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Summary 

Nucleosome remodeling, histone modifications and exchange of histone variants are 

interconnected mechanisms involved in regulation of gene transcription. 

Nucleosomes can act as strong barriers and are remodeled during RNA-Pol II-

mediated transcription elongation. Remodeling of nucleosomes is tightly regulated in 

particular during activation and inhibition of cellular differentiation. The nucleosome 

remodeler CHD1 is a transcriptional co-activator involved in RNA-Pol II processivity 

downstream of the transcriptional start site (TSS). In this study we hypothesized that 

CHD1 not only acts as a general co-activator of transcription but can also regulate 

gene specific expression. Therefore, we investigated the role of CHD1 on gene 

regulation after induction of adipocyte and osteoblast differentiation. 

Genome-wide binding analysis of CHD1 during differentiation revealed high 

occupancy at TSS-regions of adipocyte and osteoblast activated genes. Further we 

observed direct regulation of these activated genes by enriched CHD1 binding 

around TSS. Concordantly, CHD1 was required for ectopic bone formation in mice. 

Besides these biological aspects it could here be shown that global RNA-Pol II 

stalling downstream of TSS was caused by CHD1 depletion. This highlights its 

genomic role for efficient early RNA-Pol II-mediated transcription elongation. A group 

of highly activated genes during osteoblast differentiation was found to be repressed 

by significantly increased RNA-Pol II stalling ratios in parallel with decreased CHD1 

protein levels. Interestingly, high steady-state levels of the histone variant H2A.Z at 

the TSS-region were revealed to be dependent on CHD1. This presumably increases 

the nucleosome stability and thus cause the observed global RNA-Pol II stalling. 

Summarized, CHD1 was shown to be necessary for a genome-wide, efficient RNA-

Pol II-mediated early transcription elongation, probably achieved by decreasing the 

nucleosome barrier at the TSS-region. In particular, CHD1 was required for the 

activation of a group of genes involved in osteoblast differentiation. This implies a 

function for CHD1 as a regulatory protein in cell differentiation. Further we propose 

that CHD1 should be considered in quality control of MSC in skeletal stem cell 

therapies. 
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1 Introduction  

1.1 DNA organization 

The approximately 2 m long human DNA is highly compacted and organized in an 

approximately 10 µm diameter sized nucleus within a dynamic structure called 

chromatin (Alberts B, Johnson A, Lewis J, et al., 2002). The chromatin consists of 

DNA, protein and RNA. Besides packaging and protecting the DNA, it also regulates 

the DNA accessibility required for cellular processes such as transcription and 

replication. The basic structural unit of chromatin is the nucleosome which is defined 

as 146 bp of DNA wrapped around an octamer of 4 core histone proteins consisting 

of H2A, H2B, H3 and H4 (Luger et al., 1997). Two H2A/H2B heterodimers connect 

with two H3/H4 heterodimers to form a stable histone octamer (Kornberg, 1974). 

These interact via a “hand-shake motif” and connect in the presence of DNA. In 

addition to the core particles, the histone H1 binds to linker DNA between two 

nucleosomes. This further stabilizes the DNA wrapped around the nucleosome and 

helps to fold the higher compacted chromatin (Allan et al., 1986; Hansen, 2002).  

The differences in the compaction of chromatin can be differentiated within a cell and 

associates with different functions (Figure 1). After the nucleosome, the next level of 

compaction is the 10 nm fiber or “beads on a string” structure, which defines open 

accessible chromatin for example at transcriptional start sites or regulatory 

sequences (Cooper, 2000). Further packaging includes the 30 nm and 300 nm fibers, 

which both represent highly compacted chromatin (Tremethick, 2007). Though, the 

30 nm fiber can be actively remodeled to the open 10 nm fiber and is associated with 

actively transcribed genes (Li et al., 2010), the 300 or 700 nm structure characterizes 

condensed chromatin which is present in the interphase of mitosis.    

In general, two states of chromatin are distinguished, the eu- and heterochromatin. 

Euchromatin represents 10 to 30 nm thick fibers which characterize open and 

accessible chromatin. Cellular processes which involve the direct contact with DNA 

such as transcription, DNA-repair and -replication require euchromatin (Cooper, 

2000). Heterochromatin in contrast defines closed and condensed chromatin, located 

most often at the centromere or telomere with repetitive elements (Grewal and Jia, 

2007).   
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Figure 1: Organization of DNA from decondensed (top) to higher condensed (bottom) 

chromatin structures. In the lowest condensed chromatin state, the “beads on a string” structure is 

the DNA wrapped around a histone octamer associated with histone H1 (yellow). Further compression 

includes 30 nm, 300 nm and 700 nm chromatin structures which leads to the organization of 

interphase chromosome within a cell nucleus (Figure taken from Tonna et al., 2010). 

1.2 Histone modifications  

Negatively charged DNA and positive charged histones are tightly bound when 

forming the nucleosome, however N- and C-terminal tails of histones protrude from 

nucleosomes and are often targets of different post-translational modifications (PTM) 

(Luger et al., 1997; Van Holde et al., 1980). However, some histone amino acids 

lying within the core of nucleosomes between the tails and get modified, too 

(Tropberger et al., 2013). The most common PTMs include acetylation, methylation, 

phosphorylation, ubiquitination and SUMOylation (Figure 2) (Bannister and 

Kouzarides, 2011). The modifications consist of relatively small, covalently bound 

acetyl-, phospho- or methyl-groups up to relatively large protein moieties like ubiquitin 

or Small Ubiquitin-like Modifier (SUMO) attached to specific amino acids of histones. 

Interestingly, the high variability in PTMs leads to extensive changes in the 

chromatin, mainly either loosening DNA-histone interactions and/or changing the 

binding properties with other proteins or complexes (Bannister and Kouzarides, 
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2011). These changes have a broad impact on nearly all cellular processes, although 

cause and effect of histone modifications have to be considered carefully.  

 

Figure 2: Post-translational histone modifications in humans. Schematic view of N- and C-

terminal tails of Histone 2A, 2B, 3 and 4 (H2A, H2B, H3, H4) shows post-translational histone 

modification (explained at bottom) at respective amino acid residues of each histone (Figure taken 

from Kato et al., 2010). 

1.3 Deciphering the “histone code”  

Extensive modifications on one nucleosome raised the hypothesis for a “histone 

code” stating the association of various epigenetic changes defining a single 

functional and regulatory event (Strahl and Allis, 2000). Since then, thousands of 

genome-wide chromatin immunoprecipitation with subsequent deep sequencing 

(ChIP-seq) studies were performed analyzing different histone modifications in 

different cell lines and organisms (Bernstein et al., 2010; ENCODE Project 

Consortium, 2012). Indeed, these great amount of data confirmed the early 

hypothesis and revealed that histone marks could characterize the active and 

repressed regions of genomic elements in a cell type-specific manner (Álvarez-Errico 

et al., 2015; Li et al., 2007). These data also revealed that active transcriptional start 

sites (TSS) in eukaryotes are frequently marked by histone H3 tri-methylated at 

lysine 4 (H3K4me3) and histone H3 acetylated at lysine 27 (H3K27ac). Actively 

transcribed gene bodies show marks like monoubiquitinated H2B (H2Bub1) and 

H3K36me3. In contrast, inactive and repressed gene regions are frequently 

characterized by H3K27me3 marks, whereas condensed chromatin is typically 
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associated with H3K9me3. Furthermore, co-occupancy of functionally active and 

repressive histone modifications like H3K4me3 and H3K27me3 describe a specific 

subset of genes, called bivalent genes. Bivalent genes are in a transcriptionally 

inactive state, but often occupied already with RNA-Polymerase II (RNA-Pol II), and 

ready to be transcribed very fast after a certain stimulus (Bernstein et al., 2006; Min 

et al., 2011). These genes are often involved in regulation of differentiation of 

developmental processes which can induce further cell fate committing genes. It has 

been shown that especially undifferentiated cells such as embryonic stem cells tend 

to have genes in a bivalent state (Grandy et al., 2015; Ravens et al., 2015). In 

addition to its role in transcription regulation the histone code is associated with 

processes such as DNA-repair, histone exchange and dosage compensation (Heard 

and Disteche, 2006; Venkatesh and Workman, 2015; Zhu and Wani, 2010).  

This altogether indicates that the “histone code” can be used to describe not only the 

genomic regions, but also regulatory processes and characteristic cellular functions. 

Moreover, since cells have characteristic histone modification “landscapes” this can 

be further used for cell type specification or even for predictions of gene expression 

(Heintzman et al., 2009; Heinz et al., 2015; Karlić et al., 2010; Koch et al., 2007).  

1.4 Histone variants  

Nucleosomes can be changed in their canonical histone composition by histone 

variants. Several conserved histone variants were described for each histone except 

H4 (Kamakaka and Biggins, 2005). H2A and H3 show the highest diversity in variants 

like H2A.X, H2A.Z, macro H2A, H2A.Bdb and for H3 like H3.1, H3.2, H3.3. These 

variants can change the interaction of DNA and proteins when replacing canonical 

histones within the nucleosomes (Bönisch and Hake, 2012). Furthermore, they also 

regulate nucleosome stability or occupancy of modifications (Kamakaka and Biggins, 

2005). The functionality and homology of histone variants compared to their 

canonical counterparts vary greatly. For example, the histone variant H3.3 is almost 

identical to the H3 and differs only in 4 or 5 amino acids, whereas H2A.Z has only a 

60% homology to H2A (Zlatanova and Thakar, 2008). Additionally, histone variants 

can be associated with a common regulatory feature of cellular processes as known 

for H2A.Z or H3.3 in transcription (Jin et al., 2009). Interestingly, some of them are 

also associated with cell type-specific functions like the histone variant H3.5 in sperm 

and testis (Schenk et al., 2011). Moreover, they can also differ in their occupancy 



  1 Introduction 

5 
 

within genome. H2A.Bdb is restricted to autosomes and the active X-chromosome, 

whereas macro H2A is mainly found in the inactive X-chromosome (Chadwick and 

Willard, 2001; Costanzi and Pehrson, 1998).  

1.4.1 Histone variant H3.3 

H3.3 can be incorporated into nucleosomes in a replication-independent manner and 

is mainly associated with active promoters, gene bodies or enhancer regions (Ahmad 

and Henikoff, 2002; Jin et al., 2009; Sarai et al., 2013). A study showed that H3.3 

containing nucleosomes are more sensitive to low salt concentrations and are less 

stable than those with the canonical histone H3 (Jin and Felsenfeld, 2007). 

Concordant with these earlier studies it was also shown that H3.3 causes higher 

nucleosome turnover, a characteristic believed to keep the DNA in a transiently 

accessible state for regulation (Mito et al., 2005; Wirbelauer et al., 2005). 

Interestingly, H3.3 appears also to be required for instance for the maintenance of a 

specific chromatin landscape in embryonic stem cells by associating with the 

polycomb repressive complex 2 (PRC2) complex mediated by H3K27me3, despite 

high nucleosome turnover still being present (Banaszynski et al., 2013). Furthermore, 

in 31% of pediatric glioblastoma samples H3.3 was shown to be mutated at sites 

corresponding to H3K27, the modification which is well known to play an important 

role in gene regulation (Schwartzentruber et al., 2012).  

1.4.2 Histone variant H2A.Z 

H2A.Z is a highly conserved protein present in the protozoan Plasmodium falciparum, 

Saccharomyces cerevisiae and human with approximately 90% sequence 

conservation (Iouzalen et al., 1996; Zlatanova and Thakar, 2008). In the nucleosome 

H2A.Z can form a heterodimer with H2B in either a homotypic (H2A.Z/ H2A.Z) or 

heterotypic (H2A/ H2A.Z) fashion and thus alter the interaction with the H3/ H4 

heterotetramer (Suto et al., 2000).  Though the overall nucleosome structure is less 

changed to its canonical counterpart, the homotypic H2A.Z-containing nucleosomes 

are more sensitive to low salt concentrations and less stable (Weber et al., 2010).  

Interestingly, H2A.Z was found to be enriched in mammals and S. cerevisiae at the 

+1 nucleosome, the first nucleosome downstream of the TSS, which is thought to 

have regulatory roles in transcription by forming a barrier for RNA-Pol II (Bönisch and 

Hake, 2012; Zhang et al., 2005). However, besides its broadly described association 
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with gene activation H2A.Z has been correlated also with gene repression (Marques 

et al., 2010). Therefore, H2A.Z is rather thought to affect nucleosome positioning by 

sliding (nucleosome sliding described below) than solely reducing nucleosome 

stability and decreasing the hurdle for RNA-Pol II (Albert et al., 2007; Bönisch and 

Hake, 2012; Guillemette et al., 2005). These features link them to a broad range of 

cellular processes such as DNA-repair, transcription regulation and segmentation of 

euchromatin and heterochromatin (Bönisch and Hake, 2012; Meneghini et al., 2003).  

Interestingly, H3.3 and H2A.Z histone variants often co-occupy positions at the +1 

nucleosome and may promote a decreased nucleosomal barrier for RNA-Pol II 

around the TSS (Jin et al., 2009).  Concordant with that, a previous study showed 

that nucleosomes with H2A.Z and H3.3 were even more sensitive to low salt 

concentrations, however another group found only subtle differences in their stability, 

but increased variability in the nucleosome positioning (Jin and Felsenfeld, 2007; 

Thakar et al., 2009). With the exception of TSS, additional regulatory regions are co-

occupied with the two histones variants such as enhancer and insulator regions 

supporting their role in the maintenance of DNA accessibility (Chen et al., 2014b; Jin 

et al., 2009).  

1.5 Nucleosome remodeling  

Another mechanism of chromatin rearrangement is the remodeling and movement of 

nucleosomes. Nucleosome remodeling and positioning were shown to be important 

in transcription, DNA-repair or DNA-recombination (Green and Almouzni, 2002; 

Kamakaka and Thomas, 1990; Roth and Roth, 2000). Although the DNA sequence is 

a strong indicator for nucleosome positioning, half of the human genome is covered 

by regularly spaced nucleosomes and around 10% of them show highly consistent 

positioning, which indicates a genome-wide role of nucleosome remodeling (Gaffney 

et al., 2012). In general, four nucleosome remodeling mechanisms are described: 

i) sliding of nucleosomes by an ATP-dependent remodeler, ii) ejection of a complete 

histone octamer, iii) replacement or iv) removal of the H2A/ H2B histones from a 

nucleosome (Cairns, 2007).  

1.5.1 Nucleosome sliding  

Nucleosome sliding is performed by enzymes which are closely related to helicases 

and characterized by a highly conserved ATPase domain. The exact molecular 
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mechanism how nucleosome sliding is performed is still a matter of debate (Mueller-

Planitz et al., 2013). However, one model predicts that the ATPase remodeler bind at 

two distal sites on the nucleosome and loosen the interaction between the DNA and 

histones. The free DNA is then directionally pulled from the nucleosome and is 

thought to form a loop. By this ATP-dependent process linker DNA is dragged behind 

which transfers around the nucleosome and finally results in a shift. The majority of 

ATP-dependent chromatin remodelers act in modular multi-protein complexes and 

are broadly expressed (Mueller-Planitz et al., 2013; de la Serna et al., 2006). These 

are classified into several families such as SWItch/Sucrose Non-Fermentable 

(SWI/SNF), imitation SWI (ISWI), chromodomain helicase DNA-binding (CHD), 

INO80 complex (INO80), etc. (Clapier and Cairns, 2009). Further, the modularity of 

the associated complexes connects them to a variety of cellular processes with 

spatial and temporal regulation like differentiation and development (Chi et al., 2003; 

Das et al., 2007; Reynolds et al., 2012).  

In general, these chromatin remodeling complexes (CRC) can be divided into 

repressing or activating ones. For instance, the nucleosome remodeling deacetylase 

(NuRD) complex is a repressive CRC with multiple components like histone 

deacetylases-1 or 2 (HDAC1/2) and SNF2-ATPase domain containing 

chromodomain helicase DNA-binding protein-3/4 (CHD3/4) (Xue et al., 1998). In 

contrast, the SWI/SNF complex is an activating CRC with histone acetyl transferase 

activity (HAT) and AT-rich interactive domain 1A/B (ARID1A/B) (Kwon et al., 1994). 

Interestingly, active and repressive CRC often can have competitive roles in 

regulation of cell fates (Gao et al., 2009). However, CRC are difficult to analyze 

because of their modularity and often cell type specific functions (Voss and Hager, 

2014).     

Nucleosome sliding in general can cause three different outcomes: Nucleosome 

spacing, phasing or positioning (Figure 3) (Mueller-Planitz et al., 2013). Nucleosome 

spacing creates a regular array of nucleosomes which is often associated with 

dynamic and active chromatin (Gaffney et al., 2012). Approximately half of the human 

genome is covered by these arrays. It was shown in yeast that defects in nucleosome 

spacing due to depletion of a nucleosome remodeler led to cryptic transcription in the 

gene bodies (Hennig et al., 2012; Shim et al., 2012). Furthermore, regularly spaced 
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arrays might be important for the integrity of chromatin fibers during DNA replication 

(Fletcher and Hansen, 1996).  

Nucleosome phasing describes a patterning of nucleosomes relative to a 

nucleosome depleted region (NDR). NDRs are long-term open DNA regions caused 

by i) DNA sequences rich in AT which repels the association with histones, ii) due to 

the occupancy of DNA-bound proteins e.g. at the TSS or iii) ATP-dependent 

remodeling (Struhl and Segal, 2013). These regions are important regulatory sites 

which are required for the recruitment and binding of proteins like transcription factors 

or RNA-Pol II associated proteins (Venkatesh and Workman, 2015). The +1 

nucleosome is a strong determinant for nucleosome phasing (Mavrich et al., 2008). 

Depletion of the Snf2-related nucleosome-spacing enzymes showed strong 

alterations in histone phasing after the +1 nucleosome reaching into the gene 

body(Gkikopoulos et al., 2011; Pointner et al., 2012). Surprisingly this had however 

weak influence on global transcription, but increased cryptic transcription. 

Interestingly, the +1 nucleosome is the well positioned nucleosome and belongs to 

the 10% of the most consistently positioned nucleosome in the human genome 

(Gaffney et al., 2012). Furthermore, neither loss of histone chaperones (described 

below) nor the loss of ATP-dependent remodeler appears to regulate this solidly 

positioned nucleosome.  

During nucleosome positioning, DNA sequences can be disclosed or exposed by 

interaction with histones within the nucleosomes and thus for example regulate an 

active or inactive state. In yeast, the chromatin structure remodeling complex (RSC), 

which is related the human SWI/SNF complex, maintains NDR, whereas the ATP-

dependent nucleosome remodeler Imitation Switch subfamily 2 (Isw2) was reported 

to shift nucleosomes at the TSS and thus inhibit transcriptional initiation (Badis et al., 

2008; Whitehouse and Tsukiyama, 2006).    
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Figure 3: Different outcomes of nucleosome sliding. The model depicts nucleosomes (blue) on a 

DNA (grey line) in a decondensed status which are remodeled from left by respective mechanisms, as 

named top left, respectively. Black arrow on the nucleosome and DNA indicates transcriptional start 

site and its directionality, NDR – Nucleosome depleted region (Figure modified after Mueller-Planitz et 

al., 2013). 

1.5.2 Ejection and histone replacement/removal 

The canonical nucleosome is a stable structure, however, a dynamic exchange of 

histones occurs over various regions e.g. gene bodies (Das and Tyler, 2013). The 

main challenge during remodeling is to disturb the histone-histone or DNA-histone 

interactions within one nucleosome to remove or replace it. DNA-histone interactions 

are modified by ATP-dependent chromatin remodeler whereas histone-histone 

interactions are changed by histone chaperones (Gurard-Levin et al., 2014).  These 

proteins often act together in complexes to unfold nucleosomes,  as shown in yeast 

and humans (Cho et al., 2013; Okada et al., 2009; Simic et al., 2003).   

1.5.3.1 Histone dynamics in transcription 

Early studies on RNA-Pol II elongation has shown that nucleosomes can block 

transcription in vitro, whereas in vivo the nucleosomes are remodeled so that 

Polymerase can passage (Chang and Luse, 1997; Kireeva et al., 2002). During the 

process of remodeling the histone chaperones facilitates chromatin transcription 

(FACT) complex and Nef-associated protein 1 (Nap1) destabilize the interaction 

between the H2A/H2B dimer and the H3/H4 tetramer which causes the ejection of 

H2A/H2B (Petesch and Lis, 2012). This is often sufficient for the RNA-Pol II to 

overcome the nucleosome barrier. Interestingly, H2Bub1 is stimulating the FACT 

dependent nucleosome remodeling and enhances the RNA-Pol II passage frequency 
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(Pavri et al., 2006). This highlights the interplay on chromatin remodeling between 

histone modifications and CRC. Further, it also shows possible regulatory 

mechanisms of transcription by modulating histone dynamics over the gene body. 

Concordant with that, the chaperone specific recruitment to genes might play a role in 

fine tuning gene expression (Jimeno-González et al., 2006).  

After RNA-Pol II passage, histones are reassembled to the DNA by FACT and 

ordered into a spaced array by ATP-dependent chromatin remodeler (Hsieh et al., 

2013; Smolle et al., 2012). This might be a coordinated process between CHD1 and 

FACT as studies pointed out in yeast, Drosophila melanogaster and human by the 

interaction of both proteins (Krogan et al., 2002; Simic et al., 2003; Sims et al., 2007). 

Defects in either of both proteins were shown to increase cryptic transcription by 

RNA-Pol II (Carvalho et al., 2013; Smolle et al., 2012).  

1.5.3.2 Histone dynamics at the TSS 

Similar to gene bodies, nucleosomes at the transcriptional start sites are strong 

barriers for initiating RNA-Pol II in vitro (Lorch et al., 1987). After RNA-Pol II 

recruitment to the TSS and accomplished transcription of 20 – 50 bp into the gene, 

often a pause follows (Sainsbury et al., 2015). This pausing RNA-Pol II requires 

further signaling to continue transcription into the gene body. Additionally, the +1 

nucleosome needs to be overcome. Interestingly, this nucleosome position is slightly 

shifted downstream relative to the TSS when the RNA-Pol II is paused (Jonkers and 

Lis, 2015; Li and Gilmour, 2013; Weber et al., 2014). This “pushed” nucleosome by 

pausing RNA-Pol II indicates a transcriptional block. Further evidence for a +1 

nucleosome dependent barrier in vivo was provided by decreased RNA-Pol II 

pausing at H2A.Z enriched genes, which destabilizes nucleosomes (described 

above). Concordantly, knockdown of H2A.Z caused higher stalling of RNA-Pol II 

around the TSS by decreasing the +1 nucleosome turnover (Weber et al., 2014). 

Thus, regulation of the +1 nucleosome barrier directly affects the gene transcription 

by RNA-Pol II.  

Factors which are involved in the turnover of the nucleosome barrier at the TSS have 

been described previously. In particular, ATP-dependent chromatin remodeler, 

histone modifications or histone variants play a pivotal role (Skene et al., 2014; 

Svensson et al., 2015; Venkatesh and Workman, 2015). Hereby, the incorporation of 
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H2A.Z or H3.3 could affect the gene regulation by modulating the nucleosomal 

barrier. H2A.Z is incorporated into human nucleosomes either by the p400/TIP60 

complex or the Snf2-related CREBBP activator protein (SCRAP), which are both 

ATP-dependent remodelers (Billon and Côté, 2013). In contrast, H3.3 is incorporated 

into nucleosomes by the histone cell cycle regulation defective homolog A (HIRA) 

chaperone (Ray-Gallet et al., 2002). Interestingly, impairment in H3.3 gene specific 

incorporation showed defects  during development and differentiation rather than 

global transcription effects (Dutta et al., 2010; Szenker et al., 2012).  

1.6 CHD1  

The highly conserved chromodomain helicase DNA binding protein-1 (CHD1) is a 

ATP-dependent chromatin remodeler and belongs to the CHD family with 9 members 

(CHD1 – 9) (Marfella and Imbalzano, 2007). CHD1 has a tandem chromodomain at 

the N-terminal site, a central SNF2-like ATPase domain and a DNA binding domain 

(DBD) at the C-terminal site (Figure 4A). The tandem chromodomain was 

dispensable for chromatin binding but especially important for its substrate 

recognition (Hauk et al., 2010; Morettini et al., 2011). However, indispensable was 

the DBD domain for fast and directional nucleosome sliding by interaction with the 

linker DNA of nucleosomes (McKnight et al., 2011; Ryan et al., 2011). Moreover, also 

mutations in the DBD domain did not prevent CHD1 from chromatin association 

(McKnight et al., 2011). Surprisingly, substitution of the DBD domain and changed 

tethering of CHD1 directly onto the nucleosome substrate changed its sliding 

properties and even caused disruption of the nucleosome (Patel et al., 2013).  

1.6.1 The role of CHD1 in yeast and drosophila 

In S. cerevisiae and D. melanogaster CHD1 is not necessary for their viability, but 

latter showed impaired development and fertility (McDaniel et al., 2008; Tsukiyama et 

al., 1999). However, CHD1 deletion in S. cerevisiae or its orthologue histidine-rich 

protein (hrp3) in Saccharomyces pombe showed changes in nucleosome positioning 

over the gene body relative to the stable positioned +1 nucleosome (Gkikopoulos et 

al., 2011; Hennig et al., 2012; Shim et al., 2012). Furthermore, H3K36me3 was 

reduced and gene bodies were more acetylated after passage of RNA-Pol II. The 

resulting changes in nucleosome array and open acetylated chromatin structure at 

the gene body caused cryptic transcription, but did not alter global transcription. 
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Consistently, another study showed that H2Bub1, a mark for transcriptional 

elongation at gene bodies, was reduced after loss of CHD1 and gene bodies had 

less nucleosome occupancy (Lee et al., 2012a). Moreover, CHD1 mutant strains 

showed an increased accumulation of RNA-Pol II Serine 5 phosphorylated form at 

TSS, which characterizes early elongating defects of the RNA-Pol II, probably by an 

altered nucleosome array (Park et al., 2014). Besides transcription regulation CHD1 

was also required for deposition and regular spacing of H3.3 in the male pronucleus 

of D. melanogaster (Konev et al., 2007).   

1.6.2 Role of CHD1 in higher eukaryotes  

In contrast to S. cerevisiae and D. melanogaster CHD1 is required for the embryonic 

development in mice (Guzman-Ayala et al., 2015). CHD1 deletion caused prenatally 

lethality between day five and six which indicates its importance in developmental 

processes. Similar to S. cerevisiae, CHD1 is mainly linked to transcriptional 

processes in higher eukaryotes. It was described to bind to H3K4me3 with its tandem 

chromodomain and interact with the transcription machinery (Figure 4B) (Lin et al., 

2011; Sims et al., 2007). In particular, CHD1 is recruited by the mediator complex 

and probably further stabilized or positioned to its nucleosome substrate by its 

binding to H3K4me3. However, it had been shown that CHD1 is not associated with 

H3K27me3 which indicates its association with active, but not bivalent, genes 

(Gaspar-Maia et al., 2009). Global binding patterns of CHD1 in human and mice 

revealed high similarities to yeast. Further, genome-wide occupancy analyses 

uncovered CHD1 binding also at gene bodies, which is supported by previous 

interaction studies between CHD1 and structure specific recognition protein 1 

(SSRP1), a histone chaperone (Kelley et al., 1999; Skene et al., 2014). If CHD1 is 

also necessary for the maintenance of H3K36me3 and H2Bub1 at the gene body like 

it was observed in yeast was not investigated yet (Gkikopoulos et al., 2011; Hennig et 

al., 2012; Shim et al., 2012).  

However, a recent study in mouse embryonic fibroblasts showed that overexpression 

of a CHD1 mutant protein increased the nucleosome turnover at the gene body which 

indicates its role in ordering the chromatin after RNA-Pol II passage (Skene et al., 

2014). Furthermore, it reduced the nucleosome turnover at the TSS of all expressed 

genes and caused decreased RNA-Pol II Serine 2 phosphorylation levels, a mark for 

elongating polymerase. This indicates that functional CHD1 was required for the 
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RNA-Pol II to overcome the +1 nucleosome barrier and order the nucleosomes at the 

gene body after passage of RNA-Pol II.  

Next to its transcriptional effects, studies also highlighted a role for CHD1 in the 

segmentation of hetero- and euchromatin. In D. melanogaster and mice, reduced 

CHD1 levels caused increased marks of heterochromatin, like HP1alpha and 

H3K9me2 (Bugga et al., 2013; Gaspar-Maia et al., 2009). CHD1, however, is 

restricted to open chromatin states, as it was mutually exclusive with the H1 histone 

(Lusser et al., 2005).  

The role of CHD1 in transcription was also shown to regulate developmental 

processes and tumorigenesis. A recent study highlighted that CHD1 is required for 

the maintenance of mouse embryonic stem cells (mESC) and self-renewal capacity 

(Gaspar-Maia et al., 2009). The same group also observed that endothelial-specific 

deletion of CHD1 caused a loss of hematopoietic progenitor cells, however, 

interestingly, after hematopoietic differentiation CHD1 deletion had no obvious effects 

on subsequent blood cell development (Koh et al., 2015). This indicates a specificity 

in certain differentiation processes and demonstrates that CHD1 played a role in 

stem cell differentiation and maintenance.  

Besides developmental processes, CHD1 is frequently mutated or deleted in human 

prostate cancer (Grasso et al., 2012), although mutations in transcriptional co-

activators are less frequently reported in high proliferative cancer cells. Interestingly, 

recent studies highlighted the interaction of CHD1 with the androgen receptor (AR) 

and its role in regulating AR-dependent gene transcription (Burkhardt et al., 2013). 

However, other studies claim that a subtype of androgen-independent aggressive 

prostate cancer cells carry CHD1 mutations (Huang et al., 2012; Rodrigues et al., 

2015). Although, molecular studies particular in cancer models are missing which 

address the question how CHD1 affects RNA-Pol II transcription and pausing, the 

studies so far showed that loss of CHD1 might act gene specific and not on global 

gene expression.      



  1 Introduction 

14 
 

 

Figure 4:CHD1 domains and its interactions near the transcriptional start site in mammals. A 

The schematic view of chromodomain helicase DNA-binding protein 1 (CHD1) domains showing the 

N-terminal tandem chromodomain, SNF2-like ATPase domain and the C-terminal DNA binding 

domain within the 1710 amino acids long protein. B The model represents CHD1 binding to Histone 3 

lysine 4 trimethylation at the transcriptional start site (small arrowhead). The transcription machinery 

(purple) of the RNA-Polymerase II (RNAP II) is recruited at the nucleosome free region with the TATA-

box motif site on the DNA (brown box). CHD1 interacts with the mediator complex (Figure modified 

after Sims et al., 2007). 

1.7 Stem cells and differentiation  

Stem cells are undifferentiated and unspecialized cell types which have the ability to 

self-renew throughout their life-span. In general, different classes of stem cells exist 

which can be distinguished by their differentiation potential (Eckfeldt et al., 2005). 

Totipotent zygotes have the highest potential and give rise to a complete organism. 

Moreover, they can differentiate into pluripotent embryonic stem cells (ESC). ESC 

are characterized by their ability to generate derivatives of the three main germ 

layers: endoderm, ectoderm and mesoderm. Gradually, each of these three classes 

can further differentiate and form more committed somatic/adult stem cells (SSC) 

with the capacity of producing restricted numbers of distinct cells types.  

Besides the natural occurring stem cells there exist also induced pluripotent stem 

cells (iPSC) which were introduced in 2006 and are considered to be a breakthrough 



  1 Introduction 

15 
 

in the stem cell field (Takahashi and Yamanaka, 2006). It had been shown that 

mouse somatic cells can be transformed into ESC by only four transcription factors, 

namely POU class 5 homeobox 1 (POU5F1 or Oct3/4), SRY-box 2 (Sox2), v-myc 

avian myelocytomatosis viral oncogene homolog (c-Myc), and kruppel-like factor 4 

(KLF4). However, the induced pluripotent stem cells (iPSC) partially retained the 

specific epigenetic memory of the parental somatic cell after reprogramming (Polo et 

al., 2010).  

Although all cells within the hierarchical differentiation program carry the same 

genotype they vary greatly in function and morphology. To accomplish this the 

accessibility of the DNA in different cell types is altered by chromatin packaging, DNA 

methylation or regulatory RNAs which together is termed as epigenetic regulation 

(Jaenisch and Bird, 2003; Li and Reinberg, 2011). Already in 1957 Conrad 

Waddington introduced a model which describes the role of the epigenetic landscape 

underlying the stem cell differentiation and cell fate determination (Figure 5A) 

(Waddington, 1957). As depicted by Waddington, the epigenetic regulation with its 

various possible modifications in the genome has a great influence on the cell fate 

determination and regulation.  

 

 

 

 

 

 

 

 

 

Figure 5: Epigenetic landscape model by Waddington. An undifferentiated pluripotent stem cell 

(blue ball) on the top of the landscape with a high differentiation potential can differentiate into more 

committed cell states “downhill”. Each event of cellular commitment will be accompanied by epigenetic 

changes that are depicted here as valleys which greatly influences the final outcome of the 

differentiated cell state (Figure modified after Barth and Imhof, 2010). 
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1.8 MSC and their differentiation potential 

MSC are somatic multipotent stem cells which reside in pre- and postnatal tissues 

like muscle, fat, bone or cartilage (Owen and Friedenstein, 1988). Recent critical 

rethinking however questioned that there is only one general MSC cell type (Méndez-

Ferrer et al., 2010; Zhou et al., 2014). Briefly, it is hypothesized that different types of 

MSC exist  which vary in their internally determined cell fates, defined by their 

progenitors and tissue they are residing in (Kassem and Bianco, 2015). For example, 

adipose tissue derived MSCs are reprogrammable to osteoblasts but show neither 

spontaneous nor in vivo capacity to form bone, whereas bone marrow derived MSC 

do. Furthermore, different MSC can vary in their responses to differentiation stimuli in 

their outcome of cell states (Al-Nbaheen et al., 2012).  

Bone marrow derived MSC (or skeletal stem cells) give rise to different tissues that 

are present in the skeleton such as bone, cartilage and fat. MSC reside perivascular 

within a stem cell niche inside the bone marrow together with hematopoietic stem 

cells (HSC) where they can mutually regulate each other’s differentiation (Méndez-

Ferrer et al., 2010). In addition, the strong vascular and microvascular environment of 

the bones influence the interplay between the hematopoietic and mesenchymal cell 

systems (Bianco and Robey, 2015). This shows that both systems are closely 

coupled and interact with each other in a paracrine manner. MSC express several 

receptor types such as insulin growth factor 1 receptor (IGF1R), transforming growth 

factor receptors (TGFR) or bone morphogenic protein receptors (BMPR) by which 

different signaling pathways can be triggered and thereby induce cell fate shifts with 

transcriptional and epigenetic changes.  

1.8.1 Adipocyte differentiation 

MSC differentiation to adipocytes is a postnatal event usually occurring with aging, 

however, it is also enhanced in diseased bone with low bone mass or in osteoporosis 

(Abdallah and Kassem, 2012; Rosen and Bouxsein, 2006). Different studies showed 

that a more adipocyte or osteoblast precursor cell type can favor the cell lineage 

differentiation which might be shifted with age or disease (Post et al., 2008; Russell 

et al., 2010). Adipocyte differentiation is mainly driven by the nuclear hormone 

receptor peroxisome proliferator-activated receptor gamma (PPARG), which is 

required for early adipocyte differentiation and maintenance of the adipocyte cell type 

(Rosen and MacDougald, 2006). Ligands which bind PPARG are still elusive, but 
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fatty acids and their metabolites or synthetically derivatives of glitazones such as 

troglitazone were shown to activate PPARG (Ahmadian et al., 2013; Mukherjee et al., 

1997). Upon activation, PPARG forms a heterodimer with the retinoid X receptor 

(RXR) and regulates gene expression by interaction with CRC and co-activators like 

p300 (Gelman et al., 1999; Salma et al., 2004). Moreover, the transcription factors 

transcriptional CCAAT/enhancer-binding protein α (C/EBPα) and different KLFs play 

an important role in early and late stages of adipocyte differentiation (Mori et al., 

2005; Oishi et al., 2005; Tang et al., 2003). 

1.8.2 Osteoblast differentiation 

The bone is a dynamic organ and undergoes life-long remodeling by continuous 

deposition and absorption of mineralized tissue (Clarke, 2008). In this process the 

role of osteoblast differentiation is indispensable to maintain the balance between 

bone formation and resorption. In general, osteoblast differentiation can be divided 

into early and late stages that involve progenitor cells, pre-osteoblasts and mature 

osteoblast formation (Long, 2012). During these stages the cells first undergo a high 

proliferation with subsequent deposition of an organic extracellular-scaffold which is 

finally mineralized in mature osteoblasts (Lian and Stein, 1992). The early cell 

lineage commitment happens under the influence of TGF-beta or BMP signaling 

(Chen et al., 2012).  

The osteoblast progenitor cells and early differentiating osteoblasts are mainly 

determined by the transcription factor runt-related transcription factor 2 (RUNX2) 

which is activated by different signaling molecules such as TGF-beta and BMP-2 

(Lee et al., 2000, 2003). However, unlike PPARG RUNX2 is not required for the 

maintenance of osteoblastic cell fate and even needs to be inactivated in mature 

osteoblasts (Komori, 2009).  

Another important regulator of osteoblast differentiation is the canonical and non-

canonical Wnt signaling pathway (Rodda and McMahon, 2006; Taipaleenmäki et al., 

2011). Striking evidence for the role of the canonical pathway for osteogenesis was 

discovered by studies which showed that removal of β-catenin in MSC progenitor 

cells reduced osteoblast differentiation (Day et al., 2005; Hu et al., 2005). 

Interestingly, the repression of osteoblast differentiation was induced by the loss of 

the β-catenin and favored instead chondrogenic differentiation of the MSCs (Hill et 
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al., 2005; Rodda and McMahon, 2006). Although, the early osteoblast differentiation 

marker RUNX2 was still expressed in the surrounding tissue, Sp7 transcription factor 

(SP7), a marker for later osteoblast differentiation stages, was not.  

The multifactorial Wnt signaling plays, however, a more complicated role in 

osteoblast differentiation by acting either as an activator or suppressor of 

differentiation which depends on the cell lineage commitment (Regard et al., 2012). 

Canonical Wnt activation in MSC causes increased proliferation but decreased 

differentiation (de Boer et al., 2004; Boland et al., 2004; Regard et al., 2012), 

whereas in pre-osteoblasts or early committed cells Wnt signaling enhances 

differentiation and growth (Eijken et al., 2008; Rodda and McMahon, 2006). 

Furthermore, the terminal differentiation can be blocked by active Wnt signaling 

(Kahler et al., 2006, 2008). This indicates a dynamic pattern of gene expression and 

complex regulation during osteoblast differentiation.  

Concordant with these findings showed recent genome-wide transcriptome studies 

that the factors involved in osteogenesis can fluctuate in their expression levels 

during differentiation (Kulterer et al., 2007; Twine et al., 2014). One conclusion of the 

authors was that the temporal fine tuning in gene expression of osteoblast-

associated factors could play pivotal roles for an ordered osteoblast differentiation. 

This is in line with the different impact of Wnt factors or RUNX2 which are pivotal at 

certain stages of differentiation but can be repressive at other stages during 

osteogenesis (Kahler and Westendorf, 2003; Kahler et al., 2006; Kanatani et al., 

2006)  

1.8.3 MSC in clinical studies 

MSCs are one of the most often used cell types for stem cell therapy in clinical 

approaches (Wei et al., 2013). When comparing the registered clinical trials for MSC 

in the United States between December 2012 and December 2015 the number 

doubled from 281 to 565 (ClinicalTrials.gov). For stem cell therapy living cells are 

either systemically or locally applied so that they home to degenerated or injured 

tissue to restore its function or to support its regeneration. MSCs have the 

advantages that they are easy to isolate from different tissues within the body and 

can be expanded ex vivo (Zaher et al., 2014). Moreover, they have 

immunomodulatory properties which lower the danger of immune-rejection by the 
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host system (Atoui and Chiu, 2012). Although their division number ex vivo is limited, 

as they undergo replicative senescence, ways of immortalization by telomerase 

reverse transcriptase (TERT) were described without impairment of their 

differentiation potential (Simonsen et al., 2002). Nonetheless providing efficient ex 

vivo expansion without changing the cellular properties remain a concern in stem cell 

therapies (Hoch and Leach, 2014)  

Preclinical studies of stem cell therapies showed that MSCs were already 

successfully used for tissue regeneration processes in liver, lung or bone (Amado et 

al., 2005; Kim et al., 2007; Lee et al., 2009; Parekkadan et al., 2007; Tzaribachev et 

al., 2008). In particular for the bone tissue repair of defective cartilage, treatment of 

patients with osteogenesis imperfect or bone fracture healing were reported (Gómez-

Barrena et al., 2015; Le Blanc et al., 2005; Wakitani et al., 2007). Regenerative 

properties of MSC are either provided by direct differentiation into bone tissue within 

an organic scaffold implanted during surgery or by their paracrine signaling of 

cytokines inhibiting apoptosis and support angiogenesis (Rosset et al., 2014; Wei et 

al., 2013). Interestingly, co-transplantation of MSC and HSC increased tissue repair 

effects in a primate animal models which indicates a potential synergism between the 

two stem cell systems (Chapel et al., 2003).  

Moreover MSC might be also suitable for treatment of osteoporosis (Antebi et al., 

2014). Osteoporosis is a disease defined by porous and fragile bone caused mainly 

by an imbalanced system between bone formation and bone resorption (Rachner et 

al., 2011). Most of the actual approved therapies are antiresorptive approaches, 

however, enhancing the bone formation shows alternative ways of therapy which are 

likely to reduce negative side effects (Chen et al., 2014a). MSC cell therapy could 

support the bone building process by osteoblast differentiation at the porous sites in 

vivo (Antebi et al., 2014). 
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1.9 Aim of the study  

The chromatin remodeler CHD1 is a well described co-activator of gene transcription 

and is associated with various transcription associated complexes. However, so far it 

is less clear if CHD1 can also act as a regulatory protein in gene expression and if it 

is required for gene induction. Here we hypothesize that CHD1 is necessary for gene 

specific expression during adipocyte and osteoblast differentiation and is required for 

the cell type change. To unravel the molecular mechanism of its gene regulation we 

performed genome-wide ChIP-seq and RNA-seq in control and CHD1 depleted 

condition. We focused on changes of the transcriptional hallmarks RNA-Pol II, H2A.Z 

and H2Bub1 of differentiation and CHD1 depletion regulated genes. Besides the 

mechanistic effect the biological impact on bone formation was investigated. 

Therefore, transcriptome wide analysis of deregulated osteoblast-specific 

differentiation genes was performed. Additionally, ectopic bone formation capacity of 

stable CHD1 depleted MSC was tested to test the role of CHD1 in vivo.  
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2 Material  

2.1 Technical equipment 

-150 °C Freezer (MDF-C2156VAN) Panasonic, Kadoma, Japan 

-20 °C Freezer     Liebherr GmbH, Biberach 

2100 Bioanalyzer     Agilent Technology, Santa Clara, USA 

-80 °C Freezer “Hera freeze”   Thermo Fisher Scientific, Waltham, USA 

Agarose gel chamber    Harnischmacher Labortechnik, Kassel 

Balance      Sartorius AG, Göttingen 

Bandelin Sonoplus Sonicator   Bandelin electr. GmbH & Co. KG, Berlin 

Biological Safety Cabinet “Safe 2020”  Thermo Fisher Scientific, Waltham, USA 

Bioruptor® Plus sonication device  Diagenode SA, Liège, Belgium 

Centrifuge (Megafuge 1.OR)   Thermo Fisher Scientific, Waltham, USA 

Centrifuge 4 °C (5417R)    Eppendorf AG, Hamburg 

Centrifuge 4 °C (Fesco 21)   Thermo Fisher Scientific, Waltham, USA 

Counting chamber (Neubauer)   Brand GmbH & Co. KG, Wertheim 

DynaMagTM 2    LifeTechnology, Carlsbad, USA 

DynaMagTM 96 Side   LifeTechnology, Carlsbad, USA 

Eclipse TS100    Nikon, Tokio, Japan 

Electrophoresis & Electrotransfer Unit  GE Healthcare Europe GmbH, München 

Gel iX Imager     Intas Science Imaging GmbH, Göttingen 

HERAcell 150i CO2 Incubator   Thermo Fisher Scientific, Waltham, USA 

Imager Western Blot    Bio-Rad Laboratories, Hercules, USA 

Inverse Microscope “Axiovert 40 CFL” Carl Zeiss MicroImaging GmbH, Göttingen 

Isotemp® water bath    Thermo Fisher Scientific, Waltham, USA 

Magnet stirrer “MR3001”    Heidolph GmbH & Co. KG, Schwabach 

Microcentrifuge C1413-VWR230  VWR, Radnor, USA     

Microwave      Clatronic International GmbH, Kempen 

Mini Trans-BlotTM Cell   Bio-Rad Laboratories, Hercules, USA 

Mini-PROTEAN Tetra Cell   Bio-Rad Laboratories, Hercules, USA 

Mr. Frosty® Cryo Freezing Container  Thermo Fisher Scientific, Waltham, USA 

Nano Drop® ND-1000   Peqlab Biotechnology GmbH, Erlangen 

Optical Reaction Module CFX96TM  Bio-Rad Laboratories, Hercules, USA 

pH meter inoLab®     WTW GmbH, Weilheim 
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Pipette Aid® portable XP    Drummond Scientific Co., Broomall, USA 

Pipettes “Research” Series   Eppendorf AG, Hamburg 

Power supply Power Pack P25T   Biometra GmbH, Göttingen 

PowerPacTM Basic Power Supply  Bio-Rad Laboratories, Hercules, USA 

PowerPacTM HC Power Supply  Bio-Rad Laboratories, Hercules, USA 

Refrigerator      Liebherr GmbH, Biberach 

Repeat Pipette     Gilson Inc., Middleton, USA 

Scanner Epson V700 Photo  Seiko Epson, Suwa, Japan 

Shaker “Rocky”     Schütt Labortechnik GmbH, Göttingen 

Test tube rotator     Schütt Labortechnik GmbH, Göttingen 

Thermal Cycler T100TM   Bio-Rad Laboratories, Hercules, USA 

Thermo mixer C    Eppendorf AG, Wessling-Berzdorf 

Vortex-Genie 2    Electro Scietific Industr. Inc., Portland, USA 

X-Ray Cassettes     Rego X-ray GmbH, Augsburg 

2.2 Consumable materials 

96-well Multiplate® PCR plate white  Bio-Rad Laboratories, Hercules, USA 

Cell scraper (16 cm)    Sarstedt AG & Co., Nümbrecht 

Cellstar 6- and 12-well cell culture plate Greiner Bio-One GmbH, Frickenhausen 

Cellstar PP-tube 15 and 50 ml   Greiner Bio-One GmbH, Frickenhausen 

Cellstar tissue culture dish 100×20 mm  Greiner Bio-One GmbH, Frickenhausen 

Cellstar tissue culture dish 145×20 mm  Greiner Bio-One GmbH, Frickenhausen 

Cryo Tube Vial (1.8 ml)    Thermo Fisher Scientific, Waltham, USA 

DNA loBinding Tube 1.5 and 0.5 ml Eppendorf AG, Wessling-Berzdorf 

Gel blotting paper (Whatman paper)  Sartorius AG, Göttingen 

HybondTM -PVDF Transfer Membrane  GE Healthcare Europe GmbH, München 

Microtube 1.5 ml     Sarstedt AG & Co., Nümbrecht 

Microtube 1.5 ml, conical    VWR International GmbH, Darmstadt 

Microtube 2 ml     Sarstedt AG & Co., Nümbrecht 

Millex-HV Filer (0.45µM) PVDF   Merck Millipore KGaA, Darmstadt 

Parafilm® “M”     Pechiney Plastic Packaging, Chicago, USA 

Pipette filter tips     Sarstedt AG & Co., Nümbrecht 

Pipette tips      Greiner Bio-One GmbH, Frickenhausen 

X-ray films “Super RX”    Fujifilm Corp., Tokyo, Japan 



  2 Material 

23 
 

 

2.3 Chemicals 

Acetic acid      Carl Roth GmbH & Co. KG, Karlsruhe 

Adefodur WB developing concentrate  Adefo-Chemie GmbH, Dietzenbach 

Adefodur WB fixing concentrate   Adefo-Chemie GmbH, Dietzenbach 

Adenosin triphosphate    Fermentas GmbH, St. Leon-Rot 

Agarose      Carl Roth GmbH & Co. KG, Karlsruhe 

Agencourt® AMPure® XP Beads   Beckman Coulter Inc. Brea USA 

Albumin Fraction V      Carl Roth GmbH & Co. KG, Karlsruhe 

Ammonium persulfate     Carl Roth GmbH & Co. KG, Karlsruhe 

Ammonium sulfate      Carl Roth GmbH & Co. KG, Karlsruhe 

Ampicilin     AppliChem GmbH, Darmstadt 

Anti-Anti     LifeTechnology, Carlsbad, USA 

Aprotinin     Carl Roth GmbH & Co. KG, Karlsruhe 

Bromophenol blue     Sigma-Aldrich Co., St. Louis, USA 

Calcitriol     Biomol GmbH, Hamburg 

Calcium Chloride      Carl Roth GmbH & Co. KG, Karlsruhe 

Chloroform      Carl Roth GmbH & Co. KG, Karlsruhe 

Dexamethasone     Sigma-Aldrich Co, St. Louis, USA 

Diethylpyrocarbonate     Carl Roth GmbH & Co. KG, Karlsruhe 

dihydrate       

Dimethyl sulfoxide      AppliChem GmbH, Darmstadt 

di-Sodium hydrogen phosphate -  Carl Roth GmbH & Co. KG, Karlsruhe 

Dithiothreitol       Carl Roth GmbH & Co. KG, Karlsruhe 

DMEM      LifeTechnology, Carlsbad, USA 

DMEM/F12      LifeTechnology, Carlsbad, USA 

dNTP       Promega GmbH, Mannheim 

Ethanol absolute     Th. Geyer GmbH & Co. KG, Renningen 

Ethidium bromide     Carl Roth GmbH & Co. KG, Karlsruhe 

Ethylenediaminetetraacetic acid  Carl Roth GmbH & Co. KG, Karlsruhe 

Fetal Bovine Serum     Thermo Scientific HyClone, Logan,USA 

Formaldehyde     Sigma-Aldrich Co., St. Louis, USA 

Glycerol      Carl Roth GmbH & Co. KG, Karlsruhe 
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Glycine      Carl Roth GmbH & Co. KG, Karlsruhe 

Hydrochloric acid      Carl Roth GmbH & Co. KG, Karlsruhe 

ImmobilonTM Western HRP substrate Merck Millipore KGaA, Darmstadt 

Insulin      Sigma-Aldrich Co, St. Louis, USA 

Iodoacetamide     Sigma-Aldrich Co, St. Louis, USA 

Isopropanol      Carl Roth GmbH & Co. KG, Karlsruhe 

L-Ascorbic acid    Sigma-Aldrich Co, St. Louis, USA 

Leupeptin      Carl Roth GmbH & Co. KG, Karlsruhe 

Linear Acrylamide     Thermo Fisher Scientific, Waltham, USA 

Magnesium chloride     Carl Roth GmbH & Co. KG, Karlsruhe 

MEM α powder    LifeTechnologies AG, Carlsbad, US  

Methanol      Carl Roth GmbH & Co. KG, Karlsruhe 

Monopotassium phosphate    Carl Roth GmbH & Co. KG, Karlsruhe 

N,N-Dimethylformamide   Sigma-Aldrich Co., St. Louis, USA 

N-ethylmaleimide      Sigma-Aldrich Co., St. Louis, USA 

NonidetTM P40      Sigma-Aldrich Co., St. Louis, USA 

Oil Red O      Sigma-Aldrich Co., St. Louis, USA 

Opti-MEM      LifeTechnology, Carlsbad, USA 

PBS tablets      LifeTechnology, Carlsbad, USA 

Pefabloc SC     Carl Roth GmbH & Co. KG, Karlsruhe 

Penicillin-Streptomycin solution   Sigma-Aldrich Co., St. Louis, USA 

Peptone     Carl Roth GmbH & Co. KG, Karlsruhe 

Polybrene      Sigma-Aldrich, St. Louis, USA 

Potassium acetate      Carl Roth GmbH & Co. KG, Karlsruhe 

Potassium chloride      AppliChem GmbH, Darmstadt 

Potassium dihydrogen phosphate Carl Roth GmbH & Co. KG, Karlsruhe 

Propidium iodide solution    Sigma-Aldrich Co., St. Louis, USA 

Protein A SepharoseTM CL-4B   GE Healthcare, Uppsala, Sweden 

RNAiMAX      LifeTechnology, Carlsbad, USA 

Roti®-Phenol     Carl Roth GmbH & Co. KG, Karlsruhe 

Rotiphorese® Gel 30    Carl Roth GmbH & Co. KG, Karlsruhe 

Rotipuran® Chloroform    Carl Roth GmbH & Co. KG, Karlsruhe 

Rotipuran® Isoamylalcohol   Carl Roth GmbH & Co. KG, Karlsruhe 

SepharoseTM CL-4B    GE Healthcare, Uppsala, Sweden 
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Skim milk powder     Carl Roth GmbH & Co. KG, Karlsruhe 

Sodium acetate     Carl Roth GmbH & Co. KG, Karlsruhe 

Sodium chloride     Carl Roth GmbH & Co. KG, Karlsruhe 

Sodium deoxycholate    AppliChem GmbH, Darmstadt 

Sodium dodecylsulfate     Carl Roth GmbH & Co. KG, Karlsruhe 

Sodium hydroxide      Carl Roth GmbH & Co. KG, Karlsruhe 

ß-Glycerolphosphate   Sigma-Aldrich Co., St. Louis, USA 

SYBR Green     Roche Diagnostics GmbH, Mannheim 

TEMED      Carl Roth GmbH & Co. KG, Karlsruhe 

Tris       Carl Roth GmbH & Co. KG, Karlsruhe 

Triton X-100      AppliChem GmbH, Darmstadt 

Trypsin-EDTA      LifeTechnology, Carlsbad, USA 

Tween-20      AppliChem GmbH, Darmstadt 

α,α-Trehalose Dihydrate    Panreac AppliChem GmbH, Darmstadt 

2.4 Kits and reagents 

Agilent High Sensitivity DNA Kit  Agilent Technology, Santa Clara, USA 

Agilent RNA 6000 Nano Kit  Agilent Technology, Santa Clara, USA 

LipofectamineTM 2000    LifeTechnology, Carlsbad, USA 

LipofectamineTM RNAiMAX   LifeTechnology, Carlsbad, USA 

MicroPlex Library PreparationTM   Diagenode SA, Liège, Belgium   

NEBNext® Poly(A) mRNA Module New England Biolabs, Ipswich, USA 

NEBNext® UltraTM Library Prep Kit  New England Biolabs, Ipswich, USA 

Qubit dsDNA HS Assay    LifeTechnology, Carlsbad, USA 
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2.5 Nucleic acids 

2.5.1 Vectors for viral particle production 

Construct name shRNA-sequence Source 

GIPZ shRNA-CHD1 #1 
Clone V3THS_312675 

TTTTTGTAAGAATCTCCCT 
Dharmacon Inc (Lafayette, 

USA) 

GIPZ shRNA-CHD1 #2 
Clone V2THS_112971 

ATAATTCAGAAATGAGATC 
Dharmacon Inc (Lafayette, 

USA) 

GIPZ non-targeting- 
control 

TACTCTCGCCCAAGCGAG 
Dharmacon Inc (Lafayette, 

USA) 

psPAX2 packaging 
vector 

- V. Assmann UKE, Hamburg 

pMD2.G envelope 
vector 

- V. Assmann UKE, Hamburg 

2.5.2 Oligonucleotides 

2.5.2.1 siRNA oligonucleotides 

Name 
Target 
Gene 

siRNA Target Sequence Source 

siCHD1-1 CHD1 CAUCAAGCCUCAUCUAAUA 
Dharmacon Inc 

(Lafayette, 
USA) 

siCHD1-2 CHD1 GAUAAGAACUCAUGAAUGG 
Dharmacon Inc 

(Lafayette, 
USA) 

siCHD1-3 CHD1 GAAGAGAGCUGAAACUCAU 
Dharmacon Inc 

(Lafayette, 
USA) 

siCHD1-4 CHD1 GAAACAAGCUCUAGAUCAU 
Dharmacon Inc 

(Lafayette, 
USA) 

Luciferase GL2 
duplex 

- CGUACGCGGAAUACUUCGA 
Dharmacon Inc 

(Lafayette, 
USA) 

 

For siCHD1 transfection reactions the individual siRNAs directed against CHD1 were 

pooled in a 1:1:1:1 ratio. 

2.5.2.2 RT-PCR primers 

For reverse transcription reaction random 9mer primer were used. The primers were 
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purchased from Sigma-Aldrich Co., St. Louis, USA  

2.5.2.3 qPCR primers 

Primers are shown in a 5´ to 3´ orientation. Own primers were designing by the 

program primer –blast available at NCBI (www.ncbi.nlm.nih.gov/tools/primer-blast/). 

Name Sequence Source 

18S rRNA F AACTGAGGCCATGATTAA Nagarajan et al. 2015 

18S rRNA R GGAACTACGACGGTATCTGA Nagarajan et al. 2015 

ALPL F TGGGCCAAGGACGCTGGGAA Karpiuk et al. 2012 

ALPL R AAGGCCTCAGGGGGCATCTCG Karpiuk et al. 2012 

AXIN2 F ATTTCCCGAGAACCCACCGCCT This study 

AXIN2 R GGCTGTGGCGGCTCTCCAAC This study 

BGLAP F CACTCCTCGCCCTATTGGC Karpiuk et al. 2012 

BGLAP R CTTGGACACAAAGGCTGCAC Karpiuk et al. 2012 

BMP4 F GGAGCTTCCACCACGAAGAA This study 

BMP4 R GGAAGCCCCTTTCCCAATCA This study 

CHD1 F GCCAAGGTTTGTAGCCCTGA This study 

CHD1 R GCACCAAGAATGAGCAAGCC This study 

COL11A1 F CTCAGGGACCTGCAGGAAAG This study 

COL11A1 R GGGTCACCTTTGAGACCAGG This study 

CTGF F CACCCGGGTTACCAATGACA This study 

CTGF R GGATGCACTTTTTGCCCTTCTTA This study 

DUSP1 F GAGCTGTGCAGCAAACAGTC This study 

DUSP1 R GGGCCACCCTGATCGTAGA This study 

EDN1 F TTGAGATCTGAGGAACCCAC This study 

EDN1 R CAGCGCCTAAGACTGCTGTT This study 

ELN F TCCCGGGAGTTGGCATTTC This study 

ELN R ACTGGGCGGCTTTGGC This study 

LPIN1 F CCGCTCGGTGCAGACCAT This study 

LPIN1 R GGACCCCCATCTTCCCAAAG This study 

LPL F TCAGCCGGCTCATCAGTCGGT Karpiuk et al. 2012 

LPL R AGAGTCAGCACGAGCAGGGCT Karpiuk et al. 2012 

PDK4 F AGAGGTGGAGCATTTCTCGC Karpiuk et al. 2012 

PDK4 R ATGTTGGCGAGTCTCACAGG Karpiuk et al. 2012 

PLIN1 F ACCTCCTCCCTCCAGACAAG   This study 

PLIN1 R ATGGTCTGCACGGTGTATCG   This study 

POSTN F TTCATTGAAGGTGGTGATGGTCA This study 

POSTN R CTTGCAACTTCCTCACGGGT This study 

PPARG F ACCTCCGGGCCCTGGCAAAA Karpiuk et al. 2012 

PPARG R TGCTCTGCTCCTGCAGGGGG Karpiuk et al. 2012 

RPLP0 F GATTGGCTACCCAACTGTTG Fritah et al., 2005  

RPLP0 R CAGGGGCAGCAGCCACAAA Fritah et al., 2005  

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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SIX1 F AAGAACCGGAGGCAAAGAGAC This study 

SIX1 R AAGGACCGAGTTCTGGTCTG This study 

2.5.2.4 ChIP primers 

Primers utilized in ChIP qPCR are shown in 5´ to 3´ orientation. 

Name  Sequence  Source 

DUSP1 TSS F CTGAAGCGAGGTTGACAGA This study 

DUSP1 TSS R GGCCATGGTCATGGAAGTGG This study 

GAPDH TSS F AAGAAGATGCGGCTGACTGT Nagarajan et al., 2015 

GAPDH TSS R CGGCTACTAGCGGTTTTACG Nagarajan et al., 2015 

RPLP0 TSS F CAATCAGAAACCGCGGATAG Nagarajan et al., 2015 

RPLP0 TSS R CTTCGCGACCCTACTTAAAGG Nagarajan et al., 2015 

TFF TSS F ACACCCACCTTCCACAACAC  Nagarajan et al., 2015 

TFF TSS R CAGGCTTCTCCCTTGATGA Nagarajan et al., 2015 

2.6. Proteins, enzymes, standards 

2.6.1 Molecular weight standards 

Gene RulerTM DNA-Ladder    Fermentas GmbH, St. Leon-Rot 

PageRulerTM Prestained Protein Ladder  Fermentas GmbH, St. Leon-Rot 

2.6.2 Enzymes 

Proteinase K      LifeTechnology, Carlsbad, USA 

Reverse Transcriptase (M-MuLV)   New England Biolabs, FFM 

RNase A       Qiagen GmbH, Hilden 

RNase inhibitor      New England Biolabs, FFM 

T4 DNA Ligase      New England Biolabs, FFM 

Taq DNA Polymerase     Prime Tech, Minsk, Belarus 

  



  2 Material 

29 
 

2.6.3 Antibodies 

2.6.3.1 Primary antibodies 

Antibodies used for ChIP and Western blot analysis and the respective dilutions 

Target Protein Cat. No° ChIP WB Source 

CHD1 A301-218A 1.5 µg - 
Bethyl Laboratories, Inc., 

Montgomery, USA 

CHD1 sc-271636 - 
1:10,000 

Santa Cruz Biotech., Inc., Texas 
USA 

H2A.Z - 5 µl - AG Gaudreau 

H2B 07-371 - 
1:10,000 

Merck Millipore, KGaA, 
Darmstadt 

H2Bub1 5546 1.5 µg - 
Cell Signaling, Inc., Danvers 

USA 

H2Bub1 - - 1:50 Prenzel et al., 2011 

HSC70 sc-7298 - 
1:25,000 

Santa Cruz Biotech., Inc., Texas 
USA 

IgG (non-
specific) 

ab46540 1 μg - Abcam, Cambridge, UK 

RNA-PolII sc-899 1.5 µg 
1:10,000 

Santa Cruz Biotech., Inc., Texas 
USA 

β-Actin ab6276 - 1:10,000 Abcam, Cambridge, UK 

 

The antibody dilutions for the immuno based analysis were supplemented with 0.01% 

sodium azide. 

2.6.3.2 Secondary antibodies 

Name  WB  Source  

anti-mouse (IgG)-HRP  1:10,000 
Santa Cruz Biotech., Inc., 
Texas USA 

anti-rabbit (IgG)-HRP  1:10,000 
Santa Cruz Biotech., Inc., 
Texas USA 

 

2.7 Cells 

Name Species Organ Source 

FOB 1.19 human bone T. Spelsberg, Mayo Clinic, USA (Harris et al., 1995) 

HEK293T human kidney V. Assmann, UKE, Hamburg 

MSC human bone M. Kassem, SDU, Denmark (Simonsen et al., 2002) 
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2.8 ChIP-seq datasets 

Cell line ChIP Antibody Source 

FOB H3K27ac 
Diagenode, pAB-
196 

Z. Najafova (AG Johnsen) 

MSC H3K4me3 
Diagenode Mab-
003 

M. Hennion (AG Johnsen) 

MSC H3K27ac 
Diagenode, pAB-
196 

Z. Najafova (AG Johnsen) 

2.9 Software 

Name Developer 

Bio-Rad CFX Manager 3.1 Bio-Rad Laboratories, Hercules, USA 

Bowtie1 Version 1.1.1 Langmead B. et al., 2009 

Bowtie2 Version 2.1.0  Langmead B. et al., 2012 

CEAS Version 1.0.2 Shin et al., 2009 

Cistrome  Liu et al., 2011  

Deeptool Galaxy Server 1.5.9.1.0 Ramirez et al., 2014 

FastQC Version 0.11.2 S. Andrews (Babraham Institute) 

Image Lab Version 5.2 build 14  Bio-Rad Laboratories, Hercules, USA 

Integrative Genome Viewer 2 James T. Robinson et al., 2011 

MACS2 Version 2.1.0.  Zhang et al., 2008 

Primer designing tool NCBI/Primer-BLAST  Ye et al., 2012 

SAMtools Version 0.1.19 Li et al., 2009 

Statistical software R, Version 3.1.1  R Development Core Team 2008 

useGalaxy Version 15.07  Giardine et al., 2005 

 

 

R-packages Developer 

DESeq1 V1.16.0 – Bioconductor package Anders and Huber, 2010 

DiffBind V1.10.2 – Bioconductor package 
Start and Brown, 2012, Ross-Innes et 

al., 2012 
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2.10 Buffers and media 

Blocking solution: 1 x TBS-T, 5% (w/v) milk 

Cell culture freezing medium: 42% (v/v) DMEM, 50% (v/v) FBS, 8% DMSO 

ChIP crosslinking buffer: 1% or 1.42% Formaldehyde in PBS 

ChIP IP buffer: 150 mM NaCl, 5 mM EDTA, 50 mM Tris (pH 8), 0.5% (v/v) NP-40, 

1% (v/v) Triton X-100 

ChIP Wash buffer: 500 mM LiCl, 20 mM EDTA, 100 mM Tris (pH 8.5), 1% (v/v) 

NP40, 20 mM NaF, 1% (w/v) Sodium deoxycholate  

Dexamethasone stock solution: 100 μM Dexamethasone in 100% EtOH 

Dilution buffer: 0.01% (w/v) SDS, 1.1% (v/v) Triton X-100, 1.2 mM EDTA, 16.7 mM 

Tris-HCl (pH 8.1), 167 mM NaCl 

DMEM cell culture medium: phenol red-free supplemented with 10% FBS, 100 U/ml 

penicillin, 100 μg/ml streptomycin 

DMEM-F12 cell culture medium: phenol red-free, high-glucose, supplemented with 

10% FBS, 100 U/ml penicillin, 100 μg/ml streptomycin 

Lämmli buffer (6×): 0.35 M Tris (pH 6.8), 30% (v/v) glycerol, 10% (w/v) SDS, 9.3% 

(w/v) DTT, 0.02% (w/v) bromphenol blue 

MEM α cell culture medium: phenol red, L-glutamine, supplemented with 10% FBS, 

100 U/ml penicillin, 100 μg/ml streptomycin 

Nuclear preparation buffer: 150 mM NaCl, 20 mM EDTA, 50 mM Tris (pH 7.5), 

0.5% (v/v) NP-40, 1% (v/v) Triton X-100, 20 mM NaF 

PBS for cell culture: 1 PBS tablet per 500 ml ddH2O 

PBS: 137 mM NaCl, 2.68 mM KCl, 4.29 mM Na2HPO4 × 2H2O, 1.47 mM KH2PO4, 

(pH 7.4)   

PBS-T: PBS including 0.1% (w/v) Tween-20 

PCI: Phenol: Chloroform: Isoamylalcohol (25:24:1) 

Proteinase inhibitor cocktail (ChIP): 1 µg/µl Aprotinin/Leupeptin, 10 mM Glycerol 2-

phosphate disodium salt hydrate, 1 mM N-Ethylmaleimide, 1 mM Pefabloc, 1 mM 

NiCl2 and 10 µM indole acetamide 

Proteinase inhibitor cocktail (WB): 1 ng/µl Aprotinin/Leupeptin, 10 mM Glycerol 2-

phosphate disodium salt hydrate, 1 mM NEM, 1 mM Pefabloc 

qPCR buffer: 75 mM Tris-HCl (pH 8.8), 20 mM (NH4)2SO4, 0.01% Tween-20, 3 mM 

MgCl2, 200 μM dNTPs, 0.5 U/reaction Taq DNA Polymerase, 0.25% Triton X-100, 1: 

80,000 SYBR Green I, 300 mM Trehalose and 30 nM primer 



  2 Material 

32 
 

RIPA buffer: 1× PBS, 1% (v/v) NP-40, 0.5% (v/v) sodium deoxychelate, 0.1% (w/v) 

SDS  

SDS separating gel (15%): 15% (v/v) acrylamide, 375 mM Tris-HCl (pH 8.8), 0.1% 

(w/v) SDS, 0.1% (w/v) APS, 0.04% (v/v) TEMED 

SDS separating gel (6%): 6% (v/v) acrylamide, 375 mM Tris-HCl (pH 8.8), 0.1% 

(w/v) SDS, 0.1% (w/v) APS, 0.04% (v/v) TEMED 

SDS stacking gel (5%): 5% (v/v) acrylamide, 125.5 mM Tris-HCl (pH 6.8), 0.1% 

(w/v) SDS, 0.1% (w/v) APS, 0.1% (v/v) TEMED 

Sodium acetate: 3 M sodium acetate, (pH 5.2) 

Sonication buffer 1: 10 mM EDTA, 50 mM Tris (pH 8), 1% (w/v) SDS  

Sonication buffer 2: 300 mM NaCl, 40 mM EDTA, 100 mM Tris (pH 7.5), 2% (v/v) 

NP-40, 40 mM NaF 

TAE buffer (50×): 2 M Tris, 1 M Acetic acid, 0.1 M EDTA 

TBS: 150 mM NaCl, 2.68 mM KCl, 4.29 mM Na2HPO4×2H2O, 1.47 mM KH2PO4, 

(pH 7.4) 

TBS-T: TBS including 0.1% (w/v) Tween-20 

TE buffer: 10 mM Tris-HCl, 1 mM EDTA, (pH 8.0) 

Tris-glycine electrophoresis buffer: 25 mM Tris, 200 mM Glycine, 0.1% (w/v) SDS 

Western blot transfer buffer: 10% (v/v) 10× Western salts, 20% (v/v) Methanol 

Western salts (10×): 1.92 M Glycine, 250 mM Tris-HCl (pH 8.3), 0.02% (w/v) SDS 
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3 Methods 

3.1 Cell culture 

3.1.1 Cell culturing    

Bone marrow derived human mesenchymal stem cells (MSC) and human fetal 

osteoblast cells (FOB) were cultured at 37 °C and 34 °C, respectively, under 5% CO2 

atmosphere and maintained sub-confluent. MSC were grown in alpha modified 

Eagle's medium (αMEM) supplemented with 10% fetal bovine serum (FBS), 100 

units/ml penicillin, 100 µg/ml streptomycin and the antifungal agent Fungizone® 

Antimyotic (25 µg/ml) (growth medium). Stable pGIPZ transduced MSC were grown 

in growth medium supplemented with 1 µg/ml puromycine (selection medium). FOB 

were cultured in Dulbecco's modified Eagle's medium-F12 (DMEM-F12) 

supplemented like MSC.  

3.1.2 Adipocyte and osteoblast differentiation 

Osteoblast differentiation of confluent cells was induced by addition of 10 mM β-

glycerophosphate, 0.2 mM ascorbate, 10 nM calcitriol and 100 nM dexamethasone 

into the growth medium (osteoblast differentiation medium). FOB were shifted 4 h 

prior to the addition of the osteoblast differentiation mix from 34 °C to 39 °C to 

inactivate the stably integrated Large-T antigen, which drives proliferation. For 

adipocyte differentiation confluent cells were cultured in normal growth medium 

supplemented with 15% FBS and 2 µM insulin, 0.45 mM isobutylmethyl-xanthine, 10 

µM troglitazone and 100 nM dexamethasone (adipocyte differentiation medium). The 

differentiation medium was changed every second day. 

3.1.3 Reverse transfection 

Small interfering RNA (siRNA) was transfected with Lipofectamine® RNAiMAX 

according to the manufacturers reverse transfection protocol. Briefly, 30 pmol of 

siRNA were mixed together with 5 µl RNAiMAX reagent in 500 µl of optiMEM and 

incubated for 20 min at room temperature. In the meantime, cells were trypsinized 

and suspended in growth medium without antibiotics or antifungal reagents 

supplemented (transfection medium). Then 250,000 cells, counted in a Neubauer 

counting chamber, were seeded in 1.5 ml of transfection medium into a well of a 6-

well plate. After 20 min of incubation time the transfection mix was added directly to 

the medium and incubated for 16 h on the cells. Thereafter the medium was changed 
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to normal growth medium. For transfections in 10 or 15 cm plates each factor in the 

mix was scaled up by a factor of 4 or 8 respectively. 

3.1.4 Forward transfection 

During a differentiation experiment for more than 4 days the cells were transfected 

again 3 days after the last transfection with siRNA by Lipofectamine® RNAiMAX 

based on the manufacturer forward transfection protocol. Per Well of a 6-well plate 

35 pmol of siRNA were mixed with 7.5 µl RNAiMAX in 500 µl optiMEM and incubated 

for 20 min at room temperature. Meanwhile the growth medium on the cells was 

removed and replaced with 1 ml of transfection medium. 20 min after incubation the 

transfection mix was added directly into the medium and replaced by the respective 

differentiation medium after 6 to 8 h. 

3.1.5 Generation of stable cell lines by lentiviral infection 

A microRNA-adapted short hairpin RNA (shRNA), coded on the GIPZ plasmid was 

stable integrated into the genome by lentiviral transformation. Prior to production of 

the lentiviral particles the shRNA expressing sequence on the GIPZ plasmid was 

checked by Sanger sequencing. For the viral particle production human embryonic 

kidney 293 cells (HEK293T) cells were used. In the following the production of stable 

cell lines is described. 

3.1.5.1 Transfection of HEK293T cells 

80% confluent HEK293T cells grown in a 10 cm plate were transfected with the 

GIPZ, lentiviral packaging and envelope plasmid by Polyethylenimine (PEI) 

transfection with the following mix: 

Reagent Amount 

Vector plasmid pGIPZ 15 µg 

Packaging plasmid psPAX2 10 µg 

Envelope plasmid pMD2.G 5 µg 

Transfection reagent PEI 50 µg 

Transfection solution optiMEM 1.1 ml 
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First, the plasmids were added into the optiMEM solution and then mixed with PEI. 

The mixture was vortexed for approximately 8 secs and incubated then for 10 min at 

room temperature. Within the incubation time the medium on the cells was replaced 

with 6 ml of transfection medium. 1 ml of the transfection mix was pipetted dropwise 

to the medium of the HEK293T cells. The cells were subsequently incubated for 14 – 

16 h before the medium was replaced with normal growth medium. Two days after 

transfection the constitutive expression of GFP, encoded by the transfected GIPZ 

plasmid, was controlled by fluorescence microscopy. 

3.1.5.2 Collection of viral supernatant 

With a transfection efficiency greater than 70% the viral particles were harvested by 

centrifugation of the supernatant at 300 g for 3 min and subsequent filtered through a 

0.45 µm, non-pyrogenic filter. The filtered supernatant was aliquot and stored for 

either up to 24 h at 4 °C or was snap frozen in liquid nitrogen and stored at -80 °C. 

3.1.5.3 Lentiviral infection of cells 

For the lentiviral infection of cells 50 – 70% confluent MSC or FOB grown in a 10 cm 

plate were infected by addition of 1 ml virus particle supernatant into antibiotic free 

growth medium supplemented with 8 µg/ml polybrene. After 24 h were the cells 

washed two times with PBS and normal growth medium was added. The infection 

and stable integration of the pGIPZ part were controlled by puromycine selection, 

which resistance gene is encoded on the integrative part. Cells were thereafter 

maintained in selection medium.  

3.2 Chemical staining 

3.2.1 Oil Red O staining 

Oil Red O staining was used to stain lipid droplets of adipocyte differentiated cells. 

Therefore, cells were washed once with PBS and fixed in a 10 % formalin solution in 

PBS for 30 min at room temperature. Meanwhile the staining solution was prepared 

by mixing 3 parts of Oil Red O stock solution with 2 parts of deionized water. The 

mixture was incubated for 10 min at room temperature and filtered through a 0.45 µm 

pore filter. After fixation the cells were washed twice with deionized water and 

incubated while covered with 60% isopropanol for 5 min. Thereafter the isopropanol 

was replaced with the staining solution and incubated for 5 min. Finally, the cells 

were washed carefully with deionized water until the water rinsed off clear. Pictures 
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of the stained cells were taken with a microscope operated at 10- or 20-fold 

magnification. 

3.2.2 Alkaline phosphatase staining 

Osteoblast differentiated cells were stained for alkaline phosphatase activity. The 

staining solution was prepared by dissolving 5 mg of Naphtol AS-MX in 200 µl of NN-

Dimethyl formamide. The solution was gently mixed and pipetted into 50 ml of 100 

mM Tris-HCl pH 8.4 solution. 30 mg of Fast Blue RR salt were added subsequently 

to the mixture and vortexed until the solution was homogeneous. Finally, the staining 

solution was filtrated through a 0.45 µm pore filter. The cells were fixed for 15 min 

with 4.8% formaldehyde in PBS. Subsequently the cells were washed two times with 

PBS and covered with the staining solution for a minimum of 15 min in the dark. 

Afterwards the cells were washed carefully with deionized water until the water rinsed 

off clear. The stained cells were either scanned within the whole well or images were 

taken at 10- or 20-fold magnification on a microscope. 

3.3 Ectopic bone formation experiment 

The ectopic bone formation experiment was performed in the group of Prof. Dr. 

Moustapha Kassem, University of Southern Denmark by Nicholas Ditzel. For the 

experiment three different stable transformed MSC cell lines with either two individual 

shRNA directed against CHD1 or one non-targeting control shRNA were sent on dry 

ice. The experiment was performed as described (Chen, L. and Ditzel, N., 2015).  

3.4 Molecular biology 

3.4.1 RNA isolation  

RNA isolation was performed according to the manufacturers’ instructions. For cells 

grown in a 6-well plates 500 µl of QIAzol reagent was added to the cells and 

incubated for 3 min at room temperature. Afterwards the cells were scraped and 

transferred to a reaction tube with 100 µl Chloroform and vortexed for 15 sec. The 

mix was centrifuged for 15 min at 12,000 g and subsequently the aqueous 

supernatant was transferred to a fresh tube with 99% Isopropanol in a 1:1 ratio. The 

solution was incubated overnight at -20 °C. The next day the solution was centrifuged 

for 30 min at 15,000 g and subsequently washed two times with 70% ethanol at 

12,000 g. The RNA pellet was air dried and solved in 30 µl nuclease free water. The 
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concentration was measured on a Nanodrop and used for complementary DNA 

synthesis or for RNA-sequencing library preparation. 

3.4.2 complementary DNA synthesis  

1 µg of RNA was diluted in 10 µl of nuclease free water and supplemented with 2 µl 

of 15 µM 9mer random primer and 4 µl of 2.5mM dNTP to a volume of 16 µl. The mix 

was incubated for 5 min at 70 °C and then placed immediately on ice. After the 

samples cooled down 0.125 µl of 25 U MMLV-reverse transcription enzyme and 0.25 

µl of 10 U Murine RNase-Inhibitor were added together with the reverse-transcription 

buffer to a final volume of 20 µl. The mix was incubated for 1 h at 42 °C and 

subsequently heat inactivated at 90 °C for 10 min. The complementary DNA (cDNA) 

was diluted to 50 µl with nuclease free water and used for real-time quantitative PCR 

(qPCR). 

3.4.3 qPCR reaction 

Per reaction either 1 µl of cDNA or diluted DNA of a ChIP experiment was mixed with 

24 µl of qPCR buffer. Samples were pipetted in technical duplicates per qPCR 

measurement. For amplification and read out the following qPCR program was used: 

Step Temperature Time  Number of cycles 

Step 1 95 °C 2 min 1 

Step 2 95 °C 15 sec 

40 - 45 

Step 3 60 °C  1 min 

 

For PCR amplification step two and three were repeated 40 or 45 times for cDNA or 

ChIP samples respectively. Subsequent to the PCR amplification a melting curve of 

the PCR products was measured by a read out every 0.5 °C increasing from 60 °C to 

90 °C. Signal intensities of the samples were read out by quantification relative to a 

dilution curve. Gene expression values were divided over unaffected control genes 

(RPLP0 and 18S rRNA) and averaged for at least biological triplicates.  
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3.4.4 Chromatin immunoprecipitation 

Chromatin immunoprecipitation (ChIP) was performed according to a modified 

protocol of (Gomes et al., 2006; Nelson et al., 2006). All ChIP experiments were 

performed in biological triplicates. 

3.4.4.1 Crosslinking 

First protein-protein and DNA-protein interactions were cross-linked with 1 or 1.42% 

formaldehyde in PBS for 10 min at room temperature. 1.42% formaldehyde 

concentration was used to ChIP CHD1, all other ChIP crosslinking reactions were 

performed with 1% formaldehyde concentration. The crosslinking reaction was 

quenched for 5 min by addition of glycine to a final concentration of 125 mM. The 

cells were washed two times with ice-cold PBS and scraped in nuclear preparation 

buffer supplemented with the ChIP inhibitors cocktail. The cell nuclei were extracted 

by careful mixing and subsequent centrifugation at 10,000 g for 5 min. This step was 

repeated one time. Thereafter the cell nuclei pellet was either snap frozen in liquid 

nitrogen and stored at -80 °C or further processed. 

3.4.4.2 Sonication 

The chromatin was sheared to 300 to 600 bp fragments by ultrasound sonication. 

Therefore, the nuclei were resuspended in 120 µl sonication buffer 1 (+ proteinase 

inhibitor cocktail) and incubated for 10 min on a rotating wheel at 4 °C. Notably, for 

CHD1 ChIP the concentration of the sonication buffer 1 was decreased to 0.2%. After 

incubation 120 µl sonication buffer 2 (+ proteinase inhibitor cocktail) was added and 

the suspension was mixed well. Subsequently the chromatin was sonicated with the 

Bioruptor® for 30 cycles, each cycle containing a 30 sec sonication pulse and a 30 

sec pause. For the CHD1-ChIP the chromatin was sheared for 60 cycles. 

3.4.4.3 Size control of sonicated fragments  

The shearing process was controlled by isolation of the DNA and agarose gel 

electrophoresis. 5% of the sheared chromatin extract was added to 100 µl of 

sonication buffer 1 plus 1 µl proteinase K (20 µg/µl) and incubated over night at 65 

°C, shaking at 800 rpm. The next day 100 µl deionized water, 10 µl LiCl (8 M), 2 µl 

linear polyacrylamide (5 µg/µl) were mixed to isolate the DNA by a Phenol-

/Chloroform-/ Isoamyl (PCI) extraction. PCI was added in a one to one ratio to the 

solution, vortexed for 30 secs and centrifuged at 16,000 g for 2 min. The aqueous 

supernatant was transferred into a fresh tube and another extraction from the 
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remaining PCI solution was performed by adding 200 µl 10 mM Tris-HCl pH 8 and 

repetition of the first step of the PCI extraction. The supernatant was added to the 

first one, mixed with 99% EtOH in a 1:2.5 ratio and incubated over night at -20 °C. 

The DNA was precipitated by centrifugation at 15,000 g at 4 °C for 30 min with one 

wash step afterwards by addition of 70 % EtOH and subsequent centrifugation. The 

pellet was air dried and dissolved then in 10 mM Tris pH 8, containing RNaseA (0.1 

µg/ µl) and incubated for 1 h at 37 °C. The DNA fragment size was analyzed by a 

HD-green 1.5 % agarose gel.   

3.4.4.4 Chromatin immunoprecipitation 

After control of the correct DNA fragment size the specific protein-DNA complexes 

were immunoprecipitated.  First, unspecific binding to sepharose was decreased by 

addition of 100 µl 50% slurry sepharose in a total volume of 1 ml of dilution buffer (+ 

proteinase inhibitor cocktail). The extracts were incubated for 1 h at 4 °C on a 

rotating wheel. After removal of the sepharose by centrifugation at 10,000 for 5 min, 

the cleared chromatin extracts were split for ChIP, unspecific IgG control and a 10% 

input sample (for dilutions of antibodies for ChIP see Material – 2.6.3.1). The ChIP 

and control samples were filled up with immuno-precipitation buffer (IP-buffer) (+ 

proteinase inhibitor cocktail) to a total volume of 800 µl and incubated overnight on a 

rotating wheel at 4 °C. After 14 – 18 h incubation 30 µl of 50% slurry protein-A or 

protein-G sepharose coupled beads, for rabbit or mouse antibody respectively, were 

added, and incubated for 2 h on a rotating wheel at 4 °C. After incubation the beads 

were washed three times with IP-buffer, two times with ChIP wash buffer, three times 

with IP-buffer again and finally two times with TE-buffer. Between each step the 

coupled beads were mixed carefully and centrifuged for 2 min at 2,000 g at 4 °C. 

3.4.4.5 Isolation of precipitated DNA 

The precipitated chromatin was treated with RNAseA (0.2 µg/µl) at 37 °C for 30 min 

and subsequently the proteins were digested by addition of 1 µl Proteinase-K (20 

µg/ml) incubating overnight on a shaker at 65 °C at 800 rpm. The next day the DNA 

was isolated by PCI extraction identical as performed previously (see 3.3.4.3) and 

transferred afterwards to DNA low-binding tubes to precipitate overnight. The next 

day the solution was centrifuged at 15,000 g for 30 min at 4 °C, washed two times 

with 70 % EtOH and the pellet was subsequently air dried. The pellet was solved in 

20 µl of nuclease free water and the DNA concentration was measured by Qubit® 
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assay according to manufacturer´s protocol. For ChIP-qPCR the DNA was diluted in 

a ratio of 1:5. 

 

3.5 Protein analysis 

3.5.1 Sample preparation  

For protein extraction the cells were scraped in ice cold RIPA-Buffer supplemented 

with the proteinase inhibitor cocktail. The cell lysate was sonicated either by Bandelin 

Sonoplus tip sonicator for 15 pulses, 10% intensity 3 sec on and off, or by the 

Diagenode Bioruptor for 15 min high intensity with 30 secs on and off. Before size 

separation of the proteins the sheared whole cell lysates were diluted with Laemmli 

buffer to 1x and heated for 10 min at 95 °C. The samples were loaded to an 

appropriately concentrated polyacrylamide gel respective for the protein size to 

separate (PAA-gel). The samples and a control protein size ladder were separated by 

applying constant 100 V. 

3.5.2 Western blot and immunostaining 

Subsequent to gel electrophoresis the PAA-gel was transferred to a polyvinylidene 

difluoride (PVDF) membrane using the wet electro blot system. The electro blotting 

was performed in Western blot transfer buffer according to the manufacturer’s 

instructions. After set up, the proteins were blotted to the membrane for 1.5 h with 

100 V. After the transfer, the membrane was stained with Ponceau-S and blocked for 

unspecific antibody binding in 5 % skim-milk in TBS-T for 1 h at room temperature. 

Next, the membrane was incubated with the primary antibody in a 5 % skim-milk 

TBS-T solution over night at 4 °C on a rotator within a 50 ml reaction tube. The next 

day the membrane was washed 3 times for 10 min in TBS-T and incubated 

subsequently for 1 hour on a shaker with a secondary horseradish peroxidase (HRP) 

coupled antibody directed against the primary antibody. After incubation the 

membrane was washed 3 times in TBS-T and the chemiluminescence signal of the 

HRP was monitored by an X-ray film or a gel imaging system. 
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3.6 Next generation sequencing 

3.6.1 Library preparation     

RNA and DNA were processed by library preparation for unstranded sequencing in 

biological duplicates for RNA-seq and triplicates for ChIP-seq. In the following the 

different library preparation protocols for RNA and DNA are described. 

3.6.2 RNA-library preparation 

Previous to the RNA library preparation the sample quality was controlled for its RNA 

integrity. Therefore, the RNA was separated by size with a RNA Nano chip on a 

Bioanalyzer. To estimate the integrity of the RNA a program calculated a RNA 

integrity number (RIN) based on degradation products and the ratio between the 28S 

rRNA and 18S rRNA. If the samples had a RIN greater or equal to 7 they were 

processed for the RNA library preparation. The preparation was performed as 

described in the NEBNext® Ultra™Library Prep Kit. Briefly, 1 µg of total RNA was 

measured by Nanodrop and used as starting material. The mRNA was isolated by 

pull down via polyadenylated coated magnetic beads. After several washing steps 

the mRNA was fragmented at 94 °C and applied for the first and subsequently 

second strand cDNA synthesis. Single base overhangs at the 5´-ends were repaired 

and sequencing adaptors were ligated to the cDNA strands. To barcode the samples, 

the processed cDNA was amplified by PCR with one common and one individual 

primer. This allows later during sequencing to distinguish individual samples in one 

sequencing lane. Subsequently the DNA concentration was measured by Qubit® 

Fluorometer and the length of the library fragments were detected on a Bioanalyzer 

by a High Sensitivity DNA chip.    

3.6.3 DNA-library preparation 

The library preparation for ChIP DNA was performed with the MicroPlex™ Library 

Preparation Kit v2 from Diagenode® and used according to the manufacturer’s 

protocol. The CHD1 ChIP DNA library preparation was performed using the 

NEBNext® Ultra™ DNA Library Prep Kit for Illumina® according to the 

manufacturer’s protocol. As starting material an equal amount of DNA (between 2 – 

10 ng) per ChIP condition was used. Prior to library preparation the DNA was 

sheared on the Bioruptor for 30 cycles, each cycle divided into 30 sec sonication and 

30 sec pause. The library preparation was performed similar to the RNA library 

preparation protocol above, except the polyadenylated bead purification, heat 
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fragmentation and reverse transcription of RNA to cDNA, which is described in more 

detail in the manufacturer´s protocol. 

3.6.4 Sequencing 

For sequencing up to 12 samples were pooled to a final concentration of 10 nm or 2 

nm depending on the lowest concentrated sample after the library concentration. The 

samples were sequenced on Illumina® HiSeq 2000 sequencers at the Heinrich-

Pette-Institute, Hamburg or the Transcriptome Analysis Laboratory (TAL), Göttingen. 

3.7 Bioinformatic processing of sequencing data 

3.7.1 Mapping of ChIP-seq reads to the genome 

The ChIP sequencing reads received from the sequencing facilities or reads 

downloaded from public available datasets (see Material 2.8 ChIP-seq datasets) 

were controled for their quality by FASTQ quality check (FastQC) (S. Andrews 

Babraham Institute) and mapped to the human genome (hg19, GRCh37) via Bowtie1 

(Langmead et al., 2009). Bowtie1 parameters were set to parameters -m 1 -k 1. The 

output files in sequence alignment format /map (SAM) were then transformed to 

binary alignment format/ map (BAM) by the software package SAMtools (Li et al., 

2009). 

3.7.2 Peak calling via MACS2 

Mapped and BAM formatted reads were analyzed for significantly, above background 

enriched genome regions by the peak calling software model-based analysis of ChIP-

seq 2 (MACS2) (Zhang et al., 2008). The background was defined by the sequenced 

input. As parameter the genome (-g) was set to hs (homo sapiens), the q-value (-q) 

was set to 0.05 and the input format (-f) was specified to BAM. The narrowpeak 

option was used for all datasets except RNA-Pol II and H2Bub1. For the peak calling 

the BAM files of the samples were merged for each condition. 

3.7.3 RNA-seq analysis 

The sequenced RNA in FASTQ format were mapped to the human reference 

transcriptome (UCSC hg19) by Bowtie2 with default parameters (Langmead and 

Salzberg, 2012). The reads per gene were counted by a homemade script, kindly 

provided by Malik Alawi, UKE Hamburg, Bioinformatic service facility. Subsequently 

the raw reads were normalized by the DESeq package using the default protocol 

parameters (Anders and Huber, 2010). For further analysis of the DESeq output 
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matrix R statistical software or Microsoft Office Excel was used (R Development Core 

Team, 2008).   

3.7.4 Normalization and calculation of ChIP-seq binding affinities  

BAM formatted files were uploaded to the public available deepTools server to 

normalize the sequencing reads either by the bamCompare or bamCoverage tools 

(Ramírez et al., 2014).. The bamCompare tool calculates a ratio between input and 

ChIP-seq file over all genomic regions subset to defined region sizes (bins). The 

parameter was set as default with a bin size of 50 bp. Specific genomic loci, 

described by the ENCODE Project Consortium as artificial, high signal regions, were 

excluded for calculations for the scaling factor. Reads were normalized by reads per 

genomic content (RPGC) to a 1x depth of coverage.  Therefore, the total number of 

mapped reads were multiplied with the fragment length and divided by the effective 

genome size (2.7 billion). Further settings were set as default in the bamCoverage 

tool. To calculate the ChIP-seq signal strength at defined genomic regions the tool 

computeMatrix was used with default settings. The visualization of the computed 

matrix was done either by the profiler (aggregation plot) or heatmapper (heatmaps). 

3.7.5 Visualization by IGV 

To visualize profiles of normalized sequencing intensities on the genome at individual 

regions the Integrative Genome Viewer software was used (Robinson et al., 2011). 

As input bamCoverage files were used. Tracks were if necessarily overlaid.  

3.7.6 Analysis in R 

For subset and filtering of datasets as well as calculation of Boxplots and scatter 

plots the R statistical software was used. For statistical test of non-parametric 

distributions, the Wilcoxon Rank-Sum test was performed with default conditions set 

in R. For parametric distributions the Welch´s t-test was used. Correlation co-

efficiencies were calculated by the Pearson method with default parameter set in R.  

3.7.7 Cis-regulatory element annotation system 

By cis-regulatory element annotation system (CEAS) software quantitatively 

representation of protein binding sites within genomic functional regions were 

represented (Shin et al., 2009). As an input BED and bigwig files received after 

MACS2 analysis were used in CEAS with default parameters for the human genome 

(hg19). 
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3.7.8 DAVID based analysis of RNA-sequencing 

The database for annotation, visualization and integrated discovery (DAVID) software 

was used for functional annotation of gene ontology (GO) terms (Huang et al., 2009). 

As a background file the default human genome file within the DAVID software was 

used. 

3.7.9 DiffBind and calculation of RNA-Pol II stalling ratios 

DiffBind is a program, which was used to calculate ChIP-seq biding intensities at 

defined genomic regions with statistical differential binding analysis for biological 

replicates (Ross-Innes et al., 2012). For calculating the stalling ratio of RNA-Pol II in 

siCon or siCHD1 treated FOBs the occupancy of RNA-Pol II was measured at TSS-

regions as well as the gene body similar as previously described in Lin et al., 2012. 

Briefly, regions 300 bp up- and downstream of the TSS as well as the gene body 

were used as input files in bed format for the DiffBind software. The gene body was 

defined as the region between 30% of the gene length downstream of the TSS to 3 

kilobase pair (kb) downstream of the TTS (for graphical illustration see Figure 22). 

Moreover, all genes shorter than 600 bp were excluded from the analysis. As an 

output of DiffBind a normalized count matrix was saved for all individual TSS and GB 

regions with the respective binding intensity values. Values equal to background 

were excluded from the analysis. For calculation of the stalling ratio the value at the 

TSS was divided with the value calculated at the gene body.
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4 Results  

4.1 CHD1 depletion impairs MSC and FOB differentiation    

Cellular differentiation is orchestrated by repression and activation of genes mediated 

by transcription factors and specific signaling pathways. Gene expression changes 

are often accompanied and maintained by rearrangements in chromatin and histone 

modifications. In this study the role of the chromatin remodeler CHD1 during the 

adipocyte and osteoblast differentiation processes was studied. For this purpose 

multipotent human bone marrow derived mesenchymal stem cells (MSC) (Simonsen 

et al., 2002) and fetal osteoblast 1.19 cells (FOB) (Harris et al., 1995) were used as a 

model system. FOB can be differentiated to osteoblasts, and MSC to osteoblasts and 

adipocytes (Bianco and Robey, 2015; Subramaniam et al., 2002). Further, both cell 

lines have the potential to form ectopic bone in vivo (Simonsen et al., 2002). Since 

they have been used previously already for over a decade in various differentiation 

studies they are well described human differentiation models.  

Here the differentiation potential of MSC and FOB was studied prior to and post 

CHD1 depletion. RNA, protein and cell staining of undifferentiated and differentiated 

adipocytes or osteoblasts, transfected either with CHD1 siRNA (siCHD1) or as a 

control with luciferase siRNA (siCon), were analyzed.  

As expected, osteoblast differentiated MSC and FOB showed cell-type-associated 

staining by alkaline phosphatase liver/ bone/ kidney (ALPL) specific activity (Figure 

6A, Figure 7A), whereas in undifferentiated MSC almost no staining was detected 

(FOB undifferentiated not shown). Interestingly, stronger ALPL staining was observed 

in CHD1 depleted MSC-derived osteoblasts compared to siCon transfected cells 

(Figure 6A). While ALPL staining in FOB after five days of differentiation was similar 

in control transfected compared to CHD1 transfected cells, the ALPL signal intensity 

was slightly decreased seven days after differentiation in CHD1 reduced conditions 

(Figure 7A). This indicates a dynamic and cell-type-specific regulation of ALPL in the 

context of reduced CHD1 levels. Adipocyte-differentiated cells showed an 

accumulation of lipid droplets compared to undifferentiated control (Figure 6A, panels 

to the right), which was reduced after CHD1 depletion. This suggests a role of CHD1 

in adipocyte differentiation. 
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Figure 6: CHD1 depletion alters adipocyte and osteoblast differentiation in MSC. A ALPL activity 

staining of cells (blue-framed left panels) or of lipid droplets by Oil Red O (red-framed right panels) of 

osteoblasts (Ost), adipocytes (Adi) or undifferentiated control cells (Und) transfected either with siRNA 
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directed against CHD1 (siCHD1) or luciferase (siCon). Cells were differentiated for five days and 

images taken after staining by bright-field microscopy with 10x (second row panels) or 4x (third row 

panels) magnification. B Immunodetection of CHD1, mono-ubiquitinated H2B (H2Bub1), heat shock 

protein family A member 8 (HSC70) or H2B with antibodies by Western blot analysis of whole cell 

protein lysates of differentiated MSC, transfected with siRNA as described in A. C Relative mRNA 

levels of specific genes (see below) in MSC transfected and differentiated as described in A. The 

genes analyzed by real time quantitative PCR (qPCR) with gene specific primers and normalized to 

the 18S rRNA gene expression were the osteoblast associated genes osteocalcin (BGLAP), alkaline 

phosphatase (ALPL), elastin (ELN) and the adipocyte associated genes peroxisome proliferator-

activated receptor gamma (PPARG), lipoprotein lipase (LPL), periliplin 1 (PLIN1). Values are shown 

relative to the expression in undifferentiated cell under siCon-transfected conditions. Error bars 

represent the standard deviation of at least three biological replicates.  

 
Figure 7: Osteoblast differentiation marker are reduced after CHD1 depletion in FOB.          

A Microscopic evaluation of ALPL activity staining of five and seven days’ osteoblast differentiated 

FOB (Ost) transfected with control siRNA against luciferase (siCon) or CHD1 siRNA (siCHD1). Cell 

culture wells were scanned and representative regions are shown for each condition. B Western blot 

analysis of whole cell lysates of five days’ osteoblast differentiated FOB, transfected with siCon or 

siCHD1. CHD1, Beta-actin (ACTB), H2Bub1 or H2B were immunodetected with corresponding 

antibodies by immunoperoxidase. C Relative mRNA levels of osteoblast associated genes ELN, ALPL 

and bone morphogenic protein 4 (BMP4) in five days differentiated FOB transfected with siCon or 

siCHD1 as measured by qPCR with gene specific primer and normalized to the 18S rRNA levels. 

Values are shown relative to the expression in undifferentiated cells under siCon-transfected 

conditions. Error bars represent the standard deviation of at least three biological replicates. 
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The observed differences in the chemical cell staining shown so far were further 

analyzed by Western blots to initially validate the CHD1 knockdown efficiency on 

protein level. Additionally, H2Bub1, a PTM histone mark required for adipocyte and 

osteoblast differentiation (Karpiuk et al., 2012) and shown to be dependent on CHD1, 

was measured (Lee et al., 2012b). Surprisingly, H2Bub1 was not reduced with 

decreased CHD1 protein levels neither in MSC nor in FOB when differentiated or 

undifferentiated (Figure 6B, Figure 7B). This indicates that global H2Bub1 levels are 

independent from CHD1 in these cell systems, despite the strongly reduced CHD1 

protein levels achieved post siCHD1 transfection. The result of these experiments 

also indicates that the CHD1-dependent effects on differentiation are probably 

independent of H2Bub1-mediated events during differentiation.  

4.2 Cell lineage specific genes are deregulated with reduced CHD1 levels 

To analyze the effect of CHD1 depletion on cell-lineage-specific gene regulation 

cDNA was analyzed by quantitative real-time PCR (qPCR). Differentiated adipocytes 

showed a gene induction of lipid storage and glucose-metabolizing proteins perilipin 

1 (PLIN1) and lipoprotein lipase (LPL), as well as the adipogenic transcription factor 

peroxisome proliferator-activated receptor gamma (PPARG) (Figure 6C). These 

strong inductions in an adipocyte specific manner support the cell lineage specific 

differentiation observed previously by Oil Red O staining. Concordant with the 

reduced Oil Red O staining in CHD1 depleted condition a decreased induction of the 

adipogenic master regulator PPARG and PLIN1 was observed. LPL was however not 

regulated arguing against a general inhibition of differentiation-induced genes. 

Consistent with that, osteoblast differentiated cells showed an increased expression 

of the early induced, cell lineage specific marker genes BGLAP and ALPL as 

reported previously (Rickard et al., 1996). In addition, ELN, a gene important for 

ectopic bone formation and expressed during early osteoblast differentiation (Larsen 

et al., 2010; Twine et al., 2014), was induced, too. Two of the osteoblastic marker 

genes ALPL and BGLAP were higher expressed after CHD1 depletion compared to 

control transfected cells, whereas ELN was strongly repressed under all conditions 

(Figure 6C). This together this strongly argues for a CHD1 specific regulation on cell 

differentiation. In FOB ALPL, BMP4 and ELN were repressed in expression upon 

reduction of CHD1 levels (Figure 7C). However, BGLAP, an early marker for 
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differentiation, was not expressed, which highlights potential differences in cell 

lineage commitment between the MSC and FOB. 

In sum MSC and FOB were lineage specifically differentiated as evident by the 

expression of cell type specific marker genes and characteristic phenotypic staining. 

CHD1 depletion caused an altered differentiation pattern compared to control siRNA 

transfected cells. The osteoblast specific marker genes ALPL and BGLAP were 

higher expressed and showed concordantly increased ALPL staining. This strongly 

suggests that the cells entered the osteoblast lineage, but possibly in a slightly 

restricted manner when taking the observed repression of ELN as a marker into 

account. In contrast, in FOB osteoblast associated genes were inhibited by CHD1 

depletion and showed minor reduction of ALPL staining at day seven. These 

observed differences compared to MSC might be caused by different stages of cell 

lineage commitment, a speculation supported by the observed lack of BGLAP 

expression.  

Adipocyte differentiation was inhibited upon CHD1 depletion as deduced from 

decreased lipid body formation and PPARG repression. Although cell type change is 

often initiated and characterized by single factors, the full differentiation process is 

multifactorial with timely orchestration of different signaling pathways. To further 

address the question of global gene regulation during differentiation in CHD1 

depleted conditions the transcriptome was analyzed by deep RNA sequencing (RNA-

seq).  

4.3 Transcriptomic differences in MSC after CHD1 depletion and differentiation 

Transcriptome-wide differential expression analysis helps to distinguish and 

characterize cell states. Here we sought to analyze differences of gene regulatory 

networks and pathways, which could further elucidate the differentiation effects 

observed in the previous part. Therefore, poly-adenylated mRNA was isolated from 

undifferentiated and seven-days-differentiated MSC and FOB, transfected with either 

siCon or siCHD1.  

Genome-wide differences in mRNA expression of the different conditions in MSC 

were first measured by principal component analysis (PCA). Therefore the variation 

between all expressed genes were reduced to two dimensions, the principal 

component 1 and 2 (PC1, PC2). Each condition was plotted in biological duplicates, 

as used in the RNA-seq study. The PCA plot showed high similarity between the 
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biological duplicates for each condition (Figure 8). Further we observed that the 

osteoblast and adipocyte differentiated transcriptomes strongly shifted from the 

undifferentiated state on PC1, but only the osteoblast condition shifted also on PC2, 

which indicates differences between all three control transcriptomes. The 

transcriptome of CHD1 depleted samples shifted mainly on the PC2 axis when 

compared to their control condition. Interestingly however was that the CHD1 

depleted osteoblast condition was shifted apart less from undifferentiated control 

than the osteoblast control sample was. This implies a decrease in the global change 

of transcription during osteoblast differentiation when CHD1 protein levels were 

reduced. However, the smallest change introduced by CHD1 depletion to its relative 

control was observed in the undifferentiated cells, which suggests a greater influence 

of CHD1 on gene expression during differentiation than in an undifferentiated 

condition. Together, this shows that different transcriptome wide changes were 

introduced with differentiation and CHD1 depletion, however, interestingly, caused 

reduced levels of CHD1 during osteoblast differentiation decreased changes in the 

transcription profile.

 

Figure 8: Differentiation and CHD1 depletion causes broad transcriptomic changes. The 

principal component analysis (PCA) plot represents the transcriptome of all genes in undifferentiated 

(Und) and 5 days differentiated adipocyte (Adi) or osteoblast (Ost) cells transfected either with siCHD1 

or siCon. Each dot shows one of two RNA-seq samples of the respective condition indicated by the 

color code shown top right. The samples were calculated based on their normalized gene expression 

counts for all human genes and plotted on the principal component 1 (PC1) and 2 (PC2).   
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4.4 CHD1 depletion attenuates regulation of differentiation regulated genes  

Differentiation specific gene sets in MSC and FOB were grouped by thresholds of 

plus or minus 0.5 log2 fold change values (+/- 0.5 log2FC), with a multiple testing 

adjusted probability value below 0.05 (p-adj. < 0.05). With these thresholds 2,478 

genes were repressed and 1,986 genes were activated during adipocyte 

differentiation, whereas in osteoblast differentiation a lower number of 1,379 genes 

showed increased and 1,408 genes showed decreased expression compared to 

control (Figure 9A, B, left panel). This shows greater gene expression changes in 

adipocyte differentiated cells than in osteoblasts, which might indicate a closer 

osteoblast cell fate commitment of the bone marrow derived MSC (Simonsen et al., 

2002). During FOB osteoblast differentiation 4,012 genes were increased in their 

expression and 4,869 were decreased compared to undifferentiated control condition 

(Figure 9C, left panel).  

Next the impact of CHD1 on the genes regulated during differentiation was 

investigated. Genes induced during adipocyte and osteoblast differentiation were 

reduced in their activation and repressed genes during differentiation were mitigated 

in their silencing (Figure 9A, B, C, right panel). Thus CHD1 depletion mainly 

attenuates the effect on gene regulation taking place during differentiation. To further 

identify the significant differentially expressed genes after CHD1 depletion the groups 

selected above were filtered with similar thresholds to the differentiated siCHD1-

treated condition (+/- 0.5 log2FC, p-adj. < 0.05). This showed that the majority of 

significant CHD1 regulated genes during differentiation were indeed regulated in an 

opposite manner compared to the control differentiation (Figure 9A, B, C, pie charts). 

Interestingly, this effect was stronger during osteoblast differentiation than adipocyte 

differentiation. In particular, out of all 1,379 genes activated by osteogenesis were 

550 significantly reduced in their induction, but only 155 were further increased when 

CHD1 protein levels were reduced (Figure 9B, pie chart). Furthermore, in total 579 

genes in FOB were repressed after CHD1 depletion (not shown). Strikingly, 472 of 

these genes were also regulated during the differentiation process (Figure 9C, blue 

parts of pie charts). This indicates a major effect of CHD1 especially on the 

differentiation regulated genes in FOB. In MSC, approximately 40% of all repressed 

genes with CHD1 knockdown were also regulated during osteoblast differentiation 

which argues for a broader regulation, not only on differentiation specific genes.  
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In sum, the transcriptome of MSC and FOB was broadly changed in over thousands 

of genes within 5 days of differentiation. CHD1 depletion affected the gene 

expression by weakening the regulatory impact of the differentiation program, most 

evident in osteoblast differentiation. This attenuation of the differentiation effect was 

also observed by the decreased shift shown in the PCA plot for CHD1 depleted 

osteoblasts.  

 

Figure 9: Genes regulated during differentiation are attenuated upon CHD1 depletion. A Heat 

map represents the log2fold changes in mRNA expression during adipocyte differentiation (Adi, Diff.) 

compared to relative changes after CHD1 depletion (Diff. + siCHD1). Genes were defined by 

differentially expression of undifferentiated siRNA-Control condition compared to adipocyte 

differentiated siRNA-Control condition (left panel). Further, gene expression changes between 

adipocyte control (Diff.) and adipocyte CHD1 depletion conditions are shown (right panel). 

Differentiation genes were filtered by values above or below 0.5 log2 fold changes (+/- 0.5 log2FC) and 

an adjusted probability value below 0.05 (p-adj. < 0.05). In total 1,986 genes higher expressed (upper 

half) and 2,478 repressed genes (lower half) during adipocyte differentiation are plotted. The log2FC 

values of the heat map are shown in the color key. Pie charts depict the numbers of significantly 

repressed (blue) or activated (red) differentiation genes upon CHD1 depletion with thresholds 

described above. B Heat map and pie charts represent genes regulated during MSC osteoblast 

differentiation and the relative regulation by siRNA mediated CHD1 depletion. In total 1,379 genes 

were higher (upper part) and 1,408 were lower (lower part) expressed during osteoblast differentiation. 

For further description see A. C Heat map and pie charts show genes regulated during FOB osteoblast 

differentiation and the relative regulation by siRNA mediated CHD1 depletion. In total 4,012 genes 
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were higher (upper part) and 4,869 lower (lower part) expressed during osteoblast differentiation. For 

further description see A. 

4.5 Low transcribed genes require CHD1 for their activation during 
differentiation  

As CHD1 was necessary for the gene regulation during differentiation we sought to 

further investigate the transcription levels of these CHD1 regulated genes (Figure 9, 

pie charts). Therefore, the normalized transcription counts were plotted two-

dimensionally for differentiated and undifferentiated cells in control and CHD1 

depleted condition.  

The selected genes showed a broad distribution of expression levels in 

undifferentiated and differentiated conditions (Figure 10A, B, C). This implies that 

CHD1 differentiation affected genes were distributed over a wide range of 

transcription values. To clarify the data, a regression curve was plotted through the 

gene expression points of undifferentiated and differentiated control conditions. 

Interestingly, all investigated gene subsets showed particular strong changes during 

differentiation in the lowly expressed genes (Figure 10, black lines). Particularly, lowly 

transcribed genes in undifferentiated state were mainly activated during 

differentiation and not further repressed. Strikingly, these genes were changed less 

prominent in CHD1 depleted condition and closer resembled the undifferentiated 

control expression levels (Figure 10, red lines). This suggests that the lowly 

expressed genes required CHD1 for their full activation.  

Next, we sought to quantify the changes in gene expression introduced by CHD1 

depletion especially during osteoblast differentiation. The initial data of the PCA plot 

showed a reduced transcriptomic shift during osteoblast differentiation relative to 

undifferentiated control when CHD1 was depleted. For further analysis, the Pearson 

correlation coefficient (R) for the data represented in the scatter plot was calculated. 

It describes the similarity of data values in a range from -1 (low) to 1 (high). We could 

observe an increase of the correlation coefficient between undifferentiated and 

siCHD1 treated osteoblasts compared siCon treated osteoblasts. The increase was 

similar in FOB and MSC from 0.72 to 0.78 and 0.78 to 0.84, respectively (Figure 10B, 

C). Interestingly, the regression curve suggests that the most affected genes were 

low expressed ones. This argues for reduced changes in gene expression during 

osteoblast differentiation when CHD1 is depleted. Surprisingly, this effect was not 

observed in adipogenesis. All genes were further changed in their expression relative 
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to undifferentiated control or the regulation pattern was more heterogeneous which 

might overlay the effect on induced genes while adipocyte differentiation. This 

together indicates that the regulatory effects in osteoblast and adipocytes could be 

different. Further, CHD1 was required to introduce changes in gene expression 

during osteoblast differentiation and decreased CHD1 protein levels rather 

maintained the undifferentiated expression profile than further changing it.  

 

 

Figure 10: CHD1 is necessary for induced changes in gene expression during osteogenesis.        

A Scatter plots show normalized gene expression values between undifferentiated and adipocyte 

differentiated condition with siCon (Adi) or siCHD1 treatment (siCHD1) in MSC. Genes were selected 

by significant changes of expression during differentiation (p-adj. < 0.05, + or - 0.5 log2FC) and 

significant regulation by siRNA mediated CHD1 depletion (p-adj. < 0.05, +/- 0.5 log2FC). A regression 

curve is shown in black for control and in red for the siCHD1 condition. The Pearson correlation 

coefficient (R) is shown at the bottom right of each plot. The color of the plot indicates the gene 

densities from low (yellow) to high (red). In total, 2,020 genes were plotted similar. B Scatter plots 

show normalized gene expression values of undifferentiated and osteoblast differentiated condition 

with siCon (Ost) or siCHD1 treatment (siCHD1) in MSC. Gene selection, thresholds and figure 

description were used as described in A. In total 1,298 genes were plotted. C Scatter plots show 

normalized gene expression values between undifferentiated and osteoblast differentiated condition 

with siCon (Ost) or siCHD1 treatment (siCHD1) in FOB. For further gene selection, thresholds and 

figure description see A. In total, 971 genes were plotted similar as described in Figure 9C pie charts.  

4.6 CHD1 regulated genes are enriched in osteoblastic gene ontology terms  

Transcriptome-wide data can be used to analyze regulatory networks or biological 

functions for a better characterization of cellular states. Therefore, we used all 
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deregulated genes by CHD1 depletion during the differentiation process in MSC and 

FOB as described previously (Figure 9A, B, C). These groups were analyzed for their 

enrichment in Gene Ontology (GO) terms of biological processes and cellular 

compartments defined by the GO Consortium and built-in the Database for 

Annotation, Visualization and Integrated Discovery (DAVID) software.  

The highest annotation cluster in MSC as well as FOB showed GO terms associated 

with the extracellular region and extracellular matrix (ECM) (Table 1Table 2Table 3). 

Both cellular compartments undergo strong changes during differentiation, which are 

necessary for cell type specific functions like deposition of collagen before matrix 

mineralization in osteoblasts or structural support of the membrane previous to 

storage of lipids (Damsky, 1999; Mariman and Wang, 2010). Changes in the ECM 

during differentiation were also observed in the microscopic images for cell type 

specific staining (Figure 6A). Besides the ECM organization, the extracellular region 

term involves secreted protein like BGLAP or ELN. These genes were previously 

shown to be strongly deregulated by CHD1 depletion (Figure 6C, Figure 7C). 

Additionally, the top annotation clusters further selected terms showed impairment of 

important supportive biological processes for adipocyte and bone formation such as 

angiogenesis and responses to endogenous stimuli (Eshkar-Oren et al., 2009; 

Ledoux et al., 2008). This implies that the crosstalk between osteoblast or MSC with 

vascularizing tissue might be perturbed which could influence proper bone formation. 

Further, signaling pathways stimulated by differentiation medium or in a paracrine 

manner required CHD1 for proper regulation. Deregulated signaling pathways maybe 

involved in indirect gene regulation independent of CHD1. 

Strikingly, bone related GO terms were significantly enriched within the deregulated 

gene groups of osteoblast differentiated MSC and FOB (Table 2, Table 3 bold). We 

compared the genes of the top term “skeletal system development” with the fold 

changes in gene expression identified by RNA-seq. Intriguingly, it showed that 44 out 

of 56 deregulated genes in MSC and 23 out of 30 in FOB were repressed in their 

activation during osteogenesis when CHD1 protein levels were low. This argues for a 

role of CHD1 in the activation of skeletal development associated genes. 

Summarized, biological processes and cellular compartments which are important for 

bone formation required CHD1 for normal regulation during early osteogenesis. 

Furthermore, terms related to bone formation also showed perturbed regulation by 

CHD1 depletion which might affect normal bone development. 
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Table 1: Gene Ontology terms of CHD1 dependent genes during adipocyte MSC differentiation.  

The table lists gene ontology (GO) terms of deregulated genes after CHD1 depletion during adipocyte 

differentiation of MSC. Genes were selected by thresholds described in Figure 9A (pie chart) and 

analyzed for enriched GO terms with the Database for Annotation, Visualization and Integrated 

Discovery (DAVID) software. In total 2,020 genes were used as an input with the all human genes set 

as background. Results were sorted by the enrichment score or their false discovery rate (FDR). The 

gene number (Count) within the respective GO term (Term) and probability values calculated by the 

Benjamini-Hochberg procedure (Benjamini) are shown on top of the table.  
 

Annotation Cluster 1 Enrichment Score: 9.90                                          

Category Term Count Benjamini FDR 

Cellular Compartment Extracellular region part 168 5.37E-11 1.45E-10 

Cellular Compartment Extracellular region 282 3.21E-08 2.60E-07 

Cellular Compartment Extracellular space 112 9.87E-06 1.60E-04 

     Annotation Cluster 2 Enrichment Score: 8.97                               

Category Term Count Benjamini FDR 

Cellular Compartment Extracellular matrix 73 9.35E-08 1.01E-06 

Cellular Compartment Proteinaceous extracellular matrix 68 2.57E-07 3.46E-06 

Cellular Compartment Extracellular matrix part 29 3.39E-04 1.19E-02 

     Selected terms                             

Category Term Count Benjamini FDR 

Biological Process Vasculature  development 50 1.17E-03 1.05E-02 

Biological Process Blood vessel morphogenesis 43 1.87E-03 2.94E-02 

Biological Process Angiogenesis 30 2.02E-02 7.59E-01 

     

Biological Process Response to endogenous stimulus 71 1.13E-03 1.16E-02 

Biological Process Response to hormone stimulus 63 3.97E-03 7.85E-02 

     

Cellular Compartment Plasma membrane 441 8.78E-04 3.55E-02 
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Table 2: Gene Ontology terms of CHD1 dependent genes during osteoblast differentiation in 

MSC.  

The table lists gene ontology (GO) terms of deregulated genes after CHD1 depletion during osteoblast 

differentiation of MSC. Genes were selected by thresholds described in Figure 9B (pie chart) and 

analyzed for enriched GO terms with the Database for Annotation, Visualization and Integrated 

Discovery (DAVID) software. In total 1,298 genes were used as an input with the all human genes set 

as background. For further description of the table see Table 1. 
 

Annotation Cluster 1 Enrichment Score: 11.66                                      

Category Term Count Benjamini FDR 

Cellular Compartment Extracellular region part 132 4.87E-14 1.55E-13 

Cellular Compartment Extracellular region 205 1.78E-09 1.72E-08 

Cellular Compartment Extracellular space 85 6.04E-07 1.75E-05 

     Annotation Cluster 2 Enrichment Score: 10.63                                         

Category Term Count Benjamini FDR 

Cellular Compartment Extracellular matrix 61 4.76E-10 3.06E-09 

Cellular Compartment Proteinaceous extracellular matrix 55 1.03E-08 1.32E-07 

Cellular Compartment Extracellular matrix part 22 6.48E-04 2.92E-02 

     Annotation Cluster 7 Enrichment Score: 6.02                                           

Category Term Count Benjamini FDR 

Biological Process Skeletal system development 56 4.01E-08 6.31E-08 

Biological Process Bone development 24 5.18E-04 8.43E-03 

Biological Process Ossification 22 1.40E-03 3.16E-02 

Biological Process Osteoblast differentiation 11 1.33E-02 5.67E-01 

     Selected terms                                             

Category Term Count Benjamini FDR 

Biological Process 
Response to endogenous 

stimulus 59 3.51E-06 2.76E-05 

Biological Process Response to hormone stimulus 53 2.22E-05 2.21E-04 

     Biological Process Vasculature development 36 1.51E-03 3.63E-02 

Biological Process Blood vessel development 35 1.86E-03 5.26E-02 

Biological Process Angiogenesis 22 2.43E-02 1.26E+00 

     Cellular Compartment Plasma membrane 323 3.69E-07 9.51E-06 
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Table 3: Gene Ontology terms of CHD1 dependent genes during osteoblast differentiation in 

FOB. The table lists gene ontology (GO) terms of deregulated genes after CHD1 depletion during 

osteoblast differentiation of FOB. Genes were selected by thresholds described in Figure 9C (pie 

chart) and analyzed for enriched GO terms with the Database for Annotation, Visualization and 

Integrated Discovery (DAVID) software. In total 971 genes were used as an input with the all human 

genes set as background. For further description of the table see Table 1. 

 

Annotation Cluster 1 Enrichment Score: 8.44             

Category Term Count Benjamini FDR 

Cellular Compartment Extracellular matrix 46 2.25E-07 1.44E-06 

Cellular Compartment Proteinaceous extracellular matrix 43 4.55E-07 4.37E-06 

Cellular Compartment Extracellular matrix part 18 3.26E-03 6.26E-02 

     Annotation Cluster 2 Enrichment Score: 7.74             

Category Term Count Benjamini FDR 

Cellular Compartment Extracellular region part 98 5.47E-10 1.75E-09 

Cellular Compartment Extracellular region 141 2.37E-04 3.03E-03 

Cellular Compartment Extracellular space 62 2.09E-04 3.34E-03 

     Selected terms                            

Category Term Count Benjamini FDR 

Biological Process Skeletal system development 30 4.64E-02 8.15E-01 

     

Biological Process Blood vessel development 26 2.93E-02 3.53E-01 

Biological Process Vasculature  development 26 3.40E-02 5.12E-01 

     Biological Process Response to organic substance 62 1.19E-03 7.09E-03 

Biological Process Response  to endogenous stimulus 36 3.55E-02 5.77E-01 

Biological Process Response  to hormone stimulus 33 4.69E-02 8.80E-01 

     Cellular Compartment Intrinsic to plasma membrane 86 1.30E-02 3.76E-01 

Cellular Compartment Integral to plasma membrane 83 2.31E-02 7.45E-01 

 

4.7 Validation of single genes identified by RNA-seq with individual CHD1-
siRNAs  

To confirm CHD1 specific gene regulation and to exclude off-target effects by the 

CHD1 siRNA pool, single siRNAs of the pool were used to validate the gene 

regulation observed in the RNA-seq experiments. MSC and FOB were transfected 

with CHD1 targeting siRNA #1 and #2 and differentiated for 5 days.  

Both single siRNAs #1 and #2 showed strong depletion of CHD1 protein and CHD1 

mRNA in MSC and FOB (Figure 11A, B, C, D). In addition, genes listed in the 

“skeletal development” GO term in MSC like endothelin 1 (EDN1), SIX homeobox 1 

(SIX1), periostin (POSTN) or dual specificity phosphatase 1 (DUSP1) were confirmed 
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to be regulated by both single siRNAs in similar efficiency to the siCHD1 pool 

observed in the RNA-seq. Also genes analyzed in the previous experiments  showed 

similar regulation by single siRNAs in MSC (ALPL, ELN) and FOB (bone 

morphogenetic protein 4 (BMP4), ELN, POSTN) (compare Figure 11B, D to Figure 

6C, Figure 7C). Additionally, osteoblastic marker genes were repressed by CHD1 

depletion in FOB, like the Wnt-signaling factor AXIN2 or osteoblast differentiation 

associated gene connective tissue growth factor (CTGF). This together indicates that 

the genes regulated by the siCHD1 pool are unlikely off-target effects caused by the 

siRNA pool.   
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Figure 11: Individual CHD1-siRNAs validate CHD1-specific gene regulation observed by RNA-

seq. A Immunodetection of CHD1 and HSC70 by Western blot analysis of whole cell lysates of 5 days’ 

osteoblast differentiated MSC, transfected with siRNA directed against luciferase (siCon) or individual 

siRNA #1 and #2 against CHD1. B qPCR analysis of RNA from cells described in A by using gene 

specific primer against CHD1, alkaline phosphatase, liver/bone/kidney (ALPL), elastin (ELN), dual 

specificity phosphatase 1 (DUSP1), periostin (POSTN), SIX homeobox 1 (SIX1) and Endothelin 1 

(EDN1). Gene expression was normalized to the RNA level of the gene encoding the ribosomal 

protein, large, P0 (RPLP0) and compared relative to that of the osteoblast differentiated siCon 

condition. Error bars represent the standard deviation of at least 3 biological replicates. C 

Immunodetection of CHD1 and ACTB by Western blots of whole cell lysates of 5 days’ osteoblast 
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differentiated FOB, transfected with siRNA directed against luciferase (siCon) or individual siRNA #1 

and #2 against CHD1. D qPCR analysis of cDNA from cells described in C by using gene specific 

primer against CHD1, POSTN, bone morphogenetic protein 4 (BMP4), ELN, connective tissue growth 

factor (CTGF), collagen, type XI, alpha 1 (COL11A1) and AXIN2. Gene expression was normalized to 

that of the RPLP0 gene and compared relative to the osteoblast differentiated siCon condition. Error 

bars represent the standard deviation of at least 3 biological replicates. 

4.8 Heterozygous CHD1 knockout mice show an abnormal bone phenotype  

As CHD1 depletion caused deregulated differentiation pattern in MSC and FOB 

which were connected to GO terms of skeletal development we were curious to see if 

CHD1 would also impact bone formation in vivo. The international mouse 

phenotyping consortium (IMPC) describes phenotypes for a constitutive homozygous 

and heterozygous CHD1 knockout mouse model. The homozygous CHD1 knockout 

mouse is embryonic lethal before day six, but the heterozygous model is viable with a 

described phenotype. Among other phenotypes the mice showed significant 

abnormal skull shape and teeth morphology, which is often associated with defects in 

bone formation by an interplay between osteoblasts and osteoclasts (Gama et al., 

2015). Strikingly however was that the mice showed a significant decrease in body 

length, bone mineral density and bone mineral content (Figure 12A). This clearly 

indicates defects in the bone in a CHD1 heterozygous genotype. The phenotype on 

adipocyte-associated tissues were less clear. CHD1 heterozygous mice had a total 

decrease in fat mass, but in comparison to the total body weight it did not show a 

significant difference to wild type mice (Figure 12B). 

The IMPC data clearly linked CHD1 to the maintenance of normal bones in mice. 

However, bone formation is a complex process involving different cell types such as 

MSC, osteoblasts, osteoclasts or osteocytes. Thus we wanted to further specify if 

MSC differentiation was particularly involved in the defective bone formation with low 

levels of CHD1. 
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Figure 12: CHD1 heterozygous knockout mice show decreased bone associated parameters. 

Box plots represent different phenotypical parameters measured in CHD1 heterozygous C57BL/6NCrl 

CHD1
tm1b(KOMB)Wtsi

 knockout or wildtype mice described by the international mouse phenotype 

consortium (IMPC). A Female or male mice were analyzed for bone mineral density, body length, 

bone mineral content or B fat mass and fat / body weight ratio 14 weeks after birth. Statistic 

differences between the means of heterozygous CHD1 knockout (female and male; orange line) and 

wildtype (female and male; dotted orange line) mice for the different parameters were compared by 

Fisher´s exact test.  
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4.9 CHD1 depleted MSC form less ectopic bone in mice 

As described by others MSC formed ectopic bone in vivo after implantation into 

severe combined immunodeficiency (SCID) mouse (Simonsen et al., 2002). Ectopic 

bone formation is an easy and meaningful experiment to predict the bone formation 

capacity of a model system (Abdallah et al., 2008). To test if CHD1 depletion 

impaired bone formation in vivo we created MSC cell lines which stably express a 

shRNA-targeting CHD1. In total, three cell lines, two with individual shRNA against 

CHD1 (shCHD1-#1, shCHD1-#2) and one control cell line, expressing a non-

targeting control shRNA (shCon), were established and analyzed for CHD1 depletion 

(Figure 13C). The cells were injected together with a hydroxyapatite/ tri-calcium 

phosphate (HA/TCP) matrix into SCID mice, which were sacrificed 8 weeks after 

injection. The ectopically formed tissue sections were stained by hematoxylin and 

eosin (H&E) and the ratio of formed bone area (BA) relative to the measured tissue 

area (TA) was calculated. To control whether that the formed bone tissue was of 

human MSC origin control sections were immunostained for human vimentin (VIM).  

Besides the stable shRNA-expressing MSC untransformed MSC were also injected 

into mice to exclude effects due to the viral integration into the genome. 

Untransformed MSC and shCon MSC showed no difference in their mean bone 

formation rate with 3.2% and 3.1% BA/ TA and were combined into one control group 

(control). Strikingly, both CHD1 depleted MSC cell lines shCHD1 #1 and shCHD1 #2 

formed less extracellular collagen matrix compared to control with 0.54% and 1.12% 

BA/ TA, respectively (Figure 13A, B). Statistical analysis by Tukey multiple 

comparisons with a p-value threshold of 0.05 showed a significant difference 

between the control group and shCHD1 #1 and shCHD1 #2, but no difference 

between shCHD1 #1 and #2 (Figure 13B). These findings support the RNA-seq 

results, highlighting a defect in MSC early osteoblast differentiation with decreased 

protein levels of CHD1. Furthermore, the low formation of extracellular collagen 

matrix implies differentiation defects before day five as others showed that deposition 

of organic compounds began around the fifth day of osteogenesis (Kulterer et al. 

2007).  
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Figure 13: CHD1 depletion reduces ectopic bone formation in mice. A H&E stained tissue slides 

show ectopic formed bone area (black arrowhead) of control MSC (non-targeting shRNA) or shRNA-

CHD1 expressing MSC (shCHD1 #1 or #2) in severe combined immunodeficiency (SCID) mice. MSC 

cell lines were subcutaneously injected into mice in a hydroxyapatite/ tri-calcium phosphate matrix. 

Eight weeks after injection mice were sacrificed and tissue sections were analyzed for BA relative to 

tissue area (TA) measured. Control slides were immunostained for human vimentin as a control for 

MSC formed tissue (control (VIM)). The scalebar = 100 µm. B Boxplot analysis show the ratio of bone 

area formed relative to tissue area (BA/ TA%) measured in control MSC (n = 5) and CHD1 depleted 

MSC (shCHD1 #1, #2) groups (n = 4). Statistical differences between the groups were calculated by 

Tukey multiple comparison test for a threshold of 0.05 (*). Individually measured values are shown by 

circles. C Immunodetection of CHD1 and HSC70 by Western blot analysis of whole cell protein lysates 

of stable MSC cell lines used for the ectopic bone formation experiment (see A).  
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Taken together CHD1 depletion caused deregulated mRNA expression of 

differentially expressed genes during adipocyte and osteoblast differentiation in MSC 

and FOB. The deregulation was characterized by repressed gene induction and 

attenuated gene silencing (Figure 9). Further, osteoblast with reduced CHD1 levels 

showed a decreased change of global gene transcription and remained closer to an 

undifferentiated transcriptomic profile (Figure 8). Moreover, CHD1 depletion 

increased the correlation to undifferentiated transcription levels in a particular group 

of genes (Figure 10). A closer analysis on this group of genes showed a significant 

enrichment in skeletal system and bone development related GO terms (Table 2, 

Table 3) which was concordant with an abnormal bone phenotype observed in 

heterozygous CHD1 knockout mouse reported by the IMPC (Figure 12). Finally, 

CHD1 depleted MSC showed decreased ectopic bone formation in mice (Figure 13). 

This supported the hypothesis that CHD1 is required for functional osteoblast 

differentiation by normal regulation of gene transcription and activation of skeletal 

associated genes. Although this combined was likely caused by effects of CHD1 on 

the transcriptional processes a direct evidence is missing. Therefore, CHD1 ChIP 

with subsequent deep sequencing (CHIP-seq) was performed to investigate the 

mechanism how CHD1 is regulating these gene transcription changes. 

4.10 CHD1 ChIP-seq reveals high binding near TSS 

Initially the CHD1 ChIP was tested by qPCR (ChIP-qPCR) in undifferentiated 

conditions in MSC to validate its specificity. The histone modification H3K4me3 ChIP 

was used as a positive control for TSS-regions and to identify potential CHD1 binding 

sites. To exclude unspecific signals, a non-specific antibody (IgG) was used as a 

negative control.  

CHD1 ChIP-qPCR signals showed an enrichment downstream of the TSS of the 

genes ribosomal protein, large, P0 (RPLP0), glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) and dual specificity phosphatase 1 (DUSP1) (Figure 14A). 

This specific binding was confirmed by prominent signals of H3K4me3, which 

indicates TSS of either active or bivalent genes. In contrast, CHD1 and H3K4me3 

had comparable low signals like IgG around the TSS of the inactive TFF1 gene, 

which was confirmed by RNA-seq. This together shows specificity of the CHD1 ChIP 

and made the DNA applicable for genome-wide studies by deep sequencing 

technique.  



  4 Results 

66 
 

To elucidate global changes of CHD1 binding during differentiation ChIP-seq was 

performed in undifferentiated, adipocyte and osteoblast differentiated MSC as well as 

osteoblast differentiated FOB. Additionally, H3K4me3 and H3K27ac ChIP-seq data 

from MSC of previous studies were used for further analysis. To validate the ChIP-

seq signal specificity, the obtained sequencing reads of undifferentiated MSC were 

transformed into genome-wide profiles and compared to the previous ChIP-qPCR 

enriched regions. Concordantly, both techniques showed an overlapping signal in the 

tested genome coordinates for CHD1 and H3K4me3 ChIP (Figure 14B). Although the 

CHD1 profile had a high overlap with H3K4me3, further binding was detected in the 

gene body and the transcriptional termination site, which suggests independent 

binding of H3K4me3 as well. 

 

Figure 14: ChIP-qPCR and ChIP-seq profiles of CHD1 and H3K4me3 overlap around TSS.                                 

A Bar graphs represent the relative quantification to input of CHD1, H3K4me3 and IgG ChIP signals in 

MSC at transcriptional start site (TSS) regions measured by qPCR with gene specific primer for 

ribosomal protein, large, P0 (RPLP0), dual specificity phosphatase 1 (DUSP1), glyceraldehyde-3-
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phosphate dehydrogenase (GAPDH) and trefoil factor 1 (TFF1). Error bars represent standard 

deviations of biological duplicates. B Genomic profiles show ChIP-seq signals of CHD1 (blue) and 

H3K4me3 (red) at genes described in A. Signals of CHD1 are shown in a range of 0 – 50 of 

normalized read counts and H3K4me3 in a range of 0 – 300. The signals were overlaid and visualized 

by the integrative genomics viewer (IGV). Black arrowheads represent the TSS of respective genes 

and orientation.    

4.11 Genome-wide CHD1 binding is broadly associated with gene regions 

To elucidate the CHD1 binding pattern and its regulatory role during differentiation, 

the genome-wide CHD1 binding sites were investigated in undifferentiated, 

adipogenic and osteogenic conditions in MSC or FOB. All above background and 

significantly enriched binding sites of CHD1 were overlaid with defined genomic 

functional segments in the human genome and quantified within them.  

The highest proportion of CHD1 binding was observed within the gene regions of 

introns and exons followed by promoter and 5´- untranslated regions (5´-UTR) 

(Figure 15A). However, compared to the high distribution of introns within the 

genome the relative binding was not strikingly enriched of CHD1. Overall, the binding 

pattern of CHD1 was quite similar between undifferentiated and differentiated 

conditions, as well as between MSC and FOB. Interestingly, although CHD1 binding 

was reported at enhancer regions (Siggens et al., 2015), we could detect only low 

binding within intergenic distal loci. However, this proportion increased slightly during 

osteoblast differentiation in MSC. Although mapping of CHD1 to the functional 

regions revealed its distribution over the genome it did not identify the binding 

intensities at these sites. Therefore, an average binding profile of CHD1 to all gene 

regions was calculated and plotted on a meta gene (Figure 15B). All gene bodies 

were scaled into a length of 3 kilo base pairs (kb) with an additional region 1 kb up- 

and downstream of the TSS or the transcriptional termination site (TTS). The highest 

CHD1 binding was clearly around the TSS and decreased over the gene body. 

Interestingly, CHD1 signals also increased again at the TTS. This showed that 

although the most binding regions were associated within the gene body, the highest 

binding intensities were around the TSS. These observations indicate that the major 

role of CHD1 is closely around genes with a likely-highlighted function at the TSS-

regions.   
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Figure 15: CHD1 distribution on genomic elements. A Pie charts show relative CHD1 binding 

distribution within functional domains of the human genome in undifferentiated (Und), adipocyte (Adi) 

and osteoblast (Ost) differentiated MSC or FOB. Significant CHD1 enriched regions were assigned to 

genomic segments of gene promoter and downstream regions, 3´- and 5´-untranslated regions (UTR), 
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exons and introns and distal intergenic loci. The color table with the respective functional segments 

and its relative distribution is depicted under the pie charts. The pie chart on the bottom right shows 

the normal distribution of the functional segments within the human genome (hg19). Calculations and 

graphics were produced within CEAS software. B Average binding profile represents CHD1 ChIP-seq 

signals (red line) over all human genes scaled into a meta-gene. The meta-gene includes a region 

1,000 base pairs (bp) upstream or downstream of the transcriptional start site (TSS) and 

transcriptional termination site (TTS) indicated by dotted lines. The averaged CHD1 ChIP-seq signal 

intensity is represented on the y-axis relative to the meta-gene coordinates, shown on the x-axis. The 

representative undifferentiated MSC CHD1 ChIP-seq sample was used to plot the profile by the CEAS 

software.   

4.12 CHD1 correlates with active histone modifications and gene expression  

As CHD1 is located at and around gene regions and plays a role in gene 

transcription we sought to further analyze how it was associated with active histone 

modifications and actively transcribed genes in MSC. H3K4me3 is a hallmark for 

active and poised TSS whereas H3K27ac mostly decorate actively transcribed TSS. 

Thus, analysis of binding intensities of both histone marks and CHD1 could clarify 

which gene states were bound by CHD1 in MSC and in differentiated conditions.  

As expected, CHD1 binding correlated well with H3K4me3 binding intensity at TSS-

regions between 1 and 1,000 bp downstream into the gene body. A Pearson 

correlation coefficient score between 0.62 and 0.71 was measured in the different 

conditions (Figure 16A). No obvious differences between undifferentiated and 

differentiated cell states in the regression lines were observed. Further TSS-regions 

highly enriched for CHD1 were also decorated with H3K4me3 marks. But 

surprisingly, high H3K4me3 levels were not necessarily highly bound by CHD1. 

Further, the distribution of H3K4me3 intensities was less variable, showing either 

highly or lowly decorated TSS, but to a lesser extend a fraction in between.  

Although H3K4me3 is a descriptive mark for TSS-regions, it does not necessarily 

indicate active genes. To further investigate the CHD1 binding solely to active 

transcribed genes the correlation with H3K27ac at TSS-regions was calculated. The 

observed correlation coefficient in the different conditions was even higher than for 

H3K4me3 with values between 0.7 and 0.78 (Figure 16A). Additionally, binding levels 

of CHD1 and H3K27ac showed a tendency for linear correlation, which support the 

assumption of their co-occupancy at active genes. Moreover, a gradual signal 

distribution was observed in contrast to H3K4me3 binding patterns around TSS. This 

could imply a finer readout of gene expression by H3K27ac compared to H3K4me3.   

Finally, the correlation of CHD1 binding at TSS-regions in MSC and FOB was 

compared to the respective normalized gene expression of the occupied sites. In all 



  4 Results 

70 
 

conditions the regression line showed a trend between high gene expression and 

high CHD1 binding intensities (Figure 16B). Notably, also low and medium expressed 

genes showed medium to high CHD1 binding, especially in MSC osteoblasts. 

Moreover, the distribution pattern was much broader, supported also by a lower 

Pearson correlation coefficient between 0.44 in FOB and up to 0.57 in osteoblast 

differentiated MSC. Summarized, this shows an overall high correlation between 

CHD1 and active histone marks around TSS. Nevertheless, a lower correlation 

between CHD1 and gene expression was observed. This was partially caused by low 

or medium levels of gene expression but relatively high binding of CHD1.  
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Figure 16: CHD1 positively correlates with active histone marks and gene expression. A 

Smooth scatter plots show binding intensities of CHD1 (x-axis), H3K4me3 (upper panel) and H3K27ac 

(lower panel) downstream of the TSS (0 – 1 kb). The Pearson correlation coefficient for each dataset 

is shown at bottom right of the respective plots (R). Black lines represent the regression curves. ChIP-

seq values of the respective samples in undifferentiated (Und), adipocyte (Adi) and osteoblast (Ost) 

condition were used for the calculation of binding intensities and were log2 transformed. B Smooth 

scatter plots depict CHD1 binding intensities (x-axis) against gene expression in undifferentiated 
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(Und), adipocyte (Adi) and osteoblast (Ost) condition in MSC or osteoblast differentiated FOB. All 

human (hg19) genes were used for analysis. For further description see A.  

4.13 Induced genes during differentiation are enriched in CHD1 binding around 
their TSS  

Since the previous sections showed that CHD1 was variably correlated with gene 

expression, we especially sought to investigate how differentiation-regulated genes 

were bound by CHD1. Genes which were induced, unchanged, or repressed during 

differentiation in MSC were grouped and analyzed for their CHD1 binding at their 

TSS-region. Subsets were formed with thresholds as described before (Figure 9 , +/- 

0.5 log2FC, p-adj. < 0.05).  

Adipocyte- and osteoblast-differentiated genes which were induced during 

differentiation had increased CHD1 binding downstream of their TSS, compared to 

unregulated or repressed genes (Figure 17A, B). Additionally, when comparing CHD1 

binding in the undifferentiated state to these genes no or minor differences in their 

average profile were observed. These findings strongly suggest that genes which 

were induced during differentiation required CHD1 for their activation, as many of the 

activated genes were rather inhibited in their induction after CHD1 depletion (Figure 

9A, B). 

Next, we investigated if the genes induced during the osteogenesis of MSC had also 

increased CHD1 binding in FOB. This would imply similarities between the cell lines 

in osteoblast-specific gene activation and requirement of CHD1 for their induction. 

Indeed, increased CHD1 binding at TSS-sites of genes activated during MSC 

osteogenesis were also enriched in FOB differentiated osteoblasts (Figure 17B). 

Additionally, it was surprising that CHD1 binding signals were higher in osteoblast-

differentiated MSC than in undifferentiated or adipocytes. The reason is unknown, 

but it can be hypothesized if this was due to higher binding affinity, more recruitment 

by cofactors or technique procedures. However, binding patterns, gene expression 

levels and protein levels of CHD1 were not altered in osteoblast or undifferentiated 

condition (Figure 6B, C, Figure 15A).    

A key question was if CHD1 binding around TSS was directly connected to CHD1 

mediated gene regulation. To answer this question, all TSS-regions were subset into 

genes which were higher, lower, or unregulated after CHD1 depletion. Genes were 

therefore classified by thresholds described before (Figure 9, +/- 0.5 log2FC, p-adj. < 

0.05) and their mean CHD1 binding was calculated in the region between the TSS 
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and 1 kb downstream. This analysis showed that genes which were less expressed 

after CHD1 depletion had significant higher CHD1 binding compared to unregulated 

or higher expressed genes (Figure 17C). Strikingly, this observation was consistent 

between all differentiation conditions and in MSC as well as FOB. Higher expressed 

or unregulated genes were not significant differential bound or had low differences in 

binding. This key finding associated CHD1 protein occupancy around the TSS with 

direct transcriptional regulation of these respective genes. 

Previously, we showed that CHD1 binding was increased at TSS-regions of genes 

induced during MSC differentiation. Furthermore, these genes were likely to be 

repressed after CHD1 depletion. Thus, we asked if the genes higher expressed 

during differentiation, but repressed with CHD1 depletion, were further enhanced in 

their CHD1 binding around TSS. Indeed, a significant increased CHD1 binding was 

measured at these TSS-regions (Figure 17D). In FOB however no significant 

difference was detected (not shown). These findings further support the idea that 

CHD1 is required for full induction especially of differentiation-activated genes.    



  4 Results 

74 
 

 

Figure 17: CHD1 binding is enriched near the TSS-regions of induced genes during MSC 

differentiation. A Heat maps represent CHD1 ChIP-seq binding signals in undifferentiated (Und) or 

adipocyte differentiated MSC (Adi) relative to a 4 kb region around the centered TSS of genes which 

were activated (Up, red arrowhead), unchanged (Un, green arrowhead) or repressed (Down, blue 
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arrowhead) after five days of adipocyte differentiation. Genes were selected based on RNA-seq 

analysis with previous described thresholds (Figure 9A, +/- 0.5 log2FC, p-adj. < 0.05). The color keys 

are shown at the right side of the respective heat map. Aggregate plots above the heat maps 

represent the mean CHD1 binding values with their standard deviation for the respective regulated 

gene set indicated by the color code described before. B Heat maps show CHD1 ChIP-seq binding in 

undifferentiated (Und), osteoblast differentiated MSC (Ost) or osteoblast differentiated FOB (FOB) to 

regions described in A of genes regulated during MSC osteoblast differentiation with thresholds 

described before (Figure 9B, +/- 0.5 log2FC, p-adj. < 0.05). For further figure explanation see A. C Box 

plots represent mean CHD1 binding values near TSS of genes regulated by CHD1 depletion in 

undifferentiated, adipocyte or osteoblast differentiated MSC or osteoblast differentiated FOB. Gene 

regions between the TSS and 1 kb downstream of higher (up), lower (down) or unregulated (un) 

expressed genes after siCHD1 transfection were used to calculate normalized CHD1 ChIP-seq values 

to. Unbound or below background detected TSS were subtracted from calculation. Statistical analysis 

was performed by Wilcoxon-rank sum test (n.s. – non significant, * p-val. < 0.5, ** p-val. < 0.01, *** p-

val. < 0.001). D Box plots depict CHD1 binding values to regions as described in C of genes activated 

during adipocyte or osteoblast differentiation in MSC. Further these genes were grouped by CHD1 

regulation. For further description see C.  

4.14 Single gene analysis reflects genome-wide observed effects 

Next, we sought to test whether the genome-wide findings of CHD1-dependent 

regulation on genes by binding to their TSS-regions could also be observed on the 

single gene level. Therefore, ChIP-seq profiles of CHD1, H3K4me3, H3K27ac, 

H3K27me3 in osteoblast differentiated and undifferentiated conditions together with 

RNA-seq signals were compared. Genes, which were transcriptionally induced during 

osteoblast differentiation and either repressed (SIX1, DUSP1, DUSP5) or enhanced 

(ALPL, BGLAP) after CHD1 depletion were analyzed. Epithelial membrane protein 3 

(EMP3) was selected as an unregulated control gene.  

As expected, these selected genes, except for the negative control, showed as 

expected an increase of the activating marks H3K4me3 and H2K27ac (Figure 18), 

whereas the repressive mark H3K27me3 was barely detectable except for ALPL. 

This indicates that these genes were probably not primed for transcription-activation 

before differentiation. Interestingly, ALPL showed only minor changes in H3K4me3 

and H3K27ac, but H3K27me3, a repressive mark, was high in undifferentiated and 

still weakly present in differentiated state. Most intriguingly, however, was the strong 

increase of CHD1 binding at the TSS-regions of the activated genes SIX1, DUSP1 

and DUSP5 after differentiation. Nevertheless, only a minor increase of CHD1 

binding was observed around the TSS of ALPL and BGLAP which were upregulated 

after CHD1 depletion. In sum, these findings support the role of CHD1 specific 

regulation at the TSS of differentiation-induced genes in osteoblasts. Additionally, it 
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suggests that the marker genes ALPL and BGLAP were probably indirectly regulated 

after CHD1 depletion.  

 

 

Figure 18: CHD1 binding signals increase around TSS during osteogenesis at CHD1 dependent 

genes. ChIP-seq profiles of CHD1, H3K4me3, H3K27ac, H3K27me3 in undifferentiated (Und, yellow) 

and differentiated (Ost, blue) conditions are shown along with RNA-seq signals in siCon (green) or 

siCHD1 (red) transfected MSC. Genes significantly activated during osteoblast differentiation and 

repressed by CHD1 depletion (SIX homeobox 1 (SIX1), dual specificity phosphatase 1 (DUSP1), 

DUSP5, alkaline phosphatase liver/ bone/ kidney (ALPL), bone gamma-carboxyglutamate (Gla) 

protein (BGLAP)) or unregulated by differentiation and CHD1 depletion (epithelial membrane protein 3 

(EMP3)) were selected. Scale bars are shown top right of each panel and represent sizes in kilo base 

pairs (kb). Normalized read counts are shown top right of each lane and black arrowheads indicate 

directionality and transcriptional start sites (TSS) of genes.   
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4.15 Global RNA-Pol II occupancy increases around TSS after CHD1 depletion  

In the previous sections we saw that repressed genes after CHD1 depletion had 

higher binding of CHD1 at the TSS than unregulated or enhanced expressed genes. 

To address the mechanism of how CHD1 depletion caused less transcription at these 

genes we decided to analyze the occupancy of RNA-Pol II, H2A.Z and H2Bub1 at 

these genes in control and CHD1 depleted condition. Previous studies have shown 

that CHD1 was necessary for RNA-Pol II to overcome the nucleosome barrier 

downstream of the TSS (Skene et al., 2014). Further, the histone variant H2A.Z, 

which is also located at the TSS and correlates well with H3K4me3 (Ku et al., 2012) 

is associated with gene transcription (Zlatanova and Thakar, 2008) and decreased 

nucleosome stability (Abbott et al., 2001; Henikoff et al., 2009). A connection 

between CHD1 and H2A.Z had been discussed but was to our knowledge not 

subjected to an experimental study before (Persson and Ekwall, 2010). As CHD1 is a 

chromatin remodeler, involved in shifting of nucleosomes and is co-localized with 

H2A.Z downstream at the TSS we hypothesized that CHD1 depletion could cause 

alterations in H2A.Z and RNA-Pol II occupancy in FOB. Further, although no global 

change of H2Bub1 was detected with low CHD1 protein levels gene specific 

regulation could not be excluded. Therefore, H2Bub1 was analyzed via ChIP-seq to 

obtain information for specific gene groups and further used as a read-out for gene 

transcription, as H2Bub1 levels correlate well with transcription elongation levels 

(Fuchs et al., 2014).  

First genome-wide distribution of RNA-Pol II, H2A.Z and H2Bub1 were analyzed in 

control and CHD1 depleted condition around all TSS. Intriguingly, a genome-wide 

increase of RNA-Pol II at the TSS was observed when CHD1 was depleted (Figure 

19A). Yet, no obvious difference between the total number of bound TSS was 

observed when comparing the heat maps. As RNA-Pol II binding was recently also 

described at enhancers we sought to analyze these loci too (Lam et al., 2014). 

Therefore, FOB specific and active enhancer regions, defined by BRD4, H3K4me1 

and H3K27ac occupancy, were analyzed. Interestingly, no difference was observed 

between the tested conditions (Figure 19B). To exclude that the different binding 

intensities at TSS were due to higher global RNA-Pol II levels in the CHD1 depleted 

condition Western blot analysis was performed. We detected no change in the total 

RNA-Pol II levels by Western blot between control and CHD1-depleted condition 

(Figure 19C). This in sum supported the idea that higher RNA-Pol II binding at TSS 
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sites is independent from total RNA-Pol II levels and restricted around TSS, but not at 

enhancers. Additionally, CHD1 binding mainly occurred around TSS and less at 

intergenic regions. This indicates that CHD1 is directly involved in the regulation of 

these binding occupancies. 

The H2A.Z signals showed a biphasic peak around the TSS, flanking the RNA-Pol II 

peak, as described by others as well (Ku et al., 2012) (Figure 19A). Interestingly, 

reduced H2A.Z levels downstream and upstream of the TSS were observed when 

CHD1 was depleted (Figure 19A). Moreover, lower differences in the ratio between 

the peak height downstream and upstream of the TSS were obvious in CHD1-

reduced condition. The total number of H2A.Z bound regions however did not change 

when comparing the signals of the heat maps. Like RNA-Pol II H2A.Z is present at 

enhancers (Jin et al., 2009). To analyze if the observed effects were also taking place 

at enhancers, the regions described above were used to map H2A.Z under the 

different conditions. Surprisingly and contrary to the pattern at the TSS, a slight 

increase of H2A.Z occupancy at these regions after CHD1 depletion was observed. 

This suggests that regulation of H2A.Z exchange taking place at the enhancer is 

different than at the TSS and that latter is likely connected to CHD1. We wondered 

whether these changed H2A.Z histone distributions at TSS were caused by different 

H2A.Z protein levels in the cells. Therefore, we performed Western blot to measure 

the H2A.Z level, but did not detect a change in protein levels of H2A.Z (Figure 19C).  

Finally, H2Bub1 occupancy to all gene regions between TSS and 5 kb downstream of 

TSS were compared in CHD1 depleted and control condition. Concordant with the 

results of the Western blot (Figure 7A) no global change in H2Bub1 binding was 

observed at these regions. This also showed that although a global increase of RNA-

Pol II at the TSS was measured, no global increase of the transcription elongation 

marker H2Bub1 was detected. Further, based on the RNA-seq results less than then 

percent of all genes were significantly regulated with low levels of CHD1. This 

indicates that no global effect on gene expression regulation occurred, although 

increased RNA-Pol II was measured around the TSS.  

 



  4 Results 

79 
 

 

Figure 19: CHD1 depletion increases RNA-Pol II and decreases H2A.Z binding around TSS.               

A Heat maps represent binding of RNA-Pol II, H2A.Z and H2Bub1 of control (green heat maps) or 

CHD1-depleted (red heat maps) osteoblast differentiated FOB around TSS. Gene regions were sorted 

from high to low signal intensity. The average binding profiles above each heat map show the mean 

binding signal between 2 kb upstream to 5 kb downstream of the TSS (y-axis). The color keys are 

shown right to the respective heat map. B Average profile plots depict binding of H2A.Z and RNA-Pol 

II in control (green) or CHD1-depleted (red) condition 2 kb around active enhancers bound by BRD4. 

The signal intensities (y-axis) of mean values with standard deviations are plotted relative to the center 

of enhancer regions. C Immunodetection of RNA-Pol II, HSC70, H2A.Z or H2B with antibodies by 

Western blot analysis of whole cell protein lysates of differentiated and siCon or siCHD1 transfected 

FOB.  
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4.16 CHD1 dependent genes show unchanged RNA-Pol II levels around their 
TSS  

As the global patterns of H2A.Z and RNA-Pol II binding around TSS were impaired 

after CHD1 depletion, but not all genes were differentially expressed, we sought to 

further investigate the binding patterns at the CHD1 regulated genes. Surprisingly, 

RNA-Pol II levels in CHD1-depleted cells were almost unchanged at the TSS-regions 

compared to control, although the gene expression was reduced after CHD1 

depletion (Figure 20A). As expected, enhanced expressed genes showed increased 

enrichment of RNA-Pol II close to the TSS, but unregulated genes had counter 

intuitively increased RNA-Pol II signals, as well. However, concordant with reduced 

gene expression after CHD1 depletion a drop of H2Bub1, a mark for transcriptional 

elongation, was observed over the gene body (Figure 20A). Moreover, genes with 

increased transcription after CHD1 depletion indeed showed increased H2Bub1 

marks, but, as expected, were transcriptionally unchanged genes not altered in 

H2Bub1 average levels. This revealed that CHD1-sensitive genes had low 

transcription levels and indeed reduced H2Bub1 binding over the gene body, but 

unexpectedly almost unchanged RNA-Pol II occupancy at the TSS. Further, CHD1 

unregulated genes also had increased RNA-Pol II levels at the TSS-regions, but 

neither a change in H2Bub1 nor in gene expression. This together strongly indicates 

a stalling of RNA-Pol II when CHD1 protein concentration is reduced. 

When comparing H2A.Z levels between the differentially expressed genes, no strong 

differences were observed in either control or siCHD1 condition, except that 

enhanced expressed genes had higher levels of H2A.Z in the biphasic peaks (Figure 

20A). The almost equal levels of H2A.Z at the TSS in CHD1 reduced condition 

indicates that the lower H2A.Z occupancy correlated well with genome-wide 

increased RNA-Pol II at the TSS-regions, however it was not reflecting the change of 

gene expression caused by CHD1 depletion.  

 

As genes repressed by CHD1 depletion showed lower levels of H2Bub1 and RNA-

Pol II in control condition we were curious to investigate how these genes were 

expressed before and after differentiation. First, the gene regulation during 

differentiation of CHD1 regulated genes in FOB was analyzed. Genes which were 

attenuated in their expression upon reduction of CHD1 protein levels were strong 

induced during differentiation (Figure 20B). Moreover, genes unregulated or higher 
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expressed upon CHD1 depletion showed no or even reduced activation during 

differentiation, respectively. Interestingly, genes which were sensitive to CHD1 

depletion also showed the lowest expression in undifferentiated condition, but were 

elevated to similar expression levels after differentiation. Most striking however was 

that the genes in differentiated CHD1-depleted condition were similar in their gene 

expression levels to undifferentiated status. This is in accordance with previous 

findings where CHD1 depletion reduced gene expression changes taking place in 

osteoblast differentiation. Together with the ChIP-seq data, these findings suggest 

that CHD1 is required for the induction of genes activated during differentiation. It 

also implicates that the regulation took place downstream of the TSS by affecting 

early RNA-Pol II-mediated transcription elongation.   
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Figure 20: Unchanged RNA-Pol II occupancy around TSS of repressed genes after CHD1 

depletion. A Average profile plots of RNA-Pol II, H2Bub1, H2A.Z binding of control or CHD1 depleted 

differentiated FOB were plotted relative to the TSS of lower (blue), unchanged (green) or higher (red) 

expressed genes after CHD1 depletion. Genes were subset by thresholds as described before (+ or - 

0.5 log2FC, p-adj. < 0.05, Figure 9A). Mean normalized read counts of respective ChIP-seq samples at 

2 kb upstream and 5 kb downstream of TSS are shown with their standard deviation. B Box plots 

depict repressed (blue), unregulated (green) and activated genes (red) after CHD1 depletion for fold 

changes (FC) in i) gene expression during differentiation (top left box plots), ii) gene expression in 

undifferentiated FOB (top right box plots), iii) gene expression in differentiated FOB (bottom left box 

plots) and iv) gene expression in CHD1 depleted differentiated FOB (bottom right box plots). Values 
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are shown after log2 transformation. Statistical analysis was performed by Wilcoxon-rank sum test (n.s. 

– non significant, * p-val. < 0.05, ** p-val. < 0.01, *** p-val. < 0.001).  

4.17 ChIP-seq profiles reveal RNA-Pol II stalling also on single gene level 

To confirm the observed genome-wide effects on single-gene scale ChIP-seq profiles 

in FOB of control and CHD1-depleted condition were compared for differently 

regulated genes. Three representative examples of differentially expressed genes in 

CHD1-reduced conditions were studied at their genomic region close to the TSS. 

This analysis of the single-gene profiles also clarified the order of peaks at the TSS-

region of CHD1, RNA-Pol II and H2A.Z and their change after CHD1 depletion. First, 

the CHD1 peak was located downstream of the TSS and the stalled RNA-Pol II 

(Figure 21). Next, the RNA-Pol II signals were biphasically flanked by H2A.Z peaks, 

which was well observed for the repressed high mobility group AT-hook 2 (HMGA2), 

unregulated guanine nucleotide-binding protein G(I) subunit alpha-1 (GNAI1) or 

higher expressed syndecan 1 (SDC1). Notably, also the H2A.Z profiles at the TSS 

were decreased when CHD1 was reduced, but peaks upstream of the TSS were less 

effected, particularly at the higher expressed paired-like homeodomain 1 (PITX1) or 

the repressed KLF9 gene. This observation of TSS-region independent regulation 

was concordant with the similar levels of H2A.Z at FOB-specific enhancer (Figure 

19B). Further, CHD1 depletion stronger decreased the H2A.Z peak downstream of 

the TSS, as it was observed at the ELN gene-region.   

The ELN gene was of special interest as it is associated with enhanced ectopic bone 

formation (Larsen et al., 2010; Twine et al., 2014) and repressed by low levels of 

CHD1 protein (Figure 6C, Figure 7C). In this single-gene profile, increased RNA-Pol 

II levels were detected downstream of the TSS, but decreased levels at the gene 

body in CHD1-depleted condition. This represents an interesting example of a gene 

with strong CHD1-dependent regulation. Thus we asked if this pattern of high RNA-

Pol II around the TSS but low-occupancy at the gene body was general for CHD1 
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sensitive genes.  

 

Figure 21: Single-gene profiles describe different pattern of RNA-Pol II profiles after CHD1 

depletion. ChIP-seq profiles of CHD1, RNA-Pol II, H2A.Z and H2Bub1 of siCon (green) or siCHD1 

(red) transfected FOB are shown along with H3K27ac ChIP-seq and RNA-seq signals. Genes 

significantly repressed (blue arrow), activated (red arrow) or unchanged (green arrow) after CHD1 

depletion were selected as described previously (+ or - 0.5 log2FC, p-adj. < 0.05, Figure 9A). Scale 

bars are shown top right in kilo base pairs (kb) units. Signal intensities are represented in normalized 

read counts shown top right. Black arrowheads indicate TSS and directionality of genes.   
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4.18 Highest RNA-Pol II stalling ratios at TSS-regions of CHD1 dependent 
genes   

To further unravel the transcription regulation after CHD1 depletion the genome-wide 

RNA-Pol II binding was quantified around the TSS and on the gene body (GB) to 

analyze RNA-Pol II stalling ratios. Therefore, RNA-Pol II intensities were measured in 

a 300 bp region around the centered TSS and divided by values obtained from the 

GB (Figure 22A). A similar calculation was described previously by others (Lin et al., 

2012). The values were measured for the different groups of genes regulated by 

CHD1 (+ or - 0.5 log2FC, p-adj. < 0.05, Figure 20A).  

First, the binding occupancy of RNA-Pol II around the TSS was compared between 

the different gene sets in control and CHD1 depleted condition. As observed 

previously RNA-Pol II values were increased at TSS of unregulated and enhanced 

transcribed genes, but a decreased median of RNA-Pol II binding at the TSS of 

repressed genes was measured (Figure 22B). Though, if comparing the mean 

values, no significant difference was detected (data not shown). Most interesting 

were the effects observed at the gene bodies. Genes less expressed after CHD1 

depletion indeed had significantly less RNA-Pol II binding at the GB. As expected, no 

difference was observed at unregulated genes. Highly expressed genes had an 

increased median of RNA-Pol II at the GB, which was, however, not significant. 

Finally, when comparing the RNA-Pol II ratio between values measured at the TSS 

and GB, all gene groups showed an increased stalling ratio with low CHD1 protein 

levels. Intriguingly, we observed the highest difference for repressed genes. This 

indicates the highest retention of RNA-Pol II is present at genes which are repressed 

after CHD1 depletion. Although unregulated and highly expressed genes had also an 

increased stalling of RNA-Pol II around TSS, similar median levels of RNA-Pol II or 

increased levels of RNA-Pol II at GB were measured in non-regulated or highly 

expressed genes, respectively. This together indicates that RNA-Pol II is impaired in 

its early elongation release rate into the gene body in a genome-wide manner and 

gets stalled at the TSS in CHD1 depleted condition. The fact that still not all genes 

are reduced in their expression is likely by a compensation of increased RNA-Pol II 

occupancy at TSS-regions. Genes which are reduced in their mRNA-expression may 

not have sufficient increase of RNA-Pol II to adapt to the increased stalling ratio.  
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Figure 22: RNA-Pol II stalling ratios are highest in repressed genes after CHD1 depletion.                  

A Schematic average profile plot of RNA-Pol II signals over a meta-gene with the transcriptional start 

site (TSS) region (red box), defined by 300 bp around the centered TSS and the gene body (GB) 

region defined as 30% of gene length downstream of the TSS to 3 kb downstream of the transcription 

termination site (TTS) (yellow box). These regions were used to calculate the RNA-Pol II occupancy 

by the DiffBind software (Lin et al., 2012). B Box plots show values of RNA-Pol II occupancy at the 

TSS-region, in the GB or the ratio of both values (TSS divided by GB) in control (green) or CHD1 

depleted (red) FOB. Measurements of normalized ChIP-seq values were calculated for genes which 

were less (down), unchanged (un), or higher expressed (up) after CHD1 depletion in FOB (+ or - 0.5 

log2FC, p-adj. < 0.05, Figure 20). Statistical analysis was performed by Wilcoxon-rank sum test (n.s. – 

non significant, * p-val. < 0.05, ** p-val. < 0.01, *** p-val. < 0.001). Values depicted were log2 

transformed.   
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5 Discussion  

Transcriptional regulation plays an essential role in determining the cell fate during 

differentiation. Importantly, epigenetic processes are pivotal in coordinating various 

signals within the cell and respond to the physiological stimuli. Besides histone 

modifications, the chromatin undergoes extensive remodeling at genes and gene 

regulatory regions. Though, these regulatory mechanisms are often co-regulatory. 

The ATP-dependent chromatin remodeler CHD1 is a well described transcriptional 

co-regulator. However, the mechanistic role of CHD1 during stem cell differentiation 

is poorly studied. Here, we could show that CHD1 is required for lineage-specific 

differentiation of MSC and FOB by regulating the expression of differentiation-specific 

genes. Genome-wide CHD1 occupancy analyses revealed its increased binding at 

TSS of differentiation-induced genes, thus promoting their transcription activation. 

Mechanistically we could show that CHD1 depletion caused increased stalling of 

RNA-Pol II at the TSS region, especially on induced genes during differentiation. 

Furthermore, global H2A.Z levels around TSS were decreased with CHD1 

knockdown, which may cause a higher stability of the +1 nucleosome at the TSS and 

led to increased stalling. Finally, ectopic bone formation in mice was decreased with 

constitutive knockdown of CHD1 confirming its role in bone differentiation in vivo. 

This altogether showed that CHD1 can act as a regulator of stem cell differentiation 

partly by affecting the stalling of RNA-Pol II and H2A.Z occupancy which regulate 

differentiation-dependent gene expression. 
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Figure 23 Model of CHD1-regulated gene expression during differentiation of induced and 
stably transcribed, non-induced genes. A The induced gene is transcriptionally activated and 
bound by CHD1 (red) which remodels the nucleosome barrier for efficient, early-elongation of the 
RNA-Polymerase II (RNA-Pol II). CHD1 binding downstream of the transcriptional start site (TSS), 
close to the nucleosome marked with H3K4me3 (green four) and H3K27ac (green 27), increases the 
nucleosome turnover and the incorporation of the histone variant H2A.Z. This incorporation further 
destabilizes the nucleosome for an efficient RNA-Pol II passage. The less intense color of H2A.Z 
indicates its reduced occupancy. B In the absence of CHD1 the RNA-Pol II is stalled during the early-
elongation process downstream of the TSS. The overcoming of the nucleosome barrier is reduced 
which causes decreased gene expression for a low expressed and induced gene. Low levels of H2A.Z 
might further increase the nucleosome stability. C A stable expressed gene which is further induced by 
differentiation has stalled RNA-Pol II downstream of the TSS as well, when CHD1 is depleted. 
However increased RNA-Pol II levels around the TSS increase the likelihood of overcoming the 
nucleosome barrier which leads to unchanged gene expression, even though H2A.Z levels are low. 
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5.1 Genome-wide transcription effects of CHD1 by regulating RNA-Pol II 
stalling  

CHD1 is described as a global co-activator of gene expression in mice and human 

(Koh et al., 2015; Sims et al., 2007). However, most of the studies in yeast or mouse 

observed only mild effects of CHD1 on global gene expression (Gaspar-Maia et al., 

2009; Lee et al., 2012a). Nonetheless, only few studies performed genome-wide 

transcription analyses in a CHD1-impaired system after various stimuli for example 

by stress or differentiation (Koh et al., 2015; Park et al., 2014). In this study we 

observed that transcriptional activation was regulated and that CHD1 depletion had 

differential effects during differentiation. Thus, we hypothesize that CHD1 is required 

for a cell fate change. Indeed, effects on de-differentiation were observed earlier in 

mouse when Gaspar-Maia and colleges reprogrammed CHD1-depleted MEFs by 

introducing the Yamanaka factors, where a significant reduction of iPS colony 

formation was observed when CHD1 was depleted by RNAi (Gaspar-Maia et al., 

2009). A recent in vivo study of the same group showed that CHD1 is necessary for 

the differentiation of endothelial  progenitor cells to HSC by blocking differentiation-

specific genes (Koh et al., 2015). However, if genes induced during differentiation or 

if already stable expressed genes were CHD1-sensitive stayed elusive. With our 

investigations we were able to show that CHD1 is required for the direct activation of 

induced genes during osteoblast differentiation. This indicated gene specific 

regulation. Though, another study reported that CHD1 is necessary for a global 

increase of transcriptional output in highly proliferating mouse epiblasts, but with 

decreased RNA-Pol II occupancy levels around TSS in CHD1 knockout embryonic 

stem cells (Guzman-Ayala et al., 2015). However consistent with our findings, a study 

in non-embryonic human system observed the RNA-Pol II stalling as the central 

regulatory mechanism for differential transcription regulation too (Skene et al., 2014).  

5.1.1 How is CHD1 depletion affecting gene expression in particular? 

To elucidate the molecular mechanism of CHD1-specific gene regulation, we studied 

the occupancy of RNA-Pol II, H2A.Z and H2Bub1 under CHD1-depleted conditions. 

In consistence with the association of RNA-Pol II with CHD1 in overcoming the +1 

nucleosome barrier (Skene et al., 2014), we observed that CHD1 depletion affects 

global RNA-Pol II stalling. Here we extended the regulatory mechanism by showing 

that only particular genes were sensitive in differential gene expression to RNA-Pol II 

stalling after CHD1 depletion. Unaffected and higher expressed genes after CHD1 
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depletion gained RNA-Pol II, but repressed genes did not. This led us to hypothesize 

that the higher nucleosome barrier was overcome by increased RNA-Pol II at the 

TSS region. Indeed, different in vitro studies have shown that the levels of RNA-Pol II 

are important to overcome a transcriptional barrier (Epshtein and Nudler, 2003; Saeki 

and Svejstrup, 2009). Further, it was shown that an increased number of RNA-Pol II 

closely occupying a DNA region could “collide” and push each other which increased 

the energy of the first RNA-Pol II to overcome a pause site. Concordantly with this it 

was observed that a highly expressed DNA template, with more RNA-Pol II bound, 

were less susceptible for stalling at a pause site than a lower expressed template 

(Kulish and Struhl, 2001). This indicates why high expressed genes were less 

affected by CHD1 depletion than the low expressed genes. Summarized these 

studies show that the increased RNA-Pol II levels at the TSS regions observed by us 

were sufficient to maintain the normal transcriptional output when CHD1 was 

depleted. However, repressed genes had similar occupancy levels of RNA-Pol II and 

were less likely to overcome the nucleosome barrier with low CHD1 protein levels.  

Interestingly another study showed in yeast that pausing of RNA-Pol II occurs also 

over the entire gene body (Churchman and Weissman, 2011). This might extend the 

role of CHD1 to support the overcome of the nucleosome barrier not only at the TSS, 

but also at the gene body, as we and others observed CHD1 binding at the entire 

gene.  

Further we saw that particularly genes were highest stalled after CHD1 knockdown 

which got induced during differentiation. Other studies had observed that genes 

highly responsive to stimulation or activated during development were stalled before 

induction and that stalling was reduced after their activation (Muse et al., 2007; 

Zeitlinger et al., 2007). CHD1 might be important for the activation of these stalled 

genes. Thus it would be important to test if the genes affected by CHD1 depletion 

were stalling in undifferentiated condition.  

In addition to positive elongation factors, RNA-Pol II release from TSS can be also 

stimulated by histone modifications like H3K27ac, H3K122Ac or H3K115Ac (Manohar 

et al., 2009; Stasevich et al., 2014). Surprisingly, in our study, we observed low levels 

of H3K27ac around TSS of CHD1-sensitive genes irrespective of their expression. 

Similarly, differentiation-regulated genes which were low in H3K27ac occupancy, but 

had normal gene expression like stably expressed genes, were described in 
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D. melanogaster (Pérez-Lluch et al., 2015). Furthermore, other studies observed the 

effect of low or no histone modifications in induced and activated genes (Chen et al., 

2013; Hödl and Basler, 2012; Zhang et al., 2014). These suggest the dynamic nature 

of histone code in their regulation of gene expression and the association with CHD1.  

5.1.2 Reduced H2A.Z levels upon CHD1 depletion may link to decreased 

nucleosome turnover  

Besides higher RNA-Pol II stalling, we observed less occupancy of the histone 

variant H2A.Z around TSS upon CHD1 knockdown. Interestingly, it was described 

that H2A.Z incorporation into the +1 nucleosome decreases the nucleosome barrier 

and that depletion of H2A.Z cause higher RNA-Pol II stalling (Weber et al., 2014). 

This highly suggests that the lower H2A.Z levels observed after CHD1 depletion 

caused increased RNA-Pol II stalling. This effect however was not observed at active 

enhancers and argues for a TSS-specific effect. Yet, if the lower H2A.Z occupancy 

around the TSS is due a lower steady-state level of the +1 nucleosome or solely due 

to lower H2A.Z levels can here only be speculated.  

What argues for a lower steady-state nucleosome occupancy was the observation 

that a CHD1 mutant which caused decreased nucleosome turnover at the TSS led to 

surprisingly lower steady-state levels of the +1 nucleosome (Skene et al., 2014). This 

would favor a model where the reassembly of the nucleosome after the passage of 

RNA-Pol II is disrupted by CHD1 depletion which cause a low occupancy of 

nucleosomes, as it was observed in yeast (Lee et al., 2012a).  

Alternatively, CHD1 might aid the incorporation or removal of H2A.Z during the +1 

nucleosome remodeling and thereby decrease H2A.Z levels specifically. It already 

had been shown that CHD1 was required for the incorporation of histone variants 

H3.3 and CENP-H into nucleosomes (Konev et al., 2007; Okada et al., 2009). 

Performing ChIP-seq of H3 or H2B is therefore necessary to rule-out the possibility of 

less nucleosome occupancy upon CHD1 depletion and can emphasize on the effect 

of H2A.Z occupancy. Interestingly the histone variant H3.3 commonly co-occupies 

H2A.Z nucleosomes which further destabilizes them (Jin et al., 2009). Thus, it could 

be hypothesized that CHD1 may be required for H3.3 specific incorporations into 

nucleosomes at TSS regions too. Therefore, performing H3.3 ChIP at TSS-specific 

regions upon CHD1 depletion would further improve our knowledge on the role of 

CHD1 as a chromatin remodeler in incorporating histone variants.  
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5.1.3 H2Bub1 and CHD1 

Previous studies showed that CHD1 was required for the maintenance of global 

H2Bub1 levels (Lee et al., 2012a). H2Bub1 was shown to be necessary for MSC 

differentiation to osteoblast and adipocytes (Karpiuk et al., 2012). Thus, we 

hypothesized that the differentiation defects observed in our study after CHD1 

depletion were due to reduced H2Bub1 levels. However, in our system, we did not 

see any regulation in H2Bub1 levels upon CHD1 depletion, neither in MSC nor in 

FOB which might be due to the usage of different cell lines. Lee et al. used yeast and 

human 293 cells for their studies, but not stem cells. Probably, high levels of H2Bub1 

need to be established prior to observe CHD1-specific effects on H2Bub1. Karpiuk et 

al. showed that undifferentiated MSC possess very negligible amount of H2Bub1 and 

they gain H2Bub1 during differentiation (Karpiuk et al., 2012). Thus, it could be 

interesting to test if CHD1 affects H2Bub1 stronger in already differentiated cells than 

during differentiation. Moreover, CHD2, which is also an ATPase-dependent 

chromatin remodeler and structurally resembles CHD1, may have redundant 

functions as CHD1 in MSC and FOB, but were not expressed in human 293 cells 

(Siggens et al., 2015).  

5.2 Genome-wide binding pattern of CHD1 

Several studies and the ENCODE consortium performed ChIP-seq on CHD1 in yeast 

or human (ENCODE Project Consortium, 2012; Lee et al., 2012a; Siggens et al., 

2015). However, comparison of dynamic binding patterns of CHD1 before and after 

stimulation is poorly understood. Here, we provide a comprehensive overview of 

CHD1 binding in undifferentiated MSC and after adipocyte and osteoblast 

differentiation. The observed CHD1 binding regions may possess the following 

possible regulatory mechanisms: 

5.2.1 CHD1 regulation around TSS  

CHD1 has a broad binding pattern over gene bodies and might act in several ways 

on transcriptional processes, however its main regulatory role in mammals was 

thought to be at TSS (Gaspar-Maia et al., 2009; Siggens et al., 2015; Skene et al., 

2014). Indeed, in our study, we observed the highest CHD1 binding intensity closely 

downstream to TSS. Furthermore, we showed that CHD1 binding around TSS 

positively correlated with gene expression levels and active histone modifications 

H3K4me3 and H3K27ac. Previous studies revealed similar correlations between 
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actively transcribed genes and CHD1 binding at their TSS regions, but categorized 

the gene expression status quite broad by active, inactive or modestly transcribed 

sets (Siggens et al., 2015). Here we sought to extend this information and showed for 

each gene the respective CHD1 binding downstream of its TSS. Especially in 

osteoblast differentiated MSC, we observed that low and medium expressed genes 

had high CHD1 binding around their TSS. Furthermore, we could measure that 

genes induced during differentiation had higher binding of CHD1 which was required 

for their activation. Altogether, our study demonstrates a strong mechanistic insight 

connecting the occupancy of CHD1 around TSS and the activity of differentiation-

induced genes.  

5.2.2 How is CHD1 recruited to differentiation-induced genes? 

Interaction of CHD1 with transcription-associated complexes like FACT, SAGA or 

mediator were described before and this could suggest different possibilities for 

recruitment of CHD1 to the chromatin (Lin et al., 2011; Pray-Grant et al., 2005; Simic 

et al., 2003). CHD1 may possess differential binding affinities to various complexes. 

Indeed, strong interaction between CHD1 and Mediator Complex Subunit-1 (MED1) 

was observed (Lin et al., 2011). Furthermore, another strong interaction was 

observed between CHD1 and the General Transcription Factor IIH (TFIIH) complex, 

which is opening up the DNA at the TSS (Guzmán and Lis, 1999). Interestingly, 

TFIIH is involved in nuclear receptor-associated binding and modulating its activity in 

gene expression (Compe and Egly, 2012). It was shown to be interacting with RAR, 

PPARG, AR or the vitamin D receptor (VDR) which also play fundamental roles in 

regulating differentiation-related gene expression (Jeong and Mangelsdorf, 2009). 

This altogether indicates that CHD1 may be recruited differentially to TSS by their 

interaction partners TFIIH or MED1 which can modulate its binding affinity to TSS 

(Esnault et al., 2008; Mizuta et al., 2014). Performing ChIP-seq on MED1, TFIIH 

subunits or the nuclear receptors during MSC differentiation can help in 

understanding the correlation in their binding with CHD1 and looking at CHD1 

occupancy upon depletion of these factors would aid us in elucidating the mechanism 

of CHD1 recruitment to the chromatin.  

5.2.3 When is CHD1 recruited to differentiation-induced genes? 

A large part of primed and inactive genes in human ESC are however often marked 

with H3K4me3 (Guenther et al., 2007). These genes are related to differentiation 
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processes and get activated during differentiation. In our study, we observed that 

high levels of CHD1 are positively correlated with high levels of H3K4me3 at the 

TSS. In contrast, TSS highly marked with H3K4me3 are not necessarily correlated 

with CHD1 binding. One could speculate that these H3K4me3-enriched genes which 

are exclusive of CHD1 might be primed for differentiation-specific stimulation. 

Furthermore, these primed genes can be marked bivalent by H3K4me3 and 

H3K27me3 which had been described before to play a role in stem cell differentiation 

(Bernstein et al., 2006; Voigt et al., 2013). It could be possible that CHD1 gets 

recruited after primed genes lose H3K27me3 and are activated. The reasons could 

be: First, CHD1 and H3K27me3 does not co-occupy as observed in mESC (Gaspar-

Maia et al., 2009). Second, occupancy of the strong interaction partner of CHD1, 

MED1 is reduced at bivalent genes which do not possess the binding of Really 

Interesting New Gene 1b (RING1B), a PRC1 complex member involved in 

maintenance of bivalency (Lehmann et al., 2012; Lin et al., 2011). Third, CHD1 is 

more correlated with active mark H3K27ac than H3K4me3, which does not 

necessarily mark active genes. Nonetheless is a detailed binding analysis between 

activating transcription factors, histone modifications and CHD1 occupancy 

necessary to further understand the dynamics in gene activation during differentiation 

and the part of CHD1 within it. 

5.2.4 Regulatory roles of CHD1 at gene bodies  

Many of the published binding regions of CHD1 in yeast and human are localized 

within the gene body (ENCODE Project Consortium, 2012; Lee et al., 2012a; Siggens 

et al., 2015). Here, we performed quantification of genome-wide CHD1-enriched 

binding regions and could show that the highest proportion were located within the 

gene and not at the TSS. Although, the signal intensity of CHD1 occupancy is lower 

compared to TSS, it could have affected the gene expression in various ways: 

5.2.4.1 CHD1 role in regulation of Cryptic transcription 

It is known that CHD1 interacts with the FACT complex in S. cerevisiae, 

D. melanogaster and human to order the nucleosomes after RNA-Pol II passage into 

a regularly spaced array which represses cryptic transcription (Hennig et al., 2012; 

Kelley et al., 1999; Lin et al., 2011; Simic et al., 2003; Smolle et al., 2012). However, 

this function was described only in yeast. Nonetheless we also observed CHD1 

binding over the gene body which argues for a similar function. Supporting a 
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conserved role in repression of cryptic transcription, two studies in yeast and human 

showed that a mutation in the ATPase-domain of CHD1 caused a decreased 

nucleosome density over the gene body which is characteristic for cryptic 

transcription (Hennig and Fischer, 2013; Hennig et al., 2012; Skene et al., 2014). In 

our study, we sequenced poly-adenylated mRNA in a non-directional approach and 

thus could not capture cryptic transcripts, which are not poly-adenylated. To study 

cryptic transcription, one could use deep sequencing of nascent RNA transcripts of 

RNA-Pol II which would help to capture even very unstable cryptic transcripts 

(Churchman and Weissman, 2011). Even though cryptic transcription had only mild 

effects on global transcriptional changes in CHD1 depleted system, it might act in fine 

tuning gene expression (Colin et al., 2011). If CHD1 affects cryptic transcription in a 

lineage-specific manner would be interesting to test.  

5.2.4.2 CHD1 and splicing  

Besides repression of cryptic transcription, CHD1 is also linked with splicing of pre-

mRNA (Sims et al., 2007). Sims et al. showed that CHD1 in human interacts with 

different components of the small nuclear Ribonucleoprotein 2 (snRNP2) riboprotein 

complex, a part of the huge spliceosome, and is required to associate the complex to 

the chromatin. Concordantly, a recent study in yeast reported that a CHD1-depleted 

strain decreased the nucleosome turnover at 3´ end of introns and CHD1 was 

thought to be necessary to release RNA-Pol II from 5´ intron-exon boundary which 

might affect splice site recognition (Jonkers and Lis, 2015; Park et al., 2014).In in our 

study, we also observed a high proportion of CHD1 binding regions within exons. 

These observations indicated that CHD1 may be involved in the release of RNA-Pol 

II of intron-exon boundaries and pre-mRNA splicing in MSC and FOB. Deep, strand-

specific RNA-seq under CHD1-depleted conditions could help to further elucidate this 

question by detection of alternatively spliced transcripts (Mills et al., 2013).  

Furthermore, one could speculate that less nucleosome occupancy over the gene 

body as observed in CHD1 mutant cells affect RNA-Pol II traveling speed over the 

gene which was described to regulate alternative splicing events (Naftelberg et al., 

2015; Skene et al., 2014). Additionally to RNA-Pol II traveling speed also the 

nucleosome distribution at intron-exon boundaries regulate the recognition of splice 

sites which is also important for alternative spliced mRNA (Iannone et al., 2015; 

Schwartz et al., 2009; Tilgner et al., 2009). Interestingly, alternative splicing is 
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involved in osteoblast differentiation as osteoblast differentiation factors like FosB or 

Lef1 are alternatively spliced and cause differential regulation (Jensen et al., 2010). 

Moreover, alternatively spliced isoforms of RUNX2 regulate BGLAP expression in 

different ways, which could be one explanation for the observed differentially 

expression of BGLAP in MSC and FOB (Makita et al., 2008).   

5.2.4.3 CHD1 around TTS 

Additional to the prominent peak of CHD1 at the TSS, we observed a second smaller 

peak closely downstream at the transcriptional termination site (TTS). Even though 

no studies in metazoans are known in this regard, a study in S. pombe showed that 

the CHD1 homologue hrp1 acts as a transcriptional termination factor (Alén et al., 

2002). Interestingly, another recent study linked CHD1 to the H3 histone dynamics at 

the 3´-end of long genes in S. cerevisiae (Radman-Livaja et al., 2012). We also 

observed that long genes were significantly less expressed in CHD1-depleted 

conditions in MSC, but not in FOB (data not shown). Regulation of transcriptional 

termination by CHD1 is poorly understood. Nevertheless, CHD1 is involved in 

nucleosome positioning and might help to maintain a nucleosome free region at the 

TTS which could support the disassembly of RNA-Pol II from the DNA for mRNA 

cleavage (Core et al., 2008; Mavrich et al., 2008). Furthermore, CHD1 may also be 

involved in nucleosome turnover at TTS other than TSS (Materne et al.; Radman-

Livaja et al., 2012).  

5.2.4.4 CHD1 at enhancer 

Recently, CHD1 binding was described at enhancer regions which were marked by 

different H3K4me1/2/3 methylation patterns (Siggens et al., 2015). Indeed, CHD1 

also binds to H3K4me2, a mark which is present at active enhancers (Sims et al., 

2005; Wang et al., 2014). Although we did not focus on enhancer regions in our 

study, we detected only a small portion of CHD1 binding at intergenic regions, in 

MSC as well as FOB. However, mapping of H2A.Z and RNA-Pol II on active 

enhancers in FOB showed no obvious changes upon CHD1 depletion, though 

occupancy of both proteins were affected by CHD1 depletion around TSS and play 

pivotal roles in the regulation of enhancer activity (Brunelle et al., 2015). This 

indicates that the effects of CHD1 may be negligible at enhancers in our system. 

Furthermore, we observed a small increase of intergenic bound regions in 

differentiated cells compared to undifferentiated conditions, which could reflect higher 
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binding on enhancers during differentiation. Moreover, mapping CHD1 binding to 

H3K4me1 and H3K27ac sites which are exclusive of H3K4me3 could improve its 

binding properties on active enhancer regions. 

5.3 Biological implications on osteoblast differentiation upon CHD1 depletion  

Transcription factors, histone modifying enzymes and chromatin remodeler are 

important for a rapid transcriptional response to intra- and extracellular signals. 

During the early and late osteogenesis showed differentiation associated genes a 

high dynamicity in transcription (Kulterer et al., 2007; Twine et al., 2014). For 

example, fluctuated the expression of RUNX2 or BGLAP during differentiation, 

however their dynamic regulation is so far only poorly understood. Nonetheless it is 

important that this coordinated interplay is maintained and that the factors are 

expressed at the right time, as one factor can enhance or block differentiation, 

depending on the differentiation status of a cell (Kahler and Westendorf, 2003; Kahler 

et al., 2006; Regard et al., 2012). CHD1 likely plays a role in stabilizing this 

coordinated process by supporting the transcription of fast activated genes as 

discussed above.  

5.3.1 CHD1 regulation of bone development associated gene ontology terms 

During osteoblast differentiation the extracellular matrix (ECM) is reorganized and 

organic substrates mainly collagen are deposit on the cell surface (Clarke, 2008). 

The modification of the ECM is not only a consequence of differentiation but can also 

affect osteoblast differentiation (Mathews et al., 2012; Xiao et al., 2002). In this study 

we observed that the highest enrichment of deregulated genes was associated with 

parts of the ECM. Further, the ECM proteins BGLAP and ELN were one of the 

strongest deregulated genes in CHD1 depleted conditions. Besides our also another 

study highlighted the importance of the ECM in transcriptome wide regulation during 

early osteoblast differentiation (Kulterer et al., 2007). Furthermore, also secreted 

factors are included in the extracellular region part which were dependent on CHD1 

for a normal regulation. More recently, secreted factors were shown to support the 

coordination of osteoblast differentiation and interestingly were also connected to a 

systemic signaling (Mrak et al., 2007; Oury et al., 2013; Sabek et al., 2015; Zhong et 

al., 2012). This together shows that the genes regulated by CHD1 during 

differentiation might impair osteogenesis also over indirect pathways and not by 

renowned transcription factors. 
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Besides the ECM, deregulated genes were also significantly enriched for the 

biological processes such as vascularization and blood vessel development. Several 

studies had implicated a role of MSC signaling on HSC differentiation and 

development of the microvascular environment in the bone (Deckers et al., 2002; 

Eshkar-Oren et al., 2009; Furumatsu et al., 2003). These reports were supported by 

a recent finding of the MSC stem cell niche which resides together with HSC and is 

located perivascular in direct contact with the blood vessels (Méndez-Ferrer et al., 

2010). In sum this implies that applications in vivo could consider the effects of CHD1 

on vascularization in particular in cell therapeutic approaches (further discussed 

below).  

5.3.2 Ectopic bone formation and effects in vivo based on CHD1 

Osteoblastic differentiation consist in general of three phases: proliferation, 

extracellular matrix organization and subsequent mineralization of this extracellular 

scaffold (Lian and Stein, 1992). Phenotypically matrix reorganization begins around 5 

days after differentiation and includes deposition of organic compounds mainly 

consisting of different types of collagen (Broek et al., 1985; Kulterer et al., 2007; 

Niyibizi and Eyre, 1989; Pihlajaniemi et al., 1990). In this study the ectopic bone 

formation experiment showed low deposition of extracellular matrix in CHD1 depleted 

conditions. This was concordant with the deregulated genes identified in our RNA-

seq study which were enriched for terms in ECM organization. Further the 

observation supports the assumption of an osteoblast differentiation defect before 

day 5.   

Recent studies described a group of genes predicting a strong ectopic bone 

formation in mice (Larsen et al., 2010; Twine et al., 2014). Surprisingly, the bona fide 

osteoblast marker genes ALPL and BGLAP were not specified within this group 

characteristic for enhanced ectopic bone formation (Larsen et al., 2010). Of particular 

interest for us was that ELN turned out to be one of the best predictors for ectopic 

bone formation, which was directly regulated by CHD1. The mechanism of how ELN 

is acting on bone formation is unknown, however it is expressed during craniofacial 

bone development in mice and can be induced by TGFβ, which plays an essential 

role in osteoblast differentiation (Diez-Roux et al., 2011; Sethi et al., 2011). In other 

tissues ELN was shown to serve as a scaffold protein for mineralization of the ECM 

which could be transferred to osteoblasts too (Seligman et al., 1975; Starcher and 
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Urry, 1973). Further studies will be necessary to unravel its importance in bone 

formation and if the strong regulatory effect of CHD1 on ELN expression also holds 

true in other systems.    

5.3.3 Expression of ALPL and BGLAP in osteogenesis after CHD1 depletion 

ALPL and BGLAP are well established marker for osteoblast differentiation. In this 

study ALPL was higher expressed in MSC but only slightly affected in FOB after 

CHD1 depletion. Though we observed that the TSS region of ALPL was lowly bound 

by CHD1 which indicates an indirect regulation by CHD1 depletion. Thus probably 

the cellular background of MSC and FOB could explain the observed differences in 

gene regulation. It could further be speculated that the cells are at a different stage of 

osteoblast differentiation which is supported by absent expression of BGLAP in 

FOBs.  

Interestingly ALPL and BGLAP are both coordinative activated by the retinoblastoma 

protein 1 (pRB1) and E2F transcription factor 1 (E2F1) (Flowers et al., 2013). Our 

RNA-seq study revealed that E2F1 is only lowly expressed in FOB osteoblast 

differentiated cells, but expressed at an average level in MSC (data not shown). 

Although MSC and FOB can be both differentiated to osteoblast the different cellular 

background shown by BGLAP or E2F1 expression indicate that osteogenesis might 

be triggered in various ways.  

5.4 Translation for clinical therapeutic approaches  

Worldwide currently 320 open clinical studies exist which include mesenchymal stem 

cells (ClinicalTrial.gov). MSC had been used now for over a decade in cell therapies 

because of their regenerative and immunomodulatory properties as well as their good 

safety record in humans (Lepperdinger et al., 2008; Zaher et al., 2014). Besides 

therapeutic studies in non-skeletal tissues and treatment of immune diseases their 

regenerative properties were already successfully used for the regeneration of bone 

and cartilage in human (Gangji et al., 2005; Le Blanc et al., 2005; Quarto et al., 2001; 

Wakitani et al., 2007). However the repair of skeletal or cartilage depends on the 

ability of the injected cells to differentiate and form new tissue (Undale et al., 2009). 

This makes it essential to understand their regenerative and differentiation potential 

before injection. Though, the canonical osteoblast markers do not predict accurately 

the in vivo bone formation (Kuznetsov et al 1997, Larsen KH et al 2010). Here we 
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suggest with CHD1 another marker which could help to better predict the 

regenerative potential for bone tissue and maybe cartilage repair.   

In cell therapy MSC are commonly expanded ex vivo before transplantation to obtain 

sufficient material for regenerative purposes (Undale et al., 2009). For example, 1 – 2 

million cells per kilogram of body weight are required for a systemic cell therapeutic 

approach (Schallmoser et al., 2008). A challenge during this culturing ex vivo is to 

maintain the stem cell characteristics and probably their epigenetic profile (Ng et al., 

2014). In this study we showed that CHD1 depletion decreased the differentiation 

potential and was required for broad introduction of transcriptional changes. These 

properties might be used to decrease the differentiation ex vivo during cell 

expansion. To my knowledge no small inhibitors of CHD1 exist, however transient 

siRNA mediated depletion of CHD1 could be applied during ex vivo culturing. 

Nonetheless deeper investigations especially on transcriptional effects in the 

undifferentiated state and on the epigenome by CHD1 will unravel its use for 

therapeutic approaches.  

 

In summary this work reveals a novel regulatory function of CHD1 in gene activation 

during osteoblast differentiation and shows its necessity for ectopic bone formation. 

Markers for safe cell therapy are still poorly described, we suggest to consider CHD1 

as one. Further we extend the mechanistic role of CHD1 on global RNA-Pol II stalling 

around TSS in humans and highlight its requirement for differentiation specific gene 

activation. Moreover, a new regulatory connection of CHD1 associated H2A.Z 

incorporation into the +1 nucleosome is hypothesized. Further insights will help to 

understand if inhibition of CHD1 or H2A.Z are potential targets in stem cell therapy to 

selectively block differentiation.  
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