

SubtiWiki 3.0: A relational database for the functional genome

annotation of the model organism Bacillus subtilis

Dissertation

for the award of the degree

"Doctor rerum naturalium”

of Georg-August-Universität Göttingen

within the doctoral program Microbiology und Biochemistry

of the Georg-August University School of Science (GAUSS)

submitted by

Bingyao Zhu

from Jiangsu, P.R. China

Göttingen, 2017

I hereby declare that the doctoral thesis entitled, “SubtiWiki 3.0: A relational database for the

functional genome annotation of the model organism Bacillus subtilis” has been written

independently and with no other sources and aids than quoted.

City, date, name

Bingyao Zhu, Göttingen

Thesis Committee

Prof. Dr. Jörg Stülke, Dept. of General Microbiology, Institute for Microbiology and Genetics

PD. Dr. Fabian Commichau, Dept. of General Microbiology, Institute for Microbiology and

Genetics

Prof. Dr. Burkhard Morgenstern, Dept. of Bioinformatics, Institute for Microbiology and

Genetics

Members of the Examination board

Referee: Prof. Dr. Jörg Stülke

2nd Referee: PD. Dr. Fabian Commichau

Further members of the Examination Board

Prof. Dr. Burkhard Morgenstern, Dept. of Bioinformatics, Institute for Microbiology and

Genetics

Prof. Dr. Stephan Klumpp, Institute for Nonlinear Dynamics

Prof. Dr. Ivo Feußner, Dept. of Plant Biochemistry, Albrecht von Haller Institute

Dr. Johannes Soeding, Computational Biology, Max Planck Institut for Biophysical Chemistry

Date of oral examination: 11.01.2018

Acknowledgements

When I arrived at Göttingen almost 5 years ago, I didn’t have a clear picture in my mind how

the life would become. Now at the end of 2017, the end of my PhD study, I looked back and

concluded that the past few years have been a unique and adventurous journey. It wasn’t

always smooth and there were difficulties. But here I am, thanks to the wonderful people

around me.

First, I would like to thank my advisor Jörg. I joined his lab during the iGEM project in 2013.

After that he introduced me to the SubtiWiki project. It is a great project and I really appreciate

the opportunity to work on it. I am also thankful for the freedom and the trust he has given

me. It wasn’t very clear at the beginning of this project what the outcome could be like. I am

also grateful to have Fabian and Burkhard as members of my thesis committee. Their

suggestions are valuable to me and this project.

I want to say thank you to Rapha. He was my supervisor when I was doing the lab rotation and

the master thesis. It was a great experience working with him. We had exciting and inspiring

talks about new ideas and new technologies.

I want to thank all the former and current members of AG Stülke and HIF. I am grateful to

Katrin Gunka for her guidance and supervision in the iGEM project and the practical course.

The suggestions on SubtiPathways from Jonathan Rosenberg are very helpful to me. It is such

a great experience to work with Daniel Reuss in the Minibacillus project. I am very grateful to

David and Maaike for helping with the project. I would like to thank everyone for the nice

atmosphere in this department.

I need to thank all my dear friends in Göttingen, Wanwan, Yehan, Yuanzi and Minhui. I am not

having enough of those hot pot parties and hikes. It’s nice to have them as friends and let’s

keep having fun together.

I would like to thank my parents for their love and support during the study. I would like to

thank my boyfriend Chris. I am a lucky woman to have him as an indispensable part of life. His

company helped me through the rough time in the past years. I am sincerely grateful.

Table of contents

Table of contents

List of publications……… I

List of abbreviations……II

1 Summary .. 1

2 Introduction ... 2

2.1 Characteristics of biological data and databases ... 3

2.2 Implementation approaches of biological databases .. 4

2.2.1 Flat file databases ... 4

2.2.2 Relational databases ... 5

2.2.3 Object-oriented databases ... 5

2.2.4 Biological Wikis ... 6

2.3 Model organism databases .. 8

2.4 The model organism Bacillus subtilis .. 9

2.5 Databases for Bacillus subtilis .. 10

2.6 SubtiWiki and Subti-Apps ... 11

2.7 Motivation of this project ... 12

3 Methods and tools ... 13

3.1 Web related .. 13

3.1.1 LAMP software bundle .. 13

3.1.2 URL rewrite and mod_rewrite .. 14

3.1.3 Server-side scripting and PHP ... 16

3.1.4 HTML and document object model .. 16

3.1.5 JavaScript, JSON and AJAX .. 17

3.2 Relational databases ... 18

3.2.1 Primary key ... 19

3.2.2 Foreign key .. 19

3.2.3 Stored procedures .. 20

3.2.4 Triggers .. 20

3.2.5 Structured query language ... 20

3.2.6 Entity-relationship model ... 23

3.3 Graph drawing .. 24

3.3.1 Circular layout ... 25

Table of contents

3.3.2 Orthogonal layout ... 26

3.3.3 Force-directed layout methods .. 26

3.4 Mobile development .. 29

3.4.1 SQLite .. 29

3.4.2 Development of an Android application ... 29

3.4.3 Development of an iOS application .. 31

4 Results: Implementation of SubtiWiki v3.0 ... 35

4.1 Database construction .. 35

4.1.1 Conceptual design ... 35

4.1.2 Database implementation .. 37

4.2 Construction of server-side applications .. 48

4.2.1 The framework .. 48

4.2.2 The applications .. 52

4.3 The Mobile Apps ... 65

4.3.1 Local and remote data storage ... 66

4.3.2 WebView to present gene pages .. 66

5 Discussion and outlook .. 68

5.1 Usage report of SubtiWiki ... 68

5.2 Assessment of the new implementation .. 69

5.3 SubtiWiki compared with other databases .. 71

5.4 Presentation of metabolic pathways .. 79

5.5 Multi-mode database as a possible solution .. 80

5.6 Web-based biological data visualization .. 83

5.7 A database implementation for other MODs ... 84

6 References ... 86

7 Appendix .. 93

7.1 Table schemes .. 93

7.2 Directory structure ... 101

7.3 Default data access methods ... 101

I

List of publications

1. Zhu, B. & Stülke, J. (2017) SubtiWiki in 2018: from genes and proteins to functional network

annotation of the model organism Bacillus subtilis. Nucleic Acids Res.

doi:10.1093/nar/gkx908

2. Reuß, D. R., Altenbuchner, J., Mäder, U., Rath, H., Ischebeck, T., et al. (2017) Large-scale

reduction of the Bacillus subtilis genome: Consequences for the transcriptional network,

resource allocation, and metabolism. Genome Res. 27, 289–299

3. Michna, R. H., Zhu, B., Mäder, U. & Stülke, J. (2016) SubtiWiki 2.0 - an integrated database

for the model organism Bacillus subtilis. Nucleic Acids Res. 44, 654–662

4. Reuß, D. R., Commichau, F. M., Gundlach, J., Zhu, B. & Stülke, J. (2016) The Blueprint of a

Minimal Cell: MiniBacillus. Microbiol. Mol. Biol. Rev. 80, 955–987

5. Morgenstern, B., Zhu, B., Horwege, S. & Leimeister, C. A. (2015) Estimating evolutionary

distances between genomic sequences from spaced-word matches. Algorithms Mol. Biol.

10, 5

6. Juhas, M., Reuß, D. R., Zhu, B. & Commichau, F. M. (2014) Bacillus subtilis and Escherichia

coli essential genes and minimal cell factories after one decade of genome engineering.

Microbiology 160, 2341–2351

II

List of abbreviations

NIH National Institute of Health

EMBL European Molecular Biology Laboratory

NCBI National Center of Biotechnology Information

DDBJ DNA Data Bank of Japan

PDB Protein Data Bank

LAMP Linux, Apache, MySQL, PHP

PHP Hypertext preprocessor

HTML Hypertext markup language

DOM Document object model

CGI Common gateway interface

CSS cascade style sheet

XHTML Extensible Hypertext markup language

XML Extensible markup language

JSON JavaScript notation object

AJAX Asynchronous JavaScript and XML

SQL Structured query language

DNA Deoxyribonucleic acid

RNA Ribonucleic acid

SVG Scalable vector graph

Summary

1

1 Summary

Biological databases emerged in the 1970s along with the rapid development of information

science. Since then, they have greatly helped the research community in data management

and information sharing, especially the model organism databases. Model organism

databases focus on functional annotations of single well-studied model organisms, such as

baker’s yeast, Escherichia coli and Bacillus subtilis. B. subtilis is a model organism for Gram-

positive bacteria. It is of great importance in both labs and the industry and SubtiWiki is the

model organism database dedicated to it. SubtiWiki is based on MediaWiki software and

encourages the community to actively participate in the functional annotation of B. subtilis.

With almost 9 years of constant updating, SubtiWiki has reached a state where the data it

holds has outgrown the capacity of its engine. The limitations of the MediaWiki software have

caused issues in data management, such as data duplication and inconsistency. Therefore, we

have decided to migrate the SubtiWiki from MediaWiki to a relational database. The new

database layout is structured, integrated and flexible as well. We included JavaScript Object

Notation format to handle the challenges brought by the data complexity. In addition, batch

operations of the data are now possible. Based on this new database layout, we built a content

management system. With this system, the data of SubtiWiki can still be freely edited by the

users and each edit is documented. With all data for protein-protein interaction and gene

regulation cleaned from the wiki text, the visualization of large biological networks in B.

subtilis is possible. Hence, we have included two more Subti-Apps, i.e. the interaction browser

and the regulation browser. Those network browsers present biological networks at different

levels. In addition, we introduced the genome browser for the access of DNA and protein

sequences. The new implementation of SubtiWiki is user- and developer-friendly. Interactive

data visualizations based on web technologies are created for efficient information

communication. The modularized design makes SubtiWiki easily extendable. With the new

database layout and Subti-Apps, SubtiWiki will continue serving the Bacillus research

community by providing up-to-date and well-presented functional annotations of B. subtilis.

Introduction

2

2 Introduction

Biological databases are computer-based information systems for reliable storage and fast

access of biological information. They emerged along with the rapid development of

information science in the 1970s. The very first computer-based biological database “Protein

Data Bank (PDB)” was initiated in the year 1971 [1]. In the same year, E. F. Codd proposed the

relation theory for relational databases [2]. In 1982, the United States National Institute of

Health (NIH) initiated the GenBank [3] project and simultaneously the European Molecular

Biology Laboratory (EMBL) started its own sequence collection. In the middle of the 1980s,

NIH and EMBL started the collaboration on data sharing and synchronization. Together with

the DNA Data Bank of Japan (DDBJ) [4], the International Nucleotide Sequence Database

Collaboration (INSDC) was formed.

From the 1980s until now, there have been a great number of breakthroughs in molecular

biology. The amount and variety of biological data grows exponentially. For example, the new

sequencing technology made sequencing highly affordable. Therefore, large quantities of raw

and processed sequence data have been accumulated. The requirements to store and share

such data has led to a variety of different biological databases.

Based on the origin of the data, databases can be classified to primary and secondary

databases. The primary databases collect data obtained directly from the experiments while

the secondary databases use other databases as source and present combined or processed

data views.

According to the type of information collected, databases can be classified into meta,

expression, sequence, structure, function databases etc. Meta databases are databases of

databases. They can merge data from different sources and present them in a suitable form.

For example, the Entrez database from National Center for Biotechnology Information (NCBI)

is a meta database. It provides combined search results in different NCBI databases like

GenBank, PubMed etc. The expression databases store expression data and most of them are

from micro arrays. The sequence databases collect protein and nucleic acid sequences while

the structure databases focus on the structure of proteins and RNAs. Functional databases

gather functional annotations of biological elements and their associations, such as regulation

network or metabolic pathways.

Introduction

3

2.1 Characteristics of biological data and databases

Biological data obtained from experiments or natural observation typically have high

complexity. This complexity has posed great challenges for data modelling and database

design. S.B. Navathe and U. Patil have concluded 9 characteristics of biological data and

biological database application from their first-hand experience with MITOMAP, a database

for human mitochondrial genome annotations [5]. Those characteristics can be summarized

as follows.

Concerning the biological data:

1. High complexity. Biological data are highly complex in comparison to other applications

such as data of shop inventory or human resources. This requires the biological data

model to be able to present complicate schemas and relationships at different levels and

apply a combination of structures, i.e. hierarchical, binary, tabular or graph data.

2. High variety. Biological information systems are required to be flexible in handling data

types in case of outlier values.

3. Fast evolution. The schemas of biological database evolve fast. New discoveries in

research might require change in data modelling and database design. For example, the

discovery of mRNA degradation has added more complexity to the modelling of gene

regulation. Hence, the information system should be extendable for the rapidly changing

schemas.

4. Multiple data interpretation and presentation. The data presentation and terminology

might not be consistent from biologist to biologist. The complex biological data can be

interpreted in different ways and different data models can be developed. Hence, a

mechanism is needed to perform the interchange between database schemas.

5. Context is important. Biological data are in organization highly associated. Isolated values

do not provide a lot of meanings without context.

Concerning the biological database applications:

1. For a biological database, read-only access is adequate for most users. The search patterns

of users are usually beyond the expectation of database developers. Most database

Introduction

4

applications implement a user system which allows limited users to edit the content of

the database.

2. Most of the users of biological database do not have the knowledge of structure of

databases. A clear instructive graphical interface is very important. The user interface and

the user experience of the database application should present the information or work

flow in the way applicable to user requests. A certain level of encapsulation would be

recommended.

3. As context is important for biological data, complex queries are necessary for users to

associate single values together and generate a combined view. The construction of such

complex queries would be best done with tools that require no knowledge of detailed

data structure.

4. For biological databases, version control is important. Old data should be properly

archived for reviewing.

2.2 Implementation approaches of biological databases

A database is simply a collection of well-organized data for easy access and manipulation. In

most cases a database management system (DBMS) is needed to keep the database secure,

integrate and maintained. The database and the database management system can be in very

different formats. The simplest case would be to use flat files to store information and use the

file system as the DBSM, just like when we do taxes on our computers.

2.2.1 Flat file databases

For most of the sequence databases such as GenBank, EMBL and DDBJ, the data are stored in

flat files with a specific syntax. For GenBank, the syntax is called Abstract Syntax Notation one

(ASN.1). A flat file database is easy to initiate but efforts are needed to prevent data

duplication and data corruption. In addition, parsers are needed to break the text into data

segments and values. This could slow down large batch operations of data.

Introduction

5

Figure 1. A partial GenBank flat file

Another approach for flat databases would be eXtensive Markup Language (XML). XML

supports complicated nested data structures, which makes it very suitable for presentation of

biological data.

2.2.2 Relational databases

Relational databases are databases based upon relation theory [2]. In relational database,

data are organized in tables. Each row presents an instance while each column stores the

value of the corresponding attribute. More details about the relational databases and the

Entity-Relationship model will be introduced in the Chapter 3.2.

2.2.3 Object-oriented databases

In object-oriented databases, data are presented in the format of objects. The objects in the

object-oriented databases are abstractions of concrete real-world entities, such as a car, a

person or a gene. The objects can be described as a collection of attribute-value pairs and the

values can also be the references to other objects.

Classes are groups of objects sharing the same properties. They can also be viewed as

templates to create objects like the corresponding concept in object-oriented programming.

A class can have sub classes. For example, the class “Animal” is of higher abstraction and it

could have sub classes such as “dog”, “cat” or “mouse”.

Introduction

6

The object-oriented databases have a lot of benefits. They are very well suited for data of high

complexity. However, due to the lack of successful commercial implementation, there are no

major biological databases using this implementation approach.

2.2.4 Biological Wikis

There are different ways to build a biological database application. Setting up a biological wiki

is certainly one of the simplest ways. A “wiki” is a web site whose content can be freely

modified by its users in a collaborative way. It usually runs on a wiki software like MediaWiki.

Technically speaking, wiki software packages are mature and closed content management

systems with their own database implementation and server-side applications.

Because it is very easy to set up a wiki without any knowledge of programming, there have

been quite a few biological wikis providing platforms for sharing microarray data or functional

annotation. SubtiWiki is one of them.

Name Description

ArrayWiki A community-maintained system for sharing public microarray data

repositories and meta-analyses

BOWiki An ontology-based wiki for annotation of data and integration of

knowledge

EcoliWiki A wiki-based community resource for Escherichia coli

ESND A wiki-based English-to-Chinese scientific nomenclature dictionary

Gene Wiki A wiki harnessing community intelligence to the annotation of human

gene and protein function

GONUTS A community-based browser and usage guide for Gene Ontology (GO)

terms and a community system for general GO annotation of proteins

MetaBase A community-curated database of commonly used biological databases

PDBWiki A community annotated knowledge base of biological molecular

structures

Introduction

7

Proteopedia A scientific wiki bridging the rift between three-dimensional structure

and function of biomacromolecules

Rfam A community-derived annotation of RNA families

RiceWiki A wiki-based, publicly editable and open-content platform for

community annotation of rice genes

SEQanswers

Wiki

A wiki database of tools for high-throughput sequencing analysis

SNPedia A wiki supporting personal genome annotation, interpretation and

analysis

SubtiWiki A comprehensive community resource for the model organism Bacillus

subtilis

Transdab Wiki A wiki database of transglutaminase substrate proteins

WikiCell A unified resource platform for human transcriptomics research

WikiGenes A collaborative knowledge resource for the life sciences

WikiPathways An open, public platform dedicated to the curation of biological

pathways

WikiProteins A wiki-based system for community annotation of proteins

Table 1. A list of biological wikis. Data source: http://bigd.big.ac.cn/sciencewikis/index.php/Biological_Wikis.

A biological wiki has many advantages in comparison to traditional database applications.

1. A biological wiki encourages the fellow researchers in the community to contribute to the

database. Hence, it is not dependent on a single lab for maintenance. The wiki can be still

updated even if the person or lab initiated the project is no longer participating.

2. Most wiki software provides the feature of version control, which means each edit of the

content of a page is well documented. This allows the researchers to track the source of

the information.

3. A wiki is easy to set up. There have been quite a few wiki software packages available.

Only simple installation without any programming is required. This allows researchers

without knowledge of programming to establish their own platform for information

sharing.

http://bigd.big.ac.cn/sciencewikis/index.php/Biological_Wikis

Introduction

8

4. The content of a wiki page does not require a fixed scheme. The users can freely edit the

page structure and style. This prevent the possible data loss due to the limit of data model.

However, most implementations of wiki software are designed for narrative information

rather than complicated biological data. The limitations of the software result several

drawbacks:

1. Most wiki software packages are designed primarily for sharing text. They do not handle

tabular or hierarchical data well. This makes it not very suited to store relationships

between objects.

2. The database layout of most wiki software packages does not perform data consistency

control. The pages in the wiki and associated with hyperlinks other than database

references. For example, one can create a hyperlink to a non-existing page. This is usually

not allowed in traditional databases

To resolve those issues, Brohée et al. has developed a plugin in 2009 for the popular wiki

software MediaWiki [6], which supports batch data operations in wiki. However, this plugin

has stopped updating and the download link is no longer accessible.

2.3 Model organism databases

Model organism databases (MODs) are databases which focus on functional annotations of

well-studied model organisms [7]. These model organisms include Bacillus subtilis, Escherichia

coli, Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, Mus

musculus, and Arabidopsis thaliana. Most MODs are secondary databases hosting manually

or automatically curated genomic and functional information. They sometimes also provide

extra features such as data visualization and analysis in addition to data hosting.

In comparison to large cross-species sequence or structure databases like GenBank [8] or PDB

[1], MODs focus on a specific domain of knowledge. This specification saves time and effort

the users need to spend on finding and filtering data of their need. The MODs have proven to

be very helpful in different stages of research [7].

Introduction

9

Model organism Model organism database

Saccharomyces cerevisiae Saccharomyces Genome database

Schizosaccharomyces pombe PomBase

Xenopus laevis XenBase

Drosophila melanogaster FlyBase

Mus musculus Mouse Genome Informatics

Caenorhabditis elegans WormBase

Rattus norvegicus Rat Genome Database

Dictyostelium discoideum dictyBase

Arabidopsis thaliana The Arabidopsis Information Resource (TAIR)

Danio rerio Zebrafish Information Network

Candida albicans Candida Genome database

Escherichia coli EcoCyc

Table 2. A list of model organism databases. Data source: https://en.wikipedia.org/wiki/Model_organism_databases

2.4 The model organism Bacillus subtilis

Bacillus subtilis is a rod-shaped soil bacterium. It is not pathogenic to humans and animals. It

was among the first microorganisms people cultivated and studied. The first paper describing

this bacterium dates to early 1900s. In the last 100 years, there have been 33250 research

papers about B. subtilis available in PubMed and this number keeps growing (Figure 2).

Bacillus subtilis is a model organism to understand the biological processes such as spore

formation, biofilm formation etc. It is also used as base organism in minimal genome projects

[9]. Because of its excellent fermentation properties, it is of great value in industry as well. It

is used as cell factories to produce enzymes, vitamins and other products [10].

The compete genome sequence of B. subtilis subsp. subtilis 168 was published in 1997 [11].

Bacillus subtilis has over 6000 genes and RNA features. About 4200 of them are protein

encoding genes. In SubtiWiki, there are currently 253 genes identified as essential.

https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae
https://en.wikipedia.org/wiki/Schizosaccharomyces_pombe
https://en.wikipedia.org/wiki/Xenopus_laevis
https://en.wikipedia.org/wiki/Drosophila_melanogaster
https://en.wikipedia.org/wiki/Mus_musculus
https://en.wikipedia.org/wiki/Caenorhabditis_elegans
https://en.wikipedia.org/wiki/Rattus_norvegicus
https://en.wikipedia.org/wiki/Dictyostelium_discoideum
https://en.wikipedia.org/wiki/Arabidopsis_thaliana
https://en.wikipedia.org/wiki/Danio_rerio
https://en.wikipedia.org/wiki/Candida_albicans
https://en.wikipedia.org/wiki/Escherichia_coli
https://en.wikipedia.org/wiki/Model_organism_databases

Introduction

10

Figure 2. The number of publications about Bacillus subtilis every year from PubMed database [12].

2.5 Databases for Bacillus subtilis

As a well-studied model bacterium, Bacillus subtilis has several MODs dedicated to it. The first

MOD “Bacillus subtilis ORF database (BSORF)” was established in 1995 in Japan [13]. This

database project is initiated to release the sequencing results of Bacillus subtilis genome. This

database was actively updated until 2006.

In the same year, another project “SubtiList” is initiated in Europe. SubtiList [14] is a relational

database dedicated to functional genome annotation of Bacillus subtilis. This database

stopped updating in 2004.

In 1999, the first version of DBTBS was release in Japan [15]. This database collects information

about transcription factors and promoters. Later the focus was shifted to regulatory networks

in Bacillus subtilis. The database has stopped updating in 2008.

BioCyc is a collection of pathway/Genome databases of different organisms. BsubCyc is one

of the database collections dedicated to Bacillus subtilis. BsubCyc provides information about

metabolic pathways, regulatory networks, and functional genome annotation. However, since

2017, BsubCyc has changed its access policy and its data are no longer open to public. The

users are required to pay for a subscription to access the data.

0

200

400

600

800

1000

1200

1400

1
9
1
3

1
9
1
9

1
9
2
2

1
9
3
1

1
9
3
5

1
9
4
2

1
9
4
6

1
9
4
9

1
9
5
2

1
9
5
5

1
9
5
8

1
9
6
1

1
9
6
4

1
9
6
7

1
9
7
0

1
9
7
3

1
9
7
6

1
9
7
9

1
9
8
2

1
9
8
5

1
9
8
8

1
9
9
1

1
9
9
4

1
9
9
7

2
0
0
0

2
0
0
3

2
0
0
6

2
0
0
9

2
0
1
2

2
0
1
5

2
0
1
8

n
u
m

b
er

 o
f

p
u
b

lic
at

io
n
s

year

Number of publications from PubMed database

Introduction

11

2.6 SubtiWiki and Subti-Apps

As BSORF and SubtiList stopped updating around 2005, the Bacillus research community

needed an up-to-date model organism database. Hence, the SubtiWiki project was initiated.

It was first online in 2009 using the MediaWiki engine with the motivation to enable collective

curation of annotations in the research community [16].

SubtiWiki was designed to be a collection of functional genome annotations. The information

of genes is stored in separate “pages” and the names of genes are used as title (identifier). All

pages are generated with a template for a uniform page structure. A table on the top provides

brief information about the gene such as name, function, production, neighbors etc. More

detailed information about the gene, the RNA, and the protein is displayed in sections [16].

Besides genes, a category system is developed and managed within the wiki. This category

system classifies genes according to their functions. This system has a tree structure with 6

major categories and over 5 layers, offering a very detailed grouping according to functionality

of genes [17].

As more and more information about B. subtilis became available, the focus of research

shifted from single genes to association among the genes. Hence, two Subti-Apps are included

in a later update, namely SubtiPathways and SubtInteract. SubtiPathways depicts the

metabolic pathways as maps using system biology markup language while SubtInteract

focuses on protein-protein interactions [17].

In 2012, a large-scale transcriptomic study was conducted and data were gathered under

more than 100 experimental conditions [18]. Based on the results of this study and other

proteomic data [19,20], SubtiExpress is introduced [21].

Those Subti-Apps supplemented SubtiWiki and makes SubtiWiki one of most complete

knowledge base for a single organism.

Introduction

12

2.7 Motivation of this project

SubtiWiki is a successful database and has served the Bacillus community in many ways.

However, there are a few issues concerning the implementation.

SubtiWiki is not an integrated system. Annotations of genes are kept and managed in

MediaWiki and each of Subti-Apps has its own separate database which is not updated in a

synchronized manner. The resulting problem is that the name of genes in Subti-Apps are not

synchronized and extra manual updates are required.

MediaWiki has its limitations. The content of pages in MediaWiki is mostly in text format with

images or videos inserted, which brings two outcomes. First, the contents of pages are not

structured enough for exports or batch operations. Second, the page is rather static. Dynamic

contents and interactive parts are difficult to be integrated.

It is also difficult to store associations among genes under the framework of MediaWiki.

Adding one protein-protein interaction always requires two edits on pages of each interaction

partner. This introduced data duplication and data duplication introduced data inconsistency.

Those issues motivated us to develop a relational database and a content management

system which are more adapted to our need. This system should:

1. be suited for biological information

2. be flexible and extendable

3. have good performance

4. improve the experience of data management

5. have a user system

6. have version control

7. introduce more interactivity

With this new system, SubtiWiki should become friendlier to both users and developers. For

users, the interfaces should be simple and intuitive. For developers, it should be easy to

extend the data scheme and add new functionalities.

Methods and tools

13

3 Methods and tools

3.1 Web related

3.1.1 LAMP software bundle

LAMP is a software bundle for building dynamic web pages or web applications [22]. It is an

acronym of the names of four software packages, namely Linux, Apache, MySQL and PHP. The

SubtiWiki server is installed with LAMP bundle.

Linux is a Unix-like operating system. It commonly refers to a family of operating system

distributions packed with a Linux kernel. It is a popular choice for web servers. Ubuntu and

Debian, two Linux distributions, take up over 50% of the market [23].

Apache is a free and open-source web server software [24]. It is highly scalable, handling large

numbers of requests at ease. It provides varies of feature as modules [25], which extend the

core functionality of the software. Among all the modules, SubtiWiki installed two, namely

php5_module for PHP support and mod_rewrite for URL rewriting.

MySQL [26] is the relational database management system in the bundle. It covers a broad

subset of ANSI SQL 99 standard [27]. It provides multiple store engines such as InnoDB,

MyISAM, Memory, CSV, etc. It also offers features like stored procedures, triggers and sub-

selects. More details will be described in chapter 3.2.

PHP [28] is for hypertext preprocessor. It is scripting language primarily design for web

developing. It has a syntax like C and the variable naming style like Perl. Its code can be

embedded in HTML, which proved to be handy for generating dynamic web pages. More

details will be introduced in the chapter 3.1.3.

As the image below illustrates, requests initiated by clients travel through the internet and

arrived at the server. They are handled by the web server software, which is Apache in LAMP

bundle. Server-side scripts are invoked to retrieve data from a persistent storage, database or

file system. The raw data from persistent storage is processed and a response is generated

upon them. The response is sent out by web server software and goes back the client.

Methods and tools

14

Figure 3. A over view of components in LAMP software bundle. Work flows marked in arrows. This image is created

by K7.india at English Wikipedia, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=31270395.

3.1.2 URL rewrite and mod_rewrite

URL rewriting is the process to modify uniform resource locators (URLs). It is often performed

to shorten the long URLs or make them more user/search-engine friendly. It is also a way of

implementing routing in web application, which provides a layer of abstraction between the

script generating a web page and the URL with which this page can be accessed.

The URL rewriting function is provided in Apache as a module [29]. The Apache module

mod_rewrite uses a rule (regular expression) based engine. Those rules can be applied to

different contexts depending on where they are placed [29]. Written in the global

configuration file of Apache httpd.conf, the rules affect all virtual hosts on the server. When

placed in the <VirtualHost> block, those rules will only apply to specific virtual host.

A .htaccess file with such rules can be placed under a directory to make those rules effective

only for this directory [29].

The URL rewriting module of Apache is extremely powerful and complicated. A

typical .htaccess starts with the line “RewriteEngine on” to enable the rewrite engine. The

RewriteCond keyword can be used to define a condition under which URL rewriting will take

Methods and tools

15

place. The RewriteRule keyword is followed by the actual rules in regular expression. Finally,

the RewriteOption keyword defines the scope of the rewrite engine [29].

When an URL enters the rewrite engine and the rewrite engine is enabled, it is compared with

the pattern provided in RewriteCond syntax. If it is a match, the rewrite rules will be executed,

and the rewritten URL continues to be compared with the pattern in the next RewriteCond

syntax. Inappropriately written rules could result an endless loop.

This code block is the actual .htaccess file used in the new implementation of SubtiWiki.

RewriteEngine On

RewriteCond %{REQUEST_FILENAME} -f

RewriteCond %{REQUEST_FILENAME} /(var|app|res)/

RewriteRule /(var|app|res)/ html/404.php [PT]

RewriteCond %{REQUEST_FILENAME} -f

RewriteCond %{REQUEST_FILENAME} src

RewriteCond %{REQUEST_FILENAME} !src/init.php

RewriteRule ^(.+)$ html/404.php [PT]

RewriteCond %{REQUEST_FILENAME} -d

RewriteCond %{REQUEST_FILENAME} !-f

RewriteRule ^(.+)$ html/404.php [PT]

RewriteCond %{REQUEST_FILENAME} !-d

RewriteCond %{REQUEST_FILENAME} !-f [OR]

RewriteCond %{REQUEST_FILENAME} .php$

RewriteRule ^(.+)$ src/init.php [END,L]

Code block 1. The sample of a .htaccess file

The first snippet filters requests on existing files. If those files are under the directories var/,

app/, or res/, request will be redirect to an error message page. The second code snippet

blocks access to the files under src/ except for init.php, which serves the sole entry point of

the requests. The third code snippet rejects all access to directories. The last snippet redirects

all requests except the allowed files to src/init.php. The flag at the end of line [END] indicates

the rewriting stops here.

Methods and tools

16

3.1.3 Server-side scripting and PHP

Server-side scripting is a technique used to create dynamic web pages according to the

requests initiated by clients. It differs from the client-side scripting, which is embedded and

evaluated at the client-side, mostly web browser. In earlier times, the server-side scripting

was mostly done by a combination of C programs, Perl scripts and shell scripts using the

Common Gateway Interface (CGI). Nowadays there is a big variety of server-side scripting

language for this purpose, such as ASP, Java, server-side JavaScript, Lua, PHP, Python, R etc.

PHP is the server-side scripting language in the LAMP software bundle. It is primarily designed

for web developing. The syntax of PHP is like C. All the variables begin with a dollar sign, which

resembles Perl. PHP is not type strict. It has four scalar type, i.e. Boolean, integer, float, and

string. For compound types it offers arrays, objects callables (functions) and iterables. A

special type resource is included to present the references to external resource, mostly C

pointers [30].

PHP provides two types of arrays, the simple array and the associative array. For arrays, the

keys must be either integers or strings. The values in an array does not require to be the same

the type[31]. The arrays can be converted into objects by simple casting [32]. However, the

most common way to create an object is to define a class and instantiate the class [33]. This

gives PHP the object orienting feature.

In PHP, the functions are of the type callables /callbacks [34], which means functions can be

used as parameters or return values of other functions. This gives it features of function based

programming.

3.1.4 HTML and document object model

Hypertext markup language (HTML) is a standard markup language used to build web

pages[35]. HTML is one of the technologies along with cascade style sheet (CSS) and JavaScript

used to generate contents on the internet. HTML describes the underlying structure of the

web pages and provides different elements for different purposes.

HTML elements are the building blocks of web pages. Tags using angle brackets are used to

determine them. Some of the HTML elements introduce content directly into the page, such

as or <input />. Some of the HTML elements consist of two tags, an opening tag

Methods and tools

17

and a closing one, like <p></p>. In this case, the content to be rendered is placed between

the opening and closing tags.

Web browsers do not display HTML tags. They just display the rendered page using tags as

guidelines. For most modern web browsers, document object model is a built-in feature. This

model interprets an HTML or XHTML or XML document as a tree structure with HTML

elements as nodes in the tree. Each HTML element is presented as an object and can be

accessed and manipulated programmatically. The scripting language used to alter DOM

elements is JavaScript.

3.1.5 JavaScript, JSON and AJAX

JavaScript is a high-level interpreted programming language [36]. Along with HTML and CSS,

JavaScript is an important element for web developing. JavaScript code can be executed in the

web browser and supports manipulation of the document object model (DOM)[35], making

the web page more dynamic and interactive.

JavaScript is not type strict. It has three primary data types, i.e. number, string or Boolean. For

composite data types, JavaScript offers objects and arrays. Objects in JavaScript are

associative arrays. The keys are of string type and the values unlimited. To access the

attributes in an object, a dot notation (person.name) or bracket notation

(person[“name”]) can be used [36].

JavaScript is almost completely object-oriented. However, unlike object-oriented

programming languages based on class, JavaScript uses prototypes. In JavaScript, functions

double as object constructors. The new keyword is used to create an object from a prototype.

JavaScript also natively support many function-based features. In the modern implementation

of JavaScript, functions are constructed as objects. A function can have properties and even

methods, like bind() or call(). Functions can be taken as parameter or used as return value of

other functions. Nested functions, which means a function defined inside another function is

also allowed. Those features greatly enriched the functionality of JavaScript [36].

JavaScript Object Notation (JSON) is derived from JavaScript [37]. It is a light-weight data

exchange format. It is easy to read and write for both humans and machines. JSON is a text

format which is independent from JavaScript.

Methods and tools

18

JSON is built on objects and arrays. Objects in JSON are an unordered collection of key value

pairs. The keys are of string type while the value can be null, strings, numbers, Boolean values,

objects or array. An array in JSON is an ordered list of values. In some implementation of JSON

parser, values in an array do not require to be of the same type [37].

A JSON object is wrapped within a pair of curly brackets. Each key value pair in this object is

separated by a comma. A colon is placed between the key and the value in each key value pair.

A JSON array is wrapped within a pair of square brackets. Each value in the array is separated

by a comma [37]. The example below shows the employee information in JSON format.

{

 "name":"John Doe",

 "gender":"male",

 "employee_id": 314,

 "association": "Univeral heritage"

}

Code block 2. The sample of JSON text

To update the partial data without refreshing the whole page, asynchronous JavaScript and

XML (Ajax) can be applied to reduce the data traffic. Ajax is a set of technologies which allow

request sending and response receiving run in the background without interfering the

rendered web page. This enabled much more activity of the web site and reduced the data

traffic. With ajax, web applications can be built with a different model, which is illustrated in

Figure 4.

3.2 Relational databases

Relational databases are based on the relational model of data. This model was proposed by

E. F. Codd in 1970 [2]. The purpose is to provide a declarative way to specify data and queries.

In this model, data are presented as tuples and grouped in relations. Here the word “relation”

has a counter-intuitive mathematical meaning. Thus, it is commonly conceived as “table”.

In relational databases, data are presented in tables. A table is a collection of objects of the

same type. It has columns and rows. The column headers are the name of attributes of objects

while each row is an object [38]. Relational databases follow certain rules to ensure data

accessibility and integrity via various keys and constraints [38]

Methods and tools

19

Figure 4. The conventional model for a Web Application versus an application using Ajax. A client-side application

is added serve as a middle layer between the user interface and server side. This client-side application initiates

HTTP(s) requests and handles the update of the user interface.

3.2.1 Primary key

A primary key is a column or a combination of columns which is used to identify a row or

present a relation to another table. Its main purpose is identification. Thus, one table can only

have one primary key and values of this primary key cannot be NULL.

3.2.2 Foreign key

A foreign key is a relationship between rows in different tables. The foreign key refers from a

column in the parent table to a column in the child table, building a dependency between two

tables. This not only enables fast queries on related data, but also prevents data being inserted,

updated, or deleted when the dependency will break. One row in the child table cannot be

Methods and tools

20

inserted if the referred row in parent table does not exist. The update or deletion on a row in

the table will be either prevented or cascaded to the row in parent table depending on the

definition of this foreign key.

3.2.3 Stored procedures

A stored procedure is a database object which implements a database routine. It can be

considered as functions in the context of SQL. Stored procedures can take parameters and

deliver results. It can be used to encapsulate complicated business logic, perform data

validation etc.

3.2.4 Triggers

A trigger is a database object which implements a routine and is associated with a table. The

implemented logic is executed when an event occurred on the table, such as insert, update,

and delete. Triggers can be used to validate data or maintain other tables. The trigger and the

associated statement is grouped up as a transaction, which means if the trigger failed, the

associated statement will not take effect.

3.2.5 Structured query language

Structure query language (SQL) is the first commercial implementation of the relational model

[27]. It doesn’t not completely conform to the relation model, but this didn’t affect its success

as the most widely used database language.

SQL uses a collection of imperative verbs for the process of modifying scheme or data. This

makes it very intuitive and read like a nature language. It consists of a data definition language,

a data manipulation language, and a data control language [27]. The data definition language

defines/ alters the scheme of data, for example, the scheme of table, its keys, its indexes etc.

The data manipulation language operates on the data themselves. The

select/update/insert/delete statements are parts of it. The data control language defines or

alters the permissions on certain data. It defines the user privileges on databases, tables, and

columns.

Methods and tools

21

3.2.5.1 Insert statement

An insert statement is used to add new rows to a table. It should specify the name of intended

table, the header of columns and the values to be inserted. The strings in the syntax should

be properly quoted. The insert statement is not successful when the data type of any given

value does not confront to the defined table scheme. For example, the following query inserts

a new row in the gene table.

INSERT INTO gene (id, gene_name)

VALUES (12, "dnaa");

Code block 3. A sample of insert statement

3.2.5.2 Select statement

A select statement or a query is used to retrieve data from the database. It should specify

one or a few column headers, one or more tables to select data from and as well as a where

clause to specify the rows. For example, a query to find short genes from the “gene” table is

as follows:

SELECT *

FROM gene

WHERE geneLength < 500.00

ORDER BY locus;

Code block 4. A sample of select statement

This query finds all rows in “gene” table which the value of geneLength column is smaller than

500. The results are sorted in ascending order by the locus (locus tag) column. The wild card

symbol “*” directly after select indicates all columns are included in the result data set.

3.2.5.3 Update statement

An update statement updates the existing data in an existing table. It should specify the name

of the table to be updated, the columns to be updated, the new values, and a where clause to

specify the rows.

UPDATE gene

SET gene_name = "dnaB"

WHERE id = 12;

Code block 5. A sample of update statement

Methods and tools

22

The update statement above updates the row with the id “12”. The value of gene_name column

of this row is updated to “dnaB”.

3.2.5.4 Delete statement

A delete statement deletes a row or rows from a table. It should specify the name of the table

and a where clause to specify the rows to be delete. The following statement delete the row

with id 12 from the gene table.

DELETE FROM gene

WHERE gene_name = "dnaA";

Code block 6. A sample of delete statement

3.2.5.5 Where clause

The where clause in select/update/delete statement specifies the rows to operate on with

predicates. A few comparison operators can be used in the predicates such as “=”, “>”, “<”,

“is”, “like” etc. The comparison operator “like” is used to compare strings to given string or

pattern while Comparison operator “is” is often used to determine if a value is a NULL.

Predicates can be combined with logic operators.

...

WHERE gene_name LIKE "dna%"

AND geneLength > 1000;

Code block 7. A sample of where clause

The where clause above will specify the rows whose values in gene_name column start with

“dna” and the values in geneLength column greater than 1000. The wild card symbol “%” in

the provided pattern presents matches to one or more unspecified characters.

3.2.5.6 Join syntax

A join syntax is used when information from more than one table is retrieved. There must be

one column appearing in both tables which can be used as criterium for joining. For example,

we are interested in the names of interaction partners of protein DnaA. We now have a

Methods and tools

23

“protein” table with an “id” column and a “name” column. We also have an “interaction” table

with columns “protein1” and “protein2” which store only ids from “protein” table. The select

statement to fulfill our purpose would be the statement below.

SELECT protein_table_1.name, protein_table_2.name

FROM interaction

 JOIN protein AS protein_table_1

 ON protein_table_1.id = interaction.protein1

 JOIN protein AS protein_table_2

 ON protein_table_2.id = interaction.protein2

WHERE protein_table_1.name = "dnaA"

 OR protein_table_2.name = "dnaA";

Code block 8. A sample of select statement with join syntax

In this syntax, the “protein” table is joined with “interaction” table twice as two different

instances and two aliases are given to distinguish them. As interaction is mutual, the

disjunction of two predicates are included in the where clause.

3.2.6 Entity-relationship model

The Entity-Relationship model was first proposed by Chen in the year 1976[39]. It is based on

set theory and relation theory and can be considered as a generalization of the network model,

relational model, and entity-set model, which were the three major data models.

The Entity-relationship model presents data in an abstract level. It is often applied in the

conceptual designing of a relational database. It concludes the domains of knowledge which

should be part of the database and presents this knowledge with Entities and Relationships.

An entity, is by Chen’s definition, a thing that can be distinctly identified. An entity could be a

person, a car, a gene or a protein. A relationship, is the associations among entities. For

example, “marriage” can be described as the relationship between two “person” entities.

The entities and relationships are objects of higher abstraction in the design process. To

gradually implement those concepts into a physical database, entities and relationships need

to be described in an information structure. The information concerning the entities are

gathered and expressed as an attribute-value set.

Methods and tools

24

The Entity-relationship model can be illustrated with a diagram, in which boxes present

entities and diamonds relationships. Attributes are drawn as circles connected to entities or

relationships. The type of the relationships, such as one-to-one or one-to-many or many-to-

many, should be also marked on the line connecting entities and relationships.

Figure 5. A demonstration of ER diagram, presenting the relationship "protein-protein interaction" between

"protein" entities

Among those attributes, one or a combination of multiple attributes can be used to identify

the entity as entity primary key. With the entity primary key defined, the relationship between

two entities can be presented as the relationships between the primary keys.

3.3 Graph drawing

Graphs, as abstract mathematical objects, are commonly used to present the relationships

among things. The formal definition of a graph is an ordered pair of the set of nodes (vertices)

and the set of edges, which is the two-element subset of the set of nodes [40].

Figure 6. The node-link diagram of the graph depicting the relationship between characters of the novel "Les

miserables". Image generated as Visjs show case [41].

Methods and tools

25

Graphs are applicable to present a lot of things in the everyday life and scientific research: the

bus and subway systems with all their lines and stops, the association among people at work

or in social media, the interaction of binding elements inside the cell like DNA segments, RNAs,

proteins and smaller molecules.

Graph drawing is a set of mathematical and computer science methods to generate

visualizations of graphs [40]. This visualization often depicts the nodes and edges in the graph

in node-link diagram (Figure 6) where nodes are presented with dots, circles, boxes, etc. and

edges with lines [40]. Arrow heads are sometimes included for directed graphs to indicate the

direction of edges. In addition to node-link diagrams, other presentations of graph are

available such as circle packings [42], intersection representations [43]. In those methods,

nodes are represented in areas and edges are presented as adjacency or intersection of those

regions.

To evaluate the results of visualization, different measurements are defined. The crossing

number of edges is the criterion universal to graph layout methods using node-link diagrams.

Symmetry is also another aspect to consider as patterns are always easy to human eyes.

3.3.1 Circular layout

Figure 7. The protein-protein interaction diagram of DnaA in circular layout[44].

Methods and tools

26

Circular layout is quite intuitive. In this layout, all nodes are placed on a circle. Edges are drawn

as straight or curved lines connecting the nodes inside or outside the circle. The position of

the nodes need to be adjusted to minimize edge crossing for a clear visualization.

3.3.2 Orthogonal layout

Orthogonal layout allows the edges of the graph to run horizontally or vertically as single lines

or polylines. This layout is variously used in presenting flow charts, database diagrams, etc.

Figure 8. A random graph in orthogonal layout

3.3.3 Force-directed layout methods

Force-directed layout methods generate pleasing and aesthetic results. The visualizations

tend to have uniform edge lengths, evenly distributed nodes, clear structure, and beautiful

symmetry.

The force-directed layout methods, as the name suggests, calculate the positions of nodes by

assigning forces to them: global repel force between all nodes but attractive forces between

the adjacent ones. A configuration with the lowest energy and most force balance is

considered as the best solution.

3.3.3.1 The algorithm of Eades

The algorithm of Eades was proposed in 1984 [45]. In this method, edges are modelled as

springs with logarithmic strength, which means the force on the spring is not linear according

Methods and tools

27

to Hook’s law, but rather logarithmic to its deformation. A global repel force between non-

adjacent nodes exists under an inverse square law. For the layout, nodes are initially randomly.

Nodes are moved according to the forces on them in each iteration.

𝑓𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑐1 ∗ log (
𝑑

𝑐2
)

𝑓𝑟𝑒𝑝𝑒𝑙 =
𝑐3

√𝑑

c1, c2, c3 are both constant where c2 is the resting length of the spring. d is the distance

between nodes.

3.3.3.2 The algorithm of Fruchterman and Reingold

The later algorithm of Fruchterman and Reingold [46] improved the methods by including

additional measurements. In this algorithm, it is an important how evenly nodes were

distributed. Hence, they defined the repelling and attractive forces differently.

𝑓𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
𝑑2

𝑘

𝑓𝑟𝑒𝑝𝑒𝑙 = −
𝑘2

𝑑

Here d is the distance between the nodes. Note that k represents the optimal distance

between nodes and is not a constant. It is associated with the “density” of the nodes and

defined as following.

𝑘 = 𝐶√
𝑎𝑟𝑒𝑎

 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠

Similar to the algorithm of Eades, the method computes the attractive and repel forces and

moves nodes step by step trying to find a force balance state. Different from the algorithm of

Eades, the concept “temperature” is introduced to scale down the movement of nodes in each

iteration. The temperature should be set with an initial value proportional to the drawing area

(frame) and reduced in iterations. This “cools” the system down as in later iterations, the

movement of nodes are scaled down more.

Methods and tools

28

3.3.3.3 The algorithm of Kamada and Kawai

The algorithm of Kamada and Kawai [47] takes the graph distances between nodes into

consideration, which is defined as the length of shortest pathway from one node to another.

The goal then becomes to make the geometrical distances match the graph distance.

Therefore, the forces between the nodes are simplified. If the geometrical distance between

two nodes is relatively smaller than the graph distance, the nodes repel each other and

otherwise the nodes attract each other.

Therefore, graph theoretical terms begin to map with geometrical terms. The width or the

length of the drawing area corresponds to the diameter of the graph. The desired geometrical

distance between two nodes should be proportional to the graph distance, and the coefficient

should be also linear to the ratio between the previous two values mentioned. This algorithm

is computationally expensive as the pair-wise shortest paths need to be found first.

3.3.3.4 Multi-level approaches

For large graphs with over thousands of nodes, the drawing process can be extremely

expensive. It is natural to think of an approach which generates a rough layer first and then

gradually finalize the details of the graph. The concept of multi-level approaches was first

raised by Hadany and Harel, who introduces the strategy below [48].

1. Perform fine-scale relocations of vertices that yield a locally organized

configuration

2. Perform coarse-scale relocations (through local relocations in the coarse

representations, correcting global disorders not found in stage 1)

3. Perform fine-scale relocations that correct local disorders introduced by

stage 2

Since the concept was presented, there have been quite a few different multi-level graph

drawing algorithms. The algorithm of Harel and Koren [48] uses the k-centers problem for an

abstraction. The algorithm of Walshaw [49] extended the algorithm of Fruchterman and

Reingold. The algorithm of Quigley and Eades [50] assigned gravity as repel force (with

negative gravity constant) and relies on the Banes-Hut simulation [51] for n-body problems in

physics to reduce the complexity of repel force computation.

Methods and tools

29

3.4 Mobile development

3.4.1 SQLite

SQLite [52] is a light-weight relational database management system. It implements most of

the SQL standards. Unlike client-server database management systems, SQLite usually comes

as a library linked to the target program and becomes an active part of it [52].

SQLite is a compact library which can run with minimal memory. This makes it very suitable

for platforms with memory constrains, such as embedded systems and smart phone

applications.

3.4.2 Development of an Android application

Android is an open-source and free mobile operation system based on Linux kern [53]. It was

first developed by Android Inc. which was later bought by Google. It has a wide support for

different hardware and takes up 85% market share in the first quarter of 2017 [54].

Android applications are written with Java. Code and other resource files are compiled and

packed into an Android package by Android SDK tools. Those packages are later used to install

application on devices.

Each application runs its own secure sandbox, which means the code and files of each

applications are isolated from each other. Each process has its own virtual machine and a

unique user is created for each application. This ensures that the private files cannot be

accessed by other apps.

The applications usually consist of a few components such as Activities, Fragments, Services,

Broadcast receivers and content providers. Each of the components serves for a distinct

purpose.

3.4.2.1 Activity

An Activity is an application component which provides an interactive interface [55]. Each

Activity acquires a window on which the interface is drawn on. This window usually takes up

the whole device screen or sometimes appears as a flowing window, like an alert message etc.

Methods and tools

30

An Android application usually consists of a few loosely tied activities. One of those activities

are assigned as “main” in the Android manifest file. This activity will first appear when the

user launches the application. When a new activity starts, the old activity will pause, and its

states will be kept in the return stack in case the user returns by pressing the back button.

Therefore, an activity has a life cycle from being created to being destroyed, depending on the

operation of users. This life cycle is implemented with a few callback methods in the

Activity class. To create an activity, a new subclass of the Activity class should be

implemented. The life-cycle callbacks should be overridden with proper logic to respond to

the changes of state. More details about the activity and its life cycle is available in the

developer’s guild [53].

3.4.2.2 Fragment

The Fragment is introduced to Android 3.0+ [56]. It can be considered as an encapsulation of

behavior or user interface inside the activity. It is primarily designed to enable more flexible

layout for tablets which have larger screens. With Fragments, the application can adapt to

different kind of screens in a modularized way and no extra effort is required to adjust the

layout (Figure 9).

Figure 9. A demonstration of using fragments for different screens.

Data source: https://developer.android.com/guide/components/fragments.html

https://developer.android.com/guide/components/fragments.html

Methods and tools

31

To create a fragment, a subclass of Fragment class should be implemented. Like activity, the

fragment also has a life cycle. The life-cycle callback methods needed to be overriden to

handle the fragment state change. A fragment can be added to an activity either in runtime

or throught the layout definition file.

A FragmentManager class is provided to manage the fragments within an activity. The

fragments can be added, replaced or removed. The default action on back buttons also affects

fragment transactions althought this action can be overriden.

3.4.2.3 Multi-threading in Android

Android uses the single threat model [57]. By default, all component of the same application

run in the same process. When an application is launched, the system creates a thread for it,

called “main”. This thread is sometimes called “User interface (UI) thread” as it is responsible

for UI drawing and other events on user interface elements. When the UI thread is blocked,

the user interface elements do not respond and lose interactivity [57].

Therefore, for time consuming tasks such as file operation or internet access, it is

recommended to perform them on a separated thread (work thread). However, the UI

elements cannot be updated from other threads. Thus, Android offers several different ways

to access UI thread from other thread, such as

Activity.runOnUiThread(Runnable),

View.post(Runnable),

or View.postDelayed(Runnable, long).

Another solution would be the AsyncTask class. It provides a few callback methods such as

onPreExecute, doInBackground, onProgressUpdate, and onPostExecute. Of all

four methods provided, doInBackground is executed on a separate thread, while the other

methods are executed on the UI thread.

3.4.3 Development of an iOS application

iOS is the operating system running on mobile Apple devices such as iPod touch, iPhone and

iPad. The operating system is developed and maintained by Apple Inc. The operation system

Methods and tools

32

manages the hardware of the devices, and provides the framework to develop applications.

For application development, objective-C or Swift can be used.

3.4.3.1 The Swift programming language

Swift is a new programming language introduced for iOS, macOS, watchOS and tvOS. It is not

a scripting language but has some extremely interesting features which makes it very flexible

and handy.

Swift is a type-strict language. The type of a constant or variable can be implied from initial

value or explicitly defined. Swift provides scalar types such Int, Double, Float, Bool and String.

For collection types, swift offers Array, Set, and Dictionary. In swift, constants are declared by

let keyword and variables var keyword.

Optionals are another new feature that Swift offers. An optional variable can be assigned with

either nil or a value of designated type. Here nil is not like nil in C or NULL in Java. It presents

the absence of a value and can only be assigned to optional variables.

An optional variable can be “unwrapped”, which means this variable will be cast from optional

type to a non-optional type. Before unwrapping an optional variable, it is always necessary to

check if this variable does have a value, otherwise runtime error can be raised. This can be

done in an if-statement by comparing the variable with nil. Optional binding can also be used

to find out an optional variable has a value or not and directly assign the value to another

constant to be used in the if block.

if let actualNumber = Int(possibleNumber) {
 print("has a number")
} else {
 print("is nil")
}

Code block 9. Sample code of optional binding in Swift programming languages

Besides optional binding, Swift also provides optional chaining to handle a series of queries

on attributes or subscripts which can be nil. By adding a “?” behind the variable or attribute

of optional type, the chained expression will fail if the variable or attribute is nil. This saves a

large amount of if statement in comparison to the code in Java expressing the same logic.

Methods and tools

33

Beside optional variables, Swift has a lot of other interesting and exciting features. For

example, subscript function can be custom defined, which makes implementing our own

collection type easier. A defined class can be extended with more methods, which makes Swift

as flexible and enjoyable as scripting languages.

In general, Swift is a new language introduced in recent years. It combines the nice features

and designs from multiple languages. It is a very pleasant experience to write Swift.

3.4.3.2 Model-View-Controller pattern

The model-view-controller pattern is a software design pattern which divides the software

into three components, namely data model, view, and view controllers. The data model

defines the information or knowledge the software will handle. Views are the visual

presentations of information on device screens. This could be in the format of text, images,

diagrams or videos etc. The controller is responsible for process requests and updates views.

The framework for macOS and iOS development (Cocoa and Cocoa Touch) is built using this

pattern. They also provide various helpful components to assist the application development.

In practice, the user interface can be designed in the interface builder editor integrated in

XCode. In the interface builder editor, the developer can drag and drop view controllers and

view widgets. The storyboard is other technology to assist the design of user experience. With

story board, the relationships between different view controllers are visually presented in the

interface builder editor and separated from the code.

All view controllers should be implemented as a sub class of UIViewController. In the view

controller classes, class attributes marked with “@IBOutlet” can be used to create a

reference to an object in the views, which can be a widget, a constraint, or an attribute of the

view. In Xcode this can be done by simply drag and drop.

The model part needs to be implemented completely by the developers. The Cocoa and Cocoa

Touch framework provides a CoreData library to assist the development. The CoreData library

handles the association of persistent data storage and in-memory object. With CoreData, the

developer can focus more on the model itself. Another option would be to implement the

model as own classes and use SQLite for persistent data storage.

The Model-View-Controller focus on the separation of the three components of software and

achieve modularized development. With the Cocoa and Cocoa Touch framework and the

Methods and tools

34

assisting tools provided by Apple, the application development for iOS is simple, straight-

forward and clear.

Results: Implementation of SubtiWiki v3.0

35

4 Results: Implementation of SubtiWiki v3.0

4.1 Database construction

A proper data model is vital to any software. For SubtiWiki, the task is to analyze and re-

organize the collected annotations, build a proper data model and implement a relational

database according to this data model.

4.1.1 Conceptual design

The conceptual design of the SubtiWiki data model is centered around the entity gene. Here,

gene is an abstraction of a certain gene or RNA feature, its transcribed RNA (if any) and its

translated protein (if any). Therefore, protein-protein interactions can be modelled as

relationship between genes. This relationship is a many-to-many relationship as one protein

can interact with multiple proteins.

We also included the entity operon. In genetics, an operon is functional unit of DNA which

consists of one or more genes. Those genes are transcribed together into a single mRNA and

share the regulatory mechanism in the transcriptional level. An operon can have one or more

gene(s) and a gene can be in more than one operon. With the entity operon included, we can

model the gene regulation on transcriptional level as the relationship between regulator and

operon. The regulator here is an abstract entity. A regulator can be either a gene (a protein,

in biological meaning) or a riboswitch.

Smaller molecules play vital roles in a living cell as solvent, reactant or ligand of biochemical

reactions. Thus, we included metabolite, reaction, and pathway to properly present the

biochemical reactions and pathways in an abstract level. A pathway is a collection of reactions.

A reaction can be assigned to more than one pathway. A reaction is a collection of multiple

metabolites and a catalyst. The catalyst here is an abstract entity, which can be of the type

gene (protein in biological meaning) or protein complex, which is a group of genes (proteins

in biological meaning). Both the relationship between reaction and metabolite and the

relationship between reaction and catalyst are many-to-many relationships.

In SubtiWiki, genes/proteins are classified into different categories according to their

functions. Thus, we included the entity category, which has no corresponding biological

Results: Implementation of SubtiWiki v3.0

36

concept. The category system used in SubtiWiki is tree-structured. Thus, a one-to-many

relationship is needed to describe the position of a certain category in the tree. The

relationship between gene and category is many-to-many as a gene can be assigned to more

than one categories and a category has multiple genes.

Figure 10. The ER-diagram showing the described conceptual schema of SubiWiki database.

For the references included in SubtiWiki, we included the entity paper. To fulfill the function

of content management system, the data model of SubtiWiki should also include the entity

user and the entity history, which is used to present the data of older versions. For the

transcriptomic data and proteomic data, the entity condition is introduced, which presents

the experimental condition of omics data.

Results: Implementation of SubtiWiki v3.0

37

4.1.2 Database implementation

We implemented a relational database based on the conceptual schema described in the

previous chapter. The database management system we used is MySQL. Below are tables

created in subtiwiki_v3 database with short description. Detailed information about all

tables including description of all column can be found in the appendix.

Name of table or view

(case sensitive)

Description

Category Stores information of categories in SubtiWiki

Chemical (beta) Stores information of metabolites

Complex (beta) Stores information of protein complexes

Condition Stores information of the experimental condition of

collected transcriptomic and proteomic data

Config Stores system parameters about database changes

Gene Stores annotations of genes

GeneCategory Stores information of classification of genes into

category

GenomicContext Stores coordinates of genomic elements (genes,

transcription upshift, transcription downshift) on the

genome.

History Stores older versions of all tables. This table collects

only data from tables with a “id” field.

Interaction Stores information of protein-protein interaction

MaterialViewGeneRegulation This is a read only table maintained by triggers. No

update or delete operation should be performed on this

table. It functions like a view. Details will be discussed in

the following chapter

Results: Implementation of SubtiWiki v3.0

38

Metabolite Stores information of metabolites

Operon Stores information of operons

Pathway Stores information of pathways

PathwayGene Stores information of proteins as catalyst in pathways

PathwayMetabolite Stores information of metabolites in pathways

ProteinComplex (beta) Stores information of enzymatic protein complexes

ProteomicData Table of proteomic data

Pubmed Stores information of papers

Reaction (beta) Stores information of single biochemical reactions

Reaction_chemical (beta) Stores information of metabolites in reaction

Reaction_enzyme (beta) Stores information of enzymes in reaction

Regulation Stores information of gene regulation, both

transcriptional and translational

Regulon Stores information about a specific regulon.

Sequence Stores DNA and amino acid sequences

Statistics Stores information about clicks on pages

Tracker Stores information of every request, no ip address is

recorded

TranscriptomicData Table of transcriptomic data

ViewGeneOperon View with the information of genes in operons

idmapping Table which maps ids of genes (v3) to ids of genes (v2)

user This is a copy of user table from MediaWiki database.

This allows the v3 to use the same user account.

Table 3. A list of all tables in the subtiwiki_v3 database with a short description. The tables marked with “beta”

are not used in the production environment and do not have foreign key constraint with other tables.

Results: Implementation of SubtiWiki v3.0

39

4.1.2.1 The Gene table

During implementation, we were facing a big challenge raised by the complex structure of the

entity gene. In previous SubtiWiki, a template is provided to keep each page in the wiki

uniformed. This template is not compulsory during editing and no mechanism is applied so

that each page confronts this template. In addition, it is highly valued to enable a flexible

structure of data, at least for the gene entity. Thus, we didn’t define a list of attributes for the

entity gene, which should be implemented as columns in a table. Instead, we transform the

annotations of genes into key-value pairs and serialize the data into text with JSON format.

The JSON format is chosen because it is well supported by most of programming languages

and is light-weighted.

Figure 11. From table to JSON.

Using the parsable text, the attributes of entity gene can be free defined for each instance.

However, this trick lowers the performance of searching and indexing of the table, as searches

on longer text is always more expensive than on shorter text or on other simpler data types.

To compensate this disadvantage, we created index columns, which holds a copy of the value

for a certain key path. In the implemented database, names of those columns start with an

under score. The elements in key path are joined by “$$” to generate the unique column name.

The Gene table has the schema shown in Table 4.

The “data” column of the Gene table has the “mediumtext” datatype. This is the column

where the JSON formatted text is stored. In the implementation of server-side applications

and client-side applications of SubtiWiki, we established a consistent code routine concerning

this special column. More details will be discussed in chapter 4.2.1.3.

Results: Implementation of SubtiWiki v3.0

40

Column name Column data

type

Actual data type

(if is text)

Description

id char(40) String Unique id of the gene, a sha1

hash string

title varchar(255) String Current name of the gene

data mediumtext JSON object Text in JSON format

_locus varchar(50) String Index column for key “locus”

_function text String Index column for key

“function”

_names text JSON array of strings Index column for key

“names”, which consists of

all names of this gene

_mw double - Molecular weight

_pI double - Isoelectric point

_description text String Description of this gene

_essential varchar(10) enum(“yes”,”no”) Essentiality of this gene

_ec varchar(30) String E.C. number of this gene

_geneLength int(11) - Gene length

_proteinLength int(11) - Protein length

bank_id int(11) - ID in SubtiBank

count int(11) - Access count of this record

lastUpdate timestamp - The time when this record is

last updated

lastAuthor varchar(255) String The user who performed the

last edit

Table 4. Schema of the Gene table. Columns whose names start with underscore serve as indexes.

Results: Implementation of SubtiWiki v3.0

41

In the new MySQL community server 5.8+, a new datatype named “JSON” is included. This

new feature will provide even better support to our database layout.

4.1.2.2 The Regulation table and views

The expression of a gene can be affected by many different factors via different mechanisms

in different stage of its life cycle. To simplify the model, we included two abstract entities in

the conceptual design, i.e. regulator and regulated object. A regulator can be a gene or

riboswitch and a regulated object can be a gene or an operon. In physical implementation, we

created the Regulation table based on those two abstract entities. The schema of the table

is described in the table below.

Column name Column data type Description

id int(11) The numeric id for version

regulator varchar(255) The id of the regulator, type indicated

regulated varchar(255) The id of the regulated object, type

indicated

mode varchar(255) The mechanism of this regulation

lastAuthor varchar(255) Name of the user who last operated on

this record

lastEdit timestamp The time when this record is last updated

/ created

Table 5. The schema of Regulation table in the database “subtiwiki_v3”.

To indicate the type of record referred in the field regulator and regulated, a markup is used.

This markup has two parts, a short string describing the record type and the referred record

id. Figure 12 demonstrates the format of this markup.

This implementation is clear, simple and reduces data duplication. However, a rather

complicated SQL syntax (Code block 10) with join clause must be used to retrieve the

transcriptional regulatory information from Gene to Gene.

Results: Implementation of SubtiWiki v3.0

42

Figure 12. Records in the Regulation table in the production environment. The record above presents a

transcriptional regulation. The record below presents a translational regulation.

SELECT regulator,

 gene,

 mode,

description

FROM Regulation

JOIN ViewGeneOperon

ON Regulation.regulated

LIKE Concat("{operon|", ViewGeneOperon.operon, "}")

WHERE …

Code block 10. The SQL syntax to retrieve the transcriptional regulatory information from Gene to Gene without

dependency on MaterialViewGeneRegulation.

The performance of this syntax has become the bottleneck for our regulation browser. It takes

as long as 43.13 seconds to retrieve all rows (around 5800 rows). This is probably due to three

reasons: First the syntax is dependent on the view ViewGeneOperon which is not very

efficient (18.47 second to retrieve all records). Second the syntax has a string function “concat”

which drags down the performance. Third, the column on which two table join has a string

datatype. Comparisons on strings are always slower than numbers.

To solve this issue, we created a “material view” MaterialViewGeneRegulation, which is

a table rather than a view in MySQL. This table ought to be read-only and maintained solely

by triggers. Triggers are a stored process in MySQL which is executed when a given operation

occurs on a given table. In our case, those triggers create / delete related records in the

MaterialViewGeneRegulation table whenever a record is created or deleted in the

Regulation table. The triggers are defined with the syntax in Code block 11.

Results: Implementation of SubtiWiki v3.0

43

Table 6. Schema of MaterialViewGeneRegulation in database “subtiwiki_v3”

delimiter $$

CREATE definer = root@localhost trigger Regulation_AFTER_DELETE

 AFTER INSERT ON regulation FOR EACH row

BEGIN

 IF old.regulated LIKE "{operon%}"

 THEN DELETE FROM MaterialViewGeneRegulation

 WHERE regulation = old.id;

 END IF;

END $$

delimiter ;

delimiter $$

CREATE definer = root@localhost trigger Regulation_AFTER_INSERT

 AFTER INSERT ON regulation FOR EACH row

BEGIN

 IF NEW.regulated LIKE "{operon|%}" THEN

 INSERT INTO MaterialViewGeneRegulation

 (gene,

 regulation)

 SELECT gene,

 NEW.id

 FROM ViewGeneOperon

 WHERE operon = Substr(NEW.regulated, 9, 40);

 END IF;

END $$

delimiter ;

Code block 11. The SQL syntax used to define triggers to maintain the table MaterialViewGeneRegulation.

To minimize data duplication and inconsistency caused by hard copy, the table

MaterialViewGeneRegulation only has two columns, namely gene and regulation, which

refer to the id columns in Gene and Regulation table respectively. A simpler and more efficient

SQL syntax (Code block 12) can then be used to retrieve the transcriptional regulatory

information from Gene to Gene.

Column

name

Column datatype Foreign key

references

Description

gene char(40) Gene.id The regulated gene

regulation int(11) Regulation.id The related regulation

Results: Implementation of SubtiWiki v3.0

44

SELECT regulator,

 gene,

 mode,

 description

FROM MaterialViewGeneRegulation

JOIN Regulation

ON MaterialViewGeneRegulation.regulation = regulation.id

WHERE ...

Code block 12. The more efficient syntax to retrieve the transcriptional regulatory information from Gene to Gene

with the table MaterialViewGeneRegulation.

With this query syntax, the latency is reduced to 0.03 second to retrieve all data (around 5800

rows). This is a significant improvement of performance and greatly increased the user

experience of our regulation browser, which always retrieves the whole regulatory network

at once and processes this network with graph algorithms.

4.1.2.3 The Reaction tables

Three tables in subtiwiki_v3 database, namely Reaction, Reaction_chemical,

Reaction_enzyme, are designed to store information of biochemical reactions in the cell of

Bacillus subtilis. Due to limited time and man power, those tables are only partially finished

and are not yet integrated to the rest of the database.

Column Data type Extra

id int(11) primary key, auto increment

pathway int(11)

reversible int(1) default yes

Table 7. The table scheme of table Reaction

Results: Implementation of SubtiWiki v3.0

45

Column Data type Extra

id int(11) primary key, auto_increment

title varchar(255) unique

synonym varchar(255)

pubchem int(11)

Table 8. Scheme of table Chemical. It is named "Chemical" to differentiate it from the "Metabolite" table. The

“pubchem” column stores id of the chemical in PubChem database.

Column Data Type Extra

id char(40) primary key

title varchar(255) unique

Table 9. The schema of table Complex. It is named "Complex" to differentiate it from the "ProteinComplex" table.

Column Data type Extra

id int(11) primary key, auto increment

reaction int(11)

chemical int(11)

side enum(‘L’, ‘R’)

isMain int(1)

Table 10. The scheme of table Reaction_chemical

Column Data type Extra

id int(11) primary key, auto increment, not null

reaction int(11) not null

enzyme varchar(255) not null

modification varchar(45)

position varchar(255)

Table 11. The scheme of table Reaction_enzyme

The biochemical reactions in a living cell are mostly reversible reactions. Therefore, we do not

differentiate between reactants and products. In the table Reaction_chemical, the

Results: Implementation of SubtiWiki v3.0

46

column “side” indicates where the metabolite should locate in the reaction diagram and

“reversible” column indicates whether this reaction is reversible or not.

Figure 13. The diagram of a biochemical reaction catalyzed by GapB

For display reasons, we divided the metabolites involved in the reaction into two groups. The

main metabolites will be on the main axis of the diagram while the other metabolites will be

placed around them. The main metabolites in the reaction are also seen as the connecting

point to another reaction.

The enzyme column in the table Reaction_enzyme uses the same markup described in the

previous chapter, as an enzyme here can be either a gene or a protein complex.

4.1.2.4 The Category table

The category system used in SubtiWiki has a tree-like structure. Storing such hierarchical data

in a relational database has long been discussed and quite a few options are applicable for

MySQL, such as adjacency list, nested set, materialized path, bridge table, etc. In the

conceptual design, we included the relationship “is the parent of” between categories to

present the tree structure, which should be implemented as adjacency list. However, we

decided to use materialized path approach instead due to a few reasons: The category system

is well developed and relative stable. Queries on the level of a certain node occur often at the

server backend and frontend.

In the materialized path approach, each node stores its full path to the root node. In SubtiWiki,

we created a unique id based on its path for each category. All ids start with “SW” and contains

a series of numbers separated by a dot “.”. The id of a child category is composed of the id of

its parent and its position among its siblings. For example, the category with id “SW 1.1.2” is

the second child of the category with id “SW 1.1” and the category with id “SW 1.1” is the first

child of “SW 1”.

Results: Implementation of SubtiWiki v3.0

47

Title ID1 ID2

ABC transporters for the uptake of iron/ siderophores SW 1.3.3.1 SW 2.6.5.4

Acquisition of iron / Other SW 1.3.3.3 SW 2.6.5.1

Acquisition of iron/ based on similarity SW 1.3.4 SW 2.6.5.2

Biosynthesis of antibacterial compounds SW 2.6.6.1 SW 4.3.15

Biosynthesis of lipoteichoic acid SW 1.1.1.3 SW 2.6.1.2

Biosynthesis of peptidoglycan SW 1.1.1.1 SW 2.6.1.1

Biosynthesis of teichoic acid SW 1.1.1.4 SW 2.6.1.3

Biosynthesis of teichuronic acid SW 1.1.1.5 SW 2.6.1.4

Biosynthesis of the carrier lipid

undecaprenylphosphate

SW 1.1.1.8 SW 2.6.1.5

Elemental iron transport system SW 1.3.3.2 SW 2.6.5.5

Genetic competence SW 3.1.7 SW 4.1.3

Other protein controlling the activity of the

phosphorelay

SW 3.4.7.6 SW 4.2.2.6

Phosphatases controlling the phosphorelay SW 3.4.7.5 SW 4.2.2.5

phosphorelay SW 3.4.7 SW 4.2.2

Proteins controlling the activity of the kinases SW 3.4.7.2 SW 4.2.2.2

Sigma factors SW 3.2.1.2 SW 3.4.1.1

The kinases SW 3.4.7.1 SW 4.2.2.1

The phosphotransferases SW 3.4.7.3 SW 4.2.2.3

The ultimate target SW 3.4.7.4 SW 4.2.2.4

Utilization of amino sugars SW 2.2.2.17 SW 2.3.3.3

Table 12. A list of categories sharing the same name and genes.

Using this approach, we can calculate the parent’s id from the id of a child category. The level

of a certain node corresponds to how many numbers there are in the id. And a regular syntax

can be used to retrieve children of different levels.

Results: Implementation of SubtiWiki v3.0

48

During the transfer of data from old wiki to the new database, we discovered that several

categories share the same names and have the same genes assigned to them. Those

categories have different paths but should be treated as same category. Therefore, in practice

we use “title” as identifier for update. A list of such categories are shown in Table 12.

4.2 Construction of server-side applications

Server-side applications serve as middle layer between the clients and database. They analyze

the requests from users, perform database operations, receive data from database, and

create dynamic web pages. For SubtiWiki, the complexity of data adds difficulty to the

development process. Thus, we have created a small framework to modularize the code

structure and to reduce coupling.

4.2.1 The framework

The framework we created consists of a few loosely connected modules. A core module sorts

the requests according to URLs, invokes designated handlers, manages database connection,

and keeps logs. A database model implements two data access models and provides a set of

pre-defined secure methods for database operations. The controller manager and the model

manager organize the handlers for view controlling and data accessing. Finally, a template

module helps to generate dynamic web pages in a uniform style.

4.2.1.1 Request process routine

We implemented a routine for request processing in the core module (Figure 14). All requests

coming from the clients are first redirected to src/init.php by the web server. Each request

is sorted by its URL and forwarded to its designated handler. The handler consumes the

request and returns a value indicating whether this procedure is successful. If not successful,

an error message is delivered.

Results: Implementation of SubtiWiki v3.0

49

Figure 14. Flow chart describing the routine for request processing implemented in the core module.

The handlers are the only concern for the developers under this framework. They implement

the business logic for each application. They are associated directly with URLs of certain

format and organized by the ControllerManager class. With the static

ControllerManager::register method, a function or closure can be assigned as the handler

for a certain action of a certain data model. For example, the code block below assigns an

anonymous closure as the handler for “view” action of “gene”. The output of this closure can

be accessed with the URL “http://domain /path/gene/view/12". In this URL, the path

component “12” is passed as the first argument to the closure. More components are allowed

and passed to the closure respectively.

Results: Implementation of SubtiWiki v3.0

50

ControllerManager::register("gene", "view", function($id) {

 echo "information of gene with the id $id will show";

});

Code block 13. The sample code snippet for registering a handler with ControllerManager::register method.

4.2.1.2 Common logic for handlers

The server of SubtiWiki focuses more on data presentation and interactivity than data

processing or heavy computing. Thus, the logic for most handlers can be broken down to a

few major steps (Figure 15). First the user input should not be trusted for security reasons.

Database operations such as create, read, update, or delete are than expected. Based on the

results returned from the database, a proper response is required. If the database operation

is successful, data presentation ought to be prepared. If not, an error message should be

delivered.

Figure 15. Flow chart of common logic implemented in handlers in SubtiWiki.

Results: Implementation of SubtiWiki v3.0

51

It is recommended to encapsulate the database operations in the data access handlers

organized by the ModelManager class. They provide an extra layer of abstraction and

modularization when the requested data are in complex format. The template module can

help to generate dynamic web pages which share the same static part. Using the template

module can keep the code clean, reduce the trouble of escaping special characters in string

literals and allow better control of universal structure and style of the whole website.

More information is available in the document provided within the installation package of this

framework. This framework is freely available under the URL “http://subtiwiki.uni-

goettingen.de/Monkey.zip".

4.2.1.3 Adapted data access objects

In the previous chapter we have described the technique when implementing the Gene table.

By storing JSON text in a MySQL table, we created a mixed database which is relational and

document-oriented at the same time. This implementation brings extra steps for routine

database operations such as create, read, and update. For example, when reading a record

from Gene table, the JSON text should be parsed into native PHP data structures. When

updating or creating a record in Gene table, the JSON text should be validated and

corresponding index columns should also be updated at the same time. Those extra steps are

not the concerns of server-side applications as they should focus on business logic.

Therefore, a layer of abstraction is needed to hide the detailed database structure from the

applications and database module is implemented to serve as data access objects. It

implements active record pattern and an adapted data access pattern specific for our

database layout.

In our data access pattern, the “data” (column name can be assigned differently) column of a

table is considered a virtual container of the data. From the aspect of applications which

initiate database operations, this column does not exist. It has a text datatype and stores the

JSON text. When a record of such table is retrieved, an object, let’s name it row, is mapped

from the record using active record pattern: column names to keys and fields to values. The

JSON text which is under the key “data” is then parsed into an object and key-value pairs of

this object will be copied to the row object and the key “data” is deleted. An example is shown

in Figure 16 how a record is mapped with an object.

Results: Implementation of SubtiWiki v3.0

52

Figure 16. The pattern maps a record to an object.

When a record needss to be updated, an object is mapped to a record. In this case, the other

columns are updated first, and corresponding keys are consumed according to whether this is

an index column or not. The object, with unconsumed keys, is encoded to JSON and stored in

the “data” column.

In this way, we included features of document oriented database into a relational database.

4.2.2 The applications

Currently SubtiWiki has 22 applications corresponding to all data models. The applications are

listed in the table below.

Applications Description

bank resolves compatibility issue with the previous SubtiWiki

versions, providing redirections

category provides viewing and editing functions for categories

complex (beta) provides viewing, editing functions for protein complexes

in biochemical pathways

expression provides access to transcriptomics and proteomics data

Results: Implementation of SubtiWiki v3.0

53

gene provide viewing and editing functions for gene pages

geneCategory enables adding and removing gene to/ from category

geneTranslationalRegulation provides editing function to translational regulations of

genes

genome provides access to DNA sequences

genomicContext provides access to coordinates of genes

history enables version control

interaction provides viewing, editing, and removing functions of

protein-protein interactions

operon provides viewing, editing, and removing functions of

operons

pathway provides access of data of biochemical pathways

proteinComplex (beta) provides viewing, editing, and removing functions of large

protein complexes such as ribosomes etc.

pubmed enables access to references in SubtiWiki

reaction provides viewing, editing, and removing functions of

biochemical reactions

regulation provides viewing, editing, and removing functions of

transcriptional regulations

regulon provides viewing and editing functions of additional

information about the regulators

statistics provides viewing of access data of SubtiWiki

subtiwiki provides redirects to previous SubtiWiki versions

user handles user information

Table 13. The applications in SubtiWiki

Results: Implementation of SubtiWiki v3.0

54

4.2.2.1 The Application “Gene”

The application “gene” is the center of SubtiWiki. It generates pages for genes/proteins and

offers the editing interface for updating the information. To be consistent with the previous

versions, only minimal changes are made to web site layout. We have updated the genomic

context browser with more interactivity and included diagrams of interaction and regulation

on the side panel. Some minor adjustments are also made to offer a better reading experience.

A partial screenshot of a gene page is shown in Figure 17.

The updated genomic context browser allows the user to move up or down the genome with

mouse wheel. The JavaScript code for the genomic library is extended and rewritten into a

library which can be applicable for other biological or bioinformatic websites. This library can

display both linear and circular genomes. In circular mode, this library will show the end of

genome overlapping with the starting point.

As described in the previous chapter, we have implemented the Gene table in the way that

attributes of entity gene can be freely defined for each instance. Therefore, the way to present

our data should be data-driven as well. To achieve that, we simply defined a template adapter

(details see inline document) which prints out the JSON object to HTML recursively. This

method will save us trouble because no extra code is needed in the future when the structure

of data is updated. It is also consistent with our editing interface: It shows exactly whatever

the user actually edits.

However, this “print” technique brings a problem. The designed web pages of genes contain

information which is not stored in the Gene table. That information needs to be integrated

and presented at a specific position on the web page. To resolve this issue, we used a “[[this]]”

markup to indicate the location and displayed title of this information. For example, the key-

value pair {genomicContext: “[[this]]”} will be displayed as the genomic context

browser.

For editing, we introduced a markup system. This markup system not only indicates the style

of the page, but also the structure the page. In this markup system, all section titles follow

one or multiple asterisk “*” depending on the level of the title and a space is required between

the asterisk and the actual title.

Results: Implementation of SubtiWiki v3.0

55

Figure 17. The partial screenshot of the web page for the gene citB.

Contents of a section can be placed either right behind the title, following a “:” and a space,

or under the title in a new line. A new line in this edit box will be a new bullet point on the

parse web page and multiple new empty lines are ignored. For gene’s page, a universal

template is provided. Information can be added to the intended section.

In the MediaWiki engine, a markup such as “[[citB]]” generates a link to the page with the title

“citB”. In our new markup, such feature is kept and adjusted. To create a link to the page of

citB, a markup in the format “[[gene|citB]]” is required. The text “gene” before the vertical

bar indicates the type of the link, in other words, name of associated data model.

Results: Implementation of SubtiWiki v3.0

56

More details about the new markup is available at our FAQ page and a quick reference table

is accessible in the editing interface. Quick tool buttons are also provided with hot key

combinations.

Figure 18. A: The new markup system indicates the structure of the page. B: The source text in the new markup is

parsed to a JSON object in the front end. C: The JSON object is printed to a HTML page.

In the editing process, when the user hits the submit button, a grammar check is first

performed to ensure correct structure of the data. The source text is parsed to JSON and sent

to the server-side, where a second validation is performed. The editing can be rejected when

the submitted data is too small in comparison to the older version, indicating vandalism.

We created this markup and avoided using JSON directly in the editing interface because of a

few reasons. This markup is closer to natural language than JSON. This markup is more

tolerant with grammatic errors than JSON. This markup does not require escaping strings as

string is the only primitive data type here.

A

B

C

Results: Implementation of SubtiWiki v3.0

57

Figure 19 The editing interface of gene citB.

In the gene’s editing interface, we included portals of all editing interfaces concerning this

gene/protein, such as protein-protein interaction, regulation, operons, etc. Those portals are

listed on the left panel of the editing interface. Table 14 describes the intention of each section.

Section name Description

Gene General information about this gene, transcribed RNA, and

translated protein (if any).

Interactions Information on protein-protein interactions.

Translational regulations regulation which happens at translational level, transcriptional

regulation please go to "Operons" section

Operon all operons this gene is a part of, information of transcriptional

regulations which affecting the whole data stored here.

Protein Complexes functional protein complexes, still under construction, but you

are welcome to add in data already.

Additional information

on regulon

If this protein is a regulator, some information about this

protein as regulation can be added here, such as the reference

papers or etc.

Table 14. Description of different sections in the editing interface.

Results: Implementation of SubtiWiki v3.0

58

As we cleaned and structured all text, exports of data by specific key chain is made possible.

On the “gene export wizard” page, the user can select desired key chains and a csv file is

generated according to selection.

More information about the application “gene”, its provided actions, and public APIs is

included in the appendix.

4.2.2.2 The application “Category”

In the previous version of SubtiWiki, the category system was maintained by hand. It requires

two edits to assign a gene to a category: add link to the gene page on the category page and

add link to the category page on the gene page. This doubled the amount of work and resulted

in data inconsistency. Therefore, we have developed the application “category” for better

data management.

At the application index page (http://subtiwiki.uni-goettingen.de/category), all categories are

listed in a tree view. Subcategories can be extended or collapsed. This provides a better

overview of the whole category system.

The page of the individual category includes more information. It shows the path from the

root to the current category, all its child categories (if any), genes assigned to this category,

descriptions and references of this category, and the sibling categories.

In the editing interface of each category, the user can rename this category, add a description

and references. All genes assigned to this category will also be shown in a table format. The

user can delete genes from this category or add new genes to it. The administrator of

SubtiWiki can also add a new category in the editing interface of the designated parent

category. Deletion of a category can only be performed by administrators of SubtiWiki when

the category doesn’t have any gene assigned to it or any subcategories. Deletion of a category

will result re-labeling of all its sibling categories.

http://subtiwiki.uni-goettingen.de/category

Results: Implementation of SubtiWiki v3.0

59

Figure 20. The editing interface of category “Glycolysis”. On the top the path to this category is listed. A table of all

genes assigned to this category is displayed and operations such as add and delete can be performed. With the

form at the bottom of the page, name of this category can be changed, and description of this category can be

added. Only administrators of SubtiWiki can delete categories.

4.2.2.3 The genome browser

The major motivation to develop a genome browser for SubtiWiki is to provide our users a

combined view of genomic elements and corresponding sequences. In the genome browser,

the user can focus on a specific gene or a region. As the genome browser only handles static

data, no editing interface is provided.

Results: Implementation of SubtiWiki v3.0

60

Figure 21. The screenshot of the genome browser displaying genomic context of citB, its DNA sequence, and protein

sequence.

In the SubtiWiki database, coordinates of genomic elements are stored. These coordinates are

used to extract DNA sequences of desired genes or RNA features. The protein sequences are

translated from the DNA sequence using the common codon table for prokaryotes. The link

to the codon table is included at the end of protein sequence.

We also enabled a very simple sequence search function for the DNA sequences. This can be

helpful for finding restriction enzyme sites in the displayed DNA sequence.

4.2.2.4 The network browsers and NetVis

After all the data about gene regulation have been cleaned from text and put into the

relational database, it become extremely interesting for us to visualize the whole network. In

the previous SubtiWiki version (SubtiBank), a JavaScript library was implemented to display

the protein-protein interaction network. In this library, a circular layout is used with all nodes

(proteins) put on a large circle and straight lines representing the edges. However, this

Results: Implementation of SubtiWiki v3.0

61

implementation is not suitable for large and inter-connected networks such as the regulatory

network.

Therefore, we switched to force directed drawing algorithms introduced in chapter 3.3.3. We

used a JavaScript library (Visjs[41]) which implements Kawaii algorithm[47] and Barnes-Hut

simulation[51] to draw the network in the front end. This provides us more interactivity and

lowers the computational burden of our server. The back end of the regulation browser is

mainly responsible for retrieving the subnetworks to be displayed.

It is unrealistic to display the whole regulatory network at once. The simulation is extremely

long, and the generated visualization is overwhelmed with large overlapping clusters.

Therefore, we offer to display a subnetwork of a certain gene. This subnetwork is defined by

two factors, a gene and a radius. The regulation network is treated as an undirected network

when the subnetwork is calculated. This subnetwork consists of all nodes whose distances to

the selected node (gene) are no greater than the radius. The subnetworks are calculated with

an algorithm adapted from the Dijkstra algorithm [58].

The SigA regulon is by default excluded from the subnetwork of genes other than sigA. As the

house-keeping sigma factor, SigA controls a lot of genes in B. subtilis and sharing SigA as sigma

factor doesn’t provide a lot of information.

For example, the subnetwork of gene citB consists of all genes directly regulated by CitB and

all proteins which directly regulate citB when the radius is 1. When radius is 2, the subnetwork

includes all neighboring genes of previous subnetwork.

With higher radius, more and more genes are included in the subnetwork. Figure 22 shows

the regulatory network around citB with the radius of two. In this presentation, we clearly

observe regulatory clusters and the association between them.

The most important parameter for the gravity model is the global gravity constant. The global

gravity constant defines how hard nodes repel each other. With a smaller gravity constant (be

aware this value is negative), the nodes tend to push each other further away, lengthen the

edges, and result a clearer presentation. In our regulation browser, the gravity constant is

defined exponential to the nodes count for better presentations.

The edges are color labelled according the regulatory mechanism each edge represents. To

avoid too much color, all regulator mechanisms are sorted into three categories, namely

positive (green color), negative (red color), and other (gray color). Those colors can be

Results: Implementation of SubtiWiki v3.0

62

adjusted individually in the settings panel. A highlight function is also available to search for a

series of gene in large networks. When highlighted, the genes stay opaque while the rest of

the network fades away. The users can highlight multiple genes at once and remove the

highlight simply by clicking on the blank area.

Figure 22. The subnetwork of citB with the radius of 2.

The users can also overlay transcriptomic and proteomic data with the regulatory network.

Data from a certain experiment can be selected from the control panel. The nodes are then

colored according to the expression level with a color legend at the lower left corner.

The export function is enabled for the regulation browser, too. Right click on the blank area

brings the menu for different formats. Data can be exported in csv format, which is text based

and can be processed in Excel. The current viewport can be exported as an image file (png

format). The “nvis” format is intended for our network visualization tool NetVis. This file

consists of coordinates of nodes and no additional time is needed for simulation.

The data for whole regulatory network can be exported in the data export page of SubtiWiki.

The data is in csv format which is good for both human reading and processing with scripts.

The interaction browser is implemented with the same logic as regulation browser.

Results: Implementation of SubtiWiki v3.0

63

In addition to our online tool which integrates data collected by SubtiWiki, we offer a cross

platform network visualization tool NetVis. With NetVis, users can visualize their own data

and adjust the style of the visualization. Simple network manipulations such as adding or

deleting nodes or edges are enabled. The users can also save the results of a simulation to

avoid waiting time.

4.2.2.5 The expression browser

Figure 23. The expression data of citB in comparison with citA and citZ.

We updated the expression browser for better visualization and a uniform web site design

throughout the Subti-Apps. In the updated expression browser, google charts library is used

Results: Implementation of SubtiWiki v3.0

64

to draw the interactive diagrams. The comparison function is extended, now allowing

comparison of multiple genes.

4.2.2.6 The pathway browser

We updated the pathway browser for better interactivity sand a uniform web site design

throughout the Subti-Apps.

In the updated pathway browser, the markers on the pathway map can be turned off for a

clearer view. Selecting an enzyme from a drop menu in the control panel will highlight all

occurrences of the selected enzyme with markers. The same logic applies to metabolites as

well.

Figure 24. Pathway map for central carbon metabolism, with occurrences of citB highlighted

Results: Implementation of SubtiWiki v3.0

65

4.3 The Mobile Apps

With the popularity of smart phones and tablets, the habit of internet users has undergone

significant changes. Mobile internet and mobile apps has become an important aspect of life.

Therefore, we took effort to ensure better mobile access to our web site. First, we have

adjusted the layout and style of the web pages to better fit the smaller screens (Figure 25).

We also developed mobile apps for both Android and iOS.

Figure 25. The index page of SubtiWiki on mobile device and the search tab of the SubiWiki iOS App.

We designed the mobile apps as quick dictionary for gene annotations and focus more on the

extended offline functions. The user can search for a gene using name or locus tag. Detailed

information about a selected gene shows on a separated screen. The user can add genes,

categories, and regulons to their favorite. This saves the added items locally for accessibility

when device is offline. Notes in text format or images can be added to the app and associated

with certain genes. For iOS users, local data, including all notes, images, and favorite items are

saved in iCloud and synced among devices.

Results: Implementation of SubtiWiki v3.0

66

4.3.1 Local and remote data storage

We used the SQLite database on both Android and iOS apps for local data storage. Since the

mobile app doesn’t provide the function of editing, the data model and corresponding

database layout is rather simple. We have entities like Gene, Category, Regulon which are

consistent with the database on our server. For offline functions, we introduced Image and

Collection. Foreign keys are enabled to keep the data consistent.

Table name description Foreign key references

Gene table to store gene added to favorites None

Category table to store category added to favorites None

Regulon table to store regulon added to favorites None

Image table to store information about imported

images, including a md5 hash value of

image and imported timestamp

None

Collection table to store information about user

created collection of genes

None

ImageGene table to store association between genes

and images

image -> Image.id

gene -> Gene.id

CollectionGene table to store association between genes

and user created collections

collection -> Collection.id

gene -> Gene.id

Table 15. The database layout for mobile apps

For iOS users, user created data can be synchronised among devices with the help of iCloud.

Under the CloudKit framework, the development frame work for iCloud provided by Apple, a

private remote database can be established for each user. The layout of this remote database

is very similar to the one of the local database.

4.3.2 WebView to present gene pages

Both Android and iOS provide a system component called WebView which can load HTML

pages and even run JavaScript. We took advantage of this component to present gene pages.

Results: Implementation of SubtiWiki v3.0

67

As described in previous chapters, the attributes of gene can be freely defined, which means

all information should be presented in a data driven way. Thus, we applied the same idea on

the mobile end too. The Apps receive data in JSON format. The JSON text is parsed, processed

and printed into a HTML page, which is presented in the WebView. The Apps also load styling

sheets from the SubtiWiki server, which allows us to change the style of gene pages on mobile

Apps without updating the Apps themselves.

With the WebView, we can present content from other websites seamlessly integrated into

our App. WebViews from both Android and iOS provide delegate methods allowing us to

control links and redirects within the WebView. Thus, we used a specific URI format with the

scheme name “subtiwiki” to indicate in-house content and of course URI with “http” as

external source.

Discussion and outlook

68

5 Discussion and outlook

5.1 Usage report of SubtiWiki

SubtiWiki is one the most dedicated online knowledge base for Bacillus subtilis. It has a great

coverage of information about over 6000 genes, proteins and RNA features. Until now (27-09-

2017), SubtiWiki has 1791 annotated operons, 2468 protein-protein interactions, 5802 gene

regulations, and over 6838 included references. SubtiWiki is also frequently updated. Since

the SubtiWiki v3 is online in June 2017, there has been 15482 edits.

SubtiWiki is popular among fellow researchers. Our internal traffic tracker logged 1189175

requests in a period of 96 days, from which 5284 requests come from mobile app access. The

SubtiWiki App has 46 installations from Android users and 2551 downloads from App store.

Figure 26. The requests of SubtiWiki per week. Data collected between 25th and 39th calendar week of year 2017

Figure 27. The requests of SubtiWiki originated from mobile apps per week. Data collected between 25th and 39th

calendar week of year 2017.

0

50000

100000

150000

200000

250000

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

re
q

u
es

t
co

u
n

t

calendar week

Request count per week

0

200

400

600

800

1000

1200

1400

1600

1800

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

re
q

u
es

t
co

u
n

t

calendar week

Request count per week on mobil app access

Discussion and outlook

69

5.2 Assessment of the new implementation

The construction of biological database applications is more challenging compared to

applications in other fields. This is caused by the nature of the biological data, which is

described and summarized in chapter 2.1. As a model organism database for B. subtilis, we

are facing the same challenges. In this section, we will review all those characteristics and

show how the new implementation addressed the requirements.

Concerning the biological database:

1. High complexity

The complexity of biological data requires the database to be able to present complex

schemes at different levels. In the new implementation, we use JSON, a semi-structured data

format, to tackle this problem. Semi-structured data are naturally powerful to present

complicated nested structures which are difficult to store in relational databases. By using

JSON, we also separated the platform and content. The task to define the scheme is shifted

from database developers to content curators, who have a better understanding of the data.

2. High variety

The high variety of biological data requires the databases to be flexible with data types

because there are always outlier values. The new implementation of SubtiWiki solves this

issue simply by using only one data type, which is string. All values are treated as string unless

they can be casted to numbers or Boolean values.

3. Fast evolution

The schemes of biological data change fast and the databases should be able to adapt to this

fast evolution. The new implementation of SubtiWiki applies the semi-structured data, which

do not have a fixed scheme. The change of the scheme of a single object does not require the

change of the table scheme. This makes SubtiWiki easily extendable.

4. Multiple data interpretation and presentation

This is not applicable to SubtiWiki because this project is about migration of SubtiWiki from

wiki to relational database.

5. Context is important

Biological data are in organization highly associated and information with context has more

value. Hence, we focus on data integration in SubtiWiki. In the Subti-Apps, we enabled the

Discussion and outlook

70

function to integrate omics data to networks or pathways. We could further integrate all three

types of biological networks, i.e. protein-protein interaction, gene regulation, and metabolic

pathways, to present a full “life cycle” of elements of life.

Concerning biological database applications:

1. User accessibility

SubtiWiki always provides open access to all its data. A user account is needed only when a

researcher would like to contribute.

2. Instructive interfaces

SubtiWiki is search centered and the search function is designed to be simple. For individual

gene pages, the new implementation of SubtiWiki did not change the page layout. All

information of a gene or RNA feature is presented on a single web page. The editing interface

provides tool bars and full templates to help users with the new markup system.

3. Tools to build queries

SubtiWiki does not support complex queries. We compensate that with data export functions.

The users can export the information from SubtiWiki in csv format and use Excel or other office

software to filter out the information they need.

4. Version control

The new implementation also has a version control system. All historic versions are kept so

each edit is traceable. The user can also select two versions to compare and differences are

displayed according the key paths.

Discussion and outlook

71

5.3 SubtiWiki compared with other databases

In this chapter we will look at other biological databases which also focus on a single organism

and compare them with SubtiWiki. In the first part of this chapter, we will discuss a few

databases of other microorganisms, i.e. yeast, E. coli, Mycoplasma pneumoniae and Listeria

monocytogenes. In the second part of this chapter, we will have a closer look at all the

databases which dedicate to Bacillus subtilis.

The Saccharomyces Genome Database (SGD) is the model organism database for baker’s yeast

[59]. It covers a wide spectrum of data, including manually curated annotations from

published literature as well as high-throughput data. In SGD, experimental results gathered

from various of sources are presented in a controlled language to ensure a consistent

interpretation of information. In general, SGD is quite similar to SubtiWiki as both databases

gather manually curated annotations. In SubtiWiki, we have a category system, which is

equivalent to the gene ontologies. However, the search function of SGD is much more

powerful than SubtiWiki. In SubtiWiki, the search function is gene-orientated, which means

the users use gene names as keywords and get gene pages as results. In SGD, it appears to be

ontology-oriented, which means the users can use functional descriptions as keywords, such

as actin or kinase. The search results of the keyword “actin” covers different domains, such as

genes, biological processes (ontology term), chemicals, phenotypes etc.

Figure 28. Seach results of keyword "actin" in SGD. The search results cover different domains of information

The current database layout of SubtiWiki already supports such multi-domain searches.

Enhancement of the search function can be a topic of future SubtiWiki development.

Discussion and outlook

72

SGD also applies a modern web design and very clear data presentation. The contents of the

web page are well compartmentalized, and examples and hints are given for search boxes or

other user interface elements. We can see that a lot of efforts have been invested in design

work, which is really rare for scientific websites.

EcoliWiki is subsystem of PortEco [60]. It is the community-based platform of functional

annotation of E. coli K12 strain. It has a lot of similarities with SubtiWiki as both are

community-based platforms and both are dedicated to a bacterial model organism. However,

unlike SubtiWiki, which has always focused on the 168 strain of B. subtilis, EcoliWiki extended

its functions and now covers other E. coli strains. Like other biological wikis, EcoliWiki is limited

by its engine. Hence, the information presentation in EcoliWiki is limited to text and static

images and Interactivity barely exists.

EcoCyc is another model organism database for E. coli. It is a part of BioCyc database collection

like BsubCyc. All the BioCyc databases are established in the exact same way. Hence, we will

only discuss about BsubCyc in the later part of this chapter.

MyMPN is the model organism database for Mycoplasma pneumoniae. It is established in

2014 and it is a relational database. It hosts very detailed information about the protein

features as well as omics data. On each gene’s page, information about the gene, the protein

product, and the transcriptional level is displayed in different sections. Detailed information

about the homologous proteins from different organisms is also included. MyMPN also offers

a pathway browser which is based on CellDesigner (Figure 29). The same software is used to

generate pathways in SubtiWiki. Hence, both pathway browsers look extremely similar.

However, in MyMPN all pathways are depicted in the same map. This is because the metabolic

network in M. pneumoniae is much simpler than that in B. subtilis.

From the website, we can see that the database is quite well structured. However, this

database has already stopped updating. It is a real pity as the database layout is still usable.

This addresses the necessity for database developers to separate the content from the

platform.

Discussion and outlook

73

Figure 29. The overview of metabolic pathways in M. pneumoniae provided by MyMPN. This application is based

on CellDesigner and Google Maps.

For researchers working on Listeria monocytogenes, there is a database named ListiList[14]

dedicated to genome annotations of L. monocytogenes, which is a part of GenoList project

like SubtiList. This database project was initiated to share genome sequencing data and has

stopped updating since 1998.

There is also a model organism database named ListeriaBase [61]. This database offers

detailed annotations of L. monocytogenes genome as well as the tools for comparative data

analysis. This database was established in 2015. However, currently (13.11.2017), the

database cannot be accessed.

Listeriomics [62] is a database focusing on the system biology of L. monocytogenes. It hosts

basic genome annotations of Listeria species and allows users to export the data in a tabular

format. It also includes transcriptomics and proteomics data. The users can select different

datasets and view those data in a heat map. In the expression browser of SubtiWiki, we

presented the expression level of gene or proteins in charts.

Discussion and outlook

74

Figure 30. The heap map view of two different transcriptomic datasets provided by Listeriomics.

In conclusion, compared with other databases which focus also on a single organism,

SubtiWiki has quite a few advantages. It has a broad data coverage and focuses on the

integration of data as well. It has also a modern web design and applies modern methods for

data visualization.

SubtiWiki is not the only model organism database for B. subtilis. As mentioned in the

introduction part (chapter 2.5), there are other databases such as BSORF, DBTBS, SubtiList and

BsubCyc. In this chapter, we will also compare different MODs of Bacillus subtilis with

SubtiWiki in three aspects, i.e. data coverage, data organization and data presentation.

1. Data coverage

BSORF was the earliest database for Bacillus subtilis. The initial motivation was to share the

sequencing data from the genome sequencing project. It provides basic information on the

gene and protein features. Information on protein-protein interactions and gene regulations

is not included.

DBTBS, on the other hand, focuses on the information concerning the gene regulation, such

as transcription factors, regulated operons, motifs etc. It does not cover detailed functional

annotations of each gene.

SubtiList is very similar to BSORF. It also provides basic information on the gene and protein

features. Information on the protein-protein interactions and the gene regulations is also not

included.

Discussion and outlook

75

SubtiWiki covers a much wider spectrum of information. It offers information on the gene, the

RNA and the protein features. It also collects information on biological networks, such as the

protein-protein interactions, the gene regulation, and metabolic pathways. A category system

is included in SubtiWiki which is equivalent to the gene ontology in other databases. The

SubtiWiki database also collects information on biological materials such as mutants,

antibodies etc.

BsubCyc is the part of BioCyc database collections which focuses on B. subtilis. It also collects

a great variety of data including information on the gene and the protein as well as gene

regulations and metabolic pathways. In comparison to SubtiWiki, information on protein-

protein interactions is missing there.

2. Data organization

For databases like BSORF, DBTBS, and SubtiList, the data they collect do not have a

complicated structure. Hence, modelling and data organization are not big issues. However,

for SubtiWiki and BsubCyc, the challenge of data complexity is real. In this chapter we will

compare SubtiWiki and BsubCyc in the aspect of data organization.

In SubtiWiki, a gene, its transcribed RNA and its translated protein are abstracted as one entity

gene based on the information flow which is depicted by central dogma. For BsubCyc, the

gene, the RNA (transcription units), and the protein are modelled separately, based on the

molecules in the cell. Hence, the BsubCyc database has a more complicated database

structure which is shown in Figure 31. The model for SubtiWiki is more abstract and focused

on the information flow from DNA to RNA to proteins. This model is suitable for our data and

is not applicable to eukaryotic organisms. Because of alternate splicing, the relationships

between DNA and the transcribed RNA and the translated proteins are not one-to-one but

rather one-to-many.

Discussion and outlook

76

Figure 31. Pathway tool schema (version 15.0, Jan 2011). Image source: https://biocyc.org/schema.shtml. This

schema is much more complicated than the schema of SubtiWiki.

3. Data presentation

BSORF, DBTBS, and SubtiList were established in earlier times when there were only limited

methods to present the data. Pages in these three databsases all have a tabular format.

Information is presented in narrative text and static images are used to present diagrams.

SubtWiki and BsubCyc were both established in the late 2000s. Both databases present the

information of the gene, the RNA and the protein features on the same page. Both database

embed diagrams in gene pages to visualize the connections between the genes. In addition,

both databases provide different kinds of browsers to present overviews of biological

networks.

Discussion and outlook

77

a) Regulation browser

SubtiWiki offers a regulation browser which presents the regulatory networks around a gene

at different levels. The regulation browser in SubtiWiki uses a force-directed graph drawing

algorithm which present regulatory clusters well. Details of this regulation browser is stated

in the results part (chapter 4.2.2.4).

Figure 32. The screenshot of the regulation browser provided by BsubCyc. The regulations of two regulators are

highlighted.

BsubCyc also provides a portal to view the regulatory connections between the genes with a

completely different design. In this application, regulatory networks in B. subtilis is presented

in a hierarchical structure. Genes and proteins are arranged in circles with top level regulators

in the inner circle and secondary regulators in the outer circle.

The two applications are also built in different ways. The regulation browser in BsubCyc is

based on static images and is probably curated manually. The regulation browser in SubtiWiki

uses an automatic graph layout algorithm, which makes update easier.

b) Genome browser

The genome browser in BsubCyc is in general similar to the genome browser in SubtiWiki. The

genome browser in BsubCyc is implemented with static images. Hence it provides less

interactivity than our genome browser. On the other hand, more detailed information on

operons, promoters and terminators is collected in BsubCyc and that information is depicted

in its genome browser.

Discussion and outlook

78

Figure 33. The genome browser of BsubCyc

c) Pathway browser

In SubtiWiki, an application is provided to present the metabolic pathways. BsubCyc provides

an application to view the metabolic pathways in B. subtilis as well. In the pathway browser

of BsubCyc, a large map of metabolic pathways is offered. The users can use the mouse wheel

to zoom in and out for details or overview. However, it is not so well implemented. It is very

lagging to zoom or move with the mouse and is sometimes not responding. In chapter 5.4, we

will discuss more about the pathway browser in SubtiWiki and compare it with the pathway

browser from KEGG[63].

Figure 34. The pathway browser provided by BsubCycs

In conclusion, both BsubCyc and SubtiWiki exist in the same niche and have quite a few

functional overlaps, which make them direct competitors with each other. BsubCyc is a part

of the BioCyc database collections, which allow the users to compare data in B. subtilis with

other organisms. However, SubtiWiki, on the other hand, has a wider data coverage. In

Discussion and outlook

79

addition, the data visualization tools SubtiWiki offers are more interactive and have better

performance. In early 2017, BsubCyc has changed its access policy. The users need a paid

subscription to access the data in BsubCyc, which means that SubtiWiki is now the only free,

up-to-date information source for Bacillus research community.

5.4 Presentation of metabolic pathways

In this project, we have migrated SubtiWiki to a relational database. This new database layout

has integrated the category system, SubtiExpress and SubtInteract. However, due to limited

time, the integration and update of SubtiPathways remains unfinished. It was established in

2010 and the implementation was not updated since then. There are three major issues with

the current version:

First, pathways concerning different aspects of life are displayed separately in SubtiPathways,

although it is an integrated system in the cell. The database KEGG [63] present the biochemical

pathways in various levels. An overview is provided with links to more detailed pathway

diagrams. Interconnections between pathways are also labelled as entry points to other

pathway maps. It would be good to integrate all data from different pathways and create a

multi-level presentation.

Figure 35. The pathway overview provided by KEGG.

Discussion and outlook

80

Second, the process to update data in SubtiPathways is complicated. The maps are created

with CellPublisher[64], then uploaded to SubtiWiki server. It would be much more convenient

if a pathway editor is included in the current system and the user can see the results directly.

Third, the data for SubtiPathways are stored in XML files, which are not synchronized with the

SubtiWiki database. Therefore, data should be imported into the current database so that

SubtiPathways becomes a truly integrated part of SubtiWiki family.

As described in the results section, the tables to store pathway data have been created. A

temporary JavaScript library has been developed to present single biochemical reactions in

diagrams. What remains to be done is a JavaScript library to connect biochemical reactions to

pathways and present the pathways in a proper format.

Figure 36. The diagram of a biochemical reaction generated by the JavaScript library based on SVG.

Consider the reactions as nodes and common metabolites between the reactions as edges,

the full pathway can be modelled as a graph. Therefore, the presentation of pathway

information in a living cell is another graph drawing problem. To present the whole pathway,

we could use force-directed layout or orthogonal layout. The KEGG pathway databases applies

the orthogonal layout. The pathway maps from KEGG are generated manually, which is a big

work load. For SubtiWiki, it would a better solution to use an automatic layout algorithm to

generate a rough presentation and manually adjust the unsatisfying part.

5.5 Multi-mode database as a possible solution

Like any software, SubtiWiki is affected by many factors which are not technological. As a non-

profit scientific database, SubtiWiki needs a solution which is stable, mature and does not

require an expensive license. This is one of the major reasons we decided to construct a

Discussion and outlook

81

relational database using MySQL. To handle the complexity of biological data, we applied the

JSON format in our database. This gives the database features like document databases.

Because of the nature of biological data, it is challenging to build a database with a single

approach mentioned in the introduction part. From the experience we have obtained

migrating SubtiWiki to a relational database, we have concluded that a multi-mode database

might be most suitable for biological data.

The data collected in SubtiWiki over the years can be used as a good example as they cover

almost every aspect of the functional annotations. The entity gene in SubtiWiki has complex

nested structure, which makes document model suitable. The associations among biological

elements in the cell, like protein-protein interactions and gene regulations, can be modelled

as graphs and should be stored in a graph database. The omics data are mostly already in a

tabular format, which makes relational databases the best solutions.

Figure 37. Implementation of multi-mode database with the help of database abstraction layer. This database

abstraction layer will be responsible to coordinate database operation in different database management

systems. This layer will isolate the applications from the detailed database layouts.

The multi-mode database can be implemented with two different approaches. One is to

combine different database management systems with the help of a data abstraction layer to

enable cross-database operations (Figure 37). This data abstraction layer is responsible for

Discussion and outlook

82

cross-database operations and keeping data integrate and consistent. This structure is

illustrated in Figure 37. The current version of SubtiWiki is implemented in this way. The data

access handlers serve as the database abstraction layer and they access data from the

relational database and a flat file (genome sequence file).

Another approach is the application of a multi-mode DBMS. Since 2010, there have been quite

a few multi-model DBMS developed, such as ArangoDB, CosmosDB, etc. Those DBMS software

packages support document model, relational model, graph model and key-value pairs.

Name Initial

release

Supported models Special feature Availability

ArangoDB[65] 2011 document, graph,

key-value

 free

open-source

CosmosDB[66] 2017 document,

tabular, relational,

key-value

cloud storage,

distributive system

free for basic

functions

CouchBase[67] 2010 document, key-

value

distributive system free

open-source

CrateDB[68] c.a. 2014 relational,

document

distributive system free

open-source

Oracle

Database[69]

1977

(incremental

software

update)

relational,

document, graph,

key-value,

geospatial, binary

object-oriented

relational

database

free for basic

functions

Table 16. Comparison of several multi-model DBMSs.

From the table above, we can see that the multi-mode DBMS is still quite fresh out of oven

and needs to be tested by the market. For maintainability reasons, we did not apply such

DBMSs. However, it could be an option in the future when the current structure can no longer

meet the requirements.

Discussion and outlook

83

5.6 Web-based biological data visualization

Data visualization is the process to present the data in a graphical form by encoding it as visual

objects, such as dots, lines, bars, etc. The goal of data visualization is clear and effective

communication of information through graphical means. The old saying, “a picture is worth a

thousand words”, states how efficient and communicative visual presentations are in

comparison with plain text.

The beginning of this century witnessed the rapid development of the internet. It is no longer

a luxury for a small fraction of people but rather an infrastructure for the modern society.

More and more web technologies are introduced, such as scalable vector graph (SVG) and

html canvas. Those technologies provide us new means for data visualization.

Before SVG and canvas is available, the data visualization on a web page is commonly done

using static images or flash. For example, the DNA sequence database GenBank provides a

graphical view of the DNA sequences with the annotations as shown in Figure 38.

Figure 38. The graphical view of DNA sequences provided by GenBank

If we take a closer look at the source code of this web page, we will realize that the ruler and

the bars of the diagram are static images. If we zoom in the web page, the images will blur.

This is the disadvantage of static images. Scalable vector graphs, as the name suggests, are

scalable. Those graphs can be scaled without losing resolution. They are also much smaller

than the static images because they are basically text file of instructions of how to draw the

images.

Discussion and outlook

84

<?xml version="1.0" encoding="UTF-8" ?>
<svg xmlns="http://www.w3.org/2000/svg" version="1.1">
 <rect x="25" y="25" width="200" height="200" fill="lime" stroke-

width="4" stroke="pink" />
 <circle cx="125" cy="125" r="75" fill="orange" />
 <polyline points="50,150 50,200 200,200 200,100" stroke="red"

stroke-width="4" fill="none" />
 <line x1="50" y1="50" x2="200" y2="200" stroke="blue" stroke-

width="4" />
</svg>

Code block 14. A sample of a SVG file and the rendered image. Image and code from Wikipedia user Offnfopt

SVG is XML-based and can be integrated directly in the HTML file. It can be manipulated with

JavaScript, providing interactivity to the presentation. In SubtiWiki, the genomic context

viewer, protein-protein interaction diagram and the gene regulation diagram, which are

embedded in each gene page is developed with SVG.

HTML canvas is another technology commonly used for data visualization. Canvas is a HTML

element which allows graphs to be drawn inside. The drawing is done purely by JavaScript.

HTML canvas is faster than SVG. Hence, it is more suitable for the situation when large

numbers of visual objects need to be drawn. In SubtiWiki, the network browsers use canvas

instead of SVG to draw the networks because of the large size of the networks.

Presenting data with SVG and HTML canvas is certainly a bit more complicated than with static

images because it requires programming. However, those technologies are faster, which

means the visualization application loads faster and runs smoother. They also provide more

interactivity. Each object in the visualization can respond to user actions. The visualizations

based on those technologies are data-driven, which means no extra effort is needed when

some data change. The market itself has already proven how powerful those technologies are.

They have completely replaced flash, a previous technology to present interactive interfaces.

5.7 A database implementation for other MODs

Since the release of the new implementation, we have been frequently asked whether the

same system we developed can be applied to other organisms. In principle, the new database

layout is specifically designed and optimized for our data in SubtiWiki. This system certainly

can be applied to other organisms, which has similar data structure to Bacillus subtilis. For

example, the whole system can be applied to Mycoplasma species without major adjustment

Discussion and outlook

85

because the data scheme is similar. However, for eukaryotic organisms, like Arabidopsis

thaliana, more biological entities such as chromosome, intron and extron need to be added

into the database layout. A secondary development is required to adjust the system to the

data to be collected.

There is a general model organism database(GMOD) project started in 2000, which is a

collection of useful tools to set up model organism databases. In this project, a core relational

database implementation, named “Chado”, is provided. This database implementation was a

generalization of FlyBase[70] database (MOD for fruit fly). It covers a broad variety of

interesting biological concepts for a model organism, such as sequences, sequence

comparisons, phenotypes, genotypes, ontologies, phylogeny etc.

The GMOD project has generated many fruitful results. Many biological databases

participated in the project and some MODs are established with the software and tools from

GMOD project. However, the Chado database implementation is not suitable for the data we

have gathered. In SubtiWiki, data presents a complex nested structure which is difficult for

pure relational database. A lot of effort would be requirement to extend the Chado database

to fit our data. In addition, the Chado database has a complicated structure, which makes

maintenance more difficult.

As described in chapter 2.1, the schema of biological database evolves fast. This is the same

with database and web technologies. It might not be possible to develop a general solution

once for all. Instead of creating a general model, it might be better to create individual models

which are interchangeable with each other. It would also be better to keep a certain level of

abstraction in those models. Database developers love precise models but in the real world

there are always ambiguity. In addition, it is important to separate the platform from the

content, like the wikis. This would make maintenance much easier. it will be also possible to

hand over the database from one lab to another one so that the database which takes a lot of

effort to build, can live longer.

References

86

6 References

1. Parasuraman, S. (2012) Protein data bank. J. Pharmacol. Pharmacother. 3, 351

2. Codd, E. F. (1983) A relational model of data for large shared data banks. Commun.

ACM 26, 64–69

3. Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Wheeler, D. L. (2005)

GenBank. Nucleic Acids Res. 33, D34–D38

4. Mashima, J., Kodama, Y., Kosuge, T., Fujisawa, T., Katayama, T., et al. (2016) DNA data

bank of Japan (DDBJ) progress report. Nucleic Acids Res. 44, D51–D57

5. Navathe, S. B. & Patil, U. (Springer Berlin Heidelberg, 2004) Genomic and proteomic

databases and applications: a challenge for database technology. in Database Systems

for Advanced Applications: 9th International Conference, DASFAA 2004, Jeju Island,

Korea, March 17-19, 2003. Proceedings, (eds. Lee, Y., Li, J., Whang, K.-Y. & Lee, D.) 1–

24 doi:10.1007/978-3-540-24571-1_1

6. Brohée, S., Barriot, R. & Moreau, Y. (2010) Biological knowledge bases using Wikis:

combining the flexibility of Wikis with the structure of databases. Bioinformatics 26,

2210–2211

7. Oliver, S. G., Lock, A., Harris, M. A., Nurse, P. & Wood, V. (2016) Model organism

databases: essential resources that need the support of both funders and users. BMC

Biol. 14, 49

8. NCBI Resource Coordinators. (2017) Database resources of the National Center for

Biotechnology Information. Nucleic Acids Res. 45, D12–D17

9. Reuß, D. R., Commichau, F. M., Gundlach, J., Zhu, B. & Stülke, J. (2016) The Blueprint

of a Minimal Cell: MiniBacillus. Microbiol. Mol. Biol. Rev. 80, 955–987

10. Zweers, J. C., Barák, I., Becher, D., Driessen, A. J. M., Hecker, M., et al. (2008) Towards

the development of Bacillus subtilis as a cell factory for membrane proteins and

protein complexes. Microb Cell Fact 7, 10

References

87

11. Kunst, F., Ogasawara, N., Moszer, I., Albertini, A. M., Alloni, G., et al. (1997) The

complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature

390, 249–256

12. Search on Bacillus subtilis. Available at:

https://www.ncbi.nlm.nih.gov/pubmed/?term=bacillus+subtilis.

13. Ogiwara, A., Ogasawara, N., Watanabe, M. & Takagi, T. (1996) Construction of the

Bacillus subtilis ORF database (BSORF DB). Genome Informatics 7, 228–229

14. Moszer, I., Glaser, P. & Danchin, A. (1995) Subtilist: a relational database for the

Bacillus subtilis genome. Microbiology 141, 261–268

15. Ishii, T., Yoshida, K., Terai, G., Fujita, Y. & Nakai, K. (2001) DBTBS: a database of Bacillus

subtilis promoters and transcription factors. Nucleic Acids Res. 29, 278–280

16. Flórez, L. A., Roppel, S. F., Schmeisky, A. G., Lammers, C. R. & Stülke, J. (2009) A

community-curated consensual annotation that is continuously updated: The Bacillus

subtilis centred wiki SubtiWiki. Database 2009, bap012

17. Lammers, C. R., Flórez, L. A., Schmeisky, A. G., Roppel, S. F., Mäder, U., et al. (2010)

Connecting parts with processes: SubtiWiki and SubtiPathways integrate gene and

pathway annotation for Bacillus subtilis. Microbiology 156, 849–859

18. Nicolas, P., Mäder, U., Dervyn, E., Rochat, T., Leduc, A., et al. (2012) Condition-

dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis.

Science 335, 1103–1106

19. Maaβ, S., Wachlin, G., Bernhardt, J., Eymann, C., Fromion, V., et al. (2014) Highly

precise quantification of protein molecules per cell during stress and starvation

responses in Bacillus subtilis. Mol. Cell. Proteomics 13, 2260–2276

20. Maass, S., Sievers, S., Zühlke, D., Kuzinski, J., Sappa, P. K., et al. (2011) Efficient, global-

scale quantification of absolute protein amounts by integration of targeted mass

spectrometry and two-dimensional gel-based proteomics. Anal. Chem. 83, 2677–2684

References

88

21. Michna, R. H., Commichau, F. M., Tödter, D., Zschiedrich, C. P. & Stülke, J. (2014)

SubtiWiki-a database for the model organism Bacillus subtilis that links pathway,

interaction and expression information. Nucleic Acids Res. 42, D692–D698

22. LAMP (software bundle). Available at:

https://en.wikipedia.org/wiki/LAMP_(software_bundle).

23. Debian/Ubuntu extend the dominance in the Linux web server market at the expense

of Red Hat/CentOS. Available at:

https://w3techs.com/blog/entry/debian_ubuntu_extend_the_dominance_in_the_lin

ux_web_server_market_at_the_expense_of_red_hat_centos. (Accessed: 11th

October 2017)

24. Welcome! - The Apache HTTP Server Project. Available at: https://httpd.apache.org/.

(Accessed: 11th October 2017)

25. Module Index - Apache HTTP Server Version 2.4. Available at:

https://httpd.apache.org/docs/2.4/en/mod/. (Accessed: 11th October 2017)

26. MySQL. Available at: https://www.mysql.com/. (Accessed: 11th October 2017)

27. Gulutzan, P. & Pelzer, T. (1999) SQL-99 Complete, Really.

28. PHP: Hypertext Preprocessor. Available at: http://php.net/. (Accessed: 11th October

2017)

29. mod_rewrite - Apache HTTP Server Version 2.4. Available at:

http://httpd.apache.org/docs/current/mod/mod_rewrite.html. (Accessed: 11th

October 2017)

30. PHP: Introduction - Manual. Available at:

http://php.net/manual/en/language.types.intro.php. (Accessed: 11th October 2017)

31. PHP: Arrays - Manual. Available at:

http://php.net/manual/en/language.types.array.php. (Accessed: 11th October 2017)

32. PHP: Objects - Manual. Available at:

http://php.net/manual/en/language.types.object.php. (Accessed: 11th October

2017)

References

89

33. PHP: Classes and Objects - Manual. Available at: http://php.net/language.oop5.

(Accessed: 11th October 2017)

34. PHP: Callbacks / Callables - Manual. Available at:

http://php.net/manual/en/language.types.callable.php. (Accessed: 11th October

2017)

35. HTML 5.1 2nd Edition. Available at: https://www.w3.org/TR/html/. (Accessed: 11th

October 2017)

36. ECMAScript® 2017 Language Specification (ECMA-262, 8th edition, June 2017).

Available at: http://www.ecma-international.org/ecma-262/8.0/index.html.

37. JSON. Available at: http://www.json.org/index.html. (Accessed: 11th October 2017)

38. A Relational Database Overview (The JavaTM Tutorials JDBC(TM) Database Access

JDBC Introduction). Available at:

https://docs.oracle.com/javase/tutorial/jdbc/overview/database.html. (Accessed:

11th October 2017)

39. Chen, P. P.-S. (1976) The entity-relationship model---toward a unified view of data.

ACM Trans. Database Syst. 1, 9–36

40. Tarawneh, R. M., Keller, P. & Ebert, A. (2011) A general introduction to graph

visualization techniques. Proc. IRTG 1131 - Vis. Large Unstructured Data Sets Work.

151–164 doi:10.4230/OASIcs.VLUDS.2011.151

41. Network | Les miserables. Available at:

http://visjs.org/examples/network/exampleApplications/lesMiserables.html.

(Accessed: 11th October 2017)

42. Brightwell, G. R. & Scheinerman, E. R. (1993) Representations of Planar Graphs. SIAM

J. Discret. Math. 6, 214–229

43. Erdős, P., Goodman, A. W. & Pósa, L. (1966) The representation of a graph by set

intersections. Can. J. Math. 18, 106–112

44. Michna, R. H., Zhu, B., Mäder, U. & Stülke, J. (2016) SubtiWiki 2.0 - an integrated

database for the model organism Bacillus subtilis. Nucleic Acids Res. 44, 654–662

References

90

45. Eades, P. (1984) A Heuristic for Graph Drawing. Congr. Numer. 42, 149–160

46. Fruchterman, T. M. J. & Reingold, E. M. (1991) Graph drawing by force-directed

placement. Softw. Pract. Exp. 21, 1129–1164

47. Kamada, T. & Kawai, S. (1989) An algorithm for drawing general undirected graphs. Inf.

Process. Lett. 31, 7–15

48. Hadany, R. & Harel, D. (2001) A multi-scale algorithm for drawing graphs nicely. Discret.

Appl. Math. 113, 3–21

49. Walshaw, C. (2003) A Multilevel Algorithm for Force-Directed Graph-Drawing. J. Graph

Algorithms Appl. 7, 253–285

50. Quigley, A. & Eades, P. (Springer Berlin Heidelberg, 2001) FADE: Graph Drawing,

Clustering, and Visual Abstraction. in Graph Drawing: 8th International Symposium, GD

2000 Colonial Williamsburg, VA, USA, September 20--23, 2000 Proceedings (ed. Marks,

J.) 197–210 doi:10.1007/3-540-44541-2_19

51. Barnes, J. & Hut, P. (1986) A hierarchical O(N log N) force-calculation algorithm. Nature

324, 446–449

52. SQLite Home Page. Available at: https://www.sqlite.org/. (Accessed: 11th October

2017)

53. Application Fundamentals | Android Developers. Available at:

https://developer.android.com/guide/components/fundamentals.html. (Accessed:

11th October 2017)

54. IDC: Smartphone OS Market Share. Available at:

https://www.idc.com/promo/smartphone-market-share/os. (Accessed: 11th October

2017)

55. Activities | Android Developers. Available at:

https://developer.android.com/guide/components/activities/index.html. (Accessed:

11th October 2017)

References

91

56. Fragments | Android Developers. Available at:

https://developer.android.com/guide/components/fragments.html. (Accessed: 11th

October 2017)

57. Processes and Threads | Android Developers. Available at:

https://developer.android.com/guide/components/processes-and-threads.html.

(Accessed: 11th October 2017)

58. Dijkstra, E. W. (1959) A Note on Two Problems in Connexion with Graphs. Numer.

Math. 1, 269–271

59. Cherry, J. M., Hong, E. L., Amundsen, C., Balakrishnan, R., Binkley, G., et al. (2012)

Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic

Acids Res. 40, D700-5

60. Hu, J. C., Sherlock, G., Siegele, D. A., Aleksander, S. A., Ball, C. A., et al. (2014) PortEco:

a resource for exploring bacterial biology through high-throughput data and analysis

tools. Nucleic Acids Res. 42, D677–D684

61. Tan, M. F., Siow, C. C., Dutta, A., Mutha, N. V. R., Wee, W. Y., et al. (2015) Development

of ListeriaBase and comparative analysis of Listeria monocytogenes. BMC Genomics 16,

755

62. Bécavin, C., Koutero, M., Tchitchek, N., Cerutti, F., Lechat, P., et al. (2017) Listeriomics:

an Interactive Web Platform for Systems Biology of Listeria. mSystems 2,

63. Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., et al. (1999) KEGG: Kyoto

encyclopedia of genes and genomes. Nucleic Acids Research 27, 29–34

64. Flórez, L. A., Lammers, C. R., Michna, R. & Stülke, J. (2010) Cellpublisher: A web

platform for the intuitive visualization and sharing of metabolic, signalling and

regulatory pathways. Bioinformatics 26, 2997–2999

65. ArangoDB - highly available multi-model NoSQL database. Available at:

https://arangodb.com/. (Accessed: 3rd November 2017)

References

92

66. Azure Cosmos DB – Globally Distributed Database Service | Microsoft Azure. Available

at: https://azure.microsoft.com/en-us/services/cosmos-db/. (Accessed: 3rd

November 2017)

67. NoSQL Engagement Database | Couchbase. Available at:

https://www.couchbase.com/. (Accessed: 3rd November 2017)

68. CrateDB - Put machine data to work. Scalable, open source SQL database. Available at:

https://crate.io/. (Accessed: 3rd November 2017)

69. Database 12c | Oracle. Available at: https://www.oracle.com/database/index.html.

(Accessed: 3rd November 2017)

70. Attrill, H., Falls, K., Goodman, J. L., Millburn, G. H., Antonazzo, G., et al. (2016) FlyBase:

establishing a Gene Group resource for Drosophila melanogaster. Nucleic Acids Res 44,

D786–D792

Appendix

93

7 Appendix

7.1 Table schemes

Table Category

Column Data type Extra

id varchar(255) primary key

title varchar(255)

data text

lastUpdate timestamp on update current timestamp

lastAuthor varchar(255) by default “ghost”

count int

Table Chemical

Column Data type Extra

id int(11) primary key, auto_increment

title varchar(255) unique

synonym varchar(255)

pubchem int(11)

Table Complex

Column Data Type Extra

id char(40) primary key

title varchar(255) unique

Table Condition

Column Data type Extra

id int(6) not null

Appendix

94

title varchar(50) not null, primary key

description text

type enum(‘T’, ‘P’)

short varchar(255)

Table Config

Column Data type Extra

name varchar(255) primary key

value varchar(255)

Table Gene

Column Data type Extra

id char(40) primar key

title varchar(255)

data mediumtext

_locus varchar(50) index

_function text

_names text

_mw double index

_pI double

_description text

_essential varchar(10)

_ec varchar(30)

_geneLength int(11)

_proteinLength int(11)

bank_id int(11) index

count int(11) not null

Appendix

95

lastUpdate timestamp on update current timestamp

lastAuthor varchar(255) default “ghost”

Table GeneCategory

Column Data type Extra

id int(11) primary key, auto increment

gene char(40) foreign key to Gene.id

unique(gene,category)

category varchar(255) foreign key to Category.id

unique(gene,category)

lastAuthor varchar(255)

lastUpdate timestamp current time stamp

Table GenomicContext

Column Data type Extra

start int(11)

stop int(11)

object varchar(255)

strand int(1)

Table History

Column Data type Extra

version char(16) primary key

id varchar(255) index

data longtext

user varchar(255)

lastOperation varchar(255)

Appendix

96

time timestamp current timestamp

Table Interaction

Column Data type Extra

id int(11) primary key, auto increment

prot1 varchar(255) unique(prot1, prot2)

prot1 varchar(255) unique(prot1, prot2)

data text

lastUpdate timestamp on update current timestamp

lastAuthor varchar(255)

Table MaterialViewGeneRegulation

Column Data type Extra

gene char(40)

regulation int(11)

Table Metabolite

Column Data type Extra

name varchar(255)

id int(11)

syn varchar(255)

Table Operon

Column Data type Extra

id char(40) primary key

title text

data mediumtext

Appendix

97

_genes text

lastUpdate timestamp on update current timestamp

lastAuthor varchar(255)

count int(11)

Table Pathway

Column Data type Extra

id int(3) primary key, auto increment

title varchar(255)

markers blob

Table PathwayGene

Column Data type Extra

pathway int(11)

gene char(40)

Table PathwayMetabolite

Column Data type Extra

pathway int(11)

metabolite int(11)

Table ProteinComplex

Column Data type Extra

id char(40) primary key

title varchar(255)

_categories varchar(255)

_Complex_members text

Appendix

98

lastUpdate timestamp on update current timestamp

lastAuthor varchar(255)

Table proteomicData

Column Data type Extra

id char(40) unique

bsu varchar(100)

con1 … con16 int(11)

Table Pubmed

Column Data type Extra

id int(11) primary key

report text

Table Reaction

Column Data type Extra

id int(11) primary key, auto increment

pathway int(11)

reversible int(1) default yes

Table Reaction_chemical

Column Data type Extra

id int(11) primary key, auto increment

reaction int(11)

chemical int(11)

side enum(‘L’, ‘R’)

isMain int(1)

Appendix

99

Table Reaction_enzyme

Column Data type Extra

id int(11) primary key, auto increment, not null

reaction int(11) not null

enzyme varchar(255) not null

modification varchar(45)

position varchar(255)

Table Regulation

Column Data type Extra

id int(11) not null, primary key, auto increment

regulator varchar(255) unique(regulator, regulated)

regulated varchar(255) unique(regulator, regulated)

mode varchar(255) not null

description text

lastAuthor varchar(255) default “ghost”

lastUpdate timestamp current timestamp

Table Regulon

Column Data type Extra

id varchar(255) primary key, not null

title varchar(255)

data text

lastUpdate timestamp current timestamp

lastAuthor varchar(255) default “ghost”

count int(11)

Appendix

100

Table Sequence

Column Data type Extra

gene char(40) primary key

dna mediumtext

aminos mediumtext

Table Statistics

Column Data type Extra

id varchar(255)

count int(11)

Table TranscriptomicData

Column Data type Extra

id char(40) unique

con1…con105 decimal(5,3)

View ViewGeneOperon

Column Data type Extra

operon char(40)

gene char(40)

The table user is a copy of the MediaWiki user table. Details please see MediaWiki document

here: https://www.mediawiki.org/wiki/Manual:User_table .

https://www.mediawiki.org/wiki/Manual:User_table

Appendix

101

7.2 Directory structure

Directory Description

/app directory of all applications

/css directory of all CSS files

/html directory of all HTML templates

/imgs directory of all images

/js directory of all JavaScript files

/res directory of resource files, such as genome sequence file.

/src directory of source files of the framework

.htaccess .htaccess file, contains URL redirect rules, might need to be updated

when apache is updated

favicon.ico icon file for the website

index.php the entry page of SubtiWiki.

index_mobile.php this file is currently not in use

Config.php a configuration of the whole website, contains information for

database connections

7.3 Default data access methods

In this section we will describe the default data access handlers defined for SubtiWiki. Those

methods are defined in /app/default.php and overridden the methods defined in

/src/default.php.

1. Default::updateCount($id)

Updates the count column of a table row by 1. The id of the given row need to be given

2. Default::update($id, $data)

Updates a table row with $data, which is identified by $id. Here $id should be an array or an

object. This update method generates a history record. If update fails, this method returns

false and an error message is written in debug log.

Appendix

102

3. Default::remove($id)

Removes a table row, which is identified by $id. Here $id should be an array or an object. This

remove method generates a history record. If deletion fails, this method returns false and an

error message is written in debug log

4. Default::insert($data)

Inserts a row to the table with the given data. This method generates a history record. If

insertion fails, this method returns false and an error message is logged.

5. Default::list($page, $pagesize)

Lists the records of the table in pages. The table must have id, title, lastUpdate, lastAuthor

columns. This method is currently used.

6. Default::saveToHistory($id, $operation)

Generates and inserts a history record. The operation here can be add, update, or remove.

7. Default::naturalJoin($resultSet)

Process raw result sets from the database. Any object markup in the format of {object

type|object id} is replaced with the object itself.

Bingyao Zhu

Ernst-Fahlbusch-Str. 30

37077, Göttingen, Germany

lucil_zby@hotmail.com

PERSONAL Date of Birth: August 26th, 1991

Place of Birth: Jiangsu, China

Citizenship: Chinese

EDUCATION PhD study in GGNB program Microbiology and chemisty

November 2015 – November 2017

Thesis: SubtiWiki v3.0: A relational database for functional

genome annotation of the model organism Bacillus subtilis

Master study in the program Microbiology and chemisty at

University of Göttingen

October 2012 – November 2014

Thesis: A document oriented approach to organize genes’

annotation in model organism Bacillus subtilis.

Bachelor study in the honor program (Life science) at China

Agriculture University

September 2008 – July 2012

Thesis: A study of in vitro phosphorlational regulation of MAP18

College Entrance Examination in Jiangsu

June 2008

SKILLS Foreign language - Fluent in English, intermediate German

Computer Skills – Programming skills in C and Java. Experience of

front-end and back-end development.

mailto:lucil_zby@hotmail.com

	Cover
	Acknowledgements
	List of publications
	List of abbreviations
	1 Summary
	2 Introduction
	2.1 Characteristics of biological data and databases
	2.2 Implementation approaches of biological databases
	2.2.1 Flat file databases
	2.2.2 Relational databases
	2.2.3 Object-oriented databases
	2.2.4 Biological Wikis

	2.3 Model organism databases
	2.4 The model organism Bacillus subtilis
	2.5 Databases for Bacillus subtilis
	2.6 SubtiWiki and Subti-Apps
	2.7 Motivation of this project

	3 Methods and tools
	3.1 Web related
	3.1.1 LAMP software bundle
	3.1.2 URL rewrite and mod_rewrite
	3.1.3 Server-side scripting and PHP
	3.1.4 HTML and document object model
	3.1.5 JavaScript, JSON and AJAX

	3.2 Relational databases
	3.2.1 Primary key
	3.2.2 Foreign key
	3.2.3 Stored procedures
	3.2.4 Triggers
	3.2.5 Structured query language
	3.2.5.1 Insert statement
	3.2.5.2 Select statement
	3.2.5.3 Update statement
	3.2.5.4 Delete statement
	3.2.5.5 Where clause
	3.2.5.6 Join syntax

	3.2.6 Entity-relationship model

	3.3 Graph drawing
	3.3.1 Circular layout
	3.3.2 Orthogonal layout
	3.3.3 Force-directed layout methods
	3.3.3.1 The algorithm of Eades
	3.3.3.2 The algorithm of Fruchterman and Reingold
	3.3.3.3 The algorithm of Kamada and Kawai
	3.3.3.4 Multi-level approaches

	3.4 Mobile development
	3.4.1 SQLite
	3.4.2 Development of an Android application
	3.4.2.1 Activity
	3.4.2.2 Fragment
	3.4.2.3 Multi-threading in Android

	3.4.3 Development of an iOS application
	3.4.3.1 The Swift programming language
	3.4.3.2 Model-View-Controller pattern

	4 Results: Implementation of SubtiWiki v3.0
	4.1 Database construction
	4.1.1 Conceptual design
	4.1.2 Database implementation
	4.1.2.1 The Gene table
	4.1.2.2 The Regulation table and views
	4.1.2.3 The Reaction tables
	4.1.2.4 The Category table

	4.2 Construction of server-side applications
	4.2.1 The framework
	4.2.1.1 Request process routine
	4.2.1.2 Common logic for handlers
	4.2.1.3 Adapted data access objects

	4.2.2 The applications
	4.2.2.1 The Application “Gene”
	4.2.2.2 The application “Category”
	4.2.2.3 The genome browser
	4.2.2.4 The network browsers and NetVis
	4.2.2.5 The expression browser
	4.2.2.6 The pathway browser

	4.3 The Mobile Apps
	4.3.1 Local and remote data storage
	4.3.2 WebView to present gene pages

	5 Discussion and outlook
	5.1 Usage report of SubtiWiki
	5.2 Assessment of the new implementation
	5.3 SubtiWiki compared with other databases
	5.4 Presentation of metabolic pathways
	5.5 Multi-mode database as a possible solution
	5.6 Web-based biological data visualization
	5.7 A database implementation for other MODs

	6 References
	7 Appendix
	7.1 Table schemes
	7.2 Directory structure
	7.3 Default data access methods

