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Abstract 

Active gene transcription is tightly correlated with the occupancy of histone H2B 

monoubiquitination (H2Bub1) in the transcribed region. Therefore, it is has been 

commonly assumed that H2Bub1 is an exclusively positively acting histone 

modification and that increased H2Bub1 occupancy correlates with its requirement 

for gene expression.  In contrast, depletion of the H2B ubiquitin ligases RNF20 or 

RNF40 alters the expression of only a subset of genes. We show that genes 

occupied by low to moderate amounts of H2Bub1 are selectively regulated in 

response to Rnf40 deletion whereas genes marked by high levels of H2Bub1 are 

mostly unaffected by Rnf40 loss. Furthermore, RNF40-suppressed genes appear to 

play an equally important role compared to RNF40-dependent genes in the 

RNF40/H2Bub1 regulatory network. We show that decreased expression of RNF40-

dependent genes is highly associated with widespread narrowing of H3K4me3 peaks 

following Rnf40 deletion. Notably, genes upregulated following Rnf40 deletion, 

including Foxl2, are enriched for H3K27me3, which is decreased following Rnf40 

deletion due to decreased expression of the Ezh2 gene. As a consequence, 

increased expression of some RNF40-suppressed genes is associated with 

enhancer activation via FOXL2. Finally, consistent with our previous findings, 

H2Bub1 is essential for the activation of bivalent genes, whereby RNF40, 

presumably via H2Bub1, modulates bivalent gene expression via coordination of the 

active and repressive marks H3K4me3 and H3K27me3, respectively. Together these 

findings show the complexity and context-dependency whereby one histone 

modification can have divergent effects on gene transcription dependent upon the 

activity of other epigenetic regulatory proteins and histone modifications. 



II 
 

Acknowledgements 

It is a genuine pleasure to express my gratitude to my supervisor Prof. Dr. Steven A. 

Johnsen for giving me the opportunity of working in the international and excellent 

laboratory. I extend my deep thankful for his guidance and support in science and all 

his help during my stay in Germany. It is my great honour to meet him on the road of 

science.  

I owe a deep sense of thanks to my thesis committee members Prof. Dr. Heidi Hahn 

and Prof. Dr. Matthisa Dobbelstein for the discussion and support throughout my 

project. 

My grateful thanks are extended to Feda Hamdan and Madhobi Sen for the 

generous assistance and discussion about thesis writing. Many thanks to Dr. 

Vijayalakshmi Kari, Dr. Simon Baumgart, Dr. Sankari Nagarajan, Zeynab Najafova, 

Dr. Sandra Laufer, Dr. Michaela Miehe, and Dr. Aya Shibamiya for their assistance 

in my experiments.  

I would like to thank all the members of Steven Johnsen’s group. I am happy to 

acknowledge the great assistance and love provided by Prof. Dr. Hans Will. Also 

thanks to Anusha Thota, Dr. Upasana Bedi, Dr. Theresa Gorsler, Dr. Florian 

Wegwitz, Robyn Laura Kosinsky, Sanjay Kumar Raul, Tareq Hossan, and Vivek 

Kumar Mishra for their cooperation and help. 

I would like to thank my friends, Meng Xiaodan, Dr. Jiang Wei, Dr. Li Hua, Dr. Xing 

Chuanxi, Wang Xiaoqing, and Liu Boyang, for all your support and encouragement.  

I would like to express my eternal gratitude to the financial assistance provided by 

China Scholarship Council (CSC) of my mother land. Thanks to Jilin University and 



III 
 

Prof. Dr. Hongsheng Ouyang to help me get the scholarship. Thanks a lot to 

Göttingen Graduate School for Neurosciences, Biophysics, and Molecular 

Biosciences (GGNB) for providing lots of excellent courses.  

Last but not least, I would like to thank my family for their love and support.  

  



IV 
 

Abbreviations 

APS Ammonium persulfate  

BGP ß-Glycerophosphate  

IAA Iodacetamide  

IBMX Isobutyl-methyl-xanthine  

NEM N-ethylmaleimide  

Bre1 BREfeldin A sensitivity  

°C degree Celsius / centrigrade  

CDK7 Cyclin-Dependent Kinase 7  

CDK9 Cyclin-Dependent Kinase 9  

cDNA Complementary DNA  

ChIP Chromatin immunoprecipitation  

ChIP-seq ChIP coupled with high-throughput sequencing  

mRNA Message ribonucleic acid 

CO2 Carbon dioxide  

COMPASS Complex proteins associated with Set1p  

CTD Carboxy-terminal Domain  

DEPC Diethylpyrocarbonate  

DMEM Dulbecco/Vogt modified Eagle's minimal essential medium  

DMSO Dimethyl sulfoxide  

DNA Deoxyribonucleic acid  

dNTP deoxyribonucleotide  

DSIF DRB Sensitivity Inducing Factor  

DUB Deubiquitinating enzyme  

E1 Ubiquitin-activating enzyme  

E2 Ubiquitin-conjugating enzyme  

E3 Ubiquitin-ligase  

V Voltage 

EDTA Ethylenediaminetetraacetic acid  

et al. and others  

EtOH Ethanol  

FACT Facilitates Active Chromatin Transcription  

FDR False Discovery Rate  

H2A Histone 2A  

H2B Histone 2B  



V 
 

H3 Histone 3  

H3K4me1 Histone 3 monomethylated at lysine 4 

H3K4me3 Histone 3 trimethylated at lysine 4 

H3K27me3 Histone 3 trimethylated at lysine 27  

H3K36me3 Histone 3 trimethylated at lysine 36  

H3K79me3 Histone 3 trimethylated at lysine 79 

H3K27ac Histone 3 acetylation at lysine 27 

H4 Histone 4 

HAT Histone acetyltransferase  

hMSCs Human Mesenchymal Stem Cells  

HSC70 Heat shock 70kDa protein  

TBP TATA-binding protein 

IgG 

kDa 

Immunoglobulin G  

kilo Dalton  

m milli  

μ micro  

n nano  

min Minute  

kb Kilo base pairs 

bp Base pair 

s secend 

h hour 

MLL Myeloid/lymphoid or mixed-lineage  

MEFs Mouse embryonic fibroblasts 

NELF Negative elongation factor  

NP-40 Nonidet P40  

PBS Phosphate Buffered Saline  

mRNA messenger RNA  

cDNA Complementary DNA 

PCR Polymerase Chain Reaction  

qPCR Quantitative real-time PCR  

pH Measurement of acidity or alkalinity of a solution  

P-TEFb Positive Transcription Elongation Factor beta  

RNAP II RNA Polymerase II  

RNF20 Ring finger protein 20  



VI 
 

RNF40 Ring finger protein 40  

P300 E1A binding protein p300 

CBP CREB-binding protein 

TF Transcription factor 

SAGA Spt-Ada-Gcn5-Acetyltransferase 

RT-PCR Reverse Transcription PCR  

SDS Sodium dodecylsulfate  

SDS-PAGE Sodium dodecylsulfate polyacrylamide gel electrophoresis  

siRNA Small interfering RNA  

Tris Tris(hydroxymethyl)aminomethane  

4-OHT (Z)-4-Hydroxytamoxifen 

U Unit  

UBE2A Ubiquitin-conjugating Enzyme E2A  

USP22 Ubiquitin Specific Peptidase 22  

WAC WW domain containing adaptor with coiled-coil  

PcG Polycomb-group proteins 

EZH2 Enhancer of zeste homolog 2 

PRC2 Polycomb Repressive Complex 2 

 

 

  



VII 
 

List of Figures 

Fig.1 Post-translational modifications in histone tails ...................................................... 2 

Fig.2 H2Bub1 associated machinery for transcription elongation .................................. 14 

Fig.3 The model of enhancer-promoter loop ................................................................. 24 

Fig.4 Conditional Rnf40 knockout construct model ....................................................... 46 

Fig.5 The distribution of H2Bub1 on various genome elements .................................... 60 

Fig.6 The dynamic pattern of H2Bub1 occupancy on gene body. ................................. 61 

Fig.7 Correlation between H2Bub1, gene expression, active histone modifications, 

and repressive histone modification .............................................................................. 63 

Fig.8 The effects of H2Bub1 deletion on other active histone modifications ................. 64 

Fig.9 Low or moderate H2Bub1 targeted genes is sensitive to RNF40 deletion ........... 65 

Fig.10 Genome-wide analysis of the alteration of H3K4me3, H3K27me3, and 

H3K27ac surrounding TSS (±1kb) in the absence of H2Bub1 ...................................... 67 

Fig.11 Transcription regulation induced by RNF40 deletion is not associated with 

gene length ................................................................................................................... 69 

Fig.12 Three chromatin states in MEFs ......................................................................... 70 

Fig.13 Heatmaps displaying the occupancy of H2Bub1, H3K4me3, H3K27me3, and 

nascent RNA levels (GRO-Seq) surrounding TSSs in the three chromatin states ........ 71 

Fig.14 The effects of H2Bub1 deletion on H3K4me3 occupancy at the given gene 

clusters .......................................................................................................................... 73 

Fig.15 The alteration of H3K27me3 occupancy near TSS regions of given gene 

clusters following H2Bub1 deletion ............................................................................... 73 

Fig.16 The effects of H2Bub1 deletion on H3K27ac occupancy near TSS regions of 

the given genes ............................................................................................................. 74 

Fig.17 Venn diagram analysis reveals RNF40-dependent and RNF40-independent 

gene enrichment ........................................................................................................... 75 

Fig.18 Differential expression induced by H2Bub1 deletion .......................................... 76 

Fig.19 The spread of H3K4me3 is dependent on H2Bub1 ............................................ 77 

Fig.20 Transcription dependency on H2Bub1 is associated to widespread of 

H3K4me3 domain ......................................................................................................... 78 

Fig.21 Examples for RNF40-dependent genes are associated to widespread 

narrowing of H3K4me3 following Rnf40 deletion ........................................................... 79 

Fig.22 Broadest H3K4me3 marked genes enriched for development in MEFs ............. 82 



VIII 
 

Fig.23 The behavior of H3K4me3 on RNF40-dependent adipocytes specific genes 

during differentiation ...................................................................................................... 83 

Fig.24 GSEA of RNA-Seq data show enrichment of PcG suppressed genes for 

upregulation in Rnf40-/- MEFs ........................................................................................ 86 

Fig.25 PRC2 complex depends on H2Bub1 .................................................................. 87 

Fig.26 Loss of H2Bub1 affects the recruitment of RNA polymerase II on Ezh2 gene ... 89 

Fig.27 Distribution of H3K27me3 signals on various genome elements  in Rnf40+/+ 

and Rnf40-/- MEFs ......................................................................................................... 90 

Fig.28 Reduction of Ezh2 majorly decreases H3K27me3 occupancy near TSS 

regions .......................................................................................................................... 92 

Fig.29 Regulation on EZH2 or H3K27me3 enriched genes ........................................... 94 

Fig.30 Increased H3K27ac signals on EZH2 or decreased H3K27me3 target 

promoters ...................................................................................................................... 96 

Fig.31 The effects of EZH2 small molecular inhibitor on RNF40-suppressed genes .... 97 

Fig.32 Correlation of H3K27me3, EZH2, H3K36me3, DNase-Seq, GRO-Seq, RNAP 

II, H3K4me3, H2Bub1, and H3K27ac near bivalent gene TSSs .................................. 100 

Fig.33 The behavior of multiple histone modifications on H2Bub1 enriched (+) or 

H2Bub1 unenriched (-) bivalent gene TSS following Rnf40 deletion ........................... 102 

Table1 Gene Oncology analysis ................................................................................. 104 

Fig.35 Single gene analysis confirming gene regulation and the alteration of histone 

modification on Hoxc genes ........................................................................................ 106 

Fig.36 Loss of H2Bub1 affects H3K27ac occupancy on enhancers ............................ 108 

Fig.37 Distal enhancer activation affects RNF40-suppressed gene transcription ....... 109 

Fig.38 FOXL2 is distributed to activate RNF40-suppressed gene associated 

enhancers ................................................................................................................... 111 

Fig.39 SiRNA-mediated Foxl2 knockdown blocks a fragment of RNF40-suppressed 

genes .......................................................................................................................... 113 

Fig. 40 Model describing RNF40 mediated H2Bub1 regulatory network. .................... 115 

Fig. 41 Transcriptional dependency on H2Bub1 is associated to H3K4me3 width ...... 117 

Fig. 42 Model depicting how RNF40 indirectly monitors the dynamic antagonism 

between H3K27me3 and H3K27ac ............................................................................. 122 

Fig. 43 The regulatory network of H2Bub1 on bivalent domain ................................... 125 



pg. 1 
 

1. Introduction 

1.1 Nucleosome: How to organize the DNA double helix 

In all organisms, from bacteria to human, the genetic instruction is carried by the 

DNA double helix. Within the nucleus of the eukaryotic cells, highly compacted DNA 

consists of a fundamental repeating chromatin unit called the nucleosome. Each 

nucleosome core particle is formed by the wrapping of approximately 147 base pairs 

of DNA around an octamer protein complex containing two of each of the highly 

conserved core histones (H2A, H2B, H3, and H4). In addition, the linker histone H1 

as well as its isoforms bind to the linker region of DNA outside the nucleosome 

(Zhou et al. 1998). Through the interactions of the nucleosomes or other chromatin 

associated proteins like heterochromatin protein 1 (HP1), nucleosomes are further 

packaged into various compacted levels of chromatin structure from extended 

nucleosome arrays to higher-ordered chromatin fibers (Caterino and Hayes 2007).  

Actually,  eukaryotic cells utilize diverse mechanisms for DNA replication (Fragkos et 

al. 2015), transcription (Workman 2006), DNA damage repair (Ciccia and Elledge 

2010), mRNA processing (Bentley 2014), etc. Those chromatin-associated molecular 

processes require regulatory machineries that control access to genome loci in a 

spatiotemporal manner. Moreover, it is becoming clear that the controlling of 

chromatin compaction and accessibility involves the modulation of histone tail – DNA 

interaction (Caterino and Hayes 2007). Numerous residues within histone proteins 

are subjected to different post-transitional modifications (PTMs) including 

phosphorylation, acetylation, methylation, ubiquitination, deamination (Kouzarides 

2007), ADP ribosylation (Messner and Hottiger 2011), and formylation (Jiang et al. 

2007; Wisniewski et al. 2008), etc. Until now, the best-understood modifications 
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focus on the N-terminal tail extending from the nucleosomal surface (Fig. 1). It 

suggested that this region is required for histone-DNA and nucleosome-nucleosome 

interactions (Iwasaki et al. 2013). Modifications to the histone N-terminal tail have 

profound influences on chromatin structure and accessibility. For example, in 

heterochromatin, H3 tri-methylation at Lysine 9 (H3K9me3) serves as an HP1 

binding platform to compact chromatin (Fischle et al. 2005; Zinner et al. 2006). In 

euchromatin, acetylation of histone tails opens up chromatin via facilitating histone 

exchange and  functioning as a transcription factor  binding platform ,such as 

bromodomain proteins(Dhalluin et al. 1999).    

 

Fig. 1 Post-translational modifications in histone tails 

Modifications at various amino acid residues are shown here (K: Lys, R: Arg, S: Ser, 

and T: Thr). Colors indicate different modifications   on each residue.  

1.2 Histone modifications and gene expression   

In multicellular organisms, each cell type has a unique epigenome to characterize 

specific transcriptional profile, which can be passed down to the daughter cells 

without changes in DNA sequences. In general, epigenome is defined as the 

combination of chemical modifications on DNA and histones (Schones and Zhao 

2008). DNA modifications such as methylation have been frequently studied in the 
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past few decades. Unlike DNA, histones are subjected to various modifications, 

which play diverse functions in chromatin-associated processes such as transcription.  

Transcription requires the access of multiple transcription factors to the specific gene 

locus to further recruit mRNA polymerase II to form the preinitiation complex near the 

transcription start sire (TSS). In the past few years, genome-scale studies on various 

histone modifications as well as their associated epigenetic factors have led to 

exciting advances in our knowledge of epigenetic regulation of gene expression, and 

put forward the ‘histone code’ hypothesis (Strahl and Allis 2000; Turner 2000), the 

‘charge-neutralization’ hypothesis (Roth and Allis 1992), as well as the ‘signaling-

pathway’ hypothesis (Schreiber and Bernstein 2002).  

Genome-wide studies of histone modification maps on multiple eukaryotic cells have 

determined that each histone modification carried out a conserved function in 

transcription. For example, the best-studied H3K4me3, from yeast (Pokholok et al. 

2005), fly (Schubeler et al. 2004), and mammal cells (Bernstein et al. 2005), is 

specifically localized near TSS, and facilitating transcription initiation (Guenther et al. 

2007). However, monomethylation on H3 Lysine 4 (H3K4me1) occupies promoters 

and enhancers, and is required for enhancer-associated factors binding. Tri-

methylation on H3 Lys 36 (H3K36me3) is selectively enriched on the transcribed 

regions of genes from the 5’ to 3’ region in a gradually increased manner, where it is 

associated with transcriptional elongation (de Almeida et al. 2011). In contrast, a 

subset of histone modifications exhibits a transcriptional repressive function. Tri-

methylation of H3K9, H3K27, and H4K20 were found to be associated with 

heterochromatin and maintain genome silencing. Unlike H3K4me3 which selectively 

binds near transcription starting site, H3K27me3, H3K9me3, and H4K20me3 are  
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broadly enriched at the silenced non-coding and coding genomic regions (Roh et al. 

2006; Magklara et al. 2011). However, di-methylation of H3K27 (H3K27me2) or 

monomethylation of H4K20 (H4K20me1) have been observed on less transcribed 

genes (Lee et al. 2015a; Svensson et al. 2015). Thus, histones can be diversely 

modified to comprehensively control gene expression on different levels. 

1.3 Histone H2B monoubiquitination  

1.3.1 Biochemical pathway for the monoubiquitination of H2B 

Monoubiquitination on H2B is sequentially catalyzed by an enzymatic cascade 

involving ATP-dependent ubiquitin-activating enzyme (E1), ubiquitin-conjugating 

enzyme (E2), and RING finger ubiquitin ligase (E3) which ligates the highly 

conserved ubiquitin containing of 76 amino acids to the C-terminal tail of histone 

H2B (at K123 of yeasts and K120 of mammals) (Robzyk et al. 2000; Hwang et al. 

2003; Weake and Workman 2008). In this sequential process, ubiquitin is transferred 

to the ATP activated cysteine residue of E1; Afterwards, E2 is activated via 

ubiquitination by E1.  Subsequently, the ubiquitin activated E2 is recruited to the 

lysine residue of target proteins by the substrate-specific binding E3 in an ATP 

independent manner.  (Schulman and Harper 2009; van Wijk and Timmers 2010; 

Metzger et al. 2012).  

The E2 and E3 enzymes responsible for H2B monoubiquitination were first identified 

in yeast. Rad6 with the E2 activity specifically interacts with Bre1 with the E3 activity 

to ubiquitinate H2B on lysine 123 (Robzyk et al. 2000; Hwang et al. 2003). E2 and 

E3 for H2B monoubiquitination are highly conserved, with two homologs in human 

cells. The human E2 homologs are called UBE2A and UBE2B (Kim et al. 2009). The 

E3 homologs RNF20 (hBre1A) and RNF40 (hBre1B) form a heterotetrameric 
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complex through their N-terminal region which together carries out H2B 

monoubiquitination at lysine 120 (Zhu et al. 2005; Kim et al. 2009). Depleting either 

RNF20 or RNF40 specifically results in the global loss of H2Bub1 (Fuchs et al. 2012; 

Karpiuk et al. 2012).  

In contrast to poly-ubiquitination which commonly plays a role in targeting proteins 

for degradation via the proteasome, monoubiquitination on H2B plays multiple 

biological functions. It serves as a transcription coactivator for ongoing transcription 

elongation (Kim et al. 2005; Johnsen 2012; Fuchs et al. 2014). Additionally, it 

regulates replication-dependent histone mRNA 3’-end processing (Pirngruber et al. 

2009). Furthermore, it plays a role in DNA double strand break (DSB) repair (Kari et 

al. 2011), DNA replication (Trujillo and Osley 2012), and maintains chromatin 

integrity (Ma et al. 2011; Sadeghi et al. 2014). Accordingly, H2B monoubiquitination 

plays a crucial role in stem cell differentiation and tumorigenesis (Chen et al. 2012; 

Johnsen 2012; Karpiuk et al. 2012; Cole et al. 2015).   

1.3.2 H2Bub1 facilitates transcription elongation   

Early studies in yeast (Robzyk et al. 2000; Sun and Allis 2002) and mammals (Zhu et 

al. 2005; Shema et al. 2008) suggest that H2Bub1 is tightly linked to gene 

transcription. Based on chromatin immunoprecipitation coupled with high throughout 

sequencing (ChIP-seq), H2Bub1 is selectively enriches transcribed regions in 

mammals and yeast (Jung et al. 2012; Sadeghi et al. 2014). Moreover, genome-wide 

mapping of H2Bub1 has uncovered that it is a better representative for the RNA 

polymerase II moving rate than H3K36me3 and H3K79me2 (Fuchs et al. 2014). 

Notably, RNF20-RNF40 ubiquitination complex is cooperatively recruited via 
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interacting to other transcription factors, involving PAF1 complex (Kim et al. 2009), 

WAC (Zhang and Yu 2011), TP53 (Liu et al. 2009), and RB1 (Wen and Ao 2000).  

1.3.2.1 PAF1c regulates H2Bub1  

In mammalian cells, the RNA polymerase II associated factor 1 complex (PAF1c) is 

composed of several subunits including PAF1, CTR9, CDC73, RTF1, SKI8, and 

LEO1 (Kim et al. 2010b). It is suggested that those components can directly interact 

with RNF20-RNF40 complex in vitro and mediate monoubiquitination of H2B at the 

transcribed regions (Fig. 2) (Laribee et al. 2005; Zhu et al. 2005; Kim et al. 2009). In 

the case of hyperparathyroidism-jaw tumor syndrome and Wilms tumor, it is 

suggested that low levels of H2Bub1 was related to the highly frequent mutation of 

the tumor suppressor CDC73 and CTR9. Disruption of PAF1 complex by knocking 

down CDC73 leads to a global reduction of H2Bub1 levels in parathyroid cancer 

(Hahn et al. 2012; Hanks et al. 2014). In addition, PAF1c directly interacts with the 

histone chaperone complex Facilitates Chromatin Transcription (FACT) (Krogan et al. 

2002), which releases the H2A-H2B dimer from the nucleosome to facilitate 

transcription elongation in an ATP-independent manner (Kireeva et al. 2002; 

Belotserkovskaya et al. 2003). Furthermore, H2Bub1 is able to increase the catalytic 

activity of FACT (Pavri et al. 2006).  Accordingly, we can assume that PAF1c, FACT, 

and H2Bub1 forms a machinery to drive RNA polymerase II mediated transcription.   

In addition, PAF1c shows functional diversity in transcription cycle. Depletion of 

PAF1, a subunit of PAF1c, leads the release of RNA polymerase II from the 

promoter-proximal pausing in an H2Bub1-independent manner (Chen et al. 2015a).  
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1.3.2.2 The CDK9-WAC-RNF20/40 regulatory pathway 

The carboxy-terminal domain (CTD) of RNA polymerase II is comprised of the Tyr1-

Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 heptapeptide repeats (Egloff and Murphy 2008). 

From yeast to human, the sequence of this repeat is highly conserved, while differing 

in number with 26 and 52 repeats, respectively (Eick and Geyer 2013). Dynamic 

phosphorylation of the different residues of the CTD is one of the most important 

events in the transcription cycle and is catalyzed by various cell cycle-dependent 

kinases and TFIIF-dependent phosphatases.  Over the past decades, it was 

uncovered that the phosphorylation of CTD usually occurs at the Tyr1, Ser2, Thr4, 

Ser5, and Ser7 residues (Chapman et al. 2007; Hsin et al. 2011; Hintermair et al. 

2012). Cyclin-dependent kinase-7 (CDK7), a component of the general transcription 

factor TFIIH, was initially identified to be responsible for phosphorylation of Ser5 

(Ser5-P) in yeast and mammals (Feaver et al. 1991; Lu et al. 1992). Moreover, it was 

also suggested that TFIIH has Ser7 phosphorylation activity (Glover-Cutter et al. 

2009). Early findings revealed that Ser2 is phosphorylated by the positive 

transcription elongation factor b (P-TEFb) composed of CDK9 and Cyclin T, which 

further facilitates transcription elongation by overcoming the promotor-proximal 

pausing of RNA polymerase II (Marshall and Price 1992). In addition, a recent study 

suggested that CDK12/CDK13, which has Ser2 phosphorylation activity, coupled 

with CDK9, coordinates transcription elongation (Blazek et al. 2011).  

Due to the advances in the development of mono-antibody fo single phosphorylation 

at Tyr1, Ser2, Thr4, Ser5, or Ser7, ChIP-seq approaches were rendered possible 

and could reveal the dynamic changes of the CTD modifications through different 

transcription steps. Ser5-P and Ser7-P are highly enriched at the 5’ ends (Kim et al. 

2010a), where Ser5-P is involved in regulating mRNA capping via recruiting the 
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capping enzymes (Schwer and Shuman 2011). However, Ser2-P shows low 

occupancy at the 5’ end, but gradually increases toward the 3’ end, and is highly 

enriched surrounding transcription terminal site (TTS) (Bataille et al. 2012). Ser2-P 

modulates promoter-proximal pausing of RNA polymerase II, transcription elongation, 

and 3’ RNA processing in transcription cycle.  

During the generation of RNA transcripts, transcription elongation requires 

phosphorylation of Ser2 of CTD.  Most of our understanding of the key machinery 

responsible for Ser2-P is P-TEFb involving CDK9. CDK9 is cooperatively recruited to 

transcription preinitiation complex (PIC), which directly or indirectly depends on 

Ser5-P (Eick and Geyer 2013). Ser5-P is specially catalyzed by CDK7, a component 

of the general transcription factor TFIIH (Lu et al. 1992). In the transcription initiation 

phase, CDK7 carries out a dual function via phosphorylating TFIIE and CDK9. At the 

beginning, the phosphorylated TFIIE is free from PIC, which provides a position for 

the combination of DRB sensitivity-inducing factor (DSIF) and the negative 

elongation factor (NELF) thereby forming the promoter-proximal pausing of RNA 

polymerase II. 

Stimulation of transcription elongation necessitates the activating of the two 

transcriptional elongation inhibitors by phosphorylation, which is catalyzed by the 

phosphorylated CDK9 (Fujinaga et al. 2004; Yamada et al. 2006). Usually, the 

kinase function of CDK9 is inhibited in complex with 7SK snRNA and HEXIM1, and 

dissociates in nucleus (Schulte et al. 2005). After recruiting near TSS under the 

control of other transcription factors like the Ser5-P dependent capping enzymes 

(Coudreuse and Nurse 2010), CDK9 is sequentially activated by CDK7-catalyzed T-

loop phosphorylation (Larochelle et al. 2012).  
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H2Bub1 is globally dependent on Ser2-P as S2A mutation on CTD results in global 

loss of H2Bub1 (Pirngruber et al. 2009). In concordance, inhibiting kinase domain or 

depleting CDK9 abolished H2B monoubiquitination, while overexpression of CDK9 

elevated H2Bub1 levels (Pirngruber et al. 2009). In transcription cycle, multiple 

molecular interactions are associated with the CDK9 kinase activity. Another 

important phosphorylated target is UBE2A, the E2 enzyme responsible for H2Bub1 

in RNF20/RNF40 complex (Wood et al. 2005; Shchebet et al. 2012). Moreover, 

CDK9 can cooperatively facilitate H2B monoubiquitination via promoting the 

recruitment of PAFc, in which the phosphorylated SPT5 CTD by CDK9 serves as a 

binding domain for RTF1, a subunit of PAFc (Mbogning et al. 2013). Additionally, 

depletion of PAF1 (a subunit of PAFc) increased CDK9 occupancy and Ser2-P levels 

and led to genome-wide loss of H2Bub1 (Chen et al. 2015a). This indicates that 

CDK9-facilated H2B monoubiquitination is dependent on PAFc.  

The specific recruitment of RNF20/RNF40 complex to Ser2-P CTD is majorly 

mediated by the WW domain-containing adaptor with coiled-coil (WAC). WAC 

interacts with RNF20/RNF40 complex through its C-terminal coiled-coil region, and 

its N-terminal WW domain recognizes Ser2-P CTD of RNA polymerase II, thereby 

bridging RNF20/RNF40 complex to RNA polymerase II (Zhang and Yu 2011). 

Together, CDK9, WAC, and RNF20/RNF40 complex form a co-regulatory machinery 

to control tissue specific gene expression (Fig. 2) (Karpiuk et al. 2012). 

Eventually, the recruitment of the key regulator CDK9 is crucial to regulate H2Bub1, 

which is mediated by various transcription factors involving BRD4. BRD4 containing 

two N-terminal bromodomains specifically recognizes acetylated histone tails, 

thereby bridging P-TEFb to the hyper-acetylated chromatin site through interacting 
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with BRD4 C-terminal domain PID (Bisgrove et al. 2007). In addition, BRD4 also 

promotes the release of the elongation negative factor NELF to active P-TEFb 

complex (Patel et al. 2013). Both overexpression and functional deletion experiments 

confirmed the P-TEFb mediated CTD phosphorylation is dependent on BRD4 

(Bisgrove et al. 2007; Nagarajan et al. 2014). BRD4 genome-widely mediates the 

recruitment of CDK9 to transcribed regions, further stimulating coding and enhancer 

RNA transcription elongation. In turn, this process can be blocked by the 

bromodomain specific binding inhibitors (Kanno et al. 2014; Nagarajan et al. 2014). 

Unexpectedly, BRD4 partly serves the kinase activity to phosphorylate Ser2 of CTD 

in the absence of P-TEFb (Devaiah et al. 2012). Consistent with the role of Ser2-P 

on transcription elongation, BRD4 facilitates the release of RNA polymerase II into 

gene body (Kanno et al. 2014). Given the positive effect of Ser2-P on H2Bub1 

(Karpiuk et al. 2012), our group further confirmed the role of BRD4 in H2Bub1 

regulatory axis (Fig. 2), by which the depletion of BRD4 led to a decrease in H2Bub1 

(Johnsen 2012; Nagarajan et al. 2014). 

1.3.2.3 H2Bub1 facilitates nucleosome ‘breathing’ during transcription 

elongation 

During transcription elongation, DNA replication, or DNA damage repair, the DNA 

template needs to be unwound from the nucleosome to enable epigenetic regulators 

to access the DNA template. Afterwards, DNA is repackaged within the nucleosome, 

and nucleosomal structure is restored. As other molecular processes, this 

nucleosome breathing requires the help of various chromatin regulators, which are 

classified into ATP-dependent nucleosome remodelers and ATP-independent 

histone chaperones.  
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To date, several ATP-dependent chromatin remodeling enzymes have been 

implicated in transcription activation such as SWI/SNF and NuRD/Mi-2/CHD complex. 

In agreement with the transcription coactive role of H2Bub1, H2Bub1 directs 

SWI/SNF complex recruitment to target genes via functioning as a binding platform 

for chromatin remodeling complex such as BAF155, a subunit of SWI/SNF complex 

(Shema-Yaacoby et al. 2013). The correlation between H2Bub1 and SWI/SNF could 

be confirmed in gene expression due to the fact that disruption of SWI/SNF complex 

resulted in significant reduction of H2Bub1-dependent genes. Unexpectedly, one 

early finding suggested that BAF250, another subunit of SWI/SNF complex, partly 

acts as an E3 ubiquitin ligase for H2Bub1 (Li et al. 2010).  

Unlike chromatin remodelers, histone chaperones mediated nucleosome breathing 

doesn’t require ATP. One of the best-studied chaperones is Facilitates Chromatin 

Transcription (FACT) complex containing two conserved subunits: SPT16H and 

SSRP1. FACT facilitates transcription by releasing H2A-H2B dimer from the core 

nucleosome, and directly interacts with H3-H4 dimer to allow RNA polymerase II to 

efficiently overcome the nucleosome barrier (Belotserkovskaya et al. 2003). On the 

structural basis of a recent study, FACT priority displaces H2A-H2B dimer from 

nucleosome, which requires the interaction between the novel ‘U-turn’ motif in 

Spt16M domain and the α1 helix of H2B to weaken the binding between H2A-H2B 

dimer and DNA (Hondele et al. 2013). FACT has the capability of a dual function as 

it carries out the nucleosome reassembly after transcription. Furthermore, it was 

proposed that H2Bub1 is capable of increasing FACT enzymatic activity to promote 

H2A-H2B dimer displacing. FACT can in turn facilitate H2B monoubiquitination 

through SPT16H recruits RNF20/RNF40 to Ser2-P CTD of RNA polymerase II 

(Endoh et al. 2004). Taking together, this cooperative interaction between FACT and 
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H2Bub1 enhances nucleosome breathing (Fig. 2), Subsequently, H2Bub1-facilitated 

transcription elongation shows FACT dependency (Pavri et al. 2006).  

1.3.2.4 Deubiquitination of H2Bub1 by SAGA complex 

Monoubiquitination of H2B is dynamically controlled by ubiquitination and 

deubiquitination. Ubiquitination of H2B is catalyzed by RNF20/RNF40 complex in 

mammals and Rad6/Bre1 in yeast, as described above. Deubiquitination of H2B is 

carried out by an evolutionary conserved multifunctional machinery-SAGA (Spt–

Ada–Gcn5 acetyltransferase). In yeast, architecture of SAGA is composed of several 

modules: TATA-binding protein (TBP), histone acetyltransferase (HAT), and 

deubiquitinase (DUB) (Rodriguez-Navarro 2009; Samara et al. 2012; Morgan et al. 

2016). DUB is comprised of several subunits involving ubiquitin-specific protease, 

Sgf73, Sgf11, and Sus1.  

On the functional and structural basis of early studies, DUB is independently folded 

into a sub-complex and crosslinks to the core SAGA complex via the C-terminal 

region of Sgf73 (Han et al. 2014), or the human homolog ATXN7. The disruption of 

DUB modules by knockdown of ATXN7 leads to a significantly global increase in 

H2Bub1 (Bonnet et al. 2014). The conserved zinc finger domain of Sgf11 (human, 

ATXN7L3) bridges DUBs to H2B, and the N-terminal zinc finger–ubiquitin binding 

(ZnF-UBP) domain of Ubp8 (human, USP22) and is essential to deubiquitination 

(Samara et al. 2010; Samara et al. 2012; Morgan et al. 2016). 

The DUB activity is mainly carried out by Ubp8 (Henry et al. 2003) and Ubp10 (Emre 

et al. 2005) in yeast. Genome-wide studies uncovered that Ubp8 and Ubp10 

deubiquitinated H2BK123 in an epigenomic context dependent manner (Schulze et 

al. 2011). Ubp8 is suggested to serve as a transcription coactivator (Daniel and 
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Grant 2007), while Ubp10 is associated with telomere silencing (Emre et al. 2005). In 

human, multiple H2B ubiquitin-specific proteases have been identified such as USP3 

(Nicassio et al. 2007), USP7 (Sarkari et al. 2009), USP12 (Joo et al. 2011), USP46 

(Joo et al. 2011), USP44 (Fuchs et al. 2012), USP22 (Zhao et al. 2008), and two 

potential deubiquitinases USP27X and USP51 (Johnsen 2012). Possibly, as in yeast, 

the diverse DUBs in human control H2Bub1 levels in a context-dependent manner 

(Johnsen 2012). Notably, SAGA is required for a subset of gene transcription, 

depletion of ATXN7L3 leads to significant reduction of gene transcription regardless 

of H2Bub1 level (Bonnet et al. 2014). The question is how this contradictory 

phenomenon occur: 1. H2Bub1 stabilizes nucleosome in yeast (Chandrasekharan et 

al. 2009), which characterizes a potential transcription repressive function; 2. 

H2Bub1 serves as a transcription coactivator; 3, Loss of DUBs with H2Bub1 

increasing is harmful for transcription; 4, FACT enriched transcribed region is 

sensitive to H2Bub1 depletion. One possible explanation is a dynamic balance 

between ubiquitination and deubiquitination that could increase the FACT-mediated 

nucleosome ‘breathing’ rate, and promotes transcription elongation. Thus, tipping the 

balance by loss of any of those functional opposing machineries (RNF20/RNF40 

complex and UBDs) could decrease FACT-facilitated transcription elongation rate.    
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Fig. 2 H2Bub1 associated machinery for transcription elongation modified from 

(Johnsen 2012).  

Monoubiquitination of H2B begins with the recruitment of CDK9 mediated by BRD4, 

which contains two bromodomain regions which bind to acetylated histone H4. CDK9 

phosphorylates Ser2 residue on the CTD tail of polymerase II to create a binding 

domain for WAC, further recruiting RNF20-RNF40 complex. Meanwhile, CDK9 

activates the E2 (UBE2A) by phosphorylation.  Notably, PAF1 complex also provides 

binding domains to recruit RNF20 and RNF40. Those components work together to 

ubiquitinate H2B on Lys 120. H2B monoubiquitinated nucleosome further recruits 

FACT, which removes H2A-H2B dimer from the core nucleosome to facilitate 

transcription elongation. The single ubiquitin on H2B can be specifically removed by 

SAGA complex involving ubiquitin-specific protease-22 (USP22). 
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1.3.3 H2Bub1 also functions as a transcription suppressor  

H2Bub1 is also proposed to play a repressive role in transcription both in yeast and 

human cells. Depletion of RNF20 led to a subset of H2Bub1-targeted genes 

upregulation (Espinosa 2008; Shema et al. 2008). In yeast, the transcription 

repressive function of H2Bub1 is associated with the occupancy of H2Bub1 on 

promoters. The nucleosome at TSS is highly occupied with H2Bub1 compared to 

transcribed regions in H2Bub1-suppressed genes, where H2Bub1 inhibits 

transcription factor binding such as TBP via stabilizing the nucleosome (Gardner et 

al. 2005; Fleming et al. 2008). Collectively, Espinosa put forward a hypothesis that 

H2Bub1-mediated transcription suppression is related to promoter-proximal pausing 

of RNA polymerase II as deubiquitination of H2Bub1 by DUB such as USP22 could 

facilitate the release of RNA polymerase II from the promoter-proximal pausing 

(Espinosa 2008). However, genome-wide analysis of H2Bub1 in human cells failed 

to show additional occupancy of H2Bub1 on promoters (Shema et al. 2008). 

Moreover, loss of H2Bub1 by depleting hBRE1A was not able to promote the release 

of RNA polymerase II from promoter-proximal pausing (Chen et al. 2015a). In 

addition, another study proposed that RNF20 acted as a tumor suppressor by 

inhibiting pro-oncogenic gene transcription via mechanically blocking the cooperative 

binding of transcription elongation factor S-II (TFIIS) to PAFc and RNA polymerase II  

(Shema et al. 2011). Moreover, another genome-wide study suggested that H2Bub1-

suppressed genes show low transcription level and are unmarked by H2Bub1 (Jung 

et al. 2012). In addition, the H2Bub1 ubiquitinating complex and DUB have opposing 

function in the same genes in yeast and human cells. For example, the IRF1 is 

upregulated following RNF20 knockdown, while downregulated in USP22 depleted 

cells (Johnsen 2012). But it still less known how the two enzymes, which play these 
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opposing functions on H2Bub1, together modulate gene transcription. It is proposed 

that H2Bub1-suppressed genes display epigenetic context dependency (Buro et al. 

2010; Chipumuro and Henriksen 2012).   

1.3.4 H2Bub1 crosstalk with H3 methylation 

Studies in both yeast and human have shown that H2Bub1-mediated chromatin 

processes such as DNA damage repair and transcription are correlated to the 

histone trans-tail crosstalk between H2Bub1 and H3 methylation at lysine 4 or 79. 

Similar to the occupancy pattern of H2Bub1, genome-wide mapping of H3K79me3 

indicates that H3K79me3 is preferentially enriched on transcribed gene both in yeast 

and human cells (Schulze et al. 2011; Jung et al. 2012). Early studies uncovered that 

H2Bub1 directly stimulates DOT1-like (DOT1L) methyltransferase activity through 

allosteric mechanisms to facilitate H3K79 methylation (Ng et al. 2002; McGinty et al. 

2008).  

Unlike H3K79me3 and H2Bub1, H3K4me3 is preferentially enriched on promoters, 

where it modulates the recruitment of transcription initiation factors (Guenther et al. 

2007). Methylation of H3K4 is catalyzed by the COMPASS/Set1 complex containing 

Set1, Cps35, and other six subunits in yeast. Compared to yeast, multiple complexes 

are responsible for H3K4me3 in mammals, including six major players in the 

MLL/Set1 complex: SET1A and SET1B (the homologue of Drosophila Set1), MLL1 

and MLL2 (the homologue of Drosophila Trithorax), as well as MLL3 and MLL4 (the 

homologue of Drosophila Trithorax-related) (Smith et al. 2011). Two hypotheses 

about H2Bub1 and H3K4 methylation crosstalk were put forward in yeast. In the 

‘bridge’ model, the H3K4 methyltransferase Set1/COMPASS complex is directed to 

transcribed genes via the interaction between the accessory COMPASS subunit 
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yCps35 or hWDR82 and H2Bub1 (Lee et al. 2007; Vitaliano-Prunier et al. 2008; Wu 

et al. 2008). Notably, H2Bub1 is also able to mediate the interaction between Cps35 

and Dot1 to facilitate H2Bub1-dependent H3K79 methylation (Lee et al. 2007). 

Another study suggested that Rad6/Bre1 is capable of activating Cps35 via adding a 

ubiquitin at lysine 68 and lysine 69. The ubiquitinated Cps35 further promotes the 

recruitment of Spp1, a required COMPASS subunit for H3K4me3 (Vitaliano-Prunier 

et al. 2008). In the ‘wedge’ model, H2Bub1 acts as a chromatin opener which 

enhances the access of H3K4 methyltransferases to active regions. However, most 

of the studies were performed in yeast. Considering that H3K4 methylation 

machineries are more complex in mammals than COMPASS/Set1 complex in yeast, 

exhaustive study is direly needed to resolve the mechanism of crosstalk between 

H2Bub1 and H3K4me3 in mammals. While the COMPASS/Set1 complex is 

responsible for the bulk of H3K4me3 in yeast, the MLL complexes in mammals are 

more likely to be catalyzed in a gene-specific manner (Shilatifard 2012). The 

question is if the crosstalk between H2Bub1 and H3K4me3 occurs in a gene-specific 

manner, or if H3K4me3 is globally modulated by H2Bub1 on mammals.  

Several studies have shown that H2Bub1 is coupled to H3 methylation (H3K4me3 

and H3K79me3) to modulate transcription of certain genes such as homeobox (HOX) 

genes, which are required for anatomical structures development in various 

organisms (Zhu et al. 2005; Kim et al. 2009). Two recent studies suggested that 

broad H3K4me3 was able to facilitate transcription elongation and had additional 

enhancer activity (Benayoun et al. 2014; Dincer et al. 2015). While less is known 

about the factors driving H3K4me3 spreading, given the correlations between 

H2Bub1 and H3K4me3, we propose that H2Bub1 could facilitate H3K4me3 

broadening.  
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1.4 Polycomb group proteins (PcG)  

PcG genes were first identified as suppressor of Hox genes during anterior-posterior 

development in Drosophila. In various organisms, multiple PcG complexes are 

recognized as chromatin modifiers which are capable of mediation of H2A 

monoubiquitination (H2Aub1), H3K27 methylation, as well as DNA methylation to 

silence gene expression, and play crucial roles in cell fate, development, and 

diseases.  

1.4.1 PcG in gene regulation 

1.4.1.1 The core components of PcG complex 

Two main PcG complexes, the Polycomb Repressive Complex 1 and 2 (PRC1 and 

PRC2) have been identified in mammals. The core components of canonical PRC1 

includes one of each of RING1 (RING1a/b), chromobox-domain (CBX) protein 

(CBX2, 4, 6, 7, and 8), polycomb group ring finger family (PCGF1-8), and PHC 

(PHC1-3) (Di Croce and Helin 2013). These components work together to 

monoubiquitinate H2A on Lys119 through the E3 ligase RING1a and RING1b activity 

(Wang et al. 2004; Cao et al. 2005). The core components of PRC2 contain 

Enhancer of zeste homolog 2 or 1 (EZH2 and EZH1), embryonic ectoderm 

development (EED), and suppressor of zeste 12 (SUZ12). EZH2 or EZH1 catalyzes 

additional methyl groups on H3 Lys 27 (mono-, di-, and tri- methylation) (Cao et al. 

2002). Moreover, EZH2 is capable of catalyzing DNA methylation (Vire et al. 2006).  

The function of PRC1 and PRC2 in genome silencing is believed to be associated 

with nucleosome compaction(Sexton et al. 2012).  
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1.4.1.2 Different PcG complexes mediate specific genome locus silencing  

During embryogenesis and tumorigenesis, different genome loci are spatiotemporally 

activated or repressed.  In Drosophila and mammals, diverse epigenetic factors are 

capable of interacting with core PcG components to form different PcG complexes, 

which selectively meditate genome silencing at the right time. For example, the 

silencing of a subset of tissue-specific genes in ESC cells requires Jarid2 (a member 

of Jumonji C (JmjC) domain protein family) to direct the core components of PRC2 to 

the promoters of these genes (Peng et al. 2009; Shen et al. 2009). KMT1D and 

KMT1C (H3K9me1 and H3K9me2 methyltransferases) could be purified from E2F6-

dependent PRC2 complex, which mediates silencing of the E2F6 bound promoters 

and Myc-response elements through the interaction with E2F6 (Ogawa et al. 2002). 

Another PRC2-associated protein PHF1 is suggested to mediate HOX gene 

repression (Sarma et al. 2008). Recently, genome-wide study of yeast and 

embryonic stem cells uncovered that more than 50% of nucleosomes were modified 

by H3K27 methylation (mono-methylation, di-methylation, and tri-methylation) (Voigt 

et al. 2012; Lee et al. 2015b). This indicates that methylation of H3K27 may have 

very broad effects on chromatin.  

In the case of PRC1, approximately 180 PRC1 complexes comprised of the core 

components with other epigenetic factors have been postulated in mammals (Di 

Croce and Helin 2013). Usually, the recruitment of PRC1 complex is mediated by the 

interaction between CBX family (subunits of PRC1) and H3K27me3. In mouse 

embryonic stem cells, CBX7-mediated PRC1 recruitment is required to silence 

differentiation genes and maintain pluripotency, while CBX7 is replaced by CBX2 

and CBX4 to mediate pluripotent genes silencing during differentiation (Morey et al. 
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2012; O'Loghlen et al. 2012). More PcG complex-associated proteins and their 

functions are reviewed by Di Croce (Di Croce and Helin 2013).  

Overall, the interaction of the core components of PcG complex with other epigenetic 

factors mediates the specific silencing of genome loci and characterizes gene 

regulation in a context-dependent manner.   

1.4.2 H2Bub1 and Bivalency  

Due to the advancement in ChIP-sequencing, early studies in ESC cells found that 

approximately 22% of promoters are marked with the transcription coactivator 

H3K4me3 and the repressive H3K27me3, which is referred to as bivalency 

(Bernstein et al. 2006; Mikkelsen et al. 2007). Strikingly, most of those bivalent 

domains are occupied by RNA polymerase II while being transcribed at a low degree 

(Min et al. 2011). Moreover, most development-associated genes are located in 

bivalent domains such as HOX clusters (Bernstein et al. 2006). Thus, it is believed 

that bivalent domains maintain transcription silencing in ESCs while allowing to be 

rapidly activated following developmental stimuli. 

Bivalent domains are evolutionarily conserved and present in mammals and 

zebrafish (Lindeman et al. 2011). In addition to ESCs, bivalency is also found in 

various cell lines such as MEFs, B cells, neural progenitors, mesenchymal stem cells 

(MSC). Furthermore, bivalency is also studied in cancer cells, and increasing 

evidence show the dynamic changes in specifc bivalent domains in cancer cells and 

after therapeutic treatment (Bapat et al. 2010; Ntziachristos et al. 2014). Given that 

drug-induced DNA demethylation in colon cancer cells forms new bivalent regions 

(McGarvey et al. 2008), it can be speculated that the subsequent silencing of some 

tumor suppressors might be the origin of the establishment of bivalency. 
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To date, multiple factors are proposed to  form bivalent domains (Voigt et al. 2013), 

including CpG island dependent recruitment, DNA methylation status, histone 

modification, and noncoding RNAs (ncRNA),etc. The key step is controlling the 

access of the central players responsible for H3K4me3 and H3K27me3, namely MLL 

and PRC2 complex, to genomic loci. Changes in either H3K4me3 or H3K27me3 can 

affect the expression of the bivalent genes resulting in either their full activation or 

repression (Agger et al. 2007; Wang et al. 2009; Agarwal and Jothi 2012). Given the 

importance of H2Bub1 on facilitating H3K4me3, the co-regulation of Hox bivalent 

genes by H2Bub1 and H3K4me3 was proposed (Zhu et al. 2005). H2Bub1 is also 

suggested to decrease H3K27me3 on some individual tissue-specific bivalent genes 

during MSC differentiation (Karpiuk et al. 2012). However the role of H2Bub1 in 

bivalency is still unclear. Genome-wide studies can uncover the effect of H2Bub1 on 

bivalent domains via utilizing ChIP-sequencing approaches.   

1.4.3 Another poised chromatin signature: the dynamic equilibrium between 

H3K27me3 and H3K27ac 

The lysine 27 of H3 is not only subjected to methylation, but also modified with 

acetylation. In general, histone acetylation is catalyzed by histone acetyltransferases 

(HATs) via transferring an acetyl group from acetyl CoA to form ε-N-acetyl lysine. 

H3K27ac shows an opposing effect on gene transcription compared to H3K27me3. 

Multiple HAT families have been identified involving Gcn5-related N-

acetyltransferases (GNATs), p300/CBP complex, SRC family, as well as MYST 

families. One of the best-known HATs is p300/CBP complex, which is believed to 

bind to active cis-regulatory elements.  
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Surprisingly, p300/CBP is also found at hypoacetylated promoters and enhancers 

(Rada-Iglesias et al. 2011; Zentner et al. 2011). In most cases, those p300/CBP 

bound regions are occupied by H3K27me3, and their annotated genes are not highly 

transcribed. Generally, this epigenetic signature endows those regions with a ‘poised’ 

feature like bivalent domains, which allows their annotated genes to be rapidly 

activated (Rada-Iglesias et al. 2011). Acetylation of histone is required not only in the 

recruitment but also in the activation of the enzymatic activity of p300/CBP 

(Holmqvist and Mannervik 2013). In order to prevent pre-acetylation by p300/CBP on 

those poised region, antagonistic mechanisms must exist. H3K27me3 is typically 

considered to decrease chromatin accessibility. While the recruitment of p300/CBP 

complex is not affected by the presence of H3K27me3, H3K27me3 blocks the p300 

enzymatic activity on those unique chromatin regions (Rada-Iglesias et al. 2011; 

Calo and Wysocka 2013; Holmqvist and Mannervik 2013).  

The opposing functions of H3K27me3 and H3K27ac on gene transcription indicate 

that p300/CBP serves as a transcription switch on the ‘poised’ regions. The H3K27-

specific demethylase UTX can directly bind to CBP (Tie et al. 2012) thus elevating 

H3K27ac by overexpressing CBP which antagonizes PcG-mediated H3K27me3. 

Additionally, knockdown of CBP results in antagonistic changes in H3K27me3 in 

Drosophila (Tie et al. 2009). Furthermore, inhibiting EZH2 methyltransferase domain 

leads to a global increasing of H3K27ac (Johnson et al. 2015). Given the similar 

‘poised’ function of these unique regions and bivalent domains in gene transcription, 

the bivalent domain might be occupied by p300/CBP. However, factors affecting the 

dynamic equilibrium between H3K27me3 and H3K27ac are still necessary to be 

identified. 
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1.5 Enhancers and transcription  

The human genome is as long as approximately 6 billion base pairs, while less than 

2% of this DNA sequence (coding DNA) can be transcribed into mRNA (Hawes and 

O'Brien 2008). The spatiotemporal expression of genes is modulated by the 

interaction of epigenetic factors and cis-regulatory elements. In the past decades, 

some functionally diversified cis-regulatory elements (such as promoters, enhancers, 

silencers, and insulators) within the noncoding genome regions have been well 

studied. Unlike promoters which usually control the transcription of their nearby 

genes, enhancers are able to activate genes at remote distances, ranging from 

several to hundreds kilo base pairs. Even enhancers can activate genes at different 

chromatins (Lomvardas et al. 2006). Owing to the recent advances in high 

throughout epigenomic profiling technologies, enhancers are proved to play a crucial 

role in regulating cell type-specific genes during embryogenesis and tumorigenesis.  

1.5.1 Enhancer-promoter looping activates transcription 

In general, activation of enhancers begins with the binding of multiple transcription 

factors such as “pioneer” factors, which are able to recognize specific DNA 

sequences (Cirillo et al. 2002). In fact, most transcription factors can only bind to 

nucleosome-free DNA, the pioneer factors have the additional ability to directly bind 

to the nucleosomal DNA via a cooperative interaction mechanism (Zaret and Carroll 

2011). For example, the forkhead box (FOX) proteins, FOXA1, FOXA2, and FOXA3 

pioneers bind to sequence-specific nucleosomal DNA through a conserved 80-100 

amino acid formed motif (McPherson et al. 1993; Zaret and Carroll 2011; Spitz and 

Furlong 2012). Genome-wide mapping further discovered that multiple FOX proteins 

directly modulate enhancers’ activity (Spitz and Furlong 2012; Georges et al. 2014). 

In fact, the ability of enhancers to facilitate gene transcription from a great distance is 
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mediated by the interaction with coactivators, including histone modifiers (e.g., 

p300/CBP), chromatin remodelers (e.g., CHD7), and mediators (Weake and 

Workman 2010). The pioneer factors are able to stimulate an open chromatin state 

via repositioning nucleosomes and decompacting chromatin. Additionally, it 

facilitates the binding of other transcription factors via recruiting the chromatin 

remodelers such as SWI/SNF complex (McPherson et al. 1993; Li et al. 2012). 

Notably, enhancers are also bound by general transcription factors (e.g., TFIID) and 

mRNA polymerase II (Malik and Roeder 2010). Based on the chromosome 

conformation capture technology (such as 3C, 4C, 5C and Hi-C), diversity of 

enhancer-promoter communications have been observed (Ong and Corces 2011). In 

order to activate transcription, enhancer-bound transcription factors loop out the 

intervening sequences and interact with the promoter regions (Fig. 3).  

 

 

Fig.3  the model of enhancer-promoter loop 

TF, transcription factors, such as FOXA1, FOXA2, and FOXA3.   
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1.5.2 Enhancer associated histone modifications 

1.5.2.1 H3K4 monomethylation at enhancers 

The central feature of enhancers is their ability to bind to multiple transcription 

factors to activate gene transcription from a great distance In order for the 

transcription factors to have access to the enhancer, they must overcome the 

nucleosome barrier. Similar to pioneer factors, histone modifications have the 

capability of activating  enhancers though various mechanisms, such as rearranging 

nucleosomes, serving as an integrated transcription factor binding platform, and 

promoting histone exchange. H3K4me1 was the first identified enhancer associated 

histone signature (Heintzman et al. 2007). Notably, H3K4me1 is not only a unique 

signature for enhancers, but also broadly occupies the 5’ region of transcribed genes. 

The pre-presence of H3K4me1 on intergenic regions is utilized to identify cell type-

specific enhancers, which opens a window to study enhancers’ role in cell type-

specific gene transcription during embryogenesis and tumorigenesis (Akhtar-Zaidi et 

al. 2012; Herz et al. 2012). During embryonic stem cell differentiation, the activation 

of tissue-specific genes is associated with their enhancer activity (Bogdanovic et al. 

2012). In addition to being tightly coupled to enhancer activity, H3K4me1 also marks 

pre-activated enhancers which lack histone acetylation (Creyghton et al. 2010). 

Additional genome-wide studies have shown that p300/CBP pre-occupies those 

unactivated enhancers which are also enriched by H3K27me3 (Rada-Iglesias et al. 

2011). This unique chromatin region is referred to by poised enhancers as described 

1.4.3. Thus, H3K4me1 is a unique epigenetic signature that can broadly be used to 

define potential enhancers.   
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1.5.2.2 An over-activated enhancer marker: H3K4me3 

Although H3K4me3 typically presents on activated promoter, genome-wide mapping 

of H3K4me3 observe a detectable level of H3K4me3 on enhancers (Clouaire et al. 

2012). Recent studies suggested that broad H3K4me3 domain at 5’ regions 

additionally serves as an enhancer that activates tumor suppressors and tissue-

specific genes (Benayoun et al. 2014; Clouaire et al. 2014; Chen et al. 2015b). 

Moreover, loss of the H3K4me3-specific demethylase KDM5C leads the 

overactivation of enhancers characterized by the elevation of H3K4me3, which is 

associated with overexpression of oncogenes (Shen et al. 2016). H3K4me2 is also 

able to occupy both promoters and enhancers (Pekowska et al. 2010). Studies in 

Drosophila and human cells confirmed that the bulk of H3K4me2 and H3K4me3 are 

majorly catalyzed by the SET1A/B complex (Wu et al. 2008; Ardehali et al. 2011). 

However, the CxxC domain-containing CFP1, one specific subunit of SET1a/b 

complex, directs H3K4me3 on nonmethylated CpG-islands enriched promoters (Lee 

and Skalnik 2005). Interestingly, disruption of SET1 complex by depletion of WDR82, 

SET1, and CFP1 decreased H3K4me3 occupancy on promoters, while increased 

enhancer activity proved by increased H3K4me3 occupancy (Clouaire et al. 2012; 

Clouaire et al. 2014). Given that H2Bub1 increases H3K4me3 mainly via modulating 

the activity of SET1 complex, we speculate that the gene-body specific H2Bub1 

modulates enhancer activity at a great distance. 

1.6 Aims of this project  

In the past decades, H2Bub1 has been believed to be tightly associated with 

embryogenesis and tumorigenesis. Although active gene transcription is tightly 

correlated to the occupancy of H2Bub1 in the transcribed region, depletion of the 

H2B ubiquitin ligases RNF20 or RNF40 alters (including increasing and decreasing) 
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the expression of only a subset of genes. In order to investigate the role of H2Bub1 

in gene transcription, we utilized the next generation sequencing technology to study 

the genome-wide occupancy of H2Bub1, H3K4me3, H3K27me3, and H3K27ac 

occupancy in inducible Rnf40 knockout mouse embryo fibroblasts (MEF). We 

observed that low and moderate levels of H2Bub1 are particularly associated with 

RNF40-dependent gene expression changes. Interestingly, the downregulation of 

RNF40-dependent genes was related to the narrowing of broad H3K4me3 peaks in 

H2Bub1-deficient MEFs while the upregulation of gene expression was dependent 

upon a loss of Ezh2 transcription and decreased H3K27me3 near TSS, resulting in 

the up-regulation of many H3K27me3-targeted bivalent genes. Moreover, many 

upregulated genes are highly associated with the activation of FOXL2-bound 

enhancers. Together these findings uncover a previously unknown function of 

H2Bub1 and RNF40 in the indirect repression of gene transcription via the 

maintenance/activation of PRC2 and indirect repression of Foxl2 transcription and 

provide further insight into the context-dependent intricacies of epigenetic regulation. 
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2. Materials 

2.1 Equipment 

2.1.1 Technical equipment 

Equipment Source 

Pipettes “Research” Series  Eppendorf AG, Hamburg  

Qubit® 2.0 Fluorometer  Invitrogen GmbH, Karlsruhe  

Nano Drop® ND-1000  Peqlab Biotechnology GmbH, Erlangen  

Bioruptor Diagenode SA, Liège, Belgium 

Agarose gel chamber Harnischmacher Labortechnik, Kassel 

Centrifuge 4 °C Eppendorf AG, Hamburg 

Balance Sartorius AG, Göttingen 

MiniVE  GE Healthcare Europe GmbH, München 

CFX96TM Optical Reaction Module Bio-Rad Laboratories GmbH, München 

C1000TM Thermal Cycler Bio-Rad Laboratories GmbH, München 

Counting chamber (Neubauer) Brand GmbH & Co. KG, Wertheim 

Biological Safety Cabinet  Thermo Fisher Scientific, Waltham, USA 

Freezer -20 °C Liebherr GmbH, Biberach 

Freezer -80 °C “Hera freeze” Thermo Fisher Scientific, Waltham, USA 

5100 Cryo 1 °C Freezing Container Thermo Fisher Scientific, Waltham, USA 

Microwave Clatronic International GmbH, Kempen 

Incubator (cell culture)  Thermo Fisher Scientific, Waltham, USA 

Pipettes “Research” Series Eppendorf AG, Hamburg 

Thermomixer comfort Eppendorf AG, Hamburg 
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Ultrapure Water System “Aquintus” MembraPure GmbH, Bodenheim 

Gel Imager “Gel iX imager” Intas Science Imaging GmbH, Göttingen 

Magnet stirrer “MR3001” Heidolph GmbH & Co. KG, Schwabach 

Microscope Axio Scope A1 Carl Zeiss MicroImaging GmbH, Göttingen 

Vacuum pump Integra Bioscienc. AG, Zizers, Switzerland 

Bandelin Sonoplus Sonicator Bandelin electr. GmbH & Co. KG, Berlin 

Microwave Clatronic International GmbH, Kempen 

pH meter inoLab® WTW GmbH, Weilheim 

Repeat Pipette Eppendorf AG, Hamburg 

Table centrifuge (GMC-060) LMS Co., Ltd., Tokyo, Japan 

Scanner (CanoScan 8600F) Canon GmbH, Krefeld 

Pipette Aid® portable XP Drummond Scientific Co., Broomall, USA 

Vortex mixer Scientific Industries, Inc., Bohemia, USA 

Shaker “Rocky” Schütt Labortechnik GmbH, Göttingen 

Test tube rotator Schütt Labortechnik GmbH, Göttingen 

Pestle Sartorius AG, Göttingen 

Qubit 2.0  fluorometer Life Technologies, USA 

Water bath “TW 20” JULABO Labortechnik GmbH, Seelbach 

Centrifuge (Megafuge 1.OR) Thermo Fisher Scientific, Waltham, USA 

Incubator (bacteria culture) Infors AG, Bottmingen 

Incubator (bacteria) Memmert GmbH & Co. KG, Schwabach 

ChemiDoc™ MP Imaging System Bio-Rad Laboratories GmbH, München 

DynaMag™-96 Side Magnet Thermo Fisher Scientific, Waltham, USA 

MagnaRack™ Magnetic Separation 
Rack 

Thermo Fisher Scientific, Waltham, 
USA 
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Agilent 2100 Bioanalyzer Agilent Technologies,  California, USA 

Freezer -150 °C (MDF-C2156VAN) Panasonic, Japan 

DELL Optiplex 7010 DELL, Texas, USA 

 

2.1.2 Bioinformatic software  

Name Source 

Galaxy Cistrome http://cistrome.org/ap/root  

Galaxy http://galaxyproject.org/  

Galaxy deepTools http://deeptools.ie-freiburg.mpg.de/ 

Bowtie 2.0  

Ruby Script https://github.com/judofyr/rubyscript 

DESeq  

Gene Set Enrichment Analysis (GSEA) http://www.broadinstitute.org/gsea/index.

jsp 

DAVID analysis https://david.ncifcrf.gov/ 

Primer designing tool NCBI/Primer-

BLAST 

www.ncbi.nlm.nih.gov/tools/primer-blast/  

Integrative Genomics Viewer (IGV) https://www.broadinstitute.org/igv/ 

Reduce Visualize Gene Ontology 

(REViGO) 

http://revigo.irb.hr/ 

Genomic Regions Enrichment of 

Annotations Tool (GREAT) 

http://bejerano.stanford.edu/great/public/

html/ 

R statistical software https://www.r-project.org/ 

 

2.2 Consumable materials 

Name Source 

Syringe filter, Ca-membrane, 0,20 m Sartorius AG, Göttingen 

Protan® Nitrocellulose transfer membrane Whatman GmbH, Dassel 
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Pipette filter tips Sarstedt AG & Co., Nümbrecht 

Pipette tips Greiner Bio-One GmbH, Frickenhausen 

Petri dish 92×16 mm Sarstedt AG & Co., Nümbrecht 

Parafilm® “M” Pechiney Plastic Packaging, Chicago, USA 

Microtube 0,5 ml, 1.5 ml, 2 ml Sarstedt AG & Co., Nümbrecht 

Eppendorf® LoBind microcentrifuge tubes Eppendorf AG, Hamburg 

NORM-JECT Syringes  Henke Sass Wolf GmbH, Tuttlingen 

96 Multiply® PCR plate Bio-Rad Laboratories GmbH, München 

Microtube 1.5 ml, conical VWR International GmbH, Darmstadt 

Gel blotting paper (Whatman paper) Sartorius AG, Göttingen 

Cryo TubeTM Vial (1.8 ml) Thermo Fisher Scientific, Waltham, USA 

Cellstar tissue culture dish 100×20 mm Greiner Bio-One GmbH, 
Frickenhausen 

Cell scraper (16 cm, 25 cm) Sarstedt AG & Co., Nümbrecht 

Cellstar tissue culture dish 145×20 mm Greiner Bio-One GmbH, 
Frickenhausen 

Cellstar 6- and 12-well cell culture plate Greiner Bio-One GmbH, 
Frickenhausen 

Cellstar PP-tube 15 and 50 ml Greiner Bio-One GmbH, Frickenhausen 

 

2.3 Chemicals 

Name Source 

Albumin Fraction V Carl Roth GmbH & Co. KG, Karlsruhe 

Aprotinin Carl Roth GmbH & Co. KG, Karlsruhe 
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Ammonium persulfate  Carl Roth GmbH & Co. KG, Karlsruhe 

Adefodur WB fixing concentrate Adefo-Chemie GmbH, Dietzenbach 

Adefodur WB developing concentrate Adefo-Chemie GmbH, Dietzenbach 

Agarose Biozym Scientific GmbH, Oldendorf 

Acetic acid Carl Roth GmbH & Co. KG, Karlsruhe 

Ammonium sulfate Carl Roth GmbH & Co. KG, Karlsruhe 

Bromophenol blue Sigma-Aldrich Co., St. Louis, USA 

Chloroform Carl Roth GmbH & Co. KG, Karlsruhe 

Calcium Chloride Carl Roth GmbH & Co. KG, Karlsruhe 

Charcoal Dextran treated FBS Thermo Scientific HyClone, Logan, USA 

Co-precipitant Pink Bioline, Luckenwalde 

Diethylpyrocarbonate (DEPC) Carl Roth GmbH & Co. KG, Karlsruhe 

Dimethyl sulfoxide (DMSO) AppliChem GmbH, Darmstadt 

GlutaMAX™ DMEM GIBCO®, Invitrogen GmbH, Darmstadt 

dNTPs Carl Roth GmbH & Co. KG, Karlsruhe 

Ethidium bromide Carl Roth GmbH & Co. KG, Karlsruhe 

Ethanol absolute Th. Geyer GmbH & Co. KG, Renningen 

Ethylenediaminetetraacetic acid 
(EDTA) 

Carl Roth GmbH & Co. KG, Karlsruhe 
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EPZ 6438,EZH2 Inhibitor Absource Diagnostics GmbH, München 

Fetal Bovine Serum (FBS) Thermo Scientific HyClone, Logan, USA 

FBS Superior Biochrom GmbH, Berlin, Germany 

Formaldehyde Sigma-Aldrich Co., St. Louis, USA 

Glycine Carl Roth GmbH & Co. KG, Karlsruhe 

ß-Glycerolphosphate (BGP) Sigma-Aldrich Co., St. Louis, USA 

Hydrochloric acid (HCl) Carl Roth GmbH & Co. KG, Karlsruhe 

Isopropanol Carl Roth GmbH & Co. KG, Karlsruhe 

Lithium chloride (LiCl), 8M Sigma-Aldrich Co., St. Louis, USA 

Leupeptin Carl Roth GmbH & Co. KG, Karlsruhe 

lipofectamine TM 2000 Invitrogen GmbH, Karlsruhe 

QIAzol™ Lysis Reagent QIAGEN, Hilden 

Methanol M. Baker B.V., Deventer, Netherlands 

Magnesium chloride (MgCl2) Carl Roth GmbH & Co. KG, Karlsruhe 

M-MLV Reverse Transcriptase New England Biolabs, Frankfurt am Main 

N-ethylmaleimide (NEM) Sigma-Aldrich Co., St. Louis, USA 

NonidetTM P40 (NP-40) Sigma-Aldrich Co., St. Louis, USA 

Non-Essential Amino Acid (NEAA) GIBCO®, Invitrogen GmbH, Darmstadt 
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Opti-MEM GIBCO®, Invitrogen GmbH, Darmstadt 

PBS tablets GIBCO®, Invitrogen GmbH, Darmstadt 

Penicillin-Streptomycin solution Sigma-Aldrich Co., St. Louis, USA 

Pefabloc SC Protease Inhibitor Carl Roth GmbH & Co. KG, Karlsruhe 

Potassium chloride (KCl) AppliChem GmbH, Darmstadt 

Protein-A Sepharose CL-4B GE Healthcare, Uppsala, Sweden 

Protein-G Sepharose 4 Fast Flow GE Healthcare, Uppsala, Sweden 

Lipofectamine® RNAiMAX Reagent Invitrogen GmbH, Karlsruhe 

RNase inhibitor New England Biolabs, Frankfurt am Main 

Rotiphorese® Gel 30 Carl Roth GmbH & Co. KG, Karlsruhe 

Roti®-Phenol Carl Roth GmbH & Co. KG, Karlsruhe 

Rotipuran® Chloroform Carl Roth GmbH & Co. KG, Karlsruhe 

Rotipuran® Isoamylalcohol Carl Roth GmbH & Co. KG, Karlsruhe 

SepharoseTM CL-4B GE Healthcare, Uppsala, Sweden 

Sodium chloride Carl Roth GmbH & Co. KG, Karlsruhe 

Sodium acetate Carl Roth GmbH & Co. KG, Karlsruhe 

Sodium aside AppliChem GmbH, Darmstadt 

Skim milk powder Carl Roth GmbH & Co. KG, Karlsruhe 
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Sodium deoxycholate AppliChem GmbH, Darmstadt 

Sodium fluoride AppliChem GmbH, Darmstadt 

Sodium dodecylsulfate Carl Roth GmbH & Co. KG, Karlsruhe 

Sodium hydroxide  Carl Roth GmbH & Co. KG, Karlsruhe 

SYBR Green I Roche Diagnostics GmbH, Mannheim 

TEMED Carl Roth GmbH & Co. KG, Karlsruhe 

Tris  Carl Roth GmbH & Co. KG, Karlsruhe 

Trypsin-EDTA (0.05%) GIBCO®, Invitrogen GmbH, Darmstadt 

Tween-20 AppliChem GmbH, Darmstadt 

Triton X-100 AppliChem GmbH, Darmstadt 

(Z)-4-Hydroxytamoxifen (4-OHT) Sigma-Aldrich Co., St. Louis, USA 

 

 

2.4 Kits and reagents 

Names Source 

Qubit dsDNA HS assay Invitrogen GmbH, Karlsruhe 

NucleoBond® Xtra Midi MACHEREY-NAGEL GmbH & Co. KG, Düren 

NucleoSpin® Gel and PCR Clean-up MACHEREY-NAGEL GmbH & Co. 
KG, Düren 
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innuPREP Plasmid Mini Kit Plus AJ Innuscreen GmbH, Berlin 

NEBNext® Ultra™ RNA Library 
Prep Kit for Illumina® 

New England Biolabs, Frankfurt am Main 

NEBNext® ChIP-Seq Library Prep 
Master Mix Set for Illumina® 

New England Biolabs, Frankfurt am Main 

NEXTflex™ RNA-Seq Kit Bioo Scientific, Austin 

NEBNext® Poly(A) mRNA 
Magnetic Isolation Module 

New England Biolabs, Frankfurt am Main 

SuperSignal® West Dura Thermo Fisher Scientific, Waltham, USA 

Immobilon Western Chemiluminescent 

HRP Substrate 

Millipore, Billerica, USA 

Bioanalyzer DNA High sensitivity kit Agilent, Santa Clara, USA 

 

2.5 Nucleic acids 

2.5.1 Primers for PCR 

All primers in this study were designed using the NCBI primer designing tool 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/), and ordered from Sigma Aldrich, 

Hamburg. Reverse Transcription primers were used 9-mer random primer. 

qRT-PCR primers 

Gene Forward Primer (5’ to 3’) Reverse Primer (5’ to 3’) 

Rplp0 TTGGCCAATAAGGTGCCAGC CTCGGGTCCTAGACCAGTGT 

Ezh2 TCCATGCAACACCCAACACA AACTCCTTAGCTCCCTCCAGAT 
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Eed AAGAACCTGGAGGGAGGCG TGACAGCATCGTCATTTTCGTC 

Ezh1 GCAAGTCCCCCAACTTCCAA ACATACAGAGCCTTTGCTCCC 

Suz12 AGCATCAAAAGCTTGTCTGCAC ACTTTCACAAGCAGGACTTCCA 

Psrc1 AATTCGAACGAAGCTCCGCC CGGCTTAGACCTCGCTTCAC 

Myl9 GCGCCGAGGACTTTTCTTCT TCTTGGCCTTGGCTCTCTTG 

Loxl3 TTGTGCCTAGTCGAAGTGCCC GGGCAGCAATACCACACACT 

Hoxc6 ATGAATTCGCACAGTGGGGT GCCGAGTTAGGTAGCGGTTG 

Hoxc8 GATGAGACCCCACGCTCCT CTTCAATCCGGCGCTTTCTG 

Hoxc10 CGGATAACGAAGCTAAAGAGGAGA TCCAATTCCAGCGTCTGGTG 

Nat8l GCCCTGCGCTACTACTACAG CCCAGAAACAGGAACCAGGTG 

Kcnc3 CCATCCGAAAAGCCACTGGT GCTCGTCCACTAGGGGGATA 

Tgfa CTGCTAGCGCTGGGTATCCT CTGAGTGTGGGAATCTGGGC 

Chd5 TGGACCCTGACTACTGGGAG TCATCCTGCCACTCCTGGTC 

Foxl2 TGCAACCGAGTTCTCATCCC TAAAGACCTGGCCTGGAGGT 

Foxl2os AGCAAGCTGGTCTAACGCTC AGAGCCAAAAGGTACCTGCC 

Hoxc13 CCCTGTTGAAGGCTACCAGC AACCACGTCTGGGAAGGGAG 

Esr2 GAAAGCTGCTGGATGGAGGT CCTCATCCCTGTCCAGAACGA 

Efna5 TGCAATCCCAGACAACGGAA TGGCTCGGCTGACTCATGTA 

   

ChIP-qPCR primers 

Gene Forward Primer (5’ to 3’) Reverse Primer (5’ to 3’) 

Ezh2- TSS  CCGGAATCCACAGTTCACTCG GACAGCTTTCTGAGCGGTCG 

Ezh2- Gene body TGAAGGTTTTGGGAGGGTGG AGGCAGGTAAGCAGTTTGGG 

Hoxc13- TSS GCCGGAGAGCCTTATGTACG CCAATACAGGGTGCGGGAG 

Hoxc6-TSS CCACCGCCTATGATCCAGTG GGGAGTCGAGTAGATCCGGT 

 



pg. 38 
 

 

2.5.2 Plasmid and primers for cloning 

Vector pSG5-HA-ERT2-P2A-Hyg was used to overexpress wildtype and mutated 

Ezh2. 

 Name Primer (5’ to 3’) 

Wildtyp

e Ezh2 

BamHI-Ezh2-For GCTGACGGATCCATGGGCCAGACTGGGAAGAAATCTG 

SpeI-Ezh2-Rev GCTGACACTAGTAGGGATTTCCATTTCTCGTTCGATG 

Mutated 

Ezh2 

H689A-For TGCTAATGCTTCAGTAAATCCAAAC 

H689A-Rev GCATAGCAGTTTGGATTTACTGAAGCATTAGCA 

 

2.5.3 Primers for genome typing mouse embryos 

Detected 

target 

Name Primer (5’ to 3’) 

LoxP 

site 

mRnf40_3LoxP_13254F TGGGCCCAGGTGGATGCCTGAA 

mRnf40_3LoxP_15985R AGGCCACAGCAGGGACCATCA 

CreERT2 

ERT2-For AAAGTCGCTCTGAGTTGTTAT 

ERT2-Rev1 GGAGCGGGAGAAATGGATATG 

ERT2-Rev2 CCTGATCCTGGCAATTTCG3 

 

2.5.4 siRNA Oligonucleotides 

All siRNA Oligonucleotides were ordered from Dharmacon, Lafayette, CO, USA. 

Target gene Sequence (5’ to 3’) 

siGENOME Nontargeting siRNA pool #5 --- 

Foxl2 SMARTpool siRNAs 

5’-GCGCAGUCAAAGAGGCCGA-3’ 

5’-ACUCGUACGUGGCGCUCAU-3’ 

5’-UAGCCAAGUUCCCGUUCUA-3’ 

5’-CGGGACAACACCGGAGAAA-3’ 
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2.6 Proteins 

2.6.1 Molecular weight standards 

GeneRulerTM 1 Kb Plus DNA Ladder Thermo Fisher Scientific, Waltham, 
USA 

PageRulerTM Plus Prestained 
Protein Ladder (10 to 250 kDa) 

Thermo Fisher Scientific, Waltham, 
USA 

 

2.6.2 Antibodies  

Primary antibodies used for western blot (WB) and ChIP 

Target  Clone Cat.No. WB ChIP Source 

H3 - ab10799 1:5000 - Abcam 

HSC70 B-6 sc-7298 1:50,000 - Santa Cruz 

H2B 53H3 2934 1:5000 - Cell signaling 

RNF40 - 15621-1-AP 1:500 - Acris 

EZH1 - ab13665 1:1000 - Abcam 

SUZ12 D39F6 3737 1:1000 - Cell signaling 

EZH2 - 4905 1:1000 - Cell signaling 

H2Bub1 7B4 - 1:10 - Hybridoma (Prenzel 

et al., 2011) 

H2Bub1 D11 5546 - 1.5 µl Cell signaling 

H3K27me3 - pAb-195-

050 

1:1000 1 µg Diagenode 

H3K27ac - pAb-196-

050 

1:1000 1 µg Diagenode 

H3K4me3 - pAb-003-

050 

1:1000 1 µg Diagenode 

IgG - Ab37415 - 1 µg Abcam 
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Secondary antibodies for western blot 

Name Cat.No. Source 

Goat anti-rabbite IgG HRP sc-2004 Santa Cruz 

Goat anti-mouse IgG HRP sc-2005 Santa Cruz 

 

2.6.3 Enzymes 

Name Source 

Proteinase K Invitrogen GmbH, Karlsruhe 

RNase A Qiagen GmbH, Hilden 

Phusion DNA Polymerases Thermo Fisher Scientific, Waltham, USA 

M-MLV Reverse Transcriptase New England Biolabs, Frankfurt am Main 

Taq DNA Polymerase Prime Tech, Mink, Belarus 

T4 DNA Ligase New England Biolabs, Frankfurt am Main 

BamHI Thermo Fisher Scientific, Waltham, USA 

Spel Thermo Fisher Scientific, Waltham, USA 

 

2.7 Animal and Cells 

2.7.1 Bacterial Cells  

Escherichia coli DH10BTM was got from Invitrogen GmbH, Karlsruhe. 

2.7.2 Mice        

Rosa26-CreERT2, Rnf40loxP/wt mice was generated from Johnsen’s lab. 

2.7.3 Mouse embryonic fibroblast cells (MEFs) 

Rnf40 inducible knockout MEFs were isolated from 13.5 postcoitum mouse embryos.   

2.8 Buffers and cell culture medium 

2.8.1 Buffers for PCR 
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10X PCR buffer (store at room temperature up to 1 month) 

Stock Final concentration 

1.5 M Tris-HCl (pH 8.8) 750 mM 

1 M (NH4)2SO4 200 mM 

10% Tween-20 0.1% 

 

PCR Master Mix (store at -20°C up to 4 months) 

Stock Final concentration 

10X PCR buffer 1X 

25 mM MgCl2 3 mM 

SYBR Green (1:100) 1:80000 

20 mM dNTPs 0.2 mM 

5 U/µl Taq DNA Polymerase 20 U/ml 

10% Triton X-100 0.25% 

1 M Trehalose 300 mM 

 

2.8.2 Buffers for western blot 

10X PBS (store at room temperature up to 1 month) 

Stock Final concentration 

NaCl 0.73 M 

KCl 0.027 M 

NaH2PO4 * 7H2O 14.3 mM 

KH2PO4 14.7 mM 

 

RIPA Lysis Buffer (store at 4°C up to 1 month) 

Stock Final concentration 

5 M NaCl 150 mM 

0.5 M EDTA (pH 8.0) 5 mM 

1 M Tris (pH 8.0) 50 mM 

10% NP-40 1.0% 
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10% Sodium deoxycholate 0.5% 

10% SDS 0.1% 

 

10X TBS-T  (pH 7.6) (store at 4°C up to 1 month) 

Stock Final concentration 

Tris 0.1 M 

NaCl 1.5 M 

Tween-20 1% 

 

10X Western salts (store at 4°C up to 1 month) 

Stock Final concentration 

Tris 0.25 M 

Glycine 0.86 M 

SDS 0.7 mM 

 

6X Laemmli buffer (store at -20°C up to 4 months) 

Stock Final concentration 

1M Tris-Cl (pH 6.8) 0.375 M 

SDS 12% 

Glycerol 60% 

DTT 0.6M 

Bromophenol blue 0.06% 

 

 

Transfer Buffer (store at 4°C, can be used for two or three times) 

Tris 0.048M 

glycine 0.039M 

methanol 20% 

SDS 0.00375% 
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Blocking solution (store at 4°C up to 1 month) 

TBST 1X 

Milk 5% 

 

2.8.3 Buffers for ChIP 

Nuclear preparation buffer (store at 4°C up to 1 month) 

Stock Final concentration 

5M NaCl 150 mM 

0.5 M EDTA (pH 8.0) 20 mM 

1 M Tris-HCl (pH 7.5) 50 mM 

10% NP-40 0.5% 

10% Triton X-100 1% 

0.5 M NaF 20 mM 

 

Sonication buffer-1 (freshly used) 

Stock Final concentration 

1 M Tris-HCl (pH 8.0) 50 mM 

0.5 M EDTA (pH 8.0) 10 mM 

10% SDS 1%  

 

Sonication buffer-2 (store at 4°C up to 1 month) 

Stock Final concentration 

0.5 M EDTA (pH 8.0) 20 mM 

1 M Tris-HCl (pH 8.0) 50 mM 

5M NaCl 150 mM 

10% NP-40 1% 

0.5 M NaF 20 mM 
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Dilution buffer (store at 4°C up to 1 month) 

Stock Final concentration 

0.5 M EDTA (pH 8.0) 20 mM 

1 M Tris-HCl (pH 8.0) 50 mM 

5M NaCl 150 mM 

10% NP-40 1% 

0.5 M NaF 20 mM 

10% (w/v) Sodium deoxycholate 0.5% 

 

IP Buffer (store at 4°C up to 1 month) 

Stock Final concentration 

0.5 M EDTA (pH 8.0) 20 mM 

1 M Tris-HCl (pH 8.0) 50 mM 

5M NaCl 150 mM 

10% NP-40 1% 

0.5 M NaF 20 mM 

10% (w/v) Sodium deoxycholate 0.5% 

10% (w/v) SDS 0.1% 

 

Wash buffer (store at 4°C up to 1 month) 

Stock Final concentration 

8 M LiCl 0.5 M (add it freshly before using this 

buffer)  

10% NP-40 1% 

10% (w/v) Sodium deoxycholate 0.5% 

0.5 M EDTA (pH 8.0) 20 mM 

1 M Tris-HCl (pH 8.5) 10 mM 

0.5 M NaF 20 mM 

 

TE buffer (store at 4°C up to 1 month) 
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Stock Final concentration 

0.5 M EDTA (pH 8.0) 1 mM 

1 M Tris-HCl (pH 8.0) 10 mM 

 

2.8.4 Cell culture medium 

LB-medium (1 L) (store at 4°C up to 1 month) 

Yeast extract 5 g 

Tryptone 10 g 

NaCl 10 g 

 

MEF growth medium (store at 4°C up to 1 month) 

GlutaMAX™ DMEM, high-glucose --- 

FBS Superior 10% 

Non-Essential Amino Acid (100X) 1X 

Penicillin 100 U/ml 

Streptomycin 100 μg/ml 

 

  



pg. 46 
 

3. Methods 

3.1 Conditional Rnf40 knockout mouse model 

All animal work was performed in agreement with the Institutional Animal Care and 

Use Committee and the Institutional Guidelines for Humane Use of Animals in 

Research. Conditional Rnf40 knockout mice were generated using a construct 

containing two loxP sites flanking exons 3 and 4 of the Rnf40 gene (Fig.4) and a 

neomycin selection cassette was surrounded by two short flippase recognition target 

(FRT) sites. The targeting construct was -transfected in MPI II ES cells by 

electroporation and targeted clones were identified by quantitative and long-range 

PCR. Following the generation of chimeras and verification of germline transmission, 

the neomycin cassette was removed to generate Rnf40loxP mice by crossing to a 

transgenic mouse line expressing the FLP recombinase in all tissues (Farley et al. 

2000). The Rnf40loxP mice were next crossed to a transgenic line expressing a 

tamoxifen-inducible Cre recombinase (CreERT2) inserted into the ubiquitously 

expressed Rosa26 locus (Hameyer et al. 2007). 

 

 

Fig. 4 Conditional Rnf40 knockout construct model 
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3.2 Cell culture 

3.2.1 Isolation and culturing of primary MEFs  

The inducible Rnf40 knockout MEFs were obtained by intercrossing Rosa26-CreERT2, 

Rnf40loxP/wt mice. MEFs were isolated from 13.5 postcoitum mouse embryos as 

previously described (Takahashi and Yamanaka 2006). In brief, the legs, brain and 

dark red organs were removed the rest of the cleaned tissue was made into single 

cells sequentially via cutting into small pieces and trypsinizing with 0.25% of trypsin-

EDTA.  The single cells from each embryo were separately plated  in 15 cm tissue 

culture dish and cultured in growth medium (GlutaMAX™ DMEM supplemented with 

1x NEAA, 10% FBS Superior, 100 U/ml penicillin, and 100 μg/ml  streptomycin) at 

37°C and 5% CO2 conditions. The primary cells were frozen at 70% confluency in 

MEF freezing media (DMEM high glucose supplemented with 8% DMSO and 50% 

FBS) and stored in 150°C freezer.  

3.2.2 Inducing Rnf40 knockout and inhibiting EZH2 enzymatic activity in MEFs 

For deletion of the conditional Rnf40 allele, 105 MEFs were passaged in growth 

medium supplemented with 250nM of (Z)-4-Hydroxytamoxifen (4-OHT), while the 

control cells were treated with 0.5 µl of ethanol. After 5 days, cells were grown for 

another 3 days in the absence 4-OHT. Cells were passaged every three days.  

For inhibition of EZH2 methyltransferase activity in Rnf40 wild type (Rnf40+/+) MEFs, 

105 cells were cultured in growth medium supplemented with 1µM of an EZH2 small 

molecular inhibitor (EPZ-6438) for 2 days, while the control cells were treated with 

1µl DMSO.  
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3.2.3 siRNA transfection in Rnf40+/+, Rnf40-/-, and EZH2 inhibited MEFs 

Forward and reverse siRNA transfection were performed in Rnf40+/+, Rnf40-/-, and 

EZH2 inhibited (EZH2i) MEFs using lipofectamine® RNAiMAX Reagent according to 

the manufacturer’s protocol. For knockdown of Foxl2 gene, targeted mouse Foxl2 

SMARTpool siRNAs were transfected, while cells transfected with non-targeting 

siRNA were used as a negative control. These experiments were performed in 6-well 

plates. 30 pmol of siRNA, 500 µl of Opti-MEM medium, and 5 µl of lipofectamine® 

RNAiMAX Reagent were pre-mixed in a 1.5 ml tube, and incubated for 20 min at 

room temperature. Meanwhile, cells were trypsinized into single cells and diluted into 

50,000 cells/ml using penicillin/streptomycin-free MEF growth medium. 2 ml of 

diluted MEFs and 0.5 ml of siRNA-lipofectamine® RNAiMAX complex was added to 

each well of the 6-well plate, and then mixed properly. After approximately 16 hours, 

the medium was changed into fresh MEF growth medium containing 

penicillin/streptomycin, and EZH2i group cells were additionally treated with 1 µM of 

EPZ-6438. Cells were harvested after 48 hours.   

3.3 Molecular biology  

3.3.1 Genome typing for mouse embryos 

Tissues from legs of each embryo were lysed overnight at 56°C in 500 µl of Lysis 

buffer (100 mM Tris-HCl pH 8.5, 5 mM EDTA, 0.2% SDS, and 200 mM NaCl) 

supplemented with 100 µg of proteinase K. After centrifugation at full speed for 10 

min, the supernatant was vortexed with 500 µl isopropanol. DNA was further pelleted 

by centrifugation at full speed for 10 min at room temperature, and washed with 70% 

EtOH. After brief air-drying, DNA pellet was redissolved in 50 µl water. DNA 

concentration was detected using Nano Drop® ND-1000. 300 ng of each DNA 
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sample was used for genotyping. PCR primers for detection of Cre-ERT2 or the 

sequence containing loxP are listed in 2.5.3. 

A total 50 µl volume of PCR reaction for detection of Cre-ERT2 or loxP sit: 

 Cre-ERT2 (µl) loxP site (µl) 

Waster 13.8 14.8 

10× Hot fire buffer 2.5 2.5 

dNTP (2 mM) 2.5 2.5 

MgCl2 (25 mM) 2 2 

primers 
1 1 
1 1 
1  

Hot Fire DNA polymerase 0.2 0.2 

PCR reaction was performed in C1000TM Thermal Cycler: 

 

loxP site 

95°C 15 min 

95°C 30 sec 

60°C 30 sec 

72°C 1 min 

72°C 10 min 

4°C 
Infinite 

hold 

 

The PCR produces were separated in 0.8% agarose gel, and the detected in Gel 

Imager. 

3.3.2 RNA isolation 

Total RNA from cultured cells were isolated using QIAzol™ Lysis Reagent according 

to the manufacturer’s protocol. First of all, cells in 6-well plates were washed twice 

using PBS and lysed by adding 500 µl of QIAzol™ Lysis Reagent. Cells were then 

Cre-ERT2 

95°C 15 min 

95°C 30 sec 

55°C 45 sec 

72°C 1 min 

72°C 10 min 

4°C 
Infinite 

hold 

}  35 cycles 35 cycles }  
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harvested into 1.5 ml tubes using scrapers and kept on ice. Each sample was mixed 

with 100 µl of chloroform by vortexing for 15 sec and then centrifuged at 12,000 x g 

for 15 min at 4 °C. The upper, aqueous phase (approximately 250 µl) was collected 

in a new 1.5 ml tube, and mixed with 300 µl of isopropanol by vortexing for 15 sec. 

All samples were placed at -20 °C overnight. Next day, RNA pellets were collected 

by centrifuging at 12,000 x g for 30 min at 4°C, and washed twice by 70% of ethanol 

(prepared with DEPC water). After brief air-drying the RNA pellet was redissolved in 

40 µl of DEPC water. 

3.3.3 First-Strand Synthesis of cDNA 

Before cDNA synthesis, the concertation of total RNA was measured using Nano 

Drop® ND-1000. 1 µg of total RNA from each sample, 2 µl of 15 µM random primers, 

and 4 µl of 2.5 µM dNTP were pre-mixed and incubated at 70°C for 5 min. After that, 

2 µl of M-MLV 10× reaction buffer, 10 U of RNase inhibitor, 25 U of M-MLV Reverse 

Transcriptase, and 1.625 µl of DEPC water were mixed with each sample. First-

strand cDNA was synthesized by incubating at 42°C for 1 hour followed by 95°C for 

5 min. Finally, each sample was diluted in 30 µl of DEPC water. 

3.3.4 High throughout RNA sequencing (RNA-Seq) 

Transcript profiles in Rnf40+/+ and Rnf40-/- MEFs at passage 3 were investigated 

using RNA-Seq. After measuring the concentration of total RNA in the three 

replicates of each condition, the integrity of each sample was detected using 

Bioanalyzer 2100. Libraries were prepared from 1 µg of total RNA using the 

NEXTflex™ Rapid Directional RNA-Seq Kit according to the manufacturer’s protocol. 

In brief, Libraries were performed by a series of steps as follows: mRNA purification 

using Oligo d(T)25 magnetic beads, mRNA fragmentation, first-strand cDNA 

synthesis, cDNA amplification, adaptor extension and size selection, and 
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amplification of size-selected fragments. Each library was quantified by Qubit 3.0, 

and then the fragment size (approximately 300 bp) was determined by using the 

DNA 1000 chip on the Bioanalyzer 2100. 

Finally, cDNA library sequencing was performed by using the cBot and HiSeq2000 

from Illumina (SR; 1x50 bp; 6 GB ca. 30-35 million reads per sample) at the 

Transcriptome Analysis Laboratory (TAL), University of Göttingen.  

3.3.5 Chromatin immunoprecipitation (ChIP) 

Cross linking and cell harvest 

First of all, approximately 2×106 MEFs in 15 cm plates were crosslinked for 10 min 

by adding 1% formaldehyde at room temperature.  The formaldehyde was quenched 

by adding 125 mM glycine. After washing twice in ice-cold PBS, the nuclear pellets 

were harvested in cold nuclear preparation buffer supplemented multiple proteinase 

inhibitors (1 mM N-ethylmaleimide, 10 mM β-glycerophosphate, 1 ng/μl 

Aprotinin/Leupeptin, 1 mM Pefabloc, 10µM iodo acetamide and 1 mM nickel 

chloride). The pellets were further washed once with nuclear preparation buffer, 

frozen in liquid nitrogen and stored at -80°C.  

Sonication 

The nuclear pellets were re-suspended and lysed in 300 µl of sonication buffer-1for 

15 min at 4°C. The sample was diluted using 100 µl of sonication buffer-2 and 

aliquoted in two 1.5 ml tubes, and sonicated for 30 cycles in the biorupter with 30sec 

on/off setting. The soluble chromatin fragments were cleared by centrifugation at 

12,000 g for 10 min at 8°C, and diluted in 600 µl dilution buffer.  
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Preclearing 

Chromatin fragments were pre-cleared by incubating with 100 µl of 50% slurry of 

sepharose beads for 1 hour at 4°C. After centrifugation at 12,000 g for 2 min at 4°C, 

the cleared supernatant was aliquoted in three 1.5 ml tubes (each around 300 µl) 

and stored at -80°C. 30 µl of supernatants was kept as input. 

Immunoprecipitation 

300 µl of each sample was diluted in 600 µl of IP buffer and incubated overnight at 

4°C with protein specific targeting primary antibodies listed in 2.6.2, or the 

background binding non-specific control IgG antibody. The antibody bound 

chromatin fragments were precipitated by adding 30 µl of 50% slurry of protein A-

sepharose. The sepharose beads were collected by centrifuging at 2,000 g for 2 min 

at 4°C. Finally, the immunoglobulin complexes were washed with several buffers: 

ice-cold IP buffer twice, wash buffer twice, IP buffer twice again, and TE buffer twice.  

DNA isolation 

RNAs in the samples were degraded by incubating for 30 min at 37°C with 50 µl of 

RNAse-A solution. In addition, proteins were eliminated by adding 50 µl of 2× 

Weinmann lysis buffer (100 mM Tris-HCl at pH 8, 20 mM EDTA, and 2% SDS) 

supplemented with 1 µg proteinase K and incubated overnight at 65°C. After 

centrifugation at 2,000 g for 2 min, 100 µl of 10 mM Tris-HCl (pH8) solution was 

added to the supernatant, and incubated 10 min at 65°C.This was followed by 

adding 10 µl 8M of LiCl, 4 µl colorless coprecipitant, and 200 µl of 

Phenol/chloroform/Isoamylic alcohol extraction (25:24:1) and vortexing. The aqueous 

phase containing DNA was collected in 1.5 ml LoBind microcentrifuge tubes after 

centrifugation at full speed for 2 min. In addition, the phenolic phase was vortexed 

with 200 µl of solution containing 10 mM of Tris-HCl (pH8) and 0.4 M LiCl, and then 
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the aqueous phase was harvested by centrifugation at full speed for 2 min. 400 µl of 

the aqueous phase containing DNA was mixed with 1 ml of EtOH and incubated for 

2 hours at -80°C. DNA was pelleted via centrifugation at 15,000 g for 5 min at 4°C. 

After brief air-drying, the DNA pellet was redissolved in 40 µl of nuclease-free water.  

3.3.6 Quantitative real-time PCR (qPCR)  

Before starting qPCR, standard samples were prepared from all cDNA samples or 

input DNA of ChIP samples in different dilutions (1:1, 1:4, 1:16, 1:64, 1:256, and 

water). Each qPCR reaction involved 1 µl cDNA or ChIP DNA, 30 nM primers, 8.5 µl 

water, and 14 µl of PCR Master Mix (75 mM Tris-HCl (pH 8.8), 20 mM (NH4)2SO4, 

0.01% Tween-20, 3 mM MgCl2, 1:80000 SYBR Green, 0.2 mM dNTPs, 20 U/ml Taq 

DNA Polymerase, 0.25% Triton X-100, and 300 mM Trehalose).  

PCR reaction was performed in CFX96TM Optical Reaction Module using two-step 

protocol: 

 

The PCR reaction was followed by a melting curve analysis from 60°C to 95°C with 

reads every 0.5°C. 

3.3.7 ChIP-Seq library preparation 

In order to investigate the genome-wide  H2Bub1, H3K4me3, H3K27ac, and 

H3K27me3 bound regions, DNA isolated from the protein specific ChIP was followed 

by high-throughput sequencing  in Rnf40+/+ and Rnf40-/- MEFs at passage 3.  
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The concentration of each DNA sample was first measured using Qubit® 2.0 

Fluorometer. 5 ng DNA was diluted in 50 µl EB buffer (10 mM Tris-HCl (pH8) and 0.2% 

Tween-20) and sonicated for 30 cycles in the biorupter with 30sec on/off setting. 

Libraries were prepared using the NEBNext Ultra DNA library preparation kit 

according to the manufacturer’s protocol. Each library was quantified by Qubit® 2.0 

Fluorometer, and then the fragment size (approximately 300 bp) was determined by 

using the DNA 1000 chip on the Bioanalyzer 2100. 

Finally, 75 bp single-ended tags for H3K4me3 and 51 bp single-ended tags for other 

samples were sequenced with single indexing using NextSeq or HiSeq 2500 

platforms, respectively. 

3.3.8 Protein level analysis 

3.3.4.1 SDS-PAGE 

Protein extracts were prepared by lysing Rnf40+/+, Rnf40-/-, and EZH2i MEFs in RIPA 

buffer supplemented with proteinase inhibitors (1 mM Pefabloc, 1 ng/μl 

Aprotinin/Leupeptin, 10 mM BGP and 1 mM NEM) followed by sonication (15 sec at 

10% power). Before sodium dodecylsulfate polyacrylamide gel electrophoresis 

(SDS-PAGE), samples were mixed with 6X laemmli buffer and boiled for 10 min at 

95°C. Proteins were separated according to their molecular weight by SDS-PAGE as 

described before (Laemmli 1970).   

3.3.4.2 Western blot analysis 

After electrophoresis, the separated proteins were transferred from polyacrylamide 

gels to PVDF membranes using transfer buffer at 100 V for 1.5 hours. The 

membranes were blocked in blocking solution for 1 hour to prevention specific 

binding. Subsequently, the membranes were incubated with protein-specific targeted 
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primary antibodies at 4°C overnight. After washing out the unspecific bound 

antibodies with TBS-T, the primary antibody bound membranes were incubated with 

the corresponding horseradish peroxidase-conjugated anti-rabbit IgG or anti-mouse 

IgG secondary antibodies for 1 hour at room temperature. After washing thrice with 

TBS-T, HRP signals were detected by ChemiDoc™ MP Imaging System using 

enhanced chemiluminescence solution. 

3.3.9 Data analysis 

3.3.9.1 RT-qPCR and ChIP-qPCR data 

Gene expression level in each cDNA sample was calculated using a standard curve 

as explained previously. Furthermore, the expression of each gene was normalized 

to Rplp0 as an internal reference gene. Finally, the relative gene expression levels 

were calculated, and referred to as “Rel. mRNA level”. 

The DNA levels in input, IgG, and ChIP samples were quantified using a standard 

curve made from diluted input samples.  DNA levels in IgG and ChIP samples were 

normalized to input samples, and expressed as “% input”. 

p-value was calculated using t-test, ‘n.s’ indicated no significant difference; *p<0.05; 

**p<0.01; ***p<0.0001. 

3.3.9.2 RNA-Seq data 

RNA-seq data process 

Sequencing data were transformed to bcl files by using BaseCaller software, and 

further transformed to fastq files with CASAVA (version 1.8.2). The quality of fastq 

data was checked using FastQC (version 0.64) in Galaxy. The raw fastq data from 

each sample was mapped to mouse reference transcriptome (UCSC, mm9) using 
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bowtie 2.0 tool under Linux environment, thereby generating sam files (Langmead 

and Salzberg 2012). Counts of each transcript were aggregated in a CSV table using 

Ruby Script (https://github.com/judofyr/rubyscript).  DESeq analysis (Anders and 

Huber 2010) was performed and the normalized gene expression counts of each 

sample were calculated according to the sample count size, and differential gene 

expression between Rnf40+/+ and Rnf40-/- conditions were computed. According to 

the differential gene expression table, Rnf40-dependent, -independent, and -

suppressed gene clusters were selected as follows: Rnf40-dependent genes, 

baseMean>15, log2-fold change <-1, and p-value<0.05; Rnf40-independent genes, 

baseMean>15, -0.2<log2-fold change<0.2, and p-value>0.8; Rnf40-suppressed 

genes, baseMean>15, log2-fold change>1, and p-value<0.05. 

Gene Set Enrichment Analysis (GSEA) 

Pathway enrichment scores were calculated using GSEA according to user guide 

(Subramanian et al. 2005). The normalized gene expression counts, generated from 

DESeq analysis of RNA-Seq data, were compared with the published C4-curated 

gene sets database. Genes were sorted from left to right according to fold change in 

gene expression under Rnf40-/- vs. Rnf40+/+ conditions. FDR p-value <0.05 was 

considered as significant enrichment. 

Gene ontology analysis (GO) 

GO analysis were performed to compare the Rnf40-dependent, Rnf40-suppressed, 

or the broadest H3K4me3 bound gene cluster to the published gene sets in 

“GOTERM_BP_ALL” using DAVID 6.7 (Huang da et al. 2009). The significant 

enriched GO terms (FDR<0.05) were represented as the Bubble plot generated by 

using REViGO (Supek et al. 2011). 
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3.3.9.3 ChIP-Seq data 

The raw fastq files of ChIP-Seq data were generated by Dr. Daniela Indenbirken 

from Heinrich Pette Institute of Hamburg as the similar process as RNA-Seq data. 

After checking data quality using FastQC, each fastq file was mapped to mouse 

genome (UCSC, mm9) using bowtie (version 1.0.0) in Galaxy (Langmead et al. 

2009). In order to identify  the regions where reads were significantly enriched, we 

further performed Model-based Analysis of ChIP-seq (MACS) (version 1.0.0) for 

peak calling with the input of each condition as control and “p-value < 0.00001” cutoff 

for peak detection (Zhang et al. 2008; Liu 2014), thereby generating two important 

processed data: bed files containing regions significantly bound by the protein of 

interest and wig files containing ChIP signals on each bound region. Moreover, ChIP 

signals in each wig file were normalized to the filtered reads per hundred million. The 

normalized wig files were further transformed to bigwig files using ‘Wig/BedGraph-to-

bigWig’ tool. The ChIP signal profile on each gene could be visualized by loading the 

bigwig file to Integrative Genomics Viewer (version 2.3.14) (Thorvaldsdottir et al. 

2013).  

The tables containing mouse genome elements (TSS, gene bodies, etc.) were 

obtained from UCSC Table Browser (Karolchik et al. 2004). The average signal of 

H3K4me3, H3K27me3, and H3K27ac near TSS (±1kb) and H2Bub1 on gene bodies 

were computed from the normalized bigwig files using ComputeMatrix in deepTools 

(Ramirez et al. 2014). Furthermore, Smooth Script plot analysis investigated the 

correlation between the given histone modifications and gene expression, and 

boxplot analysis was used to compare the signals between the given gene clusters, 

by using those qualified ChIP signals.  
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The heatmapper in deepTools was used to create heatmaps of each ChIP. CEAS 

(version 1.0.0) and aggregate profiles analysis were performed in Galaxy/Cistrome 

(Ji et al. 2006; Shin et al. 2009).  

The H3K27me3 targeted distal regions were obtained by considering only the 

regions further than 5 kb upstream or downstream of gene bodies. Active enhancers 

were defined as enriched (+) H3K4me1 and H3K27ac but unenriched (-) H3K4me3 

regions.  Differential binding (DiffBind) analysis of H3K27me3 near TSS (±1kb) and 

distal regions or H3K27ac on enhancers under Rnf40+/+ vs. Rnf40-/- conditions as 

described before (Ross-Innes et al. 2012).  

Enhancer associated coding genes were identified using the Genomic Regions 

Enrichment of Annotations Tool (GREAT version 3.0.0) with setting as: proximal (5 

kb upstream 5 kb downstream) plus distal (up to 300kb) (McLean et al. 2010).  

Sequence-based motif analysis for Rnf40-suppressed gene associated enhancers in 

Rnf40-/- MEFs was performed using oPOSSUM (version 3.0) (Kwon et al. 2012). The 

input file was given the sequences surrounding H3K27ac peak centers (±150 bp) on 

upregulated genes associated enhancers in Rnf40-/- MEFs. Background file was 

given all enhancer sequences excluding input sequences.  
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4. Results 

4.1 H2Bub1 and transcription activation 

4.1.1 H2Bub1 is enriched in the transcribed regions and gradually decreases 

toward the 3’ end 

To investigate the genome-wide H2Bub1 occupancy in the mouse genome, we 

performed chromatin immunoprecipitation coupled with sequencing (ChIP-seq) for 

H2Bub1 in mouse embryonic fibroblast cells (MEFs). In agreement with early 

findings in human cells (Fuchs et al. 2014), H2Bub1 selectively occupies gene 

bodies and is absent on distal intergenic region (Fig. 5A). In order to further 

characterize the H2Bub1 distribution within gene bodies, we compared H2Bub1 

signals on each element. As shown here (Fig. 5B), H2Bub1 majorly occupies the 

intron and exon.  

 

 



pg. 60 
 

 

Fig.5 The distribution of H2Bub1 on various genome elements  

(A and B) Enrichment on chromosome and annotation (CEAS) analysis of H2Bub1 

occupancy on various genome elements in MEFS. P-values were calculated by χ2 

test.  

Furthermore, we investigated the dynamic occupancy pattern of H2Bub1 along gene 

body. Consistent to the observation in human cells (Jung et al. 2012; Nagarajan et al. 

2014), H2Bub1 highly occupied near 5’ end of transcribed regions and its occupancy 

gradually decreased towards the 3’ end in MEFs as seen in the case of the Lrrc1 

gene (Fig. 6A and 6B). In addition, the dynamic pattern of H2Bub1 occupancy on 

exons and introns were observed by CEAS analysis. As shown in average 

concatenated profiles, H2Bub1 occupancy was remarkably decreased from 5’ to 3’ 

ends on exons compared to introns (Fig. 6C and 6D).  
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Fig.6 The dynamic pattern of H2Bub1 occupancy on gene body.  

(A) The average ChIP signals on the meta-gene of 3 kb, which shows that H2Bub1 

is enriched on gene bodies and decreases towards the 3' end.  

(B) The average H2Bub1 signals on the Lrrc1 gene.  

(C and D) The average concatenated H2Bub1 signals on exons (C) and introns (D). 

4.1.2 H2Bub1 is tightly correlated with gene transcription and active histone 

modifications 

Previous studies have determined that highly transcribed genes are correlated with 

high H2Bub1 occupancy in different human cell lines (Minsky et al. 2008; Jung et al. 

2012; Nagarajan et al. 2014). It was further suggested that H2Bub1 is tightly coupled 

with RNA polymerase II elongation rate (Johnsen 2012; Fuchs et al. 2014). To 

investigate the genome-wide correlation between H2Bub1 and gene transcription, 

we computed the normalized H2Bub1 average signal on each gene body using 
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deepTools and correlated that to the normalized gene expression level. Consistent 

with early findings, H2Bub1 is highly correlated with transcription level for most 

genes (Fig. 7A). Given that the stimulation of transcription begins with the 

establishment of the transcription preinitiation complex on promoters, and the 

interplay of various histone modifications on promoters is able to modulate the 

recruitment of transcription factors, it was interesting to investigate the correlation 

between H2Bub1 and other active or repressive histone signatures, Chromatin 

accessibility assessed by DNase-Seq, RNA polymerase II (RNAPII), and nascent 

RNA transcription detected by GRO-seq on the promoter regions. Indeed, H2Bub1 is 

highly correlated to transcription initiation associated histone marks H3K4me3 and 

H3K27ac (Guenther et al. 2007; Karlic et al. 2010), transcription elongation 

associated H3K36me3 (Guenther et al. 2007), RNAPII, chromatin opened degree 

(DNase-Seq), and transcription level, while negatively correlated to transcription 

initiation and elongation repressive marks like H3K27me3 (Schones et al. 2008) and 

its methyltransferase EZH2 (Cao et al. 2002) (Fig. 7B). Together, these data 

confirmed H2Bub1 is highly correlated with gene transcription in MEFs.  
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Fig.7 Correlation between H2Bub1, gene expression, active histone 

modifications, and repressive histone modification 

(A) SmoothScatter plot analysis displays the relationship between the average 

H2Bub1 signals on gene body and its own gene expression level. The average 

H2Bub1 signals on gene body were calculated by ComputeMatrix in deepTools.  

(B) The heatmap shows the correlation between H3K27me3, EZH2, H3K36me3, 

GRO-seq, DNase-Seq, mRNA polymerase II (RNAPII), H2Bub1, H3K4me3, and 

H3K27ac on the region of transcriptional start sits (TSSs) to downstream 1kb. The 

correlation coefficients were calculated using Pearson’s method. 

4.1.3 Inducible knockout of RNF40 globally affects active histone 

modifications  

To further study the correlation between H2Bub1 and other active histone marks, we 

developed a conditional Rnf40 knockout mouse in which exons 3 and 4 of the mouse 

Rnf40 gene were flanked by LoxP sites (Fig. 4). This mouse was subsequently 

crossed to a transgenic line expressing a ubiquitously expressed tamoxifen-inducible 

Cre recombinase (Rosa26-CreERT2) and mouse embryo fibroblasts were then 

file:///C:/Users/Wanhua/Desktop/Wanhua%20Thesis%20Version2/3.%20Methods.docx
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obtained from homozygous Rnf40loxP/loxP embryos containing the CreERT2 transgene 

(Hameyer et al. 2007). The deleted RNF40 and H2Bub1 MEFs were effectively 

generated by treating cells with 4-hydroxytamoxifen (4-OHT) for 5 days and an 

additional 3 days culture without 4-OHT (Fig. 8A). In agreement with the crosstalk 

between H2Bub1 and methylation on histone 3 (H3K4me3 and H3K79me3) 

(Shilatifard 2006; Kim et al. 2009), loss of H2Bub1 resulted in global decrease of 

H3K4me3 and H3K79me3. In addition, we observed a global decrease of various 

histone acetylations (H3K9ac, H3K27ac, and H4K12ac) (Fig. 8B). However, there 

was no significant effect on transcription elongation-associated H3K36me3 (Fig. 8B). 

Together, we can conclude that H2Bub1 has a critical role in maintaining not only 

H3K4me3 and H3K79me3 occupancy via histone crosstalk mechanisms but also 

some other active histone modifications such as histone acetylation. 

 

Fig.8 The effects of H2Bub1 deletion on other active histone modifications  

(A) PCR detection of the sequence containing LoxP site. The Rnf40 inducible 

knockout MEFs were treated with 125 nM or 250 nM of 4-OHT for 0, 1, 2, and 5 days. 

300 ng of DNA were performed PCR to detect the sequence containing LoxP site 

(938 bp)  
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(B) Western blot analysis for protein extracts from H2Bub1 presented or deleted 

MEFs using the antibodies targeting RNF40, H3K36me3, H3K79me3, H3K9ac, 

H3K4me3, H3K27ac, H4K12ac, H2Bub1, and H3 (the loading control). Rnf40 

knockout was induced by treating with 250 nM of 4-hydroxytamoxifen (4-OHT) for 5 

days, and then cultured for 3 days in the absence of 4-OHT.  

4.1.4 Loss of RNF40 selectively affects low or moderate H2Bub1 targeted 

gene transcription 

Next, we further categorized genes globally into 4 clusters based on their degree of 

H2Bub1 occupancy from high to non-enrichment (Fig. 9A), and observed that genes 

displaying undetectable or abundant levels of H2Bub1 were largely unaffected in 

their expression level. In contrast, genes displaying low (L) or moderate (M) H2Bub1 

occupancy were highly regulated in Rnf40-deficient MEFs (Fig. 9B).  

 

Fig.9 Low or moderate H2Bub1 targeted genes is sensitive to RNF40 deletion 

(A) Heatmaps show H2Bub1, H3K4me3, H3K27me3, H3K27ac and GRO-seq signal 

surrounding TSS (±5kb) in wild-type (Rnf40+/+) MEFs. Genes are sorted according to 
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H2Bub1 level in descending order. Color key of the heatmaps is shown on their right. 

According to H2Bub1 occupancy, genes are grouped into high (“H”) displaying up to 

75% of ranked genes, moderate (“M”) displaying 50% ~ 75% of ranked genes, low 

(“L”) displaying 25% ~ 50% of ranked genes, no (“No”) displaying ~25% of ranked 

genes.  

(B) Boxplot compares the absolute values of log2-fold changes in gene expression 

(Rnf40-/- vs. Rnf40+/+) in the defined groups. P-value was calculated by unpaired 

Wilconxon-Mann-Whitney-Test. 

In addition, we studied the effects of loss of H2Bub1 on the occupancy of H3K4me3, 

H3K27ac and H3K27me3 near the TSS. SmoothScatter analysis showed that active 

marks (H3K4me3 and H3K27ac) were most strongly decreased on genes displaying 

high levels of H2Bub1 and slightly increased on non-/low-H2Bub1 marked genes 

(Fig. 10A and 10B; left panel). Consistent with the dynamic pattern of gene 

regulation (Fig. 9B), the active and repressive histone marks surrounding TSS in ”L” 

and “M” gene clusters were significantly altered in Rnf40-deficient MEFs (Fig. 10A-C; 

right panel). Notably, majority of genes in the highly regulated clusters (L and M) 

were at bivalent state with decorated by both active and repressive marks (Fig. 9A). 

Thus, we hypothesized that the dependency of differential regulation on H2Bub1 is 

highly associated to histone modification context.  
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Fig.10   Genome-wide analysis of the alteration of H3K4me3, H3K27me3, and 

H3K27ac surrounding TSS (±1kb) in the absence of H2Bub1 

(A-C; left panel) The smoothScatter plots compare average H2Bub1 signals on the 

gene body to the changing levels of H3K4me3 (A), H3K27ac (B), and H3K27me3 (C) 

occupancy near the TSS. The correlation coefficient above each smoothScatter plot 

was calculated using the Pearson method.  

(A-C; right panel) Boxplots show the absolute value of log2-fold changes in 

H3K4me3 (A), H3K27ac (B), and H3K27me3 (B) occupancy for genes grouped 
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according to H2Bub1 occupancy as “No”, “L”, “M”, and “H”. P-values were calculated 

by unpaired Wilcoxon-Mann-Whitney-Test. 

4.1.5 Transcription dependency on H2Bub1 is not associated with gene length 

in RNF40 deleted cells 

It is suggested that transcription level of a gene is correlated with its own 

morphological parameters (such as distance to neighbors, numbers of exons and 

introns, and gene length). Moreover, early data showed that transcription regulation 

in response to RNF20 knockdown majorly occurs in longer genes (Fuchs et al. 2012). 

In contrast to the observation in RNF20 knockdown cells, there is no significant 

difference in gene length between RNF40 regulated and independent genes (Fig. 

11A). Furthermore, we investigated the alteration of gene expression both in the 

shortest and longest genes. There is no difference in H2Bub1 occupancy between 

the shortest and longest genes (Fig. 11B). In general, we didn’t observe too many 

significant changes in gene expression in those two gene clusters (Fig. 11C). We 

conclude that transcription dependency on H2Bub1 is not associated with gene 

length. 
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Fig.11 Transcription regulation induced by RNF40 deletion is not associated 

with gene length 

(A) Boxplot analysis compares gene length between RNF40-regulated (reg.) and -

independent (inde.) gene clusters. RNF40 independent genes: adjustment q-value 

greater than 0.8, log2-fold change between -0.2 and 0.2. RNF40 regulated genes: 

adjustment q-value less than 0.05, log2-fold change less than -1 or greater than 1. p-

value was calculated by unpaired Wilcoxon-Mann-Whitney-Test.  

(B) Boxplot analysis compares normalized H2Bub1 average signals on gene body 

between the shortest genes and longest genes. p-value was calculated by unpaired 

Wilcoxon-Mann-Whitney-Test.  

(C) Boxplot analysis compares the alteration in gene expression between Rnf40+/+ 

and Rnf40-/- conditions in the shortest and longest gene clusters. P-value was 

calculated by paired Wilcoxon-Mann-Whitney-Test. The longest gene shows up to 75% 

ranked gene length; the shortest gene cluster involves genes showing less to 25% 

ranked gene length.  

4.1.6 Three classified states of promoters   

Given that H2Bub1-regulated genes are comprehensively occupied by active and 

repressive histone modifications, such as H3K4me3, H3K27me3, and H3K27ac (Fig. 

9A), in order to better investigate the role of H2Bub1 in transcription, it is necessary 
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to classify global genes according to the epigenetic context. Based on the active 

H3K4me3 and repressive H3K27me3 occupancy near TSS regions, we grouped 

global genes into only H3K4me3 enriched (H3K4me3+), both H3K4me3 and 

H3K27me3 occupied (H3K4me3+ & H3K27me3+), and only H3K27me3 enriched 

(H3K27me3+) clusters (Fig. 12C)., we identified that out of 4727 genes were marked 

by H3K27me3 containing 2686 of H3K27me3+ genes (Fig. 12A and 12C); and out of 

13605 of H3K4me3 marked genes containing 11564 of H3K4me3+ genes (Fig. 12B 

and 12C). Through overlapping the H3K4me3 and H3K27me3 marked genes, we 

further identified 2041 genes marked both by H3K4me3 and H3K27me3 (Fig. 12C).  

 

Fig.12  Three chromatin states in MEFs 

(A-C) Venn diagram analysis identified genes with H3K27me3 (A), H3K4me3 (B), 

and both H3K4me3 & H3K27me3 enriched (C) near TSS regions. The significant 

H3K4me3 or H3K27me3 peaks were called using MACS (version 1.0.1) with p-value 

less than 0.00001.  

In addition, we utilized heatmaps which displayed histone modification occupancy 

surrounding the TSS of the classified gene clusters. Combined with the published 

data in mouse fibroblasts (Liu et al. 2014; Wei et al. 2015) H3K4me3+ genes show a 

high degree of H2Bub1 occupancy and transcription detected by nascent RNA 
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sequencing (GRO-Seq); H3K4me3+ & H3K27me3+ genes display low or no signals 

of H2Bub1 and transcription; H3K27me3+ genes show no H2Bub1 occupancy and 

transcriptional silencing (Fig. 13).  

 

Fig.13 Heatmaps displaying the occupancy of H2Bub1, H3K4me3, H3K27me3, 

and nascent RNA levels (GRO-Seq) surrounding TSSs in the three chromatin 

states 

The color key of each heatmap is at the right.  The ‘H3K4me3+’ and ‘H3K4me3+ & 

H3K27me3+’ genes were sorted according to H2Bub1 occupancy from high to low, 

and the ‘H3K27me3+’ genes were sorted according to H3K27me3 from low to high.  
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Next, we investigated the presence of other histone modifications on TSS regions in 

response to H2Bub1 deletion. In agreement  with crosstalk between H2Bub1 and 

H3K4me3 (Racine et al. 2012), H3K4me3 was significantly decreased on 

‘H3K4me3+’ gene promoters (Fig. 14A); while slightly but not significantly decreased 

on ‘H3K4me3+ & H3K27me3+’ gene promoters (Fig. 14B), possibly because of the 

low occupancy of H2Bub1 at this chromatin locus (Fig. 13). Surprisingly, loss of 

H2Bub1 led to a significant decreasing of H3K27me3 on ‘H3K4me3+ & H3K27me3+’ 

and ‘H3K27me3+’ gene promoters (Fig. 15A and 15B). In addition, the absence of 

H2Bub1 led to a differential alteration of H3K27ac on ‘H3K4me3+’ and ‘H3K4me3+ & 

H3K27me3+’ gene promoters. However, H3K27ac occupancy was differentially 

altered in those two gene clusters in response to Rnf40 deletion, which displayed 

significantly decreased ‘H3K4me3+’ genes while increased ‘H3K4me3+ & 

H3K27me3+’ genes (Fig. 16A and 16B). There was no remarkable signal of H3K27ac 

on ‘H3K27me3+’ gene promoters (Fig. 16C). Given that H3K4me3 and H3K27ac 

serve as transcription coactivator on promoters, while H3K27me3 has the ability of 

repressing transcription initiation and elongation (Wang et al. 2009; Pasini et al. 

2010), we hypothesized that gene regulation at these  three clusters might respond 

differentially to H2Bub1 depletion.  
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Fig.14   The effects of H2Bub1 deletion on H3K4me3 occupancy at the given 

gene clusters 

Aggregate profile analysis shows the average H3K4me3 signals near TSS regions in 

‘H3K4me3+’ and ‘H3K4me3+ & H3K27me3+’ gene clusters following RNF40 deletion. 

P-values were calculated by Wilcoxon-Mann-Whitney-Test. 

 

Fig.15 The alteration of H3K27me3 occupancy near TSS regions of given gene 

clusters following H2Bub1 deletion  

Aggregate profile analysis shows the average H3K4me3 signals near TSS regions in 

‘H3K4me3+’ and ‘H3K4me3+ & H3K27me3+’ gene clusters following RNF40 deletion. 

P-values were calculated by Wilcoxon-Mann-Whitney-Test. 
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Fig.16 The effects of H2Bub1 deletion on H3K27ac occupancy near TSS 

regions of the given genes   

Aggregate profile analysis shows the average H3K27ac signals near TSS regions in 

‘H3K4me3+’, ‘H3K4me3+ & H3K27me3+’, and ‘H3K27me3+’ gene clusters following 

RNF40 deletion. P-values were calculated by Wilcoxon-Mann-Whitney-Test. 

4.1.7 RNF40-dependent genes were enriched with H3K4me3, while RNF40-

suppressed genes were enriched with H3K27me3 

Next, we investigated the differential alteration in gene expression in the three 

groups in response to H2Bub1 loss. Here, we showed that RNF40-dependent genes 

were significantly only marked by H3K4me3 (672/802), which supported the active 

function of RNF40 in transcription; while RNF40-suppressed genes were remarkably 
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marked by H3K27me3 (257/672), which indicated another unknown transcriptional 

function of RNF40 (Fig. 17).   

To investigate the biological function of the differentially expressed genes in Rnf40-/- 

MEFs, we utilized gene-annotation enrichment analysis. In agreement with the 

reports in human cells (Chen et al. 2012; Fuchs et al. 2012; Jung et al. 2012), Gene 

Ontology (GO) analysis showed that RNF40-dependent genes significantly enriched 

for cell cycle- and development-related gene sets (Fig. 18A), which supported the 

selective role of RNF40 in cell cycle associated tumor suppression and stem cell 

differentiation (Shema et al. 2008; Chen et al. 2012). Interestingly, RNF40-

suppressed genes were also significantly enriched for development-related GO 

terms (Fig. 18B), which indicated an unknown role of H2Bub1 in tissue development.  

 

Fig. 17 Venn diagram analysis reveals RNF40-dependent and RNF40-

independent gene enrichment 

Venn diagram analysis shows the shared number of upregulated (‘upreg.’), 

downregulated (‘down.’), H3K4me3 targeted (‘H3K4me3+’), and H3K27me3 targeted 

(‘H3K27me3+’) genes. Significantly upregulated genes were defined as those with p-

value <0.05, log2-fold change > 1, and average counts (Rnf40+/+ and Rnf40-/-) > 15; 
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significantly downregulated genes were defined as those with p-value <0.05, log2-

fold change < -1, and average counts (Rnf40+/+ and Rnf40-/-) > 15. 

  

Fig.18 Differential expression induced by H2Bub1 deletion 

(A and B) The bubble plot shows GO analysis of RNF40-dependent genes 

(downregulated genes) and RNF40-suppressed genes (upregulated genes). The 

pathway enrichment was analyzed using DAVID (version 6.7), then the GO terms 

with FDR value less than 0.05 were plotted by REVIGO. Bubble size indicates the 

frequency of the GO term in the underlying GO database. Color key of p-value is 

shown at the right. 

4.1.8 The downregulation of RNF40-dependent genes in Rnf40-/- MEFs is 

associated to the widespread narrowing of H3K4me3 peaks 

Consistent with an intimate crosstalk between H2Bub1 and H3K4me3, RNF40 

deficiency resulted in a global decrease in H3K4me3 levels (Fig. 8B). In addition, 

aggregate analysis of H3K4me3 average signal showed that H3K4me3 (red line) 

occupancy decreased largely at the 3’ side of the TSS-associated H3K4me3 peak 

coinciding with H2Bub1 occupancy (Fig. 19B). Recent studies reported the breadth 
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of H3K4me3 shows more important on gene transcription compared to its height 

(Benayoun et al. 2014; Chen et al. 2015b). Consistently, we observed that the 

breadth of the H3K4me3 peak is highly correlated with gene expression (Fig. 19A). 

Moreover, the summits of H3K4me3 peaks on RNF40-dependent (downregulated) 

genes were shifted by ca. 50 bp towards the 5’ end of the gene after Rnf40 knockout 

(Fig. 20A). Correlated to the narrowing of H3K4me3 peaks (Fig. 20A), the width of 

H3K27ac peaks were remarkably narrowed in RNF40-dependent genes following 

RNF40 deletion (Fig. 20B). However, the width of H3K4me3 and H3K27ac peaks 

near TSS regions were not altered too much in respond to RNF40 deletion (Fig. 20C 

and D).  

 

Fig.19 The spread of H3K4me3 is dependent on H2Bub1 

(A) Plot profile shows the correlation between the width of H3K4me3 domain and 

their associated gene transcription in Rnf40 wide type MEFs. The correlation 

coefficient (R) was calculated by the Pearson method.  

(B) Aggregate profiles show the average signal of H3K4me3 (black line) and 

H2Bub1 (blue line), as well as the dynamic changes in H3K4me3 (red line) average 

occupancy with the loss of H2Bub1 surrounding TSS of genes globally. The dynamic 

changing of H3K4me3 was calculated as the average occupancy of H3K4me3 in 

Rnf40+/+ excluding that in Rnf40-/- MEFs. 
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Fig.20 Transcription dependency on H2Bub1 is associated to widespread of 

H3K4me3 domain 

(A - D) Aggregate analyses compare H3K4me3 and H3K27ac average occupancy 

surrounding TSS between Rnf40+/+ (black) and Rnf40-/- conditions in RNF40-

dependent (C) and RNF40-suppressed (E) gene clusters. The dotted lines in Fig. 

20C point out the peak center of H3K4me3 in Rnf40+/+ (black) and Rnf40-/- (red) 

conditions.  

To confirm our bioinformatic analyses, we randomly picked out RNF40-dependent 

genes, and the single gene expression analysis confirmed the significant 

downregulation of Myl9, Loxl3, and Psrc1 (Fig. 21A). Moreover, ChIP profiles 

confirmed a significant narrowing of H3K4me3 and H3K27ac peaks on those genes, 

while the height of H3K4me3 on the promoter of Psrc1 was not changed following 

Rnf40 deletion (Fig. 21B). Together, we propose that the H2Bub1-H3K4me3 trans-
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histone pathway is particularly important for broadening of the TSS-associated 

H3K4me3 domain on a select subgroup of genes. 

 

Fig.21 Examples for RNF40-dependent genes are associated to widespread 

narrowing of H3K4me3 following Rnf40 deletion 

(A) qRT-PCR analysis of Rnf40-dependent genes (Myl9, Loxl3, and Psrc1) in 

Rnf40+/+ and Rnf40-/- MEF cells. Data are normalized by Rplp0 gene expression level 

and shown as “relative mRNA levels”, mean ± SD from three independent 

experiments. *p<0.05, **p<0.01, ***p<0.001, n.s: p>0.05, calculated with two-tailed 

unpaired t-test.  

(B) The ChIP profiles show the occupancy of H2Bub1, H3K4me3, and H3K27ac, as 

well as the normalized mRNA reads on the randomly selected RNF40-dependent 

genes in Rnf40+/+ (black) and Rnf40-/- (red) MEFs.  

4.1.9 Broadest H3K4me3 is associated with cell development 

Given that the broad H3K4me3 domain is tightly linked to the transcription of tumor-

suppressed genes and cell lineage-specific genes (Benayoun et al. 2014; Chen et al. 

2015b), and the width of H3K4me3 domain is highly dependent on H2Bub1, we next 

decided to investigate the correlation between H2Bub1 and the broadest H3K4me3 

marked genes. Indeed, the width of the broadest H3K4me3 domain (top 3% 

broadest H3K4me3 peaks) was significantly narrowed in response to Rnf40 deletion 



pg. 80 
 

(Fig. 22A). In addition, we utilized gene ontology analysis of the broadest H3K4me3 

occupied genes. Interestingly, consistent with the RNF40-dependent genes enriched 

GO terms (Fig. 18A) the broadest H3K4me3 marked genes were significantly 

enriched for cell cycle and development related genes (Fig. 22B). For example, the 

Wnt5a ligand, which is suggested to mediate axis induction (Smolich et al. 1993), 

and Klf4, one of Yamanaka factors which takes a function in differentiation and tumor 

suppression (El-Karim et al. 2013), showed the broadest H3K4me3 occupancy (Fig. 

22C), and its expression was significantly decreased in Rnf40-/- MEFs.  In agreement 

with that the broadest H3K4me3 domain is associated to cell identity (Benayoun et al. 

2014), Thy1 gene, a specific marker of MEFs (Tanaka et al. 2002), was significantly 

downregulated, and the broad H3K4me3 peaks were remarkably narrowed following 

RNF40 deletion (Fig. 22D and E). However, the H2Bub1-independent genes such as 

the housekeeping gene Actb, which was also marked by the broadH3K4me3, loss of 

H2Bub1 didn’t significantly shorten the widespread of H3K4me3 instead of the height, 

thereby didn’t affect its transcription much more (Fig. 22E). Thus, we proposed that 

the transcription of tissue-specific and cell cycle-related genes requires widening of 

H3K4me3 domains which are facilitated by H2Bub1.  
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Fig.22 Broadest H3K4me3 marked genes enriched for development in MEFs 

(A) Heatmaps show H2Bub1 and H3K4me3 occupancy near the broadest H3K4me3 

enriched TSS (from TSS upstream 1kb to downstream 10kb) in Rnf40+/+ and Rnf40-/- 

MEFs. Genes were sorted according to the length of H3K4me3 peaks. The top 3% 

broadest H3K4me3 enriched genes were selected as the broadest H3K4me3 genes. 

The color key is at the right of each heatmap. 

(B) The Bubble plot shows the broadest H3k4me3 targeted genes enriched GO 

terms.  The GO enrichment was analyzed using DAVID (version 6.7), then the FDR 

value less than 0.05 GO terms were plotted by REVIGO. Bubble size indicates the 

frequency of the GO term in the underlying GO database. Color key of p-value is 

shown at the right. 

(C) The profiles show the occupancy of H2Bub1, H3K27ac, and H3K4me3 on the 

development related genes (Wnt5a and Klf4) in MEFs.  

(D) qRT-PCR analysis of MEF-specific mark (Thy1) in Rnf40+/+ and Rnf40-/- MEF 

cells. Data are normalized by Rplp0 gene expression level and shown as “relative 

mRNA levels”, mean ± SD from three independent experiments. *p<0.05, **p<0.01, 

***p<0.001, n.s: p>0.05, calculated with two-tailed unpaired t-test.  

(E) The ChIP profiles show the occupancy of H2Bub1, H3K4me3, and H3K27ac, as 

well as the normalized mRNA reads on the MEF-specific gene (Thy1) and 

housekeeping gene (Actb) in Rnf40+/+ (black) and Rnf40-/- (red) MEFs. 

4.1.10 H2Bub1-dependent differentiation genes show wide spreading of 

H3K4me3 domain during adipocyte differentiation 

It was suggested that the transcription of tissue-specific genes requires H2Bub1. 

Therefore, we further confirmed the relationship between H2Bub1, the broadest 

H3K4me3, and cell differentiation. After additional analysis of the behavior of 
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H3K4me3 in hMSC differentiated adipocytes for 5 days from our published data 

(Karpiuk et al. 2012), we observed that the breadth of H3K4me3 on the RNF40-

dependent adipocyte specific genes (which significantly downregulated in response 

to RNF40 depletion following adipocyte differentiation for 5 days) were remarkably 

broadened. Moreover, the peak center of H3K4me3 shifted 100 bp downstream (Fig. 

23A). For example, the key adipocyte-regulated genes (PDK4, RASD1, and PPARG), 

whose expression was dependent on RNF40 (Karpiuk et al. 2012), showed a 

significant widespread of H3K4me3 peak following adipocyte differentiation (ADI.) for 

5 days (Fig. 23B). Together, our data provided evidences that H2Bub1-induced 

widespread of H3K4me3 is essential for cell lineage-specific gene transcription.  

 

Fig.23 The behavior of H3K4me3 on RNF40-dependent adipocytes specific 

genes during differentiation 

(A) Aggregate profiles show the normalized average signal of H3K4me3 surrounding 

the TSS of RNF40-dependentgenes (± 5kb) in undifferentiated hMSC (undiff., black 

line) and differentiated adipocytes (ADI., red line). The dotted lines point out the peak 

center of H3K4me3.  
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(B) ChIP profiles show H3K4me3 occupancy on the key adipocytes differentiation 

genes (PDK4, RASD1, and PPARG) in un- or differentiated conditions.  

 

4.2 Polycomb complex 2 shows H2Bub1 dependency 

Although H2Bub1 is typically correlated to gene transcription, a subset of genes was 

upregulated in respond to RNF20 depletion (Shema et al. 2008). One early finding 

suggested that RNF20 suppresses pro-oncogenic gene transcription via blocking the 

recruitment of the transcription elongation factor TFIIS (Shema et al. 2011). It was 

further found that the upregulated genes in RNF20-depleted cells show off-targeting 

of H2Bub1 (Jung et al. 2012). Thus, we speculated that “repressive” functions of 

H2Bub1 more likely occur via indirect mechanisms. 

4.2.1 Moderate H2Bub1 regulates the H3K27 methyltransferase EZH2 

expression 

To examine whether loss of H2Bub1 impacts specific subsets of genes, we 

performed gene set enrichment analyses (GSEA) of mRNA-Seq data and identified 

PRC2- (EZH2, SUZ12, and EED) and PRC1-supressed genes (Fig. 24) as being 

significantly enriched in Rnf40-null cells. 
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Fig.24 GSEA of RNA-Seq data show enrichment of PcG suppressed genes for 

upregulation in Rnf40-/- MEFs 

Gene sets of PRC2 (EZH2, SUZ12, and EED) suppressed genes in TIG3 cells 

(fibroblast). Gene sets of PRC1 (BML1 and MEL18) suppressed genes in DAOY 

cells (medulloblastoma). GSEA was performed using ‘c6.all.v4.0.symbols 

(Oncogenic signature)’ data base. Genes in the graphs were sorted by the gene 

expression ratio of Rnf40-/- vs. Rnf40+/+ from left to right.  

 

Strikingly, analysis of RNA- and H2Bub1 ChIP-seq data revealed H2Bub1 

occupancy on and a selective decrease in the expression of the Ezh2 gene, while 

the expression of the remaining members of the PRC2 complex, which catalyzes 

H3K27 methylation, including Suz12, Eed, and Ezh1 were unaffected (Fig. 25A). 

These findings could be confirmed by qRT-PCR (Fig. 25B). Consistent with an 

interdependence in their protein expression levels (Wei et al. 2011; Kim et al. 2015), 

western blot analysis of other PRC2 subunits revealed decreased protein levels not 

only of EZH2, but also for SUZ12 and EZH1 in Rnf40-/- MEFs (Fig. 25C). 

Consistently, deficiency of H2Bub1 on the body of the Ezh2 gene resulted in a 

significant decrease in the transcription initiation associated H3K4me3, H3K27ac, 

and the normalized mRNA counts on the exon (Fig. 25D). In addition, we analyzed 

the transcriptional activity of EZH2 in response to BRE1A (RNF20) and PAF1 

depletion in HCT116 cells (Chen et al. 2015a). Indeed, depletion of BRE1A 

significantly reduced RNA polymerase II occupancy at the TSS of EZH2. Moreover, 

loss of H2Bub1 in PAF1-depleted cells resulted in a significant decrease in Ezh2 

transcription (Fig. 25E).   
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Fig.25 PRC2 complex depends on H2Bub1 

(A) The scatter plot shows that moderate levels of H2Bub1 on the Ezh2 gene are 

associated with Rnf40-dependent changes in its expression. The red points denote 

transcripts encoding the PRC2 subunits EZH1, EZH2, EED, and Suz12.  

(B) qRT-PCR analysis of Ezh1, Eed, Ezh2, and Suz12 in Rnf40+/+ and Rnf40-/- MEF 

cells. Data are normalized by Rplp0 gene expression level and shown as “relative 

mRNA levels”, mean ± SD from three independent experiments. *p<0.05, **p<0.01, 

***p<0.001, n.s: p>0.05, calculated by two-tailed unpaired t-test.  

(C) Western blots analysis of protein extract from Rnf40+/+ and Rnf40-/- MEFs using 

antibodies for RNF40, EZH1, EZH2, SUZ12, and HSC70.  

(D) The profiles show the occupancy of H3K4me3, H2Bub1, H3K27ac , and the 

normalized  expression reads on Ezh2 gene in Rnf40+/+ (black) and Rnf40-/- (red) 

MEFs. 
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(E) The profiles show the occupancy of RNA polymerase II (Pol II), H2Bub1, and 

nascent RNA (RNA) in control, BRE1A knockdown, and PAF1 knockdown HCT116 

cells.  

 

Given that the gene body specific enriched H2Bub1 is involved in the regulation of 

transcription elongation (Johnsen 2012; Fuchs et al. 2014), we performed ChIP for 

RNA polymerase II (RNAP II) and H3K4me3. qPCR analyses confirmed that 

H3K4me3 occupancy near TSS (Fig. 26A) as well as RNA polymerase II (RNAP II) 

occupancy near the TSS (Fig. 26B) and on the gene body (Fig. 26C) of the Ezh2 

gene were significantly decreased in Rnf40-null MEFs, consistent with the observed 

decrease in Ezh2 mRNA levels. Thus, we suggested that H2Bub1 directly controls 

the transcription of Ezh2 gene both at transcription initiation and elongation phase.  
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Fig.26 Loss of H2Bub1 affects the recruitment of RNA polymerase II on Ezh2 

gene 

(A – C) ChIP-qPCR analysis of the occupancy of H3K4me3, RNA polymerase II 

(RNAP II) near TSS (at downstream 400 bp) and gene body (at downstream 2.5 kb) 

of Ezh2 gene. ChIP signal was normalized by input signal, and represented as 

‘%input’ ± SD (n=3). Non-specific IgG signal indicated the background binding level. 

*p<0.05, **p<0.01, ***p<0.001, calculated with two-tailed unpaired t-test. 

 

4.2.2 A significant reduction of H3K27me3 occupancy near TSS regions in  

Rnf40-/- MEFs 

Given that PRC2 complex majorly carried out tri-methylation of H3 on lysine 27 

(H3K27me3), we further investigated the effects of decreased Ezh2 expression on 

the distribution of H3K27me3 in Rnf40-null MEFs by performing Cis-regulatory 

Element Annotation System (CEAS) (Shin et al. 2009) analysis of H3K27me3 signals 

in  Rnf40+/+ and Rnf40-/- MEFs. Consistent to the observation before (Tie et al. 2014; 

Kim et al. 2015), H3K27me3 broadly occupies various genome elements including 

promoters, gene body, and distal intergenic regions; and shows high enrichment 

near TSS region (Fig. 27A and B). In relation to EZH2 occupancy on the mouse 

genome (Boulard et al. 2015), loss of H2Bub1 led to the redistribution of H3K27me3 
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occupancy on the genome, which showed a decreasing level on the promoter and 

gene body while a slight increase on distal intergenic (Fig. 27A).  

 

Fig.27 Distribution of H3K27me3 signals on various genome elements  in 

Rnf40+/+ and Rnf40-/- MEFs 

(A) Enrichment on chromosome and annotation (CEAS) analysis of H3K27me3 

distribution various elements of the mouse genome in Rnf40+/+ and Rnf40-/- MEFs.  
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(B) Aggregate analysis of the average ChIP signals of H3K27me3 on the meta-gene 

of 3 kb, which shows that H3K27me3 enriches near TSS region and decreases 

towards the 3' end, and has decreased occupancy in Rnf40-/- condition (right panel). 

 

Given that H3K27me3 majorly occupies near TSS regions and distal intergenic 

regions (Fig. 27A), we further performed differential binding (DiffBind) analysis of 

H3K27me3 behavior near TSS regions (±1kb) and on distal intergenic regions in 

response to RNF40 deletion. We observed 4727 genes occupied by H3K27me3 near 

TSS (±1 kb), in which 97% (4241/4727) of those genes displayed a significant 

reduction in H3K27me3 occupancy following Rnf40 loss (Fig. 28A), while 

H3K27me3-enriched distal intergenic regions were differentially affected, displayed a 

significant increasing on 6.4% (2528/39481) regions and a significant decreasing on 

8.7% (3419/39481) distal regions (Fig. 28B). Aggregate analysis of H3K27me3 

confirmed significant decrease near TSS regions (±5kb) in Rnf40-null MEFs (Fig. 

28C). Thus, we suggested that the decreased Ezh2 expression in Rnf40-deleted 

MEFs majorly reduced H3K27me3 occupancy on promoters. 
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Fig.28  Reduction of Ezh2 majorly decreases H3K27me3 occupancy near TSS 

regions 

(A and B) Differential Binding Analysis (DiffBind) of H3K27me3 occupancy on 

promoter (A) and distal intergenic region (B) in Rnf40+/+ and Rnf40-/- MEFs. 

Promoters were considered near TSS regions from upstream 1kb to downstream 

1kb of the TSS. The region more than 5 kb from gene body was considered as distal 

intergenic region. The size of the boxplot indicates the number of genes. The regions 

near TSS or on distal intergenic, displaying a significant increase (incre.) or decrease 

(decre.) in H3K27me3 signals, were selected based on FDR less than 0.05.  

(C) Aggregate plot analysis of average H3K27me3 profiles surrounding TSS (±5kb) 

in wildtype and Rnf40-/- MEFs. p-value was calculated using unpaired Wilcoxon-

Mann-Whitney-Test.  
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4.2.3 EZH2 and H3K27me3 targeted genes show a significant increasing in 

gene expression in response to Rnf40 deletion 

We next sought to characterize the relationship between EZH2 or H3K27me3 

occupancy near the TSS and the induction of gene expression following Rnf40 

deletion. After additional analysis of the published EZH2 ChIP-Seq data in MEFs 

(Pinter et al. 2012), we identified 861 EZH2 target genes and could demonstrate that 

H3K27me3 occupancy near the TSS (±5 kb) of these genes was significantly 

decreased in Rnf40-null MEFs (Fig. 29A).  Furthermore, GSEA analysis of mRNA-

seq data confirmed a significant enrichment for EZH2-targeted genes that were up-

regulated in Rnf40-null MEFs (Fig. 29B). Additionally, we identified a gene set 

enriched for H3K27me3 which displayed a greater than 2-fold decrease in 

H3K27me3 levels surrounding the TSS, and could observe that a large fraction of 

these genes was upregulated in Rnf40-deficient MEFs (Fig. 29C). Moreover, GSEA 

analysis using genes displaying decreased H3K27me3 occupancy in Rnf40-deficient 

MEFs further confirmed a significant enrichment for genes that were upregulated 

following Rnf40 deletion (Fig. 29D). Thus, we proposed that the increased gene 

expression in Rnf40-/- MEFs is related to loss of H3K27me3 on promoters.   
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Fig.29  Regulation on EZH2 or H3K27me3 enriched genes 

(A) Heatmaps show H3K27me3 occupancy of EZH2 targeted genes surrounding 

TSS in Rnf40+/+ and Rnf40-/- MEFs. EZH2 target genes were identified using MACS 

for peak calling with “p-value < 0.001” cutoff for peak detection.  

(B) GSEA analysis shows EZH2 targeted genes are significantly enriched for 

upregulation following Rnf40 deletion. NES: normalized enrichment score.  

(C) Heatmaps show the differential expression of gene displaying significantly 

decrease in H3K27me3 occupancy following Rnf40 deletion. The Z score value of 
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log2-fold change in gene expression (Rnf40-/- vs. Rnf40+/+) is given for heatmaps. 

Red indicates upregulated genes, green indicates downregulated genes.  

(D) GSEA analysis indicates the decreased H3K27me3 genes significantly enriched 

for upregulation in Rnf40-/- MEFs. Genes from left to right are sorted by the ratio of 

gene expression (Rnf40-/- / Rnf40+/+). 

 

4.2.4 Increased H3K27ac signals on PRC2-taget promoters are related to gene 

upregulation in Rnf40-/- MEFs 

Decrease of repressive signals is not enough to stimulate gene transcription, which 

requires additional active transcription signals. Recent findings suggested that p300 

(one of histone acetyltransferases) is able to pre-occupy H3K27me3 enriched 

promoters, while its enzymatic activity is blocked by H3K27me3 (Rada-Iglesias et al. 

2011; Zentner et al. 2011). Therefore, we hypothesized that loss of H3K27me3 might 

elevate H3K27ac occupancy. Indeed, Aggregate analysis of H3K27ac signals on 

EZH2 or decreased H3K27me3 target genes confirmed its significant increase near 

TSS regions (±5kb) in Rnf40-null MEFs (Fig. 30A and B). 
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Fig.30 Increased H3K27ac signals on EZH2 or decreased H3K27me3 target 

promoters 

Aggregate plot analysis of average H3K27ac profiles surrounding TSS (±3kb) in 

wildtype and Rnf40-/- MEFs. P-value was calculated using unpaired Wilcoxon-Mann-

Whitney-Test. 

 

4.2.5 Inhibiting EZH2 leads H3K27me3 targeted RNF40-suppressed genes 

upregulated in Rnf40+/+ MEFs 

To further confirm the influence of the loss of Ezh2 induced by Rnf40 deletion on 

gene transcription in our system, we compared the effects of treating Rnf40+/+ MEFs 

with the EZH2 selective inhibitor EPZ-6438 to Rnf40-deleted MEFs. In agreement 

with EPZ-6438 specifically blocking EZH2 methyltransferase domain (Knutson et al. 

2013), the treatment of EPZ-6438 for two days (EZH2i) significantly decreased 

global H3K27me3 level and did not affect H2Bub1 and H3K4me3, which was 

consistent to our findings that deletion of H2Bub1 also significantly decreased global 

H3K27me3 and H3K4me3 levels (Fig. 31A). Interestingly, we observed inhibiting 

EZH2 significantly elevated global H3K27ac levels (Fig. 31A). Similar to the effects 

of Rnf40 deletion, the inhibition of EZH2 significantly upregulated several randomly 
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picked RNF40-supressed genes (Foxl2, Foxl2os, Nat8l, Tgfa, Kcnc3, and Chd5) that 

displaying significant H3K27me3 occupancy; while didn’t affect H3K27me3 

unenriched gene (Psrc1) (Fig. 31B). In addition, ChIP profiles confirmed significant 

decrease of H3K27me3 occupancy and increase of H3K27ac near TSS of those 

PRC2 targeted genes which displayed low- or unoccupied H2Bub1 (Fig. 31C and D). 

This indicated the upregulation of those genes was a result of the loss or inhibition of 

EZH2 instead of a direct effect of H2Bub1.    

 

Fig.31 The effects of EZH2 small molecular inhibitor on RNF40-suppressed 

genes 

(A) Western blot analysis of protein extracts from Rnf40+/+, Rnf40-/-, and EZH2 

inhibitor treated Rnf40+/+ (EZH2i) MEFs with specific antibodies for targeting 

H3K27me3, H3K27ac, H3K4me3, H2Bub1, H3, and HSC70. The detections of H3 

and HSC70 were considered as loading controls.  

(B) qRT-PCR analysis of RNF40-suppressed genes in Rnf40+/+, Rnf40-/-, and EZH2i 

conditions. Data are normalized by Rplp0 gene expression level and shown as 

“relative mRNA levels”, mean ± SD from three independent experiments. *p<0.05, 

**p<0.01, ***p<0.001, calculated by two-tailed unpaired t-test.  
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(C) qRT-PCR analysis of RNF40-dependent gene (Psrc1) in EZH2i MEFs.  

(D) The profiles show the occupancy of H3K4me3, H2Bub1, H3K27ac , EZH2, 

SUZ12, and the normalized  expression reads on the given RNF40-supressed genes 

in Rnf40+/+ (black) and Rnf40-/- (red) MEFs. 

 

4.3 H2Bub1 and bivalent domain 

A genome-wide understanding of the chromatin landscape has revealed that a large 

number of genes are simultaneously decorated by both active H3K4me3 and 

repressive H3K27me3, which is referred to as bivalency (Bernstein et al. 2006; Voigt 

et al. 2013; Vlaming et al. 2014). It is believed that developmental genes are 

frequently enriched for bivalent chromatin marks (Sachs et al. 2013), which allows 

this subset of genes to be rapidly activated following developmental stimuli. Changes 

in either H3K4me3 or H3K27me3 can affect the expression of developmental genes 

resulting in either their full activation or repression (Agger et al. 2007; Wang et al. 

2009; Agarwal and Jothi 2012). Interestingly, our above findings suggested that 

H2Bub1 genome-wide supervised H3K4me3 as well as H3K27me3 occupancy on 

promoters via different mechanisms. In addition, it suggested that H2Bub1 activated 

some important tissue-specific bivalent gene transcription via inducing the 
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demethylation of H3K27me3 (Karpiuk et al. 2012). However, Venn diagram 

overlapping of H3K4me3 enriched (+), H3K27me3 enriched (+), Rnf40-dependent 

(down.), and Rnf40-independent (upreg.) genes revealed that bivalent genes were 

differentially regulated in response to Rnf40 deletion (Fig. 17). Thus, it is necessary 

to confirm the genome-wide role of H2Bub1 in bivalent activity.   

4.3.1 H2Bub1 is required for the transcription of bivalent genes 

We first identified 2041 bivalent genes in Rnf40+/+ MEFs (Fig. 12C). Interestingly, 

H2Bub1 was more highly correlated to gene transcription of bivalent genes detected 

by GRO-Seq compared to that in global genes (0.42 v.s 0.28) as well as to RNAP II 

(0.41 v.s 0.36), while H3K4me3 was less correlated to bivalent gene transcription 

(0.24 v.s 0.34) as well as to RNAP II (0.3 v.s 0.58) (Fig. 32A and Fig. 7B). For 

example, Zfp275 and Bmp3 show similar occupancy of H3K4me3, the difference 

being the Zfp275 is enriched by H2Bub1, RNAPII, and H3K27ac whileBmp3 is 

targeted by EZH2 and occupied by H3K27me3 to a greater degree. Therefore 

Zfp275 is transcribed, while Bmp3 is silenced (Fig. 32B). This finding suggested that 

H2Bub1 may play a more crucial role in controlling the transcriptional activity of 

bivalent genes compared to H3K4me3. 
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Fig.32 Correlation of H3K27me3, EZH2, H3K36me3, DNase-Seq, GRO-Seq, 

RNAP II, H3K4me3, H2Bub1, and H3K27ac near bivalent gene TSSs 

(A) Heatmap coupled with correlation coefficients displaying the correlations on the 

region from TSS to downstream 1kb.  

(B) ChIP profiles show H3K27me3, EZH2, H3K36me3, DNase-Seq, GRO-Seq, 

RNAP II, H3K4me3, H2Bub1, and H3K27ac occupancy on Zfp275 and Bmp3 genes. 
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4.3.2 H2Bub1 modulates bivalent gene transcription in an epigenetic-context 

manner 

It was suggested that the bivalency could be considered as a metastable equilibrium 

between active and repressive state, which was supervised by various chromatin-

modifying complexes (Voigt et al. 2013). However, less is known about their 

resolution. In agreement with our previous reports (Karpiuk et al. 2012), H2Bub1 is 

required to activate bivalent genes.  To understand in detail the role of H2Bub1 in the 

shifting of this metastable equilibrium, we classified the 2041 bivalent genes into 

H2Bub1 enriched and unenriched groups. In addition to confirm the correlation 

between H2Bub1 and other factors, heatmaps and boxplots analyses found out that 

loss of H2Bub1 significantly decreased H3K27me3 (Fig. 33D) and increased 

H3K27ac (Fig. 33E) on all bivalent genes. However, the behavior of H3K4me3 was 

dependent on H2Bub1. In H2Bub1+ genes this mark significantly decreased while 

H2Bub1- gene it was unaffected. Notably H3K4me3 on H2Bub1+ genes showed 

significantly higher occupancy than on H2Bub1- genes (Fig. 33C). It can be 

speculated that the additional H3K4me3 occupancy on H2Bub1+ genes compared to 

H2Bub1- genes is highly dependent on H2Bub1. Moreover, H2Bub1+ bivalent genes 

were averagely downregulated and H2Bub1- bivalent genes were significantly 

upregulated following H2Bub1 deletion (Fig. 33B). This data confirmed H2Bub1 

coordinates bivalent gene transcription by controlling the shifting of the metastable 

equilibrium between H3K4me3 and H3K27me3.   



pg. 102 
 

 

Fig.33 The behavior of multiple histone modifications on H2Bub1 enriched (+) 

or H2Bub1 unenriched (-) bivalent gene TSS following Rnf40 deletion 

(A) Heatmaps showing H2Bub1, H3K4me3, H3K27me3, SUZ12, EZH2, and 

H3K27ac occupancy on the promoter (the region within ± 5kb from TSS) of classified 

bivalent genes. Genes were grouped according to H2Bub1 occupancy. H2Bub1 

enriched (+) bivalent genes were identified according to H2Bub1 occupancy on gene 

body (log2-normalized value greater than 2). Genes were sorted according to 

H2Bub1 occupancy from high to low.  



pg. 103 
 

  

(B-E) Boxplots compared the alteration of H3K4me3 (B), H3K27me3 (C), H3K27ac 

(D) occupancy near TSS (from TSS to downstream  1 kb), as well as gene 

expression (E) in the grouped genes. P-value was calculated by paired Wilcoxon-

Mann-Whitney-Test.   

 

To investigate the biological function of the differentially regulated bivalent genes, we 

conducted GO analysis of the 163 upregulated or 99 downregulated bivalent genes 

(Fig. 17). Interestingly, similar to global upregulated genes enriched GO terms, 

upregulated bivalent genes were significantly enriched for development associated 

genes while downregulated bivalent genes did not display significant enrichment 

(Table 1).  

Downregulated bivalent gene enriched GO terms 

GO Terms Count % p value FDR 

homeostatic process 9 9.09 0.009 13 

chemical homeostasis 7 7.07 0.010 14 

system development 19 19.19 0.010 15 

cellular calcium ion homeostasis 4 4.04 0.011 15 

calcium ion homeostasis 4 4.04 0.012 17 

cellular metal ion homeostasis 4 4.04 0.014 19 

extracellular matrix organization 4 4.04 0.014 20 
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metal ion homeostasis 4 4.04 0.016 22 

 

Upregulated bivalent gene enriched GO terms 

tissue development 20 12.27 6.9E-07 0.001 

multicellular organismal development 40 24.54 1.7E-05 0.026 

system development 34 20.86 3.6E-05 0.056 

anatomical structure development 35 21.47 5.7E-05 0.090 

localization 40 24.54 5.8E-05 0.091 

cell communication 14 8.59 7.1E-05 0.111 

regulation of cell adhesion 7 4.29 1.1E-04 0.167 

developmental process 40 24.54 1.2E-04 0.184 

Table1 Gene Oncology analysis 

GO analysis shows the enrichment pathway of differentially regulated bivalent genes 

in response to Rnf40 deletion. GO analysis was performed based on 

‘GOTERM_BP_ALL ' database. FDR < 0.05 was considered as significant 

enrichment.  

 

4.3.3 H2Bub1 coordinates homeobox genes activation and repression 

The Hox gene clusters represent a prototypical evolutionarily conserved example of 

coordinated transcriptional and epigenetic regulation during development. 

Importantly, H2Bub1 was previously reported to be required for the activation of 

some Hox genes (Zhu et al. 2005). Thus, in order to examine the regulatory 

mechanisms by which H2Bub1 functions and coordinates the epigenomic landscape 

on Hox genes we analyzed the effects of Rnf40-depletion on histone modification 

profiles on Hox gene clusters. Interestingly, these profiles showed that Hox clusters 

were decorated by both active and repressive histone modifications (Fig. 34). For 

example, the Hoxc cluster displays increasing levels of the active histone marks 

H3K4me3 and H3K27ac in a 5’ to 3’ manner while the repressive mark H3K27me3 
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displayed an inverse pattern (Fig. 34). Interestingly, following Rnf40 deletion and the 

loss of H2Bub1, the levels of H3K4me3 on the active 3’ portion of the cluster 

containing Hoxc4-10 decreased significantly compared to other less active genes. 

Notably, consistent with our other findings, H3K27me3 levels at the 5’ end of the 

cluster (e.g. Hoxc9-13) decreased. Finally, the levels of H3K27ac decreased at the 3'   

end Hoxc genes (Hoxc4-8), and increased at the 5' end of the cluster (Hoxc13-10) 

(Fig. 34). 

 

Fig.34 ChIP and RNA-seq profiles on Hoxc genes 

 

Moreover, qPCR analysis confirmed that the H3K27me3 enriched 5’ Hoxc gene 

expression (Hoxc13 and Hoxc10) significantly increased while H3K4me3 and 

H2Bub1 enriched 3’ Hoxc gene expression (Hoxc6 and Hoxc10) significantly 

decreased in response to H2Bub1 deletion; However, EZH2 inhibitor treatment 

consistently upregulated Hoxc13 and Hoxc10 while didn’t affect Hoxc6 and Hoxc8 
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(Fig. 35A).  In addition, ChIP-qPCR analysis confirmed that both depletion of RNF40 

or inhibition of EZH2 methyltransferase activity significantly decreased H3K27me3 

occupancy on promoter of Hoxc13 gene while H3K4me3 levels were unaffected and 

RNAPII occupancy increased. In contrast, RNF40 loss resulted in decreased 

H3K4me3 and RNAP II occupancy on promoter of the Hoxc6 gene, while EZH2 

inhibition had no effect on their occupancy (Fig. 35B). Together, these data suggest 

that H2Bub1 differentially regulates Hox genes in a context-dependent manner by 

coordinating the equilibrium between active (H3K4me3 and H3K27ac) and 

repressive (H3K27me3) histone modifications. 

 

Fig.35 Single gene analysis confirming gene regulation and the alteration of 

histone modification on Hoxc genes 

(A) qPCR analysis of Hoxc13, Hoxc10, Hoxc8, and Hoxc6 gene expression in Rnf40 

wide type (Rnf40 WT), Rnf40 knock out (Rnf40 null), and EPZ-6438 treated Rnf40 

wide type (EZH2i) MEFs. Data are normalized by Rplp0 gene expression level and 

shown as “relative mRNA levels”, mean ± SD from three independent experiments.  
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(B) ChIP-qPCR analysis of the occupancy of H3K4me3, H3K27me3, and RNA 

polymerase II (RNAP II) near TSS (at downstream 400 bp) of Hoxc13 and Hoxc6 

genes. ChIP signal was normalized by input signal, and represented as ‘%input’ ± 

SD (n=3). *p<0.05, **p<0.01, n.s represents p>0.05, calculated with two-tailed 

unpaired t-test. 

4.4 H2Bub1 and Enhancers 

In agreement to the results in siRNA-mediated RNF20 or RNF40 knockdown human 

cells (Shema et al. 2008), a number of H2Bub1 target genes were upregulated after 

Rnf40 deletion. One report proposed that RNF20, another E3-specific ligase for 

H2Bub1, suppresses pro-oncogenic genes by blocking the recruitment of the 

transcription elongation factor S-II (TFIIS) (Shema et al. 2011). Additionally, we 

confirmed that a subset of increased genes in Rnf40-/- MEFs is related to the 

demethylation of H3K27me3 at promoters (Fig.17). However, we further observed 

more than 41% (276/672) of RNF40-suppressed genes displayed no significant 

occupancy of H3K4me3, H3K27me3, and H2Bub1 at promoters (Fig. 17). In the past 

few years, it has been confirmed that enhancers have the ability of modulating gene 

transcription from a great distance, by recruiting multiple transcription factors to loop 

out the intervening sequences facilitating interactions with promoters. Thus, we 

hypothesized that a subset of H2Bub1-suppressed genes is associated with 

enhancer activity.  

4.4.1 H2Bub1 modulates enhancer activity 

It is believed that H3K4me1 initially occupies enhancers, and H3K27ac typically 

represents enhancer activity, while H3K4me3 poorly enriches enhancers. We 

identified 30893 active enhancers decorated with H3K4me1 and H3K27ac and 
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unoccupied by H3K4me3 (H3K4me1+H3K27ac+H3K4me3-) in MEFs (Fig. 36A). In an 

attempt to understand enhancer activity following Rnf40 deletion, DiffBind analysis 

was performed to identify H3K27ac-enriched enhancer regions which change 

between Rnf40 wt and null MEFs. In general, H3K27ac signals on enhancers were 

increased in Rnf40-/- MEFs (Fig. 36B). Differentially, 7852 of enhancers displayed 

increased H3K27ac signals, while 6913 of enhancers exhibited decreased H3K27ac 

signals (FDR<0.05) (Fig 36B). These results indicate that gene body enriched 

H2Bub1 could affect H3K27ac occupancy on enhancers. 

 

Fig.36 Loss of H2Bub1 affects H3K27ac occupancy on enhancers 

(A) Identification of the activated enhancers in Rnf40+/+ or Rnf40-/- MEFs. Venn 

diagram show the shared binding region of H3K27ac and H3K4me3 (left panel) as 

well as H3K4me1 and H3K27ac (right panel). Enhancer was defined as H3K4me1 

enriched (+), H3K27ac enriched (+), but H3K4me3 unenriched (-) regions.  

(B) DiffBind analysis of H3K27ac behaviors on enhancers following Rnf40 deletion. 

Increased (Incre.) or decreased (Decre.) activity of enhancer were separately 

selected as follows: log2-fold change >0, FDR<0.05; log2-fold change <0, FDR<0.05. 
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4.4.2 The activation of RNF40-suppressed genes in Rnf40-/- MEFs is highly 

related to increased enhancer activity 

In order to characterize the relationship between increased or decreased enhancer 

activity and the induction of gene expression following Rnf40 deletion, we separately 

predicted the significant increased and decreased enhancer annotated genes by 

conducing GREAT analysis (McLean et al. 2010). Interestingly, we identified 7641 of 

significant increased enhancers which annotated 4725 genes, involving more than 

46% (308/672) of upregulated genes while only 19% (156/802) of downregulated 

genes (Fig. 37A). In addition, 3222 of significant decreased enhancers annotated 

3433 genes, only containing 14.2% (114/802) of downregulated genes and 17% 

(117/672) of upregulated genes (Fig. 37B). Hence, we hypothesized that the 

upregulation of a subgroup of RNF40-suppressed genes is independent of a direct 

effect on PRC2 and may be instead be associated with the de novo activation of 

distal enhancers.  

 

Fig.37 Distal enhancer activation affects RNF40-suppressed gene transcription 

(A) Venn diagram analysis shows the shared gene numbers during RNF40-

suppresed genes (upre. genes), RNF40-dependent genes (down. genes), and 

RNF40-suppressed enhancer associated genes.  
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(B) Venn diagram shows the shared gene numbers between RNF40-dependent 

genes, RNF40-independent genes and RNF40-dependent enhancer associated 

genes. Significantly increased enhancers show 2-fold increased H3K27ac, while 

significantly decreased enhancers show 2-fold decreased H3K27ac (FDR<0.05). 

 

4.4.3 The increased Foxl2 expression is responsible for the activation of 

enhancers associated with RNF40-suppressed genes  

To uncover potential transcription factors which may contribute to enhancer 

activation and upregulation of genes in Rnf40-/- MEFs, we performed sequence-

based motif analysis of the 308 gene-associated enhancers and identified a 

significant enrichment of Forkhead box protein binding motifs (Fig. 38A). Given that 

the expression of Foxl2 was significantly increased in Rnf40-/- MEFs (Fig. 31C and B), 

we further identified 3223 enhancers in our study which were found to be occupied 

by FOXL2 in a published ChIP-seq dataset (Georges et al. 2014) (Fig. 38B). In 

addition, GREAT analysis of those regions identified the FOXL2-enriched enhancer-

associated genes, which contained more than 27% (184/672) of the upregulated 

genes while 16% (136/802) of downregulated genes (Fig. 38C), and 100 genes 

(more than 60%) which were upregulated and displayed enhancer activation 

following Rnf40 deletion (Fig. 38D). Consistent with increased enhancer activation, 

the H3K27ac occupancy surrounding these FOXL2 enriched distal regions was 

significantly increased in Rnf40-/- MEFs (Fig. 38E). 
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Fig.38 FOXL2 is distributed to activate RNF40-suppressed gene associated 

enhancers 

(A) Plot showing Fisher Score and Z Score in motif analysis of RNF40-suppressed 

gene associated activating enhancers. The Fisher Score >5 & Z Score > 10 indicates 

significantly enriched motif pointed out red. 



pg. 112 
 

(B) Venn diagram shows the shared regions between enhancer in MEFs and FOXL2 

binding sites in mouse granulosa cells.  

(C) Venn diagrams showing the numbers shared by downregulated genes, 

upregulated genes, and FOXL2 enriched enhancer associated genes. FOXL2 

enriched enhancer associated genes were obtained from GREAT analysis of FOXL2 

enriched enhancers.  

(D) Venn diagram shows the shared genes between RNF40-suppressed enhancer 

associated and FOXL2 enriched enhancers associated upregulated genes.  

(E) Aggregate profiles show FOXL2 and H3K27ac average signal surrounding the 

FOXL2 binding center (±3kb) in Rnf40+/+ or Rnf40-/- MEFs. The regions were given 

from 184 (136 +48) genes associated FOXL2 enriched enhancers according to Fig. 

38C. P-value was calculated by unpaired Wilcoxon-Mann-Whitney-Test. 

 

In order to confirm the role of FOXL2 in the upregulation of this subset of genes in 

Rnf40-/- MEFs, we examined the effects of siRNA-mediated FOXL2 depletion in 

MEFs following Rnf40 deletion. Consistent with a previous study demonstrating the 

importance of FOXL2 for their expression (Georges et al. 2014), we observed that 

both the Esr2 and Efna5 genes were significantly upregulated following Rnf40 

deletion as well as following EZH2 inhibitor treatment. Importantly and consistent 

with an indirect effect mediated by FOXL2, these effects were blocked by FOXL2 

depletion (Fig. 39A). Moreover, ChIP-seq profiles confirmed that H3K27ac 

occupancy on each of these genes was increased at FOXL2-bound enhancers 

following Rnf40 deletion (Fig. 39B and 39C). Together these data support a central 
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role for FOXL2 in mediating enhancer activation and increased gene expression of a 

subset of genes whose expression increases following Rnf40 deletion. 

 

Fig.39 SiRNA-mediated Foxl2 knockdown blocks a fragment of RNF40-

suppressed genes 

(A) qPCR analysis of Foxl2, Esr2, and Efna5 gene expression in siRNA-mediated 

Foxl2 knockdown Rnf40+/+, Rnf40-/-, and EZH2i MEFs. Data are normalized by Rplp0 

gene expression level and shown as “relative mRNA levels”, mean ± SD from three 

independent experiments. **p<0.01, calculated with two-tailed unpaired t-test.  

(B and C) The ChIP-seq profiles show occupancy of H2Bub1, H3K4me3, 

H3K27me3, H3K27ac, H3K4me1 and FOXL2 on Esr2 and Efna5 genes and their 

associated distal regions.  
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5. Discussion 

The complex regulatory network of post-translational histone modifications has long 

been hypothesized to play a significant role in controlling the timely activation or 

repression of gene transcription (Strahl and Allis 2000), which is associated to cell 

fate determination during embryogenesis and tumorigenesis. H2Bub1 is one such 

histone modification, studied extensively in the past decade. Several mechanisms 

have been proposed to explain the role of H2Bub1 in facilitating gene transcription, 

such as the CDK9-WAC-RNF20/40 axis (Johnsen 2012; Karpiuk et al. 2012), FACT 

and H2A:H2Bub1 cooperative interaction (Pavri et al. 2006), H2Bub1-H3 methylation 

trans-histone tail crosstalk mechanism (Kim et al. 2009; Kim et al. 2012), etc. In 

contrast,  transcription repressive mechanisms were also established for H2Bub1, 

such as RNF20 inhibiting TFIIS recruitment (Shema et al. 2011) and H2Bub1 

stabilizing nucleosome model (Fleming et al. 2008). Here we investigated the 

genome-wide occupancy of H2Bub1 and examined the effects of its loss on 

promoter and enhancer activity at diverse chromatin states and how this is related to 

alterations in gene transcription. Furthermore, we propose context-dependent 

mechanisms of direct or indirect regulation of gene expression by H2Bub1 via 

comprehensive mapping of active histone modifications (H3K4me3 and H3K27ac) 

and repressive H3K27me3 (Fig. 40). In addition to  validating the previously 

recognized H2Bub1 correlation with promoter activity via trans-histone tail crosstalk 

(Dover et al. 2002; Sun and Allis 2002), excitingly, our data provide the first 

mechanistic explanations of how loss of RNF40 can modulate enhancer activity and 

suggest that the role of  H2Bub1 in transcription are far beyond facilitating 

transcription elongation. 
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Fig. 40 Model describing RNF40 mediated H2Bub1 regulatory network.  

RNF40-mediated H2Bub1 facilitates genes transcription involving bivalent genes via 

H2Bub1-H3K4me3 crosstalk. On the other hand, H2Bub1 indirectly maintains an 

abundance of genes in a silenced state by controlling EZH2 level which is a subunit 

of PRC2 complex responsible for repressive H3K27me3 marks.   

5.1 H2Bub1 crosstalk with H3K4me3 to modulate gene transcription 

In addition to the agreement with the H2Bub1-H3K4me3 crosstalk model in which 

H2Bub1 facilitates the trimethylation of H3K4 by the SET/COMPASS complex (Kim 

et al. 2013), we first provide genome-wide data that H2Bub1 is tightly linked to 

H3K4me3. However, the absence of H2Bub1 results in decreased (but not a total 

loss) of H3K4me3 occupancy on each gene. Notably, the decrease in H3K4me3 

occupancy was most apparent at regions downstream of the TSS, which was also 

co-occupied by H2Bub1. Following loss of H2Bub1, these H3K4me3 peaks 

displayed a significant narrowing of their TSS-associated peaks. We speculate that 

the bulk of H3K4me3 near the TSS may be catalyzed by SET/COMPASS or other 

H3K4 methyltransferases in an RNF40/H2Bub1-independent manner, but that 

transcriptional elongation-associated spreading of H3K4me3 into genes is highly 

dependent upon RNF20/40-mediated H2B monoubiquitination. This effect can also 
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be observed on the Hoxc gene cluster where H3K4me3 on each of the Hoxc genes 

decreases, but some degree of H3K4me3 remains and becomes more focused 

around the TSS. These effects closely resemble those observed in Mll1-deficient 

MEFs (Wang et al., 2009), suggesting that H2Bub1 may selectively direct MLL-

dependent H3K4 methylation near TSS.  

Recent studies provided a previously unrecognized association of broad H3K4me3 

peaks with the expression of tumor suppressor and cell identity genes (Benayoun et 

al. 2014; Chen et al. 2015b). We consistently observe broadest H3K4me3 domains 

are significantly enriched in cell cycle-related tumor suppressors and development-

associated genes in MEFs. However, the knowledge about the factors promoting 

H3K4me3 spreading is limited. In mammals, multiple methyltransferases are 

responsible for H3K4me3, SET1A/B complex carries out the bulk of H3K4me3 (Wu 

et al. 2008), while the MLL complexes more likely function at specific genes 

(Shilatifard 2012). CFP1 containing CxxC domain, the unique component of 

SET1A/B complex, specifically directs SET1A/B complex into non-methylated CpG-

islands enriched promoters to carry out H3K4me3 (Lee and Skalnik 2005). Excitingly, 

deletion of CFP1 and depletion of WDR82 (another unique subunit of SET1A/B 

complex) narrow the width of H3K4me3 peaks genome-wide (Clouaire et al. 2012; 

Clouaire et al. 2014; Austenaa et al. 2015), suggesting that SET1A/B complex is the 

major player responsible for widening H3K4me3 peaks (Fig. 41). Given that the 

H2Bub1-H3K4me3 crosstalk mechanism was established early between H2Bub1 

and SET1A/B complex in which H2Bub1 facilitates H3K4me3 via providing a binding 

site for WDR82 (Wu et al. 2008), it is fascinating to speculate that H2Bub1 is 

associated to the wide spread of H3K4me3 domain. Indeed, in addition to agreement 

with potential tumor suppressor functions of RNF20/40 and H2Bub1 and their 
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requirement for stem cell differentiation (Johnsen 2012; Karpiuk et al. 2012), we 

could observe a widening of H3K4me3 peaks on RNF40-dependent lineage-specific 

genes during differentiation (Fig. 41). In turn, loss of H2Bub1 significantly narrowed 

the broadest H3K4me3 domain. Together, we suggest that the presence of broad 

H3K4me3 domains on tumor suppressor and lineage-specific genes is highly 

dependent on H2Bub1. 

 

Fig. 41 Transcriptional dependency on H2Bub1 is associated to H3K4me3 

width 

The SET1A/B complex is directed into the non-methylated CpG island-enriched gene 

via the CxxC domain-containing CFP1, and then catalyzes trimethylation on H3 

lysine 4. The widening of H3K4me3 into the gene is facilitated by H2Bub1 via 

interacting with WDR82, which promotes gene transcription. Loss of H2Bub1 leads 

to significant narrowing of H3K4me3 peaks, resulting in reduced transcription level.  



pg. 118 
 

5.2 Transcriptional dependency on H2Bub1 is not associated with gene 

length in deletion system 

The coactive function of H2Bub1 in transcription has been confirmed in various 

independent studies. However, loss of H2Bub1 decreases the expression of only a 

subset of genes. One early study suggests gene expression level is tightly 

associated to its own morphological parameters, such as distance to neighbors, 

gene or 3’-UTR length, number of exons, etc. (Chiaromonte et al. 2003). Indeed, 

depletion of RNF20 in human cells selectively leads to significant decreasing of 

longer gene expression (Fuchs et al. 2012). However, we don’t observe that 

transcriptional dependency on H2Bub1 is associated to gene length in our Rnf40 

inducible knockout system. A possible reason is that depletion of RNF20 cannot lead 

to complete absence of H2Bub1 compared to our knockout system. There are no 

significant differences of H2Bub1 level on gene body between the shortest and 

longest transcribed genes. Given that H2Bub1 occupies the gene body in a gradually 

decreasing manner from 5’ to 3’ region, the average level of H2Bub1 at 3’ regions in 

the longest genes is significantly lower than that in shortest genes. Even though 

H2Bub1 occupancy at 3’ regions is low, it plays a crucial role in mRNA 3’-end 

processing (Pirngruber et al. 2009). Therefore, depletion of RNF20 would induce 

absence of H2Bub1 at 3’ regions, resulting in a significant narrowing of H2Bub1 

peaks in longest genes compared to that in shortest genes. The transcriptional 

product at 3’ regions can only be observed at the presence of H2Bub1 (Pavri et al. 

2006). Thus, the long genes show much more dependency on H2Bub1 in the RNF20 

depleted cells. However, H2Bub1 is completely lost both in short and long genes in 

the deletion systems. Thus, we observed that transcriptional dependency on H2Bub1 

is not associated to gene length. 



pg. 119 
 

5.3 RNF40-regulated genes display low and moderate H2Bub1 

occupancy 

In order to obtain efficient activation of gene transcription, the signals enabling 

transcriptional activity, including active histone modifications, need to reach a certain 

threshold after which gene expression can occur (Voigt et al. 2013). According to our 

data, genes, which display the highest occupancy of H2Bub1 and other active 

histone modifications, appear to be more robustly expressed and less sensitive to 

changes in the presence of individual histone modification. Even in the absence of 

H2Bub1, these genes retain sufficient additional active signals to maintain high 

levels of transcription. In another case, some highly transcribed genes such as 

housekeeping genes are controlled by simpler promoters and enhancers showing 

lower sequence conservation, and do not  require additional particular transcription 

complexes to activate transcription (Farre et al. 2007). The transcription of these 

genes shows low degree of dependency on histone modifications. In contrast, fully 

repressed genes such as those marked by only repressive histone modifications 

may require extremely high levels of additional activation signals to switch from a 

repressed to an active state. Furthermore, there seems to be a complex regulatory 

mechanism at genes marked by varying degrees of both active and repressive 

histone modifications as we observed for low to moderate H2Bub1 occupied genes, 

whose transcription require histone modifications to cooperate with the recruitment of 

tissue-specific transcription factors. Thus, it is particularly vulnerable to changes in 

expression elicited by the loss of either active or repressive marks.  
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5.4 H2Bub1 indirectly maintains cell identity via controlling EZH2 

transcription 

Although H2Bub1 occupancy has been shown to correlate with transcriptional 

elongation and gene activity (Minsky et al. 2008; Shema et al. 2008), a number of 

genes have also been shown to be upregulated following loss of H2Bub1 in 

mammalian cells (Shema et al. 2008; Shema et al. 2011; Bonnet et al. 2014). 

Consistently, in our studies we observed similar numbers of genes up- and down-

regulated in Rnf40-/- MEFs. One previous explanation for a repressive role of 

H2Bub1 was that it obstructs the recruitment of transcription elongation factor TFIIS 

to genes, thereby suppressing transcription (Shema et al. 2011). However, 

consistent with findings following RNF20 or RNF40 knockdown (Jung et al. 2012), 

we find that the vast majority of RNF40-suppressed genes do not display significant 

levels of H2Bub1, thereby suggesting that their regulation may occur through more 

indirect mechanisms. Consistently, we find that the Ezh2 gene, encoding the 

catalytic component of the PRC2 complex, which mediates H3K27 methylation, 

displays a significant level of H2Bub1 occupancy and requires RNF40 for its full 

expression. Moreover, the dependency of EZH2 transcription on H2Bub1 is 

conserved, and can be observed in other cell lines such as HCT116 (Chen et al. 

2015a).  

Notably, in agreement with the finding that EZH2 primarily occupies regions 

surrounding TSS in mouse and human cells (Xu et al. 2012; He et al. 2013), 

decreased Ezh2 expression following Rnf40 deletion resulted in decreased 

H3K27me3 occupancy near the TSS. Furthermore, consistent with a crucial role for 

EZH2 as a central mediator of H2Bub1-dependent gene repression, small molecule 

inhibition of EZH2 enzymatic activity resulted in a similar de-repression of 
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H3K27me3 targeted genes which were up-regulated in Rnf40-deficient MEFs. 

However, the upregulation of H3K27me3 targeted genes induced by RNF40 deletion 

could be blocked by overexpressing EZH2 but not in EZH2 SET domain mutated 

cells. Together, we observed a previously unrecognized regulatory pathway by which 

gene is silenced via the RNF40/H2Bub1-EZH2-H3K27me3 axis (Fig. 40).  

Only decreasing repressive H3K27me3 is not enough to switch on gene transcription. 

For this, additional coactivators to facilitate transcription factor recruitment are 

required. H3K27ac functions as a binding platform for transcription factors such as 

BRD4.  This modification is mediated by HATs such as P300/CBP. Several 

independent studies have observed that P300/CBP pre-occupies the PRC2-targeted 

promoters, while its enzymatic activity is blocked by H3K27me3 (Pasini et al. 2010; 

Tie et al. 2014; Lee et al. 2015b). Therefore, loss of H3K27me3 by EZH2 inhibition 

resulted in increased global H3K27ac levels. In addition, we confirmed that the 

upregulation of RNF40-suppressed genes appears to be related to a shift in the 

balance between H3K27me3 and H3K27ac whereby decreased H3K27 methylation 

enables the acetylation of the same residue at these loci (Fig. 42).  
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Fig. 42 Model depicting how RNF40 indirectly monitors the dynamic 

antagonism between H3K27me3 and H3K27ac  

PRC2 complex is required to maintain the unique poised state. The enzymatic 

activity of P300 is restricted by PRC2-mediated H3K27me3. RNF40-mediated 

H2Bub1 selectively controls EZH2 transcription. Loss of H3K27me3 resulted in 

increased P300 activity and H3K27ac level, thereby promoting gene transcription in 

Rnf40-/- MEFs. 

Given the essential role of EZH2 in cell fate determination and proper development 

(Aloia et al. 2013), we further determined that RNF40-supressed genes were 

enriched for developmental regulators, further supporting a critical function of RNF40 

in directing cell fate decision. Consistent with a context-dependent function of 

H2Bub1 in regulating different groups of genes, we previously demonstrated a 
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central role for RNF20/40-dependent H2B monoubiquitination in differentiation to the 

osteoblast- and adipocyte lineages (Karpiuk et al. 2012), while another group 

reported that H2Bub1 levels decrease during myoblast differentiation (Vethantham et 

al. 2012). Thus, it is possible that the RNF20/40-H2Bub1 pathway may promote cell 

differentiation to one lineage and suppress that of another lineage in a given 

epigenetic context while promoting differentiation to other lineages in a different 

context.   

5.5 H2Bub1 and Bivalent domain 

Early studies in mouse ESC cells identified a unique chromatin state, which is 

decorated both by active H3K4me3 and repressive H3K27me3 and referred as to 

“bivalency”. According to“The transition-state stabilization” theory (Pauling 1946), 

there is a transition-state between substrates and products in enzyme-promoted 

biology reactions. Transcriptional activation and repression is comprehensively 

controlled by multiple enzymes and epigenetic factors. In a wider meaning, bivalency 

could be considered as a metastable-state between transcriptional activation and 

repression. Changes in either H3K4me3 or H3K27me3 can remarkably affect 

bivalent gene transcription. We observed some bivalent genes transcribed in varying 

degrees, while others were fully silenced. We further confirmed that the activation of 

bivalency is associated with the shifting of the equilibrium of repression towards 

activation. In addition, genome-wide mapping of H2Bub1 on the bivalent genes 

revealed that H2Bub1 is an important factor in shifting the metastable equilibrium 

and correlated to a higher degree to bivalent gene transcription than H3K4me3.  

H2Bub1 plays a dual function to switch on bivalent gene transcription. H2Bub1-

H3K4me3 crosstalk can further be confirmed on bivalent genes. Loss of H2Bub1 
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leads H3K4me3 occupancy on H2Bub1 enriched (+) bivalent genes decrease to the 

similar degree of H2Bub1 unenriched (-) bivalent genes. It was suggested that the 

SWI/SNF chromatin remodeling complex binds preferentially to H2Bub1-rich 

chromatin (Shema-Yaacoby et al. 2013) and functions as an epigenetic antagonist of 

Polycomb complex (Wilson et al. 2010)., We observed lower signals of H3K27me3 

on H2Bub1+ bivalent genes compared to H2Bub1- bivalent genes. Moreover, 

additional analysis of BRG1, H3K4me3, and H3K27me3 ChIP-seq data in mouse 

ESC cells revealed a subset of bivalent genes occupied by the SWI/SNF complex 

(Min et al. 2011; de Dieuleveult et al. 2016). In addition, the decreased level of 

H3K27me3 on H2Bub1+ bivalent genes could be related to the recruitment of H3K27 

demethylase UTX. UTX has been identified in multiple H3K4 methyltransferase 

complexes such as MLL1/MLL2 and MLL3/MLL4 (Cho et al. 2007; Issaeva et al. 

2007; Patel et al. 2007). Moreover, UTX was also observed on a subset of bivalent 

genes (Voigt et al. 2013). Depletion of UTX led to a significant decrease of bivalent 

gene transcription and increased H3K27me3 occupancy (Agger et al. 2007). Thus, 

H2Bub1 is also capable of inducing the demethylation of H3K27me3 on bivalency via 

facilitating the recruitment of UTX-contained H3K4 methyltransferase complexes. 

In agreement with the crosstalk between H3K4me3 and H3 acetylation (Zhang 2006; 

Karmodiya et al. 2012), we observed a significant decrease of H3K27ac on only 

H3K4me3 occupied genes in respond to H2Bub1 deletion. In contrast, H3K27ac 

acted in an inverse manner on bivalent genes (either H2Bub1+ or H2Bub1- bivalent 

genes). Notably, the metastable equilibrium between H3K27ac and H3K27me3 is 

another important effect on bivalent activity as discussed above. In fact, increased 

H3K27ac is directly associated to the decreasing of H3K27me3.  Thus, we suggest 

that H3K27me3 is the key limitation on histone acetylation on bivalent domain.  
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To summarize, we mapped a potential regulatory network on controlling bivalent 

activity, in which H2Bub1 plays multiple roles in modulating bivalent activity. The 

activation of bivalent genes is a cooperative process (Fig. 43).  

 

Fig. 43 The regulatory network of H2Bub1 on bivalent domain 

RNF40-directed H2Bub1 modulates bivalent activity through multiple functions: i) 

Facilitates the recruitment of the SWI/SNF chromatin remodeling complex, ii) 

Promotes methylation on H3K4 via activating multiple H3K4 methyltransferase 

complexes containing UTX, iii) Monitors H3K27me3 occupancy by controlling Ezh2 

transcription (the methyltransferase in PRC2 complex). The silencing of bivalent 

genes is carried out by H3K27me3, which has abilities of restricting the enzymatic 

activity of p300, blocking recruitment of transcriptional co-activators, and limiting 

histone exchange. The abolishment of H3K27me3 is the key limitation of activating 

bivalent genes, which could be directly or indirectly achieved by H2Bub1. The 

recruitment of H3K4 methyltransferase complexes which constitute UTX directly 

mediates demethylation of H3K27me3. On the other hand, the SWI/SNF complex 

recruited by H2Bub1 antagonizes PRC2 activity. Therefore, the abolishment of 

H3K27me3 further liberates the HAT activity of p300/CBP complex to elevate histone 
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acetylation. Furthermore, readers of histone acetylation such as BRD4 promote H2B 

monoubiquitination via CDK9-WAC-RNF20/RNF40 axis.  

5.6 Does the gene body-specific H2Bub1 affect enhancer activity? 

H3K4me3 has been recently identified as an additional active chromatin feature at 

enhancers, which is essential for cell fate determination and tumour stimulation 

(Clouaire et al. 2012; Austenaa et al. 2015; Shen et al. 2016). Release of SET1 

complex from CpG enriched promoters by depleting the CxxC domain-containing 

CFP1 and WDR82 results in overactivation of enhancers characterized by the 

deposition of H3K4me3 and histone acetylation (Clouaire et al. 2014; Austenaa et al. 

2015). Thus, the H2Bub1-H3K4me3 crosstalk via interaction with WDR82 led us to 

believe that gene body-specific H2Bub1 could function at enhancers as WDR82 

does. Indeed, loss of RNF40-mediated H2Bub1 significantly elevates the bulk of 

H3K27ac at enhancers. However, we didn’t observe any appearance of H3K4me3 at 

those enhancers in Rnf40-/- MEFs. Considering the different cell type, the deposition 

of H3K4me3 at those enhancers would possibly require potential machinery which is 

undetectable in MEFs.  

Excitingly, we observed the overactivation of enhancers displaying increased 

H3K27ac level was highly correlated to the upregulation of RNF40-suppressed 

genes. Activation of enhancers is required for the recruitment of multiple transcription 

factors such as the pioneer proteins. We further determined FOXL2, whose 

expression was increased following Rnf40 deletion, was responsible for 

overactivating those enhancers. Thus, these findings indicate upregulation of genes 

in response to Rnf40 deletion depends on the activity of other epigenetic regulatory 

proteins. 
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In conclusion, we provide evidence and insight into the apparent discrepancy 

between the association of H2Bub1 with active gene transcription and the 

unexpected finding that a nearly equal fraction of genes become up- or 

downregulated following its loss. Our results support a model in which the direct 

function of RNF40 and H2Bub1 lies primarily in transcriptional activation. However, 

given the finding that the Ezh2 gene is a major target of RNF40 and H2Bub1, and 

the demonstration that the effects of Rnf40 deletion on these “H2Bub1-suppressed” 

genes can be mimicked by inhibition of EZH2 catalytic activity, support a model in 

which “suppression” of gene transcription by H2Bub1 is mediated via indirect effects 

through PRC2. These findings, together with our results supporting a role for 

H2Bub1 in controlling H3K4me3 on RNF40-dependent genes, provide an important 

step in the elucidation of the enigmatic role of H2Bub1 in transcription. Further 

studies examining the effects of Rnf40 deletion in additional cell types and tissues, in 

conjunction with in vivo disease models, will shed further light into the biological and 

mechanistic functions of H2Bub1 and further elucidate its context-dependent function. 
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