielding dairy cow producing more than 45 kg milk per day [1]. However, the immense 

milk yield also entails a high energy demand during the early lactation period, which can-

not be fully covered by feed intake [2]. In order to overcome the metabolic load resulting 

from a negative energy balance, dairy cows need to mobilize body fat, protein and mineral 

stores. A failure in metabolic adaptation to this situation leads to an increased susceptibility 

to health problems as well as development of production-related diseases such as ketosis 

and fatty liver [3,4]. 

Numerous studies have tried to elucidate and describe the complex system of metabolic 

adaptation of dairy cows during their early lactation period [2,5–9]. They identified a num-
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ber of crucial regulated target genes, metabolites and endocrine factors in the liver and 

blood plasma that are involved in important pathways responsible for the adaptive regula-

tion of the metabolism. Nevertheless, so far, a general understanding of why and how the 

ability of adaptation varies between cows has still not been reached.  

Interestingly, even under the same conditions and similar production levels, the success of 

adaptation differs substantially between cows [5,6]. This strongly suggests that the ability 

of adaptation may have a genetic basis. In this study, we aim to identify the genetic factors 

influencing the metabolic adaptation performance during early lactation. In particular, we 

are interested in identifying genes as well as pathways associated with levels of candidate 

metabolites in the blood plasma, which were previously confirmed to be essentially in-

volved in the regulation of metabolic adaptation in dairy cows [2,4,6–10]. 

Genome-wide association studies (GWAS) using single marker analysis (SMA) have been 

an essential tool for identifying genetic effects. GWAS approaches have been used to de-

tect genomic regions which affect parameters changing during a negative energy balance 

of dairy cows and milk production-related traits [11–13]. When applied to high density 

marker data, the SMA approach usually has a massive multiple testing problem, which, 

when accounted for properly, substantially decreases the power to detect true genetic ef-

fects. Another shortcoming of the SMA approach is that it ignores the fact that genes may 

be represented by several markers and so the effect of a gene may be split up into several 

marker effects, each of which might not be large enough to pass the significance threshold. 

Therefore, especially in human genetics, researchers have come forward with gene-based 

association approaches aiming to overcome the limitations of the SMA [14–19].  

In general, the main idea of a gene-based approach is to test each gene instead of each SNP 

separately by summarizing all SNP-effects annotated to a gene together to one main gene-

effect.  Here, one main challenge has been how to summarize the SNP-effects reasonably 
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in order to obtain an efficient gene-level test statistic. To date, a number of methods has 

been proposed ranging from simple gene-level statistics like the minimum p-value ap-

proach [18] to complex statistics, which may account for the linkage disequilibrium (LD) 

structure or even integrate functional information of the SNPs [16,17,20,21]. For our anal-

ysis, we decided to employ the gene-based score test (GBST) adapted from Pan [21]. This 

approach accounts for the LD structure of the SNPs in a gene and the gene size measured 

by the number of SNPs, which in turn prevents the inflation of type I error.  

In the following, we present the results of the GBST applied to the three key metabolites: 

(1) non-esterified fatty acids (NEFA), (2) beta-hydroxybutyrate (BHBA) and (3) glucose. 

We further use the significant genes to detect metabolic pathways potentially affecting 

these traits to gain understanding of their biological backgrounds. To this end, we adapt the 

methods commonly used for the analysis of gene expression profiles and gene sets in mi-

croarray data experiments, termed gene-set enrichment analysis (GSEA) [22]. More pre-

cisely, we employ the permutation-based weighted Kolmogorov Smirnov Test (WKST) by 

Subramanian et al. [23] and the Wilcoxon Rank Sum Test (WRST) [22] for the identifica-

tion of pathways, which have been reported to be more successful than other approaches 

[22,24]. 

As a result, we found several biologically sensible genes and pathways associated with 

candidate metabolites during the transition period, which are essential for the adaptation of 

dairy cows. We further identified the three pathways involved in the metabolism of lipids 

and steroids, having a joint impact on all of our phenotypes. This may be regarded as evi-

dence for the genetic basis for the adaptation performance of dairy cows and, at the same 

time, reveals its complexity.   

 

 



Chapter 2  31 

Results 

Analysis Overview 

In order to assess the genetic characteristics of the metabolic adaptation of dairy cows dur-

ing calving and lactation, we examined the three metabolites NEFA, BHBA and glucose at 

three critical points of time: 3 weeks before calving (T1), 4 and 13 weeks after calving (T2 

and T3, respectively). According to van Dorland et al. [6], Graber et al. [10] and Gross et 

al. [2,4,7], these metabolites are key factors for the metabolic status of dairy cows during 

their early lactation period.  

NEFA and BHBA, both serving as energy sources, are negatively correlated with feed in-

take and the synthesis of glucose, which is an essential substrate for milk synthesis. In gen-

eral, dairy cows exhibit increased concentrations of NEFA and BHBA during the transition 

period resulting in a higher risk for diseases such as ketosis or fatty liver. Hence, we are 

especially interested in finding genes and pathways that could be responsible for regulating 

the concentration of NEFA, BHBA and glucose. In particular, we wish to find pathways 

that are able to inhibit the production of NEFA and BHBA and, at the same time, stimulate 

the production of glucose during the transition period. To this end, we performed the 

GBST and GSEA using the measurements of NEFA, BHBA and glucose at T1, T2 and T3. 

We also considered the changes of the metabolites over time and thus used the ratio of 

their concentrations measured at the different points of time (T2/T1, T3/T1, and T3/T2) for 

each metabolite, respectively, as additional phenotypes. 

Gene-based Analysis and SMA 

For all the three traits considered, the GBST found 99 significant associations with the 

false discovery rate (FDR) approach [25] and 46 with the Bonferroni-correction at a ge-

nome-wide FDR or significance level of 5%. Table 2.1 summarizes the number of signifi-

cant genes for each of the three phenotypes. A detailed description of the discovered genes 
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is listed in the supplementary Table 2.1 and the Manhattan plots for all our results can be 

found in supplementary Figures 2.1-2.3. As a comparison, we also performed a simple 

SMA that identified only two significant genes (FDR = 5%), which were also detected by 

the GBST. In the following, all results are based on the GBST at a genome-wide FDR level 

of 5%. 

Table 2.1: Number of significant genes with the GBST (FDR = 5%) for the three metabo-

lites. 

Time/ratio NEFA BHBA glucose 

T1 5 8 5 

T2 5 10 3 

T3 7 0 12 

T2/T1 2 9 8 

T3/T1 10 0 3 

T3/T2 9 2 1 

Sum 38 29 32 

 

First, we concentrate on the analysis of the results for the metabolite NEFA. Here, we 

found several genes on chromosome 3 and 13 affecting the concentration of NEFA during 

the ante- (T1) and post-partum (T3) period, respectively. However, these genes seem to 

have no statistical  impact on the NEFA concentrations during the early lactation period 

with the highest metabolic load (T2). Moreover, we discover the gene SNAI2 (snail homo-

log (Drosophila)) on chromosome 14 to be significantly associated with the ratio of NEFA 

concentrations measured at T2 and T1 (T2/T1, p = 6.28×10
-7

) as well as during T2 (p = 

5.08×10
-8

). This strongly supports the view that SNAI2 is important for the regulation of 

this metabolite during lactation and hence has an effect on the adaption of dairy cows. Also 

noticeable are the genes UGT2B15 (UDP glucuronosyltransferase 2 family, polypeptide 

B15) and MGC152010 (UDP glucuronosyltransferase 2 family) associated with the ratio of 

NEFA (T3/T1) with p-values of p = 1.11×10
-15

 and p = 1.27×10
-11

, respectively. This in-
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dicates that the regulation of the metabolic status of dairy cows before and after the onset 

of lactation is indeed different, even though usually the metabolic load is negligible at 

these times (T1 and T3). 

In a similar fashion, we also identified several significant genes (i.a. DNAJC30 (DnaJ 

(Hsp40) homolog, subfamily C, member 30) and WBSCR22 (Williams Beuren syndrome 

chromosome region 22)) on chromosome 25 associated with the ratio of BHBA (T2/T1) 

with p-values smaller than 1.69×10
-6

. Interestingly, these genes also seem to affect the 

BHBA concentration strongly (all p-values < 9.22×10
-10

) during the early lactation period 

with the highest metabolic load (T2) but not 3 weeks before or 13 weeks after calving. 

Moreover, further investigations demonstrated that cows carrying both a minor allele at the 

SNP annotated to DNAJC30 and only major alleles at the three SNPs in WBSCR22 tend to 

have higher BHBA concentrations during the transition period (1.53 mmol/L on average) 

than cows with the opposite genetic characteristics (1.09 mmol/L on average). A Welch 

two sample t-test comparing the two different groups of cows yielded a p-value of p = 

0.044.   

Finally, we focused on the analysis of the phenotype glucose, an essential metabolite for 

the synthesis of milk during lactation. Here, the gene UEVLD (UEV and lactate/malate 

dehydrogenase domains) seems to play an important role in the regulation of the glucose 

concentration during lactation (T2, T2/T1). Similar to the results of BHBA, we investigat-

ed the 15 SNPs annotated to this gene. Among these SNPs, we identified seven markers 

interacting with each other. Cows that carry only major alleles at these loci have a relative-

ly high concentration of glucose in their blood at T2 (3.3 mmol/L on average, other cows: 

3.0 mmol/L on average). Comparing the glucose concentration of these cows with the oth-

ers yielded a p-value of p = 3.3×10
-7

 at T2, but only p = 0.01 and p = 0.002 at T1 and T3. 
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Even though the differences are significant at all three points in time, the effect appears to 

be highest during the early lactation period (T2, week 4 post-partum).  

Pathway Analysis 

For the pathway analysis, we used the permutation-based weighted Kolmogorov Smirnov  

Test (WKST) by Subramanian et al. [23] as well as the Wilcoxon Rank Sum Test (WRST) 

[22] with N = 10,000 permutations. Note that, from a statistical point of view, the tests 

were performed in a two-step framework (see Methods Section), in which the results of the 

GBST were used as input information for the WKST and WRST. By doing so, we were 

able to ignore the uncertainty resulting from the estimation of the p-values for the GBST, 

which in turn could increase the uncertainty in the estimation of the p-values for the 

WKST and WRST. In order to account for this, we will only use the empirical p-values 

obtained by the WKST and WRST in the following analysis to rank the pathways accord-

ing to their importance, but will not look at their significance. The aim is then to identify 

biologically and physiologically sensible pathways among the five top ranked pathways 

with the smallest p-values for each of the three phenotypes. 

Supplementary Tables 2.2 and 2.3 show the five top ranked pathways for each of the three 

phenotypes and points in time with the WKST and WRST, respectively. Due to the huge 

amount of results, we predominantly concentrated on pathways actively influencing the 

three phenotypes at T2 and T2/T1. Table 2.2 lists all the pathways ranked at least fifth by 

both WKST as well as WRST. Among the 20 phenotype-to-pathway associations, we 

found many associations to be biologically and physiologically sensible. We were further 

able to connect most of our findings to other studies (see Table 2.2).  

On the one hand, according to our expectations, the pathway involved in the synthesis and 

degradation of ketone bodies is significantly associated with the ratio of the ketone body 

BHBA as well as the pathway for the metabolism of starch and sucrose with glucose. On 
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the other hand, we were not able to establish a significant association of the galactose me-

tabolism with glucose during lactation. This association was only significant 13 weeks 

after calving (T3, compare supplementary Table 2.2).  

Table 2.2: Phenotype-pathway associations that were at least fifth ranked by the WKST as 

well as the WRST, and references supporting the corresponding association if 

known. 

Phenotype Time Pathways Literature 

NEFA T2 Histidine metabolism [26] 

  
Sulfur metabolism  

 
T2/T1 Glycerolipid metabolism [27] 

  
Glycerophospholipid metabolism [27] 

  
Taurine and hypotaurine metabolism  

BHBA T2 Retinol metabolism [28] 

  
Tyrosine metabolism  

  
Inositol phosphate metabolism  

  
Steroid hormone biosynthesis  

 
T2/T1 Synthesis and degradation of ketone bodies [29] 

  
Tryptophan metabolism  

  
Inositol phosphate metabolism  

glucose T2 Steroid biosynthesis [30] 

  
Other glycan degradation  

  
Fatty acid elongation  

  
Ether lipid metabolism  

 
T2/T1 Ether lipid metabolism  

  
Starch and sucrose metabolism [29] 

  
Steroid hormone biosynthesis [30] 

  
Glycerophospholipid metabolism  

 

Finally, we concentrate on the joint analysis of the three metabolites to discover pathways 

involved in the regulation of all three phenotypes and thus are important for the metabolic 

adaptation of dairy cows (see Methods Section). Table 2.3 lists the five top ranked path-
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ways resulting from the mentioned analysis (only for T2 and T2/T1, for the complete re-

sults please refer to the supplements). 

Table 2.3: The five pathways with the smallest p-values according to the WKST and 

WRST for the joined analysis of the NEFA, BHBA and glucose measurements 

at T2 and T2/T1.    

Time Rank WKST 
P-Value 

(WKST) 
WRST 

P-Value 

(WRST) 

T2 1 
Steroid hormone biosyn-

thesis 
0.0018 

Steroid hormone bio-

synthesis 
0.0040 

T2 2 Retinol metabolism 0.0063 
Other glycan degrada-

tion 
0.0199 

T2 3 
Drug metabolism - other 

enzymes 
0.0115 

Drug metabolism - 

cytochrome P450 
0.0222 

T2 4 
Starch and sucrose me-

tabolism 
0.0124 Retinol metabolism 0.0223 

T2 5 
Other glycan degradati-

on 
0.0174 

Starch and sucrose 

metabolism 
0.0242 

T2/T1 1 Ether lipid metabolism 0.0030 
Glycerophospholipid 

metabolism 
0 

T2/T1 2 
Glycerophospholipid 

metabolism 
0.0034 

Ether lipid metabo-

lism 

5.00E-

04 

T2/T1 3 
Other glycan degradati-

on 
0.0061 Nitrogen metabolism 0.0028 

T2/T1 4 Tyrosine metabolism 0.0113 Tyrosine metabolism 0.0151 

T2/T1 5 Nitrogen metabolism 0.0144 
Other glycan degrada-

tion 
0.0174 

 

Interestingly, we found that the two pathways involved in the metabolism of ether lipids 

and glycerophospholipids are highly ranked by both the WKST as well as the WRST 

method. Moreover, both pathways demonstrate empirical p-values smaller than 0.005 at 

T2/T1. This finding agrees with the results of Klein et al. [31], who were able to establish a 

link between the glycerophosphocholine levels in milk and the susceptibility for ketosis in 

dairy cows during early lactation. As for T2, the pathway for steroid hormone biosynthesis 

is highly associated with the three metabolites, showing p-values of p = 0.0018 and p = 

0.004 with the WKST and WRST, respectively. Figure 2.1 illustrates the similarities of the 
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three pathways and their number of genes. While the two lipid pathways share the majority 

of the genes involved, they seem to have no similarities with the steroid pathway.  

 

 

Figure 2.1: Venn-diagram for the number of genes annotated to the three pathways steroid 

hormone biosynthesis (S), ether lipid metabolism (E) and glycerophospholip-

id metabolism (G). 

 

Discussion 

Metabolic adaptation has been of great interest for dairy scientists during the last decades, 

but up to the present, little attention has been paid to its genetic aspects. In this study, we 

investigated the genetic factors influencing the metabolic adaptation of dairy cows during 

their transition period. In particular, we were interested in the two following questions:  

(1) Do the differences in metabolic adaptation between cows have a genetic basis? 

(2) If there is such a genetic basis, what genes and pathways are responsible for the 

metabolic adaptation? 

As for the first question, our findings strongly support the idea that the metabolic adaption 

indeed has a genetic basis. Both the gene-based as well as the pathway analysis revealed 

many genes and pathways influencing the three metabolites, but only at certain points of 
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time. For instance, the gene UEVLD appears to affect the phenotype glucose only in the 

early lactation, but not 4 weeks before or 13 weeks after calving. The opposite case can be 

observed from the relations between several genes on chromosome 3 and 13 and the phe-

notype NEFA. 

With regard to the second question, we found several significant genes and pathways regu-

lating the concentrations of NEFA, BHBA and glucose during the transition period. Three 

pathways with a number of SNPs detected (steroid hormone biosynthesis, ether lipid me-

tabolism and glycerophospholipid metabolism) were found to jointly affect the key metab-

olites NEFA, BHBA and glucose. The genes distributing to the significance of the three 

pathways are involved in various sectors of the lipid metabolism. Especially, the repeated 

link to the cholesterol metabolism in dairy cows coping with elevated NEFA concentra-

tions is obvious and was recently shown at a physiological level [32]. Interestingly, no 

SNPs were detected for genes, which are directly involved in the ketogenesis. However, 

the findings regarding associations to different phenotypes in BHBA concentrations are 

very probably an indirect result of the changes in NEFA concentrations. The availability or 

surplus of NEFA is a main factor determining the degree of BHBA synthesis, e.g. ketogen-

esis is regulated through NEFA plasma concentration. Similar to BHBA, glucose concen-

tration cannot be directly connected to significant associations with SNPs in the presented 

genes and pathways. However, the occurrence of reduced glucose availability at high 

BHBA concentrations was recently demonstrated [33] and is presumably the reason for the 

low glucose concentration as a secondary effect of high NEFA concentration.  

Generally, we were able to connect most of our findings to previous studies and hence con-

firm their plausibility. As an example, the associations of the glycerolipid and glycer-

ophospholipid metabolism with the ratio of NEFA concentrations at T2 and T1 may be 

explained by the intense mobilization of lipids from tissue stores in the transition period 
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resulting in a substantial release of NEFA into the blood stream [27]. Another interesting 

pathway associated with NEFA is the histidine metabolism (at T2). While there is no ap-

parent connection between histidine and NEFA, Vanhatalo et al. [26] found that histidine 

significantly increases the milk and milk protein yield during lactation, but at the same 

time decreases its lactose and fat contents. Nevertheless, when interpreting these results, 

we have to take into account that even though the three considered metabolites are indeed 

indicators for the metabolic adaptation of dairy cows, they may not be fully indicative to 

the whole process of adaptation. Therefore, we suggest that the discovered genes and 

pathways should be viewed as potential candidates for closer investigation and validation 

from a biological perspective in future studies considering the complex endocrine and met-

abolic interactions.  

Table 2.4: Comparison of the per test significance threshold between the SMA and GBST 

after adjustment with the Bonferroni-correction at a genome-wide level α = 

0.05. 

 m (# of SNPs/genes) α/m -log10(α/m) 

SMA 
601,455 SNPs (all) 

231,712 SNPs (intragenic) 

8.31×10
-8 

2.16×10
-7

 

7.08 

6.67 

GBST 22,025 genes 2.27×10
-6

 5.64 

 

In order to answer the two mentioned questions, we performed a GWAS using the GBST 

as suggested by Pan [21] followed by a GSEA for the identification of pathways. Even 

though the focus of this work was not methodological, our results demonstrated that using 

the GBST is more successful than the conventional SMA in identifying biologically sensi-

ble genes even with a relatively small samples size. For all of the considered traits, we dis-

covered highly significant genes consisting of many SNPs interacting with each other. The 

SMA, however, missed most of these genes, since it is only designed to dissect single 

SNP-effects and has low power due to the massive multiple testing problem. Using the 
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example of the Bonferroni-correction, Table 2.4 explains the apparent loss of power of the 

SMA compared to the GBST. By testing each single SNP separately, the SMA needs to 

test about 30 times more null hypotheses than the GBST resulting in much more conserva-

tive significance threshold per test.    

The gene-based approach in combination with the pathway analysis is a well-established 

and commonly used method in human genetics. Here, a number of methods have been pro-

posed and successfully employed to identify genes and pathways contributing to the devel-

opment of complex human diseases (for some examples, see [15,16,19,20,34]). In animal 

genetics and breeding, researchers in general are still relying on simple SNP-based associa-

tion studies. However, Peng et al. [15] as well as our study have shown that complex phe-

notypes are often affected by the joint action of many variants within a gene or even of 

many genes within a pathway. Hence, we believe that the use of the gene- and pathway-

based approach in animal science is a promising tool to shed new light on the genetic com-

plexity of common traits and deepen the understanding of their biological backgrounds.  

Material and Methods 

Phenotype Data 

The data used in our analyses were obtained from a large on-farm study involving 232 

dairy multiparous cows from different breed types (Brown Swiss, Holstein, Swiss Fleck-

vieh) housed at 64 farms (at least 2 cows per farm used in the trial, calving between No-

vember 2007 and April 2008, similar diet: grass and maize silage based feeding with addi-

tional concentrate, all cows under supervision of breeding associations) [35] and 50 Hol-

stein dairy cows kept under controlled feeding conditions on an experimental farm (grass 

and maize silage based feeding with additional concentrate) [2]. In brief, blood samples 

were taken from cows which had a significant metabolic load in their previous early lacta-

tion as estimated by the fat:protein-ratio and milk fat content reflecting a tremendous body 
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fat mobilization. Based on previous frequent measurements during the transition period, 

samples were taken at three critical stages of lactation: T1 = week 3 before expected calv-

ing (not lactating and no metabolic load); T2 = week 4 post-partum (lactating and high 

metabolic load), and T3 = week 13 after parturition (lactating and no metabolic load). 

Plasma concentrations of NEFA, BHBA and glucose were measured at T1, T2 and T3 us-

ing commercial kits as described by Graber et al. [35] and Gross et al. [2]. Table 2.5 pre-

sents the data summary for the three phenotypes and the supplement Figures 2.4-2.6 the 

corresponding histograms.  

Table 2.5: Mean and standard deviation of the three metabolites NEFA, BHBA and glu-

cose. 

µ ± σ 
NEFA 

log(mmol/L) 

BHBA 

mmol/L 

Glucose 

mmol/L 

T1 4.269 ± 0.691 0.582 ± 0.266 3.719 ± 0.360 

T2 5.624 ± 0.647 1.349 ± 1.081 3.146 ± 0.560 

T3 4.643 ± 0.642 0.770 ± 0.352 3.702 ± 0.433 

 

Genotype Data 

The 282 dairy cows were genotyped with the Illumina next-generation High-Density Bo-

vine BeadChip. The resulting genotype dataset, consisting of 777,692 markers for 282 

dairy cows, was then quality controlled and filtered with a SNP call rate of 95% and minor 

allele frequency (MAF) of 5%. After filtering and quality control, 601,455 SNPs for 282 

animals remained. 

To assess a possible stratification of the material, a principal component analysis (PCA) 

based on the genotypes was performed. Figure 2.2 displays the first two principal compo-

nents of the PCA. According to the results, we divided the 282 animals into two groups 

(Holstein, Red Holstein and Fleckvieh vs. Braunvieh). This grouping reflects that Swiss 



Chapter 2  42 

Fleckvieh historically was heavily interbred with Red Holstein. Within the two subgroups 

missing genotypes were imputed with the program BEAGLE (Version 3.3.2 [36]). After 

removing 38 cows with missing phenotypes, a final dataset with 178 animals in group 1 

(G1) and 66 animals in group 2 (G2) was available for our analyses. 

 

Figure 2.2: The two leading principal components of the analysis with the genotype data 

with 601,455 SNPs for 282 animals. The first and second principal compo-

nents explain 8.7 % and 1.4 % of the total variation, respectively. The dashed 

line indicates the division of the cows into two groups.  

 

Gene and Pathway Annotation 

In order to perform the GBST and pathway analysis, we need a gene-annotation that allo-

cates SNPs to genes and a pathway-annotation for genes to pathways. For the gene-

annotation, we downloaded a list of all known genes from the Ensembl Genes database 

(Release 73, UMD3.1) for the species Bos taurus [37]. We allocated SNPs to genes ac-

cording to the transcription-start and –end positions including exon, intron, UTR variants 

as well as SNPs up to 5kbp up- and downstream. The final gene-annotation includes 
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22,025 genes containing at least one intragenic SNP. For the pathway analysis, we re-

trieved a gene to pathway annotation from the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) database [29]. We further matched the different gene identifiers from the Ensembl 

and KEGG database to obtain a final pathway-annotation for our dataset with 81 metabolic 

pathways containing at least five genes. 

Statistical Model 

Denote y the observed vector of phenotypes of n individuals and X an 𝑛 × 𝑚 matrix with 

values in {0, 1, 2} representing the genotypes for a gene G consisting of m SNPs. To test 

the association of the gene G to the phenotype y, we fitted a linear regression model  

𝑦 = 𝑍𝜃 + 𝑋𝛽 + 𝜀, 𝜀~𝑁(0, 𝜎2𝐼𝑛), 

where Z denotes the 𝑛 × (𝑘 + 1) matrix of covariates accounting for possible environmen-

tal factors or population structures, including the intercept and 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑘+1)𝑡, 

𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑚)𝑡 are the regression coefficients. Accordingly, the statistical problem is 

to test whether the phenotype y is influenced by any of the m SNPs, that is 𝐻0: 𝛽 = 0. For 

the SMA approach, we performed a single marker regression and employed a simple t-test 

based on the same statistical model, but only for one SNP (𝑚 = 1) at a time.  

Population Stratification and Environmental Factors 

The principal component analysis based on the genotypes (see Figure 2.2) revealed a sub-

stantial population structure within the group G1 with 178 cows from the breeds Holstein, 

Red Holstein and Fleckvieh. To avoid inflation of the type I error [38], it is important to 

account for this stratification both in the gene-based as well as single marker analysis. We 

conducted a PCA for the group G1 as to obtain covariates for the regression model and 

employed the Tracy-Widom test [38] to assess how many of the leading principal compo-

nents contributed significantly to the population structure. As a result, the first 17 principal 
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components were significant (𝛼 = 0.01) and thus were added as covariates to the linear 

regression model for the group G1. We chose a very conservative significant threshold in 

order to avoid overcorrection of the regression model, which would in turn mask possible 

true effects. The covariate matrix for the whole dataset (G1+G2) with 𝑛 = 244 animals is 

then given by 𝑍 = (1𝑛 , 𝐼𝐺1, 𝑃𝐶1, 𝑃𝐶2, … , 𝑃𝐶17), where 1𝑛 = (1,1, … ,1)𝑡, (𝐼𝐺1)𝑗 = 1 if an-

imal j is in Group G1 and 0 otherwise, and (𝑃𝐶𝑖)𝑗 is the value of the i-th principal compo-

nent for animal j if it belongs to group G1 and 0 otherwise for 𝑗 = 1,2, … , 𝑛. 

The NEFA, BHBA and glucose measurements of the 244 cows are from two different 

studies, which might have different management systems. In order to account for this, we 

include an additional covariate 𝐼𝐸 with (𝐼𝐸)𝑗 = 1 if animal j is from the on-farm study and 

0 otherwise. For comparison purposes, we perform the gene-based and pathway analysis 

twice, with the covariate matrix Z and 𝑍∗ = (1𝑛 , 𝐼𝐸 , 𝐼𝐺1, 𝑃𝐶1, 𝑃𝐶2, … , 𝑃𝐶17). The results of 

the two analyses are similar, however, the analysis with the matrix Z yields smaller p-

values. Therefore, in this study, we will present results based on the matrix Z.  

Gene-based Score Test 

For our gene-based analysis, we employed a modification of the Score Test, motivated by 

Pan [21]. To this end, denote U the score vector for the m SNPs adjusted for the covariates 

given by 

𝑈 =
1

�̂�
𝑋𝑡(𝑦 − 𝑃𝑧𝑦), 

where 𝑃𝑍 = 𝑍(𝑍𝑡𝑍)−1𝑍𝑡  and �̂� is the Maximum-Likelihood estimate for 𝜎 under 𝐻0. 

Then, the covariance matrix of U, also adjusted for the covariates Z, is 

𝐶 = (𝑋 − 𝑃𝑍𝑋)𝑡(𝑋 − 𝑃𝑍𝑋). 

To test 𝐻0, Pan [21] suggests using the test statistic  



Chapter 2  45 

𝑆𝑆𝑈 = 𝑈𝑡𝐷𝑖𝑎𝑔(𝐶)−1𝑈, 

where 𝐷𝑖𝑎𝑔(𝐶) is a diagonal matrix with only the diagonal elements of C as non-zero en-

tries, instead of the standard score statistic SSU = UtC-1U. To calculate the distribution of 

the score statistic SSU, we used a 𝜒2-approximation by Zhang [39], while accounting for 

the fact that 𝜎2 was estimated by 𝜎2 =
1

𝑛
(𝑦 − 𝑃𝑍𝑦)𝑡(𝑦 − 𝑃𝑍𝑦).  

According to Pan [21], the modified test statistic SSU is more powerful than SSU’ for sim-

ulated genetic data. Freytag and Bickeboeller [40] also confirmed this finding by employ-

ing this method in the context of gene ranking. Using a simulation study, they compared 

this method to other summary statistics for genes and reported that the test based on the 

score statistic outperforms all other methods in many scenarios, in particular, when interac-

tions between SNPs are present. 

Pathway Analysis 

Using the p-values obtained by the GBST, we performed a gene set enrichment analysis 

(GSEA) to identify metabolic pathways associated with the phenotypes. For this purpose, 

we adapted the weighted Kolmogorov-Smirnov Test (WKST) suggested by Subramanian 

et al. [23]. This method was shown to be superior compared to other gene set-level statis-

tics by Hung et al. [22].  

Denote S a given set of genes (e.g. a pathway) and 𝐿 = {𝑔1, 𝑔2, … , 𝑔𝑁} a ranked list of all 

genes according to a ranking metric 𝑟(𝑔𝑗) = 𝑟𝑗 with 𝑟1 ≥ 𝑟2 ≥ ⋯ ≥ 𝑟𝑁. Importantly, the 

metric r should reflect the ‘importance’ of a gene for the phenotype under consideration. In 

order to test the association of the pathway S and the considered phenotype according to 

the GSEA approach, we first calculate an Enrichment Score ES for this pathway and then 

permute the phenotypes to obtain its null distribution. To this end, we start with a running-

sum 𝑅𝑆 = 0. We then walk down the list L (𝑖 = 1,2, … , 𝑁) and increase RS by  
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𝑟𝑖

∑ 𝑟𝑗𝑔𝑗∈𝑆
 

if the gene 𝑔𝑖 is contained in the pathway S, and decrease RS by  

1

𝑁 − 𝑁𝑠
 

if the considered gene is not contained in the pathway S, where 𝑁𝑆 = |𝑆| is the number of 

genes in the pathway S. Finally, the Enrichment Score ES is defined by the maximum de-

viation of the running sum RS from zero. To assess the significance of ES while accounting 

for the correlation structure of the genes, we permuted the phenotypes and repeated the 

whole procedure 10,000 times for each pathway and phenotype. For comparison purposes, 

we also employed the permutation-based Wilcoxon Rank Sum Test (WRST) [22] based on 

the test statistic 

𝑅𝑆 = ∑ 𝑅𝑎𝑛𝑘𝐿(𝑔𝑗)

𝑔𝑗∈𝑆

 

In our analyses, we ranked our genes according to the p-values obtained by the GBST and 

set 𝑟(𝑔𝑗) = −𝑙𝑜𝑔10(𝑝𝑗). The analysis was performed for each metabolite and each points 

of time separately. Furthermore, in order to investigate whether there is a pathway that is 

able to regulate all three metabolites simultaneously, we also conducted a joint pathway 

analysis for the three metabolites. Here, we ranked the genes according to the product of 

the p-values obtained from the gene-based analysis with the three different phenotypes and 

set 𝑟(𝑔𝑗) = −𝑙𝑜𝑔
10

(𝑝𝑗
𝑁𝐸𝐹𝐴𝑝𝑗

𝐵𝐻𝐵𝐴𝑝𝑗
𝑔𝑙𝑢𝑐𝑜𝑠𝑒

). This will especially raise the rank of genes 

exhibiting small p-values for all of the three metabolites. As a result, we hope to discover 

pathways involving in the regulation of all the three phenotypes and thus are important for 

the metabolic adaptation of dairy cows.  
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Multiple Hypothesis Testing 

Both the SMA and the GBST require the testing of multiple hypotheses (SNPs or genes) 

simultaneously. Therefore, it is necessary to adjust the significance threshold of each single 

test properly in order to avoid an inflation of the genome-wide type I error rate. A com-

monly used, but very conservative method is the Bonferroni-correction. Here, the signifi-

cance threshold for each single test α’ is given by the genome-wide rate α (e.g. α = 0.05) 

divided by the number of hypotheses tested m (𝛼′ =
𝛼

𝑚
). By doing so, the probability for 

detecting at least one false positive signal, also termed as the familywise error rate 

(FWER), has an upper boundary determined by the level α. Another and more powerful 

method to control the type I error rate is the False Discovery Rate (FDR) approach by Ben-

jamini and Hochberg [25]. As opposed to the Bonferroni-correction, the FDR approach 

aims to keep the expected proportion of false positives instead of the FWER below a cer-

tain level q. Thereby, the per test significance level α’ is determined so that the equation 

𝛼′𝑚

𝑅(𝛼)
≤ 𝑞 holds, where )'(R  denotes the number of tests that were declared significant at 

the level α’.  
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Supplementary Tables and Figures 

Supplementary Table 2.1: Results of the GBST. Description of all significant genes 

(FDR < 5%) resulting from the gene-based score test (GBST) 

according to the Ensembl database. 

(http://journals.plos.org/plosone/article/asset?unique&id=info:

http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0122325.s007
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doi/10.1371/journal.pone.0122325.s007) 

doi:10.1371/journal.pone.0122325.s007 

Supplementary Table 2.2: Results of the WKST. The five top ranked pathways according 

to the results of the weighted Kolmogorov Smirnov test 

(WKST). 

(http://journals.plos.org/plosone/article/asset?unique&id=info:

doi/10.1371/journal.pone.0122325.s008) 

doi:10.1371/journal.pone.0122325.s008 

Supplementary Table 2.3: Results of the WRST. The five top ranked pathways according 

to the results of the Wilcoxon Rank Sum test (WRST). 

(http://journals.plos.org/plosone/article/asset?unique&id=info:

doi/10.1371/journal.pone.0122325.s009) 

doi:10.1371/journal.pone.0122325.s009 

Supplementary Table 2.4: Results of the joint analysis with the WKST. The ten top 

ranked pathways according to the results of the joint analysis 

with all three metabolites with the weighted Kolmogorov 

Smirnov test (WKST). 

(http://journals.plos.org/plosone/article/asset?unique&id=info:

doi/10.1371/journal.pone.0122325.s010) 

doi:10.1371/journal.pone.0122325.s010 

Supplementary Table 2.5: Results of the joint analysis with the WRST. The ten top 

ranked pathways according to the results of the joint analysis 

with all three metabolites with the Wilcoxon Rank Sum test 

(WRST). 

(http://journals.plos.org/plosone/article/asset?unique&id=info:

doi/10.1371/journal.pone.0122325.s011) 

doi:10.1371/journal.pone.0122325.s011 
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Supplementary Figure 2.1:  Results of the GBST for NEFA. Manhatten plot of the GBST 

for the phenotype NEFA measured at T1 (1), T2 (2) and T3 

(3) as well as the ratios. Each dot represents a gene. The dot-

ted and dashed lines show the significance thresholds after 

the multiple testing correction according to Bonferroni and 

the FDR methods, respectively. 
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Supplementary Figure 2.2: Results of the GBST for BHBA. Manhatten plot of the GBST 

for the phenotype BHBA measured at T1 (1), T2 (2) and T3 

(3) as well as the ratios. Each dot represents a gene. The dot-

ted and dashed lines show the significance thresholds after 

the multiple testing correction according to Bonferroni and 

the FDR methods, respectively. 
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Supplementary Figure 2.3: Results of the GBST for glucose. Manhatten plot of the 

GBST for the phenotype glucose measured at T1 (1), T2 (2) 

and T3 (3) as well as the ratios. Each dot represents a gene. 

The dotted and dashed lines show the significance thresholds 

after the multiple testing correction according to Bonferroni 

and the FDR methods, respectively. 
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Supplementary Figure 2.4:  Histograms of NEFA. Histograms of the phenotype NEFA 

measured at T1, T2 and T3. The different colors indicate 

the two different studies (grey = on-farm study). 
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Supplementary Figure 2.5:  Histograms of BHBA. Histograms of the phenotype 

BHBA measured at T1, T2 and T3. The different colors 

indicate the two different studies (grey = on-farm study). 
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Supplementary Figure 2.6:  Histograms of glucose. Histograms of the phenotype glu-

cose measured at T1, T2 and T3. The different colors indi-

cate the two different studies (grey = on-farm study). 
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Abstract 

Background: During their early lactation, dairy cows experience a severe metabolic load 

often resulting in the development of various diseases. The inevitable deficiency in nutri-

ents and energy at the onset of lactation requires the adjustment of the hepatic metabolism 

to overcome metabolic stress. Numerous studies have been carried out to elucidate the 

complex process of adaptation, which, until now, is not fully understood. In this study, we 

conducted a whole liver transcriptome analysis for the transition cow to identify novel fac-

tors crucial for the metabolic adaptation.  

Results: Liver samples were taken from six cows at three time-points: T1 = week 3 ante-

partum; T2 = week 2 post-partum; T3 = week 3 post-partum. Using RNA-seq, we studied 

the transcriptomic profile of the transition cow before and after lactation. We performed a 

differential gene expression (DGE) and a combination of the gene-set enrichment analysis 

and perturbation analysis for biological pathways (KEGG database). Among the ~10,000 

expressed genes, we discovered ~1,000 genes to be significantly differentially expressed 

(FDR < 5%), of which ~43% and ~16% are linked to lipids and oxidative stress, respec-

tively, but only ~6% to the glucose metabolism (GO database). The combined pathway 

analysis further revealed 7 pathways to be significantly associated with the hepatic changes 

of the transition cow, including ‘adipocytokine signaling pathway’ and ‘steroid hormone 

biosynthesis’. 

Conclusion: The DGE and pathway (biological gene set) analysis demonstrated that major 

hepatic changes from late pregnancy to early lactation are related to gluconeogenesis and 

fat mobilization (‘adipocytokine signaling pathway’). We further found indications for 

immunological changes (GPX3, ‘steroid hormone biosynthesis’ and the associated CYP 

and UGT transcripts) that may contribute to the impaired immune system of dairy cows 

during the transition period. The outcome of this study provides new insights into the un-
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derstanding of the metabolic adaptation within the liver of the transition cow, which should 

be more closely investigated in future studies. 

Keywords: RNA-seq, transition cow, early lactation, hepatic transcriptome, differential 

gene expression analysis 

Background 

The transition period of a dairy cow, mostly defined as the time frame from 3 weeks ante-

partum until 3 weeks post-partum, is characterized by abrupt changes in physiology, me-

tabolism as well as nutrition of the animal [1,2]. Intensive fetal growth before parturition, 

morphological and endocrine changes related to mammary gland development, and the 

tremendous increase in energy and nutrient demand with onset of lactation are the most 

important challenges which the dairy cow has to face during this period. Hence, an optimal 

metabolic adaptation is required in order to avoid the development of metabolic and infec-

tious diseases. 

The liver is a key organ controlling and regulating metabolic adaptation. Therefore, a 

number of studies have been carried out to quantify the molecular adaptations during the 

transition period [3–10] in order to enhance the understanding of the complex biology of 

the transition cow. The main idea of these studies was to assess the transcriptomic profile 

of candidate genes known to be involved in the liver metabolism during transition using 

either mRNA abundances [6,8,9] or real-time PCR [7]. Whereas most of these studies fo-

cused mainly on specific metabolic processes, a more extensive study was conducted by 

Loor et al. [3] included the gene expression profiles of more than 6,300 genes using micro-

array technology. Even though these studies are valuable contributions to the understand-

ing of the metabolic adaptation, they are still limited in the number of genes as well as on 

pre-selected genes, which may prevent detection of new regulators influencing the hepatic 

adaptation. 
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According to our knowledge, we are one of the first studies to use RNA-sequencing (RNA-

seq) to compare the whole liver transcriptome of dairy cows from late-pregnancy to early 

lactation. This study may, on the one hand, validate the results established by earlier stud-

ies and, on the other hand, reveal new possible candidate genes crucial for the hepatic ad-

aptation. A similar approach has been performed by McCabe et al. [11], who analyzed the 

whole liver transcriptome using RNA-seq to compare cows divergent in negative energy 

balance (NEB). However, in practice, the extent of NEB is not fully indicative for the fact 

whether a cow can successfully adapt to the new physiological state of lactation or not. 

Indeed, cows with an optimal adaptive performance would even overcome an extremely 

severe NEB without any occurrence of health disorders, whereas more vulnerable cows are 

more prone to fail even under less challenging situations [12–14]. 

Results 

RNA-sequencing Data 

Table 3.1: Experimental design of the 17 RNA-sequencing libraries. Note that there is no 

sample of cow 1 at T1. 

Cow-ID Cow1 Cow2 Cow3 Cow4 Cow5 Cow6 

3 weeks ante-partum 

(T1, 21 ± 5 days ante-partum) 
- L12 L13 L14 L15 L16 

2 weeks post-partum 

(T2, 10 ± 2 days post-partum) 
L21 L22 L23 L24 L25 L26 

3 weeks post-partum 

(T3, 17 ± 2 days post-partum) 
L31 L32 L33 L34 L35 L36 

 

In order to investigate the hepatic changes during the transition period, we collected 17 

liver samples of 6 dairy cows at 3 points of time (Table 3.1). Before filtering and analysis 

of the RNA-seq data, we performed a simple comparison between the cows to avoid any 

bias resulting from outliers in the samples. Indeed, when comparing the log2-fold-changes 

of the gene counts in T3 vs. T1 for the five cows, we discovered at least two cows with 
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gene expression patterns differing substantially from the rest (Figure 3.1). Note that the 

sample for cow 1 at T1 is missing and hence, a comparison is not possible for this cow.  

 

Figure 3.1: Log2-foldchanges of the gene counts for all genes in T3 compared to T1. The 

x-axis depicts the logarithm of the mean gene counts. 

 

On the one hand, we found seven genes to be highly up-regulated with fold-changes (FC) 

higher than 500 for cow 2. On the other hand, cow 6 showed significantly down-regulated 

genes with fold-changes up to 5000. The seven up-regulated genes in cow 2 were only 

found to be expressed in the sample L32. As for the gene expression analysis, we will only 

consider genes that were expressed in at least four of the 17 samples in order to avoid unre-

liable results. Hence, the sample L32 was still included in the following analyses.  

We further studied the gene expression patterns of cow 6 and found sample L16 to be an 

outlier. Supplementary Table 3.1 lists the interesting genes that were highly overexpressed 

in T1 for cow 6. We performed a simple Wilcoxon-rank-sum test to examine whether these 

genes are enriched in certain KEGG pathways [15] and discovered many significant path-
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ways involved in several human diseases and myocardial disorders (supplementary Table 

3.2), suggesting these findings to have a biological background. Suspecting that cow 6 may 

have undergone special conditions before calving, we excluded it from the following anal-

yses. Indeed, cow 6 was bought from a private farm, and an earlier infection or health dis-

orders before drying off were not reported. However, the present data might reflect health 

disturbances in anamnesis. After checking for outliers, we filtered the remaining 14 sam-

ples in order to keep only genes with more than 5 counts per one million reads (cpm) in at 

least 4 of the 14 samples, resulting in a set of 10,186 genes.     

Performance and Metabolic Status of Cows 

Table 3.2: Milk yield on test day, energy balance in the test week and metabolic status of 

the studied cows. The average day of sampling relative to parturition is -21 (+/- 

4.6) for T1,9.5 (+/-1.6) for T2 and 16.5 (+/- 1.6) for T3.  

Time Sample Day of 

sampling 

(relative 

to parturi-

tion) 

Milk 

yield (kg) 

Energy 

balance 

(MJ 

NEL) 

Glucose 

(mmol/L) 

NEFA 

(mmol/L) 

BHBA 

(mmol/L) 

T1 L12 -16  8,89 3,81 0,14 0,31 

L13 -24  41,29 4,23 0,10 0,25 

L14 -25  31,95 4,6 0,23 0,34 

L15 -24  17,91 4,25 0,18 0,28 

L16 -16  29,83 4,34 0,2 0,26 

T2 L21 +9 32,1 -41,27 3,52 0,92 0,48 

L22 +12 35,8 -45,20 3,28 0,81 0,81 

L23 +7 30,8 -55,21 3,25 1,03 0,68 

L24 +9 30,0 -33,39 3,50 0,40 0,72 

L25 +10 30,1 -35,76 3,03 0,83 1,22 

L26 +10 31,0 -46,10 3,25 0,85 1,25 

T3 L31 +16 36,0 -47,85 3,57 0,52 0,47 

L32 +19 38,8 -51,78 3,79 0,21 0,35 

L33 +14 32,2 -43,08 3,61 1,19 0,57 

L34 +16 31,6 -22,08 3,45 0,86 0,84 

L35 +17 36,0 -18,79 2,91 0,88 1,04 

L36 +17 38,3 -23,43 3,56 0,92 1,17 
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Figure 3.2: Boxplots of energy balance (EB, MJ NEL/d), plasma NEFA (mmol/L), BHBA 

(mmol/L) and glucose for the six studied cows in T1, T2 and T3. 

 

During late gestation at T1, energy balance (EB) of all cows was positive, but became neg-

ative during lactation (T2 and T3, Table 3.2). As expected T2 and T3 present similar val-

ues, while EB is slightly higher in T3. This effect, however, is not significant, while the 

changes from T1 to T2 and T1 to T3 are both significant with p-values of p=0.0007 and 

p=0.00009, respectively. The changes in metabolic state of the six cows follow the typical 

pattern of a transition cow. With the onset of lactation, elevated plasma concentration of 

NEFA and BHBA are expected, coupled with a decrement of plasma glucose (Figure 3.2). 

Interestingly, the plasma NEFA and BHBA exhibit substantial between-cows variation in 

T2 and T3 than in T1 (𝜎𝑇1,𝑁𝐸𝐹𝐴 = 0.05, 𝜎𝑇2,𝑁𝐸𝐹𝐴 = 0.21, 𝜎𝑇3,𝑁𝐸𝐹𝐴 = 0.34) indicating the 

differences in their adaptive performance.    

Differential Gene Expression Analysis 

We conducted a differential gene expression analysis comparing T1 vs. T2 and T1 vs. T3. 

As expected, the two comparisons yielded very similar results, emphasizing the metabolic 

and physiologic similarity of the second and third week post-partum when cows are expe-

riencing a distinct NEB (Figure 3.3). Nevertheless, Figure 3.3 shows that the hepatic 

changes in T2 are slightly higher than in T3 compared to T1, indicating a time-dependency 

of the metabolic changes on the transcriptomic level and being consistent with the ob-

served metabolic status of the cows. All in all, the numbers of significantly differentially 

expressed genes are 967 (493 up-regulated) in T1 vs. T2 and 493 (318 up-regulated) in T1 
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vs. T3, respectively, at a false discovery rate (FDR) of 5% (compare supplementary Table 

3.3 and 3.4), of which 397 genes were significant in both comparisons. The majority of the 

significant genes are related to known processes occurring after calving, e.g. the mobiliza-

tion of lipids. This is reflected by the fact that about 43% of the 632 significant genes (in 

T1 vs. T2 or T1 vs. T3) with FC greater than 1.5 are linked to lipids; about 16% to oxida-

tive activities, but only about 6% are linked to glucose metabolism (supplementary Table 

3.5) according to the gene ontology (GO) database [16,17].  

 

Figure 3.3: Volcano-plots of the results of the DGE analysis. Each dot in the plot repre-

sents a gene with its corresponding logFC on the x-axis and p-value (log10) on 

the y-axis. The horizontal line indicates the significance threshold (FDR<5%), 

whereas the vertical line segregates genes with logFC>1.5. 

 

Pathway Analysis 

The gene-set enrichment analysis (GSEA) using the permutation-based weighted Kolmo-

gorov-Smirnov test (WKS) [18] in combination with the perturbation analysis (PEA) [19] 

for KEGG pathways revealed 6 and 4 significant pathways (FDR < 0.05) in the compari-

sons T1 vs. T2 and T1 vs. T3, respectively. Table 3.3 lists the details of the WKS and PEA 

as well as the combined p-value from Fisher’s method for all significant pathways. For a 
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detailed list of the results for all pathways, please refer to the supplementary Tables 3.6 

and 3.7 for the comparisons T1 vs. T2 and T1 vs. T3, respectively. Note that the PEA is 

only applicable for signaling pathways with existent gene interaction information. Among 

the seven significant pathways, only one had gene network information for the perturbation 

analysis, namely the pathways ‘adipocytokine signaling pathway’.       

Table 3.3: Results of the GSEA and perturbation analysis for the 7 significant pathways 

(FDR<5%) in T1 vs. T2 and T1 vs. T3 with their number of annotated genes 

and p-values. Note that a perturbation analysis is only applicable for pathways 

with present gene network information. 

T1 vs. T2 Size 
GSEA 

Score 

GSEA p-

value 

Pert 

Factor 

Pert p-

value 

Combined p-

value 

Steroid hormone biosyn-

thesis 
38 0,59 1,00E-04 0 NA 1,00E-04 

Arachidonic acid meta-

bolism 
34 0,60 0,0002 0 NA 0,0002 

Retinol metabolism 36 0,57 0,0004 0 NA 0,0004 

Adipocytokine signaling 

pathway 
46 0,54 0,0002 2,87 0,23 0,0005 

Galactose metabolism 17 0,67 0,0008 0 NA 0,0008 

Linoleic acid metabo-

lism 
16 0,64 0,0015 0 NA 0,0015 

T1 vs. T3 Size 
GSEA 

Score 

GSEA p-

value 

Pert 

Factor 

Pert p-

value 

Combined p-

value 

Steroid hormone biosyn-

thesis 
38 0,55 0,0004 0 NA 0,0004 

Arachidonic acid meta-

bolism 
34 0,54 0,0009 0 NA 0,0009 

Adipocytokine signaling 

pathway 
46 0,50 0,0021 4,31 0,048 0,0010 

Citrate cycle (TCA cyc-

le) 
28 0,56 0,0012 0 NA 0,0012 
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Discussion 

Statistical Analysis 

We performed a differential gene expression analysis using the R-package ‘edgeR’ fol-

lowed by two pathway analyses, namely the GSEA by Subramanian et al. [18] and signal-

ing pathway impact analysis (SPIA) by Tarca et al. [19]. The SPIA approach consists of 

two independent steps: (1) an over-representation analysis (ORA) to determine whether a 

certain pathway is enriched by significant genes and (2) a so-called perturbation analysis 

(PE) to capture the impact of gene expression changes to the considered pathway using its 

topology structure. The main idea, hereby, is that expression changes in certain genes that 

highly interact with other genes may have a higher probability to perturb the function of 

the pathway than down-stream genes. The final p-value for a pathway is then given by the 

combination of the ORA and perturbation analysis. However, the ORA method imple-

mented by Tarca et al. [19] is Fisher’s exact test, which requires a declaration of an arbi-

trary significant threshold for the differentially expressed genes, which may exclude poten-

tially informative genes, a main and known drawback of ORA approaches. To this end, 

Subramanian et al. [18] introduced the GSEA approach to overcome these limitations by 

ranking all genes according to their strength of association (e.g. p-value or FC). Therefore, 

in our study, we consider a combination of the two approaches in order to make use of 

their advantages (for further details, please refer to the section Material and Methods). 

Comparison With Other Studies 

We further compared our results with those of Ha et al. [20], where a genome-wide associ-

ation study was performed for the key metabolites glucose, NEFA, and BHBA during the 

transition period, and McCabe et al. [11] (Figure 3.4). We found 99 genes to be significant 

(FDR < 0.05 and FC > 1.5) in both our studies and in McCabe et al. [11]. Surprisingly, 

there are more than 700 significant genes that were only detected by McCabe et al. [11] or 
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the present study, of which about 500 genes are unique to our study. To figure out which 

types of genes are among these genes, we conducted a simple Fisher’s Exact test to ident i-

fy GO terms [17] enriched with the  ~500 genes unique to our study. As a result, we find 

five significant GO terms at a FDR of 0.05 (supplementary Table 3.8). According to these 

results, we find the majority of these genes to be involved in either regulating processes 

supporting the breakdown of triglyceride as a result of fat mobilization in early lactation or 

biosynthetic processes for the formation of sterols, in particular cholesterols, and their me-

tabolism. The increased activity of genes involved in hepatic cholesterol synthesis is in 

accordance with the observations by Schlegel et al. [8] and Kessler et al. [21] supporting 

their hypothesis that this adaptation aims to provide the mammary gland with cholesterol 

and triglycerides for milk production, which was until then only known for other species, 

such as rats [8,22]. The uniqueness of these genes as compared to McCabe et al. [11] fur-

ther indicates that these processes might be common to all lactating cows regardless of 

their NEB.  

 

Figure 3.4: Venn-diagram of the number of significant genes comparing the results of our 

analysis T1 vs. T2 (A) and T1 vs. T3 (B) with that of McCabe et al. (C) and 

Ha et al. (D). As for Ha et al. the number refers to the number of significant 

genes at a FDR of 5%, whereas for McCabe et al. and the results of this study, 

the numbers refer to the number of significant genes at a FDR of 5% and fold 

change greater than 1.5. 
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The gene WFDC2 (Bos Taurus WAP four-disulfide core domain 2), known to be involved 

in the negative regulation of the peptidase activity according to GO [17], was significant in 

all three studies. However, until now, the functionality of this gene with respect to the met-

abolic adaptation of the transition cow is not understood. WAP (Whey acidic protein) is a 

major milk protein of many species, e.g. rats and wallabies, but is known to be absent in 

milk of cows, sheep and humans [23]. Nevertheless, the WFDC2 protein was recently de-

tected to have an antibacterial activity in the mammary gland of the tammar-wallaby dur-

ing lactation [24]. Therefore, it cannot be ruled out that this gene may have a function in 

the hepatic adaptation, since it has been identified to be significantly differentially ex-

pressed (down-regulated, > 1.5-fold) in our study and significantly associated with the 

transition cow in two other independent studies [11,20].  

In all three studies the pathway “steroid hormone biosynthesis” was found to be highly 

significant. As McCabe et al. [11] already mentioned, the liver usually is known for steroid 

hormone inactivation. In our study, 11 genes within this pathway were significantly differ-

entially expressed with four genes (LOC100296421, UGT2B10, HSD3B1, CYP11A1) high-

ly up-regulated and the rest (LOC785540, CYP2C87, SULT1E1, CYP1A1, CYP7B1, 

HSD17B2, UGT2A3) being down-regulated. Similar to McCabe et al. [11], we detected an 

up-regulation of CYP11A1, a member of the cytochrome P450 (CYP) family and a key 

enzyme in the metabolism of cholesterol to pregnenolone [11,25]. However, in contrast to 

their study, we even find further up-regulated genes, namely LOC100296421, UGT2B10, 

HSD3B1. It is known that HSD3B1 (type I 3β-hydroxysteroid dehydrogenases) is crucial 

for the biosynthesis of hormonal steroids, such that aldosterone, cortisol and testosterone 

[26], whereas LOC100296421 (UGT2B4) and UGT2B10 are members of the UDP glucu-

ronosyltransferase (UGT) 2 family, which is known for the metabolism and elimination of 

androgens in humans [27]. Together with the  CYPs, UGTs are responsible for the metabo-

lism of most hepatically cleared drugs in humans [28]. Further, Congiu et al. [29] detected 
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a decrease in UGT mRNA expression which was associated with the degree of inflamma-

tion for three isoforms of the UGT family including the significant UGT2B4 (FC >1.5). 

This highly suggests these genes to be involved in the increased susceptibility of dairy 

cows to infectious diseases during their transition period.  

Hepatokine FGF21 

The most striking gene is FGF21 (fibroblast growth factor 21) with p-values of 5.3×10
-77 

and 1.8×10
-52  

in T1 vs. T2 and T1 vs. T3, respectively. Compared to the other significant 

genes having up to 12-fold-changes, this gene exhibits fold-changes greater than 167 in T1 

vs. T2 and 111 in T1 vs. T3 (Figure 3.3). Indeed, this finding is consistent with the obser-

vations of recent studies [8,30–34], where FGF21 gene expression is substantially altered 

during the transition period of dairy cows. Whereas Carriquiry et al. [30] hypothesized the 

functionality of this gene to be in the uncoupling of the ST-IGF axis, others found evidence 

for an inhibitory effect of FGF21 on GH signaling [33] and its relevance for ketotic cows 

[31].  

Further studies have suggested FGF21 to be associated with the excessive use of lipid re-

serves [12,34] and to be relevant to many health-related aspects during transition and lacta-

tion in dairy cows, e.g. rate of gluconeogenesis, β-oxidation of free fatty acids, and devel-

opment of ketosis [13,35]. In particular, Schoenberg et al. [34] detected that elevated 

FGF21 expression is stimulated by the energy deficit during early lactation. Even though it 

was not directly mentioned in McCabe et al. [11], FGF21 was also significantly different 

(FC > 2.49 p=6.9×10
-09

) between cows with a severe and mild NEB in their study. More-

over, in Carriquiri et al. [30] the mRNA expression of FGF21 was found to be negatively 

correlated with EB and plasma glucose, but positively with plasma NEFA concentration. 

However, in our study, we failed to establish a significant correlation of the gene expres-
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sion pattern (of T2 and T3, log-transformed) and the NEB (sample correlation -0.32, 

p=0.317), probably due to the very limited sample size.  

Figure 3.5 illustrates the gene expression pattern of FGF21 for the six dairy cows. In gen-

eral, the graph indicates the absence of the FGF21 gene expression in T1 (cpm < 1) and a 

substantial increase in expression in T2, which subsequently drops drastically in T3. The 

extent of this expression pattern is highest for cow 5, but is completely modified for cow 3 

showing a steady increase in gene expression from T1 to T3. This substantial between-cow 

variation of the hepatic FGF21 expression was also found in Schoenberg et al. [34] and 

may be a reason for the lack of correlation for EB. Nevertheless, we discovered that the 

gene expression pattern of T2 and T3 (log-transformed) are significantly negatively corre-

lated (sample correlation -0.74, p=0.006) with milk yield on the test day. Indeed, FGF21 is 

known to increase glucose uptake in adipocytes in mice [36]. Together with our results, we 

suggest the up-regulation of this gene might be associated with the glucose demand of the 

mammary gland for milk production.  

 

Figure 3.5:  Gene expression pattern of the gene FGF21 for the six cows at the three 

points of time. 
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Gluconeogenesis 

The main metabolic changes happening from late pregnancy to early lactation are related 

to the onset of lactation. Hence, we expected to observed major hepatic changes in the reg-

ulation of gluconeogenesis. However, the KEGG pathway ‘glycolysis / gluconeogenesis’ 

itself was not significantly affected after multiple testing correction (p = 0.087 in T1 vs. T2 

and p = 0.115 in T1 vs. T3), which is also the case in McCabe et al. [11]. However, in con-

trast to their study, we effectively compare non-lactating vs. lactating cows and thus, dif-

ferences were expected. Indeed, even though it is not significant, we discovered many 

genes within this pathway to be significantly up-regulated (ALDOA, G6PC, FBP2, LDHB, 

LDHA), whereas PKLR, a major rate limiting enzyme in gluconeogenesis [11] is signifi-

cantly down-regulated. Furthermore, the up-regulation of LDHB and LDHA suggest a 

greater activity of the liver pyruvate dehydrogenase and the overexpression of G6PC in T2 

and T3 as compared to T1 clearly shows the enhanced activity of the gluconeogenesis as a 

response to the high glucose demand for milk production.  

This finding is further confirmed by a significant up-regulation of the precursor pyruvate 

carboxylase (PC, FC>2). However, as opposed to Graber et al. [6], we found no differ-

ences in the expression of propionyl-CoA carboxylase (PCC) α and β and PEPCK-m, but 

solely a trend for a possible up-regulation of PEPCK-c (cytosolic PCK1, 𝑝 = 0.029) that 

controls the entry of amino acids and propionate into the tricarboxylic acid cycle (TCA 

cycle or citrate cycle). This observation is consistent with the significance of the TCA cy-

cle with 6 significantly up-regulated genes (SUCLA2, OGDH, IDH2, IDH1, IDH3A, PC) 

suggesting a higher activity of this cycle as a result of the intense breakdown of fatty acids 

during the transition period. Interestingly, the observed trend in PCK1, but not in PCK2 

(PEPCK-m) is similar to the results of Agca et al. [37], but are completely opposed to that 

of Ostrowska et al.[7] and van Dorland et al. [14]. In chickens, Watford et al. [38] pro-

posed a model, where  PCK1 is required for gluconeogenesis from amino acids, whereas 
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PCK2 is responsible for gluconeogenesis from lactate. Following this model, the discrep-

ancies of the different studies including ours, may be explained by the individual adapta-

tions of the cows as a response to the availability of different resources (e.g. amino acids, 

propionate, lactate) for gluconeogenesis.  

Significant Pathways Indicate Immunological Functionality 

Among the seven significant pathways, we discovered the three pathways ‘arachidonic 

acid metabolism’, ‘retinol metabolism’, and ‘linoleic acid metabolism’ to be significantly 

down-regulated. Here, we note that all significantly differentially expressed genes within 

the ‘linoleic acid metabolism’ are also contained in the ‘arachidonic acid metabolism’. As 

for the retinol (vitamin A) metabolism, we identified 6 (LOC785540, CYP2C87, AOX1, 

CYP1A1, CYP26A1, UGT2A3) out of the 9 genes in this pathway to be down-regulated, 

whereas half of the significant genes in the ‘arachidonic acid metabolism’ were down-

regulated.  

It was shown that low concentration of vitamin A and arachidonic acids may contribute to 

an impaired immune function [39]. Nevertheless, within the pathway ‘Arachidonic acid 

metabolism’ we found the gene GPX3 to be significantly up-regulated (p=8.53
-11

, FC > 

12). As a member of the glutathione peroxidase enzyme family, it is an important defense 

mechanism against oxidative stress by protecting cells from oxidative damage [40]. In-

deed, a number of studies have considered oxidative stress as one major factor for the suc-

cess of metabolic adaptation [41–43]. In particular, Sordillo and Aitken [42] emphasized 

the need to enhance the antioxidant defense mechanisms of dairy cows during the transi-

tion period. In fact, our data exhibits a significant negative correlation between the GPX3 

expression pattern (log-transformed) and the EB (T2 and T3) with a sample correlation of -

0.73 (p = 0.007). This suggests that cows with a higher energy deficit are exposed to a 

higher rate of oxidative stress and thus exhibit higher level of plasma glutathione peroxi-
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dase enzymes. Furthermore, we detected at least 16 additional genes that were significantly 

(FDR<5%) up-regulated (FC > 1.5) and were associated with anti-oxidative activities ac-

cording to GO [17]. GPX3, the most up-regulated gene compared to other genes with anti-

oxidative activities, is known to interact with selenium, an important dietary trace element 

closely linked to vitamin E metabolism and involved in numerous anti-oxidative processes.  

Adipocytokine Signaling Pathway 

One of the most interesting findings is the ‘adipocytokine signaling pathway’. Among the 

63 genes that were annotated to this pathway according to the KEGG database, we found 

46 genes to be expressed (> 5 cpm) during the transition period, 14 of which  are signifi-

cantly differentially expressed, with nine genes being up-regulated after calving. Figures 

3.6 and 3.7 show the results of the SPIA for this pathway for the comparisons T1 vs. T2 

and T1 vs. T3, respectively. Red arrows indicate an inconsistency of the gene expression 

data to the KEGG network information. As illustrated by Figure 3.5, the ‘adipocytokine 

signaling pathway’ is highly perturbed in the transition period. Due to the overexpression 

of the two receptors for leptin (LEPR) and adiponectin (ADIPOR2), we expected to ob-

serve an activation of PPARα, which in turn, up-regulates CPT1A and B in order to enable 

the oxidation of adipose tissue derived fatty acids. However, contrary to the natural flow of 

this pathway, we detected a significant down-regulation of the PPARα gene expression 

(Figure 3.5) in T2. This significance totally vanishes in T3 (Figure 3.6). PPARα is the pri-

mary subtype of the peroxisome proliferator-activated receptors that are key factors in the 

regulation of fatty acid metabolism and gene transcription [30]. It is activated by a broad 

spectrum of fatty acids including linoleic acid, which indicates a possible relationship be-

tween the down-regulation of the pathway ‘linoleic acid metabolism’, as discussed earlier, 

and the down-regulation of PPARα. The reports in literature on this issue are so far incon-

sistent: in contrast to the present study, Loor et al. [3] observed an increase in PPARα ex-

pression until day 49 after calving. In Carriquiri et al. [30] the increase in expression was 
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only observed after 136 DIM, whereas Khan et al. [33] find that PPARα expression de-

creases around parturition. Nevertheless, we still observed an increment of PPARα targets, 

among others the genes FGF21, CPT1A, CPT1B as discussed above. 

 

 

Figure 3.6:  Map of the pathway “adipocytokines signaling pathway” created based on 

the perturbation analysis[19] and the R-package TOPASeq[63] for the com-

parison T1 vs. T2. Genes with dashed boundaries are expressed but not sig-

nificantly differentially expressed. Black arrows indicate that the gene-to-

gene interaction is consistent with our expression data, whereas red arrows 

indicate inconsistency. 
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Figure 3.7:  Map of the pathway “adipocytokines signaling pathway” created based on 

the perturbation analysis[19] and the R-package TOPASeq[63] for the com-

parison T1 vs. T3. Genes with dashed boundaries are expressed but not sig-

nificantly differentially expressed. Black arrows indicate that the gene-to-

gene interaction is consistent with our expression data, whereas red arrows 

indicate inconsistency. 

 

The ‘adipocytokine signaling pathway’ was shown to play a key role in lipid metabolism 

and feed efficiency [44]. Considering the role of leptin and insulin (state of insulin re-

sistance after parturition, respectively) changes of the ‘adipocytokine signaling pathway’ 

enable the supply of energy and nutrients during the stage of a negative energy balance. 

The early lactation period is characterized by a decreased rate of lipogenesis and an in-
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creased rate of lipolysis [45]. Adipose tissue (AT) is the major site for lipolysis, during 

which NEFA are released to support energy supply. However, AT is not only a source for 

fatty acids, but also an important site for synthesis and secretion of adipokines, a collective 

term for various AT derived hormones, proteins, and other bioactive molecules [46,47]. 

Predominately during periods of  NEB, gene expression of leptin was shown to be reduced 

[48]. Besides leptin, adiponectin is one of the major circulating adipokines, and plays an 

important role in the regulation of glucose and fatty acid metabolism [47,49]. Furthermore, 

by acting on insulin sensitivity [50], adiponectin is supposed to be a key regulator of nutri-

ent partitioning during early lactation [47]. Singh et al. [47] observed an inverse associa-

tion between plasma adiponectin and NEFA concentrations during a NEB in dairy cows at 

different lactation stages and assumed inhibitory effects of adiponectin on lipolysis and 

stimulatory effects on hepatic fatty acid oxidation underlying their findings, as shown by 

earlier studies [50,51]. Whereas Singh et al. [47] speculated on a potential feed intake 

stimulatory effect of adiponectin by the AMP-activated protein kinase as shown thitherto 

only for mice [52], our present pathway analysis for the ‘adipocytokine signaling pathway’ 

clearly indicates a causal association between adipokine and AMPK expression in transi-

tion dairy cows. The earlier observations by Singh et al. [31] of independent regulatory 

functions of adiponectin and leptin are confirmed by the changes of single components 

within the overall pathway by our present investigations. 

Conclusions 

The substantial hepatic changes (~10% of all expressed genes) from late-pregnancy to ear-

ly lactation emphasize the complexity of the metabolic adaptation in dairy cows. Neverthe-

less, we were able to identify further genes and pathways that, to our knowledge, have not 

been linked to the transition cow on a transcriptomic level. In particular, we found indica-

tions for immunological changes (GPX3, ‘steroid hormone biosynthesis’ and the associated 
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CYP and UGT transcripts) that may contribute to the impaired immune system of dairy 

cows during the transition period. The discovered factors are a valuable contribution to the 

understanding of the metabolic adaptation and hence, should be more closely investigated 

in future studies. 

Material and Methods 

Characterization of Cows and Liver Sampling 

For our analysis, we collected liver and blood samples from 6 dairy cows (Red Holstein) at 

three different stages: 3 weeks before expected calving (T1, 22 ± 4 days ante-partum), 2 

weeks (10 ± 2 days post-partum) and 3 weeks (17 ± 2 days post-partum) after calving (T2 

and T3, respectively). Cows were kept at an experimental station with individual daily re-

cording of feed intake and milk yield. Liver sampling was performed by blind percutane-

ous needle biopsy under local anesthesia as described by van Dorland et al. [14]. Liver 

samples were directly put in RNAlater (Ambion, Applied Biosystems Business, Austin 

TX, USA) and stored at -80°C until extraction. Following milk yield, dry matter intake, 

and development of body weight, EB of the animals was calculated on a weekly basis. 

Blood samples concomitantly obtained prior to liver sampling were analyzed for concen-

trations of glucose, non-esterified fatty acids (NEFA), and β-hydroxybutyrate (BHBA) to 

characterize the metabolic changes occurring during the transition period. Apart from the 

liver samples, the 6 cows were also phenotyped for various traits and metabolic character-

istics. Table 3.2 shows the extract of the phenotype data that were used in this study, in-

cluding the milk yield and energy balance. 

RNA Isolation and Sequencing 

RNA was isolated from liver samples using RNeasy Mini kit (Qiagen). The quality and 

quantity of the isolated RNA was measured with an Agilent 2100 Bioanalyzer (Agilent 

Technologies) and Qubit 2.0 Fluorometer (Life Technologies). The RNA integrity number 
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(RIN) of all samples was between 8.1 and 9.0. Approximately 800 ng of high quality RNA 

was used for strand-specific paired-end RNA library preparation (TruSeq stranded mRNA 

sample preparation guide Part #15031047 Rev.D, Illumina). Total mRNA libraries were 

multiplexed (pool of 4 uL of each sample after dilution to 2 nM, adding ca. 1% PhiX con-

trol) and sequenced each in three lanes (in the same run) on the Illumina HiSeq2000 plat-

form using 2 x 100 bp paired-end sequencing cycles. The Illumina BCL output files with 

base calls and qualities were converted into FASTQ file format and demultiplexed with the 

CASAVA (v1.8.2) software (Illumina). 

RNA Read Alignment and Counting 

 

Figure 3.8: Comparison of the different mapping methods. Each dot represents the number 

of read pairs (log10) assigned to the same gene and sample for different map-

ping methods, i.e. STAR vs. Tophat (not trimmed) and trimming vs. not trim-

ming (STAR).   

Table 3.4: The mean rate of mapped and counted read pairs across all samples for the dif-

ferent methods. The numbers are percentages of the average total number of 

read pairs N. 

N = 23,015,133 
STAR Tophat 

not trimmed trimmed not trimmed 

rate of mapped pairs 0.94 0.915 0.796 

rate of counted pairs 0.739 0.718 0.635 
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In order to avoid bias in the subsequent analyses, we conducted a comprehensive quality 

control using FastQC [53] (version 0.11.2) for the forward and backward reads of the three 

lanes for all 17 samples. In general, none of the read sequences failed the overall quality 

control; nevertheless, as a matter of course, there are sequences containing bases with low 

qualities (<10 Sanger Quality Score). In order to assess whether these outliers do have an 

impact on our analyses, we trimmed the bad bases for all samples using the program 

Trimmomatic [54] (version 0.33). After quality control, we combined the different lanes 

for each sample before mapping them to the reference genome Bos Taurus (UMD3.1, re-

lease 78). For comparison purposes, we performed the alignment on the original as well as 

trimmed samples using two different programs, STAR [55] (Version 2.4) and Tophat2 [56] 

(version 2.0.13), based on a gene annotation (Bos Taurus, UMD3.1, release 78) download-

ed from Ensembl [57] to improve the mapping performance. STAR and Tophat were run 

with their default parameters, since they are claimed to be optimized for mammalian spe-

cies (compare the corresponding manuals). Finally, we used featureCounts [58] (version 

1.4.6-p19) to count the number of reads overlapping with a specific gene. In order to avoid 

an inflation of false positives, we only counted read pairs that are uniquely mapped in a 

concordance manner and can be unambiguously assigned to an annotated gene. Table 3.4 

depicts the average rate of mapped and counted read pairs for the different methods, 

whereas a comparison between trimming vs. not trimming, and STAR vs. Tophat2 are il-

lustrated in Figure 3.8. For a complete list of the mapped and counted pairs for all samples, 

please refer to Table 3.5. All in all, we detected that the effect of trimming is negligible, 

while STAR has a higher mapping rate than Tophat2. Therefore, in the present paper, all 

results are based on the mapping program STAR for untrimmed data. For the differential 

gene expression analysis, we removed genes with less than 5 cpm (counts per 1 million 

reads) in at least 4 samples to avoid unreliable results. Finally, a matrix with counts of 

10,186 genes for 17 samples was on hand. 
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Table 3.5: The total number and rate (bracket) of uniquely mapped and counted read pairs 

for each 17 samples for the final data (mapped with STAR, not trimmed).  

Sample # read pairs # mapped pairs # counted pairs 

L12 27,339,731 25,479,412 (0.932) 19,756,739 (0.723) 

L13 26,648,264 25,315,159 (0.950) 20,025,837 (0.751) 

L14 23,475,475 22,134,917 (0.943) 17,679,582 (0.753) 

L15 20,833,859 19,748,273 (0.948) 15,576,240 (0.748) 

L16 24,250,944 22,956,153 (0.947) 18,570,700 (0.766) 

L21 23,342,617 21,833,370 (0.935) 17,127,338 (0.734) 

L22 21,724,762 20,360,111 (0.937) 15,794,314 (0.727) 

L23 19,546,096 17,777,418 (0.91) 13,938,476 (0.713) 

L24 23,416,586 21,869,282 (0.934) 17,201,584 (0.735) 

L25 20,321,033 19,235,832 (0.947) 15,060,712 (0.741) 

L26 24,075,637 22,750,704 (0.945) 17,925,743 (0.745) 

L31 20,395,477 19,255,991 (0.944) 15,006,595 (0.736) 

L32 22,092,573 20,506,446 (0.928) 16,006,660 (0.725) 

L33 25,332,449 23,820,903 (0.940) 18,489,979 (0.730) 

L34 21,855,757 20,618,961 (0.943) 16,312,584 (0.746) 

L35 23,651,113 22,374,014 (0.946) 17,609,780 (0.745) 

L36 22,954,884 21,690,343 (0.945) 17,031,698 (0.742) 

Average 23,015,133 21,631,017 (0.940) 17,006,739 (0.739) 

 

Differential Gene Expression and Pathway Analysis   

All analyses were conducted in R [59]. For the identification of genes differentially ex-

pressed before and after lactation, we employed the R-package ‘edgeR’ [60,61] using a 

paired design to account for the baseline differences between the cows. For each gene g, 

we used a likelihood-ratio test (“glmFit”) based on the generalized linear model  

NXY log)log(   , 
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where t

nTjTjnTiTi yyyyY ),...,,,...,( ,1,,1,  and t

nTjTjnTiTi NNNNN ),...,,,...,( ,1,,1, , are the nor-

malized gene counts and library sizes for each cow in Ti and Tj; X is the design matrix with 

the columns Intercept and the binary designed variables Cow1,…, Cown, Time and β is the 

vector of regression coefficients. Using the negative binomial distribution for the gene 

counts, we test the null hypothesis that the coefficient βTime is equal to zero comparing T1 

vs T2 and T1 vs T3.  

We used the obtained p-values to perform a gene-set enrichment analysis (GSEA) based on 

the weighted Kolmogorov-Smirnov Test (WKS) suggested by Subramanian et al. [18] to 

detect pathways enriched with significant genes. To this end, we created a gene to pathway 

annotation based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database 

[15]. As for the WKS, we made use of the weights −𝑙𝑜𝑔10(𝑝𝑗), where pj is the p-value of 

the of gene gj obtained from the DGE analysis, and 10,000 permutations. For further de-

tails, please refer to Ha et al. [20] or Subramanian et al. [18].  

We further conducted a signaling pathway impact analysis (SPIA) by Tarca et al. [19]. The 

SPIA approach consists of two independent steps: (1) an over-representation analysis 

(ORA) to determine whether a certain pathway is enriched by significant genes and (2) a 

perturbation analysis (PEA) to capture the impact of gene expression changes to the con-

sidered pathway using its topology structure. In our study, we consider a combination of 

the WKS and the PEA, i.e. the second part of the SPIA. For each pathway, we obtain its 

final p-value by combining the p-values of the WKS and PEA using Fisher’s method [62]. 

The PEA as well as the visualization of the pathway data were conducted using the R-

package “ToPASeq” [63], which is adapted for RNA-seq data. Since PEA is a network-

based approach, it is only applicable for signaling pathways with gene network information 

(inhibition/activation). For those pathways, where a perturbation analysis is not applicable, 

we only consider the p-values obtain from the WKS approach.  
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Both the DGE and pathway analysis require the testing of multiple null hypothesis and 

thus, need to be properly accounted for. Here, we employed the false discovery rate (FDR) 

approach by Benjamini and Hochberg [64]. As for the pathway analysis, we reduced the 

multiple testing problems by filtering out non-relevant pathways, which are the KEGG 

pathways for human diseases. 
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Supplementary Table 3.6: Results of the WKS and PEA for all pathways comparing T1 

vs. T2. (https://figshare.com/s/2e8f8635579042e9b087) 

doi:10.6084/m9.figshare.3369817 

https://figshare.com/s/7168726c01d048afebbe
https://figshare.com/s/8106f335d6f807d28347
https://figshare.com/s/2d213d5f81a0906d2696
https://figshare.com/s/b7628b467212d3daa6a0
https://figshare.com/s/55793bdea1f748d81a60
https://figshare.com/s/2e8f8635579042e9b087
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Supplementary Table 3.7: Results of the WKS and PEA for all pathways comparing T1 

vs. T3. (https://figshare.com/s/ef1405c63ba9158abf69) 

doi:10.6084/m9.figshare.3369820 

Supplementary Table 3.8: Results of the Fisher’s Exact test for the ~500 genes unique to 

our study. The five GO terms [17] of the GO domain ‘biologi-

cal processes’ are significant at a FDR of 0.05. 

(https://figshare.com/s/93fcbb22b7bcff2f2fe0) 

doi:10.6084/m9.figshare.3369823 
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Abstract 

Dairy cows often suffer a severe metabolic stress in the transition phase, caused by the 

discrepancy of a high energy demand for rapidly increasing milk production and limited 

feed intake. We hypothesize that some cows are genetically less well suited to cope with 

this metabolic stress than others leading to adverse follow-up effects on longevity. To test 

this, we designed a reaction norm model in which the functional lifetime is linked to the 

metabolic challenge at the beginning of the first lactation. As challenge variables, we used 

either the sum of the milk yield or the accumulated fat/protein ratio of the first three test 

days, pre-adjusted for herd-test day variance. We defined a random regression sire model, 

in which a random regression term was modeled for each sire to assess the genetic compo-

nent of the reaction to the challenge. The model was fitted to data of ~5,000 Brown Swiss 

bulls and ~580’000 daughters with suitable observations available (≥10daughters per bull). 

In order to validate our proposed model and to assess the reliability of the estimated 

(co)variance components, we conducted an extensive bootstrap approach. We found the 

sire variance for the slope of the random regression to be significantly different from zero 

for both challenge variables, suggesting a genetic component for the ability to cope with 

metabolic stress. The results of the study show that the ability to cope with metabolic stress 

in the transition phase clearly has a genetic component and can be used to breed metaboli-

cally robust dairy cows.  

Introduction 

The phase of negative energy balance (NEB) which dairy cows inevitably undergo during 

early lactation has posed a major challenge for dairy science in the last decades. The sub-

stantial increase of energy demand due to the onset of lactation coupled with an insuffi-

cient feed intake makes dairy cows susceptible to major production-related diseases and 

infections in the early lactation phase [1–3]. An optimization of metabolic adaptation of 
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dairy cows would help to overcome this phase [4]. Despite the growing interest and num-

ber of studies aiming to unveil the complex mechanisms of this adaptation driven by the 

liver [5–13], practical management implications to effectively reduce the number of disor-

der occurrences during early lactation remain limited.   

Even under the same conditions and similar production levels, the variability of how indi-

vidual dairy cows deal with this situation is remarkably large [14,15]. It ranges from a suc-

cessful metabolic adaptation without any clinical health problems to the development of 

production-related diseases, such as fatty liver and ketosis, coupled with a weakening of 

the immune system. This has led to the hypothesis that the metabolic adaptability may 

have a genetic basis [9,10,13,15,16]. If it exists, identifying this genetically determined 

metabolic robustness of dairy cows would allow us to breed for robust dairy cows that are 

better suited to cope with the excessive energy demand during the transition period. This 

goal, however, has not been reached so far, not least because there is no general definition 

of what metabolic robustness is and how it can be measured on a phenotypic scale.   

In this study, we suggest defining the metabolic robustness of a dairy cow based on her 

reaction to a given metabolic load during early lactation. We further assume that metaboli-

cally robust cows are better able to cope with metabolic stress during early lactation. This 

ability is reflected by a generally increased fitness of the cow, which in the long run will 

result in a longer functional lifetime. Figure 4.1 presents a schematic representation of 

metabolic robustness and illustrates the difference between a robust and non-robust dairy 

cow. Robust dairy cows are expected to generally have a high fitness regardless of the ex-

tent of their metabolic load, whereas for non-robust dairy cows, the extent of metabolic 

stress has a negative effect on their fitness. 
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Figure 4.1: Schematic representation of the metabolic robustness.  

 

In animal breeding, these kinds of models are referred to as reaction norm models and have 

been successfully applied for the analysis of genotype-by-environment interaction effects 

[17–19]. In this context, the metabolic load that a cow has to face during early lactation is 

termed the challenge variable and her fitness is called the response variable. The metabolic 

robustness is then defined as the slope of the fitted linear regression line of the response 

variable on the challenge variable. In order to fit such a model, repeated observations of 

the challenge and response variable would be required for each genotype, i.e. for each 

dairy cow.  

However, in practice, each dairy cow is subjected to a single metabolic load in a given lac-

tation and thus, fitting a regression line for each dairy cow is not possible. Hence, we sug-

gest the use of a reaction norm sire model, in which a regression line is estimated for each 

bull using the data of his daughters exposed to different challenges and thus exhibiting 

different reactions. For our analysis, we assume that the fitness of a certain cow is reflected 

by her functional lifetime, whereas the challenge is represented by the energy deficit in the 
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early part of her first lactation, which is quantified by either the cumulated milk yield or 

the fat to protein ratio.  

The aims of the present study are (1) to estimate breeding values for the metabolic robust-

ness (slopes) using a reaction norm sire model and (2) to validate the proposed model by 

means of an extensive bootstrap approach, in which both the random effects and residuals 

are resampled. 

Material and Methods 

Raw Data and Data Filtering 

In the present study, around 38 million test day records of ~1.9 million dairy cows of the 

breed Brown Swiss were available for the traits milk yield, fat and protein content. These 

test day records were pre-adjusted for herd-test day variance as well as length of gestation, 

which was done in the routine genetic evaluation system (http://www.interbull.org/web-

/static/mace_evaluations_archive/eval/pr-dec10.html). Among these cows, around 1.4 mil-

lion cows also had records for the trait “functional lifetime” obtained from the routine ani-

mal genetic evaluation (http://www.interbull.org/web/static/mace_evaluations_archive/ 

longevity/long-apr13.html)   as pseudo-records and their corresponding weights from Sur-

vivalKit V3.0 [20], based on dead and living animals born between 1976 and 2014. In gen-

eral, the pseudo-record should reflect the longevity of an animal corrected for all non-

genetic effects and the corresponding weight the reliability of its calculation [21]. In the 

following, the term functional lifetime is defined as the logarithmized pseudo-record. For 

our analysis, we filtered these data by only considering (1) cows that were born before 

2011 and have died in order to have a reliable own record for longevity, (2) animals with 

pseudo-records having weights greater than 0.0005 in order to remove unreliable pseudo-

records, and (3) animals with at least three test day records within the first 120 days in milk 

(DIM) of the first lactation to be able to calculate the challenge variable. 
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Challenge and Response Variables 

For each dairy cow, we defined functional lifetime as the response variable and used the 

sum of the first three test-day records in the first lactation either for milk yield or for the fat 

to protein ratio the as challenge variable. Since the test-day records of the different cows 

may be on different DIMs, we performed a linear regression of the challenge on the sum of 

their first three DIMs and corrected for this effect if the slope was significant (p < 0.05). 

To avoid unreliable estimates due to rare and extreme environments, we excluded extreme 

values (3% on both tails of the distribution) of the challenge variables and standardized 

them to have mean zero and standard deviation of one. Only bulls with at least 10 daugh-

ters with records were considered for analysis, resulting in a data set of 4,983 bulls and 

~580,000 daughters with records. The number of daughters per bull ranges between 10 and 

11,470 with a median of 30. In the following, these 4,983 bulls are referred to as the refer-

ence bulls. 

Statistical Analyses 

We assessed the metabolic robustness of dairy cows using the following reaction-norm sire 

model 

𝑦𝑖𝑗 = 𝜇 + 𝛽𝑥𝑖𝑗 + 𝑠𝑖 + 𝑏𝑖𝑥𝑖𝑗 + 𝜖𝑖𝑗 , (1) 

where 𝑦𝑖𝑗  and 𝑥𝑖𝑗  are the response and challenge variables of the 𝑗-th daughter of sire 𝑖, 

respectively; 𝜇 and 𝛽 are the fixed coefficients for intercept and slope; 𝑠𝑖 and 𝑏𝑖 are the 

random intercept and slope for sire  𝑖 with 

(
𝑠
𝑏

) ~ (0, 𝐴⨂ (
𝜎𝑠

2 𝜎𝑠𝑏

𝜎𝑠𝑏 𝜎𝑏
2 )) 

and 𝜖𝑖𝑗~(0,
𝜎𝑒

2

𝑤𝑖𝑗
) is the scaled residual term as suggested by Ducrocq et al. [22] and 

Joaquim et al. [21], where 𝑤𝑖𝑗  are the weights of the pseudo-record 𝑦𝑖𝑗  as obtained from 
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SurvivalKit V3.0 [20] . 𝐴 is the additive-genetic relationship matrix calculated based on 

the corresponding pedigree, constructed to include the 4,983 reference bulls and their an-

cestors up to the 10
th
 generation and resulting in 30,842 animals for which breeding values 

were estimated. For comparison purposes, we further fitted a simple sire model based on 

the equation  

𝑦𝑖𝑗 = 𝜇 + 𝑠𝑖
∗ + 𝜖𝑖𝑗 , (2) 

with the random errors 𝜖𝑖𝑗~(0,
𝜎𝑒

2

𝑤𝑖𝑗
) and random sire effects 𝑠∗~(0, 𝜎𝑠∗

2 𝐴) as to obtain an 

estimate for the heritability of the response variable when not accounting for challenge 

variables. All models were fitted using ASReml 3.0 [23].  

In general, heritability is defined as the ratio between genotypic and phenotypic variation. 

As for model (2) without the genetic component of the challenge variables, the total genet-

ic variance is given by four times the sire variance �̂�𝑠∗
2  and thus, heritability is defined by 

ℎ2 =
4�̂�𝑠∗

2

�̂�𝑠∗
2 + �̂�𝑒

2
. 

In the reaction norm sire model (1), where the phenotype is modeled to be dependent on 

the challenge variable, heritability is also a function of the challenge variable x and is given 

by [24] 

ℎ2(𝑥) =
4�̂�𝐺

2(𝑥)

�̂�𝐺
2(𝑥) + �̂�𝑒

2
 

where �̂�𝐺
2(𝑥) = �̂�𝑠

2 + �̂�𝑏
2𝑥2 + 2�̂�𝑠𝑏𝑥. 

In order to test whether the variance components 𝜎𝑠
2, 𝜎𝑏

2 and 𝜎𝑠𝑏 are different from zero, we 

used the likelihood ratio test. To this end, four hierarchically nested sub-models of model 

(1) were fitted:  
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sub-model 1: 𝜎𝑠
2 = 0, 𝜎𝑏

2 = 0, 𝜎𝑠𝑏 = 0 

sub-model 2: 𝜎𝑠
2 > 0, 𝜎𝑏

2 = 0, 𝜎𝑠𝑏 = 0 

sub-model 3: 𝜎𝑠
2 > 0, 𝜎𝑏

2 > 0, 𝜎𝑠𝑏 = 0 

sub-model 4: 𝜎𝑠
2 > 0, 𝜎𝑏

2 > 0, 𝜎𝑠𝑏 ≠ 0. 

The test statistic for the null hypotheses 𝐻0
(1)

:  𝜎𝑠
2 = 0, 𝐻0

(2)
: 𝜎𝑏

2 = 0 and 𝐻0
(3)

: 𝜎𝑠𝑏 = 0 are 

given by 𝑇1, 𝑇2 and 𝑇3, respectively, where 𝑇𝑖 = 2(log 𝐿𝑖 − log 𝐿𝑖+1) and 𝐿𝑖 is the likeli-

hood of the fitted sub-model 𝑖 obtained from ASReml 3.0 [23]. While the null distribution 

of 𝑇3 is a 𝜒1
2-distribution, we used the 

1

2
𝜒0

2 +
1

2
𝜒1

2 distribution for 𝑇1 and 𝑇2 to account for 

the fact that the corresponding null hypotheses lie on the boundary of the respective pa-

rameter space [25].  

We further assessed the accuracy of the estimated variance components by means of a 

bootstrap method, while keeping the structure of our dataset as well as fixing the number 

of daughters per bull in the reference. To this end, we applied a method based on the boot-

strapping of both random effects and residuals, which has been proven to have a superior 

performance for mixed models as compared to other, non-parametric approaches [26,27]. 

However, since the random effects 𝑠𝑖 and 𝑏𝑖 are correlated with a known covariance struc-

ture, which is the relationship matrix A, we had to account for this by adapting the boot-

strap procedure as follows [26]: 

(1) Fit the reaction norm sire model to the original data to obtain the random effects �̂�𝑖 

and �̂�𝑖 and residuals 𝜖�̂�𝑗 = 𝑦𝑖𝑗 − �̂� − �̂�𝑥𝑖𝑗 − �̂�𝑖 − �̂�𝑖𝑥𝑖𝑗 with their corresponding 

weights 𝑥𝑖𝑗 

(2) Sampling random effects: 
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a. Transform the random effects 𝑠′ = 𝐴−1/2�̂� , 𝑏′ = 𝐴−1/2�̂�, such that the set 

of {(𝑠𝑖
′, 𝑏𝑖

′)} = {(𝑠1
′ , 𝑏1

′ ), (𝑠2
′ , 𝑏2

′ ), … , (𝑠𝑚
′ , 𝑏𝑚

′ )} are independent tuples, 

where m is the total number of random effects or sires 

b. Draw a sample of tuples {(𝑠𝑖
′∗, 𝑏𝑖

′∗)}  of size m with replacement from 

{(𝑠𝑖
′, 𝑏𝑖

′)} 

c. Transform the random effects back using 𝑠∗ = 𝐴1/2𝑠′∗ , 𝑏∗ = 𝐴1/2𝑏′∗ 

(3) Sampling residuals: 

a. Transform the residuals 𝜖𝑖𝑗
′ =

�̂�𝑖𝑗

𝑤𝑖𝑗
, such that the residuals {𝜖𝑖𝑗

′ } are inde-

pendently and identically distributed 

b. Draw a sample {𝜖𝑖𝑗
′∗} of size N with replacement from {𝜖𝑖𝑗

′ }, where N is the 

total number of data records 

c. Transform the residuals back using 𝜖𝑖𝑗
∗ = 𝑤𝑖𝑗𝜖𝑖𝑗

′∗ 

(4) Fit the reaction norm sire model to the new dataset 𝑦𝑖𝑗
∗ = �̂� + �̂�𝑥𝑖𝑗 + 𝑠𝑖

∗ + 𝑏𝑖
∗𝑥𝑖𝑗 +

𝜖𝑖𝑗
∗  to obtain relevant variance components  

Steps (1) to (4) were repeated 1,000 times, so that a sample of 𝑛 = 1,000 bootstrap estima-

tors for all (co)variance components were available reflecting their empirical distribution. 

Based on this distribution, we calculated typical measures of accuracy such as variance, 

standard errors or confidence intervals. Here, we note that between step (2a) and (2b) as 

well as between step (3a) and (3b), we applied a further correction for both random effects 

and residuals to avoid a bias resulting from the difference between empirical and estimated 

variance components as shown by previous studies[26,28–31]. To this end, the random 

effects as well as residuals were first centered and then scaled with the ratio matrix of the 

estimated and empirical covariance matrices (for further details, please refer to [26]).  
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By sampling the random effects, we assumed that the random slopes are interchangeable 

between bulls. Therefore, this bootstrap procedure is inappropriate if we aim to assess the 

accuracy of the predicted slopes for each sire separately. In order to obtain confidence 

bands for the predicted slopes �̂�𝑖, we conducted another bootstrap procedure, where the 

covariance parameters  �̂�𝑠
2, �̂�𝑏

2 and �̂�𝑠𝑏 were fixed and given by the estimators obtained 

from the original data. For each reference bull 𝑖 and his set of daughter 

ords {(𝑦𝑖1 , 𝑥𝑖1, 𝑤𝑖1), (𝑦𝑖2, 𝑥𝑖2, 𝑤𝑖2), … , (𝑦𝑖𝑑𝑖
, 𝑥𝑖𝑑𝑖

, 𝑤𝑖𝑑𝑖
)}, we draw a bootstrap sample of 

size 𝑑𝑖  with replacement. Using the new bootstrap sample of all reference bulls and the 

variance parameters �̂�𝑠
2, �̂�𝑏

2 and �̂�𝑠𝑏, a new prediction for the random effects including the 

random intercepts and slopes for all bulls were calculated. This procedure was repeated 

1,000 times, such that in the end, a sample of 𝑛 = 1,000 estimators �̂�𝑖
(1)

, �̂�𝑖
(2)

, … , �̂�𝑖
(𝑛)

  was 

available reflecting the empirical distribution of �̂�𝑖.  

Results 

The results of the reaction norm model given by equation (1) for two different challenge 

variables based on milk yield and fat/protein ratio are presented in Table 4.1. As indicated 

by their standard errors obtained from ASReml 3.0 [23], all components are significantly 

different from zero except for the fixed parameter 𝛽 for the challenge variable ‘milk’. This 

is further confirmed by the results of the log-likelihood ratio tests, where all genetic com-

ponents were found to contribute significantly to a better fitting of the reaction norm model 

as compared to the model without the respective genetic component (all p-values < 10−8). 

The empirical distributions of the four variance components �̂�𝑠
2, �̂�𝑏

2, �̂�𝑠𝑏 and �̂�𝑒
2 as ob-

tained from the boostrap approach are presented in Figure 4.2. The standard errors calcu-

lated based on these distributions are similar to those obtained directly from ASReml 3.0 

(Table 4.1) with minor deviations. More importantly, according to Figure 4.2, all variance 

estimators are unbiased. 
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Figure 4.2: Empirical distribution of the estimated variance components calculated using 

the bootstrapping of both random effects and residuals. The red vertical lines 

depict the estimated values from the original data. 

 

Table 4.1: Fixed effects and variance parameter estimates (including the genetic correla-

tion 𝑟𝑠𝑏 =
𝜎𝑠𝑏

√𝜎𝑠
2𝜎𝑏

2
) from the reaction norm sire model and their estimated stand-

ard errors in brackets as  obtained from ASReml 3.0 and from the Bootstrap 

method.  

 Parameter Estimates 

𝜇 𝛽 𝜎𝑠
2 𝜎𝑏

2 𝜎𝑠𝑏  𝑟𝑠𝑏 𝜎𝑒
2 

Milk 1.377 

(0.0080/ 

0.0012) 

-0.0023 

(0.0026/ 

0.0006) 

0.00423 

(1.6·10
-4

/ 

1.8·10
-4

) 

0.000245 

(2.9·10
-5

/ 

2.6·10
-5

) 

0.000557 

(5.7·10
-5

/ 

5.2·10
-5

) 

0.5478 

(0.046/ 

0.043) 

0.0579 

(1.1·10
-4

/ 

1.3·10
-4

) 

Fat/ 

Protein 

1.387 

(0.0078/ 

0.0012) 

0.0089 

(0.0014/ 

0.0004) 

0.00435 

(1.7·10
-4

/ 

1.8·10
-4

) 

0.0000515 

(1.1·10
-5

 / 

9.4·10
-6

) 

0.000289 

(4.1·10
-5

/ 

3.2·10
-5

) 

0.6105 

(0.078/ 

0.066) 

0.0579 

(1.1·10
-4

/ 

1.4·10
-4

) 
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As expected, the analysis of both challenge variables show similar results, which are re-

flected by the high correlation of 0.608 of the predicted slopes bi (compare Figure 4.3) of 

all bulls. In regard to the reference bulls, the empirical correlation amounts to 0.676, which 

is significantly different from zero (𝑝 < 10−16). However, as compared to fat/protein ratio, 

the analysis of milk yield as challenge variable exhibits greater variation of the slopes. 

Figure 4.4 displays the fitted regression lines for the two bulls with the greatest and small-

est slopes including the 95%-confidence bands obtained from the bootstrap procedure with 

fixed variance components. We further validated the trends of the daughter performances 

of the two bulls by means of a simple linear regression of functional lifetime on the chal-

lenge variable for each bull, separately (Figure 4.5, dashed lines). As a result, we found 

significant slope effects of the challenge variable on functional lifetime with p-values of 

2.44 × 10−16 and 0.018 for the bulls with the greatest and smallest slopes, respectively. 

 

Figure 4.3:  Estimated slopes bi for the 30,842 animals including the 4,983 reference sires 

(black circles) for the two challenge variables milk yield and fat to protein ra-

tio.  

 

We further assessed the relationship between the predicted slopes and functional lifetime 

as well as the two challenge variables. In Figure 4.5, the predicted slope for each sire is 
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plotted against the average functional lifetime (left panels) or the average challenge (right 

panels) of all his daughters. The correlation between the slopes and average functional life-

time is 0.535 and 0.61, whereas the correlation between the slopes and averaged challenge 

amounts to 0.377 and 0.08 for milk yield and fat to protein ratio, respectively.   

 

Figure 4.4: The estimated regression lines 𝑦 = �̂� + �̂�𝑥 + 𝑠�̂� + 𝑏�̂�𝑥 for the sire i with the 

largest (left) and smallest (right) slopes estimated for the challenge variable 

milk yield and their corresponding 95% confidence bands (gray) obtained 

from the bootstrap approach with fixed variance components. The dashed 

lines depict the corresponding regression lines based on a simple linear re-

gression model fitted for each sire, separately, using the data points of his 

daughters (points). 

 

Figure 4.6 illustrates the estimated heritability estimates as functions of the challenge vari-

ables. Under the average metabolic load reflected by a challenge of zero, all models includ-

ing the sire model (2) without any genetic components exhibit similar heritabilities. For 

both challenge variables, heritability is strongly affected by the challenge. Especially for 

milk yield, the heritability increases up to ~0.5 for dairy cows that are exposed to extreme 
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metabolic loads (>2). For comparison purposes, we re-estimated the heritability using a 

reaction norm model based on permuted milk yield as well as permuted fat to protein ratio 

data as challenge variable. As expected, the influence of the challenge load on the herita-

bility is substantially diminished.  

 

 

Figure 4.5: The estimated slopes for the challenge variable milk yield in dependency of 

the daughter average of functional lifetime (upper left) and the cumulated milk 

yield (upper right) and the corresponding plots for fat/protein ratio (below left 

and right). The red line depicts the linear regression of the y-axis to the x-axis. 

 



Chapter 4  105 

 

Figure 4.6:  Estimated heritabilities of functional lifetime as functions of the challenge 

variables and their corresponding 95% confidence bands as obtained from the 

non-parametric bootstrap method. The two dashed lines represent the herita-

bilities estimated from a reaction norm model based on permuted milk yield 

or fat to protein ratio data.        

 

Discussion 

The objective of the present study was the introduction and evaluation of a new measure 

for the metabolic robustness of dairy cows. Our hypothesis is that some cows are genetical-

ly better suited to cope with the metabolic load during early lactation than other cows re-

gardless of the extent of the metabolic load. We further assumed that the metabolic robust-

ness of these cows is reflected by a greater fitness, e.g. lower frequency of disorder inci-

dences, which in the long run will result in a longer functional lifetime. To this end, we 

proposed a reaction norm sire model linking the functional lifetime to the metabolic load in 

the early part of the first lactation. 

The metabolic load or stress that a certain cow encounters during early lactation is best 

characterized by her energy balance (EB) [32], which is mainly negative during early lacta-
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tion. The EB, however, is very difficult and costly to practically measure [33] and is cur-

rently not implemented in routine genetic evaluation systems. Therefore, in our study, we 

made use of the accumulated milk yield or fat to protein ratio of the first three test day rec-

ords as indicator challenge variables and proxy for the negative EB. Indeed, the fat to pro-

tein ratio in the early part of the first lactation has been found to be a reliable indicator for 

EB [33–35] due to their high phenotypic [36] as well as genetic correlations [33]. Moreo-

ver, Heuer et al. [35] discovered that a higher fat to protein ratio is associated with a higher 

risk for production-related diseases. They also reported that cows with higher milk yields 

are more prone to develop metabolic disorders [35] and thus milk yield as well as fat to 

protein ratio are well-suited indicators for the metabolic stress of dairy cows at least during 

early lactation (DIM<180) [33].  

The results of our study have shown that metabolic robustness of dairy cows has a genetic 

component. For both challenge variables, a significant proportion of the sire variation for 

the slope of the random regression is explained by the genetic relatedness of the bulls, sug-

gesting a genetic component for the ability to cope with metabolic stress. In other words, 

some bulls have daughters in which metabolic stress (as indicated by either milk yield or 

fat to protein ratio) is associated with a reduction of longevity, while for other bulls the 

longevity of the daughters remains largely unaffected by an energy deficit in the transition 

phase.  

In the present study, two measures of robustness were calculated based on two different 

challenge variables that were supposed to reflect the metabolic load. Interestingly, we find 

a high correlation between the two measures (Figure 4.3) supporting the suitability of the 

two challenge variables as proxy for the metabolic load. Nevertheless, according to our 

results, using cumulated milk yield as challenge yielded a higher slope variation and a 

higher heritability for longevity at least for dairy cows exposed to high challenges (com-
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pare Figure 4.6). The substantial variation of the slopes also exceeded our initial expecta-

tions, which are illustrated in Figure 4.1. According to our hypothesis, robust dairy cows 

are expected to be largely unaffected by the metabolic load. However, in our results we 

observe bulls whose daughters’ functional lifetime is actually positively influenced by 

metabolic stress (Figure 4.4, left panel). A possible explanation for this could be a special 

treatment of high-yielding cows. If a high-yielding dairy cow became ill, farmers might put 

more effort into aiding her recovery than in the case of other cows producing less milk.  

In general, reaction norm models aim to model genotype by environment interactions giv-

en that the environment is measureable on a continuous scale [19]. In cattle, reaction norm 

models have been successfully applied to describe the reaction of different milk production 

and fertility traits to changing environments [37–39]. In this setting, the slope is a measure 

of phenotypic sensitivity to environmental changes and may be viewed as an own trait 

[17,40]. In our study, the environment was defined to be the metabolic load during early 

lactation and is thus a kind of ‘internal’ environment. Besides the metabolism and perfor-

mance of dairy cows, environmental factors such as management, housing and herd also 

have a high impact on metabolic stress [4].  

Kolmodin and Bijma [17] studied the special features for selection, when the breeding goal 

is a desired gain in intercept or slope. They pointed out that the optimum selection envi-

ronment is dependent on several factors including the correlation between slope and inter-

cept and the heritability of the trait. Therefore, special attention needs to be paid to these 

features when using the suggested slopes for the breeding of metabolically robust dairy 

cows. Applying their theory to our model and considering the varying heritability in Figure 

4.6, we conclude that in order to obtain the highest selection response in the slopes, we 

have to perform selection among cows exposed to the highest metabolic challenges. Due to 
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the positive correlation of intercept and slope, this would lead to the selection of cows that 

are both long-living and high-challenged and thus considered metabolically robust.  

The transition phase of dairy cows has long been an unresolved problem for the farmer 

industry. Increasing health and fertility problems haven been observed worldwide as a con-

sequence of the breeding for high-producing dairy cows [4,33]. Therefore, the hypothesis 

of a genetic component of the metabolic robustness has been of major interest recently, not 

least because of its potential for the dairy industry to improve the transition cow’s health 

without compromising milk production. To our knowledge, this analysis represents the 

first study trying to assess the metabolic robustness of dairy cows using reaction-norm 

models. Even though the model was only fit to data of the Brown Swiss population, we 

believe that our approach is also applicable to other breeds leading to similar results.  
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Overview 

In order to assess the hypothesis of a genetic component of the metabolic adaptation, the 

present dissertation comprises three independent studies aiming to analyse this hypothesis 

from different point of views. In chapter 2, we addressed the metabolic adaptation by 

means of auxiliary phenotypes known to be important for the process of adaptation. We 

identified a number of significant genes and pathways affecting some of the auxiliary 

traits, which may be viewed as potential candidates for the genetic basis of the metabolic 

adaptation. Another pool of candidate genes and pathways was derived from a tran-

scriptomic perspective in chapter 3. Here, we used RNA-seq data to identify differentially 

expressed genes and pathways before and after lactation. The basis of the genomic and 

transcriptomic analyses in chapter 2 and chapter 3, respectively, is the metabolic adapta-

tion, which is a complex process rather than a measureable phenotype. If a genetic compo-

nent exists, which affects this process of adaptation, this should be reflected in a better 

adaptability of certain dairy cows that are considered metabolically robust. In order to 

measure this robustness as a phenotype, in chapter 4 we proposed a reaction norm sire 

model to predict the metabolic robustness of Brown Swiss bulls based on the metabolic 

performance of their daughters. In all three studies, we found substantial evidence support-

ing the genetic basis of the metabolic adaptation by means of different methods and inde-

pendent data sets. Even though genome-wide association studies (GWAS), differential 

gene expression analysis (DGE analysis) and reaction norm models are well established 

methods, there are still some limitations and challenges in their applications, which we will 

discuss in the following.   
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Genome Annotations – the Bridge Between Genome and Functional Biol-

ogy? 

A crucial step in the gene-based GWAS and DGE analysis in chapter 2 and 3 is the anno-

tation of genes. In chapter 2, SNPs were grouped into sets according to their bp positons 

in relation to annotated genes, whereas in chapter 3, mapped reads were counted if they 

fell into annotated gene regions. In both studies, the gene annotation was retrieved from the 

Ensembl database [1]. The Ensembl project is a joint project between the European Bioin-

formatics Institute (EMBI-EBI) and the Wellcome Trust Sanger Institute (WTSI). The ma-

jor goal of gene annotation is to bridge the gap between the genome and the proteome, i.e. 

the totality of all proteins expressed in a species. In practice, this is done by aligning 

known protein sequences to a reference genome, both originating from publicly available 

resources. This annotation along with the functional information on specific gene products, 

i.e. proteins, is the key element for a successful interpretation of our results and was treated 

as reliable information.  

However, despite the substantial progress in technology as well as improvement of bioin-

formatic tools, the recent available genome assemblies as well as protein databases are far 

from completed at least for the species Bos taurus. For instance, in the two most frequently 

used and currently available genome assemblies (UMD3.1.1 [2] and Btau_4.6 [3]) ~10% of 

the sequences are missing with numerous gaps that still have to be filled.  Another source 

of uncertainty may also arise from the protein sequences. Based on a query in the UniProt 

Knowledgebase (UniProtKB, www.uniprot.org/uniprot/), one of the protein databases em-

ployed by Ensembl, we found a total of ~24,000 records of proteins for the species Bos 

taurus, of which only a fraction of ~6,000 proteins are validated and reviewed. Hence, the 

quality of the resulting gene annotation is dependent of three main points: (1) the reliability 

of the reference genome, (2) the reliability of the protein sequences and last but not least 
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(3) the procedure of mapping these two sources of information. Each of the three compo-

nents is important for the reliability of the gene annotation and thus highly influenced the 

precision of biological analyses in chapter 2 and chapter 3. 

How these uncertainties may relate to our results may be predicted from the experiences 

made in human data. Within a time frame of three years the first human assembly contain-

ing ~150,000 gaps with 10% of the genome missing was improved to the ‘nearly’ complete 

assembly with only ~350 gaps and 1% missing [2,4]. With this improvement, they detected 

that 58% of the transcripts mapped onto the ‘old’ genome assembly were erroneous [4]. 

Indeed, in chapter 3, about ~30% of our RNA-seq data (read pairs) were not included in 

the final analysis, since we were either not able to map it to the reference genome or assign 

them to any gene products. This limitation, however, is common to the majority of RNA-

seq analyses for the cattle genome, for example in McCabe et al. [5] only a fraction of 

~30% were retained for final analyses after several steps of quality controls, whereas in 

McLoughlin et al. [6] ~50% of the mapped reads fell into annotated gene regions. This 

together with the results of our DGE analysis in chapter 3 demonstrated the incomplete-

ness of the current genome annotation. Therefore, future studies may aim at unveiling this 

‘missing’ part of the bovine transcriptome either by de-novo alignment of the transcrip-

tome or on ‘updated’ genome annotations.     

RNA-seq – the Curse of Small Sample Sizes 

Another shortcoming of the RNA-seq experiment in chapter 3 is the extremely low num-

ber of samples. As a matter of fact, next-generation sequencing technology is still a rela-

tively expensive tool. Consequently, small sample sizes are common practice in RNA-seq 

experiments, as demonstrated in Figure 5.1. The number of samples illustrated in this fig-

ure refers to the total number samples in a given experiment with a median of nine samples 

per experiment. Typically, RNA-seq experiments are suspected to compare samples among 
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two or more conditions and thus, the effective number of samples per condition is even 

smaller. Therefore, comparison studies have been conducted recently to assess the general 

effect of small sample sizes in RNA-seq studies [7,8]. On the one hand, Seyednasrollah et 

al. [7] observed an appropriate power when the number of replicates, i.e. the number of 

samples per condition, is greater than or equal to five. On the other hand, Schurch et al. [8] 

pointed out that for the detection of highly differentially expressed genes (e.g. fold change 

> 2), three replicates may be sufficient, whereas an appropriate power to detect ~90% of 

true effects would only be possible with more than 12 replicates. Nevertheless, as demon-

strated in chapter 3, many of our results were matched by previous studies and could be 

plausibly related to the transition dairy cow. However, considering the results of Schurch 

et al. [8], we might still have missed some further important genes that may also have an 

important influence of the hepatic adaptation of dairy cows. 

 

Figure 5.1: Histogram for the number of samples in RNA-seq experiments (log10). These 

numbers were obtained by a query from the NCBI database 

(http://www.ncbi.nlm.nih.gov/gds) for all GEO datasets of type "expression 

profiling by high throughput sequencing" (date of query: 5.5.2016). 
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Reaction Norm Model – the Model Assumptions 

Compared to chapter 3, in chapter 4 a dataset of more than 500,000 records was used to 

fit a reaction norm sire model and to predict a measure of metabolic robustness of around 

5,000 bulls. Despite the high amount of data available, major challenges of this study lay in 

the assumption of a linear relationship between response and challenge variables and the 

choice of these variables. As stated in chapter 1, reaction norm models usually assume a 

linear relationship between response and challenge variables (e.g. [9–12]), not least be-

cause the interpretability of the slope as the environmental sensitivity or in our case, as the 

metabolic robustness that we are seeking for. Nevertheless, nonlinear relationships be-

tween functional longevity and other traits exist in dairy cattle, for instance conformation 

traits [13], type traits or somatic cell score [14]. In order to test whether a nonlinear rela-

tionship also exists for longevity and the production traits in chapter 4, we used the 

Akaike Information Criterion [15] to assess whether inclusion of higher order polynomials 

would improve our statistical model and found indications for higher order relationships 

(data not shown). Taking this effect into consideration could further increase the estimated 

genetic variances. We therefore believe that the estimated genetic merit of the metabolic 

robustness in chapter 4 might still be underestimated.  

With respect to our definition of the metabolic robustness as the general impact of the met-

abolic load during early lactation on the cow’s fitness, longevity is the most appropriate 

response variable to choose, since it includes the whole fitness complex [16]. However, in 

practice, measurements of the true longevity of a cow, generally defined as the productive 

period following first parity until disposal, are extremely biased due to the voluntary cull-

ing of cows exhibiting poor production [16]. This has posed a problem in many genetic 

evaluations in the past (e.g. [17,18]). Therefore, it is a common practice to consider the 

‘functional’ instead of the true longevity, in which the effect of voluntary culling on milk 
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production and other environmental factors should theoretically be adjusted for [17,19].  

However, as demonstrated by Dekkers [18], in practice this kind of adjustment is still im-

perfect. This observation is also in agreement with our observation in chapter 4, where a 

positive relationship between milk yield and functional lifetime was observed for some 

bulls. Hence, genetic analyses involving longevity data should always be interpreted with 

caution. 

In chapter 4, cumulated milk yield and fat to protein ratio in the early part of first lactation 

were used as indicators for the extent of the metabolic load. A robustness score is then pre-

dicted based on the relationship between the longevity and the metabolic load in the first 

lactation, ignoring the possibility that follow-up lactations may also have an impact on the 

cow’s functional lifetime. An alternative would be to consider the average metabolic load 

(e.g. cumulated milk yield (first three records) averaged over all parities); however, this 

might lead to a bias in the number of parities, which differs substantially between cows. 

Instead of changing the challenge variable, another possibility would be to redefine the 

response, e.g. by considering the probability of surviving the first lactation as a direct ef-

fect of its metabolic load or the frequency of disorder occurrences.  

Outlook 

Despite the mentioned limitations of the methods applied in our three studies, we found 

substantial evidence supporting the hypothesis of a genetic basis of the metabolic adapta-

tion. Following the suggestions of further studies on this genetic basis, for example when a 

more comprehensive genome annotation is available or with better defined response varia-

bles, we believe that the disclosure of this genetic basis will be possible. As a final goal, 

we would like to find an overlap between the current three studies by means of a GWAS 

for the newly defined metabolic robustness in chapter 4 to determine whether the identi-
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fied genetic factors are included in the pools of candidate genes obtained in chapter 2 and 

chapter 3.  
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