Der glazifluviale Formenschatz im Gletschervorfeld des Himalaya und der Versuch einer relativ-zeitlichen Einordnung

Dissertation

zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades "Doctor rerum naturalium" der Georg-August-Universität Göttingen

im Promotionsprogramm Geowissenschaften / Geographie der Georg-August University School of Science (GAUSS)

> vorgelegt von Gerrit Tombrink

> > aus Leer

Göttingen, 2017

Betreuungsausschuss:

Prof. Dr. Daniela Sauer, Abteilung Physische Geographie / Geographisches Institut der Universität Göttingen

Dr. habil. Jürgen Ehlers

Mitglieder der Prüfungskommission:

Referentin: Prof. Dr. Daniela Sauer, Abteilung Physische Geographie / Geographisches Institut der Universität Göttingen

Korreferent: Dr. habil. Jürgen Ehlers

Weitere Mitglieder der Prüfungskommission:

Prof. Dr. Christoph Dittrich, Abteilung Humangeographie / Geographisches Institut der Universität Göttingen

Prof. Dr. Martin Kappas, Abteilung Kartographie, GIS und Fernerkundung / Geographisches Institut der Universität Göttingen

Prof. Dr. Jonas Kley, Abteilung Strukturgeologie und Geodynamik / Geowissenschaftliches Zentrum der Universität Göttingen

Dr. Sigrid Meiners, Institut für Geographie / Universität Hamburg

Tag der mündlichen Prüfung: 23.11.2017

Vorwort

Die Datengrundlage der vorliegenden Arbeit basiert auf zwei insgesamt sechswöchigen Feldforschungskampagnen, die im Jahr 2012 im Khumbu Himal sowie im Jahr 2013 am Pangong Tso durchgeführt wurden. Sie zielten darauf ab, eine glazifluviale Formenabfolge für das Gletschervorfeld im Himalaya zu entwickeln. Angeregt und betreut wurde diese Dissertation von Herrn Professor Dr. Matthias Kuhle in Göttingen. Bis zu seinem tödlichen Unglück durch ein Erdbeben am 25. April 2015 in der Hochgebirgstalschaft des Buri Gandaki Flusses in Nepal trug er durch Unterstützung und klärende Diskussionen während meiner Promotionszeit sowie damaliger Feldforschungen zu der Entwicklung dieser Arbeit bei. Ich danke ihm dafür besonders. Ohne ihn wäre diese Arbeit nicht entstanden.

Meinen besonderen Dank möchte ich auch für die Übernahme des Hauptreferats Frau Prof. Dr. Daniela Sauer sowie Herrn Dr. habil. Jürgen Ehlers für die Übernahme des Korreferats aussprechen.

Für die Kostenübernahme meiner Forschungsreise in Nepal danke ich der FAZIT-Stiftung. Für die Organisation während dieser Forschungsreise möchte ich mich stellvertretend bei Herrn Ankami Sherpa bedanken. Die Laborarbeiten wurden dankenswerterweise vom Universitätsbund Göttingen finanziell unterstützt und im Geographischen Institut der Georg-August-Universität Göttingen durchgeführt. Für die Beratung und die Laborarbeiten bedanke ich mich bei Laborleiter Herrn Dr. Jürgen Grotheer. Ebenso danke ich Herrn Dr. Mauro Alberti für die schnelle Anpassung seines Tools qprof in QGIS, welches ich für Längsprofilanalysen benutzt habe. Ebenso möchte ich mich bei Google und Google Earth Outreach für die freie Nutzung des Programmes Google Earth Pro bedanken.

Für die unterstützenden Ratschläge und Diskussionen während der Endphase meiner Arbeit gilt der besondere Dank Frau Sabine Kuhle, Frau Dr. Sigrid Meiners, Herrn Nils Schröder und Herrn Dr. Markus Wagner.

Zuletzt möchte ich Frau Angela Corwin für die akribische Durchsicht des Manuskripts und meiner Familie herzlich danken. Ihre uneingeschränkte Unterstützung trug zum Gelingen dieser Arbeit bei.

I

Inhaltsverzeichnis

Vorwort	I
Abkürzungsverzeichnis	v
Abbildungsverzeichnis	VI
Diagrammverzeichnis	XIV
Tabellenverzeichnis	xv
Kartenverzeichnis	XVI
Photoverzeichnis	ХХ
Einleitung	1
1.1 Stand der Forschung und Problemstellung	2
1.2 Gang der Abhandlung	7
 1.3 Auswahl und Charakterisierung der Arbeitsgebiete 1.3.1 Hauptuntersuchungsgebiet im Khumbu Himal 1.3.1.1 Gewässernetz im Khumbu Himal 1.3.1.2 Historische und rezente Klimaverhältnisse im Khumbu Himal 1.3.1.3 Geologische Einordnung des Khumbu Himal 1.3.1.4 Vergletscherungsgeschichte im Khumbu Himal 1.3.2 Vergleichsuntersuchungsgebiet am Pangong Tso 1.3.2.1 Gewässernetz am Pangong Tso 1.3.2.2 Historische und rezente Klimaverhältnisse am Pangong Tso 1.3.2.3 Geologische Einordnung des Pangong Tso 1.3.2.4 Vergletscherungsgeschichte am Pangong Tso 	8 11 11 14 16 18 20 20 22 23 24
2 Forschungsfragen, Methoden und Begriffsklärungen	27
2.1 Fragestellungen und Hypothesen zu den Beziehungen von Relief und Prozessen	27
2.2 Einflussnehmende Faktoren und Prozesse auf die Untersuchungsgebiete der Gletscherbäche	31
 2.3 Methoden 2.3.1 Morphologische und morphometrische Geländeanalyse 2.3.2 Photographische Dokumentation und ihre zeitliche Klassifikation 2.3.3 Korngrößenanalyse 2.3.4 Morphologische und morphometrische Untersuchungen mittels Satellitenbildanalysen 2.4 Begriffsklärungen 	36 36 37 37 39 41

 2.4.1 Begriffsabgrenzungen einer Terrassenform 2.4.2 Ordnung und Klassifikation der Terrassenebenen - oder Flächen 2.4.3 Begriffe der Schottersohlenebene/ Sohlenebene und ihre methodischen Betrachtungsweisen 2.4.3.1 Formenschatz der Fluss- und Bachbettsohle auf der Mikroebenenskala 2.4.3.2 Formenschatz des Fluss- und Bachlaufes auf der Mesoebenenskala 2.4.3.3 Längsprofil eines Fließgewässers und das Gefälle auf der Makroebenenskala 	41 43 45 46 54 57
3 Ergebnisse der morphologischen und morphometrischen Analysen des fluvialen und glazifluvialen Formenschatzes	59
3.1 Nordöstlicher Teil des Hauptuntersuchungsgebiets Khumbu Himal: Der Oberlauf des	
Imja Khola	60
3.1.1 Die Talschaft des Imja-Lake Abflusssystems	60
3.1.1.1 Obersicht zum Imja Lake als Konnuenz des Enoise Shar-, Imja- und Amphu Gletschers 3.1.1.2 Morphologie und Terrassenbildungen des Imja Khola Gletscherbachsystems auf der Mikro-, Meso-	60 62
3.1.1.3 Übersicht zum historischen Gletscherbachsystem des Island Peak und Lhotse Gletschers	73
3.1.1.4 Übersicht zum orographisch links gelegenen Zuflusses zum Imig Khola Gletscherbach	75
3.1.1.5 Übersicht zum Gletscherbachsystem des Chukhung Gletschers und des Endmoränendurchbruches	76
3.1.1.6 Übersicht zum Gletscherbachsystem des Ama Dablam Gletschers	82
3.1.2 Haupttalschaft des Lhotse, Lohtse Nup, Nuptse, Unbenannten Kongma-La, Duwo und Tsuro	
Gletschers	84
3.1.2.1 Molphologie und Terrassenblidungen des Lhoise Gleischerbaches auf der Mikro-, Meso- und Makroehene	84
3.1.2.2 Morphologie und Terrassenbildungen des Lhotse Nup Gletscherbaches auf der Mikro-, Meso- und	04
Makroebene	93
3.1.2.3 Übersicht zum historischen Gletschersee am Lhotse Nup Gletscher	103
3.1.2.4 Übersicht zum angrenzenden Abflusssystem des Nuptse Gletschers	107
3.1.2.5 Ubersicht zum Gletscherbachsystem des Unbenannten Kongma-La Gletschers	109
3.1.2.6 Übersicht zum Duwo Gletscherbachsystem	111
3.1.2.7 Obersicht zum Tsuro Gietscherbachsystem 3.1.2.8 Die Morphologie und Terrassenbildungen des Imia Khola Hauptstroms auf der Mikro- Meso- und	114
Makroebene	118
3.2 Nördlicher Teil des Hauptuntersuchungsgebiets Khumbu Himal: Die Haupttalschaft des	
Khumbu Gletschers und deren angrenzenden Gletscherbachsysteme	129
3.2.1 Gletscherbachsysteme des Pokalde, Lobuche und Khumbu Gletschers	129
3.2.1.1 Übersicht zum Pokalde Gletscherbachsystem (Kongma-La Pass)	129
3.2.1.2 Ubersicht zum historisch angrenzenden Gletscherbachsystem des Lobuche Gletschers	131
3.2.1.3 Morphologie und Terrassenbildungen des orographisch linken Gletscherbachsystems im	125
3.2.1.4 Morphologie und Terrassenhildungen des orographisch rechten Gletscherhachsystems im	130
Talverlauf des Khumbu Gletschers auf der Mikro Meso- und Makroebene	148
3.2.2 Gletscherbachsysteme in der Talschaft des Tshola Tsho Gletschersees	158
3.2.2.1 Übersicht zum historischen Gletscherbachsystem in der südlichen Kartreppe nahe des Lobuche East Gipfels	158
3.2.2.2 Übersicht zum Unterlauf des südlichen Nirekha Peak Gletscherbaches	160
3.2.2.3 Übersicht zum Gletscherbachlauf des angrenzenden Gletschers des Cho La-Passes	164
3.2.3 Gletscherbachsysteme in der Talschaft des Nare Drangka und Mingbo Abflusssystems 3.2.3.1 Morphologie und Terrassenbildungen des Nare Drangka Gletscherbachsystems auf der Mikro-,	169
Meso- und Makroebene	169
3.2.3.2 Ubersicht zum Gletscherbachsystem des Mingbo Gletschers	182
3.2.3.3 Übersicht zur fluvialen Umgestaltung der Talschaftsform nahe Pangboche	185

3.3 Nordwestlicher Teil des Hauptuntersuchungsgebiets Khumbu Himal: Die Haupttalschaft des Ngozumpa- und Lungsampa Gletschers und deren angrenzende Gletscherbachsysteme 187

 3.3.1 Überblick zum orographisch linken Gletscherbachsystem der Ngozumpa Gletscherzunge 3.3.2 Orographisch rechte Gletscherbachsysteme des Ngozumpa- und Lungsampa Gletschers 3.3.2.1 Übersicht zum orographisch rechten Gletscherbachabflusssystem des Ngozumpa- und 	187 190
Lungsampa Gletschers	190
3.3.2.2 Übersicht zu den glazifluvialen Ursprüngen des vierten Gletschersees (4th Lake)	196
der Ngozumpa Gletscherzunge auf der Mikro-, Meso- und Makroebene	198
3.4 Teil des Vergleichsuntersuchungsgebiets Pangong Tso: Gletscherbachsysteme nahe des südlichen Ufers am Pangong Tso	214
3 4 1 Morphologie und Terrassenbildungen des Unbenannten Pangong Tso Gletscher I	217
Gletscherbachsvstems auf der Mikro Meso- und Makroebene	214
3.4.2 Morphologie und Terrassenbildungen des Unbenannten Pangong Tso Gletscher II	
Gletscherbachsystems auf der Mikro-, Meso- und Makroebene	225
3.4.3 Morphologie und Terrassenbildungen des Unbenannten Pangong Tso Gletscher III und IV	
Gletscherbachsystems auf der Mikro-, Meso- und Makroebene	238
4 Zusammenfassung und Diskussion der Ergebnisse	253
4.1 Prozesse und Formen mit potentiellem Einfluss auf die Gletscherbachsysteme im	
Hauptuntersuchungsgebiet	253
4.1.1 Talschaft des Imja-Lake Abflusssystems	253
4.1.2 Gletscherbachsysteme in der Haupttalschaft des Lhotse, Lohtse Nup, Nuptse, Unbenannten	
Kongma-La, Duwo und Tsuro Gletschers	254
4.1.3 Gletscherbachsysteme in der Talschaft des Khumbu Gletschers	256
4.1.4 Gletscherbachsysteme in der Talschaft des Tshola Tsho Gletschersees	257
4.1.5 Umgebung des Nare Drangka Abflusssystems	258
4.1.6 Gletscherbachsysteme des Ngozumpa- und Lungsampa Gletschers	259
4.2 Mikroebenenanalysen	261
4.2.1 Gletscherbachsohlenseguenzen in den Untersuchungsgebieten	261
4.2.2 Rekonstruierte Terrassenordnungen in den Untersuchungsgebieten und ihre glazifluvial-	
geomorphologische Bedeutung	265
4.3 Mesoebenenanalysen	271
4.3.1 Schotterflurausprägung, ihre Gebundenheit und ihre Mehrstufigkeit in den	
Untersuchungsgebieten	271
4.3.2 Abfolge von Gletscherbachlaufformen in den Untersuchungsgebieten	276
4.4 Makroebenenanalysen	279
4.4.1 Genese der Längsprofile in den Untersuchungsgebieten	279
4.5 Synthese: Die glazifluviale und fluviale Serie in den Untersuchungsgebieten	282
5 Abschließende Zusammenfassung	285
Literaturverzeichnis	289
Anhang	302

Abkürzungsverzeichnis

- s. u. = siehe unten
- s. = siehe
- Kap. = Kapitel
- bzw. = beziehungsweise
- o. g. = oben genannten
- s. o. = siehe oben
- m ü. NN = Meter über Meeresspiegel
- u. a. = unter anderem
- ca. = circa
- z. B. = zum Beispiel
- SRTM = Shuttle Radar Topography Mission
- GLIMS = Global Land Ice Measurements from Space
- DEM = digitales Höhenmodell

Abbildungsverzeichnis

Abbildung 1: Faktoren- und Prozessmodell für Gletscherbachuntersuchungen im Hochgebirge.

Abbildung 2: Zeitliche Abhängigkeit glazifluvialer und fluvialer Erosionsprozesse im Gletscherbachlauf eines Hochgebirges.

Abbildung 3: Schematische Aufsicht der Bachbettsohlenmorphologie während geringer Abflussmengen: A = Kaskadenformenschatz (cascade), B = Stufen-Becken Sequenzabfolge (step-pool), C = Ebene Fluss- und Bachbettsohle (plane bed), D = Kolk-Furt Sequenz (pool-riffle), E = Rippelformen Sequenz (dune-ripple) (verändert nach Montgomery & Buffington 1997: Figure 2).

Abbildung 4: Schematisches Längsprofil der Bachbettsohlenmorphologie während geringer Abflussmengen: A = Kaskadenformenschatz (cascade), B = Stufen-Becken Sequenzabfolge (step-pool), C = Ebene Fluss- und Bachbettsohle (plane bed), D = Kolk-Furt Sequenz (pool-riffle), E = Rippelformen Sequenz (dune-ripple) (verändert nach Montgomery & Buffington 1997: Figure 3).

Abbildung 5: Das Abflusssystem des Imja Lake (↓) mündet in den angrenzenden See; Google Earth (Bildmitte: 27°54'2.75"N, 86°54'36.24"E).

Abbildung 6: Lauf des Imja Khola Gletscherbaches. Die beiden Pfeile (↓) zeigen den Beginn und das Ende des untersuchten Bachabschnittes an; Google Earth (Bildmitte: 27°53'55.31"N, 86°53'47.50"E).

Abbildung 7: Längsprofil des Imja Khola Gletscherbaches nach SRTM-Höhenmodell.

Abbildung 8: Das Gletscherzungenende (↓) mündet in das angrenzende Gletscherbachsystem des Chukhung Gletschers; Google Earth (Bildmitte: 27° 53' 12.67" N, 86° 53' 27.97" E).

VI

Abbildung 9: Ein Gletschersee des Chukhung Gletschers (↓) grenzt am 24.05.2009 direkt an die Talvergletscherung des Ama Dablam Gletschers; Google Earth.

Abbildung 10: Ein historischer Gletschersee des Chukhung Gletschers (↓) (siehe Abbildung 9) wurde von Eismassen und Obermoränenmaterial des Ama Dablam Gletschers überlagert; Aufnahme vom 13.01.2014; Google Earth.

Abbildung 11: Ein historischer Gletschersee des Chukhung Gletschers (↓) sowie das angrenzende Gletscherbachsystem vom 24.05.2009; Google Earth (Bildmitte: 27°53'31.08" N, 86°53' 12.86" E).

Abbildung 12: Durch Abflussveränderungen entstehen verzweigte Bachläufe (↓) im Gletscherbachsystem des Chukhung Gletschers. Aufnahme vom 24.05.2009; Google Earth (Bildmitte: 27° 53' 43.77" N, 86° 52' 59.78" E).

Abbildung 13: Mäandrierungen und Verästelungen (roter und blauer Pfeil ↓) prägen das Gletscherbachsystem des Ama Dablam Gletschers; Google Earth (Bildmitte: 27°53'50.83"N, 86°52'7.01"E).

Abbildung 14: Lauf des Lhotse Gletscherbaches. Die beiden Pfeile (↓) zeigen den Beginn und das Ende des untersuchten Bachabschnittes an; Google Earth (Bildmitte: 27° 54' 12.93" N, 86° 52' 21.22" E).

Abbildung 15: Längsprofil des Lhotse Gletscherbaches nach SRTM-Höhenmodell.

Abbildung 16: Eine verringerte Zufuhr von Sedimenten sowie ein abgeschwächter Bachneigungswinkel (↓) reduzieren die chaotische Ablagerung von Gletscherbachsedimenten im oberen Abschnitt des Lhotse Nup Gletscherbachlaufes; Google Earth (Bildmitte: 27°54'32.00"N, 86°52'28.69"E).

VII

Abbildung 16a: Lauf des Lhotse Nup Gletscherbaches. Die beiden Pfeile (↓) zeigen den Beginn und das Ende des untersuchten Bachabschnittes an; Google Earth (Bildmitte: 27°54'24.27"N, 86°52'21.30"E).

Abbildung 17: Längsprofil des Lhotse Nup Gletscherbaches nach SRTM-Höhenmodell.

Abbildung 18: Schneeakkumulationen (↓) innerhalb des historischen Gletschersees am Lhotse Nup Gletscher aus dem Jahr 2003 (07.05.2003); Google Earth.

Abbildung 19: Eine zuvor großräumig schneebedeckte Hohlform (↓) des historischen Gletschersees am Lhotse Nup Gletscher aus dem Jahr 2009 (03.11.2009); Google Earth.

Abbildung 20: Eine zuvor großräumig schneebedeckte Hohlform (↓) des historischen Gletschersees am Lhotse Nup Gletscher aus dem Jahr 2010 (20.02.2010); Google Earth.

Abbildung 21: Durch Gletscherschmelzdynamiken wurde die Podestmoräne eingeschnitten (↓). Diese Abflüsse bildeten schließlich die Nuptse Gletscherbachläufe; Google Earth (Bildmitte: 27°54'16.90"N, 86°51'48.68"E).

Abbildung 22: Eine Breitenzunahme der ersten Terrassenschotterebene (↓) ist im Endmoränendurchbruch des Unbenannten Kongma-La Gletscherbaches zu erkennen; Google Earth (Bildmitte: 27°54'17.02"N, 86°50'58.12"E).

Abbildung 23: Zwei kleinräumige mit Obermoränen überprägte Vergletscherungen (roter Pfeil ↓) fließen bis in die Nähe des Gletschersees heran. Vergangene Gletschereisschmelzprozesse bildeten in der Front des Moränen-Westhanges des Duwo-Gletschers glazifluviale Einschneidungsformen aus (blauer Pfeil ↓); Google Earth (Bildmitte: 27°53'12.44''N, 86°50'4.10''E).

VIII

Abbildung 24: Vergangene Gletschereisschmelzprozesse bildeten in der Front des Moränen-Westhanges des Duwo-Gletschers glazifluviale Einschneidungsformen aus (blauer Pfeil ↓); Google Earth (Bildmitte: 27°53'19.62''N, 86°50'13.92''E).

Abbildung 25: Die Schuttfächerakkumulation des Tsuro-Gletschers beeinflusst die angrenzende Bachbettmorphologie des Imja Khola (roter Pfeil \downarrow). Bewuchszonen stabilisieren einen weiteren Schuttfächer vor möglichen fluvialen Überprägungen durch den Imja Khola (blauer Pfeil \downarrow). Der weiter südlich gelegene Gletscherbachlauf schneidet im Vergleich intensiver in die Podestmoräne ein und formt einen aktiveren Schuttfächer aus (grüner Pfeil \downarrow); Google Earth (Bildmitte: 27°52'41.87''N, 86°49'8.88''E).

Abbildung 26: Die Morphologie des Imja Khola Hauptstroms. Die beiden Pfeile (↓) zeigen den Beginn und das Ende des untersuchten Laufabschnittes an; Google Earth (Bildmitte: 27°53'30.57"N, 86°50'36.04"E).

Abbildung 27: Orographisch linke Hangrutschungsprozesse (↓) beeinflussen die Morphologie des Imja Khola Hauptstroms; Google Earth (Bildmitte: 27°53'19.07"N, 86°49'43.64"E).

Abbildung 28: Längsprofil des Imja Khola Hauptstromes nach SRTM-Höhenmodell.

Abbildung 29: Das Pokalde Gletscherbachsystem bildet am Ende der Talschaft ein Sedimentschuttfächer aus (↓); Google Earth (Bildmitte: 27°56'6.76"N, 86°49'23.37"E).

Abbildung 30: Das Bachsystem des orographisch linken Gletscherbachtales des Lobuche Gletschers (1) mündet in das orographisch rechte Bachsystem der Khumbu-Haupttalschaft; Google Earth (Bildmitte: 27°57'25.37"N, 86°48'40.54"E).

IX

Abbildung 31: Die Khumbu Gletscherzunge und ihre Gletscherbachläufe. Die beiden Pfeile (↓) zeigen den Beginn und das Ende des untersuchten Bachabschnittes an; Google Earth (Bildmitte: 27°55'34.57"N, 86°48'16.83"E).

Abbildung 32: Talaufwärts blickend in das hier aufgesuchte Talquerprofil des orographisch linken Khumbu Gletscherbachers (2-fach überhöht) nach SRTM-Höhenmodell.

Abbildung 33: Talaufwärts blickend in das Talquerprofil des gesamten Khumbu Gletscherbachsystems (4-fach überhöht) nach SRTM-Höhenmodell.

Abbildung 34: Der Khumbu Gletscherbachlauf und dessen übergeordneten Terrassenordnungen (↓) sind gebunden. Sie sind als großräumiger Sander zu klassifizieren; Google Earth (Bildmitte: 27°55'4.80"N, 86°48'17.55"E).

Abbildung 35: Längsprofil des orographisch linken Khumbu Gletscherbaches nach SRTM-Höhenmodell.

Abbildung 36: Hangrutschungen (↓) beeinflussen das Gleichgewicht des orographisch rechten Khumbu Gletscherbachlaufs; Google Earth (Bildmitte: 27°55'44.28"N, 86°48'12.52"E).

Abbildung 36a: Der orographisch rechte Gletscherbachlauf des Khumbu Gletschers. Die beiden Pfeile (↓) zeigen den Beginn und das Ende des untersuchten Bachabschnittes an; Google Earth (Bildmitte: 27°55'32.78"N, 86°48'9.46"E).

Abbildung 37: Längsprofil des orographisch rechten Khumbu Gletscherbaches nach SRTM-Höhenmodell.

Abbildung 38: Aneinandergereihte Karformen (↓) und Bachläufe prägen die Bergflanke des Lobuche East Gipfels; Google Earth (Bildmitte: 27°56'0.70"N, 86°47'26.31"E).

Х

Abbildung 39: Der Gletscherbachlauf des Nirekha Peaks ist durch abgrenzende Moränenflächen gebunden. Es bilden sich Mäanderschlingen und Bachverästelungen (↓) aus; Google Earth (Bildmitte: 27°56'38.03"N, 86°46'38.15"E).

Abbildung 40: Mit abnehmendem Talgefälle bilden sich Bachverwilderungen (braided river) und vereinzelt Mäanderschlingen (↓) im Gletscherbachlauf des Cho La Gletschers aus; Google Earth (Bildmitte: 27° 57' 24.11" N, 86° 45' 44.69" E).

Abbildung 41: Kleinräumig setzt die Abfolge von Verwilderungen und Mäanderschlingen mit zum Teil verfestigten Inselbildungen (↓) im Gletscherbachlauf des Cho La Gletschers aus; Google Earth (Bildmitte: 27° 56' 23.34" N, 86° 46' 2.62" E).

Abbildung 42: Der Nare Drangka Gletscherbach. Die beiden Pfeile (↓) zeigen den Beginn und das Ende des untersuchten Bachabschnittes an; Google Earth (Bildmitte: 27°50'20.29"N, 86°50'26.33"E).

Abbildung 43: Längsprofil des Nare Drangka Gletscherbaches nach SRTM-Höhenmodell.

Abbildung 44: Der Schwemmfächer des Mingbo Gletscherbachsystems (↓) ist kleinräumig ausgeprägt; Google Earth (Bildmitte: 27°51'19.62"N, 86°49'38.30"E).

Abbildung 45: Im Eisrandtal bildet der orographisch linke Ngozumpa Gletscherbach eine Konfluenz, verändert seine Laufrichtung und fließt in Richtung Süden und Südwesten (↓); Google Earth (Bildmitte: 27°55'17.90''N, 86°43'7.23''E).

Abbildung 46: Durch Abflussdynamiken des orographisch linken Ngozumpa Gletscherbaches wurde der Seiten- bzw. Endmoränenwall in Richtung Südosten glazifluvial eingeschnitten (↓); Google Earth (Bildmitte: 27°55'42.52''N, 86°43'7.84''E).

XI

Abbildung 47: Altarme entstanden durch historische Abflussdynamiken in der Sohle des zwischengeschalteten periodischen Bachlaufes (↓) unterhalb des vierten Gletschersees (4th Lake); Google Earth (Bildmitte: 27°58'11.89"N, 86°41'21.87"E).

Abbildung 48: Historische Bachbettsohle zwischen dem vierten (4th Lake) und dritten (3rd Lake) Gletschersee. Zum Übergang in den dritten Gletschersee (3rd Lake) bildet sich ein Schwemmfächer (↓); Google Earth (Bildmitte: 27°57'47.77"N, 86°41'27.93"E).

Abbildung 49: Bachbettsohle zwischen dem dritten und zweiten Gletschersee (3rd und 2nd Lake) sowie dem orographisch rechten Ngozumpa Gletscherbach. Zum Übergang in den zweiten Gletschersee (2nd Lake) lässt sich ein Schwemmfächer erkennen (↓); Google Earth (Bildmitte: 27°56'18.40"N, 86°42'3.97"E).

Abbildung 50: Talquerprofil des orographisch rechten Ngozumpa Gletscherbaches (2fach überhöht) nach SRTM-Höhenmodell. Das Profil wurde nahe des Untersuchungsstandortes entnommen; talaufwärts blickend.

Abbildung 51: Lauf des orographisch rechten Ngozumpa Gletscherbaches. Die beiden Pfeile (↓) zeigen den Beginn und das Ende des untersuchten Bachabschnittes an; Google Earth (Bildmitte: 27°55'21.20"N, 86°42'46.74"E).

Abbildung 52: Längsprofil des orographisch rechten Ngozumpa Gletscherbachlaufes nach SRTM-Höhenmodell.

Abbildung 53: Lauf des Unbenannten Pangong Tso Gletscher I Gletscherbaches. Die beiden Pfeile (↓) zeigen den Beginn und das Ende des untersuchten Bachabschnittes an; Google Earth (Bildmitte: 33°53'36.69"N, 78°27'3.71"E).

Abbildung 54: Längsprofil des Unbenannten Pangong Tso Gletscher I Gletscherbaches nach SRTM-Höhenmodell.

XII

Abbildung 55: Lauf des Unbenannten Pangong Tso Gletscher II Gletscherbaches. Die beiden Pfeile (↓) zeigen den Beginn und das Ende des untersuchten Bachabschnittes an; Google Earth (Bildmitte: 33°53'58.77"N, 78°26'5.57"E).

Abbildung 56: Längsprofil des Unbenannten Pangong Tso Gletscher II Gletscherbaches nach SRTM-Höhenmodell.

Abbildung 57: Lauf des Unbenannten Pangong Tso Gletscher III und IV Gletscherbaches. Die beiden Pfeile (↓) zeigen den Beginn und das Ende des untersuchten Bachabschnittes an; Google Earth (Bildmitte: 33°54'55.29"N, 78°25'10.93"E).

Abbildung 58: Längsprofil des Unbenannten Pangong Tso Gletscher III Gletscherbachlaufes nach SRTM-Höhenmodell.

Abbildung 59: Merkmale glazifluvialer und fluvialer Formen für den Hochgebirgsraum Himalaya.

Diagrammverzeichnis

Diagramm 1 bis 21: Korngrößen aus den Untersuchungsgebieten des Khumbu Himal.

Diagramm 22: Korngrößen aus dem Untersuchungsgebiet nahe des Pangong Tso.

Tabellenverzeichnis

Tabelle 1 bis 11: Ermittelte Daten (Koordinaten, Höhe ü. NN und Steigung) der Längsprofilanalysen der Untersuchungsgebiete im Khumbu Himal und nahe des Pangong Tso; siehe im Anhang.

Tabelle 12: Die Gletscherbachsohlenformen in den Untersuchungsgebieten.

Tabelle 13: Die Terrassenordnungen in den Gletscherbachuntersuchungsgebieten im Khumbu Himal.

Tabelle14:DieTerrassenordnungenindenbachabwärtsgelegenenUntersuchungsgebieten im Khumbu Himal.

Tabelle 15: Die Terrassenordnungen in den Gletscherbachuntersuchungsgebieten nahe des Pangong Tso.

Tabelle16:Diehorizontal-vertikaleGletscherbachlaufabfolgeindenUntersuchungsgebieten.

Tabelle 17: Vergletscherungsstadien der Gebirge Hochasiens von den rißzeitlichen (pre-LGM) bis zu den rezenten Gletscherstadien (verändert nach Kuhle 2006: 97).

Kartenverzeichnis

Karte 1a: Übersichtskarte der Untersuchungsgebiete.

Karte 1b: Übersichtskarte des Hauptuntersuchungsgebietes im Khumbu Himal.

Karte 1c: Übersichtskarte des Vergleichsuntersuchungsgebietes am Pangong Tso.

Karte 2a: Das modellierte Gewässernetz im Khumbu Himal. Mithilfe des Programms GRASS GIS und der Verwendung von SRTM-Daten konnte dieses Gewässernetz modelliert werden.

Karte 2b: Das modellierte Gewässernetz am Pangong Tso. Mithilfe des Programms GRASS GIS und der Verwendung von SRTM-Daten konnte dieses Gewässernetz modelliert werden.

Karte 3a: Überblickskarte des Imja Khola Gletscherbaches (Oberlauf).

Karte 3b: Geomorphologische Kartierung des Imja Khola Gletscherbaches (Oberlauf).

Karte 3c: Zeitlicher Satellitenbildabgleich des Imja Khola Gletscherbaches.

Karte 4a: Überblickskarte des Lhotse und Lhotse Nup Gletscherbaches.

Karte 4b: Geomorphologische Kartierung des Lhotse und Lhotse Nup Gletscherbaches.

Karte 4c: Zeitlicher Satellitenbildabgleich des Lhotse und Lhotse Nup Gletscherbaches.

Karte 5a: Überblickskarte des Imja Khola Hauptstroms.

Karte 5b: Geomorphologische Kartierung des Imja Khola Hauptstroms.

Karte 5c: Zeitlicher Satellitenbildabgleich des Imja Khola Hauptstroms.

Karte 6a: Überblickskarte des orographisch linken Khumbu Gletscherbaches.

Karte 6b: Geomorphologische Kartierung des orographisch linken Khumbu Gletscherbaches.

Karte 6c: Zeitlicher Satellitenbildabgleich des orographisch linken Khumbu Gletscherbaches.

Karte 6d: Überblickskarte des orographisch rechten Khumbu Gletscherbaches.

Karte 6e: Geomorphologische Kartierung des orographisch rechten Khumbu Gletscherbaches.

Karte 6f: Zeitlicher Satellitenbildabgleich des orographisch rechten Khumbu Gletscherbaches.

Karte 7a: Überblickskarte des oberen Nare Drangka Gletscherbaches.

Karte 7b: Geomorphologische Kartierung des oberen Nare Drangka Gletscherbaches.

Karte 7c: Überblickskarte des mittleren Nare Drangka Gletscherbaches.

Karte 7d: Geomorphologische Kartierung des mittleren Nare Drangka Gletscherbaches.

Karte 7e: Zeitlicher Satellitenbildabgleich des Nare Drangka Gletscherbaches.

Karte 8a: Überblickskarte des orographisch rechten Ngozumpa Gletscherbaches.

Karte 8b: Geomorphologische Kartierung des orographisch rechten Ngozumpa Gletscherbaches.

Karte 8c: Zeitlicher Satellitenbildabgleich des orographisch rechten Ngozumpa Gletscherbaches.

Karte 9a: Überblickskarte des Gletscherbaches des Unbenannten Pangong Tso Gletscher I.

Karte 9b: Geomorphologische Kartierung des Gletscherbaches des Unbenannten Pangong Tso Gletscher I.

Karte 9c: Zeitlicher Satellitenbildabgleich des Gletscherbaches des Unbenannten Pangong Tso Gletscher I.

Karte 10a: Überblickskarte des Gletscherbaches des Unbenannten Pangong Tso Gletscher II.

Karte 10b: Geomorphologische Kartierung des Gletscherbaches des Unbenannten Pangong Tso Gletscher II.

Karte 10c: Zeitlicher Satellitenbildabgleich des Gletscherbaches des Unbenannten Pangong Tso Gletscher II.

Karte 11a: Überblickskarte des Gletscherbaches der Unbenannten Pangong Tso Gletscher III und IV.

Karte 11b: Geomorphologische Kartierung des Gletscherbaches der Unbenannten Pangong Tso Gletscher III und IV.

XVIII

Karte 11c: Zeitlicher Satellitenbildabgleich des Gletscherbaches der Unbenannten Pangong Tso Gletscher III und IV.

Karte 12: Russische Militärkarte vom Nordwestufer des Pangong Tso aus dem Jahr 1984, Maßstab 1:100 000.

Photoverzeichnis

Alle Photographien stammen vom Autor dieser Arbeit und wurden im Zeitraum der Forschungsexpeditionen im März 2012 sowie von Mitte August bis Anfang September 2013 aufgenommen.

Weitestgehend sind die Photographien mit Koordinatenangaben verortet. Dadurch sind die Aufnahmestandorte mithilfe von Satellitenbildsoftware (z. B. Google Earth) abrufbar. Zusätzlich sind die Photoaufnahmestandorte der Untersuchungsgebiete in den Karten 3a bis 11b zu finden.

Photo 1 bis 56: Photographien aus dem Hauptuntersuchungsgebiet des nordöstlichen Khumbu Himal (Nord-Ost-Nepal); siehe Photoband.

Photo 57 bis 120: Photographien aus dem Hauptuntersuchungsgebiet des nördlichen Khumbu Himal (Nord-Ost-Nepal); siehe Photoband.

Photo 121 bis 138: Photographien aus dem Hauptuntersuchungsgebiet des nordwestlichen Khumbu Himal (Nord-Ost-Nepal); siehe Photoband.

Photo 139 bis 150: Photographien aus dem Vergleichsuntersuchungsgebiet nahe des südlichen Ufers des Pangong Tso (Nord-West-Indien); siehe Photoband.

Einleitung

Gletscherschwankungen im Hochgebirgsraum des Himalaya beeinflussen durch ihre Abfluss- und Sedimentfreisetzungen die direkt angrenzenden Gletscherbachläufe (Hewitt 1967: 93; Kuhle 1991: 37-47) und bachabwärts liegenden Abschnitte (Wohl 2000: 56-59) in ihrer Morphodynamik.

Diese glazifluvialen Prozess- und Formenzusammenhänge in den Bachläufen der Gletschervorfelder des Himalaya sind der Fokus der vorliegenden Arbeit, denn insbesondere die Anordnung der Formen innerhalb von Gletscherbachläufen im Himalaya ist aufgrund ihrer schweren Zugänglichkeit bisher wenig erforscht. Doch gerade der Lagebezug dieser Gletscherbachformen ist für eine relativ-chronologische Abfolge von Bedeutung. Die Datengrundlage dieser Untersuchungen bilden morphologische und morphometrische Feldforschungen. Sie wurden im März 2012 im Hauptuntersuchungsgebiet des Khumbu Himal (Zentral-Ost-Himalaya) sowie von Mitte August bis Anfang September 2013 im Vergleichsuntersuchungsgebiet am Pangong Tso (West-Himalaya) durchgeführt. Erweitert durch Satellitenbildanalysen und Photopanorama-Auswertungen konnte so der glazifluvial- und fluvialgeomorphologische Formenschatz der Gletscherbachläufe in den Untersuchungsgebieten erfasst, verglichen und chronologisiert werden. Mithilfe dieser empirisch-systematischen Analyse ist es möglich, raumzeitliche Formenähnlichkeiten und -unterschiede vom Gletscherbachbeginn bis zur Konfluenz mit einem Bach- oder Flusslauf aufzudecken.

Die Arbeit zielt darauf ab, eine glazifluviale Formenabfolge für das Gletschervorfeld im Himalaya auszuarbeiten. Diese Studie bildet somit eine Basis für zukünftige Untersuchungen über klimatische Formenveränderungen im Gletscherbachlauf eines Hochgebirges, die durch Gletscherschwankungen ausgelöst werden können. Demzufolge liefern die Inhalte dieser Arbeit einen Beitrag zur klimagenetischen Geomorphologie im Hochgebirge.

1.1 Stand der Forschung und Problemstellung

Mit dem Beginn eines Gletscherbaches wird unweigerlich eine Prozessabfolge ausgelöst, in welcher die Sohle der Bachläufe im eisrandnahen sowie im talabwärts gelegenen Bereich Sequenzabfolgen ausprägt (Brardinoni & Hassan 2007: 16; Buffington & Montgomery 2013: 749-750). Mit zunehmender Entfernung zum Eisrand unterliegen diese einer fortwährenden Entwicklung, die sich durch divergente Formen von Gletscherbachsohlen kenntlich macht (Montgomery & Buffington 1997: 597-600; Chin 2002; Buffington & Montgomery 2013: 749-750). Untersuchungen zur Bachmorphologie in vergletscherten Talschaften im südwestlichen British Columbia zeigen, dass im Bereich von Karwänden wasserfallartige Kaskaden (cascade) und Stufen-Becken Sequenzen (step-pool) die proglazialen Bachabschnitte ausbilden (Brardinoni & Hassan 2007: 16). Nach Chin & Wohl (2005: 277) können Blockablagerungen in Stufen-Becken Sequenzabfolgen (step-pool) aus einem vergangenen glazigenen Prozess bzw. Ursprung hervorgegangen sein.

In den Gletscherbachuntersuchungsgebieten dieser Studie liegen zur Bachbettsohlenabfolge bisher keine Ergebnisse vor. Ebenso ist es von Bedeutung, diese Abfolge innerhalb der Untersuchungsgebiete chronologisch einzuordnen, um die mögliche Abhängigkeit zu den bestehenden Abfluss- und Sedimentfreisetzungen infolge von Gletscherschwankungen aufzudecken. Deshalb wird in dieser Studie der folgenden Frage nachgegangen:

F1: Welche fluvialgeomorphologischen Bachbettformen entstehen/ entstanden durch das Vorrücken oder Abschmelzen der Gletscher in den Gletscherrandbereichen sowie den weiter talabwärts in gelegenen Gletscherbachbetten dieser Untersuchungsgebiete, und wie sind diese zeitlich einzuordnen?

Zusätzlich lassen sich weitere Prozesszusammenhänge durch Gletscherbachuntersuchungen aufdecken. Morphologische Veränderungen im Gletscherbachlauf gehen mit rezenten Gletschereisschwankungen (Achenbach 2011; Hewitt 2011; Iturrizaga 2011a; Bolch et al. 2012; Kuhle 2014) sowie holozänen und

pleistozänen Gletschereisschwankungen (Kuhle 1982; Röthlisberger 1986; Meiners 1996; Meiners 1997; Kuhle 2004; Owen 2009; Kuhle 2013; Kuhle 2014) im Himalaya und Karakorum einher. Diese Gletscheroszillationen einschließlich ihrer Gletschereissschmelze in den Untersuchungsgebieten (Kuhle 2005; Kuhle 2006a, b; Byers 2007; Bolch et al. 2008; Nuimura et al. 2012; Kuhle 2013) trugen zur Terrassenausprägung bei. Neben den Gletschereisschwankungen beeinflussen weitere Faktoren die Entstehung und Umgestaltung von Terrassen, welche ausführlich in Kapitel 2.2 beschrieben sind.

Auf welche Art der Genese sich diese Formgebung zurückführen lässt und wie diese relativ zeitlich einzuordnen ist, blieb in den hier aufgesuchten Untersuchungsgebieten des Khumbu Himal sowie nahe des Pangong Tso bisher unbeantwortet. Datierungsergebnisse von Terrassenkörpern liegen außerhalb dieser Gletscherbachuntersuchungsgebiete im Khumbu Himal (Barnard et al. 2006) sowie für weitere Hochgebirgsregionen im Himalaya (Lavé & Avouac 2001) vor. Die untersuchten Terrassenabstufungen innerhalb der Gletscherbachvorfelder wurden bisher nicht erfasst, verglichen oder zeitlich in eine relative Gletscherchronologie, wie zum Beispiel nach Kuhle (2006), eingeordnet (siehe Tabelle 17). Aufgrund ihrer Bedeutung für die Talschaftsgenese und der unzureichenden Datenbasis von Terrassenabstufungen ist in dieser Arbeit die folgende Frage zu behandeln:

F2: Wie intensiv ist die Terrassenabstufung in den direkt angrenzenden Gletscherrandbereichen sowie in den weiter talabwärts gelegenen Gletscherbachund Flussbetten dieser Untersuchungsgebiete ausgeprägt, und wie lässt sich diese chronologisch einordnen?

Neben den zuvor dargelegten Zusammenhängen zwischen Formen und zugrundeliegenden Prozessen ist auch die Schotterflur zu untersuchen, die durch "ihre glazialperiphere Lage außerhalb und im unmittelbaren, oft auch verzahnten Anschluß an Endmoränenkomplexe" zu finden ist (Kuhle 1991: 37). Die Schotterflur sowie das glazifluviale Schotterfeld sind gleichbedeutend mit dem Begriff der "Sander im Gebirge" (Kuhle 1991: 37 nach Maul 1958: 402; Warburton 1994). An die Oberflächenform der

Talschaften gebunden, wurden diese Vorkommen im Hohen Himalaya in den Talgefäßen kanalisiert und fluvial abgelagert (Kuhle 1982, Abbildungsteil: Abb. 12). Oft ist das Gletscherschotterfeld auch mit dem naheliegenden Endmoränenkomplex und der Grundmoräne verzahnt. Aufgrund der andauernden Oszillationen des Gletschers lässt sich demnach keine lokale Trennlinie im eisrandnahen Schotterfeld erkennen (Kuhle 1991: 37-39).

Schotterfelder, die nach dem Endmoränenwall einsetzen, wurden im Alpenvorland mit dem Begriff "Trompetentälchen" beschrieben (Troll 1926: 14). Im Himalaya hingegen wird die Ausbreitung der Sanderformen zum Teil durch die Breite der Talschaft diktiert und somit eingeengt. Infolgedessen akkumulieren die "kanalisierten Schotterfluren" nun mehr und mehr talauswärts (Kuhle 1982: 117). Im Vergleich zu den "kanalisierten und direkten Schotterfluren" eines breiten Talgletschers weisen die akkumulierten Schotterflurformen eines Hängegletschers und eines kleinen Gletschers im engen Nebental andere Formen auf: Die Akkumulation des Schotterflurfächers erfolgt erst nach dem glazifluvialen sowie fluvialen Transport durch die erosiv eingeschnittene, kerbförmige Talstrecke. Im anschließenden Haupttal lagert der Gletscherbach nun einen "indirekten Kegelsander" ab (Kuhle 1982: 116). Der Talverlauf und somit auch die Schotterflur ist vereinzelt durch eine Steilstufe unterbrochen. Dies ist als "kombinierte Schotterflur" zu definieren. Ist sie mindestens zweimal von einer Steilstufe unterbrochen, bildet sich eine "Schotterflurtreppe" (Kuhle 1982: 118). Neben den Schotterfluren in der Himalaya-Region (Kuhle 1982; Kuhle 1991; Barnard et al. 2006; Kuhle 2013) lassen sich Sanderformen auch außerhalb dieses Hochgebirges finden (Krigström 1962; Church & Ryder 1972; Maizels 1979; Warburton 1994; Marren 2005; Ehlers 2011; Marren & Toomath 2014).

Im Khumbu Himal wurden Sanderflächen zum Teil datiert und mit Vergletscherungsstadien korreliert (Barnard et al. 2006). Warburton (1994) verdeutlicht jedoch, dass die Entstehung von Sanderformen im Hochgebirge nicht allein auf Gletscheroszillationen zurückzuführen ist. Um Ähnlichkeiten und Formenzusammenhänge der Schotterfluren sowie einen möglichen chronologischen Zusammenhang in den Untersuchungsgebieten aufzudecken, ist in dieser Arbeit die folgende Fragestellung zu behandeln:

F3: Welchen Formenschatz nehmen Sander respektive Gletscherbachschotterfelder in den Untersuchungsgebieten ein, und wie sind diese chronologisch einzuordnen?

Zudem lassen sich weitere Zusammenhänge zwischen Formen und Prozessen mithilfe der Gletscherbachuntersuchungen aufdecken, wie das folgende Beispiel zeigt: Die Transportkraft des Gletscherbaches reicht nicht aus, um den ständig akkumulierten Schutt, der durch die Gletscherzunge am Gletscherrandbereich abgelagert wird, fortzutransportieren. Daher "ertrinkt" das Gletscherschotterfeld im Schutt (Kuhle 1991: 37-39). Der Akkumulation von Grobund Feinschutt, die während der Aufschüttungsphase, also der Vorrückphase des Gletschers auftritt, wirkt der Bach durch seitliche Erosion im Gletscherbachbett entgegen: Es bilden sich Gletscherbachverwilderungen, auch braided river Bachbettformen genannt, aus. Erst so kann durch die Gletscherbacherweiterung die Transportkraft des Fließgewässers erhöht werden (Troll 1926: 9-11). Aufbauend auf diesen Erkenntnissen wurden die oben genannten Entstehungsprozesse der verwilderten Bachbettformen (braided river) am Bosson-Gletscher der Alpen, im Verlauf des Gletschervorstoßes, beobachtet (Maizels 1979: 94). Gegen diese Entstehungsprozesse sprechen jedoch neuere Untersuchungen (Warburton 1994: 147-148), die den noch zum Teil unerforschten Entstehungs- und Formungsprozess verdeutlichen. Weiter talabwärts verändern sich die Gletscherbachund Flusslaufformen (Nanson & Knighton 1996; Knighton 1998; Schumm 2005; Wohl 2010). In den hier aufgesuchten Untersuchungsgebieten ist die Gletscherbachlaufabfolge bisher unerforscht. Deshalb zielt diese Studie ebenfalls darauf ab, diese für die Untersuchungsgebiete herauszuarbeiten und chronologisch einzuordnen, woraus sich die folgende Fragestellung ergibt:

F4: Welche Gletscherbachlaufformen lassen sich mithilfe einer gesamtheitlichen Gletscherbachlaufanalyse in den Untersuchungsgebieten erkennen, und wie sind diese chronologisch einzuordnen? Weitere morphologische Zusammenhänge lassen sich mit der Gefällekurve eines Fließgewässers ermitteln. Sie wird von vielen Faktoren beeinflusst. Dazu gehören u. a. der Geschiebezulauf und das Transportvermögen (Abfluss) (Mangelsdorf & Scheuermann 1980: 148; Knighton 1998: 252; Wohl 2014: 151-153;). Insbesondere beeinflusst das Substrat der Bachsohle die Form der Gefällekurve (Wohl 2014: 153). Eine Fluss- und Bachsohle im anstehenden Gestein persistiert länger als eine Sohle aus Lockermaterial (Wohl 2014: 153). Daraus folgt, dass die Gefällekurve von der topographischen Lage abhängig ist. Ihre Form kann geradlinig, konvex oder konkav ausgeprägt sein (Wohl 2014: 151). Auch eine Durchmischung dieser Formen tritt im Gefällelängsprofil eines Fließgewässers auf (vgl. Wohl 2014: 152, Figure 5.15).

Da in den aufgesuchten Gletscherbachläufen im Khumbu Himal und am Pangong Tso bisher keine Längsprofilanalysen (Gefällekurven) erfasst wurden, ist es von maßgeblicher Bedeutung, diese in die Untersuchung mit aufzunehmen. Ihre Formen lassen sich schließlich mit den Feldbegehungsdaten und Satellitenbildanalysen abgleichen und womöglich mithilfe der Lagebeziehungsanalyse räumlich sowie zeitlich einordnen. Aufgrund der vorhergehenden Vergletscherungen der untersuchten Gletscherbachtalschaften (Kuhle 2005), lassen sich im Längsprofil vermutlich konvexe und konkave Formen rekonstruieren. Aus diesem Grund ist der folgenden Frage nachzugehen:

F5. Welche Formen (konvex/ konkav) lassen sich mithilfe eines Gletscherbachlängsprofiles in den Untersuchungsgebieten erfassen, und wie sind diese räumlich sowie zeitlich einzuordnen?

Alle hier aufgeführten Fragestellungen werden in dieser Arbeit in eine fluvialgeomorphologische Mikro-, Meso-, und Makroebenenanalyse (Schumm 1991) eingeordnet. Dieser methodische Ansatz wurde für diese Arbeit spezifisch entwickelt und fand in den Gletscherbachläufen der Untersuchungsgebiete im Himalaya Anwendung. Nähere Ausführungen dazu sind in Kapitel 2.1 zu finden. Einflussnehmende Prozesse, die Veränderungen im Gletscherbachlauf bedingen, wurden in Kapitel 2.2 aufgeführt.

Des Weiteren sind ausführliche Erörterungen zu den in dieser Arbeit zu untersuchenden Gletscherbachformen in Kapitel 2.4 enthalten, die somit den aktuellen Stand der Forschung abdecken.

In ihrer Gesamtheit sollen die Ergebnisse der zuvor aufgezählten Fragestellungen schließlich das System einer bisher unerforschten glazifluvialen Formenabfolge innerhalb von Gletscherbachläufen im proglazialen Bereich für den Hochgebirgsraum Himalaya darlegen. Durch ihre Lagebeziehung untereinander können womöglich diese glazifluvialen Formen das von Kuhle (1990/1991) ausgearbeitete Schema der 15 homologen Merkmale glaziärer Indikatoren für den Hochgebirgsraum des Himalaya erweitern.

1.2 Gang der Abhandlung

Im zweiten Kapitel dieser Arbeit werden die Fragestellungen und Hypothesen, die angewandten Arbeitstechniken, deren Möglichkeiten, aber auch Grenzen sowie die morphologischen Begrifflichkeiten in Bezug auf den aktuellen Stand der Forschung erläutert. Das dritte Kapitel stellt die empirischen Befunde dieser Arbeit dar, welche im abschließenden vierten und fünften Kapitel zusammengefasst und diskutiert werden.

Die gesammelten Daten zu den untersuchten Gletscherbachläufen können anhand der Photographien im angehängten Photoband überprüft werden. Erst durch die zahlreichen Photoaufnahmen lassen sich die Formenzusammenhänge der glazifluvialen sowie fluvialen Akkumulations- und Erosionsformen chronologisch einordnen und klassifizieren. Dem Leser wird durch diese bildliche Darstellung das Verständnis der zeitlichen Aufeinanderfolge von Prozessen und Formen erleichtert.

Zur Orientierung, Begehung und morphologischen Überblickserfassung der Talschaften wurde im Khumbu Himal das Kartenwerk von Erwin Schneider (1988) verwendet. Für die Talschaften nahe des Pangong Tso im indischen Westhimalaya wurde das Ladakh & Zansgar Kartenwerk von Abraham Pointet (2013) genutzt. Ebenfalls wurden digitale Google Earth Pro Kartenausdrucke sowie eine Russische Militärkarte (1984) als Informationsgrundlage eingesetzt.

1.3 Auswahl und Charakterisierung der Arbeitsgebiete

Ziel dieser Untersuchungen ist es, die Auswirkungen von Änderungen der Sedimentmengen und des Abflusses durch Gletscheroszillationen auf die direkt angrenzende Gletscherbachbettmorphologie geomorphologisch zu beschreiben und morphometrisch zu analysieren. Zum Vergleich der Formenausprägung von Gletscherbachläufen und Überprüfung der angewandten Arbeitstechniken müssen die beiden zu untersuchenden Regionen folgende Kriterien erfüllen:

Die Höhe der Talschaft soll eine historische Vergletscherung implizieren. Des Weiteren muss die Anzahl von möglichen Störfaktoren, die die Gletscherbachmorphologie verändern können, möglichst gering sein. Ebenso sollten korrigierte SRTM-Höhendaten für nachfolgende Untesuchungen vorliegen. Für die morphologischen Untersuchungen ist außerdem die Zugänglichkeit der rezenten Talvergletscherungen unerlässlich. Ebenfalls müssen beide Regionen rezent-klimatische Unterschiede vorweisen, um eine klimatisch bedingte Morphogenese als möglichen Störfaktor auszuschließen. Mithilfe dieser Merkmale ist es schließlich möglich, die Formen der Gletscherbachausprägungen und ihre zeitliche Abfolge zu klassifizieren. Erst durch die Einbindung eines zweiten Untersuchungsgebietes können die Ergebnisse dieser Einordnungen und Klassifikationen miteinander verglichen werden, um sowohl die morphologischen Ähnlichkeiten als auch deren Differenzen aufzudecken.

Karte 1a: Übersichtskarte der Untersuchungsgebiete.

Anhand schließlich der Kriterien konnten folgende zuvor genannten Untersuchungsgebiete näher eingegrenzt werden (Karte 1a): Das Hauptuntersuchungsgebiet befindet sich im nordöstlich von Kathmandu gelegenen Khumbu Himal. Hier durchqueren die Oberläufe des Imja-, Khumbu-, und des Nare-Khola sowie des Dudh- und Bhoti-Kosi die Talschaften. Aufgrund der Höhe der zu untersuchenden Gletscherbachsysteme (4400 m ü. NN bis 5200 m ü. NN) und der dort zahlreich lokalisierten Talgletscher eignen sich diese breiten Talschaften besonders gut für die geomorphologischen Untersuchungen (Karte 1b). Die in diesem Untersuchungsgebiet durchgeführten Arbeiten (u. a. Cenderelli & Wohl 2001; Kuhle 2005; Bernard et al. 2006) erlauben zudem den Abgleich der gesammelten Daten und erweitern das Interpretationsspektrum der Befunde.

Karte 1b: Übersichtskarte des Hauptuntersuchungsgebietes im Khumbu Himal.

Das Vergleichsuntersuchungsgebiet liegt im indischen Westhimalaya in der Region Ladakh. Der Fokus wurde dabei auf die unerforschte Gletscherbachmorphologie der südwestlich an den Pangong Tso See angrenzenden Gletscher (Kuhle 2013) gelegt. Dabei prägt der Pangong Tso den Übergangsbereich zur Tibetischen Hochebene. In den hier südlich des Seeufers angrenzenden Hochgebirgstalschaften lokalisieren sich kleinräumig rezente Vergletscherungen, deren Abschmelzprozesse durch das semiaride Klima beeinflusst werden. Aufgrund der morphologischen und klimatischen Unterschiede zum Hauptuntersuchungsgebiet wurden die Gletscherbachläufe südwestlich des Pangong Tso als Vergleichsregion genutzt (Karte 1c).

1.3.1 Hauptuntersuchungsgebiet im Khumbu Himal

1.3.1.1 Gewässernetz im Khumbu Himal

Fluviale Dynamiken im Untersuchungsgebiet des Khumbu Himal setzten Kräfte frei, die die Fluss- und Bachbetten während der Erdgeschichte prägten. Infolge dieser andauernden fluvialen Umgestaltung der Landschaft, dazu zählen ebenso Gletscherseeausbrüche (Cenderelli & Wohl 2001), bildete sich das rezente Gewässernetz heraus. Der Unterlauf des Ur-Dudh-Kosi ist der Himalaya-Orogenese entsprechend als Durchbruchsfluss einzuordnen (Hagen et al. 1959: 55).

Der rezente Dudh Kosi bildet den Hauptstrom im Khumbu Himal. Dieser durchfließt das Haupttal, welches sich talabwärts unterhalb der Ortschaft Namche Bazar (3440 m ü. NN) durch die Konfluenz der Nebentalflussläufe Nangpo Tsangpo und Imja Khola Hauptstrom ausgeprägt hat. Insgesamt wird der Dudh Kosi u. a. durch die im Einzugsgebiet auftretenden Schnee- und Regenereignisse, Lawinenabbrüche sowie Gletscherschmelzprozesse aller in den Hauptstrom mündenden Bach- und Flussläufe genährt. Zusammenfassend unterliegt das Flusseinzugsgebiet jahreszeitlichen Abflussschwankungen. Im Vergleich zum Monsuneinfluss in den unteren Flussläufen wird der Abfluss in den Gletscherbachläufen jedoch hauptsächlich durch Gletscherschmelzprozesse induziert. Einige der Gletscherbäche sowie Flussläufe im Einzugsgebiet des Dudh Kosi wurden während dieser Geländearbeiten ausführlich untersucht (siehe Karte 1b):

Dazu zählt der Gletscherbach Imja Khola, der Gletscherbach Lhotse und der Gletscherbach Lhotse Nup, die allesamt in den Imja Khola Hauptstrom münden. Deutlich unterhalb der Gletscherbäche sowie Gletscherzungen wurde nahe der Ortschaft Dingboche die Morphologie des Imja Khola Hauptstroms in dieser Studie untersucht. In den Jahren 1974 und 1975 wurden bereits Abflussmessungen nahe der Ortschaft auf einer Höhe von ca. 4330 m ü. NN durchgeführt (Higuchi et al. 1976). Mithilfe dieser Ergebnisse lässt sich erkennen, dass der Abfluss des Imja Khola Hauptstroms im Sommer eine deutlich höhere Dynamik als im Winter vorweist (Higuchi et al. 1976: 24). Dies lässt sich hauptsächlich auf den monsunalen Einfluss zurückführen (Higuchi et al. 1976: 24). Für den Untersuchungszeitraum wurde von den Autoren ein geschätzter jahreszeitlicher Gesamtabfluss von 1.7 x 10⁶ m³ angegeben (Higuchi et al. 1976: 23). Auch der nordwestlich vom Imja Khola Hauptstrom gelegene Khumbu Gletscher und die in dieser Talschaft vorhandenen Nebengletscher nähren durch ihre Abschmelzprozesse zahlreiche Gletscherbachsysteme. Dazu zählt der in dieser Studie untersuchte orographisch linke sowie rechte Khumbu Khola Gletscherbach. Nach einer Konfluenz dieser Bachsysteme mündet der Khumbu Khola weiter talabwärts in den Dudh Kosi. Im westlich gelegenen Nebental unterliegt der Khumbu Khola durch die abfließenden Gletscherbäche aus den Talflanken, die zuerst in den Tshola Tsho münden und dann durch einen Gletscherbach in den Hauptstrom abfließen, einer jahreszeitlich schwankenden Nährung.

Circa 3,9 Kilometer talabwärts, südwestlich der Konfluenz des Khumbu- und Imja Khola Hauptstroms, mündet der in dieser Studie untersuchte Nare Drangka Gletscherbach in

den Imja Khola Hauptstrom. Dieser Gletscherbach wird u. a. durch die Abschmelzprozesse des Mingbo- und Nare Gletschers genährt. Untersuchungen von Cenderelli & Wohl (2001) zeigen, dass dieser Bachlauf im Jahr 1977 von einem Gletscherseeausbruch (GLOF) morphologisch beeinflusst wurde. Infolge der dadurch freigesetzten Wassermassen entstand ca. 8.6 km unterhalb des Druchbruches vermutlich ein Abflusswert von ca. 1900 m³/s. Dieser Wert wurde mittels "stepbackwater Modellierungen" erfasst (Cenderelli & Wohl 2001: 88).

Im westlich gelegenen Nebental des Khumbu Haupttales nähren u. a. die Abschmelzprozesse des Ngozumpa Gletschers den orographisch linken sowie orographisch rechten Ngozumpa Gletscherbach, die in den Lauf des Dudh Kosi münden. Die Morphologie des orographisch rechten Ngozumpa Gletscherbaches wurde in dieser Arbeit ebenfalls ausführlich untersucht. Die angrenzenden Nebengletscher dieser Talschaft tragen zur Abflusssteigerung des Dudh Kosi bei. Auch die Bachsysteme der westlichen und östlichen Talflanke dieses Haupttales bilden teilweise einen Zufluss zum Hauptstrom des Dudh Kosi.

Ebenso befinden sich in den zuvor beschriebenen Talsystemen noch weitere kleine Gletscher und Schneeakkumulationen. Auch deren Abflüsse münden in den Khumbu Khola und Imja Khola Hauptstrom sowie in den Dudh Kosi. Ebenfalls findet eine Abflussnährung u. a. durch Abschmelzprozesse von Schnee- und Gletschereis, Schnee- und Eislawinen und vereinzelt auftretenden Gletscherseeausbrüchen im gesamten Einzugsgebiet des Dudh Kosi statt.

Mithilfe von Modellierungen mit GRASS GIS konnte die Einzugsgebietsgröße der untersuchten Gletscherbach- und Flussläufe im Khumbu Himal auf eine Größe von 656,25 km² bestimmt werden. Des Weiteren verdeutlicht die modellierte Gletscherbachund Flussklassifikation die Konfluenzhäufigkeit der hier vorzufindenden Bach- und Flusssysteme (Karte 2a).

Karte 2a: Das modellierte Gewässernetz im Khumbu Himal. Mithilfe des Programms GRASS GIS und der Verwendung von SRTM-Daten konnte dieses Gewässernetz modelliert werden.

1.3.1.2 Historische und rezente Klimaverhältnisse im Khumbu Himal

Während der Monsunzeit (Juni bis September) treten in den Talschaften des Himalaya (Nepal) starke Regenfälle auf. In der Postmonsunzeit, die von Oktober bis Januar andauert, fallen in Nepal 12 % der jährlichen Gesamtniederschläge (Dhar & Nandargi 2005: 355). In der Prämonsunzeit von Februar bis Mai hingegen, tritt mit 8 % der geringste Anteil der Gesamtniederschläge auf (Dhar & Nandargi 2005: 355).

Die Talschaften des Untersuchungsgebietes im Khumbu Himal erstrecken sich in Höhen zwischen 4400 bis 5200 m ü. NN. Aufgrund der Höhe und der Exposition bilden sich daher unterschiedliche Mikroklimate in den Talschaften aus. Durch die Lage des Gebirgszuges des Hohen Himalaya liegen die Untersuchungsgebiete im Regenschatten der Gipfelflur. Infolge der zahlreichen Bergsteiger- und Forschungsexpeditionen,
existieren vereinzelte Datenreihen zum Niederschlag und der Temperatur im Khumbu Himal:

Auf einer Datenbasis von Messungen über 14 Jahre (1949-62) fanden Dhar und Narayanan (1965), dass in der Ortschaft Namche Bazar (3440 m ü. NN) ein Jahresniederschlag von 940 mm das Gebiet nährte (Dhar & Nandargi 2000: 227). Aktuellere Messungen der etwas weiter nördlich gelegenen automatischen Wetterstation, die sich zwischen den Ortschaften Syangboche und Khumjung auf einer Höhe von 3833 m ü. NN befindet, ergaben für den Messzeitraum Oktober 1994 bis Oktober 2000 folgende Werte:

Während der Monsunzeit (3.6 bis 1.10) betrug der Gesamtniederschlag 700 mm und der durchschnittliche Tagesniederschlag 6,7 mm pro Tag, außerhalb dieser Zeit wurde ein Starkniederschlag von mehr als 30 mm pro Tag gemessen. Die höchsten durchschnittlichen Lufttemperaturen im Jahrzeitraum 1996 bis 2000 wurden im Juli gemessen. Sie betrugen 8,9 °C bis 10,6 °C. Die geringsten durchschnittlichen Lufttemperaturen im Jahrszeitraum 1995 bis 2000 betrugen -3,7 bis -9,3. Sie wurden im Januar gemessen. Innerhalb einer warmen Periode einer Wintersaison wurde die Temperatur von 0 °C nicht übertroffen. Untersuchungen zeigten, dass es trotz eines so kurzen Zeitraumes von vier Jahren deutliche Variationen in der Temperatur und der Schneebedeckung gab (Ueno et al. 2001: 29-30).

Mit zunehmender Höhe und der Abschattung durch den Hohen Himalaya reduziert sich zugleich auch die Niederschlagsmenge. Dies verdeutlichen auch die Daten einer achtmonatigen Bergsteiger-Expedition im Mingbo Tal auf einer Höhe von 5800 m ü. NN, die unter der Leitung von Sir Edmund Hillary durchgeführt wurde. Von Dezember 1960 bis März 1961 konnte diese Gruppe 70 mm Niederschlag messen. In den darauffolgenden Monaten, von April bis Mai 1961, maß die Expeditionsmannschaft 60 mm Niederschlag (Dhar & Nandargi 2000: 227).

Dem Haupttal taleinwärts des Dudh Kosi folgend, im Einzugsgebiet des Imja Khola, wurde in der Ortschaft Lhajung im Zeitraum vom Juni bis September 1974 ein Gesamtniederschlag von 428 mm ermittelt (Higuchi et al. 1982: 22). In der orographisch rechten Talseite des Khumbu Gletschers gelegen, nordwestlich der Lokalität Lobuche,

befindet sich das italienische Forschungsobservatorium Ev-K2-CNR (5050 m ü. NN). Nahe dieser Einrichtung wurde im Jahr 1990 eine AWS errichtet, auch bekannt unter dem Namen "Pyramide". Folgende Ergebnisse dieser Wetterstation verdeutlichen die Wetter- und Klimaverhältnisse von Januar 1994 bis Dezember 1999 in dieser Talschaft: dieser In Höhe (5050 m ü. NN) der Talschaft beträgt der Niederschlagsdurchschnittswert für den gesamten Untersuchungszeitraum 465 mm, wobei sich fast 90 % des Niederschlages in den Monaten Juni bis September ereignete. Im gesamten Jahreszeitraum betrachtet befand sich die Lufttemperatur nur ein Viertel des Jahres oberhalb von 0 °C. Der Juli kennzeichnete den wärmsten Monat, bei dem 94 % des Tages die Minimumtemperatur oberhalb der 0 Grad-Grenze lag. Die Maximumtemperatur lag in den Sommermonaten konstant oberhalb von 0 °C. Im gesamten Untersuchungszeitraum wurden die kältesten Temperaturen im Wintermonat Februar gemessen (Bollasina et al. 2002: 2-4).

1.3.1.3 Geologische Einordnung des Khumbu Himal

Einen geologischen Überblick über dieses Hauptuntersuchungsgebiet geben die ausführlichen Arbeiten von Heim & Gannser (1939), Gannser (1964), Hagen et al. (1959) und Hagen (1969). Neuere Ergebnisse zur geologischen Raumausstattung bietet die Arbeit von Carosi et al. (1999). Südlich des Hohen Himalaya beginnend in Richtung Norden lässt sich der Himalaya-Gebirgsraum wie folgt unterteilen (Carosi et al. 1999: 788 nach Gannser 1964 und Le Fort 1975):

- Die "Siwalik Hills", welche der Gangesebene angrenzen, bestehen aus Molasse-Sedimenten aus dem Miozän bis zum Pliozän-Pleistozän (Carosi et al. 1999: 788).
- Der "Lesser Himalaya" umfasst die "Mahabharat Range" und die "Midland zone". Südlich wird dieses Gebiet abgegrenzt durch die "Main Boundary Thrust (MBT)" und nördlich durch die "Main Central Thrust (MT)". Sie bestehen aus einer mächtigen Sequenz von metamorphisierten präkambrischen Sedimenten, auch "Nawakot Nappes" genannt (Carosi et al. 1999: 788; vgl. Hagen 1969).

- Der "Higher Himalaya" wurde aus einer Überschiebungsdecke abgetragen. Diese besteht aus metamorphen Gesteinen der "Higher Himalayan Crystallines (HHC)" und der überlagernden "Tethyan (Tibetan)" Sedimentsequenz, welche flach in Richtung Norden einfallen (Carosi et al. 1999: 788).
- Weiter nördlich, zwischen den Hauptgipfeln und der "Yarlung Tsangpo suture zone", bestehen die Gebirgszüge des Tibetischen Plateaus aus gefalteten marinen Sedimenten der Tethys. Diese wurden auf dem nordindischen Kontinentalrand abgelagert. Eine Sequenz von schwach metamorphisierten Sedimentgesteinen tritt zwischen der südlichen fossilhaltigen Tehtys-Sequenz und der unterliegenden "Higher Himalayan Crystallines (HHC)" auf. Diese ist in der Sagarmatha-Region als "North Col Formation" bekannt (Carosi et al. 1999: 788-789).

Im Hauptuntersuchungsgebiet bildet der Mount Everest (8848 m ü. NN) die höchste Erhebung. Im Längsprofil betrachtet ist er synklinal gelagert (Hagen et al. 1959: 62). Zwischen dem Arun-Tal und Nangpa La bildet die gesamte Everestgruppe einen tektonischen Sektor. Diese Synklinale ist durch die Arun-Querantiklinale sowie der Nangpa-La-Querantiklinale eingefasst (Hagen et al. 1959: 62-64). In diesem Gebiet entstanden die Unterläufe des Ur-Arun, des Ur-Dudh-Kosi sowie des Ur-Bhote-Kosi, die auch als Durchbruchsflüsse zu klassifizieren sind (Hagen et al. 1959: 55).

Die Entstehung der gesamten Everestgruppe kann nach Hagen et al. (1959) in sechs Phasen eingeordnet werden (Hagen et al. 1959: 52-53):

- 1. Die Nawakot-Phase im Miozän.
- 2. Die Kathmandu-Phase im Mittel- bis Ober-Miozän.
- 3. Die Tibet-Phase im Altpleistozän.
- 4. Die Everest-Phase, in der die Hauptketten des Mount Everest und Annapurna entstanden.
- 5. Die Mittelland-Phase.
- 6. Die Mahabharat-Phase.

Genauere Gesteinsabfolgen im Hauptuntersuchungsgebiet können anhand eines geologischen Querprofiles von Süden nach Norden verlaufend (Carosi et al. 1999: Figure 3) angegeben werden. Der "Barun Gneiss" bildet in diesem Gebiet die erste Gesteinsformation. Direkt im Anschluss schließt der "Namche Migmatite Orthogneiss" an. Überlagernd findet sich der "Black Gneiss" sowie die "Rongphu-Formation" und "Lhotse-Schiefer". Zusammen bilden all diese Gesteinsabfolgen die "Higher Himalayan Crystallines (HHC)". Vermehrt in Richtung Norden, also dem höchsten Gipfel (Mount Everest) folgend, finden sich schließlich die überlagernden Schichten der "North Col Formation" sowie der "Mt Jolmo Lungma Formation" und "Yellow Band" (Carosi et al. 1999: Figure 3).

Diese Gesteinsabfolgen geben somit einen geologischen Gesamtüberblick des Hauptuntersuchungsgebietes im Khumbu Himal wieder.

1.3.1.4 Vergletscherungsgeschichte im Khumbu Himal

Während des Hochglazials (Würm) waren die Täler der Südabdachung des Himalayas von tief hinab reichenden Gletschern überprägt (Kuhle 2004), einschließlich der Talschaften des Khumbu Himal (Kuhle 2005; vgl. Tabelle 17). Erste Erratikafunde aus dem Khumbu Himal, dem Passbereich des Phusi La im Mount Everest Gebiet, führte Odell (1925: 311-312) für eine großräumige Vergletscherung an. Glazialgeomorphologische Untersuchungen von Kuhle (u. a. 1986, 1998, 2005, 2006a, b und 2013) verdeutlichen, dass die hochglaziale Eisausprägung bis auf eine Höhe von ca. 900 m ü. NN nahe der Inkhu Khola Konfluenz (Kuhle 2005: 315) talabwärts reichte. Fushimi (1978) verdeutlicht, dass glaziale und fluviale Sedimente eine flache Oberfläche im Bereich der Ortschaft Lukla prägen (Fushimi 1978: 77). Nach Heuberger & Weingartner (1985) und Heuberger (1986) reichte das LGM-Eisstromnetz südlich der Ortschaft Ghat bis auf eine Höhe von ca. 2500 m ü. NN im Dudh Kosi talabwärts.

Deutlich weiter talaufwärts nahe der Siedlung Periche wurde mithilfe von OSL-Datierungen (optisch stimulierte Luminiszenz-Datierung) von den Autoren Richards et al. (2000) ein Moränenwall datiert. Nach deren Ergebnissen unterlag dieser drei

glazialen Vorstößen, zwischen ca. 1000 und 2000 Jahre, um ca. 10.000 Jahre und von ca. 18.000 bis 25.000 Jahre vor heute. Der älteste Vorstoß wurde schon zuvor als "Periche Glacial Stage" benannt (Richards et al. 2000: 1629 nach Iwata 1976 und Fushimi 1977). Laut Richards et al. (2000) ist dieser auf einer Höhe von ca. 5400 m ü. NN zu findende Moränenkörper somit ins LGM (Last Glacial Maximum) einzustufen. ¹⁰Be-Datierungen von Finkel et al. (2003) ergaben für das Periche-Stadium weitere Differenzierungen. So wurde das Periche-Stadium in ein älteres Periche I Stadium zwischen 23.000 + 3000 Jahre vor heute und in ein jüngeres Periche II Stadium zwischen 16.000 + 2000 Jahre vor heute aufgeteilt (Finkel et al. 2003: 562). Ebenfalls entnahmen Finkel et al. (2003) weitere Datierungsproben, die nach ihren Ergebnissen das älteste Stadium im Khumbu Himal ergeben. Klassifiziert wurden diese in das Thyangboche II Stadium, welches ein Alter von 35.000 + 3000 (3 Proben) Jahre vor heute ergab, sowie in das Thyangboche I Stadium mit Altersschwankungen zwischen 59.000 + 29.000 Jahre vor heute. Das Thyangboche I Stadium basiert auf insgesamt 6 Proben mit zwei Clustern zwischen 86.000 + 6000 und 33.000 + 7000 Jahre vor heute (Finkel et al. 2003: 561). Technische Fehler, die mit derartigen Datierungen in Hochasien einhergehen können, wurden von Kuhle & Kuhle (2010) und Schröder (2007) diskutiert und beschrieben.

Neben den zuvor genannten Ergebnissen erfasste Röthlisberger (1986) mithilfe von ¹⁴C-Datierungen holozäne Gletscherschwankungen im Khumbu Himal. Ebenfalls führte Fushimi (1978) Datierungen mithilfe von ¹⁴C nahe des Kyuwo Gletschers durch. Auch Müller (1958) nutzte diese Arbeitstechnik und datierte im oberen Abschnitt des Khumbu Gletschers nahe des Gorakshep Sees Pflanzenreste aus Bodenprofilen (Gfeller et al. 1961: 16). Kuhle (1986, 2005) konnte mithilfe von ¹⁴C-Datierungen das Mindestalter der Eisrandlagen von Moränenkörpern des Ngozumpa Gletschers sowie weiterer Moränenkörper im Khumbu Himal erfassen (vgl. Kuhle 2005: Table 2 u. 3).

In den angrenzenden Talschaften des Rolwaling Himal rekonsturierte Meiners (1999) post- und spätglaziale Gletscherschwankungen. König (2002) kommt im Arbeitsgebiet des Rolwaling Himal zu dem Schluss, dass die Vergletscherung im LGM bis auf eine Höhe von 950 m ü. NN talabwärts reichte und nahe der Ortschaft Singali Bazar endete (vgl. auch König 2001).

Die Lage der rezenten Gletscherzungenenden im Khumbu Himal variiert je nach Topographie und Exposition sehr stark (siehe dazu Kapitel 3). Bolch et al. (2011) verdeutlichte anhand von Satellitenbilduntersuchungen die Intensität von Gletscheroberflächenreduzierungen zwischen 1970 bis 2007 im Khumbu Himal. In diesem Zeitraum unterlagen die meisten Gletscher einer Oberflächenreduzierung im mittleren Ablationsgebiet, wobei der gesamte Eisverlust der erforschten Gletscher ca. >0,6 km³ betrug (Bolch et al. 2011: 353). Im Zeitraum von 2002 bis 2007 wurden die Gletscher ebenfalls durch eine Oberflächenreduzierung geprägt. Die spezifische Massenbilanz aller von Bolch et al. (2011) untersuchten Gletscher verdoppelte sich möglicherweise in diesem Zeitraum im Vergleich zum Zeitfenster von 1970 bis 2007. Auch eine weitere Studie von Bolch et al. (2008) verdeutlicht die Gletschereisschmelze in diesem Untersuchungsgebiet. Nuimura et al. (2012) kommen zu ähnlichen Ergebnissen der durchschnittlichen Massenbilanzveränderungen der Gletscher im Khumbu Himal. Mithilfe eines Vergleiches von historischen Gletscheraufnahmen aus dem Jahr 1956 von Fritz Müller mit aktuellen Photographien, konnte Byers (2007) die Reduktion der Gletschereismassen einzelner Gletscher im Khumbu Himal bildlich darstellen. Ebenfalls verdeutlichen Datensätze über aktuelle sowie historische Gletscherstände innerhalb der Gletscherstandsdatenbank des Projektes "Global Land Ice Measurements from Space" (GLIMS nach Raup et al. 2007) die Reduktion der Gletschereismassen im Khumbu Himal (vgl. GLIMS: u. a. Racoviteanu & Bajracharya 2008).

1.3.2 Vergleichsuntersuchungsgebiet am Pangong Tso

1.3.2.1 Gewässernetz am Pangong Tso

Das gesamte Einzugsgebiet des Pangong Tso Sees beträgt 28 700 km² (Fontes et al. 1996: 26 nach Ou 1981). Durch Seespiegelanstiege kann der im Westen angrenzende Shyok Flusslauf genährt werden, der wiederum in den Indus mündet (Fontes et al. 1996: 26).

Insgesamt weisen die Gletscherbachläufe im Untersuchungsgebiet des Pangong Tso im Vergleich zum Khumbu Himal deutlich geringere Laufausprägungen vor. Von Südosten bis Nordwesten dem Südufer des Sees folgend sind die untersuchten Gletscherbachläufe wie folgt aufzuzählen, die allesamt in den Pangong Tso münden: Der südöstliche Gletscherbachlauf wird u. a. durch Gletschereisschmelzprozesse des Unbenannten Pangong Tso Gletschers I (33°52'1.31"N, 78°25'41.23"E) genährt. Der Abfluss dieses Bachlaufes trägt zur Wasserhaushaltsnährung des Pangong Tso Sees bei.

Der weiter nordwestlich angrenzende Gletscherbachlauf wird ebenfalls u. a. durch Gletschereisschmelzprozesse eines weiteren Gletschers genährt, der als Unbenannter Pangong Tso Gletscher II (33°52'16.95"N, 78°24'58.33"E) zu definieren ist. Auch der Abfluss dieses Gletscherbaches trägt zur Wasserhaushaltsnährung des Pangong Tso Sees bei.

Dem Seeufer in Richtung Nordwesten folgend lässt sich ein weiterer Gletscherbachlauf auffinden. Dieser unterliegt u. a. der Nährung durch Gletschereisschmelzprozesse der Unbenannten Pangong Tso Gletscher III (33°53'35.11"N, 78°23'6.40"E) und IV (33°54'11.06"N, 78°22'55.55"E). Auch dieser Gletscherbachabfluss trägt zur Wasserhaushaltssteigerung des Pangong Tso Sees bei.

Messungen von vergangenen Abflussdynamiken liegen für die zuvor genannten Gletscherbäche im gesamten Untersuchungsgebiet nahe des Pangong Tso nicht vor. Mithilfe von GRASS GIS konnte die Einzugsgebietsgröße der untersuchten Gletscherbachläufe am Pangong Tso ermittelt werden. Das Einzugsgebiet des Gletscherbachs des Unbenannten Pangong Tso Gletschers I beträgt 5,76 km². Der Gletscherbach des Unbenannten Pangong Tso Gletschers II wird durch ein Einzugsgebiet mit einer Größe von 6,37 km² genährt. Der nordwestlichste Gletscherbachlauf der Unbenannten Pangong Tso Gletscher III und IV weist ein Einzugsgebiet mit einer Größe von 9,88 km² auf. Die hier modellierte Gletscherbachklassifikation verdeutlicht die Konfluenzhäufigkeit der Bachsysteme (Karte 2b).

Karte 2b: Das modellierte Gewässernetz am Pangong Tso. Mithilfe des Programms GRASS GIS und der Verwendung von SRTM-Daten konnte dieses Gewässernetz modelliert werden.

1.3.2.2 Historische und rezente Klimaverhältnisse am Pangong Tso

Insgesamt kann das rezente Klima im Untersuchungsgebiet des Pangong Tso als semiarid eingeordnet werden. Abgegrenzt durch die Gebirgszüge des nordwestlichen Himalaya liegt es im Regenschatten (Dortch et al. 2011: 111 nach Bookhagen et al. 2005, vgl. Bookhagen & Burbank 2006). Die Niederschläge dieser Region treten vermehrt zwischen Juni bis September auf und können als konvektive Niederschläge oder als geringe Monsunniederschläge klassifiziert werden (Fontes et al. 1996: 26). Während des frühen bis mittleren Holozän fluktuierte der indische und asiatische Monsun in unterschiedlich starken Niederschlagsphasen und ging im Inland nieder (Gasse et al. 1996: 91). Das umgebende Gebiet des Pangong Tso Sees ist als Montanstufe einzuordnen (Fontes et al. 1996: 26), die einen steppenartigen Charakter vorweist. Ältere Klimamessungen nach Ou (1981) zeigen, dass der mittlere Jahresniederschlag in dieser Region 69 mm beträgt (Fontes et al. 1996: 26 nach Ou 1981). Die mittlere Jahreslufttemperatur schwankt hier zwischen 0 °C bis 4 °C (Fontes et al. 1996: 26 nach Ou 1981). Ein Abgleich mit anderen Niederschlagswerten zeigt, dass für diese Region auch Jahresniederschlagswerte zwischen 100 bis maximal 200 mm angegeben wurden (Kuhle 1999: 47). Neuere Messungen von satellitenbildtechnischen TRMM-basierten Monsunwerten für den Zeitraum zwischen Januar 1998 bis Dezember 2005 liefern für diese Region jährliche monsunbedingte Niederschlagswerte zwischen 250 bis 500 mm (Dortch et al. 2011: 111 nach Bookhagen & Burbank 2006: Figure 1). Anhand dieser Klimadaten kann verdeutlicht werden, dass die rezente Jahresniederschlagsintensität in dieser Region als gering einzuordnen ist (vgl. Böhner 2006: 290).

Durch einen Abgleich dieser Werte mit dem Hauptuntersuchungsgebiet im Khumbu Himal zeigt sich, dass das Vergleichsuntersuchungsgebiet Pangong Tso insgesamt ein arideres und somit steppenartigeres Klima vorweist. Diese niederschlagsbedingten Unterschiede gehen ebenso mit einer geringeren Abflussintensität der in dieser Region auffindbaren Gletscherbachläufe einher.

1.3.2.3 Geologische Einordnung des Pangong Tso

Das Vergleichsuntersuchungsgebiet grenzt direkt am südlichen Ufer des Pangong Tso an. Einen geologischen Überblick über dieses Arbeitsgebiet geben die Arbeiten von Gannser (1964). Neuere Ergebnisse, die speziell dieses Vergleichsuntersuchungsgebiet abdecken, werden in Srikantia et al. (1982), Thakur & Misra (1984) sowie Phillips (2008) berichtet.

Bei übergeordneter Betrachtung liegt dieses Arbeitsgebiet im geologischen Bereich des "Eastern Ladakh". Dieser lässt sich in vier tektonische Zonen aufteilen, die "Zanskar zone", die "Indus suture zone", die "Shyok suture zone", und die "Karakoram zone" (Thakur & Misra 1984: 212). Kleinräumiger lokalisiert sich der Pangong Tso in der

"Karakoram zone", welche weiträumig in zwei litho-tektonische Einheiten aufgeteilt werden kann, die "Karakoram supergroup" und der "Karakoram plutonic complex" (Thakur & Misra 1984: 217). Das Vergleichsuntersuchungsgebiet liegt konkret innerhalb der "Karakoram supergroup", welche ebenso als "Karakoram Tethys" bezeichnet wird. Drei tektonisch-stratigraphische Einheiten sind in dieser Gruppe zu finden. Dazu zählt die "Tangse" Gruppe, die "Pangong Tso" Gruppe sowie die "Koyul" Gruppe. Die tiefgelegenste Gesteinsabfolge "Tangse" dieser "Karakorum supergroup" besteht aus Mylonitgneis, Biotitgneis sowie Migmatit (Thakur & Misra 1984: 217). Diese Gesteinsabfolgen lassen sich dem Jura Zeitalter zuordnen (Thakur & Misra 1984: Table 1). Überlagert wird diese durch die "Pangong Tso" Gruppe, welche aus geschichtetem Marmor, Schiefer, Quarzit und Amphibolit besteht (Thakur & Misra 1984: 217). Zeitlich sind diese Gesteinsabfolgen der "Pangong Tso" Gruppe dem mittleren bis oberen Paläozoikum zuzuordnen (Thakur & Misra 1984: Table 1). Die metamorphen Gesteinsabfolgen dieser "Tangse" sowie "Pangong Tso" Gruppe erstrecken sich nicht weiter südöstlich von Dungti (Thakur & Misra 1984: 217). Die überschobene "Koyul" Gruppe setzt sich aus Sandstein, Grauwacke, Quarzit, "cherty" Sandstein, Diamiktit, sowie Schiefer- und Kalkstein zusammen (Thakur & Misra 1984: 217). Die Gesteinsabfolgen dieser Gruppierung sind zeitlich dem Präkambrium sowie möglicherweise dem unteren Paläozoikum einzuordnen (Thakur & Misra 1984: Table 1). Im nordwestlichen bis südöstlichen Trenngürtel zwischen den Gesteinsabfolgen der "Shyok suture zone" in Richtung Süden und der "Pangong Tso" Gruppe in Richtung Norden innerhalb des "Chusul-Pangong Tso" Gebietes, ist der "Chusul" Granitoid zu finden. Dieser lässt sich als Biotit-Muskovit-Granit klassifizieren (Thakur & Misra 1984: 218).

All diese Gesteinsabfolgen geben somit einen geologischen Gesamtüberblick über das Vergleichsuntersuchungsgebiet am Pangong Tso wieder.

1.3.2.4 Vergletscherungsgeschichte am Pangong Tso

Bereits Huntington (1906) erkannte eine glaziale Überprägung des Pangong Tso und schrieb: "Old moraines show that previous to the formation of the present lake the basin

was once or twice filled with ice; ... " (Huntington 1906: 599). Ebenfalls erfasste Huntington (1906: 606) historische Moränenkörper bis unterhalb der Ortschaft Tangste, die im nordwestlich angrenzenden Talverlauf des Pangong Tso Sees zu finden ist. Auch zahlreiche erratische Blöcke sind in der angrenzenden Talschaft und an den Hängen des Sees - mindestens 600 Fuß (182,88 m) über dem Pangong Tso - auffindbar (Huntington 1906: 608, Fig. 9). Auch Trinkler (1930) bestätigte eine historische Vergletscherung des Pangong Tso und schrieb: "I think there can be no question about the basin of Pangong Tso having once contained a big glacier. The whole fjord-like valley containing the lake is a typical submerged broad trough (PI. 7)." (Trinkler 1930: 230).

Feldforschungen von Kuhle (1998a, 1999 & 2013) zeigen ebenso, dass der Pangong Tso als ein spätglaziales Gletscherzungenbecken zu definieren ist, das sich durch ein westliches Abflusssystem der hochglazialen Vergletscherung (LGM) aus Zentraltibet erklären lässt (Kuhle 2013: 157). Zu dem glazialen Formenschatz am Ostufer des Pangong Tso zählen Grundmoränenablagerungen, große Granitblöcke (Erratika), ein am Ostufer mit Grundmoränen ausgekleideter Bergrücken sowie eine zum Teil rezent überspülte Insel nahe des Ostufers, die als Rundhöcker (roche moutonnée) zu klassifizieren ist (Kuhle 2013: 157, Figure 49, Photo 99). Mithilfe von Kartenangaben lässt sich zeigen, dass sich das nächste Gebiet mit Granitgestein mindestens ca. 5 km bis 10 km östlich des erratischen Blockes befindet (Kuhle 2013: 157). Um die zuvor genannten Standpunkte der gazialen Formen und Akkumulationen (Erratika) mit Eismassen aus den ca. 75 km weit entfernten Gebirgsvergletscherungen zu erreichen, müsste eine mindestens 700 m mächtige Schneegrenzabsenkung (spätes Spätglazial; Stadium IV (Sirkung Stadium) oder während arideren Bedingungen Stadium III (Dhampu Stadium); vgl. Tabelle 17) existiert haben (Kuhle 2013: 157). In den älteren Stadien reichten die Eismassen ebenfalls bis zum Pangong Tso (Kuhle 2013: 157). ¹⁰Be-Datierungen von erratischen Blöcken am Pangong Tso wurden von Dortch et al. (2013) durchgeführt. Die Autoren klassifizierten die Ergebnisse in das Pangong Cirque $(0.4 \pm 0.3 \text{ ka})$, Pangong-1 (40 ± 3 ka nach Dortch et al. (2011)) und Pangong-2 (85 ± 15)

ka) Gletscherstadium (Dortch et al. 2013: 194, Table 1, Fig. 7 & Fig. 8). Das Pangong-1 Gletscherstadium konnte aufgrund des schlechten Erhaltungszustandes nicht mit ¹⁰Be

datiert werden. Dortch et al. (2011) geben an, dass der Rundhöcker (roche moutonnée) im Tangste Tal durch einen kleinen Gletscher von der Pangong Tso Range geformt wurde. Das Alter dieser glazialen Form ergibt das Gletscherstadium Pangong-1(40 \pm 3 ka) (Dortch et al. 2013: 197). Nach Dortch et al. (2013: 197) ist neben einer partiellen Pangong-1 Gletscherstadiums-Moräne der Rundhöcker (roche moutonnée) als einziger Beleg für eine Vergletscherung in dem Gebiet zu deuten. Des Weiteren konstatieren die Autoren, dass das Ladakh Cirque (1.8 \pm 0.4 ka) Gletscherstadium sowie das Pangong Cirque (0.4 \pm 0.3 ka) Gletscherstadium mit keinen weiteren Gletscherwachstumsstadien in der Region korreliert (Dortch et al. 2013: 197).

Vereinzelte rezente Vergletscherungen der Pangong Tso Range lassen sich mithilfe von Datensätzen der Gletscherstandsdatenbank des Projektes "Global Land Ice Measurements from Space" (GLIMS, nach Raup et al. (2007)) erfassen, die im Vergleich zu den vorhergehenden Stadien einen Gletscherrückgang verdeutlichen. Ebenfalls geben historische Aufnahmen (Huntington 1906: Figure 2, 5 & 7 sowie Trinkler 1930: Plate 7) Hinweise über den geringen Vergletscherungsstand im frühen 20. Jahrhundert wieder.

2 Forschungsfragen, Methoden und Begriffsklärungen

2.1 Fragestellungen und Hypothesen zu den Beziehungen von Relief und Prozessen

Subjektive Fehlschlüsse, die mit einer "trainierten" und somit voreingenommenen geomorphologischen Beobachtung einhergehen (Schumm 1991: 26-27), können durch Erfahrung, Klassifikation der Formengestalt auf unterschiedlichen Skalierungsebenen (Mikro-, Meso-, und Makroebene) und Anwendung mehrerer Arbeitstechniken mit anschließender Überprüfung der Ergebnisse reduziert werden. Mithilfe dieser methodischen Vorgehensweise ist es möglich, eine intersubjektive Reliefanalyse (Kuhle 1991: 96-101) der glazial- und fluvialgeomorphologischen Formen im Gelände durchzuführen.

Unter Anwendung dieser intersubjektiven Reliefanalyse wurde bereits im Alpenvorland die glaziale Formenabfolge mit dem Begriff der "glazialen Serie" definiert (Penck & Brückner 1909: 16-22). Ebenfalls wurde anhand dieser Arbeitsmethodik für den Hochgebirgsraum Hochasien der Indizienbeweis einer Vergletscherung mithilfe der Lagebeziehungen der Glazialindikatoren geführt (Kuhle 1991: 190-194). Diese Lagebeziehungsanalyse "mit 15 homologisierbaren Merkmalen" des Typus "Bortensander" (Kuhle 1991: 197) gilt nach Kuhle (1990) aufgrund einer Wahrscheinlichkeitsberechnung als abgesichert.

Erst durch die Erfassung glazifluvialer sowie fluvialer Prozessformen können womöglich weitere Indikatoren der Lagebeziehungsanalyse nach Kuhle (1990) hinzugefügt und erweitert Insgesamt damit die Beweiskette werden. zielt daher diese Gletscherbachanalyse darauf ab, eine glazifluviale Formenabfolge für die Gletscherbachvorfelder im Himalaya herauszuarbeiten. Jedoch erweist sich gerade diese glazifluviale und fluviale Prozessformenanalyse als problematisch, da sie nur anhand einer ganzheitlichen Betrachtung, die mit einer unterschiedlichen Zeitskalenund Betrachtungsebenenanalyse einhergeht, zu bewerkstelligen ist.

Deshalb wurden in dieser Untersuchung mehrere Hypothesen zur fluvialen und glazifluvialen Genese von Erosions- und Sedimentationskörpern innerhalb von

Gletscherbachläufen gebildet, was nach Chamberlin als "method of multiple working hypotheses" bezeichnet wird (Chamberlin 1890, vgl. Schumm 1991:11). Diese Anwendung von mehreren Hypothesen hat zur Folge, dass die Gefahr einer "vorherrschenden bzw. kontrollierenden Einzelhypothese", die das Forschungsverhalten des Beobachters stark beeinflussen kann, reduziert wird (Chamberlin 1890 nach Schumm 1991: 11). Ebenso ist die Geländebeobachtung immer anhand weiterer Indizienbeweise und Vorkommen an anderen Lokalitäten zu überprüfen. Erst so kann ein Einzelphänomen, das womöglich durch andersartige Prozesse entstand, ausgeschlossen werden. Dementsprechend ergeben sich folgende Fragestellungen, im Mehrfachhypothesenbildung, welche Rahmen einer die zuvor genannte Aufgabenstellung zur Erfassung einer glazifluvialen Formenabfolge im Himalaya lösen sollen:

Die Herleitung der folgenden Fragestellungen und Mehrfachhypothesen ist im Kapitel 1.1 zu finden. Sie basiert auf einer ausführlichen Literaturrecherche.

Mikroebene:

F1: Welche fluvialgeomorphologischen Bachbettformen entstehen/ entstanden durch das Vorrücken oder Abschmelzen der Gletscher in den Gletscherrandbereichen sowie in den weiter talabwärts gelegenen Gletscherbachbetten dieser Untersuchungsgebiete, und wie sind diese zeitlich einzuordnen?

- H. 1.1 "Morphologisch lässt sich in den Gletscherbachläufen der Untersuchungsgebiete eine Übergangsphase von Kaskadensohlenform (cascade) zu Stufen-Becken Sequenzabfolgen (step-pool) erkennen, die in weiteren Entwicklungsstadien klassifiziert werden können."
- Η. 1.2 "Die Kaskadensohlenformen (cascade) einschließlich ihrer Sequenzabfolgen Übergangsphasen zu den Stufen-Becken (step-pool) frühes fortgeschrittenes (ausgearbeitet als: Entwicklungsstadium und

Entwicklungsstadium) im Gletscherbachbett der Untersuchungsgebiete lassen sich mit jungen Gletscherstadien im Holozän parallelisieren."

 H. 1.3 "Die Stufen-Becken Sequenzabfolgen (step-pool) im Gletscherbachbett der Untersuchungsgebiete lassen sich im Vergleich zu den Kaskadensohlenformen einschließlich ihrer Übergangsphasen mit den nächst älteren und somit historischen Gletscherstadien parallelisieren."

F2: Wie intensiv ist die Terrassenabstufung in den direkt angrenzenden Gletscherrandbereichen sowie in den weiter talabwärts gelegenen Gletscherbachund Flussbetten dieser Untersuchungsgebiete ausgeprägt, und wie lässt sich diese chronologisch einordnen?

- H. 2.1 "In den Gletscherbachuntersuchungsgebieten des Khumbu Himal lassen sich mindestens vier Terrassenabfolgen erfassen, die als Resultat der rezenten und historischen Vergletscherungsstadien im Holozän entstanden sind."
- H. 2.2 "In den talabwärts gelegenen Bachuntersuchungsgebieten des Khumbu Himal lassen sich bis zu sechs oder mehr Terrassenabfolgen erfassen, die als Resultat der historischen Vergletscherungsstadien im Holozän entstanden sind."
- H. 2.3 "Die Anzahl der Terrassenabfolgen innerhalb der Gletscherbäche im Vergleichsuntersuchungsgebiet nahe des Pangong Tso lassen sich mit der Terrassenabfolgenanzahl des Khumbu Himal abgleichen."

Mesoebene:

F3: Welchen Formenschatz nehmen Sander respektive Gletscherbachschotterfelder in den Untersuchungsgebieten ein, und wie sind diese chronologisch einzuordnen?

- H. 3.1 "In den Hochgebirgstälern der Untersuchungsgebiete im Himalaya sind überwiegend gebundene und kanalisierte Sanderformen zu finden."
- H. 3.2 "In den Hochgebirgstälern der Untersuchungsgebiete im Himalaya überlagern rezente Sanderformen historisch Akkumulierte und lassen somit eine vertikal-räumliche Anordnung erkennen."
- H. 3.3 "In den Hochgebirgstälern der Untersuchungsgebiete im Himalaya sind historische Sanderformen weiter talauswärts zu den rezenten Sanderformen aufzufinden. Dadurch lässt sich eine horizontal-vertikal räumliche Anordnung erkennen."
- H. 3.4 "Ausschließlich anhand von Sanderflächen lässt sich die relative zeitliche Abfolge von Gletscheroszillationen erfassen."

F4: Welche Gletscherbachlaufformen lassen sich mithilfe einer gesamtheitlichen Gletscherbachlaufanalyse in den Untersuchungsgebieten erkennen, und wie sind diese chronologisch einzuordnen?

 H. 4.1 "Mithilfe von Gletscherbachlaufformen in den Untersuchungsgebieten im Himalaya Hochgebirgsraum lässt sich eine morphologische Abfolge erkennen und ausarbeiten."

Makroebene:

F5. Welche Formen (konvex/ konkav) lassen sich mithilfe eines Gletscherbachlängsprofiles in den Untersuchungsgebieten erfassen, und wie sind diese räumlich sowie zeitlich einzuordnen?

 H. 5.1 "Langgestreckte konvexe Formen im insgesamt konkaven Gletscherbachlängsprofil lassen sich in den Untersuchungsgebieten mit Moränenstadien parallelisieren."

Erst mithilfe dieses Aufbaues können die zentralen Fragestellungen, anhand von empirischen Geländebeobachtungen in unterschiedlichen Arbeitsgebieten, einschließlich ihrer Mikro-, Meso- und Makroebenenanalyse, induktiv gelöst werden. Durch diese Logik der intersubjektiven Beweisführung kann die Problematik der möglichen Subjektivität des beobachtenden Wissenschaftlers (von Elverfeldt 2012) reduziert werden.

2.2 Einflussnehmende Faktoren und Prozesse auf die Untersuchungsgebiete der Gletscherbäche

Im Unterlauf eines Flusssystems mit anschließender Deltabildung beeinflussen die eustatischen Meeresspiegelschwankungen sowie die tektonischen Hebungen und Senkungen der Flusstalschaft die fluviale Einschneidung von Terrassenformationen (Merritts et al. 1994). Im Himalaya hingegen, kann aufgrund der Entfernung zum Meer mit einer einhergehenden Verlagerung der regionalen Erosionsbasis, wie zum Beispiel in Form von Seen, ein Einfluss der Meeresspiegelschwankungen auf die fluvialen Terrasseneinschneidungen sowie Gletscherbachlaufformen im Oberlauf ausgeschlossen werden.

Die tektonischen Hebungsraten und Ausgleichsbewegungen in Folge einer LGM-Vergletscherung des Tibetischen Plateaus (Kuhle 1995) können ebenso die Höhenlage der regionalen Erosionsbasis verschieben, sodass ein Hochgebirgsflusslauf diesem Hebungsprozess bis zum Gleichgewichtszustand der Fließdynamiken durch Einschneidung entgegenwirkt. Ist die Hebungsrate über Jahrzehnte oder gar Jahrhunderte konstant, korreliert die fluviale Einschneidung ebenso konstant. Räumt der Flusslauf die Sedimente eines Flussbettes aus und trifft schließlich auf anstehendes Gestein, kann die Gesteinshärte das Zeitintervall einer fluvialen Einschneidung verlängern (Schumm 2005).

Ebenso wie die Tektonik einen Einfluss auf die Talschaft ausübt, beeinträchtigen auch weitere Prozesszusammenhänge die Talschaft: Der durch Hangrutschungen, Felsstürze, Murabgänge, Lawinenabgänge und Slush flows entstandene Sedimentkörper im Flussbett hat zur Folge, dass das Flusssystem - bis zur regionalen Erosionsbasis - in diesem einschneidet und so die Terrassenbildung und Schottersohlenumgestaltung forciert. Eine derartige Formenveränderung ist daher nicht zwangsläufig das Resultat von Gletscheroszillationen. Durch diese ineinandergreifende Prozesskette gleicht das Flusssystem den vorherigen Status der Sedimentüberfrachtung des Flusslaufes wieder aus.

Auch klimatische Einflüsse können die fluviale Einschneidung verändern. So können zum Beispiel erhöhte monsunale Regen- und Schneeniederschläge den Abfluss des Gletscherbaches und des Flusssystems erhöhen (Tombrink 2017). Des Weiteren beeinflusst die solare Einstrahlungsintensität die Schnee- und Gletscherschmelzrate. Auch Luftfeuchtigkeitsund Temperaturschwankungen können Gletscherschmelzveränderungen hervorrufen (Winkler 2009: 15 - 16). Fluviale Prozesse bestimmen die Einschneidungsintensität des Gletscherbaches und des Flusssystems. Aufgrund der langsamen fluvial rückschreitenden Erosion, wie dies zum Beispiel anhand von Kaskadenbachbettformen (cascade) und Stufen-Becken Sequenzen (steppool) beobachtbar ist, können je nach Abflussintensität über einen langen Zeitraum (Jahrhunderte bis Jahrtausende) Millimeter, Zentimeter oder gar Meter vom Flusssedimentkörper abgetragen werden (Chin & Wohl 2005; vgl. Lavé & Avouac 2001). Für eine deutlich höhere Erosionsintensität kann ein plötzlicher Gletscherseeausbruch (GLOF) ursächlich sein (Iturrizaga 2011). Die durch dieses Ereignis entstehende Umlagerung von Sedimenten mit einer einhergehenden, kurzfristig verstärkten fluvialen Erosion kann die Terrassenformationen und Gletscherbachbettmorphologie maßgeblich verändern oder gänzlich morphologisch unkenntlich machen (Cenderelli & Wohl 2003). Doch auch der natürliche Zustrom von Fließgewässern beeinflusst das zu untersuchende Bachsystem. Dieser kann durch periodische Schnee- und Gletscherschmelzprozesse entstehen. Ein derartiger Vorgang muss bei einer Rekonstruktion eines fluvialen Terrasseneinschnitts sowie der Bachformengestalt mitberücksichtigt werden.

Um ähnliche Problematiken von Abhängigkeiten der zeitlichen Prozesszusammenhänge innerhalb von Flusssystemen zu verdeutlichen, wurde in der fluvialgeomorphologischen Disziplin eine allgemeine, systematische Zeitskala (Schumm zu & Lichtv 1965: 112) jedoch ohne direkten Bezug glazifluvialen Gletscherbachsystemen in Hochgebirgen - eingeführt.

Aus diesem Grund wurde für die Analyse von glazifluvialen und fluvialen Prozesszusammenhängen der Gletscherbachläufe und der angrenzenden Oberläufe von Flusssystemen in Hochgebirgstalschaften ein neues und spezifischeres Kriterienmodell entwickelt. Die zuvor dargelegten Prozesszusammenhänge lassen sich hierfür wie folgt zusammenfassen (Abbildung 1 und 2):

Geologisch bedingte Prozesse (Tektonische Ausgleichsbewegungen, Gesteinshärte), hangiale Prozesse (u. a. Felsstürze, Hangrutschungen, Murabgänge, Lawinenabgänge und Slush flows von den angrenzenden Talflanken), klimatisch bedingte Prozesse (Luftfeuchtigkeits- und Temperaturschwankungen, veränderte Schneeschmelz- und Gletscherschmelz-, aber auch Gletscherwachstumsraten durch Einstrahlungsveränderungen, Niederschlagsschwankungen) und fluvial bedingte Prozesse (rückschreitende Erosion, Gletscherseeausbrüche, Zustrom periodischen von Fließgewässern) sind die hier im Modell berücksichtigten Faktoren und Prozesse, die schließlich auch einen morphologischen Einfluss auf die Terrassengenese und die Gletscherbachformengestalt ausüben. Anhand der Empirie lassen sich die Prozesse beliebig erweitern, die jedoch aufgrund der Vereinfachung des Modells nicht mitaufgeführt wurden. Fehlverknüpfungen von unterschiedlichen Betrachtungsskalen, aber auch zeitlichen Zusammenhängen (Schumm & Lichty 1965) sollen mittels dieser reliefanalytischen Vorgehensweise ausgeschlossen werden.

Abbildung 1: Faktoren- und Prozessmodell für Gletscherbachuntersuchungen im Hochgebirge.

Abbildung 2: Zeitliche Abhängigkeit glazifluvialer und fluvialer Erosionsprozesse im Gletscherbachlauf eines Hochgebirges.

Unter Mitberücksichtigung dieser Kriterien, die die Terrassengenese und Schottersohle im Gletscherbachbereich beeinflussen können, ist es schließlich möglich glazifluviale und fluviale Gletscherbachveränderungen einschließlich ihrer Terrassenformationen mit vergangenen Gletscherständen zeitlich abzugleichen. Mit fortschreitender Entfernung zur Gletscherzunge hingegen nehmen die hier im Faktorenkatalog aufgezählten Prozesszusammenhänge in Anzahl und Intensität zu. Dies lässt sich durch die räumliche Lage in Hochgebirgstalschaften erklären, die durch weitere Bachzuströme zusätzliche Prozessabläufe freisetzen. Naturgemäß erschwert dies die Rekonstruktion der gletscherschwankungsbedingten Bachmorphologie. Aus diesem Grund wurden die Untersuchungen weitestgehend auf Gletscherbachläufe beschränkt, was eine Reduktion von Prozessstörfaktoren zur Folge hat.

2.3 Methoden

2.3.1 Morphologische und morphometrische Geländeanalyse

Während der Feldbegehungen der Arbeitsgebiete im März 2012 im Khumbu Himal sowie von Mitte August bis Anfang September 2013 nahe des Pangong Tso wurde der Formenschatz in den Gletscherrandbereichen geomorphologisch beschrieben, kartiert und klassifiziert. Gerade diese deskriptive Arbeitsweise ermöglicht es, die morphologischen Zusammenhänge und Lagebeziehungen der Formenelemente zueinander in den unterschiedlichen Zeit- und Raumskalen aufzudecken. Somit erweitert diese Arbeitsweise maßgeblich den Betrachtungsraum des beobachtenden Subjektes, also dem Forschenden, der jene Formengestalt in ihrer Ganzheit einschließlich ihrer Prozessabfolgen erfassen möchte.

Neben dieser deskriptiven Arbeitsweise wurden die Terrassenordnungen sowie das Sohlenprofil und deren Sequenzabfolgen der Bach- und Flussläufe morphometrisch ausgemessen. Die Entfernung jeglicher Formenelemente, dazu gehören die Distanzen der Terrassenabfolgen, aber auch der Sequenzabfolgen, wurden mithilfe eines Laserdistanzgerätes des Typs Leica Disto D5 sowie eines Meterstabes im Gelände gemessen. Dadurch ist es schließlich möglich die Terrassenordnungen und Sohlenprofile metrisch zu erfassen.

Eine metrische Analyse allein ist jedoch nicht ausreichend evident, um die Gesamtheit der Lagebeziehungen der Formenelemente untereinander zu erfassen. Diese Arbeitstechnik dient lediglich dazu, den geomorphologischen Formenschatz, also die Terrassenabfolgen und die Gletscherbachbettmorphologie, metrisch "exakt" zu bestimmen. Allesamt sind die gemessenen Werte jedoch auf einen kurzen Zeitraum beschränkt (Schumm & Lichty 1965), da sie durch die Prozessdynamiken des Hochgebirges zeitnah verändert werden können.

2.3.2 Photographische Dokumentation und ihre zeitliche Klassifikation

Die untersuchten Formenelemente der Fluss- und Bachläufe wurden photographisch dokumentiert und klassifiziert. Dazu wurde eine hochauflösende digitale Spiegelreflexkamera des Typs "Sony Alpha 77" mit einem 24,3 Megapixel CMOS-Sensor verwendet, an der Objektive mit Festbrennweiten von Minolta 50 mm (F3,5), Sony 20 mm (F 2,8) sowie Zoomobjektive von Sony 18 bis 55 mm (F 3,5 - 5,6) und Minolta 70 bis 210 mm (F4) genutzt wurden. Zur exakten Verortung des Bildmateriales wurde der interne GPS Empfänger der DSLR verwendet. Ebenfalls kam vereinzelt eine Kompaktkamera des Typs "Canon PowerShot SX 210 IS" zum Einsatz.

Einzelbilddokumentation wurden Neben Photopanoramen unter Verwendung geeigneter EDV-Programme zusammengesetzt (u. a. mit Adobe Lightroom, Photoshop und Kolor Autopano), die in ihrer Ganzheit den Formenschatz und ihren prozessualen Zusammenhang im Untersuchungsgebiet verdeutlichen. Zeitlich deckt dieses Photomaterial den Zeitraum der zwei Forschungsexpeditionen im März 2012 sowie von Mitte August bis Anfang September 2013 ab. Der morphologische Bezugszeitraum umfasst den steady und graded Zeitraum nach Schumm & Lichty (1965). Ebenso wurde das Photomaterial mit historischen Aufnahmen abgeglichen. Aufgrund der hohen Photoaufnahmen im Photoanhang Anzahl wurden die aufgeführt und ihre entsprechenden morphologischen Ausführungen in Bildunterschriften ergänzt. Infolgedessen wurde im Lauftext dieser Abhandlung lediglich auf die dazugehörigen Photonummern verwiesen.

In ihrer Gesamtheit geben die aufgeführten Photographien ein Abbild der an dem Zeitpunkt wahrgenommenen Formenrealität wieder, die als Grundlage der Beweisführung herangezogen wird.

2.3.3 Korngrößenanalyse

Neben der geomorphologischen, morphometrischen sowie satellitenbildtechnischen Analyse wurden während der Feldbegehungen Sedimentproben aus den Gletscherbach- sowie Flussläufen einschließlich ihrer Terrassenordnungen zur

Überprüfung der Prozesse entnommen. Im Anschluss konnten diese mittels der Siebund Pipettanalyse nach Köhn (1928) auf die Korngrößenzusammensetzungen im Labor des Geographischen Instituts der Universität Göttingen analysiert werden. Anhand dieser Ergebnisse wurden schließlich Korngrößendiagramme erstellt sowie die dazugehörigen Sortierungskoeffizienten berechnet. Korngrößendiagramme sind hilfreich, um die Korngrößencharakteristika der entnommenen Sedimentproben von u. a. glazifluvialen, glazialen sowie fluvialen Prozessablagerungen zu unterscheiden (Bennett & Glaser 2009: 207-244; vgl. Kuhle 1999: Figure 6-9; vgl. Sauer 2002: 66-67). Innerhalb dieser Säulendiagramme einschließlich ihrer Kornsummenkurve wurden die Korngrößen in die Sand-, Schluff- und Tonfraktionen klassiert. Des Weiteren konnten die Säulendiagramme in Kombination mit einer Summenkurve graphisch dargestellt werden. Glazigene Sedimentakkumulationsprozesse am Probeentnahmestandort lassen sich durch bimodale Verteilungen der Korngrößenklassen erkennen (Wagner 2007: 8). Dagegen deutet ein unimodaler Verlauf der Summenkurve auf glazifluviale oder Sedimentakkumulationsprozesse Entnahmestandort fluviale am der Sedimentprobe hin.

Neben dieser graphischen Korngrößenklassendarstellung wurde zudem der Sortierungskoeffizient jeder einzelnen Sedimentprobe ermittelt. Dieser Wert liefert zusätzlich Informationen bezüglich der Sedimentationsbedingungen der Sedimentprobe (Müller 1964: 102-103). Für die Bestimmung des Sortierungskoeffizienten (= So) werden die Quartil-Maße des dritten sowie des ersten Quartils benötigt. Der Sortierungskoeffizient (So) wird nach der Formel aus der Wurzel des Quotienten des dritten 75%-Quartils (Q3) und des ersten 25%-Quartils (Q1) der Summenkurve berechnet (Engelhardt 1973). Dieser verändert seinen Wert je nach der Anzahl der Korngrößenklassen.

Eine Mengenerhöhung der Korngrößenklassen bewirkt, dass der Wert der Koeffizienten (So) ansteigt und sich der Korngrößensortierungsgrad verschlechtert. Sedimentablagerungen, die fluvialen oder äolischen Transportprozessen unterlagen, sind gut bis sehr gut sortiert. Sie weisen somit niedrige So-Werte auf (Wagner 2007: 8). Wurden Sedimentablagerungen jedoch durch einen glazigenen Transportprozesses beeinflusst, sind die Kornfraktionen der Sedimentprobe unsortiert und weisen somit

höhere So-Werte vor (Wagner 2007: 8). Der Abgleich mit anderen Korngrößenkoeffizienten ist nur folgerichtig, wenn die Berechnungsverfahren der Intervalle einheitlich sind (Tombrink 2010: 14). Daher können die hier ermittelten Werte der Sortierungskoeffizienten nach Engelhardt (1973) nur mit Koeffizienten verglichen werden, die diesen in der Berechnungsgrundlage gleichen (Tombrink 2010: 14) (dazu vgl. Arbeiten u. a. nach Kuhle 2005; Achenbach 2011; Kuhle 2013).

Diese labortechnischen Analyseverfahren unterstützen und verfeinern schließlich die geomorphologische Geländebeobachtung (Leser 1977: 250) und erweitern somit die gesammelten Ergebnisse.

2.3.4 Morphologische und morphometrische Untersuchungen mittels Satellitenbildanalysen

Um die Ergebnisse dieser empirischen Untersuchungen zu erweitern, wurden fernerkundliche Arbeitstechniken angewandt. Dazu zählt die Analyse und Auswertung der Daten eines digitalen Höhenmodelles (DEM) und ihrer verorteten Satellitenbilder. Vorgehen jedoch durch die Begrenzt wird dieses Erschöpfbarkeit des Auflösungsvermögens der frei verfügbaren Satellitendaten. Daher wurde auf das frei verfügbare digitale Höhenmodell des Autors "Jonathan de Ferranti" zurückgegriffen (http://www.viewfinderpanoramas.org/dem3.html), dessen Höhendatenmodell sich auf SRTM Daten (Shuttle Radar Topography Mission) der NASA beziehen und im Anschluss seitens der Autoren De Ferranti (2012) und Jarvis et al. (2008) durch Korrektur von falschen Höhendaten überarbeitet wurde. Insgesamt weist dieses DEM-Modell ein Auflösungsvermögen von 90 m vor.

Ebenso wurden auf aktuelle und historische Erdoberflächensatellitendaten von unterschiedlichen Anbietern in Google Earth zurückgegriffen, die in Ihrem Auflösungsvermögen die abrufbaren Landsat-Daten der NASA übertreffen. Des Weiteren wurden die aktuellen sowie historischen Gletscherstandsdaten mittels der ebenfalls frei verfügbaren Datenbasis des Projektes "Global Land Ice Measurements from Space" (GLIMS nach Raup et al. (2007)) berücksichtigt.

Neben diesen frei zugänglichen Daten wurde auf die Anwendung einer quelloffenen Satellitenbildsoftware Wert gelegt, die es ermöglicht, das Vorgehen für jedweden Anwender zu reproduzieren. Aus diesem Grund fanden die Open-Source-Geoinformationssysteme QGIS (http://www.qgis.org/de/site/) sowie GRASS GIS 7.0.0 (http://grass.osgeo.org/) Verwendung (vgl. Casagrande et al. 2014). Zu den Softwareerweiterungen, die in dem Programm QGIS zu Einsatz kamen, zählen u. a. QGIS OpenLayers Plugin und qProf (www.malg.eu), deren jeweiliger Programm-Code (Python) ebenso quelloffen und somit einsehbar ist. Zu den Modulen, die in GRASS GIS genutzt wurden, zählen u. a. "r.watershed", "r.water.outlet" sowie "r.stream.extract". Um schließlich ein Höhenmodell in QGIS sowie GRASS GIS zu erstellen, wurde dieses mit der Software 3DEM in ein geotif-Format umgewandelt. Im Anschluss konnten die Satellitendaten in QGIS und GRASS GIS georeferenziert, bearbeitet und dann zur Geländeanalyse verwendet werden.

Zu den hier angewandten Analysetechniken mittels QGIS zählen u. a. die Modellierung eines Reliefs, die Erstellung von Isohypsen, die Erstellung eines Hangneigungsreliefs, die Erstellung eines Tallängs- und Querprofils mittels der Erweiterung qProf, die Vektorlayererstellung von Fluss- und Bachläufen, die Vermessung einzelner Untersuchungsgebietsabschnitte, die Kartierung von Flussund Bachläufen einschließlich ihrer dazugehörigen Terrassenordnungen sowie die Erstellung von Kartenmaterialien, die all jene morphologischen Informationen beinhalten, die während der Geländearbeiten empirisch erfasst werden konnten. Für die geomorphologischen und hydrologischen Modellierungen kam vermehrt das Programm GRASS GIS zum Einsatz. Neben dieser Anwendung der Geoinformationssysteme wurden vereinzelte Bach- und Flusslaufbreiten mit der Software Google Earth Pro ermittelt und überprüft. Durch den Abgleich dieser arbeitstechnischen Vorgehensweisen konnten mögliche Fehlbarkeiten und Vorzüge der fernerkundlichen Geländeanalyse aufgedeckt und verdeutlicht werden.

2.4 Begriffsklärungen

Über die gewohnte Terminologie der geomorphologischen Fachdisziplin hinaus wurden zu den Detailerfassungen des zu beschreibenden fluvialen und glazifluvialen Formenschatzes einige neue Begriffsbildungen eingeführt. Ebenso wurden die Begriffe einschließlich all ihrer Prozesszusammenhänge, die mithilfe der Mikro-, Meso- sowie Makroebenen im dritten Kapitel analysiert wurden, hier aufgeführt und erläutert. Diese decken den aktuellen Forschungsstand ab. Erst mithilfe dieser vorhergehenden Definitionen und Erläuterungen ist das Verständnis der Inhalte des dritten Kapitels gegeben.

2.4.1 Begriffsabgrenzungen einer Terrassenform

Der Begriff "Terrasse" beschreibt lediglich die chronologische Abfolge von Flächen oder Ebenen, die in der allgemeinen geomorphologischen und geologischen Literatur in die Begriffe Niederterrasse, Mittelterrasse und Hochterrasse unterteilt werden (Gibbard 1994: 9). Unterliegen diese einer fluvialen Genese lassen sie sich zwischen Ablagerungssterrasse und Erosionsterrasse unterscheiden (Wohl 2014: 176; vgl. Louis 1968: 146;), die u. a. eine Terrassentreppe (Ehlers 1994: 270) bilden können. Des Weiteren existieren Klassifikationen in tektonische sowie klimatische Terrassen, die im Hochgebirge aufgrund der Wechselbeziehung von tektonischen und klimatischen Prozessen jedoch nicht eindeutig rekonstruierbar sind (Wohl 2014: 176). Ebenso lassen sich Terrassenkörper in Felsterrassen mit geringen alluvialen Ablagerungen (strath terraces) und Aufschüttungsterrassen (fill terraces) untergliedern (Wohl 2014: 176; vgl. Merritts et al. 1994).

Aufbauend auf diesen Klassifikationen wurden die hier untersuchten Terrassenformen für die Gletscherbacheinzugsgebiete genauer untergliedert. Mithilfe des Formenschatzes der hier beschriebenen Terrassen sollen schließlich Rückschlüsse auf die tatsächliche Genese dieser ermöglicht werden. Nahe der Gletscherzunge wurde diese weitestgehend glazifluvial geformt, weiter talauswärts hingegen konnte die glazifluviale Ausarbeitung durch aktuelle fluviale Prozesse überprägt werden. Deshalb

wurden die unterschiedlichen Terrassenebenen, die glazifluvial und zum Teil auch nur fluvial geformt werden, der Genese entsprechend wie folgt untergliedert und definiert:

Terrassenebene/ buckelartige Terrassenfläche:

Nach dem Einschnitt von glazifluvialen oder fluvialen Fließgewässern bildet sich eine Erosionsrinne (Bach- oder Flussbett) aus, die auch durch glazifluviale oder fluviale Lateralerosionsvorgänge erweitert werden kann. Verstärkt sich jedoch die Abflussdynamik und die dadurch freigesetzte kinetische Energie, kann das Fließgewässer (hier: Gletscherbachsystem) die Tiefenerosion forcieren. Dadurch entsteht eine Terrasse, die zuvor vom Fließgewässer überprägt und somit geformt wurde. Eine Terrasse - also eine ehemalige Schottersohle bzw. Sohlenebene - wurde in dieser Abhandlung mit dem Begriff der Terrassenebene definiert. Sinngemäß der Definition "buckelartige Terrassenfläche" entsprechend wurde innerhalb dieser Arbeit eine Begriffsabgrenzung eingeführt, die Terrassen beschreibt, die keine Ebene vorweisen, sondern vielmehr eine buckelartige Terrassenlandschaftsform bilden. Da infolge der Glazialstadien die Talschaften der Untersuchungsgebiete von Gletscherzungen und deren Moränenablagerungen geprägt wurden (Kuhle 2005; Kuhle 2013), liegt es nahe, die Terrassenebenen sowie buckelartigen Terrassenflächen in den rezenten Ablationsgebieten der Gletscher als Moränenreste zu klassifizieren, die in Folge des Interglazials fluvial überprägt und ausgewaschen werden konnten.

Terrassenschotterebene oder buckelartige Terrassenschotterfläche:

Der Formengestalt entsprechend wird eine Terrassenebene, auf der vermehrt Grobkies bis grobes Blockwerk (nach DIN 14688-1: 20 bis 630 mm) glazifluvial oder fluvial abgelagert und anschließend durch selbige Vorgänge eingeschnitten wurde, in dieser Arbeit mit dem Begriff der Terrassenschotterebene bzw. mit dem Begriff einer buckelartigen Terrassenschotterfläche - die eine buckelartige Landschaftsform mit größeren Blockkörpern vorweist (siehe vorherige Begriffsabgrenzung) - definiert. Diese grenzt meist an der rezenten Schottersohle des Bach- oder Flusslaufes an und bildet somit die erste Terrassenabgrenzung. Jedoch können auch alle weiteren der chronologischen Abfolge entsprechenden Terrassen aus derartigen Blockakkumulationen bestehen. Der Natur der Formengestalt entsprechend, ist die

reinste Form der Terrassenschotterebene ohne jegliche fluviale Störvariable vermehrt im Grenzbereich des Gletscherzungenendes und eines Endmoränendurchbruches existent.

2.4.2 Ordnung und Klassifikation der Terrassenebenen - oder Flächen

Neben der Terrassenform unterliegen die Terrassenkörper ebenso einer chronologischen Abfolge (Stratigraphie). Diese wurde innerhalb dieser Arbeit wie folgt klassifiziert:

Erste Terrassenordnung:

Die Ebene oder Fläche, die direkt an dem rezenten Fluss- oder Bachlauf angrenzt und zum Teil auch Buckelformen vorweist oder durch Schotter geprägt wird (siehe vorheriges Kapitel), bildet nach dieser Klassifikation die erste Terrassenabgrenzung. In der traditionellen geomorphologischen Klassifikation von Terrassenanordnungen, wird diese Ebene oder Fläche auch mit dem Begriff "Flussaue" definiert (Louis 1968: 146-147). Da jedoch die erste Terrassenabgrenzung im Hochgebirge es ermöglichen kann, Rückschlüsse auf Gletscheroszillationen zu treffen, wird sie - wenn der Formenschatz der rezenten glazifluvialen Prozesse zu erkennen ist - in dieser Abhandlung mit dem Begriff "Erste glazifluviale Terrassenordnung" definiert. Der Natur entsprechend werden die weiter talabwärts gelegenen Terrassenordnungen - sobald diese keiner rezenten glazifluvialen Beeinflussung mehr unterliegen - lediglich durch fluviale Prozesse beeinflusst. Infolgedessen werden diese dann mit dem Begriff "Erste fluviale Terrassenordnung" definiert.

In der folgenden Begriffsabgrenzung wird die Form dieser Ordnung dann in eine Terrassenebene, buckelartige Terrassenfläche, Terrassenschotterebene oder buckelartige Terrassenschotterfläche untergliedert. Diese Ebene oder Fläche unterliegt aufgrund der sich schnell verändernden Abflussdynamiken infolge von klimatischen Veränderungen und der im Himalaya und im tibetischen Himalaya tektonischen Ausgleichsbewegungen, einer schnellen Entwicklungsdynamik. Der Begriff der "Flussaue", der im Hochgebirge aufgrund der deutlich schnelleren Entwicklungsdynamik

nichtzutreffend ist, umschreibt demzufolge diese Ebene oder Fläche unzureichend. Eine klare Abgrenzung der Terrassenchronologie entsprechend ist nur mittels dieser deutlicheren Begriffsabgrenzung gegeben. Des Weiteren ist innerhalb dieser Terrassenordnung vereinzelt Vegetationsbewuchs zu erkennen. Aufgrund der hohen Veränderungsdynamiken infolge von möglichen Abflussschwankungen unterliegt die Vegetation jedoch erhöhten Störfaktoren respektive Stressfaktoren.

Zweite Terrassenordnung:

Direkt angrenzend bildet sich die zweite glazifluvial oder fluvial geprägte Terrassenablagerung. Die Formengestalt lässt sich ebenfalls in eine Terrassenebene, buckelartige Terrassenfläche, Terrassenschotterebene oder buckelartige Terrassenschotterfläche untergliedern. Innerhalb der Begriffsbezeichnungen der Fluvialgeomorphologie wird diese u. a. auch als Niederterrasse beschrieben (Gibbard 1994: 9). Der Vegetationsbewuchs dieser Ebene kann - wie auch in der ersten Terrassenebene beobachtbar - in sehr geringem Maße auftreten.

Dritte Terrassenordnung:

Stratigraphisch eine Terrassenenordnung höher gelegen, grenzt diese glazifluvial oder fluvial geprägte Terrasse an die zweite Terrassenordnung. Je nach unterschiedlicher Formengestalt lässt sich diese ebenfalls - wie die zuvor beschriebenen Formengestalten - genauer unterteilen. Aufgrund der wenig bis nicht vorhandenen rezenten glazifluvialen bis fluvialen Überprägung ist es möglich, dass sich auf dieser Ebene oder Fläche ausgeprägte Vegetationsbewuchszonen finden lassen, die das Vegetationsausmaß der vorhergehenden Terrassenordnungen deutlich übertreffen.

Die angrenzenden Terrassenordnungen:

Der stratigraphischen Ordnung entsprechend lagern sich alle weiteren Terrassenebenen oder Terrassenflächen übereinander ab. Demnach definiert die höchste Terrassenordnung den historisch höchsten Punkt des Fließgewässers, von dem sich in Folge von Warm- und Kaltzeiten das Fluss- oder Bachsystem allmählich ausformen konnte. Durch die Prozesse der Erosion und Sedimentation bildeten sich

schließlich die hier in der Arbeit beschriebenen Abfolgen der Terrassenebenen oder Terrassenflächen aus.

2.4.3 Begriffe der Schottersohlenebene/ Sohlenebene und ihre

methodischen Betrachtungsweisen

Neben der zuvor ausführlich erläuterten morphologischen Klassifikation von Terrassenebenen oder Terrassenflächen wurde ebenso die Fluss- oder Bachsohle morphologisch der Genese entsprechend gegliedert:

Schottersohlenebene oder Sohlenebene:

Die Fluss- oder Bachlaufsohle kann aus anstehendem Gestein aber auch aus Lockergestein (Lockersedimenten) bestehen (Schumm 2005: 10). Die Lockergesteinsablagerungen (Lockersedimentablagerungen) können wiederum aus feinkörnigen- und bzw. oder groben Sedimenten, Geröllen und Geschieben, aber auch aus transportierten und umgelagerten Flussschotterablagerungen zusammengesetzt oder mit all den zuvor genannten Ablagerungen stark durchmischt sein.

Diese Durchmischungen des Sedimentsubstrates (Schotterablagerungen) entstehen meist durch den Transport und die Umlagerung von Gletscherbewegungen (Kuhle 1991: 37-39), die durch das Abschmelzen des Gletschereises schließlich als Grundmoränen freigegeben werden können (Kuhle 1991: 37-39; vgl. Ehlers 1994: 78-82; vgl. Ehlers 2011: 30-31). Ebenfalls wird dieser Formenschatz durch die nun im Postglazial freigesetzten Abflussdynamiken fluvial umgelagert, wodurch sich schließlich Schottersohlenebenen ausprägen können.

Gerade in den in dieser Arbeit untersuchten Gletscherrandbereichen bildet infolge der vorhergehenden Gletscheroszillationen die Grundmoräne den "Fundus" der Fluss- oder Bachbettsohle. Auch weiter talabwärts der hier aufgesuchten Talschaften kleiden Moränenreste die Sohlen der Talschaften aus (Kuhle 2005; vgl. Kuhle 2013), die während der im Glazial ausgeprägten Vergletscherungen abgelagert und im anschließenden Interglazial fluvial umgelagert wurden. Je nach Abflussdynamik, die

infolge der Gletscherschmelzprozesse eines Gletscherstadiums einsetzt, werden diese Grundmoränenreste dann fluvial eingeschnitten oder durch fluviale Ablagerungen deren fluvialer Transport zuvor stattfand - mittels einer feinkörnigen Sedimentschicht (Sohlenebene) oder einer groben Schotterablagerungsschicht (Schottersohlenebene) überprägt.

Fließgewässer, deren Sohle vermehrt aus Locksedimentablagerungen bestehen, infolge der sich kurzzeitig verändernden unterliegen Abflussdynamiken mit einhergehender Transportkraftveränderung einer zeitlich kürzeren und somit dynamischeren Laufveränderung bzw. Erosionsveränderung (Schumm & Lichty 1965), als Fließgewässer, deren Sohle aus anstehendem Gestein besteht, welches höhere Resistenzen gegen fluviale Erosionsprozesse vorweist (Schumm 2005: 9-17). Demnach kann sich u. a. je nach kurzzeitigen Abflussdynamikund der Formenschatz einer Lockersedimentsohle Sedimentzufuhrveränderungen divergent ausprägen. Gerade diese kurzzeitigen Abflussdynamikund Gletscheroszillationen Sedimentzufuhrveränderungen sind aufgrund der im Gletscherrandbereich um ein Vielfaches intensiver ausgeprägt als im talabwärts gelegenen Flusslauf. Jene intensiven Veränderungen lassen sich durch die dort kurzzeitig verändernde Formengestalt erkennen. Aus diesem Grund sind genaue Begriffsabgrenzungen für die Beschreibung des im Gletscherrandbereich zu findenden Formschatzes erforderlich. Dabei ist es hilfreich den Formenschatz aus unterschiedlichen Betrachtungsebenen (Mikro-, Meso- und Makroebene, siehe auch Kapitel 2.1) zu beschreiben, worauf im Folgenden näher eingegangen werden soll. Schließlich liefert dieser Formenschatz Hinweise auf die Morphodynamik dieser Landschaftsform.

2.4.3.1 Formenschatz der Fluss- und Bachbettsohle auf der

Mikroebenenskala

Mithilfe einer Mikroebenenanalyse kann die Fluss- oder Bachbettsohle in Kaskaden Sequenzen (cascade), Stufen-Becken Sequenzen (step-pool), ebene Fluss-Bachbettsohlen Sequenzen (plane bed), Kolk-Furt Sequenzen (pool-riffle) und

Rippelformen Sequenzen (dune-ripple) unterteilt werden (Montgomery & Buffington 1997: 597-600, Buffington & Montgomery 2013: 749-750). Folgende Beschreibungen der nicht nur im himalayischen Hochgebirge zu findenden Sohlenbettsequenzen verdeutlichen die unterschiedlichen Merkmale dieser (nach Buffington & Montgomery 2013: 749-750) (vgl. Abbildung 3 und 4):

Die Fluss- oder Bachbettsohle von Kaskaden Sequenzen (cascade) sind durch chaotische Anordnungen von Geröll und Gesteinsblöcken gekennzeichnet. Diese Geröll- und Blockanordnung erzeugt Turbulenzen im Fließgewässer, die durch "Weißes Wasser" in Erscheinung treten. Abgegrenzt wird das Fließgewässer durch wallartige Akkumulationsformen, die direkt am Berghang gebunden sind. Das im Fluss- oder Bachbett akkumulierte Geröll und Blockwerk wird meist durch Hangrutschungen vom Berghang, Murabgänge oder Paleoflutereignisse zugeführt (Buffington & Montgomery 2013: 749). Andersartige Akkumulationsbedingungen, die exemplarisch in dieser Arbeit im Hochgebirge des Himalayas untersucht wurden, sind jedoch nicht auszuschließen. Vielmehr können die historisch akkumulierten Grundmoränenreste ebenso eine derartige Fluss- oder Bachbettform erzeugen.

Das Längsprofil dieser Fluss- oder Bachbettsohle ist steil ausgeprägt. Dadurch kann eine hohe Fließgeschwindigkeit induziert werden, die zugleich Korngrößenklassen mit bis zu der Größe von Geröllen (Steinen) transportieren kann (Buffington & Montgomery 2013: 749, vgl. Hjulström 1935). Der Transport von größerem Geröll- und Blockwerk verlangt jedoch eine deutlich höhere Transportenergie, die nur durch unregelmäßige und sehr kräftige Flutereignisse erzeugt werden können (Buffington & Montgomery 2013: 749, vgl. Hjulström 1935). Infolgedessen ist der Prozess der Sedimentablagerung in einer derartigen Sequenzabfolge gering, der durch Kriterien wie der geringen Flussoder Bachbetttiefe zum anstehenden Gestein sowie der geringen bis nicht vorhandenen Überschwemmungsebene, auf der zumeist Sedimente abgelagert werden können, verstärkt wird (Buffington & Montgomery 2013: 749). Aufgrund dieser morphologischen Gegebenheiten bilden sich chaotisch entstehende kleine Beckenformen (pools) in dieser Sequenzabfolge aus (vgl. Abbildung 3 und 4), die ebenfalls durch turbulentes Fließverhalten gekennzeichnet sind (Buffington & Montgomery 2013: 749).

Im Vergleich zu den Kaskaden Sequenzen (cascade) weisen Stufen-Becken Sequenzen (step-pool) eine geordnete Geröll- und Blockablagerung vor, die schließlich diese sich wiederholende Sequenzabfolge formen (vgl. Abbildung 3 und 4). Meist gebildet durch Murabgänge (gemischt mit Baumresten), resistentes, anstehendes Gestein oder durch Geröll bzw. Blöcke, die in Form von kinematischen Wellen, großskaligen Antidünen oder gestauten Strukturen akkumuliert werden (Buffington & Montgomery 2013: 749), können sich diese Sequenzabfolgen formen. Ebenfalls ist auch das Längsprofil dieser Fluss- und Bachbettsohle steil ausgeprägt mit zum Teil abgegrenzten Läufen (channels), die insgesamt auch an einen Berghang gebunden sind. Des Weiteren die Überschwemmungsebene ist innerhalb dieser Sequenzabfolgenanordnung meist kleinräumig ausgeprägt (Buffington & Montgomery 2013: 749).

Die jährlichen Sedimenttransportraten von der Sand bis zur Stein Fraktion (Becken-Substrat) weisen in dieser Sequenzabfolge hohe Kapazitäten auf. Die Herkunft und die Mobilität der transportierten Gerölle und Blöcke sind vergleichbar mit den zuvor beschriebenen Kaskaden Sequenzabfolgen (cascade). Die Länge der Amplitude einer Stufen-Becken Sequenz folgt aus der Anpassung, um eine möglichst hohe Resistenz gegenüber den Fließdynamiken zu erzeugen, die Morphologie des Bachlaufes (channels) zu stabilisieren und die Sedimentzufuhr sowie die Geschiebefracht im Gleichgewicht zu halten (Buffington & Montgomery 2013: 749). Aufgrund der Lokalität dieser Sequenzabfolgen werden diese zum Teil von Murabgängen überprägt (Buffington & Montgomery 2013: 749).

Zu den weiteren Sequenzabfolgen zählen ebene Fluss- und Bachbettsohlen Sequenzen (plane bed). Diese weisen eine langgestreckte Form mit einer dahingleitenden oder geriffelten Fluss- oder Bachsohle vor (vgl. Abbildung 3 und 4). Beckenformen (pools) und Barren (bar) treten in dieser Sequenzabfolge nur selten auf. Im Vergleich zu den vorherigen Sequenzabfolgen ist die Längsprofilneigung dieser Fluss- oder Bachbettsohle nur moderat ausgeprägt. Diese Sohle eines derartigen Laufes (channel) wird überwiegend durch Kiese und Schotterablagerungen geprägt, die zum Teil mit Sanden aber mitunter auch mit Blöcken durchsetzt ist. Infolge dieser Kies- und

Schotterablagerungen entsteht die für diese Sohlenform charakteristische Panzerplattensohle (Imbrikation) (Buffington & Montgomery 2013: 750, vgl. Schumm 2005).

Die Sedimentablagerungen, Überschwemmungsebenenentwicklung und die Abhängigkeiten zum Berghang varriieren bei dieser Sequenzabfolge stark. Aufgrund des meist bis zum Ufer gefüllten Fluss- oder Bachstromes (bankfull) werden in dieser Sequenzabfolge vermehrt Sedimente transportiert. Mithilfe dieser Abflussart können die meisten Sedimente innerhalb eines kurzen Zeitintervalls transportiert werden. Hohe Sedimentzufuhrraten reduzieren und verändern jedoch den Panzerplattenschutzeffekt der Sohle erheblich, was zugleich zu einer Reduktion eines effektiven Abflusses führt. Infolgedessen kann sich der Abfluss verringern, der wiederum mit mehr und deutlich höheren Flutwellen (Buffington & Montgomery 2013: 750) den Gesamtabfluss des Fließgewässers ausgleicht.

Eine weitere Sohlenbachbettform ist die Kolk-Furt Sequenz (pool-riffle). Abwechselnde Flussbettformen von Becken (pool) und Barren (bar), die durch seitlich oszillierende Abflussdynamiken diesen Fluss- oder Bachgrenzbereich formen, kennzeichnen diese Sohlenform (vgl. Abbildung 3 und 4). Aufgrund von Konvergenzen des fließenden Stromes können sich in diesen Grenzbereichen Becken bzw. Kolke (pool) entwickeln. Die Divergenz dieses Stromes führt jedoch zu einer Sedimentation der Transportfracht, die schließlich Barren (bar) entstehen lassen. Charakteristisch für das Längsprofil ist die geringe bis moderate Fluss- oder Bachbettsohlenneigung. Ebenso sind die einzelnen Läufe (channels) des Gesamtstromes ungebunden und somit frei. Die Sohle dieser Sequenzabfolge besteht meist aus Flussschotter, zugerundeten Steinen und Sandablagerungen, die in den Randbereichen teils durch sehr ausgeprägte Überschwemmungsebenen erweitert wird. Im Vergleich zu den zuvor beschriebenen Sequenzabfolgen lässt sich diese Sequenzabfolge meist weiter talabwärts beobachten und ist somit von der Sedimentzufuhr durch Berghänge sowie der seitlichen Sedimentzufuhr der Flanken weitestgehend entkoppelt. Zu der Ausnahme zählen die fluvialen Erosionsprozesse an steilen Talflanken oder Terrassenebenen inner- oder außerhalb von Mäanderbögen (Buffington & Montgomery 2013: 750).

Ausgeprägte Sedimentablagerungen dieser Sohlenform finden den auf Überschwemmungsebenen oder in den hier charakteristischen Barren (bar) statt. So wie schon anhand von der ebenen Fluss- und Bachbettsohlen Sequenz (plane bed) erläutert. lässt sich auch in dieser Sohlenform eine charakteristische Panzerplattensohle (Imbrikation) auffinden. Auch der nahezu bis zum Ufer gefüllte Flussoder Bachstrom (bankfull) erhöht in dieser Sequenzabfolge die Sedimenttransportkraft. Sobald sich die Abflussdynamiken reduzieren, erhöht sich die Anzahl der Fluten, die zugleich die Erosion und somit die Sedimentzufuhrrate erhöhen. Ebenso reduziert dieser Abflussdynamikenwechsel den Schutz der durch die Panzerplattensohle (Imbrikation) entstehen kann. Des Weiteren ist die Ausformung der Becken (pool) anfällig für Sedimentfüllungen bzw. Blockierungen durch grobe und kleinkörnige Sedimentablagerungen (Buffington & Montgomery 2013: 750).

Auch Rippelformen Sequenzen (dune-ripple) zählen zu den Sequenzabfolgen, die in der Flusssohle eines Gebirges beobachtet werden können. Das Längsprofil dieser Sequenzabfolge weist einen geringen Neigungswinkel auf. Diese ungebundenen (freien) Rippelform Sequenzen, dessen Sohle vermehrt aus Sandablagerungen besteht, formen die großen mit Schwemmfächern ausgekleideten Talschaften (alluviale Ablagerungen), die charakteristisch für diese Sohlenbettform, durch eine geringere Schuttzufuhr aus den Talhängen beeinflusst werden. Die sich je nach Intensität des Flussentwicklungsstadiums, des Fließzustandes¹ und der Transportkraft verändernde und somit morphologisch variierende Sohlenbettform kann Rippelformen, Dünen (dune), Sandwellen, ebene Fluss- und Bachbettsohlen (plane bed) und Antidünen ausprägen (Buffington & Montgomery 2013: 750; vgl. Abbildung 3 und 4). Die Morphologie der Überschwemmungsebene ist in dieser Sohlensequenz eindeutig zu erkennen, dessen nahezu bis zum Ufer gefüllte Flusspegel (bankfull) sowie die daraus folgenden erhöhten Abflussdynamiken, ein sich wiederholendes Intervall von ca. ein bis zwei Jahren vorweisen. Die Transportkraft dieser Sequenzabfolge ist limitiert, sie weist einen geringen Schwellenwert für den Sedimenttransport sowie eine sehr hohe

¹ Der Fließzustand, also die hydrodynamischen Strömungsbedingungen eines Gewässers, wird nach der Froude Zahl klassifiziert (Wohl 2014: 48 - 51).
Transportkraft während hoher Abflussdynamiken, die infolge eines bis zum Ufer gefüllten Flusspegels auftreten, vor. Die Sedimentablagerungen dieser Sequenzabfolge, die sich im Sohlenbett oder auf den Überschwemmungsebenen ablagern, sind sehr intensiv ausgeprägt (Buffington & Montgomery 2013: 750).

Abbildung 3: Schematische Aufsicht der Bachbettsohlenmorphologie während geringer Abflussmengen: A = Kaskadenformenschatz (cascade), B = Stufen-Becken Sequenzabfolge (step-pool), C = Ebene Flussund Bachbettsohle (plane bed), D = Kolk-Furt Sequenz (pool-riffle), E = Rippelformen Sequenz (duneripple) (verändert nach Montgomery & Buffington 1997: Figure 2).

Abbildung 4: Schematisches Längsprofil der Bachbettsohlenmorphologie während geringer Abflussmengen: A = Kaskadenformenschatz (cascade), B = Stufen-Becken Sequenzabfolge (step-pool), C = Ebene Fluss- und Bachbettsohle (plane bed), D = Kolk-Furt Sequenz (pool-riffle), E = Rippelformen Sequenz (dune-ripple) (verändert nach Montgomery & Buffington 1997: Figure 3). Zu den im Hochgebirge vermehrt zu Tage tretenden Fluss- und Bachlaufformen zählt der Formenschatz eines verwilderten (braided) Fließgewässers. Das Auftreten dieser ist vermehrt im Gletscherrandbereich zu beobachten, dort wo die ehemals vom Gletscher geprägte Sohle glazifluvial ausgewaschen werden kann. Die Sohle dieser Fluss- und Bachlaufform lässt sich auch in Bereichen finden, wo die Zufuhr an Sedimenten als steuernde Kraft sehr stark ausgeprägt ist. Des Weiteren lässt sich diese Sohlenbettform auch in alluvialen Lockersedimentbereichen, wo das Flussufer destabilisiert wurde, sowie in semiariden Regionen finden. Dort herrscht für eine Stabilisierung der Sedimente innerhalb der Sohlenform eine zu geringe Vegetationsdichte vor (Buffington & Montgomery 2013: 750).

Hauptsächlich besteht diese Sohlenform aus unterschiedlich stark variierenden Breiten und Tiefen von kleinen Verwilderungsgewässerläufen (braid threads). Ebenso variiert die Fließgewässerneigung dieser Sohlenform sehr stark. Das Sohlensubstrat besteht meist aus Sand, Flussschottern und deutlich zugerundeten Steinen (Korngröße nach ISO 14688-1: 0,063 - 200mm). Während eines bis zum Ufer gefüllten Flusspegels (bankfull), der naturgemäß variieren kann, werden diese Sedimentablagerungen unterschiedlich stark transportiert und auch einzelne Bereiche des Laufes überspült. Einige dieser Sohlen der verwilderten Fluss- bzw. Bachlaufformen bestehen zum Teil aus Kolk-Furt Sequenzabfolgen (pool-riffle) oder aus einem Barren-Furt (bar-riffle) Formenschatz, wobei die Kolkausprägung (pool) nicht sehr intensiv ist und vermehrt in der Konfluenz der aufeinandertreffenden Verwilderungsgewässerläufe (braid threads) auftreten. Die Entstehung dieses Vewilderungsformenschatzes lässt sich auf die hohen Sedimentransportraten oder der Lauferweiterung, welche durch die Uferdestabilisierung entstehen kann, zurückführen (Buffington & Montgomery 2013: 750).

Anhand der zuvor genannten Sohlenformen lässt sich zeigen, dass die Morphologie sowie die Anordnung dieser Sequenzabfolgen zahlreichen Einflussfaktoren unterliegen (Montgomery & Buffington 1997). So konnten Untersuchungen zu glazifluvialen und fluvialen Sequenzabfolgen in vergletscherten Talschaften im südwestlichen British Columbia verdeutlichen, dass nach Karwänden wasserfallartige Kaskaden (cascade) und Stufen-Becken Sequenzen (step-pool) die Flussbettmorphologie formen (Brardinoni

& Hassan 2007: 16). Erst mit abnehmendem Gefälle weiter talabwärts am Talboden von Trogtälern bilden sich Furt-Kolk Sequenzabfolgen (riffle-pool) (Brardinoni & Hassan 2007: 16). Ebenso konnte gezeigt werden, dass Blockablagerungen in Stufen-Becken Sequenzabfolgen (step-pool) einem vergangenen glazigenen Prozess bzw. Ursprung unterliegen können (Chin & Wohl 2005: 277) und zum Teil durch eine stabilere sowie eine geringere interne Selbst-Organisation beeinflusst werden (Chin & Wohl 2005: 277; vgl. Wohl 2010; vgl. Zimmermann & Church 2001). Wie schon verdeutlicht, unterliegen jene Sequenzabfolgen den fluvialen Tiefenerosionsprozessen, die diesen durch die und Verlagerung Stufen-Becken Anordnung von Sequenzen (step-pool) entgegenwirken (Chin & Wohl 2005: 277). Das periodische Auftreten dieser Sequenzabfolge lässt sich mit Mäandrierungen in der Vertikalen oder der dritten Dimension analogisieren (Chin & Wohl 2005: 289).

Eine ähnliche Anordnung der zuvor beschriebenen Flusssequenzabfolgen konnte im Flusslauf des Buri-Gandaki im Himalaya nachgewiesen werden (Tombrink 2010; vgl. Tombrink 2012, vgl. Tombrink 2017). Naturgemäß durchlaufen diese zuvor beschriebenen Flussoder Bachbettsohlenformen im Hochgebirge Entwicklungsstadien, die je nach Veränderungsprämissen ein kurzes oder längeres Zeitintervall benötigen (Schumm & Lichty 1965; vgl. Schumm 2005). Demzufolge lassen sich anhand der Bachsohlenmorphologie in den Untersuchungsgebieten auch Übergangsformen der zuvor beschriebenen Sequenzabfolgen erkennen, die im deskriptiven Teil dieser Abhandlung näher herausgearbeitet und mit Gletscherständen parallelisiert wurden. Diese Entwicklungsdynamik der Gletscherbachsohle von Kaskadenformen (cascade) zu Stufen-Becken Seguenzabfolgen (step pool) lässt sich mittels der im Kapitel 3 empirisch erfassten Sequenzabfolgen in die folgenden Zwischenstadien aufteilen:

Frühes Entwicklungsstadium:

Das frühe Entwicklungsstadium zeichnet sich durch eine Fortentwicklung der Kaskadensohlenform (cascade) aus. Die hier prägenden Block- und Sedimentablagerungen unterliegen einer glazifluvialen Umlagerung, weisen aber innerhalb dieses Stadiums noch eine deutlich überwiegende chaotische Sortierung vor.

Dieser Formenschatz konnte in den Gletscherbachoberläufen, meist direkt unterhalb des Endmoränen- und Podestmoränendurchbruches, aber auch innerhalb dieser abgrenzenden Form beobachtet werden. Zum Teil tragen Hangrutschungen innerhalb des Moränendurchbruches zur Forcierung der chaotischen Blockablagerungsgestalt im Gletscherbachbett bei, die infolge glazifluvialer Gletscherbachdynamiken wieder umgestaltet werden können.

Fortgeschrittenes Entwicklungsstadium:

Das fortgeschrittene Entwicklungsstadium ist durch die Endphase der Entwicklung zu einer Stufen-Becken Sequenzabfolge (step-pool) gekennzeichnet. Es lassen sich innerhalb dieses Stadiums noch vereinzelte chaotische Blockablagerungen innerhalb der Sequenzabfolgen erkennen, die jedoch einen deutlichen Formenschatz von aneinanderreihenden Stufen-Becken Sequenzen (step-pool) vorweisen. Dieser Formenschatz konnte deutlich unterhalb des Endmoränen- und Podestmoränendurchbruches beobachtet werden. Ebenso lassen sie sich meist im gebundenen aber auch ungebundenen Sanderformenschatz auffinden. Zum Teil ist diese Sohlenform vergesellschaftet mit Bachverwilderungen (braided river), die ein typisches Merkmal von Sanderformen sind (Church 1972: 136-138).

2.4.3.2 Formenschatz des Fluss- und Bachlaufes auf der

Mesoebenenskala

Anhand der Mesoebenenanalyse ist es möglich die Formengestalt eines einzelnen Bach- oder Flusslaufes in gestreckt, schlangenlinig, mäandrierend oder verwildert (braided) zu klassifizieren (Nanson & Knighton 1996: 236, Schumm 2005: 14). Wie in den einzelnen Fluss- oder Bachläufen lässt sich die Klassifikation der zuvor beschriebenen Formengestalten auch in einem mehrläufigen Fluss- oder Bachsystem mit stabil ausgeprägten Inseln (anabranching river) anwenden (Nanson & Knighton 1996: 236). Durch diese morphologische Ausprägung von mehreren klein- oder großskaligen Läufen und Seitenarmen innerhalb eines Fluss- oder Bachbettes,

einschließlich stabiler Inselbildungen (anabranching rivers), verändern sich die dort ablaufenden Transportprozesszusammenhänge (Nanson & Knighton 1996: 236-237).

Zu den fluvialen Formengestalten, die in den Gebirgsräumen zu finden sind und dort eine laterale Aktivität ausüben, zählen jedoch hauptsächlich mäandrierende sowie verwilderte Fluss- und Bachlaufformen (Nanson & Knighton 1996: 236). Diese sind an die dort vorherrschenden morphologischen Naturgegebenheiten, die durch zeitlich divergierende Akkumulations- und Erosionsraten u. a. durch Fluss- und Bachläufe (Schumm und Lichty 1965) aber auch durch historische Vergletscherungen umgestaltet wurden, gebunden.

Ausgeprägte mäandrierende Bachbettformen lassen sich sowohl im Oberlauf von Hochgebirgsfluss- bzw. Bachläufen als auch weiter talabwärts finden. Das Wachstum und die Umgestaltung dieses Mäanderformenschatzes ist am stärksten ausgeprägt, dort wo der Abfluss mächtige Ausmaße einnimmt, die Sedimentablagerungen der Flussufer labil sind und die Auen- bzw. Ufervegetation nur geringfügig, infolge der Aridität der Region oder die landwirtschaftliche Nutzung, ausgeprägt ist (Schumm 2005: 27). Dabei üben stark variierende Abflussschwankungen eines Fließgewässers, deren Einschneidung von der Materialzusammensetzung des Untergrundes abhängt, einen morphologisch sehr formenwirksamen Einfluss auf die Umgestaltung von Mäanderbögen innerhalb dieser Bachbettform aus (Knighton 1998: 216).

Zu Entstehung von Mäanderbögen muss jedoch die Böschung des Fluss- oder Bachlaufes fluvial abgetragen werden, um schließlich einen Mäanderbogendurchbruch entwickeln zu lassen. Periodisch morphologische Veränderungen des Flussbettes und die Entstehung von gewundenen Talwegen sowie Stromläufen bereiten diese Erosion von Böschungen, die einen Lauf abgrenzen, vor (Knighton 1998: 220). Doch die Prozesszusammenhänge, die schließlich einen Mäanderbogen entstehen lassen, sind bisher noch nicht eindeutig belegt (Knighton 1998: 220). Zu den treibenden Kräften der Entstehung eines Mäanderbogens, die bisher untersucht werden konnten, zählen die innenwohnenden Kräfte eines turbulenten Abflusses oder die Interaktion zwischen dem Fließverhalten und der mobilen Fluss- oder Bachbettsohle, die schließlich den Prozess des Sedimenttransportes induziert (Knighton 1998: 220). Der Beweis der gegen die Hypothesen der Entstehung von Mäanderbögen infolge von Sedimenttransport-

veränderungen spricht, ist das Auftreten dieses Mäanderformenschatzes innerhalb von supraglazialen Abflüssen, wobei die Sedimente, die zur Entstehung dieser Form beitragen, in diesem Fließgewässer nur selten auftreten (Knighton 1998: 225).

Die Bach- bzw. Flusslaufform im angrenzenden Bereich eines Gletschers weist jedoch vermehrt verwilderte (braided-river) Formengestalten auf. Der Formenschatz dieser Laufform kennzeichnet sich durch ein Fließgewässer, das durch kleine Inseln oder Barren aufgeteilt ist. Das Aufteilen und Zusammenführen der einzelnen Ströme (Verwilderung) und die dadurch entstehende Konvergenz und Divergenz der Fließdynamiken führt im Vergleich zu den zuvor beschriebenen Flusstypen zu einer hohen fluvialen Aktivität (Knighton 1998: 230). Um jedoch verwilderte Bach- bzw. Flusslaufformen entstehen zu lassen, ist möglicherweise ein Auftreten von folgenden Kriterien von Relevanz:

Erhöhte Sedimentfrachten und Sedimentzuströme, Flussufer, die leicht fluvial abgetragen werden können, ausgeprägte Abflussschwankungen und erhöhte Abflussleistungen (Knighton 1998: 231-232).

Erst durch diese ineinandergreifenden Prozesszusammenhänge ist das Auftreten von Verwilderungsformen vorherrschend (Knighton 1998: 231-232). Da im Gletschervorfeld derartige Prozesszusammenhänge vermehrt auftreten, lassen sich gerade hier gehäuft verwilderte Bach- bzw. Flusslaufformen beobachten. Im Vergleich mit den mehrläufigen Fluss- und Bachsystemen mit ausgeprägten Seitenarmen (anabranching river) bilden diese verwilderten Läufe (braided river) nicht so deutlich ausgeprägte Inseln mit Vegetationsbewuchs aus (Knighton 1998: 236). Diese Inselbildungen unterliegen aufgrund der erhöhten Abflussdynamiken im Gletschervorfeld vielmehr einer deutlich höheren Morphodynamik, die gerade deshalb in sehr kurzen Zeitintervallen auch wieder gänzlich erodiert werden können (Knighton 1998).

Dieser proglaziale Bereich besteht je nach Morphologie aus freien und somit ungebundenen Sandern (sandur), die ganze Landschaftsflächen bedecken (Church 1972), sowie gebundenen Sandern (sandur), die durch die Talflanken aber auch durch Lateralmoränen innerhalb der Gebirgslandschaften blockiert sein können (Krigström 1962, Wohl 2010: 253).

2.4.3.3 Längsprofil eines Fließgewässers und das Gefälle auf der Makroebenenskala

Das Längsprofil (Gefällekurve) Fließgewässers die eines kann durch Makroebenenanalyse näher untersucht werden. Gerade im angrenzenden Bereich eines Gletschers kann das Längsprofil Hinweise auf glazifluviale und fluviale Erosionsprozesse geben. Naturgemäß ist dieses Gefälle im Gletscherrandbereich und somit zum Quellgebiet eines Flusslaufes gehörend - der stark vereinfachte Begriff des Oberlaufes verortet diesen Bereich - sehr steil, welches mit der Näherung zur relativen bzw. absoluten Erosionsbasis abnimmt (Mangelsdorf & Scheuermann 1980: 144). Zur ein Fluss- oder Bachlauf in ein ausgeglichenes oder Klassifikation kann unausgeglichenes Fließgewässer unterteilt werden, welches je nach Stadium vorwiegend konkave mit vereinzelt konvexen Formen ausbildet. Diese unterschiedlich ausgeprägte Formengestalt ist u. a. ein Resultat der im Fluss- oder Bachbett abgelagerten Hindernisse. Dadurch entsteht eine Gefälleminderung, die von den Fließdynamiken überwunden werden muss (Mangelsdorf & Scheurmann 1980: 149). Ebenfalls beeinflussen u. a. die Resistenz des anstehenden Gesteins, die Zufuhr von grobkörnigeren Sedimenten oder mächtigeren Sedimentzufuhrlasten, tektonische Aktivitäten oder die Auswirkungen von historischen Ereignissen, die eine Reduktion der Erosionsbasis zur Folge hatten, lokale Abschnitte des Längsprofiles eines Fließgewässers (Knighton 1998: 244). Insgesamt hängt die Form einer Gefällekurve eines Flusslaufes vom Geschiebezulauf und Transportvermögen (Abfluss) des Fließgewässers ab (Mangelsdorf & Scheuermann 1980: 148, vgl. Knighton 1998: 252). Dessen Fließdynamiken transportieren in steileren Flussabschnitten grobe Korngrößen der Geschiebefracht fort und können talabwärts aufgrund der abnehmenden Gefälleneigung, die mit einer abnehmenden Transportkraft des Fließgewässers einhergeht, nur noch kleinere Korngrößen bis hin zu den Sedimenten mit erhöhtem Ton-Schluffanteil transportieren (Schumm 1963). Empirische Daten und Modellierungen zeigen, dass bei einer Abnahme der Korngröße der Sohlensedimente des Laufes eine ausgeprägtere konkave Längsprofilform zu erkennen ist, während bei einer konstanten Sohlensedimentgröße oder einer Zunahme dieser flussabwärts, das Längsprofil eine geringere konkave Form bildet (Knighton 1998: 251).

Ebenso beeinflusst auch das Klima die Gefällekurve, denn in humiden Klimaten steigen im Vergleich zu den ariden Regionen die Abflussdynamiken im Flusslauf schneller an. Dies hat zur Folge, dass die erhöhten Abflussdynamiken die Fluss- oder Bachsohle der Gefällekurve in humiden Klimaten stärker abtragen. Durch diese Erosionsprozesse können sich schließlich steilere und ausgeprägtere konkave Gefälleformen bilden (Mangelsdorf u. Scheurmann 1980: 150, Knighton 1998: 252). In ariden Klimaten hingegen, reduziert sich der Abfluss flussabwärts, welches zugleich eine Reduktion der Abtragung der Fluss- bzw. Bachsohle induziert. Dies hat zur Folge, dass in flussabwärts gelegenen ariden Regionen die Gefällekurve geringere konkave Formen vorweist oder sich gar konvexe Gefällekurven des Laufes ausprägen (Knighton 1998: 252).

Insgesamt lässt sich zeigen, dass zunehmende Abflussdynamiken sowie abnehmende Sedimentkorngrößen nur eine generelle Erklärung für eine konkave Längsprofilformbildung sind. Diese Formbildungsveränderungen werden von zahlreichen Variablen beeinflusst. dessen Interaktionen in unterschiedlichen Kombinationen schließlich zu diversen Variationen von Profilformen führen können (Knighton 1998: 255). Dadurch wird deutlich, dass genaue Erklärungen für die Entstehung eines derart komplexen Formensystems im gesamten Fluss- oder Bachlauf nicht eindeutig getroffen werden können, sondern vielmehr mit den vorzufindenden Geländeformen eines Untersuchungsgebietes abzugleichen und zu verorten sind.

3 Ergebnisse der morphologischen und morphometrischen Analysen des fluvialen und glazifluvialen Formenschatzes

Anhand der im Gelände durchgeführten Feldbeobachtungen, Probenentnahmen und morphometrischen Felduntersuchungen ließen sich im März 2012 im Hauptuntersuchungsgebiet des Khumbu Himal (siehe Karte 1b) sowie von Mitte August bis Anfang September 2013 im Vergleichsuntersuchungsgebiet des Pangong Tso (siehe Karte 1c) Ergebnisse sammeln. Belegt und erweitert wurden die Ergebnisse durch Fernerkundungen und von selbst aufgenommenem sowie historischem Photomaterial (vgl. Kapitel 2, siehe Photo 1 - 150).

Die morphologischen und morphometrischen Beschreibungen sind nach den Untersuchungsgebieten und dem dort lokalisierten Gletscherbachordnungssystem geordnet: von den nördlichst gelegenen Gletscherbachquellgebieten beginnend bis zu den weiter südlich gelegenen Gletscherbachquellgebieten in den Nebentälern, die jedoch allesamt von östlicher in westlicher Richtung abgehandelt wurden. Des Weiteren wurden die morphologischen Beschreibungen in Unterkapitel mit standortspezifischen Übersichtsskapiteln sowie mit Kapiteln einer fokussierten Mikro-, Meso- und Makroebenenanalyse des Bachformenschatzes unterteilt. Dabei ist zu beachten, dass die morphologischen Beschreibungen der Übersichtsskapitel zum Verständnis des Gesamtzusammenhangs sowie einer zusätzlichen Überprüfung der Hypothesen aufgeführt wurden, jedoch nicht allesamt einzeln begangen werden konnten. Hier wurden vermehrt die Arbeitstechniken der Satellitenbildanalyse sowie die Auswertung von Photographien genutzt.

In den Unterkapiteln der Mikro-, Meso- und Makroebenenanalyse hingegen, wurden die Arbeitstechniken der morphologischen sowie morphometrischen Felduntersuchungen mit anschließender Satellitenbild- und Höhenmodellanalyse angewandt.

Um all die hier aufgeführten Formen begriffstechnisch fokussiert zu erfassen, wurden teils neue Terminologien eingeführt, die allesamt im Kapitel 2.4 definiert und erläutert wurden. Diese tragen zum Verständnis dieses Kapitels bei.

3.1 Nordöstlicher Teil des Hauptuntersuchungsgebiets Khumbu Himal: Der Oberlauf des Imja Khola

3.1.1 Die Talschaft des Imja-Lake Abflusssystems

3.1.1.1 Übersicht zum Imja Lake als Konfluenz des Lhotse Shar-, Imja- und Amphu Gletschers

Der Lhotse Shar Gletscher, welcher durch die Schneemetamorphose und an der Südflanke des Lhotse Shar (8383 m ü. NN) von Schneefällen und Wandvereisungen genährt wird, fließt mit einer Länge von ca. 5,07 km auf einer Höhe von ca. 5070 m ü. NN mit dem Imja Gletscher zusammen. Der ca. 5,76 km lange Imja Gletscher hingegen wird durch die Gletschernährung im Gletscherkar, welche durch Schnee- und Eisakkumulationen auf der Westflanke und Nordwestflanke der bis zu 7057 m ü. NN hohen Gipfel entstehen, gebildet (Photo 12). Auch der ca. 2,9 km lange Amphu Gletscher - der an der Nord-, Nordwest- und Nordostflanke durch Wandvereisungen, Eis- sowie Schneelawinen und Schneeakkumulationen in einem Gletscherkar (max. Gipfelhöhe 6246 m ü. NN) genährt wird - bildet auf einer Höhe von 5075 m ü. NN eine Konfluenz mit dem Imja Gletscher. Erst mittels der Konfluenz dieser Gletschersysteme, erhöhen sie ihre Eis- und somit auch ihre Abschmelzmächtigkeiten (Photo 13). Diese treten durch das Kalben der gesamten Gletscherfront (ca. 27° 53' 52.62'' N, 86° 55' 58.54'' E) - die eine Breite von 490 m vorweist (Messung: Google Earth) - in den Imja Lake zutage (Photo 13).

Der Gletschersee wächst seit 1956. Im Jahr 2007 wies er eine Größe von 1,03 km² auf (Watanabe et al. 2009: 256-259). Bei erhöhter Sonneneinstrahlungsintensität auf die Schuttbedeckung der Gletscherfront des Amphu, Imja und Lhotse Shar Gletschers kann das Kalben des Gletschers forciert werden. Die Folge ist, dass seit 1997 die Gletscherseewachstumsrate 0,03 km² pro Jahr beträgt (Watanabe et al. 2009: 265-266). Aufgrund der Gletscherschmelzrate unterliegt die Gletschersee-Morphologie einer vermehrten Veränderungsdynamik (vgl. Kuhle 2005: Photo 68).

Ebenso beeinflussen Eis- und Schneelawinen von den angrenzenden Moränen und Gipfelfluren des Imja-Lakes die Abflussdynamiken des Imja Khola. Aber auch

Schneeniederschläge tragen zur Nährung des Gletschersees und des am Gletscherseeausgang beginnenden Imja Khola bei.

In seiner Ost-West Ausrichtung weist der Imja Lake eine Länge von bis zu ca. 2 km auf. Die Breite von bis zu 0,6 km des Gletschersees ist durch die Seitenmoränen gebunden. Die Seespiegelhöhe befindet sich auf einer Höhe von ca. 5011 m ü. NN (Messung: Google Earth). Am Ende des großen Imja Lakes lokalisiert sich ein Abflusssystem, welches in einen angrenzenden See mündet (Pfeil (↓) in Abbildung 5; Photo 8).

Abbildung 5: Das Abflusssystem des Imja Lake (↓) mündet in den angrenzenden See; Google Earth (Bildmitte: 27°54'2.75"N, 86°54'36.24"E).

Mit einer Distanz von ca. 0,46 km gegen WSW bildet sich am angrenzenden kleinen See ein Abflusssystem (ca. 27° 53' 58.69" N; 86° 54' 26.10" E), welches schließlich auf einer Höhe von 5010 m ü. NN den Beginn des Imja Khola bildet (Photo 8). Dieser durchschneidet die Endmoräne des Gletschersees und gestaltet so einen ständigen Abfluss des Sees. Gefahren eines Gletscherseeausbruchs - da keine ständige Barriere am Gletschersee vorhanden ist, die Wasser staut und infolge dieser Prozessabfolge brechen kann - wird durch diese morphologische Gegebenheit reduziert. Jedoch kann durch das Hineinstürzen von Lawinen- und Eisbrüchen in den Imja Lake ein Wasserund Druckschwall erzeugt werden², der die angrenzende Landschaftsform umgestaltet. Es wird jedoch angenommen, dass ein derartiger Schwall nicht die gletscherseeabgrenzenden Lateralmoränen, die eine Mindesthöhe von 47 m aufweisen, überflutet. Ebenfalls wird die Gefahr durch die Seespiegelabnahme von 37 m, die zwischen 1964 und 2006 auftrat, reduziert (Watanabe et al. 2009: 265-266).

3.1.1.2 Morphologie und Terrassenbildungen des Imja Khola

Gletscherbachsystems auf der Mikro-, Meso- und Makroebene

Das zwischengeschaltete System des Imja Lakes puffert die durch die rezenten Gletscheroszillationen verursachten Abflussdynamiken sowie die Sediment- und Eismassen. Aufgrund dieser Zwischenspeicherung wird die Rekonstruktion der (gleichbedeutend fluvioglazialen) Einschneidung glazifluvialen mit: oder der glazifluvialen Akkumulationsprozesse im Gletscherbachsystem erschwert. Eine derartige Einschneidung infolge des in den See kalbenden Gletschersystems tritt demnach erst zeitlich verzögert im Gletscherbachsystem in Kraft. Aber auch Schneeund Eisakkumulationen im See, die infolge von lokalen Wetterveränderungen in Erscheinung treten sowie Evaporationsprozesse der zwischengelagerten Wassermassen, können durch Einstrahlungsveränderungen beeinflusst werden. Einen direkten Bezug zu den rezenten Gletscheroszillationen kann ein glazifluvialer Erosionsoder Akkumulationsprozess im Gletschervorfeld daher nicht haben. Vielmehr gibt die fluvioglazialgeomorphologische Sohlenformengestalt im Gletscherbachbett Auskünfte über die kurzfristig vergangenen Abflussraten des Gletschersees wieder, der wiederum hauptsächlich durch die Gletscheroszillationen beeinflusst wird. Daher ist der Gletschersee, der die Wasser- und Eismassen zwischenspeichert, als Störfaktor zu betrachten.

Die erhöhten Abschmelzraten des in den See mündenden Gletschersystems haben zur Folge, dass der Imja-Lake wächst (Watanabe et al. 2009: 265). Daraus resultiert eine Steigerung des Gletscherseeabflusses sowie der glazifluvialen Einschneidung. Eine

² Ein derartiger Pozesszusammenhang konnte während einer Begehung der Talschaft des Buri-Gandaki am 21.04.08 beobachtet werden (Tombrink 2017).

zunehmende Gefahr eines womöglich auftretenden Gletscherseeausbruches (GLOF), die durch eine Größenzunahme des Gletschersees bedingt wird (vgl. Bolch et al. 2008a), kann durch den vom Imja Lake gebildeten Abfluss des Imja Khola Gletscherbaches (Photo 8) jedoch erheblich reduziert werden.

Mittels der Mikroebenenanalyse lässt sich folgendes verdeutlichen: Der Seeabfluss schneidet in die angrenzende Endmoräne und Grundmoräne ein und bildet direkt nach dieser zuerst eine Kaskadensohlenform (cascade), die sich dann mittels einer Morphogenese in ein fortgeschrittenes Entwicklungsstadium - morphologisch grenzt die Abfolge von Stufen-Becken Sequenzen (step-pool) an dieser an - fortentwickelt und somit die Bachlandschaft umformt (Photo 1, 2, 4, 5, 6, 7, 8, 9 und 10). Morphometrische und morphologische Untersuchungen wurden am 15.03.2012 auf einer Höhe von ca. 4984 m ü. NN (4975,6 m, GPS-Messung), kurz unterhalb des glazifluvialen Einschnittes des Endmoränenkomplexes - die eine Abflussneigung von 14 % bis 15 % vorweist durchgeführt. An diesem Untersuchungsstandort (ca. N27° 53,941' E086° 54,332', GPS-Messung) wurde eine Gletscherbachbreite von 3 m bis 4 m und eine Gletscherbachtiefe von 0,5 m gemessen (Photo 1). Die Bachmorphologie zeigt, dass die chaotische Anordnung von Stufen eine Länge von 3 m bis 4 m und eine Tiefe von 20 cm bis 40 cm vorweisen (Photo 1). Die Becken - mit einer Länge 1 m bis 2 m und einer Tiefe von 40 cm bis 50 cm - sammeln die abfließende Gletschermilch (Photo 1). Die sich hier noch im fortgeschrittenen Entwicklungsstadium zu Stufen-Becken Sequenzabfolgen (step-pool) formende Gletscherbachsohlenform war zu dieser Jahreszeit noch von Eismassen überprägt (Photo 1, 4, 5 und 6). Die Wasserkörpertemperatur betrug nur 1,6 °C bis 1,7 °C und verdeutlicht somit den nahen Abstand zum Gletschersee (Photo 8). Ebenfalls lassen sich anhand von Verfärbungen an Blockkörpern mit Größen von bis zu 3 m bis 7 m und der vorzufindenden Auenvegetation Hochwassermarken rekonstruieren. Diese lokalisieren sich ca. 2 m bis 3 m oberhalb des rezenten Wasserpegelstandes, also mindestens ca. 1,5 m oberhalb der ersten glazifluvial geprägten Terrassenschotterebene (s. u.). Die Abflussdynamiken des rezenten Gletscherbaches, deren Wasseroberfläche je nach Lokalität eine Breite von ca. 3 m bis 5 m vorweist, bilden schließlich durch Tiefenerosionsprozesse die erste glazifluviale Terrassenordnung aus und schneiden diese weiter ein, was schließlich zu

einer Genese einer weiteren Terrassenordnung führt. Dies lässt sich ebenso mittels der Sedimentprobe verdeutlichen (Diagramm 1), die ca. 1 m oberhalb des rezenten Bachlaufes am Untersuchungsstandort aus der 1. Terrassenschotterebene entnommen wurde (Photo 3) und eine glazifluviale Sortierung vorweist.

Diagramm 1: Korngrößen vom 15.03.12. Anhand der Korngrößenzusammensetzung kann verdeutlicht werden, dass dieser glazigen akkumulierte Moränenkörper während des Gletschereisrückzuges glazifluvial ausgewaschen wurde. Die Maxima dieser Sedimentprobe sind in der Grobsand- sowie Mittelsandfraktion zu finden. Der Sortierungskoeffizient dieser Sedimentprobe weist einen Wert von 2,16 vor.

Erst durch den weiteren Ausschluss der Beeinflussungsprozesse (s. Kap. 2), die eine Terrassengenese im Gletscherseerandbereich beeinträchtigen können, lassen sich Einschneidungsintensitäten und Terrassenordnungen für das angrenzende Gletschervorfeld, die den Imja Khola bilden, herausarbeiten. Auf diese Beeinflussung wird im Folgenden näher eingegangen:

Die hier rekonstruierten glazifluvial geformten Terrassenordnungen entstanden vermehrt durch historische Gletscherschmelzraten. Nahe dieses Untersuchungsstandpunktes (siehe Karte 3a und 3b (Anhang)), der im Zeitraum der 1950er Jahre³ bis kurz vor dieser Lokalität noch von einer mächtigen Imja Gletscherfront bedeckt wurde (Khumbu Himal Karte nach Schneider 1988; Kuhle 2005; vgl. Byers 2007: 24), konnte sich dieser Formenschatz durch glazifluviale Erosionsprozesse entwickeln. Dieser

³ Die Kartierungen und Feldbegehungen fanden im Zeitraum von 1955 bis 1963 statt (Schneider 1988).

Bereich des rekonstruierten Gletscherbachbettes wurde einst auch von den Eismassen überlagert (Kuhle 2005). Im Anschluss des Gletschereisstadiums in den 1950er Jahren unterlag die Gletschersystemkonfluenz des Lhotse Shar, Imja sowie Amphu Gletschers einer Längen- und Mächtigkeitsreduktion, was schließlich zur Bildung des Imja Gletschersees führte. Infolgedessen wurden die Gletscherschmelzraten des zuvor genannten Gletschersystems im Imja Lake gepuffert und konnten erst im Anschluss durch den angrenzenden Gletscherbachabfluss Imja Khola die Talschaft hinabströmen und somit diese Terrassenabfolgen weiter ausarbeiten. Es ist jedoch anzunehmen, dass diese erste Terrassenschotterebene der insgesamt maximal vier glazifluvialen Terrassenordnungen (s. u.) auch durch periodisch auftretende Hochwasserereignisse, die mittels verstärkter Gletscher- sowie Eisschmelze entstehen können, überflutet wird. Nicht nur ein glazifluvialer Einschnitt erfolgte durch die hier historischen Abflussdynamiken, sondern auch gletscherbachabflussbedingte Umlagerungsprozesse der hier 1850 bis 1950 glazigen abgelagerten Grundmoränensedimente und Moränenkörper (Kuhle 2005) konnten durch diese Prozesskette ebenso forciert werden. Nach Kuhle lassen sich diese Moränenkörper in das Stadium X bis XI einordnen (Kuhle 2005: Photo 68: 413 und Table 1: 263; vgl. Tabelle 17). Im Anschluss dieser Ausspülung der feineren Moränensedimente wurden sie mittels des Fließgewässers bachabwärts forttransportiert und teils im anschließenden Bachabschnitt durch Gleichgewichtsveränderungen des Bachlaufes akkumuliert (Photo 11). Eine Aufschotterung von Sedimenten mittels glazifluvialer Dynamiken des rekonstruierten Imja Tse Gletscherbaches (siehe Karte 3a und 3b (Anhang)), dieses lässt sich auch als ein konkav geformtes Terrassenschotterebenen-Sammelbecken beschreiben, kann nicht ausgeschlossen werden (Photo 19, 20 und 21). Daher trug womöglich der Zustrom des Imja Tse Gletscherbaches, der u. a. durch die in den Jahren 1955 bis 1963 kartierte Imja Schnee- bzw. Eisseenausprägung genährt wurde (Schneider 1988), ebenso zur Genese der rekonstruierten Terrassenschotterebenen bei. Auch die rezenten sowie historischen Imja Khola Abflusszuströme konnten zu Veränderungen der Terrassenmorphologie beitragen. Dazu zählt u. a. der auf einer Höhe von ca. 4961 m ü. NN (27° 53' 57.71" N, 86° 54' 06.54" E) zufließende Bach, welcher sich auf der orographisch linken Talflanke ausprägt. Durch diesen, aber auch durch den Imja Tse

Gletscherbach, wird das gesamte Abflussverhalten des Imja Khola Gletscherbaches beeinflusst, was zugleich die Möglichkeit einer Rekonstruktion der Terrassengenese - die sich hier auf die Gletscherbachschmelzprozesse beziehen - um ein Vielfaches erschwert (vgl. Kapitel 2).

In diesem oberen Gletscherbachlaufabschnitt (siehe Abbildung 6) variiert das rezente Bachbett mit Breiten zwischen 3 m bis 5 m. Im Anschluss lagern sich hier folgende glazifluvial geprägte Terrassenordnungen an (Photo 2, 8, 9 und 10; Karte 3a und 3b (Anhang)): Die erste angrenzende Terrassenschotterebene, die ca. 0,5 m bis 1 m oberhalb des rezenten Bachlaufes ihre Gesamtausdehnung einnimmt, ist sehr kleinräumig. Ihre Breite variiert zwischen ca. 7 m bis 19 m. Angrenzend lokalisiert sich die zweite glazifluvial geformte Terrassenschotterebene, die je nach Lokalität Breiten zwischen ca. 20 m bis 45 m ausformt. Innerhalb dieser lassen sich teils ausgeprägte Vegetationsbewuchszonen nachweisen. Direkt im Anschluss ist eine dritte glazifluviale Terrassenschotterebene zu erkennen. Die Terrassenschotterebenenbreite in diesem Untersuchungsabschnitt schwankt sehr stark zwischen ca. 23 m bis ca. 160 m, was sich durch den im Zentrum der Schotterebenenlandschaft glazigen akkumulierten Moränenkörper erklären lässt. der die Breite dieser Ausprägung der Terrassenschotterebenen abgrenzt. Im Randbereich der abgrenzenden Talflanken und des Moränenkörpers sind zudem Formenrelikte einer vierten glazifluvialen Terrassenordnung zu erkennen. Ob diese jedoch ausschließlich ein Resultat der Abflussdynamiken ist oder ob die Formengenese sich auf andersartige Prozesse zurückführen lässt, kann nicht eindeutig belegt werden. Morphologisch ähnelt diese Form jedoch einer glazifluvialen buckelartigen Terrassenschotterfläche. Da der orographisch linke Nebenbach während der Feldbegehung von Eis und Schnee überprägt wurde, die ebenfalls einer Schmelze unterliegen, kann angenommen werden, dass sich unterhalb dieses Bachlaufes ebenfalls Terrassenschotterebenen der Ordnungen Eins und Zwei lokalisieren. Anhand der Morphologie konnte zumindest eine dieser Terrassenschotterebenen im periodischen Nebenbach rekonstruiert werden (Photo 10).

Aufgrund von Verwitterung und Erosionsprozessen (vgl. Faktoren- und Prozessmodell im Kapitel 2), die jene Terrassenordnungen exogen verändern können, wird das

Auffinden von historisch weiter zurückreichenden Terrassenformationen erschwert oder vollkommen verhindert. Ebenso können die hier in situ auftretenden Verwitterungs- und Erosionsprozesse die hier aufgeführten Terrassenreste umlagern und morphologisch hier verändern. Gerade anhand der rekonstruierten vierten buckelartigen Terrassenschotterfläche können derartige Formenveränderungen nicht ausgeschlossen werden (Photo 10; Karte 3a und 3b (Anhang)). Ein weiteres Formenmerkmal in diesem Untersuchungsgebiet ist, dass die nicht abgetragenen Moränen den Gletscherbachlauf des Imja Khola in ihrer Gesamtheit abgrenzen. Die Entstehung dieser lässt sich durch die vorhergehenden Vergletscherungen und der dabei in Kraft getretenen glazigenen Akkumulationen Sedimentkörpern erklären, die Anschluss von im des Abschmelzprozesses diesen typischen Formenschatz hinterließen (vgl. Kuhle 2005). Daraus folgt, dass sich ebenso durch die eintretenden Gletscheroszillationen ein Sanderformenschatz - der hier von der ersten gebundener glazifluvialen Terrassenordnung bis maximal zur vierten glazifluvialen Terrassenordnung unterteilt Infolgedessen lassen wurde ausprägen konnte. sich anhand dieser Terrassenanordnungen die Gletschereisrückzugsstadien verdeutlichen.

Mittels der Mesoebenenanalyse (vgl. Kapitel 2) lässt sich im Gletscherseerandbereich ein einzelner Bachlauf, der die erste Terrassenschotterebene erodiert, erkennen. Lediglich ist dieser nur von einem Endmoränenkomplex vom aktuellen Gletschersee getrennt, der jedoch durch den glazifluvialen Einschnitt der Endmoräne (Photo 1, 2 und 4) entwässert wird. Nach dem Einschnitt der Endmoräne und der darauffolgenden fortgeschrittenen Entwicklungsphase, von einer chaotischen Kaskaden-Seguenzabfolge (cascade) zur Stufen-Becken-Sequenzabfolge (step-pool), nimmt durch die abnehmende Fließgewässerneigung die Kraft des Fließgewässers und somit die glazifluviale Erosion ab. Eine Steigerung der Fließgewässerkraft wird durch die Sedimentation der zuvor aufgenommenen Fracht in Form von Inselbildungen (27° 53' 58,55" N, 86° 54' 15,54" E, 4977 m ü. NN) und Mäandrierungen (27° 53' 56,41" N, 86°54' 18,50" E, 4976 m ü. NN), die sich durch einen pool-riffle Formenschatz mit steppool Ausprägungen sohlenmorphologisch erkenntlich machen (siehe Karte 3a, 3b und 3c (Anhang); Photo 9), freigesetzt. Ebenfalls liefert dieser Formenschatz Hinweise (vgl.

Schumm 2005: 27) über die sehr stark ausgeprägten Abflussdynamiken in diesem Grenzbereich zum Gletschersee. Weiter talabwärts wird der einzelne Lauf durch weitere Zuflüsse aus den lateralen Bereichen genährt, die dazu führen, dass sich ein mehrläufiges verwildertes Bachsystem (braided river) ausprägt, bzw. ausprägen konnte (27° 54' 00,59" N, 86°53' 49,31" E, 4917 m ü. NN) (Photo 11). Ebenfalls ist es für diesen hier zu beobachtenden Formenschatz eines "braided river" typisch, dass sich die inhomogenen Läufe (channels) durch die Abflussschwankungen verändern und unterschiedlich intensiv Sedimente akkumulieren, die schließlich in Form von kurzweilig existierenden Inselbildungen zu Tage treten können (vgl. Knighton 1998) (siehe Abbildung 6).

Abbildung 6: Lauf des Imja Khola Gletscherbaches. Die beiden Pfeile (↓) zeigen den Beginn und das Ende des untersuchten Bachabschnittes an; Google Earth (Bildmitte: 27°53'55.31"N, 86°53'47.50"E).

Mithilfe der Makroebenenanalyse lassen sich folgende morphometrischen Veränderungen im Gletscherbachlauf des Imja Kholas beobachten, die mithilfe eines Längsprofiles des Bachlaufes in den Höhen zwischen ca. 5005,24 m ü. NN (WGS 84/Pseudo Mercator: E 9674432,2795497600 N 3236323,2241792300; umgewandelt in WGS 84: E 86.906903819 N 27.8996134227; siehe Tabelle 1) und ca. 4827,05 m ü. NN (WGS 84/Pseudo Mercator: E 9671448,7718703100 N 3236091,0182371300;

umgewandelt in WGS 84: E 86.8801025135 N 27.897769917; siehe Tabelle 1)⁴ analysiert wurden (siehe Kapitel 2) (Abbildung 7):

Zwischen den Höhen von 5005 m bis 4979 m ü. NN, im Quellbereich des Imja Khola, weist der Gletscherbach das höchste Bachneigungsgefälle von 10,5° bis maximal 13,79° vor. Dies verdeutlicht die hier glazifluvial intensive Einschneidung in den Endmoränenkörper nahe des Imja Lakes (Photo 1, 4, 5, 6, 7 und 8). Im anschließenden Bereich dieses Moränenkomplexes reduziert sich das Gefälle auf bis zu 0,26°. Die Abnahme geht einher mit einer Reduktion der glazifluvialen Tiefenerosion, die sich auch anhand der sich verändernden Bachbettsohlenmorphologie verdeutlichen lässt (Photo 2, 9 und 10). Im Anschluss steigt das Bachlängsprofil auf eine Steigung mit bis zu 5,86° an und ergibt dadurch eine Messhöhe von 4971 m ü. NN. Diese reduziert sich jedoch wieder im angrenzenden Bereich. Die hier gemessene Steigung lässt sich auf die hier auftretenden Höhenangabenfehler des SRTM-Höhenmodelles sowie der fehlerhaften Bachprofilerfassung zurückführen. Die Bachneigung des darauffolgenden Längsprofilbereiches erhöht sich auf einen Neigungswert von maximal 11,80° und ergibt dadurch eine gemessene Höhe von 4964 m ü. NN. Dieses zunehmende Gefälle verdeutlicht die hier auftretenden Tiefenerosionsprozesse des Bachlaufes. Ebenso lassen sich in diesem Bereich kleinräumige Stufenformen erkennen (siehe Abbildung 7), die jedoch auch durch die o. g. technischen Fehler entstanden sein könnten. Weiter bachabwärts lässt sich auf einer Höhe von 4961 m ü. NN ebenfalls ein Höhendatenfehler sowie Bachprofilerfassungsfehler erkennen, der hier mit einer Steigung von 10,16° angegeben wird. Im angrenzenden Abschnitt unterliegt der Bachlauf Neigungsschwankungen mit einem überwiegenden Gefälle von maximal 10,95°. Vereinzelte Höhenmodell-Ungenauigkeiten lassen sich mit Steigungen von maximal 5,62° in diesem Abschnitt verdeutlichen. Bis zu einer Höhe von 4909 m ü. NN reduzieren sich die Gefälleschwankungen auf 0,03°. Anhand des zuvor beschriebenen Bachabschnittes lässt sich insgesamt eine konvexe Längsprofilform erkennen (vgl. Abbildung 7). Dieser glazigen und glazifluvial überprägte Ablagerungskörper entstand durch die Akkumulation von Moränenmaterial infolge von Gletscherschwankungen, die

⁴ Die Koordinatenangaben können z. B. - wie auch in allen anderen Untersuchungsgebieten – in Google Earth oder Google Maps übertragen und genutzt werden, um die hier aufgeführte Morphologie einzusehen.

eine Vollform einer Moräne entstehen ließ, sowie durch die vermehrte glazifluviale Schuttakkumulation infolge von Gletscherschmelzprozessen. Diese lagerten sich im Anschluss des rezenten Endmoränendurchbruches im Quellgebiet des Imja Khola ab und veränderten somit das Kraft-Last Verhältnis. Rezent wurde dieser ebenso durch die Wasserfließdynamiken eingeschnitten.

Der angrenzende Bachbereich zwischen 4909 m und 4900 m ü. NN weist überwiegend geringe Bachneigungsschwankungen vor, vereinzelt jedoch mit einem maximalen Gefälle von 4,32° bis 7,84°. Ebenso lassen sich in diesem Abschnitt aber auch Steigungen erkennen, die hier einen Maximalwert von 6,06° erreichen. Erklären lassen sich diese durch eine vermehrte Sedimentakkumulation oder infolge von falschen bzw. unzureichenden Höhendaten sowie den bereits erwähnten möglichen Bachprofilerfassungsfehlern. Insgesamt nimmt dieser Abschnitt weitestgehend eine die ebenso zur Formung einer flachen und ebenen flache Form ein, Bachbettmorphologie beitragen kann (siehe Abbildung 7).

Angrenzend an diese flache Ebene erhöht sich das Gefälle des Bachsohlenprofiles in den Höhen zwischen 4900 m und 4863 m ü. NN auf maximal 10,52°. Vereinzelte Steigungen von maximal 11,58° sind hier ebenfalls gemessen worden. Diese lassen sich ebenso auf die o.g. Datenfehler zurückführen. Wie auch in den bachaufwärts gelegenen Abschnitten zu beobachten, lässt sich insgesamt auch hier eine konvexe Längsprofilform erkennen, die auf einen ehemals akkumulierten Moränenkörper hindeuten wird auch durch die hier auftretenden kann. Dieser rezent Gletscherschmelzprozesse (Watanabe et al. 2009) glazifluvial eingeschnitten und abgetragen.

Weiter bachabwärts, zwischen 4863 m bis 4827 m ü. NN schwankt das Gefälle des Gletscherbaches und formt ein Maximalgefälle von 10,75°. Hier lassen sich vereinzelte Steigungen von maximal 4,22° erkennen, die auch auf einen kleinräumigen Akkumulationskörper einschließlich auftretende Höhendatenmodellfehler sowie Bachprofilerfassungsfehler hindeuten. Die hier kleinräumig ausgeprägte konvexe Form, verdeutlicht den möglichen Moränenkörper. Der sich am Chukhung Gletscher bildende Gletscherbach fließt im Anschluss in den Imja Khola und bildet dort eine Konfluenz. Dieser Gletscherbachzustrom erhöht durch den Zusammenfluss den Gesamtabfluss

des Imja Khola. Demzufolge lässt sich ab diesem Konfluenzbereich der glazifluviale Formenschatz nicht mehr allein auf die Abflussdynamiken des Imja Khola Gletscherbaches zurückführen.

Abbildung 7: Längsprofil des Imja Khola Gletscherbaches nach SRTM-Höhenmodell.

Insgesamt sich mittels der Anwendung lässt der Mikro-, Mesound Makroebenenanalyse zeigen, dass die Morphologie des Gletscherbachlaufes sowie die Terrassenordnungen maßgeblich von holozänen aber auch rezenten Gletscherschwankungen des Imja Gletschers mindestens beginnend ab den 1950er Jahren (vgl. GLIMS: Racoviteanu & Bajracharya 2008) (nach Kuhle 2005: Stadium XII; vgl. Tabelle 17) beeinflusst wurden. Historische Photographien aus dem Jahr 1956 von Fritz Müller (Byers 2007), Kartierungen aus den Jahren 1955 bis 1963 (Schneider 1988) sowie die Formengestalt (Photo 18) der noch in den 1950er Jahren überlagerten Imja

Tse Schnee- bzw. Eisseenausprägung (Schneider 1988) verdeutlichen die damalige Mächtigkeit der Imja Gletschereiszunge. Mithilfe dieser Datenbasis lässt sich schließlich der Beginn der historischen glazifluvialen Einschneidung des hier untersuchten Bachlaufes ausfindig machen. Infolge der nahe des Untersuchungsstandortes Imja-Gletschereisschmelze (GLIMS: freigesetzten intensiven Racoviteanu & Bajracharya 2008) wurden im Anfangsstadium dieser die Erosionsleistungen des Imja Khola ohne Seezwischenspeicherung maßgeblich forciert und trugen somit zur Ausarbeitung der Terrassenlandschaft bei. In der Folgezeit ab 1956/57 ließen diese den Gletschersee Imja Lake entstehen (Watanabe et al. 2009), der wiederum die Gletscherschmelzabflussdynamiken puffert. Diese hier freigesetzten Prozesse konnten die zuvor vom Gletscher akkumulierten Grundmoränenschließlich sowie Ufermoränenakkumulationen, nach Kuhle einzuordnen in das Stadium X bis XI (Kuhle 2005: Photo 68: 413 und Table 1: 263; vgl. Tabelle 17), glazifluvial einschneiden und umlagern. Daraus konnte sich die Formengestalt der hier rekonstruierten maximal vier glazifluvialen Terrassenordnungen bilden. Sie sind demnach das Resultat der ineinander verschachtelten holozänen Gletscherschwankungen. Infolge der durch die Gletscherschmelze freigesetzten erhöhten Abschmelzprozesse unterliegen die hier klassifizierten Kaskaden-Sequenzabfolgen (cascade) im Bachbett einer intensiven Entwicklungsdynamik, die sich von einer chaotischen Ablagerung (cascade) zu einer chaotisch sortierten Ablagerung fortentwickeln (fortgeschrittenes Entwicklungsstadium) und hier schließlich die Übergangsphase zu Stufen-Becken Sequenzabfolgen (step pool) im Bachlauf ausprägen. Die Dauer dieser Genese bezieht sich lediglich auf den gletschereisfreien Zeitraum von ca. 52 bis 60 Jahren (vgl. Gletschereisstände nach GLIMS: Racoviteanu & Bajracharya 2008; Schneider 1988).

Des Weiteren lässt sich anhand der Gletscherbachmorphologie zeigen, dass die Abflussdynamiken starken Schwankungen unterliegen. Dies lässt sich durch die Sedimentakkumulationen, die nur durch erhöhte Abflussdynamiken entstehen können, sowie durch den hier vorgefunden verwilderten Bachbettformenschatz (braided river) verdeutlichen. Mittels des Gletscherbachlängsprofiles lassen sich treppenstufenartig angeordnete konvexe Formengestalten erkennen, die vermutlich ein Resultat der glazigenen Akkumulation und der anschließenden glazifluvialen Sedimentation sind. Die

teils intensiven Steigungsraten im Längsprofil verdeutlichen jedoch auch die ungenauen Daten, die auf einem fehlerhaften SRTM-Höhenmodell sowie einer ungenauen Bachprofilerfassung basieren.

3.1.1.3 Übersicht zum historischen Gletscherbachsystem des Island Peak und Lhotse Gletschers

Zwischen der orographisch linken Ufermoräne, die den Imia Lake abgrenzt und dem Imja Tse Peak (Island Peak) lokalisiert sich eine Zwischentalscheide, die auch als Eisrandtal (gleichbedeutend mit: Ufermoränental) definiert wird (Iturrizaga 2007). Die Talsohle dieser trägt periodisch Entwässerung zur der zwei Imia-Tse-Südhängegletscher bei (ca. 27° 54' 12.03" N, 86° 55' 15.56" E, 5045 m ü. NN & ca. 27° 54' 08.92" N, 86° 55' 47.61" E, 5107 m ü. NN). Der weiter östlich gelegene Gletscher weist derzeitig eine Länge von ca. 1 km und der westlich Gelegene eine Länge von ca. 0,24 km auf (Photo 16). Der durch die Eisabschmelzprozesse entstandene Gletscherbachlauf war jedoch während der Begehung dieser Talschaft versiegt (Photo 14). Durch die Abschmelzraten der sich auf der Südflanke befindenden Imja Hängegletscher (Photo 16), die seit den 1950er Jahren (Schneider 1988; vgl. Kuhle 2005: Photo 68) zur Wasserfreisetzung beitrugen, konnte diese zwischengeschaltete (Photo Eisrandtalschaft fluvial umgestaltet werden 14). Infolge dieser Prozesszusammenhänge entwickelte sich am Talschaftsgrund eine kleinräumige Abflussrinne (vgl. Hambrey et al. 2008). Aufgrund von deutlich weiter talabwärts reichenden Gletscherständen vor dem Zeitraum der 1950er Jahre wurde aber auch einst diese Zwischentalschaft von Eismassen überlagert (Kuhle 2005). Bestätigen lassen sich diese aufeinander aufbauenden glazigenen Akkumulations- sowie fluvialen Erosionsprozesse anhand der glazigen gebrochenen und anschließend fluvial zugerundeten Geschiebe im historischen Bachbett (Photo 17) und der historisch fluvialen Auswaschung des Sedimentkörpers innerhalb der Sedimentprobe 2 (Photo 15, Diagramm 2).

Diagramm 2: Korngrößen vom 16.03.12. Mittels dieser Korngrößenzusammensetzung lässt sich zeigen, dass die Sedimentkörper des Eisrandtales im Anschluss einer glazialen Ablagerung fluvial sortiert und ausgewachen wurden. Die Korngrößenverteilung lässt sich mit einem Sanderkörper abgleichen. Die Maxima dieser Sedimentprobe sind mit 50,4 % in der Feinsand- und mit 26,6 % in der Mittelsandfraktion zu finden. Der Sortierungskoeffizient dieser Sedimentprobe weist einen Wert von 1,87 vor.

Weiter talabwärts auf einer Höhe von 5035 m ü. NN konnte ein historischer Gletscherbachzufluss des Lhotse Gletschers, der in das historische Gletscherbachabflusssystem in dieser Talschaft mündet, rekonstruiert werden (ca. 27° 54' 24.70" N, 86° 54' 39.67" E). Beide Abflusssysteme sammelten sich in einem kleinen Sammelbecken (Photo 18), das anhand von Feinsedimentablagerungen ausfindig gemacht werden konnte. Durch diese periodischen Abflussdynamiken bildete sich ein kleiner See, der vermutlich vereinzelt auch mit Eis- und Schneemassen überprägt wurde (Schneider 1988). Mittels einer Abflussrinne - eingeschnitten zwischen zwei Moränenablagerungen - konnte sich dieser schließlich in den Imja Khola entleeren (Photo 19, 20 und 21). Dieses zum derzeitigen Zeitpunkt versiegte Abfluss-verbindungsglied lässt sich durch die glazifluviale Sortierung der Korngrößenklassen der Sedimentprobe 3 (Photo 21, Diagramm 3), der glazifluvialen Zurundung der Gesteine (Photo 20 und 21) und der Feinsedimentablagerungen an der Talsohle ausfindig machen.

Diagramm 3: Korngrößen vom 16.03.12. Die Korngrößenzusammensetzung dieser Sedimentprobe aus einem Abflussverbindungsglied verdeutlicht, dass die hier ehemals akkumulierten Moränensedimente einer glazifluvialen Umlagerung sowie Auswaschung unterlagen. Die Maxima dieser Sedimentprobe sind mit 26,4 % in der Mittelsand- und mit 23,3 % in der Feinsandfraktion zu finden. Der Sortierungskoeffizient dieser Sedimentprobe weist einen Wert von 3,35 vor.

Ebenso erzeugte die hier morphologisch zu erkennende Hangneigung einen fluvialen Einschnitt. Die Dauer der fluvialen Erosion lässt sich jedoch nicht rekonstruieren. Nachträglich wurde diese Talschaft durch Hangrutschungsprozesse und Felsstürze mit grobem Blockwerk beladen. Dadurch ergeben sich chaotische Ablagerungen, die die glazifluvial sortierten Korngrößenklassen überlagern (Photo 20 und 21). Infolge dieses hier rekonstruierten Zuflusses wurde schließlich der Gesamtabfluss des Imja Khola Geltscherbaches erhöht und somit auch die Erosionsprozessraten dieses Gletscherbachsystems verstärkt.

3.1.1.4 Übersicht zum orographisch links gelegenen Zuflusses zum Imja Khola Gletscherbach

Südlich des Untersuchungstandpunktes am Imja Khola Gletscherbach, der am 15.03.2012 aufgesucht wurde, lokalisiert sich ein kleines periodisches Bachsystem. Während der Untersuchungszeit war dieser Lauf von einer Schnee- und Eisschicht überprägt (Photo 10). Genährt wird dieses kleine Bachsystem durch Akkumulationen sowie Schmelzprozesse von Schnee- und Eismassen, die vom angrenzenden

westlichen Abschnitt der Nordflanke des 6238 m ü. NN hohen Gipfels ohne namentliche Kennzeichnung (ca. 27° 53' 00.23" N, 86° 54' 46.54" E) hinabrutschen oder stürzen. Aber auch in situ abschmelzende Wandvereisungen und Schneeakkumulationen tragen zur Nährung dieses kleinen Bachlaufes bei. Schließlich formen die freigelassenen Wassermassen der Schnee- und Eisschmelze eine Erosionsrinne, die sich ab einer Höhe von ca. 5030 m bis 5090 m ü. NN an der Nordflanke lokalisiert (ca. 27° 53' 44.79" N, 86° 54' 31.51" E) (Photo 10). Durch vermehrte fluviale Erosion schneidet der periodische Bachlauf in das Lockermaterial ein und formt die dadurch entstandene Erosionsrinne noch deutlicher aus. Die freigelassenen Schmelzwässer fließen hangabwärts und münden schließlich ab einer Höhe von 4961 m ü. NN in den Imja Khola Gletscherbach (ca. 27° 53' 57.67" N, 86° 54' 06.53" E).

Die Abflussdynamiken dieses kleinen Gletscherbaches sind als gering einzustufen und erhöhen somit nicht maßgeblich den Abfluss des Imja Khola Gletscherbach. Gerade das am 15.03.2012 aufgesuchte Untersuchungsgebiet wird nicht durch die Abflussdynamiken dieses kleinen Gletscherbachlaufes beeinträchtigt, da es erst weiter talabwärts vom Untersuchungsstandort gelegen in den Imja-Khola mündet. Demnach kann es als beeinflussende Störvariabel am Untersuchungsstandort ausgeschlossen werden.

3.1.1.5 Übersicht zum Gletscherbachsystem des Chukhung Gletschers und des Endmoränendurchbruches

Die Wandvergletscherung des Chukhung Gletschers wird durch Wandvereisungen, Lawinen- und Eisabbrüche sowie der Metamorphose von Schnee zu Eis an der Nordostwand, die aus eine Gipfelflur mit Höhen bis zu 6430 m ü. NN (vgl. Khumbu Himal Karte nach Schneider 1988) gekennzeichnet ist, genährt (Photo 22, 23, 24 und 25). Beginnend vom Eisabbruch bis zum nach Nordwesten abfließenden Gletscherzungenende misst der Gletscher eine Länge von ca. 2,63 km. Mit einer Gletscherbreite von ca. 2,65 km übertrifft diese sogar die Länge des Gletschers. Die Wandvereisungen reichen bis zur Höhe der Kammlinie, die hier durch die Gipfelflur geprägt wird. Die Gletscherzunge hingegen endet nahe einer Höhe von ca. 5040 m ü. NN (27° 53' 09.62"

N, 86° 53' 29.26" E), die hier zum Teil noch von einer Obermoräne überprägt wird (Pfeil (↓) in Abbildung 8).

Abbildung 8: Das Gletscherzungenende (↓) mündet in das angrenzende Gletscherbachsystem des Chukhung Gletschers; Google Earth (Bildmitte: 27° 53' 12.67" N, 86° 53' 27.97" E).

Hier setzt die Schmelze dieser Gletscherzungen Wassermassen frei, die zu einer Ausformung eines Gletscherbaches beitragen und diesen bereits in den vergangenen Jahrzehnten umgestalteten. Nahe den Gletscherzungenenden bildeten sich insgesamt fünf respektive vier Gletscherseen. Auf historischen Satellitenbildern (Pfeil (\downarrow) in Abbildung 9, Satellitenbild: 24.05.2009) grenzt einer dieser Seen jedoch direkt an die Talvergletscherung des Ama Dablam Gletschers an, der jedoch in der Folgezeit von Eismassen und Obermoränenmaterial überlagert wurde (Pfeil (\downarrow) in Abbildung 10, Satellitenbild: 13.01.2014).

Abbildung 9: Ein Gletschersee des Chukhung Gletschers (↓) grenzt am 24.05.2009 direkt an die Talvergletscherung des Ama Dablam Gletschers; Google Earth.

Abbildung 10: Ein historischer Gletschersee des Chukhung Gletschers (↓) (siehe Abbildung 9) wurde von Eismassen und Obermoränenmaterial des Ama Dablam Gletschers überlagert; Aufnahme vom 13.01.2014; Google Earth.

Durch all diese Gletscherseen werden die Wasserabschmelzmassen zwischengespeichert, bis sie schließlich die Talschaft hinabfließen und diese umformen können (Photo 22 und 24, siehe Abbildung 11). Die Gletscherschmelzprozesse formen ein verzweigtes Abflusssystem aus, welches die glazigen geformte Landschaft fluvial ausräumt. Insgesamt bilden die Abflussdynamiken von sechs Abschmelzrinnen den angrenzenden Gletscherbach, dessen Breite zwischen ca. 4 m bis 6 m variiert. Dabei erodiert dieser den Grundmoränenkörper und mäandriert gegen Norden (Abbildung 8). Kurz hinter dieser Einschneidung bildet sich die erste Terassenschotterebene aus. Diese besteht hier vermehrt aus Blockschutt und Moränenakkumulat. Die Breite dieser glazifluvialen Terassenschotterebene variiert zwischen ca. 9 m bis 20 m (Messung: Google Earth). Weiter talabwärts bildet dieser Bachlauf einschließlich der ersten Terrassenschotterebene einen gebundenen Sander (Fächer) aus. Der Bachlauf mündet schließlich in einen historischen Gletschersee, der noch teilweise mit einem Wasserkörper gefüllt ist (Pfeil (\downarrow) in Abbildung 11).

Abbildung 11: Ein historischer Gletschersee des Chukhung Gletschers (↓) sowie das angrenzende Gletscherbachsystem vom 24.05.2009; Google Earth (Bildmitte: 27°53'31.08" N, 86°53' 12.86" E).

Das im Anschluss dieses Sammelbeckens abfließende Bachsystem durchschneidet ebenfalls die hier historisch abgelagerte Moräne. Die Gletscherbachbreite variiert ab dieser Lokalität zwischen ca. 4 m bis 5 m und bildet somit eine Schottersohlenebene. Die erste glazifluviale Terrassenordnung, die hier auch als Terrassenschotterebene bezeichnet werden kann, misst eine Breite von ca. 10 m bis 15 m. Im Anschluss wird auch der Endmoränendurchbruch mittels der fluvialen Kraft mehr und mehr ausgeformt. Der Gletscherbach misst bei diesem Durchbruch ebenfalls eine Breite von ca. 4 m bis 5 m und auch die Breite der ersten Terrassenschotterebene ist nahezu identisch mit der vorhergehenden Einschneidung. Doch aufgrund der steilen Flanken des Moränendurchbruches kann das Bachbett und auch die erste Terrassenschotterebene durch das Akkumulat von Hangrutschungsprozessen beeinträchtigt werden.

Als Folge des abnehmenden Talgefälles, die zugleich eine Reduzierung der Transportkraft induziert. wurden im angrenzenden Bereich des Endmoränendurchbruches grobe Blockwerke abgelagert. Erst dadurch konnte der hier zu lokalisierende und durch Moränenflanken gebundene Sander (Sedimentschuttfächer) entstehen. Die zuvor entstandene Kraft, die es dem Wasserkörper ermöglicht, die Endmoräne zu durchbrechen und anschließend schwallartig gröbere Geschiebe und Blöcke aufzunehmen und diese zu transportieren. lässt sich nur mit dem Prozess eines plötzlichen Gletscherseeausbruches erklären (Hambrey et al. 2008: 2365; Westoby et al. 2014). Aufgrund der morphologischen Ähnlichkeit bestätigt der Vergleich mit dem Gletscherseeausbruchformenschatz des Tam Pokhari Gletschersees (Osti et al. 2011), dessen Ausbruch am 3. September 1998 stattfand, ein solches Naturereignis als mögliche Ursache.

Dieser Abgleich zeigt aber auch, dass der Chukhung-Gletscherseeausbruch deutlich älterer Natur ist: Dies lässt sich anhand der scharfkantigen Erosionsmerkmale der steilen Moränendurchbruchsflanken, die die Moränen des vergangenen Chukhung-Glescherseeduchbruches nicht vorweisen (Photo 22, 23, 24, 25, 26 und 27), verdeutlichen.

Ob sich die Ablagerung eines derartigen gebundenen Sanders jedoch allein auf einen einzigen Gletscherseeausbruch zurückzuführen lässt (Hambrey et al. 2008: 2365), kann nicht gewiss beantwortet werden. Vielmehr zeigen die historischen Gletscherseepegelstände, die sich durch Verwitterungserscheinungen an den Ufermoränen kenntlich machen, ein Auftreten von mindestens zwei Gletscherseestadien (Linie (-) in Abbildung 11). Daraus lässt sich schließen, dass diese Form vermutlich durch einen größeren

Gletscherseeausbruch geprägt und dann mit zunehmender Zeit durch die freigelassenen Sedimente von mindestens einem weiteren Gletscherseeausbruch überlagert wurde (Westoby et al. 2014). Aber nicht nur kurz unterhalb der Endmoräne, sondern auch weiter talabwärts, wurde die Transportfracht sedimentiert (Abbildung 12, Photo 22 und 24). Diese sind jedoch nach der dem Neigungswinkel entsprechenden Kraft, die sich dementsprechend durch die talabwärts zunehmende Neigungswinkelabnahme reduziert, deutlich feinerer Natur (vgl. Hjulström 1935).

Abbildung 12: Durch Abflussveränderungen entstehen verzweigte Bachläufe (↓) im Gletscherbachsystem des Chukhung Gletschers. Aufnahme vom 24.05.2009; Google Earth (Bildmitte: 27° 53' 43.77" N, 86° 52' 59.78" E).

Da die Kraft des zuerst einsetzenden und mächtigsten Gletscherseeausbruchs deutlich höher war, konnten gröbere Blockwerke weiter talabwärts transportiert und dort abgelagert werden (Abbildung 12). In der Folgezeit wurde durch die freigesetzten Gletscherabschmelzprozesse auch diese Schuttfächerlandschaft fluvial eingeschnitten. Erst durch die Veränderungen der Abflussmengen verlagert sich auch die Kraft des Wasserkörpers, die schließlich zur Verlagerung von Mäanderbögen und der Bildung von verzweigten Bachläufen (braided river) in der Schuttfächerlandschaft führten (vgl. Church 1972; vgl. Germanoski & Schumm 1993). Dieses Vorkommen lässt sich anhand der dort vorzufindenden Morphologie verdeutlichen (Pfeil (↓) in Abbildung 12). Im Anschluss der Konfluenz all dieser sich verändernden Bachläufe lässt sich ein Gletscherbachkanal erkennen, der eine Bachbreite von ca. 2,5 m bis 3 m misst (Messung: Google Earth). Weiter bachabwärts mündet schließlich dieser Abfluss in das Gletscherbachsystem des Imja Khola (ca. 27° 53' 51.89" N, 86° 52' 48.37" E, 4833 m ü. NN).

3.1.1.6 Übersicht zum Gletscherbachsystem des Ama Dablam Gletschers

Der Ama Dablam Gletscher bildet sich in einem Gletscherkar, der wiederum durch Lawinen- und Eisabbrüche der angrenzenden und vereisten Nordflanke (6340 m ü. NN, Khumbu Himal Karte: Schneider 1988) genährt wird. Dieser Gipfel grenzt direkt östlich an dem Ama Dablam (6856 m ü. NN, Khumbu Himal Karte: Schneider 1988) an. Ebenso trägt auch die Metamorphose von Schnee zu Eis im Nährgebiet des Gletschers zur ständigen Eisbildung bei. Aber auch die Eismassen der östlich angrenzenden Chukhung Vergletscherung formten durch dessen Gletscherabschmelzprozesse einen supraglazialen Gletschersee aus, der noch im Jahr 2009 direkt in dem orographisch rechten Gletscherbereich des Ama Dablam Gletschers mündete. In den folgenden Jahren unterlag dieser aber einer verstärkten Morphodynamik, was schließlich dazu führte, dass der supraglaziale See durch Eismassen und Obermoränenmaterial überlagert wurde (Pfeil (↓) in Abbildungen 9 und 10, Photo 25 und 27). Mittels dieser Gletscherkonfluenz ist der Austausch des Eis- und Wasserkörpers beider Gletschersysteme gegeben. Beginnend ab einer Höhe von 5310 m ü. NN (ca. 27° 51' 38.99" N, 86° 52' 54.39" E) fließt der Gletscher nordwestlich mit einer Länge von ca. 4,55 km auf einer Podestmoräne die Talschaft bis zum Gletscherzungenende (ca. 27° 53' 47.38" N, 86° 52' 01.31" E, 4775 m ü. NN) (Photo 25) nieder. Weiter oberhalb misst der Gletscher noch eine Breite von ca. 0,41 km bis 0,58 km. Gletscherabwärts hingegen nimmt die Breite des Gletschers ab: Sie misst hier nur ca. 0,35 km. Die am Ende der Gletscherzunge einsetzenden Gletscherabschmelzprozesse bildeten einen Gletscherbach, der schließlich zur Nährung des angrenzenden Imja Khola beiträgt. Morphologisch lässt sich hier ein Endmoränendurchbruch erkennen, der jedoch nicht

sehr deutlich ausgeprägt ist. Weiter östlich angrenzend sind noch weitere Gletscherbachabflussrinnen (Abbildung 13), deren Morphologie als Schottersohlenebene zu klassifizieren ist, zu erkennen. Die beiden Gletscherbachsysteme münden schließlich nach einer sehr kurzen Abflussdistanz von maximal ca. 200 m auf einer Höhe von 4697 m ü. NN (ca. 27°53' 53.63'' N, 86° 51' 59.60'' E) in das Gletscherbachsystem des Imja Khola. Aber selbst in einer so kurzen Distanz konnten sich Mäandrierungen und Gletscherbachverästelungen ausformen (roter Pfeil (\downarrow) in Abbildung 13).

Abbildung 13: Mäandrierungen und Verästelungen (roter und blauer Pfeil ↓) prägen das Gletscherbachsystem des Ama Dablam Gletschers; Google Earth (Bildmitte: 27°53'50.83"N, 86°52'7.01"E).

Die Gletscherbachbreite lässt sich anhand der Satellitenbilder leider nicht ermitteln. Durch Messungen wird aber ersichtlich, dass die erste glazifluviale Terrassenordnung, die den Formenschatz einer Terrassenschotterebene einnimmt, eine Breite von ca. 20 m misst. Durch einen Höhenunterschied von ca. 73 m auf einer Distanz von ca. 200 m, der vom Gletscherbachbeginn bis zur Konfluenz zum Imja Khola gemessen wurde, kann so von einer Hangneigung von 36,5 % ausgegangen werden. Dadurch erhöht sich die Abflussgeschwindigkeit und somit auch die fluviale Erosionsintensität im Gletscherbachlauf. Des Weiteren durchschnitten die Abschmelzprozesse des Ama Dablam Gletschers der orographisch linken Seite der Gletscherzunge auf einer Höhe von ca. 4790 m ü. NN (27° 53' 30.21" N, 86° 52' 05.54" E) die dort glazigen abgelagerte Grundmoräne und formten somit einen weiteren kleinen Gletscherbach aus. Anhand von Satellitenbildern lässt sich auch die Morphologie der ersten glazifluvialen Terrassenordnung dieses Bachsystems ermitteln. Mittels Messungen lässt sich so erkennen, dass die Breite der Terrassenschotterebene - im Unterlauf ab einer Höhe von ca. 4600 m ü. NN - zwischen ca. 10 m bis 17 m variiert. Ebenfalls wird die Schottersohlenebene von Mäanderformen geprägt (blauer Pfeil (↓) in Abbildung 13), bis die Kraft des abfließenden Gletscherbaches schließlich in den Imja Khola Hauptstrom mündet und dort eine Konfluenz bildet (ca. 27°53'46.71"N, 86°50'47.54"E, ca. 4438 m ü. NN).

3.1.2 Haupttalschaft des Lhotse, Lohtse Nup, Nuptse, Unbenannten Kongma-La, Duwo und Tsuro Gletschers

3.1.2.1 Morphologie und Terrassenbildungen des Lhotse Gletscherbaches auf der Mikro-, Meso- und Makroebene

Genährt wird der Lhotse-Gletscher u. a. von den Lawinen- und Eisabbrüchen der Lhotse-Südwand, die eine Vertikaldistanz von ca. 2535 m vorweist (Messung: Gipfelhöhe des Lhotse Hauptgipfels (8516 m ü. NN) bis zum Nährgebiet des Lhotse-Gletschers). Naturgemäß trägt ebenso auch die Metamorphose von Schnee zu Eis im Nährgebiet zum Gletschermassenhaushalt bei. Der Beginn der Nährgebietes im eisausgefüllten Gletscherkar befindet sich auf einer Höhe von ca. 5260 m ü. NN. Nach einer Länge von ca. 7,22 km setzt die schließlich nach Westen fließende Gletscherzunge auf einer Höhe von ca. 4827 m ü. NN (ca. 27°54'8.78"N, 86°52'41.35"E) Abflussdynamiken frei. Diese tragen zur Umformung des Gletschervorfeldes bei. Talabwärts dieses Gletscherzungenendes im Gletschervorfeldbereich, das einem mächtigen Moränenkörper mit von eingeschlossenem Toteis überprägt ist, lokalisieren sich zahlreiche kleine Eisseen (Photo 24, 25, 28 und 29). Durch einen Vergleich der Gletscherbreite wird die Abnahme

der Gletscherzunge sehr deutlich: Im Nährgebiet misst sie zum Teil 0,91 km, doch oberhalb des Gletscherzungenendes (ca. 27°54'8.78"N, 86°52'41.35"E) weist sie nur noch eine Breite von ca. 0,19 km vor.

Westlich der Eisseen lokalisiert sich eine Endmoräne. Diese wurde durch die freigesetzten Abflussdynamiken, die infolge des Abschmelzprozesses des Gletschers entstehen, glazifluvial eingeschnitten. Dadurch entstand ein Endmoränendurchbruch (Photo 29 und 30).

Weiter talabwärts im Gletschervorfeldbereich lässt sich eine Terrassenschotterebene (Sander) erkennen. Hier bilden die freigesetzten Abflussdynamiken einen kleinen Gletscherbach, der die lokale Schottersohlenebene des Laufes umgestaltet (Photo 30, 31 und 32). An diesem Untersuchungsstandort (GPS: 27°54' 14"N; 86° 52' 23"E; 4768,4 m ü. NN) wurden am 17.03.12 gegen 18 Uhr morphologische und morphometrische Analysen innerhalb der Mikroebenenanalyse durchgeführt. Die Bachbettmorphologie ist durch ein gestrecktes, vereinzelt aber auch mäandrierendes Gletscherbachsystem geprägt, das sich nahe dem Endmoränendurchbruch von chaotisch abgelagerten Kaskaden-Sohlensequenzabfolgen (cascade) zu Stufen-Becken Sequenzabfolgen (step-pool), die deutlich weiter bachabwärts zu finden sind, fortentwickelt (Photo 30 und 31). Demnach prägen sich am Untersuchungsstandort Entwicklungsstadien zu Stufen-Becken Sequenzabfolgen (step-pool) aus, die jedoch aufgrund ihrer teils chaotischen Blockablagerungen noch nicht als solche zu klassifizieren sind. Sie sind vielmehr dem frühen Entwicklungsstadium zuzuordnen (Photo 30 und 31). Mit einer Länge von 1 m bilden sich hier deutliche Stufenbachbettformen. Im Anschluss lokalisieren sich 3 m bis 4 m lange Beckenformen. Bachabwärts des Standortes ist die Entwicklungsphase der Sequenzabfolgen fortgeschritten. Insgesamt misst der Gletscherbach hier eine Breite von 6 m bis 9 m. Die Bachbetttiefe, welche infolge der zutage tretenden Abflussdynamiken ebenfalls wie die Bachbettbreite variabel ist, betrug zum Zeitpunkt der Untersuchung 0,5 m bis 1 m. Intensive Abflussschwankungen lassen sich durch kurzfristig vergangene Wasserpegelstände rekonstruieren. 1 m bis 2 m oberhalb des rezenten Wasserpegels ist der Beginn der Vegetation zu erkennen (Photo 30, 31 und 32). Eine periodische Überflutung dieses Bereiches würde das Wachstum der Vegetation erheblich mindern, wenn nicht gänzlich verhindern. Daraus lässt sich

schließen, dass der kurzfristig vergangene Wasserpegel sich nur maximal 1 m bis 2 m oberhalb des rezenten Wasserpegelstandes befinden konnte. Aufgrund der kurzen Distanz zur Gletscherzunge und der geringen Einstrahlungsintensität, die Messungen wurden einschränkend abends während einer ausgeprägten Bewölkung durchgeführt, betrug die Wassertemperatur hier lediglich 0 °C.

Die im Gletscherbachbett zu findenden großen Blöcke von bis zu 7 m, deuten auf einen vergangenen glazigenen Transport hin (Photo 30, 31 und 32). In der darauffolgenden Gletschereisschmelzphase wurden weitestgehend die feineren Sedimente (Ton und Schluff) glazifluvial aus der 1. Terrassenschotterebene ausgewaschen. Dies bestätigt die entnommene Sedimentprobe, die auf der orographisch rechten Gletscherbachseite mit ca. 4 m bis 5 m Entfernung sowie einer Höhendistanz von ca. 1 m bis 1,5 m von der benetzten Breite entnommen wurde (Diagramm 4, Photo 33 und 34).

Diagramm 4: Korngrößen vom 17.03.12. Anhand der Korngrößenzusammensetzung des Lhotse Gletscherbachterrassenkörpers kann verdeutlicht werden, dass dieser ehemals glazigen akkumulierte Moränenkörper während des Gletschereisrückzuges einer intensiven glazifluvialen Auswaschung unterlag. Dies lässt sich mittels der fehlenden Tonfraktion sowie der nur gering vorhandenen Schlufffraktion bestätigen. Die Maxima dieser Sedimentprobe sind mit 68,3% in der Grobsandfraktion und mit 19,2% in der Mittelsandfraktion zu finden. Der Sortierungskoeffizient dieser Sedimentprobe weist einen Wert von 1,76 vor.

Der hier rezent vom Eis freigelegte Bereich wurde vor dem Zeitraum von 1950 bis 1960 von Eismassen überprägt (vgl. GLIMS: Racoviteanu & Bajracharya 2008; nach Kuhle
2005: Gletscherstadium X bis XI; vgl. Tabelle 17) und hinterließ aufgrund von Gletscherabschmelzprozessen derartige Blockakkumulationen und Grundmoränenlandschaften. Wie im Holozän auch schon weiter talabwärts auftretend, konnten die freigelassenen Wassermassen nun auch hier einen Gletscherbach sowie die daraus zu entstehende Schottersohlenebene bilden und die Grundmoräne glazifluvial einschneiden.

Aufgrund dieser glazifluvialen Erosionsprozesse bildeten sich schließlich vier glazifluviale Terrassenordnungen aus (siehe Karte 4a und 4b (Anhang)): Die erste Terrassenschotterebene befindet sich ca. 1 m bis 1,8 m oberhalb des rezenten Schottersohlenebene des Gletscherbaches. Infolge von sich verändernden Laufbedingungen variiert die Breite im Untersuchungsstandortbereich zwischen ca. 16 m bis 24 m und im gesamten Lhotse Gletscherbachlauf bis zur talabwärts liegenden Konfluenz zwischen ca. 10 m bis 28 m. Direkt übergeordnet lässt sich eine zweite Terrassenschotterebene finden, dessen Breite am Lhotse Gletscherbach zwischen 18 m bis 72 m schwankt. Zwischengeschaltet beträgt die Höhendistanz am Untersuchungsstandort zur dritten glazifluvialen Terrassenordnung ca. 1 m bis 2 m. Talabwärts nimmt diese Höhendistanz zu dieser Terrassenordnung zu (Photo 23). Hauptsächlich⁵ aufgrund des längeren Zeitraumes der abflussbedingten Einschneidung infolge der auftretenden Gletschereisschwankungen im Holozän, der der untere Bereich der zweiten glazifluvialen Terrasssenordnung seit der Enteisung ausgesetzt ist, konnte sich talabwärts eine mächtigere zwischengeschaltete Höhendistanz zwischen der glazifluvialen Terrassenordnung 1 und 2 entwickeln (Photo 23). Während der jüngeren Gletscherschwankungen induzierten die Abflussdynamiken nahe des Untersuchungsstandpunktes ebenfalls Erosionsprozesse, die sich auch durch die zuvor beschriebene Höhendistanz kenntlich machen. Da dieser Bereich jedoch während des Zeitraumes von 1950 bis 1960 von Gletschereismassen überprägt war (vgl. GLIMS: Racoviteanu & Bajracharya 2008), konnte die zeitliche Aussetzung der glazifluvialen Einschneidung im

⁵ Auch andersartige Prozesse tragen zur glazifluvialen Einschneidung eines Bachlaufes bei. Zu diesen zählen u. a. die Bachlaufneigung, verändernde Abflussdynamiken und sich verändernde Sedimentzufuhrraten, die sich allesamt im Gleichgewichtszustand des Bachlaufes widerspiegeln. Neben diesen Beeinflussungsfaktoren wirkt sich ebenso die Mächtigkeit der morphologisch konvexen Gestalt, also der weiter talabwärts akkumulierten Moränenkörper, auf die Höhendistanz einer Terrasseneinschneidung aus. Ist der Moränenkörper mächtiger ausgeprägt, beeinflusst dies auch die erkennbare Einschneidungsintensität einer Terrasse (siehe dazu Kapitel 2).

Vergleich zu den weiter talabwärts gelegenen Bereichen nicht von so großer Dauer sein. Daraus resultiert die im Vergleich schon genannte geringere Terrasseneinschneidungsmächtigkeit von ca. 1 m bis 2 m am Untersuchungsstandort.

Oberhalb dieser unterschiedlichen Einschneidungsmächtigkeiten lokalisiert sich die die eine Form einer dritte glazifluviale Terrassenordnung, buckelartigen Terrassenschotterfläche einnimmt und größtenteils mit Vegetationsbewuchszonen überprägt wird. Aufgrund der jedoch sehr chaotischen Anordnung von zum Teil konvex überlagernden Moränenakkumulationskörpern (Photo 23), lassen sich die Ausmaße dieser Fläche nur grob bestimmen. Demnach ist innerhalb dieser Terrassenordnung davon auszugehen, dass sich in dieser im vergangenen Holozän noch weitere Terrassenabfolgen, geprägt durch Gleterscherbacherosionsprozesse, entwickelten. Diese konnten vermutlich in der Folgezeit durch exogene Prozesse umgestaltet werden. Aus den Messungen ergibt sich, dass die Breite dieser Terrassenordnung je nach Lokalität zwischen ca. 180 m bis ca. 490 m schwankt. Angrenzend an dieser lassen sich mit einer Distanz mit bis zu ca. 710 m (von 27° 54' 23.57" N, 86° 52' 12.47" E, 4787 m ü. NN; bis 27° 54' 03.72" N, 86° 52' 25.71" E, 4786 m ü. NN) zwei voneinander entfernt liegende Ufermoränenkörper ausfindig machen. Diese wurden einst von den hier einflussnehmenden Gletscherschwankungen des Lhotse und Lhotse Nup Gletschers abgelagert. Infolgedessen ist der Zwischenbereich, der u. a. durch den Formenschatz der zuvor genannten Terrassenabfolgen gestaltet wird, vermutlich von noch einer weiteren vierten buckelartigen Terrassenfläche geprägt.

Mithilfe der Mesoebenenanalyse lässt sich zeigen, dass der Gletscherbachlauf aus dem orographisch linken sowie rechten Lhotse Gletscherbereich entspringt und nahe des Untersuchungsstandortes eine Gletscherbachkonfluenz bildet (Abbildung 14). Aufgrund der sich verändernden Einflussfaktoren, die eine Sequenzabfolge der Schottersohlenebene entstehen lassen (vgl. Kapitel 2), unterliegt auch die Sohle dieses Gletscherbachlaufes einer Entwicklungsdynamik. Die nahe des Untersuchungsgebietes auftretende Durchmischung einer Kaskaden (cascade) sowie einer Stufen-Becken Sequenzabfolge (step-pool), die auf ein frühes Entwicklungsstadium hindeutet, entwickelt sich bachabwärts vermehrt zu einer deutlich ausgeprägteren Stufen-Becken Sequenzabfolge (step-pool) (vgl. Photo 35). Insgesamt durchschneidet der

Gletscherbachlauf den Moränenkörper und fließt in kleinräumig ausgeprägten Mäanderbögen talabwärts zuerst in Richtung Westen, bis sich schließlich der Lauf vermehrt in Richtung Südwesten ausrichtet. Ebenso bilden Teil zum Bachverwilderungen (braided-river) den Formenschatz der Schottersohlenebene (Photo 23, 24 und 36; Abbildung 14; Karte 4a, 4b und 4c (Anhang)). Dies lässt sich durch die sich zu verändernden Abfluss- sowie Sedimentationsdynamiken erklären, die ein typisches Merkmal der proglazialen Bereiche sind. Des Weiteren zeigt sich, das die Gletscherbachabflussdynamiken einen gebundenen Sanderformenschatz, der hier als erste Terrassenschotterebene definiert wurde, aus dem im Holozän abgelagerten Moränenkörper herausgearbeitet haben. Die Breite dieser Terrassenschotterebene nimmt vom Untersuchungsgebiet talabwärts bis zur Gletscherbach-Konfluenz mit dem Lhotse Nup Gletscherbach ab (Abbildung 14; Photo 23). Dies lässt sich durch die erhöhten Abflussdynamiken, die durch die Gletscherschmelze entstanden und somit den Oberlauf des Gletscherbaches geprägt haben, aber auch durch die Gebundenheit der hier abgelagerten Moränenkörper erklären (Abbildung 14; Photo 23).

Abbildung 14: Lauf des Lhotse Gletscherbaches. Die beiden Pfeile (↓) zeigen den Beginn und das Ende des untersuchten Bachabschnittes an; Google Earth (Bildmitte: 27° 54' 12.93" N, 86° 52' 21.22" E).

Mittels der Erstellung eines Längsprofiles zwischen den Höhen von ca. 4756,58 m ü. NN (WGS 84/Pseudo Mercator: E 9670747.0352758000 N 3236864.7290779800;

umgewandelt in WGS 84: E 86.8737987064 N 27.9039123609; siehe Tabelle 2) und ca. 4690,84 m ü. NN (WGS 84/Pseudo Mercator: E 9670111,9798942300 N 3236735,4489111800; umgewandelt in WGS 84: E 86.8680939069 N 27.9028860377; siehe Tabelle 2) des Lhotse Gletscherbaches konnte die Makroebenenanalyse auch in diesem Lauf angewandt werden. Demnach lassen sich folgende Laufcharakteristika erfassen:

Ab einer Höhe von ca. 4756,58 m ü. NN bildet der Gletscherbachlauf eine Konfluenz zweier Gletscherbachläufe. Beginnend ab dieser Höhe kann verdeutlicht werden, dass der Neigungswinkel des Bachlaufes bis zu der weiter bachabwärts gelegenen Höhe von 4734,14 m ü. NN zwischen 2,56° und 8,24° Gefälle schwankt. Durch diese Gefälleschwankungen entsteht eine kleinräumige konvexe Formengestalt im Gletscherbachlängsprofil. Im angrenzenden Abschnitt zwischen 4734,14 m ü. NN und 4708,30 m ü. NN schwankt das Längsprofilgefälle weitestgehend zwischen mindestens 3,46° bis maximal 7,88°. Zum Ende dieses Abschnittes reduziert sich das Gefälle jedoch bis auf den Mindestwert von 1,07°. Diese Längsprofilschwankungen ergeben eine konvexe Formengestalt. Die Genese dieser Form kann nicht eindeutig rekonstruiert werden. Vielmehr lässt sich die Entstehung auf unterschiedliche Prozesszusammenhänge zurückführen. Dazu zählt u. a. die glazigene Ablagerung eines Moränenkörpers einschließlich einer rezenten glazifluvialen Einschneidung, eine glazifluviale Sedimentation im Gletscherbachlauf oder hangiale Rutschungsprozesse, die Gletscherbachlauf akkumulierten schließlich mittels im und des Gletscherbachabflusses eingeschnitten wurden. Ebenso können die zuvor genannten Prozesse auch im Gesamtsystem zusammenhängend aufgetreten sein (siehe Kapitel 2). Direkt im oberen Bereich des Abschnittes zwischen 4708,30 m ü. NN bis 4690,84 m ü. NN erhöht sich zuerst das Gefälle, bis es schließlich auf der Höhe von ca. 4705,63 m ü. NN das geringste, gemessene Gefälle im gesamten Gletscherbachlängsprofil von 0,90° bildet. Weiter bachabwärts unterliegt das Gletscherbachlängsprofil weiteren Gefälleschwankungen, die sich mittels der Mindestwerte von 1,14° sowie der Maximalwerte von 6,58° erfassen lassen. Aufgrund dieser unterschiedlichen Neigungswinkel lässt sich auch hier eine kleinräumige konvexe Formengestalt erkennen, die ebenfalls durch womöglich unterschiedliche Prozesszusammenhänge

entstanden ist (s. o.). Abgrenzend bildet schließlich dieser Gletscherbachlauf auf einer Höhe von 4690,84 m ü. NN eine Konfluenz mit dem Lhotse Nup Gletscherbach. Aus der dadurch entstehenden Abflusszunahme, lassen sich alle bachabwärts bedingten Längsprofilveränderungen nicht allein auf das Längsprofil des Lhotse Gletscherbaches beziehen und wurden deshalb aus dieser Untersuchung ausgeschlossen. Insgesamt zeigt sich anhand dieses Längsprofillaufes, dass der Neigungswinkel im Vergleich zu anderen Bachläufen weitestgehend keine intensiven Neigungswinkelschwankungen ausgesetzt ist und der Lhotse Gletscherbach demnach durchgehend glazifluvial den Moränenkörper einschneidet. Eine Beeinflussung von exogenen Prozessen (siehe Kapitel 2) ist im Vergleich zu anderen Gletscherbachläufen hier kleinräumiger und somit geringer ausgeprägt.

Abbildung 15: Längsprofil des Lhotse Gletscherbaches nach SRTM-Höhenmodell.

Insgesamt lässt sich mittels der Anwendung der Mikro-. Mesound Makroebenenanalyse aufzeigen, dass die glazifluviale Einschneidung der Terrassen mit einer einhergehenden Formung der Terrassenebenen den vorhergehenden Gletscheroszillationen obliegt. Bei einer konstanten Abschmelzrate des Gletschers schneidet der Gletscherbach auch ebenso in die Grundmoräne ein. Wird dieser Prozess infolge einer Gletscherstagnations- oder kurzfristigen Gletschervorrückphasen unterbrochen, verändert sich demzufolge auch die Intensität der glazifluvialen Einschneidung und der Sedimentablagerungen. Daraus lässt sich schließen, dass mittels einer Gletschervorrückphase Sedimente abgelagert wurden, die während des Gletscherabschmelzprozesses nach und nach, wiederum unterbrochen von Gletscherstagnations- oder kurzfristigen Gletschervorrückphasen, abflussbedingt eingeschnitten werden konnten. Dieser ineinandergreifende Prozesszusammenhang ließ die hier nun vorzufindenden vier glazifluvialen Terrassenordnungen entstehen, die allesamt aus den Sedimenten der in den vorherigen Gletscherständen abgelagerten Grundmoräne bestehen und sich nach Kuhle in das Stadium IX bis XI (Kuhle 2005: Table 1: 263; vgl. Tabelle 17) einordnen lassen.

Ebenso lässt sich zeigen, dass die Gletscherbachsohle am Untersuchungsstandort in eine Entwicklungsphase von einer Kaskadenform (cascade) zur Stufen-Becken Sequenzabfolge (step-pool) zu klassifizieren ist (frühes Entwicklungsstadium). Weiter bachabwärts unterliegt der Lhotse Gletscherbachlauf einer Morphogenese, die schließlich ein fortgeschrittenes Entwicklungsstadium entstehen lässt. Die Formen des Gletscherbachlaufes sind durch kleinräumige Mäandrierungen sowie Bachverwilderungen (braided river) gekennzeichnet, die insgesamt die Sedimente des hier gebundenen Sanderformenschatzes umlagern. Mittels der Gletscherbachlängsprofilanalyse lässt sich konstatieren, dass der Bachlauf eine weitestgehend ausgeglichene Formengestalt mit leicht konvexen Formen bildet. Im Vergleich zu anderen Gletscherbachläufen unterliegt dieser Gletscherbach daher keiner intensiven Morphodynamik, die sich durch Neigungswinkelschwankungen im Gletscherbachlängsprofil kenntlich machen können.

3.1.2.2 Morphologie und Terrassenbildungen des Lhotse Nup Gletscherbaches auf der Mikro-, Meso- und Makroebene

Im oberen Nährgebiet des Lhotse Nup Gletschers, zwischen ca. 5200 m ü. NN bis 5900 m ü. NN wird der Gletscher neben der herkömmlichen Metamorphose von Schnee zu Eis auch durch Lawinen und Eisabbrüche des südlichen Flankenmassivs des Nuptse (7861 m ü. NN) und der angrenzenden Talflanken genährt. Der Beginn des Talgletschers (ca. 5508 m ü. NN) unterliegt der Bildung im Gletscherkar. Der gesamte Lhotse Nup Gletscher misst eine Länge von ca. 3,9 km bis 4,1 km. Im Nährgebiet fließt dieser in Richtung Süden und im Zehrgebiet vermehrt in Richtung Südwesten talabwärts. Die Gletscherzunge bildet sich auf einer Höhe von ca. 4978 m ü. NN bis 4984 m ü. NN (vgl. GLIMS: Racoviteanu & Bajracharya 2008). Durch die hier auftretenden Abschmelzprozesse des Gletschers werden Wassermassen freigesetzt, die im Holozän - als die Gletscherzunge die Podestmoräne bildete und danach langsam abschmolz - die angrenzende Podestmoräne (27° 54' 33.96" N, 86° 52' 41.82" E, 4919 m ü. NN) glazifluvial durchbrochen haben. Die nun freigesetzten Abflussdynamiken werden kurzfristig in den angrenzenden Eis- und Gletscherseen zwischengespeichert (Abbildung 16). Nach dieser Prozessabfolge fließen die Wassermassen talabwärts und formen den glazifluvialen Podestmoränendurchbruch weiter aus, der im Folgenden anhand der Mikroebenenanalyse näher beschrieben wird:

Das angrenzende Gletschervorfeld wird durch einen glazifluvialen Einschnitt der orographisch linken Podestmoräne geprägt (Photo 36, 37, 38, 39). Die Breite der Schottersohlenebene des Bachlaufes innerhalb dieses Podestmoränendurchbruches, die zum Teil durch Eis- und Schneeablagerungen zu erkennen ist, variiert zwischen ca. 3,5 m bis 7 m. Diese Grundmoränenablagerung, überprägt von großen Blockkörpern, die hier ehemals vom Gletscher abgelagert oder von angrenzenden Moränen abgerutscht sind, konnte der Gletscherbach weiter ausräumen. Die erhöhte Schuttzufuhr von hangialen Prozessen der angrenzenden Moränenkörper sowie die Zufuhr von Sedimenten infolge noch aktuell auftretender Gletscheroszillationen des Lhotse Nup Gletschers hinterlässt eine chaotische Ablagerung von Sedimenten innerhalb der Gletscherbachsohle, die demnach als Kaskaden-Sohlenform (cascade) eingestuft werden kann (Photo 36). Mit einer Zunahme der Abflussdynamiken und einer

Verringerung der Schuttzufuhr kann sich dieser Schottersohlenformenschatz schneller entwickeln, was schließlich die Entstehung von Stufen-Becken Sequenzabfolgen (steppool) begünstigt. Die Entwicklungsphase hin zu diesen Sequenzabfolgen ist jedoch erst unterhalb der Podestmoräneneinschneidung zu erfassen, die weiter bachabwärts in ein fortgeschrittenes Entwicklungsstadium übergeht. Während der Feldforschungen waren die Abflussdynamiken dieses Gletscherbachlaufes jedoch nicht intensiv ausgeprägt. Eis- und Schneeablagerungen ermöglichten es aber, die Laufveränderungen zu erfassen. Diese bilden im Lhotse Nup Gletscherbach ein verwildertes Laufverhalten (braided-river) (Photo 36, 37).

Orographisch rechts dieser Moräneneinschneidung lässt sich noch ein weiterer Podestmoränendurchbruch erkennen. Genährt wird dieser Gletscherbach ebenso von den Abschmelzprozessen des Lhotse Nup Gletschers. Jedoch puffern zahlreiche Gletscher- und Eisseen den Abfluss dieses kleinen Bachsystems und verhindern so eine stärkere glazifluviale Umlagerung der Schottersohle, die auch den Grund- bzw. Podestmoränenkörper einschneidet. Innerhalb des Moränendurchbruches variiert die Breite des Gletscherbaches, also der Schottersohlenebene, zwischen ca. 1 m bis 2,5 m. Aufgrund der hier auftretenden Schuttzufuhr durch Hangrutschungsprozesse und Gletscheroszillationen sowie des steilen Neigungswinkels des Durchbruches lagern sich die Schuttakkumulationen innerhalb der Schottersohlenebene chaotisch an. Deshalb ist auch dieser Gletscherbachlauf als Kaskadenform (cascade) zu klassifizieren. Durch den hier kleinräumig ausgeprägten Gletscherbachlauf lässt sich zeigen, dass dieser erst weiter talabwärts eine Konfluenz mit dem deutlich ausgeprägteren Gletscherbachlauf (27° 54' 16.44" N, 86° 52' 11.48" E, 4726 m ü. NN) des orographisch linken Podestmoränendurchbruches bildet.

Anhand dieser beiden Gletscherbachabflusssysteme lässt sich durch die Gebundenheit den angrenzenden Moränenkörpern Terrassenschotterebene an nur eine rekonstruieren. Diese grenzt direkt an den rezenten Bachlauf. Das Fundament dieser Terrassenschotterebene besteht aus Grundmoränensowie Podestmoränensedimenten, die nach der Sedimentation abgelagert und anschließend glazifluvial umgelagert wurden. Da sich innerhalb dieser Terrassenschotterebene keine Vegetation finden lässt (Photo 36), ist anzunehmen, dass Abschnitte während höherer

Abflussdynamiken überflutet werden. Sie misst im orographisch linken Podestmoränendurchbruch eine Breite von ca. 22 m bis 38 m. Im orographisch rechten Podestmoränendurchbruch fällt diese mit einer Breite von ca. 4 m bis ca. 9,20 m deutlich geringer aus. Innerhalb des Moränendurchbruches lässt sich aufgrund des juvenilen Stadiums des orographisch linken und rechten Gletscherbachlaufes keine weitere direkt angrenzende Terrassenschotterebene rekonstruieren. Der Kammverlauf der hier angrenzenden Moränen verdeutlicht die höchste Ebene, woher die glazifluvialen Tiefenerosionsprozesse einsetzten. Diese lokalisiert sich je nach Standpunkt, bezogen auf die orographisch linke sowie rechte Terrassenschotterebene, ca. 3 m bis 8 m oberhalb der ersten Terrassenschotterebene (Photo 39). Da lediglich der orographisch linke Gletscherbach während der Feldforschungen näher untersucht werden konnte, beziehen sich die nachfolgenden Ausführungen der Terrassenausprägungen ausschließlich auf diesen:

Unterhalb des Podestmoränendurchbruches verändert sich die Breitenausprägung⁶ der ersten Terrassenschotterebene auf eine Breite von ca. 14 m bis 24 m (siehe Karte 4a und 4b: (Anhang)). Des Weiteren lässt sich am orographisch linken Gletscherbach auch eine zweite glazifluviale Terrassenordnung rekonstruieren. Diese lässt sich durch Schotterablagerungen erkennen (Photo 36). Die Breite variiert sehr stark zwischen ca. 37 m und 63 m. Die direkt angrenzende dritte glazifluviale Terrassenordnung nimmt die Form einer buckelartigen Terrassenschotterfläche ein, die zum Teil mit Vegetationsbewuchszonen überprägt ist. Des Weiteren ist anhand der nur geringen Höhenunterschiede zu erkennen, dass diese mit der dritten glazifluvialen Terrassenordnung des Lhotse Gletschers ineinander verschachtelt ist. Aufgrund der hier nun identischen Terrassenordnung, weist diese die gleichen sehr stark schwankenden Breiten von ca. 180 m bis ca. 490 m vor, die talabwärts abnehmen. Wie schon anhand der Morphologie der Terrassenordnungen des Lhotse Gletschers beobachtet. lassen sich auch hier anhand von konvex hervorgehobenen Moränenkörpern Hinweise von weiteren Terrassenordnungen ausfindig machen. Mit einer Distanz mit bis zu ca. 710 m (von 27° 54' 23.57" N, 86° 52' 12.47" E, 4787 m ü.

⁶ Die zwischengeschaltete Übergangshöhe zur nächsten Terrassenebene, wie sie am Gletscherbachlauf des Lhotse Gletscher aufgezeichnet wurde, konnte während des Feldaufenthaltes nicht gemessen werden.

NN; bis 27° 54' 03.72" N, 86° 52' 25.71" E, 4786 m ü. NN) konnten zwei voneinander entfernt liegende Ufermoränenkörper identifiziert werden (siehe vorheriges Kapitel), die einst von den hier aufgetretenen Gletscherschwankungen des Lhotse und Lhotse Nup Gletschers abgelagert wurden. Demnach kann davon ausgegangen werden, dass diese Anordnung mindestens eine vierte glazifluviale Terrassenordnung bildete (Photo 36).

Mithilfe der Mesoebenenanalyse lässt sich verdeutlichen, dass die zwei unterschiedlichen Gletscherbachsysteme durch die Gletscheroszillationen des Lhotse Gletschers entstanden sind (siehe oben). Die dabei Nup freigesetzten Wasserdynamiken durchschneiden die Podestmoränen und arbeiten mithilfe der Tiefenerosion und Lateralerosion die Grundmoräne sowie die Terrassenabfolge talabwärts weiter aus und bilden somit einen gebundenen Sanderformenschatz (Photo 38). Die ausgeprägten Mäanderbögen des orographisch linken Gletscherbaches sowie die hier zu erkennende verwilderte Bachbettform (braided-river) verdeutlichen, dass die Abflussdynamiken sowie die Sedimentzufuhrraten des Gletscherbaches stark schwanken (Photo 36, 37; siehe Karte 4a, 4b und 4c (Anhang)). Der Lauf ist jedoch auch weiter talabwärts durch orographisch linke Moränenkörper gebunden, was die zeitliche Dauer einer Mäanderbogenausweitung um ein Vielfaches erhöht. Des Weiteren lässt sich anhand der Morphologie der Schottersohlenebene, also der rezenten Morphologie der Gletscherbachsohle, erkennen, dass sich mit zunehmender Entfernung zum Podestmoränendurchbruch die Morphologie der Sohle vermehrt zum Stadium der Stufen-Becken Sequenzabfolgen (step-pool) sowie der pool-riffle Sequenzabfolgen fortentwickelt und somit erst ein frühes Entwicklungsstadium sowie bachabwärts ein fortgeschrittenes Entwicklungsstadium ausprägt. Dies lässt sich durch die bachabwärtsbedingte, verringerte Zufuhr von Sedimenten sowie dem dort abgeschwächten Bachneigungswinkel erklären (Pfeil (↓) in Abbildung 16), die eine chaotische Ablagerung der Gletscherbachsedimente reduzieren.

Der orographisch rechte Gletscherbach hingegen, der einen deutlich kleinräumigeren Moränendurchbruch herausarbeitete, bildet zuerst eine nahezu geradlinige Laufrichtung aus, die dann aber durch kleinräumige Mäanderbögen sowie Verwilderungen (braidedriver) erweitert wurde. Da die Abflussdynamiken hier sehr gering ausgeprägt sind -

während der Feldbegehungen waren in dem Lauf keine Fließdynamiken erkennbar (Photo 37) - ist die zeitliche Dauer zur nächsten Entwicklungsstufe der Bachbettsohlenform, im Vergleich zum orographisch linken Bachlauf, deutlich langwieriger ausgeprägt. Da chaotische Ablagerungen von Blöcken die Sohlenform prägen und orographisch rechts zu lokalisierende Hangrutschungsprozesse die Entwicklung beeinflussen, ist diese Bachbettsohle (Schottersohlenebene) mit dem Begriff der Kaskaden-Bachbettsohlenform (cascade) zu klassifizieren (Abbildung 16). Insgesamt richtet sich der Gesamtlauf, entstanden aus der Konfluenz des orographisch linken und rechten Gletscherbachlaufes, vermehrt in Richtung Südwesten. Jedoch wird die Laufrichtung teils durch die Moränenkörper sowie mittels der Abfluss- sowie Sedimentzufuhrraten, die vom Nuptse Gletscher in den Bachlauf fließen, beeinflusst. Dadurch entsteht schließlich eine deutlich ausgeprägte Mäanderschlinge die zuerst in Richtung Süden gerichtet ist und dann im Anschluss die Fließrichtung in SSW ändert. Dies ist durch einen deutlichen orographischen links-rechts Bogen des Laufes zu erkennen (Photo 37). Der hier gebildete gesamte Gletscherbachstrom des Lhotse Nup Gletschers mündet schließlich auf einer Höhe von 4696 m ü. NN (27° 54' 10.41" N, 86° 52' 05.15" E) in das Gletscherbachabflusssystem des Lhotse Gletschers.

Abbildung 16: Eine verringerte Zufuhr von Sedimenten sowie ein abgeschwächter Bachneigungswinkel

(↓) reduzieren die chaotische Ablagerung von Gletscherbachsedimenten im oberen Abschnitt des Lhotse Nup Gletscherbachlaufes; Google Earth (Bildmitte: 27°54'32.00"N, 86°52'28.69"E).

Abbildung 16a: Lauf des Lhotse Nup Gletscherbaches. Die beiden Pfeile (↓) zeigen den Beginn und das Ende des untersuchten Bachabschnittes an; Google Earth (Bildmitte: 27°54'24.27"N, 86°52'21.30"E).

Mithilfe der Erstellung eines Längsprofiles, das sich jedoch aufgrund der intensiveren Abflussdynamiken und der ausgeprägteren Einschneidungsmächtigkeiten ausschließlich auf den orographisch linken Lhotse Nup Gletscherbachlauf bezieht, konnte eine Makroebenenanalyse durchgeführt werden. Die Ergebnisse des Laufprofiles sind wie folgt morphologisch einzuordnen:

Beginnend ab dem orographisch linken Endmoränendurchbruch, der ab einer Höhe von ca. 4911,90 m ü. NN (WGS 84/Pseudo Mercator: E 9671238,1315554300 N 3237544,2589517600; umgewandelt in WGS 84: E 86.8782102994 N 27.9093068202; siehe Tabelle 3) einsetzt und auf einer Höhe von ca. 4690,84 m ü. NN (WGS 84/Pseudo Mercator: E 9670111,9701372600 N 3236735,4541063400; umgewandelt in WGS 84: E 86.8680938192 N 27.902886079; siehe Tabelle 3) in den Lhotse Gletscherbach mündet, wurde das Längsprofil untersucht (vgl. Abbildung 16a). Es lässt sich zeigen, dass das Laufprofil zwischen ca. 4911 m ü. NN und ca. 4854 m ü. NN eine maximale Neigung von 21,5° vorweist. Im anschließenden bachabwärts gelegenen

Abschnitt, der auf einer Höhe von 4802 m ü. NN hinabreicht, unterliegt das Gefälle 10.87° zwischen und 17,02°. Schwankungen Durch diese Neigungswinkelschwankungen bildet sich eine geringfügig eingeschnittene konkavkonvexe Formengestalt. Entstanden ist diese vermutlich durch Gletscheroszillationen, die die Abflussdynamiken sowie die Transportfracht veränderten und somit das Gleichgewicht des Bachlaufes beeinflussten. Insgesamt zeigt sich, dass die Neigungswinkel innerhalb des Podestmoränendurchbruches deutlich intensiver ausgeprägt sind. Dies lässt sich durch die steilen Hangneigungswinkel einer Podestmoräne, wie sie auch hier zu finden ist, erklären. Infolgedessen fällt innerhalb dieses Akkumulationskörpers auch das Bachgefälle intensiver aus.

Im anschließenden Bachabschnitt, der sich zwischen ca. 4802 m ü. NN und 4784 m ü. NN lokalisiert, ist eine Abnahme des Bachgefälles zu erfassen. Das Gefälle beträgt in diesem Bereich maximal 12,81°. Weiter bachabwärts auf einer Höhe von 4772 m ü. NN sind Gefälleschwankungen von 0,63° bis 7,51° zu erkennen. Im Anschluss zwischen 4772 m ü. NN und 4764 m ü. NN steigt das Gefälle auf maximal 9,09° und sinkt dann wieder auf einen Wert von 1,27°. Diese Bachneigungsschwankungen sind jedoch alle außerhalb des Podestmoränendurchbruches zu verorten. Dadurch lassen sich schließlich auch die geringeren Bachneigungswinkel erklären. Innerhalb von Podestmoränenkörpern sind diese deutlich intensiver ausgeprägt.

Weiter bachabwärts zwischen der Höhe von 4764 m ü. NN bis 4739 m ü. NN unterliegt das Gefälle des Bachlaufes Schwankungen bis zu einem Maximalwert von 8,99°, bis es schließlich zu einer nahezu ebenen Fläche von nur 0,37° bis 0,03° Gefälle abnimmt.

Infolge dieser Gefälleschwankungen bildet sich eine leichte konvexe Formengestalt aus (Abbildung 17). Da sich dieser hier kleinräumig erhabene Formenschatz jedoch deutlich unterhalb des Podestmoränendurchbruches lokalisiert, sind die Zufuhrraten von zu transportierenden Sedimenten, die vermehrt im Bereich der angrenzenden Gletscherzunge auftreten, nicht so immens. Des Weiteren ist der morphologische Wechsel von einem gebundenen Bachlauf, innerhalb des Moränendurchbruches wird dieser durch Moränenflanken abgegrenzt, zu einem weitestgehend ungebundenen Lauf innerhalb dieses Laufprofilabschnittes, wie dieser weiter oberhalb zu finden ist, anhand der Lage hier auszuschließen. Wie anhand von Sanderausprägungen beobachtbar (vgl.

Church 1972), können diese plötzlichen Laufveränderungen Sedimentationsprozesse induzieren. Aus genannten Gründen kann diese hier kleinräumig konvex erscheinende Form somit als Moränenkörper klassifiziert werden, der infolge von Gletscheroszillationen glazigen abgelagert wurde. Die hier in naher Umgebung zu klassifizierenden Grundmoränenkörper bestätigen diese Annahme. Eine darauffolgende glazifluviale Sedimentation ist jedoch nicht auszuschließen. Diese trat womöglich während des Gletschereisrückzuges ein und konnte durch einen Prozesswechsel von Erosion und Akkumulation diesen konvexen Moränenkörper weiter morphologisch verändern sowie abtragen.

Im Anschluss dieser Gefälleabnahme (s. o.), weist der Bachlauf zwischen den Höhen von 4739 m ü. NN und 4712 m ü. NN Gefälleschwankungen vor und bildet in diesem Abschnitt ein Maximalgefälle von 8,33° aus, bis sich dieser schließlich auf einer Höhe von 4712 m ü. NN auf ein Gefälle von 0,74° reduziert. Wie auch schon anhand der vorherigen konvexen Formengestalt beschrieben (s. o.), lassen sich diese Neigungswinkelschwankungen ebenfalls auf die glazigene Akkumulation eines Moränenkörpers, die im Anschluss glazifluvial eingeschnitten oder teils mit Sedimentationsablagerungen infolge von Gleichgewichtsveränderungen des Bachlaufes überprägt wurden, zurückführen.

In dem folgenden Bachlaufabschnitt lassen sich ebenfalls ähnliche Gefälleschwankungen erkennen, die zwischen 4712 m ü. NN und 4697 m ü. NN ein maximales Bachgefälle von 8,64° vorweisen und sich im Anschluss auf einer Höhe von 4697 m ü. NN auf ein Gefälle von 1,8° reduzieren. Direkt im Anschluss steigt dieses Bachgefälle wieder auf einen Maximalwert von 8,79° an und reduziert sich schließlich wieder. Bachabwärts auf einer Höhe von ca. 4690,84 m ü. NN bildet dieser Lauf eine Konfluenz mit dem Lhotse Gletscherbach.

Auch diese Bachneigungsschwankungen verdeutlichen die Unebenheiten, die sich durch kleinräumig auftretende konvexe Formen innerhalb des Bachlaufes erkenntlich machen. Wie schon anhand der vorhergehenden Formen erläutert, sind diese Abschnitte weitestgehend als Moränen zu klassifizieren. Jedoch können diese teils durch lokale Podestmoränenrutschungsprozesse des orographisch rechts zu klassifizierenden Nuptse Moränenkörpers rezent überprägt werden und somit das

Laufprofil kleinräumig verändern. Demnach kann eine externe Beeinflussung, dabei handelt es sich um ferntransportiertes Moränenmaterial, nicht gänzlich ausgeschlossen werden. Ebenfalls können SRTM-Datenfehler im Höhenmodell sowie Ungenauigkeiten in der Gletscherbachverortung auch an diesem Profil nicht ausgeschlossen werden.

Insgesamt zeigt sich so, dass das Längsprofil des Gletscherbaches einzelne Stufen vorweist, die in der Gesamtheit als Treppenform zu klassifizieren sind. Bachaufwärts lässt sich die Genese jener Form auf die holozänen Gletscherschwankungen zurückführen, die während der Folgezeit glazifluvial umgelagert sowie durch Sedimentations- und Erosionsprozesse überprägt wurde. Weiter bachabwärts tritt diese Treppenform ebenfalls zu Tage. Eine Beeinflussung des Längsprofiles mittels externe hangialer Prozesse kann hier aber nicht gänzlich ausgeschlossen werden.

Abbildung 17: Längsprofil des Lhotse Nup Gletscherbaches nach SRTM-Höhenmodell.

Durch die Zusammenfassung der Mikro-, Meso- und Makroebenenanalyse zeigt sich, die Morphologie des oberen Nup Gletscherbachlaufes dass Lhotse im Moränenkörperdurchbruch sowie die Terrasenschotterebenen eins und zwei von aktuellen Gletschereisschwankungen im Zeitraum von 1950 bis 2012 glazifluvial ausgearbeitet wurden und nach Kuhle ins Stadium XII klassifiziert werden können (vgl. Kuhle 2005: Table 1 und Figure 3; vgl. Tabelle 17; vgl. GLIMS: Racoviteanu & Bajracharya 2008). Ebenfalls lässt sich dies mithilfe der Bachbettsohlenform, beeinflusst die durch starken Abflussschwankungen sowie der Schuttzufuhrschwankungen, verdeutlichen. Daraus resultiert die oberen im Bachlaufabschnitt erkennbare Kaskadensohlenform (cascade), die sich bachabwärts zu einer Übergangsform zu Stufen-Becken Sequenzabfolgen (step-pool) fortentwickelt und somit im oberen Bachabschnitt ein frühes Entwicklungsstadium sowie bachabwärts ein fortgeschrittenes Entwicklungsstadium der Bachbettsohlenform ausprägt. Die intensiven Abflussschwankungen und Sedimentzufuhrschwankungen lassen sich ebenso durch den verwilderten Bachlauf (braided-river) bestätigen (Photo 36, 37). Durch einen Abgleich der Terrassenordnungen mit den Lhotse Nup Gletscherschwankungen, zeigt sich Folgendes: Die Terrassenschotterebenen eins und zwei konnten durch die Gletschereisschmelzprozesse, die während des Zeitraumes von ca. 1950 bis 2012 einsetzten (vgl. Kuhle 2005) und eine glazifluviale Erosion induzierten, entstehen. Die buckelartigen Terrassenschotterflächen drei und vier, einschließlich der noch vermutlich zwischengeschalteten Terrassenordnungen, sind älterer Natur und lassen sich auf den Zeitraum deutlich vor 1950 einstufen (nach Kuhle 2005: Table 1 und Figure 3, Gletscherstadien IX-X; vgl. Tabelle 17). Der in diesem Gletschereinzugsgebiet verortete glaziale Formenschatz (Kuhle 2005) bestätigt den glazialen Formenursprung des hier rekonstruierten Gletscherbachlängsprofiles, welches einer treppenstufenartigen konvexen Formenabfolge gleicht. Die glazigene Ablagerung des Untergrundes wurde seit dem Beginn des Gletschereisrückzuges glazifluvial umgelagert und eingeschnitten.

3.1.2.3 Übersicht zum historischen Gletschersee am Lhotse Nup Gletscher

Östlich der orographisch rechten Seitenmoräne des Lhotse Nup Gletschers lokalisiert sich auf einer Höhe von ca. 4951 m ü. NN (N27° 54' 45.06", E86° 52' 46.44", GPS) ein Gletscherbach, der rezent in Moränenablagerungen einschneidet. Die Kraft der Gletscherbachfließdynamiken beeinflusste auch die nordöstlich angrenzende Moräne, sodass eine glazifluvial ausgeformte Kerbe innerhalb des Moränenkörpers entstehen konnte (Photo 40). Die Quellen des Zuflusses wurden aus der Begehung leider nicht ersichtlich. Jedoch liegen die Abschmelzprozesse von Gletschereisund Schneeakkumulationen im angrenzenden Bereich als mögliche Nährquelle nahe. abschmelzende Ebenfalls können Eiskerne innerhalb der angrenzenden Moränenakkumulation einen Beitrag zur Gletscherbachentstehung geleistet haben.

Am 14.03.12 um 12:25 Uhr wurde dieses Bachsystem näher untersucht. Die Gletscherbachbreite ist mit 2 m bis 5 m sehr variabel und auch die Gletscherbachtiefe variiert zwischen 0,5 m bis 1 m. Zum Zeitpunkt der Untersuchungen war die Wasseroberfläche des Gletscherbaches gefroren. Die Wassertemperatur schwankte je nach Sonnenbestrahlung zwischen -0,2 °C bis -0,5 °C. Ca. 2,5 m oberhalb der orographisch rechten Seite des rezenten Gletscherbaches verfestigt Vegetation den Boden. Der maximale Wasserpegelstand des Gletscherbaches wird durch diese Grenze ersichtlich. Eine länger andauernde Überflutung dieser Vegetation würde das Wachstum maßgeblich beeinträchtigen. Das geringe Gefälle innerhalb dieser Ebene ließ eine flache und ebene Schottersohle (plane bed) entstehen (Photo 41).

Erst die glazifluviale Einschneidung des Gletscherbaches in die Sedimentablagerungen der Moränenakkumulate formte die hier vorzufindenden glazifluvialen Terrassenordnungen aus. Der rezente Gletscherbach bildet die Schottersohlenebene. Die maximale Gletscherbachtiefeneinschneidung von 1 m bildet den Übergang zur ersten glazifluvialen Terrassenschotterebene. Diese wird durch vereinzelt leicht konvexe Formen mit geringen Höhenunterschieden von bis zu 2 m geprägt. Des Weiteren überlagern Blockkörper mit einer Größe von bis zu 2,5 m sowie Mattenvegetationsbewuchszonen diese Terrassenschotterebene. Diese bildet die höchste rekonstruierte glazifluviale Terrassenschotterebene, die hier aber vielmehr als Seespiegelstandshöhe klassifiziert werden kann. Oberhalb dieser grenzen die Seitenmoränen die hier zu

lokalisierenden Seestadien ab (Photo 41). Ebenfalls bestätigt die Feinsedimentanalyse an diesem Untersuchungsstandort (Photo 42) die Abfolge dieser Prozesskette: Zuerst wurde der Moränenkörper glazigen abgelagert. Anschließend wurden die oberflächlichen Moränensedimente durch glazifluviale Prozesse überprägt und ausgewaschen, welches sich anhand der Sedimentprobe 5 belegen lässt (Diagramm 5).

Diagramm 5: Korngrößen vom 14.03.12. Anhand der Korngrößenzusammensetzung des Sedimentkörpers des historischen Lhotse Nup Gletschersees kann verdeutlicht werden, dass dieser ehemals glazigen akkumulierte Moränenkörper glazifluvial ausgewaschen wurde. Es lassen sich jedoch noch Reste in allen Kornfraktionen finden. Die Tonfraktion weist innerhalb dieser Probe einen Anteil von 1,9 % vor. Die Maxima dieser Sedimentprobe sind mit 39,2 % in der Feinsandfraktion und mit 32,1 % in der Mittelsandfraktion zu finden. Der Sortierungskoeffizient dieser Sedimentprobe weist einen Wert von 2,20 vor.

Mittels einer großräumigen Betrachtung lässt sich erkennen, dass die starken Schwankungen der Gletscherbachbreite durch kleine natürliche Stauseen, die Form der Gletscherbachausprägung überlagern. Insgesamt lässt sich anhand der Feinsedimentablagerungen, die auf Stillwassersedimente hindeuten, sowie der großskaligen Beckenform eindeutig eine glazigen geformte Hohlform, die ehemals mit Wasser gefüllt war und somit einen Gletschersee bildete, erkennen (Photo 40, 41). Ein Vergleich der Satellitenbilder aus dem Jahr 2003 (07.05.2003), 2009 (03.11.2009) und 2010 (20.02.2010) zeigt eine Reduktion der Schneeakkumulationen innerhalb der Hohlform (Pfeil (\downarrow) in Abbildung 18, 19 & 20).

Abbildung 18: Schneeakkumulationen (↓) innerhalb des historischen Gletschersees am Lhotse Nup Gletscher aus dem Jahr 2003 (07.05.2003); Google Earth.

Abbildung 19: Eine zuvor großräumig schneebedeckte Hohlform (↓) des historischen Gletschersees am Lhotse Nup Gletscher aus dem Jahr 2009 (03.11.2009); Google Earth.

Abbildung 20: Eine zuvor großräumig schneebedeckte Hohlform (↓) des historischen Gletschersees am Lhotse Nup Gletscher aus dem Jahr 2010 (20.02.2010); Google Earth.

Auch in vorangegangenen Zeiträumen war das glazigen geformte Becken nicht mehr ganzheitlich mit Wasser gefüllt. Zieht man die Gletscherausdehnung von 1957 bis 1959 zur Untersuchung hinzu (GLIMS: Racoviteanu & Bajracharya 2008), lässt sich verdeutlichen, dass diese konkave Formengestalt noch vor diesem Zeitraum der Gletscherausdehnung durch vorhergehende Gletscherüberprägungen gestaltet wurde und somit nach Kuhle in das Stadium X oder XI einzuordnen ist (vgl. Kuhle 2005: Table 1: 263; vgl. Tabelle 17).

südwestlichen Endpunkt dieser Hohlform wurden die Am abgrenzenden Moränenablagerungen durch den Abfluss der unterschiedlichen Wasserpegelstände der Gletscherseestadien glazifluvial eingeschnitten (Photo 41), sodass sich der Wasserpegel des historisch glazigen geformten Sees reduzieren konnte. Die dadurch die freigesetzten Wassermassen durchschnitten auch talabwärts liegenden Moränenkörper und mündeten schließlich auf einer Höhe von ca. 4815 m ü. NN (27°54'28.30"N, 86°52'30.88" E) in den orographisch rechten Lauf des Lohtse Nup Gletscherbaches.

3.1.2.4 Übersicht zum angrenzenden Abflusssystem des Nuptse Gletschers

Im Gletscherkar des Nuptse Gletschers beginnt ab einer Höhe von ca. 5809 m ü. NN das Nährgebiet. Gespeist wird dieser Gletscher durch die Metamorphose von Schnee zu Eis sowie durch Lawinen und Eisabbrüche der südöstlichen Lhotse Felswand, die mit einer Höhe von 7861 m ü. NN (Nuptse) begrenzt ist. Die Gletscherlänge von ca. 6,3 km mäandriert talabwärts in Richtung Süden und endet mit der Gletscherzunge auf einer Höhe von ca. 4970 m ü. NN. Ebenfalls sind im Bereich der Gletscherzunge vereinzelte Seen zu erkennen. Durch das Abschmelzen der Gletscherzunge wurde die aufgeschüttete Podestmoräne durchbrochen und eingeschnitten (Pfeil (1) in Abbildung 21). Diese Einschneidung erzeugte schließlich drei voneinander getrennte Gletscherbachläufe.

Abbildung 21: Durch Gletscherschmelzdynamiken wurde die Podestmoräne eingeschnitten (↓). Diese Abflüsse bildeten schließlich die Nuptse Gletscherbachläufe; Google Earth (Bildmitte: 27°54'16.90"N, 86°51'48.68"E).

Auf der westlichen Flanke des Podestmoränenkörpers bilden die Abschmelzprozesse den orographisch rechts gelegenen Gletscherbach (ca. 27°54'30.25"N, 86°51'51.21"E), der Teils noch vom geringen Abfluss des noch weiter westlich gelegenen und sehr kleinräumigen Bachlaufes (ca. 27°54'35.86" N, 86°51'45.18" E), der schließlich auf

einer Höhe von ca. 4699 m ü. NN (ca. 27°54'13.32" N, 86°51'43.37" E) in den zuvor genannten Lauf mündet, beeinflusst werden kann. Der deutlich großräumigere orographisch rechte Lauf (ca. 27°54'30.25" N, 86°51'51.21" E) bildet Verästelungen (braided river) aus. Die Bachbettbreite der Schottersohlenebene beträgt hier ca. 2 m bis 3 m und die angrenzende erste glazifluviale Terrassenschotterebene misst eine Breite von ca. 35 m bis 45 m (Messungen: Google Earth). Die glazifluviale Einschneidung von der ersten Terrassenschotterebene beginnend bis zur Oberfläche des Moränenkörpers misst eine Höhe mit bis zu 7 m bis 10 m. Diese Distanz lässt sich nur durch erhöhte Abschmelzraten, einer intensiveren Einschneidung aufgrund des Neigungswinkels oder einer länger andauernden Erosionszeitspanne erklären. Mit einer maximalen Neigung von ca. 98,5 % bis zu ca. 68,5 % fließt dieser abwärts und mündet schließlich auf einer Höhe von ca. 4605 m ü. NN (27° 54' 02.07" N, 86° 51' 36.28" E) in das Gletscherbachsystem des Lhotse und Lhotse Nup Gletschers.

Weiter östlich auf der Podestmoränenflanke gelegen, der Bachlauf bildet sich in der Mitte der Podestmoräne, schneidet ein weiterer Gletscherbach ein (ca. 27°54'30.88" N, 86°51'55.54" E). Dieser fließt gegen Südosten hangabwärts und formt ebenfalls Verästelungen (braided river) aus. Die Gletscherbachbreite der Schottersohlenebene variiert hier zwischen 2 m bis 3 m und schneidet in die zuvor vom Bachlauf ausgearbeitete erste glazifluviale Terrassenschotterebene, die hier eine Breite von ca. 18 m bis 28 m misst, ein. Im Vergleich zum benachbarten westlichen Gletscherbach ist die Einschneidung gering ausgeprägt. Die Tiefe dieser misst hier ca. 3 m bis 5 m. Der Vergleich der Hangneigung zeigt hier Unterschiede. Die maximale Neigung beträgt in diesem Gletscherbach zwischen ca. 98,8 % bis ca. 64,6 %. In Richtung Südwesten abfließend mündet auch dieser Gletscherbach auf einer Höhe von 4664 m ü. NN (27° 54' 03.30" N, 86° 51' 56.74" E) schließlich in das Gesamtabflusssystem des Lhotse und Lhotse Nup Gletschers.

Direkt östlich des zuvor beschriebenen Gletscherbaches angrenzend - ca. 130 m gegen Osten versetzt - ist ebenfalls ein glazifluvialer Einschnitt eines Bachsystems in die Podestmoräne erkennbar (ca. 27°54'32.06" N, 86°52'0.47" E). Aufgrund der geringen Ausräumung des Bachbettes bzw. der Schottersohlenebene, dessen Breite sich nicht anhand von Satellitenbildern (Google Earth) ermitteln lässt, sind die Abflussdynamiken

im Vergleich zu den zuvor beschriebenen Einschneidungen gering. Dies lässt sich anhand der geringen Breite der ersten glazifluvialen Terrassenschotterebene von nur ca. 8 m bis 10 m verdeutlichen. Die glazifluviale Einschneidungstiefe, die sich mittels der Distanz von der Schottersohle bis zur Oberfläche der Podestmoräne großräumig ermitteln lässt, beträgt hier ca. 9 m bis 11 m. Die maximale Neigung des Bachlaufes schwankt zwischen ca. 98,4 % bis ca. 63,8 %. Dem Bachverlauf weiter hangabwärts folgend spaltet sich dieser schließlich in zwei getrennte Abflusssysteme. Der westlich aufgespaltene Bachlauf bildet eine Konfluenz auf einer Höhe von 4677 m ü. NN (27° 54' 08.28" N, 86° 51' 58.39" E) mit dem Bachlauf des weiter westlich angrenzenden Abflusssystems des Nuptse Gletschers. Der östlich gelegene Bachlauf mündet auf einer Höhe von 4675 m ü. NN (27° 54' 04.60" N, 86° 52' 00.85" E) in den Gletscherbachhauptstrom des Lhotse und Lhotse Nup Gletschers. Die Laufform dieser beiden aufgeteilten Bachläufe weisen Mäandrierungen und ausgeprägte Verästelungen vor (braided river). Die Genese dieses Formenschatzes lässt sich durch die hier auftretenden Abflussschwankungen und der sich somit veränderten kinetischen Energie zur Landschaftsformung erklären.

3.1.2.5 Übersicht zum Gletscherbachsystem des Unbenannten Kongma-La Gletschers

Der Unbenannte Komgma-La Gletscher weist nur noch eine sehr geringe Gletschermächtigkeit vor (Photo 43). In einem Gletscherkar an der Südflanke einer Gipfelflur, die südwestlich bis zum Kongma-La Pass hinunterreicht, beginnt der Gletscher ab einer Höhe von ca. 5709 m ü. NN (27° 56' 25.63" N, 86° 50' 18.58" E, 21.11.2009). Aufgrund des Zurückweichens endet dieser nach einer Länge von ca. 540 m auf einer Höhe von ca. 5562 m ü. NN (27° 56' 09.38" N, 86° 50' 26.30" E). Weiter hangabwärts lokalisieren sich jedoch zahlreiche kleine bis große Seen, die auf historische Gletscherstände hindeuten (Photo 26, 44).

Genährt von Gletschereis- und Schneeschmelze bildet sich aus den sich hier lokalisierten Seen sowie der auftretenden Gletscherschmelzprozesse des Unbenannten

Kongma-La Gletschers und der angrenzenden Wandvereisungen ein kleinräumiges Bachabflusssystem aus. Beginnend ab der Seenfläche durchfließt das hier entstehende kleine Bachsystem die ehemals von zahlreichen Gletschervorstoßprozessen geprägte treppenstufenartig geformte Landschaft (Photo 26, 44, 45) talabwärts in Richtung Süden. Dabei wird es jedoch durch weitere Schnee- und Eisschmelzzuströme, die die angrenzenden Gipfelfluren bedecken, genährt. Während dieser Abfließprozesse durchschneidet der Gletscherbach die hier einst vom Gletschergesamtsystem, dazu zählt die historische Konfluenz des Unbenannten Kongma-La Gletschers mit allen angrenzenden Wandvereisungen, abgelagerten Grundmoränenreste. Die Breite der Schottersohlenebene, also die Gletscherbachbreite, variiert je nach Lokalität zwischen ca. 3 m bis 6 m. Die direkt angrenzende erste Terrassenschotterebene weist in diesem Bereich Breiten von ca. 6 m bis 10 m vor. Im Anschluss dieser treppenstufenartigen Abfolge der hier zu lokalisierenden Kartreppe bildet der Bachlauf auf einer Höhe von ca. 4983 m ü. NN (ca. 27°54'49.12"N, 86°50'54.11"E) eine Konfluenz mit einem aus Nordwesten abfließenden Bachlauf (Photo 45). Dadurch erhöhen sich die Abflussdynamiken des Bachlaufes, welche im Anschluss den abgelagerten Endmoränenkörper, der sich nahe der Höhe von 4787 m ü. NN (27° 54' 27.09" N, 86° 51' 00.85" E) lokalisiert, durchschneiden. Die Mächtigkeiten des glazifluvialen Moränenkörpereinschnitts verdeutlichen die Intensitäten der Gletscherbachabflussdvnamiken, die in den vorhergehenden Eisrandlagen einen intensiveren Gletscherbachabfluss erzeugten. Im Bereich dieses Endmoränendurchbruches ist auch eine Breitenzunahme der ersten Terrassenschotterebene zu erkennen (Pfeil (1) in Abbildung 22), die hier Breiten zwischen ca. 9 m und 17 m misst. Im Anschluss dieses Durchbruches, also weiter bachabwärts, prägen Verästelungen und Mäandrierungen die Form dieses Bachlaufes. In diesem Bereich misst die erste Terrassenschotterebene eine Breite zwischen ca. 4 m bis 8 m, dessen Bachlauf schließlich auf einer Höhe von 4478 m ü. NN (27° 53' 52.50" N, 86° 50' 59.49" E) in den orographisch rechten Abflussarm des Imja Khola mündet.

Abbildung 22: Eine Breitenzunahme der ersten Terrassenschotterebene (↓) ist im Endmoränendurchbruch des Unbenannten Kongma-La Gletscherbaches zu erkennen; Google Earth (Bildmitte: 27°54'17.02''N, 86°50'58.12''E).

3.1.2.6 Übersicht zum Duwo Gletscherbachsystem

Der Duwo Gletscher entsteht direkt unterhalb der Nordflanke des Ama Dablam (6856 m ü. NN). Durch Lawinen- und Eisabbrüche und der Metamorphose von Schnee zu Eis wird der Gletscher genährt. Dieser beginnt ab einer Höhe von ca. 5241 m ü. NN (27° 52' 16.83" N, 86° 51' 43.54" E). Mit einer Länge von ca. 2,6 km fließt der Gletscher talabwärts in Richtung Nordwesten und bildet auf einer Höhe von ca. 4686 m ü. NN (27° 53' 18.48" N, 86° 50' 40.41" E) eine wulstförmige Gletscherzunge aus. Direkt angrenzend lokalisiert sich ein Gletschersee. Insgesamt misst der Gletscher eine Breite von ca. 0,65 km, die jedoch stark variiert und talabwärts deutlich abnimmt. Aber auch dem orographisch linken Kammverlaufsausläufer des Ama Dablam folgend lokalisieren sich nördlich dieser Vollform zwei weitere aber deutlich kleinere Vergletscherungen, die Mähe des zuvor beschriebenen Gletschersees heran (roter Pfeil (↓) in Abbildung 23).

Abbildung 23: Zwei kleinräumige mit Obermoränen überprägte Vergletscherungen (roter Pfeil ↓) fließen bis in die Nähe des Gletschersees heran. Vergangene Gletschereisschmelzprozesse bildeten in der Front des Moränen-Westhanges des Duwo-Gletschers glazifluviale Einschneidungsformen aus (blauer Pfeil ↓); Google Earth (Bildmitte: 27°53'12.44"N, 86°50'4.10"E).

Im Anschluss des Gletschersees folgt die Grundmoräne (Kuhle 2005: Figure 25, Figure 46). Ob diese vereinzelt noch vom Eis durchtränkt ist und somit den untersten Abschnitt der Gletscherzunge darstellt und daher als Obermoräne zu klassifizieren ist, kann aus den Satellitenbilddaten nicht eindeutig entnommen werden (vgl. Abbildung 23). Weiter gegen Westen lokalisiert sich auf einer Höhe von 4669 m ü. NN (27° 53' 19.72" N, 86° 50' 30.34" E) ein weiterer. aber deutlich kleinerer Gletschersee. Durch Abschmelzprozesse der vorgelagerten Eismassen ändert sich auch der Wasserspiegelstand dieses Sees. Da die alleinige Sublimation von Eismassen und die Verdunstung des Wasserkörpers nicht ausreichen, um derartige Eisund Wasservolumina zu reduzieren, entstand durch die Kraft des Wasserkörpers schließlich eine glazifluviale Erosionsrinne einschließlich ihrer Schottersohlenebene. Angrenzend lokalisiert sich die erste glazifluviale Terrassenschotterebene, die eine Breite von ca. 8 m bis 12 m misst (Messung: Google Earth). Mittels dieser Oberflächenumlagerung der Moränenakkumulation konnten SO die Wassermassen bis tief hinab zum Talschaftsboden abfließen und Sedimentkörper transportieren. Rezent tragen diese

Abflussprozesse jedoch nicht zur Nährung des angrenzenden Imja Khola Flusssystems bei, vielmehr beeinflussten diese Prozesse in den vergangenen Gletschereisrückzugsstadien die Landschaftsgenese (nach Kuhle 2005: Historisches Gletscherstadium VII-XI sowie Stadium XII nach Table 1; vgl. Tabelle 17). Die durch diesen Prozessablauf entstandenen Einschneidungsformen (blauer Pfeil (↓) in Abbildung 23 und 24) lassen sich auch anhand der breiten Front des Moränen-Westhanges verdeutlichen (vgl. Photo 46).

Des Weiteren sind SSW dieser Einschneidungsformen des Westhanges weitere fluviale Auskerbungen zu erkennen (ca. 27° 53' 10.81" N, 86° 50' 12.09" E, 4547 m ü. NN) (Photo 46). Der Moränenkörper, der nach Kuhle zuerst im Gletscherstadium "Sirkung Stage" IV glazigen abgelagert wurde (Kuhle 2005: Figure 46), erfuhr in den darauffolgenden Gletscherstadien weitere glazigene Überprägungen, die im Anschluss durch die einsetzenden Eisabschmelzprozesse glazifluvial umgestaltet werden konnten. Obermoränen der kleineren Gletscher, die sich orographisch links des Ama Dablam Gletschers lokalisieren (s. o.) und ihre Gletscherzunge im Bereich von ca. 4646 m ü. NN (27°53'4.80"N, 86°50'20.50"E) des Westhanges enden lassen, verdeutlichen die Veränderungen dieser Gletscheroszillationen. Die sich hier ausprägende Stufenformation innerhalb des Podestmoränenwesthanges sowie einer vorhandenen Moränenakkumulationsform nahe von ca. 4392 m ü. NN (27°53'13.09''N. 86°49'54.83"E) unterhalb des rezenten Gletscherzungenendes kann nur anhand der auf dieser Podestmoräne aktiven Gletschern (Duwo- und kleine Nachbargletscher) erklärt werden. Diese unterlagen während der letzten Gletscherstadien ebenfalls einer Vorrückphase (Abbildung 23 und Photo 46). Mittels der Abschmelzprozesse der vorherigen aber auch rezenten Gletscherstände entstanden schließlich kleinräumige Erosionsrinnen (Abbildung 23, 24 sowie Photo 46), deren Breite zwischen ca. 2 m und 5 m variiert (Messung: Google Earth). Somit ist hier ebenfalls der lokale Beweis einer glazifluvialen Einschneidung einer Moräne, an dieser Lokalität bezieht es sich jedoch vielmehr auf eine Podestmoräne, gegeben. All die hier aufgeführten Erosionsrinnen münden schließlich in das Abflusssystem des Imja Khola.

Abbildung 24: Vergangene Gletschereisschmelzprozesse bildeten in der Front des Moränen-Westhanges des Duwo-Gletschers glazifluviale Einschneidungsformen aus (blauer Pfeil ↓); Google Earth (Bildmitte: 27°53'19.62"N, 86°50'13.92"E).

Durch den möglichen fluvialen Transport von Sedimenten mit einhergehender Ablagerung in der Talschaft des Imja Khola, kann eine morphologische Beeinflussung in Form von Mäanderverlagerungen des Flusssystems nicht ausgeschlossen werden. Da diese Prozesszusammenhänge jedoch nicht rezent zu beobachten sind (Photo 46), können diese Prozesse lediglich im vergangenen Holozän den Lauf des Imja Khola Hauptstromes beeinflusst haben.

3.1.2.7 Übersicht zum Tsuro Gletscherbachsystem

Unterhalb der Westflanke des angrenzenden westlichen Nebengipfels des Ama Dablam beginnt der Tsuro Gletscher. Genährt wird dieser durch Schnee- und Eisabbrüche der vereisten Westflanke und durch Lawinenabbrüche der angrenzenden Kammverläufe. Naturgemäß trägt die Metamorphose von Schnee zu Eis im Gletscherkar, wobei der Schnee zuvor mittels Lawinenabbrüchen oder Niederschlag abgelagert wurde, zur Gletschernährung bei. Erst durch diese Nährung konnte sich der Tsuro Gletscher ab einer Höhe von ca. 5217 m ü. NN (27° 52' 10.77" N, 86° 50' 43.72" E) ausbilden. Dieser

fließt westlich bis auf einer Höhe von ca. 4502 m ü. NN (27° 52' 38.52" N, 86° 49' 28.66" E) hinab. Die Distanz dieser beiden Höhenangaben und der somit tatsächlichen Gletscherlänge beträgt ca. 2,22 km.

Das Gletscherzungenende verändert mittels auftretender Gletschereisschmelzprozesse und der damit freigelassenen Wasser- und Sedimentkörper die angrenzende Podestmoräne. Mit dem Beginn des Gletscherbachabflusses wird aufgrund der freigesetzten Kräfte des hinabfließenden Wasserkörpers diese Moräne eingeschnitten und umgelagert. Weiter hangabwärts konnte sich so ab einer Höhe von ca. 4300 m ü. NN (27° 52' 46.63" N, 86° 49' 20.91" E) eine Schuttfächerakkumulation bilden, die schließlich durch ihre Mächtigkeiten auch die angrenzende Bachbettmorphologie des Imja Khola beeinflusst (roter Pfeil (1) in Abbildung 25 und Photo 47). Bis zum angrenzenden Imja Khola (4227 m ü. NN) weist der Schuttfächer eine Höhe von ca. 73 m vor. Vom Beginn des Gletscherzungenendes bis zum am Talboden fließenden Gletscherbach misst die gesamte Podestmoräne eine Höhendifferenz von ca. 275 m. Die maximale Hangneigung des Gletscherbach- und Schuttfächerreliefes verläuft zwischen ca. 89,6 % bis ca. 52,5 %. Zur Zeit der Begehung waren die radialstrahlig in der Podestmoräne eingeschnittenen Bachbette jedoch trockengelegt (Photo 47, 48). Vergangene Abflussdynamiken haben diese Formen mit einer Schottersohlenebenenbreite (Abflussrinnenbreite) von ca. 2 m bis 4 m geprägt (Messung: Google Earth). Da diese Schuttfächerakkumulation bis in den Lauf des Imja Khola hineinreicht, wird die Sohlenmorphologie maßgeblich beeinträchtigt, die durch chaotische Blockablagerungen im Lauf zu Tage treten (Photo 47). Ebenso zeigt sich, dass der Randbereich dieses Schuttfächers keine Vegetationsbewuchszonen vorweist (Photo 47). Daraus lässt sich schließen, dass dieser einer aktiven Dynamik unterliegt und somit ins Anfangsstadium der Schuttfächer-Entwicklungsdynamik eingestuft werden kann.

Abbildung 25: Die Schuttfächerakkumulation des Tsuro-Gletschers beeinflusst die angrenzende Bachbettmorphologie des Imja Khola (roter Pfeil ↓). Bewuchszonen stabilisieren einen weiteren Schuttfächer vor möglichen fluvialen Überprägungen durch den Imja Khola (blauer Pfeil ↓). Der weiter südlich gelegene Gletscherbachlauf schneidet im Vergleich intensiver in die Podestmoräne ein und formt einen aktiveren Schuttfächer aus (grüner Pfeil ↓); Google Earth (Bildmitte: 27°52'41.87''N, 86°49'8.88''E).

Südwestlich dieses Schuttfächers ist eine weitere glazifluviale Einschneidung der Podestmoräne erkennbar (Photo 48). Beginnend ab einer Höhe von ca. 4470 m ü. NN (27° 52' 35.37" N, 86° 49' 21.49" E) durchschneiden die Abschmelzprozesse des Gletschers diesen Akkumulationskörper. Die Breite der dabei entstehenden ersten glazifluvialen Terrassenordnung variiert hier zwischen ca. 6 m bis 11 m, wobei die tatsächliche Schottersohlenebenenbreite (Abflussrinnenbreite) geringer ausfällt und zwischen ca. 2 m bis 4 m schwankt. Weiter hangabwärts ab einer Höhe von ca. 4260 m ü. NN (27° 52' 41.14" N, 86° 49' 08.26" E) gabelt sich dieser Abfluss in zwei voneinander getrennte Läufe.

Bevor die nördliche Abflussrinne in den Imja Khola mündet, schneidet sie in die Podestmoräne ein und bildet zur Taltiefenlinie hin einen Schuttfächer aus. Dies lässt sich mittels der abrupten Abnahme des Gefälles mit einhergehender Abnahme der Transportkraft des Bachlaufes erklären. Durch diesen länger andauernden Prozess wurden bereits Sedimente abgelagert, die jedoch schon weitestgehend vom Vegetationsbewuchs überprägt wurden. Diese Bewuchszonen stabilisieren zugleich den

Schuttfächer vor möglichen fluvialen Überprägungen durch den hier angrenzenden Imja Khola (blauer Pfeil (↓) in Abbildung 25). Insgesamt lässt sich somit die Entwicklungsdynamik des Schuttfächers in das Endstadium einstufen, die hier nicht mehr maßgeblich aktiv durch die Schuttzufuhr umgestaltet wird.

Hingegen schneidet der weiter südlich gelegene Gletscherbachlauf im Vergleich intensiver in die Podestmoräne ein und formt einen größeren und deutlich aktiveren Schuttfächer nahe der Taltiefenlinie aus (grüner Pfeil (1) in Abbildung 25), bis dieser schließlich in den südlich gelegenen Abschnitt des Imja Khola mündet. Die Schuttfächergenese lässt sich hier ebenfalls - wie schon im vorherigen Beispiel erläutert - durch die abrupte Abnahme der Energie infolge der Gefälleveränderung erklären. Die Tiefeneinschneidung des hier ca. 2 m bis 3 m breiten Bachlaufes formte eine Terrassenschotterebene (erste glazifluviale Terrassenordnung), die hier eine Breite von bis zu ca. 12 m misst, aus. Weiter hangabwärts lassen sich anhand der Oberflächenform dieses Schuttfächers trockengelegte Bachbettformen ausfindig machen. Dieser Formenschatz ist ein typisches Merkmal von verwilderten Bachbettformen (braided river) (Church 1972), die sich durch die Abflussveränderungen der im Imja Khola mündenden Gletscherbachabschmelzprozesse erklären lassen. Diese schwankenden Abflussdynamiken üben auch eine unterschiedlich intensive kinetische Energie auf den Bachlauf aus, welche den Formenschatz unterschiedlich ausformen kann. Des Weiteren beeinflusst auch die Gefälleveränderung des Schuttfächers die Wasserdynamiken des Gletscherbaches und deren Formengestalt. Im Veraleich zum weiter nördlich lokalisierten Schuttfächer, ist hier die Entwicklungsdynamik des Vegetationsbewuchses nicht so intensiv fortgeschritten.

Demnach können die Gletscherbachabschmelzprozesse einen stärkeren Einfluss auf die Schuttfächergenese und der damit verwobenen Morphologie ausüben, so wie es auch in dem dazugehörigen nördlichst gelegenen Schuttfächer des Tsuro Gletscherbachsystems, der den nördlich gelegeneren Abschnitt des Imja Khola überlagert (Photo 47), rekonstruiert wurde.

3.1.2.8 Die Morphologie und Terrassenbildungen des Imja Khola Hauptstroms auf der Mikro-, Meso- und Makroebene

Da der Imja Khola in diesem Abschnitt der Talschaft den Hauptstrom bildet, der durch den Zustrom aller Gletscherabschmelzprozesse und den daraus sich entwickelnden Bachsystemen in dieser Talschaft genährt wird, ist eine morphometrische und morphologische Mikroebenenanalyse unerlässlich. Daher wurden am 12.03.12 um 09:55 Uhr nahe der Ortschaft Dingboche (N 27° 53.409' E 086° 49.812', 4278 m ü. NN (GPS)) Geländeuntersuchungen durchgeführt, die folgende Ergebnisse offenlegen: Die Schottersohlenebene des Imja Khola weist hier eine Breite von ca. 6 m bis 7 m vor. Die Flusstiefe variiert hier zwischen 0,5 m bis 1 m. Während der Messungen betrug die Wassertemperatur -0,2 °C und die Fließgeschwindigkeit ca. 1 m/sec bis 2 m/sec.. Morphologisch lassen sich im Flussbett Stufen-Becken Sequenzabfolgen (step-pool) erkennen, die eine Länge von 3 m bis 5 m vorweisen. Des Weiteren ist das Flussbett durch vermehrte Ansammlungen von Blockkörpern mit Größen von 1 m bis 3 m gekennzeichnet (siehe Photos 50, 51, 54). Talabwärts fließt der Imja Khola mit einem Gefälle von ca. 7 % in Richtung Südwesten. Dabei bildet dieser zahlreiche Mäanderschlingen und Verästelungen, die zum Teil verfestigt sind (anabranching-river), aus. Talaufwärts hingegen beträgt das Flussbettgefälle ca. 10 %. Mithilfe von Korngrößenanalysen der Schottersohlenebene und der angrenzenden ersten Terrassenschotterebene (Photos 52, 53, 55 und 56) konnte die Sedimentzusammensetzung dieser untersucht werden, die aufgrund ihrer Korngrößenzusammensetzung auf glazifluviale sowie fluviale Prozesse hindeuten (vgl. Diagramm 6 und 7).

Diagramm 6: Korngrößen vom 12.03.12. Anhand der Korngrößenzusammensetzung der Flusssohle des Imja Khola Hauptstroms kann verdeutlicht werden, dass diese ehemals als Grundmoränenkörper abgelagert wurde und im Anschluss glazifluvialen sowie fluvialen Auswaschungsprozessen unterlag. In allen Kornfraktionen lassen sich noch Sedimentreste auffinden. Auch die Tonfraktion weist innerhalb dieser Probe einen Anteil von 1,1 % vor. Die Maxima dieser Sedimentprobe sind mit 40,9 % in der Mittelsandfraktion und mit 30,3 % in der Feinsandfraktion zu finden. Der Sortierungskoeffizient dieser Sedimentprobe weist einen Wert von 2,22 vor.

Diagramm 7: Korngrößen vom 12.03.12. Anhand der Korngrößenzusammensetzung der ersten Terrassenschotterebene des Imja Khola Hauptstroms kann verdeutlicht werden, dass diese ehemals als Grundmoränenkörper abgelagert wurde und im Anschluss glazifluvialen sowie fluvialen Auswaschungsprozessen unterlag. In allen Kornfraktionen lassen sich noch Sedimentreste auffinden. Die Tonfraktion weist innerhalb dieser Probe einen Anteil von 1,2 % vor. Die Maxima dieser Sedimentprobe sind mit 37,2 % in der Mittelsandfraktion und mit 32 % in der Feinsandfraktion zu finden. Der Sortierungskoeffizient dieser Sedimentprobe gibt einen Wert von 2.26 vor. Im Vergleich zu der Imja Khola Flusssohlensedimentprobe (vgl. Diagramm 6) lässt sich erkennen, dass diese Terrassenkörpersedimente längeren glazifluvialen sowie fluvialen Auswaschungprozessen unterlagen. Dies lässt sich mittels der höheren Sedimentanteile in der Sandfraktion belegen (vgl. Diagramm 7).

Schließlich lassen sich an diesem Standpunkt fünf fluviale Terrassenordnungen rekonstruieren (siehe Karte 5a und 5b (Anhang)): Die Schottersohlenebene misst hier eine Breite von ca. 4 m bis 7 m. Der Übergang zur ersten fluvialen Terrassenordnung weist eine Höhendistanz von ca. 0,5 m bis 1 m vor. Diese erste fluviale Terrassenordnung respektive erste Terrassenschotterebene misst Breiten von ca. 16 m Im Anschluss bis 25 m (Messungen: Google Earth). lokalisiert sich die zwischengeschaltete zweite Terrassenschotterebene, die lediglich mit einer Höhendistanz von ca. 0,5 m bis 1 m oberhalb der ersten Terrassenschotterebene ansetzt. Diese zweite fluviale Terrassenordnung lässt sich anhand der zahlreichen kleinen Inselbildungen innerhalb des Hauptstroms erkennen (Photos 50 und 51). Die dieser zwischengeschalteten Terrassenschotterebene variiert je nach Breite Messlokalität sehr stark zwischen ca. 15 m bis 47 m. Mit der hier zu beginnenden Auenvegetation kann diese auch als Hochwassermarkenterrasse definiert werden. Mit einer Höhendistanz von ca. 1 m bis 2 m wird der Übergang zur dritten fluvialen Terrassenordnung, die hier als buckelartige Terrassenschotterfläche klassifiziert wurde, geprägt. Die Breite dieser buckelartigen Terrassenschotterfläche variiert je nach Lokalität sehr stark zwischen ca. 40 m bis 95 m. Der Übergang zur nächsten angrenzenden fluvialen Terrassenordnung wird durch eine Höhendistanz von ca. 2 m bis 6 m oberhalb der dritten Terrassenordnung gebildet. Die nun hier angrenzende vierte Terrassenschotterebene, die Breiten aller untergeordneten Terrassenordnungen sind hier mit inbegriffen, wird an diesem Untersuchungsstandort durch Breiten von ca. 130 m bis 175 m geformt. Ca. 8 m bis 20 m beträgt die Distanz zur nächst höher gelegenen fünften Terrassenordnung, die diese Terrassenabfolgen abschließt und aufgrund ihrer Breite zur Bebauung der Ortschaft Dingboche genutzt wurde. Je nach Lokalität misst sie insgesamt, einschließlich aller sich unterhalb befindenden Terrassenordnungen, Breiten von ca. 300 m bis 470 m. Ob sich diese fünfte Terrassenebene jedoch noch feiner untergliedern lässt, kann anhand der Morphologie nicht eindeutig belegt werden. Daher stellt diese Untergliederung eine Mindestanzahl von Terrassenabfolgen dar.

Mithilfe der Mesoebenenanalyse lässt sich erkennen, dass der Gesamtlauf des Imja Khola zuerst in Richtung Westen und dann vermehrt in südwestlicher Richtung talabwärts fließt (Abbildung 26). Nahe der Gletscherrandbereiche bilden sich infolge von sich jährlich verändernden Abschmelzprozessen verwilderte Bachbettsohlen (braided river) aus, dessen Abflussdynamiken schließlich in den Gesamtlauf des Imja Khola münden. Dem Imja Khola Hauptstrom weiter talabwärts folgend lässt sich erkennen, dass die Inseln innerhalb der Sohle zunehmend von der hier vorherrschenden Vegetation verfestigt werden, die hier als eine verwilderte Bachtbett- bzw. Flussbettform (anabranching river) klassifiziert werden kann. Dies lässt sich durch die nahe der Ortschaft Dingboche teils großräumig ausgeprägten Vegetationsinseln innerhalb des Laufes verdeutlichen (Photo 46, 50 und 51). Erklären lässt sich diese Formenentwicklung dadurch, dass der Abfluss in diesen deutlich weiter talabwärts gelegenen Bereichen nicht so extremen Abflussschwankungen wie jenen in den Gletscherrandbereichen unterliegen und die Vegetationszonen nicht mehr von gletscherrandbereichbedingten extremen Witterungsverhältnissen beeinflusst werden. Ebenso übt die Abnahme der Flussneigung einen Einfluss auf die Genese dieses Formenschatzes aus.

Des Weiteren lässt sich erkennen, dass in diesem Laufabschnitt die Mäanderbogenausprägung deutlich intensivere Bogenformen vorweist, jedoch durch hier vorhandene Vegetation gebunden ist. Ebenfalls lassen sich anhand der sich hier sehr ausgeprägten Stufen-Becken Sequenzabfolgen (step-pool) die Genese jenes Formenschatzes verdeutlichen, dessen Formengestalt in den Gletscherrandbereichen eine deutlich unsortiertere sowie chaotischere Bachbettsohle (cascade) einnimmt.

All dies verdeutlicht den Entwicklungsprozess der Fluss- und Bachbettmorphologie einschließlich der Terrassenausprägung des Imja Khola, welches durch Fluvialprozesse im vergangenen Holozän respektive Quartär beeinflusst wurde (siehe Karte 5a, 5b und 5c (Anhang)). Zu diesen zählten auch die glazialen Prozesse, die während vergangener Glazialsstadien eine Breite Talschaft ausformen konnten und schließlich die Sedimente als Grundgerüst einer sich zu bildenden Terrasse akkumulierten. Anhand der

Morphologie lässt sich ebenfalls belegen, dass die Talschaftsbreite hier talabwärts zunimmt, die mit einer Terrassenbreitenzunahme einhergeht. (Photo 46).

Abbildung 26: Die Morphologie des Imja Khola Hauptstroms. Die beiden Pfeile (↓) zeigen den Beginn und das Ende des untersuchten Laufabschnittes an; Google Earth (Bildmitte: 27°53'30.57"N, 86°50'36.04"E).

Mithilfe der Morphologie konnte ein Längsprofil für die Makroebenenanalyse des Imja Khola Hauptstroms ausgearbeitet werden. Dieses Längsprofil bezieht sich jedoch lediglich auf den Laufabschnitt des Imja Khola Hauptstroms, der direkt nach dem Zusammenfluss aller in der Talschaft abfließenden Gletscherbachläufe auf einer Höhe von ca. 4602,67 m ü. NN entsteht (WGS 84/Pseudo Mercator: E 9669359,3482949100 Ν 3236305,9351589500; umgewandelt in WGS 84: E 86.8613329022 Ν 27.8994761645; siehe Tabelle 4) und mit der Konfluenz des Khumbu Khola auf Höhen von ca. 4142,49 m ü. NN nach dem hier verwendeten SRTM-Höhenmodell endet (WGS 84/Pseudo Mercator: E 9664303,0747462300 N 3233773,4725206300; umgewandelt in WGS 84: E 86.8159116241 N 27.8793689745; siehe Tabelle 4). Mit dieser Vorgehensweise kann die Morphologie des Bachlaufes und die Erosion des Imja Khola Gesamtabflusses aufgezeigt und verglichen werden (siehe Kapitel 2). Zu beachten gilt, dass sich diese Längsprofilanalyse auf den Gesamtabfluss bezieht und nicht wie in den vorherigen Beispielen auf die jeweiligen Gletscherbachabflüsse, die naturgemäß einer
geringeren Erosionsleistung unterliegen. Die anhand des Längsprofiles gesammelten Ergebnisse sind wie folgt morphologisch einzuordnen:

Beginnend ab der Konfluenz des orographisch linken Imja Khola Gletscherbaches und des orographisch rechten Abflusses, der sich aus den Abflüssen des Lhotse des Lhotse Gletscherbaches, Nuptse Gletscherbaches und des Nuptse Gletscherbaches zusammensetzt, wurde das Längsprofil untersucht. Demnach wurde die Längsprofilerstellung ab einer Höhe von 4602,67 m ü. NN angesetzt. Zwischen den Höhen von 4602,67 m ü. NN und 4470,94 m ü. NN variiert das Längsprofil zwischen 0,81° Steigung und 12,74° Gefälle. Zwischen den Höhen von 4470,94 m ü. NN und 4416,20 m ü. NN schwankt die Neigung des Längsprofiles zwischen 0,85° bis 7,75°. Die durch diese Schwankungen entstehenden kleinräumig konvexen Formen lassen sich vielmehr durch die aus der orographisch linken Talflanke hinabrutschenden Sedimentkörper, die der Moränenmatrix nahe des Duwo Gletschers entspringt, erklären, als durch einen hier in situ akkumulierten Moränenkörper. Dies verdeutlicht auch die orographische Lage sowie die Morphologie des Imia Khola Hauptstroms, der hier direkt an die Hangrutschungsprozesse angrenzt und die Sedimente teils fluvial einschneidet sowie umlagert. Ebenso ist anzumerken, dass Datenfehler im SRTM-Höhenmodell sowie eine ungenaue Verortung des Gletscherbachlängsprofiles nicht ausgeschlossen werden können.

Zwischen den Höhen von 4416,20 m ü. NN bis auf 4390,05 m ü. NN nimmt die Flussneigung erst auf einen Wert von 7,94° zu, reduziert sich jedoch wieder im Anschluss zwischen den Höhen von 4390,05 m ü. NN und 4372,61 m ü. NN auf einen Wert von 3,48° sowie zwischen den Höhen von 4372,61 m ü. NN und 4362,94 m ü. NN auf einen Wert von 1,92°. Auch diese Abschnitte unterliegen dem Einfluss des direkt am Duwo Gletscher angrenzenden Sedimentationskörpers, der die orographisch linke Talflanke morphologisch umgestaltet und die Laufabschnitte des Imja Khola Hauptstroms mit Sedimenten genährt hat. Die Ausprägungen von Vegetationsinseln innerhalb des Laufes, die zu einer Laufverfestigung führen, sowie die sichtbare Vegetation in den Randbereichen der Imja Khola Schottersohlenebene verdeutlichen jedoch, dass die Zufuhrraten jener Sedimente nicht mehr sehr aktiv sind. Vereinzelt wird

der Lauf aber noch rezent von Sedimentationsakkumulationen beeinflusst (Photo 46, 47 und 48).

Zwischen den Höhen von 4362,94 m ü. NN und 4303,37 m ü. NN erhöht sich das Längsprofil zuerst auf einen Steigungswert von 5,92°, reduziert sich dann jedoch auf einen maximalen Gefällewert von 11,25°. Im Anschluss unterliegt das Längsprofil weiteren Gefälleschwankungen, bis es schließlich auf einer Höhe von 4314,58 m ü. NN eine Steigung von maximal 7,17° ausprägt. Nach einer kurzen Distanz lassen sich mittels des Längsprofiles wieder Gefällewertschwankungen erfassen, die ein maximales Gefälle von 13,51° gestalten. Mittels dieser Längsprofilhöhenschwankungen entstehen kleinräumige konvexe Formengestalten innerhalb der Flusssohle des Imja Khola Hauptstroms. Diese resultieren ebenfalls aus den schon zuvor dargelegten Prozessen der Sedimentablagerungen. Fehler im SRTM-Höhenmodell sowie in der Verortung des Imja Khola Laufes können hier nicht gänzlich ausgeschlossen werden.

Zwischen den Höhen von 4303,37 m ü. NN und 4266,61 m ü. NN unterliegt der Imja Khola Hauptstrom extremen Längsprofilschwankungen mit einem Maximalgefälle von 10,86°. Neben diesen Gefälleschwankungen lassen sich jedoch auch extreme Längsprofilsteigungsraten im Lauf erfassen, die auf einer längeren Distanz einen Maximalwert von 10,07° Steigung bilden. Mittels dieser unterschiedlichen Schwankungen des Gefälles sowie der Steigungen prägen sich in diesem Bereich hauptsächlich zwei konvexe Formengestalten aus, welche sich ebenfalls in den Beeinflussungsbereichen der hier auf der orographisch linken Talflanke auftretenden Hangrutschungsbereichen lokalisieren. Jedoch ist zu erkennen, dass die Schottersohlenmorphologie nicht direkt, wie in den vorherigen Abschnitten beobachtbar, an eine Talflanke mit einer derartig hohen Reliefenergie angrenzt. Vielmehr wurde dieser Laufabschnitt durch freigesetzte fluviale Dynamiken einschließlich auftretender Sedimentationsprozesse, die infolge von Gletscherabschmelzprozessen des Duwo Gletschers sowie dessen kleinräumig angrenzende Gletscher die Sedimente und Morphologie der orographisch linken Talflanke umgestalteten, beeinflusst. Der in diesem Laufabschnitt im Talschaftsgrund zu erkennende Sedimentationsfächer verdeutlicht dies (Pfeil (1) in Abbildung 27). Daraus ergibt sich, dass der Imja Khola durch die hier lokal auftretenden Sedimentationsbedingungen beeinflusst wurde und

sich durch einzelne Laufveränderungen den Sedimentationsbedingungen anpasste. Diese hier durch den Sedimentationsfächer akkumulierte konvexe Formengestalt wurde bzw. wird im fortlaufenden Holozän fluvial umgelagert bzw. abgetragen. Es ist jedoch anzumerken, dass die Steigungsraten in diesem Abschnitt sehr extrem sind. Aus diesem Grund liegen im SRTM-Höhenmodell sowie der Verortung des Imja Khola Hauptstroms mit höherer Wahrscheinlichkeit Datenfehler vor (Abbildung 28).

Abbildung 27: Orographisch linke Hangrutschungsprozesse (↓) beeinflussen die Morphologie des Imja Khola Hauptstroms; Google Earth (Bildmitte: 27°53'19.07"N, 86°49'43.64"E).

Im anschließenden Laufabschnitt zwischen den Höhen von 4266,61 m ü. NN bis 4192,65 m ü. NN variiert das Längsprofil des Imja Khola, im Vergleich zu den vorherigen Laufabschnitten, sehr stark. Im oberen Bereich dieses Laufabschnittes bildet es maximale Gefällewerte von 11,24° aus, weiter laufabwärts sind die Gefällewerte mit 22,86° noch deutlich extremer. Zwischengeschaltet lassen sich im oberen Laufbereich Abschnitte mit Steigungsraten von 16,68° auffinden. Weiter bachabwärts fallen diese zwar geringer aus, sind aber mit Werten von 11,04° bis 14,79° Steigung noch als sehr einzuordnen. Diese Längsprofilschwankungen hoch lassen sich durch aneinandergereihte konvexe Formengestalten erkennen (vgl. Abbildung 28). Erklären lassen sich diese durch Sedimentablagerungen im Imja Khola Hauptstrom. Diese unterliegen rezent einer aktiven Sedimentüberlagerung, die zum Teil von den

Hangrutschungsprozessen aus der orographisch linken Talflanke freigesetzt, aber auch durch fluviale Prozessabfläufe innerhalb des Hangrutschungskörpers hangabwärts transportiert werden können (Photo 47). Diese ineinander verschachtelten Prozessabläufe der Sedimentfreisetzung und dessen Transportes werden durch die ebenfalls aktiven Gletscheroszillationen des sich hangaufwärts lokalisierenden Tsuro Gletschers in Kraft gesetzt sowie verstärkt. Da sich dieser Laufabschnitt jedoch im Grenzbereich zu dem talauswärts akkumulierten Moränenkörper (vgl. Kuhle 2005: Figur 3) befindet, lässt sich ein glazigener Ursprung dieser schon deutlich ausgeprägteren konvexen Formengestalt nicht ausschließen. Vermutlich glazigen geformt und durch hangiale Sedimentationsprozesse überprägt, konnte sich so diese konvexe polymorphe Form bilden. Ebenfalls sei hier noch anzumerken, dass die hier mittels des SRTM-Höhenmodelles und Laufprofilkartierung gemessenen Werte einer Fehlerwahrscheinlichkeit unterliegen. Ob die Ausprägungsmaße dieser konvexen Formengestalt tatsächlich der Natur entsprechen ist nicht gewiss. Die zuvor zusammenhängenden der Akkumulation Prozessabläufe des konvexen Sedimentkörpers, die anhand des morphologischen Zusammenhangs belegt wurden, sind durch diese möglichen Datenfehler jedoch nicht auszuschließen.

Im Anschluss dieser konvexen Formengestalten im zuvor dargestellten Laufabschnitt nimmt die Neigung des Imja Khola zwischen 4192,65 m ü. NN und 4142,49 m ü. NN insgesamt ab. Zuerst lassen sich im oberen Bereich dieses Abschnittes Steigungswerte von 7,90° im Längsprofil erfassen. Laufabwärts reduzieren sich diese und bilden ein maximales Gefälle von 13,99°. Dieses Gefälle reduziert sich wieder und formt im Anschluss eine Steigung von 5,91° aus. Weiter laufabwärts lassen sich mittels des Längsprofiles noch weitere kleinräumige Längsprofilschwankungen erkennen. Allesamt können diese kleinräumigen konvexen Formen ebenfalls auf den hier glazigen akkumulierten Moränenkörper (vgl. Kuhle 2005: Figure 3) sowie auf die historischen Hangrutschungsprozesse zurückgeführt werden, deren konvexe Formen rezenten fluvialen Erosionsprozessen unterliegen. SRTM-Datenfehler sowie eine ungenaue Erfassung des Imja Khola Laufprofiles können hier aber ebenfalls nicht gänzlich ausgeschlossen werden. Ab einer Höhe von ca. 4142,49 m ü. NN bildet der Lauf des Imja Khola Hauptstroms schließlich eine Konfluenz mit dem Khumbu Khola.

Abbildung 28: Längsprofil des Imja Khola Hauptstromes nach SRTM-Höhenmodell.

Durch die Zusammenfassung der Ergebnisse der hier angewandten Mikro-, Meso- und Makroebenenanalyse zeigt sich, dass die Anzahl der Terrassenausprägungen talabwärts zunimmt (vgl. Photo 46 mit 49). Diese entstanden durch intensive fluviale Einschneidungen. Nahe der Ortschaft Dingboche (Photo 46) konnten die fluvialen Dynamiken mit einer längeren Zeitdauer die Terrassenordnungen ausarbeiten. Dies lässt sich durch die hier fünf rekonstruierten Terrassenordnungen verdeutlichen, deren Sedimentkörper zuvor akkumuliert werden mussten. Da eine hangiale Ablagerung für derartige Sedimentationsmächtigkeiten, die die gesamte Talschaft auskleiden, nicht ausreicht, lässt sich die Entstehung des hier ausgeprägten Akkumulationskörpers nur mittels glazigener Ablagerungen erklären. Demnach wurden die zu beobachtenden Sedimente während der vergangenen Glazialstadien, die bis ins Hochglazial (LGM) zurückreichen (Kuhle 2005: Figure 3; vgl. Tabelle 17), mittels Gletscherschwankungen

als überlagernde Grundmoränen respektive Podestmoränen akkumuliert und in den anschließenden Interglazialen, die ein Abschmelzen und Zurückweichen des Talschaftsgletschers erzeugten, sukzessive glazifluvial sowie fluvial erodiert und teils umgelagert. Aufgrund der nun vom Eis freigelegten Talflanken konnte dieses Fundament durch Hangrutschungsprozesse sowie durch fluviale Sedimentation, die mithilfe von sich verändernden Gletscherabflussdynamiken induziert wurde, in den vergangenen Interglazialen überprägt werden.

Infolge des Zurückweichens der Talschaftsgletscherzunge, die zugleich mit einer Reduktion der direkten Beeinflussung von Gletscherschwankungen einschließlich ihrer Abflussdynamiken einhergeht, konnte sich der Lauf des Imja Khola Hauptstroms im Holozän zunehmend verfestigen. Dies lässt sich durch die hier ausgeprägten Stufen-Becken Sequenzabfolgen (step-pool), der zunehmenden Vegetation in den Bachrandbereichen sowie der hier schon teils verfestigten Inselbildungen (anabranching river), die die Übergangsform von einem verwilderten Lauf (braided river) bilden, verdeutlichen.

Neben den hier rekonstruierten Terrassenordnungen und der Morphologie des Imja Khola Hauptstroms, bestätigt das Längsprofil des Laufes ebenfalls die hier prägende Beeinflussung durch Glazialstadien. Das Längsprofil nimmt hier unterschiedlich groß ausgeprägte konvexe Formen an, die insgesamt einer Aneinanderreihung von Treppenstufen gleicht. Zum Teil lassen sich diese Formen auf Moränenakkumulationen zurückführen, aber auch die Zufuhr von Hangschutt beeinflusst die Genese. Ebenfalls ist anzumerken, dass Datenfehler im SRTM-Höhenmodell sowie in der Verortung des Imja Khola Hauptstroms hier nicht auszuschließen sind. Das Talende der Imja Khola Talschaft wird schließlich durch einen Podestmoränenkörper ausgekleidet (Kuhle 2005: Figure 3), der als Beleg von pleistozänen Gletscherstadien zu deuten ist.

3.2 Nördlicher Teil des Hauptuntersuchungsgebiets Khumbu Himal: Die Haupttalschaft des Khumbu Gletschers und deren angrenzenden Gletscherbachsysteme

3.2.1 Gletscherbachsysteme des Pokalde, Lobuche und Khumbu Gletschers

3.2.1.1 Übersicht zum Pokalde Gletscherbachsystem (Kongma-La Pass)

Unterhalb der Westflanke des Pokalde Gipfels (5806 m ü. NN) fließt ab einer Höhe von ca. 5694 m ü. NN der Pokalde Gletscher in Richtung Nordwesten hangabwärts. Genährt wird dieser durch die im Gletscherkar entstehende Metamorphose von Schnee zu Eis. Die Nährung durch Schnee- und Eislawinen ist aufgrund der geringen Distanz vom Gletscherbeginn bis zum hinaufragenden Pokalde Gipfel als gering einzuordnen. Nach einer Gletscherlänge von ca. 483 m ragt der Gletscher bis auf einer Höhe von ca. 5423 m ü. NN hinab (27° 55' 44.33'' N, 86° 49' 53.02 '' E). Ab dieser Höhe treten die Gletscherschmelzprozesse zu Tage. Aufgrund der Nordwest-Exposition und der Abschattung durch die Gipfelflur ist im Vergleich zu dem Unbenannten Kongma-La Gletscher jedoch mit geringeren Abschmelzraten zu rechnen (Photo 58).

Durch diese Abschmelzprozesse verändern sich aber auch die im Anschluss abgelagerten Sedimentkörper. Ebenso konnte sich dadurch ein kleines Bachsystem bilden, welches in die zuvor von den Gletscherständen abgelagerte Grundmoräne einschneidet (Photo 57). Das kleine Gletscherbachsystem durchbricht hier die ehemals vom Gletscher akkumulierte Podestmoräne in Höhen zwischen 5221 m ü. NN (27° 56' 05.88" N, 86° 49' 43.37" E) bis 5119 m ü. NN (27°56' 12.33" N, 86° 49' 37.14" E). Die erste Terrassenschotterebene misst in diesem Abschnitt eine Breite zwischen 6 m bis 8 m.

Dem Bachverlauf hangabwärts folgend, beginnt dieser ab einer Höhe von ca. 5032 m ü. NN (27° 56' 15.24" N, 86° 49' 30.58" E) ein verwildertes Bachsystem einschließlich Schottersohlenebene zu entwickeln (braided river) (Photo 57). Mit abnehmender Hangneigung bildet sich ab einer Höhe von ca. 4936 m ü. NN (27° 56' 19.80" N, 86° 49'

20.73" E) und am Ende der Talschaft ein Sedimentschuttfächer respektive gebundene Sander aus (Pfeil (1) in Abbildung 29; Photo 57).

Abbildung 29: Das Pokalde Gletscherbachsystem bildet am Ende der Talschaft ein Sedimentschuttfächer aus (↓); Google Earth (Bildmitte: 27°56′6.76″N, 86°49′23.37″E).

Weitestgehend von Vegetation überprägt lassen sich auf dieser Schuttakkumulation historische glazifluviale Einschneidungsrinnen erkennen. Daraus lässt sich schließen, dass die Abflussdynamiken des Bachsystems Schwankungen unterliegen. Während erhöhter Abflussraten unterliegt das Bachsystem auch auf dem Schuttfächer noch einer ausreichenden Kraft, um diesen umzuformen und schließlich einzuschneiden (Photo 57).

Aufgrund des zuvor entstandenen verwilderten Bachsystems wird der Schuttfächer aktiv von zwei Bachläufen beeinflusst (Photo 57). Die weitere geradlinige Ausprägung der Bachläufe wird jedoch durch die direkt angrenzende linke Seitenmoräne des Khumbu Gletschers verhindert. Da der orographisch linke Bachlauf höhere Abflussdynamiken vorweist - erkennbar durch die intensive fluvialgeomorphologische Umgestaltung der Landschaftsoberfläche - und diese Kraft umlagern muss, ändert dieser Bachlauf aufgrund der Blockierung durch den Khumbu-Seitenmoränenkörper die Fließrichtung (Abbildung 29). Ebenfalls wird der Schuttfächer durch ein aus Nordosten hinabfließendes Bachsystem, welches aus einem Gleterschersee auf einer Höhe von ca. 4937 m ü. NN (27° 56' 37.56" N, 86° 49' 24.32" E) genährt wird, durchschnitten. Schließlich bildet es eine Konfluenz mit dem orographisch rechten Bachsystem, der aus der Pokalde Gletscher Talschaft abfließt. Auf einer Höhe von ca. 4899 m ü. NN (27° 56' 21.18" N, 86° 49' 10.77" E) nährt dieser Bachlauf auch den orographisch linken Bachlauf. Dieses Abflusssystem fließt nun der orographisch linken Seitenmoräne des Khumbu Gletschers folgend talabwärts in Richtung Südwesten. Dabei bildet der Lauf Mäanderschlingen aus. In dem zuvor beschriebenen Abschnitt der Laufrichtungs-änderung und Konfluenz der Bachsysteme variiert die Schottersohlenebene zwischen 1 m bis 2 m. Die erste Terrassenschotterebene weist hier noch eine Breite zwischen 15 m und 21 m vor. Talabwärts nimmt aber auch diese ab. So misst die erste Terrassenschotterebene auf einer Höhe von ca. 4869 m ü. NN (27°56' 04.83" N, 86° 49' 00.89" E) nur noch eine Breite von ca. 3 m bis 6 m. Schließlich mündet dieser Bachlauf auf einer Höhe von ca. 4821 m ü. NN (ca. 27° 55' 54.28" N, 86° 48' 52.18" E) in den orographisch linken Khumbu Khola Gletscherbach und nährt dessen Abflussdynamiken.

3.2.1.2 Übersicht zum historisch angrenzenden Gletscherbachsystem des Lobuche Gletschers

Auf der Westflanke gelegen, ca. 480 m unterhalb des Lobuche West Gipfels (6145 m ü. NN), bildet sich auf einer Höhe von ca. 5824 m ü. NN (27° 58' 05.35'' N, 86° 47' 09.09'' E) der Lobuche Gletscher. Genährt wird dieser u. a. durch Lawinen- und Eisabbrüche sowie durch die im Nährgebiet einsetzende Schneemetamorphose, die einst das Gletscherkar mit Eis auffüllte.

Nach einer Gletscherlänge von ca. 1,85 km lässt der Gletscher auf einer Höhe von ca. 5152 m ü. NN (27° 57' 33.03" N, 86° 48' 05.40" E) die gebundenen Eismassen frei, die dann schließlich als Eisabbruch auf die Obermoräne des ca. 57 m tieferen aktiven Gletschereises hinabgleiten (Photo 58, 59 und 60). Durch dieses prozessuale Auftreten eines Eisabbruches verliert der Hauptgletscher schließlich an Eismasse, die dann jedoch wieder im angrenzenden Gletschersystem auf einer Höhe von ca. 5095 m ü. NN (27° 57' 31.43" N, 86° 48' 08.92" E) zutage tritt. Innerhalb dieses angrenzenden Lobuche Gletschersystems, welches durch mächtige Obermoränenablagerungen

bedeckt wird, sind kleine supraglaziale Eisseen zu verorten (Photo 58). Deren Mächtigkeiten und Veränderungen unterliegen dem Gletscherhaushalt. Infolge der Gletscheroszillationen des Lobuche Gletschers konnte sich der östliche Randbereich des hier lokalisierenden Podestmoränenkörpers im Zeitraum von 1957 bis 1959 ablagern (vgl. GLIMS: Racoviteanu & Bajracharya 2008; vgl. Kuhle 2005: 279), der schließlich dieses Gletschersystem von dem weiter östlich verorteten Eisrandtal abgrenzt (Photo 60).

Die Abschmelzprozesse dieses Gletschers, zwischengespeichert in den supraglazialen Eisseen, werden in den Randbereichen der Podestmoräne freigesetzt. Unterhalb der orographisch linken Flanke der Podestmoräne befindet sich ein kleinräumiger Taleinschnitt, der als Weg zur italienischen Forschungsstation "Pyramid" genutzt wird. Die im Hochglazial bis zum Holozän glazigen akkumulierte Talsohle (27° 57' 19.87" N, 86° 48' 52.71" E, 5005 m ü. NN) dieses talauswärts in Richtung Südwesten verlaufenden Talsystems (Kuhle 2005: 278 & Gletscherstadien in Table 1) verdeutlicht anhand der sortierten Schotterablagerungen, die die Schottersohlenebene gestalten, die glazifluvial überprägende Kraft innerhalb dieser Talschaft. Entstanden durch freigesetzte Eis- und Schneeschmelzdynamiken aus dem proglazialen Gletschersee (27° 57' 44.10" N, 86° 48' 47.02" E, 5069 m ü. NN) der weiter nordwestlich verorteten Talschaft, sowie durch hier vermutlich auftretenden Eiskernschmelzprozesse innerhalb des Lobuche Podestmoränenkörpers, die dort mittels der Gletscheroszillationen des Lobuche Gletschers abgelagert werden können, konnte die Schotterflur dieser glazial geprägten Talschaft in den letzten Jahrzehnten glazifluvial umgelagert und sortiert werden.

Gletscherzungenabschmelzprozesse der vorhergehenden Gletscherstadien, die diese Talschaft mit Eis füllten (Kuhle 2005: 278 - 279), trugen ebenso zur Genese dieser Schotterflur und der angrenzenden Landschaftsformen bei. Das rekonstruierte Bachsystem (Pfeil (↓) in Abbildung 30), welches periodisch durch Abflusszufuhr von den auftretenden Schneeschmelzprozessen der angrenzenden Talhänge sowie der möglichen Abflüsse aus dem Gletschersee der nordwestlich verorteten Talschaft genährt wird, mündet schließlich auf einer Höhe von ca. 4966 m ü. NN (27° 57' 08.95"

N, 86° 48' 53.63" E) in das orographisch rechte Bachsystem der Khumbu-Haupttalschaft.

Abbildung 30: Das Bachsystem des orographisch linken Gletscherbachtales des Lobuche Gletschers (↓) mündet in das orographisch rechte Bachsystem der Khumbu-Haupttalschaft; Google Earth (Bildmitte: 27°57'25.37"N, 86°48'40.54"E).

Nordwestlich der Ortschaft Lobuche konnten mithilfe der Mikroebenenanalyse unterhalb der Flanke der orographisch rechten Lobuche Podestmoräne ebenfalls historische Gletscherabflussdynamiken ausfindig gemacht werden. Die hier kerbförmia eingeschnittene Talform reicht bis zum Kammverlauf der Podestmoräne bis auf ca. 4990 m ü. NN (27° 57' 02.64" N, 86° 48' 30.48" E) hinauf. Jedoch ist die Sohle dieser Talschaft mit bis zu 8 m großen Hangschutt und Blockwerk, die aus der orographisch linken Podestmoräne, aber auch der orographisch rechts gelegenen Talflanke hinabrutschten oder gar stürzten, überlagert worden (Photo 61, 62, 63 und 64). Dennoch wurden zur Überprüfung der hier vermutlich ehemals abfließenden glazifluvialen Dynamiken am 19.03.2012 aus einer Höhe von ca. 5003 m ü. NN (GPS) zwei Sedimentproben aus der Talsohle entnommen. Die erste Probe wurde vom Standpunkt (GPS: 27°57'2.16" N, 86°48'29.21" E) aus einer Bodentiefe von ca. 10 cm genommen (Diagramm 8, Photo 61). Eine zweite Sedimentprobe - die als zusätzliche Testprobe diente - wurde ca. 5 m bis 6 m hangabwärts aus einer Bodentiefe von ca. 5 cm bis 10 cm entnommen (Diagramm 9, Photo 63). Aus den Korngrößenanalysen wird

ersichtlich, dass es sich bei beiden Sedimentproben um glazifluvial umgelagerte und ausgewaschene Sedimente handelt (vgl. Diagramm 8 und 9).

Diagramm 8: Korngrößen vom 19.03.12. Anhand der Korngrößenzusammensetzung der ersten Sedimentprobe aus der orographisch rechten Kerbtalsohle des Lobuche Gletschers kann verdeutlicht werden, dass die Sedimentablagerungen glazifluvialen Auswaschungsprozessen unterlagen. In allen Kornfraktionen lassen sich noch Sedimentreste auffinden. Auch die Tonfraktion weist innerhalb dieser Probe einen Anteil von 0,8 % vor. Die Maxima dieser Sedimentprobe sind mit 39 % in der Mittelsandfraktion und mit 36 % in der Grobsandfraktion zu finden. Der Sortierungskoeffizient dieser Sedimentprobe ergibt einen Wert von 2,13.

Diagramm 9: Korngrößen vom 19.03.12. Anhand der Korngrößenzusammensetzung der zweiten Sedimentprobe aus der orographisch rechten Kerbtalsohle des Lobuche Gletschers kann verdeutlicht werden, dass die Sedimentablagerungen glazifluvialen Auswaschungsprozessen unterlagen. In allen Kornfraktionen lassen sich noch Sedimentreste auffinden. Die Tonfraktion weist innerhalb dieser Probe lediglich nur noch einen Anteil von 0,2 % vor. Die Maxima dieser Sedimentprobe sind mit 41,1 % in der

Mittelsandfraktion und mit 34 % in der Grobsandfraktion zu finden. Der Abgleich mit der ersten Sedimentprobe dieser Talschaft (vgl. Diagramm 8) lässt eine Ähnlichkeit der Kornfraktionsanteile erkennen. Mit dieser zusätzlichen Testprobe kann die glazifluviale Umgestaltung der Talsohle bestätigt werden. Der Sortierungskoeffizient dieser Sedimentprobe ergibt einen Wert von 2,07.

Die Breite des rekonstruierten Gletscherbaches respektive Schottersohlenebene betrug ca. 4 m bis 5 m. Aufgrund der Trockenlegung des Bachbettes konnte die Gletscherbachtiefe von ca. 0,5 m bis 1 m nur angenommen werden. Mittels des Gletscherbachsohlenneigungswinkels von 15° wurde diese vermutlich ehemals durch kaskadenartige Sequenzabfolgen (cascade) geprägt. Die Abflussdynamiken des rekonstruierten Bachlaufs flossen in Richtung 152° SSO auf die zunehmend breiter werdende Talsohle talabwärts, bis sie schließlich in das orographisch rechts des Khumbu Gletschers lokalisierte Bachsystem auf ca. 4922 m ü. NN (27° 56' 46.87'' N, 86° 48' 39.70'' E) mündeten.

Die rezenten Gletscherabschmelzprozesse des Lobuche Gletschers die nahe der Podestmoränenflanke zu Tage treten, werden durch die dort errichteten Kanalsysteme in ein Staubecken, das innerhalb der Ortschaft Lobuche errichtet wurde, weitergeleitet und dort schließlich gesammelt.

3.2.1.3 Morphologie und Terrassenbildungen des orographisch linken Gletscherbachsystems im Talverlauf des Khumbu Gletschers auf der Mikro-, Meso- und Makroebene

Mit einer Länge von bis zu ca. 16,3 km weist der Khumbu Gletscher die größte Gletscherlänge in dieser Talschaft vor. Die Gipfelflur des Khumbu-Nährgebietes wird von drei der höchsten Gipfel der Erde - dazu zählt der Nuptse (7861 m ü. NN), der Lhotse (8516 m ü. NN) und der Mount Everest (8848 m ü. NN) - geprägt. Diese grenzen zusammen das Gletschkar des Khumbu Gletschers (Western Cwm) ab, an dessen Karflanken Lawinen- und Eisabbrüche niedergehen und schließlich den Khumbu Gletscher nähren. Diese intensiv von den hohen Talflanken abgegrenzte Kartalschaft ist zwischen Höhen von ca. 6200 m ü. NN bis 6890 m ü. NN verortet und verläuft von OSO

in Richtung WNW, bis sie schließlich vom Khumbu-Eisfall abgegrenzt wird.

Ebenso wie in diesem groß ausgeprägten Gletscherkar wird der Khumbu Gletscher aber auch von Lawinen- und Eisabbrüchen der weiter talabwärts gelegenen Talflanken sowie kleiner ausgeprägten Gletscherkare genährt. Des Weiteren bilden der Changri Shar Gletscher sowie der Changri Nup Gletscher auf einer Höhe von ca. 5060 m ü. NN (27° 58' 26.50" N, 86° 49' 39.13" E) rezent eine Konfluenz mit dem Khumbu Gletscher. Die Konfluenz dieser Gletschersysteme führt schließlich zu einem Massenzuwachs des Khumbu Gletschers, dessen aktiv schuttüberlagertes Gletscherzungenende vermutlich bis auf Höhen von ca. 4880 m ü. NN (27° 55' 55.98" N, 86° 48' 20.20" E) talabwärts reicht. Jedoch kann mithilfe von Satellitenbildidentifikationen (Google Earth) hier keine eindeutige Aussage zur Höhe getroffen werden, da eine Verbundenheit zum aktiven und schuttbedeckten Gletschereis nicht mithilfe von Satellitenbildanalysen bestätigt werden kann. Infolge ist das schuttbedeckte und aktive Gletscherzungende nicht eindeutig verortbar (Bolch et al. 2008: 593). Jedoch setzt sich dieses Zungenende vermutlich aus stagnierendem Eis zusammen, welches möglicherweise mit der aktiven Gletscherzunge verbunden ist (Bolch et al. 2008: 593).

Orographisch links des Khumbu Gletschers entwickeln auf einer Höhe von ca. 4900 m ü. NN (27° 55' 58.78" N, 86° 48' 43.78 " E) Gletscherschmelzprozesse das angrenzende Gletscherbachsystem der schuttbedeckten Khumbu Gletscherzunge. Gespeist aus den Gletscherschmelzprozessen der aktiven sowie inaktiven Gletscherzunge und den supraglazialen Glescherseen (Photo 60) des Khumbu Gletschers durchbricht der Gletscherbach die orographisch linke Seitenmoräne und schneidet in Richtung OSO in den angrenzenden Grundmoränensockel ein. Unterhalb des Seitenmoränendurchbruchs - beeinflusst durch die orographisch links angrenzende Talflanke - verlagert sich die Laufrichtung nun mehr in Richtung SSW. An diesem Standort der Laufänderung bildet der aus NO abfließende Zufluss eine Konfluenz mit dem Khumbu Gletscherbachsystem (vgl. Kap. 3.2.1.1). Die Gletscherbachbreiten respektive Schottersohlenebenenbreiten vom Gletscherbachbeginn bis zur Ortschaft Doughla varrieren zwischen 4 m und 8 m. Angrenzend lokalisiert sich die erste Terrassenschotterebene, die ebenfalls als erste glazifluviale Terrassenordnung klassifiziert werden kann. Die Breite dieser schwankt in diesem Abschnitt zwischen ca.

20 m bis ca. 95 m. Talabwärts nimmt die Mächtigkeit dieser Terrassenebene zu (Abbildung 31).

Abbildung 31: Die Khumbu Gletscherzunge und ihre Gletscherbachläufe. Die beiden Pfeile (↓) zeigen den Beginn und das Ende des untersuchten Bachabschnittes an; Google Earth (Bildmitte: 27°55'34.57"N, 86°48'16.83"E).

Direkt am Gletscherbachsystem des Khumbu Gletschers (N27° 55.364' E86° 48.488', GPS) auf einer Höhe von ca. 4613 m ü. NN (Garmin-GPS) nahe der Ortschaft Doughla konnten am 20.03.12 um 12:25 Uhr Mikroebenenanalysen zur Gletscherbachmorphologie durchgeführt werden. Der rezente Gletscherbach respektive die Schottersohlenebene misst hier eine Breite von ca. 9 m bis 12 m. Die Tiefe variiert hier zwischen 0,5 m bis 1,5 m. Trotz der Nähe zum Khumbu Gletscher misst der Wasserkörper des Gletscherbaches zum Zeitpunkt der Mittagszeit eine Temperatur von 2,5 °C. Gestört durch Hangrutschungen aus den Terrassenflanken wird die Schottersohlenebene dieses Gletscherbaches durch chaotische Blockund Schuttakkumulationen mit Größen von bis zu 10 m beeinflusst. Kleinere Korngrößen können im Anschluss von der Kraft des Fließgewässers glazifluvial sortiert werden. Durch diese Beeinflussungsprozesse befindet sich die Schottersohlenebene des Gletscherbaches in einem Entwicklungsprozess von einer chaotischen Schottersohlenablagerung hin zu einer glazifluvial sortierten Ablagerung. Morphologisch lässt sich die hier beobachtete Sequenzabfolge ins frühe Formenentwicklungsstadium einstufen, in

der sich die hier stark ausgeprägte Kaskadensohlenform (cascade) zu einer Stufen-Becken Sequenzabfolge (step-pool) fortentwickelt. Die Gletscherbachsohle respektive Schottersohlenebene ist demnach durch eine sich entwickelnde Übergangsform geprägt (Photo 65). Die hier chaotisch geprägte Stufen-Sequenz (step) unterlag während der Untersuchungszeit einer Fließgeschwindigkeit von ca. 1 m/sec bis 2 m/sec.

Talaufwärts blickend, aus der Richtung 32° N kommend, weist der Gletscherbach eine Sohlenneigung von ca. 10° vor (Photo 66). Talabwärts schneidet der Gletscherbachlauf in Richtung 12° S mit einer Sohlenneigung von 10° bis 11° in die Grundmoräne ein (nach Kuhle VII bis X (Kuhle 2005a: Figure 3)). Dabei bildet das Bachsystem an diesem Untersuchungsstandort Verästelungen aus, die sich weiter talabwärts durch die Konfluenz mit weiteren Fließgewässern zu verwilderten Bachbettformen (braided-river) ausprägen (Photo 70).

Anhand der Terrassenmorphologie konnten während der Feldforschungen eine Abfolge von bis zu sieben glazifluviale Terrassenordnungen auf der orograpisch linken Talflanke rekonstruiert werden (Photo 65, 66) (siehe Karte 6a und 6b (Anhang)). Ebenfalls wurde Überblick morphologischen ein Talquerprofil des hier untersuchten zum Gletscherbaches sowie der gesamten Talschaft erstellt (Abbildung 32 und 33), welches aber aufgrund der Auflösung des SRTM-Höhenmodelles die Höhenunterschiede der rekonstruierten Terrassenordnungen nicht morphologisch exakt wiedergeben kann. Des Weiteren belegen Korngrößenanalysen einer aus ca. 5 m oberhalb des Gletscherbachbettes entnommenen Sedimentprobe den glazifluvialen Transport der hier rekonstruierten zweiten buckelartigen Terrassenschotterfläche (Diagramm 10, Photo 67).

Abbildung 32: Talaufwärts blickend in das hier aufgesuchte Talquerprofil des orographisch linken Khumbu Gletscherbachers (2-fach überhöht) nach SRTM-Höhenmodell.

Abbildung 33: Talaufwärts blickend in das Talquerprofil des gesamten Khumbu Gletscherbachsystems (4fach überhöht) nach SRTM-Höhenmodell.

Diagramm 10: Korngrößen vom 20.03.12. Anhand der Korngrößenzusammensetzung der Sedimentprobe aus der zweiten Terrassenschotterfläche des orographisch linken Khumbu Gletscherbachlaufes lässt sich zeigen, dass die feineren Korngrößenklassen intensiv glazifluvial ausgewaschen wurden. In allen Kornfraktionen lassen sich noch Sedimentreste auffinden. Die Tonfraktion weist innerhalb dieser Probe lediglich einen Anteil von 0,1 % vor. Die Maxima dieser Sedimentprobe sind mit 44,1 % in der Grobsandfraktion und mit 37,4 % in der Mittelsandfraktion zu finden. Der Sortierungskoeffizient dieser Sedimentprobe ergibt einen Wert von 2,06.

Die rezente Gletscherbachsohle bildet die Schottersohlenebene, die eine Breite von 9 m bis 12 m vorweist. Die Übergangshöhe einschließlich der Gletscherbachtiefe zur ersten Terrassenschotterebene beträgt ca. 0,5 m bis 1 m. Die Breite dieser ersten glazifluvialen Terrassenordnung respektive ersten Terrassenschotterebene variiert am Untersuchungsstandort zwischen ca. 30 m und 47 m, wobei die zuvor genannte Gletscherbachbreite bei dieser Angabe mit inbegriffen wurde. Da diese Ebene direkt an den rezenten Abfluss des Khumbu Gletscherbaches angrenzt, dient sie während erhöhter Abflussdynamiken als Überflutungsebene. Von dieser Terrassenschotterfläche ca. 1 m bis 3 m. Da diese in unterschiedlichen Größenausprägungen auftritt, variiert die Breite sehr stark zwischen 6 m und 15 m. Ausgehend von dieser Terrassenordnung beträgt die Übergangshöhe zur dritten buckelartigen Terrassenschotterfläche ca. 2 m bis 4 m, die durch konvexe Formengestalten zu verorten ist (Photo 65). Aufgrund der Hangneigung der orographisch linken Talflanke ließen sich die Breite net folgenden Terrassenordnungen während der Feldforschungen nicht genau

erfassen (Photo 68). Jedoch lässt sich anhand der Morphologie die Distanz der angrenzenden Übergangshöhen ermitteln (Photo 65). Der Übergang von der dritten Terrassenordnung zur vierten buckelartigen Terrassenschotterfläche beträgt ca. 2 m bis 5 m. Diese Terrassenfläche wurde zugleich zur Errichtung eines Wegesystems genutzt, welches zu nahegelegenen Ortschaft Doughla führt. Ausgehend von dieser Terrasse schließt nach einer Höhendistanz von ca. 4 m bis 8 m die fünfte buckelartige Terrassenschotterfläche an. Die Höhendistanz zur folgenden sechsten buckelartigen Terrassenschotterfläche beträgt ca. 7 m bis 12 m. Diese ist auf einer Höhe von ca. 4614 m ü. NN zu verorten. Bestätigt werden kann die leicht konvexe Formengestalt (Photo 65) ebenso durch das Talquerprofil des orographisch linken Khumbu Gletscherbaches (siehe Abbildung 32). Oberhalb dieser beträgt die Höhendistanz ca. 36 m bis 47 m, bis die nächst angrenzenden konvexen Formengestalten die siebte buckelartige Terrassenschotterfläche bilden. Diese nimmt im Vergleich zu den vorherigen Terrassenordnungen eine deutlich größere Fläche ein. Des Weiteren wird anhand der weitläufigen Höhendistanzen erkennbar, dass innerhalb dieser, vermutlich noch weitere Terrassenabfolgen die Landschaftsgestalt prägten. Da oberhalb der rekonstruierten siebten Terrassenordnung durch vorhergehende Gletscherstadien Moränenkörper abgelagert wurden, kann davon ausgegangen werden, dass jene aufgrund der morphostratigraphischen Abfolge entsprechend ebenfalls glazifluvial überprägt wurden (Photo 68). Weil im Hochgebirge des Himalaya exogene Umgestaltungsprozesse die Landschaftsformen verändern und somit eine Rekonstruktion um ein Vielfaches dieser erschweren können. wurden mögliche weitere Terrassenabfolgen in Untersuchung nicht näher klassifiziert.

Neben der morphologischen und morphometrischen Analyse im kleinräumigen Maßstab lassen sich mithilfe der Mesoebenenanalyse für diesen Laufabschnitt folgende Formveränderungen erkennen: Nahe des Untersuchungsstandortes bildet der Lauf des orographisch linken Khumbu Khola Gletscherbachabflusses Verästelungen aus, die schließlich während geringer Abflussraten Schotterinseln zum Vorschein bringen (siehe Karte 6a, 6b und 6c (Anhang)). Weiter talabwärts hingegen, der Lauf fließt hier vermehrt in Richtung SW, nimmt die Breite der Schottersohlenebene sowie der ersten

Terrassenschotterebene, die hier auch als Überschwemmungsebene klassifiziert werden kann, zu. Des Weiteren zeigt sich, dass dieser Laufabschnittsbereich, der sich zwischen den Höhen von ca. 4500 m ü. NN bis 4375 m ü. NN erstreckt, vermehrt von deutlich ausgeformteren und nicht verfestigten Laufverästelungen geprägt wird (Photo 70, 71). Dies lässt sich durch die sich hier jährlich auftretenden Abflussveränderungen erklären, dazu zählt ebenfalls der zuströmende orographisch rechte Khumbu Khola Gletscherbachabfluss (Photo 69), sowie die hier auftretende Bachneigungsveränderung. Diese Parameter nehmen Einfluss auf die Formengestalt des Laufabschnittes. Anhand der Morphologie lässt sich dieser Abschnitt in eine verwilderte Bachform (braided river) klassifizieren, in der vermehrt Schotterinseln zu Tage treten. Ebenso lässt sich verdeutlichen, dass sich die Bachsohle von einer chaotischen Ablagerung von Blockkörpern (cascade) weiter bachabwärts zu einer vermehrt sortierteren Sohle einordnen lässt (Photo 70). Daraus folgt eine Genese in das hier zu klassifizierende fortgeschrittene Sohlenentwicklungsstadium. Deutlich weiter bachabwärts (Photo 70) wandelt sich diese und lässt sich somit ins Anfangsstadium einer Stufen-Becken Sequenz (step-pool) klassifizieren. Diese Fortentwicklung kann durch die hier deutlich geringeren Schuttakkumulationen, wie sie zum Beispiel im oberen Laufabschnitt des Khumbu Khola erfasst wurden, erklärt werden. Insgesamt ist zu konstatieren. dass dieser Laufabschnitt und dessen übergeordneten Terrassenordnungen als großräumiger Sander klassifiziert werden kann (Pfeil (\downarrow) in Abbildung 34), deren Breitenausprägung jedoch von den Talflanken verhindert wird. Die Genese dieser Form lässt sich ebenfalls auf die Neigung der Talschaft zurückführen, die im Vergleich zum Gletscherbachoberlauf deutlich geringer ausgeprägt ist.

Abbildung 34: Der Khumbu Gletscherbachlauf und dessen übergeordneten Terrassenordnungen (↓) sind gebunden. Sie sind als großräumiger Sander zu klassifizieren; Google Earth (Bildmitte: 27°55'4.80"N, 86°48'17.55"E).

Im Anschluss dieses Laufabschnittes, beginnend ab einer Höhe von ca. 4375 m ü. NN bis zur Konfluenz mit dem Imja Khola, verändert sich die Richtung des Laufes zuerst in SE und weiter bachabwärts in SSE. Anhand der Schotterinseln einschließlich der hier vereinzelt auftretenden Vegetationsinseln zeigt sich, dass die verwilderte Bachform (braided river) einer vermehrten Verfestigung unterliegt (Photo 70, 71). Des Weiteren prägen hier Mäanderschlingen die Bachlandschaft. Demnach lässt sich der Laufabschnitt in eine Übergangszone klassifizieren, die hier die Gestalt eines verfestigten Bachlaufes (anabranching river) einnimmt. Eine derartige Verfestigung entsteht u. a. durch die Abnahme der Flussneigung und der Schuttzufuhr während unbeeinträchtigt durch exogene Prozesse (dazu zählen diese u. a. Abflussschwankungen) ist.

Mithilfe der Erstellung eines Längsprofiles des orographisch linken Gletscherbachlaufes des Khumbu Gletschers konnte eine Makroebenenanalyse zwischen den Höhen von 4897,24 m ü. NN (WGS 84/Pseudo Mercator: E 9663910,0881151000 N 3240590,1466971300; umgewandelt in WGS 84: E 86.8123813651 N 27.9334833454; siehe Tabelle 5) und 4431,75 m ü. NN (WGS 84/Pseudo Mercator: E

9662714,8952801100 N 3238382,4587556100; umgewandelt in WGS 84: E 86.8016447652 N 27.9159605129; siehe Tabelle 5) durchgeführt werden. Die Ergebnisse des Laufprofiles sind wie folgt morphologisch einzuordnen (siehe Abbildung 35): Beginnend ab der Schnittstelle zwischen Eis und Gletscherbach, die sich oberhalb der orographisch linken Seite des Khumbu Endmoränendurchbruches lokalisiert und ab einer Höhe von ca. 4897 m ü. NN einsetzt, wurde das Längsprofil untersucht. Zuerst fließt der Bachlauf mit einer geringen Neigung bachabwärts, erhöht sich dann aber ab einer Höhe von ca. 4892,86 m ü. NN auf eine Neigung von 11,16°, bis diese auf einer Höhe von ca. 4866,99 m ü. NN ihren Maximalwert im gesamten Bachlauf von 23,23° erreicht. Im Anschluss reduziert sich die Bachneigung, bis sie auf einer Höhe von ca. 4807,79 m ü. NN einen Neigungswert von nahezu 0,63° vorweist. Im angrenzenden Bereich weist der Bachlauf kurzfristig eine Bachsteigung von maximal 13,47° vor, die sich im Bachsohlenbereich zwischen den Höhen von ca. 4807 m ü. NN bis ca. 4812 m ü. NN erstrecken. Erklären lässt sich dies durch die hier auftretende Bachlaufrichtungsänderung von SO in SW, die ebenso eine Kraft-Last Verschiebung der Fließdynamiken induzieren kann. Ebenfalls kann der hier blockierende sowie sanderformenabgrenzende Moränenkörper eine Bachsteigungsgenese verstärken. Aber auch Datenfehler des hier verwendeten Höhenmodelles sowie eine ungenaue Verortung des Gletscherbachlaufprofiles können einen derartig hohen Anstieg induziert haben. Im Anschluss reduziert sich die Neigung auf einen Wert von 15,83°, der auf einer Höhe von 4794,34 m ü. NN zu verorten ist. Im folgenden Abschnitt von ca. 30 m unterliegt die Bachsohle einer Bachsteigung von 2,63°, die sich auf einer Höhe von ca. 4786,26 m ü. NN lokalisiert. Im Anschluss bildet der Bachlauf auf einer Höhe von 4786,94 m ü. NN ein Gefälle von 8,96°, welches sich dann weiter bachabwärts auf einer Höhe von 4782,66 m ü. NN in eine Steigung von 4,54° umformt. Erklären lassen sich derartig kleinräumige Bachsteigungsraten durch die Kraft-Last Verschiebung der Fließdynamiken des Fließgewässers, aber auch durch die möglichen Fehlerquoten des verwendeten Höhenmodelles sowie der Laufprofilverortung.

Der angrenzende Bachsohlenabschnitt bis hinab auf 4544,90 m ü. NN unterliegt leichten Gefälleschwankungen, die vereinzelt kleinräumig konvexe Erhebungen im Bachlauf entstehen lassen. Diese Sohlenprofilform entstand unter anderem durch die

Abflusszufuhr sowie Sedimentzufuhr aus der orographisch linken Talflanke, z. B. ist auf einer Höhe von 4747 m ü. NN (SRTM-Höhe) eine Bachkonfluenz zu erkennen (vgl. Google Earth Koordinaten: ca. 27°55'41.42"N 86°48'39.28"E). Aber auch unterschiedliche Tiefenerosionseinflüsse bedingen derartige Schwankungen. Der Auflösung des Höhenmodelles entsprechend sind Datenfehler im Längsprofil ebenso nicht auszuschließen. Aber auch eine ungenaue Verortung des Gletscherbachlängsprofiles kann zu möglichen Höhenfehlerangaben führen. Im angrenzenden bachabwärts lokalisierten Bereich zwischen ca. 4539,07 m ü. NN bis ca. 4531,57 m ü. NN nimmt das Bachgefälle auf einen Maximalwert von 17,81° zu (vgl. Google Earth Koordinaten: ca. 27°55'15.11"N 86°48'21.17"E). Hier unterliegt der Bachlauf einer Steilstufenformation, die durch die auftretende sich Einschneidung eines Moränenkörpers erklären lässt und so die hier aufzufindenden glazifluvialen Erosionsterrassen ausformen kann (Photo 65). Weiter bachabwärts im angrenzenden Steilstufenformationsbereich reduziert sich das Gefälle bis es schließlich nach wenigen Zehner Metern wieder auf einer Höhe zwischen ca. 4520.31 m ü. NN und 4501.27 m ü. NN auf ein Gefälle von maximal 13,79° zunimmt. Dies deutet ebenfalls auf einen zuvor akkumulierten Moränenkörper hin, der im Anschluss glazifluvial ausgeräumt wurde und rezent noch immer einer glazifluvialen Tiefeneinschneidung unterliegt (Photo 69). Im angrenzenden bachabwärts liegenden Bereich unterliegt der Bachlauf nur noch geringeren Schwankungen und bildet schließlich auf einer Höhe von ca. 4431,75 m ü. NN eine nahezu ebene Fläche von 0° Gefälle (Photo 70). Belegt wird dies ebenfalls durch den hier auftretenden Sanderformenschatz. Der tiefste Punkt dieses Längsprofiles bildet schließlich den Übergang zur Konfluenz mit dem orographisch rechten Gletscherbach. Da der nachfolgende Längsprofilbereich durch diese Konfluenz und den damit verbundenen Abflussveränderungen beeinflusst wird und dieser sich somit nicht mehr ausschließlich auf die Fließdynamiken des orographisch linken Gletscherbaches beziehen, wurde der nachfolgende Längsprofilbereich aus der Untersuchung ausgeschlossen.

Abbildung 35: Längsprofil des orographisch linken Khumbu Gletscherbaches nach SRTM-Höhenmodell.

Insgesamt lässt sich mittels der Anwendung der Mikro-, Mesound Makroebenenanalyse zeigen, dass die glazifluvialen Einschneidungen und die damit die verbundene Terrassenordnungsausarbeitung aber auch Genese der Gletscherbachsohlenmorphologie durch holozäne Abschmelzprozesse des Khumbu Gletschers beeinflusst wurden. Das Abschmelzen des Gletschereises in der jüngeren Zeit, also zwischen 1957 bis 2007, lässt sich jedoch nicht morphologisch anhand des Zurückweichens des zum Teil noch aktiven und schuttbedeckten Gletscherzungenendes eindeutig identifizieren (Byers 2007: Plate 1), sondern vielmehr mittels der gesamten Gletschervoluminaveränderungen (Bolch et al. 2008, Nuimura et al. 2012). So konnte gezeigt werden, dass das Abschmelzen des schuttbedeckten Khumbu Gletscherzungenbereiches in den Jahren von 1962 (Corona DTM) bis 2002 (Aster DTM) zwischen 16,9 +- 8,6 m schwankte (Bolch et al. 2008: Table 5). Diese

Abschmelzprozesse setzten schließlich Wassermassen frei, die dazu führten, dass der Gletscherbach die Moränenakkumulation glazifluvial ausarbeiten konnte und so die hier rekonstruierten Terrassenabfolgen 1 bis ca. 3 im Zeitraum von 1957 bis 2012 hinterließ (vgl. Photo Fritz Müller aus Byers 2007: Plate 1). Alle Terrassenabfolgen die sich oberhalb dieser lokalisieren, sind mit den weiter zurückreichenden Gletscherständen (nach Kuhle: VII bis X (Kuhle 2005a: 279 und Figure 3); vgl. Tabelle 17) in Relation zu setzen.

Auch die Gletscherbachsohlenmorphologie verdeutlicht diese Abflussschwankungen. So unterliegt der obere Gletscherbachbereich, der sich nahe des Untersuchungsstandortes lokalisiert einer erhöhten Schuttzufuhr. Daraus und aus der chaotischen Blockablagerung im Bachbett folgt der hier rekonstruierte Kaskadensohlenformenschatz (cascade), der durch die glazifluviale Umlagerung einer Morphodynamik unterliegt und somit in ein frühes Entwicklungsstadium klassifiziert werden kann. Weiter bachabwärts hingegen, im gebundenen Sanderbereich des Bachlaufes, lassen sich ausgeprägtere Stufen-Becken Sequenzabfolgen (step-pool) vorfinden (vgl. Abbildung 34), deren Entwicklung weiter talabwärts zunimmt. Der glazifluviale sowie fluviale Einschnitt in eine derartig unsortierte Sedimentmatrix bestätigt ebenso den hier als Grundpodest vorliegenden Moränenkörper (Kuhle 2006b: 195), der im Anschluss der glazialen Akkumulation glazifluvial sowie fluvial ausgearbeitet und umgelagert werden konnte. Durch die im Bachlauf auftretenden Abflussschwankungen konnten sich weiter bachabwärts im gebundenen Sanderbereich verwilderte Bachbettformen (braided river) ausbilden (Photo 70), die sich jedoch dem Bachverlauf weiter talabwärts folgend zunehmend verfestigen und somit Mäanderschlingen mit Vegetationsbewuchs im Uferbereich (anabranching-river) ausprägen (Photo 70, 71). Die in diesem Bachlauf verorteten Moräneneinschneidungen lassen sich auch anhand des Gletscherbachlängsprofiles verdeutlichen, welches vereinzelt kleinräumig konvexe Formen im Profil vorweist. Großräumig lässt sich auch eine konvexe Form erkennen, die insgesamt als Moräne mit überlagernden gebundenen Sanderformen zu klassifizieren ist. Es ist jedoch anzumerken, dass Datenfehler im SRTM-Höhenmodell sowie Ungenauigkeiten in der Laufprofilerfassung nicht auszuschließen sind.

3.2.1.4 Morphologie und Terrassenbildungen des orographisch rechten Gletscherbachsystems im Talverlauf des Khumbu Gletschers auf der Mikro-, Meso- und Makroebene

Die Gletscherabschmelz- und Schneeschmelzprozesse auf der orographisch rechten Flanke des Khumbu Gletschers im Gletscherzungenbereich und weiter talaufwärts erzeugen einen Abfluss, der die zwischengeschaltete Talsohle - auch genannt peripheres Entwässerungstälchen (Haffner 1972: 260, Fig. 7) respektive Eisrandtal (Iturrizaga 2007) - des hier verlaufenden Bachsystems nähren. Neben diesem Zufluss wird der Bachlauf ebenso durch die freigesetzten Abflussdynamiken aus der orographisch rechten Talflanke, dazu zählen u. a. die Abflussdynamiken des Lobuche Gletschers, aber auch die freigesetzten Wasserdynamiken der südlich davon gelegenen Seen, genährt. Durch diese freigesetzten glazifluvialen Kräfte findet eine Umlagerung der orographisch rechten Khumbu Gletscher Bachbettsohle statt. Unterhalb der Ortschaft Doughla bildet der Gletscherbach durch das erst noch steile aber talabwärts abnehmende Bachgefälle, infolge der nun eintretenden Kraftreduktion einen Schwemmfächer aus (siehe Abbildung 31 und 34 im vorherigen Kapitel, Photos 69 -72). Die im Gletschervorfeld lokalisierten Schwemmkegel sind einer ständigen glazifluvialen bzw. fluvialen Umlagerung unterworfen (Haffner 1972: 261). Aus diesem Grund lassen sich die Schwemmkegel respektive Sanderflächen in einen dynamischen Zyklus einordnen (vgl. Schumm und Lichty 1965).

Der auf der Sanderfläche orographisch rechts verlaufende rezente Gletscherbach wurde am 20.03.2012 um 10:55 Uhr nahe des sanderflächenabgrenzenden Tschola Gletschers (ca. 27°55'8" N 86°48'1" E, ca. 4488 m ü. NN) mithilfe der Mikroebenenanalyse untersucht. Während der Feldforschungen konnte eine Bachbreite von ca. 2 m bis 4 m ermittelt werden. Des Weiteren wurde eine Bachtiefe von 0,5 m im Gelände gemessen. Jedoch war der Bachlauf zu dieser Zeit noch von größeren Schnee- und Eisablagerungen überprägt (Photo 73 und 74). Die Ermittlung der Wasserkörpertemperatur von ca. 0,5 °C zeigt, dass die Wasserkörpererwärmung durch die überlagernden Schnee- und Eismassen gedämpft wurde. Ebenfalls werden durch

die geringe Bachtiefe und der noch zusätzlich ausfüllenden Schnee- und Eislast, die geringfügigen Abflussdynamiken - die zu dieser Jahreszeit den Bachlauf prägen deutlich. Eine Abflusssteigerung dieses Bachlaufes findet naturbedingt in den Monaten mit erhöhtem Schneeniederschlag statt. Morphologisch lässt sich erkennen, dass die Sohle des Bachlaufes durch sich zu entwickelnde Stufen-Becken Sequenzen (steppool) geprägt ist, dessen Stadium im Vergleich zum orographisch linken Khumbu Gletscherbach weiter fortgeschritten ist (fortgeschrittenes Entwicklungsstadium) (Photo 74). Vom Untersuchungsstandort talaufwärts blickend, fließt der rezente Bachlauf aus 60° NE-Richtung und einer Neigung von ca. 8° bis 9° Gefälle bachabwärts. Talabwärts hingegen verändert der Bachlauf seine Richtung von 217° S bis nach 150° SE und weist eine Bachlaufneigung von 5° bis 6° vor. Oberhalb der rezenten Bachbettsohle wurde die historisch vom Gletscher abgelagerte Grundmoräne (nach Kuhle (VII) bis (X) (Kuhle 2005: Figure 3)) durch ca. 1 m hohe Strauchvegetation durchsetzt. Deutlich erkennbar ist auch auch die Zusammensetzung der Grundmoräne - auch zu finden in der Bachbettsohle - die aus zum Teil sehr großen Blockablagerungen besteht. Die nahe dieses Untersuchungsstandortes entnommene Sedimentprobe (Photo 75 und 76) bestätigt den glazigenen Ursprung der Sedimente, die während der Gletschereisrückzugsphase einer glazifluvialen Auswaschung und Umlagerung unterlagen (Diagramm 11).

Diagramm 11: Korngrößen vom 20.03.12. Anhand der Korngrößenzusammensetzung der Sedimentprobe aus der zweiten Terrassenschotterfläche des orographisch rechten Khumbu Gletscherbachlaufes lässt sich zeigen, dass der hier vorzufindende Grundmoränenkörper glazifluvialen Auswaschungsprozessen

unterlag. Im Vergleich zum orographisch linken Khumbu Gletscherbach ist die Auswaschung nicht so intensiv fortgeschritten (vgl. Diagramm 10). In allen Kornfraktionen dieser Probe lassen sich noch Sedimentreste auffinden. Die Tonfraktion weist innerhalb dieser Probe einen Anteil von 2,2 % vor. Die Maxima dieser Sedimentprobe sind mit 31 % in der Feinsandfraktion und mit 22,6 % in der Grobschlufffraktion zu finden. Der Sortierungskoeffizient dieser Sedimentprobe ergibt einen Wert von 3,01.

Anhand der morphologischen Untersuchungen im Gelände lassen sich folgende glazifluviale Terrassenordnungen erkennen (siehe Karte 6d und 6e (Anhang)): Die erste Terrassenschotterebene grenzt direkt an die Schottersohle des orographisch rechten Khumbu Gletscherbaches an. Dies kann aufgrund der freigelegten Gesteins- und Sedimentzusammensetzung, die während erhöhter Abflussraten glazifluvial umgestaltet wird, belegt werden (Photo 74). Daher bildet diese Terrassenordnung eine Überflutungsfläche. Ebenso zeigt sich, dass vereinzelte Schneeakkumulationen diese Terrasse während der Begehung überlagerten (Photo 73 und 74). Insgesamt misst diese Terrassenordnung am Untersuchungsstandort Breiten von ca. 8 m bis 10 m. Mit einer Höhendistanz von ca. 50 cm bis 1 m oberhalb dieser lokalisiert sich die zweite buckelartige Terrassenschotterfläche (Photo 74). Diese zweite glazifluviale Terrassenordnung - die hier aufgrund ihrer teils chaotischen Schotterablagerungen und konvexen Formenschatzes eindeutig als Grundmoräne einzuordnen ist - ist weitestgehend mit Strauchvegetationsbewuchs durchsetzt (Photo 68, 73 und 74) (vgl. Haffner 1972). Daraus lässt sich schließen, dass diese Fläche keiner jahreszeitlich extremen Wasserüberflutung - wie bei der ersten Terrassenordnung erkennbar ausgesetzt ist. Daher zählt sie nicht zum Bereich der Überflutungsfläche, wie es ein typisches Merkmal für Flussauen oder Niederungen ist. Die Breite dieser zweiten buckelartigen Terrassenschotterfläche bildet die Gesamtbreite des Sanders bzw. des glazifluvialen Schwemmfächers. Talaufwärts (ca. 27°55'14.51"N, 86°48'9.06"E, 4524 m ü. NN), am Beginn des Schwemmfächers weist dieses Gebiet eine Breite von ca. 140 m vor. Weiter talabwärts hingegen (27° 55' 06.42" N, 86° 48' 03.91" E, 4468 m ü. NN) ist die buckelartige Terrassenschotterfläche mit einer Breite von ca. 320 m schon deutlich mächtiger ausgeprägt. Inbegriffen ist bei dieser Breitenangabe der Gletscherbach einschließlich der ersten glazifluvialen Terrassenordnung. Diese talabwärts

zunehmende Breite verdeutlicht die Morphodynamiken von Sanderausprägungen, die jedoch durch Talflanken aber auch konvexe Formengestalten - hier sind es die Moränenakkumulationskörper des Tshola Gletschers - blockiert werden können (Photo 73). Durch derartige glaziale Ablagerungsprozesse konnte schließlich die weitere Talabwärtsbewegung dieses Schwemmfächers und somit der zweiten glazifluvialen Terrassenordnung verhindert werden.

Mithilfe der Mesoebenenanalyse zeigt sich, dass der Bachlauf oberhalb des Untersuchungsstandortes und der Sanderausprägung (27°56'9.57"N, 86°48'15.53"E), also im gebundenen Eisrandtal, zum Teil verwilderte Bachbettformen vorweist (braided river) (Photo 72). Unterhalb dieser Lokalität, die hier auch den Konfluenzbereich des Khumbu-Gletscherbaches mit den aus der orographisch rechten Talflanke entspringenden Abflussdynamiken bildet (u. a. 27°56'28.67"N, 86°48'5.70"E), durchschneidet der Bachlauf Abschnitte des orographisch rechten Khumbu Gletscherendmoränenkörpers. Dabei bildet der Bachlauf einen Bogen, der durch den hier durchschnittenen Moränenkörper gebunden ist und fließt in Richtung SSO. Bachverästelungen sind in diesem Bereich weitestgehend nicht zu erfassen. Ab einer Höhe von ca. 4734 m ü. NN (ca. 27°55'45.16"N, 86°48'7.54"E) prägen zusätzliche Abflussdynamiken, die aus der nahegelegenen schuttbedeckten Khumbu-Gletscherzunge freigesetzt werden, eine Konfluenz mit dem hier einschneidenden Bachlauf und können somit den Gesamtabfluss des orographisch rechten Khumbu-Gletscherbaches erhöhen. folgenden Gletscherbachabschnittsbereich Im sind Bachverästelungen zu erkennen (braided-river). Des Weiteren unterliegt der Bachlauf auf einer Höhe von ca. 4635 m ü. NN (27°55'29.22"N, 86°48'10.93"E) Schuttzufuhren, die durch Hangrutschungen aus der orographisch rechten Talflanke freigesetzt werden. Aber auch nördlich und südlich dieser Lokalität sind derartige Sedimentzufuhren aus der Talflanke erkennbar (Pfeil (↓) in Abbildung 36; Photo 69). Dies beeinflusst das Gleichgewicht des Gletscherbachlaufes. Unterhalb dieses Bachlaufabschnittes im Bereich zwischen ca. 4600 m ü. NN (ca. 27°55'24.69"N, 86°48'12.88"E) und ca. 4524 m ü. NN (ca. 27°55'14.51"N, 86°48'9.06"E) bildet der Bachlauf einen Bogen und fließt in Richtung SSO. In diesem Abschnitt lässt sich erkennen, dass der Bachlauf weitere Moränenstadien älteren Typus durchschneidet. Dies lässt sich mittels der im Bachlauf abgelagerten Blöcke und der Arbeitskante des Moränenkörpers bestätigen. Mit dem Beginn der Sanderausprägung, die im angrenzenden Bereich am Ende des Moränendurchbruches auf einer Höhe von ca. 4524 m ü. NN (ca. 27°55'14.51"N, 86°48'9.06"E) beginnt, formt der Bachlauf zum Teil Mäanderschlingen aus. Die Bildung dieser Mäanderschlingen ist weitestgehend nur durch eine Wasserkraftumverteilung gegeben, die u. a. durch größere Blockwerkablagerungen ausgelöst werden kann (Knighton 1998: 220-230). Demzufolge lässt sich die Mäanderprozessauslösung u. a. durch die groben Blockwerke in dem hier abgelagerten Grundmoränenkörper erklären. Ebenfalls zeigt sich, dass der Bachlauf und ebenso deren Mäanderbögen im Sanderausprägungsbereich Teil durch zum die Vegetation der zweiten Terrassenordnung gebunden sind (Photo 73 und 74). Diese Vegetationsbewuchszonen der zweiten Terrassenordnung verdeutlichen die hier in den letzten Jahren geringe bis kaum vorhandene Sedimentumlagerungsintensität (siehe Karte 6d, 6e und 6f (Anhang)). Im Vergleich zum orographisch linken Khumbu-Gletscherbach ist diese am orographisch rechten Gletscherbach deutlich geringerer Natur. Wenige Meter südwestlich des Untersuchungsstandortes (ca. 27°55'8" N, 86°48'1" E) entsteht eine Blockierung durch den hier akkumulierten Moränenkörper des Tshola Gletschers (Photo 73). Infolgedessen unterliegt der Lauf hier einer Gebundenheit und fließt nun in Richtung Osten bis Südosten talabwärts. Durch den direkt angrenzenden Moränenkörper können aber auch Schuttmassen in den Bachlauf akkumulieren. Dieser Prozess induziert eine Gleichgewichtsveränderung des Bachlaufes, die schließlich auch zur glazifluvialen Aufschotterung sowie anschließender glazifluvialen Erosion führen kann. Ab einer Höhe von ca. 4437 m ü. NN (ca. 27°54'57.43"N, 86°48'5.85"E) mündet dieser Bachlauf in den orographisch rechten Khumbu-Gletscherbachlauf und bildet somit eine Konfluenz.

Abbildung 36: Hangrutschungen (↓) beeinflussen das Gleichgewicht des orographisch rechten Khumbu Gletscherbachlaufs; Google Earth (Bildmitte: 27°55'44.28"N, 86°48'12.52"E).

Abbildung 36a: Der orographisch rechte Gletscherbachlauf des Khumbu Gletschers. Die beiden Pfeile (↓) zeigen den Beginn und das Ende des untersuchten Bachabschnittes an; Google Earth (Bildmitte: 27°55'32.78"N, 86°48'9.46"E).

Die Anwendung der Längsprofilanalyse (Makroebenenanalyse) bezieht sich hier auf den Laufabschnitt beginnend nahe des Gletscherzungendes ab einer Höhe von ca. 4831,33 m ü. NN (WGS 84/Pseudo Mercator: E 9662976,8825896300 Ν 3240422,8562929800: umgewandelt in WGS 84: E 86.8039982372 N 27.9321556296; siehe Tabelle 6) bis zur Höhe von 4469,17 m ü. NN (WGS 84/Pseudo Mercator: E N 3238745,4301683100; umgewandelt in WGS 84: E 9662558,8654493500 86.8002431254 N 27.91884168; siehe Tabelle 6) direkt am Moränenakkumulationsdes Tshola Gletschers (Abbildung 36a). Der Beginn körper dieses Gletscherbachbereiches wurde ausgewählt, da der Abfluss sich weitestgehend auf den Gletscherbachabfluss des orographisch rechten Khumbu Gletscherbaches bezieht. Weiter nördlich hingegen wurde die glazifluviale Einschneidung auch durch Abflüsse aus der orographisch rechten Talflanke genährt. Mithilfe dieses Längsprofiles lässt sich Folgendes erfassen (Abbildung 37):

Beginnend ab einer Höhe von ca. 4831,33 m ü. NN bis zu einer Höhe von ca. 4762,27 m ü. NN schwankt das Gefälle des Gletscherbaches und weist einen Maximalwert von ca. 17,44° Neigung vor. Im anschließenden Bereich nimmt die Neigung nahe der Höhe von ca. 4737,60 m ü. NN auf einen Gefällewert von ca. 9,29° ab. Im Anschluss steigt der Gefällewert an und schwankt in dem Bereich zwischen ca. 4732,89 m ü. NN und ca. 4713,99 m ü. NN mit einem Gefälle zwischen mindestens 12,58° und maximal 13,69°. Die zuvor erkennbare Absenkung des Gefällewertes ist nahe der Konfluenz mit dem aus NNW abströmenden Gletscherbach zu finden. Diese plötzliche Abnahme des Gefälles lässt sich durch den hier erkennbaren Übergang eines höheren zum nächst tieferen Moränenkörper erklären, der insgesamt eine Abfolge von ineinander verschachtelten Moränenstadien bildet. Das im Anschluss zunehmende Gletscherbachgefälle entsteht ebenfalls durch die zuvor aufgeführte Konfluenz beider Gletscherbachläufe, die eine Abflusszunahme induzieren. Unterhalb dieses Bachgefälles reduziert sich auf einer Höhe von ca. 4706,40 m ü. NN das Gefälle auf einen Wert von ca. 7,74° und steigt im Anschluss wieder bis zu einer Höhe von ca. 4691,66 m ü. NN auf einen Maximalwert von ca. 17,93° Neigung an. Diese Schwankungen deuten ebenfalls auf verschachtelte Moränenstadien hin, die durch den Bachlauf glazifluvial eingeschnitten werden. Weiter bachabwärts reduziert sich insgesamt die Bachneigung - einschließlich vereinzelter Schwankungen - und prägt auf einer Höhe von ca. 4645,92 m ü. NN nur noch ein Gefälle von ca. 4,64° aus. Dies lässt

sich durch die hier (ca. E 9662848,8388901400 N 3239608,2518327100) auftretenden Sedimentakkumulationen erklären, die aus der orographisch rechten Talflanke hinabrutschen oder stürzen (Photo 69). Auch weiter bachabwärts lässt sich ein geringeres Gefälle erkennen, welches in dem Bereich zwischen ca. 4645,92 m ü. NN und ca. 4622,40 m ü. NN nur leicht schwankt. Dieser Bachabschnitt lokalisiert sich ebenfalls in dem zuvor aufgeführten Hangrutschungsbereich. Kurz unterhalb dieses Hangrutschungsbereiches nimmt das Bachlaufgefälle auf einer Höhe von ca. 4598,14 m ü. NN auf den höchsten Neigungswert dieses Laufes von ca. 19,49° zu. Weiter unterhalb reduziert sich die Neigung jedoch und schwankt in den angrenzenden Höhen von ca. 4594,46 m ü. NN und ca. 4580,48 m ü. NN zwischen ca. 1,9° und maximal ca. 9,9°. Im Anschluss zwischen den Höhenbereichen von ca. 4578,75 m ü. NN und ca. 4547,39 m ü. NN steigt das Bachgefälle wieder an und bildet einen Maximalwert von ca. 16,29° Gefälle aus. Bachabwärts nahe der Höhe von ca. 4527,50 m ü. NN reduziert sich das Bachgefälle wieder auf einen Wert von ca. 4,87°. Diese zuvor beschriebenen Gefälleschwankungen, die sich durch das Gletscherbachlängsprofil verdeutlichen lassen, geben Hinweise auf das Vorhandensein von aufeinanderfolgenden Moränenstadien. Jedoch ist ebenfalls anzumerken, dass jene Schwankungen auch durch glazifluviale Erosions- und Akkumulationsprozesse entstanden sein könnten oder einem Datenfehler des verwendeten Höhenmodelles sowie einer ungenauen Erfassung des Bachlaufprofiles obliegen. Weiter bachabwärts sind anhand des Sohlenprofiles nur noch Bachschwankungen in kleinräumigen Dimensionen zu erkennen, die sich durch vereinzelt auftretende Profilerhebungen erkennen lassen. Diese können mittels der im Sanderbereich vermehrt einflussnehmenden glazifluvialen Sedimentakkumulationen und Erosionsprozesse erklärt werden, welche ebenso anhand der Mäanderformenausprägungen innerhalb des Bachlaufes erfassbar sind (vgl. Mesoebenenanalyse). Im Anschluss dieser Gefälleschwankungen unterliegt der Bachlauf beginnend ab einer Höhe von 4467,60 m ü. NN Steigungsraten von 1,11° bis maximal 3,9°. Diese lassen sich durch die hier auftretenden Moränenakkumulationen des Tshola Gletschers erklären (ca. 27°55'8" N, 86°48'1" E), der mittels dieser Blockade im Anschluss auf einer Höhe von ca. 4469,17 m ü. NN eine Bachlaufrichtungsänderung (Photo 73) induzieren konnte. Ebenfalls liegt es Nahe, dass durch den Moränenkörper,

Hangrutschungsprozesse induziert werden, die sich ebenso im Lauf ablagern und somit das Längsprofil beeinflussen können. Eine Fehlangabe der Höhendaten sowie einer ungenauen Erfassung des Gletscherbachlaufprofiles lässt sich an diesem Standpunkt, aber auch in den weiter bachabwärts gelegenen Bereichen, daher nicht gänzlich ausschließen. Deshalb wurde das Laufprofil daher nur bis zu der Höhe von ca. 4469,17 m ü. NN erstellt.

Abbildung 37: Längsprofil des orographisch rechten Khumbu Gletscherbaches nach SRTM-Höhenmodell.

mithilfe Meso-Insgesamt lässt sich der hier angewandten Mikro-, und Makroebenenanalyse verdeutlichen, dass die Bachsohlenmorphologie einschließlich des Laufverhaltens im oberen Bereich des hier untersuchten orographisch rechten Khumbu Gletscherbaches durch holozäne Gletscherschwankungen der jüngeren Zeit, also von 1957 bis 2012 respektive der aktuellen Postuntersuchungszeit in den Jahren zwischen 2012 bis 2015, beeinflusst wurden. Die Akkumulation der

Grundmoränenkörper erfolgte deutlich vor dem Zeitraum von 1957 (nach Kuhle (VII) bis (X) (Kuhle 2005: Figure 3); vgl. Tabelle 17). Gletschervoluminaveränderungen und die dadurch freigesetzten Abflussdynamiken des Khumbu Gletschers belegen diese glazifluvial überprägende Einflussnahme (vgl. Zusammenfassung des orographisch linken Khumbu Gletscherbaches; Bolch et al. 2008: Table 5). Weiter bachabwärts im Sanderbereich dieses Bachlaufes konnten zwei Terrassenabfolgen rekonstruiert dieser Terrassenabfolgen ist ebenso mit der dritten werden. Die Zweite Terrassenabfolge des orographisch linken Gletscherbaches verschachtelt. Jedoch zeigt sich, dass diese in dem hier untersuchten Sanderbereich durch eine Vegetationsdecke überprägt ist und somit einer längeren prozessualen Ruhephase unterliegt. Durch einen Abgleich mit der Bachbettmorphologie, die hier ein fortgeschrittenes Stadium von sich zu entwickelnden Stufen-Becken Sequenzen (step-pool) bildet (Photo 73 und 74), kann ebenso aufgezeigt werden, dass der Bachlauf in diesem Sanderbereich durch die zuvor genannte Ruhephase geprägt wird. Das Grundpodest dieses glazifluvial überprägten Formenschatzes bildet ein Grundmoränenkörper, der hier in den vergangenen Gletscherstadien abgelagert (nach Kuhle (VII) bis (X) (Kuhle 2005: Figure 3); vgl. Tabelle 17), aber ebenso auch glazifluvial umgelagert wurde. Dies lässt sich durch die Gletscherbachlaufmorphologie verdeutlichen. Es zeigt sich, dass der obere Abschnitt dieses Bachlaufes durch verwilderte Bachbettformen (braided river), weiter talabwärts im Sanderbereich jedoch vereinzelt durch verfestigte Mäanderschlingen (anabranching river) geprägt wird. Die verwilderten Bachbettformen (braided river) im oberen Bachlaufabschnitt verdeutlichen die Abfluss- und Sedimentationsschwankungen, die durch die freigesetzten Abflussdynamiken und glazifluvialen Sedimenttransportraten, entstanden durch die am Khumbu Gletscher auftretende Gletschereisschmelze, geprägt werden. Die Verfestigung im angrenzenden Sanderbereich hingegen entsteht durch die zweite Terrassenordnung, die mit Vegetationszonen überprägt ist. Anhand dieser Vegetationsüberlagerung lässt sich verdeutlichen, dass diese Terrassenordnung in den letzten Jahren durch geringe bis kaum vorhandene Sedimentationsumlagerungen beeinflusst wurde. Durch einen Vergleich der Erosionsdynamiken des orographisch linken Khumbu Gletscherbaches lässt sich zeigen, dass die Erosionsleistungen in diesem Gletscherbach deutlich geringer ausfallen. Des Weiteren lassen sich mithilfe

des Gletscherbachlängsprofiles Moränenstadien verdeutlichen. Sie konnten durch sehr kleinräumige konvexe Formen im Längsprofil erfasst werden, welche allesamt mittels Satellitenbilddaten (Google Earth) abgeglichen werden konnten. Aber auch in diesem Längsprofil können Datenfehler im SRTM-Höhenmodell sowie Ungenauigkeiten in der Laufprofilerfassung nicht gänzlich ausgeschlossen werden.

3.2.2 Gletscherbachsysteme in der Talschaft des Tshola Tsho Gletschersees

3.2.2.1 Übersicht zum historischen Gletscherbachsystem in der südlichen Kartreppe nahe des Lobuche East Gipfels

Südlich des Lobuche East Gipfels lokalisiert sich ein Kar (27° 55' 53.58" N, 86° 47' 27.98" E, ca. 4790 m ü. NN), welches ehemals vom Gletschereis überformt wurde. Postglazial wurden durch Gletschereisschmelzprozesse Abflussdynamiken freigesetzt, die diese vom Gletscher geprägte Landschaft mittels glazifluvialer und fluvialer Erosionsprozesse überprägten (Photo 77 und 78). Die als Deckschicht abgelagerten teils zugerundeten und teils galzigen gebrochenen Sedimente am hier untersuchten Kargrund bestätigen die Hypothese der historischen Eisüberlagerung (Kuhle 2005) mit anschließender glazifluvialer Überprägung und Umlagerung während der Gletschereisschmelzphase (Diagramm 12, Photo 79 und 80).

Diagramm 12: Korngrößen vom 21.03.12. Anhand der Korngrößenzusammensetzung der Sedimentprobe aus dem Kargrund nahe des Lobuche East Gletschers lässt sich bestätigen, dass dieser glazigen als Grundmoränenkörper abgelagert wurde und im Anschluss intensiven glazifluvialen Auswaschungsprozessen unterlag. In allen Kornfraktionen dieser Probe lassen sich Sedimentreste auffinden. Die Tonfraktion weist innerhalb dieser Probe einen Anteil von 1,1 % vor. Die Maxima dieser Sedimentprobe sind mit 46,6 % in der Mittelsandfraktion und mit 35,6 % in der Grobsandfraktion zu finden. Der Sortierungskoeffizient dieser Sedimentprobe ergibt einen Wert von 1,93.

Des Weiteren schneidet ein aus der südlich exponierten Talflanke periodisch abfließender Bachlauf in den geformten Kargrund ein. Die hier ca. 1,50 m bis 3 m breite Sohle des Bachlaufes, verdeutlicht jedoch die periodisch geringfügig abfließenden Wasserdynamiken. Freigesetzt werden diese durch den sich weiter oberhalb befindenden Gletschersee (27° 56' 35.45" N, 86° 47' 29.79" E, ca. 5200 m ü. NN), der durch schmelzende Schnee- und Eismassen genährt wird. Dieser See wurde innerhalb eines weiteren, aber deutlich kleinräumigeren Kares abgelagert und ist letztendlich ein Formenrelikt der letzten Gletscherstadien.

Abbildung 38: Aneinandergereihte Karformen (↓) und Bachläufe prägen die Bergflanke des Lobuche East Gipfels; Google Earth (Bildmitte: 27°56'0.70"N, 86°47'26.31"E).

Der weiter unterhalb gelegene Tshola Tsho Gletschersee kann ebenfalls als eine Karform gedeutet werden (Photo 82). Zusammenhängend lassen sich schließlich drei aneinandergereihte Karformen erkennen (Pfeil (1) in Abbildung 38), die allesamt eine

Kartreppe bilden. Diese Formen entstanden durch die zusammenhängenden glazialen Prozessabläufe während der vergangenen Glazialstadien mit anschließender glazifluvialer Umgestaltung durch die einsetzenden Gletschereisschmelzprozesse.

Die am Beginn der untersten Karform zu verortenden Erosionsrinnen zeigen die historisch aber auch noch rezent auftretenden glazifluvialen und fluvialen Erosionsprozessformen (Photo 82), dessen Abflussdynamiken den Gletschersee Tshola Tsho mit Wasser- und Sedimentfracht periodisch nähren. Mit einem zunehmenden Wasserspiegel des Tshola Tsho Gletschersees, kann schließlich die abschließende konvexe Form am Rande des Uferbereiches des Sees überspült werden, was zu einer Seespiegelabnahme führt (Photo 81). Diese periodisch freigesetzten Wassermassen nähren schließlich den angrenzenden orographisch rechten Khumbu Gletscherbach.

3.2.2.2 Übersicht zum Unterlauf des südlichen Nirekha Peak Gletscherbaches

Genährt wird dieser Gletscherbach durch die abschmelzenden Eismassen des südöstlich abfließenden Gletschers des Nirekha Peaks (6159 m ü. NN). Dieser Gletscher bildet sich auf einer Höhe von maximal ca. 5726 m ü. NN (27° 58' 38.13" N, 86° 45' 22.23" E) in einem Kar und wird dort mittels Lawinen- und Eisabbrüchen sowie der Metamorphose von Schnee zu Eis genährt. Mit einer Länge von ca. 1,59 km fließt dieser talabwärts. Auf einer Höhe von ca. 5361 m ü. NN (27°58'2.57"N, 86°45'44.64"E) (vgl. GLIMS: Racoviteanu & Bajracharya 2008) bildet der Gletscher schließlich sein Gletscherzungenende aus. Hier tritt der Gesamtwasserhaushalt, einschließlich der subglazialen, intraglazialen sowie englazialen Schmelzwässer, des Gletschers zutage. Während seines in südöstlicher und südlicher Richtung talabwärts fließenden Bachlaufes wird dieser durch weitere Abflussmengen einschließlich glazifluvial transportierter Sedimentmassen - die aus den Schnee- und Eisschmelzprozessen der angrenzenden Talflanken zutage treten - genährt. Aufgrund dieser Sedimentations- und Abflussschwankungen sowie durch das teils abnehmende Fließgefälle, bildet der Bachlauf in den flacheren Bachabschnitten, wie zum Beispiel vermehrt im

Sanderbereich des angrenzenden Gletschers in Höhen zwischen 4913 m ü. NN und 4860 m ü. NN, Bachverästelungen aus (braided river). Im anschließenden Bachabschnitt hingegen ist der Lauf durch abgrenzende Moränenflächen gebunden, wodurch sich hier vermehrt Mäanderschlingen und vereinzelt Bachverästelungen ausprägen (Pfeil (1) in Abbildung 39).

Abbildung 39: Der Gletscherbachlauf des Nirekha Peaks ist durch abgrenzende Moränenflächen gebunden. Es bilden sich Mäanderschlingen und Bachverästelungen (↓) aus; Google Earth (Bildmitte: 27°56'38.03"N, 86°46'38.15"E).

In Höhen zwischen ca. 4637 m ü. NN und 4730 m ü. NN sind vereinzelte Stufen-Becken Sequenzabfolgen (step-pool) zu erkennen (Photo 83), die u. a. durch eine Reduktion der Sedimentzufuhrraten aus den angrenzenden Gletscherbachhängen induziert werden können. Trotz der noch sporadisch chaotischen Ablagerung von Blöcken und Sedimenten innerhalb dieses Gletscherbachsohlenbereiches, lässt sich dieser insgesamt in ein fortgeschrittenes Entwicklungsstadium einordnen. Unterhalb dieses Sequenzabfolgenbereiches schneidet der Gletscherbach in anstehendes Gestein ein. Aufgrund der zunehmenden Steilheit in diesem Unterlaufbereich des Gletscherbachsystems bildet sich hier nun eine wasserfallartige Kaskadenform mit einzelnen Beckenformen aus (Photo 84 und 85). Auf einer Höhe von ca. 4628 m ü. NN (27°55'56" N 86°46'50" E, GPS-Daten) konnten am 21.03.12 um ca. 11:05 Uhr folgende fluvialgeomorphologische Ergebnisse zu diesem Unterlaufabschnitt gesammelt werden: Der an das anstehende Gestein gebundene Bachlauf weist in diesem Abschnitt eine Bachbreite von ca. 12 m bis 13 m vor. Die Bachtiefe variiert je nach Beckenanlagerung in der Kaskaden-Bachbettform (cascade) zwischen ca. 0,5 m und 1 m. Während des Untersuchungszeitraumes betrug die Wassertemperatur ca. 4,1 °C und die Außentemperatur ca. 18 °C. Ebenfalls konnten während dieser Untersuchung Eisablagerungen oberhalb der Wasserfläche beobachtet werden. Innerhalb und am Rand der Bachsohle wurden Blöcke mit einer Größe von bis zu 3 m abgelagert, die auf ein Formenrelikt des hier ehemals deutlich ausgeprägteren Moränenkörpers hindeuten (Photo 85). Ob diese Blöcke jedoch ausschließlich einem glazigenen Transport unterlagen und somit in situ durch Gletscherprozesse abgelagert wurden oder auch durch fluviale Transportereignisse mittels eines Gletscherseeausbruches transportiert werden konnten, kann an diesem Standpunkt nicht eindeutig belegt werden. Ca. 2 m oberhalb der rezenten Bachbettsohle lassen sich anhand der Felseinschnitte, die die orographisch rechte Bachseite prägen, fluviale Pegelstände erkennen. Des Weiteren deutet die ca. 0,8 m bis 1 m oberhalb des rezenten Bachlaufes vorzufindende Mattenvegetation ebenfalls auf historische Wasserpegelstände des Bachlaufes hin (Photo 85). Vom Untersuchungsstandort beobachtet, schneidet der Bachlauf mit einer Fließgefälleneigung von ca. 14° und einer Fließrichtung von ca. 200° südlich in den Untergrund ein. Talaufwärts blickend, beträgt die Fließgefälleneigung jedoch 19°, wobei der Bachlauf aus ca. 358° N bis zum Untersuchungsstandort hinab fließt. Die an diesem Untersuchungsstandort entnommenen Sedimentproben (27°55'56" N, 86°46'50" E, GPS-Daten) und die im Anschluss angewandten Korngrößenanalysen zeigen, dass der ehemals glazigen abgelagerte Sedimentkörper glazifluvial sowie fluvial überprägt wurde (Photo 87 und 88; Diagramm 13 und 14).

Diagramm 13: Korngrößen vom 21.03.12. Mittels der Korngrößenzusammensetzung der Sedimentprobe aus dem Gletscherbach des Nirekha Peaks lässt sich bestätigen, dass dieser glazigen als Grundmoränenkörper abgelagert wurde im Anschluss und intensiven glazifluvialen Auswaschungsprozessen unterlag und auch rezent von diesen beeinflusst wird. In allen Kornfraktionen dieser Probe lassen sich Sedimentreste auffinden. Die Tonfraktion weist innerhalb dieser Probe einen Anteil von 0,2 % vor. Die Maxima dieser Sedimentprobe sind mit 41,5 % in der Mittelsandfraktion und mit 39,9 % in der Feinsandfraktion zu finden. Der Sortierungskoeffizient dieser Sedimentprobe ergibt einen Wert von 2,03.

Diagramm 14: Korngrößen vom 21.03.12. Mithilfe der Korngrößenzusammensetzung der Sedimentprobe kurz oberhalb des rezenten Gletscherbaches des Nirekha Peaks lässt sich verdeutlichen, dass dieser glazigen als Grundmoränenkörper abgelagert wurde und im Anschluss glazifluvialen Auswaschungsprozessen unterlag und auch rezent von diesen beeinflusst wird. In allen Kornfraktionen dieser Probe lassen sich Sedimentreste auffinden. Die Tonfraktion weist innerhalb dieser Probe einen Anteil von 0,8 % vor. Die Maxima dieser Sedimentprobe sind mit 35,1 % in der Mittelsandfraktion und mit 30,2 % in der Feinsandfraktion zu finden. Der Sortierungskoeffizient dieser Sedimentprobe ergibt einen

Wert von 2,38. Im Vergleich zu der vorherigen Sedimentprobe (vgl. Diagramm 13) sind die glazifluvialen Auswaschungsprozesse geringer. Dies lässt sich mittels des Probeentnahmestandortes erklären, der hier kurz oberhalb des rezenten Gletscherbaches (vgl. Diagramm 13) zu verorten ist.

Infolge der glazifluvialen sowie fluvialen Einschneidung, die sich oberhalb der Steilstufenformation zu erkennen gibt, konnte sich am Untersuchungsstandpunkt eine ca. 4 m bis 6 m oberhalb der rezenten Flusssohle befindende kleine Einschneidungsterrassenfläche, das Grundpodest wurde durch glazigene Prozesse abgelagert, ausbilden. Aufgrund der abgrenzenden morphologischen Formengestalten des Gesteins sind die Erosionsformen sowie die anstehenden Breiten dieser Terrassenfläche gering ausgeprägt. Ca. 100 m bis 130 m weiter talaufwärts zeigt sich jedoch, dass die Distanz zwischen der rezenten Schottersohlenebene und der angrenzenden Terrassenordnung mit einer Höhe von ca. 10 m bis 15 m glazifluvial sowie fluvial deutlich intensiver eingeschnitten wurde (Photo 83 und 86). Aber nicht nur die Terrasseneinschneidungshöhe, sondern auch die Terrassenbreite nimmt aufgrund des hier vorhandenen Lockergesteines, welcher als Moränenkörper klassifiziert werden kann, talaufwärts zu (Photo 83 und 86) (vgl. Abbildung 39). Mittels dieser Terrassenanordnungen und der weiter talaufwärts akkumulierten Satzendmoräne sowie der Grundmoräne (Photo 83 und 86) - diese bildet die Ebene der Talschaft - lässt sich zeigen, dass das Abschmelzen und der Rückzug der historischen Gletscherstände zu intensiven Tiefeneinschneidungsprozessen führten, die sich rezent durch die zuvor beschriebene Höhendistanz kenntlich machen.

3.2.2.3 Übersicht zum Gletscherbachlauf des angrenzenden Gletschers des Cho La-Passes

Während der Überquerung des Cho La-Passes muss ein kleinräumiger Kargletscher passiert werden, der nördlich und südlich von steilen Talflanken umgeben ist. Das Nährgebiet dieses Gletschers lässt sich in einer Höhe von maximal ca. 5390 m ü. NN (ca. 27° 57' 48.26'' N, 86° 45' 07.50'' E) verorten. Die hier entstandenen Eismassen fließen mit einer Länge von maximal ca. 790 m in südöstlicher Richtung hangabwärts

(Photo 89). Das Gletscherzungenende lokalisiert sich auf einer Höhe von ca. 5270 m ü. NN (Photo 90) (ca. 27° 57' 38.25" N, 86° 45' 34.20" E) und setzt durch Abschmelzprozesse Wasserdynamiken frei. Mithilfe von fernerkundlichen Daten konnte ebenso gezeigt werden, dass jene Eismassen der Gletschereisschmelze unterliegen (vgl. GLIMS: Racoviteanu & Bajracharya 2008).

Die rezent freigesetzten Wasserdynamiken fließen in südöstlicher Richtung talabwärts, erodieren das nahe am Gletscherzungenuntergrund anstehende Gestein und bilden im Anschluss ein Gletscherbachsystem aus (Photo 90, 91, vgl. Abbildung 40). Mit abnehmendem Talgefälle bilden sich schließlich ab einer Höhe von ca. 4965 m ü. NN (27° 57' 08.54" N, 86° 45' 45.73" E) Bachverwilderungen (braided river) und vereinzelt Mäanderschlingen (Photo 91, Pfeil (1) in Abbildung 40) im Gletscherbachlauf aus. Auch weiter talabwärts sind diese Bachformenausprägungen erkennbar. Aufgrund der vorhergehenden glazialen Überprägung dieser Trogtalschaft wurde die Sohle dieser mit Grundmoränenmaterial ausgekleidet, welches im Postglazialstadium glazifluvial überprägt und umgelagert wurde (Photo 91). Ebenso lassen sich glazifluviale Einschneidungen von abgelagerten Moränenstadien erkennen (u. a. 27°56'35.55"N, 86°46'6.32"E). Die Schottersohlenbreite variiert vom Gletscherbachbeginn bis zum Zufluss in dem Tshola Tsho Gletschersee zwischen ca. 5 m und 9 m. Anhand von Feldbegehungen erfasst, können die unterschiedlichen Bachläufe (channels) des Gletscherbachgesamtsystems im oberen Gletscherbachbereich (ca. 27°56'45.66"N, 86°46'8.76"E) von zusammenhängenden Eismassen, die eine Breite von maximal ca. 130 m messen, bedeckt sein (Photo 92). Des Weiteren lässt sich anhand der hier im Gletscherbachbereich feinkörnigen oberen beobachteten Korngrößenklassen (Stilwassersedimente) sowie der weitestgehend breiten und ebenen Talsohle - die ebenfalls durch Moränenkomplexe abgegrenzt ist - ein historischer Gletschersee rekonstruieren (Photo 91 und 92, vgl. Abbildung 40). Die Korngrößenanalysen zweier Sedimentproben bestätigen diese Beobachtungen und zeigen somit, dass der flache, zum Gletscherbach angrenzende Bereich von noch großräumigeren Wassermassen überprägt war (Photo 95 und 96, Diagramm 15). Abgegrenzt wird dieser von Moränenakkumulationskörpern (Photo 93 und 94, Diagramm 16), die somit als Wasserbarriere dienen können.

Diagramm 15: Korngrößen vom 21.03.12. Mittels der Korngrößenzusammensetzung der Sedimentprobe aus dem orographisch linken Ufer des weitflächigen Cho La Gletscherbaches lässt sich bestätigen, dass diese großräumige Fläche ihren Ursprung als Grundmoränenkörper mit anschließender glazifluvialer Auswaschung findet. Im vergangenen Holozän war dieser Bereich ebenfalls von großräumigen Wassermassen überprägt, die einen Gletschersee bildeten. Während der Feldbegehung waren kleinräumigere Wasserüberprägungen im angrenzenden Bachbereich existent. Die Sedimentprobe weist in diesem Uferbereich einen Tonanteil von 2,4 % vor. In allen weiteren Kornfraktionen dieser Probe lassen sich ebenfalls Sedimentreste auffinden. Die Maxima dieser Sedimentprobe sind mit 43,9 % in der Feinsandfraktion und mit 34,1 % in der Mittelsandfraktion zu finden. Der Sortierungskoeffizient dieser Sedimentprobe ergibt einen Wert von 2,06.

Diagramm 16: Korngrößen vom 21.03.12. Mithilfe der Korngrößenzusammensetzung der Sedimentprobe aus dem orographisch linken Uferbereich, die hier eine konvexe Form bildet, lässt sich bestätigen, dass es sich hierbei um einen Moränenkörper handelt, der einer geringen glazifluvialen Ausspülung unterlag. Aufgrund ihres glazigenen Ursprunges weist die Sedimentprobe einen Tonanteil von 4,3 % vor. In allen

weiteren Kornfraktionen dieser Probe lassen sich ebenfalls Sedimentreste auffinden. Die Maxima dieser Sedimentprobe sind mit 35,1 % in der Feinsandfraktion und mit 22 % in der Mittelsandfraktion zu finden. Der Sortierungskoeffizient dieser Sedimentprobe ergibt einen Wert von 2,69.

Abbildung 40: Mit abnehmendem Talgefälle bilden sich Bachverwilderungen (braided river) und vereinzelt Mäanderschlingen (↓) im Gletscherbachlauf des Cho La Gletschers aus; Google Earth (Bildmitte: 27° 57' 24.11" N, 86° 45' 44.69" E).

Demzufolge wurde die Talschaft im vergangenen Holozän und somit während der letzten Glazialstadien (Kuhle 2005) durch deutlich tiefer hinabreichende Eismassen bedeckt, die schließlich einen kleinräumigen Gletschersee bilden konnten (ca. 27°56'45.66"N, 86°46'8.76"E). Aufgrund dieser ebenen Talsohle liegt es nahe, dass der rezente Gletscherbach in diesem Bereich neben den Bachverwilderungen (braided river) und Mäanderschlingen eine flache und ebene Schottersohle (plane bed) vorweist. Erst ab einer Höhe von ca. 4840 m ü. NN (27° 56' 37.83" N, 86° 46' 06.31" E) setzt diese morphologische Abfolge von Verwilderungen und Mäanderschlingen mit zum Teil verfestigten Inselbildungen aus (Pfeil (↓) in Abbildung 41). Im Anschluss unterliegt das Bachsystem einem steilen Gefälle, welches sich durch Tiefenerosionsprozesse kenntlich macht. Kaum ist diese Stufe mit steilem Gefälle überwunden, formt der Bachlauf ab einer Höhe von ca. 4740 m ü. NN (27° 56' 20.29" N, 86° 45' 58.83" E) wieder Bachverwilderungen (braided river) sowie vereinzelt verfestigte Inselbildungen Formen entstehen durch die sich hier ständig verändernden aus. Diese Abflussdynamiken (vgl. Buffington & Montgomery 2013). Jedoch wird das Bachsystem in diesem Abschnitt durch zusätzliche Abflussdynamiken, die nordwestlich dieses Abschnittes freigesetzt werden, genährt. Dies hat zur Folge, dass sich die Transportkraft und Fracht (Last-Kraft Gefüge) verlagert. Ob auch diese flache Talsohle von einem Gletschersee überprägt wurde, kann aufgrund fehlender Sedimentproben nicht eindeutig belegt werden. Jedoch deuten die flache und ebene Schottersohle sowie die morphologische Gesamtgestalt dieses Talabschnittes auf eine mögliche Gletscherseeexistenz hin. Erst ab einer Höhe von 4674 m ü. NN (27° 55' 59.87" N, 86° 46' 19.14" E) verändert sich die Laufrichtung des Gletscherbaches weitestgehend in einen geradlinigen Lauf und auch die Bachverwilderungen (braided river) reduzieren sich (vgl. Abbildung 41). Talabwärts, in einem ausgeformten Mäanderbogen fließend, mündet der Bachlauf schließlich auf einer Höhe von 4532 m ü. NN (27° 55' 43.88" N, 86° 46' 45.31" E) in den Tshola Tsho Gletschersee.

Abbildung 41: Kleinräumig setzt die Abfolge von Verwilderungen und Mäanderschlingen mit zum Teil verfestigten Inselbildungen (1) im Gletscherbachlauf des Cho La Gletschers aus; Google Earth (Bildmitte: 27° 56' 23.34" N, 86° 46' 2.62" E).

Mittels der Beobachtung der Laufveränderungen des Gletscherbaches, die in diesem Gesamtlauf vermehrt durch Bachverwilderungen (braided river) und Mäanderschlingen geprägt ist, lässt sich zeigen, dass der Bachlauf Abflussschwankungen unterliegt, die sich durch einen derartigen Formenschatz kenntlich machen. Ebenso zeigt sich, dass dieser Untersuchungsabschnitt durch Abfolgen flacher Ebenen geprägt ist, die die Existenz mehrerer Gletscherseen erkennen lassen. Diese flachen Ebenen wurden ebenso im Holozän während der letzten Gletschereisstadien von Eismassen überlagert (Kuhle 2005), dessen Gletschereiskörper im Anschluss der Kaltphasen abschmolzen und somit Seeabfolgen hinterließen. Räumlich sowie morphologisch im Gesamtzusammenhang betrachtet, verdeutlicht diese Abfolge die Existenz einer Kartreppe, dessen unterschiedlichen Abfolgen vergletschert waren. Auch weiter talabwärts des Tshola Tsho Gletschersees, lassen sich weitere Karformen erkennen. Ebenfalls sind anhand des Gesamtlaufes unterschiedliche Intensitäten von Tiefen- und Lateralerosionen - entstanden durch schwankende glazifluviale und fluviale Dynamiken - zu erkennen, die sich schließlich auf die historischen und rezenten Gletscherschwankungen zurückführen lassen.

3.2.3 Gletscherbachsysteme in der Talschaft des Nare Drangka und Mingbo Abflusssystems

3.2.3.1 Morphologie und Terrassenbildungen des Nare Drangka Gletscherbachsystems auf der Mikro-, Meso- und Makroebene

Der Nare Gletscher bildet sich durch die Wandervereisungen an der Süd- und Südwestflanke des Ama Dablam (6856 m ü. NN) und unterhalb dieser durch die im Gletscherkar einflussnehmende Schneemetamorphose. Auch unterhalb dieses Gletscherkares dem nun südwestlich verlaufenden Nare Talgletscher folgend, trägt die orographisch linke Talflanke mit ihren nordexponierten Wandvereisungen ebenfalls zur Gletschernährung und somit zur Abflusssteigerung des Nare Gletscherbachsystems bei (Photo 97, 98). Ebenfalls sind Lawinenabbrüche, aufgrund der hier sehr ausgeprägten Reliefenergie, keine Seltenheit. Ebenso wie Schneefälle nähren diese Prozesse die Eismassen des Gletschers. An der Oberfläche des schuttbedeckten Nare Gletschers, der mit seiner ca. 5,8 km Länge und ca. 0,3 km bis 0,5 km Breite (Abbildung 42) die Talschaft ausfüllt, sind zahlreiche englaziale Schmelzwasserbäche zu lokalisieren, die schließlich auch den Abfluss des angrenzenden Gletscherbachsystems nähren. Die Gletscherzunge endet auf einer Höhe von ca. 4704 m ü. NN (27°49'48.36"N, 86°50'8.38"E) (vgl. GLIMS: Racoviteanu & Bajracharya 2008).

Angrenzend lokalisiert sich hier der orographisch rechts gelegene Gletscherbach, der ab einer Höhe von ca. 4640 m ü. NN bis 4700 m ü. NN beginnt. Auf der orographisch linken Seite des Gletschers lokalisiert sich ein zweiter Gletscherbach, der jedoch schon in der Obermoräne des Gletschers nahe einer Höhe von ca. 4740 m ü. NN (27°49'41.54"N, 86°50'13.23"E) entspringt. Die Kraft dieser beiden Gletscherbachsysteme schneidet den rezenten Endmoränenkörper ein und durchbricht diesen, nimmt Material als Fracht auf und lagert es in Form eines angrenzenden Schwemmfächers proximal ab. Dieser Formenschatz, im Alpenvorland mit dem Begriff eines Trompetentälchens beschrieben (Troll 1926), ist in dieser Talschaft jedoch nur sehr kleinräumig, mit einer Länge von ca. 95 m und einer Breite von ca. 101 m (Messung: Google Earth) ausgeprägt. Gerade der kleine proglaziale Schwemmfächer, der sich in Hochgebirgen bis zu den begrenzenden Talflanken ausbreiten kann, verdeutlicht das junge Stadium. Bestätigen lässt sich dies durch den am 3. September 1977 aufgetretenen Gletscherseeausbruch (Buchroither et al. 1982; Fushimi et al. 1985, Cenderelli & Wohl 2001), der die gesamte Talschaft des Nare Drangka umgestaltete. Daraus lässt sich schließen, dass der Zeitraum zur Formung der Größe eines derartigen Schwemmfächers lediglich im Zeitfenster der letzten 35 Jahre - bezogen bis zum Jahr 2012 - stattfand (Photo 97, 98). Ebenfalls lässt sich aus der Einschneidung des Endmoränenkörpers und der anschließenden proglazialen Schwemmfächerakkumulation das zuvor eintretende Stadium des Abschmelzens und somit des Zurückweichens des Nare Gletschers rekonstruieren. Bestätigen lässt sich dieses durch die ermittelten holozänen Gletscherstände (Kuhle 2005) und das Abschmelzen dieser seit dem Gletscherseeausbruch im Jahr 1977 (Buchroither et al. 1982).

Unterhalb dieser Schwemmfächerausprägung und der Konfluenz des orographisch linken sowie rechten Gletscherbaches (27°49'57.41"N, 86°49'54.91"E) wurden auf einer Höhe von ca. 4524 m ü. NN (N 27° 50.209' E 086° 49.692', Garmin-GPS) am 10.03.12 um ca. 13:00 Uhr Mikroebenenanalysen zur Gletscherbachmorphologie durchgeführt. An diesem Untersuchungsstandort konnte eine Gletscherbachtiefe von 0,2 m bis 0,5 m und eine Gletscherbachbreite von ca. 2 m gemessen werden. Diese gemessenen Werte unterliegen naturgemäß starken Schwankungen, die durch die Abflussdynamiken des Gletscherbaches beeinflusst werden. In diesem angrenzenden Gletschervorfeld schneidet der Gletscherbach in Form eines fortgeschrittenen Entwicklungsstadiums von Kaskaden Bachbettformen (cascade) hin zu Stufen-Becken Sequenzabfolgen (steppool) in die Grundmoräne ((ca. 90 m Schneegrenzdepression: Mittleres Dhaulagiri Stadium bis Jüngeres Dhaulagiri Stadium ('VII - VII)) nach Kuhle 2005: Table 1) ein, dessen Gletscherbachsohle hauptsächlich aus groben Blockwerk besteht (Photo 99). Dieses fortgeschrittene Entwicklungsstadium von Kaskaden Sequenzabfolgen (cascade) zu Stufen Becken Sequenzabfolgen (step-pool) bildet die Endphase der Entwicklung dieser Bachbettformengestalt und kann somit als Übergangsphase klassifiziert werden. Entscheidend für die Entwicklung dieser Bachbettmorphologie ist das hier vorzufindende geringe Gefälle sowie die Schuttzufuhr, die durch Gletscherabschmelzprozesse, aber auch durch Hangrutschungsprozesse freigesetzt werden können (Photo 100). Ebenso zeigt sich, dass die Bachschotter teils aus großen Blockkörpern - diese verdeutlichen hier das Grundgerüst eines Grundmoränenkörpers, deren feinere Sedimente glazifluvial ausgewaschen wurden - bestehen (Photo 99), die eine weitergehende Entwicklung unterbinden können. Naturgemäß unterliegen diese Entwicklungsprozesse einer Zeitspanne, beginnend von der Akkumulation bis zur glazifluvialen Umlagerung dieser Bachschotter und Blockkörper. Durch die Überlagerung der Blöcke im Flussbett wird die darunterliegende Sohle einschließlich ihrer feineren Grundmoränensedimente geschützt (definiert als Panzersohle, siehe Schumm 2005: 97 103). Weiter bachabwärts hingegen feinere sind Korngrößenklassen im Gletscherbachbett zu finden, die nicht wie an diesem Untersuchungsstandort durch eine derartig mächtige Panzersohle geschützt werden (Photo 113).

Gebunden durch die abgrenzenden steilen Schutthänge, die als Moränenkörper zu klassifizieren sind, bildet der Nare Drangka in diesem Bereich der proximalen Gletscherschotterflur ein verwildertes Bachsystem (braided river) mit vereinzelten Bachverzweigungen aus, welches je nach der Stärke der Abflusssdynamiken seinen Lauf verändern kann. Im weiter oberhalb gelegenen Sanderbereich sind diese verwilderten Bachbettformen (braided river) noch deutlicher ausgeprägt. Bachabwärts dieses Untersuchungsstandortes hingegen, variiert dieser Formenschatz mit teils ausgeprägten Mäanderbögen (Abbildung 42).

Abbildung 42: Der Nare Drangka Gletscherbach. Die beiden Pfeile (↓) zeigen den Beginn und das Ende des untersuchten Bachabschnittes an; Google Earth (Bildmitte: 27°50'20.29"N, 86°50'26.33"E).

Anhand der Terrassenmorphologie konnten an diesem Untersuchungsstandort eine Abfolge von vier glazifluvialen Terrassenordnungen rekonstruiert werden. Die erste dieser Terrassenschotterebenen misst eine Breite von ca. 4 m bis 6 m. Direkt angrenzend lokalisiert sich die zweite Terrassenschotterebene, die nahe des Untersuchungsstandortes Breiten von ca. 9 m bis 12 m misst. Oberhalb dieser lokalisiert sich die dritte buckelartige Terrassenschotterebene mit einer Breitenausprägung von ca. 22 m bis 36 m, dessen Anordnung darauffolgend von der vierten buckelartigen Terrassenschotterbene erweitert wird. Die Breite dieser vierten Terrassenordnung beläuft sich nahe des Untersuchungsstandortes auf ca. 38 m bis 50 m. Insgesamt variieren diese Terrassenbreitenausprägungen sehr stark. Weiter oberhalb sowie unterhalb des Untersuchungsstandortes nehmen die Breiten der dritten sowie vierten Terrassenordnung zu (siehe Karte 7a und 7b (Anhang)).

Die weitere Abfolge wird an diesem Untersuchungsstandort von den steilen Schutthängen abgegrenzt (Photo 100), die eine Rekonstruktion möglicher weitere Terrassenordnungen verhindert. Aufgrund des hohen Gefälles dieser Hänge können Prozesse von Schuttzufuhren induziert werden, die so die angrenzenden Terrassenordnungen überprägen können (Photo 100). Die niedrigen Höhendistanzen zwischen den einzelnen Terrassenordnungen am und nahe des Untersuchungsstandortes im Bachoberlauf verdeutlichen (Photo 97, 98, 99, 100), dass die Zeitspanne der glazifluvialen Tiefenerosion als gering einzuordnen ist. Ebenfalls beeinflusst die hier vorzufindende Panzerplattenschottersohle des Gletscherbaches die Tiefenerosionsleistungen, die von möglichen Abflussschwankungen induziert werden können.

Weiter bachabwärts in Höhen von ca. 4466 m ü. NN sind die Abfolgen der Terrassenanordnungen einschließlich ihrer geringen Höhendistanzen zwischen einander ebenfalls zu erkennen (Photo 101, 102, 103, 104). Folgt man dem Bachverlauf jedoch bis auf Höhen von ca. 4401 m ü. NN bachabwärts, lässt sich zeigen, dass die Höhendistanzausprägung zwischen den einzelnen Terrassenanordnungen zunehmen (Photo 105, 109). Erklären lässt sich dies anhand der morphologisch veränderten Schottersohle, die hier nicht ausschließlich aus Schotter besteht und somit eine ausgiebig überprägende Panzerplattenschottersohle bildet, welche die glazifluvialen und fluvialen Tiefenerosionsleistungen reduzieren können. Ebenfalls lassen sich in diesen Höhen von ca. 4401 m ü. NN sechs Terrassenordnungen erkennen, die teils durch Vegetation verfestigt sind. Daraus lässt sich schließen, dass die höher gelegenen Terrassenordnungen älterer Natur sind und daher zum Teil keiner glazifluvialen und fluvialen Veränderungsdynamik mehr unterliegen. Die Größenausprägungen der hier aufgeführten Terrassenordnungen auf der orographisch linken Ebene bzw. Fläche sind wie folgt (siehe Karte 7c (Anhang)): Die Breite und 7d der ersten Terrassenschotterebene beläuft sich auf ca. 6 m bis 8 m, wobei der Gletscherbach an diesem Untersuchungsstandort Breiten von ca. 4 m bis 6 m einnimmt. Direkt angrenzend lokalisiert sich die zweite Terrassenschotterebene mit Breiten die zwischen

von ca. 12 m bis ca. 30 m sehr stark schwankt. Bei dieser Angabe gilt es zu beachten, dass hier die Breite des Gletscherbaches mit inbegriffen ist. Oberhalb dieser lässt sich die dritte Terrassenfläche mit Breiten von ca. 6,5 m bis 18,5 m messen. Zum Teil ist diese durch Vegetation verfestigt. Dies zeigt, dass die Terrassenfläche in den letzten Jahren lediglich einer geringen glazifluvialen sowie fluvialen Beeinflussung unterlag. Ca. 1 m bis 3 m oberhalb dieser lokalisiert sich die vierte Terrassenfläche, die Breiten zwischen ca. 6 m bis 17 m vorweist. Übergeordnet lagert sich die fünfte Terrassenfläche, dessen Breiten zwischen ca. 2 m bis 14 schwanken, an. Die Höhendistanz zur nächst höher gelegenen Terrassenfläche beträgt ca. 1 m bis 2 m. Naturgemäß wurde diese Distanz mittels glazifluvialer Einschneidungen abgetragen und unterliegt rezent noch andauernden Verwitterungs- und Hangrutschungsprozessen. Oberhalb dieser lässt sich noch eine sechste Terrassenfläche rekonstruieren, die Breiten zwischen ca. 3,5 m und 15,5 m misst (Photo 105, 108, 109). All jene Terrassenordnungen sind das Resultat von vorhergehenden Glazialstadienakkumulationen, die in der Abschmelzphase des Eises die abgelagerten Moränenkörper glazifluvial und fluvial eingeschnitten und somit ausgearbeitet haben. Dies bestätigt auch die aus der Übergangshöhe von der zweiten zur sechsten Terrassenordnung am orographisch rechten Hang entnommene Sedimentprobe, die aus glazifluvial umgelagertem Moränenmaterial besteht (Photo 106, 107, vgl. Diagramm 17).

Diagramm 17: Korngrößen vom 10.03.12. Diese Sedimentprobe wurde orographisch rechts ca. 3 m bis 5 m oberhalb der zweiten Terrassenschotterebene des Nare Drangka Gletscherbaches aus einem

Terrassenübergang (hier: auch Terrassenhang) entnommen. Mittels der Korngrößenzusammensetzung sowie der Durchmischung der Sedimentfraktionen innerhalb dieser Sedimentprobe lässt sich bestätigen, dass dieser glazigen als Moränenkörper abgelagert wurde und im Anschluss glazifluvialen Auswaschungsprozessen unterlag. In allen Kornfraktionen dieser Probe lassen sich Sedimentreste auffinden. Die Tonfraktion weist innerhalb dieser Sedimentprobe einen Anteil von 2,8 % vor. Die Maxima dieser Sedimentprobe sind mit 31,2 % in der Mittelsandfraktion und mit 25,8 % in der Feinsandfraktion zu finden. Der Sortierungskoeffizient dieser Sedimentprobe ergibt einen Wert von 2,90.

Mithilfe der Mesoebenenanalyse lässt sich verdeutlichen, dass der orographisch linke sowie rechte Gletscherbachlauf am Beginn seiner Bildung einen kleinräumigen Sander ausprägt. Beide Gletscherbachläufe bilden schließlich eine Konfluenz (27°49'57.41"N, 86°49'54.91"E) (siehe oben), was zur Erhöhung der hier auftretenden Abflussdynamiken führt. Dieser obere Gletscherbachlaufbereich wird durch verwilderte Bachbettformen geprägt (braided river), die durch das Auftreten von vermehrten Abfluss- sowie Sedimentschwankungen, aber auch durch das geringe Bachgefälle induziert werden können. Aufgrund der engen Talschaft ist die Bachlaufrichtung einschließlich ihrer Schottersohle abgegrenzt und somit morphologisch vorgegeben. Demnach fließen die verwilderten Bachläufe (braided river) in Richtung NW talabwärts. Zum Teil wird das Gleichgewicht des Bachlaufes durch Sedimentzufuhrraten, die durch Hangrutschungen an den steilen Talhängen dem Bachlauf zugeführt werden, genährt (Photo 100, 110). Weiter bachabwärts, unterhalb der Hangrutschungsakkumulation (4517 m ü. NN; 27°50'16.46"N, 86°49'32.63"E) bildet der Bachlauf vereinzelt Mäanderschlingen aus, die jedoch zum Teil durch die hier noch vorhandene Schottersohle gebunden sind. Auf einer Höhe von 4471 m ü. NN (27°50'32.43"N, 86°49'21.63"E) setzt diese Schottersohlengebundenheit vermehrt aus. Aufgrund dieser sedimentologischen Gegebenheit der Bachsohle bilden die Fließdynamiken hier einen kleinräumig verwilderten Bachbettformenschatz aus (braided river), der im Anschluss wieder in einen gebundenen Bachlauf übergeht (Photo 101, 102, 103, 104, vgl. Abbildung 42) und vereinzelt Mäanderschlingen mit Inselbildungen (anabranching river) ausprägt. Dies verdeutlicht die sich hier entwickelnde Mehrläufigkeit des Bachlaufes (siehe Karte 7e (Anhang)). Ab einer Höhe von ca. 4460 m ü. NN (27°50'44.78"N, 86°49'18.77"E) lässt sich eine Abnahme der Schottersohlenbreite und eine Zunahme von Vegetationsbewuchszonen, die hier die angrenzenden Terrassenordnungen befestigen, ausfindig machen (Photo 105, 108, 109). Im folgenden, bachabwärts gelegenen Abschnitt in Höhen von ca. 4433 m ü. NN (27°51'1.97"N, 86°49'1.56"E) nimmt die Schottersohlenbreite deutlich an Mächtigkeit ab und die Höhe der glazifluvialen Terrasseneinschneidungen (Photo 111, 112, vgl. Abbildung 42) zu. Aufgrund dieser engen Gebundenheit weist der Gletscherbach hier nur noch einen nahezu gestreckten Lauf mit vereinzelten Richtungsänderungen vor. Entstanden durch die im Jahr 1977 intensiven fluvialen Tiefenerosions- und Umlagerungsprozesse eines Gletscherseeausbruches (Buchroither et al. 1982; Cenderelli & Wohl 2001) konnte sich ein derartiger Laufcharakter einschließlich der steilen Bachlaufflanken entwickeln (Photo 111, 112). Weiter bachabwärts auf einer Höhe von ca. 4358 m ü. NN (27°51'22.87"N, 86°48'51.87"E) bilden die aus der orographisch rechten Talflanke abfließenden Bachdynamiken des Mingbo Gletscherbaches eine Konfluenz mit dem hier abfließenden Nare Drangka und erhöhen somit den Gesamtabfluss dieses Bachlaufes (Photo 111). Kurz unterhalb dieser Konfluenz verändert der Bachlauf seine Fließrichtung und schneidet in westlicher Ausrichtung den deutlich erkennbaren Moränenkörper ein (nach Kuhle 2005: 284, vgl. Photo 83; Spätglaziales bis Neoglaziales (IV-'VII) Gletscherstadium) (Photo 113, 114, 115, 116). Die Höhendistanz dieser glazifluvialen sowie fluvialen Einschneidung nimmt weiter bachabwärts an Mächtigkeit ab, die ebenso mit einer Größenreduktion des Moränenkörpers einhergeht. Nach drei aufeinanderfolgenden Mäanderschlingen mündet der Gletscherbach schließlich auf einer Höhe von ca. 3903 m ü. NN (27°51'17.21"N, 86°47'37.95"E) in den Imja Khola (Photo 116).

Die Längsprofilanalyse (Makroebenenanalyse) des Nare Drangka Gletscherbaches beginnt ab einer Höhe von 4623,88 m ü. NN (WGS 84/Pseudo Mercator: E 9666399,5053523300 N 3227760,9986178400; umgewandelt in WGS 84: E 86.8347441806 N 27.831616318; siehe Tabelle 7) und endet auf einer Höhe von 3900,00 m ü. NN (WGS 84/Pseudo Mercator: E 9661850,3136311800 N 3230673,6721255600; umgewandelt in WGS 84: E 86.7938780961 N 27.8547521673; siehe Tabelle 7) (vgl. Abbildung 42). Im oberen Bachlaufabschnitt zwischen 4623,88 m

ü. NN und 4586,36 m ü. NN weist der Gletscherbach Gefälleschwankungen zwischen mindestens 3.33° und maximal 14.33° vor. Erklären lassen sich diese hohen Gefällewerte durch die hier abgelagerte konvexe Sanderkörperform, die zum Niveauausgleich mithilfe glazifluvialer Tiefenerosionsprozesse führen (Photo 97, 98). Direkt im Anschluss zwischen 4585,36 m ü. NN und 4580,55 m ü. NN unterliegt der Bachlauf kleinen Schwankungen von Steigungen und Neigungen. Erklären lassen sich diese durch die hier auftretenden verwilderten Bachbettformen (braided river), die einer erhöhten Sedimentzufuhr und Umlagerung unterliegen. Fehlerhafte Höhenangaben des hier verwendeten SRTM-Höhenmodelles sowie eine ungenaue Verortung des Gletscherbachlaufprofiles können aber nicht gänzlich ausgeschlossen werden. Weiter bachabwärts zwischen 4580,37 m ü. NN und 4526,45 m ü. NN treten ebenfalls Höhenschwankungen des gemessenen Längsprofiles auf, die in diesem Bereich maximale Neigungswerte zwischen 10,6° und 11,31° Gefälle vorweisen. Der höchste Steigungswert in diesem Abschnitt beläuft sich auf 5,41°. Wie auch zuvor erläutert, lassen sich Längsprofilhöhenschwankungen durch die hier vorzufindende Morphologie von verwilderten Bachbettsohlen (braided river) erklären. Ebenfalls induzieren die in diesem Bereich abgrenzenden steilen Schutthänge Hangrutschungsprozesse, die auch in den angrenzenden Bachlauf akkumulieren können und somit dessen Gleichgewicht verändern. Ebenfalls können hier fehlerhafte Datensätze des Höhenmodelles sowie der ungenauen Gletscherbachlaufverortung die gemessenen Werte beeinflusst haben. Im direkt angrenzenden Bereich bis auf einer Höhe von 4520,26 m ü. NN erhöht sich das Gefälle auf einen Maximalwert von 14,14°, nimmt im Anschluss aber wieder rapide ab und weist schließlich eine Steigung von 1,01° vor. Dies lässt sich durch einen hier vorzufindenden Moränenkörper erklären, aber auch die hier zu erkennenden verwilderten Bachbettformen (braided river) sowie die Sedimentzufuhr infolge von Hangrutschungsprozessen tragen zu derartigen Längsprofilschwankungen bei. Im direkt angrenzenden Bachabschnitt zwischen 4520.26 m ü. NN und 4497.33 m ü. NN lässt sich eine leichte Bachsteigung erkennen, die dann aber in einer zunehmenden Bachneigung übergeht und schließlich auf einer längeren Strecke Gefällewerte zwischen 10,25° und 17,12° vorweist. Diese erhöhten Gefällewerte (siehe Abbildung 43) deuten auf einen Moränenkörper hin, der hier in den vorhergehenden Glazialstadien

abgelagert wurde. Aber auch die Zufuhr von Hangrutschungsmaterial im Bachbett, welches im Anschluss der Akkumulation glazifluvial ausgearbeitet und somit ausgeglichen wird, kann hier nicht ausgeschlossen werden. Gerade die hier vorzufindende enge Talschaft sowie die hier zu lokalisierenden Hangrutschungsmaterialien, welche sich auf der orographisch linken Seite auffinden lassen (Photo 103), deuten ebenso auf einen Prozesszusammenhang hin. Demnach können in diesem Bachabschnitt ineinander verschachtelte Moränenkörperstadien mit oder ohne Hangrutschungsdeckschichten nicht ausgeschlossen werden. Im direkt angrenzenden Bachbereich zwischen 4497,33 m ü. NN und 4488,76 m ü. NN schwankt das Bachgefälle erst zwischen 3,02° und 7,98° verändert sich dann jedoch in einer zunehmenden Bachsteigung, die einen Maximalwert von 11,58° vorweist. Diese hier zunehmende Steigung lässt sich durch die zwischen 4483,75 m ü. NN und 4488,09 m Hangrutschungsprozesse erklären (ca. ü. NN auftretenden 27°50'20.98"N 86°49'28.52"E), die den Bachlauf mit Sedimenten nähren. Der Gletscherbach versucht diese Sedimentakkumulationen durch Tiefenerosionsprozesse glazifluviale auszugleichen. Jedoch können auch an diesem Standpunkt das Vorhandensein von fehlerhaften Daten im SRTM-Höhenmodell sowie der ungenauen Verortung des Gletscherbachlaufprofiles nicht ausgeschlossen werden. Weiter bachabwärts bis auf Höhen von 4438,86 m ü. NN unterliegt das Profil des Gletscherbaches Schwankungen, die sich vermehrt aus einem Gefälle, aber auch vereinzelt aus Bachsteigungen zusammensetzen. Jedoch treten im oberen Bereich dieses Abschnittes keine extremen Schwankungen auf, wie dies im vorhergehenden Abschnitt ermittelt werden konnte. Dieses ausgeglichende Profil lässt sich auch mittels der Bachbettmorphologie verdeutlichen, die hier zum Teil gebundene und ungebundene Mäanderbögen ausbildet. Hangrutschungen üben in diesem Abschnitt demnach einen geringeren Einfluss aus, treten aber vereinzelt ebenso auf. Erst im letzten Abschnitt dieses Bereiches zwischen 4444,41 m ü. NN und 4438,81 m ü. NN weist das Längsprofil des Gletscherbaches ein Gefälle mit einem Maximalwert von 13,07° und direkt im Anschluss eine Bachsteigung von maximal 9,93° auf, die daraufhin jedoch wieder direkt in ein Bachgefälle übergeht. Aufgrund der hier zunehmenden Höhendistanzen zwischen den einzelnen Terrassenordnungen lässt sich zeigen, dass dieser Bereich einer

ausgeprägten fluvialen sowie glazifluvialen Tiefenerosion, aber auch einer Zufuhr von Hangrutschungsmaterial unterlieat. Ebenfalls zeiat sich. dass diese Terrassenordnungen aus großräumigen Moränenkörpern bestehen (Photo 105). Demnach kann diese kleinräumige konvexe Längsprofilform ein Resultat eines vorhergehenden Gletscherstadiums sein, welches sich durch eine derartige Formengebung erkennen lässt. Der Datengrundlage des Höhenmodelles entsprechend können hier aber ebenso Fehler im Höhenmodell sowie der ungenauen Verortung des Gletscherbachlaufes nicht gänzlich ausgeschlossen werden. Im direkt anschließenden Bachbereich zwischen 4438,81 m ü. NN und 4385,17 m ü. NN unterliegt der Bachlauf im oberen Abschnitt kleinräumigen Gefälleschwankungen mit zum Teil auftretenden Steigungen von bis zu 8,13° im Bachlängsprofil. Die Laufform dieses Gletscherbaches weist in diesem Abschnitt einen weitestgehend gestreckten Lauf vor. Des Weiteren zeigt sich, dass der Lauf von direkt angrenzenden steilen Talflanken abgegrenzt wird, die die Hangschuttzufuhrraten um ein Vielfaches erhöhen. Aus diesem Grund können in diesem Bachabschnitt vereinzelt auftretende Steigungsraten das gemessene Längsprofil beeinflussen. Im letzten Abschnitt dieses Bereiches, unterliegt das Längsprofil einem zunehmenden Bachgefälle mit einem Maximalwert von 17,49° und direkt im Anschluss Steigungen von maximal 16,37°. Aufgrund dieser Schwankungen bildet sich in Höhen von 4393,02 m ü. NN bis 4385,17 m ü. NN eine konvexe Form, die ebenfalls Hinweise zu einem Moränenkörperstadium bildet. Des Weiteren zeigt sich, dass der Gletscherbach hier von sehr steilen Talflanken aus Lockergestein umgeben ist, dessen Sedimentmatrix ebenso in den Gletscherbach abstürzen oder rutschen kann. Datenfehler des SRTM-Höhenmodelles sowie einer ungenauen Verortung des Gletscherbachlaufprofiles können hier nicht ausgeschlossen werden. Weiter bachabwärts im Bereich zwischen 4385,17 m ü. NN und 4055,75 m ü. NN bildet der Bachlauf insgesamt eine konkave Profilform aus, die einem vermehrten steilen Gefälle unterliegt. Im obersten Bereich dieses Bachabschnittes weisen die Gefälleraten einen Maximalwert von bis zu 21,13° vor. Vereinzelt treten jedoch Bachsteigungen auf, die einen Maximalwert von bis zu 7,31° vorweisen. Herleiten lassen sich derartige Steigungswerte durch erhöhte Schuttzufuhren aus den direkt angrenzenden Lockermaterialhängen (Photo 112), historischen Moränenakkumulationsstadien, die

rezent fluvial eingeschnitten werden, oder durch Sedimentumlagerungen, die sich auf den im Jahr 1977 stattgehabten Gletscherseeausbruch (Buchroither et al. 1982; Fushimi et al. 1985; Cenderelli & Wohl 2001; Cenderelli & Wohl 2003) zurückführen lassen. Der untere Gletscherbachbereich dieses Abschnittes, der sich zwischen 4147,98 m ü. NN und 4055,75 m ü. NN lokalisiert, weist die höchsten Gefällewerte des gesamten Gletscherbachlängsprofiles vor. Diese schwanken maximal zwischen 21,38° bis 27,30°. Aufgrund der hier auch geringeren Gefällewerte und der zuvor genannten Maximalwerte des Bachgefälles lässt sich schließlich eine konvexe Profilform ausfindig machen. Diese steilen Gefällewerte treten in einem geradlinigen Gletscherbachbereich auf, der jedoch im Anschluss sprunghaft bachabwärts seine Richtung von W in SW ändert. Erklären lassen sich derartige Schwankungen ebenso durch die Beeinflussungsprozesse, die im vorhergehenden Abschnitt erläutert wurden. Fehlerhafte SRTM-Höhendaten sowie ungenaue Bachlaufprofilverortungen können hier aber - wie auch in den vorhergehenden Abschnitten - nicht ausgeschlossen werden. Weiter bachabwärts zwischen 4055,75 m ü. NN und 3900,00 m ü. NN nimmt die Intensität der Gefälleschwankungen ab, weist aber noch Neigungswerte von maximal 20,14° vor. Kurz unterhalb dieses hohen Gefälles konnte eine Steigung von maximal 8,14° gemessen werden. Direkt im Anschluss wird das Längsprofil wieder von einem Gefälle geprägt. Mittels dieser Schwankungen lässt sich schließlich eine konvexe Form - wie diese auch schon in den vorhergehenden Längsprofilbereichen ermittelt werden konnte - erkennen. Die Form bildete sich aber kurz vor der Mündung in den angrenzenden Imja Khola, die sich durch eine zunehmende Breite der direkt angrenzenden Schotterebene einschließlich der Talschaft kennzeichnet. Hier prägt sich ebenso ein historisch abgelagerter und gebundener Sanderformenschatz aus, der rezent fluvial eingeschnitten wird. Diese Unebenheiten im Profil der Sedimentakkumulation können ein Resultat des im Jahr 1977 umlagernden Gletscherseeausbruches sein. Unterhalb dieser Akkumulation endet dieses Längsprofil, da der Gletscherbach eine Konfluenz mit dem Imja Khola Hauptstrom bildet.

Abbildung 43: Längsprofil des Nare Drangka Gletscherbaches nach SRTM-Höhenmodell.

Zusammenfassend lässt sich mittels der Anwendung der Mikro-, Mesound Makroebenenanalyse zeigen, dass die talabwärts in dieser Talschaft akkumulierten Moränenkörper (nach Kuhle 2005: 284, vgl. Photo 83; Spätglaziales bis Neoglaziales (IV-'VII) Gletscherstadium; vgl. Tabelle 17), die aus einer feinkörnigen Sedimentmatrix bestehen, einer glazifluvialen sowie fluvialen intensiven Erosionsdynamik unterlagen. Während der letzten Zeitspanne von ca. 35 Jahren (bis 2012: vgl. Photos) traten diese nach dem Gletscherseeausbruch im Jahr 1977 auf (Buchroither et al. 1982; Fushimi et al. 1985; Cenderelli & Wohl 2001; Cenderelli & Wohl 2003). Die im oberen Abschnitt insgesamt vier rekonstruierten Terrassenordnungen verdeutlichen daher den Zeitraum des glazifluvialen Einschnittes infolge von Gletschereisschmelzprozessen, die nach dem vorhergehenden Prozessereignis eines Gletscherseeausbruches die Landschaftsformung beeinflussen. Innerhalb dieser Zeitspanne konnte der Bachlauf in

Form eines fortgeschrittenen Entwicklungsstadiums von Kaskaden Bachbettformen (cascade) hin zu Stufen-Becken Sequenzabfolgen (step-pool) in die Grundmoräne einschneiden. Weiter bachabwärts unterliegt dieser Formenschatz einer voranschreitenden Entwicklung.

Der obere Bereich dieser noch breiträumig geformten Talschaft ist durch verwilderte Bachbettformen (braided river) einschließlich überprägender Sanderakkumulationen gekennzeichnet (Photo 97, 98). Als Folge von gletschereisschmelzbedingten Abflussdynamiken und einhergehenden glazifluvialen Sedimenttransportraten konnte sich der hier aufgefundene Formenschatz entwickeln. Weiter bachabwärts prägt ein sich zu entwickelndes mehrläufiges Bachsystem, das verzweigten Bachbettformen (anabranching river) ähnelt, mit vereinzelten Mäanderschlingen in der zunehmend enger werdenden Talschaft den Bachlauf. Die Fließdynamiken des Bachlaufes werden zum Teil durch Hangrutschungszufuhren beeinflusst. Diese Zufuhr verändert den Bachlaufcharakter. Ebenfalls lässt sich zeigen, dass die Höhendistanz zwischen den Terrassenordnungen bachabwärts an Mächtigkeit zunimmt. Am untersten Abschnitt dieses Bachlaufes prägen steile Hänge diese enge Talschaft, sodass hinabstürzendes oder rutschendes Hangschuttmaterial das Gleichgewicht des Gletscherbachlaufes beeinflussen kann.

Das Gletscherbachlängsprofil weist insgesamt eine konvexe Form vor, die als Moränenakkumulationskörper klassifiziert werden kann (siehe Abbildung 43). Zum Teil wurden Abschnitte dieser Längsprofilform auch durch Hangrutschungsprozesse sowie den fluvialen Veränderungsprozessen aufgrund eines Gletscherseeausbruches überprägt. Wie auch in den anderen Untersuchungsgebieten erfasst, können hier Datenfehler im SRTM-Höhenmodell sowie der ungenauen Verortung des Gletscherbachlängsprofiles nicht ausgeschlossen werden.

3.2.3.2 Übersicht zum Gletscherbachsystem des Mingbo Gletschers

Der Mingbo Gletscher bildet im Kar der Süd- und Südostflanke des Ama Dablam (6856 m ü. NN) eine Hängegletscherform aus (Photo 117). Mittels der im Zehrgebiet des Gletschers auftretenden Abschmelzprozesse konnten sich zwei voneinander getrennte

Gletscherbachsysteme entwickeln. Das nördlich gelegene (27° 51' 25.69" N, 86° 50' 08.49" E) Bachsystem durchschneidet die zuvor vom Gletscher akkumulierte Podestmoräne auf einer Höhe von ca. 4911 m ü. NN stromlinienförmig und bildet weiter hangabwärts zwischen ca. 4700 m ü. NN bis 4610 m ü. NN ein verwildertes Bachsystem (braided river) mit zum Teil mehrläufigen Verzweigungen, dessen zum Teil auftretende Mehrläufigkeit sich auf einer Höhe von ca. 4602 m ü. NN (27°51'12.92"N, 86°49'43.61"E) zu einem nun mehr schlangenlinienförmigen sowie mäandrierenden Gletscherbachlauf vereinigt (siehe Abbildung 44). Dieser Lauf mündet schließlich auf einer Höhe von ca. 4594 m ü. NN (27°51'11.83"N, 86°49'39.53"E) in das Hauptbachsystem des Mingbo Gletschers.

Abbildung 44: Der Schwemmfächer des Mingbo Gletscherbachsystems (↓) ist kleinräumig ausgeprägt; Google Earth (Bildmitte: 27°51'19.62"N, 86°49'38.30"E).

Gletscherbachsystem Das weiter südlich gelegene des Mingbo Gletschers (27°51'13.16"N, 86°50' 06.90"E) durchschneidet den Endmoränenkörper in den Höhen zwischen ca. 4832 m ü. NN bis 4680 m ü. NN und akkumuliert das aufgenommene Material in Form eines proglazialen Schwemmfächers proximal ab. Die frische Formengebung dieses Schwemmfächers - die geringe Vegetationsüberprägung verdeutlicht die rezente Aktivität dieser Sanderform - lässt auf ein stagnierendes oder zurückweichendes Mingbo Gletschersystem schließen, das durch seine

Gletschereisschmelzprozesse Wasser- und Sedimentdynamiken freisetzt. Infolgedessen konnte der Moränenkörper glazifluvial eingeschnitten, Sedimentfracht aufgenommen und im Anschluss das Bachgleichgewicht durch glazifluviale Sedimentationsprozesse ausgeglichen werden. Bestätigen lassen sich die hier auftretenden Gletscherfluktuationen ebenfalls mittels Satellitenbilddaten (vgl. GLIMS: Racoviteanu & Bajracharya 2008).

Die Größe des hier zu lokalisierenden Schwemmfächers ist kleinräumig ausgeprägt (Länge: 123 m; Breite 125 m; Messung Google Earth) (Pfeil (↓) in Abbildung 44) und wird lediglich von den sehr weit entfernten - die Gletscherschotterflur umfasst hier eine Breite von ca. 475 m bis 530 m (Messung: Google Earth) - und zurzeit nicht blockierenden Ufermoränen begrenzt. Die sich hier bildende Bachform ändert sich in den Höhen zwischen ca. 4625 m ü. NN bis 4594 m ü. NN zunehmend von verwilderten Bachbettformen (braided river) mit zum Teil mehrläufigen Verzweigungen zu einem einzelnen Bachlauf, der die Grundmoränenlandschaft einschneidet und durch Mäandrierungen umgestaltet.

In Folge der Konfluenz der hier zuvor beschriebenen Gletscherbachabflüsse (27°51'11.83"N, 86°49'39.53"E, 4594 m ü. NN) und der weiter bachabwärts auf einer Höhe von ca. 4580 m ü. NN zu lokalisierenden, nicht sonderlich mächtigen Konfluenz eines weiteren Bachlaufes (27°51'17.59"N, 86°49'29.77"E) erhöht sich der Abfluss des Hauptbaches. Mittels dieser Abflusskraft erodiert und transportiert der Gletscherabflüssstrom Fein- und Grobsedimente des Akkumulationskörpers, der hier ehemals in Form einer Grundmoräne abgelagert wurde (Kuhle 2005), und sedimentiert diese Transportfracht z. B. in Form von Barren innerhalb von flachen Ebenen, die für Mäanderbögen charakteristisch sind. Die Formengebung, die durch derartige Prozesszusammenhänge entstehen können, lassen sich anhand der Mäanderbögen und Altarme, die nahe des Ama Dablam Base Camps die Landschaft umgestalteten (27°51'16.89"N, 86°49'26.93"E; 4579 m ü. NN) verdeutlichen. Weiter talabwärts mündet dieses Abflusssystem schließlich auf einer Höhe von ca. 4358 m ü. NN in den Nare Drangka Gletscherbach (27°51'22.87"N, 86°48'51.87"E) und erhöht somit dessen Abfluss (Photo 111).

3.2.3.3 Übersicht zur fluvialen Umgestaltung der Talschaftsform nahe Pangboche

Die angrenzenden Talhänge in der Umgebung von der Ortschaft Pangboche sowie talauf- und talabwärts sind allesamt mit Moränenmaterial, welches während vergangener Glazialstadien dort abgelagert wurde, ausgekleidet (Photo 115). Dies konnte mittels ausgiebiger Feldforschungen zur Vergletscherungsgeschichte des Khumbu Himal bestätigt werden (Kuhle 2005; Kuhle 2006a, b). Im Anschluss dieser Eisüberprägung der Talschaft im Stadium des Hochglazials bis zum Spätglazialstadien der mit Moränenkörper ausgekleidete Talgrund glazifluvial sowie fluvial eingeschnitten. Diese als Fracht aufgenommenen Sedimente wurden ebenso vom Flusslauf transportiert und somit umgelagert. Die ca. 51 m bis 56 m oberhalb des rezenten Flusslaufes Imja Khola aus ca. 30 cm Bodentiefe entnommene Sedimentprobe sowie die hier chaotischen Ablagerungen von Blockkörpern, die allesamt in einer feinen Sedimentmatrix gebunden sind, bestätigen den hier zu klassifizierenden Moränenkörper (vgl. Diagramm 18, Photo 118, 119).

Diagramm 18: Korngrößen vom 09.03.12. Diese Sedimentprobe wurde orographisch rechts ca. 51 m bis 56 m oberhalb des Imja Khola entnommen. Mithilfe der Korngrößenzusammensetzung sowie der Durchmischung der Sedimentfraktionen innerhalb dieser Sedimentprobe lässt sich bestätigen, dass dieser als Moränenkörper einzuordnen ist, der im Anschluss glazifluvialen sowie fluvialen Auswaschungsprozessen unterlag. In allen Kornfraktionen dieser Probe lassen sich Sedimentreste auffinden. Die Tonfraktion weist innerhalb dieser Sedimentprobe einen Anteil von 4,3 % vor. Die Maxima

dieser Sedimentprobe sind mit 38,7 % in der Mittelsandfraktion und mit 29,2 % in der Grobsandfraktion zu finden. Der Sortierungskoeffizient dieser Sedimentprobe ergibt einen Wert von 2,48.

Doch neben dieser glazigenen Ablagerung (Kuhle 2005) lässt sich auch eine glazifluviale und fluviale Sortierung und der Fließrichtung entsprechenden Einregelung von Flussschottern erkennen, die nahe des Sedimententnahmestandortes erfasst werden konnte (Photo 118, 119). Ebenfalls bestätigen lässt sich dies mittels der glazifluvialen und fluvialen Einschneidung von Terrassenkörpern, die hier den gesamten Talgrund auskleiden (Photo 120). Mittels dieser Befunde lässt sich schließlich belegen, dass die Talschaft mindestens bis zu dieser Höhe von ca. 4058 m ü. NN (27°51'21" N, 86°47'30" E) den Prozessen der glazifluvialen sowie fluvialen Einschneidung, Umlagerung und Sortierung von glazigenen Sedimenten unterlag, die während der Interglazialstadien diese Talschaft umformten.

Infolge dieser ineinander verschachtelten Prozesszusammenhänge von glazigener Überformung der Talschaft mit anschließender glazigener Akkumulation innerhalb der Glazialstadien sowie der in den Interglazialphasen einsetzenden glazifluvialen sowie fluvialen Ausarbeitung des Talgrundes konnte auch hier eine für die Hochgebirgstalschaften des Himalaya typische Kerbtrogtalform (vgl. Kuhle 1991: 1-8) tiefer ausgearbeitet werden.

Aus den glazifluvial und fluvial übertiefenden Prozessen schließend, lag der Talschaftsgrund, der aus Grundmoränenmatrix besteht, in den vergangenen Glazialstadien bei mindestens 51 m bis 56 m oberhalb der rezenten Talschaftssohlenhöhe. Jedoch muss hier angemerkt werden, dass u. a. tektonische Prozesse, Hangrutschungsprozesse und Gletscherseeausbrüche ebenso einen Einfluss auf die Landschaftsformung innerhalb der vergangenen Zeiträume nahmen und rezent ebenfalls noch verändern.

3.3 Nordwestlicher Teil des Hauptuntersuchungsgebiets Khumbu Himal: Die Haupttalschaft des Ngozumpa- und Lungsampa Gletschers und deren angrenzende Gletscherbachsysteme

3.3.1 Überblick zum orographisch linken Gletscherbachsystem der Ngozumpa Gletscherzunge

Zwischen der orographisch linken Seitenmoräne des Ngozumpa Gletschers und den östlich angrenzenden Talhängen - diese wurden während vergangener Glazialstadien mit Moränenmaterial überlagert (Kuhle 2005) - ist ein Eisrandtal (Iturrizaga 2007) zwischengeschaltet. Der Talgrund dieser Zwischentalschaft ist durch einen Bachlauf geprägt, der diese entwässert. Freigesetzt werden die Wassermassen u. a. durch Gletschereis- und Schneeschmelzprozesse aus den angrenzenden Nebentalschaften (Photo 89, 121), den direkt angrenzenden Talhängen (Photo 122) aber auch innerhalb und oberhalb der orographisch linken Seitenmoräne - Toteisblöcke fördern diese Prozesse - des Ngozumpa Gletschers (Abbildung 45). Neben dieser rezenten Freisetzung von Wassermassen wurde der Talschaftsgrund ebenso von vergangenen Eisabschmelzprozessen des Ngozumpa Gletschers - diese konnten schließlich Bereiche der Seitenmöräne des Gletschers einschneiden - glazifluvial umgestaltet (Abbildung 45). Allesamt bilden die rezenten Abflussdynamiken schließlich auf einer Höhe von ca. 4573 m ü. NN (ca. 27° 55' 40.72" N, 86° 43' 14.84" E) eine Konfluenz mit dem orographisch linken Gletscherbachabfluss des Ngozumpa Gletschers.

Dieses orographisch linke Gletscherbachsystem des Ngozumpa Gletschers beginnt ab einer Höhe von ca. 4686 m ü. NN (ca. 27° 55' 47.64" N, 86° 42' 58.72" E). Aufgrund der Gletscherabschmelzprozesse werden Wassermassen freigelassen, die hier schließlich zur glazifluvialen Erosion und einer Ausprägung eines Gletscherbachlaufes führen. Infolge dieser freigesetzten Kraft wurde schließlich auch der Seiten- bzw. Endmoränenwall in Richtung Südosten glazifluvial eingeschnitten (Abbildung 45, Pfeil (↓) in 46). Im Einschneidungsbereich weist der Gletscherbach einen gestreckten Lauf mit einer Gletscherbachbreite von 4 m bis 6 m vor. Erst weiter hangabwärts - dort wo die Bachkonfluenz mit dem Eisrandtal ansetzt - verändert der Gletscherbach seine

Laufrichtung und fließt nun in Richtung Süden und Südwesten talabwärts (Pfeil (\downarrow) in Abbildung 45). Dies ist die Folge der vom Eisrandtal vorgegebenen Talsenke und der an der Talflanke aufwärtsgerichteten Hangneigung, die die Bachdynamiken beeinflussen.

Abbildung 45: Im Eisrandtal bildet der orographisch linke Ngozumpa Gletscherbach eine Konfluenz, verändert seine Laufrichtung und fließt in Richtung Süden und Südwesten (↓); Google Earth (Bildmitte: 27°55'17.90"N, 86°43'7.23"E).

Des Weiteren lässt sich anhand dieses Bachabschnittes zeigen, dass der Lauf nicht wie zuvor gestreckt ausprägt ist - diese Laufformengebung entsteht durch die steilere Hangneigung des Endmoränenkörpers - sondern vermehrt einer Formung durch Mäanderschlingen und Bachverästelungen, die zum Teil durch Vegetation verfestigt sind, unterliegt. Dieser Formenschatz ist einer ständigen Entwicklung ausgesetzt und wird durch die Sedimentzufuhr, die aus der angrenzenden Talflanke hinabrutschen oder hinabstürzen kann, beeinflusst.

Die von der Eisabschmelze freigesetzten Wassermassen hinterließen auch im Durchbruchsbereich des orographisch linken Seiten- bzw. Endmoränenkörpers des Ngozumpa Gletschers glazifluvial ihre Spuren (Pfeil (1) in Abbildung 46). Anhand von Satellitenbildfernerkundungen (Google Earth) lassen sich in diesem Bereich vier glazifluviale Terrassenordnungen, wie sie auch am orographisch rechten

Gletscherbachlauf beobachtet wurden, rekonstruieren. Jedoch ist anzumerken, dass diese Gletscherbachuntersuchung nur auf einer Satellitenbildanalyse beruht und daher lediglich als morphologische Übersicht verwendet werden kann (Abbildung 46).

misst Die erste Terrassenschotterebene im oberen Gletscherbachbereich, einschließlich des Gletscherbaches, Terrassenbreiten zwischen ca. 12 m bis 20 m. Angrenzend lokalisiert sich die zweite Terrassenschotterebene mit Breiten zwischen ca. 80 m bis 90 m, die jedoch talabwärts abnimmt und dort nur noch durch Breiten von bis zu 50 m geprägt wird. Überlagert wird diese Terrassenschotterebene durch große Blockakkumulationen mit Längen von bis zu 18 m (Messung: Google Earth). Der Übergangsbereich zur dritten Terrassenordnung weist orographisch rechts des Gletscherbaches einen Höhenunterschied zwischen ca. 11 m und 15 m vor. Die dritte Terrassenfläche lokalisiert sich orographisch rechts auf Höhen zwischen 4638 m ü. NN bis 4648 m ü. NN (27° 55' 43.63" N, 86° 43' 06.00" E). Insgesamt weist die dritte Terrassenfläche, einschließlich des Übergangsbereiches und der zweiten sowie ersten Terrassenordnung, eine Breite von bis zu ca. 235 m vor. Je nach unterschiedlicher Position der Messung variiert diese Schottersohlenbreite. Orographisch links des Gletscherbachlaufes lassen sich am akkumulierten Sedimentkörper Verwitterungs- und Erosionsspuren erkennen (27° 55' 49.28" N, 86° 43' 09.13" E), die ebenfalls auf die Ausprägung dieser dritten Terrassenfläche hindeuten. Aufbauend auf dieser Terrassenfläche folgt die vierte Terrassenfläche, die anhand von Verwitterungserscheinungen und Erosionsformen orographisch rechts zwischen den Höhen von ca. 4647 m ü. NN bis 4656 m ü. NN (27° 55' 42.21" N, 86° 43' 05.51" E) zu erkennen ist. Aber auch orographisch links lassen sich Verwitterungs- und Erosionsformen dieser erfassen. Angrenzend lässt sich orographisch rechts eine Höhendistanz zum oberhalb liegenden Kammverlauf messen, die eine Höhe von ca. 8 m bis 10 m vorweist. Ob oberhalb des Verlaufs sich noch Reste einer weiteren Terrassenabfolge lokalisieren, lässt sich nicht mithilfe der Fernerkundung eindeutig belegen. Es zeigt sich vielmehr, dass sich unterhalb sowie südwestlich des Kammverlaufs Überreste eines historischen Gletscherbachverlaufes (27°55'36.99"N, 86°43'3.83"E) befinden. Morphologisch besteht aber eine Wahrscheinlichkeit, dass eine hier ehemals existierende Terrassenordnung im Anschluss der Bildung dieser Formengestalt glazifluvial eingeschnitten wurde. Folgt

man dieser Genese, misst die orographisch rechts zu erkennende Fläche eine Breite von ca. 75 m bis 80 m. Während der Entstehungsphase überprägte diese, falls es sich dabei um einen Überrest handelt, die zuvor beschriebenen Terrassenordnungen. Dieser Genese entsprechend, misst sie, einschließlich der zuvor beschriebenen Terrassenordnungen und der rezenten Bachschottersohle, eine Breite von mindestens ca. 510 m. (siehe Abbildung 46).

Abbildung 46: Durch Abflussdynamiken des orographisch linken Ngozumpa Gletscherbaches wurde der Seiten- bzw. Endmoränenwall in Richtung Südosten glazifluvial eingeschnitten (↓); Google Earth (Bildmitte: 27°55'42.52''N, 86°43'7.84''E).

3.3.2 Orographisch rechte Gletscherbachsysteme des Ngozumpa- und Lungsampa Gletschers

3.3.2.1 Übersicht zum orographisch rechten Gletscherbachabflusssystem des Ngozumpa- und Lungsampa Gletschers

Im Bereich zwischen der orographisch rechten Seitenmoräne des Ngozumpa- und Lungsampa Gletschers und den orographisch rechten Talhängen, die noch weit oberhalb des rezenten Talbodens mit Moränenleisten ausgekleidet sind (Kuhle 2005), ist ein periodisches Gletscherbachabflusssystem im Eisrandtal (vgl. Iturrizaga 2007) zwischengeschaltet. Wie auch schon anhand der Eisrandtäler des Khumbu Gletschers und des Imja Gletschers beobachtet, entwässert dieses System (Photo 122, 123) die Schnee- und Eisabschmelzprozesse des Ngozumpa- und Lungsampa Gletschers (Photo 124). Diese Schmelzprozesse können aus den Eiskernen innerhalb der Seitenmoräne zu Tage treten, aber auch mittels der Schmelze der in diesem Eisrandtal sowie den darin mündenden Nebentälern akkumulierten Schnee- und Eisablagerungen auftreten (Photo 123). Der dadurch induzierte Schmelzabfluss trägt zur Ausprägung eines kleinen Bachlaufes bei und sammelt sich teils auch in mehreren kleinen zwischengeschalteten Seen. Nördlich des fünften Gletschersees (5th Lake) in Richtung Süden folgend lassen sich bis zum vierten Gletschersee (4th Lake) kleinräumigere Seen und Bachbettformen, die teils trockengelegt sind, erkennen (Photo 125, 126, 127, 128, 129). Aber auch anhand der Verwitterungen und der Morphologie dieser Seen deren Sohle besteht weitestgehend aus flachen Ebenen (plane-bed), die jedoch vereinzelt konkav-konvexe Formengestalten vorweisen - lassen sich historisch höhere Seepegel rekonstruieren, die von der rezenten Seeüberprägung und Größe abweichen. Im vergangenen Holozän waren demnach die Seen von großräumigeren Wassermassen bedeckt. Historische Seepegelstandshöhen von ca. 0,5 m bis 1 m oberhalb der Seesohle verdeutlichen dies (Photo 127, 129). Auch glazifluviale Einschneidungen von Bachläufen in den Grundmoränenkörper, die die Seen untereinander verbinden, liefern Hinweise der ehemals höheren Abflussdynamiken in diesem zwischengeschalteten Bachsystem (Photo 127, 128, 129).

Der Gesamtabfluss dieser kleinen Seen und Bachsysteme floß innerhalb eines kleinräumigen Bachlaufes talabwärts und nährte schließlich die angrenzenden Seen, wie z. B. den vierten Gletschersee (4th Lake). Ein Schwemmschuttfächer nahe des vierten Gletschersees (4th Lake) bestätigt, dass die sich weiter talaufwärts zu findenden Bachläufe einer historischen Abflussdynamik unterlagen und schließlich während erhöhter Schnee- und Eisabschmelzprozesse in diesen See mündeten (Photo 130). Während dieser Prozessabfolgen schnitten die Abflussdynamiken in den hier akkumulierten Grundmoränenkörper ein. Mittels einer Probenentnahme konnte die Sedimentzusammensetzung dieser oberhalb des vierten Gletschersees (4th Lake)

ermittelt werden. Die Ergebnisse zeigen, dass der Sedimentkörper als glazifluvial ausgewaschener Moränenkörper zu klassifizieren ist (Diagramm 19, Photo 132).

Diagramm 19: Korngrößen vom 25.03.12. Diese Sedimentprobe wurde zwischen dem Seeufer des 4th Lake und der orographisch rechten Moräne des Ngozumpa Gletschers entnommen (27°58'29" N 86°41'22" Mittels der Korngrößenzusammensetzung sowie der Durchmischung E). der Sedimentfraktionen innerhalb dieser Sedimentprobe lässt sich bestätigen, dass es sich hierbei um Moränenkörpersedimente handelt. Diese wurden im Anschluss der Akkumulation glazifluvial ausgewaschen. In allen Kornfraktionen dieser Probe lassen sich Sedimentreste auffinden. Die Tonfraktion weist innerhalb dieser Sedimentprobe einen Anteil von 3,8 % vor. Die Maxima dieser Sedimentprobe sind mit 44,5 % in der Feinsandfraktion und mit 25 % in der Grobschlufffraktion zu finden. Der Sortierungskoeffizient dieser Sedimentprobe ergibt einen Wert von 2,17.

Weiter gegen Süden dem Gletscher talabwärts folgend, lassen sich ebenso historische Bachbettformen - auf einer Höhe von 4865 m ü. NN (27° 58' 14.94" N, 86° 41' 21.48" E) konnten anhand eines Satellitenbildes Altarme ausfindig gemacht werden - in der Sohle des zwischengeschalteten periodischen Bachlaufes erkennen (Pfeil (↓) in Abbildung 47).

Abbildung 47: Altarme entstanden durch historische Abflussdynamiken in der Sohle des zwischengeschalteten periodischen Bachlaufes (↓) unterhalb des vierten Gletschersees (4th Lake); Google Earth (Bildmitte: 27°58'11.89"N, 86°41'21.87"E).

Weiter talabwärts lässt sich anhand des trockengelegten Bachbettes eine breiter werdende Bachbettschottersohle erfassen, die teils von Blockschutthalden - entstanden durch das mitgeführte Transportmaterial der Hang- und Schneelawinenabbrüche aus dem orographisch rechten Talhang - überprägt wurden. Ebenfalls tragen vereinzelte Gletschereisschmelzprozesse, die aus der orographisch rechten Seitenmoräne des Ngozumpa Gletschers freigesetzt werden, zur Abflussnährung bei. Erst zum Übergang in den dritten Gletschersee (3rd Lake) bildet sich ein Schwemmfächer, der schließlich in diesen See mündet (Photo 133, Pfeil (↓) in Abbildung 48).

Abbildung 48: Historische Bachbettsohle zwischen dem vierten (4th Lake) und dritten (3rd Lake) Gletschersee. Zum Übergang in den dritten Gletschersee (3rd Lake) bildet sich ein Schwemmfächer (↓); Google Earth (Bildmitte: 27°57'47.77"N, 86°41'27.93"E).

Talabwärts zwischen dem dritten und zweiten Gletschersee (3rd und 2ed Lake) ist ein Bachsystem zwischengeschaltet, welches rezent perennierend entwässert. In der Übergangszone zum zweiten Gletschersee (2nd Lake) lässt sich ebenfalls ein Schwemmschuttfächer erkennen (Pfeil (↓) in Abbildung 49). Aber auch im folgenden Übergangsbereich zwischen dem zweiten und ersten Gletschersee (2nd und 1st Lake) entwässert dieser Bachlauf dieses zwischengeschaltete System ganzjährig, bildet Bachmäander aus und mündet schließlich in den kleinsten aller hier lokalisierten Gletscherseen (1st Lake). Die Entwässerung des ersten Gletschersees (1st Lake) führt zur Ausprägung eines Bachlaufes, der nach einer kurzen Distanz von lediglich ca. 0,24 km in den orographisch rechten Gletscherbachabfluss des Ngozumpa Gletschers führt (Abbildung 49 und Photo 134).

Abbildung 49: Bachbettsohle zwischen dem dritten und zweiten Gletschersee (3rd und 2nd Lake) sowie dem orographisch rechten Ngozumpa Gletscherbach. Zum Übergang in den zweiten Gletschersee (2nd Lake) lässt sich ein Schwemmfächer erkennen (↓); Google Earth (Bildmitte: 27°56'18.40"N, 86°42'3.97"E).

Insgesamt lässt sich mithilfe dieser Beobachtungen aufzeigen, dass oberhalb des fünften Gletschersees (5th Lake) und zwischen dem fünften, vierten und dritten Gletschersee (5th, 4th und 3rd Lake) ein periodisches Abflusssystem existiert. Im Anschluss von Gletschereisvorrückstadien führten die Eisabschmelzprozesse zu einer Erosionsrinne sowie zu einer Ausprägung eines Bachlaufes. Ebenso lässt sich anhand der Morphologie aufzeigen, dass Gletscherabschmelzprozesse der vergangenen Gletscherstände den orographisch rechten Ngozumpa Seitenmoränenkörper (Kuhle 2005) fluvialgeomorphologisch - es lassen sich Erosionsrinnen erkennen, die sich in Richtung der orographisch rechten Talflanke neigen - umformten. Bereiche dieses orographisch rechten Seitenmoränenkörpers wurden nach Kuhle während des älteren bis zum jüngeren Dhaulagiri Stadiums (VI - VII) abgelagert (Kuhle 2005: Figure 19).

Im Anschluss des letzten Abschmelzprozesses fiel der hier untersuchte Bachlauf jedoch trocken und wurde nur mittels einzelner erhöhter Schnee- und Eisabschmelzprozesse periodisch vom Fließgewässer durchströmt. Auch die vereinzelt zwischengeschalteten Seen verdeutlichen die historische Ausprägung des Fließgewässers.

Die Bachabflussläufe zwischen dem dritten, zweiten und ersten Gletschersee (3rd, 2nd

und 1st Lake) werden jedoch von rezenten Abflussdynamiken der Fließgewässer überprägt. Dieser Bereich zählt somit zur aktiven Zone die ebenso einer fluvialgeomorphologischen Veränderungsdynamik unterliegt.

3.3.2.2 Übersicht zu den glazifluvialen Ursprüngen des vierten Gletschersees (4th Lake)

Der orographisch rechts lokalisierende vierte Gletschersee (4th Lake) wird hauptsächlich durch die nordwestlich gelegenen Gletschersysteme - die allesamt einen Gletscherbachlauf ausprägen - genährt. Die höchsten Gipfel in der Nähe des Gletschereisnährgebietes weisen Höhen von 5813 m ü. NN und 5977 m ü. NN vor. Das Blankeis der in Richtung Osten verlaufenden Gletscherzunge des ersten Gletschersystems endet auf einer Höhe von ca. 5410 m ü. NN (27° 59' 46.83" N, 86° 39' 18.95" E). Im Anschluss ist der weiter gegen Osten verlaufende Gletscher mit einer mächtigen Obermoräne bedeckt. Des Weiteren lokalisieren sich auf dieser Obermoräne vereinzelte Gletscherseen. Der Endmoränendurchbruch auf einer Höhe von 5240 m ü. NN (27° 59' 32.93" N, 86° 39' 48.13" E) verdeutlicht das Ende der Gletscherzunge. Im Anschluss dieses Durchbruches - geprägt durch glazifluviale Erosionsprozesse infolge der Gletscherabschmelzprozesse - wurde ein Schwemmschuttfächer abgelagert. In diesem Bereich bilden die vom Gletscher freigesetzten Wassermassen ein Bachsystem aus, welches auf einer Höhe von 5170 m ü. NN beginnt (27° 59' 26.35" N, 86° 39' 44.78" E). Im ersten Bachabschnitt bildet dieser Lauf Mäanderformen. Ab einer Höhe von 5096 m ü. NN (27° 59' 06.52" N, 86° 39' 57.22" E) bis zu einer Höhe von 5038 m ü. NN (27° 58' 49.56" N, 86° 39' 59.45" E) formt der Bachlauf Bachverwilderungen (braided river). Diese morphologische Laufveränderung resultiert aus dem an diesen Standort veränderten Bachneigungswinkel und der zunehmenden Schuttzufuhr. Im Anschluss bringt der Bachlauf auf einer kurzen Distanz eine gestreckte Form hervor. Kurz nach der Laufrichtungsänderung bildet der Bachlauf ab einer Höhe von ca. 4987 m ü. NN (27° 58' 40.27" N, 86° 40' 00.62" E) bis ca. 4908 m ü. NN (27° 58' 34.74" N, 86° 40' 16.36" E) wiederholt Bachverwilderungen (braided river). Dies lässt sich auf einen veränderten Bachneigungswinkel zurückführen (Buffington & Montgomery 2013). Im Anschluss verläuft der Bachlauf weitestgehend gestreckt, bis dieser schließlich auf einer Höhe von 4848 m ü. NN (27° 58' 33.96" N, 86° 40' 29.29" E) einen Schwemmschuttfächer im 4th Lake ausprägt und somit in dem See mündet (Photo 131).

Das bezüglich der Flächenmächtigkeit geringer ausgeprägte zweite Gletschersystem ist im Vergleich zum ersten Gletschersystem weiter westwärts positioniert. Das Blankeis innerhalb dieses Gletschersystemnährgebietes beginnt ab einer Höhe von ca. 5768 m ü. NN (27° 59' 38.72" N, 86° 38' 16.02" E) und fließt ca. 1,15 km in Richtung Südosten talabwärts. Weiter talabwärts ist die Gletscherzunge von einer Obermoräne bedeckt. Erst ab einer Höhe von ca. 5105 m ü. NN (27° 58' 44.22" N, 86° 39' 09.70" E) lässt sich ein glazifluvialer Endmoränendruchbruch erkennen. Kurz oberhalb dieses Durchbruches - auf einer Höhe von ca. 5155 m ü. NN (27° 59' 02.17" N, 86° 39' 08.38" E) - schmilzt das Gletschereis.

Unterhalb des Endmoränendurchbruches variiert die Bachbettsohlenbreite zwischen 20 m und 80 m. Der Bachlauf fließt im ersten Abschnitt in Richtung Süden und ändert in einer Höhe von 5040 m ü. NN (27° 58' 33.56" N, 86° 39' 20.78" E) seinen Lauf in Richtung Osten. Der nun folgende Bachabschnitt weist Mäanderschlingen auf. Erst auf einer Höhe von ca. 4870 m ü. NN (27° 58' 28.55" N, 86° 40' 00.90" E) formt der Bachlauf deutlich ausgeprägte Bachverwilderungen (braided river). Die Schottersohlenbreite der ca. dritten Schottersohlenebene nimmt auf Mächtigkeiten von bis zu 170 m zu. Aufgrund der Breite der Schottersohlenebene lässt sich erkennen, dass dieser Bereich ehemals von Wassermassen überfüllt war und einst einen See bildete. Weiter talabwärts reduziert sich die Schottersohlenbreite auf ca. 5 m bis 7 m. Schließlich mündet auch dieser Lauf auf einer Höhe von 4854 m ü. NN (27° 58' 29.22" N, 86° 40' 25.80" E) in den vierten Gletschersee (4th Lake) (Photo 131).

Demzufolge wird der Gletschersee rezent u. a. durch die Gletscherabschmelzprozesse der zuvor beschriebenen Gletschersysteme genährt. Während des Hochglazials (LGM) war dieses Gebiet jedoch vollkommen vergletschert (Kuhle 2005: Photo 129). So wurde während des hochglazialen Gletscherstadiums der in dieser Talschaft zu erkennende Rundhöcker, aber auch die angrenzenden Transfluenzpässe glazigen überprägt (Kuhle 2005: Photo 129). Insgesamt konnte sich dadurch ein Gletschersystem bilden, welches

mit dem rezenten Ngozumpa Gletscher eine Konfluenz bildete. Infolge der einsetzenden Interglazialstadien schmolzen die Eismassen ab, überformten nach Kuhle im späten Spätglazial (Sirkung Stage: IV) eine orographisch linke Grundmoränenterrasse (nach Kuhle 2005: Photo 129; Stadium: IV-III; vgl. Tabelle 17) und sammelten sich in den später einsetzenden Eisabschmelzphasen in der vom Eis ausgeschürften konkaven Gletscherseeform (Kuhle 2005).

Die in der Senke gesammelten Eis- und Wassermassen unterliegen auch einer Sublimation und Verdunstung. Somit reduzierten sich die gesammelten Wassermassen, wie dies auch am Imja Lake zu erfassen ist. Die rezent sowie historisch erkennbaren Pegelstände verdeutlichen diese Fluktuationen des Wasserpegelstandes im Holozän (Photo 131).

Die homologen Merkmale des sechsten, fünften und dritten Gletschersees (6th, 5th und 3rd Lake) zeigen ebenfalls, dass die Genese dieser Gletscherseen auf die glazigene Ausschürfung im Hochglazial und der Wassermassenbefüllung während der einsetzenden Gletschereisrückzugstadien beruht.

3.3.2.3 Morphologie und Terrassenbildungen des orographisch rechten Gletscherbachabflusssystems der Ngozumpa Gletscherzunge auf der Mikro-, Meso- und Makroebene

Das Nährgebiet des Ngozumpa Gletschers ist durch den Kammverlauf des Cho Oyu (8188 m ü. NN) in östlicher Richtung verlaufend zum Gyachung Kang (7922 m ü. NN) bis nahe des Nup La (5985 m ü. NN) abgegrenzt. Durch diese Flächenausprägung der Kammumrahmung wird das Nährgebiet des Ngozumpa und des Lungsampa Gletschers von Eis- und Schneelawinen genährt. Ebenso trägt die Metamorphose von Schnee zu Eis zum Gletscherwachstum bei. Mittels der Konfluenz des Lungsampa Gletschers mit dem Ngozumpa Gletscher auf einer Höhe von ca. 4997 m ü. NN (28° 01' 23.76" N, 86° 42' 21.20" E) werden dem Gletschersystem des Ngozumpa Gletschers weitere Eismassen zugeführt (Photo 124), die schließlich die aktuell längste Gletscherzunge Nepals entstehen lassen. Eine - wie im Kartenmaterial verzeichnete (Schneider 1988) schon im Nährgebiet dieser Gletschersysteme auftretende terminologische Abgrenzung dient nur zur Aufteilung der kleineren Gletschersubsysteme. Durch die Konfluenz beider Gletschersysteme werden diese schließlich vereinigt und bilden den Gletscherzungenverlauf des Ngozumpa Gletschers. Kammverlauf Das am hinabfließende Gletschereis akkumuliert schließlich im Gletscherkar, welches am Ngozumpa Hauptgletscher auf einer Höhe von ca. 6620 m ü. NN (28° 05' 56.67" N, 86° 43' 10.56" E) beginnt. Ab dieser Lokalität fließt das Gletschereis ca. 20,5 km talabwärts und bildet auf einer Höhe von ca. 4694 m ü. NN (27°55'46.53"N, 86°42'56.97"E) das Gletscherzungenende (vgl. GLIMS: Racoviteanu & Bajracharya 2008).

Orographisch rechts und links des Gletscherzungenendes bilden sich die Gletscherbachsysteme des Ngozumpa Gletschers. Das orographisch rechte Bachsystem, welches auf der Talseite der zuvor beschriebenen Seen verortet ist, bildet sich direkt im Anschluss der Nahe des Gletscherzungenendes ausgeformten proglazialen Seen, die einer Wachstumsrate unterliegen (Thompson et al. 2012). Der Bachlauf beginnt im Gletscherzungenbereich auf einer Höhe von ca. 4710 m ü. NN (27° 56' 01.97" N, 86° 42' 34.66" E) und variiert im Zungenbereich zwischen den Gletscherbachbreiten von ca. 10 m bis 21 m. Ebenfalls bildet der im orograpisch rechten Randbereich der Gletscherzunge ausgeprägte Gletscherbach Mäanderschlingen aus (Abbildung 51). Aufgrund der Gletschereisschmelzprozesse wird dieser obere Abschnitt neben erhöhten Abflussdynamiken auch durch erhöhten Schuttzufuhrraten beeinflusst. Abschnitte dieses Bereiches bildeten im Jahr 1975 auf Höhe von ca. 4688 m ü. NN (27°55'54.35"N, 86°42'33.91"E) das einer Gletscherzungenende des Ngozumpa Gletschers (GLIMS: Racoviteanu & Bajracharya 2008). Kurz unterhalb dieses vergangenen Gletscherstandes lässt sich ein Endmoränendurchbruch erkennen, welches in den vorhergehenden Jahrzehnten glazifluvial eingeschnitten wurde, sich aber auch rezent mit zunehmender glazifluvialer Tiefen- und Seitenerosion mehr und mehr ausprägt.

Im Anschluss dieser Endmoräneneinschneidung erodiert dieser Bachlauf weitestgehend gestreckt - gebunden an die orographisch rechte Ufermoräne - die Grundmoräne. Im Bereich der Konfluenz mit dem angrenzenden Bachlauf, der das orographisch rechte

Eisrandtal entwässert, weist die Gletscherbachbettsohle ein frühes Entwicklungsstadium von einem chaotischen Kaskadenformenschatz (cascade) zu einer sortierteren Stufen-Becken Sequenzabfolge (step-pool) vor (Photo 134). Diese Sequenzabfolgen werden durch die Kraft des Fließgewässers zunehmend sortiert und führen schließlich bachabwärts zu einer Fortentwicklung (vgl. Photo 135). Aufgrund dieser weitestgehend unsortierten Bachschottersohle sind in diesem bachaufwärts gelegenen Abschnitt auch vereinzelte Bachverästelungen vorzufinden (Photo 134, vgl. Abbildung 51).

Ca. 270 m unterhalb der Konfluenz (27°55'49.36"N, 86°42'30.31"E) des orographisch rechten Bachsystems, welches im zwischengeschalteten Eisrandtal die einzelnen Seen entwässert, konnte mithilfe der Mikroebenenanalyse der Bachlauf am 25.03.12 um ca. 12:50 Uhr auf einer Höhe von ca. 4602 m ü. NN (N27°55.695' E86°42.510', Garmin-GPS-Messung) morphologisch und morphometrisch untersucht werden. Die Ergebnisse dieser Untersuchungen sind wie folgt (siehe Karte 8a und 8b (Anhang)):

Die Bachbreite beträgt an diesem Untersuchungsstandort ca. 13 m bis 16 m und die Bachtiefe variiert zwischen 1 m bis 2 m. Je nach Abflussdynamiken unterliegt die Bachbreiten- und Tiefenausprägung den natürlichen Schwankungen. Zum Zeitpunkt der Messung betrug die Wassertemperatur ca. 4,2 °C. Die Fließgeschwindigkeit betrug hier ca. 2 m/sec bis 3 m/sec (geschätzt). Von diesem Untersuchungsstandpunkt talaufwärts blickend strömt das Ngozumpa Bachsystem aus 352° nördlicher Richtung mit einer Neigung von ca. 14° dem Standpunkt entgegen. Talabwärts blickend weist die Flussneigung ca. 13° vor und fließt in 160° südlicher Richtung. Aufgrund der chaotischen Blockablagerungen lässt sich in diesem Bachabschnitt eine Übergangsform von einer chaotischen Kaskadenbachbettform (cascade) zu einer Stufen-Becken Sequenzabfolge erkennen (step-pool), die hier ins fortgeschrittene Entwicklungsstadium klassifiziert werden kann (Photo 135, 136). Die Beckenlänge beträgt an dieser Lokalität ca. 5 m und die Stufenlänge ca. 1 m bis 2 m. Im Randbereich des Bachbettes sind vereinzelt akkumulierte Blöcke mit Längengrößen von bis zu 6 m bis 8 m vorzufinden, die mittels eines glazialen Transportes an dieser Lokalität abgelagert werden konnten. Aufgrund der überwiegend chaotischen Blockablagerungen im Bachbett prägen vereinzelte Bachverästelungen den Gletscherbachlauf. Mithilfe der glazifluvialen Tiefenerosionsleistung bildet sich nach einer Erosionszeitspanne aus der

derzeitigen Schottersohlenebene schließlich auch Abfolge eine von Terrassenordnungen heraus. Mittels Geländekartierungen konnten in diesem Abschnitt vier glazifluviale Terrassenordnungen - die ehemals allesamt eine Schottersohlenebene bildeten - rekonstruiert werden (Photo 135). Die erste glazifluviale Terrassenordnung misst einschließlich der Bachbreite, eine Gesamtbreite von ca. 10,5 m bis 22 m. Hauptsächlich besteht diese erste Terrassenschotterebene aus chaotischen Blockablagerungen, die lediglich einer kurzen Zeitperiode von glazifluvialen Erosionsprozessen unterlag. Wie auch lateral anlagernd, handelt es sich bei dieser Terrassenschotterebene um umgelagertes - also vom Bachlauf eingeschnittenes -Moränenmaterial. Direkt angrenzend lokalisiert sich die zweite Terrassenschotterebene, dessen Breiten zwischen ca. 30 m bis 45 m variieren. Ebenso ist bei diesem Wert die Gletscherbachbreite sowie die Breite der ersten Terrassenordnung mit inbegriffen.

Direkt oberhalb dieser lässt sich die dritte Terrassenschotterfläche ausfindig machen. Ebenso wie die rezente Schottersohlenebene besteht das auf dem orographisch linken abgelagerte Komponenten Talhang Material aus den des angrenzenden Moränenkörpers. Orographisch rechts hingegen, lässt sich die glazifluviale Lateralerosion eindeutig am dort anstehenden Gestein erkennen. Glazifluviale Einschneidungsmarker im Anstehenden belegen dies (Photo 135). Kurz oberhalb dieser Einschneidung befindet sich auf einer Höhe von ca. 4614 m ü. NN (ca. 27° 55' 43.16" N, 86° 42' 29.42" E) der zurzeit genutzte Transportweg. Wegnah lokalisieren sich auf der orographisch rechten Seite Abschnitte der dritten Terrassenschotterfläche. Mithilfe eines Höhenvergleiches des orographisch linken Talhanges lässt sich zeigen, dass der Terrassenschotterflächenbeginn - dort weist er Höhen zwischen 4610 m ü. NN bis 4614 m ü. NN (ca. 27° 55' 43.81" N, 86° 42' 32.29" E) vor - bezüglich der Höhenlage nahezu identisch ist. Diese dritte glazifluviale Terrassenschotterfläche misst einschließlich der vorherigen Terrassenordnungen Breiten zwischen ca. 52 m bis 127 m. Ebenfalls besteht diese Terrassenschotterfläche aus glazigenen Sedimenten, die jedoch teils glazifluvial umgelagert wurden (Photo 138). Bestätigen lässt sich dies durch die an diesem Untersuchungsstandort entnommene Sedimentprobe, die hier aus glazifluvial umgelagertem Moränenkörpermaterial besteht (Diagramm 20, Photo 137). Nicht sehr deutlich ausgeprägt, aber anhand der Verwitterungserscheinungen und der

Morphologie des orographisch rechten Talhanges (ca. 27° 55' 41.50" N, 86° 42' 28.30" E, 4631 m ü. NN) und des orographisch linken Endmoränenkörpers (ca. 27° 55' 43.11" N, 86° 42' 35.58" E, 4629 m ü. NN) zu erkennen (vgl. Abbildung 51 und Photo 135), konnten Restbestände der vierten Terrassenschotterfläche rekonstruiert werden. Die Höhendistanz zwischen der dritten und vierten Terrassenordnung variiert je nach Lokalität zwischen ca. 2 m und 11 m und die Breite variiert zwischen ca. 10 m und 44 m. Übergeordnet der an diesem Untersuchungsstandort rekonstruierten Terrassenordnungen sind vermutlich noch Abfolgen älterer Terrassenordnungen zu finden. Aufgrund der hier verorteten steilen Hänge unterliegen die Sedimente dieser jedoch erhöhten Umlagerungsdynamik. Dies erschwert bzw. verhindert einer die Rekonstruktion weiterer Terrassenflächen in den höher gelegenen Bereichen dieses untersuchten Bachabschnittes.

Insgesamt lassen sich an diesem Untersuchungsstandort des orographisch rechten Gletscherbachsystems vier glazifluviale Terrassenordnungen rekonstruieren, die allesamt in das angrenzende Grundmoränenmaterial eingeschnitten haben (vgl. Abbildung 50). Des Weiteren nimmt talabwärts die Höhe des Übergangsbereiches zwischen den einzelnen Terrassen ab. Da mit zunehmender Entfernung zur rezenten Gletscherzunge und der dort geformten Terrassenordnungen die Störanfälligkeit einer Rekonstruktion von Terrassenabfolgen durch u. a. aus den Nebentälern zuströmenden Bachläufen zunimmt, wurde auf die Rekonstruktion jener im talabwärts gelegenen Bereich verzichtet. Eine Sedimentprobenentnahme aus einer Höhe von 4579 m ü. NN (ca. 27°55'31.81"N, 86°42'31.09"E, Garmin-GPS) verdeutlicht jedoch, dass jene Terrassenkörper, abgelagert als Moränenkörpersedimente, während der Gletschereisschmelzphase glazifluvial umgelagert und ausgewaschen wurden (Diagramm 21).

Diagramm 20: Korngrößen vom 25.03.12. Diese Sedimentprobe wurde orographisch rechts des hier untersuchten Ngozumpa Gletscherbaches aus der dritten Terrassenschotterfläche entnommen (ca. 27°55'40.85"N, 86°42'30.50"E). Mithilfe der Korngrößenzusammensetzung sowie der Durchmischung der Sedimentfraktionen innerhalb dieser Sedimentprobe lässt sich bestätigen, dass es sich hierbei um glazifluvial ausgewaschene Moränenkörpersedimente handelt. In allen Kornfraktionen dieser Probe lassen sich Sedimentreste auffinden. Die Tonfraktion weist innerhalb dieser Sedimentprobe einen Anteil von 7,7 % vor. Die Maxima dieser Sedimentprobe sind mit 36,5 % in der Feinsandfraktion und mit 17,8 % in der Grobschlufffraktion zu finden. Der Sortierungskoeffizient dieser Sedimentprobe ergibt einen Wert von 2,76.

Diagramm 21: Korngrößen vom 25.03.12. Diese Sedimentprobe wurde orographisch rechts des hier untersuchten Ngozumpa Gletscherbaches, bachabwärts der vorherigen Sedimentprobe (Diagramm 20) ca. 10 m bis 15 m oberhalb des Gletscherbachlaufes aus einer Höhe von ca. 4579 m ü. NN (ca. 27°55'31.81"N, 86°42'31.09"E) entnommen. Mithilfe der Korngrößenzusammensetzung sowie der Durchmischung der Sedimentfraktionen innerhalb dieser Sedimentprobe lässt sich bestätigen, dass diese als Moränenkörper abgelagerten Sedimente glazifluvialen Auswaschungsprozessen unterlagen. In allen

Kornfraktionen dieser Probe lassen sich Sedimentreste auffinden. Die Tonfraktion weist innerhalb dieser Sedimentprobe einen Anteil von 3,3 % vor. Die Maxima dieser Sedimentprobe sind mit 41,5 % in der Grobsandfraktion und mit 25,7 % in der Mittelsandfraktion zu finden. Der Sortierungskoeffizient dieser Sedimentprobe ergibt einen Wert von 2,95.

Abbildung 50: Talquerprofil des orographisch rechten Ngozumpa Gletscherbaches (2-fach überhöht) nach SRTM-Höhenmodell. Das Profil wurde nahe des Untersuchungsstandortes entnommen; talaufwärts blickend.

Mithilfe der Mesoebenenanalyse lässt sich zeigen, dass dieser durch Moränenkörper gebundene Gletscherbach am Beginn seiner Entstehung schlangenlinienartig, die sich durch zum Teil ausgeprägte Mäanderbögen verdeutlichen lassen, in die angrenzende Endmoräne mit einem Gefälle einschneidet. Erhöhte Sedimentzufuhrraten aus den angrenzenden und steilen Moränenhängen tragen schließlich zur immensen Schuttzufuhr auf der Gletscherbachschottersohle bei. Infolge dieser erhöhten Sedimentzufuhrraten verändert sich auch das Gleichgewicht des Gletscherbaches. Des Weiteren zeigt sich, dass dieser Bachlauf im oberen Abschnitt Schotterinseln bildet, die durch Bachverwilderungen entstehen können (braided river), jedoch u. a. aufgrund fehlender Vegetation keiner Verfestigung unterliegen. Dies lässt sich durch die hier ständig auftretenden Abfluss- und Sedimentzufuhrschwankungen erklären, die vom abschmelzenden Ngozumpa Gletscher freigesetzt werden. Auch die angrenzenden steilen Moränenhänge tragen zur Sedimentzufuhr bei. Ebenfalls zeigt sich, dass durch die Sedimentzufuhr die Gletscherbachschottersohle in diesem Bereich einer chaotischen Blocksortierung gleicht. Unterhalb der Konfluenz in einer Höhe von ca. 4656 m ü. NN (27°55'49.36"N, 86°42'30.31"E) mit dem aus dem orographisch rechten Eisrandtal entwässernden Bachlauf, bildet der orographisch rechte Ngozumpa Gletscherbach einen vermehrt gestreckten Lauf mit vereinzelten Mäanderbögen aus. Die direkt angrenzenden steilen Hänge induzieren eine Schuttzufuhr, die schließlich zur morphologischen Veränderung der Gletscherbachschottersohle und den hier rekonstruierten glazifluvialen Terrassenordnungen beitragen. Diese Hangrutschungsprozesse lassen sich durch die freigelegte Hangoberfläche, die keiner verfestigten Vegetationsüberprägung unterliegt, bestätigen (Photo 135, Abbildung 51). Auf einer Höhe von ca. 4611 m ü. NN (ca. 27°55'43.33"N, 86°42'30.75"E) sind Inselbildungs-Gletscherbachbett prozesse im zu erkennen, die einer abflussund sedimentzufuhrbedingten Veränderungsdynamik unterliegen (siehe Karte 8a, 8b und 8c beeinflussen die (Anhang)). Ebenfalls Hangrutschungsprozesse die auch Formengenese der hier vorzufindenden Gletscherbachschotttersohle einschließlich der angrenzenden Terrassenabfolgen. Dies zeigt, dass die Prozesse ineinander verschachtelt sind und der Abhängigkeit der angrenzenden steilen Moränen- und Talhänge unterliegen. Weiter bachabwärts unterhalb der Schotterinselbildung zwischen ca. 4601 m ü. NN (27°55'41.90"N, 86°42'31.38"E) und ca. 4452 m ü. NN (27°55'13.41"N, 86°42'39.04"E) zeigt sich, dass aufgrund abnehmender Steilheit und zunehmender Vegetationsüberprägung der Moränenhänge die Intensität von Hangrutschungsprozessen durch die vorhandene Vegetation gebunden werden und somit jene abnimmt. Aufgrund der hier reduzierenden Schuttzufuhr verändert sich zugleich auch das Gleichgewicht des Gletscherbachlaufes, welches sich durch morphologische Veränderungen der Gletscherbachschottersohle verdeutlichen lässt. Der Gletscherbachlaufcharakter ist in diesem Abschnitt durch zum Teil auftretende Mäanderschlingen geprägt, die jedoch aufgrund der vorhandenen Blöcke innerhalb der Schottersohle gebunden sind. Auf einer Höhe von ca. 4473 m ü. NN (27°55'18.75"N, 86°42'36.80"E) lassen sich Schotterinseln im Bachbett lokalisieren, die vermutlich durch vergangene Schuttzufuhrraten aus dem orographisch linken Moränenhang freigesetzt werden konnten und somit zur morphologischen Veränderung des Bachlaufes beitrugen. Weiter bachabwärts zwischen ca. 4452 m ü. NN (27°55'13.41"N,

86°42'39.04"E) und ca. 4305 m ü. NN (27°54'40.03"N, 86°43'4.42"E) fließt der Bachlauf vermehrt schlangenlinienartig in Richtung Südosten und schneidet weitergehend in den Moränenkörper ein. Großräumig lassen sich hier Abfolgen von aneinandergereihten Mäanderschlingen erkennen. Ebenfalls zeigt sich, dass die Hangneigung des gletscherbachangrenzenden Reliefs abnimmt, die gleichfalls die morphologische Gebundenheit an dieser Form reduziert. Des Weiteren zeigt sich, dass die angrenzenden Terrassenordnungen zum Teil von Vegetationsbewuchs beeinflusst werden. Dies induziert eine Verfestigung des Bachlaufes. Die nahe des rezenten Bachlaufes trockengelegten stabilen Vegetationsinseln (anabranching river) verdeutlichen (u. a. 27°54'51.85"N, 86°42'57.01"E), dass dieser Abschnitt zum Teil von einem mehrläufigen Bachlauf geprägt wurde. Auch die Breitenausprägungen der Terrassenschotterebenen nehmen in diesem Bachabschnitt an Mächtigkeit zu. Dies lässt sich u. a. durch die bachabwärts abnehmende Gebundenheit an die angrenzenden Hänge erklären, die die Schottersohle respektive Sander hier breiter auffächern lassen. Auch die Schottersohle unterliegt in diesem Bachbereich einer Verfestigung, die aufgrund der hier geringen Schuttzufuhr auf eine Entwicklung zur Stufen-Becken Sequenzabfolge (step-pool) schließen lässt. Schließlich bildet dieser orographisch rechte Ngozumpa Gletscherbachlauf auf einer Höhe von ca. 4305 m ü. NN (27°54'40.03"N, 86°43'4.42"E) eine Konfluenz mit dem orographisch linken Ngozumpa Gletscherbach. Nahe dieser Konfluenz und weiter bachabwärts lassen sich weitere großräumigere Terrassenabfolgen mit ausgeprägteren Höhenzwischendistanzen erkennen, die mit den spätglazialen und neoglazialen Gletscherstadien nach Kuhle (Sirkung Stadium bis zum älteren Dhaulagiri-Stadium (IV -VI) in Kuhle 2005: Figure 19, Table 1; vgl. Kuhle 2013: Table 1) in Relation gesetzt werden können, jedoch aufgrund von zunehmenden Störfaktoren wie u. а. Hangrutschungen, Bachkonfluenzen geologischen Verwerfungen, die und Fehlerwahrscheinlichkeiten von getroffenen Analysen bezüglich der Genese der talabwärts liegenden Bach- und Flussterrassenabfolgesystemen erheblich steigern.

Abbildung 51: Lauf des orographisch rechten Ngozumpa Gletscherbaches. Die beiden Pfeile (↓) zeigen den Beginn und das Ende des untersuchten Bachabschnittes an; Google Earth (Bildmitte: 27°55'21.20"N, 86°42'46.74"E).

Die Längsprofilanalyse (Makroebenenanalyse) des orographisch rechten Ngozumpa Gletscherbaches beginnt ab einer Höhe von 4704,67 m ü. NN (WGS 84/Pseudo Mercator: E 9652474,2328315700 N 3240616,5531285200; umgewandelt in WGS 84: E 86.7096513292 N 27.933692921; siehe Tabelle 8) und endet auf einer Höhe von 4299,34 m ü. NN (WGS 84/Pseudo Mercator: E 9653387,9327648400 Ν 3237774,9256800600; umgewandelt in WGS 84: E 86.7178592354 N 27.9111379108; siehe Tabelle 8) (vgl. Abbildung 51). Im oberen Bachlaufabschnitt zwischen 4704,67 m ü. NN und 4637,47 m ü. NN weist der Beginn des Gletscherbaches eine nahezu ebene Fläche vor und bildet im direkt angrenzenden Bachabschnitt Bachneigungsgefälleschwankungen zwischen 2,06° 17.09°. und In diesem Bachabschnitt schneidet der Gletscherbach intensiv in den abgrenzenden Bereich des Podestmoränenkörpers ein. In der Folge entsteht ein derartiges Gefälle. Direkt im Anschluss zwischen 4637,47 m ü. NN und 4604,19 m ü. NN nimmt das Gefälle des Gletscherbachlaufes erst auf einen Maximalwert von 24,83° zu, reduziert sich dann im Anschluss auf einen Steigungswert von 4,70° und bildet dann ein Gefälle von 16,39° bis 16.50°. Diese immensen Höhenschwankungen des Gletscherbachlängsprofiles

verdeutlichen schließlich die hier verorteten zwei aufeinanderfolgenden konvexen Formengestalten (siehe Abbildung 52). Erklären lässt sich dies durch die hier angrenzenden steilen Hänge, die durch ihre Reliefenergie Prozesse von Hangrutschungen induzieren können, welche schließlich im Gletscherbachbett akkumulieren. Ebenfalls lässt sich zeigen (siehe Abbildung 51), dass in diesem Bereich eine Bachverzweigung den Gletscherbachlauf prägt. Dies deutet ebenfalls auf das hier akkumulierte Hangrutschungsmaterial hin, welches eine Umverteilung des Bachlaufes und dessen Fließdynamiken induzieren und somit zur Entstehung eines kleinräumigen Mäanderbogens beitragen kann (vgl. Knighton 1998: 213-230). Ebenfalls sei anzumerken, dass jene Formengestalt auch durch Akkumulationsprozesse vergangener Gletscherstadien entstehen kann. Da sich diese Formengestalt mittels Geländebefunde bestätigen lässt, ist die Fehlerwahrscheinlichkeit bezüglich des SRTM-Höhenmodelles sowie der ungenauen Verortung des Gletscherbachlängsprofiles als gering einzustufen, kann aber nicht gänzlich ausgeschlossen werden.

Weiter bachabwärts zwischen 4604,19 m ü. NN und 4530,14 m ü. NN steigt das Bachgefälle von zuerst 4,45° auf 11,80° an und sinkt dann wieder, bis es schließlich in Höhen zwischen 4561 m ü. NN und 4565,19 m ü. NN einer Bachsteigung mit einem Maximalwert von 8,67° unterliegt und schließlich wieder durch ein Bachgefälle geprägt wird. Infolge dieser Höhenprofilschwankungen des Bachlaufes entsteht schließlich eine ausgeprägte konvexe Formengestalt. Gleicht man diese mit der verorteten Morphologie des Bachlaufes ab, zeigt sich, dass in diesem Bereich die Gletscherbachschotterbreite an Mächtigkeit abnimmt. Direkt nördlich dieses Abschnittes (E 9652410,89 Ν 3239771,02; siehe auch Tabelle 8: Nr. 55; vgl. Abbildung 52) bildet der Bachlauf eine Mäanderschlinge mit Altarmresten aus. Demnach versucht der Bachlauf in diesem Bereich die Bachsedimente umzulagern, um schließlich das Gleichgewicht der Abflusskraft aufrecht zu erhalten. Durch die direkt angrenzende Gletscherbachschotterbreitenabnahme kann schließlich eine Bachakkumulation von Sedimenten innerhalb der Schottersohle induziert werden. Jedoch sei auch hier anzumerken, dass Höhendatenfehler des SRTM-Höhenmodelles sowie die ungenaue Verortung des Gletscherbachlängsprofiles nicht gänzlich ausgeschlossen werden können. Südlich dieser Formengestalt schwankt das Bachgefälle zwischen 2,79° und 18,27°, ändert sich

dann aber im Anschluss auf ein Steigungswert von 1,29°. Direkt angrenzend bildet der Bachlauf ein Gefälle von 4,04° bis 8,69°. Infolge dieser Höhenprofilschwankungen entsteht schließlich eine im Vergleich zum vorherigen Abschnitt kleinräumige konvexe Formengestalt. Direkt in diesem Abschnitt verortet bildet sich ein Mäanderbogen aus, der durch Gleichgewichtsveränderungen von Abfluss und Sedimenten innerhalb des Bachlaufes entstehen kann. Mittels dieser morphologischen Gegebenheit lassen sich derartige Profilhöhenschwankungen erklären. Datenfehler im SRTM-Höhenmodell sowie der ungenauen Verortung des Gletscherbachlängsprofiles können jedoch nicht gänzlich ausgeschlossen werden.

Weiter bachabwärts zwischen 4530,14 m ü. NN und 4444,74 m ü. NN nimmt die Bachneigung zuerst auf Gefällewerte von 10,52° zu, reduziert sich wieder und schwankt dann zwischen 3,27° und 12,63° Gefälle. Direkt im Anschluss des Gefällewertes von 12,63°, welches auf einer Höhe von 4467,02 m ü. NN verortet ist, reduziert sich das Gefälle, steigt auf einer kurzen Distanz wieder an und bildet schließlich auf einer Höhe von 4443,35 m ü. NN bis 4445,30 m ü. NN eine Steigung zwischen 1,58° bis 4,26°. Direkt im Anschluss auf einer Höhe von 4444,74 m ü. NN lässt sich anhand des bis 9,11° Längsprofiles ein Bachgefälle von zu nachweisen. Diese Höhenprofilschwankungen des Ngozumpa Gletscherbachlaufes verdeutlichen schließlich, dass sich im unteren Abschnitt dieses Bereiches eine kleinräumige konvexe Formengestalt ausprägt. Diese konvexe Form ist im Mäanderbogen des Gletscherbachlaufes zu verorten (E 9652605,06 N 3238941,32). Folglich finden in diesem Bereich Umverteilungen von Sedimenten statt, die eine derartig kleinräumige Höhenprofilveränderung entstehen lassen können. Da jedoch die weiter bachaufwärts zu findenden Mäanderschlingen keine derartige Steigung vorweisen, kann ebenso davon ausgegangen werden, dass es sich bei dieser Angabe um ein Datenfehler im SRTM-Höhenmodell sowie möglichen Erfassung der ungenauen des Gletscherbachlängsprofiles handelt.

Im angrenzenden Bereich zwischen 4444,74 m ü. NN und 4406,12 m ü. NN reduziert sich das Gefälle erst von maximal 9,67° auf 0,05°, steigt dann wieder an und reduziert sich schließlich wieder. Direkt im Anschluss auf Höhen zwischen 4405,44 m ü. NN und 4406,56 m ü. NN lassen sich Steigungswerte zwischen 0,34° bis 2,94° im Längsprofil

erkennen. Diese Höhenprofilschwankungen formen schließlich eine kleinräumige konvexe Formengestalt, die innerhalb eines gestreckten Laufes zu finden ist. Aufgrund der weit entfernten Hänge unterliegt dieser Bereich keinen rezenten Hangrutschungsprozessen. Auch die angrenzenden Terrassenordnungen zeigen, dass sie aufgrund der Vegetationsüberprägung von keiner aktuellen Umlagerung betroffen sind. Den nah umgebenden Formengestalten entsprechend - hier lassen sich vermehrt Moränenreste verorten - kann diese kleinräumige konvexe Form (E 9652422,59 N 3239574,78) ein Überrest vergangener Moränenkörperstadien sein. Ebenfalls lässt sich nahe dieses Höhenprofilstandpunktes eine Breitenzunahme der Terrassenschotterebene erkennen (ca. 27°55'5.77"N, 86°42'46.28"E), die auf eine historische Sanderform hindeutet. Diese Breitenzunahme kann ebenso durch erhöhte Abfluss- und Sedimentzufuhrraten, induziert durch vergangene Gletscherstadien, entstanden sein. Doch können auch andere Faktoren wie die Breitenzunahme der Talschaft maßgeblich den Prozess einer Sanderausbreitung auslösen. Datenfehler im SRTM-Höhenmodell sowie der ungenauen Verortung des Gletscherbachlängsprofiles sind hier jedoch ebenfalls nicht gänzlich auszuschließen.

Weiter bachabwärts zwischen 4406,12 m ü. NN und 4312,54 m ü. NN steigt das Gefälle zuerst auf Werte von maximal 11,72° an, sinkt dann wieder und unterliegt im angrenzenden Bereich erhöhten Schwankungen, bis es sich schließlich auf einer Höhe von 4345,94 m ü. NN auf ein Gefälle von 0,99° bis 1,19° reduziert. Bachabwärts nimmt das Gefälle wieder an Mächtigkeit zu und weist eine maximale Neigung von 10,27° vor. Direkt angrenzend reduziert sich das Gefälle wieder und ergibt schließlich in den Höhen von 4324,06 m ü. NN bis 4324,26 m ü. NN Steigungsraten zwischen 0,16° und 0,71°. Die Gletscherbachmorphologie zeigt, dass in diesem Bereich Abfolgen von kleinräumigen Mäanderbögen mit Altarmen den Lauf prägen. Folglich unterliegt dieser Abschnitt erhöhten Sedimentumlagerungen. Angrenzend an diesen Abschnitt (ca. 27°54'46.71"N, 86°42'58.99"E) lassen sich iedoch auch vergangene Moränenkörperstadien erkennen. Auch im Anschluss lässt sich wieder im Gletscherbachlängsprofil ein Gefälle beobachten, welches dann in Höhen zwischen 4313,29 m ü. NN und 4314,22 m ü. NN in Bachsteigungen zwischen 1,05° und 1,90° umkehrt. Direkt im Anschluss unterliegt der Bachlauf wieder einer Gefällezunahme. In

diesem Bereich weist der Gletscherbach einen gestreckten Laufcharakter vor, der jedoch im vegetationsüberprägten Sanderbereich zu verorten ist. Aufgrund der hier zunehmenden Breite der Talschaft können derartige flache Ebenen mit nicht sonderlich hohen konvexen Formengestalten entstehen. Datenfehler im SRTM-Höhenmodell sowie der ungenauen Verortung des Gletscherbachlängsprofiles können hier jedoch ebenso nicht ausgeschlossen werden. Diese Abfolge von zwei länglich und gering konvexen Formengestalten (siehe Abbildung 52) verdeutlichen, dass jener Abschnitt von Moränenablagerungen mit angrenzenden Sanderformen geprägt wird. Dies lässt sich anhand der hier nah verorteten Morphologie bestätigen (u. a. ca. 27°54'46.71"N, 86°42'58.99"E und ca. 27°54'41.26"N, 86°43'1.36"E), die insgesamt auf vergangene Gletscherstadien hindeutet.

Im letzten Bereich zwischen 4312,54 m ü. NN und 4299,34 m ü. NN steigt das Längsprofil erst auf eine Bachsteigung von 1,07° an, kehrt sich dann jedoch wieder in ein Gefälle von maximal 13,02° um. Im Anschluss reduziert sich das Gefälle bis der Gletscherbach schließlich nahe der Höhe von 4299,34 m ü. NN eine Konfluenz mit dem orographisch linken Ngozumpa Gletscherbach bildet. Angrenzend an den direkt vorhergehenden Abschnitt bildet dieser Bereich eine Erweiterung der zuvor gering konvex ausgeprägten Formengestalt, die eher einer länglich-treppenstufigen Form gleicht, welche insgesamt mittels der vorangegangenen Akkumulation von Moränenkörpermaterial und der anschließenden glazifluvialen Erosion entstehen konnte. Der lateral verortete Formenschatz bestätigt, dass jene Landschaftsformen durch vergangene Glazialstadien entstanden sind (siehe auch Kapitel 3.3.2.1 und 3.3.2.2) (vgl. Kuhle 2005).

Insgesamt lässt sich zeigen, dass das Gletscherbachlängsprofil im oberen Bereich zum Teil durch Hangrutschungsprozesse gestört wird. Im unteren Bereich hingegen, lassen sich die Höhenschwankungen weitestgehend mit vergangenen Gletscherstadien in Relation setzen. Diese Profilschwankungen machen sich durch treppenstufenartige Abfolgen von nicht sonderlich konvex ausgeprägten Formen erkenntlich. Störfaktoren, die durch Datenfehler im SRTM-Höhenmodell sowie der ungenauen Verortung des Gletscherbachlängsprofiles induziert werden, können jedoch nicht ausgeschlossen werden.

Abbildung 52: Längsprofil des orographisch rechten Ngozumpa Gletscherbachlaufes nach SRTM-Höhenmodell.

Zusammenfassend lässt sich mittels der Anwendung der Mikro-, Meso- und Makroebenenanalyse zeigen, dass die hier akkumulierten Moränenkörper einer intensiven glazifluvialen Erosion unterlagen. Der obere Gletscherbachbereich wurde durch vergangene Gletschereisschmelzprozesse, die mithilfe von Satellitendaten aus dem Jahr 1975 bestätigt werden konnten (vgl. GLIMS: Racoviteanu & Bajracharya 2008), glazifluvial intensiv umgestaltet. Naturgemäß üben diese Abschmelzprozesse auch Veränderungen im talabwärts gelegenen Bachbereich aus. Demnach konnten am Untersuchungsstandort, nahe des Endmoränenkörperdurchbruches, bis zu vier glazifluviale Terrassenabfolgen rekonstruiert werden. Des Weiteren zeigt sich, dass die Höhe des Übergangsbereiches zwischen den einzelnen Terrassenabfolgen talabwärts

abnimmt. Die Bachschottersohle weist in diesem Bereich ein noch nicht sonderlich fortgeschrittenes Entwicklungsstadium von einer Kaskadenform (cascade) zur Stufen-Becken Sequenzabfolge (step-pool) vor. Diese Entwicklung wird zum Teil durch zusätzliche Sedimente, die mittels Hangrutschungsprozessen zugeführt werden, blockiert. Aufgrund der Reduktion dieser Sedimentzufuhrraten lassen sich bachabwärts fortgeschrittenere Entwicklungsstadien der Schottersohle finden. Im bachabwärts gelegenen Bereich werden die im Bachbett akkumulierten Sedimente zum Teil durch Mäanderbögen umgelagert.

Die Schotterebenenausprägung ist im oberen Glescherbachbereich durch die steilen Hänge gebunden, weiter bachabwärts nimmt diese Gebundenheit ab und ist durch Vegetationsbewuchszonen überprägt. Im unteren Bachabschnitt, kurz vor der Konfluenz mit dem orographisch linken Ngozumpa Gletscherbach, weist dieser Bachlauf zum Teil trockengelegte und somit stabile Vegetationsinseln (anabranching river) vor. Die Breitenausprägung der Terrassenschotterebenen ist hier sehr großräumig und kann somit als Sanderform klassifiziert werden. Dies lässt sich durch die abnehmende Gebundenheit an die angrenzenden Hänge erklären. Insgesamt weist der Laufcharakter im oberen Bachbereich, direkt unterhalb der Konfluenz mit dem entwässernden Bachlauf aus dem orographisch rechten Eisrandtal, einen gestreckten Lauf vor. Vereinzelt lassen sich in diesem Bereich jedoch auch Mäanderbögen erkennen, die weiter bachabwärts in höherer Häufigkeit auftreten. Die Längsprofilanalyse des Gletscherbachlaufes im oberen Gletscherbachbereich verdeutlicht ebenfalls die Zufuhrraten durch Hangschuttsedimente. Dies lässt sich durch konvexe Formengestalten erkennen. Ausgeglichen werden jene durch zum Teil geformte Mäanderbögen. Weiter bachabwärts sind stufenartige konvexe Abfolgen im Längsprofil zu erkennen. Mit den angrenzenden Landschaftsformen der hier abgelagerten Moränenkörper in Relation gesetzt, verdeutlichen sie die Glazialabfolgestadien, welche im vergangenen Holozän diese Landschaft formten (Kuhle 2005). Bis zur unteren Bachkonfluenz sind diese nach Kuhle ins ältere bis jüngere Dhaulagiri Stadium (VI - VII) zu klassifizieren (Kuhle 2005: Photo 132 & Figure 19, Table 1; vgl. Kuhle 2013: Table 1; vgl. Tabelle 17).

3.4 Teil des Vergleichsuntersuchungsgebiets Pangong Tso: Gletscherbachsysteme nahe des südlichen Ufers am Pangong Tso

3.4.1 Morphologie und Terrassenbildungen des Unbenannten Pangong Tso Gletscher I Gletscherbachsystems auf der Mikro-, Meso- und Makroebene

Der Unbenannte Pangong Tso Gletscher I (33°52'1.31"N, 78°25'41.23"E) lokalisiert sich Süd-Süd-Westlich der Ortschaft Spangmik, welche am Südufer des Pangong Tso verortet ist. Abgegrenzt ist dieses Gletschernährgebiet durch den Kammverlauf der Pangong Range, die in diesem Nährgebiet eine maximale Höhe von ca. 6117 m ü. NN (33°52'2.52"N, 78°25'15.96"E) vorweist. Des Weiteren unterliegt das Nährgebiet einer Abgrenzung durch nordwestlich verlaufende Moränenkörper, welche während vorhergehender Gletscherstadien abgelagert werden konnten (Kuhle 2013: 157-158). Mittels dieser eng abgrenzenden Kammumrahmung ist das rezente Gletschernährgebiet kleinräumig ausgeprägt. Die Nordost-Exposition dieses Nährgebietes sowie die verortete Höhe über dem Meer tragen zur vermehrten Metamorphose von Schnee zu Eis bei. Hinabstürzende oder auf den Gletscherkarboden rutschende Schnee- und Eislawinen im Nährgebiet tragen ebenfalls zur Entwicklung des Gletscherhaushaltes bei. Die rezenten Hängegletscher-Eismassen sammeln sich im Gletscherkargrund, welches auf einer Höhe von ca. 5732 m ü. NN (33°51'57.85"N, 78°25'37.14"E) beginnt. Die an dieser Lokalität gebildeten Eismassen reichen hinab bis auf Höhen von ca. 5414 m ü. NN (33°52'34.08"N, 78°26'12.47"E) und bilden eine freigelegte Gletschereiszunge von ca. 1,49 km Länge. Talabwärts dieser Obermoränen-Gletschereiszunge prägen und Grundmoränenkörper das Landschaftsbild. Ob es sich bei diesen Moränenbedeckungen im talabwärts angrenzenden Bereich ausschließlich um Obermoränenkörper, die die rezente Gletschereiszunge bedecken, handelt, kann nicht ausgeschlossen werden (Photo 139, vgl. Abbildung 53). Proglaziale Eisseen, freigelegte Eiskörper, sowie vermutlich englaziale Gletscherbachläufe - wenn es sich hierbei nicht um Formenrelikte handelt geben Hinweise auf eine hier verortete schuttbedeckte Gletschereiszunge. Ebenfalls lassen sich erst in Höhen von ca. 5155 m ü. NN (33°52'57.58"N, 78°26'32.58"E) und

5107 m ü. NN (33°53'1.69"N, 78°26'31.09"E) Formen von eingeschnittenen Gletscherbachläufen erkennen, die jedoch auch als englaziale Gletscherbachläufe klassifiziert werden können. Talabwärts auf Höhen von ca. 5076 m ü. NN (33°53'4.21"N, 78°26'37.73"E) lassen sich weitere Moränenakkumulationen finden. Direkt angrenzend auf Höhen von ca. 5041 m ü. NN (33°53'6.95"N, 78°26'38.67"E) und ca. 5036 m ü. NN (33°53'7.00"N, 78°26'41.89"E) befinden sich Gletscherbachläufe. Demnach ist nicht gänzlich auszuschließen, dass die rezente Gletschereiszunge bis auf Höhen zwischen ca. 5155 m ü. NN (33°52'57.58"N, 78°26'32.58"E) und ca. 5076 m ü. NN (33°53'4.21"N, 78°26'37.73"E) hinabreicht und somit rezente Gletscherzungenlängen von ca. 2,4 km bis 2,64 km vorweist. Historische Kartenmaterialien zeigen, dass diese Gletscherzunge während der 80er Jahre weiter talabwärts reichte (vgl. Karte 12). Die an diesem Gletscherzungenende freigesetzten Wasserdynamiken bilden schließlich drei Gletscherbachläufe, deren Erosionsformen eindeutig mittels Fernerkundung zu erkennen sind. Dazu zählt der orographisch rechte Gletscherbachlauf beginnend auf einer Höhe von ca. 5036 m ü. NN (33°53'7.00"N, 78°26'41.89"E), der weiter westlich beginnende Bachlauf auf einer Höhe von ca. 5041 m ü. NN (33°53'6.95"N, 78°26'38.67"E), sowie der weiter südwestlich lokalisierte Gletscherbachlauf, der auf einer Höhe von ca. 5107 m ü. NN (33°53'1.69"N, 78°26'31.09"E) den hier vorzufindenden Moränenkörper einschneidet.

Deutlich unterhalb dieses Gletscherzungenendes konnte mithilfe der Mikroebenenanalyse am 24.08.13 um 17:00 Uhr auf einer Höhe von ca. 4389 m ü. NN (N33° 54.061' E78° 27.438', Garmin-GPS-Messung) die hier verortete orographisch linke Gletscherbachverzweigung des gesamten Gletscherbachsystems sowie der angrenzende Formenschatz morphologisch und morphometrisch untersucht werden. Die Ergebnisse dieser Feldforschungen sind wie folgt:

Die Gletscherbachbreite der orographisch linken Bachverzweigung beträgt ca. 1,5 m und die Gletscherbachtiefe variiert zwischen ca. 20 cm bis 30 cm. Je nach den freigesetzten Abflussdynamiken unterliegt die Bachbreite und Bachtiefe natürlichen Schwankungen. Talabwärts weist diese orographisch linke Verzweigung des Gletscherbachlaufes eine Bachneigung von ca. 9° vor. Der Gletscherbachlauf und die angrenzenden Terrassenbereiche bestehen überwiegend aus Schottern und Geröllen,

die einer chaotischen Ablagerung unterliegen, im Bachbett jedoch glazifluvial umgelagert und sortiert werden konnten. Der Gletscherbachbettformencharakter weist daher ein fortgeschrittenes Entwicklungsstadium vom Kaskadenformenschatz Stufen-Becken Sequenzabfolge am (cascade) zur (step-pool) vor. Die Untersuchungsstandort erkennbaren zum Teil chaotisch erodierten Stufen weisen Breiten von ca. 1,5 m, Längen von ca. 1 m und Tiefen zwischen 30 cm bis 50 cm vor. Die direkt angrenzenden Becken ergeben am Untersuchungsstandort Breiten von bis zu 1,5 m, Längen von ca. 1,5 m sowie Tiefen zwischen 30 cm bis 50 cm. Insgesamt prägen die hier untersuchten Stufen-Becken Sequenzabfolgen (step-pool) eine Länge von ca. 2,5 m und eine Breite von ca. 1,5 m (Photo 140, 141). Der rezente Gletscherbach schneidet in den hier im Spätglazial bis Neoglazial abgelagerten Grundmoränenkörper (Sirkung- (IV) bis Nauri- Gletscherstadium (V) (Kuhle 2013: 194 (Table 1)) mit zum Teil vorhandenen Blockakkumulationen ein und bildet an diesem Untersuchungsstandort vereinzelt Bachverästelungen aus, die insgesamt einen verwilderten Bachlauf prägen (braided river).

Mittels Gletschereisschmelzprozessen werden der Gletscherzunge an Wasserdynamiken freigesetzt, die schließlich glazifluviale Tiefen- und Lateralerosionsprozesse induzieren. Diese glazifluvialen Prozesse beeinflussen auch weiter bachabwärts, also an diesem Untersuchungsstandort, den angrenzenden Gletscherbachformenschatz. Aber auch während vergangener Glazialstadien veränderten diese die Genese dieses Formenschatzes. All jene Prozesse lassen sich durch die hier verortete Terrassenabfolge verdeutlichen. Mittels Geländekartierungen konnten an diesem Untersuchungsstandort mindestens vier glazifluviale Terrassenordnungen rekonstruiert werden (Photo 140, 141, 142) (siehe Karte 9a und 9b (Anhang)). Ca. 20 cm bis 50 cm oberhalb der benetzten Breite des Bachlaufes lokalisiert sich die erste glazifluviale Terrassenordnung. Diese Terrassenschotterebene misst einschließlich des Baches eine Gesamtbreite von ca. 8,70 m, variiert jedoch der Morphologie entsprechend sehr stark. Ca. 0,97 m oberhalb der benetzten Breite lokalisiert eine zweite glazifluviale Terrassenschotterebene, die einschließlich der vorhergehenden Terrassenabfolge eine Breite von maximal 12,87 m misst. Ca. 1,5 m bis 2,5 m oberhalb

der benetzten Breite lässt sich eine dritte glazifluviale Terrassenschotterebene auffinden, die einschließlich aller vorhergehenden Terrassenabfolgen Breiten zwischen ca. 26 m bis 28 m misst. Oberhalb dieser lässt sich noch eine vierte buckelartige Terrassenschotterebene erkennen, die mit einer Gesamtbreite von ca. 483 m den gesamten Sanderformenschatz überprägt (Messung: SRTM-Höhenmodell). Ob sich jedoch zwischen oder oberhalb dieser vierten Terrasse noch kleinräumigere Terrassenabfolgen finden lassen, die das Landschaftsbild prägen, lässt sich mithilfe der Fernerkundungsdaten nicht eindeutig belegen⁷.

Mithilfe der Mesoebenenanalyse lässt sich zeigen, dass der Oberlauf des Gletscherbaches orographisch links aus zwei und orographisch rechts aus einem Gletscherbachlauf besteht. Allesamt schneiden diese in das hier glazigen akkumulierte Moränenmaterial ein, welches sich aus Lockergestein zusammensetzt. Eindeutige glazifluviale Erosionsspuren, die den Beginn des Gletscherbaches markieren, lassen sich orographisch links auf den Höhen von ca. 5036 m ü. NN (33°53'7.00"N, 78°26'41.89"E) und ca. 5041 m ü. NN (33°53'6.95"N, 78°26'38.67"E) verorten. Ob der Beginn der Gletscherbachläufe jedoch wenige Meter weiter talaufwärts entsteht, kann mithilfe der Fernerkundung nicht eindeutig belegt Infolge werden. der Wasserfreisetzung durch Gletschereisschmelzprozesse schneiden diese beiden Gletscherbachläufe in die angrenzende Grundmoräne sowie Podestmoräne ein und fließen in zum Teil verwilderten Bachbettformen (braided river) in Richtung Nordost talabwärts. Naturgemäß können durch derartige Prozesse Sedimente als Fracht aufgenommen und talabwärts transportiert werden. Auf einer Höhe von ca. 4919 m ü. NN (33°53'16.61"N, 78°26'45.50"E) bilden diese Bachläufe eine Konfluenz und fließen im Anschluss in einem leichten Mäanderbogen, der schließlich einen gestreckten Lauf bildet, talabwärts. Aufgrund der Gebundenheit durch die angrenzenden Moränenhänge ist die Schottersohlenbreite in diesem oberen Abschnitt nicht sonderlich breit ausgeprägt. Intensiv umlagernde Hangrutschungsprozesse, die eine verstärkte Veränderung der Bachlaufmorphologie zur Folge haben müssten, lassen sich in diesem

⁷ Die hier rekonstruierten Terrassenabstufungen im Sanderformenschatz lassen sich mit dem verwendeten SRTM-Modell nicht erkennen, sodass in dieser Mikroebenenuntersuchung auf ein Querprofil verzichtet wurde. Vielmehr zeigt ein solches Profil lediglich die konvexe Formengestalt eines Sanders auf. Dies wurde mittels QGIS überprüft.

Abschnitt nicht großskalig erkennen. Orographisch rechts der Konfluenz der beiden zuvor genannten Gletscherbachläufe lassen sich jedoch kleinräumige Reste von Hangrutschungsprozessen verorten, die aufgrund der Beschaffenheit der Landschaft feinere Korngrößenklassen dem Bachlauf zuführten. Eine maßgebliche Bachlaufveränderung wird durch eine derartige Hangschuttzufuhr jedoch nicht induziert. Dies lässt sich mittels der Nahe dieser Konfluenz unveränderten Bachlaufmorphologie verdeutlichen.

Unterhalb der Konfluenz (33°53'16.61"N, 78°26'45.50"E) nimmt die Schottersohle des Gletscherbaches, je weiter diese talabwärts reicht, an Mächtigkeit zu. Die im vergangenen Holozän und Pleistozän geformte Tiefeneinschneidung lässt sich mittels der ausgeprägteren Höhenunterschiede zwischen den einzelnen Terrassenordnungen verdeutlichen. Ebenfalls tragen orographisch rechts des Bachlaufes zu lokalisierende Hangrutschungsprozesse, die sich auf einer Höhe von ca. 4767 m ü NN (33°53'28.13"N, 78°26'50.00"E) verorten lassen, zur Sedimentation von Hangschutt im Bachlauf Morphologische Bachbettveränderungen, die bei. hier verwilderte Bachbettformen (braided river) mit kurzweilig existierenden Schotterinseln entstehen lassen, verdeutlichen die Intensität der Bachgenese. Schließlich bildet auch dieser Bachlauf auf einer Höhe von ca. 4633 m ü. NN (33°53'38.99"N, 78°26'55.79"E) eine Konfluenz mit dem orographisch linken Gletscherbachlauf, der auf einer Höhe von ca. 5107 m ü. NN (33°53'1.69"N, 78°26'31.09"E) entsteht. Dieser schneidet in einem großräumigen Mäanderbogen in Richtung Süden in die hier abgelagerten Moränenkörper ein. Dabei bildet er ebenso wie die orographisch rechten Bachläufe vereinzelt verwilderte Bachbettformen (braided river) aus. Die Schottersohlenbreite ist bis zur Konfluenz mit dem orographisch rechten Gletscherbachlauf weitestgehend kleinräumig ausgeprägt. Auf einer Höhe von ca. 4843 m ü. NN (33°53'24.92"N, 78°26'35.81"E) ändert der Bachlauf seine Richtung und fließt vermehrt in Richtung Nordosten talabwärts. Wenige Meter östlich dieser Lokalität lassen sich im Vergleich zu den weitestgehend kleinräumigen Schottersohlenausprägungen hier großräumige verschachtelte Sanderflächen auffinden. Die Entstehung dieser lassen sich mittels glazifluvialer Aufschotterungen erklären, deren Sedimente durch die Bachtransportkraft vergangener Gletschereisschmelzprozesse aus dem orographisch linken Moränenhang

(ca. 33°53'16.57"N, 78°26'26.97"E) und dem hier untersuchten orographisch linken Gletscherbachlauf talabwärts transportiert und schließlich an dieser Lokalität abgelagert werden konnten. Im Anschluss dieser nordöstlichen Fließrichtungsänderung sowie der Sanderausprägung schneidet der Bachlauf vermehrt gestreckt in den angrenzenden Moränenkörper ein. Die Schottersohle des Bachlaufes ist in diesem Abschnitt durch die abgrenzenden Moränenschutthänge gebunden. Nahe der Höhe von ca. 4738 m ü. NN (33°53'32.55"N, 78°26'45.78"E) führen orographisch links verortete Hangrutschungsprozesse dem Gletscherbach Sedimente zu und verändern somit das Gleichgewicht des Gletscherbachlaufes. Weiter bachabwärts bildet dieser Bachlauf schließlich den zweiten Zustrom der zuvor genannten Konfluenz auf einer Höhe von ca. 4633 m ü. NN (33°53'38.99"N, 78°26'55.79"E).

Unterhalb dieser Konfluenz fließt der Bachlauf schlangenlinienförmig mit zum Teil (braided verwilderten Bachbettformen river), großskalig betrachtet iedoch weitestgehend gestreckt, talabwärts. Dieser Abschnitt des Bachlaufes ist zum Teil durch eine ca. 14 m Breite Schottersohle geprägt, die durch glazifluviale Bachbettveränderungen im Bachlauf gekennzeichnet ist. Demnach lassen sich in diesem Gletscherbach vermehrt Bachverwilderungen (braided river) auffinden. Ebenfalls lassen sich anhand der Morphologie aufeinanderfolgende Terrassenabfolgen erkennen, die durch vergangene Gletscherbachabflussschwankungen entstehen konnten. Ab einer Höhe von ca. 4509 m ü. NN (33°53'49.92"N, 78°27'12.35"E) nimmt die Talschaftsbreite zu, die ebenfalls mit einer großräumigen Sanderausprägung einhergeht. Dieser Sanderformenschatz ist jedoch älterer Natur, da er rezent glazifluvial eingeschnitten wird. Bestätigen lässt sich dies durch die trockengelegten Bachläufe auf dem Sander (siehe Karte 9a, 9b und 9c (Anhang)). Nach einem schlangenlinienförmig nordöstlich einschneidenden Bachlauf, dieser bildet hier sanderflächentypisch Bachverwilderungen (braided river) (vgl. Church 1972) mit zum Teil aufgeteilten Läufen, formt der Gletscherbach auf einer Höhe von ca. 4361 m ü. NN (33°54'6.60"N, 78°27'31.88"E) einen rezenten Sanderformenschatz aus. Der historische sowie der rezente Sanderformenschatz lassen eine großräumige ineinandergreifende Verschachtelung der Formen erkennen (vgl. Abbildung 53), die ebenso eine Sanderabfolge ausprägen. In der rezenten Sanderausprägung teilt sich der Gletscherbach erneut in zahlreiche,

sehr kleine Bachläufe auf, die insgesamt eine Verästelungsform erkennen lassen. Schließlich mündet der Hauptbach dieser auf einer Höhe von ca. 4249 m ü. NN (33°54'22.05"N, 78°27'59.24"E) in den nordöstlich angrenzenden Pangong Tso (Photo 140). Naturgemäß münden auch alle anderen Bachverästelungen dieses Gesamtlaufes in diesen See. Der Pangong Tso bildet somit die absolute Erosionsbasis für die hier untersuchten Gletscherbachläufe.

Abbildung 53: Lauf des Unbenannten Pangong Tso Gletscher I Gletscherbaches. Die beiden Pfeile (↓) zeigen den Beginn und das Ende des untersuchten Bachabschnittes an; Google Earth (Bildmitte: 33°53'36.69"N, 78°27'3.71"E).

Mithilfe der Makroebene wurde eine Längsprofilanalyse des hier untersuchten Gletscherbachsystems durchgeführt. Das Längsprofil des Gletscherbaches bezieht sich auf den orographisch linken Gletscherbach des Unbenannten Pangong Tso Gletscher I, welches auf einer Höhe von 5024,82 m ü. NN (WGS 84/Pseudo Mercator: E 8732452,8654925500 N 4013408,6715022600; umgewandelt in WGS 84: E 78.4449587693 N 33.8852826571; siehe Tabelle 9) beginnt und auf einer Höhe von 4246,29 m ü. NN (WGS 84/Pseudo Mercator: E 8734765,9109865300 N 4016324,4206304900; umgewandelt in WGS 84: E 78.4657372105 N 33.907023834; siehe Tabelle 9) nach dem hier verwendeten SRTM-Höhenmodell in den Pangong Tso endet. Die genaue Verortung des Gletscherbaches erwies sich in diesem Lauf und im

historischen Sanderbereich vereinzelt als problematisch, konnte jedoch aufgrund der abgrenzenden Terrassenabstufung und der teils vorhandenen Mehrläufigkeit des Gletscherbaches zugeteilt werden. Der obere Gletscherbachlauf zwischen den Höhen von 5024,82 m ü. NN bis auf 4645,18 m ü. NN weist die intensivsten Gefälleschwankungen des gesamten Laufes vor. Am Beginn des Gletscherbachlaufes lässt sich ein Bachgefälle von 15,77° erfassen, welches bachabwärts schwankt und auf ein Gefälle von 23,78° zunimmt. Im angrenzenden Bereich reduziert sich das Längsprofilgefälle des Bachlaufes und bildet schließlich auf einer Höhe von 4857,54 m ü. NN (E 8732590,1192587200 N 4013931,8879345900) nur noch ein Gefälle von 0,21°. Dieser ist zugleich der geringste gemessene Wert im ganzen Längsprofil. Erklären lässt sich eine derartig intensive Reduktion des Längsprofilgefälles durch die Zufuhr von Hangschuttmaterialien aus den angrenzenden Moränenkörperhängen, die schließlich an dieser Lokalität die Bachbettmorphologie verändern und somit die Genese von verwilderten Bachbettformen (braided river) induzieren. Ebendiese sind in der zuvor genannten Höhe auffindbar. Aber auch ein Datenfehler im SRTM-Höhenmodell sowie der ungenauen Verortung des Gletscherbachlängsprofiles lassen sich nicht gänzlich ausschließen. Es zeigt sich jedoch, dass dieser Bereich insgesamt einem Gefälle unterliegt, sodass trotz möglicher Daten- sowie Bachverortungsfehler, eine Bachgefälleabnahme die Landschaft gestaltet. Aufgrund dieser morphologischen Gegebenheit lässt sich in diesem oberen Längsprofilbereich insgesamt eine leicht Formengestalt erkennen, die auf ausgeprägte konvexe ein vergangenes Moränenkörperstadium hindeutet.

Unterhalb jenes Bereiches lässt sich anhand des Längsprofiles eine Zunahme des Bachgefälles erkennen, die auf der Höhe von 4728,30 m ü. NN (E 8732721,5810321800 N 4014252,5448737300) ein Maximalgefälle von 30,63° vorweist. Dieser gemessene Wert bildet das höchste Gefälle im gesamten Längsprofil des Bachlaufes. Datenfehler SRTM-Höhenmodell im sowie ungenaue Gletscherbachlaufprofilverortungen sind hier zwar nicht gänzlich auszuschließen, aber aufgrund der auf einer langen Distanz erkennbaren Zunahme des Gefälles als unwahrscheinlich Höhendistanz einzustufen. Die des Bachlaufes bis zum angrenzenden Moränenkörperhang bestätigt zudem, dass die Abflussdynamiken in

diesem Bereich intensiv den angrenzenden Moränenkörper eingeschnitten haben. Infolgedessen verdeutlicht die Morphologie die an dieser Lokalität zu erkennenden intensiven glazifluvialen Erosionsbedingungen in das Lockergestein, die schließlich ein derartiges Bachgefälle haben entstehen lassen können. Weiter bachabwärts reduziert sich das Bachgefälle zunehmend, bis es auf einer Höhe von 4645,18 m ü. NN (E 8732840,1710985100 N 4014522,8507232500) nur noch ein Gefälle von 5,62° misst. Die Lokalität der verorteten Gefälleabnahme geht mit der hier zunehmenden Breite der Talschaft einher, die dadurch eine Reduktion der talhängebezogenen Gebundenheit des Gletscherbachlaufes induziert. In diesem Bereich und ca. 30 m weiter bachabwärts bildet dieser Lauf eine Konfluenz mit dem orographisch linken Gletscherbachabfluss. Infolgedessen erhöht sich im Anschluss dieser Konfluenz der Gesamtabfluss des hier untersuchten Gletscherbachlaufes. Insgesamt lässt sich anhand der Gefälleschwankungen im Längsprofil (Abbildung 54) in diesem oberen Gletscherbachbereich eine konvexe Formengestalt erkennen. Der Form entsprechend lässt sich diese auf holozäne und pleistozäne Moränenkörperakkumulationen zurückführen, die ebenfalls mittels Satellitenbildaufnahmen (33°53'35.10"N, 78°26'51.84"E) bestätigt werden können.

Im angrenzenden Bachbereich zwischen den Höhen von 4645,18 m ü. NN und 4476,04 m ü. NN lässt sich im oberen Abschnitt ein Anstieg des Bachgefälles erkennen, das jedoch wieder abnimmt und im Anschluss Gefälleschwankungen unterliegt. Das höchste Gefälle in diesem Bachabschnitt beträgt 20,90°, welches sich auf einer Höhe von 4568,93 m ü. NN (E 8733087,5728809500 N 4014806,7854391300) verorten lässt. Aufgrund dieser Gefälleschwankungen entstehen kleinräumige konvexe Formen im Längsprofil, die ebenso Hinweise auf vergangene Moränenakkumulationen liefern. Rezente Hangrutschungsprozesse mit anschließender Akkumulation von Sedimenten im angrenzenden Gletscherbachbett, die derartige Schwankungen induzieren können, lassen sich in diesem Bereich nicht verorten. Die hier zum Teil schlangenlinienförmig auftretenden Bachverwilderungen (braided river) verdeutlichen jedoch, dass dieser Bereich erhöhten Sediment- und Abflussschwankungen ausgesetzt ist, die durch die bachaufwärts zu lokalisierende Bachkonfluenz, aber auch durch die hier verorteten glazifluvialen Einschneidungen und die Sedimenttransportaufnahme von

Moränensedimenten, verstärkt werden können. Datenfehler im SRTM-Höhenmodell sowie der ungenauen Verortung des Gletscherbachlängsprofiles können hier jedoch nicht gänzlich ausgeschlossen werden. Insgesamt bilden diese kleinräumig konvexen Formen mittels einer großskaligen Betrachtung eine nicht sonderlich intensiv ausgeprägte konvexe Formengestalt aus. Mittels dieser Analyse lässt sich zeigen, dass sich die zuvor genannten kleinräumigen Formen lediglich auf eine glazifluviale Abtragung der hier verorteten Lockermaterialien im Bachbett zurückführen lassen. Die Genese dieser Lockermaterialien ist einem hier im Holozän bis Pleistozän akkumulierten Moränenkörper zuzuordnen (vgl. Kuhle 2013: 157-158).

Der bachabwärts liegende Bereich zwischen den Höhen von 4476,04 m ü. NN und 4246,29 m ü. NN unterliegt, im Vergleich zu den vorherigen Abschnitten, nur noch geringen Gefälleschwankungen. Der maximale Gefällewert von 11,56° lässt sich im dieses Bereiches. oberen Abschnitt nahe des Beginns des historischen Sanderformenschatzes (33°53'53.11"N, 78°27'17.59"E), verorten. Weiter bachabwärts fallen die Gefälleschwankungen deutlich geringer aus und nehmen ab (Abbildung 54). Die Schwankungen lassen sich durch Bachbettverwilderungen (braided river) erklären, die durch die glazifluvialen Erosionen und Sedimentakkumulationen im Sander und der damit einhergehenden Gleichgewichtsveränderungen im Bachlauf entstehen können. Hangrutschungsprozesse lassen sich in diesem Längsprofilbereich, aufgrund der weitestgehend nicht vorhandenen Schutthänge, nicht verorten. SRTM-Höhendatenfehler sowie die ungenaue Verortung des Gletscherbachlängsprofiles können hier nicht ausgeschlossen werden. Insgesamt weist der Gletscherbachlauf in diesem Bereich ein ausgeglichenes und idealtypisches Sander-Längsprofil vor (vgl. Church 1972), welches eine Tendenz zu einer konkaven Längsprofilform ausprägt. Schließlich weist das Längsprofil dieses Gletscherbaches auf einer Höhe von 4246,29 m ü. NN kein Gefälle mehr vor und mündet somit in den angrenzenden Pangong Tso.

Abbildung 54: Längsprofil des Unbenannten Pangong Tso Gletscher I Gletscherbaches nach SRTM-Höhenmodell.

Zusammenfassend lässt sich mittels der Anwendung der Mikro-, Meso- und Makroebenenanalyse zeigen, dass die in dieser Talschaft verorteten Moränenkörper einer intensiven glazifluvialen Erosion unterlagen. Verwilderte Bachbettformen (braided river) prägen den oberen Gletscherbachbereich. In diesem weist das Gletscherbachlängsprofil Vereinzelte konvexe Formengestalten vor. Hangrutschungsprozesse führen dem Bachlauf im Oberlaufbereich Sedimente zu. Ebenfalls unterliegt der obere Gletscherbachbereich intensiven glazifluvialen Erosionsprozessen, die die hier im Holozän und Pleistozän abgelagerten Moränenkörper einschneiden und umlagern. Weiter bachabwärts weist das Längsprofil eine ausgeglichenere Formengestalt mit kleinräumigen konvexen Formen vor. Der Bachlauf bildet hier verwilderte Bachbettformen (braided river) in Schlangenlinienform aus. Ebenfalls zeigt sich, dass der Bachlauf in die abgelagerten Moränenkörper

eingeschnitten hat, die sich mittels einer Terrassenabstufung erkennen lassen. Der unterste Längsprofilbereich, hier sind historische und rezente Sanderformen ineinander verschachtelt, weist ein ausgeglichenes und geringfügig konkaves Längsprofil vor. In diesem Sanderbereich wurde eine Mikroebenenuntersuchung durchgeführt, dessen Moränenkörper des Untersuchungsgebietes in das Sirkung- (IV) bis zum Nauri-Gletscherstadium (V) (Kuhle 2013: 194 (Table 1); vgl. Tabelle 17) einzuordnen sind. Anhand dieser Untersuchung konnten hier vier glazifluviale Terrassenordnungen rekonstruiert werden. Die Bachbettschottersohle weist in diesem Bereich ein fortgeschrittenes Entwicklungsstadium, von einer Kaskadenform (cascade) zur Stufen-Becken Sequenzabfolge (step-pool), vor. Ebenfalls zeigt sich, dass diese Sohle Bachverwilderungen (braided river) vorweist, welches ein typisches Merkmal der Oberflächenformen von Sandern ist.

All jene Formen sind das Resultat von holozänen und pleistozänen Gletscherschwankungen (nach Kuhle 2013: letzte Hochglazial (0) bis zum rezenten Gletscherstadium (XII)), die den Prozess der Moränenkörperakkumulation am Talschaftsgrund induzierten. In der darauffolgenden Abschmelzphase des glazifluvial Gletschereises wurde diese eingeschnitten. Diese mehrmalige Prozessabfolge hinterließ schließlich die hier rekonstruierten Terrassenordnungen. Die dadurch in der Talschaft einflussnehmenden Abfluss- und Sedimentschwankungen des Bachlaufes, lassen sich durch Bachverwilderungen (braided river) verdeutlichen. Im Sanderbereich führten diese schließlich zu der deutlich erkennbaren Verschachtelung von historischen sowie rezenten Sanderformen.

3.4.2 Morphologie und Terrassenbildungen des Unbenannten Pangong Tso Gletscher II Gletscherbachsystems auf der Mikro-, Meso- und Makroebene

Westlich des Unbenannten Pangong Tso Gletscher I (33°52'1.31"N, 78°25'41.23"E) lokalisiert sich der Unbenannte Pangong Tso Gletscher II (33°52'16.95"N, 78°24'58.33"E), der ebenfalls am Südufer des Pangong Tso verortet ist. Das

Gletschernährgebiet ist abgegrenzt durch die Pangong Range, die hier eine maximale Höhe von ca. 6117 m ü. NN (33°52'2.52"N, 78°25'15.96"E) vorweist. Des Weiteren ist das Nährgebiet, ebenso wie das des Nachbargletschers, durch nordwestlich verlaufende Moränenstadien abgegrenzt, die ein Resultat vorhergehender Glazialstadien sind (vgl. Kuhle 2013: 157-158). Das Gletschernährgebiet ist hier auch kleinräumig ausgeprägt. Aufgrund der Nord-Ost Exposition sowie der verorteten Höhe über NN tritt innerhalb dieses Nährgebietes eine Metamorphose von Schnee zu Eis auf. Auch tragen hinabstürzende oder rutschende Schnee- und Eislawinen auf den Gletscherkarboden zur Entwicklung des Eises im Gletschernährgebiet bei. Rezent lassen sich Hängegletscher-Eismassen erkennen, welche sich im anschließenden Kargrund auf einer Höhe von ca. 5809 m ü. NN sammeln (33°52'16.95"N, 78°24'58.33"E). Die hier akkumulierten Eismassen fließen als eine vom Obermoränenmaterial freigelegte Gletschereiszunge bis auf eine Höhe von ca. 5401 m ü. NN (33°53'7.67"N, 78°25'27.32"E) hinab. Die Länge dieser vom Obermoränenmaterial freigelegten Gletschereiszunge beträgt ca. 1,81 km. Unterhalb dieser freigelegten Gletschereiszunge lagern sich Moränenkörperakkumulationen ab. Ob es sich dabei ausschließlich um Obermoränenkörper handelt, die die rezente Gletschereiszunge bedecken, kann nicht ausgeschlossen werden. Teils vom Obermoränenkörper freigelegte Eismassen sowie die in diesem Bereich nicht zu lokalisierenden Gletscherbachläufe geben jedoch Hinweise auf eine mögliche Gletschereisschuttbedeckung. Falls diese Obermoränenschuttbedeckung zutreffend ist, beträgt die Gesamtlänge der Gletschereiszunge ca. 2,08 km, die bis auf eine Höhe von ca. 5347 m ü. NN (33°53'15.09"N, 78°25'31.70"E) talabwärts reicht. Mithilfe von Kartenmaterialien lässt sich jedoch zeigen, dass diese Gletscherzunge während der 80er Jahre weiter talabwärts reichte (vgl. Karte 12). Direkt unterhalb dieser Lokalität Gletschereisschmelzprozesse Wasserdynamiken die den setzen frei. Hauptgletscherbachlauf formen. Dieser lässt sich eindeutig mittels eingeschnittener Moränenkörper erkennen. Jedoch lassen sich noch weitere Gletscherbachläufe, die im Vergleich rezent keinen immensen Einfluss auf den Abfluss und somit das Gleichgewicht des Gletscherbachlaufes haben, verorten.

Dazu zählt das orographisch rechts dieses Gletscherbachlaufes verortete Bachsystem, welches sich auf einer Höhe von ca. 5456 m ü. NN (33°53'4.15"N, 78°25'36.73"E) befindet. Anhand der weitestgehenden Trockenlegung dieses Bachlaufes, erkennbar mittels Fernerkundungsdaten (Google Earth), hat dieser jedoch keinen nennenswerten Einfluss mehr auf das Gesamtabflussverhalten des Hauptgletscherbachabflusses. In vergangenen Gletschereisstadien, die während des Gletschereisrückzuges ebenfalls Wassermassen freisetzten, wurde das Landschaftsbild dieses Bachlaufes maßgeblich beeinflusst. Gletschereisrückzugsstadien induzierten schließlich die hier verorteten Tiefenerosionsformen (Photo 143).

Orographisch links des Hauptgletscherbachlaufes lassen sich weitere kleinräumigere Gletscherbachläufe erkennen, die eher der Gestalt von Rinnen ähneln. Dazu zählt der westlichste Bachlauf, der auf einer Höhe von ca. 5310 m ü. NN (33°53'23.68"N, 78°25'30.20"E) beginnt. Östlich angrenzend, also direkt orographisch links des Hauptgletscherbachlaufes, befindet sich ein weiterer Bachlauf. Dieser beginnt auf einer Höhe von ca. 5282 m ü. NN (33°53'20.87"N, 78°25'35.75"E). Diese Gletscherbachläufe, die als Rinnsalsystem klassifiziert werden können, schneiden rezent den Endmoränenkörper des Gletschers ein. Die mittels der Gletscherschmelze kleinräumig freigesetzten Wasserdynamiken bilden schließlich nahe einer Höhe von ca. 4886 m ü. NN (33°53'42.17"N, 78°25'54.90"E) eine Konfluenz mit dem Hauptgletscherbachlauf.

Deutlich weiter bachabwärts der Hauptgletscherbachentstehung konnte mithilfe der Mikroebenenanalyse am 25.08.13 um 11:45 Uhr auf einer Höhe von ca. 4471 m ü. NN (ca. 33°54'22.93"N, 78°26'41.84"E, Garmin-GPS-Messung) der orographisch linke Hauptgletscherbachabfluss einschließlich der morphologischen und morphometrischen Gegebenheiten untersucht werden. Die gesammelten Geländedaten weisen folgende Ergebnisse vor: Die Gletscherbachbreite des hier untersuchten orographisch linken Bachlaufes variiert an diesem Untersuchungsstandort zwischen ca. 3,5 m bis 6 m. Die Bachtiefe beträgt ca. 0,5 m bis 1 m. Naturgemäß unterliegt diese Bachbreite und Bachtiefe den jahreszeitlichen Abflussschwankungen. Der schlangenlinienförmige Bachlauf ist hier durch wallartige Formen im Sanderformenschatz und großräumigen konvexen Akkumulationskörpern, die allesamt als Moränenkörper klassifiziert werden können, gebunden (Photo 144). Die Ablagerung dieser lässt sich in das Sirkung- (IV)

bis zum Nauri- Gletscherstadium (V) (Kuhle 2013: 194 (Table 1)) einordnen. Überwiegend prägen Schotter und Gerölle die Formengestalt des Bachlaufes und der angrenzenden Terrassenordnungen, die aber auch zum Teil in feinere Sedimentablagerungen verkittet sind. Die Gletscherbachabflussdynamiken schneiden in diese Sedimentmatrix ein und prägen schließlich den hier verorteten Gletscherbachbettformencharakter. Dieser lässt sich hier in ein fortgeschrittenes Entwicklungsstadium vom Kaskadenformenschatz (cascade) zur Stufen-Becken Sequenzabfolge (step-pool) klassifizieren. Die hier zum Teil chaotisch gebildeten Stufen, lateral abgegrenzt durch Blöcke, weisen Breiten von ca. 1 m bis 2 m und Längen von ca. 1 m vor. Die direkt angrenzenden Becken - diese sind ebenfalls durch chaotisch abgelagerte Blöcke lateral voneinander getrennt - weisen Breiten von ca. 1 m bis 2 m und Tiefen von 1 m vor. Insgesamt bilden die hier untersuchten Stufen-Becken Abfolgen eine Sequenzlänge von ca. 2 m bis 3 m und eine Breite von ca. 1 m bis 2 m (Photo 145). Der hier zum Teil verwilderte Gletscherbachlauf (braided river) schneidet in den im Spätglazial bis Grundmoränenkörper (IV)Neoglazial abgelagerten (Sirkungbis Nauri-Gletscherstadium (V) (vgl. Kuhle 2013: 194 (Table 1)), der zum Teil durch chaotische Blockakkumulationen infolge einer Sanderausprägung überlagert wurde, ein. Dies lässt sich anhand der hier verorteten feinkörnigen und chaotisch abgelagerten Sedimentmatrix, die die Sohle des Bachlaufes prägt, bestätigen (Photo 145). Des Weiteren lässt sich die Intensität der Tiefenerosionsprozesse anhand der Terrassenabfolgen belegen. Insgesamt konnten an diesem Untersuchungsstandort drei glazifluviale Terrassenordnungen rekonstruiert werden (siehe Karte 10a und 10b (Anhang)). Ca. 50 cm oberhalb der benetzten Bachbreite lokalisiert sich die erste Terrassenschotterebene, die einschließlich des Baches eine Gesamtbreite von 4 m bis 7 m misst. Naturgemäß variiert diese der Morphologie entsprechend sehr stark. Bis zu 1 m oberhalb dieser lokalisiert sich die zweite Terrassenschotterebene, die hier eine Breite von ca. 8 m bis 9 m misst. Ca. 1 m oberhalb dieser lassen sich Reste einer dritten buckelartigen Terrassenschotterfläche finden. Ob jedoch oberhalb noch weitere Terrassenabstufungen zu finden sind, lässt sich allein anhand dieser Lokalität nicht bestätigen. Jedoch zeigt sich, dass diese dritte Terrassenordnung im gesamten Sanderbereich zu den höchstgelegensten Flächen zählt, die infolge von glazifluvialen

Tiefenerosionsprozessen voneinander getrennt wurden. Demnach kann die gesamte Sanderbreite auch als Maß der Gesamtbreite dieser dritten buckelartigen Terrassenschotterfläche angenommen werden (Photo 145).

Mithilfe der Mesoebenenanalyse lässt sich zeigen, dass der Oberlauf des Gletscherbaches sich aus einem Hauptgletscherbach und zwei westlich angrenzenden kleinräumigen Gletscherbachläufen zusammensetzt (siehe oben). Glazifluvial schneiden diese in das hier abgelagerte Lockermaterial des Podestmoränenkörpers ein. Die Tiefeneinschneidungsprozesse des Hauptgletscherbachlaufes (33°53'16.48"N, 78°25'36.38"E) sind im Vergleich zu den westlich Angrenzenden deutlich intensiver ausgeprägt und zeigen somit, dass diese durch aktive Gletschereisschmelzprozesse nahe der Höhe von ca. 5347 m ü. NN (33°53'15.09"N, 78°25'31.70"E) genährt werden. Aufgrund der aktiven Abfluss- und Sedimentschwankungen formen sich im Oberlauf dieses Hauptgletscherbachlaufes zum Teil Bachverwilderungen mit vereinzelten Verzweigungen aus (braided river). Nach einer zuerst nordöstlich und später nördlich ausgerichteten Fließrichtung des Bachlaufes bildet der Hauptgletscherbach schließlich nahe einer Höhe von ca. 4886 m ü. NN (33°53'42.17"N, 78°25'54.90"E) eine Konfluenz mit den östlich in den Podestmoränenkörper einschneidenden Bachläufen. Im Bereich nahe dieser Konfluenz beginnend, nimmt die Breite der Schottersohle zu. Naturgemäß ist diese mit den angrenzenden Terrassenordnungen verschachtelt, die hier ebenfalls an Mächtigkeit zunehmen. Diese auffindbare Terrassenbreitenausdehnung von ca. 110 m (33°53'43.61"N, 78°25'56.86"E), die die Breite eines älteren Stadiums und somit einer höheren Terrassenordnung bildet, verdeutlicht, dass die Gletschereisschmelzprozesse in den vergangenen Jahrzehnten deutlich intensiver ausgeprägt waren. Wie auch schon anhand der Formengestalten im oberen Bereich aufgezeigt, haben vergangene Gletschereisschmelzprozesse dieses mit Moränenkörper ausgekleidete Landschaftsbild (Mittelmoräne: 33°53'34.49"N, 78°25'58.48"E; Ufermoränenreste: 33°53'50.00"N, 78°25'51.38"E; 33°53'53.22"N. 78°26'26.41"E) umgestaltet.

Unterhalb dieses Abschnittes nehmen die Terrassenverschachtelungen an Mächtigkeit zu. Der rezente Gletscherbachlauf ist an diesen gebunden. Demnach unterliegt auch die Fließrichtung der Gebundenheit der Terrassenabfolgen, die unterhalb der Konfluenz

in Richtung Nordost fließt. Bachverwilderungen mit zum Teil geformten Verästelungen (braided river) prägen diesen Gletscherbachbereich. Nahe der Höhe von ca. 4729 m ü. NN (33°53'51.49"N, 78°26'12.10"E) formten historische Gletscherbachabflussdynamiken eine Konfluenz mit dem orographisch rechts angrenzenden Bachlauf, dessen Abfluss ebenfalls ein Resultat von Gletscher- und Schneeschmelzprozessen ist. Dies lässt sich mittels der hier angrenzenden Bachbettformen, die zum Teil Formen eines historischen Bachbettes erkennen lassen (ca. 33°53'49.54"N, 78°26'9.30"E), verdeutlichen. Auch die historisch geformten Terrassenabfolgen sowie die dazugehörigen Breiten nehmen unterhalb dieser Konfluenz an Mächtigkeit zu. Allesamt sind diese jedoch das Resultat der Abfluss- und Sedimentdynamiken der beiden Gletscherbachläufe, die einst die zuvor genannte Konfluenz bildeten. Weiter unterhalb fließt der hier untersuchte Hauptgletscherbach, dieser gestaltet den orographisch linken Talbodenbereich um, in Richtung Nordost, bis er schließlich auf einer Höhe von ca. 4639 m ü. NN (33°54'1.49"N, 78°26'19.40"E) den Beginn des Sanderbereiches erwirkt und seine Fließrichtung in Norden ändert. Die Bachbettsohle weist hier zum Teil verwilderte Bachbettformen (braided river) vor, auf einer längeren Distanz betrachtet lässt sich jedoch ein gestreckter Lauf erkennen.

Vom Beginn des Sanderbereiches auf einer Höhe von ca. 4639 m ü. NN (33°54'1.49"N, 78°26'19.40"E) nimmt die Schottersohlenbreite an Mächtigkeit zu und die Gebundenheit durch die abgrenzenden Talflanken reduziert sich. Deutlich weiter bachabwärts lässt sich schließlich die hier großräumige Sanderausprägung beobachten, die aufgrund ihrer Verfestigung als historisch klassifiziert werden kann. Die auf dem Sander teils trockengelegten Bachläufe bestätigen dies (siehe Karte 10a, 10b und 10c (Anhang)). Im oberen Sanderbereich lassen sich kleinräumige aneinandergereihte Mäanderbögen im Gletscherbachlauf erkennen, die einer Schlangenlinienform ähneln. Weiter bachabwärts im unteren Sanderbereich nimmt die Intensität dieser Mäanderbögenausprägung ab. Innerhalb dieser Schlangenlinienform, also in einer vermehrten kleinskaligen Betrachtung, sind für die an der Oberfläche der Sanderform charakteristischen verwilderten Bachbettformen (braided river) zu erkennen (Photo 144, 145). Die Mäanderbögen sowie die Bachlaufverwilderungen (braided river) sind das Resultat einflussnehmender Faktoren, dazu zählen u. a. Abflussund
Sedimenttransportschwankungen des Gletscherbachlaufes sowie das Gefälle des Sanderformenschatzes (Church 1972), die allesamt das Gleichgewicht des Gletscherbachlaufes verändern können. Des Weiteren lässt sich anhand der im Sanderbereich verorteten Bachbettmorphologie erkennen, dass die Gletscherbachabflussdynamiken Tiefenerosionsprozesse induzieren und somit die Bachsohle einschließlich ihrer Sander- und Moränenkörpersedimente abtragen, die schließlich eine Terrassenordnungsabfolge formen.

Unterhalb einer Höhe von ca. 4377 m ü. NN (33°54'32.69"N, 78°26'54.90"E) bildet der Gletscherbachlauf, der jedoch zuvor auf einer Höhe von ca. 4448 m ü. NN (33°54'23.46"N, 78°26'42.64"E) einen Zustrom von Abflussdynamiken aus der angrenzenden erhalten orographisch links Talschaft hat, einen rezenten Sanderformenschatz. Dieser überlagert den hier zuvor sedimentierten historischen Sanderformenschatz und bildet somit eine ineinandergreifende Formenverschachtelung aus (vgl. Abbildung 55), die ebenso eine Sanderabfolge formt. Orographisch links und rechts dieses Bachlaufes sind noch weitere überlagernde rezente Sanderformenausprägungen erkennbar, dessen einflussnehmenden Formungsprozesse sich jedoch nicht auf den hier behandelten Gletscherbachlauf beziehen. Die Bachlaufform in diesem unteren Sanderbereich weist ebenfalls, wie auch schon weiter bachaufwärts, Bachverwilderungen (braided river) sowie vereinzelte Verästelungen auf. Auch hier ist eine deutliche Laufaufteilung erkennbar. Schließlich mündet der nordöstlich fließende Hauptbach dieser Bachlaufströme auf einer Höhe von ca. 4251 m ü. NN (33°54'48.06"N, 78°27'30.80"E) in den Pangong Tso. Alle weiteren Bachverästelungen sowie Bachaufteilungen dieses Gesamtlaufes münden ebenso in diesen See. Dieser bildet die absolute Erosionsbasis für den hier untersuchten Gletscherbachlauf (Abbildung 55).

Abbildung 55: Lauf des Unbenannten Pangong Tso Gletscher II Gletscherbaches. Die beiden Pfeile (↓) zeigen den Beginn und das Ende des untersuchten Bachabschnittes an; Google Earth (Bildmitte: 33°53'58.77"N, 78°26'5.57"E).

Mithilfe der Makroebene wurde eine Längsprofilanalyse des hier untersuchten Gletscherbachsystems durchgeführt. hier Das untersuchte Längsprofil des Gletscherbaches bezieht sich auf den Hauptgletscherbach des Unbenannten Pangong Tso Gletscher II, welches auf einer Höhe von 5286,98 m ü. NN (WGS 84/Pseudo Mercator: E 8730461,5751210000 N 4013784,1074968400; umgewandelt in WGS 84: E 78.4270707035 N 33.8880823928; siehe Tabelle 10) beginnt und auf einer Höhe von 4244,13 m ü. NN (WGS 84/Pseudo Mercator: E 8733975,4930478600 Ν 4017175,3189065900; umgewandelt in WGS 84: E 78.4586367653 N 33.9133674811; siehe Tabelle 10) nach dem verwendeten SRTM-Höhenmodell in den Pangong Tso endet. Teils erwies sich die genaue Verortung des Hauptgletscherbaches im historischen sowie rezenten Sanderbereich als problematisch, konnte jedoch aufgrund der abgrenzenden Terrassenabstufung und der vorhandenen Mehrläufigkeit des Gletscherbaches zugeordnet werden. Der obere Bereich dieses Gletscherbachlaufes zwischen den Höhen von 5286,98 m ü. NN bis auf 4974,14 m ü. NN weist das höchste Gefälle sowie die intensivsten Gefälleschwankungen des gesamten Laufes vor. Am Beginn dieses Bereiches beträgt das Gefälle 19,62° und steigt bis zum Maximalwert des gesamten Laufes auf 24,31° an (E 8730726,2609218200 N 4014054,7828174600).

Im Anschluss reduziert sich das Gletscherbachgefälle und bildet vereinzelt nur noch ein Gefälle von 4,91° aus. In diesem Bereich der Gefälleabnahme fließt der Bachlauf schlangenlinienförmig die Talschaft hinab und bildet zum Teil Bachverwilderungen (braided river) aus. Diese Formen lassen auf Veränderungen im Gletscherbachgleichgewicht schließen, die schließlich auch zu Sedimentationsprozessen im Bachbett führen können und somit eine Reduktion des Bachgefälles induzieren. Datenfehler im SRTM-Höhenmodell sowie die ungenaue Verortung des Gletscherbachlängsprofiles lassen sich hier jedoch nicht ausschließen. Im angrenzenden Bereich steigt das Gefälle intensiv an und sinkt dann wieder, bis es schließlich Gefällewerte zwischen 7,24° bis 17,75° vorweist. Hangschuttzufuhren beeinflussen diesen Bachlaufbereich nicht. Der Bachlauf bildet hier ebenfalls verwilderte Bachbettformen (braided river) aus. Mittels dieser Gefälleschwankungen lässt sich im Gletscherbachlängsprofil insgesamt eine leicht konvexe Formengestalt mit einem kleinräumigen konkaven Knick erkennen. Diese verdeutlicht den hier auch fernerkundlich erkennbaren Moränenkörper, der glazifluvial eingeschnitten und somit zurückverlegt wird.

Im angrenzenden Bereich zwischen 4974,14 m ü. NN bis 4737,50 m ü. NN erhöht sich zuerst das Gefälle und schwankt dann zwischen den Gefällewerten von 10,72° und maximal 20,41°. Vereinzelt treten auch Einbrüche des Bachgefälles auf, die aber einen Mindestgefällewert von 6,62° (E 8731075,5949310100 N 4014777,4256555300) vorweisen. Die Entstehung dieses Mindestgefällewertes lässt sich mittels einer historischen Sedimenttransportzufuhr aus den westlich angrenzenden Gletscherbachläufen erklären, die nahe dieses Gefälles eine Konfluenz mit dem hier untersuchten Hauptgletscherbach bildeten. Dies lässt sich ebenfalls an der hier verwilderten Bachbettmorphologie (braided river) verdeutlichen. Die rezente Zufuhr von Hangschutt als Bildungsprozessauslöser kann an dieser Lokalität, aufgrund der breiten Talschaft, gänzlich ausgeschlossen werden. Im untersten Abschnitt dieses Bachlängsprofiles reduziert sich das Bachgefälle auf Werte von 8,91° bis 9,41°. Weitestgehend sind die in diesem Abschnitt auftretenden Gletscherbachgefälleschwankungen ein Resultat der holozänen Moränenakkumulationsphasen, die infolge der Gletschereisschmelzphasen einer glazifluvialen Abtragung, die mit einer Gefällereduktion einherging, unterlagen. Rezent werden diese Akkumulationsformen auch abgetragen. Mittels dieser

Gefälleveränderungen lässt sich schließlich eine leicht konvexe Formengestalt im Gletscherbachlängsprofil erkennen. Wie auch im vorherigen Abschnitt erläutert, können hier Datenfehler im SRTM-Höhenmodell sowie die ungenaue Verortung des Gletscherbachlängsprofiles nicht ausgeschlossen werden.

Weiter bachabwärts zwischen 4737,50 m ü. NN und 4519,66 m ü. NN erhöht sich das Bachgefälle, reduziert sich im Anschluss mit leichten Gefälleschwankungen und steigt wieder an. Im angrenzenden Bereich reduziert sich das Bachgefälle dann wieder mit leichten Gefälleschwankungen und steigt - wie auch zuvor - an. Diese Abfolge von Zunahme und Reduktion des Gefälles setzt sich bis zur Höhe von 4519,66 m ü. NN fort. Dabei werden maximale Gefällewerte von mindestens 1,10° und maximal 15,07° erreicht. Der erste auf einer längeren Distanz andauernde Gefälleeinbruch lokalisiert sich direkt im historischen Konfluenzbereich mit dem aus der orographisch rechten Talflanke historisch abfließenden Bachlauf. Die angrenzenden Gefälleeinbrüche sind nahe dieser Konfluenz verortet. Infolge dieser historischen Konfluenz wurden vermutlich glazifluviale Transportfrachten am Bachgrund sedimentiert. Diese Abfluss- und Sedimentschwankungen lassen sich ebenfalls anhand der Bachbettmorphologie verdeutlichen, die hier einen verwilderten Bachlauf (braided river) erkennen lassen. Angrenzend an dieser lassen sich Moränenstadien erkennen, die allesamt glazifluvial eingeschnitten wurden und somit eine Abfolge von Terrassenordnungen hinterließen. SRTM-Höhendatenfehler sowie die ungenaue Verortung des Gletscherbachlängsprofiles können an diesen Lokalitäten nicht gänzlich ausgeschlossen werden. Der längste Bachgefälleeinbruch in diesem Bereich, dieser weist auf einer Höhe von 4591,03 m ü. NN (E 8731824,9312505600 N 4015654,8483799500) ein Bachgefälle von 4,90° vor, geht ebenfalls mit den glazifluvial eingeschnittenen Moränenstadien einher. Hangrutschungen können aufgrund der hier zunehmenden Breite der Talschaft als Beinflussungsprozesse ausgeschlossen werden. Vielmehr zeigt sich, dass dieser Bereich den Übergang zur sich hier langsam ausprägenden Sanderform bildet. Aufgrund der langen Distanz, die durch die Gefällewerte geprägt wird, sind Datenfehler im SRTM-Höhenmodell und der Verortung des Gletscherbachlängsprofiles kaum vorhanden. Direkt im Anschluss steigt das Gefälle wieder leicht an und unterliegt dann leichten Gefälleschwankungen, bis es sich schließlich auf einer Höhe von 4519,66 m ü.

NN reduziert. Mittels dieser Gefälleschwankungen im Bachlängsprofil lässt sich verdeutlichen, dass in diesem Bereich zwei aufeinanderfolgende, kleinräumige konvexe Formen zu erkennen sind. Diese treppenstufige Abfolge lässt sich mittels Moränenstadien erklären, die hier während vergangener Glazialstadien akkumuliert und in den zwischengeschalteten Interglazialphasen glazifluvial eingeschnitten wurden. Rezent unterliegen diese ebenfalls einer glazifluvialen Tiefenerosion, die auch rückschreitend sein kann.

Der dem zuvor beschriebenen Bachabschnitt angrenzende Bereich, der sich auf Höhen von 4519,66 m ü. NN bis auf 4244,13 m ü. NN bezieht, ist im Sanderbereich zu verorten. Die natürliche Gefälleabnahme an der Oberfläche einer Sanderform, lässt sich durch diese anhand des SRTM-Höhenmodelles Gemessene bestätigen. Aufgrund der chaotischen Blockablagerungen und den dadurch induzierten Bachverwilderungen (braided river) fallen die Gefälleschwankungen in diesem Bachabschnitt unterschiedlich aus. Im oberen Bereich dieses Abschnittes ist das Gefälle intensiver, nimmt jedoch bachabwärts ab und misst auf einer Höhe von 4344,89 m ü. NN (E 8733031,6368152800 N 4016751,5788038700) nur noch ein Gefälle von 0,74° (siehe Abbildung 56). Morphologisch gehen diese Bachgefälleschwankungen mit der im oberen Bereich dieses Bachabschnittes akkumulierten historischen Sanderformengestalt, die nahe dieser Gefällereduktion durch einen rezenten Sanderformenschatz überlagert wird, einher. Dadurch konnte sich eine leicht konvexe Formengestalt ausprägen, die sich anhand des Bachlängsprofiles verdeutlichen lässt (siehe Abbildung 56). Aufgrund dieser morphologischen Beweisführung kann ein Datenfehler im SRTM-Höhenmodell sowie der Gletscherbachlängsprofilverortung ausgeschlossen werden. Unterhalb dieses Gefälleeinbruches erhöht sich zuerst das Bachgefälle, reduziert sich dann im Anschluss wieder und bildet auf einer Höhe von 4302,98 m ü. NN (E 8733372,4742867300 N 4016869,0775864200) ein Bachgefälle von 0,68°. Dieser gemessene Wert bildet das geringste Gefälle im gesamten Längsprofil des Hauptgletscherbaches. Da die kurz oberhalb und unterhalb lokalisierten Bereiche deutlich höhere Gefällewerte zwischen 4,10° bis 5,58° vorweisen, ist mit höherer Wahrscheinlichkeit SRTM-Datenfehler Fehler ein sowie ein in der Gletscherbachlängsprofilverortung an dieser Lokalität zu finden. Insgesamt zeigt sich

jedoch, dass aufgrund dieser Gefälleschwankungen hier eine weitere kleinräumige Formengestalt vorzufinden ist. Kurz unterhalb dieses geringsten Gefällewertes im gesamten Lauf, ist der Bachlauf durch eine Straßenerrichtung verfestigt worden. Unterhalb dieser reduziert sich zuerst das Bachgefälle und steigt dann kleinräumig an. Kurz bevor der Bachlauf in den Pangong Tso mündet, ist anhand dieser Gefälleschwankungen im Längsprofil eine sehr kleinräumige konvexe Formengestalt erkennbar. Diese lässt sich durch die hier vorzufindende Aufschotterung der Transportfracht, die während der einhergehenden Gefälleabnahme einsetzen kann, erklären. Schließlich mündet der Bachlauf laut dem SRTM-Höhenmodell auf einer Höhe von 4244,13 m ü. NN in den angrenzenden Pangong Tso See.

Abbildung 56: Längsprofil des Unbenannten Pangong Tso Gletscher II Gletscherbaches nach SRTM-Höhenmodell.

Zusammenfassend lässt sich mittels der Anwendung der Mikro-, Meso- und die Makroebenenanalyse zeigen. dass dem Gletscherbach angrenzenden Moränenkörper einer intensiven glazifluvialen Erosion unterlagen, die auch rückschreitend sein kann. Überwiegend bilden insgesamt verwilderte Bachbettformen hier untersuchten Hauptgletscherbachlauf. (braided river) den Treppenstufig aneinandergereihte konvexe Formengestalten lassen sich anhand des Gletscherbachlängsprofiles erkennen. Der obere Hauptgletscherbachbereich unterliegt Erosionsprozessen, abgelagerten intensiven glazifluvialen die den hier Podestmoränenkörper einschneiden. Weiter bachabwärts lassen sich zusätzliche holozäne und pleistozäne Moränenkörperstadien auffinden, die allesamt diese Talschaft auskleiden. Moränenkörper unterliegen Diese auch den glazifluvialen Erosionsprozessen mit anschließender Umlagerung dieser Sedimente, die sich durch Bachverwilderungen (braided river) mit zum Teil auftretender Schlangenlinienform erkennen lassen. Innerhalb der Talschaft bestätigen die Terrassenordnungen die intensive glazifluviale Umgestaltung dieser Moränenkörper. Zusätzlich belegt das Gletscherbachlängsprofil das Vorhandensein jener Formen, die sich hier durch aneinandergereihte konvexe Formengestalten kenntlich machen. Im untersten Längsprofilbereich sind historische sowie rezente Sanderformen ineinander verschachtelt, die sich durch ein geringfügiges konvexes Formenprofil erkennen lassen. Es wurde eine Mikroebenenanalyse innerhalb des Sanderbereiches durchgeführt, dessen Moränenkörper in das Sirkung- (IV) bis zum Nauri- Gletscherstadium (V) (Kuhle 2013: 194 (Table 1); vgl. Tabelle 17) eingeordnet werden können. Anhand der hier Geländeuntersuchungen konnten drei glazifluviale Terrassenordnungen rekonstruiert werden. Die Bachbettschottersohle ist in diesem Bereich durch ein fortgeschrittenes Entwicklungsstadium geprägt, welches sich von einer Kaskadenform (cascade) zur Stufen-Becken Seguenzabfolge (step-pool) fortentwickelt. Ebenfalls zeigt sich, dass hier vermehrt Bachverwilderungen (braided river) vorzufinden sind, welche ein typisches Merkmal der Oberflächenformen von Sandern darstellen.

Anhand der am Pangong Tso abgelagerten Moränenkörper und Erratikafunde (Kuhle 2013: 157-158) konnte gezeigt werden, dass dieser gesamte Bereich einschließlich des angrenzenden Pangong Tso Sees von einem mächtigen hochglazialen Eispanzer

bedeckt war (Kuhle 2013: 157-158). Infolge der im Anschluss auftretenden Interglazialphasen schmolzen die Eismassen ab, unterlagen weiteren Gletscherschwankungen und schnitten mittels freigesetzter Abflussdynamiken in die zuvor abgelagerten Moränenkörper ein, bis sie schließlich derartig verschachtelte Terrassenordnungen, wie sie in dieser Talschaft empirisch belegt werden konnten, als Formenrelikt jener Abschmelzphasen hinterließen.

3.4.3 Morphologie und Terrassenbildungen des Unbenannten Pangong Tso Gletscher III und IV Gletscherbachsystems auf der Mikro-, Mesound Makroebene

Das Gletschersystem der Unbenannten Pangong Tso Gletscher III (33°53'35.11"N, 78°23'6.40"E) und IV (33°54'11.06"N, 78°22'55.55"E) befindet sich westlich der Ortschaft Spangmik und somit orographisch links des Unbenannten Pangong Tso Gletscher II. Das Gletschernährgebiet ist abgegrenzt durch den Kammverlauf der Pangong Range, die in diesem Gletschernährgebiet eine maximale Höhe von ca. 6156 m ü. NN (33°53'56.37"N, 78°22'45.74"E) vorweist. Ebenfalls ist das Nährgebiet durch Moränenakkumulationen abgegrenzt, die während des Hochglazials hier abgelagert werden konnten (Kuhle 2013). Aufgrund dieser eng abgrenzenden Kammumrahmung ist das rezente Nährgebiet der zwei verorteten Gletschersysteme kleinräumig ausgeprägt. Wie auch in den vorherigen Gletschersystemen in diesem Vergleichsuntersuchungsgebiet, tragen die Nordost-Exposition sowie die verortete Höhe über NN zur vermehrten Metamorphose von Schnee zu Eis bei. Ebenfalls fördern hinabstürzende oder rutschende Schnee- und Eislawinen in das Gletschernährgebiet die Entwicklung des Gletscherhaushaltes. Insgesamt wird der hier untersuchte Hauptgletscherbach aus zwei aneinander liegende Gletschersysteme genährt. Die Hängegletscher-Eismassen dieser sammeln sich im Kargrund, der am orographisch rechten Unbenannten Pangong Tso Gletscher III auf einer Höhe von ca. 5802 m ü. NN (33°53'35.11"N, 78°23'6.40"E) und am direkt westlich angrenzenden Unbenannten

Pangong Tso Gletscher IV auf einer Höhe von ca. 5835 m ü. NN (33°54'11.06"N, 78°22'55.55"E) beginnt.

Am Unbenannten Pangong Tso Gletscher III reichen diese Eismassen hinab bis auf eine Höhe von ca. 5377 m ü. NN (33°54'21.71"N, 78°24'2.37"E) und bilden somit eine freigelegte Gletschereiszunge von ca. 2,03 km Länge, die in den 80er Jahren weiter talabwärts reichte (vgl. Karte 12). Direkt unterhalb dieser Gletschereiszunge befindet sich ein Gletschersee, der im Anschluss einen Gletscherbach ausprägt. Auf einer Höhe von ca. 5314 m ü. NN (33°54'27.42"N, 78°24'12.99"E) schneidet dieser den hier abgelagerten Podestmoränenkörper glazifluvial ein. Direkt westlich angrenzend lassen sich noch weitere kleinräumigere Gletscherbachläufe erkennen, die ebenfalls diesen einschneiden. Weiter fließen Moränenkörper hangabwärts diese in den Gletscherbachabfluss des Unbenannten Pangong Tso Gletscher IV.

Der angrenzende Unbenannte Pangong Tso Gletscher IV weist eine freigelegte Gletschereiszunge mit einer Länge von 1,04 km vor und reicht bis auf eine Höhe von ca. 5639 m ü. NN (33°54'20.58"N, 78°23'32.51"E) hinab, die ebenfalls in den 80er Jahren weiter talabwärts reichte (vgl. Karte 12). Unterhalb dieser freigelegten Zunge lassen sich Moränenablagerungen finden, die als Obermoräne klassifiziert werden können. Hinweise liefern die teils erkennbaren Eisablagerungen innerhalb dieser Moränen. Demnach kann davon ausgegangen werden, dass jener Gletscher moränenbedeckt mit einer Gesamtlänge von 1,43 km bis auf eine Höhe von ca. 5554 m NN (33°54'30.63"N, 78°23'41.90"E) hinabreicht. Unterhalb dieser setzen ü. Gletscherschmelzprozesse Wasserdynamiken frei und bilden schließlich den hier orographisch links verorteten Gletscherbach, der auf einer Höhe von ca. 5545 m ü. NN (33°54'32.49"N, 78°23'40.77"E) beginnt. Auch orographisch rechts der Gletscherzunge lässt sich ein kleinräumigerer Gletscherbach erkennen. Diese beiden Gletscherbachläufe bilden schließlich eine Konfluenz auf einer Höhe von 5248 m ü. NN (33°54'40.40"N, 78°24'4.93"E).

Allesamt prägen die Gletscherbachabflüsse der Unbenannten Pangong Tso Gletscher III sowie IV eine Konfluenz, die sich auf der Höhe von ca. 5124 m ü. NN (33°54'42.11"N, 78°24'21.02"E) auffinden lässt.

Deutlich unterhalb dieser Konfluenz konnte mithilfe der Mikroebenenanalyse am 25.08.13 um 17:10 Uhr auf einer Höhe von ca. 4465 m ü. NN (33°54'53.92"N, 78°26'13.13"E, Garmin-GPS-Messung) der hier verortete Hauptgletscherbach, einschließlich des angrenzenden Formenschatzes morphologisch und morphometrisch untersucht werden. Die Ergebnisse dieser Datenerhebung sind wie folgt:

Die Gletscherbachbreite des hier verwilderten und zum Teil verzweigten Bachlaufes (braided river) variiert zwischen ca. 5 m bis 6 m. Des Weiteren konnte hier eine Gletscherbachtiefe zwischen 0,5 m bis 1 m gemessen werden. Je nach freigesetzten Abflussdynamiken und der hier verorteten Morphologie entsprechend, unterliegt die Bachbreite sowie Bachtiefe natürlichen Schwankungen. Der Gletscherbach weist hier eine Bachneigung von 8° bis 9° vor. Dieser Gletscherbachlauf und die angrenzenden Terrassenbereiche bestehen hier überwiegend aus chaotisch abgelagerten Schottern und Geröllen, die jedoch bereits glazifluvial umgelagert werden konnten. Aus diesem Grund weist der Gletscherbachformencharakter ein fortgeschrittenes Entwicklungsstadium vom Kaskadenformenschatz (cascade) zur Stufen-Becken Sequenzabfolge (step-pool) vor (Photo 146). Die Stufen dieser Schottersohle weisen Breiten zwischen 2 m bis 3 m und Längen bis 1 m vor. Die Becken bilden identische Größenausprägungen von Breiten zwischen 2 m bis 3 m und Längen bis 1 m. Die Sequenzlänge beläuft sich daher auf ca. 2 m. Der Gletscherbach schneidet in die hier im Spätglazial bis Neoglazial akkumulierte Grundmoräne (Sirkung- (IV) bis Nauri- Gletscherstadium (V) (vgl. Kuhle 2013: 194 (Table 1)), die mit Sanderausprägungen überlagert wurde, ein. Ebenfalls prägen hier sandertypische Verwilderungen (braided river) den Gletscherbachlauf.

Durch die Gletscherschmelze werden Wasserdynamiken freigesetzt, die schließlich auch an diesem Untersuchungsstandort die Erosion forcieren. Naturgemäß beeinflussten derartige Erosionsprozesse auch während des Holozäns und Pleistozäns die Gletscherbachlandschaft. Demnach lassen sich diese anhand der verorteten Terrassenabfolgen verdeutlichen. An diesem Untersuchungsstandort konnten mittels Geländekartierungen vier glazifluviale Terrassenordnungen rekonstruiert werden (siehe Karte 11a und 11b (Anhang)). Kurz oberhalb der benetzten Breite lokalisiert sich die erste Terrassenschotterebene. Diese misst Breiten zwischen 6 m bis 8 m, ist jedoch je nach Lokalität sehr variabel. Ca. 0,3 m bis 0,5 m oberhalb der rezenten

Wasserdynamiken befindet sich die zweite buckelartige Terrassenschotterfläche, deren Breiten hier zwischen ca. 8 m bis 9 m variieren und in der gesamten Sanderfläche zu finden sind. Ca. einen weiteren Meter oberhalb dieser lokalisiert sich die dritte buckelartige Terrassenschotterfläche. Diese orographisch rechts des Gletscherbachs auffindbare Fläche misst eine Breite zwischen 15 m und 20 m. Vermutlich prägte sie, bevor die glazifluviale Einschneidung einen Einfluss nahm, eine deutlich großräumigere Fläche aus. Deshalb lassen sich ca. 65 m bis 75 m orographisch links vom Untersuchungsstandpunkt entfernt ebenfalls Flächenreste dieser Terrassenschotterfläche finden (Photo 147). Ca. 2 m bis 3 m oberhalb des rezenten Gletscherbachwasserstandes lokalisiert sich die vierte buckelartige Terrassenschotterfläche. Die Breite dieser schwankt je nach Lokalität zwischen 20 m bis 30 m (Photo 146, 147). Ebenso wie in der vorherigen Terrassenordnung prägte diese im vergangenen Holozän sowie Pleistozän eine deutliche größere Fläche aus und überlagerte vermutlich den gesamten Sanderformenschatz (Messung: SRTM-Höhenmodell). Anhand einer Sedimentprobenentnahme kann bestätigt werden, dass es sich bei dem vierten Terrassenkörpermaterial um einen glazifluvial umgelagerten Grundmoränenkörper handelt. Dieser weist hier eine bimodale Korngrößenmatrix auf (Photo 148, Diagramm 22).

Diagramm 22: Korngrößen vom 25.08.13. Diese Sedimentprobe wurde orographisch rechts aus der vierten buckelartigen Terrassenschotterfläche des hier untersuchten Unbenannten Pangong Tso Gletscher III und IV Gletscherbachsystems entnommen. Anhand der Korngrößenzusammensetzung sowie der chaotischen Durchmischung der Sedimentfraktionen innerhalb dieser Sedimentprobe lässt sich

verdeutlichen, dass es sich hierbei um einen Moränenkörper handelt. Dieser unterlag jedoch glazifluvialen Auswaschungsprozessen. In allen Kornfraktionen dieser Probe sind Sedimentreste aufzufinden. Die Tonfraktion weist einen Anteil von 8,4 % vor. Die Maxima dieser Sedimentprobe sind mit 30,7 % in der Mittelsandfraktion und mit 28,6 % in der Feinsandfraktion zu finden. Der Sortierungskoeffizient ergibt einen Wert von 3,78.

Mithilfe der Mesoebenenanalyse lässt sich zeigen, dass der Oberlauf des Gletscherbaches sich aus zwei voneinander getrennten Gletscherbachsystemen der Pangong Tso Gletscher Ш und IV zusammensetzt. Unbenannten Die Gletscherschmelzprozesse dieser schneiden in die hier verorteten Moränenkörper ein und bilden schließlich eine Konfluenz auf einer Höhe von 5248 m ü. NN (33°54'40.40"N, 78°24'4.93"E). Dadurch bildet sich der hier untersuchte Hauptgletscherbach. Dieser fließt in Richtung Westen bachabwärts und bildet dabei Bachverwilderungen (braided Auch vereinzelte Laufverzweigungen lassen sich anhand aus. river) des Gletscherbachlaufcharakters erkennen. Ebenso zeigt sich, dass der Gletscherbach zuerst eine gestreckte Laufform vorweist, die jedoch später in eine Schlangenlinienform und großskaligen Mäanderbögen übergeht. Aufgrund der engen Gebundenheit durch abgrenzenden Moränenkörper nahe der Bachkonfluenz (33°54'40.40"N, die 78°24'4.93"E) ist die Schottersohlenbreite zwischen ca. 14 m bis 18 m in diesem oberen Abschnitt noch nicht sonderlich breit ausgeprägt. Weiter bachabwärts ab einer Höhe von ca. 5019 m ü. NN (33°54'45.66"N, 78°24'31.79"E) nimmt diese Schottersohlenbreite jedoch an Mächtigkeit zu und weist Breiten zwischen ca. 55 m bis 76 m vor. Ab dieser Höhe nehmen auch die Bachverwilderungen (braided river) an Intensität zu. Ebenfalls lassen sich hier vermehrt Altarme finden, die rezent einer Verfestigung unterliegen. Des Weiteren lässt sich anhand von fernerkundlichen dass dieser obere Gletscherbachbereich und sein Arbeitstechniken zeigen, entsprechendes Fließgleichgewicht von keinen rezenten Hangrutschungsprozessen beeinflusst werden. Erst ab einer Höhe von ca. 4785 m ü. NN (33°54'52.64"N, 78°25'7.26"E) erfährt der Gletscherbachlauf eine Laufrichtungsänderung, die zuerst in Richtung Südost fließt und dann die Fließrichtung in Nordost ändert. Großskalig betrachtet entsteht dadurch ein Mäanderbogen. Nahe dieser zuvor genannten Lokalität lassen sich Formenrelikte vorfinden, die verdeutlichen, dass das

Gletscherbachgleichgewicht mittels historischer Abfluss- und Sedimentzufuhrraten umgestaltet wurde. Diese wurden aus den orographisch links und rechts lokalisierten Hängen freigesetzt. Historische Bachläufe bestätigen dies (u. a. 33°54'48.73"N, 78°25'3.08"E). Ebenfalls lässt sich anhand des hier verorteten Formenschatzes zeigen, dass die Terrassenbreite sowie die Höhe zwischen den einzelnen Terrassenordnungen im Vergleich zum oberen Gletscherbachabschnitt an Mächtigkeit zunehmen. Daraus lässt sich schließen, dass dieser Bereich einst von Moränenkörpersedimenten ausgefüllt war, welche infolge von Gletscherschmelzprozessen glazifluvial ausgewaschen und umgelagert werden konnten. Kurz unterhalb und oberhalb der Höhe von ca. 4707 m ü. NN (33°54'51.43"N, 78°25'22.06"E) sind am orographisch linken sowie rechten angrenzenden Hang Rutschungsformen zu erkennen. Ob der Gletscherbachlauf jedoch noch rezent von diesen beeinflusst wird, lässt sich mittels der Fernerkundung (Google Earth) nicht eindeutig belegen. Die weiter bachabwärts deutlich ausgeprägten Bachverwilderungen (braided river) sowie Bachverzweigungen bestätigen die Annahme der historischen Hangrutschungsprozessbeeinflussung in diesem, aber auch im talabwärts gelegenen Bereich. Ebenfalls nimmt ab der zuvor genannten Lokalität (33°54'51.43"N, 78°25'22.06"E) die Breite der Schottersohle sowie die angrenzenden Terrassenausprägungen an Mächtigkeit zu. Dieser Formenschatz gleicht einem großräumigen gebundenen Sander. Gebunden ist dieser durch die hier zu findenden Moränenhänge, die allesamt während der Glazialstadien im Holozän abgelagert wurden (vgl. Kuhle 2013). Die während der Interglazialzeiten freigesetzten Gletscherschmelzprozesse bildeten einen Bachlauf, welcher schließlich die in dieser Talschaft akkumulierten Moränenkörper glazifluvial abtrug. Am Talschluss, direkt nach dem Mäanderbogen, lässt sich diese ineinander verschachtelte Formengenese sehr deutlich zeigen. Der hier abgelagerte Endmoränenkörper (33°54'43.29"N, 78°25'53.65"E) (vgl. Photo 147) unterlag einer intensiven glazifluvialen Erosion, die mit der Zeit auch den Talgrund abtrug und umlagerte.

Unterhalb dieses Moränenkörpers auf einer Höhe von ca. 4520 m ü. NN (33°54'49.23"N, 78°25'59.58"E) unterliegt der Gletscherbachlauf keiner Gebundenheit mehr. Infolgedessen bildet sich hier ein freier Sander aus, welcher den Randbereich des orgraphisch rechts angrenzenden historischen Sanders mit rezenten

Sedimentakkumulationen überlagert. Sandertypisch lassen sich in diesem Bereich vermehrt Bachverwilderungen (braided river) erkennen, die jedoch durch sehr intensiv ausgeprägte Bachverästelungen erweitert werden. Demnach unterliegt der Bachlauf im Sanderbereich einer Mehrläufigkeit. Dessen Hauptbachlauf fließt in Richtung Osten bachabwärts. großräumigen Mittels eines Moränenkörpers inmitten des Sanderformenschatzes (Randbereich des Moränenkörpers: 33°54'52.53"N, 78°26'12.86"E) (vgl. Photo 146 & 147) wird der Hauptbachlauf und die Schottersohlenausbreitung auf einer kurzen Distanz blockiert und somit gelenkt. Unterhalb dieses Moränenkörpers lässt sich, wie auch schon weiter bachaufwärts erläutert, eine glazifluviale Sedimentüberprägung eines historischen Sanders erkennen (siehe Karte 11a, 11b und 11c (Anhang)). Ebenso werden Moränenreste durch derartige glazifluviale Sedimentakkumulationen überlagert. Demnach lässt sich in diesem Untersuchungsgebiet eine großräumige ineinandergreifende Verschachtelung von historischen und rezenten Sanderformen erfassen (vgl. Photo 146, 147 & Abbildung 57), die somit eine Sanderabfolge ausprägen. Schließlich mündet auch dieser Hauptbach auf einer Höhe von ca. 4250 m ü. NN (33°55'19.40"N, 78°27'16.27"E) in den östlich angrenzenden Pangong Tso See, der für dieses Untersuchungsgebiet die absolute Erosionsbasis bildet. Aber auch alle anderen Bachverzweigungen dieses Gesamtlaufes münden darin (Photo 149, 150).

Abbildung 57: Lauf des Unbenannten Pangong Tso Gletscher III und IV Gletscherbaches. Die beiden

Pfeile (↓) zeigen den Beginn und das Ende des untersuchten Bachabschnittes an; Google Earth (Bildmitte: 33°54'55.29"N, 78°25'10.93"E).

Mithilfe der Makroebene wurde eine Längsprofilanalyse des hier untersuchten Hauptgletscherbachsystems durchgeführt (Abbildung 58). Dabei bezieht sich der obere Gletscherbachbereich auf den Unbenannten Pangong Tso Gletscher III. Weiter bachabwärts, direkt nach der Konfluenz mit dem Unbenannten Pangong Tso Gletscher IV, ist das hier untersuchte Längsprofil auf den Gletscherbachgesamtlauf ausgerichtet. Demnach beginnt das Längsprofil auf einer Höhe von 5337,92 m ü. NN (WGS 84/Pseudo Mercator: E 8727750,2696741900 N 4016304,3999254400; umgewandelt in WGS 84: E 78.4027146323 N 33.9068745693; siehe Tabelle 11) und endet nach dem hier verwendeten SRTM-Höhenmodell auf einer Höhe von 4245,31 m ü. NN (WGS 84/Pseudo Mercator: E 8733503,0568938300 N 4018232,1347071900; umgewandelt in WGS 84: E 78.4543927991 N 33.9212456344; siehe Tabelle 11), dessen Bachlauf in den Pangong Tso See mündet. Teils erwies sich die genaue Zuordnung des Gletscherbachlaufes in diesem Längsprofil als problematisch, konnte jedoch aufgrund der verorteten Terrassenabstufung und der Bachbettmorphologie entsprechend zugeteilt werden.

Der obere Gletscherbachbereich des Unbenannten Pangong Tso Gletscher III, der sich zwischen den Höhen von 5337,92 m ü. NN (E 8727750,2696741900 Ν 4016304,3999254400) und 5108,00 m ü. NN (E 8728100,5274966200 Ν 4016953,0352759300) auffinden lässt, bildet kurz unterhalb der Gletscherbachentstehung eine Neigung zwischen 12,73° und 21,83° aus. Weiter bachabwärts, kurz vor der Konfluenz mit dem Gletscherbachsystem des Unbenannten Pangong Tso Gletscher IV, weist dieser Gletscherbachabschnitt eine Neigung von 21,83° vor. Infolge der Neigungsveränderungen ist im Gletscherbachlängsprofil eine gering ausgeprägte konvexe Formengestalt zu erkennen. Zurückführen lässt sich diese auf die hier verorteten Moränenkörper. Ebenso übt die Sedimentation der Gletscherbachtransportfracht, freigesetzt infolge der Gletschereisschmelze, einen Einfluss auf die Formengestalt des Längsprofiles aus. Dieser glazifluviale Prozess forciert in diesem oberen Gletscherbachbereich die Genese des hier verorteten, konvexen

Sedimentkörpers. Datenfehler im SRTM-Höhenmodell sowie die ungenaue Verortung des Gletscherbachlängsprofiles sind hier nicht gänzlich auszuschließen, aber aufgrund des morphologischen Beleges als gering einzustufen.

Unterhalb der Gletscherbachkonfluenz der Unbenannten Pangong Tso Gletscher III sowie IV, zwischen 5108,00 m ü. NN und 4683,27 m ü. NN, unterliegt der Gletscherbachlauf intensiven Gefälleschwankungen und weist das höchste Bachgefälle im gesamten Lauf vor. Am Beginn dieses Bereiches steigt das Bachgefälle an, bis es 5061,73 m ü. NN (E 8728266,8341243400 auf einer Höhe von Ν 4017032,3041515400) einen Maximalwert von 25,71° im gesamten Längsprofil misst. Unterhalb dieses intensiven Gefälleeinschnittes reduziert sich das Bachgefälle auf einen Wert von 7,16°. Infolgedessen lässt sich im Längsprofil eine deutliche konvexe Formengestalt erkennen. Der Bachlauf und die Schottersohlenausprägungsbreite sind in diesen Gefällehöhen als gering einzustufen. Ebenso verdeutlicht die hier lateral abgrenzende Morphologie, die enge Gebundenheit dieses Gletscherbachabschnittes. Diese wird durch die hier verorteten holozänen Moränenkörper induziert, die infolge der Gletschereisschmelze einer intensiven glazifluvialen Erosion unterlagen. Bestätigen lässt sich dies anhand des hier verorteten glazifluvialen Moräneneinschnittes. Aufgrund dieser morphologischen Gegebenheiten sind mögliche Fehler im SRTM-Höhenmodell sowie der Verortung des Gletscherbachlängsprofiles als gering einzustufen. Unterhalb dieses Abschnittes unterliegt der Bachlauf leichten Gefälleschwankungen, bis es auf einer Höhe von 4934,36 m ü. NN (E 8728712,4911168300 N 4017170,5638182900) ein Bachgefälle von 4,48° vorweist. Gleich im Anschluss steigt es wieder an und sinkt wieder auf ein Gefälle von 7,90°. Dadurch entsteht schließlich eine leicht konvex ausgeprägte Form im Längsprofil. Die Gletscherbachbettmorphologie weist in diesem Bereich eine verwilderte Bachbettform (braided river) vor, die hier teils schlangenlinienförmig in die Schotterschle einschneidet. Ebenso zeigt sich, dass die Schottersohlenbreite hier an Mächtigkeit zugenommen hat. Morphologisch lässt sich kurz unterhalb dieser Gefälleschwankungen das Ende eines holozänen Gletscherstadiums verorten. Primär lassen sich diese Gefälleschwankungen demnach auf die hier vorzufindende Moränenakkumulation zurückführen, die während des Interglaziales glazifluvial eingeschnitten wurde und eine derartige rezent vorzufindende

Gletscherbachbettmorphologie induzierte. Sekundär verstärken Sedimentationsschwankungen im Bachbett, diese sind typisch für Bachverwilderungen, die Genese der konvexen Formengestalt im Gletscherbachlängsprofil. Ebenso wie in den vorherigen Bachabschnitten, sind hier Fehler im SRTM-Höhenmodell sowie der Gletscherbachlängsprofilverortung als gering einzustufen. Unterhalb dieses Bereiches bis auf eine Höhe von 4683,27 m ü. NN unterliegt das Gletscherbachlängsprofil intensiven Gefälleschwankungen. Das Bachgefälle steigt zuerst auf einen Wert von 15,20° an und reduziert sich direkt im Anschluss wieder auf einen Gefällewert von 6,78°. Weiter bachabwärts lassen sich aufeinanderfolgende Gefälleschwankungen ausfindig machen, bis das Bachlängsprofil ein Gefälle von 1,42° vorweist und direkt im Anschluss auf einer Höhe von 4683,27 m ü. NN (E 8730058,4762666200 Ν 4017245,9516990900) ein Bachgefälle von 4,92° ausprägt. Infolge dieser Gefälleschwankungen leicht lässt sich eine konvexe Formengestalt im Gletscherbachlängsprofil erkennen. Diese kann das Resultat der Verschachtelung einer Moränenakkumulation mit anschließender glazifluvialer Einschneidung und Umlagerung von Sedimenten, die sich mittels der hier vorzufindenden Bachverwilderungen innerhalb einer breiten Gletscherbachschotterflur verdeutlichen lassen, sein. Im unteren Bereich dieses Abschnittes lassen sich jedoch orographisch links und rechts des rezenten Gletscherbachlaufes, historische Bachläufe erkennen. Diese transportierten und lagerten Sedimente im rezenten Bachlauf ab. Aufgrund der morphologischen Gegebenheiten konnte die Genese des Gletscherbachlängsprofiles so um ein Vielfaches verändert werden. Ebenfalls sei hier noch anzumerken, dass aufgrund der unzureichenden Verortung der Gletscherbachsohle, diese konnte mittels des verwendeten Satellitenbildlayers nicht genau ermittelt werden, falsch erfasste Werte aus dem SRTM-Höhenmodell möglich sind. Demnach kann in diesem Abschnitt nicht mit eindeutiger Gewissheit verdeutlicht werden, dass jene konvexe Formengestalt im Gletscherbachlängsprofil, auffindbaren trotz der hier Moränenstadien, sich ausschließlich auf die holozäne Genese dieser Moränenakkumulation zurückführen lässt.

Der anschließende Bereich zwischen 4683,27 m ü. NN und 4515,77 m ü. NN unterliegt, wie auch im vorherigen Abschnitt, intensiven glazifluvialen Gefälleschwankungen.

Ebenfalls lassen sich in diesem Bachabschnitt Bachsteigungen mit einem Maximalwert von 1,39° messen. Dieser Wert, der sich auf einer Höhe von 4603,38 m ü. NN verorten lässt (E 8730560,8425748000 N 4017033,6332631100), weist die höchste gemessene gesamten Gletscherbachlängsprofil Aufgrund Steigung im vor. dieser Gefälleschwankungen lässt sich hier ebenfalls eine leicht konvex ausgeprägte Formengestalt im Gletscherbachlängsprofil erkennen. Die steil abgrenzenden Moränenhänge innerhalb dieses Bereiches verdeutlichen die historischen glazifluvialen Einschneidungsbedingungen, die eine derartige Landschaftsform gestalten konnten. Vermutlich führen jedoch rezente Hangrutschungen dem Gletscherbach Sedimente zu. Sich verändernde Transportbedingungen innerhalb dieser breiten Gletscherbachschotterflur können durch Bachverwilderungen (braided river), die zum Teil eine ausgeprägte Gletscherbachmehrläufigkeit geformt haben, bestätigt werden. Demnach lassen sich die Längsprofilschwankungen in diesem Bereich nicht allein auf die holozänen sowie pleistozänen Moränenakkumulationen zurückführen. Des Weiteren können aber auch vereinzelte Schwankungen, zu nennen wären hier Steigungen im Bachbett, das Resultat von Datenfehlern im SRTM-Höhenmodell sowie der Gletscherbachlängsprofilverortung sein.

Weiter bachabwärts zwischen 4515,77 m ü. NN und 4245,31 m ü. NN erhöht sich das Gefälle auf einen Wert von 10,58°, reduziert sich im Anschluss wieder und unterliegt dann leichten Gefälleschwankungen. Im Anschluss steigt das Längsprofil jedoch auf Gefällewerte von 10,16° bis 11,92° an, die allesamt über eine lange Bachdistanz verteilt sind. Verorten lassen sich diese Werte in Höhen zwischen 4437,37 m ü. NN (E 8731717,9270822800 N 4017445,5030413100) und 4418,34 m ü. NN (E 8731801,9362893200 N 4017494,7498178500). Direkt im Anschluss reduziert sich das Bachgefälle im Längsprofil. Aufgrund dieser Schwankungen lässt sich eine konvexe Formengestalt im Längsprofil verorten. Der Gletscherbach gestaltet in diesem Bereich den hier historisch akkumulierten Sander um, indem er rezent Sedimente auf diesem ablagert. Bestätigen lässt sich dies mittels der Gleichgewichtsveränderungen des Gletscherbachlaufes, die sich durch Bachverwilderungen und der sehr stark ausgeprägten Mehrläufigkeit kenntlich machen (Photo 149 & Abbildung 57). Dieser Formenschatz ist ein typisches Merkmal von Sanderformen (Church 1972). Aufgrund

dieser morphologischen Gegebenheiten entsteht hier eine Verschachtelung von historischen und rezenten Sanderformen, die eine konvexe Form im Längsprofil abbilden. Datenfehler im SRTM-Höhenmodell sowie die ungenaue Gletscherbachlängsprofilverortung sind hier jedoch nicht auszuschließen.

Weiter bachabwärts reduziert sich das Bachgefälle und unterliegt leichten Gefälleschwankungen. Ebenfalls lassen sich in diesem untersten Abschnitt sehr kleinräumige konvexe Formengestalten im Längsprofil erkennen, die allesamt das Resultat von sandertypischen Abfluss- und Sedimentschwankungen sind. Diese Gleichgewichtsveränderungen lassen sich anhand der im untersten Abschnitt des Sanders verorteten Mehrläufigkeit und der Bachverwilderungen (braided river) belegen (Photo 149, 150). Höhendatenfehler sowie die ungenaue Gletscherbachlängsprofilverortung können in diesem Bachabschnitt ebenfalls nicht gänzlich ausgeschlossen werden.

Insgesamt weist der Gletscherbachlauf in diesem Bereich ein ausgeglichenes und idealtypisches Sander-Längsprofil vor (vgl. Church 1972), welches vereinzelt konvexe Formen im insgesamt konkaven Längsprofil erkennen lässt. Schließlich mündet der Bachlauf dieses Längsprofiles auf einer Höhe von 4245,31 m ü. NN in den angrenzenden Pangong Tso See.

Abbildung 58: Längsprofil des Unbenannten Pangong Tso Gletscher III Gletscherbachlaufes nach SRTM-Höhenmodell.

Zusammenfassend lässt sich mittels der Anwendung der Mikro-, Meso- und Makroebenenanalyse zeigen, dass historische Gletscherschmelzprozesse den Talgrund und die angrenzenden Moränenkörper in diesem Untersuchungsgebiet glazifluvial überformten und SO Terrassenabstufungen gestalteten. Rezent lassen sich überwiegend verwilderte Bachbettformen (braided river) in dem hier untersuchten Hauptgletscherbach erkennen. die mit zunehmender talabwärts gelegener Schottersohlenbreite an Intensität zunehmen. Der obere Bereich des Gletscherbaches lässt insgesamt einen gestreckten Bachlauf erkennen, der weiter talabwärts schlangenlinienförmig die Talschaft prägt. Die treppenstufenartig aneinandergereihten konvexen Formengestalten des Hauptgletscherbachlängsprofiles geben Hinweise auf holozäne und pleistozäne Gletscherstadien. Diese lassen sich mittels der glazifluvialen Moränenkörpereinschneidungen, die hier die Terrassenkörper ausbilden, bestätigen.

Ebenfalls bestätigt der im Talschluss lokalisierte Endmoränenkörper den glazigenen Ursprung dieser Talschaft. Weiter bachabwärts ist der Hauptgletscherbach an keinerlei Moränenkörper gebunden. In diesem ungebundenen Hauptgletscherbachbereich prägen vielmehr die rekonstruierten Sanderstadien die Landschaftsform. Mittels Satellitenbildern und dem erfassten Gletscherbachlängsprofil lässt sich zeigen, dass diese Sanderform durch eine Verschachtelung von historischen sowie rezenten Sanderformen geprägt ist. Im Gletscherbachlängsprofil kann diese Verschachtelung durch teils kleinräumige konvexe Formengestalten verortet werden. Innerhalb dieses Sanderformenbereiches wurde eine Mikroebenenanalyse durchgeführt, dessen Moränenkörper in das Sirkung- (IV) bis zum Nauri- Gletscherstadium (V) (Kuhle 2013: 194 (Table 1); vgl. Tabelle 17) eingeordnet werden können. Anhand der Geländeuntersuchungen konnten an dieser Lokalität bis zu vier glazifluviale Terrassenordnungen rekonstruiert werden. Wie auch in den benachbarten Untersuchungsgebieten der Unbenannten Pangong Tso Gletscher I und II ist hier die Bachbettschottersohle durch ein fortgeschrittenes Entwicklungsstadium geprägt, welches sich von einer Kaskadenform (cascade) zur Stufen-Becken Sequenzabfolge (step-pool) fortentwickelt. Des Weiteren lässt sich eine abflussabhängige Mehrläufigkeit des Bachlaufes erkennen, die vermehrt Bachverwilderungen (braided river) ausprägen. Dies ist ein typisches Merkmal der Gletscherbachläufe in Sanderbereichen, die die Oberfläche dieser gestalten.

Anhand der in der Talschaft des Hauptgletscherbachlaufes sowie der in den Randbereichen des Sanderformenschatzes verorteten Moränenkörper - dieser lagert sich orographisch rechts des Mikroebenenuntersuchungsgebietes an - lässt sich zeigen, dass die Talschaft und der Sanderformenschatz von einem mächtigen Eispanzer überlagert war. Moränen- und Erratikafunde belegen die hochglaziale Überprägung des gesamten Bereiches, einschließlich des Pangong Tso Sees (Kuhle 2013: 157-158; vgl. auch Huntington 1906). Die im Anschluss einflussnehmenden Interglazialphasen induzierten eine Eismassenreduktion. Naturgemäß folgten weitere Gletscherschwankungen, die die Moränenkörper überformten. Aber ebenso schnitten die durch Gletscherschmelzprozesse freigesetzten Wasserdynamiken glazifluvial in die zuvor abgelagerten Moränenkörper ein. Durch diese verschachtelten glazialen und

glazifluvialen Prozessabfolgen innerhalb der Glazial- und Interglazialphasen entstanden schließlich die hier empirisch belegten Terrassenordnungen in der Talschaft sowie im proximal angrenzenden ungebundenen Sanderbereich.

4 Zusammenfassung und Diskussion der Ergebnisse

4.1 Prozesse und Formen mit potentiellem Einfluss auf die Gletscherbachsysteme im Hauptuntersuchungsgebiet

4.1.1 Talschaft des Imja-Lake Abflusssystems

Der unterhalb des Imja-Lake angrenzende Imja Khola Gletscherbach ist u. a. durch folgende glazifluviale Prozesse und Zuströme beeinflusst, die im Kapitel 3.1.1 aufgeführt sind:

Der Imja Lake puffert durch seine seit 1956 einsetzenden Wachstumsraten (Watanabe et al. 2009) die Wassermassen zum angrenzenden Gletscherbach. Ebenso nähren die Eis- und Schneelawinen von den angrenzenden Moränen und Gipfelfluren des Imja-Lakes den Wasserhaushalt des Sees, die die Abflussdynamiken des Imja Khola beeinflussen. Durch das Abrutschen der Eis- und Schneelawinen kann ebenfalls ein Wasser- und Druckschwall in den Imja Lake erzeugt werden, der die angrenzende Landschaftsform umgestaltet (siehe dazu Kapitel 3.1.1.1).

Des Weiteren formten historische Abschmelzprozesse des Imja Peak Gletschers sowie des Lhotse Gletschers einen Bachlauf im benachbarten Eisrandtal (vgl. Hambrey et al. 2008) und bildeten schließlich einen historischen See, der vermutlich vereinzelt auch mit Eis- und Schneemassen überprägt wurde (vgl. Schneider 1988). Die im See gesammelten Wassermassen formten schließlich eine Abflussrinne (Photo 19, 20 und 21), die in den angrenzenden Imja Khola Gletscherbach mündete und die Abflussdynamiken veränderte. Dies konnte mithilfe von Feldforschungen und anschließenden Sedimentanalysen belegt werden (siehe dazu Kapitel 3.1.1.3).

Zudem wird ein periodischer Bachlauf, orographisch links des Imja Khola Gletscherbaches, durch Eis- und Schneeschmelzprozesse aus den angrenzenden Hängen genährt. Schließlich bildet dieser Bachlauf mit dem Imja Khola Gletscherbach eine Konfluenz und verändert somit dessen Gesamtabfluss (siehe dazu Kapitel 3.1.1.4). Überdies bilden die Abflussdynamiken des Chukhung Gletscherbaches unterhalb des Hauptuntersuchungsgebietes des Imja Khola Gletscherbaches eine Konfluenz mit diesem Lauf. Kurz unterhalb der Gletscherzunge prägen die Abfluss- und

Sedimentfreisetzungen der Gletscherschmelze einen gebundenen Sander aus. Der unterhalb der Endmoräne angrenzende Bachlauf sowie Sanderformenschatz des Chukhung Gletschers wurde durch einen Gletscherseeausbruch (Hambrey et al. 2008: 2365; Westoby et al. 2014) oder mindestens zwei Gletscherseeausbrüche umgeformt. Dies lässt sich mithilfe von historischen Gletscherseepegelständen, die sich durch Verwitterungserscheinungen an den Ufermoränen kenntlich machen, verdeutlichen. Ebenso lässt sich zeigen, dass der untere Sanderformenschatz in seiner Form durch verlagerte Mäanderbögen und verzweigte Bachläufe (braided river) gekennzeichnet ist (siehe dazu Kapitel 3.1.1.5).

Ferner entwickeln die Wasserund Sedimentzuflüsse des Ama Dablam Gletscherbaches deutlich unterhalb des Hauptuntersuchungsgebietes des Imja Khola Gletscherbaches ebenso eine Konfluenz mit diesem Lauf. Auf einer sehr kurzen Distanz bilden die Abschmelzprozesse des Ama Dablam Gletschers bereits Bachverwilderungen und Mäanderformen innerhalb der zwei Gletscherbachläufe aus (siehe dazu Kapitel 3.1.1.6).

4.1.2 Gletscherbachsysteme in der Haupttalschaft des Lhotse, Lohtse Nup,

Nuptse, Unbenannten Kongma-La, Duwo und Tsuro Gletschers

Die untersuchten Gletscherbäche dieser Haupttalschaft sind u. a. von folgenden glazifluvialen Prozessen beeinflusst, die im Kapitel 3.1.2 aufgeführt sind:

Eine Bachlaufform im historischen Gletschersee mündete in das talabwärts liegende orographisch rechte Bachsystem des Lhotse Nup Gletschers und konnte so dessen Abfluss- und Sedimenthaushalt verändern. Anhand von Feldforschungen und anschließenden Korngrößenanalysen wurde dieser See (Photo 40, 41) sowie dessen Genese rekonstruiert (siehe dazu Kapitel 3.1.2.3).

Zudem schneiden die durch die Nutpse Gletscherschmelze entstandenen Bachläufe die angrenzende Podestmoräne ein. Im Anschluss formen sie allesamt Bachverwilderungen (braided river) aus und münden schließlich in die Gletscherbachläufe des Lhotse und Lhotse Nup Gletschers. Die in den Bachläufen zu erkennenden Bachverwilderungen (braided river) lassen sich durch die vom Gletscher

freigesetzten Abfluss- und Sedimentschwankungen erklären (siehe dazu Kapitel 3.1.2.4).

Nach einem fluvialen Einschnitt der im Nebental abgelagerten Grundmoräne fließt das Gletscherbachsystem des Unbenannten Kongma-La Gletschers eine Kartreppe talabwärts, wird durch weitere Bachkonfluenzen genährt, bis die gesamten Abflussdynamiken schließlich den talauswärts verorteten Endmoräneneinschnitt weiter ausarbeiten (Photo 26, 44, 45). Unterhalb des Endmoränendurchbruches lassen sich Bachverästelungen sowie Mäandrierungen erkennen. Im Anschluss bildet dieser Bachlauf eine Konfluenz mit dem orographisch rechten Abflussarm des Imja Khola (siehe dazu Kapitel 3.1.2.5).

Des Weiteren prägen die Duwo Gletscherschmelzprozesse einen Gletschersee. Unterhalb dieses Sees lassen sich Erosionsrinnen erkennen. Entstanden durch freigesetzte Abflussdynamiken während vergangener Gletscherrückzugsstadien formten diese den hier einst akkumulierten Moränenkörper-Westhang um (Photo 46). Dieser wurde nach Kuhle zuerst im Gletscherstadium IV "Sirkung Stage" glazigen abgelagert (Kuhle 2005: Figure 46) und erfuhr in den darauffolgenden Gletscherstadien weitere glazigene Überprägungen, die im Anschluss durch die einsetzenden Eisschmelzprozesse glazifluvial umgestaltet werden konnten. Alle Fließdynamiken, die die Erosionsrinnen formten, nährten schließlich den Imja Khola Hauptstrom mit Wasserund Sedimentfracht. Während des Holozäns trugen sie vermutlich auch zur Mäanderverlagerung im Hauptstrom bei (siehe dazu Kapitel 3.1.2.6).

Überdies prägen die Tsuro Gletscherabflussdynamiken insgesamt drei Bachläufe aus und schneiden den Podestmoränenkörper ein. Der nördlichste und taleinwärts gelegenste fluviale Einschnitt bildet hangabwärts eine Schuttfächerakkumulation aus, die schließlich durch ihre Mächtigkeiten auch die angrenzende Bachbettmorphologie des Imja Khola beeinflusst. Die Veränderungen der Sohlenmorphologie lässt sich durch chaotische Blockablagerungen im Lauf bestätigen (Photo 47). Die nicht vorhandenen Vegetationsbewuchszonen verdeutlichen, dass dieser Schuttfächer einer aktiven Dynamik unterliegt. Südwestlich dieses Schuttfächers sind zwei weitere fluviale Einschnitte zu erkennen, dessen hangabwärts gelegene Schuttfächerakkumulation ein inaktives sowie ein aktives Stadium vorweisen. Dies lässt sich mithilfe der

Vegetationsüberprägung verdeutlichen. Ebenfalls lassen sich im Schuttfächer trockengelegte und verwilderte Bachbettformen (braided river) beobachten (siehe dazu Kapitel 3.1.2.7).

4.1.3 Gletscherbachsysteme in der Talschaft des Khumbu Gletschers

Die untersuchten Gletscherbäche des Khumbu Gletschers sind u. a. von folgenden glazifluvialen Prozessen und Zuströmen beeinflusst, die im Kapitel 3.2.1 aufgeführt sind:

Im oberen Pokalde Gletscherbachbereich sind Bachverwilderungen (braided river) zu lokalisieren. Hangabwärts lässt sich ein gebundener Sanderformenschatz erkennen, der weitestgehend von Vegetation überprägt ist. Historische glazifluviale Einschneidungsrinnen formten diesen Sander. Aktiv unterliegt diese Form einer Beeinflussung von zwei Bachläufen (Photo 57). Weiter bachabwärts fließt das gesamte Abflusssystem der orographisch linken Seitenmoräne des Khumbu Gletschers folgend talabwärts in Richtung Südwesten und formt Mäanderschlingen. Schließlich mündet dieser Lauf in den orographisch linken Khumbu Khola Gletscherbach (siehe dazu Kapitel 3.2.1.1).

Orographisch links der Lobuche Podestmoräne schnitt ein periodischer Bachlauf das in Richtung Südwesten verlaufende, glazigen geformte Talsystem (Kuhle 2005: 278) glazifluvial ein. Dies lässt sich anhand der sortierten Schotterablagerungen in der Talsohle bestätigen. Dieser periodische Bachlauf bildet schließlich mit dem orographisch rechten Bachsystem der Khumbu-Haupttalschaft eine Konfluenz. Des Weiteren konnten orographisch rechts der Lobuche Podestmoräne historische Gletscherabflussdynamiken ausfindig die gemacht werden, eine kerbförmig eingeschnittene Talform prägten. Sedimentproben bestätigen die glazifluviale Überprägung der Talsohle (Photo 61 & 63). Diese wurde vermutlich ehemals durch kaskadenartige Sequenzabfolgen (cascade) geformt. Schließlich mündete der rekonstruierte Bachlauf in das orographisch rechts des Khumbu Gletschers zu findende Bachsystem (siehe dazu Kapitel 3.2.1.2).

4.1.4 Gletscherbachsysteme in der Talschaft des Tshola Tsho Gletschersees

Die angrenzende Talschaft des Khumbu Gletschers wird u. a. durch folgende Prozesse und Zuflüsse der hier aufgeführten Gletscherbäche aus dem Nebental beeinflusst, die im Kapitel 3.2.2 aufgeführt sind:

Der Kargrund des Lobuche East Gipfels wurde glazifluvial überprägt (Photo 77 und 78). Dies konnte mithilfe der Morphologie sowie Korngrößenanalysen bestätigt werden. Ebenso schneidet ein periodischer Bachlauf glazifluvial in den Kargrund ein. Der Bachlauf fließt schließlich die hier rekonstruierte Kartreppe, bestehend aus drei aneinandergereihten Karformen, hangabwärts und nährt den Tshola Tsho Gletschersee mit Wasser- und Sedimentfracht. Steigt der Wasserpegel des Gletschersees an bildet sich ein Zufluss zu dem angrenzenden, orographisch rechten Khumbu Gletscherbach (siehe dazu Kapitel 3.2.2.1).

Ferner wird durch abschmelzende Eismassen der Nirekha Peak Gletscherbach genährt. Talabwärts in den flacheren Bachabschnitten bilden die Abflussdynamiken des Bachlaufes Bachverästelungen aus (braided river). Im Anschluss ist der Bachlauf durch abgrenzende Moränenflächen gebunden, wodurch sich vermehrt Mäanderschlingen aber auch vereinzelte Bachverästelungen (braided river) ausprägen. Weiter bachabwärts sind vereinzelte Stufen-Becken Sequenzabfolgen (step-pool) zu erkennen (Photo 83). Dieser Gletscherbachsohlenbereich lässt sich insgesamt in ein fortgeschrittenes Entwicklungsstadium einordnen. Unterhalb dieses Sequenzabfolgenbereiches schneidet der Gletscherbach in anstehendes Gestein ein der Lauf bildet eine wasserfallartige Kaskadenform mit einzelnen Beckenformen aus (Photo 84 und 85). Entnommene Sedimentproben innerhalb und außerhalb der Bachsohle bestätigen eine glazifluviale Auswaschung des hier akkumulierten Moränenkörpers. Mithilfe der Höhendistanz zwischen den Terrassenordnungen dieses Bachlaufes lässt sich zeigen, dass das Abschmelzen und der Rückzug der historischen Gletscherstände zu intensiven Tiefeneinschneidungsprozessen führten. Schließlich mündet dieser Bachlauf in den Tshola Tsho Gletschersee (siehe dazu Kapitel 3.2.2.2). Im ergänzenden Untersuchungsgebiet schneidet das Cho-La Gletscherbachsystem in die Grundmoräne ein und formt mit abnehmendem Talgefälle Bachverwilderungen

(braided river), vereinzelte Mäanderschlingen (Photo 91) und flache sowie ebene Schottersohlen (plane bed) im Bachlauf aus. In diesem Bereich lässt sich ebenso ein historischer Gletschersee erfassen. Korngrößenanalysen zweier Sedimentproben bestätigen, dass der zum Gletscherbach angrenzende Bereich von noch großräumigeren Wassermassen überprägt war (Photo 95 und 96). Bachabwärts unterliegt das Bachsystem einem steilen Gefälle und formt im Anschluss Bachverwilderungen (braided river) sowie vereinzelt verfestigte Inselbildungen innerhalb einer flachen Ebene aus. Diese hier zu erkennende flache und ebene Schottersohle sowie die morphologische Gesamtgestalt dieses Talabschnittes deuten auf eine mögliche historische Gletscherseeexistenz hin. Bachabwärts mündet der Lauf schließlich in den Tshola Tsho Gletschersee (siehe dazu Kapitel 3.2.2.3).

4.1.5 Umgebung des Nare Drangka Abflusssystems

In dem Abschnitt des untersuchten Nare Drangka Gletscherbachsystems nahe der Ortschaft Pangboche konnten im Kapitel 3.2.3 u. a. folgende Gegebenheiten erfasst werden, die den Nare Drangka Bachlauf beeinflussen sowie die Mächtigkeit der glazifluvialen Einschneidung des Imja Khola Hauptstromes verdeutlichen:

Zwei Gletscherbachläufe werden durch die Abschmelzprozesse des Mingbo Gletschers genährt. Das nördlich gelegene Bachsystem durchschneidet eine akkumulierte Podestmoräne stromlinienförmig und bildet hangabwärts ein verwildertes Bachsystem (braided river) mit zum Teil mehrläufigen Verzweigungen aus. Im Anschluss mündet der Lauf in das Hauptbachsystem des Mingbo Gletschers. Das südlich gelegene Gletscherbachsystem des Mingbo Gletschers durchschneidet einen Endmoränenkörper und akkumuliert das aufgenommene Material in Form eines Schwemmfächers proximal ab. Die Formengebung dieses Schwemmfächers sowie die geringe Vegetationsüberprägung verdeutlicht die rezente Aktivität dieser Sanderform, die als jung zu klassifizieren ist. Bachabwärts ändert sich die Bachform zunehmend von verwilderten Bachbettformen (braided river) mit zum Teil mehrläufigen Verzweigungen zu einem einzelnen Bachlauf. Abflusserhöhungen durch einen Bachzufluss lassen sich anhand von Mäanderbögen und Altarmen nahe des Ama Dablam Base Camps

verdeutlichen. Weiter talabwärts mündet dieser Gesamtabfluss schließlich in den Nare Drangka Gletscherbach (Photo 111) (siehe dazu Kapitel 3.2.3.2).

Ferner sind die Talhänge in der Umgebung der Ortschaft Pangboche mit Moränenmaterial ausgekleidet (Kuhle 2005; Kuhle 2006a, b). Im Anschluss der Eisüberprägung dieser Talschaft (Kuhle 2005: 284-285, Photo 87) wurden in den Interglazialstadien der mit Moränenkörper ausgekleidete Talgrund glazifluvial sowie fluvial eingeschnitten. Eine Sedimentprobe aus ca. 51 m bis 56 m oberhalb des rezenten Flusslaufes Imja Khola sowie chaotische Ablagerungen von Blockkörpern, die in einer feinen Sedimentmatrix gebunden sind, bestätigen den hier zu klassifizierenden Moränenkörper (Photo 118, 119). Im Anschluss der Akkumulation wurde dieser glazifluvial ausgewaschen. Dies lässt sich ebenfalls mit einer der Fließrichtung entsprechenden Einregelung von Flussschottern erkennen. die nahe des Sedimententnahmestandortes orographisch rechts erfasst werden konnte (Photo 118, 119). Diese Befunde zeigen, dass die Talschaft mindestens bis zu der Höhe von ca. 4058 m ü. NN den Prozessen der glazifluvialen sowie fluvialen Einschneidung, Umlagerung und Sortierung von glazigenen Sedimenten (vgl. Kuhle 2005) während der Interglazialstadien unterlag (siehe dazu Kapitel 3.2.3.3).

4.1.6 Gletscherbachsysteme des Ngozumpa- und Lungsampa Gletschers

Die Talschaft des Ngozumpa Gletschers wird u. a. durch folgende Prozesse und Zuflüsse der Gletscherbäche beeinflusst, die im Kapitel 3.3 aufgeführt sind:

Der orographisch linke Gletscherbach des Ngozumpa Gletschers schneidet in Richtung Südosten den Ngozumpa Seiten- bzw. Endmoränenwall glazifluvial ein. In diesem Durchbruchsbereich formten die Abflussdynamiken vier glazifluviale Terrassenordnungen aus. Unterhalb dieser Einschneidung fließt der Bachlauf in Richtung Süden und Südwesten talabwärts. Der Lauf bildet in diesem Talbereich vermehrt Mäanderschlingen und Bachverästelungen aus, die zum Teil durch Vegetation verfestigt sind (siehe dazu Kapitel 3.3.1).

Zudem wurde ein periodisches Gletscherbachabflusssystem, welches zwischen der orographisch rechten Seitenmoräne des Ngozumpa- und Lungsampa Gletschers und

den orographisch rechten Talhängen im Eisrandtal zwischengeschaltet ist, untersucht. Dieser Schmelzabfluss sammelt sich teils in mehreren kleinen Seen, die sich zwischen dem fünften Gletschersee (5th Lake) und vierten Gletschersee (4th Lake) erkennen lassen (Photo 125, 126, 127, 128, 129). Historische Seespiegelschwankungen sowie glazifluviale Einschneidungen der Bachläufe, die die Seen untereinander verbinden, liefern Hinweise der ehemals höheren Abflussdynamiken in diesem zwischengeschalteten Bachsystem (Photo 127, 128, 129). Der Gesamtabfluss dieser kleinen Seen und Bachsysteme nährte schließlich die angrenzenden Gletscherseen (4th Lake). Ein Schwemmschuttfächer nahe des vierten Gletschersees (4th Lake) bestätigt die historischen Abflussdynamiken sowie die Mündung in den See. Diese glazifluviale Auswaschung von Moränenkörpern konnte mithilfe einer Sedimentprobe bestätigt werden. Bachabwärts, im Übergang zwischen dem vierten (4th Lake) und dritten Gletschersee (3rd Lake), bildet sich ein Schwemmfächer. Talabwärts, zwischen dem dritten und zweiten Gletschersee (3rd und 2ed Lake), ist ein rezent perennierendes Bachsystem zwischengeschaltet. In der Übergangszone zum zweiten Gletschersee (2nd Lake) bildet sich ebenfalls ein Schwemmfächer. Zwischen dem zweiten und ersten Gletschersee (2nd und 1st Lake) fließt der Bachlauf ganzjährig, bildet Bachmäander aus und mündet schließlich in den kleinsten Gletschersee (1st Lake). Der Bereich zwischen dem dritten, zweiten und ersten Gletschersee (3rd, 2nd und 1st Lake) kann somit in eine fluvialgeomorphologisch aktive Zone klassifiziert werden. Im Anschluss mündet der Bachlauf in den orographisch rechten Ngozumpa Gletscherbach (Photo 134) (siehe dazu Kapitel 3.3.2.1).

Ferner wurden zwei rezente Zuflüsse des orographisch rechts lokalisierenden vierten Gletschersees (4th Lake) untersucht. Einer dieser Läufe bildet nach einem Endmoränendurchbruch einen Schwemmschuttfächer, Mäanderformen, Bachverwilderungen (braided river) mit einem zum Teil gestreckten Lauf, bis er schließlich einen Schwemmschuttfächer im 4th Lake ausprägt und somit in dem See mündet (Photo 131). Der weiter westwärts positionierte zweite Bachlauf durchbricht ebenfalls einen Endmoränenkörper. Bachabwärts lassen sich Mäanderschlingen und ausgeprägte Bachverwilderungen (braided river) erkennen, bis der Gletscherbach schließlich in den vierten Gletschersee (4th Lake) (Photo 131) mündet. Dieser

Gletschersee unterliegt natürlichen Wasserpegelschwankungen. Rezente sowie historische Pegelstände am Seeufer verdeutlichen diese Fluktuationen des Wasserpegelstandes im Holozän (Photo 131). Homologe Merkmale der angrenzenden Gletscherseen (6th, 5th und 3rd Lake) zeigen, dass die Genese dieser auf der glazigenen Ausschürfung im Hochglazial (Kuhle 2005) und der Wassermassenbefüllung während der einsetzenden Gletscherrückzugstadien beruht (siehe dazu Kapitel 3.3.2.2).

4.2 Mikroebenenanalysen

4.2.1 Gletscherbachsohlensequenzen in den Untersuchungsgebieten

Mithilfe der Mikroebenenanalyse der untersuchten Gletscherbachläufe im Khumbu Himal sowie am Pangong Tso konnte gezeigt werden, dass die Gletscherbachsohlen Entwicklungsdynamik unterliegen. Weitestgehend bildet die untersuchte einer Bachsohle direkt unterhalb der nährenden Gletscher einen Kaskadenformenschatz (cascade) aus. Mit einer talabwärts zunehmenden Entfernung zum rezenten Gletscherstand lässt sich eine Veränderung dieser Sohlenformengestalt erkennen, bis die Bachsohle schließlich das Endstadium von Stufen-Becken Sequenzen (step-pool) ausformt. Diese Morphogenese lässt sich auf die glazifluviale Einschneidung und Umgestaltung der Gletscherbachsohle zurückführen, die mit zunehmender Entfernung zur rezenten Gletscherzunge einer zeitlich längeren Beeinflussungsdauer unterliegt. Um jedoch derartige Sequenzabfolgen glazifluvial zu gestalten, bedarf es eines Fundaments aus chaotischen Sediment- sowie Blockablagerungen. Diese sind das Resultat glazigener Ablagerungen (vgl. Untersuchungen aus British Columbia in: Brardinoni & Hassan 2007), die im Khumbu Himal und am Pangong Tso als Grundmoränensedimente zu klassifizieren sind (vgl. Kuhle 2005: 199-201; vgl. Kuhle 2006a, b; vgl. Kuhle 2013). Freigelegt wurden diese insgesamt durch das Abschmelzen Gletscherzungen, die jedoch vereinzelt durch der zwischengeschaltete Gletschereisvorrück- und stagnationsphasen das Grundmoränenfundament erneut überprägten.

Neben diesen als Sohlenfundament dienenden Grundmoränensedimenten führen auch vereinzelte Hangrutschungsprozesse an den zum Teil Gletscherbach angrenzenden End- und Podestmoränenkörpern dem Bachlauf Sedimente zu. Dadurch kann die Dauer der Gletscherbachsohlengenese hinausgezögert werden. Bachabwärts nimmt das Vorkommen und die Intensität der einflussnehmenden Faktoren zur Gletscherbachsohlenveränderung natürlicherweise zu (siehe Kapitel 2). Mittels der Untersuchungsgebietsauswahl wurde versucht die Anzahl an möglichen Störfaktoren weitestgehend einzugrenzen (siehe Kapitel 2.2).

Aufbauend auf dieser Auswahl der Untersuchungsgebiete im Khumbu Himal sowie am Pangong Tso konnten daher folgende Gletscherbachsohlenformen ermittelt und kartiert werden (siehe Tabelle 12):

Untersuchungsgebiet:	Ermitteltes Sohlenstadium, beginnend vom höchsten bis zum tiefsten Standpunkt:
Imja Khola Gletscherbach	Bachaufwärts: "Frühes Entwicklungsstadium";
	Untersuchungsstandort: "Fortgeschrittenes Entwicklungsstadium"; hier Gletscherstadium 1850 bis 1950 (Gletscherstadium nach Kuhle: X bis XI)
Lhotse Gletscherbach	Untersuchungsstandort: "Frühes Entwicklungsstadium" vor dem Zeitraum von 1950 bis 1960 von Eis überprägt (Gletscherstadium nach Kuhle 2005: X bis XI);
	Bachabwärts: "Fortgeschrittenes Entwicklungsstadium" (Gletscherstadium nach Kuhle 2005: IX bis X)
Lhotse Nup Gletscherbach	Podestmoränenkörperdurchbruch: Kaskadenformen (cascade) (1950 bis 2012, Gletscherstadium nach Kuhle 2005: XII);
	Bachabwärts: "Frühes Entwicklungsstadium" und dann "Fortgeschrittenes Entwicklungsstadium" (Gletscherstadium nach Kuhle 2005: IX bis X)
Orographisch linker Khumbu Gletscherbach	Untersuchungsstandort: "Frühes Entwicklungsstadium" (Grundmoräne: Gletscherstadium nach Kuhle 2005: VII bis X), Terrassenabfolgen 1-3: 1957 bis 2012);
	Bachabwärts: "Fortgeschrittenes Entwicklungsstadium" und dann Stufen-Becken Sequenzabfolgen (step-pool)
Orographisch rechter Khumbu Gletscherbach	Untersuchungsstandort: "Fortgeschrittenes Entwicklungsstadium" (Gletscherstadium nach Kuhle 2005: VII bis X) (Terrassenabfolgen 1-3: 1957 bis 2012);
	Bachabwärts: Fortentwicklung in Stufen-Becken Sequenzabfolgen (step-pool) erkennbar
Nare Drangka Gletscherbach	Untersuchungsstandort: "Fortgeschrittenes Entwicklungsstadium" (Gletscherstadium nach Kuhle 2005: 'VII - VII);

	Bachabwärts: Fortentwicklung erkennbar (Gletscherstadium nach Kuhle 2005: Spätglazial bis Neoglazial (IV-'VII))
Orographisch rechter Ngozumpa Gletscherbach	Unterhalb der Endmoräneneinschneidung: "Frühes Entwicklungsstadium";
	Untersuchungsstandort: "Fortgeschrittenes Entwicklungsstadium" (Gletscherstadium nach Kuhle 2005: ältere bis jüngere Dhaulagiri Stadium (VI - VII))
Unbenannter Pangong Tso I	Untersuchungsstandort: "Fortgeschrittenes Entwicklungsstadium"
Gletscherbach	(Gletscherstadium nach Kuhle 2013: Sirkung bis Nauri (IV - V))
Unbenannter Pangong Tso II	Untersuchungsstandort: "Fortgeschrittenes Entwicklungsstadium"
Gletscherbach	(Gletscherstadium nach Kuhle 2013: Sirkung bis Nauri (IV - V))
Unbenannter Pangong Tso III und	Untersuchungsstandort: "Fortgeschrittenes Entwicklungsstadium"
IV Gletscherbach	(Gletscherstadium nach Kuhle 2013: Sirkung bis Nauri (IV - V))
Taballa 10: Dia Clatasharkashashlarfarman in dan Unternushunganahistan	

Tabelle 12: Die Gletscherbachsohlenformen in den Untersuchungsgebieten.

Die hier aufgezählten Entwicklungsstadien der Sequenzabfolgen wurden bereits in Kapitel 2.4 näher definiert.

Diese empirisch belegten frühen sowie fortgeschrittenen Entwicklungsstadien sind im Gletscherbachuntersuchungsgebieten zuzuordnen, Khumbu Himal den deren Grundmoränenfundament nach Kuhle vereinzelt während der Gletscherstadien des Spätglazials bis Neoglazials (IV-'VII) (vgl. Nare Dranka Gletscherbach), überwiegend aber während der Historischen Gletscherstadien (VII - XI) bis zum rezenten Gletscherstadium (XII) (Kuhle 2005, Kuhle 2006a, b; vgl. Tabelle 17) sowie Gletscherstadien jüngeren Datums (ab 1980) (GLIMS: Racoviteanu & Bajracharya 2008) durch Gletschereismassenbewegungen abgelagert wurde. Das Grundmoränenfundament der fortgeschrittenen Bachentwicklungsstadien nahe des Pangong Tso lässt sich anhand der Gletscherstadien nach Kuhle (Kuhle 2013) ins Sirkung- (IV) bis zum Nauri- Gletscherstadium (V) einordnen. Aufgrund der unterschiedlichen der Untersuchungsstandpunkte Höhenlage sowie der einflussnehmenden Hochgebirgsmorphologie einschließlich ihrer Schneegrenze (vgl. Kuhle 2013) wurde das Grundmoränenfundament dieser - im Vergleich zu den Untersuchungsgebieten des Khumbu Himal - deutlich früher glazigen abgelagert. Dies verdeutlicht. die in den Untersuchungsgebieten erfasste Abfolge von dass Entwicklungsstadien der Gletscherbachsohle generell als Indiz vergangener Vergletscherungsstadien genutzt werden kann.

Bachabwärts lassen sich schließlich im Khumbu Himal, als empirisches Beispiel dient der Imja Khola Hauptstrom, Stufen-Becken Sequenzabfolgen (step-pool) auffinden. Erklären lässt sich dies durch die längere glazifluviale Einflussdauer. In den Untersuchungsgebieten nahe des Pangong Tso konnte sich die Bachsohle jedoch nicht soweit fortentwickeln, da die Gletscherbachläufe bereits nach dem fortgeschrittenen Entwicklungsstadium in den angrenzenden Pangong Tso See münden. Chronologisch sind die Stufen-Becken Sequenzabfolgen (step-pool) demnach den nächst älteren Gletscherstadien zuzuordnen. Eine genaue und somit exakte Datierung dieser zeitlichen Formenabfolge kann jedoch nicht getroffen werden, da die Genese dieser durch zahlreiche Faktoren beeinflusst werden kann. Dazu zählen u. a. mögliche Hangschuttzufuhrraten aus den angrenzenden Moränenhängen, Gletscherbachabflussraten sowie Gletscherbachsedimentationsraten (vgl. Kapitel 2.2). All diese Ergebnisse verdeutlichen, dass die am Anfang dieser Arbeit (siehe Kapitel 2) aufgeführten Hypothesen (H. 1.1 bis H. 1.3) wie folgt zu bewerten sind:

Н. 1.1 "Morphologisch lässt sich in den Gletscherbachläufen der Übergangsphase Untersuchungsgebiete eine von Kaskadensohlenform (cascade) zu Stufen-Becken Sequenzabfolgen (step-pool) erkennen, die in weiteren Entwicklungsstadien klassifiziert werden können."

Aufgrund der vorgefundenen Formen konnte diese Hypothese verifiziert werden.

Η. 1.2 "Die Kaskadensohlenformen (cascade) einschließlich ihrer Ubergangsphasen zu den Stufen-Becken Sequenzabfolgen (step-pool) (ausgearbeitet frühes Entwicklungsstadium fortgeschrittenes als: und Entwicklungsstadium) im Gletscherbachbett der Untersuchungsgebiete lassen sich mit jungen Gletscherstadien im Holozän parallelisieren."

Die Hypothese konnte mit der Einschränkung bestätigt werden, dass die zeitliche Einordnung der Kaskadensohlenformen (cascade) einschließlich ihrer Übergangsphasen je nach einflussnehmendem Relief und Gletschergröße mit einhergehender Abflussvariabilität unterschiedlich ausfallen kann, aber insgesamt mit jungen Gletscherstadien im Holozän zu parallelisieren sind.

 H. 1.3 "Die Stufen-Becken Sequenzabfolgen (step-pool) im Gletscherbachbett der Untersuchungsgebiete lassen sich im Vergleich zu den Kaskadensohlenformen einschließlich ihrer Übergangsphasen mit den nächst älteren und somit historischen Gletscherstadien parallelisieren."

Ebenso wie die vorherige Hypothese konnte diese mit der Einschränkung bestätigt werden, dass die zeitliche Einordnung der Stufen-Becken Sequenzabfolgen (step-pool) je nach Relief und Gletschergröße und damit einhergehender Abflussvariablität unterschiedlich ausfallen kann. Alle empirisch erfassten Stufen-Becken Sequenzabfolgen (step-pool) befinden sich in den Untersuchungsgebieten unterhalb der Kaskadensohlenformen (cascade) und ihren Entwicklungsphasen. Sie sind demnach den nächst älteren Gletscherstadien zuzuordnen.

Die hier rekonstruierte Abfolge und Entwicklung von Sohlenformen sind nicht auf den Himalaya Gebirgsraum begrenzt, sondern lassen sich auch in anderen Gebirgsräumen finden. Dazu zählen zum Beispiel vergletscherte Talschaften im südwestlichen British Columbia (Brardinoni & Hassan 2007), Talschaften im westlichen Washington sowie in Küstengebieten Oregons (Montgomery & Buffington 1997) und in Talschaften der Santa Monica Mountains in Südkalifornien (Chin 2002).

4.2.2 Rekonstruierte Terrassenordnungen in den Untersuchungsgebieten und ihre glazifluvial-geomorphologische Bedeutung

Mithilfe der rekonstruierten Terrassenordnungen in den Untersuchungsgebieten des Khumbu Himal sowie am Pangong Tso konnte die Intensität der holozänen Gletscherschmelzprozesse verdeutlicht werden. Die damit in Relation zu setzenden Gletscherschwankungen lassen sich in die Gletscherstadienchronologie nach Kuhle (Kuhle 2005: 263, Table 1; 2006a, b; & 2013; vgl. Tabelle 17) vom historischen Gletscherstadium (VII - XI) bis ins rezente Gletscherstadium (XII) klassifizieren und ebenso den aktuellen Gletscherschwankungen ab 1980 zuordnen. Die im Himalaya und Karakorum rezenten Gletschereisschwankungen (Achenbach 2011; Hewitt 2011; Iturrizaga 2011a; Bolch et al. 2012; Kuhle 2014) sowie die vergangenen holozänen Gletschereisschwankungen (Kuhle 1982; Röthlisberger 1986; Meiners 1996; Meiners 1997; Kuhle 2004; Kuhle 2013; Kuhle 2014) sind ein Beleg der Klimaveränderungen in diesen Gebirgsräumen. Infolge dieser Schwankungen wurden Schmelzwasserdynamiken freigesetzt, die allesamt die Landschaftsformen im derzeitigen Holozän veränderten (vgl. zum Holozän: Zalasiewicz et al. 2015).

Im Hauptuntersuchungsgebiet des Khumbu Himal sind nach Kuhle glaziale Formenrelikte des vorletzten Hochglazial (Stadium -I = Riß) sowie des letzten Hochglazial (Stadium 0 = Würm) bis zu den rezenten Gletscherstadien (Stadium XII), diese decken den Zeitraum von 1950 bis 1980 ab, erfasst worden (Kuhle 2005: 263; 2006a, b; vgl. 2004). Aktuellere Gletscherschwankungen im Khumbu Himal, die den Zeitraum zwischen 1962 bis maximal 2008 betreffen, konnten mittels Satellitenbilduntersuchungen (Bolch et al. 2008, Nuimura et al. 2012) und photographischen Vergleichen (Byers 2007) ermittelt werden. Fernerkundliche Analysen von Bolch et al. (2008) bestätigen schließlich die von Röthlisberger (1986: 137) getroffene Aussage, dass rezente Gletschereisschwankungen im Khumbu Himal eher eine Reduktion der Gletschereismächtigkeit induzieren als eine Reduktion der Gletschereislänge (Bolch et al. 2008).

Im Vergleichsuntersuchungsgebiet des Pangong Tso hingegen sind glaziale Formenrelikte vom letzten Hochglazial (Stadium 0 = Würm) bis zum späten Spätglazial (Stadium IV) zu finden (Kuhle 2013: 157; vgl. Huntington 1906; vgl. Trinkler 1930). Daher wurde die gesamte Talschaft einschließlich des Pangong Tso Sees im letzten Hochglazial (Stadium 0 = Würm) von einem mächtigen Eispanzer überprägt, welcher als westliches Eisabflusssystem infolge der tibetischen Inlandvereisung entstehen konnte (Kuhle 2013: 157).
Aufgrund der zuvor dargelegten pleistozänen sowie holozänen Eisüberlagerung der untersuchten Gletscherbachläufe besteht das Fundament dieser rekonstruierten Terrassenordnungen weitestgehend aus Grundmoränenmaterial, welches während der Vorrückphasen der Gletscherzungen am Talgrund akkumuliert werden konnte. In der anschließenden Interglazialphase, die mit einem Zurückweichen der Gletscherzungen einhergeht, konnten diese Moränensedimente glazifluvial eingeschnitten werden. Zwischengeschaltete kleinräumige Gletschervorrückphasen überlagerten jene Terrassenkörper, die in der anschließenden Gletscherschmelzphase jedoch wieder glazifluvial eingeschnitten wurden. Derartige Prozessketten konnten bereits in den Gletschervorfeldern und Sanderformen in den Untersuchungsgebieten von British Columbia ausfindig gemacht sowie ausgearbeitet werden (Church & Ryder 1972: 3068-3069; vgl. Church 1972).

Diese ineinander verschachtelten glazigenen und glazifluvialen Prozesse hinterließen in den Gletscherbachuntersuchungsgebieten des Khumbu Himal den folgenden Formenschatz (siehe Tabelle 13):

Gletscherbachuntersuchungsgebiet:	Terrassenanzahl:	Terrassenform:
Imja Khola Gletscherbach	4	1-3: Terrassenschotterebene;
		4. Duckelallige
Lhotse Gletscherbach	4	1-2: Terrassenschotterebene; 3: Buckelartige Terrassenschotterfläche; 4:
		Buckelartige Terrassenfläche
Lhotse Nup Gletscherbach	4	 1-2: Terrassenschotterebene; 3: Buckelartige Terrassenschotterfläche; 4: Buckelartige Terrassenfläche
Orographisch linker Khumbu Gletscherbach	7	1: Terrassenschotterebene; 2- 7: Buckelartige Terrassenschotterfläche
Orographisch rechter Khumbu Gletscherbach	2	1: Terrassenschotterebene; 2: Buckelartige Terrassenschotterfläche
Oberer Nare Drangka Gletscherbach	4	1-2: Terrassenschotterebene;3-4: buckelartigeTerrassenschotterebene
Orographisch rechter Ngozumpa Gletscherbach	4	1-2: Terrassenschotterebene; 3-4: Terrassenschotterfläche

Tabelle 13: Die Terrassenordnungen in den Gletscherbachuntersuchungsgebieten im Khumbu Himal.

Die hier aufgezählten Terrassenordnungen wurden allesamt unter der besonderen Berücksichtigung der einflussnehmenden Faktoren in den Gletscherbacheinzugsgebieten (siehe Kapitel 2.2) erfasst. Daraus folgt, dass die Genese dieser Terrassenordnungen sich eindeutig auf glazigene und glazifluviale Prozesse zurückführen lassen. Diese Prozesse sind den rezenten Vergletscherungsstadien (vgl. in Table nach Kuhle 2013: XII; vgl. Tabelle 17; sowie 1 aktuellere Gletscherschwankungen (vgl. GLIMS: Racoviteanu & Bajracharya 2008)) und den historischen Gletscherstadien im Holozän (vgl. in Table 1 nach Kuhle 2013: weitestgehend X bis XI; vgl. Tabelle 17) zuzuordnen. Mithilfe dieser morphologischen und morphometrischen Beweisführung kann die folgende Hypothese bestätigt werden:

 H. 2.1 "In den Gletscherbachuntersuchungsgebieten des Khumbu Himal lassen sich mindestens vier Terrassenabfolgen erfassen, die als Resultat der rezenten und historischen Vergletscherungsstadien im Holozän entstanden sind."

Weiter bachabwärts nimmt die Anzahl der Terrassenordnungen im Khumbu Himal zu (siehe Tabelle 14):

Fluss- und Bachuntersuchungsgebiet:	Terrassenanzahl:	Terrassenform:
Imja Khola Hauptstrom	5	1-2: Terrassenschotterebene; 3: Buckelartige Terrassenschotterfläche; 4: Terrassenschotterebene; 5: Terrassenebene
Unterer Nare Drangka Gletscherbach	6	1-2: Terrassenschotterebene; 3-6: Terrassenfläche

Tabelle 14: Die Terrassenordnungen in den bachabwärts gelegenen Untersuchungsgebieten im Khumbu Himal.

Im Hauptuntersuchungsgebiet konnte dies am Beispiel des Imja Khola Hauptstromes (Photo 46) sowie anhand des unteren Nare Drangka Gletscherbaches (Photo 109) verdeutlicht werden. Die höhere Anzahl von Terrassenordnungen lassen sich durch glazigene Akkumulationsprozesse innerhalb von Vergletscherungsstadien erklären, die aufgrund des Zurückweichens der Gletscher derartige Terrassenfundamentakkumulationen (auch als Grundmoräne zu definieren) hinterließen. Die direkt im Anschluss eintretenden Gletscherschmelzprozesse glazifluvialen trugen zur Einschneidung sowie zur weiteren Freilegung dieser Sedimentkörper bei. Während eines kurzweiligen Gletschereisvorstoßes konnten derartige Sedimentkörper zum Teil erneut durch das Gletschereis überfahren und somit umgelagert werden. Daraus folgt, dass die untersten Terrassenordnungen (Terrassenordnungen 1 bis 4) ein Produkt der rezenten (vgl. in Table 1 nach Kuhle 2013: Stadium XII (= Terrassenordnung 2); vgl. Tabelle 17; sowie aktuellere Gletscherschwankungen (= Terrassenordnung 1) (vgl. GLIMS: Racoviteanu & Bajracharya 2008)) sowie historischen Vergletscherungsstadien (vgl. in Table 1 nach Kuhle 2013: Stadium X (= Terrassenordnung 4) bis XI (= Terrassenordnung 3); vgl. Tabelle 17) sind und die darauf auflagernden (Terrassenordnungen 5 bis 6) als Terrassenabfolgen Resultat der älteren Gletscherstadien im Holozän (vgl. in Table 1 nach Kuhle 2013: Stadium VIII (= Terrassenordnung 6) bis IX (= Terrassenordnung 5); maximal jedoch Stadium VII; vgl. Tabelle 17) zu deuten sind.

Jedoch sei anzumerken, dass gerade die älteren Terrassenordnungen durch mögliche Faktoren einer höheren Beeinflussungsdauer unterliegen und somit morphologisch verändert werden können (siehe Faktoren- und Prozessmodell in Kapitel 2.2). Unter anderem dadurch lassen sich Altersschwankungen von ¹⁰Be-Datierungen, welche zum Beispiel am höchsten Terrassenkörper des Imja Khola Hauptstromes (hier: Terrassenordnung 5, vgl. Photo 46, 51) nahe der Ortschaft Dingboche von Barnard et al. (2006) durchgeführt wurden, erklären. Die Autoren konnten für die einzelnen Proben dieser Terrassenordnung ein Alter von 14.63 + 0.36 ka, 12.19 + 0.30 ka sowie 6.16 + 0.16 ka ermitteln (Barnard et al. 2006: Table 1, Expositionsalter mit geomagnetischer Korrelation), wobei die letztgenannte Probe aussortiert wurde (Barnard et al. 2006: 389). Bereits vorliegende Studien über die technischen Schwierigkeiten der zuvor genannten Datierungstechnik sowie den extremen Altersschwankungen (vgl. u. a. Beer 2000; Putkonen & Swanson 2003; Schröder 2007; Kuhle & Kuhle 2010) verdeutlichen die Fehlbarkeit dieser Datierungsergebnisse. Ebenfalls zeigt sich, dass die Autoren Barnard et al. (2006) den Imja Khola Hauptstrom nur in drei Terrassenabfolgen untergliederten (Barnard et al. 2006: Fig. 7) - die Bach-/ Flussmorphologie weist jedoch tatsächlich fünf Terrassenordnungen vor (siehe Photo 46, 51 & Kapitel 3.1.2.8).

Aufbauend auf den zuvor genannten empirischen Belegen des Nare Drangka Gletscherbaches und Imja Khola Hauptstromes kann daher die folgende Hypothese verifiziert werden:

 H. 2.2 "In den talabwärts gelegenen Bachuntersuchungsgebieten des Khumbu Himal lassen sich bis zu sechs oder mehr Terrassenabfolgen erfassen, die als Resultat der historischen Vergletscherungsstadien im Holozän entstanden sind."

Die Terrassenordnungen des Vergleichsuntersuchungsgebietes nahe des Pangong Tso weisen ähnliche Terrassenabfolgen vor (siehe Tabelle 15):

Gletscherbachuntersuchungsgebiet:	Terrassenanzahl:	Terrassenform:
Gletscherbach des Unbenannten Pangong Tso	4	1-3: Terrassenschotterebene;
Gletscher I		4: Buckelartige
		Terrassenschotterebene
Gletscherbach des Unbenannten Pangong Tso	3	1-2: Terrassenschotterebene;
Gletscher II		3: Buckelartige
		Terrassenschotterfläche
Gletscherbach der Unbenannten Pangong Tso	4	1: Terrassenschotterebene; 2-
Gletscher III und IV		4: Buckelartige
		Terrassenschotterfläche

Tabelle 15: Die Terrassenordnungen in den Gletscherbachuntersuchungsgebieten nahe des Pangong Tso.

Jedoch ist zu konstatieren. dass die Untersuchungsstandpunkte dieser Terrassenrekonstruktionen im Vergleich zum Hauptuntersuchungsgebiet des Khumbu Himal deutlich weiter talabwärts verortet sind. Dadurch geht eine mögliche Erhöhung der Anzahl von Auslösefaktoren, die beeinflussende Prozesskaskaden freisetzen können, einher (siehe Faktoren- und Prozessmodell in Kapitel 2.2). Des Weiteren zeigt sich, dass die Anzahl der Terrassenabfolgen mit dem Khumbu Himal zwar identisch ist, aufgrund der Orographie müssten iedoch in den hier aufgesuchten Rekonstruktionsstandorten mindestens vier oder mehr Terrassen auffindbar sein. Diese geringe Anzahl von Terrassen lassen sich u. a. durch lokalklimatische Unterschiede erklären, die ebenso die lokalen Gletscheroszillationen beeinflussen konnten. Somit kann die folgende Hypothese nicht gänzlich bestätigt werden:

 H. 2.3 "Die Anzahl der Terrassenabfolgen innerhalb der Gletscherbäche im Vergleichsuntersuchungsgebiet nahe des Pangong Tso lassen sich mit der Terrassenabfolgenanzahl des Khumbu Himal abgleichen."

Aus diesem Grund ist bezüglich der Terrassenabfolgen einschließlich ihrer Erosionsentstehung im Himalaya noch weitere morphologische Grundlagenforschung zu leisten, deren Ergebnisse schließlich mit Erosionsmodellierungen bspw. CAESAR-LISFLOOD (Coulthard et al. 2013) abgeglichen werden können. Durch diese methodische Vorgehensweise ist es schließlich möglich, Fehler von Erosionsmodellierungen aufzudecken, zu korrigieren und somit das Modellwissen programmatisch zu erweitern.

4.3 Mesoebenenanalysen

4.3.1 Schotterflurausprägung, ihre Gebundenheit und ihre Mehrstufigkeit in den Untersuchungsgebieten

Mithilfe der Mesoebenenanalysen in den Untersuchungsgebieten des Khumbu Himal und am Pangong Tso konnte gezeigt werden, dass die Ausprägung "Sander im Gebirge" (Maul 1958: 402, zitiert nach Kuhle 1991), auch definiert als Schotterflur (Kuhle 1991: 37; vgl. Maul 1958: 402), je nach Moränenkörpergröße unterschiedlich gebunden ist. Dadurch fällt die Schotterflurvielfalt (auch Sander/ Sandur) in kanalisierten Talvergletscherungen (Kuhle 1991: 37-47) im Vergleich zu Flachlandvergletscherungen (Church 1972) intensiver aus.

Unterhalb der Gletscherzunge schneiden die von der Gletschereisschmelze freigesetzten Abflussdynamiken glazifluvial in den Grundmoränenkörper und den gletscherabgrenzenden Moränenkörper ein (Troll 1926: 13; vgl. Church 1972). Durch diesen glazifluvialen Einschneidungsprozess bildet sich eine Kerbform aus. Aus diesem Grund sind glazifluviale Sedimentakkumulationen, die durch Gleichgewichtsveränderungen der Gletscherbachdynamiken induziert werden können, innerhalb

dieses kerbförmia eingeschnittenen Moränenkörpers gebunden. Diese moränenbedingten Reliefabhängigkeiten induzieren somit eine Kanalisierung und Gebundenheit der Gletscherbachschotterflur (vgl. Kuhle 1991: 37). Weiter bachabwärts direkt unterhalb der kerbförmig eingeschnittenen Moränenkörperakkumulation kann die Gletscherbachkanalisierung aussetzen. Der Gletscherbach durchfließt nun eine breitere Talschaft. Infolgedessen können durch Gleichgewichtsveränderungen des Gletscherbachlaufes Sedimente akkumulieren und einen kleinräumigen Kegelsander ausprägen. Die Ausmaße dieser kleinräumigen Sanderausprägung sind jedoch ebenfalls durch die hier abgrenzenden Talhänge, die in den Untersuchungsgebieten als Moränenkörper zu klassifizieren sind, gebunden. Aber auch diese Schotterflur-/ Sanderformen können durch die Abflusszunahme eines Gletscherbaches glazifluvial eingeschnitten werden. Ist die kerbförmige Tiefeneinschneidung intensiv genug ausgeprägt, kann diese Form mögliche glazifluviale Gletscherbachsedimentationsprozesse binden und somit kanalisieren. Unterhalb dieser Kegelsander ist die Genese weiterer gebundener sowie ungebundener Sanderformen - diese können ebenfalls durch die zuvor genannten Prozesse induziert werden - nicht auszuschließen.

Über lange Bachdistanzen zwischengeschaltet, als empirisches Beispiel dient hier u. a. das Nare Drangka Gletscherbachsystem, sind Kanalisierungen und Blockierungen durch großräumig glazifluvial eingeschnittene Moränenkörperakkumulationen ebenso möglich. Auch innerhalb dieser langläufigen Talschaften lagern sich Sedimente durch Gleichgewichtsveränderungen der Gletscherbachdynamiken glazifluvial ab und bilden somit gebundene Sanderformen aus. Aufgrund von Abflussschwankungen können diese jedoch ebenso glazifluvial eingeschnitten werden und somit Terrassenformen ausbilden, die morphologisch mit den hier gebundenen Sanderformen vergesellschaftet sein können.

Dies zeigt die maßgebliche Abhängigkeit des umgebenden Reliefs, wodurch sich Sanderformenausprägungen unterschiedlich entwickeln. Anhand folgender Gletscherbachläufe konnten die Formen der gebundenen und ungebundenen Schotterflurausprägungen (auch: Sander) empirisch durch Feldforschungen belegt werden:

- i. Der Gletscherbachlauf des Imja Gletschers
- ii. Der Gletscherbachlauf des Lhotse Gletschers
- iii. Der Gletscherbachlauf des Lhotse Nup Gletschers
- iv. Der talabwärts gelegene Hauptstrom des Imja Kholas
- v. Der orographisch linke Gletscherbachlauf des Khumbu Gletschers
- vi. Der orographisch rechte Gletscherbachlauf des Khumbu Gletschers
- vii. Der Gletscherbachlauf des Nare Drangka Gletschers
- viii. Der orographisch rechte Gletscherbachlauf des Ngozumpa Gletschers
- ix. Der Gletscherbachlauf des Unbenannten Pangong Tso Gletschers I
- x. Der Gletscherbachlauf des Unbenannten Pangong Tso Gletschers II
- xi. Der Gletscherbachlauf der Unbenannten Pangong Tso Gletscher III und IV

Erweitert wurden diese Ergebnisse durch zusätzliche Gletscherbachlaufanalysen, die allesamt in den Übersichtskapiteln des Hauptuntersuchungsgebietes zu finden sind (siehe Kapitel 3 sowie 4.1).

Des Weiteren kann mithilfe der Geländedaten eine Verschachtelung historischer sowie rezenter Sanderformen ausfindig gemacht werden: In breiten und somit in gewissermaßen ungebundenen Talschaften überlagern rezente Kegelsanderformen die zuvor abgelagerten und somit als historisch zu definierenden Kegelsanderformen. Dadurch lässt sich eine vertikale Abfolge von historischen zu rezenten Sanderformen erkennen. Als markante Beispiele der begangenen Untersuchungsgebiete sind hier die Sanderformen des Lhotse Nup Gletscherbaches, des oberen Nare Drangka Gletscherbaches, des orographisch rechten Khumbu Gletscherbaches und die ungebundenen Sanderformenausprägungen der Unbenannten Pangong Tso Gletscher I, II, III und IV zu nennen.

Neben dieser vertikalen Abfolge lässt sich räumlich auch eine horizontal-vertikale Abfolge auffinden. Diese wird durch eine lange Taldistanz induziert, die durch ihre abgrenzenden Moränenkörperakkumulationen eine Breitenausprägung der Sanderformen verhindert und somit erst am Talausgang eine idealtypische

Sanderformenausprägung entstehen lassen kann. Diese horizontal-vertikale räumliche Betrachtung zeigt, dass die älteren Sanderformen talabwärts vorzufinden sind. Rezente Sanderformen hingegen lassen sich in den Untersuchungsgebieten deutlich weiter talaufwärts vorfinden. Eindrucksvoll verdeutlichen dies die Sanderformenausprägungen des orographisch linken Khumbu Gletscherbaches sowie des unteren Nare Drangka Gletscherbaches.

Insgesamt kann mithilfe der hier angewandten Mesoebenenanalyse eine räumlich und zeitlich voneinander getrennte, aber zum Teil auch eine überlagernde Abfolge von Sanderformen in den Talschaften des Khumbu Himal sowie des Pangong Tso bestätigt werden, die jedoch im Vergleich zu der von Troll (1926) postulierten Hypothese der Trompetentälchen im Alpenvorland (Troll 1926), in den Gletschervorfeldern der Hochgebirge eine andere Formengestalt einnimmt. Für die hier aufgesuchten Talschaften im Himalaya sind somit die folgenden Hypothesen zu verifizieren:

- H. 3.1 "In den Hochgebirgstälern der Untersuchungsgebiete im Himalaya sind überwiegend gebundene und kanalisierte Sanderformen zu finden."
- H. 3.2 "In den Hochgebirgstälern der Untersuchungsgebiete im Himalaya überlagern rezente Sanderformen historisch Akkumulierte und lassen somit eine vertikal-räumliche Anordnung erkennen."
- H. 3.3 "In den Hochgebirgstälern der Untersuchungsgebiete im Himalaya sind historische Sanderformen weiter talauswärts zu den rezenten Sanderformen aufzufinden. Dadurch lässt sich eine horizontal-vertikal räumliche Anordnung erkennen."

Ein Abgleich dieser Geländebefunde mit den Talschaften des Dhaulagiri- und Annapurna Himalaya zeigt, dass derartige Sanderkanalisierungen und talabwärts gelegene Kegelsanderablagerungen (Kuhle 1982: 116-117) auch in anderen Talschaften des Hohen Himalaya vorzufinden sind. Verglichen mit Erkenntnissen zu den Sanderformen innerhalb der Arolla Talschaft (Warburton 1994) sowie der Talschaft des Bossons Gletschers (Maizels 1979) in den Alpen wird deutlich, dass das Vorhandensein derartiger Sanderformenausprägungen nicht auf das Himalaya-Gebirge allein begrenzt ist. Ebenso lassen sich diese in den Glaziallandschaften der Ostzentralen Baffin Island sowie der Region des Süd-zentralen British Columbia (Church & Ryder 1972: 3068-3069), aber auch in den isländischen Gletschervorfeldern (Krigström 1962; Marren 2005; Marren & Toomath 2014) auffinden.

Speziell in den Haupttalschaften im Khumbu Himal wurde die Entstehung von Sanderflächen mittels ¹⁰Be-Datierungen zeitlich erfasst und mit Gletscheroszillationen korreliert (Barnard et al. 2006). Eine Überschneidung dieser Untersuchungsgebiete im Vergleich zur vorliegenden Arbeit besteht lediglich im Hauptstrom des Imja Khola. Vielmehr ist darauf hinzuweisen, dass die Sedimentzufuhren der Sanderausprägungen neben dem abgrenzenden Relief und den Gletscherbachabflussund Gletscherbachsedimentschwankungen (vgl. Germanoski & Schumm 1993; vgl. Marren 2005) einer Vielzahl von landschaftsbildenden Einflüssen unterliegen (Church 1972; Church & Ryder 1972; Iturrizaga 1999a, b; Hewitt 2002: 85-87). Beispiele hierfür wurden im Kapitel 2 aufgeführt (siehe Abbildung 1) und durch empirische Befunde während der Feldbegehungen und der anschließenden Satellitenbilduntersuchungen überprüft und belegt. Mithilfe dieser Ergebnisse und dem Abgleich mit einer anderen Studie von Warburton (1994) zeigt sich, dass die Entstehung jener Sanderformen im Hochgebirge nicht allein auf Gletscheroszillationen zurückzuführen ist. Ebenfalls sei in ¹⁰Bediesem Zusammenhang anzumerken, die Ergebnisse dass von Sanderdatierungen abhängig der Beeinflussung durch mögliche von Sedimentumlagerungen (Schröder 2007; Kuhle & Kuhle 2010) sind, die kurzzeitig und intensiv diese Formengestalten verändern können. Erst eine Kombination von CNE-Datierungen (cosmogenic nuclide exposure) und OSL-Datierungen (optically stimulated luminescence) erzeugen womöglich genauere Ergebnisse über das Alter von glazialen Formen im Hochgebirge Zentralasiens, wobei die Methodiken der geomorphologischen Landschaftsanalyse auch hier zu berücksichtigen sind (Gribenski 2017).

Insgesamt lässt sich daraus schließen, dass die hier erfasste horizontale und vertikale Abfolge von Sanderflächen lediglich als Hinweis auf Gletscheroszillationen genutzt werden kann. Eine Analyse dieser Hochgebirgsformen muss jedoch qualitativ-

systematisch aus unterschiedlichen Untersuchungsskalen (Schumm & Lichty 1965; vgl. Schumm 1991; siehe auch Kapitel 2) erfolgen, um mögliche Beeinflussungsfaktoren auszugrenzen. Ohne diese methodische Vorgehensweise ist die folgende Hypothese zu falsifizieren:

• H. 3.4 "Ausschließlich anhand von Sanderflächen lässt sich die relative zeitliche Abfolge von Gletscheroszillationen erfassen."

4.3.2 Abfolge von Gletscherbachlaufformen in den Untersuchungsgebieten

Mithilfe der Mesoebenenanalysen konnten in den Untersuchungsgebieten morphologisch großskalige Abfolgen der Gletscherbachläufe ermittelt werden. Da der Formenschatz dieser durch gletscherabschmelzbedingte Sedimentund Abflussfreisetzungen infolge von Gletscheroszillationen mitbeeinflusst wird, ist die Genese der Bachläufe ebenso mit den gebundenen und ungebundenen Sanderformen (Gletscherbachschotterfluren) (vgl. Kuhle 1991: 37) verzahnt. Aber auch weitere Prozesszusammenhänge wie z. B. Hangrutschungen, Gletscherseeausbrüche sowie Konfluenzen mit anderen Bachläufen (siehe Abbildung 1 und 2 in Kapitel 2) wirken auf die Genese in allen Gletscherbachuntersuchungsgebieten ein. Deutlich erkennbar konnten diese in den Talschaften des Nare Drangka Gletscherbaches, des orographisch rechten Khumbu Gletscherbaches, sowie in den Untersuchungsgebieten der Unbenannten Pangong Tso Gletscher I, II, III und IV erfasst werden.

Einflussnehmende Prozesskaskaden auf den Gletscherbachverlauf lassen sich nicht nur in den Hochgebirgstalschaften des Himalaya auffinden, sondern treten auch in anderen Hochgebirgsregionen in Erscheinung (Krigström 1962; Church 1972; Church & Ryder 1972: 3068-3069; Maizels 1979; Marren & Toomath 2014).

Insgesamt verdeutlicht die geomorphologische Bestandsaufnahme der Gletscherbachformenabfolgen in den Untersuchungsgebieten, dass der direkt dem Gletscher angrenzende Gletscherbachlauf vermehrt verwilderte Bachbettformen (braided river) vorweist, die zum Teil mit einer kleinräumigen Mehrläufigkeit des Gletscherbaches verschachtelt sind. Dieser Formenschatz ist ebenso ein

charakteristisches Merkmal von Sanderformen mit angrenzenden Flachlandvergletscherungen (vgl. Church 1972: 136-138), in den untersuchten Hochgebirgstalschaften werden diese jedoch durch die abgrenzenden Hänge morphologisch kanalisiert. Aufgrund einer Reduktion der Bachneigung und einer abnehmenden Gletscherbachsedimentzufuhr können sich in den oberen Gletscherbachläufen ebenso Mäanderformen ausprägen, die zum Teil schlangenlinienförmige Bachlaufformen entfalten. Die Bögen dieser können jedoch durch die engen Talschaften blockiert werden. Aber auch gestreckte Gletscherbachläufe sind in den Untersuchungsgebieten vorzufinden. Diese entstehen u. a. durch eine geringe Sedimentzufuhr sowie eine intensive Bachneigung. Bachabwärts sind zum Teil großräumige Mäanderbögen und Bachverwilderungen (braided river) auffindbar. In den Gletscherbachoberläufen des Nare Drangka Gletscherbaches sowie der Unbenannten Pangong Tso Gletscher I, II, III und IV lassen sich ebensolche Gletscherbachformen erfassen.

Deutlich weiter bachabwärts sind in den Untersuchungsgebieten vereinzelt vegetationsverfestigte Mäanderformen und Inselbildungen (anabranching river) erkennbar, die aufgrund ihrer Vegetationsüberprägungen eine intensiv-rezente glazifluviale Morphodynamik ausschließen. Als Beispiele sind hier die unteren Gletscherbachabschnitte des Lhotse Nup Gletscherbaches, des Nare Drangka Gletscherbaches sowie des orographisch linken sowie rechten Khumbu Gletscherbaches zu nennen.

Zusammenfassend lässt sich anhand der Gletscherbachuntersuchungen im Khumbu Himal und am Pangong Tso die horizontal-vertikale Gletscherbachlaufabfolge wie folgt aufgliedern (siehe Tabelle 16):

Orographische Einordnung eines Gletscherbaches:	Gletscherbachform:
Oberer Abschnitt: Direkt unterhalb der	Bachverwilderungen mit vereinzelter
Gletscherzunge	Gletscherbachmehrläufigkeit (braided river)
Oberer Abschnitt: Steiles Bachgefälle, talgebunden	Gestreckter Gletscherbachlauf
Oberer/ Mittlerer Abschnitt: Flaches Bachgefälle,	Kleinräumige und zum Teil gebundene
talgebunden	Mäandrierungen (Schlangenlinienformen)
Mittlerer Abschnitt: Flaches Bachgefälle,	Bachverwilderungen mit ausgeprägter
weitestgehend ungebundener Sander	Gletscherbachmehrläufigkeit (braided river)

Unterer Abschnitt: Flaches Bachgefälle, wenig Sedimentzufuhren	Großräumige Mäandrierungen
Unterer Abschnitt: Flaches Bachgefälle, deutlich weiter bachabwärts	Großräumige Mäandrierungen mit ausgeprägten Inselbildungen und Vegetationsverfestigungen (anabranching river)

Tabelle 16: Die horizontal-vertikale Gletscherbachlaufabfolge in den Untersuchungsgebieten.

Die dieser Gletscherbachlaufabfolgen Formen lassen sich mit vereinzelten landschaftsprozessbedingten Bachlaufveränderungen außerhalb ebenso der Untersuchungsgebiete vorfinden. Empirisch-photographische Beispiele aus dem Himalaya-Karakorum Hochgebirgsraum verdeutlichen die Formenähnlichkeiten und können u. a. mit den Gletscherbachlaufveränderungen nahe des Rongbuk Gletschers (Kuhle & Wang 1988: Figure 58, 59, 60), im großräumigen Einzugsgebiet des Buri Gandaki (Tombrink 2010: Photoband; Tombrink 2017), im großräumigen Einzugsgebiet des Kali Gandaki (Wagner 2007: Photo 19, 33, 45; vgl. auch Wagner 2005: Photo 5), den Gletscherbachlaufveränderungen des Rolwaling Khola im Einzugsgebiet des Rolwaling Gletschers (König 2002: Photo 30, 30a), des Simbua Khola im Einzugsgebiet des Yalung Gletschers (Meiners 1999: Photo 34; König 2002: Photo 98, 149), im Einzugsgebiet des Kerengi Gletschers (Meiners 2005: Photo 17) und im Einzugsgebiet des Shurt Gletschers nahe des Shimshal-Passbereiches (Iturrizaga 1999a: Photo 27), abgeglichen werden. Auch außerhalb des Himalaya-Karakorum Hochgebirgsraumes lassen sich empirisch-photographische Beispiele finden. Dazu zählen Bachlaufformen u. a. in der Cordillera Blanca (Iturrizaga 2014: Figure 12), in der Cordillera del Paine (Röthlisberger 1986: 221, Abb. 158 & 159), auf der Baffin Island (Church & Ryder 1972: Figure 3), im westlichen Südnorwegen der Skanden (Winkler 2009: 69, Abb. 6.8), in den Alpen (Warburton 1994: Figure 1) und am Mt. Cook in den Neuseeländischen Alpen (Röthlisberger 1986: 267, Abb. 198). Diese photographische Auflistung dient lediglich als Überblick und kann durch zahlreiche empirisch-photographische Beispiele erweitert werden.

Mithilfe dieses strukturalistischen Vergleiches zeigt sich schließlich, dass morphologische Gletscherbachabfolgen in ähnlicher Formenvielfalt auch in anderen Hochgebirgsräumen vorzufinden sind. Um jedoch eine allgemein für Hochgebirge empirisch belegbare Aussage treffen zu können, bedarf es weiteren Feldbegehungen außerhalb des Himalaya Hochgebirgsraumes. Aufgrund der in dieser Arbeit erfassten

Datenbasis kann die folgende Hypothese speziell für den Himalaya Hochgebirgsraum bestätigt werden:

• H. 4.1 "Mithilfe von Gletscherbachlaufformen in den Untersuchungsgebieten im Himalaya Hochgebirgsraum lässt sich eine morphologische Abfolge erkennen und ausarbeiten."

Die in den Untersuchungsgebieten erfasste Formenabfolge lässt sich auch großräumig und somit relativ-zeitlich einordnen. Diese beginnt mit dem rezenten Stadium direkt unterhalb der Gletscherzunge und endet im historischen Stadium deutlich weiter bachabwärts (siehe Abbildung 59).

4.4 Makroebenenanalysen

4.4.1 Genese der Längsprofile in den Untersuchungsgebieten

Mithilfe der Anwendung einer Längsprofilanalyse, das verwendete Höhenmodell basiert auf SRTM Daten, in den hier begangenen Untersuchungsgebieten wurden die fluvialgeomorphologischen Feldforschungsergebnisse durch zusätzliche morphometrisch-satellitenbildtechnische Datensätze erweitert. Die dadurch morphometrisch erfassten Längsprofilformen wurden mit dem im Gelände empirisch gesammelten Bachformenschatz abgeglichen und überprüft. Unter Verwendung dieser arbeitstechnischen Vorgehensweise ist es schließlich möglich, Datenfehler im SRTM-Höhemodell sowie der möglicherweise ungenauen Gletscherbachlaufverortung und Vektorisierung zu überprüfen und aufzudecken, aber auch Längsprofilformen zu erfassen und zu verorten.

Zusammenfassend kann so gezeigt werden, dass zum Teil deutlich langgestreckte und ausgeprägte, konvexe Formengestalten innerhalb der Gletscherbachlängsprofile vorzufinden sind. Da das zugrundeliegende Gletscherbachfundament sowie die angrenzenden Bereiche allesamt als Grundmoränenkörper klassifiziert werden können, ist der Untergrund jener Längsprofile als glazigen zu klassifizieren. Diese großräumig langgestreckten konvexen Formen sind das Resultat vergangener Gletscherschwankungen, die derartige Formen glazigen akkumulierten. Dies konnte mithilfe der hier angewandten Makroebenenanalysen einschließlich der Geländearbeiten empirisch belegt werden.

Des Weiteren beeinflussen auch zusätzliche Prozessabläufe, zu nennen wären hier u. Abflussund Sedimentationsprozessschwankungen a. der untersuchten Gletscherbachläufe, Hangrutschungsprozesse und somit Sedimentakkumulationen in dem Gletscherbachlauf, glazifluviale Sedimentationsprozesse aus anderen Nebengletscherbächen, die mit dem Hauptgletscherbach eine Konfluenz bilden, historische Gletscherseeausbrüche, die die Gletscherbachsohle umgestalten (siehe Abbildung 1 und 2 in Kapitel 2), die Entstehung sowie Umlagerung der Formengestalten im Gletscherbachlängsprofil. Derartige Erosions- sowie Akkumulationsprozesse sind jedoch punktuell zu verorten und lassen sich so vermehrt durch kleinräumige konvexe Formenveränderungen im Längsprofil erkennen. Als Beispiel ist hier das Gletscherbachlängsprofil des Nare Drangka Gletscherbachlaufes zu nennen, dessen Gletscherbachsohle durch einen historischen Gletscherseeausbruch aus dem Jahr 1977 umgestaltet wurde (Buchroither et al. 1982; Fushimi et al. 1985; Cenderelli & Wohl 2001; Cenderelli & Wohl 2003) und rezent von Hangrutschungsprozessen beeinflusst wird (vgl. Photo 108 & 110). Infolgedessen sind in diesem Gletscherbachlängsprofil vermehrt kleinräumige konvexe Formengestalten vorzufinden, die sich durch Schwankungen des Bachgefälles erkenntlich machen.

Auch der Hauptgletscherbach der Unbenannten Pangong Tso Gletscher III und IV zeigt die möglichen fluvialgeomorphologischen Beeinflussungsfaktoren auf. Erfasst werden konnten diese anhand von Gletscherbachverwilderungen (braided river) im oberen Talabschnitt, die kleinräumige Gefälleschwankungen im Gletscherbachlängsprofil induzierten.

Neben diesen Prozessbeeinflussungskriterien können kleinräumige konvexe Formen auch durch Datenfehler im SRTM-Höhenmodell oder einer ungenauen Verortung und Vektorisierung des Gletscherbachlängsprofiles entstehen. Großräumige, langgestreckte konvexe Formengestalten, die treppenstufenartig im Gletscherbachlängsprofil

aneinandergereiht sind, lassen sich durch diese technischen Messfehler nicht erklären. Diese Formen sind vielmehr als Resultat einer großskaligen glazigenen Umlagerung von Sedimenten zu deuten, die diese zeitlich voneinander versetzt im Gletscherbachbett akkumulierte. Aus diesem Grund ist die folgende Hypothese, die durch einen qualitativen Abgleich mit der Morphologie in den Untersuchungsgebieten überprüft wurde, zu bestätigen:

 H. 5.1 "Langgestreckte konvexe Formen im insgesamt konkaven Gletscherbachlängsprofil lassen sich in den Untersuchungsgebieten mit Moränenstadien parallelisieren."

Ergebnisse aus anderen Gebirgsregionen bestätigen, dass derartige Längsprofilformen als ein Resultat vergangener Vergletscherungsprozesse zu deuten sind. So zeigen Gletscherbachuntersuchungen im südwestlichen British Columbia (Brardinoni & Hassan 2006; vgl. Brardinoni & Hassan 2007), dass die insgesamt sehr großräumigen konkaven Formengestalten der Bachlängsprofile durch historische Vergletscherungen entstanden sind und somit als Ursprungslandschaftsform persistieren bis sie erneut glazigen überprägt werden (Brardinoni & Hassan 2006: 11).

Aufgrund der im Himalaya vorzufindenden Längsprofilformen, die Hinweise zu vergangenen Moränenstadien liefern, ist es von maßgeblicher Bedeutung, die in den vorherigen Kapiteln dargelegten glazifluvialen Formen innerhalb der Gletscherbäche mit dieser Kennform zu ergänzen.

Neben diesen erfassten Längsprofilformen in den Untersuchungsgebieten der Gletscherbäche gilt es, den Längsprofilformenschatz in anderen Hochgebirgsregionen morphologisch und morphometrisch zu erfassen. Erst dadurch ist es möglich, die hier gesammelten Ergebnisse mit weiteren Gletscherbachlaufprofilen strukturalistisch zu vergleichen.

4.5 Synthese: Die glazifluviale und fluviale Serie in den Untersuchungsgebieten

In der Zusammenschau lässt sich das "Schema homologer Merkmale glaziärer Indikatoren und Bortensander" (Kuhle 1990; Kuhle 1991: 191-194) durch glazifluviale und fluviale Formen für den Hochgebirgsraum des Himalaya erweitern. Dieser glazifluviale und fluviale Formenschatz ist wie folgt zusammenzufassen:

- Horizontal-vertikale, chronologische Abfolge von a) Kaskaden Sequenzabfolgen (cascade) und ihren b) Entwicklungsstadien zu c) Stufen-Becken Sequenzabfolgen (step-pool)
- Glazifluviale Terrassenabfolgen von a) vier Terrassen und b) bis zu sechs oder mehr Terrassen
- 3. Bachaufwärts verortete rezente sowie gebundene Sanderformen
- 4. Bachabwärts verortete historische Sanderformen
- 5. Vertikal vergesellschaftete rezente sowie historische Sanderformen
- 6. Horizontal-vertikale Gletscherbachlaufabfolge bestehend a) aus: Bachverwilderungen mit vereinzelter Gletscherbachmehrläufigkeit (braided river), b) gestreckter Gletscherbachlauf, c) kleinräumige und zum Teil gebundene Mäandrierungen (Schlangenlinienformen), d) Bachverwilderungen mit ausgeprägter Gletscherbachmehrläufigkeit (braided river), e) großräumige Mäandrierungen, f) großräumige Mäandrierungen mit ausgeprägten Inselbildungen und Vegetationsverfestigungen (anabranching river)
- 7. Langgestreckte konvexe Formen im insgesamt konkaven Gletscherbachlängsprofil

Die Merkmale dieser glazifluvialen und fluvialen Formen sind der vorherigen Nummerierung entsprechend wie folgt in den Untersuchungsgebieten im Hochgebirgsraum des Himalaya zu finden und somit chronologisch einzuordnen (siehe Abbildung 59):

Abbildung 59: Merkmale glazifluvialer und fluvialer Formen für den Hochgebirgsraum Himalaya.

All diese Gletscherbachformen wurden durch freigesetzte Sedimentund Abflussprozesse der vergangenen Gletscheroszillationen induziert. Räumlich sind diese Gletscherbachformen einem Lagebezug untereinander zuzuweisen. Zeitlich lassen sie sich in den Untersuchungsgebieten vermehrt den rezenten sowie historischen Gletscherstadien im Holozän zuordnen. Insgesamt können diese Formenfunde zur Verortung von Gletschervorfeldern einschließlich möglicher Gletscherstadien im Hochgebirgsraum des Himalaya genutzt werden. Neben dieser Erweiterung des Fundus "glaziärer Indikatoren" im Hochgebirgsraum des Himalaya (Kuhle 1991: 191-194; vgl. Kuhle 1990) belegen die glazifluvialen und fluvialen Formenmerkmale das Ausmaß sowie die Intensität der rezenten und historischen Gletscherschmelzprozesse im Holozän. Ebenso bilden die in dieser Arbeit deskriptiv ausgearbeiteten glazifluvialen Formenmerkmale eine Basis für zukünftige Untersuchungen über klimatische

Formenveränderungen im Gletscherbachlauf eines Hochgebirges, die durch Gletschereisschwankungen ausgelöst werden können.

5 Abschließende Zusammenfassung

Ziel der Untersuchungen war es, eine glazifluviale Formenabfolge im proglazialen Bereich herauszuarbeiten und diese Abfolge zeitlich zu klassifizieren. Sie dient dazu eine mögliche klimagenetische Abhängigkeit zu rezenten und historischen Gletscherschwankungen im Holozän in den Untersuchungsgebieten aufzuzeigen. Um dies empirisch zu belegen, wurde eine skalenabhängige Mikro-, Meso- und Makroebenenanalyse für das Hauptuntersuchungsgebiet im Khumbu Himal spezifisch entwickelt und angewandt. Dieser skalenabhängige Untersuchungsaufbau konnte ebenso für die Gletscherbachläufe in der semiariden Vergleichsregion nahe des Pangong Tso Südwestufers genutzt werden, um nicht nur Formenähnlichkeiten sondern auch Unterschiede zwischen den Regionen zu verdeutlichen. Mithilfe dieser Methodik wurde schließlich die zeitliche und räumliche Abhängigkeit von Sohlenseguenzabfolgen, Terrassenordnungen, Schotterflurformen respektive Sanderformenausprägungen, Abfolgen von Gletscherbachlaufformen sowie Längsprofilformen der Gletscherbäche in den Untersuchungsgebieten des Himalaya bewiesen (siehe Kapitel 4.2 bis 4.5). Mögliche Beeinflussungsfaktoren der Gletscherbäche (siehe Kapitel 2.2) wurden in den Untersuchungsgebieten berücksichtigt, die durch zusätzliche Ergebnisse aus den Nebentalschaften (siehe Kapitel 4.1) verdeutlicht werden konnten.

In den untersuchten Gletschervorfeldern entwickeln sich die Sohlensequenzabfolgen von Gletscherbächen bachabwärts von Kaskaden Sequenzabfolgen (cascade) zu Stufen-Becken Sequenzabfolgen (step-pool). Anhand der Gletscherbachmorphologie ließen sich zwischen diesen Abfolgen frühe sowie fortgeschrittene Entwicklungsstadien rekonstruieren. Das Sohlenfundament dieser ist als Grundmoräne zu klassifizieren. Im Khumbu Himal sind diese Fundamente vereinzelt während des Spätglazials bis Neoglazials (IV-'VII) (vgl. Nare Dranka Gletscherbach), vermehrt aber während der Historischen Gletscherstadien (VII - XI) bis zum rezenten Gletscherstadium (XII) (Kuhle 2005, Kuhle 2006a, b; vgl. Tabelle 17) und Stadien jüngeren Datums (ab 1980) (GLIMS: Racoviteanu & Bajracharya 2008) abgelagert worden. In den Gletscherbachläufen am Pangong Tso wurde das Fundament der fortgeschrittenen Bachentwicklungsstadien im Sirkung- (IV) bis zum Nauri- Gletscherstadium (V) abgelagert (Kuhle 2013). Erst deutlich weiter bachabwärts konnten im Hauptuntersuchungsgebiet Stufen-Becken

Sequenzabfolgen (step-pool) kartiert werden (siehe Imja Khola Hauptstrom: Kapitel 3.1.2.8). Anhand dieser Untersuchungen wurde somit eine Chronologie der Gletscherbachsohlen belegt, deren Fundamente Grundmoränen sind (siehe Kapitel 4.2.1).

Des Weiteren konnten in den oberen Gletscherbacheinzugsgebieten im Khumbu Himal mindestens vier Terrassenordnungen sowie Terrassenfomen rekonstruiert werden, die bachabwärts in ihrer Anzahl auf fünf (Imja Khola Hauptstrom) und sechs (untere Nare Drangka Gletscherbach) zunehmen. Die untersten Terrassenordnungen 1 bis 4 sind als ein Produkt historischer Vergletscherungsstadien rezenter und und Gletscherabschmelzphasen zu deuten. Die darauf auflagernden Terrassenordnungen 5 bis 6 sind als Resultat historischer Gletscherstadien und anschließenden Gletscherabschmelzphasen im Holozän zu erfassen (vgl. Gletscherstadienchronologie nach Kuhle 2013: Table 1; vgl. Tabelle 17). Diese älteren Terrassenordnungen unterliegen jedoch durch mögliche Faktoren einer höheren Beeinflussungsdauer und morphologisch verändert werden können somit (siehe Kapitel 2.2). Im Vergleichsuntersuchungsgebiet am Pangong Tso konnten in den bachabwärts gelegenen Gletscherbachabschnitten maximal vier Terrassenordnungen rekonstruiert werden, deren geringe Anzahl sich durch lokalklimatische Unterschiede und somit veränderte Gletscheroszillationen erklären lässt (siehe Kapitel 4.2.2).

Ebenfalls wurden Schotterflurformen/ Sanderformen rekonstruiert, die eine räumlich und zeitlich voneinander getrennte, aber zum Teil auch eine überlagernde Abfolge von historischen und rezenten Formen vorweisen. In den Untersuchungsgebieten der Gletscherbäche konnten diese Verschachtelungen als vertikale Abfolge in breiteren Talbereichen, aber auch als horizontal-vertikale Abfolge in engen Talschaften erfasst werden. Diese prägen im Vergleich zu den Trompetentälchen im Alpenvorland (Troll 1926) eine andere Formengestalt aus, sind aber ebenso in anderen Hochgebirgstälern zu finden. Aufgrund von Sedimentumlagerungen und Zufuhren können die Sanderabfolgen jedoch lediglich als Hinweis auf Gletscheroszillationen genutzt werden. Daher müssen Sanderformen qualitativ-systematisch aus unterschiedlichen Untersuchungsskalen (Schumm & Lichty 1965; vgl. Schumm 1991; siehe auch Kapitel 2) rekonstruiert werden, um mögliche Beeinflussungsfaktoren auszugrenzen. Erst so ist

es möglich ein relatives Alter zu erfassen (siehe Kapitel 4.3.1).

Ebenso lässt sich durch die rekonstruierten Gletscherbachlaufformen in den Untersuchungsgebieten eine morphologische Abfolge erkennen. Unterhalb der Gletscherzunge beginnt diese vermehrt mit verwilderten Bachbettformen (braided river), die teils mit einer kleinräumigen Mehrläufigkeit des Gletscherbaches verschachtelt sind. Bachabwärts gliedern sich dann im steilen Gefälle gestreckte Bachläufe und im flachen Gefälle Mäanderformen mit zum Teil schlangenlinienförmigen gebundene Bachlaufformen an. Im Anschluss sind in einem flachen Bachgefälle im weitestgehend ungebundenen Sanderbereich ausgeprägte Bachverwilderungen (braided river) auffindbar. Unterhalb dieser setzen im flachen Bachgefälle teilweise großräumige Mäandrierungen an. Deutlich weiter bachabwärts prägen im flachen Bachgefälle vereinzelt vegetationsverfestigte Mäanderformen und Inselbildungen (anabranching river) die Gletscherbachlandschaft. Diese Abfolge der Gletscherbachläufe lassen sich in ähnlicher Formenvielfalt auch in anderen Hochgebirgsräumen vorfinden (siehe Kapitel 4.3.2).

Des Weiteren zeigen Längsprofiluntersuchungen der Gletscherbachläufe, dass zum Teil deutlich langgestreckte und ausgeprägte konvexe Formen im insgesamt konkaven Längsprofil die Bachläufe prägen. Diese konvexen Formen, die teils treppenstufenartig aneinandergereiht sind. entstanden durch die Akkumulation vergangener Gletscherschwankungen. Somit können sie mit Moränenstadien parallelisiert werden. Des Weiteren beeinflussen auch zusätzliche Prozessabläufe die Entstehung sowie Umlagerung dieser Formen im Gletscherbachlängsprofil (siehe Kapitel 2.2). Derartige Erosions- sowie Akkumulationsprozesse sind punktuell zu verorten und lassen sich vermehrt durch kleinräumige konvexe Formenveränderungen im Profil erkennen (siehe Kapitel 4.4.1).

Die Gesamtheit der zuvor aufgeführten Formen bildet eine glazifluviale sowie fluviale Abfolge, welche in den Gletscherbachvorfeldern im Himalaya zu finden ist (siehe Kapitel 4.5 und Abbildung 59). Zusammengefasst konnte so eine Gletscherbach-Formenchronologie empirisch belegt werden. Diese Ergebnisse erweitern somit den Fundus "glaziärer Indikatoren" im Hochgebirgsraum des Himalaya (Kuhle 1990; vgl.

Kuhle 1991: 191-194) und können daher ebenso zur Verortung von Gletschervorfeldern einschließlich möglicher Gletscherstadien im Hochgebirgsraum des Himalaya genutzt werden.

Außerdem können diese empirischen Geländedaten für einen Vergleich über die Intensität der zukünftigen Abschmelzprozesse des Gletschereises herangezogen werden. So ist es schließlich möglich, klimatische Veränderungen im Gletscherbachbereich der untersuchten Hochgebirgsbachläufe zu erfassen. Aus diesem Grund leisten die Ergebnisse dieser Studie einen Beitrag für das Verständnis von Gletscherbachläufen im Himalaya, deren Gesamtabfluss die Landschaftsgenese (Heckmann et al. 2016) sowie die ortsabhängige Bewässerung gestalten.

Literaturverzeichnis

- ACHENBACH, H. (2011): Historische und rezente Gletscherstandsschwankungen in den Einzugsgebieten des Cha Lungpa (Mukut-, Hongde- und Tongu-Himalaja sowie Tach Garbo Lungpa), des Khangsar Khola (Annapurna N-Abdachung) und des Kone Khola (Muktinath-, Purkhung- und Chulu-Himalaja). Diss. Göttingen.
- BARNARD, P.L., OWEN, L.A. & FINKEL, R.C. (2006): Quaternary fans and terraces in the Khumbu Himal south of Mount Everest: their characteristics, age and formation. Journal of the Geological Society 163, 2, 383–399.
- BEER, J. (2000): Long-term indirect indices of solar variability. Space Science Reviews 94, 1/2, 53–66.
- BENNETT, M. & GLASSER, N.F. (2009): Glacial Geology: Ice Sheets and Landforms. Chichester, UK, Hoboken, NJ: Wiley-Blackwell.
- BÖHNER, J. (2006): General climatic controls and topoclimatic variations in Central and High Asia. Boreas 35, 2, 279–295.
- BOLCH, T., BUCHROITHNER, M., PIECZONKA, T. & KUNERT, A. (2008): Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data. Journal of Glaciology 54, 187, 592–600.
- BOLCH, T., BUCHROITHNER, M.F., PETERS, J., BAESSLER, M. & BAJRACHARYA, S. (2008a): Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everst region/Nepal using spaceborne imagery. – Natural Hazards and Earth System Sciences 8, 1329–1340.
- BOLCH, T., PIECZONKA, T. & BENN, D.I. (2011): Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere 5, 2, 349–358.
- BOLCH, T., KULKARNI, A., KAAB, A., HUGGEL, C., PAUL, F., COGLEY, J.G., FREY, H., KARGEL, J.S., FUJITA, K., SCHEEL, M., BAJRACHARYA, S. & STOFFEL, M. (2012): The State and Fate of Himalayan Glaciers. Science 336, 6079, 310–314.
- BOLLASINA, M., BERTOLANI, L. & TARTARI, G. (2002): Meteorological observations at high altitude in the Khumbu Valley, Nepal Himalayas, 1994-1999. Bulletin of Glaciological Research 19, 1–11.
- BOOKHAGEN, B. & BURBANK, D.W. (2006): Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophysical Research Letters 33, 8.

- BOOKHAGEN, B., THIEDE, R.C. & STRECKER, M.R. (2005): Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya. Geology 33, 2, 149.
- BRARDINONI, F. & HASSAN, M.A. (2006): Glacial erosion, evolution of river long profiles, and the organization of process domains in mountain drainage basins of coastal British Columbia. – Journal of Geophysical Research 111, F1.
- BRARDINONI, F. & HASSAN, M.A. (2007): Glacially induced organization of channel-reach morphology in mountain streams. Journal of Geophysical Research-Earth Surface 112, F3.
- BUCHROITHNER, M.F., JENTSCH, G. & WANIVENHAUS, B. (1982): Monitoring of recent geological events in the Khumbu area (Himalaya, Nepal) by digital processing of landsat MSS data. Rock Mechanics, 15, 181–197.
- BUFFINGTON, J. & MONTGOMERY, D. (2013): 9.36 Geomorphic Classification of Rivers. In: Treatise on Geomorphology: Elsevier, 730–767.
- BYERS, A.C. (2007): An assessment of contemporary glacier fluctuations in Nepal's Khumbu Himal using repeat photography. Himalayan Journal of Sciences 4, 6.
- CAROSI, R., LOMBARDO, B., MUSUMECI, G. & PERTUSATI, P. (1999): Geology of the Higher Himalayan Crystallines in Khumbu Himal (Eastern Nepal). – Journal of Asian Earth Sciences 17, 5-6, 785–803.
- CASAGRANDE, L., FRIGERI, A., FURIERI, A., MARCHESINI, I. & NETELER, M. (2014): GIS Open Source: GRASS GIS, Quantum GIS and SpatiaLite. Palermo: Flaccovio.
- CENDERELLI, D.A. & WOHL, E.E. (2001): Peak discharge estimates of glacial-lake outburst floods and "normal" climatic floods in the Mount Everest region, Nepal. Geomorphology, 40, 57–90.
- CENDERELLI, D.A. & WOHL, E.E. (2003): Flow hydraulics and geomorphic effects of glacial-lake outburst floods in the Mount Everest region, Nepal. Earth Surface Processes and Landforms 28, 4, 385–407.
- CHAMBERLIN, T.C. (1890): The Method of Multiple Working Hypotheses. Science (old series) 15, 92–96, reprinted 1965, v. 148, p. 754-759.
- CHIN, A. (2002): The periodic nature of step-pool mountain streams. American Journal of Science 302, 2, 144–167.
- CHIN, A. & WOHL, E. (2005): Toward a theory for step pools in stream channels. Progress in Physical Geography 29, 3, 275–296.

- CHURCH, M.A. (1972): Baffin Island sandurs: A study of arctic fluvial processes. Geological Survey of Canada. Bulletin 216. Ottawa: Department of Energy Mines and Resources.
- CHURCH, M. & RYDER, J.M. (1972): Paraglacial Sedimentation: A Consideration of Fluvial Processes Conditioned by Glaciation. Geological Society of America Bulletin 83, 10, 3059–3072.
- COULTHARD, T.J., NEAL, J.C., BATES, P.D., RAMIREZ, J., DE ALMEIDA, GUSTAVO A. M. & HANCOCK, G.R. (2013): Integrating the LISFLOOD-FP 2D hydrodynamic model with the CAESAR model: implications for modelling landscape evolution. Earth Surface Processes and Landforms 38, 15, 1897–1906.
- DE FERRANTI, J. (2012): Digital elevation models. Viewfinder Panoramas., http://www.viewfinderpanoramas.org/.
- DHAR, O.N. & NANDARGI, S. (2000): An appraisal of precipitation distribution around the Everest and Kanchenjunga peaks in the Himalayas. Weather 55, 223–234.
- DHAR, O.N. & NANDARGI, S. (2005): Areas of heavy precipitation in the Nepalese Himalayas. Weather 60, 12, 354–356.
- DHAR, O.N. & NARAYANAN, J. (1965): A study of precipitation distribution in the neighbourhood of Mount Everest. Indian J. Met. Geophys 16, 2, 229–240.
- DORTCH, J.M., OWEN, L.A., CAFFEE, M.W. & KAMP, U. (2011): Catastrophic partial drainage of Pangong Tso, northern India and Tibet. Geomorphology 125, 1, 109–121.
- DORTCH, J.M., OWEN, L.A. & CAFFEE, M.W. (2013): Timing and climatic drivers for glaciation across semi-arid western Himalayan–Tibetan orogen. Quaternary Science Reviews 78, 188–208.
- EHLERS, J. (1994): Allgemeine und historische Quartärgeologie. Stuttgart: Enke.
- EHLERS, J. (2011): Das Eiszeitalter. Heidelberg: Spektrum Akademischer Verlag.
- ELVERFELDT, K. von (2012): Systemtheorie in der Geomorphologie: Problemfelder, erkenntnistheoretische Konsequenzen und praktische Implikationen. Erdkundliches Wissen 151. Stuttgart: Steiner.
- ENGELHARDT, W. von (1973): Die Bildung von Sedimenten und Sedimentgesteinen: Mit 55 Tabellen im Text. Stuttgart: Schweizerbart.

- FINKEL, R.C., OWEN, L.A., BARNARD, P.L. & CAFFEE, M.W. (2003): Beryllium-10 dating of Mount Everest moraines indicates a strong monsoon influence and glacial synchroneity throughout the Himalaya. – Geology 31, 6, 561.
- FONTES, J.-C., GASSE, F. & GIBERT, E. (1996): Holocene environmental changes in Lake Bangong basin (Western Tibet). Part 1: Chronology and stable isotopes of carbonates of a Holocene lacustrine core. – Palaeogeography, Palaeoclimatology, Palaeoecology 120, 1-2, 25–47.
- FUSHIMI, H. (1977): Glaciations in the Khumbu Himal (1). Seppyo 39, 60–67.
- FUSHIMI, H. (1978): Glaciations in the Khumbu Himal (2). Seppyo 40, 71–77.
- FUSHIMI, H., SHANKAR, K., IKEGAMI, K. & HIGUCHI, K. (1985): Nepal case study: catastrophic floods. – International Association of Hydrological Sciences (IAHS), 149, 125–130.
- GANSSER, A. (1964): Geology of the Himalayas. London, New York, Sydney: Interscience Publishers.
- GASSE, F., FONTES, J., VAN CAMPO, E. & WEI, K. (1996): Holocene environmental changes in Bangong Co basin (Western Tibet). Part 4: Discussion and conclusions. Palaeogeography, Palaeoclimatology, Palaeoecology 120, 1-2, 79–92.
- GERMANOSKI, D. & SCHUMM, S.A. (1993): Changes in Braided River Morphology Resulting from Aggradation and Degradation. – Journal of Geology 101, 451–466.
- GFELLER, C., OESCHGER, H. & SCHWARZ, U. (1961): Bern radiocarbon dates II. Radiocarbon 3, 15–25.
- GIBBARD, P.L. (1994): Pleistocene History of the Lower Thames Valley. Cambridge: Cambridge Univ. Press.
- GRIBENSKI, N. (2017): Comparison of dating methods for paleoglacial reconstruction in Central Asia. Eiszeitalter und Gegenwart 66, 1, th6–8.
- HAFFNER, W. (1972): Khumbu Himalaya Landschaftsökologische Untersuchungen in den Hochtälern des Mt. Everest-Gebietes. Geoecology of the high mountain regions of Eurasia. Ed. Carl Troll. Wiesbaden Steiner, 244–263.
- HAGEN, T. (1969): Report on the geological survey of Nepal: Preliminary reconnaissance. Denkschriften der Schweizerischen Naturforschenden Gesellschaft 86,1. Zürich: Komm.-Verl. Fretz.

- HAGEN, T., DYHRENFURTH, G.-O., FÜRER-HAIMENDORF, C.v. & SCHNEIDER, E. (1959): Mount Everest: Aufbau, Erforschung und Bevolkerung des Everest-Gebietes. Zurich: Orell Fussli.
- HAMBREY, M.J., QUINCEY, D.J., GLASSER, N.F., REYNOLDS, J.M., RICHARDSON, S.J. & CLEMMENS, S. (2008): Sedimentological, geomorphological and dynamic context of debris-mantled glaciers, Mount Everest (Sagarmatha) region, Nepal. – Quaternary Science Reviews 27, 25-26, 2361–2389.
- HECKMANN, T., MCCOLL, S. & MORCHE, D. (2016): Retreating ice: research in pro-glacial areas matters. Earth Surface Processes and Landforms 41, 2, 271–276.
- HEIM, A. & GANSSER, A. (1939): Central Himalaya: Geological observations of the Swiss expedition 1936. Denkschriften der Schweizerischen Naturforschenden Gesellschaft 73,1. Basel u.a.: Birkhäuser.
- HEUBERGER, H. (1986): Untersuchungen über die eiszeitliche Vergletscherung des Mt. Everest-Gebietes, Südseite, Nepal. In: KUHLE, M. (Hrsg.). Internationales Symposium über Tibet und Hochasien vom 8.-11. Oktober 1985 im Geographischen Institut der Universität Göttingen: Vorträge und Dikussionen. Göttinger Geographische Abhandlungen 81. Göttingen: Goltze, 29–30.
- HEUBERGER, H. & WEINGARTNER, H. (1985): Die Ausdehnung der letzteiszeitlichen Vergletscherung an der Mount-Everest-Südflanke, Nepal. Wien: Oesterreichische Geographische Gesellschaft.
- HEWITT, K. (1967): Ice-Front Deposition and the Seasonal Effect: A Himalayan Example. – Transactions of the Institute of British Geographers, 42, 93–106.
- HEWITT, K. (2002): Postglacial Landform and Sediment Associations in a Landslidefragmented River System: the TransHimalayan Indus Streams, Central Asia. In: HEWITT, K., BYRNE, M.L., ENGLISH, M. & YOUNG, G. (Hrsg.). Landscapes of transition: Landform assemblages and transformations in cold regions (Geojournal library). Dordrecht, Berlin: Springer, 63–91.
- HEWITT, K. (2011): Glacier Change, Concentration, and Elevation Effects in the Karakoram Himalaya, Upper Indus Basin. Mountain Research and Development 31, 3, 188–200.
- HIGUCHI, K., AGETA, Y. & KODAMA, H. (1976): Water Discharge of Imja Khola in Khumbu Himal. – Journal of the Japanese Society of Snow and Ice 38, Special, 22–26.
- HIGUCHI, K., AGETA, Y., YASUNARI, T. & INOUE, J. (1982): Characteristics of precipitation during the monsoon season in high-montain areas of the Nepla Himalaya. Hydrological Aspects of Alpine anh High Mountain Areas (IAHS), 138, 21–30.

- HJULSTRÖM, F. (1935): Studies of the morphological activity of rivers as illustrated by the river Fyris. Uppsala: Almqvist & Wiksell.
- HUNTINGTON, E. (1906): Pangong: A Glacial Lake in the Tibetan Plateau. The Journal of Geology 14, 7, 599–617.
- ITURRIZAGA, L. (1999a): Die Schuttkörper in Hochasien: Eine geomorphologische Bestandsaufnahme und Typologie postglazialer Hochgebirgsschuttkörper im Hindukusch, Karakorum und Himalaya. Göttinger Geographische Abhandlungen 106. Göttingen: Goltze.
- ITURRIZAGA, L. (1999b): Typical debris accumulation forms and formations in High Asia A glacial-history-based concept of the origin of Postglacial debris accumulation landscapes in subtropical high mountains with selected examples from the Hindu Kush, the Karakoram and the Himalayas. – GeoJournal 47, 1/2, 277–339.
- ITURRIZAGA, L. (2007): Die Eisrandtäler im Karakorum: Verbreitung, Genese und Morphodynamik des lateroglazialen Sedimentformenschatzes. Geography International Bd. 2. Aachen: Shaker.
- ITURRIZAGA, L. (2011): Glacier lake outburst floods. In: SINGH, V.P., SINGH, P. & HARITASHYA, U.K. (Hrsg.). Encyclopedia of Earth Sciences Series: Encyclopedia of Snow, Ice and Glaciers. Dordrecht, The Netherlands: Springer Science, 381–399.
- ITURRIZAGA, L. (2011a): Trends in 20th century and recent glacier fluctuations in the Karakoram Mountains. – Zeitschrift f
 ür Geomorphologie, Supplementary Issues 55, 3, 205–231.
- ITURRIZAGA, L. (2014): Glacial and glacially conditioned lake types in the Cordillera Blanca, Peru: A spatiotemporal conceptual approach. – Progress in Physical Geography 38, 5, 602–636.
- IWATA, S. (1976): Late Pleistocene and Holocene Moraines in the Sagarmatha (Everest) Region, Khumbu Himal. – Journal of the Japanese Society of Snow and Ice 38, Special, 109–114.
- JARVIS, A., REUTER, H.I., NELSON, A. & GUEVARA, E. (2008): Hole-filled seamless SRTM data V4, http://srtm.csi.cgiar.org.
- KNIGHTON, D. (1998): Fluvial forms and processes: A new perspective. London, New York: Arnold.
- Кöнn, M. (Hrsg.) (1928): Beiträge zur Theorie und Praxis der mechanischen Bodenanalyse. Berlin: Parey.

- KÖNIG, O. (2001): Investigations on the Quaternary Glaciation in the Khumbu Himal (Nepal, East-Himalaya). GeoJournal 54, 451–469.
- König, O. (2002): Zur Vergletscherungsgeschichte des Rolwaling Himal und des Kangchenjunga Himal (Nepal, Himalaya Südabdachung). Diss. Göttingen.
- KRIGSTRÖM, A. (1962): Geomorphological Studies of Sandur Plains and Their Braided Rivers in Iceland. – Geografiska Annaler 44, 3/4, 328–346.
- KUHLE, M. (1982): Der Dhaulagiri- und Annapurna-Himalaya: E. Beitr. zur Geomorphologie extremer Hochgebirge. Berlin: Borntraeger.
- KUHLE, M. (1986): Former glacial stades in the mountain areas surrounding Tibet In the Himalayas (27-29°N: Dhaulagiri-, Annapurna-, Cho Qyu-, Gyachung Kang-areas) in the south and in the Kuen Lun and Quilian Shan (34-38°N: Animachin, Kakitu) in the north. In: JOSHI, S., HAIGH, M., PANGTEY, Y., JOSHI, D. & DANI, D. (Hrsg.). Nepal-Himalaya - Geo-Ecological Perspektives, Himalayan Research Group, 437–473.
- KUHLE, M. (1990): The probability of proof in geomorphology an Example of the Application of Information Theory to a new Kind of Glacigenetic Morphological Type, the Ice-Marginal Ramp (Bortensander). GeoJournal, 21.3, 195–222.
- KUHLE, M. (1991): Glazialgeomorphologie. Darmstadt: Wiss. Buchges.
- KUHLE, M. (1995): Glacial isostatic uplift of Tibet as a consequence of a former ice sheet. GeoJournal 37, 4, 431–449.
- KUHLE, M. (1998): Reconstruction of the 2.4 million km2 late Pleistocene ice sheet on the Tibetan Plateau and its impact on the global climate. Quaternary International 45-46, 71–108.
- KUHLE, M. (1998a): New Findings on the Inland Glaciation of Tibet from South and Central West Tibet with Evidences for its Importance as an Ice Age Trigger. In: Himalayan Geology. The role of the Tibetan Plateau in forcing global climatic changes, 19, 2, 3–22.
- KUHLE, M. (1999): Reconstruction of an approximately complete Quaternary Tibetan inland glaciation between the Mt. Everest- and Cho Oyu Massifs and the Aksai Chin. A new glaciogeomorphological SE–NW diagonal profile through Tibet and its consequences for the glacial isostasy and Ice Age cycle. – GeoJournal 47, 1/2, 3– 276.
- KUHLE, M. (2004): The High Glacial (Last Ice Age and LGM) ice cover in High and Central Asia. In: EHLERS, J. & GIBBARD, P.L. (Hrsg.). Quaternary Glaciations - Extent and Chronolgy: Part III: South America, Asia, Africa, Australasia, Antarctica. Amsterdam: Elsevier, 175–199.

- KUHLE, M. (2005): The maximum Ice Age (Würmian, Last Ice Age, LGM) glaciation of the Himalaya – a glaciogeomorphological investigation of glacier trim-lines, ice thicknesses and lowest former ice margin positions in the Mt. Everest–Makalu–Cho Oyu massifs (Khumbu and Khumbakarna Himal) including informations on lateglacial, neoglacial, and historical glacier stages, their snow-line depressions and ages. – GeoJournal 62, 3-4, 193–650.
- KUHLE, M. (2006a): Reconstruction of the Ice Age Glaciation in the Southern Slopes of Mt. Everest, Cho Oyu, Lhotse and Makalu (Himalaya) (Part 1). – Journal of Mountain Science 3, 2, 91–124.
- KUHLE, M. (2006b): Reconstruction of the Ice Age Glaciation in the Southern Slopes of Mt. Everest, Cho Oyu, Lhotse and Makalu (Himalaya) (Part 2). – Journal of Mountain Science 3, 3, 191–227.
- KUHLE, M. (2013): The Uplift of High Asia above the Snowline and its Glaciation as an Albedo-Dependent Cause of the Quaternary Ice Ages. Earth sciences in the 21st Century. New York: Nova science publ.
- KUHLE, M. (2014): Climate or Topography: Topography of Mountains as Basis of Modern Glacier Variations, Exemplified by 6500 up to 8000 m High Summits in High Asia - Evidences of Holocene and History as well as Current Glacial Stages. In: BENTO GONÇALVES, ANTÓNIO JOSÉ & VIEIRA, ANTÓNIO AVELINO BATISTA (Hrsg.). Mountains: Geology, Topography and Environmental Concerns. Geology and mineral research developments, 65–148.
- KUHLE, M. & KUHLE, S. (2010): Review on dating methods: Numerical dating in the quaternary geology of High Asia. Journal of Mountain Science 7, 2, 105–122.
- KUHLE, M. & WANG, W. (1988): The Sino-German Joint Expedition to S Tibet, Shisha Pangma and the N flank of Chomolungma (Mt. Everest) 1984 - Expedition report. – GeoJournal 17, 4.
- LAVÉ, J. & AVOUAC, J.P. (2001): Fluvial incision and tectonic uplift across the Himalayas of central Nepal. Journal of Geophysical Research 106, B11.
- LE FORT, P. (1975): Himalayas: The collided range. Present knowledge of the continental arc. American Journal of Science, 275-A, 1–44.
- LESER, H. (1977): Feld- und Labormethoden der Geomorphologie 1. Aufl. Berlin: de Gruyter.
- LOUIS, H. (1968): Allgemeine Geomorphologie 3., neu bearb. u. stark erw. Aufl. Berlin: de Gruyter.

- MAIZELS, J.K. (1979): Proglacial Aggradation and Changes in Braided Channel Patterns during a Period of Glacier Advance: An Alpine Example. Geografiska Annaler 61, 1/2, 87–101.
- MANGELSDORF, J. & SCHEURMANN, K. (1980): Flussmorphologie. Ein Leitfaden f. Nat.wiss. u. Ingen. München: Oldenbourg.
- MARREN, P.M. (2005): Magnitude and frequency in proglacial rivers: a geomorphological and sedimentological perspective. Earth-Science Reviews 70, 3-4, 203–251.
- MARREN, P.M. & TOOMATH, S.C. (2014): Channel pattern of proglacial rivers: topographic forcing due to glacier retreat. Earth Surface Processes and Landforms 39, 7, 943–951.
- MAULL, O. (1958): Handbuch der Geomorphologie. Wien: Deuticke.
- MEINERS, S. (1996): Zur rezenten, historischen und postglazialen Vergletscherung an ausgewählten Beispielen des Tien Shan und des Nord-West-Karakorum. Göttingen: Geo Aktuell, Band 2.
- MEINERS, S. (1997): Historical to Post Glacial glaciation and their differentiation from the Late Glacial period on examples of the Tian Shan and the N.W. Karakorum. GeoJournal 42, 2/3, 259–302.
- MEINERS, S. (1999): The history of glaciation of the Rolwaling and Kangchenjunga Himalayas. GeoJournal 47, 1/2, 341–372.
- MEINERS, S. (2005): The glacial history of landscape in the Batura Muztagh, NW Karakoram. GeoJournal 63, 1-4, 49–90.
- MERRITTS, D.J., VINCENT, K.R. & WOHL, E.E. (1994): Long river profiles, tectonism, and eustasy: A guide to interpreting fluvial terraces. Journal of Geophysical Research 99, B7, 14031.
- MONTGOMERY, D.R. & BUFFINGTON, J.M. (1997): Channel-reach morphology in mountain drainage basins. Geological Society of America Bulletin 109, 5, 596–611.
- MÜLLER, F. (1958): Acht Monate Gletscher- und Bodenforschung im Everestgebiet. In: Von der schweizerischen Stiftung für Alpine Forschungen (Hrsg.). Berge der Welt, 199–216.
- MÜLLER, G. (1964): Methoden der Sediment-Untersuchung: Mit 2 Farbtafeln, 29 Tabellen im Text, 1 Tabelle im Anhang sowie 3 Beilagen. Stuttgart: Schweizerbart.
- NANSON, G.C. & KNIGHTON, A.D. (1996): Anabranching Rivers: Their cause, character and classification. Earth Surface Processes and Landforms, 21, 217–239.

- NUIMURA, T., FUJITA, K., YAMAGUCHI, S. & SHARMA, R.R. (2012): Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992–2008. Journal of Glaciology 58, 210, 648–656.
- ODELL, N.E. (1925): Observations on the Rocks and Glaciers of Mount Everest. The Geographical Journal 66, 4, 289.
- OSTI, R., BHATTARAI, T.N. & MIYAKE, K. (2011): Causes of catastrophic failure of Tam Pokhari moraine dam in the Mt. Everest region. – Natural Hazards 58, 3, 1209–1223.
- OU, Y.-X. (1981): Hydrologic characteristics of the east Bangong lake. In: DONG-SCHENG, L. (Hrsg.). Geological and ecological studies of Qinghai-Xizang Plateau: Environment and ecology of Qinghai-Xizang Plateau. Beijing: Science Pr. u.a., 1713–1717.
- OWEN, L.A., ROBINSON, R., BENN, D.I., FINKEL, R.C., DAVIS, N.K., YI, C., PUTKONEN, J., LI, D. & MURRAY, A.S. (2009): Quaternary glaciation of Mount Everest. – Quaternary Science Reviews 28, 15-16, 1412–1433.
- PENCK, A. & BRÜCKNER, E. (1909): Die Alpen im Eiszeitalter. Leipzig: Tauchnitz.
- PHILLIPS, R.J. (2008): Geological map of the Karakoram fault zone, Eastern Karakoram, Ladakh, NW Himalaya. Journal of Maps 4, 1, 21–37.
- POINTET, A. (2013): Ladakh & Zanskar: Carte de trekking = Ladakh & Zanskar trekking map. Geneve: Editions Olizane.
- PUTKONEN, J. & SWANSON, T. (2003): Accuracy of cosmogenic ages of moraines. Quaternary Research 59, 255–261.

RACOVITEANU, A. & BAJRACHARYA, S. (2008): GLIMS Glacier Database. Boulder, CO.

- RAUP, B., RACOVITEANU, A., KHALSA, SIRI JODHA SINGH, HELM, C., ARMSTRONG, R. & ARNAUD, Y. (2007): The GLIMS geospatial glacier database: A new tool for studying glacier change. Global and Planetary Change 56, 1-2, 101–110.
- RICHARDS, B.W., BENN, D.I., OWEN, L.A., RHODES, E.J. & SPENCER, J.Q. (2000): Timing of late Quaternary glaciations south of Mount Everest in the Khumbu Himal, Nepal. Geological Society of America Bulletin 112, 10, 1621–1632.

RUSSISCHE MILITÄRKARTE (1984): Maßstab 1:100 000, Bez. i44-073. https://mapstor.com.

- RÖTHLISBERGER, F. (1986): 10 000 Jahre Gletschergeschichte der Erde: Ein Vergleich zwischen Nord- und Südhemisphäre Alpen, Skandinavien, Himalaya, Alaska, Südamerika, Neuseeland. Aarau etc.: Sauerländer.
- SAUER, D. (2002): Genese, Verbreitung und Eigenschaften periglaziärer Lagen im Rheinischen Schiefergebirge anhand von Beispielen aus Westerwald, Hunsrück und Eifel. Boden und Landschaft, 36, 1–294.
- SCHNEIDER, E. (1988): Khumbu Himal, 1:50.000. München: Arbeitsgemeinschaft für vergleichende Hochgebirgsforschung.
- SCHRÖDER, N. (2007): The discrepancy between the method of Cosmogenic Nuclide Exposure Dating on moraines and morphodynamics, weathering, glacierdynamics, erosion and global climate: INQUA 2007 Abstracts. Quaternary International 167-168, 369.
- SCHUMM, S.A. (1963): A Tentative Classification of Alluvial River Channels an examination of similarities and differences among some Great Plains rivers. U.S. Geological Survey Circular, 477, 1–10.
- SCHUMM, S.A. (1991): To interpret the earth: Ten ways to be wrong. Cambridge: Cambridge Univ. Press.
- SCHUMM, S.A. (2005): River variability and complexity. Cambridge: Cambridge Univ. Press.
- SCHUMM, S.A. & LICHTY R. W. (1965): Time, Space, and Causality in Geomorphology. American Journal of Science 263, 110–119.
- SRIKANTIA, S. V., GANESAN, T. M. & WANGDUS, C. (1982): A Note on the Tectonic Framework and Geologic Set-Up of the Pangong-Chushul Sector, Ladakh Himalaya. – Geological Society of India 23, 7.
- THAKUR, V.C. & MISRA, D.K. (1984): Tectonic framework of the Indus and Shyok suture zones in Eastern Ladakh, Northwest Himalaya. Tectonophysics 101, 3-4, 207–220.
- THOMPSON, S.S., BENN, D.I., DENNIS, K. & LUCKMAN, A. (2012): A rapidly growing moraine-dammed glacial lake on Ngozumpa Glacier, Nepal. Geomorphology 145-146, 1–11.
- TOMBRINK, G. (2010): Hydrogeomorphologische Untersuchungen am Buri-Gandaki im Manaslu Durchbruchstal (Himalaja). Unveröffentlichte Diplomarbeit. Göttingen.
- TOMBRINK, G. (2012): Holocene river dynamics in a glacial Himalaya transverse valley (Manaslu-Himal). INQUA 2011 Abstracts. Quaternary International 279-280, 495.

- TOMBRINK, G. (2017): Flood events and their effects in a Himalayan mountain river: Geomorphological examples from the Buri Gandaki Valley, Nepal. – Journal of Mountain Science, 14, 7, 1303–1316.
- TRINKLER, E. (1930): The Ice-Age on the Tibetan Plateau and in the Adjacent Regions. The Geographical Journal 75, 3, 225–232.
- TROLL, C. (1926): Die jungglazialen Schotterfluren im Umkreis der deutschen Alpen: Ihre Oberflächengestalt, ihre Vegetation und ihr Landschaftscharakter. Forschungen zur deutschen Landes- und Volkskunde 24,4. Stuttgart: Engelhorn.
- UENO, K., KAYASTHA, R.B., CHITRAKAR, M.R., BAJRACHARYA, O.R., POKHREL, A.P., FUJINAMI, H., KADOTA, T., IIDA, H., MANANDHAR, D.P., HATTORI, M., YASUNARI, T. & NAKAWO, M. (2001): Meteorological observations during 1994-2000 at the Automatic Weather Station (GEN-AWS) in Khumbu region, Nepal Himalayas. – Bulletin of Glaciological Research 18, 23–30.
- WAGNER, M. (2005): Geomorphological and pedological investigations on the glacial history of the Kali Gandaki (Nepal Himalaya). GeoJournal 63, 1-4, 91–113.
- WAGNER, M. (2007): Zur pedologischen Relativdatierung glazialgeomorphologischer Befunde aus dem Dhaulagiri- und Annapurna-Himalaja im Einzugsgebiet des Kali Gandaki (Zentral-Nepal): Pedological relative dating of glaciogeomorphological features from the Dhaulagiri and Annapurna Himalya along the catchment of the Kali Gandaki (central Nepal). Diss. Göttingen: Niedersächsische Staats- und Universitätsbibliothek.
- WARBURTON, J. (1994): Channel change in relation to meltwater flooding, Bas Glacier d'Arolla, Switzerland. Geomorphology 11, 141–149.
- WATANABE, T., LAMSAL, D. & IVES, J.D. (2009): Evaluating the growth characteristics of a glacial lake and its degree of danger of outburst flooding: Imja Glacier, Khumbu Himal, Nepal. Norsk Geografisk Tidsskrift Norwegian Journal of Geography 63, 4, 255–267.
- WESTOBY, M.J., GLASSER, N.F., HAMBREY, M.J., BRASINGTON, J., REYNOLDS, J.M. & HASSAN, MOHAMED A. A. M. (2014): Reconstructing historic Glacial Lake Outburst Floods through numerical modelling and geomorphological assessment: Extreme events in the Himalaya. Earth Surface Processes and Landforms 39, 12, 1675–1692.
- WINKLER, S. (2009): Gletscher und ihre Landschaften: Eine illustrierte Einführung. Darmstadt: Wiss. Buchges.
- WOHL, E.E. (2000): Mountain rivers. Water resources monograph 14. Washington, DC: American Geophysical Union.

- WOHL, E.E. (2010): Mountain rivers revisited. Water resources monograph 19. Washington, DC: American Geophysical Union/Geopress.
- WOHL, E.E. (2014): Rivers in the landscape: Science and management. Chichester: Wiley Blackwell.
- ZALASIEWICZ, J., WATERS, C.N., BARNOSKY, A.D., CEARRETA, A., EDGEWORTH, M., ELLIS, E.C., GAUSZKA, A., GIBBARD, P.L., GRINEVALD, J., HAJDAS, I., IVAR DO SUL, J., JEANDEL, C., LEINFELDER, R., MCNEILL, J., POIRIER, C., REVKIN, A., DEB RICHTER, D., STEFFEN, W., SUMMERHAYES, C., SYVITSKI, J.P., VIDAS, D., WAGREICH, M., WILLIAMS, M. & WOLFE, A.P. (2015): Colonization of the Americas, 'Little Ice Age' climate, and bomb-produced carbon: Their role in defining the Anthropocene. The Anthropocene Review 2, 2, 117–127.
- ZIMMERMANN, A. & CHURCH, M. (2001): Channel morphology, gradient profiles and bed stresses during flood in a step–pool channel. Geomorphology 40, 3-4, 311–327.

Anhang

Karten 3a bis 12 Tabelle 17 Tabellen 1 bis 11 (Längsprofile)

Karte 3a: Überblickskarte des Imja Khola Gletscherbaches (Oberlauf).

Koordinatensystem: WGS 84 Entwurf: G. Tombrink

Karte 3b: Geomorphologische Kartierung des Imja Khola Gletscherbaches (Oberlauf).

Karte 3c: Zeitlicher Satellitenbildabgleich des Imja Khola Gletscherbaches.

Karte 4a: Überblickskarte des Lhotse und Lhotse Nup Gletscherbaches.

Karte 4b: Geomorphologische Kartierung des Lhotse und Lhotse Nup Gletscherbaches.

Karte 4c: Zeitlicher Satellitenbildabgleich des Lhotse und Lhotse Nup Gletscherbaches.

Karte 5a: Überblickskarte des Imja Khola Hauptstroms.

Karte 5b: Geomorphologische Kartierung des Imja Khola Hauptstroms.

Karte 5c: Zeitlicher Satellitenbildabgleich des Imja Khola Hauptstroms.

Karte 6a: Überblickskarte des orographisch linken Khumbu Gletscherbaches.

Koordinatensystem: WGS 84 Entwurf: G. Tombrink

Karte 6b: Geomorphologische Kartierung des orographisch linken Khumbu Gletscherbaches.

Karte 6c: Zeitlicher Satellitenbildabgleich des orographisch linken Khumbu Gletscherbaches.

Karte 6d: Überblickskarte des orographisch rechten Khumbu Gletscherbaches.

Koordinatensystem: WGS 84 Entwurf: G. Tombrink

Karte 6e: Geomorphologische Kartierung des orographisch rechten Khumbu Gletscherbaches.

Karte 6f: Zeitlicher Satellitenbildabgleich des orographisch rechten Khumbu Gletscherbaches.

Karte 7a: Überblickskarte des oberen Nare Drangka Gletscherbaches.

Koordinatensystem: WGS 84 Entwurf: G. Tombrink

Karte 7b: Geomorphologische Kartierung des oberen Nare Drangka Gletscherbaches.

Karte 7c: Überblickskarte des mittleren Nare Drangka Gletscherbaches.

Koordinatensystem: WGS 84 Entwurf: G. Tombrink

Karte 7d: Geomorphologische Kartierung des mittleren Nare Drangka Gletscherbaches.

Karte 7e: Zeitlicher Satellitenbildabgleich des Nare Drangka Gletscherbaches.

Karte 8a: Überblickskarte des orographisch rechten Ngozumpa Gletscherbaches.

Koordinatensystem: WGS 84 Entwurf: G. Tombrink

Karte 8b: Geomorphologische Kartierung des orographisch rechten Ngozumpa Gletscherbaches.

Karte 8c: Zeitlicher Satellitenbildabgleich des orographisch rechten Ngozumpa Gletscherbaches.

Karte 9a: Überblickskarte des Gletscherbaches des Unbenannten Pangong Tso Gletscher I.

Koordinatensystem: WGS 84 Entwurf: G. Tombrink

Karte 9b: Geomorphologische Kartierung des Gletscherbaches des Unbenannten Pangong Tso Gletscher I.

Karte 9c: Zeitlicher Satellitenbildabgleich des Gletscherbaches des Unbenannten Pangong Tso Gletscher I.

Karte 10a: Überblickskarte des Gletscherbaches des Unbenannten Pangong Tso Gletscher II.

Koordinatensystem: WGS 84 Entwurf: G. Tombrink

Karte 10b: Geomorphologische Kartierung des Gletscherbaches des Unbenannten Pangong Tso Gletscher II.

Karte 10c: Zeitlicher Satellitenbildabgleich des Gletscherbaches des Unbenannten Pangong Tso Gletscher II.

Karte 11a: Überblickskarte des Gletscherbaches der Unbenannten Pangong Tso Gletscher III und IV.

Karte 11b: Geomorphologische Kartierung des Gletscherbaches der Unbenannten Pangong Tso Gletscher III und IV.

Karte 11c: Zeitlicher Satellitenbildabgleich des Gletscherbaches der Unbenannten Pangong Tso Gletscher III und IV.

Karte 12: Russische Militärkarte vom Nordwestufer des Pangong Tso aus dem Jahr 1984, Maßstab 1:100 000. Pfeile (↓) markieren die Gletscherzungenenden von ca. 1984 innerhalb der untersuchten Gletscherbachläufe (vgl. Karten 9a/b, 10a/b, 11a/b).

	Glacier stage	Gravel field (Sander)	Approximated age (YBP)	ELA-depression (m)
- I	= Riß (pre-last High Glacial maximum)	No. 6	150 000 ~ 120 000	c. 1400
0	= Würm (last High Glacial maximum)	No. 5	60 000 ~18 000	c. 1300
I - IV	= Late Glacial	No. 4 ~ No. 1	17 000 ~13 000 or 10 000	c. 1100 ~ 700
I II III IV	= Ghasa-Stage = Taglung-Stage = Dhampu-Stage = Sirkung-Stage	No. 4 No. 3 No. 2 No. 1	17 000 ~15 000 15 000 ~14 250 14 250 ~13 500 13 500 ~13 000 (older than 12 870)	c. 1100 c. 1000 c. 800~ 900 c. 700
V-VII	= Neo-Glacial	No0 ~ No2	5 500 ~ 1 700 (older than 1 610)	c. 300~ 80
V VI VII	= Nauri-Stage = Older Dhaulagiri-Stage = Middle Dhaulagiri-Stage	No0 No1 No2	5 500 ~ 4 000 (4 165) 4 000 ~ 2 000(2 050) 2 000 ~ 1 700(older than 1 610)	c. 150~ 300 c. 100~ 200 c. 80~ 150
VII- XI	= Historical glacier stages	No3 ~ No6	1 700 ~ 0 (= 1950)	c. 80 ~ 20
VII VIII IX X XI	= Younger haulagiri-Stage =Stage VIII = Stage IX = Stage X = Stage XI	No3 No4 No5 No6 No7	1 700 ~ 400 (440 resp. older than 355) 400 ~ 300(320) 300 ~ 180(older than 155) 180 ~ 30(before 1950) 30 ~ 0(= 1950)	c. 60~ 80 c. 50 c. 40 c. 30~ 40 c. 20
XII	= Stage XII = recent resp. present glacier stages	No8	+0 ~ +30 (1950 - 1980)	c. 10∼ 20

Draft: M. Kuhle

Tabelle 17: Vergletscherungsstadien der Gebirge Hochasiens (Himalaya, Karakorum, E-Zagros und Hindukush, E-Pamir, Tien Shan mit Kirgisen Shan und Bogdo Uul, Quilian Shan, Kuenlun mit Animachin, Nganclong Kangri, Tanggula Shan, Bayan Har, Gangdise Shan, Nyainquentanglha, Namche Bawar, Minya Gonka) von den rißzeitlichen (pre-LGM) bis zu den rezenten Gletscherstadien (verändert nach Kuhle 2006: 97).

Nr.	Profilhöhe über NN (m)	Gefälle in Grad	WGS 84/Pseudo Mercator (EPSG: 3857) in Ost;Nord	WGS 84 (EPSG: 4326) in Ost:Nord
1	5005,24	-2,26	9674432,27954976000000;3236323,22417923000000	86.906903819:27.8996134227
2	5004,88	-2,79	9674423,919094700000000;3236319,274967850000000	86.9068287157;27.8995820697
3	5004,49	-2,97	9674416,404750250000000;3236317,079127220000000	86.9067612132;27.8995646369
4	5004.10	-7.75	9674408.902361740000000:3236316.71736860000000	86.9066938181:27.8995617649
5	5002.90	-10.50	9674400.179317510000000:3236318.307614520000000	86.9066154577:27.8995743899
6	5001.20	-10.91	9674391.07473850000000:3236319.258614870000000	86.9065336699:27.8995819399
7	4999.82	-7.17	9674384.00874240000000:3236317.95513068000000	86.9064701949:27.8995715915
8	4998.97	-5.42	9674380.88148082000000:3236312.005638890000000	86.9064421023:27.8995243583
9	4998.18	-8.80	9674378.65821103000000:3236304.00287816000000	86.9064221303:27.8994608241
10	4997.18	-9.86	9674374.95796231000000:3236298.67058713000000	86.9063888904:27.8994184908
11	4995.91	-10.76	9674370.254047730000000:3236293.105537230000000	86.9063466344:27.8993743096
12	4994.37	-10.96	9674364.566088280000000:3236287.309883160000000	86.9062955386:27.8993282976
13	4993.28	-12.91	9674360.71136418000000:3236283.19757839000000	86.906260911:27.8992956498
14	4991.66	-12.99	9674354,35590704000000:3236280,17903309000000	86.906203819:27.8992716854
15	4990.21	-13.41	9674348.911280330000000:3236277.043742400000000	86.9061549091:27.8992467942
16	4988.99	-13.50	9674343.87799642000000:3236276.036850170000000	86.9061096943:27.8992388004
17	4986.97	-13.79	9674336.545225120000000:3236271.880217000000000	86.9060438229:27.8992058006
18	4984,66	-11,48	9674327,31681109000000;3236270,165814450000000	86.9059609227;27.8991921899
19	4982,87	-11,58	9674318,76634795000000;3236272,29933202000000	86.9058841125;27.899209128
20	4981,03	-9,73	9674309,808997470000000;3236271,846843340000000	86.9058036473;27.8992055357
21	4979,41	-7,65	9674301,363741160000000;3236267,557386370000000	86.9057277823;27.8991714814
22	4978,34	-7,71	9674296,93462316000000;3236260,948881650000000	86.9056879948;27.8991190161
23	4977,19	-7,94	9674291,80791667000000;3236254,111056490000000	86.9056419408;27.8990647301
24	4976,16	-8,30	9674286,98333834000000;3236248,580795660000000	86.9055986009;27.899020825
25	4975,23	-8,54	9674282,180989130000000;3236244,391798310000000	86.9055554607;27.8989875682
26	4974,17	-8,42	9674276,207127210000000;3236240,637363220000000	86.9055017966;27.8989577615
27	4972,90	-7,77	9674267,83485534000000;3236238,635656330000000	86.9054265872;27.8989418697
28	4971,95	-6,77	9674260,890074740000000;3236238,713799910000000	86.9053642011;27.8989424901
29	4971,30	-5,31	9674255,581520270000000;3236240,022311110000000	86.9053165136;27.8989528785
30	4970,51	-5,93	9674248,03606304000000;3236244,048360950000000	86.9052487316;27.8989848416
31	4969,46	-6,79	9674238,74197199000000;3236247,978228830000000	86.9051652413;27.8990160411
32	4968,40	-5,94	9674230,18473408000000;3236250,210076460000000	86.9050883704;27.8990337599
33	4967,31	-0,26	9674220,528879170000000;3236254,420632310000000	86.9050016303;27.8990671879
34	4967,25	0,25	9674210,59399016000000;3236262,668300370000000	86.9049123837;27.8991326666
35	4967,30	1,57	9674202,905068380000000;3236271,516149050000000	86.904843313;27.8992029103
36	4967,68	2,91	9674194,540407790000000;3236282,317225030000000	86.9047681719;27.8992886606
37	4968,51	4,39	9674183,39644845000000;3236294,40036096000000	86.904668064;27.8993845893
38	4969,65	5,86	9674172,64816785000000;3236304,552169840000000	86.9045715106;27.8994651849
39	4971,19	2,41	9674161,22535565000000;3236314,41295346000000	86.9044688977;27.8995434701
40	4971,90	4,59	9674144,56049939000000;3236314,755227710000000	86.9043191948;27.8995461874
41	4973,09	-5,71	9674129,99039904000000;3236317,94216013000000	86.9041883093;27.8995714885
42	4971,83	-9,95	9674118,42395443000000;3236312,837850440000000	86.9040844062;27.8995309653
43	4969,80	-10,81	9674110,675710770000000;3236304,270008750000000	86.9040148025;27.8994629448
44	4968,04	-1,90	9674105,63189079000000;3236296,52345600000000	86.9039694931;27.8994014446
45	4967,48	-4,74	9674088,93166598000000;3236297,087541860000000	86.9038194725;27.8994059229
46	4966,61	-11,80	9674078,706433840000000;3236294,848535020000000	86.9037276176;27.8993881473
47	4964,60	-1,62	9674076,39866067000000;3236285,498434660000000	86.9037068866;27.8993139164

48	4964,20	-5,46	9674062,360020110000000;3236286,371089510000000	86.9035807753;27.8993208445
49	4962,49	-8,71	9674045,135056710000000;3236281,569949570000000	86.9034260408;27.899282728
50	4960,12	10,16	9674032,161992710000000;3236273,126360440000000	86.9033095018;27.8992156938
51	4961,79	-1,27	9674029,273913770000000;3236281,984962640000000	86.9032835578;27.8992860228
52	4961,61	-6,74	9674021,09964942000000;3236283,628506470000000	86.9032101271;27.899299071
53	4959,92	-5,96	9674007,336099480000000;3236279,821138620000000	86.903086487;27.8992688441
54	4958,55	-1,45	9673994,434948140000000;3236277,248058040000000	86.902970594;27.8992484162
55	4958,14	3,16	9673978,57507380000000;3236280,190567680000000	86.9028281223;27.899271777
56	4958,99	4,21	9673965,37786836000000;3236288,34880960000000	86.9027095698;27.8993365457
57	4960,27	1,64	9673951,46759205000000;3236298,744849130000000	86.9025846117;27.8994190803
58	4960,71	-2,08	9673937,77413792000000;3236305,80697808000000	86.9024616013;27.8994751469
59	4960,21	-4,66	9673924,57550066000000;3236310,068947210000000	86.9023430359;27.8995089828
60	4959,09	-6,58	9673910,89120801000000;3236311,760322170000000	86.9022201078;27.8995224107
61	4957,21	-7,93	9673894,66199319000000;3236310,827393750000000	86.9020743183;27.8995150042
62	4955,30	-8,25	9673881,33235745000000;3236307,497854270000000	86.9019545762;27.8994885708
63	4953,95	-9,25	9673872,57140566000000;3236304,381600670000000	86.9018758752;27.8994638308
64	4951,92	-8,96	9673862,844220070000000;3236296,560823040000000	86.9017884944;27.8994017413
65	4950,21	-3,04	9673855,52189325000000;3236288,635076740000000	86.9017227168;27.8993388184
66	4949,80	4,60	9673847,652698810000000;3236289,109484500000000	86.9016520266;27.8993425847
67	4950,52	4,24	9673840,058845350000000;3236293,856102480000000	86.9015838099;27.8993802684
68	4951,35	0,44	9673832,42504705000000;3236302,164890790000000	86.9015152343;27.8994462322
69	4951,43	-0,55	9673822,78104980000000;3236303,526397310000000	86.9014286008;27.8994570413
70	4951,33	0,09	9673812,87190980000000;3236301,810689260000000	86.9013395855;27.8994434202
71	4951,35	0,16	9673801,87751602000000;3236303,885219190000000	86.9012408212;27.89945989
72	4951,37	0,41	9673793,94860360000000;3236298,68590780000000	86.9011695945;27.8994186124
73	4951,44	-1,41	9673784,667079810000000;3236298,916822330000000	86.9010862172;27.8994204456
74	4951,13	-3,26	9673773,833797140000000;3236305,157982610000000	86.9009889002;27.8994699945
75	4950,59	-2,19	9673766,402803730000000;3236311,229787970000000	86.9009221464;27.8995181988
76	4950,17	-9,16	9673755,48888102000000;3236311,923910700000000	86.900824105;27.8995237095
77	4948,08	-10,10	9673744,62049502000000;3236318,955033890000000	86.9007264726;27.8995795298
78	4945,81	-10,54	9673735,64616470000000;3236328,02203350000000	86.9006458548;27.899651513
79	4943,49	-6,53	9673724,823675880000000;3236334,253632160000000	86.9005486347;27.8997009858
80	4941,73	-8,33	9673709,68959434000000;3236331,874975950000000	86.900412683;27.8996821016
81	4940,42	-8,34	9673700,749028750000000;3236332,331552750000000	86.9003323685;27.8996857263
82	4939,27	-7,00	9673692,890110170000000;3236332,698732260000000	86.9002617706;27.8996886414
83	4938,37	-10,95	9673685,569045170000000;3236332,079435260000000	86.9001960044;27.8996837248
84	4937,03	-7,25	9673679,023664430000000;3236334,337022140000000	86.9001372062;27.8997016478
85	4936,16	-5,79	9673672,212322230000000;3236333,883190530000000	86.9000760189;27.8996980448
86	4935,43	-6,75	9673665,13332440000000;3236332,61672580000000	86.9000124272;27.8996879903
87	4934,47	-5,46	9673657,02032910000000;3236332,12504148000000	86.8999395469;27.8996840869
88	4933,86	-7,71	9673650,738478970000000;3236331,086159400000000	86.8998831161;27.8996758391
89	4932,88	-2,95	9673643,500864550000000;3236331,271673160000000	86.8998180995;27.8996773119
90	4932,55	3,04	9673637,52915448000000;3236328,891942500000000	86.8997644547;27.8996584192
91	4932,88	3,75	9673633,43970478000000;3236324,166628420000000	86.8997277186;27.8996209048
92	4933,31	5,62	9673629,52805165000000;3236318,840429350000000	86.8996925796;27.8995786199
93	4933,92	3,44	9673626,80333678000000;3236313,325816720000000	86.8996681031;27.8995348392
94	4934,28	0,03	9673623,35601020000000;3236308,452136640000000	86.8996371352;27.8994961469
95	4934,28	-2,41	9673619,37691185000000;3236305,009914700000000	86.8996013903;27.899468819
96	4933,98	-5,51	9673613,401412710000000;3236301,362840780000000	86.8995477115;27.8994398647
-----	---------	-------	---	-----------------------------
97	4933,41	-4,59	9673607,72082910000000;3236299,502433790000000	86.899496682;27.8994250948
98	4932,82	-6,32	9673601,045622590000000;3236296,593858300000000	86.8994367176;27.8994020035
99	4932,09	-5,40	9673594,665717140000000;3236294,770937460000000	86.8993794059;27.8993875313
100	4931,42	-6,33	9673588,11021203000000;3236292,159804150000000	86.8993205168;27.8993668014
101	4930,87	-6,74	9673583,35512878000000;3236290,634412330000000	86.8992778012;27.8993546912
102	4930,18	-9,16	9673577,80379204000000;3236289,011822310000000	86.8992279327;27.8993418094
103	4929,13	-4,79	9673571,24997436000000;3236288,823259310000000	86.8991690587;27.8993403124
104	4928,62	-5,45	9673565,25234893000000;3236288,305412140000000	86.8991151811;27.8993362012
105	4928,03	-7,25	9673559,06698032000000;3236288,454785910000000	86.899059617;27.899337387
106	4927,26	-7,88	9673553,36819356000000;3236290,458907350000000	86.8990084239;27.8993532979
107	4926,61	-5,85	9673549,334343310000000;3236292,861624270000000	86.8989721872;27.8993723732
108	4926,09	-5,21	9673544,240613170000000;3236293,485895510000000	86.8989264295;27.8993773293
109	4925,43	-7,28	9673537,04294543000000;3236293,651166380000000	86.8988617717;27.8993786414
110	4924,79	-3,82	9673532,57406004000000;3236296,007073690000000	86.8988216271;27.899397345
111	4924,26	-5,25	9673524,79319340000000;3236294,531582940000000	86.8987517303;27.899385631
112	4923,66	-6,17	9673518,26528638000000;3236294,798967220000000	86.8986930892;27.8993877538
113	4922,93	-6,88	9673511,768673770000000;3236296,520482750000000	86.8986347291;27.899401421
114	4921,99	-6,56	9673505,44302249000000;3236301,102725320000000	86.8985779048;27.8994377996
115	4921,31	-6,36	9673500,551395570000000;3236304,333005870000000	86.8985339626;27.899463445
116	4920,58	-5,97	9673495,152953250000000;3236308,055305490000000	86.8984854675;27.8994929964
117	4919,82	-5,85	9673491,65534430000000;3236314,416309360000000	86.898454048;27.8995434967
118	4919,22	-5,67	9673488,37352828000000;3236319,294846250000000	86.8984245669;27.8995822276
119	4918,76	-5,51	9673484,72164813000000;3236322,134516150000000	86.8983917615;27.8996047718
120	4918,20	-5,65	9673480,42010395000000;3236326,135099190000000	86.8983531201;27.8996365325
121	4917,46	-4,86	9673475,88195868000000;3236331,989925670000000	86.8983123533;27.8996830142
122	4916,88	-5,67	9673474,04751585000000;3236338,564547980000000	86.8982958742;27.8997352102
123	4916,01	-5,51	9673468,55789364000000;3236345,388401090000000	86.8982465601;27.8997893849
124	4915,10	-5,20	9673462,001900170000000;3236352,172115340000000	86.8981876666;27.899843241
125	4914,09	-4,86	9673452,09559405000000;3236357,289133100000000	86.8980986767;27.899883865
126	4913,20	-4,55	9673442,331771330000000;3236361,210161320000000	86.8980109668;27.8999149941
127	4912,48	-4,45	9673433,724875970000000;3236363,704489650000000	86.8979336497;27.8999347966
128	4911,82	-4,05	9673425,615157370000000;3236366,395349190000000	86.8978607989;27.8999561593
129	4911,22	-3,48	9673417,21379514000000;3236367,251469890000000	86.8977853282;27.8999629561
130	4910,86	-3,92	9673411,32712672000000;3236366,26891580000000	86.8977324473;27.8999551556
131	4910,39	-4,07	9673404,51935639000000;3236366,515547180000000	86.8976712921;27.8999571136
132	4909,88	-3,38	9673397,48622182000000;3236368,006504110000000	86.8976081124;27.8999689503
133	4909,37	-0,03	9673390,506474740000000;3236373,012344030000000	86.8975454122;27.9000086917
134	4909,36	1,99	9673380,741494340000000;3236378,892282570000000	86.8974576919;27.9000553725
135	4909,68	1,21	9673372,66880896000000;3236382,799624160000000	86.8973851738;27.9000863929
136	4909,84	1,23	9673364,73674548000000;3236382,95202348000000	86.8973139188;27.9000876028
137	4910,04	1,82	9673355,75553108000000;3236383,238911300000000	86.8972332392;27.9000898804
138	4910,30	1,93	9673348,068372970000000;3236386,335769140000000	86.8971641843;27.9001144663
139	4910,59	2,10	9673340,55750993000000;3236390,407005540000000	86.897096713;27.9001467878
140	4910,85	1,83	9673335,216021310000000;3236395,185702670000000	86.8970487296;27.9001847259
141	4911,14	1,70	9673327,14230016000000;3236399,418275850000000	86.8969762022;27.9002183282
142	4911,44	0,92	9673318,010695970000000;3236403,380479000000000	86.8968941716;27.9002497841
143	4911,56	0,09	9673310,24452209000000;3236402,789913280000000	86.8968244068;27.9002450956

1				
144	4911,57	-0,17	9673303,844655510000000;3236399,22097830000000	86.8967669159;27.9002167619
145	4911,55	-1,22	9673297,87068932000000;3236394,597855780000000	86.8967132508;27.9001800589
146	4911,36	-4,32	9673290,60125089000000;3236389,479961770000000	86.8966479483;27.900139428
147	4910,70	-4,30	9673282,929026730000000;3236385,364323880000000	86.8965790276;27.900106754
148	4910,00	-4,11	9673273,696248560000000;3236383,714596360000000	86.8964960881;27.9000936568
149	4909,51	-3,65	9673266,92325882000000;3236383,48798908000000	86.8964352453;27.9000918578
150	4908,91	-3,00	9673257,70831978000000;3236384,812373260000000	86.8963524661;27.9001023721
151	4908,40	-1,57	9673248,356897730000000;3236387,816153290000000	86.8962684609;27.9001262191
152	4908,15	-0,69	9673241,05548790000000;3236392,99564266000000	86.8962028712;27.900167339
153	4908,07	-0,02	9673235,87635480000000;3236397,981212820000000	86.8961563462;27.9002069194
154	4908,06	-0,48	9673231,70145316000000;3236402,978587280000000	86.8961188424;27.9002465935
155	4908,01	-2,16	9673226,98421022000000;3236407,339736290000000	86.8960764667;27.9002812165
156	4907,70	-3,13	9673219,194297210000000;3236410,105831880000000	86.8960064888;27.9003031765
157	4907,26	-3,46	9673211,23252509000000;3236410,726627130000000	86.8959349669;27.900308105
158	4906,68	-2,04	9673201,699441240000000;3236410,582226350000000	86.8958493298;27.9003069586
159	4906,35	-1,51	9673192,778867790000000:3236407,554522310000000	86.8957691949:27.9002829217
160	4906.12	-1.64	9673184.85382504000000:3236404.341207770000000	86.895698003:27.9002574113
161	4905.91	-0.88	9673178.23037706000000:3236400.933562900000000	86.8956385036:27.900230358
162	4905.81	-0.01	9673171.85075145000000:3236399.22339542000000	86.8955811944:27.900216781
163	4905.81	0.27	9673165.31783556000000.3236399.25223686000000	86.8955225083 27.90021701
164	4905 83	-0.46	9673159 486172670000000:3236399 854051860000000	86 8954701215:27 9002217878
165	4905 77	-0.73	9673152 062152220000000:3236398 675348220000000	86 8954034304:27 9002124301
166	4905,65	-0.39	9673142 9765450200000000.3236395 933133420000000	86.895321813.27.9001906597
167	4905,60	-0.21	9673135 316203540000000.3236394 430742070000000	86 895252999.27 9001787322
168	4905 57	0,21	9673126 762064070000000:3236393 199963030000000	86 8951761559.27 9001689611
160	4905.60	0,20	9673118 35661630000000.3236393 68816141000000	86 8951006485:27 9001728369
170	4905,65	-0.56	9673110 900920440000000.3236394 738689910000000	86.8950336728:27.900181177
170	4905,65	-1.62	9673101 87535483000000.3236394 69122267000000	86 8949525948:27 9001808002
172	4905,30	-1,02	9673093 569087300000000.3236392 437628540000000	86 8948779783:27 9001629089
172	4903,32	-2,43	9673086 375771630000000:3236388 42468874000000	86 8948133596:27 9001310502
174	4904,90	-5,27	9673020,37377103000000,3236300,424000740000000	96 904736114:37 0000794117
174	4904,34	-3,05	9673077,77685153000000,3236370,09451630000000	80.094730114,27.9000784117
175	4903,90	-2,99	9673069,94410490000000,3236379,082626270000000	80.0940037513,27.9000306630
170	4903,44	-3,44	9673061,510153880000000,5238377,095200260000000	86 804512447:27 0000225507
170	4902,92	-2,05	9073032,303032120000000,3230374,753107100000000	00.034313447,27.3000225597
170	4902,54	-0,98	9673046,406621030000000,3236369,656866970000000	80.8944545107,27.8999838584
179	4902,42	-2,26	9673039,855636930000000;3236367,390384160000000	86.8943954622;27.8999640589
180	4902,09	-3,14	9673031,609866560000000;3236366,405294040000000	86.8943213891;27.8999562383
181	4901,64	-3,67	9673023,45429160000000;3236367,447040730000000	86.8942481264;27.8999645087
182	4901,18	-2,23	9673016,987227570000000;3236370,511978340000000	86.8941900317;27.8999888413
183	4900,92	-2,00	9673010,307076230000000;3236370,757634320000000	86.8941300229;27.8999907915
184	4900,69	-1,98	9673003,707749110000000;3236371,095055150000000	86.8940707402;27.8999934703
185	4900,39	-1,62	9672995,12460595000000;3236371,51647448000000	86.8939936365;27.899996816
186	4900,15	-2,06	9672986,55530108000000;3236372,27854339000000	86.8939166571;27.900002866
187	4899,84	-1,24	9672978,078692870000000;3236371,420671550000000	86.8938405104;27.8999960554
188	4899,64	-1,24	9672969,08553968000000;3236368,76614010000000	86.8937597236;27.8999749811
189	4899,48	-1,37	9672961,913538450000000;3236366,375450180000000	86.8936952964;27.8999560014
190	4899,31	-1,84	9672955,34732725000000;3236364,34758060000000	86.8936363111;27.8999399021
191	4899,06	-2,42	9672947,32789146000000;3236363,610385070000000	86.8935642713;27.8999340495

102	1808 72	-2.05	9672940 0950869900000003236367 148844740000000	86 803/002070-27 8000621/13
102	4090,72	-2,00	9672940,09500099000000,3236367,140044740000000	86 8034282884:27 8000682353
10/	4898,43	3.50	9672924 365859010000000:3236370 380858540000000	86 8033570008.27 8000878003
194	4090,12	5,50	9672924,50585901000000,5256570,58085854000000	86,8022228284:27,0000242054
195	4090,49	0,00	9672920,451700480000000,3236374,966461010000000	00.0933220304,27.9000242034
190	4899,06	2,02	9672916,137617230000000,3236378,263623020000000	86,8032145222-27,0000582820
197	4899,33	-4,09	9672908,061272310000000,3236379,271477870000000	00.0932113332,27.9000303029
196	4696,61	-1,99	9672902,036362360000000,3236374,665238940000000	88.8931574106,27.9000219728
199	4898,57	1,73	9672897,662789280000000;3236369,369434660000000	86.8931181221;27.8999797706
200	4898,77	1,80	9672894,18224992000000;3236363,98693080000000	86.8930868559;27.8999370389
201	4898,99	1,83	9672889,59130663000000;3236358,317948640000000	86.8930456147;27.8998920328
202	4899,22	1,90	9672885,472442970000000;3236352,688692360000000	86.8930086143;27.8998473421
203	4899,48	1,90	9672879,90724307000000;3236347,027898770000000	86.8929586213;27.8998024009
204	4899,77	2,00	9672874,95969718000000;3236339,696212240000000	86.8929141767;27.8997441945
205	4900,06	2,02	9672869,26528880000000;3236333,83584380000000	86.892863023;27.899697669
206	4900,29	2,07	9672865,197505470000000;3236328,839393610000000	86.8928264815;27.899658002
207	4900,53	2,12	9672859,79684990000000;3236324,702455590000000	86.8927779666;27.8996251587
208	4900,82	2,16	9672854,21501076000000;3236319,219965250000000	86.892727824;27.8995816331
209	4901,07	2,18	9672849,305950350000000;3236314,863437070000000	86.8926837252;27.8995470465
210	4901,35	2,19	9672843,32890622000000;3236310,545979460000000	86.8926300325;27.89951277
211	4901,61	2,19	9672837,592797810000000;3236306,999735300000000	86.8925785042;27.8994846162
212	4901,92	2,23	9672830,42599719000000;3236303,148553760000000	86.8925141237;27.8994540415
213	4902,21	2,08	9672823,25039349000000;3236300,77480202000000	86.8924496642;27.8994351962
214	4902,45	1,79	9672816,86985125000000;3236299,766757330000000	86.8923923468;27.8994271933
215	4902.66	1.58	9672810.182562850000000:3236300.025658650000000	86.8923322738:27.8994292488
216	4902,90	0,46	9672801,434812510000000;3236301,383162830000000	86.8922536915:27.899440026
217	4902.95	0.50	9672796.40096027000000:3236305.30102418000000	86.8922084716:27.8994711301
218	4903.02	1.76	9672790.464964140000000:3236309.766707780000000	86.8921551476:27.8995065833
219	4903 13	2 40	9672786 73712940000000 3236309 980184580000000	86 8921216599 27 8995082781
220	4903.39	2 47	9672781 40421714000000 3236307 132358210000000	86 8920737536-27 8994856691
221	4903.63	2 47	9672777 403802850000000:3236303 075068170000000	86 8920378172.27 8994534581
222	4903.86	2 29	9672773 24539469000000 3236299 87120610000000	86.8920004616:27.8994280225
222	4904.09	2,23	9672767 670640330000000.3236297 897775100000000	86 8019503827:27 8094123554
220	4904,03	2,27	9672762 55987460000000.3236296 23458728000000	86 8010044710:27 8003001513
224	4904,51	2,10	9672762,55967400000000;5236290,25456720000000	96 9019460559:27 9002960107
225	4904,30	2.45	9672730,73720378000000,3236294,09389740000000	86 8017802264:27 8002840082
220	4904,78	2,15	9672749,745042550000000,5250294,55852502000000	86 8017330853:37 8003731350
227	4905,05	2,10	9672742,468197800000000,3236292,831741970000000	00.0917239033,27.0993721339
228	4905,30	-7,15	9672736,080897260000000;3236291,350971430000000	86.8916666072;27.89936038
229	4904,48	-7,84	9672729,733211350000000;3236289,658760370000000	86.891609585;27.8993469455
230	4903,53	-7,78	9672722,849179070000000;3236289,883440510000000	86.8915477447;27.8993487292
231	4902,63	-7,68	9672716,26589916000000;3236290,330768830000000	86.8914886061;27.8993522806
232	4901,85	-6,99	9672710,539031160000000;3236290,853730790000000	86.89143/1608;27.8993564324
233	4901,11	-5,57	9672704,779179790000000;3236292,76844185000000	86.8913854191;27.8993716334
234	4900,38	-5,85	9672698,415555610000000;3236296,688586110000000	86.8913282537;27.8994027556
235	4899,70	-5,78	9672692,30303438000000;3236299,18835685000000	86.891273344;27.8994226014
236	4899,09	-6,19	9672686,55883044000000;3236301,12315820000000	86.8912217429;27.8994379618
237	4898,51	-5,14	9672681,28463810000000;3236302,04621048000000	86.8911743641;27.89944529
238	4898,02	-2,78	9672676,20392159000000;3236303,872283230000000	86.8911287232;27.8994597873
239	4897,79	-3,27	9672672,40489906000000;3236306,823811540000000	86.891094596;27.8994832196

240	4897,45	-5,79	9672667,24807500000000;3236309,814712430000000	86.8910482715;27.8995069644
241	4896,77	-7,05	9672660,545592710000000;3236310,193299440000000	86.8909880621;27.8995099701
242	4895,98	-7,38	9672654,34845679000000;3236308,880429900000000	86.8909323922;27.8994995471
243	4895,21	-5,26	9672648,52639899000000;3236307,492842020000000	86.8908800918;27.899488531
244	4894,67	2,38	9672642,655769910000000;3236307,576004550000000	86.890827355;27.8994891913
245	4894,89	4,45	9672637,26788809000000;3236307,949570560000000	86.8907789549;27.899492157
246	4895,44	3,63	9672630,74338626000000;3236310,577158870000000	86.8907203443;27.8995130175
247	4895,76	0,83	9672625,743017770000000;3236311,712936780000000	86.8906754252;27.8995220345
248	4895,83	-2,87	9672621,212603350000000;3236310,956333800000000	86.8906347278;27.8995160278
249	4895,62	-3,29	9672617,839633940000000;3236308,512779940000000	86.8906044279;27.8994966284
250	4895,28	-2,39	9672613,126118830000000;3236304,904140210000000	86.8905620857;27.8994679792
251	4895,09	-2,28	9672609,159052370000000;3236302,706862450000000	86.8905264489;27.8994505349
252	4894,91	-2,36	9672604,99885402000000;3236300,596962860000000	86.8904890772;27.8994337844
253	4894,63	-3,67	9672598,915974170000000;3236297,628705540000000	86.8904344338;27.8994102192
254	4894,19	-5,51	9672593,28451306000000;3236293,93258463000000	86.8903838455;27.8993808756
255	4893,58	-5,39	9672588,743154380000000;3236289,416234750000000	86.8903430498;27.89934502
256	4892,97	-6,51	9672583,950410250000000;3236285,172220440000000	86.8902999958;27.8993113266
257	4892,08	-6,67	9672578,68764110000000;3236279,362250410000000	86.8902527196;27.8992652009
258	4891,35	-7,66	9672574,39173596000000;3236274,843884040000000	86.8902141288;27.8992293294
259	4890,55	0,38	9672570,770253250000000;3236270,087014720000000	86.8901815965;27.8991915643
260	4890,59	11,58	9672567,38780786000000;3236264,702484820000000	86.8901512114;27.8991488162
261	4891,96	10,69	9672563,52837868000000;3236259,236586230000000	86.8901165416;27.899105422
262	4893,07	8,91	9672560,00423156000000;3236254,526419430000000	86.8900848836;27.8990680277
263	4894,09	7,46	9672555,517889380000000;3236249,770075010000000	86.8900445821;27.8990302667
264	4894,99	6,56	9672550,49632298000000;3236245,12022830000000	86.8899994726;27.8989933513
265	4895,75	5,44	9672545,05878869000000;3236241,374204210000000	86.8899506264;27.8989636113
266	4896,28	4,10	9672540,325843710000000;3236238,501575190000000	86.8899081097;27.8989408053
267	4896,73	2,63	9672534,65692148000000;3236235,654193050000000	86.8898571849;27.8989181997
268	4897,03	0,61	9672528,636696310000000;3236233,305212880000000	86.8898031043;27.8988995509
269	4897,09	0,85	9672523,04367103000000;3236232,068012740000000	86.8897528613;27.8988897287
270	4897,27	-0,47	9672511,68146309000000;3236228,863005460000000	86.8896507928;27.8988642839
271	4897,16	-1,40	9672498,98034349000000;3236226,42095398000000	86.8895366967;27.8988448962
272	4896,93	-1,26	9672489,46676132000000;3236225,26740530000000	86.8894512348;27.8988357381
273	4896,69	-0,56	9672479,02560795000000;3236223,479644580000000	86.8893574403;27.8988215449
274	4896,59	-0,39	9672469,55745639000000;3236220,28540558000000	86.8892723864;27.8987961856
275	4896,52	-0,61	9672460,327598280000000;3236215,877348010000000	86.8891894732;27.8987611896
276	4896,44	-0,43	9672453,43814660000000;3236211,841948610000000	86.8891275842;27.8987291522
277	4896,38	-2,99	9672446,782612350000000;3236207,204414260000000	86.8890677965;27.8986923343
278	4895,80	-4,16	9672435,877476580000000;3236205,143130810000000	86.888969834;27.8986759696
279	4895,06	-4,02	9672425,728845450000000;3236205,753961340000000	86.8888786673;27.898680819
280	4894,32	-3,91	9672415,248318420000000;3236206,071006080000000	86.8887845192;27.8986833361
281	4893,70	-3,97	9672406,097409710000000;3236206,099301780000000	86.8887023151;27.8986835607
282	4893,04	-3,80	9672396,669478670000000;3236206,287727610000000	86.8886176226;27.8986850567
283	4892,50	-3,95	9672388,46751565000000;3236206,051522010000000	86.8885439431;27.8986831814
284	4891,78	-4,03	9672378,05805918000000;3236206,234585320000000	86.8884504334;27.8986846348
285	4890,94	-0,99	9672366,18138708000000;3236206,855803890000000	86.8883437434;27.8986895667
286	4890,75	-0,57	9672355,330220910000000;3236206,934692450000000	86.8882462657;27.898690193
287	4890,65	-0,62	9672344,48166913000000;3236206,36541035000000	86.8881488115;27.8986856734

288	4890,56	-0,76	9672336,250797110000000;3236205,379601140000000	86.8880748723;27.898677847
289	4890,45	-0,52	9672327,974023330000000;3236204,931210420000000	86.8880005208;27.8986742871
290	4890,37	-0,05	9672319,301277480000000;3236207,053511510000000	86.8879226122;27.8986911363
291	4890,36	0,46	9672311,09656086000000;3236209,717849300000000	86.887848908;27.8987122887
292	4890,42	0,80	9672303,937343420000000;3236212,473555470000000	86.8877845957;27.8987341666
293	4890,51	0,34	9672297,857635340000000;3236214,669308840000000	86.8877299807;27.8987515988
294	4890,56	-0,46	9672289,62610366000000;3236215,431310340000000	86.8876560356;27.8987576484
295	4890,49	-1,36	9672280,60010739000000;3236214,274513220000000	86.8875749537;27.8987484645
296	4890,26	-6,64	9672271,04494632000000;3236213,094319510000000	86.8874891182;27.8987390949
297	4889,18	-6,86	9672261,896741110000000;3236211,442372840000000	86.8874069385;27.8987259799
298	4888,51	-7,12	9672256,504705140000000;3236210,149437270000000	86.887358501;27.8987157152
299	4887,73	-6,68	9672250,545211640000000;3236208,229994370000000	86.887304966;27.8987004765
300	4886,95	-7,01	9672244,03927838000000;3236207,053518120000000	86.8872465222;27.8986911364
301	4885,62	-6,86	9672233,54627206000000;3236204,225551820000000	86.8871522619;27.8986686849
302	4884,72	-6,72	9672226,239400710000000;3236202,635517110000000	86.8870866232;27.8986560614
303	4883,85	-5,92	9672219,005973540000000;3236201,371419740000000	86.8870216442;27.8986460256
304	4883,11	-5,03	9672211,85357752000000;3236201,374420170000000	86.8869573931;27.8986460494
305	4882,47	-4,98	9672204,68614238000000;3236202,507998650000000	86.8868930069;27.898655049
306	4881,86	-4,40	9672197,707998980000000;3236203,649518090000000	86.8868303212;27.8986641117
307	4881,30	-4,09	9672190,71193049000000;3236205,439609720000000	86.8867674745;27.8986783234
308	4880,59	-7,63	9672181,23147394000000;3236208,293902370000000	86.8866823101;27.8987009839
309	4879,23	-8,29	9672171,34374592000000;3236210,536182610000000	86.8865934871;27.8987187856
310	4877,73	-8,38	9672161,314414480000000;3236212,943631220000000	86.8865033921;27.8987378985
311	4876,28	-8,48	9672151,769127570000000;3236215,249774110000000	86.8864176453;27.8987562072
312	4874,46	-9,60	9672139,90322982000000;3236218,144975860000000	86.8863110521;27.8987791925
313	4872,90	-10,38	9672130,666953250000000;3236218,708946500000000	86.8862280813;27.8987836699
314	4871,12	-10,52	9672121,093825280000000;3236217,196096130000000	86.8861420844;27.8987716592
315	4869,21	-9,85	9672111,81197726000000;3236212,786132470000000	86.8860587041;27.8987366481
316	4867,79	-9,55	9672105,50928076000000;3236207,569555290000000	86.886002086;27.8986952332
317	4866,70	-9,20	9672100,665045280000000;3236203,228805850000000	86.8859585695;27.8986607716
318	4865,75	-9,12	9672096,52862825000000;3236199,092833560000000	86.8859214115;27.8986279357
319	4864,73	-9,58	9672091,96992136000000;3236194,677178380000000	86.8858804599;27.8985928793
320	4863,86	-6,01	9672087,65506416000000;3236191,804941340000000	86.8858416989;27.8985700763
321	4863,25	-2,42	9672081,92362650000000;3236191,234188300000000	86.8857902125;27.8985655451
322	4862,92	-1,78	9672075,415783180000000;3236195,315089130000000	86.8857317515;27.8985979438
323	4862,76	-2,21	9672071,13769190000000;3236198,600952110000000	86.8856933208;27.8986240306
324	4862,45	-2,34	9672064,412072790000000;3236202,824275960000000	86.8856329035;27.89865756
325	4862,05	-2,93	9672055,78623035000000;3236207,675296530000000	86.8855554163;27.8986960727
326	4861,72	-2,44	9672049,90946562000000;3236210,049997270000000	86.8855026244;27.8987149257
327	4861,40	-2,17	9672043,14400978000000;3236213,379795770000000	86.8854418493;27.8987413613
328	4861,12	-3,21	9672036,568785090000000;3236216,852910850000000	86.885382783;27.8987689347
329	4860,76	-3,37	9672030,379321460000000;3236218,659805990000000	86.8853271821;27.8987832798
330	4860,28	-2,81	9672022,59036963000000;3236220,576755750000000	86.8852572128;27.8987984986
331	4859,87	-2,55	9672014,673833560000000;3236223,286357890000000	86.8851860973;27.8988200104
332	4859,53	-2,04	9672007,340575680000000;3236226,027896460000000	86.8851202216;27.8988417757
333	4859,18	-1,91	9671998,46826133000000;3236230,047368090000000	86.8850405202;27.8988736866
334	4858,97	-1,42	9671992,61911008000000;3236232,285576540000000	86.8849879764;27.8988914559
335	4858,75	-2,60	9671983,74291962000000;3236234,134159100000000	86.8849082402;27.898906132

336	4858,39	-2,79	9671975,93637574000000;3236233,93105630000000	86.8848381128;27.8989045195
337	4857,94	-2,47	9671966,743268140000000;3236233,317913100000000	86.8847555297;27.8988996518
338	4857,70	-3,00	9671961,03355018000000;3236233,319861400000000	86.8847042385;27.8988996672
339	4857,21	-3,03	9671951,87613979000000;3236232,29863380000000	86.884621976;27.8988915596
340	4856,76	-3,51	9671943,27467958000000;3236231,281485580000000	86.8845447078;27.8988834844
341	4856,26	-3,65	9671935,43625618000000;3236229,459726400000000	86.8844742941;27.8988690213
342	4855,92	-3,40	9671930,32251440000000;3236228,098002750000000	86.8844283565;27.8988582104
343	4855,54	-3,49	9671924,002400870000000;3236226,807663220000000	86.884371582;27.8988479663
344	4855,01	-3,53	9671915,53716643000000;3236224,885305760000000	86.8842955375;27.8988327046
345	4854,82	-3,08	9671912,47107879000000;3236224,162413450000000	86.8842679944;27.8988269655
346	4854,61	-3,12	9671908,67516486000000;3236223,665271350000000	86.8842338951;27.8988230186
347	4854,38	-2,96	9671904,548783170000000;3236223,094462500000000	86.8841968272;27.8988184869
348	4854,15	-4,17	9671899,98468319000000;3236222,875633910000000	86.8841558272;27.8988167496
349	4853,86	-4,88	9671896,13737592000000;3236222,256420890000000	86.8841212662;27.8988118336
350	4853,41	-5,63	9671891,12995364000000;3236220,434988220000000	86.8840762838;27.8987973731
351	4852,92	-5,56	9671887,150219410000000;3236217,425543720000000	86.8840405332;27.8987734808
352	4852,49	-5,66	9671883,586961410000000;3236214,874156020000000	86.8840085239;27.8987532251
353	4852,03	-5,82	9671880,016821340000000;3236211,890301030000000	86.8839764528;27.898729536
354	4851,47	-5,79	9671876,61769152000000;3236207,597849980000000	86.8839459179;27.8986954579
355	4850,71	-5,74	9671872,05902042000000;3236201,631586330000000	86.8839049667;27.8986480911
356	4850,00	-5,47	9671867,745045910000000;3236196,016351930000000	86.8838662136;27.8986035112
357	4849,43	-4,97	9671863,11974296000000;3236192,36563200000000	86.8838246638;27.8985745277
358	4848,83	-4,34	9671856,84608126000000;3236189,297590690000000	86.8837683065;27.8985501702
359	4848,44	-3,84	9671851,97416565000000;3236187,971093610000000	86.8837245413;27.898539639
360	4848,00	-2,75	9671845,36784443000000;3236187,041557510000000	86.8836651958;27.8985322593
361	4847,49	-3,54	9671834,86625124000000;3236188,134302240000000	86.8835708583;27.8985409347
362	4847,03	-3,74	9671827,48586374000000;3236187,61943802000000	86.8835045592;27.8985368472
363	4846,52	-3,91	9671819,70742705000000;3236186,691795930000000	86.8834346843;27.8985294825
364	4845,90	-5,56	9671810,776389550000000;3236185,180857430000000	86.8833544554;27.898517487
365	4845,14	-3,63	9671803,321007170000000;3236182,879077920000000	86.8832874826;27.8984992129
366	4844,68	-2,88	9671796,33373406000000;3236184,613149520000000	86.8832247148;27.8985129799
367	4844,37	-3,47	9671790,402715770000000;3236186,540045000000000	86.8831714356;27.8985282778
368	4843,98	-6,12	9671784,125102480000000;3236187,752966840000000	86.8831150428;27.8985379073
369	4843,51	-2,84	9671779,84153846000000;3236186,697294940000000	86.8830765629;27.8985295262
370	4843,29	-5,43	9671775,59885078000000;3236187,789711350000000	86.8830384502;27.898538199
371	4842,64	-3,08	9671768,82654118000000;3236187,072713140000000	86.8829776135;27.8985325067
372	4842,27	2,01	9671761,92367769000000;3236188,40962039000000	86.882915604;27.8985431205
373	4842,55	4,22	9671755,649411640000000;3236193,616095670000000	86.8828592414;27.8985844553
374	4843,23	-3,26	9671749,620204470000000;3236200,582321510000000	86.8828050801;27.8986397609
375	4842,89	-7,87	9671743,65480178000000;3236200,79798382000000	86.8827514919;27.898641473
376	4842,00	-9,46	9671737,91375399000000;3236197,779393220000000	86.8826999192;27.8986175081
377	4840,90	-10,75	9671732,73474063000000;3236193,751972880000000	86.8826533954;27.898585534
378	4839,65	-6,45	9671728,238482210000000;3236188,912635960000000	86.8826130048;27.898547114
379	4838,60	-1,82	9671719,109479520000000;3236187,359272030000000	86.8825309976;27.8985347817
380	4838,32	0,31	9671710,22604903000000;3236187,786911680000000	86.8824511963;27.8985381768
381	4838,40	0,44	9671695,463791420000000;3236189,288163650000000	86.8823185847;27.8985500954
382	4838,46	2,52	9671687,200443740000000;3236190,194005160000000	86.8822443538;27.898557287
383	4838,80	-3,20	9671679,77877719000000;3236192,299769240000000	86.8821776839;27.8985740048

384	4838,32	-1,53	9671671,34376449000000;3236190,694231530000000	86.8821019108;27.8985612583
385	4838,09	2,60	9671662,668104330000000;3236190,260512810000000	86.8820239761;27.898557815
386	4838,59	-2,91	9671652,00196003000000;3236193,274599700000000	86.8819281605;27.8985817441
387	4838,10	-3,60	9671642,34296739000000;3236191,710364280000000	86.8818413923;27.8985693255
388	4837,68	-4,02	9671635,85490602000000;3236190,304525030000000	86.881783109;27.8985581644
389	4837,27	-2,68	9671630,18356674000000;3236188,88881392000000	86.8817321625;27.8985469249
390	4836,97	-4,33	9671623,800138910000000;3236188,018670710000000	86.8816748192;27.8985400167
391	4836,60	-1,84	9671619,17864202000000;3236186,742044130000000	86.8816333036;27.8985298815
392	4836,46	2,44	9671614,721900570000000;3236186,402987840000000	86.881593268;27.8985271897
393	4836,58	1,67	9671612,06377608000000;3236187,110705420000000	86.8815693896;27.8985328083
394	4836,71	3,77	9671607,428449880000000;3236188,066295120000000	86.8815277498;27.8985403948
395	4837,00	-0,47	9671603,41278710000000;3236189,679487110000000	86.8814916765;27.8985532021
396	4836,96	-4,08	9671598,923208510000000;3236189,86451300000000	86.8814513459;27.8985546711
397	4836,66	-8,54	9671594,826562170000000;3236188,766213670000000	86.8814145451;27.8985459516
398	4835,87	-9,42	9671590,87844590000000;3236185,301023590000000	86.8813790786;27.898518441
399	4835,04	-9,30	9671587,61489385000000;3236181,523984880000000	86.8813497616;27.8984884547
400	4833,83	-9,65	9671582,85266203000000;3236175,870957620000000	86.8813069817;27.8984435747
401	4832,81	-8,00	9671579,403859880000000;3236170,974371870000000	86.8812760006;27.8984047001
402	4831,84	-5,57	9671574,33538105000000;3236166,18901899000000	86.8812304697;27.8983667086
403	4831,24	-2,76	9671568,96675100000000;3236163,18842830000000	86.8811822425;27.8983428866
404	4830,86	-2,02	9671562,96000792000000;3236158,384367860000000	86.881128283;27.8983047465
405	4830,66	-2,09	9671560,613125250000000;3236153,192209710000000	86.8811072006;27.8982635253
406	4830,39	-2,21	9671557,355945810000000;3236146,532598020000000	86.8810779408;27.8982106538
407	4830,08	-2,24	9671553,971629770000000;3236139,181866940000000	86.881047539;27.8981522953
408	4829,84	-2,07	9671550,86151085000000;3236133,880156420000000	86.8810196003;27.8981102043
409	4829,57	-1,39	9671545,494059140000000;3236128,661370020000000	86.8809713837;27.8980687716
410	4829,40	-1,06	9671538,87341366000000;3236126,411510190000000	86.8809119094;27.8980509097
411	4829,28	-0,94	9671532,569835370000000;3236125,368742960000000	86.8808552834;27.898042631
412	4829,21	-0,96	9671528,35230939000000;3236125,012722580000000	86.8808173967;27.8980398045
413	4829,15	-1,72	9671524,56570642000000;3236124,779563570000000	86.8807833811;27.8980379534
414	4829,02	-1,75	9671520,50073452000000;3236123,140924510000000	86.8807468649;27.898024944
415	4828,95	-2,41	9671518,471348110000000;3236122,249952560000000	86.8807286346;27.8980178705
416	4828,79	-2,55	9671515,83327382000000;3236119,33474181000000	86.8807049363;27.8979947262
417	4828,60	-2,47	9671513,69772206000000;3236115,786945570000000	86.8806857524;27.8979665597
418	4828,37	-2,26	9671510,795604330000000;3236111,362190450000000	86.8806596822;27.8979314309
419	4828,14	-1,44	9671506,78745790000000;3236106,858893290000000	86.8806236764;27.8978956785
420	4828,01	-0,83	9671502,007847590000000;3236104,928333280000000	86.8805807404;27.8978803515
421	4827,92	-0,45	9671496,19939159000000;3236104,251078740000000	86.8805285622;27.8978749747
422	4827,87	-0,74	9671490,068353410000000;3236104,548339190000000	86.8804734861;27.8978773347
423	4827,81	-0,82	9671485,331491870000000;3236104,160641290000000	86.8804309342;27.8978742567
424	4827,73	-1,06	9671479,56650466000000;3236103,42707038000000	86.8803791464;27.8978684327
425	4827,61	-1,11	9671473,44135629000000;3236101,80648238000000	86.8803241233;27.8978555666
426	4827,52	-1,51	9671469,02026596000000;3236100,415277060000000	86.8802844079;27.8978445216
427	4827,38	-1,43	9671464,39220650000000;3236097,338893550000000	86.8802428334;27.8978200977
428	4827,24	-1,26	9671459,86954635000000;3236094,400206400000000	86.8802022056;27.897796767
429	4827,14	-0,88	9671455,79641664000000;3236092,232725320000000	86.8801656161;27.897779559
430	4827,07	-0,40	9671451,41643003000000;3236091,019320290000000	86.88012627;27.8977699256
431	4827,05	0,00	9671448,771870310000000;3236091,018237130000000	86.8801025135;27.897769917

Tabelle 1: Längsprofildaten des Imja Khola Gletscherbaches.

	Profilhöhe über	Gefälle in		
Nr.	dem Meer (m)	Grad	WGS 84/Pseudo Mercator (EPSG: 3857) in Ost;Nord	WGS 84 (EPSG: 4326) in Ost;Nord
1	4756,58	-6,58	9670747,03527580000000; 3236864,72907798000000	86.8737987064;27.9039123609
2	4756,15	-7,80	9670743,437684280000000; 3236863,784965120000000	86.8737663887;27.9039048659
3	4755,66	-5,76	9670740,005757110000000; 3236864,858842280000000	86.8737355592;27.9039133911
4	4755,32	-2,56	9670736,984734320000000; 3236863,509010060000000	86.8737084209;27.9039026752
5	4755,16	-4,95	9670734,784253570000000; 3236860,696693730000000	86.8736886536;27.903880349
6	4754,78	-7,64	9670730,931592130000000; 3236858,368944900000000	86.8736540446;27.9038618697
7	4754,14	-7,77	9670726,234987830000000; 3236859,104112780000000	86.8736118543;27.9038677059
8	4753,41	-7,62	9670721,53501066000000; 3236861,606028320000000	86.8735696336;27.9038875679
9	4752,69	-7,96	9670717,186772350000000; 3236864,842967240000000	86.8735305727;27.9039132651
10	4752,02	-7,97	9670712,65190325000000; 3236866,281623200000000	86.8734898353;27.9039246862
11	4751,19	-6,76	9670706,911572850000000; 3236867,760169590000000	86.8734382691;27.9039364239
12	4750,56	-6,60	9670701,702828320000000; 3236866,761344610000000	86.8733914781;27.9039284945
13	4749,84	-7,60	9670695,58763670000000; 3236865,431544330000000	86.8733365444;27.9039179376
14	4749,24	-4,20	9670691,12360790000000; 3236865,355965850000000	86.8732964434;27.9039173376
15	4748,80	-2,88	9670686,347781310000000; 3236861,607875990000000	86.8732535414;27.9038875826
16	4748,52	-3,84	9670682,79520219000000; 3236857,457739310000000	86.873221628;27.9038546359
17	4748,16	-7,89	9670678,86210832000000; 3236853,724793420000000	86.8731862964;27.903825001
18	4747,40	-8,21	9670673,413325760000000; 3236853,499817250000000	86.8731373492;27.903823215
19	4746,45	-7,21	9670666,884080240000000; 3236854,142033120000000	86.873078696;27.9038283134
20	4745,89	-6,24	9670662,531161070000000; 3236853,050442360000000	86.873039593;27.9038196476
21	4745,36	-5,84	9670658,22267904000000; 3236850,906452790000000	86.8730008893;27.903802627
22	4744,85	-4,82	9670653,944839770000000; 3236848,275082590000000	86.8729624608;27.9037817373
23	4744,37	-4,50	9670649,724143870000000; 3236844,492787470000000	86.8729245456;27.9037517107
24	4743,91	-6,37	9670645,639300070000000; 3236840,293196160000000	86.8728878509;27.9037183713
25	4743,25	-7,97	9670640,57943386000000; 3236837,259707100000000	86.8728423973;27.9036942892
26	4742,48	-8,21	9670635,178693560000000; 3236836,076218360000000	86.8727938816;27.9036848938
27	4741,72	-7,74	9670630,004349370000000; 3236835,264895890000000	86.8727473997;27.903678453
28	4741,12	-5,75	9670625,82042946000000; 3236833,887540770000000	86.8727098149;27.9036675185
29	4740,63	-5,42	9670622,120804510000000; 3236830,651381260000000	86.8726765806;27.9036418275
30	4740,22	-7,18	9670619.069496290000000: 3236827,591123910000000	86.8726491703;27.9036175329
31	4739,62	-8,24	9670614,97859993000000; 3236825,256291510000000	86.8726124211;27.9035989973
32	4738,90	-7,28	9670610,210054850000000; 3236823,814096620000000	86.8725695845;27.9035875481
33	4738.13	-6.38	9670605.05571002000000: 3236820.688358360000000	86.8725232823:27.9035627337
34	4737,52	-4,96	9670600,242039480000000; 3236818,099176790000000	86.8724800403:27.9035421788
35	4737.01	-5.29	9670595.048421270000000: 3236815.359360600000000	86.8724333853:27.9035204281
36	4736.78	-5.57	9670592,734699710000000; 3236814.425352780000000	86.8724126008;27.9035130133
37	4736.41	-5.53	9670589,033650640000000; 3236813.391244380000000	86.8723793537;27.9035048038
38	4736.06	-5.53	9670585.577148310000000; 3236812.308983780000000	86.8723483034:27.903496212
39	4735.68	-5.40	9670581.853834930000000; 3236811.101954760000000	86.8723148563:27.9034866297
40	4735.32	-5.28	9670578,318518250000000; 3236809,677233320000000	86.872283098:27.9034753192
41	4735.03	-5.31	9670575 491799190000000 3236808 342083130000000	86.8722577051.27.9034647198
42	4734.66	-4.61	9670571.937112590000000: 3236806.653435620000000	86.8722257729:27.903451314

43	4734,41	-4,41	9670569,466192950000000; 3236804,706917150000000	86.8722035762;27.9034358611
44	4734,14	-4,46	9670566,903182180000000; 3236802,425677420000000	86.8721805523;27.9034177509
45	4733,88	-5,08	9670564,35960965000000; 3236800,175956180000000	86.872157703;27.9033998909
46	4733,58	-5,51	9670561,50036945000000; 3236798,353558470000000	86.872132018;27.9033854234
47	4733,27	-5,89	9670558,575796740000000; 3236797,001989420000000	86.8721057461;27.9033746936
48	4732,91	-6,09	9670555,245443230000000; 3236796,112321750000000	86.872075829;27.9033676307
49	4732,57	-5,79	9670552,041213880000000; 3236796,299240700000000	86.872047045;27.9033691146
50	4732,18	-5,59	9670548,423202070000000; 3236797,436143740000000	86.8720145438;27.9033781402
51	4731,82	-5,24	9670544,980107550000000; 3236798,838282940000000	86.871983614;27.9033892715
52	4731,45	-4,05	9670541,41931661000000; 3236800,794903530000000	86.8719516268;27.9034048046
53	4731,12	-4,03	9670538,222619830000000; 3236804,111051300000000	86.8719229104;27.9034311307
54	4730,76	-5,64	9670534,63903756000000; 3236807,771910090000000	86.8718907185;27.9034601933
55	4730,30	-5,80	9670530,136185840000000; 3236809,094918270000000	86.8718502687;27.9034706963
56	4729,86	-5,70	9670525,905235110000000; 3236809,846403820000000	86.8718122615;27.9034766622
57	4729,50	-5,71	9670522,36012943000000; 3236810,679201570000000	86.8717804152;27.9034832736
58	4729,10	-5,94	9670518,49982805000000; 3236811,512151160000000	86.8717457376;27.9034898861
59	4728,68	-3,57	9670514,43437652000000; 3236811,214228840000000	86.871709217;27.903487521
60	4728,35	-5,70	9670511,644947990000000; 3236806,703189620000000	86.8716841591;27.903451709
61	4727,83	-5,61	9670506,437772180000000; 3236806,788503570000000	86.8716373823;27.9034523863
62	4727,17	-5,72	9670499,914762140000000; 3236805,209505910000000	86.8715787851;27.903439851
63	4726,62	-5,75	9670494,59947550000000; 3236804,006729870000000	86.871531037;27.9034303025
64	4726,13	-5,84	9670489,76546202000000; 3236803,567718230000000	86.8714876124;27.9034268173
65	4725,74	-5,78	9670485,943745980000000; 3236802,962184420000000	86.8714532813;27.9034220101
66	4725,34	-5,80	9670482,01320970000000; 3236802,738969750000000	86.8714179727;27.903420238
67	4724,87	-5,71	9670477,43995063000000; 3236802,498412870000000	86.8713768904;27.9034183283
68	4724,44	-5,61	9670473,074556340000000; 3236802,521019370000000	86.8713376754;27.9034185078
69	4723,98	-5,85	9670468,464816840000000; 3236802,729148390000000	86.8712962654;27.9034201601
70	4723,61	-5,73	9670464,788250250000000; 3236802,486455350000000	86.8712632382;27.9034182334
71	4723,19	-5,48	9670460,599856930000000; 3236802,467481090000000	86.8712256133;27.9034180828
72	4722,74	-5,30	9670456,022341990000000; 3236802,835176160000000	86.8711844928;27.9034210018
73	4722,29	-5,62	9670451,105209930000000; 3236803,448084870000000	86.8711403214;27.9034258675
74	4721,83	-5,48	9670446,469152910000000; 3236803,539046120000000	86.871098675;27.9034265897
75	4721,43	-5,53	9670442,31826698000000; 3236803,775832490000000	86.871061387;27.9034284694
76	4721,03	-5,57	9670438,15597936000000; 3236803,930369440000000	86.8710239965;27.9034296963
77	4720,70	-5,43	9670434,84134978000000; 3236804,008031940000000	86.8709942207;27.9034303128
78	4720,34	-5,50	9670430,972575330000000; 3236804,234788180000000	86.8709594669;27.903432113
79	4719,63	-6,96	9670423,637414540000000; 3236804,496940590000000	86.870893574;27.9034341941
80	4718,79	-7,88	9670417,499232160000000; 3236801,449317940000000	86.8708384338;27.9034099998
81	4717,83	-6,28	9670411,205059170000000; 3236798,446662290000000	86.8707818923;27.9033861625
82	4717,09	-7,16	9670404,535559490000000; 3236799,141739960000000	86.8707219791;27.9033916805
83	4716,31	-7,39	9670398,389347110000000; 3236798,513885750000000	86.8706667668;27.9033866962
84	4715,42	-7,55	9670391,618213870000000; 3236797,369490590000000	86.8706059406;27.9033776111
85	4714,57	-7,76	9670385,346144150000000; 3236795,950943430000000	86.8705495977;27.9033663496
86	4713,74	-7,73	9670379,50642802000000; 3236794,075847390000000	86.8704971386;27.9033514637
87	4712,93	-5,89	9670373,804564910000000; 3236792,320487440000000	86.8704459179;27.9033375283
88	4712,33	-3,46	9670368,07525410000000; 3236793,351299330000000	86.8703944506;27.9033457116
89	4711,94	-5,70	9670362,71990945000000; 3236796,68282088000000	86.8703463427;27.9033721598
90	4711,37	-7,50	9670357,06635728000000; 3236797,90710396000000	86.870295556;27.9033818791

92 4709,86 -5,28 9670344,97149435000000; 3236796,97194281000000 86.870186906;27.903374455 93 4709,09 -3,10 9670337,00694976000000; 3236799,29980908000000 86.8701153593;27.9033929354 94 4708,59 -2,43 9670329,41604495000000; 3236804,55173873000000 86.87047169;27.9034346292 95 4708,30 -1,07 9670324,15084087000000; 3236808,91689282000000 86.869998709;27.903487651 96 4708,16 -2,44 9670316,69669707000000; 3236801,21926845000000 86.8699329092;27.903487651 97 4707,85 -4,63 9670303,15622706000000; 3236806,26725404000000 86.869811271;27.9034482482 99 4706,85 -2,71 9670286,89263267000000; 3236804,20411013000000 86.869917919;27.903436158 100 4706,51 -1,67 9670286,85564420000000; 3236804,601282000000 86.86917919;27.903436158 101 4706,28 -3,88 9670282,08696709000000; 3236804,71300234000000 86.8694184;27.903435255 104 4705,54 -3,41 9670273,13704159000000; 3236804,63025858000000 86.86942184;37.9034251648 105 4704,71 -4,91 9670259,9787
93 4709,09 -3,10 9670337,00694976000000; 3236799,29980908000000 86.8701153593;27.9033929354 94 4708,59 -2,43 9670329,41604495000000; 3236804,55173873000000 86.87047169;27.9034346292 95 4708,30 -1,07 9670324,15084087000000; 3236808,91689282000000 86.869998709;27.903487561 96 4708,16 -2,44 9670316,69669707000000; 3236811,21926845000000 86.8699329092;27.903487561 97 4707,85 -4,63 9670303,15622706000000; 3236801,2703382000000 86.86986857;27.9034879657 98 4707,20 -3,16 9670303,15622706000000; 3236806,26725404000000 86.8698112731;27.9034482482 99 4706,51 -1,67 9670289,85564420000000; 3236804,80198282000000 86.8696917919;27.9034366158 101 4706,53 -0,90 9670273,13704159000000; 3236804,63025858000000 86.86961843;27.9034420319 103 4705,54 -3,41 9670262,2866201000000; 3236803,35955892000000 86.8694441535;27.903435255 104 4705,21 -4,98 967025,846201000000; 3236798,11900912000000 86.8694045946;27.9033340923 105 4704,71 -4,91 967025
944708,59-2,439670329,41604495000000; 3236804,5517387300000086.870047169;27.9034346292954708,30-1,079670324,15084087000000; 3236808,9168928200000086.8699998709;27.903487561964708,16-2,449670316,69669707000000; 3236811,2192684500000086.8699329092;27.903487561974707,85-4,639670309,53449549000000; 3236811,2702398200000086.86986857;27.9034879657984707,20-3,169670303,15622706000000; 323680,2672540400000086.86986857;27.9034879657994706,85-2,719670296,89263267000000; 3236805,2041101300000086.8698112731;27.9034482482994706,51-1,679670289,85564420000000; 3236804,8019828200000086.8696917919;27.90343561581014706,53-0,909670273,13704159000000; 3236804,71730023400000086.869421843;27.90344351411024705,54-3,419670267,63494759000000; 3236804,6302585800000086.8694218;27.9034352551044705,21-4,989670259,97876480000000; 3236798,1190091200000086.869444155;27.903435251054704,71-4,919670257,884985140000000; 3236781,887673710000086.8693670739;27.90328604271084703,33-2,189670247,03268001000000; 3236785,851445300000086.8693670739;27.90328604271084703,33-2,189670247,03268001000000; 3236785,5247516400000086.8692161;27.90325343731074703,33-2,189670241,73810218000000; 3236785,5247516400000086.8692161;27.90325343731104702,65-4,999670227,43064371000000; 32367
954708,30-1,079670324,15084087000000; 3236808,9168928200000086.8699998709;27.903469283964708,16-2,449670316,69669707000000; 3236811,2192684500000086.8699329092;27.903487561974707,85-4,639670309,53449549000000; 3236811,2702398200000086.86986857;27.9034879657984707,20-3,169670303,15622706000000; 3236805,2672540400000086.8698112731;27.9034482482994706,85-2,719670286,892632670000000; 3236805,2041101300000086.8699112731;27.90343681581014706,51-1,679670289,85564420000000; 3236804,8019828200000086.869621843;27.90343661581014706,28-3,889670273,13704159000000; 3236804,6128430000086.869421843;27.9034455451024705,54-3,419670267,63494759000000; 3236804,6302585800000086.8694218;27.9034352551044705,21-4,989670262,28866201000000; 3236804,6302585800000086.8694218;27.9034352551044705,11-4,919670259,97876480000000; 3236791,8876737100000086.8694234033;27.90338356131064704,15-3,069670247,03268010000000; 3236785,8351445300000086.8693670739;27.90328604271084703,33-2,189670247,03268010000000; 3236785,8351445300000086.8693670739;27.9032857861094703,12-4,429670241,73810218000000; 3236785,5247516400000086.8692161;27.90325343731104702,65-4,99967022,03063919000000; 3236776,4292763600000086.8691726671;27.90325343731114702,02-5,80967022,0406371000000; 32367
964708,16-2,449670316,69669707000000; 3236811,2192684500000086.8699329092;27.903487561974707,85-4,639670309,53449549000000; 3236811,2702398200000086.86986857;27.9034879657984707,20-3,169670303,15622706000000; 3236806,2672540400000086.8698112731;27.9034482482994706,85-2,719670296,89263267000000; 3236805,2041101300000086.8699127919;27.90343661581004706,51-1,679670289,85564420000000; 3236804,8019828200000086.869621843;27.90344751411024706,28-3,889670282,06896799000000; 3236804,7130023400000086.869421843;27.90344751411024705,63-0,909670273,13704159000000; 3236802,7130023400000086.8694218;27.90344552551044705,54-3,419670262,28866201000000; 3236803,3595589200000086.8694441535;27.90342516481054704,71-4,919670259,97876480000000; 3236798,1190091200000086.8694234033;27.9033856131064704,15-3,069670257,88498514000000; 3236785,8351445300000086.8694045946;27.9033409231074703,76-3,529670253,70820214000000; 3236785,8351445300000086.8693071067;27.90327161661094703,12-4,429670241,73810218000000; 3236785,5247516400000086.8693071067;27.90321367851104702,65-4,999670236,901867520000000; 3236781,7280238400000086.869176671;27.9032137171114702,02-5,809670236,901867520000000; 3236771,362900100000886.869176671;27.90321137171124701,32-5,449670247,43064371
974707,85-4,639670309,53449549000000; 3236811,2702398200000086.86986857;27.9034879657984707,20-3,169670303,15622706000000; 3236806,2672540400000086.8698112731;27.9034482482994706,85-2,719670296,89263267000000; 3236805,2041101300000086.8697550063;27.90343980821004706,51-1,679670289,85564420000000; 3236805,2041101300000086.8696917919;27.90343661581014706,28-3,889670282,06896709000000; 3236806,1747808900000086.869621843;27.90344751411024705,63-0,909670273,13704159000000; 3236802,7130023400000086.86942182;27.90343525251044705,21-4,989670267,63494759000000; 3236803,3595589200000086.869441535;27.90342516481054704,71-4,919670259,97876480000000; 3236798,1190091200000086.8694441535;27.903342516481064704,15-3,069670257,88498514000000; 3236793,8190091200000086.8694045946;27.90333409231074703,76-3,529670253,70820214000000; 3236785,8351445300000086.8693071067;27.90327161661094703,12-4,429670241,73810218000000; 3236781,7280238400000086.8691310167;27.90325343731114702,02-5,809670232,6693919000000; 3236771,4292763600000086.8691126671;27.90325343731114702,02-5,809670227,43064371000000; 3236771,42927636000000086.8691310186;27.9031711511124701,32-5,449670227,43064371000000; 3236771,529000100086.8691310186;27.9031711511124701,32-5,449670227,430643
98 4707,20 -3,16 9670303,15622706000000; 3236806,26725404000000 86.8698112731;27.9034482482 99 4706,85 -2,71 9670296,89263267000000; 3236805,20411013000000 86.8697550063;27.9034398082 100 4706,51 -1,67 9670289,85564420000000; 3236804,80198282000000 86.869917919;27.9034366158 101 4706,28 -3,88 9670282,0689670900000; 3236806,17478089000000 86.869621843;27.9034475141 102 4705,63 -0,90 9670273,13704159000000; 3236802,71300234000000 86.8694218;27.9034475141 102 4705,54 -3,41 9670267,63494759000000; 3236804,63025858000000 86.869416061;27.903425255 104 4705,21 -4,98 9670262,28866201000000; 3236798,11900912000000 86.8694441535;27.903435255 104 4704,71 -4,91 9670259,97876480000000; 3236798,11900912000000 86.869424033;27.9033835613 106 4704,15 -3,06 9670257,88498514000000; 3236791,88767371000000 86.8693071067;27.9032860427 108 4703,33 -2,18 9670247,03268001000000; 3236785,52475164000000 86.8693071067;27.9032716166 109 4703,12 -4,42
994706,852,719670296,89263267000000; 3236805,2041101300000086.8697550063;27.90343980821004706,511,679670289,85564420000000; 3236804,8019828200000086.8696917919;27.90343661581014706,283,889670282,06896709000000; 3236806,1747808900000086.869621843;27.90344751411024705,630,909670273,13704159000000; 3236802,7130023400000086.8695416061;27.90342003191034705,543,419670267,63494759000000; 3236804,6302585800000086.86949218;27.90343525251044705,21-4,989670262,28866201000000; 3236793,13595589200000086.8694441535;27.90342516481054704,71-4,919670259,97876480000000; 3236798,1190091200000086.8694234033;27.90338356131064704,153,069670257,88498514000000; 3236791,8876737100000086.8694045946;27.90333409231074703,763,529670253,70820214000000; 3236785,8351445300000086.8693071067;27.903271616661094703,124,429670241,73810218000000; 3236785,5247516400000086.8692595447;27.90328357861104702,65-4,999670232,06693919000000; 3236778,4292763600000086.8691726671;27.90321337171124701,32-5,449670227,43064371000000; 3236771,3629001100000086.8691310186;27.90371151
1004706,51-1,679670289,85564420000000; 3236804,8019828200000086.8696917919;27.90343661581014706,28-3,889670282,06896709000000; 3236806,1747808900000086.869621843;27.90344751411024705,63-0,909670273,13704159000000; 3236802,7130023400000086.8695416061;27.90342003191034705,54-3,419670267,63494759000000; 3236804,6302585800000086.86949218;27.90343525251044705,21-4,989670262,28866201000000; 3236703,3595589200000086.8694441535;27.90342516481054704,71-4,919670259,97876480000000; 3236798,1190091200000086.8694234033;27.90338356131064704,15-3,069670257,88498514000000; 3236791,8876737100000086.8694045946;27.90333409231074703,76-3,529670253,70820214000000; 3236785,8351445300000086.8693670739;27.90328604271084703,33-2,189670247,0326800100000; 3236785,5247516400000086.8693071067;27.90327161661094703,12-4,429670236,90186752000000; 3236785,5247516400000086.8692595447;27.90328357861104702,65-4,999670236,90186752000000; 3236776,4292763600000086.869110186;27.903171771124701,32-5,449670227,43064371000000; 3236771,362900100000086.8691310186;27.9031711511124701,32-5,449670227,43064371000000; 3236771,3629000100000086.8691310186;27.903171151
1014706,28-3,889670282,06896709000000; 3236806,1747808900000086.869621843;27.90344751411024705,63-0,909670273,13704159000000; 3236802,7130023400000086.8695416061;27.90342003191034705,54-3,419670267,63494759000000; 3236804,6302585800000086.86949218;27.90343525251044705,21-4,989670262,28866201000000; 3236803,3595589200000086.8694441535;27.90342516481054704,71-4,919670259,9787648000000; 3236798,1190091200000086.8694234033;27.90338356131064704,15-3,069670257,88498514000000; 3236791,8876737100000086.8694045946;27.90333409231074703,76-3,529670253,70820214000000; 3236785,8351445300000086.8693670739;27.90328604271084703,33-2,189670247,03268001000000; 3236784,0179667300000086.8693071067;27.90327161661094703,12-4,429670241,73810218000000; 3236785,5247516400000086.8692161;27.90328357861104702,65-4,999670232,06693919000000; 3236778,7280238400000086.8691726671;27.90325343731114702,02-5,809670227,43064371000000; 3236776,4292763600000086.8691726671;27.90321137171124701,32-5,449670227,43064371000000; 3236771,3629001100000086.8691310186;27.903171151
1024705,63-0,909670273,13704159000000; 3236802,7130023400000086.8695416061;27.90342003191034705,54-3,419670267,63494759000000; 3236804,6302585800000086.86949218;27.90343525251044705,21-4,989670262,28866201000000; 3236803,3595589200000086.8694441535;27.90342516481054704,71-4,919670259,97876480000000; 3236798,1190091200000086.8694234033;27.90338356131064704,15-3,069670257,88498514000000; 3236791,8876737100000086.8694045946;27.90333409231074703,76-3,529670253,70820214000000; 3236785,8351445300000086.8693670739;27.90328604271084703,33-2,189670247,03268001000000; 3236785,5247516400000086.8693071067;27.90327161661094703,12-4,429670241,73810218000000; 3236785,5247516400000086.8692595447;27.90328357861104702,65-4,999670236,90186752000000; 32367781,7280238400000086.8691726671;27.90325343731114702,02-5,809670227,43064371000000; 3236776,4292763600000086.8691310186;27.9031711511124701,32-5,449670227,43064371000000; 3236771,3629001100000086.8691310186;27.903171151
1034705,54-3,419670267,63494759000000; 3236804,6302585800000086.86949218;27.90343525251044705,21-4,989670262,28866201000000; 3236803,3595589200000086.8694441535;27.90342516481054704,71-4,919670259,97876480000000; 3236798,1190091200000086.8694234033;27.90338356131064704,15-3,069670257,88498514000000; 3236791,8876737100000086.8694045946;27.90333409231074703,76-3,529670253,70820214000000; 3236785,8351445300000086.8693071067;27.90328604271084703,33-2,189670247,03268001000000; 3236784,0179667300000086.8693071067;27.90327161661094703,12-4,429670241,73810218000000; 3236785,5247516400000086.8692595447;27.90328357861104702,65-4,999670236,90186752000000; 32367781,7280238400000086.86911;27.90325343731114702,02-5,809670227,43064371000000; 3236776,4292763600000086.8691310186;27.903711511124701,32-5,449670227,43064371000000; 3236771,3629001100000086.8691310186;27.90371151
1044705,21-4,989670262,28866201000000; 3236803,3595589200000086.8694441535;27.90342516481054704,71-4,919670259,97876480000000; 3236798,1190091200000086.8694234033;27.90338356131064704,15-3,069670257,88498514000000; 3236791,8876737100000086.8694045946;27.90333409231074703,76-3,529670253,70820214000000; 3236785,8351445300000086.8693670739;27.90328604271084703,33-2,189670247,03268001000000; 3236784,0179667300000086.8693071067;27.90327161661094703,12-4,429670241,73810218000000; 3236785,5247516400000086.8692595447;27.90328357861104702,65-4,999670236,90186752000000; 32367781,7280238400000086.8692161;27.90325343731114702,02-5,809670227,43064371000000; 3236776,4292763600000086.869110186;27.9031711511124701,32-5,449670227,43064371000000; 3236771,3629001100000086.8691310186;27.903171151
1054704,71-4,919670259,97876480000000; 3236798,1190091200000086.8694234033;27.90338356131064704,15-3,069670257,88498514000000; 3236791,8876737100000086.8694045946;27.90333409231074703,76-3,529670253,70820214000000; 3236785,8351445300000086.8693670739;27.90328604271084703,33-2,189670247,03268001000000; 3236784,0179667300000086.8693071067;27.90327161661094703,12-4,429670241,73810218000000; 3236785,5247516400000086.8692595447;27.90328357861104702,65-4,999670236,90186752000000; 3236781,7280238400000086.8692161;27.90325343731114702,02-5,809670223,06693919000000; 3236776,4292763600000086.8691726671;27.90321137171124701,32-5,449670227,43064371000000; 3236771,3629001100000086.8691310186;27.903171151
1064704,153,069670257,88498514000000; 3236791,8876737100000086.8694045946;27.90333409231074703,76-3,529670253,70820214000000; 3236785,8351445300000086.8693670739;27.90328604271084703,33-2,189670247,03268001000000; 3236784,0179667300000086.8693071067;27.90327161661094703,12-4,429670241,73810218000000; 3236785,5247516400000086.8692595447;27.90328357861104702,65-4,999670236,90186752000000; 3236781,7280238400000086.8692161;27.90325343731114702,02-5,809670232,06693919000000; 3236776,4292763600000086.8691726671;27.90321137171124701,32-5,449670227,43064371000000; 3236771,3629001100000086.8691310186;27.903171151
1074703,76-3,529670253,70820214000000; 3236785,8351445300000086.8693670739;27.90328604271084703,33-2,189670247,03268001000000; 3236784,0179667300000086.8693071067;27.90327161661094703,12-4,429670241,73810218000000; 3236785,5247516400000086.8692595447;27.90328357861104702,65-4,999670236,90186752000000; 3236781,7280238400000086.8692161;27.90325343731114702,02-5,809670232,06693919000000; 3236776,4292763600000086.8691726671;27.90321137171124701,32-5,449670227,43064371000000; 3236771,362900100000086.8691310186;27.903171151
108 4703,33 -2,18 9670247,03268001000000; 3236784,01796673000000 86.8693071067;27.9032716166 109 4703,12 -4,42 9670241,73810218000000; 3236785,52475164000000 86.8692595447;27.9032835786 110 4702,65 -4,99 9670236,90186752000000; 3236781,72802384000000 86.8692161;27.9032534373 111 4702,02 -5,80 9670232,06693919000000; 3236776,42927636000000 86.8691726671;27.903213717 112 4701,32 -5,44 9670227,43064371000000; 3236771,36290001000000 86.8691310186;27.903171151
109 4703,12 -4,42 9670241,73810218000000; 3236785,52475164000000 86.8692595447;27.9032835786 110 4702,65 -4,99 9670236,90186752000000; 3236781,72802384000000 86.8692161;27.9032534373 111 4702,02 -5,80 9670232,06693919000000; 3236776,42927636000000 86.8691726671;27.9032113717 112 4701,32 -5,44 9670227,43064371000000; 3236771,3629001000000 86.8691310186;27.903171151
110 4702,65 -4,99 9670236,90186752000000; 3236781,72802384000000 86.8692161;27.9032534373 111 4702,02 -5,80 9670232,06693919000000; 3236776,42927636000000 86.8691726671;27.903213717 112 4701,32 -5,44 9670227,43064371000000; 3236771,36290001000000 86.8691310186;27.903171151 140 4702,55 5,54 9670227,43064371000000; 3236771,36290001000000 86.8691310186;27.903171151
111 4702,02 -5,80 9670232,06693919000000; 3236776,42927636000000 86.8691726671;27.9032113717 112 4701,32 -5,44 9670227,430643710000000; 3236771,362900010000000 86.8691310186;27.903171151 140 4700,55 5,56 9670227,430643710000000; 3236771,362900010000000 86.8691310186;27.903171151
112 4701,32 -5,44 9670227,430643710000000; 3236771,362900010000000 86.8691310186;27.903171151 140 1700,55 5.50 9670220,430643710000000; 3236771,362900010000000 86.8691310186;27.903171151
113 4700,55 -5,58 9670224,037788170000000; 3236764,014299930000000 86.8691005401;27.9031128121
114 4700,04 -3,05 9670218,993123450000000; 3236762,492830670000000 86.8690552231;27.9031007335
115 4699,76 -5,76 9670214,089377750000000; 3236764,231953280000000 86.869011172;27.90311454
116 4699,23 -4,93 9670209,21578094000000; 3236762,423224810000000 86.8689673917;27.9031001809
117 4698,54 -5,49 9670207,632882720000000; 3236754,548933650000000 86.8689531723;27.9030376687
118 4697,98 -5,77 9670205,635933630000000; 3236749,084949410000000 86.8689352334;27.9029942913
119 4697,58 -6,30 9670203,961398760000000; 3236745,486839960000000 86.8689201908;27.9029657267
120 4697,12 -6,07 9670200,406285790000000; 3236743,348048220000000 86.8688882547;27.9029487473
121 4696,54 -5,46 9670195,272053360000000; 3236741,375091030000000 86.8688421331;27.9029330844
122 4696,01 -1,71 9670189,754828880000000; 3236740,593785740000000 86.868792571;27.9029268818
123 4695,79 -5,98 9670183,849346970000000; 3236744,469058340000000 86.8687395211;27.9029576468
<u>124</u> 4695,09 -5,91 9670177,42717602000000; 3236742,426430810000000 86.8686818298;27.9029414308
125 4694,36 -6,58 9670170,610740550000000; 3236740,549545380000000 86.8686205967;27.9029265306
126 4693,48 -5,59 9670164,119359420000000; 3236736,604586590000000 86.8685622836;27.9028952124
127 4692,81 -4,62 9670157,297673940000000; 3236735,590771940000000 86.8685010034;27.9028871639
128 4692,19 -3,81 9670149,69623166000000; 3236736,14221162000000 86.8684327185;27.9028915417
129 4691,70 -2,10 9670142,551440150000000; 3236737,709721120000000 86.8683685357;27.9029039858
130 4691,41 -1,14 9670134,70638808000000; 3236738,776875190000000 86.8682980624;27.9029124577
131 4691,25 -1,42 9670126,393190880000000; 3236737,955607400000000 86.8682233837;27.9029059379
132 4691,07 -1,74 9670119,478422090000000; 3236736,936710800000000 86.8681612673;27.9028978491
133 4690,84 0,00 9670111,979894230000000; 3236735,448911180000000 86.8680939069;27.9028860377

Tabelle 2: Längsprofildaten des Lhotse Gletscherbaches.

NL	Profilhöhe über	Gefälle in		
Nr.	dem Meer (m)	Grad	WGS 84/Pseudo Mercator (EPSG: 3857) In Ost;Nord	WGS 84 (EPSG: 4326) In Ost;Nord
1	4911,90	-8,62	9671238,131555430000000; 3237544,258951760000000	86.8782102994;27.9093068202
2	4910,79	-10,86	9671236,011143090000000; 3237537,257667200000000	86.8781912514;27.9092512418
3	4909,50	-12,32	9671232,368756760000000; 3237531,573818470000000	86.8781585313;27.9092061216
4	4907,94	-17,61	9671226,978604540000000; 3237526,905415420000000	86.8781101107;27.9091690623
5	4905,30	-18,10	9671220,395578380000000; 3237521,822372830000000	86.8780509744;27.9091287114
6	4902,87	-17,61	9671214,373749720000000; 3237517,451299060000000	86.8779968794;27.9090940123
7	4900,39	-17,55	9671207,503796240000000; 3237513,732346660000000	86.8779351655;27.90906449
8	4898,04	-17,43	9671200,821062870000000; 3237510,479594330000000	86.8778751335;27.9090386686
9	4895,42	-18,48	9671193,162903240000000; 3237507,161736930000000	86.8778063391;27.9090123303
10	4892,63	-19,50	9671185,851249670000000; 3237503,150554580000000	86.8777406574;27.9089804882
11	4890,32	-20,51	9671180,530693680000000; 3237499,397672510000000	86.877692862;27.9089506965
12	4886,85	-21,11	9671173,95510362000000; 3237492,857262150000000	86.8776337925;27.9088987765
13	4882,26	-21,50	9671166,573387280000000; 3237483,511486040000000	86.8775674814;27.9088245864
14	4877,94	-20,63	9671160,49194450000000; 3237474,386754210000000	86.8775128509;27.908752151
15	4873,95	-19,88	9671156,227328950000000; 3237464,689666050000000	86.8774745412;27.908675172
16	4869,92	-19,33	9671151,529267710000000; 3237454,568171500000000	86.8774323378;27.9085948239
17	4866,79	-18,68	9671147,489902290000000; 3237446,639749800000000	86.8773960515;27.9085318851
18	4863,42	-18,06	9671141,773728550000000; 3237438,462966300000000	86.8773447023;27.9084669747
19	4860,71	-17,42	9671137,281017510000000; 3237431,453104410000000	86.8773043436;27.9084113278
20	4857,25	-13,41	9671132,281083410000000; 3237421,642796790000000	86.8772594284;27.9083334497
21	4854,46	-13,84	9671124,062472730000000; 3237413,323934180000000	86.8771855994;27.9082674113
22	4851,71	-14,18	9671116,167765310000000; 3237405,437348560000000	86.87711468;27.9082048045
23	4848,58	-14,53	9671106,961863550000000; 3237397,114772530000000	86.877031982;27.9081387365
24	4845,44	-14,41	9671097,635089570000000; 3237389,378848550000000	86.8769481981;27.9080773256
25	4842,45	-14,30	9671087,796368550000000; 3237383,175085000000000	86.8768598154;27.9080280776
26	4839,33	-16,15	9671076,910628450000000; 3237377,552871380000000	86.8767620271;27.9079834461
27	4835,58	-16,53	9671067,897286480000000; 3237368,297967690000000	86.8766810589;27.9079099768
28	4833,62	-17,02	9671062,484737120000000; 3237364,465365110000000	86.8766324371;27.907879552
29	4830,99	-16,80	9671056,24336270000000; 3237358,587862540000000	86.8765763699;27.9078328939
30	4828,76	-16,57	9671051,014205380000000; 3237353,362278340000000	86.8765293956;27.907791411
31	4826,48	-15,71	9671046,504707910000000; 3237347,181657030000000	86.8764888861;27.9077423465
32	4824,29	-15,69	9671043,44287630000000; 3237340,013438330000000	86.8764613812;27.9076854421
33	4821,64	-15,73	9671039,31331009000000; 3237331,533448750000000	86.8764242847;27.9076181242
34	4818,95	-15,48	9671034,188618110000000; 3237323,456107170000000	86.8763782488;27.9075540027
35	4816,66	-13,18	9671028,39091640000000; 3237317,570253010000000	86.8763261671;27.9075072781
36	4814,73	-12,83	9671021,940914370000000; 3237312,461227770000000	86.8762682258;27.9074667204
37	4812,02	-12,87	9671013,051105140000000; 3237304,578270150000000	86.8761883673;27.9074041418
38	4810,40	-11,78	9671007,924132170000000; 3237299,655761140000000	86.8761423109;27.9073650647
39	4809,15	-12,93	9671002,16624640000000; 3237298,012478240000000	86.8760905869;27.9073520196
40	4807,50	-12,18	9670997,02283392000000; 3237292,980358170000000	86.8760443829;27.9073120723
41	4805,89	-12,94	9670993,436633970000000; 3237286,435173090000000	86.8760121675;27.9072601135
42	4804,19	-10,87	9670988,478093340000000; 3237280,971499180000000	86.8759676242;27.9072167403
43	4802,78	-12,60	9670986,545540490000000; 3237273,883537430000000	86.8759502637;27.9071604727
44	4801,03	-12,81	9670982,26548436000000; 3237267,323547980000000	86.8759118153;27.9071083964
45	4799,34	-12,72	9670977,887295470000000; 3237261,325382030000000	86.8758724854;27.90706078
46	4797,57	-10,02	9670973,395400210000000; 3237254,863520600000000	86.875832134;27.9070094826
47	4796,32	-9,34	9670967,629204490000000; 3237250,833286750000000	86.8757803354;27.9069774887

48	4795,30	-10,13	9670962,055931250000000; 3237248,020316510000000	86.8757302698;27.9069551579
49	4793,88	-8,84	9670956,149480420000000; 3237242,730705030000000	86.8756772113;27.9069131664
50	4792,72	-5,14	9670949,30134652000000; 3237239,757332350000000	86.8756156934;27.9068895623
51	4791,95	-7,83	9670940,782311490000000; 3237240,664736880000000	86.8755391657;27.9068967657
52	4790,87	-9,87	9670933,179583410000000; 3237238,712738820000000	86.8754708692;27.9068812698
53	4789,52	-9,16	9670928,36281295000000; 3237232,618009980000000	86.8754275994;27.9068328868
54	4788,18	-9,06	9670921,415473230000000; 3237228,075720810000000	86.8753651904;27.9067968278
55	4786,67	-8,55	9670918,62953420000000; 3237219,022408340000000	86.8753401639;27.9067249581
56	4785,32	-2,88	9670910,73209090000000; 3237214,792971920000000	86.8752692199;27.9066913826
57	4784,79	-7,51	9670900,79337390000000; 3237218,221046830000000	86.8751799389;27.9067185964
58	4783,66	-6,26	9670892,56829489000000; 3237215,721072500000000	86.8751060518;27.9066987504
59	4782,66	-4,52	9670887,700485870000000; 3237208,011551850000000	86.8750623235;27.9066375482
60	4781,97	-2,15	9670880,38176873000000; 3237203,258745950000000	86.8749965783;27.906599818
61	4781,57	-3,79	9670875,43622510000000; 3237193,783258010000000	86.8749521518;27.9065245967
62	4781,22	-2,42	9670871,28736549000000; 3237190,622484980000000	86.8749148819;27.9064995048
63	4780,98	-3,41	9670868,55695503000000; 3237185,574923610000000	86.8748903542;27.9064594346
64	4780,64	-4,30	9670864,708026440000000; 3237181,317095460000000	86.8748557787;27.9064256337
65	4780,27	-2,80	9670860,511230770000000; 3237178,684546810000000	86.8748180783;27.9064047351
66	4780,01	-3,68	9670857,93768893000000; 3237174,227394100000000	86.8747949597;27.9063693519
67	4779,65	-3,57	9670854,11260656000000; 3237169,986708650000000	86.8747605984;27.906335687
68	4779,28	-4,43	9670850,491226610000000; 3237165,441780090000000	86.874728067;27.906299607
69	4778,83	-5,23	9670845,89031530000000; 3237161,880626260000000	86.8746867363;27.9062713366
70	4778,26	-5,08	9670839,622668570000000; 3237161,269538790000000	86.8746304331;27.9062664854
71	4777,75	-4,53	9670834,00195092000000; 3237161,880051000000000	86.8745799414;27.906271332
72	4777,33	-4,59	9670829,02837596000000; 3237163,778515980000000	86.874535263;27.9062864031
73	4776,98	-4,72	9670824,890655570000000; 3237165,141132060000000	86.8744980932;27.9062972202
74	4776,63	-5,03	9670820,72960996000000; 3237166,184840090000000	86.8744607139;27.9063055058
75	4776,31	-4,79	9670817,088281640000000; 3237166,429728030000000	86.8744280033;27.9063074498
76	4775,88	-4,66	9670813,01145305000000; 3237163,333962930000000	86.8743913805;27.906282874
77	4775,45	-3,49	9670809,15067950000000; 3237159,80428080000000	86.8743566986;27.9062548534
78	4775,21	-1,28	9670807,417201220000000; 3237156,314319490000000	86.8743411265;27.9062271482
79	4775,13	-2,88	9670807,424451940000000; 3237152,411149770000000	86.8743411916;27.9061961627
80	4774,95	-4,11	9670806,37289298000000; 3237149,119415260000000	86.8743317453;27.9061700311
81	4774,74	-0,63	9670804,76695230000000; 3237146,691185400000000	86.8743173189;27.9061507545
82	4774,72	-4,04	9670805,031123740000000; 3237144,617911890000000	86.874319692;27.9061342957
83	4774,42	-5,73	9670802,78563708000000; 3237140,945655560000000	86.8742995204;27.9061051433
84	4773,87	-5,72	9670797,607111470000000; 3237139,158328880000000	86.8742530009;27.9060909545
85	4773,29	-5,86	9670792,381889250000000; 3237136,761106360000000	86.874206062;27.9060719241
86	4772,46	-8,12	9670786,315583140000000; 3237131,380209350000000	86.8741515674;27.9060292075
87	4771,78	-8,35	9670782,226103740000000; 3237128,997251970000000	86.874114831;27.9060102902
88	4771,23	-7,41	9670778,465852540000000; 3237129,113294730000000	86.8740810521;27.9060112115
89	4770,60	-8,47	9670773,83780056000000; 3237130,562911000000000	86.8740394776;27.9060227193
90	4769,73	-8,67	9670767,96630828000000; 3237130,268115040000000	86.8739867331;27.9060203791
91	4769,11	-8,66	9670764,010048700000000; 3237129,553249660000000	86.8739511934;27.9060147041
92	4768,41	-8,21	9670759,88910283000000; 3237127,425851760000000	86.8739141743;27.9059978156
93	4767,57	-9,06	9670755,526315240000000; 3237123,625849510000000	86.8738749827;27.905967649
94	4766,79	-9,09	9670750,975144940000000; 3237121,796683970000000	86.8738340989;27.9059531281
95	4766,06	-8,98	9670746,520854710000000; 3237120,908186560000000	86.8737940853;27.9059460747

96	4765,39	-8,18	9670742,30210862000000; 3237120,465978060000000	86.8737561877;27.9059425642
97	4764,95	-8,91	9670739,24376398000000; 3237120,889722630000000	86.8737287141;27.9059459281
98	4764,51	-6,62	9670736,44805182000000; 3237120,699110580000000	86.8737035998;27.9059444149
99	4764,10	-1,27	9670733,191655150000000; 3237122,097265230000000	86.8736743471;27.9059555143
100	4764,02	-2,30	9670731,45451532000000; 3237125,062776900000000	86.8736587421;27.9059790562
101	4763,83	-2,65	9670728,602811340000000; 3237128,759665830000000	86.8736331248;27.9060084042
102	4763,61	-4,23	9670725,451915790000000; 3237132,393910770000000	86.8736048198;27.9060372548
103	4763,23	-5,59	9670721,400518480000000; 3237135,471423020000000	86.8735684255;27.9060616858
104	4762,63	-4,52	9670715,885397740000000; 3237138,137479780000000	86.8735188823;27.9060828505
105	4762,01	-4,57	9670709,214466220000000; 3237142,352965230000000	86.8734589563;27.9061163153
106	4761,51	-4,76	9670703,777587110000000; 3237145,533408440000000	86.873410116;27.9061415634
107	4761,06	-4,67	9670699,02776510000000; 3237148,022540510000000	86.8733674476;27.9061613235
108	4760,65	-0,92	9670694,239941170000000; 3237149,568390430000000	86.8733244379;27.9061735954
109	4760,58	-2,33	9670690,177039410000000; 3237150,051835860000000	86.8732879402;27.9061774332
110	4760,44	-3,48	9670686,809682750000000; 3237149,534203990000000	86.8732576907;27.906173324
111	4760,23	-4,14	9670683,473774010000000; 3237148,249600490000000	86.8732277237;27.9061631261
112	4759,93	-4,02	9670679,84742009000000; 3237146,388634760000000	86.8731951476;27.9061483527
113	4759,62	-3,58	9670675,755422270000000; 3237144,651759350000000	86.8731583886;27.9061345644
114	4759,34	-3,99	9670671,487144670000000; 3237143,414295870000000	86.873120046;27.9061247408
115	4759,05	-4,78	9670667,534581610000000; 3237142,078197440000000	86.8730845395;27.9061141341
116	4758,52	-5,66	9670661,76100360000000; 3237139,438013980000000	86.8730326746;27.9060931748
117	4758,17	-6,24	9670658,784679590000000; 3237137,613395890000000	86.8730059378;27.90607869
118	4757,71	-7,64	9670655,36990402000000; 3237135,150534560000000	86.8729752624;27.9060591384
119	4757,13	-8,15	9670652,859625470000000; 3237131,577974100000000	86.8729527122;27.9060307775
120	4756,45	-8,30	9670650,899728230000000; 3237127,273057760000000	86.8729351061;27.9059966026
121	4755,73	-8,25	9670648,381940790000000; 3237123,040477840000000	86.8729124884;27.905963002
122	4755,04	-7,78	9670645,290712710000000; 3237119,430238110000000	86.8728847195;27.9059343419
123	4754,43	-7,48	9670641,71923190000000; 3237116,751338090000000	86.8728526363;27.9059130753
124	4754,11	-7,85	9670639,625997440000000; 3237115,496024320000000	86.8728338325;27.9059031099
125	4753,78	-8,56	9670637,603595590000000; 3237114,155745500000000	86.8728156649;27.90589247
126	4753,37	-8,60	9670635,557924870000000; 3237112,407861550000000	86.8727972883;27.9058785943
127	4752,91	-8,97	9670633,161178460000000; 3237110,490294120000000	86.872775758;27.9058633715
128	4752,43	-8,99	9670630,870964450000000; 3237108,490385850000000	86.8727551847;27.9058474951
129	4752,06	-7,16	9670629,095574820000000; 3237107,046245970000000	86.8727392361;27.9058360307
130	4751,70	-6,64	9670627,10220150000000; 3237104,91165090000000	86.8727213293;27.9058190851
131	4751,28	-6,67	9670624,335424370000000; 3237102,577829540000000	86.8726964749;27.9058005578
132	4750,84	-6,65	9670621,445654480000000; 3237100,188792500000000	86.8726705157;27.9057815923
133	4750,42	-4,86	9670618,62388006000000; 3237098,064525580000000	86.8726451672;27.9057647286
134	4750,09	-5,96	9670614,69369890000000; 3237097,718626610000000	86.8726098618;27.9057619827
135	4749,62	-6,84	9670610,472735040000000; 3237096,208632090000000	86.8725719442;27.9057499955
136	4749,04	-6,78	9670608,12095390000000; 3237091,947391820000000	86.8725508178;27.9057161673
137	4748,61	-5,90	9670605,177965050000000; 3237089,851775470000000	86.8725243805;27.9056995311
138	4748,16	-4,77	9670601,088323860000000; 3237088,357283390000000	86.8724876426;27.9056876669
139	4747,76	-5,56	9670596,402962040000000; 3237087,506517890000000	86.8724455533;27.905680913
140	4747,34	-5,75	9670592,405379520000000; 3237085,841286620000000	86.8724096424;27.9056676934
141	4746,87	-5,88	9670588,306921610000000; 3237083,702797230000000	86.8723728254;27.9056507169
142	4746,41	-6,09	9670584,488393560000000; 3237081,267690350000000	86.8723385229;27.9056313856
143	4746,03	-5,47	9670581,86031696000000; 3237078,830522170000000	86.8723149145;27.9056120379

144	4745,66	-3,85	9670578,46612620000000; 3237077,103428050000000	86.872284424;27.9055983272
145	4745,38	-3,65	9670574,349555950000000; 3237076,906157150000000	86.8722474442;27.9055967611
146	4745,07	-4,07	9670569,48325268000000; 3237076,874026760000000	86.8722037295;27.9055965061
147	4744,83	-4,52	9670566,112555710000000; 3237076,520351860000000	86.87217345;27.9055936984
148	4744,61	-4,48	9670563,436411290000000; 3237075,908634660000000	86.8721494098;27.9055888422
149	4744,40	-4,65	9670560,698699310000000; 3237075,298461950000000	86.8721248165;27.9055839983
150	4744,18	-4,54	9670558,09501345000000; 3237074,556517490000000	86.8721014272;27.9055781083
151	4743,98	-4,46	9670555,673803140000000; 3237073,924173390000000	86.8720796771;27.9055730884
152	4743,78	-4,19	9670553,183155560000000; 3237073,314501050000000	86.8720573032;27.9055682484
153	4743,56	-4,59	9670550,261327980000000; 3237072,814031630000000	86.872031056;27.9055642754
154	4743,28	-3,46	9670547,005419790000000; 3237071,797784600000000	86.8720018076;27.9055562078
155	4743,05	-4,60	9670543,051024920000000; 3237071,830043100000000	86.8719662847;27.9055564639
156	4742,71	-3,68	9670539,073078670000000; 3237070,446861540000000	86.8719305502;27.9055454834
157	4742,47	-1,23	9670535,451275950000000; 3237070,240768340000000	86.871898015;27.9055438473
158	4742,40	-3,46	9670532,382969290000000; 3237071,906938560000000	86.8718704519;27.9055570744
159	4742,15	-4,66	9670528,31546610000000; 3237071,952031890000000	86.8718339129;27.9055574323
160	4741,83	-4,60	9670524,73833802000000; 3237070,382086210000000	86.871801779;27.9055449692
161	4741,51	-4,77	9670521,110386450000000; 3237068,770473190000000	86.8717691886;27.9055321752
162	4741,20	-4,79	9670518,025076270000000; 3237066,690748130000000	86.8717414728;27.9055156651
163	4740,94	-4,69	9670515,64851895000000; 3237064,573004400000000	86.8717201238;27.9054988532
164	4740,74	-4,66	9670513,779132770000000; 3237063,116001470000000	86.8717033308;27.9054872867
165	4740,48	-4,45	9670511,401022110000000; 3237060,882855600000000	86.8716819679;27.9054695586
166	4740,23	-3,85	9670508,815471230000000; 3237059,025731650000000	86.8716587415;27.9054548157
167	4740,04	-3,34	9670506,090032240000000; 3237058,104626330000000	86.8716342585;27.9054475034
168	4739,83	-3,31	9670502,652241280000000; 3237057,701266930000000	86.8716033763;27.9054443013
169	4739,63	-2,13	9670499,124665470000000; 3237057,343058930000000	86.8715716875;27.9054414576
170	4739,52	-0,37	9670496,303900540000000; 3237057,946140290000000	86.8715463482;27.9054462452
171	4739,50	-0,03	9670493,918524480000000; 3237059,511992630000000	86.87152492;27.9054586759
172	4739,50	-2,65	9670491,641758010000000; 3237061,180662620000000	86.8715044674;27.9054719228
173	4739,35	-2,82	9670488,413793610000000; 3237061,328163440000000	86.8714754701;27.9054730937
174	4739,20	-3,44	9670485,28433140000000; 3237061,335991110000000	86.8714473577;27.9054731559
175	4738,97	-4,42	9670481,59723186000000; 3237060,775765870000000	86.8714142359;27.9054687085
176	4738,77	-4,49	9670479,163791870000000; 3237059,642459280000000	86.8713923759;27.9054597116
177	4738,56	-4,63	9670476,758799510000000; 3237058,522400290000000	86.8713707715;27.9054508199
178	4738,31	-4,89	9670473,982531780000000; 3237057,152872860000000	86.8713458319;27.9054399478
179	4738,04	-4,51	9670471,29116540000000; 3237055,590201870000000	86.8713216549;27.9054275423
180	4737,88	-3,47	9670469,43563669000000; 3237054,880177180000000	86.8713049864;27.9054219057
181	4737,77	-2,94	9670467,577432220000000; 3237054,715274230000000	86.8712882939;27.9054205966
182	4737,69	-2,69	9670465,976474510000000; 3237054,758358980000000	86.8712739122;27.9054209387
183	4737,62	-2,90	9670464,434975780000000; 3237054,875141490000000	86.8712600647;27.9054218658
184	4737,52	-3,25	9670462,632932650000000; 3237054,934866450000000	86.8712438767;27.9054223399
185	4737,44	-3,52	9670461,114664150000000; 3237054,874952920000000	86.8712302379;27.9054218643
186	4737,33	-3,43	9670459,420775680000000; 3237054,715953500000000	86.8712150214;27.905420602
187	4737,26	-4,45	9670458,167160510000000; 3237054,623142710000000	86.87120376;27.9054198652
188	4737,13	-4,89	9670456,647014740000000; 3237054,153595300000000	86.8711901043;27.9054161377
189	4737,01	-4,38	9670455,35841496000000; 3237053,595912630000000	86.8711785286;27.9054117105
190	4736,86	-4,63	9670453,398453310000000; 3237053,060132090000000	86.871160922;27.9054074571
191	4736,71	-5,59	9670451,63080651000000; 3237052,475492450000000	86.8711450429;27.9054028159

1				
192	4736,51	-5,95	9670449,962572610000000; 3237051,366565610000000	86.8711300569;27.9053940126
193	4736,31	-6,30	9670448,52338503000000; 3237050,110463140000000	86.8711171285;27.9053840409
194	4736,11	-6,37	9670447,714301010000000; 3237048,448479680000000	86.8711098604;27.905370847
195	4735,91	-6,14	9670446,87136534000000; 3237046,864272360000000	86.8711022881;27.9053582706
196	4735,65	-6,00	9670445,069186180000000; 3237045,307882280000000	86.8710860989;27.9053459151
197	4735,34	-6,06	9670442,641555110000000; 3237043,614196490000000	86.8710642911;27.9053324695
198	4735,04	-5,84	9670440,308436580000000; 3237042,030388100000000	86.8710433323;27.9053198963
199	4734,77	-4,67	9670437,932595660000000; 3237040,746310250000000	86.8710219898;27.9053097025
200	4734,45	-3,08	9670434,11022204000000; 3237039,963785860000000	86.8709876528;27.9053034904
201	4734,29	-5,75	9670431,17550809000000; 3237040,204746120000000	86.8709612898;27.9053054032
202	4733,92	-6,78	9670427,814572710000000; 3237038,719224500000000	86.8709310981;27.9052936103
203	4733,55	-6,75	9670425,476869530000000; 3237036,746725390000000	86.8709100981;27.9052779514
204	4733,27	-6,87	9670423,56298964000000; 3237035,28403950000000	86.8708929054;27.9052663397
205	4732,85	-7,00	9670420,838727790000000; 3237033,166588840000000	86.870868433;27.90524953
206	4732,45	-6,18	9670418,22156205000000; 3237031,102199110000000	86.8708449226;27.9052331416
207	4732,17	-3,54	9670416,24021260000000; 3237029,534800050000000	86.8708271238;27.9052206986
208	4732,01	-3,43	9670413,909064130000000; 3237028,337740070000000	86.8708061827;27.9052111956
209	4731,84	-3,41	9670411,39454316000000; 3237027,160018410000000	86.8707835944;27.9052018462
210	4731,66	-3,72	9670408,595292220000000; 3237025,919770670000000	86.8707584483;27.9051920003
211	4731,47	-4,55	9670405,899751410000000; 3237024,612742550000000	86.8707342339;27.9051816243
212	4731,21	-5,90	9670403,183569840000000; 3237022,853772160000000	86.870709834;27.9051676605
213	4730,92	-6,24	9670401,300319590000000; 3237020,830007370000000	86.8706929165;27.9051515946
214	4730,68	-6,56	9670399,86695950000000; 3237019,106438410000000	86.8706800404;27.9051379118
215	4730,39	-6,43	9670398,37329696000000; 3237017,078626380000000	86.87066666226;27.9051218138
216	4730,11	-6,62	9670396,803075210000000; 3237015,224040200000000	86.870652517;27.9051070909
217	4729,80	-6,88	9670395,072348310000000; 3237013,099962690000000	86.8706369696;27.9050902287
218	4729,44	-7,01	9670393,30818086000000; 3237010,764277080000000	86.8706211219;27.9050716865
219	4729,09	-7,17	9670391,571492760000000; 3237008,453730220000000	86.8706055209;27.9050533439
220	4728,74	-7,19	9670389,91180226000000; 3237006,209002670000000	86.8705906117;27.9050355239
221	4728,42	-6,87	9670388,33956029000000; 3237004,200295490000000	86.870576488;27.9050195775
222	4728,12	-4,53	9670386,612930870000000; 3237002,447203230000000	86.8705609774;27.9050056603
223	4727,91	-2,70	9670384,364212540000000; 3237001,048593990000000	86.8705407768;27.9049945573
224	4727,77	-2,25	9670381,538995180000000; 3237000,258466860000000	86.8705153975;27.9049882847
225	4727,64	-2,57	9670378,365292910000000; 3236999,941730340000000	86.8704868876;27.9049857703
226	4727,52	-2,99	9670375,539743790000000; 3236999,403234920000000	86.8704615053;27.9049814954
227	4727,38	-3,14	9670373,116008760000000; 3236998,635820160000000	86.8704397325;27.9049754031
228	4727,23	-3,69	9670370,428827140000000; 3236997,701709160000000	86.8704155931;27.9049679876
229	4727,04	-3,95	9670367,853821760000000; 3236996,278008870000000	86.8703924615;27.9049566853
230	4726,85	-4,32	9670365,59667645000000; 3236994,841611940000000	86.8703721852;27.9049452823
231	4726,66	-4,33	9670363,673505310000000; 3236993,228730440000000	86.870354909;27.9049324782
232	4726,49	-4,05	9670361,89451246000000; 3236991,898899710000000	86.8703389281;27.9049219212
233	4726,33	-4,87	9670359,805825560000000; 3236990,811346930000000	86.8703201651;27.9049132875
234	4726,12	-5,06	9670358,244619170000000; 3236988,996544160000000	86.8703061405;27.9048988804
235	4725,92	-4,45	9670357,204633210000000; 3236986,942113440000000	86.8702967982;27.904882571
236	4725,77	-3,14	9670357,19497025000000; 3236984,989465320000000	86.8702967114;27.9048670696
237	4725,65	-2,92	9670357,993468520000000; 3236982,955456610000000	86.8703038844;27.9048509224
238	4725,54	-3,46	9670358,806243250000000; 3236981,080998200000000	86.8703111857;27.9048360417
239	4725,41	-4,67	9670359,37627312000000; 3236978,954324400000000	86.8703163063;27.9048191588

240	4725,24	-5,28	9670359,128922140000000; 3236976,905145650000000	86.8703140844;27.9048028911
241	4725,07	-5,15	9670357,83686256000000; 3236975,526450140000000	86.8703024776;27.9047919461
242	4724,89	-4,29	9670356,23967028000000; 3236974,326984120000000	86.8702881298;27.904782424
243	4724,70	-3,39	9670353,891448550000000; 3236973,651372970000000	86.8702670353;27.9047770605
244	4724,58	-3,60	9670351,833073440000000; 3236973,553744660000000	86.8702485446;27.9047762855
245	4724,41	-4,39	9670349,065642940000000; 3236973,303744730000000	86.8702236844;27.9047743008
246	4724,23	-5,22	9670346,803697910000000; 3236972,671457410000000	86.870203365;27.9047692813
247	4724,05	-5,92	9670345,08635790000000; 3236971,728700380000000	86.8701879379;27.9047617971
248	4723,83	-6,07	9670344,255999970000000; 3236969,794350850000000	86.8701804786;27.904746441
249	4723,63	-6,17	9670343,295633780000000; 3236968,127472950000000	86.8701718515;27.9047332082
250	4723,37	-6,24	9670341,913886510000000; 3236966,257687520000000	86.8701594391;27.9047183646
251	4723,15	-6,30	9670340,941247590000000; 3236964,445550100000000	86.8701507017;27.9047039787
252	4722,92	-6,44	9670339,561471750000000; 3236962,951936350000000	86.870138307;27.9046921214
253	4722,70	-6,24	9670338,345790110000000; 3236961,427536330000000	86.8701273863;27.9046800197
254	4722,48	-6,34	9670337,714983640000000; 3236959,497721380000000	86.8701217197;27.9046646996
255	4722,35	-6,38	9670337,326369560000000; 3236958,411054370000000	86.8701182287;27.9046560729
256	4722,22	-6,70	9670336,902122280000000; 3236957,244318140000000	86.8701144176;27.9046468106
257	4722,01	-6,77	9670335,86652966000000; 3236955,826535500000000	86.8701051147;27.9046355553
258	4721,85	-6,83	9670335,069188730000000; 3236954,787186960000000	86.8700979521;27.9046273042
259	4721,66	-6,89	9670334,159125330000000; 3236953,453677380000000	86.8700897769;27.9046167179
260	4721,50	-6,95	9670333,389924420000000; 3236952,330647580000000	86.870082867;27.9046078026
261	4721,32	-7,02	9670332,439765830000000; 3236951,234401700000000	86.8700743316;27.9045990999
262	4721,17	-6,91	9670331,690442370000000; 3236950,263986240000000	86.8700676003;27.9045913961
263	4720,98	-6,52	9670330,511979950000000; 3236949,276162000000000	86.870057014;27.904583554
264	4720,80	-5,17	9670329,148748190000000; 3236948,535647930000000	86.8700447679;27.9045776754
265	4720,69	-5,10	9670327,897623680000000; 3236948,344257270000000	86.8700335288;27.904576156
266	4720,52	-3,77	9670326,04092045000000; 3236948,094552780000000	86.8700168498;27.9045741736
267	4720,43	-0,85	9670324,654459210000000; 3236948,230663320000000	86.870004395;27.9045752542
268	4720,41	-1,91	9670323,40765502000000; 3236948,450151120000000	86.8699931948;27.9045769966
269	4720,36	-3,85	9670321,986410160000000; 3236948,067399520000000	86.8699804275;27.9045739581
270	4720,28	-4,54	9670321,031856570000000; 3236947,386886960000000	86.8699718526;27.9045685557
271	4720,16	-2,07	9670319,934977530000000; 3236946,338300690000000	86.8699619992;27.9045602313
272	4720,11	-0,79	9670318,386539930000000; 3236945,912230530000000	86.8699480893;27.9045568489
273	4720,08	-0,88	9670316,782183540000000; 3236945,824861580000000	86.8699336771;27.9045561553
274	4720,06	-2,46	9670315,03244903000000; 3236945,706338880000000	86.869917959;27.9045552144
275	4719,99	-4,36	9670313,57114965000000; 3236945,220791640000000	86.8699048319;27.9045513598
276	4719,88	-4,47	9670312,465381130000000; 3236944,356691190000000	86.8698948986;27.9045445
277	4719,80	-3,36	9670311,59688692000000; 3236943,66130096000000	86.8698870968;27.9045389795
278	4719,72	-2,13	9670310,424657120000000; 3236943,090879020000000	86.8698765665;27.9045344511
279	4719,67	-2,44	9670309,062596970000000; 3236942,755383130000000	86.8698643309;27.9045317878
280	4719,61	-2,11	9670307,797264880000000; 3236942,382137060000000	86.8698529642;27.9045288247
281	4719,56	-2,36	9670306,479531650000000; 3236942,073357390000000	86.8698411268;27.9045263734
282	4719,51	-3,00	9670305,186981350000000; 3236941,722817860000000	86.8698295157;27.9045235906
283	4719,44	-4,08	9670304,006991560000000; 3236941,275891900000000	86.8698189156;27.9045200426
284	4719,36	-4,58	9670303,030098130000000; 3236940,689322000000000	86.86981014;27.904515386
285	4719,27	-4,69	9670302,083044410000000; 3236940,003639970000000	86.8698016325;27.9045099426
286	4719,19	-5,00	9670301,342664320000000; 3236939,452539200000000	86.8697949816;27.9045055676
287	4719,08	-4,75	9670300,391462190000000; 3236938,662938820000000	86.8697864368;27.9044992992

288	4719,00	-5,65	9670299,64424019000000; 3236938,111152130000000	86.8697797244;27.9044949187
289	4718,90	-6,21	9670298,928631220000000; 3236937,347178490000000	86.8697732959;27.9044888538
290	4718,79	-5,88	9670298,35449628000000; 3236936,531776510000000	86.8697681384;27.9044823806
291	4718,69	-6,34	9670297,69128600000000; 3236935,769591470000000	86.8697621807;27.9044763298
292	4718,55	-6,54	9670297,004154170000000; 3236934,764089480000000	86.8697560081;27.9044683475
293	4718,41	-5,71	9670296,330526780000000; 3236933,667665010000000	86.8697499568;27.9044596433
294	4718,32	-4,23	9670295,703022590000000; 3236933,045264360000000	86.8697443198;27.9044547023
295	4718,25	-6,33	9670294,957087990000000; 3236932,649349940000000	86.869737619;27.9044515593
296	4718,16	-7,15	9670294,414518790000000; 3236931,935401340000000	86.869732745;27.9044458915
297	4718,02	-7,27	9670294,076302410000000; 3236930,945193770000000	86.8697297067;27.9044380305
298	4717,89	-7,27	9670293,853829910000000; 3236929,930749840000000	86.8697277082;27.9044299772
299	4717,77	-7,14	9670293,624885110000000; 3236929,019149570000000	86.8697256516;27.9044227403
300	4717,67	-5,32	9670293,340208450000000; 3236928,302019190000000	86.8697230943;27.9044170472
301	4717,58	-5,28	9670292,564135130000000; 3236927,715601350000000	86.8697161227;27.9044123918
302	4717,48	-5,91	9670291,680613740000000; 3236927,069281050000000	86.8697081859;27.9044072609
303	4717,39	-5,79	9670291,044577570000000; 3236926,471794060000000	86.8697024723;27.9044025176
304	4717,29	-6,68	9670290,269896830000000; 3236925,795836280000000	86.8696955132;27.9043971514
305	4717,18	-5,94	9670289,699428170000000; 3236925,030723680000000	86.8696903886;27.9043910775
306	4717,09	-4,78	9670289,100428330000000; 3236924,490770930000000	86.8696850077;27.9043867909
307	4717,01	-4,62	9670288,245264530000000; 3236924,017225560000000	86.8696773256;27.9043830316
308	4716,94	-6,87	9670287,493288730000000; 3236923,630866230000000	86.8696705705;27.9043799644
309	4716,81	-7,63	9670286,85367088000000; 3236922,748904260000000	86.8696648247;27.9043729628
310	4716,65	-7,26	9670286,621860510000000; 3236921,591540270000000	86.8696627423;27.9043637749
311	4716,52	-6,36	9670286,09423045000000; 3236920,659218730000000	86.8696580026;27.9043563735
312	4716,37	-7,43	9670285,180238260000000; 3236919,764032720000000	86.869649792;27.9043492669
313	4716,25	-7,53	9670284,758591850000000; 3236918,950570900000000	86.8696460043;27.9043428091
314	4716,07	-7,72	9670284,14180303000000; 3236917,663797290000000	86.8696404636;27.9043325938
315	4715,85	-7,79	9670283,59921085000000; 3236916,174739180000000	86.8696355894;27.9043207726
316	4715,67	-7,78	9670283,42485180000000; 3236914,848690610000000	86.8696340231;27.9043102455
317	4715,51	-7,41	9670283,027734360000000; 3236913,749024520000000	86.8696304558;27.9043015156
318	4715,39	-7,02	9670282,532500780000000; 3236912,978654290000000	86.869626007;27.9042953999
319	4715,27	-7,19	9670281,899136220000000; 3236912,240088220000000	86.8696203174;27.9042895366
320	4715,10	-7,63	9670281,075849770000000; 3236911,203984260000000	86.8696129217;27.9042813113
321	4714,95	-7,83	9670280,486813730000000; 3236910,208197580000000	86.8696076303;27.9042734061
322	4714,78	-7,96	9670279,966435320000000; 3236909,138426860000000	86.8696029556;27.9042649135
323	4714,64	-7,70	9670279,571793370000000; 3236908,154756880000000	86.8695994105;27.9042571045
324	4714,49	-7,21	9670279,02108163000000; 3236907,257480070000000	86.8695944634;27.9042499813
325	4714,36	-6,95	9670278,315775830000000; 3236906,464559380000000	86.8695881275;27.9042436865
326	4714,23	-6,52	9670277,552525850000000; 3236905,729415730000000	86.8695812711;27.9042378504
327	4714,12	-6,95	9670276,763383680000000; 3236905,113148810000000	86.8695741821;27.9042329581
328	4714,01	-7,94	9670276,100819450000000; 3236904,499970210000000	86.8695682302;27.9042280903
329	4713,86	-8,23	9670275,568731680000000; 3236903,598150830000000	86.8695634504;27.904220931
330	4713,70	-8,22	9670275,191634450000000; 3236902,546603520000000	86.8695600629;27.9042125831
331	4713,56	-8,16	9670275,045273560000000; 3236901,637659300000000	86.8695587481;27.9042053672
332	4713,45	-8,28	9670274,96431329000000; 3236900,845101760000000	86.8695580208;27.9041990754
333	4713,29	-8,33	9670274,740146730000000; 3236899,763900980000000	86.8695560071;27.9041904921
334	4713,13	-8,18	9670274,42986400000000; 3236898,69728620000000	86.8695532198;27.9041820245
335	4712,94	-7,24	9670273,812799480000000; 3236897,572971870000000	86.8695476766;27.9041730989

336	4712,79	-4,99	9670272,940624270000000; 3236896,717445050000000	86.8695398417;27.9041663072
337	4712,68	-4,76	9670272,272437140000000; 3236895,723182430000000	86.8695338393;27.904158414
338	4712,56	-4,21	9670271,211562070000000; 3236894,757404010000000	86.8695243093;27.904150747
339	4712,45	-3,66	9670269,84148704000000; 3236894,035779850000000	86.8695120017;27.9041450182
340	4712,35	-1,42	9670268,297082170000000; 3236893,549328120000000	86.8694981281;27.9041411565
341	4712,31	-0,74	9670266,991892670000000; 3236893,851005100000000	86.8694864033;27.9041435514
342	4712,30	-2,30	9670265,867453720000000; 3236894,282439190000000	86.8694763023;27.9041469764
343	4712,22	-2,05	9670264,02747619000000; 3236894,354854110000000	86.8694597735;27.9041475513
344	4712,17	-3,10	9670262,499486130000000; 3236894,499478190000000	86.8694460474;27.9041486994
345	4712,07	-3,43	9670260,631684830000000; 3236894,211357080000000	86.8694292686;27.9041464121
346	4711,96	-3,43	9670258,98048995000000; 3236893,808908470000000	86.8694144357;27.9041432172
347	4711,85	-3,18	9670257,05736872000000; 3236893,340708090000000	86.86939716;27.9041395003
348	4711,74	-3,12	9670255,149915550000000; 3236893,007973370000000	86.869380025;27.9041368588
349	4711,65	-2,59	9670253,487819410000000; 3236892,742766120000000	86.8693650942;27.9041347534
350	4711,54	-2,47	9670251,18540382000000; 3236892,67688300000000	86.8693444112;27.9041342304
351	4711,43	-2,95	9670248,53073908000000; 3236892,677285780000000	86.869320564;27.9041342336
352	4711,34	-3,43	9670246,822698890000000; 3236892,479162230000000	86.8693052204;27.9041326607
353	4711,26	-3,33	9670245,474785170000000; 3236892,149789610000000	86.8692931119;27.9041300459
354	4711,16	-2,66	9670243,956182970000000; 3236891,821757300000000	86.86927947;27.9041274418
355	4711,10	-3,13	9670242,49161020000000; 3236891,756476760000000	86.8692663136;27.9041269235
356	4710,98	-2,91	9670240,45561236000000; 3236891,430085940000000	86.8692480239;27.9041243324
357	4710,89	-3,22	9670238,594605750000000; 3236891,234965810000000	86.8692313062;27.9041227834
358	4710,78	-2,92	9670236,759849790000000; 3236890,897013030000000	86.8692148243;27.9041201005
359	4710,69	-4,04	9670234,84666810000000; 3236890,689852790000000	86.8691976379;27.9041184559
360	4710,56	-4,69	9670233,17131008000000; 3236889,933720110000000	86.8691825879;27.9041124532
361	4710,40	-2,19	9670231,69533370000000; 3236888,692084600000000	86.869169329;27.9041025963
362	4710,34	-2,75	9670230,245185110000000; 3236887,996704170000000	86.869156302;27.9040970758
363	4710,25	-4,02	9670228,908737570000000; 3236886,857402400000000	86.8691442965;27.9040880313
364	4710,15	-4,25	9670228,26670746000000; 3236885,482833020000000	86.8691385291;27.904077119
365	4710,03	-4,43	9670227,77952204000000; 3236884,066760450000000	86.8691341526;27.9040658772
366	4709,94	-4,29	9670227,536703550000000; 3236882,934164040000000	86.8691319713;27.9040568858
367	4709,81	-4,14	9670226,922418510000000; 3236881,284342260000000	86.8691264531;27.9040437884
368	4709,70	-4,05	9670226,204253910000000; 3236879,891326070000000	86.8691200017;27.9040327296
369	4709,59	-3,66	9670225,38798134000000; 3236878,552683260000000	86.869112669;27.9040221026
370	4709,47	-3,71	9670224,12635836000000; 3236877,14330950000000	86.8691013357;27.9040109139
371	4709,34	-4,03	9670222,84695636000000; 3236875,752281490000000	86.8690898426;27.903999871
372	4709,22	-4,08	9670221,760873440000000; 3236874,348016810000000	86.8690800862;27.9039887229
373	4709,10	-3,72	9670220,72028208000000; 3236873,036821650000000	86.8690707384;27.9039783137
374	4708,97	-3,62	9670219,315430240000000; 3236871,732569650000000	86.8690581184;27.9039679597
375	4708,85	-4,13	9670217,758148820000000; 3236870,440616330000000	86.8690441291;27.9039577032
376	4708,73	-3,86	9670216,656132590000000; 3236869,247093520000000	86.8690342295;27.9039482282
377	4708,60	-3,85	9670215,202618170000000; 3236867,988908320000000	86.8690211724;27.9039382398
378	4708,48	-3,66	9670213,85501626000000; 3236866,885840990000000	86.8690090667;27.9039294829
379	4708,36	-4,33	9670212,289225570000000; 3236865,788843190000000	86.8689950009;27.9039207741
380	4708,22	-4,89	9670211,024669220000000; 3236864,544572800000000	86.8689836412;27.9039108962
381	4708,07	-4,70	9670209,972013870000000; 3236863,058167560000000	86.8689741851;27.9038990961
382	4707,93	-4,92	9670208,817764510000000; 3236861,753664170000000	86.8689638163;27.90388874
383	4707,76	-4,63	9670207,611923260000000; 3236860,241652050000000	86.868952984;27.9038767365

384	4707,60	-5,12	9670206,182860770000000; 3236858,872989080000000	86.8689401465;27.9038658711
385	4707,42	-5,45	9670204,943072130000000; 3236857,298721260000000	86.8689290093;27.9038533735
386	4707,27	-5,66	9670204,13009390000000; 3236855,964557000000000	86.8689217062;27.9038427819
387	4707,11	-5,59	9670203,413313870000000; 3236854,495369350000000	86.8689152672;27.9038311184
388	4707,03	-5,86	9670202,99581749000000; 3236853,79281400000000	86.8689115168;27.903825541
389	4706,89	-5,88	9670202,734476780000000; 3236852,477169370000000	86.8689091691;27.9038150965
390	4706,61	-5,81	9670201,709755250000000; 3236849,909701600000000	86.8688999639;27.9037947141
391	4706,29	-5,64	9670200,095071480000000; 3236847,207682490000000	86.868885459;27.9037732635
392	4706,01	-5,55	9670198,313965330000000; 3236845,047600810000000	86.868869459;27.9037561152
393	4705,68	-4,39	9670195,961046830000000; 3236842,669276210000000	86.8688483224;27.9037372343
394	4705,41	-4,08	9670192,734271210000000; 3236841,138045800000000	86.8688193358;27.9037250783
395	4705,21	-4,20	9670190,06587810000000; 3236840,140232070000000	86.8687953652;27.9037171569
396	4704,91	-3,97	9670186,27958376000000; 3236838,710971850000000	86.8687613523;27.9037058104
397	4704,70	-6,41	9670183,412804770000000; 3236837,823721670000000	86.8687355996;27.9036987668
398	4704,31	-6,81	9670181,065045320000000; 3236835,234308710000000	86.8687145093;27.9036782101
399	4703,90	-7,19	9670179,049442580000000; 3236832,510129820000000	86.8686964029;27.9036565836
400	4703,43	-7,28	9670177,257373310000000; 3236829,223590610000000	86.8686803044;27.9036304926
401	4703,00	-6,84	9670176,579446610000000; 3236825,907120150000000	86.8686742145;27.9036041641
402	4702,59	-7,44	9670176,661735680000000; 3236822,503736420000000	86.8686749537;27.9035771455
403	4702,16	-7,28	9670175,829588670000000; 3236819,282015740000000	86.8686674784;27.9035515691
404	4701,75	-6,80	9670173,745893140000000; 3236816,906280380000000	86.8686487603;27.9035327087
405	4701,36	-6,76	9670171,13120710000000; 3236814,952365690000000	86.8686252721;27.9035171971
406	4701,02	-6,51	9670168,76099109000000; 3236813,335751290000000	86.8686039801;27.9035043632
407	4700,67	-7,34	9670166,050219710000000; 3236811,805991570000000	86.8685796289;27.9034922189
408	4700,28	-8,31	9670163,683747770000000; 3236809,891682170000000	86.8685583705;27.9034770216
409	4699,75	-8,45	9670162,297846820000000; 3236806,554069540000000	86.8685459207;27.9034505252
410	4699,18	-8,42	9670160,52160760000000; 3236803,133723990000000	86.8685299645;27.9034233719
411	4698,58	-8,62	9670159,440087270000000; 3236799,230519340000000	86.868520249;27.9033923853
412	4698,03	-8,64	9670157,302599290000000; 3236796,322266300000000	86.8685010476;27.9033692974
413	4697,46	-5,45	9670154,808999750000000; 3236793,481788780000000	86.8684786473;27.9033467476
414	4697,13	-1,80	9670151,417571640000000; 3236792,943367820000000	86.8684481815;27.9033424732
415	4697,05	-1,79	9670149,020386070000000; 3236793,638484120000000	86.8684266473;27.9033479915
416	4696,93	-7,20	9670145,205186670000000; 3236794,713699700000000	86.8683923747;27.9033565274
417	4696,57	-8,79	9670142,643459420000000; 3236793,605496340000000	86.8683693624;27.9033477297
418	4696,20	-6,60	9670140,804739630000000; 3236792,004192610000000	86.8683528449;27.9033350173
419	4695,88	-5,43	9670139,557648180000000; 3236789,598463640000000	86.868341642;27.9033159188
420	4695,60	-4,46	9670139,163155250000000; 3236786,688161020000000	86.8683380983;27.9032928146
421	4695,34	-4,55	9670139,480180180000000; 3236783,361388260000000	86.8683409461;27.9032664041
422	4695,10	-4,77	9670139,702635250000000; 3236780,361938790000000	86.8683429445;27.9032425922
423	4694,84	-5,07	9670139,784926550000000; 3236777,171886470000000	86.8683436837;27.9032172672
424	4694,52	-4,64	9670139,64089160000000; 3236773,636795320000000	86.8683423898;27.9031892029
425	4694,28	-6,05	9670139,801855870000000; 3236770,601577970000000	86.8683438358;27.903165107
426	4693,98	-4,09	9670138,948106680000000; 3236767,944096230000000	86.8683361664;27.9031440099
427	4693,75	-1,59	9670136,791361180000000; 3236765,549922800000000	86.8683167921;27.9031250031
428	4693,66	-2,02	9670133,85894293000000; 3236764,568203740000000	86.8682904497;27.9031172094
429	4693,58	-3,96	9670131,74626769000000; 3236763,664861710000000	86.8682714712;27.903110038
430	4693,38	-4,84	9670129,881819430000000; 3236761,417450240000000	86.8682547226;27.9030921963
431	4693,13	-3,10	9670128,859568380000000; 3236758,690413280000000	86.8682455396;27.903070547

432	4693,05	-2,97	9670127,61981286000000; 3236757,822134470000000	86.8682344026;27.9030636539
433	4692,95	-2,24	9670125,89828010000000; 3236756,713362060000000	86.8682189379;27.9030548516
434	4692,88	-1,41	9670124,301831130000000; 3236756,035902110000000	86.8682045967;27.9030494734
435	4692,84	-1,21	9670122,599832330000000; 3236755,642748270000000	86.8681893074;27.9030463522
436	4692,79	-1,75	9670120,620632370000000; 3236755,273209350000000	86.8681715279;27.9030434185
437	4692,74	-3,43	9670118,89227532000000; 3236754,765464030000000	86.8681560018;27.9030393877
438	4692,62	-4,51	9670117,315304910000000; 3236753,594207460000000	86.8681418357;27.9030300893
439	4692,45	-3,11	9670116,007120710000000; 3236751,859670330000000	86.8681300841;27.9030163192
440	4692,32	-3,26	9670114,018861540000000; 3236750,662898150000000	86.8681122232;27.9030068183
441	4692,24	-3,10	9670112,76151099000000; 3236749,860320250000000	86.8681009282;27.9030004468
442	4692,17	-4,38	9670111,700718280000000; 3236749,245488690000000	86.868091399;27.9029955658
443	4691,99	-4,96	9670110,05903540000000; 3236747,443490970000000	86.8680766515;27.9029812601
444	4691,77	-5,62	9670108,758961250000000; 3236745,386845380000000	86.8680649727;27.9029649329
445	4691,53	-5,25	9670108,651384340000000; 3236742,937975840000000	86.8680640063;27.9029454918
446	4691,29	-2,79	9670109,344555940000000; 3236740,383647560000000	86.8680702332;27.9029252136
447	4691,16	-4,50	9670111,573534310000000; 3236738,756776170000000	86.8680902565;27.9029122982
448	4691,03	-5,54	9670112,35909465000000; 3236737,362650730000000	86.8680973133;27.9029012305
449	4690,84	0,00	9670111,970137260000000; 3236735,454106340000000	86.8680938192;27.902886079

Tabelle 3: Längsprofildaten des Lhotse Nup Gletscherbaches.

Nr.	Profilhöhe über dem Meer (m)	Gefälle in Grad	WGS 84/Pseudo Mercator (EPSG: 3857) in Ost;Nord	WGS 84 (EPSG: 4326) in Ost;Nord
1	4602,67	-5,87	9669359,348294910000000;3236305,935158950000000	86.8613329022;27.8994761645
2	4601,32	-6,01	9669346,24443796000000;3236304,57605290000000	86.8612151882;27.8994653745
3	4599,95	-6,07	9669333,420916710000000;3236302,892163850000000	86.8610999926;27.8994520061
4	4598,92	-6,39	9669323,75673579000000;3236301,621935750000000	86.8610131778;27.8994419217
5	4597,64	-7,53	9669312,55376140000000;3236299,298918240000000	86.8609125397;27.8994234791
6	4596,02	-8,94	9669301,67475463000000;3236293,797878890000000	86.8608148119;27.8993798061
7	4594,03	-8,28	9669292,738990840000000;3236284,791897680000000	86.8607345406;27.8993083072
8	4592,75	-6,69	9669284,023921140000000;3236283,824927750000000	86.8606562518;27.8993006304
9	4591,94	-8,44	9669277,25421722000000;3236285,10657430000000	86.8605954385;27.8993108054
10	4590,78	-9,39	9669269,51903473000000;3236283,970846420000000	86.8605259522;27.8993017888
11	4589,76	-8,63	9669264,67036978000000;3236280,14069120000000	86.8604823959;27.899271381
12	4588,38	-6,00	9669259,99272690000000;3236272,304272040000000	86.8604403759;27.8992091672
13	4587,70	-3,13	9669258,85320491000000;3236265,928277440000000	86.8604301394;27.8991585478
14	4587,29	-0,75	9669256,70468623000000;3236258,892819400000000	86.8604108389;27.8991026929
15	4587,16	0,79	9669256,79275091000000;3236248,98913908000000	86.86041163;27.8990240668
16	4587,26	0,81	9669258,15856889000000;3236242,113865420000000	86.8604238994;27.8989694835
17	4587,36	-4,56	9669259,48249356000000;3236235,501305060000000	86.8604357924;27.8989169859
18	4586,77	-6,55	9669256,03458248000000;3236228,972602330000000	86.8604048193;27.898865154
19	4585,70	-5,45	9669249,32593950000000;3236222,605767900000000	86.8603445545;27.8988146071
20	4585,08	-4,94	9669245,598493310000000;3236217,252096860000000	86.8603110703;27.8987721038
21	4584,35	-7,57	9669241,37538014000000;3236209,932784340000000	86.8602731334;27.8987139951
22	4583,25	-8,37	9669234,34257580000000;3236205,577313190000000	86.8602099567;27.8986794166
23	4581,86	-8,31	9669225,020754210000000;3236203,730487050000000	86.8601262173;27.8986647545
24	4580,90	-7,40	9669218,741853440000000;3236201,958407200000000	86.860069813;27.8986506858

25	4580,01	-4,39	9669213,186865370000000;3236197,928557630000000	86.8600199117;27.8986186924
26	4579,39	-3,97	9669208,982248880000000;3236191,058665810000000	86.859982141;27.8985641516
27	4578,86	-4,65	9669203,650089480000000;3236185,588631070000000	86.8599342414;27.8985207244
28	4578,18	-4,60	9669195,62168570000000;3236182,996926500000000	86.859862121;27.8985001486
29	4577,37	-3,96	9669185,99576726000000;3236180,177944680000000	86.8597756499;27.8984777683
30	4576,71	-3,93	9669178,60434360000000;3236174,170495330000000	86.8597092516;27.8984300745
31	4576,10	-4,42	9669171,54935008000000;3236168,821838820000000	86.8596458755;27.8983876109
32	4575,23	-4,28	9669160,389826410000000;3236167,221424970000000	86.8595456278;27.898374905
33	4574,37	-3,94	9669148,98357081000000;3236168,815498140000000	86.8594431637;27.8983875606
34	4573,71	-4,00	9669140,28874859000000;3236172,550956330000000	86.8593650568;27.8984172168
35	4573,01	-4,26	9669131,070729740000000;3236176,611088020000000	86.8592822499;27.8984494507
36	4572,17	-0,76	9669120,352353570000000;3236180,116253410000000	86.8591859651;27.8984772786
37	4572,00	-0,17	9669107,950353810000000;3236182,903380190000000	86.859074556;27.8984994059
38	4571,96	-0,97	9669094,311679210000000;3236184,585486080000000	86.8589520377;27.8985127603
39	4571,66	-1,99	9669077,88253602000000;3236191,131147130000000	86.8588044522;27.898564727
40	4571,18	-3,07	9669065,92746759000000;3236198,262224000000000	86.858697058;27.8986213414
41	4570,48	-3,84	9669056,014551790000000;3236206,849164600000000	86.8586080088;27.898689514
42	4569,43	-4,30	9669043,931250310000000;3236216,696193230000000	86.8584994627;27.8987676905
43	4568,32	-3,70	9669031,27679203000000;3236224,166664300000000	86.8583857857;27.8988269992
44	4567,37	-3,56	9669016,591767840000000;3236225,301400280000000	86.8582538679;27.898836008
45	4566,36	-3,66	9669000,318450890000000;3236224,693140240000000	86.8581076822;27.8988311789
46	4565,09	-4,19	9668980,50883332000000;3236224,425543470000000	86.8579297294;27.8988290545
47	4563,92	-7,98	9668964,585251710000000;3236225,005153380000000	86.8577866854;27.898833656
48	4561,58	-12,74	9668948,85878436000000;3236230,634467770000000	86.8576454122;27.8988783477
49	4557,38	-11,07	9668935,01910028000000;3236243,031437090000000	86.8575210882;27.8989767682
50	4554,76	-3,33	9668922,86360726000000;3236248,659881680000000	86.8574118935;27.8990214528
51	4553,73	-1,73	9668905,398533880000000;3236245,791218610000000	86.8572550021;27.8989986783
52	4553,33	-7,06	9668892,696343710000000;3236241,735903320000000	86.8571408964;27.8989664829
53	4551,75	-11,38	9668880,004535370000000;3236243,057870920000000	86.8570268839;27.8989769781
54	4549,67	-11,14	9668872,191872120000000;3236249,849885330000000	86.8569567016;27.8990309004
55	4546,89	-7,79	9668862,984487390000000;3236260,492869510000000	86.8568739902;27.8991153958
56	4544,76	-3,13	9668848,45782754000000;3236266,272667580000000	86.856743495;27.899161282
57	4544,01	-2,94	9668835,81097905000000;3236271,331187630000000	86.8566298864;27.8992014419
58	4543,35	-3,56	9668823,089204910000000;3236273,382587170000000	86.8565156048;27.899217728
59	4542,60	-3,54	9668811,03577249000000;3236272,610197880000000	86.856407327;27.899211596
60	4541,93	-2,49	9668800,416461730000000;3236270,524613050000000	86.8563119321;27.8991950384
61	4541,41	-3,74	9668789,37100080000000;3236265,922722070000000	86.856212709;27.8991585037
62	4540,78	-2,51	9668779,688814910000000;3236266,775105150000000	86.8561257325;27.8991652708
63	4540,29	-2,69	9668772,93218992000000;3236275,563226490000000	86.8560650367;27.8992350403
64	4539,87	-3,75	9668768,244333810000000;3236283,133434010000000	86.8560229249;27.8992951406
65	4539,07	-5,04	9668760,063837450000000;3236292,310690250000000	86.8559494383;27.8993679993
66	4537,91	-6,07	9668747,997555070000000;3236297,532719040000000	86.855841045;27.8994094572
67	4536,42	-5,72	9668734,29358530000000;3236300,160197380000000	86.8557179402;27.8994303169
68	4534,96	-5,88	9668719,71577072000000;3236298,79931405000000	86.8555869854;27.8994195127
69	4533,24	-5,05	9668703,13540762000000;3236300,046763170000000	86.8554380415;27.8994294163
70	4531,60	-4,99	9668686,123171070000000;3236307,655201030000000	86.855285218;27.89948982
71	4530,24	-5,39	9668671,02758298000000;3236311,343926760000000	86.855149612;27.8995191049
72	4528,96	-5,24	9668657,528421310000000;3236310,756545020000000	86.855028347;27.8995144417

	73	4527,89	-2,96	9668648,05051480000000;3236303,804331210000000	86.8549432055;27.8994592478
	74	4527,22	-5,18	9668646,365655720000000;3236291,000273150000000	86.8549280702;27.8993575958
	75	4525,85	-5,71	9668636,72805843000000;3236279,408457150000000	86.8548414941;27.8992655678
	76	4523,68	-2,65	9668619,478626550000000;3236266,229991500000000	86.8546865399;27.8991609431
	77	4522,95	-4,82	9668605,959258270000000;3236258,107849930000000	86.8545650933;27.8990964609
	78	4521,41	-3,99	9668588,924065250000000;3236251,422275950000000	86.8544120636;27.8990433837
	79	4520,04	-5,33	9668574,41217916000000;3236238,29387453000000	86.8542817011;27.8989391563
	80	4517,96	-3,77	9668555,14941529000000;3236227,00300418000000	86.8541086607;27.8988495172
	81	4516,78	-3,24	9668537,636662440000000;3236223,383540870000000	86.853951341;27.8988207819
	82	4515,94	-3,24	9668523,60801039000000;3236228,489722190000000	86.8538253195;27.8988613203
	83	4515,16	-4,28	9668510,08384199000000;3236231,093567100000000	86.8537038298;27.8988819925
	84	4514,09	-4,71	9668497,60392967000000;3236224,264300610000000	86.8535917208;27.8988277744
	85	4512,72	-3,19	9668487,24976924000000;3236211,236984140000000	86.8534987078;27.8987243493
	86	4511,71	-6,54	9668469,869529510000000;3236216,502604120000000	86.8533425785;27.8987661535
	87	4509,87	-7,93	9668453,97696852000000;3236219,009479650000000	86.8531998132;27.8987860559
	88	4508,13	-8,09	9668441,756453990000000;3236216,736135180000000	86.8530900344;27.8987680076
	89	4505,89	-7,23	9668427,68327959000000;3236209,518579080000000	86.8529636129;27.8987107067
	90	4504,13	-5,60	9668418,582681610000000;3236199,079988740000000	86.8528818609;27.8986278337
	91	4502,48	-4,69	9668412,33502445000000;3236183,482354900000000	86.8528257372;27.8985040024
	92	4501,46	-4,79	9668409,39190056000000;3236171,400126880000000	86.8527992987;27.8984080802
ſ	93	4500,08	-2,88	9668401,85501613000000;3236156,652397480000000	86.8527315937;27.8982909962
	94	4499,15	-7,07	9668394,27914458000000;3236139,976905730000000	86.8526635385;27.8981586073
ľ	95	4496,53	-4,81	9668373,74356628000000;3236134,831591050000000	86.8524790643;27.8981177579
	96	4495,09	-5,01	9668359,36240305000000;3236125,512126330000000	86.8523498761;27.8980437693
	97	4492,48	-5,16	9668334,736485710000000;3236108,860136220000000	86.8521286577;27.8979115667
ľ	98	4489,81	-5,59	9668311,59027812000000;3236090,584517360000000	86.8519207318;27.8977664736
ľ	99	4487,30	-5,55	9668290,69133263000000;3236075,693819880000000	86.8517329933;27.8976482538
	100	4485,07	-4,26	9668268,356471330000000;3236070,237270520000000	86.8515323559;27.8976049333
	101	4483,11	-2,89	9668243,536482610000000;3236078,957468450000000	86.8513093941;27.8976741645
ľ	102	4482,01	-4,66	9668227,32916786000000;3236093,565649530000000	86.8511638013;27.8977901413
ſ	103	4479,79	-4,69	9668201,102954520000000;3236100,696234490000000	86.8509282073;27.8978467522
ľ	104	4478,01	-4,33	9668181,780948550000000;3236090,862610820000000	86.8507546347;27.8977686815
ľ	105	4475,95	-5,08	9668160,845984890000000;3236073,527587370000000	86.8505665727;27.8976310557
ľ	106	4473,71	-5,25	9668137,43808640000000;3236064,099359310000000	86.850356296;27.8975562034
	107	4471,86	-5,21	9668117,73230629000000;3236059,797221190000000	86.850179276;27.8975220479
ľ	108	4470,94	-1,95	9668109,75896559000000;3236053,599393330000000	86.8501076502;27.8974728422
ľ	109	4470,47	-3,21	9668108,882991770000000;3236039,934363390000000	86.8500997812;27.8973643529
ľ	110	4469,62	-4,90	9668103,761761670000000;3236025,739989780000000	86.8500537764;27.897251661
ľ	111	4468,49	-2,64	9668091,984415920000000;3236019,921221230000000	86.8499479787;27.8972054646
ľ	112	4467.91	-4.69	9668081.07579238000000:3236026.415882570000000	86.8498499849:27.897257027
ľ	113	4467.15	-4.66	9668072.19241862000000:3236023.925378810000000	86.8497701842:27.8972372544
ľ	114	4466.11	-4.76	9668065,16553626000000;3236013.219205510000000	86.8497070606;27.8971522559
ľ	115	4465.16	-5.81	9668059,909357270000000;3236003.09203001000000	86.8496598436;27.897071854
ŀ	116	4463.96	-6.34	9668051.679259890000000;3235994.699284210000000	86.8495859114:27.8970052222
ľ	117	4462.87	-6.38	9668043,307737560000000:3235989.58776094000000	86.8495107087:27.8969646407
ľ	118	4461.61	-5.03	9668032.52360810000000;3235986.153611540000000	86.8494138332:27.8969373762
ŀ	119	4460.77	-6.19	9668023.099831720000000;3235987.280408420000000	86.849329178:27.8969463221
ł	120	4459.35	-4,49	9668010.084147500000000:3235985.262817570000000	86.8492122561:27.896930304
	•		.,	.,	

121	4458,26	-1,60	9667996,50724168000000;3235982,346001600000000	86.8490902927;27.8969071467
122	4457,88	-2,33	9667983,18666397000000;3235984,535583860000000	86.8489706319;27.8969245303
123	4457,51	-2,15	9667974,14891105000000;3235984,658051460000000	86.8488894444;27.8969255026
124	4457,02	-1,33	9667960,99736966000000;3235985,571538790000000	86.8487713021;27.896932755
125	4456,74	-1,17	9667949,92535879000000;3235989,338688700000000	86.8486718405;27.8969626632
126	4456,48	-3,05	9667938,51765180000000;3235994,907555380000000	86.8485693633;27.8970068757
127	4455,87	-3,13	9667927,16230756000000;3235993,113940460000000	86.8484673566;27.8969926358
128	4455,26	-4,71	9667916,63096049000000;3235989,294207780000000	86.8483727519;27.8969623101
129	4454,35	-6,65	9667907,28551186000000;3235983,478051980000000	86.8482888003;27.8969161343
130	4452,88	-6,88	9667895,486654910000000;3235979,006956870000000	86.8481828093;27.8968806373
131	4451,09	-7,13	9667880,97458076000000;3235975,676803210000000	86.8480524451;27.8968541984
132	4449,52	-6,06	9667868,88672922000000;3235972,543680460000000	86.8479438581;27.8968293238
133	4448,17	-6,67	9667856,25761583000000;3235974,43641605000000	86.8478304089;27.8968443507
134	4446,65	-5,29	9667843,315618710000000;3235974,169855010000000	86.8477141489;27.8968422344
135	4445,36	-5,35	9667829,742514130000000;3235977,624707840000000	86.8475922197;27.8968696633
136	4443,86	-6,94	9667814,009788750000000;3235980,618275760000000	86.8474508902;27.8968934299
137	4442,40	-7,68	9667802,23616403000000;3235978,418628680000000	86.8473451259;27.8968759664
138	4440,73	-7,75	9667794,301567410000000;3235968,931150180000000	86.8472738482;27.8968006431
139	4438,54	-4,83	9667783,424891710000000;3235957,032582820000000	86.8471761414;27.8967061775
140	4437,68	-5,05	9667779,86215106000000;3235947,487866790000000	86.8471441367;27.8966303997
141	4436,57	-5,49	9667770,132987230000000;3235939,516615930000000	86.8470567382;27.8965671139
142	4435,62	-5,28	9667761,39115925000000;3235934,84163720000000	86.846978209;27.896529998
143	4434,41	-4,48	9667750,13882806000000;3235928,265598050000000	86.8468771276;27.8964777892
144	4433,36	-5,28	9667740,145859640000000;3235919,260694440000000	86.8467873592;27.8964062969
145	4432,31	-3,59	9667729,77311486000000;3235914,612414170000000	86.8466941793;27.8963693929
146	4431,23	-3,18	9667712,709114410000000;3235912,547095330000000	86.8465408907;27.8963529958
147	4430,76	-3,21	9667704,25922608000000;3235912,922880250000000	86.8464649841;27.8963559793
148	4430,30	-3,44	9667696,96992790000000;3235916,712282560000000	86.8463995032;27.8963860644
149	4429,71	-3,30	9667688,25627139000000;3235921,069421890000000	86.8463212271;27.8964206568
150	4429,26	-0,85	9667680,478011790000000;3235920,520730720000000	86.8462513538;27.8964163006
151	4429,12	-1,49	9667674,83978390000000;3235913,159985270000000	86.8462007048;27.8963578617
152	4428,93	-2,87	9667669,09969682000000;3235908,758843540000000	86.8461491407;27.8963229199
153	4428,41	-2,22	9667658,711447150000000;3235907,904705340000000	86.8460558214;27.8963161386
154	4428,05	-2,99	9667649,85839829000000;3235905,181402860000000	86.8459762932;27.8962945176
155	4427,45	-4,19	9667638,33291290000000;3235905,406227580000000	86.845872758;27.8962963025
156	4426,73	-4,89	9667628,60404976000000;3235905,729169940000000	86.8457853621;27.8962988665
157	4426,07	-5,10	9667620,812001730000000;3235905,214143700000000	86.8457153649;27.8962947775
158	4425,51	-5,29	9667614,55529950000000;3235905,292564390000000	86.84565916;27.8962954001
159	4424,09	-4,84	9667599,45924304000000;3235908,005858930000000	86.8455235498;27.8963169417
160	4422,77	-5,09	9667583,91407104000000;3235906,431054410000000	86.8453839052;27.8963044389
161	4421,40	-4,98	9667568,62225619000000;3235908,040250520000000	86.8452465365;27.8963172148
162	4420,31	-4,92	9667556,145951570000000;3235907,872645820000000	86.8451344599;27.8963158841
163	4419,17	-5,12	9667543,09826913000000;3235905,691696390000000	86.8450172506;27.8962985689
164	4417,53	-5,17	9667525,20431682000000;3235901,68704018000000	86.8448565065;27.8962667749
165	4416,20	-5,24	9667510,64265250000000;3235899,984671170000000	86.8447256968;27.8962532593
166	4415,17	-4,26	9667499,419555730000000;3235900.000923560000000	86.844624878;27.8962533883
167	4414.35	-3.39	9667489,58400525000000:3235894.96183711000000	86.8445365238:27.8962133816
168	4413,74	-3,35	9667481,523215550000000;3235888.55307174000000	86.8444641125;27.8961625006

169	4412,71	-4,42	9667467,23626476000000;3235878,323679620000000	86.8443357706;27.8960812866
170	4411,71	-3,16	9667454,574951140000000;3235875,511061300000000	86.8442220321;27.8960589564
171	4410,71	-1,97	9667436,484632240000000;3235876,992402260000000	86.844059524;27.8960707172
172	4410,19	-1,60	9667421,45564120000000;3235876,143455690000000	86.8439245163;27.8960639771
173	4409,88	-2,47	9667410,59089226000000;3235874,299189690000000	86.8438269166;27.896049335
174	4409,29	-2,61	9667397,18120995000000;3235876,278100760000000	86.8437064553;27.8960650461
175	4408,76	-2,26	9667385,69186890000000;3235878,084010760000000	86.8436032448;27.8960793838
176	4408,43	-1,26	9667377,14498903000000;3235878,342899920000000	86.8435264669;27.8960814392
177	4408,17	-0,78	9667365,61899123000000;3235875,895679650000000	86.8434229271;27.89606201
178	4408,07	-2,43	9667359,04119709000000;3235873,945301850000000	86.8433638378;27.8960465254
179	4407,73	-4,72	9667351,463345440000000;3235871,407165560000000	86.8432957648;27.8960263743
180	4407,15	-5,09	9667344,48740866000000;3235869,926795240000000	86.8432330989;27.8960146213
181	4406,38	-3,80	9667336,04711918000000;3235868,56798420000000	86.8431572785;27.8960038332
182	4406,01	-5,33	9667330,90965738000000;3235866,077974220000000	86.8431111279;27.8959840643
183	4405,29	-6,10	9667323,33612100000000;3235864,811589250000000	86.8430430936;27.8959740101
184	4404,46	-6,28	9667315,56427839000000;3235865,370325310000000	86.842973278;27.8959784461
185	4403,69	-6,10	9667308,88436622000000;3235867,417951860000000	86.8429132713;27.8959947028
186	4402,98	-5,88	9667302,453765840000000;3235869,107353360000000	86.8428555042;27.8960081155
187	4402,15	-5,74	9667294,53583440000000;3235870,118089190000000	86.8427843763;27.89601614
188	4401,52	-5,51	9667288,26253130000000;3235870,395621460000000	86.8427280222;27.8960183434
189	4400,74	-5,46	9667280,262925850000000;3235869,281055190000000	86.8426561605;27.8960094945
190	4400,08	-5,53	9667273,54234029000000;3235867,694179440000000	86.8425957885;27.8959968959
191	4399,45	-4,11	9667267,25150710000000;3235865,917377100000000	86.842539277;27.8959827893
192	4398,85	-2,13	9667259,09613402000000;3235864,237696230000000	86.842466016;27.8959694538
193	4398,60	-2,02	9667253,71751053000000;3235868,146841260000000	86.842417699;27.8960004897
194	4398,46	-2,84	9667251,25649282000000;3235871,477770350000000	86.8423955913;27.8960269349
195	4398,14	-3,12	9667245,54002082000000;3235874,490024210000000	86.8423442394;27.8960508501
196	4397,75	-2,98	9667238,65903972000000;3235876,321759780000000	86.8422824265;27.8960653927
197	4397,38	-0,82	9667231,59770661000000;3235876,427902030000000	86.8422189934;27.8960662354
198	4397,28	0,47	9667226,17251532000000;3235871,727621050000000	86.8421702581;27.8960289185
199	4397,33	-0,59	9667222,672035220000000;3235866,517397330000000	86.8421388128;27.895987553
200	4397,25	-2,56	9667216,19844329000000;3235862,548523010000000	86.8420806595;27.895956043
201	4396,85	-3,01	9667207,25956596000000;3235863,747219920000000	86.8420003602;27.8959655598
202	4396,50	-2,36	9667200,831093330000000;3235865,299710380000000	86.8419426122;27.8959778855
203	4396,18	-0,98	9667193,03204096000000;3235865,394930040000000	86.8418725522;27.8959786414
204	4396,10	-2,53	9667188,676227700000000;3235864,112165110000000	86.8418334232;27.8959684572
205	4395,61	-3,88	9667177,52195929000000;3235864,76632003000000	86.8417332227;27.8959736507
206	4395,15	-6,91	9667171,08466439000000;3235866,950113530000000	86.8416753955;27.8959909885
207	4394,26	-7,44	9667164,87051862000000;3235870,800405700000000	86.8416195729;27.8960215571
208	4393,25	-6,59	9667160,767099330000000;3235877,423594760000000	86.8415827113;27.8960741405
209	4392,26	-7,57	9667158,885738870000000;3235885,793960910000000	86.8415658107;27.8961405953
210	4391,22	-7,72	9667154,89732082000000;3235892,44999663000000	86.8415299821;27.8961934394
211	4390,05	-7,94	9667150,156738840000000;3235899,687635820000000	86.8414873968;27.8962509011
212	4388,73	-7,13	9667143,00302398000000;3235905,942417240000000	86.8414231339;27.8963005595
213	4387,63	-7,12	9667134,688451770000000;3235908,623794730000000	86.8413484428;27.8963218477
214	4386,77	-8,02	9667128,03734302000000;3235910,652050450000000	86.8412886949;27.8963379505
215	4385,66	-7,87	9667121,51486702000000;3235914,994805200000000	86.8412301025;27.8963724288
216	4384,91	-8,27	9667119,207537190000000;3235919,929514990000000	86.8412093754;27.8964116068

217	4383,77	-7,79	9667112,98281290000000;3235924,657148780000000	86.8411534577;27.8964491408
218	4382,85	-6,65	9667106,82143536000000;3235927,337919790000000	86.8410981091;27.8964704241
219	4382,16	-3,57	9667100,953535720000000;3235928,13810200000000	86.8410453969;27.8964767769
220	4381,86	-2,84	9667096,382041220000000;3235926,603217990000000	86.8410043304;27.8964645911
221	4381,59	-2,47	9667091,33153768000000;3235924,408165340000000	86.840958961;27.896447164
222	4381,36	-2,97	9667086,56847020000000;3235922,108357980000000	86.8409161736;27.8964289052
223	4381,16	-3,81	9667082,893260570000000;3235920,622395180000000	86.8408831587;27.8964171078
224	4380,70	-3,84	9667076,296525170000000;3235919,067753110000000	86.8408238992;27.8964047651
225	4380,37	-5,27	9667071,252738130000000;3235919,235703290000000	86.8407785901;27.8964060985
226	4379,58	-6,23	9667063,121812670000000;3235921,803085090000000	86.8407055487;27.8964264816
227	4378,71	-6,20	9667056,60704120000000;3235926,417721680000000	86.8406470255;27.8964631184
228	4377,70	-6,03	9667049,67244015000000;3235932,590365530000000	86.840584731;27.8965121246
229	4376,68	-5,16	9667043,08098690000000;3235939,615923440000000	86.8405255189;27.8965679023
230	4375,94	-3,04	9667036,095002140000000;3235943,990452110000000	86.8404627628;27.8966026328
231	4375,54	-1,32	9667028,676347340000000;3235944,439098170000000	86.8403961198;27.8966061947
232	4375,37	-1,03	9667021,50907866000000;3235942,31161900000000	86.8403317352;27.8965893041
233	4375,24	-0,62	9667014,55388029000000;3235939,569755740000000	86.8402692556;27.8965675358
234	4375,14	-2,11	9667006,62917080000000;3235935,257844090000000	86.8401980667;27.8965333024
235	4374,85	-2,78	9666999,016111880000000;3235933,454070500000000	86.8401296774;27.8965189818
236	4374,47	-2,30	9666991,247802570000000;3235932,724700960000000	86.8400598935;27.8965131911
237	4374,16	-3,99	9666983,72731663000000;3235930,506638840000000	86.8399923358;27.8964955814
238	4373,66	-3,96	9666976,821889910000000;3235928,511491390000000	86.8399303033;27.8964797414
239	4373,14	-4,02	9666969,806563370000000;3235925,973828670000000	86.8398672836;27.8964595942
240	4372,61	-3,48	9666962,948029710000000;3235923,032054530000000	86.8398056723;27.8964362387
241	4372,24	-3,24	9666957,815932940000000;3235919,476161010000000	86.8397595699;27.8964080075
242	4371,86	-5,62	9666952,85776978000000;3235915,028934750000000	86.83971503;27.8963726998
243	4371,24	-5,89	9666946,702871790000000;3235914,017952580000000	86.8396597396;27.8963646733
244	4370,44	-5,77	9666939,143830410000000;3235915,937521320000000	86.8395918356;27.8963799133
245	4369,78	-5,26	9666932,713749770000000;3235917,015667140000000	86.8395340732;27.896388473
246	4369,32	-5,18	9666928,089668130000000;3235919,006775600000000	86.8394925343;27.8964042809
247	4368,91	-5,14	9666923,83404695000000;3235920,586474760000000	86.8394543054;27.8964168226
248	4368,34	-4,92	9666917,791007330000000;3235922,340305980000000	86.8394000199;27.8964307467
249	4367,87	-5,12	9666912,53372209000000;3235923,952131450000000	86.8393527929;27.8964435434
250	4367,46	-5,48	9666908,01380695000000;3235924,599871510000000	86.8393121898;27.896448686
251	4366,89	-5,64	9666902,19053204000000;3235923,742049890000000	86.8392598784;27.8964418755
252	4366,44	-5,71	9666897,92075708000000;3235921,990070980000000	86.8392215224;27.8964279661
253	4365,86	-2,34	9666893,07146360000000;3235918,781377790000000	86.8391779604;27.8964024915
254	4365,59	-1,35	9666888,41200280000000;3235914,297793170000000	86.8391361038;27.8963668951
255	4365,43	-1,67	9666883,480598310000000;3235909,519263540000000	86.8390918042;27.896328957
256	4365,23	-2,24	9666878,721972970000000;3235904,544283470000000	86.8390490568;27.8962894593
257	4365,07	-2,22	9666876,545222250000000;3235900,945657140000000	86.8390295027;27.8962608888
258	4364,95	-1,92	9666874,743740070000000;3235898,472864530000000	86.8390133197;27.8962412567
259	4364,84	-1,46	9666872,28231338000000;3235896,317034940000000	86.8389912083;27.8962241409
260	4364,74	-1,44	9666868,733238290000000;3235894,522333670000000	86.8389593265;27.8962098923
261	4364,66	-1,52	9666865,87507498000000;3235893,229781410000000	86.8389336511;27.8961996304
262	4364,53	-2,34	9666861,488959320000000;3235891,290553610000000	86.83889425;27.8961842343
263	4364,34	-2,93	9666857,788085510000000;3235888,335692700000000	86.8388610045;27.8961607748
264	4364,10	-3,02	9666854,876288110000000;3235884,843805930000000	86.8388348473;27.8961330517

Der glazifluviale Formenschatz im Gletschervorfeld des Himalaya

					1
	265	4363,97	-3,40	9666853,20618898000000;3235882,921731470000000	86.8388198446;27.8961177918
	266	4363,81	-3,62	9666851,82850783000000;3235880,556871770000000	86.8388074687;27.8960990165
	267	4363,64	-2,71	9666851,710175590000000;3235877,877889280000000	86.8388064057;27.8960777473
	268	4363,48	-2,54	9666853,33040350000000;3235874,995423590000000	86.8388209604;27.8960548626
	269	4363,25	-1,92	9666856,000314410000000;3235870,423860690000000	86.8388449446;27.8960185676
	270	4363,07	-1,82	9666859,38619442000000;3235866,28616562000000	86.8388753605;27.8959857172
	271	4362,94	-1,92	9666861,75946776000000;3235863,27150532000000	86.83889668;27.8959617829
L	272	4362,80	-2,67	9666864,07923563000000;3235859,781656860000000	86.8389175188;27.895934076
	273	4362,65	-3,04	9666864,88944523000000;3235856,69114040000000	86.8389247971;27.8959095394
	274	4362,38	-3,52	9666865,145025330000000;3235851,507776260000000	86.838927093;27.8958683871
	275	4362,15	1,39	9666864,04688326000000;3235847,949882370000000	86.8389172282;27.8958401399
	276	4362,22	4,62	9666862,758984530000000;3235845,439417590000000	86.8389056588;27.8958202086
	277	4362,54	4,52	9666861,68956705000000;3235841,552849950000000	86.8388960521;27.8957893519
	278	4362,77	5,50	9666860,98323025000000;3235838,80392066000000	86.8388897069;27.8957675273
	279	4363,05	4,79	9666861,24356723000000;3235835,831085010000000	86.8388920456;27.895743925
	280	4363,35	4,01	9666860,73947138000000;3235832,304411240000000	86.8388875172;27.8957159257
	281	4363,59	3,66	9666859,77757637000000;3235829,097587980000000	86.8388788764;27.8956904657
	282	4363,81	3,57	9666858,66994382000000;3235825,810182820000000	86.8388689263;27.8956643659
	283	4363,99	3,50	9666857,81002464000000;3235823,116922140000000	86.8388612016;27.8956429833
	284	4364,14	3,15	9666857,07333969000000;3235820,697811260000000	86.8388545838;27.8956237772
	285	4364,27	3,93	9666856,284831710000000;3235818,420731550000000	86.8388475005;27.8956056987
	286	4364,42	4,27	9666855,912391210000000;3235816,325440570000000	86.8388441548;27.8955890635
	287	4364,57	4,56	9666855,704453230000000;3235814,311076060000000	86.8388422869;27.8955730708
	288	4365,00	2,92	9666855,49505806000000;3235808,963604940000000	86.8388404059;27.8955306155
	289	4365,14	2,88	9666854,68536891000000;3235806,279620490000000	86.8388331323;27.8955093064
	290	4365,28	3,49	9666853,92537360000000;3235803,616043200000000	86.8388263051;27.8954881594
	291	4365,49	5,64	9666853,33177185000000;3235800,154568610000000	86.8388209727;27.8954606776
	292	4365,79	5,92	9666853,86010785000000;3235797,233312190000000	86.8388257188;27.8954374848
	293	4366,21	4,26	9666854,69390302000000;3235793,277486740000000	86.838833209;27.8954060781
	294	4366,49	3,42	9666854,47953850000000;3235789,510231630000000	86.8388312833;27.8953761686
	295	4366,65	0,77	9666854,04430689000000;3235786,795053590000000	86.8388273735;27.8953546119
	296	4366,69	5,56	9666852,819046470000000;3235784,274548260000000	86.8388163668;27.8953346007
	297	4367,16	3,65	9666853,47315633000000;3235779,454000070000000	86.8388222428;27.8952963287
	298	4367,41	0,31	9666853,06504216000000;3235775,574180140000000	86.8388185767;27.8952655255
	299	4367,43	-1,70	9666851,519463310000000;3235772,296424490000000	86.8388046925;27.8952395022
	300	4367,36	-6,09	9666850,06871708000000;3235770,264332540000000	86.8387916602;27.8952233688
	301	4366,98	-7,80	9666846,92435336000000;3235768,565214480000000	86.8387634139;27.8952098789
	302	4366,49	-7,50	9666843,47767653000000;3235767,554128190000000	86.8387324519;27.8952018515
	303	4365,97	-6,79	9666839,79748334000000;3235766,139852180000000	86.8386993921;27.895190623
	304	4365,68	-4,28	9666837,66051220000000;3235764,968043100000000	86.8386801954;27.8951813196
	305	4365,39	-3,92	9666835,133386470000000;3235762,155165550000000	86.8386574938;27.8951589872
	306	4365,16	-4,78	9666833,07146986000000;3235759,488031260000000	86.8386389713;27.8951378119
	307	4364,87	-7,63	9666830,799700010000000;3235756,878946760000000	86.8386185637;27.8951170974
ľ	308	4364,26	-8,26	9666826,921819470000000;3235754,45721443000000	86.8385837281;27.8950978704
ľ	309	4363,78	-7,61	9666824,014987830000000;3235752,812460130000000	86.8385576156;27.8950848121
ľ	310	4363,20	-5.09	9666820,56064240000000;3235750,194156710000000	86.8385265847;27.8950640244
ľ	311	4362,90	-7,74	9666818,69647011000000;3235747,45709864000000	86.8385098385;27.8950422939
ľ	312	4362,37	-10,18	9666815,72326113000000;3235744,85801464000000	86.8384831297;27.8950216589
-					

313	4361,88	-11,16	9666813,21696712000000;3235743,80943060000000	86.8384606153;27.8950133338
314	4361,48	-11,25	9666811,25046675000000;3235743,471122800000000	86.8384429499;27.8950106478
315	4360,86	-7,75	9666808,16168062000000;3235742,954891520000000	86.8384152029;27.8950065493
316	4360,52	0,18	9666806,10752974000000;3235741,514927390000000	86.8383967501;27.8949951169
317	4360,53	1,20	9666804,92283430000000;3235739,428441930000000	86.8383861078;27.8949785515
318	4360,60	-8,80	9666803,418865370000000;3235736,167868010000000	86.8383725975;27.8949526646
319	4360,30	-11,18	9666801,587994570000000;3235735,463355200000000	86.8383561505;27.8949470712
320	4359,79	-4,39	9666799,00209696000000;3235735,212458960000000	86.838332921;27.8949450792
321	4359,44	-5,17	9666794,63823030000000;3235734,09132690000000	86.8382937197;27.8949361781
322	4359,19	-3,87	9666791,86180103000000;3235733,641310070000000	86.8382687786;27.8949326053
323	4359,01	-1,63	9666789,47628454000000;3235732,76230952000000	86.8382473491;27.8949256266
324	4358,93	-0,86	9666787,276546410000000;3235731,076149670000000	86.8382275885;27.8949122395
325	4358,89	2,06	9666785,168888370000000;3235729,022736340000000	86.8382086551;27.8948959367
326	4359,02	1,01	9666783,65391990000000;3235725,688779280000000	86.8381950459;27.8948694672
327	4359,13	-2,51	9666780,59555270000000;3235720,233750460000000	86.8381675721;27.8948261576
328	4358,95	-5,13	9666777,45866134000000;3235717,56151180000000	86.838139393;27.8948049417
329	4358,48	-5,66	9666772,64984483000000;3235715,413467240000000	86.8380961946;27.8947878875
330	4357,84	-6,96	9666766,67729556000000;3235712,93737643000000	86.8380425423;27.8947682289
331	4357,32	-6,50	9666762,57519969000000;3235712,019609430000000	86.8380056926;27.8947609424
332	4356,82	-7,61	9666758,356376470000000;3235710,539020340000000	86.8379677942;27.8947491874
333	4356,34	-8,18	9666754,83774752000000;3235710,025184740000000	86.8379361858;27.8947451079
334	4355,85	-7,63	9666751,39467415000000;3235710,067936170000000	86.8379052562;27.8947454473
335	4355,23	-7,77	9666746,86970050000000;3235709,25510068000000	86.8378646077;27.8947389939
336	4354,69	-8,11	9666742,985286570000000;3235708,587285260000000	86.8378297134;27.8947336919
337	4353,91	-8,08	9666737,52422060000000;3235708,112985690000000	86.8377806558;27.8947299262
338	4353,43	-8,33	9666734,18402289000000;3235707,673624230000000	86.8377506503;27.8947264379
339	4352,79	-8,15	9666729,81178845000000;3235707,655612790000000	86.8377113738;27.8947262949
340	4352,18	-8,18	9666725,615375740000000;3235706,963569670000000	86.8376736768;27.8947208005
341	4351,75	-8,04	9666722,66138592000000;3235706,365406220000000	86.8376471407;27.8947160515
342	4351,23	-8,01	9666719,185753750000000;3235705,227918210000000	86.8376159185;27.8947070205
343	4350,65	-7,70	9666715,37010748000000;3235703,627279920000000	86.837581642;27.8946943124
344	4350,14	-7,48	9666712,146477010000000;3235701,633907370000000	86.8375526836;27.8946784863
345	4349,59	-8,23	9666708,885411450000000;3235699,061431930000000	86.837523389;27.8946580624
346	4349,15	-3,04	9666706,309570440000000;3235697,44006750000000	86.8375002498;27.8946451897
347	4348,99	-2,89	9666704,500579880000000;3235694,958753760000000	86.8374839994;27.8946254896
348	4348,76	-2,57	9666702,130048850000000;3235691,127679740000000	86.8374627045;27.8945950732
349	4348,59	-2,35	9666700,65799238000000;3235687,70043459000000	86.8374494808;27.8945678629
350	4348,40	-1,65	9666699,22995897000000;3235683,267433210000000	86.8374366526;27.8945326675
351	4348,25	-1,60	9666698,68794492000000;3235677,916302720000000	86.8374317836;27.8944901827
352	4348,12	-2,53	9666698,324102710000000;3235673,43819033000000	86.8374285151;27.8944546292
353	4347,91	-2,53	9666696,81802300000000;3235668,884394810000000	86.8374149858;27.8944184747
354	4347,74	-2,97	9666695,670245850000000;3235665,194250920000000	86.8374046751;27.8943891772
355	4347,48	-3,90	9666693,69775403000000;3235660,643552170000000	86.8373869559;27.8943530473
356	4347,10	-4,56	9666690,192241480000000;3235656,321379150000000	86.8373554654;27.8943187317
357	4346,66	-4,61	9666685,62577594000000;3235653,05778340000000	86.8373144441;27.8942928207
358	4346,30	-4,93	9666682,12220285000000;3235650,322859460000000	86.837282971;27.894271107
359	4346,04	-4,74	9666679,27780729000000;3235649,24364642000000	86.8372574194;27.8942625386
360	4345,59	-4,46	9666673,974420570000000;3235648,940661030000000	86.8372097782;27.8942601331

361	4345,23	-4,59	9666669,29394789000000;3235649,36057020000000	86.8371677328;27.894263467
362	4344,89	-4,63	9666665,142512140000000;3235649,459734030000000	86.8371304398;27.8942642543
363	4344,60	-4,95	9666661,545569330000000;3235649,481916770000000	86.837098128;27.8942644304
364	4344,19	-5,17	9666656,86075663000000;3235648,691247760000000	86.8370560436;27.8942581529
365	4343,81	-5,01	9666653,36390596000000;3235646,411418630000000	86.8370246308;27.8942400524
366	4343,39	-4,81	9666650,012770870000000;3235642,974660080000000	86.8369945271;27.8942127665
367	4342,99	-3,50	9666647,24021607000000;3235639,139066780000000	86.8369696208;27.8941823141
368	4342,80	1,34	9666645,434825610000000;3235636,564381040000000	86.8369534027;27.8941618726
369	4342,90	1,19	9666643,389251110000000;3235633,033734800000000	86.836935027;27.8941338412
370	4343,01	0,34	9666640,86897643000000;3235628,341799920000000	86.836912387;27.8940965899
371	4343,03	-0,62	9666638,69430965000000;3235624,863792190000000	86.8368928516;27.8940689765
372	4342,99	-1,52	9666636,367028750000000;3235621,749282020000000	86.8368719453;27.894044249
373	4342,86	-3,69	9666633,20709400000000;3235618,071532420000000	86.8368435591;27.8940150498
374	4342,61	-4,67	9666630,03969897000000;3235615,86133203000000	86.8368151059;27.893997502
375	4342,11	-6,31	9666624,76004908000000;3235612,827577720000000	86.836767678;27.8939734157
376	4341,50	-6,84	9666619,45005578000000;3235611,290509720000000	86.8367199775;27.8939612122
377	4341,04	-4,23	9666615,66632812000000;3235610,530717870000000	86.8366859877;27.8939551799
378	4340,61	-3,25	9666610,060617230000000;3235608,831968670000000	86.8366356308;27.8939416928
379	4340,33	-3,11	9666605,13551300000000;3235608,469069100000000	86.8365913878;27.8939388116
380	4340,01	-3,38	9666599,45634510000000;3235607,273563280000000	86.836540371;27.8939293199
381	4339,65	-3,37	9666593,35350278000000;3235606,791698160000000	86.8364855482;27.8939254942
382	4339,31	-3,06	9666587,91399829000000;3235608,628278550000000	86.8364366843;27.8939400756
383	4339,05	-3,23	9666583,56196038000000;3235610,669765200000000	86.8363975893;27.8939562839
384	4338,76	-3,07	9666578,35839984000000;3235611,04136902000000	86.8363508449;27.8939592342
385	4338,37	-3,24	9666571,17743013000000;3235612,385257110000000	86.8362863371;27.8939699039
386	4338,10	-3,39	9666566,36560036000000;3235611,866277990000000	86.8362431117;27.8939657835
387	4337,74	-3,59	9666560,84788506000000;3235609,601143650000000	86.8361935453;27.8939477996
388	4337,44	-3,66	9666556,396649910000000;3235607,606071540000000	86.8361535591;27.8939319598
389	4337,13	-3,74	9666552,65341405000000;3235604,664708890000000	86.8361199331;27.893908607
390	4336,81	-3,62	9666549,233894570000000;3235601,090645740000000	86.836089215;27.893880231
391	4336,63	-3,52	9666547,66210256000000;3235598,719834470000000	86.8360750954;27.893861408
392	4336,33	-3,90	9666545,427749170000000;3235594,359726470000000	86.8360550238;27.8938267911
393	4336,09	-3,83	9666543,59199525000000;3235591,343265600000000	86.836038533;27.8938028421
394	4335,82	-4,06	9666541,856040550000000;3235587,833867590000000	86.8360229386;27.8937749794
395	4335,55	-4,58	9666540,03365603000000;3235584,361455320000000	86.8360065679;27.8937474103
396	4335,24	-4,89	9666537,86929051000000;3235581,226178270000000	86.835987125;27.8937225179
397	4334,59	-4,27	9666533,50568526000000;3235575,028083640000000	86.8359479261;27.8936733083
398	4334,16	-5,00	9666531,53800788000000;3235569,544444250000000	86.8359302502;27.8936297712
399	4333,72	-5,94	9666529,220442770000000;3235565,067767360000000	86.8359094311;27.8935942287
400	4333,22	-6,59	9666526,11977269000000;3235561,445182310000000	86.8358815773;27.8935654673
401	4332,61	-3,78	9666521,898875220000000;3235558,294308620000000	86.8358436604;27.893540451
402	4332,30	-2,78	9666518,52431516000000;3235555,083122890000000	86.8358133462;27.8935149559
403	4332,04	-3,38	9666515,27546662000000;3235550,707080450000000	86.8357841613;27.8934802124
404	4331,74	-3,45	9666514,06760468000000;3235545,688018410000000	86.8357733109;27.8934403636
405	4331,47	-3,48	9666513,31025286000000;3235541,35951623000000	86.8357665074;27.8934059976
406	4331,19	-3,50	9666512,71499820000000;3235536,826980410000000	86.8357611602;27.8933700115
407	4330,91	1,57	9666511,52534987000000;3235532,288488490000000	86.8357504734;27.8933339782
408	4331,03	1,57	9666510,26372169000000;3235528,092185730000000	86.83573914;27.8933006617

Der glazifluviale Formenschatz im Gletschervorfeld des Himalaya

409	4331,14	1,23	9666509,23025894000000;3235523,943930870000000	86.8357298562;27.8932677267
410	4331,22	1,16	9666508,02882598000000;3235520,59406858000000	86.8357190636;27.8932411305
411	4331,29	-0,12	9666506,96546792000000;3235517,154175560000000	86.8357095113;27.8932138194
412	4331,28	-1,01	9666504,25098013000000;3235514,20021082000000	86.8356851266;27.8931903664
413	4331,22	-1,71	9666501,20630673000000;3235512,24862103000000	86.8356577759;27.8931748718
414	4331,11	-1,84	9666497,65115682000000;3235511,023182380000000	86.8356258394;27.8931651424
415	4330,99	-1,60	9666494,250663650000000;3235509,733596720000000	86.8355952922;27.8931549037
416	4330,91	-1,77	9666491,86740568000000;3235508,040911860000000	86.8355738831;27.8931414647
417	4330,76	-1,92	9666488,10314910000000;3235504,985449310000000	86.8355400682;27.8931172058
418	4330,67	-2,24	9666486,109809440000000;3235503,136447790000000	86.8355221617;27.8931025256
419	4330,52	-1,98	9666483,185812870000000;3235500,615033460000000	86.835495895;27.8930825068
420	4330,36	-2,23	9666480,63953925000000;3235496,86254939000000	86.8354730214;27.893052714
421	4330,21	-2,55	9666478,56760373000000;3235493,68636939000000	86.8354544089;27.8930274966
422	4330,05	-2,75	9666476,56173729000000;3235490,762313250000000	86.8354363899;27.8930042811
423	4329,86	-3,29	9666474,41568407000000;3235487,478457240000000	86.8354171116;27.8929782088
424	4329,61	-3,91	9666471,70818550000000;3235484,008230810000000	86.8353927897;27.8929506569
425	4329,37	-4,31	9666469,17404039000000;3235481,499165580000000	86.8353700251;27.8929307361
426	4329,11	-4,91	9666466,59839149000000;3235479,242715340000000	86.8353468877;27.892912821
427	4328,83	-3,78	9666463,37909932000000;3235478,482888990000000	86.8353179683;27.8929067883
428	4328,63	-3,80	9666460,548465220000000;3235479,527815010000000	86.8352925402;27.8929150846
429	4328,49	-4,61	9666458,534990870000000;3235480,176156670000000	86.8352744529;27.8929202321
430	4328,29	-5,11	9666456,15699276000000;3235480,152169130000000	86.835253091;27.8929200416
431	4328,04	-5,18	9666453,88662633000000;3235478,482772250000000	86.8352326959;27.8929067874
432	4327,76	-5,51	9666451,59810726000000;3235476,332845320000000	86.8352121378;27.892889718
433	4327,46	-5,48	9666449,213603210000000;3235474,402818810000000	86.8351907174;27.8928743945
434	4327,17	-5,45	9666447,232299010000000;3235472,147991140000000	86.8351729191;27.8928564923
435	4326,76	-5,42	9666444,83556096000000;3235468,596557680000000	86.8351513888;27.8928282956
436	4326,37	-6,32	9666442,86985005000000;3235464,925160740000000	86.8351337305;27.8927991464
437	4326,04	-6,84	9666440,914916130000000;3235462,699458930000000	86.8351161691;27.8927814754
438	4325,66	-7,10	9666438,37998699000000;3235460,727345090000000	86.8350933974;27.8927658177
439	4325,13	-7,35	9666435,05830040000000;3235458,062866940000000	86.8350635582;27.892744663
440	4324,66	-7,48	9666432,31705095000000;3235455,683040520000000	86.8350389331;27.8927257683
441	4324,28	-7,43	9666430,32310520000000;3235453,653187950000000	86.8350210212;27.8927096522
442	4323,81	-3,85	9666427,80279903000000;3235451,025351150000000	86.8349983809;27.8926887884
443	4323,59	-3,78	9666425,38634192000000;3235448,94560032000000	86.8349766735;27.8926722761
444	4323,30	-3,22	9666421,692173910000000;3235446,346660640000000	86.8349434882;27.8926516417
445	4323,08	-3,14	9666418,126146370000000;3235444,861520260000000	86.8349114541;27.8926398504
446	4322,88	-2,32	9666414,79831979000000;3235443,684580420000000	86.8348815597;27.892630506
447	4322,74	-2,40	9666411,32637700000000;3235443,19248163000000	86.8348503707;27.892626599
448	4322,58	-2,04	9666407,511975010000000;3235442,628327610000000	86.8348161053;27.8926221199
449	4322,43	-0,88	9666403,28307679000000;3235442,334568600000000	86.8347781165;27.8926197876
450	4322,36	0,41	9666399,11434206000000;3235442,88785230000000	86.8347406681;27.8926241804
451	4322.40	0.41	9666394,110811430000000:3235444.576715770000000	86.8346957206:27.8926375892
452	4322.44	1.24	9666389,52167951000000:3235445.99517666000000	86.8346544958;27.8926488511
453	4322.52	,	9666385,98380370000000;3235447.51561926000000	86.8346227145;27.8926609227
454	4322.68	1.51	9666382.578197570000000:3235449.54066954000000	86.8345921214:27.8926770007
455	4322.76	0.92	9666379.568883770000000;3235450.81473328000000	86.8345650883:27.8926871162
456	4322,83	-0.68	9666375.874512320000000:3235451.944581590000000	86.8345319012:27.8926960867
		5,55		

457	4322,79	0,69	9666372,85267160000000;3235452,143198270000000	86.8345047555;27.8926976636
458	4322,84	0,39	9666368,95383205000000;3235453,110898840000000	86.8344697317;27.8927053467
459	4322,86	0,21	9666365,72169428000000;3235453,742108460000000	86.8344406969;27.8927103582
460	4322,87	-2,65	9666363,498793550000000;3235454,108865750000000	86.8344207282;27.8927132701
461	4322,74	-4,34	9666360,87300554000000;3235453,556495430000000	86.8343971404;27.8927088845
462	4322,46	-5,10	9666357,501774970000000;3235452,012884130000000	86.8343668561;27.8926966289
463	4322,12	-3,86	9666354,20240718000000;3235450,126755180000000	86.8343372174;27.892681654
464	4321,92	-4,47	9666351,30617426000000;3235449,159926920000000	86.8343112001;27.8926739778
465	4321,67	-3,84	9666348,34380694000000;3235447,940778870000000	86.8342845887;27.8926642983
466	4321,37	-6,98	9666344,11837943000000;3235446,676627870000000	86.834246631;27.8926542615
467	4320,89	-8,66	9666341,154582750000000;3235444,057596080000000	86.8342200068;27.8926334676
468	4320,21	-9,17	9666339,04301369000000;3235440,169657350000000	86.8342010382;27.8926025992
469	4319,53	-8,98	9666338,57348935000000;3235435,99800090000000	86.8341968204;27.8925694781
470	4318,99	-8,83	9666338,64531009000000;3235432,536264680000000	86.8341974656;27.8925419935
471	4318,51	-8,25	9666338,865144750000000;3235429,494127970000000	86.8341994404;27.8925178403
472	4318,13	-2,34	9666338,32909682000000;3235426,872225990000000	86.834194625;27.8924970236
473	4317,88	-2,08	9666336,16418319000000;3235421,291041680000000	86.8341751772;27.8924527115
474	4317,78	-0,66	9666334,74529596000000;3235418,966077140000000	86.8341624311;27.8924342523
475	4317,74	-1,09	9666333,446390510000000;3235416,070199230000000	86.8341507629;27.8924112603
476	4317,70	-1,32	9666332,760575540000000;3235413,660830360000000	86.8341446021;27.8923921309
477	4317,58	-1,17	9666331,75548862000000;3235408,799810930000000	86.8341355733;27.8923535366
478	4317,51	-0,65	9666330,70913194000000;3235405,480951390000000	86.8341261737;27.8923271863
479	4317,48	-0,78	9666329,04767930000000;3235402,875253880000000	86.8341112486;27.8923064982
480	4317,44	-0,75	9666327,43429740000000;3235400,275867360000000	86.8340967553;27.8922858602
481	4317,36	-1,74	9666324,01482893000000;3235395,576134960000000	86.8340660377;27.8922485463
482	4317,17	-1,87	9666322,67592355000000;3235389,546324520000000	86.8340540101;27.8922006722
483	4316,89	-1,73	9666320,920247250000000;3235381,082081070000000	86.8340382386;27.8921334697
484	4316,66	-1,83	9666317,81878380000000;3235373,993433670000000	86.8340103777;27.8920771888
485	4316,43	-2,05	9666314,553732470000000;3235367,732416910000000	86.8339810472;27.892027479
486	4316,22	-2,31	9666312,028320440000000;3235362,471329730000000	86.8339583611;27.8919857081
487	4315,94	-2,58	9666309,61383028000000;3235356,032689280000000	86.8339366714;27.8919345879
488	4315,37	-2,75	9666306,51540122000000;3235343,606100720000000	86.8339088377;27.8918359258
489	4314,79	-1,08	9666304,84605609000000;3235331,686646290000000	86.8338938417;27.8917412901
490	4314,58	7,17	9666305,43926069000000;3235320,589812620000000	86.8338991706;27.8916531855
491	4315,70	6,21	9666304,736274070000000;3235311,707011970000000	86.8338928555;27.8915826595
492	4316,37	2,77	9666303,32299195000000;3235305,677902090000000	86.8338801598;27.8915347906
493	4316,67	2,41	9666299,71708410000000;3235300,841186780000000	86.8338477674;27.8914963889
494	4317,12	4,02	9666294,40367150000000;3235291,580570810000000	86.8338000362;27.8914228631
495	4317,53	5,47	9666293,252712730000000;3235285,787896380000000	86.8337896969;27.8913768714
496	4318,07	5,48	9666293,31724136000000;3235280,218901780000000	86.8337902766;27.8913326556
497	4318,51	2,79	9666293,36525068000000;3235275,532932780000000	86.8337907079;27.8912954507
498	4318,78	-2,81	9666292,023746830000000;3235270,165715180000000	86.8337786569;27.8912528369
499	4318,48	-4,38	9666288,15716502000000;3235265,352504260000000	86.8337439228;27.8912146217
500	4317,79	-8,03	9666282,285829890000000;3235258,415921190000000	86.8336911797;27.8911595477
501	4316,51	-10,82	9666275,199585890000000;3235252,805883170000000	86.8336275229;27.8911150059
502	4314,79	-13,51	9666267,33482219000000;3235248,41065948000000	86.8335568726;27.8910801094
503	4313,35	-12,73	9666261,367352350000000;3235247,740697810000000	86.8335032659;27.8910747901
504	4311,72	-10,42	9666254,493370670000000;3235249,914650750000000	86.8334415158;27.8910920506

505	4310,43	-8,55	9666248,47966895000000;3235253,483538090000000	86.8333874938;27.8911203863
506	4309,46	-4,69	9666243,26273370000000;3235257,302599990000000	86.8333406293;27.8911507083
507	4308,89	-6,03	9666237,19511546000000;3235260,560606420000000	86.833286123;27.8911765757
508	4308,04	-5,64	9666229,14994196000000;3235261,086497700000000	86.8332138519;27.8911807511
509	4307,53	-6,19	9666223,963872140000000;3235261,903712380000000	86.8331672647;27.8911872395
510	4306,85	-6,89	9666217,76567359000000;3235262,006722120000000	86.8331115853;27.8911880574
511	4306,29	-7,22	9666213,18565015000000;3235260,947255710000000	86.8330704423;27.8911796456
512	4305,71	-7,28	9666209,38698735000000;3235258,427294450000000	86.8330363183;27.891159638
513	4304,98	-7,01	9666204,60708628000000;3235255,255665570000000	86.8329933797;27.8911344564
514	4304,52	-4,48	9666201,000930980000000;3235254,397885610000000	86.8329609851;27.8911276459
515	4303,83	-3,41	9666192,82520386000000;3235257,636767370000000	86.8328875413;27.8911533615
516	4303,37	-2,91	9666186,148656510000000;3235261,619163050000000	86.8328275648;27.8911849803
517	4303,16	-5,75	9666182,82141726000000;3235263,91100810000000	86.8327976757;27.8912031768
518	4302,41	-7,28	9666175,41323260000000;3235264,711913250000000	86.8327311269;27.8912095357
519	4301,88	-7,47	9666171,59090956000000;3235263,159659450000000	86.8326967904;27.8911972113
520	4301,20	-7,54	9666167,21747719000000;3235260,247836640000000	86.8326575031;27.8911740925
521	4300,21	-7,59	9666160,91426638000000;3235256,209292910000000	86.8326008804;27.8911420278
522	4299,47	-7,34	9666156,14659395000000;3235253,409017270000000	86.8325580517;27.8911197946
523	4298,93	-2,95	9666152,15740742000000;3235252,143755670000000	86.8325222162;27.8911097489
524	4298,50	-2,30	9666143,97985115000000;3235251,28321100000000	86.832448756;27.8911029165
525	4298,22	-3,15	9666137,34930830000000;3235248,916088330000000	86.8323891928;27.8910841223
526	4297,69	-3,76	9666129,111942730000000;3235243,829575200000000	86.8323151953;27.8910437371
527	4297,12	-3,97	9666122,55754052000000;3235238,151892010000000	86.8322563161;27.8909986583
528	4296,67	-4,28	9666117,83156832000000;3235233,675876570000000	86.832213862;27.8909631202
529	4296,09	-4,05	9666112,73340512000000;3235227,904924840000000	86.8321680644;27.8909173008
530	4295,49	-3,77	9666106,41632628000000;3235222,346645760000000	86.8321113171;27.8908731699
531	4294,93	-0,70	9666099,34121609000000;3235217,485665290000000	86.8320477603;27.8908345753
532	4294,84	-1,03	9666092,93855366000000;3235214,084960940000000	86.8319902442;27.8908075748
533	4294,68	-1,77	9666085,335697730000000;3235209,784939340000000	86.8319219466;27.890773434
534	4294,44	-2,03	9666077,72039040000000;3235207,835475930000000	86.8318535371;27.8907579559
535	4294,20	-2,29	9666070,938153910000000;3235206,502719620000000	86.8317926113;27.8907473742
536	4293,90	-2,68	9666063,93319409000000;3235204,359276460000000	86.8317296846;27.890730356
537	4293,58	-2,98	9666057,73726856000000;3235201,482646260000000	86.8316740257;27.8907075165
538	4293,29	-3,21	9666053,50331628000000;3235197,906697120000000	86.8316359915;27.8906791246
539	4292,88	-3,41	9666047,38869658000000;3235193,71952098000000	86.8315810629;27.8906458797
540	4292,53	-3,55	9666043,093644010000000;3235189,759467370000000	86.8315424798;27.8906144381
541	4292,13	-3,71	9666038,98944053000000;3235184,892212550000000	86.8315056111;27.8905757936
542	4291,73	-3,87	9666035.290149680000000;3235179,857042990000000	86.8314723798;27.8905358159
543	4291,36	-3,89	9666032,13607903000000:3235175,307519510000000	86.8314440463;27.890499694
544	4290.97	-4.02	9666029.36306499000000:3235170.292690160000000	86.8314191359:27.8904598778
545	4290.49	-4.11	9666026.25202419000000:3235164.207175250000000	86.8313911889:27.8904115606
546	4290.06	-4.30	9666023.78049290000000:3235158.87318340000000	86.8313689868:27.8903692103
547	4289.46	-4.67	9666020,37045674000000;3235151.52941370000000	86.8313383539;27.8903109029
548	4288.89	-5.06	9666017.038968380000000;3235145.433867770000000	86.8313084267:27.890262506
549	4288.44	-5.58	9666014.20459930000000:3235141.281508190000000	86.8312829651:27.8902295374
550	4287 71	-5 74	9666008.70936206000000 3235136 195158180000000	86.8312336005.27 8901891532
551	4286.94	-5.23	9666001 68683851000000 3235133 14818484000000	86.8311705161.27.8901649611
552	4286 44	-3.31	9665996.26251085000000.3235132.48454710000000	86.8311217886.27 890159692
002	7200,77	0,01	000000000000000000000000000000000000000	

Der glazifluviale Formenschatz im Gletschervorfeld des Himalaya

					1
	553	4286,14	-3,64	9665991,401742170000000;3235134,144035320000000	86.8310781235;27.8901728679
	554	4285,84	-4,12	9665986,68725692000000;3235135,323986810000000	86.8310357726;27.8901822364
	555	4285,56	-4,20	9665982,94051240000000;3235135,835774300000000	86.831002115;27.8901862998
	556	4285,26	-4,87	9665978,81083206000000;3235136,305544260000000	86.8309650175;27.8901900297
	557	4284,86	-5,40	9665974,18660826000000;3235136,126709490000000	86.8309234773;27.8901886098
	558	4284,39	-5,38	9665969,292775580000000;3235135,333656500000000	86.8308795153;27.8901823132
	559	4284,02	-0,90	9665965,37645292000000;3235134,772284620000000	86.8308443344;27.890177856
	560	4283,93	-0,76	9665959,442871470000000;3235133,421759210000000	86.8307910321;27.8901671332
	561	4283,84	-1,03	9665953,32768256000000;3235130,935992090000000	86.8307360984;27.8901473969
	562	4283,74	-1,69	9665948,45225598000000;3235128,973874340000000	86.8306923017;27.8901318182
	563	4283,57	-3,81	9665943,05263238000000;3235126,404069160000000	86.8306437961;27.8901114147
	564	4283,24	-4,54	9665939,48922340000000;3235123,083618990000000	86.8306117854;27.8900850512
	565	4282,85	-5,36	9665936,12974000000000;3235119,448055530000000	86.8305816067;27.8900561858
	566	4282,33	-5,00	9665932,764514550000000;3235115,014370940000000	86.8305513764;27.8900209836
	567	4281,98	-1,13	9665930,93663807000000;3235111,43092038000000	86.8305349563;27.8899925319
	568	4281,93	-0,63	9665929,15318542000000;3235109,559055610000000	86.8305189352;27.8899776698
	569	4281,90	-0,07	9665926,932624330000000;3235108,893787900000000	86.8304989876;27.8899723877
	570	4281,90	0,46	9665924,78980214000000;3235109,055694570000000	86.8304797383;27.8899736732
	571	4281,92	-0,04	9665921,97788290000000;3235110,042398430000000	86.8304544784;27.8899815074
	572	4281,92	-0,13	9665916,52474856000000;3235110,276511950000000	86.8304054921;27.8899833662
	573	4281,91	-0,23	9665912,241575380000000;3235110,256851720000000	86.8303670157;27.8899832101
ſ	574	4281,89	0,58	9665908,764105970000000;3235110,123210560000000	86.830335777;27.889982149
	575	4281,92	1,08	9665905,73617495000000;3235110,883337610000000	86.8303085766;27.8899881842
	576	4281,99	3,44	9665902,640545050000000;3235112,151499000000000	86.8302807681;27.8899982531
ſ	577	4282,34	0,26	9665897,22315995000000;3235114,394860940000000	86.8302321029;27.8900160648
	578	4282,36	-1,60	9665893,215117070000000;3235114,440209900000000	86.8301960981;27.8900164249
	579	4282,26	-2,38	9665889,638441010000000;3235113,818290090000000	86.8301639682;27.890011487
	580	4282,10	-1,88	9665886,00264092000000;3235112,926719190000000	86.8301313073;27.8900044082
	581	4282,00	-0,71	9665882,89422100000000;3235112,330540310000000	86.8301033839;27.8899996747
	582	4281,91	0,85	9665875,62823713000000;3235111,220077350000000	86.8300381124;27.8899908579
	583	4281,98	4,68	9665870,58569955000000;3235111,057177720000000	86.8299928146;27.8899895645
ľ	584	4282,29	1,40	9665866,999051510000000;3235109,876775020000000	86.8299605951;27.8899801924
ľ	585	4282,40	0,64	9665863,500479250000000;3235106,917483560000000	86.8299291669;27.8899566964
ľ	586	4282,44	-0,27	9665860,67556445000000;3235104,294729120000000	86.8299037903;27.8899358724
ľ	587	4282,42	-1,86	9665857,41866480000000;3235100,861398470000000	86.8298745331;27.8899086127
ľ	588	4282,30	-3,67	9665855,29640218000000;3235097,839919760000000	86.8298554685;27.8898846229
ľ	589	4282,09	-4,37	9665853,98038356000000;3235094,860057130000000	86.8298436465;27.8898609636
ľ	590	4281,81	-5,31	9665852,69901610000000;3235091,334333500000000	86.8298321357;27.8898329702
ľ	591	4281,39	-5,36	9665851,66613641000000;3235087,018575650000000	86.8298228572;27.8897987042
ľ	592	4281,08	-3,79	9665850,83200766000000;3235083,789826030000000	86.8298153641;27.8897730687
ľ	593	4280,78	-4,15	9665848,49661966000000;3235079,834203810000000	86.829794385:27.889741662
ľ	594	4280,36	-5,29	9665845,529228310000000;3235074,888028870000000	86.8297677284;27.8897023906
ľ	595	4279.85	-6.03	9665843,28919721000000;3235069.91782950000000	86.8297476059;27.8896629284
ľ	596	4279.28	-6.69	9665841,43298110000000:3235064.84418406000000	86.8297309312:27.8896226449
İ	597	4278.61	-7.19	9665839,903059670000000:3235059.322828110000000	86.8297171877:27.8895788066
ł	598	4277 97	-7 17	9665838.92789091000000.3235054 31618674000000	86.8297084276 27 8895390551
ł	599	4277,24	-7.52	9665837.425937390000000;3235048.69913404000000	86.8296949353:27.889494457
ŀ	600	4276 49	-6 72	9665836 161369310000000:3235043 16751810000000	86.8296835755.27.8894505372
1	200		5,12		

601	4275,92	-5,95	9665833,73760452000000;3235039,045549930000000	86.8296618025;27.8894178097
602	4275,21	-3,47	9665828,98318784000000;3235034,164727690000000	86.8296190928;27.889379057
603	4274,85	-2,44	9665823,41550058000000;3235031,954558310000000	86.8295690774;27.8893615088
604	4274,62	-3,34	9665818,20504778000000;3235030,760152680000000	86.8295222712;27.8893520254
605	4274,38	-6,61	9665814,17629502000000;3235029,508967310000000	86.8294860802;27.8893420913
606	4273,76	-9,01	9665809,972523310000000;3235026,334130310000000	86.8294483171;27.8893168838
607	4272,72	-10,20	9665806,08616989000000;3235021,029409640000000	86.8294134054;27.8892747654
608	4271,28	-9,61	9665802,31536800000000;3235013,984569630000000	86.8293795317;27.8892188309
609	4270,22	-4,67	9665798,089265410000000;3235009,328996170000000	86.829341568;27.8891818666
610	4269,62	-1,73	9665792,50378745000000;3235004,477529660000000	86.8292913928;27.8891433469
611	4269,44	-2,11	9665788,26009686000000;3235000,622152930000000	86.8292532711;27.889112736
612	4269,19	1,16	9665782,58848550000000;3234996,67810130000000	86.8292023221;27.889081421
613	4269,32	8,22	9665776,481039870000000;3234993,924408370000000	86.829147458;27.8890595572
614	4270,27	8,33	9665770,044200110000000;3234992,629193030000000	86.8290896349;27.8890492735
615	4271,54	8,81	9665761,423132580000000;3234992,258237630000000	86.8290121905;27.8890463282
616	4272,62	8,96	9665754,548102310000000;3234993,453829480000000	86.8289504311;27.8890558209
617	4273,38	8,45	9665749,74383768000000;3234994,072198080000000	86.8289072736;27.8890607306
618	4274,17	7,90	9665744,454857450000000;3234993,866928480000000	86.8288597619;27.8890591008
619	4274,86	6,97	9665739,48594153000000;3234993,249769910000000	86.8288151254;27.8890542007
620	4275,40	5,48	9665735,167955840000000;3234992,229707370000000	86.8287763363;27.8890461016
621	4275,82	2,48	9665731,122562140000000;3234990,634699550000000	86.8287399959;27.8890334376
622	4275,99	-0,03	9665727,922749870000000;3234988,240591500000000	86.8287112515;27.8890144288
623	4275,99	-4,95	9665725,311833440000000;3234985,365151890000000	86.8286877972;27.8889915984
624	4275,49	-6,09	9665723,65612900000000;3234979,851892270000000	86.8286729238;27.8889478241
625	4275,18	-7,87	9665723,10022450000000;3234976,929809190000000	86.82866793;27.8889246234
626	4274,75	-8,47	9665723,32391081000000;3234973,835670220000000	86.8286699394;27.8889000565
627	4274,25	-8,82	9665724,07829708000000;3234970,572063310000000	86.8286767162;27.888874144
628	4273,76	-8,57	9665725,46466746000000;3234967,747704240000000	86.8286891701;27.8888517191
629	4273,32	-8,14	9665726,97477629000000;3234965,222270050000000	86.8287027357;27.8888316676
630	4272,83	-7,79	9665728,462034870000000;3234962,155376680000000	86.8287160959;27.888807317
631	4272,45	-6,68	9665729,57751186000000;3234959,642092640000000	86.8287261165;27.888787362
632	4271,91	-6,82	9665729,68251159000000;3234955,041962490000000	86.8287270597;27.8887508378
633	4271,47	-6,09	9665730,01220293000000;3234951,349658820000000	86.8287300213;27.8887215215
634	4270,99	-5,88	9665729,27653376000000;3234946,894548130000000	86.8287234127;27.8886861487
635	4270,65	-5,87	9665728,365395270000000;3234943,713628430000000	86.8287152278;27.8886608927
636	4270,31	-5,97	9665727,25783220000000;3234940,663524780000000	86.8287052784;27.8886366754
637	4269,87	-6,05	9665725,54978382000000;3234936,767174060000000	86.8286899348;27.888605739
638	4269,43	-6,67	9665723,54123878000000;3234933,130641700000000	86.8286718917;27.8885768655
639	4268,96	-7,38	9665721,74177716000000;3234929,508961070000000	86.8286557268;27.88854811
640	4268,17	-8,08	9665719,414655830000000;3234923,871408840000000	86.828634822;27.8885033487
641	4267,35	-8,47	9665717,837534410000000;3234918,329415780000000	86.8286206544;27.8884593461
642	4266,45	-8,88	9665716,62221308000000;3234912,434045910000000	86.828609737;27.8884125378
643	4265,51	-9,07	9665714,416863830000000;3234906,845246280000000	86.828589926;27.8883681635
644	4264,80	-5,66	9665711,815218280000000;3234903,247874620000000	86.8285665551;27.8883396009
645	4264,33	-4,84	9665707,65793702000000;3234900,801040460000000	86.8285292096;27.8883201734
646	4263,90	-5,04	9665703,479821330000000;3234898,057976820000000	86.8284916769;27.8882983939
647	4263,50	-5,18	9665699,842712270000000;3234895,395957580000000	86.8284590042;27.8882772578
648	4263,01	-5,34	9665695,123281480000000;3234892,571621460000000	86.8284166088;27.888254833

649	4262,51	-5,60	9665690,51136039000000;3234890,007720640000000	86.8283751792;27.8882344759
650	4262,13	0,76	9665687,34943095000000;3234887,759071130000000	86.8283467751;27.888216622
651	4262,19	4,41	9665683,410592220000000;3234885,735666570000000	86.828311392;27.8882005564
652	4262,53	4,80	9665679,43226086000000;3234883,722858970000000	86.828275654;27.888184575
653	4262,83	5,77	9665676,192954540000000;3234882,455932340000000	86.8282465548;27.8881745157
654	4263,23	6,57	9665672,29921510000000;3234881,692796310000000	86.8282115768;27.8881684565
655	4263,72	7,66	9665668,00555050000000;3234881,526007610000000	86.8281730061;27.8881671323
656	4264,31	8,42	9665663,71437580000000;3234882,293563570000000	86.8281344578;27.8881732265
657	4264,96	8,86	9665659,53073385000000;3234883,716879610000000	86.8280968755;27.8881845275
658	4266,06	9,35	9665652,95543085000000;3234886,229543500000000	86.8280378086;27.8882044777
659	4266,62	10,07	9665649,86989252000000;3234887,605466530000000	86.8280100907;27.8882154024
660	4267,33	9,95	9665646,55097918000000;3234889,889904920000000	86.8279802764;27.8882335405
661	4268,21	9,16	9665642,02824006000000;3234891,96086100000000	86.827939648;27.8882499836
662	4269,04	8,79	9665636,98959910000000;3234893,026810170000000	86.8278943851;27.8882584471
663	4269,98	4,85	9665630,92106243000000;3234893,807871980000000	86.8278398705;27.8882646486
664	4270,39	2,28	9665626,27327003000000;3234892,37842008000000	86.8277981187;27.888253299
665	4270,57	-1,97	9665622,47111132000000;3234890,295155080000000	86.8277639633;27.8882367581
666	4270,37	-4,23	9665618,64524278000000;3234886,191307960000000	86.8277295949;27.8882041741
667	4269,93	-7,23	9665615,29707905000000;3234881,280439050000000	86.8276995179;27.8881651825
668	4269,36	-9,34	9665613,75496430000000;3234877,02201809000000	86.8276856648;27.8881313712
669	4268,76	-10,69	9665613,339983440000000;3234873,406257060000000	86.827681937;27.8881026625
670	4267,98	-10,86	9665613,817431340000000;3234869,309044860000000	86.827686226;27.8880701311
671	4267,30	-10,25	9665614,46475569000000;3234865,811204210000000	86.827692041;27.8880423587
672	4266,61	-8,89	9665614,649468370000000;3234862,024918710000000	86.8276937003;27.888012296
673	4265,84	-4,68	9665613,66296150000000;3234857,211490150000000	86.8276848383;27.887974078
674	4265,52	-4,24	9665611,01667585000000;3234854,243432060000000	86.8276610663;27.8879505119
675	4265,21	-0,39	9665607,98759302000000;3234851,331770900000000	86.8276338556;27.8879273937
676	4265,19	-6,15	9665605,046788450000000;3234850,109378990000000	86.8276074379;27.887917688
677	4264,69	-10,19	9665602,149744970000000;3234846,534071150000000	86.8275814133;27.8878893005
678	4264,16	-11,24	9665601,56002986000000;3234843,630257120000000	86.8275761158;27.8878662445
679	4263,58	-10,68	9665601,68481429000000;3234840,735754710000000	86.8275772368;27.8878432625
680	4262,70	-10,03	9665601,09334935000000;3234836,105872510000000	86.8275719236;27.8878065017
681	4261,85	-7,98	9665599,700466840000000;3234831,501826680000000	86.8275594111;27.887769946
682	4261,39	-7,42	9665597,78878749000000;3234828,838424550000000	86.8275422382;27.8877487989
683	4260,87	-1,12	9665595,12532479000000;3234825,811948180000000	86.8275183119;27.887724769
684	4260,81	3,91	9665592,40977849000000;3234824,662199340000000	86.8274939177;27.8877156401
685	4261,19	-0,24	9665587,364631370000000;3234822,278124240000000	86.8274485964;27.8876967108
686	4261,17	-2,98	9665584,28395091000000;3234819,488336980000000	86.8274209222;27.8876745601
687	4260,99	-2,98	9665582,22051066000000;3234816,697599930000000	86.827402386;27.8876524019
688	4260,82	-1,43	9665580,274320530000000;3234813,980618420000000	86.8273849031;27.8876308293
689	4260,76	-2,97	9665578,84416885000000;3234812,322404490000000	86.8273720558;27.8876176633
690	4260,57	-1,99	9665576,70871904000000;3234809,180465280000000	86.8273528727;27.8875927165
691	4260,41	-3,08	9665573,92796406000000;3234805,465145070000000	86.8273278928;27.8875632172
692	4260,19	-4,04	9665571,833339150000000;3234802,068804620000000	86.8273090764;27.8875362506
693	4259,93	-1,60	9665570,154349850000000;3234798,789358840000000	86.8272939938;27.887510212
694	4259,81	-0,64	9665568,30435640000000;3234794,903413710000000	86.827277375;27.887479358
695	4259,76	-0,33	9665566,412246120000000;3234790,798004410000000	86.8272603779;27.8874467613
696	4259,74	-0,22	9665565,07053008000000;3234788,192476230000000	86.8272483251;27.8874260736

697	4259,73	-0,10	9665563,89952776000000;3234786,044745330000000	86.8272378058;27.8874090208
698	4259,73	-0,59	9665562,391174410000000;3234783,432219220000000	86.827224256;27.8873882776
699	4259,69	-0,87	9665560,461477740000000;3234779,934933420000000	86.8272069213;27.8873605094
700	4259,63	-1,19	9665558,53870702000000;3234776,450201120000000	86.8271896487;27.8873328408
701	4259,57	-2,12	9665557,12867312000000;3234773,853725340000000	86.8271769822;27.887312225
702	4259,43	-3,47	9665555,55019781000000;3234770,474066510000000	86.8271628025;27.8872853907
703	4259,22	-3,53	9665554,43397722000000;3234767,285438490000000	86.8271527753;27.8872600732
704	4259,01	-2,92	9665553,25559493000000;3234764,028849970000000	86.8271421897;27.8872342161
705	4258,88	-3,32	9665552,26941529000000;3234761,807402270000000	86.8271333307;27.887216578
706	4258,70	-3,32	9665551,05777509000000;3234758,914944240000000	86.8271224464;27.887193612
707	4258,51	-2,69	9665549,71525367000000;3234755,864031540000000	86.8271103863;27.8871693879
708	4258,32	-3,47	9665547,74378764000000;3234752,22238163000000	86.8270926763;27.8871404734
709	4257,98	-5,53	9665545,332730470000000;3234747,261824950000000	86.8270710174;27.8871010869
710	4257,51	-6,51	9665544,027991270000000;3234742,557962280000000	86.8270592967;27.8870637385
711	4257,11	-6,44	9665543,42564142000000;3234739,144700040000000	86.8270538857;27.8870366373
712	4256,62	-5,87	9665542,56762925000000;3234734,871768560000000	86.8270461781;27.8870027104
713	4256,24	-5,08	9665541,52900280000000;3234731,331549770000000	86.827036848;27.8869746013
714	4255,90	-5,50	9665540,02511699000000;3234727,776182110000000	86.8270233383;27.8869463718
715	4255,56	-3,69	9665538,728004510000000;3234724,489801930000000	86.8270116862;27.8869202781
716	4255,33	-3,46	9665536,731083250000000;3234721,611055660000000	86.8269937475;27.8868974209
717	4255,06	-3,39	9665533,98827043000000;3234718,105449240000000	86.8269691084;27.8868695865
718	4254,78	-6,96	9665530,90104019000000;3234714,513600950000000	86.8269413753;27.8868410674
719	4254,21	-7,76	9665529,38071656000000;3234710,080304770000000	86.826927718;27.8868058672
720	4253,56	-8,64	9665528,24047990000000;3234705,484122360000000	86.8269174751;27.8867693736
721	4252,86	-9,21	9665527,745822720000000;3234700,893684740000000	86.8269130315;27.8867329256
722	4252,19	-8,16	9665527,850401470000000;3234696,733012710000000	86.826913971;27.88669989
723	4251,54	-4,06	9665526,931778480000000;3234692,328669190000000	86.8269057189;27.8866649196
724	4251,22	-4,50	9665524,79364674000000;3234688,333662850000000	86.8268865117;27.8866331993
725	4250,80	-4,32	9665522,236396140000000;3234683,706243460000000	86.8268635395;27.8865964577
726	4250,50	-4,31	9665519,82747808000000;3234680,454511680000000	86.8268418998;27.886570639
727	4250,16	-4,06	9665516,860542880000000;3234677,153275520000000	86.8268152474;27.8865444272
728	4249,81	-4,27	9665513,09491087000000;3234673,973895300000000	86.8267814202;27.886519183
729	4249,50	-4,36	9665509,74403768000000;3234671,431021360000000	86.8267513188;27.8864989926
730	4249,19	-6,83	9665506,34985850000000;3234669,144588510000000	86.8267208283;27.8864808383
731	4248,63	-8,72	9665503,47923129000000;3234665,503012510000000	86.826695041;27.8864519242
732	4247,85	-9,01	9665502,08898166000000;3234660,571203930000000	86.8266825522;27.8864127657
733	4247,22	-7,31	9665501,000072610000000;3234656,759549330000000	86.8266727704;27.8863825012
734	4246,62	-8,18	9665499,72043286000000;3234652,295399030000000	86.8266612752;27.8863470558
735	4245,71	-9,35	9665499,19295828000000;3234645,965172340000000	86.8266565368;27.8862967938
736	4244,62	-8,51	9665499,212892770000000;3234639,34378692000000	86.8266567159;27.8862442199
737	4243,55	-10,30	9665498,715626370000000;3234632,217519620000000	86.8266522488;27.8861876373
738	4242,49	-9,53	9665499,25189852000000;3234626,387868410000000	86.8266570663;27.8861413497
739	4241,30	-9,64	9665499,411853250000000;3234619,289860950000000	86.8266585032;27.8860849914
740	4240,42	-9,93	9665499,60596136000000;3234614,168564450000000	86.8266602469;27.8860443282
741	4239,62	-8,52	9665499,961071220000000;3234609,599276710000000	86.8266634369;27.8860080479
742	4238,70	-9,93	9665501,14693128000000;3234603,536952990000000	86.8266740896;27.8859599129
743	4237,78	-5,70	9665500,59599669000000;3234598,345772300000000	86.8266691405;27.8859186947
744	4237,39	-3,46	9665498,72556356000000;3234594,85787600000000	86.8266523381;27.8858910007

745	4237,20	-2,46	9665496,906972220000000;3234592,305866540000000	86.8266360014;27.8858707377
746	4236,98	4,79	9665493,46920668000000;3234588,54448298000000	86.8266051195;27.8858408721
747	4237,36	7,03	9665489,28760849000000;3234586,632380670000000	86.8265675555;27.88582569
748	4238,15	6,45	9665483,48348373000000;3234584,044595910000000	86.8265154162;27.8858051428
749	4238,78	5,94	9665478,20762563000000;3234582,318235160000000	86.8264680223;27.8857914355
750	4239,46	5,60	9665471,97153853000000;3234580,357570750000000	86.8264120026;27.8857758677
751	4240,01	5,26	9665466,43658954000000;3234579,298808220000000	86.8263622813;27.8857674611
752	4240,46	5,00	9665461,65815749000000;3234578,242228850000000	86.8263193559;27.8857590718
753	4240,81	4,78	9665457,70425376000000;3234577,389870290000000	86.8262838374;27.885752304
754	4241,14	4,67	9665453,84293750000000;3234576,592382890000000	86.8262491506;27.8857459719
755	4241,39	3,44	9665450,88563248000000;3234576,068576630000000	86.8262225847;27.8857418129
756	4241,64	2,04	9665447,00143796000000;3234574,320765270000000	86.8261876924;27.8857279352
757	4241,72	1,16	9665445,28798398000000;3234573,072268560000000	86.8261723002;27.8857180221
758	4241,77	-0,03	9665443,54662188000000;3234571,501988920000000	86.8261566572;27.885705554
759	4241,76	-0,90	9665441,91835662000000;3234569,51881639000000	86.8261420303;27.8856898075
760	4241,73	-1,24	9665440,760501510000000;3234567,787524960000000	86.8261316291;27.8856760609
761	4241,66	-2,10	9665438,97215550000000;3234565,133379810000000	86.8261155641;27.8856549869
762	4241,47	-2,94	9665436,30300909000000;3234560,617568060000000	86.8260915868;27.8856191311
763	4241,24	-3,50	9665434,20606795000000;3234556,641133870000000	86.8260727496;27.885587558
764	4241,00	-4,02	9665432,466256530000000;3234553,217844530000000	86.8260571206;27.8855603768
765	4240,65	-4,77	9665430,204418270000000;3234548,767391700000000	86.8260368022;27.88552504
766	4240,14	-5,27	9665427,62219992000000;3234543,237827840000000	86.8260136057;27.8854811349
767	4239,75	-5,99	9665425,68553869000000;3234539,446374860000000	86.8259962084;27.8854510305
768	4239,29	-6,47	9665424,15764379000000;3234535,271064270000000	86.8259824831;27.8854178782
769	4238,70	-6,87	9665422,68787004000000;3234530,348882740000000	86.8259692799;27.8853787957
770	4238,12	-7,30	9665421,141164280000000;3234525,771112120000000	86.8259553856;27.8853424479
771	4237,48	-7,84	9665419,55628456000000;3234521,039883470000000	86.8259411484;27.8853048816
772	4236,74	-8,39	9665417,28199949000000;3234516,154580580000000	86.8259207181;27.8852660919
773	4236,10	-8,93	9665415,33224545000000;3234512,246022310000000	86.8259032032;27.8852350576
774	4235,40	-9,47	9665413,017128870000000;3234508,444883050000000	86.8258824061;27.8852048762
775	4234,75	-10,01	9665410,93419908000000;3234505,194274600000000	86.8258636949;27.8851790661
776	4233,96	-3,39	9665408,423498270000000;3234501,45110130000000	86.8258411409;27.885149345
777	4233,66	0,81	9665405,340991720000000;3234497,553120960000000	86.8258134502;27.8851183946
778	4233,74	0,91	9665401,24341130000000;3234493,82969703000000	86.825776641;27.8850888303
779	4233,82	0,62	9665397,223825770000000;3234490,694909320000000	86.8257405325;27.8850639398
780	4233,86	-0,70	9665394,349472910000000;3234488,599320120000000	86.8257147117;27.8850473006
781	4233,81	-1,31	9665391,21160401000000;3234486,07216398000000	86.8256865238;27.8850272347
782	4233,72	3,64	9665388,02166645000000;3234483,535863900000000	86.8256578681;27.8850070963
783	4233,96	6,68	9665384,94462386000000;3234481,271669510000000	86.8256302265;27.8849891183
784	4234,27	6,14	9665382,66180186000000;3234479,922013160000000	86.8256097196;27.8849784019
785	4234,65	5,44	9665379,68833839000000;3234478,061324510000000	86.8255830085;27.8849636279
786	4235,06	4,71	9665376,05089156000000;3234475,657428330000000	86.8255503328;27.8849445407
787	4235,39	4,15	9665372,81603558000000;3234473,45211480000000	86.8255212736;27.8849270302
788	4235,73	3,57	9665368,85353495000000;3234470,939675490000000	86.8254856778;27.8849070812
789	4235,99	2,68	9665365,214467700000000;3234468,785065270000000	86.8254529875;27.8848899734
790	4236,20	2,24	9665361,48307108000000;3234466,33986839000000	86.8254194678;27.8848705582
791	4236,33	1,51	9665358,515844070000000;3234464,556081940000000	86.8253928128;27.8848563948
792	4236,44	0,89	9665355,12754301000000;3234462,38884473000000	86.8253623751;27.8848391867
793	4236 49	0.18	9665352 40922479000000 3234460 624371730000000	86 8253379561 27 8848251765
-----	---------	-----------------------------	---	-----------------------------
794	4236 50	-0.43	9665349 365531420000000:3234458 533973800000000	86 8253106141:27 8848085785
795	4236.48	-1 32	9665346 513229370000000:3234456 558632430000000	86 8252849915:27 8847928941
796	4236 39	-2.12	9665343 545451240000000:3234454 29166399000000	86 8252583314.27 8847748941
797	4236.23	-2.57	9665340 19535380000000.3234451 62603111000000	86 825228237:27 8847537287
798	4236.08	-3.24	9665337 40022902000000003234449 554677470000000	86 825203128:27 8847372819
799	4235 88	-3 30	9665334 714177070000000:3234447 501334530000000	86 8251789988.27 8847209781
800	4235 70	-4 32	9665332 125430510000000:3234445 79977880000000	86 8251557437.27 8847074675
801	4235.46	-5 14	9665329 555146510000000:3234443 835259730000000	86 8251326544 27 884691869
802	4235 12	-6.63	9665326 58552110000000:3234441 40779206000000	86 8251059778 27 8846725946
803	4234 76	-7.52	9665324 530990560000000:3234439 187607990000000	86 8250875216:27 884654966
804	4234,33	-8.94	9665322 462276080000000:3234436 663663150000000	86 8250689381 27 8846349256
805	4233 81	-9.56	9665320 886029480000000:3234433 711792580000000	86 8250547784 27 8846114874
806	4233.01	-10.36	9665318 735433020000000:3234429 530022570000000	86 8250354593 27 8845782836
807	4232.32	-10.83	9665317 3978070400000003234425 999872720000000	86 8250234432 27 8845502537
808	4231 35	-6.04	9665315 415374950000000.3234421 30068881000000	86 8250056347:27 8845129415
809	4230.95	-0.85	9665313 936797480000000-3234417 892268940000000	86 8249923524-27 8844858782
810	4230,93	0,00	9665312 430418930000000:3234414 87824465000000	86 8249788204-27 8844619464
811	4230,91	-0.66	9665310 208754040000000:3234410 756166750000000	86 8249588628.27 8844292165
812	4230,85	-1 42	9665307 954087280000000.3234406 169530590000000	86 8249386088.27 884392798
813	4230,05	0.95	9665306 414699190000000:3234402 690877390000000	86 8249247802.27 884365177
814	4230.82	2 27	9665304 358753610000000.3234399 04403406000000	86 8249063114:27 8843362205
815	4231.02	1.53	9665301 743644830000000:3234394 895614090000000	86 8248828194:27 8843032814
816	4231,02	3.86	9665299 800798680000000:3234391 52123671000000	86 8248653665.27 8842764883
817	4231,12	<i>3,00</i> <i>4 4</i> 0	9665297 097126950000000:3234387 69747004000000	86 8248410791:27 884246127
818	4231,44	5 42	9665294 384377500000000-3234384 005456820000000	86 82481671:27 8842168119
810	4237,00	4 20	9665292 50935408000000-3234381 62506636000000	86 8247998664.27 8841979112
820	4232,00	11 0/	9665290 529076950000000.3234378 77633701000000	86 8247820773.27 8841752918
821	4233.05	14.67	9665288 046705520000000.3234376 48688939000000	86 8247597777.27 8841571132
822	4233,00	15.84	9665285 54595305000000-3234374 460560390000000	86 8247373131.27 8841410238
823	4233,30	15,60	9665283 008308730000000.3234372 96029290000000	86 824714517:27 8841291115
824	4235.76	16.68	9665279 761555020000000:3234371 211984720000000	86 824685351:27 8841152296
825	4236,66	15,62	9665276 924422190000000:3234370 219352640000000	86 8246598646.27 8841073479
826	4230,00	15,02	9665274 420896500000000-3234369 184249570000000	86 824637375.27 884099129
827	4237,42	15.88	9665271 71580980000000.3234368 201089830000000	86 8246130748.27 8840913226
828	4238.82	14 31	9665269 7107959000000003234367 597555660000000	86 8245950635:27 8840865304
820	4230,02	12.45	9665267 207071360000000-3234366 562728240000000	86 8245725802.27 8840783137
920	4239,51	12,45	9665264 9163616900000003234365 344703150000000	86 8245510042:27 8840686424
831	4240,00	14 78	9665261 520571770000000.3234363 62971448000000	86 8245214894:27 8840550251
922	4240,90	12.90	9665258 096035110000000:3234363 83666028000000	96 9244007262·27 9940497291
833	4241,85	13 31	9665256 04053448000000-3234362 26686497000000	86 8244722614-27 8840442038
924	4242,33	8.02	9665254,04053448000000,3234362,200804970000000	86 8244564145.27 8840200881
825	4242,19	6 27	9665253 206038350000000.3234361 012622180000000	86 8244467087.27 8840242520
000	4242,97	0,37	9003235,200030330000000,3234301,013022100000000	86 824/31055.27 8840225060
837	4240,22	0.44	9665250 47926820000000-3234358 7096950000000	86 8244223037-27 8840150502
001	4240,01	1 20	0665240 404875220000000.3234357 44040064000000	86 8244134607-27 9940059702
000	4240,02	-1,30	9003249,494073220000000,3234357,440199040000000 0665248 311804140000000-2224255 68402006000000	86 824402833.27 892001025
039	4243,27	-0,99	9003240,511004140000000,3234333,004030900000000	00.024402033,27.003991933
040	4243,02	-0,97	3003247,417303030000000,3234333,402733360000000	00.0243940031,21.0039142911

841	4242,69	-7,78	9665246,49809372000000;3234350,970471350000000	86.8243865402;27.8839545085
842	4242,34	-8,94	9665245,65680918000000;3234348,535349450000000	86.8243789828;27.8839351732
843	4241,87	-10,33	9665244,810980110000000;3234345,692523630000000	86.8243713846;27.8839126006
844	4241,39	-11,84	9665244,22491029000000;3234343,109761860000000	86.8243661198;27.883892093
845	4240,87	-10,82	9665243,903711070000000;3234340,674229990000000	86.8243632345;27.8838727545
846	4240,34	-10,96	9665243,27831391000000;3234337,952953630000000	86.8243576164;27.883851147
847	4239,78	-11,45	9665242,58906029000000;3234335,137732770000000	86.8243514248;27.8838287936
848	4239,18	-12,39	9665241,92427146000000;3234332,277766050000000	86.8243454529;27.883806085
849	4238,67	-11,77	9665241,52890579000000;3234329,972812460000000	86.8243419012;27.8837877832
850	4238,06	-12,36	9665240,79509432000000;3234327,131372550000000	86.8243353093;27.8837652216
851	4237,51	-12,20	9665240,226060220000000;3234324,677813000000000	86.8243301976;27.8837457399
852	4236,91	-12,56	9665239,47899628000000;3234322,032489580000000	86.8243234866;27.8837247355
853	4236,34	-10,91	9665238,780126270000000;3234319,557832290000000	86.8243172085;27.8837050862
854	4235,92	-12,37	9665237,79444962000000;3234317,620642270000000	86.824308354;27.8836897046
855	4235,38	-11,74	9665236,87918620000000;3234315,309326630000000	86.8243001321;27.8836713523
856	4234,87	-13,54	9665235,74623498000000;3234313,156237380000000	86.8242899546;27.8836542563
857	4234,30	-13,17	9665234,93818878000000;3234310,910697450000000	86.8242826958;27.8836364263
858	4233,55	-13,78	9665233,56862762000000;3234308,031154530000000	86.8242703928;27.8836135621
859	4232,79	-14,77	9665232,228817540000000;3234305,226189110000000	86.8242583571;27.8835912901
860	4231,93	-15,60	9665230,96222078000000;3234302,222809830000000	86.8242469791;27.8835674427
861	4230,75	-16,21	9665229,42474236000000;3234298,30362200000000	86.8242331677;27.8835363235
862	4229,69	-16,33	9665228,05520455000000;3234294,922556330000000	86.8242208649;27.8835094771
863	4228,53	-17,47	9665226,219509270000000;3234291,396215600000000	86.8242043746;27.8834814772
864	4227,11	-18,45	9665224,354507710000000;3234287,295159090000000	86.824187621;27.883448914
865	4225,66	-14,51	9665222,722605610000000;3234283,266436310000000	86.8241729614;27.883416925
866	4224,62	-9,82	9665221,22116268000000;3234279,559775610000000	86.8241594737;27.8833874933
867	4223,70	-5,86	9665219,195962210000000;3234274,651440860000000	86.824141281;27.8833485201
868	4223,28	-0,08	9665218,247722570000000;3234270,640415210000000	86.8241327628;27.8833166716
869	4223,28	-2,76	9665217,388323530000000;3234266,025272470000000	86.8241250427;27.8832800263
870	4223,10	-4,18	9665217,15970989000000;3234262,442195720000000	86.824122989;27.8832515759
871	4222,86	-4,30	9665217,17910642000000;3234259,141691740000000	86.8241231633;27.8832253691
872	4222,58	-3,70	9665217,22586306000000;3234255,340598490000000	86.8241235833;27.8831951876
873	4222,30	-5,18	9665217,141123440000000;3234251,087647890000000	86.8241228221;27.8831614181
874	4221,88	-4,18	9665217,445875320000000;3234246,418578750000000	86.8241255597;27.8831243446
875	4221,62	-0,29	9665217,47938651000000;3234242,921848580000000	86.8241258607;27.8830965797
876	4221,60	4,33	9665216,72386192000000;3234239,646104430000000	86.8241190737;27.8830705695
877	4221,97	7,01	9665214,267302010000000;3234235,510691910000000	86.8240970061;27.8830377333
878	4222,46	7,50	9665211,494562670000000;3234232,596465790000000	86.8240720981;27.8830145937
879	4223,01	8,90	9665208,369133730000000;3234229,817479290000000	86.8240440219;27.8829925278
880	4223,67	6,17	9665204,841143130000000;3234227,564422810000000	86.8240123294;27.882974638
881	4224,12	8,29	9665201,682045440000000;3234224,757650420000000	86.8239839508;27.8829523515
882	4224,57	7,00	9665199,028898210000000;3234223,226972790000000	86.8239601172;27.8829401975
883	4224,98	6,82	9665196,23212638000000;3234221,365580400000000	86.8239349933;27.8829254176
884	4225,53	0,76	9665192,38536581000000;3234218,971333340000000	86.8239004373;27.8829064067
885	4225,58	-2,79	9665190,11902512000000;3234215,920227710000000	86.8238800784;27.8828821801
886	4225,40	-3,96	9665188,56213416000000;3234212,580587110000000	86.8238660926;27.8828556625
887	4225,15	-7,20	9665187,24910044000000;3234209,332340550000000	86.8238542974;27.8828298706
888	4224,72	-6,30	9665186,71784882000000;3234205,972241350000000	86.8238495251;27.8828031905

889	4224,41	-7,97	9665186,02650160000000;3234203,240531200000000	86.8238433146;27.8827815
890	4224,01	-7,47	9665185,69370036000000;3234200,377384240000000	86.823840325;27.8827587659
891	4223,52	-8,55	9665185,03441566000000;3234196,710563990000000	86.8238344026;27.8827296503
892	4222,73	-7,97	9665184,574628410000000;3234191,478444780000000	86.8238302722;27.8826881059
893	4222,24	-8,57	9665183,980256710000000;3234188,003749490000000	86.8238249329;27.8826605159
894	4221,81	-9,57	9665183,64645550000000;3234185,177563220000000	86.8238219343;27.8826380752
895	4220,91	-10,00	9665183,70192016000000;3234179,833947930000000	86.8238224326;27.8825956454
896	4220,14	-9,71	9665184,14404666000000;3234175,476265670000000	86.8238264043;27.8825610442
897	4219,40	-8,49	9665184,40936202000000;3234171,201846870000000	86.8238287876;27.8825271041
898	4218,87	6,88	9665184,34373242000000;3234167,602115380000000	86.8238281981;27.8824985212
899	4219,40	6,86	9665184,131551470000000;3234163,162973670000000	86.823826292;27.8824632731
900	4220,12	6,63	9665183,51785490000000;3234157,259266880000000	86.8238207791;27.882416396
901	4220,70	6,35	9665182,756025110000000;3234152,306113380000000	86.8238139355;27.8823770665
902	4221,11	5,81	9665182,139116880000000;3234148,617869010000000	86.8238083937;27.8823477808
903	4221,57	5,08	9665180,82258096000000;3234144,285298160000000	86.823796567;27.8823133789
904	4222,06	4,09	9665179,026908840000000;3234139,169278250000000	86.8237804362;27.8822727561
905	4222,43	3,92	9665176,96610380000000;3234134,319027170000000	86.8237619237;27.8822342437
906	4222,70	3,35	9665175,84426152000000;3234130,663871190000000	86.823751846;27.8822052206
907	4222,85	2,74	9665174,96809540000000;3234128,119697420000000	86.8237439753;27.8821850191
908	4222,98	2,03	9665174,012405740000000;3234125,705420970000000	86.8237353902;27.882165849
909	4223,08	2,95	9665172,83479004000000;3234123,111770730000000	86.8237248115;27.8821452546
910	4223,25	2,97	9665172,10463526000000;3234119,823265680000000	86.8237182524;27.8821191428
911	4223,40	2,07	9665171,60895149000000;3234117,036378190000000	86.8237137996;27.8820970141
912	4223,53	-1,39	9665170,67026099000000;3234113,51574732000000	86.8237053672;27.8820690592
913	4223,46	-3,30	9665169,01678989000000;3234111,247357850000000	86.8236905138;27.8820510474
914	4223,29	-5,49	9665166,818073850000000;3234109,076001420000000	86.8236707624;27.8820338062
915	4223,00	-6,28	9665164,28151380000000;3234107,464836290000000	86.8236479761;27.882021013
916	4222,66	-6,33	9665161,652108480000000;3234105,921071930000000	86.8236243557;27.882008755
917	4222,36	-7,23	9665159,43999031000000;3234104,377063180000000	86.823604484;27.8819964951
918	4221,92	-7,17	9665156,48605796000000;3234102,527517230000000	86.8235779483;27.8819818091
919	4221,47	-7,01	9665153,709837070000000;3234100,271528190000000	86.8235530091;27.8819638958
920	4221,09	-7,68	9665151,56085389000000;3234098,028797550000000	86.8235337045;27.8819460878
921	4220,55	-8,61	9665148,809359070000000;3234095,101925740000000	86.8235089874;27.8819228475
922	4220,01	-9,15	9665146,34200495000000;3234092,582007340000000	86.8234868227;27.8819028385
923	4219,37	-9,57	9665143,62931616000000;3234089,627390870000000	86.8234624543;27.8818793779
924	4218,87	-9,85	9665141,733970470000000;3234087,402513950000000	86.8234454281;27.8818617116
925	4218,42	-10,66	9665140,124142170000000;3234085,376974730000000	86.8234309667;27.8818456282
926	4217,80	-10,48	9665137,98276702000000;3234082,821354250000000	86.8234117304;27.8818253357
927	4217,31	-10,47	9665136,47284859000000;3234080,65349480000000	86.8233981666;27.8818081221
928	4216,82	-11,48	9665135,07346136000000;3234078,403737440000000	86.8233855957;27.8817902583
929	4216,28	-12,57	9665133,563770270000000;3234076,236207400000000	86.8233720339;27.8817730474
930	4215,67	-13,36	9665131,87244730000000;3234074,10110806000000	86.8233568405;27.881756094
931	4215,00	-8,57	9665130,04934285000000;3234071,927144390000000	86.8233404633;27.881738832
932	4214,53	-5,38	9665127,90197808000000;3234069,686020860000000	86.8233211732;27.8817210367
933	4214,34	-5,41	9665126,482807470000000;3234068,181451520000000	86.8233084245;27.8817090899
934	4214,15	-5,74	9665125,002054470000000;3234066,882580890000000	86.8232951227;27.8816987764
935	4213,90	-5,59	9665123,14689534000000;3234065,137078300000000	86.8232784575;27.8816849165
936	4213,63	0,22	9665120,93063105000000;3234063,649258670000000	86.8232585485;27.8816731027

Der glazifluviale Formenschatz im Gletschervorfeld des Himalaya

1				
937	4213,65	8,16	9665118,386494140000000;3234062,257566650000000	86.8232356941;27.8816620522
938	4214,03	5,46	9665116,05439639000000;3234060,98186408000000	86.8232147445;27.8816519227
939	4214,40	1,78	9665112,45329582000000;3234059,555354390000000	86.8231823953;27.8816405957
940	4214,50	-3,96	9665109,13879793000000;3234058,833144970000000	86.8231526207;27.8816348611
941	4214,26	-6,62	9665105,632794070000000;3234058,961716680000000	86.8231211257;27.881635882
942	4213,88	-7,71	9665102,43467812000000;3234059,47072899000000	86.8230923965;27.8816399237
943	4213,39	-8,13	9665098,88124198000000;3234060,226164070000000	86.8230604755;27.8816459222
944	4212,76	-9,84	9665094,58278035000000;3234061,235299170000000	86.8230218617;27.881653935
945	4212,10	-2,98	9665090,955645730000000;3234062,420960220000000	86.8229892786;27.8816633496
946	4211,91	2,24	9665087,572187510000000;3234063,773026890000000	86.8229588845;27.8816740855
947	4212,08	3,84	9665083,761667440000000;3234065,888764480000000	86.822924654;27.8816908852
948	4212,28	5,91	9665081,29869486000000;3234067,688446540000000	86.8229025288;27.8817051753
949	4212,61	6,17	9665079,18096198000000;3234069,946835460000000	86.8228835048;27.8817231076
950	4212,89	5,34	9665077,35684759000000;3234071,870043750000000	86.8228671185;27.8817383786
951	4213,14	3,47	9665075,34779099000000;3234073,526914320000000	86.8228490709;27.8817515347
952	4213,38	0,76	9665071,752271780000000;3234075,363414470000000	86.8228167718;27.8817661171
953	4213,44	-0,76	9665067,150627110000000;3234076,318999000000000	86.8227754345;27.8817737048
954	4213,38	0,49	9665062,621478290000000;3234076,619666690000000	86.8227347485;27.8817760922
955	4213,42	0,09	9665058,21644059000000;3234077,319087940000000	86.8226951773;27.8817816458
956	4213,43	-1,21	9665052,990014730000000;3234077,925804510000000	86.8226482276;27.8817864634
957	4213,32	-1,44	9665047,683030730000000;3234077,999640810000000	86.8226005541;27.8817870497
958	4213,19	-4,87	9665042,67775303000000;3234077,984189620000000	86.8225555909;27.881786927
959	4212,77	-1,52	9665037,811614370000000;3234076,818884500000000	86.8225118777;27.881777674
960	4212,61	-1,24	9665032,63126572000000;3234074,427299600000000	86.8224653418;27.8817586841
961	4212,51	-1,20	9665028,413529070000000;3234072,000678110000000	86.8224274532;27.8817394159
962	4212,41	-1,72	9665024,170488410000000;3234069,679643260000000	86.8223893373;27.881720986
963	4212,26	0,11	9665019,86609094000000;3234067,269952160000000	86.8223506703;27.8817018523
964	4212,27	0,97	9665015,144067870000000;3234065,319031940000000	86.8223082516;27.8816863613
965	4212,37	8,34	9665009,38605602000000;3234063,355145120000000	86.8222565265;27.8816707674
966	4213,31	11,04	9665003,27300750000000;3234061,531071140000000	86.8222016121;27.8816562836
967	4214,91	10,21	9664995,553100440000000;3234058,779398970000000	86.822132263;27.8816344343
968	4216,42	8,75	9664987,66227982000000;3234055,934284490000000	86.8220613785;27.8816118431
969	4217,55	8,45	9664980,579135370000000;3234053,877833540000000	86.8219977496;27.8815955142
970	4218,40	8,50	9664975,15023716000000:3234052,120264160000000	86.8219489809;27.8815815585
971	4219,58	7,21	9664967,91663996000000;3234049,016575200000000	86.8218840004;27.8815569141
972	4220,58	6,73	9664960,46374856000000;3234046,248011550000000	86.82181705:27.8815349307
973	4221.31	5.93	9664954.76024792000000:3234043.788305490000000	86.8217658145:27.8815153998
974	4221.97	5.61	9664948.98887661000000:3234041.34660348000000	86.8217139694:27.8814960118
975	4222.50	7.06	9664944.17473288000000:3234038.767672270000000	86.8216707232:27.8814755341
976	4223.31	5.88	9664938.544936250000000.3234035.516895780000000	86.8216201499 27.8814497218
977	4223.73	4.58	9664935,146068210000000:3234033,271944280000000	86.8215896174.27.8814318961
978	4224.11	3.33	9664931,22298576000000,3234030,47386237000000	86.8215543757.27.8814096783
979	4224.34	2 31	9664927 770311330000000:3234028 494625620000000	86 8215233598 27 8813939624
980	4224,04	1 13	9664924 712421250000000:3234026 768417870000000	86 8214958903.27 8813802557
981	4224,49	-0.31	9664921 67905108000000003234024 56177686000000	86 8214686411.27 8813627341
082	4224,50	-1 67	9664919 187477770000000-3234021 959140750000000	86 8214462589.27 8813420683
083	4224,34 1991 11	-1,07	9664916 426959850000000-3234018 64636409000000	86 8214214608-27 8813157636
08/	1001 02	-2,90	9664914 28930262000000-3234015 764593730000000	86 8214022570-27 8812028812
304	4224,23	-4,01	0007017,200002020000000,0204010,704080700000000	00.0214022013,21.0012320012

985	4223,94	-4,06	9664911,369934970000000;3234012,782610890000000	86.8213760327;27.8812692032
986	4223,68	-1,82	9664907,967015830000000;3234011,498255670000000	86.8213454638;27.8812590049
987	4223,55	-3,85	9664903,85281233000000;3234012,046281290000000	86.8213085053;27.8812633565
988	4223,23	-5,65	9664899,15603699000000;3234011,26860820000000	86.8212663134;27.8812571814
989	4222,86	-9,05	9664895,69362590000000;3234010,073300320000000	86.8212352101;27.8812476902
990	4222,30	-10,38	9664893,046100170000000;3234007,688799240000000	86.8212114269;27.8812287564
991	4221,61	-10,41	9664890,36375685000000;3234005,047642050000000	86.821187331;27.8812077846
992	4220,81	-11,15	9664886,67738965000000;3234002,712810150000000	86.8211542158;27.8811892452
993	4220,01	-12,51	9664883,14738745000000;3234000,733826690000000	86.8211225053;27.8811735313
994	4218,50	-14,64	9664877,222235130000000;3233997,447559290000000	86.8210692787;27.881147437
995	4217,10	-14,98	9664872,69058885000000;3233994,561722930000000	86.8210285703;27.8811245224
996	4215,76	-8,90	9664868,21148102000000;3233992,310660130000000	86.8209883337;27.8811066481
997	4215,16	0,02	9664864,37881453000000;3233992,281775440000000	86.8209539043;27.8811064187
998	4215,16	-3,64	9664860,487924110000000;3233993,966361050000000	86.8209189519;27.881119795
999	4214,95	-10,65	9664857,19349543000000;3233994,667136330000000	86.8208893575;27.8811253594
1000	4214,21	-5,74	9664853,305918370000000;3233994,192213730000000	86.8208544348;27.8811215883
1001	4213,79	-3,44	9664849,129097570000000;3233994,291560830000000	86.8208169138;27.8811223772
1002	4213,53	3,84	9664844,79991040000000;3233994,369862970000000	86.820778024;27.881122999
1003	4213,80	4,98	9664841,00736649000000;3233995,633833430000000	86.820743955;27.8811330354
1004	4214,18	4,75	9664836,964454840000000;3233997,187112500000000	86.8207076369;27.881145369
1005	4214,56	-8,27	9664832,654179870000000;3233998,777448410000000	86.8206689171;27.8811579969
1006	4213,61	-19,34	9664826,21714463000000;3233997,514478710000000	86.8206110922;27.8811479684
1007	4212,14	-21,49	9664823,317165570000000;3233994,503446810000000	86.8205850412;27.8811240597
1008	4210,29	-22,46	9664820,76718232000000;3233990,562035910000000	86.8205621344;27.8810927633
1009	4208,63	-22,86	9664819,001225370000000;3233986,945166590000000	86.8205462705;27.881064044
1010	4206,73	-20,52	9664817,27309154000000;3233982,800227500000000	86.8205307464;27.8810311315
1011	4205,14	-17,96	9664814,51619028000000;3233979,549157120000000	86.8205059807;27.8810053168
1012	4203,65	-18,64	9664810,910638840000000;3233976,732180020000000	86.8204735915;27.8809829488
1013	4201,81	-18,65	9664806,72386320000000;3233973,200777090000000	86.8204359811;27.8809549081
1014	4199,96	-17,92	9664802,52007236000000;3233969,720242460000000	86.8203982178;27.8809272713
1015	4198,31	-17,56	9664798,39124064000000;3233966,682598120000000	86.8203611279;27.8809031512
1016	4196,40	-18,28	9664793,43646704000000;3233963,271098160000000	86.8203166184;27.8808760625
1017	4194,58	-17,15	9664789,01452028000000;3233959,985917520000000	86.8202768953;27.8808499768
1018	4193,38	-1,36	9664785,77000104000000;3233957,846055480000000	86.8202477493;27.8808329854
1019	4193,26	-5,13	9664780,856379670000000;3233955,613095420000000	86.8202036095;27.8808152548
1020	4192,73	-4,92	9664775,04817960000000;3233955,602288990000000	86.8201514336;27.880815169
1021	4192,37	-3,94	9664770,75857382000000;3233955,458224100000000	86.8201128994;27.8808140251
1022	4191,96	-5,34	9664764,98958556000000;3233954,367293600000000	86.8200610757;27.8808053626
1023	4191,51	-1,86	9664760,21365612000000;3233954,437523730000000	86.8200181728;27.8808059203
1024	4191,31	-0,48	9664754,00449013000000;3233954,703314220000000	86.8199623949;27.8808080308
1025	4191,27	1,79	9664749,01126404000000;3233955,457969880000000	86.81991754;27.8808140231
1026	4191,43	14,79	9664744,76561089000000;3233958,507016820000000	86.8198794006;27.8808382337
1027	4192,75	-1,53	9664740,56604562000000;3233961,18236280000000	86.8198416753;27.8808594771
1028	4192,65	-8,77	9664736,73050156000000;3233960,855656900000000	86.81980722;27.8808568829
1029	4191,83	-4,42	9664731,77910054000000;3233959,026939160000000	86.8197627408;27.8808423621
1030	4191,37	0,36	9664727,38574653000000;3233954,970689610000000	86.8197232746;27.8808101538
1031	4191.40	-0.19	9664724,59134381000000:3233950.934828270000000	86.8196981721:27.8807781075
1032	4191,39	-0,52	9664722,62519305000000;3233947,08659690000000	86.8196805099;27.8807475509

1033	4191,34	-0,73	9664721,117029840000000;3233942,400467370000000	86.8196669618;27.8807103411
1034	4191,27	-1,74	9664720,02088298000000;3233937,056464650000000	86.819657115;27.8806679075
1035	4191,11	-2,50	9664717,76252000000000;3233932,164562410000000	86.8196368277;27.8806290637
1036	4190,90	-3,04	9664715,50253505000000;3233927,878335940000000	86.8196165259;27.8805950293
1037	4190,68	-3,59	9664713,60853016000000;3233924,228350720000000	86.8195995118;27.8805660468
1038	4190,40	-4,82	9664711,50373059000000;3233920,215283500000000	86.8195806041;27.8805341814
1039	4190,00	-5,70	9664708,63005658000000;3233916,519184000000000	86.8195547894;27.8805048327
1040	4189,62	-6,35	9664706,04115932000000;3233913,705187110000000	86.819531533;27.8804824884
1041	4189,21	-6,65	9664703,451845450000000;3233911,053289140000000	86.8195082728;27.8804614312
1042	4188,86	-7,03	9664701,51468362000000;3233908,757989800000000	86.8194908709;27.8804432055
1043	4188,53	-7,84	9664699,81157763000000;3233906,692180160000000	86.8194755717;27.8804268021
1044	4188,10	-8,31	9664697,55083966000000;3233904,603964440000000	86.8194552631;27.8804102207
1045	4187,63	-8,77	9664695,20462292000000;3233902,43391208000000	86.8194341867;27.8803929895
1046	4187,17	-9,20	9664693,01262520000000;3233900,399584220000000	86.8194144956;27.8803768361
1047	4186,80	-9,71	9664691,292228240000000;3233898,858797440000000	86.8193990411;27.8803646016
1048	4186,25	-10,26	9664688,776698870000000;3233896,890827190000000	86.8193764437;27.880348975
1049	4185,56	-10,08	9664685,412348270000000;3233895,033261250000000	86.8193462212;27.8803342251
1050	4184,94	-7,37	9664682,06590873000000;3233894,23736903000000	86.8193161596;27.8803279054
1051	4184,62	-5,53	9664679,61446359000000;3233894,80354733000000	86.8192941379;27.8803324011
1052	4184,27	0,02	9664676,26050987000000;3233896,22830928000000	86.8192640088;27.8803437143
1053	4184,27	1,78	9664674,319701130000000;3233898,557924000000000	86.8192465742;27.8803622125
1054	4184,38	0,10	9664672,29972793000000;3233901,634156130000000	86.8192284285;27.8803866391
1055	4184,39	-5,30	9664669,86059220000000;3233904,09631660000000	86.8192065174;27.8804061898
1056	4184,05	-3,15	9664666,277741510000000;3233904,984982530000000	86.8191743321;27.8804132462
1057	4183,87	-3,64	9664663,136008170000000;3233905,607001440000000	86.8191461094;27.8804181853
1058	4183,66	-4,45	9664659,86172890000000;3233905,730837510000000	86.8191166961;27.8804191686
1059	4183,44	-4,93	9664657,02853969000000;3233905,58801029000000	86.8190912451;27.8804180345
1060	4183,22	-6,71	9664654,46367224000000;3233905,331137570000000	86.8190682045;27.8804159948
1061	4182,82	-7,87	9664651,19245679000000;3233904,344491710000000	86.8190388187;27.8804081604
1062	4182,42	-8,33	9664648,553540750000000;3233903,168305310000000	86.8190151129;27.8803988209
1063	4182,01	-8,45	9664646,04871508000000;3233901,935036220000000	86.8189926117;27.8803890282
1064	4181,50	-8,48	9664642,96996398000000;3233900,470137270000000	86.8189649548;27.8803773963
1065	4181,10	-9,16	9664640,521960770000000;3233899,370971010000000	86.818942964;27.8803686684
1066	4180,62	-10,28	9664637,86406912000000;3233897,964703440000000	86.8189190877;27.880357502
1067	4180,14	-11,24	9664635,704362140000000;3233896,425886160000000	86.8188996868;27.8803452832
1068	4179,47	-12,00	9664633,244959240000000;3233894,153047690000000	86.8188775936;27.8803272358
1069	4178,62	-12,48	9664630,605517530000000;3233891,143007360000000	86.8188538831;27.8803033348
1070	4177,93	-11,97	9664628,69692824000000;3233888,704457240000000	86.8188367379;27.8802839716
1071	4177,19	-10,85	9664626,059922990000000;3233886,416658130000000	86.8188130493;27.8802658054
1072	4176,52	-8,50	9664622,96139904000000;3233884,721069590000000	86.8187852148;27.8802523417
1073	4175,90	-7,32	9664618,93010328000000;3233883,79781803000000	86.818749001;27.8802450107
1074	4175,39	-8,85	9664614,97791310000000;3233883,353835120000000	86.8187134979;27.8802414852
1075	4174,85	-9,59	9664611,628812510000000;3233882,558311610000000	86.8186834124;27.8802351684
1076	4174,26	-9,48	9664608,26819382000000;3233881,567483220000000	86.8186532235;27.8802273008
1077	4173,56	-11,76	9664604,24737366000000;3233880,492712260000000	86.8186171038;27.8802187666
1078	4172,55	-14,48	9664599,860940570000000;3233878,365145350000000	86.8185776998;27.8802018728
1079	4171,60	-14,77	9664597,20542756000000;3233875,847039730000000	86.8185538449;27.8801818779
1080	4170,47	-13,51	9664594,05268134000000;3233872,905538210000000	86.8185255233;27.880158521

1081	4169,11	-11,14	9664589,193581810000000;3233870,053997740000000	86.8184818733;27.8801358785
1082	4168,11	-9,13	9664584,31028100000000;3233868,639296570000000	86.8184380059;27.8801246451
1083	4167,34	-6,86	9664579,53894321000000;3233868,048930840000000	86.8183951442;27.8801199573
1084	4166,93	0,95	9664576,164646610000000;3233868,133858880000000	86.8183648324;27.8801206317
1085	4166,99	3,34	9664572,93816622000000;3233869,730052690000000	86.8183358484;27.8801333062
1086	4167,22	5,47	9664569,82656729000000;3233871,924420210000000	86.8183078965;27.8801507305
1087	4167,65	5,12	9664566,558591150000000;3233875,057390630000000	86.8182785397;27.8801756077
1088	4168,04	7,90	9664563,42496979000000;3233878,133252030000000	86.8182503899;27.8802000314
1089	4168,73	6,73	9664560,65222918000000;3233882,244947820000000	86.818225482;27.8802326802
1090	4169,17	0,62	9664558,43884500000000;3233885,246781010000000	86.8182055988;27.8802565161
1091	4169,23	-3,40	9664553,925131210000000;3233888,433401970000000	86.8181650514;27.8802818193
1092	4168,94	-8,58	9664549,45336161000000;3233890,413075420000000	86.8181248808;27.8802975388
1093	4168,25	-8,16	9664544,90915404000000;3233890,917197160000000	86.8180840595;27.8803015417
1094	4167,50	-11,49	9664539,692910710000000;3233891,706727000000000	86.8180372012;27.8803078109
1095	4166,56	-12,22	9664535,11269166000000;3233891,195106150000000	86.8179960564;27.8803037484
1096	4165,58	-13,99	9664530,68653208000000;3233890,300614740000000	86.8179562955;27.8802966458
1097	4163,97	-13,59	9664525,05823746000000;3233887,140924860000000	86.8179057357;27.8802715564
1098	4162,78	-13,04	9664520,865744120000000;3233884,560057990000000	86.8178680739;27.8802510632
1099	4161,59	-12,54	9664516,481125790000000;3233881,901598780000000	86.8178286862;27.8802299538
1100	4160,24	-11,56	9664511,34951894000000;3233878,607849710000000	86.8177825882;27.8802038
1101	4159,16	-10,91	9664506,61753036000000;3233876,254329090000000	86.81774008;27.8801851119
1102	4158,39	-6,71	9664502,95579158000000;3233874,669190660000000	86.8177071861;27.8801725252
1103	4157,89	-2,10	9664498,75476878000000;3233875,423843660000000	86.8176694476;27.8801785175
1104	4157,74	-1,38	9664495,52570814000000;3233877,907478930000000	86.8176404405;27.8801982387
1105	4157,61	-3,28	9664491,871148880000000;3233881,444937770000000	86.817607611;27.8802263277
1106	4157,36	-4,55	9664488,333952570000000;3233884,139194660000000	86.8175758358;27.8802477213
1107	4157,00	-7,32	9664484,547711130000000;3233886,622052310000000	86.8175418235;27.8802674363
1108	4156,43	-0,77	9664480,399790770000000;3233888,068435390000000	86.8175045621;27.8802789213
1109	4156,38	-0,28	9664476,56068745000000;3233888,748553520000000	86.8174700748;27.8802843217
1110	4156,36	-2,04	9664472,26217299000000;3233888,909556340000000	86.8174314606;27.8802856002
1111	4156,18	-4,09	9664467,37215301000000;3233887,795057490000000	86.8173875328;27.8802767505
1112	4156,01	-5,93	9664465,30760202000000;3233886,638742510000000	86.8173689866;27.8802675689
1113	4155,60	-6,70	9664462,49988300000000;3233883,806287140000000	86.8173437644;27.8802450779
1114	4155,06	-7,37	9664459,46370996000000;3233880,361437730000000	86.81731649;27.8802177242
1115	4154,52	-8,11	9664456,83946262000000;3233877,15333910000000	86.817292916;27.8801922505
1116	4153,79	-8,84	9664453,79812249000000;3233872,983433660000000	86.8172655952;27.8801591395
1117	4153,03	-9,54	9664451,17672309000000;3233868,913101540000000	86.8172420468;27.8801268192
1118	4152,28	-9,96	9664449,254986550000000;3233864,849582520000000	86.8172247835;27.880094553
1119	4151,49	-10,36	9664447,333092290000000;3233860,785773910000000	86.8172075188;27.8800622845
1120	4150,70	-6,80	9664445,62237286000000;3233856,793243770000000	86.8171921512;27.880030582
1121	4150,05	5,91	9664443,669115790000000;3233851,776669470000000	86.8171746048;27.879990748
1122	4150,59	4,76	9664441,74991266000000;3233847,00674921000000	86.8171573643;27.8799528726
1123	4151,08	2,75	9664439,24782414000000;3233841,67047102000000	86.8171348876;27.8799105
1124	4151.39	1.57	9664435,78043085000000:3233836.09769334000000	86.8171037395:27.8798662495
1125	4151.54	-0.19	9664432,82167330000000;3233831.621787170000000	86.8170771606;27.8798307087
1126	4151.52	-2.61	9664429.46866532000000:3233827.37754913000000	86.81704704:27.8797970074
1127	4151.30	-3.71	9664425.91890626000000;3233824.00844274000000	86.8170151519:27.879770255
1100	4150.97	-4 47	9664422 177210740000000:3233820 642275690000000	86 8169815397 27 879743526

1129	4150,63	-6,42	9664418,91775838000000;3233817,702122200000000	86.8169522596;27.8797201798
1130	4150,02	-7,44	9664414,54902129000000;3233814,591889820000000	86.8169130145;27.879695483
1131	4149,41	-7,94	9664410,67714910000000;3233811,988826190000000	86.8168782329;27.8796748134
1132	4148,72	-9,28	9664406,617162110000000;3233809,106380780000000	86.8168417614;27.8796519254
1133	4147,93	-10,39	9664402,500913440000000;3233806,604370260000000	86.8168047845;27.8796320582
1134	4146,94	-10,51	9664397,70908329000000;3233804,026014690000000	86.8167617388;27.8796115847
1135	4146,07	-11,52	9664393,800145470000000;3233801,508264660000000	86.8167266242;27.8795915926
1136	4144,98	-3,85	9664389,16487608000000;3233798,79221108000000	86.8166849849;27.8795700257
1137	4144,58	1,01	9664383,91555125000000;3233795,935349070000000	86.8166378294;27.8795473408
1138	4144,68	0,31	9664378,60255784000000;3233793,088117370000000	86.816590102;27.8795247324
1139	4144,71	-0,24	9664374,44853873000000;3233790,790459110000000	86.8165527858;27.8795064878
1140	4144,68	-0,98	9664369,44913715000000;3233788,201131270000000	86.8165078754;27.8794859272
1141	4144,59	-1,26	9664364,75922415000000;3233785,649292180000000	86.8164657452;27.8794656643
1142	4144,46	-1,48	9664359,257952410000000;3233783,318044060000000	86.8164163264;27.879447153
1143	4144,33	0,34	9664354,288924570000000;3233781,636433400000000	86.8163716889;27.8794338002
1144	4144,35	1,89	9664350,59579708000000;3233781,845246270000000	86.8163385129;27.8794354583
1145	4144,46	-0,42	9664347,29390723000000;3233782,845424930000000	86.8163088516;27.8794434002
1146	4144,43	-3,76	9664343,62182965000000;3233782,524538940000000	86.8162758647;27.8794408522
1147	4144,20	-5,94	9664340,57965923000000;3233780,64451103000000	86.8162485364;27.8794259238
1148	4143,70	-7,26	9664337,36940875000000;3233777,046081720000000	86.8162196983;27.8793973505
1149	4143,08	-4,66	9664334,72283612000000;3233772,950118740000000	86.8161959237;27.8793648264
1150	4142,67	-1,47	9664330,17763182000000;3233771,012639460000000	86.8161550934;27.8793494418
1151	4142,58	3,47	9664326,336173390000000;3233771,047742190000000	86.816120585;27.8793497205
1152	4142,81	2,42	9664322,93107486000000;3233772,928256590000000	86.8160899965;27.8793646528
1153	4142,99	1,50	9664318,92912614000000;3233774,385411170000000	86.8160540464;27.8793762234
1154	4143,11	-1,48	9664314,58808959000000;3233775,390734850000000	86.8160150502;27.8793842061
1155	4142,96	-3,69	9664308,91295220000000;3233775,119912440000000	86.8159640696;27.8793820557
1156	4142,76	-5,19	9664305,801874610000000;3233774,413060280000000	86.8159361223;27.8793764429
1157	4142,49	0,00	9664303,07474623000000;3233773,472520630000000	86.8159116241;27.8793689745

Tabelle 4: Längsprofildaten des Imja Khola Hauptstroms.

Nir	Profilhöhe über	Gefälle in	WCC 94/Decude Merceter (EDCC: 2957) in OptiMard	
INF.	dem weer (m)	Grad	WGS 84/PSeudo Mercalor (EPSG. 3657) In Osl, Nord	WG5 84 (EP5G. 4326) IN OSI,NOIO
1	4897,24	-3,35	9663910,08811510000000;3240590,146697130000000	86.8123813651;27.9334833454
2	4896,27	-4,19	9663903,25794025000000;3240575,022741110000000	86.8123200086;27.9333633134
3	4894,53	-5,38	9663893,01267798000000;3240553,55648002000000	86.8122279738;27.9331929452
4	4892,86	-11,16	9663888,13398167000000;3240536,48104318000000	86.8121841478;27.9330574247
5	4888,10	-15,05	9663893,98841725000000;3240513,063300850000000	86.8122367391;27.9328715679
6	4883,37	-18,10	9663903,74580989000000;3240498,427211900000000	86.8123243912;27.9327554072
7	4874,38	-21,32	9663928,139291470000000;3240485,742601470000000	86.8125435216;27.9326547345
8	4866,99	-23,23	9663943,75111969000000;3240475,009469570000000	86.812683765;27.9325695499
9	4848,52	-22,13	9663979,85347245000000;3240451,591727240000000	86.813008078;27.9323836922
10	4839,47	-20,03	9663997,41677919000000;3240437,931377550000000	86.8131658518;27.9322752751
11	4830,36	-15,60	9664013,028607410000000;3240418,416592280000000	86.8133060953;27.9321203933
12	4824,63	-14,62	9664021,810260780000000;3240399,877546270000000	86.8133849822;27.9319732554
13	4820,75	-13,04	9664029,61617489000000;3240387,192935840000000	86.8134551039;27.931872582

14	4815,78	-11,03	9664048,15522090000000;3240376,459803940000000	86.813621643;27.9317873967
15	4811,63	-10,48	9664068,645745430000000;3240370,605368360000000	86.8138057125;27.931740932
16	4807,79	-0,63	9664082,30609512000000;3240354,993540150000000	86.8139284255;27.9316170259
17	4807,63	0,50	9664088,160530710000000;3240341,333190450000000	86.8139810168;27.931508608
18	4807,82	13,47	9664106,699576710000000;3240330,600058550000000	86.8141475559;27.9314234225
19	4812,52	11,55	9664124,26288346000000;3240321,81840518000000	86.8143053298;27.9313537252
20	4814,56	-3,25	9664126,21436198000000;3240312,061012550000000	86.8143228602;27.9312762836
21	4813,69	-6,64	9664116,45696935000000;3240300,352141390000000	86.8142352081;27.9311833537
22	4811,65	-3,16	9664101,82088039000000;3240290,594748750000000	86.8141037298;27.9311059121
23	4810,88	-11,05	9664093,03922702000000;3240279,861616850000000	86.8140248429;27.9310207262
24	4804,35	-14,10	9664066,264905880000000;3240259,800453280000000	86.8137843251;27.9308615061
25	4799,55	-14,55	9664050,10669942000000;3240249,613699680000000	86.8136391734;27.9307806565
26	4794,34	-15,83	9664034,299544610000000;3240237,241433100000000	86.8134971754;27.930682461
27	4790,50	-15,38	9664024,737478570000000;3240227,659566250000000	86.8134112779;27.9306064121
28	4786,26	2,63	9664015,95582520000000;3240214,974955820000000	86.8133323909;27.9305057374
29	4786,94	-8,96	9664019,50683690000000;3240200,592701810000000	86.8133642902;27.9303915888
30	4784,13	-1,91	9664015,91622365000000;3240183,166214030000000	86.8133320352;27.9302532787
31	4783,62	-3,95	9664005,300555830000000;3240172,140091430000000	86.813236673;27.9301657667
32	4782,96	-4,85	9664000,73420332000000;3240163,748644480000000	86.8131956528;27.9300991656
33	4782,00	3,21	9663995,95317030000000;3240153,503382220000000	86.813152704;27.930017851
34	4782,66	4,54	9663989,61086508000000;3240143,745989580000000	86.8130957301;27.9299404085
35	4783,76	1,49	9663984,088127230000000;3240131,002870560000000	86.8130461185;27.9298392688
36	4784,12	-2,81	9663977,53114150000000;3240118,903792990000000	86.8129872161;27.9297432407
37	4783,60	-8,63	9663970,700966660000000;3240110,824689730000000	86.8129258596;27.9296791183
38	4781,54	-8,84	9663958,38720865000000;3240105,204288670000000	86.8128152432;27.9296345102
39	4779,74	-7,05	9663950,151933510000000;3240097,066676750000000	86.8127412645;27.9295699233
40	4778,23	-7,65	9663945,702598220000000;3240085,689503390000000	86.8127012955;27.9294796246
41	4776,38	-11,93	9663941,79964116000000;3240072,517023340000000	86.8126662346;27.9293750767
42	4773,76	-11,58	9663936,433075220000000;3240061,296021810000000	86.8126180259;27.9292860173
43	4771,54	-13,06	9663933,017987790000000;3240051,050759540000000	86.8125873477;27.9292047021
44	4767,55	2,61	9663917,65009439000000;3240043,244845430000000	86.8124492955;27.9291427477
45	4768,33	0,91	9663902,038266180000000;3240035,926800950000000	86.8123090521;27.9290846654
46	4768,59	-0,55	9663888,86578612000000;3240026,169408310000000	86.8121907217;27.9290072222
47	4768,46	-2,50	9663880,57200238000000;3240014,948406780000000	86.8121162174;27.9289181625
48	4767,68	-5,20	9663872,27821863000000;3239999,336578560000000	86.812041713;27.9287942532
49	4766,37	-10,25	9663865,44804379000000;3239986,651968140000000	86.8119803565;27.9286935769
50	4763,63	-10,27	9663854,71491189000000;3239975,918836240000000	86.8118839392;27.9286083891
51	4760,94	-17,07	9663847,88473705000000;3239962,746356180000000	86.8118225827;27.9285038403
52	4755,75	-13,65	9663833,73651772000000;3239953,476832970000000	86.811695487;27.928430269
53	4752,72	-10,19	9663823,00338583000000;3239947,134527860000000	86.8115990697;27.9283799306
54	4749,38	-7,46	9663806,90368798000000;3239937,865004960000000	86.8114544436;27.9283063591
55	4747,77	-7,81	9663795,19481681000000;3239933,962047910000000	86.811349261;27.9282753817
56	4746,32	-8,09	9663784,949554540000000;3239931,522699750000000	86.8112572263;27.9282560207
57	4745,06	-7,72	9663776,167901170000000;3239930,059090850000000	86.8111783394;27.9282444042
58	4742,42	-7,34	9663757,140985530000000;3239926,156133800000000	86.8110074177;27.9282134267
59	4740,49	-3,94	9663742,50489658000000;3239922,741046370000000	86.8108759394;27.9281863214
60	4739,35	-4,27	9663726,89306836000000;3239917,374480420000000	86.810735696;27.9281437273
61	4738,17	-4,42	9663711,769109770000000;3239912,983653740000000	86.8105998352;27.9281088776

62	4737,33	-5,87	9663702,98745640000000;3239906,641348580000000	86.8105209482;27.9280585391
63	4736,19	-8,03	9663694,20580303000000;3239899,811173680000000	86.8104420613;27.9280043283
64	4732,98	-12,11	9663677,618235540000000;3239884,199345460000000	86.8102930526;27.927880418
65	4727,12	-13,39	9663653,71262359000000;3239871,026865400000000	86.8100783049;27.9277758686
66	4722,43	-13,48	9663639,07653463000000;3239857,854385340000000	86.8099468267;27.9276713191
67	4718,99	-14,60	9663627,367663470000000;3239849,560601610000000	86.8098416441;27.9276054915
68	4714,84	-11,63	9663612,73157452000000;3239843,218296390000000	86.8097101659;27.9275551528
69	4712,63	-14,27	9663601,99844262000000;3239842,730426760000000	86.8096137485;27.9275512806
70	4708,73	-17,18	9663586,93299264000000;3239839,900872180000000	86.8094784132;27.9275288225
71	4705,92	-9,97	9663580,00515450000000;3239834,046436470000000	86.8094161794;27.9274823559
72	4704,02	-8,33	9663572,570092810000000;3239826,142859280000000	86.8093493891;27.9274196253
73	4702,14	-11,76	9663566,38395950000000;3239814,921857750000000	86.8092938181;27.9273305643
74	4699,63	-7,24	9663557,60230612000000;3239806,628074010000000	86.8092149312;27.9272647366
75	4697,31	-6,26	9663540,52686901000000;3239800,285768790000000	86.8090615399;27.9272143977
76	4695,56	-9,22	9663525,89078006000000;3239793,943463580000000	86.8089300617;27.9271640587
77	4691,88	-12,83	9663505,156320710000000;3239784,673940580000000	86.8087438009;27.9270904864
78	4687,40	-17,17	9663487,59301396000000;3239775,892287200000000	86.808586027;27.9270207863
79	4680,96	-14,79	9663470,02970722000000;3239764,671285670000000	86.8084282532;27.926931725
80	4671,69	-11,51	9663442,22113820000000;3239743,205021870000000	86.8081784445;27.9267613466
81	4667,96	-5,88	9663428,56078852000000;3239731,00828108000000	86.8080557315;27.9266645406
82	4665,95	-9,05	9663418,31552625000000;3239714,420713600000000	86.8079636968;27.9265328842
83	4663,19	-9,27	9663415,38830846000000;3239697,345276480000000	86.8079374011;27.9263973555
84	4661,67	-9,13	9663416,364047720000000;3239688,075753480000000	86.8079461663;27.9263237826
85	4658,06	-10,52	9663417,58372180000000;3239665,633750420000000	86.8079571229;27.9261456587
86	4655,37	-11,59	9663412,705025480000000;3239651,973400730000000	86.8079132968;27.9260372354
87	4653,58	-12,82	9663408,802068430000000;3239644,167486620000000	86.8078782359;27.9259752791
88	4650,13	-12,88	9663400,50828469000000;3239631,482876190000000	86.8078037316;27.9258746001
89	4647,37	-12,10	9663391,72663132000000;3239623,18909245000000	86.8077248447;27.9258087715
90	4643,56	-11,77	9663376,602672730000000;3239613,919569450000000	86.8075889838;27.9257351982
91	4640,51	-3,05	9663364,893801570000000;3239605,137916070000000	86.8074838013;27.9256654972
92	4639,85	-6,07	9663355,13640893000000;3239597,33200188000000	86.8073961491;27.9256035407
93	4638,06	-8,07	9663344,647211850000000;3239584,159521910000000	86.807301923;27.9254989891
94	4636,14	-8,80	9663337,81703700000000;3239572,450650740000000	86.8072405665;27.9254060542
95	4633,70	-9,81	9663330,011122890000000;3239558,790301050000000	86.8071704448;27.9252976301
96	4630,76	-11,60	9663322,20520878000000;3239543,66634246000000	86.8071003231;27.925177589
97	4626,09	-11,71	9663316,35077320000000;3239521,712209040000000	86.8070477318;27.9250033355
98	4622,75	-11,70	9663315,862903570000000;3239505,612511190000000	86.8070433492;27.9248755495
99	4619,22	-11,80	9663315,862903570000000;3239488,537074070000000	86.8070433492;27.9247400186
100	4614,79	-11,87	9663312,93568578000000;3239467,558679910000000	86.8070170536;27.9245735091
101	4610,48	-11,95	9663311,95994652000000;3239447,068155370000000	86.8070082883;27.9244108716
102	4607,28	-11,56	9663310,984207250000000;3239431,944196780000000	86.8069995231;27.9242908295
103	4603,88	-7,31	9663310,984207250000000;3239415,356629300000000	86.8069995231;27.9241591703
104	4602,50	-7,46	9663310,008467990000000;3239404,623497400000000	86.8069907579;27.9240739789
105	4599,36	-9,62	9663308,54485910000000;3239380,717885450000000	86.8069776101;27.9238842343
106	4596,04	-9,29	9663302,202553880000000;3239362,178839440000000	86.8069206362;27.9237370852
107	4593,30	-7,31	9663299,76320572000000;3239345,591271960000000	86.8068987232;27.9236054253
108	4591,42	-1,02	9663300,73894498000000;3239330,95518300000000	86.8069074884;27.9234892546
109	4591,21	0,61	9663306,10551094000000;3239320,709920740000000	86.8069556971;27.9234079351

1	1			
110	4591,32	-5,92	9663311,47207689000000;3239311,440397730000000	86.8070039057;27.9233343602
111	4590,25	-10,33	9663312,93568578000000;3239301,195135460000000	86.8070170536;27.9232530406
112	4588,71	-15,12	9663311,47207689000000;3239292,901352140000000	86.8070039057;27.9231872104
113	4585,34	-11,97	9663303,66616278000000;3239283,143959240000000	86.806933784;27.923109763
114	4581,34	-15,43	9663298,299596830000000;3239265,092783300000000	86.8068855753;27.9229664852
115	4575,96	-15,38	9663286,59072566000000;3239249,480954490000000	86.8067803928;27.9228425691
116	4571,90	-11,91	9663278,29694192000000;3239237,28421396000000	86.8067058884;27.9227457596
117	4569,23	-7,91	9663272,442506340000000;3239226,063212170000000	86.8066532971;27.9226566947
118	4566,96	-0,72	9663275,369724140000000;3239209,963514320000000	86.8066795928;27.9225289059
119	4566,80	-6,12	9663280,248420450000000;3239198,254643160000000	86.8067234189;27.9224359684
120	4565,64	-8,59	9663280,73629008000000;3239187,521511250000000	86.8067278015;27.9223507757
121	4562,83	-10,59	9663278,784811550000000;3239168,982465250000000	86.806710271;27.9222036245
122	4558,96	-5,33	9663273,418245610000000;3239148,979810340000000	86.8066620624;27.9220448559
123	4557,59	-6,12	9663269,515288550000000;3239134,83159102000000	86.8066270015;27.921932556
124	4555,51	-5,99	9663265,61233150000000;3239115,80467538000000	86.8065919406;27.9217815318
125	4553,97	-5,81	9663261,709374440000000;3239101,656456060000000	86.8065568798;27.9216692316
126	4553,07	-5,72	9663261,709374440000000;3239092,874802680000000	86.8065568798;27.921599528
127	4551,25	-5,36	9663263,660852970000000;3239074,823626310000000	86.8065744102;27.9214562482
128	4550,34	-6,01	9663264,14872260000000;3239065,066233670000000	86.8065787928;27.9213787996
129	4549,32	-5,82	9663259.27002628000000:3239056.772449930000000	86.8065349667;27.9213129682
130	4548,32	-6,49	9663250,488372920000000;3239052,381623250000000	86.8064560798;27.9212781163
131	4546,67	-9,06	9663236,82802322000000;3239047,502926930000000	86.8063333668;27.9212393919
132	4544,90	-11,69	9663227,070630590000000;3239042,136360980000000	86.8062457146;27.9211967951
133	4542,23	-13,89	9663216,82536832000000;3239034,330446870000000	86.8061536799;27.9211348361
134	4539,07	-16,47	9663207,06797568000000;3239026,036663130000000	86.8060660277;27.9210690045
135	4535,78	-17,81	9663200,23780084000000;3239017,255009760000000	86.8060046712;27.9209993005
136	4531,57	-17,37	9663190,968277830000000;3239007,985486750000000	86.8059214017;27.920925724
137	4526,06	-1,15	9663178,77153704000000:3238995,30087633000000	86.8058118365;27.9208250403
138	4525,66	-2,93	9663169.014144400000000:3238977,737569580000000	86.8057241844;27.9206856319
139	4525,17	-3,96	9663164,135448080000000;3238969,443785840000000	86.8056803583;27.9206198002
140	4524,04	-4,37	9663159.74462140000000:3238953.83195762000000	86.8056409148;27.9204958814
141	4522,95	-3,84	9663157,793142870000000;3238939,683738300000000	86.8056233844;27.9203835799
142	4522.17	-3.47	9663157.79314287000000:3238927.97486714000000	86.8056233844:27.9202906406
143	4521.40	-5.68	9663158,28101250000000:3238915,290256710000000	86.805627767:27.9201899563
144	4520.31	-10.80	9663156.329533970000000:3238904.557124810000000	86.8056102366:27.9201047618
145	4517.72	-13.77	9663148.03575023000000:3238893.823992910000000	86.8055357322:27.9200195673
146	4515.19	-13.79	9663138.27835760000000:3238890.408905490000000	86.8054480801:27.9199924599
147	4511.74	-9.53	9663126.56948643000000:3238882.60299138000000	86.8053428975:27.9199305002
148	4509.41	-8.39	9663122.17865975000000:3238869.43051132000000	86.805303454:27.919825943
149	4508.08	-11.78	9663120,22718122000000:3238860,64885795000000	86.8052859236 27.9197562382
150	4504.21	-13.13	9663109.494049320000000:3238845.52489936000000	86.8051895062:27.919636191
151	4501.27	-12.70	9663099.24878705000000:3238838.20685489000000	86.8050974715:27.9195781035
152	4498.32	-5.33	9663087.53991589000000.3238832.35241931000000	86.8049922889 27.9195316335
153	4497.26	-5.16	9663076.806783990000000:3238828.449462250000000	86.8048958715:27.9195006535
154	4496.38	-6.26	9663067.537260990000000:3238825.522244460000000	86.804812602:27.9194774185
155	4494 47	-6.55	9663053.87691130000000.3238814.78911256000000	86.804689889.27 9193922235
156	4492,79	-6.56	9663046.558866820000000:3238802.104502130000000	86.8046241499:27.9192915384
157	4491 31	-7 00	9663038 752952710000000 3238791 859239870000000	86.8045540282.27 9192102157
1 101		.,		

158	4489,83	-6,15	9663030,45916897000000;3238783,077586490000000	86.8044795238;27.9191405105
159	4488,76	-7,05	9663021,18964596000000;3238779,662499070000000	86.8043962543;27.9191134029
160	4485,37	-4,83	9662996,55222956000000;3238767,465758280000000	86.8041749326;27.91901659
161	4483,43	-6,40	9662975,57383539000000;3238758,196235270000000	86.8039864805;27.9189430122
162	4481,98	-7,68	9662965,32857312000000;3238750,390321160000000	86.8038944457;27.9188810518
163	4479,32	-6,38	9662952,64396270000000;3238735,266362580000000	86.8037804979;27.9187610036
164	4478,14	-6,16	9662943,86230932000000;3238729,411927000000000	86.803701611;27.9187145333
165	4476,80	-6,07	9662933,12917743000000;3238723,069621780000000	86.8036051936;27.9186641904
166	4475,61	-7,87	9662923,37178479000000;3238717,703055830000000	86.8035175415;27.9186215926
167	4473,71	-8,45	9662913,61439216000000;3238707,94566320000000	86.8034298894;27.9185441419
168	4471,54	-9,50	9662904,34486915000000;3238696,724661670000000	86.8033466198;27.9184550736
169	4469,17	-6,93	9662898,00256394000000;3238684,040051240000000	86.8032896459;27.9183543876
170	4466,86	-6,67	9662897,51469431000000;3238665,01313560000000	86.8032852633;27.9182033584
171	4465,54	-5,41	9662896,53895504000000;3238653,792134070000000	86.8032764981;27.9181142898
172	4465,06	-6,89	9662898,00256394000000;3238648,913437750000000	86.8032896459;27.9180755643
173	4463,53	-6,76	9662894,831411330000000;3238636,716696950000000	86.803261159;27.9179787505
174	4461,73	-5,79	9662887,26943204000000;3238623,544216950000000	86.8031932285;27.9178741915
175	4460,55	-6,44	9662878,24384385000000;3238616,226172420000000	86.8031121503;27.9178161031
176	4458,13	-6,40	9662867,51071195000000;3238597,687126790000000	86.8030157329;27.9176689457
177	4456,36	-6,57	9662862,34892613000000;3238582,709439570000000	86.8029693638;27.9175500572
178	4454,72	-6,91	9662854,47460302000000;3238570,902905260000000	86.8028986276;27.9174563402
179	4453,24	-7,47	9662846,36624549000000;3238561,750399010000000	86.802825789;27.9173836902
180	4451,18	-7,75	9662837,26279478000000;3238548,900163230000000	86.8027440113;27.9172816885
181	4449,25	-7,96	9662829,21294586000000;3238537,191292070000000	86.8026716983;27.9171887465
182	4447,12	-8,27	9662820,43129248000000;3238524,75061633000000	86.8025928113;27.9170899956
183	4444,33	-7,78	9662809,69816058000000;3238508,894853510000000	86.802496394;27.9169641365
184	4442,29	-5,29	9662800,42863758000000;3238497,185982260000000	86.8024131244;27.9168711943
185	4441,31	-6,89	9662790,91517975000000;3238492,551220820000000	86.8023276636;27.9168344047
186	4440,01	-7,17	9662784,32893973000000;3238484,013502200000000	86.8022684984;27.9167666342
187	4438,79	-5,68	9662781,40172194000000;3238474,743979200000000	86.8022422027;27.9166930549
188	4437,90	-4,56	9662782,86533083000000;3238465,962325830000000	86.8022553505;27.916623348
189	4437,16	-3,37	9662776,52302562000000;3238459,132150980000000	86.8021983767;27.9165691316
190	4436,49	-3,49	9662766,76563298000000;3238453,277715400000000	86.8021107245;27.9165226603
191	4435,93	-4,17	9662759,44758850000000;3238447,911149450000000	86.8020449854;27.9164800616
192	4435,27	-4,40	9662754,081022550000000;3238440,593104970000000	86.8019967767;27.9164219725
193	4434,41	-4,20	9662749,690195870000000;3238430,347842710000000	86.8019573332;27.9163406477
194	4433,90	-3,80	9662746,76297808000000;3238424,005537490000000	86.8019310376;27.9162903037
195	4433,22	-2,68	9662741,39641213000000;3238415,223884120000000	86.8018828289;27.9162205966
196	4432,80	-2,71	9662734,56623728000000;3238409,369448540000000	86.8018214724;27.9161741252
197	4432,34	-2,99	9662727,736062440000000;3238402,539273690000000	86.8017601159;27.9161199085
198	4431,79	-0,20	9662721,78396356000000;3238394,030809450000000	86.8017066473;27.9160523698
199	4431,75	0,00	9662714,895280110000000;3238382,458755610000000	86.8016447652;27.9159605129

Tabelle 5: Längsprofildaten des orographisch linken Khumbu Gletscherbaches.

	Profilhöhe über	Gefälle in		
Nr.	dem Meer (m)	Grad	WGS 84/Pseudo Mercator (EPSG: 3857) in Ost;Nord	WGS 84 (EPSG: 4326) in Ost;Nord
1	4831,33	-7,84	9662976,88258963000000;3240422,856292980000000	86.8039982372;27.9321556296
2	4828,51	-9,62	9662981,972192740000000;3240403,033540620000000	86.8040439579;27.9319983034
3	4825,57	-8,55	9662976,882589630000000;3240386,425362480000000	86.8039982372;27.93186649
4	4823,11	-6,06	9662963,678971670000000;3240376,801455370000000	86.8038796271;27.9317901083
5	4820,31	-5,86	9662937,95559504000000;3240371,04002388000000	86.8036485501;27.9317443817
6	4818,07	-5,15	9662916,48326590000000;3240367,172598170000000	86.8034556609;27.9317136872
7	4815,38	-5,18	9662888,87339283000000;3240355,724347290000000	86.8032076372;27.9316228261
8	4812,67	-9,72	9662863,69796034000000;3240339,55305410000000	86.8029814824;27.9314944797
9	4806,93	-12,32	9662843,707334170000000;3240312,702125070000000	86.8028019036;27.9312813719
10	4798,94	-10,96	9662840,300601310000000;3240276,27461382000000	86.8027713004;27.9309922571
11	4794,03	-16,28	9662847,21541346000000;3240251,84915978000000	86.8028334172;27.9307983988
12	4783,35	-16,05	9662836,50451692000000;3240216,89936349000000	86.8027371996;27.930521011
13	4774,41	-17,44	9662834,424215870000000;3240185,876029760000000	86.8027185119;27.9302747859
14	4762,27	-16,40	9662825,872955530000000;3240148,209675450000000	86.8026416946;27.9299758359
15	4750,81	-12,69	9662817,253155440000000;3240110,247941730000000	86.8025642616;27.9296745408
16	4741,72	-10,79	9662792,853255840000000;3240078,102560060000000	86.8023450736;27.9294194082
17	4737,60	-9,29	9662782,138719010000000;3240059,321069350000000	86.8022488233;27.9292703424
18	4732,89	-12,93	9662765,530123320000000;3240035,778494350000000	86.8020996257;27.9290834883
19	4729,67	-13,69	9662763,92288023000000;3240021,849054490000000	86.8020851876;27.9289729321
20	4725,88	-12,58	9662764,99437562000000;3240006,312371290000000	86.802094813;27.9288496193
21	4721,41	-13,15	9662762,315637140000000;3239986,489706510000000	86.8020707495;27.928692289
22	4716,91	-13,31	9662761,779889440000000;3239967,202789430000000	86.8020659368;27.9285392106
23	4713,99	-12,61	9662761,779889440000000;3239954,880592410000000	86.8020659368;27.9284414105
24	4709,10	-9,90	9662766,065871010000000;3239933,450684550000000	86.8021044384;27.928271323
25	4706,40	-7,74	9662769,81610489000000;3239918,44974905000000	86.8021381274;27.9281522616
26	4704,07	-8,40	9662769,280357190000000;3239901,305822750000000	86.8021333147;27.9280161913
27	4701,30	-14,00	9662769,81610489000000;3239882,554653370000000	86.8021381274;27.9278673642
28	4696,63	-15,07	9662779,45956343000000;3239866,482222470000000	86.802224756;27.9277397979
29	4691,66	-17,93	9662788,567274270000000;3239850,40979158000000	86.802306572;27.9276122315
30	4686,02	-13,55	9662800,889471290000000;3239838,087594560000000	86.8024172642;27.9275144305
31	4682,10	-12,47	9662805,71120056000000;3239822,55091136000000	86.8024605785;27.9273911161
32	4678,12	-8,31	9662812,67592061000000;3239805,94273328000000	86.8025231436;27.927259297
33	4673,98	-7,92	9662826,605360730000000;3239781,298339100000000	86.8026482739;27.9270636942
34	4671,66	-9,09	9662837,85606236000000;3239768,976141750000000	86.8027493407;27.9269658927
35	4668,85	-10,05	9662848,57101629000000;3239755,046701580000000	86.8028455948;27.9268553344
36	4666,11	-10,88	9662857,142979440000000;3239742,188756870000000	86.802922598;27.9267532804
37	4663,38	-9,26	9662859,82171792000000;3239728,259316750000000	86.8029466615;27.9266427219
38	4660,45	-9,05	9662863,03620410000000;3239710,579642770000000	86.8029755378;27.9265023974
39	4657,72	-8,97	9662863,57195180000000;3239693,435716470000000	86.8029803505;27.926366325
40	4655,52	-8,64	9662863,57195180000000;3239679,506276360000000	86.8029803505;27.9262557661
41	4652,33	-8,31	9662861,428961010000000;3239658,612116190000000	86.8029610996;27.9260899274
42	4650,11	-6,32	9662858,750222520000000;3239643,611180690000000	86.8029370361;27.9259708636
43	4648,54	-6,43	9662851,785502470000000;3239631,288983670000000	86.802874471;27.9258730611
44	4645,92	-4,64	9662848,83889014000000;3239608,251832710000000	86.8028480011;27.9256902127
45	4644,83	-6,17	9662845,08865626000000;3239595,39388800000000	86.8028143122;27.9255881577
46	4643,27	-7,37	9662845,356530110000000;3239580,928700190000000	86.8028167185;27.9254733457
47	4641,64	-9,06	9662848,035268590000000;3239568,606503170000000	86.8028407821;27.9253755427

48	4639,82	-10,15	9662853,660619410000000;3239558,695170780000000	86.8028913154;27.9252968751
49	4637,85	-10,93	9662860,89321332000000;3239550,391081480000000	86.8029562869;27.9252309643
50	4635,65	-9,92	9662869,46517645000000;3239542,890613730000000	86.8030332902;27.9251714319
51	4633,01	-8,00	9662873,75115803000000;3239528,425425920000000	86.8030717918;27.9250566194
52	4631,77	-8,94	9662873,75115803000000;3239519,585588930000000	86.8030717918;27.9249864562
53	4629,95	-7,99	9662874,28690572000000;3239508,067013450000000	86.8030766045;27.9248950313
54	4624,88	-8,63	9662872,94753649000000;3239471,904043930000000	86.8030645728;27.9246079991
55	4622,40	-9,82	9662873,215410330000000;3239455,563739180000000	86.8030669791;27.9244783028
56	4619,23	-11,04	9662874,82265343000000;3239437,348317500000000	86.8030814172;27.9243337232
57	4615,64	-12,76	9662877,50139190000000;3239419,132895810000000	86.8031054807;27.9241891434
58	4611,00	-14,07	9662879,64438269000000;3239398,774483350000000	86.8031247316;27.9240275539
59	4607,12	-12,99	9662882,323121170000000;3239383,505673990000000	86.8031487951;27.9239063617
60	4603,14	-19,14	9662884,198238110000000;3239366,361747700000000	86.8031656395;27.923770286
61	4598,14	-19,49	9662893,84169666000000;3239355,646793770000000	86.8032522682;27.9236852386
62	4594,46	-1,90	9662902,41365980000000;3239349,753569100000000	86.8033292715;27.9236384625
63	4593,93	-3,71	9662917,41459530000000;3239344,396092140000000	86.8034640272;27.9235959388
64	4592,49	-6,19	9662936,16576469000000;3239332,609642810000000	86.8036324718;27.9235023865
65	4590,89	-9,09	9662946,34497092000000;3239321,894688880000000	86.8037239131;27.9234173389
66	4588,28	-7,55	9662949,023709410000000;3239305,822257980000000	86.8037479767;27.9232897674
67	4585,30	-7,77	9662947,95221401000000;3239283,320854730000000	86.8037383513;27.9231111671
68	4582,88	-6,89	9662946,88071861000000;3239265,641180740000000	86.8037287258;27.922970838
69	4580,48	-7,06	9662948,487961710000000;3239245,818515960000000	86.803743164;27.9228134991
70	4578,75	-10,37	9662949,023709410000000;3239231,889075850000000	86.8037479767;27.9227029365
71	4575,59	-13,53	9662942,59473704000000;3239215,816644960000000	86.8036902242;27.9225753642
72	4569,81	-15,36	9662932,951278510000000;3239193,850989390000000	86.8036035956;27.9224010151
73	4563,39	-14,93	9662924,91506306000000;3239171,885333830000000	86.803531405;27.9222266657
74	4559,35	-16,29	9662921,432703030000000;3239157,152272160000000	86.8035001224;27.9221097238
75	4556,35	-15,70	9662917,63837912000000;3239147,624821420000000	86.8034660374;27.9220341008
76	4553,27	-16,26	9662914,73585682000000;3239137,06173348000000	86.8034399636;27.9219502575
77	4547,39	-15,96	9662908,84263216000000;3239117,774816540000000	86.8033870239;27.9217971696
78	4541,16	-8,60	9662901,87791210000000;3239097,148530210000000	86.8033244588;27.9216334503
79	4537,01	-8,70	9662885,805481210000000;3239074,915000750000000	86.8031800777;27.9214569735
80	4533,86	-8,64	9662872,94753649000000;3239058,842569850000000	86.8030645728;27.9213293996
81	4530,46	-7,77	9662857,94660098000000;3239042,234391260000000	86.8029298171;27.9211975732
82	4527,50	-4,87	9662841,338422390000000;3239028,304951150000000	86.8027806233;27.921087009
83	4525,56	-11,20	9662820,444262220000000;3239019,197240300000000	86.8025929278;27.9210147169
84	4523,12	-12,58	9662813,47954216000000;3239009,018034070000000	86.8025303627;27.9209339198
85	4518,33	-10,14	9662812,408046770000000;3238987,588126200000000	86.8025207373;27.9207638206
86	4515,87	-10,60	9662809,19356059000000;3238974,194433790000000	86.8024918611;27.9206575084
87	4512,86	-9,40	9662808,12206520000000;3238958,122002890000000	86.8024822357;27.9205299336
88	4510,39	-8,98	9662802,764588230000000;3238944,192562780000000	86.8024341086;27.9204193687
89	4508,37	-8,18	9662795,79986818000000;3238933,477608850000000	86.8023715435;27.9203343187
90	4506,46	-6,64	9662786,156409640000000;3238924,369898010000000	86.8022849148;27.9202620261
91	4505,17	-7,29	9662776,512951100000000;3238919,012421040000000	86.8021982862;27.920219501
92	4503,03	-13,38	9662761,51201560000000;3238911,511953290000000	86.8020635305;27.9201599659
93	4498,79	-11,30	9662749,725566270000000;3238898,118260870000000	86.801957651;27.9200536531
94	4496,00	-5,16	9662737,93911694000000;3238890,61779312000000	86.8018517715;27.9199941179
95	4494,45	-2,28	9662721,33093835000000;3238886,331811550000000	86.8017025777;27.9199600978

96	4494,01	-6,39	9662711,151732110000000;3238882,045829970000000	86.8016111363;27.9199260777
97	4492,36	-9,92	9662703,115516670000000;3238869,723632950000000	86.8015389458;27.9198282697
98	4489,52	-9,90	9662700,972525870000000;3238853,651202050000000	86.801519695;27.919700694
99	4487,25	-3,29	9662696,68654430000000;3238841,329005030000000	86.8014811933;27.9196028858
100	4486,33	-10,45	9662681,149861110000000;3238837,578771160000000	86.8013416249;27.9195731181
101	4484,78	-12,96	9662675,792384140000000;3238831,149798800000000	86.8012934979;27.9195220877
102	4482,29	-10,54	9662672,04215026000000;3238820,970592560000000	86.801259809;27.9194412895
103	4479,36	-6,38	9662659,184205550000000;3238811,862881720000000	86.8011443041;27.9193689963
104	4477,71	-3,76	9662644,719017730000000;3238809,184143240000000	86.8010143611;27.9193477336
105	4476,94	-5,11	9662632,932568410000000;3238809,184143240000000	86.8009084816;27.9193477336
106	4475,83	-4,78	9662620,61037139000000;3238807,576900150000000	86.8007977894;27.919334976
107	4475,00	-8,21	9662610,96691285000000;3238805,433909360000000	86.8007111608;27.9193179658
108	4473,16	-15,03	9662599,180463530000000;3238800,612180090000000	86.8006052813;27.9192796929
109	4468,69	-4,57	9662587,39401420000000;3238788,825730770000000	86.8004994018;27.9191861369
110	4467,60	1,11	9662577,75055566000000;3238779,182272230000000	86.8004127732;27.919109591
111	4467,90	2,42	9662569,848277140000000;3238765,654642890000000	86.8003417858;27.9190022141
112	4468,26	3,21	9662565,294421710000000;3238758,422050140000000	86.8003008778;27.9189448046
113	4468,64	3,90	9662562,21387246000000;3238752,394887540000000	86.8002732048;27.9188969633
114	4469,17	0,00	9662558,865449350000000;3238745,430168310000000	86.8002431254;27.91884168

Tabelle 6: Längsprofildaten des orographisch rechten Khumbu Gletscherbaches.

Nr	Profilhöhe über dem Meer (m)	Gefälle in Grad	WGS 84/Pseudo Mercator (EPSG: 3857) in Ost:Nord	WGS 84 (FPSG: 4326) in Ost Nord
1	4623.88	-14.33	9666399.505352330000000:3227760.99861784000000	86.8347441806:27.831616318
2	4622,07	-13,58	9666393,26322315000000;3227764,35976432000000	86.8346881066;27.831643019
3	4620,92	-9,01	9666388,94174910000000;3227766,280419450000000	86.8346492862;27.8316582767
4	4619,90	-3,33	9666384,62027506000000;3227771,082057280000000	86.8346104657;27.831696421
5	4619,64	-4,23	9666383,65994749000000;3227775,403531330000000	86.8346018389;27.8317307508
6	4619,42	-9,32	9666382,69961992000000;3227778,28451403000000	86.8345932122;27.8317536373
7	4618,69	-8,81	9666378,378145880000000;3227779,244841590000000	86.8345543917;27.8317612662
8	4617,93	-8,93	9666373,57650805000000;3227778,28451403000000	86.8345112579;27.8317536373
9	4616,41	-7,93	9666364,93355995000000;3227782,60598808000000	86.8344336169;27.8317879671
10	4615,61	-9,32	9666360,612085910000000;3227786,447298340000000	86.8343947965;27.8318184825
11	4614,29	-9,37	9666352,92946538000000;3227788,848117250000000	86.8343257823;27.8318375546
12	4612,70	-8,24	9666343,32618972000000;3227789,32828104000000	86.8342395146;27.831841369
13	4611,67	-5,01	9666336,603896750000000;3227786,927462120000000	86.8341791272;27.8318222969
14	4611,12	-3,96	9666330,361767570000000;3227786,927462120000000	86.8341230532;27.8318222969
15	4610,39	-4,05	9666319,79816435000000;3227787,88778969000000	86.8340281588;27.8318299258
16	4609,74	-4,07	9666310,675052470000000;3227788,848117250000000	86.8339462045;27.8318375546
17	4609,36	-4,28	9666305,39325086000000;3227789,328281040000000	86.8338987572;27.831841369
18	4608,67	-4,88	9666296,270138980000000;3227790,768772390000000	86.8338168029;27.8318528123
19	4607,66	-5,05	9666285,226371970000000;3227795,090246430000000	86.8337175951;27.831887142
20	4606,41	-5,58	9666271,78178605000000;3227799,411720480000000	86.8335968203;27.8319214718
21	4605,27	-5,98	9666261,218182820000000;3227804,213358310000000	86.8335019259;27.831959616
22	4604,24	-5,99	9666256,41654499000000;3227812,856306410000000	86.833458792;27.8320282754
23	4603.47	-6.14	9666253.53556230000000:3227819.578599360000000	86.8334329117:27.8320816772

24	4602,44	-7,79	9666244,41245042000000;3227822,459582060000000	86.8333509574;27.8321045636
25	4601,44	-8,37	9666237,20999367000000;3227823,900073410000000	86.8332862566;27.8321160069
26	4600,08	-9,14	9666228,08688180000000;3227825,340564760000000	86.8332043023;27.8321274501
27	4598,81	-9,21	9666221,84475262000000;3227830,142202590000000	86.8331482283;27.8321655942
28	4597,34	-8,48	9666214,16213209000000;3227834,943840420000000	86.8330792142;27.8322037383
29	4596,47	-8,50	9666208,40016669000000;3227835,904167990000000	86.8330274535;27.8322113671
30	4595,16	-9,09	9666199,75721860000000;3227837,344659340000000	86.8329498126;27.8322228103
31	4594,09	-9,02	9666193,51508942000000;3227839,745478250000000	86.8328937386;27.8322418823
32	4593,13	-9,37	9666187,75312402000000;3227841,666133390000000	86.832841978;27.8322571399
33	4592,10	-8,75	9666182,471322410000000;3227845,027279860000000	86.8327945308;27.8322838408
34	4590,75	-9,45	9666177,54964363000000;3227852,229736610000000	86.8327503186;27.8323410568
35	4589,05	-9,48	9666169,38685932000000;3227858,471865790000000	86.832676991;27.832390644
36	4587,21	-9,34	9666159,78358366000000;3227863,753667400000000	86.8325907233;27.8324326024
37	4586,36	-5,52	9666154,98194583000000;3227865,674322540000000	86.8325475895;27.83244786
38	4585,36	0,98	9666145,378670170000000;3227869,515632800000000	86.8324613218;27.8324783752
39	4585,49	1,80	9666138,17621343000000;3227869,99579658000000	86.832396621;27.8324821896
40	4585,72	-1,25	9666130,97375668000000;3227869,51563280000000	86.8323319203;27.8324783752
41	4585,60	-4,23	9666126,172118850000000;3227871,436287930000000	86.8322887864;27.8324936328
42	4584,52	-2,50	9666116,56884319000000;3227882,480054940000000	86.8322025187;27.8325813639
43	4584,24	-0,28	9666110,806877790000000;3227885,361037640000000	86.8321507581;27.8326042502
44	4584,20	0,49	9666102,16392970000000;3227886,32136520000000	86.8320731172;27.832611879
45	4584,26	0,16	9666094,96147295000000;3227886,32136520000000	86.8320084164;27.832611879
46	4584,29	-2,03	9666082,47721460000000;3227886,801528990000000	86.8318962684;27.8326156934
47	4583,92	-4,48	9666072,39377516000000;3227889,68251168000000	86.8318056873;27.8326385798
48	4583,10	-7,15	9666063,270663270000000;3227894,96431330000000	86.831723733;27.8326805381
49	4582,12	-8,73	9666057,98886167000000;3227900,726278690000000	86.8316762858;27.8327263107
50	4580,81	-6,80	9666055,588042750000000;3227908,889063010000000	86.8316547189;27.8327911553
51	4580,03	-1,30	9666052,46697816000000;3227914,651028380000000	86.8316266819;27.8328369279
52	4579,86	0,70	9666045,98476709000000;3227918,012174760000000	86.8315684512;27.8328636286
53	4579,97	2,54	9666037,34181900000000;3227920,412993540000000	86.8314908103;27.8328827005
54	4580,55	-0,98	9666024,37739686000000;3227921,613403160000000	86.8313743489;27.8328922365
55	4580,37	-3,53	9666014,293957410000000;3227925,454713330000000	86.8312837678;27.8329227515
56	4579,73	-6,07	9666005,410927430000000;3227930,736514960000000	86.8312039702;27.8329647097
57	4578,59	-8,93	9665997,248143120000000;3227937,698889790000000	86.8311306426;27.8330200182
58	4575,61	-9,41	9665985,48413043000000;3227952,583967260000000	86.8310249647;27.8331382639
59	4573,63	-11,31	9665977,80150990000000;3227961,707079140000000	86.8309559506;27.833210737
60	4570,91	-9,40	9665970,59905316000000;3227973,231009930000000	86.8308912498;27.8333022818
61	4569,66	-0,73	9665968,198234240000000;3227980,433466670000000	86.8308696829;27.8333594973
62	4569,45	5,41	9665958,95508142000000;3227993,878052600000000	86.8307866502;27.8334662995
63	4570,50	1,45	9665949,83196954000000;3228000,120181780000000	86.8307046959;27.8335158862
64	4570,71	-2,62	9665944,070004150000000;3228006,36231096000000	86.8306529353;27.8335654729
65	4570,26	-6,61	9665939,26836632000000;3228015,005259050000000	86.8306098014;27.8336341314
66	4569,00	-7,51	9665936,86754740000000;3228025,568862270000000	86.8305882345;27.8337180472
67	4567,91	-3,07	9665935,427056050000000;3228033,731646590000000	86.8305752944;27.8337828912
68	4567,29	-4,99	9665927,744435530000000;3228042,374594680000000	86.8305062802;27.8338515495
69	4566,60	-9,76	9665922,94279769000000;3228048,616723860000000	86.8304631464;27.833901136
70	4563,92	-10,60	9665920,06181500000000;3228063,981964920000000	86.8304372661;27.834023195
71	4561,38	-6,48	9665918,62132365000000;3228077,426550840000000	86.8304243259;27.8341299966

72	4560,37	-2,34	9665916,220504730000000;3228086,069498930000000	86.830402759;27.8341986546
73	4560,06	-2,69	9665914,78001338000000;3228093,271955680000000	86.8303898188;27.8342558697
74	4559,09	-2,61	9665913,33952203000000;3228113,918998350000000	86.8303768787;27.8344198859
75	4558,81	-1,10	9665913,33952203000000;3228120,161127530000000	86.8303768787;27.8344694722
76	4558,68	-2,39	9665914,78001338000000;3228126,403256710000000	86.8303898188;27.8345190584
77	4558,38	4,15	9665914,78001338000000;3228133,605713450000000	86.8303898188;27.8345762733
78	4559,55	4,38	9665924,86345283000000;3228146,089971810000000	86.8304803999;27.8346754457
79	4560,25	-5,89	9665929,184926870000000;3228154,252756590000000	86.8305192204;27.8347402891
80	4559,10	-11,07	9665923,95670942000000;3228164,097367830000000	86.8304722545;27.8348184925
81	4556,40	-6,87	9665913,33952203000000;3228172,979145380000000	86.8303768787;27.8348890474
82	4554,95	-6,39	9665909,978375550000000;3228184,503074960000000	86.830346685;27.8349805908
83	4553,28	-8,55	9665898,934608540000000;3228194,586514770000000	86.8302474771;27.8350606913
84	4551,13	-7,92	9665886,930513970000000;3228202,269132010000000	86.8301396425;27.8351217201
85	4548,71	-7,67	9665873,48592804000000;3228213,312901430000000	86.8300188677;27.8352094491
86	4547,29	-7,02	9665862,92232482000000;3228213,312902850000000	86.8299239733;27.8352094491
87	4545,54	-1,95	9665849,95790268000000;3228207,550936470000000	86.8298075119;27.8351636775
88	4545,17	2,00	9665839,87446323000000;3228211,87241008000000	86.8297169308;27.8351980062
89	4545,43	-0,08	9665836,51331676000000;3228218,594703050000000	86.8296867371;27.8352514064
90	4545,42	1,36	9665833,152170270000000;3228222,916177090000000	86.8296565434;27.8352857351
91	4545,61	-2,92	9665830,271187570000000;3228230,118633840000000	86.8296306631;27.8353429496
92	4545,28	-4,14	9665825,469549740000000;3228234,440107890000000	86.8295875293;27.8353772782
93	4544,88	-7,03	9665821,14807570000000;3228237,801254360000000	86.8295487088;27.8354039783
94	4543,96	-6,65	9665813,94561895000000;3228239,721909500000000	86.8294840081;27.8354192355
95	4542,39	-7,69	9665802,301647210000000;3228246,444202460000000	86.8293794085;27.8354726356
96	4540,93	-8,06	9665793,178535340000000;3228252,206167850000000	86.8292974542;27.8355184071
97	4539,30	-7,43	9665784,53558724000000;3228259,888788380000000	86.8292198132;27.8355794357
98	4538,08	-0,68	9665776,852966710000000;3228265,170590000000000	86.8291507991;27.8356213929
99	4537,95	-1,53	9665768,69018240000000;3228272,853210520000000	86.8290774715;27.8356824214
100	4537,64	-3,12	9665759,567070530000000;3228280,055667270000000	86.8289955172;27.8357396357
101	4537,06	-3,30	9665752,36461378000000;3228287,73828780000000	86.8289308165;27.8358006642
102	4536,69	2,72	9665747,082812170000000;3228291,579598060000000	86.8288833692;27.8358311784
103	4537,26	0,76	9665736,03904516000000;3228296,381235890000000	86.8287841614;27.8358693212
104	4537,40	0,39	9665725,955605720000000;3228299,262218590000000	86.8286935803;27.8358922069
105	4537,47	0,72	9665716,832493840000000;3228302,623365070000000	86.828611626;27.8359189068
106	4537,57	-0,87	9665710,110200880000000;3228306,944839120000000	86.8285512386;27.8359532353
107	4537,44	-2,77	9665702,907744130000000;3228310,786149380000000	86.8284865379;27.8359837495
108	4537,03	-3,38	9665694,74495982000000;3228313,18696830000000	86.8284132103;27.8360028208
109	4536,64	-1,27	9665688,50283064000000;3228315,107623430000000	86.8283571363;27.8360180779
110	4536,51	-0,17	9665684,18135660000000;3228319,429097480000000	86.8283183158;27.8360524064
111	4536,49	-1,33	9665680,340046330000000;3228323,750571520000000	86.8282838088;27.8360867348
112	4536,33	-1,62	9665674,097917150000000;3228326,631554220000000	86.8282277348;27.8361096204
113	4536,13	-1,15	9665666,895460410000000;3228326,631554220000000	86.828163034;27.8361096204
114	4535,96	-2,63	9665658,73267610000000;3228325,191062870000000	86.8280897065;27.8360981776
115	4535,49	-3,77	9665649,12940044000000;3228328,552209350000000	86.8280034388;27.8361248775
116	4534,87	-3,89	9665640,486452340000000;3228332,393519620000000	86.8279257978;27.8361553917
117	4534,03	-3,29	9665628,48235776000000;3228335,274502320000000	86.8278179632;27.8361782773
118	4533,62	-7,75	9665621,27990102000000;3228335,754666100000000	86.8277532625;27.8361820915
119	4532,88	-8,12	9665617,43859076000000;3228339,59597636000000	86.8277187554;27.8362126057

120	4532,19	-7,35	9665617,43859076000000;3228344,397614190000000	86.8277187554;27.8362507483
121	4531,32	-9,68	9665618,39891832000000;3228351,119907160000000	86.8277273822;27.836304148
122	4530,36	-9,10	9665615,51793563000000;3228355,921544990000000	86.8277015018;27.8363422906
123	4529,16	-8,56	9665608,795642670000000;3228359,282691470000000	86.8276411145;27.8363689904
124	4528,11	-9,66	9665602,07334970000000;3228361,20334660000000	86.8275807271;27.8363842475
125	4526,45	0,27	9665592,95023782000000;3228364,56449308000000	86.8274987728;27.8364109473
126	4526,47	-1,02	9665588,14859999000000;3228365,524820640000000	86.8274556389;27.8364185758
127	4526,32	1,43	9665579,865774740000000;3228367,925639560000000	86.827381233;27.8364376471
128	4526,67	-4,42	9665565,94102503000000;3228368,885967130000000	86.8272561449;27.8364452756
129	4525,84	-12,42	9665556,337749370000000;3228373,687604960000000	86.8271698772;27.8364834182
130	4524,80	-14,14	9665554,41709424000000;3228378,009079010000000	86.8271526236;27.8365177465
131	4522,85	-13,87	9665553,45676667000000;3228385,691699530000000	86.8271439969;27.8365787746
132	4520,26	1,01	9665550,575783970000000;3228395,775138980000000	86.8271181166;27.8366588738
133	4520,39	1,91	9665547,694801270000000;3228402,977595720000000	86.8270922363;27.8367160876
134	4520,59	1,28	9665543,37332723000000;3228406,818905980000000	86.8270534158;27.8367466016
135	4520,81	1,28	9665535,69070670000000;3228413,061035160000000	86.8269844016;27.8367961868
136	4520,92	2,42	9665532,32956022000000;3228416,902345430000000	86.826954208;27.8368267007
137	4521,35	2,00	9665531,36923265000000;3228426,985784870000000	86.8269455812;27.8369067998
138	4521,59	1,49	9665529,92874130000000;3228433,708077830000000	86.826932641;27.8369601992
139	4521,85	-0,85	9665527,04775860000000;3228443,311353490000000	86.8269067607;27.8370364839
140	4521,70	-0,72	9665519,84530186000000;3228450,513810240000000	86.82684206;27.8370936975
141	4521,60	-0,93	9665515,523827810000000;3228456,755939420000000	86.8268032395;27.8371432825
142	4521,47	-1,20	9665511,202353770000000;3228463,958396160000000	86.826764419;27.837200496
143	4521,25	-1,14	9665506,40071594000000;3228473,081508040000000	86.8267212852;27.8372729664
144	4521,10	-0,77	9665503,51973324000000;3228480,28396478000000	86.8266954049;27.8373301798
145	4520,90	-1,21	9665495,35694892000000;3228492,288059360000000	86.8266220773;27.8374255354
146	4520,71	-2,22	9665489,114819750000000;3228499,010352320000000	86.8265660033;27.8374789345
147	4520,45	-2,87	9665485,75367326000000;3228504,772317720000000	86.8265358096;27.8375247052
148	4520,01	-3,41	9665481,432199220000000;3228512,454938240000000	86.8264969892;27.8375857327
149	4519,52	-4,43	9665478,55121652000000;3228520,137558770000000	86.8264711089;27.8376467601
150	4518,79	-4,88	9665474,70990626000000;3228528,780506870000000	86.8264366018;27.837715416
151	4518,01	-4,55	9665471,82892356000000;3228537,423454960000000	86.8264107215;27.8377840718
152	4517,31	-7,08	9665470,388432210000000;3228546,066403060000000	86.8263977813;27.8378527275
153	4516,25	-9,36	9665466,54712195000000;3228553,749023580000000	86.8263632743;27.8379137549
154	4514,79	-10,25	9665460,785156550000000;3228560,471316550000000	86.8263115136;27.8379671537
155	4513,05	-12,21	9665455,02319116000000;3228568,153937070000000	86.826259753;27.838028181
156	4511,57	-12,55	9665449,741389540000000;3228572,475411120000000	86.8262123058;27.8380625088
157	4510,15	-12,17	9665443,49926036000000;3228573,915902470000000	86.8261562318;27.8380739514
158	4509,11	-14,02	9665438,697622530000000;3228574,396066250000000	86.8261130979;27.8380777656
159	4507,50	-14,35	9665432,935657140000000;3228577,277048950000000	86.8260613373;27.8381006508
160	4505,93	-15,12	9665429,094346880000000;3228582,078686780000000	86.8260268303;27.8381387928
161	4503,21	-17,12	9665423,21234053000000;3228590,241471090000000	86.8259739913;27.8382036341
162	4499,88	-14,79	9665414,08922866000000;3228596,003436490000000	86.825892037;27.8382494045
163	4497,33	-7,14	9665405,44628056000000;3228600,324910530000000	86.8258143961;27.8382837322
164	4495,71	-3,02	9665397,28349625000000;3228610,408349980000000	86.8257410685;27.8383638302
165	4495,17	-3,28	9665392,96202220000000;3228619,531461860000000	86.8257022481;27.8384362998
166	4494,72	-3,49	9665391,041367070000000;3228627,214082380000000	86.8256849945;27.8384973268
167	4494,09	-4,04	9665388,64054816000000;3228637,297521830000000	86.8256634276;27.8385774247

168	4493,64	-4,18	9665385,279401670000000;3228642,579323440000000	86.8256332339;27.8386193807
169	4492,94	-4,68	9665377,11661736000000;3228647,861125050000000	86.8255599064;27.8386613367
170	4492,17	-4,72	9665369,43399683000000;3228653,142926670000000	86.8254908922;27.8387032926
171	4491,51	-4,80	9665362,23154009000000;3228656,504073150000000	86.8254261914;27.8387299919
172	4490,95	-4,88	9665355,98941091000000;3228658,90489206000000	86.8253701174;27.8387490628
173	4490,30	-5,07	9665348,786954170000000;3228661,305710980000000	86.8253054167;27.8387681336
174	4489,90	-6,68	9665344,46548012000000;3228662,746202330000000	86.8252665962;27.8387795762
175	4489,20	-6,32	9665341,58449742000000;3228668,028003940000000	86.8252407159;27.8388215321
176	4487,52	-7,56	9665339,18367850000000;3228682,913081210000000	86.825219149;27.8389397714
177	4486,46	-7,98	9665334,86220446000000;3228689,635374180000000	86.8251803285;27.8389931698
178	4485,18	-7,47	9665328,13991149000000;3228695,877503350000000	86.8251199411;27.839042754
179	4484,36	-4,04	9665322,37794610000000;3228698,278322270000000	86.8250681805;27.8390618248
180	4483,75	8,57	9665313,73499800000000;3228698,758486050000000	86.8249905396;27.839065639
181	4484,55	5,90	9665308,45319639000000;3228699,238649830000000	86.8249430924;27.8390694531
182	4485,13	8,14	9665303,17139478000000;3228701,159304970000000	86.8248956451;27.8390847098
183	4485,82	11,58	9665298,369756950000000;3228701,639468750000000	86.8248525113;27.8390885239
184	4486,66	4,71	9665294,52844669000000;3228700,198977400000000	86.8248180042;27.8390770814
185	4487,17	6,25	9665288,76648129000000;3228702,599796320000000	86.8247662436;27.8390961523
186	4488,09	5,96	9665280,60369698000000;3228704,520451450000000	86.824692916;27.8391114089
187	4488,76	-3,09	9665274,36156780000000;3228705,96094280000000	86.824636842;27.8391228514
188	4488,45	-2,54	9665270,520257530000000;3228710,282416840000000	86.824602335;27.8391571789
189	4488,20	-5,16	9665268,59960240000000;3228715,564218450000000	86.8245850814;27.8391991347
190	4487,72	-6,24	9665269,559929970000000;3228720,846020070000000	86.8245937082;27.8392410904
191	4487,10	-6,67	9665271,48058510000000;3228726,127821680000000	86.8246109617;27.8392830462
192	4486,30	-4,57	9665274,36156780000000;3228732,369950860000000	86.824636842;27.8393326302
193	4485,95	-2,12	9665274,841731580000000;3228736,691424910000000	86.8246411554;27.8393669576
194	4485,51	-0,73	9665272,44091266000000;3228748,215355700000000	86.8246195885;27.8394584973
195	4485,38	-2,18	9665268,59960240000000;3228757,818631360000000	86.8245850814;27.8395347803
196	4485,12	-3,83	9665267,15911106000000;3228764,540924320000000	86.8245721413;27.8395881784
197	4484,61	-4,60	9665267,15911106000000;3228772,223544850000000	86.8245721413;27.8396492047
198	4483,91	-5,94	9665268,11943862000000;3228780,866492950000000	86.824580768;27.8397178593
199	4482,85	-6,10	9665271,48058510000000;3228790,469768610000000	86.8246109617;27.8397941421
200	4482,02	-6,51	9665274,36156780000000;3228797,672225350000000	86.824636842;27.8398513542
201	4480,84	-5,01	9665279,16320563000000;3228806,795337230000000	86.8246799759;27.8399238228
202	4480,03	-6,00	9665281,08386076000000;3228815,918449110000000	86.8246972294;27.8399962913
203	4479,07	-4,95	9665281,564024540000000;3228825,041560980000000	86.8247015428;27.8400687598
204	4478,14	-2,55	9665280,12353319000000;3228835,605164210000000	86.8246886027;27.8401526707
205	4477,75	-4,03	9665275,802059140000000;3228843,287784730000000	86.8246497822;27.8402136967
206	4476,91	-4,36	9665271,48058510000000;3228854,331551750000000	86.8246109617;27.8403014215
207	4475,80	-3,48	9665265,71861970000000;3228867,776137670000000	86.8245592011;27.8404082169
208	4475,11	-4,54	9665258,99632675000000;3228876,899249550000000	86.8244988137;27.8404806851
209	4474,53	-7,44	9665255,15501648000000;3228883,141378720000000	86.8244643067;27.8405302686
210	4473,58	-7,44	9665255,63518026000000;3228890,343835470000000	86.82446862;27.8405874803
211	4472,23	-7,12	9665259,476490530000000;3228899,947111130000000	86.8245031271;27.8406637625
212	4470,69	-6,52	9665262,357473220000000;3228911,951205700000000	86.8245290074;27.8407591152
213	4469,96	-1,77	9665260,916981870000000;3228918,193334880000000	86.8245160673;27.8408086986
214	4469,65	0,24	9665252,754197560000000;3228923,955300280000000	86.8244427397;27.8408544678
215	4469,67	0,32	9665247,712477840000000;3228924,675545920000000	86.8243974492;27.840860189

216	4469,71	-0,31	9665241,41620865000000;3228924,563944250000000	86.8243408889;27.8408593025
217	4469,67	-2,01	9665234,688035220000000;3228926,596201090000000	86.8242804486;27.8408754454
218	4469,42	-1,93	9665231,02678638000000;3228932,598247460000000	86.8242475591;27.8409231216
219	4468,97	-2,40	9665234,38793286000000;3228945,562670520000000	86.8242777528;27.8410261023
220	4468,67	-3,25	9665233,42760530000000;3228952,765127260000000	86.824269126;27.8410833137
221	4468,08	-4,38	9665229,58629503000000;3228962,368402920000000	86.8242346189;27.8411595956
222	4467,59	1,95	9665225,26482098000000;3228967,170040750000000	86.8241957985;27.8411977365
223	4467,97	5,94	9665214,221053980000000;3228969,090695880000000	86.8240965906;27.8412129929
224	4469,23	3,20	9665202,21695940000000;3228967,170040750000000	86.823988756;27.8411977365
225	4469,49	1,94	9665197,89548535000000;3228968,610532100000000	86.8239499355;27.8412091788
226	4469,81	-3,86	9665189,25253726000000;3228972,451842360000000	86.8238722946;27.8412396915
227	4469,08	-6,83	9665183,490571870000000;3228981,574954240000000	86.823820534;27.8413121592
228	4467,96	-7,03	9665181,56991673000000;3228990,69806612000000	86.8238032805;27.8413846268
229	4467,23	-5,23	9665180,12942538000000;3228996,460031520000000	86.8237903403;27.8414303958
230	4466,67	-4,58	9665176,28811512000000;3229001,261669350000000	86.8237558332;27.8414685366
231	4466,07	-0,86	9665170,52614972000000;3229006,063307170000000	86.8237040726;27.8415066774
232	4465,91	-0,35	9665160,202628390000000;3229007,983962340000000	86.8236113348;27.8415219337
233	4465,85	-2,12	9665150,83943462000000;3229008,944289790000000	86.8235272238;27.8415295619
234	4465,41	-2,32	9665139,31550383000000;3229011,585190650000000	86.8234237026;27.8415505393
235	4465,08	-1,29	9665131,15271952000000;3229013,265763920000000	86.8233503751;27.8415638886
236	4464,88	-2,70	9665123,950262770000000;3229018,067401750000000	86.8232856743;27.8416020294
237	4464,59	2,08	9665119,62878872000000;3229022,388875800000000	86.8232468538;27.841636356
238	4464,85	5,93	9665113,386659540000000;3229025,750022280000000	86.8231907798;27.8416630546
239	4465,77	6,59	9665105,70403902000000;3229030,071496430000000	86.8231217657;27.8416973812
240	4466,65	-0,03	9665098,741664160000000;3229033,192560970000000	86.8230592216;27.8417221727
241	4466,64	4,08	9665095,260476740000000;3229039,194608240000000	86.8230279496;27.8417698486
242	4467,43	-0,58	9665085,897282970000000;3229044,95657360000000	86.8229438386;27.8418156174
243	4467,33	-4,28	9665080,135317580000000;3229052,639194170000000	86.822892078;27.8418766425
244	4466,37	-5,15	9665075,813843530000000;3229064,643288700000000	86.8228532575;27.8419719941
245	4465,42	-5,94	9665072,452697040000000;3229074,726728140000000	86.8228230638;27.8420520894
246	4464,21	-5,89	9665069,09155056000000;3229085,770495160000000	86.8227928701;27.8421398128
247	4462,97	-5,88	9665064,289912740000000;3229096,814262160000000	86.8227497363;27.8422275361
248	4461,57	-5,30	9665057,087455990000000;3229108,338192960000000	86.8226850355;27.8423190733
249	4460,63	-5,48	9665049,884999250000000;3229115,540649700000000	86.8226203347;27.8423762841
250	4459,84	-9,54	9665043,642870070000000;3229120,822451310000000	86.8225642607;27.8424182386
251	4458,56	-6,43	9665041,242051150000000;3229128,024908060000000	86.8225426938;27.8424754493
252	4456,83	-5,41	9665040,281723580000000;3229143,390149120000000	86.822534067;27.8425974987
253	4456,01	-4,80	9665041,242051150000000;3229152,033097210000000	86.8225426938;27.8426661514
254	4455,41	3,54	9665037,88090467000000;3229158,275226390000000	86.8225125001;27.8427157339
255	4455,84	9,03	9665032,118939270000000;3229162,116536650000000	86.8224607395;27.8427462462
256	4457,62	9,05	9665021,07517226000000;3229164,037191790000000	86.8223615316;27.8427615024
257	4458,70	4,66	9665014,35287930000000;3229164,997519350000000	86.8223011443;27.8427691304
258	4459,39	4,37	9665007,150422550000000;3229169,318993400000000	86.8222364435;27.8428034567
259	4459,91	-8,31	9665001,268416210000000;3229172,680139880000000	86.8221836045;27.842830155
260	4458,85	-7,82	9665001,268416210000000;3229179,882596630000000	86.8221836045;27.8428873655
261	4457,73	-2,35	9665000,78825243000000;3229188,04538093000000	86.8221792911;27.842952204
262	4457,39	-1,93	9664995,98661460000000;3229194,76767390000000	86.8221361573;27.8430056004
263	4457,03	0,70	9664988,78415786000000;3229202,930458210000000	86.8220714565;27.8430704388

264	4457,20	-5,52	9664976,78006328000000;3229210,132914950000000	86.8219636219;27.8431276491
265	4456,43	-1,37	9664972,45858923000000;3229216,855207910000000	86.8219248014;27.8431810455
266	4456,22	-4,39	9664965,25613249000000;3229221,656845740000000	86.8218601007;27.8432191857
267	4455,70	-6,99	9664960,45449466000000;3229226,458483570000000	86.8218169668;27.8432573258
268	4454,77	-3,14	9664956,133020610000000;3229232,700612760000000	86.8217781464;27.8433069081
269	4454,33	0,56	9664952,29171035000000;3229239,662987630000000	86.8217436393;27.8433622113
270	4454,43	-1,35	9664949,89089143000000;3229249,746427120000000	86.8217220724;27.8434423056
271	4454,24	-2,75	9664951,81154656000000;3229257,669129470000000	86.8217393259;27.8435052367
272	4453,91	-1,80	9664956,13302061000000;3229262,95093108000000	86.8217781464;27.8435471908
273	4453,61	-1,73	9664959,97433087000000;3229271,593879180000000	86.8218126534;27.843615843
274	4453,44	-0,71	9664962,375149790000000;3229276,875680790000000	86.8218342204;27.843657797
275	4453,35	1,55	9664963,33547736000000;3229283,597973750000000	86.8218428471;27.843711193
276	4453,58	1,20	9664959,014003310000000;3229290,800430500000000	86.8218040267;27.8437684031
277	4453,74	1,31	9664955,65285683000000;3229297,522723460000000	86.821773833;27.8438217991
278	4453,93	-1,32	9664951,33138278000000;3229304,725180210000000	86.8217350125;27.843879009
279	4453,59	-1,24	9664956,133020610000000;3229318,649929910000000	86.8217781464;27.8439896148
280	4453,33	-0,88	9664960,45449466000000;3229330,173860700000000	86.8218169668;27.8440811506
281	4453,18	-3,03	9664962,855313570000000;3229339,296972580000000	86.8218385338;27.8441536164
282	4452,49	-2,04	9664960,934658440000000;3229352,261394720000000	86.8218212802;27.844256594
283	4452,15	-2,91	9664954,69252926000000;3229359,463851470000000	86.8217652062;27.8443138037
284	4451,43	-4,13	9664946,049581170000000;3229370,507618480000000	86.8216875653;27.8444015252
285	4450,44	-5,12	9664943,168598470000000;3229383,952204400000000	86.821661685;27.8445083166
286	4448,87	-2,53	9664946,049581170000000;3229401,238100590000000	86.8216875653;27.8446456195
287	4448,50	-3,17	9664951,81154656000000;3229407,480229770000000	86.8217393259;27.8446952011
288	4448,14	-3,55	9664954,69252926000000;3229413,242195160000000	86.8217652062;27.8447409687
289	4447,68	-2,09	9664956,61318439000000;3229420,444651910000000	86.8217824598;27.8447981782
290	4447,39	-1,44	9664960,934658440000000;3229427,166944870000000	86.8218212802;27.8448515737
291	4447,22	-0,55	9664964,77596870000000;3229432,448746490000000	86.8218557873;27.8448935273
292	4447,15	-1,70	9664969,57760654000000;3229437,73054810000000	86.8218989211;27.8449354808
293	4446,89	3,34	9664972,93875302000000;3229445,893332410000000	86.8219291148;27.8450003181
294	4447,73	3,18	9664976,78006328000000;3229459,818082120000000	86.8219636219;27.8451109228
295	4448,19	4,74	9664977,74039085000000;3229467,98086643000000	86.8219722487;27.84517576
296	4448,82	4,20	9664980,14120976000000;3229475,183323170000000	86.8219938156;27.8452329692
297	4449,46	3,56	9664981,581701110000000;3229483,826271270000000	86.8220067558;27.8453016203
298	4450,00	1,13	9664982,06186489000000;3229492,46921936000000	86.8220110691;27.8453702713
299	4450,16	-4,98	9664980,621373540000000;3229500,151839890000000	86.821998129;27.8454312944
300	4449,44	-3,97	9664975,33957193000000;3229506,393969070000000	86.8219506818;27.8454808756
301	4448,68	-2,92	9664970,05777032000000;3229515,997244730000000	86.8219032345;27.8455571544
302	4448,32	2,53	9664967,65695140000000;3229522,719537690000000	86.8218816676;27.8456105495
303	4448,83	0,77	9664968,617278970000000;3229534,243468480000000	86.8218902944;27.8457020839
304	4448,98	2,29	9664968,137115180000000;3229545,767399280000000	86.821885981;27.8457936182
305	4449,27	-6,53	9664967,416869510000000;3229552,969856020000000	86.8218795109;27.8458508272
306	4447,70	-2,81	9664957,093348180000000;3229562,092967900000000	86.8217867731;27.8459232917
307	4447,14	1,04	9664950,611137110000000;3229571,456161760000000	86.8217285424;27.8459976632
308	4447,35	3,56	9664946,28966306000000;3229582,25984693000000	86.821689722;27.8460834764
309	4448,07	5,83	9664942,68843469000000;3229593,303613790000000	86.8216573716;27.8461711965
310	4449,00	2,66	9664937,88679686000000;3229600,986234320000000	86.8216142378;27.8462322192
311	4449,41	-0,65	9664931,16450389000000;3229606,748199720000000	86.8215538504;27.8462779861

1				
3′	12 4449,31	-0,40	9664923,001719580000000;3229610,109346200000000	86.8214805228;27.8463046835
3′	13 4449,23	-0,40	9664914,838935270000000;3229616,351475380000000	86.8214071953;27.8463542643
3′	4449,17	-1,27	9664909,076969880000000;3229624,034095900000000	86.8213554347;27.8464152869
3′	15 4448,97	-2,94	9664904,27533205000000;3229631,716716430000000	86.8213123008;27.8464763094
3′	16 4448,54	-2,54	9664899,473694210000000;3229638,439009400000000	86.821269167;27.846529704
3′	4448,17	-3,79	9664896,112547740000000;3229646,121629920000000	86.8212389733;27.8465907264
3′	18 4447,81	-2,34	9664893,71172882000000;3229650,923267750000000	86.8212174064;27.8466288655
3′	19 4447,25	2,93	9664883,62828938000000;3229660,526543410000000	86.8211268253;27.8467051434
32	4447,79	-4,31	9664876,42583263000000;3229668,209163940000000	86.8210621245;27.8467661657
32	4446,60	1,56	9664862,501082930000000;3229675,411620690000000	86.8209370364;27.8468233742
32	4446,93	2,48	9664854,81846239000000;3229684,534732560000000	86.8208680222;27.8468958381
32	4447,49	1,50	9664846,17551430000000;3229694,138008220000000	86.8207903813;27.8469721159
32	4447,74	-1,85	9664838,97305756000000;3229700,380137400000000	86.8207256805;27.8470216964
32	4447,39	-0,94	9664829,84994568000000;3229706,14210280000000	86.8206437262;27.847067463
32	4447,26	-4,89	9664824,08798029000000;3229711,423904410000000	86.8205919656;27.8471094157
32	4446,09	-4,11	9664812,32396760000000;3229718,386279450000000	86.8204862877;27.847164717
32	28 4445,26	-4,34	9664803,92110140000000;3229726,30898168000000	86.8204108034;27.847227646
32	29 4444,41	-7,77	9664796,71864465000000;3229734,95192978000000	86.8203461027;27.8472962958
33	30 4443,20	-12,32	9664789,99635169000000;3229740,713895170000000	86.8202857153;27.8473420623
33	31 4441,77	-13,07	9664783,754222510000000;3229742,634550310000000	86.8202296413;27.8473573178
33	32 4440,39	-12,19	9664777,99225712000000;3229744,07504165000000	86.8201778807;27.8473687594
33	4438,86	-8,29	9664771,75012793000000;3229747,43618814000000	86.8201218067;27.8473954566
33	34 4437,85	-6,91	9664767,908817670000000;3229753,198153530000000	86.8200872996;27.847441223
33	4436,96	-6,06	9664764,90779403000000;3229759,920446490000000	86.8200603409;27.8474946172
33	4436,06	9,93	9664758,665664850000000;3229765,682411890000000	86.8200042669;27.8475403836
33	4437,60	9,37	9664750,98304432000000;3229770,003885940000000	86.8199352528;27.8475747084
33	4439,20	8,29	9664742,34009623000000;3229774,325359980000000	86.8198576119;27.8476090332
33	39 4440,34	6,62	9664737,05829461000000;3229780,087325380000000	86.8198101646;27.8476547996
34	4441,21	4,45	9664732,25665678000000;3229785,849290780000000	86.8197670308;27.8477005659
34	4441,86	2,99	9664724,57403626000000;3229789,210437260000000	86.8196980166;27.847727263
34	4442,32	2,43	9664715,93108816000000;3229791,131092390000000	86.8196203757;27.8477425184
34	43 4442,81	2,21	9664704,407157380000000;3229791,131092390000000	86.8195168545;27.8477425184
34	4443,09	-1,23	9664697,20470062000000;3229791,611256170000000	86.8194521537;27.8477463323
34	4442,89	-4,80	9664690,002243880000000;3229797,373221570000000	86.8193874529;27.8477920986
34	4442,18	-5,99	9664686,881179290000000;3229805,295924120000000	86.8193594159;27.8478550272
34	4441,42	-7,25	9664684,24027848000000;3229812,018217000000000	86.8193356923;27.8479084212
34	48 4440,33	-8,60	9664680,398968220000000;3229819,700837520000000	86.8193011852;27.8479694429
34	4438,81	-9,48	9664672,71634769000000;3229826,183048550000000	86.8192321711;27.8480209299
35	50 4437,63	-0,32	9664666,474218510000000;3229829,544195030000000	86.8191760971;27.8480476268
35	51 4437,59	-1,05	9664661,67258068000000;3229832,425177730000000	86.8191329632;27.8480705099
35	52 4437,47	3,88	9664656,870942850000000;3229837,226815560000000	86.8190898294;27.8481086484
35	53 4438,04	2,92	9664649,188322320000000;3229840,587962040000000	86.8190208152;27.8481353453
35	54 4438.59	-2,66	9664639,58504666000000;3229845,389599870000000	86.8189345475;27.8481734838
35	55 4438.29	-0.13	9664635,26357261000000;3229850,191237700000000	86.8188957271;27.8482116222
35	56 4438.27	-10.56	9664629,50160722000000;3229854,512711750000000	86.8188439665;27.8482459468
35	57 4436.65	0.30	9664628,54127965000000:3229863.15565984000000	86.8188353397;27.848314596
35	58 4436.71	5.03	9664626,14046074000000:3229874.199426850000000	86.8188137728:27.8484023142
35	59 4437.28	3.74	9664621,338822910000000;3229878.520900900000000	86.8187706389:27.8484366388
	- ,			

1				
360	4437,74	1,10	9664616,05702129000000;3229883,32253873000000	86.8187231917;27.8484747771
361	4437,87	-0,53	9664613,17603860000000;3229889,08450413000000	86.8186973114;27.8485205431
362	4437,81	-1,01	9664611,735547250000000;3229895,326633300000000	86.8186843712;27.848570123
363	4437,70	-1,64	9664610,29505590000000;3229901,088598700000000	86.8186714311;27.8486158889
364	4437,44	-2,60	9664606,93390942000000;3229909,73154680000000	86.8186412374;27.8486845378
365	4437,16	-3,31	9664605,01325429000000;3229915,493512190000000	86.8186239838;27.8487303037
366	4436,89	-4,26	9664603,09259916000000;3229919,814986240000000	86.8186067303;27.8487646282
367	4436,27	-6,19	9664596,37030619000000;3229924,616624070000000	86.8185463429;27.8488027664
368	4434,96	-8,17	9664590,488299850000000;3229935,180227290000000	86.818493504;27.8488866705
369	4433,58	-9,69	9664584,72633446000000;3229942,862847820000000	86.8184417433;27.8489476916
370	4432,42	-10,63	9664579,44453284000000;3229947,184321870000000	86.8183942961;27.8489820159
371	4430,96	-4,93	9664575,603222580000000;3229953,906614830000000	86.818359789;27.8490354094
372	4430,40	-6,92	9664577,523877710000000;3229960,148744010000000	86.8183770426;27.849084989
373	4429,64	-2,78	9664578,00404149000000;3229966,390873190000000	86.818381356;27.8491345685
374	4429,34	-4,00	9664578,48420528000000;3229972,633002370000000	86.8183856693;27.8491841481
375	4428,68	5,40	9664573,20240366000000;3229980,315622890000000	86.8183382221;27.849245169
376	4429,36	5,11	9664568,880929610000000;3229986,077588290000000	86.8182994016;27.8492909347
377	4430,21	3,24	9664564,079291790000000;3229994,240372600000000	86.8182562678;27.8493557694
378	4430,71	2,03	9664560,71814530000000;3230002,403156910000000	86.8182260741;27.849420604
379	4431,08	0,78	9664556,87683504000000;3230012,006432570000000	86.818191567;27.84949688
380	4431,20	-0,12	9664553,99585235000000;3230020,649380670000000	86.8181656867;27.8495655284
381	4431,18	-1,04	9664552,075197210000000;3230028,812164980000000	86.8181484332;27.8496303629
382	4431,03	-2,53	9664548,714050730000000;3230036,494785510000000	86.8181182395;27.8496913836
383	4430,73	-3,75	9664543,91241290000000;3230041,296423340000000	86.8180751056;27.8497295215
384	4430,28	-5,29	9664538,150447510000000;3230045,137733600000000	86.818023345;27.8497600318
385	4429,19	-7,46	9664528,547171850000000;3230051,860026570000000	86.8179370773;27.8498134248
386	4427,50	-9,49	9664518,94389618000000;3230060,502974660000000	86.8178508096;27.849882073
387	4425,74	-10,92	9664511,741439440000000;3230068,185595190000000	86.8177861089;27.8499430935
388	4424,49	-5,59	9664506,939801610000000;3230072,507069230000000	86.817742975;27.8499774176
389	4423,43	-3,02	9664499,73734486000000;3230080,669853540000000	86.8176782743;27.8500422518
390	4422,91	-5,41	9664492,53488812000000;3230087,392146510000000	86.8176135735;27.8500956447
391	4421,89	4,97	9664482,93161246000000;3230092,193784340000000	86.8175273058;27.8501337825
392	4422,90	8,13	9664473,80850058000000;3230099,39624108000000	86.8174453515;27.8501909891
393	4424,62	7,02	9664462,28456979000000;3230102,757387560000000	86.8173418303;27.8502176856
394	4425,84	3,85	9664453,161457910000000;3230106,598697830000000	86.8172598759;27.8502481957
395	4426,53	1,80	9664446,919328730000000;3230114,761482140000000	86.8172038019;27.8503130298
396	4426,81	0,73	9664442,59785468000000;3230122,444102660000000	86.8171649815;27.8503740501
397	4426,91	-1,31	9664438,27638064000000;3230129,646559410000000	86.817126161;27.8504312567
398	4426,58	-2,68	9664433,354701870000000;3230143,571309120000000	86.8170819488;27.8505418558
399	4425,97	-4,03	9664428,55306403000000;3230155,575403690000000	86.817038815;27.8506371998
400	4425,21	-4,55	9664423,75142620000000;3230165,178679350000000	86.8169956811;27.850713475
401	4424,40	-3,97	9664422,310934850000000;3230175,262118800000000	86.816982741;27.8507935638
402	4423,73	-5,00	9664421,35060729000000;3230184,865394460000000	86.8169741142;27.8508698388
403	4422,31	-5,81	9664414,62831432000000;3230199,750471730000000	86.8169137268;27.850988065
404	4421,32	-5,82	9664410,30684028000000;3230208,39341982000000	86.8168749064;27.8510567124
405	4419,91	-5,32	9664405,50520245000000;3230221,35784196000000	86.8168317725;27.8511596835
406	4419.05	-3.84	9664403,58454732000000:3230230.48095384000000	86.816814519:27.8512321445
407	4418.40	-1.95	9664403,58454732000000:3230240.084229500000000	86.816814519:27.8513084192
<u> </u>		, -		· · · · · · · · · · · · · · · · · · ·

408	4418,15	-7,85	9664405,02503866000000;3230247,286686250000000	86.8168274591;27.8513656253
409	4417,02	-9,87	9664401,18372840000000;3230254,489142990000000	86.8167929521;27.8514228312
410	4415,73	-10,51	9664395,90192679000000;3230259,770944600000000	86.8167455048;27.8514647823
411	4414,28	-6,78	9664390,13996139000000;3230265,052746220000000	86.8166937442;27.8515067333
412	4413,15	-4,97	9664386,29865113000000;3230273,695694310000000	86.8166592371;27.8515753804
413	4412,32	-7,04	9664386,298651130000000;3230283,298969970000000	86.8166592371;27.8516516549
414	4411,28	-8,19	9664388,21930626000000;3230291,461754280000000	86.8166764907;27.8517164881
415	4410,19	-3,77	9664385,81848735000000;3230298,664211030000000	86.8166549238;27.8517736939
416	4409,47	-7,57	9664381,49701330000000;3230308,747650470000000	86.8166161033;27.851853782
417	4408,44	-2,98	9664380,77676762000000;3230316,430271090000000	86.8166096332;27.8519148014
418	4407,55	-6,20	9664373,33422899000000;3230331,795512060000000	86.8165427758;27.8520368402
419	4406,75	-8,95	9664371,89373764000000;3230338,99796880000000	86.8165298356;27.8520940458
420	4404,94	-2,25	9664372,37390142000000;3230350,521899590000000	86.816534149;27.8521855747
421	4404,58	-8,45	9664368,05242738000000;3230358,684683840000000	86.8164953285;27.8522504077
422	4403,01	-4,62	9664368,05242738000000;3230369,248287130000000	86.8164953285;27.8523343091
423	4402,23	-5,52	9664365,17144468000000;3230378,371399010000000	86.8164694482;27.8524067694
424	4401,23	-0,28	9664362,77062576000000;3230388,454838450000000	86.8164478813;27.852486857
425	4401,17	4,01	9664360,36980685000000;3230401,899424370000000	86.8164263144;27.8525936403
426	4402,08	5,19	9664352,20702254000000;3230411,982863820000000	86.8163529868;27.8526737278
427	4403,09	-3,51	9664342,36366498000000;3230417,264665260000000	86.8162645624;27.8527156783
428	4402,56	-5,98	9664341,163255530000000;3230425,907613520000000	86.816253779;27.8527843246
429	4401,52	-4,67	9664345,004565790000000;3230435,030725400000000	86.8162882861;27.8528567846
430	4400,51	-3,50	9664349,326039840000000;3230446,554656190000000	86.8163271065;27.8529483129
431	4399,97	-2,96	9664351,246694970000000;3230455,197604290000000	86.8163443601;27.8530169591
432	4399,48	-3,18	9664351,72685875000000;3230464,800879950000000	86.8163486734;27.8530932325
433	4399,00	-4,49	9664349,326039840000000;3230472,963664260000000	86.8163271065;27.8531580649
434	4397,70	-4,89	9664343,08391065000000;3230488,328905320000000	86.8162710325;27.8532801023
435	4396,82	-3,35	9664339,24260039000000;3230497,932180980000000	86.8162365254;27.8533563756
436	4396,13	-5,43	9664335,40129013000000;3230508,975947990000000	86.8162020184;27.8534440898
437	4395,01	-8,25	9664330,119488520000000;3230519,539551210000000	86.8161545711;27.8535279903
438	4393,02	-9,87	9664321,956704210000000;3230530,583318220000000	86.8160812436;27.8536157044
439	4391,28	-10,84	9664316,194738810000000;3230538,746102530000000	86.816029483;27.8536805365
440	4388,93	-10,62	9664309,95260963000000;3230549,309705760000000	86.815973409;27.8537644368
441	4387,19	-4,30	9664306,59146315000000;3230557,952653850000000	86.8159432153;27.8538330824
442	4386,58	-6,07	9664307,551790710000000;3230566,115438160000000	86.8159518421;27.8538979144
443	4385,71	-13,45	9664307,551790710000000;3230574,278222470000000	86.8159518421;27.8539627463
444	4384,17	-17,49	9664304,67080802000000;3230580,040187870000000	86.8159259617;27.85400851
445	4382,67	-15,34	9664301,309661530000000;3230583,401334350000000	86.8158957681;27.8540352055
446	4381,02	-7,50	9664298,428678840000000;3230588,683135960000000	86.8158698877;27.8540771555
447	4380,39	-9,42	9664298,428678840000000;3230593,484773800000000	86.8158698877;27.8541152919
448	4378,92	5,99	9664296,508023710000000;3230602,127721890000000	86.8158526342;27.8541839373
449	4380,09	16,37	9664290,746058310000000;3230611,730997550000000	86.8158008736;27.85426021
450	4383,19	12,69	9664283,06343778000000;3230618,933454290000000	86.8157318594;27.8543174144
451	4385,17	6,09	9664276,821308610000000;3230625,175583470000000	86.8156757854;27.8543669916
452	4385,95	-2,41	9664272,979998340000000;3230631,417712650000000	86.8156412784;27.8544165687
453	4385,59	-1,03	9664271,53950699000000;3230640,060660750000000	86.8156283382;27.854485214
454	4385,46	-0,61	9664269,13868808000000;3230646,782953710000000	86.8156067713;27.8545386047
455	4385,34	-3,72	9664263,37672268000000;3230655,906065580000000	86.8155550107;27.8546110634

456	4384,54	-7,17	9664256,174265930000000;3230665,989505030000000	86.8154903099;27.8546911494
457	4383,25	-9,80	9664249,93213675000000;3230674,152289340000000	86.8154342359;27.8547559809
458	4381,83	-13,27	9664244,650335140000000;3230680,394418520000000	86.8153867887;27.8548055578
459	4379,49	-17,41	9664238,64828785000000;3230688,317121160000000	86.8153328714;27.8548684824
460	4375,80	-14,71	9664233,00636340000000;3230698,640642270000000	86.8152821891;27.854950475
461	4372,34	-7,64	9664225,80390666000000;3230709,68440928000000	86.8152174883;27.8550381879
462	4370,84	-8,74	9664221,002268830000000;3230719,767848730000000	86.8151743545;27.8551182736
463	4369,09	-9,46	9664215,72046722000000;3230729,851288170000000	86.8151269072;27.8551983592
464	4367,13	-10,80	9664210,43866560000000;3230740,414891400000000	86.81507946;27.8552822583
465	4364,50	-5,06	9664203,716372640000000;3230752,418985970000000	86.8150190726;27.8553775981
466	4363,68	0,32	9664199,39489859000000;3230760,581770280000000	86.8149802522;27.8554424292
467	4363,73	-6,28	9664195,073424540000000;3230767,304063240000000	86.8149414317;27.8554958194
468	4361,59	-10,15	9664188,35113159000000;3230785,550287000000000	86.8148810443;27.8556407356
469	4358,67	-12,04	9664181,62883862000000;3230800,435364270000000	86.8148206569;27.8557589566
470	4356,15	-0,75	9664176,347037010000000;3230810,998967500000000	86.8147732097;27.8558428553
471	4356,00	-1,58	9664171,06523539000000;3230821,082406940000000	86.8147257625;27.8559229404
472	4355,75	-2,55	9664167,704088910000000;3230829,245191250000000	86.8146955688;27.8559877711
473	4355,19	-6,82	9664163,38261486000000;3230841,249285830000000	86.8146567483;27.8560831103
474	4353,83	-10,20	9664156,660321910000000;3230850,372397700000000	86.8145963609;27.8561555681
475	4351,39	-12,13	9664147,05704625000000;3230859,975673360000000	86.8145100932;27.8562318393
476	4348,61	-14,86	9664138,41409815000000;3230869,578949020000000	86.8144324523;27.8563081105
477	4345,46	-18,08	9664129,77115006000000;3230877,741733330000000	86.8143548114;27.856372941
478	4339,80	-14,71	9664115,366236570000000;3230887,345008990000000	86.8142254098;27.8564492121
479	4336,12	-9,79	9664104,32246956000000;3230895,987957090000000	86.814126202;27.8565178561
480	4333,97	-10,26	9664098,56050416000000;3230907,031724100000000	86.8140744414;27.8566055677
481	4332,67	4,28	9664099,04066794000000;3230914,234180840000000	86.8140787548;27.856662771
482	4333,17	3,86	9664103,902326250000000;3230918,795736770000000	86.8141224278;27.8566989997
483	4333,59	2,48	9664101,92165064000000;3230924,797784070000000	86.8141046351;27.856746669
484	4333,99	-0,65	9664098,080340370000000;3230932,960568380000000	86.814070128;27.8568114992
485	4333,88	-4,41	9664091,83821120000000;3230939,68286134000000	86.814014054;27.8568648887
486	4333,28	-4,94	9664084,635754450000000;3230942,563844040000000	86.8139493532;27.85688777
487	4332,50	-4,36	9664076,472970140000000;3230946,405154300000000	86.8138760257;27.8569182783
488	4332,01	-5,51	9664071,671332310000000;3230950,726628350000000	86.8138328918;27.8569526001
489	4331,42	-3,69	9664066,869694480000000;3230954,567938610000000	86.813789758;27.8569831084
490	4330,86	-4,25	9664063,028384220000000;3230962,250559140000000	86.8137552509;27.857044125
491	4330,35	-8,78	9664060,147401520000000;3230968,492688320000000	86.8137293706;27.8570937009
492	4329,65	-10,09	9664056,306091250000000;3230970,893507240000000	86.8136948635;27.8571127685
493	4328,68	-10,59	9664051,02428965000000;3230972,333998590000000	86.8136474163;27.8571242091
494	4325,47	-12,79	9664036,49933520000000;3230981,457110460000000	86.8135169364;27.8571966662
495	4321,18	-9,38	9664019,69360280000000;3230990,100058550000000	86.813365968;27.8572653097
496	4319,26	-6,90	9664012,49114606000000;3230999,223170440000000	86.8133012672;27.8573377666
497	4318,20	-7,86	9664008,169672010000000;3231006,905790960000000	86.8132624467;27.857398783
498	4316,30	-0,58	9664002,40770662000000;3231019,390049320000000	86.8132106861;27.8574979345
499	4316,20	-2,78	9663997,60606878000000;3231028,032997410000000	86.8131675523;27.8575665778
500	4315,70	-6,92	9663990,88377582000000;3231035,715617940000000	86.8131071649;27.857627594
501	4311,09	-11,27	9663964,47476776000000;3231063,084953570000000	86.8128699287;27.857844964
502	4308,31	-13,02	9663954,39132831000000;3231072,688229240000000	86.8127793476;27.8579212341
503	4306,11	-14,93	9663947,669035350000000;3231079,410522200000000	86.8127189603;27.8579746231

1	1			
504	4302,43	-16,39	9663934,704613210000000;3231084,212160030000000	86.8126024989;27.8580127581
505	4299,33	-11,27	9663927,50215646000000;3231091,894780550000000	86.8125377981;27.858073774
506	4296,44	-5,69	9663919,33937215000000;3231103,89887513000000	86.8124644706;27.8581691114
507	4295,11	-4,70	9663912,61707919000000;3231115,42280592000000	86.8124040832;27.8582606352
508	4294,34	5,97	9663907,335277580000000;3231123,105426450000000	86.8123566359;27.8583216511
509	4295,36	5,03	9663899,172493270000000;3231128,387228060000000	86.8122833084;27.8583635994
510	4296,11	3,34	9663895,331183010000000;3231136,069848590000000	86.8122488013;27.8584246152
511	4296,49	0,39	9663892,45020030000000;3231141,831813990000000	86.812222921;27.858470377
512	4296,61	-3,89	9663881,88659708000000;3231156,716891260000000	86.8121280266;27.8585885949
513	4295,71	-7,32	9663873,723812770000000;3231167,280494490000000	86.812054699;27.8586724914
514	4294,35	-10,37	9663866,041192240000000;3231174,482951230000000	86.8119856849;27.8587296935
515	4292,18	-13,49	9663857,87840793000000;3231183,125899320000000	86.8119123573;27.8587983361
516	4289,49	-17,51	9663850,19578740000000;3231191,288683630000000	86.8118433432;27.8588631651
517	4283,33	-15,72	9663835,19066918000000;3231203,772942000000000	86.8117085499;27.8589623152
518	4278,68	-13,43	9663821,74608326000000;3231213,376217660000000	86.8115877751;27.8590385845
519	4274,32	-15,27	9663805,42051463000000;3231221,539001970000000	86.8114411201;27.8591034134
520	4269,62	-0,06	9663790,53543736000000;3231230,181950060000000	86.8113074051;27.8591720556
521	4269,61	-0,98	9663777,090851440000000;3231235,943915460000000	86.8111866304;27.8592178171
522	4269,36	-2,28	9663763,646265510000000;3231241,225717070000000	86.8110658556;27.8592597651
523	4268,87	-2,86	9663752,12233472000000;3231245,067027340000000	86.8109623344;27.8592902728
524	4267,91	-4,94	9663733,876110970000000;3231251,309156520000000	86.8107984257;27.8593398477
525	4266,66	-7,27	9663720,43152504000000;3231256,590958120000000	86.810677651;27.8593817956
526	4264,38	-7,55	9663703,62579264000000;3231262,83308730000000	86.8105266825;27.8594313705
527	4262,51	-11,87	9663691,141534280000000;3231269,315298380000000	86.8104145345;27.859482852
528	4259,73	-14,08	9663678,41719403000000;3231272,916526820000000	86.8103002298;27.8595114529
529	4256,39	-15,07	9663665,21269000000000;3231274,597100380000000	86.8101816117;27.8595248
530	4254,02	-14,29	9663656,569741910000000;3231272,916526750000000	86.8101039708;27.8595114529
531	4251,01	-7,66	9663645,045811110000000;3231275,557427470000000	86.8100004496;27.8595324268
532	4248,75	-7,43	9663628,48016060000000;3231278,678492090000000	86.8098516378;27.8595572142
533	4246,54	-6,85	9663611,91451009000000;3231282,039638620000000	86.809702826;27.8595839083
534	4244,72	-7,65	9663597,50959659000000;3231286,841276460000000	86.8095734245;27.8596220428
535	4243,62	-6,24	9663589,78054868000000;3231284,241936640000000	86.8095039933;27.8596013989
536	4242,51	-4,71	9663580,46378230000000;3231288,281767620000000	86.8094202993;27.8596334831
537	4241,52	-6,70	9663570,86050664000000;3231295,484224580000000	86.8093340317;27.8596906847
538	4239,63	-8,84	9663555,01510180000000;3231298,365207300000000	86.80919169;27.8597135654
539	4237,64	-9,10	9663542,530843440000000;3231295,484224550000000	86.809079542;27.8596906847
540	4235,93	-9,27	9663531,96724022000000;3231294,04373320000000	86.8089846475;27.8596792444
541	4233,08	-9,31	9663515,16150781000000;3231289,242095370000000	86.808833679;27.85964111
542	4230,43	-9,37	9663500,276430540000000;3231282,999966190000000	86.8086999641;27.8595915352
543	4228,30	-9,44	9663487,79217218000000;3231279,638819710000000	86.8085878161;27.8595648411
544	4225,60	-9,44	9663472,426931120000000;3231274,35701810000000	86.8084497878;27.8595228932
545	4223,22	-10,23	9663458,50218142000000;3231270,99587162000000	86.8083246996;27.8594961991
546	4221,34	-10,62	9663448,418741970000000;3231268,354970900000000	86.8082341186;27.8594752251
547	4219.03	-11.63	9663436,17456550000000;3231266,91447960000000	86.8081241273;27.8594637848
548	4215,88	-14,71	9663421,04940634000000;3231264,753742710000000	86.8079882556;27.8594466243
549	4212.81	-17.37	9663410,00563933000000:3231260.91243263000000	86.8078890478;27.8594161167
550	4206.91	-19.77	9663392,47966125000000:3231253.950057320000000	86.8077316093:27.8593608216
551	4202.54	-21.13	9663381,195812350000000:3231249.38850138000000	86.8076302447:27.8593245939
	,. '		,	

	1			
552	4197,11	-18,07	9663367,99130832000000;3231244,58686372000000	86.8075116266;27.8592864593
553	4192,12	-17,38	9663353,82647672000000;3231238,824898160000000	86.8073843818;27.8592406979
554	4186,22	-9,56	9663336,060416750000000;3231232,582768970000000	86.8072247866;27.8591911229
555	4183,39	-4,71	9663319,254684340000000;3231232,582768970000000	86.8070738181;27.8591911229
556	4182,65	-4,45	9663310,37165436000000;3231234,023260330000000	86.8069940205;27.8592025633
557	4181,48	-13,55	9663295,48657708000000;3231236,424079240000000	86.8068603056;27.8592216306
558	4178,20	-20,13	9663282,04199116000000;3231234,503424110000000	86.8067395308;27.8592063767
559	4173,79	-8,79	9663271,47838793000000;3231228,741458710000000	86.8066446363;27.8591606152
560	4172,29	-11,73	9663261,875112270000000;3231227,300967360000000	86.8065583686;27.8591491749
561	4168,91	-12,19	9663246,029707430000000;3231231,142277630000000	86.8064160269;27.8591796825
562	4165,69	-14,56	9663231,14463016000000;3231231,142277630000000	86.806282312;27.8591796825
563	4162,56	-9,25	9663219,140535580000000;3231230,181950060000000	86.8061744774;27.8591720556
564	4160,44	-12,50	9663206,656277230000000;3231226,340639800000000	86.8060623294;27.859141548
565	4157,03	-12,50	9663191,291036170000000;3231226,340639800000000	86.8059243011;27.859141548
566	4155,43	-6,96	9663184,08857943000000;3231226,34063980000000	86.8058596003;27.859141548
567	4153,97	-4,15	9663172,08448485000000;3231226,34063980000000	86.8057517657;27.859141548
568	4153,05	-5,04	9663159,60022649000000;3231224,900148450000000	86.8056396177;27.8591301076
569	4151,91	-6,01	9663146,63580435000000;3231223,699739070000000	86.8055231563;27.8591205739
570	4150,89	-5,64	9663137,03252869000000;3231224,419984660000000	86.8054368886;27.8591262941
571	4149,94	-5,40	9663127,42925303000000;3231224,900148450000000	86.8053506209;27.8591301076
572	4148,04	-5,40	9663107,262374140000000;3231225,380312230000000	86.8051694588;27.859133921
573	4147,04	-0,84	9663096,69877092000000;3231225,380312230000000	86.8050745643;27.859133921
574	4146,88	7,31	9663085,655003910000000;3231224,900148450000000	86.8049753565;27.8591301076
575	4147,98	-0,13	9663077,972383380000000;3231221,058838180000000	86.8049063423;27.8590995999
576	4147,96	-5,29	9663071,25009042000000;3231214,81670900000000	86.8048459549;27.8590500249
577	4146,92	-13,49	9663064,047633670000000;3231206,173760910000000	86.8047812542;27.8589813825
578	4143,60	-13,38	9663059,245995840000000;3231193,209338770000000	86.8047381203;27.8588784189
579	4139,26	-16,29	9663048,68239262000000;3231178,324261500000000	86.8046432258;27.8587602013
580	4135,76	-19,18	9663041,239853980000000;3231168,961067680000000	86.8045763684;27.8586858386
581	4131,13	-23,77	9663032,83698778000000;3231158,637546390000000	86.8045008841;27.8586038488
582	4126,12	-26,24	9663027,555186170000000;3231148,554106950000000	86.8044534369;27.8585237658
583	4119,65	-27,30	9663022,273384550000000;3231136,550012370000000	86.8044059897;27.8584284287
584	4112,66	-0,73	9663016,99158294000000;3231124,065754010000000	86.8043585425;27.858329278
585	4112,48	0,17	9663011,22961754000000;3231111,581495650000000	86.8043067818;27.8582301273
586	4112,53	-8,62	9663006,90814350000000;3231095,736090620000000	86.8042679614;27.858104282
587	4111,16	-9,08	9663001,14617810000000;3231088,773715660000000	86.8042162008;27.8580489863
588	4109,00	-5,37	9662989,14208352000000;3231082,531586580000000	86.8041083661;27.8579994108
589	4107,94	-6,79	9662977,85823462000000;3231082,291505470000000	86.8040070016;27.8579975041
590	4106,44	-9,57	9662965,85414005000000;3231078,450194660000000	86.803899167;27.8579669961
591	4104,19	-12,73	9662954,090127370000000;3231072,208065450000000	86.8037934891;27.8579174206
592	4101,18	-15,44	9662947,36783440000000;3231060,684134610000000	86.8037331017;27.8578258965
593	4098,96	-17,15	9662940,670754130000000;3231056,238649890000000	86.8036729408;27.85779059
594	4096,40	-16,26	9662933,68316659000000;3231051,801104470000000	86.8036101702;27.8577553466
595	4092,85	-13,62	9662921,80315809000000;3231049,107750980000000	86.8035034503;27.8577339557
596	4090,44	-17,98	9662911,83571446000000;3231049,16020388000000	86.8034139112;27.8577343723
597	4085.62	-23,15	9662897,19071908000000;3231046,759385030000000	86.803282353;27.8577153047
598	4081.71	-25.84	9662888,78785287000000;3231043.15815658000000	86.8032068688:27.8576867034
599	4075.79	-21.38	9662880,384986670000000:3231034.275126590000000	86.8031313845:27.8576161534
	-, -			,

600	4067,22	-23,10	9662859,25778022000000;3231028,51316120000000	86.8029415956;27.8575703913
601	4061,43	-18,24	9662846,77352186000000;3231023,231359590000000	86.8028294476;27.8575284426
602	4058,63	-8,05	9662840,53139268000000;3231017,469394190000000	86.8027733736;27.8574826804
603	4056,52	-4,86	9662828,047134330000000;3231009,306609880000000	86.8026612256;27.8574178506
604	4055,75	-5,25	9662821,32484136000000;3231003,064480700000000	86.8026008382;27.8573682748
605	4054,50	-14,10	9662811,24140192000000;3230993,941368820000000	86.8025102571;27.8572958179
606	4050,61	-16,18	9662795,87616086000000;3230992,020713690000000	86.8023722288;27.8572805638
607	4047,25	-16,44	9662784,352230070000000;3230992,981041260000000	86.8022687076;27.8572881908
608	4043,83	-15,34	9662772,82829928000000;3230994,421532710000000	86.8021651864;27.8572996314
609	4040,40	-16,44	9662760,34404092000000;3230994,421532610000000	86.8020530384;27.8572996314
610	4035,67	-16,35	9662744,49863608000000;3230996,822351520000000	86.8019106967;27.857318699
611	4031,25	-14,26	9662729,613558810000000;3230999,223170440000000	86.8017769817;27.8573377666
612	4027,21	-8,30	9662713,768153970000000;3231000,663661780000000	86.80163464;27.8573492072
613	4025,10	-6,19	9662699,36324048000000;3231001,143825570000000	86.8015052385;27.8573530207
614	4023,21	-5,75	9662682,557508070000000;3230996,342187740000000	86.80135427;27.8573148855
615	4022,00	-6,11	9662671,513741070000000;3230991,540549910000000	86.8012550622;27.8572767502
616	4020,57	-6,00	9662659,50964649000000;3230985,778584510000000	86.8011472276;27.8572309879
617	4019,32	-6,03	9662649,42620705000000;3230979,536455330000000	86.8010566465;27.8571814121
618	4018,38	-7,20	9662642,22375030000000;3230974,254653720000000	86.8009919457;27.8571394632
619	4017,23	-9,03	9662634,541129770000000;3230969,453015890000000	86.8009229316;27.8571013279
620	4015,52	-11,90	9662624,457690330000000;3230965,611706130000000	86.8008323505;27.8570708197
621	4012,97	-11,71	9662612,69367765000000;3230962,730723350000000	86.8007266726;27.8570479385
622	4010,65	-13,00	9662602,61023820000000;3230957,929085110000000	86.8006360915;27.8570098032
623	4007,78	-13,70	9662590,846225520000000;3230953,847694060000000	86.8005304136;27.8569773881
624	4004,09	-13,24	9662575,72106635000000;3230952,887366410000000	86.800394542;27.856969761
625	3999,73	-13,65	9662557,234760710000000;3230954,087775890000000	86.8002284767;27.8569792949
626	3994,65	-11,09	9662536,34763615000000;3230953,607611500000000	86.8000408444;27.8569754813
627	3989,97	-7,82	9662512,579528890000000;3230951,206792270000000	86.7998273319;27.8569564137
628	3986,88	-8,89	9662490,491994870000000;3230955,528266350000000	86.7996289162;27.8569907355
629	3983,94	-10,96	9662471,765607340000000;3230956,968757730000000	86.7994606942;27.8570021761
630	3981,55	-9,59	9662459,62034462000000;3230954,611656410000000	86.7993515914;27.8569834556
631	3979,34	-10,26	9662446,55700873000000;3230954,567938610000000	86.7992342415;27.8569831084
632	3977,78	-5,14	9662438,034101580000000;3230953,367529130000000	86.7991576789;27.8569735746
633	3976,79	-5,55	9662427,110375510000000;3230954,567938610000000	86.7990595494;27.8569831084
634	3976,08	-8,01	9662419,741165180000000;3230955,005143910000000	86.7989933507;27.8569865808
635	3974,79	-9,49	9662410,78480689000000;3230953,127447270000000	86.7989128943;27.8569716678
636	3971,63	-8,82	9662393,01874692000000;3230946,645236280000000	86.7987532991;27.8569201851
637	3969,95	-11,10	9662382,45514369000000;3230944,244418180000000	86.7986584046;27.8569011174
638	3966,34	-11,94	9662365,88949318000000;3230936,321714840000000	86.7985095929;27.856838194
639	3963,25	-6,71	9662352,925071040000000;3230929,599421900000000	86.7983931315;27.8567848044
640	3960,09	-4,00	9662327,956554330000000;3230919,515982490000000	86.7981688355;27.85670472
641	3959,06	-1,12	9662314,99213218000000;3230912,793689490000000	86.7980523741;27.8566513303
642	3958,70	-4,95	9662298,426481670000000;3230904,63090532000000	86.7979035623;27.8565865
643	3956,87	-8,77	9662281,380667370000000;3230892,146646820000000	86.7977504372;27.8564873477
644	3954,56	-11,78	9662269,85673658000000;3230882,543371160000000	86.7976469159;27.8564110766
645	3951,49	-13,22	9662261,693952270000000;3230870,299194670000000	86.7975735884;27.8563138309
646	3948,30	-11,76	9662256,892314440000000;3230857,574854450000000	86.7975304546;27.8562127715
647	3944,10	-10,90	9662245,728506480000000;3230840,769122040000000	86.7974301684;27.8560792968

464 34940,11 -8,56 9662240,922868656000000,3220820,60224343000000 86.79733734527.8554199494 650 33938,18 1,24 9662232,7869343000000,3230761,17538896000000 86.7972331532,77.855770924 651 33938,70 1,03 9662224,784900000,3230761,1035000000 86.797131552,77.855746344 652 33938,97 -0,15 966221,67744240000000,3230761,01636000000 86.7971151955,27.8556440466 654 3393,84 -0,89 966221,6774544240000000,3230752,17890407000000 86.7971151955,27.85544682541 655 3393,64 -8.89 966224,67557000000,323071,35702940000000 86.7971051955,27.8556482541 656 3393,56 -11,12 966218,582400600000,323071,36702981000000 86.796167672,7.855131404 658 3393,64 -11,12 966218,58901631000000,323071,367028302,7000000 86.7968478614,27.85498233 661 3924,08 -11,12 966218,582044900000,323071,4267470000000 86.7968478614,27.85498233 661 3924,197 -14,49 966215,778893576000000,323074,426277450000000 86.796532944,27.854813212 663 3922,197 -14,9 966216,7178933000000,323	648	3941,90	-10,90	9662242,84752379000000;3230829,725355030000000	86.7974042881;27.8559915847
450 3333,18 1.24 9662227,7883413000000,3220810,75339890000000 86.797333332,7 8657370924 651 3338,32 2.01 9662223,4023786000000,3230763,13921000000 86.797231527,27 855746344 653 3338,97 0.15 9662214,757424800000,323076,113804000000 86.79711859173,27 855461244 655 3338,42 3.98 962214,7574424800000,323075,17890400000 86.79711559173,27 855575613 656 3337,61 -8.58 9662106,855330300000,3230741,13513705000000 86.7970145213,27 855758131 656 3333,56 111,12 9662198,67245576000000,3230774,37021000000 86.798018632,27 855083055 656 3333,56 141,12 9662140,9063874000000,3230715,3623523000000 86.798648362,27 856003055 657 3330,94 -1.8.79 962188,58901631000000,3230714,321562497000000 86.798643402,27 8560000519 658 3324,37 -1.8 962118,58901631000000,323071,52162497000000 86.7986743402,27 8564733665 669 3324,31 -3.5 962143,042920,00000,323071,52162497000000 86.7986743402,27 8547132586 663 3321,27 8.4 9662152,056689000000,3230665,13634070	649	3940,11	-8,56	9662240,92686866000000;3230820,602243430000000	86.7973870345;27.8559191268
651 3938,32 2.01 965229.4023786000000.323076.1138022000000 86.797283513327.8557970924 652 3938,70 1.03 966223.64097246000000.323076.6113802200000 86.7971816182.75572.75.855144040 653 3938,42 -1.99 9662216.47574248000000.323072.6113860200000 86.797151855;27.8554862854 656 3938,42 -3.98 9662210.6765033000000.3230712,930633040000000 86.79710677427.7.8551831048 656 3937,61 -8.51 9662198.572455750000000.3230717,3670291000000 86.79801787842.72.8551831048 658 3933,66 -11.12 9662198.672456750000000.3230717,3670291000000 86.7980478614.27.8550938655 660 3923,31 -20.14 962180.3901631000000.3230704.40207770000000 86.7980478614.27.8549952385 661 3924,08 -11.72 9662180.3824649000000.3230701,32050714.8277145000000 86.7986478614.27.85491733566 662 3921,17 8,14 9662150.79718933000000.3230714.40207767000000 86.7986549272.78549133561 663 3922,12 -3.77 9652145.8443180200000.3230671.5121624770000000 86.7986549272.78549173556 664 3924,12 -3.77	650	3938,18	1,24	9662232,78893813000000;3230810,753389800000000	86.7973139302;27.8558409049
652 3938,70 1,03 9662223,64097246000000,3230796,11389022000000 86.7972317527,27.8557246344 653 3938,82 1,19 9662210,8393446000000,3230761,2558380000000 86.79711529527,8558756813 655 3938,42 -3,90 9662210,67655033000000,3230752,17890407000000 86.7971152913,27.8553756913 656 3937,61 -8,50 9662206,835240600000,3230741,1351370500000 86.7970074567,27.8551831048 657 3935,26 -11.12 966218,53901631000000,3230701,53702981000000 86.7960486362,27.8550992056 658 3930,84 -18.79 966218,5991651000000,3230704,40260767000000 86.7961443402,27.855092056 661 3924,08 -11.12 9662160,90639578000000,3230701,52162497000000 86.7965443402,27.8550900519 662 3921,97 8,14 9662150,79718933000000,3230661,5638407000000 86.796548507252,7.854973386 663 3923,12 -3.33 9662130,9696234000000,3230661,5638407000000 86.7965082072,72.854931381 664 3922,15 -4.05 9662115,1238571000000,3230661,503407000000 86.7965082427,27.8548133121 665 3922,15 -4.05 9662115,1238	651	3938,32	2,01	9662229,40293786000000;3230805,237002120000000	86.7972835133;27.8557970924
663 3938,97 -0.15 9662218,383346000000.3230762,18914051000000 86.7971186188,27.8558140406 664 3938,92 -1.99 9662216,75794248000000.3230752,1780407000000 86.797115916527,8554862844 655 3937,61 -8.58 9662210,67550330000000.3230727,3063304000000 86.7970807842:27.8552879787 657 3935,26 -8.61 9662196,67245575000000.3230727,3670281000000 86.790046727.8551831048 658 3933,04 -11.72 962194,559016310000000.3230704,4026777000000 86.7969168756;27.854073850 660 3923,31 -20.14 9662190,90539578000000.3230704,4026777000000 86.7969168756;27.8549733566 661 3924,08 -11.72 9662190,90639578000000.3230704,4026777000000 86.7965984927,854973389 662 3921,17 8.41 962179,7184330000000.3230671,4156124970000000 86.79659849427,854973389 663 3923,12 -3.35 9662130,969362340000000.3230681,35474616000000 86.79639824427,8548733092 664 3922,15 -4.05 966207,32786569000000.3230667,11261691000000 86.79639269427,8548733092 665 3922,15 -4.05 966207,3787646000	652	3938,70	1,03	9662223,64097246000000;3230796,113890220000000	86.7972317527;27.8557246344
654 3938,92 -1,99 9662214,75794248000000;3230766,103653880000000 86.797151955;27.8554862854 655 3938,42 -3,89 9662210,6765503000000;323071,1851070000000 86.797080784227.855287787 867 3935,26 -8,51 9662198,67245575000000;323071,36702981000000 86.7990174567;27.8551831048 658 3933,56 -11,12 9662198,58901631000000;323071,36702981000000 86.7969186756;27.8550038665 660 3928,31 -20,14 9662180,58901631000000;323074,482077145000000 86.7968476614;27.85493386 661 3924,91 8.14 9662169,0753578000000;323074,48277145000000 86.79658075;27.854913369 662 3921,97 8.14 9662150,966588000000;323063,49300444000000 86.7965399544;27.854913369 663 3923,52 4.45 9662130,963324000000;323068,1563847000000 86.7965392644;27.854913212 666 3922,15 -3,59 9662130,19392544100000;323067,12718064000000 86.7965897542,27.8548131851 667 3920,81 -4,77 9662150,19392541,00000;3230667,12715051000000 86.7965899742,47.8548513212 668 3919,89 -1,25 9662037,15441175000	653	3938,97	-0,15	9662218,839334640000000;3230782,189140510000000	86.7971886188;27.8556140406
655 3938,42 -3,98 9662210,67655033000000;3230752,17890407000000 86.797017452913;27.8553756913 656 3937,61 -8,58 9662206,83524006000;3230727,3963304000000 86.799007842;27.855831048 657 3933,66 -11,12 9662198,672455750000000;323077,3670281000000 86.7996168756;27.855038655 658 3930,94 -18,79 9662183,58901631000000;323071,367028100000 86.7969168756;27.855038655 660 3928,31 -0,14 9662180,96238758000000;323074,40260767000000 86.796614875614;27.854962383 661 3924,08 -11,72 9662150,962346499000000;323074827145000000 86.7965392644;27.854913389 664 3924,12 -3,75 9662145,85443962000000;3230688,827744855000000 86.796539264;27.85475192 665 3923,12 -3,55 9662145,85443962000000;3230681,35474616000000 86.796962542;27.854763081 666 3921,12 -4,65 9662145,12395751000000;323067,12718068000000 86.79696065731;27.854813121 666 3921,12 -4,65 966207,39040446000000;323067,12718068000000 86.796596044;27.854736081 677 3920,81 -4,77 9662065,703960	654	3938,92	-1,99	9662214,75794248000000;3230766,103653880000000	86.797151955;27.8554862854
656 3337,61 -8,68 9662206,8352400600000;3230741,135137050000000 86.7970807842;27.8552879787 657 3935,66 -1.12 9662148,550817000000;323077,306334000000 86.7969168756;27.855033665 658 3930,94 -18,79 9662189,350817000000;323077,356293523000000 86.7969168756;27.855033665 650 3928,31 -20,14 9662180,3924649000000;3230714,8277145000000 86.796443402,27.8550933665 661 3922,17 8,14 9662159,77918933000000;323074,8277145000000 86.7966580752,72.8549733666 662 3922,12 -3,77 9662145,85443962000000;3230683,83900444000000 86.7963932694;27.8549113212 664 3922,15 -4,05 9662115,1238751000000;3230681,35474618000000 86.796392694;27.8549613212 665 3922,15 -4,05 9662115,12385751000000;3230681,35474618000000 86.7960962542;27.8547850801 667 3920,81 -4,87 9662097,23785659000000;3230671,217130668000000 86.7960962542;27.8547850801 676 3921,87 -1,105 966207,5390444000000;3230667,192713068000000 86.7956999952,738464;7896966 670 3918,87 -1,105 966207	655	3938,42	-3,98	9662210,67655033000000;3230752,178904070000000	86.7971152913;27.8553756913
657 3935,26 -8,51 9662198,67245575000000;3230727,93063304000000 86.7970074567;27.8551831048 658 3933,56 -11,12 9662184,569017000000;3230705,36233523000000 86.7969168756;27.8550398655 660 3922,31 -20,14 9662180,90639578000000;3230704,40267767000000 86.7969168756;27.8550036519 661 3924,98 -11,72 9662159,79518933000000;3230704,40267767000000 86.7967443402;27.855000519 662 3921,97 8.14 966215,79518933000000;3230683,8704440000000 86.7965890584;27.854912389 664 3922,12 -3,75 9662145,85443962000000;3230680,17544850000000 86.7965890584;27.854912389 664 3922,12 -3,35 9662197,973785659000000;3230675,11261691000000 86.796096254;27.8548513212 666 3922,15 -4,05 966207,73785659000000;323067,12161691000000 86.796096254;27.8548513212 666 3921,81 -1,25 966207,59040446000000;323067,1213068000000 86.7956996242;27.8547630982 670 3918,87 -11,06 966205,50966000000;323066,795074000000 86.79589941;27.8546987766 671 3914,85 -11,05 966207,50964	656	3937,61	-8,58	9662206,83524006000000;3230741,135137050000000	86.7970807842;27.8552879787
658 3933.56 -11.12 9662194,35098170000000;3230717,36702981000000 86.7969686362;27.8550992056 659 3930.94 -16.79 9662183,85801631000000;3230704,40260767000000 86.7969168756;27.8550936555 660 3924,08 -11.72 9662189,824649000000;3230704,40260767000000 86.7968478614;27.8550000519 661 3924,08 -11.72 9662169,3824649000000;3230704,82277145000000 86.796589054;27.8549733566 663 3922,52 4.45 9662152,09556880000000;323068,1563847000000 86.796532984;27.8549713386 664 3922,12 -3.77 9662190,9963824000000;3230681,563847000000 86.796532984;27.8548713122 666 3922,12 -4.69 96207,2378565900000;323068,1653847000000 86.79652984;27.8548713122 666 3920,81 -4.87 9662097,23785659000000;323066,79975074000000 86.79650962542;27.8548761361 667 3920,81 -1.28 966207,59444(000000);323066,799750740000000 86.795509414;27.854768688 670 3918,87 -11.05 9662075,394446000000;323066,79975074000000 86.795509414;27.8547687687 671 3916,85 -11.70 9662082,0557,03	657	3935,26	-8,51	9662198,672455750000000;3230727,930633040000000	86.7970074567;27.8551831048
659 3930.94 -18.79 9662188.58901631000000;3230705,36293523000000 86.7969168756;27.855038655 660 3328,31 -20.14 9662180,90639578000000;3230704,4026777000000 86.796644302;27.8549962383 661 3924,08 -11.72 9662163,93246499000000;3230704,8277145000000 86.7966580725,27.8549733566 663 3923,52 4.45 9662152,09656880000000;3230683,33900444000000 86.7965890584;27.8549733566 664 3924,12 -3.77 9662145,0543962000000;3230681,5574445000000 86.7965289271;27.8548713122 666 3922,15 -4.05 9662115,12955751000000;323067,11261691000000 86.7965258277;27.8548131851 667 3920,81 -4.87 9662097,23785659000000;323067,12161691000000 86.796598954;27.854733092 668 3919,84 -1.25 966207,5304044000000;323067,127130668000000 86.79559941247.854733992 667 3918,47 -11.05 966207,5304044000000;3230667,7950740400000 86.795599452,27.854815164 671 3914,73 -11.04 966205,70368936000000;3230667,35312712000000 86.795504913,27.854781765 672 3914,73 -11.0.9 96620203,37	658	3933,56	-11,12	9662194,35098170000000;3230717,367029810000000	86.7969686362;27.8550992056
660 3928,31 -20,14 9662180,90639578000000;3230704,402607670000000 86.7968478614;27.8549962383 661 3924,08 -11,72 9662169,3246499000000;3230704,8277145000000 86.7966880725;27.8549733666 663 3923,62 4.4 9662159,779189330000000;3230701,52162497000000 86.79668805427,8549123389 664 3924,12 -3,77 9662145,85443962000000;3230689,27744855000000 86.79658958427,8548761096 665 3923,12 -3,35 9662130,96936234000000;3230681,55474616000000 86.7965895427,8548131851 666 3922,15 -4,05 966207,123785659000000;323067,11261691000000 86.7960056731;27.8547330992 668 3919,89 -1,25 9662087,15441715000000;323067,127130680000000 86.7960056731;27.8547636081 670 3918,87 -11,05 966207,539040446000000;323067,075074000000 86.7956094141;27.854698766 671 3914,85 -11,70 9662085,703689360000000;323067,55106119000000 86.7955094132,7.854691766 672 3914,73 -11,04 966203,37612074000000;323067,27353398000000 86.7955704132,7.85478777 674 3909,32 -10,57 9662028,5	659	3930,94	-18,79	9662188,58901631000000;3230705,362935230000000	86.7969168756;27.8550038655
661 3924,08 -11,72 9662169,38246499000000;3230704,882771450000000 86.7967443402;27.8550000519 662 3921,52 4.45 9662159,77918933000000;3230701,52162497000000 86.7966580725;27.8549733566 663 3923,52 4.45 9662152,09656880000000;3230683,3900444000000 86.7966580725;27.8549123389 664 3924,12 -3,35 9662130,96936234000000;3230681,35474616000000 86.7966329844;27.8548513212 666 3922,15 -4.05 966207;23786569000000;323067,11261691000000 86.796052584;27.8548513212 666 3922,15 -4.05 9662087,154417150000000;323067,127130668000000 86.796056731:27.8547330992 669 3919,89 -1,25 9662087,154417150000000;3230667,0975074000000 86.7955098434;27.854698698 670 3918,87 -11,05 9662085,05260000000;3230667,0975074000000 86.7955098414;127.8546987766 671 3916,85 -11,07 9662085,05260000000;3230667,439237129000000 86.7955764913,27.854787877 673 3914,75 -10.62 9662093,971203040000;3230667,39237129000000 86.7955769132,78547758877 674 3904,92 -10,67 96620	660	3928,31	-20,14	9662180,90639578000000;3230704,402607670000000	86.7968478614;27.8549962383
662 3921,97 8,14 9662159,77918933000000;3230701,52162497000000 86.7966580725;27.8549733566 663 3923,12 -3,77 9662145,08666880000000;3230689,27744855000000 86.7965329844;27.854871096 666 3923,12 -3,35 9662130,98936234000000;3230686,15638407000000 86.7965329844;27.854871096 666 3922,15 -4,05 9662101,12395751000000;3230661,5184474616000000 86.7960962542;27.8548131851 667 3920,81 -4,87 9662097,23785659000000;3230664,789056000000 86.7960962542;27.8548131851 668 3919,88 -1,25 9662087,15441715000000;3230664,7890956000000 86.795098434;27.854686689 670 3918,87 -11,05 9662075,39040446000000;3230664,7890956000000 86.795589434;27.854686689 671 3916,85 -11,70 9662055,70368936000000;3230664,7890956000000 86.7955764913;27.85468175 672 3914,73 -11,04 9662039,37812074000000;323067,37335980000000 86.7955764913;27.85469577 674 390,32 -10,57 966208,48620000000;323067,37335980000000 86.7955764913;27.854797877 674 3904,32 -9,66 9662006,4860	661	3924,08	-11,72	9662169,38246499000000;3230704,882771450000000	86.7967443402;27.8550000519
663 3923,52 4.45 9662152,09656880000000;3230693,83900444000000 86.7965890584;27.854812312 664 3924,12 -3,77 962145,85443962000000;3230689,27744855000000 86.7965329844;27.854815212 665 3922,15 -4,05 9662151,12395751000000;3230671,51261691000000 86.796092542;27.8548131851 666 3920,81 -4,87 966207,23785659000000;3230671,127130668000000 86.7960962542;27.8548730992 668 3919,89 -1,25 966207,15441715000000;3230671,127130668000000 86.7950962542;27.854616154 670 3918,87 -11,05 9662075,39040446000000;3230674,07975074000000 86.795589434;27.8546968698 670 3918,87 -11,05 966205,703804046000000;3230674,980256000000 86.7955764913;27.854757876 671 3914,73 -11,04 9662055,70368936000000;3230674,923712000000 86.7955764913;27.8547578877 673 3911,45 -10,82 966203,37812074000000;3230674,39237129000000 86.7955764913;27.8547578877 674 3909,32 -10,57 966206,48690160000000;3230674,39237129000000 86.7955764913;27.8547578877 675 3907,09 -10,24 96	662	3921,97	8,14	9662159,77918933000000;3230701,521624970000000	86.7966580725;27.8549733566
664 3924,12 -3,77 9662145,85443962000000;3230689,27744855000000 86.7965329844;27.8548761096 665 3923,12 -3,35 9662130,96936234000000;3230686,15638407000000 86.7963992694;27.8548613212 666 3920,81 -4,67 9662097,23785659000000;3230676,151261691000000 86.7960962542;27.8547330992 668 3919,89 -1,25 9662087,15441715000000;3230676,17130668000000 86.7960966731;27.8547330992 669 3919,87 -1,10 9662085,53096652000000;3230666,70975074000000 86.795998434;27.8548986766 671 3918,87 -11,00 9662055,7036896000000;3230676,73122000000 86.795731464;27.8547273786 673 3911,45 -10,82 9662039,37812074000000;3230674,392371209000000 86.795731464;27.85478768 674 3909,32 -10,57 9662045,70368962000000;3230674,392371209000000 86.795749440;27.8547807694 675 3907,09 -10,24 9662017,0505483000000;3230674,393371209000000 86.79574940;27.854805578 676 3904,92 -9,66 9662006,48690160000000;3230684,5633839000000 86.7951926001;27.854939440;27.854895266 677 3902,93 -9,55	663	3923,52	4,45	9662152,09656880000000;3230693,839004440000000	86.7965890584;27.8549123389
665 3923,12 -3,35 9662130,96936234000000;3230686,15638407000000 86.7963992694;27.8548131851 666 3922,15 -4,05 9662115,12395751000000;3230675,11261691000000 86.7960962542;27.8547636081 667 3920,81 -4,87 9662097,23785659000000;3230667,11261891000000 86.7960962542;27.8547630991 668 3919,74 -7,17 9662082,05267695000000;3230666,70975074000000 86.7959598434;27.854696698 670 3918,87 -11,05 9662075,3904046000000;3230667,975074000000 86.7955998434;27.854691654 671 3916,85 -11,70 9662025,03669502000000;3230667,380956000000 86.7958094141;27.854691654 672 3914,73 -11,04 9662025,70368936000000;323067,39237129000000 86.7955764913;27.8547578877 674 3909,32 -10,57 9662028,5744362000000;3230667,3934172000000 86.7955764913;27.8547578877 674 3909,32 -10,57 9662028,5743562000000;3230684,156383930000000 86.7955754913;27.85487578877 674 3909,32 -10,57 966196,64354405000000;3230692,398613140000000 86.79512785484513212 676 3904,92 -9,66 96620	664	3924,12	-3,77	9662145,85443962000000;3230689,277448550000000	86.7965329844;27.8548761096
666 3922,15 -4,05 9662115,12395751000000;3230675,11261691000000 86.7962569277;27.8548131851 667 3920,81 -4,87 9662097,23785659000000;3230675,11261691000000 86.7960962542;27.8547636081 668 3919,89 -1,25 9662087,15441715000000;3230667,127130668000000 86.795598434;27.8547636081 669 3919,74 -7,17 9662067,39040466000000;3230666,70975074000000 86.7955989434;27.8546816154 671 3918,87 -11,05 966205,7036936000000;3230664,78909560000000 86.795589994141;27.8547816154 672 3914,73 -11,04 966205,70368936000000;323067,55106119000000 86.7955764913;27.854758877 674 3909,32 -10,57 966208,57435620000000;323067,27335398000000 86.7955769189;27.854865578 676 3904,92 -9.66 966206,4869016000000;3230680,39411856000000 86.7952810245;27.8548513212 677 3902,93 -9.55 9661996,64354405000000;3230697,201509200000 86.795128001;27.8549309241 678 3901,38 -9.29 9661987,616514060000000;3230697,201509200000 86.795128025;27.8549390342 677 3902,93 -9.25 9661	665	3923,12	-3,35	9662130,96936234000000;3230686,156384070000000	86.7963992694;27.8548513212
667 3920,81 -4,87 9662097,23785659000000;3230675,11261691000000 86.7960962542;27.8547636081 668 3919,89 -1,25 9662087,15441715000000;3230667,0975074000000 86.7950958434;27.8546968698 670 3918,87 -7,17 9662085,05665000000;3230666,70975074000000 86.795598434;27.8546968698 670 3918,87 -11,05 9662075,39040446000000;3230666,9493269000000 86.7958999952;27.8546816154 671 3916,85 -11,70 9662055,70368936000000;3230667,55106119000000 86.7955764913;27.8547273788 673 3911,45 -10,42 9662057,743582000000;3230674,7335398000000 86.7955764913;27.8547937694 675 3907,09 -10,24 966201,705050483000000;3230667,727335398000000 86.7954794402;27.8547867694 676 3904,92 -9,66 9662006,4869016000000;323068,15638393000000 86.795192601;27.854908981 678 3901,38 -9,29 9661987,76051406000000;323069,79933202000000 86.7951128025;27.8549199661 679 3899,55 -3,40 9661976,71674705000000;323069,79933202000000 86.794281191;27.85493352206 680 3899,99 -1,79 9661	666	3922,15	-4,05	9662115,12395751000000;3230681,354746160000000	86.7962569277;27.8548131851
668 3919,89 -1,25 9662087,15441715000000;3230667,127130668000000 86.7960056731;27.8547330992 669 3919,74 -7,17 9662082,05267695000000;3230666,70975074000000 86.7959598434;27.8546968698 670 3918,87 -11,05 9662075,39040446000000;3230666,94983269000000 86.7958999952;27.8546816154 671 3916,85 -11,70 9662065,30696502000000;3230670,55106119000000 86.7957231464;27.8547273788 672 3911,45 -10,82 9662039,37812074000000;3230674,39237129000000 86.7957231464;27.8547273788 673 3911,45 -10,82 9662017,05050483000000;3230677,2735380000000 86.7954794402;27.8547807694 675 3907,09 -10,24 9662017,05050483000000;3230681,5638393000000 86.7952810245;27.8548513212 676 3904,92 -9,65 9662006,48690160000000;3230691,79933202000000 86.79551128025;27.8549199661 678 3901,38 -9,29 9661976,716747050000000;3230697,70015092000000 86.7951128025;27.8549393042 680 3899,09 -1,79 966196,6970439000000;3230697,70015092000000 86.794445805;27.8549393042 681 3898,68 -2,00	667	3920,81	-4,87	9662097,23785659000000;3230675,112616910000000	86.7960962542;27.8547636081
669 3919,74 -7,17 9662082,05267695000000;3230666,70975074000000 86.7959598434;27.8546968698 670 3918,87 -11,05 9662075,39040446000000;3230664,7890956000000 86.7958999952;27.8546816154 671 3916,85 -11,70 966205,30696502000000;3230666,94983269000000 86.7958094141;27.8546987766 672 3914,73 -11,04 966205,70368936000000;323067,55106119000000 86.7957231464;27.8547273788 673 3911,45 -10,82 9662039,37812074000000;323067,55106119000000 86.7955764913;27.8547578877 674 3909,32 -10,57 9662028,57443562000000;323067,27335398000000 86.795579189;27.8548055578 676 3907,09 -10,24 9662017,0550483000000;323068,3941856000000 86.7952810245;27.8548153212 677 3902,93 -9,55 966196,64354405000000;3230697,293851314000000 86.79511280025;27.8549109861 678 3901,38 -9,29 9661987,7667405000000;3230697,7933202000000 86.7951128025;27.8549109861 679 3899,55 -3,40 966197,6174705000000;3230697,7933202000000 86.79444585;27.8549352206 681 3889,68 -2,00 9661	668	3919,89	-1,25	9662087,154417150000000;3230671,271306680000000	86.7960056731;27.8547330992
6703918,87-11,059662075,39040446000000;3230664,7890956000000086.7958999952;27.85468161546713916,85-11,709662065,30696502000000;3230666,9498326900000086.7958094141;27.85469877666723914,73-11,049662055,70368936000000;3230670,5510611900000086.7957231464;27.85472737886733911,45-10,829662039,37812074000000;3230674,3923712900000086.7955764913;27.85475788776743909,32-10,579662028,57443562000000;3230677,2733539800000086.7955764913;27.85475788776753907,09-10,249662017,05050483000000;3230680,3944185600000086.7953759189;27.85480555786763904,92-9,669662006,48690160000000;3230686,1563839300000086.79512810245;27.85485132126773902,93-9,559661996,64354405000000;3230694,7993320200000086.7951128025;27.85491996616783901,38-9,299661987,76051406000000;3230697,2001509200000086.795135946;27.85493522066803899,09-1,799661969,03412653000000;3230697,2001509200000086.7949445805;27.85493522066813898,68-2,009661956,06970439000000;3230697,7903320100000086.794563758;27.85491996616833897,89-2,26966193,14290739000000;3230694,7993320100000086.794563758;27.85481132126853896,84-2,52966193,14290739000000;3230686,1563838900000086.79456375;27.8548132126863896,98-2,52966193,614290739000000;3230686,51776300000086.794594420711;27.8548729666863896,96-2,529661936,14290739	669	3919,74	-7,17	9662082,05267695000000;3230666,709750740000000	86.7959598434;27.8546968698
6713916,8511,709662065,30696502000000;3230666,9498326900000086.7958094141;27.85469877666723914,7311,049662055,70368936000000;3230670,5510611900000086.7957231464;27.85472737886733911,4510,829662039,37812074000000;3230674,3923712900000086.7955764913;27.85475788776743909,3210,579662028,57443562000000;3230677,2733539800000086.7954794402;27.85478076946753907,0910,249662017,05050483000000;3230680,3944185600000086.7953759189;27.85480555786763904,92-9,669662006,48690160000000;3230686,1563839300000086.7951280245;27.85485132126773902,93-9,559661996,64354405000000;3230692,3985131400000086.795128001;27.85490089816783901,38-9,299661987,76051406000000;3230697,2001509200000086.7951128025;27.85491996616793899,55-3,409661976,71674705000000;3230697,2001509200000086.7949445805;27.85493522066803899,09-1,799661969,03412653000000;3230697,2001509200000086.7949445805;27.85493903426813898,68-2,009661956,06970439000000;3230695,75965957000000086.79445805;27.85491996616833897,89-2,269661936,14290739000000;3230686,1563838900000086.794563758;27.8548132126863896,84-2,529661936,14290739000000;3230686,5163838900000086.79446491136;27.854815132126863896,98-2,52966193,04954581000000;3230686,517763300000086.7944582179;728;27.854872930568733895,96-3,95966	670	3918,87	-11,05	9662075,39040446000000;3230664,789095600000000	86.7958999952;27.8546816154
6723914,73-11,049662055,70368936000000;3230670,5510611900000086.7957231464;27.85472737886733911,45-10,829662039,37812074000000;3230674,3923712900000086.7955764913;27.85475788776743909,32-10,579662028,57443562000000;3230677,2733539800000086.7954794402;27.85478076946753907,09-10,249662017,05050483000000;3230680,3944185600000086.7953759189;27.85480555786763904,92-9,669662006,4869016000000;3230686,1563839300000086.795128001;27.85480555786773902,93-9,559661996,64354405000000;3230692,3985131400000086.7951926001;27.85490089816783901,38-9,299661987,76051406000000;3230694,7993320200000086.7951128025;27.85491996616793899,55-3,409661976,71674705000000;3230697,2001509200000086.7950135946;27.85493522066803899,09-1,799661996,03412653000000;3230697,2001509200000086.7948281191;27.85492759346823898,68-2,009661936,14290739000000;3230694,793320100000086.7944281191;27.85492759346833897,89-2,129661945,98626495000000;3230684,7973320100000086.7945563758;27.8548193616843897,32-2,129661945,98626495000000;3230686,1563838900000086.7944420711;27.8548722966863896,64-2,529661913,09504581000000;3230683,517463000000086.7944420711;27.85487293056873895,96-3,959661897,00955908000000;3230683,51748312000000086.7944420711;27.85483034636883895,96-3,959661864,7653826	671	3916,85	-11,70	9662065,30696502000000;3230666,949832690000000	86.7958094141;27.8546987766
6733911,45-10,829662039,37812074000000;3230674,3923712900000086.7955764913;27.85475788776743909,32-10,579662028,57443562000000;3230667,2733539800000086.7954794402;27.85478076946753907,09-10,249662017,05050483000000;3230680,3944185600000086.7953759189;27.85480555786763904,92-9,669662006,4869016000000;3230686,1563839300000086.7952810245;27.85485132126773902,93-9,559661996,64354405000000;3230692,3985131400000086.7951926001;27.85490089816783901,38-9,299661987,76051406000000;3230697,2901509200000086.7951128025;27.85491996616793899,55-3,409661976,71674705000000;3230697,2001509200000086.795135946;27.85493522066803899,09-1,799661969,03412653000000;3230697,2001509200000086.794442805;27.8549393426813898,68-2,009661956,06970439000000;3230697,2001509200000086.7944281191;27.85492759346823898,33-2,319661945,98626495000000;3230695,7596595700000086.7946491136;27.85481336843897,32-2,129661936,14290739000000;3230688,976940300000086.794420711;27.854872966853896,84-2,529661913,09504581000000;3230688,8771763300000086.794420711;27.854872966863896,96-3,61961904,99349465000000;3230688,6771763300000086.7943692937;27.85487513486883895,96-3,9596187,44186128000000;3230686,636477000000086.7943692937;27.8548513486883895,989,92961874,44186128000000;323067,55	672	3914,73	-11,04	9662055,70368936000000;3230670,551061190000000	86.7957231464;27.8547273788
6743909,32-10,579662028,57443562000000;3230677,2733539800000086.7954794402;27.85478076946753907,09-10,249662017,05050483000000;3230680,3944185600000086.7953759189;27.85480555786763904,92-9,669662006,4869016000000;3230686,1563839300000086.7952810245;27.85485132126773902,93-9,559661996,64354405000000;3230692,3985131400000086.7951926001;27.85490089816783901,38-9,299661987,76051406000000;3230694,7993320200000086.7951128025;27.85491996616793899,55-3,409661976,71674705000000;3230697,199871400000086.7950135946;27.85493522066803899,09-1,799661969,03412653000000;3230697,2001509200000086.7949445805;27.85493903426813898,68-2,009661956,06970439000000;3230695,7596595700000086.794737538;27.85491996616833897,89-2,969661936,14290739000000;3230694,7993320100000086.7946491136;27.85481836843897,32-2,129661925,81938606000000;3230684,792847600000086.7946491136;27.85485132126853896,84-2,529661913,09504581000000;3230688,7972847600000086.794420711;27.8548722966863896,48-3,619661904,99349465000000;3230688,7972847600000086.79442975728;27.8548513486883895,094,379661884,76538261000000;3230688,571763300000086.794494537;27.854872930568733895,86-3,95966187,444186128000000;3230676,5531082500000086.794948437;27.8548304636893895,989,929661874,44186128000000;323	673	3911,45	-10,82	9662039,37812074000000;3230674,392371290000000	86.7955764913;27.8547578877
6753907,09-10,249662017,05050483000000;3230680,3944185600000086.7953759189;27.85480555786763904,92-9,669662006,48690160000000;3230686,1563839300000086.7952810245;27.85485132126773902,93-9,559661996,64354405000000;3230692,3985131400000086.7951926001;27.85490089816783901,38-9,299661987,76051406000000;3230694,7993320200000086.7951128025;27.85491996616793899,55-3,409661976,71674705000000;3230697,2001509200000086.7950135946;27.85493522066803899,09-1,799661969,03412653000000;3230697,2001509200000086.7949445805;27.85493904226813898,68-2,009661956,06970439000000;3230697,2001509200000086.794737538;27.85491996616833897,83-2,319661945,98626495000000;3230694,7993320100000086.7944281191;27.85492759346843897,32-2,129661925,81938606000000;3230689,9976940300000086.7946491136;27.85481836843897,32-2,129661925,81938606000000;3230688,7972847600000086.794420711;27.8548722966863896,84-2,529661913,09504581000000;3230688,771763300000086.794420711;27.8548722966863896,48-3,619661904,99349465000000;3230688,877176300000086.794420711;27.85487293056873895,96-3,959661897,0955908000000;3230686,365477000000086.794420711;27.8548034636883895,994,379661884,76538261000000;3230676,5531082500000086.7944837;27.85478648986903895,989,929661874,441861280000000;3230675,5	674	3909,32	-10,57	9662028,57443562000000;3230677,273353980000000	86.7954794402;27.8547807694
6763904,92-9,669662006,4869016000000;3230686,1563839300000086.7952810245;27.85485132126773902,93-9,559661996,64354405000000;3230692,3985131400000086.7951926001;27.85490089816783901,38-9,299661987,76051406000000;3230694,7993320200000086.7951128025;27.85491996616793899,55-3,409661976,71674705000000;3230697,199871400000086.7950135946;27.85493522066803899,09-1,799661969,03412653000000;3230697,2001509200000086.7949445805;27.85493903426813898,68-2,009661956,06970439000000;3230695,7596595700000086.7948281191;27.85492759346823898,33-2,319661945,98626495000000;3230694,7993320100000086.794737538;27.85491996616833897,89-2,969661936,14290739000000;3230689,9976940300000086.7946491136;27.85488132126843897,32-2,129661925,81938606000000;3230688,7972847600000086.7944420711;27.8548722966853896,84-2,529661913,09504581000000;3230688,7972847600000086.7944420711;27.85487293056873895,96-3,619661897,00955908000000;3230688,7972847600000086.7942975728;27.8548513486883895,094,379661884,76538261000000;3230683,5154831200000086.7941875814;27.85483034636893895,989,929661874,44186128000000;3230676,5531082500000086.7940948437;27.85478648986903897,938,779661863,39809426000000;3230675,5531082500000086.7938780961:27.85477504896913900,000,009661850,313631180000000	675	3907,09	-10,24	9662017,050504830000000;3230680,394418560000000	86.7953759189;27.8548055578
6773902,93-9,559661996,64354405000000;3230692,3985131400000086.7951926001;27.85490089816783901,38-9,299661987,76051406000000;3230694,7993320200000086.7951128025;27.85491996616793899,55-3,409661976,71674705000000;3230696,7199871400000086.7950135946;27.85493522066803899,09-1,799661969,03412653000000;3230697,2001509200000086.7949445805;27.85493903426813898,68-2,009661956,06970439000000;3230695,7596595700000086.7948281191;27.85492759346823898,33-2,319661945,98626495000000;3230694,7993320100000086.794737538;27.85491996616833897,89-2,969661936,14290739000000;3230689,9976940300000086.794491136;27.854881836843897,32-2,129661925,81938606000000;3230688,7972847600000086.7944420711;27.8548722966853896,84-2,529661913,09504581000000;3230688,7972847600000086.7944420711;27.8548722966863896,48-3,619661904,99349465000000;3230688,7972847600000086.7944420711;27.85487293056873895,96-3,959661897,00955908000000;3230686,6365477000000086.79449275728;27.85485513486883895,094,379661864,76538261000000;3230683,5154831200000086.7941875814;27.85483034636893895,989,929661874,44186128000000;3230677,9935994800000086.7940948437;27.85478648986903897,938,779661863,39809426000000;3230675,551082500000086.7939956358;27.85477504896913900.000,009661860,313631180000000;	676	3904,92	-9,66	9662006,48690160000000;3230686,156383930000000	86.7952810245;27.8548513212
6783901,38-9,299661987,76051406000000;3230694,7993320200000086.7951128025;27.85491996616793899,55-3,409661976,71674705000000;3230696,7199871400000086.7950135946;27.85493522066803899,09-1,799661969,03412653000000;3230697,2001509200000086.7949445805;27.85493903426813898,68-2,009661956,06970439000000;3230695,7596595700000086.7948281191;27.85492759346823898,33-2,319661945,98626495000000;3230694,7993320100000086.794737538;27.85491996616833897,89-2,969661936,14290739000000;3230689,9976940300000086.7946491136;27.854881836843897,32-2,129661925,81938606000000;3230686,1563838900000086.7945563758;27.85485132126853896,84-2,529661913,09504581000000;3230688,7972847600000086.794420711;27.8548722966863896,48-3,619661904,99349465000000;3230688,7972847600000086.7943692937;27.85487293056873895,96-3,959661897,00955908000000;3230686,6365477000000086.794420711;27.85487293056883895,094,379661884,76538261000000;3230683,5154831200000086.7941875814;27.85483034636893895,989,929661874,44186128000000;323067,5931082500000086.7940948437;27.85478648986903897,938,779661863,39809426000000;323067,5531082500000086.7939956358;27.85477504896913900,000,009661850,313631180000000;323067,5531082500000086.7938780961:27 8547524673	677	3902,93	-9,55	9661996,64354405000000;3230692,398513140000000	86.7951926001;27.8549008981
6793899,553,409661976,71674705000000;3230696,7199871400000086.7950135946;27.85493522066803899,09-1,799661969,03412653000000;3230697,2001509200000086.7949445805;27.85493903426813898,68-2,009661956,06970439000000;3230695,7596595700000086.7948281191;27.85492759346823898,33-2,319661945,98626495000000;3230694,7993320100000086.794737538;27.85491996616833897,89-2,969661936,14290739000000;3230689,9976940300000086.7946491136;27.854881836843897,32-2,129661925,81938606000000;3230686,1563838900000086.7945563758;27.85485132126853896,84-2,529661913,09504581000000;3230688,7972847600000086.7944420711;27.8548722966863896,48-3,619661904,99349465000000;3230688,8771763300000086.7942975728;27.85485513486873895,96-3,959661897,00955908000000;3230686,6365477000000086.7942975728;27.85485513486883895,094,379661884,76538261000000;3230683,5154831200000086.7941875814;27.85483034636893895,989,929661874,44186128000000;3230677,9935994800000086.7940948437;27.85478648986903897,938,779661863,39809426000000;3230676,5531082500000086.7938780961;27.85477604896913900.000.009661850,313631180000000;3230676,5531082500000086.7938780961;27.85477524673	678	3901,38	-9,29	9661987,76051406000000;3230694,799332020000000	86.7951128025;27.8549199661
6803899,09-1,799661969,03412653000000;3230697,2001509200000086.7949445805;27.85493903426813898,68-2,009661956,06970439000000;3230695,7596595700000086.7948281191;27.85492759346823898,33-2,319661945,98626495000000;3230694,7993320100000086.794737538;27.85491996616833897,89-2,969661936,14290739000000;3230689,9976940300000086.7946491136;27.854881836843897,32-2,129661925,81938606000000;3230686,1563838900000086.7945563758;27.85485132126853896,84-2,529661913,09504581000000;3230688,7972847600000086.7944420711;27.8548722966863896,48-3,619661904,99349465000000;3230688,8771763300000086.7943692937;27.85487293056873895,96-3,959661897,00955908000000;3230686,6365477000000086.7942975728;27.85485513486883895,094,379661884,76538261000000;3230673,5154831200000086.7941875814;27.85483034636893895,989,929661874,44186128000000;3230677,9935994800000086.7940948437;27.85478648986903897,938,779661863,39809426000000;3230676,5531082500000086.7939956358;27.85477504896913900.000.009661850,313631180000000;3230673,67212556000000086.7938780961:27,8547521673	679	3899,55	-3,40	9661976,71674705000000;3230696,719987140000000	86.7950135946;27.8549352206
6813898,68-2,009661956,06970439000000;3230695,7596595700000086.7948281191;27.85492759346823898,33-2,319661945,98626495000000;3230694,7993320100000086.794737538;27.85491996616833897,89-2,969661936,14290739000000;3230689,9976940300000086.7946491136;27.854881836843897,32-2,129661925,81938606000000;3230686,1563838900000086.7945563758;27.85485132126853896,84-2,529661913,09504581000000;3230688,7972847600000086.7944420711;27.8548722966863896,48-3,619661904,99349465000000;3230688,8771763300000086.7944420711;27.85487293056873895,96-3,959661897,00955908000000;3230686,6365477000000086.7942975728;27.85485513486883895,094,379661884,76538261000000;3230683,5154831200000086.7941875814;27.85483034636893895,989,929661874,44186128000000;3230677,9935994800000086.7940948437;27.85478648986903897,938,779661863,39809426000000;3230676,5531082500000086.7939956358;27.85477504896913900.000.009661850,313631180000000;3230673,67212556000000086.7938780961:27,8547521673	680	3899,09	-1,79	9661969,034126530000000;3230697,200150920000000	86.7949445805;27.8549390342
6823898,33-2,319661945,98626495000000;3230694,7993320100000086.794737538;27.85491996616833897,89-2,969661936,14290739000000;3230689,9976940300000086.7946491136;27.854881836843897,32-2,129661925,81938606000000;3230686,1563838900000086.7945563758;27.85485132126853896,84-2,529661913,09504581000000;3230688,7972847600000086.7944420711;27.8548722966863896,48-3,619661904,99349465000000;3230688,8771763300000086.794492711;27.85487293056873895,96-3,959661897,00955908000000;3230686,6365477000000086.7942975728;27.8548513486883895,094,379661884,76538261000000;3230683,5154831200000086.7941875814;27.85483034636893895,989,929661874,44186128000000;3230677,9935994800000086.7940948437;27.85478648986903897,938,779661863,39809426000000;3230676,5531082500000086.7939956358;27.85477504896913900.000.009661850,31363118000000;3230673,67212556000000086.7938780961:27,8547521673	681	3898,68	-2,00	9661956,06970439000000;3230695,759659570000000	86.7948281191;27.8549275934
6833897,89-2,969661936,14290739000000;3230689,9976940300000086.7946491136;27.854881836843897,32-2,129661925,81938606000000;3230686,1563838900000086.7945563758;27.85485132126853896,84-2,529661913,09504581000000;3230688,7972847600000086.7944420711;27.8548722966863896,48-3,619661904,99349465000000;3230688,8771763300000086.7943692937;27.85487293056873895,96-3,959661897,00955908000000;3230686,6365477000000086.7942975728;27.85485513486883895,094,379661884,76538261000000;3230683,5154831200000086.7941875814;27.85483034636893895,989,929661874,44186128000000;3230677,9935994800000086.7940948437;27.85478648986903897,938,779661863,39809426000000;3230676,5531082500000086.7939956358;27.85477504896913900.000.009661850,313631180000000;3230673,67212556000000086.7938780961:27,8547521673	682	3898,33	-2,31	9661945,98626495000000;3230694,799332010000000	86.794737538;27.8549199661
6843897,32-2,129661925,81938606000000;3230686,1563838900000086.7945563758;27.85485132126853896,84-2,529661913,09504581000000;3230688,7972847600000086.7944420711;27.8548722966863896,48-3,619661904,99349465000000;3230688,8771763300000086.7943692937;27.85487293056873895,96-3,959661897,00955908000000;3230686,6365477000000086.7942975728;27.85485213486883895,094,379661884,76538261000000;3230683,5154831200000086.7941875814;27.85483034636893895,989,929661874,44186128000000;3230677,9935994800000086.7940948437;27.85478648986903897,938,779661863,39809426000000;3230676,5531082500000086.7939956358;27.85477504896913900.000.009661850,313631180000000;3230673,67212556000000086.7938780961:27,8547521673	683	3897,89	-2,96	9661936,14290739000000;3230689,99769403000000	86.7946491136;27.85488183
6853896,84-2,529661913,09504581000000;3230688,7972847600000086.7944420711;27.8548722966863896,48-3,619661904,99349465000000;3230688,8771763300000086.7943692937;27.85487293056873895,96-3,959661897,00955908000000;3230686,6365477000000086.7942975728;27.85485513486883895,094,379661884,76538261000000;3230683,5154831200000086.7941875814;27.85483034636893895,989,929661874,44186128000000;3230677,9935994800000086.7940948437;27.85478648986903897,938,779661863,39809426000000;3230676,5531082500000086.7939956358;27.85477504896913900.000.009661850,31363118000000;3230673,67212556000000086.7938780961:27,8547521673	684	3897,32	-2,12	9661925,81938606000000;3230686,156383890000000	86.7945563758;27.8548513212
686 3896,48 -3,61 9661904,99349465000000;3230688,87717633000000 86.7943692937;27.8548729305 687 3895,96 -3,95 9661897,00955908000000;3230686,63654770000000 86.7942975728;27.8548551348 688 3895,09 4,37 9661884,76538261000000;3230683,51548312000000 86.7941875814;27.8548303463 689 3895,98 9,92 9661874,44186128000000;3230677,99359948000000 86.7940948437;27.8547864898 690 3897,93 8,77 9661863,39809426000000;3230676,55310825000000 86.7939956358;27.8547750489 691 3900,00 0,00 9661850,313631180000000;3230673,672125560000000 86.7938780961:27,8547521673	685	3896,84	-2,52	9661913,095045810000000;3230688,797284760000000	86.7944420711;27.854872296
687 3895,96 -3,95 9661897,00955908000000;3230686,63654770000000 86.7942975728;27.8548551348 688 3895,09 4,37 9661884,76538261000000;3230683,51548312000000 86.7941875814;27.8548303463 689 3895,98 9,92 9661874,44186128000000;3230677,99359948000000 86.7940948437;27.8547864898 690 3897,93 8,77 9661863,39809426000000;3230676,55310825000000 86.7939956358;27.8547750489 691 3900.00 0.00 9661850,313631180000000;3230673,672125560000000 86.7938780961:27,8547521673	686	3896,48	-3,61	9661904,993494650000000;3230688,877176330000000	86.7943692937;27.8548729305
688 3895,09 4,37 9661884,76538261000000;3230683,51548312000000 86.7941875814;27.8548303463 689 3895,98 9,92 9661874,44186128000000;3230677,99359948000000 86.7940948437;27.8547864898 690 3897,93 8,77 9661863,39809426000000;3230676,55310825000000 86.7939956358;27.8547750489 691 3900.00 0.00 9661850,313631180000000;3230673,672125560000000 86.7938780961:27,8547521673	687	3895,96	-3,95	9661897,009559080000000;3230686,636547700000000	86.7942975728;27.8548551348
689 3895,98 9,92 9661874,44186128000000;3230677,99359948000000 86.7940948437;27.8547864898 690 3897,93 8,77 9661863,398094260000000;3230676,553108250000000 86.7939956358;27.8547750489 691 3900.00 0.00 9661850,313631180000000;3230673,672125560000000 86.7938780961:27,8547521673	688	3895,09	4,37	9661884,765382610000000;3230683,515483120000000	86.7941875814;27.8548303463
690 3897,93 8,77 9661863,39809426000000;3230676,553108250000000 86.7939956358;27.8547750489 691 3900.00 0.00 9661850,313631180000000;3230673,672125560000000 86.7938780961:27.8547521673	689	3895,98	9,92	9661874,441861280000000;3230677,993599480000000	86.7940948437;27.8547864898
	690	<u>3897,9</u> 3	8,77	9661863,398094260000000;3230676,553108250000000	86.7939956358;27.8547750489
	691	3900,00	0,00	9661850,31363118000000;3230673,672125560000000	86.7938780961;27.8547521673

Tabelle 7: Längsprofildaten des Nare Drangka Gletscherbaches.

Internet Cost meter Cost of the c
1 4/04,01 0.17 9652417,252531700000000,3240596,585037620000000 86.7096389586;27.933524457 3 4704,61 -3.89 9652475,609922650000000,3240596,649666430000000 86.7096389586;27.9335244457 4 4703,02 -6.37 9652473,54428603000000;3240556,649666430000000 86.7096538958;27.93327323730938362 6 4698,26 -4.59 9652441,150466280000000;3240451,395984287000000 86.7095385869;27.9327529952 8 4694,71 -7.23 9652441,242537330000000;3240485,125042000000 86.709355869;27.9327529952 8 4694,71 -7.23 9652452,8791979000000;3240485,612201740000000 86.709355869;27.9327529952 9 4682,55 -4.68 9652452,8791979000000;3240456,12201740000000 86.7095832908;27.9327419674 11 4689,56 -7.3 9652452,8791979000000;3240456,12201740000000 86.7095618467;27.9324196474 11 4689,56 -7.06 9652469,77337520000000;3240456,81237506000000 86.7095618467;27.932149674 13 4684,39 -8.32 9652459,77337520000000;3240369,362792000000 86.7095618467;27.9317317910998 15 4676,60 -3.26 965245
2 4/04,3 -0,41 965247,26574049000000,324039,36337720000000 86.7096399527.333534447 3 4704,61 -3.89 9652475,5092225000000,3240556,64966643000000 86.7096451439,27.9332174944 5 4700,07 -5.52 9652470,10155832000000,3240556,64966643000000 86.7096451439,27.9332174944 5 4700,07 -5.52 9652461,15046628000000,3240513,95984287000000 86.7093538083,27.9328786834 7 4696,42 -6.88 9652444,625373300000000,3240488,12329542000000 86.7093358784,27.9328786834 9 4692,55 -4.86 9652443,24828210000000,3240486,15183715000000 86.7093358784,27.9325180124 10 4691,21 -7.29 9652452,8791979000000,3240456,12201740000000 86.7095328784,27.93274196474 11 4686,87 -7.06 9652468,7240724000000,3240486,1237506000000 86.7095018467,27.9320425807 12 4666,87 -7.06 9652480,77337520000000,3240386,36527920000000 86.7095124377,27.9317310898 15 4676,60 -3.26 9652315,7337520000000,3240387,94520000000 86.70951941727,27.931909472 14 4680,12 -6.86 9652345,8773375200000000
3 4704,61 -3,83 9652475,09922550000000,3240556,64966643000000 86.70966451439;27.9332174944 4 4703,02 -6,37 9652473,5442860300000,3240556,64966643000000 86.7096451439;27.9332174944 5 4700,07 -5,52 9652470,10155832000000,3240530,8493586000000 86.7093853609,27.9327529952 6 4698,26 -4,59 9652443,26537330000000,3240480,4093014000000 86.7093853609,27.9327529952 8 4694,71 -7,23 9652443,24828221000000,3240486,51583715000000 86.7093853609,27.9325180124 10 4681,21 -3,99 9652452,8879197900000,3240486,15207140000000 86.709459846;27.93249474 11 4689,56 -5,43 9652468,724467240000000,3240486,1237506000000 86.7095832908;27.932426635 12 4666,87 -7,06 9652459,77337520000000,3240390,7101998000000 86.709618467,27.93170104972 14 4680,12 -6,86 9652459,87337520000000,3240352,84018621000000 86.709812477;27.9315904972 14 4680,12 -6,86 9652459,77337520000000,3240352,84018621000000 86.709812477;27.9315904972 14 4680,12 -8,85 9652345,245726180000
4 4703.02 -6.37 9652473,544286030000000,3240556,649666430000000 86.70964143927.9332714944 5 4700,07 -5.52 9652470,10155832000000,3240530,48493568000000 86.7096142174;27.9330098362 6 4698,26 -4.59 9652441,15046628000000,3240453,95894287000000 86.709533083,27.9327529952 8 4694,71 -7.23 9652443,248282210000000,3240485,04093014000000 86.7095336083,27.932258952 9 4692,55 -4.86 9652443,248282210000000,3240456,1523715000000 86.7095832903;27.9325180124 10 4691,21 -3.99 9652466,6588306200000,3240456,41220174000000 86.7095832908;27.932248635 12 4686,87 -7.06 9652469,77337520000000,3240486,81275506000000 86.7096514377;27.9319004972 14 4680,12 -6.86 9652459,77337520000000,324038,36527920000000 86.709514367;27.9317310898 15 4676,60 -3.26 9652452,872618000000;3240345,4016821000000 86.709514377;27.931599355 16 4674,53 -5.45 9652380,59963796000000;3240346,5472752000000 86.70851894175;27.9311303024 19 4666,75 -10.98 9652348,22899751000
5 4700,07 -5.2 9652470,101558320000000,3240530,48493868000000 86.7095338083;27,9328786834 6 4698,26 -4,59 9652441,6537330000000;3240451,395984287000000 86.7095338083;27,9328786834 7 4696,42 -6.88 9652444,62537330000000;3240485,1259542000000 86.709335809;27,9325180124 10 4691,21 -7.23 9652452,88791979000000;3240486,51583715000000 86.7094595846;27.9324196474 10 4691,21 -3,99 9652452,88791979000000;3240468,515201740000000 86.7094595846;27.9324196474 11 4689,56 -5,43 9652466,724467240000000;3240436,4127742250000000 86.7096018467;27.9322405807 13 4684,39 -8.22 9652459,77337520000000;3240369,36527920000000 86.709618467;27.931731004972 14 4680,12 -6.86 965239,9263796000000;3240334,20054864000000 86.708618325;27.9317310898 15 4676,60 -3,26 9652459,7733750000000;3240343,20054864000000 86.708618325;27.9314469219 18 4669,18 -8,69 9652349,24572618000000;3240334,20054864000000 86.708618325;27.931419303024 19 4667,55 -10,89 9652349,
6 4698,26 -4.59 9652461,150466280000000;3240498,123295420000000 86.7093538063;27.9322788834 7 4696,42 -6.88 9652444,62537330000000;3240498,123295420000000 86.7093585609;27.9327529952 8 4694,71 -7.23 9652453,3000000;3240486,51583715000000 86.7093558784;27.9326491657 9 4692,55 -4.66 9652443,24828221000000;3240486,12201740000000 86.7094595846;27.9324196474 11 4689,56 -5.43 9652452,88791979000000;3240486,6122750600000 86.7095832908;27.932266635 12 4686,87 -7.06 9652458,72446724000000;3240486,61237506000000 86.7095214377;27.9319004972 14 4680,12 -6.68 9652459,773375200000000;3240389,36527920000000 86.7095214377;27.9317310898 15 4676,60 -3.26 9652415,70646056000000;3240333,56091106000000 86.7091255779;27.931599355 16 4674,53 -5.45 965239,24572618000000;324033,56091106000000 86.7085194175;27.9313103024 19 4666,75 -10.98 9652330,3268346000000;324033,56091106000000 86.708267464;27.931091701 20 4665,54 -12.37 9652330,32681345000
7 4696,42 -6,88 9652444,62537330000000;3240498,12329542000000 86.7093358784;27.932752932 8 4694,71 -7,23 9652439,11700896000000;3240485,0493014000000 86.7093729903;27.9327529325180124 9 4692,55 -4,86 9652443,248282210000000;3240468,515837150000000 86.7093729903;27.93275491527 10 44691,21 -3,99 9652452,887919790000000;3240436,812201740000000 86.7095832908;27.932266635 12 4686,87 -7,06 9652468,724467240000000;3240390,7101998000000 86.7095214377;27.9319004972 14 4680,12 -6.86 9652439,805554510000000;3240380,71019998000000 86.7093420637;27.931599355 15 4676,60 -3,26 9652457,76460560000000;3240352,84018621000000 86.7093420637;27.9315934287 17 4672,29 -8,65 965239,245726180000000;3240335,060548640000000 86.7088101271;27.9315234287 17 4662,75 -10,98 9652344,7481535000000;3240334,0545460000000 86.708810127;1;27.931103024 19 4666,75 -10,98 9652344,2789751000000;3240288,80545087000000 86.7088104274;27.931193024 19 4666,75 -10,98 9652344,22899751000000;3240288,805450870000000 86.7088967464;27.9310152038
8 4694,71 -7,23 965243,11700896000000;3240465,04093014000000 86.7093358784;27.9326491657 9 4692,55 -4,86 9652443,24828221000000;3240468,51583715000000 86.7093729903;27.93224196474 10 4691,21 -3,99 9652452,88791979000000;3240468,512201740000000 86.7095832908;27.932266635 12 4686,87 -7,06 952468,72446724000000;3240408,61237506000000 86.7096018467;27.9310425807 13 4684,39 -8,32 9652459,77337520000000;3240390,71019098000000 86.7099618467;27.9317904972 14 4680,12 -6,86 9652439,80555451000000;3240349,36527920000000 86.70991255779;27.93179004972 14 4680,12 -6,86 9652439,8055451000000;32403452,84018621000000 86.7091255779;27.9315999355 16 4674,53 -5,45 9652340,59063796000000;3240335,609110600000 86.708101271;27.9315234287 17 4672,29 -8,65 9652349,2472618000000;324033,609110600000 86.7084104721;27.9314409219 18 4666,75 -10,98 9652343,413580000000;3240138,4640000000 86.7084507827.9311400771 20 4662,96 -7,29 9652330,3268134500000
9 4692.55 -4.86 9652443,248282210000000;3240468,515837150000000 86.7093729903;27.9325180124 10 4691,21 -3.99 9652452,88791979000000;3240456,12201740000000 86.7095832908;27.932266635 12 4686,87 -7.06 9652468,72446724000000;3240436,842742250000000 86.7095214377;27.9319004972 13 4684,39 -8.32 9652459,77337520000000;3240390,710190980000000 86.70942637;27.9317310988 15 4676,60 -3.26 9552415,70646056000000;3240352,84018621000000 86.7094265779;27.9315999355 16 4674,53 -5.45 9652306,5963796000000;3240332,509110600000 86.7088101271;27.9315234287 17 4672,29 -8.65 9652345,47481535000000;324033,56091106000000 86.7088101271;27.9313103024 19 4666,75 -10.98 9652345,47481535000000;324033,56091106000000 86.7082194175;27.9311900771 20 4662,96 -7.29 952330,32681345000000;3240288,80545087000000 86.7082967464;27.9310152038 21 4661,44 -9.26 952332,4413583000000;3240279,16581329000000 86.708496763;27.93027767 23 4659,64 -12.37 9652336,146322
10 4691,21 -3,99 9652452,88791979000000;3240456,12201740000000 86.7094595846;27.9324196474 11 4689,56 -5,43 9652466,65883062000000;3240436,8427425000000 86.7095832908;27.932266635 12 4686,87 -7,06 9652468,724467240000000;3240436,8427425000000 86.7096018467;27.9320425807 13 4684,39 -8,32 9652459,77337520000000;3240390,71019908000000 86.7095214377;27.9317310898 15 4676,60 -3,26 9652459,77337520000000;3240352,84018621000000 86.7095214377;27.9317310898 15 4676,53 -5,45 9652380,59063796000000;3240352,84018621000000 86.708101271;27.9315234287 17 4672,29 -8,65 9652348,22899751000000;324033,5609110600000 86.7088101271;27.9313103024 19 4666,75 -10,98 9652345,47481535000000;324033,5609110600000 86.70834946763;27.9311900771 20 4662,96 -7,29 9652330,32681345000000;3240234,03279,16581329000000 86.7083267464;27.930927767 23 4654,40 -5,47 9652323,44135803000000;3240247,18581329000000 86.7084946763;27.9307419636 24 4653,16 -8,75 96523
11 4689,56 -5,43 9652466,65833062000000;3240436,84274225000000 86.7095832908;27,932266635 12 4686,87 -7,06 9652468,72446724000000;3240408,61237506000000 86.7096018467;27,9320425807 13 4684,39 -8,32 9652459,77337520000000;3240390,71019098000000 86.7095214377;27,93179004972 14 4680,12 -6,86 9652439,80555451000000;3240369,36527920000000 86.709420637;27,9317310898 15 4676,60 -3,26 9652415,70646056000000;3240352,84018621000000 86.7091255779;27,931791099355 16 4674,53 -5,45 9652380,59063796000000;324033,50091106000000 86.7086103825;27,931469219 18 4667,15 -9652348,228997510000000;324033,56091106000000 86.7085194175;27,9313103024 19 4667,75 -10,98 9652345,474815350000000;3240230,19927062000000 86.7083585995;27.9310917109 21 4662,96 -7,29 9652323,44135803000000;3240228,80545087000000 86.7082967464;27,9310152038 22 4659,64 -12,37 9652328,26117682000000;3240228,1499864000000 86.70840435;27.9307419636 24 4653,16 -8,75 9652335,1466322300000000;324
12 4686,67 -7,06 9652468,72446724000000;3240408,61237506000000 86.7096018467;27.9320425807 13 4684,99 -8,32 9652459,77337520000000;3240390,71019098000000 86.7095214377;27.9319004972 14 4680,12 -6,86 9652439,80555451000000;3240369,36527920000000 86.7093420637;27.9317310898 15 4676,60 -3,26 9652415,70646056000000;3240352,84018621000000 86.7091255779;27.9315999355 16 4674,53 -5,45 9652380,59063796000000;324033,5001106000000 86.7086183825;27.931469219 18 4669,18 -8,65 9652348,22899751000000;3240316,34727252000000 86.7086183825;27.9314469219 18 4667,5 -10,98 9652345,47481535000000;324028,80545087000000 86.7085194175;27.9311900771 20 4662,96 -7,29 9652330,32681345000000;324028,80548047000000 86.7082967464;27.9310917109 21 4661,44 -9,26 9652323,44135803000000;324028,14908460000000 86.7082967464;27.930927767 23 4654,40 -5,47 9552323,41135803000000;3240243,72180757000000 86.7084018966;27.9306545266 25 4650,48 -12,87 9652335,146
13 4684,39 -8,32 9652459,77337520000000,3240390,71019098000000 86.7095214377;27.9319004972 14 4680,12 -6,86 9652439,805554510000000;3240369,36527920000000 86.7093420637;27.9317310898 15 4676,60 -3,26 9652415,70646056000000;3240352,84018621000000 86.7091255779;27.9315999355 16 4674,53 -5,45 9652380,59063796000000;3240343,20054864000000 86.7088101271;27.9315234287 17 4672,29 -8,65 9652359,24572618000000;324033,56091106000000 86.7086183825;27.9314469219 18 4669,18 -8,96 9652348,22899751000000;324031,4927062000000 86.7085194175;27.9313103024 19 4666,75 -10,98 9652330,32681345000000;3240279,16581329000000 86.70834946763;27.9311900771 20 4662,96 -7,29 9652323,44135803000000;3240279,16581329000000 86.7083267464;27.9310152038 22 4659,64 -12,37 9652323,41435803000000;3240241,738536230000000 86.7083400435;27.9307419636 24 4653,16 -8,75 9652335,14663223000000;3240241,738536230000000 86.70840435;27.9307419636 24 4653,16 -8,75 9652
14 4680,12 -6,86 9652439,805554510000000;3240369,36527920000000 86.7093420637;27.9317310898 15 4676,60 -3,26 9652415,70646056000000;3240352,84018621000000 86.7091255779;27.9315999355 16 4674,53 -5,45 9652380,59063796000000;3240333,20054864000000 86.7088101271;27.9315234287 17 4672,29 -8,65 9652348,22899751000000;3240333,56091106000000 86.7086183825;27.9314469219 18 4669,18 -8,96 9652348,22899751000000;3240301,634727252000000 86.7085194175;27.9313103024 19 4666,75 -10,98 9652345,47481535000000;32402301,19927062000000 86.7084946763;27.9311900771 20 4662,96 -7,29 965233,34135803000000;3240279,16581329000000 86.7082967464;27.9310152038 22 4659,64 -12,37 9652328,26117682000000;3240244,73853623000000 86.7084014966;27.93027767 23 4654,40 -5,47 9652335,14663223000000;3240243,72180757000000 86.708401396;27.93024545266 25 4650,48 -12,38 9652340,65499656000000;3240241,719671458000000 86.7084513791;27.9304553371 26 4647,49 -12,29
15 4676,60 -3,26 9652415,70646056000000;3240352,84018621000000 86.7091255779;27.9315999355 16 4674,53 -5,45 9652380,59063796000000;3240333,26091106000000 86.7088101271;27.9315234287 17 4672,29 -8,65 9652359,24572618000000;3240333,56091106000000 86.7086183825;27.9314469219 18 4669,18 -8,96 9652348,22899751000000;3240316,34727252000000 86.7085194175;27.9313103024 19 4666,75 -10,98 9652330,32681345000000;32402301,19927062000000 86.7084946763;27.9311900771 20 4662,96 -7,29 9652330,32681345000000;3240279,16581329000000 86.7082967464;27.9310152038 21 4661,44 -9,26 9652323,44135803000000;3240279,16581329000000 86.7082967464;27.930927767 23 4654,40 -5,47 9652335,14663223000000;3240244,73853623000000 86.708401896;27.9306545266 25 4650,48 -12,88 9652340,65499656000000;3240247,19671458000000 86.7084513791;27.9306545266 25 4650,48 -12,88 9652340,65499656000000;3240217,19671458000000 86.7084513791;27.9306545266 25 4650,48 -12,88 96
16 4674,53 -5,45 9652380,59063796000000;3240343,20054864000000 86.7088101271;27.9315234287 17 4672,29 -8,65 9652359,24572618000000;3240333,56091106000000 86.7086183825;27.9314469219 18 4669,18 -8,96 9652348,22899751000000;3240316,34727252000000 86.7085194175;27.9313103024 19 4666,75 -10,98 9652345,47481535000000;3240301,19927062000000 86.7084946763;27.9311900771 20 4662,96 -7,29 9652330,32681345000000;3240238,80545087000000 86.7083585995;27.9310917109 21 4661,44 -9,26 9652323,44135803000000;3240228,80545087000000 86.7082967464;27.930152038 22 4659,64 -12,37 9652328,26117682000000;3240247,916581329000000 86.708490435;27.9307419636 24 4653,16 -8,75 9652335,14663223000000;3240243,72180757000000 86.7084018966;27.9306545266 25 4650,48 -12,28 9652340,65499656000000;3240243,72180757000000 86.7084513791;27.9304195393 27 4644,18 -15,59 9652341,34354210000000;3240123,72180757000000 86.7084513791;27.9304195393 28 4637,47 -17,09 9
174672,29-8,659652359,24572618000000;3240333,5609110600000086.7086183825;27.9314469219184669,18-8,969652348,22899751000000;3240316,3472725200000086.7085194175;27.9313103024194666,75-10,989652345,47481535000000;3240301,1992706200000086.7084946763;27.9311900771204662,96-7,299652330,32681345000000;3240279,1658132900000086.7082967464;27.931017109214661,44-9,269652323,44135803000000;3240279,1658132900000086.7082967464;27.9310152038224659,64-12,379652323,44135803000000;3240268,1490846400000086.7082967464;27.930927767234654,40-5,479652328,26117682000000;3240244,7385362300000086.70840435;27.9307419636244653,16-8,759652335,14663223000000;3240247,71967145800000086.7084018966;27.9306545266254650,48-12,889652340,65499656000000;3240247,1967145800000086.7084513791;27.930523371264647,49-12,299652341,3435421000000;324024,1143493000000086.7084513791;27.9304195393274644,18-15,59965231,70390453000000;3240165,5557989800000086.7084080819;27.9301135086294633,86-2,06965231,70390453000000;3240154,5390703200000086.70822658198;27.929894147314632,58-16,119652315,17881153000000;3240123,5545209700000086.708225227;27.9297801527324628,18-24,839652316,55590262000000;3240138,0139773400000086.7082348933;27.9296599257
18 4669,18 -8,96 9652348,22899751000000;3240316,34727252000000 86.7085194175;27.9313103024 19 4666,75 -10,98 9652345,47481535000000;3240301,19927062000000 86.7084946763;27.9311900771 20 4662,96 -7,29 9652330,32681345000000;3240288,80545087000000 86.7083585995;27.9310917109 21 4661,44 -9,26 9652323,44135803000000;3240279,16581329000000 86.7082967464;27.930927767 23 4659,64 -12,37 9652323,44135803000000;3240248,14908464000000 86.7082967464;27.930927767 23 4654,40 -5,47 9652328,26117682000000;3240244,73853623000000 86.7084018966;27.9306545266 24 4653,16 -8,75 9652335,14663223000000;3240241,719671458000000 86.7084513791;27.930523371 26 4647,49 -12,29 9652340,65499656000000;324024,11434930000000 86.7084513791;27.9304195393 27 4644,18 -15,59 9652331,039453000000;324024,11434930000000 86.708455644;27.93029313 28 4637,47 -17,09 9652331,70390453000000;3240124,11434930000000 86.7084080819;27.9301135086 29 4633,86 -2,06 9652311,0
194666,75-10,989652345,47481535000000;3240301,1992706200000086.7084946763;27.9311900771204662,96-7,299652330,32681345000000;3240288,8054508700000086.7083585995;27.9310917109214661,44-9,269652323,44135803000000;3240279,1658132900000086.7082967464;27.9310152038224659,64-12,379652323,44135803000000;3240268,1490846400000086.7082967464;27.930927767234654,40-5,479652328,26117682000000;3240244,7385362300000086.70849466;27.930927767244653,16-8,759652335,14663223000000;3240244,7385362300000086.7084018966;27.9306545266254650,48-12,889652340,65499656000000;3240217,1967145800000086.7084513791;27.930523371264647,49-12,299652340,65499656000000;324024,1143493000000086.7084513791;27.9304195393274644,18-15,599652341,34354210000000;324024,1143493000000086.7084513791;27.9304195393284637,47-17,099652335,83517777000000;3240165,5557989800000086.7084508419;27.9301135086294633,86-2,069652331,70390453000000;3240165,5557989800000086.7082258198;27.9298949147304633,13-2,089652319,99863032000000;3240123,5545209700000086.7082255227;27.9297801527324628,18-24,839652316,55590262000000;3240123,5545209700000086.7082248933;27.9296599257
204662,96-7,299652330,32681345000000;3240288,8054508700000086.7083585995;27.9310917109214661,44-9,269652323,44135803000000;3240279,1658132900000086.7082967464;27.9310152038224659,64-12,379652323,44135803000000;3240268,1490846400000086.7082967464;27.930927767234654,40-5,479652328,26117682000000;3240244,7385362300000086.70840435;27.9307419636244653,16-8,759652335,14663223000000;3240233,7218075700000086.7084018966;27.9306545266254650,48-12,889652340,65499656000000;3240217,1967145800000086.7084513791;27.930523371264647,49-12,299652340,65499656000000;3240204,1143493000000086.7084513791;27.9304195393274644,18-15,599652341,34354210000000;3240165,5557989800000086.7084575644;27.930299313284637,47-17,099652331,70390453000000;3240154,5390703200000086.7083709701;27.9300260711304633,13-2,089652319,99863032000000;3240123,5545209700000086.7082225227;27.9297801527324628,18-24,839652316,55590262000000;3240108,4065190600000086.7082348933;27.9296599257
214661,44-9,269652323,44135803000000;3240279,1658132900000086.7082967464;27.9310152038224659,64-12,379652323,44135803000000;3240268,1490846400000086.7082967464;27.930927767234654,40-5,479652328,26117682000000;3240244,7385362300000086.7083400435;27.9307419636244653,16-8,759652335,14663223000000;3240233,7218075700000086.7084018966;27.9306545266254650,48-12,889652340,65499656000000;3240217,1967145800000086.7084513791;27.930523371264647,49-12,299652340,65499656000000;3240204,1143493000000086.7084513791;27.9304195393274644,18-15,599652341,34354210000000;3240188,9663473900000086.7084575644;27.930299313284637,47-17,099652335,83517777000000;3240165,5557989800000086.7084080819;27.9301135086294633,86-2,06965231,70390453000000;3240154,5390703200000086.70842658198;27.930260711304633,13-2,089652319,99863032000000;3240123,5545209700000086.708225227;27.9297801527314632,58-16,119652315,17881153000000;3240123,5545209700000086.7082348933;27.9296599257324628,18-24,839652316,55590262000000;3240108,4065190600000086.7082348933;27.9296599257
224659,64-12,379652323,44135803000000;3240268,1490846400000086.7082967464;27.930927767234654,40-5,479652328,26117682000000;3240244,7385362300000086.7083400435;27.9307419636244653,16-8,759652335,14663223000000;3240233,7218075700000086.7084018966;27.9306545266254650,48-12,889652340,65499656000000;3240217,1967145800000086.7084513791;27.930523371264647,49-12,299652340,65499656000000;3240204,114349300000086.7084513791;27.9304195393274644,18-15,599652341,34354210000000;3240188,9663473900000086.7084575644;27.930299313284637,47-17,099652335,83517777000000;3240165,5557989800000086.7084080819;27.9301135086294633,86-2,069652331,70390453000000;3240154,5390703200000086.7083709701;27.9300260711304633,13-2,089652319,99863032000000;3240123,5545209700000086.708225527;27.9297801527314632,58-16,119652315,17881153000000;3240123,5545209700000086.70822452527;27.9297801527324628,18-24,839652316,55590262000000;3240108,4065190600000086.7082348933;27.9296599257
234654,40-5,479652328,26117682000000;3240244,7385362300000086.7083400435;27.9307419636244653,16-8,759652335,14663223000000;3240233,7218075700000086.7084018966;27.9306545266254650,48-12,889652340,654996560000000;3240217,1967145800000086.7084513791;27.930523371264647,49-12,299652340,65499656000000;3240204,1143493000000086.7084513791;27.9304195393274644,18-15,599652341,34354210000000;3240188,9663473900000086.7084575644;27.930299313284637,47-17,099652335,83517777000000;3240165,5557989800000086.7084080819;27.9301135086294633,86-2,069652331,70390453000000;3240154,5390703200000086.7083709701;27.9300260711304633,13-2,089652319,99863032000000;3240123,5545209700000086.70822658198;27.9298949147314632,58-16,119652315,17881153000000;3240123,5545209700000086.7082248933;27.9296599257324628,18-24,839652316,55590262000000;3240108,4065190600000086.7082348933;27.9296599257
244653,16-8,759652335,14663223000000;3240233,7218075700000086.7084018966;27.9306545266254650,48-12,889652340,65499656000000;3240217,1967145800000086.7084513791;27.930523371264647,49-12,299652340,65499656000000;3240204,1143493000000086.7084513791;27.930523371274644,18-15,599652341,34354210000000;3240204,1143493000000086.7084575644;27.930299313284637,47-17,099652335,83517777000000;3240165,5557989800000086.7084080819;27.9301135086294633,86-2,069652331,70390453000000;3240165,5557989800000086.7083709701;27.9300260711304633,13-2,089652319,99863032000000;3240138,0139773400000086.7082658198;27.9298949147314632,58-16,119652315,17881153000000;3240123,5545209700000086.7082225227;27.9297801527324628,18-24,839652316,55590262000000;3240108,4065190600000086.7082348933;27.9296599257
254650,48-12,889652340,65499656000000;3240217,1967145800000086.7084513791;27.930523371264647,49-12,299652340,65499656000000;3240204,1143493000000086.7084513791;27.9304195393274644,18-15,599652341,34354210000000;3240188,9663473900000086.7084575644;27.930299313284637,47-17,099652335,83517777000000;3240165,5557989800000086.7084080819;27.9301135086294633,86-2,069652331,70390453000000;3240154,5390703200000086.7083709701;27.9300260711304633,13-2,089652319,99863032000000;3240138,0139773400000086.7082658198;27.9298949147314632,58-16,119652315,17881153000000;3240123,5545209700000086.7082225227;27.9297801527324628,18-24,839652316,55590262000000;3240108,4065190600000086.7082348933;27.9296599257
264647,49-12,299652340,65499656000000;3240204,1143493000000086.7084513791;27.9304195393274644,18-15,599652341,34354210000000;3240188,9663473900000086.7084575644;27.930299313284637,47-17,099652335,83517777000000;3240165,55579898000000086.7084080819;27.9301135086294633,86-2,069652331,70390453000000;3240154,5390703200000086.7083709701;27.9300260711304633,13-2,089652319,99863032000000;3240154,5390703200000086.7082658198;27.9298949147314632,58-16,119652315,17881153000000;3240123,5545209700000086.7082225227;27.9297801527324628,18-24,839652316,55590262000000;3240108,4065190600000086.7082348933;27.9296599257
274644,18-15,599652341,34354210000000;3240188,9663473900000086.7084575644;27.930299313284637,47-17,099652335,835177770000000;3240165,55579898000000086.7084080819;27.9301135086294633,86-2,069652331,703904530000000;3240154,53907032000000086.7083709701;27.9300260711304633,13-2,089652319,99863032000000;3240138,01397734000000086.7082658198;27.9298949147314632,58-16,119652315,17881153000000;3240123,55452097000000086.7082225227;27.9297801527324628,18-24,839652316,55590262000000;3240108,4065190600000086.7082348933;27.9296599257
28 4637,47 -17,09 9652335,83517777000000;3240165,55579898000000 86.7084080819;27.9301135086 29 4633,86 -2,06 9652331,70390453000000;3240154,53907032000000 86.7083709701;27.9300260711 30 4633,13 -2,08 9652319,99863032000000;3240138,01397734000000 86.7082658198;27.9298949147 31 4632,58 -16,11 9652315,17881153000000;3240123,55452097000000 86.7082225227;27.9297801527 32 4628,18 -24,83 9652316,55590262000000;3240108,40651906000000 86.7082348933;27.9296599257
29 4633,86 -2,06 9652331,70390453000000;3240154,53907032000000 86.7083709701;27.9300260711 30 4633,13 -2,08 9652319,99863032000000;3240138,01397734000000 86.7082658198;27.9298949147 31 4632,58 -16,11 9652315,17881153000000;3240123,55452097000000 86.708225227;27.9297801527 32 4628,18 -24,83 9652316,55590262000000;3240108,40651906000000 86.7082348933;27.9296599257
30 4633,13 -2,08 9652319,99863032000000;3240138,01397734000000 86.7082658198;27.9298949147 31 4632,58 -16,11 9652315,17881153000000;3240123,554520970000000 86.7082225227;27.9297801527 32 4628,18 -24,83 9652316,55590262000000;3240108,40651906000000 86.7082348933;27.9296599257
31 4632,58 -16,11 9652315,17881153000000;3240123,55452097000000 86.7082225227;27.9297801527 32 4628,18 -24,83 9652316,55590262000000;3240108,40651906000000 86.7082348933;27.9296599257
32 4628,18 -24,83 9652316,55590262000000;3240108,40651906000000 86.7082348933;27.9296599257
33 4619,90 -20,60 9652323,44135803000000;3240091,881426070000000 86.7082967464;27.9295287689
34 4613,18 -7,89 9652328,26117682000000;3240074,66778754000000 86.7083400435;27.929392147
35 4610.94 -8.90 9652324.81844911000000:3240058.83124009000000 86.708309117:27.9292664547
36 4607.80 4.70 9652323.44135803000000:3240038.863419390000000 86.7082967464:27.9291079729
37 4609.23 -16.50 9652317.93299370000000:3240022.33832640000000 86.7082472639:27.9289768154
38 4604.19 -16.39 9652322.06426694000000:3240005.813233410000000 86.7082843758.27.9288456577
39 4599.12 -4.45 9652332 39245007000000:3239992.042322580000000 86.7083771554.27.9287363595
40 4598.02 -6.74 9652341.34354210000000:3239981.025593920000000 86.7084575644.27 9286489209
41 4595.97 -8.79 9652350 98317968000000:3239966 56613755000000 86 7085441588:27 9285341576
42 4592.71 -9.57 9652361,99990834000000:3239948,66395348000000 86,7086431237:27 9283920695
43 4590 11 -8 81 9652367 508272670000000 3239934 20449711000000 86 708692606227 928277306
44 4588 13 -9 66 9652372 94474625000000 23239922 68746376000000 86 7087414429-27 0291959961
45 4585 27 -10.48 9652376 803637480000000 3239922,001403700000000 86.7087761070.27 0290550750
46 4582 97 -11 53 9652385 410456740000000 3239897 36731064000000 86 7088534243-27 9270849315

48	4579,10	-11,67	9652393,328730470000000;3239881,186490370000000	86.7089245553;27.9278565051
49	4576,60	-11,80	9652394,705821550000000;3239869,136943500000000	86.7089369259;27.9277608683
50	4570,32	-6,77	9652397,11573095000000;3239839,185212420000000	86.7089585745;27.9275231423
51	4568,52	-9,86	9652398,49282203000000;3239824,037210510000000	86.7089709451;27.9274029128
52	4565,68	-9,86	9652406,066822990000000;3239809,577754140000000	86.7090389836;27.9272881482
53	4561,77	-3,99	9652423,280461510000000;3239795,118297780000000	86.7091936163;27.9271733834
54	4561,00	0,64	9652424,65755259000000;3239784,101569120000000	86.7092059869;27.9270859435
55	4561,21	8,67	9652410,886641770000000;3239771,019203830000000	86.7090822807;27.9269821086
56	4563,23	6,33	9652400,558458650000000;3239762,756657340000000	86.7089895011;27.9269165285
57	4565,19	3,27	9652389,541729990000000;3239748,985746510000000	86.7088905361;27.9268072284
58	4565,84	-2,79	9652384,72191120000000;3239738,657563390000000	86.7088472389;27.9267252532
59	4565,36	-9,73	9652383,34482012000000;3239729,017925820000000	86.7088348683;27.926648743
60	4562,88	-8,14	9652383,34482012000000;3239714,558469450000000	86.7088348683;27.9265339776
61	4560,81	-12,34	9652381,96772904000000;3239700,099013080000000	86.7088224977;27.926419212
62	4557,29	-9,16	9652384,72191120000000;3239684,262465630000000	86.7088472389;27.9262935163
63	4554,07	-12,45	9652384,03336566000000;3239664,294644930000000	86.7088410536;27.9261350301
64	4550,67	-18,27	9652386,78754782000000;3239649,146643030000000	86.7088657949;27.9260147991
65	4546,65	-14,94	9652395,738639860000000;3239640,884096530000000	86.7089462039;27.9259492185
66	4541,87	-10,83	9652402,624095280000000;3239624,359003540000000	86.709008057;27.9258180572
67	4539,05	-9,26	9652405,378277440000000;3239609,899547170000000	86.7090327982;27.9257032908
68	4536,46	-11,79	9652406,75536852000000;3239594,062999730000000	86.7090451689;27.9255775943
69	4534,37	-13,45	9652409,50955069000000;3239584,423362150000000	86.7090699101;27.9255010832
70	4530,48	1,29	9652422,591915970000000;3239574,783724570000000	86.709187431;27.9254245722
71	4530,81	0,95	9652433,608644630000000;3239565,144086990000000	86.7092863959;27.925348061
72	4531,05	-4,04	9652444,62537330000000;3239555,504449410000000	86.7093853609;27.9252715498
73	4530,14	-8,69	9652450,13373762000000;3239543,799175210000000	86.7094348434;27.9251786433
74	4528,24	-10,52	9652449,44519208000000;3239531,405355470000000	86.7094286581;27.9250802716
75	4525,15	-10,41	9652442,55973667000000;3239516,257353560000000	86.709366805;27.9249600394
76	4521,70	-10,10	9652433,60864463000000;3239499,732260570000000	86.7092863959;27.9248288769
77	4518,78	-8,06	9652424,657552590000000;3239485,961349750000000	86.7092059869;27.9247195746
78	4517,12	-3,27	9652423,96900706000000;3239474,256075540000000	86.7091998016;27.9246266676
79	4516,41	-3,54	9652430,854462470000000;3239463,927892430000000	86.7092616547;27.9245446908
80	4515,43	-4,62	9652439,805554510000000;3239450,845527140000000	86.7093420637;27.9244408534
81	4514,21	-6,49	9652447,37955546000000;3239437,763161850000000	86.7094101021;27.9243370159
82	4513,21	-9,50	9652450,13373762000000;3239429,500615360000000	86.7094348434;27.9242714343
83	4508,49	-9,54	9652443,936827750000000;3239401,958793710000000	86.7093791756;27.9240528285
84	4505,20	-8,92	9652437,739917880000000;3239383,368064100000000	86.7093235078;27.9239052694
85	4502,71	-5,77	9652437,051372340000000;3239367,531516650000000	86.7093173225;27.9237795707
86	4501,47	-7,31	9652444,62537330000000;3239357,891879070000000	86.7093853609;27.9237030584
87	4499,65	-9,39	9652451,510828710000000;3239345,498059330000000	86.709447214;27.9236046854
88	4498,40	-9,27	9652451,510828710000000;3239337,924058370000000	86.709447214;27.9235445685
89	4495,75	-8,44	9652448,06810100000000;3239322,087510920000000	86.7094162875;27.9234188694
90	4494,29	-6,01	9652443,936827750000000;3239313,136418880000000	86.7093791756;27.923347822
91	4492,31	-6,00	9652446,69100992000000;3239294,545689270000000	86.7094039168;27.923200262
92	4490,45	-6,51	9652450,82228316000000;3239277,332050740000000	86.7094410287;27.9230636321
93	4488,44	-6,67	9652457,01919304000000;3239260,806957750000000	86.7094966965;27.9229324672
94	4486,56	-7,32	9652468,724467240000000;3239249,790229090000000	86.7096018467;27.9228450239
95	4484,80	-6,94	9652479,05265036000000;3239240,839137050000000	86.7096946264;27.9227739762

96	4483,12	-8,40	9652491,44647010000000;3239234,642227180000000	86.709805962;27.9227247892
97	4481,45	-9,90	9652500,397562130000000;3239227,756771770000000	86.709886371;27.9226701371
98	4478,87	-9,07	9652507,283017550000000;3239214,674406480000000	86.7099482241;27.9225662979
99	4477,10	-7,88	9652507,97156309000000;3239203,657677820000000	86.7099544094;27.9224788542
100	4474,46	-3,86	9652516,23410958000000;3239186,444039290000000	86.7100286331;27.9223422234
101	4473,28	-4,45	9652525,18520162000000;3239171,296037380000000	86.7101090422;27.9222219882
102	4472,58	-6,11	9652530,005020410000000;3239163,722036430000000	86.7101523393;27.9221618705
103	4471,16	-6,05	9652536,20193029000000;3239152,016762230000000	86.7102080071;27.9220689613
104	4470,21	-5,36	9652541,02174907000000;3239144,442761270000000	86.7102513043;27.9220088436
105	4469,02	-4,02	9652549,284295570000000;3239134,803123700000000	86.710325528;27.92193233
106	4468,21	-10,67	9652558,378142510000000;3239127,713892400000000	86.7104072194;27.92187606
107	4467,02	-12,63	9652560,301024230000000;3239121,720758410000000	86.710424493;27.9218284901
108	4465,52	-11,07	9652557,80514363000000;3239115,524001370000000	86.7104020721;27.921779304
109	4462,99	-5,03	9652549,972841110000000;3239105,195665420000000	86.7103317133;27.9216973238
110	4461,18	-2,80	9652534,13629366000000;3239092,113300140000000	86.7101894512;27.9215934836
111	4460,55	-2,63	9652526,56229270000000;3239081,785117020000000	86.7101214128;27.9215115045
112	4459,89	-3,07	9652527,93938379000000;3239067,325660650000000	86.7101337834;27.9213967336
113	4459,06	-3,85	9652533,44774812000000;3239052,866204280000000	86.7101832659;27.9212819626
114	4457,91	-5,03	9652545,84156786000000;3239041,160930080000000	86.7102946014;27.9211890527
115	4456,21	-5,85	9652560,64529700000000;3239028,767110620000000	86.7104275856;27.9210906773
116	4454,80	-7,09	9652572,267782730000000;3239021,429330650000000	86.7105319922;27.921032434
117	4453,33	-6,41	9652576,826117220000000;3239010,520653460000000	86.7105729404;27.9209458468
118	4451,98	-3,14	9652577,51466276000000;3238998,471106520000000	86.7105791257;27.9208502039
119	4451,39	-4,27	9652574,76048059000000;3238988,142923400000000	86.7105543845;27.9207682242
120	4450,63	-6,99	9652574,63705230000000;3238978,025891680000000	86.7105532757;27.9206879205
121	4449,47	-6,91	9652578,891753840000000;3238969,552193790000000	86.7105914963;27.9206206606
122	4448,05	-8,99	9652583,02302709000000;3238958,535465130000000	86.7106286082;27.9205332155
123	4445,66	-9,89	9652593,351210210000000;3238947,518736470000000	86.7107213878;27.9204457702
124	4443,35	4,26	9652605,056484410000000;3238941,321826600000000	86.7108265381;27.9203965822
125	4445,30	1,58	9652627,778487270000000;3238928,239461310000000	86.7110306533;27.9202927408
126	4445,80	-4,85	9652641,54939810000000;3238916,534186900000000	86.7111543595;27.92019983
127	4444,74	-9,11	9652646,024944110000000;3238904,828912910000000	86.711194564;27.9201069191
128	4442,00	-7,26	9652643,61503472000000;3238887,959547180000000	86.7111729154;27.919973018
129	4440,27	-8,30	9652645,68067135000000;3238874,532909090000000	86.7111914714;27.9198664435
130	4438,67	-8,08	9652645,68067135000000;3238863,516180440000000	86.7111914714;27.9197789977
131	4437,09	-8,38	9652647,05776243000000;3238852,499451770000000	86.711203842;27.9196915519
132	4434,85	-7,87	9652645,68067135000000;3238837,351449870000000	86.7111914714;27.9195713137
133	4432,36	-7,04	9652643,61503472000000;3238819,449265790000000	86.7111729154;27.9194292138
134	4430,89	-8,53	9652641,54939810000000;3238807,743991590000000	86.7111543595;27.9193363023
135	4429,43	-9,67	9652642,92648918000000;3238798,104354010000000	86.7111667301;27.9192597868
136	4427,16	-3,54	9652647,746307970000000;3238785,710534270000000	86.7112100273;27.9191614098
137	4426,44	-4,04	9652656,008854460000000;3238777,447987770000000	86.711284251;27.919095825
138	4425,06	-5,98	9652669,091219750000000;3238762,988531410000000	86.7114017719;27.9189810515
139	4423,17	-8,47	9652682,51785780000000;3238750,938984430000000	86.7115223854;27.9188854069
140	4420,83	-2,95	9652696,28876863000000;3238743,364983240000000	86.7116460916;27.9188252874
141	4420,16	-1,36	9652709,112929340000000;3238740,610801350000000	86.711761293;27.9188034257
142	4419,91	-0,05	9652719,355044270000000;3238741,299347120000000	86.7118532995;27.9188088911
143	4419,90	-1,24	9652728,650409070000000;3238744,742075210000000	86.7119368012;27.9188362182

144	4419 64	-4 27	9652740 69995604000000:3238744 053529120000000	86 7120450441 27 9188307528
145	4418,76	-6.73	9652751.02813916000000:3238738.20089192000000	86.7121378238:27.9187842968
146	4416.81	-8.53	9652764 110504440000000:3238728 216981580000000	86,7122553447,27,9187050482
147	4414,51	-9.42	9652776.84859695000000:3238719.610162200000000	86.7123697729:27.9186367305
148	4411.44	-4.16	9652793.02941718000000:3238710.659070270000000	86.7125151277:27.91856568
149	4410,09	-9,26	9652810,24305572000000;3238703,77361486000000	86.7126697604;27.9185110257
150	4407,31	-4,91	9652822,63687546000000;3238692,068340650000000	86.712781096:27.9184181133
151	4405,44	2,94	9652833,99787688000000:3238673,47761104000000	86.7128831536;27.9182705465
152	4406,56	0,34	9652846,39169662000000;3238655,575426970000000	86.7129944892;27.918128445
153	4406,67	-1,48	9652856,71987975000000;3238640,427425060000000	86.7130872688;27.9180082051
154	4406,12	-3,79	9652867,048062870000000;3238621,836695440000000	86.7131800485;27.9178606377
155	4405,32	-8,54	9652873,244972730000000;3238611,508512330000000	86.7132357163;27.9177786557
156	4402,05	-8,98	9652891,147156810000000;3238599,114692580000000	86.7133965343;27.9176802773
157	4399,12	-10,15	9652905,60661318000000;3238587,409418380000000	86.7135264258;27.9175873643
158	4395,71	-8,78	9652920,066069540000000;3238575,015598640000000	86.7136563173;27.9174889856
159	4393,85	-11,44	9652930,39425266000000;3238568,818688770000000	86.713749097;27.9174397963
160	4392,01	-11,72	9652939,34534470000000;3238567,441597680000000	86.713829506;27.9174288653
161	4390,16	-11,11	9652948,234190470000000;3238566,585246800000000	86.7139093559;27.9174220679
162	4388,74	-9,25	9652954,493346610000000;3238570,195779850000000	86.7139655828;27.9174507273
163	4386,22	-6,82	9652967,57571189000000;3238578,45832648000000	86.7140831037;27.917516313
164	4384,57	-3,23	9652981,346622720000000;3238579,835417110000000	86.7142068099;27.917527244
165	4383,75	-1,83	9652993,39616969000000;3238571,572870780000000	86.7143150528;27.9174616582
166	4383,26	-3,18	9653000,281625110000000;3238558,146232890000000	86.7143769059;27.9173550813
167	4382,53	-4,12	9653008,888444370000000;3238548,162322530000000	86.7144542223;27.9172758317
168	4381,79	-5,07	9653015,085354240000000;3238539,899776030000000	86.7145098901;27.9172102458
169	4380,65	-6,14	9653022,65935519000000;3238529,571592910000000	86.7145779285;27.9171282633
170	4379,55	-7,18	9653029,200537830000000;3238521,653319290000000	86.714636689;27.9170654101
171	4378,31	-7,76	9653036,77453879000000;3238515,456409410000000	86.7147047274;27.9170162205
172	4377,20	-8,65	9653044,004266970000000;3238511,669409020000000	86.7147696731;27.9169861603
173	4374,60	-10,12	9653059,152268880000000;3238503,751134850000000	86.7149057499;27.9169233069
174	4372,03	-7,21	9653069,824724770000000;3238494,111497070000000	86.7150016222;27.9168467898
175	4370,24	-5,00	9653074,300270790000000;3238480,684859280000000	86.7150418267;27.9167402122
176	4368,73	-1,77	9653075,67736187000000;3238463,471220950000000	86.7150541974;27.9166035742
177	4368,38	-3,39	9653079,12008958000000;3238452,798765230000000	86.7150851239;27.9165188585
178	4367,43	-4,91	9653090,481091010000000;3238441,437763670000000	86.7151871815;27.9164286772
179	4365,51	-6,61	9653108,039002310000000;3238427,666852810000000	86.7153449069;27.9163193665
180	4362,55	-8,07	9653129,38391409000000;3238413,551669140000000	86.7155366515;27.9162073229
181	4360,71	-9,43	9653139,023551670000000;3238404,94484980000000	86.7156232459;27.9161390035
182	4356,52	-7,23	9653158,991372370000000;3238389,452575170000000	86.7158026199;27.9160160286
183	4354,48	-5,12	9653165,188282240000000;3238374,648846130000000	86.7158582876;27.9158985191
184	4352,63	-4,60	9653165,87682778000000;3238353,992479890000000	86.715864473;27.9157345522
185	4350,96	-3,48	9653163,81119116000000;3238333,336113650000000	86.715845917;27.915570585
186	4349,62	-4,25	9653165,188282240000000;3238311,302656330000000	86.7158582876;27.9153956863
187	4348,03	-4,03	9653163,81119116000000;3238289,957744550000000	86.715845917;27.915226253
188	4346,62	-1,17	9653162,08982730000000;3238269,989923850000000	86.7158304538;27.9150677507
189	4346,23	-0,99	9653154,171553580000000;3238252,432012570000000	86.7157593227;27.9149283777
190	4345,94	-1,19	9653146,59755262000000;3238237,628283410000000	86.7156912843;27.914810867
191	4345,63	-4,92	9653141,089188290000000;3238223,857372590000000	86.7156418018;27.9147015547

192	4344,21	-7,02	9653140,400642750000000;3238207,332279600000000	86.7156356165;27.9145703797
193	4342,84	-9,42	9653141,777733840000000;3238196,315550940000000	86.7156479871;27.9144829296
194	4340,46	-7,40	9653145,90900708000000;3238182,544640110000000	86.715685099;27.9143736169
195	4338,75	-10,27	9653147,286098170000000;3238169,462274830000000	86.7156974696;27.9142697697
196	4332,54	-2,93	9653160,36846345000000;3238137,789179930000000	86.7158149905;27.9140183498
197	4331,68	-1,31	9653172,07373765000000;3238125,739633220000000	86.7159201407;27.9139227008
198	4331,27	-4,51	9653185,844648470000000;3238114,034358880000000	86.7160438469;27.9138297845
199	4329,14	-6,31	9653198,58274099000000;3238090,279537580000000	86.7161582752;27.9136412189
200	4326,13	-6,44	9653209,94374242000000;3238065,49189809000000	86.7162603328;27.9134444544
201	4324,06	0,16	9653216,14065230000000;3238048,278259560000000	86.7163160006;27.9133078122
202	4324,10	0,71	9653213,38647012000000;3238033,81880320000000	86.7162912593;27.9131930326
203	4324,26	-3,96	9653210,938177830000000;3238020,989760390000000	86.7162692659;27.9130911952
204	4323,47	-7,41	9653216,82919783000000;3238011,096800330000000	86.7163221859;27.9130126644
205	4321,00	-9,36	9653232,321472510000000;3238000,080071810000000	86.7164613554;27.9129252131
206	4317,61	-3,48	9653249,19083827000000;3237988,374797470000000	86.7166128954;27.912832296
207	4316,00	-2,72	9653271,568568370000000;3237974,259614000000000	86.716813918;27.9127202487
208	4315,40	-3,73	9653279,48684209000000;3237964,275703530000000	86.7168850491;27.9126409957
209	4314,66	-5,07	9653284,66106401000000;3237954,210748110000000	86.7169315299;27.9125610994
210	4313,93	-0,87	9653284,30666088000000;3237946,029246510000000	86.7169283462;27.9124961539
211	4313,60	-0,17	9653278,109751010000000;3237925,028607670000000	86.7168726785;27.9123294489
212	4313,56	-0,87	9653276,73265993000000;3237910,569151310000000	86.7168603078;27.9122146683
213	4313,29	1,05	9653279,48684209000000;3237893,355512780000000	86.7168850491;27.9120780245
214	4313,57	1,90	9653275,355568840000000;3237878,896056410000000	86.7168479372;27.9119632437
215	4313,88	1,56	9653272,60138668000000;3237869,944964370000000	86.716823196;27.9118921888
216	4314,22	-1,28	9653270,53575006000000;3237857,551144630000000	86.71680464;27.911793805
217	4314,06	-7,16	9653271,912841140000000;3237850,665689220000000	86.7168170107;27.9117391473
218	4312,83	-1,56	9653279,48684209000000;3237844,468779340000000	86.7168850491;27.9116899553
219	4312,54	-2,94	9653284,30666088000000;3237834,829141770000000	86.7169283462;27.9116134345
220	4311,74	-1,97	9653293,94629846000000;3237822,435322020000000	86.7170149406;27.9115150504
221	4311,25	1,07	9653300,831753870000000;3237810,041502280000000	86.7170767937;27.9114166663
222	4311,49	-2,88	9653303,58593603000000;3237797,647682540000000	86.7171015349;27.9113182821
223	4310,82	-9,14	9653309,782845910000000;3237785,942408330000000	86.7171572027;27.9112253636
224	4308,51	-13,02	9653321,488120110000000;3237777,679861840000000	86.717262353;27.911159774
225	4305,14	-8,72	9653335,947576470000000;3237775,614225220000000	86.7173922445;27.9111433766
226	4301,34	-4,15	9653360,73521596000000;3237775,614225220000000	86.7176149156;27.9111433766
227	4300,29	-4,23	9653375,19467233000000;3237775,269953780000000	86.7177448071;27.9111406437
228	4299,34	0,00	9653387,932764840000000;3237774,925680060000000	86.7178592354;27.9111379108

Tabelle 8: Längsprofildaten des orographisch rechten Ngozumpa Gletscherbaches.

Nir	Profilhöhe über	Gefälle in	WCC 04/Decude Mergeter (EDCC: 2057) in OptiMard	
INI.		Grad	WGS 64/Pseudo Mercalor (EPSG: 3657) III Ost, Nord	WGS 84 (EPSG: 4328) III Ost, Nord
1	5024,82	-15,77	8732452,865492550000000;4013408,671502260000000	78.4449587693;33.8852826571
2	5022,76	-15,98	8732454,133406520000000;4013415,849442970000000	78.4449701591;33.8853361859
3	5021,57	-5,84	8732455,209604950000000;4013419,848361550000000	78.4449798268;33.8853660075
4	5021,05	-17,64	8732459,587102660000000;4013422,470654240000000	78.4450191505;33.885385563
5	5019,19	-11,13	8732457,98413465000000;4013428,09352002000000	78.4450047508;33.885427495
6	5018,44	-11,86	8732459,318988960000000;4013431,655195080000000	78.445016742;33.8854540558
7	5017,57	-5,64	8732460,612541750000000;4013435,640470930000000	78.4450283622;33.8854837756
8	5016,81	-13,35	8732465,566563350000000;4013441,438035360000000	78.4450728649;33.8855270103
9	5012,48	-16,55	8732469,730939190000000;4013459,231277560000000	78.4451102741;33.8856597014
10	5008,64	-14,83	8732468,59520032000000;4013472,102984680000000	78.4451000716;33.8857556906
11	5004,29	-8,86	8732467,130317720000000;4013488,447700370000000	78.4450869124;33.8858775791
12	5002,25	-10,50	8732471,245257670000000;4013500,875035890000000	78.4451238775;33.8859702542
13	5000,00	-11,57	8732474,273894640000000;4013512,611004140000000	78.4451510842;33.8860577734
14	4995,43	-10,72	8732481,05543183000000;4013533,893794710000000	78.4452120038;33.8862164864
15	4994,05	-14,10	8732485,65173636000000;4013539,59576269000000	78.4452532931;33.8862590079
16	4991,65	-12,98	8732486,66686393000000;4013549,083658870000000	78.4452624121;33.8863297622
17	4990,04	-15,15	8732490,93139798000000;4013554,63334210000000	78.4453007211;33.886371148
18	4985,09	-17,52	8732501,153047750000000;4013569,776526940000000	78.4453925437;33.8864840755
19	4981,83	-18,16	8732505,31742358000000;4013579,241017470000000	78.445429953;33.8865546551
20	4979,78	-18,00	8732506,83174206000000;4013585,298291410000000	78.4454435563;33.886599826
21	4976,56	-14,52	8732514,024754870000000;4013592,112724590000000	78.4455081723;33.8866506432
22	4973,24	-19,17	8732526,139302740000000;4013596,277100420000000	78.4456169991;33.8866816982
23	4969,50	-18,71	8732528,032200850000000;4013606,877329820000000	78.4456340033;33.8867607472
24	4966,92	-17,38	8732528,78936009000000;4013614,448922240000000	78.445640805;33.8868172107
25	4965,14	-18,71	8732528,410780470000000;4013620,127616560000000	78.4456374041;33.8868595583
26	4960,69	-19,70	8732537,87527100000000;4013629,213527470000000	78.4457224251;33.8869273144
27	4957,83	-19,48	8732542,039646830000000;4013636,027960650000000	78.4457598343;33.8869781315
28	4955,40	-19,26	8732543,932544940000000;4013642,653104010000000	78.4457768385;33.8870275369
29	4952,41	-11,60	8732545,82544304000000;4013650,981855680000000	78.4457938427;33.8870896466
30	4949,61	-13,50	8732554,91135395000000;4013661,203505450000000	78.4458754628;33.887165872
31	4947,14	-13,76	8732557,93999092000000;4013671,046575610000000	78.4459026695;33.8872392742
32	4943,93	-19,17	8732561,791579130000000;4013683,539703100000000	78.4459372689;33.8873324384
33	4939,03	-14,87	8732560,67238015000000;4013697,612941130000000	78.445927215;33.8874373858
34	4936,09	-23,60	8732563,99726486000000;4013708,147378480000000	78.4459570829;33.8875159434
35	4929,92	-22,72	8732562,104366750000000;4013722,154824470000000	78.4459400788;33.8876203999
36	4924,84	-15,60	8732561,72578713000000;4013734,269372340000000	78.4459366779;33.8877107406
37	4921,27	-22,91	8732566,828342070000000;4013746,00534060000000	78.4459825149;33.8877982581
38	4917,42	-23,73	8732566,26874259000000;4013755,091251500000000	78.445977488;33.8878660134
39	4912,28	-22,00	8732564,704988220000000;4013766,679095890000000	78.4459634405;33.8879524261
40	4907,41	-22,94	8732564,943713910000000;4013778,752477830000000	78.445965585;33.8880424595
41	4904,36	-15,10	8732564,56513429000000;4013785,945490630000000	78.4459621842;33.888096099
42	4902,09	-23,78	8732567,783061070000000;4013793,706372870000000	78.4459910913;33.8881539732
43	4900,16	-22,96	8732567,215191640000000;4013798,060038510000000	78.4459859901;33.8881864392
44	4898,79	-11,80	8732567,02590183000000;4013801,277965290000000	78.4459842897;33.8882104358
45	4897,83	-18,51	8732569,29737956000000;4013805,253051310000000	78.4460046947;33.8882400786
46	4896,02	-22,75	8732570,433118420000000;4013810,553166010000000	78.4460148972;33.8882796024
47	4891,45	-17,01	8732568,918799940000000;4013821,342685210000000	78.4460012939;33.8883600614

48	4886,56	-18,54	8732570,433118420000000;4013837,243029300000000	78.4460148972;33.8884786325
49	4882,88	-17,18	8732570,43311842000000;4013848,221838310000000	78.4460148972;33.8885605029
50	4879,47	-11,84	8732571,56885729000000;4013859,200647330000000	78.4460250997;33.8886423733
51	4878,33	-20,73	8732573,840335010000000;4013864,122182400000000	78.4460455048;33.8886790737
52	4875,55	-20,52	8732572,32601653000000;4013871,315195210000000	78.4460319014;33.8887327128
53	4872,21	-18,02	8732570,433118420000000;4013880,022526490000000	78.4460148972;33.8887976444
54	4869,75	-17,34	8732570,81169804000000;4013887,594118920000000	78.446018298;33.8888541065
55	4866,77	-8,79	8732571,947436910000000;4013897,058609450000000	78.4460285006;33.8889246842
56	4865,02	-16,17	8732579,140449710000000;4013905,765940730000000	78.4460931165;33.8889896155
57	4859,96	-12,36	8732584,440564400000000;4013922,423444070000000	78.4461407282;33.8891138319
58	4857,54	-0,21	8732590,11925872000000;4013931,887934590000000	78.4461917408;33.8891844094
59	4857,52	-9,49	8732594,279079810000000;4013933,842865780000000	78.4462291091;33.8891989874
60	4857,10	-10,77	8732595,630147790000000;4013935,949615860000000	78.446241246;33.8892146976
61	4856,54	-5,22	8732597,038464410000000;4013938,548704300000000	78.4462538971;33.8892340792
62	4856,20	-6,02	8732599,958145220000000;4013940,850099770000000	78.446280125;33.8892512409
63	4856,01	-13,51	8732601,33211266000000;4013941,995072660000000	78.4462924676;33.889259779
64	4855,28	-8,10	8732602,34978104000000;4013944,860473570000000	78.4463016095;33.8892811465
65	4854,70	-11,60	8732605,26679618000000;4013947,742894160000000	78.4463278135;33.8893026409
66	4853,59	-1,64	8732608,247748770000000;4013952,231129970000000	78.4463545918;33.8893361099
67	4853,50	-12,68	8732611,27391859000000;4013953,271589060000000	78.4463817764;33.8893438687
68	4850,41	-16,77	8732619,26988956000000;4013964,445782020000000	78.4464536054;33.8894271953
69	4847,38	-18,12	8732622,677106140000000;4013973,910272540000000	78.4464842129;33.8894977724
70	4843,80	-18,93	8732625,32716349000000;4013984,510501940000000	78.4465080188;33.8895768188
71	4840,16	-17,36	8732624,948583870000000;4013995,110731330000000	78.446504618;33.8896558651
72	4837,67	-19,32	8732629,11295970000000;4014001,925164510000000	78.4465420272;33.8897066805
73	4835,11	-19,88	8732631,53256130000000;4014008,805389420000000	78.4465637628;33.8897579865
74	4832,68	-16,88	8732633,65591516000000;4014015,175451250000000	78.4465828373;33.8898054882
75	4830,81	-20,24	8732638,198870610000000;4014019,339827090000000	78.4466236473;33.889836542
76	4827,88	-20,45	8732637,82029099000000;4014027,289999130000000	78.4466202465;33.8898958266
77	4824,21	-20,85	8732637,82029099000000;4014037,133069280000000	78.4466202465;33.8899692264
78	4821,33	-19,82	8732640,091768710000000;4014044,32608208000000	78.4466406515;33.8900228647
79	4818,40	-11,87	8732643,12040569000000;4014051,897674510000000	78.4466678582;33.8900793261
80	4816,87	-6,36	8732647,663361140000000;4014057,576368820000000	78.4467086683;33.890121672
81	4816,07	-12,22	8732653,72063508000000;4014061,362165030000000	78.4467630817;33.8901499027
82	4814,56	-18,45	8732658,26359053000000;4014066,662279730000000	78.4468038918;33.8901894256
83	4810,67	-17,01	8732660,913647880000000;4014078,019668370000000	78.4468276976;33.8902741174
84	4808,13	-16,90	8732664,320864470000000;4014085,591260790000000	78.4468583052;33.8903305786
85	4804,37	-12,20	8732669,999558790000000;4014096,57006980000000	78.4469093178;33.8904124472
86	4802,63	-18,01	8732676,056832730000000;4014101,870184500000000	78.4469637312;33.89045197
87	4800,16	-20,93	8732679,46404932000000;4014108,68461768000000	78.4469943387;33.8905027849
88	4796,81	-18,29	8732678,70689008000000;4014117,391948970000000	78.446987537;33.8905677151
89	4792,67	-19,17	8732684,76416402000000;4014128,370757980000000	78.4470419505;33.8906495835
90	4788,37	-20,76	8732690,44285833000000;4014139,349567000000000	78.447092963;33.8907314519
91	4785,65	-23,63	8732692,71433606000000;4014146,16400018000000	78.4471133681;33.8907822666
92	4775,54	-25,26	8732701,894891870000000;4014167,364458960000000	78.4471958384;33.8909403569
93	4767,87	-26,44	8732698,48767528000000;4014183,26480305000000	78.4471652309;33.8910589244
94	4760,87	-27,58	8732704,16636960000000;4014196,136510170000000	78.4472162434;33.8911549075
95	4753,68	-28,53	8732709,08790468000000;4014209,008217290000000	78.4472604543;33.8912508905
96	4745,47	-26,02	8732713,63086013000000;4014223,394242900000000	78.4473012644;33.8913581655
-----	---------	--------	---	-----------------------------
97	4740,76	-29,80	8732720,82387293000000;4014229,830096460000000	78.4473658803;33.8914061568
98	4737,19	-27,67	8732722,338191420000000;4014235,887370400000000	78.4473794837;33.8914513252
99	4732,41	-28,48	8732721,58103218000000;4014244,97328130000000	78.447372682;33.8915190777
100	4728,30	-30,63	8732721,58103218000000;4014252,544873730000000	78.447372682;33.891575538
101	4724,75	-27,64	8732723,47393028000000;4014258,223568050000000	78.4473896862;33.8916178833
102	4718,35	-19,90	8732728,016885740000000;4014269,580956680000000	78.4474304963;33.8917025737
103	4714,77	-22,45	8732728,77404498000000;4014279,424026830000000	78.4474372979;33.891775972
104	4709,31	-13,65	8732734,074159670000000;4014291,538574710000000	78.4474849097;33.8918663082
105	4706,62	-10,90	8732740,88859286000000;4014300,245906000000000	78.4475461248;33.8919312374
106	4704,57	-18,05	8732747,43967429000000;4014308,640449660000000	78.4476049742;33.8919938341
107	4701,81	-19,85	8732748,75643302000000;4014317,017350750000000	78.4476168028;33.8920562991
108	4698,55	-17,95	8732747,70302603000000;4014325,989320230000000	78.4476073399;33.8921232015
109	4694,56	-19,14	8732749,97450376000000;4014338,103868110000000	78.4476277449;33.8922135374
110	4691,14	-16,09	8732750,353083390000000;4014347,946938260000000	78.4476311457;33.8922869353
111	4686,98	-18,29	8732756,031777700000000;4014361,197225000000000	78.4476821583;33.89238574
112	4684,04	-16,59	8732757,924675810000000;4014369,904556290000000	78.4476991625;33.8924506687
113	4680,31	-13,00	8732758,303255430000000;4014382,397683790000000	78.4477025634;33.8925438272
114	4676,63	-11,51	8732759,817573910000000;4014398,29802788000000	78.4477161667;33.8926623925
115	4673,56	-12,70	8732766,253427470000000;4014411,926894240000000	78.447773981;33.8927640198
116	4671,18	-11,70	8732770,039223680000000;4014421,769964400000000	78.4478079894;33.8928374171
117	4668,31	-10,07	8732777,98939573000000;4014433,12735303000000	78.447879407;33.8929221063
118	4666,54	-13,75	8732785,560988150000000;4014439,563206590000000	78.4479474237;33.8929700969
119	4664,72	-15,62	8732789,346784370000000;4014445,999060150000000	78.4479814321;33.8930180873
120	4661,71	-12,79	8732791,239682470000000;4014456,599289540000000	78.4479984363;33.8930971304
121	4659,88	-8,69	8732796,91837679000000;4014462,27798386000000	78.4480494489;33.8931394749
122	4658,69	-11,15	8732804,111389590000000;4014465,306620830000000	78.4481140648;33.8931620586
123	4656,50	-16,76	8732813,67052502000000;4014470,985315150000000	78.448199936;33.8932044031
124	4652,48	-12,55	8732820,56729008000000;4014482,408495880000000	78.4482618907;33.8932895825
125	4649,39	-6,80	8732829,57086912000000;4014492,942933170000000	78.4483427712;33.8933681348
126	4648,64	-8,50	8732831,463767220000000;4014499,000207110000000	78.4483597754;33.8934133021
127	4647,26	-7,22	8732832,978085700000000;4014508,08611802000000	78.4483733788;33.893481053
128	4645,18	-5,62	8732840,171098510000000;4014522,850723250000000	78.4484379947;33.8935911481
129	4644,10	-6,23	8732848,121270550000000;4014530,422315670000000	78.4485094123;33.8936476071
130	4643,39	-11,69	8732853,04280563000000;4014534,586691500000000	78.4485536232;33.8936786595
131	4641,07	-12,73	8732856,828601840000000;4014545,186920900000000	78.4485876316;33.893757702
132	4639,47	-13,25	8732858,72149995000000;4014552,00135408000000	78.4486046358;33.893808515
133	4637,13	-14,05	8732861,75013692000000;4014561,465844610000000	78.4486318425;33.8938790885
134	4634,99	-13,93	8732863,64303502000000;4014569,794596270000000	78.4486488467;33.8939411932
135	4632,62	-13,21	8732868,943149720000000;4014577,744768320000000	78.4486964584;33.8940004749
136	4630,22	-16,85	8732876,893321760000000;4014584,180621880000000	78.4487678761;33.8940484648
137	4627,14	-17,71	8732881,436277220000000;4014593,266532790000000	78.4488086861;33.8941162152
138	4624,89	-9,40	8732883,605655340000000;4014599,970123270000000	78.448828174;33.8941662014
139	4624,06	-8,72	8732887,73077629000000;4014602,86621402000000	78.4488652306;33.8941877965
140	4622,81	-10,58	8732895,70440893000000;4014604,377093370000000	78.4489368589;33.8941990626
141	4620,94	-11,75	8732903,867119770000000;4014610,187387970000000	78.4490101858;33.8942423878
142	4617,87	-10,04	8732915,98166765000000;4014618,631367400000000	78.4491190126;33.8943053515
143	4615,04	-5,29	8732924,310419310000000;4014632,260233770000000	78.4491938311;33.8944069767

	1			
144	4613,73	-4,79	8732933,774909840000000;4014642,860463160000000	78.4492788521;33.8944860186
145	4612,91	-2,31	8732941,72508189000000;4014648,539157480000000	78.4493502697;33.8945283624
146	4612,46	-5,56	8732952,32531128000000;4014651,946374070000000	78.4494454931;33.8945537686
147	4611,83	-12,53	8732958,00400560000000;4014654,975011040000000	78.4494965057;33.894576352
148	4609,99	-14,98	8732962,168381430000000;4014662,168023840000000	78.4495339149;33.8946299874
149	4607,80	-5,52	8732963,43588805000000;4014670,233423760000000	78.4495453012;33.8946901278
150	4606,82	-10,66	8732973,26241832000000;4014672,850584990000000	78.4496335744;33.8947096429
151	4604,61	-16,41	8732983,36884022000000;4014678,825527170000000	78.4497243619;33.8947541956
152	4601,04	-19,20	8732990,940432640000000;4014688,290017700000000	78.4497923787;33.8948247683
153	4597,21	-20,31	8732995,861967710000000;4014698,133087850000000	78.4498365896;33.8948981639
154	4594,94	-12,84	8732998,133445440000000;4014703,811782170000000	78.4498569946;33.8949405075
155	4589,97	-3,45	8733010,721217850000000;4014721,605024360000000	78.4499700725;33.895073184
156	4589,23	-3,25	8733018,292810270000000;4014731,448094510000000	78.4500380893;33.8951465794
157	4588,34	-5,56	8733025,107243450000000;4014745,455540500000000	78.4500993044;33.8952510265
158	4587,07	-7,98	8733031,543097010000000;4014756,812929130000000	78.4501571186;33.8953357133
159	4584,92	-11,25	8733041,007587540000000;4014768,927477010000000	78.4502421396;33.8954260459
160	4581,54	-14,29	8733051,60781693000000;4014782,177763750000000	78.4503373631;33.8955248469
161	4578,14	-14,83	8733059,17940936000000;4014793,156572770000000	78.4504053798;33.8956067106
162	4573,97	-17,75	8733073,56543496000000;4014799,592426330000000	78.4505346117;33.8956546996
163	4568,93	-20,90	8733087,57288095000000;4014806,785439130000000	78.4506604427;33.8957083343
164	4563,03	-14,68	8733100,82316769000000;4014814,735611170000000	78.4507794721;33.8957676148
165	4557,82	-2,61	8733115,954164220000000;4014827,680819130000000	78.4509153961;33.8958641406
166	4557,04	-5,01	8733130,730957760000000;4014836,033947420000000	78.4510481383;33.8959264256
167	4555,43	-7,68	8733145,129171670000000;4014847,427901860000000	78.4511774797;33.8960113844
168	4552,80	-9,82	8733160,88288503000000;4014858,931920410000000	78.4513189977;33.8960971638
169	4550,59	-11,10	8733167,91707879000000;4014869,605651240000000	78.4513821869;33.8961767521
170	4548,16	-13,36	8733179,167922550000000;4014874,794942900000000	78.451483255;33.8962154458
171	4544,94	-12,30	8733186,881947710000000;4014885,963636230000000	78.4515525513;33.8962987247
172	4543,51	-10,78	8733193,31561678000000;4014887,190949620000000	78.4516103459;33.8963078761
173	4541,78	-12,23	8733202,00335803000000;4014889,815798930000000	78.4516883892;33.8963274481
174	4540,31	-7,96	8733203,532944860000000;4014896,412030360000000	78.4517021297;33.8963766326
175	4539,58	-4,35	8733207,847741110000000;4014899,343090550000000	78.4517408902;33.8963984879
176	4538,99	-10,16	8733215,444242150000000;4014901,198395490000000	78.4518091307;33.8964123218
177	4535,57	-15,18	8733231,149202270000000;4014912,030573820000000	78.4519502108;33.8964930913
178	4531,74	-16,98	8733239,477953940000000;4014923,387962450000000	78.4520250292;33.8965777769
179	4527,58	-6,64	8733247,04954636000000;4014934,745351080000000	78.452093046;33.8966624624
180	4526,07	-7,16	8733256,89261652000000;4014943,098479330000000	78.4521814678;33.8967247468
181	4524,42	-7,33	8733268,628584770000000;4014949,131376690000000	78.4522868938;33.8967697305
182	4522,93	-7,91	8733279,985973410000000;4014951,024274790000000	78.452388919;33.8967838448
183	4521,63	-7,58	8733289,071884310000000;4014953,295752520000000	78.4524705391;33.8968007818
184	4520,26	-7,17	8733295,91069412000000;4014961,038352310000000	78.4525319732;33.8968585138
185	4518,90	-7,15	8733301,210808810000000;4014970,478466260000000	78.4525795849;33.896928903
186	4517,95	-6,42	8733307,62228575000000;4014974,496211310000000	78.4526371802;33.8969588609
187	4516,71	-7,21	8733318,22251515000000;4014977,52484828000000	78.4527324036;33.8969814436
188	4515,19	-8,53	8733329,57990378000000;4014981,310644490000000	78.4528344288;33.897009672
189	4513.87	-8.15	8733337,53007583000000:4014985.096440700000000	78.4529058464;33.8970379004
190	4511,83	-10.66	8733351,15894218000000;4014989,26081654000000	78.4530282766;33.8970689516
191	4508,16	-8,52	8733368,19502514000000;4014998,72530706000000	78.4531813143;33.8971395224

	-				
	192	4505,75	-10,25	8733384,09536923000000;4015001,375364410000000	78.4533241496;33.8971592822
	193	4501,34	-11,75	8733407,37801593000000;4015008,568377220000000	78.4535333011;33.897212916
	194	4496,35	-12,57	8733429,714213580000000;4015017,275708500000000	78.4537339506;33.8972778411
	195	4491,81	-14,38	8733448,643194640000000;4015024,847300920000000	78.4539039925;33.8973342976
	196	4487,42	-11,84	8733463,78637948000000;4015032,797472970000000	78.4540400261;33.8973935769
	197	4485,13	-9,71	8733474,386608880000000;4015035,447530320000000	78.4541352496;33.8974133367
	198	4482,83	-13,31	8733487,63689562000000;4015037,719008050000000	78.4542542789;33.8974302737
	199	4480,63	-12,98	8733495,96564729000000;4015041,883383880000000	78.4543290974;33.8974613247
	200	4477,66	-8,78	8733505,808717440000000;4015050,212135550000000	78.4544175192;33.8975234268
	201	4476,04	-8,68	8733512,62315062000000;4015058,162307590000000	78.4544787343;33.897582706
	202	4474,28	-9,27	8733517,923265310000000;4015068,383957360000000	78.454526346;33.897658922
	203	4472,36	-9,63	8733524,359118870000000;4015078,227027510000000	78.4545841603;33.8977323152
	204	4469,99	-10,06	8733531,93071130000000;4015089,962995770000000	78.454652177;33.8978198223
	205	4467,82	-10,40	8733538,745144480000000;4015100,184645540000000	78.4547133921;33.8978960382
	206	4465,81	-10,98	8733544,80241842000000;4015109,270556450000000	78.4547678056;33.8979637855
	207	4463,43	-10,31	8733555,024068190000000;4015116,084989630000000	78.4548596282;33.898014596
	208	4461,79	-10,30	8733558,431284780000000;4015124,413741290000000	78.4548902357;33.8980766976
	209	4460,18	-11,56	8733561,459921750000000;4015132,742492960000000	78.4549174424;33.8981387993
	210	4456,62	-9,70	8733573,195890010000000;4015145,614200080000000	78.4550228684;33.8982347744
	211	4454,51	-8,57	8733581,903221290000000;4015154,321531370000000	78.4551010877;33.8982996987
	212	4453,01	-7,78	8733587,96049523000000;4015162,271703410000000	78.4551555012;33.8983589773
	213	4451,80	-7,91	8733594,39634880000000;4015168,328977350000000	78.4552133154;33.898404142
	214	4450,44	-8,07	8733600,075043110000000;4015176,279149390000000	78.455264328;33.8984634206
	215	4449,12	-8,16	8733604,99657818000000;4015184,229321440000000	78.4553085389;33.8985226991
	216	4444,02	-9,22	8733618,87890849000000;4015216,958176230000000	78.455433246;33.8987667335
	217	4442,33	-8,15	8733624,142458270000000;4015225,897456260000000	78.4554805293;33.8988333868
	218	4441,24	-10,21	8733626,073726480000000;4015233,308842730000000	78.4554978781;33.8988886478
	219	4439,89	-10,51	8733631,16446372000000;4015238,756975160000000	78.455543609;33.8989292703
	220	4437,53	-10,57	8733642,09451950000000;4015245,302523490000000	78.4556417954;33.8989780753
	221	4435,09	-11,33	8733649,385038770000000;4015256,159449460000000	78.4557072872;33.8990590269
	222	4432,90	-10,18	8733658,47094968000000;4015262,216723400000000	78.4557889073;33.8991041912
	223	4430,92	-8,42	8733667,935440210000000;4015267,895417720000000	78.4558739283;33.8991465327
	224	4428,36	-8,28	8733681,564306570000000;4015278,495647110000000	78.4559963585;33.8992255701
	225	4426,15	-8,53	8733694,05743406000000;4015287,202978400000000	78.4561085862;33.8992904936
	226	4424,41	-8,77	8733703,143344980000000;4015294,395991200000000	78.4561902063;33.8993441261
	227	4422,91	-8,86	8733709,200618910000000;4015301,967583620000000	78.4562446197;33.8994005813
	228	4421,27	-8,82	8733715,636472470000000;4015310,296335290000000	78.456302434;33.8994626819
	229	4418,90	-9,14	8733723,20806490000000;4015323,546622030000000	78.4563704507;33.8995614783
	230	4416,95	-8,99	8733730,779657330000000;4015333,011112560000000	78.4564384675;33.8996320471
	231	4415,09	-9,32	8733740,622727470000000;4015339,446966120000000	78.4565268893;33.8996800338
	232	4413,46	-9,49	8733748,19431990000000;4015345,882819680000000	78.4565949061;33.8997280205
	233	4412,16	-10,14	8733753,115854970000000;4015351,940093620000000	78.456639117;33.8997731845
	234	4410,31	-10,41	8733760,498157580000000;4015359,133106420000000	78.4567054333;33.8998268166
I	235	4408,95	-10,19	8733766,366141710000000;4015363,676061880000000	78.4567581463;33.8998606895
	236	4407,70	-8,47	8733770,909097170000000;4015368,976176570000000	78.4567989564;33.8999002079
	237	4406,47	-9,84	8733772,99128508000000;4015376,926348620000000	78.456817661;33.8999594854
I	238	4405,18	-9,87	8733777,534240540000000;4015382,794332750000000	78.4568584711;33.9000032379
ľ	239	4404,13	-9,84	8733782,645065430000000;4015386,012259530000000	78.4569043824;33.9000272312

240	4402,69	-9,64	8733788,13446993000000;4015392,258823280000000	78.4569536946;33.9000738063
241	4401,46	-9,49	8733793,81316425000000;4015396,801778730000000	78.4570047071;33.9001076791
242	4400,43	-9,16	8733798,35611970000000;4015400,966154560000000	78.4570455172;33.9001387292
243	4399,56	-8,59	8733802,899075150000000;4015403,805501720000000	78.4570863273;33.9001598997
244	4397,73	-8,68	8733814,06717398000000;4015408,537746990000000	78.457186652;33.9001951838
245	4396,42	-8,69	8733821,44947660000000;4015412,891412630000000	78.4572529684;33.9002276452
246	4395,74	-8,51	8733824,85669319000000;4015415,730759790000000	78.4572835759;33.9002488157
247	4394,87	-8,09	8733829,58893845000000;4015419,137976380000000	78.4573260864;33.9002742203
248	4394,27	-8,23	8733831,860416170000000;4015422,734482780000000	78.4573464914;33.9003010362
249	4393,84	-8,04	8733833,75331428000000;4015425,005960510000000	78.4573634956;33.9003179726
250	4391,56	-8,00	8733844,779445750000000;4015436,741928770000000	78.457462545;33.9004054771
251	4390,09	-7,73	8733851,59387894000000;4015444,692100810000000	78.4575237601;33.9004647543
252	4388,69	-8,65	8733856,13683439000000;4015453,967301530000000	78.4575645702;33.9005339109
253	4387,22	-8,32	8733862,76197776000000;4015460,971024520000000	78.4576240849;33.9005861312
254	4386,29	-7,71	8733866,35848416000000;4015466,271139220000000	78.4576563928;33.9006256493
255	4383,82	-8,51	8733873,740786770000000;4015482,928642550000000	78.4577227092;33.9007498488
256	4382,50	-9,05	8733878,85161166000000;4015490,121655350000000	78.4577686205;33.9008034803
257	4381,27	-9,08	8733884,15172635000000;4015495,800349670000000	78.4578162323;33.9008458209
258	4379,57	-8,44	8733893,80550669000000;4015500,154015310000000	78.4579029536;33.9008782821
259	4377,82	-8,73	8733905,162895330000000;4015503,371942090000000	78.4580049788;33.9009022751
260	4376,79	-8,74	8733911,220169270000000;4015506,211289250000000	78.4580593922;33.9009234454
261	4375,33	-8,52	8733918,839084140000000;4015511,889983570000000	78.4581278341;33.900965786
262	4374,25	-8,14	8733924,707068280000000;4015516,054359400000000	78.4581805471;33.9009968358
263	4373,03	-7,26	8733930,38576259000000;4015522,490212960000000	78.4582315597;33.9010448217
264	4372,22	-6,03	8733933,22510975000000;4015528,168907280000000	78.458257066;33.9010871623
265	4371,54	-7,18	8733934,55013843000000;4015534,415471030000000	78.4582689689;33.9011337369
266	4370,72	-7,29	8733937,768065210000000;4015540,094165350000000	78.458297876;33.9011760773
267	4370,13	-7,19	8733940,418122550000000;4015543,879961560000000	78.4583216819;33.9012043043
268	4369,52	-7,22	8733942,87889009000000;4015548,044337390000000	78.4583437873;33.901235354
269	4366,83	-6,66	8733952,81660515000000;4015566,784028640000000	78.4584330594;33.9013750774
270	4365,18	-6,28	8733957,73814022000000;4015580,034315380000000	78.4584772703;33.9014738716
271	4363,67	-6,21	8733961,52393643000000;4015593,284602120000000	78.4585112786;33.9015726656
272	4362,26	-9,13	8733964,93115302000000;4015605,777729620000000	78.4585418862;33.9016658142
273	4359,63	-8,97	8733975,90996204000000;4015617,892277500000000	78.4586405105;33.90175614
274	4357,75	-8,59	8733985,374452570000000;4015625,085290300000000	78.4587255315;33.9018097709
275	4355,81	-8,30	8733996,73184120000000;4015631,142564240000000	78.4588275566;33.9018549337
276	4353,39	-8,35	8734011,87502605000000;4015637,956997420000000	78.4589635902;33.9019057419
277	4351,30	-8,13	8734024,368153550000000;4015644,771430600000000	78.4590758178;33.90195655
278	4349,92	-7,78	8734033,075484840000000;4015648,935806430000000	78.4591540371;33.9019875994
279	4348,45	-7,84	8734043,675714230000000;4015650,828704540000000	78.4592492606;33.9020017128
280	4346,54	-8,38	8734057,30458059000000;4015653,478761890000000	78.4593716908;33.9020214715
281	4344,39	-8,13	8734070,176287710000000;4015660,293195070000000	78.4594873193;33.9020722795
282	4343,38	-7,88	8734076,612141270000000;4015663,321832040000000	78.4595451336;33.9020948609
283	4341,33	-7,68	8734090,241007630000000;4015669,000526360000000	78.4596675638;33.9021372009
284	4339,62	-7,43	8734101,97697589000000;4015673,922061430000000	78.4597729898;33.9021738956
285	4337,93	-7,36	8734114,091523770000000;4015678,465016890000000	78.4598818166;33.9022077675
286	4335,46	-7,89	8734129,23470862000000;4015690,200985140000000	78.4600178501;33.9022952701
007	1222.04	-8.03	8734136 80630104000000004015698 151157190000000	78 4600858660.33 002354546

288	4332,69	-7,74	8734142,863574970000000;4015704,587010750000000	78.4601402803;33.9024025312
289	4331,29	-8,68	8734148,92084892000000;4015712,915762410000000	78.4601946937;33.9024646296
290	4330,26	-9,55	8734154,220963610000000;4015717,080138250000000	78.4602423055;33.9024956789
291	4329,01	-9,42	8734160,656817170000000;4015720,865934460000000	78.4603001197;33.9025239054
292	4327,91	-9,18	8734166,714091110000000;4015723,515991810000000	78.4603545332;33.902543664
293	4325,96	-8,00	8734174,66426316000000;4015732,601902720000000	78.4604259508;33.9026114076
294	4324,67	-9,05	8734178,450059370000000;4015740,930654380000000	78.4604599592;33.902673506
295	4323,26	-8,93	8734184,88591293000000;4015746,987928320000000	78.4605177734;33.9027186683
296	4320,14	-8,45	8734201,164836640000000;4015758,345316950000000	78.4606640095;33.9028033477
297	4318,60	-8,38	8734211,007906790000000;4015761,752533540000000	78.4607524313;33.9028287515
298	4317,45	-5,43	8734216,42324936000000;4015767,316000010000000	78.4608010781;33.9028702321
299	4316,83	-6,72	8734217,16405249000000;4015773,784749640000000	78.4608077329;33.9029184622
300	4315,43	-6,28	8734222,365295430000000;4015784,467310820000000	78.4608544564;33.90299811
301	4314,65	-6,21	8734226,151091640000000;4015790,524584760000000	78.4608884648;33.9030432722
302	4313,93	-5,70	8734231,82978596000000;4015793,931801350000000	78.4609394774;33.9030686759
303	4313,21	-5,56	8734238,644219140000000;4015796,203279070000000	78.4610006925;33.9030856118
304	4312,29	-5,87	8734247,73013004000000;4015798,853336420000000	78.4610823126;33.9031053702
305	4311,61	-5,83	8734253,78740398000000;4015801,503393770000000	78.461136726;33.9031251286
306	4310,94	-6,19	8734256,454001220000000;4015807,478335940000000	78.4611606805;33.9031696769
307	4310,10	-6,14	8734261,47422428000000;4015813,387485950000000	78.4612057779;33.9032137347
308	4309,66	-6,13	8734264,00905376000000;4015816,646578620000000	78.4612285487;33.9032380339
309	4309,02	-5,82	8734268,552009210000000;4015820,432374830000000	78.4612693587;33.9032662602
310	4308,16	-5,74	8734276,12360163000000;4015824,218171040000000	78.4613373755;33.9032944865
311	4307,44	-6,35	8734282,559455190000000;4015827,246808010000000	78.4613951898;33.9033170676
312	4306,61	-6,59	8734287,85956989000000;4015832,546922710000000	78.4614428015;33.9033565843
313	4305,83	-6,34	8734292,023945720000000;4015837,847037400000000	78.4614802107;33.9033961011
314	4305,42	-5,01	8734293,53826420000000;4015841,254253990000000	78.4614938141;33.9034215047
315	4304,79	-3,01	8734293,53826420000000;4015848,447266790000000	78.4614938141;33.9034751346
316	4304,57	-6,32	8734292,023945720000000;4015852,233063010000000	78.4614802107;33.9035033608
317	4303,80	-6,56	8734294,674003070000000;4015858,668916570000000	78.4615040166;33.9035513454
318	4303,19	-5,95	8734299,019398770000000;4015861,779885350000000	78.461543052;33.9035745402
319	4302,39	-6,16	8734306,17951558000000;4015864,397046650000000	78.4616073724;33.9035940532
320	4301,24	-5,97	8734315,87446185000000;4015868,890566340000000	78.4616944636;33.9036275561
321	4300,32	-6,40	8734323,82463390000000;4015872,676362550000000	78.4617658812;33.9036557823
322	4299,54	-6,28	8734328,74616898000000;4015877,597897630000000	78.4618100921;33.9036924763
323	4298,88	-5,26	8734332,153385570000000;4015882,519432700000000	78.4618406996;33.9037291703
324	4298,40	-3,49	8734337,07492064000000;4015884,033751190000000	78.4618849105;33.9037404607
325	4298,12	-5,46	8734341,71388307000000;4015883,517450840000000	78.461926583;33.9037366113
326	4297,82	-5,85	8734344,58557153000000;4015884,680844520000000	78.4619523799;33.9037452853
327	4297,46	-4,23	8734346,124254190000000;4015887,866923120000000	78.4619662021;33.9037690401
328	4297,15	-4,57	8734345,78225193000000;4015891,983923230000000	78.4619631298;33.9037997356
329	4296,70	-5,83	8734345,78225193000000;4015897,662617550000000	78.4619631298;33.9038420748
330	4295,97	-5,56	8734349,568048140000000;4015903,719891490000000	78.4619971382;33.9038872365
331	4295,21	-4,93	8734356,003901710000000;4015908,262846940000000	78.4620549525;33.9039211078
332	4294,75	-5,50	8734360,925436780000000;4015910,155745050000000	78.4620991634;33.9039352209
333	4294,47	-5,10	8734363,196914510000000;4015912,048643150000000	78.4621195684;33.9039493339
334	4294,11	-5,41	8734364,332653370000000;4015915,834439370000000	78.4621297709;33.90397756
335	4293,82	-5,36	8734365,84697185000000;4015918,484496710000000	78.4621433743;33.9039973182

336	4293,32	-4,65	8734368,563431510000000;4015923,174293600000000	78.4621677766;33.9040322843
337	4292,92	-4,64	8734373,03998466000000;4015924,920350270000000	78.4622079902;33.9040453025
338	4292,29	-4,86	8734380,23299746000000;4015927,948987250000000	78.4622726061;33.9040678833
339	4291,57	-4,95	8734387,42601026000000;4015932,491942700000000	78.4623372221;33.9041017545
340	4291,03	-4,89	8734391,968965710000000;4015936,656318530000000	78.4623780321;33.9041328032
341	4290,71	-5,97	8734394,61902306000000;4015939,306375880000000	78.462401838;33.9041525614
342	4289,69	-5,29	8734399,16197852000000;4015948,013707170000000	78.4624426481;33.9042174811
343	4289,16	-6,43	8734398,78339890000000;4015953,692401490000000	78.4624392472;33.9042598201
344	4288,49	-6,14	8734401,433456240000000;4015958,992516180000000	78.4624630531;33.9042993365
345	4287,97	-6,48	8734405,21925246000000;4015962,021153150000000	78.4624970615;33.9043219172
346	4287,45	-7,08	8734409,38362829000000;4015963,914051250000000	78.4625344707;33.9043360302
347	4286,91	-7,15	8734412,790844880000000;4015966,564108610000000	78.4625650782;33.9043557883
348	4285,86	-6,63	8734417,71237995000000;4015973,378541780000000	78.4626092892;33.904406595
349	4285,30	-6,76	8734419,226698440000000;4015977,921497240000000	78.4626228925;33.9044404661
350	4284,72	-7,00	8734421,119596550000000;4015982,464452690000000	78.4626398967;33.9044743372
351	4284,02	-6,93	8734424,526813140000000;4015987,007408150000000	78.4626705042;33.9045082083
352	4283,07	-6,78	8734429,448348210000000;4015993,064682090000000	78.4627147151;33.9045533697
353	4282,53	-6,81	8734432,85556480000000;4015996,093319060000000	78.4627453227;33.9045759504
354	4281,92	-6,67	8734435,884201770000000;4016000,257694890000000	78.4627725294;33.9046069988
355	4280,62	-5,97	8734443,908435750000000;4016007,961054880000000	78.4628446123;33.9046644329
356	4279,49	-6,49	8734446,295141350000000;4016018,429516710000000	78.4628660525;33.9047424828
357	4278,58	-6,17	8734451,973835670000000;4016024,108211020000000	78.462917065;33.9047848215
358	4277,93	-6,37	8734456,895370740000000;4016027,515427610000000	78.4629612759;33.9048102247
359	4277,24	-6,31	8734461,05974658000000;4016032,058383070000000	78.4629986852;33.9048440956
360	4276,29	-5,57	8734466,359861270000000;4016038,872816250000000	78.4630462969;33.904894902
361	4275,43	-5,29	8734474,310033320000000;4016042,658612460000000	78.4631177145;33.9049231278
362	4274,75	-5,91	8734481,12446650000000;4016045,308669810000000	78.4631789296;33.9049428858
363	4273,89	-5,27	8734487,56032006000000;4016050,608784510000000	78.4632367439;33.9049824018
364	4273,30	-4,49	8734492,481855130000000;4016054,773160340000000	78.4632809548;33.9050134501
365	4272,76	-5,01	8734498,16054946000000;4016058,558956550000000	78.4633319674;33.9050416758
366	4272,21	-4,81	8734503,839243770000000;4016061,20901390000000	78.4633829799;33.9050614338
367	4271,50	-5,09	8734509,234003370000000;4016067,644867460000000	78.4634314419;33.9051094175
368	4270,95	-5,11	8734514,155538450000000;4016071,430663670000000	78.4634756528;33.9051376432
369	4270,43	-5,18	8734519,455653140000000;4016073,702141400000000	78.4635232645;33.9051545786
370	4269,96	-4,84	8734523,99860860000000;4016076,352198750000000	78.4635640746;33.9051743366
371	4269,48	-3,85	8734527,405825190000000;4016080,895154200000000	78.4635946821;33.9052082074
372	4269,11	-3,71	8734528,920143670000000;4016086,195268900000000	78.4636082855;33.9052477233
373	4268,58	-4,87	8734530,813041790000000;4016094,145440940000000	78.4636252897;33.9053069971
374	4267,90	-4,39	8734535,35599723000000;4016100,581294500000000	78.4636660997;33.9053549806
375	4267,62	-4,45	8734536,87031572000000;4016103,988511090000000	78.4636797031;33.9053803837
376	4267,20	-4,43	8734539,14179345000000;4016108,910046170000000	78.4637001081;33.9054170769
377	4266,91	-4,98	8734540,65611193000000;4016112,317262760000000	78.4637137115;33.90544248
378	4266,34	-5,16	8734544,441908140000000;4016117,617377450000000	78.4637477199;33.9054819958
379	4266,07	-5,32	8734546,334806250000000;4016119,888855180000000	78.4637647241;33.9054989311
380	4265,67	-5,14	8734549,36344322000000;4016122,917492150000000	78.4637919308;33.9055215115
381	4265,29	-5,51	8734552,013500570000000;4016126,324708740000000	78.4638157366;33.9055469145
382	4264,89	-5,50	8734555,420717160000000;4016128,596186470000000	78.4638463442;33.9055638498
383	4264,48	-5,36	8734558,827933750000000;4016131,246243820000000	78.4638769517;33.9055836077

384	4263,85	-4,76	8734563,37088920000000;4016136,167778890000000	78.4639177618;33.9056203009
385	4263,28	-5,63	8734566,399526170000000;4016142,225052830000000	78.4639449685;33.9056654617
386	4262,65	-5,63	8734572,07822049000000;4016145,25368980000000	78.4639959811;33.9056880421
387	4262,22	-5,42	8734575,48543708000000;4016147,903747150000000	78.4640265886;33.9057078
388	4261,89	-5,00	8734577,756914810000000;4016150,553804500000000	78.4640469937;33.9057275578
389	4261,28	-4,89	8734581,16413140000000;4016156,611078440000000	78.4640776012;33.9057727186
390	4260,78	-4,80	8734583,814188750000000;4016161,911193130000000	78.4641014071;33.9058122342
391	4260,34	-5,12	8734586,46424610000000;4016166,454148590000000	78.464125213;33.9058461047
392	4259,90	-4,20	8734590,25004230000000;4016169,482785560000000	78.4641592213;33.9058686851
393	4259,68	-3,74	8734592,90009966000000;4016170,997104040000000	78.4641830272;33.9058799753
394	4259,40	-3,74	8734596,30731625000000;4016173,647161390000000	78.4642136348;33.9058997331
395	4259,13	-3,45	8734599,33595322000000;4016176,297218740000000	78.4642408415;33.9059194909
396	4258,65	-2,89	8734603,50032905000000;4016183,111651920000000	78.4642782507;33.9059702966
397	4258,43	-3,17	8734604,636067910000000;4016187,276027750000000	78.4642884532;33.9060013445
398	4258,21	-3,73	8734606,15038639000000;4016191,061823960000000	78.4643020566;33.9060295699
399	4257,98	-3,89	8734608,421864120000000;4016193,711881310000000	78.4643224616;33.9060493277
400	4257,72	-3,92	8734611,45050109000000;4016195,983359040000000	78.4643496683;33.9060662629
401	4257,33	-3,53	8734616,372036170000000;4016199,011996010000000	78.4643938792;33.9060888432
402	4257,14	-3,05	8734617,88635465000000;4016201,662053360000000	78.4644074826;33.906108601
403	4256,78	-3,37	8734619,77925276000000;4016208,097906920000000	78.4644244868;33.906156584
404	4256,39	-3,64	8734622,429310110000000;4016214,155180850000000	78.4644482926;33.9062017446
405	4256,11	-3,90	8734624,700787830000000;4016217,940977070000000	78.4644686977;33.9062299699
406	4255,87	-4,04	8734626,972265570000000;4016220,591034410000000	78.4644891027;33.9062497276
407	4255,59	-4,10	8734630,000902530000000;4016223,241091760000000	78.4645163094;33.9062694853
408	4255,33	-4,10	8734633,02953950000000;4016225,133989870000000	78.4645435161;33.906283598
409	4254,93	-3,97	8734637,951074580000000;4016227,832800480000000	78.464587727;33.9063037192
410	4254,59	-3,63	8734642,68941400000000;4016229,310554010000000	78.4646302922;33.9063147367
411	4254,19	-3,35	8734648,94207190000000;4016229,860140980000000	78.4646864608;33.9063188342
412	4253,90	-3,69	8734653,851418670000000;4016229,676945320000000	78.4647305622;33.9063174683
413	4253,68	-4,12	8734657,25863526000000;4016230,055524940000000	78.4647611698;33.9063202909
414	4253,47	-4,18	8734659,90869260000000;4016231,191263810000000	78.4647849756;33.9063287584
415	4253,16	-4,03	8734663,694488810000000;4016233,071973620000000	78.464818984;33.9063427802
416	4252,88	-4,26	8734667,48028503000000;4016234,219900780000000	78.4648529924;33.9063513387
417	4252,60	-4,29	8734670,50892200000000;4016236,491378500000000	78.4648801991;33.9063682738
418	4252,15	-4,29	8734675,430457070000000;4016239,898595100000000	78.46492441;33.9063936766
419	4251,73	-4,12	8734679,59483290000000;4016243,684391310000000	78.4649618193;33.9064219018
420	4251,50	-3,46	8734681,487731010000000;4016246,334448660000000	78.4649788234;33.9064416595
421	4251,26	-2,55	8734682,623469870000000;4016250,120244870000000	78.464989026;33.9064698847
422	4251,12	-2,55	8734682,623469870000000;4016253,148881840000000	78.464989026;33.9064924649
423	4250,97	-0,25	8734682,623469870000000;4016256,556098430000000	78.464989026;33.9065178676
424	4250,95	-3,71	8734680,730571770000000;4016259,584735400000000	78.4649720218;33.9065404478
425	4250,73	-3,99	8734682,012941370000000;4016262,772191450000000	78.4649835415;33.9065642121
426	4250,45	-3,86	8734683,96678102000000;4016266,252537550000000	78.4650010931;33.90659016
427	4250,10	-4,02	8734686,787845710000000;4016270,563544410000000	78.4650264352;33.9066223009
428	4249,89	-3,96	8734689,24251909000000;4016272,468630820000000	78.4650484859;33.9066365043
429	4249,55	-3,54	8734693,223699270000000;4016275,106499870000000	78.4650842494;33.9066561711
430	4249,39	-2,80	8734695,12878568000000;4016276,987209680000000	78.4651013631;33.9066701928
431	4249,14	-3,02	8734699,476357170000000;4016279,441883050000000	78.465140418;33.9066884937

432	4248,87	-3,00	8734704,58108790000000;4016280,406614560000000	78.4651862746;33.9066956863
433	4248,70	-1,44	8734707,792920530000000;4016280,113353050000000	78.465215127;33.9066934999
434	4248,57	-1,80	8734710,259782220000000;4016284,949570010000000	78.4652372872;33.9067295565
435	4248,45	-2,19	8734712,53125995000000;4016287,978206990000000	78.4652576922;33.9067521366
436	4248,31	-2,43	8734715,18131729000000;4016290,249684710000000	78.4652814981;33.9067690717
437	4248,09	-2,75	8734719,724272750000000;4016292,899742060000000	78.4653223081;33.9067888293
438	4247,87	-2,74	8734724,267228210000000;4016293,656901300000000	78.4653631182;33.9067944743
439	4247,59	-2,81	8734729,945922520000000;4016294,414060550000000	78.4654141308;33.9068001194
440	4247,28	-2,80	8734736,38177608000000;4016294,035480920000000	78.465471945;33.9067972969
441	4247,15	-2,80	8734739,03183343000000;4016294,035480920000000	78.4654957509;33.9067972969
442	4246,96	-2,80	8734742,817629640000000;4016294,035480920000000	78.4655297593;33.9067972969
443	4246,85	-2,26	8734745,089107370000000;4016294,035480920000000	78.4655501643;33.9067972969
444	4246,75	-1,43	8734747,36058510000000;4016295,171219790000000	78.4655705694;33.9068057644
445	4246,60	-0,05	8734751,52496093000000;4016299,714175240000000	78.4656079786;33.9068396345
446	4246,60	-1,01	8734752,282120170000000;4016302,742812210000000	78.4656147803;33.9068622146
447	4246,54	-1,56	8734754,175018280000000;4016305,392869560000000	78.4656317845;33.9068819722
448	4246,46	-0,66	8734756,446496010000000;4016307,285767660000000	78.4656521895;33.9068960847
449	4246,42	-0,50	8734757,96081449000000;4016309,935825010000000	78.4656657928;33.9069158423
450	4246,36	-0,57	8734761,36803108000000;4016316,371678570000000	78.4656964004;33.9069638249
451	4246,34	-0,79	8734762,50376994000000;4016318,264576680000000	78.4657066029;33.9069779375
452	4246,31	-0,32	8734763,639508810000000;4016319,778895160000000	78.4657168054;33.9069892275
453	4246,30	0,05	8734764,39666805000000;4016321,293213650000000	78.4657236071;33.9070005175
454	4246,30	-0,89	8734765,153827290000000;4016323,564691380000000	78.4657304088;33.9070174526
455	4246,29	0,00	8734765,91098653000000;4016324,420630490000000	78.4657372105;33.907023834

Tabelle 9: Längsprofildaten des Unbenannten Pangong Tso Gletscher I Gletscherbaches.

	Profilhöhe über	Gefälle in		
Nr.	dem Meer (m)	Grad	WGS 84/Pseudo Mercator (EPSG: 3857) in Ost;Nord	WGS 84 (EPSG: 4326) in Ost;Nord
1	5286,98	-19,62	8730461,57512100000000;4013784,107496840000000	78.4270707035;33.8880823928
2	5283,01	-18,85	8730470,22588862000000;4013791,127699770000000	78.4271484147;33.8881347436
3	5278,00	-19,70	8730478,90649746000000;4013802,968112400000000	78.4272263939;33.8882230394
4	5272,68	-19,52	8730491,65015663000000;4013810,614307890000000	78.4273408721;33.8882800583
5	5267,67	-17,07	8730504,393815790000000;4013816,731264290000000	78.4274553504;33.8883256734
6	5263,80	-16,68	8730516,117982220000000;4013821,318981590000000	78.4275606704;33.8883598846
7	5259,52	-16,93	8730527,84214865000000;4013829,474923450000000	78.4276659903;33.8884207047
8	5256,78	-17,72	8730533,95910505000000;4013836,101626220000000	78.4277209399;33.8884701209
9	5253,52	-18,08	8730542,11504691000000;4013842,218582620000000	78.427794206;33.8885157359
10	5250,98	-18,30	8730548,74174968000000;4013846,296553550000000	78.4278537346;33.8885461458
11	5247,76	-17,37	8730555,368452440000000;4013853,433002680000000	78.4279132633;33.8885993632
12	5243,98	-16,51	8730560,97566248000000;4013864,137676380000000	78.4279636338;33.8886791893
13	5241,31	-20,01	8730564,01922006000000;4013872,627435850000000	78.4279909745;33.8887424984
14	5237,05	-19,90	8730572,69982890000000;4013880,449560110000000	78.4280689537;33.8888008288
15	5233,84	-17,73	8730580,930373840000000;4013883,755451220000000	78.42814289;33.8888254812
16	5230,55	-18,55	8730591,199807310000000;4013884,614127220000000	78.4282351419;33.8888318844
17	5227,31	-19,60	8730600,73587906000000;4013886,056770140000000	78.4283208059;33.8888426424
18	5223.68	-19.73	8730608.89182093000000:4013892.173726540000000	78.4283940719:33.88888882571

19	5221,22	-18,92	8730613,98928459000000;4013896,761443840000000	78.4284398632;33.8889224682
20	5218,17	-18,85	8730617,55750915000000;4013904,917385700000000	78.4284719171;33.8889832878
21	5215,74	-19,70	8730620,106240990000000;4013911,544088470000000	78.4284948128;33.8890327037
22	5211,50	-21,62	8730625,20370466000000;4013922,248762160000000	78.4285406041;33.8891125293
23	5206,76	-23,36	8730631,44809765000000;4013932,443689490000000	78.4285966984;33.8891885537
24	5200,77	-22,13	8730642,662517710000000;4013940,599631360000000	78.4286974393;33.8892493731
25	5195,21	-21,81	8730654,896430510000000;4013946,716587760000000	78.4288073384;33.8892949876
26	5189,82	-22,73	8730667,13034330000000;4013952,323797790000000	78.4289172375;33.889336801
27	5184,36	-23,83	8730678,34476336000000;4013958,950500550000000	78.4290179783;33.8893862167
28	5178,42	-22,92	8730684,97146613000000;4013970,674666980000000	78.429077507;33.8894736444
29	5175,21	-23,73	8730687,52019796000000;4013977,811116110000000	78.4291004027;33.8895268612
30	5170,90	-22,96	8730692,107915260000000;4013986,476804340000000	78.4291416148;33.8895914816
31	5166,45	-21,55	8730697,20537893000000;4013995,652238940000000	78.4291874061;33.8896599031
32	5163,27	-21,69	8730699,75411076000000;4014003,298434440000000	78.4292103018;33.889716921
33	5159,17	-21,95	8730703,322335330000000;4014012,983615410000000	78.4292423557;33.8897891436
34	5155,92	-22,05	8730707,91005262000000;4014019,610318170000000	78.4292835678;33.8898385591
35	5150,28	-21,55	8730714,53675539000000;4014031,844230970000000	78.4293430965;33.8899297875
36	5145,94	-23,99	8730717,085487230000000;4014042,548904660000000	78.4293659922;33.8900096123
37	5139,13	-24,31	8730726,26092182000000;4014054,782817460000000	78.4294484165;33.8901008405
38	5133,47	-24,15	8730731,868131850000000;4014065,997237520000000	78.4294987869;33.8901844664
39	5128,12	-24,30	8730735,94610278000000;4014077,211657590000000	78.42953542;33.8902680921
40	5120,49	-24,30	8730744,102044650000000;4014091,994302220000000	78.429608686;33.8903783259
41	5115,14	-24,25	8730749,199508310000000;4014102,698975910000000	78.4296544773;33.8904581502
42	5110,29	-24,28	8730754,806718340000000;4014111,874410510000000	78.4297048478;33.8905265711
43	5106,28	-24,31	8730758,374942910000000;4014120,030352370000000	78.4297369017;33.8905873896
44	5099,48	-24,19	8730765,51139204000000;4014133,283757900000000	78.4298010095;33.8906862195
45	5093,19	-24,30	8730773,157587540000000;4014145,007924340000000	78.4298696964;33.8907736459
46	5089,08	-23,52	8730777,235558470000000;4014153,16386620000000	78.4299063294;33.8908344642
47	5083,20	-21,52	8730783,497622920000000;4014165,130654650000000	78.4299625825;33.8909236996
48	5080,20	-13,71	8730789,00292736000000;4014170,392357680000000	78.4300120375;33.8909629357
49	5077,11	-20,93	8730800,46476029000000;4014175,767075450000000	78.4301150009;33.8910030145
50	5073,98	-21,84	8730804,76186226000000;4014182,729155460000000	78.4301536024;33.8910549301
51	5070,22	-21,29	8730805,447537220000000;4014192,093879870000000	78.430159762;33.891124762
52	5066,50	-4,91	8730810,490647470000000;4014200,195723480000000	78.430205065;33.8911851766
53	5065,89	-21,67	8730817,56364450000000;4014199,90108302000000	78.4302686028;33.8911829795
54	5063,18	-16,11	8730817,28649229000000;4014206,723553970000000	78.4302661131;33.891233854
55	5060,93	-18,90	8730824,11730358000000;4014210,474589930000000	78.4303274753;33.8912618251
56	5058,72	-21,20	8730829,12639033000000;4014214,55022678000000	78.4303724727;33.8912922166
57	5055,40	-21,63	8730827,904659180000000;4014222,999118410000000	78.4303614977;33.8913552191
58	5051,57	-18,93	8730833,817405160000000;4014230,645313910000000	78.4304146128;33.8914122358
59	5047,18	-21,55	8730844,171781070000000;4014238,175263240000000	78.4305076278;33.8914683857
60	5044,77	-22,18	8730848,274421710000000;4014242,701803570000000	78.4305444824;33.8915021396
61	5040,94	-23,79	8730847,507513370000000;4014252,05466130000000	78.4305375932;33.8915718826
62	5037,36	-23,24	8730850,376701760000000;4014259,657654360000000	78.4305633675;33.891628577
63	5034,53	-16,64	8730853,568292610000000;4014265,431884850000000	78.4305920381;33.8916716347
64	5031,88	-19,31	8730851,14878162000000;4014273,973755060000000	78.4305703032;33.8917353301
65	5027,05	-18,97	8730851,14878162000000;4014287,736906960000000	78.4305703032;33.8918379598
66	5025,24	-19,75	8730850,944571190000000;4014292,996938050000000	78.4305684688;33.891877183

67	5023,28	-16,10	8730855,02023962000000;4014296,667125990000000	78.4306050811;33.891904551
68	5021,76	-8,40	8730853,496629770000000;4014301,698728650000000	78.4305913943;33.8919420708
69	5020,89	-18,57	8730849,619542520000000;4014306,087776160000000	78.4305565658;33.8919747992
70	5018,55	-21,35	8730849,148069370000000;4014313,035403360000000	78.4305523305;33.8920266065
71	5015,86	-20,21	8730851,40738496000000;4014319,530471430000000	78.4305726263;33.892075039
72	5011,97	-22,21	8730852,44179830000000;4014330,045855470000000	78.4305819186;33.8921534503
73	5005,58	-22,27	8730859,67957295000000;4014343,940174020000000	78.4306469366;33.8922570576
74	5003,17	-22,71	8730863,537862310000000;4014348,373873270000000	78.4306815962;33.8922901188
75	5000,59	-23,11	8730866,058862840000000;4014354,003934610000000	78.4307042428;33.8923321011
76	4996,42	-22,69	8730871,564747350000000;4014362,086832820000000	78.430753703;33.8923923736
77	4993,41	-17,60	8730873,58881220000000;4014368,975869070000000	78.4307718855;33.8924437437
78	4990,21	-21,03	8730872,175819240000000;4014378,981506570000000	78.4307591923;33.8925183536
79	4987,96	-17,75	8730876,165825880000000;4014383,265247640000000	78.4307950352;33.8925502965
80	4985,24	-17,81	8730876,75179675000000;4014391,743409700000000	78.430800299;33.8926135162
81	4982,41	-20,15	8730877,40444965000000;4014400,507100160000000	78.4308061619;33.8926788651
82	4980,15	-8,73	8730879,54632002000000;4014406,275317910000000	78.4308254027;33.8927218773
83	4979,28	-13,98	8730884,74713505000000;4014408,654964330000000	78.4308721224;33.8927396218
84	4978,10	-16,73	8730887,43533586000000;4014412,54198020000000	78.4308962709;33.8927686063
85	4976,78	-7,24	8730888,50262358000000;4014416,790701990000000	78.4309058585;33.892800288
86	4976,18	-17,04	8730892,84430832000000;4014418,767260460000000	78.4309448605;33.8928150267
87	4974,14	-9,92	8730894,56145692000000;4014425,194056530000000	78.4309602859;33.8928629497
88	4973,38	-16,85	8730898,24427530000000;4014427,520742090000000	78.4309933692;33.8928802993
89	4971,75	-17,90	8730900,21186940000000;4014432,504875050000000	78.4310110444;33.8929174647
90	4969,80	-13,63	8730900,09562326000000;4014438,548787860000000	78.4310100002;33.8929625326
91	4968,19	-17,91	8730904,79958669000000;4014443,209548750000000	78.4310522566;33.8929972867
92	4966,38	-17,78	8730906,270702730000000;4014448,627468980000000	78.4310654719;33.8930376867
93	4964,48	-16,16	8730905,382376740000000;4014454,497012420000000	78.4310574919;33.8930814543
94	4963,21	-18,43	8730907,887978770000000;4014458,094900250000000	78.4310800001;33.8931082828
95	4960,87	-15,71	8730908,557101070000000;4014465,070519430000000	78.4310860109;33.8931602981
96	4959,09	-18,73	8730912,693195070000000;4014469,847526530000000	78.4311231661;33.8931959189
97	4956,89	-18,55	8730914,048064970000000;4014476,211895840000000	78.4311353371;33.8932433762
98	4954,75	-17,99	8730913,931818840000000;4014482,591185700000000	78.4311342928;33.8932909448
99	4951,64	-16,43	8730917,033499490000000;4014491,635453570000000	78.4311621557;33.8933583853
100	4950,29	-16,88	8730917,033499490000000;4014496,223170870000000	78.4311621557;33.8933925945
101	4948,14	-14,78	8730919,58223132000000;4014502,84987363000000	78.4311850514;33.8934420079
102	4945,76	-17,24	8730926,20893409000000;4014508,96683003000000	78.4312445801;33.8934876202
103	4943,58	-17,60	8730929,529745780000000;4014515,141909510000000	78.4312744114;33.8935336659
104	4941,61	-17,82	8730932,32589049000000;4014520,69099646000000	78.4312995296;33.8935750437
105	4939,12	-15,76	8730933,476549970000000;4014528,337191960000000	78.4313098662;33.893632059
106	4936,77	-15,30	8730931,816144120000000;4014536,493133820000000	78.4312949505;33.8936928752
107	4935,11	-17,93	8730930,403151150000000;4014542,420800400000000	78.4312822573;33.8937370759
108	4932,21	-17,80	8730931,816144120000000;4014551,275778450000000	78.4312949505;33.8938031046
109	4930,13	-18,79	8730935,95223812000000;4014556,256995980000000	78.4313321056;33.8938402479
110	4927,35	-19,12	8730938,44284688000000;4014564,019437620000000	78.4313544792;33.8938981298
111	4925,04	-18,80	8730941,25857166000000;4014570,073873510000000	78.4313797732;33.8939432757
112	4922,72	-19,54	8730942,52081782000000;4014576,763096780000000	78.4313911122;33.8939931549
113	4920,70	-17,88	8730945,06954965000000;4014581,860560440000000	78.4314140078;33.8940311649
114	4918,82	-18,21	8730949,65726694000000;4014585,428785010000000	78.43145522;33.8940577719

1					
ļ	115	4917,75	-19,88	8730952,20599878000000;4014587,46777048000000	78.4314781157;33.8940729759
	116	4915,91	-20,41	8730955,26447698000000;4014591,545741410000000	78.4315055904;33.8941033839
	117	4912,82	-14,13	8730958,419544270000000;4014599,235392110000000	78.4315339329;33.8941607228
	118	4911,41	-13,68	8730958,832701550000000;4014604,799146940000000	78.4315376443;33.8942022097
	119	4909,41	-15,20	8730959,852194280000000;4014612,955088800000000	78.4315468026;33.8942630256
	120	4907,17	-15,04	8730962,910672480000000;4014620,601284300000000	78.4315742774;33.8943200404
	121	4905,14	-14,40	8730965,459404310000000;4014627,737733430000000	78.431597173;33.8943732542
	122	4903,39	-11,03	8730966,988643410000000;4014634,364436200000000	78.4316109104;33.894422667
	123	4902,08	-11,61	8730965,96915068000000;4014640,991138960000000	78.4316017522;33.8944720797
	124	4901,03	-14,66	8730965,459404310000000;4014646,088602630000000	78.431597173;33.8945100895
	125	4899,73	-14,10	8730966,784432980000000;4014650,867168890000000	78.431609076;33.8945457214
	126	4898,54	-11,87	8730967,638556110000000;4014655,528901850000000	78.4316167487;33.8945804821
	127	4897,05	-14,88	8730967,104889540000000;4014662,619617190000000	78.4316119547;33.8946333547
	128	4896,06	-7,93	8730968,24190416000000;4014666,15804736000000	78.4316221686;33.8946597394
	129	4895,55	-14,42	8730966,818359790000000;4014669,540903380000000	78.4316093807;33.8946849639
	130	4894,21	-15,77	8730968,008136140000000;4014674,634399150000000	78.4316200687;33.8947229441
	131	4892,41	-13,60	8730972,01306340000000;4014679,572414160000000	78.4316560455;33.8947597648
	132	4890,70	-14,02	8730972,816461230000000;4014686,581348530000000	78.4316632626;33.8948120275
	133	4889,30	-12,34	8730975,654331640000000;4014691,456029250000000	78.4316887556;33.8948483759
	134	4888,07	-14,71	8730980,256969550000000;4014694,617392030000000	78.4317301018;33.8948719489
	135	4886,61	-11,34	8730983,25538885000000;4014699,32594132000000	78.4317570371;33.8949070585
	136	4886,02	-14,58	8730985,980425710000000;4014700,413891880000000	78.4317815165;33.8949151709
	137	4885,09	-15,69	8730986.39856582000000:4014703.951348240000000	78.4317852727;33.8949415482
	138	4882,33	-11,61	8730991,849969240000000;4014712,151419920000000	78.4318342435;33.8950026926
	139	4880,97	-12,55	8730997,57342540000000;4014715,414108470000000	78.4318856582;33.895027021
	140	4879,25	-12,62	8731003,06438930000000;4014720,875231210000000	78.4319349844;33.8950677422
	141	4878,42	-12,84	8731004,959062430000000;4014724,065791900000000	78.4319520045;33.8950915328
	142	4877,56	-9,75	8731007,74007090000000;4014726,59868738000000	78.4319769867;33.8951104195
	143	4876,96	-7,66	8731011,19880796000000;4014727,050040760000000	78.4320080571;33.895113785
	144	4876,30	-13,17	8731016,113584410000000;4014726,628528540000000	78.4320522073;33.895110642
	145	4874,83	-13,22	8731020,87567090000000;4014730,721420050000000	78.4320949858;33.8951411609
	146	4873,84	-12,43	8731024,214728850000000;4014733,278153100000000	78.4321249811;33.8951602253
	147	4872,76	-13,92	8731028,653033140000000;4014735,353898670000000	78.4321648511;33.8951757032
	148	4870,83	-13,76	8731033,866742940000000;4014741,150398850000000	78.4322116866;33.8952189251
	149	4869,19	-13,52	8731039,28466316000000;4014745,068920530000000	78.4322603566;33.8952481437
	150	4867,57	-12,16	8731041,48903969000000;4014751,461215650000000	78.4322801589;33.8952958081
	151	4866,05	-14,65	8731042,241815840000000;4014758,480216120000000	78.4322869212;33.8953481455
	152	4864,27	-12,18	8731047,442164420000000;4014762,820520560000000	78.4323336367;33.8953805092
	153	4863,06	-13,95	8731052,938494670000000;4014764,067669100000000	78.4323830111;33.8953898086
	154	4862,02	-14,17	8731056,70400392000000;4014765,878998760000000	78.4324168372;33.8954033148
	155	4860,87	-15,55	8731060,781974850000000;4014767,917984230000000	78.4324534702;33.8954185185
	156	4859,17	-13,62	8731064,621473170000000;4014772,672700070000000	78.432487961;33.8954539722
	157	4857.85	-9.65	8731068,95283733000000;4014775,942759370000000	78.4325268704;33.8954783555
	158	4856,70	-6,62	8731075,594931010000000;4014777,425655530000000	78.4325865373;33.8954894127
	159	4856,11	-11,13	8731080,66208315000000;4014777,224585560000000	78.4326320563;33.8954879134
	160	4854.31	-15.04	8731089,32777137000000:4014780.151897020000000	78.4327099015;33.895509741
	161	4852,18	-16.03	8731094,934981410000000;4014785,759107060000000	78.4327602719;33.8955515513
	162	4851.03	-16,23	8731097,00123283000000;4014789,181486740000000	78.4327788334;33.8955770703
		- /		, , , , , , , , , , , , , , , , , , , ,	

163	4849,79	-15,60	8731099,39153196000000;4014792,706266380000000	78.4328003058;33.8956033529
164	4848,70	-16,18	8731100,08910850000000;4014796,544053500000000	78.4328065722;33.8956319694
165	4847,50	-16,18	8731103,017879590000000;4014799,464135840000000	78.4328328818;33.895653743
166	4845,36	-14,75	8731104,620162370000000;4014806,658708080000000	78.4328472754;33.8957073893
167	4844,29	-17,25	8731104,620162370000000;4014810,736679010000000	78.4328472754;33.8957377967
168	4842,55	-17,65	8731106,84430298000000;4014815,871350040000000	78.4328672552;33.8957760834
169	4840,60	-15,08	8731109,52460608000000;4014821,368309060000000	78.4328913328;33.8958170714
170	4839,41	-13,98	8731113,650044240000000;4014823,014185000000000	78.4329283922;33.8958293439
171	4838,02	-13,40	8731118,05912756000000;4014826,422570170000000	78.4329679997;33.8958547585
172	4836,71	-13,10	8731121,945014210000000;4014830,333627810000000	78.4330029072;33.8958839213
173	4835,38	-13,49	8731127,17643909000000;4014832,597649710000000	78.4330499019;33.8959008029
174	4833,99	-13,56	8731132,263533580000000;4014835,357420410000000	78.4330956;33.8959213811
175	4832,74	-14,01	8731136,86162005000000;4014837,753236440000000	78.4331369053;33.8959392455
176	4831,21	-13,05	8731141,44933735000000;4014841,831207370000000	78.4331781175;33.8959696528
177	4829,30	-14,34	8731145,105526210000000;4014849,200148860000000	78.4332109616;33.8960245991
178	4827,46	-13,18	8731150,18806926000000;4014854,31253308000000	78.4332566189;33.8960627195
179	4825,17	-13,78	8731154,19299652000000;4014863,240554770000000	78.4332925957;33.896129291
180	4823,32	-14,03	8731157,76122108000000;4014869,867257530000000	78.4333246496;33.8961787027
181	4821,03	-14,59	8731162,858684740000000;4014877,51345303000000	78.4333704409;33.8962357163
182	4818,49	-13,81	8731169,995133880000000;4014884,140155790000000	78.4334345487;33.896285128
183	4817,11	-13,90	8731172,573706940000000;4014889,121373280000000	78.4334577125;33.8963222702
184	4815,91	-14,69	8731177,11814516000000;4014890,830115070000000	78.4334985358;33.8963350113
185	4814,59	-14,90	8731180,190061210000000;4014894,844829490000000	78.4335261313;33.8963649468
186	4813,42	-11,80	8731183,016047140000000;4014898,180561690000000	78.4335515176;33.8963898195
187	4812,20	-14,59	8731183,92708973000000;4014903,944141740000000	78.4335597016;33.8964327953
188	4810,72	-14,34	8731189,103162310000000;4014906,291741830000000	78.4336061991;33.8964503001
189	4809,40	-15,47	8731193,95321310000000;4014908,09823502000000	78.4336497678;33.8964637701
190	4807,30	-14,97	8731199,560423130000000;4014913,195698680000000	78.4337001383;33.896501779
191	4805,46	-14,09	8731203,143568320000000;4014919,108444710000000	78.4337323262;33.896545867
192	4803,69	-15,86	8731209,95956089000000;4014920,914937880000000	78.4337935553;33.896559337
193	4801,49	-15,80	8731215,36256050000000;4014926,449104210000000	78.4338420913;33.8966006021
194	4799,01	-11,60	8731220,70212405000000;4014933,420322410000000	78.4338900574;33.8966525824
195	4797,90	-6,81	8731222,49900963000000;4014938,493727200000000	78.4339061991;33.8966904118
196	4797,26	-13,45	8731222,73597423000000;4014943,88903430000000	78.4339083278;33.8967306415
197	4795,72	-12,96	8731228,03317598000000;4014947,523074620000000	78.4339559133;33.8967577384
198	4793,58	-13,43	8731234,732922420000000;4014953,975408010000000	78.4340160982;33.8968058496
199	4791,72	-13,43	8731241,359625190000000;4014958,053378940000000	78.4340756269;33.8968362566
200	4789,76	-14,75	8731248,49607432000000;4014962,131349870000000	78.4341397347;33.8968666636
201	4787,59	-15,87	8731255,63252345000000;4014966,20932080000000	78.4342038425;33.8968970706
202	4783,69	-16,26	8731267,356689890000000;4014973,345769940000000	78.4343091625;33.8969502828
203	4779,53	-13,50	8731280,799385220000000;4014978,137697650000000	78.4344299203;33.8969860133
204	4776,61	-16,29	8731292,75014300000000;4014975,86621980000000	78.4345372758;33.8969690762
205	4773,83	-16,11	8731301,954775240000000;4014978,282007520000000	78.4346199624;33.8969870893
206	4771,19	-16,86	8731308,65360588000000;4014984,48714630000000	78.434680139;33.8970333572
207	4766,90	-17,22	8731322,03817815000000;4014989,162827870000000	78.4348003747;33.8970682209
208	4764,15	-17,37	8731329,77233795000000;4014993,459929840000000	78.4348698518;33.8971002618
209	4762,61	-16,79	8731334,099281150000000;4014995,849212560000000	78.4349087214;33.8971180772
210	4760,56	-13,98	8731340,759186410000000;4014997,210988570000000	78.4349685483;33.8971282311

211	4758,27	-10,72	8731348,777931150000000;4015001,659615810000000	78.4350405819;33.8971614017
212	4756,90	-11,68	8731355,404184240000000;4015004,558103380000000	78.4351001066;33.8971830139
213	4754,42	-11,64	8731363,45880058000000;4015013,456284270000000	78.4351724624;33.8972493621
214	4752,78	-10,78	8731369,35818534000000;4015018,831002060000000	78.4352254575;33.8972894379
215	4750,90	-11,67	8731378,324272510000000;4015022,891495310000000	78.4353060012;33.8973197144
216	4749,04	-11,56	8731384,78018369000000;4015029,200298420000000	78.4353639957;33.8973667551
217	4747,21	-11,54	8731391,72734300000000;4015034,807508290000000	78.4354264031;33.8974085645
218	4745,31	-11,41	8731399,06800256000000;4015040,560805370000000	78.4354923453;33.8974514631
219	4743,06	-8,91	8731407,77689325000000;4015047,522886110000000	78.4355705786;33.8975033748
220	4741,28	-9,26	8731415,029588510000000;4015056,231776490000000	78.4356357307;33.8975683113
221	4739,08	-9,41	8731424,85224800000000;4015065,542027560000000	78.4357239692;33.8976377316
222	4737,50	-10,80	8731432,07034964000000;4015071,726818670000000	78.4357888105;33.8976838475
223	4735,49	-12,19	8731441,667566310000000;4015076,023920440000000	78.4358750237;33.8977158881
224	4733,36	-12,32	8731449,70726205000000;4015081,762297280000000	78.4359472455;33.8977586753
225	4731,60	-12,63	8731457,51446552000000;4015083,773000570000000	78.4360173788;33.8977736677
226	4728,87	-11,52	8731467,432138740000000;4015090,821485490000000	78.4361064708;33.8978262235
227	4727,56	-13,02	8731471,11935193000000;4015096,097089110000000	78.4361395936;33.8978655601
228	4725,96	-10,49	8731476,723819470000000;4015100,184650940000000	78.4361899394;33.8978960382
229	4723,82	-12,57	8731488,08432689000000;4015098,117383560000000	78.4362919926;33.897880624
230	4721,86	-13,54	8731496,77985636000000;4015099,414130560000000	78.4363701059;33.897890293
231	4719,88	-13,74	8731504,13891865000000;4015103,03747820000000	78.4364362134;33.8979173098
232	4717,90	-13,56	8731511,25540565000000;4015106,899317960000000	78.4365001419;33.8979461048
233	4715,63	-13,75	8731517,95515209000000;4015113,526020730000000	78.4365603268;33.8979955155
234	4713,70	-11,73	8731523,50423906000000;4015119,133230760000000	78.4366101751;33.8980373246
235	4712,25	-12,17	8731526,25718132000000;4015125,570643720000000	78.4366349052;33.8980853238
236	4711,03	-10,71	8731528,676645880000000;4015130,660305060000000	78.4366566396;33.8981232739
237	4710,11	-9,23	8731531,78761752000000;4015134,425621760000000	78.4366845859;33.8981513491
238	4708,58	-7,01	8731538,92406665000000;4015140,542578150000000	78.4367486937;33.8981969589
239	4707,05	-7,69	8731551,157979440000000;4015142,581563620000000	78.4368585928;33.8982121622
240	4705,70	-9,09	8731560,989247770000000;4015144,534143960000000	78.4369469086;33.8982267212
241	4704,46	-13,04	8731568,37343739000000;4015146,859699520000000	78.4370132419;33.8982440612
242	4703,33	-3,93	8731569,98914704000000;4015151,482184210000000	78.4370277561;33.8982785277
243	4702,92	-1,10	8731565,97046530000000;4015155,834969150000000	78.4369916557;33.8983109833
244	4702,82	-9,75	8731561,719684570000000;4015159,286947380000000	78.4369534703;33.8983367222
245	4701,37	-10,26	8731566,21674709000000;4015166,381086280000000	78.4369938681;33.898389618
246	4699,84	-10,15	8731572,743255430000000;4015171,796555220000000	78.4370524967;33.8984299972
247	4698,98	-10,15	8731575,46635646000000;4015175,758279900000000	78.4370769587;33.8984595368
248	4698,24	-8,80	8731577,673466810000000;4015179,231331400000000	78.4370967855;33.8984854328
249	4697,58	-8,58	8731581,91440510000000;4015179,875655640000000	78.4371348825;33.8984902371
250	4696,83	-10,59	8731586,801011710000000;4015180,419137950000000	78.4371787797;33.8984942894
251	4695,13	-6,92	8731592,09713735000000;4015187,832744010000000	78.4372263556;33.8985495672
252	4694,40	-11,02	8731591,69027589000000;4015193,818533780000000	78.4372227007;33.8985941987
253	4693,32	-8,00	8731595,95753663000000;4015197,343555700000000	78.4372610341;33.8986204821
254	4692,57	-9,65	8731601,317333790000000;4015197,199026960000000	78.437309182;33.8986194045
255	4691,48	-10,63	8731603,080818940000000;4015203,370833680000000	78.4373250236;33.898665423
256	4690,34	-11,43	8731605,773884350000000;4015208,790468160000000	78.4373492159;33.8987058331
257	4689,22	-4,75	8731609,516478100000000;4015212,883359460000000	78.4373828362;33.8987363507
258	4688,73	-11,11	8731607,657819340000000;4015218,490777150000000	78.4373661395;33.8987781609

1	1			1
25	9 4687,91	-11,20	8731609,778811590000000;4015222,101996800000000	78.4373851927;33.898805087
26	0 4687,15	-9,20	8731613,27399248000000;4015223,704279570000000	78.4374165905;33.898817034
26	1 4685,81	-6,93	8731621,50297802000000;4015224,155902730000000	78.4374905127;33.8988204014
26	2 4685,34	-9,39	8731625,31861546000000;4015224,98610568000000	78.4375247892;33.8988265916
26	3 4684,40	-6,42	8731628,46505796000000;4015229,719910140000000	78.4375530541;33.8988618879
26	4 4683,95	-9,17	8731632,32615363000000;4015230,666488050000000	78.437587739;33.8988689458
26	5 4682,75	-10,49	8731632,60115196000000;4015238,108344550000000	78.4375902093;33.898924434
26	6 4681,88	-8,20	8731635,26612992000000;4015241,982105090000000	78.4376141492;33.8989533176
26	7 4680,85	-11,47	8731642,068761270000000;4015244,153816660000000	78.4376752583;33.8989695103
26	8 4679,31	-12,07	8731646,828022530000000;4015250,039600440000000	78.4377180115;33.899013396
26	9 4678,08	-12,44	8731650,31110804000000;4015254,652720620000000	78.4377493006;33.8990477924
27	0 4676,36	-13,25	8731655,655984580000000;4015260,332974290000000	78.4377973144;33.8990901456
27	1 4674,58	-12,82	8731660,243701880000000;4015266,318763980000000	78.4378385266;33.8991347768
27	2 4673,01	-11,18	8731663,34694193000000;4015272,465561560000000	78.4378664034;33.8991806086
27	3 4671,82	-10,61	8731668,46717099000000;4015275,656299950000000	78.4379123992;33.8992043994
27	4 4670,71	-11,78	8731670,438629210000000;4015281,232575320000000	78.4379301092;33.8992459772
27	5 4669,20	-11,99	8731675,026346510000000;4015286,839785340000000	78.4379713213;33.8992877856
27	6 4668,13	-12,12	8731678,59457108000000;4015290,408009910000000	78.4380033752;33.899314391
27	7 4667,05	-10,69	8731682,162795640000000;4015293,976234480000000	78.4380354291;33.8993409963
27	8 4665,65	-7,31	8731689,299244770000000;4015296,015219950000000	78.4380995369;33.8993561994
27	9 4665,18	-11,49	8731692,867469330000000;4015295,505473580000000	78.4381315909;33.8993523986
28	0 4664,39	-12,54	8731696,43569390000000;4015297,034712680000000	78.4381636448;33.8993638009
28	1 4663,51	-11,68	8731698,984425740000000;4015300,093190880000000	78.4381865404;33.8993866055
28	2 4662,61	-12,70	8731700,513664840000000;4015304,171161810000000	78.4382002778;33.8994170115
28	3 4660,63	-11,33	8731707,47201462000000;4015309,547439110000000	78.4382627857;33.899457098
28	4 4659,07	-13,16	8731709,33915132000000;4015317,086590950000000	78.4382795585;33.8995133112
28	5 4657,59	-6,80	8731714,098717380000000;4015321,241763900000000	78.4383223144;33.8995442929
28	6 4656,79	-9,88	8731718,76731862000000;4015326,100695050000000	78.4383642532;33.8995805219
28	7 4655,55	-2,00	8731718,99197063000000;4015333,226704700000000	78.4383662712;33.8996336546
28	8 4655,33	-8,33	8731724,468013910000000;4015335,936444310000000	78.4384154634;33.8996538588
28	9 4654,68	-9,48	8731726,51938592000000;4015339,929110710000000	78.4384338912;33.8996836288
29	0 4653,78	-10,67	8731728,341774410000000;4015344,950871130000000	78.438450262;33.8997210718
29	1 4652,53	-10,88	8731729,186897950000000;4015351,577573890000000	78.4384578538;33.8997704815
29	2 4651.18	-9.04	8731727.81866683000000:4015358.451689560000000	78.4384455628:33.8998217359
29	3 4650.20	-10.74	8731731.22588342000000:4015363.54915323000000	78.4384761703:33.8998597433
29	4 4649.02	-11.07	8731733.308071340000000:4015369.433617310000000	78.438494875:33.8999036186
29	5 4647.76	-10.35	8731735.54998800000000:4015375.44322692000000	78.4385150144:33.8999484271
29	6 4646.82	-10.01	8731733.75969464000000:4015380.312660250000000	78.438498932:33.8999847342
29	7 4645.89	-6.87	8731734.036948740000000:4015385.556211240000000	78.4385014226:33.9000238308
29	8 4645.35	-9.07	8731737,75820526000000.4015388,042744740000000	78 4385348512 33 9000423707
29	9 4644.05	-9.37	8731737,34354749000000,4015396,166587790000000	78 4385311263:33 9001029431
30	0 4643.40	-9.89	8731739.51299203000000.4015399.49373235000000	78 4385506147 33 9001277506
30	1 4642 12	-10 12	8731741.115274810000000.4015406.630181480000000	78.4385650083:33.9001809608
30	2 <u>4640 98</u>	-8 32	8731742 616736290000000-4015412 842775550000000	78 4385784961:33 9002272826
30	3 4640.29	-8.32	8731746.780607910000000.4015415.164702990000000	78 4386159008:33 9002445951
30	4 <u>4630 52</u>	-10 55	8731751 469650720000000.4015417 5241450000000	78 4386580232:33 9002621874
30		-11 51	8731755 69370901000000-4015421 92257248000000	78 4386959686:33 9002949825
30	6 4637.02	_11.80	8731759 261933580000000-4015427 52978250000000	78 4387280225:33 0003367004
1 30	4037,03	-11,00	0101100,20100000000000,4010421,020102000000000	10.7001200220,00.80000001804

	1			1
307	4636,26	-11,40	8731761,30091905000000;4015430,588260710000000	78.438746339;33.9003595947
308	4634,81	-12,38	8731762,07299890000000;4015437,752991750000000	78.4387532747;33.9004130156
309	4633,24	-12,53	8731764,63665135000000;4015444,409535700000000	78.4387763044;33.9004626474
310	4631,69	-13,01	8731769,45686091000000;4015449,448876270000000	78.4388196051;33.9005002212
311	4630,49	-13,15	8731771,15689323000000;4015454,345880970000000	78.4388348767;33.9005367337
312	4629,35	-12,99	8731774,65565008000000;4015457,779187360000000	78.4388663066;33.9005623327
313	4627,98	-12,90	8731775,806309570000000;4015463,590607810000000	78.4388766431;33.900605663
314	4626,37	-11,22	8731776,855643530000000;4015470,552687660000000	78.4388860695;33.9006575728
315	4625,38	-14,54	8731781,660932470000000;4015471,965680550000000	78.4389292361;33.9006681082
316	4623,59	-14,32	8731784,313300880000000;4015478,336988690000000	78.4389530627;33.9007156131
317	4621,72	-15,07	8731786,21880854000000;4015485,378534860000000	78.4389701802;33.9007681153
318	4619,92	-12,06	8731788,63637363000000;4015491,626657960000000	78.4389918976;33.9008147017
319	4618,72	-12,77	8731789,53962023000000;4015497,175744890000000	78.4390000116;33.900856076
320	4616,92	-9,86	8731793,57438872000000;4015504,021578540000000	78.4390362565;33.9009071188
321	4615,81	-13,32	8731794,060960310000000;4015510,375665080000000	78.4390406274;33.9009544952
322	4614,42	-11,66	8731797,28870064000000;4015515,279201170000000	78.4390696227;33.9009910562
323	4612,99	-9,57	8731799,06535262000000;4015521,964027050000000	78.4390855827;33.9010408985
324	4611,97	-14,07	8731799,211439980000000;4015528,022860190000000	78.439086895;33.9010860734
325	4610,56	-14,06	8731802,633577190000000;4015532,509252000000000	78.4391176366;33.901119524
326	4609,37	-11,14	8731805,28363453000000;4015536,427774000000000	78.4391414424;33.9011487406
327	4608,19	-13,10	8731806,186881130000000;4015542,370361160000000	78.4391495564;33.9011930487
328	4607,23	-10,03	8731809,014855350000000;4015545,394279970000000	78.4391749606;33.9012155951
329	4606,06	-9,76	8731809,828149380000000;4015551,909454190000000	78.4391822665;33.9012641724
330	4605,43	-10,28	8731812,224194530000000;4015554,705638380000000	78.4392037906;33.9012850208
331	4604,00	-9,16	8731813,96424338000000;4015562,394997940000000	78.4392194217;33.9013423527
332	4602,47	-10,42	8731812,78530206000000;4015571,788004230000000	78.4392088311;33.9014123871
333	4601,49	-10,33	8731814,37266423000000;4015576,885467900000000	78.4392230906;33.9014503938
334	4600,24	-9,54	8731815,78330936000000;4015583,585170760000000	78.4392357626;33.9015003467
335	4598,96	-8,47	8731815,43535942000000;4015591,216489280000000	78.4392326369;33.9015572458
336	4597,69	-7,59	8731813,41129456000000;4015599,503597840000000	78.4392144545;33.9016190344
337	4595,72	-4,77	8731814,895771810000000;4015614,228119370000000	78.4392277897;33.9017288201
338	4595,09	-5,86	8731814,138612570000000;4015621,758068680000000	78.4392209881;33.9017849632
339	4594,38	-6,37	8731815,099982240000000;4015628,588981740000000	78.4392296242;33.9018358943
340	4593,51	-7,03	8731817,110685870000000;4015636,075728870000000	78.4392476867;33.9018917152
341	4592,65	-6,56	8731820,25022102000000;4015642,326000880000000	78.4392758896;33.901938317
342	4591,73	-7,32	8731822,324395670000000;4015650,056452460000000	78.4392945222;33.9019959549
343	4591,03	-4,90	8731824,93125056000000;4015654,848379950000000	78.43931794;33.9020316833
344	4590,56	-7,75	8731824,37313485000000;4015660,361182210000000	78.4393129263;33.9020727864
345	4589,96	-7,56	8731827,75723650000000;4015663,105647520000000	78.4393433262;33.902093249
346	4589,43	-7,61	8731831,26862572000000;4015665,023202320000000	78.4393748696;33.9021075462
347	4588,62	-7,73	8731834,06606703000000;4015670,422290260000000	78.4393999994;33.9021478015
348	4588,04	-8,21	8731837,87912016000000;4015672,412248840000000	78.4394342527;33.9021626385
349	4586,91	-8,29	8731843,559373870000000;4015677,772045840000000	78.4394852793;33.9022026008
350	4585,97	-8,58	8731847,44805498000000;4015682,912712130000000	78.4395202119;33.9022409293
351	4583,95	-7,89	8731856,81277939000000;4015692,466726400000000	78.4396043366;33.9023121633
352	4582,79	-8,82	8731859,50759859000000;4015700,360334720000000	78.4396285446;33.9023710174
353	4581,81	-9,05	8731864,77943145000000;4015703,928559340000000	78.4396759023;33.9023976218
354	4581,07	-9,19	8731867,83790965000000;4015707,380537730000000	78.4397033771;33.9024233595

355	4580,02	-8,21	8731872,42562695000000;4015711,968255030000000	78.4397445892;33.9024575651
356	4579,04	-10,16	8731874,23212015000000;4015718,521914120000000	78.4397608172;33.9025064286
357	4577,47	-10,63	8731881,18159563000000;4015723,894571430000000	78.4398232454;33.9025464866
358	4575,73	-10,35	8731886,698525210000000;4015731,338616950000000	78.4398728049;33.9026019887
359	4574,02	-11,12	8731890,26674978000000;4015740,004305190000000	78.4399048588;33.9026665992
360	4572,93	-11,46	8731893,325227970000000;4015744,592022480000000	78.4399323335;33.9027008047
361	4571,62	-12,14	8731897,51944504000000;4015749,500196340000000	78.4399700108;33.9027373995
362	4569,68	-11,90	8731904,029901670000000;4015755,806442550000000	78.4400284953;33.9027844182
363	4568,46	-11,95	8731906,84096699000000;4015760,830862530000000	78.4400537475;33.9028218797
364	4567,15	-12,15	8731912,334426170000000;4015763,680021720000000	78.4401030961;33.9028431226
365	4565,77	-11,75	8731916,65731470000000;4015768,404014490000000	78.4401419292;33.9028783442
366	4564,17	-11,18	8731923,35371228000000;4015772,23431103000000	78.440202084;33.9029069024
367	4563,13	-8,18	8731928,235393770000000;4015774,215434790000000	78.4402459369;33.9029216734
368	4562,09	-11,53	8731928,47100482000000;4015781,395086440000000	78.4402480534;33.9029752039
369	4560,79	-10,35	8731933,548658810000000;4015785,255748480000000	78.4402936668;33.9030039885
370	4559,89	-11,31	8731938,285793130000000;4015786,666919590000000	78.4403362212;33.90301451
371	4559,02	-4,42	8731941,40915143000000;4015789,677133590000000	78.4403642788;33.9030369537
372	4558,48	-11,08	8731939,10954570000000;4015796,275881410000000	78.4403436211;33.9030861531
373	4557,24	-10,60	8731943,59203280000000;4015800,76761100000000	78.4403838879;33.9031196428
374	4556,30	-10,38	8731948,053648850000000;4015803,139811060000000	78.4404239673;33.9031373295
375	4554,74	-7,57	8731952,58324308000000;4015810,349303770000000	78.4404646573;33.9031910824
376	4553,83	-9,93	8731952,87541780000000;4015817,122093810000000	78.440467282;33.9032415793
377	4552,39	-8,74	8731956,88034506000000;4015824,316666010000000	78.4405032589;33.9032952209
378	4551,14	-11,84	8731957,66734552000000;4015832,399564270000000	78.4405103286;33.9033554857
379	4549,32	-11,44	8731962,48755509000000;4015839,652259620000000	78.4405536293;33.9034095605
380	4547,59	-11,09	8731968,137967570000000;4015846,031549420000000	78.4406043878;33.9034571234
381	4545,64	-9,74	8731974,502336840000000;4015853,677744920000000	78.4406615599;33.9035141321
382	4544,23	-10,02	8731981,638785970000000;4015857,755715850000000	78.4407256677;33.9035445367
383	4541,87	-6,72	8731991,58630043000000;4015866,682178210000000	78.4408150278;33.9036110908
384	4540,64	-8,70	8732002,028640640000000;4015866,464606680000000	78.4409088329;33.9036094686
385	4539,66	-10,54	8732008,27676378000000;4015867,819476450000000	78.4409649608;33.9036195702
386	4537,72	-9,54	8732013,745339010000000;4015876,686971780000000	78.4410140858;33.9036856846
387	4536,04	-10,59	8732023,059408410000000;4015880,431968900000000	78.4410977555;33.9037136065
388	4534,13	-9,72	8732030,06469080000000;4015887,830751480000000	78.441160685;33.9037687704
389	4533,10	-10,42	8732035,482611010000000;4015890,394403860000000	78.441209355;33.9037878845
390	4531,86	-9,63	8732039,240125390000000;4015896,044816410000000	78.4412431094;33.9038300128
391	4530,67	-10,43	8732045,57979613000000;4015898,987646310000000	78.4413000596;33.9038519539
392	4529,53	-7,26	8732049,409604510000000;4015903,852420200000000	78.4413344633;33.9038882246
393	4528,78	-10,22	8732048,92530636000000;4015909,749845240000000	78.4413301128;33.9039321946
394	4527,17	-10,30	8732053,51302365000000;4015917,396040740000000	78.441371325;33.9039892029
395	4525,58	-10,28	8732058,61048732000000;4015924,532489870000000	78.4414171163;33.9040424107
396	4523,17	<u>-10</u> ,10	8732067,638477440000000;4015934,209594950000000	78.4414982161;33.904114561
397	4521,61	-9,87	8732074,41262468000000;4015939,82488086000000	78.4415590693;33.9041564272
398	4519,66	-8,53	8732082,37927673000000;4015947,645445670000000	78.441630635;33.9042147355
399	4516,80	-8,55	8732099,783696880000000;4015955,524133510000000	78.4417869815;33.904273477
400	4515.03	-8,44	8732110,09487034000000;4015961,23422826000000	78.4418796084;33.9043160501
401	4514,39	-6,69	8732111,54336194000000;4015965,271556430000000	78.4418926204;33.9043461514
402	4513,92	-8,48	8732111,42462754000000;4015969,255377590000000	78.4418915538;33.9043758538

1					
	403	4513,12	-8,83	8732116,02253693000000;4015971,997025060000000	78.4419328575;33.9043962948
	404	4511,80	-8,65	8732120,799544040000000;4015979,07535108000000	78.4419757701;33.9044490689
ļ	405	4510,70	-8,64	8732126,406754070000000;4015983,66306838000000	78.4420261405;33.9044832738
	406	4509,15	-8,60	8732133,878580370000000;4015990,595307180000000	78.4420932611;33.9045349587
	407	4507,87	-7,97	8732139,500711010000000;4015996,886632890000000	78.4421437655;33.9045818651
ļ	408	4506,73	-7,12	8732146,63716015000000;4016000,833437150000000	78.4422078733;33.9046112914
	409	4505,80	-8,11	8732153,758688660000000;4016003,003589360000000	78.4422718471;33.9046274714
	410	4504,96	-7,13	8732156,337261720000000;4016008,290342660000000	78.4422950108;33.904666888
	411	4504,00	-7,72	8732163,59520263000000;4016010,727441150000000	78.44236021;33.9046850583
	412	4502,84	-8,13	8732166,54120876000000;4016018,792365160000000	78.4423866744;33.9047451881
	413	4501,91	-7,91	8732171,006933580000000;4016023,522053890000000	78.4424267907;33.9047804513
	414	4500,79	-6,50	8732177,317366740000000;4016028,520748640000000	78.4424834783;33.9048177201
	415	4499,91	-7,92	8732185,03906409000000;4016028,083297040000000	78.4425528435;33.9048144586
	416	4499,18	-9,04	8732190,296718810000000;4016028,590763510000000	78.4426000738;33.9048182421
ľ	417	4498,17	-8,95	8732193,61277046000000;4016034,011712420000000	78.4426298624;33.9048586591
ľ	418	4496,64	-9,39	8732198,41961880000000;4016042,415067230000000	78.4426730431;33.904921312
ľ	419	4495,66	-8,89	8732203,58946553000000;4016045,30866980000000	78.4427194846;33.9049428858
ľ	420	4494,66	-9,30	8732206.69180679000000:4016050.949588760000000	78.4427473534;33.9049849428
ľ	421	4493,77	-9,35	8732210.260031360000000;4016055.027559700000000	78.4427794073;33.9050153468
ľ	422	4493,23	-9,37	8732212,80876319000000;4016057,066545160000000	78.442802303:33.9050305489
ľ	423	4492,39	-9,28	8732216.886734120000000;4016060,125023360000000	78.442838936:33.9050533519
ľ	424	4491.53	-8.95	8732221.47445143000000:4016062.673755200000000	78.4428801482:33.9050723545
ľ	425	4490,34	-9,07	8732228,61090056000000;4016065,222487030000000	78.442944256:33.905091357
ľ	426	4489,46	-8,45	8732233,708364220000000;4016067,261472490000000	78.4429900473;33.905106559
ľ	427	4488,31	-9,49	8732241,28151604000000;4016068,762429650000000	78.4430580781;33.9051177497
ľ	428	4486,90	-9,53	8732248,33000088000000;4016073,48131380000000	78.4431213957;33.9051529322
ľ	429	4485,58	-9,47	8732253,96705213000000;4016078,914154760000000	78.4431720342;33.9051934377
ľ	430	4483,84	-9,46	8732260.826247160000000:4016086.777921750000000	78.4432336514;33.9052520673
ľ	431	4482,30	-9,56	8732269.070153320000000;4016090,928936300000000	78.4433077076;33.9052830159
ľ	432	4481,62	-8,53	8732271,764972510000000;4016093,987414540000000	78.4433319156;33.9053058189
ľ	433	4480.90	-9.33	8732276.36761042000000:4016095.284161010000000	78.4433732618:33.905315487
ľ	434	4479.75	-8.19	8732281.66414862000000:4016099.83041058000000	78.4434208414:33.9053493823
ľ	435	4478.51	-8.70	8732290.15279894000000:4016101.611525320000000	78.4434970963:33.9053626617
ľ	436	4477.38	-9.15	8732297.09128287000000.4016104.124218420000000	78 4435594257 33 9053813955
ľ	437	4475.50	-9.12	8732305.072855530000000.4016112.628899110000000	78 4436311254 33 9054448034
ľ	438	4473.99	-8.68	8732311,69955830000000.4016119,255601880000000	78 4436906541 33 9054942098
ľ	439	4473.26	-7 72	8732314 248290130000000.4016123 333572810000000	78 4437135497:33 9055246137
ľ	440	4472 38	-7.42	8732316 230711920000000.4016129 538493420000000	78 4437313581:33 9055708753
ľ	441	4471 58	-8 71	8732317 754656610000000:4016135 417635140000000	78 443745048:33 9056147081
ľ	442	4470,65	-8.46	8732321 197008850000000.4016140 445818340000000	78 4437759711:33 9056521964
ŀ	442	4470,00 AAGO 62	-0,40 _2 Q1	8732324 63406667000000.4016146 47481050000000	78 4438068468:33 0056071462
ŀ	443	1162 24	-0,94 _8 86	8732331 55138476000000-4016151 810686050000000	78 4438680861:33 0057360057
ŀ	144	4400,24	-0,00	8732335 250776070000000-4016155 708268240000000	78 4430022183:32 0057650992
ŀ	440	4407,41	-7,13	8732336 88200008000000-4016162 9990100000000	78 //30168700-22 0059105405474
ŀ	440	4400,40	-0,70	8732342 028804580000000-4016166 227560690000000	78 //3071102:22 0059/5255
ł	447	4400,42	-1,92	0732342,320034300000000,4010100,3373000800000000	79.4440464704.22.0059545724
ŀ	448	4464,70	-0,11	0732347,37020030000000,4046469,636300000000	79.4440465120.22.0059622002
ł	449	4464,20	-7,01	0732331,313007330000000,4010108,020397100000000	70.4440400139,33.9058023002
1	450	4463,41	-6,66	0132331,13338982000000;4016169,660811360000000	10.4440989728;33.9058700124

451	4462,55	-4,35	8732364,464208140000000;4016169,559484360000000	78.444164647;33.9058692569
452	4462,00	-5,96	8732371,61401850000000;4016168,759122940000000	78.4442288748;33.9058632897
453	4461,05	-6,99	8732380,54048082000000;4016170,535774010000000	78.4443090626;33.9058765358
454	4459,91	-7,61	8732388,88571250000000;4016174,700151380000000	78.4443840291;33.9059075837
455	4458,69	-7,25	8732394,914704610000000;4016181,514584250000000	78.4444381885;33.9059583895
456	4457,63	-7,65	8732398,064265890000000;4016189,278585080000000	78.4444664815;33.9060162748
457	4456,68	-7,31	8732402,084113750000000;4016195,090005430000000	78.4445025924;33.9060596024
458	4456,07	-7,58	8732406,220207760000000;4016197,464367660000000	78.4445397475;33.9060773047
459	4455,32	-7,73	8732410,69167892000000;4016200,800100110000000	78.4445799154;33.9061021746
460	4454,53	-6,77	8732415,031983340000000;4016204,673860550000000	78.4446189051;33.9061310558
461	4453,52	-5,49	8732423,14316336000000;4016207,411882180000000	78.444691769;33.9061514693
462	4452,73	-7,03	8732431,370589510000000;4016207,878426170000000	78.4447656773;33.9061549477
463	4451,68	-7,95	8732439,23435666000000;4016211,053150160000000	78.4448363187;33.9061786171
464	4450,45	-7,58	8732444,78344363000000;4016217,86758415000000	78.444886167;33.9062294227
465	4449,68	-7,95	8732446,99835768000000;4016223,255662480000000	78.4449060639;33.906269594
466	4449,02	-7,78	8732449,62013319000000;4016227,187546710000000	78.4449296157;33.9062989084
467	4448,51	-7,03	8732451,26717782000000;4016230,494996940000000	78.4449444113;33.9063235674
468	4447,82	-8,07	8732452,38955546000000;4016235,987519810000000	78.4449544938;33.9063645173
469	4446,79	-7,46	8732456,773062330000000;4016241,798940270000000	78.4449938715;33.9064078447
470	4446,05	-8,22	8732458,360424490000000;4016247,201939880000000	78.4450081311;33.9064481271
471	4445,50	-4,89	8732460,32636628000000;4016250,464628440000000	78.4450257914;33.9064724523
472	4445,06	-6,05	8732459,33671478000000;4016255,547171570000000	78.4450169012;33.9065103455
473	4444,73	-5,15	8732462,453316040000000;4016255,693258760000000	78.4450448981;33.9065114347
474	4444,26	-7,34	8732467,62382339000000;4016255,183512440000000	78.4450913456;33.9065076342
475	4443,77	-4,39	8732471,25017102000000;4016256,377374470000000	78.4451239216;33.9065165351
476	4443,43	-8,18	8732475,63367789000000;4016255,430925410000000	78.4451632993;33.9065094788
477	4442,96	-7,38	8732477,61454030000000;4016257,979657180000000	78.4451810937;33.9065284811
478	4442,56	-8,13	8732478,57590996000000;4016260,906968660000000	78.4451897299;33.9065503058
479	4442,21	-4,98	8732480,425605610000000;4016262,494330870000000	78.445206346;33.9065621404
480	4441,66	-7,43	8732486,746772440000000;4016261,752092150000000	78.44526313;33.9065566066
481	4440,85	-7,97	8732488,97504772000000;4016267,533671420000000	78.4452831469;33.9065997115
482	4440,38	-6,62	8732491,64002568000000;4016269,63078000000000	78.4453070868;33.9066153466
483	4439,65	-5,60	8732497,75698208000000;4016270,85448308000000	78.4453620364;33.90662447
484	4439,23	-6,24	8732502,082365890000000;4016270,854483110000000	78.4454008919;33.90662447
485	4438,89	-7,86	8732505,14084409000000;4016271,233062690000000	78.4454283667;33.9066272925
486	4438,47	-6,80	8732507,12170649000000;4016273,519461110000000	78.4454461611;33.9066443389
487	4438,07	-5,90	8732507,951909410000000;4016276,767229130000000	78.445453619;33.9066685527
488	4437,76	-4,91	8732507,951909410000000;4016279,825707330000000	78.445453619;33.9066913554
489	4437,49	-4,37	8732507,44216304000000;4016282,884185530000000	78.4454490398;33.906714158
490	4437,33	-6,57	8732506,93241668000000;4016284,923171000000000	78.4454444607;33.9067293597
491	4436,95	-5,10	8732507,36678936000000;4016288,196890700000000	78.4454483627;33.906753767
492	4436,59	-8,11	8732511,38896723000000;4016287,86540308000000	78.4454844946;33.9067512956
493	4435,93	-5,37	8732514,82602506000000;4016290,982004330000000	78.4455153702;33.9067745316
494	4435,67	-7,75	8732517,637090380000000;4016290,865758220000000	78.4455406224;33.9067736649
495	4435,15	-7,86	8732520,94298145000000;4016292,642410150000000	78.4455703197;33.9067869108
496	4434,45	-8,19	8732523,244300410000000;4016297,157083790000000	78.4455909928;33.9068205701
497	4434,14	-8,03	8732524,64237276000000;4016298,81748963000000	78.4456035519;33.9068329493
498	4433,68	-8,21	8732527,365473780000000;4016300,667185280000000	78.445628014;33.9068467397

				1
499	4433,50	-6,25	8732528,137553640000000;4016301,628554980000000	78.4456349497;33.9068539072
500	4433,28	-8,25	8732530,176539110000000;4016301,832765380000000	78.4456532662;33.9068554297
501	4432,80	-7,59	8732532,535981130000000;4016304,119163640000000	78.4456744614;33.906872476
502	4432,45	-8,21	8732533,42430712000000;4016306,594851880000000	78.4456824414;33.9068909336
503	4431,95	-7,28	8732535,432011150000000;4016309,415571800000000	78.4457004769;33.9069119635
504	4431,53	-8,03	8732538,53669140000000;4016310,410489320000000	78.4457283667;33.9069193812
505	4430,81	-6,35	8732542,909004810000000;4016313,067539520000000	78.4457676439;33.9069391909
506	4430,39	-8,05	8732546,692633270000000;4016313,468967530000000	78.4458016328;33.9069421837
507	4429,71	-8,02	8732550,77060420000000;4016316,017699360000000	78.4458382658;33.9069611858
508	4429,28	-4,84	8732552,372886970000000;4016318,624554260000000	78.4458526594;33.9069806213
509	4428,94	-7,97	8732556,37781423000000;4016318,275815670000000	78.4458886363;33.9069780213
510	4428,57	-5,58	8732557,57230299000000;4016320,565649230000000	78.4458993665;33.9069950932
511	4428,34	-7,27	8732560,00659270000000;4016320,630578910000000	78.4459212341;33.9069955772
512	4427,90	-6,63	8732560,761321110000000;4016323,984351390000000	78.445928014;33.9070205813
513	4427,58	-7,89	8732560,96553153000000;4016326,722373050000000	78.4459298484;33.9070409947
514	4427,04	-7,41	8732562,49477063000000;4016330,290597620000000	78.4459435858;33.9070675976
515	4426,77	-6,99	8732563,00451699000000;4016332,329583090000000	78.4459481649;33.9070827993
516	4426,33	-6,27	8732563,51426336000000;4016335,897807650000000	78.4459527441;33.9071094022
517	4425,99	-6,27	8732563,51426336000000;4016338,956285850000000	78.4459527441;33.9071322047
518	4425,65	-6,27	8732563,51426336000000;4016342,014764050000000	78.4459527441;33.9071550072
519	4425,26	-6,27	8732563,51426336000000;4016345,582988610000000	78.4459527441;33.9071816101
520	4424,87	-8,10	8732563,51426336000000;4016349,151213180000000	78.4459527441;33.907208213
521	4424,36	-6,47	8732565,02858185000000;4016352,398981190000000	78.4459663474;33.9072324267
522	4423,40	-6,98	8732565,290915330000000;4016360,875379610000000	78.445968704;33.9072956224
523	4423,15	-8,36	8732565,55324883000000;4016362,91436508000000	78.4459710606;33.9073108241
524	4422,88	-8,27	8732567,08248793000000;4016363,933857810000000	78.445984798;33.9073184249
525	4422,38	-6,19	8732568,61172702000000;4016366,992336010000000	78.4459985354;33.9073412273
526	4422,10	-7,30	8732568,55360396000000;4016369,541067840000000	78.4459980132;33.9073602294
527	4421,70	-8,70	8732569,121473390000000;4016372,599546040000000	78.4460031145;33.9073830318
528	4421,04	-8,71	8732572,17995159000000;4016375,658024240000000	78.4460305893;33.9074058342
529	4420,54	-8,78	8732574,21893706000000;4016378,206756070000000	78.4460489058;33.9074248362
530	4419,88	-8,37	8732577,25882802000000;4016381,246646620000000	78.4460762136;33.9074475001
531	4419,21	-8,50	8732581,282342510000000;4016383,377263390000000	78.4461123574;33.9074633848
532	4418,48	-8,33	8732585,49148019000000;4016385,794828480000000	78.4461501688;33.9074814089
533	4417,84	-5,95	8732587,98208895000000;4016389,421176140000000	78.4461725423;33.9075084451
534	4417,62	-5,94	8732588,49183532000000;4016391,460161600000000	78.4461771214;33.9075236467
535	4417,29	-6,07	8732589,24899456000000;4016394,51863980000000	78.4461839231;33.907546449
536	4416,99	-4,34	8732590,006153810000000;4016397,256661460000000	78.4461907248;33.9075668623
537	4416,57	-6,12	8732589,77171354000000;4016402,771621040000000	78.4461886188;33.9076079789
538	4416,05	-7,35	8732591,11361083000000;4016407,436668300000000	78.4462006732;33.9076427589
539	4415,57	-7,55	8732593,341886110000000;4016410,437023420000000	78.4462206902;33.9076651279
540	4415,13	-6,30	8732595,62828445000000;4016412,869509000000000	78.4462412292;33.9076832632
541	4414,77	-6,86	8732596,647777190000000;4016415,927987190000000	78.4462503875;33.9077060656
542	4414,36	-6,30	8732598,17701628000000;4016418,986465390000000	78.4462641249;33.9077288679
543	4414,00	-4,60	8732599,19650902000000;4016422,044943590000000	78.4462732831;33.9077516703
544	4413,72	-7,59	8732599,19650902000000;4016425,613168160000000	78.4462732831;33.907778273
545	4413,31	-7,51	8732601,846566360000000;4016427,084284170000000	78.446297089;33.9077892408
546	4412,55	-7,23	8732605,679083520000000;4016431,397883380000000	78.4463315171;33.9078214006

547	4412,11	-7,61	8732607,60732406000000;4016434,278856390000000	78.4463488388;33.9078428795
548	4411,45	-7,19	8732611,874584810000000;4016436,754544610000000	78.4463871722;33.9078613369
549	4410,94	-7,63	8732615,76326593000000;4016437,905204090000000	78.4464221048;33.9078699155
550	4410,59	-7,64	8732617,99154120000000;4016439,245153330000000	78.4464421218;33.9078799054
551	4410,05	-5,55	8732621,37047596000000;4016441,415305520000000	78.4464724753;33.9078960849
552	4409,75	-6,11	8732621,880222330000000;4016444,473783720000000	78.4464770544;33.9079188872
553	4409,35	-5,42	8732622,89971506000000;4016448,042008290000000	78.4464862127;33.9079454898
554	4409,01	-7,58	8732623,409461430000000;4016451,610232850000000	78.4464907918;33.9079720925
555	4408,72	-6,82	8732624,93870052000000;4016453,139471950000000	78.4465045292;33.9079834936
556	4408,35	-4,86	8732627,997178730000000;4016453,649218320000000	78.446532004;33.907987294
557	4408,00	-6,15	8732632,07514966000000;4016452,629725580000000	78.446568637;33.9079796932
558	4407,83	-6,15	8732633,604388750000000;4016452,629725580000000	78.4465823744;33.9079796932
559	4407,61	-7,58	8732635,64337423000000;4016452,629725580000000	78.4466006909;33.9079796932
560	4407,13	-7,58	8732638,19210606000000;4016455,178457420000000	78.4466235865;33.9079986951
561	4406,94	-7,36	8732639,21159879000000;4016456,197950150000000	78.4466327448;33.9080062959
562	4406,61	-6,96	8732640,74083789000000;4016458,236935620000000	78.4466464822;33.9080214974
563	4406,17	-6,69	8732644,177895710000000;4016459,344392670000000	78.4466773578;33.908029754
564	4405,74	-6,21	8732647,513628010000000;4016460,800588090000000	78.4467073232;33.9080406105
565	4405,25	-6,92	8732651,95525795000000;4016461,80516018000000	78.446747223;33.9080481
566	4404,83	-7,23	8732655,01373615000000;4016463,334399280000000	78.4467746978;33.9080595011
567	4404,56	-7,08	8732656,542975250000000;4016464,863638380000000	78.4467884352;33.9080709023
568	4404,10	-6,49	8732658,58196072000000;4016467,922116580000000	78.4468067517;33.9080937045
569	4403,86	-5,46	8732660,62094618000000;4016468,431862950000000	78.4468250682;33.9080975049
570	4403,72	-7,31	8732662,150185280000000;4016468,431862950000000	78.4468388056;33.9080975049
571	4403,10	-7,24	8732666,251843310000000;4016470,955960020000000	78.4468756515;33.9081163231
572	4402,61	-7,37	8732668,209018610000000;4016474,213442260000000	78.4468932331;33.908140609
573	4402,16	-7,06	8732671,325619880000000;4016475,873848100000000	78.44692123;33.908152988
574	4401,76	-6,08	8732674,38409808000000;4016476,966384430000000	78.4469487047;33.9081611333
575	4401,59	-7,72	8732675,91333718000000;4016477,097551180000000	78.4469624421;33.9081621112
576	4401,25	-6,04	8732677,952322640000000;4016478,626790280000000	78.4469807586;33.9081735123
577	4400,75	-7,84	8732678,53511269000000;4016483,302471840000000	78.4469859939;33.9082083714
578	4400,09	-7,85	8732681,50562659000000;4016487,045065640000000	78.4470126785;33.908236274
579	4399,54	-6,85	8732683,792024940000000;4016490,307754190000000	78.4470332176;33.9082605987
580	4399,24	-8,13	8732684,43293805000000;4016492,710398720000000	78.447038975;33.9082785113
581	4399,00	-7,91	8732685,714764270000000;4016493,861058200000000	78.4470504898;33.90828709
582	4398,65	-8,23	8732687,884916480000000;4016495,011717680000000	78.4470699847;33.9082956686
583	4398,06	-6,84	8732690,695981810000000;4016497,997152200000000	78.4470952369;33.9083179262
584	4397,72	-6,20	8732693,47720590000000;4016498,390652370000000	78.447120221;33.9083208599
585	4397,34	-5,25	8732693,986952270000000;4016501,885833320000000	78.4471248002;33.9083469179
586	4396,95	-7,63	8732694,11811901000000;4016506,094970990000000	78.4471259785;33.9083782987
587	4396,65	-7,81	8732695,44314769000000;4016507,929746020000000	78.4471378814;33.9083919776
588	4396,15	-7,74	8732698,458423440000000;4016509,983652110000000	78.4471649681;33.9084072903
589	4395,66	-5,86	8732701,531822250000000;4016511,891470850000000	78.4471925769;33.9084215138
590	4395,25	-2,30	8732705,478626440000000;4016511,760304100000000	78.4472280316;33.9084205359
591	4395,18	-4,68	8732707,007865540000000;4016510,740811370000000	78.447241769;33.9084129352
592	4395,01	-7,40	8732709,04685100000000;4016510,231065000000000	78.4472600856;33.9084091349
593	4394,65	-7,71	8732711,595582830000000;4016511,250557730000000	78.4472829812;33.9084167356
594	4394,31	-7,65	8732713,63456830000000;4016512,779796830000000	78.4473012977;33.9084281367

	1				
_	595	4393,81	-7,61	8732716,69304650000000;4016514,81878230000000	78.4473287725;33.9084433381
	596	4393,52	-7,39	8732718,22228560000000;4016516,34802140000000	78.4473425099;33.9084547392
	597	4393,19	-7,35	8732719,751524700000000;4016518,387006860000000	78.4473562473;33.9084699406
	598	4392,54	-7,38	8732722,81000290000000;4016522,464977800000000	78.447383722;33.9085003434
	599	4392,39	-5,90	8732723,82949563000000;4016522,974724160000000	78.4473928803;33.9085041438
	600	4391,86	-5,90	8732728,92695929000000;4016522,974724160000000	78.4474386716;33.9085041438
	601	4391,54	-7,45	8732731,98543750000000;4016522,974724160000000	78.4474661464;33.9085041438
	602	4391,06	-6,26	8732735,04391570000000;4016525,013709630000000	78.4474936212;33.9085193452
	603	4390,67	-7,29	8732736,229332720000000;4016528,380670750000000	78.4475042699;33.9085444472
	604	4390,16	-6,39	8732739,12188663000000;4016531,13066603000000	78.4475302542;33.9085649494
	605	4389,81	-4,57	8732742,180364830000000;4016531,640412400000000	78.447557729;33.9085687498
	606	4389,37	-7,22	8732747,55352320000000;4016530,446550470000000	78.4476059969;33.9085598491
	607	4388,89	-7,37	8732750,96229919000000;4016532,23812304000000	78.4476366184;33.908573206
	608	4388,46	-6,67	8732753,394784890000000;4016534,466398210000000	78.4476584698;33.9085898186
	609	4388,04	-7,38	8732754,92402399000000;4016537,757368790000000	78.4476722072;33.908614354
	610	4387.66	-7.22	8732756.96300946000000:4016539.796354260000000	78.4476905237:33.9086295554
	611	4387.34	-6.13	8732758.49224856000000:4016541.835339720000000	78.4477042611:33.9086447568
	612	4386.94	-7.47	8732759.511741290000000:4016545.403564290000000	78.4477134194:33.9086713592
	613	4386.46	-7.48	8732762.36600906000000:4016547.763006310000000	78.4477390597:33.9086889497
	614	4385.87	-7.51	8732765.93423363000000:4016550.442904850000000	78.4477711136:33.9087089294
	615	4385.32	-7.33	8732769.16708102000000:4016553.107882880000000	78.4478001548:33.9087287977
	616	4384.58	-6.54	8732774 29438592000000 4016555 59849162000000	78,4478462141:33,9087473661
	617	4383.88	-6.79	8732780.32337802000000:4016556.574781840000000	78.4479003735:33.9087546447
	618	4383.35	-7.24	8732782.12987123000000:4016560.695955280000000	78.4479166015:33.9087853696
	619	4382.82	-7.54	8732786.01855235000000:4016562.225194390000000	78.4479515341:33.9087967706
	620	4382.42	-6.73	8732788.56728418000000:4016563.754433490000000	78.4479744298:33.9088081716
	621	4382.12	-7.61	8732791.116016010000000:4016564.264179850000000	78.4479973254:33.908811972
	622	4380.59	-7.67	8732800.80119698000000:4016570.381136250000000	78.4480843289:33.908857576
	623	4380.09	-7.69	8732803.859675170000000:4016572.420121720000000	78.4481118036:33.9088727774
	624	4379.60	-7.71	8732806.91815337000000:4016574.45910718000000	78.4481392784:33.9088879787
	625	4379.10	-7.74	8732809.97663158000000:4016576.498092650000000	78.4481667532:33.9089031801
	626	4378.61	-5.30	8732812.52536340000000:4016579.046824480000000	78.4481896488:33.9089221818
	627	4378.11	-7.81	8732817.84039871000000:4016578.377629470000000	78.4482373946:33.9089171927
	628	4377.63	-7.66	8732820.56349975000000:4016580.605904770000000	78.4482618567:33.9089338053
	629	4377.25	-6.52	8732822.296949270000000:4016582.819259440000000	78.4482774285:33.9089503066
	630	4377.00	-3.64	8732822.89465993000000:4016584.916367980000000	78.4482827978:33.9089659412
	631	4376.80	-7.54	8732822,21054437000000,4016587,95992561000000	78,4482766523:33,908988632
	632	4376.34	-7.78	8732824 133283710000000 4016590 887237120000000	78,4482939246:33,9090104561
	633	4376.02	-6.48	8732826.15734856000000:4016592.096019670000000	78.448312107:33.909019468
	634	4375.61	-8.65	8732829.77764116000000.4016592.131840140000000	78 4483446287 33 9090197351
	635	4375.03	-8.04	8732832 405471700000000 4016594 848961840000000	78 4483682349:33 9090399921
	636	4374 45	-8 15	8732834 444457170000000 4016598 417186410000000	78 4483865514:33 9090665944
	637	4374.02	-8.07	8732835 973696270000000.4016600 965918240000000	78 4484002888:33 9090855961
F	638	<u>4</u> 373 51	-8 77	8732839 541920830000000-4016601 6217520000000	78 4484323427:33 9090904855
	639	4373 16	-8.35	8732841 580906300000000 4016602 56820098000000	78.4484506592:33.9090975416
	640	4372 58	-6.12	8732843 736137890000000-4016605 917294630000000	78 44847002.33 9091225102
F	641	A372.30	-5.72	8732844 129638130000000-4016609 12186010000000	78 4484735549.33 9091464013
F	642	A371 87	-4.68	8732844 639384500000000-4016612 690084670000000	78 448478134:33 0001730036
1	J-12		-,00	0.0201,000000000000000000000000000000000	1

643	4371,70	-5,48	8732845,149130870000000;4016614,729070140000000	78.4484827131;33.9091882049
644	4370,91	-7,62	8732848,20760906000000;4016622,375265640000000	78.4485101879;33.9092452097
645	4370,33	-7,07	8732852,532992870000000;4016622,914853160000000	78.4485490435;33.9092492325
646	4369,54	-6,97	8732856,800253610000000;4016627,603896030000000	78.4485873769;33.9092841908
647	4369,15	-7,81	8732858,91228276000000;4016630,021461130000000	78.4486063496;33.9093022145
648	4368,67	-6,90	8732862,160050770000000;4016631,303287320000000	78.4486355248;33.9093117709
649	4368,22	-7,65	8732865,85944208000000;4016630,881505100000000	78.448668757;33.9093086264
650	4367,86	-7,62	8732868,091345580000000;4016632,296372340000000	78.4486888066;33.9093191747
651	4367,29	-7,76	8732871,65594192000000;4016634,609178430000000	78.4487208279;33.9093364174
652	4367,07	-7,71	8732873,18518102000000;4016635,118924800000000	78.4487345653;33.9093402177
653	4366,24	-7,67	8732878,694110670000000;4016637,929654740000000	78.4487840528;33.9093611726
654	4365,52	-6,97	8732883,88985472000000;4016639,196895730000000	78.448830727;33.9093706202
655	4365,07	-7,40	8732887,51620235000000;4016638,891359780000000	78.448863303;33.9093683424
656	4364,40	-3,22	8732891,65229635000000;4016642,007961050000000	78.4489004582;33.9093915776
657	4364,17	-4,84	8732891,92955045000000;4016646,012888310000000	78.4489029488;33.9094214356
658	4363,75	-6,06	8732893,51691262000000;4016650,789895430000000	78.4489172083;33.9094570496
659	4363,22	-6,94	8732896,12376752000000;4016654,99903309000000	78.4489406261;33.90948843
660	4362,96	-6,93	8732897,653006610000000;4016656,528272200000000	78.4489543635;33.9094998309
661	4362,61	-7,50	8732899,69199208000000;4016658,567257660000000	78.44897268;33.9095150321
662	4361,50	-5,21	8732907,08331440000000;4016662,645228590000000	78.4490390774;33.9095454346
663	4361,14	-5,20	8732908,61255350000000;4016666,213453160000000	78.4490528148;33.9095720368
664	4360,79	-4,25	8732910,14179260000000;4016669,781677720000000	78.4490665521;33.9095986389
665	4360,48	-3,30	8732911,161285330000000;4016673,859648660000000	78.4490757104;33.9096290413
666	4360,18	-4,44	8732911,67103170000000;4016678,957112320000000	78.4490802895;33.9096670444
667	4359,89	-2,61	8732912,69052443000000;4016682,525336890000000	78.4490894478;33.9096936465
668	4359,71	-3,92	8732912,690524430000000;4016686,603307820000000	78.4490894478;33.9097240489
669	4359,35	-5,69	8732913,710017160000000;4016691,700771480000000	78.4490986061;33.9097620519
670	4358,94	-5,98	8732915,74900263000000;4016695,268996050000000	78.4491169226;33.909788654
671	4358,55	-7,07	8732917,78798809000000;4016698,327474250000000	78.4491352391;33.9098114558
672	4358,01	-5,86	8732921,35621266000000;4016700,876206080000000	78.449167293;33.9098304572
673	4357,56	-5,90	8732925,434183590000000;4016702,405445180000000	78.449203926;33.9098418581
674	4357,28	-5,93	8732927,98291542000000;4016703,424937910000000	78.4492268217;33.9098494587
675	4356,97	-5,87	8732930,531647250000000;4016704,954177010000000	78.4492497173;33.9098608596
676	4356,59	-5,72	8732934,09987182000000;4016705,973669750000000	78.4492817712;33.9098684602
677	4356,02	-5,31	8732939,690216440000000;4016706,876557810000000	78.4493319902;33.9098751915
678	4355,41	-5,63	8732943,34835009000000;4016712,338039090000000	78.4493648517;33.9099159082
679	4355,04	-4,20	8732945,76591518000000;4016715,265350500000000	78.4493865691;33.9099377321
680	4354,78	-4,24	8732946,72728486000000;4016718,702408380000000	78.4493952052;33.9099633562
681	4354,52	-4,22	8732947,688654520000000;4016722,081343080000000	78.4494038413;33.9099885471
682	4354,26	-5,20	8732948,897437070000000;4016725,270988030000000	78.4494147;33.9100123267
683	4353,88	-5,06	8732951,693581780000000;4016728,460632940000000	78.4494398182;33.9100361063
684	4353,60	-5,47	8732953,58495250000000;4016730,935302880000000	78.4494568087;33.9100545556
685	4353,10	-6,12	8732957,203539310000000;4016734,669117370000000	78.449489315;33.9100823921
686	4352,65	-6,15	8732961,116429250000000;4016736,278143060000000	78.4495244651;33.9100943877
687	4352,20	-5,19	8732965,113595690000000;4016737,429311170000000	78.4495603723;33.91010297
688	4351,89	-5,92	8732968,499272990000000;4016736,737017840000000	78.4495907863;33.9100978088
689	4348,59	-6,32	8733000,269137850000000;4016738,678241700000000	78.4498761799;33.9101122811
690	4345,22	-3,43	8733026,66746359000000;4016753,858968880000000	78.4501133201;33.910225457

	691	4344,89	-0,74	8733031,63681528000000;4016751,578803870000000	78.4501579605;33.9102084578
	692	4344,78	-5,62	8733037,16639949000000;4016744,795198050000000	78.4502076336;33.9101578844
	693	4343,85	-4,49	8733046,483317130000000;4016746,236500910000000	78.4502913289;33.9101686297
	694	4342,44	-3,16	8733064,18142953000000;4016743,193933670000000	78.4504503137;33.9101459466
	695	4342,15	-6,16	8733068,93422782000000;4016741,029922860000000	78.4504930089;33.9101298134
	696	4341,40	-6,28	8733075,29961535000000;4016743,694900870000000	78.4505501901;33.9101496815
	697	4341,15	-6,39	8733077,33860082000000;4016744,71439360000000	78.4505685066;33.910157282
	698	4340,87	-4,75	8733079,37758628000000;4016746,243632700000000	78.4505868231;33.9101686829
	699	4340,13	-3,21	8733088,140527010000000;4016745,339367870000000	78.450665542;33.9101619414
	700	4339,71	-6,24	8733095,17972365000000;4016742,344227830000000	78.4507287762;33.9101396119
	701	4339,20	-6,51	8733099,49018683000000;4016744,039566110000000	78.4507674977;33.910152251
	702	4338,76	-6,55	8733102,30137410000000;4016746,699182770000000	78.450792751;33.9101720791
	703	4338,38	-7,36	8733104,690535410000000;4016748,966733770000000	78.4508142132;33.9101889842
	704	4337,66	-7,41	8733109,45262190000000;4016751,850842730000000	78.4508569918;33.9102104859
	705	4337,07	-7,86	8733113,90917246000000;4016752,506676460000000	78.4508970257;33.9102153753
	706	4336,17	-6,69	8733119,86823967000000;4016755,143372660000000	78.4509505569;33.9102350325
	707	4335,51	-7,74	8733122,638818370000000;4016760,066994580000000	78.4509754454;33.9102717393
	708	4335,05	-4,76	8733125,667455340000000;4016761,581313070000000	78.4510026521;33.9102830289
	709	4334,60	-6,13	8733130,698872340000000;4016759,416821260000000	78.4510478501;33.9102668921
	710	4333,94	-7,11	8733133,22141132000000;4016764,973081520000000	78.4510705105;33.9103083153
	711	4333,33	-7,49	8733136,469179330000000;4016768,672472830000000	78.4510996857;33.910335895
	712	4332,49	-6,74	8733142,076389370000000;4016771,730951030000000	78.4511500561;33.9103586967
	713	4331,81	-7,00	8733147,77156369000000;4016772,008205130000000	78.4512012167;33.9103607637
	714	4330,87	-7,11	8733153,23268636000000;4016777,454407240000000	78.4512502748;33.9104013663
	715	4329,98	-6,71	8733160,09188139000000;4016779,377146530000000	78.451311892;33.9104157007
	716	4329,58	-6,79	8733162,393200340000000;4016781,867755260000000	78.4513325651;33.9104342688
	717	4329,11	-6,91	8733165,26238873000000;4016784,605776940000000	78.4513583395;33.9104546813
	718	4328,22	-6,54	8733171,146852870000000;4016789,004204430000000	78.4514112005;33.9104874725
	719	4327,65	-5,47	8733176,05502672000000;4016789,440907110000000	78.4514552914;33.9104907282
	720	4327,28	-5,30	8733179,79762049000000;4016788,552581120000000	78.4514889117;33.9104841056
	721	4326,94	-6,57	8733183,365845050000000;4016787,533088390000000	78.4515209656;33.910476505
	722	4326,42	-6,63	8733187,822395610000000;4016787,984711670000000	78.4515609994;33.910479872
	723	4325,82	-6,64	8733191,900366540000000;4016791,174356510000000	78.4515976325;33.9105036514
	724	4325,28	-6,76	8733195,759206430000000;4016793,839334620000000	78.451632297:33.9105235194
	725	4324,52	-5,62	8733201,313334750000000;4016796,998963710000000	78.4516821906;33.9105470751
	726	4324.03	-5.87	8733203.88686646000000:4016801.22319663000000	78.451705309:33.9105785676
	727	4323.59	-7.03	8733206.31935216000000:4016804.748218610000000	78.4517271604:33.9106048474
	728	4322.75	-4.91	8733212.93113431000000:4016806.393703950000000	78.4517865551:33.9106171148
	729	4322.40	-6.14	8733214.47529403000000:4016810.25254398000000	78.4518004265:33.9106458832
	730	4322.05	-6.90	8733216.44123581000000:4016812.801275560000000	78.4518180869:33.9106648845
-	731	4321.62	-7.15	8733219.23738052000000:4016814.913304810000000	78.4518432051:33.9106806301
	732	4320.93	-6.46	8733224,53133796000000;4016816.65714534000000	78.4518907615:33.9106936307
	733	4320,47	-6.64	8733227.204032570000000:4016819.64710948000000	78.4519147707:33.9107159215
	734	4320.05	-4.38	8733229 75276440000000 4016822 195841320000000	78 4519376664 33 9107349228
ļ	735	4319 77	-6 40	8733232.927488740000000.4016820.317863580000000	78.4519661854 33.9107209221
ŀ	736	4310 A5	-5 70	8733235 738554050000000-4016820 055530340000000	78 4519914376:33 9107189664
ŀ	737	<u>4310,45</u>	-7 24	8733237 457082970000000-4016823 08416740000000	78 4520068754:33 9107415454
	738	4318 55	-6 70	8733241 476930840000000-4016824 744573150000000	78 4520429863:33 910753924
1	.00	-010,00	5,75	<u></u>	

	739	4318,31	-5,19	8733243,51591630000000;4016824,744573150000000	78.4520613029;33.910753924
	740	4318,06	-4,02	8733246,064648140000000;4016823,725080410000000	78.4520841985;33.9107463235
	741	4317,80	-7,06	8733249,123126330000000;4016821,686094950000000	78.4521116733;33.9107311225
	742	4317,42	-7,18	8733252,181604530000000;4016822,195841320000000	78.4521391481;33.9107349228
	743	4317,16	-6,69	8733254,22059000000000;4016822,705587680000000	78.4521574646;33.910738723
	744	4317,04	-4,26	8733255,24008273000000;4016822,70558768000000	78.4521666228;33.910738723
	745	4316,65	-6,35	8733259,63851022000000;4016820,055530340000000	78.4522061346;33.9107189664
	746	4316,21	-3,34	8733263,60023503000000;4016819,647109670000000	78.4522417234;33.9107159215
	747	4315,88	-4,65	8733267,98374189000000;4016816,078884920000000	78.4522811011;33.9106893197
	748	4315,70	-7,02	8733270,02272736000000;4016815,059392180000000	78.4522994176;33.9106817192
	749	4315,35	-6,54	8733272,76411482000000;4016815,475306160000000	78.4523240439;33.9106848199
	750	4314,72	-6,09	8733276,27831081000000;4016819,705232570000000	78.4523556125;33.9107163548
	751	4314,08	-7,12	8733282,20597740000000;4016818,700660390000000	78.4524088616;33.9107088655
	752	4313,56	-6,77	8733286,32718208000000;4016819,503995110000000	78.452445883;33.9107148546
	753	4313,04	-6,44	8733290,667455210000000;4016819,647109480000000	78.4524848723;33.9107159215
	754	4312,23	-5,57	8733297,614614530000000;4016821,671174440000000	78.4525472797;33.9107310113
	755	4311,86	-5,15	8733301,37212890000000;4016821,701015470000000	78.4525810341;33.9107312338
	756	4311,48	-5,96	8733305,56634596000000;4016821,206189610000000	78.4526187113;33.9107275447
ľ	757	4310,92	-5,79	8733309,076447470000000;4016825,196196400000000	78.4526502431;33.910757291
ľ	758	4310,59	-6,08	8733311,05730986000000;4016827,803051350000000	78.4526680375;33.9107767256
ľ	759	4310,29	-5,87	8733313,096295340000000;4016829,842036810000000	78.452686354;33.9107919266
ľ	760	4309,94	-5,82	8733316,47523008000000;4016830,250457630000000	78.4527167075;33.9107949714
ľ	761	4309,28	-5,35	8733322,89772243000000;4016830,906291070000000	78.4527744018;33.9107998608
ľ	762	4308,92	-6,15	8733326,72828048000000;4016830,673799130000000	78.4528088122;33.9107981275
ľ	763	4308,06	-5,99	8733332,78711381000000;4016835,872588410000000	78.4528632397;33.9108368854
ľ	764	4307,43	-5,67	8733338,37940323000000;4016838,042740680000000	78.4529134761;33.9108530643
ľ	765	4306,76	-4,40	8733343,47686690000000;4016842,426247010000000	78.4529592674;33.9108857441
	766	4306,36	-5,46	8733345,720062780000000;4016847,173413270000000	78.4529794183;33.9109211351
ľ	767	4305,94	-5,43	8733348,77854099000000;4016850,231891470000000	78.4530068931;33.9109439366
ľ	768	4305,46	-4,96	8733352,34676556000000;4016853,800116040000000	78.453038947;33.9109705383
ľ	769	4305,08	-4,16	8733354,895497390000000;4016857,368340600000000	78.4530618427;33.91099714
	770	4304,80	-5,42	8733356,424736490000000;4016860,936565170000000	78.45307558;33.9110237417
	771	4304,49	-5,70	8733359,67250450000000;4016860,966406400000000	78.4531047552;33.9110239641
ľ	772	4303,94	-5,40	8733365.090424720000000:4016861.956057900000000	78.4531534252;33.9110313422
ľ	773	4303,80	-5,51	8733366.619663810000000:4016861.956057900000000	78.4531671626;33.9110313422
	774	4303,41	-5,76	8733369,67814202000000;4016864,504789740000000	78.4531946374;33.9110503434
ľ	775	4303,30	-4,10	8733370,697634750000000;4016865,014536100000000	78.4532037957;33.9110541436
ľ	776	4302,98	-0,68	8733372,474286730000000;4016869,077586420000000	78.4532197556;33.9110844343
ľ	777	4302.93	-5.47	8733371.36562948000000:4016873.262301290000000	78.4532097964:33.911115632
	778	4302.63	-5.58	8733373.75611295000000:4016875.209463430000000	78.4532312704:33.9111301484
ľ	779	4302.24	-2.50	8733377.76104020000000:4016875.850376550000000	78.4532672473:33.9111349265
ŀ	780	4302.01	-5.66	8733378.169461050000000:4016880.991042710000000	78.4532709162:33.9111732509
ľ	781	4301.57	-5.46	8733382.421801180000000;4016882.345912560000000	78.4533091156:33.9111833517
ł	782	4301,33	-3.87	8733384.460786640000000;4016883.87515166000000	78.4533274322:33.9111947524
ŀ	783	4301.06	-4 93	8733385.990025740000000.4016887 443376230000000	78.4533411696.33.911221354
ŀ	784	4300 75	-4 83	8733388 538757580000000.4016889 99210806000000	78 4533640652:33 9112403552
ŀ	785	4300,75	-5 25	8733392 106982150000000-4016894 07007899000000	78 4533961191:33 9112707571
ŀ	786	4300,29	-5 25	8733394 145967610000000-4016895 59931809000000	78 4534144356:33 9112821578
1	.00	-000,00	5,55	<u></u>	

787	4299,72	-5,00	8733397,204445810000000;4016897,638303560000000	78.4534419104;33.9112973587
788	4299,31	-4,95	8733401,792163110000000;4016897,638303560000000	78.4534831226;33.9112973587
789	4298,68	-4,02	8733409,07456220000000;4016897,493706660000000	78.4535485415;33.9112962807
790	4298,32	-4,24	8733410,967597710000000;4016902,226020860000000	78.4535655469;33.9113315607
791	4297,83	-5,41	8733413,72053996000000;4016908,269933590000000	78.453590277;33.9113766189
792	4297,26	-5,69	8733418,17709052000000;4016912,274860990000000	78.4536303109;33.9114064762
793	4296,92	-5,73	8733421,16252503000000;4016913,950187290000000	78.4536571295;33.911418966
794	4296,32	-5,51	8733426,361314220000000;4016916,993744870000000	78.453703831;33.9114416561
795	4295,77	-2,46	8733430,45033309000000;4016920,965813190000000	78.4537405633;33.9114712683
796	4295,60	-3,35	8733430,382721470000000;4016924,960396950000000	78.4537399559;33.9115010484
797	4295,26	-5,50	8733431,28596808000000;4016930,683853150000000	78.4537480699;33.9115437175
798	4294,85	-5,41	8733434,140235860000000;4016933,873498040000000	78.4537737103;33.9115674967
799	4294,41	-5,68	8733437,03373659000000;4016937,489787530000000	78.453799703;33.9115944565
800	4294,01	-5,97	8733441,042633330000000;4016937,908266510000000	78.4538357155;33.9115975763
801	4293,13	-6,14	8733447,66933609000000;4016943,00573018000000	78.4538952442;33.9116355785
802	4292,69	-5,14	8733451,23756066000000;4016945,044715650000000	78.4539272981;33.9116507793
803	4291,55	-3,61	8733457,937307100000000;4016955,749389340000000	78.453987483;33.9117305838
804	4291,19	-5,07	8733459,08796658000000;4016961,414722470000000	78.4539978195;33.9117728194
805	4290,87	-5,72	8733460,92274163000000;4016964,41507758000000	78.4540143016;33.9117951874
806	4290,44	-4,97	8733463,98121982000000;4016967,473555770000000	78.4540417764;33.9118179886
807	4290,08	-6,09	8733466,020205290000000;4016971,041780340000000	78.4540600929;33.9118445901
808	4289,67	-3,48	8733469,58842986000000;4016972,45477330000000	78.4540921468;33.9118551241
809	4289,35	-5,18	8733474,161226540000000;4016969,761513490000000	78.4541332249;33.9118350456
810	4288,75	-5,16	8733480,78792930000000;4016969,281607840000000	78.4541927536;33.9118314678
811	4288,24	-5,63	8733484,356153870000000;4016973,708317660000000	78.4542248075;33.9118644693
812	4287,78	-3,21	8733488,43412480000000;4016975,80542600000000	78.4542614406;33.9118801035
813	4287,43	-5,33	8733493,866965640000000;4016972,602420330000000	78.4543102446;33.9118562248
814	4286,94	-5,51	8733499,080675430000000;4016973,170289360000000	78.4543570801;33.9118604583
815	4286,24	-5,19	8733505,91158862000000;4016975,499889960000000	78.4544184433;33.9118778257
816	4285,80	-3,65	8733510,81976248000000;4016975,80542600000000	78.4544625342;33.9118801035
817	4285,63	-5,26	8733513,10616082000000;4016974,654766700000000	78.4544830732;33.9118715252
818	4285,31	-3,51	8733516,601341710000000;4016975,018425770000000	78.454514471;33.9118742363
819	4285,13	-4,30	8733519,10687108000000;4016973,60543283000000	78.4545369785;33.9118637023
820	4284,88	-4,51	8733522,26667480000000;4016972,58593998000000	78.4545653635;33.9118561019
821	4284,57	-4,43	8733526,170276540000000;4016971,551526710000000	78.4546004302;33.9118483903
822	4284,03	-4,40	8733532,79697930000000;4016969,512541240000000	78.4546599589;33.9118331894
823	4283,90	-4,65	8733534,32621840000000;4016969,002794870000000	78.4546736962;33.9118293892
824	4283,73	-3,46	8733536,365203870000000;4016968,493048510000000	78.4546920128;33.911825589
825	4283,62	-4,60	8733537,894442970000000;4016967,473555770000000	78.4547057502;33.9118179886
826	4283,32	-5,22	8733541,46266753000000;4016966,45406304000000	78.4547378041;33.9118103882
827	4282,90	-4,96	8733546,05038483000000;4016966,454063040000000	78.4547790162;33.9118103882
828	4282,32	-5,24	8733552,67708759000000;4016965,434570310000000	78.4548385449;33.9118027878
829	4281,90	-5,23	8733557,26480490000000;4016965,434570310000000	78.4548797571;33.9118027878
830	4281,69	-5,35	8733559,30379036000000;4016966,454063040000000	78.4548980736;33.9118103882
831	4281,45	-5,21	8733561,85252220000000;4016966,963809410000000	78.4549209692;33.9118141884
832	4280,57	-4,84	8733571,53770316000000;4016966,963809410000000	78.4550079727;33.9118141884
833	4280,35	-5,14	8733574,08643499000000;4016966,454063040000000	78.4550308683;33.9118103882
834	4280,25	-5,26	8733575,105927720000000;4016966,454063040000000	78.4550400266;33.9118103882

835	4279,07	-5,17	8733587,33984052000000;4016970,532033970000000	78.4551499257;33.9118407899
836	4278,39	-5,08	8733593,96654329000000;4016974,100258540000000	78.4552094544;33.9118673913
837	4278,06	-5,11	8733597,02502149000000;4016976,139244000000000	78.4552369292;33.9118825921
838	4277,73	-5,04	8733600,08349968000000;4016978,178229470000000	78.455264404;33.9118977929
839	4277,51	-5,04	8733602,122485150000000;4016979,707468570000000	78.4552827205;33.9119091935
840	4276,64	-5,07	8733609,76868065000000;4016985,824424970000000	78.4553514074;33.911954796
841	4276,06	-5,60	8733614,808021240000000;4016990,076765190000000	78.4553966766;33.9119864975
842	4275,48	-4,40	8733620,284064530000000;4016992,231996860000000	78.4554458687;33.9120025649
843	4275,02	-2,33	8733625,824765970000000;4016989,948561240000000	78.4554956417;33.9119855417
844	4274,83	-5,46	8733629,01374789000000;4016986,330510970000000	78.4555242888;33.9119585689
845	4274,40	-5,63	8733632,838433880000000;4016988,678692820000000	78.4555586465;33.9119760748
846	4274,16	-5,62	8733635,051788550000000;4016989,625141930000000	78.4555785294;33.9119831306
847	4273,85	-3,95	8733638,18331043000000;4016990,207931970000000	78.4556066604;33.9119874754
848	4273,43	-5,35	8733640,773158560000000;4016995,650997860000000	78.4556299254;33.9120280538
849	4272,79	-5,10	8733645,960672670000000;4017000,097323230000000	78.4556765256;33.9120612015
850	4272,18	-4,67	8733650,548389970000000;4017005,194786900000000	78.4557177378;33.9120992035
851	4271,87	-5,56	8733652,60229605000000;4017008,326308770000000	78.4557361883;33.9121225492
852	4271,60	-5,38	8733654,784057840000000;4017010,129490900000000	78.4557557874;33.912135992
853	4271,17	-5,98	8733658,00529566000000;4017013,350728760000000	78.4557847243;33.9121600066
854	4270,56	-4,11	8733663,248846680000000;4017015,899460560000000	78.4558318279;33.9121790075
855	4270,07	-3,60	8733669,42392615000000;4017018,753728470000000	78.4558872996;33.9122002862
856	4269,72	-3,99	8733675,016215560000000;4017018,957938790000000	78.455937536;33.9122018086
857	4269,45	-3,94	8733678,453273380000000;4017020,603424120000000	78.4559684116;33.9122140758
858	4268,92	-3,31	8733685,444747700000000;4017023,936990550000000	78.4560312171;33.9122389278
859	4268,58	-3,19	8733688,48502198000000;4017028,948655630000000	78.4560585283;33.91227629
860	4268,24	-3,76	8733691,44217466000000;4017034,235409280000000	78.4560850929;33.912315703
861	4267,91	-3,48	8733695,97655570000000;4017036,387865260000000	78.4561258259;33.9123317497
862	4267,66	-3,69	8733700,121224110000000;4017036,799061620000000	78.4561630581;33.9123348152
863	4267,38	-3,52	8733703,93686156000000;4017038,779924030000000	78.4561973346;33.9123495826
864	4267,13	-3,49	8733707,05346282000000;4017041,517945640000000	78.4562253315;33.9123699947
865	4266,84	-3,37	8733710,63660800000000;4017044,561503280000000	78.4562575194;33.9123926845
866	4266,59	-3,25	8733714,90386875000000;4017044,955003550000000	78.4562958529;33.9123956181
867	4266,25	-3,44	8733720,876297170000000;4017044,984844610000000	78.4563495041;33.9123958406
868	4265,82	-2,76	8733727,793615270000000;4017046,397837840000000	78.4564116434;33.9124063745
869	4265,48	-3,38	8733731,434883510000000;4017052,543075870000000	78.4564443535;33.9124521875
870	4264,93	-3,32	8733740,128853580000000;4017056,053177310000000	78.4565224528;33.9124783554
871	4264,62	-3,73	8733745,037027430000000;4017057,917793710000000	78.4565665436;33.9124922562
872	4264,21	-3,55	8733750,265657850000000;4017061,486018050000000	78.4566135132;33.9125188574
873	4263,93	-3,58	8733752,04230982000000;4017065,534147970000000	78.4566294732;33.9125490364
874	4263,73	-2,77	8733753,382259110000000;4017068,592626170000000	78.4566415101;33.9125718374
875	4263,56	-3,25	8733753,64459260000000;4017071,971560910000000	78.4566438667;33.9125970275
876	4263,32	-3,55	8733754,664085330000000;4017076,049531840000000	78.456653025;33.9126274288
877	4263,05	-3,73	8733756,193324430000000;4017080,127502780000000	78.4566667624;33.9126578302
878	4262,67	-3,93	8733758,43702768000000;4017085,531831860000000	78.4566869179;33.9126981196
879	4262,37	-4,32	8733760,53362885000000;4017089,361060450000000	78.456705752;33.9127266665
880	4262.03	-4,31	8733764,02880974000000;4017092,230248850000000	78.4567371497;33.9127480564
881	4261,58	-4,21	8733768,87886053000000;4017095,813393900000000	78.4567807185;33.9127747688
882	4261,35	-4,24	8733770,97596906000000;4017097,968625600000000	78.4567995571;33.912790836

883	4260,91	-3,89	8733775,50556329000000;4017101,842386170000000	78.4568402472;33.9128197149
884	4260,34	-4,11	8733783,719628220000000;4017103,575835630000000	78.4569140354;33.9128326378
885	4259,80	-4,00	8733788,994579870000000;4017108,993755840000000	78.4569614211;33.9128730284
886	4259,01	-4,07	8733799,65361496000000;4017112,752381660000000	78.4570571728;33.912901049
887	4258,36	-3,93	8733807,68816324000000;4017116,969271490000000	78.4571293484;33.9129324859
888	4257,77	-3,93	8733815,83364932000000;4017119,887719360000000	78.4572025205;33.9129542429
889	4257,17	-3,94	8733821,950605710000000;4017126,004675760000000	78.4572574701;33.9129998448
890	4256,67	-3,87	8733828,50426480000000;4017129,209241350000000	78.4573163426;33.9130237348
891	4256,28	-3,48	8733833,849141330000000;4017131,336191230000000	78.4573643564;33.9130395911
892	4256,01	-3,89	8733838,29077128000000;4017131,744611820000000	78.4574042563;33.9130426359
893	4255,55	-4,41	8733844,087271120000000;4017135,123546410000000	78.4574563271;33.9130678258
894	4254,79	-5,22	8733852,24321298000000;4017140,832082100000000	78.4575295932;33.9131103829
895	4254,07	-5,33	8733859,917690310000000;4017142,303198420000000	78.4575985342;33.91312135
896	4253,28	-5,30	8733867,79637808000000;4017145,318473370000000	78.4576693097;33.9131438288
897	4252,56	-5,24	8733874,67049372000000;4017149,07598803000000	78.4577310609;33.913171841
898	4252,06	-5,32	8733879,95724719000000;4017150,168524100000000	78.4577785526;33.9131799858
899	4251,51	-5,27	8733885,24400067000000;4017152,833502660000000	78.4578260443;33.9131998532
900	4250,88	-5,30	8733891,09584145000000;4017156,371885940000000	78.4578786123;33.9132262317
901	4250,03	-5,12	8733899,87340918000000;4017158,951555680000000	78.4579574625;33.9132454631
902	4249,08	-5,20	8733910,46464398000000;4017160,099559170000000	78.4580526052;33.9132540214
903	4247,72	-5,25	8733925,17424493000000;4017162,633370450000000	78.4581847438;33.9132729109
904	4246,82	-5,24	8733934,68505670000000;4017164,715558620000000	78.4582701809;33.9132884335
905	4246,10	-2,53	8733942,093450910000000;4017167,358367870000000	78.4583367316;33.9133081356
906	4245,85	-3,68	8733947,60308506000000;4017166,274638720000000	78.4583862255;33.9133000564
907	4245,56	-3,53	8733951,68105600000000;4017168,313624180000000	78.4584228585;33.913315257
908	4245,04	-3,31	8733959,83699785000000;4017170,352609650000000	78.4584961246;33.9133304575
909	4244,82	-3,13	8733963,405222420000000;4017171,881848750000000	78.4585281785;33.913341858
910	4244,13	0,00	8733975,49304786000000;4017175,318906590000000	78.4586367653;33.9133674811

Tabelle 10: Längsprofildaten des Unbenannten Pangong Tso Gletscher II Gletscherbaches.

	Profilhöhe über	Gefälle in		
Nr.	dem Meer (m)	Grad	WGS 84/Pseudo Mercator (EPSG: 3857) in Ost;Nord	WGS 84 (EPSG: 4326) in Ost;Nord
1	5337,92	-1,38	8727750,26967419000000;4016304,399925440000000	78.4027146323;33.9068745693
2	5337,50	-5,73	8727767,914241190000000;4016304,399925910000000	78.4028731361;33.9068745693
3	5336,02	-6,39	8727778,97501452000000;4016314,143939670000000	78.4029724967;33.906947216
4	5334,08	-10,47	8727794,24941580000000;4016322,30784380000000	78.403109709;33.9070080821
5	5329,85	-12,04	8727805,83689264000000;4016342,059224760000000	78.4032138011;33.9071553387
6	5326,95	-12,73	8727815,05420375000000;4016352,066591120000000	78.4032966016;33.9072299486
7	5323,85	-12,65	8727823,48145963000000;4016362,864012710000000	78.4033723049;33.9073104487
8	5319,59	-12,40	8727834,01552948000000;4016378,665117480000000	78.4034669341;33.9074282535
9	5316,71	-19,95	8727843,101164720000000;4016388,145780180000000	78.4035485517;33.9074989364
10	5312,00	-19,97	8727849,42160663000000;4016399,469904880000000	78.4036053292;33.907583363
11	5307,22	-20,81	8727849,42160663000000;4016412,637492670000000	78.4036053292;33.9076815335
12	5301,52	-21,27	8727852,05512409000000;4016427,385190410000000	78.4036289865;33.9077914842
13	5295,88	-20,31	8727858,112214250000000;4016440,552777840000000	78.4036833983;33.9078896544
14	5291,30	-21,83	8727858,11221426000000;4016452,930309640000000	78.4036833983;33.9079819342

	15	5284,99	-21,15	8727862,852545680000000;4016467,941359410000000	78.4037259814;33.908093848
	16	5280,29	-19,99	8727863,90595268000000;4016480,055539810000000	78.4037354443;33.9081841642
	17	5275,20	-22,26	8727863,115897430000000;4016494,013182310000000	78.4037283471;33.9082882241
	18	5269,36	-21,73	8727870,226394580000000;4016506,390714390000000	78.4037922218;33.9083805036
	19	5262,59	-21,08	8727878,65365046000000;4016521,138412550000000	78.4038679251;33.9084904534
	20	5255,44	-20,29	8727889,58274792000000;4016536,149461510000000	78.4039661029;33.9086023665
	21	5248,88	-9,50	8727901,170224760000000;4016549,580400490000000	78.404070195;33.9087024991
	22	5246,98	-7,57	8727912,494349840000000;4016550,107102840000000	78.4041719213;33.9087064258
	23	5245,37	-18,73	8727923,81847493000000;4016554,320729030000000	78.4042736477;33.90873784
	24	5237,83	-19,54	8727930,92897208000000;4016575,388870140000000	78.4043375224;33.9088949105
	25	5232,11	-19,44	8727932,245730810000000;4016591,453327040000000	78.404349351;33.9090146765
	26	5225,70	-19,24	8727931,98237906000000;4016609,624597220000000	78.4043469853;33.9091501494
	27	5221,57	-20,41	8727929,61221334000000;4016621,212075450000000	78.4043256937;33.9092365378
	28	5216,65	-19,86	8727932,509082550000000;4016634,116311290000000	78.4043517167;33.9093327429
	29	5211,56	-19,12	8727937,51276573000000;4016647,283896610000000	78.4043966656;33.9094309113
	30	5202,91	-19,86	8727948,57353907000000;4016669,668796140000000	78.4044960262;33.9095977973
	31	5197,39	-19,97	8727952,523815270000000;4016684,416494560000000	78.4045315121;33.9097077456
	32	5192,51	-19,70	8727952,26046352000000;4016697,847433940000000	78.4045291464;33.9098078769
	33	5186,66	-16,85	8727956,47409145000000;4016713,648536080000000	78.4045669981;33.9099256783
	34	5180,28	-14,11	8727963,057885110000000;4016733,663270950000000	78.4046261413;33.9100748932
	35	5177,02	-15,41	8727969,37832702000000;4016744,987396120000000	78.4046829188;33.9101593173
	36	5174,18	-15,73	8727971,74849273000000;4016754,994762460000000	78.4047042103;33.9102339246
	37	5169,14	-16,14	8727974,64536194000000;4016772,639329570000000	78.4047302334;33.9103654688
	38	5166,28	-16,59	8727978,858989880000000;4016781,593289040000000	78.404768085;33.9104322226
	39	5161,81	-17,40	8727986,49619052000000;4016794,497524420000000	78.4048366912;33.9105284264
	40	5157,48	-18,52	8727993,606687670000000;4016806,348353470000000	78.4049005659;33.9106167767
	41	5149,99	-8,69	8728003,61405402000000;4016826,363085760000000	78.4049904636;33.9107659904
	42	5146,45	-8,20	8728018,62510356000000;4016844,007652800000000	78.4051253101;33.9108975338
	43	5142,87	-11,47	8728029,949228640000000;4016866,129199690000000	78.4052270365;33.9110624536
	44	5138,32	-14,12	8728038,37648452000000;4016886,933987630000000	78.4053027398;33.9112175565
	45	5134,56	-16,77	8728048,120499130000000;4016898,258112570000000	78.4053902718;33.9113019794
	46	5127,91	-19,97	8728064,975010880000000;4016912,479106860000000	78.4055416784;33.9114079989
	47	5123,51	-22,72	8728073,13891502000000;4016921,433066390000000	78.405615016;33.9114747518
	48	5113,99	-17,42	8728088,41331629000000;4016938,287578140000000	78.4057522283;33.9116004041
	49	5108,00	-6,97	8728100,52749662000000;4016953,035275930000000	78.4058610518;33.9117103498
	50	5103,96	-10,69	8728128,311105840000000;4016970,943194670000000	78.4061106362;33.9118438551
	51	5099,87	-11,54	8728148,062486810000000;4016979,897154040000000	78.4062880659;33.9119106077
	52	5094,09	-14,73	8728168,07721952000000;4016999,911886750000000	78.4064678613;33.9120598191
	53	5089,93	-15,33	8728183,84393516000000;4017000,782098080000000	78.4066094961;33.9120663066
	54	5082,91	-16,93	8728205,713635750000000;4017014,098491960000000	78.406805955;33.9121655812
	55	5079,68	-18,68	8728215,21718209000000;4017018,873212480000000	78.4068913268;33.912201177
	56	5074,18	-19,04	8728229,70152813000000;4017026,247061370000000	78.4070214419;33.9122561495
	57	5070,01	-17,01	8728241,28900496000000;4017029,670634070000000	78.407125534;33.9122816724
	58	5064,37	-19,89	8728259,72362720000000;4017030,724041060000000	78.407291135;33.9122895256
	59	5061,73	-25,71	8728266,834124340000000;4017032,304151540000000	78.4073550097;33.9123013054
	60	5053.19	-10.75	8728280,83190885000000;4017043.204612710000000	78.4074807539;33.9123825689
ļ	61	5051.66	-23.89	8728288,72095558000000:4017041.670269050000000	78.4075516224;33.9123711303
ļ	62	5045.48	-20.89	8728300,04508066000000:4017049.83417423000000	78.4076533488;33.9124319925
1		-, -		, .,	

63	5040,46	-19,48	8728312,26230056000000;4017054,689049960000000	78.4077630979;33.9124681858
64	5035,58	-8,71	8728325,476038340000000;4017058,673842900000000	78.407881799;33.9124978926
65	5032,86	-7,16	8728340,96764090000000;4017067,329933780000000	78.4080209624;33.912562424
66	5030,83	-15,49	8728353,87187646000000;4017077,073948390000000	78.4081368831;33.9126350659
67	5028,22	-9,41	8728363,260877570000000;4017076,375554760000000	78.4082212259;33.9126298593
68	5026,54	-11,71	8728371,77979520000000;4017081,814279820000000	78.4082977527;33.9126704052
69	5023,82	-14,60	8728384,10018250000000;4017086,291259500000000	78.4084084286;33.9127037811
70	5020,28	-13,13	8728397,576888510000000;4017084,527953360000000	78.4085294919;33.9126906356
71	5018,41	-14,40	8728405,488818710000000;4017086,027907760000000	78.408600566;33.9127018178
72	5016,02	-14,22	8728414,70612982000000;4017084,974500770000000	78.4086833665;33.9126939647
73	5013,03	-12,52	8728426,29360666000000;4017082,604335060000000	78.4087874586;33.912676295
74	5010,01	-13,10	8728438,934490470000000;4017087,608018230000000	78.4089010136;33.9127135976
75	5006,58	-11,59	8728452,308284760000000;4017081,459394090000000	78.4090211524;33.9126677595
76	5004,31	-11,61	8728461,31938890000000;4017087,871369980000000	78.4091021005;33.9127155609
77	5001,17	-9,58	8728476,59379018000000;4017088,134721730000000	78.4092393128;33.9127175242
78	4999,07	-9,95	8728487,917915270000000;4017093,401756650000000	78.4093410392;33.91275679
79	4996,83	-10,84	8728500,62463702000000;4017094,191811890000000	78.4094551856;33.9127626798
80	4995,00	-11,23	8728509,841948130000000;4017096,825329350000000	78.4095379861;33.9127823127
81	4992,00	-9,48	8728524,58964592000000;4017099,985550310000000	78.4096704669;33.9128058722
82	4989,40	-12,93	8728540,12739895000000;4017098,40543983000000	78.4098100449;33.9127940925
83	4986,35	-11,09	8728552,50493102000000;4017103,145771260000000	78.4099212342;33.9128294317
84	4985,06	-15,26	8728559,088724670000000;4017103,409123010000000	78.4099803774;33.912831395
85	4981,69	-12,62	8728566,72592532000000;4017113,153137620000000	78.4100489836;33.9129040366
86	4978,67	-15,70	8728580,156864380000000;4017114,206544600000000	78.4101696357;33.9129118898
87	4975,24	-18,10	8728591,466799140000000;4017118,798069490000000	78.4102712346;33.9129461196
88	4970,42	-9,95	8728601,02749026000000;4017130,007649370000000	78.4103571198;33.9130296869
89	4969,29	-19,01	8728607,347932170000000;4017128,690890640000000	78.4104138973;33.9130198705
90	4967,40	-15,75	8728610,519658770000000;4017133,167870330000000	78.4104423894;33.9130532463
91	4963,71	-11,10	8728623,412388680000000;4017135,480763480000000	78.4105582067;33.9130704889
92	4962,71	-19,07	8728628,416071860000000;4017134,747980810000000	78.4106031556;33.913065026
93	4958,28	-21,05	8728640,00354869000000;4017140,27836748000000	78.4107072476;33.9131062549
94	4953,78	-8,68	8728649,48421156000000;4017147,125512880000000	78.4107924139;33.9131573003
95	4951,95	-14,96	8728661,335040140000000;4017145,808754140000000	78.4108988717;33.9131474838
96	4948,16	-20,16	8728674,502627440000000;4017151,075789070000000	78.4110171581;33.9131867495
97	4943,36	-16,91	8728683,78577650000000;4017160,293100190000000	78.4111005501;33.9132554642
98	4940,74	-17,53	8728691,686328880000000;4017163,716672880000000	78.411171522;33.9132809869
99	4935,68	-12,23	8728706,434026660000000;4017170,037114790000000	78.4113040028;33.9133281055
100	4934,36	-4,48	8728712,491116830000000;4017170,563818290000000	78.4113584146;33.9133320321
101	4933,51	-6,45	8728719,338262230000000;4017178,991074160000000	78.4114199235;33.9133948569
102	4932,88	-10,37	8728723,551890170000000;4017182,677998610000000	78.4114577752;33.9134223428
103	4930,21	-9,37	8728737,50953272000000;4017186,891626550000000	78.4115831588;33.9134537552
104	4929,20	-7,90	8728742,776567640000000;4017190,051847500000000	78.4116304734;33.9134773145
105	4927,36	-10,69	8728751,730527010000000;4017199,795862110000000	78.4117109082;33.9135499556
106	4925,90	-10,32	8728758,05096892000000;4017204,27284180000000	78.4117676857;33.9135833312
107	4924,37	-13,83	8728764,37141083000000;4017209,757461440000000	78.4118244632;33.9136242187
108	4921,62	-13,93	8728775,49802210000000;4017210,856635460000000	78.4119244152;33.9136324129
109	4920,11	-10,35	8728781,555112270000000;4017211,383338950000000	78.411978827;33.9136363395
110	4916,32	-13,60	8728794,72269958000000;4017227,447795470000000	78.4120971134;33.9137560989

1				
111	4914,71	-15,20	8728800,25308625000000;4017231,134719910000000	78.4121467937;33.9137835846
112	4912,56	-14,55	8728807,89028689000000;4017233,241533880000000	78.4122153999;33.9137992907
113	4908,69	-14,86	8728822,637984670000000;4017231,134719910000000	78.4123478807;33.9137835846
114	4905,54	-13,46	8728834,48881325000000;4017230,608016420000000	78.4124543385;33.9137796581
115	4903,97	-6,78	8728841,072606910000000;4017230,871368160000000	78.4125134817;33.9137816213
116	4902,57	-9,36	8728852,791759610000000;4017229,817961180000000	78.4126187567;33.9137737683
117	4899,05	-7,27	8728870,69967835000000;4017241,405438010000000	78.4127796262;33.913860152
118	4895,50	-10,40	8728898,476895540000000;4017239,527714450000000	78.4130291532;33.9138461537
119	4885,99	-13,84	8728948,514238680000000;4017252,798341560000000	78.4134786463;33.9139450851
120	4863,83	-12,15	8729035,524024310000000;4017275,804801620000000	78.4142602685;33.9141165959
121	4848,29	-7,27	8729105,317703590000000;4017294,259110900000000	78.4148872358;33.9142541707
122	4836,81	-9,55	8729191,01194091000000;4017321,763613970000000	78.4156570403;33.9144592132
123	4821,66	-9,43	8729276,706178240000000;4017349,268117040000000	78.4164268447;33.9146642553
124	4815,74	-9,86	8729310,69460830000000;4017360,177075550000000	78.4167321679;33.9147455798
125	4807,62	-10,45	8729356,91283976000000;4017366,497517450000000	78.4171473534;33.9147926977
126	4791,60	-10,55	8729443,727126410000000;4017364,528260250000000	78.4179272194;33.9147780172
127	4786,05	-7,99	8729473,41709546000000;4017361,345281560000000	78.4181939289;33.9147542886
128	4779,47	-7,34	8729519,41237282000000;4017352,516863630000000	78.4186071115;33.9146884742
129	4775,04	-9,90	8729553,03548740000000;4017345,246309940000000	78.4189091531;33.9146342733
130	4759,34	-11,45	8729640,432078790000000;4017323,755944310000000	78.41969425;33.9144740658
131	4758,96	-10,39	8729642,25445675000000;4017323,30783108000000	78.4197106207;33.9144707252
132	4748,37	-9,53	8729699,97425612000000;4017325,712258710000000	78.4202291265;33.9144886498
133	4742,78	-7,92	8729733,24248506000000;4017326,994755520000000	78.4205279801;33.9144982107
134	4730,25	-6,55	8729823,03306990000000;4017333,13078638000000	78.4213345827;33.9145439539
135	4727,28	-9,42	8729848,85390164000000;4017334,895307910000000	78.4215665351;33.9145571082
136	4716,13	-11,36	8729914,296810570000000;4017319,884258380000000	78.4221544188;33.9144452029
137	4706,37	-11,23	8729960,38336615000000;4017304,346505350000000	78.4225684214;33.914329371
138	4697,49	-14,99	8730004,935578210000000;4017300,350462050000000	78.4229686407;33.914299581
139	4684,01	-1,42	8730047,552794140000000;4017273,534351050000000	78.4233514777;33.91409967
140	4683,27	-4,92	8730058,47626662000000;4017245,951699090000000	78.4234496049;33.913894044
141	4680,96	-5,35	8730085,22359950000000;4017243,64981803000000	78.4236898803;33.9138768836
142	4678,62	-8,21	8730110,098833860000000;4017241,405438010000000	78.4239133383;33.913860152
143	4676,06	-5,02	8730120,35804630000000;4017226,886830310000000	78.4240054984;33.9137519169
144	4674,38	-8,29	8730139,31937202000000;4017229,600376520000000	78.4241758308;33.9137721462
145	4670,11	-12,43	8730164,085941830000000;4017214,016856410000000	78.4243983127;33.9136559722
146	4667,35	-9,72	8730167,807127570000000;4017202,017221260000000	78.4244317407;33.9135665157
147	4663,09	-16,79	8730191,73787518000000;4017195,318882430000000	78.4246467143;33.9135165799
148	4655,69	-3,71	8730206,714663410000000;4017175,922387110000000	78.4247812531;33.91337198
149	4654,27	-6,61	8730216,74136056000000;4017156,368860700000000	78.4248713244;33.9132262092
150	4651,95	-1,75	8730235,95744586000000;4017150,812436970000000	78.4250439454;33.9131847862
151	4650,94	-9,59	8730258,59495742000000;4017126,53830958000000	78.4252473017;33.913003823
152	4648,29	-4,02	8730274,04092085000000;4017129,171827170000000	78.4253860551;33.9130234558
153	4646,49	-11,36	8730285,22212009000000;4017106,145680090000000	78.4254864975;33.912851796
154	4639,40	-8,39	8730320,20033658000000;4017111,026095720000000	78.4258007122;33.9128881795
155	4635,41	-9,25	8730331,221502740000000;4017086,369452010000000	78.425899717;33.912704364
156	4632,17	-5,24	8730350,68880738000000;4017082,184506350000000	78.4260745948;33.9126731652
157	4630,72	-8,68	8730365,60193096000000;4017087,424694940000000	78.4262085617;33.9127122309
158	4626,59	-11,43	8730392,543581640000000;4017085,237852520000000	78.4264505826;33.912695928

	1				
	159	4620,49	-4,80	8730420,698695810000000;4017074,360403040000000	78.4267035043;33.9126148363
	160	4618,31	-13,18	8730446,003986120000000;4017079,970817670000000	78.4269308256;33.9126566621
	161	4611,06	-8,43	8730471,45245796000000;4017062,29173440000000	78.4271594331;33.9125248641
	162	4608,41	1,25	8730489,330972440000000;4017061,538437210000000	78.4273200385;33.9125192482
	163	4608,98	-5,25	8730505,962403170000000;4017041,338266820000000	78.4274694412;33.9123686552
	164	4607,48	-5,99	8730522,014365340000000;4017038,235389460000000	78.4276136385;33.9123455231
	165	4603,38	1,39	8730560,84257480000000;4017033,633263110000000	78.4279624382;33.912311214
	166	4604,37	-7,03	8730590,02939419000000;4017005,018736730000000	78.4282246279;33.912097891
	167	4596,34	-11,53	8730654,831565750000000;4016997,943013280000000	78.4288067557;33.912045141
	168	4585,41	-2,56	8730703,758245860000000;4017019,798066390000000	78.4292462715;33.9122080718
	169	4583,21	-9,75	8730752,98084395000000;4017020,957016040000000	78.4296884456;33.9122167119
	170	4571,51	-5,85	8730816,583561510000000;4017045,365820160000000	78.4302597986;33.9123986808
	171	4567,26	-18,36	8730857,49108954000000;4017038,624593450000000	78.4306272772;33.9123484246
	172	4562,17	0,66	8730870,13197336000000;4017047,315201070000000	78.4307408321;33.9124132135
	173	4562.35	-12.86	8730884.879671150000000:4017041.784814400000000	78.430873313:33.9123719842
	174	4558.36	0.98	8730900.348901580000000:4017049.948718530000000	78.4310122754:33.9124328465
	175	4558.69	-8.76	8730919.37874990000000:4017046.26179408000000	78.4311832235:33.9124053603
	176	4552.00	-7.79	8730948.874145470000000:4017078.127355370000000	78.4314481851:33.9126429191
	177	4539.73	-13.21	8731024.45609663000000:4017126.320724930000000	78.4321271493:33.9130022009
	178	4532.08	-15.65	8731047.81999878000000:4017149.060509250000000	78.4323370308:33.9131717256
	179	4526.58	-4.36	8731061.720368710000000:4017162.926617650000000	78.4324619:33.913275097
	180	4524,41	-2.89	8731076.994769990000000.4017186.891626550000000	78,4325991123:33,9134537552
	181	4523.24	-6.96	8731094.375985240000000:4017202.429379580000000	78.4327552504:33.9135695883
	182	4520.35	-9.25	8731115.707476680000000:4017212.700097680000000	78.4329468744:33.9136461558
	183	4515.77	-7.47	8731143.39367132000000:4017217.588982350000000	78.4331955837:33.9136826021
	184	4513.58	-9.98	8731150.69874195000000:4017232.576767700000000	78.4332612063:33.913794335
	185	4508,70	-8,76	8731173,20943558000000;4017248,87005900000000	78.4334634233;33.9139158001
	186	4506.22	-9.09	8731189.06755728000000:4017251.583598820000000	78.4336058792:33.9139360293
	187	4502,24	-9,72	8731213,503019790000000;4017256,164641110000000	78.4338253867;33.9139701805
	188	4499,12	-10,58	8731231,18721738000000;4017260,63011548000000	78.4339842466;33.9140034702
	189	4494.25	-7.58	8731254.62552280000000:4017271.954240570000000	78.4341947965:33.9140878904
	190	4491.02	-4.91	8731274.11355201000000:4017286.438586610000000	78.4343698604:33.9141958696
	191	4489.53	-5.85	8731278.06382821000000:4017303.293098370000000	78.4344053463:33.914321518
	192	4487.43	-5.96	8731287.54449107000000.4017321.464368850000000	78 4344905126 33 9144569824
	193	4485.24	-6.47	8731307.822575530000000:4017326.994755520000000	78.4346726737:33.9144982107
	194	4482.83	-6.58	8731327.57395649000000:4017334.895307910000000	78.4348501034:33.9145571082
	195	4479.48	-2.93	8731354 43583460000000 4017345 956081250000000	78 4350914078 33 9146395646
	196	4477.96	-4.64	8731382.08776795000000.4017335.42201140000000	78,4353398093:33,9145610347
	197	4476.03	-5.77	8731405.723587170000000.4017333.315197430000000	78,4355521335:33,9145453287
	198	4473.18	-3.43	8731432,58546528000000.4017342,00580506000000	78 4357934378 33 9146101159
	199	4471.87	-6.13	8731454 443660210000000 4017340 689046330000000	78 4359897933 33 9146002996
	200	4468.72	-9.19	8731481.042186580000000:4017353.06657840000000	78.436228732:33.9146925722
	201	4466 70	-10.67	8731487.36262849000000.4017363.863999990000000	78.4362855095:33.9147730653
	202	4461 80	-9.21	8731507.114009460000000.4017380.718511750000000	78.4364629391:33.9148987128
ļ	203	4458.95	-1.36	8731524.415452130000000.4017383.878732700000000	78.4366183606.33.9149222717
	204	4458 50	-2 07	8731543 456550430000000 4017382 03527048000000	78.4367894097:33.914908529
	205	4458.09	-6.65	8731554 780675510000000 4017383 08867746000000	78 4368911361 33 9149163819
	200	4457 01	-5 58	8731563 471283140000000-4017386 248898420000000	78 4369692051:33 9149399408
	-00	1101,01	0,00	0.0.0.000, The Control	

				1
207	4456,59	-9,49	8731567,68491108000000;4017387,302305400000000	78.4370070568;33.9149477938
208	4454,93	-9,02	8731576,63887045000000;4017391,515933340000000	78.4370874916;33.9149792056
209	4453,45	-5,73	8731584,80277458000000;4017395,99291303000000	78.4371608292;33.9150125807
210	4452,59	-6,82	8731591,64991998000000;4017401,259947950000000	78.4372223381;33.9150518454
211	4451,25	-6,81	8731596,126899670000000;4017411,530666080000000	78.4372625555;33.9151284117
212	4449,80	-7,30	8731604,554155550000000;4017420,221273710000000	78.4373382589;33.9151931984
213	4448,76	-4,63	8731609,68951459000000;4017426,541715590000000	78.4373843906;33.915240316
214	4448,11	-1,51	8731617,59006698000000;4017427,858474320000000	78.4374553624;33.9152501322
215	4447,88	-4,09	8731625,753971110000000;4017425,224956860000000	78.4375287;33.9152304998
216	4447,39	-7,33	8731632,601116510000000;4017424,961605110000000	78.437590209;33.9152285366
217	4446,44	-2,80	8731639,184910170000000;4017428,385177810000000	78.4376493522;33.9152540586
218	4446,12	-3,01	8731645,50535208000000;4017427,06841908000000	78.4377061297;33.9152442425
219	4445,88	-8,70	8731649,98233176000000;4017426,278363840000000	78.4377463471;33.9152383528
220	4444,43	-4,93	8731656,56612542000000;4017433,125509240000000	78.4378054903;33.9152893968
221	4443,95	-2,30	8731662,09651209000000;4017433,388860990000000	78.4378551706;33.9152913601
222	4443,62	-3,78	8731669,99706448000000;4017431,282047020000000	78.4379261425;33.9152756542
223	4443,22	-8,96	8731676,054154640000000;4017430,755343530000000	78.4379805543;33.9152717277
224	4442,05	-6,40	8731681,584541310000000;4017435,759026700000000	78.4380302346;33.9153090291
225	4441,65	-3,03	8731685,00811400000000;4017436,549081940000000	78.4380609891;33.9153149188
226	4441,26	-4,84	8731692,38196290000000;4017435,232323210000000	78.4381272295;33.9153051027
227	4440,45	-8,13	8731701,86262576000000;4017435,495674960000000	78.4382123957;33.9153070659
228	4439,36	-9,93	8731708,709771160000000;4017438,919247660000000	78.4382739047;33.9153325879
229	4437,37	-11,92	8731717,927082280000000;4017445,503041310000000	78.4383567052;33.9153816687
230	4435,82	-10,64	8731723,98417245000000;4017449,716669250000000	78.438411117;33.9154130803
231	4434,88	-10,16	8731728,724503870000000;4017451,296779730000000	78.4384537001;33.9154248597
232	4433,37	-11,51	8731736,88840800000000;4017453,403593700000000	78.4385270377;33.9154405655
233	4432,04	-9,10	8731742,41879468000000;4017456,827166400000000	78.438576718;33.9154660875
234	4431,20	-11,70	8731742,682146420000000;4017462,094201320000000	78.4385790837;33.9155053521
235	4428,81	-9,02	8731750,846050550000000;4017470,258105450000000	78.4386524213;33.9155662121
236	4427,58	-11,34	8731758,48325119000000;4017471,311512440000000	78.4387210274;33.915574065
237	4426,30	-10,92	8731763,486934370000000;4017475,261788630000000	78.4387659763;33.9156035134
238	4425,01	-10,18	8731769,28067278000000;4017478,68536133000000	78.4388180223;33.9156290353
239	4423,94	-3,84	8731774,81105946000000;4017480,79217530000000	78.4388677026;33.9156447411
240	4423,60	-10,86	8731779,55139089000000;4017478,685361330000000	78.4389102858;33.9156290353
241	4422,75	-10,86	8731783,238315330000000;4017481,055527050000000	78.438943406;33.9156467043
242	4422,39	-10,77	8731784,818425810000000;4017482,10893403000000	78.4389576003;33.9156545572
243	4419,90	-10,76	8731795,615847410000000;4017489,482782930000000	78.4390545952;33.9157095274
244	4418,34	-10,16	8731801,93628932000000;4017494,749817850000000	78.4391113727;33.9157487919
245	4416,82	-8,86	8731805,62321376000000;4017502,387018490000000	78.4391444929;33.9158057253
246	4415,99	-7,29	8731807,466675990000000;4017507,390701670000000	78.439161053;33.9158430264
247	4415,05	-7,12	8731812,86538678000000;4017512,394384850000000	78.4392095505;33.9158803276
248	4414,13	-6,44	8731819,18582869000000;4017516,081309290000000	78.439266328;33.9159078126
249	4413,38	-6,83	8731825,769622340000000;4017517,134716280000000	78.4393254712;33.9159156655
250	4412,66	-6,49	8731831,300009010000000;4017519,504881990000000	78.4393751515;33.9159333345
251	4411,98	-5,73	8731835,25028520000000;4017523,981861680000000	78.4394106374;33.9159667092
252	4411,47	-6,13	8731837,62045092000000;4017528,458841360000000	78.439431929;33.9160000838
253	4411,01	-6,33	8731840,253968380000000;4017531,882414060000000	78.4394555863;33.9160256056
254	4410,45	-6,27	8731843,94089283000000;4017535,305986760000000	78.4394887065;33.9160511274

		1		
255	4409,73	-6,07	8731848,944576010000000;4017539,519614710000000	78.4395336554;33.9160825388
256	4408,97	-5,57	8731855,791721410000000;4017541,626428670000000	78.4395951643;33.9160982445
257	4408,25	-4,29	8731863,16557030000000;4017542,153132170000000	78.4396614047;33.916102171
258	4407,86	-5,95	8731868,169253480000000;4017540,573021690000000	78.4397063536;33.9160903917
259	4406,95	-5,55	8731876,333157610000000;4017543,469890900000000	78.4397796912;33.916111987
260	4406,48	-5,78	8731879,756730310000000;4017546,893463600000000	78.4398104456;33.9161375088
261	4406,11	-5,00	8731883,180303010000000;4017548,210222330000000	78.4398412001;33.9161473249
262	4405,60	-5,67	8731888,974041430000000;4017547,683518840000000	78.4398932462;33.9161433984
263	4404,90	-4,92	8731895,55783508000000;4017550,317036300000000	78.4399523894;33.9161630306
264	4404,58	-2,94	8731897,92800080000000;4017553,213905510000000	78.4399736809;33.9161846259
265	4404,26	-2,81	8731898,981407790000000;4017559,270995670000000	78.4399831439;33.9162297797
266	4403,84	-5,67	8731900,29816652000000;4017567,698251550000000	78.4399949725;33.9162926024
267	4403,16	-5,59	8731906,09190493000000;4017571,38517600000000	78.4400470185;33.9163200874
268	4402,54	-3,05	8731912,412346840000000;4017571,648527740000000	78.440103796;33.9163220506
269	4402,30	-5,30	8731916.099271290000000;4017569.015010280000000	78.4401369162;33.9163024185
270	4401.79	-5.78	8731921.62965795000000:4017568.751658530000000	78.4401865966:33.9163004553
271	4400.79	-5.95	8731928.47680336000000:4017575.862155680000000	78.4402481055:33.9163534619
272	4400.01	-6.35	8731933.48048653000000:4017581.392542350000000	78.4402930544:33.9163946892
273	4398.87	-3.37	8731943 48785289000000 4017583 76270806000000	78,4403829521:33,9164123581
274	4398 53	-6.45	8731948 491536070000000:4017580 865838860000000	78 4404279009:33 9163907628
275	4397 42	-6 60	8731957 972198930000000.4017583 236004570000000	78 4405130672:33 9164084317
276	4396 35	-7 11	8731966 926158300000000.4017585 606170290000000	78 4405935019:33 9164261005
277	4395 50	-7.26	8731972 456544980000000.4017589 556446480000000	78 4406431823:33 9164555486
278	4393,30	-5.04	8731972,430344930000000,4017586,140240130000000	78 4407094227:33 9165046287
279	4393.61	-7 50	8731981 673856090000000.4017601 933978550000000	78 4407259828:33 9165478192
280	4392.90	-6.67	8731985 360780530000000.4017605 884254740000000	78 440759103:33 9165772672
281	4392,53	-3.99	8731986 677539270000000.4017608 781123950000000	78 4407709316:33 9165988625
282	4392.23	-7 97	8731986 414187520000000.4017612 994751890000000	78 4407685659:33 9166302737
283	4391.26	-7 21	8731991 681222440000000.4017617 471731580000000	78 4408158805:33 9166636481
284	4389.76	-7.04	8732001 688588800000000.4017623 792173480000000	78 4409057782:33 9167107649
285	4388.91	-6 70	8732007 745678970000000.4017627 215746180000000	78 4409601899:33 9167362865
286	4388 27	-6.96	8732011 432603410000000.4017631 166022380000000	78 4409933101:33 9167657345
287	4387.65	-6.42	8732015 646231340000000:4017634 062891590000000	78 4410311618:33 9167873296
207	4387.14	-2.81	8732020 12321103000000.4017634 58959508000000	78 4410713702:33 916791256
200	4307,14	-2,01	8732020,12321103000000,4017634,589393080000000	78 44107 137 92,33.9107 91230
209	4380,88	-0,74	8732024,53085897000000,4017631,42957415000000	78 4412122220:22 016701256
290	4385,40	-4,70	8732033,92431381000000,4017634,58939308000000	78.4412133229,33.910791230
291	4364,06	-3,10	8732044,878275180000000,4017631,892723870000000	78.4412937377,33.9107090009
292	4364,34	-0,50	8732049,881938380000000,4017628,269153170000000	78.4413387080,33.9107441393
293	4383,47	-0,73	8732057,38748312000000,4017629,585911900000000	78.4414061298,33.9167539553
294	4382,23	-6,55	8732065,551387250000000;4017636,169705550000000	78.4414794674;33.9168030352
295	4381,30	-4,99	0732075,900405950000000;4017637,749816030000000	70.44415504393;33.9168148144
296	4380,69	-4,85	8732075,822105350000000;4017644,33360969000000	78.4415717309;33.9168638943
297	4379,99	-5,42	8/320/8,45562281000000;4017652,234162070000000	78.4415953882;33.9169227902
298	4378,87	-6,07	8/32083,72265/730000000;4017662,768231920000000	/8.441642/027;33.9170013179
299	4377,99	-6,06	8/32089,516396150000000;4017668,561970340000000	78.4416947488;33.9170445081
300	4377,15	-6,10	8732096,363541550000000;4017672,512246530000000	78.4417562577;33.917073956
301	4376,36	-6,13	8732102,68398346000000;4017676,462522730000000	78.4418130352;33.9171034038
302	4375,33	-6,01	8732111,111239340000000;4017680,939502410000000	78.4418887386;33.9171367781

I	303	4374.43	-5.94	8732119.275143470000000:4017683.573019870000000	78.4419620762:33.91715641
	304	4373.89	-6.23	8732124.27882665000000:4017684.889778600000000	78.442007025:33.9171662259
	305	4373.28	-5.83	8732129.01915808000000:4017687.786647810000000	78.4420496081:33.917187821
	306	4372,85	-6,23	8732133,23278602000000;4017688,576703440000000	78.4420874598;33.9171937105
	307	4372,02	-6,24	8732140,07993142000000;4017691,736924590000000	78.4421489688;33.9172172688
	308	4371,45	-5,90	8732144,03020762000000;4017695,160494630000000	78.4421844547;33.9172427902
	309	4370,71	-5,52	8732148,243835560000000;4017700,954234820000000	78.4422223063;33.9172859803
	310	4369,82	-6,42	8732152,45746349000000;4017709,118139450000000	78.442260158;33.9173468391
	311	4368,98	-5,79	8732158,51455365000000;4017713,595120080000000	78.4423145698;33.9173802132
	312	4368,22	-6,01	8732165,888402550000000;4017714,385173810000000	78.4423808102;33.9173861027
	313	4367,32	-6,82	8732174,31565843000000;4017715,965284650000000	78.4424565135;33.9173978819
	314	4366,21	-8,05	8732181,162803830000000;4017722,285725810000000	78.4425180225;33.9174449982
	315	4364,64	-7,92	8732191,696873670000000;4017725,709298040000000	78.4426126516;33.9174705196
	316	4363,01	-7,61	8732201,177536540000000;4017732,556444270000000	78.4426978179;33.9175215623
	317	4361,75	-5,55	8732209,868144160000000;4017736,243368660000000	78.4427758869;33.9175490468
	318	4360,97	-6,24	8732217,110317180000000;4017732,819796410000000	78.4428409445;33.9175235255
	319	4359,82	-7,54	8732227,117683530000000;4017729,396223710000000	78.4429308422;33.9174980041
	320	4358,45	-7,39	8732237,388401640000000;4017730,449630690000000	78.4430231056;33.9175058569
	321	4356,94	-6,93	8732248,975878470000000;4017731,766389430000000	78.4431271977;33.9175156728
	322	4355,69	-6,41	8732258,456541330000000;4017735,716665620000000	78.4432123639;33.9175451205
	323	4354,68	-4,25	8732266,357093710000000;4017739,930293560000000	78.4432833358;33.9175765314
	324	4353,84	-2,45	8732274,520997850000000;4017747,830845940000000	78.4433566734;33.9176354267
	325	4353,56	-3,72	8732278,734625790000000;4017752,834529120000000	78.4433945251;33.9176727271
	326	4353,32	-3,12	8732282,42155023000000;4017752,834529120000000	78.4434276453;33.9176727271
	327	4352,71	-3,59	8732292,42891659000000;4017748,09419769000000	78.443517543;33.9176373899
	328	4352,07	-3,80	8732302,69963469000000;4017748,094197690000000	78.4436098064;33.9176373899
	329	4351,06	-3,98	8732317,18398074000000;4017752,571177370000000	78.4437399215;33.9176707639
	330	4350,52	-4,18	8732324,55782963000000;4017754,94134309000000	78.4438061619;33.9176884325
	331	4349,48	-3,69	8732337,72541694000000;4017760,208378010000000	78.4439244484;33.917727696
	332	4349,06	-4,47	8732341,148989640000000;4017765,73876482000000	78.4439552028;33.9177689227
	333	4348,54	-4,46	8732346,41602456000000;4017769,95239262000000	78.4440025174;33.9178003335
	334	4348,10	-2,58	8732351,946411230000000;4017770,74244786000000	78.4440521977;33.917806223
	335	4347,75	-5,09	8732358,79355663000000;4017767,055523410000000	78.4441137067;33.9177787386
	336	4347,02	-5,76	8732366,430757270000000;4017770,215744370000000	78.4441823128;33.9178022967
	337	4346,43	-6,07	8732370,38103347000000;4017774,429372310000000	78.4442177987;33.9178337074
	338	4345,32	-6,40	8732380,651751570000000;4017776,272834530000000	78.4443100622;33.9178474497
	339	4344,40	-6,50	8732388,02560046000000;4017779,95975898000000	78.4443763026;33.9178749341
	340	4342,82	-6,28	8732400,92983602000000;4017784,963442160000000	78.4444922233;33.9179122343
	341	4342,09	-6,72	8732407,513629680000000;4017786,016849140000000	78.4445513665;33.917920087
	342	4341,22	-6,82	8732413,570719840000000;4017790,230477080000000	78.4446057783;33.9179514978
	343	4340,36	-7,00	8732419,36445825000000,4017794,444105020000000	78.4446578243;33.9179829085
	344	4338,83	-6,52	8732430,161879850000000;4017800,764546930000000	78.4447548192;33.9180300246
	345	4337,88	-7,18	8732438,39162192000000;4017801,817953910000000	78.4448287483;33.9180378772
ļ	340	4337,29	-6,83	0732442,00524980000000;4017803,924767880000000	78.44480009999;33.9180535826
	347	4336,45	-6,78	0732440,818877800000000;4017809,455154550000000	78.4449044516;33.9180948091
ļ	348 240	4335,85	-0,20	0732451,02250097000000,4017810,245209790000000	78 4440720577-22 0494 429992
	349	4335,15	-5,82	0732434,430070430000000,4017810,038948210000000	79.4449730377,33.9181438883
	300	4334,30	-o,∠/	0/32430,02024413000000,401/823,412/9/100000000	10.4449943493,33.9101900009

054	4000.00	5.00		70 445000700 00 0400000440
351	4333,83	-5,98	8732459,986465110000000;4017827,099721550000000	78.445022738;33.9182263412
352	4332,83	-5,90	8732466,833610510000000;4017833,683515200000000	78.445084247;33.9182754203
353	4332,18	-5,55	8732471,573941930000000;4017837,897143140000000	78.4451268301;33.9183068309
354	4331,16	-5,00	8732480,001197820000000;4017844,217585050000000	78.4452025334;33.9183539468
355	4330,58	-5,14	8732484,214825760000000;4017849,221268220000000	78.4452403851;33.9183912468
356	4329,79	-5,03	8732491,85202640000000;4017853,698247910000000	78.4453089912;33.9184246206
357	4329,05	-5,05	8732499,48922704000000;4017857,12182061000000	78.4453775974;33.9184501416
358	4328,45	-5,01	8732504,75626196000000;4017861,335448550000000	78.445424912;33.9184815522
359	4327,96	-4,19	8732509,759945140000000;4017863,968966010000000	78.4454698608;33.9185011838
360	4327,38	-3,39	8732517,66049752000000;4017863,968966010000000	78.4455408327;33.9185011838
361	4326,88	-4,97	8732525,824401660000000;4017861,862152040000000	78.4456141703;33.9184854785
362	4326,31	-4,50	8732531,35478832000000;4017865,285724740000000	78.4456638506;33.9185109996
363	4325,62	-4,40	8732536,22679563000000;4017872,659573640000000	78.4457076166;33.918565968
364	4324,86	-4,80	8732545,970810240000000;4017873,712980620000000	78.4457951486;33.9185738206
365	4324,21	-6,45	8732553,608010870000000;4017872,132870150000000	78.4458637547;33.9185620416
366	4323,27	-7,38	8732561,77191500000000;4017870,552759670000000	78.4459370923;33.9185502627
367	4322,89	-6,64	8732564,405432470000000;4017871,869518400000000	78.4459607496;33.9185600785
368	4322.15	-6.97	8732568.88241216000000:4017876.346498090000000	78.446000967:33.9185934521
369	4321.51	-7.29	8732573.09604009000000:4017879.506719040000000	78.4460388186:33.91861701
370	4320.68	-6.45	8732579.15313026000000.4017881.876884750000000	78,4460932304:33,9186346784
371	4320.16	-7.13	8732583,630109940000000.4017881,086829510000000	78,4461334478:33,9186287889
372	4319 30	-7 21	8732590 477255340000000.4017881 876884750000000	78 4461949568:33 9186346784
373	4318 14	-5 56	8732599 16786296000000.4017884 773753960000000	78 4462730258:33 9186562731
374	4316.98	-6.94	8732606 015008370000000.4017894 517768340000000	78 4463345348:33 9187289098
375	4315.82	-6.88	8732614 705615990000000.4017898 46804500000000	78 4464126038:33 9187583571
276	4313,02	-0,00	8732614,70501599000000;4017890,40004500000000	78 4465110644:23 0187662007
277	4314,40	-0,94	8732623,70038933000000,4017899,521431730000000	78.4465119044,53.9187002097
270	4313,78	-0,90	8732631,29077000000000,4017900,83821048000000	78.4403010447,33.9187700234
270	4312,66	-5,00	8732653,07062489000000,4017902,154969210000000	78.4400278632,33.9167636412
379	4311,55	-4,77	8732652,101563950000000,4017901,364913970000000	78.4467465373,33.9187799517
380	4310,85	-4,70	8732660,265468080000000;4017899,521451750000000	78.4468218749;33.9187662097
381	4310,27	-5,62	8732667,112613480000000;4017897,941341270000000	78.4468833839;33.9187544308
382	4309,64	-5,43	8732673,169703650000000;4017900,048155240000000	78.4469377957;33.918770136
383	4308,61	-5,29	8732683,967125240000000;4017900,838210480000000	78.4470347905;33.9187760254
384	4308,10	-5,37	8732689,497511910000000;4017900,83821048000000	78.4470844708;33.9187760254
385	4306,61	-5,87	8732705,298616680000000;4017901,364913970000000	78.4472264146;33.9187799517
386	4306,16	-5,26	8732708,985541130000000;4017903,73507969000000	78.4472595348;33.9187976201
387	4305,57	-5,41	8732712,672465570000000;4017909,002114610000000	78.447292655;33.9188368831
388	4304,53	-6,28	8732718,992907480000000;4017917,95607398000000	78.4473494325;33.9189036302
389	4303,69	-6,14	8732725,840052880000000;4017921,379646680000000	78.4474109414;33.9189291511
390	4302,23	-5,67	8732738,678450510000000;4017925,856626370000000	78.4475262707;33.9189625246
391	4301,55	-5,22	8732744,735540670000000;4017929,016847320000000	78.4475806825;33.9189860824
392	4300,77	-5,56	8732753,162796540000000;4017930,333606050000000	78.4476563858;33.9189958981
393	4299,69	-5,81	8732763,69686640000000;4017933,757178750000000	78.447751015;33.919021419
394	4298,27	-5,88	8732775,81104672000000;4017940,604324150000000	78.4478598385;33.9190724608
395	4297,23	-5,93	8732783,97495085000000;4017946,661414320000000	78.4479331761;33.9191176131
396	4296,23	-5,44	8732791,61215149000000;4017952,455152730000000	78.4480017823;33.9191608023
397	4295,33	-5,19	8732800,302759120000000;4017956,142077180000000	78.4480798513;33.9191882863
398	4294,12	-5,32	8732813,47034643000000;4017958,248891150000000	78.4481981378;33.9192039914

399	4293,34	-4,69	8732821,370898820000000;4017960,882408610000000	78.4482691096;33.9192236228
400	4292,62	-3,99	8732826,90128548000000;4017967,729554010000000	78.4483187899;33.9192746645
401	4292,01	-4,77	8732831,11491342000000;4017975,366754650000000	78.4483566416;33.9193315955
402	4291,05	-4,77	8732841,648983270000000;4017980,107086080000000	78.4484512708;33.919366932
403	4290,40	-4,77	8732848,75948042000000;4017983,267307040000000	78.4485151455;33.9193904897
404	4289,40	-4,77	8732859,556902010000000;4017988,270990220000000	78.4486121403;33.9194277893
405	4288,76	-4,71	8732866,404047410000000;4017991,957914660000000	78.4486736493;33.9194552732
406	4287,99	-4,59	8732874,04124805000000;4017997,224949580000000	78.4487422554;33.9194945359
407	4287,29	-3,94	8732880,625041710000000;4018003,018688000000000	78.4488013987;33.9195377249
408	4286,53	-3,56	8732886,155428380000000;4018012,499350160000000	78.448851079;33.9196083977
409	4285,77	-4,73	8732890,895759810000000;4018023,823476090000000	78.4488936621;33.9196928123
410	4285,20	-4,76	8732897,47955346000000;4018025,930289920000000	78.4489528053;33.9197085174
411	4284,84	-2,70	8732901,166477910000000;4018028,037103890000000	78.4489859255;33.9197242224
412	4284,60	-4,48	8732901,95653315000000;4018033,040787070000000	78.4489930227;33.9197615218
413	4283,94	-4,75	8732907,88194743000000;4018039,097877230000000	78.4490462516;33.9198066738
414	4283,10	-5,43	8732917,36261029000000;4018042,521449930000000	78.4491314179;33.9198321945
415	4281,89	-5,82	8732928,68673538000000;4018048,315188350000000	78.4492331442;33.9198753832
416	4280,45	-5,88	8732942,38102618000000;4018052,002112790000000	78.4493561621;33.919902867
417	4279,08	-5,94	8732955,02191000000000;4018055,952388990000000	78.4494697171;33.9199323139
418	4278,03	-5,16	8732964,50257286000000;4018059,375961690000000	78.4495548833;33.9199578345
419	4277,67	-5,81	8732968,45284906000000;4018058,849258200000000	78.4495903693;33.9199539083
420	4277,51	-5,55	8732970,032959540000000;4018059,112609940000000	78.4496045637;33.9199558714
421	4276,86	-4,88	8732974,773290970000000;4018063,852941370000000	78.4496471468;33.9199912076
422	4276,12	-5,65	8732980,303677640000000;4018070,436735030000000	78.4496968271;33.9200402857
423	4275,61	-4,79	8732985,307360810000000;4018072,016845510000000	78.4497417759;33.9200520644
424	4275,08	-5,41	8732991,36445098000000;4018070,173383280000000	78.4497961877;33.9200383226
425	4274,17	-5,50	8732999,79170686000000;4018074,650362970000000	78.449871891;33.9200716957
426	4273,57	-4,43	8733005,84879702000000;4018076,230473440000000	78.4499263028;33.9200834744
427	4272,98	-2,44	8733012,695942420000000;4018073,070252490000000	78.4499878117;33.9200599169
428	4272,53	-2,91	8733022,70330878000000;4018069,383328040000000	78.4500777095;33.9200324332
429	4272,11	-2,51	8733029,02375068000000;4018074,650362970000000	78.4501344869;33.9200716957
430	4271,74	-2,20	8733037,45100656000000;4018073,596955980000000	78.4502101903;33.9200638432
431	4271,62	-3,22	8733040,611227520000000;4018072,806900740000000	78.450238579;33.9200579538
432	4271,40	-2,45	8733043,50809672000000;4018075,440418200000000	78.450264602;33.920077585
433	4270,91	-3,59	8733045,94410038000000;4018086,501191770000000	78.450286485;33.9201600361
434	4270,23	-3,75	8733056,214818480000000;4018089,924764250000000	78.4503787485;33.9201855566
435	4269,61	-4,10	8733065,168777850000000;4018092,821633700000000	78.4504591832;33.9202071509
436	4269,00	-3,11	8733070,96251626000000;4018099,142075360000000	78.4505112293;33.9202542658
437	4268,52	-3,75	8733072,279274990000000;4018107,832682990000000	78.4505230579;33.9203190486
438	4267,94	-4,62	8733075,17614420000000;4018116,259938870000000	78.450549081;33.9203818683
439	4267,50	-4,88	8733078,59971690000000;4018120,473566800000000	78.4505798354;33.9204132782
440	4266,93	-4,71	8733084,65680706000000;4018123,37043602000000	78.4506342472;33.9204348724
441	4266,48	-5,21	8733089,92384199000000;4018124,687194740000000	78.4506815618;33.920444688
442	4265,99	-4,92	8733094,400821670000000;4018127,584063950000000	78.4507217792;33.9204662822
443	4265,32	-4,41	8733098,087746120000000;4018134,431209350000000	78.4507548994;33.9205173231
444	4264,78	-4,71	8733099,93120835000000;4018141,278354750000000	78.4507714595;33.920568364
445	4264,30	-4,12	8733101,774670570000000;4018146,808741420000000	78.4507880196;33.9206095893
446	4263,49	-5,41	8733103,35478105000000;4018157,869514770000000	78.450802214;33.9206920399
447	4262,55	-4,31	8733110,72862993000000;4018164,453308420000000	78.4508684544;33.9207411175
-----	---------	-------	---	-----------------------------
448	4261,99	-3,19	8733117,57577534000000;4018167,350177630000000	78.4509299633;33.9207627117
449	4261,67	-1,76	8733123,36951376000000;4018167,350177630000000	78.4509820094;33.9207627117
450	4261,51	-4,09	8733128,10984519000000;4018165,506715400000000	78.4510245925;33.92074897
451	4260,88	-3,62	8733136,53710106000000;4018168,403584610000000	78.4511002958;33.9207705641
452	4260,44	-3,66	8733143,384246470000000;4018169,456991600000000	78.4511618048;33.9207784166
453	4259,96	-3,30	8733150,75809536000000;4018170,773750330000000	78.4512280452;33.9207882321
454	4259,35	-1,67	8733161,292165210000000;4018171,300453820000000	78.4513226743;33.9207921583
455	4259,18	-3,17	8733166,559200130000000;4018168,930288100000000	78.4513699889;33.9207744903
456	4258,69	-3,08	8733175,51315950000000;4018168,930288100000000	78.4514504237;33.9207744903
457	4258,28	-0,33	8733183,150360140000000;4018168,666936360000000	78.4515190298;33.9207725272
458	4258,25	-3,48	8733186,310581100000000;4018165,506715400000000	78.4515474186;33.92074897
459	4257,82	-1,16	8733193,421078240000000;4018166,296770640000000	78.4516112933;33.9207548593
460	4257,73	-1,80	8733196,84465094000000;4018163,926604930000000	78.4516420477;33.9207371913
461	4257,36	-2,90	8733208,16877603000000;4018159,976328730000000	78.4517437741;33.9207077447
462	4256,87	-3,45	8733217,649438890000000;4018161,029735930000000	78.4518289403;33.9207155972
463	4256,29	-3,27	8733225,81334302000000;4018166,296771020000000	78.4519022779;33.9207548593
464	4255,89	-2,01	8733232,13378493000000;4018169,193640530000000	78.4519590554;33.9207764535
465	4255,64	-1,91	8733238,980930330000000;4018167,613529600000000	78.4520205644;33.9207646748
466	4255,39	-1,23	8733246,354779230000000;4018165,506715400000000	78.4520868048;33.92074897
467	4255,24	-3,03	8733252,148517640000000;4018162,083142490000000	78.4521388508;33.9207234496
468	4254,81	-3,12	8733260,04907003000000;4018164,189956260000000	78.4522098227;33.9207391544
469	4254,35	-2,73	8733267,68627067000000;4018167,613529950000000	78.4522784288;33.9207646748
470	4253,85	-2,82	8733278,22034052000000;4018168,66693602000000	78.452373058;33.9207725272
471	4253,44	-3,13	8733286,384244640000000;4018170,247046840000000	78.4524463956;33.9207843059
472	4252,79	-3,58	8733295,73323163000000;4018177,620895730000000	78.452530379;33.9208392728
473	4252,32	-3,14	8733301,52697005000000;4018182,361227160000000	78.452582425;33.9208746087
474	4251,55	-2,80	8733309,427522440000000;4018193,948703990000000	78.4526533969;33.9209609852
475	4251,15	-1,62	8733317,591426570000000;4018193,948705280000000	78.4527267345;33.9209609852
476	4250,84	-3,15	8733327,07208943000000;4018188,15496558000000	78.4528119007;33.9209177969
477	4250,49	-3,07	8733333,12917959000000;4018189,735078150000000	78.4528663125;33.9209295756
478	4249,93	-2,88	8733341,819787220000000;4018195,528812700000000	78.4529443816;33.9209727638
479	4249,23	-2,32	8733353,40726406000000;4018203,429362510000000	78.4530484736;33.9210316568
480	4248,66	-2,14	8733361,83451993000000;4018214,49013174000000	78.453124177;33.9211141069
481	4248,27	-2,40	8733368,41831359000000;4018222,91739236000000	78.4531833202;33.921176926
482	4247,82	-1,68	8733378,68903169000000;4018225,287557010000000	78.4532755836;33.9211945939
483	4247,51	-1,05	8733389,22310153000000;4018223,180756640000000	78.4533702128;33.9211788892
484	4247,37	-1,00	8733394,75348820000000;4018227,92107629000000	78.4534198931;33.9212142248
485	4247,16	-0,65	8733406,07761329000000;4018231,871355440000000	78.4535216194;33.9212436713
486	4247,06	-0,78	8733412,13470345000000;4018239,245205240000000	78.4535760312;33.9212986379
487	4246,92	-0,75	8733421,61536632000000;4018241,352020190000000	78.4536611974;33.9213143427
488	4246,78	-0,87	8733432,741977590000000;4018242,405429360000000	78.4537611495;33.9213221951
489	4246,51	-0,99	8733449,85984109000000;4018238,455150870000000	78.4539149219;33.9212927487
490	4246,23	-1,27	8733465,660945870000000;4018235,031577470000000	78.4540568656;33.9212672284
491	4245,86	-1,55	8733481,98875413000000;4018231,081300210000000	78.4542035408;33.921237782
492	4245,55	-1,41	8733493,57623096000000;4018231,081300210000000	78.4543076329;33.921237782
493	4245,31	0,00	8733503,056893830000000;4018232,134707190000000	78.4543927991;33.9212456344

Tabelle 11: Längsprofildaten des Unbenannten Pangong Tso Gletscher III Gletscherbaches.

Curriculum Vitae

Name Geburtsdatum /-ort	Gerrit Tombrink 26. Februar 1984 / Leer
	Akademische Ausbildung
03/2011 – 11/2017	Doktorand in Geographie Georg-August-Universität Göttingen
10/2016 – 06/2017	Akademischer Geoinformatiker Universität Salzburg, UNIGIS professional
10/2005 – 01/2011	Diplom in Geographie Georg-August-Universität Göttingen
	Nebenfächer: Politikwissenschaften, Bioklimatologie
06/2004	Abitur Wirtschaftsgymnasium, Leer
	Berufserfahrung
07/2011 – 12/2015	Berufserfahrung Wissenschaftlicher Mitarbeiter Georg-August-Universität Göttingen, Abt. Prof. Dr. M. Kuhle
07/2011 – 12/2015	Berufserfahrung Wissenschaftlicher Mitarbeiter Georg-August-Universität Göttingen, Abt. Prof. Dr. M. Kuhle • Assistenz, GIS-Analysen und Lehrtätigkeiten
07/2011 – 12/2015 02/2010 – 03/2010	BerufserfahrungWissenschaftlicher Mitarbeiter Georg-August-Universität Göttingen, Abt. Prof. Dr. M. Kuhle• Assistenz, GIS-Analysen und LehrtätigkeitenPraktikant Potsdam-Institut für Klimafolgenforschung, Abt. Prof. Dr. J. Kropp
07/2011 – 12/2015 02/2010 – 03/2010 04/2007 – 07/2010	BerufserfahrungWissenschaftlicher Mitarbeiter Georg-August-Universität Göttingen, Abt. Prof. Dr. M. Kuhle• Assistenz, GIS-Analysen und LehrtätigkeitenPraktikant Potsdam-Institut für Klimafolgenforschung, Abt. Prof. Dr. J. KroppStudentische Hilfskraft Georg-August-Universität Göttingen
07/2011 - 12/2015 02/2010 - 03/2010 04/2007 - 07/2010 06/2005 - 08/2005	BerufserfahrungWissenschaftlicher Mitarbeiter Georg-August-Universität Göttingen, Abt. Prof. Dr. M. Kuhle• Assistenz, GIS-Analysen und LehrtätigkeitenPraktikant Potsdam-Institut für Klimafolgenforschung, Abt. Prof. Dr. J. KroppStudentische Hilfskraft Georg-August-Universität GöttingenFreiwilligenarbeit Regenwaldschutzgebiete, Costa Rica

Göttingen, den 20.10.2017