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Chapter 1

Introduction

"Thermodynamics is a funny subject. The first time you go through
it, you don’t understand it at all. The second time you go through it,
you think you understand it, except for one or two small points. The
third time you go through it, you know you don’t understand it, but
by that time you are so used to it, it doesn’t bother you any more."

Arnold Sommerfeld, when he has been asked why he had never
written a book about thermodynamics

Condensed matter systems play a key role in modern technologies. They are
utterly indispensable for modern life and the development of new applications.
Thus, a reliable description of such systems and their evolution in time is abso-
lutely essential.

The physical picture of the electronic states is an electron gas, in which electrons
are able to travel all over the structure. In realistic systems, the number of these
electrons can be of the order of Avogadros number, i.e. Nel ∼ 1023.

There may be a vast amount of particles involved, but the principle of their
description follows the seemingly simple quantum mechanical time evolution,
which is the Schrödinger equation (Schrödinger, 1926a,b,c,d)

i~
∂

∂t

∣∣ψ
〉

= Ĥ
∣∣ψ
〉
, (1.1)

with the reduced Planck constant ~. This equation shows that the time evo-
lution of the state |ψ〉 is driven by the hermitian Hamiltonian Ĥ, which is the
operator measuring the energy of the system. We consider a time-independent
Hamiltonian. Hence the Schrödinger equation leads to the following time evo-
lution of a state |ψ〉:

|ψ(t)〉 = e−iĤt/~ |ψ(t=0)〉. (1.2)

The time-evolution operator exp(−iĤt/~) is unitary,1 because Ĥ is hermitian.
The naive way of calculating the time evolution is to diagonalize the Hamilto-
nian, i.e. Ĥ = T̂ †D̂T̂ , with D̂ = diag(Eα) being a diagonal operator containing

1The time evolution operator is also unitary for time-dependent Hamiltonians.

1



2 Chapter 1. Introduction

the Hamiltonian’s eigenenergies Eα and T̂ being the corresponding similarity
transformation. Subsequently, the time-evolution operator is easily calculated:

e−iĤt/~ = e−iT
†D̂ T t/~ = T † e−i diag(Eα)t/~ T = T † diag

(
e−iÊαt/~

)
T. (1.3)

However, the core of the problem of describing a quantum many-body system
lies at the point of the diagonalization of Ĥ: The dimension of the Hilbert space
increases exponentially with system size. For example, a system of N spins has
2N basis-states. Evidently, a number of 1023 electrons cannot be treated by a
numerical diagonalization. For very simple models, which describe the electrons
of a metal, one already needs a supercomputer to perform a full diagonalization
for 20 atoms with two electronic states per atom and 20 electrons (Dolfen, 2006).

This thesis is concerned with non-equilibrium quantum mechanics. Problems
not only arise with the calculation of the complicated time evolution. For a
rigorous description of an experimental setup, one also needs to know the initial
state of the problem. However, it is not possible to determine all details of the
initial state in experiments. The reasons for that are that states can not be
measured, but only eigenvalues of observables, and that finding the composition
of the state needs perfect reproductions of the exact states. In many cases, the
initial state is simply assumed to be a thermal state with a well-defined temper-
ature. Often, this assumption is not build on rigorous arguments. Hence, the
questions we should ask are: when can an initial state be assumed to be thermal
and can therefore be treated by the well-known tools of thermodynamics? In
which kind of systems does thermalization occur? What happens if a system is
not coupled to the environment?

An experimental way to learn more about large quantum systems are quantum
simulators. These are experiments with ultracold gases that, inter alia, simulate
simple and pure condensed matter systems. In contrast to real materials, they
offer much more control of the model parameters. For example, in such settings,
one can study the one-dimensional Hubbard model. This model is also one aim
of our investigation. Therefore, the next section, Sec. 1.1, will deal with these ul-
tracold gases and how they motivate the research in the field of non-equilibrium
quantum many-body-physics. Afterwards, Sec. 1.2 will be concerned with the
experimental technique called photoemission spectroscopy. We will present how
it is used to measure the time-evolution of the electronic momentum distribu-
tion in solid samples. As we will show, there are also samples, in which the
conduction electrons are confined to (quasi) one-dimensional structures. This is
a great motivation for this work, because it deals with the long-time evolution
of momentum distributions of one-dimensional systems. In any dimension, such
distributions are a possible measure of thermalization in a system, which will be
discussed in Sec. 1.3. This section will also introduce the theoretical framework
of quantum thermalization. In addition, we will show how one can reconcile
two basic concepts: (1) unitary time evolution, that leads to the fact that pure
states always stay pure, and (2) the notion of thermalization, where thermal
states are defined as non-pure density matrices for non-zero temperatures. The
goals and scope of this thesis will be elaborated in Sec. 1.4. We will introduce
the two models, which are considered in this work: a Hubbard model with next-
to-nearest neighbor hopping and an effective model for a PrxCa1−xMnO3 chain.
At last, we will give the outline of the thesis, where we will briefly discuss the
content of the chapters.
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1.1 Motivation: Ultracold gases

Recent advances in the field of dilute, ultracold gases made it possible to in-
vestigate very pure, closed quantum systems (Greiner et al., 2002b; Kinoshita
et al., 2006; Hofferberth et al., 2007; Bloch et al., 2008; Schreiber et al., 2015;
Langen et al., 2015). The temperatures, which can be reached, are of O(10 pK)
(Bloch et al., 2012), and the number of particles in such a gas is about 104. In
this section, we will show that, within these experiments, one cannot only study
three-dimensional systems, but one can tune the setup in such a way that they
become effectively low-dimensional for low temperatures. Furthermore, one can
create one-, two-, and three-dimensional lattices, which makes it possible to
simulate the electrons of condensed matter systems.

The subsections are organized as follows. First, we will introduce the concept of
the scattering length in Sec. 1.1.1. This measure captures the essential features
of the two-particle interaction potential for low temperatures. Sec. 1.1.2 will be
about two important cooling mechanisms for creating ultracold gases. Moreover,
we will elaborate on one important method for trapping atoms and on how to
create lattices for the trapped atoms, see Sec. 1.1.3. Another great feature of
ultracold gases setups we will consider is the possibility to tune the interaction
between particles, which is explained in Sec. 1.1.4. After we will have explained
two measurement techniques in Sec. 1.1.5, we will show experiments that are
milestones for the field of quantum thermalization, see Sec. 1.1.6.

As a start, we clarify the technical terms "cold" and "ultracold". They emerge
from scattering theory, in which one has cold and ultracold scattering processes.
Scattering theory (see e.g. Gottfried and Yan (2003)) treats the interaction of
two particles in their rest frame. Hence, one obtains a Schrödinger equation
for the relative coordinate ~r, which measures the distance of the particles. We
assume a spherically symmetric potential and consider two identical particles.
This leads to the Schrödinger equation of the relative motion (Goodman, 2009):

[
− ~2

2m

d2

dr2
+

~2l(l + 1)

2mr2
+ V (r)− E

]
u(r) = 0, (1.4)

where l is the quantum number of their relative angular momentum. The two
atoms can only have a chance to react if their energy E compensates for the cen-
trifugal barrier ~2l(l + 1)/2mr2. However, for small temperatures the relative
energies of the particles are also small. Hence, the smaller the temperature, the
lower the values of the angular momentum have to be. The centrifugal barrier
only vanishes for l = 0, which is known as s-wave scattering. The next partial
waves with l = 1, 2, 3, ... are called p-wave, d-wave, f-wave, and so on.

This leads to the defining hallmark of the cold regime of a quantum gas: Only
partial waves with l . 5 can contribute to scattering. In the ultracold regime,
all contributions with l > 0 are negligible; only s-wave scattering can occur
(Weiner, 2003; Levin et al., 2012).

It is important to note that there is no fixed border for the cold and ultracold
regime, because the higher partial waves do not freeze out abruptly, but contin-
uously. However, a quantum gas made of atoms is typically ultracold when the
temperature is below 1 mK (Jones et al., 2006).
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1.1.1 The scattering length

In this section, we introduce the scattering length. We will show that it is a
measure for the two-particle interaction in the ultracold regime.

For distances beyond the influence of the potential, the scattered wave function
of a plane wave ei~k·~r is

ψ(~r)
large r−−−−→ ei

~k·~r + f(k, θ)
eikr

r
, (1.5)

with the distance r = |~r| from the scattering center and the angle θ between
~r and the wave vector ~k of the plane wave. The scattering amplitude f(k, θ)

measures how much of the incoming wave ei~k·~r is scattered into other directions.
The latter are described by a spherical wave for long distances r, where a detec-
tor is usually placed. The scattering amplitude can be decomposed into partial
wave contributions:

f(k, θ) =

∞∑

l=0

(2l + 1) fl(k)Pl(cos(θ)), (1.6)

where Pl(x) are the Legendre-Polynomials.

For s-wave scattering, the scattering amplitude does not depend on the scat-
tering angle θ any more (Basdevant and Dalibard, 2002): f0(k) := f(k, θ).
Furthermore, the small temperature implies that the particles have low ener-
gies. Due to the low density, the wave vector is very small for both bosons
and fermions. Therefore, in the ultracold regime, the particle interaction is
completely determined by the scattering amplitude in the limit k → 0. This is
known as the s-wave scattering length

as = − lim
k→0

f(k, θ) = − lim
k→0

f0(k). (1.7)

It is a measure for the interaction strength, which becomes apparent when its
Born-approximation is considered (Basdevant and Dalibard, 2002):

as =
m

2π~2

∫
d3r V (r). (1.8)

We will see in Sec. 1.1.4 that it is possible to change the scattering length in
cold-gas experiments and therefore one can change the interaction of the atoms.

1.1.2 Creation of ultracold gases

In order to achieve temperatures of O(10 pK), a cascade of several cooling mech-
anisms is used. The available list of such mechanisms is shown in Fig. 1.1. Two
very important stages are laser cooling and evaporative cooling, which make it
possible to reach such low temperatures. Therefore, in this section, these two
mechanisms are elaborated in more detail. There are also other cooling meth-
ods such as "optical molasses" (Dalibard and Cohen-Tannoudji, 1989; Phillips,
1998), magnetic traps (Pethick and Smith, 2008), and magneto-optical traps
(Pethick and Smith, 2008). Cold gases can be trapped in a vacuum chamber
with external magnetic fields or with the use of an atom chip.
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Figure 1.1: Possible cooling mechanisms. The vertical axis shows the temperatures,
which can be reached with the different techniques. On the horizontal axis, there is
the de Broglie wavelength for atomic sodium. Reprinted figure with permission from
Weiner (2003) c©2003 by the Cambridge University Press.

Laser cooling In principle, laser cooling achieves low temperatures by shoot-
ing photons with very small momenta onto the atom in order to slow it down.
Thereby, the photon and the atom interact in the following way: The laser has
a resonance frequency ω0, which can excite an electron. After this excitation,
there is a spontaneous emission of another photon, which travels in a random
direction. Hence, the momentum of the atom has changed. If the incident pho-
tons have a fixed direction, the mean acceleration of the atom is exactly in this
fixed direction.

However, one wants to slow down a whole atom gas, whose constituents all
travel in different directions. Thus, an atom should only interact with a photon
if they travel in opposite directions. This selection is provided using the Doppler
effect. It states that waves like light or sound appear to have a higher frequency
when they move towards the observer, and lower if they move away from it. If
both the atom and the photon move in the same direction, there should be no
interaction. Therefore, the laser light has to be tuned away from the resonance
frequency. If the atom and the photon travel in opposite directions, they should
interact. Hence, the laser frequency has to be lowered by the Doppler shift ωD
of the relative velocity of atom and photon, i.e. ω = ω0 − ωD. This is referred
to as red detuning of the laser with respect to the resonance ω0, in contrast to
blue detuning, which means increasing the laser frequency.

Laser cooling can achieve very low temperatures, but has a certain temperature
limit, which is known as the Doppler limit : TD = ~ω0/2 (Wineland and Itano,
1979; Letokhov and Minogin, 1981; Stenholm, 1986). It is determined by the
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spontaneous emission of a photon. The kinetic energy of an initially resting atom
after the emission is known as recoil energy Er = ~2k2

0/2m, where k0 = ω0/c
is the momentum of the emitted photon (Bloch et al., 2008; Stoof et al., 2009;
Lewenstein et al., 2012). Even if the atom reached zero velocity by an incident
photon, it would accelerate in a random direction by the spontaneous emission.
Thus, the recoil energy is a measure for the Doppler temperature.

Evaporative cooling The last cooling step of the gas is inspired by hot coffee.
The temperature of the coffee is mainly lowered by atoms that have so much
energy that they can escape from the fluid, i.e. they evaporate. Consequently,
the momentum distribution is reduced in its high-energy tail. It is important
to highlight that the particles in the fluid now have to be able to interact in
such a way that the momentum distribution thermalizes. This leads to a new
high-energy tail, which is again cut away by evaporating atoms. Hence, for the
cost of loosing a few atoms, the fluid is cooled down.

This mechanism is used to obtain ultra-cold gases. The confining potential
is gradually reduced to allow fast particles to leave the gas. Obviously, the
reduction has to be slower than the relaxation rate of the gas. The remaining
particles are at an extremely low temperature.

The most important drawback of this process is not the loss of particles, but the
fact that particles have to interact via s-wave scattering. Fermions cannot in-
teract via s-wave scattering because of the Pauli exclusion principle. Therefore,
at some point the temperature is so low that identical fermions cannot interact
any more, so that the temperature cannot be further lowered any more. this
problem can be solved using a two-component Fermi gas. The fermions of one
species interact with the other species, which leads to thermalization.

1.1.3 Trapping of ultracold atoms

Now that we introduced the cooling of an atomic gas, we will show how to keep
the cold gas in one place. In this chapter, we explain two techniques of trapping
atoms. We elaborate on the dipole trap, which directly leads to the introduction
of optical lattices for atoms.

Magnetic trap (Pethick and Smith, 2008): The principle, on which mag-
netic traps are based, is the Zeeman effect. Let us consider two degenerate
states with magnetic moments with opposite sign. Applying a magnetic field,
one level is shifted up in energy and the other one down. If the magnetic field is
inhomogeneous, a particle within the state, whose level is shifted up, will move
to lower magnetic fields. Therefore, this state is called a low-field seeker. The
other state is called a high-field seeker. Hence, a magnetic trap will collect either
low-field seekers or high-field seekers, and will push out the high-field seekers or
low-field seekers, respectively.

Dipole trap (Stoof et al., 2009): Lasers can be used to trap atoms. The
difference to laser cooling is that the laser is far detuned, which means that its
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frequency is far away from the resonance frequencies of the atoms. Therefore,
the laser-cooling effect is negligible. The main interaction of atom and light is
the following: in a semi-classical picture, the electric field of a laser, which is
aligned in x-direction can be described by

~E(~r, t) = ~eE Re
[
E(~r) ei(kx−ωt)

]
(1.9)

with the position ~r = (x, y, z) in real-space. Let us assume that the laser is
described by this electric field and that the intensity profile in y- and z-direction
is a Gaussian, i.e.,

E(~r) = e−(y2+z2)/2a2(x), (1.10)

with the convergence function a(x), which describes the beam’s focusing. There-
fore, Eq. (1.9) becomes

~E(~r) = ~eE E0 cos
[
(kz−ωt) e−(y2+z2)/2a2(x)

]
. (1.11)

The light field induces a dipole in the atom: The dipole ~d is induced by the
virtual transition of the valence electron from its unexcited state |g〉 to its excited
state |e〉:

~d = e Re
[〈
g
∣∣ ~̂R
∣∣e
〉]
, (1.12)

where ~̂R is the position operator measuring the distance of the atomic core and
the atom’s electron in real space. We assume that other states than |g〉 and |e〉
are not relevant. Thus, we can treat the atom as an effective two-state system.

The interaction with the electric field ~E(~r) of the laser light is proportional to

~d · ~E(~r). (1.13)

In second-order perturbation theory, this leads to an effective external potential
for the atom:

V (~r) = − 1

2∆

∣∣〈g| ~̂d · ~eE |e〉
∣∣2E2(~r)

ω0

ω + ω0
, (1.14)

where ω0 is the resonance frequency of the atom closest to the laser frequency ω.
The shape of this potential in real space is determined by the intensity E2(~r).
The detuning ∆ = ω−ω0 can be either negative or positive, so can the effective
potential. Thus, for ∆ > 0 (blue detuning), the atom is attracted to the minima
of the intensity, for ∆ < 0 (red detuning) it is attracted to the maxima. In order
to construct a trap, one focuses a blue-detuned laser at the point, where the
atom gas is to be trapped. Using Eq. (1.11), the potential obtains the form

V (~r, t) = −V0 cos2(kx−ωt) e−(y2+z2)/a2(x) (1.15)

with a constant prefactor V0. Because the atom’s reaction on the laser is much
slower than 1/ω, this potential is effectively averaged in time, i.e.

V (~r) = −V0

2
e−(y2+z2)/a2(x). (1.16)

A problem of this potential is that the intensity of the beam in x-direction
does not change very much. Hence, there is only a relatively weak confinement
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that due to the interference of the two laser beams, V0 is
four times larger than Vtrap if the laser power and beam
parameters of the two interfering lasers are equal.

Periodic potentials in two dimensions can be formed
by overlapping two optical standing waves along differ-
ent, usually orthogonal, directions. For orthogonal po-
larization vectors of the two laser fields, no interference
terms appear. The resulting optical potential in the cen-
ter of the trap is then a simple sum of a purely sinusoidal
potential in both directions.

In such a two-dimensional optical lattice potential, at-
oms are confined to arrays of tightly confining one-
dimensional tubes !see Fig. 4"a#$. For typical experimen-
tal parameters, the harmonic trapping frequencies along
the tube are very weak "on the order of 10–200 Hz#,
while in the radial direction the trapping frequencies can
become as high as up to 100 kHz. For sufficiently deep
lattice depths, atoms can move only axially along the
tube. In this manner, it is possible to realize quantum
wires with neutral atoms, which allows one to study
strongly correlated gases in one dimension, as discussed
in Sec. V. Arrays of such quantum wires have been real-
ized "Greiner et al., 2001; Moritz et al., 2003; Kinoshita et
al., 2004; Paredes et al., 2004; Tolra et al., 2004#.

For the creation of a three-dimensional lattice poten-
tial, three orthogonal optical standing waves have to be
overlapped. The simplest case of independent standing
waves, with no cross interference between laser beams
of different standing waves, can be realized by choosing
orthogonal polarization vectors and by using slightly dif-
ferent wavelengths for the three standing waves. The

resulting optical potential is then given by the sum of
three standing waves. In the center of the trap, for dis-
tances much smaller than the beam waist, the trapping
potential can be approximated as the sum of a homoge-
neous periodic lattice potential

Vp"x,y,z# = V0"sin2 kx + sin2 ky + sin2 kz# "36#

and an additional external harmonic confinement due to
the Gaussian laser beam profiles. In addition to this, a
confinement due to the magnetic trapping is often used.

For deep optical lattice potentials, the confinement on
a single lattice site is approximately harmonic. Atoms
are then tightly confined at a single lattice site, with trap-
ping frequencies !0 of up to 100 kHz. The energy "!0
=2Er"V0 /Er#1/2 of local oscillations in the well is on the
order of several recoil energies Er="2k2 /2m, which is a
natural measure of energy scales in optical lattice poten-
tials. Typical values of Er are in the range of several
kilohertz for 87Rb.

Spin-dependent optical lattice potentials. For large de-
tunings of the laser light forming the optical lattices
compared to the fine-structure splitting of a typical
alkali-metal atom, the resulting optical lattice potentials
are almost the same for all magnetic sublevels in the
ground-state manifold of the atom. However, for more
near-resonant light fields, situations can be created in
which different magnetic sublevels can be exposed to
vastly different optical potentials "Jessen and Deutsch,
1996#. Such spin-dependent lattice potentials can, e.g.,
be created in a standing wave configuration formed by
two counterpropagating laser beams with linear polar-
ization vectors enclosing an angle # "Jessen and Deutsch,
1996; Brennen et al., 1999; Jaksch et al., 1999; Mandel et
al., 2003a#. The resulting standing wave light field can be
decomposed into a superposition of a $+- and a
$−-polarized standing wave laser field, giving rise to lat-
tice potentials V+"x ,##=V0 cos2"kx+# /2# and V−"x ,##
=V0 cos2"kx−# /2#. By changing the polarization angle #,
one can control the relative separation between the two
potentials %x= "# /&#'x /2. When # is increased, both po-
tentials shift in opposite directions and overlap again
when #=n&, with n an integer. Such a configuration has
been used to coherently move atoms across lattices and
realize quantum gates between them "Jaksch et al., 1999;
Mandel et al., 2003a, 2003b#. Spin-dependent lattice po-
tentials furthermore offer a convenient way to tune in-
teractions between two atoms in different spin states. By
shifting the spin-dependent lattices relative to each
other, the overlap of the on-site spatial wave function
can be tuned between zero and its maximum value, thus
controlling the interspecies interaction strength within a
restricted range. Recently, Sebby-Strabley et al. "2006#
have also demonstrated a novel spin-dependent lattice
geometry, in which 2D arrays of double-well potentials
could be realized. Such “superlattice” structures allow
for versatile intrawell and interwell manipulation possi-
bilities "Fölling et al., 2007; Lee et al., 2007; Sebby-
Strabley et al., 2007#. A variety of lattice structures can
be obtained by interfering laser beams under different

(a)

(b)

FIG. 4. "Color online# Optical lattices. "a# Two- and "b# three-
dimensional optical lattice potentials formed by superimposing
two or three orthogonal standing waves. For a two-
dimensional optical lattice, the atoms are confined to an array
of tightly confining one-dimensional potential tubes, whereas
in the three-dimensional case the optical lattice can be ap-
proximated by a three-dimensional simple cubic array of
tightly confining harmonic-oscillator potentials at each lattice
site.
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Figure 1.2: Optical lattice. Reprinted figure with permission from Bloch et al.
(2008) c©2008 by the American Physical Society.

in x-direction. An improvement on this trap is the crossed-beam dipole trap
Grimm et al. (2000). One uses two red-detuned lasers, which are orthogonal in
space as well as in their polarization. At the crossing of the two beams, one
can approximate the slowly varying convergence function by a(x) ≈ a(0). This
leads to the potential

V (~r) ≈ V0

[
x2 + y2 + 2z2

a2(0)
− 1

]
. (1.17)

There are many other ways to build atom traps. For example, there is also the
possibility of a blue-detuned dipole trap: One surrounds the atom cloud by a
wall of blue-detuned laser light, off which the atoms are repelled. The advantage
is that the atom can be kept in a dark place, i.e. a place with a very low electric
field Grimm et al. (2000).

Another example is the magneto-optical trap (Pethick and Smith, 2008). It
combines a laser and an inhomogeneous magnetic field. The latter leads to a
Zeeman shift of the electron levels of the atom. The field is tuned in such a way
that the Zeeman splitting is stronger outside the trap. Hence, there, the atoms
are in resonance with the laser light. This leads to a force that pulls the atoms
into the trap.

Optical lattice: Detuned lasers can also be used to construct lattices for the
cold atoms. Two lasers with opposite directions and same polarization lead to
a standing wave by interference of the two lasers. The corresponding electric
field reads

~E(~r, t) = ~ex Re
[
E(~r) ei(kx−ωt) + E(~r) e−i(kx−ωt)

]
. (1.18)

Assuming the same shapes a(x) of the laser, as in Eq. (1.11), we obtain

E(~r, t) = 2E0~ex cos(kx) cos(ωt) e−(y2+z2)/a2(x). (1.19)
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The potential of the atom becomes

V (~r, t) = 4V0 cos2(kx) cos2(ωt) e−(y2+z2)/a2(x). (1.20)

Here, we also have to average over time:

V (~r) = 2V0 cos2(kx) e−(y2+z2)/a2(x). (1.21)

Again, the atoms are drawn to the maxima for red-detuned lasers. They reside
within the minima of the periodic factor cos2(kx). We can create a three-
dimensional lattice by assembling three perpendicular pairs of lasers. In the
experiments we consider, the width of the laser at the crossing is much larger
than the laser wavelength, i.e. kja(0) � 1 for all j ∈ {x, y, z}. Hence, in the
region of the laser crossing, the exponential factor is approximately 1 and we
obtain the time-averaged potential

V (~r) = V1 cos2(kx) + V2 cos2(ky) + V3 cos2(kz). (1.22)

The potential is periodic: it resembles the periodic potential of atom cores in
a crystal. In this analogy, the atom gas corresponds to the valence electrons in
the crystal. When the amplitudes Vj of the optical lattice are sufficiently larger
than kBT , the atoms cannot leave the optical lattice. Then, their only degree
of freedom is tunneling to the neighboring potential minima, which is called
hopping. Furthermore, atoms only interact if they are in the same potential
well. This is described by the Hubbard model, which is one model we will study
in this thesis.

By changing the intensity of one pair of counter-propagating laser beams, the
potential well in that direction can be increased. Hence, the hopping-amplitude
in this direction is lowered. Thus, one can tune the hopping in every direction.
It is important to note, however, that the higher the intensity the more likely is
a loss of two atoms on the same site due to growing inelastic collisions (Sesko
et al., 1989; DePue et al., 1999). Therefore, the optical lattice depth cannot be
increased to arbitrary large values.

Furthermore, one can also create other lattice forms, like a triangular lattice,
the Kagome lattice and many more. This is achieved by changing the angles
amongst the laser pairs.

1.1.4 Tuning interactions in ultracold atom systems

So far, we explained how to create and trap the cold gas. Now, a very exciting
feature of cold gases experiment is presented: The possibility to tune the inter-
action strength of atomic interactions. We will show that this is achieved by
varying an external magnetic field and making use of the Feshbach resonances
(Feshbach, 1962; Fano, 1961; Stwalley, 1976; Pethick and Smith, 2008; Stoof
et al., 2009).

When two atoms come close, the valence electrons interact. For our purposes, it
is sufficient to consider a simple model consisting of two atoms with one valence
electron. The corresponding Hamiltonian including spin-spin coupling of the
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electronic spins ~̂s1 and ~̂s2 and coupling to an external magnetic field ~B = B~ez
reads

Ĥ = − ~2

2m̄
∆~r + V (r) + Vspin(r) ~̂s1 · ~̂s2/~2 + ~̂µ · ~B. (1.23)

We consider a singlet state |S〉 with electronic spins s1 = s2 = 1
2 , total spin

sS = 0, and magnetic quantum number mS = 0 and a triplet state |T 〉 with
s1 = s2 = 1

2 , sT = 1, and mT = −1. ~sj and ~s are the eigenvalues of the
spin operator ~̂sj , and total spin operator ~̂s = ~̂s1 + ~̂s2, respectively. ~m is the
eigenvalue of the total-spin projection in z-direction, i.e. ŝz = ~̂s ·~ez. |S〉 and |T 〉
are chosen such that they have a different magnetic moment, i.e. ∆µ 6= 0. The
corresponding eigenvalues of the spin-spin couplings are

~̂s1 · ~̂s2|S〉/~2 = 1
2

[
sS(sS + 1)− s1(s1 + 1)− s2(s2 + 1)

]
|S〉 = − 3

4 |S〉,
~̂s1 · ~̂s2|T 〉/~2 = 1

2

[
sT (sT + 1)− s1(s1 + 1)− s2(s2 + 1)

]
|T 〉 = 1

4 |T 〉 (1.24)

The singlet state has the effective potential VS(r) := V (r) − 3
4 Vspin and the

triplet state the effective potential VT (r) := V (r) + 1
4 Vspin. We assume that

VT (r → ∞) < VS(r → ∞). Furthermore, the term including the global mag-
netic field ~B can be expressed by

~̂µ · ~B = −g µB ~̂s ·B~ez = −g µB B ~̂sz, (1.25)

with the gyromagnetic factor g ≈ 2, the Bohr magneton µB = ~q/2m, and the
electric charge q. The eigenvalues of the two states are

~̂µ · ~B|S〉 = −g µB B ~mS |S〉 = 0,

~̂µ · ~B|T 〉 = −g µB B ~mT |T 〉 =: µTB|T 〉. (1.26)

Moreover, the two states we are considering are coupled by a hyperfine inter-
action Vhf = αhf〈T |~̂I · ~̂s|S〉, where ~̂I is the nuclear spin operator. Moreover, we
assume that the two states only couple very weakly to other eigenstates of the
single atoms such that we may only consider the subsystem of the two states
as a two level system. This leads to the time-independent Schrödinger equation
(Stoof et al., 2009)
[
−~2∇2

2m + VT (~r) + µTB − E Vhf
Vhf −~2∇2

2m + VS(~r)− E

] [
ψT (~r)
ψS(~r)

]
= 0, (1.27)

with the spatial wave function ψX(~r) = 〈~r|X〉 for X ∈ {S, T}. One eigenstate
is an open channel, and the other a closed channel, i.e. the corresponding radial
parts are

u1(r →∞) = A eikr + B e−ikr, and
u2(r →∞) = C e−κr, (1.28)

respectively.

In general, there are many open and closed channels. The formalism uses a
projection P̂ onto the space of open channels and the projection Q̂ = 1 − P̂
onto the space of closed channels (Pethick and Smith, 2008). The Schrödinger
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Figure 1.3: Scheme of the interaction potential of a pair of atoms satisfying the
prerequisites for exhibiting Feshbach resonances. It is inspired by pictures like figure
5.4 of Pethick and Smith (2008), in which Eopen is called the threshold energy and
Eclosed the resonance energy.

equation separates into two coupled equations of the two projections |ψP 〉 =
P̂ |ψ〉 and |ψQ〉 = Q̂|ψ〉 of the eigenstate |ψ〉:

0 = P̂ (Ĥ − E)|ψ〉 = ĤPQ |ψQ〉+ (ĤPP − E)|ψP 〉
0 = Q̂(Ĥ − E)|ψ〉 = ĤQP |ψP 〉+ (ĤQQ − E)|ψQ〉, (1.29)

with ĤXY = X̂ĤŶ and |ψX〉 = X̂|ψ〉 for all X,Y ∈ {P,Q}2. The formal
solution is

(
ĤPP − ĤPQ(ĤQQ − E − iδ)−1ĤQP − E

)
|ψP 〉 = 0. (1.30)

Similar to second-order perturbation theory, this leads to the following s-wave
scattering length

as = a(p)
s +

m

4π~2

∑

n

|〈φopen|ĤQP |φn〉|2
Eopen − En

, (1.31)

neglecting the interaction between the open channels, and denoting the open
channel that the system is currently in as φopen. Moreover, a(p)

s is the scattering
length without closed channels and En are the eigenenergies of ĤQQ. The energy
Eopen is the energy describing the following threshold: A channel is closed if the
energy of the relative motion is smaller than Eopen.

If there is a closed channel which has an energy Eclosed very close to Eopen, the
contribution of the other closed channels are negligible. Thence, the scattering
length becomes

as = a(0)
s +

m

4π~2

|〈φopen|ĤQP |φclosed〉|2
Eopen − Eclosed

, (1.32)
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with the non-resonant scattering length a
(0)
s . An external magnetic field can

induce shifts of the energy levels. The open channel shifts differently than the
closed channel. Thus, there is a B0, for which the denominator Eopen − Eclosed
vanishes. Therefore, we expand it in the magnetic field B: Eopen − Eclosed =
µ0(B −B0) +O(B −B0)2. Hence, the scattering length near B0 has the form

as ≈ a(0)
s

(
1− B1

B −B0

)
(1.33)

with a constant B1. From scattering theory (see e.g. Sakurai (1994); Basdevant
and Dalibard (2002); Friedrich (2006)), we know that the scattering length is a
measure for the strength of the two-particle interaction potential. While tuning
the magnetic field through a Feshbach resonance, the scattering length assumes
all possible values. Therefore, in principle, one can tune the interaction to any
desirable value. In an experiment, of course, the closer the magnetic field is near
the resonance, the larger is the uncertainty of the scattering length. However,
Feshbach resonances are a very important tool to change the effective interaction
strength within a cold gas.

In summary, with the help of optical lattices, one can simulate electrons in lattice
structures. One can tune the hopping of the particles from one site (potential
well) to the next by altering the intensity of the lasers, which build the optical
lattice. Furthermore, one exploits Feshbach resonances to change the interaction
between two particles by tuning an external magnetic field. Due to the fact that
the interaction of neutral atoms is short-ranged, we can approximate that atoms
only interact when they reside in the same potential well. For spin- 1

2 fermions
this system is described by the d-dimensional Hubbard model

ĤHubbard = −J
∑

NN(~l,~l′)
σ∈{↑,↓}

ĉ†
σ,~l
ĉ
σ,~l′

+ U
∑

~l∈Zd
n̂↑,~l n̂↓,~l , (1.34)

with hopping amplitude J , interaction U , the creation and annihilation opera-
tors ĉ†σ,l and ĉσ,l, and the number operator n̂σ,l = ĉ†σ,lĉσ,l. Moreover, the first
sum runs over pairs of indices of neighboring atoms only.

1.1.5 Measurement techniques

In the previous sections, we explained the physics of cold gases. This section, we
will be concerned with measuring the momentum distribution and the particle
density in cold-gas experiments.

Time-of-flight measurement: A very common way of measuring the mo-
mentum distribution of a trapped cold gas is known as time-of-flight (TOF)
measurement (Bloch et al., 2008). It is a destructive measurement, where the
particles are released from the trap. After a time tm = O(10 ms), a photo of the
expanded gas is taken by shining light onto the gas. The atoms absorb the light
and the resulting image is captured by a camera (absorption imaging). The
density distribution nTOF(~x), which is measured by this method, is related to
the momentum distribution ntrap(~k) of the previously trapped gas. Making the
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B

a

Figure 1.4: Scheme of the interaction potential of a pair of atoms satisfying the
prerequisites for exhibiting Feshbach resonances.

realistic assumption of a ballistic expansion of the cloud, the relation is (Bloch
et al., 2008)

nTOF(~x(t)) ≈ (M/~t)3 ntrap(~k), (1.35)

with ~x(t) = ~~kt/2m.

An illustrative example for an absorption image measurement is the work of
Greiner et al. (2002a). They investigated a system of ultracold bosons, which
is described by a Bose-Hubbard model (the bosonic equivalent of the Hubbard
model Eq. (1.34)), with an additional external trap potential Ṽ~l :

Ĥ = −J
∑

NN(~l,~l′)

â†~l â~l′ + U
∑

~l∈L

n̂~l

(
n̂~l
− 1
)

+
∑

~l∈L

Ṽ~l n̂~l
, (1.36)

with the bosonic creation operators â†~l and the corresponding number operator
n̂~l

= â†~l â~l . As pointed out before, the hopping amplitude J is determined
by the depth V0 of the optical lattice. In this experiment, a quantum phase
transition is measured when changing V0, which can be seen by the resulting
absorption images shown in Fig. 1.5. Image (a) depicts the case where the optical
lattice is turned off. There, the gas exhibits Bose-Einstein condensation, which
means that the single-particle ground state is occupied by an extensive fraction
of the gas. Hence, picture (a) only shows a large peak at zero momentum.
Turning on the lattice, more interference peaks appear at multiples of reciprocal
lattice vectors ~G, because, both, a plane wave with momentum ~k and one with
momentum ~k + ~G describe the same wave. These sharp peaks are hallmarks of
the superfluid phase. From figure (f) to (g), the peaks vanish, because in (g)
and (h) the state is a Mott insulator. This means that the potential wells are so
large that particles do not move for sufficiently low temperatures. In this case,
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Figure 1.5: The figure shows absorption images for different optical lattice depths
V0: 0Er (a), 3Er (b), 7Er (c), 10Er (d), 13Er (e), 14Er (f), 16Er (g), 20Er (h).
The color scale is a measure for the atomic density. This series of pictures shows the
transition from the superfluid (a-f) to the Mott-insulating phase (g,h). Reprinted by
permission from Macmillan Publishers Ltd: Nature (Greiner et al., 2002a), c©2002.

the density has sharp peaks. Therefore, the momentum distributions (g) and
(h) are broad and show no peaks.

Fluorescence imaging: Another technique is able to measure the particle
density in the trap. It is a high-resolution measurement of the occupation of
an optical lattice called fluorescence imaging (Bloch et al., 2012). Light with
a frequency near a resonance is shone onto the optical lattice and leads to
fluorescence of the atoms. To avoid hopping of the atoms, the lattice depth is
increased by a factor of 100. This, however, requires increasing the intensity,
which amplifies the previously mentioned loss effect: If a lattice site is occupied
by more than one atom, particles are lost in pairs due to light-induced collisions
(Sesko et al., 1989). Hence, fluorescence imaging is destructive and can only
measure the lattice occupation modulo 2, i.e. the parity.

1.1.6 Experiments motivating the research in quantum
thermalization

In the previous chapters, we laid the ground work for understanding cold-gas
experiments. Since this thesis deals with thermalization, we will now point
out two cold-gas experiments, which had a great impact on the field of non-
equilibrium physics.

Collapse and revival of a Bose-Einstein condensate: In the experiment
of Greiner et al. (2002b), a Bose-Einstein condensate is in an optical lattice with
a lattice depth 8Er. The optical lattice L is suddenly changed to a relatively
high lattice depth of 22Er. In theory, this is described by a change of the Hamil-
tonian, which is called a (quantum) quench. The new Hamiltonian has different
eigenstates. Hence, it is practically impossible that the state is an energy-
eigenstate or a thermal state, which means that this is an out-of-equilibrium
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macroscopic matter wave field w¼ kaðtÞjâjaðtÞl; which has an
intriguing dynamical evolution. At first, the different phase evol-
utions of the atom number states lead to a collapse of w. However, at
integer multiples of the revival time trev ¼ h=U all phase factors in
the sum of equation (2) re-phase modulo 2p, leading to a perfect
revival of the initial coherent state. The collapse time t c depends on
the variance j2n of the atom number distribution, such that tc <

trev=jn (see refs 1–5). A more detailed picture of the dynamical
evolution ofw can be seen in Fig. 1, where the overlap of an arbitrary
coherent state jbl with the state jal (t) is shown for different
evolution times up to the first revival time of themany-body state8,9.

In our experiment, we create coherent states of the matter wave
field in a potential well, by loading a magnetically trapped Bose–
Einstein condensate into a three-dimensional optical lattice poten-
tial. For low potential depths, where the tunnelling energy J is much
larger than the on-site repulsive interaction energyU in a single well,
each atom is spread out over all lattice sites. For the case of a
homogeneous system with N atoms and M lattice sites, the many-
body state can then be written in second quantization as a product
of identical single-particle Bloch waves with zero quasi-momentum
jWlU=J¼0 /

PM
i¼1 â

†
i

! "Nj0l. It can be approximated by a product
over single-site many-body states jfil, such that jWlU=J¼0 <QM

i¼1 jfil: In the limit of large N and M, the atom number
distribution of jfil in each potential well is poissonian and almost
identical to that of a coherent state. Furthermore, all the matter
waves in different potential wells are phase coherent, with constant
relative phases between lattice sites. As the lattice potential depth VA
is increased and J decreases, the atom number distribution in each
potential well becomes markedly subpoissonian10 owing to the
repulsive interactions between the atoms, even before entering the
Mott insulating state11–13. After preparing superposition states jfil
in each potential well, we increase the lattice potential depth rapidly
in order to create isolated potential wells. The hamiltonian of
equation (1) then determines the dynamical evolution of each of
these potential wells.

The experimental set-up used here to create Bose–Einstein
condensates in the three-dimensional lattice potential (see
Methods) is similar to that used in our previous work11,14,15. Briefly,
we start with a quasi-pure Bose–Einstein condensate of up to
2 £ 105 87Rb atoms in the jF ¼ 2;mF ¼ 2l state in a harmonic
magnetic trapping potential with isotropic trapping frequencies of
q¼ 2p£ 24Hz:Here F andmF denote the total angularmomentum

Figure 1 Quantum dynamics of a coherent state owing to cold collisions. The images a–g
show the overlap jkbjaðt Þlj2 of an arbitrary coherent state jbl with complex amplitude b
with the dynamically evolved quantum state jal(t) (see equation (2)) for an average
number of jaj2 ¼ 3 atoms at different times t. a, t ¼ 0h=U ; b, 0.1 h/U; c, 0.4 h/U;
d, 0.5 h/U; e, 0.6 h/U; f, 0.9 h/U; and g, h/U. Initially, the phase of the macroscopic matter
wave field becomes more and more uncertain as time evolves (b), but remarkably at t rev/2
(d), when the macroscopic field has collapsed such that w < 0, the system has evolved

into an exact ‘Schrödinger cat’ state of two coherent states. These two states are 1808 out

of phase, and therefore lead to a vanishing macroscopic field w at these times. More

generally, we can show that at certain rational fractions of the revival time t rev, the system

evolves into other exact superpositions of coherent states—for example, at t rev/4, four

coherent states, or at t rev/3, three coherent states
2,4. A full revival of the initial coherent

state is then reached at t ¼ h/U. In the graph, red denotes maximum overlap and blue

vanishing overlap with 10 contour lines in between.

Figure 2 Dynamical evolution of the multiple matter wave interference pattern observed
after jumping from a potential depth VA ¼ 8 E r to a potential depth VB ¼ 22 E r and a

subsequent variable hold time t. After this hold time, all trapping potentials were shut off

and absorption images were taken after a time-of-flight period of 16ms. The hold times t

were a, 0 ms; b, 100ms; c, 150ms; d, 250ms; e, 350ms; f, 400ms; and g, 550ms. At
first, a distinct interference pattern is visible, showing that initially the system can be

described by a macroscopic matter wave with phase coherence between individual

potential wells. Then after a time of,250ms the interference pattern is completely lost.

The vanishing of the interference pattern is caused by a collapse of the macroscopic

matter wave field in each lattice potential well. But after a total hold time of 550ms (g) the
interference pattern is almost perfectly restored, showing that the macroscopic matter

wave field has revived. The atom number statistics in each well, however, remains

constant throughout the dynamical evolution time. This is fundamentally different from the

vanishing of the interference pattern with no further dynamical evolution, which is

observed in the quantum phase transition to a Mott insulator, where Fock states are

formed in each potential well. From the above images the number of coherent atoms Ncoh

is determined by first fitting a broad two-dimensional gaussian function to the incoherent

background of atoms. The fitting region for the incoherent atoms excludes

130mm £ 130mm squares around the interference peaks. Then the number of atoms in

these squares is counted by a pixel-sum, from which the number of atoms in the

incoherent gaussian background in these fields is subtracted to yield N coh. a.u., arbitrary

units.
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Figure 1.6: Momentum distribution of a Bose-gas observed by time of flight mea-
surements at different times (Greiner et al., 2002b). This series shows the momentum
distribution during one cycle of the collapse and revival of the Bose gas introduced
in the text. Comparing these pictures to the ones in Fig. 1.5, one can see that the
momentum distribution is the one of a superfluid in the beginning. Then, it changes in
the one of a Mott-insulator, and cycles back to a distribution very close to the initial
one. Reprinted by permission from Macmillan Publishers Ltd: Nature (Greiner et al.,
2002b), c©2002.

situation. Due to the large depth of the optical lattice, hopping is suppressed.
The time evolution is solely determined by the interaction Hamiltonian

Ĥint = U
∑

~l∈L

n̂~l

(
n̂~l
− 1
)
. (1.37)

This leads to what is known as collapse-and-revival behavior. The reason for
this can be explained as follows: The time evolution is

exp(−iĤintt/~) =
∑

~l∈L

∞∑

n~l =0

e−iUn~l(n~l−1)t/~∣∣~l, n~l
〉〈
~l, n~l

∣∣, (1.38)

with the number of particles in the potential well labeled by ~l and the eigen-
states |{n~l}~l〉 of the corresponding number operator n̂~l. The state is assumed

to be generic and therefore a superposition of all the eigenstates |~l, n~l〉. How-
ever complicated this superposition may be, at times t ∈ (2π~/U)Z all the
phase-factors exp[−iUn~l(n~l − 1)t/~] are equal to 1, and the original state is re-
covered ("revival"). The momentum distribution is measured by a time-of-flight
measurement, see Fig. 1.6. It oscillates back and forth from a momentum dis-
tribution of a superfluid to one of a Mott-insulator. Thus, this experiment is an
example for time evolution in three dimensions without a thermalizing behavior.

Quantum Newton’s Cradle: This thesis is concerned with thermalization
of quantum many-body systems. A famous experiment that motivated this field
of research is the Quantum Newton’s Cradle by Kinoshita et al. (2006). In this
experiment, a system containing cold hard-core Bosons is investigated. They are
cooled down to very low temperatures and trapped in a combination of a crossed
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the problem, and there is negligible tunnelling among the tubes. We
can vary the weighted average number of atoms per tube, N tube, and
the axial oscillation period, t. For a given array, t is the same to within
6% for all 1,000–8,000 tubes. The 1D coupling strength is given by
g ¼ j2/a1Dn1Dj, where n1D is the 1D density, ja1Dj < a r

2/2a is the 1D
scattering length, a ¼ 5.3 nm is the three-dimensional (3D) scattering
length, a r ¼ ("/mq r)

1/2 ¼ 41.5 nm is the transverse oscillator width,
and m is the Rb mass18.
To study the 1D Bose gases, we turn off the crossed dipole trap and

allow the atoms to expand in one dimension for 27ms before taking
an absorption image from the transverse direction. When we inte-
grate the image transverse to the tubes, we get a 1D spatial distri-
bution that corresponds to the momentum distribution after
expansion, f(p ex). Although the individual 1D gases have Thomas–
Fermi or Tonks–Girardeau f(p ex) profiles, we measure gaussian
f(p ex) distributions, as expected when the f(p ex) for many 1D Bose
gases with different N tube are summed.
To create non-equilibrium momentum distributions, we pulse

on a 3.2 THz detuned 1D lattice along the tubes, which acts as a
phase grating for the atoms. Two pulses, with intensity 11Wcm22

and pulse widths of 23 ms separated in time by 33 ms, can deplete the

zero momentum state and transfer atoms to^2"k peaks19,20 where k
is the wavevector of the 1D lattice light. We wait after the grating
pulses for a variable time, t, beforemeasuring f(p ex). Figure 2 shows a
time series of absorption images spanning a full oscillation in the
crossed dipole trap, when the weighted average of the initial peak g in
each tube, go, is 1.0. The two momentum groups collide with each
other in the centre of the crossed dipole trap twice each full cycle, for
instance at t ¼ 0 and t/2, as illustrated in Fig. 1b. The total collision
energy is 8("k)2/2m ¼ 0.45"q r, less than one-quarter the energy
needed for transverse vibrational excitation21, so the colliding gases
remain 1D.
The first and last images in Fig. 2 differ because the oscillating

atoms dephase. Illustrated conceptually in Fig. 1b, there is dephasing
due to the gaussian crossed dipole trap anharmonicity, which gives an
,8% spread of t across the full-width at half-maximum of each of the
colliding clouds. The top curves in Fig. 3a–c show the time-averaged
f(pex) over the first cycle for different go. Differences in shape among
them reflect the initial energy per particle, which increases with n1D,
and hence go

21. Within 10t to 15t, f(p ex) stops changing noticeably
during an oscillation period. The central observations in this letter
are of the evolution of f(p ex) that are dephased, like the lower curves
of Fig. 3a–c. Comparing only dephased distributions avoids the
complication of how the momentum distribution in the trap evolves
into f(p ex) during expansion, which may slightly depend on the
initial spatial distributions. As atoms have clearly dephased within
each tube, dephasing among tubes is irrelevant.

Figure 2 |Absorption images in the first oscillation cycle for initial average
peak coupling strength go 5 1. Atoms are always confined to one
dimension, in this case in 3,000 parallel tubes, with a weighted average of
110 atoms per tube. After grating pulses put each atom in a superposition of
^2"k momentum, they are allowed to evolve for a variable time t in the
anharmonic 1D trap (crossed dipole trap), before being released and
photographed 27ms later. The false colour in each image is rescaled to show
detail. These pictures are used to determine f(p ex). The first image shows
that some atoms remain near pex ¼ 0 at t ¼ 0. How many remain there
depends on n1D, implying that these remnant atoms do not result from an
imperfect pulse sequence, but rather from interactions during the grating
pulses or evolution of the momentum distribution during expansion. The
relative narrowness of the peaks in the last image compared to the first is
indicative of the reduction in spatial density that results from dephasing
(Fig. 1b). The transverse spatial width of each of the 14 image frames is
70 mm. Horizontal in the figure corresponds to vertical in the experiment, a
minor distinction because a magnetic field gradient cancels gravity for the
atoms.

Figure 3 | The expanded momentum distribution, f(pex), for three values
of go. The curves are obtained by transversely integrating absorption
images like those in Fig. 2. The spatial position, z, is approximately
proportional to the expanded momentum, p ex. The vertical scale is
arbitrary, but consistent among the curves. a, go ¼ 4; b, go ¼ 1; and
c, go ¼ 0.62. The highest (green) curve in each set is the average of f(p ex)
from the first cycle, that is, from the images like those in Fig. 2. The lower
curves in each set are f(p ex) taken at single times, t, after the atoms have
dephased: a, t ¼ 34ms, t ¼ 15t (blue) and 30t (red); b, t ¼ 13ms, t ¼ 15t
(blue) and 40t (red); and c, t ¼ 13ms, t ¼ 15t (blue) and 40t (red). The
changes in the distribution with time are attributable to known loss and
heating. (See Supplementary Information for a discussion of the fine spatial
structure in these curves.)
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Figure 1.7: Quantum newtons cradle. This plot depicts the momentum distribution
of two counterpropagating Bose-gases confined in one dimension. These measurements
depict the momentum distribution. It oscillates and does not show signs of thermal-
ization. Reprinted by permission from Macmillan Publishers Ltd: Nature (Kinoshita
et al., 2006), c©2006.

dipole trap and an optical lattice. The latter confines the particles very strongly
within two dimensions, while the confinement within the third dimension is
less strong. Therefore, the experimental setup consists of many parallel one-
dimensional tubes like the ones in Fig. 1.2a. Hence, in one run of the experiment,
thousands of parallel one-dimensional Bose gases can be sampled. In one tube,
there are hundreds of atoms. These atoms are prepared in a state where half
of them have momentum 2~k and the other half −2~k, with the wave vector k
of the underlying 1d lattice. Thence, initially there are two clouds of Bosons
moving in opposite directions. The time evolution of the momentum distribution
is captured by time-of-flight measurements, which are plotted in Fig. 1.7. One
can see that the momentum distribution oscillates. It does not show signs of
thermalization. An oscillating momentum distribution implicates an oscillating
particle density. The clouds oscillate back and forth with thousands of particle
collisions. Despite a vast number of collisions thermalization is not seen here.
There are relaxation processes, but they are negligible. They can be attributed
to heating, losses from the trap, and dephasing due to trap anharmonicities.

Moreover, an important aspect of this experiment is the role of the dimension-
ality. Fig. 1.7 shows that the non-thermalizing behavior is present in the one-
dimensional version of their system. Thermalization in the three-dimensional
equivalent is accomplished after 2.7 collisions per atom. However, in the one-
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dimensional case, they find that the systems are not thermalized after 600 or
more collisions per atom. This is due to the fact that the underlying model is
integrable in one dimension only.

The experiments discussed in this section suggest that in many-body physics
the time evolution does not necessarily lead to thermalization. So far, however,
we have not clarified yet what thermalization in the realm of quantum many-
body physics means and entails. Thus, in the next section, we will address this
issue starting with the basic theoretical frameworks of quantum mechanics and
thermodynamics.
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1.2 Time-evolution measurement of the electronic
momentum distribution

The objective of this work is to investigate the thermalization behavior of elec-
trons in a valence band. A way of considering this is measuring the electronic
momentum distribution n(el)(k, t). Therefore, this section is dedicated to an
experimental technique that is able to measure the time evolution of this distri-
bution in solid samples.

A solid consists of nuclei and electrons. Due to their interaction, they constitute
a complex quantum many-body system. Photoemission spectroscopy (PES)
techniques aim at gaining information about electronic occupation in a solid by
shining light on them and measuring the properties of electrons that are emitted
from the solid into ultra-high vacuum. This is based on the photo-electric effect
found by Hertz (1887) and explained by Einstein (1905). In Sec. 1.2.1, we
present a short theoretical introduction to PES.

The angle-resolved PES (ARPES) measures the energy and the angle of the
emitted electrons, and therefore grants access to the spectral function, which
contains all the information about the momentum distribution. In Sec. 1.2.2, we
shortly explain ARPES and discuss an example for such an experiment. One
can also measure the time dependence of the electronic occupation, which is
known as time-resolved ARPES (trARPES). An example for this technique is
shown in Sec. 1.2.3. Finally, in Sec. 1.2.4, we will show the large number of
trARPES measurements treating (quasi) one-dimensional systems, which is of
special interest for this thesis.

1.2.1 Photoemission spectroscopy

In this section, we will derive an approximate form of the electron emission rate
measured by PES. We follow the derivation of Gunnarsson and Schönhammer
(1987), pages 110-113. In this kind of experiment, one excites an electron into
a state with such a high energy, that it is able to leave the sample. In order to
describe such processes within a quantum many-body formulation, we make use
of Fermi’s Golden rule, see e.g. Gottfried and Yan (2003). It gives the transmis-
sion rate Γi→f from an initial state |i〉 to a final state |f〉 by the perturbation
V̂ .

Γi→f =
2π

~
|〈i|V̂ |f〉|2 δ(Ef − Ei), (1.39)

where Ei and Ef are the initial and final energy, respectively.

Next, we approximate the photo excitations by the operator

τ̂ =
∑

kk′

τkk′ ĉ
†
k ĉk′ , (1.40)

where τkk′ are the dipole matrix elements of an electron excitation from the
single particle state ĉ†k′ |0〉 to ĉ

†
k|0〉.

Now we apply the sudden approximation. It assumes that the excited electron
has no interaction with the electrons that remain in the sample. This means
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that the final state can be written like |f〉 = ĉ†k|n〉 and that its energy is Ef =

En+ εk−~ω. Hereby, εk is the kinetic energy of the electron created by ĉ†k, and
ω is the photon frequency. The higher εk, the better the approximation, and
this kinetic energy is typically in the range of 50 to 1000 eV. Using the sudden
approximation, the matrix elements of the perturbation become

〈i|V̂ |f〉 = 〈i| τ̂ ĉ†k|n〉 (1.41)

and the energy conservation reads

δ(Ef − Ei) = δ(En + εk − ~ω − Ei). (1.42)

Furthermore, in a photoemission experiment all final states are allowed. Hence,
we sum over n and obtain

Γi(k) =
∑

n

|〈i| τ̂ ĉ†k|n〉|2 δ(εk − ~ω + En − Ei). (1.43)

Our initial state is a low-temperature thermal density-matrix ρ̂ = exp(−βĤ)/Z
describing the grand-canonical ensemble with Ĥ = Ĥ − µN̂ and the grand-
canonical partition function Z = tr[exp(−βĤ)]. Here, Ĥ and N̂ are the Hamil-
tonian and total number of particles of the solid sample without the photonic
perturbation τ̂ , respectively. We assume that the time evolution of the solid
sample (without the perturbation τ̂ by the photons) preserves the number of
electrons, i.e. [Ĥ, N̂ ] = 0. Hence, the eigenvalues of Ĥ can be written as
Kn := En − µNn, which is a combination of the eigenenergies En and the
eigenvalues Nn of the number operator N̂ . Thence, the spectral decomposition
of the density matrix is

ρ̂ =
1

Z

∑

i

e−βKi |i〉〈i|. (1.44)

Every part exp(−βKn)|n〉〈n| in the mixture leads to a certain amount of emitted
electrons. Therefore, we need to sum up the individual emission rates Γi(k)
weighted by exp(−βKi)/Z:

Γ(k) =
1

Z

∑

i

e−βKi Γi(k)

=
1

Z

∑

i,n

e−βKi |〈i| τ̂ ĉ†k|n〉|2 δ(εk − ~ω + En − Ei). (1.45)

Moreover, we can express the energy difference En − Ei using the eigenvalues
Kn:

En − Ei = Kn −Ki + µ(Nn −Ni). (1.46)

The detector measures the kinetic energy εk of any emitted electron with mo-
mentum k. Hence, PES has access to

Γ(ε) =
∑

k

δ(ε− εk) Γ(k)

=
1

Z

∑

k

δ(ε− εk)
∑

i,n

e−βKi |〈i| τ̂ ĉ†k|n〉|2 δ(εk − ~ω + En − Ei). (1.47)
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We simplify the matrix element 〈i| τ̂ ĉ†k|n〉 by assuming that the states |i〉 contain
negligible contributions from the high-lying scattering states ĉ†k|0〉 that have
sufficient kinetic energy εk ' 50 eV. Hence, we approximate

ĉk|i〉 ≈ 0. (1.48)

This leads to

〈n| ĉk τ̂ |i〉 =
∑

qq′

τqq′〈n| ĉk ĉ†q ĉq′ |i〉 =
∑

qq′

τqq′〈n| (δkq − ĉ†q ĉk) ĉq′ |i〉

=
∑

q

τkq〈n| ĉq |i〉. (1.49)

Furthermore we assume that the interference of different q is negligible. Then,
the emission rate becomes

Γ(ε) =
1

Z

∑

q

∑

i,n

e−βKi |〈i|ĉ†q|n〉|2 δ(εk − ~ω + En − Ei)
∑

k

|τkq|2 δ(ε− εk).

(1.50)
We approximate the factor |τkq| by an effective dipole matrix element τeff (Hedin
and Lundqvist, 1970). In addition, we define τ(ε) :=

√∑
k τ

2
eff δ(ε− εk). Then

we can write

Γ(ε) =
τ2(ε)

Z

∑

q

∑

i,n

e−βKi |〈i|ĉ†q|n〉|2 δ(εk − ~ω + En − Ei). (1.51)

We can identify the Lehmann representation of the lesser Green’s function
G<(~k, ε− ~ω), see Eq. (A.7). It is equal to a combination of the spectral func-
tion of the retarded Green’s function multiplied and the Fermi-Dirac function
f(ε) = 1/[1+exp(β(ε−µ))], see Eq. (A.13). Thence, we obtain the PES emission
rate

Γ(ε) = τ2(ε)
∑

q

f(ε− ~ω) A(~q, ε− ~ω). (1.52)

As a side remark, for the inverse of the PES, which is the bremsstrahlung
isochromat spectroscopy (BIS), one gets a similar result, see Gunnarsson and
Schönhammer (1987). The difference is that the lesser Green’s function G< is
replaced by the greater Green’s function G> (definition see Eq. (A.1)). As a
result, the Fermi function f in Eq. (1.52) is replaced by 1− f .
With both methods, PES and BIS, one gets access to the spectral function
A(~k, ε). This is very valuable knowledge about the investigated sample. The
spectral function not only grants access to the density of states

ρ(ε) =
∑

k

A(~k, ε− ~ω), (1.53)

and the occupied density of state
∑

k

f(ε) A(~k, ε− ~ω). (1.54)

In Eq. (A.14) we show that it also grants access to the momentum distribution

n(~k) =

∫
dε G<(~k, ε) =

∫
dε f(ε) A(~k, ε). (1.55)
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FIG. 3: Image plots of the calculated spectral functions in the normal (a1,b1,c1) and superconducting (a2,b2,c2)
states compared to the spectral functions in the normal (a3,b3,c3) and superconducting (a4,b4,c4) states measured in
Bi2Sr2Ca0.92Y0.08Cu2O8+δ (Bi-2212)[6] for momentum cuts a,b,c shown in the right-most panel and in Figure 2. The same
color scale is used for the normal/superconducting pairs within each cut, but the scaling for the data and the calculation are
separate. The red markers indicate 70meV in the superconducting state.

the data are revealed at around 70 meV - the B1g energy
plus the gap. Indeed a much weaker kink at 105 meV
from the breathing phonon shows at higher energies for
the nodal cut but this kink becomes weaker away from
nodal directions as the coupling and the band bottom
along the cut moves below the phonon frequency so that
the “energy window” closes.

Our work is formulated in the context of band struc-
ture and one phonon process. Fig. 3 indicates that
such an approach catches the key features of the band
renormalization effects due to optical phonons in the 35-
70 meV range, something unexpected a priori given the
strong correlation effects in these materials. Additional
broadening in the data of Fig. 3 is likely a manifestation
of the Coulomb correlation over a broad energy range. A
next step is to incorporate the correlation effect, vertex
correction, and possible non-linear phonon effects, espe-
cially as we push towards underdoped regime. These are
challenges ahead. On the other hand, the current ap-
proach allows us to study the doping trend in the over-
doped regime.

In summary, contrary to usual opinion of the role of
anisotropy in electron-phonon coupling, the interplay of
specific coupling mechanisms of electrons to the buck-
ling and breathing phonons give a natural interpretation
to the bosonic renormalization effects seen in ARPES in
both the normal and superconducting states, and pro-
vides a framework to understand renormalizations as a
function of doping.
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Figure 1.8: Calculated versus measured spectral function A(~k, ω) in
Bi2Sr2Ca0.92Y0.08Cu2O8+δ from Devereaux et al. (2004). The upper row shows the
results of the calculations and the lower row the results of the measurements. The
pictures with the numbers 1 and 2 show a normal (not superconducting) state of the
system. The numbers 3 and 4 show a superconducting state of the system and the red
lines denote a phonon mode with approximately constant energy. The electrons and
the phonon mode interact and form quasiparticles within the shown band structure.
The letters of the plots (a, b, and c) are explained in the last column, where the
position of the momenta in the Brillouin zone of a, b, and c is shown, respectively.
One can see that both the calculation and the measurement show the same features.
The difference is that the measured data is considerably broadened compared to
the calculated ones. Reprinted figure with permission from Devereaux et al. (2004)
c©2004 by the American Physical Society.

For this thesis, it is important, because A(~k, ε − ~ω) grants access to the mo-
mentum distribution via

n(~k) =

∫
dε G<(~k, ε) =

∫
dε f(ε) A(~k, ε). (1.56)

However, only with the angle-resolved version of PES discussed in the next
section, one is able to access the momentum dependence of the spectral function,
which is necessary to calculate the momentum distribution.

1.2.2 Angle-resolved photoemission spectroscopy

In the previous section, we introduced the theoretical basis for a PES measure-
ment. By additionally measuring the angle of the emitted electron, one can
reconstruct its initial momentum ~k, which is equal to the momentum of the
electron in the solid, because the momentum of the photon is negligible. In this
way, one obtains access not only to the momentum dependence of the spectral
function. However, a realistic, measured intensity PARPES(~k, ε) is broadened in
momentum and energy, which is modeled by convolutions with the Gaussian
functions RM (~k) and RE(ε), respectively. Additionally, there is an approxi-
mately constant background b. This leads to

PARPES(~k, ε) ≈
∫
dε′ d3k′ τ2(ε) f(ε′)A(~k′, ε′) RM (~k − ~k′) RE(ε− ε′) + b,

(1.57)
see Damascelli et al. (2003).

We give an example for an ARPES measurement in Fig. 1.8. It shows a calcu-
lation of the spectral function A(~k, ω) and the measurement. One can see that
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We now apply sub-10-fs extreme ultraviolet (XUV) pulses
(hn 5 43 eV, s-polarization) to monitor the transient response of the
CDW phase to excitation with infrared laser pulses (hn 5 1.57 eV) of
32 fs width. Details of the time-resolved ARPES experiment are
described in Methods. Figure 2a shows ARPES intensity maps of
1T-TiSe2 measured at T 5 125 K with the femtosecond XUV light
source20 (Methods). Despite the poorer energy resolution, both sets
of Se 4p bands are well resolved, the original one at !C and the folded
one at !M. Time-resolved experiments are performed at infrared pump
fluences between 0.2 and 5 mJ cm22, corresponding to an excitation
density range of 0.025 to 0.63 photons per Ti atom. Figure 2b–e shows
four photoemission snapshots recorded at a pump fluence of 5 mJ cm-2

with increasing temporal delay between the infrared pump and the
XUV probe, up to a maximum of 3 ps (Supplementary Movie 1). The
data have been corrected for a space charge shift of 200 meV induced
by the electron background because of multi-photon photoemission
by the infrared pump pulse. The time series is dominated by two
prominent changes in the photoemission intensity maps. First, in
instantaneous response to the infrared excitation, an electron-like
band appears, crossing the Fermi energy EF and extending (at suffi-
ciently small temporal delays) from !M to !C. We observe here the
transient generation of quasi-free charge carriers because of near-
resonant Ti 3d – Se 4p excitation. Second, the downward-dispersing
Se 4p band, folded onto the !M point owing to the interaction with the
CDW superlattice, disappears or is at least considerably reduced in
intensity. This suggests that long-range order in the electronic sub-
system breaks down on an ultrafast timescale. In the following, we
restrict our quantitative analysis to the short-time (sub-100-fs) dynamics
of this process.

Figure 2f compares the temporal evolution of the integrated intensity
of the folded Se 4p band—our spectroscopic measure for CDW order—
for different pump fluences (see Supplementary Information section 3
for details of the data analysis). Both breakdown and (partial) recovery
of the signal (inset of Fig. 2f) are strongly dependent on the pump
fluence. The fluence dependence of the time constant characterising
the signal breakdown, tSe 4p, is shown in Fig. 3a: at the lowest fluences,

the initial drop in the signal is retarded by about 80 fs with respect to the
laser pulse excitation. As the fluence increases, the response becomes
continuously faster, and at the highest fluences the transient minimum
in the folded Se 4p band intensity appears well within the 32-fs-long
infrared pump laser pulse with an ultimate response time of 20 fs. For
comparison, the dynamics associated with the initial population of the
Ti 3d band due to absorption happens within the width of the infrared
pulse for the entire pump fluence regime. Notably, for the highest
excitation fluence, the folded Se 4p band follows this population
dynamics without delay (Supplementary Information section 4). The
partial recovery of the folded Se 4p intensity is observed on timescales of
several hundreds of femtoseconds. Two-temperature model calcula-
tions following reference 21 suggest that this recovery is mostly driven
by thermalization of the electronic subsystem with the atomic lattice.

In previous studies, it has been shown that the fundamental time-
scales of photoinduced phase transitions are governed by bottlenecks
associated with the characteristic response times of the relevant degrees
of freedom, such as the oscillation period of neighbouring atoms22 or
the hopping rate of localized electrons between neighbouring sites23.
The upper solid line in Fig. 3a marks for instance the expected short-
time limit (75 fs) of the lattice response of 1T-TiSe2 to a photoexcita-
tion; this short-time limit is taken as one-quarter of the oscillation
period of the high-frequency CDW amplitude mode24. The vaporiza-
tion of a long-range-ordered state within 20 fs is in this context excep-
tionally fast. The ultrafast timescale observed in the high-fluence
regime points to a purely electronically driven process, whose response
time, however, strongly depends on the excitation fluence. The absorp-
tion of the light pulse initially increases the free charge carrier density n
(electrons and holes), as can be seen in the instantaneous population of
the Ti 3d band. This transient free carrier population, which is directly
governed by the excitation fluence, links the time constant tSe 4p to a
material specific timescale: quantum kinetic calculations have shown
that the characteristic build-up time for carrier screening in response to
an ultrashort laser excitation is the plasma oscillation period, tpl (refs
25, 26), which scales with 1=

ffiffiffi
n
p

. As shown in Fig. 3a, tSe 4p closely
follows such a 1=

ffiffiffi
n
p

dependence (a quantitative estimate of the
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the dashed lines indicate the extension of the unit cell in the normal phase.
d, First BZ (green line) of the CDW phase. The folding of Se 4p and Ti 3d states
is indicated. e, ARPES intensity map (electron binding energy versus
momentum) of the room temperature phase. Photoelectron intensity is
encoded in a false-colour scale. f, ARPES intensity map of the CDW phase.
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Figure 1.9: CDW phase transition of 1T-TiSe2: The left half show the unit cell
(a), Brillouin zone (b) and ARPES measurement (e) for the normal state at room
temperature. The right half (c,d,f) shows the same for the CDW state at 34 K. One
can see that the hole-like SE-4p bands are folded from Γ to M. The color scale
measures the number of electrons emitted from the sample. Reprinted by permission
from Macmillan Publishers Ltd: Nature (Rohwer et al., 2011), c©2011.

experiment and theory agree and reveal the same electronic structure. However,
the measured distribution is broadened compared to the calculated images.

Another drawback, which occurs in angle-resolved measurements, is connected
to the wave vector ~k of the electron: the component ~k‖ parallel to the sample
surface can be determined exactly, while the component ~k⊥ perpendicular to the
surface cannot. This stems from the fact that ~k⊥ is not conserved across the
surface because of the missing translational invariance (Damascelli et al., 2003).
However, for the investigation of (quasi) two- or one-dimensional samples, this
is not a problem. Therefore, we will not address this problem here, because
ultimately, this thesis is concerned with low-dimensional systems.

1.2.3 Time- and angle-resolved photoemission spectroscopy

It is also possible to track the evolution of the electronic occupation. This
is known as time-resolved ARPES (trARPES). An abundant number of time-
resolved photoemission spectroscopy experiments have been performed, for ex-
ample by Perfetti et al. (2007); Schmitt et al. (2008); Graf et al. (2011); Rohwer
et al. (2011); Rettig et al. (2012); Smallwood et al. (2012); Liu et al. (2013).
In trARPES experiments, the sample is first excited and then measured after a
delay time. Both can be achieved using laser beams. One can perform such ex-
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Figure 1.10: Snapshots of the time evolution of an ARPES intensity measurements
(Rohwer et al., 2011) of 1T-TiSe2. They monitored the CDW phase of the material
excited by infrared laser pulses (Epump

photon = 1.57 eV). The sample was probed by
femtosecond pulses with extreme ultraviolet light (Ephoton = 43 eV).
a) Charge-density wave phase without the excitation at a temperature of 125 K.
b-e) Snapshots of the measured time evolution. The time in the upper-right corner
denotes the pump-probe delay.
f) Integrated intensity of the folded Se 4p band as a measure for the CDW order. It
shows the transient excitations. The CDW order breaks down immediately. The inset
shows that it recovers on a time scale of the order of picoseconds.
Reprinted by permission from Macmillan Publishers Ltd: Nature (Rohwer et al., 2011),
c©2011.
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periments by varying the time between excitation and measurement beam (Liu
et al., 2013). The shorter the laser pulses, the higher is the time resolution.

As an example for this technique, we present the experiment performed by
Rohwer et al. (2011), who investigate a two-dimensional compound. It is a
monolayer of the transition metal dichalcogenide 1T-TiSe2, where 1T denotes
the polytype of the layer (Kolobov and Tominaga, 2016). This material is
in a charge-ordered state, which occurs as a charge-density wave (CDW) at
temperatures below 200 K. There, the atoms have an equilibrium position, so
that the unit cell doubles in all directions compared to higher temperatures.
This leads to the Se 4p band being folded from Γ (center of the Brillouin-zone)
to M (edge of the Brillouin zone), which is shown in Fig. 1.9. Therefore, in this
experiment, the occupation of the folded Se 4p band is used as measure for the
order of the CDW.

Fig. 1.10 shows the time evolution of the measured intensity. During the exper-
iment, they probe the sample by extreme ultraviolet light Ephoton = 43 eV. At
a certain time, the sample is excited by a probe beam. They observe that elec-
trons are shifted into the Ti 3d band. The excitation is instantaneous, which
can be seen in Fig. 1.10c, where the delay between the pump and the probe
beam is 0 fs. Fig. 1.10f displays the occupation of the folded Se 4p band. It
instantaneously changes, and the CDW order is reduced in an instant. The inset
of the figure shows that the order recovers on times of O(1 ps).

This is an example for the benefits of time-resolved ARPES. The evolution of
the non-equilibrium physics of electrons can be studied. Furthermore, one can
observe relaxation processes, which we will investigate from the theoretical point
of view in this thesis.

1.2.4 (Quasi) one-dimensional materials

There are materials which exhibit one-dimensional features. By construction,
carbon nanotubes (Egger and Gogolin, 1997; Kane et al., 1997; Egger and
Gogolin, 1998) are one-dimensional on a microscopic level. There are also
solids, which have one-dimensional electronic patterns embedded in their three-
dimensional structure. In these materials, there are chains made up of atoms
or molecules, where the coupling within the chain is distinctly stronger than
the other couplings. For example, in superconducting cuprates like SrCuO2

(Keren et al., 1993; Motoyama et al., 1996; Kojima et al., 1997) and YBa2Cu2O4

(Karpinski et al., 1988; Kaldis et al., 1989; Zhou and Goodenough, 1996), chains
of CuO build up CuO2 planes. Further examples for quasi one-dimensional
compounds are K0.3MoO3 (Travaglini et al., 1981), Bechgaard salts, and an or-
ganic conductor abbreviated by TTF-TCNQ (Jérome and Schulz, 1982). The
latter stands for a complex formed by tetrathiafulvalene (TTF, C6H4S4) and
tetracyanoquinodimethane (TCNQ, C12H4N4). As a last example, Blumenstein
et al. (2011) were able to manipulate gold on a solid surface, thereby creating
gold stripes, and measured the system with ARPES. Also for the previous ex-
amples, photoemission spectroscopy studies were performed. E.g., Ishii et al.
(2003) considered carbon nanotubes, Kim et al. (1996), Kim et al. (2006), and
Koitzsch et al. (2006) SrCuO2, Kondo et al. (2010) YBa2Cu2O4, Perfetti et al.



1.2. Time-evolution measurement of the electronic momentum distribution 25H. Y. LIU et al. PHYSICAL REVIEW B 88, 045104 (2013)

K (1)
K (2)

MoO6 (1)

MoO6 (2)

MoO6 (3)

-0.8

-0.4

0

-0.4

0

0.4

1.210.80.6
Momentum ( /b)

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

-0.8 -0.4 0 0.4
E–EF (eV)

E
–E

F 
(e

V
)

E
–E

F 
(e

V
)

(c)(b)

(a)

b
c

a

d

A1 B1 A2 B2

High

Low

High

Low

Y
X'

X

Γ

Γ’

Bonding band
Anti-bonding 
band

(A1)
kF

(B1)
kF

(A2)
kF

(B2)
kF

FIG. 1. (Color online) Crystal structure and static band properties
of K0.3MoO3. (a) Linear chains of MoO6 octahedra form slabs, which
make up the b-d cleavage plane. (b) Upper panel: static ARPES
intensity map at t = − 50 fs and 20 K as a function of binding energy
and momentum. To bring out the underlying band structure, we also
plot ∂2I/∂E2 (lower panel). The dashed blue and red lines locate the
antibonding (A1 and A2) and bonding (B1 and B2) bands. Vertical
arrows mark the different Fermi wave vectors. The photoelectron
momentum is measured along the cut direction indicated on the zone
map shown in the inset. (c) Individual EDCs used to produce the
intensity map. EDCs at the Fermi momenta are highlighted and are
labeled.

at k
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F = 0.6, k

(B1)
F = 0.9, k
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F = 1.1, and k

(B2)
F = 1.25, in

units of π/b, the distance to the zone boundary. These
antibonding (A1 and A2) and bonding (B1 and B2) bands
result from the hybridization of Mo-4d and O-2p states.28,29

Their dispersion agrees with calculations28,29 and previous
ARPES experiments.4,30–32 Figure 1(c) shows individual
energy distribution curves (EDCs) for each momentum. The
minimum binding energy is 0.15–0.2 eV due to the opening of
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FIG. 3. (Color online) Time evolution of the electronic structure
near the gap edge for each Fermi wave vector as labeled. Symbols:
intensity near EF , integrated from −50 to +100 meV. Solid lines: fits
to the integrated intensity. The model contains an exponential decay
plus a sine function with frequencies of 1.7 THz (a), 0.8 THz (b), or
both (c and d).

the CDW gap. EDCs at k
(B1)
F and k

(A2)
F cross a single band, but

those at k(A1)
F and k

(B2)
F cross both a bonding and an antibonding

band, giving double-peak features.
In the pump-probe experiments reported here, the optical

pulse creates quasiparticles across the gap, depleting the CDW
condensate. This is reflected in the changes in the spectral
function presented in Fig. 2(a). In each band, an overall
upward shift in intensity is observed as the CDW gaps close.
Figure 2(b) illustrates the reduction of the CDW gaps by
showing individual EDCs at k

(B1)
F and k

(A2)
F with intensity

shifting from the equilibrium valence bands to EF as the CDW
ground state melts nonthermally.33

By measuring the time-dependent EDCs near EF for
each Fermi momentum, two-dimensional data sets in energy
and time are obtained. These are depicted by the density
plots in Fig. 3. The prompt initial upward shift, reflecting

FIG. 2. (Color online) Response to impulsive excitation by a femtosecond laser pulse. (a) Photoemission intensity maps at −50 and 250 fs,
shown on the same color scale. The arrows mark the centers of increased intensity above EF . (b) Photoinduced changes in the EDCs at k

(B1)
F

and k
(A2)
F with intensity transferred from the valence bands to EF as the CDW phase melts in response to the excitation pulse.

045104-2

Figure 1.11: Crystal structure and static band properties of K0.3MoO3. (a) Chains
(left) of MoO6 in b directions building up cleavage planes (right). (b) Upper picture:
ARPES intensity map I of the unperturbed sample at a temperature of 20 K. Lower
picture: Plot of ∂I2/∂E2, which brings out the band structure. The material has four
bands near the Fermi-edge (A1, A2, B1, and B2). They are marked in the plot by
dashed lines. Their corresponding Fermi momenta are denoted by k

(A1)
F and k

(B1)
F ,

k
(A2)
F , and k

(B2)
F (c) Individual energy distribution curves used to create (b). Again

the four bands are marked. Reprinted figure with permission from Liu et al. (2013)
c©2013 by the American Physical Society.

(2002) and Liu et al. (2013) K0.3MoO3, Zwick et al. (1997) Bechgaard salts, and
Claessen et al. (2002) and Sing et al. (2003) TTF-TCNQ.

Such effectively one-dimensional materials exhibit a lot of fascinating effects. For
example, in carbon nanotubes features of a Luttinger-liquid have been observed
(Ishii et al., 2003). The one-dimensional structures of SrCuO2 are approximate
Heisenberg chains (Keren et al., 1993; Motoyama et al., 1996; Kojima et al.,
1997). Below 180 K, K0.3MoO3 shows the Peierls transition to a charge-density
wave and a gap opening at the Fermi-level (Travaglini et al., 1981; Johnston,
1984). The Bechgaard salt (TMTSF)2PF6 was the first organic superconductor
(Jérome, D. et al., 1980). These materials exhibit a spin-charge wave below
12 K (Dressel, 2003). The spectra of the TTF-TCNQ compound are perfectly
described by a one-dimensional Hubbard model at metallic doping and exhibits a
charge-density wave below 54 K (Claessen et al., 2002; Sing et al., 2003; Benthien
et al., 2004; Seabra et al., 2014).
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FIG. 1. (Color online) Crystal structure and static band properties
of K0.3MoO3. (a) Linear chains of MoO6 octahedra form slabs, which
make up the b-d cleavage plane. (b) Upper panel: static ARPES
intensity map at t = − 50 fs and 20 K as a function of binding energy
and momentum. To bring out the underlying band structure, we also
plot ∂2I/∂E2 (lower panel). The dashed blue and red lines locate the
antibonding (A1 and A2) and bonding (B1 and B2) bands. Vertical
arrows mark the different Fermi wave vectors. The photoelectron
momentum is measured along the cut direction indicated on the zone
map shown in the inset. (c) Individual EDCs used to produce the
intensity map. EDCs at the Fermi momenta are highlighted and are
labeled.
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plus a sine function with frequencies of 1.7 THz (a), 0.8 THz (b), or
both (c and d).
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pulse creates quasiparticles across the gap, depleting the CDW
condensate. This is reflected in the changes in the spectral
function presented in Fig. 2(a). In each band, an overall
upward shift in intensity is observed as the CDW gaps close.
Figure 2(b) illustrates the reduction of the CDW gaps by
showing individual EDCs at k
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F and k
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F with intensity

shifting from the equilibrium valence bands to EF as the CDW
ground state melts nonthermally.33

By measuring the time-dependent EDCs near EF for
each Fermi momentum, two-dimensional data sets in energy
and time are obtained. These are depicted by the density
plots in Fig. 3. The prompt initial upward shift, reflecting

FIG. 2. (Color online) Response to impulsive excitation by a femtosecond laser pulse. (a) Photoemission intensity maps at −50 and 250 fs,
shown on the same color scale. The arrows mark the centers of increased intensity above EF . (b) Photoinduced changes in the EDCs at k
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Figure 1.12: ARPES intensity for K0.3MoO3. (a) Intensity maps for delay times
of −50 fs and 250 fs, (b) Intensity at the Fermi momenta k(B1)

F and k(A2)
F . Reprinted

figure with permission from Liu et al. (2013) c©2013 by the American Physical Society.
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Figure 1.13: Time evolution of the electronic structure of K0.3MoO3 near the Fermi
edge for each of the Fermi momenta k(A1)

F , k(B1)
F , k(A2)

F , and k(B2)
F . The symbols are

the intensity integrated over the energy from −50 to 100 meV. One can see the onset
of relaxation, while the occupation is oscillating. The lines are fits with functions that
are a combination of an exponential and a sine function, with which the frequencies of
the oscillations were extracted: (a) 1.7 THz, (b) 0.8 THz, (c, d) both. Reprinted figure
with permission from Liu et al. (2013) c©2013 by the American Physical Society.
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As an example for trARPES performed for a quasi one-dimensional system, we
briefly discuss the experiment of Liu et al. (2013), who investigated K0.3MoO3.
The structure of the quasi one-dimensional material is shown in Fig. 1.11a.
Near the Fermi-edge, it exhibits the four bands A1, A2, B1, and B2, which is
confirmed by the various plots of Figs. 1.11b and c. In this experiment, intensity
maps were recorded like those in Fig. 1.12.

Fig. 1.13 shows their result, i.e. the dynamics of the energy distribution for the
four Fermi momenta k(A1)

F , k(B1)
F , k(A2)

F , and k
(B2)
F . The latter are labeled by

their respective band. One can clearly see oscillations during the onset of an
overall relaxation process. This is quantified by the symbol plots, because they
show the intensity at the Fermi-momentum integrated over the energy from
−50 meV to 100 meV. The fits (solid lines) reveal two different oscillation fre-
quencies (0.8 THz and 1.7 THz). Furthermore, one can see that the electrons
are not relaxed during the relatively long measurement time of about 2 ps. Al-
though the ARPES measurements are broadened, they show that it is possible
to track the thermalization. This experiment shows that one is able to track
the time evolution of one-dimensional, real materials.

Summary

In this chapter, we have shown how the momentum distribution in combination
with the band structure can be measured. The measurements are considerably
broadened, but they reveal the same features as numerical calculations. Fur-
thermore, we have presented an example for the observation of time evolution
of the electronic occupation. Moreover, we have pointed out the existence of
one-dimensional materials, which can be investigated by photoemission spec-
troscopy. Hence, the time evolution of momentum distributions in (quasi) one-
dimensional materials are accessible and a useful measure for the investigation
of the electronic relaxation in solids.
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1.3 Thermalization in closed quantum systems:
Theoretical overview

In this thesis, we are concerned with the long time dynamics of closed many-
body systems. In the previous section, we presented the experimental moti-
vation for this work. It shows that the long time dynamics may not lead to
thermalization within the time of an experiment. For a further investigation
of this, we now introduce the theoretical basis for calculating the long time
evolution of large quantum many-body systems.

As a first step, we consider a well known treatment of large quantum systems,
i.e. thermodynamics. There, thermal equilibrium is assumed, which means that
the system is in a state described by a certain mixed state. In a closed system,
the density matrix of this mixed state is (Balian, 2007)

ρmc =
1

Zmc

∑

E−dE6Eα6E+dE

|α〉〈α|, (1.58)

where |α〉 are the energy eigenstates, i.e. the eigenstates of the Hamiltonian Ĥ.
Evidently, ρmc is an indifferently weighted composition of all energy eigenstates
in a small energy shell, so that there is a defined energy E in the system. This
is known as the microcanonical ensemble. Moreover, the normalization factor
Zmc = tr(

∑
E−dE6Eα6E+dE |α〉〈α|) is the microcanonical partition function.

Now we bring the investigated system (S) in contact with a heat bath (B) By
definition, B has to be much larger than S. The equilibrium state of S is obtained
by maximizing the entropy (Jaynes, 1957a,b; Balian, 2007)

S[ρ] = −kB tr
(
ρ ln ρ

)
. (1.59)

Hereby, the energy of S is not fixed but only its expectation value, which leads to
the constraint 〈Ĥ〉 = tr(ρĤ). The method of performing this maximization with
constraints is the Lagrangian multipliers scheme. The Lagrangian multiplier for
the energy constraint is the inverse temperature β. The result is (Balian, 2007)

ρcan =
1

Zcan
e−βĤ . (1.60)

This expression matches the density matrix obtained by taking the partial trace
over the bath, trbath ρfull, if the interaction between system and bath is small.
More precisely, the energy stored in the interaction has to be much smaller than
both the energies stored in the bath and the one stored in the system (Balian,
2007).

Moreover, one can also add a particle bath, resulting in the grandcanonical
ensemble (Balian, 2007). The corresponding equilibrium state is

ρgc = trbath ρfull =
1

Zgc
e−β(Ĥ−µN̂). (1.61)

Here, neither energy nor the total particle number are fixed, so that the con-
straints for maximizing the entropy are 〈Ĥ〉 = tr(ρĤ) and 〈N̂〉 = tr(ρN̂). The
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respective Lagrangian multipliers are β and βµ, where µ is the chemical poten-
tial. It measures how much energy is needed to add a particle to the system.

However, a system may not be in a state described by thermal density operators
like Eqs. (1.58), (1.60), and (1.61). There are examples, in which systems do
not exhibit signs of thermalization over a long time, for instance in the collapse
and revival or the Newton’s cradle experiments (Greiner et al., 2002b; Kinoshita
et al., 2006) introduced in Sec. 1.1.6.

Hence, it is important to learn more about non-equilibrium quantum mechanics.
A major issue in this field is that pure states always stay pure in the quantum-
mechanical unitary time evolution |ψ(t)〉 = e−iĤt/~ |ψ(t = 0)〉, see Eq. (1.2).
Thus, the question arises how thermalization is established, knowing that a
pure state can never approach a mixed state like a thermal one.

An important point is that a quantum state cannot be observed in experiments.
The only measurable objects are the eigenvalues of observables (Basdevant and
Dalibard, 2002).

Another point is realizing that there is no well-defined, long-time limit of a
pure state

∣∣ψ
〉

=
∑
α Cα e

−iEαt/~
∣∣α
〉
because of the oscillating factors e−iEαt/~.

Therefore, also expectation values of observables have no well-defined long-time
limit. Thus, one needs to refrain from the question of what happens at infinite
time, but one should rather investigate the following question: How does the
system behave most of the time? For this reason, time averages are investigated.
In this way, the diagonal ensemble (Deutsch, 1991; Rigol et al., 2008) is found.
The long time average of an expectation value of an observable Ô in a pure state∣∣ψ
〉

=
∑
α Cα e

−iEαt/~
∣∣α
〉
is

lim
T→∞

1

T

∫ T

0

dt
〈
ψ
∣∣Ô
∣∣ψ
〉

=
∑

α,β

〈
α
∣∣Ô
∣∣β
〉
C∗αCβ lim

T→∞
1

T

∫ T

0

dt e−i(Eβ−Eα)t/~

=
∑

α

〈
α
∣∣Ô
∣∣α
〉 ∣∣Cα

∣∣2 =: tr
(
ρdiag Ô

)
.

(1.62)
Obviously, the off-diagonal elements 〈α|Ô|β〉, α 6= β do not play a role because
of dephasing, i.e. limT→∞ 1

T

∫ T
0
dt e−i(Eβ−Eα)t/~ = 0. This is only true if the

Hamiltonian exhibits level repulsion2, which is the case if the systems are not
integrable 3 (Santos and Rigol, 2010; Polkovnikov et al., 2011). Eq. (1.62) defines
the diagonal ensemble (Deutsch, 1991; Rigol et al., 2008)

ρdiag =
∑

α

∣∣Cα
∣∣2 |α〉〈α|. (1.63)

It is a first step towards an ensemble description, despite the fact that the initial
state is pure. However, due to its strong dependence on the initial state, it is
not an equilibrium description in general.

The dependence of the diagonal ensemble on the initial state is weakened if
the eigenstate thermalization hypothesis (ETH) (Deutsch, 1991; Srednicki, 1994;

2Level repulsion means that there is a non-zero minimum energy difference between any
pair of energy eigenstates, i.e. |Eα − Eβ | > 0 ∀(α, β).

3 Integrable systems have a large number of conserved quantities. We introduce the notion
of integrability later on.



30 Chapter 1. Introduction

Rigol et al., 2008; Rigol, 2009) holds and the initial state is composed of energy
eigenstates within an energy shell,

∣∣ψ
〉

=
∑
E−dE6Eα6E+dE Cα e

−iEαt/~
∣∣α
〉
.

The ETH states that the expectation value of a few-body observable Ô in an
energy eigenstate is a smooth function of the energy of the eigenstate (Rigol,
2009; Rigol and Srednicki, 2012):

〈
α
∣∣Ô
∣∣α
〉

= O(Eα). (1.64)

A few-body operator is one that contains products of a small number of creation
and annihilation operators. An example for a few-body operator is the number
operator, be it in real or momentum space, or the total number of particles.
In contrast to this, a many-body operator is, for instance, the exponential of
a few-body operator, such as the time-evolution operator. The reason is its
series expansion, because it contains operators with 2n creation and annihilation
operators with all possible n ∈ N0.

Employing Eq. (1.64), the long time average in Eq. (1.62) becomes

lim
T→∞

1

T

∫ T

0

dt
〈
ψ
∣∣Ô
∣∣ψ
〉

= O(E)
∑

E−dE6Eα6E+dE

∣∣Cα
∣∣2 = O(E) = tr

(
ρmc Ô

)
. (1.65)

Of course, this statement is restricted to systems where the ETH holds, to
few-body operators, and to initial states, which are a composition of energy
eigenstates picked from a small energy shell. However, the idea of the ETH
tempts one to define a system as thermalized when the expectation values of few-
body observables are (approximately) equal to the thermal expectation values
for most of the times.

A more general statement about non-equilibrium quantum mechanics of pure
states is that, in large systems, nearly all pure states are locally thermal (Popescu
et al., 2006). Thus, after tracing out a much larger part of the system, the re-
sulting density matrix is very close to being thermal. Of course, pure states
stay pure for all times, but during the time evolution of a generic pure state,
it is very probable that this state will be locally thermal for most times. This
was later formulated as the local relaxation conjecture (Cramer et al., 2008a).
Therefore, a reasonable definition of thermalization is that the state is thermal
in all small, finite subsystems.

In summary, triggered by the vast amount of publications and opinions regard-
ing thermalization presented in this chapter, for the author of this thesis, there
is no fixed definition of thermalization. There are strong and weak definitions
of thermalization. They heavily depend upon the requirements of an exper-
iment. The narrowest definition of thermalization one can make is that the
initial quantum mechanical state has to evolve into a thermal ensemble. This
is of course neither the case for pure states nor for mixed states, except for the
thermal states. Thus, this definition is not very useful for closed quantum sys-
tems. Consequently, one has to find weaker definitions of thermalization. We
have shown for instance that local thermalization of the state can be used as a
definition. However, there is also the possibility to abandon the consideration of
states in that matter and to restrict oneself to objects that can be measured in
experiments instead. Hence, we understand a state to be thermalized when the
expectation values of observables have thermalized, i.e. tr[ρ(t)Ô] = tr[ρthermalÔ].
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This is also a very narrow definition, because, surely, one can construct an ob-
servable in such a way that it does not thermalize. Therefore, this definition
should also be weakened. Like mentioned before, a reasonable definition is that
a state is considered to be thermal when all few-body observables have thermal-
ized.

For this work the relevant observables to measure thermalization are the number
operators in momentum space n̂k = ĉ†k ĉk. Their expectation values give the
momentum distribution. The use of the momentum distribution as an indicator
for thermalization is of course not a new notion, as it has been extensively used
before (Srednicki, 1994; Manmana et al., 2007; Moeckel and Kehrein, 2008;
Eckstein et al., 2009; Rigol et al., 2007; Rigol, 2009; Kinoshita et al., 2006).
In this thesis, we will introduce a Boltzmann equation that describes the time
evolution of the momentum distribution of the quasiparticles of the system, and
we will investigate its tendency to thermalize.

As we mentioned before, there is a prominent class of systems that do not
show signs of thermalization, which are known as integrable systems. These
kind of systems include a number of conserved quantities, which grows with
system size. In Sec. 1.1.6, we already discussed two examples for such systems:
The collapse-and-revival experiment of Greiner et al. (2002b) and the quantum
Newton’s cradle performed by Kinoshita et al. (2006).

The equilibrium density matrix of an integrable theory is found by the same
principle as Eq. (1.60) and Eq. (1.61), namely by maximizing entropy with re-
spect to the constraints 〈Q̂j〉 = tr(ρ Q̂j), where Q̂j are the conserved quantities.
The maximization with constraints is performed by the Lagrangian multipliers
method. It leads to the ensemble, which is known as generalized Gibbs ensemble
(GGE) (Rigol et al., 2007, 2008)

ρGGE =
1

ZGGE
exp
{
−
∑

j

βj Q̂j

}
, (1.66)

where βj are the Lagrangian multipliers corresponding to Q̂j .

The integrability of a model can be broken by changing its Hamiltonian. Then,
the quantities Q̂j are no longer conserved. If integrability is broken slightly,
one typically sees a special effect called prethermalization (Eckstein et al., 2009;
Fagotti, 2014; Bertini and Fagotti, 2015; Gring et al., 2012). The expectation
value of the investigated few-body operator relaxes after a relatively small time,
but the value is not thermal and seems to be stationary for a relatively long
time. The reason for this effect is that the quantities Q̂j are still approximately
conserved, relax very slowly, and thus prevent thermalization for a very long
time. During the prethermalization, the expectation values match the prediction
of the GGE, which assumes the quasi-conserved quantities to be conserved.
However, on a longer time scale, thermalization is expected (Berges et al., 2004;
Eckstein et al., 2009; Bertini and Fagotti, 2015; Gring et al., 2012).

The experiment of Kinoshita et al. (2006) is close to being integrable apart from
minor issues. The interaction is not exactly a point-interaction as in the corre-
sponding integrable model and also the previously mentioned heating, particle
loss, and anharmonicity effects give rise to non-integrability. Thus, this experi-
ment is an example for systems with weakly broken integrability. Nevertheless,
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despite the broken integrability, the features of the corresponding integrable
system are clearly visible. This suggests that the effects of integrability are not
immediately gone when integrability is broken, but they slowly wear off the
further away the theory departs from an integrable point. To have a better
understanding of how a small integrability breaking influences the long time
dynamics, we investigate a model with weakly broken integrability.

We will study how the thermalization time depends on the integrability-breaking
parameter. In order to do this, we need a method that can reach very long
times. They must be so long that one can reach thermalization even for very
small integrability breaking. There are many methods for calculating the time
evolution of a one-dimensional quantum mechanical system. However, most of
them can only investigate small systems or lack the ability to reach times long
enough to observe thermalization.

An important analytical approach is the flow equation or continuous unitary
transformation (CUT) method (Wegner, 1994; Głazek and Wilson, 1993, 1994;
Kehrein, 2006), where the Hamiltonian is gradually diagonalized by a sequence
of small, unitary transformations. By this procedure, the time evolution be-
comes very simple, but simple observables are transformed into very compli-
cated objects. Thus, in practice one considers a small interaction strength to
describe these objects perturbatively (Moeckel and Kehrein, 2008; Essler et al.,
2014). Hence, there is also a maximum time scale on which the results are valid.

Another more naive approach to gain information about the time evolution is
an expansion in time. For example, Hamerla and Uhrig (2013) studied the
expansion of the Heisenberg equations of motions for the creation operator in
a one-dimensional Hubbard model. Depending on how many terms one takes
into account, the maximum time, for which the computation is valid, increases.
However, this approach is not able reach very long times.

Besides analytical methods, there are also numerical methods. The most obvious
one is exact diagonalization (Rigol, 2009; Roux, 2009; Santos and Rigol, 2010;
Essler et al., 2014). It is an exact approach, but, as we mentioned before, it
can only be used for computing the time evolution of rather small systems, even
when using super-computers.

A very successful exact numerical approach is the time-dependent density matrix
renormalization group method (tDMRG) (White, 1992, 1993; Daley et al., 2004;
Manmana et al., 2005; Schollwöck, 2005, 2011). Originally designed for finding
ground states of one-dimensional systems, it can calculate the time evolution
of a state. For example, tDMRG and CUT have been compared calculating
a nearest-neighbor Green’s function. The results cannot be distinguished by
the bare eye (Essler et al., 2014). With this method, one can compute much
larger systems compared to exact diagonalization. However, the maximal time
it can reach is limited by growing entanglement and at some point finite size
effects set in. Therefore, the long time scale of thermalization cannot be reached
(Manmana et al., 2007; Daley et al., 2004; Kollath et al., 2007; Cramer et al.,
2008b; Essler et al., 2014).

In the next section, we will introduce our approach for studying a many-body
quantum system for long times. Moreover, we will elaborate on the goals of this
thesis.
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damped to a nonthermal quasistationary value on the time
scale 1=V, while full thermalization can only happen on
much longer time scales.

We now show that this prethermalization regime is a
general feature of fermionic Hubbard-type models at
strong coupling and calculate the double occupation in
the quasistationary state. We use the standard unitary
transformation !A ¼ e"SAeS [30] for which the double
occupation !D ¼ P

i !ni" !ni# of the dressed fermions !ci! is
conserved, ½H; !D$ ¼ 0. After decomposing the hopping
term [31], K ¼ P

ij!ðVij!=VÞcþi!cj!, into parts Kp that

change the double occupation by p, i.e., Kþ ¼P
ij!ðVij!=VÞcþi!cj!ð1" nj !!Þni !! ¼ ðK"Þþ and K0 ¼ K "

Kþ " K", the leading order transformation is S ¼
ðV=UÞ !Kþ þ ðV=UÞ2½ !Kþ; !K0$ " H:c:þOðV3=U3Þ. For
the double occupation, dðtÞ ¼ heiHtDe"iHti0=L, we obtain

dðtÞ ¼ dstat "
2V

U
Re½eitURðtVÞ$ þO

!
V2

U2 ;
tV3

U2

"
; (4)

where RðtVÞ ¼ heitVK0Kþe
"itVK0i0=L and dstat ¼

dð0Þ þ ð2V=UÞRehKþ=Li0. The error OðtV3=U2Þ, which
is due to omitted terms in the exponentials e(iHt, is ir-
relevant in comparison to the leading terms if t ) U=V2.
Here we do not consider the dynamics for t * U=V2. In
fact, dðtÞ remains close to h !Di, which is constant on ex-

ponentially long time scales [18]. It remains to show that
(i) the envelope function RðtVÞ of the oscillating term
decays to zero for t * 1=V, and (ii) the quasistationary
value dstat differs from the thermal value dth. (i) Insert-
ing an eigenbasis K0jmi ¼ kmjmi yields RðtVÞ ¼P

m;nhjnihmji0eitVðkm"knÞhnjKþjmi. In this expression all
oscillating terms dephase in the long-time average
[13,15], so that only energy-diagonal terms contribute to
the sum. But from ½K0; D$ ¼ 0 it follows that D is a good
quantum number of jni so that hnjKþjni ¼ 0, and thus
RðtVÞ vanishes in the long time limit (if it exists and if
accidental degeneracies between sectors of different D are
irrelevant). From Eq. (4) we therefore conclude that dðtÞ
equals dstat for times 1=V ) t ) U=V2, up to corrections
of order OðV2=U2Þ. (ii) For the quasistationary value we
obtain dstat ¼ dð0Þ ""d,

"d ¼ "
X

ij!

Vij!

UL
hcþi!cj!ðni !! " nj !!Þ2i0; (5)

which applies to arbitrary initial states. For noninteracting
initial states the expectation value in this expression fac-
torizes; in DMFT Eq. (5) then evaluates to "d ¼ nð1"
n=2ÞðV=UÞhK=Li0; i.e., it is proportional to the kinetic
energy in the initial state. For the thermal value dth we
expand the free energy in V=T+, because the effective
temperature T+ is much larger than V after a quench to
U * V. At half-filling we obtain dth ¼ dð0Þ þ ðV=UÞ,
hK=Li0; for noninteracting initial states in DMFT we thus
find that "d ¼ dð0Þ " dstat ¼ ½dð0Þ " dth$=2, i.e., at times
1=V ) t ) U=V2 the double occupation has relaxed only
halfway towards dth.
The strong-coupling predictions for the prethermaliza-

tion regime agree with our numerical results, for which the
center of the first oscillation in dðtÞ approaches dstat for
large U [inset in Fig. 2(b)]. The scenario also applies to
interaction quenches in the half-filled Falicov-Kimball
model in DMFT [12] and the 1=r Hubbard chain [15],
although thermalization is inhibited in these models: in
both models the long-time limit of dðt ! 1Þ can be ob-
tained exactly and indeed agrees with dstat for U * V. For
quenches to large U in the free 1=r chain (with bandwidth
2"V) Eq. (5) yields "d ¼ ðV=UÞð1" 2n=3Þ". For the
Falicov-Kimball model in DMFT "d is half as big as for
the Hubbard model because only one spin species contrib-
utes to the kinetic energy in the initial state.
Fast thermalization, U - Udyn

c ¼ 3:2V.—The charac-
teristic collapse-and-revival oscillations of the strong-
coupling regime disappear for quenches to U between
3:3V and 3V, as is apparent from the Fermi surface dis-
continuity"n1 at its first revival maximum [Fig. 3(a)]. This
change in the short-time dynamics reflects a change in the
nature of single-particle excitations [Eq. (3)]. It occurs also
in equilibrium even at very high temperatures, because
jGret

#!ðt" t0Þj2 becomes oscillatory as a result of the transfer
of spectral weight to the Hubbard subbands at (U.
Additionally the prethermalization plateau at "nstat disap-
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FIG. 2 (color online). Fermi surface discontinuity "n and
double occupation dðtÞ after quenches to U . 3 (left panels)
and U / 3:3 (right panels). Horizontal dashed lines in the lower
left panel are at the quasistationary value "nstat ¼ 2Z" 1 pre-
dicted in Ref. [14], with the T ¼ 0 quasiparticle weight Z taken
from equilibrium DMFT data [33]. Horizontal arrows indicate
corresponding thermal values dth of the double occupation,
obtained from equilibrium DMFT. Inset: thermal value dth and
dmed, the average of the first maximum and the second minimum
of dðtÞ, which provides an estimate of the stationary value dstat;
black dashed lines are the respective results from the strong-
coupling expansion (see text).
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Figure 1.14: Time evolution of the quasiparticle residue in a Hubbard model for
several interaction strenghs U 6 3. The colored symbols connected by lines are the
result of the numerical calculation of Eckstein et al. (2009). One can clearly see the
prethermalization plateau. This confirms the findings of Moeckel and Kehrein (2008).
Their prediction of the prethermalization plateau are the dashed lines. Reprinted
figure with permission from Eckstein et al. (2009) c©2009 by the American Physical
Society.

1.4 Goals and scope

In this thesis, we investigate the long time evolution of a many-body quantum
system. The previous section showed the difficulties of such an undertaking.
In order to tackle this problem, we need to find a measure for thermalization,
with which we are able to calculate for long times. Hence, we consider the
quasiparticle momentum distribution n(k, t). Our method of choice to study
n(k, t) is a quantum Boltzmann equation.

The motivation for such an approach is the physical picture that is depicted in
the work of Moeckel and Kehrein (2008). For small times, quasiparticles are
building up. On a larger time scale, the quasiparticles interact until they finally
thermalize. This interaction and equilibration of the quasiparticle momentum
distribution is described by a Boltzmann equation (Moeckel and Kehrein, 2008).
In their work, they investigated a Hubbard model4 in d > 2 dimensions, which
is integrable if the interaction strength is zero. Their findings were confirmed
by a non-equilibrium dynamical-mean-field-theory calculation of Eckstein et al.
(2009), see Fig. 1.14. They found prethermalization plateaus for several interac-
tion strengths, which matched the prediction of Moeckel and Kehrein (2008). In
general, a Boltzmann equation can be derived for systems, in which the lifetime
of the quasiparticles is so long that it can be assumed to be infinite (Rammer
and Smith, 1986; Erdös et al., 2004; Moeckel and Kehrein, 2008; Kamenev and
Levchenko, 2009).

When certain prerequisites are fulfilled, the collision term of a Boltzmann equa-
tion is the leading order contribution of ṅ(k, t). We will show in detail in Chap-
ter 2 that n(k, t) evolves according to

ṅ(k, t) = Icoll[n](k, t) + o(U2), (1.67)
4We introduce the Hubbard model in Sec. 1.4.1. There we will also elaborate on its one-

dimensional version
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where Icoll is the collision term of the Boltzmann equation and U is the inter-
action strength. The approximations for obtaining a Boltzmann equation will
be discussed in Chapter 2. Furthermore, a detailed derivation of the collision
term is given in App. B.1.

However, in some cases, the two-particle collision term Icoll does not lead to
thermalization. Yet, this does not exclude the higher-order terms from being
able to induce thermalization. Since the higher-order terms are normally much
smaller than the leading order, the thermalization of the momentum distribution
will accordingly take very long, meaning orders of magnitude longer than naively
expected.

An important goal is predicting thermalization times of the quasiparticle mo-
mentum distribution for experiments and theoretical studies like for example
tDMRG calculations. As pointed out before, thermalization is hardly seen in
numerical calculations of one-dimensional systems and we want to contribute
to answering why that is the case. With the method we use, one is able to tell
if two-particle collisions are ineffective for certain models, which may lead to
unexpectedly long thermalization times.

The two models we will investigate are the one-dimensional Hubbard model and
a certain magnetic phase of a one-dimensional Manganite chain. Both models
will shortly be introduced in the following two subsections. We will elaborate
on the two of them in Chapters 3 and 4, respectively.

1.4.1 The Hubbard model

The Hubbard model introduced by Hubbard (1963, 1964a,b), Gutzwiller (1963),
and Kanamori (1963) describes the electrons of a crystal structure, where the
unit cell is made up of one atom. Each atom contributes only two energetically
degenerate valence states, which differ in their spin direction. One state has spin
↑, the other spin ↓. The Hamiltonian of the Hubbard model in d dimensions
(see Eq. (1.34)) reads

ĤHubbard = −J
∑

NN(l,l′)
σ∈{↑,↓}

ĉ†σ,l ĉσ,l′ +H.c.+ U
∑

l∈Zd
n̂↑,l n̂↓,l , (1.68)

with the creation and annihilation operators ĉ†σ,l and ĉσ,l, respectively, and the
number operator n̂σ,l = ĉ†σ,lĉσ,l. The first sum runs only over pairs of indices of
neighboring atoms.

The first term reflects the ability of electrons to hop from atom to atom. It
connects the valence electron states of the atoms and forms the band of states,
which we mentioned before. The second term models the screened Coulomb
interaction of the electrons. Due to charge screening, the effective electron-
electron interaction within a sample becomes short-ranged. Hence, we may
approximate this interaction so that the electrons only feel a Coulomb repulsion
if they reside on the same atom. The Hubbard Hamiltonian in one dimension is

ĤHubbard = −J
∑

l∈Z,
σ∈{↑,↓}

ĉ†σ,l ĉσ,l+1 +H.c.+ U
∑

l∈Z
n̂↑,l n̂↓,l. (1.69)
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The one-dimensional Hubbard model is integrable for every J and U (Essler
et al., 2005). To investigate the breaking of integrability and its consequence for
the equilibration dynamics, we introduce an additional next-to-nearest-neighbor
hopping term in the Hamiltonian:

Ĥ = ĤHubbard − J ′
∑

l∈Z,
σ∈{↑,↓}

ĉ†σ,l ĉσ,l+2 +H.c.. (1.70)

It accounts for the non-zero overlap of the valence states of next-to-nearest-
neighbor atoms, and thus enables the electrons to move from one atom to the
one after the next. Reasonably, the overlap of next-to-nearest-neighbor atom
states is considerably smaller than their nearest-neighbor counterparts.

We will investigate the model in Eq. (1.70) with respect to its long time evolution
in the thermodynamic limit by means of a quantum Boltzmann equation. This
was previously studied by Fürst et al. (2012, 2013b,a). They examined the time
evolution of several initial momentum distributions for the integrable as well
as for the non-integrable case. In the integrable case they found non-thermal
stationary distributions, to which the momentum distributions converge. This
is owed to the integrability of the model. In the non-integrable case, they ob-
served thermalization. In both cases, the relaxation times were measured. Since
there is no thermalization in the integrable model, the relaxation time of the
integrable case is not the thermalization time (which is infinite for an integrable
theory). It can rather be considered a prethermalization time. As argued before,
the reason is that models near an integrable point exhibit the dynamics of the
integrable point for sufficiently small times. Hence, the relaxation time of the
non-integrable case is the prethermalization time of the case with weakly broken
integrability. Consistently, Fürst et al. found that this prethermalization time is
significantly smaller than the thermalization time of the non-integrable model.
We will add a systematic investigation of the thermalization rates to their pre-
vious work. Our approach is linearizing the Boltzmann equation around the
thermal distribution. The eigenvalues of the resulting linear operator are the
relaxation rates, which we are going to find in this thesis.

The Hubbard model has one single-particle band, which can be seen from the
kinetic part of the Hamiltonian:

J
∑

l∈Z,
σ∈{↑,↓}

ĉ†σ,l ĉσ,l+1 + J ′
∑

l∈Z,
σ∈{↑,↓}

ĉ†σ,l ĉσ,l+2 +H.c. = 2

∫
dk
∑

σ∈{↑,↓}
ω(k) n̂σ(k) , (1.71)

with the momentum creation operator ĉ†σ(k) =
∑
l e
i2πkl ĉ†σl, the momentum

number operator nσ(k) = ĉ†σ(k)ĉσ(k), and the single-particle band ω(k) =
J cos(2πk) + J ′cos(4πk). We will investigate the case for more than one band,
too. In the next section, an effective model with four bands will be introduced,
which is suitable for this purpose.

1.4.2 Praseodymium calcium manganite chain: A multi-
band model

In the last section, the Hubbard model was considered. As we have seen, it
consists of exactly one single-particle band. We will also apply our method of
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finding the thermalization rates on a model with more than one band. In order
to have more bands, a larger unit cell is needed, because the number of bands
is equal to the number of sites in the unit cell.

Our multi-band model is motivated by the material PrxCa1−xMnO3. It is a
fascinating material, which we will introduce in detail in Chapter 4. Thereby, we
will also point out the property of manganites showing many different magnetic
phases. We will consider a one-dimensional effective model of the material and
investigate one certain magnetic phase. The effective model describing this
phase is similar to the Hubbard model. The difference is that the ↑ and ↓
electrons have different energies. These energies alternate in such a way that it
leads to a unit cell with four sites.

For the examination of this model, we also use a Boltzmann equation. However,
here we need a Boltzmann equation that takes care of more than one bands.
Therefore, in Chapter 2, we derive the multi-band Boltzmann equation building
on the derivation of the single-band version of Erdös et al. (2004).

Outline

In this thesis, we consider two one-dimensional models. The first one is the inte-
grable integrable Hubbard model with an additional integrability breaking term
in the Hamiltonian, which is a next-to-nearest-neighbor hopping term. This
has been previously investigated by Fürst et al. (2012, 2013b). They consid-
ered several initial quasiparticle momentum distributions and their relaxation
times for different strengths of the next-to-nearest-neighbor hopping amplitude
J ′. We want to find the dependence of the thermalization rates on J ′, on the
filling and on temperature for any initial quasiparticle momentum distribution
in the regime of small integrability breaking. However, we will restrict to the
situation, where ↑- and ↓-spin fermions have the same quasiparticle momentum
distribution, n(k) = nσ(k). This means that the material has no magnetization
and the excitation of the system is independent of spin. An example for this is
a light-induced excitation, where the number of photons is so huge that there
are enough electrons excited to safely assume the momentum distribution’s in-
dependence of spin. Furthermore, the off-diagonal terms of the matrix-valued
Boltzmann equation (Fürst et al., 2012, 2013b) are assumed to have already
relaxed to zero, which is the value in thermal equilibrium, where the the spins
of all the quasiparticles have aligned to the same spin basis. Therefore, we inves-
tigate the corresponding single-valued Boltzmann equation. Chapter 2 contains
the introduction of a Boltzmann equation in one dimension, which can be used
for any kind of band structure.

In Chapter 3, we investigate the first model which is a single-band model. There,
we will investigate the interaction among ↑- and ↓-spin fermions leading to
thermalization of the quasiparticle momentum distribution if integrability is
broken by an next-to-nearest-neighbor hopping. Away from half filling, we will
see an exponentially big timescale in the inverse temperature β. At half filling,
Umklapp processes relax the exponential growth of these timescales. Yet, for
some initial quasiparticle momentum distributions, the timescale will still be
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exponentially large in β. We will suggest an interpretation of the properties of
such quasiparticle momentum distributions.

The second model has four single-particle bands. It is an effective model to
describe a one-dimensional version of a manganite material. In Chapter 4, we
investigate the effects of a band structure on the thermalization rate. We will
see that for large band gaps, there are quantities arising that are conserved for
two-particle-interaction.

Chapter 5 summarizes the results of this work and gives an outlook on future
research possibilities. The appendix includes calculations, that were omitted in
the main part in order to simplify the reading flow. Nonetheless, they can be
very instructive to get a deeper knowledge about the theoretical basis of the
thesis.
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Chapter 2

The multi-band Boltzmann
equation

The purpose of this thesis is to investigate the thermalization of a closed quan-
tum system in the thermodynamic limit. As we explained in the introduction,
this is why we use a Boltzmann-equation approach. In this chapter, we in-
troduce the Boltzmann equation using a general Hamiltonian. In Chapters 3
and 4, we will apply this approach to the Hubbard model and the praseodymium
calcium manganite chain, respectively. With the linearization scheme (shown
in Sec. 2.2), we lay the groundwork to systematically describe the long-time
convergence of the quasiparticle momentum distribution to the thermal one in
Chapter 3 and Chapter 4. Furthermore, the linearization enables to identify
quantities, which are conserved by the Boltzmann equation. The two quanti-
ties, which are conserved in every case, are treated in Sec. 2.3. We will show
that they are connected to particle-number conservation and energy conserva-
tion. Moreover, the linearized Boltzmann equation includes a linear operator.
The eigenvalues of the latter will turn out to be the relaxation rates. Sec. 2.4
will show that all of the respective eigenfunctions can be linked to a state-space
operator, which is the physical quantity, whose expectation value relaxes with
the relaxation rate given by the corresponding eigenvalue.

The last section of this chapter, Sec. 2.5, contains the proof that in certain
situations the collision term of the Boltzmann equation cannot vanish. Such a
situation occurs, as this section will show, if the dispersion relation is continuous
and periodic.

2.1 Setting up a Boltzmann equation for fermions

We will investigate the relaxation of a multi-band quasiparticle momentum dis-
tribution nσν(k, t). The method of our choice is a Boltzmann-equation approach.
This section is concerned with setting up a multi-band Boltzmann equation of
the form

ṅσν(k, t) = Icoll[n]σν(k, t), (2.1)

39
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with the spin σ ∈ {↑, ↓}, the band index ν ∈ B := {1, 2, ..., Nb} and momentum
k being in the first Brillouin zone K :=

(
− 1

2 ,
1
2

]
. Icoll is the collision term of the

Boltzmann equation. It is an operator acting on the quasiparticle momentum
distribution and describing the change of the quasiparticle momentum distri-
bution ṅσν(k, t) ≡ ∂nσν(k, t)/∂t. We will derive this Boltzmann equation for
fermionic Hamiltonians of the form

Ĥ = Ĥ0 + Ĥint,

Ĥ0 =

∫
dk
∑

σν

~Ων(k) n̂σν(k),

Ĥint = U

∫

K4

d4k δ
(
kmod(∆k~k)

) ∑

~ν∈B4

Φ~ν,~k ĉ†↑ν1(k1) ĉ†↓ν2(k2) ĉ↓ν3(k3) ĉ↑ν4(k4).

(2.2)
Hereby, we introduced the fermionic creation and annihilation operators ĉσν(k)
and ĉ†σν(k), the fermionic number operators n̂σν(k) = ĉ†σν(k) ĉσν(k), the single-
particle bands Ων(k), the change in total momentum ∆k~k := k1 + k2 − k3 − k4,
the interaction strength U , and the dimensionless interaction matrix element
Φ~ν,~k. Lastly, we defined the function

kmod : R→ K =
(
− 1

2 ,
1
2

]

k 7→
{

1
2 for k ∈ Z+ 1

2(
(k + 1

2 ) mod 1
)
− 1

2 else.
(2.3)

It maps its parameter into the first Brillouin zone
(
− 1

2 ,
1
2

]
using shifts with the

reciprocal lattice vector 1. The δ-distribution containing kmod simply results
from summing up Fourier functions

∑

j

eikj = δ
(
kmod(k)

)
. (2.4)

This part of the thesis is concerned with statements valid for any number of
bands and dispersion relations Ων(k). Both of the Hamiltonians, which we will
consider later on, can be written in the form of Eq. (2.2).

In the following, we will summarize the derivations in App. B.1. The derivation
of the Boltzmann equation is based on Erdös et al. (2004) and starts out with
the quantum mechanical time evolution, which is known from any textbook
about quantum mechanics, e.g. Basdevant and Dalibard (2002):

ṅσν(k, t) =
∂

∂t
tr
{
ρ̂(t) n̂σν(k)

}
=
i

~
tr
{
ρ̂(t)

[
n̂σν(k), Ĥ

]}
, (2.5)

where ρ̂(t) is the density matrix. We introduce a shorter notation for the ex-
pectation values: 〈

Â
〉
t

:= tr
{
ρ̂(t) Â

}
(2.6)

for every operator Â.

Using Eq. (2.5) and the time evolution of the four-point-function, we derive the
collision term for the momentum distribution nσν(k, t) of the quasiparticles in
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Eq. (B.49):

Icoll[n]ν1(k1, t) =
2πU2

~J

∫

K3

dk2 dk3 dk4 δ
(
kmod(∆k~k)

) ∑

ν2,ν3,ν4
∈{1,..,4}

δ
(
∆Ω~ν,~k

) ∣∣Φ~ν,~k
∣∣2

×
{[

1−nν1(k1, t)
][

1−nν2(k2, t)
]
nν3(k3, t)nν4(k4, t)︸ ︷︷ ︸

gain term

−nν1(k1, t)nν2(k2, t)
[
1−nν3(k3, t)

][
1−nν4(k4, t)

]
︸ ︷︷ ︸

loss term

}
.

(2.7)
This collision term is a low interaction limit. It consists of momentum conserva-
tion and energy conservation with the change in momentum ∆k~k := k1+k2−k3−k4

and the change in energy ∆Ω~ν,~k := Ων1(k1)+Ων2(k2)−Ων3(k3)−Ων4(k4). The
last factor is the sum of the gain and the loss term. Considering the loss term,
the quasiparticle momentum distribution nν1(k1, t) can only become less occu-
pied if it is not empty already, i.e. nν1(k1, t) > 0. In the classical Boltzmann
equation, the factors 1 − nνi(ki, t) are missing. Here, they prevent the quasi-
particle momentum distribution nν1(k1, t) from growing larger than 1. The gain
term leads to the fact that the quasiparticle momentum distribution nν1(k1, t)
only increases if it is not completely full, i.e. nν1(k1, t) < 1. Thence, the factors
1− nνi(ki, t) are attributed to the fermionic nature of the Hamiltonian.

The details of the collision term’s calculation are written in App. B.1. Here, we
will only point out the assumptions, which lead to the collision term.

Assumption 1: Weak interaction strength U . The momentum distri-
bution nσν(k, t), which will appear in the collision term, is taken in the zero
interaction limit. Therefore, the Boltzmann equation describes the time evolu-
tion of the quasiparticle momentum distribution. As pointed out by Erdös et al.
(2004), instead of small U , one can also take the low-density limit to derive a
Boltzmann equation.

Assumption 2: The Boltzmann equation is assumed to be correct on times
t = O(J/U2), which are known as kinetic timescales (Fürst et al., 2013a). In
combination with U → 0, this leads to the energy conserving delta distribution
δ(∆Ω~ν,~k).

Assumption 3: We need to make an assumption about the 2-by-2 matrices
(〈
ĉ†σν(k) ĉσ′ν(k)

〉
t

)
σσ′
. (2.8)

Having derived a Boltzmann equation for these matrices, Fürst et al. (2012,
2013b) found that they become diagonal during relaxation. As an example, the
thermal density matrix e−βĤ+βµN̂ has the property (2.9), because the Hamilto-
nian Ĥ and the total particle number operator N̂ both commute with the total
spin operator ~

2 (N̂↑−N̂↓). Furthermore, in a discussion with Spohn (2014) it be-
came clear, that it is unknown how to linearize their matrix-valued Boltzmann
equation, because the occurring 2-by-2-matrices do not commute. However,
the linearization of the Boltzmann equation is an essential part of this thesis.
Therefore, we assume that the off-diagonal elements of Eq. (2.8) have already
vanished, i.e. 〈

ĉ†σν(k) ĉσ′ν(q)
〉
t
∝ δσσ′ . (2.9)



42 Chapter 2. The multi-band Boltzmann equation

This means that our method cannot track the diagonalization process of Eq. (2.8),
but we will find only the relaxation rates of the time evolution of the quasipar-
ticle momentum distribution 〈ĉ†σν(k) ĉσν(q)〉t. Furthermore, Eq. (2.9) leads to
the fact that two-point-functions as in Eq. (2.9) are reduced to quasiparticle
momentum distributions.

Assumption 4: We need to assume that spin-up fermions have the same
quasiparticle momentum distribution like the spin-down fermions. The result is

〈
ĉ†σν(k) ĉσ′ν(q)

〉
t
∝ δσσ′nν(k, t), (2.10)

with nν(k, t) := n↑ν(k, t) = n↓ν(k, t). This is not an artificial assumption, be-
cause, for example, the excitation of an electron with a photon does not depend
on the spin of the electron.

Assumption 5: Spatial homogeneity. This means that we require
〈
ĉ†i,σ ĉj,σ′

〉
t

=
〈
ĉ†i−j,σ ĉ0,σ′

〉
t
, (2.11)

with the real-space creation and annihilation operators ĉ†i,σ and ĉi,σ′ , respec-
tively. It leads to 〈

ĉ†σν(k) ĉσ′ν′(q)
〉
t
∝ δ(k − q). (2.12)

This means that two particles with different momenta are uncorrelated.

Assumption 6: Building on the last assumption, for the case of multiple
bands, we have to assume that also particles in different single-particle bands
are uncorrelated in the same way:

〈
ĉ†σν(k) ĉσ′ν(q)

〉
t
∝ δνν′ . (2.13)

If one would want to relax this condition, one had to derive a Boltzmann
equation for the Nb-by-Nb matrices [〈ĉ†σν(k) ĉσν(k)〉t]νν′ . This would lead to
a matrix-valued Boltzmann equation. However, as we stated in the assumption
for Eq. (2.9), it is not known how to linearize this kind of Boltzmann equation.

In total, Eqs. (2.9), (2.10), and (2.13) yield
〈
ĉ†σν(k) ĉσ′ν(q)

〉
t
∝ δσσ′ δνν′ δ(k − q). (2.14)

This is necessary to transform the four- and eight-point functions into expres-
sions that are made up of momentum distributions nσν(k, t) = 〈ĉ†σν(k) ĉσν(k)〉t.
Assumption 7: Restricted quasi-freeness. Quasi-freeness means that the
density matrix has the form exp(

∑
σij Aσij ĉ

†
σiĉσj). This results into a Wick

theorem for all n-point function. The restricted quasi-freeness, however, only
assumes a density matrix so that there is a Wick theorem for the four- and
six-point functions. Hence, these functions are reduced to sums of products of
two-point functions.

In the classical Boltzmann equation, a particle is supposed to collide just once or
twice. This justifies the assumption that particles are completely uncorrelated.
This assumption leads to the fact that there are no reoccurrences1 in the Boltz-
mann equation. It always converges to a stationary state, while the entropy is

1Reoccurrence means that the system is in the initial state again after the reoccurrence
time.
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monotonically increasing. This is alright, as long as the times are much shorter
than the reoccurrence time, which is practically always the case for macroscopic
systems. The restricted quasi-freeness is the quantum-mechanical equivalent to
the classical particles being completely uncorrelated. It assumes that the cor-
relation functions can be treated as if we had a free state. This means that
particles are not influenced by each other, as long as they do not collide.

Next, we will get rid of the kmod function in the momentum conservation. All
the functions in the integrand are 1-periodic in all the kj , therefore we can trade
it for a larger integration space. Specifically, we have to enlarge the integration
interval of one momentum. We choose this momentum to be k4 and obtain

∫

K3

dk2 dk3 dk4 δ
(
kmod(∆k~k)

)
→
∫

K2×R

dk2 dk3 dk4 δ(∆k~k). (2.15)

This will be very useful later on in the calculation of the interaction channels. It
basically means that for any (k1, k2, k3) ∈ K3 one gets exactly k4 = k1 +k2−k3.
If k4 is outside the first Brillouin zone it simply means that the process is an
Umklapp process. This does not affect the other parts of the integrand, because
it is 1-periodic in all kj .

The Boltzmann equation now reads

Icoll[n]ν1(k1, t) =
2πU2

~J

∫

K2×R

dk2 dk3 dk4 δ(∆k~k)
∑

ν2,3,4∈B
δ
(
∆Ω~ν,~k

) ∣∣Φ~ν,~k
∣∣2

×
{[

1−nν1(k1, t)
][

1−nν2(k2, t)
]
nν3(k3, t)nν4(k4, t)

− nν1(k1, t)nν2(k2, t)
[
1−nν3(k3, t)

][
1−nν4(k4, t)

]}
.

(2.16)
It describes the time evolution of the quasiparticle momentum distribution.
This is confirmed by derivations using Green functions, see Rammer and Smith
(1986); Kamenev and Levchenko (2009). Note that momentum conservation
leads to |k4| < 3

2 .

For any kind of dispersion relation, the last factor in Eq. (2.16) vanishes if the
distribution is equal to the Fermi-Dirac distribution

fν(k) =
1

exp[β(Ων(k)− µ)] + 1
, (2.17)

see App. C.7. Therefore, fν(k) is a fixed point of the Boltzmann equation.
Furthermore, it is a stable fixed point, because the linearization around this
distribution leads to a positive semidefinite linear operator L̂, which we will
discuss in Sec. 2.2.

It is important to note that depending on the dispersion relation, there may be
more fixed points of the Boltzmann equation. For example, the cosine dispersion
relation has many non-thermal stationary states, see Sec. 3.2.1.
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2.2 Linearization of the Boltzmann equation

In order to find the relaxation rates of the quasiparticle momentum distribution,
we will linearize the Boltzmann equation around its thermal distribution, the
Fermi-Dirac distribution fn(k) defined in Eq. (2.17). The linearization scheme
we use is described in the book by Haug and Jauho (1996) and presented in
this section. Its advantage of the linearized Boltzmann equation is that it re-
veals, which parts of the momentum distributions relax how fast. Without the
possibility of linearization, one would have to evolve different initial momentum
distributions in time, and try to extract the longest relaxation time.

It is important to note that it is an open question (Spohn, 2014) how to lin-
earize the full matrix-valued Boltzmann-equation derived by Fürst et al. (2012,
2013a,b). The 2-by-2 matrices involved in this case make the problem very
difficult, because they do not commutate in general.

The first step is defining the perturbation φν(k, t) of the quasiparticle momentum
distribution:

nν(k, t) =
1

1 + exp[β(Ων(k)− µ)− φν(k, t)]
. (2.18)

For any real-valued functions φν(k, t), the resulting momentum distribution
nν(k, t) has values between 0 and 1. Thus, nν(k, t) is a valid quasiparticle
momentum distribution for fermions.

The linearization of Eq. (2.18) yields

nν(k, t) = fν(k) + fν(k)
[
1−fν(k)

]
φν(k, t) +O

(
φ2
)
. (2.19)

We plug this into the collision term, Eq. (2.16), and then linearize the result. The
linearization is shown in detail in App. B.2. The resulting linearized Boltzmann
equation takes the form

φ̇ν(k, t) = −L̂[φ]ν(k, t), (2.20)

with the linear operator

L̂[φ](k1, t) =
2πU2

~2

∫

K2×R

dk2 dk3 dk4

∑

ν2,ν3,ν4
∈{1,..,4}

[
1−fν1(k1)

][
1−fν2(k2)

]
fν3(k3)fν4(k4)

fν1(k1)
[
1−fν1(k1)

]

×δ(∆k~k) δ
(
∆Ω~ν,~k

) ∣∣Φ~ν,~k
∣∣2[φν1(k1, t)+φν2(k2, t)−φν3(k3, t)−φν4(k4, t)

]
.

(2.21)

This formula is Eq. (B.62) from the appendix. In order to formally solve the
linear rate equation in Eq. (2.20), we will introduce the eigenfunctions of L̂,
which is possible, because L̂ is hermitian in the scalar product (see Eq. (B.64))

〈φ, ψ〉F :=

∫
dk
∑

n

φν(k) fν(k)
[
1− fν(k)

]
ψν(k), . (2.22)

Therefore, its eigenvalues λn are real-valued and the eigenfunctions χn(k) are
orthogonal in this scalar product. The scalar product induces the norm

‖φ‖F :=
√
〈φ, φ〉F. (2.23)
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It is important to note that for a small final temperature T , the scalar product
is of O(T ), which is shown by a Sommerfeld expansion, see App. B.4. For
T = 0, the scalar product vanishes, therefore it cannot induce a norm. However,
even ‖ · ‖F/T = O(1) is not a norm for temperature zero. The reason is the
factor fν(k)[1 − fν(k)]/T = f ′ν(k)/Ω′ν(k) in the scalar product 〈φ, ψ〉F/T . The
derivative f ′ν(k) becomes increasingly narrow in the limit T → 0. Finally, at
T = 0, it becomes proportional to δ(k+kF)−δ(k−kF). Hence, in this limit, the
scalar product only takes into account the values of φ and ψ at the two Fermi
momenta ±kF. Therefore, limT→0 ‖ · ‖F/T is only a semi-norm. However, we
are not interested in a final temperature of zero, because this implies that the
initial momentum distribution has already been the thermal distribution with
temperature zero. Thus, the scalar product induces a norm for the cases we are
considering.

The scalar product and the induced norm lead to the Hilbert space

{
g ∈ L2

(
R,R

) ∣∣∣ g(k+1) = g(k) ∀ k
}
. (2.24)

The eigenfunctions χ(j)
ν (k) of L̂ span this space. Thus, we can represent the

perturbation φν(k) with the eigenfunctions χ(j)
ν (k):

φν(k, t) =
∑

j

Aj(t) χ
(j)
ν (k). (2.25)

The linear rate Eq. (2.20) leads to

Aj(t) = Aj(0) e−λjt, (2.26)

and therefore

φν(k, t) =
∑

j

Aj(0) e−λjt χ(j)
ν (k). (2.27)

This is Eq. (B.76) from the appendix. The coefficient

Aj(0) =
〈χ(j), φ〉F
‖χ(j)‖2F

(2.28)

is the initial contribution of the jth eigenfunction. Eq. (2.26) shows that a con-
tribution Aj(t) decays exponentially with the rate λj . Thence, the eigenvalues
λj of the linear operator L̂ are the relaxation rates.

Since L̂ is positive semidefinite, the eigenvalues are positive. Thus, there is no
exponential growth, which would lead away from the thermal distribution fν(k).

Furthermore, it is important to note that L̂/U2 is independent of U . It is obvious
that this leads to the following two consequences. Firstly, every eigenvalue λj
is proportional to U2. Secondly, the eigenfunctions χ(j)

ν (k) do not depend on U
at all. This means that the eigenfunctions always stay in the U → 0 limit.
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2.3 Conserved contributions

The eigenvalues λj , which are zero, correspond to constant contributions, i.e.
Aj(t) = Aj(0) for all times t. Independent of the form of the dispersion relation
Ων(k), there are always two eigenvalues that are zero, the eigenvalue λ1 =
0 corresponding to the constant function and λ2 = 0 corresponding to the
dispersion relation, i.e.:

χ(1)
ν (k) = const

χ(2)
ν (k) = Ων(k). (2.29)

The formal reason for them to have an eigenvalue of zero is that the factor
φν1(k1, t)+φν2(k2, t)−φν3(k3, t)−φν4(k4, t) in the operator L̂ (see Eq. (2.21))
vanishes for both of them:

χ(1)
ν1 (k1) + χ(1)

ν2 (k2)− χ(1)
ν3 (k3)− χ(1)

ν4 (k4) = const · (1 + 1− 1− 1) = 0,
[
χ(2)
ν1 (k1) + χ(2)

ν2 (k2)− χ(2)
ν3 (k3)− χ(2)

ν4 (k4)
]
δ
(
∆Ω~ν,~k

)
= ∆Ω~ν,~k δ

(
∆Ω~ν,~k

)
= 0.

(2.30)
In order to find the physical reason, we have to see what happens if there are
contributions of these two eigenfunctions χ(1,2)

ν (k) in the perturbation φν(k, t).
Therefore, we consider the definition nν(k, t) = 1/{1 + exp[β(Ων(k) − µ) −
φν(k, t)]} of the perturbation, see Eq. (2.18). Plugging Eq. (2.27) into this
equation, the argument of the exponential becomes

β
(
Ων(k)− µ

)
−
∑

j

Aj(0) e−λjt χ(j)
ν (k)

=
(
β −A1(0)

)
Ων(k)−

(
βµ+A2(0)

)
−
∑

j>3

Aj(0) e−λjt χ(j)
ν (k). (2.31)

If φν(k) has a contribution of either of these eigenfunctions, the inverse tem-
perature β and the chemical potential µ may become modified. Thus, the time
evolution leads to another Fermi-Dirac distribution consisting of a different final
temperature βfinal and a different chemical potential µfinal:

βfinal = β −A2(0)

βfinal µfinal = βµ−A1(0) =⇒ µfinal =
βµ−A1(0)

β −A2(0)
(2.32)

Hence, β and µ are not the true final temperature and chemical potential,
respectively, but βfinal and µfinal are. If we redefine βfinal → β and µfinal → µ,
the contributions A1(0) and A2(0) vanish. Consequently, for every quasiparticle
momentum distribution nν(k, t) the perturbation φν(k) can be defined in such
a way that A1(0) = A2(0) = 0. Therefore, any contribution from the first two
eigenfunctions χ(1,2)

ν (k) can be avoided.

Furthermore, the eigenfunction χ(1)
ν (k) = const seems to be connected to the

total particle number, because it modifies βµ and the eigenfunction χ(2)
ν (k) =

Ων(k) is apparently related to the total energy, because it modifies the inverse
temperature β. These two connections become clearer in Sec. 2.4.

It is important to note that φν(k) = k, which corresponds to the total momen-
tum, is not an eigenfunction of L̂, since Umklapp processes are allowed.
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2.4 State-space operators corresponding to eigen-
functions of the linearized Boltzmann opera-
tor

In order to understand the physical meaning of the eigenfunctions of L̂, we make
a connection to the state space, i.e. the space of the quantum-mechanical states.
Therefore, we define the operator

Φ̂[ψ] :=

∫
dk
∑

ν

ψν(k) n̂ν(k), (2.33)

which maps the function ψν(k) to an operator in state space. These mappings
are motivated by the connection of the first two eigenfunctions χ(1,2)

ν (k) (see
Eq. (2.29)) to the total particle number and the total energy, see Sec. 2.3. The
corresponding operators are

N̂tot =

∫
dk
∑

ν

n̂ν(k) = Φ̂[χ(1)] (2.34)

and
Ĥ =

∫
dk
∑

ν

Ων(k) n̂ν(k) +O(U) = Φ̂[χ(2)] +O(U). (2.35)

In Sec. 2.3, we learned that the eigenfunctions always stay in the U → 0 limit.
So does the eigenfunction χ(2)

ν (k), which is related to the energy. This is the
reason why the operator Φ̂[χ(2)] is only the U → 0 limit of the total energy, i.e.
the kinetic energy, see Eq. (2.35).

So far, we only defined operators. Now, we will explain, why this definition is
physically reasonable for every eigenfunction of L̂. This is done by the expec-
tation values of the operators.

The expectation values are

〈
Φ̂[ψ]

〉
t

=

∫
dk
∑

ν

ψν(k) nν(k, t)

(2.19)
=

∫
dk
∑

ν

ψν(k)
[
fν(k) + fν(k)(1− fν(k)) φν(k)

]
+O(φ2)

=

∫
dk
∑

ν

ψν(k) fν(k) + 〈ψ, φ〉F +O(φ2)

=

∫
dk
∑

ν

ψν(k) fν(k)

︸ ︷︷ ︸
=const

+
∑

j

Aj(0) e−λjt〈ψ, χ(j)〉F +O(φ2). (2.36)

In the case of ψ being antisymmetric around k = 0, the constant contribution
is zero.

Now, we plug the eigenfunctions into Φ̂ and get the expectation value

〈
Φ̂[χ(j)]

〉
t

=

∫
dk χ(j)

ν (k) fν(k)

︸ ︷︷ ︸
=const

+Aj(0) e−λjt. (2.37)
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We find that the time evolution of the expectation value of Φ̂[χ(j)] resembles the
time evolution of perturbation φν(k) of the quasiparticle momentum distribution
nν(k, t). Thus, the operators Φ̂[χ(j)] help us to understand the physical meaning
of the eigenfunctions.

Further examples of operators in the form of Eq. (2.33) are the total momentum
operator, the total particle current, the total energy current, and the total heat
current:

K̂ =

∫
dk
∑

ν

k n̂ν(k) = Φ̂[id]

ĴN =
J

π~

∫
dk
∑

ν

Ω′ν(k) n̂(k) = Φ̂[jN ]

ĴE =
4J2

π~

∫
dk
∑

ν

Ω′ν(k) Ων(k) n̂(k) +O(U) = Φ̂[jE ] +O(U)

ĴQ = ĴE − µĴN = Φ̂[jQ] +O(U), (2.38)

with idν(k) := k, jNν (k) := Ω′ν(k), jEν (k) := Ω′ν(k) Ων(k), and jQν (k) := jEν (k) −
µjNν (k). The currents are derived for one band in App. C.5. It is important to
note that the Boltzmann equation can only cover the zeroth order in interac-
tion. For the energy current, this means that the U -term cannot be measured.
However, if U is small enough, this part is negligible. In the discussion of the
Hubbard model in Chapter 3 the operators in Eq. (2.38) will play an important
role in identifying the physical meaning of the eigenfunction, which belongs to
the smallest relaxation rate, see Sec. 3.5.2.

2.5 Interaction channels

In order to calculate the collision term Icoll (see Eq. (2.16)) or the linearized
Boltzmann operator L̂ (see Eq. (2.21)), we have to perform the integrations over
k2, k3, and k4. These integrations are restricted by δ(k1 + k2 − k3 − k4) and
δ(Ων1(k1)+Ων2(k2)−Ων3(k3)−Ων4(k4)). The two δ-distributions are momentum
conservation and energy conservation, respectively. In order to perform the
integrals, we have to know the possible combinations of k1, ..., k4, which obey
these two conservation laws. We call these combinations "interaction channels".

There are two kinds of channels, which we denote as trivial interaction chan-
nels and non-trivial interaction channels. Both are valid interaction channels.
However, trivial channels are all the channels, which do not contribute to the
collision term Icoll. Since L̂ is the linearization of Icoll and the trivial chan-
nels do not contribute for all quasiparticle momentum distributions, the trivial
channels do not contribute to L̂ either. Only non-trivial interaction channels
can make Icoll and L̂ become non-zero.

We will prove in Sec. 2.5.2 that a continuous periodic dispersion relation always
lead to non-trivial channels in the Boltzmann equation. This means that in these
cases the Boltzmann equation is never zero. However, it does not mean that
such Boltzmann equations always lead to the thermalization of the momentum
distribution, which they describe.
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2.5.1 Trivial interaction channels and their elimination
from the energy conservation

The formal definition of a trivial channel is that

nν1(k1, t)nν2(k2, t)
[
1−nν3(k3, t)

][
1−nν4(k4, t)

]

−
[
1−nν1(k1, t)

][
1−nν2(k2, t)

]
nν3(k3, t)nν4(k4, t) = 0 (2.39)

for every quasiparticle momentum distribution nν(k, t). Because the pertur-
bation φν(k, t) is defined by nν(k, t) (see Eq. (2.18)), Eq. (2.39) is also valid
for every φν(k, t). Thus, when Eq. (2.39) is linearized, every coefficient has to
vanish, especially the coefficient of the linear term:

fν1(k1) fν2(k2)
[
1−fν3(k3)

][
1−fν4(k4)

]

×
[
φν1(k1, t) + φν2(k2, t)− φν3(k3, t)− φν4(k4, t)

]
= 0. (2.40)

The prefactor containing the Fermi-Dirac functions is positive, therefore we have

φν1(k1, t) + φν2(k2, t)− φν3(k3, t)− φν4(k4, t) = 0. (2.41)

Let us consider an example for a trivial channel. For intra-band interactions
(ν = ν1 = ν2 = ν3 = ν4), there are trivial solutions to momentum and energy
conservation, for instance k1 = k3 ∧ k2 = k4. These solutions are momentum
exchanges and do not change the quasiparticle momentum distribution, i.e. they
do not contribute to Icoll. They are trivial interaction channels, because

nν(k1, t)nν(k2, t)
[
1−nν(k1, t)

][
1−nν(k2, t)

]

−
[
1−nν(k1, t)

][
1−nν(k2, t)

]
nν(k1, t)nν(k2, t) = 0. (2.42)

Moreover, one also has

φν(k1, t) + φν(k2, t)− φν(k1, t)− φν(k2, t) = 0. (2.43)

When we state the general cases of trivial channels, we do not restrict the kj
to a certain Brillouin zone. We use a description where k1, k2, k3 ∈ Z and
k4 = k1 + k2 − k3 +m, for any m ∈ Z.
In general, there are trivial interaction channels if ν3 = ν1 ∧ ν4 = ν2, or ν3 =
ν2 ∧ ν4 = ν1. In the first case, ν3 = ν1 ∧ ν4 = ν2, there is a trivial channel if
there are m,n ∈ Z so that k3 = k1 + n∧ k4 = k2 +m. This is equivalent to the
equality

sin
(
π(k3 − k1)

)
= 0. (2.44)

Similarly, the second case, where ν3 = ν2 ∧ ν4 = ν1, is described by

sin
(
π(k3 − k2)

)
= 0. (2.45)

For intra-band interactions, both cases are applicable. Then, we have

sin
(
π(k3 − k1)

)
sin
(
π(k3 − k2)

)
= 0. (2.46)
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The product of the two sinuses can be written as 1
2 [cos(π(2k3 − k1 − k2)) −

cos(π(−k1 + k2))]. Thus, Eq. (2.46) is equivalent to

cos
[
π(k1 − k2)

]
= cos

[
π(k3 − k4)

]
, (2.47)

which also holds for a more general quasi momentum conservation k4 = k1 +
k2 − k3 + n, n ∈ Z.
The trivial interaction channels can be omitted in numerics to save CPU time.
However, it turns out that it takes a lot of effort to do so. For the Hubbard
model, there is an equation that describes only the non-trivial channels, see
Eq. (3.27). This simplifies the numerical implementation in this case.

For other band structures like the one of the manganite chain in Eq. (4.38), the
trivial channels can be eliminated using a division by sin

(
π(k3−k1)

)
, sin

(
π(k3−

k2)
)
, or both. As an example, we consider ν3 = ν1 ∧ ν4 = ν2. There, the non-

trivial solutions are described by

∆Ων1ν2ν1ν2(
~k)

sin
(
π(k3−k1)

) =
Ων1(k1)− Ων1(k3) + Ων2(k2)− Ων2(k2 + k1 − k3)

sin
(
π(k3−k1)

) . (2.48)

For a very small y := k3−k1, one can get into trouble when performing numerical
calculations, because both the enumerator and the denominator go to zero. For
a small y, we perform a Taylor expansion in ŝy := sin(πy). For every y ∈ R, we
find that

Ων(x+ arctan[tan(πy)]/π) = Ων(x+ kmod(y)) = Ων(x+ y). (2.49)

It is important to note, that we do not use arcsin[sin(πy)]/π, because it gives
the wrong sign in the second Brillouin zone. Now, we can expand

Ων(x+ arctan[t̂y]/π)

= Ων(x) + Ω′ν(x)
t̂y
π

+ Ω′′ν(x)
t̂2y

2π2
+

[
−Ω′ν(x)

4π
+

Ω′′′ν (x)

6π3

]
t̂3y +O

(
t̂4y
)
, (2.50)

with t̂y := tan(πy). Expanding Ων1(k3) and Ων2(k2 + k1 − k3) in this manner,
we can bring Eq. (2.48) in a form, which can be numerically evaluated for small
kmod(y):

∆Ων1ν2ν1ν2(
~k)

ŝy
=

[
−Ω′ν(k1)− Ω′ν(k2)

πĉy
− Ω′′ν(k1) + Ω′′ν(k2)

2π2ĉ2y
ŝy

]
+O

(
ŝ2
y

)
,

(2.51)
with ĉy := cos(πy) and y = k3 − k1. To find only the non-trivial channels and
keep up a high precision, the points where trivial and non-trivial channels meet
have to be treated very carefully.

2.5.2 Existence of non-trivial interaction channels

The interesting channels are those interaction channels, which contribute to the
collision term. We denote these channels as non-trivial interaction channels.
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Figure 2.1: For the proof of the existence of non-trivial interaction channels: For
k2 = 0.3, we schematically plot sgn(∆E) as a function of k1 and k3. denotes one sign
and the other. The trivial channels are the vertical line k3 = k2 and the diagonal
line k3 = k1. Since ∆E is periodic in all kj , there must be an additional sign change,
which is at the Brillouin-zone in this figure.

For inter-band interactions, we prove below that such channels exist (see also
Biebl and Kehrein (2016)).

The change of energy for this single band with index ν is

∆E := ∆Ων,ν,ν,ν(~k) = Ων(k1) + Ων(k2)− Ων(k3)− Ων(k1+k2−k3). (2.52)

The proof is visualized in Fig. 2.1. There, we plotted the sign2 of the energy
change sgn(∆E) as a function of k1 and k3 for a fixed k2 = 0.3. When sgn(∆E)
is zero, we have a possible two-particle interaction channel because of the conti-
nuity of the dispersion relation Ων(k). Beside the first Brillouin zone of k1 and
k3, we plotted the region (k1, k3) ∈ [ 1

2 ,
3
2 ] × [− 1

2 ,
1
2 ]. This region looks exactly

like the first Brillouin zone due to the 1-periodicity of ∆E in every kj , which is
inherited from the 1-periodicity of Ων(k).

If there is no non-trivial channel within the first Brillouin zone, the proof is
done. Otherwise, the situation is the same as in Fig. 2.1, which means that
there is a non-trivial channel at the border where k1 = 1

2 . So in fact, there is a
non-trivial channel, which proves our claim.

Of course, there is the possibility that the trivial channels could be double
zeros, i.e. there is a zero, but no sign change. If only one of the trivial channels
is a double zero, then there will still be a sign change on at least one of the
Brillouin-zone boundaries.

For the last case, we assume that both trivial interaction channels are double
zeros of ∆E. This leads to the fact that there is no sign change at the trivial in-
teraction channels. Thus, if there is no further channel within the first Brillouin

2The sign function is defined as

sgn(x) =

 1 for x > 0
0 for x = 0
−1 else.
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zone, then ∆E has exactly one sign, w.l.o.g.

∆E > 0 ∀k1,2,3, k4 = k1 + k2 − k3. (2.53)

Now, we interchange k1 with k4 and k2 with k3. Momentum is still conserved,
but the energy change has gained a minus sign. Hence, we have

∆E 6 0 ∀k1,2,3, k4 = k1 + k2 − k3. (2.54)

The result is that ∆E is zero everywhere. But this means that the dispersion
relation is a constant, i.e. the band is completely flat. The constant dispersion
relation has a solution for every combination of momenta, as long as momentum
is conserved. Thus also in this case there are non-trivial interaction channels.

It is important to note, however, that for the case of ∆E ≡ 0 the Boltzmann
equation diverges, which rules out the use of the constant dispersion relation.
Furthermore, the existence of non-trivial channels does not necessarily lead to
thermalization within two-particle scattering, e.g. in integrable systems like the
standard 1d-FHM (Fürst et al., 2012). However, we expect thermalization to
happen in most cases, like the integrability broken one-dimensional Hubbard
model (Fürst et al., 2013b).



Chapter 3

Relaxation rates in the
Hubbard model with
next-to-nearest-neighbor
hopping

In this chapter, we consider the Hubbard model with a next-to-nearest-neighbor
hopping term and try to find the relaxation rates of the quasiparticle momentum
distribution. In the first section, we introduce the model. Then, in Sec. 3.2,
we set up the Boltzmann equation and introduce the perturbation φ(k), which
linearizes it. This is needed to find the relaxation rates. Moreover, we also
show physically meaningful examples that illustrate the physical nature of φ(k).
In Sec. 3.3, we will show the numerical scheme, which calculates the relaxation
rates from the linearized Boltzmann equation. The section that follows, Sec. 3.4,
displays the results of the numerical scheme. We will show how the relaxation
rates depend on the inverse final temperature, the chemical potential, and next-
to-nearest-neighbor hopping parameter.

In the previous chapter, it was already been noted that the third relaxation rate
is most important, because it is the thermalization rate. In Sec. 3.5, we will
find an approximation for its eigenfunction. Then, we use this approximation to
link this thermalization rate to an operator in state space. Afterwards, we will
give an example on how approximating the eigenfunction helps us to determine
the long-time temperature dependence for certain operators. As examples, the
total particle current and the total energy current are used in Sec. 3.5.3.

In Sec. 3.6, we will calculate the first-order perturbation theory of the linearized
Boltzmann equation in the next-to-nearest-neighbor hopping amplitude. After-
wards, it will be shown that the first order contribution of the lowest eigenvalues
vanishes. We will show that this agrees with our numerical findings.
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3.1 The Hubbard model and next-to-nearest-neighbor
hopping

The Hubbard model is a minimal model describing the valence electrons in
a simple metal with one sort of atoms. It was invented by Hubbard (1963,
1964a,b); Gutzwiller (1963); Kanamori (1963). For one dimension, the Hubbard
Hamiltonian (see also Eq. (1.69)) in the Wannier form is

Ĥ = −
∑

l,m∈Z

∑

σ∈{↑,↓}
Jlm ĉ†l,σ ĉm,σ +H.c.+ U

∑

l∈Z
n̂l,↑n̂l,↓. (3.1)

The first term is called the hopping term because it is the kinetic part of the
Hamiltonian. The second term is the interaction term. It assumes that the
Coulomb interaction is screened and consequently short-ranged. Therefore, in
good approximation, electrons only interact, when they are at the same atom.

The most simple form of a hopping term assumes that the highest occupied
atomic orbitals overlap only for neighboring atoms. This kind of hopping is
called nearest-neighbor hopping and leads to the Hamiltonian

Ĥ = −J
∑

l∈Z

∑

σ∈{↑,↓}
ĉ†l,σ ĉl+1,σ +H.c.+ U

∑

l∈Z
n̂l,↑n̂l,↓. (3.2)

We denote this model as the integrable Hubbard model. It is integrable, be-
cause it has an infinite amount of conserved quantities in the thermodynamic
limit. For this model, integrability can be broken by an additional hopping or
interaction term. Thus, the integrable model is only a singular part of all pos-
sible Hubbard models and extended Hubbard models. It is important to note
that a Boltzmann equation, like the one we will consider, cannot detect integra-
bility breaking by an interaction term, because an additional interaction term
would only modify

∣∣Φ~ν,~k
∣∣2. Therefore, the resulting Boltzmann equation would

have the same conserved quantities as the one without an additional interac-
tion term. Moreover, it is also not clear if it can detect integrability breaking
by a hopping term. However, we will investigate the relaxation rates in the
Boltzmann-equation approach when we extend the integrable Hubbard model
by an additional next-to-nearest-neighbor hopping term, which takes into ac-
count the non-zero overlap of next-to-nearest valence orbitals. The Hamiltonian
of the corresponding Hubbard model reads

Ĥ =
∑

l∈Z

∑

σ∈{↑,↓}

[
−J ĉ†l,σ ĉl+1,σ − J ′ ĉ

†
l,σ ĉl+2,σ

]
+H.c.+ U

∑

l∈Z
n̂l,↑n̂l,↓. (3.3)

For simplicity, we define dimensionless parameters ε := J ′/J and β := 2J/kBT ,
where T is the final temperature, which is dependent on the energy of the initial
state. Furthermore, we introduce the dimensionless chemical potential µ, which
is measured in units of 2J .

The Boltzmann equation resulting from Eq. (3.3) was previously investigated
by Fürst et al. (2012, 2013b). They found that for J ′ = 0, the quasiparticle
momentum distributions do not thermalize, but relax to non-thermal station-
ary quasiparticle momentum distributions. The timescales for the relaxation
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are relatively fast. Conversely, for J ′ 6= 0, the initial quasiparticle momentum
distributions thermalize within the Boltzmann-equation description. Moreover,
the timescales for the thermalization at J 6= 0 are much longer than the re-
laxation times of the integrable case. We will come back to this in Sec. 3.2.1
and Chapter 5.

The Hubbard Hamiltonian has one single-particle band, therefore Nb = 1. In
the Bloch form, cf. Eq. (2.2), it reads

Ĥ = Ĥ0 + Ĥint

Ĥ0 = 2J

∫
dk
∑

σ

ω(k) n̂σ(k)

Ĥint = U

∫
d4k δ

(
kmod(∆k~k)

)
ĉ†↑(k1) ĉ†↓(k2) ĉ↓(k3) ĉ↑(k4). (3.4)

The comparison with Eq. (2.2) yields

Ω1(k) =
2J

~
ω(k) and Φ~k = 1. (3.5)

Moreover, the dispersion relation ω(k) of Eq. (3.4) is easily calculated from
Eq. (3.3). It is

ω(k) = − cos(2πk)− ε cos(4πk). (3.6)

The transformed creation operators are

ĉσ(k) =
∑

l

e−i2πkj ĉl,σ. (3.7)

For the derivation of Eq. (3.4), see App. C.1.

3.2 The Boltzmann equation for the Hubbard model

In Sec. 3.1, we found the 1-band form of the Hubbard Hamiltonian. Using
Eq. (3.5), the Boltzmann equation in Eq. (2.16) reduces to

ṅ(k, t) = Icoll[n](k, t), (3.8)

with the collision integral

Icoll[n]1 =
2πU2

~2

∫
dk2 dk3 dk4 δ(∆k~k) δ(2J∆ω~k/~)

×
[
(1−n1)(1−n2)n3n4 − n1n2(1−n3)(1−n4)

]

=
πU2

~J

∫
dk2 dk3 dk4 δ(∆k~k) δ(∆ω~k)

×
[
(1−n1)(1−n2)n3n4 − n1n2(1−n3)(1−n4)

]
. (3.9)

To shorten the notation, we introduce Xj = X(kj , t) for X = n, φ and Yj =
Y (kj , t) for Y = f, ω. The two terms in the square brackets are the gain and
the loss term taking into account Fermi-Dirac statistics. Furthermore, ∆k~k =
kmod(k1 + k2 − k3 − k4) is the change in total momentum and ∆ω~k = ω(k1) +
ω(k2) − ω(k3) − ω(k4) is the change in energy. Defined in Eq. (2.3), the kmod
function maps its parameter into the first Brillouin zone [− 1

2 ,
1
2 ). It is important

to note that the missing factor 2 in the prefactor comes from the 2 in Eq. (3.5).
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3.2.1 Linearized Boltzmann equation

In this section, we will apply the findings of the general section on the lin-
earized Boltzmann equation (Sec. 2.2) to the Hubbard model. The linearized
quasiparticle momentum distribution is

n(k, t) =
1

1 + exp[β(ω(k)− µ)− φ(k, t)]
≈ f(k) + f(k)

[
1− f(k)

]
φ(k, t).

(3.10)
It leads to the rate equation (Eq. (2.20))

φ̇(k, t) = −L̂[φ](k, t). (3.11)

In this equation, the linear, positive semidefinite, and hermitian operator L̂ is

L̂[φ]1 =
πU2

~J

∫
dk2 dk3 dk4

1∑

m=−1

δ(∆k~k+m) δ(∆ω~k)

× F1234

[
φ1 + φ2 − φ3 − φ4

]
, (3.12)

see Eq. (2.21). Here, we defined the factor F1234 := (1− f2)f3f4/f1 containing
all the Fermi-Dirac functions involved. It can be rewritten into

F1234 =
[
(1− f1) + f1

] (1− f2)f3f4

f1

= (1− f1)
(1− f2)f3f4

f1
+ f1

(1− f2)f3f4

f1

= (1− f1)
f2(1− f3)(1− f4)

1− f1
+ f1

(1− f2)f3f4

f1

= f2(1− f3)(1− f4) + (1− f2)f3f4. (3.13)

Scalar product, norm and decomposition: For the single-band model,
the scalar product defined in Eq. (2.22) looses the sum and becomes

〈ψ, φ〉F :=

∫
dk ψ(k) f(k)

[
1− f(k)

]
φ(k). (3.14)

It induces the norm
‖ψ‖F :=

√
〈ψ,ψ〉F. (3.15)

The operator L̂ is hermitian in this scalar product, see Eq. (B.64). The expan-
sion in Eq. (2.27) is formally the same in the case of a single band:

φ(k, t) =
∑

j

Aj(0) e−λjt χ(j)(k). (3.16)

Hereby, the coefficients Aj(0) are determined by the initial state. The exponen-
tial factor shows that λj are the relaxation rates we are looking for.

An eigenvalue λj , which is zero, means that the contribution Aj(t) of the corre-
sponding eigenfunction χj(k) persists over time. The other contributions decay
exponentially in time.
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Fixed points: In this paragraph, we will identify fixed points of the Boltz-
mann equation established in Eq. (3.9). One fixed point, which is present for any
dispersion relation, is the thermal distribution. In our case, it is the Fermi-Dirac
distribution

f(k) =
1

1 + exp[β(ω(k)− µ)]
. (3.17)

This means that the collision term vanishes for n = f , so that

Icoll
[
f
]
≡ 0 ∀ω. (3.18)

The derivation can be found in App. C.7.

For the special case of the integrable Hubbard model, ε = 0, there is a whole
class of additional fixed points. Fürst et al. (2012) found stationary quasiparticle
momentum distributions of the form

fS(k) =
1

1 + exp[φS(k)− a]
, (3.19)

where the 1-periodic function φS(k) is antisymmetric around k = ± 1
4 :

φS
(
± 1

4 + k
)

= −φS
(
± 1

4 − k
)
. (3.20)

This means that the collision term vanishes for the stationary quasiparticle
momentum distributions, cf. App. C.8:

Icoll
[
fS
]∣∣∣
ε=0
≡ 0. (3.21)

The reason for the stationarity is the fact that ∆ω~k
∣∣
ε=0

= 0 is equivalent to
kmod(k1 + k2 − 1

2 ) = 0.

The relation between the perturbation φ(k, t) and the quasiparticle momentum
distribution n(k, t), as defined in Eq. (3.10), has the same form as the non-
thermal stationary distributions fS(k), see Eq. (3.19). Thence, φS(k) is a fixed
point of the linear operator for the integrable Hubbard model, i.e.

L̂
[
φS
]∣∣∣
ε=0
≡ 0. (3.22)

This means that every φS(k) fulfilling Eq. (3.20) is an eigenfunction of L̂
∣∣
ε=0

and corresponds to the eigenvalue zero. The respective contribution to the total
perturbation φ(k) is conserved.

3.2.2 Separation and description of the non-trivial inter-
action channel

In Sec. 2.5, we introduced the interaction channels of the Boltzmann equation.
The trivial channels we described in Sec. 2.5.1 do not contribute to Icoll and
L̂. Only the non-trivial channels can contribute to Icoll and L̂. In Sec. 2.5.2,
we proved that they exist, as long as the dispersion relation is continuous and
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periodic, like the dispersion relation ω(k) of the Hubbard model. In the follow-
ing, we will demonstrate that the trivial channels can be separated from the
non-trivial channels in the case of the Hubbard model.

Defined in Eq. (3.6), the dispersion relation reads

ω(k) = − cos(2πk)− ε cos(4πk). (3.23)

To shorten our notation, we define

ck := cos(2πk), c̃k := cos(4πk),

sk := sin(2πk), s̃k := sin(4πk). (3.24)

In order to simplify the calculation of the non-trivial interaction channels, we
introduce new momentum coordinates

k := 1
2 (k1 + k2), k′ := 1

2 (k3 + k4),

p := 1
2 (k1 − k2), q := 1

2 (k3 − k4). (3.25)

We will denote this set of momentum coordinates containing relative and to-
tal momenta as "center of mass and relative momentum coordinates". These
variables are very well suited for describing scattering, since momentum conser-
vation is trivially fulfilled by identifying k = k′. The other set of coordinates,
{k1, k2, k3, k4}, we call "original momentum coordinates", because they define
the scattering process in the first place.

For writing the dispersion relation in the new variables, the first step is

ck1 + ck2 = 2 ck cp

c̃k1 + c̃k2 = 2 c̃k c̃p = 2 c̃k(2c2p − 1). (3.26)

This holds similarly for k1, k2, p → k3, k4, q. Thence, the energy conservation
becomes

∆ω~k = −ck1 − ck2 + ck3 + ck4 − ε
[
c̃k1 + c̃k2 − c̃k3 − c̃k4

]

= −2 ck(cp − cq)− 2 ε c̃k
[
(2c2p − �1)− (2c2q − �1)

]

= 2 (cp − cq)
[
ck + 2 ε c̃k (cp + cq)

]
. (3.27)

If the factor cp−cq is zero, we have trivial channels, see Eq. (2.47). In this case,
we get an equation that describes the non-trivial channels only:

ck + 2 ε c̃k (cp + cq) = 0. (3.28)

One can easily consider two extreme cases: For ε → 0, the second term of the
l.h.s. in Eq. (3.28) vanishes and we are left with

ck = 0. (3.29)

This leads to
k1 + k2 = ±1

2
. (3.30)

Later on, we will see that increasing ε a little bit will change the statement by
O(ε).
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In the other extreme, ε→∞, there is no nearest-neighbor hopping, only next-
to-nearest-neighbor hopping. Thus, the chain splits into two independent ones:
The chain with the odd positions and the chain with the even positions. Thence,
the band −ε cos(4πk) with k ∈ K is split into two independent bands. The first
band is ω1(k′) = − cos(2πk′), with k′ = 2k and k ∈ (− 1

4 ,
1
4 ]. The second

band looks similar, ω2(k′) = − cos(2πk′), but now k′ = kmod(2k) and k ∈
(− 1

2 ,− 1
4 ] ∧ (− 1

4 ,
1
2 ]. Hence, we have two bands with k′ = kmod(2k) ∈ K.

The trivial interaction channels come from cp′ − cq′ = 0, as demonstrated in
Eq. (2.47). With the primed variables being twice the unprimed variables, we
obtain

0 = cp′ − cq′ = c̃p − c̃q = 2(cp − cq)(cp + cq). (3.31)

Let us compare this to the full energy conservation, Eq. (3.27). In our case,
only the second term 4 ε c̃k(cp− cq)(cp + cq) contributes. It describes the trivial
channels correctly, because it contains the factor c̃p− c̃q. The remaining factor,
c̃k = 0, is equivalent to ck′ = 0. This describes the non-trivial channels and is
consistent with the finding for one chain, i.e. ε = 0, see Eq. (3.29).

Now that we have established that the non-trivial channels are consistent and
physically reasonable in the extreme cases, we consider the solutions between the
two extreme cases, i.e. for general next-to-nearest-neighbor hopping ε. There-
fore, we consider the non-trivial solutions

ck + 2 ε rpq (2c2k − 1) = 0, (3.32)

where we defined rpq := (cp + cq). The momenta k, which solve Eq. (3.32) are
denoted by k̃

ε

pq. Completing the square, we find

cos
(
2πk̃

ε

pq

)
=
−1±

√
1 + 32 (ε rpq)2

8 ε rpq
. (3.33)

Next, we show that for ε < 1
4 the solution with the minus sign is not valid.

Setting x := 4 ε rpq, the right-hand side is
∣∣∣∣∣
−1−

√
1 + 2x2

2x

∣∣∣∣∣ 6 1 ⇐⇒
√

1 + 2x2 6 2|x| − 1. (3.34)

If |x| < 1, the inequality cannot be fulfilled, since
√

1 + 2x2 > 1. In the other
case, the right-hand side is bigger than zero. Hence, we are allowed to square
both sides and get

⇐⇒ 2x2 6 4x2 − 4|x| ⇐⇒ 0 6 |x|
(
|x| − 2

)
. (3.35)

For |x| < 2, this cannot be fulfilled. Thus, for ε = |x|
4 |rpq| 6

|x|
8 < 1

4 , the minus
sign solution is not valid.

The limiting case is ε = 1
4 . Thence, we have

x = ±2⇔ rpq = ±2⇔ p = q =
n

2
with n ∈ Z

⇔ k1 − k2 = 2k3 − k1 − k2 = n with n ∈ Z
⇔ k1 = k3 ∧ k2 = k1 + n with n ∈ Z. (3.36)
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Shifting the kj into the Brillouin zone K =
(
− 1

2 ,
1
2

]
, this equation describes the

point k1 = k2 = k3 = k4 as a special coincidence of the trivial channels. Hence,
for ε = 1

4 , the additional non-trivial channel is actually coinciding with trivial
channels. It is important to note that for ε > 1

4 , the additional channel does
not coincide with trivial channels in general.

We have proven that Eq. (3.33) does not have the solution with the minus sign
when

ε 6 1
4 . (3.37)

This is sufficient to describe small integrability breaking. Thus, from now on, we
will only consider this case. This is also motivated by the fact that for ε > 1

4 we
would have to implement the additional interaction channel into our numerical
code.

The plus-sign solution of Eq. (3.33) is valid for all ε rpq:
∣∣∣∣∣
−1 +

√
1 + 2x2

2x

∣∣∣∣∣ 6 1 ⇐⇒
√

1 + 2x2 6 2|x|+ 1 ⇐⇒ 0 6 2x2 + 4|x| .

(3.38)
Thus, in our case, we obtain

cos
(
2πk̃

ε

pq

)
=

√
1 + 32 (ε rpq)2 − 1

8 ε rpq
. (3.39)

For ε = 0, the non-trivial interaction channel yields k̃
0

pq =± 1
4 , see Eq. (3.30).

Therefore, we define

d
ε
pq := k̃

ε

pq − 1
4 . (3.40)

This yields

sin
(
2πd

ε
pq

)
=

√
1 + 32 (ε rpq)2 − 1

8 ε rpq
. (3.41)

This equation has two solutions and we choose

d
ε
pq =

1

2π
arcsin

{√
1 + 32 (ε rpq)2 − 1

8 ε rpq

}
∈
[
− 1

4 ,
1
4

]
. (3.42)

Hence, we obtain k̃
ε

pq ∈
[
0, 1

2

]
and

k̃
ε

pq := +
1

2π
arccos

{√
1 + 32 (ε rpq)2 − 1

8 ε rpq

}
. (3.43)

However, we must keep in mind that −k̃εpq is also a solution of the equation
∆ω~k = 0. At this point, we notice that k̃

ε

pq and d
ε
pq only depend on ε rpq.

Furthermore, dεpq is an odd function of ε rpq. A Taylor expansion around ε = 0
yields

d
ε
pq = − 1

π
ε rpq +

22

3π
(ε rpq)

3 +O(ε rpq)
5. (3.44)
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Therefore, we get

k̃
ε

pq = 1
4 +O(ε). (3.45)

This leads to the fact that non-trivial interaction channels are altered by O(ε)
when turning on the next-to-nearest-neighbor hopping.

The solution k̃
ε

pq can be expressed using the original momentum coordinates.
However, it can not be solved for one of the kj . But the Taylor expansion can be
found using an iterative approach. As an example, we demonstrate the iteration
for k2. It starts using the zeroth order expansion

k2 = ±2 k̃
ε

pq − k1 = ± 1
2 +O(ε). (3.46)

This is plugged into the r.h.s. of Eq. (3.43), which yields the first-order expansion

k1 + k2 = ± 1
2 − ε∆13,

∆13 = 2
π (sk1 + sk3) +O(ε3). (3.47)

Hence, the nth iteration step is plugging the nth-order expansion into the r.h.s.
of Eq. (3.43), which leads to the (n+1)st-order expansion. This way, the Taylor
expansion can be calculated up to every finite order. The third-order expansion
of k1 + k2 = ± 1

2 − ε∆13 yields

∆13 = 2
π (sk1 +sk3)

[
1 + 2 ε(ck1 +ck3) + 4 ε2[(ck1 +ck3)2 − 7

3 (sk1 +sk3)2]
]

+O(ε3).
(3.48)

The fact that k̃
ε

pq = 1
4 +O(ε) leads to very tight bounds on k̃

ε

pq. Rough bounds
can be found easily by noticing that k̃

ε

pq is a monotonic function of ε rpq:

d

dx

√
1 + 2x2 − 1

2x
=

1√
1 + 2x2

−
√

1 + 2x2 − 1

2x2

=
1

2x2
+

1√
1 + 2x2

[
1− 1 + 2x2

2x2

]
=

1

2x2

[
1− 1√

1 + 2x2

]

=
1

2x2
√

1 + 2x2

[√
1 + 2x2 − 1

]
> 0 ∀x. (3.49)

Furthermore, we make use of the fact that the cosine is bounded, in particular
−2 6 rpq ≡ cp + cq 6 2. Due to the monotonicity of k̃

ε

pq, we obtain bounds of
k̃
ε

pq by plugging the bounds on rpq into Eq. (3.43):

−
√

1 + 128 ε2 − 1

16 ε
6 cos

(
2πk̃

ε

pq

)
6

√
1 + 128 ε2 − 1

16 ε
. (3.50)

We defined k̃
ε

pq to be non-negative. With the cosine being monotonically de-
creasing in the parameter range (0, 1

2 ), we obtain

1

2π
arccos

(√
1 + 128 ε2 − 1

16 ε

)
6 k̃

ε

pq 6
1

2π
arccos

(
−
√

1 + 128 ε2 − 1

16 ε

)
.

(3.51)
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Figure 3.1: Emergence of the additional non-trivial interaction channel. In all
pictures, we set k1 = 0.4. The next-to-nearest-neighbor hopping parameter is ε = 0.22
(A), ε = 0.25 (B), and ε = 0.27 (C). In the last picture, an additional solution appears
in form of a circle. It is the minus-sign solution of Eq. (3.58).

For very small ε:

1

4
− 2ε

π
+O(ε3) < k̃

ε

pq <
1

4
+

2ε

π
+O(ε3). (3.52)

Thus, the solution k̃
ε

pq is bound to a small region around 1
4 . The region is

of O(ε). Even for our maximal next-to-nearest-neighbor hopping, ε = 1
4 , the

region is still quite narrow:
1

6
6 k̃

ε

pq 6
1

3
. (3.53)

We conclude that for weakly broken integrability (small ε), the interaction chan-
nels change only slightly. However, it is not clear yet if this is sufficient to see
thermalization within the Boltzmann equation’s description. We will address
this issue in Sec. 3.4.

3.2.3 Uniqueness of the non-trivial interaction channel for
the Hubbard model

In this section, we make a contribution to the implementation of the numerical
scheme that diagonalizes the linear Boltzmann operator L̂. We investigate the
energy conservation ∆ω~k = 0, written in the original momentum coordinates
k1, k2, k3, and k4. The momentum k4 is fixed by momentum conservation:
k4 = k1 + k2 − k3. Since L̂[φ](k1) depends on k1, the momentum k1 is also
fixed. The two integrations over k2 and k3 are left. In general, one has to
scan all three parameters (k2, k3) ∈ K3 ≡

(
− 1

2 ,
1
2

]3 and find the zeros of the
function (k1, k2, k3) 7→ ∆ω~k. However, for the Hubbard model with next-to-
nearest-neighbor hopping, there is a big simplification making the numerical
implementation considerably simpler: Given k1 and k3, there is exactly one
non-trivial k2, which fulfills the energy conservation. In the following, we will
proof this statement.

Let us rearrange the energy conservation ∆ω~k = 0:

ω(k2)− ω(k2 + k1 − k3) = ω(k3)− ω(k1). (3.54)
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We can rewrite the left side in the form

f(x) := ω(x+ z)− ω(x− z), (3.55)

with the variable x = k2 + 1
2 (k1 − k3) and the constant z = 1

2 (k3 − k1). Then,
we define C := ω(k3)− ω(k1). Thus, Eq. (3.54) becomes

f(x) = C. (3.56)

This equation can have two solutions for x at most, because the function f(x)
has exactly one maximum and one minimum in the interval (− 1

2 ,
1
2 ] for ε 6 1

4 .
The extrema are the solutions of

0 =
d

dx

[
ω(x+ z)− ω(x− z)

]

= 2π
[
sx+z − sx−z

]
+ 4πε

[
s̃x+z − s̃x−z

]

= 4π sz
[
cx + 4ε c̃x cz

]

= 4π sz
[
cx + 8ε c2x cz − 4ε cz

]
. (3.57)

This is solved by

⇒ cx =
−1±

√
1 + 2α2

2α
, (3.58)

with α := 8ε cz. The solution with the positive sign gives two solutions (if
x = x0 is a solution, so is x = −x0, because of c−x = cx).

Considering Eq. (3.58) with the negative sign, there is no solution as long as
ε < 1

4 , because −1 6 cx 6 1. This can be proven by considering the minimum
value of cx, which is −1:

− 1 =
−1−

√
1 + 2α2

2α

⇔ 2α = 1 +
√

1 + 2α2. (3.59)

The l.h.s. shows that α has to be bigger than 1. Thus, we have

4α2 − 4α+ 1 = 1 + 2α2

⇔ 0 = 2α2 − 4α = 2α(α− 2). (3.60)

α = 0 is not a solution, because α > 1. Therefore, we obtain

α = 2⇔ cz =
1

4ε
. (3.61)

This can only work for ε > 1
4 .

So far, we have shown that the function ω(x + z) − ω(x − z) has exactly two
extrema in x ∈ (− 1

2 ,
1
2 ]. These extrema can only be one minimum and one

maximum because of the continuity and the periodicity of the dispersion relation
ω(k). Between two consecutive extrema, the function has to be monotonic.
Thus, setting the function equal to a constant, there can only be one solution
between two consecutive extrema. Therefore, there are exactly two solutions of
ω(x+ z)− ω(x− z) = C, as long as the constant C does not lie on the extreme
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values or exceeds them. The constant C cannot exceed the function values,
because it is a value of the function f(x):

C = f

(
k3 + k1

2

)
. (3.62)

Approaching an extremum, the two solutions lie closer together. At the ex-
tremum, the trivial solution k2 = k3 and the non-trivial solution coincide. Thus,
there is one point where the non-trivial solution is actually trivial. For every
k1, there is a k3-value, where the trivial and the non-trivial solution coincide.

For the case of k1 = k3, obviously all k2 are possible solutions, but these are of
course trivial solutions. In this case, there is one k2, where the solution coincides
with the non-trivial channel.

To visualize this, we consider the space (k2, k3) ∈ K2 with a fixed k1 in Fig. 3.1.
There, we plot all the points having a solution to the energy conservation. This
gives us three continuous lines: The non-trivial solution’s line, and the two
trivial solutions’ straight lines k2 = k1 and k2 = k3. Indeed one can see that,
at one point, the trivial solution k2 = k3 and the non-trivial solution coincide.
Moreover, in the case of k1 = k3, one sees that there is also one point, where
the solutions coincide, i.e. the previously mentioned continuation.

Fig. 3.1 also shows that for ε > 1
4 , there is an additional line forming a circle.

It stems from the solution with the minus sign in Eq. (3.58). For ε = 1
4 , these

solutions are contracted to a single point. Hence, in principle, this limiting case
also has additional extrema in the function f(x):

± 1 =
−1−

√
1 + 8c2z

4cz
∧ cx = ±1

⇔ ∓ 4cz − 1 =
√

1 + 8c2z ∧ cx = ±1

⇔ 16c2z ± 8cz + 1 = 1 + 8c2z ∧ ∓4cz − 1 > 1 ∧ cx = ±1

⇔ 8c2z ± 8cz = 0 ∧ ∓cz > 1
2 ∧ cx = ±1

⇔ (cz = ∓1 ∨ cz = 0) ∧ ∓cz > 1
2 ∧ cx = ±1

⇔ cz = ∓1 ∧ ∓cz > 1
2 ∧ cx = ±1

⇔ cz = ∓1 ∧ cx = ±1

⇔
∨

m,n∈Z

[(
z = n ∧ x = 1

2 +m) ∨ (z = 1
2 + n ∧ x = m

)]
. (3.63)

Using x = k2 + 1
2 (k1 − k3) and z = 1

2 (k3 − k1), we obtain
∨

m,n∈Z

[(
z = n ∧ x = 1

2 +m) ∨ (z = 1
2 + n ∧ x = m

)]

⇔
∨

m,n∈Z

[(
1
2 (k3+k1) = n ∧ k2+ 1

2 (k1−k3) = 1
2−m)

∨
(

1
2 (k3−k1) = 1

2 +n ∧ k2+ 1
2 (k1−k3) = m

)]

⇔
∨

m,n∈Z

[(
k3 = k1+2n ∧ k2 = 1

2 +m−n) ∨ (k3 = k1+1+2n ∧ k2 = 1
2 +n+m

)]
.

(3.64)
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Shifting the momenta kj into the Brillouin zone K =
(
− 1

2 ,
1
2

]
, we are left with

the single solution
k3 = k1 ∧ k2 = 1

2 . (3.65)

It follows that the two additional extrema coincide and we thus only have one
additional extremum. Having three extrema in the Brillouin zone means that
one still has one maximum and one minimum. The third extremum is either
the same as the minimum or the maximum or it is an inflection point. Either
way, the reasoning for the unique solution for ε < 1

4 is still valid here for ε = 1
4 .

It is important to note that this is consistent with the fact that the additional
non-trivial channel coincides with a trivial channel for ε = 1

4 , see Eq. (3.36).

In summary, for ε 6 1
4 there is a unique non-trivial solution

k2 = k̃2(k1, k3) (3.66)

solving the energy conservation for a fixed k1 and k3 (k4 follows from momentum
conservation). Hence, the algorithm for the numerical scheme is as follows:

1. Fix the momenta k1 and k3, for which a solution is supposed to be found.

2. Calculate an approximate solution using the Taylor expansion of k̃2(k1, k3) =
1
2 − k1 −∆13, see Eq. (3.48).

3. Use a root-finding algorithm like the Newton-Raphson procedure to find
the roots of the non-trivial part of the energy conservation, see Eq. (3.28).

3.2.4 The reformulation of the delta distribution of the
energy conservation

For both analytical and numerical calculation, it is inevitable to rewrite the
delta-distribution δ(∆ω~k), which is a factor of the collision term Icoll and the
linearized Boltzmann operator. The first paragraph treats δ(∆ω~k) written with
the original momentum coordinates k1, k2, k3, and k4, which we use for the
numerical evaluation, the second paragraph deals with δ(∆ω~k) using the center
of mass and relative momentum coordinates k, p, and q, which is necessary for
the analytical calculations.

Original momentum coordinates: Using the momentum conservation k4 =
k1 + k2 − k3, we can express δ(∆ω~k) with the original momentum coordinates,
k1, k2, k3. Fixing the tupel (k1, k3), we obtain a unique non-trivial solution
k2 = k̃2(k1, k3), see Sec. 3.2.3. The delta-distribution becomes

δ(∆ω~k) =
δ
(
k2 − k̃2(k1, k3)

)
∣∣dω
dk

(
k̃2(k1, k3)

)
− dω

dk

(
k̃4(k1, k3)

)∣∣ , (3.67)

with the group velocity dω
dk = 2π[sin(2πk) + 2ε sin(4πk)]. This removes the

integration over k2. Since the k4 integration is removed by the momentum-
conservation, the only integration left is the one over k3.
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Center of mass and relative momentum coordinates: Now, we simplify
δ
(
∆ωεk,p,q

)
with ∆ωεk,p,q = ω(k+ p) + ω(k− p) − ω(k+ q) − ω(k− q). From

Sec. 3.2.2, we obtain the solutions of ∆ωεk,p,q = 0. They are k̃
ε

pq and −k̃εpq. The
energy-conserving delta function becomes

δ
(
∆ω

ε
k,p,q

)
=
∑

k0(p,q)∈[− 1
2 ,

1
2 ]

∆ω~k(k0(p,q),p,q)=0

δ
(
k − k0(p, q)

)
∣∣∣∣∣

[
∂∆ωεk,p,q

∂k

]

k=k0(p,q)

∣∣∣∣∣

−1

= δ
(
k − k̃εpq

)
∣∣∣∣∣

[
∂∆ωεk,p,q

∂k

]

k=k̃
ε

pq

∣∣∣∣∣

−1

+ δ
(
k + k̃

ε

pq

)
∣∣∣∣∣

[
∂∆ωεk,p,q

∂k

]

k=−k̃εpq

∣∣∣∣∣

−1

.

(3.68)
To calculate the derivative of ∆ω~k, we use ∆ω~k = 2 (cp−cq)

[
ck+2 ε c̃k (cp+cq)

]
,

see Eq. (3.27). This leads to
∣∣∣∣
∂∆ωεk,p,q

∂k

∣∣∣∣ =

∣∣∣∣
∂

∂k
2 (cp − cq)

[
ck + 2 ε rpq c̃k

]∣∣∣∣
= 4π

∣∣(cp − cq)
[
sk + 4 ε rpq s̃k

]∣∣
= 4π|sk| |cp − cq|

[
1 + 8 ε rpq ck

]
. (3.69)

In the last factor of the last line, we may omit the absolute value, because

1 + 8 ε rpq ck̃
ε

pq
= 1 + 8 ε rpq

√
1 + 32 (ε rpq)2 − 1

8 ε rpq
=
√

1 + 32 (ε rpq)2 > 1.

(3.70)
Moreover, |∂∆ω~k/∂k| is symmetric in k. Next, we plug in the solution k̃

ε

pq:∣∣∣∣∣

[
∂∆ωεk,p,q

∂k

]

k=±k̃εpq

∣∣∣∣∣ = 4π s
k̃
ε

pq
|cp − cq|

√
1 + 32 (ε rpq)2. (3.71)

Here, we dropped the absolute value in |s
k̃
ε

pq
|, because s

k̃
ε

pq
is non-negative due

to the fact that we defined k̃
ε

pq ∈ [0, 1
2 ], see Eq. (3.42). Furthermore, we obtain

1

|d∆ω~k/dk̃
ε

pq|
=

1

4π

1

|cp − cq|
1

s
k̃
ε

pq

1√
1 + 32 (ε rpq)2

︸ ︷︷ ︸
=: γ(ε rpq)

. (3.72)

The function γ(x) is even and positive. It does not diverge, because k̃
ε

pq does
neither reach 0 nor 1

2 , see Eq. (3.51). This function is

γ(x) =
1√

1− c2
k̃
ε

pq

1√
1 + 32 (ε rpq)2

=


1−

(√
1 + 32x2 − 1

8x

)2


−1/2

1√
1 + 32x2

=
8x√

32x2 + 2
(√

1 + 32x2 − 1
)

1√
1 + 32x2

= 1− 14x2 + 326x4 +O(x6). (3.73)
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To summarize, we find

δ
(
∆ω

ε
k,p,q

)
=

1

4π

γ(ε rpq)

|cp − cq|
{
δ
(
k − k̃εpq

)
+ δ
(
k + k̃

ε

pq

)}
. (3.74)

The advantage of this form of δ(∆ω~k) is the separation of the diverging factor
1/|cp−cq| from the ε-dependent factor. This is used for computing the first-order
perturbation theory in Sec. 3.6.4.

3.2.5 Examples for an initial perturbation

At this point, we present two examples for initial perturbations φ0(k). They
should give an impression on the meaning of the perturbation φ(k, t). We will
investigate an electric field and a temperature gradient, which create particle
and heat currents in electronic systems. Each of them creates a certain initial
quasiparticle momentum distributions. Our method investigates the relaxation
of these two initial distributions when the electric field and the temperature
gradient are turned off.

Example 1: Electric field: The first example is created by applying a ho-
mogeneous electric field E to a Fermi-distribution for a time ∆tE. The initial
temperature is T0, the initial chemical potential µ0. During the application of
the field, we have

~ k̇(t) = eE. (3.75)

After the time ∆tE, this results in a shift of the distribution,

f(k)→ n0(k) = f(k + ∆kE) =
1

1 + exp[β0(ω(k + ∆kE)− µ0)]
, (3.76)

with ∆kE =
∫∆tE

0
dt k̇(t) = ∆tE eE/~. We assume that the ∆kE is small. To

read off the initial perturbation, we expand ω(k + ∆kE) for small ∆kE. Thus,
the exponent results in

β0(ω(k + ∆kE)− µ0) ≈ β0(ω(k)− µ0) + ∆kE β0 ω
′(k). (3.77)

We have to compare this with the exponent in the definition of the perturbation,
see Eq. (3.10). We find

φ0(k) = β0 ∆kE ω
′(k)

= −2Jβ0 ∆kE j
N (k). (3.78)

Furthermore, we find that in first order in ∆kE, the temperature has not changed
after shutting down the electric field, i.e. β = β0, and µ = µ0. Including the
next order in ∆kE, we find that the temperature actually changes slightly:

T0 = T
(
1− 2π2∆k2

E
)

+O
(
∆k2

E ε T
)
. (3.79)

Hence, we can safely assume that T0 = O(T ).
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We need φ(k) to be small. Therefore, we have to demand that the time ∆tE is
sufficiently small, i.e. the electric field should only be applied for a small time.
Moreover, we define η := ∆tE e/~, and obtain

φ0(k) = β η E ω′(k), (3.80)

with β η E = β∆tE eE/~ = O(1). We see that the perturbation is proportional
to the function jN (k) = ω ′(k) of the total particle current, see Eq. (2.38). This
seems to be consistent, because we applied an electric field that results in the
acceleration of electrons.

Example 2: Temperature gradient: As a second example, we consider a
temperature gradient. Our realization of such a gradient is preparing the initial
quasiparticle momentum distribution so that the left-moving fermions have a
different temperature than the right-moving ones:

n0(k) = θ(−k)f(k)
∣∣
β=β1

+ θ(k)f(k)
∣∣
β=β2

. (3.81)

To calculate φ0(k), we use the final temperature T = 1
2 (T1 + T2) and define the

temperature difference ∆T = 1
2 (T2−T1). This leads to kBβ1 = 1/(T −∆T ) and

kBβ2 = 1/(T + ∆T ). We assume a small temperature difference ∆T . Thus, we
get

n0(k) ≈ θ(−k)

1 + exp[β(ω(k)− µ) + β2∆T (ω(k)− µ)]

+
θ(k)

1 + exp[β(ω(k)− µ)− β2∆T (ω(k)− µ)]

=
1

1 + exp[β(ω(k)− µ) + sgn(k)β2∆T (ω(k)− µ)]
. (3.82)

We read off the corresponding perturbation:

φ0(k) ≈ β2∆T sgn(k)
(
ω(k)− µ

)
. (3.83)

It is supposed to be small. Thus, we demand for ∆T that β2∆T = O(1):

φ0(k) ≈ β2∆T sgn(k)
(
ω(k)− µ

)
. (3.84)

It is important to note that one can choose a smoother function to replace sgn(k)
like sin(2πk) for instance. This means that one has a k-dependent temperature
of β0+β2

0∆T sin(2πk). One could also choose the group velocity ω ′(k), which is a
sin-function with an ε-correction. This would mean that the initial perturbation
was φ0(k) ≈ β2

0∆T jQ(k). Since this seems to be very artificial, we will use the
example in Eq. (3.84).

Summary: Both examples lead to anti-symmetric initial perturbations φ0(k).
Thence, 〈φ0, χ

(3)〉F is non-zero. Therefore, there are long-living currents for
these two initial perturbations, which we will see in Sec. 3.5.3.
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3.3 Numerical scheme for diagonalizing the lin-
earized Boltzmann equation

In this section, we start with a description of the implementation of the numer-
ical part of this work. We already showed how to treat the energy conservation
in Sec. 3.2.3 and Eq. (3.67). First, we will introduce the discretization of the
linear Boltzmann operator L̂ in Sec. 3.3.1. In App. B.5, we justify the need for
a good interpolation scheme and derive the N -point interpolation. Sec. 3.3.2
demonstrates the finite size scaling, which is necessary due to the discretization
of L̂.
The structure of the numerical algorithm is roughly:

1. Calculation of the discretized version of L̂, see Sec. 3.3.1.

2. Diagonalization of the matrix. This was achieved using algorithms from
the Lapack library.

3. Extrapolation of the eigenvalues to the limit of infinitely large discretiza-
tion points, see Sec. 3.3.2.

For the numerical computation, we use a rescaled version of L̂:

L̂(num)[φ](k, t) :=
t0
u2
L̂[φ](k, t), (3.85)

with the timescale t0 = ~/(πJ) and the dimensionless interaction u = U/J . By
this rescaling, we obtain a dimensionless operator. Furthermore, this operator
is independent of the interaction. The time scale we introduced is roughly
t0 ≈ 0.2 fs for J = 1 eV.

We implemented our numerical code on a computer, using the programming
languages C++ and Python. With C++, we got the dimensionless eigenval-
ues λ(num)

n := t0u
−2λn and eigenfunctions of the linearized Boltzmann opera-

tor L̂(num) for several discretizations, final chemical potentials µ, final inverse
temperatures β, and next-to-nearest-neighbor hoppings ε. Then, we used the
scripting-language Python to perform finite-size scalings of the eigenvalues and
to find the dependences on µ, β, and ε.

3.3.1 Calculation of the discretized linear Boltzmann op-
erator

Since a computer can only deal with a finite set of numbers, we have to choose
a discretization for the linearized Boltzmann operator L̂ and the perturbation
φ(k). We define the discretized momenta by

κn = −1

2
+

n

Nk
, (3.86)

with n ∈ {1, 2, ..., Nk}. With this, we discretize the perturbation φ(k):

φ̃n := φ(κn). (3.87)
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The objective of this section is obtaining the dimensionless discretized linearized
Boltzmann operator Lmn:

1

Nk

Nk∑

n=1

Lmn φ̃n Nk→∞−−−−−→ L̂(num)[φ](k1), (3.88)

where m = mNk(k1) is a sequence such that κm is the discretized momentum
closest to k1. Therefore, κm → k1 in the limit Nk →∞.

We start the derivation of Lmn by performing the integrals over k2 and k4 in
Eq. (3.12), using the formula for the energy-conserving delta-function Eq. (3.67):

L̂(num)[φ]1
(3.12)

=

∫
dk2 dk3 dk4

1∑

m=−1

δ(∆k~k+m) δ(∆ω~k)

× F1234

[
φ1 + φ2 − φ3 − φ4

]

(3.67)
=

1/2∫

−1/2

dk3
F1234∣∣ω′2 − ω′4

∣∣
[
φ1 + φ2 − φ3 − φ4

]∣∣∣∣ k2=k̃2(k1,k3)

k4=k1+k2−k3

. (3.89)

The remaining integral is replaced by a sum over discretized momenta:

L̂(num)[φ]1 ≈
1

Nk

∑

k3∈D

F1234∣∣ω′2 − ω′4
∣∣
[
φ1 + φ2 − φ3 − φ4

]∣∣∣∣ k2=k̃2(k1,k3)

k4=k1+k2−k3

.

(3.90)
That approximation becomes exact in the limit Nk →∞.

Mollification: The factor |ω′2 − ω′4| vanishes for k1 = k3. Obviously, at this
point, the contribution to the collision term has to be zero, because k1 = k3 is
a trivial interaction channel, i.e. the factor δk1,κn + Bn(k2) − δk3,κn − Bn(k4)
vanishes. The numerical code, however, may not be able to account for the
zero caused by this factor. Thus, we make use of the mollification procedure
proposed by Fürst et al. (2012). We do it the following way:

1√
(ω′2 − ω′4)2 + (5/Nk)2

Nk→∞−−−−−→ 1∣∣ω′2 − ω′4
∣∣ . (3.91)

The factor 5 is not arbitrary: We did a lot of testing, and found that for some
reason the mollification number has to span at least a small number of momen-
tum differences 1/Nk.

Thence, the approximate Boltzmann operator becomes

(
L̂(num)[φ]1

)
approx =

1

Nk

∑

k3∈D

F1234

[
φ1 + φ2 − φ3 − φ4

]
√

(ω′2 − ω′4)2 + (5/Nk)2

∣∣∣∣ k2=k̃2(k1,k3)

k4=k1+k2−k3

.

(3.92)
It still fulfills the constraint

(
L̂(num)[φ]1

)
approx

Nk→∞−−−−−→ L̂(num)[φ]1. (3.93)
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Interpolation: Now, we have to take care of the perturbation φ(k), because
we only know it at the discretization points κn. The momentum k3 is already
discretized. Therefore, calculating φ(k3) is not a problem. Furthermore, we
choose k1 ∈ D, so there is no problem calculating φ(k1) either. However, in
general, the solution k̃2(k1, k3) is not on the grid κn for any ε > 0. Thus,
we have to choose a scheme to interpolate for the calculation of φ(k̃2) and
φ(k1 + k2 − k3). Because simple interpolation schemes are not able to give
precise results, we used the N-point interpolation described in App. B.5. Using
Eq. (B.94) from this section, we obtain

φ(k2) ≈
Nk∑

n=1

φ̃nBn(k2). (3.94)

This equation becomes exact in the limit Nk →∞. Plugging this into Eq. (3.90)
yields

L̂(num)[φ]1 ≈
1

Nk

∑

k3∈D

F1234√
(ω′2 − ω′4)2 + (5/Nk)2

×
[
φ1 − φ3 +

Nk∑

n=1

(
φ̃nBn(k2)− φ̃nBn(k4)

)]
∣∣∣∣∣ k2=k̃2(k1,k3)

k4=k1+k2−k3

.

(3.95)
The next step is bringing this into a form that enables us to read off the matrix:

L̂(num)[φ]1 ≈
1

Nk

Nk∑

n=1

∑

k3∈D

F1234√
(ω′2 − ω′4)2 + (5/Nk)2

×
[
δk1,κn +Bn(k2)− δk3,κn −Bn(k4)

]∣∣∣∣∣ k2=k̃2(k1,k3)

k4=k1+k2−k3

φ̃n

=:
1

Nk

Nk∑

n=1

Lmn φ̃n,

(3.96)
with the dimensionless matrix

Lmn =
∑

k3∈D

F1234

[
δk1,κn +Bn(k2)− δk3,κn −Bn(k4)

]
√

(ω′2 − ω′4)2 + (5/Nk)2

∣∣∣∣k1=κm

k2=k̃2(k1,k3)

k4=k1+k2−k3

. (3.97)

Thence, the final formula for the dimensionless discretized linearized Boltzmann
operator is

Lmn =
∑

k3∈D

F1234

[
δk1,κn +Bn(k2)− δk3,κn −Bn(k4)

]
√

(ω′2 − ω′4)2 + (5/Nk)2

∣∣∣∣k1=κm

k2=k̃2(k1,k3)

k4=k1+k2−k3

.

(3.98)
By construction, this matrix fulfills Eq. (3.88), i.e. it describes L̂(num)[φ] in the
limit Nk →∞.
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−2λn for different
N-point interpolations.

Accuracy of the interpolation scheme: The motivation to find the accu-
racy of the interpolation scheme is that Lmn did not give reasonable results.
We first defined test functions φ(k) and calculated φ̃n. Then, we compared
1
Nk

∑
n Lmn φ̃n with (L̂(num)[φ]1)approx. We found that simple interpolation

schemes were not precise enough. Only more accurate interpolation schemes
give reasonably small errors.

In order to find a measure for the error, we use the fact that the first two
eigenvalues have to be zero analytically. The eigenvalue λ1 has the constant
function as eigenfunction. Therefore, the interpolation scheme is irrelevant for
this eigenvalue, which can be seen in the numerical results. There, the eigenvalue
is always about 15 orders of magnitude smaller than the largest eigenvalue,
see Fig. 3.2. However, for crude interpolation schemes, the second eigenvalue
λ2 can be 10 orders of magnitude larger, and becomes quite close to λ3 for
some instances. The reason is that the eigenfunction ω(k) is curved. Thus,
the eigenvalue λ2 measures the error from the interpolation scheme. It can be
decreased by using more points for the interpolation, see Fig. 3.2.

We chose the 9-point interpolation for the whole numerical evaluation, because
with this interpolation, λ2 comes in the vicinity of λ1. This is confirmed in
Fig. 3.3, where we plot λ1 and λ2 for µ = 0 and various ε and β. Both eigenvalues
in Fig. 3.3 are calculated using the 9-point interpolation.

Testing the numerical code: In order to test the numerical program, we
compared the results of the various algorithms at the first time step:

• "Exact": Here we calculated the Boltzmann dynamics using the exact
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plot can be considered the numerical error of our data.

initial quasiparticle momentum distribution n(k, t=0). The advantage of
this procedure is that the function can be evaluated for any momentum. Of
course, this works only for the first time step. The term "exact" only refers
to the exact initial quasiparticle momentum distribution. The operator is
still discretized.

• "Naive": Here, we employ the discretized version of the initial function,
with an approximation for the function values between two momenta. To
evaluate the integral, we use the variables k1, k2, k3, and k4.

• Algorithm similar to Fürst et al. (2012): The same as above, but using
relative variables p = 1

2 (k1 − k2) and q = 1
2 (k3 − k4).

• "Exact" and linearized: This procedure is similar to the "exact" scheme.
The only difference is that we calculate the linearized Boltzmann operator
using the exact initial perturbation φ(k, t=0).

• Linearization with N-point interpolation: Instead of the exact initial per-
turbation φ(k), we use an interpolation of its discretized version. The
interpolation scheme uses N points of the discretized perturbation φ̃n.
The results of this scheme is closest to the exact scheme.

3.3.2 Finite-size scaling

Given a set of parameters (µ, β, ε), we calculate the discretized, linearized Boltz-
mann operator Lmn for different Nk up to Nk = 2000. We define Nk as the
number of momenta on the discretization grid D. Then, the eigenvalues are
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Figure 3.4: We display the interpola-
tion to Nk → ∞ for µ = 0. The symbols
are the data. The eigenvalue on top is
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calculated and a finite-size scaling is performed with them, i.e. we extrapolate
them to the limit Nk →∞. Thereby, three cases occur (see Fig. 3.4):

1. Very small fluctuations: The convergence is so good, that the respective
eigenvalue fluctuates with just a very small error, see lower eigenvalues in
Figs. 3.4B and C. Here, we simply took the mean value and computed the
error from the variance.

2. Exponential behavior in 1/Nk: One function is a simple exponential, see
highest eigenvalue in Figs. 3.4A, B, and C.

3. Exponential decay and oscillation: At low inverse temperature β and very
low next-to-nearest-neighbor hopping ε the smallest eigenvalues show a
damped oscillation as a function of 1/Nk, see lower eigenvalues in Fig. 3.4A.
In this case, we found that the function x 7→ AeBx sin(Cx) fitted very
nicely.

For the fits, we gave more weight to the data with higher Nk, because they are
more reliable due to the fact that they lie closer to the Nk →∞ limit.

In any case, the total error is a combination of the fit error and the error
on the data points. The eigenvalues λ1 and λ2, which are zero analytically,
fluctuate around zero in the numerical calculation due to the finite precision
of the algorithm. Therefore, they can also acquire negative signs. Hence, we
estimate the error of the numerical data, by the maximum of |λ1| and |λ2|.

This extrapolation procedure needs to be automated, because we require the
eigenvalues for a vast amount of parameter sets. Therefore, we created a script
using the scripting language Python.
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Figure 3.5: Here, we plot the eigenval-
ues λn over the next-to-nearest-neighbor
hopping ε for different inverse tempera-
tures β. The straight lines are fits with
the function ε 7→ Aε2. They show that
the eigenvalues are proportional to ε2 for
small ε.
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3.4 Results

In the previous sections, we discussed how to diagonalize the linearized Boltz-
mann operator L̂ = (2πU2/~J)L̂(num) numerically. We showed how we com-
puted the eigenvalues λn of L̂. The eigenvalues are the relaxation rates of the
different contributions to the perturbation φ(k) of the quasiparticle momentum
distribution n(k), see Eq. (3.16). In this section, we present some of the central
results of this thesis, namely the behavior of the smallest relaxation rates when
changing integrability breaking (next-to-nearest-neighbor hopping ε), the final
temperature β, and the chemical potential µ.

We plot the other eigenvalues in Fig. 3.5. There, we see double logarithmic
plots with the eigenvalues’ dependence on the next-to-nearest-neighbor hopping
ε. The symbols are the eigenvalues and the lines are fits with the function
ε 7→ λ̃n ε

2. Those lines fit the eigenvalues very well for small ε, thus we deduce
at least for the smallest eigenvalues that

λn = ε2 λ̃n
u2

t0
+O

(
ε3
)
. (3.99)

This equation shows how the decay of the perturbations φ(k) changes in the
regime of low ε.

Considering Eq. (3.99), we see that the first two coefficients in the Taylor expan-
sion of the smallest eigenvalues λn(ε) are zero. The expansion’s zeroth order,
i.e. the constant term, vanishes, because there are many zero eigenvalues for
ε = 0, which correspond to the perturbations φS(k) that are antisymmetric
around k = ± 1

4 , see Sec. 3.2.1. Hence, we define the low-lying eigenvalues as all
the eigenvalues that vanish in the limit ε→ 0. In Sec. 3.6.4, we will indeed find
proof that the linear part in the Taylor expansion of the low-lying eigenvalues
vanishes. Thus, λn = O

(
ε2
)
is numerically and will be analytically confirmed.
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As a next step, we make a statement about the temperature dependence of the
lowest eigenvalues for small integrability breaking using the previously men-
tioned fits of λn(ε) with ε→ λ̃n ε

2, see Fig. 3.5. This is reasonable, because the
fits do not only describe the small-ε regime of the eigenvalues λn(ε), they are
also upper bounds on them:

λn(ε) 6 λ̃n ε
2. (3.100)

Therefore, we extract the second-order Taylor-expansion coefficient of the low-
lying eigenvalues:

λ̃n :=
t0

2!u2

∂2

∂ε2
λn(ε)

∣∣∣∣
ε=0

. (3.101)

In Fig. 3.6, we plot λ̃n as a function of β with µ = 0. The symbols denote the
data and the lines illustrate the border of the error regions. Most of the λ̃n
do not vary much with inverse temperature β. Only λ̃3 is different. At about
β = 5, it starts to decay exponentially in β. This is shown by an exponential
fit, which presents itself as a line, because the plot’s vertical axis is logarithmic.
At the right end of the fit, there is a region of highly fluctuating values with
large errors, because the values become smaller than our numerical precision,
i.e. λ3 cannot be distinguished from λ1 and λ2 within our numerical calculation.
With ε2 λ̃3u

2/t0 being an upper bound on λ3 (see Eq. (3.100)), the correspond-
ing contribution A3(t) = A3(0) e−λ3t to the perturbation φ can be considered
conserved.

Thence, for low temperature, there is an approximately conserved quantity,
i.e. a quantity that is conserved over a very long time 1/λ3. This quantity is
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Figure 3.9: Umklapp process near the Fermi edge for kF ≈ 1
4
, which means µ ≈ 0.

A reciprocal lattice vector ±1 is added to the momentum of one of the fermions.
Therefore, the total momentum is changed by exactly 1/2. Hence, Umklapp processes
at low temperature are only effective if the Fermi momentum kF is near 1/4. Here,
this means that µ ≈ 0, i.e. half filling.

described by the respective eigenfunction χ3(k) and the corresponding state-
space operator Ψ̂3 :=

∫
dk χ3(k) n̂(k), see Sec. 2.4. In Sec. 3.5, we will give a

physical meaning to this quantity and we will show that there are long-lasting
currents in the systems if the initial perturbation has a contribution A3 of the
eigenvalue λ3.

The eigenvalue λ3 is the smallest non-zero relaxation rate. Hence, on times
t� 1/λ4, the perturbation becomes proportional to the eigenfunction χ(3), i.e.

φ(k, t) ≈ 〈χ(3), φ0〉F e−λ3t χ(3)(k), (3.102)

because the contributions A1(0) and A2(0) are zero, see Secs. 2.3 and 3.2.1.

So far, everything was done for a chemical potential of µ = 0, i.e. for half-filling.
In the case of µ 6= 0, we again find that λn = ε2 λ̃nu

2/t0 +O(ε3) (Eq. (3.99)) is
still valid. The coefficient λ̃3 is still exponentially suppressed as a function of β
for large β. However, the coefficients λ̃n>4 also show an exponential decay in β.
For small µ, there is small exponential decay, see Fig. 3.7A. For µ approaching
its maximum (µmax = ω( 1

2 ) = 1− ε), the exponential decay becomes as strong
as the one of λ̃3, see Fig. 3.7B.

We show this by fitting exponential functions An exp(xn − Γnβ) to the small
temperature tails of λ̃n for n > 3. In Fig. 3.8, we illustrate the dependence Γn
on µ for n > 3 and µ ∈ [0, 0.95]. In good approximation, we find that

Γ3 ≈ 0.86 + µ,

Γn>4 ≈ 2µ. (3.103)

Thus, the relaxation rates are

λ3 ≈ const · u
2

t0
ε2 e−β(0.86+|µ|) (3.104)

and

λn>4 ≈ const · u
2

t0
ε2 e−2β|µ| (3.105)

for small next-to-nearest-neighbor hopping ε and for small temperature T . In
addition, Eqs. (3.104) and (3.105) are upper bounds for the respective eigenval-
ues for general ε, see Eq. (3.100).
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We explain this behavior with the effectivity of Umklapp processes. For small
temperatures, fermions can only scatter from non-empty regions of the Fermi
Dirac-distribution to regions that are not fully occupied. Furthermore, energy
conservation restricts these scattering processes further. For possible scatter-
ing processes, the fermions should be near the Fermi edges. At half-filling, the
Fermi-edges have a distance of 1

2 . This is exactly the difference of the initial
mean momentum and the final mean momentum of an Umklapp process, see
Fig. 3.9. Thus, for µ = 0, Umklapp processes make the relaxation rates rela-
tively big, even for small temperatures. However, going away from µ = 0, these
Umklapp processes become increasingly less possible, especially for low temper-
ature, where the Fermi edge becomes more narrow. We believe that this is why
the eigenvalues λn>4 become exponentially suppressed as a function of β when
increasing µ.

Conversely, the eigenvalue λ3 behaves differently than λn>4, especially at half
filling. Thus, we deduce that for λ3 Umklapp processes are ineffective even for
half filling.

Since the physical meaning of λ3 is encoded in its corresponding eigenfunction
χ(3)(k), the special form of χ(3)(k) may be responsible for the ineffectiveness
of the Umklapp processes. In Fig. 3.10, we plot χ(3)(k) for several inverse
temperatures β. For high temperatures, it approaches ω ′(k)ω(k). This function
is connected to the total energy current, see Eq. (C.45). For low temperatures,
the function seems to approach the saw-tooth-shaped function k − 1

4 sgn(k).

In order to investigate why the eigenfunction χ(3)(k) has a very special eigen-
value, we compare it to the eigenfunctions χ(4,5,6)(k), plotted in Fig. 3.11. They
behave significantly different. Around k = 1

4 , the eigenfunctions χ(4,5,6)(k) be-
come flat in the low-temperature limit in contrast to χ(3)(k), which obtains a
large linear region in this limit. This linear region is responsible for the suppres-
sion of scattering processes for χ(3)(k). We will elaborate on this in Sec. 3.5.1.
There, we will define and investigate an approximate version of χ(3)(k) in the
zero-temperature limit.

With λ3 being the smallest non-zero relaxation rate, we devote the whole Sec. 3.5
to it. Besides the already mentioned investigation of an approximate eigen-
function in Sec. 3.5.1, we will also relate a certain observable in the quantum-
mechanical state space to λ3, see Sec. 3.5.2. Moreover, in Sec. 3.5.3 we will
describe the currents present on long times t � 1/λ4, where the perturbation
φ(k, t) is described by χ(3)(k).

3.5 The first non-trivial eigenvalue of the linearized
Boltzmann equation: The 3rd eigenvalue

In this section, we discuss the eigenvalue λ3, which is the smallest non-trivial
relaxation rate. In Sec. 3.5.1, we will introduce a low temperature approxima-
tion for its eigenfunction χ(3)(k). Furthermore, we investigate an operator in
quantum-mechanical state space, which is connected to λ3, see Sec. 3.5.2. More-
over, we consider the long-time limit of operators of the form

∫
dk ψ(k) n̂(k) in
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Figure 3.12: The overlap of χ(3)(k) and χ̃(3)
(k). We plot 1 −

|〈χ(3), χ̃
(3)〉F|/‖χ

(3)‖F‖χ̃
(3)‖F as function of the dimensionless temperature kBT/2J .

It is a good measure to see how small the overlap becomes. The plot shows that
the overlap becomes small for low temperatures T . In this case, χ̃(3)

(k) is a good
approximation for χ(3)(k).

Sec. 3.5.3. Additionally, we present two examples for such an operator: We will
calculate the expectation values of two total-current operators.

3.5.1 The approximation of the 3rd eigenfunction

In this section, we introduce an approximation of the 3rd eigenfunction χ(3)(k).
We will use it to determine the physical meaning of χ(3)(k) by calculating the
corresponding observable in the state space, which is connected in χ(3)(k).

Eqs. (3.104) and (3.105) show that χ(3)(k) has a different temperature depen-
dence than the larger eigenvalues λn>4. For µ = 0, it is the only eigenvalue
that decreases exponentially when decreasing temperature. If µ 6= 0, then all
low-lying eigenvalues decrease exponentially, but χ(3)(k) decays faster than the
others, see Figs. 3.6 and 3.7. Hence, for sufficiently low temperature, the con-
tribution A3(t) becomes approximately conserved for all µ. We are interested
in the physical interpretation of this conservation. To do this, we will make use
of the approximate eigenfunction

χ̃(3)
(k) := kmod(k)− 1

4 sgn
(
kmod(k)

)
, (3.106)
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which we found in Sec. 3.4 and Fig. 3.10. The kmod function makes the χ̃(3)
(k)

periodic. The shape of χ̃(3)
(k) is a saw-tooth function.

In this section, we determine the quality of the approximate eigenfunction
χ̃(3)

(k). A natural measure for this is the scalar product 〈·, ·〉F, because it is the
scalar product, in which the linearized Boltzmann operator L̂ is hermitian, see
Eqs. (2.22) and (B.64). Thus, for this discussion a logical choice for a quality
measure of the approximation is the overlap

∣∣〈χ̃(3)
, χ3

〉
F

∣∣
∥∥χ̃(3)∥∥

F

∥∥χ3

∥∥
F

. (3.107)

The closer its value is to 1, the better χ̃(3)
(k) approximates χ3(k). As an ex-

ample, we plot Eq. (3.107) in Fig. 3.12. Decreasing with temperature T , the
error goes to zero, because the scalar product’s factor f(k)(1−f(k)) gives more
weight to region around the Fermi edge. The other momentum regions are expo-
nentially suppressed by the weight factor. Therefore, according to the measure
in Eq. (3.107), the approximation is very good for small temperatures, despite
the fact that χ̃(3)

(k) does not resemble χ3(k) around k = 0,± 1
2 , see Fig. 3.10.

Now, we find the physical reason for the slow relaxation of the eigenfunc-
tion χ(3)(k). We address this problem by using the approximate eigenfunction
χ̃(3)

(k). The latter can provide the reason why the scattering processes are not
very effective for the eigenfunction χ(3)(k). In order to find it, we consider the
change of the quasiparticle momentum distribution in time:

ṅ(k, t) = f(k)
(
1−f(k)

)
φ(k, t) = f(k)

(
1−f(k)

)
L̂[φ](k, t). (3.108)

Next, we assume that enough time has past that only the contribution of the
3rd eigenfunction remains, i.e. 1/λ4 � t� 1/λ3:

ṅ(k, t) = A3(t) f(k)
(
1−f(k)

)
L̂
[
χ(3)

]
(k, t). (3.109)

Furthermore, we replace the eigenfunction with its approximation and plug it
into L̂, see Eq. (3.12):

ṅ1 = A3(t)
πU2

~J

∫
dk2 dk3 δ(∆ω~k) f1f2(1−f3

)
(1−f4

)

×
[
χ̃(3)

1 +χ̃
(3)
2 −χ̃

(3)
3 −χ̃

(3)
4

]∣∣∣∣
k4=k1+k2−k3

, (3.110)

where we used the previously defined notation Xj := X(kj , t). Therefore, we
split the last factor into two parts:

[
χ̃(3)

1 +χ̃
(3)
2 −χ̃

(3)
3 −χ̃

(3)
4

]
=: K1234 − Σ1234 , (3.111)

with

K1234 :=kmod(k1) + kmod(k2)− kmod(k3)− kmod(k4),

Σ1234 := 1
4

[
sgn
(
kmod(k1)

)
+sgn

(
kmod(k2)

)
−sgn

(
kmod(k3)

)
−sgn

(
kmod(k4)

)]
.

(3.112)
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Figure 3.13: Examples for scattering processes. A: forward scattering. B: Umklapp
scattering. C: Backward scattering.

We can distinguish three types of scattering processes. The first one is forward
scattering, see Fig. 3.13A. All the momenta have the same sign. Here, both
K1234 and Σ1234 vanish separately.

K1234 = k1 + k2 − k3 − k4 = 0,

Σ1234 = 1
4 + 1

4 − 1
4 − 1

4 = 0. (3.113)

Thence, for these processes, gain and loss term balance each other out and
cannot contribute to ṅ(k, t).

The second kind is Umklapp scattering, see Fig. 3.13B. In these kind of in-
teractions, the initial momenta have one sign and the final momenta have the
opposite sign. The two terms mentioned in the first case are not zero anymore,
but cancel each other out. E.g., for k1 > 0, the terms become

K1234 = k1 + k2 − k3 − (k4 − 1) = 1,

Σ1234 = 1
4 + 1

4 + 1
4 + 1

4 = 1. (3.114)

Hence, also in this case, the processes balance each other out and do not con-
tribute to ṅ(k, t).

The third and last type of scattering processes is backward scattering, see
Fig. 3.13C. In this case one momentum has a different sign than the other
three. For the situation, depicted in the figure, said terms are

K1234 = k1 + k2 − k3 − k4 = 0.

Σ1234 = 1
4 + 1

4 + 1
4 − 1

4 = 1
2 . (3.115)

Thus, the third scattering-process type trivially conserves total momentum K̂,
but violates the difference in left and right movers. Hence, this type is the only
one contributing to ṅ(k1, t). However, in this case, the factor f1f2(1−f3

)
(1−f4

)

is exponentially small, because this factor only allows for processes that start
in regions of the Fermi-Dirac distribution, where there are fermions, and end
in regions, where fermions are missing. Note that f1f2(1−f3

)
(1−f4

)
= (1−

f1

)
(1−f2

)
f3f4, see Eq. (B.59). Therefore, there are scattering process with

k1, k2 → k3, k4, as well as those, where k3 and k4 are the initial momenta, i.e.
k3, k4 → k1, k2. For instance, in the example of Fig. 3.13C, the momentum k3 is
near k = 1

2 and k4 near k = 0. Hence, (1−f3

)
(1−f4

)
is exponentially suppressed.
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The reasoning for the third scattering-process type also holds for the eigenfunc-
tions χ(n>4)(k), whereas the types 1 and 2 do not apply to χ(n>4)(k). Hence,
these two types are the reason for the difference between the low-temperature be-
havior of λ3 and the one of λn>4. The Umklapp and forward-scattering processes
have no effect on χ̃(3)

(k). However, for the real eigenfunction χ(3)(k), there are
Umklapp and forward scattering processes that contribute, but they have to be
at momenta kj = 0 or kj = ± 1

2 . Then, however, the factor f1f2(1−f3

)
(1−f4

)

suppresses these scattering processes as in the third scattering-process type.

In this section, we introduced and justified the approximate eigenfunction χ̃(3)
(k).

Furthermore, we explained why all the scattering processes either balance each
other out or are exponentially suppressed in β.

3.5.2 The state-space operator corresponding to the 3rd

eigenvalue

In Sec. 2.4 we showed that the eigenfunctions χ(j)(k) of the linearized Boltzmann
operator L̂ are connected to the operators

∫
dk χ(j)(k) n̂(k), see Eq. (2.33). In

this section, we investigate the operator corresponding to the 3rd eigenvalue λ3:

Î3 :=

∫
dk χ(3)(k) n̂(k). (3.116)

We will explore its physical meaning by replacing the eigenfunction with its
approximation χ̃(3)

(k) = k− 1
4 sgn(k), which we investigated in Sec. 3.5.1. This

leads to
Î3 ≈ K̂ − 1

4

(
N̂R − N̂L

)
, (3.117)

where K̂ =
∫
dk k n̂(k) is the total momentum operator defined in Eq. (2.38)

and it corresponds to φ(k) = k. Furthermore, for Eq. (3.117), we introduced
the number operator counting the fermions with positive momenta and the one
counting the fermions with negative momenta:

N̂R :=

1/2∫

0

dk n̂(k)

N̂L :=

0∫

−1/2

dk n̂(k). (3.118)

The approximation in Eq. (3.117) gives a physical meaning to the eigenfunction
of the 3rd eigenvalue λ3. It is a linear composition of three simple observables.
If Î3 was equal to the total momentum, it would mean that Umklapp processes
did not play a role at low temperatures. Since φ(k) = k is neither conserved for
high temperature (cf. Sec. 2.3) nor for low temperature (especially for µ = 0,
see Fig. 3.6), the expectation value of K̂ is also not conserved, see Sec. 2.4.
This means that Umklapp processes still contribute to relaxation, even at low
temperatures.



3.5. The first non-trivial eigenvalue of the linearized Boltzmann equation:
The 3rd eigenvalue 85

The expectation value of Î3 is

〈
Î3
〉
t

(2.37)
=

∫
dk χ(3)f(k)

︸ ︷︷ ︸
=0

+
∑

j∈N
Aj(0) e−λjt 〈χ(3), χ(j)〉F︸ ︷︷ ︸

=0 for j 6=3

= A3(0) e−λ3t ‖χ(3)‖2F
(2.28)

= 〈χ(3), φ0〉F e−λ3t. (3.119)

The expectation value of Î3 resembles the time evolution of the 3rd eigenvalue’s
contribution to the perturbation φ(k, t). Hence, Î3 is the observable connected
to λ3. Thus, it is an (approximately) conserved quantity for low temperatures.

There is also another way to deduce a connection between λ3 and Î3. For
times 1/λ4 � t � 1/λ3, the contribution of the eigenfunction χ(3)(k) can be
considered to be conserved. Therefore, we apply the well-known way of finding
the quasiparticle momentum distribution of the Gibbs ensemble, see for example
Fetter and Walecka (2003). The only change that is made is that we add the
approximately conserved quantity Î3 to the energy and the particle number.
This leads to the following partition function:

ZGGE = tr e−βĤ+βµN̂−β3Î3 . (3.120)

Since the eigenfunctions of L̂ are independent of U , we can consider the limit of
small U . Therefore, the Hamiltonian is approximately equal to its kinetic part.
Hence, the partition function becomes

ZGGE =
∑

{nk}
exp
{∑

k

nk
[
−βω(k) + βµ− β3χ

(3)(k)
]}

=
∏

k

1∑

nk=0

enk
[
−βω(k)+βµ−β3

χ(3)(k)
]

=
∏

k

{
1 + e−βω(k)+βµ−β3

χ(3)(k)
}
. (3.121)

The quasiparticle momentum distribution follows from
∑

k

nGGE(k) =
∂

∂(βµ)
lnZGGE =

∑

k

1

1 + eβ(ω(k)−µ)+β3
χ(3)(k)

. (3.122)

Therefore, we obtain

⇒ nGGE(k) =
1

1 + eβ(ω(k)−µ)+β3
χ(3)(k)

. (3.123)

Comparing this to the definition of the perturbation φ(k) in Eq. (3.10), we find
that the perturbation corresponding to this quasiparticle momentum distribu-
tion is

φ(k) = β3 χ
(3)(k). (3.124)

The coefficient β3 is determined by the representation of the perturbation by
the eigenfunctions of L̂ in Eq. (3.16):

β3 = A3(0). (3.125)
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This confirms the connection of the eigenfunction χ(3)(k) and the operator Î3.

In this section, we gave an example of how to relate eigenfunctions of the lin-
earized Boltzmann operator L̂ to observables in the quantum-mechanical state
space. For generic eigenfunctions, it may be very difficult to find an interpre-
tation of the observable, especially if they have complicated peak structures,
which can hardly be approximated by analytical expressions, see e.g. Fig. 4.12.
We have seen that the rather simple form of the eigenfunction χ(3)(k) makes
the interpretation considerably easier.

3.5.3 Long-lasting currents

Not only can we calculate the physical quantity that is approximately conserved,
but we can also test if other physical quantities do not decay for a long time.
With the linearized Boltzmann equation, we can access the long-time behavior
of operators of the form

Φ̂[ψ] =

∫
dk ψ(k) n̂(k), (3.126)

see Eq. (2.36). In this section, we study the total particle current ĴN = Φ̂[jN ]
and the total heat current ĴQ = Φ̂[jQ], see Eq. (2.38). The reason we concern
ourselves with these current operators is the anti-symmetry of the eigenfunction
χ(3)(k). It suggests that a contribution from χ(3)(k) to the perturbation φ(k)
induces net currents. We will prove this hypothesis in the following. Also, the
question arises, whether the perturbations that have a contribution from χ(3)(k)
are pathological or not. We will answer this question presenting the currents of
the physically obvious examples from Sec. 3.2.5.

We start the investigation by considering the expectation value of Φ̂[ψ]:

〈
Φ̂[ψ]

〉
t

(2.36)
=

∫
dk ψ(k) f(k) +

∞∑

j=3

Aj(0) e−λjt〈χ(j), ψ〉F. (3.127)

For the currents ĴN and ĴQ, the function ψ(k) is anti-symmetric. Therefore,
the first term vanishes. The sum is dominated by the term with j = 3 for long
times t > 1/λ4. On these time scales, the expectation value reduces to

〈
Φ̂[ψ]

〉
t
≈ e−λ3t

〈φ0, χ
(3)〉F〈χ(3), ψ〉F
‖χ(3)‖2F

(3.119)
=

〈
Î3
〉
t

〈χ(3), ψ〉F
‖χ(3)‖2F

. (3.128)

Note that this expectation value is generated by a non-zero 〈φ0, χ
(3)〉F. The

factor 〈χ(3), ψ〉F/‖χ(3)‖2F measures how different 〈Φ̂[ψ]〉t is from 〈Î3〉t and how
enhanced or alleviated the expectation value is compared to 〈Î3〉t. Thus, the
expectation value 〈Î3〉t generates the currents we are about to investigate and
〈χ(3), ψ〉F/‖χ(3)‖2F can be considered as conductivities.
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Temperature dependence of expectation values: Now, we present the
temperature dependence of the expectation values necessary for calculating the
currents. For small temperature, the calculation can be done analytically using
the Sommerfeld expansion in App. B.4 and replacing the eigenfunction χ(3)(k)

by its approximation χ̃(3)
(k) = k− 1

4 sgn(k), see Sec. 3.5.1. The full calculation
is presented in App. C.4.

For the total particle current ĴN = Φ̂[jN ], we find the following expression in
Eq. (C.12):

〈
χ̃(3)

, jN
〉
F

=





a0kB
4πJ

arcsin(µ− ε) T +O
(
ε(µ−ε)2T

)
+O

(
ε2T

)
+O

(
T 3
)

for ε T 2 � |µ− ε|
a1k

3
B

8πJ3
ε T 3 +O

(
T 5
)

for |µ− ε| � ε T 2.

(3.129)
Away from half filling, the particle current is quite large, because it scales with
T . However, for µ approaching ε, the prefactor becomes very small. For µ = ε,
which is equivalent to kF = 1

4 , there is another leading term, which scales with
T 3. Note that µ = ε is approximately half filling when ε is supposed to be small.

The scalar product 〈χ̃(3)
, jE〉F, which is connected to the total energy current,

has different leading terms, too. Instead, we consider the heat current ĴQ =
ĴE − µ ĴN . The corresponding scalar product is found in Eq. (C.14):

〈
χ̃(3)

, jQ
〉
F

=
a1k

3
Bk
′
F

16J3
T 3 +O(T 5)

=
a1k

3
B

16J3

1

2π
√

1− (µ− ε)2
T 3 +O

(
ε2T 3

)
+O

(
ε(µ−ε)T 3

)
+O

(
T 5
)
,

(3.130)
with jQ(k) = jE(k)− µ jN (k). We can see that it always has the same leading
term regardless of the value of µ.

Furthermore, the heat current is always quite small in temperature. However,
it may still be larger than the particle current, because its prefactor does not
scale with ε or µ − ε, like the one in the particle current’s scalar product, see
Eq. (3.129).

Temperature dependence of the currents: In the following, we investi-
gate the total particle current 〈ĴN 〉t and the total heat current 〈ĴQ〉t. They
have a similar temperature dependence for long times as the expectation values
considered in Eqs. (3.129) and (3.130), as long as 〈φ0, χ

(3)〉F/‖χ(3)‖2F is constant
in the limit T → 0. The elaborate calculation is presented in App. C.6.

First, we consider the total particle current using Eq. (3.128):

〈
ĴN
〉
t

= e−λ3t
〈φ0, χ

(3)〉F 〈χ(3), jN 〉F
‖χ(3)‖2F

(3.131)

The scalar product 〈χ(3), jN 〉F was already presented in Eq. (3.129). In a sim-
ilar fashion, we calculate the scalar products 〈φ0, χ

(3)〉F, and 〈χ(3), χ(3)〉F, see
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App. C.4 and Eqs. (C.16) and (C.18). Thus, we obtain in Eq. (C.50):

〈
ĴN
〉
t

= e−λ3t





a0kB
2J

[
φ0(kF)−φ0(−kF)

]
T +O

(
T 3
)

for kBT � |µ−ε|

2Ja2
0

a1kB
arcsin2(µ−ε)

[
φ0(kF)−φ0(−kF)

]
T−1

+O
(
ε(µ−ε)3T−1

)
+O

(
T
)

for (kBT )2 � |µ−ε| � kBT

a0kB
2J

arcsin(µ−ε)
[
φ′0(kF)+φ′0(−kF)

]
T

+O
(
ε(µ−ε)2T

)
+O

(
T 3
)

for ε(kBT )2 � |µ−ε| � (kBT )2

πa1k
3
B

8J3

[
φ′0(kF)+φ′0(−kF)

]
ε T 3 +O

(
ε(µ− ε)T 3

)

+O
(
ε2T 3

)
+O

(
T 5
)

for |µ−ε| � ε(kBT )2.
(3.132)

The most important regime in this equation is the first one, i.e. kBT � |µ−ε|.
In most cases, the temperature will, at some point, become much smaller than
|µ−ε|. There, the particle current is of O(T ). For the case µ = ε, this regime
can never be reached. In this case, the particle current is determined by the last
regime in Eq. (3.132), i.e. it is of O(T 3) for low temperatures. We will comment
on the dependence on φ0(k) after considering the heat current.

The expectation value of the total heat current ĴQ can be calculated by the
same computation as for the particle current. This leads to

〈
ĴQ
〉
t

=
〈
Φ̂[jQ]

〉
t

(3.128)
= e−λ3t

〈φ0, χ
(3)〉F 〈χ(3), jQ〉F
‖χ(3)‖2F

. (3.133)

The computation in App. C.6 leads to Eq. (C.55), which reads

〈
ĴQ
〉
t

= e−λ3t





a1k
3
B

16J3

φ0(kF)−φ0(−kF)

arcsin(µ− ε) T 3 +O
(
ε(µ− ε)T 3

)
+O

(
T 5
)

for kBT � |µ−ε|
a0kB
4J

arcsin(µ− ε)
[
φ0(kF)−φ0(−kF)

]
T +O

(
ε(µ− ε)2T

)

+O
(
T 3
)

for (kBT )2 � |µ−ε| � kBT

a1k
3
B

16J3

[
φ′0(kF)+φ′0(−kF)

]
T 3 +O

(
T 5
)
for |µ−ε| � (kBT )2.

(3.134)
Here, the limiting regimes have the same temperature dependence, namely T 3,
in contrast to the expectation value of the total particle current. Eq. (3.134)
shows that the expectation value of the total energy current is proportional to
T 3 if the temperature is low enough, even in the case µ = ε. However, for µ 6= ε,
there is an intermediate regime connecting the two T 3 regimes.

For both currents, we do not consider the case ε = 0, because there the ap-
proximation that λ3 is the lowest non-zero eigenvalue is not valid any more.
Furthermore, the dependencies of the factor φ0(kF)−φ0(−kF) on ε and µ could
not be considered, because the initial perturbation φ0(k) is arbitrary. If how-
ever φ0(k) is symmetric around k = 0, then both calculations give zero currents,
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because in this case, the contribution A3(0) of the 3rd eigenvalue is not present
in the perturbation φ(k, t) at all times. Thus, there is no current at least for
times t� 1/λ4.

Note that the calculation of the two currents is representative of the calcula-
tion of any observable of the form Φ̂[ψ]. The scheme can easily be adapted
to operators Φ̂[ψ], as long as ψ(k) and its derivatives are finite and known at
k = ±kF.

Examples

The calculation of the currents proves that there are long-lasting currents in
many situations. However, it is not clear yet if these situations are just patho-
logical. In order to address this issue, we calculate the long-lasting currents for
the two initial perturbations φ0(k) given in Sec. 3.2.5. Here, we present the
results of the calculation in App. C.6.2. Moreover, we calculate the long-time
evolution of the electrical and thermal conductivity.

Example 1: The first example is that of an electric field. We found in
Sec. 3.2.5 that the initial perturbation is φ0(k) = −(β η E/2J) jN (k). In Eq. (C.64),
we find that this perturbation gives the particle current

〈
ĴN
〉
t

= σ(t)E. (3.135)

Based on this example, we can calculate the electrical conductivity for low
temperatures, and has the form

σ(t) = e−λ3t





2πa0η√
1−(µ−ε)2

+O
(
ε) +O

(
T 2) for kBT � |µ−ε|

8πJ2a2
0η

a1k2
B

arcsin(µ−ε)2 T−2 +O
(
ε4T 2

)
+O

(
T 0
)

for ε(kBT )2 � |µ−ε| � kBT

4πa1k
2
Bη

J2
ε2 T 2 +O

(
ε(µ−ε)3T 2

)
+O

(
T 4
)

for |µ−ε| � ε(kBT )2.
(3.136)

The heat current is given in Eq. (C.68):

〈
ĴQ
〉
t

= e−λ3tE





πa1k
2
Bη

4J2

1

arcsin(µ−ε) T
2 +O

(
εT 2

)
+O

(
T 4
)

for kBT � |µ−ε|
2πa0η arcsin(µ− ε) +O

(
ε(µ− ε)2

)
+O

(
T 2
)

for ε(kBT )2 � |µ−ε| � kBT

π3a1k
2
Bη

8J2
ε T 2 +O

(
ε2T 2

)
+O

(
T 4
)

for |µ−ε| � ε(kBT )2.

(3.137)
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Example 2: The second example is given by a temperature difference, which
leads to the initial perturbation φ0(k) = β2∆T sgn(k)

(
ω(k)−µ

)
, see Eq. (3.84).

In Eq. (C.77), we obtain the particle current

〈
ĴN
〉
t

= e−λ3t ∆T





a1kB
2J

1 + (µ−ε) arcsin(µ−ε)√
1−(µ−ε)3/2

arcsin(µ− ε) T +O
(
εT
)

+O
(
T 3
)

for kBT � |µ−ε|

2Ja0 arcsin(µ− ε) T−1 +O
(
ε(µ−ε)2T−1

)
+O

(
T
)

for ε(kBT )2 � |µ−ε| � kBT

a1kB
J

ε T +O
(
ε2(µ−ε)T

)
+O

(
T 3
)

for |µ−ε| � ε(kBT )2.
(3.138)

We obtain the heat current in Eq. (C.82). It is
〈
ĴQ
〉
t

= κ∆T, (3.139)

with the thermal conductivity κ given by

κ = e−λ3t





a2
1k

3
B T 3

128π3a0J3
√

1−(µ−ε)2

[
1

1−(µ−ε)2
+

arcsin(µ−ε)√
1−(µ−ε)3/2

]

+O
(
T 5
)

for kBT � |µ−ε|
a1kB
4J

T +O
(
(µ−ε)T

)
+O

(
T 3
)

for |µ−ε| � kBT.

(3.140)
On the basis of this second example, we can see that the temperature de-
pendence of the long-living currents also depends on the form of the initial
perturbation φ0(k). For the regime of reasonably large µ − ε, the example
φ0(k) ∝ sgn(k)[ω(k) − µ] leads to a heat current, which is proportional to T 5,
whereas the first example gives a heat current proportional to T 3. Also the
particle current is different for this regime: in the first example, it is of O(T )
and in the second it is of O(T 3).

The heat current of the first example and the particle current of the second
example look very similar. Note, however, that this is not very astonishing.
These, two currents would even be the same except for a constant factor if the
sgn-function was replaced by ω′(k) in the second example.

With the consideration of the two examples, we found that there are long-
lasting currents in realistic situations. In fact, there are many situations where
currents stay in the system for a very long time. However, there are also initial
perturbations, which do not lead to long-lasting currents. This is the case
when 〈φ0, χ

(3)〉 = 0. At half filling, the currents then decay on a timescale
1/λ4 � 1/λ3 or faster. Away from half filling, we have seen in Fig. 3.7 that all
low-lying eigenvalues decay exponentially in inverse temperature. In this case,
one can at least say that initial perturbations φ0(k), that are symmetric around
k = ± 1

4 , lead to 〈φ0, χ
(n>3)〉 = 0 (see Figs. 3.10 and 3.11) for all low-lying

eigenvalues λn>3. Hence, with this symmetry, φ0 is expected to decay relatively
fast away from half filling.



3.6. Perturbation theory of the linearized Boltzmann operator 91

In this section, we have seen how to calculate currents, especially long-lasting
currents, in the system by means of the linearized Boltzmann equation. This
kind of investigation is exemplary for other observables of the form

∫
dk ψ(k) n̂(k)

that might be of interest. We showed that we can calculate the time evolution
of their expectation values and their dependence on the final temperature in the
case of long times and small temperatures. Note that this calculation for long
times is rather simple, because there is only one non-zero relaxation rate λ3, that
is much smaller than the others. For other models, there can be a vast amount
of low relaxation rates, which are of the same order of magnitude, which means
that many relaxation rates have to be considered for the long-time behavior of
currents and other physical quantities. Examples for such models include this
model close to complete or empty filling (see Fig. 3.7) or the one-dimensional
manganite model presented in Fig. 4.11.

3.6 Perturbation theory of the linearized Boltz-
mann operator

This section is concerned with the perturbation theory of the linear operator L̂
for small ε. We will show that the first order vanishes. The second order per-
turbation theory is complicated by the fact that the eigenvalue zero is infinitely
degenerate. Thus, when calculating the second-order approximation, one would
have to diagonalize an infinite-dimensional matrix. Therefore, we will not calcu-
late it, but only use the fact of the vanishing first order to explain the numerical
results in Sec. 3.4.

We will first reformulate L̂ from Eq. (3.12). The momenta k1, k2, k3, and k4 =
k1 +k2−k3 will be replaced with the variables k, p, and q defined in Eq. (3.25).
We use the latter, because they seem to be natural for scattering processes,
since k measures the conserved total momentum. Furthermore, introducing
these variables, ∆ω~k = 0 factors into the trivial solution and the non-trivial
solution, see Eq. (3.28).

3.6.1 Center of mass and relative momentum coordinates

A Fourier basis is utilized to map the integral operator to an infinite matrix. We
choose this basis so that half of it is in ker L̂ε=0 and the others are orthogonal to
all functions in ker L̂ε=0. This will be used to perform the perturbation theory
later on. The basis functions in ker L̂ε=0 are

vn(k) :=
√

2 sin
(
2πn(k − 1

4 )
)
, ∀n ∈ N. (3.141)

They are antisymmetric around k = ± 1
4 , like the perturbations of the stationary

states in Eq. (3.20). The other functions are

wn(k) :=
√

2 cos
(
2πn(k − 1

4 )
)
, ∀n ∈ N0. (3.142)

Thus, the set of eigenfunctions with eigenvalue zero has an infinitely large basis,
and so does the set of the remaining eigenfunctions.
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We can determine the relative degeneracy of the eigenvalue zero. In order to do
this, we first put a cut-off |n| 6 N on the wavelength 2πn of the basis functions.
Hence, the N + 1 functions vn(k) have eigenvalue zero. Furthermore, there are
N remaining functions wn(k). The relative degeneracy is

N + 1

2N + 1

N→∞−−−−→ 1

2
. (3.143)

Thus, half the eigenfunctions of L̂ have eigenvalue zero.

In Eq. (3.12), we saw that the operator L̂ of the linearized Boltzmann equation
acting on a perturbation φ has the form

L̂[φ]1 =
πU2

~J

∫
dk2 dk3 dk4

1∑

m=−1

δ(∆k~k+m) δ(∆ω~k)

× 1− f2

f1
f3f4

[
φ1 + φ2 − φ3 − φ4

]
. (3.144)

It is convenient to use relative momenta p, q and half total momenta k, k′ before
and after the collision instead of k1, ..., k4. The transformation to from the
former to the latter reads

k1 = k + p, k2 = k − p, k3 = k′ + q, k4 = k′ − q. (3.145)

These can be used to replace the integration variables k1,2,3,4:

∫
d4k δ(∆k~k+m) ... =

∣∣∣∣det

(
1 1
1 −1

)∣∣∣∣
2 ∫

[− 1
2
, 1
2

]4

dk dk′ dp dq δ(2k − 2k′) ... .

(3.146)
Applying the momentum conservation k = k′, we obtain

∫
d4k δ(∆k~k+m) ... = 2

∫

[− 1
2
, 1
2

]3

dk dp dq ... . (3.147)

In the calculation of the operator L̂, there is no integral over k1. However, we
can add an integral

∫
dk′1 δ(k

′
1 − k1) and get

L̂[φ] = −2πU2

~J

∫

[− 1
2
, 1
2

]3

dk dp dq δ(k + p− k1) δ
(
∆ω

ε
k,p,q

) 1− fp−
fp+

fq+fq−

×
[
φp+ + φp− − φq+ − φq−

]
, (3.148)

where we introduced the index notation gp± := g(k ± p). In the next section,
we will perform the basis transformation and consider the energy-conserving
delta-function δ(∆ω~k).



3.6. Perturbation theory of the linearized Boltzmann operator 93

3.6.2 Basis transformation

We write the Boltzmann operator L̂ in the following Fourier basis

ζn(k) = ϑ̄n v|n|(k) + ϑn wn(k), n ∈ Z, (3.149)

with
ϑn :=

{
1 if n > 0
0 else

ϑ̄n := 1− ϑn (3.150)

and the definitions in Eqs. (3.141) and (3.142) of vn and wn, respectively. ζ0 is
the constant function, ζn>0 are eigenfunctions with eigenvalue zero for ε = 0,
and the ζn<0 are the other Fourier modes.

In this way, the operator L̂ maps into an infinite matrix

Lεmn :=
〈
ζm, L̂[ζn]

〉
F

= −2πU2

~J

∫

[− 1
2
, 1
2

]3

dk dp dq ζm,p+ δ(∆ω~k) [1−fp+][1−fp−]fq+fq−

×
[
ζn,p+ + ζn,p− − ζn,q+ − ζn,q−

]
. (3.151)

We now replace the energy conservation with

δ
(
∆ω

ε
k,p,q

)(3.74)
=

1

4π

γ(ε rpq)

|cp − cq|
{
δ
(
k − k̃εpq

)
+ δ
(
k + k̃

ε

pq

)}
. (3.152)

Thence, we obtain

Lεmn = − U2

2~J

∫

[− 1
2
, 1
2

]3

dk dp dq ζm,p+
γ(ε rpq)

|cp − cq|
{
δ
(
k − k̃εpq

)
+ δ
(
k + k̃

ε

pq

)}

× [1−fp+][1−fp−]fq+fq−
[
ζn,p+ + ζn,p− − ζn,q+ − ζn,q−

]
, (3.153)

with the index notation gp± := g(k ± p). To evaluate δ(k + k̃
ε

pq), we need to
know how ζn transforms under k → −k:

ζn(−k) = Nn
[
ϑ̄n sin

(
2π|n|(−k − 1

4 )
)

+ ϑn cos
(
2πn(−k − 1

4 )
)]

= Nn
[
−ϑ̄n sin

(
2π|n|(k − 1

4 ) + π|n|
)

+ ϑn cos
(
2πn(k − 1

4 ) + πn
)]

= Nn
[
(−1)n+1ϑ̄n sin

(
2π|n|(k− 1

4 )+π|n|
)

+ (−1)nϑn cos
(
2πn(k− 1

4 )+πn
)]

= (−1)n+ϑ̄nζn(k).
(3.154)

Moreover, we notice that

g(k̃
ε

p,q + p)
∣∣∣
p→−p

= g(k̃
ε

−p,q − p)
(3.43)

= g(k̃
ε

pq − p) = g(k̃
ε

p,q − p) (3.155)

for any function g, because k̃
ε

pq only depends on ε rpq = ε(cp + cq). Continuing
the calculation of the matrix elements, we additionally use the symmetries of
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fq± and ζn,p+ + ζn,p− − ζn,q+ − ζn,q− to obtain

Lεmn = − U2

2~J

∫

[− 1
2
, 1
2

]2

dp dq
γ(ε rpq)

|cp − cq|
{
ζm,p̃+ + (−1)m+ϑ̄m+n+ϑ̄nζm,p̃−

}

× [1−fp̃+][1−fp̃−]fq̃+fq̃−
[
ζn,p̃+ + ζn,p̃− − ζn,q̃+ − ζn,q̃−

]}
.

(3.156)
We continue with changing the integration over p to one over −p in the term
including (−1)m+ϑ̄m+n+ϑ̄nζm,p̃−:

Lεmn = −U
2

~J
∆n+m+ϑ̄n+ϑ̄m

∫

[− 1
2
, 1
2

]2

dp dq
γ(ε rpq)

|cp − cq|
ζm,p̃+ [1−fp̃+][1−fp̃−]fq̃+fq̃−

×
[
ζn,p̃+ + ζn,p̃− − ζn,q̃+ − ζn,q̃−

]
,

(3.157)
where we introduced gp̃± = g(k̃

ε

pq±p). Furthermore, we changed the integration
variable p to −p in the term including ζm,p̃−. Additionally, in the last line we
defined

∆l := 1
2

(
1 + (−1)l

)
∈ 0, 1. (3.158)

Thence, the factor ∆n+m+ϑ̄n+ϑ̄m makes half the matrix elements vanish.

3.6.3 Kernel of the linearized operator in the integrable
case

After we performed the basis transformation of L̂ to Lεmn in the last section, we
continue with the search for a basis of ker(L̂), i.e. the eigenfunctions of L̂ with
eigenvalue zero. Using γ(0) = 1 (Eq. (3.73)), the matrix Lεmn in Eq. (3.157)
attains the form

L0
mn = −U

2

~J
∆n+m+ϑ̄n+ϑ̄m

∫

[− 1
2
, 1
2

]2

dp dq
ζm( 1

4 +p)

|cp−cq|
[
1−f0

( 1
4 +p)

][
1−f0

( 1
4−p)

]

× f0
( 1

4 +q)f
0
( 1

4−q)
[
ζn( 1

4 +p) + ζn( 1
4−p)− ζn( 1

4 +q)− ζn( 1
4−q)

]
.

(3.159)
Furthermore, we plug in the basis ζn(k) defined in Eq. (3.149):

L0
mn = −U

2∆n+m+ϑ̄n+ϑ̄m

~J

∫

[− 1
2
, 1
2

]2

dp dq

[
1−f0

( 1
4 +p)

][
1−f0

( 1
4−p)

]
f

0
( 1

4 +q)f
0
( 1

4−q)
|cp − cq|

×
[
ϑ̄m sin

(
2π|m|p

)
+ϑm cos

(
2πmp

)][
2ϑn cos

(
2πnp

)
−2ϑn cos

(
2πnq

)]
.

(3.160)
Next, we make use of the fact that the term including sin

(
2π|m|p

)
is odd in p

and therefore vanishes:

L0
mn = −2U2

~J
ϑm ϑn ∆m+n

∫

[− 1
2
, 1
2

]2

dp dq
cnp−cnq
|cp−cq|

cmp

×
[
1−f0

( 1
4 +p)

][
1−f0

( 1
4−p)

]
f

0
( 1

4 +q) f
0
( 1

4−q). (3.161)
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Now, we symmetrize the p- and q-dependent integrand. This is possible since
[1−f1][1−f2]f3f4 = f1f2[1−f3][1−f4], see Eq. (B.59). We obtain

L0
mn = −U

2

~J
ϑm ϑn ∆m+n

∫

[− 1
2
, 1
2

]2

dp dq
(cnp − cnq)(cmp − cmq)

|cp − cq|

×
[
1−f0

( 1
4 +p)

][
1−f0

( 1
4−p)

]
f

0
( 1

4 +q) f
0
( 1

4−q). (3.162)

In the case of n 6 0, the matrix elements are zero. For n < 0, the reason is the
antisymmetry of vn(k) around k = ± 1

4 leading to the factor ϑ̄n. For n = 0, the
factor w0(k + p) + w0(k − p) − w0(k + q) − w0(k − q) = 0 leads to the factor
cnp − cnq = 0. Therefore, the associated ζn60 are eigenfunctions of L̂ε=0 with
eigenvalue zero, see Eq. (3.141). Hence, we have

vn ∈ ker L̂ε=0 ∀n 6 0, (3.163)

with vn(k) =
√

2 sin
(
2πn(k − 1

4 )
)
, cf. Eq. (3.141). The first two eigenfunctions

ζ0(k) = 1 and ζ−1(k) ∝ cos(2πk) are the eigenfunctions of ker L̂ considered
in Sec. 3.2.1. They are connected to particle number and energy conservation.
Hence, their eigenvalues are always zero. The eigenvalues of the other eigen-
functions are not expected to be zero for broken integrability. In Sec. 3.6.4,
we will see that they increase with ε2. App. C.9 displays how to simplify L0

mn

even more and how the zeros of the factor |cp − cq| in the denominator can be
eliminated analytically.

3.6.4 First-order perturbation theory

We have shown, that L̂ε=0 has an infinitely large kernel dimension. The two
basis functions ζ0 = const and ζ−1 = ωε=0 will still be eigenfunctions of L̂, even
for non-zero ε. They are the constant function ζε0 = const and the dispersion
relation ζε−1 = ω, respectively.

The other functions ζn62 are eigenfunctions of L̂ in zeroth-order perturbation
theory. However, they are not the ε → 0 limit of the eigenfunctions χ(n)(k).
These ε→ 0 limits can be found by higher-order contributions of perturbation
theory as superpositions of ζn62. A hint that ζn62 cannot be the equal to
the eigenfunctions limε→0 χ

(n)(k) is that all the eigenfunctions are orthogonal
for ε 6= 0, but the functions ζn are not: 〈χ(m), χ(n)〉F = δmn (cf. Eqs. (3.14)
and (B.71)), but 〈ζm, ζn〉F 6= 0 for all m 6= n, m,n < 0, and β 6= 01.

In Sec. 3.4, the low-lying eigenvalues were defined as those eigenvalues, which
vanish in the limit ε → 0. This means that they are the smallest eigenvalues.
Now, we additionally introduce another designation: We refer to the eigenfunc-
tions of low-lying eigenvalues as low-lying eigenfunctions.

1For β = 0 the Fermi-Dirac function becomes f(k) = const. Therefore, the scalar product
〈·, ·〉F defined in Eq. (3.14) is proportional to the standard scalar product. This makes the
basis ζn orthonormal.
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It is very probable that the low-lying eigenvalues cannot be calculated analyti-
cally, but we will show, that they are O(ε2). This will be done by showing that
the first-order contribution λ̃1 of a low-lying eigenvalue λε vanishes, i.e.

λ̃1 =
d

dε
λ
ε
∣∣∣∣
ε=0

. (3.164)

In App. C.10, we find that λ̃1 is defined by the eigenvalue problem

−1∑

n=−∞
L(1)
mn An = λ̃1 Am, m 6 −1. (3.165)

In order to solve this eigenvalue problem, we have to diagonalize the matrix
L(1)
mn given in Eq. (C.111):

L(1)
mn ≡

〈
vm, L̂1[vn]

〉
F
≡
〈
vm
∣∣
[
d

dε
L̂
]

ε=0

∣∣vn
〉

=

[
d

dε
Lεmn

]

ε=0

(3.166)

The next step is plugging in the matrix Lεmn given in Eq. (3.157):

L(1)
mn =

−U2∆m+n

~J

∫

[− 1
2
, 1
2

]2

dp dq

{
d

dε

γ(ε rpq) ζm(k̃
ε

pq+p)

|cp−cq|
[
1−f(k̃εpq+p)

][
1−f(k̃εpq−p)

]

× f(k̃εpq+q)f(k̃
ε

pq−q)
[
vn(k̃

ε

pq+p)+vn(k̃
ε

pq−p)−vn(k̃
ε

pq+q)−vn(k̃
ε

pq−q)
]}

ε=0
(3.167)

for m,n 6 0. Actually, we do not need m = 0 or n = 0, because we already
know that the constant function is always an eigenfunction of L̂. The other
eigenfunctions are orthogonal to it. The calculation in App. C.11 leads to

L(1)
mn =

U2β

~J
ϑm ϑn ∆m+n

∫

[− 1
2
, 1
2

]2

dp dq
1 + 2 cp cq
|cp−cq|

(cmp − cmq)(cnp − cnq)

× f0
( 1

4 + p) f
0
( 1

4−p) f
0
( 1

4 + q) f
0
( 1

4−q)
[
η(p) + η(q)

]
. (3.168)

Due to the factor ϑn(cnp − cnq), the matrix L(1)
mn vanishes for n 6 0 for all m.

The factor also vanishes for m 6 0 for all n. This symmetry comes from the
fact that L̂ is hermitian in the scalar product 〈·, ·〉F.

L(1)
m,n = 0 for n 6 0 (or m 6 0). (3.169)

Thus, the l.h.s. in Eq. (3.165) is zero and so is the r.h.s. λ̃1. We have proven
that the first-order correction to the low-lying eigenvalues of L̂ vanishes. This
confirms the ε2 behavior, we have found in the numerical calculation for the
relaxation rates λn in Fig. 3.5.

Due to the vanishing first-order contribution of the perturbation theory, the
ε→ 0 limits of the low-lying eigenfunctions are determined by the second-order
contribution of perturbation theory. However, it is important to note that in
general the high-lying eigenvalues, which we define as non-low-lying eigenvalues,
do have a first-order correction in ε.
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3.7 Summary

The final temperature T measures the energy content of the electronic system
we are studying. The more energy we have, the more excited electrons we have
compared to the ground state (T = 0). When the energy content approaches
half the possible total energy (T → ∞), the relaxation time decreases. The
trend of decreasing relaxation times for increasing temperature is also observed
in higher-dimensional systems, see e.g. Mueller and Rethfeld (2013). However,
for small temperatures we found three scenarios:

1. Away from half filling: The relaxation rates become exponentially small
as function of inverse final temperature β.

2. Half filling and 〈Î3〉 6= 0: The thermalization rate is again exponentially
small as a function of β for low temperature.

3. Half filling and 〈Î3〉 = 0: The thermalization rate is hardly dependent on
β and the prefactor λ̃4 is of order O(1).

At half filling, we have to consider the operator Î3 ≈ K̂ − 1
4

(
N̂R − N̂L

)
. If it

has a zero expectation value, then the eigenfunction χ(3)(k) does not contribute
to the perturbation φ(k) of the quasiparticle momentum distribution. This
means that the time is not set by λ3, which is exponentially small in β, but by
λ4 = λ̃4ε

2u2/t0, see Fig. 3.6. Hence, the relaxation time is much faster than in
the other two cases. This is explained by Umklapp processes: For low T , they
are only effective at half filling.
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Chapter 4

Praseodymium calcium
manganite

4.1 Introduction

In this chapter, we apply our numerical method to a model with a more complex
band structure. The substance we are interested in belongs to the class that
is known as "manganites" (Dagotto, 2003), although it incorporates Mn3+ as
well as Mn4+ (the latter is a manganate). In general, the manganites we are
referring to have the chemical formula AxB1−xMnO3, where A and B are for
example Lanthanum (La), Calcium (Ca), or Praseodymium (Pr). The man-
ganese and the oxygen form lattices of octahedra, see Fig. 4.1. The atoms A
and B are distributed into the remaining spaces. By placing different sorts of
atoms A and B in different relative concentrations x, the electronic doping can
be changed. For example, for Pr0.5Ca0.5MnO3, half of the manganese atoms
miss an additional electron, therefore formally half of them have the oxidation
state 3+ and the other one 4+.

Manganites are known for many fascinating features (Dagotto, 2003), with the
colossal magneto resistance being the most famous one. The most important
for us, however, is that it is a promising material for a more efficient conversion
of solar energy to electric energy compared to the conventional silicon-based
solar cells (Saucke et al., 2012), because the long lifetime of photo-excitations
of electrons. Furthermore, we will show below that the manganites exhibit
many different magnetic phases. These influence the band structure. Thus, one
expects a tunability of the photovoltaic properties of manganites using electric
and magnetic fields (Ni et al., 2012).

For understanding the conduction properties of manganites, it is essential to de-
scribe the corresponding electron orbitals. Since only the manganese and oxygen
atoms contribute to electronic conduction, we investigate the change of the va-
lence orbitals, when bringing both of them in close proximity. Thus, the first
section of this chapter, Sec. 4.1.1, introduces the crystal-field splitting, which
leads to the reorganization of the manganese d-orbitals into eg- and t2g orbitals.
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Figure 4.1: The perovskite structure of A1−xBxMnO3 (Dagotto, 2003). We only
show the manganese and oxygen atoms. Between the octahedra, there is space for
electron donors and acceptors, which are denoted by A and B. Note that the size of
the ions are not to scale for a better illustration of the geometry.

In Sec. 4.1.2, we will introduce the exchange mechanisms of PrxCa1−xMnO3

(PCMO) for x = 0.5, which leads to conduction, but also to the many possible
magnetic phases in general.

4.1.1 Crystal field splitting

In this section, we review the splitting of the d states of the manganese atoms
into eg and t2g states. This is called crystal field splitting. We follow the
derivation of Dagotto (2003).

The electronic configuration of manganese is1[Ar]3d54s2. The 3d subshell is
partly filled. Its states, which we from now on denote as d states, have the
highest energy compared to the states, in which the other electrons are residing.
Hence, we can safely assume that the other shells are not influenced by nearby
atoms. 3d5 means that the principal quantum number of the shell is n = 3,
the angular momentum of the subshell is l = 2, and the number of electrons
in this subshell is equal to 5. The d states change when there are oxygen
atoms in the vicinity. In zeroth order of perturbation theory, the new states
are a superposition of the original d states, which we will demonstrate in this
section. However, it is important that in higher orders they also acquire smallf
contributions from other states with l 6= 2

The states in the manganese d shell have the principle quantum number n = 3
and the azimuthal quantum number l = 2. Both can be considered fixed for
the derivation below. The d states only differ in the magnetic quantum number

1The electronic configuration of Argon (Ar) is 1s22s22p63s23p6. The information about
electronic configurations can be deducted from the chemical periodic table.
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m. Furthermore, they have the same eigenenergy, as long as we neglect the
influence of magnetic fields on the states with different quantum number m.
This eigenenergy we denote as Wn=3,l=2 and the unperturbed Hamiltonian of
the manganese electrons as ĤMn. Hence, we have

ĤMn|n, l,m〉 = Wn,l|n, l,m〉. (4.1)

The eigenstates |n, l,m〉 in real space are given by 〈~r|n, l,m〉 = RnlYlm(θ, φ) with
the radial part Rnl(r) and the spherical harmonics Ylm(θ, φ). In the following,
we will not explicitly write the principal quantum n any more, since we set it
constant anyway.

The Hamiltonian ĤMn for the electrons of a manganese atom is perturbed by
the six adjacent oxygen atoms. The oxygen imposes a perturbative potential V̂ .
The original eigenstates of ĤMn are the |l,m〉. The perturbation V̂ leads to new
eigenstates |ψ〉 = |ψ0〉+ α|ψ1〉+O(α2), with α being the small real number, to
which V̂ is proportional. Hence, we define V̂ = α V̂ (1). As a start, we expand
|ψ〉 =

∑
lmQlm|l,m〉, with Qlm = Q

(0)
lm + αQ

(1)
lm + O(α2). The perturbation

theory begins by considering the eigenvalue equation for the total Hamiltonian:

ĤMn|ψ〉+ V̂ |ψ〉 = E|ψ〉, (4.2)

where E = E0 + αE1 +O(α2). The zeroth order gives
∑

l′m′

(Wl′ − E0)Q
(0)
l′m′ |l′,m′〉 = 0. (4.3)

In order to find non-zero coefficients Q(0)
l′m′ , the leading contribution E0 of the

eigenenergy must be equal to one of the coefficients Wl. This fixes the angular
momentum l for |ψ〉 (in our case l = 2). The rest of the sum in Eq. (4.3) leads
to Q(0)

l′m′ = 0 for l′ 6= l. Thus, we have

|ψ〉 =
∑

m′

Q
(0)
l,m′ |l,m′〉. (4.4)

The first order of Eq. (4.2) is

ĤMn|ψ1〉+ V̂ (1)|ψ0〉 = E1|ψ0〉+ E0|ψ1〉. (4.5)

We multiply 〈l′,m′| from the left and get

0 =
∑

l′′m′′

〈l′,m′|(ĤMn − E0)Q
(1)
l′′m′′ |l′′,m′′〉+

∑

m′′

〈l′,m′|(V̂ (1) − E1)Q
(0)
lm′′ |l,m′′〉

=
∑

l′′m′′

δl′l′′δm′m′′(Wl′′ −Wl)Q
(1)
l′′m′′ +

∑

m′′

Q
(0)
lm′′〈l′,m′|V̂ (1)|l,m′′〉 − E1δll′Q

(0)
lm′

= (Wl′ −Wl)Q
(1)
l′m′ +

∑

m′′

Q
(0)
lm′′〈l′,m′|V̂ (1)|l,m′′〉 − E1δll′Q

(0)
lm′ .

(4.6)
For l′ = l, this equation yields the eigenvalue equation

∑

m′

[
〈l,m|V̂ (1)|l,m′〉 − E1

]
Q

(0)
lm′ = 0. (4.7)
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The solution of this equation leads to the first-order correction E1 of the eigen-
energy E as well as the leading order Q(0)

lm of the eigenstate coefficients Qlm.

The entries of the 5-by-5 matrix
(
〈l,m|V̂ (1)|l,m′〉

)
mm′

are defined by

〈l,m|V̂ |l,m′〉 =

∫
d3r

∣∣Rnl(r)
∣∣2 Y ∗lm(θ, φ) V (~r) rl Ylm′(θ, φ). (4.8)

For the evaluation of the matrix elements 〈l,m|V̂ |l,m′〉, we write the perturbing
potential in real space. It is the superposition of the potential created by the
six neighboring, negatively-charged oxygen ions:

V (~r) = Vx(~r) + Vy(~r) + Vz(~r) (4.9)

with

Vs(~r) =
Ze√

r2 + a2 − 2a s
+

Ze√
r2 + a2 + 2as

∀s ∈ x, y, z. (4.10)

Here, we defined the distance a between one manganese and one oxygen, the
elementary charge e, the effective number of charges of the oxygen ion Z = −2,
and the Cartesian coordinates (x, y, z) of position ~r. The denominators in the
expression of Vs come from the distance measure |~r − a~es| =

√
r2 + a2 ± 2as

with the unit vector ~es in s-direction.

We only need to know the potential close to the manganese atom. Hence, we
apply a Taylor expansion, which simplifies the potential to

V (~r) = Ze

[
6

a
+

35

4a5

(
x4 + y4 + z4 − 3

5
r4

)]
. (4.11)

Since the d states are described by Ylm(θ, φ), it is reasonable to rewrite the
potential using spherical harmonics:

V (~r) =
Ze

a

[
6 +

√
π r4

6a4

(√
70
(
Y4,4 + Y4,−4

)
+ 14Y4,0

)]
. (4.12)

Since the spherical harmonics are a basis for functions dependent on the angles
θ and φ, we can write a product of two spherical harmonics with the same angles
as a sum over single spherical harmonics. This leads to the following expression
(Edmonds, 1957):

Yl1m1
(θ, φ)Yl2m2

(θ, φ) =
∑

lm

√
(2l1+1)(2l2+1)(2l+1)

4π

× 〈l1, l2,m1,m2|l1, l2, l,m〉 〈l1, l2, 0, 0|l1, l2, l, 0〉 Ylm(θ, φ). (4.13)

In the next step, we use the following property of the Clebsch-Gordon-coefficients
(Mathur and Singh, 2009):

〈l1, l2,m1,m2|l1, l2, l,m〉 = 0 if m 6= m1 +m2. (4.14)

This leads to

Yl1m1
(θ, φ)Yl2m2

(θ, φ) =
∑

lm

√
(2l1+1)(2l2+1)(2l+1)

4π

× 〈l1, l2,m1,m2|l1, l2, l,m1+m2〉 〈l1, l2, 0, 0|l1, l2, l, 0〉 Yl,m1+m2
(θ, φ).

(4.15)
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dz2

R32(r)Y2,0(θ, φ)

dx2−y2

R32(r)[Y2,2(θ, φ) + Y2,−2(θ, φ)]

dxy

R32(r)[Y2,2(θ, φ)− Y2,−2(θ, φ)]

dxz

R32(r)[Y2,1(θ, φ)

+Y2,−1(θ, φ)]

dyz

R32(r)[Y2,1(θ, φ)

+Y2,−1(θ, φ)]

eg states t2g states

Figure 4.2: Illustration of eg and t2g orbitals. The colors denote different signs of
the wavefunction. The designation of the orbital is written below the respective plots.
Below them is the formula of the highest-order contribution to the corresponding
wavefunction. The eg states have a high density in the directions of x, y, and z, where
the adjacent oxygen atoms are located. The t2g states evade them, and thus they have
a lower energy because of a smaller Coulomb repulsion with the oxygen electrons. The
three-dimensional plots were created using Mathematica.
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Looking up the Clebsch-Gordon coefficients and using Eq. (4.15), Dagotto (2003)
arrives at

〈l = 2,m|V̂ |l = 2,m′〉 =
ZqC

105




1 0 0 0 5
0 −4 0 0 0
0 0 6 0 0
0 0 0 −4 0
5 0 0 0 1



mm′

, (4.16)

with C =
∫
dr r6

∣∣R3,2(r)
∣∣2. Obviously, one of the eigenvalues is 6 and there is

a two-fold degenerate space with eigenvalue −4. The remaining block matrix
[

1 5
5 1

]
(4.17)

has the eigenvalues 1± 5 ∈ −4, 6. In summary, the eigenvalue 6 is two-fold and
the eigenvalue −4 three-fold degenerate. The two-fold-degenerate eigenstates
are denoted by eg and have a higher energy than the three-fold-degenerate ones,
which are denoted by t2g. All five states are visualized in Fig. 4.2, which shows
that the eg states expand into the space in the direction to the oxygen atoms.
Therefore the eg states have a larger overlap with the oxygen states than the t2g

states. Hence, the energy elevation of the eg states is due to the higher Coulomb
repulsion with the oxygen electrons.

4.1.2 Competing couplings

In this section, we explain the various couplings of two neighboring manganese
atoms. They are the couplings of the eg and t2g states of neighboring manganese
atoms, which are established by the valence orbitals of the oxygen, i.e. the p
orbitals. We will show that the eg states of the manganese form σ bonds with
the oxygen pz orbital. Hence, the latter is referred to as the oxygen’s pσ orbital.
The t2g states form π bonds with the remaining p orbitals, px and py. These
two oxygen orbitals are the component parts of the pπ orbital of the oxygen.
Since manganese and oxygen have different kinds of valence orbitals, we will
from now on only use the designations eg, t2g, pσ, and pπ without mentioning
the sort of nuclei they belong to. In the following, we will discuss the three most
important types of couplings caused by these valence orbitals.

Hund’s coupling: We start with the coupling within the Mn, which is the
electronic interaction of its t2g and its eg states. The t2g states contain three
electrons, which have the same spin due to energy minimization (Hund’s rule).
The latter also leads to the eg state with the same spin being lowered in energy,
such that the remaining eg and t2g states are both higher in energy and not
occupied. The electrons in the eg and t2g interact via electronic exchange,
which is called Hund’s coupling, and we denote it by JH.

Superexchange: The next coupling is between oxygens and manganese va-
lence orbitals. Therefore, we consider one Mn4+-O2−-Mn3+ bridge in z-direction.
The eg orbitals form a σ bond with the pσ orbital (i.e. the pz) of the oxygen.
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t2g pπ t2g

Mn O Mn

t2g pπ t2g

Mn O Mn

Figure 4.3: Visualization of the superexchange inducing anti-ferromagnetism (see
also Li (2008), Fig. 2.10): The left picture shows the possible states of the π bond
of the fully filled oxygen-pπ orbitals and the half-filled t2g orbitals of the neighboring
manganese atoms. In the left part, all the electrons of one t2g have spin up, and the
ones of the other t2g have spin down. In this scenario, one electron can be virtually
transported from one Mn to the next. On the right, all the t2g electrons have the
same spin. The electrons can only be virtually excited to neighboring t2g states, but
transport from one t2g to the next is not possible. Although the lower two states are
much higher in energy, they are mixed with the upper state and, thus, lower the energy
of the upper state. The mechanism is similar to the one of an ionic bond, where there
is a bond without electronic transport.

The t2g orbitals form π bonds with the remaining pπ orbitals (i.e. px and py)
of the oxygen. Because of their symmetry, the eg cannot form bonds with the
pπ and the t2g cannot form bonds with pσ, as long as the angle of the Mn4+-
O2−-Mn3+ bridge is 180◦. It is important to mention that in real materials,
there are distortions that can lower the total energy. Thence, the angle is never
exactly 180◦, but it is close enough, so that assuming 180◦ should lead to a good
approximation.

The t2g states are half-filled, which means that they have either three spin up
or three spin-down states occupied due to energy minimization of a single Mn
atom. Establishing bonds to the neighboring nuclei, one can further lower the
energy by mixing in higher states of possible t2g−pπ − t2g configurations. This
mechanism is visualized in Fig. 4.3. For the case where two neighboring t2g

orbitals have an antiferromagnetic alignment, the first excited state is created
when one electron of the oxygen goes to one of the neighboring manganese.
For obtaining the next excited state, one electron of the other manganese fills
the hole of the oxygen. The last step is not possible if the t2g spin of the two
manganese nuclei are parallel aligned. This means that the antiferromagnetic
alignment is slightly favored by neighboring t2g orbitals. This effect is called
superexchange (Goodenough, 1963; Li, 2008). The strength of this coupling is
denoted by JAF.

Double-exchange: The last coupling involves the σ bond of eg and pσ. This
can also show superexchange, but the leading coupling, which determines the
preferred alignment of the eg electrons, is the double-exchange (Dagotto, 2003).
It is illustrated in Fig. 4.4. This mechanism can transfer an electron of a Mn3+ to
a Mn4+. Hereby, the oxygen bridge is the mediator. It is called double-exchange,



106 Chapter 4. Praseodymium calcium manganite

Mn3+ O2− Mn4+

Mn3+ O1− Mn3+

Mn4+ O2− Mn3+

Figure 4.4: Double-exchange. Manganese atoms can exchange eg electrons by the
mechanism depicted in this figure. The electron of the oxygen moves to a free Mn; the
electron of the Mn, which was occupied in the beginning, moves to the oxygen. Due
to this effect, electron transport can be effectively described by a transport from one
manganese atom to another (Dagotto, 2003).

J

JAF

JH JH

eg

t2g

eg

t2g

Figure 4.5: Competing couplings. We illustrate the couplings occurring in two neigh-
boring manganese atoms, see Dagotto (2003). The eg states interact via the double-
exchange visualized in Fig. 4.4. It leads to the ferromagnetic hopping J . The ferromag-
netic Hund’s coupling JH connects the eg- and t2g states of one atom. The neighboring
t2g states interact via a virtual hopping. This coupling is anti-ferromagnetic and de-
noted by JAF. It leads to frustration in this system of couplings, where all of the other
couplings are ferromagnetic.

i=2
i=1

i=0
i=−1

i=−2

Figure 4.6: Five elements of a one-dimensional manganite chain. At the edges,
oxygen atoms are located; at the center are the manganese atoms.
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because the O2− gives the electron with the spin of the Mn3+-eg-electron to
Mn4+ and the Mn3+ gives its electron to the oxygen. This effective ferromag-
netic hopping is denoted by J . The important difference to the superexchange
of the t2g electrons is that the double-exchange makes the eg electrons itinerant.

In this section, we introduced the couplings of neighboring manganese atoms.
The Hund’s coupling and the double-exchange are ferromagnetic couplings,
whereas the superexchange is antiferromagnetic in nature. The difference be-
tween superexchange and double-exchange is that the former is a static coupling,
whereas the latter involves itinerant electrons. The couplings J and JAF com-
pete for the nature of the alignment of the neighboring t2g spin, which can be
parallel or anti-parallel. This competition is visualized in Fig. 4.5.

4.1.3 Magnetic phases and one-dimensional chain

Due to the competing couplings introduced in the previous section, the t2g

orbitals of two neighboring manganese atoms can show different alignments of
their total spins. This leads to various magnetic phases depicted in Fig. 4.7, see
Dagotto (2003). There can also be more than one phase in one realization of a
manganite crystal. Then, phase boundaries occur.

We will consider a one-dimensional PrxCa1−xMnO3 chain, i.e. a chain of octa-
hedra, see Fig. 4.6. Different magnetic phases also occur for different dopings.
For our chain, we choose the doping x = 0.5, where one manganese atom ac-
commodates 3.5 electrons on average. There, the eg electrons can only move
along bonds of manganese dz2 and the oxygen pz with a hopping amplitude
J . Rajpurohit and Blöchl (2016) found, that for a certain hopping amplitude
J ≈ 0.5 eV, which is experimentally reasonable, the total spins of the t2g or-
bitals align in an extraordinary way. They alternate between ferromagnetic and
anti-ferromagnetic alignment, i.e. ↑↑↓↓↑↑↓↓ and so on.

4.1.4 Outline

We introduced the most important features of manganites for this thesis while
using PCMO as an example. Sec. 4.2 establishes an effective model for the
manganite phase ↑↑↓↓. Furthermore, we reshape the corresponding effective
Hamiltonian to obtain the single-particle band structure. In Sec. 4.3, we adapt
the multi-band Boltzmann equation to the effective model, and linearize it.
Moreover, we also discuss the significance of numerous analytically zero eigen-
values of the linearized Boltzmann equation in Sec. 4.3.4. The results of this
chapter are discussed in Sec. 4.4. There, we find the thermalization rates of the
effective model for different temperatures and investigate ∆ = 4.

4.2 Effective model for the magnetic phase ↑↑↓↓
Our first intermediate objective is to derive an effective model for the conduction
electrons, i.e. the eg electrons. Thereby, the spin configuration of the non-
conducting t2g orbitals, which is assumed to be static, plays an important role.
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A-type B-type (FM) C-type

D-type E-type F-type

G-type CE-type AF(2)

Figure 4.7: Structure types. We display the configurations found by Wollan and
Koehler (1955) apart from DE-type and the DF-type. In every picture, we show the
magnetization of the manganese atoms. Furthermore, one can see the AF(2)-type
defined in Yunoki et al. (2000). Note that these phases also exhibit charge ordering of
the manganese cores. There are several Mn3+ and Mn4+ combinations for each phase,
which are presented in the work of Wollan and Koehler (1955). This shows how rich the
manganite materials can be. They can exhibit ferromagnetism (FM) as well as a lot of
antiferromagnetic (AF) configurations. While the B-type is completely ferromagnetic,
the A-type has antiferromagnetically coupled ferromagnetic layers. The C-type follows
the same principle, only the layers are diagonally aligned. In the D-type, one layer
contains ferromagnetic lines, which are antiferromagnatically coupled. The next layer
is rotated by 90◦, and so on. The E-, F-, and G-type differ from the A-type by regular
patterns of single opposite spins in the layers. The CE-type is a combination of the C-
and the E-type resulting in a far bigger magnetic unit cell. Essentially, it is a zig-zag
pattern of ferromagnetic strings. The AF(2) has the second biggest magnetic unit.
In two directions, the coupling is antiferromagnetic, but in one direction, one sees a
pattern alternating in ferromagnetism and antiferromagnetism, i.e. ↑↑↓↓↑↑↓↓ · · · .
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E1

∆

i=−2 i=−1 i=0 i=1. . . . . . . . . . . .

U U U U U U U UJ J
J J

J

J J

Figure 4.8: Sketch of the effective model describing the electron gas of a manganite
chain in a certain magnetic phase. We are only including the eg states, because they
are responsible for the electronic conductivity. The effect of the t2g states is also
accounted for. Their electrons have the same spin leading to a magnetic field, which
splits the eg states by an energy ∆. At every second atom, the magnetization changes,
and so does the splitting of the eg states. The spin-↑ states are colored in blue, the
spin-↓ states in green. The spin-↑ electrons can hop along the blue states with a
hopping amplitude J . They interact with the spin-↓ electrons when they occupy the
same manganese atom with the interaction strength U .

Their total spin splits the conducting eg orbital energetically. The eg state with
spin in the direction of the total t2g spin is lower in energy than the eg state with
the spin in the other direction. As mentioned in the last section, the alignment
of the t2g orbitals is ↑↑↓↓↑↑↓↓, which leads to the the effective model sketched in
Fig. 4.8. Neighboring states with the same spin are connected via the hopping
amplitude J . On each site, the ↑ state and the ↓ state have an on-site interaction
U . The energy difference between the ↑-state energy and the ↓-state energy is
∆. We measure ∆ in units of J .

In Sec. 4.2.1, we will calculate the Hamiltonian of the effective model. Then, we
will rewrite the Hamiltonian into a unit cell form, see Sec. 4.2.2. We will then
transform it in Sec. 4.2.3 into a new basis where the single particle part of the
Hamiltonian is diagonal. With this transformation, we map the interaction part
of the Hamiltonian into a form that can be used for the Boltzmann equation,
see Sec. 4.3.

4.2.1 Effective Hamiltonian

One-particle Hamiltonian: In this section, we derive the effective Hamil-
tonian describing the eg electrons of a one-dimensional manganite chain. It is
sketched in Fig. 4.8. First, we write down the quadratic part of the Hamilto-
nian, i.e. everything short of the on-site interaction U . Let the manganese sites
be enumerated by i ∈ Z and the spin of the electrons denoted by σ ∈ {↑, ↓}.
For spin-↑, the states of the sites in the setM1 := 4Z∪ (4Z+3) have the energy
E1, the states of the sites in M2 := (4Z + 1) ∪ (4Z + 2) have the energy E2.
Then, the model describing the quadratic part of the Hamiltonian depicted in
Fig. 4.8 is

Ĥ0 = −J
∑

σi

ã†σiãσ,i+1+H.c.+
∑

i∈M1

[
E1 ñ↑i + E2 ñ↓i

]
+
∑

i∈M2

[
E2 ñ↑i + E1 ñ↓i

]
,

(4.18)
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with the creation operator ã†σi, the annihilation operator ãσ,i, and the number
operator ñσi := ã†σiãσi. The first two terms model the hopping of an electron
from one eg to the next with a hopping amplitude J , which results from the
previously explained double-exchange mechanism. The sums over M1 and M2

describe the staggered field induced by the t2g spins that are assumed to be
static. Moreover, note that ã†σi and ãσ,i have a tilde. Later on, we will transform
these operators into new ones, which will be marked by a hat.

In order to get one sum over all sites, we introduce the factor

ζi =
√

2 cos
(π

2
i− π

4

)
=

{
1 for i ∈M1

−1 for i ∈M2,
(4.19)

which distinguishes the sites in M1 from the sites in M2. Hence, the factor
(1 + ζj)/2 only selects sites in M1 and the factor (1− ζj)/2 only sites in M2.

∑

i∈M1

[
E1 ñ↑i + E2 ñ↓i

]
+
∑

i∈M2

[
E2 ñ↑i + E1 ñ↓i

]

=
∑

i

[(1 + ζi
2

E1 +
1− ζi

2
E2

)
ñ↑i +

(1 + ζi
2

E2 +
1− ζi

2
E1

)
ñ↓i
]

=
∑

i

[(E1 + E2

2
+ ζi

E1 − E2

2

)
ñ↑i +

(E2 + E1

2
+ ζi

E2 − E1

2

)
ñ↓i
]

=
∑

σi

E1 + E2

2
ñσi +

∑

i

ζi
E1 − E2

2

[
ñ↑i − ñ↓i

]
. (4.20)

This leads to

Ĥ0 = −J
∑

σi

ã†σiãσ,i+1 +H.c.+
∑

σi

E1 + E2

2
ñσi +

∑

i

E1 − E2

2
ζi
[
ñ↑i − ñ↓i

]
,

(4.21)
where ζi =

√
2 cos(π2 i + π

4 ). Now, in order to give a physical meaning to the
terms we derived, we define

the energy difference ∆ := (E2 − E1)/J

a spin operator s̃zi := 1
2

(
ñ↑i − ñ↓i

)

the total number operator Ñ :=
∑

σi

ñσi. (4.22)

Note that we defined the spin operator s̃zi without ~ for simplicity. Using all
the three definitions, the Hamiltonian becomes

Ĥ0 = −J
∑

σi

ã†σiãσ,i+1 +H.c.+
E1 + E2

2
Ñ − J ∆

∑

i

ζi s̃
z
i . (4.23)

We see that the ∆ term acts as a magnetic-field term, despite the fact the
underlying mechanism is Hund’s rule exchange. Now, we shift the energy levels
so that the zero energy is halfway between E1 and E2, i.e. E1 + E2 = 0.

Ĥ0 = J
{
−
∑

σi

ã†σiãσ,i+1 +H.c.−∆
∑

i

ζi s̃
z
i

}
(4.24)
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Figure 4.9: Visualization of the unit cell. Here, we show the same model depicted
in Fig. 4.8. The difference is that we mark our choice of the unit cell, where the index
l numbers the unit cell, and the index j the sites within one unit cell.

Interaction Hamiltonian: We model the interaction of the electrons by the
short-ranged interaction term from the Hubbard model:

Ĥint = U
∑

i∈Z
ñ↑i ñ↓i. (4.25)

This interaction term describes the Coulomb interaction between the eg elec-
trons. We only take into account on-site interaction assuming that the Coulomb
interaction is sufficiently screened by the positively-charged atom cores. More-
over, we define a dimensionless interaction strength u := U/J .

Total Hamiltonian: In summary, the complete effective Hamiltonian is

Ĥ = Ĥ0 + Ĥint

= J
{
−
∑

σi

ã†σiãσ,i+1 +H.c.−∆
∑

i

ζi s̃
z
i + u

∑

j

ñ↑i ñ↓i
}
. (4.26)

4.2.2 Hamiltonian in unit cell form

In this section, we rewrite our effective Hamiltonian in such a way that the unit
cell becomes apparent.

One-particle Hamiltonian: We start by considering the single-particle Hamil-
tonian defined in Eq. (4.18). First, we define new coordinates: l ∈ Z enumerates
the unit cells and j ∈ {1, 2, 3, 4} the 4 sites in the unit cell. Therefore, the origi-
nal coordinate is recovered by i = 4 l+ j. The next step is labeling the creation
operator by the new coordinates, hence b̃†σlj := ã†σ,4l+j . Thus, Eq. (4.26) be-
comes

Ĥ0 =
∑

σljj′

[
Aσjj′ b̃†σlj b̃σlj′ +

(
Bjj′ b̃†σlj b̃σl+1,j′ +H.c.

)]
, (4.27)
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Figure 4.10: Band structure ων(k) for different ∆ with E2 = −E1 = J∆/2.

with the newly defined 4× 4 matrices

A↑ :=




E1 −J 0 0
−J E2 −J 0
0 −J E2 −J
0 0 −J E1


, A↓ :=




E2 −J 0 0
−J E1 −J 0
0 −J E1 −J
0 0 −J E2


, B :=




0 0 0 0
0 0 0 0
0 0 0 0
−J 0 0 0


.

(4.28)
The matrices Aσ describe the energy levels and the hopping within one unit
cell. The hopping between two unit cells is described by B. It is important to
note that, although B is not hermitian, the single-particle Hamiltonian Ĥ0 is,
because it includes the hermitian conjugate of the term containing B.

Interaction Hamiltonian: The interaction part is brought into unit cell form
simply by using the new creation operators and summing over the unit cells and
the atoms they contain:

Ĥint = U
∑

lj

b̃†↑lj b̃↑lj b̃
†
↓lj b̃↓lj . (4.29)

Total Hamiltonian: Combining Ĥ0 and Ĥint, we obtain the full Hamiltonian
of our effective model, which is

Ĥ = Ĥ0 + Ĥint

=
∑

σljj′

[
Aσjj′ b̃†σlj b̃σlj′ + Bjj′ b̃†σlj b̃σl+1,j + B†jj′ b̃†σlj b̃σ,l−1,j

]

+ U
∑

lj

b̃†↑lj b̃↑lj b̃
†
↓lj b̃↓lj . (4.30)
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4.2.3 Hamiltonian in single-particle band form

Now, we bring the effective Hamiltonian finally in the form that is used to derive
the multi-band Boltzmann equation, see Chapter 2. We do this by applying two
transformations of the creation and annihilation operators. These two transfor-
mations are obtained by diagonalizing the single-particle Hamiltonian.

Single-particle Hamiltonian: The first transformation of the creation and
annihilation operator is a Fourier transform of the unit-cell index l:

b̃σlj =

∫
dk ei2πkl b̂σj(k). (4.31)

This results into the single-particle Hamiltonian

Ĥ0 =
∑

σjj′

∫
dk b̂†σj(k) b̂σj′(k)

[
Aσjj′ + Bjj′ei2πk + B†jj′e−i2πk

]

︸ ︷︷ ︸
=: Cσjj′(k)

. (4.32)

Diagonalizing the hermitian 4-by-4 matrices Cσ(k), we obtain the single-particle
bands labeled by the indices ν:

T †σ(k) Cσ(k) Tσ(k) = Dσ(k),

Dσνν′(k) = J δνν′ ωσν(k), (4.33)

where ωσν(k) is defined in such a way that it is dimensionless. Thence, we define
the final annihilation operator ĉσν(k) by

b̂σj(k) =
∑

ν

T ∗σjν(k) ĉσν(k). (4.34)

Thus, the one-particle part of the Hamiltonian becomes

Ĥ0 = J
∑

σjj′ν

∫
dk b̂†σj(k) b̂σj′(k) Tσjν(k) ωσν(k) T ∗σνj′(k)

= J
∑

σν

∫
dk ωσν(k) n̂σν(k) (4.35)

where n̂σν(k) = ĉ†σν(k) ĉσν(k).

The band structure of ↑ and ↓-spin particles are the same. Hence, we label both
band structures the same way:

ων(k) = ω↓ν(k) = ω↑ν(k). (4.36)

Furthermore, we order the bands by the their minimum energy. This leads to
the final form of the one-particle part of the Hamiltonian:

Ĥ0 = J
∑

σν

∫
dk ων(k) n̂σν(k). (4.37)
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Defining ∆ := (E2 −E1)/J and having E1 +E2 = 0, the bands turn out to be

ων(k) =
+
+
−−

1

2

√
8 + ∆2

+
−−
+

4
√

2(1 + cos(2πk)) + ∆2. (4.38)

In Fig. 4.10, these bands are plotted for various values of ∆.

In the limit ∆ = 0, we recover the single band of the tight-binding Hubbard
model in the following way: The highest and the lowest bands are ±2 cos(πk/2).
The two bands in the middle are ±2 sin(πk/2). Now, we concatenate the bands
starting with the lowest. This results in the sequence

− 2 cos(πk/2),

2 sin(π(k + 1)/2) = −2 cos(πk/2),

2 cos(π(k + 2)/2) = −2 cos(πk/2), and
2 sin(π(k + 3)/2) = −2 cos(πk/2). (4.39)

Hence, for ∆ = 0, we can describe the band structure by one band. Using the
momenta k̃ = k/4, we obtain the cosine band of the Hubbard model−2 cos(2πk̃).
The factor 4 resembles the change from a unit cell with four atoms to a unit
cell with one atom.

For large ∆, the bands become cosine shaped. This can be seen expanding for
large ∆:

ων(k) =
+
+
−−

1

2

[
∆

+
−−
+

2 +
2

∆
+

1

∆2

(
4
−
+
+
−

6
) +
−−
+

2

∆2
cos(2πk) +O(∆−3)

]

= ω
(0)
1,2,3,4

+
−
+
−

1

∆2
cos(2πk) + O(∆−3), (4.40)

where we defined the constant ω(0)
1,2,3,4 :=

+
+
−−

1
2

√
8 + ∆2

+
−−
+

4
√

2 + ∆2. In this case,
all the band widths become 2J/∆2. One obtains very flat, cosine-shaped bands.
A flat band ων(k) means that the group velocity ω′ν(k) is very small. Conse-
quently, the effective hopping must be very small. For the PCMO chain, this
stems from the fact that the probability for an ↑-electron to tunnel through a
dimer of two elevated ↑ states becomes smaller with increasing level splitting ∆.
For ∆ = ∞, this tunneling process is not possible any more and the electrons
cannot leave from their dimers. Therefore, in this limit, the effective model
becomes a chain of disconnected dimers.

This has an important consequence for thermalization: For large (but finite) ∆,
the bands become so flat that some inter-band exchanges are not possible any
more. In other words, there are exactly conserved quantities, which are certain
combinations of the number operator

Nν :=

∫
dk nν(k), (4.41)

which counts the number of particles in the band ν.

For two bands, such a conserved quantity occurs when their distance is larger
than the maximum of their bandwidths. Numerically, one can easily find that
for the lower two bands this happens at ∆ = ∆1 ≈ 1.297 and for the two bands
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in the middle at ∆ = ∆2 ≈ 2.246. Thus, already for not too large ∆, certain
inter-band exchanges will become impossible. Hence, there can be different
chemical potentials for each band

fν(k) =
1

exp{β(ων(k)− µν)}+ 1
, (4.42)

and they cannot equilibrate to a common value.

Considering all four bands, the symmetry of the band structure still allows
for certain inter-band exchanges. For example, a particle can be transferred
from the 1st into the 2nd band if another particle is transferred from the 4th

into the 3rd band. We denote this process as (1, 4 → 2, 3). Also, processes
like (1, 2 → 3, 4) are energetically allowed. We will show that this results in
the conserved quantities that we find after the linearization of the Boltzmann
equation in Sec. 4.3.4.

Interaction Hamiltonian: Now that we have the transformation that leads
to the single-particle bands, we can use them to bring the interaction Hamil-
tonian in the form that is necessary for setting up the Boltzmann equation.
Starting from Eq. (4.29), we deduce:

Ĥint = U
∑

lj

b̃†↑lj b̃↑lj b̃
†
↓lj b̃↓lj

(4.31)
= U

∑

j

∫
d4k δ(∆k~k) b̂†↑j(k1) b̂†↓j(k2) b̂↓j(k3) b̂↑j(k4)

(4.34)
= U

∑

~ν

∫
d4k δ(∆k~k) Φ~ν(~k) ĉ†↑ν1(k1) ĉ†↓ν2(k2) ĉ↓ν3(k3) ĉ↑ν4(k4), (4.43)

with the momentum change ∆k~k = k1 +k2−k3−k4 and the interaction weight

Φ~ν(~k) =
∑

j

T ∗↑j,ν1(k1)T ∗↓j,ν2(k2)T↓j,ν3(k3)T↑j,ν4(k4). (4.44)

Total Hamiltonian: To summarize, we find for the effective Hamiltonian in
band form:

Ĥ = Ĥ0 + Ĥint

= J
∑

σν

∫
dk ων(k) n̂σν(k)

+ U
∑

~ν

∫
d4k δ(∆k~k) Φ~ν(~k) ĉ†↑ν1(k1) ĉ†↓ν2(k2) ĉ↓ν3(k3) ĉ↑ν4(k4). (4.45)

One sees that Φ~ν(~k) is not easily calculated. However, we point out the sym-
metries of the transformation that T inherits from C:

Cσ =
(
CRσ
)∗
, (4.46)
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where the R operation reverses the indices: (AR)jm := A5−j,5−m. For our choice
ω↑n = ω↓n, this leads to

Tσ,j,n = T ∗σ,5−j,n . (4.47)

Furthermore, the definition
C↓ = C↑

∣∣∣
E1↔E2

(4.48)

and the fact that the single-particle bands ωn are invariant under the change
E1 ↔ E2, we get

T↓ = T↑
∣∣∣
E1↔E2

. (4.49)

4.3 Boltzmann equation

This section introduces the Boltzmann equation we will use to find the time
evolution of the quasiparticle momentum distribution nσm(k) = 〈n̂σm(k)〉. We
will revisit the linearization of the Boltzmann equation, which was elaborately
done for the general case in Sec. 2.2. It is important to keep in mind the
resulting linear operator and the meaning of its eigenvalues, eigenfunctions, and
corresponding states-space operators.

We investigate the model parameter ∆ = 4, which was a preliminary result of
the ab-initio calculation of Rajpurohit and Blöchl (2016). The most realistic
parameter for Pr0.5Ca0.5MnO3 were investigated by Köhler et al. (2016). By
the time these new results were found, this chapter has already be finalized and
they were not taken into consideration for this thesis. As we will show, this
choice ∆ = 4 constitutes an interesting case, because the linearized Boltzmann
equation contains the maximum number of conserved quantities, which we have
seen in our calculations, but ∆ is still not overly large.

Furthermore, every manganite Mn3+ contributes half a valence electron due
to the doping of Pr0.5Ca0.5MnO3, see Sec. 4.1.3. Therefore, the Fermi level is
located between the lowest and the second lowest band. This means that for
T = 0, the lowest band is completely filled and the other three bands are empty.

Following Chapter 2 (or App. B.1), the Boltzmann equation for n↑m(k) =
n↓m(k) is

ṅν1(k1, t) =
2πU2

~J

∫

K3

dk2 dk3 dk4 δ
(
kmod(∆k~k)

) ∑

ν2,ν3,ν4
∈{1,..,4}

δ
(
∆ω~ν,~k

) ∣∣Φ~ν,~k
∣∣2

×
{[

1−nν1(k1, t)
][

1−nν2(k2, t)
]
nν3(k3, t)nν4(k4, t)︸ ︷︷ ︸

gain term

−nν1(k1, t)nν2(k2, t)
[
1−nν3(k3, t)

][
1−nν4(k4, t)

]
︸ ︷︷ ︸

loss term

}
. (4.50)

Here, we defined the momentum change ∆k~k = kmod(k1 + k2 − k3 − k4) and
the total energy change ∆ω~ν,~k := ων1(k1) + ων2(k2) − ων3(k3) − ων4(k4). This
Boltzmann equation treats more than one band in contrast to the single-band
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Boltzmann equation that we used in the case of the Hubbard model, see Chap-
ter 3.

In order to linearize the Boltzmann equation, we define the perturbation φν(k, t)
of the thermal distribution fν(k) so that

nν(k, t) =
1

exp
[
β
(
ων(k)− µ

)
− φν(k, t)

]
+ 1

= fν(k)− fν(k)
[
1− fν(k)

]
φν(k, t) +O

(
φν(k, t)

2
)
. (4.51)

This leads to the linearized version of the Boltzmann equation (see App. B.2):

φ̇ν1(k1, t) = L̂[φ]ν1(k1, t), (4.52)

with the linearized Boltzmann operator

L̂[φ]ν1(k1, t) =
2πU2

~J

∫

K3

dk2dk3dk4 δ(∆k~k)
∑

ν2,ν3,ν4
∈{1,..,4}

F~ν,~k
∣∣Φ~ν,~k

∣∣2

× δ(∆ω~ν,~k)
[
φν1(k1, t) + φν2(k2, t)− φν3(k3, t)− φν4(k4, t)

]
.

(4.53)
Hereby, we defined

F~ν,~k =

[
1−fν2(k2)

]
fν3(k3)fν4(k4)

fν1(k1)
. (4.54)

4.3.1 Eigenvalues and eigenfunctions of the linearized Boltz-
mann operator

In App. B.3, we show that the eigenvalues of L̂ are positive, see Eq. (B.72), and
that they are the relaxation rates:

φν(k, t)
(B.76)

=
∑

j

Aj(0) e−λjt χ(j)
ν (k). (4.55)

Extending the numerical code used in Chapter 3, we calculate the eigenvalues
and eigenfunctions of (~J/2πU2)L̂, i.e. the operator L̂ without its prefactor.
This prefactor can be rewritten using a time constant t0 := ~/2πJ = 0.21 fs and
the interaction scalar u = U/J .

The eigenfunctions χ(j)
ν (k) of L̂ give information about the quantities that decay

with a relaxation rate that is equal to the corresponding eigenvalue. While the
eigenvalues answer the question of how fast these quantities are decaying, the
eigenfunctions are key to the question of what is decaying. For example, the
quantity corresponding to the eigenfunction ων(k) is the energy. The energy is
not decaying, which is consistent with the fact that the corresponding eigenvalue
is zero.
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4.3.2 Numerical calculation of the linearized Boltzmann
operator

In this section, we describe the numerical evaluation of the linearized Boltzmann
operator L̂. The numerical code for obtaining the eigenvalues and eigenfunc-
tions has additional complications for the evaluation of the energy conservation
δ(∆ω~ν,~k). The band structure we use for this model has to be treated differently
than the dispersion relation in Sec. 3.2.3. For the latter, we found that there
is a unique solution for a certain parametrization of the energy conservation.
However, for the dispersion relations of the effective PCMO model, we do not
know how many solutions of ∆ω~ν,~k = 0 we can expect. Therefore, we have
to scan every momentum k1, k2, and k3 over its whole value range (note that
k4 is fixed by momentum conservation). This not only prolongates the time
the evaluation takes, but it also requires an extension of the numerical code in
the following way: First, we create a grid in the parameter space. Then, for
every point, we calculate the energy change ∆ω~ν,~k. If the sign changes, the
point lies near a zero of ∆ω~ν,~k. The precise position of the zero is found by a
Newton-Raphson root-finding procedure adapted to our problem. In our case,
the parameter space is two dimensional: k1 is fixed, because it is a parameter
of L̂. k4 = k1 + k2 − k3 is fixed due to momentum conservation. This leaves us
with the two degrees of freedom k2 and k3. The energy conservation restricts
this space to one dimension. We obtain paths in (k2,k3)-space where ∆ω~ν,~k is
zero. Along these paths ~γ(x) = (k2(x), k3(x)), we calculate the path integral.
Of course, we can only find some path points. The number of these points is
defined by N~γ . The rest of the path is interpolated. In App. D.1, we derive the
reformulation of the energy conserving delta using paths. The result is

∫
dk2 dk3 δ

(
∆ω~ν,~k

)
G~ν
(
~k
)

=

∫
dx
‖~γ′(x)‖G~ν

(
k1, γ1(x), γ2(x), k1+γ1(x)−γ2(x)

)
∥∥~∇~γ

(
∆ω~ν,k1,γ1(x),γ2(x),k1+γ1(x)−γ2(x)

)∥∥ , (4.56)

where G~ν
(
~k
)
is a placeholder for the rest of the integrand of L̂. This leads to

L̂[φ]ν1(k1, t) =
2πU2

~J
∑

~γ

∫
dx

‖~γ′(x)‖
‖~∇~γ∆ω~ν,~k‖

∑

ν2,ν3,ν4
∈{1,..,4}

F~ν,~k
∣∣Φ~ν,~k

∣∣2

×
[
φν1(k1, t) + φν2(k2, t)− φν3(k3, t)− φν4(k4, t)

]∣∣∣∣ (k2,k3)=~γ(x)

k4=k1+k2−k3

. (4.57)

The integral over x is discretized by the positions of the zeros, which make
up the paths ~γ. Furthermore, we descretize the perturbation φν(k, t) by the
interpolation scheme in App. B.5, i.e. φν(k, t) =

∑
j Bj(k)φν(kj , t). Hence, we
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obtain

L̂[φ]ν1(k1, t) ≈
2πU2

~J
∑

~γ

N~γ∑

l=1

∆x ‖~γ′(xl)‖
‖~∇~γ∆ω~ν,~k‖

∑

ν2,ν3,ν4
∈{1,..,4}

F~ν,~k
∣∣Φ~ν,~k

∣∣2 ∑

ν5,j

φν5,j(t)

×
∑

j

[
δν5ν1Bj(k1) + δν5ν2Bj(k2)− δν5ν3Bj(k3)− δν5ν4Bj(k4)

]∣∣∣∣ (k2,k3)=~γ(xl)

k4=k1+k2−k3

,

(4.58)
where φν,j(t) = φν(kj , t). The distance ∆x between the discretized path pa-
rameters x is compensated by ‖~γ′(xl)‖. We can see this when we plug in the
approximation ~γ′(xl) = 1

∆t

∑b
m=a Cm ~γ(xl+m) from App. D.2. The linear oper-

ator becomes

L̂[φ]ν1(k1, t) ≈
2πU2

~J
∑

~γ

N~γ∑

l=1

‖∑b
m=a Cm ~γ(xl+m)‖
‖~∇~γ∆ω~ν,~k‖

∑

ν2,ν3,ν4
∈{1,..,4}

F~ν,~k
∣∣Φ~ν,~k

∣∣2 ∑

ν5,j

φν5,j(t)

×
[
δν5ν1Bj(k1) + δν5ν2Bj(k2)− δν5ν3Bj(k3)− δν5ν4Bj(k4)

]∣∣∣∣ (k2,k3)=~γ(xl)

k4=k1+k2−k3

.

(4.59)
From this, we can extract a discretized version of L̂ using

L̂[φ]ν1(κn, t) ≈
2πU2

~J

4∑

ν5=1

Nk∑

j=1

Lν1,n;ν5,j φν5,j(t). (4.60)

The discretized momenta κn = − 1
2 + n

Nk
∈ D are defined the same as for the

Hubbard model, see Eq. (3.86). One finds

Lν1,n;ν5,j =
∑

~γ

N~γ∑

l=1

‖∑b
m=a Cm ~γ(xl+m)‖
‖~∇~γ∆ω~ν,~k‖

∑

ν2,ν3,ν4
∈{1,..,4}

F~ν,~k
∣∣Φ~ν,~k

∣∣2

×
[
δν5ν1Bj(k1) + δν5ν2Bj(k2)− δν5ν3Bj(k3)− δν5ν4Bj(k4)

]∣∣∣∣ k1=κn

(k2,k3)=~γ(xl)

k4=k1+k2−k3

.

(4.61)
In order to avoid divergences caused by ‖~∇~γ∆ω~ν,~k‖, we use the mollification
procedure from Eq. (3.91):

√
‖~∇~γ∆ω~ν,~k‖2 + (5/Nk)2 Nk→∞−−−−−→ ‖~∇~γ∆ω~ν,~k‖. (4.62)
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The resulting discretized version of L̂ is

Lν,m;ν5,n =
∑

~γ

N~γ∑

l=1

‖∑b
m=a Cm ~γ(xl+m)‖√

‖~∇~γ∆ω~ν,~k‖2 + (5/Nk)2

∑

ν2,ν3,ν4
∈{1,..,4}

F~ν,~k
∣∣Φ~ν,~k

∣∣2

×
[
δν5ν1Bj(k1) + δν5ν2Bj(k2)− δν5ν3Bj(k3)− δν5ν4Bj(k4)

]∣∣∣∣ k1=κn

(k2,k3)=~γ(xl)

k4=k1+k2−k3

.

(4.63)
We extract the low-lying eigenvalues of L̂ by calculating the spectrum of Lν,m;ν5,n

for various discretizations Nk and extrapolating them to Nk →∞.

4.3.3 Corresponding state-space operators

Now, we make a connection from the eigenfunctions of L̂ to state-space oper-
ators. As shown in Sec. 2.4, we can define operators in the state space, whose
expectation values converge exponentially in time, where the convergence rate
is one of the eigenvalues of L̂. These operators can help finding a physical
interpretation for the eigenfunctions and their decay time.

In order to see this, we first consider the scalar product

〈φ, χ(i)〉F =
∑

j

Aj(t) e
−λjt 〈χ(j), χ(i)〉F

(B.71)
= ‖χ(i)‖2F Ai(t) e

−λit. (4.64)

Using this, we can calculate the expectation values of the observables Îi :=∫
dk
∑
ν
χ(i)
ν (k) n̂n(k):

〈
Îi
〉
t

=

∫
dk
∑

ν

χ(i)
ν (k) nν(k, t)

=

∫
dk
∑

n

χ(i)
ν (k) fν(k) +

∫
dk
∑

n

χ(i)
ν (k) fν(k)

[
1− fν(k)

]
φν(k, t) +O(φ2)

=

∫
dk
∑

n

χ(i)
ν (k) fν(k) + 〈χ(i), φ〉F +O(φ2)

= ‖χ(i)‖2F Ai(t) e
−λit + Ci +O(φ2),

(4.65)
with the time-independent constant Ci :=

∫
dk
∑
n
χ(i)
ν (k) fν(k). Hence, the

time evolution of Îi resembles the one of the related eigenfunction χ(i)
ν (k). For

example, the operator related to the constant function φν(k) = 1 is the total
number of particles N̂ =

∫
dk
∑
n n̂n(k).

It is important to note that our method cannot distinguish between Îi and
Îi +O(U) because of the U → 0 limit used for the derivation of the Boltzmann
equation. The strength of the interaction U only enters in the prefactor of Icoll
and L̂. Thus, the eigenfunctions are not altered when changing U .
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4.3.4 Eigenfunctions with eigenvalue zero and correspond-
ing conserved quantities

Zero (and approximately zero) eigenvalues are special as their corresponding
contributions to the perturbation φν(k, t) do not (or hardly) decay. For the
model, we investigate in this chapter, there are a number of exactly zero eigenval-
ued eigenfunctions. The most obvious ones are the constant function χ(1)

ν (k) = 1

and χ(2)
ν (k) = ων(k). For the particular choice of ∆ = 4, there are a couple of

additional eigenvalues zero. In total, the functions
(
χ(1)
ν (k)

)
ν=1,..,4

=
(
1, 1, 1, 1

)
∀k

(
χ(2)
ν (k)

)
ν=1,..,4

=
(
ω1(k), ω2(k), ω3(k), ω4(k)

)
∀k

(
χ(3)
ν (k)

)
ν=1,..,4

=
(
1, 0, 1, 0

)
∀k

(
χ(+)
ν (k)

)
ν=1,..,4

=
(
0, 0, 1, 1

)
∀k (4.66)

as well as combinations of them like
(
χ(+b)
ν (k)

)
ν=1,..,4

:=
(
χ(1)
ν (k)− χ(+)

ν (k)
)
ν=1,..,4

=
(
1, 1, 0, 0

)
∀k

(
χ(3b)
ν (k)

)
ν=1,..,4

:=
(
χ(+b)
ν (k)− χ(3)

ν (k)
)
ν=1,..,4

=
(
0, 1, 0, 1

)
∀k

(
χ(3c)
ν (k)

)
ν=1,..,4

:=
(
χ(3)
ν (k)− χ(+)

ν (k)
)
ν=1,..,4

=
(
1, 0, 0,−1

)
∀k

(
χ(3d)
ν (k)

)
ν=1,..,4

:=
(
χ(+b)
ν (k)− χ(3)

ν (k)
)
ν=1,..,4

=
(
0, 1,−1, 0

)
∀k (4.67)

are in the kernel of L̂, i.e. they are eigenfunctions of L̂ corresponding to eigen-
value zero. Obviously, a 2-band calculation is not able to detect χ(+)

ν (k), which is
why we denoted it with a "+" instead of a number. Hence, the 2-band version of
L̂ has 3 eigenfunctions with eigenvalue zero, and the 3- and 4-band calculations
have 4 of them. This is confirmed by our numerical evaluation, see Fig. 4.11.

There is one more combination of the eigenfunctions with eigenvalue zero that
we would like to mention. Defining the mean values φn :=

∫
dk φν(k), one finds

ω1 = −ω4 and ω2 = −ω3, since ω1(k) is the mirror image of ω4(k) using the
mirror axis φ(k) ≡ 0. The same holds for ω2(k) and ω3(k). Thus,

(
χ(2b)
ν (k)

)
ν=1,..,4

:=
(
χ(2)
ν (k)− ω1 χ

(3c)
ν (k)− ω2 χ

(3d)
ν (k)

)
ν=1,..,4

=
(
ω1(k)−ω1, ω2(k)−ω2, ω3(k)−ω3, ω4(k)−ω4

)

⇒ χ(2b)
ν (k) = ων(k)− ων (4.68)

also corresponds to a zero eigenvalue.

The corresponding state-space operators Îi =
∫
dk
∑
n
χ(i)
νn(kn)n̂n(k) of the zero

eigenvalues are

Î1 = N̂ , Î2 = Ĥ0, Î2b = Ĥ0 −
∑
jωjN̂j ,

Î3 = N̂1 + N̂3, Î3b = N̂2 + N̂4, Î3c = N̂1 − N̂4,

Î3d = N̂2 − N̂3, Î+ = N̂3 + N̂4, Î+b = N̂1 + N̂2, (4.69)
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where N̂ν is the number of particles in the νth band. Their expectation value is
conserved for our choice of the model parameters. Furthermore, we can easily
read off their physical interpretation: For example Î1 corresponds to the total
number of particles and Î2 to the total energy.

4.4 Result: The lowest non-zero eigenvalue and
its eigenfunction

With this last part of the chapter, we show the results obtained for the effec-
tive PCMO model using the Boltzmann-equation approach. We will discuss the
thermalization rates and then consider the eigenfunction of the lowest eigen-
value.

In Fig. 4.11, we can see the lowest relaxation rates of the momentum distribution
of the PCMO chain. The effect of the highest bands become apparent at inverse
temperatures of β / 3. For lower temperatures, the lines lie perfectly on top of
each other. Furthermore, it is worth noting that the effect of the higher bands
start at the same point for the 3-band and the 4-band calculations. Moreover,
the semi-logarithmic diagram shows lines for the eigenvalues for low tempera-
tures. This means that, there, the lowest relaxation rates all decay exponentially
in inverse final temperature β. The plot also shows that the eigenvalues depend
very strongly on β. For example, in the low-temperature region, the inverse
temperature β̃ = β + 5 has a relaxation rate that is two orders of magnitude
smaller than the inverse temperature β. Hence, for reasonably low temperature,
the Boltzmann equation does not lead to thermalization within experimentally
accessible time.

To get a feeling for the relaxation times tn = 1/λn, we give some examples. For
a typical hopping rate J = 0.5 eV, the time constant is t0 ≈ 0.2 fs. Hence, for
a typical interaction strength U = 3J , on the left hand side, the dotted lines
approach tn ≈ (1/0.2) · t0/u2 ≈ 0.1 fs, the dashed lines tn ≈ (1/0.04) · t0/u2 ≈
0.6 ns and the solid ones tn ≈ 103t0/u

2 ≈ 20 fs. At room temperature (≈ 300 K),
the dimensionless inverse temperature is β = J/(300 K · kB) ≈ 23. In this case,
the largest finite relaxation time t4 = 1012t0/u

2 ≈ 20 ms is extremely long.

As for the eigenvalues, the most interesting eigenfunction in terms of thermal-
ization is χ(4)

ν (k). It corresponds to the lowest non-zero eigenvalue λ4. Hence,
the contribution of χ(4)

ν (k) to the perturbation φν(k) lives the longest. Note
that, as mentioned before, the 3- and 4-band calculations have an additional
eigenfunction χ(+)

ν (k), with eigenvalue λ+ = 0. In the middle of Fig. 4.12, the
eigenfunction χ(4)

ν (k) is plotted for a 4-band calculation. In either case, the
discretization of momentum space is Nk = 300 points.

As one can see in Fig. 4.12, the eigenfunction changes its nature, but only for
the 4-band calculation. By plotting χ(4)

1 (0) as a function of β, we see that there
is a phase transition at β ≈ 2. This can also be seen by plotting the maximum
position in the range k ∈ (− 1

4 ,
1
4 ) in band n = 1 (black line with crosses). They

drop to about 0.5 due to the glitch seen in the middle picture of Fig. 4.12.
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Figure 4.11: Eigenvalues (t0/u
2)λn of (t0/u

2)L̂ as functions of inverse final tem-
perature β for ∆ = 4 with u = U/J and t0 = ~/(2πJ). All three pictures include
the results of calculations using 2 bands (solid lines), 3 bands (dashed lines), and 4
bands (dotted lines). The Fermi energy lies between the first and the second band.
The figures show the eigenvalues λn with n ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 20} as function of
β and for Nb = 3, 4 the additional eigenvalue λ+. The red, fluctuating lines describe
the eigenvalues λ1,2,3 and λ+, which are zero analytically. Their values give our nu-
merical precision and are / 10−13. They give the resolution of the eigenvalues by our
numerical calculation. As expected, these eigenvalues are extremely small. Note that
λ+ does not appear in the legend, but is added in the plot. The error bars of the
eigenvalues have two contributions. The first is determined by the extrapolation error
when finding the limit L → ∞. The second applies only to the non-zero eigenvalues
λn>4 and is given by the numerical resolution maxn∈{1,2,3,+} |λn|.
The top-right graph is a semi-logarithmic plot and shows that the eigenvalues decay
exponentially as functions of β. The diagram on the upper left displays the same
eigenvalues as a double-logarithmic plot. Here, one can nicely observe the splitting of
the eigenvalues for different numbers of bands included in the calculations. The graph
on the bottom zooms into this region. There, one can see that the eigenvalues for
different numbers of bands lie on top of each other for β & 3.
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Figure 4.12: Eigenfunctions corresponding to the first non-vanishing eigenvalue for
∆ = 4 and Nk = 300. The upper plot shows the result of a 2-band calculation, the
middle one the result of a 4-band calculation, where we only show the lower two bands
of the eigenfunction, i.e. χ(4)

1 (k) and χ(4)
2 (k). The eigenfunctions concur for β & 2. In

contrast to eigenfunction obtained by the 2-band calculation, the one obtained by the
4-band calculation abruptly changes its shape at β ≈ 2. The first-band part quickly
goes from having two zeros to having four. Both parts change their symmetry around
k = 0 to an anti-symmetry around k = 0. This transition is displayed in the bottom
picture. It shows the position k of the extremum of χ(4)

1 (k) closest to k = 0, and also
χ(4)
1 (k) with k ∈ {0,±1/Nk,±2/Nk} as a function of β.
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The first-band part of χ(4)
1 (0) seems to be changing from the total energy cur-

rent’s function jE(k) := ω1(k)ω′1(k) to the total energy’s function ω1(k), where
the nth band’s total energy current operator is

ĴEn =

∫
dk jE(k) n̂n(k) +O(U) (4.70)

and its total energy is Ĥn =
∫
dk ωn(k) n̂n(k) +O(U).

The nature of the second band’s part χ(4)
2 (0) is unknown. This is a good example

of how difficult it can be to find a physical meaning for a generic eigenfunction
of L̂.
In this chapter, we applied the Boltzmann-equation method to a more realistic
model that includes a richer band structure. Thereby, we found the thermal-
ization rates of the quasiparticle momentum distribution of an effective model
for a PCMO chain. Furthermore, in Sec. 4.3.4, we gave an interpretation for
the eigenvalues that are exactly zero. Their corresponding quantities that are
conserved within the Boltzmann equation are linear combinations of the energy
and the number operators counting the total number of quasiparticles per band.
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Chapter 5

Conclusions and outlook

In this thesis, we aimed for predicting thermalization time scales in one-dimen-
sional many-body quantum systems. As we pointed out in the introduction,
thermalization may take a very long time in low dimensional systems. In par-
ticular, we investigated the thermalization time of the quasiparticle momentum
distribution. The method is a Boltzmann equation and we demonstrated how
to derive it. Contrary to common belief, we proved that in one dimension,
the Boltzmann equation is able to change the momentum distribution if the
dispersion relation is continuous and periodic. In many cases, the Boltzmann
equation even leads to thermalization. To be more precise, in the investigation
of the Hubbard model we found that the next-to-nearest-neighbor hopping term
is responsible for the thermalization in the Boltzmann-equation approach.

To be more specific, we investigated a Hubbard model with nearest-neighbor
hopping J , next-to-nearest-neighbor hopping J ′, and interaction U in Chapter 3.
Thereby, we confirmed the findings of Fürst et al. (2012, 2013b). Specifically,
in the integrable case (J ′= 0), we found that the Boltzmann equation does not
lead to thermalization. There, the linearized Boltzmann equation determines
all the fixed points of the Boltzmann equation, that were previously identified
by Fürst et al. (2012). Furthermore, we also find that in the non-integrable
case (J ′ 6= 0) the additional next-to-nearest-neighbor-hopping term leads to
thermalization. Our investigation revealed how the thermalization rate depends
on the system parameters J , J ′, and U and the state properties β and µ. The
final inverse temperature β and the final chemical potential µ are defined so that
they describe the thermal state that has the same energy and same amount of
electrons as the initial state. We found that

λthermalization = λ̃thermalization e
−β(Γ+|µ|) (5.1)

for small temperature 1/β and the constant Γ ≈ 0.86. It is important to note
that the chemical potential µ is defined so that it is zero in the middle of the
single Hubbard band. The prefactor has the form

λ̃thermalization ∝
(
U

J

)2 (
J ′

J

)2

(5.2)

127
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for small U/J and small J ′/J , see Eq. (3.104). This is consistent with the fact
that the Boltzmann equation does neither lead to thermalization in the inte-
grable case (J ′ = 0), nor in the non-interacting case (U = 0). Furthermore,
we learned that for small temperatures the thermalization is exponentially sup-
pressed in inverse final temperature β, i.e. the momentum distribution is ap-
proximately conserved within the Boltzmann scheme.

Hence, using this linearized Boltzmann equation, we are able to calculate ther-
malization times analytically. Therefore, it is possible to predict the thermal-
ization times for numerical calculations such as tDMRG, for which it is difficult
to unambiguously identify thermalization on the accessible time scales.

An interesting aspect of the linearization method is the ability to distinguish
the relaxation times of different contributions of the momentum distribution
and link them to operators in the state space. These operators give a physical
meaning to their respective relaxation time 1/λn, because their expectation
values equilibrate at time t ≈ 1/λn. In the case of the Hubbard model, e.g., the
largest relaxation rate corresponds to the state-space operator

Î3 ≈ K̂ − 1
4

(
N̂R − N̂L

)
, (5.3)

which is a combination of the total momentum operator K̂ and the number oper-
ators of left- and right-moving particles, N̂L and N̂R respectively, see Eq. (3.117).

Taking Î3 into account, we found three different relaxation scenarios for small
temperatures:

1. Away from half filling: The relaxation rate becomes exponentially small
as a function of inverse final temperature β,

λthermalization ∝
(
U

J

)2 (
J ′

J

)2

e−Γ1β , (5.4)

with a constant Γ1 > 0.

2. Half filling and 〈Î3〉 6= 0: the relaxation rate is again exponentially small
as a function of β for low temperature,

λthermalization = λ3 ∝
(
U

J

)2 (
J ′

J

)2

e−Γ2β , (5.5)

with another constant Γ2 > 0.

3. Half filling and 〈Î3〉 = 0: The relaxation rate is hardly dependent on β.
Instead of the exponential in β, a factor of O(β0) appears,

λthermalization = λ4 ∝
(
U

J

)2 (
J ′

J

)2

. (5.6)

Remarkably, in the last case, the relaxation rate is orders of magnitudes larger
than in the other cases. We explain this behavior with Umklapp processes,
which are effective at half filling only. Hence, with half filling, there is the largest
chance to see thermalization in experiments and numerical investigations.
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For high temperatures, the relaxation rates are barely dependent on β. However,
one can clearly see that the relaxation rates grow with growing temperature T .
Since T measures the excitation energy in the system, the relaxation is faster
the more excitations there are (as long as T is positive). This trend is similar
in higher-dimensional systems, see e.g. Mueller and Rethfeld (2013).

We then extended our study to the effective one-dimensional model for the
material PrxCa1−xMnO3, with x = 1/2. Our investigation revealed that the
thermalization time depends strongly on the band structure. There are con-
served quantities arising in the Boltzmann approach when the band gaps are
increasing. For instance, if a band gap becomes larger than the bandwidths of
a two-band system, two-particle scattering cannot change the particle number
in any of the two bands because of energy conservation. In our PCMO model,
the quantities conserved within the Boltzmann scheme are combinations of the
particle numbers N̂ν of the four bands ν =∈ {1, 2, 3, 4}. Furthermore, there are
a lot of approximately conserved quantities at small temperature. The corre-
sponding relaxation rates are exponentially suppressed in inverse temperature
β similar to those of the Hubbard model away from half filling. We found, that
at room temperature and for an interaction strength U = 3J , the thermaliza-
tion takes about 20 ms, which is extremely long. This time is much larger than
the experimentally found relaxation time of excitations in the three-dimensional
material (Saucke et al., 2012), which is of the order of nanoseconds. Hence, the
reason for our long relaxation time may be the low dimensionality of the system.

For a more realistic prediction of electronic thermalization, one could derive a
Boltzmann equation in higher dimensions. There, the evaluation is different,
because the higher dimensional Boltzmann equation with d spatial dimensions
differs in the following way: The number of integrals in the collision term is 3 ·d,
the number of constraints due to energy and momentum conservation is 1 + d.
Hence, in d > 1 dimensions, NI = 2d− 1 integrals are left after integrating out
the conservation laws. Thus, in this case, the constraints are not as important
as in one dimension. There will always be enough scattering processes that are
able to thermalize the momentum distribution for d > 1. We are not aware of
any counter example. In order to evaluate the Boltzmann equation in the d > 1
cases, one probably needs to exploit this fact by using smart approximations,
which are supposed to reduce the number NI of integrals, which are to be
evaluated. For example, Kabanov and Alexandrov (2008) simplify a Boltzmann
equation using an approximation, in which the particle-hole excitations have an
energy much smaller than the Fermi energy. This results in a rate equation,
that is independent of the dispersion relation. Note, however, that since this
approach does not take the details of the band structure into account, it does
not allow for investigating how the band structure effects thermalization.

Another endeavor one could pursue is adding phonons. This would surely accel-
erate thermalization, but, of course, it is difficult to estimate by how much. One
can again simply consider the first-order contribution in the electron-phonon in-
teraction and apply similar approximations like the ones for deriving the Boltz-
mann equation used in this thesis. However, if there is no thermalization without
the phonons, it is not guaranteed that implementing the leading contribution of
the phonon Boltzmann equation automatically leads to thermalization.

Furthermore, it would be quite interesting to derive higher-order contributions
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to the time evolution of the quasiparticle momentum distribution. The next cor-
rection describes three-particle collisions, the higher corrections correspond to
collisions involving more particles. If the collision term of the Boltzmann equa-
tion does not vanish, we do not expect a qualitative change of the thermalization
behavior. However, if the collision term does not lead to thermalization, then
the higher orders determine the thermalization time. Nonetheless, we expect
them to be extremely small.

Many aspects about thermalization in quantum systems are still unknown.
Quantum mechanics and physics in general keep on to be surprising and people
continue to reveal new and fascinating effects. We hope that our contribution
will inspire future research endeavors.
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Appendix A

Appendix for the introduction

A.1 One-particle Green function for the grand-
canonical ensemble

In this section, we present the Lehmann representation of the correlator con-
taining a creation and annihilation operator, which is known as one-particle
Green function or two-point Green function. We follow the known derivations,
which can be found for example in the book of Mahan (1990). The results of
this section are used in Sec. 1.2.1.

For fermions, the lesser, greater, retarded, and advanced Green functions are
defined by

G<(~r1, ~r2, t1, t2) := i〈ĉ†~r2(t2)ĉ~r1(t1)〉
G>(~r1, ~r2, t1, t2) := −i〈ĉ~r1(t1)ĉ†~r2(t2)〉
GR(~r1, ~r2, t1, t2) := θ(t1 − t2)

[
G>(~r1, ~r2, t1, t2)−G<(~r1, ~r2, t1, t2)

]

GA(~r1, ~r2, t1, t2) := θ(t2 − t1)
[
G<(~r1, ~r2, t1, t2)−G>(~r1, ~r2, t1, t2)

]
. (A.1)

In thermal equilibrium, the Green functions are translationally invariant in
space. Therefore, in this case, all information is contained in the transformed
Green functions

∫
d3r e−i

~k·~r GX(~0, ~r, t1, t2) for X ∈ {<,>,R,A}. (A.2)

The lesser Green function, Fourier-transformed in space, can be written as

G<(~k, t1, t2) = i
〈
ĉ†~k(t2) ĉ~k

(t1)
〉
. (A.3)

Now, we express the expectation value by the thermal density matrix exp(−βĤ)
with Ĥ = Ĥ − µN̂ , the Hamiltonian Ĥ, and the number operator N̂ :

G<(~k, t1, t2) =
i

Z
tr
[
e−βĤ ĉ†~k(t2) ĉ~k

(t1)
]
. (A.4)
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As a next step, we rewrite the trace with the help of the eigenfunctions |n〉 of
Ĥ and we insert 1 =

∑
n |n〉〈n|:

G<(~k, t1, t2) =
i

Z

∑

m,n

〈n|e−βĤ ĉ†~k(t2)|m〉〈m|ĉ~k(t1)|n〉. (A.5)

Since ĉ†~k(t) = eiĤt ĉ†~k e
−iĤt, one can pull the time dependence out of the matrix

elements:

G<(~k, t1, t2) =
i

Z

∑

m,n

e−βKn |〈m|ĉ~k|n〉|
2 ei(t2−t1)(En−Em), (A.6)

where Kn = En − µNn are the eigenvalues of Ĥ, En the energy eigenvalues,
and Nn the eigenvalues of the number operator. Hence, this Green function
is only dependent on the time difference t2 − t1 and we can define the fully
Fourier-transformed, lesser Green function

G<(~k, ω) =

∫
dt eiωtG<(~k, 0, t)

=
i2π

Z

∑

m,n

e−βKn |〈m|ĉ~k|n〉|
2 δ(ω + En − Em). (A.7)

This is the Lehmann representation of the lesser Green function and we can see
that it is purely imaginary.

Analogously, one finds for the retarded Green function

GR(~k, t1, t2) = −iθ(t1 − t2)
[〈
ĉ~k

(t1) ĉ†~k(t2)
〉

+
〈
ĉ†~k(t2) ĉ~k

(t1)
〉]

= − iθ(t1 − t2)

Z

∑

m,n

[
e−βKn + e−βKm

]
|〈m|ĉ~k|n〉|

2 ei(t2−t1)(En−Em).

(A.8)
Now, we perform the Fourier transformation in time

GR(~k, ω+i0) =

∫
dt ei(ω+i0)tGR(~k, 0, t)

=
1

Z

∑

m,n

[
e−βKn + e−βKm

]
|〈m|ĉ~k|n〉|

2

ω + En − Em + i0
lim
δ→0+

[
lim
T→∞

e−Tδ

︸ ︷︷ ︸
=0

−eiδ
]
.

(A.9)
The imaginary part of this can be calculated by making use of the Sokhot-
ski–Plemelj theorem (see e.g. Blanchard and Bruening (2003))

1

x± i0 = P 1

x
∓ iπδ(x), (A.10)

with the Cauchy principal value P. This leads to the spectral function of the
retarded Green function

A(~k, ω) :=− 1

π
ImGR(~k, ω+i0)

=
1

Z

∑

m,n

[
e−βKn + e−βKm

]
|〈m|ĉ~k|n〉|

2 δ(ω + En − Em). (A.11)
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By multiplying the spectral function A(~k, ω) with the Fermi-Dirac function
f(ω) = 1/(1 + exp(βω − µ)), we can establish a connection to the lesser Green
function G<(~k, ω):

f(ω)A(~k, ω) =
1

Z

∑

m,n

e−βKnf(ω)
[
1 + eβ(Kn−Km)

]
|〈m|ĉ~k|n〉|

2 δ(ω + En − Em).

(A.12)
We make use of the fact that the matrix element 〈m|ĉ~k|n〉 vanishes for Nm 6=
Nn − 1. Therefore, we get

f(ω)A(~k, ω) =
1

Z

∑

m,n

e−βKnf(ω)
[
1 + eβ(En−Em−µ)

]
|〈m|ĉ~k|n〉|

2 δ(ω+En−Em)

=
1

Z

∑

m,n

e−βKn |〈m|ĉ~k|n〉|
2 δ(ω + En − Em)

=
1

i2π
G<(~k, ω).

(A.13)
The spectral function is very valuable in this thesis, because it contains the
momentum distribution, which we show in the following formula:

n(~k) =
〈
ĉ†~k(0) ĉ~k

(0)
〉

=

∫
dt δ(t)

〈
ĉ†~k(t) ĉ~k

(0)
〉

=
1

i2π

∫
dω

∫
dt eiωtG<(~k, 0, t)

=
1

i2π

∫
dω G<(~k, ω) =

∫
dω f(ω)A(~k, ω).

(A.14)
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Appendix B

Multi-band Boltzmann
equation

B.1 Derivation

This section contains the derivation of a multi-band Boltzmann equation fol-
lowing Erdös et al. (2004), who derived a one-band Boltzmann equation. Note
that here we will not consider a matrix-valued Boltzmann equation like Fürst
et al. (2013a) did.

A couple of important assumptions for obtaining the Boltzmann equation, which
is used in this thesis, are summarized in Eq. (2.14), which reads

〈
ĉ†σν(k) ĉ†τν(q)

〉
t

= δστ δνν′ δ
D
kq nσν(k, t), (B.1)

where we defined the Dirac delta δDxy := δ(x − y) to keep the notation short.
The assumptions that lead to Eq. (B.1) have been explained above Eq. (2.14).
As Erdös et al. (2004), we will drag the factor δ(0) along to cancel it later in
Eq. (B.37) with the one in δ(∆k~k)2 = δ(0) δ(∆k~k), where ∆k~k := kmod(k1 +
k2 − k3 − k4) is the change of momentum. The kmod function is defined in
Eq. (2.3).

B.1.1 Quantum-mechanical time evolution

This derivation assumes a Hamiltonian of the form

Ĥ = Ĥ0 + Ĥint,

Ĥ0 =

∫
dk
∑

σν

~Ων(k) n̂σν(k),

Ĥint = U

∫

K4

d4k δ
(
kmod(∆k~k)

) ∑

~ν∈B4

Φ~ν,~k ĉ†↑ν1(k1) ĉ†↓ν2(k2) ĉ↓ν3(k3) ĉ↑ν4(k4).

(B.2)
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In order to keep the notation short, we will not write the time dependence
explicitly any more and we will put the function parameter in the index of
functions and operators, i.e. nσνk := nσν(k, t). Throughout this calculation, we
will enumerate the band indices by ν and m, and the corresponding momenta
as k and q, respectively. We will now start to calculate the Boltzmann equation
for the momentum distribution nσνk. Thus, we need to know its change in time:

δ(0)
∂

∂t
nσνk =

∂

∂t

〈
n̂σνk

〉
t

=
i

~
〈[
n̂σνk, Ĥ

]〉
t
. (B.3)

The first part of [n̂σνk, Ĥ] vanishes:
[
n̂σνk, Ĥ0

]
= 0. (B.4)

Only the second part is left:

[
n̂σνk, Ĥint

]
=
∑

~m

∫
d4q Φ~m,~q δ(∆k~q) ĉ

†
↑m1q1

ĉ†↓m2q2
ĉ↓m3q3

ĉ↑m4q4

×
[
δ↑σδm1νδ

D
q1k + δ↓σδm2νδ

D
q2k − δ↓σδm3νδ

D
q3k − δ↑σδm4νδ

D
q4k

]

= : U F̂σνk.
(B.5)

Eqs. (B.3) and (B.5) lead to

i~ δ(0)
∂

∂t
nσνk(t) = U

〈
F̂σνk

〉
t
. (B.6)

Let us define the expectation value of the operator F̂σνk by

Fσνk(t) :=
〈
F̂σνk

〉
t
. (B.7)

Hence, the change of the momentum distribution can be written as

i~ δ(0)
∂

∂t
nσνk(t) = U Fσνk(t). (B.8)

Now we need to find out how Fσνk(t) evolves in time. First, we define

ϕ̂~m,~q := ĉ†↑m1q1
ĉ†↓m2q2

ĉ↓m3q3
ĉ↑m4q4

. (B.9)

This results in

Fσνk(t) =
∑

~m

∫
d4q Φ~m,~q δ(∆k~q)

〈
ϕ̂~m,~q

〉
t

×
[
δ↑σδm1nδ

D
q1k + δ↓σδm2nδ

D
q2k − δ↓σδm3nδ

D
q3k − δ↑σδm4nδ

D
q4k

]
.

(B.10)
In order to calculate Fσνk(t), we need to know

ϕ~ν,~k(t) :=
〈
ϕ̂~ν,~k

〉
t
. (B.11)

Similar as for nσνk(t), the change of the 4-point function is

i~
∂

∂t
ϕ~ν,~k(t) =

〈[
Ĥ, ϕ̂~ν,~k

]〉
t
. (B.12)
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The first part of the commutator is
[
Ĥ0, ϕ̂~ν,~k

]
= ~∆Ω~ν,~k ϕ̂~ν,~k, (B.13)

with ∆Ω~ν,~k = Ων1(k1) + Ων2(k2)− Ων3(k3)− Ων4(k4).

⇒
(
i~
∂

∂t
+ ~∆Ω~ν,~k

)
ϕ~ν,~k(t) = U

〈[
Φ̂, ϕ̂~ν,~k

]〉
t
. (B.14)

Its formal solution is

⇒ ϕ~ν,~k(t) = ϕ~ν,~k(0) e−it∆Ω
~ν,~k − iU

~

∫ t

0

ds e−i(t−s)∆Ω
~ν,~k
〈[

Φ̂, ϕ̂~ν,~k
]〉
s
. (B.15)

Plugging this into Eq. (B.10), we find

Fσνk(t) =
∑

~m

∫
d4q Φ~m,~q δ(∆k~q)

×
{
ϕ~m,~q(0) e−it∆Ω~m,~q − iU

~

∫ t

0

ds e−i(t−s)∆Ω~m,~q
〈[

Φ̂, ϕ̂~m,~q
]〉
s

}

×
[
δ↑σδm1νδ

D
q1k + δ↓σδm2νδ

D
q2k − δ↓σδm3νδ

D
q3k − δ↑σδm4νδ

D
q4k

]

= F
(0)
σνk(t)− iU

~

∫ t

0

ds
〈[

Φ̂, Ĝσνk(t− s)
]〉
s
. (B.16)

Here, we introduced

F
(0)
σνk(t) :=

∑

~m

∫
d4q Φ~m,~q δ(∆k~q) e

−it∆Ω~m,~q ϕ~m,~q(0)

×
[
δ↑σδm1νδ

D
q1k + δ↓σδm2νδ

D
q2k − δ↓σδm3νδ

D
q3k − δ↑σδm4νδ

D
q4k

]
,

Ĝσνk(t) :=
∑

~m

∫
d4q Φ~m,~q δ(∆k~q) e

−it∆Ω~m,~q ϕ̂~m,~q

×
[
δ↑σδm1νδ

D
q1k + δ↓σδm2νδ

D
q2k − δ↓σδm3νδ

D
q3k − δ↑σδm4νδ

D
q4k

]
.

(B.17)
Plugging Eq. (B.16) into Eq. (B.8), the change of the momentum distribution
becomes

⇒ i~ δ(0) ṅσνk(t) = U F
(0)
σνk(t)− iU2

~

∫ t

0

ds
〈
[Φ̂, Ĝσνk(t− s)]

〉
s
. (B.18)

We introduce the following short notations for indices. First, we define x :=
(σνk). Next, ~y and ~z are supposed to be summing indices so that yj =
(τj ,mj , qj) and zj = (τj ,m

′
j , q
′
j), where ~τ = (↑, ↓, ↓, ↑) is fixed. Thus, we have

∑∫

~y

[
...
]

=
∑

~m

∫
d4q

[
...
]
~σ=~τ

. (B.19)

Furthermore, if we use ~y as an index, sometimes only the relevant degrees of
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freedom are used, like in δ(∆k~y) = δ(∆k~q) and Φ~y = Φ~m,~q.
[
Φ̂, Ĝσνk(t− s)

]
=
[
Φ̂, Ĝx(t− s)

]

= −
∑∫

~y,~z

Φ~y δ(∆k~y)
[
ϕ̂~y, ϕ̂~z

]
Φ~z δ(∆k~z) δ

x
~z e
−i(t−s)∆Ω~z

=
∑∫

~y,~z

ϕ̂~y ϕ̂~z
[
Φ~y δ(∆k~y)Gx,~z(t− s)− Φ~z δ(∆k~z)Gx,~y(t− s)

]
,

(B.20)
where

δx~y := δy1x + δy2x − δy3x − δy4x
δyjx := δτjσδmjnδ

D
qjk

Gx,~y(t) := −Φ~y δ(∆k~y) e−it∆Ω~y δx~y

Mx(~y, ~z, t) := Φ~y δ(∆k~y)Gx,~z(t)− Φ~z δ(∆k~z)Gx,~y(t) (B.21)

⇒
〈[

Φ̂, Ĝx(t′)
]〉
t

=
∑∫

~y,~z

〈
ϕ̂~y ϕ̂~z

〉
t
Mx(~y, ~z, t′). (B.22)

B.1.2 Restricted quasi-freeness

The next assumption we make use of is called restricted quasi-freeness. It means
that the four- and eight-point functions fulfill a Wick theorem (see Eq. (23) of
Erdös et al. (2004)), i.e.

〈
ϕ̂~y
〉
t

=
〈
ĉ†y1 ĉ

†
y2 ĉy3 ĉy4

〉
t

=

∣∣∣∣
νy1y4 νy1y3
νy2y4 νy2y3

∣∣∣∣ (B.23)

and 〈
ϕ̂~y ϕ̂~z

〉
t

=
〈
ĉ†y1 ĉ

†
y2 ĉy3 ĉy4 ĉ

†
z1 ĉ
†
z2 ĉz3 ĉz4

〉
t

=

∣∣∣∣∣∣∣∣

νy1z4 νy1z3 νy1y4 νy1y3
νy2z4 νy2z3 νy2y4 νy2y3
νz1z4 νz1z3 −νz1y4 −νz1y3
νz2z4 νz2z3 −νz2y4 −νz2y3

∣∣∣∣∣∣∣∣
, (B.24)

with ναβ = 〈ĉ†αĉβ〉t and νxy := δxy − νxy.
The term "restricted quasi-freeness" is explained in appendix A in Erdös et al.
(2004). As a first step, they define a quasi-free state ρ̂ as a density matrix

ρ̂ =
1

Z
e−H̃0 . (B.25)

Hereby, the hermitian operator H̃0 has the form

H̃0 =
∑

yz

ĉ†y Qyz ĉz. (B.26)

Erdös et al. (2004) show that such states fulfill Eq. (B.23) and Eq. (B.24). The
restricted quasi-freeness does not necessarily assume a quasi-free state. It only
assumes that Eq. (B.23) and Eq. (B.24) are fulfilled.
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From Eq. (B.23), it follows that
〈
ĉ†y1 ĉ

†
y2 ĉy3 ĉy4

〉
t

(
δDy1x + δDy2x − δDy3x − δDy4x

)
= 0 ∀x. (B.27)

Proof:
• Case 1: x 6= yj ∀j.

Eq. (B.27) is fulfilled because (δy1x + δy2x − δy3x − δy4x) = 0.

• Case 2a: x = y1 = y2 or x = y3 = y4.
Eq. (B.27) is fulfilled because ĉ†xĉ†x = ĉxĉx = 0.

• Case x = y1 = y3 or x = y1 = y4 or x = y2 = y3 or x = y2 = y4:
W.l.o.g., we consider x = y1 = y3. Then, the l.h.s. of Eq. (B.27) is reduced
to 〈ĉ†xĉ†y2 ĉxĉy4〉t

(
δDy2x − δDy4x

)
. The second factor can only be non-zero if

y2 6= y4, and if at least one of them is equal to x. Hence, either ĉ†xĉ†y2 = 0

or ĉxĉy4 = 0, and Eq. (B.27) is true.

• Case 3: x is equal to exactly one of the yj .
We assume w.l.o.g. that x = y1. Then, we have y1 6= y3 and y1 6= y4, and
therefore νy1y3 = νy1y4 = 0.

All possible configurations of the yj fit in one of these cases. Thus, the proof is
done.

The equality Eq. (B.27), which we just proved, leads to

ϕ~y(0)
(
δDy1x + δDy2x − δDy3x − δDy4x

)
= 0

⇒ F
(0)
σνk(t) = 0 (B.28)

Therefore, the first term of the l.h.s of Eq. (B.18) drops out and we get

⇒ δ(0)
∂

∂t
nσνk(t) = −U

2

~2

∫ t

0

ds
〈
[Φ̂, Ĝσνk(t− s)]

〉
s
. (B.29)

Using Eq. (B.1), which states that νyz = δyz ny(t), the 8-point function becomes
〈
ϕ̂~y ϕ̂~z

〉
t

=
〈
ĉ†y1 ĉ

†
y2 ĉy3 ĉy4 ĉ

†
z1 ĉ
†
z2 ĉz3 ĉz4

〉
t

= ny1ny2

∣∣∣∣∣∣∣∣

δDy1z4 0 δDy1y4 0
0 δDy2z3 0 δDy2y3

δDz1z4nz1(t) 0 −δDz1y4ny4(t) 0
0 δDz2z3nz2(t) 0 −δDz2y3ny3(t)

∣∣∣∣∣∣∣∣

= ny1(t)ny2(t)
{
δDy1z4

[
δDy2z3δ

D
z1y4δ

D
z2y3 ny4(t)ny3(t) + δDy2y3δ

D
z1y4δ

D
z2z3 ny4(t)nz2(t)

]

+ δDy1y4
[
δDy2y3δ

D
z1z4δ

D
z2z3 nz1(t)nz2(t) + δDy2z3δ

D
z1z4δ

D
z2y3 nz1(t)ny3(t)

]}
.

(B.30)
Plugging this into Eq. (B.22), the first of the four term above gives

→
∑∫

~y

Mx(~y; ~yrev; t′) ny1(t)ny2(t)ny3(t)ny4(t) =

=
∑∫

y1y2y4z2

Φ~y Φ~yrev ny1(t)ny2(t)ny3(t)ny4(t) δ(∆k~y)

× δ(∆k~yrev)︸ ︷︷ ︸
=δ(∆k~y)

[
δx~y e

−it′∆Ω~y − δx~yreve−it
′∆Ω~yrev

]
, (B.31)
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with ~yrev = (y4, y3, y2, y1). The second terms is

→
∑∫

y1y2y4z2

Mx(y1y2y2y4; y4z2z2y1; t′) ny1(t)ny2(t)ny4(t)nz2(t) =

=
∑∫

y1y2y4z2

Φy1y2y2y4 Φy4z2z2y1 ny1(t)ny2(t)ny4(t)nz2(t) δ(∆ky1y2y2y4)︸ ︷︷ ︸
=δDy1y4

× δ(∆ky4z2z2y1)︸ ︷︷ ︸
=δDy4y1

[
δxy1y2y2y4︸ ︷︷ ︸

=δDy1x
−δDy4x

e−it
′∆Ωy1y2y2y4 − δxy4z2z2y1︸ ︷︷ ︸

=δDy4x
−δDy1x

e−it
′∆Ωy4z2z2y1

]

= 0,
(B.32)

where e−it∆Ω~y = e−it∆Ω~y . The third term gives

→
∑∫

y1y2y4z2

Mx(y1y2y2y1; z1z2z2z1; t′) ny1(t)ny2(t)nz1(t)nz2(t)

=
∑∫

y1y2y4z2

Φy1y2y2y1 Φz1z2z2z1 ny1(t)ny2(t)nz1(t)nz2(t) δ(∆ky1y2y2y1)

× δ(∆kz1z2z2z1)
[
δxy1y2y2y1︸ ︷︷ ︸

=0

e−it
′∆Ωy1y2y2y1 − δxz1z2z2z1︸ ︷︷ ︸

=0

e−it
′∆Ωz1z2z2z1

]

= 0.
(B.33)

The last term results in

→
∑∫

y1y2y4z2

Mx(y1y2y2y4; z1z2z3z1; t′) ny1(t)ny2(t)ny3(t)nz1(t)

=
∑∫

y1y2y4z2

Φy1y2y2y4 Φz1z2z3z1 ny1(t)ny2(t)ny3(t)nz1(t) δ(∆ky1y2y2y4)︸ ︷︷ ︸
=δDy1y4

× δ(∆kz1z2z3z1)︸ ︷︷ ︸
=δDz2z3

[
δxy1y2y2y4︸ ︷︷ ︸

=δDy1x
−δDy4x

e−it
′∆Ωy1y2y2y4 − δxz1z2z3z1︸ ︷︷ ︸

=δDz2x
−δDz3x

e−it
′∆Ωz1z2z3z1

]

= 0.
(B.34)

Hence, only the first term does not vanish. Thus, we have

〈
[Φ̂, Ĝx(t′)]

〉
t

=

=
∑∫

~y

|Φ~y|2δ(∆k~y) δ(0)
[
δx~y e

−it′∆Ω~y − δx~yreve−it
′∆Ω~yrev

]
ny1(t)ny2(t)ny3(t)ny4(t).

(B.35)
Here, we used the fact that Φ~yrev = Φ∗~y. Now, we relabel the second term and
define ∆n~y(t) := ny1(t)ny2(t)ny3(t)ny4(t)− ny1(t)ny2(t)ny3(t)ny4(t):

〈
[Φ̂, Ĝx(t′)]

〉
s

=
∑∫

~y

|Φ~y|2δ(∆k~y) δ(0) δx~y e
−it′∆Ω~y∆n~y(s). (B.36)



B.1. Derivation 145

Plugging this into Eq. (B.29), we cancel the factor δ(0) and find

⇒ ∂

∂t
nx(t) = −U

2

~2

∑∫

~y

|Φ~y|2δ(∆k~y) δx~y

∫ t

0

ds e−i(t−s)∆Ω~y ∆n~y(s). (B.37)

B.1.3 Local approximation in time: A zero-interaction
limit

In the following, we show how the phase factor e−i(t−s)∆Ω~y becomes the energy
conservation δ(∆Ω~y) by performing a certain U → 0 limit. First, we define a
non-zero (!) energy scale for the quadratic part of the Hamiltonian. We choose

~ ζ := max
ν,k

Ων(k), (B.38)

because the only way it vanishes would be a trivial dispersion relation Ων(k) ≡ 0.
We use this to define dimensionless versions of the dispersion relation:

∆Ω̃ :=
∆Ω

ζ
. (B.39)

The limit of low interaction means that the interaction term is much smaller
than the other term in the Hamiltonian. Hence, we have to compare U with ~ζ
and define

u :=
U

~ ζ
. (B.40)

Now, a dimensionless time τ is defined by

τ := u2ζ t. (B.41)

Here, we added the factor u2, because we assume that we operate on times
t = O(U−2), so that

τ = O(1). (B.42)

This way, we get the following dimensionless version of Eq. (B.37):

∂

∂τ
n̄x(τ) =

1

u2ζ

∂

∂t
nx(t)

= − 1

u2ζ
u2ζ2

∑∫

~y

|Φ~y|2δ(∆k~y) δx~y

∫ τ

0

dσ

u2ζ
e−(i/u2ζ)(τ−σ)ζ∆Ω̃~y ∆n̄~y(σ)

= − 1

u2

∑∫

~y

|Φ~y|2δ(∆k~y) δx~y

∫ τ

0

dσ e−i(τ−σ)∆Ω̃~y/u
2

∆n̄~y(σ),

(B.43)
where n̄y(τ) := ny(τ/U2ζ). Defining

βu(E, x, τ) : =
∑∫

~y

|Φ~y|2δ(∆k~y) δx~y
1

u2
ei(τ−σ)(E−∆Ω̃~y)/u2

B(E, x, τ) : = lim
u→0

βu(E, x, τ/u2), (B.44)
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we make use of the reasoning of Erdös et al. (2004), p. 377, and get

∂

∂τ
n̄x(τ) = −π B(0, x, τ)

= −π
∑∫

~y

|Φ~y|2 δ(∆k~y) δx~y δ(∆Ω̃~y) ∆n̄~y(τ) (B.45)

in leading order in u. At this point, the momentum distribution ny(t) has
been replaced by the momentum distribution for U = 0. Plugging the original
dimensioned variables back into Eq. (B.45), one obtains

∂

∂t
nx(t) = u2ζ

∂

∂τ
n̄x(τ)

= −u2ζ π
∑∫

~y

|Φ~y|2 δ(∆k~y) δx~y δ(∆Ω~y/ζ) ∆n~y(t)

= −πU
2

~2

∑∫

~y

|Φ~y|2 δ(∆k~y) δx~y δ(∆Ω~y) ∆n~y(t). (B.46)

Reducing δx~y = δDy1x + δDy2x − δDy3x − δDy4x, we gain a factor of two:

∂

∂t
nx(t) = −2πU2

~2

∑∫

~y

[
δDy1x + δDy2x

]
|Φ~y|2δ(∆k~y) δ(∆Ω~y) ∆n~y(t). (B.47)

Remember that yj = (τj , nj , kj) and ~τ = (↑, ↓, ↓, ↑). Thus, if the multi-index x
is equal to (↑, n.k), the term with δDy2x vanishes and if it is (↓, n, k), the other
term vanishes.

∂

∂t
n↑,n1,k1(t) = −2πU2

~2

∫
dk2 dk3 dk4 δ(∆k~k)

∑

ν2,ν3,ν4

δ(∆Ω~ν,~k) |Φ~ν,~k|2 ∆n~τ,~ν,~k(t),

(B.48)
with ∆k~k := k1 + k2 − k3 − k4. Obviously, in ∆n~τ,~ν,~k(t), both the ↑- and the
↓-spin densities are involved. We assume a material with zero total spin and no
magnetization, i.e. n↑nk(t) = n↓nk(t) =: nν(k, t).

∂

∂t
nν1(k1, t) = −2πU2

~2

∫
dk2 dk3 dk4 δ(∆k~k)

∑

ν2,ν3,ν4

δ(∆Ω~ν,~k) |Φ~ν,~k|2 ∆n~ν(~k, t),

(B.49)
with ~ν = (ν1, .., ν4), ~k = (k1, ..., k4) and

∆n~ν(~k, t) := nν1(k1, t)nν2(k2, t)
[
1− nν3(k3, t)

][
1− nν4(k4, t)

]

−
[
1− nν1(k1, t)

][
1− nν2(k2, t)

]
nν3(k3, t)nν4(k4, t). (B.50)

The limit U → 0 was taken in such a way that the Boltzmann equation in
Eq. (B.49) describes the time evolution of the quasiparticle momentum distri-
bution. We make use of this Boltzmann equation in Eqs. (2.7), (3.9), and (4.50).
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B.2 Linearization

This section is establishing the scheme, with which we linearize the Boltzmann
equation and obtain a linear rate equation. From App. B.1, we know

ṅ1 = Icoll[n]1

Icoll[n]1 :=
2πU2

~2

∫

K3

dk2 dk3 dk4 δ(∆k~k)
∑

ν2,ν3,ν4
∈{1,..,4}

δ(∆Ω~ν,~k)
∣∣Φ~ν,~k

∣∣2

×
[
(1− n1)(1− n2)n3n4 − n1n2(1− n3)(1− n4)

]
. (B.51)

We want to know the long time behavior of the quasiparticle momentum distri-
bution. Therefore we linearize the quasiparticle momentum distribution and the
Boltzmann equation around the thermal distribution, which is the Fermi-Dirac
function in our case, i.e.

fν(k) =
1

exp[β(Ων − µ)] + 1
. (B.52)

The first step towards a linearized rate equation is defining a perturbation
φν(k, t). We use the linearization scheme of Haug and Jauho (1996). The
first step is defining the perturbation φν(k, t) of the quasiparticle momentum
distribution by

nν(k, t) =
1

exp[β(Ων − µ)− φν(k)] + 1
. (B.53)

The perturbation measures how far nν(k, t) is away from the thermal distribu-
tion. This can be seen by means of the expansion of nν(k, t) in φν(k):

nν(k, t) = fν(k) + fν(k)
[
1−fν(k)

]
φν(k, t) +O

(
φ2
)
. (B.54)

The time derivative applied to this equation yields

ṅν(k, t) = fν(k)
[
1−fν(k)

]
φ̇ν(k, t) +O

(
φ2
)
. (B.55)

Rearranging this equation leads to

φ̇ν(k, t) =
ṅν(k, t)

fν(k)
[
1−fν(k)

] =
Icoll[n]ν(k, t)

fν(k)
[
1−fν(k)

] =: L̂[φ]ν(k, t) (B.56)

in first order in φ. This defines the linear operator L̂, which maps the per-
turbation φν(k, t) to its change in time φ̇ν(k, t). Introducing the notations
fν(k) := 1− fν(k) and Xj = Xνj (kj , t) for every function X, we get

L̂[φ]1 =
Icoll[f ]1
f1(1− f1)︸ ︷︷ ︸

=0

− 2πU2

~2f1f1

∫

K3

dk2 dk3 dk4 δ(∆k~k)
∑

ν2,ν3,ν4
∈{1,..,4}

δ(∆Ω~ν,~k)
∣∣Φ~ν,~k

∣∣2

×
[
−f1f1φ1f2f3f4 − f1f2f2φ2f3f4 + f1f2f3f3φ3f4 + f1f2f3f4f4φ4

− f1f1φ1f2f3f4 − f1f2f2φ2f3f4 + f1f2f3f3φ3f4 + f1f2f3f4f4φ4

]
.

(B.57)
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To do the next step, we consider

fν1(k1)fν2(k2)fν3(k3)fν4(k4) =

=
1

eβ(Ω1(k)−µ1) + 1

1

eβ(Ω2(k)−µ2) + 1

1

e−β(Ω3(k)−µ3) + 1

1

e−β(Ω4(k)−µ4) + 1

= fν1(k1)fν2(k2)fν3(k3)fν4(k4) e−β∆Ω
~ν,~k

+β(µ+µ−µ−µ).
(B.58)

This is equivalent to

fν1(k1)fν2(k2)
[
1−fν3(k3)

][
1−fν4(k4)

]
−
[
1−fν1(k1)

][
1−fν2(k2)

]
fν3(k3)fν4(k4)

(B.59)
or in short notation

f1f2f3f4 = f1f2f3f4. (B.60)
We emphasize that this equation and the following derivation do not hold, if
the final momentum distribution has different chemical potentials for each band.
This may be the case, if the bands become too flat and particle exchange between
bands is no longer possible. We assume a common chemical potential, i.e.
µn = µ. If particle exchange is not possible, we will still see it in our results,
because there will be additional eigenfunctions with zero eigenvalue, which are
connected to change of local chemical potentials, see Eq. (4.66).

Eq. (B.59) leads to

L̂[φ]1 =
2πU2

~2f1f1

∫

K3

dk2 dk3 dk4 δ(∆k~k)
∑

ν2,ν3,ν4
∈{1,..,4}

δ(∆Ω~ν,~k)
∣∣Φ~ν,~k

∣∣2 f1f2f3f4

×
[
f1φ1 + f2φ2 − f3φ3 − f4φ4 + f1φ1 + f2φ2 − f3φ3 − f4φ4

]
.

(B.61)
Finally, we obtain

L̂[φ]1 =
2πU2

~2

∫

K3

dk2 dk3 dk4 δ(∆k~k)
∑

ν2,ν3,ν4
∈{1,..,4}

δ(∆Ω~ν,~k)
∣∣Φ~ν,~k

∣∣2

× (1−f2)f3f4

f1

[
φ1 + φ2 − φ3 − φ4

]
. (B.62)

This linear operator is used for the linearized Boltzmann equations in Eqs. (2.21),
(3.12), and (4.52).

B.3 Scalar product, eigenfunctions, eigenvalues,
and relaxation rates

As in the previous section, we follow Haug and Jauho (1996) to find the scalar
product and the relaxation rates. We define a scalar product and a correspond-
ing norm using the thermal distribution fν(k) = 1/{exp[β(~Ων(k)− µ)] + 1}:

〈φ, ψ〉F :=

∫
dk
∑

n

φν(k) fν(k)
[
1− fν(k)

]
ψν(k),

‖φ‖F :=
√
〈φ, φ〉F. (B.63)
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L̂ is hermitian in this scalar product, i.e. :

〈ψ, L̂[φ]〉F = 〈L̂[ψ], φ〉F. (B.64)

Proof:
First, the l.h.s. of Eq. (B.64) is considered:

〈ψ, L̂[φ]〉F =
2πU2

~2

∫
d4k δ(∆k~k)

∑

~n

δ(∆Ω~ν,~k) fν1(k1)fν2(k2)fν3(k3)fν4(k4)

× ψν1(k1)
[
φν1(k1) + φν2(k2)− φν3(k3)− φν4(k4)

]
.

(B.65)
Using the short notation Xj = Xνj(kj), we obtain

〈ψ, L̂[φ]〉F =
2πU2

~2

∫
d4k δ(∆k1234)

∑

~n

δ(∆Ω1234) f1f2f3f4 ψ1

[
φ1+φ2−φ3−φ4

]
.

(B.66)
Now, we are relabeling the momenta kj so that all φj are changed into φ1:

〈ψ, L̂[φ]〉F =
2πU2

~2

∫
d4k

∑

~n

[
δ(∆k1234) δ(∆Ω1234) f1f2f3f4

(
ψ1 + ψ2)

− δ(∆k3412) δ(∆Ω3412) f3f4f1f2

(
ψ3 + ψ4)

]
φ1 . (B.67)

Next, the identity f1f2f3f4 = f1f2f3f4 is used, see Eq. (B.59). Moreover, we
utilize the fact that ∆k3412 = ∆k1234 and ∆Ω3412 = ∆Ω1234:

〈ψ, L̂[φ]〉F =
2πU2

~2

∫
d4k
∑

~n

δ(∆k1234) δ(∆Ω1234) f1f2f3f4

[
ψ1+ψ2−ψ3−ψ4

]
φ1

= 〈L̂[ψ], φ〉F .
(B.68)

We just proved that operator L̂ is hermitian. Therefore, its eigenfunctions
χ(i)
ν (k) are orthogonal in the scalar product 〈·, ·〉F.

Proof:

λi〈χ(i), χ(j)〉F = 〈L̂[χ(i)], χ(j)〉F = 〈χ(i), L̂[χ(j)]〉F = λj〈χ(i), χ(j)〉F (B.69)

⇒
(
λi − λj

)
〈χ(i), χ(j)〉F = 0 . (B.70)

If λi 6= λj , the claim is proven. Otherwise, we can orthogonalize the eigenfunc-
tions, e.g. by the Gram-Schmidt procedure.

In essence, we find

〈χ(i), χ(j)〉F = ‖χ(i)‖F‖χ(j)‖Fδij . (B.71)

As a next step, we show that L̂ is positive semidefinite.
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Proof:

〈φ, L̂[φ]〉F =
2πU2

~2

∫
d4k

∑

~n

δ(∆k1234) δ(∆Ω1234) f1f2f3f4

[
φ1+φ2−φ3−φ4

]
φ1

=
2πU2

~2

∫
d4k

∑

~n

δ(∆k1234) δ(∆Ω1234) f1f2f3f4

×
[
φ1 + φ2 − φ3 − φ4

] 1

4
[φ1 + φ1 + φ1 + φ1

]

=
πU2

2~2

∫
d4k

∑

~n

δ(∆k1234) δ(∆Ω1234) f1f2f3f4

×
{[
φ1 + φ2 − φ3 − φ4

]
[φ1 + φ2] +

[
φ3 + φ4 − φ1 − φ2

]
[φ3 + φ4]

}

=
πU2

2~2

∫
d4k

∑

~n

δ(∆k1234) δ(∆Ω1234) f1f2f3f4︸ ︷︷ ︸
>0

[
φ1 + φ2 − φ3 − φ4

]2
︸ ︷︷ ︸

>0

> 0.

(B.72)

Since L̂ is positive semidefinite, the eigenvalues λi of L̂ are positive. Further-
more, they are the relaxation rates. To see this, we expand the perturbation
φν(k, t) in the eigenfunctions χ(i)

ν (k) of L̂:

φν(k, t) =
∑

i

Ai(t) χ
(i)
ν (k). (B.73)

The time derivative of the r.h.s. is

∑

i

Ȧi(t) χ
(i)
ν (k) = φ̇ν(k, t)

(B.62)
= −

∑

i

Ai(t) L̂[χ(i)]ν(k) = −
∑

i

Ai(t) λi χ
(i)
ν (k).

(B.74)
Hence, we have

Aj(t) = Aj(0) e−λjt. (B.75)

Thus, one finds

φν(k, t) =
∑

i

Ai(0) e−λit χ(i)
ν (k). (B.76)

This shows that the eigenvalues λi are the relaxation rates.

B.4 Sommerfeld expansion of the scalar product

The scalar product 〈·, ·〉F defined in Eq. (2.22) is important for the linearization
of the Boltzmann equation. It can easily be calculated for small temperatures
using a Sommerfeld expansion. The following calculation is for one band only
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for convenience.

〈
φ, ψ

〉
F

=

∫ 1/2

−1/2

dk φ(k) f(k)
[
1−f(k)

]
ψ(k)

=

∫ 1/2

0

dk f(k)
[
1−f(k)

] [
φ(k) ψ(k) + φ(−k) ψ(−k)

]

= −
∫ ω(1/2)

ω(0)

dω f(k(ω))
[
1−f(k(ω))

]
R[φ, ψ](ω). (B.77)

Hereby, we defined

Rφψ(ω) := k′(ω)
[
φ(k(ω))ψ(k(ω)) + φ(−k(ω))ψ(−k(ω))

]
. (B.78)

Assuming Rφψ(ω) to be well behaved in the vicinity of ω = µ, we can replace it
with its Taylor expansion around µ.

Rφψ(ω) =

∞∑

n=0

1

n!
R

(n)
φψ (µ) (ω − µ)n. (B.79)

Plugging this into Eq. (B.77), we obtain

〈
φ, ψ

〉
F

=

∞∑

n=0

R
(n)
φψ (µ)

(n)!

∫ ω(1/2)

ω(0)

dω
(ω−µ)n eβ(ω−µ)

(1 + eβ(ω−µ))2
. (B.80)

As long as µ is far enough away from zero or full filling, the integral over ω
becomes (

kBT

2J

)n ∫ β(ω(1/2)−µ)

β(ω(0)−µ)

dx xn
ex

(1 + ex)2

=

(
kBT

2J

)n ∫

R

dx xn
ex

(1 + ex)2
+O(e−β). (B.81)

The integral vanishes for an asymmetric integrand, i.e. for odd n. Thus, we
have

〈
φ, ψ

〉
F

=

∞∑

n=0

(
kBT

2J

)2n+1 R
(2n)
φψ (µ)

(2n)!
an +O(e−β), (B.82)

where an =
∫
R
dx x2n ex(1 + ex)−2.

B.5 N-point interpolation

Here, we explain the interpolation of a function g(k), while we only know the
function values at the parameters κ1, ..., κNk . At those points, g(k) has values
g1, ..., gNk , respectively. For the interpolation, we use exactly NI of those points.
That is similar to a spline interpolation or a local Lagrange interpolation, see
for example Landau et al. (2007).
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κj−1 κj κj+1 κj+2

gapprox

k

Figure B.1: Here, we see the 1-point-interpolation. It is an interpolation with a
piecewise constant function. The local function x 7→ a = const is determined by one
point κj and its function value only. The advantage is that this is the fastest inter-
polation scheme in a numerical evaluation. The disadvantage is the lack of precision.
This scheme can be used for a rough estimate.

Examples: For NI = 1, one simply approximates g(k) with gj , where j is
such that |k − κj | is minimal. This is depicted in Fig. B.1.

The case NI = 2 is a linear interpolation, see Fig. B.2. We choose j so that
κj < k < κj+1 and so that our approximation becomes g(k) ≈ gj . One draws a
line between the two points (κj , gj) and (κj+1, gj+1) with κj < k < κj+1. Thus,
the interpolation reads

g(k) =
k − κj+1

κj − κj+1
gj +

k − κj
κj+1 − κj

gj+1. (B.83)

For NI = 3, a parabola is used for interpolation. For larger NI, higher polyno-
mials are used.

Arbitrary number of interpolation points NI: For the N-point interpola-
tion of a function g(k), we use those NI discretization points κj that lie closest
to k. We denote the corresponding indices with j1, ..., jNI . The vector of dis-
cretization points, which are used for the interpolation, are denoted by

~v(k) :=
(
κj1 , ..., κjNI

)
. (B.84)

At the beginning of this section, we already established that the function g(k)
is only known at the discretization points κj . Therefore, also

g̃m(k) := g
(
vm(k)

)
(B.85)

is known for allm = 1, ..., NI. The approximation of g(k) is a linear combination
of those known function values:

gapprox(k) :=

NI∑

n=1

B̃n
(
k
)
g̃n(k). (B.86)
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κj−1 κj κj+1 κj+2

gapprox

k

Figure B.2: This figure shows an example of a 2-point interpolation. It is an
interpolation using a piecewise linear function. The local functions have the form
x 7→ a+ bx. The two unknown parameters a and b are determined by the two points
κj and κj+1 and by their respective function values. We used this scheme for a first
version of the numerical code for diagonalizing the linear Boltzmann operator for the
single-band Hubbard model. Unfortunately, the precision of the eigenvalues was not
high enough for our purposes.

The weights B̃n(k) are calculated in the following: The first step is a Taylor
expansion of g(vm(k)) around k:

g̃m(k) =

∞∑

l=0

1

l!
g(l)
(
vm(k)

) (
κj − vm(k)

)l
. (B.87)

Plugging this into Eq. (B.86), we find

gapprox(k) =

NI∑

n=1

B̃n
(
k
)
g̃n(k) = g(k)

NI∑

n=1

B̃n
(
k
)

︸ ︷︷ ︸
!
= 1

+

NI−1∑

l=1

1

l!
g(l)(k)

NI∑

n=1

B̃n
(
k
)

(vn(k)− k)l

︸ ︷︷ ︸
!
= 0

+

∞∑

l=NI

NI∑

n=1

B̃n
(
k
) 1

l!
g(l)(k) (vn(k)− k)l

︸ ︷︷ ︸
error

. (B.88)
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This interpolation scheme assumes that the known points belong to a smooth
function. The weights B̃n are determined by the N equations




1 . . . 1
v1(k)− k . . . vNI(k)− k

...
...

(v1(k)− k)NI−1 . . . (vNI(k)− k)NI−1



~̃B
(
k
)

=




1
0
0
...
0



. (B.89)

This can be solved by thinking of what properties the B̃n should have. When k
is equal to one of the vm(k), then the weight of gjm should be one and all others
have to vanish. Therefore, it is reasonable to expect B̃n to be

B̃n
(
k
)

=

NI∏

m=1
m 6=n

k − vm(k)

vn(k)− vm(k)
. (B.90)

This is local Lagrange interpolation. The discretized momenta are evenly dis-
tributed. Therefore, we can write vn(k)− vm(k) = (n−m)/Nk. We use this to
simplify Eq. (B.90):

B̃n
(
k
)

=
(−1)n NNI−1

k
(NI − n)!(n− 1)!

NI∏

m=1
m 6=n

(
k − vm(k)

)
. (B.91)

Thus, the approximation of the function g(k) is

gapprox(k) =

NI∑

n=1

g̃n(k)
(−1)n NNI−1

k
(NI − n)!(n− 1)!

NI∏

m=1
m6=n

(
k − vm(k)

)
. (B.92)

At last, we define the coefficients Bj(k):

Bj(k) =

{
B̃m(k) for j = jm
0 else.

(B.93)

Hence, we can write the approximation of g(k) as

gapprox(k) :=

Nk∑

j=1

Bj
(
k
)
gj . (B.94)

That form is more useful for calculating the discretized version of the linearized
Boltzmann operator L̂ in Eq. (3.96).

Error estimation: We estimate the error by calculating a bound on the first
error term. For the sake of simplicity, we only consider an odd number of
discretization points NI.
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In order to determine the vm, we have chosen those function parameters that
lie closest to k. The vm have a distance 1/Nk. Therefore, one finds

NI

2Nk
− m

Nk
6 k − vm 6

NI

2Nk
− m

Nk
+

1

Nk
. (B.95)

Moreover, we have

∣∣(k − vm)(k − vNI+1−m)
∣∣ 6

∣∣∣∣
NI + 1

Nk
− m

Nk

∣∣∣∣
2

. (B.96)

Thus, for n 6= NI+1
2 we find the bounds

NI∏

m=1
m6=n

(k − vm) 6





1

NNI−1
k

[
NI − 1

2
!

]2 |NI − 2n|
(NI + 1− 2n)2

for n 6= NI+1
2

1

NNI−1
k

[
NI − 1

2
!

]2

for n = NI+1
2 .

(B.97)
These give bounds for the weights:

∣∣B̃n(k)
∣∣ 6





(
NI−1
n−1

)
1

(NI−1)!

[
NI−1

2 !
]2 |NI−2n|

(NI+1−2n)2 6 1
4 for n 6= NI+1

2

(
NI−1

(NI−1)/2

)
1

(NI−1)!

[
NI−1

2 !
]2

= 1 for n = NI+1
2

6 1 .
(B.98)

Thence, the error term can be bound by
∣∣∣∣B̃n(k)

1

NI!
g(NI)(k) (k − vn)NI

∣∣∣∣

6
‖g(NI)‖∞
NI!

{
(NI−1)/2∑

n=1

|B̃n(k)| (k − vn︸ ︷︷ ︸
6(NI+1−2n)/2L

)NI + |B̃NI+1−n(k)| (vNI+1−n − k︸ ︷︷ ︸
6(NI+1−2n)/2L

)NI

+ |B̃(NI+1)/2(k)| | k − v(NI+1)/2︸ ︷︷ ︸
61/2L

|NI

}

6
‖g(NI)‖∞
(2L)NINI!

{
2

(NI−1)/2∑

n=1

(
NI − 1

n− 1

)(
NI − 1

(NI − 1)/2

)−1

+ 1

}

=
1

NNI
k

‖g(NI)‖∞
2 NI!

(
NI−1

(NI−1)/2

) .

(B.99)
Even for functions with a relatively large N th

I derivative, the error is still small,
because it is suppressed by N−NI

k . For instance, with NI = 9 and Nk = 2000,
this factor becomes 2 · 10−30, which is extremely small.
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Appendix C

Calculations for the Hubbard
model

C.1 Band form of the Hubbard Hamiltonian

In this section, we will show the textbook transformation of the Hubbard Hamil-
tonian in Eq. (3.3) to its 1-band form in Eq. (3.4). First, we define the trans-
formed creation and annihilation operators:

ĉσ(k) =
∑

l

e−i2πkj ĉl,σ

ĉ†σ(k) =
∑

l

ei2πkj ĉ†l,σ . (C.1)

Due to δl,0 =
∫
dk ei2πkl, the back-transforms are

ĉl,σ =

1/2∫

−1/2

dk ei2πkj ĉσ(k)

ĉ†l,σ =

1/2∫

−1/2

dk e−i2πkj ĉ†σ(k). (C.2)
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Using these transformations, we can perform the transformation of the hopping
part:

Ĥ0 =
∑

l∈Z

∑

σ∈{↑,↓}

[
−J ĉ†l,σ ĉl+1,σ − J ′ ĉ

†
l,σ ĉl+2,σ

]
+H.c.

= −
∑

lσ

∫
dk dk′ ĉ†σ(k) ĉσ(k

′)
[(
J e−i2π(kl−k′(l+1)) + J ′e−i2π(kl−k′(l+2))

)
+ c.c.

]

= −
∑

σ

∫
dk dk′ ĉ†σ(k) ĉσ(k

′) δ(k − k′)
[(
J e−i2πk + J ′e−i4πk

)
+ c.c.

]

= −
∑

σ

∫
dk ĉ†σ(k) ĉσ(k)

[
2J cos(2πk) + 2J ′ cos(4πk)

]
.

(C.3)
With the number operator n̂σ(k) = ĉ†σ(k) ĉσ(k), the dimensionless dispersion
relation Ων(k) = cos(2πk) + ε cos(4πk), and the dimensionless next-to-nearest-
neighbor hopping ε = J ′/J , the last line resembles the 1-band form of Ĥ0 in
Eq. (3.4). The interaction part of the Hamiltonian transforms in the following
way:

Ĥint = U
∑

l∈Z
n̂l,↑n̂l,↓ = U

∑

l∈Z
ĉ†l,↑ĉl,↑ĉ

†
l,↓ĉl,↓ = U

∑

l∈Z
ĉ†l,↑ĉ

†
l,↓ĉl,↓ĉl,↑

= U
∑

l

∫
d4k ĉ†↑(k1) ĉ†↓(k2) ĉ↓(k3) ĉ↑(k4) e−i2π(k1l+k2l−k3l−k4l)

= U

∫
d4k δ

(
kmod(k1+k2−k3−k4)

)
ĉ†↑(k1) ĉ†↓(k2) ĉ↓(k3) ĉ↑(k4). (C.4)

This is the interaction Hamiltonian’s 1-band form in Eq. (3.4). The kmod
function is defined in Eq. (2.3). It comes from the 1-periodicity of the function
k 7→ exp(i 2π l k) for any l ∈ Z.

C.2 Monotonicity of the NNN dispersion relation

The monotonicity of the dispersion relation is important for finding a numerical
scheme. This numerical scheme uses a certain expression for the solution of the
energy conservation, see Sec. 3.2.3.

The extrema of the dispersion relation are given by

0 = ω′(k) = 2π sin(2πk) + 4π ε sin(4πk) = 2π sin(2πk)
[
1 + 4 ε cos(2πk)

]

⇐⇒ sin(2πk) = 0 ∨ cos(2πk) = − 1

4 ε
. (C.5)

For ε < 1
4 , the cosine equation has no solutions. In this case, the only extrema

within the Brillouin zone are at k=0,± 1
2 . With k=0 being a minimum, ω(k) is

monotonically increasing in the region k ∈ (0, 1
2 ) and monotonically decreasing

for k ∈ (− 1
2 , 0).
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C.3 The inverse dispersion relation and its first
two derivatives

In this section, we calculate the inverse dispersion relation and its first two
derivatives, which is used in Apps. C.4 and C.6.1. First, we calculate the inverse
k(ω) of the dispersion relation k → ω(k) with [0, 1

2 ] 7→ R:

ω(k) = ω

⇒ 2ε c2k + ck − ε+ ω = 0

⇒ ck =
−1 +

√
1− 8ε(ω − ε)

4ε
(C.6)

The plus sign solution is not possible for the ε we chose. We find

k(ω) = arccos

(√
1− 8ε(ω − ε)− 1

4ε

)

=
1

2π
arccos(ε− ω) +

ε (ω − ε)2

π
√

1− (ω − ε)2
+O(ε2)

=
1

4
+

1

2π
arcsin(ω − ε) +

ε (ω − ε)2

π
√

1− (ω − ε)2
+O(ε2). (C.7)

The first derivative has the form

k′(ω) =
ε

π

√
2

[1− 8ε(ω − ε)]
[√

1− 8ε(ω − ε)− 1 + 4ε(ω + ε)
]

=
1

2π
√

1− (ω − ε)2
+
ε(ω − ε)[2− (ω − ε)2]

π[1− (ω − ε)2]3/2
+O(ε2). (C.8)

The second derivative is

k′′(ω) =
ω − ε

2π
√

1− (ω − ε)3/2
+

ε[2 + (ω − ε)2]

π[1− (ω − ε)2]5/2
+O(ε2). (C.9)

The example seems to be quite generic, because it exhibits the the same features,
which were already discovered for the calculation for general φ0(k).

We can express the derivatives of ω(kF) by the derivatives of k(µ). For this, we
use ω′(kF)k′F ≡ ω′(k(µ))k′(µ) = (d/dµ)ω(k(µ)) = 1. Thus, we have

ω′(kF) =
1

k′F

ω′′(kF) = − k′′F
(k′F)2

. (C.10)

C.4 Small-temperature behavior of certain scalar
products

In this section, we perform the calculations of a certain scalar product of the
form 〈φ, χ(3)〉F, which are needed for Sec. 3.5.3. In order to perform these
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calculations, we make use the Sommerfeld expansion in App. B.4. Furthermore,
we will replace the eigenfunction χ(3)(k) with its approximation χ̃(3)

(k) = k −
1
4 sgn(k). This approximation is justified in Sec. 3.5.1. Moreover, we denote
k′F := k′(µ), k′′F := k′′(µ), and k′′′F := k′′′(µ).

First, we calculate the scalar product of the third eigenfunction and the particle
current’s function jN (k) = Ω′(k), see Eq. (2.38):

〈
χ̃(3)

, jN
〉
F

=

∞∑

n=0

(
kBT

2J

)2n+1
1

(2n)!
an

d2n

dµ2n

[
kF − 1

4 sgn(kF)
]

=
a0kBT

J

[
kF − 1

4

]
+
a1k

3
B

16J3
k′′F T

3 +O(T 5). (C.11)

Note that the derivative of the sign function is zero, as long as kF is not near
the band edges. With the help of the formulas for kF and k′′F in App. C.3, we
calculate

〈
χ̃(3)

, jN
〉
F

=





a0kB
2J

[
kF− 1

4

]
T +O(T 3) for ε(kBT )2 � |µ− ε|

a1k
3
B

16J3
k′′F T

3 +O(T 5) for |µ− ε| � ε(kBT )2

=





a0kB
4πJ

arcsin(µ− ε)T +O
(
ε(µ− ε)2T

)
+O

(
T 3
)

for ε(kBT )2 � |µ− ε|
a1k

3
B

8πJ3
ε T 3 +O

(
ε2T 3

)
+O

(
T 5
)

for |µ− ε| � ε(kBT )2.

(C.12)
Obviously, this scalar product has a different leading term in different situations.
This is used in Eq. (3.129).

Next, we consider the scalar product with the heat current’s function jQ =
jE − µjN , where jE(k) = Ω′(k)ω(k) is the function of the total kinetic energy
current, see Eq. (2.38). Using the Sommerfeld expansion in Eq. (B.82), we find

〈
χ(3), jQ

〉
F

=
∞∑

n=0

(
kBT

2J

)2n+1
an

(2n)!

d2n

dω̃2n
2k′(ω̃)

[
k(ω̃)− 1

4 sgn
(
k(ω̃)

)]

× ω′(k(ω̃))
[
ω(k(ω̃))− µ

]∣∣∣∣
ω̃=µ

+O
(
e−β

)
.

(C.13)
With ω′(k(ω̃))k′(ω̃) being equal to one and all the derivatives of sgn(k) vanishing
at k = kF, we obtain

〈
χ(3), jQ

〉
F

=

∞∑

n=0

(
kBT

2J

)2n+1
2an

(2n)!

d2n

dω2n

[
k(ω)− 1

4

] (
ω − µ

)∣∣∣∣
ω=µ

+O
(
e−β

)

=
a0kBT

J

(
kF− 1

4

)
· 0 +

(
kBT

2J

)3

· 2a1

2

[
k′′F · 0+k′F+

(
kF− 1

4

)
· 0
]

+O
(
T 5
)

=
a1k

3
B

8J3
k′F T

3 +O(T 5)

=
a1k

3
B

16πJ3
T 3 +O

(
ε(µ− ε)T 3

)
+O

(
T 5
)

(C.14)
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for small temperature T . Here is exactly one leading term in contrast to
〈χ̃(3)

, jN 〉F. This leads to Eq. (3.130).

For the calculation of the expectation values 〈ĴN 〉t and 〈ĴQ〉t (see Eq. (3.131)
and Eq. (3.131), respectively), we additionally need to consider the norm of the
approximate eigenfunction:

‖χ̃(3)‖2F =
kBT

2J
a0 k

′
F
[
kF − 1

4

]2
+

(
kBT

2J

)3
1

2
a1

{
k′′′F
[
kF − 1

4

]2

+ 4k′′Fk
′
F
[
kF − 1

4

]
+ 2(k′F)3

}
+O(e−β)

=
kBT

2J
a0 k

′
F
[
kF − 1

4

]2
+
a1k

3
B

8J3
(k′F)3 T 3 +O(T 5). (C.15)

This leads to

‖χ̃(3)‖2F =





a0kB
2J

k′F
[
kF − 1

4

]2
T +O(T 3) for (kBT )2 � |µ− ε|2

a1k
3
B

8J3
(k′F)3 T 3 +O(T 5) for |µ− ε|2 � (kBT )2

=





a0kB
16π3J

arcsin2(ε− µ)T +O(T 3) for (kBT )2 � |µ− ε|2

a1k
3
B

64π3J3
T 3 +O(T 5) for |µ− ε|2 � (kBT )2.

(C.16)
We also need to consider the scalar product with the initial perturbation φ0(k):

〈χ̃(3)
, φ0〉F =

(
kBT

2J

)
a0 k

′
F
[
kF − 1

4

][
φ0(kF)− φ0(−kF)

]

+

(
kBT

2J

)3
1

2
a1

{
k′′′F
[
kF − 1

4

][
φ0(kF)− φ0(−kF)

]

+ 2k′′Fk
′
F
[
φ0(kF)− φ0(−kF)

]
+ 2k′′F

[
kF − 1

4

][
φ′0(kF) + φ′0(−kF)

]
k′F

+ k′Fk
′′
F
[
φ0(kF)− φ0(−kF)

]
+ 2k′Fk

′
F
[
φ′0(kF) + φ′0(−kF)

]

+ k′F
[
kF − 1

4

][
φ′′0(kF)− φ′′0(−kF)

]
(k′F)2

+ k′F
[
kF − 1

4

][
φ′0(kF) + φ′0(−kF)

]
k′′F
}

+O(T 5).

(C.17)
As in previous scalar products, one can also distinguish between two leading
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terms provided that φ0(k) has an anti-symmetric part:

〈χ̃(3)
, φ0〉F =

=





a0kB
2J

k′F
[
kF − 1

4

][
φ0(kF)− φ0(−kF)

]
T +O

(
T 3
)

for (kBT )2 � |µ− ε|

a1k
3
B

8J3
(k′F)2

[
φ′0(kF) + φ′0(−kF)

]
T 3 +O

(
T 5
)

for |µ− ε| � (kBT )2

=





a0kB
8π2J

arcsin(µ− ε)
[
φ0(kF)− φ0(−kF)

]
T +O

(
ε(µ− ε)2T

)
+O

(
T 3
)

for (kBT )2 � |µ− ε|
a1k

3
B

32π2J3

[
φ′0(kF) + φ′0(−kF)

]
T 3 +O

(
ε(µ− ε)T 3

)
+O

(
T 5
)

for |µ− ε| � (kBT )2.
(C.18)

Note that here we assumed φ0(kF)−φ0(−kF) 6= 0 and φ′0(kF)+φ′0(−kF) 6= 0. If
this is not the case, other terms are the leading ones. Then, another calculation
is necessary.

This is the case for our last calculation, where we consider the function φex.20 (k) :=
sgn(k) · (ω(k)−µ), which we find in one of our examples for a physically mean-
ingful initial perturbation, see Eq. (3.84). Using the Sommerfeld expansion in
Eq. (B.82), we obtain

〈
χ(3), φex.20

〉
F

=

∞∑

n=0

(
kBT

2J

)2n+1
an

(2n)!

d2n

dω̃2n
2k′(ω̃)

[
k(ω̃)− 1

4 sgn
(
k(ω̃)

)]

× sgn(k(ω̃))
[
ω(k(ω̃))− µ

]∣∣∣∣
ω̃=µ

+O
(
e−β

)
.

(C.19)
With all the derivatives of sgn(k) vanishing at k = kF, we obtain

〈
χ(3), φex.20

〉
F

=

∞∑

n=0

(
kBT

2J

)2n+1
2an

(2n)!

d2n

dω2n
k′(ω)

[
k(ω)− 1

4

] (
ω − µ

)∣∣∣∣
ω=µ

+O
(
e−β

)

=
a0kBT

J
k′F
(
kF− 1

4

)
· 0 +

(
kBT

2J

)3

· 2a1

2

[
k′′′F
(
kF− 1

4

)
· 0 + k′Fk

′′
F · 0

+ k′F
(
kF− 1

4

)
· 0 + k′′Fk

′
F · 0 + k′′F

(
kF− 1

4

)
+ k′Fk

′
F
]

+O
(
T 5
)

=
a1k

3
B

8J3

[
(k′F)2 + k′′F

(
kF− 1

4

)]
T 3 +O(T 5)

=
a1k

3
B

32π2J3

[
1 + (µ− ε) arcsin(µ− ε)

]
T 3 +O

(
ε(µ− ε)T 3

)
+O

(
T 5
)
.

(C.20)
This is used in Eqs. (C.74) and (C.79).

C.5 Particle and energy current

We calculate the total particle current ĴN =
∑
l ̂
N
l and the total energy current

ĴE =
∑
l ̂
E
l . In order to do this, we need to use the well-known continuity
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equation. It links the local particle density ρ(N)
l := n̂l =

∑
σ n̂σ,l to the local

particle current ̂Nl and the local energy density

ρ
(E)
l := ĥl = ĥkinl + ĥintl =

(
−J q̂(1)

σl − J ′q̂
(2)
σl

)
+H.c.+ U n̂↑,ln̂↓,l (C.21)

to the local energy current ̂El . The discretized continuity equations (Essler
et al., 2005) read

d

dt
ρ

(X)
l = ̂Xl−1 − ̂Xl , (C.22)

with X ∈ {N,E}. Utilizing a known simple trick, we can use this to directly
calculate the total currents:

ĴX =
∑

l

̂Xl
[
(l + 1)− l

]
=
∑

l

l
[
̂Xl−1 − ̂Xl

]
=
∑

l

d

dt
ρ

(X)
l =

i

~
∑

l

l
[
ρ

(X)
l , H

]
.

(C.23)
In order to perform the calculation and keep track of what we are doing, we
define a short notation:

q̂
(n)
σl := ĉ†σ,l+nĉσ,l + ĉ†σ,lĉσ,l+n

ζ
(n)
σl := ĉ†σ,l+nĉσ,l − ĉ

†
σ,lĉσ,l+n . (C.24)

Using Ĥ =
∑
l ĥl, the total particle current becomes

ĴN =
i

~
∑

σ,l

l
[
n̂σ,l,−Jq̂

(1)
σm − J ′̂q

(2)
σm

]
. (C.25)

For the evaluation of this equation, we make use of

[ĉ†αĉβ , ĉ
†
γ ĉη] = ĉ†αĉηδβγ − ĉ†γ ĉβδαη (C.26)

and
[
n̂σj , q̂

(a)
σn

]
=
[
ĉ†σ,j ĉσ,j , ĉ

†
σ,n+aĉσ,n + ĉ†σ,nĉσ,n+a

]

= ĉ†σ,j ĉσ,nδj,n+a − ĉ†σ,n+aĉσ,jδjn + ĉ†σ,j ĉσ,n+aδjn − ĉ†σ,nĉσ,jδj,n+a

= ζ(a)
σn

(
δj,n+a − δjn

)
.

(C.27)
Hence, Eq. (C.25) becomes

ĴN = − i
~
∑

σ,l

l
[
Jζ(1)

σm

(
δl,m+1 − δlm

)
+ J ′ζ(2)

σm

(
δl,m+2 − δlm

)]

= − i
~
∑

σ,l

l
[
J
(
ζ

(1)
σl−1 − ζ

(1)
σl

)
+ J ′

(
ζ

(2)
σl−2 − ζ

(2)
σl

)]
. (C.28)

Shifting l in the first and third term by 1 and 2, respectively, one obtains

ĴN = − i
~
∑

σ,l

{
Jζ

(1)
σl

[
(l + 1)− l

]
+ J ′ζ(2)

σl

[
(l + 2)− l

]}

= − i
~
∑

σ,l

(
Jζ

(1)
σl + 2J ′ζ(2)

σl

)
. (C.29)
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We can express this with the group velocity ω ′(k) = 2π[sin(2πk) + 2ε sin(4πk)]
by transforming the current into momentum space by employing

∑

m

ζ(a)
σm =

∑

m

c†m+acm −H.c. =

∫
dk ei2πka n̂(k)−H.c.

= 2i

∫
dk sin(2πka) n̂(k). (C.30)

This leads to

ĴN =
2

~
∑

σ

∫
dk
[
J sin(2πk) + 2J ′ sin(4πk)

]
n̂(k). (C.31)

Now, we can use ω ′(k) and finally obtain:

ĴN =
J

π~
∑

σ

∫
dk ω ′(k) n̂(k). (C.32)

The second current, which we will calculate, is the energy current. From
Eq. (C.23), we deduce:

ĴE =
i

~
∑

lm

l
[
ĥl, ĥm

]

=
i

~
∑

σlm

l
[
−Jq̂(1)

σl − J ′̂q
(2)
σl + Un̂↑ln̂↓l,−Jq̂

(1)
σm − J ′̂q

(2)
σm + Un̂↑mn̂↓m

]

=
i

~
∑

σlm

l
{
J2
[
q̂

(1)
σl , q̂

(1)
σm

]
− JJ ′

([
q̂

(1)
σl , q̂

(2)
σm

]
+
[
q̂

(2)
σl , q̂

(1)
σm

])
+
(
J ′
)2[

q̂
(2)
σl , q̂

(2)
σm

]

− JU
([
q̂

(1)
σl , n̂↑mn̂↓m

]
+
[
n̂↑ln̂↓l, q̂

(1)
σm

])
− J ′U

([
q̂

(2)
σl , n̂↑mn̂↓m

]
+
[
n̂↑ln̂↓l, q̂

(2)
σm

])

+ U2
[
n̂↑ln̂↓l, n̂↑mn̂↓m

]}
.

(C.33)
The last term vanishes and the remaining interaction terms can be simplified
by defining σ̄, which denotes the opposite spin of σ:

ĴE =
iJ2

~
∑

σlm

l
{[
q̂

(1)
σl , q̂

(1)
σm

]
+ ε
([
q̂

(1)
σl , q̂

(2)
σm

]
+
[
q̂

(2)
σl , q̂

(1)
σm

])
+ ε2

[
q̂

(2)
σl , q̂

(2)
σm

]

− u
([
q̂

(1)
σl , n̂σm

]
n̂σ̄m+

[
n̂σl, q̂

(1)
σm

]
n̂σ̄l
)
− εu

([
q̂

(2)
σl , n̂σm

]
n̂σ̄m+

[
n̂σl, q̂

(2)
σm

]
n̂σ̄l
)}
,

(C.34)
where ε = J ′/J and u = U/J . For this, we need to calculate the missing
commutators:
[
q̂

(a)
σj , q̂

(b)
σn

]
=
[
ĉ†σ,j+aĉσ,j + ĉ†σ,j ĉσ,j+a, ĉ

†
σ,n+bĉσ,n +H.c.

]

=
(
ĉ†σ,j+aĉσ,nδj,n+b − ĉ†σ,n+bĉσ,jδj+a,n + ĉ†σ,j ĉσ,nδj+a,n+b − ĉ†σ,n+bĉσ,j+aδjn

)
−H.c.

= ζ(a+b)
σn δj,n+b − ζ(a+b)

σj δj+a,n + ζ(b−a)
σn δj+a,n+b − ζ(b−a)

σ,n+aδjn .
(C.35)
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We realize that ζ(0)
σn ≡ 0 leads to

[
q̂

(1)
σl , q̂

(1)
σm

]
= ζ(2)

σm δl,m+2 − ζ(2)
σl δl,m−2

[
q̂

(2)
σl , q̂

(2)
σm

]
= ζ(4)

σm δl,m+4 − ζ(4)
σl δl,m−4. (C.36)

Furthermore, we get
[
q̂

(1)
σj , q̂

(2)
σn

]
= ζ(3)

σn δj,n+2 − ζ(3)
σj δj,n−1 + ζ(1)

σn δj,n+1 − ζ(1)
σ,n+1δjn. (C.37)

Plugging these commutators into Eq. (C.34), it gets the form

ĴE =
iJ2

~
∑

σlm

l
{(
ζ(2)
σm δl,m+2 − ζ(2)

σl δl,m−2

)
+ ε2

(
ζ(4)
σm δl,m+4 − ζ(4)

σl δl,m−4

)

+ ε
(
ζ(3)
σmδl,m+2 − ζ(3)

σl δl,m−1 + ζ(1)
σmδl,m+1 − ζ(1)

σ,m+1δlm

− ζ(3)
σl δm,l+2 + ζ(3)

σmδm,l−1 − ζ(1)
σl δm,l+1 + ζ

(1)
σ,l+1δml

)

− u
(
−ζ(1)

σl

(
δm,l+1 − δml

)
n̂σ̄m + ζ(1)

σm

(
δl,m+1 − δlm

)
n̂σ̄l
)

− εu
(
−ζ(2)

σl

(
δm,l+2 − δml

)
n̂σ̄m + ζ(2)

σm

(
δl,m+2 − δlm

)
n̂σ̄l
)}
.

(C.38)
Now, we perform the sum over m:

ĴE =
iJ2

~
∑

σl

l
{(
ζ

(2)
σl−2 − ζ

(2)
σl

)
+ ε2

(
ζ

(4)
σl−4 − ζ

(4)
σl

)

− ε
(
ζ

(3)
σ,l−2 − ζ

(3)
σl + ζ

(1)
σ,l−1 −��

�
ζ

(1)
σ,l+1 − ζ

(3)
σl + ζ

(3)
σ,l−1 − ζ

(1)
σl +

�
��ζ

(1)
σ,l+1

)

− u
(
−ζ(1)

σl

(
n̂σ̄,l+1 −��n̂σ̄l

)
+
(
ζ

(1)
σ,l−1 −�

�ζ
(1)
σl

)
n̂σ̄l
)

− εu
(
−ζ(2)

σl

(
n̂σ̄,l+2 −��n̂σ̄l

)
+
(
ζ

(2)
σ,l−2 −�

�ζ
(2)
σl

)
n̂σ̄l
)}
. (C.39)

As a next step, we collect like terms by shifting l in some terms by 1 or 2:

ĴE =
iJ2

~
∑

σl

{
ζ

(2)
σl

[
(l + 2)− l

]
+ ε2ζ

(4)
σl

[
(l + 4)− l

]

− ε
{
ζ

(3)
σl

[
(l + 2)− l − l + (l + 1)

]
+ ζ

(1)
σl

[
(l + 1)− l

]}

+ u ζ
(1)
σl n̂σ̄,l+1

[
l − (l + 1)

]
+ εu ζ

(2)
σl n̂σ̄,l+2

[
l − (l + 2)

]}
. (C.40)

This can be simplified to

ĴE =
iJ2

~
∑

σl

{
2ζ

(2)
σl + 4ε2ζ

(4)
σl + ε

(
3ζ

(3)
σl +ζ

(1)
σl

)
− u ζ(1)

σl n̂σ̄,l+1 − 2εu ζ
(2)
σl n̂σ̄,l+2

}
.

(C.41)
The terms, which remain when u = 0, can be further rewritten with the disper-
sion relation ω(k) using the transformation to momentum space in Eq. (C.30):
∑

σl

{
2ζ

(2)
σl + 4ε2ζ

(4)
σl + ε

(
3ζ

(3)
σl + ζ

(1)
σl

)}

=
∑

σ

∫
dk
{

4i sin(4πk) + 8iε2 sin(8πk) + ε
[
6i sin(6πk) + 2i sin(2πk)

]}
n̂σ(k).

(C.42)
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We can show that the integrand is proportional to ω(k)ω ′(k):

ω(k)ω ′(k) =

= −2π
[
cos(2πk) + ε cos(4πk)

][
sin(2πk) + 2ε sin(4πk)

]

= −2π
{

1
2 sin(4πk) + 4ε sin(2πk) cos2(2πk)

+ ε sin(2πk)
[
2 cos2(2πk)− 1

]
+ ε2 sin(8πk)

}

= −π
{

sin(4πk) + 12ε sin(2πk) cos2(2πk)− 2ε sin(2πk) + 2ε2 sin(8πk)
}
.

(C.43)
Using sin(6πk) = 4 sin(2πk) cos2(2πk)− sin(2πk), we obtain

ω(k)ω ′(k) = −π
[
sin(4πk) + 3ε sin(6πk) + ε sin(2πk) + 2ε2 sin(8πk)

]
.
(C.44)

This leads to the final form of the total energy current

ĴE =
J

~
∑

σ

{
4J

π

∫
dk ω(k)ω ′(k) n̂σ(k)− U

∑

l

[
ζ

(1)
σl n̂σ̄,l+1 + 2ε ζ

(2)
σl n̂σ̄,l+2

]}
.

(C.45)

C.6 Calculation of the total currents’ expecta-
tion values

In this appendix, we calculate the expectation values 〈ĴN 〉t and 〈ĴQ〉t, see
Eq. (3.131) and Eq. (3.131), respectively. In App. C.6.1, we consider a general
initial perturbation φ0 and assume that φ0(kF) − φ0(−kF) 6= 0 and φ′0(kF) +
φ′0(−kF) 6= 0. The last part, App. C.6.2, uses the two examples for a physically
meaningful initial perturbation found in Sec. 3.2.5.

C.6.1 General initial perturbation

First, we consider the expectation value of the total particle current and make
use of Eq. (3.128):

〈
ĴN
〉
t

= e−λ3t
〈φ0, χ

(3)〉F〈χ(3), jN 〉F
‖χ(3)‖2F

. (C.46)

As a next step, we use the Sommerfeld expansions of the occurring scalar prod-
ucts calculated in Eqs. (C.14), (C.16), and (C.18):

〈
ĴN
〉
t

= e−λ3t

{
a0kB
2J

k′F
[
kF − 1

4

][
φ0(kF)− φ0(−kF)

]
T

+
a1k

3
B

8J3
(k′F)2

[
φ′0(kF) + φ′0(−kF)

]
T 3 +O(T 5)

}

×

[
a0kB
2J

(
kF− 1

4

)
T +

a1k
3
B

16J3 k
′′
F T

3 +O(T 5)
]

[
a0kB
2J k′F

[
kF− 1

4

]2
T +

a1k3B
8J3 (k′F)3 T 3 +O

(
T 5
)] . (C.47)
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Furthermore, we obtain the leading terms of the different temperature regimes

〈
ĴN
〉
t

= e−λ3t





a0kB
2J

[
φ0(kF)−φ0(−kF)

]
T

for (kBT )2 � |µ−ε| ∧ ε(kBT )2 � |µ−ε| ∧ (kBT )2 � |µ−ε|2

2Ja2
0

a1kB

(
kF− 1

4

k′F

)2 [
φ0(kF)−φ0(−kF)

]
T−1

for (kBT )2 � |µ−ε| ∧ ε(kBT )2 � |µ−ε| ∧ |µ−ε|2 � (kBT )2

a0kB
2J

kF− 1
4

k′F

[
φ′0(kF)−φ′0(−kF)

]
T

for |µ−ε| � (kBT )2 ∧ ε(kBT )2 � |µ−ε| ∧ |µ−ε|2 � (kBT )2

a1k
3
B

16J3

k′′F
k′F

[
φ′0(kF)−φ′0(−kF)

]
T 3

for |µ−ε| � (kBT )2 ∧ |µ−ε| � ε(kBT )2 ∧ |µ−ε|2 � (kBT )2.
(C.48)

This is equivalent to

〈
ĴN
〉
t

= e−λ3t





a0kB
2J

[
φ0(kF)−φ0(−kF)

]
T +O

(
T 3
)

for kBT � |µ−ε|
2Ja2

0

a1kB

(
kF− 1

4

k′F

)2 [
φ0(kF)−φ0(−kF)

]
T−1 +O

(
T
)

for (kBT )2 � |µ−ε| � kBT

a0kB
2J

kF− 1
4

k′F

[
φ′0(kF)−φ′0(−kF)

]
T +O

(
T 3
)

for ε(kBT )2 � |µ−ε| � (kBT )2

a1k
3
B

16J3

k′′F
k′F

[
φ′0(kF)−φ′0(−kF)

]
T 3 +O

(
T 5
)

for |µ−ε| � ε(kBT )2.
(C.49)

Plugging the formulas for kF, k′F, and k
′′
F from App. C.3 into this equation, we

obtain

〈
ĴN
〉
t

= e−λ3t





a0kB
2J

[
φ0(kF)−φ0(−kF)

]
T +O

(
T 3
)

for kBT � |µ−ε|

2Ja2
0

a1kB
arcsin2(µ−ε)

[
φ0(kF)−φ0(−kF)

]
T−1

+O
(
ε(µ−ε)3T−1

)
+O

(
T
)

for (kBT )2 � |µ−ε| � kBT

a0kB
2J

arcsin(µ−ε)
[
φ′0(kF)−φ′0(−kF)

]
T

+O
(
ε(µ−ε)2T

)
+O

(
T 3
)

for ε(kBT )2 � |µ−ε| � (kBT )2

πa1k
3
B

8J3

[
φ′0(kF)−φ′0(−kF)

]
ε T 3 +O

(
ε(µ− ε)T 3

)

+O
(
ε2T 3

)
+O

(
T 5
)

for |µ−ε| � ε(kBT )2.
(C.50)

The same computation can be done for the expectation value of the total heat
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current ĴQ, but we will not present it here in all detail. From Eq. (3.128), we
know that

〈
ĴQ
〉
t

=
〈
Φ̂[jQ]

〉
t

(3.128)
= e−λ3t

〈φ0, χ
(3)〉F〈χ(3), jQ〉F
‖χ(3)‖2F

. (C.51)

Furthermore, use the Sommerfeld expansions of the occurring scalar products
calculated in Eqs. (C.14), (C.16), and (C.18):

〈
ĴQ
〉
t

= e−λ3t
[a0kB

2J
k′F
[
kF − 1

4

][
φ0(kF)− φ0(−kF)

]
T

+
a1k

3
B

8J3
(k′F)2

[
φ′0(kF) + φ′0(−kF)

]
T 3 +O(T 5)

]

×

[
a1k

3
B

16J3 k
′
F T

3 +O(T 5)
]

[
a0kB
2J k′F

[
kF− 1

4

]2
T +

a1k3B
8J3 (k′F)3 T 3 +O

(
T 5
)] . (C.52)

Now, we distinguish the different regimes that can occur. In these regimes, the
expectation value of the heat current exhibits different leading order terms

〈
ĴQ
〉
t

= e−λ3t





a1k
3
B

16J3
k′F

φ0(kF)−φ0(−kF)

(kF− 1
4 )

T 3 +O
(
T 5
)

for (kBT )2 � |µ−ε| ∧ (kBT )2 � |µ−ε|2

a0kB
4J

kF− 1
4

k′F

[
φ0(kF)−φ0(−kF)

]
T +O

(
T 3
)

for (kBT )2 � |µ−ε| ∧ |µ−ε|2 � (kBT )2

a1k
3
B

16J3

[
φ′0(kF)−φ′0(−kF)

]
T 3 +O

(
T 5
)

for |µ−ε| � (kBT )2 ∧ |µ−ε|2 � (kBT )2.
(C.53)

This is equivalent to

〈
ĴQ
〉
t

=
a1k

3
B

16J3
e−λ3t





φ0(kF)−φ0(−kF)

arcsin(µ− ε) T 3 +O
(
ε(µ− ε)T 3

)
+O

(
T 5
)

for kBT � |µ−ε|
a0kB
4J

kF− 1
4

k′F

[
φ0(kF)−φ0(−kF)

]
T +O

(
T 3
)

for (kBT )2 � |µ−ε| � kBT

[
φ′0(kF)−φ′0(−kF)

]
T 3 +O

(
T 5
)

for |µ−ε| � (kBT )2.
(C.54)

The last step is plugging the formulas for kF, k′F, and k′′F from App. C.3 into
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this equation:

〈
ĴQ
〉
t

= e−λ3t





a1k
3
B

16J3

φ0(kF)−φ0(−kF)

arcsin(µ− ε) T 3 +O
(
ε(µ− ε)T 3

)
+O

(
T 5
)

for kBT � |µ−ε|
a0kB
4J

arcsin(µ− ε)
[
φ0(kF)−φ0(−kF)

]
T +O

(
ε(µ− ε)2T

)

+O
(
T 3
)

for (kBT )2 � |µ−ε| � kBT

a1k
3
B

16J3

[
φ′0(kF)−φ′0(−kF)

]
T 3 +O

(
T 5
)

for |µ−ε| � (kBT )2.

(C.55)

C.6.2 Exemplary initial perturbations

This section is devoted to calculating the currents which are present in the two
exemplary initial perturbations φ0(k) from Sec. 3.2.5.

Example 1: The first example is φ0(k) = −(β η E/2J) jN (k), see Eq. (3.80).
As a start, the electrical conductivity σ0 is calculated. We find it by considering
the particle current of the initial perturbation:

〈
ĴN
〉
t

=
〈
jN , φ0

〉
F

= σ0E (C.56)

with

σ0 = 2J β η
〈
jN , jN

〉
F

= 2J β η

∞∑

n=0

(
kBT

2J

)2n+1
an

(2n)!

d2n

dω̃2n
2k′(ω̃)

[
ω ′(k(ω̃))

]2
∣∣∣∣
ω̃=µ

+O
(
e−β

)
.

(C.57)
Next, we make use of 1 = ω′(k(ω̃))k′(ω̃):

σ0 = 2J β η

∞∑

n=0

(
kBT

2J

)2n+1
an

(2n)!

d2n

dω̃2n
2ω ′(k(ω̃))

∣∣∣∣
ω̃=µ

+O
(
e−β

)

= 4J a0 η
1

k′F
+O

(
T 3
)
. (C.58)

Now, we plug in the equation for k′F from App. C.3 and obtain

σ0 = 8π a0 J η E
√

1− (µ− ε)2 +O
(
ε(µ− ε)

)
+O

(
T 2
)
. (C.59)

After a time much larger than 1/λ4, the particle current decays to

〈
ĴN
〉
t

= e−λ3t β η E
〈χ(3), jN 〉2F
‖χ(3)‖2F

. (C.60)
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Using Eqs. (C.12) and (C.16), one obtains

〈
ĴN
〉
t

= e−λ3t β η E

[
a0kB
2J

(
kF− 1

4

)
T +

a1k
3
B

16J3 k
′′
F T

3 +O(T 5)
]2

[
a0kB
2J k′F

[
kF− 1

4

]2
T +

a1k3B
8J3 (k′F)3 T 3 +O

(
T 5
)] .

(C.61)
Furthermore, we get the leading terms of the different temperature regimes

〈
ĴN
〉
t

= e−λ3t β η E





a0kB
2J

1

k′F
T +O

(
T 3
)

for ε(kBT )2 � |µ−ε| ∧ (kBT )2 � |µ−ε|2

2Ja2
0

a1kB

(kF− 1
4 )2

(k′F)3
T−1 +O

(
T
)

for ε(kBT )2 � |µ−ε| ∧ |µ−ε|2 � (kBT )2

a1k
3
B

16J3

(k′′F)2

(k′F)3
T 3 +O

(
T 5
)

for |µ−ε| � ε(kBT )2 ∧ |µ−ε|2 � (kBT )2.
(C.62)

This can be simplified to

〈
ĴN
〉
t

= e−λ3t η E





a0
1

k′F
+O

(
T 2
)

for kBT � |µ−ε|

4J2a2
0

a1k2
B

(kF− 1
4 )2

(k′F)3
T−2 +O

(
T 0
)

for ε(kBT )2 � |µ−ε| � kBT

a1k
2
B

8J2

(k′′F)2

(k′F)3
T 2 +O

(
T 4
)

for |µ−ε| � ε(kBT )2.

(C.63)
Plugging the formulas for kF, k′F, and k

′′
F from App. C.3 into this equation, leads

to

〈
ĴN
〉
t

= e−λ3t η E





2πa0√
1− (µ− ε)2

+O
(
ε T 0) +O

(
T 2) for kBT � |µ−ε|

8πJ2a2
0

a1k2
B

arcsin(µ− ε)2 T−2 +O
(
ε4T 3

)
+O

(
T 0
)

for ε(kBT )2 � |µ−ε| � kBT

4πa1k
2
B

J2
ε2 T 2 +O

(
ε(µ− ε)3T 3

)
+O

(
T 4
)

for |µ−ε| � ε(kBT )2.
(C.64)

Now, we consider the total heat current. For t � 1/λ4, its expectation value
becomes

〈
ĴQ
〉
t

= e−λ3t β η E
〈jN , χ(3)〉F〈χ(3), jQ〉F

‖χ(3)‖2F
. (C.65)



C.6. Calculation of the total currents’ expectation values 171

Using Eqs. (C.12), (C.14), and (C.16), we find

〈
ĴQ
〉
t

= e−λ3t β η E

[
a0kB
2J

(
kF− 1

4

)
T +

a1k
3
B

16J3 k
′′
F T

3 +O(T 5)
][

a1k
3
B

16J3 k
′
F T

3 +O(T 5)
]

[
a0kB
2J k′F

[
kF− 1

4

]2
T +

a1k3B
8J3 (k′F)3 T 3 +O

(
T 5
)] .

(C.66)
Furthermore, the leading terms of the different temperature regimes is ob-
tained:

〈
ĴQ
〉
t

= e−λ3t β η E





a1k
3
B

16J3

1

kF− 1
4

T 3 +O
(
T 5
)

for kBT � |µ−ε|

a0kB
4J

kF− 1
4

(k′F)2
T +O

(
T 3
)

for ε(kBT )2 � |µ−ε| � kBT

a1k
3
B

32J3

k′′F
(k′F)2

T 3 +O
(
T 5
)

for |µ−ε| � ε(kBT )2.

(C.67)
Plugging the formulas for kF, k′F, and k

′′
F from App. C.3 into this equation, we

get

〈
ĴQ
〉
t

= e−λ3t η E





πa1k
2
B

4J2

1

arcsin(µ−ε) T
2 +O

(
ε T 2

)
+O

(
T 4
)

for kBT � |µ−ε|
2πa0 arcsin(µ− ε) +O

(
ε(µ− ε)2T 0

)
+O

(
T 2
)

for ε(kBT )2 � |µ−ε| � kBT

π3a1k
3
B

8J2
ε T 2 +O

(
ε2T 2

)
+O

(
T 4
)

for |µ−ε| � ε(kBT )2.

(C.68)

Example 2: The second example is φ0(k) = β2∆T sgn(k)
(
ω(k) − µ

)
, see

Eq. (3.84). From this example, we can calculate the thermal conductivity κ0,
because of 〈

ĴQ
〉
t

=
〈
jQ, φ0

〉
F

= κ0 ∆T. (C.69)

Thus, the thermal conductivity is

κ0 = 4J2 β2
〈
jQ, sgn ·(ω − µ)

〉
F

= 4J2 β2
∞∑

n=0

(
kBT

2J

)2n+1
an

(2n)!

× d2n

dω̃2n
2k′(ω̃)ω ′(k(ω̃))

[
ω(k(ω̃))− µ

]2
sgn
(
k(ω̃)

)∣∣∣∣
ω̃=µ

+O
(
e−β

)
.

(C.70)
Now, we use ω ′(k(ω̃))k′(ω̃) = 1 and the fact that sgn(k) = 1 for k ∈ (0, 1/2):

κ0 = 8J2
∞∑

n=0

(
kBT

2J

)2n−1
an

(2n)!

d2n

dω̃2n
(ω̃ − µ)2

∣∣∣∣
ω̃=µ

+O
(
e−β

)
. (C.71)
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The only series coefficient that is not zero is the one for n = 1. Thence, one
gets

κ0 = 4J2 β2

(
kBT

2J

)3
a1

2
4 +O

(
e−β

)

⇒ κ0 = 4J a1 kBT ∆T +O
(
e−β

)
. (C.72)

For t� 1/λ4, the particle current is

〈
ĴN
〉
t

= e−λ3t β2∆T
〈sgn(ω − µ), χ(3)〉F 〈χ(3), jN 〉F

‖χ(3)‖2F
. (C.73)

Using Eqs. (C.12), (C.16), and (C.20), we find

〈
ĴN
〉
t

= e−λ3t β2∆T
[a1k

3
B

8J3

[
(k′F)2 + k′′F

(
kF− 1

4

)]
T 3 +O(T 5)

]

×

[
a0kB
2J

(
kF− 1

4

)
T +

a1k
3
B

16J3 k
′′
F T

3 +O(T 5)
]

[
a0kB
2J k′F

[
kF− 1

4

]2
T +

a1k3B
8J3 (k′F)3 T 3 +O

(
T 5
)] . (C.74)

Furthermore, we obtain the leading terms of the different temperature regimes

〈
ĴN
〉
t

= e−λ3t β2∆T





a1k
3
B

8J3

(k′F)2 + k′′F
(
kF− 1

4

)

k′F
(
kF − 1

4

) T 3 +O
(
T 5
)

for kBT � |µ−ε|

a0kB
2J

[
(k′F)2 + k′′F

(
kF− 1

4

)](
kF − 1

4

)

(k′F)3
T +O

(
T 3
)

for ε(kBT )2 � |µ−ε| � kBT

a1k
3
B

16J3

[
(k′F)2 + k′′F

(
kF− 1

4

)]
k′′F

(k′F)3
T 3 +O

(
T 5
)

for |µ−ε| � ε(kBT )2.
(C.75)

This leads to

〈
ĴN
〉
t

= e−λ3t ∆T





a1kB
2J

(k′F)2 + k′′F
(
kF− 1

4

)

k′F
(
kF − 1

4

) T +O
(
T 3
)

for kBT � |µ−ε|

2Ja0

kB

kF− 1
4

k′F
T−1 +O

(
T
)

for ε(kBT )2 � |µ−ε| � kBT

a1kB
4J

k′′F
k′F

T +O
(
T 3
)

for |µ−ε| � ε(kBT )2.

(C.76)
Plugging the formulas for kF, k′F, and k

′′
F from App. C.3 into this equation, we
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obtain

〈
ĴN
〉
t

= e−λ3t ∆T





a1kB
2J

1 + (µ−ε) arcsin(µ−ε)√
1−(µ−ε)3/2

arcsin(µ− ε) T +O
(
εT
)

+O
(
T 3
)

for kBT � |µ−ε|
2Ja0

kB
arcsin(µ− ε) T−1 +O

(
ε(µ−ε)2T−1

)
+O

(
T
)

for ε(kBT )2 � |µ−ε| � kBT

a1kB
J

ε T +O
(
ε2(µ−ε)T

)
+O

(
T 3
)

for |µ−ε| � ε(kBT )2.
(C.77)

Now, we consider the total heat current. For long times, which are much longer
than 1/λ4, one gets

〈
ĴQ
〉
t

= e−λ3t β2∆T
〈sgn(ω − µ), χ(3)〉F 〈χ(3), jQ〉F

‖χ(3)‖2F
. (C.78)

Using Eqs. (C.14), (C.16), and (C.20) leads to

〈
ĴQ
〉
t

=

= e−λ3t β2∆T

[
a1k

3
B

8J3

[
(k′F)2 + k′′F

(
kF− 1

4

)]
T 3 +O(T 5)

][
a1k

3
B

16J3 k
′
F T

3 +O(T 5)
]

a0kB
2J k′F

[
kF− 1

4

]2
T +

a1k3B
8J3 (k′F)3 T 3 +O

(
T 5
)

= e−λ3t β2∆T

1
2

(
a1k

3
B

8J3

)2

k′F
[
(k′F)2 + k′′F

(
kF− 1

4

)]
T 6 +O(T 8)

a0kB
2J k′F

[
kF− 1

4

]2
T +

a1k3B
8J3 (k′F)3 T 3 +O

(
T 5
) .

(C.79)
Furthermore, we obtain the leading terms of the different temperature regimes

〈
ĴQ
〉
t

= e−λ3t β2∆T





a2
1k

5
B

64a0J5
k′F
[
(k′F)2 + k′′F

(
kF− 1

4

)]
T 5 +O

(
T 7
)

for kBT � |µ−ε|
a1k

3
B

16J3

(k′F)2 + k′′F
(
kF− 1

4

)

(k′F)2
T 3 +O

(
T 5
)

for |µ−ε| � kBT.
(C.80)

The fact that kF− 1
4 = O(arcsin(µ− ε)) leads to

〈
ĴQ
〉
t

= e−λ3t ∆T





a2
1k

3
B

16a0J3
k′F
[
(k′F)2 + k′′F

(
kF− 1

4

)]
T 3 +O

(
T 5
)

for kBT � |µ−ε|
a1kB
4J

T +O
(
(µ−ε)T

)
+O

(
T 3
)

for |µ−ε| � kBT.

(C.81)
Plugging the formulas for kF, k′F, and k

′′
F from App. C.3 into this equation, we
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obtain

〈
ĴQ
〉
t

= e−λ3t ∆T





a2
1k

3
B T 3

128π3a0J3
√

1−(µ−ε)2

[
1

1−(µ−ε)2
+

arcsin(µ−ε)√
1−(µ−ε)3/2

]

+O
(
T 5
)

for kBT � |µ−ε|
a1kB
4J

T +O
(
(µ−ε)T

)
+O

(
T 3
)

for |µ−ε| � kBT.
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C.7 Fixed-point Fermi-Dirac distribution

For any dispersion relation ω(k), the collision term becomes zero when the
Fermi-Dirac distribution is plugged in:

Icoll[f ] =

∫
dk2 dk3 dk4

1∑

m=−1

δ(∆k~k+m) δ(∆ω~k)

×
[
(1− f1)(1− f2)f3f4 − f1f2(1− f3)(1− f4)

]
.

It becomes zero, because the last factor (1−f1)(1−f2)f3f4−f1f2(1−f3)(1−f4)
vanishes. The first term of this factor is compensated by the second due to
energy conservation:

(1−f1)(1−f2)f3f4

=
1

e−β(ω1−µ) + 1

1

e−β(ω2−µ) + 1

1

eβ(ω3−µ) + 1

1

eβ(ω4−µ) + 1

=
eβ(ω1−µ)

eβ(ω1−µ) + 1

eβ(ω2−µ)

eβ(ω2−µ) + 1

e−β(ω3−µ)

e−β(ω3−µ) + 1

e−β(ω4−µ)

e−β(ω4−µ) + 1

= f1f2(1−f3)(1−f4) eβ(ω1+ω2−ω3−ω4) . (C.83)

In the last line, the exponential factor is one due to energy conservation ∆ω~k =
ω1 + ω2 − ω3 − ω4 = 0. Thus, we find

δ(∆ω~k)
[
(1− f1)(1− f2)f3f4 − f1f2(1− f3)(1− f4)

]
. (C.84)

Therefore, one obtains
Icoll[f ] = 0 ∀ω. (C.85)

C.8 Stationary states for nearest-neighbor hop-
ping

In this section, we consider the stationary states fS for the case of vanishing
next-to-nearest-neighbor hopping, i.e. ε = 0. These states were described by
Fürst et al. (2012) and introduced in Eq. (3.19). We will show that the collision
term vanishes for fS .
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Plugging fS into the collision term leads to

I ε=0
coll

[
fS
]
1

=

∫
dk2 dk3 dk4

1∑

m=−1

δ(∆k~k+m) δ(∆ω
ε=0
~k

)

×
[
(1− fS1 )(1− fS2 )fS3 f

S
4 − fS1 fS2 (1− fS3 )(1− fS4 )

]

=

1/2∫

−1/2

dk3

[
(1−fS1 )(1−f̄S1 )fS3 f̄

S
3 − fS1 f̄S1 (1−fS3 )(1−f̄S3 )

]
, (C.86)

with f̄Sj := fS( 1
2−kj). As in App. C.7, where we showed that the Fermi-Dirac

distribution is a fixed point of the collision term, we will show that the factor
(1−fS1 )(1−f̄S1 )fS3 f̄

S
3 − fS1 f̄S1 (1−fS3 )(1−f̄S3 ) vanishes:

(1−fS1 )(1−f̄S1 )fS3 f̄
S
3 − fS1 f̄S1 (1−fS3 )(1−f̄S3 )

=
1

e−φ
S
1 +a + 1

1

eφ
S
1 +a + 1

1

eφ
S
3−a + 1

1

e−φ
S
3−a + 1

− 1

eφ
S
1−a + 1

1

e−φ
S
1−a + 1

1

eφ
S
3 +a + 1

1

eφ
S
3−a + 1

. (C.87)

Here, we used the symmetry of the stationary state, to be specific φS( 1
2−k) =

−φS(k), see Eq. (3.20). Now, the common factors of the two terms is pulled
out:

(1−fS1 )(1−f̄S1 )fS3 f̄
S
3 − fS1 f̄S1 (1−fS3 )(1−f̄S3 )

=
1

eφ
S
1−a + 1

1

eφ
S
1 +a + 1

1

eφ
S
3−a + 1

1

eφ
S
3 +a + 1

[
eφ

S
1−a eφ

S
3 +a − eφS1 +a eφ

S
3−a

]

︸ ︷︷ ︸
= eφ

S
1 +φS3 − eφS1 +φS3 = 0

.

(C.88)
Then, we realize that the remains add up to zero independent of k1, k3, and the
choice of a ∈ R. Thus, indeed, the quasiparticle momentum distribution fS(k)
is stationary for ε = 0:

I ε=0
coll

[
fS
]

= 0. (C.89)

C.9 Further simplification of L0
mn

In this part of the appendix, we record some simplifications that we found while
calculating L0

mn. This operator is the ε→ 0 limit of Lεmn =
〈
ζm, L̂[ζn]

〉
F
, which

is defined in Eq. (3.151). In the following, we show how to get rid of the factor
|cp − cq| in the denominator of the integrand of L0

mn. This can be useful for
numerical evaluations, because |cp − cq| contains zeros that are eliminated by
the denominator.

We start with L0
mn given in Eq. (3.162) from Sec. 3.6.3:

L0
mn = −U

2

~J
ϑm ϑn ∆m+n

∫

[− 1
2
, 1
2

]2

dp dq
(cnp − cnq)(cmp − cmq)

|cp − cq|

×
[
1−f0

( 1
4 +p)

][
1−f0

( 1
4−p)

]
f

0
( 1

4 +q) f
0
( 1

4−q), (C.90)



176 Appendix C. Calculations for the Hubbard model

where ϑn>0 = 1 and ϑn<0 = 0, which was defined in Eq. (3.150). As a first
step, we perform the actual elimination of the zeros:

cnp − cnq
cp − cq

=
c(n−2)p − c(n−2)q

cp − cq
+ 2c(n−1)p + 4

n−2∑

l=1

clpc(n−1−l)q + 2c(n−1)q

(C.91)
For example

n = 1 :
cp − cq
cp − cq

= 1

n = 2 :
c2p − c2q
cp − cq

= 2(cp + cq). (C.92)

We can also write this as

cnp − cnq
cp − cq

= Jn
(
p+q

2

)
Jn
(
p−q

2

)

Jn(x) = cnx/cx =

n−1∑

l=1

c(n−2l)x. (C.93)

As we see, the remaining expression is without divergence. Note that it only
contains terms of the form cjpcmp where m + j ∈ {n − 1, n − 3, n − 5, ...}. We
notice that in Eq. (3.162) most terms in the p integration are products of cosines
of p.

However, before we can use this, we need to separate |cp−cq| = (cp−cq) sgn(cp−
cq):

∫

[− 1
2
, 1
2

]2

dp dq sgn(cp − cq) {...} = 2

1/2∫

−1/2

dq

|q|∫

−|q|

dp {...} −
∫

[− 1
2
, 1
2

]2

dp dq {...}. (C.94)

For L0
mn, we treat the contribution from

∫
[− 1

2
, 1
2

]2
dp dq {...} first. For m = 0,

one kind of Term survives: the terms in (cnp − cnq)/(cp − cq), which depend on
q only: 2c(n−1)q, 2c(n−3)q, and so on. This leads to

2

π
ϑm ϑn ∆m+n

∫

[− 1
2
, 1
2

]2

dp dq
cnp − cnq
cp − cq

cmp f
0
( 1

4 + q) f
0
( 1

4 − q)

=
2

π
ϑm ϑn ∆m+n

∫

[− 1
2
, 1
2

]2

dp dq

{
c(n−2)p − c(n−2)q

cp − cq
+���

�2c(n−1)p

+ 4

n−2∑

l=1
((((

((clpc(n−1−l)q + 2c(n−1)q

}
cmp f

0
( 1

4 + q) f
0
( 1

4 − q) (C.95)

We reduced the index n in the factor cnp − cnq by two and gained a term with
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c(n−1)q. Iterating this procedure we end up with

2

π
ϑm ϑn ∆m+n

∫

[− 1
2
, 1
2

]2

dp dq
cnp − cnq
cp − cq

cmp f
0
( 1

4 + q) f
0
( 1

4 − q)

=
4

π
ϑmϑn ∆m+n

1/2∫

−1/2

dq
{
c(n−1)q + c(n−3)q + ...

}
f

0
( 1

4 +q) f
0
( 1

4−q)
1/2∫

−1/2

dp cmp .

(C.96)
The integral over p gives a factor δm,0, which makes the factor ϑm superfluous.

2

π
ϑm ϑn ∆m+n

∫

[− 1
2
, 1
2

]2

dp dq
cnp − cnq
cp − cq

cmp f
0
( 1

4 + q) f
0
( 1

4 − q)

=
4

π
δm,0 ϑn δm,0 ∆n

1/2∫

−1/2

dq

n−1∑

j=1

∆j+1 cjq f
0
( 1

4 + q) f
0
( 1

4 − q)

= 0. (C.97)

The sum over j starts at 1, because of ∆n, which demands that n is even.
Therefore, the cjp are antisymmetric around p = 1

4 . With f
0
( 1

4 ± q) being
symmetric around q = 1

4 , this contribution to L0
mn vanishes completely. Hence,

we are left with the
∫ 1/2

−1/2
dq
∫ |q|
−|q| dp {...} part of L

0
mn:

L0
mn = −4U2

π~J
∆m+n

1/2∫

−1/2

dq

|q|∫

−|q|

dp

{
c(n−2)p − c(n−2)q

cp − cq
+ 2c(n−1)p

+ 4

n−2∑

l=1

clp c(n−1−l)q + 2c(n−1)q

}
cmp f

0
( 1

4 + q) f
0
( 1

4 − q)

= ϑn L̂m,n−2 −
9U2

π~J
ϑm ϑn ∆m+n

1/2∫

−1/2

dq

{[
s(n+m−1)|q|
l +m

+
s(n−m−1)|q|
l −m

]

+
1

π

n−2∑

l=1

[
s(l+m)|q|
l +m

+
s(l−m)|q|
l −m

]
c(n−1−l)q + δm,0 c(n−1)q

}
f

0
( 1

4 +q) f
0
( 1

4−q).

(C.98)
Since s(l+m)|q| and f

0
( 1

4 + q) f
0
( 1

4 − q) are symmetric around 0 and 1
4 , the

integral over q will only be non-zero if c(n−1−l)q is symmetric around 0 and 1
4 ,

too. Thus, some terms are dropping out:

L0
mn =

U2

~J
ϑn L0

m,n−2 −
32U2

π~J
ϑm ϑn ∆m+n

1/4∫

0

dq

{[
s(n+m−1)q

n+m− 1
+
s(n−m−1)q

n−m− 1

]

+
1

π

n−2∑

l=1

[
s(n+m−l−1)q

n+m− l − 1
+

s(n−m−l−1)q

n−m− l − 1

]
∆l clq

}
f

0
( 1

4 +q) f
0
( 1

4−q).

(C.99)
We got rid of the denominator |cp − cq| and arrived at this form of L0

mn.
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C.10 Degenerate non-hermitian perturbation the-
ory

In this section, we perform the perturbation theory on the operator L̂ε=0 (see
Sec. 3.6.4). For an introduction to perturbation theory in quantum mechanics,
see for example Basdevant and Dalibard (2002).

The right kernel ker L̂ε=0 consists of the constant function ζ0 and the functions
ζ−|n|, which we call the low-lying eigenfunctions. We will find the corrections
to their eigenvalues, which are called low-lying eigenvalues.

The other eigenfunctions of L̂ε=0 we call the high-lying eigenfunctions. They
span the remaining space

(
ker L̂ε=0)⊥. We denote them as θµ.

L̂ is hermitian in the scalar product 〈·, ·〉F, see Eqs. (3.14) and (B.64). Therefore,
the left eigenfunctions are not the same as the right eigenfunctions. A left
eigenfunction we denote by an upper index L. For every eigenfunction χn(k),
we can find a left eigenfunction by multiplying with the factor f(k)[1−f(k)],
which is used in the scalar product:

χL
n(k) = χn(k) f(k)[1−f(k)]. (C.100)

We introduce the Dirac notation

χn(k)→
∣∣χn
〉
, χL

n(k)→
〈
χn
∣∣. (C.101)

Let ψε be a low-lying eigenfunction and λε its eigenvalue. Then, we may write

L̂
∣∣ψε
〉

= λ
ε∣∣ψε

〉
. (C.102)

Furthermore, we can expand
∣∣ψε
〉
using the eigenfunctions of L̂:

∣∣ψε
〉

=
−1∑

n=−∞
An

∣∣vn
〉

+
∑

µ

Bµ
∣∣θµ
〉
. (C.103)

Since we only consider the low-lying eigenvalues, the zeroth order of the eigen-
value vanishes. Thus, one obtains

L̂ε=0 ∣∣vn60

〉
= λ0

∣∣vn60

〉
= 0;

〈
vn6−1

∣∣ L̂ε=0
= 0,

L̂ε=0∣∣θµ
〉

= νµ
∣∣θµ
〉
;

〈
θµ
∣∣L̂ε=0

= νµ
〈
θµ
∣∣; νµ ∈ C.

(C.104)

Firstly, we apply
〈
vn
∣∣ onto Eq. (C.102) from the right:

0 =
〈
vn
∣∣ L̂ − λε

∣∣ψε
〉

=

=
〈
vn
∣∣ L̂ε=0 − λ0

︸ ︷︷ ︸
=0

∣∣ψε
〉

+ ε
〈
vn
∣∣ L̂1 − λ̃1

∣∣ψε
〉

+ ε2
〈
vn
∣∣ L̂2 − λ̃2

∣∣ψε
〉

+O(ε3)

= ε
∑

m

Am
〈
vn
∣∣ L̂1

∣∣vm
〉

+ ε
∑

µ

Bµ
〈
vn
∣∣ L̂1

∣∣θµ
〉
− ε λ̃1An +O(ε2)

(C.105)
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This leads to

λ̃1An =
∑

m

Am
〈
vn
∣∣ L̂1

∣∣vm
〉

+
∑

µ

Bµ
〈
vn
∣∣ L̂1

∣∣θµ
〉

+O(ε). (C.106)

Secondly, we do the same with
〈
θµ
∣∣:

0 =
〈
θµ
∣∣ L̂ − λε

∣∣ψε
〉

=
〈
θµ
∣∣ L̂ε=0 − λ0

∣∣ψε
〉

+ ε
〈
θµ
∣∣ L̂1 − λ̃1

∣∣ψε
〉

+ ε2
〈
θµ
∣∣ L̂2 − λ̃2

∣∣ψε
〉

+O(ε3)

= νµBµ + ε
∑

n

An
〈
θµ
∣∣ L̂1

∣∣vn
〉

+ ε
∑

µ

Bµ
〈
θµ
∣∣ L̂1

∣∣θµ
〉

+O(ε2)

(C.107)
For νµ 6= 0, we deduce that

Bµ = O(ε). (C.108)

Plugging this into Eq. (C.105) we find.

λ̃1An =
∑

m

Am
〈
vn
∣∣ L̂1

∣∣vm
〉

+O(ε) . (C.109)

Therefore, the first-order contribution λ̃1 to λ
ε is defined by the eigenvalue

problem
−1∑

n=−∞
L(1)
mn An = λ̃1 Am , (C.110)

with
L(1)
mn =

〈
vn
∣∣ L̂1

∣∣vm
〉

=
〈
ζLn , L̂1[ζm]

〉
=
〈
ζn, L̂1[ζm]

〉
F
. (C.111)

This result gives Eq. (3.165).

C.11 Computing the first order correction of L̂

Here, we execute the first-order perturbation theory calculation from Sec. 3.6.4.

L(1)
mn ≡

〈
vm, L̂1[vn]

〉
F
≡
〈
vm
∣∣
[
d

dε
L̂
]

ε=0

∣∣vn
〉

=

[
d

dε
Lεmn

]

ε=0

(3.157)
= −U

2

~J
∆m+n

∫

[− 1
2
, 1
2

]2

dp dq
γ(0)

|cp − cq|

{
d

dε
ζm(k̃

ε

pq + p)

×
[
1−f(k̃εpq + p)

][
1−f(k̃εpq − p)

]
f(k̃

ε

pq + q)f(k̃
ε

pq − q)

×
[
vn(k̃

ε

pq + p) + vn(k̃
ε

pq − p)− vn(k̃
ε

pq + q)− vn(k̃
ε

pq − q)
]}

ε=0

.

(C.112)
This equation is Eq. (3.167) with the difference that we already pulled γ(0) out
of the derivative. We can do that, because γ is an even function and therefore
d
dεγ(ε rpq) = 0.
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First, we expand all other functions up to first order in ε. For this, we make use
of k̃

ε

pq = 1
4 − 1

π ε rpq +O(ε3), given in Eq. (3.44). For ζn, defined in Eq. (3.149),
we find

vn(k̃
ε

pq + p) = ϑ̄n s|n|p + ϑn cnp + ε n rpq
[
ϑ̄n c|n|p + ϑn snp

]
+O(ε2). (C.113)

For the other factors depending on ε, one obtains

f(k̃
ε

pq+p) = f
0
( 1

4 +p) + ε f
0
( 1

4 +p)
[
1−f0

( 1
4 +p)

] [ d
dε
β ω(k̃

ε

pq+p)

]

ε=0

+O(ε2).

(C.114)
Thus, we need to calculate

[
d

dε
ω(k̃

ε

pq+p)

]

ε=0

=

[
∂ω

∂ε
(k̃
ε

pq+p) +
∂ω(κ)

∂κ

∣∣∣∣
κ=k̃

ε

pq+p

∂k̃
ε

pq

∂ε

]

ε=0

=
[
−c̃

k̃
ε

pq+p
+ 2π

[
s
k̃
ε

pq+p
+ 2 ε s̃

k̃
ε

pq=p

] (
−rpq
π

+O(ε2)
)]

ε=0

= c̃p − 2 cprpq

= −1− 2 cpcq. (C.115)

Note that partial derivative with respect to ε means that only the explicit
occurrence of ε in ω(k) is taken into account, i.e. ∂εω(k) = ∂ε[− sin(2πk) −
ε cos(2πk)] = − cos(2πk). Now, we can utilize C.115 to obtain

f(k̃
ε

pq+p) = f
0
( 1

4 +p)
{

1− βε
[
1−f0

( 1
4 +p)

](
1 + 2 cpcq

)}
+O(ε2). (C.116)

In order to express the Fermi factor in Eq. (C.112), we need the following
product of two Fermi functions:

f(k̃
ε

pq+p)f(k̃
ε

pq−p) = f
0
( 1

4 +p) f
0
( 1

4−p)
[
1 + βε

(
1 + 2 cpcq

)

×
[
1−f0

( 1
4 +p) + 1−f0

( 1
4−p)

]]
+O(ε2). (C.117)

Furthermore, also the calculation of the sum of these Fermi functions is neces-
sary:

f
0
( 1

4 +p) + f
0
( 1

4−p) =
1

1 + exp(−β c 1
4 +p − βµ)

+
1

1 + exp(−β c 1
4−p − βµ)

=
1

1 + exp(β sp − βµ)
+

1

1 + exp(−β sp − βµ)

=
2 + exp(β sp − βµ) + exp(−β sp − βµ)

1 + exp(β sp − βµ) + exp(−β sp − βµ) + exp(−2βµ)

=
2 + 2 e−βµ cosh(β sp)

1 + e−2βµ + 2 e−βµ cosh(β sp)
.

(C.118)
This function is equal to one for µ = 0. To shorten notation, we define the
following function, which is one for µ = 0 and even in p:

η(p, β, βµ) := 2− f0
( 1

4 +p)− f0
( 1

4−p) =
2 e−2βµ + 2 e−βµ cosh(β sp)

1 + e−2βµ + 2 e−βµ cosh(β sp)
.

(C.119)
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For the sake of an even shorter notation, we will not explicitly write the param-
eters β and βµ. This leads to

f(k̃
ε

pq+p)f(k̃
ε

pq−p) = f
0
( 1

4 +p) f
0
( 1

4−p)
[
1 + βε η(p)

(
1 + 2 cpcq

)]
+O(ε2).

(C.120)
All the factors like Eqs. (C.113) and (C.120) have a linear term in ε. Therefore,
they contribute to L(1)

mn. Plugging them into Eq. (C.112) yields

L(1)
mn = −U

2∆m+n

~J

∫

[− 1
2
, 1
2

]2

dp dq
γ(0)

|cp − cq|
f

0
p+f

0
p−f

0
q+f

0
q−

{[
mrpq

[
ϑ̄m c|m|p + ϑm smp

]

− β
(
ϑ̄m s|m|p + ϑm cmp

)(
1 + 2 cpcq

)[
η(p) + η(q)

]]
·
(
2ϑn cnp − 2ϑn cnq

)

+
(
ϑ̄m s|m|p + ϑm cmp

)
·
(
2n rpq ϑ̄n cnp − 2n rpq ϑ̄n cnq

)}
.

(C.121)
We use γ(0) = 1, see Eq. (3.73), and make some simplifications so that we arrive
at

L(1)
mn = −2U2∆m+n

~J

∫

[− 1
2
, 1
2

]2

dp dq
cnp − cnq
|cp − cq|

f
0
p+f

0
p−f

0
q+f

0
q−

×
{
ϑn

[
mrpq

[
ϑ̄m c|m|p + ϑm smp

]

− β
(
ϑ̄m s|m|p + ϑm cmp

)(
1 + 2 cpcq

)[
η(p) + η(q)

]]

+ ϑ̄n n rpq
(
ϑ̄m s|m|p + ϑm cmp

)}
. (C.122)

The parts of the integrand, which are odd in p, drop out. These are all the
terms containing a sinus factor:

L(1)
mn = −2U2∆m+n

~J

∫

[− 1
2
, 1
2

]2

dp dq cmp
cnp − cnq
|cp − cq|

f
0
p+f

0
p−f

0
q+f

0
q−

{
ϑn

[
mrpq ϑ̄m

− β ϑm
(
1 + 2 cpcq

)[
η(p) + η(q)

]]
+ ϑ̄n n rpqϑm

}
.

(C.123)
Now, we consider the transformation (p, q) → ( 1

2 − p, 1
2 − q). In this transfor-

mation, rpq = cp + cq gets a minus sign. The function η(p) does not change, be-
cause cosh(β sp) is invariant under this transformation. Furthermore, the factor
∆m+n cmp (cnp − cnq)/|cp − cq| is invariant under this transformation. Conse-
quently, the two terms with rpq vanish:

L(1)
mn =

2U2β

~J
ϑm ϑn ∆m+n

∫

[− 1
2
, 1
2

]2

dp dq cmp
cnp − cnq
|cp − cq|

(
1 + 2 cp cq

)

× f0
( 1

4 + p) f
0
( 1

4 − p) f
0
( 1

4 + q) f
0
( 1

4 − q)
[
η(p) + η(q)

]
. (C.124)
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We can anti-symmetrize the factor cmp, since the rest is antisymmetric under
exchange of p and q:

L(1)
mn =

U2β

~J
ϑm ϑn ∆m+n

∫

[− 1
2
, 1
2

]2

dp dq
1 + 2 cp cq
|cp−cq|

(cmp − cmq)(cnp − cnq)

× f0
( 1

4 + p) f
0
( 1

4−p) f
0
( 1

4 + q) f
0
( 1

4−q)
[
η(p) + η(q)

]
.

(C.125)
The factor ϑn(cnp−cnq) tells us that for n 6 0 the matrix elements L(1)

mn vanish.
The same holds for m 6 0. This leads to Eq. (3.169) in the main text.

C.12 The relation between Fermi momentum and
chemical potential

The relation between Fermi momentum kF and chemical potential µ is defined
by

µ = ω(kF) = −cF − ε (2 c2F − 1), (C.126)

with cF := cos(2πkF). This is how one calculates µ from kF. However, we want
to know the inverse function. Therefore, we reorder Eq. (C.126) to

2ε c2F + cF − ε+ µ = 0. (C.127)

We use the known solution of quadratic equations and get

cF =
−1±

√
1 + 8ε(ε− µ)

4ε
. (C.128)

For ε < 1
4 , the solution is the one with the plus sign. The other solution would

lead to the right-hand side exceeding the range of the cosine. Thus, we have

kF =
1

2π
arccos

[√
1 + 8ε(ε− µ)− 1

4ε

]
. (C.129)

The Taylor expansion in ε yields

kF =
1

2
− arccos(µ)

2π
− 1− 2µ2

2π
√

1− µ2
ε. (C.130)

For the case µ = 0, which is very often considered in this work, we get

kF

∣∣∣
µ=0

=
1

2π
arccos

[√
1 + 8ε2 − 1

4ε

]
(C.131)

and the corresponding Taylor expansion

kF

∣∣∣
µ=0

=
1

4
− ε

2π
+

11 ε3

12π
+O(ε5). (C.132)

We see that for µ = 0 the Fermi momentum kF is shifted below 1
4 by O(ε).
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C.13 The factor containing the Fermi-Dirac func-
tions

In this section, we will be concerned with a certain factor in the definition of
the linearized Boltzmann operator L̂, Eq. (3.12):

F1234 :=
1−f2

f1
f3 f4. (C.133)

We will always keep in mind that we have the momentum conservation kmod(k1+
k2−k3−k4) = 0 and the energy conservation ω1 +ω2−ω3−ω4 = 0. The latter
leads to

(1−f1)(1−f2)f3f4 = f1f2(1−f3)(1−f4), (C.134)

see Eq. (B.59). Thus, we can rewrite F1234 by multiplying it with 1 = 1−f1+f1:

F1234 =
(1−f1+f1)(1−f2)f3f4

f1

=
(1−f1)(1−f2)f3f4

f1
+
f1(1−f2)f3f4

f1
. (C.135)

For the first term, we use Eq. (C.134). In the second term, we simply cancel f1:

F1234 =
f1f2(1−f3)(1−f4)

f1
+ (1−f2)f3f4

= f2(1−f3)(1−f4) + (1−f2)f3f4. (C.136)

With this we found a way to write F1234 in such a way that there is no denom-
inator any more. Although f1 vanished, F1234 is still dependent on k1 because
of quasi-momentum-conservation and energy conservation. The T → 0 limit is
now very easily found:

F1234
T→0−−−−→ θ2 θ̄3 θ̄4 + θ̄2 θ3 θ4, (C.137)

where we introduced θj := θ(−ωj + µ) and θ̄j = θ(ωj − µ).

One can also multiply Eq. (C.133) by 1 = θ1 + θ̄1. This leads to

F1234 =
θ1(1−f2)f3f4

f1
+
θ̄1(1−f2)f3f4

f1
. (C.138)

The first term is not a problem in the limit T → 0, because as long as ω1 < µ
the Fermi function approaches 1. However, in the second term, the fact that
ω1 > µ lets the denominator consisting of f1 vanish. We rewrite the second
term using Eq. Eq. (C.134):

F1234 =
θ1(1−f2)f3f4

f1
+
θ̄1f2(1−f3)(1−f4)

1−f1
. (C.139)

The T → 0 limit leads to

F1234
T→0−−−−→ θ1 θ̄2 θ3 θ4 + θ̄1 θ2 θ̄3 θ̄4. (C.140)
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This seems to be contradictory to Eq. (C.137). The additional factors θ1 and
θ̄1 are redundant. For example, the term θ̄2 θ3 θ4 leads to

ω1 = ω3 + ω4 − ω2 < µ+ µ− µ = µ. (C.141)

This is equivalent to a factor θ(−ω1 + µ) = θ̄1. Hence, both Eqs. (C.137)
and (C.140) are valid and equivalent. Summing up the important things leads
to

F1234 = f2(1−f3)(1−f4) + (1−f2)f3f4, (C.142)

and

F1234
T→0−−−−→ θ̄2 θ3 θ4 + θ2 θ̄3 θ̄4

= θ1 θ̄2 θ3 θ4 + θ̄1 θ2 θ̄3 θ̄4. (C.143)



Appendix D

Calculations for the PCMO
chain

D.1 Evaluation of the energy-conserving delta-
function using paths

In this section, we show how one can reformulate a delta function of the form
δ(h(x, y)) using paths. This is used in the numerical evaluation of the energy-
conserving delta-function ∆ω~ν,~k, see Sec. 4.3.2. Since k1 is a parameter and k4 is
set by the momentum conservation δ(∆k~k), two parameters are left to integrate
over, i.e. (x, y) = (k2, k3). The problem can be formulated as

∫
dx dy δ(h(x, y)) f(x, y). (D.1)

For the beginning, we assume that the function h(x, y) contains one path γ,
where its function value vanishes. Hence, we have

h(γ(t)) = 0. (D.2)

This is valid for all path parameters t. Assuming that the paths are smooth, we
can take the derivative of this equation and find

0 =
d

dt
h(γ(t)) = γ′(t) · ∇γh(γ(t)). (D.3)

We now see that ∇h(γ(t)) is orthogonal to γ′(t). Therefore, we can now specify
the following reparametrization of the integral near the path γ:

(x, y) = γ(t) + s∇γh(γ(t)). (D.4)

Thus, Eq. (D.1) takes the form
∫
dx dy δ(h(x, y)) f(x, y)

=

∫
dt ds

∣∣∣∣
∂(x, y)

∂(t, s)

∣∣∣∣ δ
(
h(γ(t) + s∇γh(γ(t)))

)
f
(
γ(t) + s∇γh(γ(t))

)
. (D.5)
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The reparametrization includes the Jacobi determinant
∣∣∣∣
∂(x, y)

∂(t, s)

∣∣∣∣ =

∣∣∣∣
∂x

∂t

∂y

∂s
− ∂x

∂s

∂y

∂t

∣∣∣∣

=

∣∣∣∣γ′1(t)
∂h(γ(t))

∂y
− γ′2(t)

∂h(γ(t))

∂x

∣∣∣∣
= ‖γ′(t)‖ ‖∇γh(γ(t))‖. (D.6)

In the last step, we made use of the orthogonality of γ′(t) and∇γh(γ(t)), because
for two orthogonal functions v and w we have

‖v‖2‖w‖2 = (v2
1 + v2

2)(w2
1 + w2

2) = (v1w1 + v2w2)2

︸ ︷︷ ︸
=0

−2v1v2w1w2 + v2
1w

2
2 + v2w

2
1

= (v1w2 − v2w1)2.
(D.7)

Furthermore, for the delta function, we consider the Taylor expansion

h
(
γ(t) + s∇γh(γ(t))

)

=

∞∑

m,n=0

sm+n

m!n!

∂m∂nh(γ(t))

∂xm∂yn

[
∂h(γ(t))

∂x

]m [
∂h(γ(t))

∂y

]n

= h(γ(t))︸ ︷︷ ︸
=0

+s∇γh(γ(t)) · ∇γh(γ(t))

+ s2
∞∑

m,n=0
m+1>2

sm+n−2

m!n!

∂m∂nh(γ(t))

∂xm∂yn

[
∂h(γ(t))

∂x

]m [
∂h(γ(t))

∂y

]n

︸ ︷︷ ︸
=:Q

. (D.8)

This leads to

δ
(
h(γ(t) + s∇γh(γ(t)))

)
= δ
(
s‖∇γh(γ(t))‖2 + s2Q

)

=
δ(s)

‖∇γh(γ(t))‖2 + δ
(
‖∇γh(γ(t))‖2 + sQ

)
. (D.9)

In our case, the second term does not contribute, because we assumed that we
have only one path. If there is another path crossing or touching the path, the
contributions are taken into account by simply summing over all possible paths.

We obtain for Eq. (D.5) the following result:
∫
dx dy δ(h(x, y)) f(x, y)

=

∫
dt ds ‖γ′(t)‖ ‖∇γh(γ(t))‖ δ(s)

‖∇γh(γ(t))‖2 f
(
γ(t) + s∇γh(γ(t))

)

=

∫
dt

‖γ′(t)‖
‖∇γh(γ(t))‖ f

(
γ(t)

)
. (D.10)

If h(x, y) contains more than one path with h(γ(t)) = 0, then we have to sum
over all paths. This leads to the final result:

∫
dx dy δ(h(x, y)) f(x, y) =

∑

γ

∫
dt

‖γ′(t)‖
‖∇γh(γ(t))‖ f

(
γ(t)

)
. (D.11)
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D.2 First derivative of the paths of zero energy
change

Here, we calculate the first derivative γ′(x) of the paths introduced in App. D.1.
This is used in Sec. 4.3.2. γ′(x) can be calculated in a similar manner as the
interpolation scheme discussed in App. B.5. However, here we do not need to
interpolate between points, we only want to find the derivative at the discretized
points xl, which simplifies the calculation.

γ(xl) =

∞∑

n=0

1

n!
γ(n)(xm) (xl − xm)n

=

∞∑

n=0

1

n!
γ(n)(xm) (l −m)n ∆xn. (D.12)

We choose the parametrization so that xl = l∆x, x ∈ [0, Nt). Furthermore, we
need to specify which, points we use for approximating γ′(xl). The number of
the points is NI. We use the indices in {l+a, ..., l+ b} with b = floor(NI/2) and
b− a = NI − 1.

γ′(xl) =

l+b∑

m=l+a

C̃m(xl) γ(xm) =

∞∑

n=0

γ(n)(xl)
∆xn

n!

l+b∑

m=l+a

C̃m(xl) (m− l)n

= γ(xl)

b∑

m=a

C̃m(xl)

︸ ︷︷ ︸
!
= 0

+γ′(xl) ∆x

b∑

m=a

C̃l+m(xl)m

︸ ︷︷ ︸
!
= 1

+

∞∑

n=2

γ(n)(xl)
∆xn

n!

b∑

m=a

C̃l+m(xl)m
n

︸ ︷︷ ︸
!
= 0

.

(D.13)
Let us define

Cm := ∆x C̃l+m(xl). (D.14)

It fulfills



1 1 . . . 1
a a+ 1 . . . b
...

...
...

aNI−1 (a+ 1)NI−1 . . . bNI−1


 ~C =




0
1
0
...
0



. (D.15)

We can see that Cm(l) is only dependent on the number of points NI. This
is very useful for the numerical implementation of the linearized Boltzmann
equation, because we only need to calculate Cm once and can use it for any
choice of ∆x and number of path points xl of the path γ(x).

We can rewrite Eq. (D.15) by defining ~y := (a, a+ 1, ..., b):




1 1 . . . 1
y1 y2 . . . yNI...

...
...

yNI−1
1 yNI−1

2 . . . yNI−1
NI


 ~C

(
k
)

=




0
1
0
...
0



. (D.16)



We solved this using Mathematica and found the following principle, which we
checked up to the desired NI = 9:

Cn = (−1)NI

NI∑

l=1
l 6=n

NI∏

m=1
m 6=n
m6=l

ym

NI∏

m=1
m6=n

(yn − ym)

= (−1)NI

NI∑

l=1
l 6=n

NI∏

m=1
m6=n
m 6=l

ym

NI∏

m=1
m6=n

(n−m)

. (D.17)

We implemented this in our numerical code, and checked it against known
derivatives of test functions. The latter were combinations of sinusoidal and
exponential functions, which have well-defined derivatives. Finally, we have

γ′(xl) =
1

∆x

b∑

m=a

Cm γ(xl+m), (D.18)

with universal parameters Cm for a fixed number NI of integration points.
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