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Chapter 1 – Introduction

Microbes are ubiquitous inhabitants of our environment. Soils, plants, animals, oceans, and

atmosphere are colonized by large quantities of microbial individuals living in complex

microbial communities. The global total plant leaf surface, for example, has been estimated

at more than 1 billion square kilometers  (Vorholt 2012) and the average number only of

bacteria on leaves has been estimated at 10,000 to 100,000 individuals cells per square

millimeter of leaf surface (Lindow and Brandl 2003). Both figures taken together underline

the ubiquity of bacterial  activity on a global scale.  Nevertheless,  we have only limited

knowledge of their spatial distribution and the underlying ecological processes at global

scale,  at  the scales  of  landscapes,  hosts,  or  bacterial  individuals.  In  this  dissertation,  I

studied leaf-colonizing bacteria,  their  interactions with the environment,  and the spatial

scale at which these interactions can be observed. The goal of the project was to improve

our understanding of microbial leaf surface colonization processes on an individual level.

This understanding is crucial to the interpretation of bacterial patterns at larger scales, e.g.

at  the level  of  colonies  or  whole  leaves.  The research  presented in  this  dissertation is

expected to enhance our understanding of how plant-colonizing bacteria establish on plant

surfaces and thus to open avenues towards efficient and sustainable measures for biological

control of bacterial plant pathogens.

The study of microbial leaf colonization on the level of bacterial individuals raises several

fundamental questions:  1) How do bacterial  individuals perceive their  environment? 2)

How can we assess the spatial scale of bacterial interactions on the leaf surface? 3) What is

the appropriate spatial scale of observation? 4) Are the observed patterns equivalent to

natural patterns or are they biased under laboratory conditions? The introductory chapters

1, 2, and 3 of this dissertation are aimed at discussing these questions in the context of the

current state of research. Chapter 1 covers the current knowledge about microbial life on

plant  leaves.  Chapters  2  discusses  the  above  aspects  of  spatial  scale-specific  analysis.

Chapter 3 presents results of an auxiliary study of how bacterial distribution patterns on

leaves  observed  under  the  microscope  compare  to  natural  patterns.  Given  the  cross-

disciplinary nature of the dissertation project,  i.e.  microbiology and ecology as well  as

application and theory of spatial statistics, these chapters give a more detailed overview of

these topics than was required for the publication of the core research chapters 4, 5, and 6

of this thesis in scientific journals. In Chapter 4, the distribution of leaf-colonizing bacteria
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on bean  leaves  is  analyzed.  We show how bacteria  interact  with  their  environment  at

different spatial scales and how the interplay of these interactions explains the complex

bacterial  colonization  patterns  on  plant  leaves.  Chapter  5  contrasts  the  underlying

processes as being either physical, i.e. driven by leaf topography, or being driven by leaf

biological  properties.  Chapter  6  presents  an  extension  of  current  methods  in  spatial

statistics  that  allows  the  study of  the  distribution  of  bacterial  individuals  along  linear

structures such as the network of grooves between leaf epidermal cells. The new method

was then applied to  further  explore this  important  interaction of bacteria  with the leaf

surface. The concluding Chapter 7 summarizes the most important results of the research

project and brings them into a broader context.

How do bacteria perceive their environment? The ecology of leaf-colonizing 

bacteria

The term 'phyllosphere'  was  independently coined by F.  T.  Last  (1955) and J.  Ruinen

(1956). In analogy to the term rhizosphere, it describes the 'characteristic milieu'  (Ruinen

1956) that the leaf surface as an environment provides to its microbial colonizers. More

precisely, the leaf surface, including a thin surrounding gaseous boundary layer, provides a

habitat  that  differs  physically,  chemically,  and  biologically  from  the  surrounding

environment,  i.e.  the  leaf  tissue  and  the  free  atmosphere.  The  importance  of  the

phyllosphere as an object of study lies, amongst other things, in its role as an active site of

many plant pathogens and as a habitat for human pathogens. Both issues have pressing

implications for food production but microbial leaf colonization has also been studied in

other fields such as forestry  (e.g. Peñuelas  et al. 2012; Kembel  et al. 2014; Griffin and

Carson 2015) or remediation of air pollutants (Bringel and Couée 2015).

The  phyllosphere  has  frequently been  described  as  a  harsh  environment  for  microbial

colonizers  (Lindow  and  Brandl  2003;  Leveau  2006;  Vorholt  2012).  Other  harsh

environments are usually defined by the presence of extreme values for an environmental

factor such as excessive heat around black smokers on ocean floors (Blöchl et al. 1997) or

high amount of toxins in contaminated soils  (Nies 2000). The phyllosphere, however, is

considered as  an extreme environment  for  the  wide range and frequent  fluctuations  in

several  environmental  factors.  Compared  to  other  microbial  habitats  such  as  the

rhizosphere,  colonizers  of  the phyllosphere are  exposed to  excessive amounts of ultra-

violet  light.  This  is  expected  to  be  the  reason  why  most  leaf-colonizing  bacteria  are
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pigmented and often have well developed DNA-repair abilities (Sundin and Jacobs 1999;

Jacobs, Carroll and Sundin 2004; Atamna-Ismaeel  et al. 2012). Local weather conditions

frequently alter light and water availability, which requires adaptions conferring drought

tolerance  as  well  as  adaptions  to  high  and  low  temperatures.  Rain  and  wind  cause

mechanical stress to the leaf surface which may challenge microbial attachment to the leaf

surface.  The  rapid  and  frequent  changes  in  UV  radiation,  temperature,  and  water

availability  define  the  phyllosphere  as  a  harsh  environment  for  microbial  colonizers

compared to more homeostatic habitats such as the leaf interior. 

Tied to  the environmental  factors  are  chemical  properties  of  the leaf  surface.  The leaf

epidermis is covered by a cuticle that regulates transpiration and gas exchange as well as

protects  the  leaf  interior  from  mechanical  stress  (Riederer  and  Müller  2006).  The

hydrophobic nature of the cuticle impedes microbial  colonization and adds to the self-

cleaning capability of leaves. Spread across this cuticle is a wealth of metabolic products

from microbial and non-microbial sources with nutritional, antimicrobial, regulatory, and

communication functions for microbes. From bioreporter studies, it is known that many of

these substances are heterogeneously distributed on the leaf surface. Important examples

include the distribution of water  (Axtell and Beattie 2002), fructose and sucrose (Leveau

and Lindow 2001), nitrogen  (Parangan-Smith and Lindow 2013), and iron  (Joyner and

Lindow 2000). Similar biosensors exist for signaling molecules (Deng et al. 2014; Rai, Rai

and Venkatesh 2015) and environmental contaminants (Stiner and Halverson 2002; Liu et

al. 2010) but their spatial distribution in the phyllosphere has not been studied yet. Besides

this micro-scale heterogeneity the amounts of single compounds may vary considerably

between the leaves of a single host plant (Fiala et al. 1990; Mercier and Lindow 2000).

Finally,  biological  factors  such  as  facilitation  and  competition  within  microbial

communities (reviewed in Meyer and Leveau 2011), as well as plant host responses (Dangl

and Jones 2001; Conrath, Pieterse and Mauch-Mani 2002), or predation  (O’Rorke  et al.

2015) shape  microbial  life  in  the  phyllosphere.  Considering  the  immense  microbial

diversity  found  on  leaves,  extensive  networks  of  inter-microbial  and  host-microbial

interactions  may exist  (Figure  1)  but  we are  only beginning to  grasp their  complexity

(Ponomarova and Patil 2015). Common ecological processes such as direct competition for

nutrients  or  predation  are  complemented  by more  complex  processes  such  as  quorum

sensing  (Hosni  et  al. 2011) or  the  cooperative interspecific  production  of  extracellular

matrix  compounds  (Morris  and  Monier  2003).  Quorum  sensing  regulates  population
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density-dependent  changes  in  microbial  physiology  induced  by  microbial  signaling

molecules  (Lv  et al. 2013). Ambient concentrations of these molecules are increased in

regions of high microbial densities and trigger reactions such as locomotion in order to

avoid  competition  or  the  production  of  compounds  for  an  extracellular  matrix.  Such

gelatinous matrices that encase groups of microbes are known to improve microbial fitness

in  the  phyllosphere,  e.g.  by  filtering  environmental  factors  such  as  antimicrobial

compounds  or  drought  (Costerton  et  al. 1995;  Morris  and  Monier  2003).  For  some

microbial colonizers it has been shown that the colonizers can change the physiology of

their hosts (Yamada 1993), e.g. by the production of growth hormones such as ethylene or

indole acidic acid  (IAA, Brandl and Lindow 1998). Conversely, plants are able to alter

microbial physiology, e.g. by the excretion of specialized compounds that mimic microbial

communication  molecules  such  as  N-acyl  homoserine  lactones  (AHLs)  (Teplitski,

Robinson and Bauer 2000).

The interplay of physical, chemical, and biological factors in the phyllosphere are drivers

of an astonishing diversity in microbial taxa, chemical compounds, and interactions, and as

consequence,  a diversity of phyllosphere research directions.  These include but are not
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Figure  1:  Microbial  colonizers  of  the  phyllosphere  are  affected  by  and  interact  with  their
environment in numerous ways – physically, chemically, biologically. Shown are seven exemplary
classes of bacterial interactions on the plant leaf.
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limited  to  the  study  (Lindow  and  Brandl  2003;  Vorholt  2012;  Berg  et  al. 2014) and

modeling (Pérez-Velázquez et al. 2012; Kreft  et al. 2013; van der Wal et al. 2013) of all

levels of microbial  diversity and dynamics,  mechanisms and determinants of microbial

community composition (Knief et al. 2010; Schlaeppi and Bulgarelli 2014), as well as bio-

film formation and succession  (Blakeman 1985; Yang  et al. 2001; Whipps  et al. 2008;

Redford and Fierer 2009; Tecon and Leveau 2012; Maignien et al. 2014; Copeland et al.

2015). Furthermore, the spatial distribution of microbial cells  (Monier and Lindow 2004;

Redford  et  al. 2010;  Remus-Emsermann  et  al. 2014) and  processes  connected  to

immigration, growth, and emigration  (Dunne 2002; Mattick 2002; Dechesne  et al. 2010;

Yu et al. 2014; Wackett 2015) are of general interest in phyllosphere ecology, as well as the

exchange  of  genetic  information  (Espinosa-Urgel  2004;  Pontiroli  et  al. 2009),  host-

pathogen interactions (Trouvelot et al. 2014), and the means of biological control of plant

pathogens (Kim et al. 2011).

Evidently,  the  phyllosphere  constitutes  a  diverse  and  complex  environment.  Its

colonization by microbes is governed by a large family of interrelated processes (Figure 1).

The outcome of these concurrent processes are complex colonization patterns of microbes

on leaves. These patterns are the central study object of this dissertation. My research was

built on the premise that an understanding of the complex microbial colonization patterns

on leaves and the processes that created them starts at the level of the bacterial individual.

Environmental factors such as water or carbon availability are difficult to measure spatially

explicit in the phyllosphere. Bacterial bioreporter strains have been genetically engineered

that produce fluorescent biomolecules in the presence of a certain target substance. Thus

they can be used to visualize the presence and, within limits, the local concentration of

these molecules. Such bioreporters are now available for many substances (e.g. Joyner and

Lindow 2000; Leveau and Lindow 2001; Axtell and Beattie 2002) but they only measure

environmental  conditions  at  the  location  of  microbial  individuals.  Although  these

bioreporters  provide  important  information  on  the  heterogeneity  in  the  distribution  of

environmental factors, explaining bacterial distribution based on this information would be

circular. Consequently, this dissertation focuses on the analysis of correlations between the

locations of bacterial individuals as well as between bacteria and certain morphological

features of the leaf surface.  Such spatial  correlations were assumed to be indicative of

bacterial  interactions  on  the  leaf  surface. The  spatial  analysis  required  an  unbiased

observation of spatial patterns formed by these individuals under controlled conditions and
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during an early phase of plant leaf colonization.

The  key  goal  of  this  dissertation  was  a  quantitative  description  of  bacterial

colonization  patterns  on  plant  leaves  and  the  exploration  of  spatial  correlation

between  conspecific  and heterospecific  bacterial  individuals  on  the  one  hand  and

spatial correlations between bacterial individuals and morphological features of the

leaf surface on the other hand.
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Chapter 2 – Methodological approach

What is the appropriate spatial scale for observing leaf-colonizing bacteria?

One of the major goals in ecology is to gain a better understanding of the processes and

interactions that govern life on Earth. Within the context of this dissertation, process refers

to a more uni-directional or basic causality such as the increase in nutrient availability

around a glandular trichome in the phyllosphere due to excretion of metabolites from the

leaf  interior.  Similarly,  the  term  interaction would  describe  a  bi-directional  chain  or  a

network of processes on a higher level such as an increase in bacterial population density

near glandular trichomes due to increased nutrient availability. In most cases, however, a

strict differentiation of the two expressions will be difficult.

Probably all ecological processes can somehow be put into a spatial context. Given time, a

process  will  likely  translate  into  a  spatial  (and  temporal)  pattern.  Consequently,  the

analysis of spatial patterns yields the opportunity to 'derive hypotheses on the nature of the

underlying  processes  producing  the  pattern'  (Wiegand  and  Moloney  2014,  p.  xvii).

Inferring process from pattern has been labeled the 'ultimate goal' (Wiegand and Moloney

2014, p. xix) of spatial pattern analysis in ecology. One particular challenge of such an

endeavor is that the ecology of an organism is usually ruled by a variety of facilitating or

antagonizing processes that, in the worst case from the viewpoint of the researcher, might

be canceling out each other at least at some spatial scale of observation. 

The distribution of leaf-colonizing bacteria in space, for example, is controlled by a wide

variety of processes that operate at  different spatial  scales:  Monier and Lindow  (2004)

described the aggregation of bacterial colonizers on leaves at the base of trichomes and in

the grooves between undifferentiated epidermal cells. While these patterns, at leaf scale,

did  not  differ  qualitatively between the  abaxial  (bottom)  and the  adaxial  (top)  side  of

leaves (Monier and Lindow 2004), the abaxial surface of leaves tends to be more densely

populated  (Beattie and Lindow 1999). Furthermore, population densities differ between

leaves of a single plant  (Hirano  et al. 1982) and are generally more abundant on lower

leaves  close  to  the  ground  (Andrews  and  Harris  2000).  Finally,  abundances  of  plant

pathogens vary on  a  within-field  scale  and on landscape  scale  (Birkhofer  et  al. 2012;

Ranjard et al. 2013). Such multi-scale complexity in the spatial distribution of bacteria in

the landscape can be expected to require multiple processes that operate at different spatial
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scales  and  that  produce  these  patterns.  Consequently,  a  multi-scale  spatial  analysis  of

bacterial patterns should help disentangling these diverse processes that rule bacterial life

on plants. When viewed from the other direction, an ecological study limited to a single

spatial scale comprises the danger of missing out on, or even misjudging the underlying

relationships.

How can we assess the spatial scale of bacterial interactions on the leaf 

surface?

In spatial analyses, the choice of methods depends on the kind of variable to be analyzed.

Continuous  variables  such  as  temperature  can  be  measured  at  any  location  in  space

whereas discrete entities such as bacterial individuals in space occur at discrete locations

only. Although such entities have at least some spatial extent, it is often appropriate to only

consider them as individual points in space. All data considered in this dissertation fall into

this last category, i.e. spatial point patterns. The location of spheroid bacterial individuals

on leaves, for example, can easily approximated by a set of points with negligible loss of

information. The ever-growing field of spatial point pattern analysis continues to develop

methods designed to describe point patterns and help to infer the processes that produced

them. These methods are summarized in several textbooks targeted at various audiences

(Stoyan and Stoyan 1994; Illian et al. 2008; Chiu et al. 2013; Diggle 2013; Wiegand and

Moloney 2014).

The fundamental concept of spatial point pattern analysis is that an observed point pattern

ϕ is  one realization of a  point process Φ that was observed within a region  W, which is

called observation window. Multiple point patterns ϕi that are all realizations of the same

point process Φ are supposed to have the same spatial properties except for some random

deviations between the patterns. The point process Φ has an intensity λ which is the mean

number of points per unit volume. Although leaf surfaces, on the micrometer scale, have a

pronounced  three-dimensional  topography,  we  only  considered  point  patterns  in  two-

dimensional space (IR2). Therefore, the intensity is given in points per unit area. Given the

fact  that  leaf  topography  is  rather  smooth,  the  error  from  not  considering  the  third

dimension was expected to be small.

Besides the intensity, the distance between pairs of points is another keystone quantity in

spatial point pattern statistics. In our studies, the distance between two points was always

the direct (Euclidean)  distance.  Only in Chapter 6,  where correlations  between a point
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pattern and a pattern of line segments are considered, additional definitions for distance are

used. Most summary statistics used to characterize point patterns are either based on the

intensity  of  the  point  process  (estimated  from  the  observed  point  pattern)  or  the

distributions of inter-point distances, or both. They are compared to the expected values of

these quantities, given a predefined null model.

The most common and fundamental null model is  complete spatial randomness (CSR).

Under CSR, each point is placed at random and independently from the location of the

other points. The best and most commonly used example of a point process that fulfills the

CSR property is the homogeneous Poisson point process, where the number of points in a

test set (observation window) placed at arbitrary locations in the pattern follows a Poisson

distribution.  The CSR null  model  is  an  appropriate  null  model  in  exploratory analysis

because it is the simplest spatial model available and well understood. Nevertheless, more

can be learned from complex null models such as models including a gradient or a cluster

process  (Wiegand and Moloney 2004). These more complex null models can incorporate

ecological knowledge about processes or traits of the study organism. The ultimate goal

would be to find a null  model that  generates point  patterns that have the same spatial

properties as the observed point pattern, based on the different spatial statistical measures.

For example, if the dispersal kernel of seeds of a typical tree of a certain species is well

known, one could construct a null model based on the parameters of this dispersal. This

null model could be used to test if location of seeds of trees of other species, e.g. from the

same genus, follows the same dispersal kernel. Such methods have been used, for example,

to study the ecology of trees (Yu et al. 2009; Fedriani, Wiegand and Delibes 2010), orchids

(Jacquemyn et al. 2009), and even fossil macro-organims (Mitchell et al. 2015).

The simplest  class of summary statistics used to describe point  patterns are  numerical

summary statistics.  These indices summarize some characteristics of an observed point

pattern in a single number. The wide-spread Clark-Evans index R (Clark and Evans 1954),

for example, divides the observed mean distance of points to their nearest neighbor d by

the expected distance dCSR, given the points follow CSR. In other words, R is the ratio of

the  average  nearest  neighbor  distance between  points  in  the  observed  pattern  and the

expected nearest neighbor distance if the points were randomly distributed. A point for

which the distance to its nearest neighbor is about the average nearest neighbor distance in

the pattern is considered a typical point. This term can also be extended to any other spatial

property of the point other than the nearest neighbor distance. Values of  R ≈ 1 indicate a
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random  distribution  of  the  points  whereas  values  R > 1  or  R < 1  indicate  an

hyperdispersion or an aggregation of points, respectively. A hyperdispersion of points thus

describes  a  lack  (or  scarcity)  of  short  distances  to  the nearest  neighbors,  compared to

randomly distributed points. Such patterns then appear to be more regular, because of the

more  evenly  spaced  distribution  of  the  points.  Similarly,  an  aggregation  (or  under-

dispersion) of points results in a lack of longer distances to the nearest neighboring points.

A  considerable  limitation  of  the  Clark-Evans  index  and  other  numerical  summary

characteristics such as the intensity is that these measures loose much information about

the  observed  pattern  by  their  attempt  to  characterize  the  pattern  by  a  single  number.

Furthermore, such basic measures are limited by the fact that very different point patterns

may still have very similar values for these measures. They are also not scale-specific in

the sense that a pattern of regularly-spaced clusters can only be characterized by them to be

either clustered or regular (Figure 2).

Functional  summary  statistics,  in  contrast,

retain  much  more  information  about  an

observed pattern by characterizing the pattern

for  a  range  of  scales.  A  wide  variety  of

summary functions have been developed that

all capture different characteristics of a point

pattern.  The  nearest-neighbor  function  D(r)

(Hanisch 1984), for example, is the cumulative

distribution  function  of  the  nearest-neighbor

distances  d1. Clearly, this functional summary

statistic  contains  more  information  than  the

Clark-Evans  index  that  only  expresses  the

average nearest neighbor distance. The natural

short-sightedness of  D(r) may be reduced by

looking at multiple distribution functions Dk(r)

of the distances dk to the k-th nearest neighbor.

A similar functional summary statistic is the spherical contact distribution function  HS(r)

(Diggle 1983). It too, is a cumulative distribution function of the distances to the closest

point but measured from a random location in space that does not need to be part of the

point pattern. Compared to the nearest-neighbor function, its reference point is therefore
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Figure  2:  A  point  pattern  illustrating  the
limitations of numerical summary statistics.
Clearly,  the  points  in  this  pattern  are
clustered.  The clusters  are  aligned along a
lattice resulting in a larger-scale regularity in
the pattern. The Clark-Evans index for this
pattern  is  R = 0.48,  suggesting  a  regular
distribution  of  points.  Numerical  summary
statistics  such  as  the  Clark-Evans  index
cannot accurately describe such multi-scale
distribution patterns.



not a typical point of a point pattern but a  random location in space.  Consequently,  it

characterizes the open spaces between the points (holes in the point pattern) rather than the

clustering of points.

The widely used Ripley's K function K(r) (Ripley 1977) is a normalization of the average

number of points within a radius r around a typical point of the point process. For a CSR

pattern, K(r) = r2, whereas values K(r) > r2 indicate an aggregation of points at scale r. This

means that within a distance r around a typical point of the pattern, one finds more points

than expected in a CSR pattern. Similarly, values  K(r) < r2 indicate a scarcity of points

within a distance  r around the typical point. Studying the  K-function across a range of

distances r allows an advanced analysis of the structure of the point pattern. For example,

if all values K(r) = 1 for all r < s and all K(r ) > 1 for all r > s, this would suggest that the

aggregation of points only sets off at a scale s around a typical point of the pattern.

Ripley's  K function, entails a natural 'memory effect' from its cumulative nature. It gives

the average number of points within a radius r around the typical point. For example, given

a  strong  small-scale  (r1)  aggregation,  an  additional  weaker  scarcity  of  points  at  an

intermediate scale (r2) is difficult to detect because a ring of radius r2 will include the many

points  already present  within  r1.  The  scarcity of  points  between  r1 and  r2 may fail  to

compensate the 'memory' of aggregation at scales < r1. The pair correlation function g(r)

(PCF, Stoyan and Ohser 1982; Stoyan and Stoyan 1994), which is a normalized derivative

of Ripley's K, describes the average number of points at a distance r1 and r2 separately and

therefore  has  no  memory.  The  same  is  true  for  the  closely  related  O-ring  function

o(r) = λ∙g(r) (Stoyan and Ohser 1982; Wiegand and Moloney 2004).

All the above mentioned scale-dependent summary statistics characterize different aspects

of the observed point pattern and a thorough treatment of a single point pattern should

include the study of several of these and other characteristics (Wiegand, He and Hubbell

2013). Given the large amounts of data to be analyzed and the multitude of interactions to

be interrogated in this dissertation, only the pair correlation function was considered here.

It has been recognized to be the single summary statistic that captures most information

from a point pattern and has been recommended as the primary tool in exploratory point

pattern analysis (Illian et al. 2008; Wiegand, He and Hubbell 2013). 

As  mentioned  above,  the  pair  correlation  function  g(r)  is  a  normalized  derivative  of

Ripley's K function
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 .

A more  formal  definition  of  the  pair  correlation  function  includes  the  product  density

ϱ(x1,x2)

 ,

where ϱ(x1, x2)dxdy gives the probability to find one point of a point pattern in each of two

infinitesimally small spheres centered at x1 and x2 (Stoyan and Stoyan 1994), respectively.

Given the point process is motion invariant, i.e. its properties such as the intensity are both

invariant under translation (stationary) and rotation (isotropic) of the observation window,

then ϱ(x1, x2) and g(x1, x2) solely depend on the distance between the points r = ||x2-x1|| and

we write

 .

Heuristically speaking, the difference between Ripley's K-function and the pair correlation

function is that the former is similar to the average number of points within a disk of radius

r centered  at  a  typical  point  of  the  point  pattern,  whereas  the  latter  approximates  the

average number of points on a  ring, i.e. the margin of a disk, of radius  r, centered at a

typical point of the point pattern. Clearly, for finite point density λ, the probability to find a

point at an exact distance r from another point is zero. This is the reason why the definition

of the product density ϱ involves small discs. They ensure positive probabilities while at

the  same  time  precluding  to  find  more  than  one  point  in  a  disc.  Transferred  to  the

interpretation above, g(r) contains the average number of points on a ring of approximate

radius r.

A common challenge not only tied to pair correlation functions arises from the fact that for

larger distances  r there is a substantial  probability that parts  of the rings (or discs) lie

outside the observation window but no point data is available for these regions. Several so-

called  edge-correction methods  have  been  developed  to  compensate  for  this  effect

(summarized  in  Illian  et  al. 2008).  Edge  correction  methods  introduced  by  Ripley

(isotropic edge correction; 1976), Stoyan & Stoyan (1994), Ohser & Mücklich (2000) and

Wiegand & Moloney (2004). include weights in the estimators for the summary statistics.

The weights are either based on the fraction of the area of a disc of radius r (Ripley 1976)

or ring of radius r and width Δr (Wiegand and Moloney 2004) centered at a point xi in the
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observation W, or they are based on the probability that start- and endpoint of a vector of

random direction  φ and  length  r both  lie  within  the  observation  window  (Stoyan and

Stoyan 1994; Ohser and Mücklich 2000). For our research, we chose the isotropic edge

correction which is also the default method used in pair correlation function estimation in

the spatstat package (Baddeley and Turner 2005). 

The concept of the pair correlation function can also be transferred to studies where the

relative distribution of two point patterns is of interest. For example, microbiologists might

be interested in the question if individuals of two bacterial strains aggregate close to each

other, or are avoiding each other, or if there is no spatial correlation between them. Such

questions can be targeted with the partial pair correlation function which also goes back to

Stoyan and Ohser (1982). If we assume two bacterial strains in a stationary point process

with points of type 1 (strain 1) and points of type 2 (strain 2), the partial pair correlation

function is defined as

 ,

where ϱ12(r)dx1dx2 gives the probability to find a point of type 1 in an infinitesimally small

disk of area dx1 and a point of type 2 in a similar disc of area dx2 and the distance between

the  centers  of  the  two  discs  equals  r (Stoyan  &  Stoyan  1994).  The  uni-variate  pair

correlation  function  (Eq.  2.3)  can  be  considered  the  special  case  of  the  partial  pair

correlation function where only points of the same type are considered. 

In application, the above stationarity assumption is rather necessary than realistic. Ecology

often deals with phenomena along gradients in space and the abundances of organisms will

often change along these gradients. Small observation windows (or low abundances within

the  window)  furthermore  might  suggest  an  absence  of  stationarity  alsthough the  point

process,  on  a  larger  scale,  is  actually  stationary.  The  stationarity  assumption  can  be

loosened by either testing the summary statistic against a non-stationary null model (e.g.

inhomogeneous Poisson point process) or by applying the inhomogeneous pair correlation

function ginhom(r) (Baddeley, Møller and Waagepetersen 2000). For the inhomogeneous pair

correlation function, one assumes a large-scale heterogeneity (above the largest scale r up

to which we want to evaluate our pair correlation function) which is expressed as changes

in local intensity λ(x) of the point process, e.g. along a gradient in space. This means that

the intensity of the point process is no longer a constant but a function in space.

Throughout our studies, we applied the default estimators of the pair correlation function
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implemented  in  the  spatstat package  (Baddeley and Turner  2005) in  R (R Core Team

2013). They are based on the estimators formulated by Stoyan & Stoyan (1994).  For the

homogeneous, uni-variate pair correlation function, this is

 .

Here, kh(t) is the Epanechnikov kernel with t ≥ 0 and standard deviation σ = h/√5:

 ,

The Epanechnikov kernel smooths the results of the pair correlation function which helps

to  reduce  stochasticity  in  the  results.  The  remaining  term in  the  sum in  Eq.  2.5,  i.e.

, with r = ||xj – xi|| is Ripley's isotropic edge correction (Ripley 1977), where |Wr| is

the area of the translated window Wr.

Analogously, the estimator for the partial pair correlation function is

which is also the default estimator used in the spatstat package.

The estimator  of the inhomogeneous PCF accounts for heterogeneity in the pattern by

using weights based on estimates of the local intensity λ(x) around location x.

 .

The estimator of the inhomogeneous partial pair correlation function follows analogously 

from Eq. 2.5, Eq. 2.7, and Eq. 2.8.
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Chapter 3 – Are observed bacterial distribution patterns on 

leaves biased under laboratory conditions?

Methods for observing bacterial colonization of the phyllosphere developed rapidly within

the last  decades.  Simple observations  of bacterial  colonization patterns  on leaves  were

achieved early by leaf printing experiments (Leben 1965, 1970). Here, naturally colonized

leaves  were  pressed  gently  on  a  nutritious  agar  surface  and  the  bacteria  that  were

transferred to the agar surface grew to colonies. The observed patterns are indicative of the

bacterial  distribution  on  leaves.  Of  course,  the  observed  patterns  were  biased  by  the

possibility that not all bacterial species transfer equally well onto the agar surface and the

fact that different species will multiply at different rates. Moreover, most species will not

even  be  culturable  (Rastogi  et  al. 2010,  2012).  More  direct  data  about  the  spatial

distribution of bacterial individuals on leaves became available with the advent of electron

microscopy  (Barnes and Neve 1968; Leben 1969; Mansvelt  and Hattingh 1987, 1989).

These studies already established the existence of bacterial clusters on the leaf surface and

that bacterial colonization was especially associated with leaf structural elements such as

trichomes,  veins,  and  stomata.  A less  invasive  alternative  to  electron  microscopy was

introduced later in the form of fluorescence microscopy (Lichtman and Conchello 2005).

Here,  the  introduction  of  genes  encoding  fluorescent  proteins  such  as  the  Green

Fluorescent Protein GFP into microorganisms (Chalfie et al. 1994) allowed for the direct

light microscopic observation of bacterial leaf colonization.

The  observation  of  colonization  patterns  of  bacterial  individuals  on  leaves  is  tightly

coupled  to  the  question  if  an  observed  microbial  pattern  is  equivalent  to  the  real

distribution on leaves or if it has been altered during the preparation of the sample. The

process of fixation and gold-plating for electron-microscopy possibly alters the distribution

of bacterial individuals on leaves but a quantification of such changes is difficult. 

Similarly,  adding water or a mounting medium and a cover slip to a light-microscopic

preparation could wash away bacterial individuals or aggregates. In order to explore this

issue, we compared a series of fluorescence micrographs with and without cover slip of

bacteria  colonizing bean leaves.  Therefore,  bean leaves were prepared,  inoculated,  and

incubated using the same procedures described in detail in Chapter 4 of this dissertation.

Before  adding  mounting  medium  and  the  cover  slip,  we  took  micrographs  of  the
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fluorescent bacteria near special landmarks of the leaf surface, e.g. intersections of leaf

veins. We used microscope objectives with long working distance (Zeiss EC Plan-Neofluar

10×/0.3,  working  distance  WD = 5.2  mm  and  Zeiss  LD  Plan-Neofluar  40×/0.6,

WD = 2.9 mm) that did not require the use of a cover slip. Thereafter, we added mounting

medium and fixated a cover slip to the top and took more micrographs at the exact same

locations  as before using the same 10× and a standard 40× objective (Zeiss EC Plan-

Neofluar 40×/0.75).

Such images without cover slip were difficult to obtain. Incubated leaves were covered by

water droplets that quickly evaporated once the microscope light was turned on, thereby

shifting the plane of focus. Once the water evaporated, the microscope light quickly started

damaging the leaf tissue and bacterial colonizers, leaving only a brief window of time for

taking a series of pictures in different fluorescent channels and at different planes of focus.

From the 'before'  (no cover slip) and 'after'  (with cover  slip) images,  we extracted the

location  of  all  green  and  red  bacterial  individuals  using  the  free  software  ImageJ

(Schneider, Rasband and Eliceiri  2012). We inspected the observed patterns visually as

well as using several statistical tests based on numerical measures that describe the spatial

configuration of the leaf colonizers. These measures are presented in the following.

A measure of entropy

For the first measure, we assumed that in a perfectly undisturbed colony, all individuals sit

next to each other and are of same identity I. In our studies the identity is the color of the

fluorescent marker (DsRed or GFP). All individuals in a colony appear to be descendants

of a single colony forming unit (CFU) if they have the same color. Assuming a spherical

shape of all individuals, as we had usually observed in our micrographs, each individual

may have  six  adjacent  neighbors.  For  a  minimum radius  of  a  cell  rmin,  the  minimum

distance between the centers of two individuals is  dmin = 2 rmin. In spatial statistics this is

called a hardcore point process with minimum distance dmin (Illian et al. 2008).

Our quantity to measure entropy in bacterial distributions is a function of the identity I of

an individual  i and its six nearest neighbors  j and the distances  dij to these six nearest

neighbors. For reasons of comparability it is desirable to have a measure that takes only

values between 0 and 1. A function of the distances dij that fulfills this criterion is
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 ,

where  n is the number of bacterial individuals in the sample. The function is zero if all

dij = dmin and it approaches 1 for all dij→∞. Equation 3.1 is a special case of a more general

function which accounts for other neighborhood configurations such as the twelve nearest

neighbors that are potentially all allowed to touch the focal sphere in a three-dimensional

setting. The more general form of Eq. 3.1 can be found in the Supplementary Materials

(p. 99).

A suitable measure based on the identity of neighboring cells is the function

 .

It only depends on the number  nGFP,i of green colored cells within the neighborhood of

individual  i (also counting i). The entropy EI is zero if  nGFP,i = 7 (all green) or if  nGFP,i = 0

(all  red) and peaks for the theoretical  case  nGFP,i = 3.5.  The defined cases  nGFP,i = 3 and

nGFP,i = 4 are equally representing the maximum achievable entropy. For both cases EI = 1.

Equation 3.2 is also a special case of a more general form that can be used for different

neighborhoods and more than two identities. The general form of Eq. 3.2 is also given in

the Supplementary Materials section (p. 99).

We combined the two functions to one entropy measure using a weighted average which

allows to control for the relative influence of the two terms:

 ,

where γ is a constant between 0 and 1. It controls the contribution of the distance term to

the overall entropy. For γ = 0, entropy E = EI, for γ = 0.5 both terms contribute equally to

the entropy and for γ = 1 only the distances between neighbors are considered, i.e. E = ED.

Our combined entropy measure then is

 .

For  our  study,  we chose a  parsimonious value  of  γ = 0.5,  because it  requires  the  least

assumptions.

The more general form of equation 3.4 (see Supplementary Materials section, p. 99) can be

used for example in experiments where three-dimensional location data is studied. In that
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case, each individual would be surrounded by up to 12 direct neighbors. One can also think

of  an experiment  of early colonization stages  when only colonies of  up to  4 cells  are

observable.  Either  way,  an  adjustment  on  the  number  of  neighbors  nn is  indicated.

Similarly, the number of cell types nc has to be adjusted if more than 2 fluorescent markers

(species,  strains)  are  involved  in  the  experiment.  The  complex  equation  will  always

simplify to a form comparable to Eq. 3.4.

Segregation index

Next, we considered the segregation index SI defined by Monier and Lindow (2005). The

segregation index is the mean inverse number of colonies in the sample weighted by the

relative abundance of the two strains. It takes values between 0 (cells randomly distributed)

and 1 (cells highly aggregated). Monier and Lindow (2005) did not exactly specify what

constitutes a cluster but it is reasonable to assume that in their study members of a cluster

need to  be in  physical  contact  with at  least  one other  member of  the  cluster.  For  our

purposes, we assumed that an individual belongs to a cluster if the distance to the nearest

member of the cluster is less than a certain aggregation distance dagg. A value of dagg = 8

µm was chosen, as this minimized the variance of SI between samples when we calculated

the segregation index for dagg values between 1 and 40 µm in steps of 1 µm. Different from

the Monier and Lindow (2005), who determined the number of colonies per aggregate, we

counted the number of red and green colonies in each field of view. Thus, we retrieved

information about the changes in segregation within the colonization pattern on a larger

spatial scale, which appeared to better fit a study of disturbance. Using an aggregation

distance to define and count colonies also changed the original purpose of the segregation

index. It was designed to quantify the intermingling of differently colored clusters. In our

study,  we  take  advantage  of  its  property  to  compile  lots  of  information  about  the

colonization  structure  in  a  single  number  and  of  its  sensitivity  to  different  types  of

disturbance in those colonization patterns.

Integrity

Given an aggregation distance dagg that defines the association of a point to a cluster, the

integrity I of a point pattern can be defined as

 .
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This measure does not require information on the identity of bacterial individuals and thus

could  also  be  applied  to  colonization  patterns  of  general  bacteria,  e.g.  on  field-grown

leaves treated with a single fluorescent dye such as acridine orange. Heuristically speaking,

this measure is the ratio of the sum of all inter-individual distances dij (denominator) and

the sum of the fraction of dij that is smaller than the predefined aggregation distance dagg

(numerator).

Then I = 1, if max(dij) < dagg. This is a problem, when clusters grow to sizes larger than dagg.

Then even a perfectly intact (undisturbed) colony will have I < 1. This can occur especially

during  anisotropic  colony  development.  Integrity  is  absent  (I = 0)  if  min(dij) > dagg.

Disturbance to such patterns can only be measured if the disturbance increases the level of

aggregation in the pattern.

This illustrates a general problem of disturbance measures: Disturbance can either reduce

integrity of  a  colony or  move points  to  areas  where  they accumulate,  e.g.  because  of

topography, and thus increase integrity. The entropy measure defined above is less prone to

this effect, but it still occurs if the different species (colors) are well separated in space.

Comparing pair correlation functions

A  further  approach  considered  for  the  analysis  of  disturbance  involved  the  direct

comparisons of the PCFs of patterns with and without cover slip using either paired t-tests

(along  spatial  scale  r),  or  a  Kolmogorov-Smirnov  test  (across  the  21  samples).  Both

methods were hampered by the instability of the PCF at small scales (r → 0), where small

changes in patterns can cause substantial changes in pair correlation values. An exclusion

of  these  scales,  however,  is  not  appropriate  because  small-scale  disturbances  are  also

important  to  consider.  Similar  'butterfly effects'  also occur  at  larger  scales if  the point

pattern violates the stationarity assumption required for PCFs. The addition or removal of

single points can heavily change the shape of the PCF (own observation).

Pattern reconstruction

We also consider  the use of  pattern  reconstruction  (Nothdurft  et  al. 2010) in  order  to

generate 95% simulation envelopes around the observed pair correlation function of an

undisturbed pattern (without cover slip). Deviations of the pair correlation function of the

potentially disturbed pattern (with cover slip) would then indicate a significant disturbance

of the pattern. This approach, more than any other, illustrates the problem of quantifying
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disturbance because it measures disturbance by deviation from a simulation envelope that

was derived from a set  of fully disturbed patterns,  i.e.  patterns that have second-order

properties similar to the original pattern but often have a completely different distribution

of  points.  Furthermore  the  definition  of  stop  criteria  in  pattern  reconstruction  adds

ambiguity to the analysis that is difficult to handle.

Modeling disturbance

A promising but laborious solution to the disturbance problem for future research involves

the definition of different disturbance processes such as smearing, disruption or bloating of

colonies,  or  the  topography-dependent  aggregation  of  cells.  These  processes  could  be

implemented in an individual-based model (IBM) that is used to add a defined negligible

level of disturbance to the original pattern and derive simulation envelopes from the pair

correlation  functions  of  these  simulated  patterns.  Once  proper  definitions  and

parametrization exist,  the IBM-derived envelopes  could be used to  quantify significant

disturbance added to the bacterial colonization by the addition of mounting medium and a

cover slip to a microscopic preparation of leaf-colonizing bacteria.

Results and Discussion

The following  1 summarizes  the  results  of  the  disturbance  analysis  using the  entropy,

segregation,  and integrity measures  presented above.  Shapiro-Wilk tests  suggested  that

entropy, segregation, and integrity values did not follow a normal distribution (all p-values

< 0.001). We performed one-sided and two-sided Wilcoxon tests, where for the one-sided

tests we used the null hypotheses Eafter > Ebefore, Safter < Sbefore, and Iafter < Ibefore. All three tests

suggested that there were no significant changes in the bacterial colonization patterns when

a cover slip was added to a preparation. A plot of the measure values after adding the cover

slip against the values before adding the cover slip also did not suggest any systematic

changes in the pattern (Figure 3).
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Table 1: Testing for disturbance introduced to bacterial colonization patterns on bean leaves by 
adding a cover slip to microscopic preparations.

Sample Entropy Segregation Integrity

No cover slip Cover slip No cover slip Cover slip No cover slip Cover slip

58b_11 0.572 0.604 0.096 0.076 3050.743 544.381

71a_01 0.735 0.661 0.230 0.090 3.852 7.234

71a_02 0.942 0.971 0.312 0.147 6.394 7.245

71a_03 0.504 0.549 NA NA 3.291 3.040

71b_04 0.930 0.539 0.063 0.061 449.152 154.182

72a_01 0.788 0.766 0.051 0.033 173.874 472.519

72a_02 0.809 0.868 0.111 0.055 1541.089 721.622

72a_03 0.568 0.602 0.040 0.037 808.240 1031.911

72b_04 0.826 0.903 0.070 0.059 394.787 213.325

72b_05 0.499 0.477 0.096 0.090 203.745 216.497

73a_05_a 0.485 0.482 NA NA 135.349 236.682

73a_05_e 0.965 0.961 0.027 0.026 169.258 192.891

73a_05_f 0.961 0.957 0.045 0.049 357.147 346.974

73a_05_g 0.951 0.955 0.251 0.500 290.244 305.869

73a_05_h 0.982 0.928 0.118 0.250 4.332 2.041

73a_05_i 0.949 0.945 0.036 0.038 152.300 138.853

73a_05_j 0.899 0.956 0.040 0.039 71.518 133.555

73a_05_k 0.901 0.926 0.088 0.080 10.539 11.405

73a_05_l 0.945 0.944 0.060 0.053 70.674 65.489

73a_05_m 0.969 0969 0.036 0.036 163.123 152.540

73a_05_n 0.959 0.945 0.096 0.083 65.375 65.758

73a_05_o 0.968 0.972 0.167 0.154 22.137 23.259

73a_05_p 0.956 0.978 0.341 0.500 5.537 6.023

Wilcoxon-

test (p-value)

0.4947 (two-sided)

0.7628 (one-sided)

0.1111 (two-sided)

0.9484 (one-sided)

0.9168 (two-sided)

0.4584 (one-sided)
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Figure 3: Comparison of entropy, segregation and integrity values of bacterial colonization patterns
on bean leaves observed before and after adding a cover slip to the microscopic preparation.



Despite these promising results, it became clear that, at least in theory, even an obviously

disturbed pattern could have the same value as the undisturbed pattern for any of the tested

indices, e.g. when the whole pattern was shifted or rotated. Therefore, we do not expect our

results to allow a final assessment of disturbance. In order to give an impression of how

little the observed before/after patterns differed from each other, we refer to the picture

pairs in Figure 4. The sum of our results combined with these micrographs suggest that the

patterns observed in preparations with cover slip represent the real distribution on leaves

sufficiently well. Therefore, we decided for the main studies of this dissertation project

(chapters 4-6) to obtain large numbers of micrographs with cover slips rather than few,

more difficult to obtain samples without. The increased achievable number of samples was

assumed to outweigh a possible bias that might be introduced by adding the cover slip to a

preparation.
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Figure 4: Pages 23 ff.. Micrographs of red and green fluorescent leaf-colonizing bacteria on bean
before (left column) and after (right column) adding a cover slip to the microscopic preparation.
Bacterial distribution on the leaves is barely effected by this preparation step. Scale bars are 100
µm.
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Figure 4 - continuation



25

Figure 4 - continuation



Chapter 4 – Spatial scales of interactions among bacteria and

between bacteria and the leaf surface

This chapter was published as a research article
Esser D. S., Leveau J. H. J., Meyer K. M., Wiegand K. (2015)

FEMS Microbiology Ecology 91:fiu034

Abstract

Microbial life on plant leaves is characterized by a multitude of interactions between leaf

colonizers and their environment. While the existence of many of these interactions has

been confirmed, their  spatial  scale or reach often remained unknown. In this  study we

applied spatial point pattern analysis to 244 distribution patterns of Pantoea agglomerans

and Pseudomonas syringae on bean leaves. The results showed that bacterial colonizers of

leaves  interact  with  their  environment  at  different  spatial  scales.  Interactions  among

bacteria  were  often  confined  to  small  spatial  scales  up  to  5-20  µm,  compared  to

interactions between bacteria and leaf surface structures such as trichomes which could be

observed in excess of 100 µm. Spatial point pattern analyses prove a comprehensive tool to

determine the different spatial scales of bacterial interactions on plant leaves and will help

microbiologists to better understand the interplay between these interactions.
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Introduction

The plant leaf surface as a microbial habitat, also known as the phyllosphere (Last 1955),

is  an important  arena for plant-microbe interactions.  Many of these interactions are  in

principle well understood biologically  (Meyer and Leveau 2011), physically  (Hirano and

Upper 2000), chemically  (Beattie 2011) or genetically  (Bailey, Lilley and Diaper 1996;

Espinosa-Urgel  2004;  Pontiroli  et  al. 2009).  The  phyllosphere  is  a  complex  and

heterogeneous  environment  where  microbial  colonizers  experience  temporally  and

spatially variable competition for resources, facilitative interactions with other microbes,

exposure to environmental stresses such as UV radiation, rapidly changing temperatures,

and  desiccation  (Leveau  2006).  Furthermore,  the  leaf  surface  exhibits  a  pronounced

topography and a variety of structural elements, such as stomata, trichomes, or veins which

influence microbial fitness in the phyllosphere in various ways (Timmer, Marois and Achor

1987; Leveau and Lindow 2001; Monier and Lindow 2004; Yadav, Karamanoli and Vokou

2005).

One of the most difficult questions to answer is how all these factors interact with each

other and how they rule microbial life in the phyllosphere. Some factors may be more

locally confined than others. For example, the competition of microbes for a carbon source

may  be  spatially  confined  within  a  few  micrometers  around  the  individuals,  whereas

environmental factors such as temperature will only change along larger distances, e.g.

several millimeters or more. This means that different interactions of bacteria with their

environment operate at different spatial scales and a good understanding of these scales is a

prerequisite  for  a  thorough  interpretation  of  microbial  colonization  patterns  in  the

phyllosphere. Numerous studies have looked at the spatial distribution of bacteria in the

phyllosphere but often stopped at a general description of observed patterns  (Blakeman

1985; Mansvelt and Hattingh 1989; Morris, Monier and Jacques 1998; Fett  and Cooke

2003;  Hong  et  al. 2010;  Yu  et  al. 2014).  These studies  all  confirmed the non-random

association of microbial colonizers with leaf structures such as stomata or leaf veins and

the  aggregated  character  of  bacterial  colonization  patterns  on  leaves  in  general.  Other

studies applied various statistical methods to correlate bacterial success in the phyllosphere

to leaf morphological features or to interactions between microbes  (Monier and Lindow

2004; Yadav, Karamanoli  and Vokou 2005; Hunter  et al. 2010). None of these studies,

however, was spatially explicit in the sense that it quantified the spatial scale (or reach) of
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the  underlying processes.  For  instance,  the aggregation of  Pseudomonas syringae near

bean leaf trichomes of the glandular type was noted  (Monier and Lindow 2004) but the

radius around the trichomes within which this process was significant, i.e. the spatial scale

of  the  process,  remained  undefined.  Knowing  this  spatial  scale  would  be  very  useful

towards  conceiving  (or  rejecting)  mechanistic  explanations  for  microbial  colonization

patterns.

Spatial point pattern analysis  (Illian  et al. 2008; Wiegand and Moloney 2014) provides

tools  to  identify  and  evaluate  interactions  between  the  points  in  a  point  pattern,  e.g.

between individuals in a population. The results can help to understand the processes that

formed the pattern and to assess the spatial scale at which these processes operate. In the

most basic case, point-pattern analysis is used to test if points in a pattern are randomly

distributed. More particularly, the case of complete spatial randomness (CSR) is used as a

null  model  against  which  the  observed patterns  are  compared.  Under  complete  spatial

randomness, the location of each point is random and independent from the location of

other  points.  The alternate  hypothesis  (point  distribution does not  follow CSR) can be

differentiated as points being either aggregated or distributed in a regular pattern which

causes a scarcity of certain inter-point distances. The aggregation of points can indicate

facilitative  interactions  between  individuals,  whereas  regular  patterns  often  arise  from

inhibitory  interactions.  Both  patterns,  however,  also  may  have  been  formed  by  an

unobserved external factor such as heterogeneous nutrient availability – a fact that requires

careful consideration when discussing results.

The pair correlation function g(r) (Figure 5) is currently the preferred method to study the

distribution of points in  a  pattern,  if  fully mapped location data  for all  points,  e.g.  all

individuals of a species in an area, is available (Illian et al. 2008; Wiegand and Moloney

2014).  It  uses all  inter-point distances in a  pattern to determine the probability to find

points at a certain distance r around a typical point of the pattern. If the points, e.g. bacteria

on a leaf surface, are randomly distributed in space, the pair correlation function takes the

value 1 at all spatial scales  r. Values  g(r) > 1 indicate an aggregation of points at scale r,

whereas values g(r) < 1 indicate a scarcity of points (cf. Figure 5). For example, a pattern

of randomly placed (circular) clusters of points, where the typical diameter of a cluster is

5 µm, will (ideally) result in a pair correlation function with  g(r) > 1 for radii  r smaller

than or equal to 5 µm and g(r) = 1 for r > 5 µm.
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Figure 5: Cross-type pair correlation functions (B, D and F, solid lines) of artificial
and observed point patterns (A, C and E). A, C: artificial point patterns in a unit
square  (scale  bars  are  0.4  units),  E:  pattern  of  DsRed-labeled  Pseudomonas
syringae (red) and GFP-labeled Pantoea agglomerans (green) on a bean leaf (scale
bar  is  110 µm).  If  the  function exceeds the simulation envelopes  (B,  D and F,
broken lines) at scale r, the points are significantly aggregated at scale r. Values for
g12(r)  smaller  than  the  lower  bound  of  the  simulation  envelopes  indicate  a
significant  scarcity of  points  of  pattern 2 at  distance  r of  an arbitrary point  of
pattern 1. The colored bands ('quantum plots') at the bottom of the graphs depict
the spatial scales at which the pair correlation functions deviate from the simulation
envelopes. In pattern A, the black points were aggregated around the gray points up
to  a  scale  of  0.07  units.  A second  maximum around  r =  0.25  units  suggest  a
periodicity in  the  pattern that  could arise  from a typical  distance of  0.25 units
between clusters. In pattern C the black points aggregated 0.1 units from the gray
points  but  avoided  coming  closer  than  this.  The  P.  agglomerans cells  in  E
aggregated around P. syringae cells but no significant patterns were found at scales
larger than 10 µm.



Two important extensions of the pair correlation function exist. Firstly, the cross-type pair

correlation function g12(r) (Lotwick and Silverman 1982) is used to study the interactions

between points from two different point patterns, e.g. between individuals of two different

species.  Secondly,  the  inhomogeneous  pair  correlation  function  ginhom(r)  (Baddeley,

Møller and Waagepetersen 2000) was developed to study the interactions between point

patterns where the distribution of points is inhomogeneous, e.g. when the point density

increases  along  an  unobserved  environmental  gradient.  Both  extensions  to  the  pair

correlation  function  can  be  combined  to  analyze  the  interactions  between  two  point

patterns of which at least one pattern is inhomogeneous.

Pair correlation functions can exhibit complex behavior, especially when the distribution of

points was formed by more than one process. The pattern of black points in Figure 5C for

example was produced by two competing processes, one of which attracts the black points

towards the grey points whereas the second processes forbids the black points to come

closer than 0.1 units to the grey points. One may think of moths being attracted by the light

of  campfires  and  repulsed  by  the  intense  heat  at  the  same  time.  Both  processes  are

represented in the corresponding cross-type pair correlation function g12(r) (Figure 5D).

Pair  correlation  functions  are  usually  evaluated  by their  deviations  from Monte  Carlo

simulation envelopes  (Kenkel 1988). These envelopes are based on a series of simulated

point patterns that were generated according to a suitable null model, e.g. complete spatial

randomness. But also more complex null models such as a parametrized cluster process are

possible  (Wiegand and Moloney 2014). By calculating the pair correlation function for a

number  m of these simulated patterns, and maybe ommiting the  s  most extreme values

found at each scale  r, one can derive simulation envelopes which delineate the range of

values that  g(r) takes if the observed points were distributed by the process in the null

model. Observed values of  g(r) greater than the upper bound of the envelope at scale  r

indicate a significant aggregation of points at scale  r, whereas values of  g(r) below the

lower bound of the envelope at scale r indicate a scarcity of points at scale r (cf. Figure 5).

The level of significance α attached to such a simulation envelope is 2s/(m+1). However,

note that this level of significance is a guideline only, due to type I error inflation in these

simulation envelopes (Loosmore and Ford 2006; Baddeley et al. 2014). Nevertheless, for

the  purposes  of  exploratory  analysis,  Monte  Carlo  simulation  envelopes  can  yield

important insights into the point pattern under study (Baddeley et al. 2014).
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In  microbiology,  the  potential  of  spatial  point  pattern  analysis  has  not  yet  been  fully

explored. The majority of studies represent landscape-scale epidemiology (Jonsson et al.

2010; Rao, Kitron and Weigel 2010; Lin  et al. 2011). However, at the landscape scale,

geostatistical  methods  are  more  common  (Dandurand,  Schotzko  and  Knudsen  1997;

Franklin et al. 2002; Franklin and Mills 2003; Brown et al. 2004; Gosme and Lucas 2009).

The difference between point pattern analysis and geostatistics is that the former studies

the spatial associations between objects (points) in an area that is completely mapped while

the  latter  studies  continuous  processes  at  selected  sampling  locations.  In  spatial  point

pattern  analysis,  the  location  of  a  finite  number  of  spatially  discrete  entities  such  as

individuals  or  colonies  is  studied.  This  requires  a  complete  survey  of  all  individuals

(colonies, entities) within the observation window and yields information about the spatial

relationship between the entities. In geostatistical methodology, a number of independent

samples at different locations are considered and values for a spatially continuous variable,

e.g. soil moisture or relative abundances in a microbial community, are measured. From

that, conclusions about the spatial properties of these variables are drawn. Only few studies

have applied point pattern analysis on an individual cell level, for example to quantify

micro-scale clustering of bacteria in soils (Nunan et al. 2002; Raynaud and Nunan 2014) or

the  micro-scale  inhibition  of  bacteria  and  algae  in  stream biofilms  (Augspurger  et  al.

2010).  Our  study  is  the  first  to  perform  spatial  point  pattern  analysis  of  bacterial

colonization patterns on plant leaves including the interactions between bacteria and leaf

structures. The phyllosphere represents an excellent microbial habitat to test the usefulness

of  point-pattern  analyses  in  surface-based colonization.  In  this  study,  we analyzed the

colonization patterns of the bacteria Pantoea agglomerans and Pseudomonas syringae on

leaves of common bean. The aim of our study was to reveal how and on which spatial

scales  these  patterns  were  influenced  by  the  presence  of  other  bacteria  and  by  plant

features such as stomata, trichomes, vein cells, or the grooves between epidermal cells and

to give an outlook on probable processes that formed the observed patterns.

Methods

Experimental  Setup

We  inoculated  cut  sections  from  primary  leaves  of  two-week  old  green  bean  plants

(Phaseolus vulgaris cv. Blue Lake Bush) with either single or mixed suspensions of the

bacterial species Pantoea agglomerans 299R and Pseudomonas syringae B728a. Our study
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therefore included two lines of experiments, a) single-species experiments where leaves

were inoculated with one strain (P. agglomerans) and b) mixed-species experiments where

both strains were co-inoculated in equal quantities. The single-species experiments were

used to study spatial patterns of P. agglomerans. Mixed inoculation with both strains were

used twofold: to study the changes in the colonization patterns of  P. agglomerans  when

competing with a second species and to study the interactions between both strains. Single-

species and mixed-species setups were further processed the same way. We chose members

of  Pseudomonas and  Pantoea as  they  are  among  the  best  studied  genera  in  the

phyllosphere. The Pseudomonas genus is of special economic interest because of its wide

variety of plant pathogenic strains (Hirano and Upper 2000; Espinosa-Urgel 2004; Monier

and  Lindow 2004;  Masák  et  al. 2014).  Much  is  known already about  the  biology of

Pantoea agglomerans, its interactions with Pseudomonas species and its importance as an

biocontrol agent (Kempf 1989; Marchi et al. 2006; Yu et al. 2014).

In our study, single species experiments featured P. agglomerans strains 299R (pFRU48)

and 299R (pFRU97) (Tecon and Leveau 2012). Plasmids pFRU48 and pFRU97 drive the

constitutive expression of fluorescent proteins GFP (green) and DsRed (red), respectively.

In two-species experiments we used GFP-producing 299R::JBA28  (Leveau and Lindow

2001) with  P. syringae B728a (pFRU97)  (Monier and Lindow 2004). We cultivated the

bacteria separately in 5 ml of Lysogeny Broth (LB) liquid medium with 50 mg kanamycin

per liter at 30 °C. Cells were harvested during mid-exponential phase by centrifugation for

10 minutes  at  2500 g,  washed twice  in  M9 minimal  medium  (Sambrook,  Fritsch  and

Maniatis 2001) without carbon source, and diluted in M9 (no carbon) to an approximate

concentration of 107 individuals/ml.

Sections of  15 mm × 15 mm were cut  from bean leaves  (mid-leaf,  about  5 mm off the

central vein) and edge-sealed by dipping briefly into 90-100 °C paraffin wax. Two leaf

sections each were placed on agarose gel in a petri dish with the adaxial side facing up.

Inoculation with 50 µl of a 107 cells per ml suspension was performed using an airbrush

Iwata  Eclipse  HP-CS  (ANEST  IWATA  Corporation,  Yokohama,  Japan)  at  100  kPa

pressure. We either inoculated a mixture of red and green P. agglomerans or a mixture of

red P. syringae and green P. agglomerans cells. We chose to use mixtures of red and green

P. agglomerans cells to have more information on a posteriori mixing processes also in the

single-species experiments (Tecon and Leveau 2012). Inoculation was performed through a

hole in the lid of a plastic container 170 mm above the leaf surface. The nozzle of the
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airbrush was slightly swirled during inoculation to assure a good spread across the petri

dish. The sections were either observed under the microscope directly (time  t=0) or the

petri dishes were sealed to maintain a 100% relative humidity environment and put in an

incubator at 28 °C. Incubation times ranged between 10 to 72 hours to cover many stages

of early leaf colonization.

Additionally, we inoculated a series of leaves with DsRed-labelled P. syringae B728a only,

incubated them for 92 hours at room temperature and high humidity. We then cut sections

from these leaves, sealed the edges with wax and inoculated these sections with green P.

agglomerans 299R and incubated for another 0-72 hours at 28 °C.

A full record of incubation times for all samples is given with further information in the

Table S4.1 in the Supplementary Materials section (p. 100).

Sample preparation and image acquisition

After incubation, leaf sections were transferred to a microscope slide with the adaxial side

facing up and covered with 10-50 µl Aqua Poly/Mount (Polyscience Inc., Warrington PA,

USA) medium to ensure a good coverage of the sample. We then carefully added a cover

slip which we fixed with strips of adhesive tape to all sides. From each leaf section, we

typically took 10 micrographs at random positions using an Axio Imager.M2 fluorescence

microscope  (Carl  Zeiss  AG,  Oberkochem,  Germany)  equipped  with  EC  Plan-

Neofluar10x/0.3,  20x/0.5  and  40x/0.6  (Zeiss)  objectives  and  a  AxioCAM  MRn

monochrome camera. Image sizes were 895.3 µm × 670.8 µm, 447.6 µm × 335.4 µm and

223.8 µm × 167.7 µm  for  the  10×,  20×  and  40×  objective,  respectively,  but  in  few

instances smaller, when out-of-focus areas had to be cropped. For the fluorescence images

we  used  a  GFP filter  cube  (exciter:  470;  emitter:  525/50,  beam  splitter:  495)  and  a

rhodamine filter cube (exciter: 546/12; emitter: 607/80; beam splitter 560). We also took

phase-contrast images of all samples to visualize the leaf surface structure. To account for

the  topography of  the  leaf  surface  we took all  images  as  3-dimensional  'z-stacks',  i.e.

several shots of the same area at different planes of focus. These were saved in the native

Zeiss .zvi format.

Image Processing

The .zvi images were processed using the open-source ImageJ software package (Rasband,

W.S.,  ImageJ,  U.  S.  National  Institutes  of  Health,  Bethesda,  Maryland,  USA,
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http://imagej.nih.gov/ij/,  1997-2012).  We extracted the location (x-/y-coordinates) of all

bacterial individuals and all structural elements of the leaf surface, i.e. stomata, trichomes,

veins, grooves. The location of stomata was represented by a point within each guard cell,

for  the  location  of  trichomes  we  used  the  center  of  each  base  cell,  and  veins  were

represented by a point at the center of each vein cell. For the grooves between epidermal

cells we marked the intersections where at least three grooves come together. If grooves

have an effect on the distribution of bacterial leaf colonizers, these intersections will be of

special importance as they represent locations of high groove density.

Spatial Statistics

Our study consists of three groups of analyses: a) the analysis of interactions between the

individuals of the same bacterial  species = intraspecific interactions, b) the interactions

between  the  two  bacterial  species  =  interspecific  interactions,  and  c)  the  interactions

between bacteria (not considering species identity) and the different structural elements of

the leaf surface such as stomata or vein cells. The quality and scale of the patterns observed

in  these  analyses  can  be  used  to  develop  hypotheses  about  the  underlying

processes/interactions that contributed to the observed distributions. This procedure has to

be  performed cautiously depending on the  null-model  against  which  the observed pair

correlation function is tested (Baddeley et al. 2014).

To study the spatial distribution of P. agglomerans, we calculated the inhomogeneous pair

correlation function from the location data  of the bacterial  cells  (intraspecific  analysis,

P. agglomerans only,  not  considering  different  colors).  We also  calculated  intraspecific

inhomogeneous pair correlation functions of P. agglomerans growing with P. syringae and

vice  versa  and  also  for  the  pattern  of  ‘pooled’ bacteria,  i.e.  patterns  of  all  bacterial

individuals regardless of their color or species.

To explore the interactions between  P. agglomerans and  P. syringae,  we calculated the

inhomogeneous  version  of  the  cross-type  pair  correlation  function  g12(r).  This  was

performed separately for the data sets in which both strains were inoculated together at the

same time and for the data sets in which P. agglomerans was inoculated after P. syringae

had already grown on the leaf for 92 hours.

For all inhomogeneous pair correlation functions, intraspecific and interspecific, we used a

Gaussian  smoothing  kernel  with  standard  deviation  σ =  110 µm to  estimate  the  local

densities  λ(x,y).  We found that  σ =  110  µm gave  the  most  stable  results  for  the  pair
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correlation functions across our whole data set. Moreover, this scale is above the maximum

expected interaction distance: based on work by Jeff Chanat, Frankin & Mills estimated the

interaction distances between bacterial individuals in a solution to be around 10 times their

cell  size  (Franklin  and  Mills  2007) which  translates  to  about  10  µm  in  our  study.

Interactions  between  bacteria  in  the  rhizoplane  were  found  to  steeply  decay at  scales

greater than 5 µm and have not been observed beyond 78 µm (Gantner et al. 2006). For the

phyllosphere, for which such measurements did not exist until now, we would not expect

longer ‘calling distances’.

To study the interactions between the bacterial colonizers and the leaf surface structures

(stomata, trichomes, veins, and grooves), we used the cross-type pair correlation function.

For stomata, trichomes, and groove nodes we assumed a homogeneous distribution. Vein

cells, however, are distributed heterogeneously along linear structures (the veins), and we

additionally calculated the inhomogeneous cross-type pair correlation function, again with

σ = 110 µm.

All pair correlation functions g(r) for each sample were tested for significant clumping or

scarcity  of  points  using  Monte-Carlo  simulation  envelopes.  Throughout  our  study,  we

estimated  95%-simulation  envelopes  from 199  simulations  of  the  null-model.  At  each

spatial scale r we selected the fifth highest and fifth lowest values of g(r) for the upper and

lower bound of the envelope, respectively. 

The null models used in the analyses reflect the biological hypotheses to be tested. For the

intraspecific analyses (studying only one bacterial species), we applied the CSR null model

where the location of a point is independent from the location of other points. Therefore,

we generated random point patterns of the same point density as the observed pattern. For

the analyses of cross-type pair correlation functions (interaction between bacterial species

and interactions between bacteria and leaf surface structures), we applied the independence

null model, i.e. we performed 199 toroidal shifts  (Wiegand and Moloney 2014). Here, a

bacterial pattern is shifted a random distance into a random direction and points that exit

the (rectangular) observation window reappear at the opposite edge of the window. The

location of other observed point pattern (either the other bacterial strain or a leaf structure)

stayed unchanged. This approach preserves the internal structure of both point patterns

(here, the structure of the bacterial pattern and the structure of e.g. the stomatal pattern).

This way, the independence null  model exclusively tests  for independence between the

patterns  and is  unaffected  by patterns  (e.g.  clustering)  that  may be  present  within  the
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individual point patterns. Thus, the toroidal shift null model is especially well suited to

study  the  interactions  between  two  different  point  patterns  as  it  preserves  all  other

interactions  within  the  first  pattern  and  only considers  differences  that  arise  from the

dependence (interaction) of the first pattern from the second pattern. Also, it only relies on

random shifts of one of the patterns and therefore is not subject to the limitations with

respect to interaction distances discussed in (Baddeley et al. 2014). All calculations were

performed using the spatstat package (Baddeley and Turner 2005) in the statistics software

R (R Core Team 2013).

Data presentation

The  results  from  our  analyses  using  pair  correlation  functions  were  summarized  in

frequency  plots.  For  each  of  these  frequency  plots  we  looked  at  the  pair  correlation

functions of all samples and plotted the relative frequencies of significant aggregation and

scarcity. These were represented as stacked bars for every distance class r at which the pair

correlation function was evaluated. Since each pair correlation function was evaluated up

to  a  maximum  distance  r depending  on  the  size  of  the  observation  window  of  the

respective sample, sample size typically decreased with increasing spatial scale  r. Not all

data sets had stomata, trichomes, or veins in them. This resulted in a reduced number of

samples used in the respective analyses.

Results and Discussion

In total, we analyzed point patterns from 244

samples  (i.e.  images  of  fields  of  view under

the microscope) from 42 different adaxial leaf

sections  from  23  independent  spray

experiments.  A  rather  typical  pattern  is

depicted  in  Figure  5E.  The  total  area  of  all

observation  windows  was  approximately

75.63 mm2 and  contained  131,429  bacterial

individuals,  2,192  stomata,  135  glandular

trichomes, 74 hooked trichomes, and 819 vein

cells. We found 43,674 nodes at which three or

more  grooves  between  epidermal  cells  came

together.  Bacterial  population sizes on leaves
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Figure 6: Mean bacterial population density
(open  circles)  and  standard  deviation
(broken  lines)  over  time  from all  samples
excluding  samples  where  P.  agglomerans
was inoculated 92 hours after P. syringae.



increased  within  the  first  20  hours  after  inoculation  and  remained  constant  thereafter

(Figure 6).

Interactions between bacterial individuals of the same species

When P. agglomerans was the only colonizer of the bean leaves, bacterial cells clustered at

scales up to 7 µm in 90% of our samples (Figure 7A). This means that within a 7 µm

radius around a typical individual we found significantly more bacterial cells than expected

if the cells were randomly distributed. The percentage of significant clustering gradually

decayed at scales larger than 7 µm and disappeared into a background noise around 85 µm

away from a typical  P. agglomerans  cell.  This small-scale aggregation of bacteria is in

agreement with most published studies on the general spatial distribution of bacteria on

leaves  (Kinkel 1997; Beattie and Lindow 1999; Leveau and Lindow 2001; Monier and

Lindow  2004) but  none  of  these  studies  were  able  to  report  statistically  verified

information on the scale of the aggregation. Our results are also consistent with the concept

of heterogeneously distributed but highly localized availability of resources  (Leveau and

Lindow 2001; Kinkel, Newton and Leonard 2002) and with the concept of clonal ‘staying-

together’ growth behavior (Tecon and Leveau 2012).

When  P.  agglomerans was  inoculated  in  combination  with  P.  syringae,  small-scale

aggregation of  P. agglomerans cells  was observed for more than 98% of our samples,

while  the  noise  distance  was  reduced  to  about  75  µm  (Figure  7B).  Comparison  of

Figure 7A and  7B suggest  that  the  interaction  with  P.  syringae increases  the  level  of

clustering of P. agglomerans. Garbeva et al.  (2011) showed that the shape of colonies of

Pseudomonas fluorescens  changes  from irregular  shapes  in  isolation to  spherical  when

exposed  to  Pedobacter-born  signaling  molecules,  thereby  suggesting  an  interspecific

interaction. Because of the reduced surface-to-volume ratio, cells in a spherical colony will

be  more  spatially  aggregated  than  the  same  cells  in  an  irregular  shaped  colony  of

comparable packing density. Similar mechanisms may explain the increase in small-scale

aggregation of our P. agglomerans cells when exposed to compete with P. syringae cells.

Alternatively to the active response mechanism suggested by Garbeva et al.  (2011), the

increase in small-scale aggregation prevalence could be the result of steric constraints that

colonies of the one species imposes on the development of colonies of the other species.

Aggregation of  P. syringae competing with  P. agglomerans was found at scales up to at

least 5 µm in the majority of the sample images (Figure 7C). At scales larger than 5 µm,
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prevalence of significant aggregation rapidly decayed such that aggregation up to 28 µm

was found in every third sample and disappeared in a background noise around 90 µm.

Compared to  P. agglomerans cells  in  Figure 7B, the  P. syringae cells were clustered at

smaller scales, i.e.  more compact than  P. agglomerans.  If  we considered local resource

availability  as  the  most  important  determinant  of  bacterial  colonization  patterns,  the

tendency of  P. syringae being more clustered than  P. agglomerans  could be the result of

P. syringae using other,  more spatially confined resources compared to  P. agglomerans.

Alternatively,  if  both  strains  were  to  use  similar  resources,  P. syringae would  require

higher concentrations of some key resources. Such ideas could be pursued in a future study

that  combines  spatial  point  pattern  analysis  with  data  from  bacterial  bioreporters  for

nutrient availability  (Leveau and Lindow 2001) or micro-meter-scale metabolic profiling

(Fang  and  Dorrestein  2014) of  the  phyllosphere,  both  of  which  would  provide  high-

resolution spatial information on nutrient availability along the leaf surface.
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Figure  7:  Intraspecific  interactions  of  bacteria  in  the  bean  phyllosphere.  The  graphs  give  the
relative frequency of significant aggregation (yellow/light gray), randomness (medium gray) and
scarcity (blue/dark gray) at different scales up to 110 µm as determined by inhomogeneous pair
correlation functions. A: Interactions between individuals of Pantoea agglomerans when growing
as  the  sole  species  on  the  leaf.  B:  Interactions  between  individuals  of  P.  agglomerans when
growing in competition with  Pseudomonas syringae.  C:  Interactions between individuals  of  P.
syringae when growing in competition with  P.  agglomerans.  D:  Interactions  between bacterial
individuals not considering species identity (both species growing together). Numbers of samples
were 145 in A, 82 in B, 83 in C and 87 in D.



The spatial  distribution  of  bacteria,  not  considering  their  species  exhibited  small  scale

aggregation of cells  in all  samples up to 4 µm followed by an almost linear decay in

prevalence that disappeared in a background noise at almost 90 µm (Figure 7D). 

The general pattern of scarcity of cells towards larger scales (above 50 µm, Figure 7A-D)

is  more  difficult  to  explain.  A classical  interpretation  would  be  a  regularity  in  the

environment, e.g. the undifferentiated epidermal cells in our experiments. This is, however,

difficult  to  verify given  their  complex  shape  and the  probable  multitude  of  additional

interfering interactions of bacteria with their environment. A non-biological explanation is

that  a  bias  arose  from the  bandwidth  of  the  Gaussian  smoothing  kernel  used  for  the

inhomogeneous  pair  correlation  functions.  The inhomogeneous  method applied  here  is

known to be biased downwards  and can give unexpected results  especially for regular

patterns (Baddeley, Møller and Waagepetersen 2000). Although our choice of 110 µm for

the bandwidth gave the most stable results for 50 randomly chosen images from our data

set,  it  is possible that it  worked better  for the sparser  P. syringae patterns than for the

denser P. agglomerans patterns. Additionally, the inhomogeneous pair correlation function

requires the points to be “second-order intensity reweighed stationary” (Baddeley, Møller

and  Waagepetersen  2000);  an  assumption  probably  violated  by  our  complex  bacterial

colonization patterns on bean leaves (Baddeley, personal communication). Nevertheless,

we recommend the use of the inhomogeneous pair correlation. Given a) its non-cumulative

nature which puts it ahead of other methods such as the Ripley’s K function (Ripley 1976;

Wiegand and Moloney 2014), b) its ability to look at distance beyond the nearest neighbor

of a point,  and c) its  ability to (within limits) account for a heterogeneity in the point

pattern, it is the best available method for the data at hand in our study.

Interactions between bacterial individuals of different species

The interspecific analyses of mix-inoculated P. agglomerans and P. syringae cells revealed

a clustering of  P. agglomerans cells within 10 µm around individuals of  P. syringae and

vice versa (Figure 8A and B). Clustering was found in more than 60% of our samples. A

typical pattern that exhibited this clustering is shown in Figure 5E. In the example pattern

of  P.  syringae near  P.  agglomerans pictured  in  Figure  9A,  the  inhomogeneous  pair

correlation was very similar to the overall results in  Figure 8B. In this particular sample,

P. syringae was less abundant than P. agglomerans (176 P. syringae cells against 1380 of

P. agglomerans)  and  the  P. syringae clusters  were  small  (10 µm in  diameter  and  less,
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Figure 9A). Similar patterns were found in many other samples. From the pair correlation

function (Figure 9B), we can see that P. syringae typically aggregated up to 11 µm near P.

agglomerans cells,  for  example  in  the  large  P.  agglomerans colony  (left  inset  in

Figure 9A). The aggregation from 18 µm to 23 µm is only very weak and probably mostly

due to two colonies at the left edge of the large P. agglomerans colony and maybe a colony

surrounded by a half moon-shaped  P. agglomerans colony (right inset in  Figure 9A). In

summary, the pattern observed in this particular sample captures important aspects of the

interactions  between  the  two  species  that  seem  to  be  typical  for  bean  leaves  in  our

experiments.

In experiments where P. syringae had the opportunity to develop on the bean leaves for 92

hours under 100% humidity at room temperature prior to the arrival of  P. agglomerans,

P. syringae was much more abundant than P. agglomerans. The late arriving GFP-labeled
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Figure  8:  Interspecific  interactions  of  bacteria  in  the  bean  phyllosphere.  The  graphs  give  the
relative frequency of significant aggregation (yellow/light gray), randomness (medium gray) and
scarcity  (blue/dark  gray)  at  different  scales  as  determined  by  inhomogeneous  cross-type  pair
correlation functions using random toroidal shifts as a null model. A, C: Aggregation of individuals
of  Pantoea agglomerans around individuals of  Pseudomonas syringae. B, D: Aggregation of  P.
syringae around P. agglomerans. In A and B, both strains were inoculated jointly and incubated for
0-72 hours. In C and D,  P. syringae was inoculated first  and incubated for 92 hours before  P.
agglomerans was inoculated. After inoculation with P. agglomerans, these samples were incubated
for another 0-72 hours. Number of samples were 41 in all four analyses.



P. agglomerans cells  only  developed  poorly  (84.2%  P.  syringae versus  15.8%

P. agglomerans,  averaged  over  all  samples).  Here,  P. syringae probably  was  able  to

exclude  P. agglomerans from  successful  establishment  by  depleting  patches  rich  in

resources prior to the arrival of P. agglomerans. Such processes have recently been shown

in a study on the reproductive success of  P. agglomerans on pre-colonized bean leaves

(Remus-Emsermann,  Kowalchuk  and  Leveau  2013).  In  this  setting,  aggregation  of  P.

agglomerans around P. syringae was observed in 60% of our samples and up to 20-30 µm

from a typical P. syringae individual and vice versa (Figure 8C and D).

Summarizing the results from our interspecific studies, the two strains settle in the same

regions of a leaf and do not seem to avoid each other. The maximum range of interactions

leading to a co-aggregation of the two species lies around 20-30 µm. In the majority of our

samples, however, we found no significant interspecific aggregation at scales larger than

10 µm, a value that evidently fits well the value of 10 times the bacterial cell diameter

suggested by Frankling and Mills (2007).

Bi-variate analyses of bacteria near bean leaf surface features

Due to the heterogeneous distribution of  suitable  sites on the leaf  surface,  interactions

between  bacteria  are  usually  not  the  only  determinant  of  bacterial  distribution  in  the

phyllosphere. 
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Figure  9: A: Spatial pattern of  P. agglomerans (gray points) and  P. syringae (black points) on a
bean  leaf  surface.  B:  the  inhomogeneous  pair  correlation  function  (PCF,  solid  line)  and  95%
simulation envelope (broken lines) for P. syringae cells near P. agglomerans cells derived from the
pattern (interpretation of the PCF same as in Figure 1). The spatial pattern is typical in the sense
that the PCF result well resembles the general results for this interaction shown in Figure 8B.



In our study, the grooves, or more precisely the intersection points of grooves between

epidermal cells of the bean leaf were frequently attracting bacteria on a small scale up to

12 µm (Figure 10A). Attraction of bacteria to grooves was apparent in about 45 % of our

samples. This aggregation of microbial colonizers of the phyllosphere has been frequently

reported  (Diem 1974;  Blakeman 1985;  Davis  and Brlansky 1991;  Leveau and Lindow
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Figure  10: Interactions of bacteria with structural elements of the bean phyllosphere. The graphs
give the relative frequency of significant aggregation (yellow/light  gray),  randomness (medium
gray) and scarcity (blue/dark gray) at different scales as determined by cross-type pair correlation
functions (g12) using random toroidal shifts (cf. text) as a null model. A-E: homogeneous  g12, F:
inhomogeneous g12. In F, the local point density was estimated using a moving Gaussian smoothing
kernel of bandwidth 110 µm, which limited our analysis up to this scale. A: Interaction of bacteria
with grooves between epidermal cells. B: Interaction with stomata. C: Interaction with glandular
trichomes.  D:  Interaction with  hooked trichomes.  E-F Interactions  with vein  cells.  Number  of
samples were 244 in A and B, 93 in C, 72 in D, 99 in E and 62 in F. 



2001;  Monier  and  Lindow  2004).  The  grooves  between  epidermal  cells  have  been

hypothesized to retain water longest during periods of evaporation (Kinkel 1997; Leveau

and Lindow 2001). Considering that the presence of water on leaf surfaces can stimulate

leaching of substances from inside the leaf (Tukey 1970) and that nutrients in solution will

accumulate in regions that retain evaporating water the longest, it becomes obvious why

plant  leaf  surface  features  such  as  the  grooves  could  be  a  good proxy for  explaining

microbial success and therefore colonization patterns in the phyllosphere. Nevertheless, it

remained unclear how much of the bacterial aggregation on small scales can be accounted

to accumulation of nutrients in the grooves and how much is due to other processes such as

a physical or gravitational groove effect. 

We found no strong signs of bacterial aggregation near stomata which is in line with the

study of (Monier and Lindow 2004) who studied Pseudomonas syringae on bean leaves. In

fact, we rather detected a slight tendency of bacteria to avoid stomata which lasted up to

35 µm  (Figure  10B).  Then  again,  stomata  have  been  reported  for  a  long  time  to  be

positively correlated with high densities of leaf colonizers  (Miles, Daines and Rue 1977;

Blakeman 1985; Mew and Vera Cruz 1986; Timmer, Marois and Achor 1987; Mansvelt

and Hattingh 1989). In these studies, incubation time was longer (3-30 days) and in the

studies of Miles  et al.  (1977), Timmer  et al.  (1987), and Mansvelt and Hattingh  (1989)

incubation was performed under less humid conditions. We conclude that interactions with

stomata may occur on bean leaves but they are less important under the conditions tested in

our experiments and that these interactions are more important in less humid environments.

Under such conditions, stomatal transpiration has been shown to produce highly localized

zones of elevated humidity (Burkhardt  et al. 1999) which will facilitate bacterial growth

under otherwise dry conditions. Further studies of the spatial distribution of bacteria on dry

leaves could reveal the spatial  scale up to which this  localized increase in humidity is

effective.

On a larger scale we observed an aggregation of bacteria within a 0-60 µm (less often

100 µm)  neighborhood  around  glandular  trichomes  in  up  to  16%  of  our  samples

(Figure 10C). This interaction has also been reported before (Blakeman 1985; Leveau and

Lindow 2001; Monier and Lindow 2004; Yadav, Karamanoli and Vokou 2005), but here we

can for the first time quantify the range of this interaction. In the literature the effect is

usually explained by nutritious exudates of the glandular trichomes  (Ascensão and Pais

1998; Monier and Lindow 2004) or their ability to retain water droplets  (Brewer, Smith

43



and Vogelmann 1991) which also could increase nutrient leaching from the leaf interior

(Schönherr and Baur 1996). 

We also found significant aggregation of bacteria within up to  120 µm around hooked

trichomes but at any spatial scale aggregation was not observed in more than about 15% of

our  samples  (Figure  10D).  Interestingly,  aggregation  was  most  prevalent  between

60-100 µm around hooked trichomes, suggesting an interplay between an attracting (e.g.

increased  water  availability)  and  a  repulsing  process  (e.g.  gravitational,  away  from

elevated trichomes on veins).  Aggregation of bacteria  near  hooked trichomes has  been

reported before on bean leaves  (Leveau and Lindow 2001; Monier and Lindow 2004).

These studies mention a thinner cuticle and the presence of more nutrients compared to

undifferentiated epidermal cells as probable properties that facilitate bacterial growth near

hooked trichomes.

Bacteria were significantly aggregated around vein cells but usually in not more than 10%

of our samples that had vein cells in them (Figure 10E and F). Both the homogeneous and

the inhomogeneous pair correlation functions detected aggregation at scales up to 100 µm.

The most obvious difference between the two functions was that the inhomogeneous pair

correlation function (Figure 10F) found no clear signs of aggregation of bacteria within

8 µm around the centers of vein cells. This small-scale randomness could be explained by a

process in which the large-scale attraction of bacteria towards veins is locally overruled by

the  small-scale  aggregation  of  cells  in  the  grooves  between  vein  cells.  However,  it

remained unclear  why this  effect  is  not  also visible  in  Figure 10E.  The association of

bacterial colonizers of leaves with leaf veins has been reported frequently and has usually

been attributed to veins being regions of increased water availability, leakage and nutrient

availability (Canny 1990; Leveau and Lindow 2001; Axtell and Beattie 2002; Monier and

Lindow 2004). Glandular trichomes, which also caused attraction of bacteria, were often

located on veins and may thus be sufficient to explain the attraction of bacteria towards

veins. Disentangling such facilitative processes not directly related to the veins should be

subject of further studies.

Conclusions

In this  study we showed how point-pattern analysis  can improve our understanding of

micro-ecological processes in the phyllosphere. Most importantly, we determined spatial

scales or distances of major importance to processes that shape the spatial distribution of
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bacteria on bean leaves. Where the uni-variate analysis (Figure 7) mostly informed about

the spatial structure of bacterial colonization patterns, the bi-variate analyses allowed for

an  estimation  of  the  operational  range  of  interactions  between  two  bacterial  strains

(Figure 8) or between bacteria and structural elements of the leaf surface (Figure 10). Our

study is the first to report such interaction distances for bacteria and plant leaves. These

interactions are not static but may develop in time as discussed for example for bacterial

interactions  with  stomata.  The strength  of  the  underlying  processes  ranged from weak

effects, such as the tendency of bacteria to avoid stomata, to strong effects such as the

aggregation  of  bacteria  in  the grooves  between epidermal  cells.  The co-aggregation  of

individuals of P. agglomerans and P. syringae suggests that these two strains facilitate each

other or at least exploit resources in the phyllosphere in similar ways during early phases

of colonization. It is important to consider how all these processes interact with each other,

facilitating  or  canceling  each  other  out,  thereby  leading  to  the  complex  colonization

patterns of bacteria observed in the phyllosphere. Based on the results of this study, we

developed a conceptual model that gives an impression of how all these processes might

come  together  to  create  the  bacterial  colonization  patterns  observable  in  the  bean

phyllosphere  (Figure  11).  We assert  that  our  findings  are  primarily  valid  for  Pantoea

agglomerans and Pseudomonas syringae on bean leaves and that the interaction regime of

other  microbial  colonizers on different  hosts  may differ from our results.  This may be

especially  true  for  bacterial  development  under  less  humid  conditions  than  in  our

experiments. In conclusion, our study is a starting point of a series of future experiments

that will use spatial point pattern analysis to unravel the significance of the different spatial

interactions between microbial leaf colonizers and their environment.
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Figure  11: A conceptual model of bacterial development based on the findings of this study. We
used a simple simulation model based on the strength and range of bacterial interactions on bean
leaves determined in our study in order to determine if these processes were sufficient to generate
colonization patterns similar to the observed ones. The simulated colonization pattern in D suggests
that  the concert  of  many different  interactions at  different  spatial  scales is  able to  explain the
complex  bacterial  colonization  patterns  observed  on  bean  leaves.  A:  The  starting  ‘landscape’.
Epidermal  structure  of  a  young  bean  leaf.  An  x-shaped  leaf  vein  (shaded  in  grey)  locally
approaches the leaf surface from the leaf interior with a glandular trichome (g) at the intersection.
The vein is surrounded by stomata (s) and undifferentiated epidermal cells (‘puzzle pieces’). The
base of a hooked trichome (h) can be seen near the middle of the upper boundary.  B: Prior to
colonization by microbes, resources (shaded areas) gathered on the leaf surface by processes such
as epidermal leaching, especially near veins, grooves between epidermal cells, and excretion by
glandular  trichomes.  Single  bacterial  colonizers  arrive  on  the  leaf.  C:  In  the  course  of  time,
bacterial  colonizers  reproduce  more  successfully  at  locations  rich  in  resources.  Additionally,
bacterial  cells  tend to  get  trapped near  the  grooves either  by gravitational  processes  or by the
increased density of leaf surface area that decreases cell motility. D: Further bacterial growth. After
20 hours, growth stops in locations where the resource requirements reach the level of leaching of
new resources  from the leaf  interior.  Colonization of  new resource-rich regions allows further
growth of the bacterial population.
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Abstract

Microbial life is ruled by a wide variety of interactions that operate at different spatial and

temporal  scales.  Intraspecific  interactions  co-occur  with  interspecific  interactions  with

other microbes, with hosts, and with predators, as well as factors and processes of the non-

living environment. Often the relative effect of a single process is difficult to isolate from

others.  For  example,  it  is  known  that  leaf-colonizing  bacteria  often  aggregate  in  the

grooves between epidermal cells of plant leaves but it is unclear if this phenomenon is the

result of some process connected to leaf topography or if it is the result of a leaf biological

process such as increased leaching of nutrients in the grooves. In our study, we analyzed

the spatial distribution of two wide-spread leaf-colonizing bacteria on synthetic replicas of

bean leaf surfaces. Comparison of our results to a similar study on real leaves suggests that

the frequently reported aggregation of bacteria near grooves between epidermal cells is

driven  by physical  processes  connected  to  leaf  topography  rather  than  leaf  biological

processes. Our study highlights the importance of micro-topographic effects on bacterial

surface  colonization  and illustrates  the  suitability  of  soft-lithographically  manufactured

micro-landscapes for studying these effects.
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Introduction

The microbial colonization of surfaces has been intensely studied and has been regularly

reviewed  from different  scientific  perspectives  such  as  the  general  process  of  biofilm

formation (O’Toole, Kaplan and Kolter 2000; Danhorn and Fuqua 2007), particular aspects

of adhesion (Katsikogianni and Missirlis 2004), the effect of physical stress on biofilm

structure  (Otto 2014),  the  description  of  chemical  compounds and signaling molecules

(Petrova  and  Sauer  2012),  surface  detection  by microbes,  changes  in  gene  expression

patterns, and cell morphology (Tuson and Weibel 2013; Wozniak and Parsek 2014) as well

as  the  development  of  anti-fouling  surfaces  (Salta  et  al. 2010). Surface  colonization

involves  complex  interplays  of  the  microbes  with  the  surface  (e.g.  attachment,

modification,  detachment),  with  each other  (e.g.  competition,  antibiosis,  collaboration),

and  with  the  medium  that  interfaces  the  surface  (e.g.  air  or  water).  Adding  to  this

complexity  is  the  fact  that  many  surfaces  feature  spatial  variability  in  the  physical,

chemical and biological conditions at scales that are relevant to microorganisms. One of

the major challenges in microbial ecology is to understand this complex interplay as well

as the individual and combined impact of these processes on surface colonization. One

tried  and  proven  approach  to  disentangle  the  complexity  of  surface  colonization  is

experimental deconstruction, i.e. selectively removing one or more parts of the complexity

in order to assess the impact of physical, chemical or biological condition. Examples are

the use of single species experiments in order to exclude interspecies interactions or the use

of artificial flat surfaces that eliminate potential effects of surface topography.

If, in contrast, such topographical effects, e.g. of biological surfaces, are of interest, these

effects could be targeted by comparing the microbial colonization of the biological surface

to  the  colonization  patterns  on  a  biomimetically  patterned  surface  (BPS),  i.e.  a

manufactured exact replica of the biological surface. For example, Zhang et al. (2014) and

colleagues  recently showed that  soft-lithographic replicas of spinach leaves made from

polydimethylsiloxane (PDMS) are well  able  to  replicate  spinach leaf  surface structure.

They also found that wettability of the PDMS replicas was similar to real spinach leaves.

Finally, they pointed out that BPS made from agarose gel and supplemented by 'suitably

controlled nutrient mixtures' allow studying the effect of surface topography on bacterial

colonization (Zhang et al. 2014).

The spatial distribution of colonizers of the plant leaf surface, i.e. the colonization of the
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phyllosphere  (Last 1955), has long been studied  (e.g. Leveau and Lindow 2001; Monier

and Lindow 2004; Remus-Emsermann et al. 2012, 2014). A wide variety of environmental

factors and processes was found to contribute to or to hamper the successful establishment

of epiphytic microbes (Leben 1970; Roos and Hattingh 1983; Rodenacker et al. 2000; Fett

and Cooke 2003; Monier and Lindow 2004; Hunter et al. 2010; Tecon and Leveau 2012;

Remus-Emsermann  et  al. 2014;  Esser  et  al. 2015).  Many  environmental  factors  are

difficult  to  measure  at  micrometer-scale  resolution  but  for  an  increasing  number  of

substances, e.g. carbon, water, or iron, such information became available in the form of

bioreporters (Joyner and Lindow 2000; Leveau and Lindow 2001; Axtell and Beattie 2002;

Remus-Emsermann and Leveau 2009; Remus-Emsermann et al. 2012). They showed the

heterogeneous  distribution  of  these  factors  which  affects  local  success  of  bacterial

colonization  in  the  phyllosphere.  Additionally,  interactions  between  the  microbial

individuals also contribute to the complexity of the observable colonization patterns (Yu et

al. 2014). Finally, bacterial population density was found to be spatially correlated to the

occurrence of certain leaf morphological structures such as veins, stomata, and trichomes

(Marcell  and Beattie 2002; Monier  and Lindow 2004; Hunter  et al. 2010; Esser  et  al.

2015).  For  example,  glandular  trichomes  are  known to  excrete  carbon-rich  substances

(Ascensão  and Pais  1998) that  can  be  utilized  by bacteria  and  the  crevices  (grooves)

between  epidermal  cells  have  frequently  been  reported  to  harbor  large  numbers  of

microbial colonizers. Especially for such plant-microbe interactions it is often unclear if

they are based solely on some effect of the leaf surface topography or if also a biological

effect is active. For example, some trichomes have the ability to better retain water than

undifferentiated, smooth leaf areas (Brewer, Smith and Vogelmann 1991). Those areas that

retain water the longest are likely to concentrate water-soluble nutrients during times of

evaporation. This solely topographical (or physical) process could be amplified by the fact

that improved water availability increases nutrient leakage from the leaf interior  (Tukey

1970).  We would  consider  such  a  trans-cuticular  process  as  a  leaf  biological  process,

because it would not be present on an artificial biomimetic surface.

The manufacturing of artificial biomimetic leaf surfaces is a growing field of research in

materials science. Here, scientists are often interested in producing self-cleaning surface

coatings that mimic the superhydrophobic properties of leaves of different plant species

such as Nelumbo nucifera or Triticum aestivum (Sun et al. 2005; Koch et al. 2007; Schulte

et al. 2009). Microbial colonization of such artificial surfaces has also become a vivid field
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of research. Active fields are the development of sterile surface coatings for medical tools

(Ionescu et al. 2012; Cerqueira et al. 2013; Manabe, Nishizawa and Shiratori 2013; Cole et

al. 2014; Depan and Misra 2014) or marine applications (Salta et al. 2013), or the study of

bacterial communities in water treatment facilities  (Liu et al. 2013; Al Ashhab, Herzberg

and Gillor 2014). But only recently, microbial colonization of biomimetic leaf surfaces has

been considered for the study of effects of plant leaf topography on bacterial growth and

survival on leaves (Zhang et al. 2014; Doan and Leveau 2015).

Here, we present the first in-depth spatial analysis of bacterial colonization patterns on

such artificial leaf surfaces. The aim of our study was to isolate the effect of topography on

bacterial  leaf  colonization.  Our main  focus  was  on  detecting  differences  in  the  spatial

distribution of bacteria growing on bean leaves and on biomimetic bean leaf surfaces made

from PDMS. Given the fact  that  such surfaces  have  similar  physical  properties  as  the

biological  surface  (Zhang  et  al. 2014),  we  hypothesized  that  differences  between

experiments conducted on both surfaces are caused by processes that cannot be explained

by surface microstructure alone. Conversely, microbial colonization patterns that do not

differ  between  biological  and  biomimetic  surfaces  would  suggest  that  microbial

colonization is either surface-independent or at least independent from processes linked to

the biology of the surface. We used spatial statistics for a detailed spatial description of

bacterial colonization patterns on the artificial surfaces and compared the results to the

results of an equivalent study on real bean leaves (Esser et al. 2015).

Materials and methods

The experimental setup equaled the setup in Esser  et al. (2015) except that the bacterial

suspension was  supplemented  with  a  carbon  source  to  allow bacterial  growth and the

bacteria  were  sprayed  on  artificial  leaf  surfaces  (Doan  and  Leveau  2015)m.  A brief

summary is given in the following.

Primary leaves of 2 weeks-old green bean plants (Phaseolus vulgaris, variety Blue Lake

Bush 274) were washed in deionized water and dried at room temperature. To create a

negative mold, one leaf was then placed flat, adaxial surface facing up, in a 145 mm plastic

culture dish, and its edges were attached to the dish bottom with masking tape to prevent

liquid infiltration underneath. We produced the polydimethylsiloxane (PDMS) mold using

a Sylgard elastomer 184 kit (Dow Corning, Flint, MI, USA). We mixed PDMS base and

curing agents in a 10:1 ratio (wt/wt), and approximately 40 to 60 g of this mix was poured
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into the dish to cover the leaf entirely. After pouring, trapped air bubbles slowly migrated

to the surface and were removed by a gentle stream of nitrogen gas. The dish was then

covered and placed in an oven at 60 °C for three hours to harden the PDMS. The mold was

then cut out of the dish with a scalpel and the real leaf removed. We trimmed the mold to

remove excess of PDMS, and we washed it with deionized water containing 1% Triton-X

to remove remaining debris. The leaf mold was further placed under a UV light source

emitting at 185 and 254 nm (UVP, Upland, CA, USA) for two hours, in order to create a

glassy layer of SiO2 on the surface, and then rinsed again with deionized water. To prepare

artificial leaves the cast was placed in a new dish, facing up, and fully covered (1-2 mm

above the top) with a new mix of PDMS base and curing agent (10:1 ratio). Air bubbles

were removed as described above and the dish was placed in an oven at 60 °C for three

hours.  Finally,  PDMS was removed from the dish and the artificial  leaf  was manually

separated from the mold (which can be washed and reused multiple times), and cleaned

prior to experimental use.

In our experiments we used two fluorescent bacterial species: 1)  Pantoea agglomerans

green  labeled  strains  299R  JBA::28,  299R(pFRU48),  and  red-labeled  strain

299R(pFRU97) and 2) Pseudomonas syringae red-labeled strain B728a(pFRU97) (Leveau

and Lindow 2001; Monier and Lindow 2004; Tecon and Leveau 2012). All strains were

grown separately in Lysogeny Broth (LB) with 50 mg kanamycin per liter at 30 °C and

harvested in mid-exponential phase by centrifugation and washing twice in M9 minimal

medium (Sambrook, Fritsch and Maniatis 2001) with no carbon source. Cells were diluted

to  an  approximate  concentration  of  107  cells  per  milliliter.  Square  sections,  about

15×15 mm in  size  were  cut  from the  artificial  PDMS leaves.  Two sections  each were

placed on a plain agarose surface in a petri dish. Inoculation was performed by spraying

50 µl of cell suspension (M9, now complemented with 400 mg/l D-fructose as the only

carbon source) onto the artificial leaves using an airbrush Iwata Eclipse HP-CS (ANEST

IWATA Corporation,  Yokohama,  Japan)  from  about  170 mm  above  the  artificial  leaf

surface. We moved the nozzle of the airbrush slightly during inoculation to ensure a good

cover of the artificial leaf pieces. We either co-inoculated  P. agglomerans 299R JBA::28

and DsRed-labeled P. syringae B728a(pFru97) or P. agglomerans only. Because the use of

green- and red-labeled strains proved useful for a posteriori assessment of mixing events

(Tecon and Leveau 2012; Esser  et al. 2015), we also used green- and red-labeled strains

299R(pFRU48)  and  299R(pFRU97)  in  these  Pantoea-only  experiments.  An  exact
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overview of the design of spraying experiments is given in Table 2.

Bacteria were observed under the microscope either directly after inoculation (t = 0) or first

incubated before observation for 24, 48, or 72 hours in sealed petri dishes at 28 °C. In

preparation of the microscopic observations, single artificial leaf sections were transferred

from the petri  dish to microscopic slides and covered with a mounting medium (Aqua

Poly/Mount Polyscience Inc., Warrington PA, USA) and a cover slip. Depending on the

topography of the PDMS pieces, 25-150 µl of mounting medium were required to ensure a

good coverage of the whole surface. The cover slip was then fixed to the glass slide with

adhesive tape (Figure 12) to exclude its accidental dislocation which could have introduced

a disturbance to the colonization patterns on the artificial leaves.

Table 2: Overview of experiments on artificial leaf surfaces in this study

Section Red species Green species Incubation [h] 10× 20× 40×

80 299R(pFRU97) 299R(pFRU48) 48 2 5 -

81 B728a(pFRU97) 299R JBA::28 0 - 3 2

82 B728a(pFRU97) 299R JBA::28 24 - 19 -

83 B728a(pFRU97) 299R JBA::28 48 - 9 10

84 B728a(pFRU97) 299R JBA::28 72 5 4 -

89 299R(pFRU97) 299R(pFRU48) 0 10 10 -

90 299R(pFRU97) 299R(pFRU48) 24 7 6 -

91 299R(pFRU97) 299R(pFRU48) 48 9 8 -

92 299R(pFRU97) 299R(pFRU48) 72 - 6 -

Total 33 70 12
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Figure 12: Artificial leaf surface made from PDMS. Left: Photograph of an inoculated section of
artificial bean leaf surface. The section has been covered with a cover slip that was fixated by
adhesive tape. The air bubbles are inside the PDMS and do not connect to the surface. Center:
Micrograph of an inoculated PDMS leaf surface after 24 hours of incubation. Red- and green-
labeled  fluorescent  bacteria  mostly  settle  in  the  grooves  between  the  puzzle-piece-shaped
epidermal cells of the leaf surface. Right: Micrograph of an inoculated real bean leaf after 40 hours
of incubation. Scale bars are 50 µm.



From each artificial  leaf  section we took a series of micrographs (samples)  at  random

locations  (Table  S5.1,  p. 107).  The  microscope  was  an  Axio  Imager.M2  fluorescent

microscope  (Carl  Zeiss  AG,  Oberkochem,  Germany),  equipped  with  Zeiss  Neofluar

10x/0.3, 20x/0.5 and 40x/0.6 objectives and an AxioCAM MRn monochrome camera. For

fluorescence  imaging  we  used  a  GFP filter  cube  (exciter:  470;  emitter:  525/50,  beam

splitter: 495) and a rhodamine filter cube (exciter: 546/12; emitter: 607/80; beam splitter

560). Phase-contrast micrographs were additionally taken to recognize the location of leaf

surface structures such as veins and stomata. All images were taken at several planes of

focus in order to account for leaf topography and finally saved as z-stacked images in the

native .zvi file format.

We used the ImageJ software package

(U.S.  National  Institute  of  Health,

Bethesda,  MD,  USA)  to  manually

mark  the  location  of  bacterial  cells

and  structural  elements  of  the  leaf

surface, i.e. structures of the artificial

leaf surface that could be matched to

stomata,  hooked  and  glandular

trichomes,  as  well  as  veins  and  the

grooves  between  epidermal  cells  on

the  real  leaf  from which  the  PDMS

mold was made from. Linear grooves

between  epidermal  cells  were

approximated  by  a  point  pattern  of

groove intersections, i.e. points where

three or more grooves joined together.

The veins were approximated by the

pattern  of  center  points  of  all  vein

cells. We saved the locations of all objects as tables of x-/y- coordinates in .csv text files.

All analyses were performed using the spatstat package (Baddeley and Turner 2005) in R

(R Core Team 2013).

Equivalently to Esser et al. (2015), we estimated pair correlation functions (PCFs; Stoyan

and Stoyan 1994; Wiegand and Moloney 2014) from the point pattern data. In general, a
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Figure  13: Pair correlation function (PCF)  g(r). Left:
Artificial  pattern of clustered points on a hexagonal
grid  to  illustrate  the  PCF  method.  Scale  bar  is  25
units. Distance between neighboring cluster centers is
10 units. Right: The observed PCF (solid line) of the
pattern. The narrow gray band centered at g(r) = 1 is
an  approximately  95%  simulation  envelope  derived
from  the  PCFs  of  199  random  point  patterns  of
comparable density. Deviations of the observed PCF
above the simulation envelope indicate an aggregation
of points at spatial scale  r, whereas deviations below
the  bottom  of  the  envelope  indicate  a  scarcity  of
points at scale r. The colored bar at the bottom of the
graph indicates  significant  aggregation (yellow) and
scarcity  (blue).  Note  how  the  regularity  of  the
hexagonal grid (multitudes of 20 units) is reflected in
the PCF. 
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pair correlation function analyzes the distribution of inter-point distances in a point pattern

in order to determine if the points are either clustered, randomly or regularly distributed in

space (Figure 13). This analysis is performed at a series of different spatial scales r which

refer to the inter-point distances. The critical scales, i.e. scales or distances at which the

distribution of bacterial cells switches between being clustered, random, or regular, as well

as local maxima and minima, can often be matched to typical cluster sizes (diameter, not

number of bacterial cells) or distances between cluster centers: For the artificial data in

Figure  13,  which  we specifically designed for  illustration  purposes,  the  first  transition

between the clustered and regular  distribution at  a little  more than 5 units  reflects  the

radius of a typical cluster which was modeled to be about 5 units. Similarly, the minimum

at 10 units reflects the empty areas between clusters where a scarcity of points causes a

larger scale regularity in the pattern of clusters, where the centers of clusters are typically

20 units apart (reflected by the local maximum at 20 units). PCFs allow an assessment of

the nature of the spatial processes that formed the point patterns and the spatial scales at

which  these  processes  operate.  The  choice  of  pair  correlation  functions  (for

homogeneous/inhomogeneous  and  for  single-strain  and  dual-strain  patterns)  as  well  as

parameter  choices  for  smoothing kernels  and maximum spatial  scales  up to  which we

performed the analysis were the same as in Esser  et al. (2015): Intraspecific interactions

were analyzed using the pair correlation for inhomogeneous data  (Baddeley, Møller and

Waagepetersen  2000).  For  interspecific  interactions  between  P. agglomerans and

P. syringae we used the cross-type PCF for inhomogeneous point  patterns  (Stoyan and

Ohser  1982;  Stoyan  and  Stoyan  1994).  Assuming  a  homogeneous  distribution  of  leaf

structural  elements,  we  also  studied  the  interactions  between  bacteria  and  trichomes,

stomata and veins using the cross-type PCF for homogeneous data. For interactions with

veins,  whose  cells  are  aligned  along  the  veins  we  additionally  calculated  the

inhomogeneous cross-type PCF. More details on these functions can be found in current

textbooks  (Illian  et  al. 2008;  Wiegand  and  Moloney  2014) and  for  an  application  to

bacterial data see Esser et al. (2015).

We used Monte Carlo simulation envelopes (Ripley 1977; Kenkel 1988; Illian et al. 2008)

to detect scales at which the observed pair correlation functions deviated from the random

null models that represent the absence of interactions between the points. We used two null

models: A) We used the Poisson point process for all univariate analyses, i.e. studying the

distribution of a single bacterial strain or the combined pattern of all bacteria as a whole.
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B) We used a toroidal shift model (Wiegand and Moloney 2014) to test for independence

between two point patterns, i.e. between the two bacterial strains or between bacteria and

the  leaf  structural  elements.  Observed  values  greater  than  the  upper  bound  of  the

simulation envelopes indicate an bivariate association of points at the corresponding spatial

scale. Observed values smaller than the lower bound of the simulation envelope indicated a

scarcity at the corresponding scale. Scarcity at the smallest spatial scale is often the result

of  a  repulsion  between  points  and  may cause  a  regularity  in  the  pattern  as  shown in

Figure 13.

We summarized the results from all observed samples to detect ubiquitous spatial trends in

the  patterns  that  allow assumptions  about  the  processes  that  created  the  patterns.  We

collectively analyzed the results from samples that have been incubated for 24, 48 and 72

hours  in  order  to  only  find  general  trends  that  persist  over  this  early  phase  of  leaf

colonization. In our analyses, we were mostly interested in the (empirical) probability to

find  non-random patterns  (aggregation,  scarcity)  at  various  spatial  scales  r,  e.g.  in  the

distribution of Pantoea cells only or of bacterial cells at distance r around stomata. These

probabilities are proxies of how commonly bacteria occur in certain spatial configurations

(e.g. aggregates) and how commonly bacteria are associated with (or avoid) leaf structures

such as stomata. We compared these probabilities to the respective probabilities reported in

Esser  et  al.  (2015) for  bacteria  colonizing  real  bean  leaves.  Differences  in  empirical

probabilities  between  real  and  artificial  leaf  surfaces  are  used  to  distinguish  physical

effects on bacterial colonization patterns, e.g. from leaf topography, from leaf biological

effects, such as leaf surface permeability or the secretion of nutrient-rich exudates. Where

no differences between the patterns from real and artificial leaves are found, we conversely

expected an absence of leaf biological factors and hence physical processes connected to

shape, roughness or topography of the leaf surface to be the primary driving forces behind

these patterns.

Results

We collected 115 samples from 9 artificial leaf sections (Table S5.1, p. 107). Overall we

counted 208,722 bacterial individuals covering a total sampling area of 29.89 mm². After

inoculation, bacteria could use the fructose supplied in the bacterial suspension to increase

population densities on the artificial leaves (Figure 14). In the single-species experiments,

P. agglomerans populations increased by more than one magnitude during 72 hours of
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incubation (Figure 14).  Mixed  P. agglomerans and  P. syringae population densities were

highest after 48 hours of incubation and slightly declined afterward (Figure 14). Images of

samples taken directly after inoculation usually did not contain enough bacteria for our

statistical  analysis.  Visual  inspection  of  these  micrographs,  however,  revealed  that  the

bacterial  individuals  were  well  spread  across  the  artificial  leaf  surfaces  suggesting  no

spatial structure in the bacterial distribution patterns introduced by the spray-inoculation

technique  using  an  airbrush  system.  Pair  correlation  functions  were  calculated  for

incubated samples only. In all experiments, most of the bacterial growth occurred during

the  first  24 hours  of  incubation (Figure 14).  Thus the  pooling of  results  from samples

incubated for 24, 48, and 72 hours is not expected to have added much variability into the

results. Not all samples contained trichomes, veins, or stomata which reduced the number

of images that could be analyzed with respect to these structures. Final sample sizes are

given in the respective figure captions.

General patterns of bacterial  distribution on artificial  and real leaves

The univariate pair correlation functions describe the

distribution  pattern  of  bacteria  of  the  same  type.

Bacteria  in  mixed-species  experiments  were

clustered at small scales up to 30 µm, but in some

asmples  aggregation  was  observed  up  to  80 µm

(Figure 15A).  At  these  larger  scales,  however,

bacteria  were  more  often  regularly  distributed.  In

combination, these results indicate that bacteria are

distributed  in  regularly  spaced  clusters.  When

considering  each  species  in  the  mixed-species

experiments separately, both species were similarly

distributed and consequently the curves (Figure 15B

and C) both resemble the curves for the species pool

in Figure 15A. When  P. agglomerans was the only

surface  colonizer  the  distribution  of  cells  was

qualitatively similar to the patterns described above,

however  at  scales  between  10  and  70  µm

aggregation  was  not  as  commonly  found  in  these

samples (Figure 15D). 
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Figure  14:  Bacterial  growth  on
artificial  leaf  surfaces.  When
P. agglomerans was the only species
applied to the surface (○), population
density increased about 21-fold within
72  hours  after  inoculation.  When
P. agglomerans and  P. syringae were
both  applied  to  the  surface  at
comparable  initial  concentrations,
both strains were similarly successful
in  reproducing  with  P. agglomerans
(□)  increasing  about  105-fold  and
P. syringae (×) by about 115-fold after
72 hours after inoculation. 
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The patterns of bacterial  distribution

in dual-strain experiments on artificial

leaves  qualitatively  resembled  the

distribution  on  real  leaves  under

comparable  conditions  reported  in

Chapter 4: On both surfaces a small-

scale  aggregation  and  a  larger  scale

regularity  was  observed  in  the

patterns.  Deviations  between  the

patterns on both surfaces were mostly

confined  to  outside  the  direct

neighborhood  of  cells,  i.e.  scales

larger than 10 µm (Figure 16). On this

intermediate  scale  (~10-70  µm),  the

study  of  bacteria  not  considering

species  revealed  that  bacterial

clustering  was  more  frequently

observed  on  artificial  leaf  surfaces

than on real leaves (Figure 16A). For

example,  on  artificial  leaves,

clustering  occurred  on  scales  up  to

70 µm in  over  55% of  the  samples

(Figure 15A), whereas on real leaves

clustering at  this  scale was found in

merely  5%  of  the  samples

(Figure 8A).  The  difference  of  over

50% can directly be read from the line

showing aggregation  in  Figure  16A.

The  difference  between  real  and

artificial  leaf  surfaces  can  be  traced

back  to  the  Pantoea cells  in  these

experiments  who  exhibited  very

similar  deviations  between  their

distribution  on  real  and  artificial
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Figure  15:  Frequency  of  intraspecific  aggregation
(yellow)  and scarcity (blue)  of  bacteria  on artificial
leaves across spatial scales. (A) Analysis of bacteria
irrespective  of  their  species.  (B)  Analysis  of
P. agglomerans in competition with  P. syringae.  (C)
Analysis of  P. syringae growing in competition with
P. agglomerans. (D) Analysis of P. agglomerans as the
sole  colonizer  of  the  artificial  leave.  Sample  sizes
were 48 in (A), 51 in (B), 45 in (C) and 61 in (D). 

Figure  16:  Differences  Fartificial -  Fleaf in  the  relative
frequency F of intraspecific aggregation (yellow) and
scarcity (blue) of bacteria on artificial and real leaves.
(A)  –  (D)  and  sample  sizes  were  the  same  as  in
Figure 15. 



leaves (Figure 16B). The P. syringae cells, however, exhibited much more aggregation on

intermediate scales on artificial surfaces compared to real bean leaves (Figure 16C). This

means that, although  P. syringae  was commonly clustered on both surfaces, cluster sizes

were smaller on real leaves (5-10 µm) and thus more strongly clustered than under similar

conditions on artificial leaves. When P. agglomerans was the only colonizer of the artificial

leaves, these cells were less aggregated at scales up to 40 µm, compared to real leaves

(Figure 16D).

Co-location of P. agglomerans  and P. syringae  on artificial  & real bean leaves.

The  bi-variate  inhomogeneous  pair

correlation functions  describe spatial

correlations  between  individuals  of

two different strains,  e.g.  P. syringae

and P. agglomerans.  On  artificial

bean  leaves,  P. agglomerans cells

aggregated  typically  within  20  µm

around  P.  syringae cells  and  vice

versa (Figure 17). This co-location of

individuals  of  both  species  was

almost  symmetrical  for  P. syringae

cells aggregating near P. agglomerans

cells  and  P. agglomerans cells

aggregationg  near  P. syringae cells

(Figure 17A and B). In about 70% of

our  samples  we  found  significant

aggregation  at  the  smallest  spatial

scale,  indicating  that  cells  of  both

species  can  be  direct  neighbors

forming  mixed  colonies  and

aggregates.  We  regularly  observed

this  also  directly  in  the  micrographs,  e.g.  in  the  center  panel  of  Figure  12.  The  co-

aggregation was usually not found to be significant at scales larger than 20-30 µm. Starting

at distances larger than 30 µm, there was a slight tendency of segregation between strains,

but this was typically observed in less than 20% of our samples.

58

Figure  17:  Relative  frequency  of  interspecific  co-
aggregation (yellow) and scarcity (blue) of bacteria on
artificial leaves across spatial scales. (A) Aggregation
of  P.  agglomerans around  P.  syringae.  (B)
Aggregation  of  P.  syringae around  P.  agglomerans.
Sample sizes were 45 in (A) and (B). 

Figure  18:  Differences  Fartificial -  Fleaf in  the  relative
frequency  F of interspecific co-aggregation (yellow)
and scarcity (blue)  of  bacteria  on artificial  and real
leaves. (A) and (B) and sample sizes were the same as
in Figure 17. 



On real leaves, the co-aggregation of P. agglomerans and P. syringae was observed at the

same spatial  scale  although slightly less  frequent  than on artificial  leaves  (Figure  18).

Interestingly, the weak segregation of the two strains at scales larger than 30 µm was a

phenomenon only observed on artificial leaves (Figures 17 and Figure 18).

Role of structural elements of the leaf surface on bacterial distribution

Grooves between epidermal cells (more precisely, the intersection points of grooves) were

the only surface structure of artificial  leaves  for which we found a clear effect on the

distribution  of  bacteria  (Figure  19A).  In  more  than  65%  of  our  samples,  we  found

significant  aggregation  of  bacteria  at  the  groove  intersection  points  suggesting  an

association of bacteria with the grooves in general. Aggregation was limited to distances of

15 µm away from the groove intersections. On real leaves, we found a strikingly similar

distribution  of  bacteria  near  grooves,  although  the  aggregation  was  somewhat  more

prevalent in samples from artificial leaves (Figure 20A).
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Figure  19: Bacterial  aggregation (yellow) and scarcity (blue) around structural  elements of the
artificial  leaf  surface.  (A)  Aggregation of  bacteria  near  intersection points  of  grooves between
epidermal cells. (B) Interactions with glandular trichomes. (C) Interactions with hooked trichomes.
(D)  and  (E)  Interactions  with  vein  cells.  (F)  Interactions  with  stomata.  In  (E),  we  used  the
inhomogeneous partial pair correlation function whereas in the remaining analyses, we used the
homogeneous partial pair correlation function. Sample sizes were 109 in (A), 31 in (B), 17 in (C),
24 in (D), 21 in (E) and 104 in (F).



We found no clear small-scale correlations between the location of bacteria and neither

glandular trichomes (Figure 19B) nor hooked trichomes (Figure 19C). This was different

from real leaf surfaces, where an aggregation of cells was observed within 120 µm and

more around both types of trichomes (Figure 20B and C). 

In less than 20% of our artificial leaf samples, we found bacteria aggregating near veins

(Figure 19D) and no such effect was observed when we accounted for the inhomogeneous

distribution of vein cells (Figure 19E). Not considering the inhomogeneous distribution of

vein cells allowed no differentiation between bacterial distribution patterns near veins on

artificial  and real  bean leaves  (Figure 20D),  whereas  accounting for this  heterogeneity

showed that the weak aggregation of bacteria within 100 µm around vein cells found on

real leaves was absent from artificial surfaces (Figure 20E).

Stomata had no effect on the distribution of bacteria in our experiments on artificial leaf

surfaces (Figure 19F) whereas a repulsion of cells from these structures was observed on

real bean leaves (Figures 20F and Figure 10B, p. 42).
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Figure 20: Differences Fartificial leaf – Freal leaf in the relative frequency of bacterial aggregation (yellow)
and scarcity (blue) around structural elements of the artificial leaf surface. (A) – (F) and sample
sizes were the same as in Figure 19. 



Discussion

The  distribution  patterns  of  bacteria  colonizing  our  artificial  leaf  surfaces  generally

resembled the distribution of bacteria found on real leaves. The bacteria mostly formed

loose aggregates with only few areas with colonies of adjacent bacterial individuals and a

frequent  occurrence  of  single individuals  in  the wide areas  between aggregates.  These

general patterns have been frequently reported for bacteria colonizing leaves (Kinkel 1997;

Leveau and  Lindow 2001;  Monier  and Lindow 2004;  Remus-Emsermann  et  al. 2014;

Esser  et  al. 2015).  The similarity between bacteria colonizing real and artificial  leaves

illustrates the ability of micro-molded PDMS surfaces to mimic the physical properties of

natural environments such as the topography. Zhang  et al. (2014) recently showed that

artificial spinach leaves made from PDMS not only capture the topography but also closely

mimic wettability of the real leaves. This predestines PDMS for the replication of plant

leaves and other similarly hydrophobic surfaces but coating of PDMS surfaces with an

appropriate surfactant (if not produced by the microbes) may open avenues towards a wide

variety of artificial surfaces to be colonized by microbes.

Of all correlations considered in our study, the aggregation of bacteria around the grooves

between epidermal cells  was the most remarkable.  On both surfaces, real and artificial

bean leaves, bacteria aggregated closely to these structures and the distance decay of this

aggregation away from the grooves was very similar both in shape and range (~15 µm)

(Figures  19A,  20A and  10A). This suggests that this important plant microbe interaction

that has been frequently reported in the literature (Diem 1974; Blakeman 1985; Davis and

Brlansky 1991; Leveau and Lindow 2001; Monier and Lindow 2004; Esser et al. 2015) can

be  explained  by  the  topographic  properties  of  the  leaf  surface  without  the  need  of

additional leaf biological processes such as increased nutrient leaching near grooves. Two

mechanisms come to  mind:  It  is  reasonable  to  assume that,  under  dry conditions,  the

deeper  grooves  between  epidermal  cells  retain  more  water  from evaporation  than  the

exposed epidermal cell tops, e.g. by capillary forces. Under such conditions, the grooves

may serve as a protected habitat  and, at  the same time, concentrate nutrients from the

evaporating  solution.  The  other  probable  mechanism  is  based  on  the  fact  that  small

particles in solution move slower near surfaces than in the open liquid phase (Dusenberry

2008). Grooves between epidermal cells constitute locations of high surface density, i.e.

there is more leaf surface per liquid volume compared to the top of an epidermal cell or the

tip of a hooked trichome. Assuming a random movement of motile bacteria, these cells
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would thus get stochastically entrapped within the grooves.

In  contrast  to  the  grooves  between epidermal  cells,  the  differences  in  the  aggregation

patterns of bacteria around glandular trichomes on real and artificial leaves suggest that an

additional  leaf  biological  process  is  required  to  explain  the  patterns  observed  on  real

leaves.  It  is  important  to note that  the analysis  of real  and artificial  leaf surfaces with

spatial statistical methods only allow an assessment of the nature of the processes that

determine  bacterial  distribution  in  the  phyllosphere,  i.e.  differentiating  physical/

topographical  effects  from leaf  biological  effects.  They do  not  prove  the  presence  or

importance  of  specific  processes  such  as  the  secretion  of  nutrients  from  trichomes

(Ascensão and Pais 1998) or the retention of water droplets to the leaf surface  (Brewer,

Smith and Vogelmann 1991). Consequently,  the absence of spatial correlations between

bacteria and hooked trichomes, veins and stomata on artificial leaves (Figure 19C, E, and

F) also suggests that  such correlations observed on real leaves (Figure 10D, F,  and B,

respectively) are mediated by leaf biological processes but not topographic effects. The

exact leaf biological processes that caused these spatial correlations remain nevertheless

unknown.  Spatial  point  pattern  analysis  of  distribution  patterns  of  surface-colonizing

microbes is a tool for exploratory studies that can reveal the relative importance and spatial

scales of unknown microbial interactions. The true mechanism behind these interactions

remain to be revealed by complementary analysis. In our study, for example, we isolated

the effect of leaf topography from leaf biological processes by comparing the colonization

patterns of bacteria on leaves and biomimetic artificial leaf surfaces. Similarly, knock-out

studies  could  be combined with spatial  point  pattern analyses  to  isolate  and study the

effects  and  spatial  scales  of  known physiological  processes,  e.g.  biofilm formation  or

antimicrobial resistance, on bacterial colonization of surfaces.

In our study we established that topography is the main driver of bacterial aggregation near

grooves  and found that  the  aggregation  of  bacteria  near  trichomes  and veins  (and the

avoidance  of  stomata)  involve  additional  leaf  biological  processes.  Consequently,  the

general distribution patterns of bacteria on artificial  leaf surfaces,  at  least  around these

structures, needs to be different from the distribution on real leaves. On both surfaces the

bacteria were aggregated on small scales. However on intermediate scales (10-70 µm), we

observed additional aggregation more frequently on artificial leaves than on the real leaves

(Figure  18).  This  was  an  unexpected  result  considering  the  fact  that  larger  scale

aggregation patterns around trichomes and veins were only observed on real bean leaves
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(Figure  10)  and  that  these  patterns  should  also  occur  in  the  intraspecific  distribution

analysis (Figure 15). Instead, at these scales, we found additional intraspecific aggregation

on artificial leaves where the aggregation around trichomes and veins was not active. This

is probably due to the fact that population densities on artificial leaves were about 20 times

higher  than  in  our  experiments  on  real  bean leaves  (Esser  et  al. 2015).  Probably,  the

fructose levels added to the M9 medium in the experiments on artificial leaves were at

higher concentrations than the sugar availability on natural leaves or more homogeneously

distributed.  The  population  densities  found  on  artificial  leaf  surfaces  did  not  exceed

population densities of 106 to 107 cells/cm2 that have been reported for typical leaves

(Lindow and Brandl 2003) but it is valid to assume that the higher colonization rates on

artificial leaves result in larger bacterial aggregates and thus in larger scales of significant

clustering compared to the less densely populated real bean leaves from our earlier our

experiments (Esser  et al. 2015). The fact that the bacterial aggregation near grooves was

limited to about 15 µm around grooves on both surfaces however suggests that the larger

colonies stretch out along the grooves rather than growing into more distant regions away

from the grooves. This would also explain the differences in the co-aggregation of our two

model strains on real and artificial leaf surfaces, i.e. an equal co-aggregation at scales up to

15 µm but more prevalent co-aggregation at larger scales up to 60 µm on the artificial

surfaces (Figure 18). In our opinion, the development of larger colonies along the grooves

is  evidence  that  topographical  effects  can  overrule  other  bacterial  pattern  formation

processes such as clonal growth or the formation of an extracellular matrix. By extension,

this has to be true also for bacterial colonization of some other biological, environmental,

or  technical  surfaces.  At  least,  it  illustrates  that  micro-topographic  effects  have  to  be

considered to fully understand microbial surface colonization.
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Abstract

Spatial  studies  in  ecology often  involve entities  such as  individuals,  nests,  colonies  or

small resource patches whose locations in space are regularly approximated by a single

point coordinate. Spatial correlations and interactions between these point-like objects are

frequently studied relying on a rich body of spatial point pattern analysis tools such as the

pair correlation function. Nevertheless, there exists a wide variety of spatial objects that are

better described by a pattern of lines, e.g. roads, streams, geological faults, or cracks. The

analysis of effects of such linear structures on the distribution of point-like objects has

received considerably less attention, both in theory and application. Here, we introduce the

line-to-point  pair-correlation  function  (LPPCF)  as  an  extension  of  the  pair  correlation

function. The LPPCF is able to detect effects of linear objects on the location of point-like

entities, it identifies the spatial scale at which these effects operate, and determines if they

are of an attracting or inhibiting nature. We present several types of LPPCFs which only

differ  in the definition of the distance between a point  and a line.  We further propose

estimators for the LPPCF based on four different line-to-point distances. We demonstrate

the performance of our method by using (a) artificially generated point- and line- patterns

and (b) the data sets of bacterial colonizers on bean leaves from Chapter 4. The line-to-

point pair-correlation function will  help ecologists  to better  understand how the spatial

distributions of organisms are affected by linear structures such as roads, streams, hedges

or other types of ecotones.
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Introduction

In ecological studies, the distribution of individuals and objects are routinely approximated

by spatial point patterns where each point represents the location of an individual or object.

The sum of these locations forms a point pattern and each observed point pattern is then

seen as one realization of a spatial process that created the pattern. The analysis of such

point  patterns  may  therefore  allow  insights  into  the  mechanics  of  biotic  and  abiotic

interactions. Consequently, the analysis of spatial point patterns has become increasingly

important in ecology. It has been widely used to study the distribution of individuals in a

population  (Law  et al. 2009; Miller  et al. 2010; Murphy and McCarthy 2012) and the

interactions between individuals of different age classes (Franklin and Santos 2011; Pillay

and  Ward  2012) or  individuals  from different  taxonomic  groups  (Schurr  et  al. 2004;

Wiegand et al. 2007).

Within the field of spatial point pattern analysis, so-called second-order summary statistics

such as Ripley's K function (Ripley 1976), its widely used transformation, the L-function

(Besag 1977) and its  derivative,  the pair  correlation function  (Stoyan and Ohser 1982;

Stoyan and Stoyan 1994) constitute a class of especially powerful tools to describe and

analyze point patterns  (Wiegand, He and Hubbell 2013). All these methods analyze the

frequency distribution of the distances between the points of the same type (univariate

case)  or  between points  of  two different  types  (bivariate  case)  and relate  them to  the

expected distribution given a predefined null model. The most common null model used in

such  analyses  is  complete  spatial  randomness  (CSR),  where  all  points  are  randomly

distributed in space and independent from the location of other points. The comparison of

observed inter-point distances and the distances predicted by the null  model  allows an

assessment  of  certain  classes  of  inter-point  distances  being  uncommonly  abundant  or

scarce compared to the null model. In case of the CSR-model this then translates to the

points in the pattern being aggregated or scarce at the corresponding spatial scales.

Often in ecology, the location of point-like entities such as individuals, colonies, or nests

may not so much be affected by the location of other point-like objects of the environemnt

but by the presence of linear structures such as roads, streams, hedges, or cracks in parched

soil. Our  interest  in  this  topic  was  motivated  by  a  problem  from  microbial  ecology.

Bacterial plant leaf colonizers (Figure 21) are known to settle close to or within grooves

between  epidermal  cells  of  the  leaf  surface  (Diem 1974;  Blakeman  1985;  Davis  and
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Brlansky 1991; Leveau and Lindow 2001; Monier and Lindow 2004; Esser  et al. 2015),

but the exact scales of these interactions are unknown. The grooves can be represented by a

pattern of straight line segments that form a complex network.

Compared to spatial point pattern analysis,

only little attention has been spent on the

analysis  of  interactions  between  a  point

pattern  and  a  line  pattern.  Nevertheless,

there  exists  some  literature  on  the

statistical  theory of  interactions  with  line

patterns (Mecke and Stoyan 1980; Stoyan,

Mecke and Pohlmann 1980; Mecke 1981;

Stoyan  and  Ohser  1982;  Stoyan  1984;

Heinrich  and  Schwandtke  1990;

Krasnoperov  and  Stoyan  2004;  Weiss,

Ohser and Nagel 2011). With some of this

work  originating  in  material  science,

interactions  with  linear  structures  were

often  referred  to  as  fibre  processes,

although  this  term  may  not  be  intuitive

within an ecological framework. These studies presented measures that describe second-

order properties of line patterns and in few cases cross-correlations between different line

patterns. A comprehensive overview is given in Chiu et al. (2013, chapter 8). For example,

Stoyan and Ohser  (1982) proposed a wide variety of cross-correlation measures to study

the interactions between random sets and introduced three estimators which analyze the

cross-correlation between a point process and a fibre process. However, these estimators

have several drawbacks such as being computationally intensive and difficult to handle in

application.

The Berman-Test (Berman 1986) is another tool used to confirm the association of a point

pattern with other geometrical structures, such as points, lines or areal objects. It is based

on the shortest distance between a point of the point pattern to the nearest spatial object

and is therefore 'short-sighted' as it does not include objects that are further away than the

nearest neighbor. Similarly the Nearest Neighbor Distance method (Okabe and Fujii 1984)

also is a short-range method. Finally, Foxall and Baddeley (2002) introduced an adaption
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Figure  21:  Microscopic  view  of  a  bean  leaf
surface  with  bacterial  colonizers  carrying  red
(Pseudomonas  syringae)  and  green  (Pantoea
agglomerans) fluorescent markers. All bacterial
cells  sit  in  puzzle-piece  shaped  grooves  that
developed at the margins of leaf epidermal cells.
Scale bar is 50 µm.



of  the  J-function  (van  Lieshout  and  Baddeley  1996),  a  normalized  nearest-neighbor

distance distribution function. Bedford and van den Berg (1997) argue that the J-function

may find a random distribution of points around the line pattern despite of the presence of

interactions. Although this is a common problem of summary characteristics, those which

have memory, such as the  J-function, are more prone to this type of error  (Wiegand and

Moloney 2004).

In this paper, we propose the line-to-point pair correlation function (LPPCF), a method to

examine the influence of a linear structure on the distribution of point-like objects in its

vicinity.  It incorporates the benefits of non-cumulative, second-order summary statistics

and  also  studies  spatial  scales  beyond  nearest-neighbor  distances.  Furthermore,  our

approach suits the common practice to approximate linear structures by a set of straight

line segments. As an extension of the pair-correlation function, the LPPCF evaluates the

number of points in a neighborhood of a line segment in the line pattern. We can make

inferences about the nature of the underlying processes (aggregation or scarcity of points

near linear structure) and about the spatial scale at which these processes operate. We also

present several estimators for the LPPCF. We then illustrate the principle of our method in

several simulation studies. Finally, we apply the LPPCF to the patterns of leaf-colonizing

bacteria on bean from Chapter 4.

Materials and Methods

The l ine-to-point pair correlation function (LPPCF)

In the following, we introduce the line-to-point pair correlation function for patterns in

two-dimensional space (IR2) which is the most important case in application. Nevertheless,

LPPCFs can be derived for higher dimensions, accordingly, using existing estimators of the

partial pair correlation function.

Let Φp be a stationary point process on IR2. The intensity λp of the point process equals the

expected number of points per unit square. A point pattern φp is one realization of this

process observed inside an observation window W. Furthermore, xp denotes the p-th point

in φp and we write  np = Φp(W) for the number of points in the observation window. The

area of W is denoted by |W|.

Similarly, we define Φl to be a stationary line process and the line pattern φ l to be one

observed realization of this line process inside the observation window W. Then xl denotes
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the l-th line in the line pattern. Its length is denoted by |xl|. The intensity of the underlying

line process is denoted by λl and equals the expected total line length per unit square. The

number of lines that have at least one point in W is denoted by nl. The total length of all

line segments in W is given by Φl(W). 

We first describe the concept of pair correlation functions for a single point pattern φp. If

we consider two infinitesimally small discs centered at locations  x1 and  x2 with areas  dx

and dy, respectively, then ϱ(x1, x2)dxdy gives the probability to find one point of the point

pattern in each of the two discs (Stoyan and Stoyan 1994). The term ϱ(x1, x2) is called the

second-order product density.  As Φp is assumed to be stationary,  the product density is

independent  of  the  locations  of  the  points  x1  and  x2 themselves  and  depends  on  their

distance h, only:

The  pair  correlation  function  (Stoyan  and Ohser  1982;  Stoyan  and  Stoyan  1994) is  a

normalization of the product density and is defined as

 .

Interactions  between  the  points  of  two  different  point  processes  Φp and  Φq can  be

characterized  by  the  partial  pair  correlation  function  (also  termed  cross-type  pair

correlation function) which is defined as

 .

Here, ϱpq(h)dxdy gives the probability to find a point of type p in an infinitesimally small

disc of area dx and a point of type q in a similar disc of area dy and the distance between

the centers of the two discs is h (Stoyan & Stoyan 1994). Both pair correlation functions

(Eq.  6.2 and Eq.  6.3)  share  the  property that  g(h)  = 1 when there  are  no interactions

between the points at scale h. Values g(h) > 1 indicate an aggregation of points at scale h

whereas values g(h) < 1 indicate a scarcity of points.

Our LPPCF is based on the partial pair correlation function (Eq. 6.3). We write:

There are two important aspects to be considered compared to the partial pair correlation

function: Firstly, the line density λl is given in length per square unit compared to number
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of points per square unit for λp. Secondly, the product density ϱlp(h) can only be formulated

for  a  single  point  on  a  line  but  not  for  the  line  as  a  whole.  Most  importantly,  the

formulation of a LPPCF depends on how the distance  d(xl,xp) between the line and the

point is defined. This is actually true for any pair correlation function that one would like

to formulate for patterns of spatial objects other than points, i.e. lines, areas, or volumes.

Once  an  appropriate  distance  measure  is  selected,  we  can  estimate  the  LPPCF.

Analogously  to  Illian  et  al.  (2008,  p.  282),  we  use  the  estimator  for  the  partial  pair

correlation function and write

for h > 0, where k(∙) is a kernel function, typically a box kernel or the Epanechnikov kernel

(Illian et al. 2008). Wx denotes the translated observation window .

The term  is therefore the weight of the translational edge correction (Illian et

al. 2008), where   is a midpoint of the  l-th line segment. The midpoint is not uniquely

defined, e.g. it could be the center of gravity of the line segment or a point halfway running

along the line segment. In our examples, where all lines are straight line pieces, both points

are identical. For the intensities we used the standard estimator (Illian et al. 2008, p. 189)

and , respectively.

A possible choice for the line-to-point distance d(xl, xp) is the distance from the focal point

to the mid-point of the line.

. 

This way, the line pattern is reduced to a point pattern (of mid-points) and the partial pair

correlation function (Eq. 6.3) can be applied. Unfortunately, this approach loses most of

the information from the line pattern. If we choose the distance between the point and the

nearest point on the line xmin,l,p,

.

more information might be preserved because potentially any point   can be  xmin,l,p,

depending on the configuration of the points in φp.

Since the purpose of the LPPCF is to analyze the effect of a line  xl on the location of a

point xp in space, it might be reasonable to assume that any part of the line, i.e. every point

, affects the point  . Furthermore, the strength of this effect may depend on the
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distances between the points   and . These aspects are not covered by any of the

above approaches.  To account  for  all  points  on a  line,  we suggest  the  use  of  average

distances   between a line and a point. Now, at least one point  xl' on the line segment

exists for which .

gives the average distance between the point and the line segment.

Alternatively, we can define a distance-dependent potential , which describes

the effect of the point  on the location of . Then, the average distance between the

line and the point is given by

Choosing Ulp(d) = d-1, the distance measure in Eq. 6.6d gives values closer to dMIN, whereas

dMEAN generally gives larger values than dMIN. Therefore, Eq. 6.6d is the distance measure

that uses most information from the line pattern while being still biologically interpretable.

The  explicit  formulas  for  dMEAN and  dPOT are  derived  in  the  Supplementary  Materials

section S6.1 at the end of this thesis. The implementation of the LPPCF-methods in our R-

package  lppcf is  described  in  the  Supplementary  Section  S6.2.

Evaluation of the l ine-to-point pair correlation function in a simulation study

In a simulation study, we tested the four different types of LPPCFs presented above, i.e. the

functions based on dMID, dMIN, dMEAN and dPOT. The goals of the simulation study were: (a) to

establish  that  the  LPPCFs  give  the  expected  results  when  points  are  attracted  by,  or

repulsed from a line pattern, (b) to study the behavior of the LPPCFs depending on how

well a line pattern is approximated by a set of straight line segments and (c) to compare the

behavior of the 4 types of LPPCFs to each other.

The general behavior of the four LPPCFs was tested using an artificial line pattern within a

unit square observation window (Figure 22, p.  74, left column). The line pattern forms a

network of sine-shaped lines, similar to the grooves between epidermal cells of bean leaves

(cf.  Figure 21) The distance between parallel sine-waves was 0.2 units such that the cell

centers are about 0.1 units away from the closest line. We constructed 5 different point
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patterns based on this line pattern representing different probable interactions between the

points  in  the  point  pattern  and  the  lines: The  first  point  pattern  (Figure  22A)  was

constructed  with  the  points  aggregating  closely around the  line  pattern.  In  the  second

pattern (Figure 22B), points were designed to aggregate in a buffer zone at distance 0.03-

0.05 units from the line pattern. In the third pattern (Figure 22C), the points followed a

random  distribution  that  was  not  affected  by  the  presence  of  the  lines.  Pattern  4

(Figure 22D) was constructed such that the points follow a random distribution except for

avoiding a buffer zone 0.02 to 0.04 units from the closest point on a line segment. This

pattern can be seen as the inverse of the point pattern in Figure 22B, with slightly different

parameters for the buffer zone. Finally in pattern 5 (Figure 22E), the points were designed

to actively avoid the line pattern.

We calculated the four different LPPCFs for each of the five point patterns and chose to

use no smoothing of the results (bandwidth of the Epanechnikov kernel = 0) in order to not

loose any deviations between the 4 types of LPPCFs. 

Mode of segmentation

The line pattern in our examples (Figures Figure 22A-E) represent sets of continuous (sine)

curves  that  were  approximated  by sets  of  straight  line  pieces  or  'segments'.  This  is  a

common practice in geographical information system (GIS) applications but often it will be

difficult to justify the choice of segment lengths or, more broadly speaking, the resolution

that was chosen for the approximation. Nevertheless, one has to consider this segmentation

issue when working with LPPCFs. Obviously, the average distance between a point and a

line segment dMEAN, for example, will increase with segment length |xl|, even if the shortest

distance  between  the  point  and  the  line  segment  dMIN stays  constant.  The  finer  the

resolution of the segmentation process, the shorter are the final line segment lengths and

the closer the results of the four LPPCF modes will be. For the estimator based on dPOT this

effect is less severe than for dMEAN because distant points of the line segment get smaller

weights  when calculating this  other  type of average distance.  Values for  dPOT will  thus

always be closer to dMIN in the first place. In order to assess the effect of segmentation, we

used different approximations (‘inadequate’, ‘adequate’, ‘fine’, see  Figure 23, p.  75, left,

center,  and right,  respectively)  of the line pattern used in  Figure 22 and calculated the

LPPCFs for the point pattern from Figure 22A (aggregation of points near the lines). We

chose  this  point  pattern  because  it  has  the  shortest  line-to-point  distances  (dMIN)  and
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therefore is most prone to the effect of long line segment lengths. Moreover in our analyses

in Figure 22, it yielded the most dynamic LPPCFs and should therefore be suited best for

capturing changes due to a coarse segmentation resolution. The segment lengths in the

three line patterns were smaller than 0.091 units in the inadequate pattern, smaller than

0.051 units in the adequate pattern, and smaller than 0.004 units in the fine pattern.

Application: Bacteria on plant leaves

In Chapter 4, we considered the spatial scale of the aggregation of leaf-colonizing bacteria

near grooves between leaf epidermal cells (see also Esser et al. 2015). We combined point

location data of the bacteria on leaves and intersection points of the linear grooves in a

spatial analysis using the partial pair correlation function. Although this approach proved

useful,  strictly  speaking  it  only  confirmed  the  aggregation  of  bacteria  near  groove

intersections which is less intuitive and biologically less meaningful than considering the

aggregation near the full pattern of  linear grooves. This was the main motivation behind

the development of the LPPCF. It can be discussed with respect to the groove lines instead

of only groove intersection points. We ‘field-tested’ the LPPCF by analyzing the bacteria-

groove data sets from Chapter 4. We manually extracted the line patterns from the source

images using ImageJ software (Schneider, Rasband and Eliceiri 2012) and transformed the

data into the linnet-format, native to the spatstat package for R (Baddeley and Turner 2005;

R Core Team 2013). The distribution of segment lengths were approximately log-normal

(not shown) and we decided not to cut them into smaller pieces. We only calculated gMIN

and  gPOT because we consider these to be the most intuitive and biologically meaningful

modes  of  the  line-to-point  pair  correlation  function.  We  chose  a  bandwidth  of

epan.scale = 4 µm for Epanechnikov kernel smoothing (Eq. 6.5). We compared the results

to those of Chapter 4, where we calculated partial pair correlation functions of bacteria

near groove intersection points as an approximation of the groove pattern. Additionally, we

tested a recommendation of Stoyan and Ohser (1982) to approximate the groove pattern by

a pattern of points randomly distributed  on the line pattern and then calculate the partial

pair correlation function for these two patterns. All pair correlation functions were tested

for significance using 95% simulation envelopes from 199 simulations (Kenkel 1988). We

used toroidal shifts  (Dixon 2002) of the bacterial  patterns,  a null  model which is  well

suited for testing for independence between two patterns (Wiegand and Moloney 2014).
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Results

Abil ity of LPPCFs to correctly describe spatial  correlations

We discuss the four methods collectively because the results were very similar for all four

methods except for some deviations at very small spatial scale h (Figure 22, right column).

Another exception is the  MEAN-method where  gMID(h) always approached 0 as scale  h

approaches 0. This behavior was expected because the mean distance between a straight

line segment and a point sitting on the line segment lies between one quarter and one half

of the length of the line segment. Consequently, only non-zero point-line distances exist

with the MEAN methods and consequently gMID(h) = 0 for h → 0.

The  point  pattern  in  Figure  22A was  constructed  with  the  points  aggregating  closely

around  the  line  pattern.  The  aggregation  was  visible  in  the  respective  LPPCFs  in

Figure 22F up to a scale of about 0.05 units and, because of the regularity in the pattern,

again at spatial scales of 0.2 and 0.4 units. The scarcity of points at scales in between

indicates the empty areas between the lines, i.e. the centers of the 'plant epidermal cells'

(Figure 22A and F).

In the second pattern (Figure 22B), points aggregated in a buffer zone at distance 0.03-0.05

units from the line pattern, indicated by the peaks in  Figure 22G around 0.05 units. The

expected scarcity at  scale  h = 0.1 units ('epidermal cell'  centers)  was not observed. At

scales 0.16 – 0.28 units, we observed an alternating pattern of aggregation, scarcity and

aggregation, which very well described the aggregation near and scarcity at the nearest

parallel sine wave, i.e. the periodicity in the pattern. The fact that the scarcity was not

highest at 0.2, as one would expect, can be accounted to the dominance of diagonal line-to-

point distances, i.e. distances between a line segment to points non-perpendicular to the

sine wave of the line segment and aggregating near a parallel sine wave. These distances

will  always  usually  be  larger  than  0.2  units.  Even  at  a  scale  of  about  0.4  units  the

periodicity of the pattern was visible (Figure 22G).

In the third pattern (Figure 22C), the points followed a random distribution that was not

affected by the presence of the lines. As expected, glp(h) ≈ 1 for all h for all four methods

(Figure 22H). Again, the only exception was the MEAN method at very small scales.
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Figure 22: Artificial line patterns and point patterns in a unit square (left column). Points are (A)
aggregated close to the lines, (B) aggregated at a certain distance away from the lines in the pattern,
(C) randomly distributed, (D) scarce at distances 0.02-0.04 units from the line pattern, and (E)
avoiding the line pattern.  F-J: line-to-point pair correlation functions of the point patterns in A-E
based on distances of the points to the mid-point of each line segment (dMID, black), the shortest
distance to each line segment (dMIN, red), the average distance to every point on a line segment
(dMEAN, green), and distances based on the potential effect of each point of a line segment ( dPOT,
blue).



In pattern 4, the points were designed to avoid a buffer zone 0.02 – 0.04 units distant from

the lines. To the human eye the scarcity of points in this buffer zone is not obvious. All four

LPPCFs, nevertheless, suggest a scarcity of points at a spatial scale of about 0.04 units

(Figure 22I). The LPPCFs, however, detected an aggregation of points at the lines. This is

the consequence of how we constructed the pattern by thinning a CSR pattern only within

the buffer zone. This reduced the overall point density of the pattern such that the local

point densities in the buffer zone was decreased while at the same time it was increased

outside the buffer zone when compared to the overall intensity. A close look at the LPPCFs

between scales 0.0 and 0.2 units exactly reveals the designed point distribution with two

local minima at the scales of the buffer zones.

Finally, for pattern 5, where the points actively avoided the areas close to the lines, all four

LPPCFs capture this behavior very well and also unveiled the regularity in the pattern at

scales that are manifolds of 0.2 units (Figure 22J).

Mode of segmentation

The inadequate approximation of the line pattern (Figure 23, left) caused the  LPPCFs to

overestimate the strength of point aggregation compared to the finer patterns, (Figure 24).

This does not need to be a general bias but could be an effect of how the line pattern was

changed  by  this  particular  (inadequate)  approximation.  The  adequate  line  pattern

(Figure 23, center) produced results very similar to the fine line pattern (Figure 23, right,

and Figure 24). Deviations were small and probably the result of the 'fine' LPPCF being

more smooth due to the larger number of line segments in this pattern.
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Figure  23: Different approximations of the line pattern in  Figure 22. The approximations can be
considered as 'inadequate' (left), 'adequate' (center) and 'fine' (right). The effect of the quality of
these approximation was assessed with analyses presented in Figure 24.



Bacteria on plant leaves

The performance of our LPPCFs based on the distances dMIN and dPOT in comparison to the

results from Chapter 4 and the method proposed by Stoyan & Ohser  (1982) revealed the

superior sensitivity of the LPPCFs over the other methods in detecting spatial correlations

between the points in a point pattern and the lines in a line pattern (Figure 25). Whereas

our approach in Chapter 4 found significant aggregation of bacteria near grooves only in

47.1% of our samples, the LPPCFs had detection rates of almost 80% (Figure 25, left). The

method proposed by Stoyan and Ohser (1982) performed intermediate with a detection rate
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Figure  24:  Analysis  of  the  effect  of  inadequate  line  pattern  approximation  using  inadequate,
adequate, and fine segmentation of the line pattern (Figure 23). A: line-to-point pair correlation
functions (LPPCFs)  based on  dMID.  B:  LPPCFs based on  dMIN.  C:  LPPCFs based on  dMEAN.  D:
LPPCFs based on dPOT.



of 57.5% (Figure 25, left). Similarly the detection rates for bacterial scarcity on the tops of

leaf epidermal cells (scales 15-40 µm) were much higher for the LPPCFs (41.4% for gMIN

and 36.5% for  gPOT) compared to the Stoyan and Ohser method (17.9%) and our results

from Chapter 4 (9.6%).

Of particular interest are the quantum plots (colored bars) in Figure 25, which indicate at

which scales the four methods found significant aggregation (or scarcity) in more than 5%

of the samples. Obviously, there is much agreement between the four methods about the

maximum spatial scale up to which grooves between leaf epidermal cells attract bacterial

individuals.  Thus,  the  major  advantage  of  our  LPPCFs  is  not  so  much  an  increased

precision in the scales of spatial correlations between points and lines but in the sensitivity

for  detecting  such  correlations.  Furthermore,  the  LPPCFs  gave  some  indication  of  an

aggregation of cells at distances larger than 60 µm which is in good agreement with the

typical size of leaf epidermal cells. This suggests that LPPCFs are able to detect larger

scale aggregation caused by a regularity in the line pattern – information that the two other

approaches in  Figure 25 did not provide and that can also not be detected by nearest-

neighbor distance-based methods such as the J-function (van Lieshout and Baddeley 1999)

or the Berman test (Berman 1986).

Discussion

In this paper, we presented an adaption of the partial pair correlation function that can be
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Figure  25: Detection rate of significant aggregation (left) and scarcity (right) of leaf-colonizing
bacteria at distance  h from grooves between leaf epidermal cells. Our new LPPCFs  gMIN(h) and
gPOT(h) are compared to the results in Chapter 4 (Esser  et al., 2015) and a method proposed by
Stoyan and Ohser (1982, cf. main text). The broken line is a threshold line for the quantum plots
(colored bars) that outline the scales at which the 4 methods detected significant aggregation and
scarcity in more than 5% of the samples.



applied to study spatial correlations between the points in a point pattern and linear spatial

structures. What sets it apart from existing tools such as the J-function (van Lieshout and

Baddeley 1999) or the Berman test  (Berman 1986) is the fact that it is able to analyze

spatial scales beyond the distance to the nearest point on the closest line segment. Also our

estimators are inherently more stable than the estimators suggested for Stoyan & Ohser's

k12 and c12 functions (Stoyan and Ohser 1982). We presented four estimators for our line-

to-point  pair  correlation  function  (LPPCF)  that  only  differed  in  the  definition  of  the

distance between a point and a line. Under homogeneous conditions, all four estimators

gave almost identical results (Figure 22). In application, such high degrees of homogeneity

cannot  be  guaranteed  and the  differences  between the  estimators  become more  visible

(Figure 25). On the one hand this provides the opportunity to study various aspects of

point-line correlations since the four estimators can reveal different information about the

patterns. On the other hand it raises the question of how to deal with heterogeneity in line

patterns.

Further studies that apply LPPCFs are needed to develop a more in-depth understanding of

what  the  different  distance  modes  tell  us  in  ecological  practice.  Our  function  gMIN is

probably the most intuitive one because it is based on the distance from a point to the

closest  points  on  the  line  segments.  This  line-to-point  distance  is  commonly  used  in

practice, e.g. in geographical information systems. The estimation of the function  gMID is

computationally the most  efficient  one because the midpoint  of  a  segment  is  easier  to

determine than the point closest to a target point in the point pattern which is required for

gMIN.  The  estimation  of  the  remaining  functions  gMEAN and  gPOT,  while  being

computationally more demanding, has the advantage that both functions use much more

spatial information contained in the line pattern than the other two functions. Although

gMEAN has the more intuitive definition compared to  gPOT, given that  dMEAN is the average

distance between a point of the point pattern and every point on a line segment, it will

usually be biologically less meaningful. It assumes that every point on the line segment has

an equally strong effect on the location of points in the point pattern,  regardless of its

distance to the points. The estimator thus gives overly much weight to distant points on the

line segment and the therefore dMEAN takes values considerably larger than dMIN. Probably

the best estimator for the LPPCF in application is  ĝPOT. It uses all the spatial information

contained in the line pattern but gives most weight to distances close to dMIN. That means

that it gives most weight to the points of the line segment that are closest to the point in the
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point pattern. We expect these points of the line segment to have the greatest effect on the

point  pattern  in  most  applications  and  therefore  suggest  that  gPOT is  the  LPPCF  that

captures correlations between a point pattern and a linear structure the best.

Despite  the  promising  results  presented  above,  the  issue  of  the  mode of  segmentation

(Figures  23 and 24) has not been fully resolved yet. The more straight line segments are

used to approximate a curve-like structure in reality, the more similar the four modes of

LPPCFs will be. The resolution of the segmentation will be limited by the computational

power available  and thus  is  rather  arbitrary.  One step towards reducing this  ambiguity

could be to group line segments into well defined segmented curves and average or sum

the  line-to-point  distances  across  this  segmented  curve.  In  our  examples  (plant  leaf-

colonizing bacteria) such a well defined segmented curves could be the strings of segments

connecting the groove intersection points used in Chapter 4. Then not the distance between

a bacterium and a groove segment would be calculated but the distance to the segmented

curves.  The  formulation  of  such  a  curve-based  line-to-point  pair  correlation  function

should be subject to future research.

In summary, we expect the line-to-point pair correlation functions to fascilitate the study of

spatial correlations between point-like and linear objects in ecology as well as in a wide

variety of other fields. In particular, the LPPCFs based on dMIN and dPOT will play a central

role in such endeavors.
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Chapter 7 – Consolidated discussion

The key goal of this dissertation was a quantitative, scale-specific description of bacterial

colonization patterns on plant leaves directed at establishing an approach for untangling the

multitude  of  concurrent  interactions  between  bacteria  and  their  environment.  While  a

detailed identification and description of these interactions will require continuous future

research efforts, the present study illustrates how spatial point pattern analysis can be used

for  this  task  and  at  the  same  time  presents  important  fundamental  principles  of  how

bacteria interact with their phyllospheric environment.

Most  importantly,  we  showed  that  the  bacterial  leaf  colonizers  interact  with  their

environment at different spatial scales and were able for the first time to quantify these

scales.  Moreover,  the  bi-variate  spatial  point  pattern  analyses  also  allowed  for  the

differentiation  of  concurrent  interactions  that  act  at  similar  spatial  scales  such  as  the

aggregations of bacteria near glandular and hooked trichomes which both occured at scales

up to 100-120 µm. This showed that the bi-variate spatial point pattern analysis of large

numbers  of  patterns  allows  for  a  differentiation  of  multiple  concurrent  effects.  It  is

especially this  last  aspect  that  somehow challenges  the ergodicity assumption that  one

pattern may suffice for an identification of all relevant processes (Illian et al. 2008, p. 39).

The analyses in chapters 4, 5, and 6 revealed that there is a substantial probability to miss

out  on certain correlations  that,  based  on the shape of  our  empirical  probability plots,

actually  do  exist.  One  prominent  example  for  this  is  the  aggregation  of  bacteria  near

glandular trichomes that was clearly identified at scales up to 100 µm, but only in about

16% of  our  samples  that  had  glandular  trichomes  in  them (Chapter  4).  Two possible

explanations for this low detection rate could be 1) the low number of glandular trichomes

per sample (often only 1) and 2) the low probability that a bacterium lands within 100 µm

around  a  glandular  trichome during  inoculation.  Thus,  the  ergodicity  assumption  is  of

limited  use  in  spatial  point  pattern  analysis  unless  practical  experience  with  the  study

system exists that may help to decide if the one pattern under study is of appropriate size.

This is especially true for study systems, where multiple processes at different, also larger

spatial  scales affect  the distribution of the points.  In our study system (leaf-colonizing

bacteria),  we  found  processes  operating  at  small  scales  (aggregation  near  grooves),

intermediate  scales  (repulsion  from  stomata),  and  larger  scales  (aggregation  near

trichomes), such that it is unlikely to find all these interactions in one sample. Although
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larger samples might meet the ergodicity assumption, such data sets are very difficult to

acquire with fluorescence microscopy. Nevertheless the parallel analysis of large numbers

of smaller samples proved to be a more than adequate alternative. A second alternative

would have been to combine the replicate samples directly within the estimator of the pair

correlation  function  such  that  one  PCF is  estimated  across  all  samples  (Wiegand  and

Moloney 2014, p. 246 ff.). Such practices have not yet been implemented in the spatstat-

package used for our analyses and were therefore not applied in our studies.

With our high number of samples, the bi-variate analyses isolated single interactions from

the point patterns which were created by multiple processes. This in turn has important

implications for the uni-variate analysis of bacterial colonization patterns on leaves and by

extension  for  any  uni-variate  point  pattern  analysis  where  multiple  processes  can  be

expected  to  have  created  the  observed  pattern.  In  our  studies  on  leaves  (Chapter  4),

bacteria were found to be aggregated at scales up to 90  µm,  but various processes were

identified that could have caused this aggregation: The aggregation of cells in the grooves

between epidermal cells, near both types of leaf trichomes, and near veins. But also other

processes  such  as  the  clonal  growth  mechanism of  bacteria  could  have  added  to  the

observed aggregation patterns. Thus, the uni-variate analysis is really just a description of

the bacterial colonization patterns on leaves, whereas spatial correlations identified in the

bi-variate analyses allow much more for an assessment of the involved processes. 

Since a specific identified interaction such as an aggregation near grooves can still have

multiple underlying mechanisms, we also studied bacterial colonization of artificial bio-

mimetic bean leaf surfaces. We found that leaf physical properties such as topography and

wettability were sufficient to explain the aggregation of bacteria near the grooves. Leaf

biological processes such as cuticle permeability or local excretion of nutrients were thus

excluded to be obligate processes. Again, the fundamental physical process that caused the

aggregation  near  the  grooves,  e.g.  a  gravitational  process  or  'stochastic  entrapment'

(Chapter  5),  remained  unknown.  Our  procedures  illustrate  how  spatial  point  pattern

analyses combined with specialized null models and the simplification of environmental

conditions (here the exclusion of leaf biological processes) can be applied in a multi-step

approach to study the true drivers of bacterial distribution on plant surfaces. We see great

potential for such practices for a scale-specific identification of bacterial interactions on

plant surfaces especially with respect to the wealth of modern and upcoming molecular

methods. For example, the hydrophobicity of artificial leaf surfaces can be controlled by
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UV-light treatment as described in Chapter 5. This effect could be used in future studies of

the effect of leaf surface hydrophobicity on both, changes in the waterscape  (Doan and

Leveau 2015),  or  the spatial  distribution of  bacterial  colonizers.  Both studies  could be

combined by a spatially explicit analysis of water availability based on the response of

individual  bacteria  carrying  a  fluorescent  bioreporter  system  that  responds  to  water

deprivation (Axtell and Beattie 2002).

Another  important  aspect  of  this  dissertation  project  arose  from  the  predominant

aggregation of bacteria near the grooves between epidermal cells. These grooves are linear

by nature.  Although the  bi-variate  analysis  of  bacteria  near  groove  intersection  points

(Chapter 4 and 5) produced well interpretable results, we expected to gain more detailed

information by using the full information contained in the line patterns. As discussed in

Chapter 6, there exists a variety of methods targeted at such point-line problems (Stoyan

and Ohser 1982; Berman 1986; Foxall and Baddeley 2002), but these methods are either

based on a reduction of information, e.g. representation of line pattern by a point pattern,

or they are difficult  to handle or even unstable,  and did not find their  way into broad

application.  The line-to-point pair  correlation function (LPPCF) presented in Chapter 6

was  motivated  by  the  idea  that  the  concept  of  pair  correlation  functions  could  be

transferred  to  point-line  problems.  The  implementation  of  our  concept,  however,  was

impeded by the question  of  what  is  the exact  distance  between a  point  and a  line.  In

application, this issue was usually intuitively neglected and simply the shortest distance

from the point to the line was used  (Wang 2006). This is also true for the definition of

distances between points and lines in the spatstat package for R that was used for most of

our analyses, e.g. in the function nncross. In Chapter 6, we introduced more line-to-point

distance  measures,  two  of  which  are  based  on  distance  integrals  which  can  use  all

information contained in the line pattern. Of course, these non-eucledian distances may be

difficult  to  interpret.  Nevertheless,  especially  the  potential-based  measure  discussed  in

Chapter 6 captures the interactions between point- and line-like objects in a way that can

be assumed to occur in many natural settings, i.e. closer parts of a linear structure interact

more strongly with a point-like entity than more distant parts of the same linear structure.

We hope for these distance measures to reignite discussions across many fields on how

relationships between point-like and linear objects can be evaluated.

A comparison of the analyses of bacterial aggregation near grooves between epidermal leaf

cells in Chapter 4 (bi-variate point pattern analysis using groove intersection points) and
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Chapter 6 (potential based line-to-point pair correlation function) revealed that even for

such complex linear structures, comparable results can be attained. The high quality line-

data requirements of the LPPCF (fully connected linear network, no duplicated vertices, no

zero-length line segments) are challenging to meet if a large number of line data sets is

required, especially if automated picture analysis algorithms are used. Therefore, for many

applications, the suggestion by Stoyan and Ohser  (1982) to approximate line patterns by

point  patterns  and  use  the  appropriate  bi-variate  point  process  estimators  should  be

sufficient. In cases where an appropriate approximation requires a large number of points

compared to the number of line segments in the pattern, e.g. in line patterns consisting of a

large number of long segments, the LPPCF might still confer a computational advantage

over  the  approach of  Stoyan and Ohser  (1982).  The biggest  advantage of  the  LPPCF,

however, is its superior sensitivity that may enable researchers to detect weak line-point

correlations where other methods might fail. Furthermore, we expect that the abstract scale

space  of  'average  potential-based  distances'  between  points  and  lines  has  interesting

properties that might be beneficial for the analysis and description of interactions between

points and linear objects in a wide variety of scientific fields such as the cumulative effect

of road noise on point-like objects in the landscape or diffusion-dependent concentration of

chemicals in the vicinity of vascular systems in physiology. An in-depth description and

analysis of this abstract scale space, however, was beyond the scope of this dissertation.

Limitations and future directions

This  dissertation  project  provides  of  a  scheme  for  exploring  and  discriminating  the

multitude of interactions that shape microbial life in the phyllosphere and that can easily be

extended to other microbial and macrobiological environments. A thorough spatial point

pattern  analysis  of  bacterial  colonization  patterns  with  specific  null  models  and  the

reduction of environmental complexity using artificial leaf surfaces are both methods that

have not been established in phyllosphere ecology yet  (but see Remus-Emsermann et al.

2014). The present work discussed fundamental principles of microbial colonization of this

habitat such as the aggregation near the grooves between epidermal leaf cells. However, at

this  early point,  it  is  challenging to  transfer  the  results  from our  controlled laboratory

environment to field conditions. Here, other abiotic and biotic drivers may play a much

more  important  role  than  the  interactions  identified  in  our  studies.  Some of  the  most

important deviations from a natural field system include a) the reduced microbial diversity

in our experiments, i.e. the restriction to only two bacterial strains, b) the constantly high
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humid  conditions  (~100%)  and  constant  temperature  during  incubation,  and  c)  the

restriction of observing colonization only for three days after a single immigration event

(spray inoculation) compared to the seasonal succession with continuous immigration and

emigration events under field conditions.

The  other  major  result  of  this  dissertation  project  is  the  review and  the  extension  of

statistical  methodology  for  studying  spatial  correlations  between  point-like  and  linear

objects.  Such  interactions  are  omnipresent  in  natural  environments  but  due  to  the

complexity of their analysis are less often considered or they are reduced to the analysis of

the  shortest  distance  between  a  point  and  the  nearest  linear  object.  This  dissertation

discussed the available methods and proposed the line-to-point pair correlation function as

an alternative method that can flexibly handle various point-to-line distance measures. The

integral-based distance measure derived from potential  influence fields is  an especially

interesting candidate that represents the distance of a line from a point as a function of

distance-dependent  influence  of  each  point  of  the  line  piece  on  the  point  –  a  type  of

interaction that can be assumed for many natural processes. Nevertheless, the analysis of

point-line interactions  remains  challenging and more effort  needs  to be spent  to  better

understanding the limits and implications of such analyses. These future research efforts

should  concern  both  the  properties  and  interpretation  of  the  potential-based  distance

measure as well as the general question of inhomogeneous line patterns. Especially the last

point might be challenging to tackle given the often arbitrary choice of parameters for

estimating  the  local  intensity  λ(x,y)  of  point  and  line  processes  and  the  fact  that

heterogeneity in general is not fully understood. For example, various classes of spatial

heterogeneity  might  exist  outside  the  realm  of  second-order  intensity  reweighed

stationarity  (Baddeley,  Møller  and  Waagepetersen  2000),  e.g.  considering  complex

anisotropy. The aggregation of bacterial cells in the puzzle-piece shaped grooves between

epidermal leaf cells forces the bacteria into a complex spatial distribution pattern which

might  be  described  as  following  a  'scale-dependent  isotropy'.  At  larger  scales,  the

aggregation of bacterial cells follows the homogeneous distribution of the linear network

pattern of epidermal grooves. However, at smaller scales of tens of micrometers, the cells

are  forced  into  an  anisotropic  distribution  following  the  meandering  structure  of  the

grooves. An investigation of such complex heterogeneity structures is recommended for

future studies. Furthermore, these issues also translate into higher dimensional sets, e.g. the

spatial  correlations  between  point  patterns  and  areas  or  between  linear  structures  and
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volumes, thereby pointing out the pivotal role of the earlier work by Stoyan and Ohser

(1982).  Clearly,  such  techniques  could  be  applied  to  a  wide  range  of  spatial  research

questions also beyond the field of ecology.

In the field of microbial ecology, we expect our work to be only the starting point of future,

more detailed spatial analyses of life in microbial habitats. Multiple extensions come to

mind.  Our  research  was  limited  to  the  early  colonization  of  bean  leaves  by  artificial

communities  of  Pantoea  agglomerans and  Pseudomonas  syringae under  controlled

laboratory  conditions.  The  concepts  established  in  our  work  should  be  verified  under

different conditions, e.g. under less humid or more variable conditions. Also more different

microbial species and multiple host plants should be considered. The sum of such efforts

will allow the identification of common themes of microbial colonization of leaves. The

next step would be the analysis of microbial colonization of plants under field conditions.

Remus-Emsermann et al. (2014) introduced a method to observe the distribution of various

bacterial taxonomic groups under field conditions. Their approach applied fluorescent  in

situ hybridization (FISH) techniques  (Amann and Fuchs 2008) to analyze highly diverse

bacterial communities that developed over time under variable conditions with naturally

occurring succession and migration events. Similar to our studies, they observed intra- and

interspecific aggregation of bacteria on these leaves, but the spatial processes that caused

this  aggregation remained unknown. We expect  fluorescent  identification tools  such as

FISH and the use of bioreporters  (Joyner and Lindow 2000; Leveau and Lindow 2001;

Axtell and Beattie 2002; Remus-Emsermann and Leveau 2009; Remus-Emsermann et al.

2012), when combined with spatial marked point pattern analysis, to vastly improve our

understanding  of  microbial  diversity,  interactions,  and  functions  on  plant  surfaces.  In

particular, bioreporters, i.e. bacteria that were genetically modified to report the presence

and relative concentration of various substances such as nutrients, allow the introduction of

geostatistical  methods  such  as  kriging  into  phyllosphere  research.  The  results  of  such

studies could then be further processed in marked point pattern analyses involving such

methods  as  the  mark-correlation  function  (Stoyan  and  Stoyan  1994) or  Baddeley's

ρ- function  (Baddeley  et  al. 2012),  both of which may be offering deeper  insights into

spatial ecological processes and both of which may be more sensitive to certain processes

than the pair correlation function applied in our studies. Clearly, we just only turned page

one of the spatial analysis of microbial interactions in the phyllosphere.
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Supplementary Materials

Supplementary materials to Chapter 3

General form of the entropy measure

The more general form of Eq. 3.1 is

Here the neighborhood size nn can be chosen depending on the experiment. For example in

three-dimensional colonies  nn = 13. It is also useful in experiments which only consider

early developing colonies, e.g. nn = 4 for 4-cell states. Once nn is chosen equation Eq. S3.1

simplifies to an equation similar to Eq. 3.1. The more general form of Eq. 3.2 is

.

Here, mod stands for the modulo operation and brackets stand for the round-to-closest-

integer  operation.  The  denominator  gives  the  maximum achievable  entropy  given  the

number  of  neighbors  nn-1  and  the  number  of  possible  identities  nc (fluorescent  dyes,

species,  etc.).  The number of individuals in the neighborhood of the focal  individual  i

which  have  the  same color  as  i is  given  by  nGFP,i.  Then  nn-nGFP,i gives  the  number  of

differently colored individuals without  considering the entropy within this  subset.  This

entropy is still mapped by considering every point i in the pattern.

For completeness we give here the combined general measure for entropy:
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Supplementary materials to Chapter 4

Table_S4 1: Overview of all samples analyzed in Chapter 4
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61a_01 20 150022 21 299R 299R 129 162 2 0 1 1 112

61a_02 20 149986 21 299R 299R 92 44 1 0 0 0 84

61a_03 20 149878 21 299R 299R 43 80 0 0 1 0 75

61a_04 20 150130 21 299R 299R 69 101 1 1 0 0 107

61a_05 20 149986 21 299R 299R 59 79 3 0 1 0 83

61a_11 10 597953 21 299R 299R 362 391 7 0 1 0 327

61a_12 10 597953 21 299R 299R 602 795 6 0 0 0 291

61a_13 10 529781 21 299R 299R 146 123 6 1 1 0 294

61a_14 10 598528 21 299R 299R 141 172 11 0 1 0 323

61a_15 10 598528 21 299R 299R 30 37 22 2 0 38 437

61a_21 40 37410 21 299R 299R 91 57 0 0 0 6 16

61b_06 20 149878 21 299R 299R 116 126 6 0 1 0 110

61b_07 20 63797 21 299R 299R 51 41 2 1 0 17 79

61b_09 20 150022 21 299R 299R 2 280 4 0 1 0 104

61b_10 20 150022 21 299R 299R 38 78 10 1 0 5 123

61b_16 20 598528 21 299R 299R 20 22 8 0 0 0 117

61b_16 10 149878 21 299R 299R 560 603 20 0 1 0 397

61b_17 10 597953 21 299R 299R 690 886 24 1 1 2 428

61b_18 10 597953 21 299R 299R 193 334 11 0 2 0 336

61b_19 10 597953 21 299R 299R 229 394 15 1 1 0 347

61b_22 40 37464 21 299R 299R 21 2 1 0 0 0 18

62a_02 20 150130 40 299R 299R 125 147 0 0 1 0 76

62a_03 20 150130 40 299R 299R 114 15 4 0 0 0 82

62a_04 20 150130 40 299R 299R 89 52 1 0 0 0 62

62a_06 10 399300 40 299R 299R 110 239 10 0 0 5 224

62a_08 10 436020 40 299R 299R 393 855 8 2 0 0 224

62a_09 10 559538 40 299R 299R 125 131 11 1 0 0 335

62a_10 10 328210 40 299R 299R 246 148 6 1 0 0 178

63a_01 20 150130 48 299R 299R 177 43 0 0 0 0 74

63a_05 20 146776 48 299R 299R 33 66 5 0 0 0 104

63a_06 10 598528 48 299R 299R 414 685 6 1 0 10 335

63a_07 10 598528 48 299R 299R 423 500 15 1 0 13 379

63a_08 10 598528 48 299R 299R 194 185 14 2 2 21 393

63a_09 10 506642 48 299R 299R 117 117 12 2 0 30 355

63a_10 10 600540 48 299R 299R 106 75 4 0 1 6 351

63b_16 10 598528 48 299R 299R 230 30 16 1 0 8 270

63b_16 10 379033 48 299R 299R 151 176 11 0 0 13 252
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63b_16 10 598528 48 299R 299R 14 62 10 2 0 23 295

64b_16 10 562672 10 299R 299R 6 22 15 0 0 0 254

64b_17 10 598528 10 299R 299R 2 62 19 2 0 15 277

64b_18 10 597953 10 299R 299R 20 34 14 0 0 6 267

65a_02 20 150130 25 299R 299R 106 0 5 0 0 0 64

65a_12 10 533028 25 299R 299R 108 291 21 1 1 0 337

65a_14 10 598528 25 299R 299R 23 148 18 1 0 0 317

65a_15 10 598528 25 299R 299R 326 514 24 1 0 17 335

65b_06 20 150130 25 299R 299R 42 89 5 0 0 0 81

65b_07 20 149914 25 299R 299R 215 1 4 1 0 0 74

65b_17 10 598528 25 299R 299R 296 116 16 0 0 3 253

65b_19 10 516690 25 299R 299R 87 95 13 0 0 0 264

65b_20 10 598528 25 299R 299R 248 189 15 1 0 0 294

66a_11 10 598528 30 299R 299R 8 78 9 0 2 0 241

66a_12 10 598528 30 299R 299R 108 245 8 2 0 14 328

66a_13 10 598528 30 299R 299R 239 587 21 2 0 39 330

66b_07 20 149770 30 299R 299R 535 555 4 0 0 0 61

66b_09 20 149878 30 299R 299R 0 96 5 0 0 0 76

66b_16 10 598528 30 299R 299R 568 41 23 1 1 29 351

66b_18 10 597953 30 299R 299R 251 120 14 1 1 0 284

66b_19 10 597953 30 299R 299R 115 23 16 2 0 0 279

66b_21 20 149878 30 299R 299R 3416 1 4 0 0 0 67

66b_22 20 150130 30 299R 299R 85 223 5 1 0 8 76

67a_01 20 149986 72 299R 299R 532 424 6 0 0 4 96

67a_03 20 150130 72 299R 299R 223 128 3 0 0 0 75

67a_11 10 598528 72 299R 299R 164 330 10 0 1 0 356

67a_12 10 598528 72 299R 299R 61 30 10 0 1 0 309

67a_14 10 598528 72 299R 299R 741 1007 20 1 0 19 395

67a_15 10 598528 72 299R 299R 196 109 12 0 1 0 330

67b_06 20 150130 72 299R 299R 113 127 2 1 0 1 67

67b_07 20 150130 72 299R 299R 162 135 6 1 0 8 122

67b_08 20 150130 72 299R 299R 279 288 5 0 0 0 89

67b_09 20 150130 72 299R 299R 89 121 6 0 0 0 98

67b_10 20 150130 72 299R 299R 117 114 5 0 0 0 91

67b_16 10 598528 72 299R 299R 731 821 16 0 1 0 368

67b_17 10 598528 72 299R 299R 479 402 20 0 2 0 386

67b_18 10 598528 72 299R 299R 305 331 28 1 0 13 409

67b_19 10 598528 72 299R 299R 237 302 14 2 0 7 397

68a_01 20 149878 60 299R 299R 1 0 0 0 0 2 89

68a_02 20 149878 60 299R 299R 72 0 8 0 0 5 99
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68a_03 20 149878 60 299R 299R 4 0 5 1 0 2 81

68a_04 20 149734 60 299R 299R 59 18 3 0 0 0 71

68a_05 20 149878 60 299R 299R 1 0 3 0 0 0 76

68a_11 10 598528 60 299R 299R 3 18 16 0 1 0 310

68a_12 10 598528 60 299R 299R 149 3 16 0 2 0 312

68a_14 10 547139 60 299R 299R 0 26 16 1 1 0 300

68a_15 10 597953 60 299R 299R 75 0 16 0 2 0 346

68b_06 20 149878 60 299R 299R 21 3 6 0 2 0 91

68b_07 20 150130 60 299R 299R 189 148 4 0 0 1 78

68b_08 20 150022 60 299R 299R 8 29 3 0 0 0 68

68b_09 20 150022 60 299R 299R 184 406 3 1 0 0 70

68b_10 20 149878 60 299R 299R 44 14 4 0 0 0 71

68b_16 10 598528 60 299R 299R 42 4 15 1 0 0 309

68b_17 10 597953 60 299R 299R 455 797 22 3 0 7 384

70a_12 10 598528 0 299R 299R 0 31 26 0 0 0 439

70a_13 10 598528 0 299R 299R 0 25 18 0 1 0 321

70a_15 10 598528 0 299R 299R 0 20 26 1 1 1 410

70b_06 20 149878 0 299R 299R 0 3 4 0 0 0 52

71a_01 40 37500 24 299R 299R 21 62 0 0 0 0 18

74a_03 20 149458 0 299R 299R 0 7 5 0 0 2 93

74a_05 20 149590 0 299R 299R 2 6 2 0 1 0 76

74b_06 20 149734 0 299R 299R 10 5 4 0 1 0 87

74b_07 20 149589 0 299R 299R 3 10 7 0 1 0 116

75a_01 20 150130 24 299R 299R 94 133 4 0 0 0 82

75a_02 20 150130 24 299R 299R 42 55 1 0 0 0 55

75a_04 20 150130 24 299R 299R 9 75 2 0 0 0 59

75a_05 20 150130 24 299R 299R 262 266 4 0 0 0 76

75a_11 10 598528 24 299R 299R 215 143 12 2 0 0 279

75a_13 10 598528 24 299R 299R 162 106 17 1 1 0 310

75a_14 10 598528 24 299R 299R 309 475 21 1 0 3 349

75a_15 10 598528 24 299R 299R 398 682 23 1 1 6 340

75b_16 10 598528 24 299R 299R 43 167 20 0 0 0 326

75b_17 10 598528 24 299R 299R 317 265 10 0 0 0 256

75b_18 10 374972 24 299R 299R 63 59 14 0 0 0 195

75b_19 10 376196 24 299R 299R 305 237 18 1 0 8 228

75b_20 10 598528 24 299R 299R 95 45 16 1 0 0 281

76a_01 20 150022 48 299R 299R 94 132 3 0 0 0 75

76a_02 20 150130 48 299R 299R 130 174 5 0 0 0 81

76a_04 20 150022 48 299R 299R 49 25 3 0 0 0 63

76a_11 10 321465 48 299R 299R 36 48 6 0 0 0 140

102



S
am

p
le

M
icroscop

e

ob
jective

A
rea [µ

m
²]

In
cu

b
ation

 

tim
e [h

]

D
sR

ed
 

sp
ecies

G
F

P
 

sp
ecies

n
D

sR
ed

n
G

F
P

S
tom

ata

G
lan

d
u

lar 

T
rich

om
es

H
ook

ed
 

T
rich

om
es

V
ein

 cells

N
od

es

76a_12 10 564730 48 299R 299R 100 63 14 0 0 0 273

76a_13 10 503100 48 299R 299R 121 89 5 1 0 0 217

76a_14 10 597953 48 299R 299R 377 622 22 2 0 48 369

76a_15 10 597953 48 299R 299R 45 128 14 0 1 0 354

76b_06 20 149878 48 299R 299R 58 151 8 0 0 6 108

76b_07 20 149878 48 299R 299R 57 48 6 0 0 0 81

76b_08 20 149986 48 299R 299R 155 177 4 1 2 39 99

76b_09 20 150022 48 299R 299R 110 32 5 0 0 0 83

76b_10 20 150130 48 299R 299R 26 241 5 1 0 0 80

76b_16 10 546825 48 299R 299R 37 85 21 0 0 0 344

76b_19 10 598528 48 299R 299R 331 191 22 2 0 0 355

76b_20 10 598528 48 299R 299R 433 601 23 1 0 5 394

77a_01 20 149878 72 299R 299R 290 111 4 2 0 9 85

77a_02 20 106330 72 299R 299R 397 210 0 0 0 0 44

77a_03 20 149986 72 299R 299R 96 108 2 0 0 0 68

77a_05 20 149986 72 299R 299R 121 158 8 0 0 6 99

77a_11 10 598528 72 299R 299R 641 731 8 0 1 0 275

77a_12 10 383590 72 299R 299R 505 666 13 4 1 11 231

77a_13 10 598528 72 299R 299R 383 482 14 4 1 19 362

77a_14 10 598528 72 299R 299R 145 157 3 1 0 0 247

77a_15 10 597953 72 299R 299R 1127 1519 20 1 0 18 353

77a_21 10 416689 72 299R 299R 1046 634 0 0 1 0 18

77b_07 20 127977 72 299R 299R 0 6 2 0 0 0 75

77b_08 20 149878 72 299R 299R 134 19 4 0 1 0 99

77b_09 20 141341 72 299R 299R 14 39 7 0 0 0 74

77b_10 20 149878 72 299R 299R 24 143 6 0 0 0 88

77b_16 10 598528 72 299R 299R 249 810 18 1 0 1 388

77b_17 10 597953 72 299R 299R 141 187 13 1 0 0 349

77b_18 10 598528 72 299R 299R 581 799 23 3 1 0 405

77b_19 10 598528 72 299R 299R 330 506 28 1 0 23 378

77b_20 10 598528 72 299R 299R 417 380 28 1 0 5 367

85a_15 10 598528 0 B728a 299R 28 10 12 1 2 0 445

85b_06 20 149986 0 B728a 299R 0 2 5 0 1 0 111

85b_08 20 149878 0 B728a 299R 7 2 6 0 1 0 114

85b_09 20 149878 0 B728a 299R 8 3 7 1 0 2 130

85b_10 20 149986 0 B728a 299R 4 2 6 1 0 5 129

86a_05 20 150022 24 B728a 299R 29 559 4 1 1 0 102

86a_11 10 597953 24 B728a 299R 16 400 15 2 0 19 398

86a_12 10 598528 24 B728a 299R 95 602 16 1 0 3 342

86a_13 10 598528 24 B728a 299R 42 606 11 0 1 0 376
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86a_21 10 598528 24 B728a 299R 204 431 18 2 1 14 434

86a_22 10 318630 24 B728a 299R 275 1222 14 2 0 9 226

86a_23 10 598528 24 B728a 299R 94 1385 18 2 1 2 406

86a_24 10 598528 24 B728a 299R 146 725 17 2 0 13 364

86a_25 10 598528 24 B728a 299R 69 1204 25 3 0 33 391

86b_07 20 149878 24 B728a 299R 9 108 5 2 1 0 127

87a_01 20 150130 48 B728a 299R 112 456 4 0 0 0 81

87a_02 20 150130 48 B728a 299R 68 188 3 0 0 0 73

87a_03 20 150130 48 B728a 299R 109 507 4 0 0 0 73

87a_04 20 150022 48 B728a 299R 94 463 7 1 0 4 123

87a_05 20 150130 48 B728a 299R 82 1187 4 0 0 0 83

87a_11 40 37374 48 B728a 299R 6 80 0 0 0 0 19

87a_12 40 37473 48 B728a 299R 21 170 1 0 0 0 12

87a_13 40 37473 48 B728a 299R 28 128 2 0 0 0 25

87a_14 40 37473 48 B728a 299R 37 58 2 0 0 0 32

87b_06 20 150022 48 B728a 299R 15 424 6 1 0 9 101

87b_07 20 149878 48 B728a 299R 1 982 5 0 0 0 96

87b_08 20 150022 48 B728a 299R 10 876 6 2 0 12 118

87b_09 20 150130 48 B728a 299R 7 179 10 0 0 5 98

87b_10 20 149878 48 B728a 299R 13 423 5 0 0 7 78

87b_16 40 37473 48 B728a 299R 2 156 1 0 0 0 20

87b_18 40 37509 48 B728a 299R 2 250 0 0 0 0 25

87b_19 40 31779 48 B728a 299R 3 71 2 0 0 0 18

87b_20 40 37446 48 B728a 299R 2 0 1 0 0 0 16

88a_01 20 150130 72 B728a 299R 466 301 6 0 0 0 73

88a_02 20 150130 72 B728a 299R 6 264 4 0 0 0 73

88a_04 20 150130 72 B728a 299R 21 357 8 0 0 0 89

88a_05 20 150130 72 B728a 299R 58 1309 8 1 1 9 93

88a_11 10 598528 72 B728a 299R 86 233 20 0 1 0 329

88a_12 10 598528 72 B728a 299R 262 752 26 0 0 0 329

88a_14 10 598528 72 B728a 299R 83 420 31 1 0 0 367

88a_21 10 598528 72 B728a 299R 176 1380 28 2 0 9 380

88b_06 20 150130 72 B728a 299R 0 156 3 0 0 0 94

88b_07 20 150130 72 B728a 299R 30 447 3 0 1 0 90

88b_08 20 150130 72 B728a 299R 2 96 4 0 0 0 80

88b_09 20 150130 72 B728a 299R 4 84 4 0 0 0 82

88b_10 20 150130 72 B728a 299R 14 119 0 1 0 0 64

88b_16 10 598528 72 B728a 299R 6 525 8 2 1 0 341

88b_17 10 598528 72 B728a 299R 3 843 10 2 1 0 348

88b_18 10 598528 72 B728a 299R 20 1856 10 0 1 0 288
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88b_19 10 598528 72 B728a 299R 87 698 10 2 2 0 312

93a_01 20 149986 92+0 B728a 299R 664 68 8 1 0 0 122

93a_03 20 78762 92+0 B728a 299R 116 37 5 0 0 0 56

93a_04 20 98671 92+0 B728a 299R 642 25 7 1 0 0 79

93a_05 20 149878 92+0 B728a 299R 5214 48 6 1 0 0 88

93b_06 20 149986 92+0 B728a 299R 998 2 9 2 0 0 112

93b_07 20 49152 92+0 B728a 299R 0 5 3 0 0 0 43

93b_08 20 114754 92+0 B728a 299R 1235 10 9 1 0 12 109

93b_09 20 49473 92+0 B728a 299R 1481 8 6 0 0 0 49

94a_01 20 149878 92+24 B728a 299R 2173 0 6 0 0 0 84

94a_02 20 149878 92+24 B728a 299R 493 8 5 0 1 6 83

94a_03 20 137512 92+24 B728a 299R 1265 20 4 0 0 0 79

94a_04 20 149986 92+24 B728a 299R 8390 24 4 0 0 0 76

94a_05 20 150130 92+24 B728a 299R 2896 170 4 0 0 0 69

94a_11 20 150022 92+24 B728a 299R 874 6 4 1 0 6 81

94b_06 20 150022 92+24 B728a 299R 1265 520 5 1 0 0 96

94b_07 20 150022 92+24 B728a 299R 612 171 1 1 1 0 90

94b_08 20 150022 92+24 B728a 299R 528 72 5 0 0 0 95

94b_09 20 123393 92+24 B728a 299R 311 75 4 2 0 7 93

94b_10 20 106025 92+24 B728a 299R 344 14 4 0 0 0 58

94b_12 20 150022 92+24 B728a 299R 455 61 4 1 0 0 78

94b_13 20 149878 92+24 B728a 299R 422 1315 4 0 0 0 57

95a_01 20 149878 92+48 B728a 299R 277 585 7 0 0 4 80

95a_02 20 150022 92+48 B728a 299R 120 211 6 0 1 3 73

95a_03 20 149878 92+48 B728a 299R 53 657 4 0 0 0 79

95a_04 20 149878 92+48 B728a 299R 10 205 5 0 0 2 78

95a_05 20 149986 92+48 B728a 299R 84 275 4 0 0 0 79

95b_06 20 149878 92+48 B728a 299R 170 32 3 1 0 4 87

95b_07 20 149878 92+48 B728a 299R 102 35 4 0 0 0 61

95b_08 20 149986 92+48 B728a 299R 2 97 3 0 0 0 80

95b_09 20 149878 92+48 B728a 299R 119 268 6 0 0 4 82

95b_10 20 107739 92+48 B728a 299R 82 219 6 0 0 0 79

96a_01 20 150022 92+72 B728a 299R 305 3 10 0 0 0 111

96a_02 20 149878 92+72 B728a 299R 582 19 8 0 0 0 102

96a_03 20 149878 92+72 B728a 299R 270 207 6 0 1 0 115

96a_04 20 138291 92+72 B728a 299R 528 359 11 1 0 4 138

96a_05 20 150022 92+72 B728a 299R 523 229 8 0 0 0 85

96a_06 20 149878 92+72 B728a 299R 308 175 7 0 0 0 82

96a_07 20 149878 92+72 B728a 299R 784 194 7 0 1 0 96

96a_08 20 150022 92+72 B728a 299R 647 22 7 0 0 0 98
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96b_09 20 149878 92+72 B728a 299R 90 299 10 0 0 0 125

96b_10 20 149986 92+72 B728a 299R 90 47 8 0 0 0 114

96b_11 20 150022 92+72 B728a 299R 147 79 7 1 0 0 115

96b_13 20 150022 92+72 B728a 299R 121 43 8 0 0 0 114

96b_14 20 150022 92+72 B728a 299R 37 33 8 0 0 0 111

96b_15 20 149878 92+72 B728a 299R 87 118 12 0 0 4 156

Σ 69313 62116 2192 135 74 819 43674
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Supplementary materials to Chapter 5

Table_S5 1: Overview of all samples analyzed in Chapter 5
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80_01 20 150130 48 299R 299R 38 0 20 1 0 8 80

80_02 20 150130 48 299R 299R 48 95 6 1 0 0 61

80_03 20 150130 48 299R 299R 42 1 12 1 1 6 76

80_06 10 598528 48 299R 299R 58 0 58 1 0 13 381

80_07 10 598528 48 299R 299R 63 0 28 0 0 0 287

81b_06 40 37437 0 B728a 299R 0 6 6 0 0 0 29

81b_07 40 37473 0 B728a 299R 0 2 4 0 0 0 27

81b_08 20 149878 0 B728a 299R 2 5 10 0 0 0 101

81b_09 20 150022 0 B728a 299R 4 0 6 0 1 0 91

81b_10 20 150130 0 B728a 299R 2 5 12 0 0 0 98

81b_11 20 149986 0 B728a 299R 4 9 10 1 0 0 91

81b_12 20 149986 0 B728a 299R 4 4 10 0 0 0 87

82a_01 20 149986 24 B728a 299R 2997 7963 0 0 0 0 112

82a_02 20 149878 24 B728a 299R 1967 4490 10 0 0 0 89

82a_03 20 130749 24 B728a 299R 1703 6247 8 1 0 0 86

82a_04 20 131832 24 B728a 299R 2100 4993 4 0 0 0 67

82a_05 20 149878 24 B728a 299R 718 1593 8 0 0 0 80

82a_11 20 149878 24 B728a 299R 1932 3465 17 0 0 5 92

82a_12 20 149878 24 B728a 299R 2668 8477 12 0 0 0 107

82a_13 20 149878 24 B728a 299R 1381 5074 10 0 0 0 105

82a_14 20 135265 24 B728a 299R 1194 1879 8 0 0 0 86

82a_15 20 149986 24 B728a 299R 569 2916 12 0 0 0 87

82b_06 20 130742 24 B728a 299R 4 2100 12 1 0 0 85

82b_07 20 149878 24 B728a 299R 1 485 8 0 0 0 90

82b_08 20 150022 24 B728a 299R 201 1511 12 0 0 0 96

82b_09 20 117773 24 B728a 299R 36 1024 14 1 0 4 92

82b_10 20 149878 24 B728a 299R 2 226 12 0 0 0 89

82b_16 20 149878 24 B728a 299R 2 379 8 0 0 0 85

82b_17 20 150022 24 B728a 299R 75 1567 8 0 0 0 88

82b_18 20 149986 24 B728a 299R 10 541 10 0 1 0 92

82b_20 20 150022 24 B728a 299R 2 421 16 0 0 0 93

83a_01 20 150130 48 B728a 299R 914 2453 8 1 0 0 107

83a_02 20 150130 48 B728a 299R 465 90 6 0 0 0 74

83a_03 20 150130 48 B728a 299R 1832 997 8 2 0 0 88

83a_04 20 128148 48 B728a 299R 1326 1753 6 0 0 0 68

83a_05 20 149842 48 B728a 299R 1942 4756 10 0 0 0 89

107



S
am

p
le

M
icroscop

e 

ob
jective

A
rea [µ

m
²]

In
cu

b
ation

 

tim
e [h

]

D
sR

ed
 

sp
ecies

G
F

P
 sp

ecies

n
D

sR
ed

n
G

F
P

S
tom

ata

G
lan

d
u

lar 

T
rich

om
es

H
ook

ed
 

T
rich

om
es

V
ein

 cells

N
od

es

83a_11 40 37356 48 B728a 299R 400 1030 4 0 0 0 26

83a_12 40 37536 48 B728a 299R 835 428 2 0 0 0 20

83a_13 40 37509 48 B728a 299R 934 468 6 0 0 0 32

83a_14 40 37536 48 B728a 299R 80 120 2 0 0 0 26

83a_15 40 37536 48 B728a 299R 911 405 2 1 0 0 27

83b_06 20 150130 48 B728a 299R 1000 5881 8 0 0 0 73

83b_07 20 150130 48 B728a 299R 1279 5019 10 0 0 6 86

83b_08 20 150130 48 B728a 299R 1278 6787 6 0 0 0 77

83b_09 20 150022 48 B728a 299R 1264 5266 0 0 0 0 81

83b_16 40 37536 48 B728a 299R 433 1876 0 0 0 0 13

83b_17 40 37509 48 B728a 299R 86 2627 4 0 0 0 26

83b_18 40 37500 48 B728a 299R 179 1989 0 0 0 5 10

83b_19 40 37536 48 B728a 299R 416 1447 0 0 0 0 16

83b_20 40 37536 48 B728a 299R 272 2464 2 1 0 0 21

84b_01 10 484043 72 B728a 299R 743 2852 6 0 0 0 248

84b_02 10 598528 72 B728a 299R 1726 1877 12 1 1 7 342

84b_03 10 597953 72 B728a 299R 2722 1137 30 0 0 8 326

84b_04 10 598528 72 B728a 299R 839 3531 14 0 0 0 339

84b_05 10 597953 72 B728a 299R 919 5094 8 1 3 0 365

84b_06 20 150022 72 B728a 299R 1066 1815 12 0 0 11 110

84b_07 20 149842 72 B728a 299R 935 349 2 0 1 0 85

84b_09 20 149878 72 B728a 299R 43 1662 4 0 0 0 86

84b_10 20 149878 72 B728a 299R 253 43 2 0 0 0 97

89a_01 20 150022 0 299R 299R 13 58 4 0 0 0 88

89a_02 20 149878 0 299R 299R 17 31 6 0 1 0 118

89a_03 20 150022 0 299R 299R 34 28 10 0 1 0 110

89a_04 20 149986 0 299R 299R 118 62 6 0 0 0 94

89a_05 20 150022 0 299R 299R 55 87 16 1 0 0 114

89a_11 10 597953 0 299R 299R 52 91 46 1 0 0 432

89a_12 10 598528 0 299R 299R 69 93 41 0 1 0 358

89a_13 10 598528 0 299R 299R 144 143 38 0 0 0 385

89a_14 10 598528 0 299R 299R 62 62 34 0 1 0 388

89a_15 10 597953 0 299R 299R 84 80 40 0 1 0 418

89b_06 20 149878 0 299R 299R 65 32 16 1 0 3 107

89b_07 20 149878 0 299R 299R 26 10 8 0 0 0 88

89b_08 20 149878 0 299R 299R 28 8 8 0 0 0 81

89b_09 20 149986 0 299R 299R 32 19 12 0 0 0 94

89b_10 20 149878 0 299R 299R 9 30 6 0 0 0 77

89b_16 10 598528 0 299R 299R 36 45 62 1 0 15 422

89b_17 10 598528 0 299R 299R 72 149 40 2 0 7 395
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89b_18 10 597953 0 299R 299R 21 37 54 1 0 0 427

89b_19 10 597953 0 299R 299R 42 79 32 1 0 2 401

89b_20 10 598528 0 299R 299R 44 54 47 0 0 10 408

90a_02 20 150130 24 299R 299R 0 54 10 0 0 0 72

90a_03 20 150130 24 299R 299R 412 1293 8 0 0 0 74

90a_04 20 149878 24 299R 299R 240 63 8 0 0 0 70

90a_05 20 150022 24 299R 299R 1161 768 8 1 0 0 67

90a_11 10 598528 24 299R 299R 1732 2380 33 0 0 0 356

90a_12 10 598528 24 299R 299R 3978 3123 16 0 0 11 258

90a_13 10 598528 24 299R 299R 1372 1329 40 2 0 5 367

90a_14 10 598528 24 299R 299R 770 3515 32 3 0 0 363

90b_08 20 150130 24 299R 299R 70 724 4 1 0 0 75

90b_09 20 150130 24 299R 299R 57 673 8 0 0 0 78

90b_16 10 600540 24 299R 299R 30 59 30 1 0 0 338

90b_17 10 598528 24 299R 299R 82 866 30 0 0 0 305

90b_21 10 361502 24 299R 299R 7 3 10 0 0 0 227

91b_01 20 78319 48 299R 299R 21 344 14 0 0 0 72

91b_02 20 149878 48 299R 299R 679 6 12 0 0 0 97

91b_03 20 100615 48 299R 299R 322 1 4 0 0 0 59

91b_04 20 143286 48 299R 299R 85 89 8 0 0 0 88

91b_05 20 150022 48 299R 299R 186 24 16 0 0 0 99

91b_06 20 150022 48 299R 299R 20 630 12 0 0 0 83

91b_08 20 150022 48 299R 299R 736 81 7 0 1 0 78

91b_10 20 149986 48 299R 299R 285 127 15 0 0 0 108

91b_11 10 597953 48 299R 299R 1361 578 54 0 0 43 438

91b_12 10 597953 48 299R 299R 136 29 56 0 6 77 451

91b_13 10 473290 48 299R 299R 763 11 26 1 0 0 284

91b_14 10 597953 48 299R 299R 362 266 48 1 0 10 391

91b_15 10 597953 48 299R 299R 676 763 38 0 0 0 353

91b_16 10 597953 48 299R 299R 295 674 38 0 1 0 368

91b_17 10 598528 48 299R 299R 346 178 37 0 1 0 363

91b_19 10 598528 48 299R 299R 1508 251 67 1 0 38 446

91b_20 10 598528 48 299R 299R 34 187 32 0 2 0 372

92a_01 20 149878 72 299R 299R 1233 840 10 1 0 7 103

92a_03 20 150130 72 299R 299R 833 116 12 0 0 0 86

92a_04 20 150130 72 299R 299R 303 241 10 0 0 2 85

92a_05 20 150022 72 299R 299R 1146 990 14 0 0 0 89

92b_06 20 115080 72 299R 299R 2 1198 10 1 0 5 77

92b_07 20 103429 72 299R 299R 3 168 4 0 1 0 63

Σ 65188 143534 1852 36 25 308 18396
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Supplementary materials to Chapter 6

S6.1 – Derivation of the l ine-to-point distance measures dME A N  und dP OT

In order to calculate the average distances  dMEAN (Eq. 6.6c) and  dPOT (Eq. 6.6d) and the

average potential Ulp, we need to solve the integrals

and 

.

To do so, we consider a point xp = P(p1, p2) and a line segment xl = AB which is defined by

two endpoints (vertices)  A(a1,  a2) and  B(b1,  b2) in  IR2. Any point  X(x1,  x2)  AB can be

expressed by a control variable ͂  by

,

such that X = A if  = 0 and X = B if  = 1. Now,

,

where

,

, and 

.

Analogously  to  Gradstein  &  Ryshik  (1981),  we  define   and

 and their formula 2.262 (1.):

with 2.261 T(127) from Gradstein & Ryshik (1981)

.
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S6.2 – Implementation

Our R-package  lppcf contains an implementation of the four types of line-to-point pair

correlation functions (LPPCFs). The main function segment.pcf() processes point patterns

of type  ppp and line patterns of type  linnet, both native formats of the  spatstat package

(Baddeley and Turner 2005) for R (R Core Team 2013). A ppp-object contains information

about  the  point  pattern  such  as  x-/y-coordinates  of  the  points,  the  dimensions  of  the

observation window, and the unit of measure. Similarly, linnet-objects contain all relevant

information about a line pattern (linear network) such as the coordinates of nodes (points)

and a mapping of the connections between nodes. Thus Line patterns in the lppcf-package

are approximated by a network of straight  line pieces  (segments) even if  the observed

pattern actually consists of a set of continuous curves. This is a common practice, e.g. in

geographical information systems, but it has to be noted that the precision at which this

approximation is performed (expressed in number of line segments) may introduce a bias

into the data, while at the same time it has great influence on calculation performance. 

The  segment.pcf-function in our  lppcf-package calculates the distances  dMID,  dMIN,  dMEAN,

and  dPOT (modes MID, MIN, MEAN, and POT, respectively) between the points and the

lines. Based on these distances, the function estimates the corresponding LPPCFs at all

spatial scales  , where  hmax is maximum spatial scale

up to which the LPPCF will be evaluated and Δh is the step-width between the scales at

which the LPPCF will be evaluated. The function segment.pcf uses the estimator

.

Here, λl and λp are estimators of the intensity of the line process and the point process,

respectively,  nl and  np are  the  number  of  lines  and  points,  respectively.  The  indicator

function 1(∙) takes a value of 1 if the statement (∙) is true and 0 otherwise. The denominator

 is the translational edge correction factor (c.f. section Material and Methods

in Chapter 6). The resulting function values can be smoothed in the lppcf-package using a

moving Epanechnikov kernel. The bandwidth of the kernel is controlled by the parameter

epan.scale. Line patterns with very different segment lengths can be dissected into smaller

segments of approximate length Δl using the parameter deltal. This procedure will produce

more precise results by reducing the segmentation bias discussed in Chapter 6 at the cost of

increased calculation times. The default setting (deltal=Inf) will perform no dissections.
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Abstract

Microbial  organisms  are  ubiquitous  to  habitats  on  Earth  and  they  are  important

components in cycling of matter. This is true for the micro-scale and at global scale, and all

spatial  scales in between. In soils, aquatic environments,  in the atmosphere,  as well  as

inside and on higher organisms, they are highly active in the activation and recycling of

organic and mineral nutrients. They regulate population dynamics as pathogens or increase

host fitness by reducing the effects of pathogens and toxic compounds. Despite their high

abundance in nature and their important role for the environment, little is known about the

spatial distribution and interactions of microbes, especially at the micrometer scale.

In my dissertation  “Scales of bacterial  interactions on the leaf surface”,  I  studied the

spatial  distribution  of  leaf-colonizing  bacteria.  My study system consisted  of  artificial

single- and two-species communities of two common leaf-colonizing bacteria,  Pantoea

agglomerans and Pseudomonas syringae, colonizing bean leaves (Phaseolus vulgaris). At

the center of my studies were fluorescence microscopic records which allowed the full

measurement of the location of individual bacteria on the leaf. Additional phase-contrast

micrographs revealed the location of leaf structural elements that were reported before to

influence the spatial distribution of bacteria. These structural elements were glandular and

hooked trichomes, leaf veins, stomata, and the network of crevices between epidermal cells

(“grooves”). The resulting data set of bacterial and leaf structural point patterns were then

analyzed using modern spatial statistical methods and here the pair correlation function

(PCF)  in  particular.  I  analyzed  the  intraspecific  and  interspecific  aggregation  of  both

bacterial species as well as the spatial correlations between the bacterial colonizers and the

leaf structural elements (Chapter 4). The correlations found by the PCF were generally

interpreted to be bacterial interactions with their leaf environment. Additionally, the PCFs

allowed an estimation of the spatial scale at which these interactions operate.

The experiments were furthermore doubled on artificial  biomimetic leaf  surfaces made

from  PDMS  (Polydimethylsiloxane)  by  micro  molding  techniques  (Chapter  4).  This

allowed to study how much of the observed bacterial distribution patterns on leaves can be

explained by leaf topography and which interactions require additional leaf physiological

processes.

The third main component of the dissertation involved the development of the line-to-
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point-pair correlation function (LPPCF). The LPPCF extends the concepts of the existing

bivariate PCF to interactions between point- and line-like objects such as bacteria and the

grooves between epidermal cells (Chapter 6). I present four different LPPCFs that differ in

the definition of the distance between a point and a line.

The dissertation makes multiple important contributions, both methodologically and with

respect to the biology of leaf-colonizing bacteria. The ten most important contributions

comprise the fields of microbial ecology, spatial ecology and spatial statistics.

Methodology

1. Introduction of PCFs in single-cell microbiology on plant leaves (Chapter 4).

2. Introduction  of  a  new  method  involving  artificial  biomimetic  leaves  for

differentiating  leaf  topographical  and  leaf  physiological  effects  on  the  spatial

distribution of bacteria on leaves (Chapter 5).

3. Introduction of a new extension of the pair correlation function for studying spatial

correlations between point- and line-like objects (Chapter 6). The new line-to-point

pair correlation function reignites an overdue discussion about how linear structures

affect point-like objects in ecology (Chapter 6).

4. New definitions for the distance between a point and a line are introduced. The

potential-based of these distance measure may be of particular interest  to many

research problems in ecology (Chapter 6).

5. Line patterns can be analyzed with satisfactory precision by approximating them by

nodes (if forming a network) or by random points distributed on lines (Chapter 6).

Biology of leaf-colonizing bacteria

6. Bacterial  individuals  interact  with  their  environment  in  different  ways  and  the

underlying processes operate at different spatial scales (Chapter 4).

7. The aggregation of bacteria near grooves near epidermal leaf cells is mainly driven

by leaf topography (Chapters 4 and 5). 

8. This aggregation near grooves operates at short distances (<15 µm; Chapter 4 & 5)

9. The aggregation of bacteria near trichomes and veins as well as the scarcity of bac-

teria near stomata cannot solely be explained by leaf topography (Chapter 4 & 5). 

10. The effects of leaf trichomes, veins and stomata can operate also at larger scales

(100 µm and more; Chapter 4).
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