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Abstract 

The progresses in mechanics and electronics have provided the technology to build very 

advanced upper limb prostheses that are multifunctional and capable of several degrees of 

freedom (DoF). However, these advanced systems are not commonly used by patients. This 

is due to the lack of intuitive control and to the limited reliability of the man-machine 

interface. Although research in this field has been very active in the last decades and many 

control algorithms have been proposed, the control systems offered commercially and in 

clinics to the patients are basically the same as the original simple schemes dated more 

than 50 years. In this thesis, the reasons of this discrepancy between technology advance 

and usage of upper limb prostheses by amputees have been analyzed. Moreover, the 

robustness and reliability of the myocontrol have been identified as crucial for future 

developments. Therefore, the thesis contributes in this direction by following two 

approaches. 

In the first part, the non-invasive approach (surface EMG for control) has been addressed. A 

literature review on control algorithms and in particular pattern recognition has been 

conducted. These studies revealed that the misplacement of the electrodes caused by the 

donning and doffing of the prosthesis is one of the major issues limiting the reliability. 

Furthermore, all previous studies to improve the reliability of pattern recognition 

algorithms were based on a very small number of EMG electrodes. A novel approach to 

increase the robustness and reliability of the control algorithm has been developed. The 

proposed approach reduced the impact of electrodes replacement, and noise on the control 

performance. The method is based on high-density EMG recordings made with hundreds of 

closely-spaced electrodes on the forearm muscles. From these recordings, new features 

based on spatial correlation (variogram) have been proposed. This feature set has been 

tested on data collected on both able-bodied subjects and one amputee, showing a 

substantial reduction in the sensitivity to electrode shifts and noise with respect to classic 

methods. Moreover, the method proposed based on the variogram allowed to eliminate 

noisy channels during the testing phase without re-training the system. This is one of the 
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first studies that explicitly use spatial information from high-density EMG recordings to 

improve myocontrol, with substantial benefits. The use of such number of electrodes has 

been always considered a strong drawback for clinical applications. However, the advances 

in grid technologies and the development of microprocessors capable of handling a high 

amount of data are supporting the use of HD EMG in myoelectric control. Indeed, new 

embedded architectures specifically designed for accelerating the signal processing for real-

time prosthesis control with HD EMG have been recently presented in the literature. 

The second part of the thesis focuses on the invasive approach. With this approach, signals 

to control the prosthesis are acquired through sensors implanted into the human body. This 

solution eliminates the problem of the electrodes shift during donning and doffing since the 

implants are chronically anchored to the muscles. Moreover, invasive EMG signals can be 

recorded from deep muscles, which are not accessible with surface EMG. This solution can 

be more challenging than the previous, since it requires surgery, and the transmission of the 

signals has to be wireless to avoid breakage or infections due to the presence of 

percutaneous wires. Following a review of the current devices, the major challenges to face 

the design of an implanted device have been identified. The wireless transmission from 

implants in the human body to a controller located inside the socket prosthesis has to be 

carefully studied since the human body is a heterogeneous propagation environment. There 

are few solutions in the literature and they are characterized by communication links 

tailored for the application, which use frequency bands not dedicated to implants 

communication and hence prone to interference. Through accurate simulation studies, a 

new system has been proposed. The system includes implanted EMG sensors that can 

record, process and transmit wirelessly EMG signals to an embedded controller positioned 

inside the socket of the prosthesis. The simulation studies conducted in this part of the 

thesis provided the channel model measuring the path loss. The safety of the system has 

been checked simulating the SAR values, and a preliminary link budget analysis confirmed 

the feasibility of such system. The system proposed has also the advantage that it can be 

adapted to any kind of amputation, since it doesn’t need coils that can limit the positioning 

of the implants. Moreover, the wireless link follows a standard protocol (IEEE 802.15.6). 
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In conclusion, the thesis proposes two directions for improving the robustness in the control 

of upper limb prostheses, one with advances in non-invasive systems and the other with 

new concepts in implanted designs. Both directions seem promising and applicable to new 

generations of upper limb prostheses. While the thesis demonstrates the feasibility of the 

solutions presented, further developments are needed to translate them into clinical 

products. 
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1. Introduction 

1.1 Background and motivation  

The loss of an upper limb is a traumatic event, not only for the limited physical functionality 

that it generates but also because the hands are used for gestures, communications and 

sensations [1][2]. In most cases, the absence of the hand is a consequence of a trauma or a 

disease rather than congenital [3] [4] [5]. In case of amputation, the patients have high 

expectations from the prosthesis and the rehabilitation process. They expect to restore the 

functionalities of the limb as it was before the amputation. In the last decades, the research 

in this field has been quite active, indeed several new control systems for multifunction 

prostheses have been proposed with the purpose to improve the usability and provide 

functionalities similar to the lost hand. 

The upper limb prostheses can be divided in two main categories, passive and active. The 

passive prostheses are usually only cosmetic. They substitute aesthetically the missing limb 

and can facilitate some specific activities. The active prostheses instead can be divided in 

body powered and electric powered. The body powered prostheses are controlled by cables 

that link the movement of the body to the prosthesis. A certain movement of the body will 

pull the cables and cause the opening or closing of the terminal device of the prosthesis 

which can be a hand, a hook or specific tools called prehensors. The last and more recent 

type of upper limb prostheses are externally powered. The batteries power the motors that 

can move the components of the prosthesis. This kind of prostheses can be controlled 

electrically by external buttons or by signals generated by the residual muscles 

(electromyography, EMG).  

The history of prosthetic hands is very long.  Already a Roman general in the second Punic 

War, which had an arm amputated, substituted the limb with an iron hand, as written by 

Pliny the Elder [6]. Lately there are evidences that artificial hands were inspired by body 
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armor and used mainly by knights to replace the limb lost during battles. The most famous 

example is the prosthetic hand of Götz von Berlichingen, a German knight who lost his hand 

in a battle in 1504. The lost hand was substituted by a mechanical prosthesis made of iron 

(Figure 1) [7]. Most luckily this prosthesis was used only during the battles. Subsequently 

there have been attempts to improve the functionalities and robustness of the prostheses, 

introducing joints and rotations of the wrist [7]. In the 19th century many efforts to make 

the prostheses lighter, using wooden or aluminum have also been done. Only after the 

World War II, when the numbers of amputees increase considerably, many investments to 

improve the quality of limb prostheses have been undertaken. Indeed the veterans were 

dissatisfied from the prostheses provided by the US government and demanded for 

improved devices [6]. Since then new technologies have been developed and applied in 

order to obtain devices that can respond better to the needs of the users. The myoelectric 

prostheses became the most common among the users after the 1960s [8]. In the years 

after the research in this field has been quite active contributing to improve considerably 

the prostheses commercially available. Today manufacturers of myoelectric upper limb 

 

Figure 1. Götz Berlichingen ‘s prosthetic hand. Source image Wikipedia. The image is in the public domain due to its 
age 
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prostheses can claim to have developed multifunction robotic hands controlled trough 

sensors either placed on the skin of the remaining limb or implanted in muscles, nerves or 

brain. Nevertheless the prostheses that are commercially available, and used by amputees, 

are still controlled by few surface EMG electrodes. The control mechanism is still far from 

being intuitive, moreover any sensory information is provided. Moreover the rate of 

abandonment of the prostheses is still quite high (>25%) and can vary across the users [9] 

[10]. New solutions are needed to better satisfy the users needs and at the same time, they 

should be easily commercialized. This means that researchers and manufacturers should 

work to have prostheses that are more functional, according with the requirements of the 

users, and with a reasonable cost.  

Critical technological aspects, that limit the robustness and reliability of the state of the art 

upper limb prostheses, have been identified.  The challenges are related with multiple uses 

of the prostheses (shift of surface EMG electrodes), the presence of noise while recording 

and transmitting the EMG signals and finally the reduced number of controllable functions. 

Therefore, the aim of this thesis is to propose and test two approaches to overcome these 

difficulties and improve the reliability of myocontrol. The first approach is non-invasive and 

is based on the use of surface EMG electrodes, while the second is invasive and based on 

the use of implanted EMG sensors.  

1.2 Limitations and challenges in control of myoelectric 

hand prostheses  

The control of a device trough signals generating by muscle activity is called myoelectric 

control. It requires the ability to activate voluntary skeletal muscles by the users. In case of 

upper limb prosthesis, the EMG signal is associated to a desired movement of the 

prosthesis.  

To record myoelectric signals, surface electrodes, wire or needle electrodes, and implanted 

electrodes can be used. Surface electrodes can be wet-type or dry-type. The wet, or gel, 
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electrodes require conductive gel between the skin and the electrode, and also skin 

preparation. They provide a good signal quality, but they are not for long term use since the 

gel can dry out. Instead the dry electrodes are suitable for long term use and, moreover 

they can be integrated easily in the socket of the prostheses. The dry electrodes are then 

the only practical solution for the actual commercial available hand prostheses [11]. Finally 

the wire or needle electrodes are invasive, they have to be inserted into the muscle under 

the skin. The presence of wires makes them no appropriate for myoelectric prostheses. 

Implanted electrodes as alternative to dry electrodes in the field of myoelectric prostheses 

have also been considered, but they are still in the research stage and no solution has been 

yet commercialized.  

In the las few years many progresses in the mechanics of the upper limb prostheses have 

been carried out. In fact, some of the commercially available prostheses can claim to allow 

many degrees of freedom (DoFs) which can enable also several type of grasping. There are 

robotic hands capable of up to 24 grip patterns and with the wrist able to rotate and flex 

[12]. The research in this field has been very active, many scientific papers have been 

written proposing new control methods, sensory feed backs solutions and lately also the 

introduction of implanted EMG electrodes. 

Despite the advances that the research and technology have made in the last decades the 

hand prostheses available in the market are still far from offering intuitive, multifunctioning 

prostheses and especially they do not provide sensations. The control system in most of the 

cases still relies on two or three surface dry electrodes and the control strategy is often 

sequential. It means that a specific signal is used to switch between a set of predefined 

movements [12]. The discrepancy between advancements in research and technology, and 

prostheses effectively used by the amputee represents one of the challenges in this field 

that need to be taken. Very often the solutions presented in literature do not take into 

account the amputees requirements, the experiments are done in laboratory under certain 

conditions that do not represent the everyday life[13]. 
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1.3 Thesis objective and outline 

This work intends to analyze some of the problems that are preventing the utilization of 

more technological upper limb prostheses and proposing new solutions. The thesis analyzes 

two different approaches in the control of upper limb prostheses. The first part concerns 

the non-invasive approach and hence the use of surface EMG electrodes. The second part 

take into account the invasive approach and that is the use of implanted devices to record 

EMG signals. The final objective of this thesis is not to evaluate which approach is better, 

but provide two different solutions that can be offered to amputee. 

The outline of the thesis is structured as follows: 

Part I: The non-invasive approach. 

 In Chapter 2 a review on the state of the art of sEMG upper limb prostheses is given. 

An overview of the controlling algorithms is also provided, with particular attention 

to the pattern recognition algorithms. The main features used in literature have 

been summarized. Finally, the issues related to pattern recognition algorithms are 

carried out, outlying the shift of electrodes as a major problem in the robustness of 

such algorithm for control of upper limb prostheses. 

 In Chapter 3 a new method to provide features robust to electrodes number and 

shift has been proposed. The method is based on the use of the spatial correlation of 

high density EMG signals (the variogram), which have not been used previously for 

controlling upper limb prostheses. The method is explained and tested on data 

acquired on able- bodied subject and one amputee. The accuracies of classification 

obtained with this method are compared with those of the most popular algorithms 

used in pattern recognition for upper limb prostheses. Finally, it has also been tested 

that the variogram features allow to eliminate channels that may be broken without 

re-training.  
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 In Chapter 4 is given an overview of the studies that have been exploited the spatial 

correlation and HD EMG after the publication of the method described in the 

chapter 3. Moreover, the limitations of HD EMG are described. 

Part II: The invasive approach. 

 In Chapter 5 it is outlined as the problems that are affecting the pattern recognition 

algorithm in the control of upper limb prostheses can be solved with a different 

approach, using implanted EMG sensors. A description of the technology available in 

this field and the state of the art of implanted EMG in robotic hands has been 

provided. It has been highlighted as the solutions proposed until now in research 

have not been commercialized. Few solutions have been proposed, and the research 

in this field is still open. 

 In Chapter 6 has been described the background of wireless implanted devices. 

These devices have specific issues since the medium of propagation is the human 

body. In this chapter have been described all the aspects that have to be taken into 

account when designing a device that has to be implanted into the human body and 

that has to transmit data outside.  

 In Chapter 7 it has been proposed a new solution for the wireless transmission of 

EMG signals recorded inside the human body. The solution proposed is based on a 

standard communication protocol (IEEE 802.15.6). To define the channel model and 

prove the safety of the system proposed, two implanted antennas have been 

implanted in a 3D human model and an electromagnetic simulator which use the 

FDTD method have been used. The feasibility of the link has been confirmed with a 

preliminary link budget analysis. 

 In Chapter 8 the summary of the thesis is provided. Moreover, the conclusions are 

discussed, highlighting the pros and drawbacks of the approaches proposed.  

 



 
 

 

 

 

 

 

 

Part I: The non-invasive 

approach 
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2. State of the art in myocontrol for upper limb 

prostheses 

The developing of current myoelectric upper limb prostheses has been characterized by the 

use of few surface EMG electrodes. The focus has been on a small number of electrodes 

because better clinical acceptance and low computational load. In the commercially 

available upper limb prostheses, the control is usually realized with one or two electrodes 

[11]. It depends on the condition of the stump. If the stump is small, a single-site system can 

be used, otherwise two electrodes are positioned over the residual flexor and extensor 

muscles. To eliminate potential noise, the EMG signals acquired through the surface 

electrodes are filtered. An estimation of the amplitude or the rate of change of the 

myoelectric signal provides a measure of the muscles activity level [15]. The contraction of 

muscle is detected by reaching a threshold that has been determined in the fitting phase of 

the prostheses. The control scheme that uses such signal processing is called direct control. 

The direct control can be a simple switch or proportional. In the first case, a contraction of 

the flexor can close the hand, while a contraction of the extensor can open it. To switch to 

another DoF a co-contraction, a simultaneous contraction of both muscles, is needed. If the 

amputees are able to modulate the strength of the muscle contraction, it is possible to 

control the speed and the force of the prosthetic device (proportional control scheme). The 

direct control schemes are usually adopted by prosthesis with only one DoF, since the use 

of co-contraction, to sequentially switch between different DoFs, makes the device slow, 

and difficult to use [11]. To overcome these difficulties, and allow more DoFs, simultaneous 

and proportional control, new approaches have been investigated and proposed. In 

particular, control strategies based on pattern recognition control have been developed. 

This type of control is based on the concept that amputees can still generate different and 

repeatable EMG signal patterns associated with each class of movements. The EMG signal 
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processing for pattern recognition algorithms can be summarized by Figure 2. The first step 

is the detection of EMG signals from the stump, following by a preprocessing to remove 

noise and artifact due to electrode movement, at this point start the pattern recognition. It 

consists of a first stage where the EMG signals are windowed. The next step is the 

extraction of the features that increase the information of the EMG signals. The last step of 

the pattern recognition algorithm is the classification of the movements, which provide the 

class labels to the motor control of the prosthesis. 

The selection of the window length is very important to balance between stability of the 

features and delay in the classification decision [16]. A longer length of the windows 

reduces the variance of the feature and increases the classification accuracy, but delays the 

decision [16]. It has been found that the optimal window length is between 150 and 250 ms 

[17].  

The features extraction is the core part of the pattern recognition control. Several 

algorithms and features have been investigated with the purpose to identify the most 

robust EMG pattern [18]. There are algorithms very simple, which consider as only feature 

the root mean square (RMS) of EMG signals [19]. Others approaches use time domain (TD) 

 

Figure 2. EMG signal processing for pattern recognition algorithms. 
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features [15], [21], [22]. Many TD features have been extracted. The most used are the 

following [21], where xi is the ith sample of the EMG signal (X), and N is the window size: 

 Mean Absolute Value (MAV). – Estimation of the mean absolute value of the 

signal  

�̅� =
1

𝑁
∑ |𝑥𝑖|

𝑁
𝑖=1           (2.1) 

 Zero Crossing (ZC). – The number of times the signal passes the zero amplitude 

axis within an analysis window. A threshold (ε) must be considered to reduce the 

noise induced zero crossing. Given two consecutive samples xi and xi+1 ZC is 

incremented if  

{𝑥𝑘 > 0 𝑎𝑛𝑑 𝑥𝑘+1 < 0} 𝑜𝑟 {𝑥𝑘 < 0 𝑎𝑛𝑑 𝑥𝑘+1 > 0}           (2.2) 

and |𝑥𝑘 −  𝑥𝑘+1| ≥  휀           (2.3) 

 Slope Sign Changes. – The number of time the slope of the signal changes sign. 

Considering a threshold (ε) to reduce noise induced count. The slopeSign count increased by 

one if 

{𝑥𝑖 > 𝑥𝑖−1 𝑎𝑛𝑑 𝑥𝑖 > 𝑥𝑖+1} 𝑜𝑟 {𝑥𝑖 < 𝑥𝑖−1 𝑎𝑛𝑑 𝑥𝑖 <  𝑥𝑖+1}           (2.4) 

and |𝑥𝑖 − 𝑥𝑖+1| ≥ 휀 𝑜𝑟 |𝑥𝑖 − 𝑥𝑖−1| ≥ 휀           (2.5) 

 Waveform Length (WL). – The cumulative length of the EMG signal within the 

analysis window. 

𝑊𝐿 = ∑ |∆𝑥𝑖|
𝑁
𝑖=1           (2.6) 

where  ∆xi =  xi − xi−1. 

The following have been also considered [22][18] [23]: 



11 
 

 Mean Absolute Slope (MAS). – The difference between sums in adjacent 

segments  

∆𝑋𝑖 =  𝑋𝑖+1 − 𝑋𝑖            (2.7) 

 Willison amplitude (WAMP). – The amount of times that the change in EMG 

signal amplitude exceeds a predefined threshold (ε). It is an indicator of muscle 

contraction level. 

𝑊𝐴𝑀𝑃 = ∑ 𝑓(|𝑥𝑘 − 𝑋𝑘+1|)𝑁
𝑖=1             (2.8) 

where f(x) = 1 if x > ε, 0 otherwise. 

 Variance (var). – It is a measure of the power of the EMG signal. 

𝑣𝑎𝑟 = 𝜎2 =
1

𝑁−1
∑ 𝑥(𝑘)2𝑁

𝑖=1             (2.9) 

 Autoregressive coefficient (AR). – The EMG signal can be considered, in a short 

interval, as a stationary Gaussian process. The EMG time series can be 

represented as 

𝑥𝑖 = ∑ 𝑎𝑘𝑥𝑖−1 + 𝑒𝑖
𝑝
𝑘=1            (2.10) 

where 𝑎𝑘is the autoregressive coefficient, 𝑝 is the AR model order, and 𝑒𝑖is the residual 

white noise. 

 Cepstrum coefficients (Ceps). – Provide information about the rate of change in 

different frequency spectrum bands of a signal. The Cepstrum of a signal is 

defined as the inverse Fourier transform of the logarithm of the magnitude of 

the power spectrum of the signal data. The Cepstrum coefficients are derived 

from the autoregressive model and are computed as 

𝑐1 = −𝑎1           (2.11) 
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𝑐𝑘 = −𝑎𝑘 − ∑ (1 −
𝑙

𝑘
) 𝑎𝑛𝑐𝑘−1

𝑘−1
𝑙=1               (2.12) 

where 𝑎𝑘 is the kth AR coefficient as described above, 𝑐𝑘 is kth Cepstrum coefficient, k is the 

dimensionality of the model. 

 V-Order and Log Detector (V and LOG). – V and LOG yield an estimation of the 

exerted muscle force. The V is defined as 

𝑉 = √𝐸{|𝑥𝑘|}𝑣𝑣
           (2.13) 

where E is the expectation operator applied in one analysis window on the samples. 

The LOG is defined as 

𝐿𝑂𝐺 =  𝑒
1

𝑁
∑ 𝑙𝑜𝑔(|𝑥𝑘|)𝑁

𝑘=1             (2.14) 

 EMG Histogram (HIST). It is an extension of ZC and WAMP, it measures the 

frequency with which the EMG signal reaches multiple amplitude levels.  

 

The TD features are the most used in literature, since they are the most intuitive, relatively 

easy to implement, and require less computational resources. Nevertheless, in literature 

also other features have been investigated, as frequency domain and time-frequency 

features [20] [22], as spectral measure, Fourier transform, wavelet transform and wavelet 

packet transform. 

To classify the EMG signals and assign a label to different movements a classifier is needed. 

A classifier is capable of exploiting the information received from the extracted features and 

decide to which class the information belong. The most used classifiers in this field are 

linear discriminant analysis (LDA), support vector machine (SVN), and hidden Markov model 

[16]. The LDA, respect to the other classifier, is more easy to implement and to train. It has 

been shown that the LDA classifier does not compromise the classification accuracy [24], 
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compare with the others [16], hence it is the most used in literature. To classify the data, 

part of it is used to train the classifier and the remaining part is used as test set to evaluate 

the classification accuracy. The performance of a classifier is usually evaluated measuring 

the classification accuracy (CA), which is defined as 

𝐶𝐴 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
 𝑥 100%           (2.15) 

 

2.1 Challenges in the use of surface electrodes in EMG 

pattern recognition 

The pattern recognition methods proposed in literature, for control of upper limb 

prosthesis, are based on EMG signals acquired with surface electrodes. The number and 

configuration of the electrodes has been also object of investigation. It has been 

demonstrated that the performance of the EMG pattern recognition can improve increasing 

the number of channels (i.e. electrodes) [16], [25].The number of channels depend on the 

number of residual muscles of the amputee and on the number of DoF that are allowed to 

the prosthesis. In the studies that have been done on this topic the number of the 

electrodes varies usually between 4 and 16, for transradial amputee (amputation through 

forearm). In [26] it has been found that no significant increase in classification accuracy 

resulted from adding more than 4 channels, using a symmetrical channel subset. In case of 

amputee with a higher level of amputation, this is not applicable and the number can vary a 

lot depending on the anatomy of the shoulder (in case of patient with target muscle 

reinnervation) or of the residual limb [16]. 

The classification accuracy that can be reached with pattern recognition algorithms is very 

high, most of the time over the 95%. Nevertheless, this is not the only factor that influences 

the usability of prostheses. The robustness and the reliability for upper limb prostheses are 

characteristics of extreme importance. The signals that control the prosthesis have to be 
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reliable, not affected by any kind of noise, moreover the prosthesis need to be robust, 

meaning that the electrodes displacement due to donning and doffing should not influence 

the functioning [20]. The repositioning of the prosthesis is one of the main issues, in pattern 

recognition algorithms, and it is correlated to the use of surface EMG electrodes. Indeed, a 

potential shift can occur in case of the donning and doffing of the prosthesis or because of 

loading and positioning of the limb. The shift of the electrodes can affect the classification 

accuracy, the robustness and the long-term reliability of pattern recognition algorithms 

[27]. The classification accuracy can be influenced also by the malfunctioning of some 

electrodes during the use of the prosthesis. The malfunctioning can be caused by power line 

interference or by poor contact between skin and electrode. The fault of only one electrode 

can cause degradation in classification accuracy, and to reactivate the correct operation of 

the prosthesis it is required a re-training of the classifier. These problems have been taking 

on in the last few years in literature. In [28] the problem of the shift of the electrodes has 

been carried on, proposing to train the classifier with signals from all the expected 

displacement locations and suggesting that the use of AR (AutoRegression) coefficient as 

features may be more robust. This procedure has some drawbacks as the plausible 

displacement locations have to be identified in advance, and it results time consuming, 

since the classifier has to be trained over all the possible locations of shift. In [18] have been 

studied the EMG features that can offset the impact of the electrodes displacement. The 

authors have found that a combination of three features can improve the performance, but 

cannot solve the problem. It has been also considered if the orientation and size of the 

electrodes can influence the classification accuracy and reduce the influence of the shift 

[29]. The authors concluded that longitudinally oriented electrodes perform better than 

transverse-oriented, without and with the shift, moreover they found that larger electrodes 

can reduce the sensitivity to the shift, but they are performing worse in the original 

locations. Another important finding of this study concerns the direction of the shift. Shifts 

that are perpendicular to muscle fiber are affecting more the pattern recognition algorithm 

than parallel shift. To reduce the shift sensitivity also the influence of interelectrode 
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distance has been considered. In [31] it has been investigated the optimal distance, the 

electrode configuration, along with EMG features set, that can be effective against the shift 

problem. The study found that a interlectrode distance (4 cm) larger than usually applied, 

with a combination of longitudinal and transverse locations can reduce the sensitivity to 

shift. Moreover it has been asserted that for transradial amputees it is more advisable to 

use four to six electrodes and that the features set that reduce more the shift effect is TDAR 

[27], a combination of TD and AR features. 

All the studies referenced previously in this paragraph proposed features and configuration 

of electrodes to reduce the sensitivity to shift of the electrodes, moreover they are 

exploiting a small number of electrodes. Nevertheless, all of them highlight the impossibility 

to eliminate the undesired effect of the electrodes displacement, which is considered one of 

the main reasons for the lacking of diffusion of upper limb myoelectric prostheses, 

controlled with pattern recognition algorithms.  Taking into account these findings a new 

solution has been proposed. A novel method for pattern recognition of EMG signals based 

on High Density (HD) EMG recording have been investigated. This method allowed also to 

eliminate malfunctioning channels without re-train the system. The new method will be 

described in the next chapter.  
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3. Spatial correlation of High Density EMG signals 

as new robust features for myocontrol 

The research on myoelectric control has usually focused on a small number of channels. A 

number of studies stated that between four and six channels are enough to get good 

classification accuracy (>95%). This choice has been justified by the reduced computational 

load and by the simplicity of use. The two major issues of pattern recognition algorithms, 

the shift and the malfunctioning of the electrodes, have been identified. Many studies to 

solve these problems have been conducted. Nevertheless, they have not been completely 

solved and consequently pattern recognition algorithms are not yet implemented in the 

upper limb prostheses commercially available. For these reasons, in the following 

paragraphs it has been proposed a novel pattern recognition method, which exploits the 

spatial correlation of the HD EMG signals. The work presented in the following of this 

chapter [30] has been published by me as first author on IEEE transaction of Neural 

Systems. Therefore text or results reproduced form this manuscript are not cited explicitly 

in the chapter. This is the first study that uses spatial correlation and HD EMG for the 

control of upper limb prostheses. 

3.1 High Density sEMG in myoelectric control 

High Density surface EMG electrodes can record EMG signals from multiple locations, 

closely spaced, over the skin surface. They usually have the configuration of a grid and are 

embedded in flexible silicon rubber or in clothing [32] (Figure 3). This type of electrodes has 

been used to identify individual motor unit activities from non-invasive recording [32]. HD 

EMG matrices are characterized by two spatial and one temporal dimensions, they can be 

used to investigate the muscle activity pattern and to draw topographical maps of EMG 

amplitude [33]. The limitation of this type of EMG recording is the amount of data available 

and consequently the computational load. Recently this technology has been considerably 

improved and with the development of powerful microprocessors, it has been proposed as 
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input signal for prosthetic control for transradial amputees [34] [35]. Their use was limited 

to identify the subset of optimal electrode position [34], for the estimation of the 

kinematics of the joint wrist/hand [35], or to demonstrate the robustness of the synergy 

method across some different channel configuration  [36]. 

The HD EMG have been used also on TMR patients. HD EMG signals have been recorded 

from TMR patients with the intent to improve the myoelectric control [37] [38]. The number 

of channels used in these two studies are 115 and 128 respectively. HD EMG signals (128 

channels) have been used also in TMR patients to extract neural control information from 

reinnervated muscles and to determine the optimal placement of the electrodes [39]. In 

[40] have been used up 448 channels on TMR patients to extract single motor unit spike 

trains, providing the neural code that underlined tasks of the phantom limb.  

In any of the studies mentioned the spatial information of EMG signals coming from the 

entire matrix of electrodes have been exploited to improve the myoelectric control. 

 

                                                          (a)                                                    (b) 

Figure 3. Example of HD EMG. (a) Texile HD EMG. (b) Silicon HD EMG. 
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3.2 Spatial correlation – The variogram 

A HD matrix of EMG electrodes can be considered as a grid of sensors that record data that 

are spatially correlated. The spatial correlation of data is based on the concept that samples 

recorded in proximity are likely to have similar values and to vary in the same way. The 

spatial correlation of data has been exploited mainly in the telecommunication field. It has 

been utilized in the field of dense sensors networks [41][42] for different scopes, as 

compression of data and routing [43][44], to cover possible holes in the networks [41], or 

for collaborative MAC layer [45]. In a sensor network the data from sensors that are closely 

spaced are spatial correlated. In geostatistic, the variogram (also called semivariance), is a 

statistical measure of the spatial correlation. The variogram is a graph of the semivariance 

against the distance between pairs of locations in the network. It can be defined as a 

function that describes the spatial correlation between observations. The main concept of 

the variogram is that the value of a variable z depends on the location in which it is 

observed (x). The value of z at x, z(x), is auto-correlated with the value z(x+h), where h (the 

lag) is the distance in the direction x. Considering the random variables 𝑍(𝒙) and 𝑍(𝒙 + 𝒉) 

at the points 𝒙 and 𝒙 + 𝒉, the variogram function is defined as follows:  

2𝛾(𝒙, 𝒉) = 𝐸{ [𝑍(𝒙) − 𝑍(𝒙 + 𝒉)]2}          (3.1) 

 

                                               (a)                                                                                                               (b) 

Figure 4. Identification of all pairs at distance (a) h=1 and (b) h=2 apart in the direction of the x axis for a representative 
grid. 
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The variogram 𝛾(𝒙, 𝒉) is a function that relates the semivariance to the spatial separation, 

assuming a multi-dimensional space and a stochastic process. The lag 𝒉 and the location 𝒙 

are written in bold to denote that now they are vectors with a magnitude (distance) and 

orientation. 

The variogram function 𝛾(𝒙, 𝒉) in equation 3.1 depends on both 𝒙 and 𝒉. The estimation of 

such function requires a certain number of realizations of the pair of random variables, that 

are not available in practical application. To overcome this issues the Matheron’s intrinsic 

hypothesis (a weaker assumption than the second order stationarity) [46] has been 

assumed. The Matheron’s intrinsic hypothesis states that the variogram function depends 

only on the distance vector 𝒉 (modulus and direction) and not on the location 𝒙. It is then 

possible to define an estimator of the variogram, which is known as experimental 

variogram: 

𝛾(𝒉) =
1

2𝑛(𝒉)
∑ [𝑧(𝒙𝑖) − 𝑧(𝒙𝑖 + 𝒉)]2𝑛(𝒉)

𝑖=1           (3.2) 

where 𝑧(𝒙𝑖) is a measurement taken at location 𝒙𝑖 and 𝑛(𝒉) is the number of experimental 

pairs h units apart in the direction of the vector 𝒉 [46]. In this notation, z represents a 

specific realization (the measurement) of the stochastic process Z. When considering a grid, 

the variogam is a function of the discrete distance. Figure 4 reports an example of 

measurements recorded on a grid. The circles represent the positions of the measurements 

for which the experimental variogram has been calculated. Figure 4(a) shows all the pairs at 

h=1 apart in the direction of the x axis, while Figure 4(b) shows all the pairs at h=2 apart in 

the direction of the x axis. In the example of the Figure 4, there are missing measurement 

points in the grid and this has been taken into account in the assessment of the pairs with a 

certain distance. 

The size and the configuration of the sample can influence the reliability of the variogram. 

The estimation of the variogram is more precise when the number of the spatial 

measurement points (sample) is larger [46]. The maximum lag should be limited to half the 
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extreme distance in the sampling domain and the minimum number of pairs for the 

estimation of the variogram that is usually accepted is approximately 50 [47]. The 

experimental variogram is usually evaluated for the main directions. The variogram is said 

anisotropic when the spatial variation is not the same in all directions. In this case the 

semivariance can be represented as a surface. 

3.3 Methods 

To evaluate the robustness to the shift and to electrode number of the algorithm proposed, 

EMG data have been acquired from human subjects. 

The subjects of the experiments were seven able-bodied (three males and four females) and 

one uni-lateral trans-radial traumatic amputee. The average age of the able-bodied subjects 

was 29.0 ± 4.7 years. The recruited amputee was 78 years old (53 years post-amputation). 

The protocol has been approved by the ethics committee of the University Medical Center 

Göttingen. 

 

Figure 5. Positioning of the HD EMG matrix and EMG signals. Reused and modified with permission [30] © 2015 IEEE. 
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The EMG signals were collected with an adhesive grid of 192 electrodes placed on the 

circumference of the forearm (as shown in Figure 5), starting at the ulnar bone. The grid or 

matrix of electrodes consists of 8 rows and 24 columns, with interelectrode distance of 10 

mm in both directions. Before placing the matrix, the skin of the subjects was slightly 

abraded and cleaned with alcohol. The EMG signals were amplified (EMG-USB2, OT 

Bioelettronica, Turin, Italy) with a gain of 500, sampled at 2048 Hz and A\D converted on 12 

bits.  

The able-bodied subjects had three motion trackers (XSENS Technologies, NL), they were 

positioned on the back of the hand at the wrist, and below the elbow. Finally, a reference 

electrode was positioned at the wrist. 

The able-bodied subjects were asked to perform a combination of 4 Dof (wrist flexion, wrist 

extension, radial deviation, ulnar deviation, forearm pronation, forearm supination, hand 

open, hand closing) plus the rest position, for a total of 9 tasks (classes). In the first phase of 

the experiment the subjects were trained. An assistive software provided the direction and 

time of the movements on a computer screen. The starting position was with the arm along 

the body in resting position, with the palm inwards. Four repetitions of each movement 

were recorded, for a total of four trials for each subject.  

Because of the short stump of the amputee subject, the matrix has been modified. Two 

rows have been removed. In this case the grid was made by 6 rows and 24 columns, for a 

total of 144 electrodes. The matrix was positioned on the stump, the reference electrode on 

the elbow. The three motion trackers were placed on the contralateral arm. 

The subject performed mirrored movements, thinking to replicate the tasks of the able-limb 

with the phantom limb.  

Before the extraction of the features for the pattern recognition algorithm, the raw EMG 

signals were preprocessed. A fourth-order Butterworth bandpass filter (10-500 Hz) was 

applied. The static part of the signal was identified with the data provided by the tracking 
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system. The static part corresponded to a window of 4500 samples (~2.2 s). The center of 

the static part matched to the center of each movement. The RMS value of the EMG signal 

was calculated over 30 intervals for each window, which means over 150 samples (50 ms). 

Considering that the grid is regular with normalized distance equal to 1, the RMS value was 

calculated for each signal of the matrix. The RMS values for each window of 150 samples 

were used to calculate the experimental variograms, using the equation (3.2). The RMS of 

each signal of the grid was 𝑧(𝒙𝑖), considering the maximum lag as half of the longer 

 

Figure 6. Representation of EMG RMS values on a matrix of 192 electrodes and the corresponding experimental 
variogram for one normally-limbed subject. (a) Wrist flexion, (b) wrist extension, (c) forearm supination, (d) forearm 
pronation, (e) radial deviation, (f) ulnar deviation,(g) hand open,(h) hand closed, (i) rest. For the RMS, the colors are 
normalized so that red represents the maximum value and dark blue the minimum. The same color code is used for the 
variograms. Reused with permission [30] © 2015 IEEE. 
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dimension of the grid, which was 24. Moreover, since it has been noticed that the 

variogram in different directions did not have the same trend, it was computed the 

anisotropic variogram, which includes six directions in the range 0 – 180 degrees. The 

anisotropic experimental variogram is represented as a surface. Figure 6 shows the RMS 

values of the EMG signals and the anisotropic experimental variogram for an able-bodied 

subject while performing the 9 tasks. 

The color of RMS values is normalized so that the red represents the maximum value and 

the dark blue the minimum. The same color code has been used for the experimental 

anisotropic variograms. 

The points of the six curves of the anisotropic variogram in Cartesian coordinates, have 

been used as features for classification. The number of points can vary depending on the 

direction of the variogram and on the value of the maximum distance. In Figure 7 an 

example of an isotropic variogram related to a wrist flexion for an able-bodied subject. In 

 

Figure 7. Experimental variagram, case of wrist flection for an able-bodied subject. (a) Directional variogram; (b) 
Cartesian representation of the directional variogram curves. Reused and modified with permission [30] © 2015 IEEE. 
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figure 7a the directional variogram, while Figure 7b shows the representation of the 

anisotropic variogram in Cartesian coordinates.  

A Support Vector Machine (SVM) [48] has been chosen as a classifier. The SVM scope is to 

produce a model, based on the training data, which predict the classes labels of the test 

data. The multiclass problem was solved with a one-versus-one (OVO) approach. The linear 

kernel was chosen since in preliminary analysis it was noticed that there was a better 

classification accuracy with it. The results obtained with the SVM classifier and the 

variogram features were compared with the most used classifier e features. The classifier is 

the linear discriminant analysis (LDA), while the features sets chosen are: RMS, TD (mean 

absolute value, zero crossing, slope sign changes, waveform length) and Time-Domain 

Autoregressive (TDAR). The RMS as feature has been selected since is a very simple method 

used in a large number of studies. The TD features have been considered in many studies on 

 

Figure 8. Shift inwards/onwards (8x12 electrodes). The bigger circles are the electrodes used for training, while the 
smaller circles are the electrodes used for testing. (a) Shift onwards (b) Shift inwards. Reused and modified with 
permission [30] © 2015 IEEE. 

 

x

y

10 mm

20 mm

(a)

(b)



25 
 

electrodes shift [29], moreover they are considered reliable in real time control [49]. Finally, 

the TDAR features have been considered as considered the most effective to reduce the 

shift of the electrodes [31]. The RMS, TD and TDAR have been calculated over 150 samples, 

the number of samples for which the window was shifted forward was set to 50 and the 

number of samples per movement, to avoid over-shoot of windows into the next 

movement, was set to 4500, as for the variogram.  

 The classification accuracy has been tested for several scenarios. It has been evaluated 

considering all the electrodes of the matrix, smaller subsets of electrodes, shifts of the 

electrodes in the transversal and longitudinal directions of the muscle fibers, and in 

presence of noise. The shifts have been simulated in both directions, considering 

alternatively, half of the columns and half of the rows, for training, and the other half for 

testing as explained in the Figure 8 and Figure 9. It has been considered a shift of 10 mm, 

 

Figure 9. Shift upwards/downwards (4x24 electrodes). The bigger circles are the electrodes used for training, while the 
smaller circles are the electrodes used for testing. (a) Shift upwards. (b) Shift downwards. Reused and modified with 
permission [30] © 2015 IEEE 
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considering that this value has been evaluated as the most likely in clinical situations [29]. 

Figure 8 shows the shift inwards/onwards. The bigger circles are the electrodes used for 

training, while the smaller circles represent the electrodes used for testing. The shift in this 

case is the direction of the x axis and the distances between the electrodes is 20 mm in the 

x direction and 10 mm in the y direction. Figure 9 shows the shift upward/downwards, same 

as Figure 8 the bigger circles are the electrodes used for testing, while the smaller are the 

one used for training. The shift is in the direction of the y axis. The distances between the 

electrodes are respectively 10 mm in the x direction and 20 mm in the y direction.  

In Figure 10 are shown the experimental variograms used for classifications in case of shift 

onwards. In Figure 10 a the experimental variogram used in the training phase, while in 

Figure 10b is the variogram used for testing.  

 In the last part of the study the presence of noisy channel has also been considered. The 

noise has been simulated as Gaussian distribution and same standard deviation of the 

selected EMG signal. The channels with noise have been selected randomly and varied 

between 1 and 95 with a step of 5. For each subject it was repeated for 10 times. In one 

case the noisy channels were used for testing, while in the other case they were eliminated 

 

Figure 10. Example of variograms used for shift onwards, case of wrist flexion. (a) Directional variogram used for 
training; (b) directional variogram used for testing. ). Reused and modified with permission [30] © 2015 IEEE 
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before the classification considering that was possible to identify them [50]. In all noisy 

cases considered there were no re-training of the system. The training was done with three 

trials including all the 192 electrodes, while the testing has been done with the noisy 

channels in one case or with a reduced number of channels in case they were removed. The 

same tests have been done also on the amputee, considering that in this case the matrix 

had 144 electrodes (6 rows and 24 columns). The results obtained from these tests have 

been compared with these obtained from the other classifiers and features, in the same 

conditions. 



28 
 

3.4 Results and discussion 

3.4.1 Effect of electrodes shift 

The classification accuracy has been calculated for the four methods described in previous 

section (variogram, RMS, TD, TDAR) for 9 classes and averaged over the 7 able-bodied 

subjects. In Figure 11 are shown the final results for six configurations. SC and SR represent 

 

Figure 11. Results on 7 abled-bodied subjects. Average classification accuracy for four classification methods: Variogram 
with SVM (Variog), RMS with LDA (RMS), TD with LDA (TD), TDAR with LDA (TDAR). The accuracy has been calculated for six 
cases: the first and the second case (SC and SR) are half of the matrix in no shift positions. SC is the mean and standard 
deviation of the two configurations used for the shift in the x direction, SR is the mean and standard deviation of the two 
configurations used for the shift in the y direction. The other 4 cases are the shifts. Mean and standard deviation of the 
classification accuracy normalized with respects to the accuracy obtained by the grid of 96 electrodes without shift. The 
shifts considered are the following: shift inwards of the columns (SC1), shift onwards of the columns (SC2), shift upwards of 
the rows (SR1), shift downwards of the rows (SR2). Reused and modified with permission [30] © 2015 IEEE. 
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the case with 96 electrodes and no shift. SC is the mean and standard deviation of the two 

configuration used for shift in the x direction, while SR is the mean and standard deviation 

of the two configuration used for the shift in the y direction as depicted respectively in 

Figure 8 and Figure 9. For all the four methods (variogram, RMS, TD, TDAR) the classification 

accuracy was ~ 95%, according with previous studies [28] [34]. 

The remaining four cases are the mean and standard deviation of the normalized 

classification accuracy of the shifts. The classification accuracies have been normalized 

respect to the accuracy obtained by the grid of 96 electrodes without shift. SC1 represent 

the case of the shift inwards of the columns, SC2 the shift onwards of the columns, SR1 the 

shift upwards of the rows, and SR2 the shift downward of the rows. In these cases, the 

 

Figure 12. Classification accuracy for an amputee subject over 7 classes. SC and SR are the configurations with half matrix 
(72 electrodes) with no shift. SC1, SC2, SR1 and SR2 are the shift configurations as in Figure 8. Reused and modified with 
permission [30] © 2015 IEEE. 
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variogram method (Variog) resulted more robust to the shift respect the classic features in 

both, transversal and longitudinal direction, except for SR2.  

The results obtained presented here have been obtained considering all the channels, 

without discarding any channels that can be malfunctioning. The values of the classification 

accuracies of the variogram for the four shift cases (SC1, SC2, SR1, SR2) are closer to the 

reference condition respect to RMS and TD. Variog is also comparable in SC1 respect to the 

TDAR, which is the recommended method for reducing the shift [31]. Slightly worse is the 

accuracy of the variogram in SR2 respect to TDAR. Looking at the standard deviation of the 

shifts cases, it is possible to notice that in the case of the variogram it results lower that the 

other methods. 

This study confirms also that the electrodes shift in the longitudinal direction of the muscles 

fibers influence less the classification accuracy than the shift in the transversal direction 

[31]. The Variog approach resulted robust to both shifts and with an accuracy of ~90% with 

respect to baseline for the shift in the longitudinal direction and ~80% for the shift in the 

transversal direction. Moreover, the variogram provided similar performance for the four 

shift considered, contrary to the other methods that had more variable results across 

conditions. The results related to the shifts have been obtained without training the system 

on all possible displacements sites as in [28], and also without choosing the optimal 

electrodes location [34][39]. The electrodes in this study were just organized in a regular 

grid and placed on the circumference of the forearm. The training and the testing has been 

done on the configurations depicted in Figure 8 and Figure 9. Nevertheless, the final results 

were comparable to those shown by Hargrove et al. [28] with extensive training in multiple 

electrode displacements.  

The shifts considered here are all of 10 mm. This has been considered as a plausible value of 

variation in electrodes position when donning and doffing the prosthesis in clinical studies 

[27]. 
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The statistical differences among the four methods and grid configuration on the 

normalized values, have been analyzed with a two-way ANOVA. Both factors had 4 levels 

(method: Variog, RMS, TD, TDAR; grid configuration: SC1, SC2, SR1, SR2) and both factors 

were statistically significant (p<0.05), with no interaction.  

In the next figure (Figure 12) are summarized the results for the amputee subject. The no 

shift case has 72 electrodes (SC and SR). The shift cases are also normalized respect to the 

reference matrices (SC and SR). In the SC (72 electrodes without shift) configuration the 

classification accuracy of the Variog (~90%) was greater than all other methods (~75%) 

although it was slightly worse (by ~8%) in the SR configuration. The accuracies of shifts on 

 

Figure 13. Confusion matrices of the four shifted configurations with the Variog method for the amputee subject over 7 
classes: wrist flexion (1), wrist extension (2), radial deviation (3), ulnar deviation (4), forearm pronation (5), forearm 
supination(6), rest (7). (a) SC1; (b) SC2; (c) SR1;( d) SR2. Reused and modified with permission [30] © 2015 IEEE. 
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the transversal direction of the muscle fibers (SC1 and SC2) resulted comparable with the 

cases with no shift for the Variog methods. While the classical methods perform worse. The 

shift by rows (SR1 and SR2), have similar results for all methods. For the amputee subject 

the shift in the longitudinal direction and the shift in the transversal direction show similar 

classification accuracies for the variagram, contrary to the able-bodied subjects who 

showed better results with longitudinal shifts. The explanation can be found in the fact that 

the intact matrix, in the case of the amputee, had 2 rows less, 6 instead of 8, respect to the 

able-bodied subjects. This imply that there is less spatial information in the direction of the 

y axis. The variogram performed certainly better than all the other methods in the shift 

inwards/onwards, even better than TDAR, in SC, SC1 and SC2.  

 

 Figure 14. Averaged classification accuracy and standard deviation (9 classes) for 7 able-bodied subjects as a function 

of the number of channels used in the classification test for Variog (dark blue) and as a function of the noiseless 
channel on the other 4 cases (Variog noise, RMS, TD,TDAR). Reused and modified with permission [30] © 2015 IEEE. 
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For the amputee a further analysis has been conducted with the confusion matrix (Figure 

13). In this figure can be noticed that the rest position has been always classified correctly 

(label 7). The most misclassified for the shift in the transversal direction case was the wrist 

extension (label 2, in Figure 13 a and b). For the case of shift in the longitudinal direction the 

most misclassified was the forearm supination (Figure 12 c). 

3.4.2 Effect of Noise and Reduced Number of Channels in the  Test 

Phase  

In the second part of this study the performances of the Variog feature space were analyzed 

in two cases. In presence of noisy channels and with a random reduction of the number of 

channels in the testing phase. In case of noisy channels in the testing phase, the number of 

channels used in testing and training was the same. The channels with noise were selected 

randomly for 10 times for each trial and the results were averaged for each subject. The 

results of this analysis are shown in Figure 14. The first important result of this analysis is 

that the presence of only one noisy channels drop the classification accuracy of all methods 

of ~10% respect to the intact matrix (IM), and continue to decrease progressively increasing 

the number of noisy channels. The same test has been done for the amputee subject (Figure 

15), in this case the IM matrix had 142 electrodes and the Gaussian noise was added in the 

same way as for the able-bodied subjects. It can be noticed that in this case only one noisy 

channel caused a degradation of the classification accuracy more evident than for the able-

bodied subjects.  

In Figure 14 in blue is also represented the case in which there is a progressively reduction 

of the number of channels in the testing phase for the pattern recognition algorithm with 

the variogram. The reduction of the channels in the testing phase can be due to the 

presence of channels with poor quality. Assuming that the detection of poor quality 

channels for HD EMG is possible, as described in [50], and that it is possible to remove 

them, it will be possible continue to use the prosthesis without retraining. The classical 
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classification methods (RMD, TD and TDAR) do not allow to remove channels, since it is 

required the same number of channels for training and for testing, while for the variagram 

small variation of the number of measurements used to calculate the experimental 

variogram do not change the dimension of the feature space used in variogram. This allows 

to have a different number of channels in the training and in the testing phase. The 

channels removed were selected randomly for 10 times for each trial and then averaged for 

each subject. In Figure 14 the variogram case with a reduced number of channels is 

depicted in blue. The graph shows that the classification accuracy for 9 classes decreased 

with the removal of channels in the testing phase. However, it remained ~90% with up to 30 

channels removed and decreased to ~80% with half of the channels removed. In the same 

way this analysis has been conducted for the amputee (Figure 15). The number of channels, 

that here starts from 142, was decreased to up 49 channels in the testing phase. The 

 

Figure 15. Classification accuracy (7 classes) for the amputee subject as a function of the number of channels used in 
the classification test for Variog and as a function of the noiseless channel on the other 4 cases (Variog noise, 
RMS,TD,TDAR). Reused and modified with permission [30]© 2015 IEEE. 
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classification accuracy for 7 classes in this case dropped from 92% to 70%, when removing 

36 channels.  

3.4.3 Reduced number of channels  

The last part of this study considers the use of a smaller number of channels, to evaluate 

the performance of the variogram. The number of the channels in the matrix were reduced 

to 48 first, and after to 24. In the case of seven able-bodied subject with 48 channels in the 

grid the classification accuracy normalized, as in the case of 96 channels, resulted 95.8 ± 2.3 

for no shift, for shift of the columns averaged over SC1 and SC2 85.9 ± 0.9, for shift of the 

rows averaged over SR1 and SR2 94.3 ± 0.2. In the case 24 channels for the seven able-

bodied subjects the classification accuracy resulted 92.6 ± 3.1 for the no shift case, 81.1 ± 

0.4 for the shift of the columns averaged over SC1 and SC2, 93.7 ± 0.6 for the shift of the 

rows averaged over SR1 and SR2. In the case of the amputee with 48 electrodes the 

accuracy was 81.6 for no shift, 82.1 for the shift of the columns, and 75.6 for the shift of the 

rows. Finally the amputee with 24 electrodes provided an accuracy of 70.5 with no shift, 

while for the two shifts was 80.9 and 75.6 respectively for the columns and for the rows.  

For the other methods (RMS, TD and TDAR) the results were similar to those of the Figure 

10. It is possible to conclude that the reduced number of channels did not fully impair the 

performance of the variogram, but it is advisable to keep the minimum number of pairs for 

the estimation of the variogram around 50 [47].  

3.5 Conclusions  

In this study a novel pattern recognition algorithm in myocontrol has been proposed, it uses 

the spatial correlation among HD EMG channels, as a feature minimally sensitive to 

electrode shifts and to noisy channels. The measurement of spatial correlation, the 

experimental variogram, has been used as features space for classification. It has been 

demonstrated that the variogram method reduces the sensitivity to electrodes shifts with 

respect to the TD, RMS, and TDAR features. Moreover, the variogram features allowed to 
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eliminate channels during the test phase without re-training, maintaining a good 

classification accuracy for a relatively large proportion of omitted channels. These results 

indicate that the spatial characteristics of HD EMG can be used as more robust features for 

EMG pattern recognition than the classic time domain features.  

 This study has been the first that has exploited the spatial correlation of HD EMG as feature 

in a pattern recognition algorithm. The robustness and reliability in controlling upper limb 

prostheses have been improved, nevertheless to implement this solution more 

technological advancements are necessary. The amount of information available requires 

very powerful microprocessor that have to fit in a prosthesis. Moreover the HD EMG 

electrodes have to be flexible, to adhere to different shapes of the stump of amputees, they 

do not have to require particular preparation before the use, and mainly they have to 

support the long term usage.  

More research and technological advancements are envisaged before the spatial correlation 

of HD EMG will be implemented in commercial products, however a new way has been 

open and it has been investigated in literature.   
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4. Exploitation of spatial features of HD EMG  

To overcome some of the issues of prosthesis control with pattern recognition algorithms, 

new directions have been undertaken in the last few years [51]. One of these it has been 

the exploitation of HD EMG recordings. This has been supported by improvement in the 

technology of HD EMG electrodes, and by the development of more powerful 

microprocessors.  

Subsequently the publication of the work presented in the previous chapter [30], other 

works have been done exploiting the HD EMG signals for control of upper limb prostheses. 

In [52] the authors used a method previously used in electroencephalogram (EEG) studies, 

the common spatial patterns (CSP) with HD EMG. This method has been used already for 

control of myoelectric prostheses [53][54], but without considering the shift and with few 

EMG electrodes. It has been found that this method improved the classification 

performance in case of shift respect to TD, TDAR, and respect to the Variog in the 

longitudinal shift configurations.  

Other studies related to the estimation of finger movements [55] [56] have also considered 

the HD EMG signals. In [55] it has been found that HD EMG can increase the robustness, 

adding redundant information. While in [56] HD EMG has been used to map the activation 

pattern of the entire extensor digitorum communis. The spatial activation information has 

been used to localize finger compartments of the extensor digitorum communis. 

Spatial distribution of HD EMG has been also exploited to improve the identification of tasks 

in patients with incomplete cord injury [57]. The results of this study showed the spatial 

features significantly improved the classification of the tasks.  
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At the same time some studies have been conducted to develop more powerful 

microprocessor that can handle a large number of EMG signals. The authors of [58] 

presented an architecture for embedded HD EMG prosthetics control capable of accelerate 

up to 4.8 over the software-only solution. In [59] the same authors presented a second 

architecture for accelerating HD EMG-based control algorithms, where the system achieved 

a speed-up of 5.5 over the software-only version (Figure 15).  This new architecture has 

been tested with a new pattern recognition method [59][60], based on computer vision 

features and SVM classification, which results robust to electrodes shift and noisy channels. 

The approach is based on DSIFT (Dense Scale Invariant Feature Transform) features [61], 

with fixed orientation, extracted in a dense grid of points from an image. In imagine 

categorization tasks the DSIFT features are extracted at multiple scales and combined with 

histogram-of-visual-words (HOW) [62], forming scale invariant features [63]. In [59] the 

DSIFT-HOW features have been extracted from the 2D image representation of HD EMG 

signals (192 channels). These features have been used form movement classification 

showing better classification accuracy in presence of noisy channels respect to the TD 

features. 

 

Figure 16. Application architecture of DISFT features extraction hardware thread. From [59].  
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The increasing number of studies using HD EMG, and in particular in the field of 

classification of movement, demonstrate that they can represent a valuable means to 

improve the control in upper limb prostheses. They can potentially reduce the drawbacks of 

the electrodes shift and of the noisy channels, when coupled with more powerful 

microprocessors. Nevertheless, to be effectively exploited in the prostheses, improvements 

in the technologies are still needed. They have to be suitable for long term use, this means 

that they cannot be deployed with the conductive gel, as it has been done in all the work 

presented previously. It is desirable that for example HD textile EMG will be further 

developed, so that they can be easily embedded in the socket of the prosthesis. Moreover, 

it has to be a cheaper technology, to decrease the costs of the modern upper limb 

prostheses.  
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5. State of the art in implanted EMG sensors for 

myocontrol 

The recently improvements of the technologies for implanted devices, and the need to 

overcome the drawbacks due to the use of surface EMG electrodes in the control of upper 

limb prostheses with pattern recognition algorithms, has brought to the development of 

implanted EMG electrodes. For implanted EMG electrode it is intended an invasive device, 

permanently positioned into the muscle, which can provide localized measurements [64]. 

Needles or hook-wire electrodes are usually used for intramuscular EMG recordings, but 

they are not suitable for long-term use, because the presence of transcutaneous wires, 

which can cause infections. 

 Implanted EMG present some advantages respect to the surface EMG, it can measure the 

activity of deep muscles, achieve better signal-to-noise ratio and do not have the issue of 

the shift [26]. The actual implanted EMG electrodes are divided in extra and intra-muscular 

[64]. The extra muscular electrodes are sutured onto the epimysium of the target muscle, 

while the intra-muscular are inserted directly into the muscle. 

 Epimysial EMG systems have been proposed with the intent to use them for upper limb 

prostheses [65] [66] [67]. In [65][66] the epimysial electrodes are connected by wires to a 

central unit, which send the EMG signals to the prosthesis using radio frequency 

transmission. Both epimysial electrodes and central unit have been implanted only in 

animals and just to record signals from the limbs, they are not yet implemented in a real 

prosthesis. In [66] some problems with the contacts between electrodes and the circuit 

board were encountered, with the loss of the EMG signals. In another study [67] has been 

proposed a wireless implantable EMG system for control of powered prostheses. The 

implantable system proposed consists of two epimysial electrodes that can transmit 

wireless EMG signals to an external receiver. It uses a transmission protocol tailored for the 

purposed. The power transfer is done by an external coil and the RF link is based on the 

standard IEEE 802.15.4 [68]. Also in this case it has been tested only in animal to record 
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Figure 17.  Overview of the system IMES. Reused with permission from [69] 

 

 

Figure 18. IMES system, with permission from [70] 

 

EMG signals, moreover the implantable electrics are kept outside the body of the animal. 

Few other studies exist on this topic which use intra-muscular implanted. The most 

advanced and detailed study has been done by Weir [69], which proposed a multichannel 

EMG sensor system that can record, process and transmit wireless EMG signals. In Figure 17 
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the system is illustrated, it comprises the implanted devices, the external powering coil, 

telemetry and prosthesis controller, and the prosthesis hand. The large external coil has to 

be placed around the limb. The implantable myoelectric sensors are called IMES. They can 

record EMG signals and transmit them wirelessly via an electro-magnetic coil built in to the 

socket of the prosthesis. This system has started the clinical trials on one amputee subject 

(Figure 18) [70], but only preliminary results are available. It seems that the system allowed 

a more intuitive control of the three DoF provided by the prosthesis, but there are still 

many aspects that have to be improved. In fact, there are constraints in the placements of 

the EMG sensors, since they have to be completely enclosed in the area covered by the 

external coil and parallel, making this kind of sensors suitable only for amputees with a 

round stump, as in transradial or transhumeral amputees [65]. The IMES system presents 

also practical difficulties for the overall efficiency due to the usage of a large inductive power 

fields. 

Considering the studies that have been conducted to control the prosthesis with implanted 

EMG and the increasing interest in this field, it is possible to assert that the use of implanted 

EMG sensors can potentially solve the issues coming from the use of sEMG along with 

implanted nerve electrodes for sensory feedback [71].  

 The technology for such purpose has to be designed taking into account the application and 

the particular environment in which will be used. The system has to be designed in a way 

that can be applied to any type of amputees, with a specific standard communication 

protocol. 

 In this second part of the thesis it has been proposed a new system for controlling upper 

limb prosthesis with wireless implanted EMG. It has been proposed a system that uses the 

RF link for communication between implants and controller.  

 A systematic study has been done to investigate the use of a RF wireless link based on a 

specific standard for implanted communications. The study started with the modeling of the 

wireless link, considering that the means of propagation, in this case, is the human body. In 

order to determine the feasibility of the system proposed, the propagation losses of the link 
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have been investigated, along with an evaluation of the specific absorption rate and a 

preliminary link budget analysis.   
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6. Background of wireless RF implanted devices 

Recently applications of implanted devices are monitoring and diagnosing cardiac 

pathologies, cancer, asthma and neurological disorders [72], moreover also people with 

disabilities can be helped by cochlear and retina implants and limb prostheses [73]. The 

development of these new applications has determined the standardization of networks 

formed by devices that are placed around, on the body, or implanted inside the human 

body. Such networks are called body area networks (WBANs) and they are regulated by an 

international standard, IEEE 802.15.6 [74]. Implanted devices are known form many years, 

the firs implantation of a pacemaker into a human was in 1958 [75], but only recently there 

have been the need of communication with the implant and retrieve information from it. 

Before the standardization of the WBAN the communication with the implants was done 

mainly over an inductive link. In the inductive link the transfer of data is done with two 

coils, one external and one on the implant. This type of communication does not allow high 

bit rate and the range is quite low (limited to the “touch” range), this means that for deep 

implants is impractical [75]. Moreover, the external coil must be positioned accurately to 

get a reliable link. For this reasons the RF implanted devices are replacing the inductive 

communication [76]. The RF transmission inside the human body is complex and has to be 

completely characterized. Implanted wireless RF device have built-in antennas that can 

transmit and receive signals and they operate inside the human body. They have to be very 

small, require very low power and be efficient. In the following paragraphs the main aspects 

of implants communications are summarized. 

6.1 Medical Implant Communication System (MICS) band 

Before the issue of the IEEE 802.15.6 standard, the European Telecommunication Standards 

Institute (ETSI) and the Federal Communication Commission (FCC) have standardized the 

Medical Implant Communication System (MICS) [77][78]. This standard is specific for 

implanted communication from inside the body (in-body) to outside the body (on-body or 

off-body) or from in-body to in-body, i.e. between medical implants. For these 
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communications a frequency band is allocated, from 402 to 405 MHz with a maximum 

bandwidth of 300 kHz. The power limit is fixed to 25 µW on the surface of the body. The 

frequency band allocated for MICS is recognized almost worldwide and it is shared only with 

the meteorological balloons (400-406 MHz). This assure no interference with other radio 

frequency bands. This frequency band has been also included in the IEEE 802.15.6 standard 

for implanted applications. The antennas designed for this frequency band can be small 

enough to be fitted inside the human body and have also good performance over two 

meters transmission range. Small antennas are efficient radiators in the MICS frequency 

band considering the characteristics of the human tissues in such frequencies.  

6.2 Radio Frequency and Human Body 

For wireless implanted devices the means of propagation is the human body. The human 

body is not an ideal medium, it is partially conductive and is composed by materials with 

different dielectric constants, which can vary with the frequency of operation. To model 

implanted communication is extremely important understand the effect of the human body 

on the RF signals. The tissues and organs composing the human body are characterized by 

own conductivity (σ), dielectric constant (ε), and penetration depth (δ). These electrical 

properties have to be known for the frequency of interest, to characterize the human body 

as a medium. In Table 1 are summarized the electrical properties for the main tissues 

forming the body, muscle, fat, and skin at center of MICS frequency band. 

Table 1. Dielectric properties for human tissues at 403.5 MHz 

Human 

tissue 

conductivity (σ) 

[S/m] 

dielectric constant (ε) Penetration depth (δ) 

[m] 

muscle 0.7972 57.1 0.0525 

fat 0.0411 5.5783 0.3085 

skin 0.6895 46.7060 0.0551 
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The dielectric constant describes how the material is affected by electric fields and varies 

with the frequency. The conductivity describes how much the electromagnetic wave is 

attenuated when transit the body tissues, it varies with the frequency. The penetration 

depth is the depth at which the electric field has been attenuated of a certain factor. In the 

human body the penetration depth can be described by the following expression: 

𝛿 =
1

𝑅𝑒[𝛾]
          (6.1) 

where  𝛾 is the propagation constant. Also the penetration depth varies with frequency. 

 

6.3 Implanted antennas 

The implanted antennas operate in a lossy environment, the human body. The wave 

propagation velocity inside the human body is lower compared to the free space, and also 

the wave length results shorter. At 403.5 MHz, center of the MICS band, the wave length in 

free space is 74 cm, while in the human body is 9 cm. This imply that implanted antennas 

have dimensions less than 10 percent of the wave length in free space, therefore the 

transmission efficiency is very low.  Nevertheless, a small antenna in the MICS band is an 

efficient radiator due to the characteristics of the human tissues [76]. The implanted 

antennas can be electrical or magnetic. The electrical antennas usually generate large 

component of the electric field (E-field) normal to the tissues interface, overheating the fat 

tissue. The magnetic antennas, on the contrary generate an E-field that is mainly tangential 

to the tissues, that does not overheat the fat. In term of radiation performance and safety 

for the humans the magnetic antennas would be a better candidate for implanted devices 

[76].  The shape of the implanted antennas it is determined by the applications, i.e., it 

depends of the place where it has to be placed.  
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6.4 Safety issues 

The exposure to high intensity of RF radiation can cause a heating effect of human tissues 

and this can be harmful if the temperature increases 1 degree Celsius. A parameter used to 

determine if a wireless device it is not harmful for the human beings is the specific 

absorption rate (SAR). It quantifies the RF energy absorbed in the human tissues. The 

relationship between radiation and SAR is given by: 

𝑆𝐴𝑅 =  
𝜎|𝐸|2

𝜌
   [𝑊/𝐾𝑔]          (6.2) 

where 𝜎 is the electrical conductivity of the tissue (S/m), E is the induced electric field 

strength (V/m), and 𝜌 is the density of the tissue (Kg/m3). SAR is a measure of the amount 

of heat in the antenna surrounding. This parameter is extremely important for the human 

health, therefore there are limits and regulations that have been imposed by authorities. 

These limits are summarized in the Table 2. 

Table 2. SAR limits. 

Region/Country Reference to SAR limits Limits (W/Kg) 

Europe ICNIRP Guidelines 1998 

(ICNIRP 1998) 

over 10 gr of tissue 

whole body 0.4  

head and trunk 2 

limbs 4 

US American Standard ANSI C95.1 

(ANSI 1992) 

over 1gr of tissue 

whole body 0.08 

Head and trunk 1.6 

Extremities (hands, 

wrists, feet, and ankles) 

4 
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Australia Australian Standard  

AS/NZS 2772.1 

ICNIRP guideline 

Japan   STD-T56 

(ARIB 1998) 

ICNIRP guideline 

 

In the Table 2 are shown the limitations and regulations divided per region in the world. The 

guidelines provided by ICNIRP (International Commission on Non-Ionizing Radiation 

Protection) [79] are followed in Europe and several countries in the world, such as Japan 

and Korea. These guidelines states that the local SAR, averaged over a cube of 10 g of 

tissues, should not exceed 2 W/Kg for head and trunk and 4 W/Kg for limbs. The SAR limits 

for the human limbs are usually lower since in arms and legs the circulatory system acts as a 

coolant. The ICNIRP guidelines have been accepted also by the International 

Telecommunications Union (ITU) [80] and by the World Health Organization (WHO) [81]. 

The SAR limit for head and trunk in US has been fixed by FCC and it is 1.6 W/kg averaged 

over 1g of tissue [82]. Despite the increasing spread of implanted devices, there have not 

been issued specific regulations concerning the SAR. It has been assumed that the current 

limits for electromagnetic exposure are valid also in case of implanted wireless devices.  

6.5 Channel modeling 

The human body is a heterogeneous propagation environment characterized by layers of 

different type of tissues with a different thickness and each with a dielectric property. The 

RF signals characteristics change when transmitted. The changes depend on the 

environment and on the distance between the transmitter and the receiver. The profile of 

the transmitted signal can be obtained by the received signal and it is called channel model. 

In the case considered the medium of propagation is the human body, which is a lossy 

heterogeneous medium with high permittivity. To guarantee low latency and high reliability 
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a good communication link is needed. To establish a good communication link the first step 

is a good channel model. 

Channel models are often achieved by physical measurements of the path loss in different 

experimental environment. For practical and ethical reasons, in the case of implanted 

devices, the measurements to obtain the channel model cannot be done by human trials, 

but are done by simulations. Many propagation models describe the conditions in the air (or 

free space) taking into account the losses due to fading. In case of body area networks, the 

propagation path can also be subject to fading due to shadowing by body posture, 

reflection, diffraction or energy absorption. The path loss depends on distance and 

frequency and in case of body area networks it can be represented in terms of distance d, as 

[83]: 

𝑃𝐿(𝑑) =
𝐺𝑅𝑃𝑇

𝑃𝑅(𝑑)
          (6.3) 

where 𝑃𝑇  is the transmitted power, 𝑃𝑅 is the received power, and 𝐺𝑅 is the gain of the 

receiving antenna. The transmitting antenna in MICS band is considered to be part of the 

channel [84] [75]. The path loss can be statistically modelled in dB with the following 

formula, based on the Friis formula [84] [85] [86]: 

𝑃𝐿𝑑𝐵(𝑑) = 𝑃𝐿0 + 10 ∗ 𝑛 ∗ log10
𝑑

𝑑0
            (6.4) 

where 𝑃𝐿0 is the path loss in dB at a reference distance 𝑑0 expressed in mm, 𝑑 [mm] is the 

antenna separation, and 𝑛 is the path loss exponent, which depends on the environment 

where the RF signal propagates. In free space 𝑛 = 2. This equation does not take into 

account the shadowing component due to different body tissues and antenna gain in 

different directions. These losses are considered adding a term S, wich is a normal 

distribution 

𝑃𝐿𝑑𝐵(𝑑) = 𝑃𝐿0 + 10 ∗ 𝑛 ∗ log10
𝑑

𝑑0
 + 𝑆          (6.5) 
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The shadowing component 𝑆 ~ 𝑁(0, 𝜎𝑆
2) takes in to account that there are different values 

of the path loss for same distances between transmitter and receiver. 

6.6 Finite Difference Time Domain (FDTD) simulations 

There are several numerical modeling techniques for analyzing electromagnetic problems in 

the field of body wireless communication. The most used method is the Finite-Difference 

Time-Domain (FDTD). The FDTD method requires the division of electromagnetics structures 

into small cells, and it is suitable for modeling inhomogeneous media and complicated 

boundaries [75]. The FDTD is a technique to solve Maxwell’s equations. It employs finite 

differences as approximations to both the spatial and temporal derivatives that appear in 

Maxwell’s equations. Yee has proposed this method in 1966 [87], from then many extension 

and improvements have been published. This method has been used to solve a number of 

problems in electromagnetics. This method requires a large amount of memory, indeed it is 

required to mesh the entire computational domain, and the cells need to be small 

compared to the wavelength. Even if this method is computational expensive and requires a 

large amount of memory, it is the most used in the electromagnetics simulators. 

6.7 Human model and electromagnetic simulation tool 

The investigation of propagation losses for implanted devices in human body cannot be 

done with in-vivo measurements. They can be done with phantoms filled with a fluid that 

simulate the human tissue or by numerical simulations. The latter allow considering 

multiple tissues that compose the human body. In this study the numerical simulation has 

been preferred. The human body model used in this work has been obtained by magnetic 

resonance images (MRI) of healthy volunteers and is provided by SPEAG [88]. The model 

represents a man of 34 years old (denoted Duke) and it is part of the Virtual Family, which 

has four anatomical models (two adults and two children). These models include 80 

different body tissues with dielectric properties based on the database generated by Gabriel 

[89]. The maximum grid step of the human model is used is 2 mm. The electromagnetic 
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simulation tool adopted in this work is SEMCAD X [90], it is a 3D solver which carried out 

simulations with the FDTD method.  
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7. Characterization of In-Body to On-Body 

wireless Radio Frequency link for upper limb 

prostheses 

In the last few years the research in the field of upper limb prostheses has considered the 

possibility to utilize implanted devices that can record and transmit wirelessly EMG signals. 

This solution can potentially provide robustness and reliability to prostheses, overcoming 

the drawbacks raised by the use of surface EMG electrodes. Nevertheless, the systems that 

have been proposed in literature do not provide a solution that can be easily adopted and 

implemented. Moreover they cannot be exploit for each type of amputee. 

 

Figure 19. System overview. Two implanted EMG sensors are implanted in the forearm of the amputee. The sensors 
record and process the EMG signals, which are transmitted to an external antenna placed on the socket prosthesis. The 
signals are then used to drive the hand prosthesis. Reused and modified with permission [73] © 2015 IEEE.     
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 In the following will be described a new approach that has been published in [91] [92] by 

me as first author. Text and results reproduced from these papers are not cited explicitly in 

the following. The objective of this study was to provide information, as the channel model, 

the SAR level and the link budget, on the feasibility of wireless implanted EMG sensors.  

The system proposed is represented in Figure 19. It consists of two devices implanted in the 

forearm of an amputee. These devices can record and process EMG signals, which are 

transmitted to an external antenna placed on the socket prosthesis and then used to 

control the robotic hand. The wireless link is based on IEEE 802.15.6 standard [74] and 

operates in the MICS band. The system can be considered as a WBAN, with two implanted 

nodes and one on-body. The first step to design and realize such a system is the 

characterization of the wireless link. The characterization consists in the channel modeling 

and SAR measurements. For simplicity the system considered has two implanted antennas 

and one on-body antenna, but the same considerations and results are valid with more 

implanted devices. 

 

Figure 20. Implanted antenna 
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7.1 Implanted antennas 

The implanted antenna selected has been used also by IEEE802.15.TG6 committee to 

recommend channel models [83]. However the same committee has specified that the 

channel models described in [83] do not provide absolute performance and that each 

application requires a specific channel model. The shape and dimension of the antenna 

described in [83] can fit in a small device that has to be implanted in a forearm, or in the 

shoulder, depending on the type of amputation. In the system considered (Figure 19) the 

antennas have been implanted in the forearm. 

The antenna is composed of a single metallic layer of copper. The metallic layer is printed 

on a side of a D51 (NTK) substrate with dielectric constant εr = 30, loss tangent tan θ = 

0.000038, thickness of 1mm, and covered by RH-5 substrate with dielectric constant εr = 

1.0006, loss tangent tan θ = 0 and thickness of 1 mm (Figure 20). 

 

Figure 21. Section of human arm with two implanted antenna. Reused with permission from [92]. 
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 The antenna has been designed to operate inside the human body at the MICS frequency 

band. To proceed with the simulations, the two antennas, as in described above, have been 

implanted in the forearm of the 3D human model. They have been positioned 

approximately in the wrist extensor and flexor muscles. In Figure 21 it is shown a section of 

the arm with the implants.  

The reflection coefficient has been calculated to verify that the implanted antenna operates 

in the frequency range of the MICS band. The return loss has been simulated fixing the 

central frequency to 403.5 MHz with the FDTD simulation platform SEMCAD X. It has been 

found that S11 value is about -10 dB at 403.5 MHz (Figure 22), which confirms a good 

impedance match. 

 In the Figure 23 is shown the 3D gain polar plot. The gain varies with the direction and is 

not isotropic. The maximum gain, taking into account also the losses of the body phantom, 

is -55.37 dBi. The maximum directivity is observed in the direction opposite to the x axis (in 

 

Figure 22. Return loss of the implanted antenna. Reused with permission from [92]. 

 

 

300 320 340 360 380 400 420 440
-12

-11

-10

-9

-8

-7

S
1
1
 (

d
B

)

Frequency (MHz)



57 
 

the XZ plane), but it is possible to observe (Figure 23b) that the Eθ and Eϕ components are 

similar. 

 

Figure 23. 3D Gain polar and radiation pattern plots of the implanted antenna (a ) 3D gain. (b) values of Eφ (dB) and Eθ (dB) 
in three different planes. The coordinate system is shown in figure. Reused with permission from [92]. 

 

(a)

(b)
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7.2 On-body antennas 

The antenna that positioned in the socket of the prosthesis is called the external antenna or 

on-body antenna. In the first stage of the analysis conducted to design the new system 

proposed in this study, it has been selected, as on-body antenna, a half wave dipole. This 

type of antenna has simplified the analysis and reduced the simulation time. 

 As a refinement a more realistic antenna has been designed and investigated in a second 

stage of the study, it will be described below. 

 The half-wave dipole has been designed considering that the wavelength in free space is 

~74 cm, so the length of each arm has been set to 180 mm. The thickness has been fixed to 

2 mm and the gap between the arms to 1 mm. The antenna has been positioned first in the 

 

Figure 24. Half-wave dipole antenna near the arm of the 3D human model. Reused with permission from [92]. 
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free space and after near the human body at 1 cm from the arm in the near field region (as 

in Figure 24), in both cases the return loss has been calculated (Figure 25). The S11 values 

are similar showing a good impedance matching in the MICS band (S11 at 403.5MHz is ~ -10 

dB in free space and ~ -12 dB near the human model).  

The gain and the values of the Eφ and Eθ components are showed in Figure 26.  The 

maximum value of the gain is -3.2 dBi (Figure 26a). Eφ and Eθ components have smaller 

values in the directions of the human body as can be noticed in Figure 26b. 

 This antenna has been very helpful to analyze the electromagnetic characteristics of the 

system proposed, but it is not a practical solution, when considering upper limb prosthesis. 

It cannot be embedded in the socket of the prosthesis. For this motivation a different 

antenna has been designed, a helical dipole antenna [93], with constant radius and feed at 

the midpoint.  

 

Figure 25. Return loss of the half-wave dipole antenna. Reused with permission from [92]. 
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The helical antenna has been designed to operate in the MICS frequency band when 

positioned near the human body and optimized with the FDTD simulator SEMCAD. The 

conductor wire has a radius of 1.433 mm, the distance between the turn has been fixed to 

180 mm, and the total height of the antenna is 152.4 mm (Figure 27a). The diameter of the 

helical is 101 mm, which allow the antenna to be positioned around the arm (in the socket 

prosthesis), as in Figure 27b.  

 

Figure 26. 3D Gain polar and radiation pattern plots of the dipole antenna (a) 3D gain. (b) Values of Eφ (dB) and Eθ (dB) in 
three different planes. The coordinate system is shown in figure. Reused with permission from [92]. 

 

(a)

(b)
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To verify the frequency of operation the return loss has been simulated in the free space 

and in near the 3D human body (as in Figure 27b). There is a clear de-tuning of the antenna 

when positioned in free space Indeed S11 is ~-3 dB in free space, (Figure 28), while the S11 

value at 403.5 MHz is ~-11 dB when the antenna is around the arm of the human body 

(orange curve). The gain and radiation pattern are similar to the half-wave dipole as shown 

in Figure 29a and Figure 29b. The maximum gain is -7.06 dBi. 

7.3 Channel model for upper limb prostheses 

The path loss has been investigated with the 3D solver SEMCAD-X [90] by FDTD simulations. 

The path loss is defined in terms of the transmission coefficient ( −|S21|dB) with respect to 

50 Ω as the ratio of the input power at port 1 (Pin) to the power received at port 2 (Prec) in a 

two-port setup. In this case the implanted antennas have been considered as the 

transmitters, and the external antenna as the receiver. As external antenna the half-wave 

dipole has been selected to simplify the analysis and decrease the computational time of 

 

Figure 27. Helical dipole antenna. (a) Dimensions. (b) position of the helical antenna near the human body. Reused 
with permission from [92]. 

 

(a) (b)
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the simulations. The half-wave dipole has been placed in several positions around the arm, 

with a maximum distance from the skin of 10 mm (as in Figure 24), to simulate possible 

locations for the antenna in the socket prosthesis. This represents a typical scenario of 

transmission from in-body to body surface.  

Considering as reference distance 𝑑0 = 25 mm and the following expression: 

𝑃𝐿𝑑𝐵(𝑑) = − |𝑆21|𝑑𝐵          (4.1) 

the path loss has been modeled, finding the values for 𝑃𝐿0, 𝑛 and S, as defined in equation 

6.5. The mean value of the path loss has been obtained by fitting a least square regression 

line through the scatter of measured path loss points in dB. The coefficients of the 

regression have been obtained with a 95% coefficient bounds. The resulting parameters of 

the fitted simulating model are: PL0= 61.12, n = 2.71, σs = 5.10. In Figure 30 are represented 

the values of the path loss as a function of the distance in several positions of the external 

 

Figure 28. Return loss of the helical dipole antenna. Reused with permission from [92]. 
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Figure 29. 3D Gain polar and radiation pattern plots of the helical dipole  antenna  (a) 3D gain. (b) Values of Eφ (dB) and 
Eθ (dB) in three different planes. The coordinate system is shown in figure. Reused with permission from [92]. 

 

 

 

(a)

(b)

antenna. The orange curve is the fitting curve obtained through a least square linear 

regression, while the blue dots are the values of the path loss. The model takes into account 

also the shadowing effect (the term S) as considered in the equation 6.5. S is a random 

variable with a normal distribution, zero mean and standard deviation σs and it occurs when 

the distance between the two antennas is the same, but they might have different positions 

or directions. The distances are in the range 25-80 mm. Subsequently the half-wave dipole 

has been substituted with the helical antenna and few more simulations have been done. 
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The values of the path loss obtained are in line with the model built considering the dipole. 

In Table 3 the values and the corresponding distances are listed. 

Table 3: path loss values with dipole helical antenna 

Distance (mm) 
Path Loss 

(dB) 

38 62.98 

43 61.68 

65 72.55 

69 74.89 

 

 

Figure 30. Path loss values as function of the distance between the implanted antenna and the external antenna and 
representation of the fitted model. Reused with permission from [92]. 
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7.4 Specific Absorption Rate 

The induced SAR has been calculated with the software SEMCAD X and with the 3D human 

body model Duke. It has been evaluated the spatial peak average SAR based on the 

IEEE/IEC62704-1 standard [94], using a cube of mass of lossy tissue (normally 1 g or 10 g) to 

average SAR value. The SAR has been evaluated for two different scenarios, considering the 

two implanted antennas and the half-wave dipole. In a third scenario the SAR has been 

calculated also with the helical antenna and one implanted antenna. The peak spatial 

average SAR (psaSAR) averaged over 10 g of tissues and normalized to 1mW input power 

for the implanted antennas has been evaluated for all scenarios according with [94]. 

In Figure 31 are represented the SAR values for the first scenario. The half-wave dipole is 

positioned in front of the arm, at ~10 mm from the skin. In Figures 31a, 31b and 31c are 

shown the SAR values for the external antenna and for the two implants respectively. The 

red square is the position of the peak value. The peak value for the external antenna has a 

value of 0.00577576 mW/g and is located on the skin of the arms where the dipole has 

minimum distance. For both implants the peaks (the red square) are located on the tissues 

that are close to the antenna. The psaSAR values are 0.0817047 mW/g (Figure 31b) and 

0.0802022 mW/g (Figure 31c). All the values are lower than the limitation imposed by 

ICNIRP (4 W/Kg).  

 

Figure 31. psaSAR values with the half wave dipole.  a) psaSAR related to the external half-wave dipole positioned in front 
of the arm (scenario 1); b) psaSAR related to implant 1 (scenario 1); c) psaSAR related to implant 2 (scenario1). Reused 
with permission from [92]. 

 

(a) (b) (c)
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A second scenario with the external dipole antenna positioned in the back of the arm has 

been evaluated. The distance between the external antenna and the skin is also in this case 

around 10 mm. The external antenna psaSAR is located few millimeters under the skin in 

the back of the arm in correspondence of the dipole source and is 0.00257913 mW/g 

(Figure 32a). The peak values of the implants are 0.0817043 mW/g and 0.0802018 mW/g 

(Figures 32b and 32c). It has to be noticed that the psaSAR values measured in the two 

scenarios are very close to each other, and they are quite far from the ICNRP limitations. 

Considering the psaSAR values obtained and the ICNIRP limitation for limbs (4 W/kg), the 

maximum input power allowable results ~50 mW. A further analysis has been conducted 

with the helical dipole antenna. In this case, to shorten the computational time (that can 

take more than one week), only one implanted antenna has been considered. The psaSAR 

for the helical dipole antenna is 0.00350877 mW/g and is located on the side of the arm, 

close to the source (Figure 33a), while for the implant is 0.0802028 mW/g and it is located 

on the on the tissues near the implant (Figures 33b). This confirm that the input power 

could be increased up to ~50 mW. 

 

 Figure 32. (a) psaSAR related to the external half-wave dipole positioned on the back of the arm (scenario2); (b) psaSAR 

related to implant 1(scenario2); (c) psaSAR related to implant 2 (scenario2). Reused with permission from [92]. 

 

 

(a) (b) (c)
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7.5 Link budget analysis 

The link budget analysis can validate the feasibility of a wireless link. The channel modeling 

and the characteristics of the antennas, both implanted and external, that have been 

described in the previous paragraphs can provide the necessary data for a first link budget 

analysis. Along with the data it is need take into account the limitations limitation provided 

by the ITU recommendation for MICS bandwidth [95] and by the standard for WBAN [74]. In 

Table 4 is presented the preliminary link budget analysis based on this study. It has been 

considered a symbol rate of 151.5 kbps as suggested by IEEE802.15.6 [74]. The path loss 

values have been obtained from the model obtained above which take into account the 

influence of the human body and the fading. The received power PR has been calculated as: 

PR = EIRP – PL + GR (dBm)        (4.2) 

where EIRP [dBm] is the effective isotropic radiated power, including the input power and 

the transmitting implanted antenna gain. For MICS systems EIRP = -16 dBm, according with 

[95]. PL [dB] is the path loss,it has been considered for a distance of 45 mm (68 dB), and GR 

[dBi] is the receiver antenna gain. As receiver antenna it has been considerd the half-wave 

 

Figure 33. (a) psaSAR related to the external helical dipole; (b) psaSAR related to implant 1 
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dipole with GR = -3.20 dBi (see Figure 22). The maximum transmit power from equation 4.2 

is PR= -87.2 dBm. 

The receiver sensitivity SR is defined as: 

SR = SNR + N0 + BW + NF + LR (dBm)         (4.3) 

where SNR [dB] is the signal to noise ratio, N0 [dB/Hz] is the thermal noise density for the 

implant (considering the temperature of the body 370 C), BW [dB] is the bandwidth 

(calculated as 10*log(BW [Hz])), NF [dB] is the noise figure, and LR [dB] are the losses at the 

receiver. The receiver sensitivity from equation 4.3 is SR = -98.2 dBm. 

Finally the link margin (LM) is defined as  

LM= PR – SR  (dB)          (4.4) 

and it results LM= 11dB. 

Table 4: link budget 

PARAMETERS (up-link) Value 

Frequency 402-405 MHz 

Modulation type π/2-DBPSK  

Data rate 151.8 kbps 

BW Bandwidth 300 kHz 

SNR  5 dB 

NF Noise Figure  10 dB  

LR losses at the receiver 6 dB 

N0 Thermal noise density for 

implant 

-174 dBm/Hz 

PL Path Loss (d=45 mm) 

including fading  

68 dB 

GT Transmit antenna gain  -55.37 dBi 

GR Receiver antenna gain -3.20 dBi  



69 
 

(dipole) 

EIRP -16 dBm   

 PR Received power  -87.2 dBm 

SR Receiver sensitivity  -98.2 dBm 

LM Link Margin  11 dB 

 

The link budget analysis is summarized in Table 4. The system consisting of two devices in a 

forearm of a human and one on-body device placed near the skin of the arm has a link 

margin of 11 dB. This value of the link margin is very good considering that the gain of the 

implanted antenna and the path loss can vary across the subjects. The gain of the external 

antenna can also be improved selecting a more efficient antenna. In this study the low value 

of the implanted antenna gain limits the received power. This limitation can be overtake 

setting a higher transmit power, which is not desirable in terms of safety (SAR limits) and 

battery consumption. To improve the quality of link the gain of both type of antennas can 

be improved along with a modulation scheme. 

7.6 Conclusions  

The wireless link that has been characterized in this study represents the first step to build a 

WBAN that can be used in the field of upper limb prostheses. The WBAN will consist of 2 or 

more, depending on the needs, implanted devices capable to record, process and transmit 

EMG signals to an on-body device that will be placed inside the socket of the prosthesis.  

The on-body device will receive the processed signal from the implants and will exploit 

them to control the prosthesis. Moreover if necessary the signals can be sent to a computer 

that can be placed not more than 2 m distance. The wireless RF link has been characterized 

and modeled with the limitation imposed by IEEE802.15.6 [74] and by ITU [95]. The safety in 

terms of SAR has been investigated, finding values much lower than the limitations imposed 

by ICNRP. Finally a preliminary link budget analysis has been performed providing a link 

margin of 11 dB, which results to be a good margin for the implementation. This link margin 
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could be further increased designing antenna with a higher gain and using a different 

modulation scheme. A different modulation scheme can be chosen to also increase the data 

rate. 

The main conclusion of this study concerns the use of the standard communication protocol 

(IEEE802.15.6) and the use of a dedicated band (MICS). These two aspects are very 

interesting for industries that are developing upper limb prosthesis. Indeed, they can 

develop wireless systems with a standard communication protocol without take care of the 

interferences.   

The system proposed has the advantage respect to other wireless system in literature that 

can be used with each type of amputee, there no constraints for the positioning of the 

implants. The number of wireless implants can be increased depending on the needs. 

Moreover this technology is not limited to EMG sensors, the same results presented here 

are valid also in the case of nerve electrodes, which can be used for sensory feedback.  

Novel algorithms that can use the information coming from implants are also needed. 

Further investigations are needed to improve the system, nevertheless this study is the 

necessary first step to confirm that such system can be actually implemented and further 

developed to provide a new generation of upper limb prostheses in the future, which will 

be more reliable and robust.  
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8. Summary and conclusions 

The main progresses in the prosthetic field were made following World War II. Most upper 

limb prostheses currently on the market are based on the concepts developed at that time. 

On the other side, in the last few years the technology has advanced substantially and has 

provided prostheses that replace several DoFs. Yet, the patients are hesitant to use them. 

The reasons depend on the fact that these new generations of upper limb prostheses do 

not have an intuitive control and often they lack in robustness and reliability. Starting from 

these considerations, this thesis has focused on how to increase robustness and reliability. 

The work was in two parts. The first part focused on a non-invasive approach, based on 

surface EMG electrodes, as in all the commercially available prostheses. The second part 

focused on an invasive approach. A new system has been described and designed based on 

implanted EMG sensors.  

The first part of the thesis starts with the state of the art of upper limb prostheses with 

sEMG and of the pattern recognition algorithms that have been proposed in literature. The 

main issues have been identified, as the shift of the electrodes when donning and doffing 

the prosthesis and the presence of noisy channels. The study that has been conducted to 

advance the state of the art, maintaining a non-invasive approach, is based on the use of 

spatial correlation of surface HD EMG. A measure of spatial correlation has been used as 

feature in the pattern recognition algorithm. To prove that the new method proposed can 

increase robustness and reliability a set of data has been collected from 7 able-bodied 

subjects and on one amputee subject. A matrix of 192 EMG channels has been placed on 

the forearm of the able-bodied subjects, while for the amputee the matrix was with 144 

channels, due to his short stump. The subjects performed nine different tasks. The tasks 

are: wrist flexion, wrist extension, radial deviation, ulnar deviation, forearm pronation, 

forearm supination, hand open, hand closing, and the rest position (9 classes). The amputee 

performed 7 tasks, the same as able-bodied but hand open and hand closing. The study 

concluded that the new feature, based on spatial correlation, reduces the sensitivity to 

electrodes shifts respect to classical features used in literature. Moreover, the method 
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proposed allowed to eliminate channels during the test phase without re-training, 

maintaining a good classification accuracy for a relatively large proportion of omitted 

channels.  

This method has the potentiality to become a standard in the future, but technological 

limitations needs to be addressed. The method considers the exploitation of hundreds of 

electrodes that have to be amplified and processed with instrumentations that have to be 

enclosed in the robotic hand, that means that have to be relatively small. Another 

important aspect to be considered concerns the HD EMG electrodes. They need to support 

long term usage, that means good skin contact and no degradation of the signals. In chapter 

4 the most recent studies which are exploiting HD EMG and spatial correlation have been 

considered, highlighting the increasing interest on this technology and in the advancements 

in microprocessors dedicated to control of upper limb prostheses with HD EMG.  

In the second part of the thesis it has been considered an invasive approach for improving 

the control of upper limb prosthesis. This means that the EMG signals to control the 

prosthesis are acquired with devices that are implanted directly in the muscle. This solution 

allows to overcome the shift of the electrodes, since a device implanted is anchored to the 

muscle, furthermore it is possible acquire information directly into the muscle that has to 

give the control command.  

The state of the art of implanted EMG and of implanted devices and technology available in 

general has been analyzed. In has been stated that in literature there are few proposals and 

none of them has been commercialized yet. The main points to consider for a wireless RF 

solution have been carried out. Taking into account this a new solution has been proposed. 

It includes the wireless transmission of EMG signals recorded inside the human body. The 

solution proposed is based on a standard communication protocol (IEEE 802.15.6) and 

consists in two implanted devices that transmit and process the EMG signal acquired to a 

controller placed in the socket of the prosthesis. In this thesis has been defined the channel 

model, considering the two implants and an external antenna, by electromagnetic 

simulations. The safety of the proposed system has been verified, measuring the SAR. 
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Finally a preliminary link budget analysis has been done, confirming the feasibility of the 

system. 

The presented results are the first steps for the realizations of the proposed system. Many 

other steps are necessary for the final implementation, including new control algorithms 

that can better exploit the information acquired by the implants. Nevertheless, here it has 

been demonstrated that the use of implanted EMG can represent a valid solution in the 

field of upper limb prostheses.  This type of solutions presents limitations that have to be 

carefully considered. The implants are chronic, so they need to be encapsulated into the 

human tissues, further the maintenance (for example change of batteries) as to be minimal, 

done to a distance of years. The research in the field of implanted device is very active and 

soon the technology will be ready also for applications in robotic prostheses. 

This thesis addressed two approaches with the intent of improving the robustness in upper 

limb prostheses. The scope has not been to find the best approach, but to provide two 

different points of view of the same problem. The choice between the two approaches 

depends on several factors that are mainly related to the practical translation of the 

methods into systems that can be reliably used for daily routine activities.  
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