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Summary 
Ectopic overexpression of fluorescent fusion proteins for live cell imaging studies often leads 

to a multitude of artefacts, but protein expression at endogenous levels in mammalian cells 

was difficult to achieve so far. To avoid common problems associated with overexpression, 

this study used the CRISPR-Cas9 genome engineering system for site-specific endogenous 

protein tagging in human cells. First, a general workflow for genome editing was established 

and then applied to generate heterozygous and homozygous human knock-in cells that 

express a fluorescent fusion from a genomic locus. Three human genes (HMGA1, VIM and 

ZYX) were tagged with the reversibly switchable fluorescent protein rsEGFP2 and the benefit 

of endogenous over ectopic expression demonstrated using flow cytometry and confocal 

microscopy. Moreover, low light intensity RESOLFT super-resolution microscopy could be 

applied to study nanoscale protein dynamics at physiologically relevant protein expression 

levels in living knock-in cells. 

CRISPR-mediated endogenous tagging was crucial to investigate the localization, dynamics 

and abundance of mitochondrial prohibitin 1 and 2, PHB1 and PHB2, in human cells. While 

overexpression of PHB1 and PHB2 caused aberrant mitochondria, endogenous tagging of 

prohibitins with the fluorescent protein Dreiklang (DK) restored wildtype mitochondrial 

morphology. Overexpression of PHB2-DK and human estrogen receptor α caused a 

mislocalization of PHB2-DK in the nucleus of HeLa cells, but also this artefact was not 

observed in endogenously tagged PHB2-DK HeLa cells. Homologous recombination 

frequencies for PHB1 and PHB2 tagging were remarkably high and a number of 

heterozygous PHB1-DK and PHB2-DK knock-in clones could be generated. STED super-

resolution microscopy uncovered the hitherto unknown organization of individual prohibitins 

into clusters. Dual-color STED imaging demonstrated a colocalization of tagged and 

untagged PHB1 and PHB2 indicating that PHB complex formation is not affected by protein 

tagging. Intriguingly, the vast majority of prohibitins is found at the mitochondrial cristae 

membrane where they form exceptionally static protein assemblies. Surprisingly, the global 

amount of PHB2 was found to be 4-5 times higher than that of PHB1, which is in contrast to in 

vitro studies conducted on purified yeast prohibitins. After integrating the results on prohibitin 

localization and abundance with morphological data about the ultrastructural organization of 

mitochondria and under the assumption that human prohibitins form a 1 MDa complex, it was 

estimated that about 31-36 individual PHB complexes occupy a single cristae membrane.
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1. Introduction 

1.1. Genome engineering using CRISPR-Cas9 
1.1.1. Genome engineering approaches 

Genome engineering or gene editing refers to the process of making site-specific changes to 

the genomic information of cells and organisms. Pioneering experiments demonstrated that 

the genome can be altered precisely by homologous recombination (HR) between two similar 

DNA molecules (Smithies et al., 1985; Thomas and Capecchi, 1986; Mansour et al., 1988). 

HR introduces highly precise modifications, but occurs at extremely low frequencies in 

mammalian cells (10-6 to 10-9) and often requires the use of drug-selection markers 

(Capecchi, 1989). Later studies showed that HR-mediated genome modifications could be 

greatly enhanced by the introduction of site-specific DSBs mediated by naturally occurring 

endonucleases (Plessis et al., 1992; Rouet et al., 1994; Choulika et al., 1995).  

The first site-specific nucleases were chimeric fusion proteins between the non-specific 

nuclease domain of the restriction enzyme FokI and a zinc finger DNA recognition domain 

(Kim et al., 1996). Zinc finger nucleases (ZFNs) could be designed to recognize a specific 

DNA sequence of interest and were found to efficiently enhance locus-specific HR (Figure 1) 

(Bibikova et al., 2001; Bibikova et al., 2003). Furthermore, the site-specific introduction of a 

DSB was shown to induce insertion/deletion mutations (indels) in absence of a homologous 

repair template via the error-prone nonhomologous end-joining pathway (NHEJ) (Bibikova et 

al., 2002). Zinc finger proteins recognize specific DNA sequences through protein-DNA 

interactions and consist of individual repeats targeting 3 nucleotides of DNA (Christy and 

Nathans, 1989; Pavletich and Pabo, 1991). Assembly of individual repeats into larger arrays 

leads to altered binding specificities due to crosstalk between adjacent repeats (Maeder et al., 

2008). Development and validation of zinc finger proteins with new sequence specificities is 

therefore inherently difficult and remains a major challenge that requires expert knowledge 

and extensive screening (Gonzalez et al., 2010; Sander et al., 2011).  

Another class of DNA-binding proteins are transcription activator-like effectors (TALEs) that 

occur naturally in Xanthomonas bacteria (Boch et al., 2009; Moscou and Bogdanove, 2009). 

Individual TALE repeats recognize 1 nucleotide of DNA and assembly of individual repeats 

into larger arrays followed by fusion to FokI resulted in TALE nucleases (TALENs) that could 

be used for site-specific genome editing (Christian et al., 2010; Miller et al., 2011). Generation 

and validation of TALENs is easier compared to ZFNs but their repetitive sequences render 
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synthesis labor intensive and costly. Further, most of the TALE DNA-binding monomers are 

modular, but context-dependence of individual monomers can still alter their overall targeting 

specificity (Juillerat et al., 2014).   

Next to customized nucleases that rely on DNA-binding proteins, the RNA-guided 

programmable nuclease Cas9 is based on DNA sequence recognition via Watson-Crick base 

pairing (Jinek et al., 2012). Cas9 is associated with the CRISPR system that functions as a 

bacterial adaptive immune system for antiviral defense (Barrangou et al., 2007). The ease of 

using Cas9 and its high efficiency for site-specific genome editing have led to wide adoptions 

and rapid advances in genome engineering applications within the last three years.  

 

 
Figure 1: Site-specific nucleases as tools for genome engineering. a) Blunt DNA double-strand 
breaks (DSBs) are substrates for endogenous cellular DNA repair via nonhomologous end-joining 
(NHEJ) or homology-directed repair (HDR). The NHEJ pathway is error-prone and results in 
insertion/deletion mutations (indels) that lead to frameshifts and gene knockout. The HDR pathway 
leads to precise gene modifications via recombination with an exogenous homologous repair template. 
b) Zinc finger (ZF) proteins and transcription activator-like effectors (TALE) comprise DNA-binding 
domains that recognized 3 and 1 bp of DNA, respectively. Modular assembly of ZFs or TALEs followed 
by fusion to FokI endonuclease generates programmable site-specific nucleases. c) Cas9 is targeted to 
a specific DNA sequence via a single guide RNA (sgRNA) that undergoes Watson-Crick base-pairing 
with the DNA target. Cas9 requires a protospacer-adjacent motif (PAM) downstream of the target site 
to induce a DSB catalyzed by RuvC and HNH nuclease domains. (Adapted from Hsu et al., 2014 with 
permission from Elsevier). 



1. Introduction 

3 
 

1.1.2. Microbial CRISPR systems 
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated 

(Cas) proteins comprise the CRISPR-Cas system that serves as a prokaryotic adaptive 

immune system. The first CRISPRs had been described as a set of nucleotide (nt) repeats 

that were interspaced by nonrepetitive spacer sequences in the genome of E. coli (Ishino et 

al., 1987). Clustered repeats were found in >40% of bacteria and 90% of archaea and Cas 

genes were identified as well conserved elements adjacent to the repeats (Mojica et al., 2000; 

Jansen et al., 2002). Interestingly, DNA repeat sequences were found to be of foreign genetic 

origin, CRISPR loci were shown to be transcribed and Cas genes were predicted to encode 

proteins with nuclease and helicase domains (Tang et al., 2002; Bolotin et al., 2005; Haft et 

al., 2005; Mojica et al., 2005). The natural role of CRISPR-Cas as an adaptive immune 

system that provides resistance to bacteriophages was demonstrated by infection 

experiments of bacteria with lytic phages (Barrangou et al., 2007).  

The overall sequence of CRISPR-mediated adaptive immunity involves three steps (Figure 2) 

(Barrangou and Marraffini, 2014). In the first step, adaptation, new spacer sequences are 

integrated into the CRISPR array from exogenous DNA. Second, CRISPR arrays are 

transcribed and processed into small CRISPR RNAs (crRNAs) that contain a repeat 

sequence and a spacer sequence for targeting the invading DNA. Finally, Cas proteins are 

guided by crRNA to cleave exogenous nucleic acids at sites complementary to the crRNA 

spacer sequence (Brouns et al., 2008; Marraffini and Sontheimer, 2008). Based on DNA 

sequence analysis and use of distinct molecular mechanisms, CRISPR-Cas systems have 

been classified into three major types: type I, II and III (Makarova et al., 2011). Type I and 

type II CRISPR systems require the presence of protospacer adjacent motifs (PAMs) 

adjacent to the crRNA-target site of the invading DNA (Shah et al., 2013). A large complex of 

multiple Cas proteins is required for crRNA-guided targeting of for nucleic acids in type I and 

type III CRISPR systems (Brouns et al., 2008; Hale et al., 2009). In contrast, the type II 

CRISPR system requires only a single Cas protein for RNA-guided DNA recognition and 

cleavage, a vital property for engineering a simple RNA-programmable nuclease (Jinek et al., 

2012; Gasiunas et al., 2012).  
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Figure 2: CRISPR-mediated immunity occurs in three stages. A typical CRISPR locus contains a 
set of repeat sequences (black diamonds) interspaced by nonrepetitive spacer sequences (colored 
boxes). Each CRISPR locus is flanked by a ‘leader’ sequence (L) acting as a promoter for transcription 
and genes coding for CRISPR-associated (Cas) proteins. CRISPR-based immunity is established in 
three stages: (1) acquisition of spacer sequences from foreign phage DNA, (2) biogenesis of CRISPR 
RNA (crRNA) and (3) targeting of a DNA sequence complementary to the proto-spacer found in the 
crRNA (Adapted from Barrangou and Marraffini, 2014 with permission from Elsevier). 

 

1.1.3. The engineered CRISPR-Cas9 system 
The type II CRISPR locus of S. pyogenes contains a trans-activating crRNA (tracrRNA) that is 

essential for the processing of crRNAs by endoribunclease III and the CRISPR-associated 

protein Cas9 (Deltcheva et al., 2011). Cas9 functions as a dual RNA-guided endonuclease 

that could be programmed by a tracrRNA:crRNA duplex to direct DNA cleavage in vitro (Jinek 

et al., 2012). Moreover, a single guide RNA (gRNA) could be engineered by fusing a crRNA 

to a tracrRNA in which the target site of Cas9 was determined by the 20 nucleotide sequence 

at the 5′ end of the gRNA (Figure 3) (Jinek et al., 2012). Genome editing in mammalian cells 

was accomplished by heterologous expression of tracrRNA:crRNA hybrids as well as single 

gRNAs that direct Cas9 to induce site-specific DSBs in vivo (Cong et al., 2013; Jinek et al., 

2013; Mali et al., 2013). Moreover, efficient multiplex genome editing can be accomplished by 

coexpression of several gRNAs together with Cas9 for simultaneous cleavage of multiple 

DNA target sites (Cong et al., 2013; Mali et al., 2013). Overall, the engineered CRISPR-Cas9 
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system constitutes a powerful tool that uses a single gRNA to target any 20-bp DNA 

sequence flanked by an adjacent 5’-NGG PAM site. Unlike ZFNs and TALENs, CRISPR does 

not require complex protein engineering and the ease of Cas9 customization have led to a 

rapid adoption of CRISPR-Cas9 for genome editing purposes in a multitude of model systems 

(Doudna and Charpentier, 2014; Hsu et al., 2014). 

 

 
Figure 3: S. pyogenes Cas9 is a dual-RNA guided DNA endonuclease. Programming of Cas9 to a 
target site is mediated by crRNA:tracrRNA duplex or a single guide RNA containing both RNAs that are 
fused to each other via a linker loop. Any 20 nucleotide long DNA sequence can be targeted provided it 
contains an adjacent protospacer adjacent motif (PAM) with the sequence 5’-NGG. (Adapted from 
Doudna and Charpentier, 2014 with permission from AAAS).  

 

1.1.4. Determinants of Cas9 specificity 
Next to site-specific cleavage at target sites, Cas9 might be able to induce DSBs at 

unintended genomic ‘off-target’ sites. Initial studies suggested that the gRNA ‘seed region’ 

comprising the first PAM-proximal 8-12 nucleotides determines Cas9 specificity (Jinek et al., 

2012; Cong et al., 2013). However, Cas9 exhibits a mismatch-tolerance along the entire 

gRNA sequence that depends on the number, position and distribution of mismatches (Fu et 

al., 2013; Hsu et al., 2013; Mali et al., 2013; Pattanayak et al., 2013). Moreover, mismatches 

depend on the chromatin structure and GC-content of target sites, are better tolerated at high 

Cas9 concentrations and limiting the duration of Cas9 expression influences the frequency of 

any DNA modification (Hsu et al., 2013; Dow et al., 2015b). Chromatin immunoprecipitation 

studies using catalytically inactive Cas9 demonstrated that Cas9 has many more binding sites 

than those matching the gRNA sequence (Kuscu et al., 2014; Wu et al., 2014b). Interestingly, 

active Cas9 was rarely observed to induce DNA cleavage at off-target binding sites indicating 

that both binding and cleavage require extensive gRNA:DNA pairing for efficient cleavage 
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(Wu et al., 2014b; Sternberg et al., 2014). Further, genome-wide analysis of Cas9 specificity 

demonstrated a moderate activity on the majority of DNA sequences that differ from the 

gRNA sequence by two to three nucleotides (Tsai et al., 2015; Frock et al., 2015; Kim et al., 

2015; Wang et al., 2015). Inefficient cleavage was still found when off-target and gRNA 

sequences differed by six nucleotides and some gRNAs acted on >100 off-target sites (Tsai 

et al., 2015). As off-target mutagenesis has the potential to cause local mutations as well as 

large DNA rearrangements, a variety of effective attempts have led to improved Cas9 

specificities (Figure 4). 

 

 
Figure 4: Determinants of Cas9 specificity. Top: Modifications of the single guide (sgRNA) or Cas9 
itself can be used to increase specificity. Middle: S. pyogenes Cas9 requires a NGG or NAG PAM site 
for binding. Cas9 binding is negatively affected by closed chromatin and methylated DNA whereas 
binding of Cas9 is increase at high Cas9/sgRNA concentration and high abundance of similar 
target/seed sequences in the genome. Bottom: A short DNA sequence complementary to the seed 
region of the sgRNA already induces transient binding of Cas9. However, cleavage only occurs at DNA 
sequences with extensive sgRNA complementarity (Adapted from Wu et al., 2014a with permission 
from Springer). 

 
First and foremost, judicious gRNA design is required in order to obtain high on-target 

efficiencies while reducing the number of unintended target sites. Computational tools based 

on experimental studies consider a number of potential gRNAs and can be applied for off-

target site predictions (Jamal et al., 2015).  
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Lowering the effective concentration of the Cas9/gRNA complex by titrating down the amount 

of plasmid DNA in transfected cells was shown to improve Cas9 specificity albeit at 

decreased on-target efficiencies (Hsu et al., 2013). Limiting the duration of Cas9 expression 

or regulating Cas9 activity with light provides precise spatial and temporal control over gene 

modifications (Dow et al., 2015b; Nihongaki et al., 2015; Polstein and Gersbach, 2015). The 

abundance of gRNAs can be tuned by expression from RNA Pol II promoters and processed 

from introns and ribozymes (Nissim et al., 2014; Kiani et al., 2014). Moreover, direct delivery 

of recombinant Cas9 together with in vitro transcribed gRNA was shown to reduce off-target 

mutagenesis in mammalian cells (Kim et al., 2014; Ramakrishna et al., 2014).  
Cas9 nucleases induce a blunt-ended DSB catalyzed by the activity of their RuvC and HNH 

nuclease domains. Introduction of point mutation in one of the two nuclease domains 

converts Cas9 into a ‘nickase’ that creates a single-stranded break (DSB) (Jinek et al., 2012; 

Gasiunas et al., 2012). A pair of two nickases can be targeted to two nearby opposite strands 

and create a DSB that is efficiently repaired via NHEJ or HR (Mali et al., 2013; Ran et al., 

2013a). Compared to wildtype Cas9, an improved specificity by up to 1,500-fold was 

demonstrated using the paired nickase approach (Ran et al., 2013a).  

Truncation of gRNAs (‘tru-gRNAs’) to a length of 17 or 18 nucleotides showed a significant 

increase in Cas9 targeting specificity potentially caused by a higher mismatch sensitivity (Fu 

et al., 2014). Combination of tru-gRNAs with the paired nickase approach further reduced off-

target cleavage rates (Wyvekens et al., 2015).  

A fusion of catalytically inactive Cas9 (dCas9) to FokI nuclease monomers generated an 

RNA-guided nuclease that only induces DNA cleavage upon binding of two nearby gRNAs, 

which allows FokI dimerization (Guilinger et al., 2014; Tsai et al., 2014). An increased 

specificity of at least 4-fold was reported when using dCas9-FokI over a paired nickase 

(Guilinger et al., 2014; Tsai et al., 2014).  

1.1.5. Applications of CRISPR-Cas9  
Cas9-mediated genome editing was adapted for a wide range of applications in a variety of 

cells and model organisms (Figure 5). First studies showed that Cas9 could be used to 

facilitate targeted genome engineering in bacteria, human cancer and pluripotent stem cells in 

culture as well as zebrafish (Jiang et al., 2013; Cong et al., 2013; Jinek et al., 2013; Mali et 

al., 2013; Cho et al., 2013; Hwang et al., 2013). Subsequently, Cas9 enabled rapid genome 

alteration in yeast, fruit flies, mice and a multitude of other genetically tractable model 

organisms (Sander and Joung, 2014).  
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Figure 5: Application of CRISPR-Cas9. a) Genome editing in cultured cells by transfection of 
Cas9/gRNA expression plasmids. b) Generation of transgenic animals by microinjection of Cas9 
protein and gRNA into fertilized zygotes. c) Somatic genome editing in adult animals by transduction of 
cells or tissues with CRISPR viral vectors. d) Genome-wide functional screens using gRNA libraries. e) 
Transcriptional control or epigenetic modulation based on catalytically dead Cas9 (dCas) fused to the 
respective effectors. f) Live cell DNA imaging using Cas9 fused to fluorescent reporters. g) Controlled 
Cas9 activity via optical or chemical induction. (Adapted from Hsu et al., 2014 with permission from 
Elsevier). 

 

The simplicity of Cas9-mediated genome editing and its capability to modify many DNA target 

sites in parallel enabled genome-wide functional screens based on large gRNA libraries 

(Wang et al., 2014a; Shalem et al., 2014; Koike-Yusa et al., 2014). Using array-based 

oligonucleotide synthesis, libraries that contain between ~64,000 and ~87,000 distinct gRNAs 

have been constructed. After lentiviral delivery of gRNAs directed against early, constitutive 

exons of all human genes, loss-of-function screens based on positive and negative selection 

could be successfully performed. Compared to a partial knockdown achieved with RNAi 
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libraries, Cas9-based approaches generate knockout cells and can be targeted to nearly any 

DNA sequence including non-coding regions (Shalem et al., 2014).  

CRISPR interference (CRISPRi) can specifically repress transcriptional elongation by 

targeting of catalytically dead Cas9 (dCas9) to DNA sites in E. coli (Qi et al., 2013). Fusion of 

dCas9 to transcriptional repressor domains that promote gene silencing can further enhance 

the repressive activity in human cells (Gilbert et al., 2013). Moreover, conversion of Cas9 into 

an artificial transcriptional activator can be accomplished by fusing dCas9 to activation 

domains (Konermann et al., 2013; Maeder et al., 2013; Perez-Pinera et al., 2013). Next to 

Cas9-mediated transcriptional modulation, locus-specific epigenome editing was achieved by 

fusion of epigenetic effectors to dCas9 (Hilton et al., 2015; Thakore et al., 2015).  

Visualization of DNA in living cells was accomplished when EGFP-tagged dCas9 was 

specifically recruited to genomic loci (Chen et al., 2013). Robust imaging of repetitive DNA 

elements using a single gRNA as well as visualization of nonrepetitive DNA sequences using 

an array of gRNAs along a target locus was demonstrated.  

Finally, the expression of Cas9 can be controlled in a temporal manner using an inducible 

CRISPR (iCRISPR) system (Dow et al., 2015a). Moreover, the ‘split-Cas9’ system provides 

precise spatial and temporal control over Cas9 activity using small molecules or light (Zetsche 

et al., 2015; Nihongaki et al., 2015). 

In conclusion, the RNA-guided Cas9 nuclease derived from the prokaryotic CRISPR system 

has revolutionized our ability to precisely modify the genomes of diverse organisms. Multiple 

methodologies based on Cas9 allow a wide range of applications to control the organization, 

regulation and behavior of cells and organisms. While these developments took place just 

within the last three years, it will be exciting to see the future impact of CRISPR-Cas9 ranging 

from basic science to clinical applications.  

 

1.2. Fluorescent labelling and nanoscopy 

1.2.1. Fluorescent proteins 
Fluorescence imaging of living cells enables the real-time observation of specific subcellular 

dynamics at high spatial and temporal resolution. Visualization of a protein of interest within a 

biological system mainly relies on the use of a genetically encoded fluorescent tag fused in 

frame to the specific protein. The most widely used probes in modern cell biology are 

fluorescent proteins (FP) that form bright and stable chromophores with a variety of spectral 

properties (Chudakov et al., 2010).  
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The first FP was green fluorescent proteins (GFP) purified from the bioluminescent jellyfish 

A. victoria (Shimomura et al., 1962). GFP could be cloned and used for heterologous 

expression in E. coli and C. elegans without losing its fluorescent properties (Prasher et al., 

1992; Chalfie et al., 1994; Inouye and Tsuji, 1994). GFP and its derivatives are about 240 

amino acid residues long and fold into a barrel structure that contains eleven β-sheets with a 

molecular weight of about 27 kDa (Figure 6) (Ormo et al., 1996; Yang et al., 1996). 

Interestingly, the GFP chromophore forms spontaneously from only three amino acid residues 

in the presence of oxygen without the need for any further cofactors (Heim et al., 1994). An 

internal α-helix contains the chromophore that is shielded from the bulk solvent by an 

extensive hydrogen-bonding network within the β-barrel. Importantly, the tertiary structure of 

all FPs has a great influence on chromophore formation and nearby amino acid residues play 

a crucial role for the photophysical properties of each FP variant (Shaner et al., 2005).  

 

 
Figure 6: General structure of fluorescent proteins. Based on the crystal structure of A. victoria 
GFP the typical β-barrel architecture of all fluorescent proteins is exemplified. (Adapted from Day and 
Davidson, 2009 with permission of The Royal Society of Chemistry).  

 
A variety of GFP-like proteins have been discovered from sea organisms that together with 

protein engineering efforts led to a vast number of FPs exhibiting different colors, brightness, 

photostability and tendency to oligomerize (Day and Davidson, 2009). Moreover, some FPs 

exhibit particular photophysical properties including photoactivation, photoconversion and 

photoswitching (Dean and Palmer, 2014). These are particularly useful properties that allow 

advanced imaging studies including protein tracking and movement, optical protein control 

and super-resolution microscopy applications (Nienhaus and Nienhaus, 2014). 
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1.2.2. Reversibly switchable fluorescent proteins 
Reversibly switchable fluorescent proteins (RSFPs) are FPs that can be repeatedly 

photoswitched between a non-fluorescent and a fluorescent state. The first RSFP used for in 

vivo photolabeling and protein tracking was ‘kindling fluorescent protein’ (KFP1) engineered 

from asFP595 (Chudakov et al., 2003). Initially KFP1 is not fluorescent, but green light 

illumination switches the protein into a fluorescent ‘on-state’ and results in red fluorescence. 

Irradiation with blue light leads to a reversible transition into a dark ‘off-state’. However, the 

low quantum yield and the tetrameric nature of asFP595 and its derivatives including KFP1 

limited their use for cell biology applications. The monomeric green RSFP ‘Dronpa’ was 

engineered from a tetrameric green coral FP (Ando et al., 2004). Initially Dronpa resides in a 

fluorescent on-state and blue light illumination induces off-switching accompanied by green 

fluorescence. This transition is reversible upon UV light illumination, which brings Dronpa 

back into its initial on-state. The switching modes exhibited by KFP1 and Dronpa are 

generally referred to as ‘positive’ and ‘negative’ switching (Figure 7) (Andresen et al., 2008). 

Yet another switching mode is found in the RSFP ‘Dreiklang’ (Brakemann et al., 2011). In the 

on-state, Dreiklang can be excited to emit green fluorescence using light of 511 nm while it 

can be switched off using 405 nm light. Reversible on-switching can be induced by 365 nm 

light illumination. Compared to positive or negative switchers, in which fluorescence emission 

and switching are coupled, Dreiklang shows a ‘decoupled’ switching mode. 
RSFPs form a classical GFP-like β-barrel structure that encloses the autocatalytically formed 

4-(p-hydroxybenzylidene)-5-imidazolinone (p-HBI) chromophore. The molecular mechanism 

underlying photoswitching was clarified using X-ray crystallography studies on reversibly 

switchable protein crystals of asFP595 and Dronpa (Andresen et al., 2005; Andresen et al., 

2007). Light irradiation results in a cis-trans isomerization of the chromophore methylene 

bridge, which is accompanied by complex structural rearrangements. The chromophore 

adopts a cis configuration, which corresponds to the fluorescent state while the trans isomer 

is associated to the non-fluorescent state. The isomerization state of the chromophore under 

equilibrium conditions is determined by stabilizing interactions between the chromophore and 

surrounding amino acid residues. Further, side chains that sterically influence the 

isomerization process govern the speed of reversible switching.  

The unusual decoupled switching mechanism in Dreiklang is based on a reversible light-

induced hydration-dehydration reaction of the imidazolinone ring in the chromophore 

(Brakemann et al., 2011). The on-state chromophore exhibits two absorption peaks at 405 

and 511 nm. Irradiation with 405 nm light induces a covalent modification (hydration) of the 
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imidazolinone ring that results in a nonfluorescent chromophore absorbing at 340 nm. 

Illumination with 340 nm light induces a dehydration reaction at the off-state chromophore 

converting it back into the on-state.  

 

 
Figure 7: Switching mechanisms in reversibly switchable fluorescent proteins. Top: Dreiklang 
exhibits a decoupled switching mechanism. Under equilibrium conditions, fluorescent light is emitted 
upon irradiation with 515 nm light. Off-switching using 405 nm light induces chromophore hydration, 
while on-switching mediated by 365 nm light leads to dehydration of the chromophore. Bottom: 
Switching is based on cis-trans isomerization of the chromophore and coupled to fluorescence 
excitation in all other RSFPs. Positive switcher: 488 nm excitation light switches the RSFP to the on-
state and 405 nm switches it to the off-state. Negative switcher: 488 nm excitation light induces off-
switching, while 405 nm is used for off-switching. 

 

1.2.3. Live cell super-resolution with RSFPs 
Live cell fluorescence microscopy allows unprecedented insights into dynamic processes of 

living cells, tissues and whole organisms. However, the resolution of a conventional 

fluorescence microscope is limited by diffraction to about λ/2NA (about 200 nm) in the focal 

plane with λ and NA denoting the wavelength and the numerical aperture of the used 

objective lens, respectively (Pawley, 2013). Visualization of structures below this diffraction 

limit could so far only be realized using electron microscopy (EM), which is incompatible with 

living cells. To overcome the diffraction limit, a number of super-resolution microscopy 

concepts were developed that achieve nanoscale resolution down to 20 nm in living systems 

(Hell, 2009). These concepts are based on reversible photoswitching of fluorophores between 

a bright state and a dark state and can be grouped into two categories (Figure 8).  
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Figure 8: Basic principles of super-resolution microscopy. a) Displayed is a nanostructured object 
within the diffraction zone that exhibits a minimal size of λ/2NA. The object is labelled with fluorophores 
that can reversibly switch between a bright state (A) or a dark state (B). b) Targeted switching of an 
ensemble of molecules generates a subdiffraction-sized spot with bright molecules (A) while switching 
peripheral molecules into a dark state (B). Scanning of the sample point-by-point yields a super-
resolved image. c) Stochastic methods employ single fluorophore switching at random positions to a 
bright state (A) while other molecules remain dark (B). The localization of the bright molecule can be 
calculated from the centroid of the fluorescence spot with nanoscale precision (Adapted from Hell, 
2007 with permission from AAAS).  

 

Stochastic approaches (PALM/STORM) rely on temporal switching of a subset of individual 

fluorophores (Betzig et al., 2006; Rust et al., 2006; Hess et al., 2006). Weak sample 

illumination sparsely switches individual fluorophores that are further apart than λ/2NA to a 

bright state from which they emit fluorescent photons. Detection of N ≫ 1 photons from a 

diffraction spot enables calculation of its centroid with a localization precision depending on 

the number of N. Subsequently these fluorophores are switched off to a non-fluorescent state 

enabling localization of a new set fluorophores that reside at other positions. The cycle of 

activation, detection and deactivation is repeated in order to reconstruct a super-resolved 

image from the localization of individual molecules.  

Deterministic approaches (RESOLFT/STED) utilize targeted switching of an ensemble of 

molecules (Hell, 2007). The RESOLFT (reversible saturable optical fluorescence transitions) 

principle is based on the insight that converting a subset of fluorophores into a non-
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fluorescent dark state can substantially decrease the effective fluorescent region. Practically, 

RESOLFT achieves sub-diffraction resolution by (1) exciting fluorophores using a diffraction-

limited light beam, (2) switching off fluorophores at the periphery using a donut shaped beam 

and (3) reading out the remaining fluorophores. Point-by-point scanning of the three beams 

across the entire sample generates a RESOLFT super-resolution image that exhibits 

nanoscale resolution. Compared to conventional diffraction-limited fluorescence microscopy, 

RESOLFT is diffraction-unlimited and the attainable resolution is given by:  

 

𝑑𝑑 =  
𝜆𝜆

2𝑁𝑁𝑁𝑁 �1 + 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚
𝐼𝐼𝑆𝑆

 

 

with λ, NA, Imax and IS denoting the wavelength of light, the numerical aperture of the objective 

lens, the maximum intensity of the donut beam and the saturation intensity of the used 

fluorophore, respectively (Hell, 2007). Hence, the attainable resolution of a RESOLFT 

microscope is given by the value of Imax/IS and is technically ‘infinite’ with Imax/IS → ∞. In 

practice, resolution is determined by the actual choice of the on- and off-state and the 

saturation intensity IS required to drive a transition between both states.  

The first concept of the RESOLFT type was STED (stimulated emission depletion) 

microscopy which employs an electronic transition between the excited fluorescent state S1 

and the ground state S0 (Hell and Wichmann, 1994; Klar et al., 2000). STED uses a focused 

excitation beam and a red-shifted donut-shaped beam for quenching excited fluorophores via 

stimulated emission from S1→S0. Because the fluorescence lifetime of the excited state is 

short (ns), high saturation intensities in the order of 109 W/cm2 are required. This ultimately 

translates into high depletion intensities in the range of 109 - 1012 W/cm2 required to obtain a 

super-resolved image.  

The second RESOLFT type of concept is GSD (ground state depletion) microscopy, which 

utilizes the electronic transition between the singlet system (S1 plus S0) and the metastable 

triplet state T1 (Hell and Kroug, 1995). To switch off fluorescence in the periphery of the 

excitation spot, GSD employs an excitation laser to transiently transfer fluorophores to the 

triplet state T1. As the lifetime of the triplet state is in the range of µs-ms, the saturation 

intensity IS is reduced accordingly. The dye can be switches off at 103-106 times lower 

intensities than with STED to obtain a similar resolution using this mechanism.  
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RESOLFT with RSFPs employs a photochemical transition of the chromophore between a 

fluorescent and a non-fluorescent state (Hell et al., 2003; Hofmann et al., 2005). 

Photoswitching between two long lived chemical states of a chromophore requires a low 

saturation intensity IS that ultimately results in an ultralow depletion intensity Imax ranging from 

W/cm2 - kW/cm2 (Hell, 2003; Hofmann et al., 2005). RESOLFT is particularly suited for live 

cell imaging because it uses low light intensities similar to those used in confocal microscopy 

while achieving nanoscale resolution. Moreover, RESOLFT employs genetically encoded 

RSFPs that may be introduced to a variety of model systems including cultured cells, tissues 

and whole organisms.  

RESOLFT relies on bright and photostable RSFPs that can undergo a high amount of 

switching cycles and exhibit a high contrast between the on- and off-state. Further, for live cell 

imaging applications those RSFPs should exhibit fast switching kinetics and be monomers 

that mature efficiently at 37°C. While the first RSFPs including KFP1 or Dronpa exist as 

tetramers or show a low number of switching cycles, an array of RSFPs suitable for 

RESOLFT imaging has been developed over the last few years. Among those is rsEGFP that 

can be reversibly photoswitched more than 1,000 times and enabled live cell RESOLFT 

imaging of bacteria and mammalian cells imaged at <40-nanometer resolution (Grotjohann et 

al., 2011). The uncoupled switching mechanism of Dreiklang enabled super-resolution 

microscopy based on targeted and stochastic switching (Brakemann et al., 2011). 

Mutagenesis of rsEGFP led to the generation of rsEGFP2 and rsEGFP(S205N) that exhibit 

useful features for imaging cellular dynamics and parallelized RESOLFT nanoscopy, 

respectively (Grotjohann et al., 2012; Chmyrov et al., 2013). Moreover, the Dronpa variant 

DronpaM159T was successfully applied for imaging morphological changes deep inside living 

brain slices (Testa et al., 2012). Finally, dual-color live cell RESOLFT nanoscopy was realized 

recently by coexpression of two RSFPs in mammalian cells and neurons (Lavoie-Cardinal et 

al., 2014; Testa et al., 2015).  

 

1.3. Prohibitin and Mitochondrial biology 

1.3.1. Mitochondrial structure and dynamics 
Mitochondria are double membrane organelles of endosymbiotic origin in eukaryotic cells. An 

essential feature of mitochondria is their ability to efficiently produce ATP via oxidative 

phosphorylation (OXPHOS). Additionally mitochondria are the major source of NADH and are 

central to many biochemical pathways such as β-oxidation of fatty acids, pyrimidine and 
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phospholipid metabolism, heme synthesis and others (Nunnari and Suomalainen, 2012). 

Moreover, mitochondria are key players in diverse cellular processes such as calcium ion 

storage, regulation of apoptosis, autophagy and cellular differentiation (Kasahara and 

Scorrano, 2014).  

The two mitochondrial membranes separate the organelle into four distinct compartments: 

outer mitochondrial membrane (OMM), inner mitochondrial membrane (IM), intermembrane 

space (IMS) and the matrix (Figure 9) (Palade, 1952; Sjostrand, 1953). Import of 

mitochondrial precursors occurs through the translocase of the outer membrane (TOM) 

complex that closely cooperates with the translocase of the inner membrane (TIM) complex 

and other transport complexes for proper protein sorting (Dudek et al., 2013). The 

mitochondrial matrix harbors many biosynthetic enzymes and contains the mitochondrial DNA 

(mtDNA) while the IMS serves as a transport hub between the cytoplasm and the matrix 

(Herrmann and Riemer, 2010). The mitochondrial IM can be further subdivided into the highly 

folded cristae membrane harboring OXPHOS complexes and the inner boundary membrane 

(IBM) that is opposed to the OM and connected to cristae via cristae junctions (CJ).  

Mitochondria are highly dynamic organelles that undergo frequent morphology changes 

caused by fusion and fission processes (Westermann, 2010). Mitochondrial morphology 

reflects the physiological state of the cell as the organelle appears fragmented during 

apoptosis or elongated during starvation (Suen et al., 2008; Gomes et al., 2011). 

‘Mitochondria-shaping’ proteins exert regulation and maintenance of mitochondrial 

morphology. OMM fusion requires the dynamin-related GTPases Mitofusion (Mfn) 1 and 2 

that reside in the OMM and form homo- and heterodimers to affect fusion in a GTP-

dependent manner (Koshiba et al., 2004). Fusion of the IMM is controlled by Optic Atrophy 1 

(OPA1) that is localized in the IM but faces the IMS where it controls IMM fusion in 

coordination with Mfn1 (Cipolat et al., 2004). Mitochondrial fission is mediated by the cytosolic 

soluble dynamin-related protein 1 (DRP1) (Smirnova et al., 2001). Upon translocation from 

the cytoplasm to mitochondria, DRP1 interacts with OM adaptor proteins to oligomerize and 

form spiral filaments that lead to constriction of the mitochondrial membranes (Mears et al., 

2011). While the conserved core components of the fusion-fission machinery are known, 

mechanistic insights about their assembly and regulation in the context of other factors 

including cytoskeletal proteins, membrane contact sites and further mitochondrial proteins is 

lacking (Kasahara and Scorrano, 2014).  
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Figure 9: Structure of mitochondria. a) Top: Schematic of a typical mitochondrion that comprises 
four compartments: outer membrane, inner membrane, intermembrane space and matrix. The inner 
membrane forms characteristic folds termed cristae. Bottom: Transmission electron microscopy image 
of mitochondria of human fibroblast cells in ultrathin sections. b) Mitochondria (green) form tubular 
structures that spread throughout the entire cytoplasm in many eukaryotic cells. Mitochondrial of 
human osteosarcoma (U2OS) cells were stained by indirect immunofluorescence using an anti-TOM20 
antibody for confocal microscopy. Nuclei (blue) were stained with DAPI (4′,6-diamidino-2-phenylindole). 
(Adapted from Westermann, 2010 with permission from Macmillan Publishers Ltd).  

1.3.2. The mitochondrial prohibitin complex 
Prohibitins denote a family of conserved eukaryotic proteins with the two homologous 

subunits prohibitin 1 (PHB1) and prohibitin 2 (PHB2). The PHB1 gene product was 

discovered as an inhibitor of cell proliferation although this activity could be solely attributed to 

the 3’ untranslated region of the gene (McClung et al., 1989; Jupe et al., 1996). PHB2 was 

isolated in association with PHB1 as an interaction partner of the IgM antigen receptor and 

both proteins were also named B-cell-receptor complex-associated proteins (BAP32 = PHB1 

and BAP37 = PHB2) (Terashima et al., 1994). Independent of PHB1, PHB2 was identified as 

a repressor of nuclear estrogen receptor activity and termed REA (Montano et al., 1999).  

Human PHB1 has a molecular weight of 30 kDa while human PHB2 is a 33 kDa protein 

(Figure 10). Both prohibitins contain unconventional non-cleavable signal sequences at their 

N-terminus that ensure mitochondrial import and sorting the IMM (Tatsuta et al., 2005; 

Kasashima et al., 2006). Hydropohobic N-terminal regions are required for membrane 

anchoring while the C-terminal region is facing the IMS (Berger and Yaffe, 1998; Tatsuta et 
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al., 2005). Further, the C-terminus harbors the so-called PHB domain which is characteristic 

for proteins of the SPFH (stomatin/prohibitin/flotillin/HflK)-family of membrane proteins 

(Browman et al., 2007).  

PHB1 and PHB2 interact to form a stable macromolecular PHB complex of 1-1.4 MDa at the 

IM of yeast, mammals and C. elegans (Steglich et al., 1999; Nijtmans et al., 2000; Artal-Sanz 

et al., 2003). Homodimers or PHB1 and PHB2 have been not detected and crosslinking 

studies suggest that PHB1 and PHB2 bind to each other in a heterodimeric fashion (Back et 

al., 2002; Tatsuta et al., 2005). It has been proposed that the yeast PHB complex contains 

about 12-16 (Back et al., 2002) or 16-20 (Tatsuta et al., 2005) heterodimers that associate to 

form a ring-like structure at the IMM with a diameter of 20-25 nm. Interestingly, prohibitins are 

functionally interdependent and depletion of either PHB1 or PHB2 leads to loss of the 

remaining prohibitin and absence of the PHB complex (Merkwirth et al., 2008; Artal-Sanz et 

al., 2003; Berger and Yaffe, 1998).  

 

 
Figure 10: Prohibitins form a mitochondrial membrane complex. a) Domain structures of the 
mammalian prohibitins PHB1 and PHB2. b) Heterodimers of PHB1 and PHB2 form the building blocks 
for ring-like PHB complexes with a speculative stoichiometry and a diameter of 20-25 nm. c) N-terminal 
hydrophobic stretches anchor the PHB complex to the mitochondrial inner membrane (IM). C-terminal 
PHB/SPFH and coiled-coil domains are exposed to the intermembrane space (IMS). (Adapted from 
Merkwirth and Langer, 2009 with permission from Elsevier) 

 

1.3.3. Functions of the mitochondrial PHB complex 
A diverse set of cellular functions including cell cycle progression, transcriptional regulation, 

cellular senescence, apoptosis and mitochondrial biogenesis have been attributed to 

prohibitins (Artal-Sanz and Tavernarakis, 2009; Merkwirth and Langer, 2009). Moreover, 

prohibitins were found to localize to different cellular compartments including the plasma 

membrane, the nucleus and mitochondria (Mishra et al., 2005; Mishra et al., 2006).  However, 

recent studies in different model systems indicate that cellular homeostasis depends on 

prohibitin function and localization within the IMM (Merkwirth et al., 2008; Schleicher et al., 

2008).  
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Depletion of prohibitins in yeast or human cells as well as in C. elegans leads to highly 

fragmented mitochondria (Artal-Sanz et al., 2003; Berger and Yaffe, 1998; Osman et al., 

2009b; Kasashima et al., 2006). Similarly, fragmented mitochondria accumulated in the 

absence of prohibitins in mouse embryonic fibroblasts (MEFs) or mouse embryonic stem (ES) 

cells (Merkwirth et al., 2008; Kowno et al., 2014). Ultrastructural analysis of prohibitin-

deficient MEFs revealed an absence of lamellar-shaped cristae or an accumulation of 

vesicular-shaped structures within mitochondria (Merkwirth et al., 2008). Absence of 

prohibitins resulted in the destabilization of OPA1, a large dynamin-like GTPase essential for 

mitochondrial fusion and cristae morphogenesis (Hoppins et al., 2007). Proteolytic processing 

of OPA1 splice variants generates long (L-OPA1) and short (S-OPA1) (Ishihara et al., 2006). 

Interestingly, absence of prohibitins in MEFs leads to selective loss of L-OPA1 isoforms and 

wildtype mitochondrial morphology could be restored cells by overexpression of a non-

cleavable OPA1 variant (Merkwirth et al., 2008). Because prohibitin depletion leads to an 

increased proteolytic activity of the m-AAA protease (Steglich et al., 1999), it was suggested 

that mammalian prohibitins control OPA1 processing indirectly via regulation of m-AAA 

protease activity (Merkwirth and Langer, 2009). However, experimental evidence for this 

hypothesis is lacking.  

The mitochondrial inner membrane protein stomatin-like protein 2 (SLP-2) has been shown to 

directly associate with and stabilize prohibitins (Da Cruz et al., 2008). Prohibitins and SLP-2 

are both members of the SPFH family of proteins and SLP-2 has been linked to mitochondrial 

fusion via interaction with the GTPase mitofusin 2 (Mfn2) (Browman et al., 2007; Hajek et al., 

2007). A small portion of Mfn2 participates in Mfn2/SLP-2 heterooligomers and SLP-2 is 

required for mitochondrial hyperfusion under stress conditions (Hajek et al., 2007; Tondera et 

al., 2009). Interestingly, absence of SLP-2 leads to selective loss of L-OPA1 isoforms under 

stress, a phenotype that corresponds to prohibitin-depletion under normal conditions 

indicating that OPA1 processing is regulated by a complex network of similar proteins.  

In the absence of prohibitins, genes that encode for proteins involved in the biosynthesis of 

phosphatidylethanolamine (PE) and cardiolipin (CL) become essential (Birner et al., 2003; 

Osman et al., 2009a). Decrease of PE or CL levels in prohibitin-deficient cells is detrimental 

and leads to distortions of the IMM that ultimately result in mitochondrial membrane 

dissipation and cell death (Osman et al., 2009a). Thus, the integrity of the IMM depends on 

prohibitins upon reduction of PE or CL levels.  

The ring-sized PHB complex has been proposed to constitute a protein and lipid scaffold in 

the inner mitochondrial membrane required to define functional subcompartments (Figure 11) 
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(Osman et al., 2009b). This model is supported by the sequence similarity between 

prohibitins and SPFH proteins that form large membrane assemblies and have been 

associated with lipid rafts (Huber et al., 2006; Browman et al., 2007). The formation of PHB 

complex protein scaffolds for lipid microdomains might explain the variety of phenotypes 

associated with prohibitin deficiency (Osman et al., 2009a). However, due to a lack of 

experimental tools, evidence for this model has to be awaited.  

 

 
Figure 11: PHB complexes as putative membrane scaffolds. a) PHB complexes as lipid scaffolds 
support an asymmetrical distribution of phospholipids in the inner mitochondrial membrane (IMM). 
Cardiolipin and/or phosphatidylethanolamine (dark grey circles) might be enriched in the interior of 
each PHB ring. b) PHB complexes as protein scaffolds to recruit specific proteins such as m-AAA 
protease to distinct functional sites. c) PHB complexes with a fence-like function exclude membrane 
proteins (yellow) from specific areas to generate protein-free lipid patches with functional relevance. 
(Adapted from Osman et al., 2009b with permission from The Company of Biologists Ltd).  

 
 

1.4. Aims  
RESOLFT super-resolution microscopy is the currently most suited method for nanoscale 

analysis of living systems due to the use of low light doses and the accompanied reduced 

phototoxic damage. Despite those benefits, RESOLFT relied on transient overexpression of 

fluorescently tagged proteins so far. To circumvent common problems associated with 

transient overexpression, the first goal of this thesis was the establishment of a workflow for 

endogenous fluorescent protein (FP) tagging in human cells using CRISPR-based genome 

engineering. This would, at the same time, extend the range of CRISPR applications as 

endogenous FP tagging in human cells was not reported so far. Moreover, whether typical 

artefacts observed in transient transfection experiments are caused by artificially high 

expression levels of fusion proteins or the fluorescent tag itself was not clear. Human cell 

lines that express a fluorescently tagged fusion protein would provide a suitable model 
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system to investigate such issues. Finally, the compatibility of endogenously tagged cells as 

samples for live-cell RESOLFT analysis had to be addressed, because super-resolution 

imaging at native protein levels could allow quantitative nanoscale imaging, but its potential 

was not investigated so far.  

Interestingly, while prohibitins have been studied for more than two decades, many 

fundamental aspects about their biological organization remain to be uncovered. Localization 

and dynamics could not be addressed at the beginning of this thesis, because high quality 

antibodies were lacking and prohibitin overexpression leads to non-physiological effects. 

Therefore, the established workflow for CRISPR-based gene editing had to be applied to 

generate human cells that express endogenously tagged PHB1 and PHB2. Further, it was not 

clear whether prohibitin tagging in human cells is possible and overexpression-induced 

artefacts could be avoided.  Finally, prohibitin knock-in cells would provide an excellent model 

system to gain novel insights about their localization, dynamics and abundance in human 

cells.  
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2. Materials and Methods 

2.1. Bacterial and human cell culture 
2.1.1. E. coli strains and cultivation 

E. coli strains used for cloning and plasmid propagation were DH5α and DH10β (Thermo 

Fisher Scientific, Waltham, MA, USA). For protein expression the BL21 E. coli strain was 

used (Stratagene, La Jolla, CA, USA).  

Cultivation of E. coli cells was carried out in Luria Bertain (LB) medium (0.5% yeast extract 

(w/v), 1% peptone (w/v), 0.5% 1N NaOH (v/v), 0.5% NaCl (w/v)) or on agar plates (LB 

medium supplemented with 2% (w/v) agar) in the presence of selection antibiotics. The 

culture density of E. coli cells was measured with an Eppendorf BioPhotometer® (Eppendorf, 

Hamburg, Germany) in a plastic cuvette at OD600 with the respective medium as a 

reference. Selection antibiotics were ampicillin (50 µg/ml; Sigma Aldrich, Munich, Germany) 

and kanamycin (50 µg/ml; Applichem, Darmstadt, Germany). 

 

2.1.2. E. coli transformation via electroporation 
Electrocompetent DH5α and BL21 cells were generated according to a modified protocol 

initially described by Dower et al., 1988. An overnight preculture of the respective E. coli 

strain was used to inoculate 250 ml LB medium.  The main culture was grown at 37°C until it 

reached an OD600 of about 0.6 followed by incubation at 4°C for 15 min. After this point the 

cells were kept ice cold. The cells were harvested by centrifugation at 4000 g and 4°C for 15 

min in a flat bottom centrifuge bottle. The supernatant was discarded and the pellet was 

resuspended in 250 ml ice cold water, centrifuged again as above, and resuspended in 5 ml 

10% glycerol (1/50 volume of initial culture volume). The suspension was aliquoted to 40 µl 

portions, flash frozen in liquid nitrogen and stored at -80°C.  

For electroporation 40 µl of electrocompetent cells were thawed on ice. Cells were transferred 

to an electroporation cuvette (2 mm gap width) and mixed with 5-25 ng of plasmid DNA. The 

mixture was incubated on ice for 5 min and electroporation was carried out at 2.5 kV. The 

cells were resuspended in 1 ml fresh LB medium and incubated at 37°C for 1 h while shaking. 

Afterwards the cells were plated on agar plates supplemented with the respective selective 

antibiotic and incubated at 37°C overnight.  
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2.1.3. E. coli transformation via heat-shock 
Chemically competent DH10β cells for transformation via heat-shock were prepared 

according to Hanahan et al., 1991. A main culture was established by inoculating 250 ml of 

LB medium with a drop of overnight preculture. The cells were grown at 37°C until an OD600 

of about 0.3 was reached and harvested by centrifugation at 4000 g and 4°C for 15 min 

(Sorval RC-5B, DuPont Instruments, Wilmington, DE, USA) in a flat bottom centrifuge bottle. 

The supernatant was discarded and the pellet resuspended in 80 ml of ice cold CCMB80 

buffer (10 mM KOAc, 80 mM CaCl2, 20 mM MnCl2, 10 mM MgCl2, 10% (v/v) glycerol, pH 6.4) 

followed by incubation on ice for 20 min. After another centrifugation step at 4°C, the pellet 

was resuspended in 10 ml CCMB80 and the suspension adjusted to a final OD600 of 1.0 

using CCMB80. Aliquots of 100 µl were flash frozen and stored at -80°C for further use.  

For transformation 50 µl of chemically competent cells were thawed on ice and mixed with 10-

50 ng of plasmid DNA. After incubation on ice for 30 min, the mixture was transferred to a 

42°C preheated water bath or thermocycler for 30 sec. After an additional incubation on ice 

for 2 min, 200 µl SOC medium was added and the cells incubated at 37°C for 1 h while 

shaking. The entire suspension was plated on agar plates supplemented with selective 

antibiotics at 37°C overnight.  

 

2.1.4. Plasmid isolation and verification 
Isolation of plasmid DNA from E. coli cells was based on the alkaline lysis method (Birnboim 

and Doly, 1979) using the QIAprep Spin MiniPrep or MidiPrep Kit (Qiagen, Hilden, Germany). 

Plasmid DNA was eluted in ultrapure water and the sequence verified using the Sanger 

sequencing (Sanger et al., 1977) service offered by Seqlab Göttingen.  

 

2.1.5. Cultivation of human cells 
U2OS and HeLa cells (American Type Culture Collection, Manassas, VA, USA) were cultured 

in Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen, Carlsbad, CA, USA) 

supplemented with 10% fetal bovine serum (PAA, Pasching, Austria), 100 units/ml penicillin, 

100 μg/ml streptomycin (all Biochrom, Berlin, Germany), and 1 mM sodium pyruvate (Sigma, 

St. Louis, MO, USA) under constant conditions at 37 °C and 5 % CO2. Splitting of confluent 

cells was done by detachment from the growth surface using 0.05% Trypsin/ 0.02% EDTA 

(Biochrom, Berlin, Germany) followed by transfer to fresh DMEM at a ratio of 1:3-1:6 every 2-

3 days. Cells were used until passage number 30. 
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2.1.6. Chemical transfection of human cells 
For transfection of mammalian cells FuGENE HD (Promega, Mannheim, Germany) was used. 

Therefore 2x105 U2OS cells or 3x105 HeLa cells were seeded per well of a 6-well plate 12-16 

hours before transfection. The following day, transfection was carried out using a FuGENE 

HD reagent to DNA ratio of 3.5 to 1 and a total DNA amount of 3 µg according to the 

manufacturer’s protocol. 

 
2.1.7. Electroporation of human cells 

Electroporation of U2OS cells was done using Nucleofection™ (Lonza, Basel, Switzerland). 

Therefore cells were detached from the growth surface, counted using a Scepter™ 2.0 Cell 

counter (EMD Millipore, Billerica, MA, USA) and harvested by centrifugation at 300 x g for 2 

min. Resuspension of 1x 106 cells was done using 100 µl Nucleofector™ Solution V. Cells 

were mixed with 5-10 µg plasmid DNA, transferred to a cuvette and transfected with a 

Nucleofector™ device using program X-001.  

 

2.1.8. Genomic DNA isolation from human cells 
Isolation of genomic DNA from U2OS or HeLa cells for genotyping via PCR was carried out 

with the DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany). The DNA was concentration 

was determined using a NanoDrop1000 spectrophotometer (Thermo Fisher Scientific, 

Waltham, MA, USA) and diluted to 100 ng/µl with ultrapure water.  

 

2.1.9. Flow cytometry of human cells 
Fluorescence activated cell sorting (FACS) using a FACSAria II (BD Biosciences, Heidelberg, 

Germany) was applied to analyze expression levels of fusion proteins in cells transiently 

transfected or endogenously tagged. Further, FACS was used to isolate single cells after co-

transfection of nuclease/donor plasmids. Fluorescence excitation of both rsEGFP2 and 

Dreiklang was done using an Argon laser at 488 nm and a 530/30 emission filter for 

detection. 

 
2.2. Molecular biology methods 
2.2.1. Polymerase chain reaction (PCR) 

Amplification of defined DNA sequences from plasmid or human genomic DNA was done 

using polymerase chain reaction (PCR). Therefore 50 ng (plasmid) or 100 ng (genomic DNA) 

template DNA was mixed with 1 µl forward primer and 1 µl reverse primer (10 µM each), 1 µl 
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dNTP solution (2 mM of each: dATP, dGTP, dCTP, dTTP), 10 µl of 5x Q5® reaction buffer 

(NEB, Ipswich, MA, USA) and 1 µl Q5® DNA polymerase (2 U/µl) (NEB, Ipswich, MA, USA). 

The mixture was filled up to 50 µl with sterile water. DNA amplification was carried out with a 

TPersonal Thermocycler (Biometra, Göttingen, Germany) according to the following PCR 

program:  
Temperature [°C] Time 

95 5 min 

95 20 sec 

55-65 20 sec 

72 15 sec/ 1 kb 

95 5 min 

 
 

2.2.2. Agarose gel electrophoresis 
Agarose was dissolved in TAE buffer (40mM Tris, 20mM acetic acid, 1mM EDTA pH 8.0) by 

boiling in a microwave. Analytical or preparative agarose gels were poured in custom made 

gel trays. Samples were mixed with the required amount of 6x loading buffer (30% (v/v) 

glycerol, 0.25% (w/v) bromophenol blue, 0.25% (w/v) xylene cyanol) and loaded to the gel 

together with a Gene Ruler 100 bp or 1 kb ladder (Thermo Fisher Scientific, Waltham, MA, 

USA). The gel was run at 100 V for 20 min and stained in 0.5 µg/ml ethidium bromide solution 

for 10-30 min.  

 

2.2.3. TBE-PAGE 
Fragment analysis of DNA was done using TBE-PAGE (Tris-Borate-EDTA polyacrylamide gel 

electrophoresis). Samples were mixed with 6x loading buffer (30% (v/v) glycerol, 0.25% (w/v) 

bromophenol blue, 0.25% (w/v) xylene cyanol) and loaded to a 10% Mini-PROTEAN® TBE 

Precast Gel (Bio-Rad, Munich, Germany) placed in a Mini- PROTEAN® Tetra Cell (Bio-Rad, 

Munich, Germany) filled with 1x TBE buffer (89 mM Tris, 89 mM Boric Acid, 2 mM EDTA, pH 

8.3). GeneRuler 100 bp DNA ladder (Thermo Fisher Scientific, Waltham, MA, USA) was used 

as a reference for DNA sizing. For electrophoretic DNA separation a current of 150 mA per 

gel was applied until the bromophenol blue marker reached the bottom of the gel. Gels were 

stained in 0.5 µg/ml ethidium bromide solution for 30 min followed by a destain step in water 

for 20 min.  

 

35x 
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2.2.4. Gibson Assembly 
Gibson Assembly (Gibson et al., 2009) was used for isothermal one-step assembly of multiple 

DNA fragments. Primers with complementary overhangs were designed using the NEBuilder® 

Assembly Tool v1.9 (NEB, Ipswich, MA, USA). PCR fragments were amplified using Q5® high 

fidelity DNA polymerase (NEB, Ipswich, MA, USA) and purified using a MinElute PCR 

purification kit (Qiagen, Hilden, Germany). Linearized plasmid was prepared by restriction 

digestion with EcoRV in 1x CutSmart® buffer (NEB, Ipswich, MA, USA) and 

dephosphorylation using 1 U FastAP (Thermo Fisher Scientific, Waltham, MA, USA)  followed 

by purification using gel extraction (Qiagen, Hilden, Germany). 50 ng of each DNA were 

mixed on ice with 1µl of 10x Gibson Assembly Master Mix (Qiagen, Hilden, Germany) and 

filled up to 10 µl with water. The mixture was incubated at 50°C in a thermocycler for 1 h and 

2 µl were used for transformation of chemically competent E. coli DH10β cells via heat-shock. 

Positive clones were screened via colony PCR.  

 

2.2.5. Colony PCR 
Identification of E. coli colonies that contain the desired plasmid after transformation was 

done using colony PCR. Therefore 24 µl of CloneID™ 1x Colony PCR Master Mix (Lucigen, 

Middleton, WI, USA) were mixed with 0.5 µl forward primer and 0.5 µl reverse primer (10 µM 

each) specific for the construct of interest. A bacterial colony was replicated on a LB agar 

plate containing the required selective antibiotic followed by transfer of the colony to 25 µl of 

PCR mix. DNA amplification was carried out with a TPersonal Thermocycler (Biometra, 

Göttingen, Germany) according to the following program:  

 
Temperature [°C] Time 

95 5 min 

95 20 sec 

57 20 sec 

72 1 min/ 1 kb 

95 5 min 

 
2.2.6. Cloning of overexpression plasmids 

Cloning of rsEGFP2 or Dreiklang fusion proteins for plasmid-driven overexpression in 

mammalian cells was carried out using the primers listed in Table 4. The rsEGFP2 or 

Dreiklang (DK) coding sequence was amplified from plasmid rsEGFP2-MAP2 (Stefan Jakobs 

lab, ID: p716) or from plasmid DK-Tubulin (Stefan Jakobs lab, ID: p3031), respectively. VIM 

35x 
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cDNA was amplified from the plasmid pmKate2-vimentin (Evrogen, Moscow, Russia). The 

following cDNAs were amplified from pDONR223 plasmids obtained from the hORFeome 

V7.1 collection: HMGA1 (ID: 4996); ZYX (ID: 4546); PHB1 (ID: 6030) and PHB2 (ID: 394). 

The respective fragment combinations (rsEGFP2 with VIM, ZYX or HMGA1; DK with PHB1 or 

PHB2) were mixed with EcoRV-digested, dephosphorylated pFLAG-CMV-5.1 (Sigma Aldrich, 

St. Louis, MO, USA) for Gibson Assembly as described above.  

 

2.2.7. Design and cloning of donor plasmids 
All primers used for rsEGFP2 or Dreiklang (DK) donor plasmid cloning are listed in Table 5. 

DNA sequences for left homology arm (LHA) and right homology arm (RHA) were amplified 

from human genomic DNA. The rsEGFP2 or DK coding sequence was amplified from plasmid 

rsEGFP2-MAP2 (Stefan Jakobs lab, ID: p716) or from plasmid DK-Tubulin (Stefan Jakobs 

lab, ID: p3031), respectively. 

Donor plasmid design was done in silico using SeqBuilder of the Lasergene 12 package 

(DNASTAR, Madison, WI, USA). The length of each homology arms was between 500 bp 

and 1000 bp. Both LHA and RHA were designed such that commonly used restriction sites 

between each homology arm and the transgene are be generated. This allows simple 

exchange of the respective transgene at later stages. The plasmid backbone was pUC57 

plasmid (Thermo Fisher Scientific, Waltham, MA, USA). Primer design for Gibson Assembly 

of the donor plasmids HMGA1-rsEGFP2, ZYX-rsEGFP2, PHB1-DK, and PHB2-DK was done 

using the NEBuilder® Assembly Tool v1.9 (NEB, Ipswich, MA, USA). Primer design for 

standard cloning of VIM-rsEGFP2 was done manually.  

For the VIM-rsEGFP2 donor plasmid, PCR products were purified, digested with KpnI/NotI 

(LHA), NotI/NcoI (rsEGFP2), NcoI/SalI (RHA) and cloned into a pUC57 plasmid that was 

digested with KpnI/SalI by a standard four fragments ligation. For HMGA1-rsEGFP2, ZYX-

rsEGFP2, PHB1-DK and PHB2-DK the three respective PCR products were purified and 

cloned into a pUC57 using Gibson Assembly as described above. Silent mutations within the 

ZYX-rsEGFP2 donor corresponding to the terminal exon of the ZYX gene were introduced by 

including a gBlock® DNA fragment (IDT, San Jose, CA, USA) that contained the desired 

modifications into the Gibson Assembly mixture. Silent mutations within the respective Cas9 

binding region were introduced using the QuikChange II site-directed mutagenesis kit (Agilent 

Technologies, CA, USA) and the primers listed in Table 5. 
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2.2.8. Design and cloning of nuclease plasmids 
Sequence information about each target site within the human genome was obtained from the 

Gene database provided by the National Center for Biotechnology information 

(http://www.ncbi.nlm.nih.gov/gene). Design of each guide RNA (gRNA) was carried out using 
the CRISPR Design Tool (Hsu et al., 2013; http://crispr.mit.edu). Bicistronic pX330 expression 

vector expressing Cas9 and gRNA (Cong et al., 2013) was digested with BbsI (NEB, Ipswich, 

MA, USA) and gel-purified (Qiagen, Hilden, Germany). Oligonucleotide pairs (Table 6) were 

hybridized and ligated into the BbsI-digested pX330. The plasmid pX330 was obtained from 

the Addgene plasmid repository (Addgene, Cambridge, MA, USA).  

 
2.2.9. Guide RNA in vitro cleavage assay 

A T7 promoter was added to pX330-based guide RNA (gRNA) templates by PCR 

amplification using primers listed in Table 7. The T7-gRNA product was purified using a 

MinElute Kit (Qiagen, Hilden, Germany) and used as a template for in vitro transcription (IVT) 

using the MEGAshortscript™ T7 Transcription Kit (Thermo Fisher Scientific, Waltham, MA, 

USA) followed by T7-gRNA purification using the MEGAclear™ Transcription Clean-Up Kit 

(Thermo Fisher Scientific, Waltham, MA, USA) and elution in RNase-free ultrapure water.  

DNA templates for in vitro cleavage were produced via PCR amplification using the primers 

listed in Table 8 and purified using the MinElute Kit (Qiagen, Hilden, Germany). Assembly of 

the digestion mixture was done by mixing 20 µl water, 3 µl of 10x Cas9 Nuclease Reaction 

Buffer (NEB, Ipswich, MA, USA), 3 µl gRNA (300 nM) and 1 µl S. pyogenes Cas9 (1 µM)  

nuclease (NEB, Ipswich, MA, USA). After a pre-incubation at 25°C for 10 min, 3 µl of DNA 

substrate (300 ng) were added and digestion was carried out at 37°C overnight. Fragment 

analysis was done using a 10% Mini-PROTEAN® TBE Precast Gel (Bio-Rad, Munich, 

Germany). 

 

2.2.10. T7 Endonuclease I assay 
Human cells were transfected with 10 µg of the respective guide RNA using electroporation. 

Genomic DNA was isolated 3-4 days later and used as a template for PCR amplification with 

primers listed in Table 9. PCR products were purified using a MinElute Kit (Qiagen, Hilden, 

Germany) and diluted with water to a final concentration of 20 ng/µl. 10 µl of PCR product 

were mixed with 2 µl of 10x NEBuffer 2.1 (NEB, Ipswich, MA, USA) and 9 µl water. For DNA 

hybridization the mixture was heated to 95°C for 5 min followed by cooling to 22°C with a 

cooling rate of 1.8°C/min in a thermoyclcer. 1 µl of T7 Endonuclease I (NEB, Ipswich, MA, 

http://www.ncbi.nlm.nih.gov/gene
http://crispr.mit.edu/
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USA) was added for 1 h at 37°C and a total DNA amount of 100 ng loaded per lane using a 

10% Mini-PROTEAN® TBE Precast Gel (Bio-Rad, Munich, Germany).  

 

2.2.11. Genotyping of monoclonal cell lines 
Genomic DNA from monoclonal U2OS cells was isolated and used as a template for 

subsequent PCRs. Primers out-out PCRs and junction PCRs are listed in Table 10. Primers 

for off-target sites are listed in Table 11. 

For DNA sequencing, PCR products were purified and ligated into a pCR™Blunt II-TOPO® 

vector using a Zero Blunt® TOPO® Kit (Thermo Fisher Scientific, Waltham, MA, USA) 

according to the manufacturer’s instructions. Plasmids containing an insert were identified via 

colony PCR and 15 to 20 plasmids were sequenced per locus. 

 

2.3. Biochemical methods 
2.3.1. Protein expression 

N-terminally 6xHis-tagged Dreiklang (DK) was prepared from E. coli cells carrying the pQE31-

DK expression plasmid. A preculture was prepared by inoculation of 250 ml LB/Amp with one 

bacterial colony and grown at 37°C overnight while shaking. 10 ml of a preculture were used 

for inoculation of 1 L main culture. Cells were grown at 25°C until an OD600 of about 0.4-0.6 

was reached. Protein expression was induced by adding 1 mM IPTG (isopropyl β-D-1-

thiogalactopyranoside) and the culture kept at 25°C overnight. Cells were harvested in a 

SLA1500 rotor at 5000 rpm and 4 °C for 30 min. Per gram of cell pellet 2 ml resuspension 

buffer (10 mM Imidazole, 50 mM NaH2PO4, 300 mM NaCl, pH 8.0) containing lysozyme (1 

mg/ml) and EDTA-free 1x Complete Protease Inhibitor (1 tablet per 50 ml) (Roche-

Diagnostics, Mannheim, Germany) was added. After resuspension the cells were incubated 

on ice for 2 h followed by sonication on ice (level 5, 60 % pulse, 30 x) with a Branson Sonifier 

450 (Emerson, St Louis, MO). The suspension was cleared by centrifugation at 4 °C and 

15000 rpm in a SS34 rotor for 2 h. The supernatant containing 6xHis-tagged DK was used for 

the following protein purification steps. 

 

2.3.2. Protein purification 
For Ni2+-affinity chromatography a Vantage VL16 x 250 column (EMD Millipore, Billerica, MA, 

USA) filled with Ni-NTA Agarose (Qiagen, Hilden, Germany) was equilibrated with 3 column 

volumes of resuspension buffer. Protein extract containing 6xHis-Dreiklang was passed over 
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the equilibrated column with a flow rate of 1 ml/min using a peristaltic pump. An ÄKTAprime 

plus purification system (GE Healthcare, Little Chalfort, UK) was used for washing steps and 

protein elution. Sequential washing was done with 50 ml resuspension buffer containing 30, 

50 and 70 mM imidazole, respectively. Protein elution was done with resuspension buffer 

supplemented with 250 mM imidazole. The flow rate during the purification procedure was 1 

ml/min with 10 ml fractions 10 ml during washing steps and 3 ml fractions during the elution 

step. Concentration of pooled elution peak fractions was done using Vivaspin®20 centrifugal 

concentrators to a final volume of 2 ml (Sartorius, Göttingen, Germany). 

For size exclusion chromatography a HiLoad26/60 Superdex 200 (Pharmacia, Uppsala, 

Sweden) column was equilibrated with 3 column volumes of running buffer (100 mM Tris pH 

7.5, 150 mM NaCl). A flow rate of 0.3 ml/min was set at the ÄKTAprime plus purification 

system. The previously prepared 2 ml concentrated protein solution was loaded and elution 

fractions of 0.2 ml were taken. Peak elution fractions were pooled. 

 

2.3.3. Cell extract preparation for immunoblotting 
Cell extracts of subconfluent U2OS cells grown in a 10 cm dish were prepared by washing 

the cells two times in ice cold phosphate-buffered saline (PBS). The cells were scraped from 

the growth surface and resuspended in 500 µl ice cold radioimmunoprecipitation assay 

(RIPA) buffer supplemented with 1 mM EDTA, 1 mM PMSF, 10 U/ml universal nuclease 

(Thermo Fisher Scientific, Waltham, MA, USA) and 1x complete protease inhibitor cocktail 

(Roche, Basel, Switzerland). For quantitative immunoblotting, the cells were detached from 

the growth surface using 0.05% Trypsin/ 0.02% EDTA (Biochrom, Berlin, Germany) and 

counted using a Scepter™ 2.0 Cell counter (EMD Millipore, Billerica, MA, USA). Cells were 

harvested by centrifugation at 300xg for 2 min followed by lysis with 100 µl RIPA buffer 

(supplemented as above) per 106 cells.  

After adding RIPA buffer, the cell suspension was placed on ice for 30 min with vortexing 

steps every 10 min.  The suspension was centrifuged at 13000 rpm at 4°C for 30 min. The 

supernatant was removed and the protein concentration measured using the Pierce BCA 

protein assay kit (Thermo Fisher Scientific, Waltham, MA, USA). Samples were diluted to 1.2 

µg/µl with RIPA buffer and mixed with the respective amount of 6x Laemmli buffer (375 mM 

Tris pH 6.8, 12% SDS, 60% glycerol, 0.6 M DTT, 0.06% bromophenol blue) to a final 

concentration of 1 µg/µl. The suspension was boiled at 95°C for 5 min, flash frozen in liquid 

nitrogen and stored at -20°C for further use.  
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2.3.4. SDS-PAGE 
For separation of protein mixtures, SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel 

electrophoresis) was performed using the Laemmli buffer system (Laemmli, 1970). The 

acrylamide content of the separation gel ranged from 10-15 % and was adjusted to the 

molecular weight of the proteins to be separated. Per 10 ml separating gel the following 

reagents were mixed: 

 

 Acrylamide perecentage 
Reagent 10% 12.5% 15% 

H2O 3.8 ml 3.2 ml 2.2ml 
30% Acrylamide (w/v)/ 
0.8% Bisacrylamide (w/v) 

3.4 ml 4 ml 5 ml 

1.5 M Tris pH 8.8 2.6 ml 2.6 ml 2.6 ml 
10% SDS (w/v) 0.1 ml 0.1 ml 0.1 ml 
10% APS (w/v) 100 μl 100 μl 100 μl 
TEMED 10 μl 10 μl 10 μl 

 

The acrylamide concentration of the stacking gel was 5 %. Therefore 5.6 ml H2O, 2.5 ml 1.5 

M Tris-HCl pH 6.8, 1.7 ml 30% (w/v) Acrylamide/ 0.8% (w/v) Bisacrylamide, 100 µl 10% SDS 

(w/v), 100 µl 10% (w/v) APS and 10 µl TEMED were mixed. For quantitative western blotting, 

4-15% Mini-Protean® TGX™ Precast Gels (Bio-Rad, Munich, Germany) were used.  

The gels were placed in a Mini-Protean® Tetra Cell (Bio-Rad, Munich, Germany) filled with 1x 

SDS running buffer (25 mM Tris-HCl, 192 mM glycerine, 0.1 % (w/v) SDS, pH 8.3). Samples 

were mixed with 6x Laemmli buffer 6x Laemmli buffer (375 mM Tris pH 6.8, 12% (w/v) SDS, 

60% (v/v) glycerol, 0.6 M DTT, 0.06% (w/v) bromophenol blue) and boiled at 95°C for 5 min. 

Samples were loaded on the gel together with a PageRuler Prestained Protein Ladder (MBI 

Fermentas, Burlington, Canada) as molecular weight marker. For electrophoretic protein 

separation a current of 25-50 mA per gel was applied until the bromophenol blue marker 

reached the bottom of the gel. Gels were stained in Coomassie Brilliant Blue staining solution 

(10 % (v/v) acetic acid, 25 % (v/v) isopropanol, 0.1 % (w/v) Coomassie Blue R-250) for 30 

min and subsequently destained in 10 % (v/v) acetic acid solution. 

 

2.3.5. Western Blot 
Protein transfer after SDS-PAGE was done using a TE22 Mini Tank Transfer Unit (GE 

Healthcare, Freiburg, Germany). Proteins were transferred to a nitrocellulose membrane (GE 
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Healthcare, Freiburg, Germany) in transfer buffer (25 mM Tris, 190 mM glycine, 20% 

methanol). Transfer was done at 4°C and 80 mA per membrane for 16 h with a magnetic 

stirrer circulating the transfer buffer. The membrane was briefly rinsed in TBS (50 mM Tris-

HCl, pH 7.5, 150 mM NaCl) followed by incubation in Ponceau S solution (0.5 % (w/v) 

Ponceau S, 40% (v/v) MeOH, 15% (v/v) acetic acid) for 10 min to visualize transferred 

proteins. The membrane was incubated in blocking buffer (50 mM Tris-HCl, pH 7.5, 150 mM 

NaCl, 0.1% Tween 20, 5% (w/v) skim milk) at room temperature for 1 h. Primary antibodies 

were diluted in blocking buffer and incubated with the membrane at room temperature for 1 h. 

The following primary antibodies were used: anti-HMGA1 (EPR7839; 1:5000; Abcam, 

Cambridge, UK), anti-Vimentin (V9; 1:1000; Santa Cruz Biotechnology, Heidelberg, 

Germany), anti-Zyxin (ZOL301, 1:1000, Abcam), anti-PHB1 (EP2803Y, 1:2000, Abcam), anti-

PHB2 (EPR14523, 1:5000, Abcam), anti-Actin (AC74; 1:3000, Sigma-Aldrich), anti-GFP (JL-

8; 1:3000, Clontech, Saint-Germain-en-Laye, France). After three washing steps with TBST 

(50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% Tween 20),  the membrane were incubated at 

room temperature with HRP-conjugated anti-rabbit or anti-mouse secondary antibodies 

(Dianova, Hamburg, Germany) diluted 1:5000 in blocking buffer for 1 h. After three washing 

steps with TBST, the membrane was incubated with Pierce ECL western blotting substrate 

(Thermo Fisher Scientific, Waltham, MA, USA) and exposed to a CCD camera. Membranes 

were stripped using mild stripping buffer (15g Glycine, 0.001% SDS, 0.01% Tween 20, pH 

2.2) or Restore™ Stripping Buffer (Thermo Fisher Scientific, Waltham, MA, USA) at 37°C for 

30 min followed by applying the described protocol for reprobing with a different antibody.  
 

2.4. Light microscopy 
2.4.1. Antibody coupling 

2 mg of the respective antibody were mixed with 100 µl 1 M NaHCO3 and the respective 

fluorescent dye was dissolved in water free DMF to 10 µg/µl. 20 µl of dissolved dye were 

mixed with the antibody solution and incubated at RT for 1 h. Subsequently 100 µl 1 M Tris 

was added and the mixture stirred at RT for 5 min. Purification of dye-coupled antibodies was 

done using a PD-10 desalting column (GE Healthcare, Little Chalfort, UK). Peak fractions 

were pooled, aliquoted to 50 µl portions and flash frozen in liquid nitrogen for subsequent 

storage at -80°C.  
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2.4.2. Indirect immunofluorescence staining 
Human cells were cultured on glass cover slips until they reached a confluence of about 70% 

and fixed in 37°C prewarmed 4% (w/v) PFA (paraformaldehyde) in PBS at RT for 5 min. The 

cells were permeabilized using 0.5 % (v/v) Triton-X-100 in PBS for 5 min followed by 

subsequent incubation in blocking buffer (5% (w/v) BSA in PBS containing 100 mM glycin) for 

5 min. Primary antibodies were diluted in blocking buffer and incubated with the coverslips at 

room temperature for 1 h. The following primary antibodies were used: rabbit anti-HMG-I 

(EPR7839; 1:400; Abcam), mouse anti-Vimentin (V9; 1:100; Santa Cruz Biotechnology), 

mouse anti-Zyxin (ZOL301, 1:400, Abcam); rabbit anti-PHB1 (EP2803Y, 1:200, Abcam), 

rabbit anti-PHB2 (EPR14523, 1:400, Abcam); mouse anti-ESR1 (D12, 1:500, Santa Cruz 

Biotechnology), chicken anti-GFP (1:1000, Abcam). After three washing steps in PBS, 

fluorophore-coupled secondary antibodies were diluted 1:1000 and added for incubation at 

room temperature for 1h. The following secondary antibodies were used: sheep anti-mouse, 

goat anti-rabbit or goat anti-chicken (all Dianova, Hamburg, Germany) coupled to KK114 

(Kolmakov et al., 2010) or Atto 590 (Atto-Tec, Siegen, Germany). After three PBS washing 

steps, cells were embedded in Mowiol 4-88 mounting medium containing 1 µg/ml 4′,6-

Diamidin-2-phenylindol (DAPI) and 2.5 % (w/v) 1,4-diazabicyclo-[2,2,2]-octane (DABCO). 

 

2.4.3. Widefield microscopy 
Widefield fluorescence microscopy was done using an upright Leica DM6000 B 

epifluorescence microscope (Leica, Wetzlar, Germany). The microscope was equipped with a 

100x oil immersion objective (HCX PL APO 100x/1.40-0.70 oil), a charge-coupled device 

(CCD) camera (DFC350FX) and various filter cubes: A4 (excitation: 360/40 nm; emission: 

470/40 nm), L5 (excitation:  480/40 nm; emission: 527/30 nm), GFP (excitation: 470/40 nm; 

emission: 525/50 nm), N3 (excitation: 546/12 nm; mission: 600/40 nm), BGR (excitation: 

420/30 nm, 495/15 nm or 570/20 nm; emission: 465/20 nm, 530/30 nm or 640/40 nm) and 

SFR (excitation: 630/20 nm; emission: 667/30 nm). Light source was a metal-halide lamp 

(EL6000, Leica Microsystems).  

 
2.4.4. Confocal microscopy 

Confocal microscopy was done using the Leica TCS SP5 Confocal Microscope (Leica, 

Wetzlar, Germany). All recordings were done using a pinhole diameter of one Airy unit 

(1.22λ/NA), a scan speed of 400 Hz and a 63x oil immersion objective (HCX PL APO CS 

63x/1.40-0.60 oil). The following laser lines were used for fluorescence excitation: a 405 
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Diode (405 nm), an argon laser (458 nm/ 476 nm/ 488 nm/ 496 nm/ 514 nm), a diode-pumped 

solid-state (DPSS) laser (561 nm) and a helium-neon (HeNe) laser (630 nm). Fluorescence 

detection was done using photomultipliers (PMTs) operated within the dynamic range. 

Separation of excitation and emission light was accomplished using an AOTF (acousto-optic 

tunable filter). Multicolor imaging was done using sequential acquisition between frames. For 

image digitization a sampling rate according to the Nyquist criterion was chosen. Each image 

was recorded at least twice for averaging.   

 
2.4.5. STED super-resolution microscopy 

STED (stimulated emission depletion) super-resolution microscopy was done using an 

Abberior STED 775 QUAD scan nanoscope (Abberior Instruments, Göttingen, Germany). The 

nanoscope was equipped with a 100x oil immersion objective (Olympus UPlanSApo 

100x/1.4). Fluorescence excitation was done using two pulsed laser sources at 594 nm 594 

nm (Abberior Instruments, Göttingen, Germany) and 640 nm (Picoquant, Berlin, Germany). 

Fluorescence depletion was achieved using a donut shaped pulsed laser at 775 nm leading 

to a lateral resolution of about 30 nm. Image acquisition was done in the sequential line-

scanning mode. Image acquisition and processing was performed using the software 

ImSpector (Andreas Schönle, MPIbpc, Göttingen). Besides smoothing with a Gaussian filter 

and contrast stretching, no image processing was performed.  

 
2.4.6. RESOLFT super-resolution microscopy 

The home-built RESOLFT microscope utilized three separate beam paths for generating co-

aligned focal spots: two at a wavelength of 491 nm for excitation and OFF-switching, and one 

at 405 nm for ON-switching. The two focal spots at 491 nm comprised: (i) a normally focused 

pulsed beam for reading out the fluorescence signal; (ii) a ‘doughnut-shaped’ focal intensity 

distribution with a central minimum (‘zero’) for OFF-switching at the focal periphery in the xy-

plane, obtained by passing a continuous wave beam through a vortex phase mask (463nm 

mask, vortex plate VPP-A, RPC Photonics, Rochester, NY). The two focal intensity spots 

were generated by two different lasers diodes: one for OFF-switching (50 mW, continuous 

wave, Calypso 50, Cobolt, Stockholm, Sweden) and the second (10mW, 80-100ps pulse 

width PicoQuant, Berlin, Germany) for fluorescence readout. The third focal spot, again with a 

regularly focused profile, was generated by a laser diode at 405nm wavelength (30mW, BCL-

030-405-S, CrystaLaser, Reno, NV, USA) and used for the ON-switching of the fluorescent 

protein. An oil-immersion objective lens (HCX PC APO, 100×, 1.4NA, oil; Leica Microsystems, 
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Wetzlar, Germany) was used to image the different cell lines. A piezo actuator ENV40/20 

(Piezosystem Jena, Jena, Germany) was used to move the objective lens along the optical 

axis in a range of 120 µm. A separate piezo stage NV40 (Piezosystem Jena) was 

implemented to translate the sample with nanometer precision in the xy-plane. The 

fluorescence signal was filtered by a bandpass filter (532/70 nm) and detected by an epitaxial 

silicon single photon avalanche diode SPAD (MPD, Bolzano, Italy); fluorescence photons 

were counted only when the 491 nm pulse read-out beam was switched on. The individual 

laser beam paths were triggered either by an acousto-optic modulator MTS 130A3 (Pegasus 

Optik GmbH, Wallenhorst, Germany) or by an acousto-optic tunable filter AOTF.nC/TN 

(Pegasus Optik GmbH). The pulse sequence and duration were defined by a pulse generator 

Model 9514 (QUANTUM COMPOSERS, Bozeman, MT, USA) and triggered by a time-

correlated single photon counting module (Becker & Hickl, Berlin, Germany) pixel by pixel.  

Each image was recorded by applying a specific pulse scheme, pixel by pixel. For details on 

all shown images, see Table 12. All intensity values are referring to the light intensities in the 

focal plane. Image acquisition and processing was performed using the software 

ImSpector (Andreas Schönle, MPIbpc, Göttingen). 

The RESOLFT super-resolution microscope was built and operated by Dr. Ilaria Testa 

(Department of NanoBiophotonics, MPI-BPC, Göttingen, Germany). 

 
2.5. Electron Microscopy 
2.5.1. Plastic embedding 

Human cells were grown on Aclar® polymer cover slips until 80-85% confluence. Cells were 

prefixed in 2.5% (w/v) glutaraldehyde in 0.1 M sodium cacodylate at RT for 15 min postfixed 

in the same buffer at 4°C for 15 h. Cells were washed three times in 0.1 M sodium cacodylate 

and incubated in 1% (w/v) OsO4 in 0.1 M sodium cacodylate for 3 h. Cells were washed once 

in 0.1 M sodium cacodylate and then twice in water. The cells were place in 0.1% (w/v) uranyl 

acetate (in H2O) for 30 min. Uranyl acetate was washed out by subjecting the cells to 30% 

ethanol three times for 5 min followed by dehydration through a 50%, 70% and 100% ethanol 

series. Afterwards the cells were placed in 100% propylene oxide for 5 min and then 

transferred to 50%/50% propylene oxide/Epon for 1h followed by placement to 100% Epon 

overnight. Samples were sectioned to 50 nm thickness with a Leica EM UC6 ultramicrotome 

(Leica EM UC6, Leica Microsystems, Wetzlar, Germany). Each section was transferred to 0.7 

% (w/v) Pioloform coated 200 mesh carbon grids. Samples were subjected to postcontrasting 

using 1% (w/v) uranyl- and lead acetate. Electron microscopic recordings were done using a 
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Philips CM 120 transmission electron microscope equipped with a TVIPS 2k x 2k slow-scan 

CCD camera (Philips, Amsterdam, Netherlands).  

Sample preparation and image recording was done by Dr. Dietmar Riedel (Electron 

Microscopy Unit, MPI-BPC, Göttingen, Germany).  

 
2.5.2. Immunogold labelling 

Human cells were grown to 80-85% confluence and fixed in 37°C prewarmed 4% (w/v) PFA 

(paraformaldehyde) in PBS at RT for 30 min. Further sample processing was done according 

to Tokuyasu (1973). Samples were sectioned into 80 nm thin slices and incubated with 

diluted primary antibodies for 20 min. The following antibodies were used: anti-GFP (JL-8; 

1:20, Clontech, Saint-Germain-en-Laye, France), anti-PHB1 (EP2803Y, 1:20, Abcam), anti-

PHB2 (EPR14523, 1:20, Abcam). Subsequently each sample was incubated with protein A 

coupled to 10 nm gold particles for 20 min followed by multiple washing steps and 

postcontrasting using uranyl acetate/methylcellulose on ice for 10 min. Electron microscopic 

recordings were done using a Philips CM 120 transmission electron microscope equipped 

with a TVIPS 2k x 2k slow-scan CCD camera (Philips, Amsterdam, Netherlands).  

Sample preparation and image recording was done by Dr. Dirk Wenzel (Electron Microscopy 

Unit, MPI-BPC, Göttingen, Germany).   
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3. Results 

3.1. Genomic tagging using zinc finger nucleases (ZFNs) 
State of the art genome editing methods were based on transcription activator-like effector 

nucleases (TALENs) or zinc finger nucleases (ZFNs) at the time when this project was 

initiated (Carroll, 2011; Joung and Sander, 2013). Both TALENs and ZFNs were used for 

generation of human and mouse cells expressing a fluorescent protein (FP) fusion protein 

from an endogenous locus and those cells were used for confocal microscopy studies 

(Hockemeyer et al., 2011; Samsonov et al., 2013). However, the first goal of this project was 

to establish endogenous FP labelling for RESOLFT (reversible saturable optical fluorescence 

transitions) super-resolution microscopy. Compared to conventional confocal microscopy, 

RESOLFT relies on the use of reversibly switchable FPs (RSFPs). Therefore, it first had to be 

tested whether a) RSFPs could be used for endogenous tagging in human cells and b) if 

endogenous expression levels of RSFP fusion proteins would be sufficient for RESOLFT 

super-resolution imaging.  

Popular samples for demonstrating an improved labeling strategy or a new fluorophore for 

live cell super-resolution imaging are filamentous structures that form thin fibers or tubules 

(Godin et al., 2014). Of those structures we chose to target the human β-actin gene (ACTB) 

as actin overexpression has a severe impact on cell physiology (Mounier et al., 1997; 

Peckham et al., 2001) and ACTB-targeting ZFNs were commercially available (Figure 12).  

 

 
Figure 12: Zinc finger nucleases targeting the human beta-actin gene. a) The gene structure of 
the human β-actin (ACTB) gene is shown. Yellow boxes: Exons; Black lines: introns; Dashed lines: 
Untranslated regions (UTRs). Note that the 5’-UTR comprises 37,127 bp of which only 5,000 bp are 
depicted. b) Zoom-in of start codon region. Zinc finger nucleases (ZFNs) bind to the respective target 
site (light blue), which leads to dimerization of FokI nuclease domains (red) and induction of a double 
stranded break (DSB, arrows). 
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Each ZFN carries a DNA-binding domain recognizing an 18 bp (left ZFN) or a 19 bp (right 

ZFN) nucleotide sequence. Further, each ZFN contains an obligate heterodimeric FokI 

domain. This architectural feature inhibits undesired homodimerization events of ZFNs and 

leads to an improved on-target ZFN cleavage activity (Doyon et al., 2011). After DNA binding 

and FokI heterodimerization, a DNA double strand break (DSB) is induced within the first 

exon of ACTB.  

A DSB can be repaired using the cellular pathway of non-homologous end-joining (NHEJ) or 

homology-directed repair (HDR) (Jasin and Rothstein, 2013). Whereas NHEJ is an error-

prone process potentially disrupting gene function, HDR can be used for site-specific 

transgene integration. By providing a donor plasmid containing homology arms that flank the 

transgene of interest, HDR was used for N-terminal tagging of ACTB (Figure 13).  

 

 
Figure 13: Donor plasmids for endogenous tagging of β-actin. a) An empty donor plasmid bearing 
a left homology arm of 904 bp and a right homology arm of 594 bp was obtained via gene synthesis. 
The DNA sequence for the fluorescent protein (FP) of interest (Dreiklang, rsEGFP or rsEGFP2, 
respectively) was inserted between the homology arms using molecular cloning. b) Zinc finger 
nucleases induce a site-specific double stranded break (DSB) at the human actin gene. Homology-
directed repair (HDR) using the FP containing donor plasmid as repair template leads to site-specific 
FP integration upstream of the first exon.  

 

Specifically, the donor plasmid was designed to contain a left homology arm (LHA) of 904 bp 

spanning part of the 5’-UTR of ACTB; the right homology arm (RHA) had a length of 594 bp 

and included both exon 1 and 2 as well as intron 1 and 2 of ACTB. The RSFPs inserted 

between LHA and RHA were rsEGFP (Grotjohann et al., 2011), rsEGFP2 (Grotjohann et al., 
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2012) and Dreiklang (Brakemann et al., 2011), respectively. Successful HDR-mediated RSFP 

integration upstream of exon 1 would lead to endogenously tagged β-actin leaving all other 

regions of the gene unmodified.  

For genomic tagging, U2OS cells were co-transfected with the ACTB-targeting ZFN pair and 

the respective donor plasmid. Seven days after transfection, the cells were analyzed using 

confocal fluorescence microscopy. Inspection of DAPI-stained polyclonal cultures showed the 

presence of fluorescent β-actin for all tested RSFPs, indicating the successful RSFP 

integration at the ACTB locus (Figure 14). While F-actin could be detected as typical 

filamentous fibers, a high fluorescent background caused by diffusing soluble G-actin was 

present.  

 

 
Figure 14: Endogenous tagging of β-actin with RSFPs. Confocal images of fixed U2OS cells taken 
seven days after co-transfection with both ZFN plasmids and the respective donor plasmid. Site-
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specific donor plasmid Integration leads to endogenous expression of Dreiklang-β-actin (a), rsEGFP-β-
actin (b) and rsEGFP2-β-actin (c) in a fraction of cells (white asterisks). DAPI was used to visualize all 
cells including non-targeted ones. Scale bar: 10 µm.  

As an initial proof of principle, the Dreiklang-β-actin (DK-ACTB) polyclonal culture was chosen 

for live cell RESOLFT imaging. Among the three RSFPs used, Dreiklang (DK) shows a 

unique switching mechanism and a high molecular brightness making it a beneficial probe for 

deterministic as well as stochastic super-resolution microscopy methods (Brakemann et al., 

2011; Jensen et al., 2014). DK-ACTB cells were successfully imaged using RESOLFT, which 

showed an increase in lateral resolution (Figure 15). Unfortunately, DK exhibits slow 

switching kinetics leading to high pixel dwell times. Further, actin filaments are dynamic and 

the soluble DK-tagged form of actin, G-actin, caused high background fluorescence. 

Therefore, highly dynamic thin actin filaments could not be recorded and only thicker, more 

stable structures were visible at good signal to noise ratios.  

 

 
Figure 15:  Live-cell RESOLFT nanoscopy on DK-actin cells. Compared to confocal mode, 
RESOLFT imaging results in an enhanced resolution. Due to the high dynamics of thin actin filaments, 
only thicker and more stable structures are visible at good signal to noise ratios. Scale bar: 2 µm. 

 

Next, rsEGFP2-β-actin (rsEGFP2-ACTB) cells were chosen for RESOLFT imaging. 

Compared to DK, rsEGFP2 is more suitable for imaging dynamic structures in living cells due 

to its faster switching kinetics (Grotjohann et al., 2012). RESOLFT could successfully capture 

dynamic changes of F-actin fibers in rsEGFP2-ACTB cells (Figure 16). Structural 

rearrangements of the cortical actin network within living endogenously tagged human cells 

could be recorded without any observable photodamage. However, the achieved resolution 

was only slightly improved compared to confocal microscopy. This was due to low signal-to-

noise ratio in regions with thin filaments caused by the presence of soluble fluorescent G-

actin. In fact, imaging was mainly performed on thicker stress fibers that reach a diameter of 

up to 180 nm (Tojkander et al., 2012).  
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In summary, it could be demonstrated that ZFN-mediated integration of RSFPs at the ACTB 

locus is possible, leading to endogenous expression of RSFP-tagged β-actin in human U2OS 

cells. While RESOLFT imaging was principally shown to work on DK-ACTB and rsEGFP2-

ACTB cells, the obtained resolution was not satisfactory, because simultaneous labeling of G-

actin next to F-actin causes a high cellular background and F-actin stress fibers are very thick 

structures. Therefore, actin is not a suitable the technical sample to test genomic tagging as 

labeling strategy for live cell RESOLFT super-resolution imaging. However, the dependence 

on ZFNs imposed restrictions on target protein selection for endogenous tagging. While more 

ZFNs could be generated to target other proteins than actin, assembly and verification of 

ZFNs for other targets is an expensive and time-consuming process that requires expert 

knowledge in protein engineering (Gonzalez et al., 2010;Sander et al., 2011). Compared to 

ZFNs, generation and validation of TALENs is more straightforward, but their highly repetitive 

DNA sequences and large size render synthesis and subsequent delivery difficult and 

inefficient.  

  

 
Figure 16: Live-cell RESOLFT nanoscopy on rsEGFP2-actin cells. a) Dynamic changes of the actin 
cytoskeleton were captured in a large field of view over several minutes. b) Zoom-in of the indicated 
region highlights dynamic changes of actin filaments over time. Scale bar: 2 µm. 

Therefore, to explore the full potential of site-specific endogenous tagging for imaging and 

subsequent applications, a simple and more rapid genome editing system was required. 

Moreover, an entire workflow starting from nuclease design to generation and thorough 

characterization of monoclonal cell lines had to be established. Instead of relying on ZFNs or 

TALEN, we set out to change and use the more efficient CRISPR-Cas9 system for further 

genome editing studies (Jinek et al., 2012; Cong et al., 2013; Mali et al., 2013).  
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3.2. Establishment of a general workflow for genome editing of 

human cells using CRISPR 
Recently, the type II clustered regularly interspaced short palindromic repeats (CRISPR) 

system and the CRISPR-associated (Cas) endonuclease Cas9 were engineered into a 

powerful genome editing tool (Hsu et al., 2014; Sander and Joung, 2014). Cas9 can be 

targeted to induce a DNA double-strand break (DSB) at any genomic site defined by a 20 bp 

long guide RNA (gRNA) sequence complementary to the target site flanked by a NGG 

protospacer adjacent motif (PAM). Compared to genome editing based ZFNs or TALENs, 

CRISPR-Cas9 is an inexpensive and simple-to-use tool that allows for rapid site-specific 

genome modifications. Therefore, we decided to focus on the establishment of a robust 

protocol for the generation of human knock-in cells using the CRISPR-Cas9 system as 

outlined within the following section.  

 

3.2.1. Target selection and generation of gRNAs 
The DNA sequence of a respective human gene was retrieved from the NCBI Gene database 

(http://www.ncbi.nlm.nih.gov/gene) and a region of interest within the gene used for guide 

RNA design based on the CRISPR Design Tool (Hsu et al., 2013; http://crispr.mit.edu). This 

web-based tool identifies all S. pyogenes Cas9 target sites within an input DNA sequence 

and ranks potential gRNAs based on their on- and off-target activity. Further, it implements 

experimental data regarding gRNA quality (Hsu et al., 2013) and serves as a powerful tool to 

design highly specific and efficient gRNAs as demonstrated in later sections. Target site 

selection is demonstrated for C-terminal tagging of the human gene encoding for the 

cytoskeletal protein vimentin (Figure 17). 

 
Figure 17: Schematic for target site selection within a human gene. a) The gene structure of the 
human vimentin (VIM) gene is shown. Yellow boxes: Exons; Solid lines: introns; Dashed lines: 5’- and 
3’-UTR. b) Zoom-in of stop codon region. For C-terminal transgene integration, a DNA double-strand 

http://www.ncbi.nlm.nih.gov/gene
http://crispr.mit.edu/
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break (DSB) must be induced within the stop codon region of the terminal exon (Exon 9). S. pyogenes 
Cas9 targets a 20 bp sequence (light blue) which must be followed at its 3′-end by the NGG 
protospacer adjacent motif (PAM, pink). Cas9 induces a DSB at a site 3 bp upstream of the PAM 
(black arrowhead). 

 
Based on the selected gRNA, a pair of oligonucleotides was designed that contained a) the 

20 bp DNA target site and b) overhangs compatible for cloning into a BbsI-digested plasmid 

backbone (Figure 18). We chose to work with the bicistronic CRISPR backbone pX330 that 

contains two expression cassettes: human codon-optimized Cas9 and a chimeric gRNA 

(Cong et al., 2013). Other CRISPR expression systems for mammalian cells rely on the co-

transfection of two separate plasmids encoding for Cas9 and gRNA (Mali et al., 2013; Jinek et 

al., 2013). As endogenous tagging requires the presence of an additional repair plasmid, we 

reasoned that plasmid co-delivery rates are higher when two instead of three plasmids are 

used in total. Moreover, pX330 contains a longer chimeric gRNA which was shown to 

increase targeting efficiency compared to previous CRISPR expression systems (Cong et al., 

2013). It should be noted that pX330 uses a U6 RNA polymerase III promoter to drive gRNA 

expression and the U6 promoter prefers a guanine (G) nucleotide as the first base of its 

transcript (Guschin et al., 2010). Therefore, an extra G must be added at the 5’ end of the 

gRNA in case the 20 bp guide sequence does not begin with G.  

 

 

Figure 18: Schematic for oligo cloning into plasmid pX330. a) Two oligonucleotides are designed 
based on the 20 bp target site (light blue letters). The guide oligos contain BbsI compatible overhangs 
(black letters) for ligation into pX330. A G-C base pair is added at the 5′ end of the guide sequence for 
U6 promoter driven transcription, which does not adversely affect targeting efficiency.  b) The plasmid 
pX330 contains two expression cassettes: human codon-optimized S. pyogenes Cas9 (hSpCas9) and 
the chimeric guide RNA. Digestion of pX330 with BbsI allows the replacement of the BbsI restriction 
sites with direct insertion of annealed oligos. (Adapted from Cong et al., 2013 with permission from 
AAAS). 
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For cloning, the hybridized oligonucleotide pair was ligated downstream of the U6 promoter 

into BbsI-digested pX330 followed by heat-shock of E. coli cells. Identification of positive 

bacterial clones was done via colony PCR using an insert-specific forward primer and a 

universal pX330-specific reverse primer (Figure 19). Plasmid modification with annealed 

oligonucleotides is a rapid and highly efficient one-step process which generally does not 

require to screen more than three bacterial colonies per gRNA. Moreover, the cloning step 

can be parallelized and multiple pX330-based expression plasmids can be generated and 

sequence-verified easily within 3 days (Ran et al., 2013b). This is in stark contrast to the 

generation of ZFNs or TALENs which is laborious and requires 5-7 days (Wright et al., 2006; 

Sanjana et al., 2012). Positive, gRNA-containing clones were used for plasmid DNA isolation, 

DNA sequencing and subsequent genome-editing experiments. An overview of the cloned 

gRNAs within this work is given in Table 13.   

 

 
Figure 19: Colony PCR after oligo cloning in pX330. A typical example for determining the presence 
or absence of insert DNA after oligo cloning is shown for six different gRNAs. Three clones per gRNA 
were analyzed using an insert-specific forward primer and a universal reverse primer annealing within 
pX330. Constructs containing the oligo insert show a 442 bp band, whereas constructs without oligo 
insert show no band. 

 
3.2.2. Functional validation of gRNAs 

After target site selection and gRNA cloning it is required to determine whether the respective 

gRNA forms an active complex with Cas9 capable of inducing a site-specific DNA double 

strand break (DSB). Therefore, two assays were established: 1) an in vitro assay based on 

reconstituted gRNA/Cas9 complex and 2) an in vivo assay based on DNA mismatch-specific 

endonuclease I T7 (T7EI).  

For in vitro activity testing of gRNA/Cas9 pairs, the respective gRNA had to be transcribed. 

Therefore, a PCR cassette containing a minimal T7 promoter and the gRNA sequence was 

amplified from the respective gRNA-containing plasmid. The amplicon was used as a 

template for in vitro gRNA transcription yielding a 101 bp long gRNA. A DNA fragment 

containing the respective Cas9 cleavage site was amplified from wildtype U2OS genomic 
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DNA. Cas9 and gRNA were mixed in a molar stoichiometry of 1:1. After a brief pre-incubation 

period, the substrate DNA was added for an overnight incubation step at 37°C followed by 

analysis via native polyacrylamide gel electrophoresis (Figure 20). 

 

 

 

Figure 20: in vitro Cas9/gRNA cleavage assay. Efficacy of three different gRNAs targeting the same 
genomic region at various DNA sites was tested in vitro. DNA templates that contain Cas9/gRNA target 
sites were produced via PCR using U2OS genomic DNA as a template. Recombinant Cas9 and in vitro 
transcribed gRNAs were used for reconstitution of Cas9/gRNA complexes. Inactive Cas9/gRNA 
complexes do not produce any cleavage products as observed for Cas9-untreated control DNA 
templates (CTL). Active Cas9/gRNA complexes cleave DNA templates into fragments of characteristic 
size (red asterisks) dependent on the nuclease cleavage site. 

 
The in vitro assay results suggest that Cas9 together with gRNA1 does not result in 

endonucleolytic cleavage of the DNA substrate, while both gRNA2 and gRNA3 lead to Cas9-

mediated DNA cleavage in vitro. The advantage of validating gRNAs in vitro is that the assay 

is robust and takes only 1-2 days. However, some gRNA/Cas9 combinations exhibit in vitro 

activity, while local chromatin structures might block a locus of interest in vivo (Wu et al., 

2014b; Kuscu et al., 2014). In order to take such factors into account, an alternative in vivo 

assay was established. 

For in vivo activity testing of gRNA/Cas9 pairs, an assay involving the mismatch-specific 

nuclease T7EI was used. This assay is based on the ability of T7EI to recognize and cleave 

DNA sequence mismatches due to the presence of small insertions or deletions (indels) that 

were previously introduced by Cas9 (Mashal et al., 1995). U2OS cells were electroporated 

with the respective Cas9/gRNA-expressing plasmid to induce site-specific mutagenesis. 

Three days after transfection, genomic DNA was isolated and used as a template for PCR 

amplification. PCR primers were designed such that a 300-800 bp long amplicon was 

generated that contains the Cas9 cleavage site. After denaturation and reannealing of 200 ng 

purified PCR products, T7EI was added and the mixture incubated for 1h at 37°C. For DNA 
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cleavage analysis, the mixture was separated using a 10% native polyacrylamide gel (Figure 

21).  

 
Figure 21: T7 Endonuclease I (T7EI) assay to test Cas9/gRNA activity in vivo. U2OS cells were 
transfected with two gRNAs that target the human zyxin (ZYX) locus (a) or the human high mobility 
group protein A1 (HMGA1) locus (b), respectively. Control cells (CTL) were transfected with empty 
pX330. Genomic DNA was isolated and used as template for T7EI substrate preparation. ZYX-gRNA1, 
HMGA1-gRNA1 and HMGA1-gRNA2 successfully induce mutations at the targeted locus while ZYX-
gRNA2 does not modify the target site.  

 

The observed cleavage pattern indicates that ZYX-gRNA1, HMGA1-gRNA1 and HMGA1-

gRNA2, introduced a DSB that resulted in indel mutations at the respective target site. The 

advantage of using the T7EI assay over an in vitro assay is that gRNA functionality is 

validated in vivo and factors such as locus accessibility or DNA modifications are therefore 

considered. The disadvantage of T7EI is that it takes 3-4 days to complete and the sensitivity 

is about 5% due to high background cleavage occurring even on perfectly matched DNA 

(Vouillot et al., 2015).  

Both assays are useful to evaluate the capability of a gRNA to induce a DSB in vitro or in 

vivo. This is important for knockout studies, where efficiently cutting Cas9/gRNA pairs should 

be used, because mutations are induced more frequently then and fewer clones must be 

screened before a knockout is obtained (Ran et al., 2013b). However, the main objective of 

this thesis was to use CRISPR for endogenous FP tagging that requires homologous 

recombination (HR) at a given locus. HR frequencies depend on the DNA methylation status, 

chromatin structure and the nature of the specific sequences that undergo HR (Liang and 

Jasin, 1995; Ramdas and Muniyappa, 1995). Thus, even an efficient Cas9/gRNA pair might 

not be useful for HR-dependent integration of a fluorescent reporter. Therefore, instead of 

testing multiple gRNAs for mutagenic activity, the Cas9/gRNA pairs were directly validated 

according to their ability to mediate FP integration at the locus of interest in presence of a 
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donor repair template. The results of this approach are in full agreement with the obtained 

T7EI data as demonstrated later on. 

3.2.3. Generation of donor plasmids 
Next to a functional nuclease, the second component required for site-specific gene tagging 

with fluorescent reporters is a donor plasmid. The donor plasmid is based on a pUC57 

backbone and contains two gene-specific homology arms with a length of 500-1000 bp each 

that flank the transgene of interest. Generation of donor plasmids is cumbersome and time-

consuming since it generally relies on three or more cloning steps (Wu et al., 2008). A more 

rapid generation of any donor plasmid is desired and therefore two cloning strategies serving 

this purpose were established within this work: 1) two-step four fragments cloning and 2) one-

step Gibson assembly (Gibson et al., 2009). 

In general, both cloning strategies rely on the use of pUC57 as a vector backbone, a left 

homology arm (LHA) and a right homology arm (RHA) DNA sequence amplified from the 

genomic region of interest; the fluorescent protein DNA is amplified from a plasmid template. 

For four fragments cloning, each amplicon must contain a unique restriction site at its 5’- and 

3’-end, respectively, compatible with the neighboring DNA fragment. After amplicon 

purification, the three amplicons and the backbone are digested separately using restriction 

enzymes followed by DNA ligation (Figure 22). The ligation reaction is used for 

electroporation of E. coli cells and positive bacterial clones can be identified subsequently 

using colony PCR.  

 
Figure 22: Two-step four fragment cloning strategy for donor plasmid construction. a) Three 
inserts are prepared via PCR. Double digest of each insert and the pUC57 vector backbone creates 
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restriction enzyme specific 5’ or 3’ overhangs that facilitate annealing of complementary fragments. 
b) Ligation of complementary fragments and backbone yields the final donor plasmid.  

For Gibson assembly (Gibson et al., 2009) each amplicon must contain unique 5’- and 3’-

overhangs compatible with the neighboring DNA fragment. After amplicon purification, the 

amplicons and the linearized pUC57 backbone are digested and ligated in one step 

(Figure 23). The ligation reaction is then used for E. coli transformation via heat-shock and 

subsequent colony PCR analysis for identification of bacterial clones containing the correct 

plasmid. 

In conclusion, both cloning strategies can be applied to construct a donor plasmid within 4 

days. However, the preferred method for donor plasmid generation is Gibson assembly, 

because it does not rely on the use of restriction enzymes and therefore allows greater 

flexibility in plasmid design. Further, no restriction site remains between neighboring DNA 

fragments, which is crucial when two adjacent fragments reconstitute a coding exon. All donor 

plasmids generated over the course of this thesis are given in Table 14.  

 

 
Figure 23: One-step Gibson assembly for donor plasmid construction. Three inserts are prepared 
via PCR and mixed with EcoRV-linearized pUC57 plasmid. All four fragments are joined in a single 
tube isothermal reaction. T5 exonuclease (Exo) creates single-stranded 3’ overhangs that facilitate 
annealing of complementary fragments. Q5 DNA polymerase (Pol) fills in gaps within each annealed 
fragment. T4 ligase (Lig) seals nicks in the assembled DNA to yield the final donor plasmid.  

 
3.2.4. Clone isolation and clonal expansion 

After generation of gRNA and donor plasmids required for site-specific gene tagging, U2OS 

cells were co-transfected with both constructs. Since successfully targeted cells would 

express a fluorescent reporter, no further antibiotic selection markers were used. To obtain 

monoclonal cell lines, single cells were isolated using fluorescent activated cell sorting 
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(FACS) seven to ten days after transfection (Figure 24). Clonal expansion was done in 96-

well plates for about two weeks. Wells containing cell colonies were detected using a 

brightfield microscope. Those cells were detached from the growth surface using trypsin and 

transferred into a 24-well plate. After cultivation for another three to five days, the cells were 

split and replicated on a second 24-well plate containing glass cover slips for fluorescence 

microscopy analysis. Positively targeted fluorescent cells were kept in culture for further 

experiments.  

 

 
Figure 24: Clone selection and expansion. a) Co-transfection of Cas9/gRNA encoding plasmid and 
a donor plasmid carrying the transgene to be integrated yields a polyclonal mixture of targeted (hetero- 
and homozygous clones) and non-targeted cells. b) Clone isolation is done by sorting single cells into 
96-well plates using FACS. Expansion of single cells yields a monoclonal culture.  

 
3.2.5. Analysis of clonal cell lines  

Analysis of successfully targeted clonal cell lines was done using PCR, western blot (WB) 

and DNA sequencing of on- and off-target sites. Information about the zygosity of each cell 

line was obtained using out-out PCR. Here, locus-specific information about the transgene 

integration event is obtained by using two primers that anneal outside of the left and right 

homology arm of the donor plasmid. According to the resulting band pattern, the zygosity of a 
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cell line can be easily evaluated: 1) a single band is detected for a wildtype clone, 2) a 

wildtype band and an about 700 bp shifted single band are detected for a heterozygous clone 

and 3) a single about 700 bp shifted band with respect to the wildtype band is obtained for a 

homozygous clone (Figure 25a). If no suitable primers for an out-out PCR can be designed, 

an out-in or an in-out PCR can be used as well. Here the respective “in” primer anneals within 

the homology arms and the “out” primer anneals outside of them ensuring locus-specific 

analysis of transgene integration.   

Information about the nature of the integrated transgene was obtained using junction PCR 

(jPCR). Here, a transgene-specific primer and a locus-specific primer are used to generate a 

PCR product across the junction of the transgene and the gene to be modified. A PCR 

product of characteristic size is obtained for both heterozygous and homozygous clones, but 

not for wildtype cells (Figure 25b). 

 

 
Figure 25: Genotyping of clonal cell lines. a) Out-out PCR analysis of monoclonal cell lines gives 
locus-specific information about a transgene integration event. b) Junction PCR (jPCR) gives 
information about the nature of the transgene at a specific locus. Anticipated results are shown for wild 
type (CTL), heterozygously tagged (HET) and homozygously tagged (HOM) cells. (Adapted from from 
Ratz et al., 2015).  
 

To assess whether the generated fusion protein was stably expressed from the locus of 

interest, western blot analysis using protein-specific and transgene-specific antibodies was 

done. Information about presence and stability of both the wildtype and the fusion protein was 

obtained using protein-specific antibodies. The anticipated result corresponds to that of an 

out-out PCR: 1) a single band is detected for a wildtype clone, 2) a wildtype band and an 

about 27 kDa shifted band with respect to it are detected for a heterozygous clone and 3) a 

single, about 27 kDa shifted band with respect to the wildtype band is obtained for a 

homozygous clone (Figure 26a).  

To assess whether the integrated GFP-transgene was stably expressed as a fusion protein, a 

GFP-specific antibody was used. The resulting band pattern corresponds to the pattern 

observed during jPCR: no band is detected for the wildtype unmodified protein whereas an 
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about 27 kDa shifted band with respect to the wildtype protein should be visible for both 

hetero- and homozygous clones (Figure 26b).  

 

 
Figure 26: Immunoblotting of clonal cell lines. a) Analysis using a target protein specific antibody 
gives information about fusion protein stability and expression level. b)  Analysis using a tag specific 
antibody gives information about site-specific integration. Anticipated results are shown for wild type 
(CTL), heterozygously tagged (HET) and homozygously tagged (HOM) cells. (Adapted from from Ratz 
et al., 2015).  

 
Finally, verification of site-specific transgene integration and analysis of potential Cas9-

induced off-target mutations was done using Sanger sequencing. To obtain locus-specific 

sequence information, out-out/out-in/in-out and junction PCR products were used. Potential 

off-target sites were predicted using the CRISPR Design Tool (Hsu et al., 2013; 

http://crispr.mit.edu). PCR products containing on- or off-target sites were used for TOPO-

cloning and subsequent Sanger sequencing. 

 
 

3.3. CRISPR-Cas9-mediated endogenous protein tagging for super-
resolution imaging of living human cells 

The established general workflow for CRISPR-Cas9-mediated endogenous protein tagging 

was used for tag integration at various genomic loci in human cells. An overview about all 24 

generated cell lines is given in Table 15. The following part describes the use of a selection of 

three endogenously rsEGFP2-tagged cell lines for live cell RESOLFT imaging.  

 
3.3.1. Endogenous tagging of HMGA1, VIM and ZYX with rsEGFP2 

Using the established workflow, tagging was done for the nuclear DNA-binding non-histone 

high mobility group protein HMG-I (gene: HMGA1), the class-III intermediate filament protein 

vimentin (gene: VIM), and the focal adhesions protein zyxin (gene: ZYX). These proteins 

were chosen because they exhibit different expression levels and are localized in different 

cellular compartments, i.e. the nucleus (HMG-I), the cytoskeleton (vimentin) and in the 

http://crispr.mit.edu/
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plasma membrane associated focal adhesion complexes (zyxin). Further, whether 

homozygous tagging could be carried out for various proteins had to be addressed.  

For each of the three target genes, two guide RNAs (gRNAs) were designed that target the 

stop codon region of the respective gene (Figure 27). While tools for predicting gRNA 

efficiency are becoming increasingly popular, the actual gRNA activity is still somewhat 

unpredictable (Moreno-Mateos et al., 2015; Port et al., 2015). To circumvent this issue and to 

ensure that at least one gRNA will lead to efficient cleavage, two gRNAs were designed in 

silico and generated via oligo cloning.  

 

 
Figure 27: Design of gRNAs for targeting three human genes. Using the CRISPR Design Tool two 
gRNAs were designed to target the stop codon regions of the human genes encoding for vimentin (a), 
zyxin (b) or HMG-I (c), respectively. Each gRNA is targeting a 20bp nucleotide sequence (light blue) 
followed by an upstream protospacer-adjacent motif (PAM, magenta).   

  

To facilitate the integration of the rsEGFP2 coding sequence at the 3’-end of the respective 

last exon, donor plasmids with homology between 590 and 924 bp were generated (Figure 

28). The donor plasmid VIM-rsEGFP2 used for tagging vimentin (VIM) with rsEGFP2 was 

generated using four fragment cloning. Gibson assembly was used for generation of ZYX-

rsEGFP2 or HMGA1-rsEGFP2 donor plasmids for endogenous tagging of zyxin (ZYX) or 

HMG-I (HMGA1), respectively.  
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Figure 28: Donor plasmids for C-terminal tagging. a-c) Donor plasmids were generated for stop 
codon replacement by the rsEGFP2 coding sequence at the human VIM (a), ZYX (b) or HMGA1 (c) 
gene, respectively. Each plasmid was based on a pUC57 backbone and contained a left homology arm 
(light blue) and a right homology arm (magenta) of indicated length flanking the rsEGFP2 coding DNA. 
d) Homology-directed repair (HDR) leads to rsEGFP2 transgene integration and stop codon 
replacement at the respective genomic locus.  

 
Human U2OS cells were co-transfected with the respective bicistronic gRNA/Cas9 plasmid 

and the corresponding donor matrix. Transfection with donor plasmid only served as a 

negative control to assess for potential random integration events in absence of a DSB. 

Seven days after transfection, cells were analyzed using fluorescence activated cell sorting 

(FACS). Mean integration efficiency of rsEGFP2 at the VIM locus was 0.77% or 0.73% using 

VIM-gRNA1 or VIM-gRNA2, respectively (Figure 29). The mean fraction of cells expressing 

zyxin-rsEGFP2 was 0.12% using ZYX-gRNA1 whereas ZYX-gRNA2 failed to generate 

rsEGFP2-positive cells above donor plasmid only level. HMGA1 tagging with rsEGFP2 was 

achieved on average in 4.72% of the cells using HMGA1-gRNA1 and in 2.23% using 

HMGA1-gRNA2, respectively.  
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Figure 29: FACS analysis of U2OS cells after nuclease and donor plasmid transfection. Cells co-
transfected with VIM-gRNA1/donor or VIM-gRNA2/ donor (a), ZYX-gRNA1/donor or ZYX-gRNA2/donor 
(b) and HMGA1-gRNA1/donor or HMGA1-gRNA2/donor (c) were analysed via flow cytometry. Wildtype 
U2OS cells served as a control to assess for cellular autofluorescence. Donor plasmid only transfected 
cells served as a control to assess for the fraction of cells generated via random integration events of 
the plasmid in absence of nuclease. Co-transfections were done in duplicates of which one 
representative dot plot is shown.   

 

Single rsEGFP2-positive cells were sorted into 96-well plates per nuclease/donor 

combination. Within two weeks after sorting, between 10 % and 20 % of the sorted cells 

recovered and grew to confluency per plate. Those cells were detached from the growth 

surface and transferred to 24-well plates. After another week, cells were split again and 

replicated in a second 24-well plate containing cover slips for subsequent fluorescence 

microscopy analysis. Clones that expressed a fusion protein at the correct sub-cellular 

localization were further cultivated for analysis via out-out PCR (Figure 30). It should be noted 

that a few clones were highly fluorescent, but the signal was not restricted to any specific 

cellular structure. These clones probably represent the fraction of cells in which the donor 

plasmid underwent random genomic integration followed by FP expression.  

Among the two zyxin-rsEGFP2 clones, one heterozygous and one homozygous knock-in cell 

line was identified. The nuclease/donor matrix pairs targeting the VIM locus resulted in 8 

(VIM-gRNA1) or 9 (VIM-gRNA2) heterozygous monoclonal lines per 96-well plate, 
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respectively. In case of HMG-I-rsEGFP2, one homozygous and five heterozygous monoclonal 

lines (HMGA1-gRNA1) were generated, while one homozygous and four heterozygous clones 

were obtained for cells treated with HMGA1-gRNA2.  

 

 
Figure 30: out-out PCR analysis of knock-in cells. Out-out PCR was used for genotyping of 
monoclonal cell lines obtained after single cell sorting. Genotypting results are shown for zyxin-
rsEGFP2 clones generated with ZYX-gRNA1 (a), vimentin-rsEGFP2 clones generated with VIM-
gRNA1 (b) or VIM-gRNA2 (c) and HMG-I-rsEGFP2 cell lines generated with HMGA1-gRNA1 (d) or 
HMGA1-gRNA2 (e). 

 

In summary, for the three genes targeted between 2 and 9 endogenously tagged cell lines 

were obtained per 96-well plate. Except for tagging of VIM with rsEGFP2, one homozygous 

clone per nuclease/donor combination was obtained for ZYX and HMGA1, respectively. An 

overview of these results is given in Table 1. 
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Table 1: Generated knock-in cell lines. For each nuclease/donor pair, the fraction of cells exhibiting 
rsEGFP2 fluorescence (rsEGFP2+) was determined by FACS analysis of about 10,000 cells. The 
given numbers of genotyped clones refer to the analysis of clones obtained from a single 96-well plate.  

 
 

To take potential off-target effects into account, one clone per Cas9/gRNA pair was selected. 

This strategy is generally employed in order to ensure that a phenotype does not arise due to 

off-target mutagenesis of one specific gRNA. Instead, the observation of the same phenotype 

created with multiple gRNAs indicates that the phenotype is due to an on-target effect (Koike-

Yusa et al., 2014; Shalem et al., 2014; Wang et al., 2014a). Therefore, one homozygous and 

one heterozygous clone were picked from the obtained endogenously rsEGFP2-tagged 

clones for further experiments.  

Genotyping of the selected clones was done via out-out PCR and junction PCR (Figure 31). 

Out-out PCR confirmed the heterozygosity of clones HMGA1-rsEGFP2-HET, ZYX-rsEGFP2-

HET as well as VIM-rsEGFP2-HET1 and VIM-rsEGFP2-HET2. Further, a single PCR product 

band was detected for the clones HMGA1-rsEGFP2-HOM and ZYX-rsEGFP2-HOM indicating 

that those cell lines are homozygous for rsEGFP2 integration at the respective locus.  

 
Figure 31: Genotyping of selected knock-in cells. a) Out-out PCR analysis using a primer pair 
annealing outside the homology arms. b) Junction PCR analysis using a forward primer that anneals 
outside the left homology arm and a reverse primer that anneals within the rsEGFP2 coding sequence. 
CTL, control (parental U2OS cells); HMGA1-HET, heterozygous HMGA1-rsEGFP2-HET1.5 clone, 
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HMGA1-HOM, homozygous HMGA1-rsEGFP2-HOM2.4 clone; ZYX-HET, heterozygous ZYX-rsEGFP2 
clone; ZYX-HOM, homozygous ZYX-rsEGFP2-HOM clone; VIM-HET1, heterozygous VIM-rsEGFP2-
HET1.2 clone; VIM-HET2, heterozygous VIM-rsEGFP2-HET2.1 clone. 
 

Analysis of (fusion) protein expression levels and stability was done using immunoblotting. 

Wildtype U2OS cells express HMG-I with a size of 12 kDa, whereas heterozygous knock-in 

cells express both untagged HMG-I and HMG-I-rsEGFP2 with a molecular weight (MW) of 

about 40 kDa (Figure 32a). Homozygous knock-in cells express tagged HMG-I-rsEGFP2 

only. Note that for both knock-in cell lines a shorter HMG-I-rsEGFP2 fusion with an apparent 

MW of about 35 kDa could be detected but not for the wildtype U2OS cells. Unmodified 

U2OS cells express zyxin with a predicted MW of 50 kDa and an observed MW of about 80 

kDa (Figure 32b). This size difference is well explained by extensive posttranslational 

modifications of zyxin observed experimentally (Choudhary et al., 2009; Olsen et al., 2006). 

As expected, the heterozygous zyxin-rsEGFP2 clone shows a second band with a MW of 

about 110 kDa indicating stable expression of zyxin-rsEGFP2. Here, untagged zyxin also 

runs at a higher MW explained by the fact that ZYX-gRNA1 induces mutations within the last 

exon of the gene leading to a modified but untagged protein (see below). U2OS cells 

homozygous for an rsEGFP2 knock-in at the ZYX locus only express tagged zyxin-rsEGFP2. 

Both heterozygous vim-rsEGFP2 clones express wildtype vimentin from the unmodified allele 

and vimentin-rsEGFP2 from the modified allele (Figure 32c).  

 

 
Figure 32: Western blot analysis of selected cell lines. Cell lysates of monoclonal cell lines were 
immunoblotted for rsEGFP2, beta-Actin and the respective endogenously tagged protein: HMG-I (a), 
zyxin (b) and vimentin (b). 
 

In summary, each of the selected cell lines incorporated the coding sequence of rsEGFP2 at 

the specified locus. Further, the rsEGFP2 fusion proteins are expressed stably from the 

respective locus leading to a mixed population of both tagged and untagged protein for the 

heterozygous and to a pure population of tagged protein for the homozygous knock-in cells.  
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3.3.2. DNA sequencing of endogenously tagged cell lines 

3.3.2.1. On-target site sequencing 
Each gRNA was targeted towards a specific gene sequence of interest, the on-target site. 

Additionally, each gRNA potentially targets a number of off-target sites within the genome of 

interest leading to unintended mutations and unwanted chromosomal translocations (Wu et 

al., 2014). The next section presents the analysis of both on- and off-target sites using 

Sanger sequencing of TOPO-cloned PCR products.  

Both VIM-targeting nucleases (VIM-gRNA1 and 2) are expected to induce a DSB within the 3’ 

UTR of the gene close to the stop codon. Consequently, no mutations of the coding sequence 

were observed. However, both rsEGFP2-tagged alleles and untagged alleles exhibited small 

deletions in the non-coding regions where the respective nuclease induces DNA cleavage 

(Figure 33).  

 

 
Figure 33: On-target sequencing of vimentin-rsEGFP2 clones. a, b) VIM-gRNA1 induced an 11 bp 
deletion in the untagged allele (a) and a 1 bp deletion in the tagged allele of clone VIM-rsEGFP2-
HET1.2. c, d) VIM-gRNA2 induced a 2 bp deletion in the untagged (c) and a 3 bp deletion in the tagged 
(d) allele of clone VIM-rsEGFP2-HET2.1. Wildtype reference sequences for untagged and tagged 
alleles are given above the actual consensus Sanger sequencing results.  
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Particularly, the untagged allele of the first heterozygous clone Vim-rsEGFP2-HET1 

contained an 11 bp deletion whereas the tagged allele carried a 1 bp deletion (Figure 33a, b). 

The untagged allele of the second clone Vim-rsEGFP2-HET2 contained a 2 bp deletion 

whereas the tagged allele carried a 3 bp deletion (Figure 33c, d). Interestingly, all mutations 

induced sequence alterations in the DNA strand complementary to the ‘seed region’ of the 

gRNA. The seed region comprises the last 12 nucleotides of the gRNA and mismatches 

between gRNA and DNA in this region are known to efficiently abrogate Cas9 cleavage 

activity (Hsu et al., 2013). The presented results confirm the low mismatch tolerance in this 

region as already a 1 bp deletion efficiently inhibits further Cas9-mediated DNA cleavage. 

To modify the HMGA1 gene, one nuclease was guided to the 3’ UTR (HMGA1-gRNA1) with 

the PAM site directly flanking the stop codon, while the second nuclease targeted the last 

intron (HMGA1-gRNA2). As expected no large insertions or deletions occurred that would 

affect nearby coding sequences (Figure 34). However, each nuclease target site contained 

small DNA sequence modifications. Again, those mutations were found in the DNA sequence 

required for hybridization to the gRNA seed region, highlighting the low tolerance of gRNAs to 

mismatches in this region. Specifically, a 1 bp insertion was found in the untagged allele of 

the heterozygous clone (Figure 34a) while a larger deletion of 11 bp was detected at the 

allele containing the rsEGFP2 coding sequence (Figure 34b). Unexpectedly, both of the 

tagged alleles in the homozygous HMGA1-rsEGFP2 clone exhibit an identical consensus 

sequence containing a 1 bp insertion (Figure 34c). This was surprising, because DSB repair 

via non-homologous end joining (NHEJ) is characterized by random addition or deletion of 

nucleotides that results in a diverse pattern of mutations (Cradick et al., 2013). As a 

homozygous knock-in cell is assumed to result from two independent donor plasmid 

integration events at two alleles, further Cas9-mediated mutagenesis at those alleles should 

lead to two different mutation patterns. However, an alternative explanation is that only one 

allele recombined with the provided donor plasmid initially followed by a secondary mutation 

that abrogates the gRNA binding site in the donor template. The now ‘Cas9-resistant’ allele 

could well serve as a repair template for the second allele thereby converting an initially 

heterozygous mutation to homozygosity. In fact, a similar mechanism known as the 

‘mutagenic chain reaction’ is employed to convert heterozygous flies to homozygosity (Gantz 

and Bier, 2015).  
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Figure 34: On-target sequencing of HMG-I-rsEGFP2 clones. a, b) HMGA1-gRNA1 induced a 1 bp 
insertion in the untagged allele (a) and an 11 bp deletion in the tagged allele of clone HMG-I-rsEGFP2-
HET1.5. c) All tagged alleles of the homozygous clones HMG-I-rsEGFP2-HOM2.4 carry a 1 bp 
insertion induced by HMGA1-gRNA2. Wildtype reference sequences for untagged and tagged alleles 
are given above the actual consensus Sanger sequencing results. 

 

The active ZYX-specific nuclease (ZYX-gRNA1) was targeted to the terminal exon for 

induction of a DSB. To avoid secondary nuclease-mediated mutations in the coding region 

after transgene integration, silent mutations within the nuclease binding site in the donor 

plasmid were introduced. As expected, this strategy successfully prevented Cas9-induced 

mutagenesis in alleles that recombined with the ‘nuclease-resistant’ donor plasmid (Figure 

35b, c). However, DNA sequencing revealed that NHEJ induced the deletion of a single 

cytosine in the non-tagged allele of the heterozygous ZYX-rsEGFP2 cell line (Figure 35a). 

This single point mutation in the terminal exon resulted in a frameshift that ultimately led to 

the expression of a mutated version non-tagged zyxin.  

 



3. Results 

61 
 

 
Figure 35: On-target sequencing of zyxin-rsEGFP2 clones. a) ZYX-gRNA1 induced a 1 bp deletion 
within the last exon of ZYX leading to change of the amino acid sequence in the expressed protein. b, 
c) ZYX-gRNA1 induced mutations within the tagged allele of clone ZYX-rsEGFP2-HET (b) and clone 
ZYX-rsEGFP2-HOM (c) are avoided after donor plasmid integration carrying silent mutations in the 
nuclease binding site (red characters). Wildtype reference sequences for untagged and tagged alleles 
are given above the actual consensus Sanger sequencing results. 

 

In summary, DNA sequencing of gRNA/Cas9 on-target sites revealed some interesting 

aspects about the CRISPR system. First, Cas9-induced DSBs mainly result in small indels 

that range from 1-11 bps, but no major genomic rearrangements occur. Second, all mutations 

were found in the gRNA seed region, highlighting the sensitivity of this region towards 

mismatches. Finally, silent mutations in the gRNA binding site and the adjacent PAM can be 

introduced into donor plasmids to efficiently inhibit Cas9-mediated mutagenesis after 

transgene integration. As this strategy prevents donor plasmid degradation by Cas9 nuclease 

activity, ‘nuclease-resistant’ repair templates should be used for subsequent experiments 

relying on homologous recombination.  

3.3.2.2. Off-target site sequencing 
Next to on-target site analysis, potential off-target site mutations in each clone were 

assessed. Therefore, the top two off-target sites as predicted with the CRISPR Design Tool 

were PCR amplified and fragments containing the respective site were sub-cloned for Sanger 

sequencing. An overview of the two off-target DNA sequences with the highest similarity to 

the on-target sequence for each nuclease is given in Table 2.  
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Table 2: Overview of the top two predicted off-target sites associated with each gRNA. Off-target 
sites were predicted using the CRISPR Design Tool. Given are the off-target (OT) sequence, the 
number of mismatches as well as their position with respect to the on-target site. Chromosome 
number, nucleotide position on that chromosome and the corresponding gene, specifies the off-target 
locus. nc: non-coding DNA region. 

 

 

Endogenous tagging of the VIM gene was carried out by using VIM-gRNA1 or VIM-gRNA2 to 

guide Cas9 to the stop codon of the gene. The top two off-target sites for each gRNA are 

predicted to lie within non-coding regions of chromosomes 5 and 21 (VIM-gRNA1) as well as 

chromosomes 6 and 2 (VIM-gRNA2), respectively. However, neither the Vim-rsEGFP2 clone 

generated with gRNA1 nor the Vim-rsEGFP2 cell line generated with gRNA2 showed any 

Cas9-induced alterations at those sites (Figure 36). This was expected as all off-target sites 

exhibit a) 3-4 nucleotide mismatches between the potential gRNA:DNA duplex and b) 1-2 of 

those mismatches are found in the 12 bp seed region upstream of the PAM that is crucial for 

high Cas9 binding and cleavage activity (Hsu et al., 2013; Ran et al., 2013b). 
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Figure 36: Off-target site sequencing in vimentin-rsEGFP2 clones. None of the top two predicted 
off-target (OT) sites for VIM-gRNA1 (a, b) or VIM-gRNA2 (c, d) in the respective clones was modified.   

 

HMGA1-gRNA1 is predicted to guide Cas9 to the gene coding for peptidoglycan recognition 

protein 4 (PGLYRP4) on chromosome 1 and to a non-coding region on the same 

chromosome for DSB induction. The top two off-target sites associated with HMGA1-gRNA2 

are predicted to be a non-coding sequence on chromosome 5 and the gene coding for the 

protein ‘A disintegrin and metalloproteinase with thrombospondin motifs 3’ (ADAMTS3) on 

chromosome 4. Also, none of those sites showed any DNA modifications compared to 

wildtype cells (Figure 37). This was not surprising for HMGA1-gRNA1 as it fulfils all 

requirements for a high quality gRNA, i.e. at least three mismatches between the gRNA and 

the potential off-target site of which one mismatch is found within the gRNA seed region (Hsu 

et al., 2013; Ran et al., 2013b). However, HMGA1-gRNA2 does only contain three nucleotide 

mismatches within the first 8 bp or the ‘non-seed region’ that is significantly less mismatch-

sensitive. Absence of off-target mutagenesis for HMGA1-gRNA2 highlights that, next to the 

number and position of mismatches, the spacing between mismatched nucleotides is 

important. In fact, DNA sequences that contained nucleotide mismatches spaced less than 

four bases were not targeted by the respective gRNA (Hsu et al., 2013). Moreover, all 

predicted off-target sites for HMGA1-gRNA1 and HMGA1-gRNA2 contain a PAM site with the 

sequence NAG. While Cas9 cleaves targets sites containing 5’-NAG PAMs, the efficiency is 

one-fifth of the efficiency for target sites with 5’-NGG PAMs (Hsu et al. 2013).  
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Figure 37: Off-target site sequencing in HMG-I-rsEGFP2 clones. None of the top two predicted off-
target (OT) sites for HMGA1-gRNA1 (a, b) or HMGA1-gRNA2 (c, d) in the respective clones was 
modified.   

 

Finally, the two top off-target sites for ZYX-gRNA1 are predicted to lie within non-coding 

regions of chromosomes 16 and 18. Again, neither the hetero- nor the homozygous clone 

generated with the help of ZYX-gRNA1 contained any off-target mutations at those sites 

(Figure 38). This is in agreement with the previous observations where 3-4 mismatches in the 

right position efficiently reduced Cas9 activity on a similar DNA sequence. 

  

 
Figure 38: Off-target site sequencing in zyxin-rsEGFP2 clones. a-d) None of the top two predicted 
off-target (OT) sites for ZYX-gRNA1 was modified in the heterozygous (a, b) or the homozygous (c, d) 
knock-in clone.   
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In summary, no off-target cleavage activity was detected for the analyzed DNA sequences. 

This was expected as all of the used gRNAs fulfil at least one of the critical points for high 

target specificity: 1) number of mismatches is at least 3 nucleotides, 2) at least one mismatch 

lies within the PAM proximal region and 3) a maximal number of mismatches is spaced less 

than four bases (Hsu et al., 2013). Therefore, design of only two gRNAs based on the 

CRISPR Design Tool is sufficient to generate highly active and specific gRNAs useful for 

CRISPR-based endogenous protein tagging.  

 

3.3.3. Flow cytometry of endogenously tagged and overexpressing cells 
Fluorescence activated cell sorting (FACS) was applied to analyze rsEGFP2 fusion protein 

expression levels in living cells. FACS is capable to measure fluorophore concentrations in 

thousands of cells within a few seconds. Therefore, the method is a suitable tool for 

investigating the fusion protein expression levels between different samples.  

FACS analysis of U2OS cells after vim-rsEGFP2 plasmid transfection revealed that 25.5 % of 

the cells were fluorescent (Figure 39a). Within this fraction, the mean fluorescence intensity 

(MFI) per single cell varied substantially within the range of 90423 ± 92271 AU (SD, n = 3819 

cells). The high standard deviation indicates that plasmid-based overexpression of vim-

rsEGFP2 leads to a large variation in fusion protein expression levels from cell-to-cell. This is 

in agreement with previous studies that showed a high variability in plasmid uptake per cell 

which ultimately results in highly heterogeneous protein expression levels (Cohen et al., 

2009). On the other hand, FACS of endogenously tagged vim-rsEGFP2 knock-in cells 

showed that virtually every cell is fluorescent. Moreover, the measured MFI was 16263 ± 

9839 AU (SD, n = 11800 cells) for the first clone vim-rsEGFP2-HET1 and 16577 ± 8320 AU 

(SD, n = 11536 cells) for the second clone vim-rsEGFP2-HET2. As both clones are 

heterozygous for rsEGFP2 integration at the VIM locus, the fluorescent intensities are 

expected to be similar. It is also not surprising, that overexpression of vim-rsEGFP2 from a 

heterologous promoter leads to artificially high fusion protein levels. In particular, 

overexpression levels are increased up to 23-fold compared to endogenous vim-rsEGFP2 

expression levels. Interestingly, a high standard deviation for the MFI was also observed in 

endogenously tagged vim-rsEGFP2 cells. This indicates that, although individual cells were 

genetically identical, they exhibit substantial heterogeneity in fusion protein expression levels. 

Those expression level variations on a single cell level might be attributed to variations in 

gene expression, cell size and/or cell cycle stage (Kaern et al., 2005).  
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Figure 39: FACS of transiently transfected and stable knock-in cells. Comparison of transient 
overexpression and stable endogenous expression of vimentin-rsEGFP2 (a), zyxin-rsEGFP2 (b) and 
HMG-I-rsEGFP2 (c) fusion proteins. Overexpression experiments were done in duplicates. Fraction of 
rsEGFP2+ (%) cells is given in each dot plot. (Adapted from Ratz et al., 2015).  

 

Transfection of U2OS cells with a plasmid coding for zyx-rsEGFP2 resulted in 29.5 % 

fluorescent cells on average (Figure 39b). On a single cell level, a large variation in MFI could 

be detected that exhibited values within 37793 ± 60852 AU (SD, n = 3564 cells). Obviously, 

zyx-rsEGFP2 levels cannot anticipate negative values. The high standard deviation merely 

reflects the high variability of fusion protein expression levels that range from 102-105 AU as a 

consequence of heterologous overexpression. Compared to overexpression, FACS of 

endogenously tagged zyx-rsEGFP2 cells revealed a) that every cell is fluorescent, b) 

heterozygous cells exhibit an MFI of 903 ± 575 AU (SD, n = 11866 cells) and c) homozygous 
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cells display an MFI of 1080 ± 590 (SD, n = 11664 cells). In contrast to endogenous zyx-

rsEGFP2 expression, protein levels are up to 100-fold increased upon transient transfection. 

Such an increase in protein levels is likely to induce changes of zyxin localization followed by 

a disturbance in cellular function (Nix et al., 2001). Interestingly, the MFI between both clones 

was similar although the heterozygous zyxin-rsEGFP2 carries only one tagged allele, while 

the homozygous knock-in cell line carries two ZYX-rsEGFP2 alleles. Intuitively, one might 

assume that fusion protein expression levels would differ by a factor of two between both 

clones. However, monoallelic gene expression from only one ZYX allele might occur while the 

second allele is silenced (Reinius and Sandberg, 2015). 

The mean transfection efficiency of U2OS cells with a plasmid encoding HMGA1-rsEGFP2 

was 35.5 %, while the mean MFI per cell was 62321 ± 74841 (SD, n = 12420 cells) (Figure 

39c). This observation is in agreement with the previous results that demonstrated highly 

heterogeneous fusion protein expression levels upon plasmid transfection. In fact, the 

HMGA1-rsEGFP2 level per single transfected cell can display a MFI value across four orders 

of magnitude (102-105 AU), which is reflected by a standard deviation higher than the actual 

mean. While transient transfection results in 35.5% of fluorescent cells, the entire population 

of endogenously tagged HMGA1-rsEGFP2 cells is fluorescent.  Heterozygous tagging of 

HMGA1 leads to a mean single cell expression level of 2530 ± 1409 AU (SD, n = 13157 

cells), while homozygous rsEGFP2 integration leads to HMGA1-rsEGFP2 expression levels 

of 9018 ± 4158 AU (SD, n = 11626 cells). Compared to overexpression, endogenous 

expression results in a 15-fold lower HMGA1-rsEGFP2 level representing the physiological 

expression level of the protein. Interestingly, the homozygous clone exhibits an about 4-fold 

higher fluorescence signal per cell compared to the heterozygous HMGA1-rsEGFP2 clone. 

This is consistent with the assumption that all HMGA1 alleles serve as templates for 

transcription resulting in a higher fusion protein level for homozygous knock-in cells.  

In conclusion, transient plasmid transfection results in fusion protein levels that substantially 

vary over several orders of magnitude (102-105 AU) in a single cell. In particular, an up to 100-

fold increase could be observed upon fusion protein overexpression compared to 

endogenous expression. Interestingly, phenotypic heterogeneity of fusion protein expression 

levels among genetically identical cells was observed for all endogenously tagged cell lines. 

This single cell heterogeneity or ‘biological noise’ arises from cellular differences in gene 

expression and cell cycle stage as well as from physical parameters such as cell size (Kaern 

et al., 2005).  
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3.3.4. Confocal microscopy of endogenously tagged and overexpressing cells 
Overexpression of fusion proteins is well known to cause a multitude of artefacts including 

protein aggregation and mislocalization as well as morphology changes of cells and 

organelles (Gibson et al., 2013; Rizzo, 2010). However, while FACS can be used to asses 

expression levels in thousands of cells in a sensitive manner easily, it does not provide any 

information about parameters such as protein localization. Instead, confocal fluorescence 

microscopy was used, because it allows the investigation of potential overexpression-induced 

artefacts in a spatial context on a single cell level. In particular, the fusion protein expression 

pattern was compared between plasmid-transfected and endogenously tagged U2OS cells. 

As a control, fixed U2OS were used in which the respective protein of interest was visualized 

using indirect immunofluorescence staining.  

Immunostaining of fixed U2OS cells revealed the native localization of vimentin within the 

cytoplasm where the protein forms intermediate filaments (Figure 40a). HMGA1 is a nuclear 

protein widely distributed within this compartment, while zyxin is localized to discrete focal 

adhesion sites anchoring the respective cell to the extracellular matrix (ECM).  

Overexpression of vimentin-rsEGFP2 induces an aberrant cellular morphology and densely 

bundled vimentin filaments in living U2OS cells (Figure 40b). This observation is in agreement 

with previous studies for other epithelial cells (Nishio et al., 2001) and highlights the 

importance of vimentin filaments for the maintenance of cellular integrity (Fuchs and Weber, 

1994). Confocal imaging of HMGA1-rsEGFP2 overexpressing cells revealed artifacts such as 

protein aggregates within the nucleoplasm, cell morphology changes as well as fusion protein 

mislocalization in the cytoplasm. Apart from the observed artefacts, HMGA1 overexpression 

is also likely to have an impact on gene expression, because the protein is involved in 

chromatin architecture and regulation of basal transcription (Grosschedl et al., 1994). 

Microscopic inspection of zyxin-rsEGFP2 overexpressing cells revealed a high proportion of 

mislocalized nucleocytoplasmic fusion protein in most cells. Zyxin is a low abundance protein 

that is usually enriched in cell-cell and cell-substrate focal adhesion sites (Beckerle, 1997). 

However, overexpression leads to the accumulation of cytoplasmic zyxin, because it might 

not be incorporated into spatially restricted focal adhesion complexes anymore.  

Confocal microscopy analysis of living endogenously tagged U2OS cells showed that the 

investigated proteins exhibited a native localization pattern: vimentin forms thin cytoskeletal 

intermediate filaments, HMGA1 is solely found in the nucleus and zyxin is localized to 

discrete focal adhesion sites (Figure 40c). Remarkably, fusion protein distribution in 
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endogenously tagged cells resembled the pattern previously only observed in fixed and 

antibody-stained cells.  

In summary, plasmid transfection results in artificially high fusion protein expression levels, 

which induce protein mislocalization and aggregation as well as changes in cellular 

morphology. On the contrary, endogenous integration of a fluorescent reporter at a genomic 

locus leads to physiological fusion protein levels and endogenously tagged cells are free of 

overexpression-induced artefacts. Further, this work shows that cellular artefacts are caused 

by non-physiological protein levels rather than by fusion of a fluorescent tag to a host protein. 

While transient transfection often leads to inconclusive and contradictory results, endogenous 

protein tagging will allow meaningful investigations of cellular dynamics in the future (Gibson 

et al., 2013). 

 
Figure 40: Fluorescence confocal imaging of U2OS cells. a) Fixed and immunostained U2OS cells 
show endogenous expression patterns of Vimentin, HMG-I and Zyxin. b) Living and transfected U2OS 
cells show heterogenous expression levels of Vimentin-, HMG-I and Zyxin-rsEGFP2 fusion proteins 
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under the control of a cytomegalovirus (CMV) promoter. c) Living U2OS cells expressing vimentin-, 
HMG-I- and zyxin-rsEGFP2 fusion proteins from the endogenous locus show homogenous expression 
patterns comparable to immunostaining against the untagged protein in fixed cells. Scale bar: 10 μm. 
(Adapted from from Ratz et al., 2015).  
 

3.3.5. RESOLFT imaging of HMGA1-, VIM- and ZYX-rsEGFP2 cells 
RESOLFT super-resolution microscopy is particularly suited for investigating protein 

dynamics and distributions at the nanoscale in living cells (Grotjohann et al., 2012; Testa et 

al., 2012). While RESOLFT relied on transient overexpression so far, endogenous protein 

tagging provides the superior labelling strategy for live cell imaging, because it preserves 

native expression levels. A combination of the most suitable live cell super-resolution method 

with the most native labelling strategy is demonstrated in the following part.  

First, RESOLFT microscopy was applied to image living cells expressing endogenously 

rsEGFP2-tagged vimentin (Figure 41a). Compared to diffraction-limited confocal microscopy, 

RESOLFT provides a superior resolution and nanoscale information can be retrieved. Without 

any image processing, we measured over stretches of thin vimentin-rsEGFP2 filaments a full 

width at half maximum of ~40 nm, based on Lorentzian fits to the data (Figure 41b). Sub-

cellular dynamics could be recorded in a small field of view (4.5 x 4.5 µm²) on the seconds 

time scale (Figure 41c) as well as over the range of several minutes in a larger field of view 

of 12 x 12 µm² (Figure 41d).  
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Figure 41: Live cell RESOLFT nanoscopy of vimentin-rsEGFP2 knock-in cells. a) Overview of two 
adjacent cells. b) Comparison of confocal and RESOLFT images. The images have been recorded in 
the area indicated in (a). Right: Intensity profiles across the filaments at the indicated sites (white 
arrows), each fitted with a Lorentzian function. The full width at half maximum (FWHM) values are 
given. (c) Repeated RESOLFT imaging in the area indicated in (a). Images were recorded every 12 
seconds, as indicated. (d) Time-lapse RESOLFT imaging; images were recorded every 2 minutes, as 
indicated. (Adapted from Ratz et al., 2015). 
 

Next, we analyzed living endogenously tagged HMGA1-rsEGFP2 cells using RESOLFT 

(Figure 42a, b). RESOLFT provides a superior resolution compared to confocal imaging 

exemplified by the fact that individual protein clusters could be distinguished. Further, 

dynamics of zyxin-rsEGFP2 knock-in cells could be captured at sub-diffraction resolution on a 

time-scale of several minutes (Figure 42c, d) and individual focal adhesion complexes 

distinguished from each other using RESOLFT.  
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Figure 42: Live cell RESOLFT nanoscopy of HMG-I- and zyxin-rsEGFP2 knock-in cells. a) 
Overview RESOLFT image of a homozygous HMG-I-rsEGFP2 cell. b) Comparison of confocal and 
RESOLFT images. The images have been recorded in the area indicated in a). c) RESOLFT 
microscopy of homozygous zyxin-rsEGFP2 cells. Images were recorded every 3.2 min, as indicated. 
(d) Comparison of confocal and RESOLFT images recorded in the area indicated in (c). Right: Intensity 
line profile across the area indicated in (d). All images display raw data. No deconvolution was applied. 
The RESOLFT image in (b) has been smoothed. Scale bars: 1 µm. (Adapted from Ratz et al., 2015). 

 

In summary, this part presented the establishment of a general workflow for the generation of 

human cells expressing rsEGFP2 from a locus of interest using the CRISPR technology. The 

established methodologies include: 1) target selection, gRNA design, cloning and in vitro or in 

vivo functional testing; 2) donor plasmid generation using restriction enzyme based cloning or 

Gibson assembly; 3) clone isolation using single cell sorting and clonal expansion; 4) 

characterization of clonal lines via (out-out/junction) PCR, immunoblotting, Sanger 

sequencing, flow cytometry and confocal microscopy; 5) RESOLFT super-resolution imaging 

of endogenously tagged cells.  

The established methodologies should be applicable to tag any human gene with a transgene 

of choice including fluorescent proteins, self-labelling enzymes or small protein tags. As 

outlined here, the entire protocol, from project planning to RESOLFT imaging, can be 

executed within 6 weeks. The entire workflow could be greatly accelerated by using a cell line 

that exhibits a faster growth rate than the here presented U2OS cells, because recovery of 

U2OS cells after single cell sorting takes about 2-3 weeks.  

The workflow was applied to target three human genes (VIM, ZYX and HMGA1) for 

endogenous tagging with rsEGFP2 and both hetero- and homozygous knock-in cell lines 

were efficiently generated. DNA sequencing of on-target sites verified the site-specific 

transgene integration and absence of mutations at unwanted off-target sites indicates that the 

used gRNAs were highly sequence-specific. Moreover, endogenously tagged cells expressed 

the respective fusion protein at physiological levels and were free of overexpression-induced 

artefacts. Further, RESOLFT super-resolution microscopy was employed to visualize 
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nanoscale protein dynamics in living knock-in cells over different timescales. In fact, live cell 

RESOLFT imaging on endogenously tagged cells is the method of choice to provide 

physiologically relevant information on protein dynamics at the highest attainable optical 

resolution.  

 

3.4. Localization, dynamics and abundance of mitochondrial 
prohibitins  

Prohibitins comprise a family of mitochondrial inner membrane proteins that is evolutionary 

conserved and ubiquitously expressed (Merkwirth and Langer, 2009). Prohibitin-1 (PHB1) 

and prohibitin-2 (PHB2) were shown to form large ring assemblies in the inner mitochondrial 

membrane of yeast, while various subcellular localizations have been proposed for PHB1 and 

PHB2 in mammalian cells (Merkwirth and Langer, 2009; Artal-Sanz and Tavernarakis, 2009). 

However, lack of antibodies and overexpression-induced artefacts hampered the detailed 

study of mammalian prohibitin localization so far. Further, dynamics and abundance of PHB1 

and PHB2 are unknown. Here, we show that PHB1 or PHB2 overexpression induces two 

different aberrant mitochondrial morphologies and that these artefacts can be avoided upon 

CRISPR-mediated endogenous tagging of PHB1 and PHB2. The endogenously tagged 

prohibitin cell lines were used to demonstrate the submitochondrial prohibitin localization via 

immunogold EM and cluster formation of PHB1 and PHB2 using STED microscopy. Further, 

prohibitin dynamics were analyzed using FRAP measurements and the abundance of each 

prohibitin molecule per cell was quantified using western blotting. Finally, this information was 

integrated to estimate the amount of prohibitin complexes per mitochondrial cristae.  

 
3.4.1. Overexpression analysis of PHBs 

Transient overexpression of fusion proteins is widely used to study e.g. the subcellular 

localization of the fusion protein. However, overexpression of PHB1 or PHB2 fused to the 

reversibly switchable fluorescent protein Dreiklang (DK) caused an aberrant mitochondrial 

morphology in the majority of transfected cells (Figure 43).  
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Figure 43: Overexpression of PHB1-DK and PHB2-DK in U2OS cells. a) PHB1-DK overexpression 
induces different mitochondrial morphologies: wildtype (I), intermediate (II) and vesicular (III). b) PHB2-
DK overexpression induces another set of phenotypes: wildtype mitochondria (I), fragmented 
mitochondria (II) and cytoplasmic protein aggregates (III). Scale bar: 10 µm.  

 

Only 11% of the PHB1-DK expressing cells displayed a wildtype mitochondrial morphology, 

while 72% of the cells displayed highly aberrant mitochondria that formed perinuclear clusters 

of enlarged mitochondria (Figure 43a). An intermediate phenotype displaying both partially 

clustered and retracted mitochondrial tubules was observed in 17% of PHB1-DK positive 

cells.  

Interestingly, PHB2-DK overexpression induced a phenotype different from PHB1-DK 

overexpression. Here, only 12% of the PHB2-DK positive cells exhibited a wildtype 

mitochondrial morphology and 63% of the cells showed an accumulation of fluorescent 

PHB2-DK aggregates (Figure 43b). The majority of those aggregates was cytoplasmic and 

did not co-localize with mitochondria that were specifically stained using an anti-TOM20 

antibody. This observation indicates an inhibited mitochondrial import of PHB2-DK at high 

expression rates. Further, 25% of the PHB2-DK overexpressing cells displayed fragmented 

mitochondria in which co-localization of PHB2-DK and TOM20 still occurred.  

In conclusion, overexpression of PHB1-DK mainly results in perinuclear clustering of enlarged 

mitochondria, while PHB2-DK overexpression causes mitochondrial fragmentation or 
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accumulation of cytoplasmic protein aggregates. Although the underlying molecular 

mechanisms remain to be investigated, it can be concluded that artificially high prohibitin 

levels disrupt the tubular structure of mitochondrial.  

 

3.4.2. Endogenous tagging of PHBs 
As transient transfection of both PHB1-DK and PHB2-DK mainly resulted in aberrant 

mitochondrial morphologies, we decided to use CRISPR-mediated endogenous tagging for 

labelling of both proteins. Prohibitins are targeted to mitochondria by an unconventional 

noncleavable targeting sequences at their N-terminal end (Tatsuta et al., 2005). Positioning of 

an N-terminal tag caused accumulation of prohibitin in the cytoplasm of baby hamster kidney 

cells, while C-terminal c-Myc tagging lead to mitochondrial accumulation (Ikonen et al., 1995). 

Similary, C-terminal GFP tagging was successfully done for ectopically expressed PHB1 and 

PHB2 in HeLa cells (Kasashima et al., 2006) and for PHB2 in mouse cells (Merkwirth et al., 

2008; Kowno et al., 2014). In order to accomplish C-terminal tagging of PHB1 and PHB2 also 

on an endogenous level, two gRNAs were designed that target the stop codon region of each 

respective prohibitin (Figure 44).  

 

 
Figure 44: gRNA design for C-terminal tagging of PHB1 and PHB2. Two gRNAs were designed for 
targeting the stop codon region of human PHB1 (a) or PHB2 (b), respectively. Light blue: gRNA binding 
site; Magenta, PAM site.  

Using the CRISPR Design Tool (Hsu et al., 2013), gRNAs that mediate a Cas9-induced DSB 

within the non-coding 3’-UTR of each gene and with the lowest amount of associated off-

target sites were chosen. Each gRNA was inserted into pX330 using the oligo cloning 

protocol described previously (section 3.2.2). 

Generation of donor plasmids for the integration of the fluorescent protein Dreiklang (DK) was 

done using Gibson assembly (Gibson et al., 2009). Therefore, the respective left and right 
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homology arms were amplified from U2OS genomic DNA using the primers listed in Table 5. 

The coding sequence of DK was amplified from a plasmid. Gibson assembly resulted in two 

donor plasmids for PHB1 and PHB2, respectively, bearing DK flanking homology regions 

between 832 and 969 bp (Figure 45).  

 

 
Figure 45: Generation of Cas9-resistant donor plasmids for C-terminal tagging of PHB1 and 
PHB2. Each donor plasmid was generated using Gibson assembly and comprises a left (light blue) and 
right homology arm (magenta) with a length of about 800-1000 bp. a) The PHB1-DK donor plasmid 
contained PAM sites for both gRNA1 and gRNA2 within the sequence TGGG. Site-directed 
mutagenesis was used to change this sequence to TAAG thereby making the plasmid nuclease-
resistant. b) The initially constructed PHB2-DK donor plasmid was designed such that the PAM 
required for gRNA1 targeting was mutated. The PAM sequence ‘AGG’ was mutated to ‘ATT’ thereby 
making the donor plasmid resistant to gRNA2 targeting.  

 

Importantly, the previous experience with endogenous tagging showed that ‘nuclease-

resistant’ donor plasmids can be used to avoid secondary Cas9-induced mutagenesis after 

transgene integration (section 1.4.2). Further, it was suggested that Cas9-resistant donor 

plasmids would lead to increased recombination efficiencies as they are not degraded by 

Cas9 in cells (Ran et al., 2013b). Because Cas9 cleavage requires the presence of a PAM 

site with the sequence NGG, each donor plasmid was modified minimally by changing the 

respective PAM. In particular, PHB1-gRNA1 relies on the presence of GGG for Cas9-induced 

DNA cleavage, while PHB1-gRNA2 requires the sequence TGG as adjacent PAM in the 

target site (Figure 45a). Because both PAM sites overlap within the sequence TGGG, a single 

mutagenesis step that changed this sequence to TAAG was sufficient to make the PHB1-DK 

donor resistant towards both gRNAs (Figure 34a). Moreover, primer design for the PHB2-DK 
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donor plasmid was done such that the PAM sequence ‘AGG’ required for gRNA1 was 

mutated to ‘ATG’ already within the initial donor plasmid. Site-directed mutagenesis was used 

to change the second PAM site ‘AGG’ to ‘ATT’ resulting in a gRNA2-resistant PHB2-DK 

donor plasmid (Figure 45b). Importantly, the new donor plasmids ‘PHB1-DK-res’ and ‘PHB2-

DK-res’ do not contain any other modifications than the mentioned PAM sequence mutations 

rendering them essentially Cas9-resistant.  

Each gRNA specific for either PHB1 or PHB2 was co-transfected together with the respective 

Cas9-susceptible donor plasmid or the Cas9-resistant version of the donor plasmid. Seven 

days after co-transfection, U2OS cells were analyzed via FACS (Figure 46). In absence of 

any nuclease encoding plasmid, the fraction of DK+ cells is about 0.6% for each donor 

plasmid (Figure 46a). Co-transfection of PHB1-gRNA1 resulted in 6.6% fluorescent cells 

using the PHB1-DK donor with intact PAM site and increased to 12.6% using the Cas9-

resistant PHB1-DK donor (Figure 46b). Further, co-transfection of PHB1-gRNA2 resulted in 

2.1% DK-positive cells when the nuclease-susceptible donor was used, while the fraction of 

fluorescent cells increased to 4.3% upon usage of the nuclease-resistant donor plasmid 

(Figure 46c). Similarly, a more than 2-fold increase in fluorescent cells from 8.2% to 17.7% 

was observed when PHB2-gRNA1 was co-transfected with Cas9-resistant PHB2-DK donor 

plasmid (Figure 46d). Finally, co-transfection of PHB2-gRNA2 with the Cas9-susceptible 

donor plasmid resulted in 8.6% DK-positive cells, whereas this value increased to 10% when 

the nuclease-resistant donor was co-transfected (Figure 46e). In conclusion, homologous 

recombination efficiencies could be significantly increase for most of the analyzed gRNAs 

when a nuclease-resistant donor was used (Figure 46f). Because Cas9 does not degrade a 

donor plasmid that lacks a PAM site, a higher plasmid amount is available for recombination.  
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Figure 46: FACS analysis of U2OS cells after co-transfection with PHB1 and PHB2 targeting 
nuclease and donor plasmids. a) Wildtype and donor plasmid only transfected U2OS cells were used 
as control. b, c) Co-transfection of PHB1-gRNA1 (b) or PHB1-gRNA2 (c) with Cas9-susceptible PHB1-
DK or Cas9-resistant PHB1-DK-res donor. d, e) Co-transfection of PHB2-gRNA1 (d) or PHB2-gRNA2 
(e) with Cas9-susceptible PHB2-DK or Cas9-resistant PHB2-DK-res donor. The mean fraction of DK+ 
cells of three independent experiments is shown. f) Use of Cas9-resistant donor plasmids increases 
targeting efficiency significantly for most nuclease/donor plasmid pairs.   

 

Single cell sorting after co-transfection was done for each combination of gRNA with the 

respective nuclease-resistant donor plasmid. Per nuclease/donor plasmid combination, six 

96-well plates were sorted. Tagging of PHB1 using gRNA1/PHB1-DK-mut resulted in 62 wells 

(10.8 %) that contained a colony of cells. Use of gRNA2/PHB1-DK-mut resulted in 40 colony 

containing wells (6.9%). For PHB2 tagging, use of gRNA1/PHB2-DK-mut resulted in 72 

positive wells (12.5 %) and using gRNA2/PHB2-DK-mut yielded 63 wells (10.9%) containing 

cell colonies. Those cells were split and replicated for further analysis. Inspection of the cells 

via fluorescence microscopy resulted in 20 (gRNA1/PHB1-DK-mut) and 29 (gRNA2/PHB1-

DK-mut) successfully tagged PHB1-Dreiklang clones. Further, 31 (gRNA1/PHB2-DK-mut) 
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and 43 (gRNA2/PHB2-DK-mut) targeted PHB2-Dreiklang clones were obtained. Genotyping 

of these cells was done using in-out PCR for PHB1-DK and out-out PCR for PHB2-DK clones 

(Figure 47).  

 

 
Figure 47: Genotyping of PHB1-DK and PHB2-DK knock-in cells. a) Out-in PCR analysis of PHB1-
DK clones generated with PHB1-gRNA1 (clones 1-20) or PHB1-gRNA2 (clones 21-49), respectively b) 
Out-out PCR analysis of PHB2-DK clones generated with PHB2-gRNA1 (clones 1-31) or PHB2-gRNA2 
(clones 32-74), respectively.  
 
 

All 49 generated PHB1-DK clones were heterozygous for the FP knock-in. Further, except for 

four clones showing a wildtype PCR band only, all 70 PHB2-DK clones were heterozygous as 

well. In conclusion, while homologous recombination occurred at high frequencies and 

several knock-in clones for both PHB1-DK and PHB2-DK were obtained, no homozygous 

knock-in was achieved. While only homozygous knock-in cells would allow counting of local 

prohibitin copy numbers in single complexes, heterozygous cells are a great model system to 

investigate the unknown localization, dynamics and global amounts of prohibitins.  

As PHB1-gRNA2 and PHB2-gRNA2 were initially predicted to have the lowest amount of off-

target cleavage sites, four clones from each of the respective PHB1-DK or PHB2-DK pools 
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were picked for protein expression analysis (Figure 48). Compared to PHB1 expression levels 

in wildtype U2OS cells, total PHB1 protein levels were elevated between 1.8- and 12.2-fold. 

Analysis of total PHB2 levels in PHB2-DK cells revealed a slight reduction in total PHB2 

concentrations that were between 0.61-0.99-fold the concentrations found in wildtype cells. It 

can be concluded that genomic tagging does not necessarily result in physiological 

expression levels and that multiple knock-in clones should be analyzed before selecting a 

clone for further analysis.  

 

 
Figure 48: Protein expression level analysis in PHB1-DK and PHB2-DK clones. a, b) Extracts of 
four PHB1-DK cell lines (a) or four PHB2-DK cell lines (b) were analyzed via immunoblotting using 
antibodies against PHB1 (a) or PHB2 (b), respectively. Wildtype (WT) extract was loaded as a 
reference. Actin was detected as internal loading control. c, d)  Band intensities were quantified, PHB1 
(c) or PHB2 (d) expression levels corrected for variations in loaded amounts and normalized to the 
PHB1 (c) or PHB2 (d) expression level in wildtype (WT) cells.  

 

For further experiments, PHB1-DK clone 35 and PHB2-DK clone 40 were selected as those 

cell lines showed most similar expression levels of the respective protein when compared to 

wildtype cells. For simplicity these clones will be referred to as PHB1-DK and PHB2-DK in the 

following parts.  

As overexpression of PHB1-DK and PHB2-DK induced aberrant mitochondrial morphologies, 

endogenously tagged PHB1-DK and PHB2-DK cells were first analyzed using confocal 

microscopy (Figure 49). Living genome-edited U2OS cells were first incubated with 

MitoTracker® Red FM to selectively highlight mitochondria and subsequent confocal imaging 

showed that both prohibitins localized to mitochondria. Further, mitochondria of endogenously 
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tagged PHB1-DK and PHB2-DK cells exhibited wildtype morphology indicating that 

imbalanced protein levels, but not fluorophore tagging, induced the previously observed 

aberrant mitochondrial phenotypes.  

 

 
Figure 49: Confocal microscopy of PHB1-DK and PHB2-DK knock-in cells. Mitochondrial 
morphology was analyzed in living PHB1-DK (a) and PHB2-DK (b) cells. Mitochondria were marked 
using Mitotracker Deep Red FM. Scale bar: 10 µm 

 

Next, Sanger sequencing was used to analyze potential on-target site modifications in PHB1-

DK cell lines (Figure 50a, b). No mutations were found at the PHB1-gRNA2 site of the DK-

tagged allele. This was expected as the introduced PAM site mutations in the PHB1-DK 

donor plasmid inhibit further Cas9-induced cleavages. Also the untagged PHB1 allele was not 

containing any mutations. This was surprising, because untagged alleles were constantly 

found to contain small indel mutations in previous DNA sequencing studies of gRNA on-target 

sites (section 1.3.2). However, this indicates that indeed not all PHB1 gene copies are 

accessible for site-specific gene editing as suggested previously. While four copies of the 

PHB1 gene exist in U2OS cells (Halling-Brown et al., 2012) and one is definitely containing 

the transgene, it is not trivial to determine the actual amount of (un-)tagged alleles as this 

requires advanced methods such as digital PCR (Hindson et al., 2011).  
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Sanger sequencing was also applied to investigate the gRNA2 target site in PHB2-DK cells. 

Except for the intentionally introduced PAM site mutations, no DNA sequence modifications 

were introduced at the tagged allele (Figure 50c, d). This was expected and demonstrates 

that Cas9 cleavage could be efficiently blocked via PAM mutations. However, three different 

DNA sequences were found to represent untagged PHB2 gene copies. The first sequence 

was identical to the wildtype reference, which indicates that it is not accessible for Cas9-

mediated modifications. The second sequence contained a 14 bp deletion and the third 

sequence lacked 20 nucleotides. Compared to the previously observed mutations that mainly 

affected the gRNA seed region (section 1.3.2), these mutations are larger and result in nearly 

complete removal of the gRNA target site. The observation of two different mutational 

patterns at the same target site confirms that NHEJ-mediated repair of DSBs is an error 

prone process and its outcome is difficult to predict (Caldrick et al., 2013). Further, U2OS 

cells harbor five PHB2 gene copies (Halling-Brown et al., 2012). While three untagged alleles 

were found and at least one tagged allele exists, it cannot be said whether the remaining 

allele contains the transgene or not. To determine the exact ratio of tagged vs. untagged 

alleles, copy number variation analysis would be required.  

 
Figure 50: On-target sequencing of PHB1-DK and PHB2-DK cell lines. a, b) Sequencing of the 
selected heterozygous PHB1-DK clone revealed that the untagged PHB1 allele is unmodified (a) and 
that the tagged PHB1-DK allele contains the expected mutations previously introduced into the donor 
plasmid (b). c) Sequencing of the selected heterozygous PHB2-DK clone revealed that the untagged 
PHB2 alleles contain the unmodified DNA sequence (1), a 14 bp deletion (2) or a 20 bp deletion (3). d) 
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The tagged PHB2-DK allele contains the expected PAM site mutations previously introduced into the 
donor plasmid. 

 

For each nuclease, the top three predicted off-target sites (Table 3) were sequenced using 

TOPO-cloned PCR products. Multiple bacterial colonies were screened via colony PCR after 

TOPO cloning and 15-20 plasmids containing the expected insert were sent for sequencing.  

 
Table 3: Predicted off-target sites for PHB1-gRNA2 and PHB2-gRNA2. The top three off-target 
(OT) sites as predicted using the CRISPR Design Tool are listed. Number of nucleotide mismatches 
and their position with respect to the on-target site as well as the locus and gene name for each OT are 
given.  

 
 

PHB1-gRNA2 was predicted to target non-coding DNA sequences found on chromosomes 

12, 1 and 16. Those nucleotide sequences differed in only 1-2 bp compared to the on-target 

cleavage site and furthermore contained NGG PAM sequences. Therefore, it was surprising 

that none of the predicted off-target sites showed any unwanted mutations in PHB1-DK cells 

(Figure 51a). This confirms that not only the number, but also the position as well as the 

spacing of mismatches between gRNA and potential off-target site have an influence on Cas9 

activity (Ran et al., 2013b; Hsu et al., 2013).  

Next to the on-target, PHB2-gRNA2 could potentially target three similar sequences found on 

chromosomes 4, 9 and 22. One off-target site lies within intron 1 of the human RPL7A gene 

encoding ribosomal protein L7a, an essential structural constituent of the 60S ribosomal 

subunit. However, DNA sequencing of this region as well as the other two regions in PHB2-

DK cells revealed that all potential off-target sites were not targeted for mutagenesis by Cas9 

(Figure 51b). Again, this indicates that the CRISPR Design Tool can be used for the 

generation of efficient and highly specific gRNAs. 
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Figure 51: DNA sequencing of off-target sites in PHB1-DK and PHB2-DK cells. The top three off-
target sites for PHB1-gRNA2 (a) or PHB2-gRNA2 (b) were amplified from PHB1-DK (a) or PHB2-DK 
(b) genomic DNA, subcloned and sequenced using Sanger sequencing. Sequencing depth was at least 
5x whereas none of the sequenced amplicons contained a nucleotide different from the wildtype 
reference.  

 

Taken together, both PHB1 and PHB2 were successfully targeted for endogenous tagging 

with the fluorescent protein Dreiklang (DK) using two different gRNAs per gene. Homologous 

recombination efficiencies could be increased by about 2-fold when a nuclease-resistant 

donor plasmids was used. Endogenous tagging of PHB1 and PHB2 resulted in 49 

heterozygous PHB1-DK and 70 heterozygous PHB2-DK knock-in cells. Homozygous knock-

in cells were not obtained, because not every copy of the respective gene might be 

accessible. Total PHB1 levels in different PHB1-DK knock-in cell lines were 1.8-12.2 times 

higher compared to wildtype U2OS cells, while total PHB2 levels were slightly reduced 

(between 1 and 39%) in various PHB2-DK clones compared to wildtype cells. The clones 
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exhibiting the most native protein expression levels (1.8x PHB1 and 0.99x PHB2 compared to 

wildtype cells) were selected for further experiments. Endogenously tagged PHB1-DK and 

PHB2-DK localized to mitochondria that exhibited wildtype morphology, indicating that the 

previously observed aberrant mitochondrial were caused by prohibitin overexpression rather 

than by fluorescent protein tagging. Also, the selected knock-in cells did not contain any 

unwanted mutations within the surrounding sequences at the Cas9 cleavage sites or at any 

analyzed off-target site. 

 

3.4.3. Sub-mitochondrial localization of prohibitins in human cells  
Despite the insight that prohibitins are localized to the inner mitochondrial membrane (IM), 

little is known about their distribution within this membrane. This was probably due to a lack of 

specific antibodies against mammalian PHB1 or PHB2, which were not available when this 

study was initiated. While antibodies against protein tags could be used instead, 

overexpression of tagged PHB1 or PHB2 induces highly aberrant mitochondrial morphologies 

as shown in the previous section. Thus, the endogenously tagged PHB1-DK and PHB2-DK 

cell lines provided the perfect model system to study the localization of prohibitins in human 

mitochondria.  

3.4.3.1. STED microscopy reveals prohibitin clusters  
STED microscopy was used to visualize the distribution of PHB1-DK and PHB2-DK in U2OS 

knock-in cells. Therefore, the respective cell line was chemically fixed and decorated with a 

polyclonal antibody that recognizes GFP and YFP derivatives including DK. Confocal 

microscopy suggested that PHB1-DK and PHB2-DK are homogenously distributed over the 

mitochondrial network (Figure 52). However, mitochondria are small organelles that have 

diameters ranging from 0.2 to 1.0 µm (Alberts et al., 2014). Insight about the nanoscale 

distribution of PHB1-DK and PHB2-DK in knock-in cells was obtained using STED super-

resolution microscopy. In STED images, PHB1-DK and PHB2-DK were shown to be 

heterogeneously distributed over mitochondria and concentrated in distinct protein clusters. 

While individual clusters could be detected, some regions showed denser ‘hotspots’ of PHB 

clusters. Individual PHB1-DK or PHB2-DK clusters exhibited a size of about 80 nm. The 

added lengths of the used primary and secondary antibodies enlarge any detected structure 

by about 30-35 nm (Dyba et al., 2003; Ries et al., 2012). Thus, it can be assumed that actual 

diameter of the observed PHB clusters is about 45-50 nm and that each protein cluster 

contains multiple PHB1-DK or PHB2-DK copies.  
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Figure 52: STED microscopy reveals PHB1-DK and PHB2-DK clusters in knock-in cells. 
Compared to confocal microscopy, STED microscopy enables the visualization of distinct PHB1-DK (a) 
and PHB2-DK (b) clusters. Endgenously tagged PHB1-DK and PHB2-DK were decorated with an anti-
GFP antibody to visualize the respective protein. STED images were smoothed with a low pass 
Gaussian filter. Scale bar: 1 µm. 

 
It should be noted that fluorescent protein tagging of a protein of interest could affect the 

localization and functionality (Snapp, 2005). Although the fluorescent protein was placed at 

the C-terminal end of the respective prohibitin, which leads to successful mitochondrial 

import, one could argue that the observed localization in clusters was a tag-induced 

phenomenon. During the course of this study, two new antibodies targeting PHB1 or PHB2 

became available. Therefore we used these antibodies for labeling the respective prohibitin in 

unmodified, wildtype human U2OS cells. STED microscopy revealed that both PHB1 and 

PHB2 are localized in distinct clusters that were heterogeneously distributed over 
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mitochondria (Figure 53). Localization, cluster size and density of untagged and DK-tagged 

prohibitins were indistinguishable. Thus, it can be concluded that endogenous tagging of 

prohibitins does not alter their submitochondrial distribution.  

 

 
Figure 53:  STED microscopy reveals PHB1 and PHB2 clusters in wildtype cells. Compared to 
confocal microscopy, STED microscopy enabled the visualization of distinct PHB1 (a) and PHB2 (b) 
protein clusters. Wildtype U2OS cells were decorated with anti-PHB1 (a) or anti-PHB2 (b) antibody, 
respectively. STED images were smoothed with a low pass Gaussian filter. Scale bar: 1 µm. 

 
PHB1 and PHB2 are considered to form heterodimeric subunits and multiple of these 

subunits assemble into a high molecular weight PHB complex (Nijtmans et al., 2000, Back et 

al., 2002). To determine whether endogenously tagged PHB1-DK or PHB2-DK has the same 

distribution as untagged PHB1 or PHB2, knock-in cells were labelled with antibodies against 
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GFP and the respective prohibitin (Figure 54). Intriguingly, PHB1 and PHB1-DK as well as 

PHB2 and PHB2-DK showed similar distribution patterns indicating a high degree of 

colocalization between tagged and untagged prohibitins.  

 

 
Figure 54: Co-localization of PHB1-DK with PHB1 and PHB2-DK with PHB2. STED dual-color 
microscopy revealed a similar distribution of tagged and untagged PHB1 (a) as well as of tagged and 
untagged PHB2 (b). PHB1-DK or PHB2-DK knock-in were labelled with an anti-GFP antibody and a 
PHB1 or PHB2 specific antibody. Images were smoothed with a low pass Gaussian filter. Scale bar: 
1 µm. 

 
Further, to analyze whether endogenously tagged PHB1-DK or PHB2-DK colocalizes also 

with untagged PHB2 or PHB1, knock-in cells were labelled with antibodies against GFP and 

the respective prohibitin (Figure 55). As observed in the previous experiment, a similar 

distribution between PHB1-DK and PHB2 or PHB2-DK and PHB1 was found.  

In conclusion, both experiments showed that untagged and tagged prohibitins are largely 

found in the same regions of human mitochondria. This suggests that tagged prohibitins are 

incorporated into the PHB complex similarly to their untagged counterparts.  
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Figure 55: Co-localization of PHB1-DK with PHB2 and PHB2-DK with PHB1. STED dual-color 
microscopy revealed a similar distribution of PHB1-DK and PHB2 (a) as well as of PHB2-DK and PHB1 
(b). PHB1-DK or PHB2-DK knock-in were labelled with an anti-GFP antibody and a PHB1 or PHB2 
specific antibody. Images were smoothed with a low pass Gaussian filter. Scale bar: 1 µm. 

 

3.4.3.2. Immunogold EM reveals accumulation of prohibitins in cristae 
STED microscopy is a powerful tool that allowed great insights into the nanoscale 

organization of prohbitins in human mitochondria. However, to determine the distribution of 

PHB1 and PHB2 between the various subdomains of the inner membrane (IM), immunogold 

EM of knock-in cells was used (Figure 56). Knock-in cells were chemically fixed and cut into 

cryosections that were decorated with a primary anti-GFP antibody followed by protein A 

coupled to gold particles. For quantitative analysis, the localization of each mitochondrial gold 

particle was measured with respect to the inner boundary membrane and the closest cristae 

membrane. For PHB1-DK, 85% of all gold particles (n = 106) were enriched at the cristae 

membrane (Figure 56a). Similarly, 90% of all gold particles (n = 107) labeling PHB2-DK were 

found to be localized at the cristae membrane (Figure 56b). This is in contrary to localization 

of PHB1 or PHB2 in yeast cells, where both proteins seem evenly distributed within the inner 

membrane (Vogel et al., 2006). Therefore, the predominant cristae localization of PHB1 and 

PHB2 subunits might be unique to higher eukaryotes  
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Figure 56: Submitochondrial localization of PHB1-DK and PHB2-DK using quanitative 
immunoelectron microscopy. Representative micrographs and their quantitative analysis are shown 
for immunogold labeling of PHB1-DK (a) and PHB2-DK (b) in U2OS knock-in cells. Scale bar: 200 nm. 

 

Again, it should be noted that the submitochondrial localization of FP-tagged PHB1 or PHB2 

was analyzed and that the tag itself might alter the actual localization (Snapp et al., 2005). 

Therefore, we used prohibitin-specific antibodies that became available recently as a control 

for immunogold labeling of wildtype human U2OS cells (Figure 57).  
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Figure 57: Submitochondrial localization of PHB1 and PHB2 in wildtype cells using quanitative 
Immunoelectron microscopy. Representative micrographs and their quantitative analysis are shown 
for immunogold labeling of PHB1 (a) and PHB2 (b) in wildtype U2OS cells. Scale bar: 200 nm. 

 

Similarly as observed for DK-tagged prohibitins, a mitochondrion was typically decorated with 

one or two gold particles. Quantification of gold particles highlighting the localization of PHB1 

showed that 85% of all particles (n = 124) were found at the cristae membrane (Figure 57a). 

The fraction of cristae-localized untagged PHB1 and tagged PHB1-DK is identical indicating 

that PHB1 tagging does not alter its localization. Further, 88% of all gold particles (n = 102) 

decorating PHB2-labelled mitochondria were localized at the cristae membrane (Figure 57b). 

Thus the localization data obtained using tagged PHB2-DK could be confirmed using a PHB2 

specific antibody. 
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Taken together, STED microscopy revealed that PHB1-DK and PHB2-DK are localized in 

distinct clusters within human mitochondria. Within the inner mitochondrial membrane the 

vast majority of those clusters are specifically enriched to the cristae membrane as shown 

using immunogold electron microscopy. This localization might be a unique feature of human 

mitochondria as both PHB1 and PHB2 seem evenly distributed within the inner mitochondrial 

membrane of yeast cells (Vogel et al., 2006). Further, localization of DK-tagged PHB1 and 

PHB2 in distinct clusters at the cristae membrane was confirmed using prohibitin-specific 

antibodies.  

 

3.4.4. Mobility of PHB1-DK and PHB2-DK  
Endogenously tagged PHB1-DK and PHB2-DK cells provided an excellent model system to 

study the organization and localization of prohibitins in fixed human cells. However, 

information about the mobility of prohibitins within the mitochondrial inner membrane (IM) of 

living cells was lacking. To determine the molecular mobility of PHB1-DK or PHB2-DK, 

fluorescence recovery after photobleaching (FRAP) experiments were conducted (Figure 58). 

Living U2OS cells grown on a glass cover slip were placed in a live cell chamber for confocal 

microsopy analysis. Both chamber and objective were heated to 37°C and cells overlaid with 

CO2-independent L-15 medium. Mitochondrial matrix localized Dreiklang (mito-DK) was used 

as a reference protein. FRAP analysis of mito-DK revealed a fast recovery of fluorescence 

and a high mobile fraction of about 90% (Figure 58a). This observation is in accordance with 

previous reports that showed a high mobility of matrix localized GFP (Partikian et al., 1998).  

Fluorescence recovery of PHB1-DK over a time course of one minute was slow and showed 

that only about 20% of PHB1-DK are mobile (Figure 58b). Similarly, the mobile fraction of 

PHB2-DK was found to be only 10%. Interestingly, other FRAP studies on mitochondrial IM 

proteins found much higher immobile fractions of about 40% for the γ-subunit of complex V 

and about 50% for subunit Cox8a of complex IV (Sukhorukov et al., 2010). Those proteins 

appear to be almost homogenously distributed between inner boundary (IBM) and cristae 

membrane (CM) (Vogel et al., 2006) and it was suggested that the immobile fraction of γ-

subunit and Cox8a reflects the cristae-localized fraction of these molecules (Sukhorukov et 

al., 2010). This is in agreement with the FRAP data acquired for PHB1-DK and PHB2-DK. As 

about 90% of both proteins are enriched in the CM, a similarly high fraction of both PHB1-DK 

and PHB2-DK is essentially immobile in the cristae membrane. Interestingly, it was proposed 

that prohibitins form microdomains within the mitochondrial IM (Osman et al., 2009a). While 

such domains might exhibit a low molecular mobility, FRAP is not well suited for studying 
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microdomains, because they are usually smaller than the resolution of the used confocal 

microscope (Pike, 2009). Instead, more advanced optical techniques based on single-

molecule tracking or super-resolution microscopy would be required (Douglass and Vale, 

2005; Eggeling, 2015).  

Taken together, the low mobility of PHB1-DK and PHB2-DK is in agreement with their role as 

subunits of a high molecular weight complex that is mainly found within the CM of human 

mitochondria.  

 

 
Figure 58: PHB1-DK and PHB2-DK are localized in immobile fractions. a) Matrix-localized 
Dreiklang (mito-DK) is highly dynamic with a mobile fraction of about 90%.  b) The mobile fraction of 
PHB1-DK (blue graph) is about 20% whereas the mobile fraction of PHB2-DK (red graph) is about 
10%. Each data point is the average of multiple experiments (mito-DK, n= 17; PHB1-DK, n = 18; 
PHB2-DK, n = 20). The data were fitted with an exponential function and error bars denote SD. White 
circles indicate regions of interest (ROI) that were selectively bleached. Scale bar: 2 µm.  
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3.4.5. Nuclear localization of PHB2 in HeLa cells is an overexpression artefact 
Previous studies in HeLa cells showed an estradiol (E2) and estrogen receptor (ESR1) 

dependent nuclear localization of PHB2 (Kasashima et al., 2006). In presence of both ESR1 

and E2, overexpressed PHB2-GFP was found to accumulate in the nucleus and an export 

from mitochondria was suggested, because cytosolic translation was blocked. As 

mislocalization upon overexpression is a common artefact, we set out to reproduce the 

mentioned experiments in endogenously tagged cells. First, HeLa cells expressing a 

genomically tagged version of PHB2 had to be generated. Therefore, PHB2-gRNA2 and the 

nuclease-resistant donor plasmid PHB2-DK were used as shown for U2OS cells previously 

(section 1.4.2). Seven days after plasmid co-transfection, the cells were analyzed and 

individually sorted into two 96-well plates using FACS (Figure 59). The fraction of 

fluorescently tagged HeLa cells was 11.4%, which is similar to the results obtained for PHB2-

tagging in U2OS cells (10%). This was expected, because both cell lines are of human origin 

and therefore a similar genomic sequence.  

 

 
Figure 59: CRISPR-mediated endogenous PHB2-tagging in HeLa cells. Co-transfection of HeLa 
cells was done with PHB2-gRNA2 and the Cas9-resistant PHB2-DK donor plasmid yielding 11.4% DK+ 
cells. Wildtype HeLa cells and donor plasmid only transfected cells were used as a control. 

 
Two 96-well plates were sorted initially and a total amount of 26 HeLa cell lines was obtained 

after about two weeks. Analysis of those cells was done using out-out PCR and showed that 

25 out of 26 clones were heterozygous (Figure 60). This is in accordance with the result 

obtained for U2OS cells, where all knock-in cells were heterozygous for transgene integration 

at the PHB2 locus.  



3. Results 

95 
 

 

 
Figure 60: Genotyping of HeLa-PHB2-Dreiklang clones using PHB2 locus-specific out-out PCR. 
Genomic DNA was isolated and used as a template for PCR with primers that anneal outside of the 
homology regions of the donor plasmid.  

 

To determine whether nuclear translocation of PHB2 also occurs in endogenously tagged 

HeLa cells, one clone was picked randomly for further experiments. Previously, PHB2 

localization within the nucleus was observed upon co-expression of both PHB2-GFP and 

ESR1 in wildtype HeLa cells (Kasashima et al., 2006). Therefore, wildtype cells co-

transfected with tagged PHB2-DK and untagged ESR1 served as a control. Further, 

endogenously tagged PHB2-DK cells were transfected with the same amount of ESR1 

plasmid. Importantly, the PHB2 plasmid was replaced with the same amount of plasmid 

backbone DNA to match total DNA levels in the transfection mixture and to obtain similar 

transfection efficiencies.  

One day after co-transfection of wildtype HeLa cells with PHB2-DK/ESR1, the cells were 

treated with E2 for 2 h, fixed and incubated with an antibody detecting ESR1 as described 

(Kasashima et al., 2006). A secondary antibody conjugated to the red fluorophore KK114 

(Kolmakov et al., 2010) was used for ESR1 visualization. Intrinsic DK fluorescence was 

detected for analysis of PHB2-DK distribution. Indeed, some of the co-transfected HeLa cells 

showed a nuclear localization of PHB2-DK (Figure 61a, I). However, these cells also 

displayed fragmented mitochondria or cytoplasmic PHB2-DK aggregates, a phenotype 

previously observed in U2OS cells, which overexpress PHB2-DK (section 1.4.1). Moreover, 

the majority of HeLa cells expressing PHB2-DK and ESR1 displayed a mitochondrial 

localization of PHB2-DK (Figure 61a, II). The same experiment was done using endogenously 

tagged PHB2-DK cells transfected with an ESR1-encoding plasmid. Interestingly, while 

overexpressed ESR1 was found in the nucleus, endogenously tagged PHB2-DK was 

exclusively localized to mitochondria (Figure 61b).  
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Figure 61:  PHB2 overexpression induces nuclear mislocalization in HeLa cells. a) 
Overexpression of ESR1 and PHB2-DK induces a heterogenous localization of PHB2 in both nucleus 
(I) and mitochondria (II). b) Endogenously expressed PHB2-DK is solely localized in mitochondria upon 
overexpression of ESR1. 

 

Taken together, nuclear localization of PHB2 is not a general phenomenon, because it only 

occurs in a fraction of co-transfected PHB2-DK/ESR1 cells. Further, co-localization of ESR1 

and PHB2-DK in the nucleus was only observed in those cells with highly aberrant 

mitochondrial morphology and cytoplasmic PHB2-DK aggregates. Because endogenously 

tagged PHB2-DK was exclusively found in mitochondria in presence of ESR1, it can be 

concluded that nuclear localization of PHB2-DK is induced by artificially high protein levels 

that result from plasmid-based overexpression. It should be noted that this observation is 

specific for HeLa cells. While the accumulation of PHB2 in the nucleus of HeLa cells seems to 

be an overexpression artefact, it might well be the case that PHB2 and/or PHB1 are localized 

to the nucleus or the plasma membrane in other cell types or tissues (Mishra et al., 2005; 

Mishra et al., 2006).  

 
3.4.6. Prohibitin quantification in single cells and cristae membranes 

Based on in vitro chemical crosslinking and mass spectrometry of purified prohbitins from 

yeast, it was suggested that a PHB1-PHB2 heterodimer forms the structural building block of 

the PHB complex (Back et al., 2002). Prohibitins were also proposed to form ring-like 

structures with an outer diameter of 20-25 nm using single particle electron microscopy of 

purified yeast PHB complexes (Tatsuta et al., 2005). Interestingly, without actually 

determining the copy number, these studies concluded that the 1-1.4 MDa large PHB 

complex should contain 12-16 (Back et al., 2002) or 16-20 (Tatsuta et al., 2005) copies of 

each PHB1 and PHB2 subunit. However, data regarding the structural organization of the 
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human PHB complex and its stoichiometric organization are completely lacking. Therefore, 

analysis of PHB1 and PHB2 copy numbers in genome-edited and in wildtype human cells 

was done based on quantitative western blotting. 

3.4.6.1. Quantitative western blotting using recombinant Dreiklang as standard 
Ideally, quantification of absolute protein numbers per cell, organelle or protein complex is 

done using fluorescence microscopy, because of its high sensitivity and the obtained spatial 

information (Coffman and Wu, 2014; Ulbrich, 2015). However, this approach relies on 

endogenously tagged yeast or human cells where every protein of interest is expressed as an 

FP fusion. As the generated PHB1-DK and PHB2-DK knock-in cell lines are heterozygous for 

the tagged allele, determining the number of fluorescent PHB1-DK or PHB2-DK proteins per 

cell would lead to an underestimation of the true protein amount. Therefore we set out to 

determine the average number of each prohibitin molecule per cell via quantitative western 

blot analysis. Importantly, this approach does not rely on the availability of purified proteins of 

interest commonly used for a calibration curve. It simply requires the availability of purified 

fluorescent protein used for endogenous tagging as well as an antibody directed against the 

protein of interest.  

For quantification of the total amount of PHB1 and PHB2 per cell, the heterozygous PHB1-DK 

and PHB2-DK cell lines were used. Recombinant DK was expressed and purified from E. coli 

cells to high purity using affinity and size exclusion chromatography. Together with PHB1-DK 

or PHB2-DK cell lysates corresponding to a known number of cells, various DK amounts were 

separated on a SDS gel and transferred to a membrane for western blot analysis (Figure 62). 

First, visualization of protein bands that correspond to purified DK as well as PHB1-DK or 

PHB2-DK fusion protein was achieved by membrane decoration with a polyclonal anti-GFP 

antibody. A calibration curve was obtained by plotting the background-subtracted integrated 

intensities measured for each DK band. The amount of tagged PHB1-DK or PHB2-DK was 

determined by comparing the background-subtracted intensities of the respective bands to 

the DK standard curve. Subsequently, the membrane was stripped and incubated with the 

antibody specifically recognizing PHB1 or PHB2, respectively. This step visualized both the 

tagged and untagged version of each prohibitin. Importantly, the amount of tagged PHB1-DK 

or PHB2-DK is known from the previous step and this information is now used to determine 

the amount of untagged prohibitin. First, the ratio between the known amount of PHB1-DK or 

PHB2-DK and the corresponding band intensity after incubation with the anti-PHB1 or anti-

PHB2 antibody is calculated. By multiplying this ratio with the band intensity of the respective 
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untagged prohibitin, the amount of untagged prohibitin is easily determined. Calculation of 

tagged or untagged prohibitin per cell was done by taking their specific molecular weights and 

the number of cells used as input into account.  

 

 
Figure 62: Estimation of PHB1 and PHB2 amounts per cell using recombinant DK. a) A Dreiklang 
(DK) calibration curve was generated using various amounts of recombinant DK. The membrane was 
probed against both DK followed by PHB1. The estimated amount of total PHB1 molecules per cell 
was 2.22 ± 0.26 x 106. b) A DK calibration curve was generated using various amounts of recombinant 
DK. The membrane was probed against both DK followed by PHB2. The estimated amount of total 
PHB2 molecules per cell was 1.07 ± 0.09 x 107. c) DK calibration curve obtained from band intensity 
values from a) and b).  

 
This analysis revealed that each U2OS cell contains about 7.10 ± 0.25 x 105 PHB1-DK and 

1.51 ± 0.24 x 106 PHB1 molecules. Thus, the total of PHB1 containing molecules per cell was 

2.22 ± 0.26 x 106. Further, it was found that each cell contains about 2.09 ± 0.08 x 106 PHB2-

DK molecules and 8.59 ± 0.83 x 106 PHB2 molecules. In total, this sums up to 1.07 ± 0.09 x 

107 PHB2 containing molecules per genome-edited U2OS cell.  

In conclusion, the number of PHB2 molecules is about 5 times higher than the number of 

PHB1 molecules. This was surprising, because both prohibitins were reported to assemble 

stoichiometrically into a PHB complex that contains equal amounts of each PHB1 and PHB2 
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subunit (Back et al., 2002; Tatsuta et al., 2005). However, the here presented numbers were 

determined in genomically tagged cells and fluorescent protein tagging or undetected 

mutations in gene regulatory regions due to gRNA treatment might induce changes in protein 

expression levels. Therefore, a control quantification experiment was repeated for wildtype 

U2OS cells. Because those cells do not express endogenously DK-tagged prohibitins, 

recombinant prohibitins instead of recombinant DK were used as a standard. 

3.4.6.2. Quantitative western blotting using recombinant prohibitins as standard 
Analysis of prohibitin levels in wildtype U2OS cells was done using recombinant N-terminally 

6xHis-tagged PHB1 or PHB2 purified from E. coli (Abcam, Cambridge, UK) as a standard. 

Together with wildtype cell extracts, different amounts of recombinant PHB1 or PHB2 were 

separated on a SDS gel and transferred onto a nitrocellulose membrane. Detection of 

recombinant and endogenous PHB1 was done using an anti-PHB1 antibody (Figure 63a). 

Estimation of unknown PHB1 amounts in cell extracts was easily done by comparing signal 

intensities of the detected PHB1 band to the generated calibration curve. This resulted in an 

average amount of 8.21 ± 0.38 x 106 PHB1 molecules per cell. Detection of PHB2 in 

recombinant protein preparations and cell extracts was done using an anti-PHB2 antibody 

(Figure 63b). The estimated amount of PHB2 molecules per cell was 3.57 ± 0.20 x 107. In 

conclusion, the number of PHB2 molecules was about 3-5 times higher than the number of 

PHB1 molecules per single U2OS cell.  

 

 
Figure 63: Estimation of PHB1 and PHB2 amounts per cell using recombinant PHB1 or PHB2 for 
calibration. Increasing amounts of 6xHis-PHB1 (a) or 6xHis-PHB2 (b) were loaded together with 
wildtype U2OS cell extracts for antibody-based detection of PHB1 (a) or PHB2 (b). The amount of 
PHB1 was 8.21 ± 0.38 x 106 molecules per cell. The estimated PHB2 amount was 3.57 ± 0.20 x 107 
molecules per cell. Note that recombinant PHB1 and PHB2 run at a higher MW than endogenous ones 
due to the His-tag and linker sequence. c) 6xHis-PHB1 and 6xHis-PHB2 calibration curves showing a 
linear relationship between protein amount and signal intensity.  
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Quantitative western blotting using recombinant DK for calibration revealed that the total 

amount of PHB1 molecules per genome-edited U2OS cell was 2.22 ± 0.26 x 106. Using 

recombinant 6xHis-PHB1 for calibration, an average amount of 8.21 ± 0.38 x 106 PHB1 

molecules per wildtype U2OS cell was estimated. The total amount of PHB2 was found to be 

about 1.07 ± 0.09 x 107 molecules per genome-edited cell when recombinant DK was used 

for calibration. This number increased to 3.57 ± 0.20 x 107 PHB2 molecules per wildtype cell 

when recombinant 6xHis-PHB2 was used for calibration. From a technical point of view these 

data suggest that both quantification methods are valid as they yield similar results. 

Interestingly, a 3.6-fold increase in molecule numbers was found for both PHB1 and PHB2 

samples when the calibration curve was done using the corresponding recombinant protein. 

The concentration of commercially obtained recombinant PHB1 or PHB2 was confirmed using 

the bicinchoninic acid (BCA) assay (Smith et al., 1985). However, partial degradation of the 

respective recombinant prohibitin might have occurred during handling, which leads to 

overestimation of the actual protein amount on the gel. 

In conclusion, both quantification methods showed that the number of PHB2 molecules 

exceeds that of PHB1 molecules by a factor of 4-5. This was unexpected, because both 

prohibitins were reported to assemble stoichiometrically into a PHB complex that consists of 

12-16 (Back et al., 2002) or 16-20 (Tatsuta et al., 2005) copies of each PHB1 and PHB2 

subunit. However, those numbers are based on in vitro structural analysis of purified yeast 

prohibitins (Back et al., 2002; Tatsuta et al., 2005) and comparable data on the mammalian 

PHB complex are lacking. Therefore, it is conceivable that the in vivo organization of the PHB 

complex in human cells differs.  

3.4.6.3. Mapping of prohibitins to individual cristae 
Independent of their exact molecular stoichiometry, it can be assumed that the amount of 

PHB2 is 4-5 times higher than that of PHB1 in human U2OS cells. Using electron microscopy 

analysis, it was shown that 85-90% of both PHB1 and PHB2 are localized to the cristae 

membrane (Figure 56 and 57). It would be highly interesting to use this information to 

estimate the average amount of prohibitin molecules per cristae in individual mitochondria of 

human U2OS cells. However, determining the exact number of mitochondria in a human cell 

is difficult as these organelles constantly undergo fusion and fission (Westermann, 2010; 

Youle and van der Bliek, 2012). Therefore, a combination of light and electron microscopy 
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was used to first estimate the total length of the mitochondrial network per cell followed by EM 

to determine the amount of cristae membranes per length unit.  

The mitochondrial network in human U2OS cells was stained using Mitotracker® Deep Red 

FM. Instead of trying to analyze the amount of distinct mitochondrial particles, the average 

length of the entire mitochondrial network per cell was estimated (Figure 64). Therefore, 

single cells exhibiting mitochondrial tubules that could be distinguished from neighboring 

tubules were chosen. After thresholding and image binarization, an image skeletonization 

algorithm for length measurements was applied (Niemisto et al., 2005). Skeletonization 

resulted in a morphological skeleton representation of the mitochondrial network that 

preserves the extent and connectivity of the original image. The resulting skeleton was used 

for total length measurements of mitochondrial tubules. This analysis revealed that a single 

human U2OS cell possesses a total mitochondrial network length of 937 ± 284 µm (SD, n = 

81 cells). The size variability is in agreement with previous studies showing that 

morphological heterogeneity is a general feature of mitochondria (Collins et al., 2002; 

Kuznetsov et al., 2004). 

 

 

 
Figure 64: Determination of mitochondrial network length. A representative fluorescence image 
shows mitochondria in U2OS cells visualized using Mitotracker Deep Red FM. Analysis of total 
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mitochondria network length in single cells was done as follows: image binarization (1), image 
skeletonization (2), cell selection (3, red asterisk), clearing of area outside cell of interest (4) and 
skeleton length measurement (5). The final mitochondrial network length for the selected cell was 1090 
µm. Skeleton length measurement was done using the algorithm from Niemistö et al. (2005). Scale 
bar: 20 µm. 

Electron microscopy of human cells was used to estimate the number of cristae per 

mitochondrion. Therefore human U2OS cells were grown to sub-confluency on Aclar cover 

slips and gently fixed on the growth surface. After additional fixation, contrasting and 

dehydration steps, the cells were embedded in Epon (Agar 100). Embedded cells were 

sectioned by cutting parallel to the growth surface. This procedure ensured that mitochondrial 

tubules are sectioned along their longitudinal axis thus allowing the visualization of distinct 

cristae membranes. A representative micrograph obtained using the approach is depicted in 

Figure 65a. Individual mitochondria with clearly visible cristae membranes were chosen for 

analysis. Here the distance between two neighboring cristae was measured at different 

positions (Figure 65b). After analysis of a number of mitochondria the average inter-cristae 

distance was calculated with 80 ± 19 nm (SD, n = 721 distances). 

 

 
Figure 65: Determination of inter-cristae distance. a) A representative EM micrograph of 
cryosectioned U2OS cells is shown. Analysis of cristae distance was done on individual mitochondria 
(dashed lines). b) Multiple distances between each two cristae were measured. The obtained values 
for the given pair of cristae are 74 nm (I), 55 nm (II), 67 nm (III), and 71 nm (IV). Scale bar: 300 nm.  

 

Based on the previous calculations of an average total mitochondrial network length of 

937 µm and an average inter-cristae distance of 80 nm, it can be estimated that a single 

human cell contains about 1.2 x 104 cristae membranes. Considering that a single genome-
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edited U2OS cell contains about 2.22 x 106 PHB1 and about 1.07 x 107 PHB2 molecules, this 

translates into 185 PHB1 and 892 PHB2 molecules per individual cristae. Previous dual-color 

STED imaging results suggest that both prohibitins are found in one complex (Figure 55). 

Further, PHB2 is about 5 times more abundant than PHB1 (Figure 62). Therefore, it is 

tempting to speculate that the stoichiometry of the human PHB complex between PHB1 and 

PHB2 is 1 to 5. Assuming a molecular mass of 1 MDa for the human PHB complex (Nijtmans 

et al., 2000), a 1:5 stoichiometry means that 167 kDa of the complex correspond to PHB1 and 

833 kDa to PHB2. Taken the respective MW of both prohibitins into account, each PHB 

complex would contain about 6 PHB1 (29.8 kDa) and about 25 PHB2 (33.3 kDa) subunits. 

Because the total copy number of each prohibitin was determined here, this would translate 

into 3.7-4.3 x 105 PHB complexes per single cell. Together with 1.2 x 104 cristae membranes 

per cell, this means that about 31-36 single PHB complexes exist per individual cristae 

membrane. However, these numbers assume a 1:5 stoichiometry between PHB1 and PHB2 

and might be interpreted differently as discussed later on. 

 

Taken together, overexpression of PHB1-DK and PHB2-DK in human U2OS cells causes two 

different aberrant mitochondrial phenotypes. While PHB1-DK overexpression causes a 

perinuclear accumulation of enlarged mitochondria, PHB2-DK overexpression mainly results 

in cytoplasmic fluorescent aggregates that are not imported into mitochondria. Both 

phenotypes are caused by overexpression from a heterologous plasmid promoter and can be 

prevented by CRISPR-mediated endogenous DK tagging at the C-terminus of the respective 

prohibitin. Further, overexpression of PHB2-DK together with ESR1 leads to nuclear 

accumulation of PHB2 in HeLa cells. However, endogenously tagged PHB2-DK HeLa cells 

showed an exclusive mitochondrial localization of PHB2, which indicates that the nuclear 

localization of PHB2 is an overexpression-induced artefact. Interestingly, the use of nuclease-

resistant donor plasmids lead to a 2-fold increase of homologous recombination frequencies 

with a maximum observed integration efficiency of about 18%. Despite screening 49 or 74 

individual clones, no homozygous PHB1-DK or PHB2-DK knock-in cell lines could be 

obtained. An impairment of prohibitin function due to homozygous tagging with a fluorescent 

protein tag cannot be excluded. However, further experiments are required to clarify this 

issue. Moreover, DNA sequencing of on- and off-target sites in selected knock-in clones 

revealed the high specificity of each gRNA for the respective target region, because no 

mutations at unintended genomic sites could be found. 
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Intriguingly, STED super-resolution microscopy discovered that prohibitin forms individual 

clusters and that the distribution of prohibitins in genome-edited cells is highly similar to 

prohibitin distribution in wildtype cells. Further, dual-color STED imaging revealed a high 

degree of co-localization between tagged and untagged prohibitins at the nanoscale, which 

suggests that tagged PHB1-DK and PHB2-DK is incorporated into the PHB complex 

normally. Interestingly, prohibitins are almost exclusively (85-90%) localized to the 

mitochondrial cristae membrane as demonstrated using immunogold EM. The same results 

were obtained in both genome-edited knock-in cells and wildtype U2OS cells, indicating that 

the fluorescent protein tag does not affect submitochondrial prohibitin localization. Further, 

FRAP analysis of prohibitin dynamics in living knock-in cells showed that PHB1-DK and 

PHB2-DK are exceptionally static proteins with mobile fractions of only 10-20%. In addition to 

results on localization and dynamics, this study provides first quantitative data on the number 

of prohibitins in human cells. Unexpectedly, quantitative western blotting revealed that the 

amount of PHB2 is about 4-5 times higher than that of PHB1 challenging the view of a 

previously assumed 1:1 complex stoichiometry. Interestingly, the integration of the obtained 

data on prohibitin localization, abundance and ultrastructural organization of human 

mitochondria suggests that an estimated average of about 31-36 PHB complexes resides 

within individual cristae membranes. In conclusion, CRISPR-mediated endogenous tagging 

revealed previously inaccessible insights about the localization, dynamics and abundance of 

human prohibitins. In principle, the presented methods are of general applicability and can be 

applied to investigate any other ‘taggable’ mitochondrial protein, which will allow further 

insights into the dynamic and quantitative organization of this intriguing organelle. 
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4. Discussion 
Fluorescent proteins (FPs) are among the most commonly used tools for fluorescence 

microscopy investigations of living cells in modern life science laboratories. At the same time, 

overexpression of FP fusion proteins is a widely shared concern as it leads to a variety of 

artefacts (Gibson et al., 2013; Rizzo, 2010). Therefore an alternative labelling strategy based 

on the use of site-specific nucleases for endogenous protein tagging in human cells was 

established in this thesis. Apart from preventing overexpression-induced artefacts, 

endogenous tagging has several further advantages. First, the site-specific incorporation of 

FP cDNA into the genome of a human cell leads to stable and homogeneous expression of 

fusion proteins resulting in low variation between various assays. Second, endogenous 

tagging of a protein under its native promoter facilitates long-term imaging of protein 

homeostasis, dynamics and localization. Third, native protein expression levels would allow 

the global and local quantification of protein copy numbers in living cells, an approach so far 

only realized in yeast cells (Huh et al., 2003; Ghaemmaghami et al., 2003; Wu and Pollard, 

2005; Puchner et al., 2013). The endogenous tagging method was applied as a novel 

labelling strategy for super-resolution microscopy and allowed quantitative insights into the 

localization and dynamics of mitochondrial prohibitins.  

 

4.1. RESOLFT imaging of endogenously tagged β-actin  
RESOLFT super-resolution microscopy uses low light intensities and is therefore particularly 

suited for studies of living cells and tissues (Brakemann et al., 2011; Grotjohann et al., 2011; 

Grotjohann et al., 2012; Testa et al., 2012; Chmyrov et al., 2013; Lavoie-Cardinal et al., 2014; 

Testa et al., 2015). Although these studies showed that RESOLFT is a powerful method to 

visualize dynamic processes in living cells at the nanoscale, however, visualization of the 

respective protein of interest was achieved via its overexpression as a FP fusion.  

The present work showed, for the first time, ZFN-mediated site-specific integration of 

Dreiklang and rsEGFP2 at the human β-actin (ACTB) locus (Figure 14). A similar approach 

was used for successful N-terminal tagging of β-actin with EGFP in U2OS cells (Fetter et al., 

2015). Similar to EGFP, both Dreiklang and rsEGFP2 are monomeric, bright and photostable 

proteins that are well expressed in mammalian cells (Brakemann et al., 2011; Grotjohann et 

al., 2012). Therefore it was not unexpected that endogenous tagging would also work using 

these reversibly switchable fluorescent proteins (RSFPs). However, fusion protein 
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overexpression levels can easily be orders of magnitude higher than endogenous protein 

levels (Figure 39). In general, high fluorophore concentrations often result in quenching, 

changes in lifetime, and homo FRET (Lakowicz, 2007). Further, environmental factors can 

slow down photoswitching kinetics of RSFPs (Kao et al., 2012). Hence, lower fluorophore 

expression levels were expected to be beneficial. On the other hand, bleaching of fewer 

available RSFPs and a reduced number of fluorescent photons obtained from the remaining 

fluorophores might not have been sufficient to obtain a super resolved image with good 

contrast and signal-to-noise ratio (Hell, 2009).  

We chose β-actin as a positive control for endogenous tagging because of its high cellular 

abundance of about 5 x 108 molecules per cell (Lodish, 2008). In practice this led to the first 

demonstration that RESOLFT might work on endogenously tagged DK-β-actin and rsEGFP2-

β-actin knock-in cells (Figure 15 and 16). However, β-actin is present either as globular (G)-

actin or as a subunit of filamentous (F)-actin (Lodish et al., 2008). Free RSFP-tagged G-actin 

causes a highly diffuse fluorescent signal within most parts of the respective cell. Therefore, 

RESOLFT imaging was performed on thick stress fibers at the cell periphery where the F-

actin signal was high. Whereas each F-actin microfilament measures about 6 nm in diameter 

(Fuchs and Cleveland, 1998), stress fiber diameter ranges from 60-180 nm as each fiber is 

composed of 10-30 F-actin filaments (Tojkander et al., 2012). Thus, a high background signal 

caused by free RSFP-G-actin and RESOLFT analysis of thick stress fibers led to a merely 

enhanced resolution compared to confocal imaging. Indirect F-actin labeling strategies based 

on Lifeact (Riedl et al., 2008), SiR-actin (Lukinavicius et al., 2014), or Actin-Chromobody® 

(ChromoTek, Munich, Germany) will achieve a higher imaging contrast and are therefore 

more suitable for live cell super-resolution imaging studies than endogenously tagged β-actin 

cells.  

In the presented part of this work, ZFNs were used as tools for site-specific RSFP integration 

at the ACTB locus. Although ZFN design, engineering and assembly simplified over the last 

years, ZFN generation generally requires constructing and screening large combinatorial 

libraries (Urnov et al., 2010; Sander et al., 2011). Therefore widespread adoption and large-

scale use of ZFN technology are restricted to a few expert labs. Customized ZFNs are 

available commercially, but their cost restricted the scale of research projects that can be 

realized. Similar to ZFNs are transcription activator-like effector nucleases (TALENs) 

(Bogdanove and Voytas, 2011). TALENs contain multiple DNA binding domains and each 

domain recognizes one nucleotide. The involved protein-DNA interactions are less complex 

compared to the interaction between each ZFNs domain and its target tri-nucleotides. Thus 
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TALEN design and assembly are more straightforward than ZFN generation. However, for 

each target site a new TALEN protein has to be assembled in a time-consuming fashion. 

Therefore we decided to establish our own genome editing pipeline based on the recently 

introduced clustered regularly interspaced palindromic repeats (CRISPR) system that offers 

several advantages over both ZFNs and TALENs (Jinek et al., 2012; Cong et al., 2013; Mali 

et al., 2013). 

 

4.2. CRISPR-based endogenous protein tagging 
In order to independently and cost-efficiently generate a large amount of endogenously 

tagged cell lines, we chose to establish a general workflow based on the CRISPR system. 

CRISPR is a simple, efficient and inexpensive genome engineering tool based on the 

versatile RNA-guided nuclease Cas9. Target recognition by Cas9 is based on DNA-RNA 

interactions and therefore does not require re-engineering a new protein for each target site. 

Cas9 is simply programmed by a guide RNA (gRNA) for targeting nearly any DNA sequence 

in the human genome. Plasmid construction is based on oligo cloning and therefore simple 

and straightforward. 

4.2.1. Choice of cell lines 
CRISPR-based genome engineering was done in human U2OS or HeLa cells. These cell 

lines are of human origin, easily cultivated and suitable hosts for co-transfection of large 

and/or multiple plasmids such as Cas9/gRNA and, if required, donor plasmids. Further, U2OS 

and HeLa cells are immortalized and grow indefinitely, an important feature for cell expansion 

after single cell sorting. Also both cell lines exhibit epithelial adherent morphology and are 

frequently used model systems for super-resolution imaging and studies of human 

mitochondrial biology. A disadvantage of using cancer cells is their genetic instability and their 

aneuploidy (Janssen and Medema, 2013). The most frequently used cells of this study were 

U2OS cells, a cell line that is chromosomally highly altered and contains chromosome counts 

in the hypertriploid range (Ponten and Saksela, 1967; Ben-Shoshan et al., 2014). This might 

pose challenges when homozygous knockout or knockin cells are to be generated as more 

alleles per target gene have to be modified. In fact, while screening as few as two clones was 

sufficient to obtain a homozygous ZYX-rsEGFP2 cell line (Figure 30), none of the 74 

screened PHB2-DK clones was homozygous for the transgene (Figure 47). While U2OS cells 

contain two copies of the ZYX gene, the PHB2 gene is present in five copies (Halling-Brown 

et al., 2011) and multiple rounds of genome editing might be required in order to target every 
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allele (Lazarou et al., 2015). Haploid human cancer cell lines like KBM7 or HAP1 (Carette et 

al., 2011; Burckstummer et al., 2013) might reduce the effort required to generate a 

homozygous mutant, but their round morphology and a high nucleo-cytoplasmic ratio poses 

difficulties for imaging applications.  

An alternative to cancer cell lines are primary cultures derived from normal animal tissue that 

retain many of the characteristics of the cell in vivo. However, primary cells have a limited 

lifespan and can be maintained in vitro only for a restricted time (Hayflick and Moorhead, 

1961; Hayflick, 1965). As genome edited monoclonal cell lines are established via isolation 

and expansion of a single cell, replicative senescence occurring in untransformed cell lines 

would make this selection step impossible.  

In conclusion, the advantages of using human cancer cell lines over primary cells for 

CRISPR-based gene editing is that they are easy to transfect and their indefinite growth 

potential allows the isolation of monoclonal cell lines after single cell sorting. Chromosomal 

aberrations in cancer cells and high gene copy numbers together with potentially inaccessible 

loci might slow down or even inhibit the generation of homozygous mutants. However, this 

might depend on the gene to be modified as CRISPR has been used recently to sequentially 

knockout five genes in HeLa cells (Lazarou et al., 2015).  

4.2.2. Genomic target site selection 
Target DNA sequences for gRNAs must contain a protospacer adjacent motif (PAM)-site of 

the sequence 5’-NGG-3’ immediately downstream of the gRNA binding site (Jinek et al., 

2012; Cong et al., 2013; Mali et al., 2013). Localization of PAM sites for knockouts is usually 

not difficult as many possible target sites exist within one of the first few exons. The choice of 

target sites, however, for knock-ins via HR is dictated by the desired location of insertion and 

thus more constrained. In general, selection of gRNA target sites within the human genome 

was done using the CRISPR Design Tool (Hsu et al., 2013). The algorithm scans an input 

sequence for possible CRISPR targeting sites with the sequence 5’-N20-NGG-3’ and 

potential off-target matches are analyzed throughout the selected genome. Off-target sites 

associated with potential gRNAs are computed by taking into account: 1) the total number 

mismatches between on- and off-target sites, 2) the position of the mismatch relative to the 

PAM site and 3) the mean pairwise distance between mismatches. The algorithm lists all 

possible gRNA designs and predicted number and sequence of associated off-target sites. 

However, off-target modifications might also occur in sites that are not included in the 

potential candidate list. ChIP-seq identified a wide range of >100 Cas9 off-target binding sites 
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for certain gRNAs and targeted sequencing showed that Cas9 modifies some but not all 

bound off-target sites (Kuscu et al., 2014). Ideally, whole genome sequencing of every 

generated cell line should be performed to verify the absence of unwanted modifications at 

off-target sites. However, this is approach is not straightforward as it is costly and requires 

expertise in data analysis.  

While multiple Cas9 mutants with improved specificities exist, the use of these mutants poses 

further constraints on target site selection and often leads to a reduced on-target activity (Hsu 

et al., 2014). However, the main goal of this study was to generate endogenously tagged 

human knockin cell lines. Therefore, the choice of target sites is already restricted to the start 

or stop codon region in order to achieve high HR frequencies. Moreover, transgene 

integration via HR requires highly efficient on-target mutagenesis as HR frequencies are 

much lower than initial DSB induction rates. Therefore, instead of relying on low activity Cas9 

mutants, we decided to use wildtype Cas9 that was reported to exhibit on-target efficiencies 

of up to 77% (Friedland et al., 2013). As discussed below, this approach was successfully 

realized and mutations at predicted off-target sites were not detected.  

4.2.3. In vivo vs in vitro functional gRNA validation 
Functional validation of initially generated gRNAs was done using the T7 Endonuclease I 

(T7EI) assay or an in vitro approach. T7EI is a mismatch-specific endonuclease and cleaves 

heteroduplex DNA formed after melting and hybridizing mutant and wildtype alleles (Mashal 

et al., 1995). The advantage of using the T7EI assay is that once a functional gRNA is found, 

this functionality reflects the in vivo gRNA activity. However, the T7EI assay suffers from low 

sensitivity as only mutation rates of above 5% are detected (Vouillot et al. 2015) and takes 3-

4 days to complete. The in vitro functional testing of gRNAs takes only about 1-2 days, but it 

is not guaranteed that the tested gRNAs will also be functional in vivo as chromatin structure 

and DNA modifications affect Cas9-gRNA targeting (Kuscu et al., 2014; Wu et al., 2014b). 

Another strategy to quantify mutation rates after gRNA delivery is Sanger or next-generation 

sequencing of a representative panel of sub-cloned PCR products. For routing gRNA testing 

both approaches are expensive and require several days to complete. Further, high-

resolution melting curve analysis has been used to identify mutations (Dahlem et al., 2012) 

but requires the development of a specialized quantitative PCR assay. The main objective of 

this work was using CRISPR for endogenous FP tagging. HR not only depends on a gRNA-

induced DSB but also on DNA methylation status and chromatin structure of the targeted 

locus (Liang and Jasin, 1995; Ramdas and Muniyappa, 1995) as well as the specific 
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sequences that undergo HR (Smith, 1994). Thus instead of testing multiple gRNAs for 

mutagenic activity, the Cas9-gRNA pairs were directly validated according to their ability to 

mediate FP integration at the locus of interest.  

In conclusion, the choice of the gRNA validation method depends on the intended application. 

In general, it is recommended to generate multiple gRNAs targeting the same genomic region 

at multiple sites. For knockout studies, each gRNA should be functionally validated using the 

T7EI assay, because it provides information about gRNA functionality in vivo. For knock-in 

projects, gRNAs should be tested together with the respective donor plasmid for their 

capability to induce a DSB that can be repaired efficiently via HR. 

4.2.4. Generation of donor plasmids 
Repair templates for targeted genomic insertions of large transgenes, such as fluorescent 

protein DNA, require the use of donor plasmids that contain homology arms flanking the 

transgene (Smithies et al., 1985; Thomas and Capecchi, 1986). Length of each homology 

arm should be at least 500 bp (Hasty et al., 1991). A streamlined procedure for donor plasmid 

design and construction exist (Wu et al., 2008). This method is based on recombination-

based cloning methods consisting of three steps and it takes about two weeks to construct a 

donor plasmid. Methods for faster generation of donor plasmids were established here using 

two-step cloning or one-step Gibson assembly (Gibson et al., 2009) for joining multiple 

fragments. Gibson assembly is preferred as a donor plasmid can be efficiently generated in 

one step and obtained in a sequence-verified manner within 4 days starting with ready-to-

assemble fragments. Moreover, Gibson assembly is a ‘scarless’ cloning method as no 

restriction site remains between adjacent fragments, an important feature when multiple DNA 

fragments have to be ligated that together reconstitute a single exon.  

An important point to mention is that Cas9 will a) continue to modify the allele after donor 

plasmid insertion and/or b) degrade the donor plasmid before insertion as long as the gRNA 

target and PAM site remain intact. This could lead to unwanted mutations after transgene 

insertion at the gRNA target site and/or reduce the efficiency of transgene integration. 

Therefore, it is advisable to generate a repair template that contains (silent) mutations in the 

gRNA and/or PAM site that will avoid secondary mutations after insertion. Further, transgene 

incorporation frequencies inversely correlate with the distance from the DSB (Elliott et al., 

1998). Transgene insertion rates drop about four fold at a distance of 100 bp away from the 

DSB and beyond a distance of 200 bp or more away, drug selection markers may be required 
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(Elliott et al., 1998; Ran et al., 2013b). Therefore, gRNA was done such that the fluorescent 

protein insertion site was not more than 100 bp away from the DSB.  

4.2.5. Clone isolation via FACS and characterization of monoclonal cell lines 
After successful integration of a fluorescent reporter gene, selection of single modified cells 

was done using fluorescence activated cell sorting (FACS) to obtain monoclonal cell lines. 

Major advantages of FACS are its rapid and quantitative analysis of multiple parameters 

simultaneously in a highly sensitive and reproducible manner (De Rosa et al., 2001). Further, 

FACS sorters have a low error rate and can detect and purify rare subsets of cells as low as 

0.01%. However, maintaining sterility when isolating single cells via FACS might pose 

problems and cell damage due to hydrodynamic stress causes slow recovery or even 

apoptosis of sorted cells (Mollet et al., 2007). Alternative methods for single cell isolation 

include limiting dilution protocols that are cost-effective but tedious and impractical when 

many clones are to be isolated. Further, cloning rings for harvesting individual colonies can 

be employed after cells were seeded sparsely in 10 cm dishes and allowed to expand to form 

single colonies. Here the throughput might be higher but there is no guarantee that the colony 

originated from a single cell.  

Analysis of the monoclonal cell lines was streamlined and involved genotyping via PCR, 

assessment of fusion protein expression via western blotting (WB) and on-/off-target site 

analysis using Sanger sequencing. Importantly, genotyping via PCR must be done with a 

primer pair in which at least one of the two primers anneals outside of the homology arms. 

This ensures the locus-specific analysis of the transgene integration event. For instance, 

random integration of the donor plasmid would lead to presence of homology arm DNA at an 

off-target locus. In that case, use of two primers that anneal within the homology arms (in-in 

PCR) would lead to the wrong interpretation that such a clone was successfully modified.  

Taken together, the established workflow allows for efficient endogenous protein tagging with 

fluorescent reporters using the CRISPR system and wildtype Cas9 in human cancer cell 

lines. The entire protocol, from planning to obtain a characterized cell line, takes about six 

weeks. This time could be reduced by using a cell line with a faster growth rate, because 

recovery of U2OS cells after single cell sorting takes about 2-3 three weeks. Further, an 

efficient strategy for selecting a homozygous knock-in clone at the initial FACS sorting step is 

lacking. To select clones with e.g. at least two or three knock-in alleles a double or triple 

antibiotic selection strategy could be employed to enrich for modified clones before FACS 

selection. However, further experiments are needed to test the potential of this approach.  
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4.3. Endogenous tagging for live cell super-resolution microscopy 
The previously established workflow for CRISPR-mediated endogenous tagging was 

successfully applied to generate 24 human knock-in cells (Table 15). A selection of three 

endogenously tagged cell lines was used for in-depth characterization and investigation using 

flow cytometry, confocal and RESOLFT super-resolution microscopy.  

4.3.1. Increasing integration frequencies and survival rates after single cell sorting 
The three proteins vimentin (VIM), zyxin (ZYX) and high mobility group protein A1 (HMGA1) 

were successfully targeted for C-terminal integration of the reversible switchable fluorescent 

protein rsEGFP2 (Table 1). Single cell sorting via FACS allowed the selection of targeted 

fluorescent clones even at low homologous recombination (HR) frequencies below 1%. 

However, endogenous protein tagging with widely used affinity tags such as FLAG, c-myc or 

streptavidin (Terpe, 2003) would be attractive for protein purification studies. Those tags are 

non-fluorescent and maximum homologous recombination (HR) rates are required to 

decrease the number of clones that must be screened. Because a DNA double strand-break 

is either repaired via HR or non-homologous end-joining (NHEJ), inhibition of the NHEJ 

pathway leads to knock-in frequencies of 50-66 % (Chu et al., 2015). Further, HR occurs only 

during S and G2 phase and cell cycle synchronization lead to an increase of HR frequencies 

up to 38% compared to non-synchronized cells (Lin et al., 2014). A combination of both 

approaches, NHEJ inhibition and cell synchronization, might even result in higher knock-in 

frequencies, but this remains to be experimentally verified.  

While selection of fluorescent knock-in cells via FACS is straightforward, typical recovery 

rates of U2OS cells after single cell sorting were only 10-20 %. Low survival rates are due to 

cell damage caused by hydrodynamic stress during sorting that can result in apoptosis of 

sorted cells (Mollet et al., 2007). Switching to a larger nozzle or decreasing the flow rate 

during sorting might increase viability (Tol et al., 2008). Further, recovery rates can be 

increased by supplementing the growth medium with antioxidants such as α-thioglycerol or 

bathocuprione disulphonate (Brielmeier et al., 1998) or higher concentrations of fetal bovine 

serum (FBS). 

4.3.2. Gene editing of HMGA1, VIM and ZYX using CRISPR is highly specific 
DNA sequencing of on-target sites showed that Cas9-induced DSBs mainly resulted in small 

deletions with a length of 1, 2, 3 or 11 bp or small insertions of 1 bp (Figure 33-35). This is in 

line with previous studies showing that the most common insertions/deletions (indels) are 1 
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bp insertions and 1-3 bp deletions (Cradick et al., 2013). Importantly, mutagenesis of the 

terminal exon of the ZYX gene was prevented by introduction of silent mutations within the 

gRNA binding site that did not lead to alterations in the protein sequence. It should be noted 

that the observed mutations were located within the 3’-UTR of the VIM or HMGA1 gene, 

respectively. This region contains important elements for regulation of eukaryotic gene 

expression (Barrett et al., 2012) and even single nucleotide changes within the 3’-UTR can 

greatly reduce mRNA translation (Clop et al., 2006). However, expression levels of both 

affected proteins, VIM and HMGA1, were comparable to expression levels in wildtype cells 

(Figure 32). Hence the observed mutations do not seem to influence any major post-

transcriptional regulation mechanism.  

DNA sequencing revealed no mutagenesis of the computationally predicted off-target sites in 

any of the monoclonal knock-in cell lines generated (Figure 36-38). This was expected, 

because the number of mismatches between the respective gRNA and each analyzed off-

target DNA site was 3-4 bp (Table 2). In general more than three mismatches between the 

potential off-target sites and the complementary gRNA are not tolerated (Hsu et al., 2013; 

Ran et al., 2013b). Further, most mismatches were positioned within the highly mismatch-

intolerant 12 nucleotide seed region on the 3’-end of the respective gRNA (Hsu et al., 2013; 

Ran et al., 2013b). However, only two potential off-target sites per gRNA could be analyzed 

and off-target modifications might also occur in sites that are not included in the potential 

candidate list (Wang et al., 2015). Further, some gRNAs can tolerate up to five mismatches 

with unwanted target sites (Fu et al., 2013). Technically, whole genome sequencing of every 

generated cell line is done, but this is a highly impractical approach, because it is time-

consuming, expensive and requires significant expertise in sequencing data analysis. 

Practically, the here presented approach of generating multiple, independently targeted 

clones using two different gRNAs is advisable. While this strategy does not reduce off-target 

mutagenesis itself, it can be assumed that on-target modification caused the observed 

phenotype, if the same phenotype is associated with several gRNAs (Ran et al., 2013b).  

4.3.3. Endogenous tagging prevents overexpression artefacts 
FACS and microscopic analysis of rsEGFP2 knock-in cells demonstrated the advantage of 

endogenous tagging over ectopic expression from heterologous promoters. Strikingly, fusion 

protein expression levels spanned three orders of magnitude between 102 and 105 arbitrary 

units independent of the expressed protein (Figure 39). While about 25% of the cells were 

transfected, an individual cell must have taken up various plasmid copies. In fact, previous 
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studies showed that plasmid transfection is highly heterogeneous on the levels of cellular and 

nuclear uptake to final transgene expression (Cohen et al., 2009). Compared to ectopic 

expression, endogenous expression levels were characteristic for the respective protein, 

indicating that gene expression is controlled by endogenous promoters and regulatory 

elements. Interestingly, FACS revealed the physiological variation in protein abundances on a 

single cell level. Although individual cells within each monoclonal rsEGFP2 knock-in cell were 

genetically identical, they exhibited substantial phenotypic heterogeneity. This variation is 

caused by differences in cell size and cell cycle states, but can also arise from stochasticity in 

gene expression. The resulting cellular heterogeneity can be essential for many biological 

processes (Kaern et al., 2005), but its investigation was so far limited to endogenously tagged 

bacterial (Elowitz et al., 2002) and yeast cells (Di Talia et al., 2007). Therefore, CRISPR-

mediated endogenous tagging can be applied to extend studies on cellular heterogeneity to 

human cells.  

Microscopic investigation of U2OS cells after plasmid transfection demonstrated a multitude 

of artefacts including mislocalization and aggregation of fusion proteins as well as changes in 

cell shape (Figure 40). High expression rates often result in protein aggregation due to an 

overload of the protein folding machinery (Kober et al., 2012; Halff et al., 2014), 

mislocalizations due to deregulated protein trafficking (Hung and Link, 2011) and cell 

morphology changes especially when cytoskeletal proteins are overexpressed (Mendez et al., 

2010). However, endogenously tagged cells exhibited protein distributions and cell 

morphologies comparable to wildtype cells. This demonstrates that the previously observed 

artefacts were caused by artificially high fusion protein expression levels that disturbed 

cellular homeostasis, but not by the fluorescent protein tag itself.  

4.3.4. RESOLFT allows nanoscale imaging at endogenous expression levels 
RESOLFT super-resolution imaging was successfully applied to reveal the nanoscale 

distribution and dynamics of endogenously rsEGFP2-tagged cell lines. Compared to 

conventional imaging, RESOLFT could readily image VIM-rsEGFP2 cells at a resolution down 

to 40 nm (Figure 41). Further, super-resolution movies showing highly motile vimentin 

networks on a time-scale of seconds and minutes could be recorded. Previous RESOLFT 

imaging studies on VIM-rsEGFP2 showed a less mobile intermediate filament network, 

suggesting that overexpression might negatively impact vimentin dynamics (Grotjohann et al., 

2012). RESOLFT on HMG-I-rsEGFP2 could visualize individual protein clusters in the 

nucleus of an endogenously tagged human cell for the first time (Figure 42). 3D super-
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resolution RESOLFT microscopy (Testa et al., 2012) could further improve image resolution 

as HMG-I-rsEGFP2 is three-dimensionally distributed over the nucleus. Finally, RESOLFT 

could distinguish individual zyxin fibers as well as zyxin dynamics homozygous knock-in cells. 

Compared to confocal imaging, RESOLFT was able to distinguish individual zyxin 

nanoclusters previously only observed using PALM imaging (Betzig et al., 2006; Shroff et al., 

2007). Further, these studies required up to 30 minutes to obtain a single image (Shroff et al., 

2007) whereas RESOLFT imaging took about 3 minutes per image. RESOLFT image 

acquisition time can be further reduced 4-fold via doubling the pixel length. This strategy 

would result in lower phototoxicity, but also in a 2-fold lower lateral resolution. Additionally, 

the recording speed could be further accelerated and large fields of view (100 x 100 µm²) 

recorded using massively parallelized scanning (Chmyrov et al., 2013).  

In conclusion, CRISPR-mediated genome engineering was demonstrated to generate 

heterozygous and homozygous human cell lines expressing rsEGFP2 fusion proteins. For the 

first time, this labelling strategy was adopted for RESOLFT super-resolution imaging. Ideally, 

homozygous knockin cells are obtained, as they will allow quantitative analysis of 

endogenous protein numbers and localizations on the nanoscale in the future. The approach 

is versatile since instead of rsEGFP2 incorporation, also other suitable (fluorescent) tags 

could be used.  

 

4.4. Quantitative analysis of mitochondrial prohibitins in human cells 
Besides their role in cristae morphogenesis, prohibitins have been implicated in various 

processes such as transcriptional regulation, cellular signaling and others (Merkwirth and 

Langer, 2008).  Next to mitochondria, prohibitins were found to localize to the nucleus 

(Fusaro et al., 2003; Kurtev et al., 2004; Kasashima et al., 2006) and the plasma membrane 

(Kolonin et al., 2004; Sharma and Qadri, 2004) in various cell types and model systems. 

Therefore, it was suggested that the functional diversity of prohibitins correlates with their 

diverse localizations to different cellular compartments. Interestingly, it was proposed that 

PHB2 translocates from mitochondria to the nucleus in presence of estradiol and estrogen 

receptor (Kasashima et al., 2006). However, complementation assays in mouse embryonic 

fibroblasts (MEFs) strongly support the fact that cellular homeostasis solely depends on the 

mitochondrial localization of prohibitins (Merkwirth et al., 2008). Further, many studies were 

based on prohibitin overexpression that potentially leads to protein malfunction and 

mistargeting to diverse cellular compartments (Fusaro et al., 2003; Kurtev et al., 2004, Sun et 

al., 2004; Kasashima et al., 2006).  
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To investigate the subcellular distribution of PHB1 and PHB2 in human U2OS cells at 

endogenous expression levels, we set out to employ CRISPR-based genome editing for 

genomic tagging of each prohibitin. For the first time, this approach allowed the 

comprehensive analysis of prohibitin localization, dynamics and abundance in human cells 

using a variety of methods. 

4.4.1. Overexpression of PHB1-DK or PHB2-DK induces aberrant mitochondria 
Transient overexpression of Dreiklang (DK)-tagged prohibitin 1 (PHB1) or prohibitin 2 (PHB2) 

resulted in two different aberrant mitochondrial morphologies. The majority of PHB1-DK 

transfected cells displayed perinuclear clusters of enlarged mitochondria (Figure 43). 

Interestingly, a similar phenotype was observed upon enforced expression of the outer 

mitochondrial membrane (OMM) fusion protein Mfn1, which leads to mitochondrial 

aggregation by stimulating OM fusion events (Santel et al., 2003). Thus PHB1 overexpression 

might promote OM fusion indirectly, which would be in agreement with the observed inhibitory 

effect that PHB1 exerts on mitochondrial fission events (Wang et al., 2014b). 

PHB2 overexpression causes mitochondrial fragmentation or accumulation of cytoplasmic 

protein aggregates (Figure 43). Interestingly, fragmented mitochondria were observed upon 

PHB2 knockout as well as PHB2 overexpression (Merkwirth et al., 2008; Kowno et al., 2014), 

suggesting that any imbalance in PHB2 expression levels leads to fragmented mitochondria. 

Accumulation of cytoplasmic PHB2-DK aggregates might be attributed to an overloaded 

cytoplasmic chaperone system dedicated to mitochondrial precursor protein stabilization prior 

to import (Young et al., 2003). Strikingly, cytoplasmic aggregates where never observed upon 

ectopic expression of PHB1-DK, but only detected when PHB2-DK was overexpressed. Using 

membrane topology prediction algorithms, it was proposed that PHB2 contains a 

transmembrane helix, while PHB1 is expected to be membrane associated (Back et al., 

2002). Because of the transmembrane helix, PHB2 is more hydrophobic and the intrinsic self-

aggregation properties of PHB2 might be higher than for PHB1. However, experimental 

evidence for this hypothesis is lacking and structural studies are needed for clarification.  

4.4.2. Endogenously tagged PHB1-DK and PHB2-DK clones are heterozygous and 
exhibit fusion protein expression variability 

In order to prevent artefacts induced by overexpression of PHB1-DK or PHB2-DK, the 

previously established CRISPR-based workflow for endogenous tagging was applied. While 

knock-in efficiencies reached up to 17.7% (Figure 46) and between 49 and 74 individual 

clones were screened, no homozygous PHB1-DK or PHB2-DK knock-in cell was found 
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(Figure 47). It cannot be excluded that homozygous tagging with a fluorescent reporter would 

render the respective prohibitin non-functional and cause a lethal phenotype. However, 

previous studies in yeast and mammalian cells suggest that PHB1-GFP and PHB2-GFP are 

functional (Birner et al., 2003; Kasashima et al., 2006; Kowno et al., 2014). Thus, absence of 

homozygous clones might be attributed to the insufficient targeting of all PHB1 or PHB2 gene 

copies. In fact, analysis of copy number variations in U2OS cells revealed that four copies of 

the PHB1 gene exist in these cells, while five PHB2 gene copies are present (Halling-Brown 

et al., 2011). Therefore, a homozygous modification could be prevented, if only a fraction of 

all gene copies was accessible for site-specific gene editing. This is in agreement with the 

observation that at least one gene copy of each PHB1 and PHB2 displayed a wildtype DNA 

sequence, suggesting that it was not modified by Cas9 (Figure 51 and 52). However, further 

experiments including multiple rounds of transfection with nuclease/donor plasmids and 

single clone isolation are needed to test whether homozygous tagging of PHB1 or PHB2 is 

possible.  

Expression level analysis of four PHB1-DK and four PHB2-DK clones revealed that total 

PHB1 levels varied substantially between different clones, while PHB2 levels were similar 

among most clones (Figure 48). The used gRNAs were targeted towards the 3’-UTR of the 

respective gene, a region that contains crucial elements for the regulation of gene expression 

levels (Barrett et al., 2012). While the 3’-UTR of PHB2 is not characterized, it has been 

reported that PHB1 mRNA contains a long 3’-UTR comprising a microRNA response element 

to control PHB1 protein levels (Jupe et al., 1996; Wang et al., 2014b). CRISPR-induced 

mutagenesis of PHB1 might result in 3’-UTR modifications that vary among clones and have 

a different impact on PHB1 expression levels. Alternatively, gRNA-specific off-target sites at 

unintended genomic regions might alter PHB1 protein levels.  

4.4.3. Endogenously tagged PHBs are found in mitochondria 
This thesis demonstrated that endogenous tagging of PHB1 and PHB2 with DK leads to 

mitochondrial localization of both PHB1-DK and PHB2-DK (Figure 49). Importantly, these 

knock-in cell lines exhibited a wildtype mitochondrial morphology compared to forced 

overexpression conditions that induce an aberrant mitochondrial phenotype. This shows that 

not the fluorescent protein tag itself, but rather the non-physiological expression rates of the 

respective protein caused aberrant mitochondria. Further, the central claim of the ‘gene 

dosage balance’ hypothesis is that perturbation of the stoichiometric balance in protein 
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complexes can be a source of abnormal phenotypes (Birchler and Veitia, 2012). This 

hypothesis could be confirmed experimentally for the PHB complex in the present study.  

Interestingly, nuclear localization of PHB2-DK in presence of estrogen receptor α (ESR1) and 

17β-estradiol (E2) could be demonstrated in HeLa cells (Figure 61) as shown before 

(Kasashima et al., 2006). However, the nuclear accumulation of PHB2-DK was no general 

phenomenon as it was only observed in a fraction of cells co-expressing PHB2-DK and 

ESR1. In fact, nuclear localization of PHB2 might be attributed to very high PHB2-DK 

overexpression levels achieved only in a fraction cells. This was confirmed by ESR1 

overexpression in endogenously tagged HeLa-PHB2-DK cells where PHB2-DK is solely 

localized in mitochondria (Figure 61). As previously observed for PHB2-DK overexpression in 

U2OS cells, most PHB2-DK is not imported into the mitochondrion but rather forms 

cytoplasmic aggregates. Under such conditions, a combination of unfolding and aggregation 

might generate an artefactual nuclear localization signal (Gibson et al., 2013). Further, E2 

was shown to be toxic and to induce apoptosis in ESR1-expressing HeLa cells (Kushner et 

al., 1990; Zhang and Shapiro, 2000). It can be concluded, that PHB2 nuclear mistargeting in 

HeLa cells is an overexpression artefact only observed under non-physiological conditions 

with artificially high PHB2 expression levels. 

4.4.4. Prohibitins form immobile clusters in the inner mitochondrial membrane  
Previous live cell confocal imaging of endogenous PHB1-DK and PHB2-DK showed that 

prohibitins localize to mitochondria in human cells. STED super-resolution microscopy on 

fixed cells revealed distinct clusters of PHB1-DK and PHB2-DK in genome-edited cells 

(Figure 52). Similarly, wildtype cells exhibited distinct PHB1 and PHB2 clusters suggesting 

that clustering is neither a tag-induced artifact or hindered by the C-terminal tag (Figure 53). 

The average diameter of individual PHB1 or PHB2 clusters, without decorating antibodies, 

was estimated to be between 45 and 50 nm. Further, prohibitin clustering was not always 

uniform throughout a mitochondrial tubule and prohibitin ‘hotspots’ were observed. Thus, the 

mitochondrial IM is not homogenous for prohibitin distribution and prohibitin clusters exist 

within a range of sizes. This is in contrary to other IM proteins such as Mic60 that display a 

regularly spaced array of clusters within the mitochondrial IM (Jans et al., 2013). However, 

whether there is a connection between the heterogeneous distributions of prohibitins and their 

function remains to be investigated. Dual-color STED imaging demonstrated that both PHB1-

DK and PHB2-DK colocalize with the respective untagged version of both PHB1 and PHB2 

(Figure 54 and 55). Interestingly, the distribution of both tagged and untagged PHB1 or PHB2 
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were similar, suggesting that antibody staining of the tagged prohibitin is representative for 

the distribution of both tagged and untagged prohibitin. Importantly, the similar localization 

suggests that tagged prohibitin is successfully incorporated into the PHB complex.  

Immunogold electron microscopy (EM) demonstrated that about 80-90% of both PHB1 and 

PHB2 are localized to the CM with only a small pool of 10-20% localized within the IBM 

(Figure 56 and 57). Similarly, immunogold EM studies showed that OPA1 is mostly localized 

to cristae with only a small fraction found within the inner boundary membrane (IBM) (Griparic 

et al., 2004). OPA1 mediates IMM fusion and a selective loss of long OPA1 isoforms has 

been observed upon prohibitin depletion in murine cells (Merkwirth et al., 2008). While 

prohibitins were suggested to regulate OPA1 processing only indirectly (Merkwirth and 

Langer, 2009), a similar submitochondrial localization of prohibitins and OPA1 might be 

required for optimal OPA1 processing. Moreover, it has been discussed whether prohibitins 

are involved in establishing membrane curvatures crucial for the architecture of cristae 

junctions (CJ) (Zick et al., 2009). A direct role for prohibitins in the establishment for CJs 

seems unlikely considering that the majority of both PHB1 and PHB2 are localized within the 

CM. However, PHBs might have an indirect implication via controlled processing of OPA1 

which itself is able to induce CJ tightening (Cipolat et al., 2006; Frezza et al., 2006).  

A small fraction of 10-20% of both PHB1 and PHB2 was found to localize to the IBM 

(Figure 56 and 57). These fractions could simply correspond to newly imported prohibitins 

under steady state conditions. On the other hand, IBM-enriched prohibitins might also play an 

important role for processes in the mitochondrial outer membrane (OMM). Interestingly, yeast 

cells lacking Mmm1, Mdm10 and Mdm12 critically depend on PHBs for survival (Berger and 

Yaffe, 1998) and these three proteins were shown to be subunits of the ER-mitochondria 

encounter structure (ERMES), which tethers mitochondria to the ER (Kornmann et al., 2009). 

Mammalian cells lack ERMES and Mfn2 has been proposed to form a physical ER-

mitochondria tether (de Brito and Scorrano, 2008; Schneeberger et al., 2013). Mfn2 interacts 

with SLP2, which binds cardiolipin and SLP2 was proposed to recruit both PHB1 and PHB2 to 

form cardiolipin-enriched microdomains (Hajek et al., 2007; Da Cruz et al., 2008; Christie et 

al., 2011). Therefore, it is tempting to speculate that IBM-localized PHBs were recruited via 

SLP-2 to indirectly modulate the function of Mfn2, thereby influencing mitochondrial fusion 

and/or contact sites. However, experimental evidence for this hypothesis is lacking and future 

studies are needed to clarify the potential role of IBM-localized prohibitins.  

Fluorescence recovery after photobleaching (FRAP) demonstrated that both PHB1-DK and 

PHB2-DK were highly immobile (Figure 58). Previous FRAP studies on mitochondrial inner 
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membrane proteins found an immobile fraction of about 40% for the γ-subunit of complex V 

and about 50% for subunit Cox8a of complex IV (Sukhorukov et al., 2010). Those proteins 

appear to be almost homogenously distributed between IBM and CM (Vogel et al., 2006) and 

it was suggested that the immobile fraction of γ-subunit and Cox8a reflects the cristae-

localized fraction of these molecules (Sukhorukov et al., 2010). This is in agreement with the 

mobility and localization data obtained for both PHB1-DK and PHB2-DK. About 80-90% of 

both proteins are enriched in the cristae membrane rendering the same fractions of PHB1-DK 

and PHB2-DK essentially immobile within the cristae membrane.  

4.4.5. PHB2 is more abundant than PHB1 
Quantitative western blotting demonstrated that a single genome-edited or wildtype U2OS cell 

contains about 4-5 times more PHB2 than PHB1 (Figure 62 and 63). Assuming a suggested 

heterodimeric 1:1 stoichiometry between PHB1 and PHB2 (Back et al., 2002), this would 

mean that about 60-80% of PHB2 do not participate in PHB complex formation. It is 

conceivable that such ‘free’ PHB2 functions independently of PHB1 in other mitochondrial 

protein complexes. However, dual-color STED imaging showed that both tagged and 

untagged prohibitins are similarly distributed and no subcomplexes comprising individual 

PHB1 or PHB2 could be found (Figure 54 and 55). Based on these observations, a 1:5 

stoichiometry between ~6 PHB1 and ~25 PHB2 subunits for the human PHB complex could 

be assumed. Intriguingly, this is in contrary to previous investigations that suggested the 1:1 

stoichiometry for the yeast PHB complex and found ~14 copies (Back et al., 2002) or ~18 

copies (Tatsuta et al., 2005) per prohibitin subunit. However, the insights of those studies are 

based on in vitro structural analysis using crosslinking mass spectrometry and single particle 

EM of purified yeast prohibitins. Further, the copy number of each prohibitin was extrapolated 

from the observation that the purified yeast PHB complex runs at an apparent molecular 

mass of 1-1.4 MDa in a blue-native gel without actually measuring the subunit concentration 

(Back et al., 2002; Tatsuta et al., 2005). Therefore, it is conceivable that the investigated 

yeast PHB complex represents the stable core structure that can be purified while a different 

structural organization of the complex exists in vivo. Further, comparable data for other model 

systems than yeast do not exist. Therefore, additional structural studies on both yeast and 

mammalian PHB complexes are required to get a more comprehensive insight into their 

composition and organization. 
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4.5. Conclusions and outlook  
This work presents the establishment of an efficient workflow for CRISPR-Cas9-mediated 

generation of human knock-in cell lines that express a fluorescent protein (FP) from a 

genomic locus. Importantly, site-specific endogenous protein tagging leads to (almost) native 

fusion protein expression levels, which in turn could prevent artefacts commonly associated 

with overexpression. This shows that artificially high protein expression levels, but not FP 

tagging itself, cause a disturbed cellular homeostasis. RESOLFT super-resolution imaging of 

endogenously tagged cells enabled the observation of nanoscale dynamics at physiologically 

relevant expression levels. Moreover, endogenous tagging of mitochondrial prohibitins 

allowed to gain insights into their previously unknown submitochondrial localization, protein 

dynamics and protein quantity on a single cell level.  

While this work showed the integration of a single FP at one genomic locus, the established 

methodologies can be easily applied to incorporate a second FP at a second locus. Two color 

genomic tagging would allow protein co-localization studies at endogenous levels using 

(super-resolution) microscopy. This can be achieved by simultaneous or sequential co-

transfection of two nuclease/donor plasmid pairs followed by sorting of single cells expressing 

both FPs.  

Next to FPs, the integration of self-labelling enzymes (e.g. SNAP) would enable STED super-

resolution imaging on endogenous protein levels, because highly photostable organic dyes 

could be used. Moreover, self-labelling enzymes would allow novel experimental applications 

such as pulse-chase experiments to study protein turnover on physiological protein levels.  

While protein tags such as FPs or SNAP tag are bulky structures that are usually placed at 

the N- or C-terminal end of a target protein, genetically encoded fluorescent amino acids are 

small and can be inserted also internally at many different positions of a polypeptide 

sequence (Lang and Chin, 2014). In combination with endogenous tagging, this labeling 

strategy should be the least disturbing one for most proteins. However, the incorporation of 

fluorescent amino acids into a protein of interest is still very inefficient and a few expert labs 

mainly use this labeling strategy so far.  

The entire current protocol, from project planning until a characterized cell line is obtained, 

can be executed within about 6 weeks when U2OS or HeLa cells are used. Because recovery 

of these cells after single cell sorting takes about 2-3 weeks, using a cell line that displays a 

faster growth rate might accelerate the entire workflow.  

Moreover, a strategy for selecting homozygous knock-in clones is lacking so far. This could 

be accomplished via integration of an antibiotic resistance gene downstream of the respective 
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tag. The more copies of the respective gene are targeted, the more gene copies of the 

respective antibiotic resistance gene should be expressed from the genome. Therefore, 

applying increased antibiotic concentrations before single cell sorting might enrich 

homozygous knock-in clones.  

The strategy for selecting homozygous knock-in clones should be applied to test whether 

prohibitin can be tagged homozygously with fluorescent proteins. This would enable to count 

copy numbers of prohibitin subunits in individual complexes or clusters using quantitative 

(super-resolution) imaging (Ulbrich, 2015).  

The here presented labelling strategy based on CRISPR-mediated endogenous tagging of 

human proteins is superior to previous overexpression approaches. In combination with 

super-resolution imaging methods, endogenous tagging opens up a new field of quantitative 

nanoscopy that will allow unprecedented insights into a vast spectrum of biological 

applications.
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Table 4: Primers used for one-step cloning of overexpression plasmid. All constructs are based 
on the  pFLAG-CMV-5.1 backbone.  

Plasmid name Primer  Sequence (5’ to 3’) 

VIM- 
rsEGFP2 

MR843_VIM_F TTCATCGATAGATCTGATGCCACCATGTC
CACCAGGTCCGTGTC 

MR844_VIM_R GAACCACTACCGGCGGCCGCTTCAAGGT
CATCGTGATGCTGAG 

MR845_rsEGFP2_F CCGCCGGTAGTGGTTCAGGGGTGAGCAA
GGGCGAGGAGC 

MR846_rsEGFP2_R GTCGACTGGTACCGATTTACTTGTACAGC
TCGTCCATGCC 

ZYX- 
rsEGFP2 

MR930_ZYX_F TTCATCGATAGATCTGATGCCACCATGGC
GGCCCCCCGCCCGTCTC 

MR931_ZYX_R CCGGTGCCGCTGCCGGTCTGGGCTCTAG
CAGTGTGGCACTTCCG 

MR932_rsEGFP2_F CCGGCAGCGGCACCGGTGTGAGCAAGG
GCGAGGAGCTG 

MR933_ sEGFP2_R GTCGACTGGTACCGATTTACTTGTACAGC
TCGTCCATGCCGAG 

HMGA1-
rsEGFP2 

MR956_HMGA1_F TTCATCGATAGATCTGATGCCACCATGAG
TGAGTCGAGCTCGAAGTCC  

MR957_HMGA1_R CGGATCCGCTGCCCTGCTCCTCCTCCGA
GGACT  

MR958_rsEGFP2_F CAGGGCAGCGGATCCGGCGTGAGCAAG
GGCGAGGAGCTG  

MR959_rsEGFP2_R GTCGACTGGTACCGATGGTACCTTACTTG
TACAGCTCGTCCATGCCGAG 

PHB1-DK 

MR1143_PHB1_F TTCATCGATAGATCTGATGCCACCATGGC
TGCCAAAGTGTTTGAGTCC 

MR1144_PHB1_R CCACTACCCTGGGGCAGCTGGAGGAGCA
C 

MR1145_DK_F TGCCCCAGGGTAGTGGTTCAGGGGTGAG
CAAGGGCGAGGAGCTG 

MR1146_DK_R GTCGACTGGTACCGATTTACTTGTACAGC
TCGTCCATG 

PHB2-DK 

MR1147_PHB2_F TTCATCGATAGATCTGATATGGCCCAGAA
CTTGAAGGACTTG 

MR1148_PHB2_R CCACTACCTTTCTTACCCTTGATGAGGCT
GTC 

MR1145_DK_F TGCCCCAGGGTAGTGGTTCAGGGGTGAG
CAAGGGCGAGGAGCTG 

MR1149_DK_R GGTAAGAAAGGTAGTGGTTCAGGGGTGA
GCAAGGGCGAGGAGCTG 

ESR1 
MR1216_ESR1_F TTCATCGATAGATCTGATGCCACCATGAC

CATGACCCTCCACACC 

MR1217_ESR1_R GTCGACTGGTACCGATTTAGACCGTGGCA
GGGAAAC 
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Table 5: Primers used for donor plasmid cloning. All donor plasmids are based on the pUC57 
backbone. Note: ‘ZYX gBlock’ is a double-stranded DNA fragment and the given sequence 
corresponds to the 5’ to 3’ sequence of the plus strand. 

Donor plasmid Primer name Sequence (5’ to 3’) 

HMGA1-
rsEGFP2 

GA145_LHA_F TCTCGCGAATGCATCTAGATGATGTGACCCACC
ACACTGCACTGG  

GA146_LHA_R ATCCGCTGCCCTGCTCCTCCTCCGAGGACTCCT
GC 

GA146_rsEGFP2_F GGAGGAGCAGGGCAGCGGATCCGGCGTGAGC
AAGGGCGAGGAGC 

GA147_rsEGFP2_R CACGCATGGGGGTACCTTACTTGTACAGCTCGT
CCATG 

GA148_RHA_F GTAAGGTACCCCCATGCGTGCCGCCTGCTCCT
CAC 

GA149_RHA_R AGGCCTCTGCAGTCGACGATGTGAGCTCCTTGT
TATTGGTGCCCCATCTG 

VIM- 
rsEGFP2 

MR449_LHA_F ATATTAGGTACCCCTTAAACCACTTCCTAAAGCA
GCTACATGAAACAGCTTCACTAGACTACC 

MR450_LHA_R TATATTGCGGCCGCTTCAAGGTCATCGTGATGC
TGAGAAGTTTCGTTGATAACC 

MR451_rsEGFP2_F ATATTAGCGGCCGCCGGTAGTGGTTCAGGGGT
GAGCAAGGGCGAGGAGCTGTTCACCG 

MR452_rsEGFP2_R TTAATTCCATGGTTACTTGTACAGCTCGTCCATG
CCGAGAGTGATCCC 

MR453_RHA_F CGAAACTTCTCAGCATCACGATGACCTTCCATG
GAAATTGCACACACTCAGTG 

MR454_RHA_R TATTTAGTCGACGTTATGATTAAAATCACAGACC
TGAGCTCATTTTAGAGAGACCTATCTTC 

ZYX- 
rsEGFP2 

GA403_LHA_F TCTCGCGAATGCATCTAGATGAAAGCCCTGGCT
AACTCGGCTGGC 

GA404_LHA_R TACCCCACCCCATCCAGCTCCATCTTG  

GA405_rsEGFP2_F GGCAGCGGCACCGGTGTGAGCAAGGGCGAGG
AGC  

GA406_rsEGFP2_R CTGTCCTCACGCTAGCTTACTTGTACAGCTCGT
CCATG  

GA407_RHA_F GTAAGCTAGCGTGAGGACAGGCCCTCTTCAGA
CCG  

GA408_RHA_R AGGCCTCTGCAGTCGACGATGACGCAGATGGG
AATCACACTGCCC  

ZYX_gBlock 

GAGCTGGATGGGGTGGGGTAGGGTGGAGCAG
AGCAGGGGCCTTCCGGTCCAGTGCCCCTCACC
CTTCCTTCTTCCCAGGACTGCGGGAAGCCTCTG
TCAATTGAGGCTGATGACAATGGCTGCTTCCCT
CTGGAAGGTCATGTGCTCTGTCGGAAGTGCCA
CACTGCTAGAGCCCAGACCGGCAGCGGCACCG
GTGTGAG 

PHB1-DK 

GA265_LHA_F TCTCGCGAATGCATCTAGATAGGTCACACGTTG
CAGAGAGCTGTCTTCC 

GA266_LHA_R ATCCGCTGCCCTGGGGCAGCTGGAGGAGCACG
GAC 

GA267_DK_F GCTGCCCCAGGGCAGCGGATCCGGCGTGAGC
AAGGGCGAGGAGC 

GA268_DK_R GGGTGGGCCCGGTACCTTACTTGTACAGCTCG
TCCATG 
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GA269_RHA_F GTAAGGTACCGGGCCCACCCTGCCTGCACCTC
CGC 

GA270_RHA_R  
AGGCCTCTGCAGTCGACGATCCAGGAACGTAG
GTCGGACACGTCTTTGGC  

PHB2-DK 

GA271_LHA_F  TCTCGCGAATGCATCTAGATATGTGTTACTCATT
GCTGCACCCCT  

GA272_LHA_R  ATCCGCTGCCTTTCTTACCCTTGATGAGGCTGT
CAC  

GA273_DK_F  GGGTAAGAAAGGCAGCGGATCCGGCGTGAGCA
AGGGCGAGGAGC  

GA274_DK_R  GTGACTATGCGGTACCTTACTTGTACAGCTCGT
CCATG  

GA275_RHA_F  GTAAGGTACCGCATAGTCACCAAGGACTCCACC
CC  

GA276_RHA_R  AGGCCTCTGCAGTCGACGATGGTGCCTGAGAT
TCGGGAAGGCCTG  

PHB1-DK-res MR1038_SDM GCACCTCCGCGGGCTGACTAAACCACAGCCCC 
MR1039_SDM GGGGCTGTGGTTTAGTCAGCCCGCGGAGGTGC 

PHB2-DK-res 
MR1040_SDM 

CAGAGGAAGTGGATCTGCTTCTTTAGTTTTTGA
GGAGCCA 

MR1041_SDM 
TGGCTCCTCAAAAACTAAAGAAGCAGATCCACT
TCCTCTG 

 

 
Table 6: Primers used for gRNA cloning. 

Gene gRNA  Primer Sequence (5’ to 3’) 

 
HMGA1 
 

gRNA1 MR577_F CACCGAGGAGCAGGCGGCACGCAT 
MR578_R AAACATGCGTGCCGCCTGCTCCTC 

gRNA2 MR579_F CACCGCCAACAACTGCCCACCTCAC 
MR560_R AAACGTGAGGTGGGCAGTTGTTGGC 

VIM 
gRNA1 MR292_F CACCGCGCAAGATAGATTTGGAAT 

MR293_R AAACATTCCAAATCTATCTTGCGC 

gRNA2 MR626_F CACCGTCAGGAGCGCAAGATAGATT 
MR627_R AAACAATCTATCTTGCGCTCCTGAC 

ZYX 
gRNA1 MR529_F CACCGACAGAGCACGTGACCGTCC 

MR530_R AAACGGACGGTCACGTGCTCTGTC 

gRNA2 MR531_F CACCGTGTCATCTGCCTCAATCGAC 
MR532_R AAACGTCGATTGAGGCAGATGACAC 

PHB1 
gRNA1 MR714_F CACCGTGCACCTCCGCGGGCTGACT 

MR715_R AAACAGTCAGCCCGCGGAGGTGCAC 

gRNA2 MR716_F CACCGCTGCACCTCCGCGGGCTGAC 
MR717_R AAACGTCAGCCCGCGGAGGTGCAGC 

PHB2 
gRNA1 MR718_F CACCGGGTGGAGTTCTTGGTGACT 

MR719_R AAACAGTCACCAAGAACTCCACCC 

gRNA2 MR720_F CACCGCTGGCTGGCTCCTCAAAAAC 
MR721_R AAACGTTTTTGAGGAGCCAGCCAGC 
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Table 7: Plasmid templates and primers used to generate T7-gRNA templates for IVT of gRNAs. 
The T7 promoter sequence (bold) was introduced via the respective forward primer. The reverse 
primer was universal for the guide RNA scaffold.  

Template gRNA Primer Sequence (5’ to 3’) 

pMR127 PHB1-gRNA1 MR1172_F TTAATACGACTCACTATAGGTGCACCTCCGC
GGGCTGACTGTTTTAGAG 

pMR128 PHB1-gRNA2 MR1173_F TTAATACGACTCACTATAGGCTGCACCTCCG
CGGGCTGACGT 

pMR199 PHB1-gRNA3 MR1174_F TTAATACGACTCACTATAGGAGCCCGCGGA
GGTGCAGGCAGT 

pMR129 PHB2-gRNA1 MR1178_F TTAATACGACTCACTATAGGGGTGGAGTTCT
TGGTGACTGTTTTAGAG 

pMR130 PHB2-gRNA2 MR1179_F TTAATACGACTCACTATAGGCTGGCTGGCTC
CTCAAAAACGT 

pMR208 PHB2-gRNA3 MR1180_F TTAATACGACTCACTATAGGCAGGGTAGGA
GGGTCGTAGAGTTTTAGAGCT 

Universal Universal MR1013_R AAAAGCACCGACTCGGTGCC 
 
 
Table 8: Primers used for amplification of DNA substrates to test gRNAs in vitro.  

Amplicon Primer Sequence (5’ to 3’) 

PHB1 MR900_F CTTTCTGGTGAAGGGCCTTTGGTTGTAGC 
MR901_R GGTAGGGAGGTGGATAAAAAAGTAGATGGATG 

PHB2 MR902_F GCTGTTGTTGCTTCTGTGGGGTCCTGC 
MR903_R GCTTCCCCTTAGCCGCCCCAGCCAGATTC 

 
 
Table 9: Primers used for amplification of DNA substrates for T7 Endonuclease I assay. 

Amplicon Primer Sequence (5’ to 3’) 

HMGA1 
MR962_F CAAGTTGTTTTGGAGTTTGTGCCTGG 
MR897_R GCTGGTGTGCTGTGTAGTGTGGTGGTGAGG 

ZYX MR926_F GTTGGGTGTGGCTGGAAAAAGCGATGAC 
MR927_R GGATGCTAGGGAGGGGTTGGAAATGGGAG 

 

Table 10: Primers used for on-target site analysis via PCR and DNA sequencing.  
Gene Primer  Sequence (5’ to 3’) 

HMGA1 
MR952_out_F GTCCCTCCCTCTCCTGCTCCTAGAATACTCAG 
MR953_out_R CAATGACGGATGTCGAAGAATGGAACATTGAAC 
MR834_GFP_R CACGCTGCCGTCCTCGATGTTG 

VIM 
MR847_out_F CTAATCTGGATTCACTCCCTCTGGTTGATACC 
MR849_out_R CCTATATCTTGGCAACTTCCTATGCTTTAACTCCC 
MR834_GFP_R CACGCTGCCGTCCTCGATGTTG 

ZYX 
MR928_out_F CTTGCTTTGGGAGAGTGACTGGTGAGGC 
MR929_out_R GCTGAGTAAGGAGCTGGAGCTGTCTGGGC 
MR834_GFP_R CACGCTGCCGTCCTCGATGTTG 

PHB1 
MR1269_in_F CCTGCAGCCAACAGAGATGTATCCCTCC 
MR1051_out_R GCAGTTTATACACATTTGTTTCCTTCCCAG 
MR1050_out_F GCTAAATCCATCCAGATGTGTCAAAGAATG 
MR501_DK_R GCACGACTTCTTCAAGTCCGCCATGCC 

PHB2 
MR1052_out_F TTCCCTGACCTTTTGTTCTAATCATAGCTG 
MR1053_out_R TCTAGTTGTTTATCTCATCTTAGCCTCCCA 
MR501_DK_R GCACGACTTCTTCAAGTCCGCCATGCC 
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Table 11: Primers used for off-target site analysis via DNA sequencing.  
gRNA Primer Sequence (5’ to 3’) 

HMGA1-gRNA1 

MR1014_OT1_F CAGGGTCGTGTGATGAATTCATTTGGTTATC 
MR1015_OT1_R GCATTATATCAGCCTACGGTGGAGAAGTGG 
MR1016_OT2_F GATAGGCCCGGAGAATTTGCTCAGGTTC 
MR1017_OT2_R GTATACTGGGAGATGATATCCTGCACCCTCACTG 

HMGA1-gRNA2 

MR1018_OT1_F GTTTAGCTGGGATTAGAGCCACAGACCTTG 
MR1019_OT1_R GTTTGGAGTCTCACTGCTGCTACTGTCTCATC 
MR1020_OT2_F GAAAGAGTATGGGAGAGATAGCGTCCTTCTAG 
MR1021_OT2_R GATGTCAGTTATGCCAATAATAAATTAATTAAGGGC 

VIM-gRNA1 

MR1022_OT1_F GCAGAGGCAAATTTCAACTAGTCAAACCC 
MR1023_OT1_R GTCACACTTAGATTTATCCTACAAGCTGCCC 
MR1024_OT2_F GACATAATAATACAGACATTTGTGGGTGGTAGG 
MR1025_OT2_R CTTTACTTAGAATAATGGCCTCCAGCTCTATCC 

VIM-gRNA2 

MR1026_OT1_F GGGGTTAGTTACTCAGTCACAATTGATGAAGGG 
MR1027_OT1_R CCTGCGTTAACAGTGAGTTGGAGAAACACTAG 
MR1028_OT2_F CAATAATTTGCCCTTTTGCTTCCACTGAG 
MR1029_OT2_R GTAATCTCACTCCATTACTTTTAGAATGTCAAGCCC 

ZYX-gRNA1 

MR1030_OT1_F GCCCGGCCTAATTTGTGTATTTTTAGTAGAG 
MR1031_OT1_R GTAGAGACGGTGTTTTACCATGTTAACCAGG 
MR1032_OT2_F GAGAGCTCGGGTTGCTGTTTCTACTTCAG 
MR1033_OT2_R CGTTATAGTCCTCGAAGATAATTCTAGGTGGGAG 

PHB1-gRNA2 

MR1364_OT1_F GAGATGGGGTCTCATCATGTTGCTCAGAC 
MR1365_OT1_R CACAGAAGCAGTGGAAGCCAAACAGGTG 
MR1366_OT2_F CACTTCGAACTGATGAGTCCTCAAACTGTAACC 
MR1367_OT2_R GAAGGAGTTCACAGAAGCGATGGAAGCC 
MR1368_OT3_F CGGGAAGGAGTTCACAGAAGCGGTGG 
MR1369_OT3_R GCATGTGTCCTCATCCGCAAATCTTCCATC 

PHB2-gRNA2 

MR1370_OT1_F CACAACTTGGTTTAGAATAAAGCCTCCACAGAC 
MR1371_OT1_R CTTTTGACTTTTTAGGTTGACTTCCAGCCATG 
MR1372_OT2_F CCGCATACATATTACCCACAATTCCCTTTCC 
MR1373_OT2_R CATTCTGCCGTTTGTTACTTACCAATGCC 
MR1374_OT3_F GAGACAGAGTCTTACTTTGTCACCCAGGCTG 
MR1375_OT3_R GAATGAAGAAGGAAAAGTCTCTCATTCATTGCATC 

 
 
Table 12: Overview of parameters used for RESOLFT imaging of endogenously tagged cells.  

Cell line VIM-rsEGFP2 ZYX-rsEGFP2 HMG-I-rsEGFP2 

Pixel size (nm) 
20 (overview) 

15 (inset) 

30 (movie) 

30 
30 (x-axis) 

25 (y-axis) 

Overall dwell time (µs) 520  1000 780 

ON switching at 405nm  
(Gaussian shaped)  
Time/Average Power/ Intensity 

50 µs 

0.8 µW 

2 kW/cm² 

730 µs 

2.6 µW 

2 kW/cm² 

50 µs 

0.8 µW 

2 kW/cm² 

OFF switching at 491 nm 
(donut shaped) 
Time/Average Power/ Intensity 

400 µs 

8.8 µW 

6.5 kW/cm² 

730 µs 

2.6 µW 

2 kW/cm² 

650 µs 

3 µW 

2.2 kW/cm² 
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Read out at 491 nm 
(Gaussian shaped) 
Time/Average Power/ Intensity 

50 µs 

2.4 µW 

5.3 kW/cm² 

200 µs 

4.8 µW 

2.6 kW/cm² 

50 µs 

4 µW 

2.2 kW/cm² 

  

Table 13: Overview of all generated gRNA/Cas9 plasmids (pMR) during this study.  
pMR Gene Target site (5' to 3') PAM Score 
1 

ACTB 
GCCGCGCTCGTCGTCGACAA CGG 89 

2 TTCCGGCGCGCCGAGTCCTT AGG 92 
3 ACCTCGGCTCACAGCGCGCC CGG 88 
4 

CEP41 

GTCACCTGCAAGGCAAACCC TGG 64 
5 CGAAGCGCTCAGAATCTGCC AGG 77 
6 CTGGCAGATTCTGAGCGCTT CGG 74 
7 ACCCAACTTGGGAAATGCTC AGG 57 
8 

CHCHD3 
GAAAGAGTAAGTTTTACCAC CGG 51 

9 CTTGCAGAGCATGCTTGAGA AGG 64 
10 

DNM1L 
GATTTCAGCAATAATTTGAC TGG 63 

11 CCTTGTAATGCCTGCATTAA AGG 51 
12 

EGFR 
TCCTGGGTATCGAAAGAGTC TGG 80 

13 TCCAGACTCTTTCGATACCC AGG 93 
14 GACCTGCTGTGGCTTGGTCC TGG 72 
15 GJA4 TGTTGGGTGACATAAGCCAC AGG 61 
16 

HIST1H2BJ 
CGCCGTGTCCGAGGGTACTA AGG 68 

17 GGCCTTAGTACCCTCGGACA CGG 39 
18 

IMMT 
TATGCCAGCGCCGTAGGAAT AGG 81 

19 CTGAGTGGTTCCTATTCCTA CGG 60 
20 

MINOS1 
TGTCCTTGCTTTACAGGAGC AGG 54 

21 ACCTGATACAGCAATTAGAG AGG 71 
22 CCCTCTCTAATTGCTGTATC AGG 75 
23 

NUP98 
AAATCATTTGGAACACCCTT TGG 59 

24 ACACCCTTTGGGGGTGGCAC AGG 59 
25 

TOMM70A 
ACAGAAGTTGCAAAGAAATA CGG 20 

26 GGCCATCTCCATTTCCGATT TGG 77 
27 

VIM 

ATAATTTAGTCTTTGGCATG TGG 36 
28 ATATAGGATAATTTAGTCTT TGG 44 
29 GCGCAAGATAGATTTGGAAT AGG 68 
30 TCAGGAGCGCAAGATAGATT TGG 65 
31 TTTTATTTGCCGTGATATAT AGG 53 
32 

RAB4A 
CGTACCGTAGGTTTCGGACA TGG 97 

33 GTCCGCCGGCGCGTCTCGGT GGG 92 
34 

MAP1LC3A 
GCGGGGATGTGTCTGCGGTT TGG 83 

35 GGCTCCGCGCCTCGCGCTCA AGG 83 
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36 
ZYX 

GACAGAGCACGTGACCGTCC AGG 84 
37 TGTCATCTGCCTCAATCGAC AGG 87 
38 

MAPRE3 
GCCGCCCTCAGTACTCGTCC TGG 87 

39 CAGGGGGTGCGAATCCTTCC TGG 78 
40 

PFN1 
GTCGATGTAGGCGTTCCACC CGG 93 

41 GTAGGCGTTCCACCCGGCCA TGG 88 
42 

B4GALT1 
CGTGTACCAAAACGCTAGCT CGG 95 

43 AGAGGTCCCTGGCTAATTTC AGG 65 
44 

TGOLN2 
ACGAGAGCAGCACAATCCAT TGG 66 

45 ATACCATTCTGTTAGGACTT AGG 62 
46 

BID 
TGACTGGCTAAAGCTCGATG TGG 88 

47 TTCCAGTGTAGACGGAGCCC TGG 74 
48 

PDHA1 
AACTTCAAAAGGTGGGTCGC TGG 84 

49 CACCACGAACTTCAAAAGGT GGG 66 
50 

CALR 
GCCTCTCTACAGCTCGTCCT TGG 81 

51 TCTACAGCTCGTCCTTGGCC TGG 63 
52 

ATP5A1 
ATCTTTCCATCAGCCCTATT TGG 74 

53 TTATTTCCAAATAGGGCTGA TGG 57 
54 

PXMP2 
CGAGGCGCCGAGAGCGGAGT GGG 80 

55 TCCCCAGCGCCGTGCCGCCG GGG 75 
56 

CKAP4 
GCGCGGCCCGGGAAACTTGC AGG 87 

57 CGCGGCCCGGGAAACTTGCA GGG 82 
58 

HIST1H1A 
AAGAGCCACCTACGCATTTC AGG 81 

59 CTTTTCCTGAAATGCGTAGG TGG 80 
60 

HMGA1 
GAGGAGCAGGCGGCACGCAT GGG 70 

61 CCAACAACTGCCCACCTCAC AGG 51 
62 

TGFBR2 
GTGTTTAGGGAGCCGTCTTC AGG 84 

63 AGCATCTGGACAGGCTCTCG GGG 68 
64 

RAB1B 
TGGTGGCCGCTCCGCCCCAG AGG 62 

65 TTCGGGGTTCATGGCGGCGG CGG 44 
66 

SAM50 
AACCGCGTTTCCTCGAGAGA CGG 93 

67 CCTGTAGGGGTGTCGGCTAC AGG 91 
68 

FIS1 
GAACCACTTCCGGCGTCCGG CGG 93 

69 ACTGTAGTGTGAGGCTCGCG GGG 88 
70 

TIMM50 
TGGACTTGGAGAGCTCGGCC AGG 67 

71 GAGGTTCTGCTTGTTGGACT TGG 61 
72 

OPA1 

TTTCATTGAAGCTCTTCATC AGG 55 
73 TAAAAATTCTCTAACTGTAT TGG 49 
74 TTACAGCATAAGTGACAAGC AGG 53 
75 TTTCAAAGGTATCACAAATC AGG 44 
76 MFN1 AGTTTCGTTTCCTCCTATCA TGG 62 
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77 GCTTTGGTGACCATGATAGG AGG 49 
78 CCAAAGCAATCTCTATTGTT AGG 49 
79 GACCTTTATAGTAATTAGAT TGG 58 
80 

MFN2 
CAGGAATAAAGCCGGTTGGT TGG 82 

81 GCCCACATGGCACTTAGGGC TGG 75 
82 TTTGCAGGAATAAAGCCGGT TGG 73 
83 

RAB5A 
CGAGGCGCAACAAGACCCAA CGG 82 

84 CTTCTGGGAGAGTCCGCTGT TGG 78 
85 

COX8A 
ACAGGATCCAGCCCGCTGGC AGG 74 

86 CATGACCAGGATGGGCCGGT GGG 73 
87 

RAB7A 
GGTCATCCTTCAAACTAAAG GGG 63 

88 GAGGTCATCCTTCAAACTAA AGG 60 
89 

RAB9A 
CTTTTGAGATTAACAATGGC AGG 56 

90 AGAAGAATGTGTAGGTATAA AGG 42 
91 

RAB11A 
GAGCGCCGAGCTTCAACTGC CGG 89 

92 GACCAGGGGGCGTCGCTGCA GGG 72 
93 

BCL2 
GGAGAACAGGGTACGATAAC CGG 87 

94 GTCGCAGAGGGGCTACGAGT GGG 87 
95 

BAX 
GCCTCTCGCCGGGTCCGCGC GGG 82 

96 TCTCGCCGGGTCCGCGCGGG CGG 80 
97 

VDAC1 
AGTGTCAGTTTAATACCTGC AGG 68 

98 GTGTCAGTTTAATACCTGCA GGG 66 
99 

CLTB 
CATTTTCCCCGCGCCTCCGC CGG 84 

100 GACGCTGTCACCCGAGCCGC GGG 81 
101 

RAB15 
TCGTACTGCTTCGCCATGAC TGG 91 

102 TGTCGGTGAAGCGGCACAGC AGG 74 
103 

CHCHD6 
CAGGGCGATCTGCACGGAGC TGG 78 

104 TGGGAAGCGGTTGCTGTCAC AGG 69 
105 

MTX2 
CAGCACTATTTTGAAGATCG TGG 66 

106 TTGAAGATCGTGGTAAAGGC AGG 65 
107 

HSPA9 
CAGATGGCATCTGAGCGAGA AGG 70 

108 GCATCTGAGCGAGAAGGCTC TGG 50 
109 

APOOL 
GCCCGTGATCCATGAGCTTG GGG 71 

110 CTGCCCGTGATCCATGAGCT TGG 67 
111 

PARP-1 
GGTAGCCGAGTCACACCCGG TGG 87 

112 CCATCAGCAACTTAGCGGCC AGG 85 
113 

TFAM 
CTTAATTTTACGATAGCTTC AGG 64 

114 TTCAGGTATTGAGACCTAAC TGG 55 
115 

ALEX3 
CCACCTTGTTTATATGGTAA AGG 55 

116 GAACATATGTTCAGCAAGTT TGG 54 
117 RHOT1 ACCTCAAGAGCTCCACGTTT TGG 70 
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118 GCCAAAACGTGGAGCTCTTG AGG 67 
119 

RHOT2 
ACCTGGGTGTGCCTCGCTGC TGG 72 

120 GGGGGTTGTCGGGGCCGCCG TGG 65 
121 

POM121 
GGTCCAAGGCTCTTCCTAGC AGG 66 

122 GCTCTTCCTAGCAGGTGCCA AGG 50 
123 

NUP93 
ATGATACCATACCGAACGTC TGG 95 

124 CGGCACACTGTCAGTACATC AGG 82 
125 

NUP107 
GACCAGGGACTTGACCCATT AGG 79 

126 TCTCTAATGCTCCTAGACCA GGG 72 
127 

PHB1 
TGCACCTCCGCGGGCTGACT GGG 55 

128 CTGCACCTCCGCGGGCTGAC TGG 55 
129 

PHB2 
GGGTGGAGTTCTTGGTGACT AGG 56 

130 CTGGCTGGCTCCTCAAAAAC TGG 69 
131 

RTN1 
GTTTGTGTCCAGTCCCCGGT GGG 83 

132 TCAGCATGCCTCTTAGCGCC TGG 85 
133 

RTN4 
TTCATTTGATTATACGGGGG AGG 84 

134 TGATTATACGGGGGAGGGTC AGG 80 
135 

CCND1 
TGGCATCGGGGTACGCGCGG CGG 95 

136 GTCCTGGCTGGGTCCGCGCT CGG 71 
137 

CCNE1 
CTGCGCTCCCTCGGCATGAT GGG 87 

138 CCTGCGCTCCCTCGGCATGA CGG 86 
139 

CCNA2 
TGCACGCTGCTTGGCGCCGC AGG 89 

140 CGACTATTCTTTGGCCGGGT CGG 88 
141 

CCNB1 
CTTCGGACTGCGAACTAACG CGG 97 

142 CGTTAGTTCGCAGTCCGAAG CGG 97 
143 

OXA1 
CAGCCAAGTGTGTCGTGCCA GGG 84 

144 CTTATGTTCTGTGCGCATTC TGG 81 
145 

ITPR1 
TACGCGGAGGGATCGACAAA TGG 96 

146 ATTTGTTCTCTGTACGCGGA GGG 92 
147 

MFF 
GCAGTGACACATCACTAGGA AGG 63 

148 TTCAGTTGAGCTGGTATTAT AGG 52 
149 

PARK2 
CGGGGCGTGGCGCCATACCG GGG 95 

150 GAACAGGCCCATGCGCGCAG CGG 89 
151 

PINK1 
TGGCATCCTCTGTGTCGTGA TGG 73 

152 GGAGTGTGAAACGCTCTGCC AGG 71 
153 

GDAP1 
AATGAGCTTAACCTCCGCGT CGG 94 

154 AAACCCGGAAACGCCTTGCG GGG 92 
155 

TOMM70A 
CCCCTGTTTTATAATGTTGG TGG 71 

156 ATCGCAAAGTGAATACAGAT GGG 69 
157 

CHCHD3 
GTAAGTTTTACCACCGGGAG AGG 90 

158 TATTTTTTGTCCTCTCCCGG TGG 74 
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159 
MINOS1 

CTGTATCAGGTCAGACCCAA AGG 73 
160 GCTGAATGTCCTTGCTTTAC AGG 72 
161 

IMMT 
GGTTCCTATTCCTACGGCGC TGG 95 

162 AGGGTTCGCAGCGAGAGTCC CGG 87 
163 HSPA9 AGCTTCATATGTTGTCCTTC TGG 52 
164 

ATG5 
GAGTGAACATCTGAGCTACC CGG 79 

165 GTCACCCTTTTGCTTCAATC AGG 77 
166 

NUP93 
CATTGGTGTCCCCAGACGTT CGG 85 

167 GTGTCCCCAGACGTTCGGTA TGG 94 
168 

NUP107-N 
ACCTATTTCGTTTCGCCAAC AGG 95 

169 GTTTCGCCAACAGGCGAGAC GGG 94 
170 

CAV1 
ACAGACGGTGTGGACGTAGA TGG 90 

171 ACCCACTCTTTGAAGCTGTT GGG 74 
172 

TUBA1B 
TCGAGGTAAGTAACGCACTA GGG 96 

173 AGCCCTTCCCGGCTGTATAC AGG 88 
174 

VDAC2 
CACTCTCTGCTCTGGTAGAT GGG 50 

175 GATGGGAAGAGCATTAATGC TGG 42 
176 

NUP133 
CAAGCTGATCCGCTTGTAGC AGG 94 

177 TTCAAAACAAACTCGAAGTA AGG 73 
178 

TRAK1 
AAACAAACTAGCTTACGGTG AGG 90 

179 AACTAGCTTACGGTGAGGAC TGG 89 
180 

TRAK2 
GCAAAGCTACCCATTATGAC TGG 81 

181 TTGGGTGAGGATGTGCAAAC TGG 73 
182 

gP210 
GAACCTTCACGCGGCCTAGT GGG 95 

183 TTCCATCTTGGGGGTGCACG AGG 80 
184 

EGFR 
AACGTTTACACCGACTAGCC AGG 91 

185 TCTAAGAGCTAATGCGGGCA TGG 88 
186 GTGGGTCTAAGAGCTAATGC GGG 82 
187 

H2BJ 
GCGCTAAGTAAACAGTGAGT TGG 67 

188 GGCTCTTAAAAGAGCCGTTA GGG 76 
189 TTGCAAACTCTCAACCCTAA CGG 71 
190 

DLK1_Mm 

CATGTGGTTGTAGCGCAGGT TGG 91 
191 GTAGCGCAGGTTGGACACCC AGG 84 
192 GAAGCATGTGGTTGTAGCGC AGG 87 
193 CATGTGGTTGTAGCGCAGGT TGG 91 
194 GTAGCGCAGGTTGGACACCC AGG 84 
195 GAAGCATGTGGTTGTAGCGC AGG 87 
196 

PHB1 

AGCCCGCGGAGGTGCAGGCA GGG 24 
197 GCTGTGGCCCAGTCAGCCCG CGG 39 
198 CAGTCAGCCCGCGGAGGTGC AGG 41 
199 GGCTGTGTTAAGAATCATCG GGG 23 
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200 AAGGCTGTGTTAAGAATCAT CGG 20 
201 

PHB2 

TACAGTGACAGCCTCATCAA GGG 64 
202 TGTGAGAGGCAGGACACTCT AGG 60 
203 CTCATTTCTTACCCTTGATG AGG 62 
204 ACCAAGAACTCCACCCCCAG AGG 45 
205 CAGGGTAGGAGGGTCGTAGA GGG 78 
206 TGTGAGAGGCAGGACACTCT AGG 60 
207 TACAGTGACAGCCTCATCAA GGG 64 
208 TTAGGGGACATAAATGTGAG AGG 57 
209 

STOML2 
ATCGAGTCAAGATGAGTTAG TGG 78 

210 CAAGACTTGCATCTGTACCC TGG 76 
211 TCAAGATGAGTTAGTGGAGC TGG 70 
212 

PHB1_Exon2 
GACTCATTTTCTCATCCCGT GGG 69 

213 GGACTCATTTTCTCATCCCG TGG 61 
214 TGACCGATTCCGTGGAGTGC AGG 47 
215 

PHB2_Exon1 
TTCGCGCACACCGTAGGCCA CGG 94 

216 CCGCCAAGTCCTTCAAGTTC TGG 72 
217 TTGGCGGGACGGCTGCCCGC CGG 82 
218 

PHB2_Exon2 
ATCTTCTTCAATCGGATCGG TGG 97 

219 TCGGATCGGTGGAGTGCAGC AGG 86 
220 CAGGACACTATCCTGGCCGA GGG 82 
221 

PHB1 
TGCACCTCCGCGGGCTGACT GGG 53 

222 CTGCACCTCCGCGGGCTGAC TGG 53 
223 

PHB2 
GGGTGGAGTTCTTGGTGACT AGG 56 

224 CTGGCTGGCTCCTCAAAAAC TGG 55 
225 

PHB1_Exon2 
GACTCATTTTCTCATCCCGT GGG 69 

226 GGACTCATTTTCTCATCCCG TGG 61 
227 TGACCGATTCCGTGGAGTGC AGG 47 
228 

PHB2_Exon1 
TTCGCGCACACCGTAGGCCA CGG 94 

229 CCGCCAAGTCCTTCAAGTTC TGG 72 
230 TTGGCGGGACGGCTGCCCGC CGG 82 
231 

PHB2_Exon2 
ATCTTCTTCAATCGGATCGG TGG 97 

232 TCGGATCGGTGGAGTGCAGC AGG 86 
233 CAGGACACTATCCTGGCCGA GGG 82 
234 

PHB1-N 
GCTGGACCCTCTCACACCTA AGG 78 

235 ACAACAGTCACTTTTCAACC TGG 71 
236 TTATCCCCTTAGGTGTGAGA GGG 71 
237 MIC60_Exon1 GCTGCGGGCCTGTCAGTTAT CGG 84 
238 

MIC60_Exon2 
TATCTGCGGCATGGTCGCAA TGG 94 

239 GGCATGGTCGCAATGGACGG AGG 92 
240 MIC10_Exon1 TGTCTGAGTCGGAGCTCGGC AGG 88 
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241 CGACCGCATCCGCCAGACAC CGG 86 
242 CAGGAAGTGGGACCGGTGTC TGG 78 
252 

ATP5B 

GCTGAAGAGCATTCATCGTG AGG 85 
253 TGAAGAGCATTCATCGTGAG GGG 83 
254 CTGAAGAGCATTCATCGTGA GGG 81 
255 AGCTTTTTGGGTTAGGGGCA AGG 55 
256 AAATGAAGCTTTTTGGGTTA GGG 50 
257 

CLS1 

ATGTTGTCAATGACGAGAAT TGG 82 
258 GTCAATGACGAGAATTGGCT TGG 79 
259 AATTGGCTTGGCCCCAGTTC TGG 72 
260 ATGGATTTATTGCTCGAAAC TGG 90 
261 TGGATTTATTGCTCGAAACT GGG 86 
262 GGCCAATCAAAGATCAGCTT TGG 71 

 

Table 14: Overview of all generated donor plasmids (pDM) within this study.  
pDM Gene Terminus Transgene gRNA site Cloning strategy 

1 ACTB N Dreiklang present Gene synthesis 
4 ATP5A1 C Dreiklang absent Gibson Assembly 
5 B4GALT1 C Dreiklang present Gibson Assembly 
7 BCL2 N Dreiklang absent Gibson Assembly 

10 CCNA2 N Dreiklang present Gibson Assembly 
11 CCNB1 N Dreiklang present Gibson Assembly 
15 CHCHD3 C Dreiklang present 4-Fragment cloning 
16 CHCHD6 C Dreiklang absent Gibson Assembly 
19 COX8A C Dreiklang absent Gibson Assembly 
20 DNM1L C Dreiklang absent 4-Fragment cloning 
22 FIS1 N Dreiklang present Gibson Assembly 
23 GDAP1 N Dreiklang absent Gibson Assembly 
24 H1A C Dreiklang present Gibson Assembly 
25 H2BJ C Dreiklang present 4-Fragment cloning 
26 HMGA1 C Dreiklang present Gibson Assembly 
27 HSPA9 C Dreiklang absent Gibson Assembly 
28 IMMT C Dreiklang absent 4-Fragment cloning 
29 ITPR1 N Dreiklang absent Gibson Assembly 
30 MAP1LC3A N Dreiklang present Gibson Assembly 
31 MAPRE3 C Dreiklang present Gibson Assembly 
32 MFF N Dreiklang absent Gibson Assembly 
33 MFN1 C Dreiklang present Gibson Assembly 
34 MFN2 C Dreiklang absent Gibson Assembly 
35 MINOS1 C Dreiklang absent Gibson Assembly 
36 MTX2 C Dreiklang absent Gibson Assembly 
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39 NUP107-N N Dreiklang present Gibson Assembly 
40 OPA1 C Dreiklang absent Gibson Assembly 
43 PARP1 C Dreiklang present Gibson Assembly 
45 PFN1 N Dreiklang present Gibson Assembly 
46 PHB1 C Dreiklang present Gibson Assembly 
47 PHB2 C Dreiklang present Gibson Assembly 
52 RAB4 N Dreiklang present Gibson Assembly 
53 RAB5A N Dreiklang absent Gibson Assembly 
54 RAB7A N Dreiklang present Gibson Assembly 
55 RAB9A N Dreiklang present Gibson Assembly 
58 RHOT1 C Dreiklang absent Gibson Assembly 
59 RHOT2 C Dreiklang absent Gibson Assembly 
61 RTN4 C Dreiklang present Gibson Assembly 
62 SAMM50 C Dreiklang present Gibson Assembly 
63 TFAM C Dreiklang present Gibson Assembly 
65 TGOLN2 C Dreiklang present Gibson Assembly 
67 TOMM70A C Dreiklang absent 4-Fragment cloning 
69 VDAC C Dreiklang absent Gibson Assembly 
70 VIM C Dreiklang present 4-Fragment cloning 
71 VIM C rsEGFP2 present 4-Fragment cloning 
72 ZYX C Dreiklang absent Gibson Assembly 
73 ACTB C rsEGFP2 present pDM1 + rsEGFP2 
74 ATG5 C Dreiklang present Gibson Assembly 
76 NUP133 C Dreiklang present Gibson Assembly 
77 gP210 C Dreiklang present Gibson Assembly 
78 VDAC2 C Dreiklang present Gibson Assembly 
81 H2BJ C rsEGFP2 present pDM25 + rsEGFP2 
82 H1A C rsEGFP2 present pDM24 + rsEGFP2  
83 HMGA1 C rsEGFP2 present pDM26 + rsEGFP2  
84 PHB1 C rsEGFP2 present pDM46 + rsEGFP2  
85 PHB2 C rsEGFP2 present pDM47 + rsEGFP2  
86 RAB7A C rsEGFP2 present pDM54 + rsEGFP2  
87 RTN4 C rsEGFP2 present pDM61 + rsEGFP2  
89 ZYX C rsEGFP2 absent pDM72 + rsEGFP2 
90 H1A C Halo present pDM24 + Halo  
91 HMGA1 C Halo present pDM26 + Halo  
92 PHB1 C Halo present pDM46 + Halo  
93 PHB2 C Halo present pDM47 + Halo  
94 RAB7A C Halo present pDM54 + Halo  
95 ZYX C Halo absent pDM72 + Halo  
98 H2BJ C Halo present pDM25 + Halo  
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99 VIM C Halo present pDM70 + Halo  
100 EGFR C Dreiklang present Gibson Assembly 
101 VIM C rsEGFP2 absent SDM on pDM71, no gRNA1/2 sites 
102 HMGA1 C rsEGFP2 absent SDM on pDM83, no gRNA1 site 
103 HMGA1 C rsEGFP2 absent SDM on pDM83, no gRNA2 site 
104 PHB1 C Dreiklang absent SDM on pDM46, no gRNA1/2 sites 
105 PHB1 C Halo absent SDM on pDM92, no gRNA1/2 sites 
106 PHB2 C Dreiklang absent SDM on pDM47, no gRNA2 site 
107 PHB2 C rsEGFP2 absent SDM on pDM85, no gRNA2 site 
108 PHB2 C Halo absent SDM on pDM93, no gRNA2 site 
109 SLP2 C DK absent Gibson Assembly 
110 PHB1 C 1x-FLAG absent oligo cloning into pDM104 
111 PHB2 C 1x-FLAG absent oligo cloning into pDM106 
112 PHB N Dreiklang present Gibson Assembly 
113 PHB1 C EGFP absent pDM104 + EGFP  
114 PHB2 C EGFP absent pDM106 + EGFP  
115 PHB1 C SNAPf absent pDM104 + SNAPf  
116 PHB2 C SNAPf absent pDM106 + SNAPf  
117 PHB2 N DK absent SDM on pDM112, no gRNA1 site 
118 PHB3 N DK absent SDM on pDM112, no gRNA2 site 
119 PHB4 N DK absent SDM on pDM112, no gRNA3 site 
120 TFAM C SNAPf present pDM63 + SNAPf  
121 VIM C CLIP present pDM101 + CLIP  
122 VIM C SNAPf present pDM101 + SNAP  
123 ATP5B C Dreiklang absent Gibson Assembly 
124 ATP5A1 C SNAPf absent pDM4 + SNAP  
125 ATP5B C SNAPf absent pDM123 + SNAP  

 

Table 15: Overview of all generated monoclonal cell lines. 24 cell lines were generated over the 
course of this study using CRISPR-Cas9. HET: Heterozygous; HOM: Homozygous; TBD: To be 
determined. 

Gene Transgene Clones Genotyped HET HOM 
ACTB Dreiklang 12 - TBD TBD 
ACTB rsEGFP2 11 - TBD TBD 
ATP5A1 Dreiklang 96 24 23 1 
ATP5B Dreiklang 144 - TBD TBD 
H2BJ Dreiklang 35 12 11 1 
H2BJ rsEGFP2 17 17 17 - 
H2BJ Halo 31 - TBD TBD 
HMGA1 Dreiklang 23 - TBD TBD 
HMGA1 rsEGFP2 12 12 9 2 
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MIC60 Dreiklang 3 3 3 - 
PHB1 Dreiklang 49 49 49 - 
PHB2 Dreiklang 74 74 70 - 
RAB7A Dreiklang 32 - TBD TBD 
RTN4 Dreiklang 19 - TBD TBD 
RTN4 rsEGFP2 3 - TBD TBD 
TFAM Dreiklang 7 7 7 - 
TOMM70A Dreiklang 8 8 8 - 
VIM Dreiklang 15 15 15 - 
VIM rsEGFP2 21 21 17 - 
VIM Halo 3 3 3 - 
VIM SNAP 10 10 10 - 
ZYX Dreiklang 10 - TBD TBD 
ZYX rsEGFP2 2 2 1 1 
ZYX Halo 1 1 - 1 
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