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Abstract 

Abstract 

New effective combinational therapeutic strategies are an alternative choice for a 

successful translational study. Disruptor of telomeric silencing 1-like (DOT1L) is a 

histone 3 lysine 79 (H3K79) methyltransferase enzyme and its inhibition is being 

tested in phase 1 clinical trials. DOT1L has been implicated in many biological 

functions ranging from cell cycle regulation, transcriptional regulation, and 

heterochromatin formation, however, the functions of DOT1L in DNA-damage 

response remains to be unraveled. DNA double-strand breaks (DSB) are one of the 

most lethal forms of DNA damage and can lead to several disease phenotypes, 

including cancer. In this study, we investigated the role of DOT1L in the DNA double-

strand break repair-pathway. Our results indicate that DOT1L is required for proper 

DNA-damage response and repair of DNA DSBs via a homologous recombination 

(HR) pathway. DOT1L activity prevents the proliferation of cancer cells; therefore 

this is a potential future cancer therapeutic target.  And more importantly, our results 

show the combination of small molecule inhibitor PARP with other available 

chemotherapeutics agents shows synergism in the colorectal cancer cells. The data 

further suggest DOT1L plays a role HR-mediated DNA double strand break and loss 

of DOT1L functions leads to increased sensitivity to PARP inhibition. Therefore, we 

hypothesize that DOT1L activity (i.e. H3K79me3) may serve as a marker for 

molecular stratification of colorectal cancer.   
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Introduction 

1 Introduction 

1.1 Colorectal cancer (CRC) 

Colorectal cancer (CRC) is the third most commonly occurring cancer and the fourth 

most common cause of cancer-related death (Favoriti et al., 2016). Different factors 

that influence the risk for colorectal cancer include several mutations, chronic 

intestinal inflammation, colorectal polyps, obesity, cigarette smoking, excessive 

alcohol use, increasing age and family history of colorectal cancer (Haggar and 

Boushey, 2009). The development and progression of normal cells to colon 

adenocarcinoma is a multistep process that involves mutations in genes such as 

Adenomatous Polyposis Coli (APC), v-Raf murine sarcoma viral oncogene homolog 

B (BRAF), and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS,) in 

addition to epigenetic alterations such as aberrant CpG island DNA methylation 

(Abdullah et al., 2012; Kocarnik et al., 2015; Okugawa et al., 2015). On the basis of 

molecular profiles, colorectal cancer is classified into specific sub-classes. These 

include microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and 

chromosomal instability (CIN). CIMP and MSI are  associated with mismatch repair 

deficiency (Issa, 2000; Toyota et al., 1999).  DNA repair enzymes play a crucial role 

in driving the initiation and progression of CRC. Defects in DNA repair result in 

genomic instability which lead to the development of cancer (Bardhan and Liu, 2013; 

Ferguson et al., 2015). Therefore, DNA repair mechanisms should be further 

investigated to evaluate whether disturbed repair could represent a suitable therapy 

target. 

1.1.1 Management of colorectal cancer 

Over the last few decades due to early detection (via colonoscopy) treatment of 

colorectal cancer has been rapidly improving and became more effective. Generally, 
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the treatment of patients depends on upon the stage of the disease. The main 

options used for the treatment of colorectal cancer include surgery, radiation 

therapy, chemotherapy and targeted therapy (Cunningham et al., 2010). 

Combination treatment regimens have been shown to be better than standard drugs 

alone in improving overall survival, disease-free survival, progression rate, and 

quality of life. The most clinically effective specific combinations of chemotherapeutic 

agents currently used for CRC are FOLFOX (Folinic acid, 5- Fluorouracil (5-FU), and 

Oxaliplatin), FOLFOXIRI (Folinic acid, 5-FU, Oxaliplatin, and Irinotecan), and 

FOLFIRI (Folinic acid, 5-FU, and Irinotecan) (Braun and Seymour, 2011; Souglakos 

et al., 2006). Overall, several studies have shown that FOLFOXIRI regimen leads to 

better response and survival than FOLFIRI regimen (Akhtar et al., 2014; Souglakos 

et al., 2006). Additionally, several epigenetic inhibitors have been approved or are 

currently in preclinical trials for cancer treatment (Nebbioso et al., 2012).  

1.2  Chromatin structure and organization 

Epigenetic regulation of transcription involves the changes to gene expression 

without altering the underlying DNA sequence through three main mechanisms of 

covalent modifications to histones and DNA and through non-coding RNA pathways 

(Wu and Sun, 2006). Generally, in eukaryotic cells, chromatin is a highly compacted 

complex structure of DNA and histones. Chromatin plays a significant role in packing 

and protecting the genome. It also plays a key role in the regulation of many 

biological functions including transcription, DNA damage detection, signaling, and 

repair (Price and D’Andrea, 2013). 

The basic unit of chromatin is the nucleosome. In eukaryotes, it contains 147 base 

pairs of DNA wound around an octamer of histone proteins which consist of two 

copies of each H2A, H2B, H3, and H4. Nucleosome assembly in the nucleus takes 
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place in two stages. First, hetero-tetramer H3/H4 integrates into the DNA and then, 

the heterodimer H2A/H2B is added. Nucleosomes are then compacted into 30 nm 

fibers through the fusion of linker histone H1, and further compression into 250-fold 

structural compaction associated in metaphase chromosomes (Woodcock and 

Ghosh, 2010) (Figure1). Therefore, the nucleosomes play an important role in the 

regulation of gene expression (Maze et al., 2014) and DNA repair (Peterson and 

Almouzni, 2013). The dynamic nature of the nucleosomes is due to covalent histone 

post-translational modifications and ATP-dependent chromatin remodeling (Hassa 

and Hottiger, 2005). 

 

Figure 1: The structure of chromatin. DNA organization from decondensed (bottom) to higher 
condensed (top). DNA is wrapped around histone octamers to form nucleosomes. Further 
compression includes 10 nm and 30 nm chromatin structures which lead to the organization of the 
metaphase chromosome. Modified from (Iyer et al., 2011) and used with permission from the article. 
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1.2.1 Post-translational histone modifications  

Posttranslational histone modifications regulate gene expression and are important 

for many biological processes to occur. Euchromatic regions, where DNA is 

accessible for transcription, are associated with active transcription while 

heterochromatic regions, where DNA is more compacted, is associated with gene 

repression. Different types of post-translational covalent modifications of histones 

such as phosphorylation, ubiquitination, methylation and acetylation (Figure 2) 

regulate different processes in the cell, such as DNA replication and repair (Strahl 

and Allis, 2000; Vardabasso et al., 2014). The crosstalk between multiple 

modifications of histones orchestrates the regulation of chromatin structure in 

different processes, such as replication, recombination, transcription, in addition to 

chromosome segregation and repair (Hunt et al., 2013).  

 
 
 

Figure 2: Post-translational histone modifications. A simplified view of H2A, H2B, H3, H4 post-
translational histone modification at the marked amino acid positions of each histone. Ac, acetylation; 
Me, methylation; P, phosphorylation; Ub, ubiquitination. (Rodríguez-Paredes and Esteller, 2011). 
Used with permission of the Nature Publishing Group. 
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1.3 DNA damage and repair process 

Genome integrity is always under attack from different agents. DNA lesions are 

caused by various endogenous and exogenous agents such as cytotoxic chemicals 

including reactive oxygen species (ROS) and ionizing radiation (IR), which either 

induce double strand breaks, single strand breaks, oxidative lesions or pyrimidine 

dimers. The majority of the DNA lesions induce the DNA damage response (DDR), 

which is mediated by cellular DNA mechanisms, which is further categorized into 

several distinct mechanisms such as nucleotide-excision repair, base-excision 

repair, mismatch repair and double-strand break repair based on the type of DNA 

breaks. Defects in DNA repair mechanisms can significantly increase genomic 

instability and lead to cancer progression (O’Connor, 2015). Therefore, preventing or 

repairing the DNA damage is crucial for the maintenance of genomic integrity (Polo 

and Jackson, 2011). 

1.3.1 DNA damage sensors, mediators, and transducers  

Upon DNA damage, various DNA damage sensors are recruited. In the case of 

DSBs, the MRN (Mre11–Rad50–Nbs1) complex recognizes DNA damage and 

recruits and activates ataxia-telangiectasia mutated (ATM), which is a member of the 

phosphoinositide 3-kinase (PI3K)-related protein kinase (PIKK) family, through 

interaction with protein Nbs1. ATM phosphorylates the histone H2A variant, H2AX, 

at serine position 139 known as γH2AX. Histone H2AX differs from the canonical 

H2A histone by its C-terminal tail. Moreover, ATM phosphorylates MRN complex 

which is involved in the initial processing of DSBs, checkpoint mediator MDC1 

(Mediator of DNA Damage Checkpoint 1), checkpoint kinase CHK2 which are 

important signaling mediators during DSB repair. Phosphorylation of H2AX and the 

MRN complex leads to the recruitment of many repair factors which helps in the 
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homologous recombination (HR) repair process and signal transduction (Krajewska 

et al., 2015) (Figure 3). 

In the DDR network, DNA damage sensors first detect the break sites, which further 

transduce the information, and activate cell cycle checkpoint control, apoptosis, 

transcription, and activation of DNA repair pathways. The signal transduction 

cascade includes protein kinases such as ATM, ATR, and DNA-PKcs. This signaling 

cascade modulates many downstream events (Harper and Elledge, 2007). 

KAP1 is a scaffold protein which acts as a transcriptional repressor and associates 

with histone H3 lysine 9 methyltransferases, histone deacetylases and 

heterochromatin protein 1 (HP1). KAP1 plays a crucial role as a phosphorylation 

target by ATM Serine 824, during the DNA damage response and in DSB processing 

in heterochromatin (Lin et al., 2015). 

1.4 Types of DNA damage and repair processes 

In mammals, DNA lesions are repaired by four major repair pathways. Single-strand 

DNA breaks are repaired by nucleotide excision repair (NER), base excision repair 

(BER), while double-stranded breaks (DSBs) are mainly repaired by homologous 

recombination (HR) or non-homologous end joining (NHEJ) (Haber, 2000) 

1.4.1 DNA double-strand breaks repair pathways 

One of the most lethal forms of DNA damage is DNA double-strand breaks. The 

failure to repair DSBs can lead to severe genomic instability, cell death, 

chromosome translocation and mutation or cancer (Jackson and Bartek, 2009; 

Nambiar and Raghavan, 2011; Swift and Golsteyn, 2014). Therefore, the repair of 

DNA damage is pivotal for the treatment of cancer and carcinogenesis in the context 

of chromatin and its modification. Error-free homologous recombination (HR) and 

non-homologous end joining (NHEJ) are alternative pathways of double-strand DNA 
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break repair (Chapman et al., 2012). Additionally, the damage response is regulated 

by histone modifications and chromatin remodeling, for example, the ATP-dependent 

chromatin remodeler CHD1 alters chromatin landscape and repairs DSBs (Kari et 

al., 2016).  

1.4.2 Non-homologous DNA end-joining (NHEJ) 

The first mechanism to sense and respond to DNA damage is the Non-Homologous 

End-Joining pathway. Three important steps involved in this repair pathway are 

detection, processing, and ligation (Chiruvella et al., 2013). 

In the NHEJ pathway, the KU70/80 heterodimer acts as an early sensor of a double 

strand break and leads to the binding of the broken ends followed by the recruitment 

of DNA-dependent protein kinase (DNA-PK) which brings these ends into proximity 

and activates the downstream substrates by phosphorylation. Finally, ligation occurs 

by the XRCC4-DNA Ligase IV-XLF complex, which is the most critical factor in 

rejoining separated DNA ends (Figure 3). Mainly G0-G1 and S phases of the cell 

cycle are involved in this repair pathway. This is an error-prone mechanism as 

opposed to HR (Rodgers and McVey, 2016). 

1.4.3 Homologous recombination (HR) pathway 

DNA repair pathways are based on various phases of the cell cycle (Kim et al., 

2014). The most commonly known pathway is Homologous Recombination (HR), 

which is mainly predominant in the late S and G2 phases of the cell cycle.  HR is a 

template-based repair process which requires a sister chromatid or a homologous 

chromosome. Therefore, this is considered to be an error-free repair mechanism. 

During HR-mediated repair, DNA end-resection is the first step, which takes place 

during this phases of cell cycle and generates single-stranded DNA, which is 

covered with replication protein A (RPA). The repair is supported by recruitment of 
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DNA-binding proteins such as BRCA1, BRCA2, and Rad51. MRN (MRE11-RAD50-

NSB1) contributes to DNA resection, which is followed by recruitment of replication 

protein A (RPA) (Figure 3). This ssDNA-binding factor removes secondary structures 

of ssDNA and is subsequently replaced by Rad51. Besides this, a number of 

proteins, are required and recruited for maintaining chromosome structure and for 

efficient HR. The most frequently HR-mutated genes, BRCA1 and BRCA2  

associated with hereditary breast and ovarian cancer (Fackenthal and Olopade, 

2007; Hall et al., 2009), are targets for homologous recombination repair of DNA.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: DNA damage and repair pathway. The two major DSB repair pathways in mammals: 
Upon DSB damage MRN complex recognizes and ATM activates and phosphorylates H2AX. DSB 
repair can occur through non-homologous end joining (NHEJ) or homologous recombination (HR). 
Based on (Shrivastav et al., 2008) 
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1.5 PARP in DNA repair process 

Poly (ADP-ribose) polymerases (PARPs) are a family of enzymes, which plays 

different biological processes through the covalent transfer of ADP-ribose from NAD+ 

onto substrate proteins.  PARP-1 and PARP-2 enzymes are involved in DNA repair, 

chromosome maintenance, chromatin regulation, and gene expression (Michels et 

al., 2014). In general, PARP1 enzyme plays a key role in repairing single-strand 

breaks (SSBs), by the base excision repair pathway. The inhibition of PARP1 leads 

to the accumulation of DNA SSBs, which gives rise to DSBs at replication forks 

during DNA replication. PARP inhibitors (PARPi)  have been used against tumors 

that are deficient in BRCA1 or BRCA2 (Leung et al., 2011). The deficiency in 

homologous recombination repair is thus specific to the tumor and can be exploited 

by employing PARP inhibitors. Therefore, PARP inhibition in tumor cells with 

deficient homologous recombination repair (absence of BRCA1 or BRCA2) 

generates unrepaired SSBs that cause an overwhelming accumulation of DSBs 

leading to tumor cell death (Figure 4). In contrast, cells that are heterozygous for 

BRCA1 or BRCA2 retain homologous recombination repair function and have a low 

sensitivity to PARP inhibitors similar to that of wild-type cells.  PARP inhibition 

induces selective tumor cell death while sparing normal cells and thus is considered 

as a therapeutic target for the treatments of various types of cancers displaying 

defects in the HR pathway (Dobbelstein and Sørensen, 2015). 
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Figure 4: PARP inhibitor in DNA repair cancer treatment. Mutations (red dots) on chromosomes 
make cancer cells susceptible to DNA repair with PARP inhibitors. Based on (Jackson and Helleday, 
2016). 
 

1.5.1 PARP inhibitors in combination therapy of colorectal cancer 

Standard treatments for colorectal patients include oxaliplatin, the topoisomerase I 

(Top1) inhibitor irinotecan, and 5-fluorouracil (5-FU) (Davies and Goldberg, 2011). 

PARP inhibitors play a key role in DNA repair (Schreiber et al., 2006). Presently, 

there are different PARP inhibitors are in clinical trials. Among them, olaparib is the 

first PARP inhibitor approved by the European Medicines Agency, and also by the 

US Food and Drug Administration (FDA) for platinum-based chemotherapy in 

BRCA1/2 mutant ovarian cancer (Bixel and Hays, 2015). This also tested along with 

topoisomerase I (Top1) inhibitors (irinotecan hydrochloride) in patients with locally 
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advanced or metastatic colorectal cancer (NCT00535353) (Chen et al., 2016; 

Genther Williams et al., 2015). Combining PARP inhibitors with different cytotoxic 

DNA damaging agents is a promising therapeutic approach that is currently under 

study (Benafif and Hall, 2015). Olaparib (AZD2281) demonstrated an anti-tumor 

activity in phase 1 clinical trials in castration-resistant prostate cancers characterized 

by mutations in different HR biomarkers BRCA1/2, ATM, PALB2, CHEK2, FA NCA 

and HDAC2 (Mateo et al., 2015). Olaparib was tested in phase I trials in ovarian 

cancer (Fong et al., 2009) and phase II trial in breast cancer, endometrial cancer, 

prostate cancer and pancreatic cancer. Olaparib has recently been approved for 

treating ovarian, fallopian tube and primary peritoneal cancer with BRCA1 or BRCA2 

mutations (Ledermann et al., 2014). Rucaparib (AG014699) is in phase 3 clinical 

trials (NCT02855944) tested in ovarian cancer, epithelial ovarian cancer, fallopian 

tube cancer and peritoneal cancer with BRCA mutation (Kristeleit et al., 2015). 

Niraparib (MK4827) is in phase 1/2 clinical study (NCT02657889, NCT02354131) in 

combination with Pembrolizumab/Bevacizumab with advanced or metastatic triple-

negative breast cancer and with recurrent/HRD platinum-sensitive ovarian cancer 

(Mirza et al., 2016). Talazoparib (BMN-673) in an ongoing phase 3 clinical trial 

(NCT01945775) with BRCA mutant breast cancer (Roche et al., 2015).  

Veliparib (ABT-888) is an orally active small molecule inhibitor of PARP-1 and 

PARP-2 enzymes, is an attractive candidate and is already in phase 3 clinical 

development (NCT02163694) among women with early-stage triple-negative breast 

cancer. Mutations in the BRCA1 or BRCA2 genes cause defects in homologous 

recombination (HR) and studies suggest that microsatellite instability (MSI) and 

microsatellite stable (MSS)  colorectal cancers which are defective in HR are 

sensitive to PARP inhibition (Genther Williams et al., 2015). Overall, ongoing trials in 
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patients with and without BRCA mutation imply a promising role of PARP inhibitors 

need for biomarkers for patient stratification in colorectal cancer management.  

1.6 Histone modifications in DNA damage response (DDR) and repair 

Histone modifications affect chromatin structure and dynamically change 

nucleosome positions which affect transcription. Upon induction of DDR, post-

translational modifications of histone and repair proteins are activated (Rossetto et 

al., 2010). The four well-known histone modifications are acetylation, methylation, 

phosphorylation, and ubiquitination.  

1.6.1 Phosphorylation 

Histone phosphorylation plays an important role during cell division, transcriptional 

regulation, chromatin remodeling (Rossetto et al., 2012). Additionally, it plays a role 

in DNA damage response by recruiting different repair proteins to DNA breaks. The 

best-known earliest marker for DSB epigenetic modification in mammalian cells is 

phosphorylation of histone variant H2AX (γH2AX) at ser139, which is mediated by 

members of the PI3K kinase superfamily (ATM, ATR, DNA-PK) (Rogakou et al., 

1998). H2AX is phosphorylated in the region of DSBs up to 2x106 bp around the 

break (Lowndes and Toh, 2005; Rogakou et al., 1999). In yeast, the phosphorylation 

occurs on S129 of H2A (Downs et al., 2000). Besides histones are phosphorylated 

at the other sides of breaks such as H3 at T11 and H4 at Ser1 (Rossetto et al., 

2012) in response to DNA damage and repair. 

1.6.2 Acetylation 

Acetylation is mainly associated with transcriptional activation. Histone acetylation is 

associated with open chromatin structure and helps to make chromatin accessible to 

transcription factors and enable gene expression. Acetylation is controlled by the 
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writers histone acetyltransferases (HATs), which determine transcriptionally active 

states. Whereas deacetylation mediated by the erasers, histone deacetylases 

(HDACs), lead to transcriptional repression (Davie, 2003).  Histone acetylation 

facilitates DNA repair by enabling DNA repair proteins to access the sites of damage 

or serving as a platform for the interaction and recruitment of the DNA repair proteins 

by means of bromodomains. The HAT complex Tip60, which binds to neighboring 

chromatin, is involved in DSB repair and induces histone H4 acetylation (Ikura et al., 

2000; Murr et al., 2006).  

1.6.3 Ubiquitination 

Histone ubiquitination is important for the regulation of chromatin structure. Ubiquitin 

is a 76-amino acid polypeptide that is attached to lysine residues of target proteins 

via the sequential action of three enzymes, (E1) ubiquitin-activating, (E2) ubiquitin-

conjugating and (E3) ubiquitin-ligating enzymes. Histone H2A and H2B are the most 

abundant ubiquitinated proteins in the nucleus (Vissers et al., 2008). H2A 

monoubiquitination is catalyzed by polycomb group proteins, which is mainly 

associated with gene silencing. RNF8 (RING finger-containing nuclear factor 8) is an 

E3 ubiquitin  ligase  enzyme  which catalyzes regulatory ubiquitylation at sites of 

DSBs (Panier and Durocher, 2009), which help in the recruitment  of  downstream  

factors,  such as 53BP1 and BRCA1 (Huen et al., 2007; Mailand et al., 2007). 

Monoubiquitination of H2B by RNF20 facilitates HR repair (Moyal et al., 2011; 

Nakamura et al., 2011). DNA repair factors such as BRCA1 and 53BP1 determine 

the DNA DSB repair pathway choice of either NHEJ or HR (Daley and Sung, 2014). 

It was first identified in yeast that histone H2B monoubiquitination on Lys123 by the 

Rad6/Bre1 complex is required for proper H3K79 trimethylation by Dot1L (Ng et al., 

2002). Recent studies (McGinty et al., 2008; Oh et al., 2010) demonstrated that 

recombinant human DOT1L protein was capable of increasing mono- and 
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dimethylated H3K79; however, no trimethylation was detected in correlation with 

H2B ubiquitination. It is reported that human Dot1-containing complex (DotCom) 

dimethylates and trimethylates H3K79 when nucleosomal substrates are 

monoubiquitinated on H2B (Mohan et al., 2014). 

1.6.4 Methylation 

Histone methylation is a type of covalent histone modification, which is carried out by 

a group of enzymes called histone methyltransferases (HMTs). Methylation occurs at 

lysine (K), arginine (R) residues (Greer and Shi, 2012). In general, to lysine (K) and 

arginine (R) residues, methyl groups can be transferred, i.e. to the ε-amino group of 

lysine residues or to the guanidino group of arginine residues. Methylation mainly 

occurs on the side chains of lysines, arginines and also N-terminals of many 

proteins. Depending on the positions and degree of methylation, the lysine residues 

can be mono (me1), di (me2) or trimethylated (me3). It can either be a mark for 

transcriptionally active or inactive chromatin. Histone lysine methylation plays a 

dynamic role in development and disease (Black et al., 2012). There are many lysine 

residues in histones targeted for methylation: H3K4, H3K9, H3K27, H3K36, H3K79, 

and H4K20, which are the substrates of different histone methyltransferases in 

humans (Copeland et al., 2009). Methylation of H3 lysine (H3K4 and H3K36) is 

associated with transcription activation, whereas methylation of H3K9, H3K27 and 

H4K20 appears to correlate with transcriptional repression (Vakoc et al., 2006). In 

response to UV irradiation, H3K79 and H4K20 are methylated and found to play a 

role in efficient repair of UV-induced damage (Bostelman et al., 2007; Sanders et al., 

2004). Human DOT1L binds to methylated H3K79. Dot1/DOT1L enzyme methylates 

H3K79 within the histone globular core and leads to 53BP1 recruitment (Huyen et 

al., 2004a). 
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1.6.5 The trimethylation of histone H3 at lysine 79 (H3K79me3) 

Histone methylation occurs using S-adenosylmethionine (SAM) as a methyl group 

donor. The 3 families of enzymes that catalyze histone methylation are the PRMT 

(protein arginine N-methyltransferase) family, the SET (Su[var]3–9, Enhancer of 

Zeste, Trithorax)-domain-containing family, and the non-SET domain proteins (Greer 

and Shi, 2012). Lysine methylation of H3K4, H3K9, H3K27, H3K36, and H4K20 is 

mediated by lysine methyltransferases (KMTs) that contain a SET domain  whereas, 

H3K79 is methylated by the non-SET domain-containing protein DOT1L (Nguyen 

and Zhang, 2011a; Singer et al., 1998). 

1.7 DOT1L (Disruptor of telomeric silencing 1-like) 

Dot1 (KMT4) is the lysine methyltransferase responsible for H3K79 methylation and 

was initially discovered in budding yeast and homologs have been found in a range 

of species like Drosophila, protozoa and mammals (Janzen et al., 2006; Jones et al., 

2008a; List et al., 2009). The mouse DOT1L gene shares 88% similarity with human 

DOT1L (Wong et al., 2015). This is a non-SET histone modifying enzyme and the 

only characterized lysine HMTase responsible for catalyzing mono-, di- and tri-

methylation. H3K79 mono-and di-methylation leads to active gene transcription 

(Nguyen and Zhang, 2011b; Wong et al., 2015). DOT1L methylates K79 only when 

histone H3 is incorporated in the nucleosomal histone H3, not in free/soluble form 

(Lacoste et al., 2002). There are no identified non-histone substrates of the DOT1L 

enzyme, which may help in understanding DOT1L-mediated cellular functions. The 

unique crystal structure of the catalytic domain of DOT1L reveals an AdoMet-binding 

pocket in proximity to a potential lysine-binding channel and a positively charged, 

flexible region at the C-terminus of the catalytic domain which is required for 

nucleosome binding and enzymatic activity (Barry et al., 2010) (Figure 5). 
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Figure 5: Structure of the DOT1L protein. The amino-terminal 332 amino acids of DOT1L 
comprises the catalytic domain, including the methyltransferase (MTase) and S-adenosyl –L-
methionine (AdoMet)-binding activities. The catalytic region, together with a short, lysine-rich domain 
located between amino acids 380 and 428, functions as a nucleosome-binding domain (Barry et al., 
2010). Used with permission of the Taylor & Francis Group. 
 
DOT1L/KMT4 is involved in many biological functions (Figure 6) like transcriptional 

regulation, cell cycle regulation, hematopoiesis, cardiac function, (Kim et al., 2014; 

Nguyen and Zhang, 2011a, 2011b), heterochromatin formation, and embryonic 

development (Jones et al., 2008a; Okada et al., 2005). The loss of DOT1L results in 

complete loss of H3K79 methylation in yeast (van Leeuwen et al., 2002), flies 

(Shanower et al., 2005), and mice (Jones et al., 2008b). In addition, DOT1L dis-

regulation has been linked to poor patient prognosis in breast, lung, and colorectal 

cancer (Huyen et al., 2004b; Wakeman et al., 2012; Wong et al., 2015). 

 
 

 
Figure 6: General functions of DOT1L-dependent H3K79 methylation. Based on (Kim et al., 
2014). The H3K79 methyltransferase involved in diverse cellular processes ranging from gene 
expression, cell cycle regulation, DNA damage response and in therapeutic targeting. 
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1.7.1 Role of DOT1L in cancer 

In addition to its role in gene regulation, DOT1L plays a critical role in diseases. 

Interaction of DOT1L and Mixed Lineage Leukemia (MLL) fusion proteins, leads to 

increased H3K79 methylation and maintenance of open chromatin leading to 

leukemogenesis (Bernt et al., 2011; Daigle et al., 2013a; Deshpande et al., 2013; 

Okada et al., 2005). The AF10 co-factor regulates DOT1L-mediated H3K79 in MLL 

fusion leukemia (Chen et al., 2015). Recent studies suggest that DOT1L cooperates 

with a c-Myc/p300 complex to promote breast cancer progression and enhance 

epithelial–mesenchymal transition (EMT) and breast cancer stem cell (CSC)-like 

properties (Cho et al., 2015). Deregulation of DOT1L function leads to mitotic 

misregulation, loss of cell cycle control, apoptotic failure (Nguyen and Zhang, 2011a) 

and osteoarthritis (Castaño et al., 2012). Depletion or deletion of DOT1L cause a 

complete disappearance of H3K79 methylation (Jones et al., 2008b). A loss of 

DOT1L-dependent H3K79 methyltransferase activity inhibits cell proliferation and 

leads to senescence in lung cancer cells, indicating that DOT1L is required for 

proliferation of lung cancer cells (Kim et al., 2011). H3K79me2 is required to 

maintain chromosomal stability (Guppy and McManus, 2015). Genome-wide profiling 

studies indicate that DOT1L, as well as H3K79 methylation, is enriched in actively 

transcribed regions of genes, thus identifying DOT1L as an active chromatin modifier 

(Nguyen and Zhang, 2011a; Steger et al., 2008). Moreover, human DOT1L 

functionally interacts with actively transcribing RNAPII, which targets the 

methyltransferase to active genes at the transcription start sites (TSS) (Kim et al., 

2012a). DOT1L and AF10 are found and required within β-catenin-dependent TCF4 

complexes in mouse crypt and human colon cancer cells (Ho et al., 2013) and are 

important in governing Wnt-dependent transcription in CRC cells.  Histone H3 lysine 

79 (H3K79) contributes to the stimulation of the G1/S checkpoint (Humpal et al., 
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2009). It has been suggested that DOT1L may serve as a prognostic marker for 

colorectal cancer (Kryczek et al., 2014). The epigenetic mark DNA methylation (CpG 

island microarray) is identified as a marker for pre-therapeutic options in advanced 

rectal cancers molecular stratification, primarily in combination with 5-FU response 

to preoperative radiochemotherapy (Gaedcke et al., 2014).  

1.7.2 DOT1L-mediated H3K79 methylation in DNA damage signaling 

DOT1L was shown to be required for the recruitment of the double-stranded DNA 

break repair protein 53BP1 to the DNA damage sites during different cell cycle 

phases (Huyen et al., 2004a; Wakeman et al., 2012). Overall, DOT1L is required to 

maintain chromosomal stability (Kim et al., 2014) and may play a critical role in DNA 

damage signaling. DOT1L was shown to be important for meiotic checkpoint control 

and is also involved in double-strand break repair via sister chromatid recombination 

(Conde et al., 2009a).  

1.7.3 Role of DOT1L inhibitors in cancer therapy 

Several small molecule inhibitors/drugs which block DDR kinases such as Ataxia 

Telangiectasia Mutated (ATM), Rad3-related (ATR), checkpoint kinase 1 (CHK1) 

and the cell-cycle–related kinase WEE1 have been examined for their potential use 

in anti-tumor therapy (Dobbelstein and Sørensen, 2015). DNA repair inhibitors are 

currently in different phases of clinical trials along with radio- and chemotherapy 

regimens. Currently, one of the most advanced and promising drugs targeting DNA 

repair are PARP inhibitors (Samol et al., 2012). The PARP inhibitor olaparib was 

FDA-approved for use in BRCA deficient ovarian cancer patients (Meehan and 

Chen, 2016). Loss of the HR pathway genes such as RAD51, RPA, NBS1 and 

CHK1 also conferred sensitivity to PARPi, expanding the range of potential targets 

for PARPi therapy (McCabe et al., 2006) 
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DOT1L-mediated H3K79me evaluated as the potential therapeutic target (Anglin et 

al., 2012; Daigle et al., 2011). So far, three small molecule inhibitors are available for 

DOT1L (EPZ004777, EPZ-5676, and SGC0946) and they display high specificity to 

DOT1L compared to other HMTs (Daigle et al., 2013b; Yu et al., 2012). These 

compounds function by competing with S-adenosyl methionine, a cofactor needed 

for the methyltransferase activity of DOT1L.  

EPZ-5676, which was shown to be a potent and selective inhibitor of the DOT1L 

histone methyltransferase (HMT), is currently undergoing phase 1 trials in children 

and adult patients with MLL translocated leukemias and shows initially promising 

results in adult patients with acute leukemias (Song et al., 2016). DOT1L inhibitors 

suppress proliferation and migration of breast cancer cells (Zhang et al., 2014). It 

was reported that the small molecule inhibition of DOT1L represents a potential 

therapeutic option in DNMT3A-mutant human leukemia, and could be used for the 

treatment of multiple refractory patients (Rau et al., 2016). Therefore, it is important 

to understand DOT1L’s role in DNA repair in relation to identifying potential 

therapeutical options and evaluate its role in cancer treatment.  

Many studies are investigating DOT1L as it plays an important role in a variety of 

biological processes in different organisms from yeast to mammals. However, much 

less is known regarding the involvement of this protein in DNA-DSB-break repair 

functions. Previous reports suggest that efficient methylation of H3K79 requires the 

presence of H2B ubiquitination in the same nucleosome. We hypothesize that a 

specific portion of the effects observed upon loss of H2Bub1 may be mediated 

through downstream effects on H3K79 methylation. Consistent with this hypothesis, 

one report described a correlative decrease in the expression of the H2B ubiquitin 

ligase RNF40 and H3K79me2 in seminoma (Chernikova et al., 2012). Therefore, we 

propose that the histone methyltransferase DOT1L may have a role during 
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epigenetic processes involving the DNA damage response in human colorectal 

cancer cells in response to DNA double-strand breaks. 

In this study, we aimed to investigate the role of the histone modifying enzyme 

DOT1L in DNA double-strand break repair processes in colorectal cancer cells. 

Therefore, we investigated the mechanisms underlying the regulation of chromatin 

modification and the intermediate factors responsible for repair. Importantly we 

identified H3K79me3 as a potential marker for CRC cancer patient stratification for 

the utilization of personalized therapies such as a combination of PARP inhibitors 

and irinotecan, which in combination preferentially target tumors with HR defects. 
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2 Materials 

2.1 Devices/ Technical equipment 

-20°C Freezer     Liebherr GmbH, Biberach, Germany 

-80°C Freezer “Hera freeze”   Thermo Fisher Scientific, Waltham, USA 

-150°C Freezer (MDF-C2156VAN)  Panasonic, Kadoma, Japan  

Axioscop microscope    Carl Zeiss, Jena, Germany 

Balance      Sartorius AG, Göttingen, Germany  

Bandelin Sonoplus Sonicator  Bandelin electr. GmbH & Co. KG, Berlin 

Biological Safety Cabinet (Safe 2020)   Thermo Fisher Scientific 

Bioruptor® Plus sonication device  Diagenode SA, Liège, Belgium 

CeligoTM Cytometer     Cyntellect Inc., USA 

CO2-Incubator (HERAcell 150i)              Thermo Fisher Scientific 

Confocal Microscope   Carl Zeiss 

Zeiss LSM 510 Meta   

Counting chamber (Neubauer)  Brand GmbH & Co. KG, Wertheim, 

Germany                 

DS-11+ Spectrophotometer   Wilmington, United States 

Electrophoresis & Electrotransfer Unit  Bio-Rad Laboratories, Hercules, USA 

(Western blotting)   

FACScan     BD Bioscience, Germany 

Inverted Microscopes    Nikon, Tokyo, Japan 

Eclipse TS100      

Irradiation device (200kv, 15Ma)  GLUMAY MEDICAL, UK 

RS225 research system   

Isotemp® water bath    Thermo Fisher Scientific  

Magnet stirrer “MR3001”  Heidolph GmbH & Co. KG, Schwabach, 

Germany 

Manual hand cell counter    Tamaco LTD., Taiwan 
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Microwave    Clatronic International GmbH, Kempen, 

Germany 

Mini-PROTEAN Tetra Cell    Bio-Rad Laboratories 

Mini Trans-BlotTM Cell    Bio-Rad Laboratories  

Nano Drop® ND-1000  Peqlab Biotechnology GmbH, Erlangen, 

Germany 

Optical Reaction Module CFX96TM  Bio-Rad Laboratories 

pH-meter inoLab®     WTW GmbH, Weilheim, Germany 

Pipettes      Eppendorf AG, Hamburg, Germany 

(0.1-2.5, 0.5-10, 2-20, 10-100,  

20-200, 100-1000 μL) 

Pipette Aid® portable XP    Drummond Scientific Co., Broomall, USA 

Pipettes “Research” Series   Eppendorf AG 

PowerPacTM Basic Power Supply  Bio-Rad Laboratories 

PowerPacTM HC Power Supply   Bio-Rad Laboratories 

Power supply Power Pack P25T   Biometra GmbH, Göttingen, Germany 

Pressure cooker     Pascal (Dako, Hamburg), Germany 

Refrigerator      Liebherr GmbH, Biberach, Germany  

Repeat Pipette     Gilson Inc., Middleton, USA  

Scanner Epson V700 Photo   Seiko Epson, Suwa, Japan  

Schuttler Duomax 1030  Heidolph Instruments GmbH 

Schuttler Minishaker    MS2 IKA GmbH, Staufen, Germany 

Shaker “Rocky” Schütt Labortechnik GmbH, Göttingen, 

Germany  

Test tube rotator  Schütt Labortechnik GmbH 

Thermal Cycler T100TM    Bio-Rad Laboratories 

Thermomixer Comfort    Eppendorf AG 

Vortex-Genie 2  Electro Scientific Industry. Inc., Portland, 

USA  
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Western Blot Imager   Bio-Rad Laboratories 

X- Ray Cassettes    Rego X-ray GmbH, Augsburg, Germany 

2.2 Centrifuges 

Centrifuge 4°C (5417R)    Eppendorf AG 

Centrifuge 4°C (Fesco 21)    Thermo Fisher Scientific 

Centrifuge (Megafuge 1.OR)   Thermo Fisher Scientific 

Microcentrifuge C1413-VWR230   VWR, Radnor, USA 

Table centrifuge (GMC-060)   LMS Co., Ltd., Tokyo, Japan 

2.3 Consumable materials 

96-Well Flat Clear Bottom Black   Corning GmbH, Germany  

96-well Multiplate® PCR plate white  Bio-Rad Laboratories 

Cell scraper (16 cm)    Sarstedt AG & Co., Nümbrecht, Germany 

Cellstar 6, 12, and 24- well culture plate Greiner Bio-One GmbH 

Cellstar PP-tube 15 and 50 mL  Greiner Bio-One GmbH 

Cellstar tissue culture dish 100×20 mm  Greiner Bio-One GmbH 

Cellstar tissue culture dish 145×20 mm  Greiner Bio-One GmbH 

Cellstar cell culture flasks 50 mL (T25)  Greiner Bio-One GmbH 

Cellstar cell culture flasks 250 mL (T75)  Greiner Bio-One GmbH 

Cover Slides (12 mm)    Thermo Fisher Scientific 

CryoTube Vial (1.8 mL)    Thermo Fisher Scientific 

Cuvettes      Heinemann Labortechnik GmbH, Germany 

Gel blotting paper (Whatman paper)  Sartorius AG 

Microtube 1.5 mL     Sarstedt AG & Co. 

Microtube 2 mL     Sarstedt AG & Co. 

Millex-HV Filer (0.45µM) PVDF   Merck Millipore KGaA, Darmstadt, Germany 

Mr. Frosty® Cryo Freezing Container  Thermo Fisher Scientific 
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Nitrocellulose (NC) Transfer Membrane  GE Healthcare Europe GmbH, München   

(Amersham Protran 0.45 NC) 

Parafilm® “M”     Pechiney Plastic Packaging, Chicago, USA 

Pipette filter tips     Sarstedt AG & Co. 

Pipette tips non-sterile    Eppendorf AG 

(10, 20-200, 1000 μL)  

Serological pipettes, sterile   Corning GmbH 

Sterile filter (0.2 μm, 0.45 μm)   Millipore, Molsheim, France 

(1, 2, 5, 10, 25 mL) 

X-ray films “Super RX”    Fujifilm Corp., Tokyo, Japan 

UV-Cuvettes (micro)    Brand GmbH 

2.4 Chemicals 

Acetic acid  Carl Roth GmbH & Co. KG, Karlsruhe, 

Germany 

Albumin fraction V  Carl Roth GmbH & Co. KG 

Ammonium persulfate  Carl Roth GmbH & Co. KG 

Ammonium sulfate  Carl Roth GmbH & Co. KG 

Ampicillin      AppliChem GmbH, Darmstadt, Germany  

Anti-Anti      LifeTechnology, Carlsbad, USA  

Aprotinin  Carl Roth GmbH & Co. KG 

Bromophenol blue     Sigma-Aldrich Co., St. Louis, USA  

Calcitriol      Biomol GmbH, Hamburg, Germany  

Calcium chloride  Carl Roth GmbH & Co. KG 

Chloroform  Carl Roth GmbH & Co. KG 

Diaminobenzidine (DAB) substrate  Dako, Hamburg, Germany 

Diethylpyrocarbonate (DEPC)  Carl Roth GmbH & Co. KG 

Dimethyl sulfoxide (DMSO)   AppliChem GmbH 

Dithiothreitol  Carl Roth GmbH & Co. KG 

DNA Loading Dye 6x    Fermentas GMBH, St. Leon, Germany 

24 
 



Materials 

Ethanol absolute  Th. Geyer GmbH & Co. KG, Renningen, 

Germany 

Ethylenediaminetetraacetic acid  Carl Roth GmbH & Co. KG 

Fetal bovine serum (FBS)                    Thermo Scientific HyClone, Logan, USA  

Formaldehyde     Sigma-Aldrich Co. 

Fluorescence mounting medium   Dako 

FuGENE® HD Transfection Reagent   Promega GmbH, Mannheim, Germany  

Glycine  Carl Roth GmbH & Co. KG 

Glycerol  Carl Roth GmbH & Co. KG 

β-Glycerolphosphate    Sigma-Aldrich Co. 

Hoechst 33342 solution    Thermo Scientific HyClone 

Hydrochloric acid  Carl Roth GmbH & Co. KG 

Hydrogen peroxide  Carl Roth GmbH & Co. KG 

Iodoacetamide     Sigma-Aldrich Co. 

Isopropanol  Carl Roth GmbH & Co. KG 

L-Ascorbic acid     Sigma-Aldrich Co.  

Leupeptin  Carl Roth GmbH & Co. KG 

Magnesium chloride  Carl Roth GmbH & Co. KG 

Mayer’s hemalaun    Merck 

β-Mercaptoethanol  Sigma-Aldrich Chemie GmbH, Munchen, 

Germany 

Methanol  Carl Roth GmbH & Co. KG 

N,N-Dimethylformamide    Sigma-Aldrich Co. 

Monopotassium phosphate  Carl Roth GmbH & Co. KG 

Opti-MEM      LifeTechnology 

PageRulerTM Plus Prestained   Thermo Fisher Scientific 

Protein Ladder 

Paraformaldehyde, EM grade    Merck 

PBS Tablets     LifeTechnology 

Pefabloc  SC Carl Roth GmbH & Co. KG 

Penicillin-Streptomycin solution   Sigma-Aldrich Co. 
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Penicillin-Streptomycin solution         Sigma-Aldrich Co.  

(PenStrep 100 units/mL Penicillin,  

100 μg/mL Streptomycin)  

Ponceau-S          SERVA Electrophoresis GmbH, Heidelberg  

Potassium acetate  Carl Roth GmbH & Co. KG 

Potassium chloride     AppliChem GmbH 

Potassium dihydrogen phosphate  Carl Roth GmbH & Co. KG 

Propidium iodide solution    Sigma-Aldrich Co.  

Puromycin      Invitrogen GmbH, Karlsruhe, Germany 

RNAiMAX LifeTechnology,   Carlsbad, USA  

RNase inhibitor  New England Biolabs, Frankfurt am Main, 

Germany 

Roti®-Phenol  Carl Roth GmbH & Co. KG 

Rotiphorese® Gel 30  Carl Roth GmbH & Co. KG 

Rotipuran® Chloroform  Carl Roth GmbH & Co. KG 

Rotipuran® Isoamylalcohol  Carl Roth GmbH & Co. KG 

SEA BLOCK Blocking Buffer   Thermo Fisher Scientific 

Skim milk powder  Carl Roth GmbH & Co. KG 

Sodium acetate     Carl Roth GmbH & Co. KG  

Sodium chloride  Carl Roth GmbH & Co. KG 

Sodium deoxycholate    AppliChem GmbH 

Sodium dodecyl sulfate  Carl Roth GmbH & Co. KG 

di-Sodium hydrogen phosphate  Carl Roth GmbH & Co. KG 

Sodium hydroxide  Carl Roth GmbH & Co. KG 

Sodium pyruvate    Invitrogen GmbH 

SYBR Green   Roche Diagnostics GmbH, Mannheim, 

Germany 

Tetramethylethylenediamine (TEMED) Carl Roth GmbH & Co. KG 

α,α-Trehalose Dihydrate  AppliChem GmbH 

Tris  Carl Roth GmbH & Co. KG 

Triton X-100      AppliChem GmbH 

TRIzol® Reagent     Invitrogen GmbH 
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Trypsin-EDTA (0.05%)    LifeTechnology 

Tween-20      AppliChem GmbH 

2.5 Ready to use kits and solutions 

Duolink® In Situ Red Starter Kit   Sigma-Aldrich Co. 

Mouse/Rabbit (DUO92101)  

ImmobilonTM Western HRP substrate  Merck 

LipofectamineTM RNAiMAX   LifeTechnology 

NuPAGE MOPS SDS Running Buffer   Invitrogen GmbH 

(20x)  

Pierce™ BCA Protein Assay Kit  Thermo Fisher Scientific 

2.6 Cell culture media 

DMEM/F12 GIBCO®                          LifeTechnology 

DMEM GIBCO®                                  LifeTechnology 

RPMI 1640, GlutaMAX™ GIBCO®       LifeTechnology 

2.7 Inhibitors/drugs 

DOT1L inhibitor (EPZ-5676)  Selleckchem, Germany 

5-Flurouracil (5-FU)    Sigma-Aldrich, Steinheim, Germany 

Irinotecan hydrochloride Sigma-Aldrich Co. 

NCS  Sigma-Aldrich Co. 

Veliparib (ABT-888)    Selleckchem 
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2.8 Nucleic acids 

2.8.1 siRNA oligonucleotides  

Name 
Target 

Gene 
siRNA sequence 5’-3’ direction Source 

siDOT1L-01 DOT1L CGAAGUGGAUGAAAUGGUA Dharmacon Inc 

siDOT1L-02 DOT1L CCGAGAAGCUCAACAACUA Dharmacon Inc 

siDOT1L-03 DOT1L GAAGCCGUCUCCCUCCAAA Dharmacon Inc 

siDOT1L-04 DOT1L GCAGAAUCGUGUCCUCGAA Dharmacon Inc 

Luciferase GL2 

duplex 
- CGUACGCGGAAUACUUCGA Dharmacon Inc 

siGENOME 

Nontargeting 

siRNA pool # 1 

- - Dharmacon Inc 

2.8.2 RT-PCR primers  

Primers are shown in a 5’ to 3’ orientation. 

Name 

 
Sequence Source 

h DOT1L F CCACCAACTGCAAACATCAC This study 

h DOT1L R AGAGGAAATCGCCTCTCTCC This study 

HNRNPK F ATCCGCCCCTGAACGCCCAT (Karpiuk et al., 2012) 

HNRNPK R ACATACCGCTCGGGGCCACT (Karpiuk et al., 2012) 

18S rRNA F AACTGAGGCCATGATTAA (Nagarajan et al., 2015) 

18S rRNA R GGAACTACGACGGTATCTGA (Nagarajan et al., 2015) 

2.9 Enzymes 

Proteinase K     Invitrogen GmbH  
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Restriction enzymes    New England Biolabs 

Reverse transcriptase (M-MuLV)  New England Biolabs  

RNase A      Qiagen GmbH, Hilden  

RNase inhibitor     New England Biolabs 

Taq DNA polymerase    Prime Tech, Mink, Belarus  

T4 DNA ligase     New England Biolabs 

2.10 Antibodies 

2.10.1 Primary antibodies  

The following antibodies were used for Western blot, immunofluorescence, and 

immunohistochemistry analyses.  

Name Clone Cat. No. WB IF IHC Source 

53BP1 H-300 sc-22760 1:1000 1:500  Santa Cruz 

ATM B-12 sc-8434 1:500   Santa Cruz 

 

Chk1 2G1D5 2360 1:1000   
Cell 

Signaling 

Technology 

Chk2 A-12 sc-5278 1:10,000   Santa Cruz 

CtIP 14-1 61141 1:1000   Active Motif 

DOT1L OTI1D8 CF802482 1:500   ORIGENE 

DOT1L  A310-953A 1:500   Bethyl 

Laboratories 

DOT1L  A300-954A 1:500   Bethyl 

Laboratories 

H2B  ab52484 1:40,000   Abcam 

H3  ab10799 1:1000   Abcam 

H3K79me3  C15410068 

(pAb-068-
1:500 1:500 1.250 Diagenode 
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050) 

HSC70 B-6 sc-7298 1:40,000   Santa Cruz 

 

Phospho-

ATM 

(Ser1981) 

10H11.E12 4526 1:500   
Cell 

Signaling 

Technology 

Phospho-

(Ser/Thr) 

ATM/ATR 

Substrate 

Antibody 

 2851 1:1000   
Cell 

Signaling 

Technology 

Phospho-

Chk1 

(Ser317) 

 2344 1:500   
Cell 

Signaling 

Technology 

Phospho- 

Chk1 

(S317) 

 A300-163A 1:1000   Bethyl 

Laboratories 

Phospho-

Chk2 

(Thr68) 

 2661 1:500   
Cell 

Signaling 

Technology 

Phospho-

Histone 

H2AX 

(Ser139) 

JBW301 05-636 1:1000 1:1000  Millipore 

Phospho-

Mre11 

(Ser676) 

 4859 1:500   
Cell 

Signaling 

Technology 

Phospho-

p95/NBS1 

(Ser343) 

 3001 1:500   

Cell 

Signaling 

Technology 

 

Phospho 

KAP-1 

(S824) 

 A300-767A 1:10,000   Bethyl 

Laboratories 
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KAP1  A300-274A 1:10,000   Bethyl 

Laboratories 

Mre11 31H4 4847 1:500   
Cell 

Signaling 

Technology 

Rad50  3427 1:1000   
Cell 

Signaling 

Technology 

Rad51 H-92 sc-8349 1:10,000   Santa Cruz 

RPA 70 EPR3472 2589-1 1:500   Epitomics 

2.10.2 Secondary antibodies 

Name Cat. No. 
WB 

Dilution 

IF 

Dilution 

IHC 

Dilution 
SOURCE 

Alexa-fluor488 

goat anti-rabbit 
A11008 - 1:500 - 

LifeTechnology 

 

Alexa-fluor594 

goat anti-mouse 
A11005 - 1:500 - 

LifeTechnology 

 

Envision Goat-

anti-rabbit 
   1:200 Dako 

Goat anti-mouse 

IgG-HRP 
Sc-2005 1:20,000 - - 

Santa Cruz 

 

Goat anti-rabbit 

IgG-HRP 
Sc-2004 1:5,000 - - Santa Cruz 

2.11 Cell lines 

Cell 
Line 

Species 
Tissue 
Origin 

Disease Source 

HeLa Human cervix 
cervical 

carcinoma 
ATCC® CCL-2™  

SW480 Human colon 

Dukes' type B, 

colorectal 

adenocarcinoma 

ATCC (Manassas, VA) 

31 
 



Materials 

SW837 Human rectum 
grade IV, 

adenocarcinoma 
ATCC (Manassas, VA) 

U2OS Human bone osteosarcoma 
Sigma-Aldrich (St. Louis, 

MO) 

2.12 Buffers and solutions 

Blocking solution:  

1 x TBS-T, 5% (w/v) milk 

 

Cell culture freezing medium:  

42% (v/v) DMEM, 50% (v/v) FBS, 8% DMSO 

 

Cell culture PBS sterile: 

1 PBS tablet per 500 mL distilled H2O 

 

4’-6-Diamidino-2-phenylindole (DAPI, 10ng/mL): 

10ng/mL (w/v) DAPI in deionized water (dH2O) 

 

Laemmli buffer (6x): 

0.35 M Tris (pH 6.8), 30% glycerol, 10% SDS,  

9.3% DTT, 0.02% Bromophenol blue 

 

Lysis Buffer (Buffer A) for (CF): 

10mM HEPES (pH 7.9), 10 mM KCL, 

1.5mM MgCl2, 0.34 M sucrose, 10% glycerol,  

0.1% Triton X-100, 1mM DDT and protease inhibitors 

 

Nuclear lysis buffer for (CF): 

3mM EDTA, 0.2 mM EGTA, 1 mM DTT and protease inhibitors 

 

PBS:  

137 mM NaCl, 2.68 mM KCl,  

4.29 mM Na2HPO4 × 2H2O,  

1.47 mM KH2PO4, (pH 7.4)  
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PBS-T: 

PBS including 0.1% (w/v) Tween-20 

 

PCI:  

Phenol: Chloroform: Isoamylalcohol (25:24:1) 

 

Proteinase inhibitor cocktail:  

1 ng/µL Aprotinin/Leupeptin,  

10 mM Glycerol 2-phosphate disodium salt hydrate,  

1 mM NEM, 1 mM Pefabloc 

 

qPCR buffer:  

75 mM Tris-HCl (pH 8.8), 20 mM (NH4)2SO4,  

0.01% Tween-20, 3 mM MgCl2, 200 μM dNTPs,  

0.5 U/reaction Taq DNA Polymerase, 0.25% Triton X-100,  

1: 80,000 SYBR Green I, 300 mM Trehalose  

 

RIPA buffer:  

1x PBS, 1% (v/v) NP-40, 0.5% (v/v) sodium deoxycholate,  

0.1% (w/v) SDS 

 

SDS separating gel (6%):  

6% (v/v) acrylamide, 375 mM Tris-HCl (pH 8.8),  

0.1% (w/v) SDS, 0.1% (w/v) APS, 0.04% (v/v) TEMED  

 

SDS separating gel (15%):  

15% (v/v) acrylamide, 375 mM Tris-HCl (pH 8.8),  

0.1% (w/v) SDS, 0.1% (w/v) APS, 0.04% (v/v) TEMED  

 

SDS stacking gel (5%):  

5% (v/v) acrylamide, 125.5 mM Tris-HCl (pH 6.8),  

0.1% (w/v) SDS, 0.1% (w/v) APS, 0.1% (v/v) TEMED 
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Stripping Buffer (harsh) 

10% SDS, 1M Tris pH 6.8, 

Water-volume adjusted, 0.08 % β-Mercaptoethanol 

 

TAE buffer (50×):  

2 M Tris, 1 M Acetic acid, 0.1 M EDTA 

 

TBS:  

150 mM NaCl, 2.68 mM KCl, 4.29 mM Na2HPO4×2H2O,  

1.47 mM KH2PO4, (pH 7.4)  

 

TBS-T:  

TBS including 0.1% (w/v) Tween-20 

 

TE buffer:  

10 mM Tris-HCl, 1 mM EDTA, (pH 8.0) 

 

Tris-glycine electrophoresis buffer:  

25 mM Tris, 200 mM Glycine, 0.1% (w/v) SDS  

 

Transfer buffer:  

10% 10x Western salts, 20% Methanol 

 

Triton X-100 (0.5%):  

PBS including 0.5% Triton X-100 

 

Unmasking buffer:  

Citrate buffer pH 6.0, 05% Tween 20 

 

Western salts (10×):  

1.92 M Glycine, 250 mM Tris-HCl (pH 8.3),  

0.02% (w/v) SDS 
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2.13 Software and databases 

Adobe Photoshop 7.0     Adobe Systems Inc., San Jose, USA 

Bio-Rad CFX Manager 3.1    Bio-Rad Laboratories 

ImageJ 1.41       NIH, USA 

Microsoft Office 2007     Microsoft Cooperation, 2008 

Image Lab Version 5.2 build 14    Bio-Rad Laboratories 

National Center for Biotechnology Information  http://www.ncbi.nlm.nih.gov 

(NCBI) 

Primer designing tool NCBI/Primer-BLAST  Ye et al., 2012 

(www.ncbi.nlm.nih.gov/tools/primer-blast/) 

Reference ZOTERO    https://www.zotero.org 
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3 Methods 

3.1 Description of cell lines, cultivation and cryopreservation 

The human rectum adenocarcinoma cell line SW837, human colon adenocarcinoma 

cell line SW480, human osteosarcoma cell line U2OS and human cervix cancer cell 

line HeLa were cultivated in the respective growth media (SW837: DMEM/F12, 

SW480: RPMI 1640, U2OS: high glucose, phenol red-free DMEM and extra 1x 

sodium pyruvate, HeLa: DMEM) supplemented with 10% FBS (fetal bovine serum), 

100U/mL P/S (Penicillin/Streptomycin) at 37°C in 5% CO2 humidified incubator. The 

cells were further sub-cultivated every 48-72 hours and the media was removed from 

the cells, followed by washing with PBS. Cells were then subjected to 1 mL 

trypsin/EDTA solution for five minutes at 37° C. The trypsinized cells were collected 

in a 15 mL falcon tube and to inhibit tryptic activity, 5 mL of media was added to the 

suspension. Cells were counted with a hemocytometer and seeded in cell culture 

plates. For cryopreservation cells were centrifuged, followed by washing with PBS. 

Cells were finally suspended and frozen in 42 % respective cell line media with 50 % 

FBS and 8 % DMSO at a density of 2-3.106 cells/ml. 

3.1.1 Determination of cell viability 

The viability of the cells was analyzed by adding trypan blue to the cell suspension. 

Living cells do not show staining, while dead cells with a destabilized plasma 

membrane layer take up the dye and turn blue. The viability of cells was analyzed 

manually utilizing a cell counter hemocytometer. 
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3.2 RNA interference 

3.2.1 Optimization of transfection conditions 

To obtain efficient transfection with negligible effects on cell viability, the transfection 

conditions were optimized. Cells were plated at five distinctive densities and four 

concentrations of LipofectamineTM RNAiMAX transfection reagent as suggested by 

the manufacturer’s instructional manual. For siDOT1L transfections, the Dharmacon 

siRNAs (#1, #2, #3, and #4) were pooled in a 1:1:1:1 ratio. Non-targeting, Scramble, 

and mock siRNA were utilized as negative controls to discover conditions that show 

target mRNA knockdown efficiency at > 80 % cell viability.  

3.2.2 Reverse transfection 

Small interfering RNA (siRNA) was transfected with Lipofectamine® RNAiMAX. For 

a six-well plate format, 30 pmol of siRNA were mixed together with 5 µL RNAiMAX 

reagent in 500 µL of optiMEM and incubated for 20 minutes at room temperature. In 

the meantime, cells were trypsinized and suspended in the respective cell line 

growth medium without antibiotics or antifungal reagents. Then 250,000-300,000 

cells, counted in the hemocytometer, were seeded in 1.5 mL of transfection medium. 

After 20 minutes of incubation time, the 500 µL transfection mix was added directly 

to the medium and incubated overnight. Next day, the medium was changed to the 

normal growth medium.  

3.3 Irradiation of the cells 

To study the effect of ionizing radiation on the molecular aspects of the DNA repair 

machinery, the cells were irradiated at a dose rate of 2 Gy/minute (1, 2, 4, 6, and 8 

Gy of X-rays (200 kV, 15 mA, 0.5 mm Cu filter, Gulmay Medical, Camberley, United 

Kingdom).  The facility and co-operation were provided by the department of 
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radiation therapy. These cells were collected to study the change in morphology as 

well as translational profiles of the cells. 

3.4 Cell treatment and proliferation assays using Celigo 

For evaluating the sensitivity towards multiple small molecule inhibitors, 1,000-2,000 

cells/100 µL of media were seeded into 96-well plates (Flat Clear Bottom Black, 

Corning GmbH) and allowed to incubate overnight to adhere. On the next day, cells 

were observed under a microscope and measured confluency using the CeligoTM 

Cytometer every 24 hours before treatment with Neocarzinostatin (NCS) 100 ng/mL, 

DOT1L inhibitor (EPZ-5676), PARP inhibitor veliparib, chemoradiotherapy drugs 5-

FU and irinotecan as indicated in various concentration in the study.  Chronic drug 

treatment was followed by a medium exchange every alternate day and was 

followed up by 7 days. In addition to chemoradiotherapy, we also tested the 

sensitivity of two cell lines to alone drugs and combined modality treatment. 

3.5 Colony formation assays (CFA)  

The colony formation assay (CFA) was performed to determine the surviving 

fractions (SF) of cells after transfection with DOT1L siRNA and radiation. Briefly, 

cells were transfected in duplicates either with mock and targeted siRNA and seeded 

with 300,000 cells/well as described earlier into six-well plates. After 48 hours of 

attachment, the cells were trypsinized and seeded in dilutions 750 cells/well for 1 Gy 

and 2 Gy, 1,500 cells/well for 4 Gy, 2,250 cells for 6Gy and 3,000 cells for 8Gy in 

six-well plates for CFA assay and seeded 750 cells/well for plating efficiency in 

duplicates for both mock and siRNA knockdown, and simultaneously the rest cells 

were plated for whole cell lysates for checking knockdown efficiency. 72 hours after 

transfection, cells were irradiated at a dose rate of 2 Gy/minutes (1, 2, 4, 6, and 8 Gy 

of X-rays (200 kV, 15 mA, 0.5 mm Cu filter, Gulmay Medical, Camberley, United 
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Kingdom)). Experiments were performed in technical triplicates and placed in an 

incubator (37°C, 5% CO2).  CFA growth period was up to 19 days. The medium was 

removed carefully and wells were fixed with 70% ethanol for 20 minutes. After 

complete removal of ethanol, the plates were kept for drying around 2-3 hours at RT. 

Then, samples were stained with Mayer’s hemalaun for 5 minutes. The staining 

solution was removed and each plate was rinsed first with ionized tap water and 

subsequently with normal tap water. The plates were completely dried at room 

temperature. The colonies were counted using a stereomicroscope manually. 

Colonies are considered to represent survivors if they contain more than 50 cells. 

Firstly, the number of colonies in control cells, which were not exposed to IR, was 

determined to calculate the plating efficiency. Survival fractions were calculated. The 

mean values of three independent experiments were evaluated and normalized to 

the plating efficiency. 

3.6 Immunofluorescence microscopy 

Cells with 70-80 % confluence were harvested by trypsinization and counted with a 

hemocytometer. Prior to seeding cells in six-well plates, the cells were transfected 

with either target siRNA or control siRNA and incubated for 48 hours as described 

previously. After 48 hours, they were trypsinized and diluted into to a seeding 

concentration of 10,000-50,000 cells/mL and seeded 24-well cell culture plates 

containing coverslips. The cells were incubated overnight (37°C, 5% CO2). After 

attachment of the cells to the slides overnight some plates were treated with NCS or 

mock for the indicated time point and followed by fixation with 4% PFA/PBS for 10 

minutes at RT. The coverslips were washed carefully 3 times for 5 minutes with PBS 

and permeabilization was carried out with 0.5% Triton X-100 for 10 minutes at room 

temperature. Following two washing steps, cells were blocked with 3% BSA for 30 

minutes and incubated with primary antibodies overnight at 4° C. On the next day, 
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the coverslips were washed thrice for each 5 minutes incubation with 0.1% Triton X- 

100/PBS. Then cell was incubated at RT for 60 minutes in the dark with fluorescently 

conjugated secondary antibodies. The nuclei were counterstained with DAPI (10 

ng/mL) or Hoechst blue-33342 (Benzamide-tris-hydrochloride) for 1 minute. Finally, 

coverslips were mounted onto slides using the mounting medium. After complete 

drying, we stored the coverslips at 4°C in dark until analysis. Images were acquired 

with a Zeiss LSM 510 Meta Confocal Microscope using 25x or 63x oil immersion 

lens.  

3.7 Proximity ligase assays (PLA) 

We used proximity ligase assays (PLA) to study the interaction or the close proximity 

between γH2AX and H3K79me3 by DOT1L siRNA knockdown in NCS-treated 

SW837 cells. In general, the interaction of two different proteins is examined in cell 

samples utilizing two secondary antibodies from different species which are 

conjugated to DNA oligonucleotides (PLA probes). When two antibodies are in close 

proximity to one another, they can be bridged by two additional circle forming 

oligonucleotides, joined via ligation, amplified by rolling circle amplification, and the 

signal from each pair of PLA probe is visualized as a focus.  

We performed this assay using the Duolink® In Situ Red Starter Kit Mouse/Rabbit 

(DUO92101) kit according to the manufacturer’s instructions. Briefly, the cells were 

seeded on coverslips and treated with primary antibodies as previously described 

(Kari et al., 2016). After incubation with primary antibodies, all incubations steps 

were performed in a humidity chamber. With washing steps in PBS, added PLA 

probe solutions were freshly prepared in the 3% BSA blocking solution and the 

coverslips were incubated in a humidity chamber for 1 h at +37 ° C. Then, PLA 

probe solution was washed using 1x wash buffer under very gentle agitation. After 
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which added ligase solution and incubated for 30 minutes at 37°C for ligation. 

Following two washing steps with 1x wash buffer, and carefully after tapping off all 

wash solution, an amplification-polymerase solution which is light sensitive was 

added in each sample and further incubated for 100 minutes at 37°C. After final 

washing steps, staining with DAPI, mounting and drying at room temperature in the 

dark coverslips were analyzed in the confocal microscope. 

3.8 Immunohistochemistry (IHC) 

Immunohistochemistry was performed using rectum tissue microarrays. For 

immunostaining, initially, paraffin-embedded sections (2 µm) were de-paraffinized 

and rehydrated. Sections were incubated in 100% xylene for 20 minutes, followed by 

rehydration in descending dilutions of EtOH series (100%, 90%, and 70 %) before 

washing with PBS. Proteins were then unmasked by cooking slides in the pressure 

cooker (Pascal, Dako, Hamburg) for 3 minutes with unmasking buffer (citrate buffer 

pH 6, 0.05% Tween 20). Tissue sections were allowed to cool to room temperature 

and washed with PBS three times, quenched for endogenous peroxidase activity 

with 3% hydrogen peroxide (H2O2) treatment for 10 minutes at RT and then washed 

three times with PBS. Afterward, sections were blocked using SEA BLOCK Blocking 

Buffer for 20 minutes at RT. The primary antibody H3K79me3 was diluted in PBS 

(1:250) containing 5% FBS, applied and incubated overnight at 4°C in a humid 

chamber. Sections were washed three times using PBS before adding the 

biotinylated secondary antibody (Envision Goat-anti-rabbit, Dako, Hamburg) 1:200 

diluted in PBS and incubated for 1 hour at RT. Sections were washed three times 

with PBS followed by Avidin-Peroxidase incubation diluted 1:1,000 in PBS for 45 

minutes. Staining signals were detected using diaminobenzidine (DAB) substrate 

(Dako, Hamburg) for 8 minutes at RT. Slides were washed and hematoxyline 

(Mayer’s hemalaun solution) was used for counterstaining for 5 minutes. Histological 
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slides were imaged using an Axioscop microscope and ZEN software (Carl Zeiss, 

Jena, Germany).  

3.9 Double-strand break (DSB) repair reporter assay 

DSB reporter assay was used to measure the double strand break repair efficiency. 

To induce DSBs, HeLa cells harboring stably an integrated reporter construct for HR 

(pGC) or for NHEJ (pEJ) were transfected with control or DOT1L siRNA (1,4). After 

24 hours of siRNA transfection, the cells were transfected with the I-SceI expression 

vector pCMV3xnls-I-SceI (1µg) using Fugene HD (Promega) as a transfection 

reagent to induce DSBs. 48 hours after transfection, cells were assessed for green 

fluorescence-positive cells by flow cytometry (FACScan, BD Bioscience) for HR and 

NHEJ efficiency normalized to the transfection efficiency (Kari et al., 2016). 

3.10 Molecular Biology 

3.10.1 RNA isolation and analysis 

RNA isolation was performed according to the manufacturers’ instructions. Briefly, 

500 µL of QIAzol reagent was added to cells grown in a 6-well plate and incubated 

for 3 minutes at room temperature. Afterward, the cells were carefully scraped and 

transferred into a reaction tube containing 100 µL Chloroform and vortexed for 15 

seconds. The mix was centrifuged for 15 minutes at 12,000 g and subsequently, the 

aqueous supernatant was transferred to a fresh tube containing 99% isopropanol in 

a 1:1 ratio. The solution was stored overnight at -20 °C. The next day the solution 

was spun down for 30 minutes at 15,000 g and subsequently washed two times with 

70% ethanol at 12,000 g. After removing the ethanol, pellets were allowed to dry for 

5-10 minutes and finally RNA was dissolved in 30 µL H2O. 
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3.10.2 Quantification of the isolated RNA 

The quality, as well as concentration of the isolated RNA, was verified using the 

Nanodrop ND 1000 Spectrophotometer.  

3.10.3 First-strand cDNA synthesis 

One µg of RNA was diluted in 10 µL of nuclease-free water and supplemented with 2 

µL of 15 µM random 9mer primer and 4 µL of 2.5 mM dNTPs to a total volume of 16 

µL. The mixture was incubated for 5 minutes at 70°C and then placed immediately 

on ice. After the samples cooled down 0.125 µL of 25 U MMLV-reverse transcription 

enzyme and 0.25 µL of 10 U Murine RNase-Inhibitor were added together with the 

reverse-transcription buffer to a final volume of 20 µL. The mix was incubated for 1 h 

at 42°C and subsequently heat inactivated at 90°C for 10 minutes. The 

complementary DNA (cDNA) was diluted to 50 µL with nuclease-free water and used 

for real-time quantitative PCR (qPCR). 

3.10.4 Quantitative real-time PCR 

Quantitative real-time PCR was performed according to the below qPCR reaction 

composition for each reaction volume of 25 μl. Samples were pipetted in technical 

duplicates for each qPCR measurement. 

3.10.5 qPCR reaction composition 

Component Volume/reaction [μl] 

qRT-PCR buffer mix 14 

Primer mix forward+reverse (10 μM) 1.5 

Distilled water 8.5 

Template DNA 1 

Total volume 25 
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For amplification and readout the below qRT-PCR program was performed: 

Step Temperature Time Number of cycles 

Step 1 

Initial denaturation 
95° 2 minutes 1 

Step 2 

Denaturation 
95° 15 seconds 40 

Step 3 

Annealing 
60° C 1 minute  

 

After initial denaturation for PCR amplification step 2 and 3 are repeated for 40 

cycles for the cDNA. The PCR reaction was followed by a melting curve analysis 

from 60°C to 95°C with one read every 0.5°C. For the quantification of the mRNA 

levels of the candidate gene, the reference gene HNRNPK or 18S ribosomal RNA 

was used to normalize the values and for further statistical analysis. 

3.11 Chromatin fractionation  

After appropriate treatment and experimental conditions, cells were washed with 1x 

PBS and were resuspended in lysis buffer added with freshly prepared protease 

inhibitor mixture. After 5 minutes incubation time, cells were scraped and centrifuged 

at 1,300 g for 5 minutes. After washing with lysis buffer, the nuclear pellet was lysed 

in nuclear lysis buffer for 30 minutes on ice. Soluble chromatin fractions were 

separated by centrifuging at 1,700 g for 5 minutes. Insoluble chromatin fractions 

were further sonicated and analyzed by SDS–PAGE electrophoresis. Western 

blotting was performed according to the standard protocol.  
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3.12 Protein biochemistry 

3.12.1 SDS polyacrylamide gel electrophoresis 

3.12.2 Protein analysis  

For whole cell lysate protein preparation, the culture medium completely aspired and 

cells were washed twice with PBS followed by addition of RIPA buffer containing a 

freshly prepared proteinase inhibitor cocktail at 4°C for 10 minutes. The suspension 

was then collected in a 1.5 mL Eppendorf tube and stored immediately at -20°C until 

further use. Just prior to first use genomic DNA was sheared by sonication for 15 

seconds pulse at 80% power amplitude on/off using a tip sonicator. Then, protein 

concentration was determined according to the manufacturer’s protocol in the BCA 

Protein Assay kit and reading taken using DS-11+ Spectrophotometer. Before 

loading samples in the previously mentioned stacking and resolving gel, protein 

samples were boiled in 6x Laemmli Buffer at 95°C for 10 minutes and then loaded 

onto an SDS-Polyacrylamide gel and electrophoresed in SDS running buffer at 20 

mA/gel or 60-110 V/gel. 

3.12.3 Western blot 

The separated proteins in the gel were transferred to a nitrocellulose membrane. 

The transfer of the proteins was performed at a constant voltage of 100 V for 1.5 

hours at 4° C in transfer buffer. After transferring the proteins onto the nitrocellulose 

membrane, the membrane was blocked with 5% non-fat dry milk in TBS-T at room 

temperature for minimum 20 minutes or at 4° C overnight and then incubated with 

the primary antibody for 2 hours at RT or at 4° C overnight. After three washes with 

TBS-T for 10 minutes, the membranes were incubated for 60 minutes with a 

secondary antibody coupled to horseradish peroxidase. After incubation, the 

membranes were washed three times with TBS-T and the blots were developed 
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using enhanced chemiluminescence procedure and exposed to X-ray films or by 

using the Bio-Rad gel documentation system. Normalizations were performed with 

the loading control H2B, H3 or HSC70 throughout the study. The working antibody 

dilutions for the immunoblot analysis were supplemented with 0.01% sodium azide 

as preservative in 5% skimmed milk in 1x TBS-T and stored at 4°C  for short term 

and for long term 5% BSA of 1x TBS-T and stored at -20°C. 

3.13 Membrane stripping 

For investigating several proteins on the same membrane, the primary and 

secondary antibodies were removed from the membrane before further protein 

detection. For this, the membrane was treated twice with stripping buffer for 10 

minutes at RT inside a fume hood followed by two washes with PBS for 10 minutes 

and further three washes with TBS-T for 5 minutes. Then, blocking with 5% non-fat 

dry milk was followed by primary and secondary antibody incubation as described 

above. 

 

 

 

 

 

 

 

 

 

 

 

46 
 



Results 

4 Results 

4.1 H3K79me3 levels in DOT1L-depleted cells 

DOT1L posses histone methyltransferase activity towards histone H3 at lysine 79 

(H3K79). One of the aims of this study was to determine the effects of DOT1L loss in 

CRC cells. Thus, initially, we examined the efficiency of DOT1L knockdown with 

individual and Smart Pool siRNAs after transfecting SW837 cells for 72 hours. 

DOT1L expression was detected by quantitative reverse transcription PCR/RT-PCR 

by measuring the relative mRNA expression levels in control and DOT1L siRNA-

transfected cells (Figure 7A). To determine, if an individual or Smart Pool siRNA of 

DOT1L is efficient to decrease H3K79me3, the efficacy of knockdown was accessed 

in multiple colorectal cancers cell lines. As shown here, Immunoblotting using anti- 

DOT1L antibody (Figure 7B) demonstrate that individual siRNA-1, 4 and Smart Pool 

are more efficient in knockdown of DOT1L in our model system. The level of H3K79 

trimethylation (H3K79me3) was determined using an antibody directed against 

H3K79me3 and was decreased upon DOT1L loss. These findings indicate that 

siRNAs targeting DOT1L can reduce DOT1L levels sufficiently at the mRNA and 

protein levels and are therefore suitable for studying the consequences of DOT1L 

loss in CRC cells. Moreover, this reduction of DOT1L is able to induce the decrease 

of H3K79me3 levels, especially when using the Smart Pool. 
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Figure 7: Depletion of DOT1L leads to decreased H3K79 trimethylation. SW837 cells were 
transfected with individual siRNAs (#1, #2, #3, #4,) or Smart Pool (SP) targeting DOT1L and after 72h 
knockdown efficiency was evaluated. (A) Relative DOT1L mRNA expression in control or DOT1L 
siRNA transfected cells. (B) SW837 whole cell lysates were analyzed by western blotting with DOT1L 
and H3K79me3 antibodies. H3 and HSC70 were used as loading controls. M, G, and N were used as 
3 independent controls (M – mock, G – GL2 Duplex non-targeting siRNA, N – siGENOME Non-
targeting siRNA). 

4.2 Depletion of DOT1L affects γH2AX response 

Evidence from previous studies suggests that the DOT1L-mediated H3K79 

methylation plays a role in the DNA damage response (Nguyen and Zhang, 2011b). 

DNA double-strand breaks (DSBs) are a most toxic form of DNA damage, which 

causes genetic changes and/or cell death. Upon DNA DSB induction, H2AX is 

phosphorylated by PI3 family kinases including ATM and ATR. In response to DNA 

DSB, γH2AX (H2AX-S139) is the most well-documented histone modification and an 

important marker for DNA damage. This is a critical step in the activation of the DNA 

damage response and DNA repair. Hence, we first investigated the impact of DOT1L 

knockdown on DNA damage response and repair pathway. To address this 

question, we induced DNA to double strand breaks by NCS (Neocarzinostatin) 

treatment in both control and DOT1L siRNA (Smart Pool) transfected cells. The 

whole cell lysates were harvested at different time points of NCS treatment and 

analyzed by immunoblotting. We observed an increased level in γH2AX upon 

treating control cells with NCS for 15 minutes. Interestingly, the siRNA-mediated 
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knockdown of DOT1L led to decreased γH2AX induction compared to control cells 

(Figure 8A), thereby supporting a role of DOT1L in DNA damage recognition. To 

further confirm the role of DOT1L in γH2AX induction upon DSB, 

immunofluorescence studies were performed.  We induced the DSB by NCS, in both 

mock and DOT1L siRNA-transfected cells which cause γH2AX recruitment to foci by 

immunofluorescence study. Immunofluorescence analyses confirmed this 

observation (Figure 8B) that with initial NCS treatment for 15 minutes, there is 

γH2AX induction in control cells whereas there is less γH2AX induction in DOT1L 

depleted cells. The disappearance of foci with increasing treatment time indicates 

that the breaks are repaired.    
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Figure 8: Knockdown of DOT1L affects γH2AX and DNA damage recognition (A) SW837 cells 
were either transfected with mock or DOT1L siRNA (SP). After 72 hours of transfection cells were 
treated with NCS (100 ng/ml) for the indicated time points. Whole cell protein lysates were harvested 
and immunoblotted with indicated antibodies using H2B as a loading control. (B) Immunofluorescence 
studies to check the induction of γH2AX after indicated time point treatments with NCS (100 ng/ml) in 
mock or DOT1L siRNA transfected SW837 cells. 

4.3 DOT1L is involved in the DNA damage response pathway 

Since we observed that DOT1L is required for γH2AX inductions we hypothesized 

that DOT1L might play an important role in DNA damage response. For this, DOT1L 

was transiently depleted using siRNA in SW837cells which were treated for different 

time points (15 minutes to 6 hours) with NCS to induce DSB. Whole cell lysates were 

analyzed by Western blotting to check the DNA damage response. As expected, 
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increased effects of γH2AX were seen in control cells. In addition, we observed 

increased levels of pCHK2 (checkpoint kinase 2), pKAP1 (KRAB-interacting protein 

1), pNBS1 (gene mutated in Nijmegen breakage syndrome), and pATM (gene 

mutated in the ataxia telangiectasia syndrome) in DOT1L-depleted cells compared to 

control cells (Figure 9). 

DOT1L-depleted cells show increased KAP1 phosphorylation (pKAP1), indicating 

that heterochromatin-associated DNA damage response may be particularly affected 

by altering chromatin structure. KAP1 phosphorylation is increased by DOT1L 

depletion indicating that DSB repair in heterochromatin may require DOT1L. 

However, we did not observe any change in the heterochromatin markers H3K9me2 

and H3K9me3 levels upon DOT1L depletion. Upstream phosphorylation of CHK2 

leads to check point-activation and cell-cycle arrest so may be less time require for 

DNA repair. The ATM protein is responsible for the cellular response to DNA 

damage by regulating the G1, S, and G2/M cell cycle checkpoints and by the 

phosphorylation of a number of protein substrates. Upregulation of pATM, pCHK2 

confers the DOT1L-mediated regulation of CHK2- and ATM-dependent 

phosphorylation. These data suggest that DOT1L is involved in repair of DNA DSBs. 
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Figure 9: DOT1L is required for proper DNA damage response. SW837 cells were either 
transfected with mock or DOT1L siRNA (SP). After 72 hours of transfection cells were treated with 
NCS (100 ng/ml) for indicated time points. Whole cell protein lysates were harvested and 
immunoblotted with indicated antibodies.HSC70 was used as a loading control. 

4.4 Inhibition of DOT1L leads to an altered DNA damage response 

Small molecule epigenetic inhibitors are emerging as a new direction for cancer 

therapy. Among them, an inhibitor, SGC094a, targeting DOT1L methyltransferase 

activity showed promising findings in MLL-rearranged leukemia cells. To validate the 

role of DOT1L methyltransferase activity in DNA DSB repair process, we compared 

the H3K79me3 levels in DOT1L wild-type and knockdown cells. Moreover, we have 

investigated the effect of an incubation with the DOT1L Inhibitor (SGC094a) or 

siRNA transfection for 48 hours. The efficiency of inhibition and siRNA transfection 

was further determined by measuring relative DOT1L mRNA expression levels. We 

observed decreased H3K79me3 levels with either knockdown or inhibition of 

DOT1L. As expected, there is a significant decrease in mRNA expression levels only 

with DOT1L knockdown but not with inhibition (Figure 10 A-B). Further, we wanted to 

know beyond chronic treatment of 48 hours if a short acute treatment time will block 

new methylation (H3K79me3) with DOT1L inhibition, therefore we further checked 
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long and short treatment periods (48 and 3 hours). In addition, we induced DSB 

breaks with NCS from 15 minutes to 2 hours and found there is no change of DOT1L 

levels. Interestingly, we observed less γH2AX both in short and long treatment with 

the DOT1L inhibitor with 15 minutes to 2 hours of break induction and also less 

phosphorylation of ATM compared to control cells suggesting new H3K79 

methylation by DOT1L is required for proper DNA damage response. This further 

confirms the requirement of DOT1L in DNA DSB repair (Figure 10 C). Furthermore, 

SW837 cells were treated with increasing concentrations of another DOT1L inhibitor 

EPZ-5676, which is being tested clinically. The effectiveness of DOT1L inhibition 

was shown with chronic treatment of 4 days and observed to be sufficient for cellular 

depletion of H3K79me3 levels (Figure 10D). 

Due to these findings, we inhibited DOT1L by cell treatment with the DOT1L inhibitor 

EPZ-5676 for 3 hours and subsequently induced DSB by NCS from 15 minutes to 6 

hours in SW837 cells. Surprisingly, after 15 minutes of NCS treatment, DOT1L-

depleted SW837 cells showed significantly lower γH2AX levels compared to control 

cells (Figure 10E). Inhibiting DOT1L also led to increased phosphorylation of ATM, 

KAP1 and NBS1 and CHK2 after 15 minutes of NCS treatment (Figure 10E). These 

effects are consistent with the effects observed following DOT1L siRNA-mediated 

depletion. Based on these findings, we aimed to explore whether H3K79me3 co-

localizes with γH2AX at the break sites.  
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Figure 10: Inhibition of DOT1L leads to decreased H3K79 methylation and altered DNA damage 
response (A) Immunoblot analysis of total protein lysates from SW837 cells after 72 hours of DOT1L 
siRNA transfection and 48 hours of DOT1L inhibitor (SGC094a) treatment (100 nM) (duplicates) for 
indicated proteins. Both resulted in the decrease of H3K79me3. (B) Relative DOT1L mRNA 
expression in control, DOT1L siRNA-transfected cells and SGC094a-treated samples. (C) SW837 
cells were treated with 100 nM SGC094a for 48 hours as long treatment and 3 hours as short 
treatment and followed by NCS treatment (100 ng/ml). (D) Immunoblot analysis of total protein lysates 
revealed clear effects on four days of chronic kinetic treatment with EPZ-5676 with increasing doses 
H3K79me3 levels were found to be reduced. (E) SW837 cells were pretreated with DOT1L inhibitor 
EPZ-5676 (1 µM) for 3 hours followed by NCS (100 ng/ml) for indicated time points. Whole cell 
lysates were immunoblotted and outcomes were similar to results obtained using siRNA targeting 
DOT1L. 

4.5 γH2AX and H3K79me3 are co-localized at the DSB sites 

H3K79 methylation has been implicated in the DNA damage response (Huyen et al., 

2004a). Next, we tried to determine whether H3K79me3 and histone variant γH2AX 

colocalize at the break region. To determine the co-localization of γH2AX and 

H3K79me3 at the DNA damage site; we performed PLA (Proximity ligation assay) 

following NCS treatment and checked signals by immunofluorescence microscopy. 

This method is used to study the interaction between two proteins in fixed cells 

based on the utilization of two secondary antibodies against primary antibodies from 
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different species, which are conjugated to DNA oligonucleotides. When the two 

antibodies are in close proximity to one another, they can be bridged by two 

additional circle-forming oligonucleotides, joined via ligation, amplified by rolling 

circle amplification and visualized as foci using a complementary fluorescently 

labeled oligonucleotide probe. First, we confirmed the specificity of the test using a 

positive control (γH2AX and 53BP1) and confirmed the colocalization with a focus, 

which compared with the negative control (BSA). In addition, we tested the 

specificity of the interaction between H3K79me3 and γH2AX in NCS-treated 

samples after depletion of DOT1L by siRNA. Using the PLA approach, we confirmed 

the co-localization of γH2AX and H3K79me3 upon DNA damage induction and the 

interaction is abolished in the DOT1L depleted cells. Importantly, the absence of 

DOT1L did not enhance the number of γH2AX foci (Figure 11). Taken together, PLA 

demonstrated that γH2AX and H3K79me3 are co-localizing at the DSB sites.  
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Figure 11: γH2AX and H3K79me co-localize at DSB sites. (A) SW837 cells were treated with NCS 
(100 ng/ml) for 1 h. The specificity of the proximity ligation assay (PLA) signal was confirmed by the 
interaction between γH2AX and 53BP1 antibodies. (B) SW837 mock and DOT1L siRNA transfected 
cells after indicated time points of NCS (100 ng/ml) treatment were processed for PLA assay with 
γH2AX and H3K79me3. The images were obtained using an Axioinverted microscope. Red dots 
represent the proximity between γH2AX and H3K79me3 and nuclei are stained with DAPI. Scale bar 
20 µm. 
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4.6 DOT1L is crucial for homologous recombination (HR) DNA repair pathway 

Dot1 was previously shown to play a role in repairing UV-induced DNA damage in 

yeast (Giannattasio et al., 2005). H3K79 methylation and Rad9 recruitment also play 

important roles in regulating resection of ssDNA (Lazzaro et al., 2008). Interestingly 

DOT1L was shown to be important for meiotic checkpoint control and also involved 

in double-strand break repair via sister chromatid recombination in Saccharomyces 

cerevisiae (Conde et al., 2009b).  

To further investigate the importance and understand the role of DOT1L in DSB 

repair pathway, we examined which repair pathway is affected by DOT1L depletion. 

For this purpose, we have used homologous recombination (HR) and non-

homologous end joining (NHEJ) cell reporter systems. We performed HR and NHEJ 

repair I-SceI-induced DSB assay, using GFP-based reporter systems using HeLa 

pDR-GFP cells, a cell line with the chromosomally integrated HR and NHEJ plasmid 

substrate DR-GFP. In this system, a DSB is generated by expressing the I-SceI 

endonuclease. The repair efficiency was calculated by flow cytometry based on the 

fraction of GFP-positive (GFP+ cells) cells 48 h after transfection with an I-SceI 

expression vector. 

We found that different individual siRNAs targeting DOT1L led to a significantly 

decreased HR efficiency as compared to siRNA controls (Figure 12 A). Interestingly, 

DOT1L depletion led to slightly elevated NHEJ efficiency. These results provide 

evidence that DOT1L promotes HR-mediated DSB repair. 

To further test whether DOT1L is crucial for HR-mediated DNA repair, we performed 

chromatin fractionation analyses in DOT1L-depleted cells treated with NCS for 

different time periods. We checked the chromatin fractions obtained from SW837 

cells by immunoblotting and examined the recruitment of repair proteins involved in 
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the HR pathway. Immediately after DNA damage, proteins involved in the DNA 

damage response and key HR repair mediators are recruited to the chromatin site. 

We show that the recruitment of the single stranded binding proteins RPA1 and 

RAD51 to chromatin in response to DNA DSB induction is increased in cells with 

DOT1L wildtype levels. Moreover, the C-terminal binding protein (CtBP)-interacting 

protein (CtIP) is recruited to chromatin and its levels increased over time in control 

cells. This protein plays a central role in DNA end resection DSB repair (Sartori et 

al., 2007). CtIP is decreased in DOT1L-depleted cells. Increased recruitment of the 

single stranded binding protein RPA1 and Rad51 were observed from 2-6 hours of 

NCS treatment. This is significantly decreased by RNA interference-mediated 

DOT1L knockdown (Figure 12 B). Taken together, our findings demonstrate that 

DOT1L regulates the recruitment of damage signaling machinery and promotes the 

homologous recombination pathway.  
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Figure 12: DOT1L is important for the homologous recombination-mediated repair pathway. 
(A) HeLa cells harboring of HR repair construct (pGC) or NHEJ repair construct (pEJ) were 
transfected either mock or DOT1L siRNA #1 or siRNA #2. After 24 hours of siRNA transfection, DSB 
was induced by transfecting cells with I-SceI-expressing vector (pCMV-I-SceI-3xNLS). 48 hours after 
transfection cells were assessed for green fluorescence-positive cells by flow cytometry (FACScan, 
BD Bioscience) for HR and NHEJ efficiency. HR repair efficiency is decreased in DOT1L depleted 
cells. (B) After 72 hours of post-siRNA transfection and following NCS treatment the insoluble 
chromatin fractions were harvested and subjected to Western blot analysis revealing an enrichment of 
Rad51 and CtIP in control cells.   
 

4.7 Loss of DOT1L leads to increased sensitivity to ionizing radiation (IR)  

We have observed that DOT1L functions in the homologous repair (HR)-mediated 

DNA double-strand break repair pathway. Based on the recruitment of repair factors 

to chromatin in response to DSBs, we next tested whether DOT1L is involved in cell 

survival after DNA damage. To test this, we irradiated cells with 6 Gy and harvested 

total cell lysates from 15 minutes to 6 hours of IR. Western blotting analysis 
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confirmed that γH2AX is accumulated in the control cells within 15 minutes of IR, as 

expected, it is less in DOT1L-depleted cells confirmed again its role in DSB repair 

process (Figure 13 A). We further performed a clonogenic assay to test cell survival 

after siRNA-mediated depletion of DOT1L and irradiation in SW837 cells for a period 

of 21 days. Both control and DOT1L-depleted cells were irradiated using 0, 1, 2, 4, 6 

and 8 Gy and cell proliferation was measured. We observed that depletion of DOT1L 

leads to increased sensitivity to ionizing radiation as compared to control cells. 

DOT1L-deficient SW837 cells are moderately sensitive to low IR (Figure 13 B & C) 

suggesting that these cells are sensitive in the repair of IR-induced DNA lesions. 

This is in agreement with results shown in Figures 12 in which DOT1L is involved 

only in HR pathway.  

 

 

 

 

 

 

 

 

Figure 13: Depletion of DOT1L leads to increased sensitivity to ionization radiation (A) SW837 
cells were transfected with DOT1L siRNA for 48 hours. Cells were treated with ionizing radiation 
(6Gy) and total protein lysates were harvested after indicated time points and immunoblotted with 
indicated antibodies.  H2B and HSC70 used as a loading control. (B) Colony formation assay 
performed with SW837 cells which were transfected with either mock or DOT1L siRNA. After 48 hours 
of transfection cells were treated with indicated doses of irradiation (Gy) leading to an increase in 
γH2AX. (C) Whole cell lysates from DOT1L siRNA transfected SW837 cells after 48-hour knock down 
and its efficacy of knockdown checked with DOT1L and H3K79me3 antibodies. 
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4.8 Additive effect of DOT1L and PARP inhibition on cell proliferation 

MLL-fusion protein-induced transformed cells exhibit local hyper-methylation of 

H3K79 and undergo apoptosis in the absence of DOT1L (Nguyen et al., 2011). 

Small molecule DOT1L inhibitors, such as SGC0946, EPZ004777 and EPZ5676 

induce apoptosis in leukemia cells induced by MLL-fusion proteins (Chen et al., 

2013).  

While trying to clarify the cell death and proliferation defect, we employed the 

potential PARPi (veliparib) which will block the DNA repair of DSBs for better 

treatment cancer treatment options (Srivastava and Raghavan, 2015). We monitored 

the proliferation rate of cells, using an optical automated microscope Celigo® which 

measures the cell growth upon desired treatment of the cells. Initially, SW837 cells 

were treated either with the DOT1L inhibitor EPZ-5676 or the PARP inhibitor 

veliparib (ABT-888). The SW837 cells were treated alternatively every 48 h and the 

confluence was measured daily before media exchange. Finally, cell confluence was 

plotted against time (in days).   

From the plotted graph it was clear that individual treatment with the DOT1L inhibitor 

using the highest concentration (1,000 nM) resulted in no changes in the 

proliferation. When treating cells with the PARP inhibitor veliparib (ABT-888), we 

observed a significant effect of proliferation which we also confirmed in another cell 

line, U2OS (Figure 14 A-C). Veliparib significantly reduced survival in cells at all 

tested treatment concentrations and durations and the inhibition increased with 

increasing dose and time.  
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Figure 14: Cell proliferation assay with DOT1L and PARP inhibitors. (A) SW837 cells were 
treated with increasing concentrations of EPZ-5676 (1-1000 nM) every 48 hours. Cell confluence was 
measured at regular intervals of 24 hours using the Celigo® cytometer. (B) Treatment with PARP 
inhibitor (ABT-888) in SW837 cells as and in U2OS cells (C). 
 
Treatment with a PARP inhibitor as a therapeutic anti-cancer drug is an alternative 

strategy in the context of a defective BRCA1 or BRCA2 gene (Farmer et al., 2005). 

The combination of PARP inhibitor with cytotoxic DNA damaging agents such as 

irinotecan hydrochloride is now being tried and reached phase 3 clinical trials in 
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locally advanced or metastatic colorectal cancer (NCT00535353). We further aimed 

at combination treatment strategy and compared the effects of different DNA-

damaging agents when combined with a DOT1L inhibitor. Cellular proliferation was 

examined by while increasing the inhibitor dose. We observed cell proliferation 

defects with increasing concentrations of EPZ-5676 and in a combination of veliparib 

(Figure 15 A-C). The combined inhibition of DOT1L and veliparib inhibits cell 

proliferation in a continuous pattern where combining both compounds induced a 

greater effect on cell proliferation, compared to the DOT1L inhibitor alone. We show 

that the additive antiproliferative effect of DOT1L inhibitor when combined with 

PARP inhibitor was significantly more effective than either treatment alone in 

colorectal cells and loss of DOT1L function leads to increased sensitivity to PARP 

inhibition. Taken together, both inhibiting DOT1L and treatment with veliparib 

increased anti-proliferative effects. 
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Figure 15: Additive effect on cell proliferation with dual DOT1L and PARP inhibition. (A) Dose-
dependent treatment every 48 hours with vehicle (DMSO) or with EPZ alone and increasing 
concentration of veliparib (VEL) on SW837 cells. Each figure represents the mean ± s.d. of biological 
triplicates. Cells were pre-treated with EPZ for 3 hrs followed by 48 hrs of incubation time. (B) Data 
from A represented in the graph from the 11th day of treatment. (C) Dose-dependent treatment every 
48 hours with vehicle (DMSO) or with VEL alone and increasing concentration of EPZ on SW837 
cells. Each figure represents the mean ± s.d. of biological triplicates.  
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4.9 Additive effect of DOT1L inhibition and DNA-damaging agent irinotecan 

on cell proliferation 

The study using PARP inhibitors suggests that co-treatment with DOT1L inhibitor 

with other DNA damaging agents, specifically single strand break (SSB)-inducing 

agents, could increase the sensitivity of cells to DNA damage. To test this, we used 

the topoisomerase I inhibitor irinotecan (IRI), which typically induces SSBs which 

further develop to DSBs in S-phase, which are mainly repaired via the HR pathway 

(Xu and Her, 2015). Initially, we treated SW837 cells with IRI for different time points 

from 2 hours to 48 hours. Upon treatment, phosphorylated H2AX rapidly 

accumulated from 2-6 hours and at later time points decreased due to the repair of 

damaged DNA. The cells treated with irinotecan which induced lower levels of 

γH2AX after 24 hours are seems to be repaired as observed with western blotting 

analysis (Figure 16).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16: Irinotecan affects phosphorylation of histone variant H2AX. SW837 cells treated with 
irinotecan (300 nM) (IRI) at indicated time points and analyzed with Western blot revealing the effect 
of damage response. 
 
To further check the combined effects of DOT1L inhibition and irinotecan on the 

proliferation rate of CRC cells, we investigated effects of the combination of the 

DOT1L inhibitor EPZ-5676 and irinotecan by performing Celigo® 
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measurements. Celigo image cytometer is a cell-based image cytometry assays 

which determined cell viability.  

Interestingly, cells treated with DOT1L inhibitor combined with irinotecan showed a 

significant decrease in cell proliferation compared to either DOT1L inhibitor or 

irinotecan alone (Figure 17 A-B). The combined effects are more visible only at lower 

concentrations of irinotecan. These findings clearly showed that the addition of a 

DOT1L inhibitor further increased the effects of irinotecan on cell proliferation.    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Increased sensitivity of CRC cells after combining irinotecan with a DOT1L 
inhibitor. (A) Dose-dependent treatment every 48 hours with vehicle (DMSO) or with irinotecan alone 
(0.316 µM) and increasing the concentration of EPZ on SW837 cells. Each figure represents the 
mean ± s.d. of biological triplicates. (B) Similar to A with constant concentration of irinotecan 1µM and 
increasing concentration of EPZ.  
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4.10 PARP inhibitor in combination with other DNA-damaging therapeutic 

agents 

Several studies reported that PARP plays a key role in DNA-damage signaling and 

repair. Defective homologous recombination repair pathways (BRCA-associated 

mutations) are sensitive to PARP inhibition (Javle and Curtin, 2011). In recent years 

olaparib is FDA-approved PARP inhibitor, appear promising against cancers with 

BRCA1 or BRCA2 mutations, including breast and ovarian cancers (Fong et al., 

2009). Since in our case, loss of DOT1L resulted in defective HR repair of DNA 

damage, we hypothesized that low DOT1L in the cancer cells can sensitize to PARP 

inhibition as well. We treated SW837 and SW480 cells with veliparib (ABT-888). We 

observed that increasing concentrations of veliparib markedly decreased cell 

proliferation in two different cell lines (Figure 14 B and C). The effect between 

inhibition of PARP and DOT1L was further enhanced when combined with 

irinotecan. Interestingly, we observed inhibition of PARP alone did not mediate 

significant anti-proliferative activity relative to irinotecan and PARP inhibition 

together, however, in combination with irinotecan, decreased proliferation (Figure 18 

A-B). These findings clearly demonstrate that the addition of PARP inhibitors to 

irinotecan further increased anti-proliferative effects. This shows DOT1L-activating 

DSB repair in combining with PARP and chemotherapeutic agents.    
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Figure 18: Increased sensitivity to veliparib combined with DOT1L and irinotecan. (A) Dose-
dependent treatment every 48 hours with vehicle (DMSO) or irinotecan alone 0.316 µM and with 
increasing concentration of VEL on SW837 cells. Each figure represents the mean ± s.d. of biological 
triplicates. (B) With the constant concentration of irinotecan 1µM.  
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4.11 Combination treatment with 5-FU is more effective at reducing cell 

viability and repairs DSBs    

Generally, the treatment of colorectal cancer includes the nucleoside analog 5-

fluorouracil (5-FU) in combination with radiation. 5-FU leads to the generation of 

secondary DSBs in S phase, which is repaired by the HR pathway (Srinivas et al., 

2015). Irinotecan plus 5-fluorouracil and folinic acid combined clinically and emerges 

as frontline chemotherapy for colorectal cancer (Glimelius et al., 2002).Therefore, we 

combine the DNA-damaging chemotherapeutic agents such as irinotecan with 5-FU 

in CRC cells for clinical utilization.  

After seeding cells, we pretreated the CRC cells SW837 and SW480 with 5-FU for 

24 hours in combination with EPZ and IRI or alternatively 48 hours treatment only 

with IRI and EPZ for a period of 7 days (Figure 19).  

 

 

Figure 19: Schematic presentation of treating CRC cells with 5-FU, IRI, and EPZ. 24 hours after 
seeding SW480 and SW837 cells they were incubated with 5 µM 5-FU in combination with 1 µM IRI 
and 1 µM EPZ for 24 h followed by treatment with only IRI and EPZ against the indicated time points. 
The cell proliferation was measured daily before treatment. 
 
With immunoblot analysis, we found after 5-FU and IRI combination, there is an 

increased accumulation of γH2AX as compared to 5-FU alone (Figure 20 A-B). 

Simultaneously we have performed a cell proliferation assay using the Celigo® 

cytometer for 7 days. We showed that the combination of DOT1L inhibitor, 5-FU and 

IRI led to a severe proliferation defect in both cell lines. This suggests that 

decreased cell proliferation occurs in the presence of both IRI and 5-FU inhibitor. 5-

FU alone is less effective regarding reducing cell proliferation (Figure 20 C-D). While 

comparing the relative confluence after 7 days of treatment, it was observed that the 

decrease in cell proliferation after combining 5-FU and IRI is highly significant (*** P 
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≤ 0.001) (Figure 20 E-F). Therefore, these findings suggest that combinatorial 

treatment is more effective at reducing cell proliferation than treatments with a single 

agent.  

 

 

Figure 20: Combinational treatment of the DOT1L inhibitor EPZ-5676, irinotecan and 5-FU is 
highly effective at reducing cell viability. (A) SW837 (B) SW480 cell lysates were harvested after 
48 hours of treatment as indicated, and Western blotting was carried out revealing that increasing 
breaks (C) SW837 and (D) SW480 cells were treated initially with 5-FU (5 µM), IRI (1 µM) or EPZ (1 
µM) alone or in combination as indicated for 24 hours and later followed by media change every 48 
hours. Cell confluence was measured at regular intervals of 24 hours using the Celigo® cytometer. 
(E), (F) Quantitative analysis of Celigo measurement from C and D from the 7th day of treatment. The 
error bars represent standard deviations (* P ≤ 0.05, ** P ≤ 0.01, and *** P ≤ 0.001). 
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4.12 Combinational treatment with veliparib is more effective at reducing cell 

viability and repairs DSBs    

Mutations in either the BRCA1 or BRCA2 genes lead to defective homologous 

recombination (HR) and affected cells are sensitive to PARP inhibition. It has been 

shown with several studies that PARP inhibitors increase the efficacy of 

topoisomerase inhibitors (Kummar et al., 2011; Smith et al., 2005). It has also been 

suggested that niraparib, a PARP inhibitor, also showed additive to synergistic 

inhibition of cell proliferation despite MSI/MSS status of colorectal cancer cell 

(Genther Williams et al., 2015). We hypothesized that combined treatment of 

veliparib may enhance the sensitivity to irinotecan and the DOT1L inhibitor.  As 

expected, we observed high accumulation of phosphorylated H2AX at ser139 in 

SW837 and SW480 cells after combined treatment with IRI+VEL and EPZ+IRI 

(Figure 21 A and B). Proliferation assays showed that continuous treatment with 

EPZ alone resulted in a very mild effect, while the combination of EPZ with veliparib 

resulted in a strong decrease in cell proliferation (Figure 21 C &D). We observed 

less γH2AX level with a combination of all three treatment options using Western 

blot analysis. Moreover, at day 10 of treatment, there is a significantly decreased cell 

proliferation (Figure 21 E-F), which is statistically very significant (****P ≤ 0.0001). 

Taken together, inhibiting DOT1L and PARP simultaneously results in less γH2AX 

accumulation and increased growth arrest. These results indicate that DOT1L loss 

affects HR-dependent DSB repair and results in a dependency on PARP as critical 

determinants of DSB repair. Consequently, the combination of veliparib, irinotecan 

and DOT1L inhibition seems a promising approach for targeting the DNA double-

strand break repair pathway. 
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Figure 21: Combined treatment of irinotecan, veliparib and EPZ-5676 reduces cell viability. (A) 
SW837 (B) and SW480 cells were treated with the indicated drugs for 48 hours. Total lysates were 
immunoblotted showing less γH2AX after the combination of all three drugs. (C) SW837 and (D) 
SW480 cells were treated with the individual drugs or in combination of veliparib (10 µM), irinotecan 
(0.316 µM) and EPZ-5676 (1 µM) every 48 hours. Cell confluence was measured at regular intervals 
of 24 hours using the Celigo® cytometer. (E), (F) Effect of the chronic drug treatment as described in 
A and B in SW837 and SW480 cells and relative confluency was measured at day 10 using Celigo®.  
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4.13 H3K79me3 is a marker for molecular stratification of CRC patients 

For improving patient treatments and outcomes, the identification of molecular 

biomarkers is essential. Mechanistically, DOT1L plays a role in HR-repair pathway. 

Studies in rectal cancer patient samples revealed that the DOT1L gene is 

differentially methylated and associated with an overall better survival (Gaedcke et 

al., 2014). In this study, we examined whether H3K79me3 levels may correlate with 

the survival rates of rectal cancer patients. To investigate H3K79me3 levels, we 

performed immunohistochemistry with H3K79me3 on tissue microarrays (TMAs) 

from rectal cancer patients treated in the Department of General, Visceral, and 

Pediatric Surgery. Interestingly, we observed very different levels of H3K79me3 

among the patients tested (Figure 22 A). The patients were classified based on the 

H3K79me3 staining intensity either as no staining, low (5% staining), 

medium/heterogeneous (50%) or high (100%). Interestingly, the Kaplan-Meier plot 

showed that patients who had relatively strong H3K79me3 staining (p=0.051) 

displayed better overall survival rates (red line) compared to patients with medium or 

low H3K79me3 levels (blue line) (Figure 22 B). Together our result suggests that 

DOT1L is mainly required for repair of DSB via the HR pathway. These data suggest 

that combined targeting of PARP along with other standard available 

chemotherapeutics agents like irinotecan might be a promising approach for treating 

DNA-repair defects (HR) in H3K79me3-stratified colorectal cancers. Altogether, this 

study provides strong evidence for a central role of DOT1L in DNA DSB repair and 

may serve as a basis for further exploration of DOT1L as an anti-cancer therapeutic 

target in combination with other chemotherapeutic approaches. Therefore, we 

hypothesize that DOT1L activity (i.e. H3K79me3) may serve as a marker for 

molecular stratification of colorectal cancer. 
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Figure 22: Low H3K79me3 levels result in poor overall survival in CRC patients. In total, 
samples from 156 patients were used for immunohistochemical analyses of H3K79me3 levels. Based 
on the staining intensity, the nuclei were given the relative score of 0 to 3, with 3 corresponding to 
highest staining intensity. Moreover, the overall percentage of the stained nuclei corresponding to 
each score were estimated for each analyzed sample. A. The patients’ tissue samples were then 
classified based on the staining intensity and overall percentage of the stained nuclei as no staining, 
or low (5% of the nuclei with low score), medium/heterogeneous (50% of the nuclei stained 
heterogeneously), or high (100% of the nuclei with high score) staining. Solid arrows indicate positive, 
gray arrows weak and white arrows negative staining. B. The Kaplan-Meier survival rate was 
estimated for groups of patients with tissue samples classified as “High” (red line) and “Low or 
Heterogeneous” (blue line; comprising patients with no, low or heterogeneous staining).  
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5 Discussion 

Maintaining genome integrity is essential for all living organisms. Damaged DNA 

which is not repaired properly may lead to different disease states like cancer. 

Several studies reported that the DOT1L methyltransferase is implicated in several 

biological processes such as cell cycle regulation, transcription, reprogramming, 

development, differentiation, and proliferation (Nguyen and Zhang, 2011b) where it 

mediates mono-, di-, and tri-methylation of H3K79. Moreover, DOT1L has been 

highlighted in the development of many diseases including leukemia, cardiac 

dysfunction and kidney injury (Kim et al., 2014). DOT1L and histone methylation 

(H3K79) are involved in the double-stranded DNA break repair during different cell 

cycle phases (Wakeman et al., 2012). Recent study reports that small molecule 

inhibition of DOT1L is effective in treating leukemia and aggressive breast cancer 

and DOT1L is a promising future drug  target (Lee et al., 2015). Therefore, we have 

mechanistically dissected the role of DOT1L particularly in DNA DSBs repair in 

colorectal cancer and studied the applicability in regarding therapeutic aspects.    

5.1 DOT1L affects γH2AX and DNA damage recognition  

We showed that DOT1L expression is decreased upon siRNA-mediated knockdown 

resulting in the nearly complete absence or decreased of H3K79me3. We have 

demonstrated that upon DSB, the DNA damage-response-activated ATM had an 

increased phosphorylation level. Phosphorylation of H2AX by ATM has been shown 

to be crucial in DNA damage and response pathway and to activate checkpoints 

(Fernandez-Capetillo et al., 2002). Importantly we have found that there are 

drastically reduced levels of γH2AX in DOT1L-depleted cells as seen by Western 

blotting analysis which is further confirmed by Immunofluorescence study after 15 

minutes of DNA DSB induction. This suggests the role of DOT1L in DNA repair. The 
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decreased γH2AX levels in DOT1L-depleted cells can be either because the breaks 

are not recognized properly which cause less DNA damage response or the breaks 

are repaired faster which leads to decreased γH2AX signal. 

5.2 DOT1L is required for proper DNA-damage response  

In contrast to less γH2AX after DOT1L depletion, we have also observe increased 

levels of phosphorylated NBS1 and CHK2 which are involved in the repair of DNA 

DSBs. Previous studies have indicated that KAP1 plays an important role during the 

DNA-damage response in heterochromatin regions (Cann and Dellaire, 2011; 

Pfeifer, 2012). Interestingly, we have shown that depletion of DOT1L leads to an 

increase of KAP1 phosphorylation and similar results were reported previously (Li et 

al., 2007). The possible explanation is that the loss of H3K79me3 leads to a 

heterochromatin-dependent increase of KAP1 phosphorylation, following DOT1L 

loss/inhibition. Our finding is supported by the previous report in mouse ES cells, 

Dot1L play role in the heterochromatin structure (Jones et al., 2008b). DOT1L-

mediated H3K79 methylation is enriched in actively transcribed genes (Nguyen and 

Zhang, 2011b). These data indicate that DOT1L involvement extends from 

euchromatic to heterochromatic regions in DSB repair process.   

Several reports suggested that DOT1L is a potential target for anti-cancer therapy 

and inhibitors are in the pre-clinical studies. The present study using DOT1L 

inhibitors further confirms the role of DOT1L in DNA-damage-response process. 

Consistent with our siRNA-mediated/depletion data, we observed increased levels of 

NBS1, ATM, CHK2, and KAP1 by using DOT1L inhibitor. This indicates that the 

methyltransferase activity of DOT1L responsible for H3K79 methylation and is 

essential for proper DNA-damage response. Importantly, the effectiveness of DOT1L 

inhibition with acute treatment of 3 hours observed to be the direct role of DOT1L, 

76 
 



Discussion 

which may block new the methylation (H3K79me3) with DOT1L short inhibition 

treatment. Indirectly, previous studies reported that cyclin-dependent kinase 12 

(CDK12) which is a tumor suppressor protein and is important for regulation of 

several homologous recombination genes specifically BRCA1 expression (Blazek, 

2012). The cdk12 loss led to increased PARPi sensitivity. Further experiments using 

irradiation shows that DOT1L-depleted cells are sensitive to DSBs which confirms, 

that DOT1L engaged in DNA-repair process. During DNA damage response either 

with NCS or IR, DOT1L expression promotes proper DNA repair. Thus, we placed 

our focus on the role of DOT1L-mediated H3K79me3 levels in DNA-damage repair 

and which has also been implicated as a mediator of DNA repair activity.  

5.3 DOT1L is required for homologous recombination repair pathway  

DSBs are generally repaired by two major pathways, NHEJ and HR. Knockdown of 

DOT1L in stably integrated plasmid-based HR and NHEJ reporter assays showed 

that HR efficiency has decreased but not NHEJ. This demonstrates that the histone 

methyltransferase DOT1L is involved in HR-mediated DSB repair.  

We have discussed the role of chromatin recruitment factors in the efficient repair of 

DNA DSBs and the intermediate proteins which help during this repair process and 

finally summarized our findings in the mechanism of the HR pathway. During HR 

repair, DNA end-resection process is an important step. It is well known that during 

the end resection-process CtIP binds to the damaged site. After performing a 

chromatin fractionation assay we observed that CtIP is significantly decreased in 

DOT1L-depleted cells in response to DSB induction, hence that it is required for end 

resection. It is reported that the end processing of DNA generally determine whether 

it is repaired by HR or NHEJ. Previous studies (Sartori et al., 2007) demonstrated 

that CtIP is recruited to DSBs in S and G2 phases suggesting that its recruitment 
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favors the repair of DNA DSBs via the HR pathway. Besides, single-stranded DNA 

repair protein RPA1 recruited to the sites of DNA damage (Ng et al., 2002). The HR 

pathway is controlled by repair proteins such as RAD51 (Mansour et al., 2008). 

Previously, it was reported that the presence of ssDNA tails resulted in a RAD51-

mediated initiation of HR (Loizou et al., 2006; Tsukuda et al., 2005). The proteins 

involved in the chromatin alterations and repair via HR are highly relevant. It appears 

that there is less γH2AX induction, which might be due to a quick repair of DSBs. 

We conclude that DOT1L regulated by HR is playing a crucial role in repairing DSB 

breaks and protecting the genome integrity while the loss of DOT1L leads to HR 

defects. Therefore, methylation at H3K79 may be considered as an essential mark 

for DNA damage signaling, allowing recruitment of repair factors. Our finding 

suggests that DOT1L critically contributes to DSB repair in CRC cell lines while we 

have also seen that it is involved primarily in DNA repair by homologous 

recombination. 

5.4 H3K79me3 and γH2AX co-localize at the DSB sites  

To further understand the DOT1L involvement in H2AX phosphorylation at the sites 

of DSBs, we performed co-localization studies using PLA assay. Few studies have 

described the background behind the mechanism of DOT1L involvement in DNA 

repair, the binding of 53BP1 to H3K79me3 (Wakeman et al., 2012) or the interaction 

with histone modifications such as H2B monoubiquitination (Giannattasio et al., 

2005). Our finding is consistent with the previous reports in yeast and mammalian 

cells in which Dot1/DOT1L was described to be associated with H3K79 methylation 

and to play a role in DNA repair (Nguyen and Zhang, 2011b). Since there is co-

localization or interaction of H3K79me3 and γH2AX, we proposed the explanation 

that DNA end-resection by CtIP recruitment and recruitment of other DNA repair 

proteins such as BRACA1/2 decreased recruitment with PARP-inhibitor sensitivity 
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may be involved in the repair of DSB (Benafif and Hall, 2015). We also provide the 

role of DOT1L in DNA damage function by showing that knockdown and inhibition of 

DOT1L is correlated with increased levels of pCHK2, pATM, and pKAP1.  

We found that in control cells, histone H2AX phosphorylation (γH2AX) co-localizes 

with H3K79me3. γH2AX is upregulated in response to DSBs and therefore we 

assume that this domain may extend up to some kb from the site of damage. Our 

data propose that global H3K79me3 is not affected by DNA damage, i.e. H3K79me3 

levels do not increase or decrease due to the induction of DSBs. Indeed, H3K79me3 

is co-localized with γH2AX at the break site. 

5.5 DOT1L and PARP inhibition decrease cell proliferation and cell viability 

Our findings provide evidence of a role of DOT1L in DNA-damage response and 

repair via the HR pathway. Moreover, published data suggest that DOT1L is an 

important oncogene and a novel target in aggressive breast cancer therapy (Cho et 

al., 2015). Studies have described DOT1L to have a role in cell proliferation of 

prostate and lung cancers (Kim et al., 2012b). Many other studies have proposed 

DOT1L as a potential therapeutic target in human leukemia. These studies 

highlighted the importance of DOT1L enzymatic activities and H3K79 methylation 

levels as a target for therapy. In our study, we have focused on understanding the 

therapeutic aspects with the DSB repair defects. 

Over the last years, many reports have investigated PARP and its involvement in 

DNA repair. Thus, we aimed to determine whether PARPi alone or in combination 

with DNA-damaging agents such irinotecan and oxaliplatin have anti-proliferative 

effects in CRC cell lines. We studied proliferation effects up to 7 days during 

continuous treatment with constant doses and different concentrations alone and in 

a combination of PARPi, irinotecan, and EPZ-5676. We have demonstrated that 
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increasing concentrations of PARPi and a constant dose of irinotecan and EPZ 

sensitizes both tested CRC cell lines. In this study, we demonstrate the optimal 

doses of all the compounds in our cell line-model system. To determine the 

effectiveness of combined therapy, we have treated cells always with fixed amounts 

of the PARP inhibitor together with increasing concentrations of irinotecan, vice 

versa. Irinotecan in combination with PARPi or EPZ results in the inhibition of cell 

proliferation. On the basis of our findings in cancer cell lines, the output of using 

PARP inhibitor and irinotecan is very promising and similar reports have been 

reported in mammalian tumor cells with preexisting DNA repair deficiencies (Zhang 

et al., 2011). Similar reports described less cell proliferation in yeast, mouse 

embryonic stem cells, and human cancer cells after depletion of DOT1L (Kim et al., 

2014).  

γH2AX is a marker for DNA damage (Bonner et al., 2008). We demonstrated that 

DNA damage caused by veliparib is minimal, however, after the addition of 

irinotecan the γH2AX levels increased. Moreover, after treatment with all three 

compounds VEL, IRI and EPZ-5676 we observed less γH2AX when compared to 

single treatment. This supports our findings obtained by Celigo® assay indicating 

increased drug sensitivity after drug combination. 

Studies indicate that prostate cancer patients with HR defects respond better to 

PARP inhibitor treatment (Mateo et al., 2015). They showed that the prostate cancer 

patients who had defects with DNA repair showed a high response to the PARP 

inhibitor olaparib. We did a similar assay in our model system and demonstrated 

comparable effect when combining PARPi with DOT1L inhibitors. We also confirmed 

the effectiveness of PARPi with other DNA damaging agents in multiple cell lines. 
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The data demonstrate that PARPi alone sensitizes cells but it exerts stronger effects 

after the addition of DNA-damaging substances. These findings provide further 

insight into the increased sensitivity of PARP to DNA-damaging agents such as 

irinotecan. Therefore, our data suggest that PARPi has promising therapeutic effects 

in combination with irinotecan which will be beneficial in treating CRC patients.   

Furthermore, our findings also demonstrate that the combination of 

chemotherapeutics such as 5-FU and irinotecan decreases cell proliferation, and 

combination with EPZ-5676 additionally decreases cell viability. Our results are 

supported by Srinivas et al. (2015) suggesting 5-FU and ionizing irradiation sensitize 

colorectal cancer cells towards double-stranded DNA breaks (DSBs) through 

homologous recombination repair (HRR).   

5.6 H3K79me3 may serve as a marker for molecular stratification of 

colorectal cancer patients  

The data using colorectal cancer patient samples provide preliminary evidence that 

H3K79me3 staining may serve as a marker for molecular stratification of CRC 

patients. This implicates defects in DNA repair and proliferation of cancer cells can 

be exploited by PARP inhibition. The data suggest that patients with low H3K79me3 

level show poor survival. Importantly, our findings suggest that less H3K79me3 

would increase the sensitivity to PARPi. We hypothesize that patients with low 

H3K79me3 levels, and therefore poor prognosis, will respond better to PARPi and 

irinotecan than patients with high H3K79me3 levels. The study of Mateo et al. (2015) 

observed olaparib sensitivity in patients with metastatic, castration-resistant prostate 

cancer. Several recent studies observing  PARP-inhibitor  sensitivity  were  

correlated  with  defects  in  homologous recombination-DNA repair (Birkelbach et 

al., 2013; Weaver et al., 2015). Therefore, we assume that drug combinations 
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including PARPi can become important in the context of DNA-repair defects. 

Moreover, our finding suggests a model, where H3K79me3, in addition to its well 

characterized and explained important role in DNA repair, also possibly would be a 

molecular marker for colorectal cancer. We hypothesize that the DNA-DSB repair 

defects-mediated through HR pathway that we are studying can be treated with 

combinational therapy.  

Indeed, the DOT1L inhibitor EPZ-5676 is in phase 1 clinical trials in leukemia 

patients. Based on these reports, a possible future approach to increase our 

understanding of combination treatment of PARP inhibitor with DNA-damaging 

agents such as irinotecan would be the generation of a stable cell line with DOT1L 

knockout using the CRISPR/Cas9 approach. In a xenograft animal model with and 

without PARP treatment the sensitivity can be examined. Therefore additional 

studies are needed to assess the therapeutic aspects of DNA double-strand break 

repair defects in colorectal patients using FOLFORI. A notable finding of this study 

was that a combination treatment is highly effective after the addition of DNA-

damaging agents. Furthermore, personalized therapy with a combination of PARP 

inhibition may be used in combination with other DNA damaging agents such as 

irinotecan to better treat patients with HR defects in DNA repair. It is likely that the 

future therapeutic strategies in CRC involve DNA repair defects of HR pathway 

together with PARPi and radiotherapy. Our finding is novel and a promising 

approach for CRC patient’s treatment. 
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