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ABSTRACT

One of the main challenges in upper limb prosthesis control to date is to provide devices
intuitive to use and capable to reproduce the natural movements of the arm and hand. One
approach to solve this challenge is to use the same control signals for prosthesis control
that our nervous system uses to control its muscles. This thesis aims to investigate the
possibility of natural, intuitive prosthesis control using neural information obtained with
available surface EMG decomposition methods. In order to explore all aspects of such a
novel approach, a series of five studies were performed with the final goal of implementing
a proof of concept and comparing its performance with state of the art myoelectric control.
The performed investigations revealed important insights in motor unit physiology after
targeted muscle reinnervation, EMG decomposition in dynamic voluntary contractions
of the forearm, and the properties and challenges of neural information based prosthe-
sis control. The main outcome of the thesis is that neural information based prosthesis
control is capable to outperform myoelectric approaches in pattern recognition, linear
regression and nonlinear regression, as determined by offline performance comparisons.
The final proof of concept for this novel approach was a robust regression method based
on neuromusculoskeletal modeling. The kinematics estimation of the proposed approach
outperformed EMG-based nonlinear regression in both able-bodied subjects and patients
with limb deficiency, indicating that using neural information is a promising avenue for
advanced myoelectric control.
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1

INTRODUCTION

1.1 Motivation

Our hand is our most powerful instrument of interaction with the world. It is capable
of excelling at a wide range of dynamic and precise tasks, such as playing the piano,
performing surgery or manipulating small objects. This functionality is made possible by
a sophisticated biomechanical system that has 27 degrees of freedom (DoF) actuated by
more than 30 muscles, which are controlled by the largest of brain areas devoted to a
specific motor function (ElKoura and Singh 2003; Penfield and Boldrey 1937).

Losing this essential instrument has a profound effect on the quality of life. In addition
to having to cope with physical disability, patients with limb loss experience pain, sleeping,
and emotional problems, decreased energy levels, and social isolation (Atroshi and Rosberg
2001). This is especially concerning since most upper limp amputations occure at a young
age. Depending on the country, there are an estimated 7-12 people out of 100000 suffering
upper limb loss each year, two thirds of the time under the age of 40, and 90% of these
cases are caused by trauma or congenital deficiencies (Demet et al. 2003; Durance and
O’shea 1988; Østlie et al. 2011; Ziegler-Graham et al. 2008).

An essential goal in improving the quality of life of these patients is the replacement
of the lost function, which has also been linked with the reduction of phantom limb pain
through preventing cortical reorganization (Atzori and Müller 2015; Hargrove, Lock, and
Simon 2013; Kuiken et al. 2004). The importance of replacement was recognized as early as
in 1000 B.C. in Egypt, as demonstrated by the introduction of the first cosmetic prosthesis
(Nerlich et al. 2000). Throughout history, there are more and more examples of engineering
solutions with increasing complexity and functionality, including the first body-powered
prosthesis from 1812 (Gaine, Smart, and Bransby-Zachary 1997).

Today state of the art upper limb prostheses are controlled via a myoelectric interface.
The muscle activity in the residual limb is detected using the surface electromyogram
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1. INTRODUCTION

(EMG), and used for driving a prosthetic device. Since the residual muscles generate
myoelectric signals in response to the drive received from the central nervous system, in
this application they are used as biological amplifiers of neural signals. This concept is
fully realized in a recent surgical method called targeted muscle reinnervation (TMR),
whereby the control over muscles lost during the amputation is restored by connecting
their nerves to accessory muscles. This approach enables patients to use complex prosthetic
devices even with above-elbow (transhumeral) amputations, where the muscles used for
myoelectric interfacing are typically missing (Hargrove, Lock, and Simon 2013; Kuiken
et al. 2004).

There is a wide variety in commercially available prosthetic devices. Although the most
advanced ones are capable of actuating more than 20 DoFs, enabling independent move-
ments of individual fingers (Atzori and Müller 2015), in practice their function is limited
to relatively few pre-defined movements. This limitation is imposed by current commercial
control methods unable to extract and utilize the control information required to perform
natural movements (Jiang et al. 2014).

The shortcomings of myoelectric control algorithms are best demonstrated by prosthesis
abandonment. Recent studies reported that overall 20% of myoelectric prosthesis users
either reject wearing a prosthesis or completely abandon their use, and another 10% do
not use their prosthesis frequently (Biddiss and Chau 2007a; Østlie et al. 2012). Other
reports indicated overall rejection rates of 35% (Wright, Hagen, and Wood 1995). Besides
design issues such as comfort, weight, warm-up or appearance, the most prevalent factors
in rejection or abandonment were the lack of functionality and difficult control (Biddiss
and Chau 2007a).

1.2 Aim

Providing fluent and natural control is one of the main challenges in prosthetic technology
(Jiang et al. 2012b). Natural movements of our hand are fluent and effortless because they
are controlled directly by our central nervous system. Accordingly, one way to mimic the
natural behavior is to provide the same neural control signals for the prosthetic device as
those that control the healthy hand. Recent advances in signal processing made it possible
to extract neural information non-invasively from the surface EMG, referred to as surface
EMG decomposition (Farina et al. 2014; Holobar and Zazula 2007). The aim of this PhD
project is therefore the following:
To investigate whether natural, intuitive prosthesis control can be achieved

using neural information obtained with available surface EMG decomposition
methods, and to develop a control method as a proof of concept for this novel
approach.

1.3 Thesis structure

To define the concepts, methods, and past research results used in the remainder of the
thesis, Chapter 2 briefly describes the generation of muscle force and its modeling, the
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1.3. THESIS STRUCTURE

generation of myoelectric signals, the basics of EMG decomposition, and the characteristics
of current myoelectric control methods.

Chapter 3 describes the line of inquiry I have pursued in the PhD project in the form
of several individual studies. The objectives, methods and results of these studies will
be discussed in detail. This chapter contains the main contributions of the PhD thesis.
Chapter 4 elaborates and connects all points mentioned in the individual studies, and
summarizes their contributions in the context of the proposed framework and that of the
related research from Chapter 2. This constitutes the discussion of the final results of the
PhD project.
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2

PHYSIOLOGICAL BACKGROUND

2.1 The neural drive to muscle

Human movement is realized by skeletal muscles controlled by the central nervous system.
The functional unit of skeletal muscle is the motor unit, made of an alpha motor neuron
in the spinal cord and the muscle fibers innervated by its axon (Figure 2.1.1). The group
of muscle fibers innervated by a single neuron is called a muscle unit. Discharges of the
motor neuron travel along its axon to the neuromuscular junction and cause contractions
in the muscle unit, generating force. The force generated by the whole muscle is controlled
by its neural drive, which comprises the discharges of all its innervating motor neurons,
i.e. the motor pool or motor nucleus of the muscle (Enoka 2008).

The maximal force that a muscle unit is capable to exert depends on a number of factors
(Roberto Merletti and Dario Farina 2016). The most important of these is the innervation
number, that is the number of muscle fibers within the unit (De Zepetnek et al. 1992).
In general, more fibers are able to produce more force, thus larger motor units are also
stronger.

The distribution of motor unit innervation numbers within a muscle depends on muscle
function. Innervation numbers tend to be greater in muscles used for stronger crude move-
ments, whereas muscles having to perform fine-tuned, precise movements tend to contain
motor units with smaller innervation numbers (Enoka 2008).

It is worth noting that the maximal muscle unit force also depends on the cross-sectional
area of the fibers as well as their specific force (De Zepetnek et al. 1992; Kanda and
Hashizume 1992).

The force exerted by a motor unit at a given time depends on the discharge rate of
the motor neuron and the length and shortening velocity of the muscle fibers. Generally,
the generated force increases monotonically and non-linearly with an increasing discharge
rate (De Luca and Contessa 2012; De Luca and Erim 1994; Moritz et al. 2005). At a given

5



2. PHYSIOLOGICAL BACKGROUND

Figure 2.1.1: An illustration of the motor unit structure. The motor neuron (A) is
connected to fibers in the muscle (D) through its axon (B) that is a part of a motor nerve
(C) containing many axons. Neurons and fibers belonging to two different motor units are
colored in this illustration (blue and green). In this notation all muscle fibers with a given
color (D) comprise the muscle unit of the corresponding motor neuron. All motor neurons
innervating the muscle (blue, green and gray) constitute the motor pool of the muscle. Note
that the axons of motor nerves are myelinated which is not illustrated here for simplicity.

discharge rate, the generated force depends on fiber length and shortening velocity, as de-
fined by length-force and velocity force relationships (Roberto Merletti and Dario Farina
2016). These are attributable to the cellular structure and histochemical composition of
muscle fibers, as well as to biochemical changes during lengthening and shortening con-
tractions (Colombini et al. 2007; Filippi and Troian 1994; Lieber and Ward 2011; Petit,
Giroux-Metges, and Gioux 2003).

Muscle force is regulated by the central nervous system by two mechanisms: changing
the number of active motor units, referred to as recruitment, and changing the rate of the
action potential discharges, referred to as rate coding. These mechanisms are concurrently
present, although their relative weight is different in the case of different muscles and tasks:
the force of smaller muscles is mainly regulated via rate coding, since all motor units are
already recruited at lower contraction forces, while for larger muscles recruitment is the
dominant factor in force generation (De Luca et al. 1982; Kukulka and Clamann 1981).

The order in which motor units are recruited is relatively fixed during voluntary con-
tractions (Henneman 1957). It occurs according to the size principle, that is small motor
units are recruited first, followed by the larger ones. This happens because motor unit
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2.2. THE SURFACE ELECTROMYOGRAM

size is associated with the cellular size of the motor neuron, which defines its response to
stimulation: smaller neurons have a higher excitability than larger ones, and thus will be
excited by smaller stimuli at smaller exerted forces (Henneman, Somjen, and Carpenter
1965).

The force at which a motor unit is recruited is called the recruitment threshold of the
unit. The distribution of recruitment thresholds in a motor pool is exponential, with most
motor units exhibiting lower recruitment thresholds (Fuglevand, Winter, and Patla 1993).
Changes in recruitment order can occur, however, during synergistic muscle movements
(Desnedt and Gidaux 1981), during dynamic contractions (Kossev and Christova 1998),
or due to changes in afferent feedback (Kanda and Desmedt 1983).

Because motor unit force is related to the discharge rate, rate coding is also used by
the central nervous system to modulate muscle force. A common setting to investigate
rate coding is during contractions with constant muscle length (isometric contractions)
with slow changes in force. During an isometric contraction with increasing muscle force,
motor units with lower recruitment thresholds exhibit larger initial discharge rates than
later recruited motor units. As the force increases, so does the discharge rate of all units,
whereby later recruited units arrive at larger maximal rates, typically around 30-50 pulses
per second (pps) (De Luca and Contessa 2012). During fast isometric contractions max-
imal discharge rates can be twice as high, depending on the level of training (Cutsem,
Duchateau, and Hainaut 1998). In shortening and lengthening contractions rate coding
is typically different both in terms of discharge rates and discharge patterns, depending
on the task requirement (Duchateau and Enoka 2008; Kossev and Christova 1998). There
are also notable differences in rate coding during both ballistic and sustained contractions
(Bigland-Ritchie et al. 1983; Desmedt and Godaux 1977; Riley et al. 2008).

2.2 The surface electromyogram

As mentioned above, each discharge of a motor unit determines an action potential that
travels down the motor axon to the neuromuscular junction. Here, due to the high synaptic
reliability of the neuromuscular junction, each potential evokes a muscle fiber action po-
tential along each fiber, causing the muscle fibers to contract (Enoka 2008). These muscle
fiber action potentials generate extracellular field potentials that can be measured on the
surface of the skin (Farina and Merletti 2001). In this context the tissue layers between
the fiber and the recording electrode are a volume conductor, through which the action
potential reaches the skin surface. Since the volume conduction can be described mathe-
matically as a filter applied to the action potential, it is commonly referred to as the tissue
filter (Farina and Merletti 2001).

The signal recorded on the skin surface in response to a single discharge of a motor neu-
ron is referred to as the motor unit action potential (MUAP). It is the global extracellular
field potential from all activated muscle fibers, filtered by the volume conductor between
the muscle fibers and the recording electrode. Thus, its shape is influenced by several fac-
tors, such as fibre distribution within the muscle, tissue filter characteristics, innervation
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2. PHYSIOLOGICAL BACKGROUND

number, contraction type, electrode characteristics etc (Fuglevand et al. 1992).
The surface EMG is a mixture of consecutive MUAPs (MUAP trains) originating from

multiple motor units. Neglecting various sources of noise that can affect the signal (Day
2002), it can formally be written as:

x(t) =
N∑

i=1
si(t) ∗ hi(t), (2.1)

where x is the EMG signal, N is the number of motor units observed by the electrode, hi is
the MUAP shape as detected on the surface, and si is the spike train containing consecutive
discharges of the i-th motor unit (Holobar and Zazula 2007). Since the distance between
neighboring muscles and the recording electrode is generally similar, the volume conductor
effect typically allows for signals originating from multiple muscles to be present in one
EMG channel, referred to as crosstalk (Solomonow et al. 1994). Indeed, in (2.1) there is
no restriction to what muscles the N motor units have to reside in. Crosstalk is especially
important for the interpretation of EMG signals during synergistic activation of multiple
muscles, such as voluntary contractions of forearm muscles (De Luca and Merletti 1988).

Another characteristic of the EMG signal is its nonlinear relationship with muscle force.
As indicated by (2.1), the EMG signal is an algebraic sum of MUAP trains. However, most
individual hi MUAP shapes are bi- or triphasic, thus adding their negative phase to the
sum reduces its amplitude (De Luca 1979). This is referred to as amplitude cancellation,
and causes non-linearity in the EMG amplitude-force relationship (Farina, Merletti, and
Enoka 2004).

Further nonlinearities are introduced by the previously mentioned force-length and
force-velocity relationships, by the angle between muscle fiber and the tendon (penna-
tion angle), and by the electromechanical delay (Buchanan et al. 2004). Nonlinearity in
their relation always has to be considered when estimating muscle activity based on EMG
amplitude.

2.3 EMG decomposition

There are several EMG decomposition methods aiming to extract discharges of motor
units from EMG signals automatically (De Luca et al. 2015; Holobar and Zazula 2007;
Nawab, Chang, and De Luca 2010). A majority of these employ machine learning and
signal processing techniques to decompose EMG recordings in an offline (non real-time)
manner.

Depending on the investigated muscle, electrode type and contraction strength, such
methods are able to decompose up to 20 motor units per contraction with high accuracy,
although there is no clear consensus on methods for validation of accuracy (De Luca and
Nawab 2011; Farina and Enoka 2011; Farina, Merletti, and Enoka 2015; Holobar et al.
2009; Nawab, Chang, and De Luca 2010). In general, decomposition accuracy and the
number of theoretically decomposable units increase with increasing number of recording
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2.4. MYOELECTRIC CONTROL METHODS

electrodes (Farina et al. 2008).
In this thesis the Convolution Kernel Compensation (CKC) method or an extension of

it was used for surface EMG decomposition (Holobar and Zazula 2007; Negro et al. 2016).
This method was validated in a number of muscles and recording conditions, and used for
neurophysiological studies to investigate human motor control (Hamid R. Marateb et al.
2011; Holobar, Minetto, and Farina 2014; Holobar et al. 2009; Laine, Yavuz, and Farina
2014; Negro, Holobar, and Farina 2009). Although in this original form the method is
computationally expensive and therefore offline, it is possible to implement within time
constraints of a real-time application (Chu, Moon, and Mun 2006). Details about the
algorithm can be found in the Appendix A.

Similarly to other decomposition methods, CKC makes the assumption that MUAP
shapes do not change over time, which condition is only true for isometric contractions with
constant force. While investigating isometric conditions also gave us important insights on
motor control (De Luca and Contessa 2012; De Luca and Erim 1994; Farina, Negro, and
Dideriksen 2014; Negro, Holobar, and Farina 2009), most of our muscle contractions are
dynamic.

Dynamic contractions represent a more complex decomposition problem, because of
changes in the MUAP shape during the contraction (De Luca et al. 2015). These occur
due to the movement of the muscle fibers relative to the electrode surface, to the shortening
of the fibers, and to fatigue (Hodson-Tole and Wakeling 2009; Sandercock et al. 1985).

EMG decomposition also provides us a means to extract the MUAP shapes from ex-
perimental EMG signals, using the spike triggered averaging technique (Hu, Rymer, and
Suresh 2013). It is based on the fact that according to (2.1), at each spike of the i-th
motor unit the MUAP shape hi directly appears in the EMG signal, given that there are
no other spikes within a duration corresponding to the length of hi. Thus, in the noiseless
case the portion of the EMG around each spiking instant contains the MUAP shape of
the corresponding motor unit.

Due to noise and the superimposition of MUAPs, however, the MUAP shapes extracted
in this manner contain artifacts. To reduce noise we can extract the MUAP shapes around
every spiking instance (using a pre-defined observation window), and take the average of
the waveforms, obtaining the spike triggered average. This can be done for each EMG
channel, obtaining a multichannel representation of the MUAP. This technique will be
used in this thesis to investigate MUAP properties.

2.4 Myoelectric control methods

Myoelectric prostheses are controlled using EMG signals recorded from residual muscles
after an amputation. Although there are notable differences between control methods in
several aspects, all methods rely on the following general structure to control the prosthetic
device (Fougner et al. 2012) (Figure 2.4.1).

First, myoelectric signals are recorded, whereby the exact type and structure of the
electrode can vary, and in general all control methods can be used with any EMG recording
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2. PHYSIOLOGICAL BACKGROUND

Figure 2.4.1: Schematic representation of myoelectric control. The EMG record-
ing step is illustrated using the most commonly used surface bipolar measurement, but
many other surface or intramuscular techniques can be used. The conditioning step atten-
uates noise and pre-processes the signal for feature extraction. Features are represented as
colours, whereby each box is one numerical value of a feature calculated within an obser-
vation window. The control method chooses the action to take by the prosthesis based on
the features. The image of the Michelangelo Hand prosthesis (right) is a property of and is
provided by OttoBock GmbH.

system. Then, the signal is digitized and conditioned using low- or band-pass filters. The
processing of the signal is carried out within observation windows, with a typical window
length of 100-250 ms with some overlap between consecutive windows, to facilitate smooth
changes in control (Chu, Moon, and Mun 2006; Englehart and Hudgins 2003; Li, Schultz,
and Kuiken 2010; Smith et al. 2011). For each window, features are calculated to describe
the characteristics of the signal and used to generate control commands for the prosthesis.

In the following the basic idea and mode of operation of different myoelectric control
methods will be introduced, including their corresponding signal processing steps and their
performance in replacing lost limb function.

2.4.1 Conventional control

In commercially available prostheses myoelectric control typically relies on two electrodes
over an antagonistic muscle pair. The two EMG channels control one DoF at a time, so
that one direction of the DoF is actuated proportionally to the EMG amplitude of one of
the channels (Figure 2.4.2). This approach is also referred to as dual-site control, industrial
state-of-the-art or amplitude control (Jiang et al. 2012b; Lake and Miguelez 2003; Young
et al. 2014).

Figure 2.4.2: Conceptual depiction of conventional myoelectric control methods.
The movement performed by the prosthesis (gray boxes) is regulated by the amplitude of the
EMG channels (red) as a feature (orange). Channel 1 activates extension, and channel 2
flexion. For other DoFs, such as pronation/supination, a switch has to take place, which
in this example consists of a simultaneous activation (co-contraction) on both channels.
After the switch, channels 1 and 2 will activate pronation and supination of the prosthesis,
respectively. Other DoFs can be reached by consecutive co-contractions. DoFs are typically
organized in a circular manner, i. e. in this example performing a switch after hand open/-
close will activate flexion/extension again, etc.
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The method is cumbersome to adapt for multi-DoF devices, since it requires switching
between actuated DoFs by performing special contractions, pressing a button etc. (Figure
2.4.2). The need for frequent switching leads to a slow and unintuitive control, which
requires extensive training and imposes a considerable cognitive load during everyday
tasks.

Moreover, because of the high cognitive load it is not feasible to directly actuate all DoFs
of a prosthetic hand, and devices are constrained to a set of pre-defined motions. This limits
the usability of some hands that in principle would be capable to provide natural control
(Schulz 2011; Troccaz and Connolly 2008; Van Der Niet Otr et al. 2010). As mentioned in
the introduction, the difficulty of prosthesis use and the lack of functionality are reported
to be the main reasons of myoelectric prosthesis abandonment by users (Biddiss and Chau
2007a; Biddiss and Chau 2007b).

2.4.2 Pattern recognition

To reduce the cognitive load of prosthesis control during activities of daily living, the
pattern recognition approach was proposed (Hudgins, Parker, and Scott 1993). Pattern
recognition uses machine learning methods to predict the intended movement from a global
multichannel EMG signal.

Formally this corresponds to a classification problem, i. e. to assign an observation to
one of several classes on the basis of previous observations. Thus, this machine learning
method is supervised, i. e. it is necessary to have a set of training samples for which the
corresponding class is known. Then, the method is able to learn which sample corresponds
to which class, and can assign new observations to classes after the training is complete.
The observations are characterized using explanatory variables, referred to as features.

In myoelectric control the classes are intended movements, e. g. elbow flexion, hand
open, etc., and the features are typically time- and frequency domain characteristics of
the recorded EMG signal (Figure 2.4.3) (Hudgins, Parker, and Scott 1993).

Figure 2.4.3: Conceptual depiction of pattern recognition methods. The required
movement of the prosthesis is prompted by executing the intended movement with the phan-
tom limb, leading to a more natural control. A machine learning method is trained to classify
EMG patterns belonging to the intended movements (classes). In this figure, the result of
the classification is shown in the grey boxes. This method requires more electrodes than con-
ventional methods, 6 electrodes placed symmetrically around the forearm in this example
(red), and more sophisticated signal processing. This involves segmenting the signal into
observation windows and calculating time- and frequency domain features for each window
(illustrated with blue, green and pink features for channel 6). This picture also shows that
the main drawback is that it is not possible to actuate more than one DoF (movement)
simultaneously without extending the number of classes.
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Pattern recognition methods are capable to classify the user’s intended movement with
a greater than 95% accuracy, depending on the number of electrodes, on the number of
estimated classes, and on the type of classifier (Chu, Moon, and Mun 2006; Englehart
and Hudgins 2003; Li, Schultz, and Kuiken 2010). Pattern recognition outperforms con-
ventional control in functional tests with the same tasks for both methods, if the task
requires the use of more than one DoF (Hargrove, Lock, and Simon 2013; Smith et al.
2011; Young et al. 2014).

One disadvantage of pattern recognition is that it can only provide sequential control
(Jiang et al. 2012b). Because one class is identified for each window, it is impossible in
this paradigm to use more DoFs simultaneously.

Although it is possible to extend pattern recognition by training mixture classes to
the classifier, e.g. simultaneous hand close and elbow flexion, this solution has several
drawbacks. Firstly, the number of classes increases substantially, affecting classification
accuracy (Ingraham et al. 2015; Young et al. 2013, 2014). Secondly, during simultaneous
movements it is not possible to regulate the speed of the individual movements (Scheme
et al. 2013; Simon et al. 2011).

As a result, pattern recognition cannot achieve a natural, intuitive control that would
be similar to the control of our own hand (Jiang et al. 2012b).

2.4.3 Regression

Recently, regression methods were proposed to provide simultaneous and proportional
control of multiple degrees of freedom (Jiang 2009). Instead of classifying the feature
patterns, regression methods directly estimate kinematic variables that describe the in-
tended movement, e. g. joint angles of the wrist. By directly estimating kinematics this
approach is capable to reconstruct the natural movement of each DoF simultaneously and
independently, provided the regression accuracy is high enough (Figure 2.4.4).

Figure 2.4.4: Conceptual depiction of regression methods. The prosthesis performs
the intended movement by estimating movement kinematics based on the EMG (gray box).
The joint angles in multiple DoFs are estimated simultaneously based on features (illustrated
with blue, green and pink features for channel 6) of the EMG (red), resulting in smooth
and natural movement. Note that simultaneous movements are also possible to estimate,
and in general there is no restriction to the performed movement other than those imposed
by mechanical constraints.

Regression methods use the same methodology as pattern recognition, in that they ex-
tract similar features from the EMG signal as a control input (Hahne et al. 2014; Nielsen
et al. 2011). To estimate wrist kinematics based on these features, both supervised and
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unsupervised learning can be used, such as artificial neural networks (ANNs), linear re-
gression, or non-negative matrix factorization (Hahne et al. 2014; Jiang 2009).

Numerous studies have reported successfully using regression techniques to achieve pro-
portional and simultaneous control. In particular, Hahne et al. (2012) showed that it is
possible to achieve simultaneous control without including simultaneous movements in the
training data due to the generalization ability of estimators. Amsüss et al. (2015, 2016)
showed that simultaneous and proportional control outperforms both pattern recognition
and conventional control in clinically evaluated hand control tests on subjects with limb
deficiency. These results suggest that regression methods are promising candidates for
future prosthesis control approaches.

2.5 Neural information in myoelectric control

A severe limitation of all above prosthesis control methods is that amputees with tran-
shumeral (above-elbow) or more proximal amputations do not have enough muscles for a
myoelectric interface. They may be able to control the elbow of an arm prosthesis using
the biceps and the triceps, but they lack the complete forearm and thus have no muscles
to control the wrist and the hand. Patients with shoulder disarticulations have even less
muscles to interface, yet they need the most functions replaced by the prosthesis. In such
situations it would be advantageous to be able to interface a prosthetic device directly
with motor nerves, obviating the need for residual muscles.

Intramuscular EMG recordings are capable to provide more direct information about
neural activity than surface EMG, because the information about the source of the signal
is inherently provided, without crosstalk from other sources (Basmajian and De Luca
1985). Indeed, by targeting muscles used to control of the wrist, it is possible to provide
simultaneous and proportional myoelectric control that outperforms pattern recognition
(Smith, Kuiken, and Hargrove 2014).

More invasive methods aim to interface a prosthetic device directly with motor nerves.
There are three groups of existing peripheral nerve interfaces designed to control prosthetic
devices (Navarro et al. 2005). Extraneural electrodes are placed around the nerves to record
the activity of a population of neurons. These can take the form of electrode cuffs, books
or flat electrodes (Rodri et al. 2000; Tyler and Durand 2002).

Conversely, intraneural electrodes penetrate the nerve to provide a greater selectivity.
These can be implanted longitudinally or transversally with respect to the nerve fascicle, or
penetrating it with a high density array of microelectrodes (Boretius et al. 2010; Lawrence
et al. 2004; Navarro et al. 2005). Regenerative electrodes differ from both previous types
in that they require to be implanted between severed ends of a nerve, and contain holes
that the nerves can grow through during regeneration. Using the holes as electrodes, such
interfaces are capable to record from small groups of motor units or even individual axons
(Lago et al. 2005).

Although these technologies offer better selectivity and the potential for simultaneous
sensory nerve stimulation and recording, there are still a number of challenges to over-
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come. These include chronic implantation and biocompatibility, data transfer between the
electrode and the prosthesis, low signal to noise ratio, EMG interference or performing si-
multaneous recording and stimulation (Chu et al. 2012; Dhillon and Horch 2005; Gak et al.
2008). Even after solving these challenges, implanted devices will have the drawbacks of
more difficult maintenance and the risk of infection, especially in the case of non-wireless
interfaces (Micera et al. 2008; Tillander et al. 2010).

2.6 Targeted muscle reinnervation

A successful approach to resolve the problem of absent muscles not being able to con-
tribute to a myoelectric interface is TMR (Kuiken et al. 2004). The basic concept of TMR
is that we can use still available accessory muscles that have lost their function because
of the amputation (such as m. pectoralis or m.latissimus dorsi) to amplify neural signals
of amputated muscles (Figure 2.6.1). This is in accordance with the concept that in myo-
electric interfacing muscles are essentially biological amplifiers of neural signals (Aszmann,
Dietl, and Frey 2008).

Figure 2.6.1: Illustration of the TMR procedure, before (left) and after the
amputation (right). The nerve leading to a muscle in the forearm (green) is cut (dashed
lines) and fused with a nerve leading to the m. pectoralis (yellow), which is reinnervated
with the new (green) nerve. After the reinnervation, if the subject attempts to perform
physiological tasks with the forearm, e.g. hand opening, a contraction in the chest can be
observed.

To achieve this, nerves leading to these accessory muscles are cut and refused with
nerves previously leading to now missing muscles. The transferred nerves then reinnervate
the accessory muscles, resulting in muscles that contract whenever the central nervous
system sends neural signals to the missing muscles. This technique also allows for several
other measures that facilitate prosthesis control. Firstly, the reinnervation sites can be
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separated by targeting isolated muscle parts with different nerve branches, sometimes
placing subcutaneous fat between the targeted muscle segments. Secondly, removing excess
fat layer above the reinnervated muscles increases the performance of the myoelectric
interface is also possible (Dumanian et al. 2009).

This technique have been demonstrated to enable the control of multiple-DoF devices
for patients with high level amputations (Hargrove, Lock, and Simon 2013; Kuiken TA
et al. 2009), to reverse cortical reorganization after an amputation, which also has been
linked to phantom limb pain (Chen et al. 2013; Flor et al. 1995), and to also restore lost
sensory information flow by sensory reinnervation (Hebert et al. 2014; Marasco, Schultz,
and Kuiken 2009). Although it requires more extensive surgical treatment, it can be used
with non-invasive surface interfacing, even using commercially available prostheses. An-
other advantage of this technique is that TMR patients can use the same motor commands
as for the healthy hand to drive the prosthetic device.

Because there is a corresponding reinnervation site for each physiological movement,
simultaneous and proportional control can also be achieved by using electrodes over each
reinnervation site and the conventional control method described in Section 2.4.1. However,
Hargrove, Lock, and Simon (2013) showed that conventional control might not be the
best method to provide simultaneous and proportional control, since pattern recognition
outperforms the industrial state-of-the-art even for TMR subjects.
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THESIS CONTRIBUTION

A common characteristic of myoelectric control methods reviewed in Section 2.4 is that
they use time-frequency features as a means to extract information form the EMG. In this
context the EMG is viewed as a stochastic signal (Nazarpour et al. 2013). The presence of
MUAPs in the EMG signal, as described in Section 2.2, is therefore not directly exploited
to determine the neural drive.

However, with recent advancements in EMG decomposition it has become feasible to
extract direct neural information from the EMG signal automatically and non-invasively, as
described in Section 2.3. Thus, instead of implicitly extracting control information through
time-frequency analysis and machine learning, it would also be possible to implement a
truly neural control, using the neural drive to the muscles to control a prosthetic device.

The estimation performance of regression methods could be greatly improved using this
novel type of information. This is because the neural drive to the muscles could in principle
be used in biomechanical models of the wrist to estimate muscle activity, muscle force,
wrist dynamics and ultimately wrist kinematics. Such an approach could therefore take
the physiological parameters and limitations of the wrist into account and produce natural
kinematics in a variety of conditions, as opposed to current regression methods estimating
wrist kinematics using the black box approach of machine learning.

The aim of this PhD project was to investigate whether a control framework using
neural information could provide better control performance than conventional myoelectric
control. To assess this, the following objectives were defined and addressed in individual
studies:

• In the context of neural control TMR is especially significant, because in these pa-
tients the muscles used for prosthesis control are innervated by neurons that origi-
nally belonged to other muscles. Therefore I investigated whether the neural changes
are reflected in electrophysiological characteristics, and how they affect prosthesis
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control. The results of this investigation are discussed in Study 1.

• As an initial evaluation of neural information in prosthesis control I investigated
whether it improves the performance of the well-established pattern recognition
method based on time domain features. I have found that neural features indeed
outperform traditional features in this context, as discussed in Study 2.

• To translate the results of pattern recognition to regression, it was necessary to
show that neural information can also be extracted from the surface EMG in non-
isometric contractions characteristic for regression. This investigation was conducted
in transradial amputees without TMR, to also establish whether advanced control is
also possible without the distinct isolation of movement classes on the skin surface.
The feasibility of EMG decomposition in non-isometric conditions and the properties
of the extracted neural information regarding myoelectric control were assessed in
Study 3.

• In the next step I developed a neural information based linear regression approach,
demonstrating the feasibility of regression using neural information decomposed from
the surface EMG. I validated the method in Study 4 by comparing its performance
to regression using time-domain EMG features, in subjects with limb deficiency as
well as healthy controls.

• In the final study I assessed whether enhancing neural information with physiolog-
ical modeling improves control performance, exploiting the inherent connection of
neural information with physiological variables. To this end I developed a nonlinear
regression method using neural information and neuromusculoskeletal modeling and
compared the performance of this method with state of the art nonlinear regression
based on time-domain EMG features.

The above studies will be further discussed in detail in the following sections.
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3.1 Study 1: Electrophysiological changes in motor units after targeted
muscle reinnervation

The results of this study are published in Kapelner et al. (2016) under the Creative Com-
mons Attribution (CC BY) license, permission to reuse content was therefore not neces-
sary.

Author contributions: conceived and designed the experiments, performed the experi-
ments, analyzed the data, wrote the manuscript.

3.1.1 Introduction

As discussed in Section 2.6, TMR improves the capability of patients with high amputation
levels to control myoelectric prostheses (Aszmann, Dietl, and Frey 2008; Dumanian et al.
2009; Kuiken TA et al. 2009; Marasco, Schultz, and Kuiken 2009). However, the physiology
of the newly formed motor units after reinnervation is not well explored. The characteristics
of these units could provide insights into the neurophysiological events following TMR,
and might reveal important factors in the design of a novel control algorithm based on
neural information.

The most important characteristic with respect to prosthesis control is the spatial
MUAP distribution. This is because TMR aims to separate movement classes on the
skin surface by connecting the corresponding nerve branches to separate muscle parts
(Dumanian et al. 2009). Thus, if TMR is able to create perfect separation of the classes
on the skin surface, neural information based methods would offer limited advantage over
EMG features. Previous research suggests however, that the spatial separation might not
be perfect (Hargrove, Lock, and Simon 2013; He Huang et al. 2008).

Due to the removal of subcutaneous fat over the muscle, the surface MUAP repre-
sentations after TMR are expected to have smaller areas, shorter durations and larger
amplitudes compared to healthy controls (Roeleveld et al. 1997). Because the innerva-
tion number of larger, force producing muscles are generally higher than those of muscles
performing precise, fine-tuned movements, another possible consequence of the TMR pro-
cedure is the reduction of motor unit size, because the newly innervating motor neurons
originally innervated smaller muscles (Enoka 2008).

This section will provide a general characterization of motor units in TMR patients
compared with able-bodied controls by using non-invasive electrophysiological methods.
The scope of the study is limited to motor units in the m. pectoralis major, which is easily
accessible irrespective of the amputation profile.

3.1.2 Methods

Subjects

Five TMR patients underwent surgery at the Medical University of Vienna, and had full
reinnervation of their targeted muscles before participating in this experiment (Table pec-
toralis). The detailed patient conditions and the experimental protocol were presented in
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Table 3.1: Age, gender and amputation details of TMR patients. Additional in-
formation on the TMR patients can be found in (Roberto Merletti and Dario Farina 2016).
Only TMR sites of the m. pectoralis are listed. This table was published in Farina et al.
(2014) and Kapelner et al. (2016).

Subject Age Gender Amputation
details

Time since
amputation

Time since
TMR

TMR site in
clavicular

head
sternocostal

part
abdominal

part

T1 25 Male
shoulder

disarticulation,
right

3 years and
2 months 10 months n. musculo-

cutaneous n. medianus n. medianus

T2 32 Male Glenohumeral,
left

3 years and
2 months 9 months n. ulnaris n. medianus -

T3 40 Male
shoulder

disarticulation,
left

> 5 years 1 year 5
months

n. musculo-
cutaneous n. medianus n. medianus

T4 76 Male Glenohumeral,
right > 5 years 11 months n. medianus n. medianus

n. cutaneous
antebrachii

medialis
(sensory)

T5 11 Female Glenohumeral,
left

2 years 3
months

1 year 5
months

n. musculo-
cutaneous n. medianus n. medianus

(Farina et al. 2014). Nine male able-bodied subjects were included in the control group
(mean age 30±5); none of them had any neuromuscular disorders or abnormalities. All ex-
perimental protocols were designed and conducted according to the Declaration of Helsinki
and approved by the local ethics committees. All participants signed written informed con-
sent form prior to the experiment.

Data acquisition

For all recordings in this thesis high density multichannel surface EMG electrode grids
were used (ELSCH064NM3, OTBioelettronica, Italy). These consisted of 64 electrodes in
an 8 by 8 matrix connected by copper tracks on a kapton support, with an inter-electrode
distance of 10 mm in both directions. They are applied on the skin using 1 mm thick
two-sided adhesive foam, with holes corresponding to the electrode surfaces, which are
filled with conductive paste to improve the skin-electrode contact. This procedure was the
same for all subjects and all investigated muscles.

For this experiment the electrode grids were placed on the reinnervation sites of the m.
pectoralis as described by the surgeon, for each subject individually (Figure 3.1.1). The
electrode placement of the able-bodied subjects H2-H4 was equivalent with that of T2. To
investigate the effect of electrode placement, subjects H1 and H5-H9 were equipped with
electrodes on both sides, with electrode placements equivalent to that of T1 and T2 on
the two sides.

The electrode grids were connected to a 256-channel EMG amplifier (EMGUSB2, OT-
Bioelettronica, Italy), using a 64-channel impedance adapter with a gain of 5 V/V. All
signals were recorded in monopolar mode, band pass filtered with cut off-frequencies of
3-500 Hz, and digitized with a 12 bit A/D converter at 2048 Hz. The cut-off frequencies
for able-bodied subjects were 10-900 Hz.
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Figure 3.1.1: Electrode locations for the TMR patients: T1 and T4 (left), T2 and
T5 (middle), T3 (right). The electrode placement of able-bodied subjects was the same as
for T2 on the left side and as for T1 on the right side. This figure was published in Kapelner
et al. (2016).

Experiment protocol

The TMR patients were instructed to perform the following tasks with the phantom limb
in a randomized order: hand open, hand close, wrist extension, wrist flexion, thumb ad-
duction, thumb abduction, thumb flexion, thumb extension, pronation, supination, elbow
extension, elbow flexion. Not all subjects were able to perform all tasks. Patient T1 was
able to sustain the contractions for 10 s with 5 s rest between attempts, the attempts
of other TMR patients lasted 5 s. T1, T4 and T5 performed two repetitions of 8 task
attempts, T2 performed two task attempts twice and other four once (6 tasks in total),
whereas T3 attempted two repetitions of 10 tasks. The tasks performance was guided by
visual cues.

The able-bodied subjects attempted the following contractions with the m pectoralis:
sustained contraction at low force level, sustained contraction at medium force level, and
a force ramp up from relaxation to medium force level followed by a ramp down. Force
levels were not measured during the attempts and the subjects received no visual feedback
about the force they were exerting, to provide similar conditions for both groups. Each
attempt lasted 30 seconds, followed by rest for at least 5 seconds. Neither patients nor
subjects reported fatigue.

EMG Decomposition

For patients T1, T2 and T3 the signals recorded from each grid were separately decomposed
using the CKC algorithm described in Section 2.3. For all other subjects the two grids were
jointly decomposed to increase the number of channels and thus decomposition efficiency.

Motor unit action potentials and derived properties

MUAP waveforms were estimated by multichannel spike-triggered averaging, as described
in Section 2.3, using a 100 sample (48.83 ms) observation window centered on each spiking
instant. Beforehand the EMG was high-pass filtered using a fourth order Butterworth filter
with a cut-off frequency of 50 Hz to eliminate the ECG interference on the spike triggered
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averages.
The determination of motor unit size is not possible in vivo (Bodine-Fowler et al. 1990;

Farina et al. 2008; Fuglevand et al. 1992). To quantify motor unit size changes after
reinnervation indirectly, I used the change in the distribution of the electric potential on
the skin surface, characterized by MUAP root mean square (RMS) maps (Figure 3.1.2).
The map consisted of the RMS of each MUAP channel, defined as:

RMSi = 1
N

N−1∑
n=0

xi[n]2, (3.1)

where N is the length of the observation window, and xi is the spike triggered average
of the i-th cahnnel. To gain sufficient resolution, the RMS maps were linearly interpolated
to 10 samples per inter-electrode distance.

Figure 3.1.2: Multichannel MUAP shape of a decomposed motor unit of subject
T3 (left) and the corresponding interpolated RMS map (right). One channel without
a MUAP shape was excluded from the analysis because of signal artefacts (blank in the
figure). The ellipse fitted on the RMS map of the motor unit is drawn in black on the right.
Based on this fitting the motor unit in this example had a normalized MUAP surface area
of 0.3. This figure was published in Kapelner et al. (2016).

Then, to each channel that had a greater RMS than 50% of the maximal RMS, an ellipse
was fitted using a least squares fitting algorithm (Ohad Gal 2014). Unsuccessful fittings
were repeated with manual correction. The areas of the fitted ellipses were normalized by
the total area of one grid, and used as an indirect measure of motor unit size, referred to
as normalized MUAP surface area in the rest of the section (Figure 3.1.2).

The durations of the action potentials were also calculated, defined as the time interval
containing more than 80% of the action potential energy, centered on the maximal absolute
value. Finally, maximal peak-to-peak amplitudes of the MUAPs were computed.

Statistics

For all the statistical comparisons between the two groups I used two-way nested analysis
of variance (ANOVA) with an alpha level of 0.05. The random factor “Subject” with
levels T1-T5, H1-H9 was nested in the fixed factor “Group”, containing levels “TMR” and
“Healthy”. Only the left side of the able-bodied subjects was considered for this comparison,
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Table 3.2: Number of decomposed spike trains per task for each subject. Each
column contains the number of spike trains for a given task (from Task 1 (M1) to Task
10 (M10)). Note that movements were different for each group. For the TMR patients
movements were also different for each subject, because not all subjects were able to perform
the same tasks with their phantom limb. Thus, each column in this table corresponds to a
different task for each row, and the table only gives a general idea about the number of
decomposed spike trains. This table was published in Kapelner et al. (2016).

Subject Side M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
T1 Right 2 5 3 2 6 15 4 7 - -
T2 Left 7 16 7 6 5 6 - - - -
T3 Left 9 2 8 4 7 9 5 0 6 10
T4 Right 12 8 7 10 8 7 9 5 - -
T5 Left 7 5 7 10 7 5 6 6 - -
H1 Left 19 6 0 - - - - - - -
H1 Right 26 4 0 - - - - - - -
H2 Left 3 8 2 - - - - - - -
H3 Left 4 5 1 - - - - - - -
H4 Left 5 4 7 - - - - - - -
H5 Left 11 0 0 - - - - - - -
H5 Right 9 0 0 - - - - - - -
H6 Left 7 5 2 - - - - - - -
H6 Right 1 2 2 - - - - - - -
H7 Left 24 14 0 - - - - - - -
H7 Right 12 12 0 - - - - - - -
H8 Left 14 15 9 - - - - - - -
H8 Right 20 15 5 - - - - - - -
H9 Left 28 30 10 - - - - - - -
H9 Right 31 21 5 - - - - - - -

due to unavailable data for subjects H2-H4.
For comparisons between the two sides within the able bodied group the random factor

“Subject” with levels H1, H5-H9 was nested in the fixed factor “Side”, with levels “Left”
and “Right”.

The descriptive statistics used for reporting were mean and standard deviation.

3.1.3 Results

The EMG decomposition yielded 270 spike trains for the TMR patients and 398 for the
able-bodied subjects (233 on the left and 165 on the right side, Table 3.2, Figure 3.1.3).

The normalized MUAP surface areas associated to the MU territories were significantly
smaller for the TMR group (p < 0.001, Figure 3.1.4). The mean normalized area was
0.25±0.17 for TMR patients and 0.81±0.46 for able-bodied subjects. MUAP durations of
the TMR group were statistically significantly smaller (10.92±3.89 ms and 14.03±3.91 ms;
p < 0.01, Figure 3.1.4). MUAP peak-to-peak amplitudes were not significantly different
between the two groups (0.19± 0.11 mV and 0.14± 0.06 mV; p = 0.07, Figure 3.1.4).

An analysis of the distribution of MUAPs over the surface covered by the electrode
grids revealed that motor unit surface representations tended to group in the same regions
and therefore overlapped with each other (Figure 3.1.5). The overall area on the electrode
surfaces that contained motor units corresponding to one task only was on average 12.08
cm2, representing 11.8% of the total electrode surface, with a maximum of 18.9% (17.21
cm2) for subject T4.
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Figure 3.1.3: Representation of the decomposition of a single trial for subject
T2. Above: one channel of the EMG signal. Below: bar plots of the decomposed spike trains
and their MUAPs over the matrix. The colors of the spike trains and the MUAPs are
matched. This figure was published in Kapelner et al. (2016).

There was no statistically significant difference between motor units in the left and right
sides of able-bodied subjects, or any significant interactions between the factors Side and
Subject. The mean values of the two groups were 0.76±0.43 and 0.77±0.41 for normalized
MUAP surface area (p = 0.44), 13.72± 3.52 ms and 13.30± 3.80 ms for MUAP duration
(p = 0.75) and 0.14 ± 0.07 mV and 0.13 ± 0.06 mV for MUAP amplitude (p = 0.48) for
the left and right side of able-bodied subjects respectively.

3.1.4 Discussion

This section investigated the properties of motor units after TMR surgery in vivo based on
surface EMG decomposition. The main findings were the significant difference of MUAP
surface areas and durations between the two groups, and that surface areas were generally
overlapping.

The first main finding was that MUAP surface areas in the m. pectoralis major of
TMR patients were significantly smaller than those of able-bodied subjects. However,
this difference does not necessarily indicate a difference in motor unit size. The indirect
estimate of motor unit territory described in Methods is based on the MUAP, therefore it
is also influenced by a number of factors, as described in Section 2.2, one of these being
the volume conductor effect.

Because the subcutaneous fat layer over the targeted muscles is removed during the
TMR procedure, the observed difference in MUAP surface areas might have resulted from
TMR patients having thinner tissue layers between the muscle and the recording electrodes
than able-bodied subjects. This is also indicated by the longer MUAP durations in the
healthy group.

Another possible mechanism that results in smaller MUAP surface areas in TMR pa-
tients is that reinnervation may result in more compact fibre distribution than normal
(Kugelberg, Edström, and Abbruzzese 1970). This was observed in self-reinnervated mus-
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Figure 3.1.4: Mean and standard deviation of the investigated motor unit prop-
erties of the two groups. TMR patients are shown in black, able-bodied subjects in gray.
The group means are shown on the right side. A part of this figure was published in Kapelner
et al. (2016).

Figure 3.1.5: Spatial positions of the motor unit surface areas in each electrode
grid (rows) for each subject (columns). Note that grid 1 for subject T2 and grid 2
for subject T1 were not covering the m. pectoralis. Surface areas with the same colour in
a given grid correspond to motor units identified in the same task. The area on the grid
occupied by motor units active during only one task is coloured in grey. The tick marks on
the image borders denote 1 cm. This figure was published in Kapelner et al. (2016).

cles, whose cross-sectional size decreases due to an increased fibre density.
However, both thinner subcutaneous fat layer and increased fibre density in TMR pa-

tients would lead to increased MUAP amplitude. This was not observed in this experiment,
and there was also no statistically significant difference between healthy motor unit prop-
erties with regards to sidedness, suggesting that the observed differences are unlikely to
have resulted from differences in electrode placement. Thus, the most likely explanation
for the findings is that motor units after reinnervation are effectively smaller in size, indi-
cating that motor unit characteristics are influenced by properties of the new innervating
nerve.

Changes in motor unit characteristics after reinnervation were documented in several
cases (Buller, Eccles, and Eccles 1960). The most commonly mentioned such change is
referred to as muscle plasticity, which incorporate changes in contractile and biochemical
properties, changing the new muscle to resemble the original’s properties more closely
(Gordon and Pattullo 1993; Sreter, Luff, and Gergely 1975). Muscle fibre reorganization
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into dense regions was also observed, even in in human TMR patients (Kugelberg, Ed-
ström, and Abbruzzese 1970; Smith and Hargrove 2013). In some cases the muscle can
also influence the innervating nerve, in so far as the success of the reinnervation depends
on the capability of the muscle to adapt to the new neural input (Foehring, Sypert, and
Munson 1987).

The results of this section suggest that some motor unit characteristics after reinner-
vation are indeed determined by the motor nerve. In particular, the smaller effective size
of motor units after TMR may have resulted from the fact that the physiological motor
unit sizes of the missing limb were smaller. However, it is also possible that the findings
were a result of the aforementioned dense reorganization of the muscle units, or that both
factors play a role in the resulting spatial localization. It was not feasible to directly test
for these possible mechanisms in the in vivo setting of this study.

The other main finding of this section was the overlapping nature of MUAP surface
areas. The spatial separation of EMG activity is one of the aims of the TMR procedure,
as described in Section 2.6. This section showed that the EMG activity is spatially local-
ized not only on a muscle-segment level, but also on a motor unit level. Although this
spatial localization is created to facilitate direct prosthetic control, Figure XI suggests
that MUAPs of motor units active in a given task overlap with MUAPs corresponding to
other tasks. The large degree of overlapping is also shown by the largest area activated
for a single motion class being only 18.9% of the total electrode grid surface. This finding
suggests that motor units active in different tasks share similar territories in the muscle.

This might be the cause of difficulties in optimal electrode placement for maximizing
class separation (He Huang et al. 2008), and it can also explain why more advanced control
methods prove to be more effective for TMR patients than proportional control limited to
a small number of spatially separable classes (Hargrove, Lock, and Simon 2013), (Huang
et al. 2009).

This finding also demonstrates why a control approach based on direct neural infor-
mation obtainable from surface EMG decomposition could lead to better performance:
spatial separation is not necessary for surface EMG decomposition, because neural infor-
mation based control is able to distinguish between movement classes even in the case of
overlapping motor unit territories.

3.1.5 Summary

This section has shown that in terms of surface areas and action potential durations there
are differences between reinnervated motor units and able-bodied controls. On the one
hand, this may be due to physiological changes after TMR, such as the reduced fat layer
or increased fiber density. On the other hand, it is also possible that the reinnervating
motor neuron alters motor units characteristics.

The distribution of motor unit surface areas in TMR patients did not ensure highly
separable EMG activities among different tasks, as indicated by the large degree of overlap
of the surface areas. Although this conclusion is supported by previous research (Hargrove,
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Lock, and Simon 2013; Huang et al. 2009), a separate study would be needed to adequately
analyse the separability of task for prosthesis control, and thereby evaluate the assumption
that neural information might allow for better task separation. This investigation will be
described in the next section.
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3.2 Study 2: Pattern recognition based on neural information

The results of this section are published in Kapelner et al. (2015) under IEEE copyright.
In accordance with the requirements of the copyright holder, figures reused in this section
are indicated by the copyright line ©2015 IEEE, and the approval of the senior author,
Prof. Dario Farina, is obtained to reuse a substantial portion of the original paper.

Author contributions: analyzed the data, wrote the manuscript.

The results of this section also constitute a part of the manuscript submitted for publi-
cation in Dario Farina et al. (2016). Figures 3.2.1 and 3.2.3 are based on figures of this
publication, but were significantly changed and re-rendered.

Author contributions: performed the experiments, analyzed the data, revised the manuscript.

3.2.1 Introduction

The aim of this section is to assess the control capabilities of neural information as a
feature for prosthesis control. To this end the well-established pattern recognition method
will be used, comparing the classification accuracy of features based on neural information
with that of traditional EMG features.

The comparison will be made in TMR subjects, in order to also evaluate the assumption
of the previous section. This was that neural information might provide better separation
of classes, because MUAP surface areas are distinguishable even if overlapping, as opposed
to the EMG activity of different muscles that are influenced by crosstalk.

3.2.2 Methods

Subjects

Subjects T1, T2 and T3 from Section 3.1.2 participated in this experiment. For details on
the amputation profiles and for subject description see Section 3.1.2 or (Farina et al. 2014).
All experimental protocols were designed and conducted according to the Declaration
of Helsinki and approved by the local ethics committee. All participants signed written
informed consent form prior to the experiment.

Data Acquisition and Experiment Protocol

For data acquisition the same equipment and measurement protocol was used as described
in Section 3.1.2. There was a difference in electrode placement, in that high-density surface
electrode grids were placed above all reinnervation sites of the subjects, not just over the
m. pectoralis, amounting to 6 grids per subject. For a detailed description of the electrode
placement see Farina et al. (2014).

EMG Processing

To remove ECG artefacts the raw EMG signals were high-pass filtered with a cut-off
frequency of 100 Hz using a 4TH order Butterworth filter, as suggested by Hargrove et
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al. (2009). As described in Section 2.4, the EMG features were calculated based on 100
ms observation windows with a 10 ms overlap between consecutive windows. Two sets
of global features were compared. The first feature set included the RMS of all channels
calculated by applying (3.1) to the EMG segments within each observation window. The
other feature set included the RMS and the following time domain (TD) features, as
proposed by (Hudgins, Parker, and Scott 1993):

• Waveform length: formally defined as
∑N−1

n=1 |x[n]− x[n− 1]|, where x is the EMG
signal within an N samples long observation window;

• Zero crossings: the number of instances within an observation window when x[n]x[n−
1] < 0 and x[n]− x[n− 1] > d1, where d1 is a subject specific pre-defined threshold;

• Slope sign changes: the number of such local extrema within an observation win-
dow, which exceed at least one neighboring sample in absolute value by a pre-defined
threshold of d2.

The feature space for both the RMS and the TD feature sets was reduced in dimen-
sion using Principal Component Analysis (PCA), retaining 9% of the feature variance
(Hotelling 1933; Person 1901).

Spike Processing

The recorded EMG signals were decomposed using the CKC algorithm. To ensure a fixed
number of consistently detected spike trains for each trial, we pooled the decomposed spike
trains into cumulative trains using two pooling methods:

• Grid pooling: each spike train decomposed from the EMG signals of a given elec-
trode grid was assigned to the cumulative spike train of that grid. As a result, the
feature dimension was 6 (one cumulative spike train per grid).

• Region pooling: The surface of each grid was further divided into four square
regions, and one cumulative spike train was assigned to each region. The inclusion
of spike trains to cumulative trains was based on the MUAP RMS map (Figure
3.2.1: a spike train was assigned to the cumulative train of all regions in which its
respective MUAP contained significant activity, as determined by manual evaluation.
As a result, the feature space had a dimensionality of 6 (number of grids) times 4
(number of regions per grid) = 24.

For both of these approaches the feature was the number of spiking instances of the
cumulative trains within the observation windows, using the same 100 ms intervals as for
the RMS and TD feature sets.

Classification

The used classifier was a support vector machine (SVM) system with linear kernel, using
the default C-value of the implementation (Chang and Lin 2011). SVM showed the best
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Figure 3.2.1: An illustration of region pooling for matrix 2 of subject T2. The
mean RMS of all EMG channels during the performance of the task (A) and three MUAPs
(B) are shown for three tasks (rows). The four cumulative spike trains extracted from the
matrix are colour coded: spikes of motor units with MUAP activity in a given region (color)
were pooled together. E.g. for hand close (upper row), spikes of the first motor unit were
pooled into the red and blue cumulative trains, the second motor unit was assigned to the
red and green trains, whereas spikes of the third unit were pooled into the red, blue and
yellow cumulative spike trains, etc. Note that the three tasks are clearly separable using the
color coded regions, whereas the EMG representations are highly similar.

overall classification accuracy out of several tested classifiers, while neither using other
kernels nor individual C-value optimization improved the results significantly.

The assignment of movement classes (e.g., Hand Open) to samples was done based on
the cue presented during the experiment. Moreover, this assignment was only done if at
least one motor unit discharged one action potential in that sample, to avoid the inclusion
of samples that contained no activity. This was required because most subjects were not
regular prosthesis users, and had difficulties in sustaining contractions. In all remaining
(unassigned) samples the subject was assumed to rest (No Movement class). The total
number of classes was 9, 7 and 11 for the three subjects.

For multiclass classification the one-against-one method was used with 3 sample ma-
jority voting as postprocessing (Englehart and Hudgins 2003). The classification results
are provided with 5-fold cross-validation. An overview of the whole framework for both
feature types is shown in Figure 3.2.2.
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Figure 3.2.2: Block diagrams of the two compared pattern recognition approaches
(©2015 IEEE). The difference between using neural information (top row) and EMG based
features (bottom row) lies only in the signal processing blocks, the data acquisition and the
classification method was the same for both feature types.

3.2.3 Results

Neural information with region pooling outperformed classic EMG features for all subjects
(Figure 3.2.3). The most substantial increase in performance was observed for T3, who
attempted 10 movements. Pooling all decomposed motor units of a given matrix together
yielded lower classification accuracy than all other features except RMS. TD outperformed
RMS for all subjects.

3.2.4 Discussion

The results showed that neural information contains sufficient information for pattern
recognition in TMR to substantially outperform classic feature sets, even for a high number
of classes.

In spite of the spatial separation and localization resulting from TMR, the lower classifi-
cation accuracy of EMG based features shows that crosstalk between sites cannot be fully
eliminated. The lower accuracy of grid pooling compared to region pooling and TD also
shows that there were spike trains belonging to several classes within one grid. Pooling
these together caused a decrease in class separability.

However, the additional spatial information introduced by region pooling was sufficient
to increase classification accuracy substantially. Since the spatial EMG distribution after
TMR is defined by the activity of specific muscles, the added information content of
region pooling compared to grid pooling is likely related to function: pooling together
spike trains leads to a decrease in control performance if the spike trains pooled together
are not functionally similar.

It is compelling to argue that the reason for the superior performance of neural infor-
mation is that it is more selective, because the spike trains belong to specific muscles and
thus inherently contain functional information, regardless of discharge timings. However,
intramuscular EMG, which also has the feature of each channel being muscle specific, does
not outperform surface EMG (Smith and Hargrove 2013). This indicates that the increase
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Figure 3.2.3: Confusion matrices for the classification of motor tasks. Each
matrix contains classification accuracies from 0% (white) to 100% (black). The rows of
each matrix represent the performed tasks (classes), the columns the estimated (classified)
tasks; e. g. the second column of the first row shows the number of cases (samples) that
were classified as the second class, whereas the subject actually performed the first. The
diagonals of the matrices represent all cases when the intended class was the same as the
estimated (correct classifications). The classes were: elbow extension (EE), elbow flexion
(EF), hand close (HC), hand open (HO), wrist extension (WE), wrist flexion (WF), wrist
supination (WS), wrist pronation (WP), thumb adduction (TAd), thumb abduction (TAb),
thumb extension (TE), thumb flexion (TF) and no movement (NoM).

in performance is not only caused by neural information being more selective.
These findings also indicate that a full decomposition into spike trains distinctly belong-

ing to specific motor units is not strictly necessary, as this section used only cumulative
spike trains. Thus, an estimation of discharge timings of functionally similar units might
also be sufficient for prosthetic control.

It is worth noting that TMR subjects can be trained to generate distinct EMG acti-
vations for each function, which could theoretically increase the classification accuracy of
TD to the same level as observed using neural information (Englehart and Hudgins 2003;
Hargrove, Lock, and Simon 2013). Nevertheless, the neural information based approach
achieved an almost perfect separation of classes without prior training specific to this ap-
proach. This suggests that neural information based prosthesis control can provide a more
natural control with less training, even if the increase in performance in a clinical scenario
would not be this substantial.
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3.2.5 Summary

This section has confirmed the assumption made in the previous section, that in TMR pa-
tients neural information provides sufficient information to classify the intended movement
more accurately than conventional EMG features do. The section also showed that while
grouping together spike trains is necessary to ensure accurate classification, the result-
ing groups have to be functionally homogenous. This indicates that with an appropriate
control algorithm motor unit spike trains could be used for advanced prosthesis control.
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3.3 Study 3: The feasibility of EMG decomposition during voluntary
contractions of the wrist

The results of this study are submitted for publication in Kapelner, Negro, and Farina
(2016). Upon acceptance the copyright will be transferred to IEEE. In accordance with the
requirements of the copyright holder, figures reused in this section are indicated by the
copyright line © 2016 IEEE, and the approval of the senior author, Prof. Dario Farina,
is obtained to reuse a substantial portion of the original paper. Parts of Figure 3.3.1 also
appeared in Kapelner, Jiang, and Farina (2016), permission for reuse was not required due
to retained rights of the authors for inclusion in doctoral dissertations (see Section 3.4).

Author contributions: performed the experiments, analyzed the data, wrote the manuscript.

3.3.1 Introduction

The previous sections showed that neural information is indeed a promising alternative
to traditional EMG based features when using established control methods in TMR, such
as pattern recognition. The feasibility of EMG decomposition in TMR was established by
Farina et al. (2014), but whether current decomposition methods are suitable to be used
for advanced control purposes is not self-evident.

This is because – as discussed in Section 2.3 – current EMG decomposition methods
were developed for isometric contractions at constant or slow-varying force, therefore their
applicability in the case of voluntary contractions has to be determined, especially in
the case of subjects with limb deficiency. Investigating this question is the first step in
providing a proof of concept for an advanced prosthesis control method based on neural
information. Another addressed question is whether advanced control is also possible in
the case of transradial amputees without TMR, who lack distinct isolation of movement
classes on the skin surface.

In this section the feasibility of EMG decomposition will be investigated in voluntary
contractions that are characteristic to advanced prosthesis control using regression, for
both able bodied subjects and patients with limb deficiency.

3.3.2 Methods

Subjects

Seven able-bodied subjects (A1-A7, age 29±6 years) and two patients with limb deficiency
(D1 and D2, age 43 and 57 years) participated in this experiment. All participants signed
an informed consent form approved by the local ethics committee. None of the able-bodied
volunteers had any neuromuscular abnormalities or disorders. D1 had a left side transradial
amputation 37 years before this experiment; D2 had a transradial congenital amputation
on the right side. Both patients were daily myoelectric prosthesis users.
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Data Acquisition

The EMG recordings were made using the high-density electrode grids described in Section
3.1. The grids were applied around the proximal third of the forearm of the dominant or
amputated arm of the subjects (Figure 3.3.1/A). Two grids were mounted on subjects A4,
A6, D1 and D2, while the other subjects had sufficient space on the forearm for three
grids. Data acquisition was performed as described in Section 3.1.2, with the band-pass
cut-off frequencies set to 3 and 900 Hz.

Figure 3.3.1: An illustration of the EMG recording and motion capture system
(A), as well as the signal processing steps (B) and the visual feedback provided
for the subjects (C). As shown in (C), subjects were presented an arrow as an indication
of their wrist position and movements. Horizontal movement of the arrow corresponded to
flexion and extension, vertical movement to radial and ulnar deviation, while the rotation of
the arrow corresponded to pronation and supination. This figure was adapted from Kapelner,
Jiang, and Farina (2016) and Kapelner, Negro, and Farina (2016).

To measure wrist kinematics during the contractions and to guide subjects’ movements
by visual feedback, three motion capture sensors (MTx, Xsens) were mounted on the
following landmarks on the dominant arm: the dorsal side of the palm, the dorsal side of
the wrist, and the dorsal side of the distal end of the upper arm. For subjects with limb
deficiency, the sensors were placed on the contralateral (healthy) arm.

Experiment Protocol

The subjects were seated comfortably before the recording session, with the arm fully
relaxed and the hand capable to move in the whole range of motion in all directions
without obstacles. After a familiarization session the subjects were instructed to follow
an arrow shaped visual cue, while the movement of their wrist was visualized by another
arrow with a different color, as recorded by the motion capture sensors (Figure 3.3.1/C).

The movement of the cue prompted wrist movements in one DoF at a time from rest
until the maximal range of movement, within 2.5 s, then back to the rest position. This
resulted in a triangular joint angle profile for each of the following motor tasks: flexion
and extension corresponding to horizontal arrow movements, ulnar and radial deviation
corresponding to vertical arrow movements, and pronation and supination corresponding
to arrow rotation (Figure 3.3.1/C). All motor tasks were repeated three times in a ran-
domized order. Patients with limb deficiency were instructed to perform mirrored bilateral
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movements, i. e. to match the movement of the phantom limb to the contralateral side,
which was motion captured and used for kinematics measurement and feedback (Nielsen
et al. 2011).

EMG decomposition

The EMG signals corresponding to each DoF were separately decomposed using a convo-
lutive blind source separation method related to CKC (Negro et al. 2016). This method
incorporates the calculation of an estimate for the accuracy of the decomposition, referred
to as the silhouette measure (SIL) (Negro et al. 2016). Previous validation of SIL using
concurrent intramuscular and surface EMG recordings showed that SIL values are linearly
related to the rate of agreement with intramuscular EMG signals. Decomposed spike trains
with an SIL greater than 0.8 were included in the subsequent analysis, corresponding to
an approximate accuracy of at least 80%. Spike trains having less than five discharges in
all repetitions were disregarded.

The MUAP shapes as calculated by spike triggered averaging were used to compare
motor units identified in different trials and match double occurrences. Motor units across
more trials were considered to be the same if the maximal value of the normalized cross-
correlation function of their MUAP shapes was greater than 0.8. MUAP RMS maps were
also calculated, as described in Section 3.1.2.

As an additional measure of decomposition performance the signal-to-interference ratio
(SIR) was calculated, which shows the amount of the variance of the EMG signal explained
by the identified spike trains (Hamid R. Marateb et al. 2011). To this end the MUAP
trains were reconstructed by replacing each spiking instance in each spike train by the
corresponding multichannel MUAP shape. The sum of all MUAP trains was then used
as a reconstruction of the global EMG, and the SIR was calculated using the following
formula:

SIRi =
∑N−1

n=0 (xi(n)− zi(n))2∑N−1
n=0 (xi(n))2 · 100%, (3.2)

where xi(n) is the n-th sample of the i-th channel of the multichannel differential EMG
signal, zi is i-th channel of the reconstructed EMG as described above, and N is the
number of recorded samples. This calculation was repeated for each repetition of each
trial, including only the channels for which the reconstructed signal zi had an RMS greater
than 20% of the maximal RMS for that repetition.

Data Analysis

I assigned the decomposed spike trains to motor tasks for each DoF separately, in accor-
dance with the decomposition. A spike train was assigned to a task if 90% of its spikes
were detected within the beginning and end times of the task, defined manually based on
the recorded wrist kinematics for simplicity.
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The most relevant spike trains for prosthesis control are only active during one task,
since the presence of such a train would allow the control method to directly identify the
performed task. These units reside in the agonist muscles of a given task, and will be
referred to as discriminative agonist units in the following.

A motor neuron was labeled as an agonist if 90% of its spikes were detected either
during a given motor task or during the second half of the opposite (antagonist) task.
The time intervals for the opposite task were defined as the time between reaching the
maximal angle and the end time of that task.

It is worth noting that a motor unit could be classified as agonist for more than one
DoF, e. g. motor units in the m. flexor carpi radialis act as agonist for both flexion and
radial deviation. Therefore only agonists detected only in one DoF were categorized as
discriminative agonist units.

Spike trains were smoothed using a 400 ms Hanning window, and the extrema of the
discharge rates were calculated, as well as the absolute joint angles at recruitment nor-
malized to the full range of motion (De Luca and Erim 1994). Additionally the number of
agonist units detected consistently in all repetitions was counted for each motor task.

Means and standard deviations are reported for all calculated characteristics.

3.3.3 Results

The decomposition yielded 16± 7 spike trains per motor task (Figure 3.3.2) with a mean
SIR value of 24.7 ± 12.7%. The average SIL was 0.86 ± 0.05. Out of 12 ± 6 agonist spike
trains 6± 5 were present consistently.

Figure 3.3.2: A representative example of the results of EMG decomposition
(©2016 IEEE). Decomposed spike trains are colored according to their classification: or-
ange spike trains belong to agonists for radial deviation, blue spike trains to agonists of
ulnar deviation, and green spike trains did not belong to agonists for any motor task. Note
that not all spike trains are present for each repetition of the tasks, and some are also
present at rest. For the latter spike trains the angle at recruitment was 0, whereas the other
spike trains generally corresponded to recruitment at greater angles, with only a few ac-
tive motor units for angles smaller than 20% of the range of movement. This figure also
appeared in Kapelner, Negro, and Farina (2016).
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For subjects A3 and A5 at least one discriminative unit was present in all repetitions of
each motor task, and subject A2 had three such tasks. The remaining 6 subjects (including
D1 and D2) had discriminative motor units consistently present in five motor tasks. The
number of spike trains decomposed per task, the discharge statistics and the angles at
recruitment are summarized in Tables 3.3 and 3.4.

Table 3.3: Number of decomposed spike trains per subject and discharge statistics
for the able-bodied subjects (©2016 IEEE). The discharge statistics were calculated for
the spike trains of all able-bodied subjects pooled together. Rows indicate which motor task
the spike train belong to, or how many tasks they belong to, i. e. “One Motor Task” means
that spike trains were only active during one task. Thus, based on this latter group a myo-
electric control method could discriminate between motor tasks. Only spike trains belonging
to agonists were included in those present in all repetitions. This table also appeared in
Kapelner, Negro, and Farina (2016).

Number of decomposed spike
trains per subject Minimal

discharge
rate [pps]

Maximal
discharge
rate [pps]

Normalized
angle at

recruitment [%]
SIL

Total Agonists Present in all
repetitions

Extension 12± 6 10± 5 5± 4 6.72± 2.68 22.68± 6.97 59.81± 26.28 0.86± 0.05
Flexion 16± 8 14± 5 5± 4 7.04± 3.11 22.68± 6.24 59.80± 28.59 0.86± 0.05

Radial Deviation 18± 6 13± 5 7± 6 6.96± 2.72 22.96± 6.62 65.31± 27.23 0.85± 0.04
Ulnar Deviation 21± 6 16± 5 11± 5 6.95± 2.57 22.18± 6.21 58.75± 27.63 0.87± 0.05

Pronation 15± 6 9± 5 4± 4 6.34± 2.88 21.31± 6.78 58.67± 29.76 0.86± 0.04
Supination 17± 9 11± 8 6± 6 6.46± 2.17 17.95± 7.37 58.10± 27.14 0.88± 0.05

One Motor Task
(discriminative) 62± 16 62± 16 31± 17 6.90± 2.73 22.09± 7.28 66.04± 25.60 0.86± 0.05

Two Motor Tasks 14± 8 6± 5 3± 3 6.24± 2.70 19.01± 5.51 50.21± 28.86 0.87± 0.05
Three Motor Tasks 0 0 0 6.42± 2.10 23.06± 3.50 21.71± 15.11 0.86± 0.04
Four Motor Tasks 1± 2 0 0 6.14± 1.92 19.27± 4.80 44.69± 17.94 0.85± 0.03
Five Motor Tasks 0 0 0 7.54± 4.52 27.90± 2.02 21.91± 0.77 0.83± 0.03
Six Motor Tasks 0± 1 0 0 6.88± 2.12 24.54± 2.82 22.32± 0.69 0.91± 0.02

Table 3.4: Number of decomposed spike trains per subject and discharge statistics
for the subjects with limb-deficiency (©2016 IEEE). The discharge statistics were
calculated for the spike trains of all subjects with limb-deficiency pooled together. Rows
indicate which motor task the spike train belong to, or how many tasks they belong to, i. e.
“One Motor Task” means that spike trains were only active during one task. Thus, based
on this latter group a myoelectric control method could discriminate between motor tasks.
In this group there were no spike trains present during more than two tasks. . Only spike
trains belonging to agonists were included in those present in all repetitions. This table also
appeared in Kapelner, Negro, and Farina (2016).

Number of decomposed spike
trains per subject Minimal

discharge
rate [pps]

Maximal
discharge
rate [pps]

Normalized
angle at

recruitment [%]
SIL

Total Agonists Present in all
repetitions

Extension 15± 12 14± 11 6± 3 7.00± 2.55 22.92± 8.35 61.37± 19.43 0.84± 0.04
Flexion 9± 9 8± 8 4± 3 6.58± 3.17 21.80± 9.27 57.81± 25.71 0.86± 0.04

Radial Deviation 10± 3 9± 1 3± 4 6.45± 2.34 23.69± 10.88 71.37± 17.00 0.84± 0.04
Ulnar Deviation 17± 2 16± 1 8± 8 7.57± 2.01 21.61± 6.42 58.07± 23.96 0.85± 0.04

Pronation 13± 6 11± 4 5± 2 6.15± 2.64 19.19± 5.84 59.66± 13.92 0.87± 0.05
Supination 15± 19 13± 16 5± 7 6.50± 3.10 20.51± 9.11 77.36± 19.67 0.86± 0.05

One Motor Task
(discriminative) 15± 12 14± 11 6± 3 7.00± 2.55 22.92± 8.35 61.37± 19.43 0.84± 0.04

Two Motor Tasks 9± 9 8± 8 4± 3 6.58± 3.17 21.80± 9.27 57.81± 25.71 0.86± 0.04

To obtain a surface representation of a given motor task, the MUAP surface maps of
agonist motor units belonging to a given task were summed (Figure 3.3.3).

The mean absolute normalized angle at recruitment was 62.48±26.44% (Tables 3.3 and
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Figure 3.3.3: Surface representation of the motor tasks based on the normalized
MUAP surface maps (©2016 IEEE). The sums of all normalized MUAP surface maps
of the spike trains belonging to agonist are depicted for each motor task, with blue rep-
resenting the smallest value within each map and red the largest. Able-bodied subjects are
identified as A1-A7 and patients with limb deficiency as D1-D2. Note that since one motor
unit can belong to agonist for multiple tasks, there is a considerable similarity between tasks
for some subjects, even though discriminating between these is straightforward due to the
large number of discriminative spike trains. A modified version of this figure also appeared
in Kapelner, Negro, and Farina (2016).

3.4). The distributions of the angles at recruitment were skewed towards higher angles for
all subjects (Figure 3.3.4). For three subjects the minimal normalized angle of recruitment
was at least 20%.

3.3.4 Discussion

This section showed that accurate surface EMG decomposition in voluntary contractions
associated to prosthesis control with regression is possible. The decomposition extracted at
least 15 spike trains per motor task on average in both able-bodied subjects and patients
with limb-deficiency, despite the contractions being non-isometric. These results indicate
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Figure 3.3.4: Histograms of the normalized angles at recruitment for each sub-
ject (©2016 IEEE). The height of the grey bars represent the total number of spike trains,
and the height of the black bars represent the number of units among these that were de-
tected consistently in all repetitions of a given motor task. A modified version of this figure
also appeared in Kapelner, Negro, and Farina (2016).

that advanced prosthesis control by using neural information for regression is feasible.
The number of decomposed spike trains was similar for all tasks, but there was con-

siderable variation in the number of agonist and consistently present units. (Tables 3.3
and 3.4). In most cases not all detected units were agonists, and there were fewer consis-
tently present units than agonists. Nevertheless, in 6 out of 9 subjects consistently detected
discriminative motor units were detected for at least 5 out of 6 tasks. These units are espe-
cially important for myoelectric control, since a control method could perfectly classify the
active motor task based on their presence. This finding together with the high number of
decomposed spike trains suggests that prosthesis control using automatically decomposed
spike trains is feasible.

Another finding that shows that the discrimination of movements would be facilitated by
neural information is that in subjects with limb-deficiency there were no motor units active
during more than two tasks. One the one hand this might be a result of the muscles after
amputation being artificially arranged, which leads to less similar MUAPs and facilitates
prosthesis control (Figure 3.3.3). On the other hand, it is also possible that prosthesis users
have learned how to activate individual muscles for optimal prosthesis control, whereas
able-bodied subjects used their muscles synergistically.
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The findings in this section also confirmed the findings of Section 3.2, in that in spite of
similarities in the surface representations of the motor tasks, it is possible to directly
identify the active motor task using neural information, by detecting the presence of
discriminative agonist units. Thus, neural information might offer more selectivity and
potentially more accurate control compared to surface EMG features.

In general the distribution of normalized angles at recruitment was skewed towards
higher angles (Figure 3.3.4). For subjects A5, A6 and D2, the smallest angle was greater
than 20%. Although the muscle force – wrist angle relationship is highly non-linear, because
of the gradual increase in angle, motor units recruited at higher angles were likely to
exhibit higher recruitment thresholds. Thus, the majority of detected motor units were
presumably large, high threshold units, which are indeed simpler to detect because of
their larger innervation numbers and therefore larger surface MUAPs (Farina et al. 2010;
Henneman 1957).

Nevertheless, this finding shows that a prosthesis control methods based on neural
information will have to cope with the fact that the number of motor units detected at
small wrist angles might not be sufficient for extracting control information, since in three
subjects there were no motor units at all detected below 20% of the maximal angle of
movement.

Another limiting factor might be that less than half of the decomposed spike trains
were present in all repetitions of a given motor task. This might be because of MUAP
waveform changes, as described in Section 2.3. This effect is, however, not critical for
prosthesis control, since as long as the motor task can be identified based on motor units,
detecting the exact same motor neurons in all repetitions of a task is not strictly necessary.

The found SIR values were smaller compared to results previously shown for static
contractions (Hamid R. Marateb et al. 2011). This is consistent with high angles at re-
cruitment and few consistently present spike trains, both indicating that the extracted
motor units only accounted for a fraction of the total EMG power. Thus, although de-
composition with available methods is possible, specialized methods suited for strongly
non-stationary conditions would be needed to mitigate these effects (De Luca et al. 2015;
Sandercock et al. 1985).

3.3.5 Summary

This section showed for the first time that accurate identification of motor neuron ac-
tivity from EMG decomposition during non-isometric voluntary contractions of the wrist
is possible, in both able-bodied and limb-deficient subjects. The identification was ac-
curate, discriminative for the tasks, and reliable across repetitions. These characteristics
show that prosthesis control using such information is feasible, although some considera-
tions will have to be made in order to mitigate the effects of incomplete decomposition.
The advanced prosthesis control framework presented in the next section will take these
considerations into account.
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3.4 Study 4: Linear regression based on neural information

The results of this study are submitted for publication in Kapelner, Jiang, and Farina
(2016). Upon acceptance the copyright will be transferred to IOP. However, the authors
are granted back a number of rights from IOP, including the inclusion of the article in a
dissertation. Thus, permission was not required.

Author contributions: performed the experiments, analyzed the data, wrote the manuscript.

3.4.1 Introduction

The previous sections have shown that neural information outperforms EMG-based fea-
tures in pattern recognition, and that the neural information provided by current de-
composition methods is sufficient for regression. In this section the performance of linear
regression using neural features will be compared to EMG-based features, as the first step
towards a truly neural non-invasive prosthesis control.

As discussed previously, relating neural features to continuous joint kinematics could
potentially increase regression performance, due to the inherent relationship between the
motor neuron discharge rates and muscle force. As described in Secion 2.1, this relationship
is generally nonlinear, also reflected by nonlinear estimators outperforming linear ones in
offline regression (Jiang et al. 2014).

Nevertheless, for this first step in providing a proof of concept for neural information
based prosthesis control, linear regression will be used for both EMG based and neural
features (Hahne et al. 2012; Hahne et al. 2014). The development of the novel regression
method was done taking the following observations of the previous sections into account.

Firstly, Section 3.3 found that the decomposition usually results in just a few spike trains
at low joint angles. Secondly, a compensation mechanism for not consistently present spikes
is also to be considered. Lastly, Section 3.2.4 highlighted that grouping of motor units is
only beneficial if the involved units have functional similarities. These previous findings
constituted the basic requirements for developing the control method described in the
following.

To further investigate the effects underlying these previous observations, the experi-
ments were performed in several speeds and movement ranges. The expected dependence
of performance on speed was that since EMG decomposition complexity increases with
the contraction force, neural information based control performance should decrease with
increasing contraction intensity (Holobar et al. 2011). On the other hand previous re-
search suggests that fine movements of forearm muscles corresponding to weak contrac-
tions should correlate more with neural information than with conventional global EMG
features (Farina et al. 2010). This effect could however be influenced by an insufficient
number of motor units decomposed at low wrist angles, as suggested by Section 3.3.3.
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3.4.2 Methods

Data acquisition and experiment protocol

Subjects A1-A6 and D1 from Section 3.3 participated in this study. The data acquisition
and the experiment protocol were the same as described in Section 3.3.2 In that section
the subjects were instructed to perform voluntary contractions of the wrist in three DoF
in a triangular angle profile, reaching the maximal range of movement from rest position
in 2.5 s. In this experiment the protocol contained identical instructions, but with two
additional timings: using 1 s and 5 s ramps. Additionally, subjects A4-A7 were instructed
to perform the same protocol using only 20% of their range of movement. All participants
gave informed consent prior to the experiment, as approved by the local ethics committee.

EMG Feature Extraction

The raw EMG was digitally band pass filtered with cut-off frequencies 20 and 500 Hz.
Then the signal was windowed in 100-ms intervals, with 10 ms overlap, and the same TD
features were extracted as described in Section 3.2.2 (Hudgins, Parker, and Scott 1993).
The necessary threshold parameters were selected manually for each subject. Afterwards
data dimensionality was reduced using PCA, so that the resulting signal retained 98% of
the original variance. This feature set will be referred to as TD.

EMG decomposition and spike processing

The recorded EMG signal was decomposed offline using the CKC algorithm for each
DoF separately, in the same manner as in Section 3.3. (Holobar and Zazula 2007). After
decomposition motor units present in more than one DoF were identified by using the
cross-correlation of spike triggered averaged MUAPs.

Because the spike triggered averages contained more noise due to shorter contractions
compared to the previous section, the cross correlation differed from the one described in
Section 3.3.2, in that MUAPs in channels containing artefacts or noise were not included.

All channels were included in the cross-correlation calculation, for which the ratio of
the maximal absolute value within and outside the MUAP duration (as defined in Section
2.3) was below 80% of the maximal ratio of that MUAP. This means that if the signal
amplitude outside the time support was comparable to the one within, the channel was
not included in the correlation calculation (Figure 3.4.1).

To ensure the robustness of the neural information based feature set, the number of
firings was calculated for the same observation windows as for TD. This feature set will be
referred to as Decomposed Spike Counts (DSC) in the rest of the thesis. Similarly to TD,
the dimensionality of DSC was reduced using PCA retaining 98% of the signal variance.

To compensate for the missing information suggested by the previous section, two ap-
proaches were compared.

In the first compensation approach the residual EMG signal was added to DSC. The
calculation of the residual was carried out by using the numerator of (3.1), in which the
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Figure 3.4.1: A representative example of the comparison method based on
MUAP shapes. A and B show the MUAP shapes of two motor units decomposed at differ-
ent DoFs, considering all three electrode matrices as one large matrix. One of the shapes is
shown in blue, the other in orange. The two spike triggered averages are similar in terms of
meaningful action potentials, as seen in the lower left corner of both images. However, due
to large uncorrelated noise components in the middle two rows of the electrode matrix, the
maximum of the cross-correlation function between the two waveforms is 0.6188. Using the
method described above, the cross-correlation only considers channels actually containing
MUAP shapes, depicted in C. The more accurate cross correlation based on these signals
was 0.9077. This figure also appeared in Kapelner, Jiang, and Farina (2016).

EMG reconstructed by the summation of MUAP shapes was subtracted from the measured
EMG. TD features of the residual signal were calculated and signal dimensionality was
reduced using PCA to retain 95% variance. The resulting multichannel signal together
with DSC constituted the DSCRES feature set. The inclusion of the raw EMG effectively
meant that the control method will only use neural information when it is available, in
other cases the control will revert to traditional regression.

In a second approach to mitigate the effect of missing information, a model-based
method based on physiological considerations was used in addition to DSCRES to pro-
mote robustness. Thereby I have devised grouping scheme for spike trains inspired by
motor unit physiology, as introduced in Section 2.1., and also considering the observations
of Section 3.2. In this sense this method is a neural information based alternative to PCA
dimensionality reduction.

Model-based dimensionality reduction

Motor neurons residing in the same muscle – or within synergistic muscle pairs – share
a large part of their synaptic input (De Luca and Erim 1994, 2002; Farina, Negro, and
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Dideriksen 2014). Thus, as described in Section 2.1, a single motor unit spike train carries
information about the activity of the whole muscle, which is connected to the activity
of all motor units that receive the same input. Modeling this relationship would allow to
neglect the effect of missing spikes or false positives of one spike train, as long as others
are decomposed accurately.

This redundancy can be modeled by groups of motor units estimating the same target
force. Each unit j in the group i has an individual relationship gij(.) with an individual αij

estimate of muscle force, which is used to calculate the common activation level ai, of the
whole group (Figure 3.4.2). The model gij(.) could theoretically include all physiological
processes mentioned in Section 2.1. In this section a linear model with intercept will be
used for simplicity.

Figure 3.4.2: The proposed dimensionality reduction model (right) and the phys-
iological model that it is inspired by (left). Each motor unit receives a common input
signal from the CNS, which corresponds to each decomposed spike train individually esti-
mating a common activation level. This figure also appeared in Kapelner, Jiang, and Farina
(2016).

The common activation of the i-th group Ki was obtained by combining the individual
αij estimates with a robust method C(.):

ai = C (αij) = median
j∈Ji

αij , (3.3)

where each motor unit j of the group Ji had at least one spike during the last 200
ms, to exclude inactive units. To promote the smoothness of the estimate the previously
estimated force was also included in the median. These computationally trivial steps added
another layer of robustness to the framework.

The resulting ai activations were then used together with the residual EMG to linearly
estimate joint kinematics. Thus, the model presented in Figure 3.4.2 is a signal processing
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step before regression, converting DSC into activations and thereby reducing its dimen-
sionality. The output of this model will be referred to as the DSCMOD feature set.

It is worth noting that this method is suitable to use with any neural information extrac-
tion approach besides surface EMG decomposition, such as online EMG decomposition
algorithms of intramuscular EMG (Negro et al. 2016), as well as other methods such as
peripheral nerve electrodes (Boretius et al. 2010; Lago et al. 2005; Micera et al. 2008).

Linear regression

Linear regression was implemented using the built-in linear model in MATLAB. At the
output of the linear regression the median of three consecutive samples was taken to
improve performance.

Three-fold cross validation was used to assess the performance, which was quantified by
the R2 goodness of fit measure (d’Avella et al. 2006). In each fold, one DoF triangle for
each direction of each DoF was designated as testing data, and the remaining two triangles
for training. The cross-validation was repeated 10 times.

The model on which dimensionality reduction scheme of DSCMOD was based had to
be trained as well. Each ai was defined as one direction of one DoF, e. g. a1 and a2 were
set equal to the positive and negative directions of DoF1; a3 and a4 to those of DoF2 etc.
(Figure 3.4.3). Then, motor units were grouped together based on the activations: the
motor unit j was assigned to the activation ai that had the highest correlation with its
spike train. Motor units that had a positive correlation with both directions of the same
DoF were disregarded.

Figure 3.4.3: Representative examples of the training of the activations esti-
mated by groups of motor units. Here a1 and a2 estimate the two directions of DoF1,
and a3 and a4 those of DoF2. a5 represents a common activation of the positive directions
of DoF1 and the negative direction of DoF2. In this example the randomized order of the
DoF triangles and DoF3 are eliminated for clarity. This figure also appeared in Kapelner,
Jiang, and Farina (2016).

The result of this process was a grouping between all motor units, with units of the same
group active during the same direction of the same DoF(s). This ensured the functional
similarity of the grouping, which is an important criterion for control based on Section
3.2.4. The model parameters of each gij() relating DSC to the activation estimates were
trained using linear optimization.
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Statistical analysis

Mean ± standard deviation of the R2 was used as descriptive statistics and ANOVA was
conducted to assess differences between features (α = 0.05). First a full ANOVA model
was used with the fixed-level factors “Feature” and “Ramp Duration”, and the random
factor “Subject” nested within the fixed factor “Group” with levels “Able Bodied” and
“Limb Deficiency”. Differences in features only were analyzed using one-way ANOVA with
repeated measures with the constant factor “Feature”, for each subject and ramp duration
separately. Differences in movement speed were analyzed using one-way ANOVA for each
subject and feature with the constant factor “Ramp Duration”. For reduced movement
range the above calculations were repeated, and differences in movement range were ana-
lyzed with two-sample Student’s t-tests for each condition separately. Post-hoc tests were
conducted using Bonferroni’s correction.

3.4.3 Results

For both movement ranges, statistically significant differences were observed between fea-
tures (p = 0.028) and groups (p = 0.048), and significant interactions between the factors
Feature-Subject (p = 0.02) and Speed-Subject (p < 0.001), as well a three-way interaction
between the factors Subject-Feature-Speed (p < 0.001). Thus, the control performance
for each subject and ramp duration had to be analyzed individually, as described in 3.4.2
Methods.

EMG decomposition

The decomposition of the EMG signals was successful, even though the contractions were
more than twice as fast as those of Section 3.3. In general the number of decomposed
motor units increased with ramp duration, and decreased with movement range (Table
3.5.

Table 3.5: The mean and standard deviation of decomposed spike trains, sorted
by the DoF they were active in. The last column indicates the mean of all decomposed
units per subject. Note that the number of subjects for the full movement range is seven,
whereas for the 20% range it is four. This table also appeared in Kapelner, Jiang, and
Farina (2016).

Ramp duration DoF1 DoF2 DoF3
DoF1 +

DoF2

DoF1 +
DoF3

DoF2 +
DoF3

Total

Full
movement

range

1 s ramp 38.4± 10.4 33.1± 9.2 26.0± 7.5 1.4± 1.2 0.7± 0.9 2.0± 1.7 101.8±25.3
2.5 s ramp 24.3± 10.7 22.3± 6.8 23.7± 6.9 2.4± 1.4 1.3± 1.3 2.3± 1.3 76.3± 24.1
5 s ramp 15.0± 2.8 16.3± 6.3 16.0± 4.6 3.0± 3.2 1.3± 0.9 3.0± 1.4 54.6± 11.1

20%
movement

range

1 s ramp 13.5± 7.8 15.3± 6.9 6.0± 3.2 3.0± 2.2 1.8± 1.0 2.8± 2.2 42.3± 20.7
2.5 s ramp 10.8± 3.4 14.5± 4.4 8.0± 0.8 3.0± 3.2 2.5± 1.3 2.8± 1.0 41.5± 7.7
5 s ramp 11.3± 3.6 11.0± 5.7 4.8± 2.1 3.8± 3.6 1.3± 1.0 2.0± 2.8 34.0± 9.5

Linear regression performance

In the full movement range TD significantly outperformed DSC and both DSCRES and
DSCMOD significantly outperformed TD in almost all cases. There was no pattern to
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the exceptions (Figure B.1 in Appendix B). In the reduced movement range all neural
information based features outperformed TD in almost all cases. In general DSCMOD

proved to be the best performing feature set (Figure B.2 in Appendix B).
The dependence of feature performance on ramp durations showed an inconsistent, sub-

ject and feature specific pattern for both movement ranges. For some subjects performance
increased with increasing movement speed, for others the trend was the opposite, or there
was no trend to observe. This was true for all feature sets and movement ranges (Figures
B.3 and B.4 in Appendix B). The least performance difference between different ramp
durations was observed for DSCMOD.

The performance of all feature sets was significantly higher in the full range of movement,
except for DSC in some cases (Figure B.5 in Appendix B). A detailed description of
individual comparisons between features, ramp durations and movement ranges can be
found in Appendix B, an overall comparison of performance across all conditions is shown
in Figure 3.4.4.

Figure 3.4.4: An overview of the results combining the data of all subjects. The relation-
ship between the factors is detailed in Appendix B. This figure also appeared in Kapelner,
Jiang, and Farina (2016).

3.4.4 Discussion

The primary finding of this section is that the developed novel control method based on
neural information outperformed traditional EMG-based linear regression. However, to
achieve this result the effect of missing information had to be reduced, either by includ-
ing the residual EMG in the feature set or using a robust control method in addition.
Regression performance was influenced by movement speed and movement range in a
subject-specific manner.

EMG decomposition

The findings of this section reinforced the conclusion of Section 3.3, in that while it is
possible to decompose EMG signals recorded during voluntary dynamic contractions, the
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presence of missing information requires a robust control method. As for the dependence
on contraction speed, more spike trains were decomposed at shorter ramp durations than
at longer.

This suggests that the contractions at higher speeds might have been stronger, and
thus more motor units were recruited within the pick-up area of the electrodes. How-
ever, DSCMOD outperformed all other features in this condition, suggesting that a robust
compensation method was needed to mitigate the effect of missing information.

Another interesting finding was that although the number of decomposed spikes was
lower for the 20% movement range, there was a considerable amount of decomposed spikes.
Since the in the previous section there were just a few spikes present in this range of
movement, this finding suggests that decomposing the EMG at lower force levels is only
problematic if higher force levels are also present in the signal. Future EMG decomposition
methods specific to this application will have to consider this effect.

Linear regression performance

For the reduced movement range, corresponding to low force contractions, neural infor-
mation showed better control performance, even without mitigating the effect of missing
information. This was expected because on the one hand the EMG noise at low contrac-
tion levels is comparable with the activation, decreasing regression performance. On the
other hand, neural spike trains are more correlated to muscle force oscillations compared
to EMG amplitude (Farina et al. 2010).

However, for the full movement range regression performance of neural information was
inferior to traditional features, which was also expected based on the results of Section 3.3.
Besides missing information another reason for this low kinematics estimation accuracy
may have been the non-linear relationship between discharge rate and wrist kinematics.
Nevertheless, DSCRES and DSCMOD both outperformed TD, indicating that spike trains
carry additional information not available in EMG-based features, even for high channel
numbers.

The inferior performance in the reduced movement range for all features except DSC
can be explained by the task difficulty and noise. Firstly, precise movements are harder
to control in general, and absolute error results in a higher relative error at the smaller
ranges. Secondly, the low EMG signal to noise ratio at low contraction levels might have
impeded the control performance of TD. The better performance of DSC for some subjects
could be explained by subject specific distributions of motor unit recruitment thresholds,
as discussed below.

Overall the best performing feature set DSCMOD (Figure 3.4.4), although a significant
advantage over DSCRES was only observed at the fastest speed. This is likely because the
amount of missing information was higher for faster contractions, and the model-based
robust control approach was capable to mitigate this effect the most.
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Dependence on Movement Speed

The statistically significant differences between ramp durations were subject and feature
specific, and inconsistent across movement ranges. Decreasing neural information based
regression performance with increasing movement speed was only confirmed in two out of
six subjects. This shows that, contrary to previous expectations, regression performance
depends on a number of factors other than decomposition complexity.

The most important confounding factor may be that the distributions of recruitment
thresholds of motor units picked up by the decomposition algorithm are not uniform
for each subject. For instance, it is possible that the sample of one subject contained a
relatively large number of medium threshold units, activated in both 2.5 s and 5 s ramp
durations, but suppressed by larger units and noise at 1 s ramp duration. In this subject the
regression performance of 1 s ramp duration would be smaller for the reduced movement
range.

On the other hand, some of the medium threshold units might have had a higher
recruitment threshold than the forces exerted at reduced movement range for the same
subject. Thus, decreasing the movement speed will decrease regression performance in that
range of movements. In our subject pool we observed such a relationship between factors
for subject A6. For the other subjects, corresponding scenarios can also be constructed.

This explanation highlights the possible interactions between the factors of the ANOVA
analysis. Unfortunately, based on this experiment it is not possible to confirm this hypoth-
esis, since a measurement of individual muscle forces with the same electrode configuration
during the same intended movements was not feasible.

Besides this possible explanation, other confounding factors include subject anatomy,
the relative movement of tissue layers in dynamic contractions, the composition of the
tissue filter and changes in recruitment thresholds due to contraction speed changes
(Masakado et al. 1995).

3.4.5 Summary

This section introduced the first proof of concept for a neural information based prosthesis
control method using surface EMG decomposition. This method outperformed EMG-based
linear regression in both able bodied subjects and patients with limb deficiency. For pre-
cise wrist deviations within 20% of the full movement range superior performance could
be achieved using only neural information, whereas for the full range of movement missing
information had to be compensated. Neural features with the novel dimensionality reduc-
tion method proposed in this section showed better overall performance than all other
investigated features.

Since the relationship between the investigated features in and wrist kinematics is non-
linear, it is possible that the results of this section only reflect the suitability of the
different features for linear estimation, as opposed to overall predictive value. In order
to fully characterize the relationship between EMG-based and neural information based
kinematics estimation, it is necessary to compare their performance in a nonlinear setting.
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This would also be an opportunity to fully exploit neural information by modeling the
physiology of the wrist hand system during movement. This investigation is included in
the next section.
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3.5 Study 5: Neuromusculoskeletal modeling based on neural informa-
tion for prosthesis control

The results of this study are published in Kapelner, Sartori, and Farina (2016). Upon
acceptance the copyright will be transferred to IEEE. In accordance with the requirements
of the copyright holder, figures reused in this section are indicated by the copyright line ©
2016 IEEE, and the approval of the senior author, Prof. Dario Farina, was obtained to
reuse a substantial portion of the original paper.

Author contributions: performed the experiments, analyzed the data, wrote the manuscript.

3.5.1 Introduction

The previous sections explored several aspects of prosthesis control using neural informa-
tion obtained from the surface EMG. This section will use the experience of those inves-
tigations and previous research on the physiology of the wrist-hand system to implement
a non-linear kinematics estimation method for prosthesis control using EMG decomposi-
tion. This method will be compared to state of the art regression using machine learning
in terms of offline regression accuracy.

Biomechanical models of the wrist use accurate muscle, tendon and joint models to
estimate muscle force, joint dynamics, and joint kinematics based on muscle excitations
and physiological constraints (Buchanan et al. 2004; Lemay and Crago 1996; Majors and
Wayne 2011). In recently developed neuromusculoskeletal (NMS) models the muscle ex-
citations are estimated using EMG signals acquired from the skin over specific muscles
(Lloyd et al. 2008; Sartori, Farina, and Lloyd 2014).

As discussed in Section 2.1, the central nervous system uses neural control signals to
drive our muscles during movement. Thus, as an alternative to EMG, muscle excitations
could be estimated from the neural drive to increase the accuracy of NMS modeling (Sartori
and Farina 2016). As a final step of this series of investigations, in this section a novel
NMS model will be proposed that uses neural information to estimate wrist kinematics.

The proposed model uses neural discharges acquired from surface EMG to estimate
muscle excitations, thereby modeling human movement on a neural level as well as on a
muscle level. The estimated excitations serve as an input to a biomechanical model that
estimates the kinematics of the wrist during movement (Figure 3.5.1). In this section the
proposed model will be described in detail and its performance will be compared to state
of the art nonlinear regression using an ANN.

3.5.2 Methods

Data acquisition and experiment protocol

Subjects A1-A6 and patients D1 and D2 from Section 3.3 participated in this study. The
experiment setup and the data acquisition method was the same as described in Section
3.4.2. The experiment protocol was also the same as described in Section 3.4.2, restricted
to the shortest ramp duration (1s) of the triangular wrist angle profiles (Figure 3.5.2).
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Figure 3.5.1: An illustration of the NMS modeling framework proposed in this
section. Neural information obtained from EMG decomposition is used in estimate muscle
excitations using neuromuscular regression. The information is thereby translated to the
muscular level, and used by a biomechanical model to estimate the kinematics of the wrist.

The recorded EMG signals were decomposed using (Negro et al. 2016), and the TD and
DSC feature sets were calculated as described in Section 3.4.2, without dimensionality
reduction for DSC – this is the same procedure as was done for the feature set DSCMOD

in Section 3.4.2.
To evaluate whether there is an increase in regression performance due to including

both neural information and EMG features but without using a biomechanical model,
a third feature set containing both TD and DSC was introduced, for which the same
dimensionality reduction was applied as for TD.

Artificial Neural Network regression

The nonlinear regression using EMG-based features was implemented with the neural
network toolbox of MATLAB, using one separate network for each DoF and three neurons
in one hidden layer per network, as suggested by (Hahne et al. 2014; Nielsen et al. 2011).
The outputs of the networks were filtered using a three sample long median filter and a
2nd order low pass Butterworth filter with a cut-off frequency of 2 Hz.

The training was done using the Levenberg-Marquardt back-propagation algorithm. For
each fold 50 different ANNs were trained using two repetitions of each DoF, and only the
network with the highest performance was used for further comparisons, as suggested by
Jiang et al. (2012a). ANN regression was done using the TD and TD+DSC feature sets.

Neuromusculoskeletal regression model

The proposed NMS model consisted of two submodels (Figure 3.5.3). Firstly, a set of
neuromuscular regression models were used to estimate muscle excitations based on the
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Figure 3.5.2: Illustration of the experiment protocol and data acquisition (©2016
IEEE). The subjects were equipped with HD surface EMG electrodes (A) and motion cap-
ture equipment (B). The subjects performed voluntary movements of the wrist with a tri-
angular joint angle profile guided by visual feedback (C). Finally, the recorded EMG signal
was decomposed into its constituent MUAP trains (C), and used for kinematics estimation.
This figure also appeared in Kapelner, Sartori, and Farina (2016).

decomposed spike trains. The models were the same as the ones used for linear regression
in Section 3.4.2. Then, a biomechanical model was used to estimate wrist kinematics from
the estimated muscle excitations. In the following the biomechanical submodel will be
described in detail, as well as the training and estimation phases of the whole system.

Figure 3.5.3: Block diagram of the proposed NMS model (©2016 IEEE). First
a neuromuscular regression is used to estimate muscle excitations from neural discharges
(left, first submodel). Then a biomechanical model (middle, second submodel) translates the
estimated muscle excitations to kinematics (right). This figure also appeared in Kapelner,
Sartori, and Farina (2016).

The biomechanical submodel was implemented using a generic model of the arm avail-
able in OpenSim (Delp et al. 2007; Saul et al. 2015). For simplicity the model was reduced
to the wrist joint and the following muscles acting on it: musculus flexor carpi ulinaris
(FCU), musculus flexor carpi radialis (FCR), musculus extensor carpi ulinaris (ECU),
musculus extensor carpi radialis longus (ECRL), musculus pronator teres (PT), musculus
suplinator (SUP). The maximal isometric muscle forces of the models were modified to
have zero muscle excitations at rest, to remove the offset (due to passive forces) from the
muscle excitation functions. The following three DoFs were estimated: flexion/extension,
ulnar/radial deviation, and pronation/supination.
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Model training

The parameters of the functions in the neuromuscular regression models were trained using
the same method as described in Section 3.4.2 (Figures 3.4.2 and 3.4.3), with one modifi-
cation. Instead of activation functions derived from the output kinematics, the grouping
of motor units was based on estimated muscle excitations, which were calculated using
inverse kinematics from the biomechanical model. Assigning the decomposed motor units
to muscles allowed for direct estimation of muscle excitation from the neural discharges,
using the same method as in Section 3.4.

After scaling the recorded kinematics to the boundaries of the model, the training
dataset was used to calculate muscle excitations by computed muscle control (CMC)
(Thelen, Anderson, and Delp 2003). During the constrained optimization process of CMC
non-agonist muscle excitations were restricted to zero at increasing absolute DoF angles
to promote sparsity.

The decomposed spike trains were then matched to the computed muscle excitations in
two steps. First a spike train was assigned to all muscles with an excitation 10% greater
than the baseline at the time of at least 80% of the spike train’s discharges. Finally the
parameters of the robust linear estimator were trained to estimate the computed muscle
excitation based on the DSC of the motor unit.

Kinematics estimation

Muscle excitations were estimated from DSC using the neuromuscular regression mod-
els and (3.3) (Figure 3.4.2). Then the estimated excitations were used to simulate wrist
kinematics by forward kinematics estimation (Delp et al. 2007).

If there were no spike trains active in a given window, the TD feature set was used to
estimate muscle excitations using one dedicated ANN for each muscle. The parameters
and training method of these networks were the same as described for TD previously.

As shown by recent research, proportional control methods can be less accurate than
pattern recognition in isolated single DoF movements (Smith, Kuiken, and Hargrove 2014).
The detailed biomechanical information of the NMS model allowed for the limitation of
unintended activations in other DoFs.

The NMS model estimates the excitation of all muscles, which are translated to DoFs
through joint moments generated by muscle forces. For the purpose of prosthesis control
this relationship was simplified to agonist-antagonist relations between muscles and DoFs.
By only estimating kinematics in DoFs that were actuated by all its agonists, joint angles
of inactivated DoFs could be set to zero, instead of letting them be estimated by the model.

For example, if both FCU and FCR were active, it was interpreted as a flexion and
only flexion/extension was estimated (the others were set to zero). However, if in the
above example any of the muscles were active alone, there was no information on whether
flexion/extension or deviation should be active, and therefore in this case the method
would estimate both.
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Statistical analysis

Three fold cross-validation was used to assess the regression performance of all features,
using the same method as described in Section 3.4.

For statistical analysis I used nested ANOVA with the fixed factor “Feature” and the
random factor “Subject”, which was nested within the fixed factor “Group” (with levels
“Able Bodied” and “Limb Deficiency”). Subsequent one-way repeated measures ANOVAs
were then carried out for each subject individually, with the fixed factor “Feature”. Post-
hoc tests were done using the Bonferroni correction with an alpha level of 0.05.

3.5.3 Results

The decomposition yielded on average 19±7 spike trains per DoF, corresponding to 63±16
spike trains per subject (3.6). The results of the assignment of these spike trains to muscles
by the NMS model, as described in the previous section, are detailed in Table 3.7.

Table 3.6: The number of decomposed spike trains per DoF for each subject (©2016
IEEE). DoF1 was flexion extension, DoF2 was radial/ulnar deviation, and DoF3 was
Pronation/Supination. Columns with more than one index contain spike trains detected
in more than one DoF, e.g. DoF123 contains spike trains active during all DoFs. This table
also appeared in Kapelner, Sartori, and Farina (2016).

DoF1 DoF2 DoF3 DoF12 DoF13 DoF23 DoF123 Total
A1 16 16 30 0 0 3 0 65
A2 7 17 9 3 0 4 1 40
A3 23 21 11 2 2 1 0 60
A4 18 30 22 4 0 0 0 74
A5 4 12 18 3 1 4 0 42
A6 19 29 25 1 1 5 0 80
D1 23 29 24 2 3 6 1 87
D2 17 24 14 1 0 0 0 56

Table 3.7: The average number of spike trains assigned to each muscle in the NMS
model, for each subject (©2016 IEEE). The table also shows the number of units among
these assigned to other muscles as well (in brackets), because the NMs model allows for
one spike train to estimate the excitation of multiple muscles. This table also appeared in
Kapelner, Sartori, and Farina (2016).

SUP ECRL ECU FCR FCU PT Unassigned
A1 14± 0 (0) 12± 1 (9± 3) 16± 1 (16± 1) 11± 3 (11± 3) 18± 0 (18± 0) 13± 0 (0) 5± 1
A2 5± 1 (1± 0) 18± 1 (14± 1) 12± 1 (12± 1) 12± 1 (11± 1) 9± 1 (9± 1) 4± 0 (1) 3± 1
A3 5± 1 (0) 23± 1 (23± 1) 21± 1 (20± 1) 21± 1 (17± 1) 16± 1 (14± 1) 5± 1 (0) 5± 1
A4 7 (0) 16± 0 (11± 5) 18± 0 (18± 1) 24± 5 (23± 5) 31± 1 (29± 1) 14 (0) 1± 1
A5 14± 0 (0) 5 (5) 13± 0 (11± 0) 5 (5) 11± 0 (11± 0) 3 (0) 5± 1
A6 10± 1 (1) 28± 2 (17± 6) 20± 1 (20± 1) 11± 6 (11± 6) 15± 1 (13± 1) 10± 3 (1) 15± 3
D1 8± 1 (0) 19± 1 (27± 2) 17± 1 (17± 1) 33± 2 (32± 2) 22± 1 (22± 1) 13± 1 (0) 13± 2
D2 8 (0) 19± 0 (19± 1) 20± 1 (20± 1) 17± 1 (17± 1) 19± 1 (18± 1) 5 (0) 2± 1

The full ANOVA reported no statistically significant difference between groups (p =
0.06), and significant differences between the levels of Feature (p = 0.01) and Subject (p
< 0.01), as well as a two-way interaction between these two factors (p < 0.001). Thus,
subsequent one-way analyzes were performed (see 3.5.2 Methods), revealing that DSCNMS

performed statistically significantly better than TD for 4 out of 6 able-bodied subjects,
and for all patients (Figure 3.5.4). Moreover, there was no significant difference between
TD+DSC and DSCNMS for 3 subjects, in the other cases DSCNMS outperformed TD+DSC
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significantly. The relative performance of TD and TD+DSC was mixed, with one outper-
forming the other or having no significant difference for an almost equal number of subjects
(Figure 3.5.4). An example of the estimation results is depicted in Figure 3.5.5.

Figure 3.5.4: The performance of the investigated methods across subjects
(©2016 IEEE). The TD and TD+DSC feature sets are used in ANN regression, whereas
DSCNMS uses the proposed NMS model. This figure also appeared in Kapelner, Sartori, and
Farina (2016).

3.5.4 Discussion

The main finding of this section was that NMS modeling driven by neural information
decomposed from the surface EMG outperformed state of the art EMG-based regression.
The superior performance of the proposed framework was observed in four healthy subjects
and all patients, showing that using neural information is a promising framework for
advanced prosthesis control.

DSCNMS outperforming both TD and TD+DSC in almost all cases shows that a biome-
chanical model was able to estimate wrist kinematics more accurately than the state of
the art method, irrespective of the used feature (Figure 3.5.4).

The main advantage of DSCNMS over TD might be the explicit identification of activated
muscles and thereby the DoFs to actuate. This allowed the model to avoid involuntary
simultaneous activations of multiple DoFs. Nevertheless, the model estimated all muscle
excitations simultaneously, and thus it is capable to also estimate simultaneous movements
(Figure 3.5.5)/A). The validation of this method for simultaneous movements in multiple
DoFs was, however, not performed due to the difficulties in validating such an approach
in an offline context (Jiang et al. 2014).

Another explanation of the superior performance of DSCNMS could be that the proposed
NMS model provides smooth estimates of the wrist kinematics, in which case a simple low-
pass filter after ANN regression could provide the same results. However, the increase in
performance cannot be attributed to this effect alone, since all ANN methods were low-pass
filtered on the output, and DSCNMS outperformed them significantly in most cases.

The proposed NMS method outperforming TD+DSC could be explained by the diffi-
culty of ANNs in coping with missing spikes or spike trains, which decreases the perfor-
mance of TD+DSC. This might also explain the inconclusive results regarding the relative
performance of TD and TD+DSC (Figure 3.5.4): subjects for which TD+DSC performed
worse might have had less consistently present motor units.
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Figure 3.5.5: An example of estimation results (©2016 IEEE). (A) shows the
muscle excitations estimated using neural information (blue) compared to the results of
the inverse kinematics calculations using the CMC static optimization method (black). (B)
shows the output of the regression methods (coloured) compared to the measured kinematics
of the subject (black). This figure also appeared in Kapelner, Sartori, and Farina (2016).

The number of spike trains decomposed with this method was somewhat lower than the
yield of the original CKC employed in Section 3.4 (Table 3.5). This was consistent with
the results of Section 3.3, where a comparable number of spike trains was decomposed for
slower wrist movements (Tables 3.3 and 3.4).

The assignment of the decomposed spike trains to muscles resulted in PT and SUP
having uniquely identified motor units, whereas the other muscles shared almost all of their
units (Table 3.7). This was observed due to the result of the physiological function of the
muscles. Since flexors and extensors participate in both flexion/extension and deviation, a
unique identification of a unit is only possible if it is detected in both DoFs. This was only
observed for a small number of units in our sample (Table 3.6). It has to be noted that PT
and SUP also have flexion and deviation moments physiologically, but their contribution
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was negligible for our CMC calculation.
In spite of the small number of uniquely identified motor units, the method was capable

to accurately estimate the muscle excitations in a feed-forward manner (Figure 3.5.5/A).
These could also be useful for several purposes other than prosthesis control, such as diag-
nosing or monitoring muscle weakness after amputation, or informing the training process
of the prosthetic device. Such application could be reinforced by other biomechanical vari-
ables relevant to movement, such as muscle moment arms or joint moments, which are
also simulated by the NMS model. Showing exactly what parameters to change in or-
der to improve prosthesis control during training is a clear advantage of the NMS model
over black-box approaches used in machine learning, and potentially reduces the required
training time.

3.5.5 Summary

This section showed that neural information based prosthesis control is capable to out-
perform state of the art regression methods, which is the main outcome of this thesis.
The superior performance was achieved using an NMS model consisting of two serial sub-
models, one for estimating muscle excitations from neural information, and another for
estimating wrist kinematics based on muscle excitations by biomechanical modeling. The
proposed novel prosthesis control system outperformed the state of the art regression in
patients with limb deficiency as well as able-bodied controls. In addition, this framework
provided additional information on muscle function that could be utilized in supporting
rehabilitation or reducing the training time of prosthesis control.
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4

GENERAL DISCUSSION

The aim of this PhD project was to investigate whether natural, intuitive prosthesis control
can be achieved by using neural information from surface EMG decomposition as an input,
and to realize a proof of concept for this approach. Throughout this thesis the feasibility
of the framework was demonstrated in a series of 5 studies dedicated to different aspects of
this novel approach. These studies were also milestones in an iterative process that resulted
in a novel regression method based on an NMS model driven by neural information, which
outperformed the state of the art regression in both able-bodied subjects and subjects
with limb-deficiency.

As a first step in this series of investigations I examined whether the TMR procedure
causes electrophysiological changes in the reinnervated motor units, and what implications
these have with respect to prosthesis control. I have found that the surface area of motor
units after TMR was significantly smaller compared to motor units in the able-bodied
group. In spite this high level of localization of MUAP shapes, however, motor unit surface
areas as well as surface areas of motor unit groups corresponding to a single motor task
were mostly overlapping.

This finding indicates that even though TMR aims to separate movements spatially
in order to create EMG recording sites that are specific to a given motion, the crosstalk
between these sites cannot be fully eliminated because of overlapping surface represen-
tations of motor units. This finding reveals why electrode placement in TMR patients
is not straightforward, and why pattern recognition outperforms conventional control in
TMR patients (Hargrove, Lock, and Simon 2013; He Huang et al. 2008). Neural infor-
mation based prosthesis control could therefore offer better control performance, since
overlapping MUAPs can still be separated via EMG decomposition.

This hypothesis was tested in the second section of Chapter 3, which compared neural
information to time-domain features in terms of classification accuracy with pattern recog-
nition in TMR subjects. Neural information outperformed time-domain features when the
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spike trains were pooled together based on the spatial localization of their MUAP within
a given grid, highlighting the potential of this approach in prosthesis control.

However, the performance increase was not observed when all spikes from a given grid
were pooled together without considering the spatial position of the MUAP. Because in
TMR spatial position of a MUAP is connected to motor function, this finding shows that
pooling spike trains to reduce input dimensionality for prosthesis control is only effective
if the grouped motor units are functionally similar. Therefore prosthesis control methods
have to be able to determine which motor units build a functional group.

It is worth noting that grouping together spike trains based on spatial position proved
to be effective even though MUAP shapes were found to be largely overlapping in the first
study. One explanation for this is that while individual MUAP shapes were overlapping,
the overall spatial territories of all MUAP shapes belonging to each task were distinctive
enough to allow the discrimination between tasks. Although spatial EMG representations
of tasks can also exhibit this property, the lower performance of EMG features suggests
that time-domain EMG features were not as distinctive across tasks as neural features.

Although TMR subjects can be trained to generate distinct EMG activations for each
function, potentially increasing classification accuracy to the level of using neural infor-
mation (Englehart and Hudgins 2003; Hargrove, Lock, and Simon 2013), the neural in-
formation based approach achieved an almost perfect separation of classes without prior
training. This suggests that neural information based prosthesis control can indeed provide
more natural control with less training required.

To translate the previous findings to regression methods and transradial amputees, the
third study was designed to investigate whether EMG decomposition provides enough
information for prosthesis control in non-isometric voluntary contractions, in terms of
the number of spikes and the repeatability of the decomposition. In both able-bodied
subjects and subjects with limb deficiency, the decomposition of the EMG signals recorded
during three DoF wrist motions yielded on average 16 spike trains per motor task, 6 of
which were present in all repetitions of a given task, demonstrating the feasibility of EMG
decomposition for regression.

Section 3.3 also found that the majority of the identified motor units were recruited
above 20% of the maximal range of movement. This shows that motor units at low wrist
angles were not always detected by the decomposition algorithm and that methods dedi-
cated to non-isometric contractions would be needed to fully realize the potential of this
framework.

The fourth study described the structure of a linear regression method based on neural
information and validated the methods by comparing its performance with that of time-
domain EMG features. The developed novel regression method took the experiences of the
previous studies into account. Firstly, because spike trains are rarely present at low joint
angles, according to Section 3.3.4, the raw EMG was included in the feature set along with
the spike trains to compensate for the missing information. Secondly, to compensate for not
consistently present spikes, a robust regression method was chosen to estimate kinematics.
Lastly, since Section 3.2.4 highlighted the importance of the grouping of motor units, the
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method employed a grouping scheme for spike trains inspired by motor unit physiology.
The method was validated in three degrees of freedom contractions of the wrist in vary-

ing speeds and movement ranges. It outperformed linear regression using EMG features
in all conditions, for both able-bodied subjects and subjects with limb deficiency. For the
superior performance over the full range of movements the inclusion of the raw EMG in
the feature set was necessary, as expected based on the findings of Section 3.3.

Section 3.4 also revealed that the lack of decomposed units below 20% of the maximal
range of movement was not observed when 20% was the largest normalized angle reached
within the decomposed interval. Thus, future decomposition methods dedicated to non-
isometric contractions will have to compensate for the presence of high EMG activity at
large wrist angles that potentially suppresses MUAPs at low force levels.

In the final section of Chapter 3 the natural and intuitive nature of neural information
was fully exploited by using an NMS model driven by neural information to estimate wrist
kinematics. The validation of the model showed that this approach was capable to outper-
form state of the art nonlinear regression in both able-bodied subjects and patients with
limb deficiency, and accurately estimate muscle excitations during movement. Moreover,
the detailed biomechanical information provided by the method allows for supporting the
rehabilitation and training process.

The results of the above studies strongly suggest that prosthesis control by using neural
information acquired thorough surface EMG decomposition is possible in healthy subjects,
subjects with limb deficiency and TMR subjects, with a higher performance than tradi-
tional myoelectric control methods in all subject groups. This was shown for the first time
by this thesis.

The use of the control approaches introduced in this thesis is not limited to neural
information acquired from the surface EMG. They are suitable for any method that is
capable to extract spike trains of motor unit populations, including future online EMG
decomposition algorithms of surface or intramuscular EMG (Negro et al. 2016), as well as
other methods such as peripheral nerve electrodes (Boretius et al. 2010; Lago et al. 2005;
Micera et al. 2008).

As a consequence of the novelty of the approach introduced by the thesis, there are
some limitations that need to be addressed. These arise because there is no real-time
EMG decomposition method available to date, even though such an algorithm has been
shown to be feasible (Glaser, Holobar, and Zazula 2013).

Firstly, it was not possible to assess the online performance of the proposed methods.
This would be relevant because the difference in offline performance does not necessarily
translate to a difference in performance during an online test (Jiang et al. 2014). However,
the control approach proposed by this thesis might still be more intuitive to use, and
require less training – or retraining over time – than current EMG-based methods, as
suggested by Section 3.2.4.

The development of online decomposition would also allow the evaluation of simulta-
neous control of multiple DoFs. Although all methods presented in this thesis are capable
to estimate simultaneous movements in multiple DoFs without modification of the algo-
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rithms, validation trials in this context were not in the scope of this thesis. This is because
the use of simultaneous control by subjects is specific to the task and to the used control
method (Smith, Kuiken, and Hargrove 2016). Thus, differences in simultaneous control
performance in an (artificial) offline task would not necessarily be relevant during natural
tasks.

Moreover, since Section 3.3 showed that EMG decomposition might fail to detect motor
units at small wrist angles, further decrease in decomposition performance is expected dur-
ing concurrent activations of multiple DoFs. EMG decomposition in these circumstances
would require methods designed to cope with MUAP changes due to significant muscle
movement under the skin.

Nevertheless, the technological limitation of offline decomposition is likely to be over-
come by the increase of computational power, and this thesis showed that realizing online
EMG decomposition specific to non-isometric conditions is a promising avenue of further
research with a possible application in advanced prosthesis control.

In conclusion, this thesis has investigated several aspects of prosthesis control based
on neural information decomposed from the surface EMG, in several subject groups. It
revealed insights in the physiological background of such an approach in TMR, the in-
formation content of EMG decomposition with respect to control, and the performance
of several implementations of the control approach as a proof of concept. The thesis has
demonstrated that natural, intuitive prosthesis control can indeed be achieved using neu-
ral information obtained with available surface EMG decomposition methods, and online
EMG decomposition would merit further investigation in order to assess the online control
performance and to provide better functionality for prosthesis users with a natural and
intuitive interface.
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APPENDIX

A EMG decomposition using the CKC method

The CKC algorithm is based on (2.1) extended for multichannel EMG signals expressed
in discrete time:

xj [n] =
N∑

i=1

L−1∑
l=0

hij [l]sij [n− l], (A.1)

where xj is the j-th channel of the EMG signal, N is the number of motor units observed
by all electrodes, hij is the i-th MUAP shape as detected by electrode j, also referred to as
convolution kernels in this context, si is the spike train containing consecutive discharges
of the i-th motor unit, and L is the length of the discrete-time convolution window, or
equivalently the length of the longest MUAP shape hij .

We can write (A.1) in matrix form extending the vector of spike trains by L− 1 obser-
vations to sss[n] = [s1[n]s1[n− 1] ... s1[n− L+ 1]s2[n] ... sN [n− L+ 1]]T :

xxx[n] = HHH[n]sss[n], (A.2)

where if and M is the number of EMG channels, HHH is an M ×N(L− 1) mixing matrix
of MUAP shapes. In practice to ensure numerical stability the extension factor K is
used to extend xxx[n] as well, effectively increasing its size to M(K − 1), the size of sss[n] to
N(L+K−1), and the size ofHHH[n] to KM×N(L+K−1). In the simplest implementation
of the method the MUAP shapes are assumed to be constant, corresponding to a constant
mixing matrix HHH.

Based on the above equation we can define the activity index in the following manner:
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γ[n] = xxxT [n]CxxCxxCxx
−1xxx[n] = sssT [n]HHHT

(
HHHT

)−1
CssCssCss
−1HHH−1HHHsss[n] = sssT [n]CssCssCss

−1sss[n], (A.3)

where CxxCxxCxx and CssCssCss stand for the correlation matrices of all observations of x and s

respectively. From (A.3) it can be seen that large values of the activity index γ[n] corre-
spond to time instances, in which s contained at least one spike. Moreover, if we replace
the first term xxxT [n] in (A.3) with xxxT [n0], using an n0 for which sj [n0] = 1, then for each
time instance n where only the j-th source is active it is true that

γn0 [n] = xxxT [n0]CxxCxxCxx
−1xxx[n] = sssT [n0]CssCssCss

−1sss[n] = sj [n]. (A.4)

Based on (A.4) we can theoretically reconstruct each spike train by finding time in-
stances in which only one spike train is active. The CKC method employs an optimization
process in which spike trains are iteratively reconstructed and separated from superim-
posed MUAPs (see [19] for details).

Note that the noise is neglected in all above calculations. Adding a noise component
ωωω[n] to (A.2) would result in the noise covariance CωωCωωCωω appearing in (A.3), reducing the
accuracy in the compensation of H.

It is also worth noting that (A.2) is the mathematical description of the blind source
separation problem, i.e. the estimation of sources sss[n] from xxx[n] without the knowledge of
HHH[n]. Thus, general blind source separation methods, such as ICA, can also be used for
EMG decomposition (Chen and Zhou 2016). In Sections 3.3 and 3.5 a novel blind source
separation method specifically developed for EMG decomposition was used to acquire
neural information from the surface EMG (Negro et al. 2016).

78



B. DETAILED RESULTS OF SECTION 3.4

B Detailed results of Section 3.4

This section contains the detailed results of Study 4 described in Section 3.4. The following
comparisons were made using three sets of one-way ANOVAs for all subjects and conditions
separately, using the following factors: feature, ramp duration and movement range.

B.1 Feature

For the largest ramp duration (the slowest speed), TD statistically significantly outper-
formed DSC for all but three subjects, while DSCRES and DSCMOD outperformed TD for
all subjects except subject A3, where there was no statistically significant difference (Fig-
ure B.1). There was a significant difference between DSCRES and DSCMOD for subjects
A1, A4 and A5.

Figure B.1: Performance comparison between features at the full range of move-
ment for different subjects and ramp durations. Bars with asterisks indicate statis-
tically significant differences. This figure also appeared in Kapelner, Jiang, and Farina
(2016).

For the 2.5-s ramp duration TD outperformed DSC, while DSCRES and DSCMOD out-
performed TD. For two subjects DSCMOD performed statistically significantly better than
DSCRES.

For the shortest ramp duration (the fastest speed), DS performed statistically signifi-
cantly better than TD for 3 subjects including D1, and worse for 4 subjects. DSCRES and
DSCMOD outperformed TD in, while for 5 subjects including D1 DSCMOD outperformed
DSCRES.

In the 20% movement range, DSC set outperformed TD in all subjects except A5 and
A6 at the largest ramp duration, and A2 at the shortest (Figure B.2). At the largest ramp
duration DSCRES and DSCMOD outperformed TD consistently, the performance of DSC
compared to the other spike based features varied across subjects.
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Figure B.2: Performance comparison between features at the 20% movement
range for different subjects and ramp durations. Bars with asterisks indicate sta-
tistically significant differences. This figure also appeared in Kapelner, Jiang, and Farina
(2016).

For the 2.5-s ramp the order of increasing performance was TD, DSC, DSCRES and
DSCMOD, except for subject A1 where DSCMOD did not outperform DSC, and subject A2
where there was no statistically significant difference between DSCRES and DSC.

At the fastest speed the order of performance was the same except for subject A2 where
DSC performed worse than TD, and for A1 and A5 where DSCRES performed worse than
DSC.

B.2 Ramp duration

There was no consistent performance pattern with respect to ramp duration across sub-
jects and features (Figure B.3). The speed dependence was different for each subject and
feature. For the DSC feature set, subjects A1, A6 and D1 exhibited increasing performance
with decreasing movement speed. The rest of the subjects showed the opposite. These pat-
terns were mostly eliminated in the DSCRES and DSCMOD feature sets exhibiting similar
differences to TD, or no significant difference for subjects A2 and D1.

Consistent speed dependence for the TD feature set for reduced movement range was
also not observed (Figure B.4), similarly to the full movement range. However, the per-
formance changed with speed more consistently across features in this movement range,
especially for subject A2.
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Figure B.3: Performance comparison between ramp durations at the full move-
ment range for different subjects and features. Bars with asterisks indicate statis-
tically significant differences. This figure also appeared in Kapelner, Jiang, and Farina
(2016).

Figure B.4: Performance comparison between ramp durations at the 20% move-
ment range for different subjects and features. Bars with asterisks indicate statis-
tically significant differences. This figure also appeared in Kapelner, Jiang, and Farina
(2016).
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B.3 Movement range

The performance of all features was statistically significantly worse for the reduced move-
ment range, with some exceptions. TD performed better for the reduced movement range
for subject A6 in the 2.5 s ramps. DSC showed the same results for subjects A1, A2 and A5
at different speeds inconsistently (Figure B.5). For the other two feature sets the results
were similar to those of TD.

Figure B.5: Performance comparisons between the full and the reduced move-
ment range for all subjects, ramp durations and features. Bars with asterisks indi-
cate statistically significant differences. This figure also appeared in Kapelner, Jiang, and
Farina (2016).
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