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Parts of this chapter were submitted as a review article for publication in “Topics in 

Organometallic Chemistry” of the Springer publishing company. 

 

1 Nitrogenase, Haber Bosch and heterogeneous 
N2-Splitting 

 

Nitrogen is next to oxygen, hydrogen and carbon one of the main elements found in 

organic compounds. For thousands of years, there was basically only one way to 

convert the relatively inert atmospheric N2, which constitutes about 80% in air, into 

organic molecules. Certain microbial organisms are able to transform N2 into 

ammonia via the enzyme nitrogenase. The most active form of this enzyme, the Fe-Mo 

nitrogenase has been intensively studied and the active site (FeMo-co) for N2 fixation 

was structurally characterized in 1992,[1] as a cluster of seven iron and one 

molybdenum atom bridged by ten sulfurs. In the center, one light atom was found (C, 

N or O) [2] whose identity was revealed as interstitial carbide not before 2011.[3,4] 

There exist two proposed mechanisms for N2 reduction by nitrogenase: The 

alternating pathway, entailing subsequent protonation and reduction of both 

nitrogen atoms until the N-N bond is split and the distal pathway, comprising first full 

reduction and protonation of the β-nitrogen to yield NH3 and an intermediate metal 

nitride M≡N.[5,6]  

 

As the world´s population was growing, the interest in synthetic nitrogen fixation for 

production of artificial fertilizers led to the development of one of the most important 

technical applications. In 1910, Fritz Haber discovered a synthesis for NH3 out of its 

elements[7], which was brought on an industrial scale by Carl Bosch only a few years 

later and which is now called the Haber-Bosch process.[8]  

 

Magnetite Fe3O4 with additives of aluminum, potassium and calcium oxides is 

commonly used as heterogeneous catalyst in this reaction. The accepted mechanism 

proceeds over initial dissociative chemisorption of N2 on the catalyst surface into 

nitrides, which also represents the rate limiting step of the reaction. These surface 

bound nitrides react with adsorbed H atoms to form stepwise three N-H bonds and 

release ammonia. As chemisorption of N2 is very slow, high temperatures and 
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pressures (300-500°C, 200-300 bar) are needed in this process to obtain good yields, 

although the actual transformation of N2 to NH3 is exothermic.[9] The tremendous 

demand of NH3 for the agricultural and chemical industry, about 200 million tons are 

produced annually, as well as the harsh reaction conditions lead to a global energy 

consumption of about 1-3%. Besides, the process is responsible for 1.6% of the global 

CO2 emissions, especially attributed to the steam reforming for H2 production.[10] 

Alternative nitrogen fixation systems are therefore of high interest. Especially 

electrochemical approaches are intensively studied, but suffer from comparatively 

low selectivities (H2 evolution) and energy efficiency.[9,10] 

About 20% of ammonia produced by the Haber-Bosch process is converted into 

organic molecules including amino acids, nitriles, amides, and ureas.[11,12] Another 

approach in N2 chemistry is trying to circumvent NH3 (and therefore H2 production) 

but directly produce these molecules by nitrogen functionalization in homogenous 

systems. Examples for such reaction are still scarce though.[13,14]  

The functionalization of N2 thus represents a major challenge for today´s chemistry. 

This work will focus on initial N2 cleavage in homogenous systems in analogy to the 

Haber-Bosch process in order to transform nitrogen in chemically and biologically 

more valuable compounds. 

 

 

 

2 The beginnings of molecular N2 chemistry 

 

Vol´pin and Shur were the first to study nitrogen fixation with transition metals under 

mild conditions in the mid 1960s.[15] Inspired by the nitrogenase, which is fixing 

dinitrogen rapidly under ambient conditions under participation of transition metals 

- even though the characteristics of the active site and its mode of action were 

completely unclear to that time - the authors stated, activation of N2 may be possible 

due to coordination of dinitrogen to a metal center. π-Transition metal complexes 

with olefins or acetylene were known, so in the presence of a coordinatively 

unsaturated metal complex, also complexation by N2 was thought to be possible. To 

test their assumption, they reacted metal halide salts (TiCl4, FeCl3, WCl6 and MoCl5) 

with hydrogen delivering reducing agents such as LiAlH4, grignard reagents, lithium 

or aluminum alkyls under N2 pressure (150 atm) and observed ammonia formation in 
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9-25% yield after workup with dilute acids. Yields of 70% are reported even under 

atmospheric N2 pressure for the reaction of Cp2TiCl2 (Cp = cyclopentadienyl) with 

ethylmagnesium bromide, illustrating the huge influence of the ligand sphere. 

However, these systems remain ill-defined and no intermediate could be structurally 

characterized. [16–18] 

The first isolated transition metal complex containing coordinated 

N2 was reported in 1965 by Allen and Senoff (Figure 1) and 

stimulated the discovery of hundreds of other dinitrogen 

complexes.[19] Usually the coordinated dinitrogen is not bound 

very strongly to the metal center and is easily replaced by several 

other ligands. This is why the discoverers of the first N2 complex 

brought into question whether such N2 complexes even play a part 

in the enzymatic nitrogen fixation observed for the nitrogenase.[20,21] Hope sparked 

again, when the first successful functionalization of N2 with a well-defined metal 

complex was carried out by the group of Chatt in 1972. Protonation of trans-

[M(N2)2(dppe)2] (M = Mo or W, dppe = Ph2PCH2CH2PPh2) with hydrochloric acid 

yields [MX2(N2H2)(dppe)2], where one N2 ligand is reduced to N2H2.[22] Additionally, 

Chatt observed the first nitrogen-carbon bond formation with N2 derived nitrogen by 

addition of acyl chlorides to N2 complexes in which 

however the N-N bond in the resulting M(Cl)(-N=N-

COR) complex is still intact.[23,24] Stoichiometric 

conversion of coordinated N2 into ammonia and/or 

hydrazine under mild reaction conditions could be 

accomplished in molybdenum and tungsten based 

complexes bearing phosphines as ligands. This reaction 

has been intensively studied and led to the formulation 

of the so called “Chatt cycle” for a proposed catalytic 

nitrogen fixation reaction (Scheme 1).[25–30] However, it 

took more than 20 years for the development of a 

defined homogenous and well-characterized catalytic 

system for N2 reduction to ammonia.  

 

Figure 1: First 
isolated N2-complex. 

Scheme 1: Chatt cycle for catalytic 
NH3 production. 
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3 Catalytic systems for ammonia formation 

 

In 2003, the group of Schrock reported the first homogenous catalyst, which fulfilled 

the whole six electron - six proton reduction of N2 to NH3 (Scheme 2).[31] The 

triamidoamine Mo complex coordinates N2 and cleaves the NN bond upon alternating 

steps of protonation and reduction, similar to the Chatt cycle. Decamethylchromocene 

(CrCp*2) acts as reducing agent together with lutidinium tetrakis[3,5-

bis(trifluoromethyl)phenylborate] ([LutH]BarF4) as proton source. The system is able 

to generate 8 equivalents of ammonia based on the catalyst. An impressive number of 

intermediates in the catalytic cycle has been 

isolated and characterized, giving detailed insights 

into the mechanism of the catalytic nitrogen 

fixation, which is also supported by theoretical 

investigations.[30–35] In contrast to the Chatt cycle, 

where Mo(0) to Mo(IV) oxidation states are 

assumed, in the Schrock cycle the physiologically 

more relevant oxidation states Mo(III) to Mo(VI) 

are passed through. This is also related to the 

enzyme nitrogenase, where a similar mechanism is 

proposed for nitrogen fixation. 

In 2011, the group of Nishibayashi published a 

homogenous catalyst, which initially evolved 23 

equivalents of ammonia (Scheme 3).[36,37] The 

dinitrogen bridged dimolybdenum complex with 

PNP´-pincer ligand (PNP´ = 2,6-bis(di-tert-

butylphosphinomethyl)pyridine] is reduced with 

cobaltocene as reducing agent and lutidinium 

triflate ([LutH]OTf) as proton source. 

Modifications of the pincer ligand strongly 

affected the catalytic reactivity of the complex. 

Smaller substituents on the PNP ligand gave only an about stoichiometric amount of 

NH3. Furthermore, electron donating groups in the pyridyl ring were found to 

facilitate the most difficult step according to DFT calculations, the first protonation of 

N2 to a -NNH unit.[38] The proposed mechanism does not involve the fragmentation of 

the molybdenum dimer into monomers as it has been suggested formerly.[39,40] 

Instead, the µ-N2 bridged dimolybdenum core is believed to play an important role. 

Similar to the Schrock cycle, the terminal nitrogen is then reduced and protonated to 

Scheme 2: Schrock´s catalyst and 
reaction conditions for NH3 
production. 

Scheme 3: Nishibayashi´s catalyst and 
reactions conditions for NH3 production. 



3. Catalytic systems for ammonia formation 

6 

 

release one molecule of ammonia under formation of a terminal nitrido complex. 

Subsequent protonation and reduction then converts the nitrido moiety into the 

second equivalent of ammonia.[41,42] In an attempt to enhance the stability of the 

catalyst towards protonation, a new triphosphine PPP pincer ligand (PPP = bis(di-

tert-butyl-phosphinoethyl)phenylphosphine) has been developed recently.[43] 

Unexpectedly, already the starting compound [(PPP)MoCl3] showed catalytic activity 

for nitrogen fixation, which is not the case in the PNP system. The cationic nitrido 

complex [(PPP)Mo(N)Cl]+ generated under improved reaction conditions 63 

equivalents of ammonia, the so far highest catalytic activity ever observed for a 

defined homogenous catalyst system. A similar mechanism as for the PNP system is 

proposed, but no intermediates could be observed so far.[43] 

Besides molybdenum, iron is one of the most studied transition metals related to 

nitrogen fixation. In the Haber Bosch process as well as in the nitrogenase, iron 

centers are involved in the NN splitting process. First attempts to nitrogen fixation 

with iron reach back into the 1960s, when Vol´pin and Shur, reported ammonia 

formation in 9% yield.[15] The first well-defined catalytic system for nitrogen fixation 

using iron has been developed by the group of Peters in 2013 (Scheme 4).[44] The 

complex [(TPB)Fe]BArF4 (TPB = tris[2-(di-iso-propyl-phosphanyl)phenyl]borane) can 

be reduced with excess Na/Hg and crown-ether under N2 atmosphere to the iron(-1) 

compound [Na(12-C-4)2][(TPB)Fe(N2)]. Both complexes turned out to be catalytically 

active, with the latter achieving slightly higher turn overs. Catalysis experiments are 

performed by sequential addition of an excess amount of HBArF4 as proton source 

and an excess amount of KC8 as reductant to the catalyst solution at -78°C and 

generated 6.2 and 8.5 equivalents of NH3, respectively, based on the aforementioned 

amount of catalyst. The major side reaction is formation of H2 from the proton source 

under the highly reducing conditions. 

Dihydrogen acts as catalyst poison, as it 

reacts with neutral [(TPB)Fe(N2)] to the 

adduct [(TPB)(μ-H)Fe(N2)(H)], which is 

only little active in nitrogen fixation.[44,45]. 

Although some other Fe systems have 

been found to catalyze the reduction of N2 

into ammonia, Peters´ complex is still the 

most active.[37,46] 

All catalytic systems until now have in common that they rely on strong reducing 

agents and acids as proton source. 

Scheme 4: Peter´s catalyst and reaction conditions 
for NH3 production. 
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4 Towards N-N-bond cleavage: Bonding in N2-
complexes 

 

4.1 General considerations 

The lacking dipole moment and the high bond dissociation energy (941 kJ mol-1) 

account for dinitrogen as a kinetically and thermodynamically very stable molecule. 

The reason for its exceptional stability lies in the effective overlap of the s- and p-

orbitals of the two nitrogen atoms to form very low lying, completely filled σ- and π-

molecular orbitals. The energy gap from the HOMO (highest occupied molecular 

orbital) to the LUMO (lowest unoccupied molecular orbital) is substantial, leading to 

both difficult reduction and oxidation. Hence, the ionization energy of N2 is 

approximately the same as for argon (15.58 eV and 15.75 eV respectively). In 

addition, also the proton and electron affinities are low (5.1 eV and -1.9 eV 

respectively).[21,47,48] Considering the cleavage of the NN bond, dissociation of the first 

of the three bonds in dinitrogen is the most difficult, requiring about half of the total 

triple bond energy (410 kJ mol-1) and resulting in a high kinetic barrier. This is in 

contrast to acetylene for example, which first bond is a lot more easy to brake (222 kJ 

mol-1), although the total triple bond energy (962 kJ mol-1) is even stronger than for 

N2.[49]  

The way N2 is bound to a metal center strongly depends on the metal, its oxidation 

state and the ligand environment. In principle, there have been observed 4 

coordination modes: (1) mononuclear end-on, (2) Dinuclear end-on, (3) Dinuclear 

side-on and (4) Dinuclear side-on-end-on (Figure 2). 

 

 

The different coordination modes generally show a different kind of activation of the 

N-N bond. The term “activation” herein describes the degree of elongation of the N-N 

bond length combined with the reduction of its stretching frequency compared to free 

N2 (1.10 Å and 2331 cm-1).[50,51] In general, activation in mononuclear end-on N2 

complexes (η1-N2) turned out to be rather low. The vast majority of such metal 

complexes, especially for the later transition metals, belongs to this type. The metal 

dinitrogen bond can be described as a combination of overlap of the filled σ-orbitals 

Figure 2: Different bonding motifs in N2 complexes. 
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of dinitrogen with suitably empty metal d-orbitals forming a σ-bond and π-

backbonding from filled metal d-orbitals into empty π*-orbitals of dinitrogen (Figure 

3). In consequence, the N-N bond becomes weaker upon coordination to a metal 

center and activation increases similar to isoelectronic CO complexes. But compared 

to the latter, N2 is both a much poorer σ-donor and π-acceptor, mainly because the 

energy of HOMO and LUMO orbitals usually simply does not match very well the 

energy of the metal´s d-orbitals.[21] These reduced interactions decrease the stability 

of N2 complexes and lead to the main reaction observed for this kind of complexes: 

dissociation and replacement of the N2 ligand. 

 

In dinuclear complexes, where the N2 moiety is bridging two metal centers, activation 

can become higher. As π-backbonding from the metal to dinitrogen accounts mostly 

for increased M-N strength, the metal must be in a low oxidation state and possess a 

rather high electron density. Highly reducing early transition metals can donate their 

electrons more easily into the empty π*-orbitals of N2, resulting in stronger 

activation. Concerning, the splitting of the NN-bond forming nitrides, the metal center 

must be capable of donating enough electrons to provide all 6 electrons required for 

complete nitrogen reduction. An initial low oxidation state of the metal is therefore 

beneficial and the use of multiple metal centers, where the electron count is 

distributed on all metals, seems reasonable. As dinuclear coordination is also 

essential for the metal mediated cleavage of the NN-bond into nitrido complexes, 

bonding in these complexes will therefore be discussed in more detail in the following 

sections. 

 

 

 

 

 

 

Figure 3: End-on metal-N2 bonding: σ-bonding from N2 to the metal and two π-bonding interactions from 
the metal to N2.  
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4.2 End-on bridging N2 

 

N2 end-on bridging, M-(µ-η1-η1-N2)-M, is the most frequently observed coordination 

mode for dinuclear N2 complexes. The M-N≡N-M unit is more or less linear to allow 

for efficient orbital overlap. In general, N2 gets activated upon η1-coordination to the 

first metal center, so electron density in the π* orbitals increases, rendering the 

coordinated molecule a better base for another metal center. Thermodynamics also 

play a role, as formation of strong multiple M-N-bonds is facilitated by further 

reduction from the other metal, creating electron delocalization over the whole M-N-

N-M unit.[52] In principle, such a complex can be represented in three different 

resonance structures, with differing modes of activation: (1) N2 is only coordinatively 

bound to both metals centers, showing only minor activation. (2) Formal two electron 

reduction of N2 to a diazene unit (N2)2- and (3) formation of a hydrazine derivative 

(N2)4-, if the metals are capable of donating two electrons each to the N2 moiety, 

leading to simultaneous cleavage of both π-bonds of N2 (Figure 4). Following this 

approach, further reduction would then lead to N-N-bond cleavage and form metal 

nitrides.[53] 

 

 

In this very simplistic view, one might think, the more electrons, the more the NN 

bond is weakened and the easier N2 is split. This expectation is however only in parts 

true. For example, the complex [(NH3)5Ru-N2-Ru(NH3)5]4+ with a d6 electron 

configuration for both metal centers, shows only little activation of the N2 unit (Figure 

5) and only minor differences compared to the mononuclear analogue 

[(NH3)5RuN2]2+, although two metals are involved in bonding. Moreover, a rather 

strong activation is observed for complex [(PMe2Ph)4ClRe-N2-MoCl4(OMe)] with a d6 

and d1 electron configuration for Re and Mo respectively.  

 

Figure 5: Different degree of activation in N2 complexes.[21] 

This observation can be rationalized by considering the molecular orbitals of a M-N-

N-M moiety, as first stated by Gray[54] and Chatt[55] and reviewed by Sellmann.[21] In a 

qualitative scheme, four center molecular orbitals are obtained by linear combination 

Figure 4: Different types of N2 activation in end-on coordinated dinuclear complexes. 
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of the metal´s d-orbitals with the proper p-orbitals 

of dinitrogen (Figure 6). The z-axis is determined 

along the σ-bond (1a), giving rise to four sets of π-

orbitals, whose energy is increasing with the 

number of nodal planes (1e – 4e). For each linear 

combination, there exist two degenerate molecular 

orbitals, one for the Mdxz-Npx-Npx-Mdxz and one for 

the Mdyz-Npy-Npy-Mdyz orbitals (90° rotated). 

Additionally, in fourfold geometry, there are two δ-

orbitals, formed from the Mdxy-orbitals, which are 

essentially non-bonding (1b and 2b). In a threefold 

geometry, these orbitals are not available due to 

interactions with the ancillary ligands. The strength 

of M-N and N-N is determined by the occupancy of 

all of these molecular orbitals. Filling in 6-electrons 

from N2 leads to full occupation of the 1a σ- and the 

1e π-level, which are all bonding. Further electrons 

occupy the 2e level, which weakens the N-N bond. 

Occupation of the 1b and 2b levels, if available, does 

not contribute significantly to N2 binding. The 12 electrons from [(NH3)5Ru-N2-

Ru(NH3)5]4+ however fill the orbitals until the 3e level, which is N-N-bonding again, 

producing in total three N-N-bonding orbitals (5 bonding vs. 2 antibonding MOs). 

This reflects the minor difference in N2 activation compared to the mononuclear 

complex [(NH3)5RuN2]2+. With electron poorer metals (3e level vacant) N2 bond 

activation increases, as it is in [(PMe2Ph)4ClRe-N2-MoCl4(OMe)], which only has 7 d-

electrons. Going further to the left in the periodic table, activation increases, as even 

δ-orbitals become empty. The group of Gambarotta synthesized the titanium dimer 

[{(Me3Si)2NTiCl(TMEDA)}2(µ-η1-η1-N2)], which shows strong N2 activation, in 

agreement with a formal 4 electron reduction to a (N2)4- unit (Figure 7).[56–58] 

However, factors influencing the activation of N2 are not only derived from the 

electron count in this simplified molecular orbital scheme. The complex [{(Cp*Ti(η6-

C5H4CR2)}2(µ-η1-η1-N2)] (R = p-tolyl) shows a considerable smaller activation, 

although for titanium(I) according to the MO scheme δ-orbitals should be occupied 

(Figure 7).[59] DFT calculations on these complexes reveal a significant influence of 

the ligand sphere.[57] Electrons of titanium are involved in π-backbonding to the 

fulvene ligands, preventing them from interactions with the π*-orbitals of N2. 

Although titanium(II) is less electron rich, the ligand sphere allows more electrons to 

be available for N2 reduction. Accordingly, the activation of N2 can also be correlated 

to the donor/acceptor properties of the ligand environment.  

Figure 6: MO scheme for end-on 
coordinated dinuclear N2 complexes. 
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Another example for the ligand influence on the orbital disposition in dinuclear 

complexes is very well illustrated in the recent work of Chirik.[60] His group was able 

to isolate five terpyridine molybdenum dinitrogen complexes 

[{(PhTpy)(PPh2Me)2Mo}2(µ-η1-η1-N2)][BArF4]n, which only vary by oxidation state (n = 

0, 1, 2, 3, 4) (Scheme 5).[60] The dicationic complex [{(PhTpy)(PPh2Me)2Mo}2(µ-η1-η1-

N2)][BArF4]2 displays parameters in agreement with a [N2]2- bridge. DFT calculations 

describe the HOMO as one of the 3e levels. Because of π-interactions of only one of 

the MOs in one level with the terpyridine ligand, the 3e orbitals are not degenerate 

any more, resulting in a diamagnetic complex. Additionally, the LUMO is calculated to 

be mainly ligand centered and NN antibonding in character. Intriguingly, isolation of 

the oxidized and the doubly oxidized form of the complex, as well as the reduced and 

the doubly reduced form has been achieved. Oxidation leads to a weakening of the N-

N bond as the electron is removed from the N-N bonding 3e orbital. Further oxidation 

leads to a slightly weaker N-N bond and formation of a compound with electronic 

triplet ground state. Reduction of the starting complex by one electron leads to a 

paramagnetic S = ½ compound, where the electron is located mainly on the 

terpyridine ligand. Even the second electron of further reduction can be stored in the 

terpyridine ligand, forming neutral, diamagnetic [{(PhTpy)(PPh2Me)2Mo}2(µ-η1-η1-

N2)]. So the ligand does not only influence N2 activation, it can also be redox active 

and store additional reducing equivalents, enabling such a system as promising 

platform for N2 reduction. 

Figure 7: Ti(II) (left) complex exhibiting strong N2 activation and Ti(I) complexes with significantly smaller 
activation. 
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The influence of the metal in dimeric N2-bridged complexes has been examined by the 

group of Sita, who could isolate and characterize a complete series of isostructural 

cyclopentadienyl/amidinate complexes (Cp*amM)2(µ-N2) (am = [N(iPr)C(Me)N(iPr)], 

M = Ti, Zr, Hf, V, Ta, Nb, Mo, W) (Figure 8).[61–63] While steric and electronic 

environment can be held constant, N2 activation can be monitored as a function of 

group and row position of the metal and its formal oxidation state and valence 

electron count. Whereas for Zr and Hf side-on bridged N2 complexes could be 

observed, all other metals showed end-on dinitrogen coordination. NN-bond lengths 

of all isolated complexes are summarized in Table 1.  

Table 1: N-N bond distances in (Cp*AmM)2(µ-N2) complexes. 

Metal Coordination mode d(NN) [Å] reference 

Ti (µ-η1-η1-N2) 1.270(2) [62] 

Zr* (µ-η2-η2-N2) 1.518(2) [64] 

Hf (µ-η2-η2-N2) 1.611(4) [64] 

V (µ-η1-η1-N2) 1.225(2) [63] 

Ta (µ-η1-η1-N2) 1.313(4) [61] 

Nb** (µ-η1-η1-N2) 1.300(3) [63] 

Mo (µ-η1-η1-N2) 1.267(2) [62] 

W (µ-η1-η1-N2) 1.277(8) [62] 

* Exchange of methyl group in aminidate against NMe2. 
** Exchange of methyl group in amidinate against phenyl. 

Scheme 5: Transformations of [{(PhTpy)(PPh2Me)2Mo}2(µ-η1-η1-N2)][BArF
4]n (n = 0-4) by one electron redox 

reactions. 

Figure 8: Sita´s isostructural 
(Cp*amM)2(µ-N2) complexes. 
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The diamagnetic Ti analogue is according to the authors best described as two spin 

coupled Ti(III,d1) centers, connected by a [N2]2- bridge. As Ti possesses a very high 

fourth ionization potential, further reduction of N2 is difficult to achieve.[65] Strongest 

N2 activation however is observed for the Zr and Hf analogues, where oxidation to 

formal +IV is less hindered. Ta and Nb dimers show smaller activation, as the 

reduction potential is lower for these metals. The niobium complex turned out to be 

kinetically more unstable though and the (µ-η1-η1-N2)-bridged complex could only be 

obtained by employing the more bulky phenyl substituent within the amidinate 

ligand. Least activation is observed for the thermally remarkably robust vanadium 

complex, comprising two antiferromagnetically coupled V(II, d3) centers. Formal 

oxidation state assignment is supported by the fact that N2 is easily displaced by 

strong π-acceptor ligands, yielding neutral CpamVII(CNR)2. The diamagnetic group 6 

analogues are again in agreement with decreasing reduction potential and show a 

slightly reduced activation of the bridged N2, compared to Nb and Ta. In contrast to 

the latter complexes however, group 6 compounds exhibit easy displacement of the 

N2 ligand by strong π-acceptors such as CO or isonitriles, giving rise to a M(II, d4) 

formulation. 

These results imply that a simple consideration of the electron count in the MO 

scheme in Figure 6, is only half of the truth. The relative energies of the orbitals, their 

spin population and the ligand environment are influencing the MOs and are 

therefore rendering the picture of N2 complexes clearly more complicated. 

 

 

4.3 Side-on bridging N2 

 

The side-on coordination mode is not as usual as the end-on one in dinuclear N2 

complexes.[50,66,67] The earliest mention of a such a complex was in 1970, when 

isotopically labeled Ru complexes [(NH3)5Ru(14N15N)]Br2 and [(NH3)5Ru(15N14N)]Br2 

were shown to interconvert over time.[68] The rates of isomerization turned out to be 

faster than simple dissociation and recoordination of N2, suggesting an 

intramolecular rearrangement through side-on coordination. The first structurally 

characterized side-on N2 complex was reported in 1973 for a polynuclear nickel-

lithium compound.[69,70] For f-block metals side-on coordination is more common, 

since the group of Evans characterized the first one in 1988.[71] The (Cp*2Sm)2(µ-η2-

η2-N2) complex contains basically no activated N2, displayed by its short N-N bond 

length of d(NN) = 1.088(12) Å and the fact, that N2 is easily lost upon exposure to 

vacuum. In contrast, also very strong N2 activation can be observed in side-on 
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bridging N2 as illustrated for the complex ([PNP]ZrCl)2(µ-η2-η2-N2) ([PNP] = 

iPr2PCH2SiMe2)2N), which displays an N-N bond length of d(NN) = 1.548(7) Å in a 

planar Zr-N2-Zr array.[72] Today, there exist a number of side-on bound dinitrogen 

complexes, mostly with early transition metals and f-block elements. However, the 

end-on coordination mode is certainly the most common.[66] The question that arises 

now is what makes the difference between these two binding motifs. 

 

To describe the electronic structure in N2 side-on bridging complexes, considering the 

molecular orbital scheme as depicted for the end-on bridging mode (Figure 6), is 

recommended. However, bonding in side-on N2 complexes is more sophisticated, 

since N2 can be lifted out of the M-M plane or the metals can be twisted against each 

other due to ligand constraints. In a very simplistic picture, there exist a π (and π*) 

symmetric MO, having M-N bonding (and antibonding) and N-N antibonding 

character (Figure 9). These are generated out of dyz orbitals of the metals with one π* 

orbital of dinitrogen. Similarly, there are two basically non-bonding MO combinations 

out of metal orbitals dxz. But instead of a second π-bond created in the end-on 

coordination mode, only a δ-bond (and δ*-bond) with M-N bonding (and M-N 

antibonding) and N-N antibonding character 

between the dxy and the second π* orbital of N2 can 

be formed, resulting in a somehow weaker 

stabilization. Furthermore, the N-N σ-bond is non-

bonding (σN), as well as the N-N bonding π-orbital 

formed of px orbitals of N2. In principle, the pz 

orbitals for the N-N bonding combination can form a 

bonding interaction with the respective metal 

orbitals, but calculations consider these π-donor 

interactions to be quite small, hence they are 

neglected in the MO scheme.[73] Compared to end-on 

bridged N2 complexes, involving two M-N π-bonds, in 

the side-on bridging mode, there is only one π- and 

one δ-bond. As the latter should have less orbital 

overlap, it should be less stabilized. Hence, the end-

on bridging mode usually is energetically preferred 

over the side-on mode.[67]  
Figure 9: MO scheme for side-on 
coordinated dinuclear N2 
complexes. 
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So what is the reason the side-on mode is formed at all? The most obvious hypothesis 

therefore would be that there is just no appropriate d-orbital at the metal available 

for a second back-donation to dinitrogen. Fryzuk investigated this subject and 

performed calculations on the zirconium complex {ZrCl[N(SiH2CH2PH2)]}2(µ-η2-η2-

N2).[67] The analysis revealed strong interactions of the amide in the ligand backbone 

with d-orbitals of the metal, leaving only two d-orbitals for bonding to the dinitrogen 

ligand. Actually, the amide donates its electrons into the exact orbital necessary for 

the second π-bonding to dinitrogen, enabling only the side-on coordination mode. 

Since there were also interactions with the chloride computed, its influence on the 

coordination mode was investigated chemically by exchange against a Cp ligand and 

resulted in isolation of the end-on bridging complex [(PNP)ZrCp]2(µ-η1-η1-N2) 

(Scheme 6).[67] This can be rationalized by a modification of the available d-orbitals. A 

π-orbital of the Cp ligand now overlaps with the d-orbital, which would have been 

used for δ-bonding in the side-on N2 complex. Since side-on bonding is inhibited, end-

on bonding is engaged and the free 

electron pair of the amide is 

“pushed back”. This assumption is 

supported by the unusually long Zr-

Namide distances of 2.306(3) Å and 

2.303(3) Å for the Zr moieties in the 

end-on complex, which are only 

slightly shorter than in neutral 

amine-type Zr(IV) adducts.[74,75] 

Of course, steric effects also play a role, as the two metal moieties are certainly closer 

in the side-on mode compared to the end-on one. That already subtle variation in the 

steric congestion can change the N2 coordination mode has been shown by the group 

of Chirik. The complex [Cp*Zr(η1-N2)]2(µ-η1-η1-N2) was reported in 1974 by the 

Bercaw group.[76] In 2004, Chirik could demonstrate the formation of a side-on 

bridged N2 complex [(η5-C5Me4H)Zr]2(µ-η2-η2-N2), only by alteration of the 

pentamethyl Cp to tetramethyl Cp ligands (Figure 10).[77] Adding only one methyl 

group per zirconocene yields again the end-on bridged N2 complex 

[Cp*(C5Me4H)Zr(η1-N2)]2(µ-η1-η1-N2).[78] Thus, only the steric bulk of one methyl 

group can make the difference in the N2 coordination mode.[79,80] 

 

Figure 10: Steric effect on end-on vs side-on N2 binding. 

DFT calculations predict the relative intensity of side-on N2 bridged isomers to 

increase down group 4 in the periodic table.[65] Experimentally, this effect has been 

Scheme 6: Transformation of side-on to end-on dinuclear 
complexes by ligand exchange. 
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observed for the before mentioned isostructural metal complexes from the group of 

Sita (Table 1). In group 4 complexes of this kind the titanium analogue adopts end-on, 

whereas the zirconium and hafnium analogues display side-on coordination.[62] As 

steric interactions can be critical, the covalent radii for the metals were compared. 

Here, Zr and Hf possess about the same dimension (1.75 Å), Ti on the other hand is 

significantly smaller (1.60 Å). It is assumed, that only the larger atoms are able to 

accommodate the more sterically crowded side-on coordination and the smaller 

analogues, including the later metals like V (1.53 Å), Nb (1.64 Å) or Mo (1.54 Å), can 

only adopt the end-on bonding motif with this ligand set. 

There also exists an intermediate coordination mode for N2, the side-on end-on 

coordination. The complex [(NPN)Ta]2(µ-H4) (NPN = (Ph)P(CH2SiMe2NPh)2) was set 

under an atmosphere of N2 to generate the complex [(NPN)Ta)2(µ-H)2(µ-η1-η2-N2), 

exhibiting a side-on coordination of N2 to one tantalum center and an end-on 

coordination to the other (Figure 11).[81] As the usual 

coordination mode for tantalum N2 complexes is end-on, the 

authors believe, that the bridging hydride in the complex 

forces the two metal centers in such a close proximity that 

an end-on binding motif becomes impossible.[82] The 

energetic advantage of maintaining the bridging hydrides is 

believed to prevail over the energy difference to dinuclear 

end-on coordination.  

 

Figure 11: Side-on end-on N2 
bridged tantalum complex. 
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5 From N2-complexes to N2-splitting 

 

5.1 Dinuclear end-on bridging N2-complexes 

 

The Cummins system 

The year 1995 was a milestone in dinitrogen chemistry. For the first time, the 

complete scission of the N-N triple bond of N2 could be observed proceeding over an 

N2 bridged dimer into a well-defined terminal nitride. As the group of Cummins, tried 

to recrystallize the sterically demanding triamido molybdenum(III) complex 

Mo[N(tBu)(Ar)]3 (Ar = 3,5-C6H3Me2) at -35°C under an atmosphere of N2, they 

observed the formation of a new paramagnetic species.[83] Upon warming to room 

temperature, the paramagnetism was lost and the formation of a terminal 

molybdenum(VI) nitride was observed in high yield (76% isolated, Scheme 7). This 

reaction was not only the first of this kind, it still represents the most intensively 

studied example of well-defined N2 splitting. Therefore, in the following, factors 

influencing N2 splitting will be described on the basis of this reaction. 

 

After the discovery of the thermally driven N2 cleavage reaction, following work 

revealed, that the starting compound lies in equilibrium with an end-on bridged, 

paramagnetic N2 complex {Mo[N(tBu)(Ar)]3}2(µ-η1-η1-N2). At room temperature 

however this equilibrium is shifted far towards the monomeric species.[84] Only minor 

amounts of nitride could be detected after 12 h in benzene solution and neither the 

formation of a dimeric species nor a monomeric η1 terminal N2 complex is observed 

at room temperature. Regardless, detailed spectroscopic investigations revealed a 

rather linear MNNM moiety for the dimeric species, which could also be verified by a 

crystal structure some years later.[85] Depending on the crystallization mode, NN 

Scheme 7: Cleavage of N2 in terminal nitrides mediated by a triamido molybdenum(III) complex. 
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distances of 1.212(2) or 1.217(2) Å [85] could be found together with a Raman shift of 

υ(NN ) = 1630 cm-1 [84], fitting to moderate to strong activation of the coordinated N2 

unit and description as [N2]2- and formal Mo(IV).[53] Interestingly, also the mono and 

doubly oxidized forms of the dimer have been isolated, displaying significantly 

stronger N2 activation (Figure 12). Nevertheless, only the neutral species is cleaving 

the N-N bond. This result indicates that N2 activation itself is not the only factor 

governing dinitrogen splitting and strong activation does not necessarily lead to N-N 

cleavage. 

 

Figure 12: Bond distances, stretching frequencies and number of electron in the MNNM π-system for 
{Mo[N(tBu)(Ar)]3}2(µ-η1-η1-N2)n+ (n =0-2). 

 

Electronic structure 

The electronic structure of the neutral dimeric complex can again be described by a 

molecular orbital analysis as in chapter 4.2. In threefold symmetry however, no 1b 

and 2b δ-bonding MOs are available, because these orbitals are involved in bonding to 

the ancillary ligands. A (1eu)4(1eg)4(2eu)2(2eg)0 electronic configuration by 

description with Mulliken labels and therefore 10π electrons in the MNNM unit, 

described as {MNNM}10π, results (Figure 13) and is supported by DFT 

calculations.[84,85] Furthermore, the total spin of S = 1 is in agreement with SQUID 

measurements.[85] The HOMO is described by M-N antibonding and N-N bonding 

character. Oxidizing the compound removes electrons out of this orbital, resulting in a 

weakened N-N and strengthened M-N bond in accordance with the experimental data 

({MNNM}nπ, n = 8, 9). 
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Generation of stable closed shell nitrides requires spin flip from the triplet to the 

singlet state during the splitting process. The mechanism is believed to proceed via a 

zigzag transition state (TS), incorporating a further reduced N-N single bond, as it has 

been calculated by Morokuma for the hypothetic complex [Mo(NH2)3]2(µ-η1-η1-N2).[86] 

In this transition state, symmetry is reduced leading to degeneracy of the MO e-levels 

and enabling spin pairing. N-N cleavage out of the linear dimer leads to an excited 

state and was computed to be energetically unfavorable.  

In addition, the dimer accommodates 10 π- and 6 σ-electrons within the MNNM unit. 

Two nitrido complexes N≡Mo(L)3 however require in total 8 π- and 8 σ-electrons. 

Two electrons must therefore be transferred from π-orbitals in σ-orbitals upon N-N 

cleavage. In the zigzag TS the doubly occupied 2bu π-orbitals have the appropriate 

symmetry to be correlated with the energetically higher lying, unoccupied σ-

antibonding orbital to form the occupied σ-bonds 1bu in the nitrido complexes. 

Otherwise, spitting from the linear dimer by simple linear dissociation is symmetry 

forbidden.[84] Importantly, also the σ-bonding orbital au is lowered in energy (3bu) 

when reaching the TS, thereby favoring mixing of the σ- and π-symmetric orbitals as 

their energy difference is decreased. The orbital scheme also indicates that a 

{MNNM}10π system, is essential in this splitting process. Less electrons cause stronger 

N2 activation, but splitting is inhibited because no stable nitrido complexes can be 

formed. This is supported by the isolated oxidized forms of Cummins` dimer, 

containing {MNNM}9π and {MNNM}8π systems and which do not show N-N cleavage. 

More electrons however would destabilize the dimer by M-N bond degradation 

associated with an increase of N-N bond strength. The splitting from the dinitrogen 

Figure 13: MO scheme for N2 cleavage in terminal nitrides out of a Mo(III) dinuclear dimer. 
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bridged dimer has been computed to be exothermic by about 20 kcal/mol. Driving 

force is the formation of strong Mo(VI)≡N triple bonds. 

 

Ligand influence 

Besides the electronic configuration, also the steric demand of the ligand system plays 

an important role. On the one hand, ligands must be small enough to allow for dimer 

formation. For example, Mo[N(R)Ar]3 with large substituents R like adamantyl have 

been shown to be stable towards dinitrogen, presumably because the steric bulk 

prevents assembling of two such complexes around one molecule of N2.[87] On the 

other hand, too small ligands induce different reactions. For example, the 

dimerization of Mo(NR2)3 (NR2 = NMe2, NMeEt, NEt2) to Mo2(NR2)6 (under N2 

atmosphere) is a well-known reaction (Scheme 8) [88] and DFT calculations confirm 

that the main function of the bulky amido ligand is to offer a free coordination site for 

N2 binding and prevent dimerization at the same time.[89]  

 

Scheme 8: Dimerization of Mo(NR2)3 with small R-groups. 

Besides, also the exchange of the amido ligands against alkoxides ends in the 

dimerization of the complex without reaction with N2.[90,91] By mixing the respective 

alkoxy nitrido complexes N≡Mo(OtBu)3 with Mo(N(R)Ar)3, the nitride unit is 

transferred to the latter, yielding N≡Mo(N(R)Ar)3 and Mo2(OtBu)6 (Scheme 9).[91] 

This result suggests facile nitrogen atom transfer and stimulated further 

investigations.[90–92] Adding N≡Mo(OtBu)3 to Mo(N(R)Ar)3 under N2 atmosphere 

accelerates N2 splitting significantly, yielding both nitrides. Using N≡Mo(NMe2)3 

instead of the alkoxynitride resulted in the isolation of the nitrogen bridged 

compound (Me2N)3Mo(µ-N)Mo[N(R)ArF]3 (ArF = 4-C6H4F) as putative intermediate in 

the N-atom transfer reaction.[90] 

 

Scheme 9: Nitride transfer by use of sterically less demanding alkoxy-ligands. 
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Exchanging the R-substitutents of the amide 

in Mo(NR2)3 against iso-propyl groups 

results in C-H activation and 

cyclometalation to Mo(H)(η2-

Me2C=NAr)(N(iPr)Ar)2.[93] Unexpectedly, 

also this compound splits N2, without 

observable intermediate, into the 

paramagnetic single nitrogen bridged 

species {[Ar(iPr)N]3Mo}2(µ-N). In this 

reaction, the hydride is observed to migrate 

back to carbon to form three equivalent iso-

propyl groups again. Molecular orbital 

considerations predict a {MNM}7π unit with 

a spin ground state doublet, which is 

supported by magnetic measurements. The 

mechanism for formation of the single 

nitrogen bridged species is thought to 

proceed via initial N2 splitting, generating 

the nitride species N≡Mo(N(iPr)Ar)3 which 

then couples with excess Mo(N(iPr)Ar)3 to 

the nitrogen bridged dimer (Scheme 10). To 

test this assumption, the nitride complex N≡Mo(N(iPr)Ar)3 was prepared 

independently out of N-atom transfer from N≡Cr(OtBu)3 to cyclometalated Mo(H)(η2-

Me2C=NAr)(N(iPr)Ar)2 and subsequently reacted with additional cyclometalated 

complex to show fast coupling to {[Ar(iPr)N]3Mo}2(µ-N).[93] This stands in contrast to 

the more bulky N≡Mo(N(tBu)Ar)3, isolable as monomer. Here, such a dimerization is 

obviously hampered by steric demands. Following calculations confirmed that 

splitting from {Mo[N(tBu)(Ar)]3}2(µ-η1-η1-N2) to the respective terminal nitride is 

kinetically as well as thermodynamically favored over dimerization to a single 

nitrogen bridged compound, whereas for smaller ligands (N(iPr)Ar or NMe2) the 

formation of {[R2N]3Mo}2(µ-N) is both favored kinetically and thermodynamically.[94] 

Scheme 10: N2 cleavage into bridging nitride 
with cyclometalated Mo(H)(η2-
Me2C=NAr)(N(iPr)Ar)2. 
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A comparison of Cummins´ end-on 

dinitrogen bridged dimer with a 

structurally related complex of the 

group of Schrock 

[Mo{R′NCH2CH2}3N]2(µ-η1-η1-N2) (R′ = 

tBuMe2Si) reveals that the story of 

dinitrogen splitting is not only governed 

by the number of electrons and the 

steric demand of the ligand.[84,95,96] Both 

complexes contain the same electron 

count, formal oxidation and spin state 

and display similar structural 

parameters. Schrock´s dimer also 

contains three amido ligands, but a coordination number of 5 with an amine in trans-

position to N2. Besides, electropositive silicon substituents at the amide should have 

an influence on the donor capabilities. The intriguing difference between these two 

compounds is that Cummins´ complex splits N2 thermally into nitrides and Schrock´s 

complex does not (Scheme 11). Calculations on a simplified model complex predict 

the splitting to be endothermic for the latter complex and exothermic for the 

former.[86] This result is attributed to the trans-ligand in Schrock´s dimer, which as σ-

donor transfers electron density to the metal and therefore weakens the M-N2 bond. 

In the MO scheme (Figure 13), this influence can be depicted by lifting the σ-bonding 

orbital au in energy. Hence, mixing between this orbital and the π-symmetric orbital 

2bu in the TS is hampered, because the energy difference is too large. This effect 

renders the whole splitting mechanism thermodynamically and kinetically 

unfavorable.  

Another reason might be the steric strain imposed by the triamidoamine ligand. 

Calculations of the group of Stranger indicate that rotation of one of the amido ligands 

at each metal center from the trigonal symmetry in such a way that the NC2 plane 

stands orthogonal to the MNNM unit leads to stronger π-backdonation from the metal 

to N2 and enhanced N2 activation, as the electron density at the metal is increased 

(Scheme 13). This effect is accompanied by a stabilization of the singlet state over the 

triplet state for the dimer, because the degeneracy of the HOMO is lifted and already 

results in a bent structure.[97,98] This stands in contrast to the experimentally 

observed structure and magnetization of the isolated dimer, but the computed results 

resemble the presumed zigzag transition state.[85] Ligand rotation during the splitting 

process might be involved. Furthermore, considering N-N cleavage with the less 

bulky complex Mo(N(iPr)Ar)3, dinitrogen splitting is faster and an intermediate could 

not be observed. Splitting might be accelerated from expected [Mo(N(iPr)Ar)3]2(µ-η1-

η1-N2), as ligand rotation of iso-propyl groups is easier than in the respective tert-

butyl analogues.[85,98] 

Scheme 11: Comparison of Schrock´s triamidoamine 
Mo(III) and Cummins´ triamido Mo(III) N2 dimers 
towards N2 cleavage. 
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Scheme 12: Scheme 13: Rotation of one NR2 group at each Mo center. 

DFT calculations revealed, that π-donors in the ancillary ligands not only lead to 

stronger N2 activation, but also to a more exothermic splitting reaction.[86,97] 

Consequently, N2 splitting with complexes exhibiting no or weak π-donor ligands 

should be more difficult. In 2001, Floriani and coworkers synthesized the 

molybdenum dimer [(Mes)3Mo]2(µ-η1-η1-N2) (Mes = 2,4,6-Me3C6H2).[99] This complex 

displays similarities with the above described system of Cummins. Molybdenum is 

again 4 coordinate, paramagnetic and in the same formal oxidation state, but the 

mesityl-ligands are no π-donors anymore and the steric bulk is smaller. Importantly, 

this dimer is thermally stable (refluxing benzene) and does not cleave N2 over time. 

However, dinitrogen can be split in this system by photolysis, which will be discussed 

in chapter 6.4. 

 

Scheme 14: Synthesis of thermally stable N2-bridged Mo dimer by Floriani.[99] 

 

Photolysis of N2-bridged dimer 

Bulk irradiation of the N2 bridged dimer {[Ar(tBu)N]3Mo}2(µ-N2) with visible light (λ 

≥ 480 nm) at -78°C to exclude thermal decomposition, produced an about 1:1 mixture 

of N≡Mo[N(tBu)Ar]3 and Mo[N(tBu)Ar]3, presumably under loss of 0.5 equivalents of 

N2 due to stoichiometry (Scheme 15). As loss of N2 from the dimeric complex has not 

been observed before, it is most likely due to an electronic excited state. Formation of 

the nitrido complex resembles thermal N2 cleavage. Frequency resolved pump-probe 

spectroscopy was performed in the group of Blank to get more detailed information 

about the photochemical mechanism.[100] It turned out photoexcitation at 2.3 eV 

creates a very short lived excited triplet state, which relaxes through internal 

conversion in 300 fs to the ground state with subsequent vibrational cooling in 

subpicoseconds in competition with Mo-N2 bond dissociation. Coupling to structural 

distortions facilitates the rapid internal conversion and assists the transition to the 

singlet state, giving propensity to N-N cleavage. 
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Scheme 15: Competition of N-N and M-N bond cleavage upon photolysis of {Mo[N(tBu)(Ar)]3}2(µ-η1-η1-
N2). 

These structural distortions have also been found in theoretical examinations on 

photochemical activation of stable, linear µ-N2 complexes (M = Fe, Ru) in the group of 

Reiher. The authors suggest population of antibonding π* orbitals of N2 upon 

photochemical excitation resulting in a bent diazenido like structure in the first 

excited state.[101] This resembles the zigzag transition state, proposed for Cummins 

splitting mechanism and is in agreement with the observation of terminal nitrides as 

products of N2 splitting. Qualitatively, the formation of Mo[N(tBu)Ar]3 together with 

N2 can be explained by excitation of electrons in 2eu orbitals (Figure 13). Therefore, 

the M-N bond is weakened with simultaneous strengthening of the N-N bond, which 

leads to release of N2. 

 

Intermediate Trapping 

N2 Splitting from Mo[N(tBu)Ar]3 to the terminal nitride turned out to be redox-

catalyzed. In the presence of Na/Hg, the reaction is significantly accelerated.[87] By 

controlling the reaction parameters, the reduced compound Na[(N2)Mo(N(tBu)Ar)3], 

formally a Mo(II) species, could be isolated, containing linearly bound and slightly 

activated N2. Since the starting material Mo[N(tBu)Ar]3 is not reduced by Na/Hg, 

dinitrogen coordination is considered to be the very first step in the cleavage 

mechanism. The monoanionic compound then presumably reacts with remaining 

Mo[N(tBu)Ar]3 to an anionic N2 bridged dimer, which reduces again neutral 

(N2)Mo(N(tBu)Ar)3 under generation of the neutral dimer, which is known to split the 

N-N bond. Oxidation of the trapped anionic complex [(N2)Mo(N(tBu)Ar)3]- does not 

produce the neutral compound, but deliberates N2 instantaneously to yield the 

starting material Mo[N(tBu)Ar]3. In contrast, the related isoelectronic complex 

[(Me3SiNCH2CH2)3N]Mo(N2) with triamidoamine ligand could be prepared by 

oxidation of {[(Me3SiNCH2CH2)3N]Mo(N2)}2-Mg(THF)2 in the group of Schrock.[102,103] 

The monomeric complex was structurally characterized and turned out to be 

moderately stable. Apparently, the apical amine donor in Schrock´s complex 

combined with the more reducing silyl-amides in the ancillary ligand increase the 

electron density at the metal in such an extent that N2 end-on binding becomes more 
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stable. The anionic complex [(N2)Mo(N(tBu)Ar)3]- can be functionalized with 

electrophiles such as methyl triflate (MeOTf), methyl tosylate (MeOTs) or Me3SiCl to 

form Nβ-E (E = Me, SiMe3) bonds. With MeOTf even a second methylation to cationic 

[(N(tBu)Ar)3Mo-NNMe2]OTf is possible (Scheme 16). 

 

 

Reactivity of the terminal nitrido complex [Ar(tBu)N]3Mo≡N 

The terminal nitride [Ar(tBu)N]3Mo≡N turned out to possess weak nucleophilic 

character. With a variety of Lewis acids formation of adducts has been observed to 

give compounds of formula [Ar(tBu)N]3MoN-EX3 (X = F, E = B; X = Cl, E = B, Al, Ga, In; 

X = Br, E = Al; X = I, E = Al) and [Ar(tBu)N]3MoN-ECl2 (E = Ge, Sn) by simple 

combination of the nitride with the Lewis acid in a 1:1 ratio.[104] These adducts show 

only little change in Mo-N bond length. Besides, they were observed to decompose 

back to the starting materials within 0.5 – 3 h in THF solution at 25°C. With strong 

electrophiles such as MeOTf, Me3SiOTf or PhC(O)OTf, formation of cationic imido 

complexes have been observed (Scheme 17). Such imido complexes are well 

documented in the literature.[105] The Mo-N-C or Mo-N-Si units are linear in the 

crystal structures and Mo-N bond lengths are slightly elongated compared to the 

parent nitride ([Ar(tBu)N]3Mo≡N: d(MoN) = 1.651(4) Å[85]; [Ar(tBu)N]3Mo≡N-SiMe3+: 

d(MoN) = 1.795(6) Å).[104] Methylimido complex [Ar(tBu)N]3Mo≡N-Me+ can be 

deprotonated to give a ketimide, displaying a nearly linear M-N-C unit. The N-C bond 

length is in agreement with the presence of a double bond (d(NC) = 1.300(7) Å), 

whereas the Mo-N bond distance (d(MoN) = 1.777(4) Å) lies in between a single and a 

double bond. This ketimide reacts with excess MeI to give the ethylimido complex 

[Ar(tBu)N]3Mo≡N-Et+, displaying the nucleophilic character of the ketimide carbon. 

Interestingly, the ethylimido complex could not be obtained by addition of an 

appropriate Et+ source like EtOTf, EtI or [Et3O]BF4 to the nitride. The authors state, 

the increased steric bulk of the electrophile presumably slows down the rate of the 

nucleophilic substitution reaction.[104] 

Scheme 16: Formation of mononuclear end-on [(N2)Mo(N(tBu)Ar)3]- and subsequent functionalization 
(EX = MeOTf, MeOTs, Me3SiCl). 
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Of particular interest towards the incorporation of N2 derived nitrogen into organic 

molecules is the splitting of the Mo≡N triple bond. This strong bond is needed to 

provide a driving force for the splitting of the N≡N triple bond, but for N2 fixation in 

valuable chemicals, the Mo≡N bond needs to be cleaved again. This proved to be 

possible, when the nitrido complex was reacted with trifluoroacetic anhydride. 

Within several minutes in dimethylformamide solution, the formation of an almost 

quantitative amount of CF3C(O)NH2 has been observed.[106] Following analysis 

revealed the complex is degraded upon reaction and the observed “additional” 

protons stem from isobutene elimination of the tert-butyl groups of the amide 

ligands. Attempts to produce isocyanates from the reaction of CO with the terminal 

nitrido complex failed, although DFT computations predicted a thermodynamically 

favorable reaction.[107] To rationalize the difference between the molybdenum system 

and similar vanadium nitrides reacting with CO to isocyanates[108,109], further DFT 

calculations were carried out. Based on these studies, a metal-carbonyl intermediate 

was proposed for the vanadium model complex, which isomerized to give the 

isocyanate complex, thereby avoiding a large reaction barrier.[107] 

An elegant route for nitrogen functionalization and N-atom transfer was published in 

2006, wherein dinitrogen was transformed into organonitriles and the metal complex 

could be recovered in high yield to form a synthetic cycle (Scheme 18).[110] Starting 

from Mo[N(tBu)Ar]3, N2 is split into nitrido complexes N≡Mo[N(tBu)Ar]3, which can 

be functionalized with acyl chlorides RC(O)Cl (R = Ph, tBu, Me) under assistance of 

silyl triflates. Acyl chlorides do not react 

with the nitride alone, the latter needs to 

be activated by silylation to allow for 

acylation. Reduction with magnesium 

anthracene in the presence of Me3SiCl 

produces a trimethylsiloxyl-substituted 

ketimide, which can be reacted with Lewis 

acids like SnCl2 or ZnCl2 to remove the 

oxygen moiety and release the respective 

organonitrile under generation of the 

chlorinated complex [Ar(tBu)N]3MoCl. 

Further reduction by Mg affords the 

starting material Mo[N(tBu)Ar]3. In this 

Scheme 17: Functionalization of N2 derived terminal nitrido complex [Ar(tBu)N]3Mo≡N with electrophiles. 

Scheme 18: Synthetic cycle for N2 cleavage and 
conversion in nitriles by a molbydenum triamido 
complex. 
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cycle, nitrile release in up to 38% over all steps proved to be possible. Each 

molybdenum center is oxidized by 3 electrons upon N2 cleavage and re-reduction is a 

purely metal centered process. Driving force in this synthetic scheme is formation of 

the very strong CN triple bond (D0(HC≡N) = 937 kJ mol-1).[111] 

In a similar approach for generation of cyanides, the nitrido complex was reacted 

with a mixture of MeOCH2Cl and iPr3SiOTf.[112] The resulting methoxymethyl-imido 

complex can easily be deprotonated to give [Ar(tBu)N]3MoN=CH-OMe. As described 

above, nitrile extrusion under oxygen removal can be carried out using SnCl2 with 

concomitant generation of [Ar(tBu)N]3MoCl. However, HCN elimination proved to be 

difficult, as free ligand and nitride complex have been observed and no HCN could be 

collected via vacuum transfer. If the reaction is carried out in the presence of base 

(Me3SiNMe2, 10 eq), the major product turned out to be the molybdenum(IV) cyanido 

complex [Ar(tBu)N]3Mo-CN (Scheme 19). In the reaction, no external reducing agent 

like Mg was employed for molybdenum reduction. Instead, electrons for the formal 

reduction from Mo(VI) to Mo(IV) originate from the carbon, which was deprotonated 

during the reaction, formally delivering 2 electrons to the molybdenum center. In this 

way, in the overall process N≡N is transformed to Mo≡N, which is then transformed 

to C≡N being again the driving force for the reaction without the use of strong 

reducing agents. 

 

 

 

 

5.2 Dinuclear side-on bridging N2-complexes 

 

Defined N2-splitting into nitrides mediated by side-on bound dinitrogen has not been 

examined in such detail so far. The first unequivocally established cleavage in two 

bridging nitrides was promoted by a vanadium complex and demonstrated in 1999 

by the group of Cloke. Reduction of a diamidoamine vanadium(III) complex 

{V(N[N´]2)Cl}2 (N[N´] = (Me3Si)N[CH2CH2N(SiMe3)]2) with one equivalent of KC8 

under N2 atmosphere led to the isolation of neutral bis(µ-nitrido) complex 

Scheme 19: Functionalization of N2 derived nitride into cyanide ligand. 
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[V(N[N´]2)]2(µ-N)2 (Scheme 20).[113] That both nitrides originate from the same N2 

molecule was confirmed by labelling experiments employing a 14N2/15N2 mixture. The 

V2N2 core is planar with d(NN) = 2.50(2) Å, indicating that the N≡N triple bond has 

been completely cleaved by concomitant oxidation of the metals to V(V, d0) in 

agreement with the diamagnetic character. Further one electron reduction (or direct 

2 electron reduction from the V(III) chloro complex) is possible to form anionic V(V, 

d0)/V(IV, d1) in agreement with magnetic measurements. Thorough experiments 

were carried out for understanding the electronic and vibrational structure of the 

reaction products.[114] 

The proposed diamidoamine V(II) intermediate displays similarities with the 

triamido Mo(III) system of Cummins. The electronic configuration is the same and the 

ligand environment is comparable. However, side-on coordination is assumed based 

on the labelling experiments. DFT calculations confirm side-on bonding of N2 to V(II) 

with subsequent coordination of another V(II) to form a side-on bridged dimer, which 

then cleaves the N-N bond.[115] Side-on coordination was pointed out to be preferred 

over end-on coordination due to the orbital disposition imposed by the diamidoamine 

ligand. In this way, a trans-ligand is avoided, which would raise the σ-orbitals in 

energy. In addition, only in a side-on coordination mode, transition of electrons in σ-

antibonding orbitals can be achieved, which was stated to be a prerequisite for N2 

cleavage. Importantly, again a {MNNM}10π electronic configuration seems to be 

necessary for complete N2 reduction. 

Reactivity of the nitrido complexes has not been reported to the best of our 

knowledge. 

 

 

Scheme 20: N2 Splitting into bis(µ-nitrido) complex [V(N[N´]2)]2(µ-N)2. 
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6 Initial N2-splitting along the periodic table 

6.1 Actinides 

N2 cleavage with f-block elements is rare, despite a variety of N2 complexes, 

displaying all sorts of activation. In 2002, the group of Gambarotta showed N-N bond 

splitting by reduction of the uranium(III) complex K[(Et8-

calix[4]tetrapyrrole)U(DME)] under N2 atmosphere.[116] The product was identified 

as mixed-valent UV/UIV compound K[{K(calix[4]tetrapyrrole)U}2(µ-NK)2] in 61% 

isolated yield. Each bridging nitride also interacts with one potassium center. 

Reactivity of this new compound has not been reported so far. 

 

Scheme 21: N2-splitting promoted by uranium. 

N2 cleavage with concomitant double hydrogen atom abstract to an amine moiety has 

been reported for a thorium compound.[117] Reduction of thorium(V) compound 

K{[O2]2ThCl} ([H2O2] = (2-hydroxy-3-tert-butyl-5-methyl-C6H2)2CH2) with 

K(naphtalenide) in DME under N2 atmosphere results in isolation of 

K{[O2]2Th(NH2)(DME)} in up to 47% yield. Labelling experiments with 15N2 

unequivocally confirm gaseous N2 as origin of the amide, the source of the hydrogen 

atoms however as well as the mechanism of formation remain unclear. 

 

Scheme 22: N2 cleavage into an amide group mediated by a thorium compound. 
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6.2 Group 4 

Titanium: N2 cleavage mediated by group 4 metals is hard to achieve, because very 

low valent species are needed to provide enough electrons for N2 reduction. The 

group of Gambarotta demonstrated N2 splitting by reduction of a well-defined 

titanium(III) complex LTiCl (L = 2,5-{(C4H3N)CPh2}2C4H2N(Me)) with 1.5 equivalents 

of Na/Hg.[118] The nitride-imide bridged complex [Na(dme)3][(LTi)2(µ-NH)(µ-N)] was 

isolated in 25% yield from the reaction mixture. By the use of more reducing 

equivalents another product [Na(dme)3]4[{LNa}2][(LTi)2-(µ-N)2] with two separate 

dianionic moieties was obtained. The presence of [{LNa}2]2- indicates some kind of 

degradation during the reaction. Treatment of the nitrido complexes with HCl 

resulted in ammonia formation. Whereas the complexes proved to be unreactive 

towards methylation, silylation using Me3SiCl was possible yielding mononuclear 

LTiNSiMe3. Dinitrogen splitting turned out to be very sensitive towards the choice of 

solvent, as only in DME splitting products could be observed. Identical reactions in 

THF only led to intractable mixtures. The mechanism for splitting is proposed to 

proceed via two electron reduction to a Ti(I) species with side-on coordinated N2, 

which is again reduced with subsequent hydrogen atom abstraction from the solvent 

or ligands to form the nitrido-imido complex [(LTi)2(µ-NH)(µ-N)]-. Excess reducing 

equivalents is likely to reduce the N2 complex further to the bis(µ-nitrido) [(LTi)2-(µ-

N)2]2-. 

Another approach to achieve N2 splitting with group 4 metals has been investigated 

by the group of Hou. Instead of using only 2 metal centers which need to deliver 3 

electrons each, they used 3. Notably, reducing equivalents were not introduced by 

strong alkali metals, but by the use of H2 (Scheme 23).[119,120] Reaction of the 

titanium(IV) alkyl complex Cp´Ti(CH2SiMe3)3 (Cp´= C5Me4SiMe3) with hydrogen (4 

atm) affords a mixture of the trinuclear polyhydrides (Cp´Ti)3(µ3-H)(µ2-H)6 and 

(Cp´Ti)4(µ-H)8 (not 

depicted in Scheme 

23) in 69% and 10% 

yield respectively. 

The latter is also the 

main product in 

similar reactions of 

the higher group 4 

analogues Zr and Hf 

and stable towards 

N2.[121] The former 

however reacts with 

N2 (1 atm) under 

partial H2 elimination 
Scheme 23: Ammonia synthesis out of N2 and H2 mediated by a polynuclear 
titanium hydride. 
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to (Cp´Ti)3(µ2-NH)(µ3-N)(µ2-H)2, where the N-N bond has been split under retention 

of the formal oxidation states of titanium (formally two Ti(III, d1) and one Ti(IV, d0)). 

The reaction can be monitored by low temperature NMR experiments, revealing 

formation of a dinitrogen side-on end-on bridged complex. At -10°C, N2 splitting takes 

place almost quantitatively to a bis(µ-nitrido) complex. At 20°C the latter isomerizes 

to the observed nitrido-imido-dihydrido complex (bottom center, Scheme 23). 

Further N2 incorporation has been observed upon heating (180°C) to produce 

(Cp´Ti)3(µ3-N)(µ2-NH)3. The latter as well as the nitrido-imido-dihydrido complex are 

stable towards hydrogenation. However, in the presence of Cp´Ti(CH2SiMe3)3 a 

reaction with H2 is observed, resulting in quantitative formation of the bis(imido) 

complex (Cp´Ti)3(µ3-NH)2(µ2-H)4. Furthermore, direct reaction of Cp´Ti(CH2SiMe3)3 

under H2 (4 atm) and N2 (1 atm) at 60°C also leads to generation of the bis(imido) 

complex in 90% yield. Addition of anhydrous HCl affords NH4Cl together with 

Cp´TiCl3 almost quantitatively. 

In very recent work, the group of Hou demonstrated further N2 incorporation of 

(Cp´Ti)3(µ3-NH)2(µ2-H)4.[122] Heating the neat complex to 180°C under N2 atmosphere 

(1 atm) affords the diimide/dinitride complex [(Cp´Ti)4(µ3-NH)2(µ3-N)2] in about 

95% yield (Scheme 24). Intriguingly, this complex reacts with a variety of acid 

chlorides to the respective nitriles in good yields (60-85%, 60°C, 12 h). Nitrogen 

transfer from N2 into organic substrates is therefore accomplished in two simple 

steps. A µ-oxo Ti(II) complex [(Cp´TiCl2)2(µ-O)] is characterized as reaction product 

besides unidentified paramagnetic Ti(III) species. Addition of ethereal HCl to the 

crude mixture after reaction with acid chlorides yields the trichloride [Cp´TiCl3] 

(83%), which is the starting material for the synthesis of Cp´Ti(CH2SiMe3)3. In this 

way, a synthetic cycle is closed, in which N2 is converted into organic nitriles via 

reaction with H2 and acid chlorides with the possibility of catalyst recycling. 

Importantly, the system is independent of further reagents like strong reducing 

agents or bases. It is noteworthy, that the tetranitride analogue [(Cp´Ti)42(µ3-N)4], 

obtained by dehydrogenation of the diimide/dinitride complex, does not react with 

acid chlorides under the same reaction conditions. 

 

 

 

Scheme 24: Synthetic cycle for the 
transformation of  N2 and acid 
chlorides into nitriles promoted by 
Ti complexes. 
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Zirconium and Hafnium: The higher homologues of group 4 have not been observed 

to initially split N2, although N2 activation can be very strong in these complexes. 

Nevertheless, N2 cleavage has been achieved by functionalization of N2 complexes, e.g. 

by hydrogenation. Chirik and coworkers could demonstrate generation of side-on 

bridging N2 complex [(η5-C5Me4H)2Zr]2(µ-η2:η2-N2).[78] Unlike the end-on analogue 

with a slightly different ligand set (see chapter 4.3), which reacts with H2 under 

elimination of N2, the side-on complex is hydrogenated to form [(η5-C5Me4H)2ZrH]2(µ-

η2:η2-N2H2) (Scheme 25).[77]. H2 is subsequently split over the M-N bond under 

nitrogen reduction to generate the diazenido unit. The dihedral angle between the Zr 

moieties (θ = 64°) turned to be crucial as calculations predict no reaction with H2 at a 

dihedral angle of 0°. Only in the twisted confirmation, the HOMO is a π-symmetric 

orbital with NN antibonding character and a metal centered LUMO, which is well 

suited to accommodate a hydride ligand.[78] Heating the hydrogenated complex to 

more than 45°C results in H2 loss and N-N bond cleavage to form 

[(η5-C5Me4H)2Zr]2(µ-NH2)(µ-N), which can be treated with HCl to afford two 

equivalents of NH4Cl. Furthermore, ammonia can be generated in 10-15% yield by 

heating the diazenido complex to 85°C under H2 atmosphere 

 

The similar hafnocene N2 complex ((Me2Si(η5-C5Me4)(η5-C5H3-3-tBu)Zr)2(µ-η2:η2-N2) 

has been observed to react with CO to different products depending on the CO 

concentration (Scheme 26).[123] Stoichiometric CO addition results in N-N bond 

cleavage, N-C bond formation and activation of one C-H bond of the ancillary ligand. 

NH4Cl and HNCO can be liberated from the complex by addition of HCl. If 1 atm of CO 

is admitted to the dinitrogen complex, N-N bond cleavage is accompanied by C-N and 

C-C bond formation to a bridging oxamidide ligand (N2C2O2)4-. Protonolysis with 

excess HCl yields the respective mononuclear dichloride complex along with free 

oxamide H2NC(O)-C(O)NH2 in more than 90% yield. 

Scheme 25: Ammonia formation out of N2 and H2 mediated by a zirconocene 
complex. 
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6.3 Group 5 

Vanadium: The first example of vanadium mediated cleavage of N2 was reported in 

1995 by the group of Gambarotta. The mononuclear V(II) complex 

[(Me3Si)2N]V[CH2(SiMe2)N(SiMe3)](PMe3) was pressurized with 60 atm of H2.[124] 

Unexpectedly, a new compound was isolated in 45% yield which turned out to be a 

mixed-valent species with both a dinuclear vanadium cation and anion. The cation 

proved to be the trihydrogen bridged complex {[(Me3P)3V]2(µ-H)3}+ with the anion 

containing two bridging nitrides [{[(Me3Si)2N]2V}2(µ-N)2]- (Scheme 27, top). The 

origin of the nitrides was proposed to be N2, as no corresponding ligand 

decomposition products could be detected, but was not unambiguously confirmed. 

One year later, Gambarotta and coworker demonstrated the formation of a single-

nitride bridged divanadium complex presumably derived from N2.[125] In the reaction 

of TMEDA (tetramethylethylenediamine) with Li4[(oepg)VCl2] (oepg = 

octaethylporphyrinogen) a side-product formed, which was identified as 

[Li(tmeda)2]{[(oepg)VLi2]2(µ-N)} (Scheme 27, bottom) and isolated in up to 25% 

yield from the reaction mixture. The nitride is coordinated square planar to four 

lithiums and sandwiched between two V(oepg) moieties. A magnetic moment of µeff = 

2.85 µB was determined, which is significantly lower than expected for two V(III, d2) 

centers, accounting for magnetic coupling between these two metals over the nitride 

bridge. The source of the nitride seemed to be N2, but could not be proven definitely 

by labelling experiments. 

Scheme 26: Generation of N2 and CO derived oxamide or ammonia mediated by a hafnocene complex. 
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Gambarotta looked further into N2 activation with low valent vanadium complexes 

and reported formation of a stable end-on N2 bridged V(II)/V(II) complex.[126] 

Tripyrrolide starting compound [(MeTP)V(THF)] (MeTP = 2,5-{2-

[(C6H5)2C]pyrrole]2(N-Me-pyrrole)) exhibits two σ-interactions with the outer 

pyrrole rings and one π-interaction with the methylated pyrrole ring in the middle of 

the ligand (Scheme 28). The fourth coordination site is occupied by Lewis basic 

solvents. If the latter is extracted with a strong Lewis acid, N2 coordinates forming the 

dinuclear complex [(MeTP)V]2(µ-η1-η1-N2). By reduction with KC8.8 (1 equivalent per 

V) N2 cleavage is observed producing the nitride bridged species [(MeTP)V]2(µ-N) in 

52% isolated yield. Magnetic measurements are in accordance with V(III, d2)/V(IV, 

d1) oxidation states. Upon addition of aqueous HCl, 43% of ammonia could be 

collected. In contrast to Cloke´s vanadium system (see chapter 5.2), splitting is not 

achieved from V(II) but from a more reduced species. Another difference is that N2 is 

coordinated end-on, whereas in Cloke´s case DFT predict a side-on coordination.[115] 

The side-on mode might be hampered for steric reasons, allowing only for end-on 

coordination. Therefore, a more electron rich system might be needed to achieve 

splitting, as orbitals in the right symmetry to allow transition in σ-orbitals must be 

occupied. However, the mechanism is still unclear, since the splitting reaction from 

the dimer to the single-nitride bridged compound is unbalanced and the nature of 

possible side-products is unknown. 

 

 

Scheme 27: N2 splitting reactions promoted by vanadium complexes. 
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Reduction of vanadium(III) complex [(ONO)V(THF)] (ONO = 2,6-(3-tBu-5-Me-2-

OC6H2CH2)-4-tBu-(p-tolyl)NC6H4) with KH (2 equiv.) under N2 atmosphere resulted in 

the isolation of paramagnetic [{K(DME)}2{(ONO)V(μ-N)}]2 in 61% yield with 

concomitant formation of H2 (Scheme 29).[127] The N-N distance was found as 

2.550(3) Å, indicative for complete N-N bond scission. The complex is stabilized by 

four potassium ions and magnetic measurements are in accordance with a V(IV, d1) 

oxidation state for both vanadiums in the planar V2N2 core. Oxidation with 

benzoquinone generated the terminal vanadium(V) nitride [{K(DME)}{(ONO)-VN}]2. 

Regeneration of the bridging nitrides by reduction with KH was not successful, 

suggesting that V(V) nitride is no intermediate in the N2 splitting process. The authors 

propose V(I) being responsible for N2 splitting. However, this would imply a 

{MNNM}12π electronic configuration in contrast to what has been stated in chapter 

5.1, which rather points towards V(II). Furthermore, apparently the introduced alkali 

metals are mandatory to stabilize the structure. Generation of H2 during N2 splitting 

might be a consequence of these additional electrons and protons introduced by KH, 

which have to be released in order to obtain the right electronic configuration 

{MNNM}10π.  

Nitrogen atom transfer to CO or isonitriles was accomplished, generating isocyanate 

and carbodiimide complexes. C-N bond formation is accompanied by reduction of 

V(V) back to V(III). The isocyanate ligand can be replaced by addition of alkynes. In 

toluene solution, potassium isocyanate precipitates under quantitative formation of 

[(ONO)V(η2-MeCCMe)]. Regeneration of the starting material [(ONO)V(THF)] is 

possible by simply dissolving the complex in THF and removing the volatiles under 

vacuum. Therefore, a synthetic cycle comprising N2 splitting into nitrides, nitrogen 

atom transfer to CO, release of isocyanate and regeneration of the starting material is 

accomplished. 

Scheme 28: N2 Cleavage into bridging nitride by reduction of a V(II) N2 bridged complex and subsequent 
ammonia formation. 
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The group of Mindiola examined N2 activation with vanadium(II) in analogy to 

Cummins´ molybdenum(III) complex. [128] The complex (nacnac)V(ODiiP) (nacnac = 

[(2,6-iPr2C6H3)NC(CH3)]2CH; ODiiP = 2,6-di-iso-propylphenoxide) exhibits trigonal 

planar geometry around vanadium and SQUID data is consistent with a V(II, d3) high 

spin configuration. With N2 the end-on bridged, diamagnetic compound 

[(nacnac)(ODiiP)V]2(µ-η1-η1-N2) is formed, displaying significant N2 activation and 

two antiferromagnetically coupled V(III) centers. However, the complex turned out to 

be indefinitely stable at room temperature. Thermally and photochemically only 

liberation of N2 was observed under regeneration of the starting material (Scheme 

30). Reduction also failed to cleave the N2 bond. To gain more insights into why the 

vanadium dimer does not split N2, despite having the right geometry and electron 

configuration, DFT calculations have been carried out. The results show that N2 

cleavage from the dimer into terminal 

nitrides is thermodynamically and 

kinetically prohibited, due to weaker d-π* 

interactions in both the dimer and the 

nitride and a large enery barrier for 

structure distortions in the rigid ligand 

framework. To achieve a zigzag like 

structure and allow for transition between 

π and σ subspaces, structural changes are 

necessary, which are precluded by the 

chelating nacnac ligand. 

 

Scheme 29: Synthetic cycle for N2 to isocyanate conversion promoted by vanadium complexes. 

Scheme 30: Reversible formation of dinuclear N2 
bridged [(nacnac)(ODiiP)V]2(µ-η1-η1-N2). 
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Niobium: First N2 cleavage using niobium was reported for calix[4]arene systems. 

The dimer M2{[(p-tBu-calix[4]-(O)4)Nb]2(µ-η1-η1-N2)} was prepared from [{p-tBu-

calix-[4]-(O)4}2Nb2(µ-M)2] (M = Li, Na, K) containing a Nb(III)=Nb(III) double bond by 

simple addition of N2.[129,130] The bridging dinitrogen is considerably activated (d(NN) 

= 1.390(17) Å, υ(NN) = 1372 cm-1 for M = Na). Two electron reduction of the dimer 

using Na in THF results in N2 cleavage and formation of bis(µ-nitrido) species [{p-tBu-

calix[4]-(O)4}2Nb2(µ-N)2(µ-Na)2Na2], which turned out to be in solution in 

equilibrium with the terminal Nb(V) nitride Na2[{p-tBu-calix[4]-(O)4}NbN]. The role 

of the solvent was revealed to be crucial as in DME (dimethoxyeethane) another 

main-product was found, where the NN bond was retained and a Nb-Nb bond formed. 

In this [{p-tBu-calix[4]-(O)4}2Nb2(µ-η2-η2-N2)(µ-Na)3-Na] complex, dinitrogen is side-

on coordinated, stabilized by additional interactions with the sodium metals and 

preorganized to form the bridging nitrides. Heating of the latter consistently led to 

the bis(µ-nitrido) compound again. Formation of the side-on coordinated compound 

was attributed to a metal centered reduction and stabilization of this biradical by 

metal-metal bond formation. Thermally induced electron transfer from the metals to 

nitrogen, then cleaves the NN bond. If the reaction of the Nb=Nb starting material 

with N2 is carried out in toluene instead of DME or THF, no N2 bridged complex could 

be isolated but the formation of trinuclear nitride bridged [{p-tBu-calix[4]-

(O)4}3Nb3(µ-N)2Na3] is assumed, which breaks up upon addition of TMEDA into the 

bis(µ-nitrido) compound [{p-tBu-calix[4]-(O)4}2Nb2(µ-N)2{µ-Na2-(TMEDA)2}Na2] and 

the single nitride bridged species [{p-tBu-calix[4]-(O)4}2Nb2(µ-N)][Na(TMEDA)2].The 

different reaction mechanisms and products are attributed to different reaction rates 

in each solvent, which allows for fine tuning of the desired products.[130] 

Heterobimetallic N2 cleavage was demonstrated by the group of Cummins in 2000, 

comprising molybdenum and niobium triamido complexes. Nucleophilic reactivity at 

the β-nitrogen of [(N2)Mo(N[R]Ar)3]- has been demonstrated (see chapter 5.1).[87] 

Accordingly, reaction of NbCl(N[iPr]Ar)3 with [Na(THF)x][(N2)Mo(N[R]Ar)3] afforded 

neutral, paramagnetic N2 bridged complex (Ar[tBu]N)3Mo(µ-N2)Nb(N[iPr]Ar)3 

(Scheme 31).[131] One electron reduction yielded the known molybdenum(VI) nitride 

(Ar[tBu]N)3MoN and the isoelectronic terminal nitride [K(cryptand-

222)][(N)Nb(N[iPr]Ar)3]. Oxidation of the latter produced a niobazene cyclic trimer 

{(µ-N)Nb(N[iPr]Ar)2}3 in up to 41% yield. Interestingly, the trimer exhibits 2 different 

Nb-N bond length, one short (average d(NbN) = 1.791(7) Å) and one long (average 

d(NbN) = 2.004(6) Å), which are attributed to π-interactions with the amide lone 

pairs of the ancillary ligands. Importantly, Cummins and coworkers developed a 

synthetic cycle for N2 to nitrile conversion, similar to the homometallic molybdenum 

system, published shortly after.[110,132] Addition of [(N2)Mo(N[R]Ar)3]- to the 

niobium(IV) compound Nb(OTf)(N[Np]Ar)3 (Np = neopentyl) affords the 

heterodinuclear complex (Ar[Np]N)3Nb(µ-N2)Mo(N[tBu]Ar)3, which splits N2 upon 1 

electron reduction to the respective terminal nitrides. In a methathetical N for OCl 
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exchange, addition of acyl chlorides RC(O)Cl generates nitriles RCN, NaCl and the 

niobium(V)-oxo complex Nb(O)(N[Np]Ar)3. By addition of trifluoromethanesulfonic 

anhydride (Tf2O), the oxo-group is converted into triflate (OTf), generating 

Nb(OTf)2(N[Np]Ar)3. The latter can be reduced with CoCp2 to the starting compound 

Nb(OTf)(N[Np]Ar)3.[132] By ligand modification an acylimido complex could be 

trapped, which converts into the oxo-complex upon heating. Therefore acylimido 

complexes are implicated as intermediates in nitrile generation. A variety of nitriles 

can be synthesized in high yield, providing the opportunity of selective, atom-efficient 
15N-labelling employing 15N2. 

 

 

The niobium(III) compound [P2N2]NbCl (P2N2 = PhP(CH2SiMe2NSiMe2CH2)2PPh) can 

be reduced under N2 atmosphere to afford paramagnetic dinuclear {[P2N2]Nb}2(µ-η1-

η1-N2) (Scheme 32).[133] Magnetic measurements reveal the existence of two 

antiferromagnetically coupled Nb(IV, d1) centers and therefore a [N2]4- bridge. 

Consistently, protonation of the dimer with HNMe3Cl yields hydrazine in 62% yield. 

Heating of the dimer at 110°C for 12 h results in formation of a new paramagnetic 

compound, which was identified as single nitride bridged dinuclear complex. The 

second nitrogen of the N2 unit was observed to insert into the ligand backbone giving 

[PN3]Nb-(µ-N)-Nb[P2N2] ([PN3] = PhPMe(CHSiMe2NSiMe2CH2P(Ph)-

CH2SiMe2NSiMe2N)). Magnetic examinations as well as crystallographic data support 

disproportionation of the two Nb centers into a Nb(III, d2)/Nb(V, d0) couple with S = 

1. 

Scheme 31: Synthetic cycle for N2 to organonitrile conversion mediated by a heterobimetallic Nb/Mo system. 
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The mechanism of the splitting reaction is proposed to proceed via initial nitride 

formation. Phosphine attack at the nitride allows for P-N bond formation. Subsequent 

insertion of the nitride into the C-Si bond results in N-Si bond formation and transfer 

of the methylene group to the phosphorous. The resulting phosphamethylene is then 

protonated from an adjacent CH2 group. However, the {MNNM}8π, 2δ unit is not in 

agreement with the electronic configuration for NN splitting stated in chapter 5. The 

complex may be destabilized by the two strong π-donors in the ligand backbone, 

opening the possibility of induced NN splitting by phosphine attack at one nitrogen. 

Following DFT studies compared Fryzuk´s Nb system with Cummins´ Mo system.[134] 

In contrast to the latter, N2 cleavage was calculated to be largely endothermic from 

the Nb-N2-Nb dimer to terminal nitrides, whereas formation of the single bridging 

nitride was found exothermic. The ligand constraints in the [P2N2] were observed to 

have a dramatic effect on the overall reaction enthalpy, but especially on the N2 

cleavage step. Allowing the ligands to relax, revealed rotation of the amides about 

90°C in a way that they lie in plane with the Nb-N bond. In this way the product 

nitride was found significantly lower in energy. Additionally, the exchange of the PR3 

groups by NR3 groups were found to similarly increase the exothermicity of the 

reaction, as the resulting nitride would be considerably more stabilized with more 

electronegative and stronger bonding amine ligands. 

In 2002, the group of Kawaguchi demonstrated N2 cleavage by reduction of a Nb(V) 

dimer.[135] The complex [Nb(tBu-L)Cl2]2 with tridentate aryloxide ligands was reduced 

with 6 equivalent LiHBEt3 and formation of the bis(µ-nitrido) complex [{Nb(tBu-L)(µ-

N)Li(thf)}2] was observed in 41% yield. As reduction under argon afforded a bridging 

hydride complex, dinitrogen splitting was considered to proceed via such an 

intermediate under H2 elimination. This assumption was supported when in 2007 a 

(µ-H)4 complex was isolated.[136] HNEt3([O3]NbCl3) (H3[O3] = tris(3,5-di-tert-butyl-2-

hydroxyphenyl)methane) can be reduced with 4 equivalents of LiHBEt3 to generate 

K2{([O3]Nb)2(µ-H)4} under reduction of Nb(V, d0) to Nb(IV, d1). The small Nb-Nb 

distance in the crystal structure indicates a metal-metal bond, accounting for the 

observed diamagnetism of this species. Interestingly, although rather high valent, the 

complex reacts with N2 under H2 elimination and N-N bond cleavage to the bis(µ-

nitrido) complex K2{([O3]Nb)2(µ-N)2} (Scheme 33). Four of the six electrons needed 

Scheme 32: N2 cleavage into a bridging nitride under insertion of one nitrogen in the M-P bond. 
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for N2 splitting have been stored in the hydride ligands and two in the metal-metal 

bond, allowing for splitting without further reagents. Addition of 2,6-lutidinium 

chloride results in formation of ammonia in 61% yield under formation of the 

chloride complex ([O3]NbCl3)-.[137] The latter can be recycled to hydrido complex 

K2{([O3]Nb)2(µ-H)4} with KHBEt3, thus generating a synthetic cycle for conversion of 

N2 into NH3. 

 
C-N bond formation was demonstrated by addition of methyl iodide (MeI) (Scheme 

34). Whereas one bridging nitride is readily methylated, methylation of the second 

needs prolonged heating yielding neutral ([O3]Nb)2(µ-NMe)2 after 5d at 60°C.[136] 

Cleavage into monomers is accomplished by addition of a Lewis base: Addition of 

pyridine (py) generates the mononuclear imido complex [O3]Nb(NMe)(py)2.[137] 

Whereas the bridging nitride species does not react with CO2, presumably because of 

low nucleophilicity and large steric bulk, a reaction of the mononuclear imido 

complex and CO2 is observed generating a mixture of ureate complex 

[O3]Nb[(NMe)2CO](py) and dinuclear bis(µ-oxo) {[O3]Nb}2(µ-O)2 in a 2:1 ratio. The 

reaction is proposed to proceed via initial [2+2] addition of CO2 with subsequent 

extrusion of isocyanate MeNCO and formation of an oxo complex, which then 

dimerizes. Isocyanate is reacting with another imido complex to form the observed 

ureate complex. However, no intermediates or free MeNCO could be detected. 

Liberation of the carbodiimide out of the product has not been shown yet. 

Scheme 33: Synthetic cycle for N2 derived ammonia formation mediated by a Nb triaryloxide complex. 
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The group of Mindiola recently demonstrated N2 splitting starting from Nb(IV) and 

Nb(V) aryloxide complexes under reducing conditions.[138] 4 electron reduction of 

dinuclear complex [(ArO)2Nb(µ-Cl)Cl2]2 (ArO =  2,6-bis(diphenylmethyl)-4-tert-

butylphenoxide) yields the Nb(III) compound K3[(ArO)4Nb2(µ-Cl)3Cl2], which is stable 

towards dinitrogen (Scheme 35). Two electron reduction yields Nb(IV) complex 

[trans-(ArO)2NbCl2(THF)2]. Four electron reduction of the latter or direct six electron 

reduction of the dinuclear starting material readily affords the bis(µ-nitrido) complex 

[(ArO)2Nb]2(µ-N)2 at room temperature. Further reduction is possible yielding 

anionic K[(ArO)2Nb]2(µ-N)2, which can in turn again be oxidized to the neutral form. 

Addition of anhydrous HCl (ex.) to both nitrido complexes led to formation of NH4Cl. 

However, a synthetic cycle was not possible, as also the aryloxide ligands are 

protonated and dissociate. Since the chloride bridged Nb(III) complex does not react 

with N2, the authors conclude that bridging chlorides or metal-metal bonds prevent 

reactions with N2. 

 

 

 

 

 

 

 

 

Scheme 34: Functionalization of N2 derived bis(µ-nitrido) Nb complex with MeI. 

Scheme 35: Reduction of a Nb(V) dimer with different reducing 
equivalents. 
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Tantalum: Storage of reducing equivalents for N2 in the form of hydrides has been 

well examined with tantalum complexes. Fryzuk and coworkers demonstrated that 

dinuclear Ta(IV) hydride complex {[NPN]Ta}2(µ-H)4 ([NPN] = PhP(CH2SiMe2NPh)2) 

reacts with N2 to partially release H2 and to produce dinitrogen compound 

{[NPN]Ta}(µ-H)2(µ-η2-η1-N2) with N2 being bound side-on end-on.[81] Subsequent 

treatment with boranes[139], silanes[140–142], aluminum or zirconium hydrides[143,144] or 

with 1,2-cumulenes[145] led to cleavage of the dinitrogen bond. 

A surface organometallic approach for N2 functionalization is examined in the group 

of Quadrelli. Ta(III) and Ta(V) hydrides are grafted on a silica surface and exhibit 

thermal robustness without dimerization or sintering, preserving the molecular site 

isolation and environment of homogenous complexes. These silica supported 

complexes [(≡SiO)2TaHx] (x = 1, 3) not only activate ammonia or hydrazine, but also 

N2.[146–148] The reaction with N2 produces imido-amido-tantalum(V) 

[(≡SiO)2Ta(=NH)(NH2)] at 250°C under atmospheric pressure of H2.[146] DFT 

calculations reveal that tantalum always stays in its high oxidation state and 

dinitrogen is reduced by hydride transfers or reduction with H2, which is the source 

of protons and electrons.[149] 

The group of Sita examined all group 5 metals in the Cp*am ligand framework 

towards reactions with N2.[63] They discovered, that reduction of the vanadium(III) 

precursor Cp*amVCl under N2 leads to thermally robust dinuclear [Cp*amV](µ-η1-η1-

N2). Similar to Mindiola´s experiments (see above) N2 cleavage did not seem to be 

possible and only replacement of N2 with isonitriles was observed. End-on N2 bridged 

complexes with niobium[63] and tantalum[61] were also synthesized and these display 

significantly stronger N2 activation (see Table 1). The stability of the dimers strongly 

depends on the substituents of the amidinate ligand with bigger substituents like 

phenyl, producing the most stable complexes. Small ligand substituents like methyl 

and/or temperatures above 0°C afford the respective bis(µ-nitrido) complexes, thus 

thermal cleavage of the N-N bond (Scheme 36). The niobium N2 complexes turned out 

to be the least stable, cleaving directly into the dinuclear nitride species with methyl 

substituted amidinate. Kinetic measurements suggest that the energy barrier for N2 

cleavage with niobium is significantly smaller as for the tantalum analogue and 

sterically demanding substituents stabilize the N2 complex kinetically. The 

mechanism is likely to proceed via side-on coordinated N2 as it has been proposed for 

Floriani´s[130] and Fryzuk´s[133] niobium complexes and by theoretical 

investigations.[94,150] As intermediate mononuclear nitrides could not be ruled out, 

additional experiments were performed by isotopic labelling.[63] Kinetic isotope 

effects as well as crossover experiments support side-on configuration. In addition, 

treatment of the tantalum end-on bridged N2 complex with N2O generated side-on 

bound N2 and a bridging oxo [Cp*amTa]2(µ-η2-η2-N2)(µ-O), confirming that this 

coordination mode is possible with Ta(V). Functionalization of the tantalum nitride 

could be achieved in terms of N-Si bond formation with silanes.[61] No reaction of the 
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nitride with H2 could be observed and DFT calculations show a large energy barrier 

as well as high endothermicity for this hydrogenation.[150] 

 

 

6.4 Group 6 

Thermal N2 cleavage promoted by molybdenum 

Molybdenum complexes are very well studied in N2 activation chemistry, not only 

because Mo has been found in the cofactor of the nitrogenase, but also because of the 

aforementioned first defined N2 splitting of Cummins. In 2012, the group of Schrock 

achieved full N2 cleavage in terminal nitrides by employing a Mo(III) complex with 

POCOP pincer ligand (POCOP = 2,6-[OP(tBu)2]2C6H3).[151] Reduction of (POCOP)MoI2 

with Na/Hg and 15-crown-5 under N2 atmosphere produces [Na(15-crown-

5)][(POCOP)Mo(N)(I)] (Scheme 37). The Mo≡N bond length is comparable with 

Cummins Mo(VI) nitrido complex (d(MoN) = 1.659(2) Å and d(MoN) = 1.651(4) Å 

respectively). Schrock´s nitride however is in accordance with a Mo(IV) low spin 

formulation. The splitting mechanism has not been examined in detail, but it has been 

proposed to proceed via a (µ-η1:η1-N2) bridged dimer analogous to Cummins system, 

which then splits into a Mo(V) nitride which is subsequently reduced to the observed 

anionic Mo(IV) nitride. Alternatively, presumably formed Mo(II)-N2-Mo(II) dimer is 

first reduced by two electrons and cleaves thereupon. The last assumption would be 

supported by molecular orbital considerations in analogy to Cummins system. In both 

cases the starting compounds are isoelectronic Mo(III) complexes, but in Schrock´s 

system, the complex is in a fourfold geometry. In a MO scheme of the dimer, this 

results in two additional δ-orbitals. To reach the same {MNNM}10π electron 

configuration as in Cummins dimer, there is need for 4 additional electrons (2 per 

molybdenum) consistent with experimental data. Another driving force for the N-N 

bond cleavage would then be the electronic repulsion between the two negatively 

charged molybdenum units. 

Protonation of the nitrido complex with [Et3NH][BArF4] leads to formation of a 

neutral species, in which the proton bridges between the Mo and one P atom. Since 

Scheme 36: Reduction of Nb or Ta complexes to produce end-on bridging N2 dinuclear dimers which thermally 
cleave the N-N bond and functionalization of the resulting nitrides with silanes. 
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the nitride could not be protonated, catalytic ammonia formation seemed 

unpromising. So it was not surprising, that under Nishibayahshi´s conditions [36] only 

0.34 equivalents and under Schrock´s catalysis conditions [31] 0.30 equivalents of 

ammonia were detected. 

 

 

Recently, the group of Mézailles reported N2 splitting by 2 electron reduction of a 

Mo(III) complex with PPP pincer ligand (PPhP2Cy)MoCl3 in the presence of NaI under 

N2 atmosphere.[152] An analogous mechanism to Schrock´s system has been proposed 

and the terminal nitride [(PPhP2Cy)Mo(N)(I)] was observed in 80% spectroscopic and 

60% isolated yield (Scheme 38). An intermediate Mo(I) dimer is in agreement with a 

{MNNM}10π4δ electronic configuration as it may be involved in Schrock´s example. The 

respective η1-η1-N2-bridged Mo(0) ({MNNM}12π4δ) compound with additional end-on 

coordinated N2 [(PPhP2Cy)Mo(N2)2(µ-N2)Mo(N2)2(PPhP2Cy)] was reported earlier and 

did not result in N2 splitting into nitrides.[153] 

 

Scheme 38: 2 electron reduction of (PPP)MoCl3 yielding the terminal nitride (PPP)Mo(N)(I). 

The terminal nitride could be functionalized by addition of silanes under N-Si bond 

formation. Importantly, the use of bis(silanes) enables a second intramolecular Si-H 

insertion and generates free bis(silyl)amine and a molybdenum(II) hydride (Scheme 

39). The latter could not be characterized yet, however reduction to Mo(II) could be 

verified by addition of PMe3 and resulted in the isolation of 

[(PPhP2Cy)Mo(H)(I)(PMe3)]. Regeneration of the Mo(I) species to close a synthetic or 

even catalytic cycle could not be accomplished so far, but represents an intriguing 

approach. Removal of one H-atom would generate the Mo(I) species required for N2 

splitting without the need of strong reducing agents. 

Scheme 37: N2 Cleavage and subsequent protonation of the formed terminal nitride with Schrock´s 
{(POCOP)Mo} system. 
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Scheme 39: Functionalization of a N2 derived terminal nitride with bis(silanes). 

 

N2 cleavage by photolysis promoted by molybdenum and tungsten 

First photoinduced N2 splitting was demonstrated by the group of Floriani in 2001. 

Exposure of thermally stable [(Mes)3Mo]2(µ-η1-η1-N2) to UV light (λ = 365.0 nm) 

produces the single nitrogen bridged compound [(Mes)3Mo]2(µ-N). Floriani proposes 

a mechanism that consists of initial light induced N2 splitting into monomeric nitrides, 

which then act as a Lewis base and react with excess starting material to form a 

transient tetranuclear [Mo-N-Mo-N-N-Mo-N-Mo] species. This compound loses N2 and 

forms the observed bridging nitride (Scheme 40). In agreement with a {MNM}7π 

system leading to a doublet spin state, the isolated compound is paramagnetic with 

µeff = 1.68 µB. The linear M-N-M core (179.1(3)°) displays M-N bond distances 

(d(MoN) = 1.952(5) and 1.936(5) Å) which are significantly longer than in similar 

[L3Mo]2(µ-N) compounds.[90,92,93] An alternative mechanism is proposed by Cummins, 

who could demonstrate N-N and M-N cleavage being in competition. Coupling of 

intermediate terminal nitride with (Mes)3Mo would also generate the observed 

nitrogen bridged species.[85] 

 

 

In 2014, the groups of Nishibayashi and Yoshizawa published an end-on N2 bridged 

dimer supported by a ferrocenyldiphosphine ligand, which cleaves N2 under visible 

light irradiation at room temperature into the corresponding terminal nitrides. 

Moreover, the nitrides can be oxidized to reform the N-N bond and to produce an N2 

bridged dimer again.[154,155] The dinuclear monocationic complex 

[{Mo(depf)(Cp*)}2(µ-η1-η1-N2)][BArF4] (depf = 1,1’-bis(diethylphosphino)ferrocene) 

can either be oxidized to the dicationic compound or reduced to the neutral dimer 

(Scheme 41). As in the case of Cummins isolated N2 bridged dimers (Figure 12), the 

Scheme 40: N2 cleavage by photolysis of N2 bridged dimer [(Mes)3Mo]2(µ-η1-η1-N2) as proposed by 
Floriani. 
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neutral complex exhibits the lowest N2 activation and longest Mo-N bond distances 

(d(MoN) = 1.955(4) Å). With increasing positive charge, N2 activation becomes larger 

(d(NN) = 1.226(4) Å for the cation, not depicted in Scheme 41). However, only the 

neutral complex contains a {MNNM}10π system stated necessary for splitting. 

Consistently, only the neutral complex cleaves the N-N bond, not thermally though, 

but upon photochemical excitation (580 nm > λ > 400 nm) to form the corresponding 

Mo(IV) terminal nitrides. Simulated UV/Vis spectra and electron density difference 

maps point out loss of electron density for a transition around 500 nm, which could 

therefore be responsible for the cleavage of the bridging N2. Oxidation of the nitride 

leads to dimerization to the dicationic N2-bridged complex [{Mo(depf)(Cp*)}2(µ-η1-

η1-N2)][BArF4]2 (A). Coupling of nitrides is usually observed for late transition metals. 

For rhodium and iridium nitrides a nitridyl radical M=N· is proposed as key reactive 

intermediate with spin density being almost equally distributed over the M-N 

unit.[156,157] In contrast, nearly no spin density on the nitrogen could be found by DFT 

calculations for the molybdenum system. If oxidation is carried out in the presence of 

cyclohexadiene though, a mixture of the dicationic dimer and the cationic Mo(IV) 

imide results (B), demonstrating hydrogen atom abstraction still being possible. In 

the presence of a proton source, the same products are observed with concomitant 

generation of H2. Besides, 0.37 equivalents of ammonia could be detected by reaction 

with excess CoCp2* and [LutH][BArF4] under argon. 

 

 
 

Scheme 41: N2 cleavage and functionalization mediated by a {Mo(depf)(Cp*)} complex. 
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Sita and coworkers demonstrated formation of end-on coordinated N2 bridged 

dinuclear molybdenum and tungsten complexes bearing Cp* and amidinate 

ligands.[62] These complexes exhibit a {MNNM}8π, 4δ unit and proved to be thermally 

stable. Exposure to irradiation however, results in splitting of the N-N bond.[158] In the 

case of molybdenum two products were identified, a bis(µ-nitrido) complex 

[Cp*amMo]2(µ-N)2 with formal Mo(V, d1), Mo(V, d1) centers and a single nitrogen 

bridged species [Cp*amMo]2(µ-N) with formal Mo(III, d3), Mo(IV, d2) centers (Scheme 

42). 

 

 

These findings are consistent with the reported observation of both N2 cleavage and 

N2 extrusion upon photolysis of N2-bridged dinuclear complexes as described earlier 

(see chapter 5.1).[85,99] For the corresponding tungsten analogues, only the bis(µ-

nitrido) complex were found. These react with R3ECl (R3E = Me3Si, Ph3Si, Me3Ge, 

Me3C) to produce a 1:1 mixture of the mononuclear nitride-chloride complex 

Cp*amM(N)(Cl) and the functionalized imido complexes Cp*amM(N-ER3). The 

mechanism is thought to proceed via chloride-atom abstraction and capture of the so 

formed ECl3 radical to give two mononuclear species. Interestingly, combination of 

the photochemical N2 cleavage with the functionalization in a one pot reaction yielded 

solely the imido complex and the dichloride Cp*amMCl2 in a 2:1 ratio. Since reaction 

of the imido complexes with CO to liberate isocyanates under formation of a bis-CO 

complex had been shown before, N2 derived nitrogen group transfer is possible with 

isocyanate yields up to 64%.[158,159] The bis-carbonyl complexes is converted to the 

respective dichlorides by reaction with CO2 and Me3SiCl. The dichloride complexes 

can be reduced under N2 atmosphere with sodium to yield the N2-bridged dinuclear 

compounds again.[62] In this way, a synthetic cycle can be closed for transformation of 

N2 into isocyanates. To simplify this multistep cycle, Sita and coworkers worked out a 

more efficient path (Scheme 43). Reaction of the imido complexes with CO2 (1.4 - 4.8 

bar) and excess Me3SiCl produces directly the dichloride together with free 

isocyanate. Here, simultaneous nitrogen group and oxygen atom transfer takes place. 

The whole N2 fixation reaction in one pot yielded up to 82% of recovered starting 

Scheme 42: N2 cleavage in µ-nitrido and complexes and bis(µ-nitrido) complexes and functionalization of 
the latter with electrophiles. 



6. Initial N2-splitting along the periodic table 

48 

 

material after one cycle, providing a highly efficient platform and an excellent starting 

point for catalytic N2 functionalization. 

 

Scheme 43: Synthetic cycle for N2 to isocyanate conversion by Sita. 

 

Chromium: An evalution of the group of Schrock in 2006 pointed out, that N2 

activation with chromium is more difficult compared to molybdenum especially 

attributed to the low lying high spin states and the weak reduction potential of Cr(III) 

compounds.[160] In addition, DFT calculation in the group of Stranger predict N2-

splitting with Cr(III) in a triamido ligand system to be unlikely due to thermodynamic 

reasons.[97] In 2007 however, the first example of N2 cleavage mediated by a well-

defined chromium complex was reported by the groups of Budzelaar and 

Gambarotta.[161] Reduction of N2 bridged dichromium complexes with 

diiminepyridine ligands {[{2,6-[2,6-(iPr)2PhN=C(CH3)]2(C5H3N)}Cr(THF)]2(µ-η1-η1-

N2) with 2 equivalents of NaH lead to a species with a bridging NNH unit. The N-N 

bond was elongated but still intact and the hydrogen stemmed from one of the methyl 

groups in the diimine ligand transferred in a formal hydrogen atom abstraction from 

carbon to the N2 unit. Treatment with an additional equivalent of NaH, splits the N-N 

bond and forms an anionic chromium imide. Ammonia could be collected in 87% 

yield after addition of aqueous HCl and further workup. Another example of ammonia 

formation mediated by chromium N2 complexes was reported by the group of Mock 

upon addition of several equivalents of acid to a formal chromium(0) bis(η1-N2) 

complex.[162] However, ammonia was only a side-product with the main product 

being hydrazine.  

 

6.5 Group 7 

For transition metals of group 7, no initial N2 cleavage has been observed until the 

start of this PhD thesis in 2013, although nitrides are well-known.[105] For manganese, 
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dinitrogen coordination and even its functionalization into azomethane has been 

reported, however the N-N bond has not been cleaved.[163] 

 

6.6 Group 8 

Iron: Iron is together with molybdenum the most studied metal for dinitrogen 

activation, as both are present in the active site of the nitrogenase and iron surfaces 

are used as catalysts in the Haber Bosch process. Accordingly, there have been 

published many dinitrogen complexes of iron and formation of ammonia with such 

complexes is not unknown, however these complexes and/or their mechanisms are 

often rather ill-defined and yields are low.[46,164–167] Iron nitrides are also known and 

exhibit interesting reactivity. Ammonia formation by hydrogen atom transfer has 

been reported and even electrophilic character of iron nitrides by reactions with CO 

or isonitriles has been shown, pointing towards an intriguing path towards nitrogen 

functionalization into organic compounds.[168,169] Nevertheless, iron dinitrogen 

complexes have not been reported to cleave into defined nitrides until 2011. Holland 

and coworkers reported a multinuclear iron potassium complex with N2-derived 

bridging nitride units.[170] The authors started their investigations using bulky, low 

coordinate iron(II) chloro complexes as starting materials, which are depending on 

their steric demand either mono- or dinuclear. Two electron reduction of the 

mononuclear β-diketiminate complex LFeCl (L = HC[C(tBu)N(2,6-iPr2C6H3)]2) yields 

dinuclear N2 bridged K2[LFeNNFeL], where dinitrogen is end-on bridging two iron 

centers and side-on to two potassium ions.[171] N2 is relatively strongly activated for a 

formally iron(0) compound (d(NN) = 1.23 Å, υ(NN) = 1589 cm-1).[164,166] Decreasing 

the steric bulk by using a methyl substituted diketiminate ligand led to the isolation 

of a compound containing 2 potassium, 4 iron, 2 chloride atoms together with two 

bridging nitrides (Scheme 44).[170] The N-N distance of 2.799(2) Å accounts for 

complete scission of the bond. The rather complicated structure involves one nitride 

bridging three iron centers and the other nitride bridging two irons and to 

potassiums. Each potassium interacts with two chlorides, which are connected to the 

fourth iron. NMR studies suggest that the structure is also held in solution. Mössbauer 

spectra reveal the existence of two high-spin Fe(II) and two high-spin Fe(III) centers, 

which is in agreement with a 6 electron reduction of N2 by four formal Fe(I) formed 

by reduction of the Fe(II) precursor. The participation of four iron centers for N2 

reduction avoids the formation of high oxidation states and five Fe-N bonds provide a 

driving force for the reaction. Theoretical investigations indicate that initial formation 

of a FeNNFe core is followed by coordination of a third Fe(I) complex in a side-on 

mode, which is only possible if the steric demand of the ligands allows such a 

conformation. After rearrangement to a side-on / side-on / end-on conformation, the 

fourth iron coordinates and enables N-N cleavage. These investigations also point out 
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the importance of an alkali metal for stabilization of the resulting nitride.[172] 

Following research revealed that apparently the right number and size of the alkali 

metals influences the N-N splitting reaction. Too many alkali metals introduced by 

over-reduction or too big alkali metals like caesium have been found to inhibit N-N 

cleavage, presumably because they cannot hold the right geometry of the Fe3(N2) unit 

necessary for splitting.[173] Addition of 100 equivalents of anhydrous HCl gave 

ammonia in 82 ± 4 % yield, demonstrating the nucleophilic reactivity of the nitrides. 

Unfortunately, the complex degrades under these conditions what imposes 

difficulties to a catalytic application.[167,170] The bis(µ-N) complex is reported to 

degrade slowly in benzene solution at room temperature with the main 

decomposition product being a LFe(benzene) complex.[174] Therefore, coupling of the 

nitrides back to N2 was assumed. Addition of strong π-acceptor ligands like isonitriles 

or CO supports this assumption as they stabilize the resulting Fe(I) species LFe(L´)3 

(L´ = CO, CNAr) under release of N2. These results demonstrate that the system can 

both cleave and form the N-N bond without thermodynamic sinks which are often a 

problem in nitride chemistry. 

 

Murray and coworkers used the multimetal cooperative approach to design a 

triiron(II) complex, which is reported to cleave dinitrogen after reduction with KC8 

under N2 atmosphere.[175] The three iron centers in the main product were found to 

bridge through three NHx functions. Mössbauer spectra show the presence of mixed-

valent triiron (II/II/III) centers in the resulting complexes. Since there are three 

nitrogen atoms per cluster, intra- and inter-complex cooperativity is assumed for the 

N2 splitting process. The origin of the hydrogens in the bridging NHx moieties could 

not be determined so far. Reaction in silylated glassware, deuterium labelling 

experiments and addition of compounds with weak C-H bonds (9,10-

dihydroanthracene) did not give any satisfactory results. Upon addition of HCl about 

30% of ammonia could be detected, indicating that only one of three nitrogen units 

can be liberated in this way. 

 

 

Scheme 44: N2 cleavage and ammonia formation mediated by a dinuclear iron compound. 
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Ruthenium: Despite many ruthenium N2 complexes, cleavage of the N≡N bond has 

not been observed so far. Ruthenium nitrides on the other hand are well-known and 

even reported to react with H2 to form ammonia.[176] Nevertheless, ruthenium 

dinitrogen complexes show only minor N2 activation and N-N bond splitting in 

defined complexes has only been reported for the reaction of ruthenium hydride 

complexes with hydrazine.[177,178] DFT calculations however, suggest ruthenium 

pincer complexes to be the most promising of the group 8 metals concerning NH3 

formation from N2 and H2.[179] 

 

Osmium: Osmium dinitrogen complexes have not been shown to cleave N2 in the 

electronic ground state so far. Vogler and coworkers demonstrated however N2 

cleavage from the mixed valent Os(II)/Os(III) complex {[(NH3)5Os](µ-η1-η1-N2)}5+ by 

irradiation in aqueous solution.[180] Formation of the osmium(VI) nitride 

[OsVI(NH3)4N]3+ was stated by comparison of UV/Vis and excitation spectra. Another 

product was identified as [OsIII(NH3)4(H2O)]3+. Disproportionation of the unstable 

osmium(V) nitride [OsV(NH3)4N]2+ as intermediate after N2 cleavage is assumed. 

Consistently, in the presence of oxygen as oxidant the yield in Os(VI) nitride product 

was enhanced. Striking is the presumed protonation of intermediate [OsIV(NH3)4N]+ 

to release ammonia and form the observed aqua-complex. The presence of OsII turned 

out to be crucial as by irradiation of the Os(III)/Os(III) dinitrogen bridged complex in 

a qualitative experiment only vigorous evolution of N2 was observed. The higher 

energy of metal to ligand charge transfer (MLCT) for OsIII compounds was attributed 

to this observation. Irradiation of the mixed-valent species in the presence of OCl2 

yielded a new species, which was identified as [Os(NH3)5NO]3+ and represents 

unusual oxidative N2 cleavage.[181]  
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7 Scope of this work 

 

Several examples for transition metal (TM) mediated inital N2 splitting were 

described in the previous chapter. However, defined systems for full 6 electron 

reduction of N2 into nitrides still remain scarce. The formation of strong M-N bonds in 

order to overcome the large N2 dissociation energy is a prerequisite, accordingly 

examples are reported commonly for early transition metals until group 6.. As the 

bond dissociation energies (BDEs) for diatomic [M≡N]+  decrease along the TM series 

(M = Ti−Cu), N2 cleavage into nitrides is favored with these systems.[182] However, the 

main disadvantage of these formed terminal nitrides is their stability and inertness 

towards N-centered functionalizations due to the aforementioned strong M≡N bonds. 

Even if such functionalizations are achieved, the availability of empty d-orbitals 

caused by high oxidation states strengthens the resulting M-NRx bond and liberation 

of the functionalized nitrogen containing moiety is subject to significant kinetic and 

thermodynamic barriers.[14] 

By going to the right in the periodic table, more electron rich complexes are 

generated and population of M-N π* orbitals disfavors multiple bonded nitrogen. Low 

valent late transition metal terminal nitrides are challenging to synthesize and only 

few examples for such complexes are reported, employing iron,[183–187] 

ruthenium,[176,188] osmium,[189] rhodium[157,190] and iridium,[156,191] albeit not from 

N2.[14] 

Aim of this thesis is combining strong M≡N BDE and thus enabling N2 cleavage with 

mid to late transition metal nitride reactivity observed for electron rich complexes. 

Rhenium as group 7 element accounts for the metal of choice. N2 splitting into 

nitrides, their functionalization and finally the liberation of nitrogen-containing 

compounds on the same metal platform represents the central goal.  

As described in chapter 5, prerequisite for N2 cleavage is an {MNNM}10π entity, which 

affords a low valent rhenium species as stable precursor for N2 activation. Furthermore, the 

complex must allow for N2 coordination, i.e. by offering a vacant coordination site. 

Flexible platforms for stabilizing various oxidation states have been successfully 

demonstrated by the Schneider group with the PNP pincer ligand of two phosphine and one 

amide donor bridged by an ethylene backbone prone to further amide donor fine tuning by 

ligand oxidation. By variations of the ligand such as reduction of steric bulk on 

phosphorous or decreasing the amides π-donor strength upon backbone oxidation, 

the splitting process can be examined in more detail to get more insights about the 

requirements and steric and electronic influences. 
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With the nitride in hand, functionalization experiments and reactivity studies will be 

executed. Rhenium nitrides usually react nucleophilic,[105] however electrophilic 

reactivity cannot be excluded. The aim of all functionalization reactions is to extrude 

the nitrogen containing moiety in order to convert N2 into chemically more valuable 

compounds. Standard experiments comprise protolysis or hydrogenation reactions to 

liberate ammonia. As described in chapter 1, about one-fifth of all NH3 produced in 

the Haber-Bosch process is used for organic molecules.[11,12] In this regard, N2 is 

reduced to NH3 in a tremendously energy extensive process, which then needs to be 

reacted in a second step with organic compounds, like alkenes. Therefore, using N2 

directly as NH3 surrogate under ambient conditions is an appealing goal. Especially 

organic nitriles represent an attractive synthetic target, as the conversion of N2 to 

RCN conserves the high energy triple bond. Therefore, the high energy demand for 

the cleavage of the strong N≡N bond (941 kJmol-1) can be offset by the formation of 

strong C≡N bonds (D0(HC≡N) = 937 kJmol-1) in a “triple bond metathesis”, rendering 

this reaction thermodynamically feasible.[111]. Besides, generation of amines by 

hydrogenation of an alkylimido complex represents an interesting target reaction. 

Therefore, C-N bond formation will be focused. The formed imido complexes must be 

characterized and transformed into amines by hydrogenation or to nitriles. Possible 

strategies for the latter reaction type have been demonstrated by Cummins and 

Tuczek.[110,112,132,192] Envisaged is not only the extrusion of the formed nitrile, but also 

the recovery of the starting material to close a synthetic cycle. Such a cycle 

comprising N2 splitting, functionalization and liberation of N-containing molecules 

represents the final goal of all efforts. 
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1 Re(III) starting platform 

 

 

1.1 (PNPtBu)ReCl2 

 

Parts of this chapter were published in the Journal of the American Chemical Society 

under the title: “Dinitrogen Splitting and Functionalization in the Coordination Sphere 

of Rhenium” in 2014.[193] 

 

Precursor for the (PNP)Re(III) platform is the Re(V) complex Re(O)(Cl)3(PPh3)2 (1), 

which can easily be prepared from commercially available Re2O7 or KReO4.[194] 

Reduction of these oxo-complexes with excess PPh3 in the presence of acetonitrile 

leads to the Re(III) precursor Re(Cl)3(PPh3)2(NCMe) (2).[195] As ligand, the PNP pincer 

bridged by ethylene groups with tert-butyl substituents on the phosphorous atoms 

was chosen. As the aim was to synthesize an electron rich, coordinatively 

undersaturated species, the electronic donor properties of this ligand as well as the 

steric shielding of the substituents was thought to be beneficial. Accordingly, addition 

of pincer ligand HPNPtBu to the Re(III) precursor 2 in THF solution together with a 

base (NEt3) affords highly air sensitive, violet (PNP)ReCl2 (3) after 2 h at reflux in 

high yield. Without a base, no selective reaction could be observed. In the following 

“PNP” without further indication always describes the monoanionic pincer ligand 

with tert-butyl substituents on the phosphorous atoms. 

 

 
 1 2 3 

Scheme 45: Synthesis of Re(III) platform (PNP)ReCl2. 
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On the NMR timescale, 3 exhibits C2v symmetry, whereas in the crystal structure a 

distortion from both trigonal bipyramidale and square pyramidal geometry is 

observed (τ = 0.37). The complex is diamagnetic in the ground state (δ(31P) = -51.5 

ppm) attributed to the strong π-donor amide in the ligand backbone as indicated by 

the sum of bond angles around the nitrogen atom (360°) and the short Re−N distance 

(1.923(7) Å).1 

 

 

Figure 14: Molecular structure of 3 in the crystal. ORTEP plot with anisotropic displacement parameters 
drawn at the 50% probability level. The C−H hydrogen atoms are omitted for clarity. Selected bond 
lengths [Å] and angles [°]: Re1−Cl1 2.331(2), Re1−Cl2 2.364(2), Re1−N1 1.923(7), Re1−P1 2.402(2), 
Re1−P2 2.407(3); N1−Re1−Cl1 109.7(3), N1−Re1−Cl2 140.8(3), Cl1−Re1−Cl2 109.49(9), P1−Re1−P2 

163.04(9). 

 

3 is thermodynamically stable (up to 110°C), but degrades quickly in the presence of 

moisture, oxygen or upon longer exposure (> 1 day) to chlorinated solvents (DCM). 

With acetonitrile as coordinating solvent, equilibrium formation was observed. Small 

amounts are tolerated (about 1-2 equivalents), whereas addition of 10 equivalents to 

a benzene solution of 3 yields a green precipitate, which reforms the violet starting 

material after separation and dissolution in THF. In a CD2Cl2/d3-Acetonitrile mixture, 

the formation of a diamagnetic species (δ(31P) = -18 ppm) displaying broadened 

signals in the 1H-NMR, could be observed, that has not been fully characterized so far. 

However single crystals were obtained out of a benzene/acetonitrile/pentane 

solution, which confirm coordination of acetonitrile to 3 (Figure 15).1 The Re-NMeCN 

bond distance is elongated compared to the Re-NPNP bond length (2.074(2) and 

1.901(2) Å respectively) and in agreement with an ordinary single bond. The Re-NPNP 

bond distance is even slightly shorter than in 3 (d = 0.02 Å). The amide is still planar 

(sum of angles:359°), but the acetonitrile ligand is a little bent (Re-N-C: 170.9 (2)°), 

indicating some “push-pull” relation by π-donation from the PNP-amide in metal 

orbitals, which backdonate into C-N antibonding orbitals of the nitrile ligand. The C≡N 

                                                        
1 X-Ray diffraction was performed by Dr. Christian Würtele. 
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bond distance of the latter (1.137(3) Å) is however slightly shorter than for free 

acetonitrile (1.157 Å).[196] 

 

 

Figure 15: Molecular structure of to 3 coordinated by acetonitrile. ORTEP plot with anisotropic 
displacement parameters drawn at the 50% probability level. The C−H hydrogen atoms are omitted for 
clarity, except for the acetonitrile ligand. Selected bond lengths [Å] and angles [°]:Re1−Cl1 2.3681(6), 
Re1−Cl2 2.5058(6), Re1−N1 1.901(2), Re1−N2 2.074(2), Re1−P1 2.4415(7), Re1−P2 2.4184(7), N2-C21 

1.137(3); N1−Re1−Cl1 105.23(7), Cl1−Re1−Cl2 89.57(2), Cl2−Re1−N2 83.90(6) N2-Re1-N1 81.48(9), 
P1−Re1−P2 165.48(2), Re1-N2-C21 170.9(2). 

 

 

 

1.2 (HPNPiPr)ReCl3 

 

The sterically less demanding iso-propyl derivate of the PNP ligand is well examined 

in our group[197–200] and prepared in a straightforward synthesis. To test, if the steric 

bulk is indeed a prerequisite for the synthesis of 3, its application in the rhenium 

system was tested. 

Heating a mixture of the free ligand HPNPiPr and the precursor complex 2 in THF to 

70°C for 1 h leads to a clear green solution of the ReIII compound [(HPNPiPr)ReCl3] (4, 

Scheme 46). 
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Scheme 46: Synthesis of PNPiPr-derivative 4. 

 

In agreement with an octrahedrally coordinated complex with a d4 electron count, the 

product shows paramagnetically shifted signals in the 1H-NMR spectrum (Figure 16) 

and no 31P-NMR signal. Interestingly, the observed signals are very sharp and even 

show some multiplet-like structure. One signal of the backbone protons is probably 

superimposed by the benzene signal and the amine proton is shifted far downfield 

(H = 138.5 ppm). Some diamagnetic impurities could not be removed and the 

complex has not beeen fully characterized yet.  

 

 

Figure 16: 1H-NMR spectrum of 4 in C6D6. 

 

In analogy to the synthesis of 3, NEt3 was added to the reaction mixture to 

deprotonate 4 in situ to a five coordinate dichloro species. However, no reaction was 

observed and also direct addition of NEt3 to 4 does not lead to deprotonation. 

2 4 
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Stronger bases were then tested. Deprotonation with 1 equiv. KBTSA or KOtBu gives 

two diamagnetic signals (P = -1 and -18 ppm) in an about 2:3 ratio in the 31P-NMR 

spectrum. However, these products have not been identified so far. Deprotonation 

employing 1,3,5-Triazabicyclo[4.4.0]dec-5-ene (TBD) as base results in selective 

formation of another product (P = -6 ppm), which still contains signals 

corresponding to TBD in the 1H-NMR spectra after workup. Single crystals of this 

complex could be obtained and X-ray analysis revealed coordination of 

hexahydropyrimidinopyrimidine (hpp) to the rhenium complex (Figure 17).2 TBD can 

be deprotonated to hpp, a bisdentate ligand, forming the complex [(PNPiPr)Re(hpp)Cl] 

(5) upon elimination of two equivalents of HCl, although illustrating coordination and 

deprotonation of the PNPiPr ligand (Scheme 47).  

 

 

Scheme 47: Reaction of 4 with TBD generating 5. 

 

A disorder has been found in the unit cell of the crystal structure with a population of 

0.878(2) on the main domain. The two substructures are quite similar and exhibit 

usual bond lengths. The Re-NPNP bond distance is comparable with 3 (1.9193(17) Å) 

and the amide is also planar (sum of angles at N = 359.6° and 360.0°) in both 

substructures of 5. However, the C-NPNP-C angle of the main structure (115.7(4)°) is 

about 3-5° larger than usually observed, whereas the same angle for the minor 

complex is particularly small (98.5(6)°). Different refinement did not change this 

result significantly. Striking difference in both substructures is the opposite 

orientation of the two iPr-groups of the ligand backbone on the site of the chlorine 

atom. It seems like this orientation is compressing the backbone, leading to a smaller 

angle at the amide.  

 

                                                        
2 X-Ray analysis was performed by Dr. Christian Würtele. 

4 5 
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Figure 17: Molecular structure of 5. ORTEP plot with anisotropic displacement parameters drawn at the 
50% probability level. The C−H hydrogen atoms are omitted for clarity. Disorder depicted in grey. Selected 

bond lengths [Å] and angles [°]: Re1-N1 1.9193(17), Re1-N2 2.1499(15), Re1-N3 2.2143(15), Re1-Cl1 
2.3860(15); N1-Re1-Cl1 111.63(5), N1-Re-N2 99.91(7), N2-Re1-N3 59.53(6), P1-Re-1-P2 169.22(8), P1A-

Re1-P2 160.60(11), C9-N1-C1 115.7(4), C9A-N1-C1A 98.5(6). 

 

 

 

1.3 (P=N=P)ReCl2 and (P=NP)ReCl2 

 

The utilized PNP ligand provides the intriguing opportunity for functionalization of 

the alkylamido to enamido (P=NP) or dienamido (P=N=P) units (P=N=P = 

N(CHCHPtBu2)2). By oxidation of the backbone, the ligand´s rigidity as well as the -

donor properties of the amide can be fine-tuned.[201] H-atom abstraction using the 

2,4,6-tri-tert-butylphenoxy radical (PhO·) proved to be the method of choice.[202] 

Addition of benzoquinone or its derivatives in analogy to the iridium case only leads 

to complex degradation.[203] Addition of 6 equiv. of PhO· to the dichloro complex 3 

results in full conversion to the divinyl compound [(P=N=P)ReCl2] (6). Its 31P-NMR 

signal is slightly broadened (full width at half maximum (FWHM) = 0.12 ppm) and 

shifted far into the negative region (P = -276 ppm). Besides, also its 1H-NMR (notably 

H(tBu) = 2.6 ppm, H(PCH2) = 0.9 ppm, Figure 18) and 13C-NMR signals are rather 

unusual for these kinds of coordination compounds. This behavior indicates mixing in 

of paramagnetic excited states and therefore contribution of temperature 

independent paramagnetism (TIP).[204] Identification of the corresponding signals in 

the NMR spectra has been accomplished by means of H,H-COSY and H,C-HSQC NMR 

spectroscopy. A paramagnetic side-product in varying amounts (5-20%) is observed 

(H = 15.2 ppm) in the reaction, which is tentatively assigned to [(P=N=P)ReCl3] (7, 

Scheme 48). Control experiments suggest this assignement, as 7 can be prepared 
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independently from trichloro complex 23 (see chapter 4.3) by H-atom abstraction 

with PhO· (Figure 19) and can be converted cleanly into 6 by reduction with CoCp2 

(Scheme 49). The origin of the additional chloride could not be determined, as no 

other degradation products were observed by NMR spectroscopy and no chlorinated 

solvents or other additives were used. 

 

 

Scheme 48: Reaction of 3 with excess PhO· to 6, contaminated with 7. 

 

 

Figure 18: 1H-NMR spectrum of 6 and small amounts of 7 in C6D6 after removal of 2,4,6-tri-tert-
butylphenol by washing with pentane; Expansion: 31P{1H}-NMR spectrum. 

 

 

Scheme 49: Control experiments for the identification of 7.  
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Figure 19: 1H-NMR spectrum of the reaction mixture of 23 and PhO· in C6D6. 

 

If only 2-2.5 equiv. of PhO· are used, a C1 symmetric species is observed in the NMR 

spectra, which corresponds to the enamido complex 8 with a chemical shift (31P-

NMR) in between the alkylamide 3 and the dienamide 6 (Figure 20). The constitution 

of 8 is supported by LIFDI mass measurements, but 8 could not be isolated as it is 

always contaminated either with 3 or 6 or both and they all show similar solubility 

properties. Further addition of PhO· generates 6 (Scheme 50). 

 

 

 

Scheme 50: Reaction of 3 with PhO· to enamido 8 and dienamido 6. 
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Figure 20: 31P{1H}-NMR spectrum of 3 with 2.5 equiv. of PhO· to form 8 in C6D6. 

 

In the following, this thesis focuses on the tert-butyl substituted ligand with the fully 

saturated ligand backbone (PNP). 
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2 Dinitrogen splitting 

This chapter has been published partly in the Journal of the American Chemical Society 

under the title: “Dinitrogen Splitting and Functionalization in the Coordination Sphere 

of Rhenium” in 2014.[193] 

 

2.1 Nitride synthesis 

 

3 is rapidly reduced by 1 equiv. Na/Hg in THF. Under N2 atmosphere, (PNP)Re(N)Cl 

(9) is obtained in 90% spectroscopic yield upon comparison (31P, 1H, 13C NMR) with 

an original sample, prepared by reaction of the dichloro complex 3 with an azide 

source ([PPN]N3). The use of 15N2 afforded the 15N-nitride isotopologue 

(δ(15N) = 371 ppm, Figure 21), confirming N2 as source for nitride formation. 

Accordingly, reduction of 3 with Na/Hg under argon only gives an intractable mixture 

of compounds by NMR, which were not further characterized, and no indication for 

the formation of the nitride. Nitride formation could also be observed after addition 

of the nitride transfer reagent Li[DBABH] to 3 (Scheme 51). Moreover, reduction of 3 

with Co(Cp*)2 under N2 also gives the nitride with slightly lower yields up to 75%. A 

hydride complex is found as main side product (δP = 31.2 ppm; δH = − 9.28 ppm), 

which did not incorporate deuterium upon use of d8-THF, possibly pointing toward 

traces of water or CoCp2* itself as origin for the reduced yield. However, to the best of 

our knowledge, this is the first report of well-defined N2 splitting into nitrides, which 

allows the use of organometallic reducing agents as also utilized in protocols for 

catalytic ammonia generation.[31,39,44]  
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Figure 21: 15N-NMR spectrum of 9 in d8-THF obtained from 15N2
[205]

 besides an impurity (-14.0 ppm (d, 
J = 6.1 Hz) and -80.9 ppm (d, J = 6.1 Hz)). 

 

 

Scheme 51: Different synthetic routes to the nitride complex 9. 

 

The 1H and 13C-NMR spectra of 9 indicate Cs symmetry as expected for a square-

pyramidal nitride complex. All efforts to grow single-crystals suitable for X-ray 

diffraction were unsuccessful. Computational modeling confirmed the square-

pyramidal geometry with the nitride in apical position and a typical Re≡N bond 

length (1.65 Å).[105] The lack of a low-lying, vacant d-orbital results in the absence of 

Re−NPNP π–bonding with the pincer ligand, as expressed in a long bond distance 

(2.03 Å), pyramidal nitrogen coordination and high amide basicity (see below). 

 

3 9 

9 
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The nitride complex 9 was characterized by cyclic voltammetry (CV) in CH2Cl2. A 

reversible redox wave was found at − 0.13 V vs FeCp2/FeCp2+ assignable to the 

ReV/ReVI redox couple. At more positive potential, an irreversible second oxidation is 

observed. Comparison with the CV of protonated [(HPNP)Re(N)Cl]+  (synthesis and 

characterization see below) suggests the latter as decomposition product. 

Importantly, no reduction of the nitride was observed within the electrochemical 

window of the solvent.  

 

 

Figure 22: CV of (PNP)Re(N)Cl in CH2Cl2 (1 mM, 0.1 M [NnBu4][PF6], RT, glassy carbon working electrode, 
scan rate 400 mV/s). 

 

ReV/ReVI 
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Figure 23: CVs of (PNP)Re(N)Cl (black) and [(HPNP)Re(N)Cl]+ (red) in CH2Cl2 (1 mM, 0.1 M [NnBu4][PF6], 
RT, glassy carbon working electrode, scan rate 400 mV/s). 

 

 

 

2.2 The Mechanism of N2 Splitting 

 

N2 splitting with Cummins’ Mo triamido system proceeds from a linear N2-bridged 

dimer via a zigzag {Mo=N−N=Mo} transition state to the final nitrides.[84,86,97,134,206] An 

analogous mechanism was proposed for reverse N−N coupling with [IrN(P=N=P)].[156] 

Given the steric bulk of the Re(PNP) platform, a dimeric intermediate like 

[(PNP)ClRe(N2)ReCl(PNP)] (10), which is formed upon reduction of 3, represents a 

reasonable intermediate. While at the current stage no experimental mechanistic data 

are available, this pathway was evaluated computationally. For the dimer, both the 

triplet and an open-shell singlet states were found to be very close in energy. Both 

exhibit approximate square-pyramidal metal coordination and an almost linear {Re–

N=N−Re} moiety (DNN: 1.20 Å). A transition state towards N2 cleavage could only be 

located on the singlet surface with a zigzag {Re=N−N=Re} conformation (DNN: 1.64 Å). 

A moderate barrier has been found with ΔG⧧ = 84.4 kJmol-1 and conformational 
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refinement could lower this barrier to ΔG⧧ = 71.4 kJmol−1  later on (D3-PBE/def2-

TZVP//def2-SV(P), Figure 24).3 N2 cleavage was computed to be exergonic by 

98.3 kJmol-1, suggesting this route to be a feasible mechanism for dinitrogen 

splitting.4  

 

 3 10 TS10/9 9 

Scheme 52: Proposed mechanism of N2-splitting by reduction of 3. 

 

 

 

Figure 24: Computed Free Energies for N2 Splitting Starting from dimer 10 
(D3-PBE/def2-TZVP//def2-SV(P)). 

 

                                                        
3 The PBE functional showed good performance in previous studies on PNP pincer nitride 
chemistry.[176] A higher barrier (ΔG⧧ = 117.8 kJmol-1) was found for a single-point calculation of the 
transition state with hybrid functional PBE0 (D3-PBE0/def2-TZVP//D3-PBE/def2-SV(P)), which is 
considered as an upper limit. 
4 DFT Calculations were performed by Dr. Markus Finger. 
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The calculated MO´s (Figure 25) fit well to the qualitative molecular orbital scheme, 

which has been introduced in Chapter I.5.1 (Figure 5). Because of fourfold symmetry, 

a set of basically non-bonding δ-orbitals (1b and 2b) is occupied. However, there are 

still a total of 10 electrons in the π-system of a tentative Re(II) dimer and therefore 

enough electrons for full N2 reduction and generation of stable closed shell nitrides 

(Figure 26). The HOMO has been found to be the MN antibonding and NN bonding 

orbital, similar to Cummins system, mentioned in the introduction. 

 

Figure 25: Qualitative MO-scheme (left) and calculated MO´s (right) for dimer 10. 
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Figure 26: MO scheme for N2 splitting from dimer 10 into 9; blue: electrons in the {MNNM} π-system. 

 

Because of the bulky tBu-substituents on the PNP ligands, these are supposed to 

exhibit a staggered conformation in the dimeric complex (Scheme 52). A more 

symmetric arrangement with all phosphorous atoms in one plane cannot be adopted 

due to steric reasons. The π-donor amide is therefore interacting with both dxz and dyz 

orbitals (both orbitals of one MO set) in an equal manner, keeping the 2eu level 

degenerate and therefore a triplet state dimer. In the zigzag transition state, 

symmetry is lowered, which allows for mixing of the σ-N-N-antibonding orbital 3bu 

with the 2bu π-orbitals. Transition of electrons is therefore possible and stable closed 

shell nitrides are created.  

The fast splitting reaction without an observable N2-complex may partly be attributed 

to the influence of the π-donor in the ligand backbone. As stated by the group of 

Cummins, ligand rotation to allow for π-backbonding from one amide into the MO 

with π* character of N2 is believed to occur, lowering the barrier for splitting (Scheme 

12). The PNP ligand already imposes such a geometry. Additionally, both orbitals of 

the 2eu set are raised in energy due to the π-donor influence favoring “relaxation” in a 

zigzag confirmation. Additionally, steric repulsion between the bulky tBu-groups is 

believed to support the N-N splitting reaction. 
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2.3 Possible implications of ligand variations 

 

2.3.1 A decreased steric bulk 

The steric bulk of the substituents at the phosphorous atoms is proposed to play an 

important role in the N2 splitting mechanism. Because of the sterically demanding 
tBu-groups, DFT calculations predict a twisted confirmation for the tentative N2-

bridged intermediate dimer 10, leading to an energetically rather high lying open 

shell singlet state. Splitting is then achieved via a triplet transition state to the nitride 

9 on the singlet surface (Figure 27, black). If the steric demand was decreased for 

example by utilization of methyl-substituents, rotation of the {(PNP)ReCl} fragments 

would be possible. In an inversion symmetric arrangement of the dimer, the amide in 

the ligand backbone NPNP interacts with only one of the 2eu orbitals, resulting in an 

energetic splitting of these orbitals and therefore formation of a closed shell singlet 

state dimer. Computations predict a strong stabilization of this dimeric species in the 

singlet state, with the triplet state being about 71 kJmol-1 higher in energy. In fact, this 

stabilization would even lead to a nearly isothermal splitting reaction with a quite 

high transition state (ΔG⧧ = 126.0 kJmol-1, D3-PBE/def2-TZVP//def2-SV(P), Figure 

27, blue).5 

 

 

Figure 27: Computed Free Energies for N2 Splitting Starting from dimer 10; black: PNPtBu, blue: PNPMe 
(D3-PBE/def2-TZVP//def2-SV(P)). 

                                                        
5 DFT calculations carried out by Dr. Markus Finger. 
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Hence, there is the possibility to isolate such an N2-bridged intermediate and to study 

its reactivity. Furthermore, confirmation of these computational results by 

experimental evidence provides an opportunity towards tuning of the N2 splitting 

reaction energies and might even lead to catalytic N2 activation.  

However, in this thesis the focus lies on the first described system with the tert-butyl 

ligand system. Further work will examine the role of different substituents on the 

phosphorous atoms. 

 

 

2.3.2 Oxidation of the ligand backbone 

The -donor strength of the amide in the ligand backbone is believed to have a 

significant influence on the N2 splitting mechanism (vide supra) and lowering its 

strength should have an impact at least on the speed of the reaction. In this way an 

intermediate might be observed or even captured. Furthermore, the amide in the 

nitrido complex 9 displays strong basicity due to the lack of available d-orbitals for -

backbonding and protonation to [(HPNP)Re(N)(Cl)]+ (12) is the pronounced 

reactivity (see next chapter). Delocalizing the amide´s electron density over the ligand 

backbone offers a path towards more reactivity at the nitrido unit or at the metal 

center. By lowering the -donor strength of the amide, d-orbital splitting at the metal 

is decreased, orbitals sink in energy and should therefore become available e.g. for H2 

coordination.  

Preliminary reactivity tests towards N2 splitting did not give definite results. 6 was 

converted to the nitrido compound 11 by addition of [PPN]N3 to determine its 

spectroscopic signature (P = 71 ppm in C6D6). Afterwards, N2 splitting was tested by 

reduction of 6 with 1 equiv. Na/Hg under N2 atmosphere. Some small signals in the 

region around 60 ppm in the 31P-NMR spectrum were detected right after the 

reaction, which have vanished the day after and could perhaps correspond to some N2 

bridged intermediate (Figure 28). Only the very small signal in a similar region to 11 

of the 31P-NMR spectrum is left and indicates that a nitride might have formed 

(P = 67 ppm in d8-THF). However, isobutene formation and the lack of any bigger, 

distinct signals in the NMR spectra propose over-reduction by the strong reducing 

agent. 
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Figure 28: 31P{1H}-NMR spectrum of the reaction mixture of 6 with 1 equiv. Na/Hg under N2 atmosphere 
about 10 min after the reaction in d8-THF. 

 

The same reduction carried out under an atmosphere of argon does not show any 31P-

NMR signals and besides isobutene no characteristic signals in the 1H-NMR spectrum. 

A cyclovoltamogram of 6 has not been measured yet and no weaker reducing agents, 

like CoCp2* have been tested. As reduction of 6 is different under N2 and argon 

atmosphere, a reaction with N2 is likely to occur. However, more experiments are 

necessary to evaluate the outcome and the intermediates in this reaction. 
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3 Nitride functionalization 

Parts of this chapter have been published in the Journal of the American Chemical 

Society under the title: “Dinitrogen Splitting and Functionalization in the Coordination 

Sphere of Rhenium” in 2014[193] and in the Journal Angewandte Chemie int. Ed. under 

the title “Conversion of Dinitrogen into Acetonitrile under Ambient Conditions”.[207] 

 

 

3.1 Ammonia formation? 

 

Our group recently reported hydrogenolysis of terminal nitride [RuIV(N)(PNP)] with 

H2 to ammonia at mild conditions.[176] In contrast, 9 does not react with H2 even 

under more forcing conditions (3 bar H2 , 80°C, 18 h) or in the presence of base 

(KOtBu). Presumably, the strong nitride trans influence prevents H2 heterolysis at the 

vacant site, due to the lack of available d-orbitals for coordination. These are involved 

in π-bonding to the nitride and therefore energetically augmented. Coordination at 

this site therefore seems to be hampered. 

Protonation of the nitride with several acids (HCl, HOTf) results in exclusive 

protonation of the amido group giving [(HPNP)Re(N)Cl]X (X = Cl, OTf) (12) even with 

up to 12 equiv HCl. DFT computations confirmed that amide over nitride protonation 

is thermodynamically favored by ΔG0 = 31.9 kJmol−1. The identical NMR data of 12-Cl 

and 12-OTf (except N−H) and the molecular structures from single-crystal X-ray 

diffraction indicate that the anions are not coordinated to the metal in solution and in 

the solid state.6 This observation reflects the strong nitrido trans influence and 

stabilizing N−H ···X hydrogen bonding. The Re ion in 12-Cl is square-pyramidally 

coordinated with only minor distortion (τ = 0.04) and a typical Re≡N triple bonding 

distance (1.642(4) Å).[105] 

 

                                                        
6 X-Ray diffraction was performed by Dr. Christian Würtele. 
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Figure 29: Molecular structure of 12-Cl in the crystal. ORTEP plot with anisotropic displacement 

parameters drawn at the 50% probability level. The C−H hydrogen atoms are omitted for clarity. Selected 
bond lengths [Å] and angles [°]: Re1−Cl1 2.4001(12), Re1−N1 2.132(4), Re1−N2 1.642(4), Re1−P1 
2.4578(13), Re1−P2 2.4420(12); N1−Re1 − Cl1 153.93(12), N1−Re1−N2 99.59(19), Cl1−Re1−N2 

106.48(15), P1−Re1−P2 157.35(5). 

 

In analogy to the parent nitride, the CV of 12-OTf features a reversible oxidation 

wave, yet at more positive potential (+0.64 V, Figure 23) owing to the positive charge. 

Importantly, as for the neutral nitride, no reduction was observed. Chemical 

reduction with KC8 only generated 9 and H2. Hence, the electrochemical results and 

reactivity indicate that the formation of ammonia seems not accessible on this route. 

 

Although the cyclic voltammogram of nitride complex 9 did not show a reduction 

wave until a potential of -2.4 V vs. Fc/Fc+ in DCM (Figure 22), chemical reduction with 

a very strong reducing agent (KC8) proved to be possible. Addition of 2 equiv. of KC8 

and 2 equiv. of 18-crown-6 resulted in nearly complete disappearance of the 

spectroscopic signature of 9. In benzene, the NMR spectra showed formation of a C1 

symmetric species in 80% yield (δP = 113.7 ppm (d, 2JPP = 103 Hz) and 30.1 ppm (d, 
2JPP = 103 Hz)), exhibiting only three signals for tBu-groups of the ligand backbone (δH 

= 1.82, 1.64 and 1.22 ppm) with1H-31P coupling constants of 11.0 - 12.5 Hz (Figure 

30). The fate of the fourth tBu-group is indicated by isobutene formation 

(δH = 4.8 ppm (hept, J = 1.2 Hz) and 1.59 ppm (t, J = 1.2 Hz)). Upon reduction, it seems 

that one of the tBu-groups of the PNP ligand is eliminated, which is the reason for the 

low symmetry of the complex. The exact structure of this complex has not been 

identified though. About 10% of a side-product was formed (δP = 107.3 ppm) and this 

amount increased to about 30%, when the reaction was carried out in THF instead of 

benzene (Figure 31) and which is a rather acceptable amount for further conversions. 

The complex exhibits signals in agreement with a Cs symmetric compound in the NMR 

spectra. In contrast to the asymmetric species described above, it features pentane 

solubility. However, this complex could not be isolated due to formation of different 

unidentified side-products. Reduction without ligand degradation would offer an 

interesting route towards functionalization of the nitride, but further experiments 
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(for example low temperatures) are suggested to identify the nature of these reaction 

products. 

 

 

Figure 30: 1H-NMR spectrum of the reduction of 9 with 2 equiv. KC8 and 18-crown-6 in C6D6; Expansion: 
signals corresponding to isobutene formation. 

 

Figure 31: 31P{1H}-NMR spectra of the reduction of 9 with 2 equiv KC8 and 18-crown-6; Top: in d8-THF; 
Bottom: in C6D6. 



3. Nitride functionalization 

78 

 

 

3.2 Reaction with nucleophiles 

 

To test for reactivity towards nucleophiles, metal organyls were added to 9. Addition 

of methyl lithium (MeLi) to the nitride 9 allows for quantitative exchange of the 

chloride substituent by a methyl group. In this way, the complex [(PNP)Re(N)(CH3)] 

(13) could be isolated and fully characterized.  

 

 

Scheme 53: Synthesis of 13 from 9 and MeLi. 

 

1H and 31P-NMR spectra of 13 are similar to 9. A new signal corresponding to the 

methyl group appears at 2.32 ppm (t, 3JHP = 4.1 Hz) in the 1H-NMR spectrum with the 

appropriate signal at -17.6 ppm in the 13C-NMR spectrum, indicating metal 

coordination (Figure 32). 

 

Figure 32: 1H-13C HSQC NMR spectrum of 13. 

9 13 
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The solid state structure of the complex describes a square pyramid with the nitride 

in the apical position and only minor distortions (= 0.10, Figure 33).7 The Re≡N 

bond length (1.656(5) Å) is in a typical range for terminal rhenium(V) nitrides.[105] 

The Re-NPNP bond length (2.054(4) Å) is elongated compared to most other 

{(PNP)Re} complexes and the nitrogen is pyramidally coordinated, as also predicted 

for 9 by DFT. In fact, the Re-NPNP bond distance is only slightly shorter than in the 

protonated complex 12 (d =- 0.08 Å), indicating only minor π-bonding between the 

amide and the metal center as it has been supposed for 9. The ease of protonation of 

parent 9 is in agreement with this observation. Further reaction with a second 

equivalent of the metal organyl was not observed. Furthermore, 9 is stable in the 

presence of Grignard reagents (MeMgCl, iPrMgCl, PhMgBr) or hydride sources 

(LiHBEt3). 

 

 

Figure 33: Molecular structure of complex 13 derived by single-crystal X-ray diffraction. ORTEP plots with 
anisotropic displacement parameters set at 50% probability. Hydrogen atoms are omitted for clarity. 

Selected bond lengths [Å] and angles [°]: Re1-N2 1.656(5), Re1-N1 2.054(4), Re1-C21 2.208(5), N2-Re1-N1 
110.6(2), N1-Re1-C21 147.73(18), P1-Re1-P2 153.80(5). 

 

 

 

 

 

 

 

                                                        
7 X-Ray diffraction was performed by Dr. Christian Würtele. 
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3.3 Reaction with isonitriles 

 

Introduction of a trans-substituent to the nitride at the rhenium center should 

increase nitride centered reactivity upon weakening of the Re≡N bond strength. As 

coordination at this vacant site is proved to be hampered due to the strong trans-

influence, strong ligands like isonitriles were investigated. To follow this approach, 

tert-butyl-isonitrile (CNtBu) was added to a solution of 9. A slow reaction yielding two 

diamagnetic, Cs symmetric main products in a 1:1 ratio is observed in 1H and 31P NMR 

spectra (P = 94 and 61 ppm), which is complete after 2 d at 70°C. Besides, 

characteristic signals for the formation of isobutene are observed in the 1H-NMR 

spectrum. Since the elimination of a tert-butyl group as isobutene should be 

accompanied by H+ release, the reaction was next carried out in the presence of DBU 

as base. The reaction is not accelerated, but turned out to be selective to one of the 

products observed before (P = 94 ppm), besides isobutene. After workup, the 

pentane insoluble material exhibits signals in the 1H-NMR spectrum similar to the 

nitride 9 with no observable signals for a tert-butyl group of the isonitrile (Figure 34). 

Hence, elimination of its tBu-group as isobutene under HCl abstraction is assumed, 

generating the cyanide complex 14 (Scheme 54a). This type of dealkylation is known 

and has already been observed for tBu-isocyanide complexes.[208,209] 

 

 

Figure 34: Comparison of 1H-NMR spectra of 14 (red) and 9 (green) in C6D6. 

 

Residual 

DBU 
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Scheme 54: Assumed reaction of the nitride 9 with isonitrile and DBU as base to 14 (a) and of the 
protonated nitride 12-OTf with isonitrile to 15 (b). 

 

Addition of isonitrile to the protonated nitride 12-OTf generates selectively the other 

product 15 (P = 61 ppm) with one singlet for the tert-butyl group of the isonitrile 

ligand in the 1H-NMR spectrum in agreement with the above described observations 

(Scheme 57b). Complete characterization of the reaction products has not been 

carried out yet. 

 

In this way, the chlorido ligand of 9 could easily be exchanged by a cyanido ligand in 

14. Furthermore, a reaction between 9 and isonitriles is demonstrated, illustrating 

that additional coordination to the nitrido complex is at least possible. However, 

these results point out that a ligand trans to the nitride is preferably avoided, unless 

the amide in the ligand backbone is protonated to an amine. The choice of another 

isonitrile, where its substituent is not as prone to elimination, might be able to 

activate the nitride moiety by coordination, at least as intermediate in further 

functionalizations.  

 

 

 

 

 

 

9 

12-OTf 

14 

15 

a) 

b) 
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3.4 Reaction with electrophiles 

 

Typically early and mid TM nitrides react nucleophilic.[105] In order to functionalize 

the nitride unit, 9 was converted with different electrophiles. The use of 

organohalides (MeI), acid chlorides (acetyl chloride), anhydrides (acetic anhydride, 

trifluoroacetic anhydride), aldehydes, silicon compounds (Me3SiCl, Me3SiBr, 

Me3SiOTf), phosphines (PPh3, PMe3), CO2 and CO did not result in any reaction with 

the nitride.  

With an organic electrophile, such as an alkyl triflate, 9 reacts selectively at the 

nitrido ligand. Imido complex [Re(≡NMe)Cl(PNP)]OTf (16a) is selectively formed 

with MeOTf (Scheme 55).[193] Methylation of the nitrido, rather than the amido group 

of the PNP backbone is indicated by the absence of 1H-NOESY crosspeaks with the 

pincer backbone protons (Figure 35) and confirmed by single crystal X-ray 

diffraction. The square-pyramidally coordinated Re ion (τ = 0.16) in the imido 

complex exhibits a typical bond length (1.700(2) Å)[105] to the slightly bent 

(168.31(17)°) methylimido ligand. The amido nitrogen features planar coordination, 

indicating NPNP → Re π-donation, unlike in parent 9. Importantly, DFT computations 

confirm that nitride over amide methylation is, in fact, favored by ΔG0 = 33.2 kJmol−1, 

contrasting with the thermodynamic preference of protonation. Caulton and co-

workers reported the same selectivity for electrophilic amide vs nitride attack in case 

of [RuN{N(SiMe2CH2PtBu2)2}], which was attributed to steric effects.[210] 
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Figure 35: 1H,1H NOESY NMR spectrum of 16a. 

 

 
Figure 36: Molecular structure of 16a in the crystal. ORTEP plot with anisotropic displacement 

parameters drawn at the 50% probability level. The C−H hydrogen atoms are omitted for clarity. Selected 
bond lengths [Å] and angles [°]:Re1−Cl1 2.4030(5), Re1−N1 1.9486(18), Re1−N2 1.700(2), Re1−P1 

2.4776(6), Re1−P2 2.4450(6); N1−Re1−Cl1 141.23(6), N1−Re1−N2 115.58(9), Cl1−Re1−N2 103.14(7), 
P1−Re1−P2 150.99(2), Re1−N2−C21 168.31(17). 
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In analogy, the ethylimido complex 16b is obtained upon reaction of nitride 9 with 

ethyl triflate (EtOTf) in essentially quantitative isolated yield (a = methyl-, b = ethyl-

substituted, Scheme 55). Usually, the only observed side-product is protonated 

nitride 12, which can be removed by washing with diethylether or crystallization out 

of toluene/ether. The NMR spectroscopic features of 16b are close to 16a, suggesting 

square-pyramidal geometry with the imide in the apical position as confirmed by X-

ray diffraction for 16a (Figure 36).[207]  

 

 

Scheme 55: Synthesis of imides 16-OTf by addition of alkyl triflates to 9. 

 

Generation of the imides 16a/b-BF4 can also be achieved using Meerwein salts 

[Me3O][BF4] or [Et3O][BF4]. 

To expand the reactivity scope to organotriflates containing π-systems, benzyl triflate 

was synthesized according to published procedures out of the respective organo-

halide (benzylbromide) and AgOTf and used in situ.[211] Interestingly, the alkylation is 

only possible if a non-nucleophilic base (2,6-di-tert-butyl-2-methyl-pyridin) was 

added to the organotriflate mixture prior to the addition to 9. Otherwise, the latter is 

almost quantitatively converted to the protonated species 12, presumably due to the 

instability of the formed organotriflate. [(PNP)Re(NBn)(Cl)]OTf (16c-OTf, c = benzyl-

substituted) is isolated in up to 60% yield and characterized by NMR spectroscopy 

and LIFDI mass spectrometry. The color of the complex and the chemical shift of its 
31P-NMR signal (P = 90 ppm) is in the same region as for 16a and 16b. A singlet is 

observed for the benzylic NCH2Ph group at 4.60 ppm in the 1H-NMR spectrum (Figure 

37), which shows coupling to the phenyl-groups in the aromatic region of the H,H-

COSY-NMR spectrum (Figure 38). C-N bond coupling is indicated by NOESY cross 

peaks of the aromatic signals with the tBu groups of the PNP ligand as well as to the 

benzylic protons (Figure 39). The signals for the PNP-backbone have a similar 

chemical shift compared to the other imido complexes 16a/b. 

 

9 16-OTf 
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Figure 37: 1H-NMR spectrum of isolated 16c-OTf in C6D6. 

 

Figure 38: 1H,1H-COSY NMR spectrum of 16c-OTf in C6D6. 



3. Nitride functionalization 

86 

 

 

Figure 39: 1H,1H-NOESY spectrum of 16c-OTf in d8-THF. 

 

Hence, N2 splitting and functionalization of the resulting nitride in terms of C-N bond 

formation has been accomplished. The next step represents the cleavage of the Re-N 

bond and the release of nitrogen containing organic molecules. 
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3.5 Reaction with trifluoromethanesulfonic anhydride 

 

The yield of the benzylation is acceptable (60% isolated), however far lower than the 

yield for methyl- and ethylation (almost quantitative). In an attempt to avoid the 

formation of 12 as main side-product, another procedure to prepare organotriflates 

was utilized. This procedure uses the respective alcohol, a non-nucleophilic base and 

trifluoromethanesulfonic anhydride (Tf2O).[212,213] Following this approach, the 

tentative organotriflate mixture was directly added to 9 without further workup. 

Intriguingly, 16c-OTf was only observed in minor amounts in the resulting mixture 

with the main product being a new diamagnetic, Cs symmetric species (P = 102 ppm). 

A new signal was observed in the 19F-NMR spectrum besides the triflate anion, 

indicating a reaction between 9 and Tf2O. If the latter is purely added to 9, the color of 

the solution immediately changes from yellow to green and selective formation of the 

new species is observed. Only signals for the tBu substituents and the ligand 

backbone are observed in the 1H-NMR spectrum. Product identification was 

accomplished by single crystal X-ray analysis8 (Scheme 56) and LIFDI mass 

spectrometry, which allow an assignment as [(PNP)Re(NTf)Cl]OTf (17-OTf). 

Unfortunately, due to strong disorder, the crystallographic resolution does not allow 

for description of bond lengths and angles. This product could be isolated in high 

yield (87%) from the reaction mixture.  

 

Figure 40: 1H-NMR and 1H{31P}-NMR spectrum with selective phosphorous decoupling at 102 ppm of 
17-OTf in d8-THF. 

                                                        
8 Determination of the molecular structure was performed by Christian Volkmann. 
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Figure 41: Molecular structure of complex 17-OTf derived by single-crystal X-ray diffraction. ORTEP plots 
with anisotropic displacement parameters set at 50% probability. Hydrogen atoms are omitted for 

clarity. 

 

Heating a solution of 17-OTf in benzene (50°C, 3 days) or toluene (100°C, 18 h) 

results in selective formation of the protonated nitride 12-OTf. The fate of the triflyl-

group is indicated by 19F-NMR spectroscopy, which shows for benzene one 

(F = -62.4 ppm) and for toluene three (F = -61.5 (39%), -62.1 (26%) and -62.3 ppm 

(35%)) new signals (Figure 42), which correspond to trifluoromethyl benzene (-64.0 

ppm)[214] and ortho-, meta- and para-trifluoromethyl toluene (-62.5 (para), -63.3 

(meta) and -63.6 (ortho) ppm), respectively.[215] Further analysis of this reaction e.g. 

by GC-MS has not been carried out yet.  

 

 

Scheme 56: Reaction of 9 with Tf2O to produce 17-OTf and its presumed degradation in aromatic 
solvents. 

 

9 17-OTf 12-OTf 
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Figure 42: 19F{1H}-NMR spectrum of 17-OTf after heating to 100°C for 18 h in d8-toluene.  

 

Addition of a base to deprotonate 12-OTf back to 9 might enable a catalytic 

application of this reaction. However, this base must be stable under the reaction 

conditions and strong enough to deprotonate 12-OTf. Catalytic trifluoromethylation 

of arenes and heteroarenes is a highly studied field especially in organic and 

pharmaceutical chemistry.[216,217] Common cross-coupling reactions usually require 

stoichiometric reactants, harsh conditions and/or preactivated substrates and are in 

general catalyzed by late TM (Cu, Ag, Pd, Ni). Various CF3 sources, which exhibit 

nucleophilic (e.g. Me3SiCF3),[218] electrophilic (e.g. Umemoto´s reagent)[219] or radical 

reactivity (e.g. Langlois´ reagent, NaSO2CF3) are known.[220,221] Prefunctionalized 

(hetero)arenes, aryl halides and boronic acids are usually used with nucleophilic or 

electrophilic CF3 reagents. Trifluoromethylation of non-activated arenes can be 

achieved by CF3 radicals as shown for the first time by MacMillan in 2011, using 

photoredoxcatalysis with ruthenium complexes and CF3SO2Cl as CF3 source.[222] 

Remarkable progress has been made recently by the groups of Li and Mi, which used 

TM free photocatalysis for trifluoromethylation of arenes, employing NaSO2CF3.[223] In 

this context, the observed CF3-group transfer reactivity of 17-OTf is a novel 

contribution. Catalysis with mid/early TM is uncommon, only a base and Tf2O are 

needed and the use of Tf2O as CF3 source has not been shown to the best of my 

knowledge. However, in first instance, it hast to be clarified, if the observed 

trifluoromethylation is actually a thermally induced process or photoinduced and if 

the mechanism involves electrophilic +CF3 or ·CF3 radicals. 

17 

OTf - 
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Further preliminary reactivity tests of 17-OTf, did not give any satisfactory results. 

With H2 or alkenes, no reaction is observed. Hydrid sources (LiHBEt3), Grignard 

reagents (MeMgCl) and phosphines (PMe3) cause degradation in various signals in 

the 1H- and 31P-NMR spectra. However, the easy functionalization with Tf2O might 

offer a route to a more activated {ReN}-moiety and therefore allow different 

functionalizations of the nitrogen unit. 

 

 



4. Conversion of Dinitrogen to Organonitriles 

91 

 

4 Conversion of Dinitrogen to Organonitriles 

Parts of this chapter have been published in 2016 in the Journal Angewandte Chemie 

int. Ed. under the title: “Conversion of Dinitrogen into Acetonitrile under Ambient 

Conditions”.[207] 

 

 

4.1 Strategy for N2 into organonitrile transformation 

According to thermochemical arguments, nitriles are attractive targets as the 

formation of strong C≡N bonds (D0(HC≡N) = 937 kJmol-1) facilitates offsetting the 

large N2 bond energy (941 kJmol-1).[111] Cummins and co-workers reported elegant 

synthetic cycles for the six-electron transformation of N2 to nitriles mediated by Mo 

and Nb complexes.[110,132] The routes start with initial dinitrogen splitting,[83] followed 

by nitride acylation with silyltriflate and acylchloride. Subsequent stepwise three-

electron reduction requires further silyltriflate and Lewis acid (SnCl2 or ZnCl2) for 

oxygen removal with nitrile release in up to 38% yield over all five steps.[110] In this 

synthetic scheme re-reduction of the (formal) catalyst is a purely metal-centered 

process (Scheme 57, a). 

 

Scheme 57: Schematic pathways of nitrile synthesis after N2–splitting and functionalization: Through 
nitride acylation established by Cummins et al. (a)[110] or through nitride alkylation (b and c) evaluated 
herein. 
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This work was the inspiration to evaluate new ways of N2 into nitrile conversion, 

which rely on intramolecular electron transfer: The interconversion of imido and 

nitrile ligands via 1-azavinylidenes (or ketimides) by simple double de/protonation 

was previously reported (Scheme 57, b), but not applied to N2 fixation.[192,224] 

Importantly, both deprotonation steps are associated with formal metal/ligand two-

electron redox steps offering new strategies for metal reduction within a (pseudo)-

catalytic N2 functionalization cycle (Scheme 57, b and c). Following these strategies, in 

this chapter several routes for the conversion of N2 into acetonitrile via rhenium-

mediated N2 splitting, nitride alkylation, and ligand oxidation are reported leading up 

to a synthetic cycle in three steps in over 50% yield per cycle. 

 

 

4.2 Acetonitrile release by double deprotonation 

 

In the previous chapter, dinitrogen splitting upon reduction of rhenium(III) pincer 

complex 3 with Na/Hg or CoCp*2 and alkylation of the resulting rhenium(V) nitride 9 

to the imido complexes 16a-c-OTf was reported. This chapter is focusing on the 

conversions of 16b-OTf. 

16b-OTf is deprotonated quantitatively with KN(SiMe3)2 (KBTSA) giving the 

respective red-brown 1-azavinylidene rhenium(III) complexes 

[(PNP)Re(N=CHCH3)Cl] (18b; Scheme 58). The synthesis of 18b can also be carried 

out as a one-pot reaction directly from 9 by successive alkylation and deprotonation 

in benzene with almost quantitative spectroscopic and over 80% isolated yield. 

 

 

  

 

Scheme 58: Alkylation of 9 and deprotonation of the resulting imide 16 to yield the azavinyildene species 
18. 

 

Spectroscopic characterization of complex 18b indicates the presence of two isomers 

in about 60:40 ratio with diagnostic 1H, 13C, and 15N NMR signals for the 

azavinylidene ligands, respectively (Figure 44). This observation is in line with the 

  9 16b-OTf 18b 
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formation of two stereoisomers as a result of hindered 1-azavinylidene rotation about 

the Re=N and N=C double bonds owing to strong ReN back bonding. The N=C 

double bond stretching vibration of the ketimide can be assigned to a weak band in 

the vibrational spectrum at 1594 cm-1, which shifts by 22 cm-1 upon 15N-labelling. 

 

 

Figure 43: IR spectrum of 18b (black) and 50% 15N labelled 18b-15N (red) with bands assigned for 
υ(C=N). 

 

Figure 44: 1H and 31P{1H}-NMR spectra of the two isomers of 18b in C6D6. 
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The structural assignment of 18b is confirmed by single-crystal X-ray diffraction 

(Figure 45).9 The coordination geometry around the rhenium ion is close to that in 

the methylimide 16a and all N-Re-N and N-Re-Cl bond angles of the two structures 

are the same within 5°. However, the almost linear Re-N-C moiety of 18b exhibits 

considerably longer Re-N (d =+ 0.12 Å) and shorter C-N (d = -0.17 Å) bonds than 

16a, in line with the changes in Re-N and C-N bond orders and with the only other 

structurally characterized rhenium 1-azavinylidene complex reported.[225] 

 

 
Figure 45: Molecular structures of complex 18b derived by single-crystal X-ray diffraction. ORTEP plots 

with anisotropic displacement parameters set at 50% probability. Hydrogen atoms except for the 
azavinylidene ligand are omitted for clarity. Selected bond lengths [Å] and angles [°]: Re1–N1 1.948(5), 

Re1–N2 1.822(4), Re1–Cl1 2.3962(14), N2–C20 1.273(7), C20–C21 1.489(10); N1-Re1-N2 120.5(2), 
N1-Re1-Cl1 135.07(15), N2-Re1-Cl1 104.39(16), P1-Re1-P2 162.01(5), Re1-N2-C20 174.3(5), 

N2-C20-C21 125.7(7). 

 

The ketimido complex 18b can be further deprotonated if the resulting rhenium(I) 

ion is stabilized by strong π-acceptor ligands. For example, the reaction of 18b with 

KBTSA and tert-butylisonitrile (CNtBu, 2 eq) gives the bis-isonitrile complex 

[(PNP)Re(CNtBu)2] (19) immediately in almost quantitative yield with concomitant 

release of acetonitrile (Scheme 59, Figure 46). If no external base is added, the amide 

in the ligand backbone is protonated and the octahedrally coordinated tris-isonitrile 

complex [(HPNP)Re(CNtBu)3]Cl (20) is generated in about 90% spectroscopic yield 

over the course of 10 days (Scheme 59). Two intermediates (δP = 58 and 62 ppm) are 

observed during the reaction, but escaped further characterization (Figure 47). 

Heating of the reaction mixture (60°C) leads to degradation in several compounds. 

Besides the characteristic Cs symmetric signals in the 1H-NMR spectrum of 20 (N-H: 

δH = 7.8 ppm in C6D6, three singlets for CNtBu), the structural assignment could be 

verified by X-ray analysis (Figure 48).9 The crystallographic resolution however, does 

not allow for description of bond lengths and angles due to strong disorder. 

                                                        
9 X-ray diffraction was performed by Christian Würtele. 
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Scheme 59: Reactions of ethylazavinylidene 18b with CNtBu under different conditions. 

 

 
Figure 46: Deprotonation of 18b with KN(SiMe3)2 in d8-THF in the presence of CNtBu (2.2 eq). 

 

18b 19 20 
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Figure 47: Time dependent 31P{1H} NMR spectra of the addition of excess CNtBu to 18b in C6D6. 

 

While 19 has C2v symmetry in solution on the NMR time-scale, in the crystal (Figure 

48) this compound features one strongly bent isonitrile ligand (C26-N3-C27: 

134.2(4)°) while the other isonitrile remains almost linear (C21-N2-C22: 168.7(5)°).10 

Such a strong bending is rare and indicates an unusually high degree of ReC π-back 

bonding as a consequence of the electron-rich nature of the {(PNP)ReI} fragment.[226] 

Accordingly, the C26-N3 bond (1.222(5) Å) of the bent isonitrile is considerably 

longer than in the linear isonitrile moiety (C21-N2: 1.181(6) Å).  

 

                                                        
10 X-ray diffraction was performed by Christian Würtele. 

18b 



4. Conversion of Dinitrogen to Organonitriles 

97 

 

         
Figure 48: Molecular structures of complexes 19 (a) and 20 (b) derived by single-crystal X-ray diffraction. 
ORTEP plots with anisotropic displacement parameters set at 50% (a) and 30% (b) probability. Hydrogen 
atoms are omitted for clarity. Selected bond lengths [Å] and angles [°] for 19:Re1–N1 2.028(3), Re1–C21 
1.937(4), Re1–C26 1.906(4), C21–N2 1.181(6), C26–N3 1.222(5); N1-Re1-C21 131.76(15), N1-Re1-C26 
140.30(15), Re1-C21-N2 171.9(4), Re1-C26-N3 168.9(3), C21-N2-C22 168.7(5), C26-N3-C27 134.2(4). 

 

The electronic asymmetry is also resolved in the IR spectrum, which features bands in 

two regions at around 1960 cm-1 and 1760 cm-1, respectively assignable to the linear 

and bent isonitriles (Figure 49). The low-energy stretching mode reflects the strongly 

reduced character of the bent isonitrile. Both bands are split into two, respectively, 

which can be rationalized with conformational isomers, as was previously reported 

for complexes with mixed linear/bent isonitriles.[226] 

 

 

Figure 49: IR spectrum of 19 (KBr pellet). 

a) b) 
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For completion, the reactivity of imido complex 16b-OTf towards isonitriles was 

examined. As expected, in the presence of 2 equiv. of base, the bis(isonitrile) complex 

19 is formed selectively, since the first equivalent of base deprotonates the imide to 

18b, which can be further deprotonated to 19 under release of acetonitrile (Scheme 

59). However, CNtBu also immediately reacts with the imido complex 16b-OTf 

without a base. In a stoichiometric reaction, the selective formation of a new 

compound is monitored (P = 33.6 ppm). Curiously, a signal shifted rather to the high 

field region of the 1H-NMR spectrum is observed (dH = -0.0 ppm), which couples only 

to a doublet at a chemical shift of 3.9 ppm, as stated by COSY-NMR spectroscopy 

(Figure 50). These signals are assigned to a newly formed azavinylidene group. A 

broad signal in the low field region (dH = 6.0 ppm) coupling to backbone protons, 

indicates protonation of the backbone nitrogen. It is assumed, that coordination of the 

isonitrile favors proton migration from the ethyl substituent to the amide NPNP, 

generating [(HPNP)Re(NCHCH3)(CNtBu)(Cl)]OTf (21, Scheme 60). Although the 

complex is cationic, the comparatively high electron density is expressed by strong 

shielding and a considerable high field shift of the N=CH-R proton. 

 

 

Scheme 60: Formation of 21 and 20 upon addition of isoniriles to 16b. 

 

Structural confirmation could be obtained by X-ray diffraction (Figure 51). The bond 

lengths of the azavinylidene ligand are similar to 18, however the Re-N-C unit is 

slightly more bent (166.6° compared to 172.6° (18a) and 174.3° (18b)). The 

isonitrile ligand is bound linearly (179.6°) and the Re-C bond length is a little 

elongated compared to the bis(isonitrile) complex 19 (d = +0.1 Å). 

If further equivalents of isonitrile are added to 21, degradation to 20 occurs with 

spectroscopic yields of 65% and formation of various side-products. 

 

16b-OTf 21-OTf 20 
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Figure 50: 1H,1H-COSY-NMR spectrum of 21 in d8-THF. 

 

 
Figure 51: Molecular structure of complex 21 derived by single-crystal X-ray diffraction. ORTEP plots with 

anisotropic displacement parameters set at 50% probability. Hydrogen atoms are omitted for clarity 
except for the azavinylidene ligand and the N-H proton. Selected bond lengths [Å] and angles [°]: Re1–N1 
2.2020(11), Re-N2 1.8177(12), Re1-C23 2.0137(14), N2-C21 1.2785(18), C23-N3 1.1587(18); N1-Re1-N2 

114.71(5)°, N2-Re1-C23 84.59(5)°, C23-Re1-Cl1 77.85°, N1-Re1-Cl 82.84°, P1-Re1-P2 159.520(12)°, 
Re1-C23-N3 179.56(14), Re1-N2-C21 166.60(12). 
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4.3 Acetonitrile release by oxidative functionalization 

 

Intramolecular four-electron charge transfer from the ethylimido ligand to the metal 

by double deprotonation (Scheme 57b) is in fact feasible, if the electron-rich 

{(PNP)ReI} fragment is trapped by π-accepting ligands, such as isonitriles. However, 

regeneration of parent 3 on this route was unsuccessful, so far. Therefore, conversion 

of 18b by oxidative functionalization of the azavinylidene ligand was examined. Cyclic 

voltammetry (CV) reveals reversible oxidation of 18b at low potential (E0 = -0.58 V) 

and irreversible oxidation beyond +0.55 V (Figure 52). 

 

   

Figure 52: Cyclic voltamogram of complex 18b (2 mM, DCM, 100 mV/s). 

 

Accordingly, chemical oxidation with one equivalent of AgPF6 in CH2Cl2 results in the 

formation of a red, paramagnetic product (Figure 53). While this compound could not 

be isolated due to slow degradation, in situ hydrogen-atom transfer (HAT) with 2,4,6-

tri-tert-butylphenoxy radical (after preceding oxidation of 18b with AgOTf) gives the 

vinylimido complex [(PNP)Re(N-CH=CH2)Cl][OTf] (22-OTf) in spectroscopic yields 

beyond 80% (Scheme 61). The vinyl substituent in 22 is unequivocally identified by 

its 1H-NMR signature (Figure 54), while the signals for the pincer ligand exhibit only 

small differences from those of the imido and ketimido complexes 16 and 18. 

Notably, without preceding oxidation of 18b (with AgPF6 or AgOTf) no reaction is 

observed with 2,4,6-tri-tert-butylphenoxy radical. 

-0.58 V 

0.55 V 
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Figure 53: 1H-NMR spectrum of the 1e- oxidation of 18b with Ag+ in CD2Cl2. 

 

 

Scheme 61: Synthesis of acetonitrile upon oxidation of N2–derived ketimide 18b. 

 

Hence, formal hydride abstraction from 18b by stepwise one-electron oxidation and 

subsequent HAT favors the formation of an unusual rhenium(V) vinyl imide over the 

rhenium(III) acetonitrile tautomer (Scheme 62). This observation again emphasizes 

the distinct tendency of the electron-rich {(PNP)ReCl} core for MN back bonding. 

However, the nitrile isomer [(PNP)Re(NCMe)Cl]+ was computed to exhibit a triplet 

ground state that lies only around G0 = +16 kJmol-1 higher in energy than 22. This 

result suggests that acetonitrile elimination might be accessible on the rhenium(III) 

stage by trapping of the {(PNP)ReCl}+ fragment. Accordingly, the reaction of 22 with 

LiCl, crown ether (12-C-4) and substoichiometric amounts of 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU) results in formation of parent 3 and 

acetonitrile, closing a full synthetic cycle. Without DBU no reaction is observed and 

18b 22 3 
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the non-nucleophilic base presumably facilitates proton transfer for vinyl-group 

tautomerization.  

 

Scheme 62: Proposed equilibrium between 22 and its acetonitrile tautomer. 

 

 
Figure 54: 1H-NMR spectrum of the synthesis of 22 from 18b  in C6D6. 

 

Albeit the spectroscopic yield in 3 and MeCN is only around 30% (internal 1H-NMR 

standard naphthalene, Figure 55) besides several other unidentified products, these 

results define the requirements for oxidative acetonitrile release from 18b: A two-

electron oxidant and a base for formal hydride removal in combination with a 

chloride source to stabilize rhenium(III). 

To raise the overall yield of the synthetic cycle, several reagents were screened that 

fulfill the aforementioned requirements. For example, 18b reacts with a mixture of 

CuCl2 (2 eq) and DBU (1 eq) to give 3 in around 20% spectroscopic yield (31P-NMR, 

Figure 56). The main product however turned out to be a C1 symmetric species, 

22 
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indicating an alteration of the ligand backbone. Not only the azavinylidene ligand is 

prone to oxidation, but also the CH2 groups of the saturated ethylene bridges (see 

chapter II.2), which might occur under these reaction conditions. Best results were 

obtained using N-chlorosuccinimide (NCS) for oxidation. Reaction of 18b with 2 eq 

NCS (Scheme 5) gives free acetonitrile in over 90% yield by 1H-NMR (internal 

standard hexamethylbenzene, Figure 57). 

 

 
Figure 55: 1H-NMR spectrum of the release of acetonitrile from 22 with LiCl/12-C-4/DBU in d8-

THF. 
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Figure 56: 31P{1H}-NMR spectrum of the oxidation of 18b with 2 eq CuCl2 and 1 eq DBU in THF; Integrals 
are normalized to 100%. 

 

 

Figure 57: 1H-NMR spectrum of the reaction of 18b with N-chlorosuccinimide (2 eq) in C6D6 
(hexamethylbenzene as internal standard). 

 

18b 

3 
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In addition, rhenium(IV) complex [(PNP)ReCl3] (23) is obtained almost quantitatively 

according to comparison of the 1H-NMR (H(tBu) = 10.7 ppm) and UV/Vis spectra 

with an authentic sample (Figure 58). Complex 23 was independently prepared by 

oxidation of 3 with 1 equivalent NCS and fully characterized. The molecular structure 

determined by single-crystal X-ray diffraction (Figure 59) reveals octahedrally 

coordinated rhenium with some distortion mainly arising from the pincer bite 

angle.11 The magnetic moment in solution at room temperature from Evans´ method 

(1.5 B) is in agreement with a d3 low-spin configuration resulting from the strong 

pincer -donation and some orbital contribution to the magnetic moment that leads 

to reduction of the magnetic moment with respect to the spin-only value. 

Contrariwise, EPR measurements did not show any signal. The facile synthesis of 

rhenium(IV) complex 23 from parent rhenium(III) dichloride 3 and NCS (1 eq) 

indicates that 3 could in fact be an intermediate in the oxidation of 18b with NCS. 

 

Figure 58: UV-vis spectra of isolated 23 in THF prepared by oxidation of 3 (red spectrum) and of 
18b (black spectrum) with N-chlorosuccinimide, respectively. 

 

                                                        
11 X-ray diffraction was performed by Christian Würtele. 



4. Conversion of Dinitrogen to Organonitriles 

106 

 

 

Figure 59: Molecular structures of complex 23 derived by single-crystal X-ray diffraction. ORTEP plots 
with anisotropic displacement parameters set at 50% probability. Hydrogen atoms are omitted for 

clarity. Selected bond lengths [Å] and angles [°]:Re1–N1 1.9038(16), Re1–Cl1 2.3893(5), 
Re1-Cl2 2.4024(5), Re1–Cl3 2.3700(5); N1-Re1-Cl1 91.50(5), N1-Re1-Cl2 178.69(5), N1-Re1-Cl3 91.59(5), 

P1-Re1-P2 160.046(16), Cl1-Re1-Cl2 88.090(17), Cl1-Re1-Cl3 176.471(16). 

 

Finally, the synthetic cycle could be closed by reduction of 23 with Na/Hg (2 eq) 

under dinitrogen (1 bar) at room temperature (Scheme 63). The nitride 9 is obtained 

in over 70% spectroscopic yield (Figure 60). This full cycle of N2 conversion into 

acetonitrile was further confirmed with a 15N-labeled sample producing 15N-labeled 

acetonitrile (N = -129.9 ppm). The reaction of 23 with only one equivalent of 

reductant (CoCp*2) under argon quantitatively gives complex 3 as determined by 1H 

and 31P-NMR spectroscopy, indicating that N2-splitting starting from 23 might also 

pass through rhenium(III) complex 3 as an intermediate. 

 

Scheme 63: Most efficient synthetic cycle for acetonitrile synthesis from N2 with (PNP)Re complexes. 

 

9 

18b 
23 
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Figure 60: 31P{1H} NMR spectrum of the reduction of 23 with Na/Hg (2 eq) under N2 (1 bar) at r.t. 

 

 

In summary, the best synthetic cycle is composed of three simple reaction steps with 

52% overall yield. A catalytic application is due to the need for both, strong 

electrophiles (EtOTf) and reducing conditions (Na/Hg) difficult. The solvent of choice 

to carry out the whole synthetic cycle in one pot has been found to be 1,4-dioxane, as 

it is sufficiently polar for the N2 reduction step, but inert towards ring opening 

polymerization in contrast to THF. However, it was not possible so far to run the 

complete cycle a second time as no N2 splitting could be achieved anymore in the 

presence of formed acetonitrile, succinimide, bis(trimethylsilyl)amine and KOTf.  

 

 

 

 

 

9 
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4.4 Formation of benzonitrile 

 

In analogy to the acetonitrile release by conversion of 16b-OTf, the synthesis of 

benzonitrile from 16c-OTf was envisaged to expand the reported synthetic cycle 

towards nitriles containing π-systems. 16c-OTf displays the same reactivity as its 

ethyl analogue and can easily be deprotonated by KOtBu or KBTSA to the 

azabenzylidene complex 18c (Scheme 64). In the NMR spectra, 18c also displays two 

sets of signals in the same region as observed for 18b in agreement with two stereo 

isomeric structures. The benzylic protons displays small coupling to the phosphorous 

atoms (4JHP = 2.0 and 2.2 Hz) as usually observed for ketimido species 18. 

Interestingly, some of the signals of the phenyl groups are broadened in the 1H-NMR 

spectrum (Figure 61) and in contrast to the corresponding imide 16c-OTf (Figure 

38), no cross peaks between the phenyl groups and the benzylidene protons are 

observed in the H,H-COSY NMR spectrum (Figure 62), which might indicate exchange 

of these protons. In the H,H-NOESY spectrum, spatial proximity between the phenyl 

groups and the ligand backbone is still observed by cross peaks (Figure 63). 

 

 

Scheme 64: Synthesis of 18c by benzylation of the nitride 9 with subsequent deprotonation and 
benzonitrile release upon reaction with NCS.  

9 18c 

23 

16c-OTf 
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Figure 61: 1H-NMR spectrum of 18c in C6D6. 

 

 

Figure 62: 1H,1H-COSY NMR spectrum of 18c in C6D6. 



4. Conversion of Dinitrogen to Organonitriles 

110 

 

 

Figure 63: 1H,1H-NOESY NMR spectrum of 18c in C6D6. 

 

Single crystals of 18c were examined by X-ray diffraction.12 The asymmetric unit cell 

contained two complex molecules of 18c, with one being disordered at one site of the 

PNP ligand backbone (Figure 64). The two structures are very similar and all bond 

length and angles are the same within 0.01 Å and 3.5° and describe a distorted square 

pyramide with the benzylidene group in the apical position (τ = 0.4). Comparison 

with 18b does not reveal any significant differences. 

 

                                                        
12 X-ray analysis was performed by Dr. Christian Würtele. 
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Figure 64: Molecular structures of complex 18c derived by single-crystal X-ray diffraction. ORTEP plots 
with anisotropic displacement parameters set at 50% probability. Hydrogen atoms are omitted for 

clarity, except for the azabenzylidene groups. Selected bond lengths [Å] and angles [°]: Re1-N1 1.938(2), 
Re1-N2 1.798(2), Re1-Cl1 2.3964(6), N2-C21 1.289(3), Re2-N3 1.944(2), Re2-N4 1.796(2), Re2-Cl2 

2.3952(6), N4-C48 1.287(3); N1-Re1-N2 114.54(10), N1-Re1-Cl1 137.19(8), P1-Re1-P2 161.80(2), Re1-N2-
C21 170.2(2), N3-Re2-N4 115.83(9), N3-Re2-Cl2 137.88(6), P3-Re2-P4 161.62(2), Re2-N4-C48 173.7(2).  

 

In analogy to the release of acetonitrile,[207] the reaction with 2 equiv. NCS generates 

signals corresponding to benzonitrile in about 50% spectroscopic yield (based on 1H-

NMR integration with hexamethylbenzene as internal standard) with concomitant 

formation of 23 (Scheme 64). A synthetic cycle for benzonitrile generation out of N2 is 

therefore possible with an overall yield of about 13%. However, these are preliminary 

results as full characterization of 16c-OTf and 18c as well as 15N-labelling 

experiments have not been carried out yet. Nevertheless, the N2 functionalization 

route is not only limited to alkyltriflates, but can also be used for π-conjugated 

systems. 

 

In summary, these results describe a new strategy for dinitrogen functionalization to 

valuable chemicals beyond ammonia, which still represents a rare reaction type. 

Besides the thermochemical attractiveness of forming C≡N triple bonds after N2 

splitting, this work also offers mechanistic implications regarding the restoration of 

low-valent rhenium after N2 splitting. As demonstrated, the alkylimide to nitrile 

ligand oxidation can be partially coupled with metal re-reduction. Such proton-

coupled metal–ligand redox processes are therefore of particular relevance for future 

efforts to design truly (electro-)catalytic variants of N2 transformation to organic 

compounds. 
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5 Reactivity of the methyl-imido analogue 

 

 

5.1 Deprotonation and characterization of the methyl-

ketimide 

 

In 2011, the group of Cummins demonstrated N2 conversion to cyanide with the 

Mo(NtBuAr)3 system. After N2 splitting, alkylation and deoxygenation in the presence 

of base, they could observe the formation of a cyanido complex (Scheme 19).[112] HCN 

could not be detected. 

In analogy to acetonitrile release of the ethyl-substituted complex 16b-OTf,[207] the 

question arose whether the formation of cyanides or HCN is possible from the 

methyl-substituted complex 16a-OTf. Hence, the latter was deprotonated as 

described in the previous chapter and 18a could be isolated in high yield (Scheme 

65). 

 

 

Scheme 65: Synthesis of methyl-ketimido complex 18a. 

 

The spectroscopic signature is similar to 18b and 18c, although there is only one 

isomer. Nevertheless, the two protons of the N=CH2 group display two characteristic 

multiplets with coupling to each other (2JHH = 4.8 Hz) and to the phosphorous atoms 

(4JHP = 2.4 Hz). Single crystal X-ray analysis13 revealed also comparable bond lengths 

to 18b, only the N2-C21 bond distance of the azavinylidene group is slightly shorter 

(d = 0.03-0.04 Å). The Re-N-C angle is still close to linear (172.6(2)°), but the 

                                                        
13 X-ray analysis was performed by Dr. Christian Würtele. 

9 16a-OTf 18a 
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structure around the rhenium center is more distorted. 18a is best described as a 

heavily distorted square pyramide, with the chloride in the apical position ( = 0.46), 

whereas 18b and 18c display a similar geometry, but with the 

azavinylidene/azabenzylidene ligand in the apical position ( = 0.45 and 0.40 

respectively). 

 

 

Figure 65: Molecular structure of complex 18a derived by single-crystal X-ray diffraction. ORTEP plots 
with anisotropic displacement parameters set at 50% probability. Hydrogen atoms except for the 

azavinylidene ligand are omitted for clarity. Selected bond lengths [Å] and angles [°]: Re1–N1 1.9563(15), 
Re1–N2 1.8365(16), Re1–Cl1 2.3775(5), N2–C21 1.248(3); N1-Re1-N2 134.81(7), N1-Re1-Cl1 117.51(5), 

N2-Re1-Cl1 107.67(5), P1-Re1-P2 162.140(16), Re1-N2-C21 172.56(16). 

 

Since the objective is an oxidative functionalization of 18a as it has been found for 

18b, the product was characterized by cyclovoltammetry. The cyclovoltammogram 

displays similar to 18b a reversible and an irreversible oxidation wave, although the 

potentials are shifted to slightly higher values (Figure 66).  

 

Figure 66: Cyclovoltammogram of 18a vs Fc/Fc+ in DCM (200 mV/s, GC-Working electrode, 0.1 M 
[NnBu4][PF6]). 

-0.50 V 

0.63 V 
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Reversibility for the lower wave was proven by scanning only in the region from -1 to 

0 V with different scan rates (Figure 67). The rather quasi-reversible behavior of this 

wave in the bigger potential window (Figure 66) is therefore attributed to the second, 

completely irreversible oxidation wave. 

 

  

Figure 67: Cyclovoltammogram of 18a vs Fc/Fc+ in DCM with different scan rates. 

 

 

 

5.2 Oxidative functionalization of the methyl-ketimide 

 

Chemical oxidation of 18a with 1 equiv. Ag+ however does not generate a 

paramagnetic complex similar to 18b. Instead, a mixture of diamagnetic complexes is 

formed with the main product exhibiting only a singlet for the N=CH2 group in the 1H-

NMR spectrum (Figure 69, note: chloride exchanged by a methyl group: H(ReCH3) = 

3.54 ppm, H([ReNCH2)]2) = 2.78 ppm) in contrast to parent 18a. This behavior would 

be in agreement with a dimerization of the complex. Exchanging the chloride 

substituent of 18a by a methyl group (25a, see below) followed by 1 e- oxidation 

allowed for crystal growth and X-ray diffraction of the product 24 (Figure 68).14 The 

obtained structure confirmed the dimerization of the complex to form a {Re-N-CH2-

CH2-N-Re} bridge, but unfortunately, due to disorder problems, the crystallographic 

                                                        
14 Determination of the molecular structure was performed by Dr. Christian Würtele. 
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resolution does not allow for description of bond lengths or angles. Since the reaction 

affords some side-products with similar solubility, 24 has not been fully 

characterized yet. It is assumed, that 18a forms a radical upon oxidation, with couples 

with another formed radical at the CH2-group (Scheme 66). 

 

 

Scheme 66: Chloride exchange by a methyl group and dimerization of 25a to 24 upon oxidation. 

 

 

Figure 68: Molecular structure of 24 derived by single-crystal X-ray diffraction. ORTEP plots with 
anisotropic displacement parameters set at 30% probability. Anions omitted for clarity. 

 

18a 24 25a 

2+ 
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Figure 69: 1H-NMR spectrum of 24 after crystallization in CD2Cl2. 

 

To verify the radical reactivity of oxidized 18a, a trapping reaction was performed. 

The redox potential of the trityl cation (+CPh3) is high enough to oxidize 18a (-0.11 vs 

Fc/Fc+ in acetonitrile).[227] The oxidized form then instantaneously couples with the 

so generated trityl radical (·CPh3) to form [(PNP)Re(NCH2CPh3)(Cl)][PF6] (16d-PF6) 

(Scheme 67). 

 

 

Scheme 67: C-C Coupling of 18a with the trityl cation. 

 

The spectroscopic yield (31P-NMR integration) is about 50%. The main side-product 

(40%) turned out to be 16a, tentatively due to residual moisture in the trityl salt 

[CPh3][PF6]. That coupling indeed occured was verified by 2D-NMR spectra. In the 1H-

NMR spectrum of the resulting mixture, a singlet at 4.52 ppm is assigned to the 

NCH2CPh3 group, since the spectroscopic signature of 16a is known (NCH3 at 2.86 

ppm). HSQC in combination with DEPT135 spectra confirm this signal to be a CH2 

group (Figure 70). In the 1H-NOESY spectrum, distinct coupling between this signal 

18a 16d-PF6 
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and the aromatic signals of the phenyl substituents (NCH2CPh3) as well as one tert-

butyl group of the PNP ligand can be detected (Figure 71). 

No nucleophilic reactivity of the methylene unit towards carbon electrophiles 

(MeOTf) has been reported, so nucleophilic attack of 18a at the trityl cation is 

unlikely. 

 

 
Figure 70: HSQC spectrum of an about equimolar mixture of 16a and 16d in d8-THF; vertical trace is the 

DEPT 135 spectrum of the same reaction mixture. 
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Figure 71: 1H-NOESY spectrum of a mixture of 16a and 16d in d8-THF. 

 

Deprotonation of this mixture with KBTSA affords the compounds 18a and 18d. The 
31P-NMR signal for the latter is in a slightly different region as for all other 

azavinylidene species (P = 41 and 44 ppm). Interpretation of the 1H-NMR spectrum 

is hampered due to excessive signal overlap. 

 

 

Scheme 68: Deprotonation of 16d-PF6 to 18d. 

 

However, single crystals of 18d suitable for X-ray diffraction could be obtained. The 

structure is disordered in one arm of the PNP ligand, but illustrates the C-C coupling 

reaction upon oxidation (Figure 72). Interestingly, the geometry of this complex 

resembles more a square pyramid than all other azavinylidene complexes (τ = 0.33), 

maybe due to steric reasons. All bond lengths are comparable to 18a-c. Striking 

16d-PF6 18d 
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difference is the Re-N-C angle of the azavinylidene unit (164.55(15)°), which deviates 

significantly from linearity and about 10° from the angles observed for 18a-c. This 

might be due to steric reasons, as the bulky phenyl groups are rather close to one of 

the tBu-groups of the PNP ligand. All other angles are within 5° similar to 18a-c. Since 

18d has not been isolated, nitrile release has not been tested. 

 

 

Figure 72: Molecular structure of complex 18d derived by single-crystal X-ray diffraction. ORTEP plots 
with anisotropic displacement parameters set at 50% probability. Hydrogen atoms except for the 

azavinylidene ligand are omitted for clarity. Selected bond lengths [Å] and angles [°]: Re1–N1 1.9403(17), 
Re1–N2 1.8237(16), Re1–Cl1 2.4120(5), N2–C21 1.283(2), C21-C22 1.556(3); N1-Re1-N2 113.37(7), 

N1-Re1-Cl1 138.73(5), N2-Re1-Cl1 107.88(5), P1-Re1-P2 158.747(18), Re1-N2-C21 164.55(15). 

 

Cyanide generation from 18a by an oxidative approach similar to 18b seems to be 

difficult, since the oxidized form is not stable at all. Addition of 2 equiv. NCS to a 

solution of 18a however results in formation of 23, verified by 1H-NMR spectroscopic 

investigations as well as a LIFDI mass record of the reaction mixture. Nevertheless, 

the reaction is rather unselective, as also diamagnetic and paramagnetic side-

products are detected in the NMR spectra (1H-NMR: Figure 73). A yield for 23 could 

not be determined so far. Mass spectrometry does not show any cyanide containing 

complex. Contrariwise, absorption bands in the range of 2260-2220 cm-1 in the IR-

spectrum of the dried residue of the reaction (Figure 74) indicate coordinated or 

substituted C≡N (free CN- = 2076 cm-1).[228,229] Further investigations are necessary to 

clarify the fate of the {CN} unit. 
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Figure 73: 1H-NMR spectrum of 18a with 2 equiv. NCS in C6D6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23 

Succinimide 

R-C≡N 

Figure 74: IR spectrum (KBr) of the dried residue of the reaction of 18a with 2 equiv. NCS; Selected 
wavenumbers [cm-1]: υ(R-C≡N): 2259, 2224 (w); υ(C=O) = 1763, 1709 (s). 
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6 Further reactivity of the imides and ketimides 

 

 

6.1 Reaction with metal alkyls 

 

Linear {M-N-R} imido moieties often display electrophilic reactivity.[105] To verify, if 

generation of amides is possible, the imido complexes 16 were tested towards 

nucleophiles like lithium organyls or grignard reagents. However, no reactivity at the 

imido nitrogen has been observed. Instead, 2 equiv. of MeLi or MeMgCl deprotonate 

the imide and substitute the chloride ligand to generate [(PNP)Re(NCHR)(CH3)] (25, 

Scheme 69). The structural parameters for 25a are basically the same as for 16a 

(Figure 75) and the NMR data is similar. The new Re-CH3 group of 25a displays a 

triplet in the 1H-NMR spectrum at 2.2 ppm (3JHP = 4.2 Hz) and a negative chemical 

shift in the 13C-NMR (-10 ppm). The same reaction starting from 16b generates 25b, 

identified by a similar spectroscopic signature. No further reactivity is observed if an 

excess of metal organyl is used.  

 

 

Scheme 69: Reaction of 16 with 2 equiv. of metal organyl to 25. 

 

 

16-OTf 25 
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Figure 75: Molecular structure of complex 25a derived by single-crystal X-ray diffraction. ORTEP plots 
with anisotropic displacement parameters set at 50% probability. Hydrogen atoms except for the 

azavinylidene and methyl ligand are omitted for clarity. Selected bond lengths [Å] and angles [°]:Re1–N1 
1.9837(14), Re1–N2 1.8416(15), Re1–C21 2.1416(18), N2–C22 1.271(2); N1-Re1-N2 143.36(6), N1-Re1-

C21 112.59(7), N2-Re1-C21 104.04(7), P1-Re1-P2 161.895(16), Re1-N2-C22 169.52(14). 

 

The use of PhMgBr also leads to deprotonation of the imide with a spectroscopic 

signature similar to 18a, but the resulting complex does not incorporate any 

aromatics, as observed by NMR spectroscopy. Only very small signals are observed in 

the aromatic region of the 1H-NMR spectrum, pointing towards residual Grignard 

reagent. Unexpectedly, the spectra are not identical with 18a (Figure 76). The main 

difference is described by the chemical shift of the two signals for the NCH2-group, 

which are shifted by about 0.6 ppm each to higher field. An exchange of the chloride 

substituent by bromide is most likely, but has not been examined in more detail yet. 

 

 

Figure 76: 1H-NMR spectrum of 18a (green) and the resulting complex from deprotonation of 16a with 
PhMgBr (red, signals integrated) in C6D6. 
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6.2 Imide reduction 

 

To further analyze the reactivity of the imido complexes 16, cyclic voltammetry was 

carried out using 16a. The resulting voltammogram exhibits two irreversible 

reduction waves at a potential of -1.8 and -2.1 V in THF vs Fc/Fc+ (Figure 77).  

 

 

Figure 77: Cyclovoltammogram of 16a (1 mM) vs Fc/Fc+ in THF (400 mV/s, GC-Working electrode, 0.1 M 
[NnBu4][PF6]). 

 

Chemical 2 electron reduction of 16a using 2 equiv. KC8 in THF produces selectively 

one diamagnetic, Cs symmetric compound in about 90% spectroscopic yield 

(P = 79 ppm). This compound features the characteristic signals for a N=CH2 group 

as well as a hydride signal at a chemical shift of -4.3 ppm (d8-THF) in the 1H-NMR 

spectrum. Hence, not only reduction from ReV to ReIII took place, but also chloride 

abstraction and most likely -hydrogen elimination to produce [(PNP)Re(NCH2)(H)] 

(26a, Scheme 70). For 16b, similar results are obtained, albeit the spectroscopic yield 

in 26b is lower (60% based on 31P-NMR integration). 

 



6. Further reactivity of the imides and ketimides 

125 

 

 

Scheme 70: Reactions to produce 26 by reduction of 16 and by hydrogenation of 25. 

 

To verify the structural assignment of the products, H2 was added to 25 and 

formation of the same compound was achieved (Scheme 70), proving that there is no 

chloride left in 26. After heating to 70°C for 18 h (25a), complete conversion is 

observed under release of CH4 (Figure 78). 

 

 

Figure 78: 1H-NMR spectrum of the addition of H2 to a solution of 25 in d8-THF after 18 h at 70°C. 

 

 

16-OTf 26 25 

CH4 H2 
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6.3 Hydrogenation reactions 

 

Hydrogenation of the imido complexes is an interesting goal, as it offers the 

possibility of amine generation out of N2-derived complexes. A reaction of 16a with 

H2 gas is not observed, unless small amounts of MeOTf or HCl are present, indicating 

catalysis of protons or Lewis acids. A new product is formed thereby in spectroscopic 

yields of about 85% (P = 66 ppm). No signals in the negative region of the 1H-NMR 

spectrum are observed, but deprotonation of this product with 2 equiv. KOtBu yields 

26 again. Hydride signals might therefore be suppressed (broadend) by exchange 

with H2 gas or are located in the positive region of the spectrum. The product is 

assumed to be [(HPNP)Re(NCH3)(H)(Cl)]OTf (27), although full spectroscopic 

characterization is lacking (Scheme 71).  

Furthermore, hydrogenation of 18 is slow and results in two products in an 1:1 ratio 

after heating to 80°C for several days. One of them is 26, as compared with original 

spectra (e.g. from imide reduction, see above), indicating that HCl is eliminated. The 

other one is 27, as compared with hydrogenation of 16, pointing towards HCl 

addition (Scheme 71). Hence, 18 disproportionates upon hydrogenation into 26 and 

27. Accordingly, the hydrogenation is selective towards 26 in the presence of a base 

as the formed HCl is trapped. In the presence of HCl on the other hand, only 27 is 

observed, supporting the above stated assignments. 

 

 

Scheme 71: Hydrogenation reactions of 16 and 18.  

 

Protonation of 26 is accomplished using 1 equiv. of HOTf, HBArF4 or NH4PF6 and 

yields the imido complex 28 (Scheme 72). Expected signals for an alkyl group as well 

16 

18 

26 27 
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as one hydride signal (H = -6.2 ppm, CD2Cl2) are observed in the 1H-NMR spectrum. 

The 31P-NMR shift is similar to all other imido complexes (P = 97 ppm). Similar to 16, 

hydrogenation of 28 is possible, if some residual acid is present forming a new Cs 

symmetric compound 29. However, this reaction is much faster and takes only a few 

minutes indicated by color change from green to rose, compared to three days at 80°C 

for 16 to yield blue 27. Presumably, the presence of the hydride as strong σ-donor 

enhances the electron density at the metal, which favors H2 coordination and 

splitting. Moreover, also for 29, no hydride signals in the negative region of the 1H-

NMR spectrum can be observed anymore, pointing towards exchange with gaseous 

H2, self-exchange or a positive chemical shift. Unfortunately, the product could not be 

isolated, since vacuum application led to partial back-reaction to 28. 

 

 

Scheme 72: Hydrogenation of 28: Possibility of amine release? 

 

Equilibrium formation between 29 and a polyhydride under an atmosphere of H2 

represents a viable route to generate amines. To verify this assumption, 

hydrogenation of 28-BArF4 was carried out in the presence of an additional 

equivalent of HBArF4 in order to protonate (and preferably precipitate) potentially 

formed amine. In this way, a reaction back to 28 by vacuum application would be 

hampered. As before, 29 formed selectively. However, after evacuation of the reaction 

mixture, the same product distribution of 29 and 28 was found. Therefore, amine 

generation out of hydrogenation of the N2-derived imido complexes has not been 

accomplished so far. 

26 28 29 
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To fulfill the task of rhenium mediated N2 splitting, a low valent, coordinatively 

unsaturated rhenium pincer complex was synthesized. The synthesis of Re(III) 

complex 3 containing tert-butyl substituents on the phosphorous atoms is 

straightforward and achieved in good yields (usually around 80% isolated). The 

complex is indefinitely stable at room temperature under argon atmosphere and no 

reaction with N2 is observed. On the other hand, reduction of this complex under N2 

atmosphere using Na/Hg or CoCp*2 generates the nitrido complex 9 in high 

spectroscopic yields. Although no well resolved crystal structure of this complex was 

obtained, comparison of its spectroscopic signature with an authentic sample 

prepared from an azide source ([PPN]N3) as well as 15N-labelling confirmed the 

existence of a terminal nitride. Spectroscopically, no intermediates could be detected. 

However, the splitting mechanism is proposed to proceed via a linear µ-η1
-η

1
-N2 

dimer analogous to the mechanism observed by Cummins.[83,84] DFT calculations 

predict this mechanism to be a feasible route with a broken symmetry singlet state 

dimer as reaction intermediate. During N-N splitting a zigzag transition state is 

reached with a moderate barrier, which cleaves into the nitride complexes. The N-N 

splitting process was calculated to be exergonic by about 98 kJmol-1. A {MNNM]10π4δ 

system is believed to play an important role for the N-N cleavage to take place and is 

therefore stated to be a prerequisite. This is in agreement with most other dinuclear 

systems, which also contain a 10π-electron system and which also reduce N2 into metal 

nitrides. 

 

The utilized PNP ligand allows for simple variations in order to probe the influence of 

steric bulk, rigidity and π-donor strength of the involved amide. As DFT calculations 

predict a lower steric bulk to impede N-N splitting and may allow for isolation of an 

N2 bridged intermediate, the iso-propyl-derivative PNPiPr was employed. A five-

coordinate amide like 3 seems to be disfavored. Contrariwise, the octrahedrally 

coordinated amine 4 is formed. However, the latter has not been used for N2 splitting 

in this thesis. Oxidation of the ligand backbone to enamide 8 and dienamide 6 can 

easily be accomplished by H-atom abstraction. The nitride 11 is a stable species, but a 

preliminary N2 splitting test from 6 did not unambiguously confirm, that cleavage is 

possible with these systems.  

 

A reaction of the nitride complex 9 with CO, CO2 or H2 gas has not been observed. 

Protonation of 9 yields the amine, nitride 12-X, which is protonated at the backbone 

nitrogen and not at the nitride functionality. However, the nitride was found to react 

nucleophilic. Functionalization in terms of N-C coupling was achieved by reaction 

with strong electrophiles like alkyl triflates or alkyl oxonium compounds (Meerwein 

salts) to generate the respective imido complexes 16-X. Addition of Tf2O generates 

the triflated compound 17-OTf. Weaker electrophiles like alkyl halides, acid 

chlorides, silicon compounds or anhydrides do not show a reaction with the nitride. 
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Usually, coordination trans to the nitride is inhibited due to its strong trans influence. 

However, strong σ-donors, like isonitriles do show a reaction. CNtBu in combination 

with a base presumably forms the cyanide complex 14. The tert-butyl group of the 

isonitrile is thus eliminated as isobutene. With strong electrophiles like MeLi, chloride 

exchange by a methyl group to 13 could be observed. Grignard reagents or hydride 

sources do not react with 9. Synthesis and found reactivity of 9 is summarized in 

Scheme 73. 

 

 

Scheme 73: Synthesis of the nitride complex 9 by N2 splitting from 3 with subsequent functionalizations. 

 

17-OTf displays interesting reactivity upon heating in aromatic solvents. Clean 

generation of 12-OTf is observed and CF3-group transfer to the solvent is assumed. 

By addition of a suitable base, a catalytic application would be an intriguing 

possibility, although this was not tested during the course of this thesis. 

 

The imido complexes 16 can be deprotonated by KOtBu or KBTSA to generate the 

respective azavinylidene species 18. If the deprotonation is carried out with MeLi or 

MeMgCl, additionally substitution of the chloride by the methyl group is observed to 

yield 25. Addition of H2 to the latter leads to exchange of the methyl group by a 

hydride substituent in 26. The complex 26a can also be synthesized by 2 electron 

3 

9 

12 

16 

17 

14 

13 
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reduction from 16a-OTf. Reduction from 16b-OTf to 26b is possible, but not as 

selective. Protonation of the azavinylidene species 18 and 26 to the respective imido 

complexes 16 and 28 is possible, however excess acid can cause degradation. 

Protonation of 25 has not been tested. These transformations are summarized in 

Scheme 74. 

Hydrogenation of the imides and the azavinylidenes is possible, but usually 

protonation at the backbone nitrogen and the generation of a hydride is observed and 

no reactivity at the N2-derived nitrogen. 

 

 

Scheme 74: Transformations of all characterized azavinylidene species. 

 

With the objective of acetonitrile release from 18b, deprotonation of the latter was 

tested. However, only in the presence of strong π-acceptors like isonitriles (CNtBu) a 

stabilization of the Re(I) species was observed under release of the nitrile. In 19, the 

high electron density is expressed by an unusual, but not unprecedented, bending of 

one isonitrile ligand due to strong π-backbonding. However, the starting material for 

N2 splitting, complex 3, could not be recovered from 19. In a second step, 

deprotonation and 2 electron oxidation was combined in order to oxidize the 

resulting Re(I) directly back to Re(III). Oxidation and simultaneous H-atom 

abstraction resulted in formation of the vinyl compound 22-OTf instead of 

acetonitrile. However, the nitrile could be liberated in low yields by addition of a 

chloride source under generation of 3. Addition of a chlorinating agent (NCS) to 18b 

resulted in formation of the trichloro complex 23 with concomitant release of 

acetonitrile. The latter can be reduced by one electron to 3 or by 2 electrons under N2 

atmosphere to yield 9. In this way a synthetic cycle for the transformation of N2 in 

acetonitrile is achieved with an overall yield of 52% (Scheme 75). 

16 

18 25 
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Scheme 75: Synthetic cycles for the conversion of N2 into acetonitrile. 

Oxidation of the azavinylidene analogue 18a resulted in C-C coupling, indicating that 

the oxidized form is quite unstable. If only an oxidizing agent (Ag+) is added to the 

reaction, the main product turned out to be the dimer 24. In situ formation of the 

trityl radical by oxidation of 18a, allowed for the detection of the C-C coupling 

product 16d. Utilizing this radical reactivity may allow for further functionalizations 

of the N2-derived moiety.  

Chlorination of 18a by NCS seems to produce 23 as observed for 18b. However, the 

reaction is not as clean and the fate of the {CN} moiety is unclear. 

 

In summary, rhenium mediated N2 splitting in terminal nitrides could be achieved. A 

{MNNM]10π electronic configuration is assumed to be necessary to lead to N-N 

cleavage. Unfortunately, the nitride turned out to be rather stable with efficient Re≡N 

π-backbonding. NH3 could not be generated in any way. However, functionalization 

with strong electrophiles leads to C-N bond formation. Further conversion of these 

imides could be achieved to liberate acetonitrile carrying N2 derived nitrogen. By 

recovering of the starting material, a synthetic cycle could be closed. The system still 

has potential for the generation of different nitriles or even cyanide. A truly catalytic 

process seems unlikely with this system, but an electro-catalytic application might be 

feasible. Furthermore, the ligand system offers the possibility of fine-tuning of the 

steric and electronic requirements to not only obtain more insights into the N2 

splitting mechanism, but also to achieve more reactivity at the formed nitrido unit. 
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1 Methods 
 

1.1 General Methods 

 

Inert Gas 

All reactions with reagents sensitive to air or moisture were performed using 

standard Schlenk techniques under an atmosphere of argon or N2 where indicated 

(both 5.0, Linde gas). H2 gas (5.0) was passed through a steel coil cooled with liq. N2 to 

freeze out all moisture. All glassware was pretreated in a KOH/isopropanol bath, 

neutralized with diluted HCl, washed with deionized water and heated to 120°C. 

Before utilization, the glassware was heated under applied vacuum and flushed with 

argon in three cycles. Solvents were added via steel cannulas and rubber septum or 

trap-to-trap transferred in the reaction vessel. Glass fiber filters (Whatman GF/B) 

attached to Teflon cannulas with Teflon band were used for standard filtrations. A 

glass frit (G4) was charged with hot celite (min. 24 h at 120°C) for filtration over 

celite. Dewar vessels cooled with isopropanol/N2 liq. or dry ice baths were used for 

low temperature synthesis. All small scale experiments (< 20 µmol) were performed 

in J-Young NMR tubes. 

 

Glove box 

Small scale reaction work up and weighing of sensitive materials was carried out in a 

glove box of MBraun under argon atmosphere. The atmosphere was circulated 

through columns filled with activated carbon, copper catalyst and molecluar sieves (4 

Å) to remove traces of oxygen, moisture and solvents. 

 

Solvents 

Pentanes, benzene, THF, toluene, DCM and diethylether were passed through 

columns packed with activated alumina and/or molecular sieves in a solvent 

purification system of MBraun. Methanol, ethanol, ispropanol, acetone and DMSO 

were dried by stirring over molecular sieves. Triethylamine was distilled from KOH 

under argon. Acetonitrile was dried over CaH2 and distilled under argon. Deuterated 

solvents were dried over Na/K-alloy (C6D6 and d8-THF) or CaH2 (CD2Cl2), distilled by 

trap-to-trap transfer in vacuo, and degassed by three freeze-pump-thaw cycles, 

respectively. All solvents were stored under argon atmosphere. 
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1.2 Analytical Methods 

 

Elemental Analysis 

Elemental analyses were obtained from the Analytical Laboratories at the Georg-

August University (Göttingen, Germany) on an Elementar Vario EL 3.  

 

NMR Spectroscopy 

NMR spectra were recorded on a Bruker Avance III 300, Bruker Avance III 400 MHz or 

a Bruker Avance DRX 500 spectrometer and were calibrated to the residual proton 

resonance of the solvent (C6D6: δH = 7.16 ppm, δC = 128.39; d8-THF: δH = 3.58 ppm, 

CD2Cl2: δH = 5.32 ppm). 31P and 15N NMR chemical shifts are reported relative to 

external phosphoric acid and nitromethane (δ = 0.0 ppm), respectively. Signal 

multiplicities are abbreviated as: s (singlet), d (dublet), t (triplet), m (multiplet), br 

(broad).  

 

Mass Spectrometry 

Electrospray mass spectrometry was performed with a Bruker HCT ultra ESI-MS 

under N2 atmosphere. LIFDI mass spectrometry was carried out on a JEOL AccuTOF 

JMS-T100GCV spectrometer. The sample solution was introduced to the spectrometer 

via a steel cannula from a vial with rubber septum under argon atmosphere.  

 

IR Spectroscopy 

IR spectra were recorded on a Thermo Scientific Nicolet iZ10 Transmission 

spectrometer as nujol mulls between KBr plates or as KBr pellets. Spectra in liquid 

phase were measured in a cuvette containing KBr windows and sealed with teflon 

plugs. All sample preparation was carried out in a glove box. Signal intensities are 

abbreviated as: w (weak), m (medium), s (strong). 
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UV-Vis Spectroscopy 

UV-Vis absorption spectra were recorded on a Varian Cary 300 Scan 

spectrophotometer with sealed UV-Vis cuvettes under argon atmosphere.  

 

Cyclic Voltammetry 

Cyclic voltammograms were recorded on an Autolab PGSTAT101 from Metrohm in a 

glove box. Measurements were perfomed in a freshly prepared 0.1 M [nBu4N][PF6]-

solution of either THF or DCM with glassy carbon working electrode, Ag/AgNO3 

reference electrode and Pt counter electrode. Original spectra were referenced 

against the [(C5H5)2Fe]0/+ couple.  

 

Magnetic Measurements 

Magnetic moments were determined in THF at room temperature by Evans’ method 

as modified by Sur and corrected for diamagnetic contribution.[230,231] Therefore, the 

sample (ca. 5 mg) was weighed in a J-Young NMR tube and dissolved in a defined 

volume (ca. 0.500 mL) of d8-THF and referenced against the signal of a sealed 

capillary of the same solvent. The difference in chemical shift of the residual proton 

resonance of the solvent and the sealed capillary was used for the calculation of the 

magnetic moment.
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2 Reagents and starting materials 

2.1 Commercially available reagents and starting 
materials 

MeOTf and EtOTf (Alfa Aesar) were destilled and stored at -34°C over molecular 

sieves or MgSO4. N-chlorosuccinimide (Acros), [Fe(C5H5)] and KOtBu (Sigma) were 

sublimed prior to use. PPh3 (ABCR) was recrystallized out of ethanol. CNtBu (abcr) 

was degassed and stored over molecular sieves. Trifluoromethanesulfonic anhydride 

(ChemPur), Di-tert-butylchlorophosphine, benzylbromide (Alfa), 15N2, Lithium 

granula, [N(PPh3)2]Cl, KBTSA, TBD, NH4PF6, CoCp2, CoCp2*, BuLi (2.5 M in hexanes), 

PhMgBr (1 M in THF), MeMgCl (3 M inTHF, Sigma Aldrich), MeLi (1.6 M/Et2O, Acros), 

KF, NaN3 (Merck), AgOTf, AgPF6, KReO4, HCl (2 M in Et2O, abcr) and HOTf (abcr) were 

used as purchased.  

 

2.2 Non commercially available reagents and starting 
materials 

Following reagents and starting materials were not obtained commercially and were 

synthesized according to following literature: 

 

Compound Literature 

Re(O)(PPh3)2Cl3 (1) [194] 

Re(Cl)3(PPh3)2(NCCH3) (2) [195] 

Di(2-chloroethyl)trimethylsilylamine [232] 

Bis(di-tert-butylphosphinoethyl)amine (PNP) [233,234] 

KC8 [235] 

Na/Hg [236] 

[N(PPh3)2]N3  ([PPN]N3) [234,237] 

2,3:5,6-Dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene 

(HDBABH) 

[238] 

2,4,6-tri-tert-butylphenoxyl radical [239] 

H[B{C6H3(CF3)2}4]  (H[BArF4]) [240] 

https://goechem.zvw.uni-goettingen.de/cgi-bin/cf02a.cgi?mid=e3021861d727b0f4432096a75
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3 Synthesis 

 

3.1 Re(III) platform 

 

3.1.1 (PNP)ReCl2 (3) 

Published route 

Re(Cl)3(PPh3)2(NCCH3) (2) (220 mg, 0.256 mmol, 1 eq), HPNP (92.7 mg, 0.256 mmol, 

1 eq) and NEt3 (71 µL, 0.513 mmol, 2 eq) are suspended in THF (30 mL) and heated to 

reflux for 1 h, leading to a color change from yellow to dark brown-violet. The 

mixture is allowed to cool to room temperature and the solvent is removed i. vac. The 

crude product is consecutively extracted with benzene (3 x 10 mL) and pentane (10 x 

10 mL), filtered, and the solvent is removed i. vac. After lyophilization (benzene), 

residual PPh3 is sublimed off by heating to 80°C for 3 d at 30 mTorr. The product 3 is 

obtained as violet powder. Yield: 126 mg, 0.204 mmol, 79%.  

 

Improved synthesis 

[Re(Cl)3(PPh3)2(NCCH3)] (2) (1.025 g, 1.194 mmol, 1 eq), HPNP (504.7 mg, 1.396 

mmol, 1.2 eq) and NEt3 (331 µL, 2.388 mmol, 2 eq) are suspended in THF (50 mL) and 

heated to reflux for 2.5 h, leading to a color change from yellow to dark brown-violet. 

The mixture is allowed to cool to room temperature and the solvent is removed i. vac. 

The crude product is extracted with benzene (3 x 10 mL) and after evaporation of the 

solvent, the residue is washed with pentanes until the color changes from brown to 

violet (ca. 4 x 5 mL). After lyophilization (benzene), residual PPh3 is sublimed off by 

heating to 80°C for 30 h at 30 mTorr. The product 3 is obtained as violet powder. 

Yield: 634.7 mg, 1.028 mmol, 86%. 

 

Spectroscopic Characterization 

1H NMR  (300 MHz, C6D6, [ppm]): δ = 1.54 (A18XX´A´18, N = | 3JHP + 5JHP | = 6.0 Hz, 

36H, P(C(CH3)3), 2.20 (A2B2XX´B´2A´2, N = | 3JHP + 4JHP | = 6.0 Hz, 3JHH = 

6.6 Hz, 4H, NCH2), 2.28 (m, 4H, PCH2). 

13C{1H} NMR (75.5 MHz, C6D6, [ppm]): δ = 32.0 (A6XX´A´6, N = | 2JCP + 4JCP | = 2.0 Hz, 

P(C(CH3)3), 36.7 (AXX´A´, N = | 1JCP + 3JCP | = 6.9 Hz, PCH2), 52.4 

(A2XX´A´2, N = | 1JCP + 3JCP | = 7.7 Hz, P(C(CH3)3), 98.0 (AXX´A´, N = | 2JCP + 
3JCP | = 4.1 Hz, NCH2). 

31P{1H} NMR  (121.5 MHz, C6D6, [ppm]): δ = -51.5 (s, PtBu2). 
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Elemental Analysis 

C20H44Cl2NP2Re (%) calcd.: C, 38.89; H, 7.18; N, 2.27 

 found: C, 39.43; H, 6.97; N, 2.13 

 

 

3.1.2 Synthesis of [HPNPiPrReCl3] (4) 

HPNPiPr (2.2 mg, 6.8 µmol, 1.1 eq) is dissolved in C6D6 and added to 2 (5.2 mg, 

6.1 µmol, 1 eq) in a J-Young NMR tube. The mixture is heated to 65°C for 2 h during 

which the suspension clears off. The solvent is reduced to about 0.1 mL and pentane 

is added (0.7 mL). After filtration, the residue is again washed with pentanes (2 x 

0.7 mL). The residue is extracted with benzene and filtered over Celite. NMR-spectra 

show formation of paramagnetic 4. 

1H NMR  (300 MHz, C6D6, [ppm]): δ = -12.1 (m, 2H), -6.7 (m, 2H), -0.1 (m, 2H), 6.7 

(m, 2H), 8.2 (m, 6H), 8.6 (m, 6H), 9.0 (m, 12H), 9.7 (m, 2H), 137.2 (s, 

1H). 

 

3.1.3 Deprotonation of [HPNPiPrReCl3] (4) 

KOtBu or KBTSA: 

To a solution of 4 (3.5 mg, 5.8 µmol, 1 eq) in d8-THF (0.5 mL) the respective base, 

KOtBu (0.7 mg, 6.4 µmol, 1.1 eq) or KBTSA (1.2 mg, 5.8 µmol, 1 eq), is added. The 

solution turns dark brown immediately and the 31P-NMR spectra show formation of 

two diamagnetic products. 

31P{1H} NMR  (121.5 MHz, C6D6, [ppm]): δ = -1.4 (s, 35%), -17.0 (s, 65%). 

 

TBD (Synthesis of 5): 

To a solution of 4 (3.5 mg, 5.8 µmol, 1 eq) in C6D6 (0.5 mL) TBD (0.8 mg, 5.8 µmol, 

1 eq) is added, followed by a color change to grass green and selective formation of 

one compound. The solvent is evaporated and the residue is extracted with pentanes. 

After drying i. vac. the residue is dissolved in C6D6. Crystallization out of pentane 

confirmed the formation of 5. 

31P{1H} NMR  (121.5 MHz, C6D6, [ppm]): δ = -6.1 (s, PiPr2). 
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3.1.4 Synthesis of [(P=N=P)ReCl2] (6) 

3 (40.0 mg, 64.8 µmol, 1 eq) and 2,4,6-tri-tert-butylphenoxyl radical (101.6 mg, 388.6 

µmol, 6 eq) are dissolved in benzene (5-8 mL) and warmed to 50°C until the color 

changes from blue to green (5 h). The reaction is then stirred for another 15 h at 

room temperature, before the solvent is evaporated and the residue washed with 

pentanes (3 x 2 mL). CoCp2 (1.5 mg, 7.9 µmol, 0.12 eq) is added together with 

benzene (5 mL) and the reaction is stirred for 1.5 h before filtration and 

lyophilization. The brown powder is then heated to 85°C under reduced pressure 

(30mTorr) to sublime off residual CoCp2. Pure 6 is obtained as brown powder. Yield: 

28.0 mg, 45.6 µmol, 71%. 

Spectroscopic Characterization 

1H NMR  (300 MHz, C6D6, [ppm]): δ = 0.90 (d, 3JHH = 6.4 Hz, 2H, PCHCH), 2.61 

(A18XX´A´18, N = | 3JHP + 5JHP | = 6.2 Hz, 36H, P(C(CH3)3), 3.65 

(A2B2XX´B´2A´2, N = | 3JHP + 4JHP | = 16.4 Hz, 3JHH = 6.4 Hz, 2H, NCHCH). 

13C{1H} NMR  (75.5 MHz, C6D6, [ppm]): δ = 34.7 (A6XX´A´6, N = | 2JCP + 4JCP | = 2.5 Hz, 

P(C(CH3)3), 77.4 (A2XX´A´2, N = | 1JCP + 3JCP | = 9.5 Hz, P(C(CH3)3), 147.6 

(AXX´A´, N = | 1JCP + 3JCP | = 15.4 Hz, PCHCH), 212.4 (AXX´A´, N = | 2JCP + 
3JCP | = 7.9 Hz, NCHCH). 

31P{1H} NMR  (121.5 MHz, C6D6, [ppm]): δ = -275.6 (s, PtBu2). 

Mass Spectrometry 

LIFDI+ (toluene, m/z+): 613.1 (C20H40Cl2NP2Re+). 

Elemental Analysis 

C20H40Cl2NP2Re (%) calcd.: C, 39.15; H, 6.57; N, 2.28 

 found: C, 38.81; H, 6.63; N, 2.14 

 

 

3.1.5 Synthesis of [(P=N=P)ReCl3] (7) 

23 (5.0 mg, 7.7 µmol, 1 eq) and 2,4,6-tri-tert-butylphenoxyl radical (10.0 mg, 38.3 

µmol, 5 eq) are dissolved in C6D6 (0.5 mL) and heated to 50°C for 18 h. NMR spectra 

show complete conversion to paramagnetic 7 together with the formation of 2,4,6-tri-

tert-butylphenol. 
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Spectroscopic Characterization 

1H NMR  (300 MHz, C6D6, [ppm]): δ = -51.3 (br), 15.1 (br). 

Mass Spectrometry 

LIFDI+ (toluene, m/z+): 648.0 (C20H40Cl3NP2Re+). 

 

 

3.1.6 Synthesis of [(P=NP)ReCl2] (8) 

3 (5.0 mg, 8.1 µmol, 1 eq) and 2,4,6-tri-tert-butylphenoxyl radical (4.2 mg, 

388.6 µmol, 2 eq) are dissolved in benzene (0.5 mL) and stirred for 18 h, before more 

2,4,6-tri-tert-butylphenoxyl radical (1.1 mg, 4.2 µmol, 0.5 eq) is added. After stirring 

for another 5 h, the solvent is evaporated and the residue washed with pentanes until 

the washing solution is colorless (5 x 0.3 mL). The green product 8 is obtained in 80% 

spectroscopic yield (31P-NMR integration) next to starting material 3 (P = -54.7 ppm, 

9%) and 6 (P = -278.7 ppm, 11%). 

Spectroscopic Characterization 

1H NMR  (300 MHz, C6D6, [ppm]): δ = 1.68 (d, 3JHP = 11.8 Hz, 18H, PC(CH3)3), 1.78 

(d, 3JHP = 11.8 Hz, 18H, PC(CH3)3), 2.36 (A2B2XX´B´2A´2, N = | 2JHP + 
4JHP | = 6.8 Hz, 3JHH = 6.6 Hz, 4H, PCH2), 2.63 (A2B2XX´B´2A´2, N = | 3JHP + 
4JHP | = 6.7 Hz, 3JHH = 66 Hz, 4H, NCH2, partially superimposed), 4.31 (d, 
3JHH = 6.7 Hz, NCH), 6.31 (dd, 2JHP = 32.7 Hz, 3JHH = 6.7 Hz, PCH). 

31P{1H} NMR  (121.5 MHz, C6D6, [ppm]): δ = -107.3 (d, 2JPP = 283.3 Hz, PtBu2), -113.7 

(d, 2JPP = 283.3 Hz, PtBu2). 

Mass Spectrometry 

LIFDI+ (toluene, m/z+): 615.1 (C20H42Cl2NP2Re+). 
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3.1.7 Synthesis of [(P=N=P)Re(N)Cl] (11) 

[PPN]N3 (6.5 mg, 11.2 µmol, 1.4 eq) is added to 6 (5.0 mg, 8.1 µmol, 1 eq) and the 

reactants are suspended in THF (0.5 mL). The mixture is stirred for 3 d at room 

temperature. NMR spectra show complete conversion to 11 (95%) and an undefined 

sideproduct (5%, 31P-NMR signal at 48.1 ppm). 

Spectroscopic Characterization 

1H NMR  (300 MHz, C6D6, [ppm]): δ = 1.18 (A9XX´A´9, N = |3JHP + 5JHP| = 7.0 Hz, 

18H, PC(CH3)3), 1.49 (A9XX´A´9, N = |3JHP + 5JHP| = 7.2 Hz, 18H, PC(CH3)3), 

4.29 (A2B2XX´B´2A´2, N = | 3JHP + 4JHP | = 2.2 Hz, 3JHH = 6.2 Hz, 2H, PCHCH), 

7.00 (m, 2H, NCHCH).  

31P{1H} NMR  (121.5 MHz, C6D6, [ppm]): δ = 71.8 (s, PtBu2). 

Mass Spectrometry 

LIFDI+ (toluene, m/z+): 592.0 (C20H40ClN2P2Re+). 

 

 

 

 

 

3.2 Nitride synthesis and functionalization 

 

3.2.1 [(PNP)Re(N)Cl] (9) 

N2-route A 

Na/Hg (109.7 mg, 1 mol/L, 1 eq) is added to a solution of 3 (5.0 mg, 8.10 µmol, 1 eq) 

in d8-THF (0.5 mL) in a J-Young-NMR tube under N2-atmosphere (1 bar) and the 

mixture is  shaken. The color changes from violet to brown-yellow over the course of 

about 5 minutes. 31P{1H}-NMR spectroscopy indicates the full conversion of the 

starting material and formation of Re(N)Cl(PNP) (9) in 86% yield besides two 

unidentified side-products (82.1 ppm (12%), 54.9 ppm (2%)). The 1H, 13C{1H} and 
31P{1H} NMR spectra of 9 are identical with an analytically pure sample obtained on 

the azide route (see below). 
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The 15N-labelled isotopomer Re(15N)Cl(PNP) 915N is prepared by adding 3 (10.0 mg, 

16.2 µmol, 1 eq) in d8-THF (0.5 mL) under argon atmosphere to Na/Hg (240 mg, 1 

mol/L, 1 eq) in a J-Young-NMR tube. The reaction mixture is frozen immediately and 

the atmosphere is replaced by 15N2. The mixture is allowed to warm to room 

temperature while shaking. 

 

Spectroscopic characterization 

15N NMR  (50.7 MHz, d8-THF), [ppm]): δ = 370.6 (s, ReN). 15N2 displays a signal at 

-70.8 ppm. 

 

N2-route B: 

In a J-Young-NMR tube 3 (5.0 mg, 8.10 µmol, 1 eq) and CoCp*2 (2.8 mg, 8.50 µmol, 

1.05 eq) are dissolved in d8-THF (0.5 mL) under N2-atmosphere and shaken. The 

color changes immediately to green and a green precipitate forms. The mixture is 

shaken for 16 h to allow for complete conversion of the reducing agent. 9 is formed in 

48% yield (31P{1H}-NMR) besides one major (31.2 ppm (24%)) and several smaller 

(<5%) diamagnetic side products. Additionally, one paramagnetic compound (14 

ppm, br) could be detected in the 1H-NMR. 

 

Azide route: 

3 (300 mg, 0.486 mmol, 1 eq) and [N(PPh3)2]N3 (310 mg, 0.534 mmol, 1.1 eq) are 

stirred in THF (20 mL) at room temperature. The color changes slowly from violet to 

brown and gas evolution is observed. The mixture is stirred for at least 24 h at room 

temperature and filtered before evaporation of the solvent. The residue is first 

extracted with benzene (3 x 10 mL), the solvent evaporated and the residue extracted 

with pentane (6 x 15 mL) and filtered over Celite. After evaporation of the solvent, the 

product is lyophilized out of benzene to obtain an orange solid, which is sufficiently 

pure for most syntheses. Yield: 182 mg, 0.305 mmol, 63%. For further purification, 

this product is extracted another time with pentane and acetonitrile and dryed at 

80°C for 1 d. Yield: 153 mg, 0.257 mmol, 53%. 

An equimolar mixture of the 14N/15N isotopomers is prepared by employing 

[N(PPh3)2]+[15N14N2]-, which was synthesized from [N(PPh3)2]Cl and Na[15N14N2]. 

 

Spectroscopic Characterization 

1H NMR  (300 MHz, C6D6, [ppm]): δ = 1.22 (A9XX´A´9 , N = | 3JHP + 5JHP = 6.6 Hz, 

18H, PC(CH3)3), 1.37 (m, 2H, PCH2, superimposed), 1.41 (A9XX´A´9 , N = | 
3JHP + 5JHP = 6.7 Hz, 18H, PC(CH3)3), 1.61 (ABCDXX´D´C´B´A´, N = | 2JHP + 
4JHP | = 3.8 Hz, 2JHH = 14.4 Hz , 3JHH = 7.7 Hz, 3JHH = 10.8 Hz, 2H, PCH2), 

3.08 (ABCDXX´D´C´B´A´, N = | 3JHP + 4JHP | = 1.6 Hz, 2 JHH = 10.9 Hz, 3JHH = 
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10.8 Hz, 3JHH = 5.4 Hz, 2H, NCH2), 3.69 (ABCDXX´D´C´B´A´, N = | 3JHP + 4JHP 

| = 15.9 Hz, 2JHH = 10.9 Hz, 3 JHH = 7.7 Hz, 3 JHH = 1.8 Hz, 2H, NCH2). 

13C{1H} NMR  (75.5 MHz, C6D6, [ppm]): δ = 25.7 (AXX´A´, N = | 1JCP + 3JCP | = 11.3 Hz, 

PCH2), 28.9 (A3XX´A´3, N = | 2JCP + 4JCP | = 1.9 Hz, PC(CH3)3), 29.0 

(A3XX´A´3, N = | 2JCP + 4JCP | = 2.0 Hz, PC(CH3)3), 35.5 (AXX´A´, N = |1JCP + 
3JCP | = 8.0 Hz, PC(CH3)3), 36.3 (AXX´A´, N = |1JCP + 3JCP | = 10.6 Hz, 

PC(CH3)3), 72.0 (AXX´A´, N = |2JCP + 3JCP | = 3.5 Hz, NCH2). 

31P{1H} NMR  (121.5 MHz, C6D6, [ppm]): δ = 84.2 (s, PtBu2).  

15N{1H} NMR (50.7 MHz, C6D6), [ppm]): δ = 369.0 (s, ReN).  

 

Mass Spectrometry 

ESI (acetonitrile, m/z+): 596.03 (C20H44ClN2P2Re+), 597.03 

(C20H45ClN2P2Re+), 602.28 (C20H44ClN2P2Re+ - CH3CN). 

 

Elemental Analysis 

C20H44ClN2P2Re (%) calcd:  C, 40.29; H, 7.44; N, 4.70 

 Found: C, 41.12; H, 7.52; N, 4.67 

 

 

Li[DBABH] route 

HDBABH (1.6 mg, 8.1 µmol, 1 eq) is dissolved in THF (0.3 mL) and BuLi (1.6 M in 

hexanes, 5 µL, 1 eq) is added dropwise at -35°C. The cold reaction mixture is 

transferred to 3 (5.0 mg, 8.10 µmol, 1 eq) in cold THF (0.2 mL) in a J-Young-NMR tube 

and shaken for 1 h upon warming to room temperature. The solvent is exchanged by 

d8-THF and shaken for another 27 h. 31P{1H}-NMR spectroscopy indicates selective 

formation of 9 in 66% yield. 

 

By deprotonation of 12-OTf 

12-OTf (10.0 mg, 16.2 µmol, 1 eq) is dissolved in d6-benzene (0.5 mL) and KOtBu (1.8 

mg, 16.2 µmol, 1 eq) in d8-THF (0.1 mL) is added. The color immediately changes to 

yellow and 9 is formed quantitatively (31P{1H}-NMR). 
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3.2.2 [(HPNP)Re(N)Cl]X (12) 

12-OTf: HOTf (2.9 µL, 33.5 µmol, 1 eq) is added to a solution of 9 (20 mg, 33.5 µmol, 1 

eq) in benzene (5 mL). The yellow solution immediately turns darker. After stirring 

for 20 h, the solution is evaporated to dryness and the residue washed with pentane 

(2 x 5 mL). Lyophilization out of benzene affords the product 12-OTf as red-orange 

solid. Yield: 23.2 mg, 31.1 µmol, 92%. 

 

Spectroscopic Characterization 

1H NMR  (300 MHz, C6D6, [ppm]): δ = 1.11 (A9XX´A´9, N = |3JHP + 5JHP | = 7.7 Hz, 

18H, PC(CH3)3, partially superimposed), 1.15 (A9XX´A´9, N = |3JHP  + 5JHP | 

= 7.3 Hz, 18H, PC(CH3)3, partially superimposed), 1.50 (m, 2H, PCH2), 

2.34-2.12 (m, 4H, NCH2 and PCH2 superimposed), 4.22 (m, 2H, NCH2), 

6.54 (br, 1H, HPNP). 

13C{1H} NMR (75.5 MHz, C6D6, [ppm]): δ = 25.0 (AXX´A´, N = | 1JCP + 3JCP | = 11.5 Hz, 

PCH2), 27.6 (A3XX´A´3, N = | 2JCP + 4JCP | = 2.3 Hz, PC(CH3)3), 28.2 

(A3XX´A´3, N = | 2JCP + 4JCP | = 2.0 Hz, PC(CH3)3), 35.7 (AXX´A´, N = |1JCP + 
3JCP | = 7.8 Hz, PC(CH3)3), 36.3 (AXX´A´, N = |1JCP + 3JCP | = 11.1 Hz, 

P(C(CH3)3), 65.3 (s, NCH2). 

31P{1H} NMR (121.5 MHz, C6D6, [ppm]): δ = 69.4 (s, PtBu2).  

 

Elemental Analysis 

C21H45ClF3N2O3P2ReS (%) calcd: C, 33.80; H, 6.08; N, 3.75; S, 4.30 

 found: C, 34.26; H, 6.07; N, 3.68; S, 5.92 

The deviation in the sulfur Analysis is attributed to the presence of fluorine. 

 

 

12-Cl: A solution of HCl (2 M in ether, 4.1 µL, 1 eq) in THF (0.5 mL) is added to 9 (4.9 

mg, 8.2 µmol, 1 eq) in a J-Young-NMR tube. The color of the solution turns from 

yellow to red-orange and a red precipitate forms. After removing the solvent i. vac. 

the residue is dissolved in CD2Cl2. The product 12-Cl is obtained spectroscopically 

pure (1H-NMR) in 98% yield. 

 

Spectroscopic Characterization 

1H NMR  (300 MHz, CD2Cl2, [ppm]): δ = 1.38 (A9XX´A´9, N = |3J HP + 5J HP | = 7.5 Hz, 

18H, PC(CH3)3), 1.54 (A9XX´A´9, N = |3JHP + 5JHP | = 7.2 Hz, 18H, PC(CH3)3), 

2.18 (m, 2H, PCH2), 2.68-2.54 (m, 4H, NCH2 and PCH2 superimposed), 

4.21 (m, 2H, NCH2), 9.17 (br, 1H, HN(CH2)2). 
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31P{1H} NMR  (121.5 MHz, CD2Cl2, [ppm]): δ = 71.0 (s, PtBu2). 

 

 

12-PF6: AgPF6 (2.1 mg, 8.4 µmol, 1 eq) and 9 (5.0 mg, 8.4 µmol, 1 eq) are dissolved in 

CD2Cl2 (0.5 mL). The solution turns red-orange and a grey precipitate forms. Two 

broad paramagnetic signals can be detected in the 1H NMR spectrum (5.8 ppm and 

3.8 ppm) besides the formation of 12-PF6. 

 

 

3.2.3 (PNP)Re(N)(CH3) (13) 

9 (24.0 mg, 40.3 µmol, 1 eq) is dissolved in benzene (10 mL) and a solution of MeLi 

(1.6 M in Et2O, 50 µL, 80.5 µmol, 2 eq) is added. The mixture is filtered and the solvent 

evaporated before the residue is extracted with pentanes and filtered over celite. 

After removal of the solvent i. vac. the product 13 is lyophilized out of benzene. Yield: 

15.8 mg, 27.4 µmol, 68%). 

Spectroscopic Characterization 

1H NMR  (300 MHz, C6D6), [ppm]): δ = 1.05 (A9XX´A´9, N = |3JHP + 5JHP | = 6.3 Hz, 

18H, PC(CH3)3), 1.45 (A9XX´A´9, N = |3JHP + 5JHP | = 6.5 Hz, 18H, PC(CH3)3), 

1.77 (m, 4H, PCH2), 2.32 (t, 3JHP = 4.1 Hz, 3H, ReCH3), 3.52 (m, 2H, NCH2, 

partially superimposed), 3.59 (m, 2H, NCH2, partially superimposed). 

13C{1H} NMR  (75.5 MHz, C6D6, [ppm]): δ = -17.4 (t, 2JCP = 4.7 Hz, ReCH3), 28.0 (AXX´A´, 

N = | 1JCP + 3JCP | = 10.7 Hz, PCH2), 29.3 (A3XX´A´3, N = | 2JCP + 4JCP | = 2.1 

Hz, PC(CH3)3), 29.6 (A3XX´A´3, N = | 2JCP + 4JCP | = 1.7 Hz, PC(CH3)3), 35.2 

(AXX´A´, N = |1JCP + 3JCP | = 8.0 Hz, PC(CH3)3), 35.7 (AXX´A´, N = |1JCP + 3JCP 

| = 9.9 Hz, P(C(CH3)3), 68.9 (AXX´A´, N = |2JCP + 3JCP | = 3.8 Hz, NCH2). 

31P{1H} NMR  (121.5 MHz, C6D6, [ppm]): δ = 88.2 (s, PtBu2). 

Elemental Analysis 

C21H47N2P2Re (%) calcd: C, 43.81; H, 8.23; N, 4.87 

 Found: C, 43.61; H, 7.96; N, 4.90 
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3.2.4 Reaction with isonitriles 

Reaction of 9 with CNtBu 

9 (5.0 mg, 8.4 µmol, 1 eq) is dissolved in C6D6 (0.5 mL) and CNtBu (1 µL, 8.8 µmol, 

1 eq) is added. The reaction mixture is stirred for several days (7 d) at room 

temperature to observe the formation of 2 products in the NMR spectra. 

31P{1H} NMR  (121.5 MHz, C6D6, [ppm]): δ = 60.8 (42%, 15), 83.2 (15%, 9), 94.8 (43%, 

14) 

 

Reaction of 9 with CNtBu and base to 14 

9 (5.0 mg, 8.4 µmol, 1 eq) is dissolved in C6D6 (0.5 mL) and CNtBu (1 µL, 8.8 µmol, 

1 eq) and DBU (1.3 µL, 8.4 µmol, 1 eq) are added. The reaction is heated to 60°C for 

4 d before the solvent is evaporated and the residue washed with pentanes (3 x 0.5 

mL). After extraction with benzene, the NMR spectra shows full conversion to 14. 

Spectroscopic Characterization 

1H NMR  (300 MHz, C6D6), [ppm]): δ = 1.18 (A9XX´A´9, N = |3JHP + 5JHP | = 6.9 Hz, 

18H, PC(CH3)3), 1.35 (A9XX´A´9, N = |3JHP + 5JHP | = 6.9 Hz, 18H, PC(CH3)3), 

1.49 (m, 4H, PCH2), 3.36 (m, 2H, NCH2), 3.63 (m, 2H, NCH2). 

31P{1H} NMR  (121.5 MHz, C6D6, [ppm]): δ = 94.8 (s, PtBu2). 

 

Reaction of 12-OTf with CNtBu to 15 

12-OTf (2.5 mg, 3.5 µmol, 1 eq) is dissolved C6D6 and CNtBu (0.5 µL, 3.6 µmol, 1 eq) is 

added and the mixture is stirred for 2 d at room temperature. 

Spectroscopic Characterization 

1H NMR  (300 MHz, C6D6), [ppm]): δ = 0.75 (s, 9H, CNtBu), 0.88 (A9XX´A´9, N = 

|3JHP + 5JHP | = 5.6 Hz, 18H, PC(CH3)3), 0.93 (A9XX´A´9, N = |3JHP + 5JHP | = 

5.4 Hz, 18H, PC(CH3)3), 1.53 (m, 2H, PCH2), 1.97 (m, 2H, PCH2), 2.67 (m, 

2H, NCH2), 3.67 (m, 2H, NCH2). 

31P{1H} NMR  (121.5 MHz, C6D6, [ppm]): δ = 60.0 (s, PtBu2). 
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3.2.5  [(PNP)Re(NMe)Cl]OTf (16a-OTf) 

9 (40.0 mg, 67.1 µmol, 1 eq) is dissolved in toluene (10 mL) and MeOTf (7.6 µL, 69.3 

µmol, 1 eq) is added. The orange solution is heated to 40°C for 4 h whereupon the 

color changes to green. The solution is allowed to cool to room temperature, filtered, 

layered with pentane and crystallized at -32°C. The solid is filtered off, washed with 

pentane (2 x 5 mL) and dried in vacuo. 16a-OTf is obtained as a green 

microcrystalline solid. Yield: 39.9 mg, 51.6 µmol, 77%.  

 

Spectroscopic Characterization 

1H NMR  (300 MHz, C6D6, [ppm]): δ = 1.01 (A9XX´A´9 , N = | 3JHP + 5JHP | = 6.9 Hz, 

18H, PC(CH3)3), 1.15 (A9XX´A´9 , N = | 3JHP + 5JHP | = 7.2 Hz, 18H, 

PC(CH3)3), 2.04 (ABCDXX´D´C´B´A´, N = | 2JHP + 4JHP | = 5.5 Hz, 2JHH = 14.9 

Hz, 3JHH = 4.3 Hz, 3JHH = 6.7 Hz, 2H, PCH2), 2.21 (ABCDXX´D´C´B´A´, N = | 
2JHP + 4JHP | = 3.9 Hz, 2JHH = 15.3 Hz, 3JHH = 7.8 Hz, 3JHH = 7.8 Hz, 2H, PCH2), 

2.64 (s, 3H, NCH3), 3.77 (ABCDXX´D´C´B´A´, N = | 3JHP + 4JHP | = 4.0 Hz, 
2JHH= 14.2 Hz, 3JHH= 7.1 Hz, 3JHH= 7.1 Hz, 2H, NCH2), 4.64 

(ABCDXX´D´C´B´A´, N = | 3JHP + 4JHP | = 9.6 Hz, 2JHH= 13.4 Hz, 3JHH= 8.0 Hz, 
3JHH= 4.1 Hz, 2H, NCH2). 

13C{1H} NMR  (75.5 MHz, C6D6, [ppm]): δ = 24.2 (AXX´A´, N = | 1JCP + 3JCP | = 11.3 Hz, 

PCH2), 29.6 (A3XX´A´3, N = | 2JCP + 4JCP | = 1.4 Hz, PC(CH3)3), 29.7 

(A3XX´A´3, N = | 2JCP + 4JCP | = 1.8 Hz, PC(CH3)3), 37.7 (AXX´A´, N = |1JCP + 
3JCP | = 10.8 Hz, PC(CH3)3), 38.4 (AXX´A´, N = |1JCP + 3JCP | = 8.8 Hz, 

PC(CH3)3), 60.4 (s, NCH3), 76.1 (AXX´A´, N = |2JCP + 3JCP | = 2.7 Hz, NCH2). 

31P{1H} NMR  (121.5 MHz, C6D6, [ppm]): δ = 90.7 (s, PtBu2).  

19F{1H} NMR  (282.4 MHz, C6D6, [ppm]): δ = -77.6 (s, CF3). 

 

Elemental Analysis 

C22H47ClF3N2O3P2ReS *(C6H5CH3)0.5 (%) calcd:  C, 37.98; H, 6.38; N, 3.47 

   Found: C, 37.54; H, 6.38; N, 3.55 
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3.2.6 [(PNP)Re(NEt)Cl)]OTf (16b-OTf) 

Published procedure 

9 (100 mg, 168 µmol, 1 eq) is dissolved in benzene (5-10 mL) and freshly distilled 

EtOTf (23 µL, 177 µmol, 1.05 eq) is added. The mixture is heated to 40°C for 18h 

under stirring before it is allowed to cool to room temperature. The solvent is 

removed i. vac. and the residue washed with pentanes (3 x 5 mL), followed by 

extraction with benzene (2 x 5 mL), filtration and lyophilization. Complex 16b-OTf is 

obtained as green powder. Yield: 126 mg, 163 µmol, 97%, often contaminated with 3-

6% of 12, based on 31P NMR integration. 

 

Improved synthesis 

9 (70.5 mg, 118 µmol, 1 eq) is dissolved in benzene (5-10 mL) and EtOTf (20 µL, 

150 µmol, 1.2 eq) is added. The mixture is stirred at room temperature for 24 h, 

filtered and the volume reduced to about 2 mL under reduced pressure, before 

layering with diethylether (10 mL). After 1 d at room temperature, the solvent is 

filtered off and the residue washed with ether (2 x 4 mL). The pure product 16b-OTf 

is lyophilized (benzene) and obtained as green powder (68 mg, 87.9 µmol, 78%). 

 

Spectroscopic Characterization 

1H NMR  (400 MHz, C6D6, [ppm]): δ = 1.02 (A9XX´A´9, N = | 3JHP + 5JHP| = 7.0 Hz, 

18H, PC(CH3)3), 1.07 (t, 3JHH = 7.1 Hz, 3H, NCH2CH3), 1.16 (A9XX´A´9 , N = 

| 3JHP + 5JHP| = 7.2 Hz, 18H, PC(CH3)3), 2.14 (ABCDXX´D´C´B´A´, N = | 2JHP 

+ 4JHP | = 3.9 Hz, 2JHH = 15.1 Hz , 3JHH = 8.0 Hz, 3JHH = 7.5 Hz, 2H, PCH2), 

2.23 (ABCDXX´D´C´B´A´, N = | 2JHP + 4JHP | = 5.7 Hz, 2JHH = 15.1 Hz , 3JHH = 

4.1 Hz, 3JHH = 7.0 Hz, 2H, PCH2), 2.90 (q, 3JHH = 7.1 Hz, 2H, NCH2CH3), 

3.90 (ABCDXX´D´C´B´A´, N = | 3JHP + 4JHP | = 3.3 Hz, 2JHH = 14.6 Hz, 3JHH = 

7.0 Hz, 3JHH = 7.5 Hz, 2H, NCH2CH2), 4.54 (ABCDXA’B’C’D’X´, N = | 3JHP + 
4JHP | = 9.9 Hz, 2JHH = 14.6 Hz, 3JHH = 4.1 Hz, 3JHH = 8.0 Hz, 2H, NCH2CH2).  

13C{1H} NMR  (100.6 MHz, C6D6, [ppm]): δ = 14.0 (s, NCH2CH3), 25.0 (AXX´A´, N = | 1JCP 

+ 3JCP | = 11.3 Hz, PCH2), 29.9 (A3XX´A´3, N = | 2JCP + 4JCP | = 1.9 Hz, 

PC(CH3)3), 30.0 (A3XX´A´3, N = | 2JCP + 4JCP | = 1.3 Hz, PC(CH3)3), 38.3 

(AXX´A´, N = |1JCP + 3JCP | = 10.8 Hz, PC(CH3)3), 38.4 (AXX´A´, N = |1JCP + 
3JCP | = 8.8 Hz, PC(CH3)3), 76.8 (AXX´A´, N = |2JCP + 3JCP | = 2.6 Hz, 

NCH2CH2), 67.6 (s, NCH2CH3).  

31P{1H} NMR  (162.0 MHz, C6D6, [ppm]): δ = 90.1 (s, PtBu2). 

19F{1H} NMR  (376.5 MHz, C6D6, [ppm]): δ = -77.6 (s, CF3). 
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Elemental Analysis 

C23H48ClF3N2O3P2ReS (%) calcd.: C, 35.72; H, 6.26, N, 3.62 

  found: C, 35.96; H, 6.53; N, 3.52 

 

 

3.2.7 [(PNP)Re(NBn)Cl)]OTf (16c-OTf) 

AgOTf (8.2 mg, 31.9 µmol, 1.6 eq) is dissolved in Et2O and cooled to -34°C before 

benzylbromide (ex.) is added. Immediate formation of a yellow precipitate indicates 

conversion to benzyl triflate. DTBMP (8.5 mg, 41.4 µmol, 2 eq) is added to the cold 

suspension and the mixture stirred for 5 min. The cold reaction is filtered to 9 (12.5 

mg, 21 µmol, 1 eq) and stirred at room temperature for 15 h. The green precipitate is 

filtered off, washed with Et2O until colourless, extracted with THF, overlaid with Et2O 

and crystallized at -34°C. The product is filtered off and dried in vac. to give 16c-OTf 

as a green microcrystalline solid. Yield: 10.5 mg, 12.6 µmol, 60%. 

 

Spectroscopic Characterization 

1H NMR  (300 MHz, C6D6), [ppm]): δ = 1.00 (A9XX´A´9, N = | 3JHP + 5JHP| = 7.0 Hz, 

18H, PC(CH3)3), 1.08 (A9XX´A´9, N = | 3JHP + 5JHP| = 7.2 Hz, 18H, 

PC(CH3)3), 2.02 (m, 2H, PCH2), 2.28 (m, 2H, PCH2), 3.80 (m, 2H, 

NCH2CH2), 4.61 (s, 2H, NCH2Ph), 4.70 (m, 2H, NCH2CH2), 7.00 (t, 3JHH = 

7.4 Hz, 1H, NCH2Ph), 7.13 (m, 2H, NCH2Ph, partially superimposed), 

7.49 (d, 3JHH = 7.2 Hz, 2H, NCH2Ph). 

13C{1H} NMR  (100.6 MHz, C6D6, [ppm]): δ = 24.3 (AXX´A´, N = | 1JCP + 3JCP | = 11.3 Hz, 

PCH2), 29.5 (A3XX´A´3, N = | 2JCP + 4JCP | = 1.9 Hz, PC(CH3)3), 29.7 

(A3XX´A´3, N = | 2JCP + 4JCP | = 1.4 Hz, PC(CH3)3), 37.8 (AXX´A´, N = |1JCP + 
3JCP | = 10.7 Hz, PC(CH3)3), 38.1 (AXX´A´, N = |1JCP + 3JCP | = 8.7 Hz, 

PC(CH3)3), 75.0 (s, NCH2Ph), 76.2 (AXX´A´, N = |2JCP + 3JCP | = 2.7 Hz, 

NCH2CH2), 127.0 (s, NCH2Ph), 129.1 (s, NCH2Ph), 134.8 (s, NCH2Ph). 

31P{1H} NMR  (162.0 MHz, C6D6, [ppm]): δ = 90.3 (s, PtBu2). 

19F{1H} NMR  (376.5 MHz, d8-THF, [ppm]): δ = -79.0(s, CF3). 
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Mass Spectrometry 

LIFDI+ (toluene, m/z+): 687.1 (C27H51ClN2P2Re+). 

 

 

3.2.8 [(PNP)Re(NTf)Cl]OTf (17-OTf) 

9 (25.0 mg, 41.9 µmol, 1 eq) is dissolved in benzene (5 mL) and 

trifluoromethanesulfonic anhydride (7.1 L, 42.0 µmol, 1 eq) is added. The yellow 

solution immediately turns green. The solvent is evaporated, the residue dissolved in 

chlorobenzene (3 mL) and overlaid with diethylether (10 mL). After 3 d, the 

crystalline material is filtered off, washed with diethylether (3 x 5 mL) and dried in 

vac. to yield green 17-OTf (19.7 mg, 22.4 µmol, 54%). 

Spectroscopic Characterization 

1H NMR  (400 MHz, d8-THF, [ppm]): δ = 1.31 (A9XX´A´9, N = | 3JHP + 5JHP | = 7.6 Hz, 

18H, PC(CH3)3), 1.58 (A9XX´A´9, N = | 3JHP + 5JHP | = 7.8 Hz, 18H, 

PC(CH3)3), 2.37 (ABCDXX´D´C´B´A´, N = | 2JHP + 4JHP | = 4.0 Hz, 2JHH = 15.3 

Hz, 3JHH = 9.3 Hz, 3JHH = 9.2 Hz, 2H, PCH2), 3.28 (m, 2H, PCH2), 4.71 (m, 

2H, NCH2), 5.31 (m, 2H, NCH2). 

13C{1H} NMR  (100.6 MHz, C6D6, [ppm]): δ = 23.5 (AXX´A´, N = | 1JCP + 3JCP | = 10.7 Hz, 

PCH2), 30.0 (A3XX´A´3, N = | 2JCP + 4JCP | = 1.1 Hz, PC(CH3)3), 30.4 

(A3XX´A´3, N = | 2JCP + 4JCP | = 1.0 Hz, PC(CH3)3), 38.1 (AXX´A´, N = |1JCP + 
3JCP | = 7.9 Hz, PC(CH3)3), 42.7 (AXX´A´, N = |1JCP + 3JCP | = 10.0 Hz, 

PC(CH3)3), 87.1 (s, NCH2), 121.9 (q, 1JCF = 321.2 Hz, Tf), 122.6 (q, 1JCF = 

322.4 Hz, Tf). 

31P{1H} NMR  (162.0 MHz, d8-THF, [ppm]): δ = 102.4 (s, PtBu2). 

19F{1H} NMR  (376.5 MHz, d8-THF, [ppm]): δ = -78.9 (s, OTf), -75.7 (s, NTf). 

Mass Spectrometry 

LIFDI+ (toluene, m/z+): 729.1 (C21H44ClF3N2O2P2ReS+). 
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3.2.9 Reduction of 9 

9 (5.0 mg, 8.4 µmol, 1 eq), KC8 (2.8 mg, 21.0 µmol, 2.5 eq) and 18-crown-6 (4.5 mg, 

16.8 µmol, 2 eq) are suspended in either C6D6 or THF (0.5 mL) and stirred at room 

temperature for 3 d. Formation of two main products and isobutene is observed by 

NMR spectroscopy. 

31P{1H} NMR  (121.5 MHz, C6D6, [ppm]): δ = 31.3 (d, J = 103.2 Hz, 45%), 107.5 (s, 9%), 

113.1 (d, J = 103.2 Hz, 46%). 

 

 

 

3.3 Reactivity of the Imido complexes 

 

3.3.1 (PNP)Re(NCH2)Cl (18a) 

16a-OTf (50.0 mg, 65.7 µmol, 1 eq) and KBTSA (13.1 mg, 65.7 µmol, 1 eq) are 

dissolved in THF (5 mL) and stirred for 1h at room temperature. The solvent is 

evaporated and the residue extracted with pentanes (4 x 5 mL). After evaporation of 

the solvent, the product 18a is lyophilized (benzene) and obtained as brick red 

powder. Yield: 20.2 mg, 33.1 µmol, 50%. 

Spectroscopic Characterization 

1H NMR  (300 MHz, C6D6), [ppm]): δ = 1.27 (A9XX´A´9 , N = | 3JHP + 5JHP | = 6.2 Hz, 

18H, PC(CH3)3), 1.33 (A9XX´A´9 , N = | 3JHP + 5JHP | = 5.9 Hz, 18H, 

PC(CH3)3), 1.60 (ABCDXX´D´C´B´A´, N = | 2JHP + 4JHP | = 3.6 Hz, 2JHH = 13.9 

Hz, 3JHH = 7.1 Hz, 3JHH = 7.1 Hz, 2H, PCH2), 1.80 (ABCDXX´D´C´B´A´, N = | 
2JHP + 4JHP | = 3.8 Hz, 2JHH = 13.9 Hz, 3JHH = 6.5 Hz, 3JHH = 6.5 Hz, 2H, PCH2), 

2.16 (dt, 2JHH = 4.8 Hz, 4JHP = 2.4 Hz, 1H, N=CH2), 3.41 (m, 4H, NCH2CH2, 

superimposed), 3.79 (dt, 2JHH = 4.8 Hz, 4JHP = 2.4 Hz, 1H, N=CH2). 

 

13C{1H} NMR  (75.5 MHz, C6D6, [ppm]): δ = 27.7 (AXX´A´, N = | 1JCP + 3JCP | = 8.1 Hz, 

PCH2), 30.8 (A3XX´A´3, N = | 2JCP + 4JCP | = 2.3 Hz, PC(CH3)3), 30.3 

(A3XX´A´3, N = | 2JCP + 4JCP | = 2.1 Hz, PC(CH3)3), 38.6 (AXX´A´, N = |1JCP + 
3JCP | = 6.9 Hz, PC(CH3)3), 39.5 (AXX´A´, N = |1JCP + 3JCP | = 8.3 Hz, 
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PC(CH3)3),74.2 (AXX´A´, N = |2JCP + 3JCP | = 4.5 Hz, NCH2CH2), 137.8 (t, 3JPC 

= 2.4 Hz, N=CH2). 

31P{1H} NMR  (121.5 MHz, C6D6, [ppm]): δ = 55.0 (s, PtBu2). 

Elemental Analysis 

C21H46ClN2P2Re (%) calcd.: C, 41.33; H, 7.60; N, 4.49 

 found: C, 42.10; H, 7.40; N, 4.36 

 

 

3.3.2 [(PNP)Re(NCHCH3)Cl)] (18b) 

Published procedure 

EtOTf (23 µL, 177 µmol, 1.05 eq) is added to a solution of 9 (100 mg, 168 µmol, 1 eq) 

in benzene (5-10 mL). The mixture is stirred at room temperature for 24 h. The 

solvent and residual EtOTf are removed by evaporation under reduced pressure and 

the residue is redissolved in benzene (5-10 mL). After deprotonation with KBTSA 

(33.5 mg, 168 µmol, 1 eq) and stirring for 2 h at room temperature the reaction 

mixture is filtered and the solvent removed i. vac. Extraction with pentane (4 x 3-5 

mL), filtration and solvent evaporation gives a crude product with spectroscopic 

purity >95% and small amounts of parent 9 which is sufficient for most purposes. Full 

conversion is achieved by treatment of the crude product with additional EtOTf and 

work-up as described above. After final lyophilization from benzene analytically pure, 

red-brown 18b is obtained (84.4 mg, 135 µmol, 81%). Spectroscopic Characterization 

reveals the formation of two stereoisomers in about 60:40 ratio. The 15N-enriched 

sample was synthesized starting from 9, prepared with 1-15N-azide. 

 

Improved synthesis 

Synthetis of the imido complex 16b-OTf is carried out as described earlier. After 

reaction with EtOTf, the solvent is reduced to 2-5 mL and layered with diethylether 

(10 mL). Crystallization leads to pure compound 16b-OTf which can be filtered off 

and used for deprotonation with KBTSA to yield pure 18b. 

Spectroscopic Characterization 

1H NMR  (300 MHz, C6D6, [ppm]): δ = 1.25 (A9XX´A´9 , N = |3JHP + 5JHP| = 6.2 Hz, 

18H, PC(CH3)3 isomer 2), 1.28 (m, 36H, PC(CH3)3 isomer 1), 1.34 

(A9XX´A´9 , N = |3JHP + 5JHP| = 6.0 Hz, 18H, PC(CH3)3 isomer 2), 1.52 (m, 

2H, PCH2CH2 isomer 1), 1.62 (m, 2H, PCH2CH2 isomer 2), 1.80 (m, 2H, 
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PCH2 isomer 2), 1.90 (m, 2H, PCH2 isomer 1), 2.43 (dt, 3JHH = 5.1 Hz, 5JHP 

= 1.3 Hz, 3H, NCHCH3 isomer 1), 2.43 (m, 1H, NCHCH3 isomer 2), 3.18 

(dt, 3JHH = 5.3 Hz, 5JHP = 1.3 Hz , 3H, NCHCH3 isomer 2), 3.40 (m, 2H, 

NCH2 isomer 2), 3.50 (m, 6H, NCH2 isomers 1+2), 4.21 (qt, 4JHP = 2.7 Hz, 
3JHH = 5.1 Hz, 1H, NCHCH3 isomer 1). 

13C{1H} NMR  (100.6 MHz, C6D6, [ppm]): δ = 11.9 (s, NCHCH3 isomer 2), 13.2 (s, 

NCHCH3 isomer 2), 28.3 (AXX´A´, N = |1JCP + 3JCP| = 8.0 Hz, PCH2CH2 

isomer 2), 29.7 (AXX´A´, N = |1JCP + 3JCP| = 7.5 Hz, PCH2CH2 isomer 1), 

30.7 (m, PC(CH3)3), 30.9 (A3XX´A´3, N = |2JCP + 4JCP| = 2.5 Hz, PC(CH3)3), 

31.0 (A3XX´A´3, N = |2JCP + 4JCP| = 2.5 Hz, PC(CH3)3), 36.6 (AXX´A´, N = 

|1JCP + 3JCP| = 6.4 Hz, PC(CH3)3), 37.4 (AXX´A´, N = |1JCP + 3JCP| = 6.7 Hz, 

PC(CH3)3), 39.7 (AXX´A´, N = |1JCP + 3JCP| = 8.8 Hz, PC(CH3)3), 40.1 

(AXX´A´, N = |1JCP + 3JCP| = 8.2 Hz, PC(CH3)3), 74.6 (AXX´A´, N = |2JCP + 3JCP| 

= 4.4 Hz, NCH2 isomer 2), 75.5 (AXX´A´, N = |2JCP + 3JCP| = 4.3 Hz, NCH2 

isomer 1), 143.6 (, t, 3JCP =2.6 Hz, NCHCH3 isomer 1), 147.3 (t, 3JCP = 2.4 

Hz, NCHCH3 isomer 2).  

31P{1H} NMR  (162.0 MHz, C6D6, [ppm]): δ = 51.66 (s, PtBu2 isomer 2), 51.74 (s, PtBu2 

isomer 1).  

15N{1H} NMR  (50.7 MHz, C6D6, [ppm]): δ = 7.8 (t, 2JNP = 2.3 Hz, ReNCHMe), 11.1 (t, 2JNP 

= 2.0 Hz, ReNCHMe).  

IR  (KBr, cm-1): 1594 (w, υ(C=14N)), 1572 (w, υ(C=15N)). 

Elemental Analysis 

C22H48ClN2P2Re (624.24) calcd: C, 42.33; H, 7.75; N, 4.49 

 found: C, 42.90; H, 8.02; N, 4.34 

 

 

3.3.3 [(PNP)Re(NCHPh)Cl)] (18c) 

16c-OTf (8.8 mg, 10.5 µmol, 1 eq) and KOtBu (1.2 mg, 10.5 µmol, 1 eq) are suspended 

in benzene (2 mL) and stirred for 2 h at room temperature before the solvent is 

evaporated and the residue extracted with pentanes (3 x 2 mL). After lyophilization 

(benzene) the product 18c is obtained as red powder. Yield: 4.5 mg, 6.6 µmol, 63%. 

Spectroscopic Characterization 

As for 18b, two isomers are observed for 18c. An assignment of all signals to distinct 

isomers was not possible. 
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1H NMR  (400 MHz, C6D6, [ppm]): δ = 1.16 (A9XX´A´9 , N = |3JHP + 5JHP| = 6.3 Hz, 

18H, PC(CH3)3), 1.18 (A9XX´A´9 , N = |3JHP + 5JHP| = 6.5 Hz, 18H, 

PC(CH3)3), 1.24 (A9XX´A´9 , N = |3JHP + 5JHP| = 6.0 Hz, 18H, PC(CH3)3), 1.29 

(A9XX´A´9 , N = |3JHP + 5JHP| = 6.2 Hz, 18H, PC(CH3)3), 1.65 (m, 4H, PCH2, 

isomer 1+2), 1.80 (m, 2H, PCH2), 1.95 (m, 2H, PCH2), 3.42 (m, 4H, 

NCH2CH2, isomer 1), 3.54 (ABCDXX´D´C´B´A´, N = | 3JHP + 4JHP | = 1.7 Hz, 
2JHH = 13.1 Hz, 3JHH = 9.3 Hz, 3JHH = 6.3 Hz, 2H, NCH2CH2, isomer 2), 3.75 

(t, 4JHP = 2.0 Hz, 1H, N=CHPh), 3.78 (m, 2H, NCH2CH2, isomer 2, partially 

superimposed), 5.47 (t, 4JHP = 2.2 Hz, 1H, N=CHPh), 6.47 (br, 2H, 

N=CHPh), 6.65 (tt, 3JHH = 7.3 Hz, 4JHH = 1.2 Hz, 1H, N=CHPh-para), 6.73 

(tt, 3JHH = 7.2 Hz, 4JHH = 1.4 Hz, 1H, N=CHPh-para), 7.18 (m, 2H, N=CHPh, 

superimposed by benzene), 7.35 (m, 2H, N=CHPh), 4.44 (m, 2H, 

N=CHPh). 

13C{1H} NMR  (100.6 MHz, C6D6, [ppm]): δ = 27.4 (AXX´A´, N = |1JCP + 3JCP| = 8.3 Hz, 

PCH2CH2), 29.6 (AXX´A´, N = |1JCP + 3JCP| = 7.9 Hz, PCH2CH2), 30.3 (m, 

PC(CH3)3), 30.5 (m, PC(CH3)3), 36.5 (AXX´A´, N = |1JCP + 3JCP| = 7.0 Hz, 

PC(CH3)3), 37.2 (AXX´A´, N = |1JCP + 3JCP| = 7.0 Hz, PC(CH3)3), 38.7 

(AXX´A´, N = |1JCP + 3JCP| = 8.9 Hz, PC(CH3)3), 39.2 (AXX´A´, N = |1JCP + 3JCP| 

= 8.5 Hz, PC(CH3)3), 74.0 (AXX´A´, N = |2JCP + 3JCP| = 4.4 Hz, NCH2CH2), 

75.0 (AXX´A´, N = |2JCP + 3JCP| = 4.1 Hz, NCH2CH2), 124.2 (s, Ph), 124.8 (s, 

Ph), 127.5 – 129.0 (Ph, superimposed by benzene), 132.3 (s, Ph), 132.8 

(s, Ph), 146.8 (t, 3JCP = 2.4 Hz, N=CHPh), 150.6 (t, 3JCP = 2.3 Hz, N=CHPh). 

31P{1H} NMR  (162.0 MHz, C6D6, [ppm]): δ = 54.8 (s, PtBu2), 56.5 (s, PtBu2).  

 

 

3.3.4 Reaction of 16b-OTf with excess CNtBu (20) 

16b-OTf (5.0 mg, 6.5 µmol, 1 eq) is dissolved in C6D6 (0.5 mL) and CNtBu (2.0 µL, 

20.0 µmol, 3 eq) is added. The reaction is stirred for 2 d at room temperature. 1H and 
31P-NMR spectra show conversion to 20 in about 85% yield. 

 

 

3.3.5 Reaction of 16b-OTf with stoichiometric CNtBu (21) 

16b-OTf (25.0 mg, 32.3 µmol, 1 eq) is dissolved in benzene (3 mL) and CNtBu (3.4 µL, 

32.3 µmol, 1 eq) is added. The mixture is stirred for 45 min accompanied by the 

formation of a blue precipitate. The solvent is removed i. vac. and the residue 
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extracted with THF (2 x 3 mL), concentrated and layered with pentanes. After 

crystallization at -34°C the product 21 is filtered off, washed with pentane and 

obtained as blue microcrystalline solid. Yield: 11.0 mg, 15.6 µmol, 48%. 

Spectroscopic Characterization 

1H NMR  (400 MHz, d8-THF, [ppm]): δ = 0.0 (m, 1H, N=CHCH3), 1.36 (A9XX´A´9 , N 

= |3JHP + 5JHP| = 6.3 Hz, 18H, PC(CH3)3), 1.49 (A9XX´A´9 , N = |3JHP + 5JHP| = 

6.6 Hz, 18H, PC(CH3)3), 1.53 (s, 9H, NC(CH3)3), 2.14 (ABCDXX´D´C´B´A´, 

N = | 2JHP + 4JHP | = 2.7 Hz, 2JHH = 15.3 Hz, 3JHH = 12.0 Hz, 3JHH = 6.7 Hz, 2H, 

PCH2), 2.33 (ABCDXX´D´C´B´A´, N = | 2JHP + 4JHP | = 5.0 Hz, 2JHH = 15.3 Hz, 
3JHH = 5.8 Hz, 3JHH = 2.5 Hz, 2H, PCH2), 3.08 (m, 2H, NCH2CH2), 3.78 (m, 

2H, NCH2CH2), 3.90 (d, 3JHH = 6.0 Hz, 3H, N=CHCH3), 6.06 (br, 1H, HPNP). 

13C{1H} NMR  (100.6 MHz, d8-THF, [ppm]): δ = -1.5 (s, N=CHCH3), 24.3 (PCH2, 

superimposed by THF), 29.8 (s, NC(CH3)3), 30.3 (br, PC(CH3)3), 31.7 

(A3XX´A´3, N = |2JCP + 4JCP| = 2.2 Hz, PC(CH3)3), 37.3 (AXX´A´, N = |1JCP + 
3JCP| = 8.9 Hz, PC(CH3)3), 40.2 (AXX´A´, N = |1JCP + 3JCP| = 7.2 Hz, 

PC(CH3)3), 56.1 (AXX´A´, N = |2JCP + 3JCP| =2.3 Hz, NCH2CH2), 57.9 (s, 

NC(CH3)), 136.9 (s, N=CHCH3). 

31P{1H} NMR  (162.0 MHz, d8-THF, [ppm]): δ = 33.6 (s, PtBu2). 

Elemental Analysis 

C27H57ClN3P2Re (707.38) calcd: C, 39.22; H, 6.82; N, 4.90 

 found: C, 39.74; H, 7.31; N, 4.83 

 

 

3.3.6 (PNP)Re(NCH2)(CH3) (25) 

16a-OTf (50.0 mg, 65.7 µmol, 1 eq) is dissolved in THF (10 mL) and MeMgCl (44 µL, 

3M in THF, 132 µmol, 2.0 eq) is added. The mixture is stirred at room temperature for 

18 h before the solvent is evaporated and the residue extracted with pentanes (5 x 10 

mL). After evaporation of the solvent, the residue is again extracted with pentanes (3 

x 5 mL) and lyophilized out of benzene. Yield: 31.2 mg, 52.9 µmol, 81%. 

Spectroscopic Characterization 

1H NMR  (300 MHz, d8-THF, [ppm]): δ = 1.22 (A9XX´A´9 , N = |3JHP + 5JHP| = 5.8 Hz, 

18H, PC(CH3)3), 1.33 (A9XX´A´9 , N = |3JHP + 5JHP| = 5.8 Hz, 18H, 
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PC(CH3)3), 1.90 (m, 2H, PCH2), 2.19 (m, 2H, PCH2, superimposed), 2.21 

(t, 3JHP = 4.2 Hz, 3H, ReCH3, superimposed), 2.27 (m, 2JHH = 6.4 Hz, 1H, 

N=CH2), 3.10 (m, 2H, NCH2CH2), 3.25 (m, 2H, NCH2CH2), 3.47 (m, 2JHH = 

6.4 Hz, 1H, N=CH2). 

13C{1H} NMR  (100.6 MHz, d8-THF, [ppm]): δ = -10.1 (t, 2JCP = 2.5 Hz, ReCH3), 28.0 

(AXX´A´, N = |1JCP + 3JCP| = 7.7 Hz, PCH2), 30.5 (A3XX´A´3, N = |2JCP + 4JCP| = 

2.5 Hz, PC(CH3)3), 31.3 (A3XX´A´3, N = |2JCP + 4JCP| = 2.1 Hz, PC(CH3)3), 

38.5 (AXX´A´, N = |1JCP + 3JCP| = 5.8 Hz, PC(CH3)3), 41.0 (AXX´A´, N = |1JCP 

+ 3JCP| = 7.9 Hz, PC(CH3)3), 70.1 (AXX´A´, N = |2JCP + 3JCP| = 5.3 Hz, 

NCH2CH2), 127.7 (t, 3JCP = 2.2 Hz, N=CH2). 

31P{1H} NMR  (162.0 MHz, d8-THF, [ppm]): δ = 54.9 (s, PtBu2). 

Elemental Analysis 

C22H49N2P2Re (589.80) calcd: C, 44.80; H, 8.37; N, 4.75 

 found: C, 46.07; H, 8.67; N, 4.48 

 

 

3.3.7 Deprotonation of 16a-OTf using PhMgBr 

16a-OTf (5.0 mg, 6.6 µmol, 1 eq) is dissolved in C6D6 (0.5 mL) and phenyl magnesium 

bromide (1 M in THF, 6.6 µL, 6.6 µmol, 1 eq) is added. The solution is stirred for 1 h 

before another equivalent of PhMgBr is added and the mixture again stirred for 1 h. 

The solvent is evaporated and the residue extracted with pentanes (4 x 0.3 mL). 
 

1H NMR  (300 MHz, C6D6, [ppm]): δ = 1.30 (m, 18H, PC(CH3)3, superimposed), 

1.32 (m, 18H, PC(CH3)3, superimposed), 1.56 (m, 1H, N=CH2, 

superimposed), 1.59 (m, 2H, PCH2, superimposed), 1.84 (m, 2H, PCH2), 

3.20 (m, 2JHH = 4.1 Hz, 1H, N=CH2), 3.40 (m, 4H, NCH2). 

31P{1H} NMR  (162.0 MHz, C6D6, [ppm]): δ = 52.5 (s, PtBu2). 

 

 

3.3.8 (PNP)Re(NCHR)(H) (26) 

Via 2e- reduction of 16:  

THF (0.5 mL) is added to a mixture of 16a-OTf (5.0 mg, 6.6 µmol, 1 eq) and KC8 (2.2 

mg, 16.2 µmol, 2.5 eq) and the reaction is stirred for 1 h at room temperature. The 
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suspension is filtered, the solvent evaporated and the residue dissolved in C6D6. NMR 

spectra show the formation of 26a in 95% spectroscopic yield. 

For 26b the reaction is carried out similarly with a spectroscopic yield of 60%. 

 

 

Via double deprotonation of 16 under H2 atmosphere: 

C6H6 (0.5 mL) is added to 16b-OTf (5.4 mg, 7.0 µmol, 1 eq) and KOtBu (2.0 mg, 17.8 

µmol, 2.5 eq) and the atmosphere is exchanged for H2 (1.5 bar). The mixture is heated 

to 70°C for 15 h and stirred at room temperature for another 3 d. 31P-NMR spectra 

show clean formation of 26b. 

 

 

 

Via Hydrogenation of 25: 

25a (5.0 mg, 8.5 µmol) is dissolved in d8-THF, degassed and pressurized with H2 (1 

bar). After heating to 70°C for 15 h, complete conversion of 26a is observed in the 

NMR spectra, together with the formation of methane (1H-NMR: 0.18 ppm). 

For 26b the reaction is carried out similarly. 

Spectroscopic Characterization of 26a: 

1H NMR  (300 MHz, C6D6, [ppm]): δ = -3.81 (t, 2JHP = 11.6 Hz, 1H, ReH), 1.29 

(A9XX´A´9 , N = |3JHP + 5JHP| = 6.0 Hz, 18H, PC(CH3)3), 1.36 (A9XX´A´9 , N = 

|3JHP + 5JHP| = 6.1 Hz, 18H, PC(CH3)3), 1.76 (m, 4H, PCH2), 2.12 (dt, 4JHP = 

2.5 Hz, 2JHH = 4.7 Hz, 1H, N=CH2), 2.96 (m, 2H, NCH2CH2), 3.17 (m, 2H, 

NCH2CH2), 3.38 (dt, 4JHP = 2.4 Hz, 2JHH = 4.6 Hz, 1H, N=CH2). 

13C{1H} NMR  (75.5 MHz, d8-THF, [ppm]): δ = 27.6 (AXX´A´, N = |1JCP + 3JCP| = 7.4 Hz, 

PCH2), 29.6 (A3XX´A´3, N = |2JCP + 4JCP| = 3.0 Hz, PC(CH3)3), 30.6 

(A3XX´A´3, N = |2JCP + 4JCP| = 2.7 Hz, PC(CH3)3), 37.9 (AXX´A´, N = |1JCP + 
3JCP| = 8.4 Hz, PC(CH3)3), 41.0 (AXX´A´, N = |1JCP + 3JCP| = 7.0 Hz, 

PC(CH3)3), 72.1 (AXX´A´, N = |2JCP + 3JCP| = 6.6 Hz, NCH2CH2), 126.1 (t, 3JCP 

= 2.0 Hz, N=CH2). 

31P{1H} NMR  (162.0 MHz, C6D6, [ppm]): δ = 79.1 (s, PtBu2). 

 

Spectroscopic Characterization of 26b: 

1H NMR  (300 MHz, C6D6, [ppm]): δ = -4.25 (t, 2JHP = 12.0 Hz, 1H, ReH, isomer 1), -

3.91 (t, 2JHP = 11.7 Hz, 1H, ReH, isomer 2), 1.24 (A9XX´A´9 , N = |3JHP + 
5JHP| = 5.9 Hz, 18H, PC(CH3)3, isomer 2), 1.31 (A9XX´A´9 , N = |3JHP + 5JHP| 
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= 5.7 Hz, 18H, PC(CH3)3, isomer 1), 1.35 (m, PC(CH3)3, isomer 1, 

superimposed), 1.36 (A9XX´A´9 , N = |3JHP + 5JHP| = 6.1 Hz, 18H, PC(CH3)3, 

isomer 2), 1.76 (m, 4H, PCH2, isomer 1+2), 2.23 (qt, 4JHP = 2.7 Hz, 3JHH = 

5.0 Hz, 1H, N=CHCH3 isomer 2), 2.83 (dt, 3JHH = 5.0 Hz, 5JHP = 1.1 Hz, 3H, 

N=CHCH3 isomer 2), 2.90 (dt, 3JHH = 5.3 Hz, 5JHP = 1.0 Hz, 3H, N=CHCH3 

isomer 1), 3.00 (m, 2H, NCH2CH2, isomer 1+2), 3.21 (m, 2H, NCH2CH2, 

isomer 1+2), 3.44 (m, 3JHH = 5.3 Hz, 1H, N=CHCH3, isomer 1). 

31P{1H} NMR  (121.5 MHz, C6D6, [ppm]): δ = 79.3 (s, PtBu2, isomer 2)., 75.0 (s, PtBu2, 

isomer 1). 

 

 

3.3.9 Reaction of 16a with H2 to 27a 

27a-OTf: 

16a-OTf (5.0 mg, 6.6 µmol, 1 eq) and MeOTf (cat.) are dissolved in C6D6, before the 

atmosphere is exchanged for H2 gas (1 bar). Without MeOTf no reaction is observed. 

The mixture is heated to 80°C for 3 d to give clean conversion to 27a-OTf. The solvent 

is evaporated and the residue washed with pentanes. 

Spectroscopic Characterization 

1H NMR  (300 MHz, C6D6, [ppm]): δ = 1.13 (s, 3H, NCH3), 1.22 (A9XX´A´9 , N = |3JHP 

+ 5JHP| = 6.8 Hz, 18H, PC(CH3)3), 1.35 (A9XX´A´9 , N = |3JHP + 5JHP| = 6.8 Hz, 

18H, PC(CH3)3), 1.63 (m, 2H, PCH2), 2.32 (m, 4H, PCH2, NCH2, 

superimposed), 3.08 (m, 2H, NCH2, partially superimposed), 3.16 (t, 

ReH, partiall superimposed), 4.76 (br, 1H, HPNP). 

31P{1H} NMR  (121.5 MHz, C6D6, [ppm]): δ = 66.7 (s, PtBu2). 

27a-Cl: 

16a-Cl, prepared in situ from 18a and HCl (2 M in Et2O), is dissolved in THF and 

heated to 65°C under an atmosphere of H2 (1 bar) for 18 h. The solvent is evaporated 

and the residue washed with pentanes and benzene. The spectroscopically pure blue 

residue 27a-Cl is dried in vac. and dissolved in CD2Cl2. 

Spectroscopic Characterization 

1H NMR  (300 MHz, CD2Cl2, [ppm]): δ = 1.53 (A9XX´A´9 , N = |3JHP + 5JHP| = 6.9 Hz, 

18H, PC(CH3)3), 1.65 (A9XX´A´9 , N = |3JHP + 5JHP| = 6.9 Hz, 18H, 
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PC(CH3)3), 2.10 (s, 3H, NCH3), 2.21 (m, 2H, PCH2), 2.47 (m, 4H, PCH2, 

NCH2, superimposed), 3.03 (m, 2H, NCH2), 3.57 (t, 2JHP = 18.2 Hz, 1H, 

ReH). 
31P{1H} NMR  (121.5 MHz, CD2Cl2, [ppm]): δ = 67.6 (s, PtBu2). 

 

 

3.3.10 Hydrogenation of 28 

Freshly prepared 28b (ca. 7 µmol) in CD2Cl2 solution (0.5 mL), still containing traces 

of acid, is pressurized with H2 (1.5 bar). The color of the solution changes within 5-

10 min from green to rose. 31P-NMR spectra display conversion into a single 

compound in 93% yield. 1H-NMR spectra are due to residual solvent and signal 

overlap not significant. No signals below 0 ppm in the 1H-NMR spectra are detected. 

31P{1H} NMR  (121.5 MHz, CD2Cl2, [ppm]): δ = 77.8 (s, PtBu2). 

 

 

 

3.4 Reactivity of ketimido complexes 

 

3.4.1 Protonation to imido complexes (16 and 28) 

Azavinylidene complexes 18 and 26 can be quantitatively (spectroscopically) 

protonated back to the respective imido complexes by dissolving the complex in 

benzene, Et2O or DCM and adding 1 eq of acid (HOTf, HBArF4 or NH4PF6). Excess of a 

strong acid leads to degradation of the complexes. 

Spectroscopic Characterization for 28b-BArF4 

1H NMR  (300 MHz, CD2Cl2, [ppm]): δ = -6.18 (t, 2JHP = 14.3 Hz, 1H, ReH), 1.28 (t, 
3JHH = 7.1 Hz, 3H, NCH2CH3), 1.42 (m, 36H, PC(CH3)3), 2.34 (m, 4H, 

PCH2), 2.52 (m, 2H, NCH2CH3), 3.15 (m, 2H, NCH2), 3.39 (m, 2H, NCH2), 

7.57 (s, 4H, BArF4), 7.73 (s, 8H, BArF4). 

31P{1H} NMR  (121.5 MHz, CD2Cl2, [ppm]): δ = 96.5 (s, PtBu2). 
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3.4.2 Release of NCMe upon treatment with isonitriles (Synthesis of 20) 

CNtBu (2.5 µL, 24 µmol, 3 eq) is added to a solution of 18b (5.0 mg, 8.0 µmol, 1 eq) in 

C6D6 (0.5 mL) and the mixture is stirred for 10 d at room temperature. Heating (2 d, 

60°C) leads to partial degradation. Spectroscopic yield to 20 is about 85% based on 

NMR spectra. The solvent is evaporated and the green residue washed with pentanes 

until colorless and dried in vacuo. 

 

 

3.4.3 Release of NCMe upon deprotonation of 18b (Synthesis of 19) 

18b (30.0 mg, 48.1 µmol, 1 eq), KBTSA (9.6 mg, 48.1 µmol, 1 eq) and CNtBu (11 µL, 

105 µmol, 2.2 eq) are dissolved in THF (5 mL) at room temperature. The solution 

immediately turns bright orange and the 1H-NMR spectrum shows clean formation of 

19 under release of acetonitrile. After evaporation of the solvent under reduced 

pressure, the product is extracted with pentanes and the solvent removed in vacuo. 

Lyophilization from benzene yields the 19 as orange powder (33.0 mg, 46.3 µmol, 

96%). 

Spectroscopic Characterization 

1H NMR  (400 MHz, C6D6, [ppm]): δ = 1.42 (A18XX´A´18 = N = |3JHP + 5JHP| = 5.9 Hz, 

36H, PC(CH3)3), 1.43 (s, 18H, CNC(CH3)3), 1.96 (A2B2XX´B´2A´2, N = |2JHP 

+ 4JHP| = 3.4 Hz, 3JHH = 6.5 Hz, 4H, PCH2), 3.26 (A2B2XX´B´2A´2, N = |3JHP + 
4JHP| = 6.5 Hz, 3JHH = 6.5 Hz, 4H, NCH2).  

13C{1H} NMR  (100.6 MHz, C6D6, [ppm]): δ = 28.0 (AXX´A´, N = |1JCP + 3JCP| = 7.9 Hz, 

PCH2), 30.9 (A6XX´A´6, N = |2JCP + 4JCP| = 2.6 Hz, PC(CH3)3), 33.4 (s, 

NC(CH3)3), 37.5 (A2XX´A´2, N = |1JCP + 3JCP| = 8.1 Hz, PC(CH3)3), 54.8 (s, 

NC(CH3)3), 67.2 (AXX´A´, N = |2JCP + 3JCP| = 7.1 Hz, NCH2), 194.8 (t, 2JCP = 

5.1 Hz, CNC(CH3)3).  

31P{1H} NMR  (162.0 MHz, C6D6, [ppm]): δ = 90.2 (s, PtBu2).  

IR  (KBr, cm-1): 1975 (m, CN)), 1957 (m, CN)), 1797 (s, CN)), 

1769 (s, CN)). 

IR (liq.) (DCM, cm-1): 1974 (br, CN)), 1955 (br, CN)), 1778 (s, CN)), 

1742 (s, CN)). 
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Elemental Analysis 

C30H62N3P2Re (%) calcd.:  C, 50.54; H, 8.77; N, 5.89 

 found: C, 50.61; H, 8.73; N, 5.56 

 

 

3.4.4 Oxidation of 18a or 25a with Ag+ (Synthesis of 24) 

25a (3.8 mg, 6.5 µmol, 1 eq) is dissolved in C6D6 and AgOTf (1.7 mg, 6.5 µmol, 1 eq) is 

added. The solution turns dark immediately and Ag precipitates. After stirring for 1h, 

the mixture is filtered, the residue washed with benzene and THF and extracted with 

DCM. After crystallization out of DCM/pentane, pure 24 is obtained according to NMR 

data. The reaction can be carried out similarly using 18a, however the spectroscopic 

the product was not obtained pure (78% spectroscopic yield).  

 

 

3.4.5 Oxidation of 18a with [CPh3][PF6] (Synthesis of 16d-PF6) 

18a (5.0 mg, 8.2 µmol, 1 eq) is dissolved in C6D6 and [CPh3][PF6] (3.2 mg, 8.2 µmol, 

1 eq) is added. The color of the solution immediately turns deep red. The solvent is 

evaporated and the residue washed with pentanes. After drying i. vac., the residual is 

dissolved in d8-THF to observe formation of 16a-PF6 and 16d-PF6 in an about 

equimolar ratio. 

Spectroscopic Characterization for 16d-PF6 

1H NMR  (300 MHz, d8-THF, [ppm]): δ = 1.01 (A18XX´A´18 = N = |3JHP + 5JHP| = 7.3 

Hz, 36H, PC(CH3)3), 1.23 (A18XX´A´18 = N = |3JHP + 5JHP| = 6.9 Hz, 36H, 

PC(CH3)3), 2.3 (m, 2H, PCH2), 2.4 (m, 2H, PCH2), 4.1 (m, 2H, NCH2), 4.3 

(m, 2H, NCH2), 4.52 (s, 2H, NCH2CPh3), 7.2 (m, 15H, CPh3). 

31P{1H} NMR  (121.5 MHz, d8-THF, [ppm]): δ = 87.6 (s, PtBu2). 

 

Addition of KBTSA (1.0 mg, 8.2 µmol, 1 eq) yields a mixture of 18a and 18d in a clean 

reaction. 

31P{1H} NMR of 18d  (121.5 MHz, d8-THF, [ppm]): δ = 45.9 (s, PtBu2). 

31P{1H} NMR of 18d  (121.5 MHz, C6D6, [ppm]): δ = 44.9 (s, PtBu2), 41.9 (s, PtBu2). 
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3.4.6 Oxidation of 18b with Ag+ 

CD2Cl2 (0.5 mL) is trap-to-trap transferred to a J-Young NMR tube charged with 18b 

(5.0 mg, 8.0 µmol, 1 eq) and AgPF6 (2.0 mg, 8.0 µmol, 1 eq). The mixture is warmed to 

-70°C and shaken for 10 min. The 31P and 1H NMR spectra at room temperature show 

the complete consumption of 18b and formation of a paramagnetic compound 

(δH(300 MHz, ppm) = 23.1 (br), 7.1 (br), 6.8 (br), 0.0 (br), -3.6 (br), -31.7 (br)), which 

slowly decomposes at room temperature to a mixture of diamagnetic compounds that 

was not further characterized. 

3.4.7 [(PNP)Re(NCHCH2)Cl]OTf (22) 

18b (5.0 mg, 8.0 µmol, 1 eq) and AgOTf (2.1 mg, 8.0 µmol, 1 eq) are dissolved in d2-

DCM at -34°C. The color of the reaction immediately turns deep red and a grey 

precipitate is formed. 2,4,6-Tri-tert-butyl phenoxyl radical (2.6 mg, 9.9 µmol, 1.2 eq) 

is added to the cold suspension and the reaction is allowed to warm to room 

temperature. After filtration, the product is precipitated by pentane addition (2 mL), 

filtered off and dried in vacuo as a greenish black solid. 

Spectroscopic Characterization 

1H NMR  (300 MHz, C6D6, [ppm]): δ = 1.02 (A9XX´A´9, N = |3JHP + 5JHP| = 6.9 Hz, 

18H, PC(CH3)3), 1.16 (A9XX´A´9, N = |3JHP + 5JHP| = 7.2 Hz, 18H, PC(CH3)3), 

2.12 (ABCDXX´D´C´B´A´, N = |2JHP + 4JHP| = 2.8 Hz, 2JHH = 14.9 Hz, 3JHH = 

6.4 Hz, 3JHH = 3.0 Hz, 2H, PCH2), 2.30 (ABCDXX´D´C´B´A´, N = |2JHP + 4JHP| 

= 3.8 Hz, 2JHH = 14.9 Hz, 3JHH = 8.5 Hz, 3JHH = 8.7 Hz, 2H, PCH2), 3.66 

(ABCDXX´D´C´B´A´, N = |3JHP + 4JHP| = 2.4 Hz, 2JHH = 14.8 Hz, 3JHH = 8.7 Hz, 
3JHH = 6.4 Hz, 2H, NCH2CH2), 4.87 (ABCDXX´D´C´B´A´, N = |3JHP + 4JHP | = 

12.2 Hz, 2JHH = 14.8 Hz, 3JHH = 3.0 Hz, 3JHH = 8.5 Hz, 2H, NCH2CH2), 5.08 

(d, 3JHH = 8.0 Hz, 1H, ReNCHCH2), 5.23 (d, 3JHH = 15.3 Hz, 1H, 

ReNCHCH2), 7.08 (dd, 3JHH = 15.3 Hz, 3JHH = 8.0 Hz, 1H, ReNCHCH2).  

31P{1H} NMR  (121.5 MHz, C6D6, [ppm]): δ = 89.2 (s, PtBu2). 

Mass Spectrometry 

LIFDI+ (toluene, m/z+): 623.1 (C22H47ClN2P2Re+). 
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3.4.8 Release of NCMe from 22 (Synthesis of [(PNP)ReCl2] (3)) 

22 (5.0 mg, 6.5 µmol, 1 eq), 12-crown-4 (3.1 µL, 20 µmol, 3 eq), LiCl (2.8 mg, 65 µmol, 

10 eq), DBU (0.5 µL, 3.5 µmol, 0.5 eq) and naphthalene (0.8 mg, 6.5 µmol, 1 eq) as 

internal standard are dissolved in d8-THF in a J-Young-NMR tube and shaken for 12 h. 
1H and 31P NMR spectra show the formation of 3 and acetonitrile in about 30% yield. 

 

 

3.4.9 Release of NCMe from 18b with CuCl2 and base 

18b (5.0 mg, 8.0 µmol, 1 eq), CuCl2 (1.1 mg, 8.0 µmol, 1 eq) and DBU (1.2 µL, 8.0 µmol, 

1 eq) are suspended in d8-THF at -34°C and stirred for 2 d at room temperature 

before another equivalent of CuCl2 and DBU are added. The 31P NMR spectrum shows 

the formation of 3 in about 25% yield. 

 

 

3.4.10 Oxidation of 18b with N-chlorosuccinimide (Synthesis of 23) 

A mixture of 18b (20.0 mg, 32.0 µmol, 1 eq) and N-chlorosuccinimide (8.6 mg, 64.0 

µmol, 2 eq) is dissolved in benzene (5 mL) and stirred at room temperature for 18 h. 

The formation of acetonitrile is confirmed by 1H (spectroscopic yield about 80%, 

hexamethylbenzene (1 eq) as internal standard), 15N and 1H-15N-HMBC NMR 

spectroscopy. The mixture is worked up by evaporation of the solvent under reduced 

pressure, washing with pentane (2 x 5 mL) and extraction with benzene (2 x 3 mL). 

After filtration and solvent evaporation residual succinimide is sublimed off over 18 h 

(80°C @ 10 mTorr) to obtain 23 as a green powder (19.5 mg, 29.9 µmol, 93%), which 

was identified by comparison of 1H NMR, UV-vis and LIFDI-MS data with an original 

sample.  

 

 

3.4.11 Oxidation of 18a with NCS 

18a (5.0 mg, 8.1 µmol, 1 eq) and NCS (2.2 mg, 16.4 µmol, 2 eq) are dissolved in C6D6. 

Formation of four diamagnetic signals in the 31P-NMR spectra is observed, besides the 

signal corresponding to 23 in the 1H-NMR spectrum. 
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1H NMR  (300 MHz, C6D6, [ppm]): δ = 10.8 (s, 23). 

31P{1H} NMR  (121.5 MHz, C6D6, [ppm]): δ = 91.4 (s, 65%), 71.1 (s, 29%), 47.7 (s, 1%), 

42.8 (s, 5%). 

LIFDI+ (toluene, m/z+): 682.5 (unknown); 652.1 (unknown); 596.2 (23+). 

IR  (KBr, cm-1): 2258 (w, CN)), 2223 (w, CN)). 

 

 

3.4.12 [(PNP)ReCl3] (23) 

N-chlorosuccinimide (8.6 mg, 64.8 µmol, 1 eq) is added to a frozen solution of 3 (40.0 

mg, 64.8 µmol, 1 eq) in benzene (5-10 mL) and warmed to room temperature. Upon 

melting the color changes from violet to dark green. After stirring for 2 h, the volume 

is reduced to about 3 mL and the product is precipitated with pentanes (10 mL). After 

filtration, the green powder is washed with pentanes (2 x 5 mL), dissolved in benzene 

(3 x 5 mL), filtered and lyophilized. The crude product is heated to 80°C (30 mTorr) 

for 18 h to sublime off residual succinimide. Yield: 32.0 mg, 49.0 µmol, 76%. 

Spectroscopic Characterization 

1H NMR  (300 MHz, d8-THF, [ppm]): δ = -15.8 (br), 10.7 (br). 

Magnetic Properties 

Evans method µeff298K: 1.54 µB.  

Elemental Analysis 

C20H44Cl3NP2Re (%) calcd.: C, 36.78; H, 6.79; N, 2.14 

 found: C, 37.26; H, 7.22; N, 2.51 

Mass Spectrometry 

LIFDI+ (toluene, m/z+): 652.2 (C20H44Cl3NP2Re+). 
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3.4.13 Reduction of 23 (Synthesis of [(PNP)ReCl2] (3)) 

23 (5.0 mg, 7.7 µmol, 1 eq) and CoCp2* (2.5 mg, 7.7 µmol, 1 eq) are dissolved in d8-

THF (0.5 mL) in a J-Young NMR tube. Upon shaking the color of the solution turns 

from green to red-brown and a yellow precipitate is formed. Examination by 1H and 
31P NMR spectroscopy reveals clean formation of 3. 

 

 

3.4.14 Reduction of 23 under N2 (Synthesis of [(PNP)Re(N)Cl] (9)) 

Na/Hg (209 mg, 1 M, 15.4 µmol, 2 eq) is added to a solution of 23 (5.0 mg, 7.7 µmol, 1 

eq) in d8-THF (0.5 mL) at room temperature and stirred under N2 atmosphere for 15 

h. Examination by 1H and 31P NMR spectroscopy reveals formation of 9 in about 70% 

spectroscopic yield. 

 

 

3.4.15 Hydrogenation of 18 

In the presence of HCl 

To 18a (5.0 mg, 8.1 µmol, 1 eq) a solution of HCl (8 µL, 2 M in Et2O, 1 eq) in THF is 

added and the reaction mixture is pressurized with H2 (1 bar). The solution is heated 

to 65°C for 18 h to observe formation of 27 in 70% spectroscopic yield. 

 

In the presence of KOtBu 

18b (4.4 mg, 7.0 µmol, 1 eq) and KOtBu (0.8 mg, 7.0 µmol, 1 eq) are suspended in 

benzene (0.5 mL) and pressurized with H2 (1.5 bar). The mixture is heated to 70°C for 

2 d and then stirred for 2 d at room temperature to observe conversion to 26b in 

95% spectroscopic yield. 
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2 List of abbreviations 

{MNNM}xπyδ x = number of electrons in π-symmetric orbitals; y = number of 

electrons in δ-symmetric orbitals of a {MNNM} unit 

δ  chemical shift [ppm] 

υ wave number [cm-1] 

µeff effective magnetization 

atm standard atmosphere 

BArF4 [B{C6H3(CF3)2}4]- 

BDE bond dissociation energy 

br broad 

tBu tert–butyl 

Bn benzyl 

calcd. calculated 

Cp cyclopentadienyl 

Cp* (penta-methyl)cyclopentadienyl 

CV cyclic voltammetry 

d doublet 

DCM dichloromethane 

DFT density functional theory 

Et ethyl 

equiv. equivalents 

ESI electron spray ionization 

exp experimental 

Fc ferrocene 

Fc+ ferrocenium cation 

FT fourrier transform 

h hour 

hpp hexahydroprymidinopyrimidine (deprotonated TBD) 

HOMO highest occupied molecular orbital 
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iPr iso-propyl 

IR infrared 

i. vac. in vacuo 

LUMO lowest unoccupied molecular orbital 

m multiplet (NMR) or medium (IR) 

Me methyl 

MO molecular orbital 

M molar 

NMR nuclear magnetic resonance 

OTf trifluoromethanesulfonate 

Ph phenyl 

PhO· 2,4,6-tri-tert-butylphenoxyl radical 

PNP bis(di-tert–butylphosphinoethylene)amide 

HPNP bis(di-tert–butylphosphinoethylene)amine 

P=N=P bis(di-tert–butylphosphinoethylidene)amide 

PNPiPr bis(di-iso-propylphosphinoethylene)amide 

ppm parts per million 

q quartet 

RT room temperature 

S spin 

t triplet 

TBD 1,3,5-Triazabicyclo[4.4.0]dec-5-ene, Hhpp 

THF tetrahydrofurane 

TIP temperature independent paramagnetism 

vs versus 

w weak 
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3 Crystallographic details 

3.1 [(PNP)ReCl2] (3) 
 

Empirical formula C20H44Cl2NP2Re 

Formula weight 617.60 

Temperature 100(2) K 

Wavelength 0.56086 Å 

Crystal system, space group Orthorhombic, P212121 

Unit cell dimensions  a = 12.1991(13) Å α = 90° 

 b = 12.3901(14)  Å β = 90° 

 c = 16.5297(18) Å γ = 90° 

Volume 2498.4(5) Å3 

Z, Density (calculated) 4, 1.642 Mg/m3 

Absorption coefficient  2.799 mm-1 

F(000) 1240 

Crystal shape and color Block, blue 

Crystal size 0.407 x 0.217 x 0.188 mm3 

θ range for data collection 1.297 to 23.674° 

Index ranges -17<=h<=17, -17<=k<=17, -23<=l<=23 

Reflections collected / independent 36601 / 7624 [R(int) = 0.0539] 

Completeness to θ = 19.665° 99.4 % 

Absorption correction Numerical 

Max. and min. transmission 0.7295 and 0.5455 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 7624 / 240 / 250 

Goodness-of-fit on F2 1.137 

Final R indices [I>2σ(I)] R1 = 0.0380, wR2 = 0.0935 

R indices (all data) R1 = 0.0405, wR2 = 0.0966 

Largest diff. peak and hole 4.211 and -2.383 eÅ-3 
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3.2 [(PNP)Re(NCMe)Cl2] 
 

Empirical formula C22H47Cl2N2P2Re 

Formula weight 658.65 

Temperature 298(2) K 

Wavelength 0.71073 Å 

Crystal system, space group Triclinic, P-1 

Unit cell dimensions  a = 7.4049(3) Å α = 93.800(2)° 

 b = 12.4480(5) Å β = 101.613(2)° 

 c = 15.8353(7) Å γ = 105.263(2)° 

Volume 1368.30(10) Å3 

Z, Density (calculated) 2, 1.599 Mg/m3 

Absorption coefficient  4.765 mm-1 

F(000) 664 

Crystal shape and color Plate, clear intense green 

Crystal size 0.109 x 0.073 x 0.053 mm3 

θ range for data collection 2.290 to 30.659° 

Index ranges -10<=h<=10, -17<=k<=17, -22<=l<=22 

Reflections collected / independent 70775 / 8447 [R(int) = 0.0732] 

Completeness to θ = 25.242° 99.9% 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 8447 / 0 / 275 

Goodness-of-fit on F2 1.048 

Final R indices [I>2σ(I)] R1 = 0.0313, wR2 = 0.0432 

R indices (all data) R1 = 0.0485, wR2 = 0.0462 

Largest diff. peak and hole 0.597 and -0.748 eÅ-3 
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3.3 [(PNPiPr)Re(hpp)Cl] (5) 
 

Empirical formula C23H48ClN4P2Re 

Formula weight 664.24 

Temperature 100(2) K 

Wavelength 0.56086 Å 

Crystal system, space group Triclinic, P-1 

Unit cell dimensions  a = 7.9189(3) Å α = 85.3520(10)° 

 b = 9.5438(4) Å β = 83.0080(10)° 

 c = 18.8217(7) Å γ = 76.5260(10)° 

Volume 1370.99(9) Å3 

Z, Density (calculated) 2, 1.609 Mg/m3 

Absorption coefficient  2.509 mm-1 

F(000) 672 

Crystal shape and color Block, green 

Crystal size 0.184 x 0.155 x 0.150 mm3 

θ range for data collection 0.861 to 22.198° 

Index ranges -10<=h<=10, -12<=k<=12, -25<=l<=25 

Reflections collected / independent 91475 / 7000 [R(int) = 0.0442] 

Completeness to θ = 19.665° 100.0% 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.462 and 0.3938 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 7000 / 60 / 468 

Goodness-of-fit on F2 1.098 

Final R indices [I>2σ(I)] R1 = 0.0164, wR2 = 0.0339 

R indices (all data) R1 = 0.0189, wR2 = 0.0347 

Largest diff. peak and hole 0.928 and -1.237 eÅ-3 
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3.4 [(HPNP)Re(N)Cl][Cl] (12) 
 

Empirical formula C20H45Cl2N2P2Re 

Formula weight 632.62 

Temperature 100(2) K 

Wavelength 0.56086 Å 

Crystal system, space group Orthorhombic, Pbca 

Unit cell dimensions  a = 15.1843(12) Å α = 90° 

 b = 12.3918(9) Å β = 90° 

 c = 27.434(2) Å γ = 90° 

Volume 5162.0(7) Å3 

Z, Density (calculated) 8, 1.628 Mg/m3 

Absorption coefficient  2.711 mm-1 

F(000) 2544 

Crystal shape and color Plate, yellow 

Crystal size 0.092 x 0.064 x 0.058 mm3 

θ range for data collection 1.579 to 20.596°  

Index ranges -19<=h<=18, -15<=k<=15, -34<=l<=34 

Reflections collected / independent 116371 / 5313 [R(int) = 0.1613] 

Completeness to θ = 19.665° 100.0% 

Absorption correction Numerical 

Max. and min. transmission 0.7445 and 0.6445 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5313 / 0 / 260 

Goodness-of-fit on F2 1.050 

Final R indices [I>2σ(I)] R1 = 0.0329, wR2 = 0.0518 

R indices (all data) R1 = 0.0604, wR2 = 0.0593 

Largest diff. peak and hole 0.980 and -1.461 eÅ-3 
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3.5 [(PNP)Re(N)(CH3)] (13) 
 

Empirical formula C21H47N2P2Re 

Formula weight 575.74 

Temperature 100(2) K 

Wavelength 0.56086 Å 

Crystal system, space group Orthorhombic, Pbca 

Unit cell dimensions  a = 11.9638(4) Å α = 90° 

 b = 15.5451(5) Å β = 90° 

 c = 26.4482(8) Å γ = 90° 

Volume 4918.8(3) Å3 

Z, Density (calculated) 8, 1.555 Mg/m3 

Absorption coefficient  2.736 mm-1 

F(000) 2336 

Crystal shape and color Plate, yellow 

Crystal size 0.207 x 0.190 x 0.078 mm3 

θ range for data collection 1.215 to 22.317° 

Index ranges -16<=h<=12, -20<=k<=21, -35<=l<=35 

Reflections collected / independent 50947 / 6396 [R(int) = 0.0634] 

Completeness to θ = 19.665° 100.0% 

Absorption correction Numerical 

Max. and min. transmission 0.8532 and 0.6696 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6396 / 0 / 248 

Goodness-of-fit on F2 1.173 

Final R indices [I>2σ(I)] R1 = 0.0412, wR2 = 0.0692 

R indices (all data) R1 = 0.0617, wR2 = 0.0753 

Largest diff. peak and hole 2.927 and -3.149 eÅ-3 
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3.6 [(PNP)Re(NMe)Cl][OTf] (16a) 
 

Empirical formula C26H55ClF3N2O4P2ReS 

Formula weight 832.37 

Temperature 100(2) K 

Wavelength 0.56086 Å 

Crystal system, space group Monoclinic, P21/C 

Unit cell dimensions  a = 14.9341(6) Å α = 90° 

 b = 17.4589(7) Å β = 115.5100(17)° 

 c = 14.5106(6) Å γ = 90° 

Volume 3414.5(2) Å3 

Z, Density (calculated) 4, 1.619 Mg/m3 

Absorption coefficient  2.065 mm-1 

F(000) 1688 

Crystal shape and color Plate, yellow 

Crystal size 0.219 x 0.083 x 0.076 mm3 

θ range for data collection 1.192 to 20.583° 

Index ranges -18<=h<=18, -21<=k<=21, -18<=l<=18 

Reflections collected / independent 73633 / 7039 [R(int) = 0.0418] 

Completeness to θ = 19.665° 100.0% 

Absorption correction Numerical 

Max. and min. transmission 0.9489 and 0.8097 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 7039 / 0 / 374 

Goodness-of-fit on F2 1.138 

Final R indices [I>2σ(I)] R1 = 0.0159, wR2 = 0.0320 

R indices (all data) R1 = 0.0229, wR2 = 0.0376 

Largest diff. peak and hole 1.043 and -0.558 eÅ-3 
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3.7 [(PNP)Re(NCHCH3)Cl] (18b) 
 

Empirical formula C22H48ClN2P2Re 

Formula weight 624.21 

Temperature 173(2) K 

Wavelength 0.71073 Å 

Crystal system, space group Monoclinic, P21/n 

Unit cell dimensions  a = 12.1123(5) Å α = 90° 

 b = 14.6857(6) Å β = 97.492(2)° 

 c = 15.2552(6) Å γ = 90° 

Volume 2690.39(19) Å3 

Z, Density (calculated) 4, 1.541 Mg/m3 

Absorption coefficient  4.746 mm-1 

F(000) 1264 

Crystal size 0.317 x 0.086 x 0.074 mm3 

θ range for data collection 1.933 to 27.564° 

Index ranges -15<=h<=15, -19<=k<=19, -19<=l<=19 

Reflections collected / independent 71062 / 6200 [R(int) = 0.0593] 

Completeness to θ = 25.242° 100.0% 

Absorption correction Semi empirical from equivalents 

Max. and min. transmission 0.7456 and 0.4758 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6200 / 0 / 266 

Goodness-of-fit on F2 1.409 

Final R indices [I>2σ(I)] R1 = 0.0341, wR2 = 0.0872 

R indices (all data) R1 = 0.0392, wR2 = 0.0900 

Largest diff. peak and hole 1.540 and -1.740 eÅ-3 
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3.8 [(PNP)Re(CNtBu)2] (19) 
 

Empirical formula C30H62N3P2Re 

Formula weight 712.96 

Temperature 173(2) K 

Wavelength 0.71073 Å 

Crystal system, space group Monoclinic, P21/n 

Unit cell dimensions  a = 10.8645(5) Å α = 90° 

 b =  30.8758(14) Å β = 116.691(2)° 

 c = 11.2147(5) Å γ = 90° 

Volume 3361.1(3) Å3 

Z, Density (calculated) 4, 1.409 Mg/m3 

Absorption coefficient  3.732 mm-1 

F(000) 1472 

Crystal size 0.214 x 0.165 x 0.032 mm3 

θ range for data collection 2.137 to 26.370° 

Index ranges -13<=h<=12, -38<=k<=38, -13<=l<=14 

Reflections collected / independent 36525 / 6857 [R(int) = 0.0383] 

Completeness to θ = 25.242° 99.8% 

Absorption correction Semi empirical from equivalents 

Max. and min. transmission 0.7457 and 0.6143 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6857 / 21 / 356 

Goodness-of-fit on F2 1.222 

Final R indices [I>2σ(I)] R1 = 0.0325, wR2 = 0.0626 

R indices (all data) R1 = 0.0418, wR2 = 0.0648 

Largest diff. peak and hole 2.174 and -2.995 eÅ-3 
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3.9 [(HPNP)Re(NCHCH3)(CNtBu)Cl][OTf] (21) 
 

Empirical formula C28H58ClF3N3O3P2ReS 

Formula weight 857.42 

Temperature 100(2) K 

Wavelength 0.71073 Å 

Crystal system, space group Monoclinic, P21/n 

Unit cell dimensions  a = 14.0330(8) Å α = 90° 

 b = 12.2246(7) Å β = 106.820(2)° 

 c = 22.0602(13) Å γ = 90° 

Volume 3622.5(4) Å3 

Z, Density (calculated) 4, 1.572 Mg/m3 

Absorption coefficient  3.622 mm-1 

F(000) 1744  

Crystal size 0.298 x 0.292 x 0.092 mm3 

Crystal shape and color Plate, clear intense blue 

θ range for data collection 2.253 to 36.448° 

Index ranges -23<=h<=22, -20<=k<=20, -36<=l<=36 

Reflections collected / independent 267200 / 17692 [R(int) = 0.0428] 

Completeness to θ = 25.242° 99.9% 

Max. and min. transmission 0.7471 and 0.5121 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 17692 / 0 / 395 

Goodness-of-fit on F2 1.069  

Final R indices [I>2σ(I)] R1 = 0.0215, wR2 = 0.0438 

R indices (all data) R1 = 0.0288, wR2 = 0.0462 

Largest diff. peak and hole 1.835 and -1.478 eÅ-3 
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3.10 [(PNP)ReCl3] (23) 
 

Empirical formula C20H44Cl3NP2Re 

Formula weight 653.05 

Temperature 100(2) K 

Wavelength 0.71073 Å 

Crystal system, space group Orthorhombic, Pbca 

Unit cell dimensions  a = 13.0596(8) Å α = 90° 

 b = 14.2366(8) Å β = 90° 

 c = 28.2239(16) Å γ = 90° 

Volume 5247.5(5) Å3 

Z, Density (calculated) 8, 1.653 Mg/m3 

Absorption coefficient  5.066 mm-1 

F(000) 2616  

Crystal size 0.153x 0.138 x 0.119 mm3 

θ range for data collection 2.236 to 30.119° 

Index ranges -18<=h<=18, -20<=k<=20, -39<=l<=39 

Reflections collected / independent 195808 / 7721 [R(int) = 0.0420] 

Completeness to θ = 25.242° 100.0% 

Refinement method Semi-empirical from equivalents 

Max. and min. transmission 0.7460and 0.6254 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 7721 / 0 / 256 

Goodness-of-fit on F2 1.097  

Final R indices [I>2σ(I)] R1 = 0.0187, wR2 = 0.0386 

R indices (all data) R1 = 0.0244, wR2 = 0.0402 

Largest diff. peak and hole 1.462 and -0.849 eÅ-3 
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3.11 [(PNP)Re(NCHPh)Cl] (18c) 
 

Empirical formula C29.50H56ClN2P2Re 

Formula weight 722.35 

Temperature 100(2) K 

Wavelength 0.71073 Å 

Crystal system, space group Triclinic, P-1 

Unit cell dimensions  a = 12.8449(5) Å α = 82.388(2)° 

 b = 14.3234(7) Å β = 88.031(2)° 

 c = 19.6479(9) Å γ = 67.417(2)° 

Volume 3307.8(3) Å3 

Z, Density (calculated) 4, 1.451 Mg/m3 

Absorption coefficient  3.871 mm-1 

F(000) 1476 

Crystal size 0.279 x 0.066 x 0.034 mm3 

Crystal color and shape Plate, clear light orange-brown 

θ range for data collection 1.981 to 28.431° 

Index ranges -17<=h<=17, -19<=k<=19, -26<=l<=26 

Reflections collected / independent 195920 / 16588 [R(int) = 0.0715] 

Completeness to θ = 25.242° 100.0% 

Refinement method Semi-empirical from equivalents 

Max. and min. transmission 0.7457 and 0.5777 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 16588 / 70 / 763 

Goodness-of-fit on F2 1.017 

Final R indices [I>2σ(I)] R1 = 0.0235, wR2 = 0.0406 

R indices (all data) R1 = 0.0394, wR2 = 0.0445  

Largest diff. peak and hole 0.817 and -0.764 eÅ-3 
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3.12 [(PNP)Re(NCH2)Cl] (18a) 
 

Empirical formula  C21H46ClN2P2Re 

Formula weight  610.19 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system, space group  Monoclinic, P21/n 

Unit cell dimensions a = 12.3076(4) Å a= 90°. 

 b = 14.8267(5) Å b= 103.222(2)°. 

 c = 14.0218(5) Å g = 90°. 

Volume 2490.88(15) Å3 

Z, Density (calculated) 4, 1.627 Mg/m3 

Absorption coefficient 5.124 mm-1 

F(000) 1232 

Crystal size 0.276 x 0.232 x 0.094 mm3 

θ range for data collection 2.185 to 33.140°. 

Index ranges -18<=h<=18, -22<=k<=22, -21<=l<=21 

Reflections collected / independent 191147 / 9491 [R(int) = 0.0536] 

Completeness to θ = 25.242° 100.0 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 9491 / 0 / 256 

Goodness-of-fit on F2 1.051 

Final R indices [I>2σ(I)] R1 = 0.0198, wR2 = 0.0385 

R indices (all data) R1 = 0.0278, wR2 = 0.0406 

Largest diff. peak and hole 2.194 and -1.177 eÅ-3 
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3.13 [(PNP)Re(NCHCPh3)Cl] (18d) 
 

Empirical formula  C40H60ClN2P2Re 

Formula weight  852.49 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system, space group  Monoclinic, P21/n 

Unit cell dimensions a = 11.3915(6) Å a= 90°. 

 b = 19.8542(10) Å b= 104.449(2)° 

 c = 17.6702(9) Å g = 90°. 

Volume 3870.0(3) Å3 

Z, Density (calculated) 4, 1.463 Mg/m3 

Absorption coefficient 3.321 mm-1 

F(000) 1744 

Crystal size 0.371 x 0.239 x 0.216 mm3 

Crystal shape and color Block, metallic dark brown 

θ range for data collection 2.186 to 30.507°. 

Index ranges -16<=h<=16, -28<=k<=28, -25<=l<=25 

Reflections collected / independent 176840 / 11810 [R(int) = 0.0460] 

Completeness to θ = 25.242° 99.9% 

Max. and min. transmission 0.7479 and 0.6131 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 11810 / 0 / 515 

Goodness-of-fit on F2 1.044 

Final R indices [I>2σ(I)] R1 = 0.0210, wR2 = 0.0473 

R indices (all data) R1 = 0.0288, wR2 = 0.0509 

Largest diff. peak and hole 1.904 and -0.746 eÅ-3 
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3.14 [(PNP)Re(NCH2)(CH3)] (25) 
 

Empirical formula  C22H49N2P2Re 

Formula weight  589.77 

Temperature  100(2) K 

Wavelength  0.56086 Å 

Crystal system, space group  Monoclinic, P21/n 

Unit cell dimensions a = 12.2290(18) Å a= 90°. 

 b = 14.940(2) Å b= 102.731(3)° 

 c = 14.118(2) Å g = 90°. 

Volume 2516.0(6) Å3 

Z, Density (calculated) 4, 1.557 Mg/m3 

Absorption coefficient 2.676 mm-1 

F(000) 1200 

Crystal size 0.333 x 0.291 x 0.164 mm3 

Crystal shape and color Block, brown 

θ range for data collection 1.576 to 21.428°. 

Index ranges -15<=h<=15, -19<=k<=19, -18<=l<=18 

Reflections collected / independent 86472 / 5815 [R(int) = 0.0308] 

Completeness to θ = 19.665° 100.0% 

Absorption coefficient Numerical 

Max. and min. transmission 0.5336 and 0.4305 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5815 / 0 / 257 

Goodness-of-fit on F2 1.075  

Final R indices [I>2σ(I)] R1 = 0.0131, wR2 = 0.0294 

R indices (all data) R1 = 0.0147, wR2 = 0.0302 

Largest diff. peak and hole 1.513 and -0.454 eÅ-3 
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