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Abstract

Fluorescence microscopy is an important and widely used tool in the life sciences
due to its unique ability to observe cellular processes in living specimens with target-
specific image contrast. The development of high resolution methods in the far-field
has increased its importance further by enabling the visualization of structures fea-
turing sizes below the diffraction limit of light. In particular, RESOLFT (reversible
saturable optical linear fluorescence transitions) nanoscopy using low light intensities
has become a method of choice for live-cell high-resolution fluorescence imaging.
RESOLFT nanoscopy requires labels with specialized properties which, to date,
have only been observed in reversibly photoswitchable fluorescent proteins (RSFPs).
Attempts to extend the palette of RESOLFT labels using synthetic organic fluo-
rophores have been limited to proof of concept studies, mostly owing to their in-
solubility in water. However, organic fluorophores bear the potential for higher
brightness, broader emission and excitation wavelength range as well as higher pho-
tostability than RSFPs.

In this work the first demonstration of RESOLFT nanoscopy with photoswitch-
able diarylethene-based fluorophores in aqueous environments is presented. The
photophysical behavior of these novel fluorophores was characterized and compared
to RSFPs commonly used for RESOLFT. Furthermore, the fluorophores were suc-
cessfully applied to label biological structures in fixed mammalian cells. Imaging
based on the RESOLFT concept with these fluorophores yielded two- to threefold
improved spatial resolution compared with confocal imaging. The fluorophores pre-
sented in this work thus lay the foundation for the further development of synthetic

fluorophores for RESOLFT nanoscopy in living specimens.
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1 Introduction

The investigation of processes involved in the evolution of biological life and its
functions has been pursued for hundreds of years. The development of magnify-
ing optical elements facilitated the exploration of processes which are invisible to
the human eye. Although the invention of the microscope itself can be assigned
to different individuals in history, it is known that the utilization of these instru-
ments revealed the existence of tiny building blocks of life such as blood cells and
spermatozoa already in the late 17th century .

The detailed optical examination of many biological specimen is hampered without
special methods because the structures of interest are translucent, containing small
features showing little contrast. It is therefore necessary to increase the contrast
between different sample features. On the one hand, the microscope can be tailored
to maximize the contrast due to small changes in the local refractive index, e.g.
by dark-field illumination, phase contrast or differential interference contrast (DIC)
microscopy ). On the other hand, the preparation of the specimen remains essential
and allows the staining of specific features. For classical transmission microscopy,
the image contrast can be enhanced by staining various structures in cells with highly
absorptive dyes of different colors. Most recently, the use of fluorophores became
one of the most important methods to stain biological samples, because fluorescence
and matched color filters provide excellent contrast which allows to detect the signal
against an otherwise nearly black background. The possibility to specifically label
structures of interest using immunofluorescence or genetically expressed markers in
the late 20th century has elevated fluorescence microscopy to an essential tool in
the life sciences. Moreover, since light microscopy is not limited to the observation
of surfaces, it allows noninvasive imaging of structures and processes inside of living
cells and tissues.

The basic concepts of fluorescence, fluorescence microscopes, the resolution limit
of optical microscopes and the concepts to overcome it will be described in the

following.
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1.1 Fluorescence

Fluorescence was already described in the late 16th century, while it appears in

nature since millions of years in different forms!. Fluorescent molecules, or fluo-
rophores, emit light of a different color shortly after absorption of electromagnetic

radiation.
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Figure 1.1: Jablonski diagram showing the different energy levels of a fluores-
cent molecule with the singlet states S; and triplet state T;. The different arrows
show the possible transitions between these states (IC: internal conversion, ISC:
intersystem crossing).

Fluorophores possess discrete and quantized energy levels including electronic states
and vibrational and rotational sublevels, which can be described with a Jablonski
diagram as shown in Figure 1.1. Fluorophores in thermal equilibrium usually re-
side in their singlet ground state, the electronic state with the lowest energy. In
singlet states all electron spins are paired, resulting in an angular momentum of
zero. The absorption of light of specific wavelengths, depending on the molecule’s
electron configuration, brings the molecules to higher vibrational levels of the exited
singlet state with the lowest energy S;. Within picoseconds, the molecules thermally
relax to the vibrational ground state of S;. The return to Sy occurs either by the
spontaneous emission of a photon or via internal conversion (IC) and thermal relax-
ation. Relaxation from the excited state can also occur through interactions with
other molecules, for example through resonance energy transfer (RET) or electron
transfer °/. The characteristic residence time in the excited state S is called fluor-

escence lifetime 7 and is typically in the range of nanoseconds. The emitted photon
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has lower energy than the absorbed photon because of energy losses due to vibra-
tional relaxations and solvent interactions. This causes a red-shift of the emission
spectrum compared to the absorption spectrum, known as Stokes shift (.

The ratio of emitted to absorbed photons is defined as the fluorescence quantum
yield ¢ (0 < ¢ < 1) of a fluorophore. In combination with the molar extinction
coefficient € at a given wavelength, the brightness (B = ¢ x €) of the molecule upon
excitation with this wavelength can be determined.

Instead of returning to the ground state Sy, a non-radiative transition from the low-
est excited singlet state S; to the lowest excited triplet state Ty can also occur. This
transition is denoted intersystem crossing (ISC) and involves an electron spin flip.
In triplet states two electrons have identical spin, making the S; — T transition
formally forbidden. Nevertheless, it occurs with a small probability due to me-
chanical interactions of the fluorophore with its environment and due to spin—orbit
coupling. Hence, the relaxation to the ground state Sy is also forbidden, resulting
in a long lifetime (ps to ms) of the triplet state compared to that of S;. From Ty,
the molecules reach the ground state non-radiatively or by photon emission termed

phosphorescence.

1.2 Fluorescence microscopes

The primary optical components of an epi-fluorescence microscope are a light source,
wavelength-selective filters and mirrors, an objective lens, a tube lens and a detec-
tor. The sample is illuminated through the objective lens with the excitation light.
The induced fluorescence from the sample is collected by the same objective lens
and separated from the excitation light by a dichroic mirror, reflecting light of wave-
lengths below a specific threshold and transmitting all wavelengths above, utilizing
the fluorophore’s Stokes shift. Signals originating from the focal plane are collimated
by the objective lens and imaged on the detector by the tube lens. An additional
fluorescence filter only transmits light in a wavelength band of the anticipated fluor-
escence to block any background light. Fluorescence microscopes differ in the way
of sample illumination and signal detection, as depicted in Figurc 1.2.

In a typical widefield microscope, the whole sample is evenly illuminated by the
excitation light and the fluorescence is imaged onto a camera. In this approach, the
light emitted from all sample features is collected simultaneously, which results in

a blurred background signal caused by the emission from the out-of-focus planes.
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Figure 1.2: Schematic illustration of a widefield and a confocal microscope with
their essential elements. Excitation light is shown in green. Fluorescence from the
focal plane is shown in red and from out-of-focus in orange.

This causes reduced image contrast when imaging thick samples.

A method to exclude this undesired background is confocal microscopy!”, whose
development marked a milestone in the field. Instead of illuminating the whole
sample simultaneously, only a restricted volume is illuminated. The excitation light
is tightly focused to a small spot into the sample by the objective lens. The ap-
plication of lasers as coherent light sources allows for diffraction-limited spot sizes.
The emitted fluorescence is focused to a spot, whereby a pinhole in an optically
conjugate focal plane in front of the detector blocks the undesired out-of-focus light.
This increases the signal-to-background ratio and allows axial sectioning of thick
samples. By scanning the focused excitation beam over the sample and simultane-
ous detection of the emitted fluorescence, the image is recorded point-by-point as

intensity values at each position.

1.3 Diffraction limit in far-field light microscopy

Technical advancements in the utilized optical elements and better sample prepa-
rations improved the imaging quality in optical microscopy. However, Ernst Abbe

already described in 1873 that the achievable optical resolution is ultimately limited
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by the diffraction of light®l. A radiating point source like a single fluorophore will
be imaged by an optical system as a spatial intensity distribution, called the point
spread function (PSF) of the system. The PSF of an ideal optical imaging system
with a circular aperture is a pattern consisting of a central maximum encircled by
concentric minima and maxima. The spot formed by uniform illumination of a circu-
lar aperture and focused at small angles is called Airy pattern, its central maximum
the Airy disk”). A measure for the resolving power of a microscope is given by the

Rayleigh criterion "/

. It states that two point emitters can still be distinguished if
the maximum image intensity of the first emitter falls into the first minimum image
intensity of the second emitter. Thus, the minimal distance Ar at which two point
emitters can be separated laterally is described by the radius of the Airy disk given

as

~ (.61 (1.1)

Ar = 0.61
" nsin « NA

with the wavelength A of the light forming the image. The refractive index of the
medium n and the maximum half angle a of light entering the imaging lens defines
the numerical aperture NA of the imaging system. An analogous expression for the

axial distance Az is given by

Az = 2.001\?&)\2. (1.2)
An alternative measure for the resolution is represented by the full width at half
maximum (FWHM) of the PSF. The FWHM is convenient since a diffraction-limited
PSF is often approximated by a Gaussian profile.
Following Equations 1.1 and 1.2, the spatial resolution can be increased by using
shorter wavelengths or higher NA objective lenses. However, both factors are limited:
visible light ranges from 400 to 700 nm and the maximal NA of an oil-immersion
objective lens is typically < 1.5. This limits the lateral resolving power of a light
microscope to ~ 180 nm, preventing the distinction of cellular structures with mutual
distances smaller than the resolution limit.
Different methods were developed to push the diffraction limit to its boundaries.
Total internal reflection fluorescence (TIRF) microscopy '/ uses an evanescent wave
of the excitation light to illuminate the sample in a restricted depth of about 100 nm.
This results in sub-diffraction axial resolution, but limits the method to observations
only at the glass-medium interface. In 4-Pi microscopy, two opposing objective

lenses are used to increase the effective numerical aperture of the system!?. In
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combination with deconvolution algorithms, this allowed spatially uniform resolution
of down to 100 nm %),

In all conventional light microscopy methods, the resolution is restricted by the
diffraction-limit, which impedes the observation of structures with sizes smaller than

this limit.

1.4 Diffraction-unlimited microscopy

The concept to overcome the diffraction limit by utilizing discernible states of fluo-
rescent molecules was first proposed in 1994 by Hell and Wichmann "%, Assuming
that fluorophores or other markers can be completely transferred repeatedly be-
tween different and distinguishable states, switching between these states allows to
theoretically reach unlimited spatial resolution. This opened up a new field of super-
resolution light microscopy methods, denoted as nanoscopy. Applied to fluorophores,
optical nanoscopy methods commonly utilize a fluorescent on-state and at least one
non-fluorescent off-state. One of the transitions between the on- and off-state has
to be light-driven. The fluorescent state of the molecules reports on their local pop-
ulation of states, whereas the populations are taken stochastically or prepared by
specific illumination fields. In general, any transition between two distinguishable
states can be employed, e.g. changes in the absorption cross-section. However, fea-
turing excellent sensitivity and contrast, fluorescence has proved optimal suitability
for optical nanoscopy [”.

All nanoscopy methods developed to date share the concept to separate neighboring
fluorophores by state transitions and can be assigned in two different categories:

coordinate-targeted and coordinate-stochastic methods.

1.4.1 Coordinate-targeted switching methods

Coordinate-targeted switching methods expose the sample to a light pattern fea-
turing at least one zero-intensity area. The pattern shall transfer all molecules to
a different state except the ones in the vicinity of the intensity zero. This allows
the preparation of a sub-diffraction-limit sized area of molecules in a defined state.
The strength of the transfer allows to tune the size of the region of non-transferred
fluorophores and thus the spatial resolution.

Different methods employ different state transitions of molecules. The general

method of targeted switching of molecules between a fluorescent on- and a non-
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fluorescent off-state is named RESOLFT (REversible Saturable Optical Linear Fluor-

escence Transitions) 161%,

It covers all possible reversible and saturable transitions
between states. This includes the population of the ground state in stimulated
emission depletion (STED)™ and the population of the triplet state of the fluo-
rophores as the non-fluorescent state in ground state depletion (GSD) 192!, However,
throughout this thesis, the term RESOLFT specifically refers to targeted switch-
ing between metastable states of reversibly photoswitchable fluorescent proteins
(RSFPs, section 1.6) and fluorophores (section 1.7).

The light-driven transition between an on- and off-state is characterized by its tran-
sition rate kon o = 1/7 = o x I. This rate depends on the photon cross-section o
and the applied light intensity I driving the transition. The saturation intensity s
is characteristic for each fluorophore and typically describes the intensity at which
the number of molecules in the on-state is halved. Intensities I > I, transfer the
fluorophores almost completely to the off-state.

In single beam scanning approaches, the commonly used off-switching beam is
doughnut-shaped ?!). The combination of the Gaussian-shaped excitation beam and
the parabola-shaped intensity zero of the off-switching beam effectively confines the
detection area. The spontaneous fluorescence emission decreases exponentially with
increasing off-switching intensity *?/. The size of this sub-diffraction-sized spot, the
effective PSF, mainly depends on the light intensity I and can, related to Abbe’s

description, be written as®*:

Ar ~ A (1.3)

2NA /14 /L

Stimulated emission depletion was the first method to actually overcome the diffrac-
tion limit '#?%2°, In STED, the fluorescent state is the excited state Sy of the flu-

orophores and the dark state is the ground state Sy. After excitation to S; the

fluorophores are returned to the ground state by stimulated emission. The process
of stimulated emission describes the interaction of a photon with an excited molec-
ular state, causing the transition to a lower energy level by emitting a photon. The
emitted photon has the same wavelength, polarization and phase as the stimulating
photon. Therefore this process is distinctly different from the spontaneous emission,
where the emitted photons are polarized according to the orientation of the mole-
cules’ dipole moment and have no phase relation. The STED light has to match the

energy gap between S; and Sy of the fluorophore. To reduce re-excitation by the
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STED light, the STED wavelength should be red-shifted as much as the emission
spectrum of the fluorophores allows *”. Typically the used STED wavelengths are
in the range of 590 nm for green emitting to 780 nm for red emitting fluorophores 2%
With typical values of ¢ = 1077 cm? and 7 = 1 — 4ns?”, saturation intensities I
of several MW /cm? are required for stimulated emission 2.

It is possible to multiplex the process of stimulated emission depletion either by
several single beams at different positions in the sample or by massive parallelization

using standing wave patterns in a widefield approach [2%3%

1.4.2 Coordinate-stochastic switching methods

Coordinate-stochastic methods rely on the stochastic transfer of fluorophores be-
tween different states such that they can be imaged individually by temporal sepa-
ration. During detection, only a subset of all fluorophores in the sample shall reside
in their fluorescent state at random spatial coordinates. Here it is essential, that the
detected fluorophores are further apart than the diffraction limit. The fluorescence
signals of the single emitters are imaged on a camera and their positions are subse-
quently determined precisely by fitting the center positions of the emitters’ image
spots. This yields the positions of the individual emitters with sub-diffraction pre-
cision. The localization precision scales with the inverse square root of the number
of detected photons!®!). This imaging scheme is repeated with multiple subsets of
molecules to reconstruct an image from the extracted positions of the fluorophores.
The experimental implementation of single molecule localization microscopy (SMLM)
was independently developed under the terms (fluorescence) photoactivated localiza-
tion microscopy ((F)PALM)!#2 and stochastic optical reconstruction microscopy
(STORM) **). The two methods mainly differ in the labels used. (F)PALM uses
photoactivatable fluorescent proteins and dyes, which are bleached after detec-
tion, whereas STORM relies on reversibly photoswitchable organic fluorophores.
In STORM, special imaging buffers are needed to control the photo-physical and
-chemical behavior of the used labels. Commonly employed buffers contain an
oxygen-scavenging system, e.g. a glucose oxidase system, to reduce photobleach-
ing and thiols to facilitate the photoswitching process by association with the fluo-
rophore and to act as triplet quenchers %

The coordinate-stochastic methods underlie certain limitations. Mostly, the samples
have to be fixed to avoid motion artifacts due to the time-displaced detection of the

single emitters. Furthermore, detecting enough fluorophores for an image makes the
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process time-consuming and the image reconstruction requires additional compu-
tation time. This hampers the application of these methods for live-cell imaging,

although advances in this direction were recently made 735,

1.5 RESOLFT nanoscopy with photoswitchable labels

The principle of RESOLFT nanoscopy with switchable fluorescent labels was pro-
posed in 2003 by Hell et al.['® . Employing molecular states with long lifetimes (ms
to s) allows for low light intensities to toggle between these states. The concept was
demonstrated for the first time with a photoswitchable fluorescent protein, asF'P595,
on artificial structures'®l. Subsequently, the concept was also applied to living cells
with different RSFP-variants 79

Similar to other coordinate-targeted switching methods only one of the transitions
has to be light driven. However, if both state transitions are light induced, as
in RSFPs, the imaging process can be controlled more precisely. Transition to
the fluorescent state is denoted as on-switching, whereas transition to the non-
fluorescent form is named off-switching. Assuming a switchable label, which emits
fluorescence during illumination with the off-switching wavelength, so called negative
switching markers, a typical RESOLFT scheme consists of an on-switching step, an
off-switching step with a doughnut-shaped beam and an excitation step to read out
the residual fluorescence. This three-step process, shown in Figure 1.3, is repeated
at every scanned position.

Compared to STED, where the state transition can be considered as instanta-
neous *”, RESOLFT with switchable labels suffers from the reduced imaging speed
as the off-switching step takes ps to ms*" %/, RESOLFT additionally requires very
specialized labels, from which only few are available. Despite these constraints, the
low light intensities in RESOLFT (W/cm? to kW /cm?) render the method suit-
able for the observation of living specimen and long-term experiments causing low
photodamage to the organism [

Like all high-resolution microscopy methods, RESOLFT strongly depends on the
availability of suitable fluorescent labels!'”!. The properties of the fluorescent mo-
lecules determine several important key parameters of the imaging process. This
includes the time it takes to acquire a high-resolution image, the achievable spa-
tial resolution and image contrast, the sample preparation protocol and the type of

specimen that can be observed.
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Figure 1.3: Schematic illustration of the steps required to acquire high resolution
images with negative switching markers based on the RESOLFT concept. For
imaging, the sequence of activation, off-switching and excitation is repeated at
every scanned position in the sample.

Therefore the development of new labels is crucial for the advancement of RESOLFT
nanoscopy and its application in the life sciences. This can either be accomplished
by modifying existing fluorescent proteins via targeted or random mutagenesis to
obtain photoswitchable variants with improved properties or by designing synthetic

4243] " The most common method so far is to

photochromic and fluorescent molecules |
mutate fluorescent proteins because they are applicable in live-cell imaging as genet-
ically encoded tags. A wide range of fluorescent photoswitchable proteins have been
described since the first application of asFP595 for RESOLFT nanoscopy **, but
only few of the recently developed fluorescent proteins proved to be highly suitable
for optical nanoscopy %2/, Although these candidates showed their high capability
in several applications, fully synthetic photoswitchable labels for RESOLFT na-
noscopy contain the potential for a wider spectral range, higher photostability and

higher brightness[**,

10
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1.5.1 Requirements for labels used in RESOLFT nanoscopy

RESOLFT nanoscopy imposes special requirements on the used labels. Ideally, two
different states of the molecule are addressable separately. In this regard, thermally
stable but photochemically reversible photochromic compounds are advantageous
because the transformation between two isomers, accompanied by a change in the
absorption spectrum, can be induced with light of different wavelengths. The spatial
resolution obtainable in RESOLFT is limited by several factors, in particular the
number of switching cycles before photo-bleaching, the switching contrast and the
fluorescence signal *.

The number of possible switching cycles before the label is photobleached or loses
its switching capability, denoted as switching fatigue, is a crucial factor for the
achievable resolution increase. Higher spatial resolutions require smaller scanning
steps (pixels) where at each step all labels in the diffraction limited area undergo
a switching cycle. Therefore the number of cycles a label has to undergo depends
on the FWHM of the activation spot r,. and the estimated FWHM of the effective
PSF 7eg. Assuming that the sampling step equals half the FWHM diameter of the

estimated effective PSF, the number of performed switching cycles when acquiring

a RESOLFT image in two dimensions can be written as *?!
. 2
Number of cycles = [ —~ | . 1.4
umber of cycles <reﬁ/2> (1.4)

It follows that a confocal image in the focal plane already requires four switching
cycles and that an m-fold resolution improvement in two dimensions requires 4 x m?

16l To avoid excessive photo-bleaching, the fluorophores should

switching cycles!
withstand at least this number of cycles.

Many photoswitchable fluorophores show fluorescence even after they are switched to
the off-state. The origin of this fluorescence is not definitely determined yet. It can
either originate from weak fluorescence in the off-state, a spontaneous return to the

2] or referred to ensemble measurements from a proportion of fluorophores

on-state
that can not be switched off *”!. The ratio of residual fluorescence after off-switching
and the initial fluorescence in the on-state, denoted as -, also impacts the achievable

resolution increase 4319/

. It causes a background signal during the read-out of the
region confined by the doughnut-shaped off-switching beam. This leads to a reduced

signal-to-background ratio. The intensity of this background signal is strongly de-

11
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pendent on the particular label and the type of sample. Additionally, samples with
sparse structures cause lower background than dense samples.

In two dimensions, the signal originates from the confined effective area A.g, whereas
the background signal originates from the area illuminated by the focused excitation
beam Acp > Aeg with the FWHM rggp. The signal-to-background ratio (SBR) can

then be written as

Isignal ~ Aeff o 1

SBR = ~ =
Ibackground ACF e m2’7

(1.5)

where m denotes the resolution improvement rcp/reg. Presupposing that the signal
can only be reliably detected at SBR 2 1, the resolution increase for two-dimensional
RESOLFT imaging can be estimated by m < \/1/77

Along with this, another import key parameter for a RESOLFT label is its molecular
brightness. Bright labels ensure reliable detection against noise caused by the system
and the specimen like shot noise and autofluorescence.

Long imaging times render the experiment susceptible to disturbances like vibrations
and hamper the observation of dynamic processes. In general, one of the switching

g 8739 Therefore

processes represents the time-consuming step during the imagin
high switching rates of the involved switching processes are desired. Furthermore,
longer wavelength are preferred for photoswitching to reduce phototoxicity and the
overall photon energy the samples are exposed to ).

All artificial markers need to be somehow attached to the target structure. Flu-
orescent proteins have the advantage to be genetically encodable, provided that
their expression does not impede the natural functions of the organism. Organic
fluorophores are well implemented in immunostaining protocols, although their ap-
plication in living specimen requires membrane permeability, water-solubility and a

functionalization to label biomolecules 7).

1.6 Photoswitchable fluorescent proteins

The discovery of the green fluorescent protein (GFP) and its first application as ge-
netically encoded tag for proteins in living organisms marked a major breakthrough
for cell biology **%.  GFP-like proteins have different oligomerization states in
nature and consist of about 240 amino acids. They form a barrel-like structure con-
sisting of 11 (-sheets, spanned by an o-helix. Inside the a-helix, the chromophore

is formed autocatalytically from three partially conserved amino acids. The chro-
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mophore maturation is only possible under the presence of molecular oxygen. The
fluorescence is strongly dependent on the environment of the chromophore provided
by the protein barrel ™. The originally described wild type avGFP was further

2l In

improved by mutations and subsequently applied in fluorescence microscopy
the following years, mutagenesis and isolation from different organisms yielded pro-
teins with yellow and red emission wavelengths and the first photoactivatable and
photoconvertible GFPs were discovered [*~%°!,

Photoactivatable proteins are initially non-fluorescent. Illumination with UV-light
induces a structural change of the chromophore resulting in fluorescence of the pro-
tein. Photoconvertible proteins show specific absorption and emission spectra which
are typically red-shifted upon illumination with a certain wavelength. In most cases
these structural changes can only be performed once "%,

In contrast to this, reversibly photoswitchable fluorescent proteins (RSFPs) can be
switched between an on- and an off-state state reversibly. The transitions between
the states are driven by light of different wavelengths. Thereby a distinction is
made between positive- and negative-switching RSFPs. Illumination with the ex-
citation wavelength converts positive-switching RSFPs to their fluorescent state,
whereas negative-switching RSFPs are switched to the non-fluorescent state. Ac-
cordingly, illumination with the excitation wavelength in negative switchers causes
two concurrent processes: fluorescence emission and off-switching. The molecular
switching mechanism of most RSFPs was revealed by crystallographic studies to be

57581 The repositioning of the chro-

a cis-trans-isomerization of the chromophore!
mophore’s imidazole ring by the isomerization increases the probability for a change
of its protonation. The protonation induces a blue-shift of the protein’s absorption
maximum. Therefore the different states can be addressed separately to switch be-
tween them. In the trans-position, the chromophore is less stabilized by the [3-barrel
causing a substantial drop of the fluorescence quantum yield ”®). As a result, the
cis-isomer is typically fluorescent and the trans-isomer is non-fluorescent. One ex-
ception of the cis/trans isomerization based photoswitching is the RSFP Dreiklang
with a decoupled switching and excitation process. In Dreiklang the photochromic
process is enabled by reversible covalent water addition to the chromophore %),

The discovery of the first photoswitchable GFP-like protein, the positive-switching

16,13

asFP595 % revealed the potential of these labels for nanoscopy | . However, its

tetrameric structure impeded the application as genetically encoded marker. The

5 [60]

first monomeric RSFP Dronpa was used to reveal cellular signaling pathway and

for RESOLFT imaging of artificial structures!*”). Albeit, pronounced switching fa-
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tigue and slow switching rates of these proteins hampered biological high-resolution

imaging %!, Protein mutagenesis and screening later yielded new variants with
shorter switching halftimes, higher quantum yields, faster maturation times or dif-

44]

ferent spectral properties*!). Particularly noteworthy are rsEGFP and Dreiklang

which enabled the first demonstrations of live-cell RESOLFT imaging*"**). The

successor of rsEGFP, namely rsEGFP2, proved particular suitability in this con-

text, due to its high photostability and fast switching kinetics #6259,

1.7 Photoswitchable synthetic fluorophores

Synthetic organic fluorophores were used to label structures of interest using im-

munofluorescence already before proteins were established as fluorescent tags[©®.

Typically, organic fluorophores of various origin are conjugated to an antibody,
which binds to a specific target structure. The organic fluorophores are optimized
for brightness, photostability, excitation and emission wavelengths and fluorescence
lifetime. These properties render them applicable in all branches of fluorescence

67

microscopy, especially for high resolution methods Different bioorthogonal la-

beling strategies (SNAP-tag, CLIP-tag, HaloTag!%*™)) furthermore enabled their
wide applicability in live-cell imaging [

The RESOLFT concept has been demonstrated as a proof-of-principle only with few
switchable organic fluorophores on test structures like stained grooves in a glass sur-

face or silica beads!™> 7. More recently, RESOLFT was performed with a reporter-

activator pair of two covalently linked fluorophores used to stain cellular structures

™ The switching process requires the reversible formation of a

in mammalian cells
non-fluorescent state upon thiol addition to the fluorophore, comparable to the pho-
toblinking process frequently exploited in SMLM Y. This requires the application
of blinking-enhancing and stabilizing buffers (see subsection 1.4.2) that precludes or
hampers the application in living cells.

Diarylethenes represent a majority among the synthetic photochromic molecules.
The first diarylethenes were presented three decades ago!™. They offer higher fa-

"7 compared to other photochromic com-

78,79]

tigue resistances and thermal stability
pounds like azobenzenes or spiropyrans | . Diarylethenes have two thermally sta-
ble forms, open- and closed-ring isomers. Their core structure and electronic states,

y [80-82)

derived from theoretical studies and ultrafast pump-probe spectroscop , are

depicted in Figure 1.4. The thermal stability originates from a relatively high en-
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Figure 1.4: Jablonski diagram for diarylethene derivatives including conventional
adiabatic potential energy curves (solid light gray), adapted from Irie et al. [75],
The excitation (Exc.) of the closed-ring isomer from the ground state So to the
first excited state S; is depicted in light blue and the excitation (Act.) of the
open-ring isomer from its Sy state to S; in dark purple. The fluorescence (Fluo.)
emission is depicted in green. The red and dark blue arrows show the pathways
of isomerization from the closed-ring to the open-ring and from the open-ring to
the closed-ring isomer, respectively. The dotted light gray arrow indicates the
transition from S; to S at the conical intersection (CI).

ergy barrier of ~ 192kJ/mol on the potential energy surface of Sy /. The open-ring
isomer is formed by excitation to the S; state with visible light and subsequent re-
laxation to Sp. The chromophore can be returned to the closed-ring form (CF) by
illumination with UV light. In the open-ring isomer, the 7-conjugation involves the
thiophene rings or benzothiophene fragments. The ring closure causes a delocal-
ization of the m-conjugation over the molecule inducing a substantial (> 150 nm)
red-shift in the absorption spectrum "', In solution diarylethenes exhibit two differ-
ent conformations in their open form (OF). According to the Woodward-Hoffmann
rules, the photoinduced cyclization reaction is only possible conrotatory ¥/, resulting
in a photo-inactive parallel and a photo-active antiparallel conformation depicted

in Figure 1.5. In thermal equilibrium of the two conformers, only the molecules
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in the antiparallel form can undergo the ring-closure reaction upon absorption of a

84 How-

UV photon. Thus, the quantum yield for ring closure cannot exceed 50 %!
ever, due to rapid interconversion between parallel and antiparallel conformers, full
reaction to the closed form is possible. The introduction of diarylperfluorcyclopen-
tens enabled fatigue resistances comprising above 10000 switching cycles and high

thermal stability over several months in organic solvents or in a solid state [*".

open-ring isomer

2
antiparallel parallel
conformation conformation

visible

closed-ring isomer

Figure 1.5: Antiparallel and parallel conformation of the open form of diaryl-
ethenes and possible transitions to the closed form.

A majority of diarylethenes is non-fluorescent in both open- and closed ring-forms,
but oxidated benzothiophene derivatives, as depicted in Figure 1.5, exhibit strong

6571 Non-fluorescent diarylethenes were incorpo-

fluorescence in the closed form !
rated into bichromophoric compounds with a photochromic and a fluorescent unit
to prepare photoswitchable fluorophores. In these compounds, the fluorescence is
quenched either by resonant energy transfer or electron-transfer from the fluorescent

38921 Unfortunately, these compounds

unit to the closed form of the diarylethene!
are not water-soluble, require light of 375 nm or below for cyclization and often show
very low switching rates and rapid photodecomposition in water. Nevertheless, us-
ing target-specific fluorescent units, certain compounds of this type were used for
staining cellular structures and biological imaging by exploiting hydrophobic sub-

compartments *>4.
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A viable and straightforward approach to confer water solubility to diarylethenes
is to attach hydrophilic residues to the core structure. Photochromic properties
[95]

in polar solvents were reported for derivatives decorated with acetyl ™ or inositol

96]

residues . Compounds with sulfonic residues often require cyclodextrin as non-

97, Poly(ethyleneglycol) chains induce the formation of nanoaggre-

polar cavity
gates 959 which were reported to show unspecific accumulation in the cytoplasm
of living cells and could be switched between their fluorescent and non-fluorescent

100-102]  How-

states in the timescale of minutes to hours using UV and visible light
ever, the aggregation of markers compromises labeling and resolving specific cellular
structures. These restrictions hampered the application of photochromic diaryl-
ethenes in biological imaging.

All of the above mentioned demonstrations of fluorescent, photoswitchable diaryl-
ethenes show that they lack one or more of the key features required for RESOLFT
nanoscopy. In particular, these compounds have limited water solubility, reduced
photoswitching and fluorescence performance in water and often lack a reactive

[103,104] © Ag a result, no specific staining of cellular

group required for bioconjugation
structures, neither in living nor in fixed cells, was reported for diarylethenes without

fluorescent molecules attached to the core structure.

1.8 Aim of the study

RESOLFT nanoscopy requires labels with optimized features which to date are only
provided by a limited number of RSFPs. The generation of new RSFPs demands
extensive protein mutagenesis and screening. The utilization of organic fluorophores
bears the potential to expand the palette of available RESOLFT labels based on
rational design.

In this work the properties and perspectives of synthetic reversible switchable fluo-
rophores for their application in high resolution microscopy based on the RESOLFT
concept with low light energies is evaluated. The focus is on the characterization
and implementation of new diarylethene-based fluorophores in aqueous solutions.

The findings shall provide a foundation to advance synthetic fluorophores for live-cell
RESOLFT.
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2 Experimental Methods

The investigation and application of fluorescent labels for high resolution microscopy
requires different methods. In addition to measurements of the absorption and
emission spectra in solution, it is also of significant interest how these labels per-
form under conditions present in confocal microscopy. For this purpose a confocal
screening microscope was constructed giving the opportunity to apply different ex-
citation wavelengths to the samples and to detect their specific fluorescence. The
high-resolution RESOLFT image acquisitions were performed on a modified 1C
RESOLFT QUAD Scanning microscope (Abberior Instruments, Gottingen, Ger-

many).

2.1 Absorption and emission measurements in

solution

The first characterizations of new synthetic fluorophores were performed using a
standard absorption spectrophotometer (Cary 4000 UV-Vis, Agilent, Santa Clara,
CA, USA) and a fluorescence spectrophotometer (Cary Eclipse, Agilent, Santa
Clara, CA, USA) to acquire absorption and fluorescence spectra of the respective
compounds in solution. These measurements were performed in quartz cuvettes
with 10 mm path length.

The different absorption spectra of the two isomers present in the synthesized pho-
tochromic molecules were only detectable individually if nearly all molecules in the
detection volume were present in one of the isomeric forms. Therefore the cuvette
was placed in an optical setup (Figurc 2.1a) providing collimated illumination by
LEDs with blue light at 470 nm (M470L3, Thorlabs, Munich, Germany) and UV
light at 365 nm (M365L2, Thorlabs, Munich, Germany). The illumination spot’s
diameter in the sample was ~3mm. The sample was illuminated with light of the
desired wavelength for a specific time period under continuous vigorous stirring to

convert the molecules into one of the isomers by using computer-controlled shut-
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2 Experimental Methods

ters. Typically illumination powers in the range of 10—20 mW were applied. The
photoswitching experiments in solution were conducted by stepwise exposure of the
sample with subsequent recording of the absorption and emission spectra after each
illumination step.

The fluorescence lifetime of fluorophores in solution was determined using the optical
setup depicted in Figure 2.1b. A picosecond-pulsed laser diode (LDH-P-C-470, Pico-
Quant, pulse width ~ 100 ps) emitting light at 470 nm wavelength and pulsing at a
rate of 40 MHz was used for the excitation. The emitted fluorescence was collected,
transmitted through an emission band-pass filter (selected according to the emis-
sion spectrum of the corresponding fluorophore) and recorded by a single-photon
avalanche diode (SPAD) detector (ID100-50, ID Quantique, Geneva, Switzerland)
and a stand-alone time correlated single photon counting (TCSPC) module (Pico-
Harp 300, PicoQuant, Berlin, Germany). The photon arrival times were determined
using the sync signal provided by the laser driver. The count rates on the detector
were adjusted to values below 102 cps (counts per second). The instrument response
function (IRF) of the system was determined by using a dispersant under identical
conditions as during the measurement of the sample, but without the emission filter.

The characteristic lifetimes were obtained as described in section 2.5.

a b

S kb Sample L SMF L

Laser diode
470 nm

L3 <1 y

S, g Shutter Controller |
A

| Laser Controller |
F Sync out
| Computer | Ly %;

PicoHarp 300 |
ch1| TCSPCModule |

MMF

APD

Figure 2.1: Schematic illustration of the described optical setups used for the
investigation of fluorophore behavior in solution. a: Setup for photoswitching
in solution: Ljo and L34: collimating lens pair; S; and So: shutter; I; and Is:
iris; b: Setup for TCSPC measurements: L; and Ly: focusing lens; Lo and Ls:
collimating lens; F: emission filter; SMF: single-mode fiber; MMF: multi-mode
fiber; APD: avalanche photo-diode; red lines and arrows indicate electrical signals
between devices.
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2.2 Confocal screening setup

The experiments to determine the potential of different fluorescent labels for high
resolution imaging were performed on a custom-built confocal microscope as shown
in Figurc 2.2.

For the excitation of the investigated fluorescent labels, different laser sources were
used. Pulsed excitation light (40 MHz repetition rate, ~ 100 ps pulse width) was
provided by a broad-band supercontinuum laser (SuperK Extreme EXB-6, NKT
Photonics, Birkergd, Denmark). Since the emission of the supercontinuum laser was
not polarized, a polarizing beam splitter (PBS251, Thorlabs, Munich, Germany),
provided the proper polarization for the following optical element. An acousto-
optic tunable filter (AOTF) (AOTFnC-VIS TN head with MDS8C-B66-22-80.153
driver, AA OptoElectronic, Orsay, France) allowed the selection of a wavelength
band from 450 -700nm with ~3nm FWHM bandwidth as well as the modulation
of the excitation power. The rise time of the AOTF was limited to about 2 ps with a
delay of 8 pis to the applied voltage. The spatial mode profile of the pulsed excitation
light was cleaned up using a polarization-maintaining single-mode fiber (PM460-HP,
Thorlabs, Munich, Germany). The excitation beam was collimated by an achromatic
lens L; (f; =10 mm, AC080-010-A, Thorlabs, Munich, Germany) to a beam diameter
of about 2mm. Due to the insufficient suppression of the supercontinuum spectrum
by the acousto-optic tunable filter, a filter wheel F; with different bandpass filters
was used to clean up the spectrum. The bandpass filters were selected according to
the required wavelength.

A directional beam splitter (DBS) % consisting of two polarizing beam splitters
(PBS251, Thorlabs, Munich, Germany), an achromatic half-wavelength retarder
plate A\/2 (AHWP05M-600, Thorlabs, Munich, Germany) and a Faraday rotator
(7T11A, Conoptics, Danbury, CT, USA; used without polarizers) was used for direc-
tional broad-band beam splitting of the excitation and fluorescence light '°°l. The
excitation light below 500 nm emitted by the supercontinuum source bypassed the
DBS via two dichroic mirrors D; and D3 (Z488RDC, Chroma, Bellows Falls, VT,
USA) due to the low transmission (~2%) of the Faraday rotator at wavelengths
below 500 nm. The bypassing beam path was used to include UV light for photo-
switching. Therefore a UV laser diode (405 nm wavelength, 30 mW, BCL-30-405-S,
Crystalaser, Reno, NV, USA), whose spectrum was cleaned up by a bandpass fil-
ter Fy (Z405/10x, Chroma, Bellows Falls, VT, USA), was power-modulated by an
acousto-optic modulator (MT110-A1-VIS head with MODAA110-B4-3060 driver,
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Figure 2.2: Schematic illustration of the described custom-built confocal screen-
ing setup including all relevant optical elements. PBS: polarizing beam splitter;
AOTF: acousto-optic tunable filters; SMF: polarization-maintaining single-mode
fiber; AOM: acousto-optic modulator; L: lens; F: filter; D: dichroic mirror; A/2:
half-wavelength retarder plate; A\/4: quarter-wavelength retarder plate; P: flip-
pable pellicle beamsplitter; PMT: photomultiplier tube; MMF: multi-mode fiber;
APD: avalanche photo-diode.

AA OptoElectronic, Orsay, France) and coupled into a polarization-maintaining
single-mode fiber (P5-405BPM, Thorlabs, Munich, Germany). After the beam was
collimated by an achromatic lens Ly (f; =30mm, AC254-030-A, Thorlabs, Mu-
nich, Germany), the illumination beams were combined by a dichroic mirror Dy
(Z405RDC, Chroma, Bellows Falls, VT, USA). All illumination beams were then
magnified four times by the combination of the achromatic lens Lz (f3 =50 mm,
AC254-050-A, Thorlabs, Munich, Germany) and the microscope tube lens (f; =200
mm) of a commercial microscope stand (DM IRBE, Leica Microsystems, Wetzlar,
Germany). The illumination beams were circularly polarized with a quarter-wave
retarder plate A\/4 (AQWP05M-630, Thorlabs, Munich, Germany). A 100x oil-
immersion objective lens with 1.4 NA (HCX PL APO 100x/1.4-0.7 Oil CS, Leica
Microsystems, Wetzlar, Germany) then focused the light into the sample. All ex-
periments were performed using Leica Type F immersion oil (Leica Microsystems,

Wetzlar, Germany).
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The fluorescence emission was split by the DBS into two orthogonally polarized
beams and selected by band-pass filters F5 according to the emission spectrum of
the investigated fluorophore. The fluorescence light was focused with achromatic
lenses L (f5 =30mm, AC254-030-A, Thorlabs, Munich, Germany) into step-index
multimode fibers (core-diameter: 25pm, M67L01, Thorlabs, Munich, Germany)
functioning as the confocal pinhole and detected by two avalanche photo-diodes
(PD-050-CTD-FC, MicroPhotonDevices, Bolzano, Italy). The core diameter of the
multimode fibers corresponded to a diameter of 0.91 Airy units for emissions cen-
tered at 525nm. The detected photon events were recorded as photon streams
with a TimeHarp260 PICO board (PicoQuant, Berlin, Germany) and analyzed for
fluorescence lifetime. Simultaneously, a hardware correlator (Flex02-08D/C, corre-
lator.com, Bridgewater, NJ, USA) was used for real-time monitoring of the detection
count rates and for fluorescence correlation spectroscopy of fluorophore solutions,
which proved useful for aligning the setup.

Precise positioning and scanning of the sample was provided by an xy-translation
stage (P-733K034 stage driven by an E-633 LVPZT-Amplifier, Physik Instrumente,
Karlsruhe, Germany) and a separate z-translation stage for the objective lens (MI-
POS 100 focus positioner driven by NV120 1CLE, Piezosystem Jena, Jena, Ger-

many).

The IRF of the system was determined through the reflection of the excitation beam
on gold nanoparticles (2150 nm, BBI Solutions, Cardiff, UK) for all used excitation
and emission filters. For this purpose, the signal was integrated until at least 10°
photons per channel were detected. The characteristic lifetimes were obtained as

described in section 2.5.

In addition to the confocal point illumination, a second illumination path was im-
plemented to achieve homogenous illumination over an area larger than the spatial
extent of the confocal detection PSF. It was not possible to incorporate light with
wavelengths below 400 nm through the base port of the microscope because the
tube lens showed very low transmission for these wavelengths (~0.1%). Hence, for
widefield photoswitching, two laser beams, one at 491 nm (50 mW cw, Calypso 50,
Cobolt, Solna, Sweden) and the other at 375nm (20 mW cw, directly modulatable
up to 100kHz, FBB-375-020-FS-E-1-0, RGBLase LLC, Fremont, CA, USA) were
implemented in a trans-illumination configuration. An AOTF (AOTFnC-TN head
with MOD4C-VIS driver, AA OptoElectronic, Orsay, France) was used to modulate

the power of the 491 nm light. The spectrum of the 375 nm laser beam was cleaned
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Figure 2.3: Schematic illustration of the electrical setup of the confocal screening
setup shown in Figure 2.2. Electrical signals generated by the NI-DAQ cards are
depicted as solid arrows. Signals generated by other devices in the experimental
setup that were acquired using different hardware are depicted as dashed arrows.

up by a band-pass filter Fy (Z375/10x, Chroma, Bellows Falls, VT, USA) and the
power was adjusted by different neutral density filters F3. The laser beams were
combined by a dichroic mirror Dy (Z375RDC, Chroma, Bellows Falls, VT, USA).
By focusing the beams into the sample with an achromatic lens Ly (f; =45mm,
AC254-045-A, Thorlabs, Munich, Germany), an illumination field of 15—20 pm di-

ameter was obtained.

For the examination of the excitation PSFs of the different laser sources, a pelli-
cle beamsplitter (BP108, Thorlabs, Munich, Germany) could be inserted into the
beam path between D3 and Lj directing the reflected light from the sample onto
a non-confocal detector (photomultiplier tube) (H10723-01, Hamamatsu Photonics,

Hamamatsu, Japan). The widefield illumination could be adjusted and examined by
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a CCD camera (mvBlueFOX-223G, Matrix Vision GmbH, Oppenweiler, Germany)

mounted onto the camera port of the microscope stand.

All above described components were controlled by two multifunction data acqui-
sition cards (NI PCI-6731, National Instruments, Austin, TX, USA) capable of
generating analog voltages and digital TTL outputs. These cards were also used
to acquire the signals generated by the detectors. The high speed buffer was used
to adapt current-limited signals (<5mA) from the NI-DAQ cards to 50 Q inputs
at 180 MHz bandwidth. The analog switch enabled to switch between 0V and the
analog voltage outputs generated by the NI-DAQ cards via a TTL signal. Figure 2.3
shows a schematic illustration of the wiring. Experimental control and data acqui-
sition was performed with custom-written routines for MATLAB (The MathWorks,
Natick, MA, USA) and software supplied with the TimeHarp260 NANO board (Pi-

coQuant, Berlin, Germany).

The measurement of the excitation power of the focused illuminations from the
different laser sources was accomplished by placing the sensor of a power meter
(PM100A with S120VC sensor, Thorlabs, Munich, Germany) in front of the objective
lens and the use of an iris adjusted to the diameter of the back focal plane of the
objective lens (5.6 mm). The transmission of the objective lens was specified to
~ 80 % in the range from 400—700nm. The specified power values were corrected
according to this transmission coefficient. The excitation power of the widefield

illumination was measured by placing the sensor of a power meter after the lens
Ly.

2.3 Confocal and high resolution imaging

Confocal and high resolution imaging was performed on a 1C RESOLFT QUAD
Scanning microscope (Abberior Instruments, Gottingen, Germany) modified for ad-
ditional point illumination with a 355nm laser line. The microscope featured an
IX83 microscope stand (Olympus Deutschland GmbH, Hamburg, Germany), wide
field illumination with halogen lamps, beam scanning by four galvanometer-driven
mirrors (QUAD scanner), focused excitation with laser lines at 355 nm, 405 nm and
488 nm wavelengths, generation of a doughnut-shaped beam at 488 nm wavelength
using a spatial light modulator (SLM), examination of the excitation PSFs with
a PMT and fluorescence detection with an avalanche photo-diode. Experimental

control and data acquisition was performed by the supplied software Imspector. All
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measurements were performed using a 100x oil-immersion objective lens with 1.4
NA (UPLSAPO 100XO, Olympus Deutschland GmbH, Hamburg, Germany) and a
confocal pinhole with a diameter of one Airy unit.

Line profiles on the acquired images were performed with the Fiji software pack-
age (http://imagejnet/Fiji)[1%  The obtained intensity profiles were transferred
to the software Origin (OriginLab, Northhampton, MA, USA) and the data was
subsequently fitted with the built-in Lorentzian peak function.

2.4 Specification of light intensities

It is assumed that focusing a collimated beam produces a spot with a Gaussian

intensity distribution given by

I(r) = Ipexp (—41n(2) (FV\;”HMf) (2.1)

with the FWHM of the Gaussian profile of the spot and the peak intensity in the
center of the spot [y given by

4
[0 = *11’1(2) P

R — 2.2
T FWHM? (2:2)

Here, P indicates the measured power of the incident light. All light intensities
given in this thesis refer to a calculated equivalent intensity of a Gaussian beam
profile Jequi causs- For the equivalent intensity it was assumed that the total incident
power gets uniformly distributed in an area where the intensity is at least half of the
peak intensity Iy, termed equivalent area. The FWHMSs of the PSFs generated by
the different light sources were determined experimentally by utilizing the reflection
of gold nanoparticles (see section 2.2) for the focused excitations and the emission
of a thin fluorescent layer (see subsection 2.6.1) for the widefield excitations. The

equivalent intensities were then calculated according to

; B P I
caubGans = FWHM? /4 In(2)”

(2.3)
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In case of the doughnut-shaped off-switching beam of the 1C RESOLFT QUAD
Scanning microscope, the light intensities were estimated comparing the equivalent
areas of a doughnut-shaped beam and a Gaussian-shaped beam generated by the
same laser power. Due to the larger area of the doughnut-shaped beam, its equiva-

lent intensity is given by:

P o quui,Gauss
2.72 -t FWHM?/4  2.72

I equi,doughnut ~

2.5 Fluorescence lifetime analysis

The fluorescence lifetime data from the experimental setups described in sections
2.1 and 2.2 was analyzed to determine the characteristic lifetimes. The lifetimes

were obtained by nonlinear least squares fitting of the fluorescence decay curve

using custom-written routines for MATLAB (The MathWorks, Natick, MA, USA)
based on the work of Enderlein and Erdmann!'°”. This consisted of an initial
estimation of decay times and subsequent fitting. The variable number of decay
times were treated as free parameters, whereas the corresponding amplitudes were
implicitly determined by linear least squares decomposition of the signal into the
model functions (exponential decays) convoluted with the IRF.

To ensure a robust determination of the fluorescence lifetimes, five measurements
per sample were performed and analyzed with the above described fitting routine,

followed by averaging of the obtained values for the lifetimes and the amplitudes.

2.6 Sample preparation

Different types of photoswitchable fluorescent molecules were investigated using var-
ious types of sample preparations. The specific preparation methods were selected

according to the respective molecule properties.

2.6.1 E. coli expressing fluorescent proteins

An appropriate method to investigate GFP-based photoswitchable fluorescent pro-
teins is to express these proteins inside a culturable organism like E. coli. By in-
troducing a plasmid, encoding the sequence for a specific protein cloned into the

high-copy expression vector pQE31 (Qiagen, Hilden, Germany) into the cytosol of
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these organisms, it is possible to obtain highly concentrated proteins in a cellular
environment.

Direct observation of protein properties present inside the cytosol of E. coli was ac-
complished by immobilizing the bacteria in agarose gel (2 %) on standard coverslips
(20 mm x 20 mm, #1.5) mounted to an object slide.

Alternatively, the expressed proteins could be purified by Ni-NTA (nickel-nitrilotri-
acetic acid) affinity chromatography (His SpinTrap, GE Healthcare, Freiburg, Ger-
many), concentrated by ultrafiltration and taken up in 100 mM Tris-HCI, 150 mM
NaCl, pH 7.5 buffer solution. The purified proteins were immobilized in thin PAA
(polyacrylamide) gel layers on standard coverslips mounted to an object slide.

The preparation of E. coli cultures and the protein purification were kindly car-
ried out by Sylvia Lobermann (Max Planck Institute for Biophysical Chemistry,
Gottingen, Germany).

2.6.2 Preparation of liposomes

The examination of different hydrophobic, photochromic compounds under condi-
tions present in a confocal microscope (excitation intensities > 1kW /ecm? and highly
sensitive detection) was accomplished by preparing liposomes consisting of synthetic
phospholipid derivatives. These spherical vesicles exhibit at least one lipid bilayer,
offering a spatially restricted volume for lipophilic compounds, enclosing a volume
of aqueous solution %%

The synthetic phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, Avanti
Polar Lipids, Alabaster, AL, USA) was solved in 2:1 chloroform/methanol (v/v) to
a lipid concentration of 10 mg/ml. The desired compound was solved in methanol
(1-51M) and added to the lipid stock solution. Afterwards the solvent was evapo-
rated under continuous nitrogen flow. The liposomes self-assemble after adding PBS
(phosphate-buffered saline, pH 7.4) and mixing the solution for several minutes. This
can be visually inspected since the solution becomes turbid during the process due
to the dispersion of the newly formed liposomes. As the average diameter of these
liposomes is many times larger than the spatial extent of a diffraction-limited PSF,
their size needed to be reduced. Therefore the liposome solution was treated with
a tip sonifier (450 Sonifier, Branson Ultrasonics, Danbury, CT, USA) leading to the
rupture of large liposomes and formation of smaller liposomes with a diameter of
200nm to several pm.

A volume of 10l of this liposome solution was placed under a standard coverslip
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(20 mm x 20 mm, #1.5) on an object slide, both previously cleaned with ethanol and
nitrogen flow, and sealed with addition-curing silicone (Picodent twinsil, Picodent,
Wipperfuerth, Germany). After 30 minutes the majority of vesicles did not show

movement any more due to adsorption to the glass surface.

2.6.3 Immunofluorescence labeling of cells

The following protocol was used to label specific structures of interest in cultured
Vero cells. The stainings were prepared by Ellen Rothermel (Max Planck Institute
for Biophysical Chemistry, Goéttingen, Germany).

The cells were grown on standard cover slips (# 1.5) with 18 mm diameter in DMEM
(Dulbecco’s Modified Eagle Medium). To stain cytoskeletal proteins (Tubulin and
Vimentin) the cells were fixed by placing them for five minutes in previously cooled
(—20°C) methanol. For the labeling of membrane associated proteins (NUP153),
the fixation was performed by placing the cells in 8 % PFA (paraformaldehyde) at
37°C for five minutes, followed by a permeabilization step in 0.5% Triton X-100
(Sigma-Aldrich, St. Louis, Missouri, USA) for five minutes. Afterwards they were
washed and unspecific binding cites were blocked by applying a 2% BSA (Bovine
serum albumin) in PBS solution (pH 7.4) three times for five minutes. Then 100 pl
of the selected primary antibody, diluted 1:100 or 1:200 (depending on the antibody)
in 2% BSA in PBS was applied to each cover slip for one hour in a moist chamber
followed by three washing steps with 2% BSA in PBS. Then 100 pl of the selected
secondary antibody, diluted depending on the concentration of the lot used, was also
applied for one hour in a moist chamber. After one washing step of five minutes
with 2% BSA in PBS and two five-minutes washing steps with PBS, the cover slips
were kept in PBS.

For imaging, the cover slips were placed on an object slide with cavity filled with
30l PBS and sealed with silicone.

Primary antibodies against a-Tubulin (T6074, Sigma-Aldrich, St. Louis, Missouri,
USA), Vimentin (V6389, Sigma-Aldrich, St. Louis, Missouri, USA) and NUP153
(ab24700, Abcam, Cambridge, UK) were used.
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In this chapter, the results of this study are presented as follows: The reversibly pho-
toswitchable fluorescent proteins rsEGFP and rsEGFP2 were investigated in detail
concerning their photophysical properties, shown in section 3.1. Furthermore, new
photoswitchable fluorophores based on diarylethenes were examined with respect to
their potential utilization in high resolution microscopy as exhibited in section 3.2
while section 3.3 shows their successful application in RESOLFT nanoscopy with
fixed immunostained mammalian cells in aqueous solution without any further ad-

ditives.

3.1 Reversibly photoswitchable fluorescent proteins

The confocal screening setup described in section 2.2 was used to examine the
photophysical properties of the photoswitchable fluorescent proteins rsEGFP and
rsEGFP2 to analyze its applicability for the characterization of photoswitchable
labels. These two photoswitchable proteins were already successfully applied in
high resolution imaging based on the RESOLFT concept. Their characteristics
for RESOLFT are well documented and can therefore be used as a reference for
comparison *7%9:521 - The typical characteristics for labels used in RESOLFT were
investigated. According to the emission spectrum of the mentioned proteins (emis-
sion maxima at 510nm and 503 nm, respectively), BrightLine® 525/50 (Semrock,
Rochester, NY, USA) filters were placed in front of the detectors (Fj5, Figure 2.2).

3.1.1 Typical measurement scheme

The general approach to study the behavior of a photoswitchable fluorescent label
upon photoexcitation is guided by the RESOLFT principle (see section 1.5). The
preparation of a spatially distinct area which is smaller than the diffraction limit and
capable of emitting fluorescence is the result of a two-step process of light-induced

activation and deactivation. Accordingly, the typical characterization scheme for
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Figure 3.1: Typical measurement scheme for a photoswitchable fluorescent label
used in RESOLFT nanoscopy. a: Measured fluorescence signal (blue solid line)
and a biexponential fit (red solid line) to the fluorescence decay caused by illumi-
nation with blue light (491 nm at 10kW/cm?). b: Corresponding residual of the
biexponential fit. c: Illustration of the illumination cycles with the different laser
pulses. The data shows a measurement of rsEGFP2 in the cytosol of E. coli fixed
on agarose as mean over 500 switching cycles.

RESOLEFT labels consists of these two processes and optional pauses in between the
light pulses as shown in Figure 3.1.

Prior to the actual measurement, the region of interest should be prepared such that
all molecules are in a defined state, either non-fluorescent or fluorescent, to always
achieve same initial parameters. In case of the examined RSFPs, the wavelength
Aact to convert the molecules to their fluorescent state is in the ultraviolet range. It
exhibits a higher probability to photobleach the molecules than the excitation wave-
length Aey.. It is therefore advisable to prepare the molecules in their non-fluorescent
form by illumination with the excitation light before the measurement to minimize
the photobleaching. This initialization step is followed by a repeated pulse sequence

pattern consisting of a UV pulse, an illumination break, an excitation/off-switching
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pulse and another optional illumination break. A dark time interval in between the
light pulses is required for the fluorophores that dwell in a transition state before
complete isomerization to the fluorescent form. The chosen pulse pattern is applied
consecutively to the observation area. Figure 3.1 exemplifies the resulting fluor-
escence signal as mean of 500 on/off-switching cycles. The molecules show no or
only little fluorescence during the illumination with A,q = 375nm light (depend-
ing on the applied intensity Il,.). The illumination with the excitation light at
Aexe = 491 nm causes the molecules to emit fluorescence and, concurrently, their
isomerization to the non-fluorescent state evident from the decay of the fluorescence

signal. Variations of the following parameters
(1) activation duration t,c,
(2) activation intensity I,
(3) duration of the illumination break tpeax,
(4) excitation duration te,
(5) excitation intensity Iy and
(6) duration of the illumination break after excitation fyu;

can be used to reveal the switching characteristics of the molecules. The fluorescence
decay during off-switching is modeled by a linear combination of several exponential

decay functions:

Iﬂ(t) = Iﬂ’back + Z A; exp(t/n) (31)

with the fluorescence intensity I3(t) at time ¢, the residual fluorescence after off-
switching Iq pack and the characteristic decay times 7; with their associated ampli-
tudes of the total signal A;. The fit provides information about the underlying
molecular mechanisms, since it can further indicate the number of intermediate
states involved in the off-switching, depending on the number of exponential decays
needed to describe the off-switching curve properly. Direct evaluation of the fitted
decay curve yields specific parameters of the studied fluorophore. These include the
total characteristic decay time 7.3 where the initial fluorescence value drops to 1/e
and the relative residual fluorescence after off-switching (ratio of the fluorescence

signal at the end of the illumination pulse and the initial fluorescence signal).
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3.1.2 Different illumination methods

The ensemble switching kinetics of a fluorophore can depend on the applied light
intensity distribution. Therefore, the two different illumination methods, confocal
point illumination and detection, termed the confocal mode, and widefield illumi-
nation with point detection, termed the widefield mode, were compared using thin
samples of the above mentioned proteins embedded in a polyacrylamide matrix (see
subsection 2.6.1). These samples showed a layer thickness of about 700nm. To
achieve similar conditions, the measurements were performed at the same location
in the sample for both illumination methods. To achieve this, the pulse pattern was
modified such that one switching cycle consisted of four pulses: widefield activation,
widefield off-switching, focused activation and focused off-switching including the
aforementioned illumination breaks. The intensities and durations of the activation
pulses were chosen such that all molecules in the observation area were switched to
the fluorescent state. The on-switching illumination parameters were determined in
a separate experiment previously. The intensities of the off-switching pulses were
chosen such that the characteristic decay time 7, (decay of the fluorescence to 1/e
of the initial value) was identical for both illumination methods. The applied peak
intensities were Ioxewr = 1kW/ cm? in the widefield mode and Texe,cr = 2kW/ cm?

in the confocal mode.
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Figure 3.2: Normalized off-switching curves upon illumination with blue light
(widefield mode: 491 nm, confocal mode: 488 nm) of the photoswitchable proteins
rsEGFP (a) and rsEGFP2 (b) embedded in a thin layer of polyacrylamide (PAA)
in widefield (blue) and confocal (orange) mode. The insets show the data on a
logarithmic scale.
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Using point illumination, the fluorophores contributing to the fluorescence signal are
exposed to a range of illumination intensities, depending on their relative position to
the focus. This leads to a superposition of varying off-switching rates as these rates
scale with the local intensity. This alters the shape of the observed fluorescence
decay, depending on the intensity distribution in the diffraction-limited spot and
the local fluorophore density. This also affects the detectable background level be-
cause the outer part of the focused excitation volume exhibits a low intensity which
leads to a significantly prolonged time to reach this level. Therefore, in the confocal
mode, two times the peak intensity was needed to obtain the same characteristic
decay time as in the widefield mode. Figure 3.2 compares both illumination methods
for rsEGFP and rsEGFP2. It is clearly visible that for both fluorophores the decay
curves for the confocal and widefield modes split after reaching about 1/e of the
initial fluorescence value due to a slower decay in the periphery of the point illumi-
nation. At the illumination intensities and times used in this experiment, rsEGFP
showed 60 % and rsEGFP2 11 % higher background level after 20 ms compared to
the widefield illumination.

These findings show that the widefield illumination, by providing a homogeneous
illumination of the complete detection volume, allows a distortion-free measurement
of the switching kinetics. For this reason, all following measurements were carried

out with the widefield illumination.

3.1.3 Switching fatigue

Different photobleaching mechanisms during the on- and off-switching steps cause a
decrease of the detected photons during excitation. Accordingly, the switching fa-
tigue of a fluorescent label is probably the most important factor regarding repeated
observation of dynamic processes. Moreover, a minimal number of switching cycles
is needed to achieve a notable resolution improvement (see subsection 1.5.1).

The number of photoswitching cycles a fluorescent label is able to perform can be
determined by repeated illumination of an immobile molecule population with the
measurement scheme outlined in subsection 3.1.1. Figure 3.3 shows the fluores-
cence decrease of rsEGFP and rsEGFP2 in the cytosol of E. coli upon repeated
photoswitching. For both proteins the same illumination parameters were applied.
Switching with A\,.; = 375nm for 1.5ms at 0.1kW/cm? to the fluorescent state
and, after a pause of 2ms, excitation/off-switching with Aexe = 491 nm for 20 ms at

2kW /em? to reliably reach the background level. The fluorescence is given as the
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Figure 3.3: Switching fatigue of rsEGFP (blue) and rsEGFP2 (orange) present
in the cytosol of E. coli fixed on agarose gel. Alternate illumination at 375nm
(0.1 kW /cm? for 1.5 ms) and 491 nm (2 kW /cm? for 20 ms) with the above described
widefield excitations were used for the photoswitching. Data points (fluorescence
during illumination with 491 nm light as mean of 10 consecutive switching cycles)
were fitted with monoexponential decays including an offset (solid lines).

integrated signal during the excitation pulse and normalized to the initial value of
the first cycle. Fitting with a monoexponential decay with an offset revealed that
under these conditions rsEGFP performed ~ 1100 and rsEGFP2 ~ 1550 cycles until

half of the initial fluorophores were bleached.

3.1.4 Switching kinetics at different illumination intensities

The off-switching kinetic of a fluorophore is directly coupled to the applied light in-
tensity. Careful investigation of this dependence allows to choose optimal conditions
for photoswitching in RESOLFT nanoscopy.

To measure the off-switching kinetics, the measurement scheme was adjusted such
that 12 excitation pulses with increasing intensities were applied after a correspond-
ing activation pulse. This pulse pattern was repeated 20 times at 25 different posi-
tions in the sample for each protein. During the 20 repetitions of the pulse pattern
no significant photobleaching was observed. The illumination times t.. were cho-
sen such that for all different excitation intensities the same light dose (Ioxe X texc)
was applied to the sample. Consequently, the excitation times were extended for
lower excitation intensities. The excitation pulse with the highest available intensity
(Texemax = 23kW /cm?) was set as the reference point. The illumination times tey.
for this pulse were set to 10 ms for rsEGFP and 5 ms for rsEGFP2. These times were

chosen to ensure that the final background level of the respective fluorophore was
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Figure 3.4: Intensity-dependent off-switching rate and relative residual fluores-
cence of rsEGFP and rsEGFP2. a: Off-switching rate of rsEGFP (blue) and
rsEGFP2 (orange) as a function of illumination intensity. Solid lines show a fit to
the data according to the model shown in Figure 3.5 and described in Equation 3.3.
b: Residual fluorescence after off-switching of rsEGFP (blue) and rsEGFP2 (or-
ange) as a function of illumination intensity. Dashed lines show the mean value of
the residual fluorescence for different intensities. Illumination times were chosen
such that the applied light dose was kept constant for different illumination intensi-
ties. All data were recorded in E. coli fixed on agarose gel expressing the respective
protein in the cytosol. Error bars represent twice the standard deviation.

reached at all intensities. This resulted in light doses of 230 J/cm? per off-switching
step for rsEGFP and 115 J/cm? for rsEGFP2.

Figure 3.4a shows the off-switching rates of rsEGFP and rsEGFP2 upon illumination
with different intensities. The off-switching rate is defined as the reciprocal value
of the total characteristic decay time 7.g. Tog was extracted from the biexponential
fits to the particular decay curves. The biexponential fit was chosen because a
monoexponential fit did not describe the data properly. The applied intensities
were varied from 0.5 to 23kW /cm?. Up to 2kW /em?, the off-switching rate scales
linearly with the intensity for both proteins. This behavior was verified in additional
experiments with different intensities in the range from 40 W/cm? to 1.8 kW /cm?
(Figure A.1). Above 5kW /cm?, rsEGFP switched off only slightly faster, reaching
a maximal off-switching rate of about 7500/s (7,¢ = 133ps). rsEGFP2, however,
exhibits a steeper increase up to a maximal rate of about 26 000/s (T, = 39 ns).
As the maximal detected fluorescence in each excitation pulse increases linearly
with the applied light intensity for both proteins (Figure A.2), the saturation of the

off-switching rate cannot be explained by a single fluorescent state but indicates a
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Figure 3.5: Three state model to describe the off-switching behavior of rsEGFP
and rsEGFP2 upon illumination with increasing light intensities. The transition
rate kr is light driven, whereas kg and kga, are constant. The ON-state and
the transient state T are fluorescent. The OFF-state is non-fluorescent. Possible
transitions between the states are indicated by the arrows.

saturable transient fluorescent state before the proteins switch to the non-fluorescent
state. A scheme of such a simple model is shown in Figure 3.5. This model is based
on the assumption that the molecules in the fluorescent ON-state reach a fluorescent
transition state T with a rate kr linearly depending on the illumination intensity
Ioye of the excitation light. This transition state shows a constant rate kg back
to the initial ON-state and a constant rate kg, to the non-fluorescent OFF-state.
Since no return rate from the OFF-state to the two fluorescent states is assumed,
the model can be simplified to a two state system. The populations P in the ON-

and T-state can then be described as

Pon(t) = —kpPon(t) + kg Pr(2)

(3.2)
Pr(t) = krPox(t) + (—kB — kdarx) Pr(t).

Solving this system of differential equations leads to the experimentally observable

off-switching rate
_ [exc/[1/2
1 + Iexc/jl/Z

depending on the illumination intensity /..., the maximal possible off-switching rate

k<IeXC) : kdark (33)

Fdark and the intensity I, where k represents half of kg.. The detailed derivation of
this model is presented in section A.1. This description for the intensity-dependent
off-switching rate k£ can be fitted with good agreement to the acquired data sets
as shown in Figure 3.4a, resulting in I/, = 5kW /cm? for rsEGFP and I =
13kW /cm? for rsEGFP2.

Another interesting characteristic is the dependence of the background level of fluor-
escence after the off-switching process on the applied intensity. It is obvious that

due to increasing off-switching rates at higher intensities, equal illumination times

36



3 Results

texe Would lead to different background levels. By keeping the light dose constant
throughout the measurement, this factor was canceled out. Figure 3.4b shows the
dependence of the residual fluorescence after off-switching on the illumination inten-
sity. For both proteins, the residual fluorescence shows no significant changes and
is around 1.5 % of the maximal signal per switching cycle for rsEGFP and 2.6 % for
rsEGPF2. This reveals that for these proteins the achievable residual fluorescence

only depends on the applied light dose but not on the illumination intensity.

3.1.5 Fluorescence lifetime

The fluorescence lifetime is a key property of a fluorophore and can give information
about its chemical environment. In case of fluorescent proteins this mainly represents

the direct neighborhood of the chromophore.
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Figure 3.6: Fluorescence lifetime of rsEGFP (a) and rsEGFP2 (b) measured in
E. coli fixed on agarose gel. Grey dots show the normalized measured data and red
lines exponential fits. The monoexponential fit resulted in a fluorescence lifetime
of 7 = 1.8ns for rsEGFP and the biexponential fit yielded the two fluorescence
lifetimes 71 = 0.3ns and 75 = 2.3ns (amplitude ratios: A; = 0.18, Ay = 0.82) for
rsEGFP2. The minor peak in the data and in the fit at 12ns originates from an
additional peak in the IRF.

Figure 3.6 shows typical lifetime measurements of rsEGFP and rsEGFP2 in the
cytosol of E. coli. The data was recorded using focused excitation at ey = 488 nm

with the supercontinuum source described in section 2.2 with 120 ps FWHM of the
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IRF. The acquisition was performed on a fixed spot in the sample over an integration
time of 30 seconds and adjusting the count rate per detector to ~ 5 x 10° cps. The
described fitting routine (see section 2.5) was applied to the data yielding a lifetime
of 7 = 1.8ns for rsEGFP and the lifetimes 74 = 0.3ns and 7, = 2.3ns with the
amplitude ratios A; = 0.18 and Ay = 0.82 for rsEGFP2. Control measurements
of the organic fluorophores fluorescein, rhodamine B and Alexa Fluor 488 (Thermo
Fisher Scientific) in solution (PBS, pH 7.5) yielded previously reported values of

4ns, 1.7ns and 4 ns, respectively *7.

Summary

The microscope described in this work is capable of determining the key parame-
ters of reversibly photoswitchable fluorescent labels. It was shown that a focused
excitation alters the observable off-switching kinetic of a fluorophore ensemble. A
homogeneous widefield illumination provided unbiased values and new insight on the
intensity-dependent off-switching behavior of rsEGFP and rsEGFP2 was gained. A
three-state model was presented to account for the observed saturation of the off-
switching rate with increasing excitation intensity. This model can be applied to

estimate the intensities used for the off-switching step in RESOLFT nanoscopy.
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3.2 Synthetic photoswitchable fluorophores without

linker

This section describes the investigation of the photophysical properties of diaryl-
ethene-based reversibly photoswitchable fluorescent compounds under conditions
present in a confocal microscope. The model fluorophores were hydrophobic and
did not have any linker for coupling to a biomolecule/antibody. Therefore, a special
sample preparation was required in order to prevent diffusion of the molecules out
of the observation area while sustaining the ability to photoswitch and fluoresce.
The latter prerequisite turned out to be a challenging task, as established methods
to restrict diffusion, like embedding the fluorophores in thin layers of transparent

1091101 © did not sufficiently immobilize the fluo-

polymers (e.g. polyvinyl alcohol)!
rophores or suppressed their fluorescence. A successful approach was to prepare
artificial liposomes that offered an environment in which the switching and fluores-
cence properties of the hydrophobic fluorophores were preserved. Liposomes were
selected because the molecular switch of diarylethenes is inherently hydrophobic.
The lipid membrane of liposomes offers a hydrophobic environment for the fluo-

rophores to associate with.

3.2.1 Methylated diarylethene

The first reversibly photoswitchable synthetic fluorophore investigated in this work
was a methylated diarylethene (meDAE), shown in Figure 3.7. The compound was
synthesized and provided by Dr. Heydar Shojaei (Max Planck Institute for Biophys-
ical Chemistry, Gottingen, Germany). The photoswitching unit of the fluorophore
is an integral part of its chromophore. The symmetric diarylethene core structure
1,2-bis(2-methyl-1-benzothiophene-1,1-dioxide-3-yl)perfluorocyclopentene was dec-
orated with a p-methoxyphenyl group at the C6 position and a methyl group at
the C6’ position. The compound showed very low solubility in water, but was sol-
uble in organic solvents. As described in section 1.7, the fluorescent closed form
(CF) of meDAE is formed by a cyclization reaction induced by irradiation with UV
light. The non-fluorescent open form (OF) is obtained by irradiating the closed form
with visible light. Figure 3.8 shows the absorption spectra of the non-fluorescent
open ring isomer, the fluorescent closed form and the emission spectra of the closed
form dissolved in methanol. The absorption maximum of the open form is found at

312nm and the absorption maximum of the closed form at 451 nm. The fluorescence
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UV light

meDAE “open” form (OF) meDAE “closed” form (CF)
non-fluorescent fluorescent

Figure 3.7: Structure of meDAE in its open (OF) and closed forms (CF). The
open from is non-fluorescent and can be transformed to the closed fluorescent form
by illumination with UV light. The closed form emits red fluorescence upon illumi-
nation with blue light and is transformed back to the open form with visible light.
The fluorophore was synthesized and provided by Dr. Heydar Shojaei.
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Figure 3.8: Absorption and emission spectra of meDAE in methanol. Absorption
coefficients (¢€) of the open (black line) and the closed (blue line) form are given on
the left axis. Fluorescence of the closed form upon excitation with Aexe = 450 nm
(orange line) is given in arbitrary units on the right axis.

maximum was situated at 634 nm, resulting in a large Stokes shift of 183 nm.

The filters F5 (Figure 2.2) in front of the detectors were adjusted to BrightLine®
624/40 (Semrock, Rochester, NY, USA) to match the emission of the fluorophore.
Samples were prepared as described in subsection 2.6.2. The liposomes were highly
fluorescent and showed a large variation in diameter ranging from 200nm up to
several pm. Small single liposomes with a diameter below 250 nm were first selected
in a coarse widefield search and then precisely positioned in the confocal detection

volume in all three dimensions by maximizing the detected fluorescence signal. For
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this purpose, a weak focused excitation with Ao = 488 nm at intensities around
30W/ cm? was used. The wavelength of Ay = 488 nm was chosen for the excitation
because most light sources for confocal and high resolution microscopy are in this
spectral region. Although the maximum absorption of the closed isomer is at 451 nm,

the absorption at 488 nm still reached 55 % of the maximal value.

Fluorescence pump-probe measurements

Following the approach described in subsection 3.1.1 to examine reversible photo-
switchable labels, the liposomes were illuminated with alternating light pulses of

UV (375nm) and blue (491 nm) light by the widefield illuminations described in
section 2.2.
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Figure 3.9: Switching fatigue and off-switching behavior of meDAE in liposomes.
a: Switching fatigue of meDAE in liposomes. Alternate illumination at 375 nm and
491 nm with the widefield excitations described in section 2.2 were used for photo-
switching. Data points (fluorescence during illumination with 491 nm light) were
fitted with a biexponential decay (solid line). b: Fluorescence decay of meDAE
in liposomes due to illumination with 491 nm light as mean of the first 30 switch-
ing cycles. A biexponential decay was fitted to the data (red solid line). The
corresponding residual is shown in the lower graph.

Figure 3.9a shows the switching fatigue of meDAE upon repeated photoswitching.
For the photoactivation, light intensities of 30 W/cm? at 375nm were applied for
0.5ms. These parameters were determined in a preceding experiment and ensured
that almost all molecules in the observation area were switched to the fluorescent

form. Off-switching was achieved by illumination with 491 nm light for 200 ms at
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7kW /cm?. To examine the bleaching behavior, the signal during illumination with
the 491 nm light was integrated for each cycle and the resulting data was normalized
to the first cycle. The fluorescence signal decreased to half of the initial value after
about 22 cycles. A biexponential fit was used to describe the data. The short
component was only used to fit the first few data points, indicating a different
bleaching/fading process in the beginning of the experiment.

Figure 3.9b shows the corresponding fluorescence signal of the described illumination
pattern as an average of the first 30 switching cycles. The data was fitted with
a biexponential function with time constants 7, = 3.7ms and 7 = 18.7ms and
amplitude ratios A; = 35% and Ay = 65%. The 1/e decay time was determined to
be 12.4ms. The residual fluorescence after off-switching was determined to be 6.8 %

of the initial value.
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Figure 3.10: Off-switching rate of meDAE in liposomes as a function of illumi-
nation intensity. Solid red line shows a linear fit to the data. Error bars represent
twice the standard deviation.

The rather low illumination intensity for the off-switching was chosen because the
number of achievable switching cycles severely decreased for intensities above 10
kW /cm?. Regardless, the off-switching behavior depending on the illumination in-
tensity was investigated. Figure 3.10 shows the off-switching rate of meDAFE depend-
ing on the applied intensity. Due to the strong photobleaching at higher intensities,
the measurements were not conducted using several excitation pulses with increas-
ing intensity on single liposomes. Instead, every data point represents the mean
value of 20 separate measurements with only 5 photoswitching cycles per measured
liposome. The switching rates were extracted from exponential fits to the data.

The off-switching rate scales linearly with the applied light intensity. The maximal
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measured off-switching rate was 280/s (7, = 3.6 ms), which is 27 times slower than
that for rsEGFP at similar illumination intensities (see subsection 3.1.4).

To exclude the possibility of fluorescence recovery by fluorophores that could be
present in the surrounding media instead of being associated with the liposomes,
the fluorescence of the surrounding media was examined. No increased fluorescence
was observed compared to samples prepared without fluorophores. However, this
could also arise from a significant reduction of the fluorescence quantum yield in
aqueous solution. If there were still fluorophores present in the surrounding solu-
tion, they would tend to associate with the lipid bilayer. To rule out that additional
fluorophores attach to the liposomes during a measurement via diffusion and thereby
artificially increase the number of possible switching cycles, an illumination break
was inserted after the off-switching pulse. This break was gradually increased to
examine whether fluorescence recovery took place. For each value of this break,
40 individual measurements were averaged. As can be seen from Figure 3.11, in-
creasing the illumination break up to 10 seconds did not significantly influence the
measured number of possible switching cycles before photobleaching. In particular,
no systematic increase with the duration of the pause was observed. This finding
also indicates that no long-lived dark state exists in this time span from which the

fluorophores could recover.
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Figure 3.11: Number of photoswitching cycles of meDAE in liposomes where the
fluorescence signal drops to half of its initial value depending on the delay between
illumination pulses with excitation light. The dashed line shows the mean value of
the data points. Error bars represent twice the standard deviation.
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3.2.2 Myo-inositol substituted diarylethenes

In addition to the meDAE compound presented above, two myo-inositol substituted
diarylethenes (mIDAESs) provided by Prof. Masahiro Irie (Rikkyo University, Tokyo,

1] These symmetric compounds featured 2(2)-ethyl and

Japan) were investigated
6(6’)-phenyl groups. The phenyl groups at positions C6(6’) slightly shift the absorp-
tion and emission maxima to the red spectral region and increase the fluorescence
quantum yield of the closed form, whereas the ethyl groups at positions C2(2') are
known to increase the fluorescence quantum yield in polar solvents®>''?/. The 1,2-
bis(2-ethyl-6-phenyl-1-benzothiophen-1,1-dioxide-3-yl)perfluorocyclopentene  core
structure was decorated with two and four polar myo-inositol residues via carboxyl
groups to obtain (b)-mIDAE and (t)-mIDAE, respectively. The structures are shown

in Figure 3.12.
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Figure 3.12: Structures of mIDAEs in their open (OF) and closed forms (CF). The
open form is non-fluorescent and can be transformed to the closed fluorescent form
by illumination with UV light. The closed form fluoresces upon illumination with
blue light and is transformed back to the open form with visible light. (b)-mIDAE
is decorated with two and (t)-mIDAE with four myo-inositol groups. Compounds

were provided by Prof. Masahiro Irie (Rikkyo University, Tokyo, Japan) [,
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a (b)-mIDAE in Methanol b (t)-mIDAE in Methanol
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Figure 3.13: Absorption and emission spectra of (b)-mIDAE (a) and (t)-mIDAE
(b) in methanol. Absorption coefficients (€) of the open (black line) and the closed
(blue line) form are given on the left axes. Fluorescence of the closed form (orange
line) is given in arbitrary units on the right axes.

The introduction of inositol residues increased the water-solubility of the compounds
due to the presence of multiple hydroxy groups. The emission of these compounds
was significantly shifted to the green with the emission centered at around 550 nm
(Figure 3.13). The emission filters F5 (Figure 2.2) in front of the detectors were
adjusted to BrightLine® 525/50 (Semrock, Rochester, NY, USA).

These compounds were used to prepare liposome samples as described before. De-
spite the increased water-solubility of the compounds, they showed high affinity to
associate with the lipid membrane. Similar to the characterization of meDAE, the
myo-inositol substituted diarylethenes were examined regarding their photophysi-
cal properties, summarized in Table 3.1. All displayed values, except the fluores-
cence lifetime, were acquired using widefield illuminations with A\,.¢ = 375nm and
Aexe = 491 nm and represent the arithmetic mean of the evaluation of 50 individual
switching experiments. The activation light was applied for 1ms at 120 W/cm?,
followed by the excitation for 200 ms at 8 kW /cm?. Fluorescence lifetimes were ob-
tained as described in subsection 3.1.5. The values are similar for both compounds,
reflecting the fact that they share the same core structure and only differ in the num-
ber of water-solubilizing groups. The photostability is lower than that for meDAE,
but the off-switching is about 12 times faster under similar conditions. The val-
ues for the residual fluorescence after off-switching and the fluorescence lifetime are

similar for all three compounds.
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Table 3.1: Photophysical properties of mIDAEs and meDAE in liposomes under
similar illumination conditions. Off-switching was performed with a widefield illu-
mination at 491nm for 200 ms with 8 kW /cm? for the mIDAEs and with 10 kW /cm?
for meDAE.

(b)-mIDAE (t)-mIDAE meDAE
number of cycles
till half of 1n1t'1a1 349 1745 99 & 5
fluorescence is
bleached
characteristic
off-switching time 1.2+ 0.3ms 1.0+ 0.2ms 12.4 £0.7ms
Toir (1/€)
residual
fluorescence after 6.5+2.3% 4.84+1.9% 6.84+0.8%
off-switching
fluorescence 71 = 0.5ns(9%) 71 = 0.7ns (8 %) 71 =0.6ns (6 %)
lifetime 75 =23ns(91%) 7 =25ns(92%) 71 =2.3ns(94%)

Summary

Although the preparation of liposomes allowed the examination of the hydropho-
bic fluorophores under conditions present in a confocal microscope, this type of
sample entails some uncertainties. The fluorophores are not rigidly fixed to the li-
posome membrane and their relative orientation to the membrane remains unclear,
in particular with regard to their photoswitching ability. A loose association to the
outside-directed membrane could cause dissociation from the liposome and out of the
observation area, especially in case of fluorophores with increased water-solubility.

The observed off-switching time and the residual fluorescence after off-switching of
the synthetic photoswitchable fluorophores presented in this section would generally
allow their application in RESOLFT nanoscopy. However, the absence of a suitable
linker to stain cellular structures and the low amount of possible switching cycles

constrain this implementation.
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3.3 Bioconjugateable photoswitchable synthetic

fluorophores

This section describes the investigation and application of new reversibly photo-
switchable diarylethene-based fluorophores with increased water-solubility and link-
ers for the conjugation to biomolecules. The new fluorophores were successfully used
in confocal and high resolution RESOLFT imaging. The compounds were synthe-
sized and provided by Dr. Benoit Roubinet and Dr. Heydar Shojaei (Max Planck

Institute for Biophysical Chemistry, Gottingen, Germany) '),
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Figure 3.14: Structures of EBT1 and EBT2 in their open (OF) and closed form
(CF). The open form is non-fluorescent and can be transformed to the fluorescent
closed form by illumination with UV light. The closed form fluoresces upon illumi-
nation with blue light and is transformed back to the open form with visible light.
EBT1 is decorated with four (“tetra-acid”) and EBT2 with eight (“octa-acid”) car-
boxylic groups. Compounds were synthesized and provided by Dr. Benoit Roubinet
and Dr. Heydar Shojaei 1%,

The highly symmetric core structure of 1,2-bis(2-ethyl-6-phenyl-1-benzothiophen-
1,1-dioxide-3-yl)perfluorocyclopentene (EBT) was decorated with four carboxylic
acid groups to obtain the “tetra-acid” EBT1 and eight carboxylic acid groups to ob-

tain the “octa-acid” EBT2. The structures are shown in Figure 3.14. The carboxylic
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acids are highly polar functional groups acting as hydrogen bond donors (carbonyl)
and acceptors (hydroxyl). These properties conferred the desired water-solubility to
the generally hydrophobic core. One or several carboxylic acid groups can be acti-
vated, e.g. by transformation to an NHS-ester (N-hydroxysuccinimide ester), giving

the opportunity to conjugate the diarylethene to amino groups of proteins.

3.3.1 Photophysical properties in solution

Figures 3.15a and 3.15b show the emission and absorption spectra of the tetra-acid
EBT1 and the octa-acid EBT2 in PBS. Their photophysical properties are sum-
marized in Table 3.2. The data acquisition and antibody conjugation were kindly
carried out by Dr. Mariano Bossi (Max Planck Institute for Biophysical Chem-
istry, Gottingen, Germany). The properties measured in aqueous solutions and in
methanol show minor differences. The emission efficiencies and fluorescence life-
times are reduced by 20 - 30 % in PBS, with stronger variations for EBT1. The
ring-opening quantum yield is nearly unaltered for EBT2, whereas for EBT1 a 35 %
reduction is observed in PBS. The quantum yields for the on-switching were affected
the strongest, especially for EBT1.

EBT1 and EBT2 were conjugated to antibodies (AffiniPure Sheep Anti-Mouse
IgG (H+L), Jackson ImmunoResearch Laboratories, Suffolk, UK) via NHS-ester
crosslinking reaction"'*. The bioconjugates with EBT1 and EBT?2 retain the pho-
tochromic and fluorescent properties of free fluorophores in solution. Figures 3.15¢
and 3.15d show the photoswitching of the bioconjugates in PBS. This was accom-
plished by first illuminating the sample with 470 nm light of 15 mW to reach maximal
conversion to the non-fluorescent isomer. The illumination was applied till no change
in the 450 nm-absorption band could be observed. Afterwards the sample was illu-
minated with 360 nm light of 10 mW to achieve conversion to the closed form. The
first five illumination steps had a duration of 5s, followed by a 10s and a 15s step
and three 20s steps. Absorption and emission spectra were recorded after each ir-
radiation step, exhibiting a continuous increase at the absorption maximum of the
closed isomer and the detected emission. Maximal conversion from the closed to the
open form was confirmed upon examination of absorption and emission spectra.
The presence of the antibodies is evident from the absorption of their aromatic
amino acids at 280 nm. The average number of fluorophores coupled to an antibody
(degree of labeling, DOL) was calculated on the basis of the acquired absorption

114]

spectra of the free uncoupled fluorophores and the bioconjugates! This gave a
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Figure 3.15: Absorption and emission spectra of EBT1 (a) and EBT2 (b) in PBS
(pH 7.4). Absorption coefficients (€) of the open (black line) and the closed (blue
line) form are given on the left axes. Fluorescence of the closed form (orange line)
is given in arbitrary units on the right axes. Absorption and emission spectra of
diluted samples of EBT1 (c) and EBT2 (d) conjugated to an antibody in PBS
(pH 7.4) with similar degree of labeling (DOL ~ 5). Samples were first illuminated
with 470 nm light to obtain only the non-fluorescent open isomer. Subsequent
illumination with 365nm light in several steps was performed. Absorption and
emission spectra were recorded after each irradiation step. Data provided by Dr.
Mariano Bossi.
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Table 3.2: Photophysical properties of free EBT1 and EBT2 in aqueous solution
(PBS, pH 7.4) and methanol. Data provided by Dr. Mariano Bossi.

PBS Methanol
Parameter State EBT1 EBT?2 EBT1 EBT?2
Amax abs / M OF 340 337 330 331
e/ M tem™? OF 12400 16500 12400 16000
Amax abs / M CF 450 448 449 448
e/Mtem™! CF 35000 45000 35000 44500
Amax em / 1M CF 534, 558 522, 550 525, 556 523, 552
Dy CF 0.48 0.57 0.69 0.70
T / ns CF 1.72+0.05 2.044+0.05 2.52+0.05 2.54+0.05
Por . cF CF 0.19£+004 023£0.04 0.29+0.04 0.24+0.04

Pcr ,or /1073  CF 1.2+0.3 20=£0.3 2.8=+0.3 26=x0.3

DOL of 5.1 and 4.8 for the EBT1- and the EBT2-conjugates, respectively. These
values are in the range of the DOL of 2-5 which is considered as optimal ''*. As
can be seen from Figure 3.15, attachment via NHS-ester to the secondary antibody

did not change the spectral characteristics of the fluorophores.

3.3.2 Confocal imaging

The EBT-antibody conjugates with a DOL of ~ 5 were used to stain cellular struc-
tures of fixed Vero cells to further analyze their applicability for imaging. Figure 3.16
shows confocal images using a primary antibody against o-Tubulin. The filamentous
structure was highly specifically stained by both secondary antibodies. The images
were acquired using focused excitation at Ao = 488 nm with a preceding short
widefield illumination at 355 nm to switch all fluorophores to their fluorescent form.
Repeated image acquisition of the same area led to a decrease in the fluorescence
signal originating from the isomerization of the fluorophores to the non-fluorescent
form. The signal could be restored by a short widefield illumination with 355 nm
prior to each frame. Simultaneous illumination with the excitation wavelength and
the activation wavelength (355nm) during the image acquisition caused notable
amount of photobleaching, recognizable by a decrease of the total fluorescence sig-
nal between the first and the second frame. This effect was heavily reduced by
pixelwise sequential illumination with these two wavelengths. The EBT1-stained
samples in general showed higher fluorescence intensities than their EBT2-stained

counterparts. This is caused by the lower quantum yield for the ring-opening reac-
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a Tubulin stained with EBT1 b Tubulin stained with EBT2

Figure 3.16: Confocal images of fixed Vero cells immunostained with primary
antibodies against a-Tubulin. EBT1 (a) and EBT2 (b) were attached to the sec-
ondary antibodies. Scale bars: 10 pm. Excitation at 488 nm with 10 kW /cm?, 30 ps
dwell time and a pixelsize of 100 nm.

tion of EBT1 compared to EBT2. Therefore a larger amount of fluorophores reside
in their fluorescent state during the excitation. The impact of this effect is decreased
by the higher quantum yield of EBT2.

These samples were very well suited for subsequent investigation of their photo-
physical and photoswitching properties at illumination intensities used in confocal
microscopy. Furthermore, the tubular structures offer a well-suited target structure

for high resolution imaging based on the RESOLFT concept.

3.3.3 Fluorescence pump-probe measurements

The immunostained Vero cells were used to characterize the photophysical properties
of the EBT-fluorophore-bioconjugates in the same samples as used for imaging.
Samples were prepared as described in subsection 2.6.3 and examined with the
described widefield illuminations. The emission filters F5 (Figure 2.2) in front of the
detectors were adjusted to BrightLine® 525/50 (Semrock, Rochester, NY, USA).

Switching to fluorescent on-state

First, the activation process was investigated to ensure that in the following experi-

ments all fluorophores were switched to their fluorescent on-state. Both fluorophores
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were activated completely with a 20 s pulse of 375 nm light at 0.8 kW /cm?. This
was evaluated by increasing the illumination duration at this wavelength and sam-
pling the resulting fluorescence signal with the excitation wavelength. Increasing
the length of the UV illumination pulses did not increase the retrieved fluorescence
further. However, using UV-illumination pulses longer than 20 ps caused a decrease
in the number of possible switching cycles. Furthermore, the way how the activation
light dose was applied was examined. The dose was kept at t,c; X Lt = 16 mJ/cm?.
The fluorescence signal after the activation step did not change upon increasing
the illumination time. Neither the number of switching cycles nor the off-switching
kinetics were affected. To exclude the existence of a delayed ring-closure reaction
after the UV-pulse, the waiting time between the activation and excitation pulses
was gradually increased from 20 ps to 500 ps. This also did not influence the above
mentioned characteristics of the fluorophores.

Since the way of applying the activation light dose to the sample did not influence
its photophysical properties, the shortest illumination and waiting times of 20 ps

were chosen for further experiments.

Off-switching kinetics

The off-switching behavior of the EBT-fluorophores was examined with the widefield
switching scheme for negative switchers described in subsection 3.1.1. Figure 3.17
shows an exemplary switching experiment of EBT1 and EBT2 with activation at
375nm and excitation/off-switching at 491 nm with 23kW /cm?. The off-switching
duration was set to 10 ms, because after this time no change in the residual fluor-
escence after off-switching could be observed for both fluorophores. This ensured
a precise determination of the minimal possible fluorescence signal in the off-state.
The off-switching behavior is shown as mean of the first 30 switching cycles. For
both fluorophores a biexponential fit was used to describe the data. In both cases
the fast component describes about 80 % of the signal amplitude and is five times
faster than the slow component. Compared in terms of the 1/e-decay time, EBT2
switches of about 1.6 times faster than EBT1 at the same illumination intensity.
Neither for EBT1 nor for EBT2, a single exponential decay could describe the ob-
served off-switching curve. A second process is involved described by the slower

decay of the biexponential fit.
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Figure 3.17: Fluorescence emission of cells immunolabeled with EBT1 (a) and
EBT?2 (c) showing the on-/off-switching cycles upon irradiation with the mentioned
light pulse sequence (gray bursts). The red line indicates the maximum fluorescence
signal detected within a switching cycle, while the black line displays the overall
fluorescence gained per cycle, both normalized to the respective value of the first
switching cycle. b and d show a single switching cycle as mean value of the first
30 cycles (black dots) of EBT1 and EBT2, respectively. The data point before the
maximal signal in b and d is a result of the delayed response of the AOTF. This
factor is integrated in the used fitting routine to obtain the correct values for the
initial fluorescence. The biexponential fit used to determine the switching kinetics
is shown as red solid line. Residuals of the fit are shown below. All plots were
normalized to their maximum value. All measurements were taken with 20 ps bins.
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Photobleaching

Under the same illumination conditions, EBT1 exhibits half the number of switching
cycles compared to EBT2, till half of the initial fluorescence is bleached. It was con-
sistently observed that EBT1 shows a faster decrease of fluorescence signal during
the first cycles (~ 20 — 30 % during the first 3 cycles) and that the mean fluores-
cence signal during illumination with excitation light drops faster than the maximal
fluorescence signal. After 200 cycles, only 10 % of the initial fluorescence is left for
EBT1 and EBT2. The bleaching is more distinct for the detected peak intensity
per switching cycle than for the residual fluorescence signal after off-switching. This
causes a degradation of the peak-to-background ratio during a measurement. The
residual fluorescence after off-switching increased from 5% to 7% for EBT1 and
from 2 % to 3.5 % for EBT2 from the first to the last switching cycle. In contrast to
that the 1/e decay times of the individual cycles remain the same throughout the
measurement. Reducing the duration of illumination with the off-switching light
five times to stop at a residual fluorescence after off-switching of twice the minimal
possible values (9.6 % for EBT1 and 3.8% for EBT2, both reached after 2ms at
23kW /cm?) did not affect the number of possible switching cycles. Reducing the
illumination times further revealed that the photobleaching scales linear with the
applied light dose. No significant dependence was observed solely on the applied
excitation intensity in the range from 0.8 kW /cm? to 23 kW /cm?.

Table 3.3 summarizes the photophysical switching properties of both EBT fluo-
rophores with 20 11s activation pulse of 375 nm light at 0.8 kW /cm? and off-switching
at 491nm for 10ms at 23kW /cm?. The indicated values, except the fluorescence
lifetime, represent the arithmetic mean of the evaluation of 50 individual switching
experiments.

The fluorescence lifetime was acquired using pulsed focused excitation at 488 nm.
The lifetime is altered for both fluorophores compared to the values acquired in
solution, exhibiting a biexponential decay. The major part of the decay (> 80 %
of the amplitude) is described by characteristic times being 0.5ns longer than the

monoexponential values of the measurements in solution.
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Table 3.3: Photophysical switching properties of EBT1 and EBT2 in immunos-
tained Vero cells in PBS (pH 7.4). Off-switching was performed with a widefield
illumination at 491 nm with 23 kW /cm? for 10 ms.

EBT1 EBT?2

number of cycles till half
of the initial fluorescence 11+2 224+ 2
is bleached

characteristic time 7;

(Ay) 244 £ 5pus (77%) 148 + 4 ps (76 %)
1
characteristic time 7
(As) 1324 + 37ps (23 %) 796 + 23 s (24 %)
1/e-decay time 7,g 323 + 6 ps 202 4+ 5ps
residual ﬁuo?esm.ence 48+08% 1.9+0.3%
after off-switching
fluorescence lifetime 7 = 0515 (17%) 7 = 0515 (16%)
7 =2.21s (83 %) T = 2.41s (84 %)

Intensity-dependent off-switching kinetics

The intensity dependence of the off-switching rate was examined by a pattern of con-
secutive illumination pulses with increasing intensities. The displayed off-switching
rates in Figure 3.18a depict the reciprocal value of the characteristic decay time
Tot €xtracted from biexponential fits to the decay curves. The light dose for off-
switching was kept constant for all illumination intensities at 230 J/cm? for both
fluorophores. The data shown in Figure 3.18 represent the mean over 30 individual
measurements at different positions in the sample in which the pulse pattern was
repeated five times.

For both EBT fluorophores, the off-switching rate increases linearly with the illumi-
nation intensity as can be seen by the linear fit in Figure 3.18a. Thus, the difference
in the off-switching rate of EBT1 and EBT2 stays constant at a factor of 1.5 for the
applied illumination intensities. In accordance to this, the two off-switching rates
obtained from the biexponential fits show the same linear dependence and their
amplitude ratio stays constant for all intensities for both fluorophores. These find-

ings suggest that the off-switching processes of the EBT fluorophores occurs directly
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Figure 3.18: Intensity-dependent off-switching rate and relative residual fluor-
escence of EBT1 and EBT2. a: Off-switching rate of EBT1 (blue) and EBT2
(orange) as function of illumination intensity. Solid lines show a linear fit to the
data. b: Residual fluorescence after off-switching of EBT1 (blue) and EBT2 (or-
ange) as function of illumination intensity. Illumination times were chosen such
that the applied light dose was kept constant for different illumination intensities.
All data were recorded on immunostained Vero cells. Error bars represent twice
the standard deviation.

from the S; state without further intermediate states at excitation intensities up to
23kW /cm?. The maximal observed off-switching rates of 3100/s (7og = 322ps) for
EBT1 and 5000/s (7.g = 200 ps) for EBT2 at 23kW /cm? are both lower than the
off-switching rate of rsEGFP at this illumination intensity shown in Figurc 3.4. The
faster off-switching rate of EBT2 is in accordance with the higher quantum yield for
the ring-opening reaction.

The residual fluorescence after off-switching decreases for both fluorophores at higher
illumination intensities, starting at 9.3 % and 3.7% for EBT1 and EBT2, respec-
tively. As can be seen from Figure 3.18b, these values drop to approximately half
at the maximal illumination intensity of 23kW/cm? for both fluorophores. The
decreasing relative residual fluorescence originates from the fact that the maximal
fluorescence per cycle increases linearly with the applied intensity, whereas the fluor-
escence after off-switching shows a saturable behavior.

Slight deviations of the values shown in Figurc 3.18 at illumination intensities of
23 kW /cm? compared to the values given in Table 3.3 are due to the different ways
the measurements were performed. For the data given in Table 3.3, experiments
were performed with the given intensity in repeated switching cycles. In contrast,

for Figure 3.18, the different excitation intensities were consecutively applied to the
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same area in the sample for better comparability. This can cause higher residual
fluorescence after off-switching than in the single intensity experiments due to pho-
tobleaching. Nevertheless, higher residual fluorescence values at lower illumination

intensities were also found in the single intensity experiments.

3.3.4 RESOLFT imaging

The antibody-coupled EBT-fluorophores successfully stained cellular structures of
fixed mammalian cells and showed photophysical properties suitable for RESOLF'T
nanoscopy. The imaging was performed on immunostained Vero cells mounted in
PBS. All presented images show raw data to demonstrate the capabilities of the
EBT fluorophores without further post-processing image enhancement techniques
like deconvolution algorithms.

For the RESOLFT imaging the following pixelwise scheme was deployed. The
Gaussian-shaped activation beam (355nm) was applied for 50us at 0.15kW /cm?,
followed by a 10ps illumination pause to ensure strict separation of the different
illuminations. Subsequently, the doughnut-shaped off-switching beam (488 nm) was
applied (duration and intensity where chosen depending on the respective sample)
and after another 10 ps illumination pause, the Gaussian-shaped excitation beam
(488 nm) was applied for 80 ps at 10kW /cm? to read out the remaining fluorescence
in the center of the focus. Comparison of the confocal and the RESOLFT images was
achieved by consecutive recording of the same area following the described imaging
scheme. For the confocal images the off-switching step with the doughnut-shaped
beam was omitted. Due to the photobleaching of the fluorophores, the confocal
images were recorded after the RESOLFT images. This assured higher fluorescence
intensities in the RESOLFT images at the expense of reduced fluorescence in the
confocal images. The overall bleaching caused by the RESOLFT and the corre-
sponding confocal image was examined by confocal overviews before and after the
imaging of the selected areas.

The RESOLFT images were obtained at off-switching intensities of 12kW /cm? ap-
plied for 7ms for EBT1-stained samples and 36 kW /cm? applied for 1.2 ms for EBT2.
Remarkably, higher off-switching intensities for EBT1 did not improve the image
quality, but instead caused higher photobleaching resulting in an inferior signal-to-
noise ratio. These imaging parameters led to pixel dwell times of 7.15ms for EBT1
and 1.35ms for EBT2. The images were recorded with a pixel size of 30 nm because

smaller pixel steps caused high photobleaching having negative effects on the image
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quality. Accordingly, high resolution imaging of a 6 pm x 6 pm area took ~ 5 minutes
for EBT1 and ~ 1 minute for EBT2.

The tubular structures were considerably refined in the RESOLFT images. The
attained resolution was quantified by measuring the FWHM of the EBT labeled
microtubules. This was accomplished by averaging ten intensity profiles of adjacent
pixels on single filaments. The averaging prevented the occurrence of inaccurate
smaller resolution values arising from statistical outliers in the intensity of indi-
vidual pixels. The FWHM of these line profiles were determined on Lorentzian
functions fitted to the measured data. For a robust determination of the resolution
in the images, individual line profiles of six different positions were averaged as ex-
emplary shown for EBT2 in Figure A.5. From these line profiles the resolution was
determined to be 86 + 1 nm for EBT1 and 76 £ 3nm for EBT2. As can be seen from
the RESOLFT images and the corresponding line profiles (Figures 3.19 and 3.20),
the enhanced resolution allowed to discern adjacent filaments where the confocal
images only showed a single blurred fiber. The line profiles of the confocal images
with EBT2 stained Tubulin show an FWHM of down to 175 nm (Figure 3.20e).
EBT?2 exhibited better characteristics concerning imaging speed and attainable res-
olution resulting from the higher fatigue resistance and lower residual fluorescence
after off-switching. To show its applicability also for other cellular structures, the
secondary EBT2-antibodies were further used to stain Vimentin filaments and the
nuclear pore complex protein NUP153 of Vero cells (see Figures A.3 and A.4). The
Vimentin stainings showed the same quality as the Tubulin stainings, whereas the
NUP153 stainings showed unspecific signal outside the nucleus (Figure A.4). How-
ever, the nucleus itself could be imaged without any constraints. The described
RESOLFT illumination pattern was also applied to these samples with the in-
tensities for the off-switching step with the doughnut-shaped beam adjusted to
32kW/cm? and 37kW /cm? for Vimentin and NUP153, respectively. The attained
resolution, determined as described above, was 80 4+ 5nm for the Vimentin and
88 + 6 nm for NUP153 samples.

Due to photobleaching caused by the RESOLFT imaging, the acquisition of a second
high-resolution image of the same area was not possible. Comparing the overall
photon counts of the imaged area in the confocal overviews before and after the
RESOLFT imaging yielded a decrease of ~60 % after the imaging (Figures 3.19 and
3.20). The second RESOLFT images showed reduced signal-to-noise ratio, such that

the cellular structures could not be clearly distinguished from the background.
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Figure 3.19: Confocal overview of fixed Vero cells immunostained with primary
antibodies against o-Tubulin and with EBT1 attached to the secondary antibodies
before (a) and after (b) the high resolution imaging. Confocal (¢) and RESOLFT
(d) image of the indicated areas in a and b. The RESOLFT images were recorded
before confocal images. Scale bars: 2pm. All images show raw data. e: Line
profiles A-B (averaged over ten adjacent lines) display the regions indicated in ¢
and d. The data (dots) was fitted with Lorentzian functions (solid line) for the
RESOLFT (red) and the confocal (blue) image. The FWHM determined on fit A

is indicated by the small black arrow.
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Figure 3.20: Confocal overview of fixed Vero cells immunostained with primary
antibodies against o-Tubulin and with EBT?2 attached to the secondary antibodies
before (a) and after (b) the high resolution imaging. Confocal (c) and RESOLFT
(d) image of the indicated areas in a and b. The RESOLFT images were recorded
before confocal images. Scale bars: 2um. All images show raw data. e: Line
profiles A-D (averaged over ten adjacent lines) display the regions indicated in ¢
and d. The data (dots) was fitted with Lorentzian functions (solid line) for the
RESOLFT (red) and the confocal (blue) image. The FWHMs determined on the
fits A and B indicated are by the small black arrows.
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Specificity of secondary antibodies

The secondary antibodies described in subsection 3.3.1 were used in standard immu-
nostaining protocols for the first time and some stainings showed slight unspecific
staining. To estimate to what extent this unspecificity arose from the binding of
the secondary antibody to the cellular structures of the fixed cells, negative controls

were conducted.

a FluoProbes 488 b Star 488 ¢ Alexa Fluor 488

Figure 3.21: Confocal images of fixed Vero cells solely stained with secondary
antibodies labeled with different fluorescent dyes: FluoProbes 488 (a), Star 488
(b), Alexa Fluor 488 (c), EBT1 (d) and EBT2 (e). Scale bars: 10 pm. Excitation
at 488 nm with 10 kW /cm? and 30 ps dwell time.

The incubation with the primary antibody was omitted in the immunostaining pro-
tocol described in subsection 2.6.3. Thus only the secondary antibody was applied to
the sample. This procedure was not only conducted with the antibodies conjugated
with EBT1 and EBT2 but also with commercially available secondary antibodies
commonly used in immunofluorescence. In particular, these antibodies were conju-
gated with the fluorophores FluoProbes 488 (Interchim), Star 488 (Abberior) and
Alexa Fluor 488 (Thermo Fisher Scientific).
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The different samples were imaged under similar conditions (excitation at 488 nm
with 10kW /cm? and 30 ps dwell time). In case of samples with EBT1 and EBT2, it
was ensured that all fluorophores were in their fluorescent form by a pixelwise illumi-
nation step with 355 nm (130 W /cm? for 50 pis) prior to the excitation. All secondary
antibodies showed a certain amount of unspecific labeling (see Figure 3.21). This
demonstrates that the effect is not limited to the new compounds EBT1 and EBT2

and does not arise from the fluorophore properties.

Summary

The new reversibly photoswitchable EBT fluorophores were successfully used to la-
bel various structures in fixed mammalian cells. Based on the characterization of
these new fluorophores, their first utilization for RESOLFT imaging could be demon-
strated, featuring a ~ 2.3-fold resolution increase. The enhanced water-solubility
of the fluorophores allowed the use of aqueous buffers without further additives to
enable their photoswitching behavior. This is a critical feature for future use in

living samples.
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4 Discussion and Outlook

Since the first demonstration of RESOLFT with an RSFP ', the method was ap-
plied in living cells and even whole organisms ?"%% In addition to RSFPs, syn-
thetic photoswitchable labels were employed for RESOLFT, whereby their applica-

72731 In the present study the possibilities

tion was limited to artificial structures!
to label and image biological structures with diarylethene-based reversibly photo-
switchable fluorophores in purely aqueous solutions were evaluated and demonstrat-
ed for the first time. Furthermore, the photophysical properties of these fluorophores

were compared with two RSFPs frequently applied in RESOLFT nanoscopy.

4.1 Reversibly photoswitchable fluorescent proteins

The photophysical ensemble switching properties of the two RSFPs rsEGFP 7 and
1sEGFP21%) were characterized. The results of this characterization shall be dis-
cussed in the following.

The precise determination of the fluorescence background after off-switching and the
switching kinetics of a photoswitchable label is necessary for quantitative analysis
of high-resolution RESOLFT images. This knowledge may even allow to determine
the number of emitters involved in the imaging process !9

It was shown that the observable off-switching kinetics and the residual fluorescence
after off-switching of an ensemble of rsEGFP and rsEGFP2 are altered depending
on the used illumination method (Figure 3.2). This originates from the location-
dependent intensity profile in case of the illumination with a diffraction-limited PSF
causing a superposition of different local off-switching kinetics. This is particularly
pronounced in thick samples since the observed properties would be altered signifi-
cantly due to the axial decrease of intensity in the PSF of a focused illumination.
These effects are prevented in case of an illumination with an uniform intensity
profile. Therefore it is of advantage to use a spatially uniform illumination and thin
samples (i.e. a thin layer) if the purpose of the study is to analyze the switching

kinetics and the fluorescence background after off-switching of the labels.
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The number of on/off-cycles a photoswitchable label can undergo before it is trans-
ferred to a permanent dark state influences the achievable optical resolution in
RESOLFT imaging as well as the possibility for long term observations. For rsEGFP
and rsEGFP2, the number of switching cycles till half of the initial fluorophores were
bleached was measured to be 1100 and 1550 cycles, respectively (Figure 3.3). The
reported numbers are ~ 1000 for rsEGFP and ~ 2000 for rsEGPF2 7% The dif-
ference to the data presented in this thesis are likely related to differences in sample
preparation and experimental conditions, as already noted by Grotjohann et al. %,
The data in this study was acquired using light at \..; = 375 nm to photoswitch the
non-fluorescent form to the fluorescent form. The non-fluorescent form of rsEGFP
features an absorption maximum at A,,s = 396 nm, whereas the absorption maxi-
mum of the non-fluorescent form of rsEGFP2 is located at A\,ps = 408 nm. This leads
to larger required illumination intensities or longer illumination times of rsEGFP2
using 375nm UV light to fully populate the fluorescent form. Thus, compared to
the 405 nm light used previously, the higher energy of the 375 nm light may cause a
higher probability for photobleaching in case of rsEGFP2.

The switching-kinetics of a photoswitchable label are particularly interesting in
terms of image acquisition time, as commonly one of the switching steps repre-
sents the speed limiting factor. The off-switching kinetics of rsEGFP and rsEGFP2
were modeled by a biexponential decay since a monoexponential curve did not fit
the data properly (Figure 3.1). This is in accordance with previous reports on dif-
ferent RSFPs, assigning this behavior to two different emissive states with different
switching kinetics M'7118),

Both RSFPs exhibited an intensity-dependent switching to the non-fluorescent state.
Grotjohann et al. showed that the difference in off-switching half time of rsEGFP
and rsEGFP2 decreases with higher illumination intensities, indicating a rate lim-
iting process such as the conformational change that the protein performs upon
switching. The experiments by Grotjohann et al. were performed using focused
illumination with intensities up to 400 kW /cm? on living cells expressing Vimentin
labeled with the respective protein®”. In the current study, the convergence of the
off-switching rates at increasing illumination intensities could not be reproduced on
E. coli expressing the proteins in the cytosol. This could either be an effect caused
by the differing sample preparation, the lower illumination intensities used in this
work or the different illumination methods. As mentioned above, focused illumi-
nation causes different observable off-switching kinetics than uniform illumination,

which could contribute to the measured differences.
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The off-switching rates of rsEGFP and rsEGFP2 showed a saturation with rising
intensities. This behavior could be well described by a three-state model with a tran-
sient fluorescent state T that gets populated before the off-switching (Figure 3.5).
The proposed model requires a high rate from state T back to the initial fluores-
cent on-state of the proteins. With regard to the complexity of factors influencing
the fluorescence behavior of the proteins*”), the transition state T is most likely a
superposition of several different states corresponding to minimal displacements of
amino acids in direct proximity to the chromophore.

The saturation of the off-switching rate is an essential factor in terms of imaging.
On the one hand, increasing the power of the depletion beam would cause higher
photobleaching without shortening the overall imaging time. On the other hand,
the fluorescence signal before switching off increases with the illumination intensity,
which can be useful to increase the signal during the excitation. For future screening
approaches it should be kept in mind that there is a limit for the switching speed
of RSFPs. Concerning the phototoxicity for the specimen, it is desired to screen
for protein variants with high off-switching rates in the intensity range where the
response to the intensity is still linear.

For both RSFPs the residual fluorescence after off-switching depends only on the
applied light dose independently of the applied intensity (Figurc 3.4). This indicates
that in the intensity range of up to 23kW/cm? no molecular states are populated

or generated which would cause additional non-switchable background.

As one of the most important characteristic of a fluorophore, the fluorescence lifetime
(Figure 3.6) of rsEGFP is consistent with previously reported values (7 = 1.7ns).
In contrast, the value for rsEGFP2 is substantially different, as the decay was pre-
viously described as being monoexponential with 7 = 1.6 ns/%?. However, a mono-
exponential decay did not fit the measurements in this study. In this context, it
should be noted that the fluorescence lifetime of a fluorophore can be altered by a
range of factors like pH or viscosity of the surrounding medium "'}, Hence, the
fluorescence lifetime of rsEGFP2 may be altered due to attachment to a cellular
structure compared to unbound protein in the cytosol of E. coli. Furthermore, the
amplitude of the very short decay time of rsEGFP2 represents only 18 % of the total

signal. At low photon count rates, this could be easily covered by noise.

In summary, the photophysical characterization of ensembles of rsEGFP and
rsEGFP2 with a uniform illumination profile revealed the dependence of the ob-

servable off-switching kinetics on the type of illumination and the saturation of
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the off-switching rate already at comparatively low intensities. Recently presented
RSFPs suitable for RESOLFT nanoscopy like rsFolder '*’! and rsGreens "*! should

also be evaluated for this potential behavior.

4.2 Fluorescent diarylethenes without linker

The fluorescent diarylethenes meDAE and mIDAEs represent reversibly photo-
switchable fluorescent molecules without a specialized linker to label structures of
interest. Therefore, the photophysical properties of these diarylethenes were exam-
ined in artificial liposomes to spatially restricted their motion during the measure-
ments.

meDAE showed a linear dependence of the off-switching rate and illumination inten-
sity (Figure 3.10). This supports the energy surface model of diarylethenes outlined
in Figure 1.4, indicating that the decay from the closed to the open form occurs
directly from the S; state without intermediate states.

In general meDAE and the mIDAEs showed similar photoswitching characteristics
(Table 3.1), apart from the off-switching rate, which is ten times faster for the
mIDAEs compared to meDAE. It has to be noted that the liposomes, although
allowing photoswitching of the diarylethenes under microscopy conditions, present
a heterogeneous environment to the fluorophores. This can have effects on the
photokinetics that are difficult to estimate. Hence, whether the faster switching of
the mIDAESs originates from the ethyl groups in position C2(2') or the added myo-
inositols remains uncertain. The water-soluble myo-inositols may allow for effective
photoswitching if the fluorophores are exposed to the solvent rather than being
associated with the lipids. This could lead to a higher off-switching rate of the
observed ensemble kinetic.

A reliable detection of the photophysics in aqueous solution under conditions present
in a confocal microscope could not be performed due to the low water-solubility in

case of meDAE and the lack of a method to spatially fix these fluorophores.

4.3 Bioconjugateable fluorescent diarylethenes

The low water solubility of diarylethenes so far prevented their use in aqueous so-
lution and thus also their use as markers for cellular structures. The diarylethenes
EBT1 and EBT2 presented in this work allow this possibility due to their enhanced
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water solubility and the availability of an NHS-ester to bind to biomolecules. The
properties of EBT1 and EBT2 (Table 3.2) were significantly improved in aqueous
solution compared to other fluorescent diarylethenes. In general, reports on fluo-
rescent water-soluble diarylethene derivatives are rare, whereby in these studies the

100,122]

fluorescence emerged only in nanoaggregates of the particular compounds! or

123,124]

was very weak! Previous studies mainly report on measurements in non-

86,857,125 T these solvents

polar solvents like 1,4-dioxane ®>'"?l or in ethyl acetate
high fluorescent quantum yields of up to 85 % were described . Beside the fluor-
escence quantum yield, the quantum yields for the cyclization (on-switching) and
the cycloreversion (off-switching) are of importance as they stipulate the amount
of light that has to be applied to induce the respective reaction. With regard to
the application in microscopy, a negative switching label, where off-switching and
fluorescence emission are two concurrent processes, the quantum yield for the off-
switching should ideally be in the range of 0.1 to 1% of the fluorescence quantum
yield to allow a sufficient number of photon emissions per cycle. Taking into ac-
count that the fluorescence detection efficiency of a confocal microscope is limited
to about 10 %," about 10 to 100 photons can be detected per fluorophore before it
switches to the non-fluorescent state. However, if the number of emitted photons
before off-switching exceeds 103, unnecessarily high illumination doses are required
to achieve the cycloreversion.

For fluorescent diarylethenes in non-polar solvents, cycloreversion quantum yields

95,112]

below 1072 have been reported ! , whereas non-fluorescent diarylethenes showed

quantum yields from 10~* to 0.4 for the cycloreversion in aqueous solution. [?6:10%:126]
In the present study, the EBT fluorophores showed cyclization yields = 0.25, cyclore-
version yields > 2.6 x 1072 and fluorescence quantum yields of ~ 70 % in methanol
which were largely retained in aqueous solution due to the attached carboxyl groups.
The quantum yields for the cyclization and cycloreversion were reduced less in PBS
compared to methanol for EBT2 than for EBT1. Apparently, the additional water-
soluble groups of EBT2 provide better shielding against the impacts of the polar
solvent 112127,

The brightness of the EBT-fluorophores upon excitation with 488 nm light was calcu-

lated as the product of the molar extinction coefficient € at the excitation wavelength

tThe maximal detection efficiency of a confocal microscope of ~ 10% is estimated from the
collection efficiency of a 1.4 NA oil immersion objective lens of ~ 30 %, the detection efficiency
of single-photon detectors of ~ 50% and additional losses caused by transmission through
optical elements like dichroic mirrors, lenses and filters.
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and the determined quantum yield. EBT2 is 26 % brighter than EBT1, similar to
the fluorescent proteins rsEGFP and rsEGFP2 that are 44 % and 41 % brighter than

EBT1, respectively 7%,

The EBT fluorophores were successfully coupled to antibodies and used in immu-
nostaining protocols to label different cellular structures in Vero cells (Figures 3.16,
A3 and A.4). The cytoskeletal proteins o-Tubulin and Vimentin were highly specif-
ically stained. Hence, the attachment of the fluorophores to the antibodies did not
impair the antibodies’ selectivity. However, staining a protein of the nuclear pore
complex (NUP153) caused a certain amount of unspecific background in the sam-
ples. This could originate from the fact that staining of this protein requires the cell
membranes to mostly stay intact. Apparently, the EBT2 fluorophores interact with
cellular membranes (Figure A.4), which was also reported for several commercial
fluorophores, like Atto550, Alex647N and Cy312%.

The complete on-switching of the EBT fluorophores can be performed in ~ 20 ns
with 375nm light at an intensity of 0.8 kW /cm?. This is five times faster compared
to rsEGFP, which needs 100ys at comparable intensities®”, and in the range of
rsEGFP2. Tt was shown that for the fluorophores no additional time is needed
to perform the ring-closure reaction after illumination with the UV light. It can
therefore be assumed that in this time-regime no intermediate transition state exists,

unlike described for certain RSFPs 42129

The off-switching curve of both EBTs required a description by biexponential decays
(Figure 3.17). Concerning the rather simple structure of the EBT fluorophores, it
may be assumed that the off-switching process can be described by a single rate.
The application of uniform illumination within the whole detection volume assured
that the experimentally observable decay was not influenced by the superposition of
different light intensities. A possible explanation for the biexponential decay could
be a metastable dark state that gets populated by the excitation light out of the
closed-form isomer. A delayed recovery from that state followed by its off-switching
attenuates the overall kinetic and could explain the second characteristic time in the
exponential decay. The fit suggests that ~ 20 % of the fluorophores are transferred
to this assumed dark state and populating this state and subsequent off-switching
takes five times longer than the direct off-switching to the non-fluorescent form
(Table 3.3). This dark state could be a long lived triplet state of the diarylethenes,
many times larger than triplet state lifetimes of organic fluorophores that are in the

range of several microseconds %V,
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The photostability of a fluorescent marker is a crucial property for imaging. In
case of a reversibly photoswitchable fluorophore, the photostability refers primarily
to the number of on-/off-cycles that the molecule can withstand. The presented
EBT fluorophores exhibit about 10 to 20 full switching cycles till half of the initial
fluorescence is bleached. The photobleaching was not reduced when the illumination
was reduced to light doses where the residual fluorescence after off-switching had
decayed to a value twice as high as the minimal possible value. This indicates that
the reduced absorption cross section of the fluorophores in their non-fluorescent
form efficiently prevents from photobleaching. The photobleaching scaled linearly
with the applied light dose, but no dependence was identified solely on the light
intensity. This indicates that in the tested intensity regime, the primary path for
photobleaching of the EBT-fluorophores with the excitation light occurs during the
ring-opening reaction, rather than from higher exited states.

The number of possible switching cycles of the EBT fluorophores is far below the
reported values of diarylethenes showing 10000 cycles with minor loss in fluores-

9. In the present study, the measurements

cence in non-polar solvents and solids!
were performed in aqueous solution which sets considerably differently requirements
on the fluorophores. In general, the process of solvent-dependent photobleaching
is still insufficiently understood. Common theories state that photobleaching is
predominantly induced by molecular oxygen through direct interaction with the flu-

131 In addition to dissolved

[132]

orophore and generation of free radicals in solution
molecular oxygen, reactive oxygen species are produced by irradiation !’ causing
a higher probability for photobleaching upon interaction with fluorophores. More-
over, photobleaching can also occur from higher exited states through two photon

1331341 Tn case of photoswitchable fluorophores, the observable loss of

absorption
fluorescence can furthermore be assigned to two different reactions: bleaching from
the fluorescent on-state and modification of the fluorophore in such a way that it
can not be switched to the fluorescent state any more. The dominant mechanism
for the photobleaching of the EBT fluorophores in aqueous solutions, either a per-
turbation of the photochromism of the molecules or their fluorescence capability or

a combination of both, could not be identified within the scope of this thesis.

Both EBT fluorophores showed a linear dependence of the off-switching rate and
the applied intensity (Figure 3.18), which as in the case of meDAE supports the
energy surface model of diarylethenes (Figure 1.4). Due to the simple molecular

structure of the molecules, it can be assumed that this linear correlation persists
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for intensities above 25 kW /cm?, at least if the population of short-lived dark states
does not grow over-proportional.

The residual fluorescence after off-switching decreased for both EBT fluorophores
with increasing illumination intensity. A possible explanation could be the popula-
tion of a dark state. As the applied light dose was kept constant, the duration for
the illuminations was reduced with increasing intensity. During the extended time
the molecules could return more often from such a dark state resulting in a higher
residual fluorescence after off-switching. It is also conceivable that higher intensities
cause a more efficient switching to the off-state by absorption of a second photon
in the excited state. However, this behavior has so far only been described for

135,136] and is

picosecond-pulsed lasers with high peak intensities of 7 x 105 kW /cm?!
rather unlikely at the intensities used in this work. Further experiments are needed

to elucidate which one of the two hypotheses is more probable.

RESOLFT imaging

The EBT fluorophores were successfully used for RESOLFT nanoscopy of different
biological structures in fixed mammalian cells (Figures 3.19, 3.20, A.3 and A.4).
The short on-switching times of about 20ps and the off-switching times to 1/e
of the initial fluorescence of less than 350 ps allowed imaging in the timescale of
previously reported implementations of RESOLFT #7439,

Based on the mentioned requirements for a RESOLFT label (see subsection 1.5.1),
the performance in high resolution imaging of the EBT fluorophores can be esti-
mated. With 11 and 22 full switching cycles till half of the initial fluorescence is
bleached for EBT1 and EBT?2, respectively, a maximal 1.7- to 2.3-fold improvement
of the lateral resolution can be expected according to Equation 1.4, whereas the
values of the relative residual fluorescence after off-switching of 0.05 for EBT1 and
0.02 for EBT2 would allow to improve the lateral spatial resolution 4.5 to 7.0 times
(Equation 1.5). The resolution increase achieved in the RESOLFT measurements
of 2.3-fold was therefore close to the estimated performance and mainly limited by
photobleaching. Here it should be noted that the visible size of the imaged struc-
tures was increased due to the applied staining method. In case of Tubulin, the
spatial extent of the antibodies can lead to an extension of the structure size from

25nm to approximately 55nm *.

YA more detailed description of the molecule sizes in fluorescence microscopy can be found in
section A 4.
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To date, the only other demonstration of RESOLFT nanoscopy with synthetic flu-
orophores on biological structures used a 'reporter’-’activator’ dye pair of Cy3 and
Alexa647 in immunostained mammalian cells™. This dye-pair needed 1% v/v of
primary thiol (3-mercaptoethylamine) and potassium iodide added to the buffer to
control the photoswitching between its fluorescent and non-fluorescent states. These
conditions allowed a residual fluorescence of ~5% and an off-switching time dur-
ing imaging of 15ms at 4kW/cm? with 658 nm light. A resolution of about 75nm
was shown on nuclear pore complexes with labeled NUP153. Although stating that
20 % of the fluorophores were bleached during the pump-probe-measurements, no
comments were made about the photobleaching during the imaging process. The
used illumination intensities were comparably low but caused long off-switching
times. The disadvantages of using a 'reporter’-’activator’ pair is that optimal condi-
tions have to be set for two different fluorophores and the exploited dark states are
metastable. Additionally, this type of fluorophore pair is unlikely to be applicable
in live-cell imaging as the required thiols are highly cytotoxic 7.

The EBT fluorophores presented in this work feature clear advantages such as higher
imaging speeds, stability of the fluorescent and non-fluorescent form, photochromism
and functionality in purely aqueous buffers. The extensive photobleaching encoun-
tered prevented repeated imaging of the same region of interest. The acquisition
times for a RESOLFT image were in the range of 1 to 5 minutes for a 6 pm x 6 pm
area using 30 nm pixels with the EBT fluorophores. Assuming the same conditions,
this is significantly faster than the first demonstrations of RESOLFT with Dreik-
lang (> 30 minutes) **, 1sEGFP (~ 7 to 15 minutes) " or the dye pair of Cy3 and
Alexa647 (~ 10 minutes) ™ but slower than for rsEGFP2 (~ 5 to 20 seconds) %,

rsFolder (~ 30 seconds)'*") or rsGreen (~ 20 seconds) !,

The high resolution in the confocal comparison images (Figures 3.19¢ and 3.20c¢),
can be explained by the two-step imaging process. Every position was sampled
by the activation with a 355nm beam and the excitation with the 488 nm beam.
Therefore the confocal resolution was not determined by the excitation beam alone
but also by the spatial extent of the on-switched area, defined by the size of the
activation beam. In total, the observable resolution is the product of the PSFs of
activation, excitation and detection resulting in an effective PSF. Assuming ideal
diffraction-limited PSFs and a confocal pinhole size of one Airy unit, this would result
in a 120nm FWHM of the effective PSF for the given laser lines and a detection

centered at 525nm. However, this value is strongly dependent on the size of the
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activation 355 nm PSF. Standard optics are not optimized for wavelengths below
400 nm causing the 355 nm PSF to be significantly larger (FWHM = 180nm) than
the theoretically possible value. This results in a realistic effective confocal PSF
with a FWHM of about 145nm. The confocal images were further blurred because
the fluorophores were not completely switched to the non-fluorescent form during

the excitation step.

Altogether, EBT2 exhibited superior performance compared to EBT1 in all exam-
ined aspects in aqueous solution. Obviously, the additional water-solubilizing groups
facilitated better preservation of the photochromic and fluorescence properties in the

polar environment.

RSFPs compared to EBT fluorophores

The currently used RSFPs in RESOLFT nanoscopy offer more than 1000 switching
cycles and can be genetically encoded to label structures of interest. The advan-
tage of the RSFPs is that their chromophore is encased by a barrel of amino acids
which shields it from direct interactions with solvent molecules and confers water
solubility. This feature enabled resolutions of down to 45nm in living cells*”) and
49 nm in living specimens [ with rsEGFP2. Opposed to that, organic fluorophores
are directly exposed to the solvent and the contained reactive species, apparently
rendering them more prone to photobleaching. However, the brightness of the EBT
fluorophores is comparable to or even higher than for most RSFPs!*”| whereby the
total number of emitted photons per molecule is restricted by their photostability.
The diarylethene-based EBTs have clear advantages over RSFPs in terms of photo-
switching background and long term stability of the fluorescent and non-fluorescent
forms, as in the case of proteins, one of the two states is typically the equilibrium
state 2],

Due to their switching fatigue, the presented EBT fluorophores are still inferior
to RSFPs but give rise to the expectation that future developments will put forth

synthetic fluorophores that can compete with or outperform RSFPs.
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4.4 Qutlook

The properties of the investigated EBT fluorophores give rise to a range of possible
applications and implementations.

The imaging speed of negative switching labels for RESOLFT nanoscopy is mainly
dominated by the illumination step with the doughnut shaped beam, which con-
sumes 80 to 95 % of the acquisition time. Effective shortening of this speed limiting
step could dramatically increase the imaging speed. It was reported that a stepwise
two-photon excitation can dramatically increase the cycloreversion reaction rate of

[135,136] " The cycloreversion quantum yield using

136

different diarylethene derivatives
two-photon excitation was reported to be around 50 % ['*%l. Compared to the values
for the cycloreversion yield presented in this work, these values are three orders of
magnitude higher. This could lead to a massively reduced off-switching time down
to the range of us. Albeit, the reported values were acquired in a non-polar solvent
(n-hexane) and it is not possible to anticipate how the presented EBT fluorophores
would react to two-photon excitation in aqueous environments, especially concerning
photobleaching from higher excited states!'*?.

Another possibility to speed up the image acquisition is the massive parallelization of
the illumination steps, which was up to now only shown for RSFPs %1% The EBT
fluorophores presented in this study and possible successors are suitable for massively
parallelized RESOLFT nanoscopy giving the chance to speed up the imaging process
by several orders of magnitude %),

A further approach to improve the acquisition speed and additionally the attainable
spatial resolution lies in the combination of multiple off state transitions as in pro-
tected STED "), In this approach the fluorophores are protected from the STED
light by prior transition to a state that shows minor absorption for the depletion
wavelength. Possibly, the EBT fluorophores are more resistant to the STED light
than RSFPs. However, the low number of possible switching cycles of EBTs would

considerably reduce the protecting effect.

Diarylethenes can not only be used for high resolution imaging based on coordinate-
targeted switching. The applicability of diarylethene derivatives for coordinate-
stochastic nanoscopy methods was demonstrated on artificial nanostructures in dif-

[140,141] - Beyond these proofs of concept, it was shown recently that

ferent polymers
variants of the EBT fluorophores presented in this work can be successfully used in
STORM on fixed mammalian cells using only aqueous solutions as buffer. These mo-

lecules were modified with a methoxy group and showed spontaneous on-switching
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142

under illumination with blue light '*?. This observation could lead to targeted mod-

ifications of fluorophores for different high resolution microscopy methods.

One of the greatest strengths of fluorescence microscopy is the non-invasive obser-
vation of processes in living specimen. For this purpose, the fluorophores used have
to be compatible with live-cell imaging. The possibilities of bioorthogonal reactions
like used with SNAP, CLIP or Halo-tag% 7 fusion proteins should be evaluated for
fluorescent diarylethenes. However, this would require a cell-permeable fluorophore
with a corresponding linker. In this context, different functional groups which in-
crease the water-solubility of the compounds should be evaluated. Most recently,
Takagi et al.["** reported on the prosperous use of sodium sulfonate groups. Cur-
rently, the wavelength needed for the cyclization reaction of the EBT fluorophores
is in the range of 350 nm. In case of live-cell imaging, this could cause photostress
to the cells. It could be of advantage if the whole absorption spectrum of the flu-
orophores, of the open-form as well as the closed-form isomer, was red-shifted to

avoid illuminations with wavelengths in the near UV.

In conclusion, RESOLFT with man-made photoswitchable fluorescent labels in aque-
ous solution on mammalian cells was demonstrated for the first time. The findings
gained in this thesis can be used to further improve synthetic fluorophores and to

optimize them for the use in living cells.
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A.1 Three-state model for RSFPs

The model shown in Figure 3.5 depicts three states. It can be simplified to a two-
state model, as no rate back to the ON- or T-state from the OFF-state is assumed.

The rate equations of the simplified model can be written in their matrix form

(PON(t)) _ (—k’T kB ) (PON(t)) (Al)
Pr(t) kv —ks — kaanc) \ Pr(t)

Q P(t)

with the probability P of residing in a certain state after the time interval ¢, the
rate kt = alege from the ON- to the T-state linearly depending on the excitation
intensity I, the constant return rate from the T- to the ON-state kg and the
constant rate from the T- to the OFF-state kqak.

A solution to this system of differential equations can be derived from the matrix

exponential of the transition matrix Q:

B+C B-C

5 tD ks

P(t) = exp(Qt) - P(0) = boC Bic P0) (A2
kr - —D

A 2

with

A=/ (kp + kaar + kr)? — dkaanckr

t
B = exp(—(k + kdark + kv — A)7)
2
; (A.3)
C = exp(— (kg + kdark + k1 + A)i)
B-C
D = 54 (kg + kdark — k)
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It is assumed that initially, when no excitation light is applied, all molecules are in
the ON-state (Pon(0) = 1). The time evolution of the probability of residing in the
ON- or the T-state can then be written as:

B+C
+—i—D

2
Pr(t) =k B-C .
T(t) = Fr P
Since the molecules either reside in the ON- , T- or OFF-state the population of the

OFF-state can be described as

PON(t) =

Porr(t) =1 — Pox(t) — Pr(t)
C (1 (kB o+ Fdanc + kT)> B (1 o (ki o Faari + kT)> (A.5)

=l=3 A A

2

The factor A can also be written as

4k garkr
(kB + Kdark + kr)?

A = (kg + kqark + kT)\/l — (A.6)
The fraction inside the square root is small for conditions like kg > kqau - kT or

kt > 1. Under these conditions it is reasonable to approximate the term with the
x
Taylor series /1 —x ~ 1 — 5 [144]

2k garckT
A~ (kg + kgark + k1) | 1 —
(ko dark ™) ( (kg + Fdark + kT)2>

2kqarckr
kB + kdark + kT

(A.7)
= kp + kqark + k1 —

This leads to

kg + kdark + kr kg + Kaark + K

A - 2kdarckT
kg + kqark + kT —
K dark B kg + kqark + Fr

~ 1 (A.8)

2kqarckr

kB + kdark + kT
Inserting Equation A.8 into Equation A.5 results in

because the term is very small.
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Since only the fluorescence is detected and the fluorescent states ON and T are not

distinguishable, the experimentally observable off-switching rate can be derived as

kg + kqark + kp — A

k(Iexe) = 5 (A.10)
Inserting Equation A.7 into Equation A.10 results in
k ar k k ar ]exc
k(L) ~ dark AT _ dark (Y
kg + kqark + k1 kB + Fdark + 0lexe
_ (67 IBXC k
 kp + Kaark 1+ @ . derk (A11)

Ik
kg + kdark

Iexc/[1/2 . kB =+ kdark
= ———"—kgarx With [,y = ——.
1 +[exc/11/2 dark 2 Q

k
For kg > kqan, it follows 11/2 ~ —B
(0]
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A.2 Intensity dependent properties of rsEGFP and

rsEGFP2 at low illumination intensities
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Figure A.1: Off-switching rate of rsEGFP (blue) and rsEGFP2 (orange) as func-
tion of the illumination intensity. Solid lines show a linear fit to the data. All data
were recorded in E. coli fixed on agarose gel expressing the respective protein in
the cytosol. Error bars represent twice the standard deviation.
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Figure A.2: Maximal fluorescence signal per off-switching cycle depending on
the illumination intensity for rsEGFP (a) and rsEGFP2 (b). Normalized to the
maximal value. Data extracted from the same data set as shown in Figure 3.4. All
data were recorded in F. coli fixed on agarose gel expressing the respective protein
in the cytosol. Error bars represent twice the standard deviation.
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A.3 RESOLFT imaging with EBT2
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Figure A.3: Confocal overview of fixed Vero cells immunostained with primary
antibodies against Vimentin and with EBT2 attached to the secondary antibodies
before (a) and after (b) the high resolution imaging. Confocal (c) and RESOLFT
(d) image of the indicated area in a and b. The RESOLFT images were recorded
before confocal images. Scale bars: 2pm. All images show raw data and were
performed with the settings described in subsection 3.3.4. e: Line profiles A and
B (averaged over five adjacent lines) display the regions indicated in ¢ and d. The
data (dots) was fitted with a Lorentzian function (solid line) for the RESOLFT
(red) and the confocal (blue) images. The FWHM determined on fit A is indicated
by the small black arrow.
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Figure A.4: Confocal overview of fixed Vero cells immunostained with primary
antibodies against NUP153 and with EBT2 attached to the secondary antibodies
before (a) and after (b) the high resolution imaging. Confocal (¢) and RESOLFT
(d) image of the indicated area in a and b. The RESOLFT images were recorded
before confocal images. Scale bars: 2pum. All images show raw data and were
performed with the settings described in subsection 3.3.4. e: Line profiles A and
B (averaged over five adjacent lines) display the regions indicated in ¢ and d. The
data (dots) was fitted with a Lorentzian function (solid line) for the RESOLFT
(red) and the confocal (blue) images. The FWHM determined on fit A is indicated

by the small black arrow.
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Line Profile FWHM/nm
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Figure A.5: Determination of achieved lateral image resolution in fixed Vero cells
immunostained with primary antibodies against o-Tubulin and with EBT2 attached
to the secondary antibodies. Line profiles 1-6 (averaged over ten adjacent lines)
display the regions indicated in the RESOLFT image. The data (dots) was fitted
with a Lorentzian function (solid line). The FWHM was determined on the fits.
Scale bar: 2pm. Image as shown in Figure 3.20d.
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A.4 Molecule sizes in fluorescence microscopy

Figure A.G shows the size of the target structure Tubulin and different labels used
in fluorescence microscopy for a better understanding of the proportions. Tubulin
polymerizes to form microtubules, a main part of the cytoskeleton, with an outer
diameter of about 24nm. Most commonly, the o-Tubulin subunit is targeted by
immunofluorescence staining or tagging with a fluorescent protein. Immunoglobulin
G (IgG), having a size of about 10nm, is the most frequently used type of anti-
body to target structures of interest. Fluorescent molecules are conjugated to the
antibody causing only a marginal increase in size. These antibodies can be used
to directly bind the target molecule (primary) or to bind an unlabeled primary an-
tibody. Thus, immunostained microtubules can have an effective diameter of up
to 55 nm, depending on the staining method used. Fluorescent proteins offer the
possibility to genetically tag the structures of interest. GFP-based fluorescent pro-
teins all show a similar size of about 2nm x 2nm x 4nm, given by the beta barrel

structure consisting of eleven [-strands.

rsEGFP2 EBT fluorophores

2nm

Immunoglobulin G

Figure A.6: Illustration of selected proteins and fluorophores involved in fluor-
escence imaging. From left to right: of-Tubulin heterodimer (1TUB) [145]
whole immunoglobulin G (IgG) antibody (1IGY) [ reversible fluorescent pro-
tein rsEGFP2 (5DTX) ['*% and the fluorophores EBT1 (top) and EBT2 (bottom).
The proteins are depicted as ribbon diagrams rendered with PyMOL (Schrodinger,
New York, NY, USA) based on the stated crystallographic data taken from the
Protein Data Bank (www.pdb.org). Tubulin dimer and IgG are representations of
homologs of the actual proteins involved in immunostaining and are given for size
comparison only.
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