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1 Introduction 

1.1 Intracellular membrane–trafficking.  

The structural integrity of a cell is maintained by the continuous transport of 

proteins and lipids from one compartment of the cell to the other. Intracellular 

protein trafficking is mediated by a large plethora of proteins, each of which are 

specific to a given cellular compartment. The final step involves fusion of vesicles 

and membrane merger, which in most of the intracellular trafficking events is 

mediated by a special family of proteins called the SNARE (soluble N-

ethylmaleimide sensitive factor attachment protein receptor) proteins. The 

discovery of the SNARE-proteins dates back to the 1980s, when they had been 

identified from a series of temperature-sensitive secretion-deficient mutants (‘sec-

mutants’) in Saccharomyces cerevisiae, which showed accumulation of secretory 

vesicles in yeast cells (1).In subsequent years, a large number of SNARE-proteins 

have been identified in several different organisms. SNARE-proteins are the key 

components of most of the membrane fusion events in a cell and despite their 

sequence divergence, their mechanisms of actions have highly been conserved 

through evolution. 

SNAREs belong to a superfamily of proteins, which are characterized by a special 

motif termed the ‘SNARE-motif’. It consists of 60-70 amino-acid residues 

containing heptad repeats in their membrane-proximal regions (2, 3). Most of the 

SNARE-proteins also contain a transmembrane domain. This feature however, is 

not universal, with some of the SNARE-proteins lacking a transmembrane anchor. 

A classic example of this case is represented by the neuronal SNARE, SNAP25a 

which lacks a transmembrane domain, and is attached to the membrane by 

palmitoylation (4). Apart from the characteristic SNARE-motifs and the 

transmembrane-domains, some SNARE-proteins (for example, the yeast Sso1p and 

the neuronal syntaxin1a) also feature an autonomously folded N-terminal domain 

that have been implicated to have a regulatory role in SNARE-mediated 

membrane-fusion. 

SNAREs are topologically distributed on opposing membranes, and the SNARE-

motifs of the cognate SNAREs interact with each other to assemble into a parallel 

four-helical bundle. This core complex brings the two membranes in very close 

apposition with each other, and helps in membrane merger by using the free-

energy released during the formation of the four–helical bundle (5). The core 

SNARE-complex exhibits peculiar biochemical characteristics like resistance to 

cleavage by botulinum neurotoxins, resistance to digestion by proteolytic enzymes 

(e.g. Trypsin), SDS-resistance and partial heat-resistance above a temperature of 

70°C.  
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Figure 1.1-1. SNARE-proteins involved at different steps of intracellular 
trafficking in a yeast cell and a mammalian cell. 
(A) A yeast cell represents a simplistic eukaryotic model for intracellular trafficking. 
Specific sets   of SNARE-proteins have been assigned to each step of the pathway. 
However, the R-SNAREs Nyv1 and Ykt6 can substitute each other during vacuole 
fusion. Likewise, Sec22 and Ykt6 can substitute each other in the fusion of the ER-
derived vesicles with the Golgi apparatus. (B) In a mammalian cell, distinct SNAREs 
are assigned to the different compartments of the trafficking pathway. A partial 
overlap of function, however, does exist for some compartments, as depicted for the 
sorting and recycling endosomes.[Taken from (5)]. 
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In a eukaryotic cell, distinct SNARE-proteins mediate membrane fusion in different 
intracellular compartments. Some SNAREs (for example syntaxin7), however are 
involved in more than one intracellular compartments. A summarized view of the 
SNAREs involved at the different stages of intracellular trafficking in the yeast and 
mammalian cells have been represented in Figure 1.1-1. 
 

1.2 Synaptic-vesicle exocytosis 

Membrane fusion is critical not only for intracellular trafficking pathways, but also 

for cell-cell communication.  The cells of the nervous system represent a 

specialized example in this case, where the fusion of neurotransmitter-containing 

synaptic vesicles with the neuronal plasma membrane leads to neurotransmitter-

release. The process of synaptic vesicle exocytosis is central to the formation of a 

core-SNARE complex by the three neuronal SNAREs namely syntaxin1a, SNAP25a 

and synpatobrevin2. Syntaxin1a and synaptobrevin-2 (also known as VAMP-2) are 

transmembrane proteins, containing one SNARE-motif each, whereas SNAP25a 

(containing two SNARE-motifs) lacks a transmembrane domain and is attached to 

the neuronal plasma membrane by a palmitoylation anchor. The two SNARE-

motifs of SNAP25a are attached by a linker domain, and this covalent linkage 

between the domains has been implicated to be evolutionarily important for 

increasing the local effective concentration of SNAREs on the neuronal plasma 

membrane, for achieving rapid rates of neurotransmission (6). On similar lines, in 

non-synaptic cells, where the speed of fusion is not so crucial, the Qb and Qc SNARE 

motifs are often distributed between two different proteins (7). In a neuronal cell, 

syntaxin1a and SNAP25a are present on the neuronal plasma membrane, whereas 

synaptobrevin is present on the synaptic vesicles. The membrane-insertion of all 

the transmembrane SNARE-proteins  are  mediated by a specialized trafficking 

pathway called the GET-pathway (8).  

The neurotransmitter-containing synaptic vesicles in the brain cells are roughly 

40nm in diameter and are broadly maintained in three different pools, namely (i) 

readily-releasable pool (1-2% of all synaptic vesicles)  (ii) recycling pool (10-20% 

of all synaptic vesicles) and (iii)reserve pool (80-90% of all synaptic vesicles) (9). 

The readily-releasable pool is depleted rapidly (requiring less than a second) upon 

stimulation of a nerve cell, whereas the recycling pool and the reserve pool require 

prolonged stimulation, with depletion occurring only after a few seconds (for the 

recycling pool) or even minutes (for the reserve pool) (9). In the readily-releasable 

pool, the synaptic vesicles are docked with the plasma-membrane in a release-

ready state, at specialized sites called the ‘active-zone’. The ‘active-zone’ contains 

several tethering and scaffolding factors, including Bassoon, Piccolo, RIMs, ELKs, 

α-liprin and Munc13-1 (10), that help in bringing the synaptic vesicles closer to the 

plasma membrane. 
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During neurotransmitter release, the SNARE motifs of the three neuronal SNAREs 

interact to form a four helical bundle, which is extremely critical for membrane 

fusion. The crystal structure of the cis-SNARE complex suggests that the 

interaction of the SNARE-proteins extend to the bilayer, thereby coupling the 

final state of SNARE-complex formation with membrane merger (2). The SNARE-

complex consists of a hydrophobic core containing 16 layers of amino-acid 

residues numbered from -7 to +8. The central ‘zero’- layer is however, ionic in 

nature, consisting of one polar residue contributed by each of the SNARE-motifs.  

Syntaxin1a and SNAP25a contribute one or, two glutamine (Q) residues 

respectively to this layer and, are hence called ‘Q- SNAREs’, with syntaxin1a being 

the Qa-SNARE, and SNAP25a being the Qb/Qc SNARE, respectively. 

Synaptobrevin2 contributes an arginine side-chain to the ‘zero-layer’ and is 

hence called the ‘R-SNARE’ (11).  

 

 

 
 

Figure 1.2-1. SNARE-core complex and the central layers of the interacting side-
chains. 
(A) (Top) Crystal structure of the SNARE-core complex containing the cytoplasmic 
fragments of the SNARE-proteins. (Bottom) The core of the SNARE-complex is extremely 
hydrophobic, containing 16 layers of amino-acids numbered from -7 to +8, with only one 
ionic layer at the center, termed the ‘zero’-layer. (B) The crystal structure of the ‘cis’-
SNARE-complex containing the respective transmembrane domains of the SNARE-
proteins. This model indicated that the energy from SNARE-zippering can be directly 
communicated to the bilayer via the linker regions connecting the SNARE-motif and 
transmembrane domain of the SNARE-proteins, thereby causing membrane fusion. Color 
codes: syntaxin1a is represented in red, SNAP25a in green and synaptobrevin2 in blue. [(A) 
has been adapted from  (3) and (B) is taken from (2)]]. 
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1.3 Specificity and stages of SNARE-mediated membrane-fusion. 

The intracellular trafficking event is a highly coordinated process and requires 

extreme precision for the directional targeting of a donor vesicle to the correct 

target membrane. It was earlier believed that the topological (12) and pairing 

specificity (13) between the cognate SNAREs alone is responsible for conferring 

compartmental specificity for fusion. This view has been supported by in-vitro 

studies in PC12 cells, where the fusion of dense-core vesicles with the plasma 

membrane occur much faster in the presence of the cognate SNAREs, as compared 

to the non-cognate SNAREs (14). However, additional studies using in-vitro 

liposome fusion assays have indicated that some R-SNAREs can mediate fusion 

even with non-cognate Q-SNAREs, rendering the hypothesis of SNARE-specificity 

rather tenuous (13). Electron microscopy studies of giant squid synapses after 

treatment with botulinum B or tetanus neurotoxins (which cleave the neuronal R-

SNARE, synaptobrevin (15)), showed normal vesicle docking, but a complete 

abolishment of evoked neurotransmitter release, as measured by 

electrophysiology (16). These observations indicated that the SNARE proteins 

might not be crucial for docking, and they might have a significant role only at a 

later step in membrane fusion. A recent study of hippocampal organotypic slice 

cultures from mice using cryofixation and electron tomography has, however, 

reported that both Q- and R-SNAREs are required for synaptic vesicle docking (17).  

Subsequent studies hinted on the role of another family of proteins called  Rab-

proteins (small GTPases) in mediating compartmental specificity for SNARE-

mediated fusion (18). Rab3 and Rab27b are associated with synaptic vesicles and 

have been indicated to have a role in docking synaptic vesicles to the plasma 

membrane (19). A deletion mutant of Rab3A (the major Rab-protein present in the 

brain) in mice was shown to cause a marked decrease in vesicle docking after nerve 

stimulation leaving the total number of vesicles unaffected, thereby indicating the 

role of Rab-proteins upstream of vesicle fusion (20). Taking into account the role 

of Rab-proteins in vesicle-docking and the cognate-specificity exhibited by the 

SNARE-proteins, it has collectively been proposed that both the Rab-proteins and 

the SNARE-proteins together, help in creating a check-point for preventing fusion 

between mismatched compartments (21).  

SNARE-mediated membrane-fusion proceeds in stages with gradual changes in 

contacts between the proteins and lipids of the two compartments. As depicted in 

Figure 1.3-1, during the most initial phase, vesicles approach the plasma 

membrane but the SNAREs are not in contact with each other. This is followed by 

an initial contact of the SNARE-proteins that is expected to proceed from the N-

terminus towards the C-terminus. The zippering reaction results in the formation 

of a loosely docked state, followed by a tightly docked state, which in turn increases 

the lateral tension on the membrane leading to hemi-fusion (22). The unfavorable 
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interaction between the bilayer interfaces results in the breaking of the membrane, 

creating a fusion-pore.  

 

 

 

 

1.4 SNARE-hypothesis and SNARE-cycle. 

The SNARE-hypothesis, which was proposed in the year 1993 (19), states that each 

cellular compartment contains vesicles with specific ‘v-SNAREs’ that pair up with 

their cognate ‘t-SNAREs’ to bring about membrane fusion. In the context of the 

neuronal SNAREs, it has been proposed that the three SNAREs interact together 

with the AAA-ATPase NSF, and its co-factor α-SNAP to form a 20S fusion particle. 

The binding of α-SNAP to the SNARE-complex creates a binding-site for NSF. The 

 

 
 

Figure 1.3-1. Steps involved in SNARE-mediated membrane fusion. 
(A) The vesicles approach the target membrane, but the contact between the partner 
SNAREs is not yet established. (B) The SNAREs contact each other and start zippering from 
the N-terminus towards the C-terminus. (C) The zipping of the SNAREs increases the 
lateral tension, resulting in hemi-fusion. (D) The tight-zipping of the SNAREs brings the 
distal leaflets in contact with each other, resulting in (E) membrane breakage and the 
formation of a fusion pore. This is followed by (F) membrane–relaxation and expansion of 
the fusion-pore. [Taken from (22)]. 
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energy released from the ATPase activity of NSF disassembles the SNARE-complex 

into individual proteins, thereby making them available for subsequent rounds of 

fusion (19). A schematic overview of the SNARE-cycle has been presented in Figure 

1.4.1. 

 

 

In regulated exocytosis, SNARE-complex assembly becomes irreversible after 

calcium-influx.  The subsequent phase followed by full-zippering of the SNAREs and 

 

 
 

Figure 1.4-1.  Steps involved in SNARE-complex assembly and subsequent SNARE-
recycling. 
SNARE-complex assembly initiates with the conformational reorganization of the Q-
SNAREs, which is likely mediated by a member of the SM-protein family (top left). The so 
formed ‘acceptor complexes’ then interact with the R-SNAREs on the vesicles, proceeding 
from the N-terminus towards the C-terminus. The assembly progresses from a ‘loose 
complex’ (where the SNAREs are only partially assembled), towards a ‘tight complex’ 
(where the SNAREs are fully assembled), leading to fusion-pore formation and membrane-
merger (bottom). In case of regulated exocytosis, the late-stages in the assembly process 
are controlled by accessory proteins like complexin and synaptotagmin, which are 
implicated to ‘clamp’ the SNAREs in a partially-zippered state, allowing membrane-fusion 
only upon calcium influx. Upon fusion, the SNARE complex transitions from a ‘trans’-
conformation to a ‘cis’-conformation (right). The cis-SNARE-complex is disassembled by 
NSF-αSNAP, making the SNAREs available for subsequent rounds of fusion. [Adapted 
from(5)]. 
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formation of the four-helical bundle leads to the formation of the fusion-pore and 

membrane-merger. 

 

1.5 Role of accessory proteins in neuronal exocytosis. 

Since the discovery of the SNARE-proteins in late 1980s, major advances have been 

made in understanding the mechanism underlying the SNARE-machinery. Genetic 

approaches to screen for mutants showing defects in synaptic neurotransmission 

have provided a key tool to identify proteins that play a crucial role in the process. 

An understanding of the mechanistic details of the process has however, been 

gained through biochemical approaches.  In this context, a wealth of knowledge has 

been provided by the isolation and characterization of native synaptic vesicles and 

by the purification of factors to reconstitute the fusion machinery in-vitro. The 

SNARE-proteins constitute a minimalistic system to mediate the in-vitro fusion 

between two sets of liposomes (23). Technical advancements have allowed the 

reconstitution studies to be performed in different membrane systems like small 

unilamellar vesicles (SUVs) (24), large unilamellar vesicles (LUVs) (25), giant 

unilamellar vesicle (GUVs) (26) and also supported bilayer systems like pore-

spanning membranes (27). Electrophysiological measurements, on the other hand, 

have provided a significant tool to study synaptic vesicle exocytosis in intact cells 

(28). 

A major discrepancy that has been observed while comparing SNARE-mediated 

membrane fusion in-vitro and in-vivo, is the speed at which the vesicle fusion 

occurs. Synaptic vesicle exocytosis occurs at a sub-millisecond time-scale in an 

intact neuronal cell (29), but requires several minutes for completion in an in-vitro 

bulk assay (25).  One of the many reasons that can explain this discrepancy, is the 

absence of accessory proteins that are crucial for the regulation of the SNARE-

machinery. The rates of vesicle fusion in-vitro have been observed to be altered 

substantially by accessory proteins like synaptotagmin-1 (30) , Munc18-1 (31) and 

according to a recent report, also by Munc13-1 (32).   The four major accessory 

proteins that are speculated to play crucial roles at different stages of SNARE-

mediated membrane fusion in synapses are Munc-13, Munc-18, complexin and 

synaptotagmin. 

 

1.5.1 Munc18-1 

Munc18 (Mammalian unc18) is an important regulatory protein involved in the 

regulation of SNARE-mediated exocytosis. It belongs to the SM (Sec1/Munc18) 

family of proteins. It is a cytosolic protein that has been highly conserved from 

Saccharomyces cerevisiae to Homo sapiens. The first SM-protein, unc18 was 
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identified as a product of the gene ‘unc18’ whose mutation resulted in an 

‘uncoordinated’ locomotion phenotype in C.elegans (33). Some years later, an 

orthologue of unc18-1 was identified in Saccharomyces cerevisiae, and was referred 

to as ‘Sec-1’ (34). In subsequent years, orthologues of unc18-1 were identified in 

several different organisms, like Drosophila (Rop) (35), plants (KEULE) (36) and 

mammals (Munc18). There are three homologues of Munc18 namely Munc18-1, 

Munc18-2 and Munc18-3 (also known as Munc18a, Munc18b and Munc18c, 

respectively). Munc18-1 is predominantly found in brain cells and is also referred 

to as ‘neuronal Sec-1’. Munc18-2 shares 62% sequence homology with Munc18-1 

and is predominantly present in kidney cells, intestine, testis, rat adipose tissue and 

3T3-L1 cells (37). Munc18-3 only has 51% sequence homology with Munc18-1, and 

shows a rather ubiquitous pattern of expression (37).  

Munc18-1 is a multi-domain cytosolic protein of 67 kDa, possessing an arch-shaped 

architecture (38). The affinity of interaction between the cytoplasmic variant of 

syntaxin1a (Syx1-262) and Munc18-1 is extremely high, with a dissociation 

constant (Kd) of 1.4 nM (39). Syntaxin1a is characterized by an N-terminal 

regulatory domain, which consists of an N-peptide and an Habc-domain. The Habc-

domain of syntaxin1a forms an anti-parallel three-helical bundle, and can interact 

with its SNARE-motif, resulting in a ‘closed’ conformation of syntaxin1a, which is 

incompatible for SNARE-complex assembly. Munc18-1 interacts via its domain 1 

and domain 3 (designated the ‘cleft’) with the ‘closed’ conformation of syntaxin1a 

and ‘locks’ it in this state (40).The N-peptide of syntaxin1a interacts with Munc18-

1 via a spatially distinct region, termed the N-peptide binding site (39). As shown 

in Figure 1.5-1 C, this site is positioned directly opposite of the ‘cleft’, on the outer 

surface of Munc18-1 (39). The interaction of Munc18-1 with the N-peptide in-vitro 

has been proposed to regulate the gating of syntaxin1a/Munc18-1 complexes into 

fully assembled SNARE-complexes, thereby acting as a switch to regulate SNARE-

complex formation (41). 

The role of Munc18-1 in neuronal exocytosis has long been investigated, but its 

precise mode of action remains unclear. Munc18-1 null mutations in mice were 

found to be embryonically lethal, causing a complete abrogation of 

neurotransmitter release (38). This observation was indicative of a stimulatory role 

of Munc18-1 in the process of neurotransmitter release, which was in stark contrast 

to the inhibitory sequestration of syntaxin1a by Munc18-1 observed in-vitro (39, 

40, 42). Munc18-1 thus appears to play dual roles in neuronal exocytosis.  

Experimental evidence point toward different possible roles for Munc18-1 in 

regulating SNARE-mediated membrane fusion. Some studies indicate that Munc18-

1 might have a role in structuring the acceptor complexes on the neuronal plasma 

membrane and setting the stage for SNARE-complex assembly (43–46). In yet 

another scenario, Munc18-1 has been speculated to act during the final step of the 

fusion reaction by helping in the enlargement of the fusion pore (31). The details of 
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the proposed roles of Munc18-1 in SNARE-mediated membrane fusion have been 

discussed in section 1.7. 

 

 

  

 
Figure 1.5-1. Ribbon diagrams of Munc18-1, syntaxin1a and the 
syntaxin1a/Munc18-1 complex. 
(A) Ribbon diagram of Munc18-1 showing the arch-shaped arrangement of the three 
domains. (B) Ribbon diagram of syntaxin1a, depicting the Habc-domain and the SNARE-
motif. Note that the N-peptide has not been presented in this diagram. (C) 
Syntaxin1a/Munc18-1 complex with syntaxin1a locked in the ‘closed’ conformation. 
Munc18-1 is shown in cyan and the N-peptide, Habc-domain and the SNARE-motif of 
syntaxin1a have been shown in red. [(A) and (B) have been adapted from (47), and (C) has 
been adapted from (39)]. 
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1.5.2 Munc13 

Munc13 is another regulatory protein involved in SNARE-mediated exocytosis. It 

belongs to the CATCHR (Complexes associated with tethering containing helical 

rods) family of proteins. There are three isoforms of Munc13 namely Munc13-1, 

Munc13-2 and Munc13-3. These three isoforms show relatively different 

expression patterns in the rat brain, with overlaps between at least two isoforms in 

one particular compartment. Munc13-2 and Munc13-3 have been speculated to act 

together with Munc13-1, to help in the regulation of neurotransmitter release (48).  

Munc13-1 is an elongated, cytosolic, multi-domain protein that is particularly 

expressed in the brain, with highest localization in the cerebral cortex, 

hippocampus, cerebellum and the olfactory bulb (49) and some expression also in 

pancreatic islet cells (50). It interacts with the N-terminus of the neuronal Qa-

SNARE, syntaxin1a and with a calcium sensor Doc2, thereby helping in synaptic 

vesicle docking and priming. Additionally, it also interacts with active-zone 

proteins like RIM and ERC to help in tethering the synaptic vesicles to the neuronal 

plasma membrane at the active zone.  

A double knock-out of Munc13-1/Munc13-2 in hippocampal neurons shows 

normal synaptogenesis, but causes a complete abrogation of spontaneous and 

evoked neurotransmitter release, underlining a key significance for the role of 

Munc13 in synaptic vesicle exocytosis (51). This phenotype, can, however, be 

rescued by the over-expression of the MUN-domain of Munc13-1 (52). The MUN-

domain is an autonomously folded domain of Munc13-1 containing four sub-

domains, the crystal structure of which  has been reported only recently (53). The 

architecture of the MUN-domain resembles that of some homologous tethering 

factors like Tip20 and Exo70 (53).  

A speculated key role of Munc13-1 in neuronal exocytosis is to bring about the 

transition of syntaxin1a from its 'closed' conformation in the syntaxin1a/Munc18-

1 complex to an 'open' conformation, thereby making syntaxin1a available for 

SNARE-complex formation (54).  A simplistic view of this transition mediated by 

Munc13-1 has been depicted in Figure 1.5-2. The interaction of Munc13-1 with 

syntaxin1a occurs via the linker region of syntaxin1a that connects the Habc-

domain with its SNARE-motif (54).  
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1.5.3 Synaptotagmin 

Synaptotagmin is a membrane-trafficking protein, containing an N-terminal 

membrane anchor (unlike the SNARE-proteins) and two C-terminal C2-domains, 

namely C2A and C2B (55). The neuronal counterpart, synaptotagmin1 is a synaptic 

vesicle protein, and is commonly referred to as the ‘calcium-sensor’ for neuronal 

exocytosis (56). The C2B-domain contains a distinct patch comprising of basic 

amino-acids that binds to membranes containing phosphatidylinositol (4, 5) 

bisphosphate (57). Synaptotagmin-1 also interacts with the Qa-SNARE syntaxin1a 

via its C2-domains (both in the monomeric form and as part of the SNARE-

complex). This interaction, however, appears to be regulated by the intracellular 

calcium concentration (58). In a resting nerve cell with basal levels of calcium, 

synaptotagmin-1 has been hypothesized to ‘clamp’ the SNAREs in a partially-

zippered state (59). The increase in the intracellular calcium levels, accompanied 

by the arrival of an action potential, results in binding of calcium ions to the C2-

domains of synaptotagmin-1. The calcium-bound synaptotagmin then triggers 

SNARE-mediated fusion by either disengaging from the SNAREs (thereby releasing 

the clamp) (59) or by lowering the activation energy for membrane fusion by 

extensive membrane interactions via calcium-bridges (30). 

 

 
 

Figure 1.5-2. Munc13-1 causes the transition from the ‘closed’ syntaxin1a to 
‘open’syntaxin1a.  
(Left) Munc13-1 interacts with syntaxin1a within the syntaxin1a/Munc18-1 complex, 
causing a conformational switch in syntaxin1a resulting in the formation of an 
intermediate consisting of syntaxin1a, Munc18-1 and Munc13-1, with syntaxin1a being in 
an open conformation (middle). The SNARE-motif of syntaxin1a then becomes available to 
interact with SNAP25 and synaptobrevin, leading to SNARE-complex assembly (right). 
Munc18-1 is depicted in cyan, syntaxin1a SNARE-motif in red, syntaxin1a Habc domain in 
grey, MUN-domain in magenta, SNAP25a SNARE-motif in green and synaptobrevin 
SNARE-motif in blue. [Adapted from (54)]. 
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1.5.4 Complexin 

Complexin belongs to a family of SNARE-binding proteins involved in the regulation 

of synaptic vesicle exocytosis. It is a cytosolic protein that can interact both with 

membrane phospholipids via its C-terminal amphipathic helix (60) as well as with 

(partially) assembled SNARE-complexes via its central helix (5). Complexin has 

been implicated in clamping SNARE-complex assembly by two alternate 

mechanisms: (i) by binding to the C-terminus of the syntaxin1a/SNAP25a complex, 

thereby interfering with the assembly of a fully-zippered SNARE-complex (61) and 

(ii) by forming cross-links between two adjacent pre-fusion complexes (62). The 

former clamping model is, however, debatable because it has been argued that the 

strong-binding of synaptobrevin to the pre-fusion complex is strong enough to 

cause the displacement of any downstream clamping agent, indicating that if at all, 

complexin-mediated clamping must occur at a stage that precedes initial contacts 

between the Q-SNAREs and the R-SNARE (63, 64). A deletion mutant of complexin 

causes a marked decrease in calcium-evoked synchronous release but leaves the 

asynchronous release unaltered (65). These observations implicate the role of 

complexin in calcium-triggered neurotransmission. The precise role of complexin 

in regulating the SNARE-fusion machinery, however, remains incompletely 

understood.  

 

1.6 SM-proteins as regulators of SNARE-mediated membrane fusion. 

As discussed in section 1.5.1, SM-proteins are highly conserved cytosolic proteins 

that play a critical role in SNARE-mediated membrane fusion. It is, however, 

important to mention that despite the high degree of sequence conservation, the 

mechanisms of actions of the different SM-proteins remain quite diverse. The 

modes of interaction of the SM-proteins can be grouped into three major categories. 

: (i) interaction with the respective Qa-SNAREs involving the N-terminal regulatory 

domain, (ii) interaction with the fully-assembled SNARE-complexes, and (iii) 

simultaneous interactions with more than one partner SNARE at a given point of 

time. The different modes of interaction of some of the SM-proteins with their 

respective SNAREs or the SNARE-complex has been tabulated in Table 1. The 

difference in the modes of interactions of the SM-proteins can be attributed to their 

fine structural details. For example, the yeast Sec1 contains a peculiar C-terminal 

tail that is absent in all other SM-proteins, which favors its interaction with a fully-

assembled SNARE-complex (66). 
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Table 1. A summarized view of the interaction of some of the SM-proteins with 
components of their respective SNARE-machinery. 

 

 SM-protein 

 

Compartment-specific Qa-

SNARE 

 

Cellular  

localization 

 

Organism 

 

Mode of interaction 
 

Sly1 Sed5 Sites of vesicular 

transport between ER 

and the Golgi apparatus. 

Saccharomyces 

cerevisiae 

Interacts with the  N-peptide of 

Sed5 (67) and the assembled 

SNARE complex (68).  

 

Vps45 

 

 Tlg2  Sites of vacuolar protein-

sorting from the Golgi. 

Saccharomyces 

cerevisiae 

Interacts with the N-peptide of 

Tlg2 and the assembled SNARE-

complex (69). 

 

 

Vps33 Vam3 (on the vacuoles)/ 

Pep12 (at the 

endosomes) 

 

Sites of protein sorting 

from Golgi to the yeast 

vacuole/lysosomes 

Saccharomyces 

cerevisiae 

Interacts with the Qa-SNARE  

(Vam3), Qc-SNARE (Vam7), R-

SNARE (Nyv1) and the 

assembled SNARE-complex 

(70). 

 

 

Sec1 Sso1 Budding sites on the 

yeast plasma membrane.  

Saccharomyces 

cerevisiae 

Interacts with the Qb/Qc 

SNARE, Sec9 (71) and the 

assembled SNARE-complex 

(72).  

 

 

Munc18-1 

 

Syntaxin1a Sites of exocytosis on the 

neuronal plasma 

membrane. 

Rattus norvegicus Interacts with the ‘closed’ 

conformation of syntaxin1a 

(73), with the Q-SNARE complex 

(syntaxin1a/SNAP25a) (46), 

with the R-SNARE, 

synaptobrevin (74) and the 

assembled SNARE-complex (42, 

75). 

 

 

Munc18-2 Syntaxin3 Secretion sites on the 

plasma membrane of 

epithelial cells 

Rattus norvegicus 

 

Interacts with the Q-SNARE 

complex (syntaxin 3 / SNAP25) 

(76). 

 

 

Munc18-3 

 

Syntaxin4 Secretion sites on the 

plasma membrane of 

adipocytes 

Rattus norvegicus 

 

 

Interacts with the Qa-SNARE, 

syntaxin 4 and the assembled 

SNARE-complex (77).  
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1.7 Proposed roles of Munc18-1 in synaptic vesicle exocytosis. 

Despite major efforts in understanding the role of Munc18-1 in neuronal exocytosis, 
its precise mode of action remains enigmatic. Concisely, Munc18-1 has been 
proposed to act at multiple stages of SNARE-complex assembly, with several 
evidence of its significance both at the ‘pre-docking’ as well as ‘post-docking’ stage 
of the process of neurotransmitter release. Furthermore, Munc18-1 has been 
speculated to act as a ‘chaperone’ for the transport of syntaxin1a from the Golgi-
compartment to the neuronal plasma membrane.  

As discussed in section 1.5.1, Munc18-1 enters into a very tight interaction with 

syntaxin1a (73). The syntaxin1a/Munc18-1 complex has, however been 

hypothesized to undergo substantial changes after being targeted to the neuronal 

plasma membrane, in order to mediate SNARE-complex assembly (40). The role of 

Munc18-1 in structuring the SNAREs for SNARE-complex assembly had been 

proposed almost a decade ago (41, 78) and has recently been revisited (44, 46, 79). 

A consensus view on how Munc18-1 lays the foundation for SNARE-complex 

formation, however, is still unclear. Alternatively, Munc18-1 has been speculated to 

accelerate the rate of SNARE-mediated membrane-fusion by its interacting with the 

fully assembled SNARE-complexes (42, 80). The details associated with each of the 

proposed roles for Munc18-1 have been discussed in the following sub-sections.  

 

1.7.1 Munc18-1 as a chaperone for syntaxin1a transport. 

First and foremost, Munc18-1 has been proposed to act as a ‘chaperone’ for 

targeting syntaxin1a from the endoplasmic reticulum to the neuronal plasma 

membrane. This transport occurs with syntaxin1a in a ‘closed’ conformation, and 

poses an important regulatory step by minimizing any futile interactions of 

syntaxin1a with its partner SNAREs during the transport process (81).  

In PC12 cells, a downregulation of Munc18-1 drastically lowers syntaxin 1a 

expression and also affects its targeting to the plasma membrane, with syntaxin1a 

now being localized to the perinuclear regions of the cell (82). In addition to this, 

the docking and secretion ability of the dense-core vesicles were also seen to be 

compromised in these cells. These observations highlighted the role of Munc18-1 

in maintaining syntaxin1a stability and targeting, as well as synaptic vesicle 

docking. Subsequent studies performed in mice showed that a double knock-out of 

Munc18-1 results in a 70% reduction in the expression levels of syntaxin1a (83), 

consistent with the observations in PC12 cells. The low amount of syntaxin1a 

synthesized was, however, seen to be correctly targeted to the plasma membrane 

for successful participation in SNARE-complex assembly. This observation raised a 

contradiction to the previously reported role of Munc18-1 (82) and suggested that 
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Munc18-1 is important for the stability of syntaxin1a but not for its intracellular 

targeting (83). 

 

1.7.2 Munc18-1 as a template for SNARE-complex assembly. 

Three different mechanisms for Munc18-1-mediated SNARE-complex assembly 
have been proposed so far. According to these hypotheses, Munc18-1 could provide 
a template for SNARE-complex assembly either (i) by interacting with the Qa-
SNARE syntaxin1a (84), (ii) by interacting simultaneously with the Qa-SNARE 
syntaxin1a and the Qb/Qc SNARE SNAP25a (46, 79) or, (iii) by a simultaneous 
interaction with the Qa-SNARE syntaxin1a and the R-SNARE synaptobrevin2 (44). 

 

1.7.2.1 Syntaxin1a/Munc18-1 complex as a starting point for SNARE-

complex assembly. 

Till date, the precise composition and conformation of the acceptor complexes on 

the neuronal plasma membrane for receiving the incoming synaptic vesicles, 

largely remains unknown. The syntaxin1a/SNAP25a complex, which is one of the 

candidates for forming this acceptor complex, is susceptible to disassembly by NSF-

αSNAP(43), making the proposition rather tenuous. Additionally,  a recent study 

has shown that the SNAP25a in the syntaxin1a/SNAP25a complex can be 

completely displaced by the action of Munc18-1, causing the formation of 

syntaxin1a/Munc18-1 complex  (85). Moreover, biochemical characterization of 

the syntaxin1a/Munc18-1 complex has reported that this complex cannot be 

disassembled by NSF-αSNAP (85). In-vitro vesicle fusion starting with liposomes 

containing syntaxin1a/Munc18-1, could be reconstituted in the presence of all the 

important components of the SNARE-machinery, namely the SNARE-proteins 

(syntaxin1a, SNAP25a and synaptobrevin2), Munc18-1, Munc13-1, synaptotagmin, 

NSF and αSNAP. Based on these findings, it has been suggested that 

syntaxin1a/Munc18-1 complexes can possibly act as the starting point for SNARE-

complex assembly, allowing SNARE-assembly to progress in  an NSF-αSNAP-

resistant manner (85). 

 

1.7.2.2 Syntaxin1a/SNAP25a/Munc18-1 complex as an intermediate for 

SNARE-complex assembly. 

In an alternative scenario, Munc18-1 has been speculated to set the stage for 

SNARE-complex assembly by interacting with both syntaxin1a and SNAP25a 

simultaneously.  
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Figure 1.7-1. Schematic representations of the association of Munc18-1 with 
SNARE-proteins during the process of SNARE-complex assembly. 
(A) The well characterized syntaxin1a/Munc18-1 complex is shown on the left and a 
speculated binding of Munc18-1 (not yet characterized) with both syntaxin1a and 
SNAP25a has been shown on the right. The mechanisms for transition of the syntaxin1a/ 
Munc18-1 to a fully assembled SNARE-complex remains unknown (B) A proposed model 
for the gating of syntaxin1a/Munc18-1 complex to SNARE-complex assembly.  Through 
yet unknown mechanisms, Munc18-1 is speculated to undergo alterations in its 
interaction with syntaxin1a, allowing SNAP25a to bind to this complex. The subsequent 
binding of synaptobrevin to the syntaxin1a/SNAP25a/Munc18-1 complex results in 
SNARE-complex assembly, with Munc18-1 bound to it. (C) The binding of synaptobrevin 
to the syntaxin1a/SNAP25a/Munc18-1complex can, however, also lead to the 
displacement of Munc18-1. (D) An alternative model of SNARE-complex assembly 
assumes that the syntaxin1a/SNAP25a (2:1) complex can be acted upon by Munc18-1, 
shifting the equilibrium towards syntaxin1a/Munc18-1 complex or 1:1 
syntaxin1a/SNAP25a complex. Both of these complexes can then bind synaptobrevin, 
resulting in SNARE-complex formation. [Adapted from (78)]. 
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Single-molecule experiments have shown that the association of accessory  

proteins with the syntaxin1a/SNAP25a complex can stabilize the 1:1 acceptor 

complex,  thereby preventing the formation of the “off-pathway” 2:1 

syntaxin1a/SNAP25a complexes (45). On similar lines, distance measurements 

using electron paramagnetic resonance (EPR) have been reported, showing that the 

association of Munc18-1 with the syntaxin1a/SNAP25a complex results in the 

formation of a syntaxin1a/SNAP25a/Munc18-1 complex in a 1:1:1 stoichiometry, 

with syntaxin1a being shifted towards a more ‘open’ conformation. In addition to 

this, nano-domains containing clusters of syntaxin1a/SNAP25a/Munc18-1 have 

been observed on the neuronal plasma membrane (46). The presence of this 

tripartite assembly on the neuronal plasma membrane provided further support to 

the role of Munc18-1 in providing a facilitated template for SNARE-complex 

assembly via its interaction with both the Q-SNAREs (46). 

 

1.7.2.3 Syntaxin1a/Munc18-1/synaptobrevin complex as an intermediate in 

SNARE-complex assembly. 

In addition to the high-affinity interaction of Munc18-1 with syntaxin1a, Munc18-1 

has been reported to interact with the R-SNARE, synaptobrevin, albeit with much 

lower affinity (74). Cross-linking studies have shown contacts between the 

membrane-proximal regions of synaptobrevin and residues in the outer surface of 

the domain 3b of Munc18-1 (74).  Additionally, mutations of Munc18-1 that disrupt 

its interaction with synaptobrevin have been proposed to alter fusion kinetics in 

reconstituted systems (86). Likewise, a recent study using single-molecule force 

experiments to study SNARE-complex assembly has indicated that Munc18-1 can 

provide a template for SNARE-complex assembly via its simultaneous interaction 

with the Qa-SNARE, syntaxin1a and the R-SNARE, synaptobrevin2 (44).  

Support for this hypothesis has been derived from a similar mechanism of SNARE-

complex assembly that has lately been proposed for Vps33, a yeast orthologue of 

Munc18-1. Crystal structures of the vacuolar SM-protein, Vps33 have been obtained 

in complex with the Qa-SNARE, Vam3 and the R-SNARE, Nyv1. An overlay of these 

two structures has shown stark resemblance to a partially-zippered SNARE-

complex, leading to the proposal of a model for SNARE-assembly via a SM-

protein/Qa-SNARE/R-SNARE-template (87). 

 

1.7.3 Role of Munc18-1 in accelerating SNARE-mediated fusion. 

Last but not the least, in-vitro liposome fusion assays have indicated the role of 
Munc18-1 in accelerating the rate of SNARE-mediated liposome fusion (31). This 
function of Munc18-1, however, remains debatable. Biochemical characterizations 
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have indicated that Munc18-1 forms a complex with the (cytosolic) core SNARE-
complex that contains syntaxin1a in an ‘open’ conformation (80, 88). The functional 
implication of this association has been implicated in the enlargement of fusion 
pore by Munc18-1 (31). The affinity of Munc18-1 for the SNARE-complex is, 
however, quite low (74), thereby attenuating the physiological relevance of this 
interaction. Contradiction of this role of Munc18-1 has surfaced from studies 
showing the interaction of Munc18-1 with only the N-terminus of syntaxin1a, 
without any implications for contact with the core helical bundle (39, 41). The 
significance of Munc18-1 at the fusion-step of neuronal exocytosis still remains to 
be understood.  

 

1.8 Aims and hypothesis 

As summarized in the previous section, despite extensive research to understand 

the mechanistic details underlying the SNARE-machinery, many important 

questions in the field still remain unanswered. Amongst the many open questions, 

one of the major concern that remains to be addressed, is the composition and 

precise conformation of the acceptor complex present on the neuronal plasma 

membrane. In the light of the most recent research, the SM-protein Munc18-1 has 

been implicated to provide a template for SNARE-complex assembly. As indicated 

in the previous section, a consensus view on how Munc18-1 sets the stage for 

SNARE-complex assembly largely remains missing.  

Several approaches indicate towards the formation of a ternary complex between 

syntaxin1a, SNAP25a and Munc18-1. Although evidence for the existence of this 

ternary complex on the plasma membrane do exist, a 

syntaxin1a/SNAP25a/Munc18-1 complex containing full-length proteins, has till 

date, not been isolated and characterized in-vitro. Therefore, one of the major aims 

of this project was to perform the in-vitro assembly and purification of this ternary 

complex, in order to attain a thorough knowledge about its biochemical properties.  

In this work, a detailed characterization of the syntaxin1a/SNAP25a/Munc18-1 

complex has been performed, using several different biophysical and biochemical 

approaches. The major questions to be addressed in this regard, were: 

 To test the efficiency of synaptobrevin-binding to the 

syntaxin1a/SNAP25a/Munc18-1 complex 

 To determine the molecular architecture of the 

syntaxin1a/SNAP25a/Munc18-1 complex 

 To check whether synaptobrevin-binding to the 

syntaxin1a/SNAP25a/Munc18-1 complex results in the formation of a 

fully assembled SNARE-complex.  
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 To check the conformational status of Munc18-1 after binding of 

synaptobrevin to the syntaxin1a/SNAP25a/Munc18-1 complex. 

 To check whether the association of Munc18-1 with the Q-SNAREs 

(syntaxin1a and SNAP25a) can protect the 

syntaxin1a/SNAP25a/Munc18-1 complex against disassembly by NSF-

αSNAP. 

 

I have tried to achieve the above-mentioned goals using diverse techniques like 

fluorescence anisotropy, FRET, HSQC-NMR, chemical cross-linking and MS/MS 

amongst others. This study is thus important, not only for gaining an insight into 

the conformational status of the acceptor complexes required for synaptic vesicle 

exocytosis, but also for clarifying the long-debated role of Munc18-1 in  neuronal 

exocytosis. 
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2 Materials and Methods 

 

2.1 Protein constructs 

The sequences for all the recombinant proteins used in this work were obtained from 

Rattus norvegicus. All the constructs for the SNARE-proteins and the SM-protein, 

Munc18-1 had been cloned into a pET28a vector, containing an N-terminal His6-tag, 

designed for protein purification using Ni++- NTA affinity chromatography. Schematic 

representations of the wild-type proteins used in this study have been represented in 

Figure 2.1-1. 

 

 

 

 

 

 

 

 

 

Figure 2.1-1. Wild-type constructs for neuronal SNARE proteins and SM-protein used 
in this study.  
(A) Full-length syntaxin1a (Qa-SNARE) (B) full-length SNAP25a (Qb- and Qc- SNARE) and (C) 
full-length synaptobrevin (R-SNARE) (D) full-length Munc18-1 (SM-protein). 
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In addition to the full-length wild-type SNARE-constructs, single cysteine-mutants of 

both Q-SNAREs as well as R-SNAREs were used in this study for fluorescence-based 

(FRET and anisotropy) experiments. The cysteine mutants of the Q-SNAREs used in 

this study have been depicted in Figure 2.1-2. 

 

 

 

 

 

 

Different fragments of the neuronal R-SNARE, synaptobrevin (as shown in Figure 

2.1-3) were also employed during the course of this study. For the purification of the 

ΔN-complex by co-expression, a pETduet 1 vector containing syntaxin1a (183-288) 

and a cytoplasmic fragment of synaptobrevin (residues 49-96) was used. All the above-

mentioned constructs had been previously cloned and have been summarized in Table 

2. 

 

 
 
 

Figure 2.1-2. Representation of the cysteine mutants of syntaxin1a and SNAP25a used 
in this study.  
(A) Single-cysteine mutant of syntaxin1a containing a point mutation T197C and (B) Single-
cysteine mutant of SNAP25a containing a serine to cysteine mutation at position 130. In both 
the cases, all the native cysteines had been mutated to serine residues. 
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Figure 2.1-3. Different fragments of wild-type synaptobrevin and the corresponding 
cysteine-mutants used in this study.  
(A) Truncated cytoplasmic fragments of the wild-type synaptobrevin and (B) Single-cysteine 
mutants of the different cytoplasmic fragments of synaptobrevin used in this study. 
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Table 2. Tabulated view of all the protein constructs used in this study. 

 

Protein construct 

 

Construct 

 

Length of amino-acids 

 

Reference 

 

Syntaxin 1a 

 

pET28a 

 

1-288 

1-288 (T197C) 

 

 

(24) 

(89) 

 

SNAP25a 

 

pET28a 

 

1-206 (no cysteine) 

1-206 S130C 

 

(90) 

(91) 

 

Synaptobrevin2 

 

pET28a 

 

1-116 

1-96 

1-96 (S28C) 

1-65 

1-65 (S28C) 

1-52 

1-52 (S28C) 

49-96 

49-96 (T79C) 

 

 

(24) 

(24) 

(89) 

(92) 

(92) 

(93) 

(93) 

(92) 

(92) 

 

Munc18-1 

 

pET28a 

 

1-594 

 

(39) 

 

ΔN complex 

 

pETduet 

 

Syx 1-288, Syb 49-96 

Syx 183-288, Syb 49-96 

 

(94) 

(92) 
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2.2 Protein expression and extraction for the individual neuronal SNAREs and 

Munc18-1. 

The constructs of the respective proteins contained in the pET28a vector were 

transformed into BL21 cells and the transformed cells were used for large-scale 

expression in E.coli cells. A primary culture of the E.coli cells was used for subsequent 

large-scale expression by inducing the cells with 0.25 mM IPTG, overnight at 25°C. The 

cells expressing the respective proteins were harvested by centrifuging the cells at 

4,000 rpm for 20 minutes in a Beckman centrifuge (J6-MI). The supernatant was 

discarded and the pellets were subsequently resuspended in a buffer containing 20 mM 

HEPES, 500 mM NaCl and 8 mM imidazole, maintained at a pH of 7.4. The resuspended 

pellets were stored at -20°C. 

Protein extraction was started with the addition of an extraction buffer containing 20 

mM HEPES, 500 mM NaCl, 20 mM imidazole and 10% (w/v) sodium cholate at a pH of 

7.4. The extraction buffer was added in a 1:1 (v/v) ratio of the resuspended pellets and 

incubated at room temperature for 30 minutes. Thereafter, the cells were incubated 

with a freshly prepared lysozyme solution (4 mg/L of the initial culture), 1 mM MgCl2, 

DNAse (1 mg/L of the initial culture) and complete EDTA-free protease inhibitor (1 

tablet/3L of initial culture) and incubated at room temperature for 20 minutes. The 

cells were then sonicated using a Branson Sonifier with a 50% duty cycle at the micro-

tip limit. Sonication was performed four times, with forty strokes each and the cells 

were thereafter incubated with 6M Urea for 15 minutes at room temperature. The cell-

lysate was then centrifuged at 11000 rpm for 45 minutes (Thermo Fisher, F12S-6X-500 

LEX rotor). 

For the purification of all the proteins, the supernatant of the cell lysates were 

incubated with nitrilotriacetic acid (Ni-NTA) agarose resin (Qiagen) at 4°C for 2 hours, 

with rotational shaking. The lysate-bead suspension was then loaded onto a BioRad 

econo-column (3cm x 13cm) and the flow-through was discarded. The beads were then 

extensively washed with a buffer containing 20 mM HEPES, 500 mM NaCl and 20 mM 

imidazole at a pH of 7.4. For proteins containing transmembrane domains, the washing 

buffer was supplemented with detergents (1% (w/v) CHAPS or 0.03% (w/v) DDM). 

Elution of the proteins was performed using a buffer containing 20 mM HEPES, 500mM 

NaCl and 400 mM imidazole (pH 7.4) and the eluants were immediately supplemented 

with 10 mM DTT. The protein concentration of the eluants was measured using the 

molecular weights and the extinction co-efficients of the respective protein/protein 

complex in the Nano-drop machine (Nano-Drop 1000, Thermo Scientific). The purity of 

the samples were checked using SDS-PAGE and Coomassie Blue staining. The eluants 

containing the highest protein concentrations were pooled and subsequently dialyzed 

overnight to remove excess imidazole. The dialysis buffer contained 20 mM HEPES, 1 

mM DTT and an appropriate salt concentration to support the stability of the 

respective protein. During the dialysis procedure, the proteins were also 

supplemented with 1Unit/µL of thrombin (Merck), prepared as a stock of 5mg/mL in 
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50% (v/v) glycerol, in order to facilitate the removal of the His-tag present in the 

respective proteins. Detergents were supplemented in the dialysis buffers for proteins 

containing transmembrane domains. 

 

2.3 Chromatographic purification of proteins 

All the three neuronal SNAREs were purified using ion-exchange chromatography on 

an Äkta system (GE Healthcare) (39, 89). Anion-exchange columns (MonoQ, GE 

Healthcare) were used for the purification of all the above-mentioned proteins except 

synaptobrevin, for which a cation-exchange column (MonoS, GE Healthcare) was used. 

The dialyzed samples were filtered using a 0.45µm filter and loaded onto the respective 

ion-exchange columns. For proteins containing a transmembrane domain, the buffers 

were supplemented with either 1% CHAPS, 1% OG or 0.03% DDM. The proteins were 

eluted over a salt gradient of 0-1000 mM NaCl (20 mM HEPES, 1 mM EDTA, 0.5 mM 

TCEP, pH 7.4). After elution, the concentrations of the proteins were checked by nano-

drop measurements using the respective extinction co-efficients. The fractions 

containing the highest protein concentrations were pooled and stored at -80°C or, were 

immediately used for subsequent experiments.  Munc18-1 was purified using size-

exclusion chromatography in a buffer containing 20 mM HEPES, 200 mM NaCl, 1mM 

DTT, 1 mM EDTA and 10% (w/v) glycerol. The purity of the purified sample was 

assessed as mentioned in the previous sections. 

 

2.4 Protein expression and extraction procedure for the C-terminally 

stabilized ΔN-complex 

The C-terminally stabilized ΔN-complex was prepared using the strategy of co-

expression by co-transforming BL21 cells with pETduet vectors containing full-length 

syntaxin1a and the 49-96 fragment of synaptobrevin2 with a pET28a plasmid 

containing full-length SNAP25a with a His-tag (94). The cells were induced overnight 

with IPTG at 25°C and the extraction was performed using nitrilotriacetic acid (Ni-

NTA) agarose resin as described in the previous section. 

 

2.5 Assembly and purification of the binary syntaxin1a/SNAP25a complex 

The binary syntaxin1a/SNAP25a complexes were prepared from purified monomeric 

full-length syntaxin (1-288) and SNAP25a (1-206), using a previously described 

procedure (94). The complex was purified using ion-exchange chromatography 

(MonoQ, GE Healthcare), in buffers supplemented with 50 mM OG. The purity of the 
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samples was assessed by subjecting the samples to SDS-PAGE analysis and subsequent 

Coomassie Blue staining. 

 

2.6 Assembly and purification of the syntaxin1a/SNAP25a/Munc18-1 complex 

The ternary syntaxin1a/SNAP25a/Munc18-1 complex was also assembled from 

purified full-length monomeric proteins. Syntaxin1a and SNAP25a were first mixed 

together and incubated overnight with shaking at 4°C. The following day, a 2-fold molar 

excess of Munc18-1 was added to the mixture and the protein-mix was subjected to a 

further incubation of 3 hours at room temperature. The resulting ternary complex 

between syntaxin1a, SNAP25a and Munc18-1 was further purified by ion-exchange 

chromatography (MonoQ, GE Healthcare). The formation of the ternary complex was 

assessed by SDS-PAGE and Coomassie Blue staining. For qualitative assessments, the 

ternary complex that had been purified using ion-exchange chromatography was 

further purified by size-exclusion chromatography (Superdex 200, GE Healthcare).The 

presence of a single elution peak containing all the three constituent proteins further 

validated the formation of a ternary complex.  

 

2.7 Fluorescent-labeling of SNARE-proteins 

The single cysteine mutants of syntaxin1a, SNAP25a and synaptobrevin2 were 

fluorescently labeled with dyes like Oregon Green (Oregon Green488 Iodoacetamide, 

mixed isomers, Thermo Fisher Scientific) or Texas Red (Texas Red-C5-bromoacetamide, 

Thermo Fisher Scientific) by incubating the proteins with a six-times molar excess of 

the fluorescent dye and incubating them either for 2 hours at room temperature or 

overnight at 4°C, with rotation. The excess unreacted dye was removed from the 

proteins by performing a subsequent purification step by size exclusion 

chromatography, using commercially available PD-10 columns (GE Healthcare). The 

purification step was performed using a buffer composition of 20 mM HEPES, 150 mM 

NaCl and 1 mM EDTA, at a pH of 7.4. For proteins containing transmembrane domains, 

the buffer was supplemented with 1% (w/v) OG. The column was equilibrated with 25 

mL of the buffer before loading the protein sample on the column. Elution was 

performed with 3.5 mL of the buffer. The concentrations of the fluorescently-labeled 

proteins were determined using Nano-Drop and the efficiency of labeling was 

calculated using the given formula: 

 

    Eq. (1) 

 

where, Ax is the absorbance value of the dye at the maximum absorbance wavelength, 

[
𝑨𝒙

𝛆
] ×   [

𝑴𝑾 𝒐𝒇 𝒑𝒓𝒐𝒕𝒆𝒊𝒏

𝒎𝒈 𝒑𝒓𝒐𝒕𝒆𝒊𝒏/𝒎𝑳
] =  

𝒎𝒐𝒍𝒆𝒔 𝒐𝒇 𝒅𝒚𝒆

𝒎𝒐𝒍𝒆𝒔 𝒐𝒇 𝒑𝒓𝒐𝒕𝒆𝒊𝒏
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         ε is the molar extinction co-efficient of the dye, and 
               MW denotes the molecular weight of the protein. 
 

2.8 Fluorescence anisotropy 

Fluorescence anisotropy is a widely used tool to study the rotational freedom a 

fluorescently-labeled molecule, using linearly polarized light (95). All the fluorescence 

anisotropy measurements in this study were performed in a fluorimeter with an in-

built T-configuration, equipped for polarization (Model FL322, Jobin Yvon). For binding 

experiments, 200 nM of synaptobrevin labeled with the fluorophore Oregon Green was 

used. Unlabeled acceptor complexes (the syntaxin1a/SNAP25a/Munc18-1 complex or 

the ΔN-complex) were added to the reaction mixture at a concentration of 400 nM. For 

each set of experiments, the g-factor was calculated. The g-factor (g) is a factor for 

correcting the polarization bias of the instrument, and is represented by the formula: 

 

𝒈 =
𝑰𝒉𝒗

𝑰𝒉𝒉
 

 

 

The buffer used for the anisotropy experiments included 20 mM HEPES, 150 mMKCl, 1 

mM DTT and 50 mM OG, at a pH of 7.4. Anisotropy of the samples were calculated using 

the formula: 

 

𝒓 =
𝑰𝒗𝒗 − 𝒈𝑰𝒗𝒉

𝑰𝒗𝒗 + 𝟐𝒈𝑰𝒗𝒉
 

 

 

where, ‘I’ denotes the fluorescence intensity, and the first and second subscript letter 

indicate the polarization of the exciting light and the emitting light, respectively. 

 

2.9 Förster Resonance Energy Transfer (FRET) 

Förster resonance energy transfer (FRET) provides an excellent tool for studying 

protein-protein interactions between two fluorescently-labeled probes (96). The 

major determinant of FRET is the spectral overlap between the donor emission and the 

acceptor absorption (97).  It however, also depends on other factors like the quantum 

                                                       
Eq. (2) 

Eq. (3) 



Materials and Methods 

39 
 

yield of the donor, the extinction co-efficient of the acceptor, and the relative spatial 

orientation between the donor and the acceptor fluorophore (98). FRET efficiency is 

inversely related to the sixth power of the distance, making it extremely sensitive to 

distance measurements (97) and can be used to calculate distances ranging from 10-

100Å. 

FRET measurements in this study were performed in a fluorimeter (FluoroMax 3, 

Horiba Jovin Yvon) equipped with a magnetic stirrer. For monitoring SNARE-zippering, 

FRET was measured between synaptobrevin (S28C) labeled with the fluorophore 

Oregon Green and SNAP25a (S130C) labeled with the fluorophore Texas Red. 

All the reactions were performed in a volume of 600 µL, at a temperature of 37°C. 

Oregon Green served as the donor fluorophore and Texas Red served as the acceptor 

fluorophore. The measurements were obtained by setting the excitation wavelength to 

460nm and the emission wavelength to 520nm, which correspond to the excitation and 

emission maximums of Oregon Green respectively. The quenching of the donor 

emission was reported as a measure of FRET during the course of the reactions. For 

recording fluorescence spectra, the excitation was set to 460nm and the spectra were 

recorded in a wavelength range of 400 nm-700 nm. The buffer used for the FRET 

measurements included 20 mM HEPES, 150 mM KCl, 1 mM DTT and 50 mM OG. 

 

2.10 Heteronuclear Single Quantum Coherence spectroscopy (HSQC) 

HSQC-spectroscopy is a highly sensitive 2D-NMR experiment based on the transfer of 

magnetization from the proton to a second nucleus (15N or 13C), using an insensitive 

nuclei enhanced by polarization transfer (INEPT) pulse sequence (99). In the first step, 

the transfer occurs from the proton to the second nucleus and during the second step, 

the magnetization gets transferred from the second nucleus, back to the proton via a 

retro-INEPT step, and the corresponding signal is then recorded. A series of 

experiments are usually recorded using increments in the time-delay between the two 

transfers (99). Each peak in a HSQC-spectra represents a bonded-H pair, where every 

co-ordinate corresponds to the chemical shifts of each of the H and N-atoms. In this 

study, the HSQC-NMR spectra were recorded over a time-period of 8 hours, and at a 

frequency of either 600 Hz or, 800 Hz.  

 

2.11 Liposome/proteoliposome preparation. 

In this study, small unilamellar vesicles (SUVs) were used for the incorporation of 

proteins/protein complexes into a membrane compartment. These vesicles roughly 

have a diameter of 50 nm, which is similar to the diameter of synaptic vesicles present 

in the nervous system (100). For the preparation of SUVs, 1,2-dioleoyl-sn-glycero-3-

phosphocholine (DOPC) , 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) , 
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1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) , cholesterol, 1-oleoyl-2-{12-[(7-

nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl}-sn-glycero-3-phosphoserine 

(NBD-PS) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine 

rhodamine B sulfonyl) (Rhodamine PE) from Avanti Polar lipids were used, similar to 

an earlier report (101).  

For the preparation of unlabeled liposomes, lipids were mixed in the given molar ratio: 

50% (DOPC):20% (DOPE):20% (DOPS):10% (Cholesterol). For labeled liposomes, the 

ratio of the lipids mixed was 50% (DOPC): 18.5% (DOPE): 1.5% (Rhodamine PE): 

18.5% (DOPS): 1.5% (NBD-PS): 10% (Cholesterol). After drying the lipids, the lipid film 

was resuspended in 20mM HEPES, 150mM KCl, 5% (w/v) sodium cholate solution and 

vortexed thoroughly. The lipid-mix was then mixed with the respective protein(s) in 

20mM HEPES, 150mM KCl, 3% (w/v) sodium cholate (101). The resuspended lipid film 

was mixed with the respective protein(s), and the proteoliposomes were prepared by 

subsequent detergent removal, using gel-filtration chromatography on a column 

packed with Sephadex G-50. The buffer composition for proteoliposome preparation 

was 20 mM HEPES, 150 mM KCl and 1 mM DTT at a pH of 7.4. The protein: lipid (n/n) 

ratio was 1:1000 (for synaptobrevin liposomes) and 1:2000 (for liposomes containing 

syntaxin1a/SNAP25a/Munc18-1 complex), unless stated otherwise. 

 

2.12 Co-flotation assay 

Co-flotation assay is a well-established assay based on the separation of molecular 

components over a density-gradient, using high-speed centrifugation (102). After 

centrifugation, liposomes and the associated proteins float in the topmost fractions, 

attributed by the low density of liposomes. This assay is a widely used tool to monitor 

protein-lipid interactions (103). A schematic overview of this assay has been 

represented in Figure 2.12-1.  

For all the co-flotation experiments carried out in this study, the density-gradient was  

prepared by carefully overlaying 40% Nycodenz with 30% Nycodenz and a final top 

layer containing the reconstitution buffer (20 mM HEPES, 150 mM KCl, pH 7.4). The 

density-gradient was then subjected to ultra-centrifugation (Thermo scientific, Sorvall, 

M150 SE) at a speed of 55,000 rpm in a S55S-rotor, for 1.5 hours at 4°C. After 

centrifugation, 25 µl samples were carefully taken from the top to the bottom of the 

gradient and analyzed by SDS-PAGE, followed by Coomassie Blue staining or western 

blotting. 
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2.13 SDS-PAGE and Coomassie Blue staining/ fluorescence scanning 

Sodium-dodecyl polyacrylamide gel electrophoresis is a classic technique in protein 

biochemistry for the separation of proteins/ protein complexes using an electric field 

(104). SDS-PAGE in this work was performed using pre-cast 4-12% Bis/Tris gels 

(Novagen) (105). MES (2-(N-morpholino)ethanesulfonic acid) was used as a running 

buffer for electrophoresis. After SDS-PAGE, the gels were stained with Coomassie 

Brilliant Blue R-250. Staining of the gels was performed by a brief heating of the gel in 

the staining solution followed by incubation for 10 minutes at room temperature, with 

slow shaking. Thereafter, the gels were incubated with a destaining solution comprised 

of 40% (v/v) ethanol and 10% (v/v) acetic acid. The gels were incubated with the 

destaining solution for 2-3 times, each for an incubation period of 10 minutes at room 

temperature, with shaking. 

In addition to the qualitative assessment of the purified proteins, SDS-PAGE can be 

employed as a tool to monitor the formation of SDS-resistant SNARE-complexes (106). 

In this study, it was used to test whether the addition of synaptobrevin to the 

syntaxin1a/SNAP25a/Munc18-1 complex can result in the formation of SDS-resistant 

SNARE-complexes. For this purpose, freshly-prepared syntaxin1a/SNAP25a/Munc18-

 

 
 

Figure 2.12-1.  Scheme of a typical co-flotation assay.  
A nycodenz density gradient is prepared by carefully overlaying nycodenz solutions. A mixture 
of liposomes and free proteins are mixed in the bottom layer of the gradient prior to 
centrifugation. Upon ultracentrifugation, liposomes and proteins associated with liposomes 
float at the top of the gradient due to the low density of the liposomes. Any unbound proteins, 
however, sediment at the bottom of the gradient after ultracentrifugation. [Adapted from 
(103)].  
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1 complexes were briefly incubated with synaptobrevin and the resulting mixture was 

then mixed with a sample buffer, followed by SDS-PAGE, without prior boiling of the 

samples. Coomassie Blue staining of the gel was performed to monitor the formation 

of SNARE-complexes. 

In this study, the formation of SDS-resistant SNARE-complexes was also assessed using 

SDS-PAGE, followed by fluorescence-scanning of the gels. For this, a fluorescently-

labeled synaptobrevin (Syb 1-96 C28-Oregon Green) was mixed with freshly prepared 

syntaxin1a/SNAP25a/Munc18-1 complex and the mixture was then incorporated into 

liposomes. The proteoliposomes were further purified using the co-flotation assay. 

25µL fractions of proteoliposomes from top to the bottom of the gradient were mixed 

with SDS-sample buffer and subjected to SDS-PAGE, without prior boiling of the 

samples. Presence of SDS-resistant bands in the liposomal fractions were observed by 

scanning the gels in a TECAN fluorescence scanner (FLA-7000). 

 

2.14 Western blot analysis 

Western blot analysis was performed after SDS-PAGE, by transferring proteins from a 

gel onto a nitrocellulose membrane in an electric field, at 100 Volts for one hour in 

transfer buffer [25mM Tris, 190mM glycine and 20% isopropanol]. The transfer of 

proteins to the membrane was checked by performing Ponceau staining, i.e. by 

incubating the membrane with Ponceau stain [0.1% (w/v) of Ponceau S in 5% (v/v) 

acetic acid] for 10 minutes (107). The nitrocellulose membranes were then washed 

with double-distilled water to remove the Ponceau stain completely. The membranes 

were then incubated with blocking buffer (5% milk in 1X TBST) for 1 hour at room 

temperature. The blocking buffer was then discarded and the membranes were 

incubated with the respective primary antibodies (usually used at a dilution of 1:1000), 

overnight at 4°C. The following day, any excess primary antibodies were removed from 

the membrane by washing with 1X TBST (three times, for 10 minutes each). Thereafter, 

the membranes were incubated in the secondary antibodies (1:10000), for 1 hour at 

room temperature. After repeated washing of the membranes to remove any unbound  

secondary antibodies, the membranes were developed using enhanced 

chemiluminescence. The blots were visualized in the luminescent scanner Fujifilm FAS-

1000, equipped with a CCD camera. 

 

2.15 Chemical cross-linking 

Chemical cross-linking of proteins/protein complexes is an informative method to 

determine the structural details of protein-protein interactions (108). The general 

principle of a cross-linking reaction involves the formation of a covalent bond with 

specific reactive groups (for example, primary amine group, sulfhydryl group, carboxyl 
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group or carbonyl group) of proteins resulting in a bio-conjugate that can be used for 

attaining structural information using mass spectrometry (MS/MS) (108).  

In this study, the chemical cross-linker, bis(sulfosuccinimidyl)suberate (BS3, Thermo 

Scientific) was used for crosslinking of the syntaxin1a/SNAP25a/Munc18-1 complex. 

BS3 has a spacer arm-length of 11.4Å and crosslinks the amino side-chains of the lysine 

residues and the free amino-terminus of proteins. The optimal amount of cross-linker 

to be used was determined by performing a titration with different concentrations of 

the cross-linker (see Figure 3.6-1). Having determined the optimal concentration, the 

syntaxin1a/SNAP25a/Munc18-1 complex was cross-linked using that particular 

concentration of the cross-linker and the sample was then subjected to SDS-PAGE, 

followed by in-gel trypsin digestion (109) and subsequent analysis by mass 

spectrometry (MS/MS).  

 

2.16 Mass spectrometry (MS/MS) 

The reconstituted proteolytic peptides were separated by a nano-liquid 

chromatography system (UltiMateTM 3000RSLCnano system). The system comprised 

of a C18-trapping column of 3 cm× 150 µm inner diameter, in-line with a 30 cm × 75 

µm inner diameter C18 analytical column (both packed in-house with 1.9-µm C18 

material, from Dr. Maisch GmbH). Subsequently, the peptides were loaded on the 

trapping column and desalted for 3 minutes at a flow rate of 10 µL/min in 95% of 

mobile phase A (0.1% FA in H2O, v/v) and 5% of mobile phase B (80% ACN and 0.05% 

FA in H2O, v/v). Thereafter, the peptides were eluted and separated on the analytical 

column using a 43-minutes linear gradient of 15-46% mobile phase B, at a flow rate of 

300 nL/min (109). The separated peptides were analyzed by Orbitrap Fusion mass 

spectrometer (Thermo Scientfic). 

A method called ‘top-20’ was employed, where the 20 most intense precursor ions with 

charge states 3-8 in the survey scan (380-1580 m/z scan range) were isolated in the 

quadrupole mass filter (isolation window 1.6 m/z) and fragmented in the higher 

energy collisional dissociation (HCD) cell with normalized energy. A dynamic exclusion 

of 20 seconds was used. Both the survey scan (MS1) and the product ion scan (MS2) 

were performed in the Orbitrap at 120,000 and 30,000 resolution, respectively.  Spray 

voltage was set at 2.3 kV and 60% of S-lens RF level was used. Automatic gain control 

(AGC) targets were set at 5×105 (MS1) and 5×104 (MS2).  

The raw data were converted to mgf files by Proteome Discoverer 2.0.0.802 software 

(Thermo Scientific). The mgf files were searched against a FASTA database containing 

the sequences of syntaxin1a, SNAP25a, synaptobrevin2 and Munc 18-1 from Rattus 

norvegicus by pLink 1.23 software using a target-decoy strategy (110). Database 

search parameters included mass accuracies of MS1<10 ppm and MS2 <20 ppm, 
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carbamidomethylation on cysteine as a fixed modification, oxidation on methionine as 

variable modification. Number of residues of each peptide on a cross-link pair was set 

between 4 and 40. A maximum of two trypsin missed-cleavage site was allowed. The 

results were obtained with 1% false discovery rate. 

 

2.17 Trypsin-digestion assay 

Trypsin-digestion assay is a biochemical tool to determine the orientation of 

proteins/protein complexes after their insertion into liposomes (110). The technique 

involves limited proteolysis of proteins/protein complexes in the presence of a 

proteolytic enzyme and the absence of a detergent. The amount of protein(s) inserted 

facing the inside of the liposomes show resistance to proteolysis because they get 

protected by the membrane of the liposomes and thereby represent the fraction of 

proteins in the ‘inside-out’ orientation. The fraction of protein(s) inserted with the 

‘right-side out’ orientation are exposed to the proteolytic activity of the enzyme and 

hence, get cleaved. A comparison of the cleaved and the uncleaved fraction of the 

proteins provides an estimate of the correctly oriented proteins on the liposomes. 

In this study, limited proteolysis was employed to determine the orientation of the 

syntaxin1a/SNAP25a/Munc18-1 complex after its incorporation into the liposomes.  

Proteoliposomes of specific lipid compositions were prepared as described in the 

previous section. Freshly prepared proteoliposomes were incubated with 0.1 mg of 

Trypsin (Sigma Aldrich) in the presence or absence of 0.3% (w/v) Triton X-100 at 37°C, 

for 2 hours. As a negative control, the proteoliposomes were incubated only with the 

reconstitution buffer (without Trypsin or TritonX-100), also for 2 hours at 37°C. The 

reconstitution buffer consisted of 20mM HEPES, 150mM KCl, and 1mM DTT (at a pH of 

7.4). The reactions were performed in a 50 µL reaction volume. After completion of the 

incubation period, the samples were analyzed by SDS-PAGE followed by western 

blotting. As a final step, the samples were probed using a polyclonal antibody against 

Munc18-1 (111). 
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3 Results 

3.1 Effect of Munc18-1 on the syntaxin1a/SNAP25a (2:1) complex 

The precise composition and conformation of the acceptor complexes present on the 

neuronal plasma membrane largely remain unknown. The two major propositions for 

the acceptor complexes for the reception of synaptic vesicles are (i) the 

syntaxin1a/SNAP25a complex (112) and (ii) the syntaxin1a/Munc18-1 complex (84). 

As highlighted in one of the previous sections, the syntaxin1a/SNAP25a complex is 

susceptible to disassembly by NSF and αSNAP. Moreover, according to a recent study, 

it has been proposed that the syntaxin1a/SNAP25a complex can be acted upon by the 

SM-protein Munc18-1, to result in the formation of syntaxin1a/Munc18-1 complex 

(85). In this report, however, a cytoplasmic variant of syntaxin1a (Syx 2-253) had been 

used. Several studies have reported that the interaction of syntaxin1a with its partner 

proteins get altered in the presence of the transmembrane segment of syntaxin1a 

(113–115). Therefore, it becomes important to revisit the mechanistic details of 

SNARE-mediated fusion in a system incorporating the transmembrane segment of 

syntaxin1a. In this study, a full-length construct of syntaxin1a, containing its 

transmembrane domain has been used for most of the experiments, unless stated 

otherwise.  

As a starting point, I wanted to establish the effect of Munc18-1 on the 

syntaxin1a/SNAP25a (2:1) complex. The questions to be addressed in this section 

were: 

a) Does Munc18-1 cause a complete displacement of SNAP25a from the 

syntaxin1a/SNAP25a complex to form syntaxin1a/Munc18-1 complex? or, 

b)  Does Munc18-1 interact with the syntaxin1a/SNAP25a complex to form a 

ternary syntaxin1a/SNAP25a/Munc18-1 complex? 

 

To address these questions, I employed FRET-based measurements as a first step to 

monitor the impact of Munc18-1 on the syntaxin1a/SNAP25a complex. For this 

purpose, fluorescently labeled syntaxin1a (Syx 1-288, C197-Oregon Green) and 

fluorescently labeled SNAP25a (1-206, C130- Texas Red) were used to assemble the 

syntaxin1a/SNAP25a (2:1) complex. Oregon Green and Texas Red are fluorescent dyes 

that form a FRET-pair and have widely been used for in-vitro FRET-based 

measurements (116). The assembled complex was further purified by ion-exchange 

chromatography and used for the subsequent experiments. 
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The changes in FRET between the two fluorophores in the syntaxin1a/SNAP25a (2:1) 

complex were studied upon the addition of Munc18-1.  In the first set of experiments, 

the dequenching of the donor emission (syntaxin1a labeled with Oregon Green) was 

recorded upon the addition of Munc18-1. A slow dequenching of the donor emission 

was observed upon the addition of Munc18-1 (Figure 3.1-1 A, black curve). As a control 

experiment, syntaxin1a that had been pre-incubated with Munc18-1 was added to the 

double-labeled syntaxin1a/SNAP25a complex. In this case, no dequenching of the 

donor emission was observed (Figure 3.1-1 A, red curve). These observations indicated 

that Munc18-1 alters the interaction between syntaxin1a and SNAP25a in the complex, 

but the magnitude of this effect remained unclear. In order to assess the dependence 

of the dequenching reaction on the concentration of Munc18-1, a titration was 

performed with increasing concentrations of Munc18-1. The reaction seemed to 

saturate at a concentration of 0.5µM of Munc18-1 (Figure 3.1-1 B, red curve). This 

concentration of Munc18-1 was, therefore, used for all subsequent experiments. 

 

 

 

 

Figure 3.1-1. Effect of Munc18-1 on the syntaxin1a/SNAP5a (2:1) complex in solution. 
(A) Addition of Munc18-1 to the syntaxin1a/SNAP25a (2:1) complex resulted in a slow 
dequenching of the donor emission (black curve). No increase in the donor emission was 
recorded upon the addition of Munc18-1 that had been previously incubated with full-length 
syntaxin1a. (B) Titration showing the effect of increasing concentrations of Munc18-1 on the 
syntaxin1a/SNAP25a complex. The reaction reached saturation at a 0.5µM concentration of 
Munc18-1 (red curve). 
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The next important question to be addressed was to assess the degree of effect caused 

by Munc18-1 on the syntaxin1a/SNAP25a complex. To address this issue, the SNARE-

disassembly machinery, NSF and αSNAP were incorporated in the above assay. NSF- 

αSNAP have been known to completely disassemble the syntaxin1a/SNAP25a complex 

(106). Thus, a comparison of the effect of Munc18-1 and NSF- αSNAP on the 

syntaxin1a/SNAP25a complex would provide a rough estimate of the displacement of 

SNAP25a from the syntaxin1a/SNAP25a complex caused by Munc18-1. As shown in 

Figure 3.1-2, the extent of dequenching caused by Munc18-1 on the 

syntaxin1a/SNAP25a complex was much less as compared to that caused by NSF- 

αSNAP. 

 

 

 

 

 

Figure 3.1-2 Determination of the magnitude of Munc18-1 effect on the 
syntaxin1a/SNAP25a complex.  
(A) The degree of donor dequenching on a double-labeled syntaxin1a/SNAP25a complex was 
determined upon the addition of Munc18-1, followed by NSF-αSNAP, in the presence of ATP 
and magnesium. Subsequent addition of   NSF-αSNAP,   after Munc18-1 addition to the complex 
resulted in a very fast dequenching of the donor emission. (B) Assuming the effect of NSF-
αSNAP to be 100%, the degree of dequenching caused by the addition of Munc18-1 was 
calculated to be only 20%. 
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Since, NSF- αSNAP can completely disassemble the syntaxin1a/SNAP25a complexes, 

the magnitude of its effect was assumed to be 100%. Based on this assumption, the 

effect of Munc18-1 on the binary complexes was calculated to be only about 20% (see 

Figure 3.1-2 B). Collectively, the above-experiments indicated that Munc18-1 only 

produces a mild effect on the syntaxin1a/SNAP25a (2:1) complex.  

The slow dequenching of the donor emission observed upon Munc18-1 addition could 

be indicative of two possible phenomenon: 

a) The displacement of SNAP25a by Munc18-1 from the syntaxin1a/SNAP25a 

complex.  OR, 

b) The displacement of a second syntaxin1a from the 2:1 syntaxin1a/SNAP25a 

complex by Munc18-1, resulting in the formation of a ternary 

syntaxin1a/SNAP25a/Munc18-1 complex. 

 

In order to gain further support in favor of either of these two hypotheses, I tried to 

study the effect of Munc18-1 on the syntaxin1a/SNAP25a complex using nuclear 

magnetic resonance (NMR). For this purpose, full-length SNAP25a (1-206) containing 
15N was purified and was subsequently used for the assembly and purification of 

syntaxin1a/SNAP25a complexes. I used heteronuclear single quantum coherence 

spectroscopy (HSQC) to compare the spectra of SNAP25a under three different 

conditions. HSQC-NMR spectra of SNAP25a were recorded to assess its conformational 

state in the syntaxin1a/SNAP25a complex and also after the addition of Munc18-1 to 

the syntaxin1a/SNAP25a complex. As a control, the HSQC-NMR spectrum of 

monomeric SNAP25a was also recorded. 

The spectra of SNAP25a obtained under the three conditions mentioned above, have 

been represented in Figure 3.1-3. A large number of the cross-peaks of SNAP25a (as 

compared to its monomeric form, Figure 3.1-3 A) were seen to disappear upon the 

formation of syntaxin1a/SNAP25a complex (Figure 3.1-3 B). Upon addition of Munc18- 

1 to the syntaxin1a/SNAP25a complex, a partial reappearance of some of the cross-

peaks of SNAP25a was observed (Figure 3.1-3 C). The spectra however remained quite 

different as compared to that of unbound SNAP25a (see Figure 3.1-3 A). These 

observations suggested that the addition of Munc18-1 does not completely displace 

SNAP25a from the syntaxin1a/SNAP25a (2:1) complex.  

 



Results 

49 
 

 

 
Figure 3.1-3 HSQC-NMR spectra of 15N-SNAP25a under different conditions. 
HSQC-NMR spectra of (A) unbound SNAP25a, (B) SNAP25a in the syntaxin1a/SNAP25a complex 
and, (C) SNAP25a after addition of Munc18-1 to the syntaxin1a/SNAP25a. [These experiments 
were performed in collaboration with Dr. Nils Alexander Lakomek]. 
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In summary, both the NMR spectra and the FRET measurements were indicative of 

mild structural effects of Munc18-1on the syntaxin1a/SNAP25a (2:1) complex. HSQC-

NMR measurements, however, made it more reasonable to believe that Munc18-1 does 

not completely displace SNAP25a from the syntaxin1a/SNAP25a complex. Had this 

been the case, the HSQC-NMR spectrum of SNAP25a upon the addition of Munc18-1 to 

the syntaxin1a/SNAP25a complex would have been similar to the HSQC-NMR 

spectrum of unbound SNAP25a. Based on these observations, it was concluded, that 

the addition of Munc18-1 to syntaxin1a/SNAP25a complex likely results in the 

displacement of the second syntaxin1a molecule, resulting in the subsequent formation 

of a ternary syntaxin1a/SNAP25a/Munc18-1 complex. 

In the subsequent time-course, efforts were made to perform the peak-assignment for 

the cross-peaks observed in the HSQC-NMR spectra of SNAP25a. The peak assignments 

were performed by Dr. Nils Alexander Lakomek, and have been represented in Figure 

3.1-4 A. Figure 3.1-4 B shows an overlay of SNAP25a in the syntaxin1a/SNAP25a 

complex (blue dots) and upon addition of Munc18-1 to the syntaxin1a/SNAP25a 

complex (red dots). The residues of SNAP25a which showed reappearance upon the 

addition of Munc18-1 to the syntaxin1a/SNAP25a complex have been labeled in Figure 

3.1-4 B. These residues were found to be positioned on the SNARE-motif1 (SN1) as well 

as SNARE motif2 (SN2) of SNAP25a. It, however, needs to be mentioned that the 

assignments are tentative, because the frequency used for recording the spectra were 

not identical in all the three cases. The assignments, are nonetheless important since 

they provide a broad overview of the structural effect of Munc18-1 on the 

syntaxin1a/SNAP25a complexes.  

The reappearance of the residues lying in the first SNARE-motif of SNAP25a can be 

explained by a conformational change in SNAP25a accompanied by the formation of a 

ternary syntaxin1a/SNAP25a/Munc18-1 complex. And, the reappearance of the peaks 

in the second SNARE-motif of SNAP25a can be explained by the displacement of the 

second syntaxin1a molecule from the syntaxin1a/SNAP25a (2:1 complex) upon 

addition of Munc18-1. Therefore, the assignments of the cross-peaks (although 

tentative), provided an additional support for the conclusions obtained from the FRET-

measurements and the HSQC-NMR experiments. 
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Figure 3.1-4. Peak assignments of SNAP25a for the cross-peaks observed in the HSQC-
NMR spectra. 
(A) Peak assignments for the unbound SNAP25a. (B) Peak assignments for the SNAP25a 
residues that showed reappearance upon the addition of Munc18-1 to the 
syntaxin1a/SNAP25a/Munc18-1 complex. [These experiments were performed in 
collaboration with Dr. Nils Alexander Lakomek]. 

 



                                                                               Results                                                                                                                                                              
                              

52 
 

3.2 Optimization of the in-vitro assembly and purification of the ternary 

syntaxin1a/SNAP25a/Munc18-1 complex. 

As a next step, I wanted to perform the in-vitro assembly and the subsequent 

purification of the syntaxin1a/SNAP25a/Munc18-1 complex. The complex formation 

and purification was tested under different conditions which included: 

 Order of addition of the constituent proteins 

 Salt concentration 

 Buffer conditions  

To start with, I tried to reconstitute the complex using simultaneous mixing of all the 
three proteins namely syntaxin1a, SNAP25a and Munc18-1. This method, however 
resulted in the precipitation of the protein complex and hence could not be used for 
successful complex assembly. As a next step, I tried to constitute the proteins by 
subsequent mixing of the proteins. To this end, syntaxin1a and SNAP25a were mixed 
together and incubated overnight at 4°C, followed by the mixing of a 2-fold molar 
excess of Munc18-1 on the following day, and a further incubation for 3 hours at room 
temperature. The resulting complex was then further purified by chromatographic 
procedures like ion-exchange chromatography and/or size-exclusion 
chromatography. Both ion-exchange chromatography and size-exclusion 
chromatography resulted in a peak fraction containing syntaxin1a, SNAP25a and 
Munc18-1, thereby indicating that these three proteins can assemble together to form 
a ternary syntaxin1a/SNAP25a/Munc18-1 complex. Using ion-exchange 
chromatography, the complex was purified over a salt gradient of 0-1000mM NaCl, and 
the complex was seen to elute at a salt concentration of ≈300mM (Figure 3.2-1 A, B). 
As a quality check to test for the presence of aggregates in the purified sample, the 
syntaxin1a/SNAP25a/Munc18-1 complex was also purified using size-exclusion 
chromatography. As shown in Figure 3.2-1 C, there was no elution of proteins in the 
void volume of the column (before 8mL), thereby indicating the absence of protein 
aggregates in the purified protein sample. Size-exclusion chromatography was 
performed at a salt concentration of 200 mM NaCl. 
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Figure 3.2-1. Purification of the syntaxin1a/SNAP25a/Munc18-1 complex.  
(A) Purification of the syntaxin1a/SNAP25a/Munc18-1 complex using ion-exchange 
chromatography. (B) SDS-PAGE and Coomassie Blue staining showed the presence of all the three 
proteins in the elution peak. (C) Purification of the complex using size-exclusion chromatography. 
(D) Analysis of the purified samples by SDS-PAGE and Coomassie Blue staining. [Refer to Figure 
3.5-3 for the elution profiles of the monomeric constituents of the syntaxin1a/SNAP25a/Munc18-
1 complex].   
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3.3 Syntaxin1a/SNAP25a/Munc18-1 as an efficient acceptor-complex for 

synaptobrevin-binding. 

After the successful optimization of purification of the ternary 

syntaxin1a/SNAP25a/Munc18-1 complex, I wanted to test whether this complex can 

serve as an efficient acceptor for synaptobrevin-binding and subsequent SNARE-

complex assembly. 

 

3.3.1 Studying synaptobrevin-binding to the syntaxin1a/SNAP25a/Munc18-1 

complex using fluorescence anisotropy 

As a first step towards this approach, I used fluorescence anisotropy to monitor the 

binding of synaptobrevin to the syntaxin1a/SNAP25a/Munc18-1 complex. 

Fluorescence anisotropy measurements report the freedom of rotation of a 

fluorescently-labeled molecule and hence can be used to study protein-protein 

interactions (117). The synaptobrevin used for this assay consisted of a single-cysteine 

mutant of the full-length cytoplasmic variant of synaptobrevin (1-96), labeled at 

position 28 with the fluorophore Oregon Green.  

 

 

 

 
Figure 3.3.1-1. Syntaxin1a/SNAP25a/Munc18-1 complex binds efficiently to 
synaptobrevin. 
(A) Schematic representation of the fluorescence anisotropy experiment. (B) Addition of the 
syntaxin1a/SNAP5a/Munc18-1 complex to synaptobrevin resulted in a very fast increase in 
anisotropy (black curve). No increase in anisotropy was recorded when excess of unlabeled 
synaptobrevin was added to the reaction mixture (red curve). 
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As shown in Figure 3.3.1-1 B (black curve), the addition of unlabeled 

syntaxin1a/SNAP25a/Munc18-1 complex to fluorescently-labeled synaptobrevin 

resulted in a fast increase in the anisotropy of synaptobrevin, thereby indicating a fast 

binding of synaptobrevin to the syntaxin1a/SNAP25a/Munc18-1 complex.  

As a control reaction, the acceptor complex was added in the presence of excess 

amounts of unlabeled synaptobrevin. In this case, no increase in the anisotropy of 

synaptobrevin was recorded (Figure 3.3.1-1 B, red curve). As a next step, the anisotropy 

reaction was also performed over a range of concentrations of the 

syntaxin1a/SNAP25a/Munc18-1 complex. The complex exhibited a dose-dependent 

response for the syntaxin1a/SNAP25a/Munc18-1 complex as shown in Figure 3.3.1-2.  

 

 

 
Figure 3.3.1-2. Dose-dependent response for the syntaxin1a/SNAP25a/Munc18-1 
complex. 
Addition of increasing concentrations of the syntaxin1a/SNAP25a/Munc18-1 complex 
resulted in a dose-dependent increase of the anisotropy of the fluorescently-labeled 
synaptobrevin. The range of concentrations of the acceptor complex used for the fluorescence 
anisotropy measurements was 0.06µM - 1µM. 
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3.3.2 Förster Resonance Energy Transfer (FRET) 

In order to gain a deeper understanding of the kinetics of synaptobrevin-binding to the 

syntaxin1a/SNAP25a/Munc18-1 complex, I tried to confirm the results from 

fluorescence anisotropy using FRET-measurements.  

 

 

 

 

 

 

 

Figure 3.3.2-1. Monitoring SNARE-zippering between synaptobrevin and the 
syntaxin1a/SNAP25a/Munc18-1 complex using FRET. 
(A) Addition of the acceptor syntaxin1a/SNAP25a/Munc18-1 complex to synaptobrevin 
resulted in a fast quenching of the donor emission (black curve). No quenching of the donor 
emission was observed when the acceptor complex was added in the presence of excess of 
unlabeled synaptobrevin (red curve).  (B) Scans of the fluorescence spectrum were also 
recorded before (black curve) and after the addition of the ternary 
syntaxin1a/SNAP25a/Munc18-1 complex (red curve). The addition of the acceptor complex 
resulted in a decrease in the donor emission, followed by a subsequent increase in the acceptor 
emission, thereby indicating that the donor quenching takes place due to FRET. Fluorescent 
scans were performed by using an excitation wavelength of 460 nm and recording the emission 
spectrum in the wavelength range of 490 nm-700 nm. 
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For this purpose, a single-cysteine mutant of SNAP25a was fluorescently labeled with 

the fluorophore Texas Red at position 130. The labeled SNAP25a was then used for the 

assembly and subsequent purification of a fluorescent version of the 

syntaxin1a/SNAP25a/Munc18-1 complex. The binding of the same cytoplasmic 

fragment of synaptobrevin (as used in the previous section for anisotropy 

measurements) was used to monitor SNARE-zippering with the labeled 

syntaxin1a/SNAP25a/Munc18-1 complex. 

As shown in Figure 3.3.2-1 A, the addition of the syntaxin1a/SNAP25a/Munc18-1 

complex to synaptobrevin, resulted in a fast quenching of the donor emission (black 

curve). The reaction could be completely inhibited when an excess of unlabeled 

synaptobrevin was present in the reaction mixture (red curve). As shown in Figure 

3.3.2-1 B, the decrease in the emission of synaptobrevin (donor) was accompanied by 

a simultaneous decrease in the emission of the syntaxin1a/SNAP25a/Munc18-1 

complex (acceptor), thereby validating the occurrence of FRET. 

 

3.4 Comparison of syntaxin1a/SNAP25a/Munc18-1 complex with the 

previously characterized acceptor complexes. 

After establishing the binding of synaptobrevin to the syntaxin1a/SNAP25a/Munc18-

1 complex using both fluorescent anisotropy and FRET measurements, I wanted to 

establish its efficiency as an acceptor complex. To this end, I performed a comparison 

of its activity with the previously characterized acceptor complexes like the 

syntaxin1a/SNAP25a complex (118) and the C-terminally stabilized ΔN-complex (101). 

The syntaxin1a/SNAP25a (2:1) complex acts as a ‘slow acceptor complex’ because in 

this complex, both the SNARE-motifs of syntaxin1a are occupied by SNAP25a. The 

second syntaxin1a molecule, poses a competition for synaptobrevin-binding, thereby 

lowering the speed of the reaction (118). On the other hand, the C-terminally stabilized 

ΔN-complex has been characterized as a ‘fast acceptor complex’ because the presence 

of a C-terminal synaptobrevin fragment in this complex prevents the binding of a 

second syntaxin1a molecule, thereby facilitating synaptobrevin-binding (92). 

In order to compare the efficiencies of the different complexes, I assembled and 
purified the unlabeled version of the syntaxin1a/SNAP25a complex as well as the 
labeled and unlabeled versions of both ΔN-complex and the 
syntaxin1a/SNAP25a/Munc18-1 complex. The unlabeled syntaxin1a/SNAP25a 
complex and syntaxin1a/SNAP25a/Munc18-1 complexes were used to test the binding 
of synaptobrevin, using fluorescence anisotropy measurements. As shown in Figure 
3.4-1 A, the binding of synaptobrevin to the syntaxin1a/SNAP25a complex (black 
curve) was much slower as compared to that of the syntaxin1a/SNAP25a/Munc18-1 
complex (red curve). Both of these reactions could be inhibited by the addition of excess 
of unlabeled synaptobrevin to the reaction mixture, thereby indicating that the  
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reactions were SNARE-specific. The quantification of the aforementioned fluorescence 

anisotropy measurements have been represented in Figure 3.4-2 B.  Quantifications 

were performed at a time-point of 100 seconds (black bars) and 600 seconds (red bars), 

respectively. The error bars indicate the range of values from three independent set of 

experiments. 

 

 

 

 

 

 

 

 

Figure 3.4-1 Comparison of the syntaxin1a/SNAP25a/Munc18-1 complex with the 
syntaxin1a/SNAP25a (2:1) complex. 
(A) Addition of unlabeled syntaxin1a/SNAP25a complexes to fluorescently-labeled 
synaptobrevin resulted in a slow increase in anisotropy (black curve), in contrast to the fast 
increase observed upon the addition of the syntaxin1a/SNAP25a/Munc18-1 complex. Both of 
these reactions could be completely inhibited upon the addition of an excess of unlabeled 
synaptobrevin to the reaction mixture (dotted curves). (B) Quantification of the fluorescence 
anisotropy experiments. Quantifications were performed at 100 seconds (black curve) and 600 
seconds (red curve) after addition of the acceptor complexes. Error bars indicate the range of 
values, n=3. 
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After having compared the efficiency of the syntaxin1a/SNAP25a/Munc18-1 complex 

with the 2:1 syntaxin1a/SNAP25a complex, I carried out the comparison with the ΔN-

complex. The same approach using fluorescence anisotropy measurements (as 

described above) was employed to compare the synaptobrevin-binding efficiencies of 

the ΔN-complex and the syntaxin1a/SNAP25a/Munc18-1 complex.  

 

 

 

 

 

 

 
 
 

Figure 3.4-2 Comparison of the synaptobrevin-binding efficiency between the 
syntaxin1a/SNAP25a/Munc18-1 complex and the ΔN-complex. 
(A) Synaptobrevin-binding to the ΔN-complex (black curve) and the 
syntaxin1a/SNAP25a/Munc18-1 complex (red curve) proceeded on a similar time-scale. Both 
of these reactions could be inhibited by addition of excess unlabeled synaptobrevin to the 
reaction mixture. (B) Quantification of the anisotropy measurements from three independent 
experiments, at 100 seconds (black bars) and 600 seconds (red bars) respectively. Error bars 
indicate the range of values. 
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The above comparison revealed that synaptobrevin-binding to both ΔN-complex and 

the syntaxin1a/SNAP25a/Munc18-1 complex proceeds with similar kinetics (Figure 

3.4-2 A, black and red curves). Quantifications of the anisotropy measurements have 

been shown in Figure 3.4-2 B, where the error bars indicate the range of values from 

three independent experiments.  

The remarkable similarity in the kinetics of synaptobrevin-binding exhibited by the 

ΔN-complex and the syntaxin1a/SNAP25a/Munc18-1 complex was quite interesting, 

providing clues to the role of Munc18-1 in structuring the Q-SNAREs for SNARE-

complex assembly. I therefore wanted to be study the association of synaptobrevin 

with these complexes using FRET-measurements, in order to gain more insights into 

the process of SNARE-zippering. 

For this purpose, I used fluorescently-labeled version of a single-cysteine mutant of 

SNAP25a (C130), labeled with Texas Red to assemble and purify fluorescently-labeled 

versions of the syntaxin1a/SNAP25a/Munc18-1 complex and the ΔN-complex. These 

labeled acceptor complexes were subsequently used for monitoring SNARE-complex 

assembly by measuring FRET between SNAP25a (incorporated in the acceptor 

complexes) and the full cytoplasmic version of a single-cysteine mutant of 

synaptobrevin (Syb 1-96 C28), that had been fluorescently labeled with Oregon Green. 

SNARE-complex assembly was monitored as quenching of the donor emission 

observed upon the addition of the acceptor complexes. As shown in Figure 3.4-3 A, the 

addition of the fluorescently-labeled syntaxin1a/SNAP25a/Munc18-1 complex (red 

curve) as well as the ΔN-complex (black curve) to fluorescently-labeled synaptobrevin 

resulted in a fast quenching of the donor emission.  The reaction could be inhibited by 

the addition of an excess unlabeled synaptobrevin to the reaction mixture (dotted red 

curve), indicating the SNARE-specificity of the reaction. Thereafter, the degree of 

quenching of the donor emission was also recorded over a range of concentrations of 

the syntaxin1a/SNAP25a/Munc18-1 complex.  As shown in Figure 3.4-3 B, a dose-

dependent response was observed for the FRET measurements using 

syntaxin1a/SNAP25a/Munc18-1 as an acceptor complex.  

 

 

  

 



Results 

61 
 

 

 

 

 

Collectively, the experiments performed in this section could faithfully establish that 

the syntaxin1a/SNAP25a/Munc18-1 complex serves as an efficient acceptor complex, 

with its synaptobrevin-binding efficiency being similar to that of the non-physiological 

ΔN-complex. 

 

 

 

 

 

 

Figure 3.4-3. FRET measurements showing the kinetics of SNARE-complex formation, 
using the syntaxin1a/SNAP25a/Munc18-1 complex and the ΔN-complex. 
(A) A fast dequenching of the donor emission was observed upon the addition of the 
syntaxin1a/SNAP25a/Munc18-1 complex (red curve) as well as the ΔN-complex (black curve). 
The reaction could be inhibited upon adding excess of unlabeled synaptobrevin to the reaction 
mixture (red dotted curve). (B) Increasing concentrations of the 
syntaxin1a/SNAP25a/Munc18-1 complexes resulted in an increasing quenching of the donor 
emission, thereby exhibiting a dose-dependent response. 
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3.5 Stability of the syntaxin1a/SNAP25a/Munc18-1 complex. 

After having established the functional significance of the 

syntaxin1a/SNAP25a/Munc18-1 complex, I wanted to delve deeper into the 

biochemical characteristics of this complex. To this end, I wanted to determine the in-

vitro stability of the syntaxin1a/SNAP25a/Munc18-1 complex. 

The stability of the syntaxin1a/SNAP25a/Munc18-1 complex was determined using a 

time-based approach. This involved measurement of the synaptobrevin-binding 

activity of the syntaxin1a/SNAP25a/Munc18-1 complex at different time-intervals 

post- purification, using fluorescence anisotropy. 

 

 

 

 

   

 

   Figure 3.5-1. The syntaxin1a/SNAP25a/Munc18-1 complex loses its stability with time. 
(A) Time-dependent loss in the activity of the syntaxin1a/SNAP25a/Munc18-1 complex 
assessed by fluorescence anisotropy measurements.  A considerable loss in the activity of the 
syntaxin1a/SNAP25a/Munc18-1 complex was observed after five hours of purification (B) 
Fluorescence anisotropy of synaptobrevin remained unaffected upon the addition of either 
monomeric syntaxin1a (black curve), SNAP25a (blue curve) or Munc18-1 (red curve). 
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As shown in    Figure 3.5-1 A, the syntaxin1a/SNAP25a/Munc18-1 complex appeared 

to lose its synaptobrevin-binding activity over extended periods of time, with 

considerable loss in its activity five hours post-purification. This decrease indicated a 

loss of the integrity of the complex with increasing time-course. 

Taking this into account, it became important to determine whether or not, the 

monomers formed due to the dissociation of the syntaxin1a/SNAP25a/Munc18-1 

complex could contribute to any increase in the anisotropy of synaptobrevin. To test 

this, I used fluorescently-labeled synaptobrevin to monitor the changes in its 

anisotropy upon the addition of monomeric syntaxin1a, SNAP25a and Munc18-1 

respectively.  

As indicated in    Figure 3.5-1 B, no increase in the anisotropy of synaptobrevin could 

be observed upon the addition of monomeric syntaxin1a (black curve), SNAP25a (red 

curve) or Munc18-1 (blue curve). This observation therefore asserted the fact that, 

irrespective of the unstable nature of the syntaxin1a/SNAP25a/Munc18-1 complex, it 

can be believed that the fast synaptobrevin-binding activity of the 

syntaxin1a/SNAP25a/Munc18-1 complex, is solely the property of the complex and is 

not attributed by any monomers that could be present in the solution at extended time-

points. 

As a next step, I wanted to further verify the dissociation of the 

syntaxin1a/SNAP25a/Munc18-1 complex into its constituent proteins, using an 

independent approach. To this end, I performed the in-vitro assembly and purification 

of the syntaxin1a/SNAP25a/Munc18-1 complex and subsequently injected the 

purified complex into an analytical column for size-exclusion chromatography 

(Superdex 10/300 Increase, GE Healthcare). The results of this experiment have been 

shown in Figure 3.5-2. 

The elution profile from size-exclusion chromatography revealed the presence of one 

major peak that corresponded to the ternary complex but, also showed the presence of 

additional peaks at higher retention volumes (Figure 3.5-2 B). The presence of 

additional peaks were indicative of the unstable nature of the 

syntaxin1a/SNAP25a/Munc18-1 complex under the given experimental conditions. 
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As a next step, I tried to validate whether the additional peaks observed upon size-

exclusion chromatography corresponded to the respective monomers of the 

syntaxin1a/SNAP25a/Munc18-1. For this purpose, I used the same analytical gel-

filtration column as indicated before (Superdex 10/300 Increase, GE Healthcare) to 

determine the retention volumes for the monomeric constituents of the 

syntaxin1a/SNAP25a/Munc18-1 complex.  

 

 

 

Figure 3.5-2. Stability of the syntaxin1a/SNAP25a/Munc18-1 complex. 
(A) Purification of the syntaxin1a/SNAP25a/Munc18-1 using ion-exchange chromatography. 
(B) The subsequent injection of the purified sample into an analytical gel-filtration column 
showed the presence of a main peak (pink dotted lines) corresponding to the 
syntaxin1a/SNAP25a/Munc18-1 complex. Small additional peaks were, however, also 
observed that were later characterized to correspond to the monomeric constituents of the 
syntaxin1a/SNAP25a/Munc18-1 complex. 
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As indicated in Figure 3.5-3 A, the peaks corresponding to the retention volumes 11.3 
mL, 13.2 mL and 13.5 mL corresponded to the proteins Munc18-1 (black dotted curve), 
syntaxin1a (green dotted curve) and SNAP25a (pink dotted curve) respectively. These 
three peaks showed perfect correlation with the three minor peaks observed upon the 
subsequent injection of the purified syntaxin1a/SNAP25a/Munc18-1 complex into 
size-exclusion chromatography (Figure 3.5-3 A, red solid curve). These observations 
therefore confirmed that the syntaxin1a/SNAP25a/Munc18-1 complex has a tendency 
to dissociate into its respective monomers. 

For a more thorough analysis of the reaction, I also determined the elution profiles of 
the binary syntaxin1a/Munc18-1 complex and the syntaxin1a/SNAP25a complex. This 
was achieved by performing the in-vitro assembly and subsequent injection of the 
respective complexes into the same gel-filtration column (Superdex 10/300 Increase, 
GE Healthcare), and under the same buffer conditions that were used to perform the 
above-mentioned purifications. As shown in Figure 3.5-3 B, the elution of the 
syntaxin1a/SNAP25a (2:1) complex and the syntaxin1a/Munc18-1 complex 
corresponded to retention volumes of 9.3 ml and 11 ml respectively. Thus, the small 
shoulder peak observed at 9.3ml in Figure 3.5-2 B was identified to be 
syntaxin1a/SNAP25a complex that could possibly have been formed as a side-product 
from the dissociation of the syntaxin1a/SNAP25a/Munc18-1 complex. 

 

 

Figure 3.5-3. SEC-profiles of syntaxin1a, SNAP25a, Munc18-1, the binary 
syntaxin1a/SNAP25a complex and the syntaxin1a/Munc18-1 complex. 
(A) An overlay of the re-injection profile of the syntaxin1a/SNAP25a /Munc18-1 complex with 
the elution profiles of the respective monomers and (B) with the binary syntaxin1a/SNAP25a 
(2:1) complex (green curve) and the syntaxin1a/Munc18-1 complex (black curve).  
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3.6 Architecture of the syntaxin1a/SNAP25a/Munc18-1 complex. 

The experiments performed in the previous sections established the ternary 
syntaxin1a/SNAP25a/Munc18-1 as a loose complex with a 1:1:1 stoichiometry, 
which exists in a dynamic equilibrium with its monomers and serves as a very 
efficient acceptor for synaptobrevin-binding. This finding was very interesting 
because it consolidated some earlier findings hinting at the existence of a 
syntaxin1a/SNAP25a/Munc18-1 complex as an intermediate in the SNARE-pathway 
(45, 46, 79, 119). 

In order to gain a deeper understanding of this intermediate, it became very important 
to investigate the structural features of the syntaxin1a/SNAP25a/Munc18-1 complex 
that dictate its efficiency as an acceptor complex. Since this complex appeared to be 
labile under the experimental conditions, it was difficult to resort to X-ray 
crystallography as a tool to monitor its architecture. Another popular structural 
technique, cryo-electron microscopy could also not be used due to the small size of the 
ternary complex (120 kDa). I therefore used chemical cross-linking and mass 
spectrometry (MS/MS) as a tool to gain insight into the architecture of the 
syntaxin1a/SNAP25a/Munc18-1 complex.  

        The cross-linker used for this purpose was bis(sulfosuccinimidyl) suberate (BS3), 
which is a homo-bifunctional chemical cross-linker that cross-links the lysine residues 
and also the free amino-terminus of the proteins. The spacer arm-length of this cross-
linker is 11.4 Å. As a first step in this approach, the protein complex was titrated with 
increasing amounts of the chemical cross-linker to determine the amount of cross-
linker required for optimum cross-linking. The efficiency of cross-linking was 
determined by separation of the cross-linked products using SDS-PAGE and Coomassie 
Blue staining. Optimum cross-linking of the syntaxin1a/SNAP25a/Munc18-1 complex 
appeared to occur when a 50-fold molar excess of the chemical cross-linker (BS3) with 
respect to the syntaxin1a/SNAP25a/Munc18-1 complex was used. The molecular 
weight of the cross-linked syntaxin1a/SNAP25a/Munc18-1 complex was observed 
at ̴130kDa. A representative gel showing the titration of the ternary complex with BS3 
has been depicted in Figure 3.6-1. 
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Thereafter, cross-linking of the complex was performed at the optimum concentration 
of the cross-linker, and the cross-linked bands corresponding to the ternary complex 
were excised from the gel and subjected to in-gel trypsin digestion followed by peptide 
analysis by mass spectrometry (MS/MS). All the mass spectrometry experiments and 
analysis in this study were performed by Dr. Chung-Tien Lee. MS/MS analysis of the 
cross-linked samples revealed inter-crosslinks between all the three constituent 
proteins namely syntaxin1a, SNAP25a and Munc18-1. A pictorial representation of the 
major cross-links observed upon MS/MS analysis have been represented in Figure 
3.6-2. 

 

 

 

Figure 3.6-1. Titration of the syntaxin1a/SNAP25a/Munc18-1 complex with increasing 
amounts of the chemical cross-linker, BS3. 
Freshly purified syntaxin1a/SNAP25a/Munc18-1 complex was titrated with different amounts 
of the cross-linker, ranging from a 10-fold molar excess to a 50-fold molar excess of BS3 with 
respect to the syntaxin1a/SNAP25a/Munc18-1 complex. The cross-linked samples were 
analyzed by SDS-PAGE and Coomassie Blue staining. Optimum cross-linking of the 
syntaxin1a/SNAP25a/Munc18-1 complex was obtained when a 50-fold molar excess of the 
cross-linker was used.  The cross-linked band was observed at a molecular weight of 130 kDa. 
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Figure 3.6-2. Inter cross-links obtained between syntaxin1a, SNAP25a and Munc18-1 
upon chemical cross-linking of the syntaxin1a/SNAP25a/Munc18-1 complex. 
Chemical cross-linking and the subsequent MS/MS analysis of the 
syntaxin1a/SNAP25a/Munc18-1 complex provided inter-cross-links between all the three 
constituents of the ternary complex. Munc18-1 was seen to be cross-linked to both syntaxin1a 
as well as SNAP25a. [This experiment was performed in collaboration with Dr. Chung-Tien 
Lee].  
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In the syntaxin1a/SNAP25a/Munc18-1 complex, Munc18-1 was seen to closely 
interact with the N-terminal domain of syntaxin1a, i.e. the N-peptide and the Habc-
domain. Lysine 12, lying in the N-peptide of syntaxin1a was crosslinked to lysine 125 
of Munc18-1 (positioned in domain1), consistent with the speculated role of  N-peptide 
in mediating the interaction of syntaxin1a with Munc18-1 (39). Cross-links between 
lysine 83 (positioned in the Habc-domain of syntaxin1a) and lysine 13 (positioned in 
the domain3a of Munc18-1) were also observed. No crosslinks were, however, 
detected between the SNARE-motif of syntaxin1a and Munc18-1. 

The most interesting insight that came from the cross-linking experiments, was the 
presence of cross-links between SNAP25a and Munc18-1. As shown in Figure 3.6-2, 
lysine 72 of SNAP25a and lysine 46 of Munc18-1 were seen to be crosslinked in the 
ternary complex. This cross-link provided a structural insight for the functional 
efficiency of the syntaxin1a/SNAP25a/Munc18-1 complex.  

Lysine 46 of Munc18-1 is positioned in the syntaxin1a-binding ‘cleft’ of Munc18-1 
(domain 1), a region in the syntaxin1a/Munc18-1 structure which closely interacts 
with the Habc-domain and the SNARE-motif of syntaxin1a (39, 73). For a clear 
demonstration, the residues of syntaxin1a that interact with Munc18-1 in the 
syntaxin1a/Munc18-1 structure have been represented in Figure 3.6-3. On the other 
hand, lysine 72 of SNAP25a is positioned towards the C-terminus of the first SNARE-
motif (SN1) of SNAP25a. The relative orientation of Munc18-1 with respect to SNAP25a 
in the syntaxin1a/SNAP25a/Munc18-1 complex indicates that Munc18-1 could help in 
preventing the association of a second syntaxin1a molecule to the syntain1a/SNAP25a 
complex, thereby attributing to the efficiency of the syntaxin1a/SNAP25a/Munc18-1 
complex as an acceptor for synaptobrevin-binding. 

A comparison of the interaction interfaces between syntaxin1a and Munc18-1 in the 
syntaxin1a/SNAP25a/Munc18-1 complex with the previously reported structure of 
the syntaxin1a/Munc18-1 complex  (39, 47) revealed significant differences. Most 
importantly, the contact sites between syntaxin1a and Munc18-1 in the 
syntaxin1a/SNAP25a/Munc18-1 complex appeared to be limited to the N-terminus of 
syntaxin1a, as opposed to the syntaxin1a/Munc18-1 complex, where extensive 
associations with the SNARE-motif are also present (see Figure 3.6-3). This loss of 
interaction could be caused due to the interaction of the SNARE-motif of syntaxin1a 
with its partner SNARE, SNAP25a thereby placing SNAP25a in close vicinity of Munc18-
1. It thus, becomes conceivable that syntaxin1a in the syntaxin1a/SNAP25a/Munc18-
1 complex has a tendency to exist in a more ‘open’ conformation, in contrast to the 
‘closed’ conformation observed in the syntaxin1a/Munc18-1 complex (39, 47).  
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Figure 3.6-3. Ribbon diagram of the syntaxin1a/Munc18-1 complex. 
Syntaxin1a is locked in a ‘closed’ conformation within the syntaxin1a/Munc18-1 complex.  The 
Habc-domain of syntaxin1a  (residues 30-150 ) fold back on its SNARE-motif (residues 195-
254) and interact tightly with a binding pocket (‘cleft’) formed by the domain 1 and 3a of the 
Munc18-1. Residues of syntaxin1a that contact the ‘syntaxin1a-binding cleft’ of Munc18-1 in 
this binary complex have been indicated by the labels. Syntaxin1a is shown in red and Munc18-
1 is shown in cyan. [Adapted from (39)]. [This experiment was performed in collaboration with 
Dr. Chung-Tien Lee]. 
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A wealth of knowledge was also gained from the analysis of the intra-crosslinks 
observed within the monomeric constituents of the syntaxin1a/SNAP25a/Munc18-1 
complex. The intra-crosslinks provided a measure of the domain-proximities of 
syntaxin1a, SNAP25a and Munc18-1, when they existed as part of the 
syntaxin1a/SNAP25a/Munc18-1 complex. A representative diagram of the obtained 
intra-crosslinks has been shown in Figure 3.6-4.  

The intra-crosslinks for syntaxin1a indicated extensive contacts within the residues of 
the Habc-domain and the within the SNARE-motif respectively, but minimal contacts 
were found between the Habc-domain and the SNARE-motif of syntaxin1a. This 
observation also pointed towards syntaxin1a being in a more ‘open’ conformation in 
the syntaxin1a/SNAP25a/Munc18-1 complex. This structural information was quite 
consistent with the synaptobrevin-binding efficiency of the 
syntaxin1a/SNAP25a/Munc18-1 complex obtained from the anisotropy and FRET 
measurements, discussed previously. The intra-crosslinks obtained for SNAP25a were 
also very informative. Contacts were obtained between the SN1 and the linker regions 
of SNAP25a as well as the SN2 and the linker regions of SNAP25a. The absence of intra-
crosslinks between the SN1 and SN2 of SNAP25a were indicative of the fact that in the 
syntaxin1a/SNAP25a/Munc18-1 complex, the SN2 of SNAP25a remains a little 
unstructured and dynamic with respect to the SN1 of SNAP25a, which probably gets 
structured due to association with syntaxin1a. Intra-crosslinks between the different 
domains of Munc18-1 were consistent with the three-dimensional structure of the 
protein, with crosslinks being obtained between lysine residues that constitute the 
domain2 of Munc18-1 and also between the domains 1 and 3a, respectively. The 
amino-acids that constitute these regions are separated by a stretch of amino-acids in 
the primary sequence, but are positioned closely in the three-dimensional space. The 
presence of these crosslinks added further belief to the fidelity of the conclusions 
obtained from the cross-linking experiments, by providing a proof of fact. 

Collectively, the results obtained from the experiments in this section indicate that the 
association of Munc18-1 with syntaxin1a and SNAP25a in the ternary 
syntaxin1a/SNAP25a/Munc18-1 complex helps in structuring the Q-SNAREs for 
productive SNARE-complex assembly. The discovery of the close association between 
SNAP25a and Munc18-1 is quite novel, since such an interaction has not been reported 
for Munc18-1. A recent study with the yeast SM-protein, Sec1 (homologue of Munc18-
1) has, however, indicated a groove on Sec1 that might participate in its interaction 
with Sec9 (the yeast homologue of SNAP25) (71). 
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Figure 3.6-4. Representative intra-crosslinks between the monomeric constituents of the 
syntaxin1a/SNAP25a/Munc18-1 complex.  
Intra-crosslinks obtained for (A) syntaxin1a, (B) SNAP25a and (C) Munc18-1, upon chemical 
cross-linking of the syntaxin1a/SNAP25a/Munc18-1 complex. [This experiment was performed 
in collaboration with Dr. Chung-Tien Lee]. 
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3.7 Is Munc18-1 displaced after the binding of synaptobrevin to the 

syntaxin1a/SNAP25a/Munc18-1 complex? 

The results from cross-linking experiments clearly established that the structural 

organization of the constituent proteins in the syntaxin1a/SNAP25a/Munc18-1 

complex provide a facilitated pathway for synaptobrevin-binding and subsequent 

SNARE-complex assembly. After gaining some insights into the architecture of the 

syntaxin1a/SNAP25a/Munc18-1 complex, I attempted to address the changes in this 

complex upon synaptobrevin-binding, in terms of its composition and architecture. 

To this end, I started with testing the impact of synaptobrevin-binding on Munc18-1, 

i.e. whether or not, Munc18-1 remains associated with the 

syntaxin1a/SNAP25a/Munc18-1 complex upon synaptobrevin-binding. I tried to 

address this question using three different biochemical techniques. As a starting 

approach, I used size-exclusion chromatography to monitor any changes in the 

molecular mass/hydrodynamic radius of the syntaxin1:SNAP25:Munc18-1 complex 

before and after synaptobrevin-addition. A direct measure of such changes can be 

obtained by assessing the retention volumes for the elution of the complex under 

different experimental conditions.  

Freshly purified syntaxin1a/SNAP25a/Munc18-1 complex was injected into an 

analytical column for size-exclusion chromatography and the retention volume of the 

complex was monitored (Figure 3.7-1, red curve). Thereafter, the complex was 

subjected to a brief incubation with synaptobrevin and was again analyzed by 

analytical size-exclusion chromatography. The retention volume of this complex was 

seen to be slightly lower (Figure 3.7-1, black curve) as compared to the complex 

without synaptobrevin (Figure 3.7-1, red curve). These observations provided a first 

indication that the addition of synaptobrevin to the syntaxin1a/SNAP25a/Munc18-1 

complex, probably does not lead to the dissociation of Munc18-1 from the complex.  

Although, size-exclusion chromatography is a widely used technique for the 

assessment of changes in molecular masses of proteins/protein complexes, it is not the 

ideal choice of method in this case. This is mainly because the syntaxin1a in the ternary 

complex contained a transmembrane-domain, which in turn demanded the analysis to 

be performed in detergent micelles. The precise determination of the hydrodynamic 

radius/molecular mass of proteins under micellar conditions, using size-exclusion 

chromatography, however, is a little challenging.  It therefore, became important to 

validate the above results, using a different technique.  
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As an alternative approach, I tried to address this issue using a co-flotation assay (see 

section 2.12). To this end, I purified the syntaxin1a/SNAP25a/Munc18-1 complex and 

subjected it to a brief incubation with synaptobrevin. Thereafter, the protein mixture 

was incorporated into liposomes and the proteoliposomes were separated from the 

unbound/displaced proteins using ultra-centrifugation on a nycodenz density-

gradient. The samples were thereafter analyzed by SDS-PAGE and subsequent western 

blotting using antibodies against synaptobrevin and Munc18-1. As shown in Figure 

3.7-2, after incubation of the syntaxin1a/SNAP25a/Munc18-1 complex with 

synaptobrevin, both synaptobrevin and Munc18-1 were seen to co-float with the 

liposomes, thereby indicating that synaptobrevin successfully binds to the 

syntaxin1a/SNAP25a/Munc18-1, without displacing Munc18-1 from the complex. 

However, it remained very important to address whether the presence of Munc18-1 in 

the liposomal fractions was due to a SNARE-specific interaction or whether it was due 

to non-specific binding of Munc18-1 to the lipids present in the liposomes. To address 

this concern, I prepared liposomes lacking any SNARE-proteins and subjected them to 

incubation with Munc18-1.  The liposomes were analyzed in the same way as 

mentioned previously. As shown in Figure 3.7-2 (last lane), the incubation of Munc18-

 

 

Figure 3.7-1. Synaptobrevin-binding to the syntaxin1a/SNAP25a/Munc18-1 complex 
causes a decrease in its retention volume.  
The syntaxin1a/SNAP25a/Munc18-1 complex, after synaptobrevin addition, showed a lower 
retention volume (black curve) as compared to the complex without synaptobrevin -addition 
(red curve). 



Results 

75 
 

1 with liposomes lacking any SNARE proteins did not result in any specific binding with 

the liposomes. Here the pattern of association of Munc18-1 with the liposomes was 

rather diffuse, with the majority of Munc18-1 being present in the bottom fractions of 

the gradient after co-flotation. A small amount of Munc18-1 was however, seen to be 

present in the liposomal fractions. This was consistent with an earlier report 

demonstrating the weak affinity of Munc18-1 for membrane lipids (120). 

 

 

 

 

 

Figure 3.7-2. Munc18-1 does not get displaced upon synaptobrevin-binding to the 
syntaxin1a/SNAP25a/Munc18-1 complex. 
Syntaxin1a/SNAP25a/Munc18-1 complex was incubated with synaptobrevin and the mixture 
was incorporated into liposomes, followed by a separation of unbound/displaced proteins 
from the liposomes using co-flotation assay. As a control, this assay was performed without 
synaptobrevin-incubation. Detection of Munc18-1 and synaptobrevin was performed by 
western blot analysis. The presence of Munc18-1 both in the absence (lane 1) and presence of 
synaptobrevin (lane2) indicated that synaptobrevin-binding to the 
syntaxin1a/SNAP25a/Munc18-1 complex does not lead to the displacement of Munc18-1. 
Upon incubation of Munc18-1 with protein-free liposomes (last lane), Munc18-1 was seen to 
be only weakly associated with the liposomal fractions. 
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The results obtained both from size-exclusion chromatography (Figure 3.7-1) and the 

co-flotation assay (Figure 3.7-2), pointed towards the continued association of 

Munc18-1 after synaptobrevin-binding to the syntaxin1a/SNAP25a/Munc18-1 

complex. This could result due to three different possibilities: 

 Continued association of Munc18-1 with the N-terminal domain of syntaxin1a, 

after SNARE-complex formation 

 Or, interaction of Munc18-1 with the core SNARE-complex 

 Or, both. 

 

The best way to approach this situation was to use a tool that would provide structural 

details of the syntaxin1a/SNAP25a/Munc18-1 complex upon its association with 

synaptobrevin. To this end, I resorted to the previously described chemical cross-

linking approach with BS3. In this case, purified syntaxin1a/SNAP25a/Munc18-1 

complex was incubated with synaptobrevin and the resulting complex was subjected 

to chemical crosslinking with BS3. The downstream processing of the sample was done 

in the same way as discussed in section 3.6, with the final step being the identification 

of the cross-linked peptides by mass spectrometry (MS/MS). The results of the cross-

linking experiments gave very interesting insights into the conformational changes 

that occur upon synaptobrevin-binding to the syntaxin1/SNAP25a/Munc18-1 

complex. A pictorial representation of the main results is provided in Figure 3.7-3. 

Upon addition of synaptobrevin to the syntaxin1a/SNAP25a/Munc18-1 complex, 

crosslinks could be observed only between Munc18-1 and syntaxin1a. Cross-links were 

obtained between residues in domain 3b of Munc18-1(lysine 384 and lysine 461) and 

the Habc-domain of syntaxin1a (lysine 70 and lysine 92). It becomes important to 

emphasize that although the Habc-domain of syntaxin1a could be observed to be 

associated with Munc18-1 after synaptobrevin-binding, the interaction-sites appeared 

to be altered considerably as compared to the case where no synaptobrevin was added 

to the syntaxin1a/SNAP25a/Munc18-1 complex (see Figure 3.6-2 for comparison). The 

residues of Munc18-1 which showed cross-linking with syntaxin1a were mapped to a 

region which is spatially very distinct from the ‘syntaxin-binding cleft’ of Munc18-1. 

Altogether, these observations suggested that synaptobrevin-binding to the 

syntaxin1a/SNAP25a/Munc18-1 complex leads to major structural rearrangements, 

re-orienting Munc18-1 towards the N-terminus of syntaxin1a in a fully assembled 

SNARE-complex. 
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Figure 3.7-3. Inter-crosslinks between Munc18-1 and syntaxin1a after the addition of 
synaptobrevin to the syntaxin1a/SNAP25a/Munc18-1 complex.  
Cross-links were obtained between lysine 70 and lysine 92 on the Habc-domain of syntaxin1a 
and lysine 384 and lysine 461 on Munc18-1, respectively. The cross-linked residues on 
Munc18-1 belong to its domain3b, which is spatially distal and distinct from the syntaxin-
binding ‘cleft’ of Munc18-1.These observations support the notion that Munc18-1 remains 
tethered to the fully-assembled SNARE-complex via the N-terminus of syntaxin1a. [This 
experiment was performed in collaboration with Dr. Chung-Tien Lee]. 
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For qualitative analysis, the retention volumes of the crosslinked 

syntaxin1a/SNAP25a/Munc18-1 complex with or without synaptobrevin addition was 

determined by size-exclusion chromatography using an analytical Superose column 

(GE Healthcare).  

 

 

 

 
 
 
 
As depicted in Figure 3.7-4, the crosslinked complex after synaptobrevin-addition 
eluted at a lower retention volume (red curve) as compared to the 
syntaxin1a/SNAP25a/Munc18-1 complex without synaptobrevin (black curve).  The 
small shoulder observed in the purification profiles depicted above could have resulted 
because of the presence of some high-molecular weight complexes formed due to over 
cross-linking. 
 

 

 

Figure 3.7-4. Synaptobrevin-binding to the syntaxin1a/SNAP25a/Munc18-1 complex 
leads to an increase in its molecular mass/hydrodynamic radius.  
The crosslinked syntaxin1a/SNAP25a/Munc18-1 complex after synaptobrevin addition 
showed elution at a lower elution volume (red curve) as compared to the cross-linked complex 
without synaptobrevin addition (black curve).  
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The result from the analysis of the cross-linked complexes (with or without 

synaptobrevin addition) by size-exclusion chromatography corroborated the earlier 

finding on the increase of the hydrodynamic radius of the 

syntaxin1a/SNAP25a/Munc18-1 complex upon synaptobrevin addition, using non-

crosslinked samples (see Figure 3.7-1 for comparison).  These observations, together 

with the results of the co-flotation assay and the cross-linking experiments established 

that synaptobrevin-binding to the syntaxin1a/SNAP25a/Munc18-1 complex does not 

cause the dissociation of Munc18-1 from the SNARE-complex. Moreover, the obtained 

crosslinks established that Munc18-1 remains attached to the fully zippered SNARE-

complex via its interaction with the N-terminus of syntaxin1a. 

The next important question to be addressed was to check whether synaptobrevin-

binding to the syntaxin1a/SNAP25a/Munc18-1 complex results in a fully-zippered 

SNARE-complex. I tried to address this question using different biochemical methods 

like SDS-PAGE, co-flotation assay, chemical crosslinking and fluorescence anisotropy. 

As a simple step to determine SNARE-complex formation upon addition of 

synaptobrevin to the syntaxin1a/SNAP25a/Munc18-1 complex, I performed a gel-

assay to check for the property of SDS-resistance, which is a gold-standard for 

assessing SNARE-complex formation (106). To this end, I purified the 

syntaxin1a/SNAP25a/Munc18-1 complex, and after its incubation with synaptobrevin, 

I analyzed the complex by SDS-PAGE (without prior boiling of the samples), followed 

by Coomassie Blue staining. As shown in Figure 3.7-5 A, multiple high-molecular 

weight, SDS-resistant bands were observed, indicating the formation of SNARE-

complex upon synaptobrevin-binding to the syntaxin1a/SNAP25a/Munc18-1 

complex.  

As an alternative way to address the same question, I resorted to a classical co-flotation 

assay using a single cysteine mutant (C28) of the full cytoplasmic fragment of 

synaptobrevin, which had been fluorescently labeled with the reporter dye, Oregon 

Green. The fluorescently labeled synaptobrevin fragment was incubated with the 

syntaxin1a/SNAP25a/Munc18-1 complex and the resulting complex was incorporated 

into small unilamellar vesicles (SUVs). The proteoliposome preparation was then 

subjected to fractionation on a nycodenz density-gradient to separate the 

unbound/displaced proteins from the liposomes. Thereafter, samples from top to the 

bottom of the gradient were carefully collected and subjected to SDS-PAGE (without 

prior boiling of the samples), followed by fluorescence-scanning of the gels. As 

indicated in Figure 3.7-5 B, synaptobrevin was seen to be present in multiple high-

molecular weight bands, indicative of SNARE-complex formation. The results from 

both these assays, were therefore consistent with the conclusion that synaptobrevin-

binding to the syntaxin1a/SNAP25a/Munc18-1 complex results in SNARE-complex 

assembly.  
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In order to further verify this conclusion, I wanted to attain structural information on 

SNARE-complex assembly upon binding of synaptobrevin to the 

syntaxin1a/SNAP25a/Munc18-1, which was attained by the previously described 

cross-linking assay. Herein, I analyzed the crosslinks obtained between the SNARE-

proteins after the addition of synaptobrevin to the syntaxin1a/SNAP25a/Munc18-1 

complex. A representative view of the results obtained from the analysis of the 

 

 

 

Figure 3.7-5.  Assessment of SNARE-complex assembly by SDS-resistance assay. 
(A) SDS-PAGE and Coomassie Blue staining of the syntaxin1a/SNAP25a/Munc18-1 complex 
after its incubation with synaptobrevin. SNARE-complex formation was indicated by the 
presence of multiple high-molecular weight, SDS-resistant bands. (B) Fluorescence scanning to 
assess SNARE-complex formation after the incorporation of a pre-incubated mixture of 
syntaxin1a/SNAP25a/Munc18-1 complex and synaptobrevin into liposomes. Detection of 
synaptobrevin-fluorescence in the high-molecular weight bands, in the liposomal fractions was 
indicative of SNARE-complex assembly. The second lane from the left is indicative of the 
marker lane, and hence shows no fluorescence. 
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crosslinked peptides obtained by mass spectrometry (MS/MS) has been provided in 

Figure 3.7-6. 

 

 

 

 

 

 

Inter-crosslinks were obtained between the C-termini of all the three SNARE-proteins 

namely syntaxin1a, SNAP25a and synaptobrevin. The amino-acid residues lysine 252 

and lysine 253 on syntaxin1a were seen to be crosslinked with lysine 91 and lysine 87 

on synaptobrevin, respectively.  

 

 

 

Figure 3.7-6. Synaptobrevin-binding to the syntaxin1a/SNAP25a/Munc18-1 complex 
leads to the formation of a fully-zippered SNARE-complex. 
Inter-crosslinks obtained between the SNARE-proteins upon addition of synaptobrevin to the 
syntaxin1a/SNAP25a/Munc18-1 complex. The C-termini of all the three SNARE-proteins were 
found to be crosslinked to each other indicating the formation of a fully-zippered SNARE-
complex. [This experiment was performed in collaboration with Dr. Chung-Tien Lee]. 
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Additionally, crosslinks were found between lysine 256 of syntaxin1a and lysine 201 

of SNAP25a. Lysine 87 of synaptobrevin was also seen to be crosslinked with lysine 

201 of SNAP25a. Since crosslinks could be obtained between the extreme C-termini of 

syntaxin1a, SNAP25a and synaptobrevin, it was safe to conclude that synaptobrevin-

binding to the syntaxin1a/SNAP25a/Munc18-1 complex leads to the formation of a 

fully-zippered SNARE-complex.  

As a final step towards validating SNARE-complex formation, I wanted to test whether 

NSF and αSNAP can disassemble the complex formed upon the addition of 

synaptobrevin to the syntaxin1a/SNAP25a/Munc18-1 complex.  NSF  is a AAA-ATPase 

and αSNAP is its co-factor, which together constitute the disassembly machinery for 

the SNARE-complex, to recycle the SNARE-proteins for subsequent rounds of fusion 

(5). 

To this end, I applied a straightforward approach for monitoring the anisotropy of 

fluorescently-labeled synaptobrevin upon the addition of the 

syntaxin1a/SNAP25a/Munc18-1 complex and thereafter, upon the subsequent 

addition of NSF- αSNAP to the reaction mixture.  As depicted in Figure 3.7-7, the 

addition of syntaxin1a/SNAP25a/Munc18-1 complex resulted in an increase in the 

anisotropy of synaptobrevin, indicating SNARE-complex formation. The subsequent 

addition of NSF-αSNAP to the reaction in the presence of ATP and magnesium resulted 

in a decrease in the anisotropy of synaptobrevin (black curve). This decrease in 

anisotropy was indicative of an increase in the rotational motion of synaptobrevin, 

which, in turn, could be explained by the disassembly of the previously assembled 

SNARE-complex by NSF-αSNAP. As a control reaction, the addition of NSF-αSNAP was 

performed in the absence of ATP and magnesium. In this case, no decrease in the 

anisotropy of synaptobrevin was observed (Figure 3.7-7, red curve), thereby 

highlighting that the decrease in the anisotropy of synaptobrevin observed in the 

previous case (black curve) was caused specifically by the action of NSF-αSNAP on the 

SNARE-complex. 
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Figure 3.7-7. Fully assembled SNARE-complex can be disassembled by NSF-αSNAP.  

The addition of the syntaxin1a/SNAP25a/Munc18-1 complex to fluorescently-labeled 

synaptobrevin resulted in an increase in the anisotropy of synaptobrevin (the initial phases of 

both black curve and the red curve). Subsequent addition of NSF- αSNAP (in the presence of ATP 

and magnesium) to the complex resulted in a decrease in the anisotropy, indicating subsequent 

disassembly of the previously formed SNARE-complex (after 2000s, black curve). No decrease in 

the anisotropy of synaptobrevin was observed when NSF-αSNAP was added in the absence of 

ATP and magnesium (red curve). 
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3.8 Full-length synaptobrevin is required for efficient binding to the 

syntaxin1a/SNAP25a/Munc18-1 complex. 

Extensive efforts have been made in the past to track the details of the progression 

from the initial contact between the SNARE-proteins to a fully assembled SNARE-

complex (85).  SNARE-zippering has been hypothesized to proceed from the N-termini 

towards the C-termini of the SNARE-proteins (101). An understanding of this 

mechanism has been obtained by monitoring the binding behavior of  truncated 

synaptobrevin fragments to the C-terminally stabilized ΔN-complex (101).  Efficient 

synaptobrevin-binding could be observed to complexes containing syntaxin1a and 

SNAP25a that were stabilized by a short C-terminal synaptobrevin fragment (such as 

Syb 60-96, Syb 49-96 or Syb 42-96, whereas the binding was totally abolished when N-

terminally longer fragments such as Syb 25-96 or Syb 39-96 were used (101).These 

observations implicated that the N-terminus of the acceptor complex is largely specific 

for synaptobrevin-binding (101). 

On similar lines, I employed different N-terminal and C-terminal truncations of the 

cytoplasmic fragment of synaptobrevin to monitor their binding behavior to the 

syntaxin1a/SNAP25a/Munc18-1 complex. The synaptobrevin fragments for this study 

included single-cysteine mutants (C28) of two C-terminally truncated synaptobrevin 

fragments, Syb 1-65 and Syb1-52. A single-cysteine mutant (C79) of an N-terminally 

truncated fragment of synaptobrevin containing residues 49-96 was also used. All of 

the above mentioned fragments were fluorescently labeled with the dye Oregon Green.  

As a first step, I tried to monitor the binding of the labeled synaptobrevin fragments to 

unlabeled syntaxin1a/SNAP25a/Munc18-1 complex by recording the fluorescence 

anisotropy of synaptobrevin. The results obtained from these experiments have been 

depicted in Figure 3.8-1. The experiments indicated that the full-length cytoplasmic 

fragment of synaptobrevin (Syb 1-96) binds efficiently to the 

syntaxin1a/SNAP25a/Munc18-1 complex (red curve). This reaction could be 

completely inhibited when an excess of unlabeled synaptobrevin was added to the 

reaction mixture (black curve), thereby indicating the SNARE-specificity of the 

reaction. A truncation of 31 amino-acid residues from the C-terminus of synaptobrevin 

(Syb 1-65), however, resulted in a much slower binding as compared to Syb 1-96 (green 

curve). Additionally, a deletion of the last 44 amino-acid residues from the C-terminus 

of synaptobrevin (Syb 1-52) resulted in an apparent loss of binding to the 

syntaxin1a/SNAP25a/Munc18-1 complex (blue curve). Similar to Syb 1-52, a 

truncation of the first 48 amino-acid residues of synaptobrevin (Syb 49-96)  resulted 

in a complete loss of binding to the syntaxin1a/SNAP25a/Munc18-1 complex (magenta 

curve).  
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In order to validate the functionality of the synaptobrevin fragments used for the study, 

I used the same synaptobrevin fragments to check their binding to a previously 

established acceptor complex, the ΔN-complex (84). As shown in Figure 3.8-2, the 

pattern of binding of the synaptobrevin fragments to the ΔN-complex was slightly 

different from the syntaxin1a/SNAP25a/Munc18-1 complex, and was consistent with 

the earlier studies performed with the ΔN-complex (93). Unlike the 

syntaxin1a/SNAP25a/Munc18-1 complex, both the C-terminally truncated 

synaptobrevin fragments (Syb 1-65 and Syb 1-52) showed binding to the ΔN-complex. 

The efficiency of binding was, however, different for each of these fragments. The full-

 

 

Figure 3.8-1. Fluorescence anisotropy measurements to monitor the binding of C-
terminally and N-terminally truncated fragments of synaptobrevin to the 
syntaxin1a/SNAP25a/Munc18-1 complex.  
(A) A full-length cytoplasmic fragment of synaptobrevin (Syb 1-96) binds very efficiently to the 
syntaxin1a/SNAP25a/Munc18-1 complex (red curve), in contrast to the C-terminally and N-
terminally truncated fragments used for the assay. Syb 1-65 was able to bind to the 
syntaxin1a/SNAP25a/Munc18-1 complex albeit with much lower affinity (green curve) as 
compared to Syb 1-96.  Syb 1-52 (blue curve) and Syb 49-96 (magenta curve) showed no 
apparent binding to the syntaxin1a/SNAP25a/Munc18-1 complex. The binding reaction with 
the full-length cytoplasmic fragment of synaptobrevin could be inhibited when an excess of 
unlabeled synaptobrevin was added to the reaction mixture (black curve). (B) Quantification 
of the anisotropy measurements performed at 600 seconds, from three independent 
experiments. Error bars indicate the range of values. 
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length synaptobrevin fragment showed the most efficient binding to the ΔN-complex 

(Figure 3.8-2 A, red curve). A truncation of 31 amino-acid residues from the C-terminus 

(Syb 1-65) showed a slower binding to the complex (green curve). A truncation of 44 

residues from the C-terminus (Syb1-52) further reduced the binding affinity (blue 

curve). This decrease in the binding behavior is observed due to the decreased ability 

of the smaller synaptobrevin-fragments in displacing the downstream Syb 49-96 in the 

ΔN-complex  (93). The N-terminally truncated fragment Syb 49-96, as expected, 

showed no binding to the ΔN-complex (magenta curve). 

 

 

 

 

 
Figure 3.8-2. Binding of fluorescently-labeled synaptobrevin fragments to the C-
terminally stabilized ΔN-complex.  
(A) Fluorescence anisotropy measurements for the binding of the different synaptobrevin 
fragments to the ΔN-complex.  All the C-terminally truncated synaptobrevin fragments showed 
binding to the ΔN-complex. The binding of the C-terminally truncated fragments, Syb 1-65 
(green curve) and Syb 1-52 (blue curve), however, proceeded at a slower time-scale as 
compared to the full cytoplasmic fragment of synaptobrevin (red curve). The binding reaction 
with the full cytoplasmic fragment of synaptobrevin could be inhibited when an excess of 
unlabeled synaptobrevin was added to the reaction mixture (black curve). (B) Quantification 
of the fluorescence anisotropy using the different synaptobrevin fragments, obtained from 
three independent experiments. Quantifications were performed at 600 seconds after addition 
of the acceptor complex. Error bars indicate the range of values. 
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A comparison of the binding behavior of the synaptobrevin fragments to the ΔN-

complex and the syntaxin1a/SNAP25a/Munc18-1 complex indicated a difference in 

the binding behavior of Syb 1-52. This fragment was able to bind to the ΔN-complex, 

but exhibited no binding to the syntaxin1a/SNAP25a/Munc18-1, as indicated by 

fluorescence anisotropy. It therefore became apparent to conclude that although both 

of the above-mentioned acceptor complexes serve as versatile templates for binding to 

the full-length cytoplasmic fragment of synaptobrevin, the precise mechanistic details 

underlying the transition of these complexes to a fully assembled SNARE-complex 

might be different. 

Again, since the anisotropy measurements only give us an idea about the rotational 

flexibility of a molecule, I tried to validate these results with an alternative approach. I 

used FRET-measurements to monitor SNARE-zippering between the above-mentioned 

synaptobrevin fragments and the acceptor complexes, i.e., the 

syntaxin1a/SNAP25a/Munc18-1 complex or the ΔN-complex.  In order to perform 

FRET measurements, fluorescently-labeled acceptor complexes were purified. The 

fluorescent label on the acceptor complexes was obtained by using a single-cysteine 

mutant of SNAP25a (C130), which had been labeled with the fluorophore, Texas Red. 

This fluorescent version of SNAP25a was used for the assembly and purification of the 

syntaxin1a/SNAP25a/Munc18-1 complex and the ΔN-complex. FRET between 

SNAP25a and synaptobrevin was used as a read-out to monitor SNARE-zippering and 

subsequent SNARE-complex assembly. The quenching of the donor emission upon the 

addition of acceptor complexes was used as an indicator of FRET. The results of the 

FRET experiments performed with the syntaxin1a/SNAP25a/Munc18-1 are shown in 

Figure 3.8-3. 
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As shown in Figure 3.8-3 A, the addition of fluorescently-labeled 

syntaxin1a/SNAP25a/Munc18-1 complex to the full-length cytoplasmic fragment of 

synaptobrevin resulted in a fast decrease in the donor emission (red curve). No 

decrease in the donor emission was observed when the 

syntaxin1a/SNAP25a/Munc18-1 complex was added in the presence of a large excess 

of unlabeled synaptobrevin (black curve). This indicated that the decrease in donor 

emission observed previously was exclusively due to SNARE-specificity of the reaction. 

In comparison to this, the C-terminally truncated fragment, Syb 1-65 (green curve) 

 

 

Figure 3.8-3. FRET measurements between the different synaptobrevin fragments and 
the syntaxin1a/SNAP25a/Munc18-1 complex.  
(A) The addition of the acceptor complex to Syb 1-96 showed efficient binding (red curve), 
indicated by a fast quenching of the donor emission. The C-terminally truncated Syb 1-65 
(green curve) showed binding, albeit at a much slower rate as compared to Syb 1-96. Syb1-52 
(blue curve) and Syb 49-96 (magenta curve) showed no binding to the   
syntaxin1a/SNAP25a/Munc18-1 complex. The reaction with Syb1-96 could be completely 
inhibited with an excess of unlabeled synaptobrevin (black dotted curve). (B)  Quantifications 
of three independent FRET experiments described in (A). Quantifications were performed at 
600 seconds after the addition of the acceptor complex. Error bars indicate the range of values. 
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resulted in a much slower decrease in the donor emission upon the addition of the 

syntaxin1a/SNAP25a/Munc18-1 complex. Additionally, quenching of the donor 

emission could not be observed when either Syb1-52 (blue curve) or the N-terminally 

truncated fragment Syb 49-96 (magenta curve) were mixed with the 

syntaxin1a/SNAP25a/Munc18-1 complex. The results of the FRET experiments were 

much in line with the anisotropy experiments, largely indicating that a full-length 

synaptobrevin fragment is required for efficient binding to the 

syntaxin1a/SNAP25a/Munc18-1 complex.  As a step to validate the FRET-

measurements, I used the same fragments to monitor SNARE-zippering with the 

fluorescently-labeled ΔN-complex. 

 

 

 

Figure 3.8-4. Binding of different synaptobrevin-fragments to the fluorescently labeled 
ΔN-complex, measured by FRET.  
(A) Addition of ΔN-complex to Syb1-96 was marked by a fast quenching of the donor emission 
(red curve), as compared to the C-terminally truncated Syb 1-65 (green curve), which reached 
the same final state but at a much slower rate.  Syb 1-52 (blue curve) showed a marked decrease 
in donor quenching upon addition of the ΔN-complex. No change in the donor emission was 
observed upon the addition of the complex to Syb 49-96 (magenta curve). The reaction with 
Syb 1-96 showed a complete inhibition when an excess of unlabeled synaptobrevin was added 
to the reaction mixture (black curve).  (B) Quantifications of FRET measurements at 600 
seconds after the addition of the acceptor complex. Error bars indicate the range of values from 
three independent experiments. 
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FRET-measurements indicated that the most efficient binding to the ΔN-complex could 

be observed when a full-length cytoplasmic fragment of synaptobrevin was used 

(Figure 3.8-4 A, red curve). The C-terminally truncated fragments, Syb 1-65 (green 

curve) and Syb 1-52 (blue curve) also showed binding to the ΔN-complex, however, at 

a much slower rate as compared to the full-length cytoplasmic fragment. Syb 49-96 

showed no apparent FRET with the ΔN-complex (magenta curve), since this fragment 

is already present in the ΔN-complex. 

The results obtained from the experiments performed in this section clearly indicated 

that a full-length cytoplasmic fragment of synaptobrevin is required to facilitate 

efficient binding to the syntaxin1a/SNAP25a/Munc18-1 complex. In addition to this, a 

progressive truncation of amino-acids from the C-terminus of synaptobrevin was seen 

to adversely affect the binding efficiency of synaptobrevin to this complex. A truncation 

from the N-terminus also seemed to lower the apparent binding affinity of 

synaptobrevin to the syntaxin1a/SNAP25a/Munc18-1 complex. These results 

provided very interesting insights into the mechanistic details of SNARE-complex 

assembly, starting with syntaxin1a/SNAP25a/Munc18-1 complex. The implications of 

these findings have been discussed in broad details in section 4.  

 

3.9 Is the syntaxin1a/SNAP25a/Munc18-1 complex resistant to disassembly by 

NSF and αSNAP? 

After having established the architecture and the biochemical behavior of the 

syntaxin1a/SNAP25a/Munc18-1 complex, I wanted to check whether the association 

of Munc18-1 with syntaxin1a and SNAP25a can protect the ternary 

syntaxin1a/SNAP25a/Munc18-1 complex against disassembly by NSF-αSNAP. To 

answer this question, I again resorted to a FRET-based approach, wherein, I labeled a 

single – cysteine mutant of SNAP25a (1-206, C130) and a single-cysteine mutant of full-

length syntaxin1a (1-288, C197) with the fluorescent dyes Texas Red and Oregon 

Green, respectively. These fluorescently-labeled proteins were used to purify a double-

labeled syntaxin1a (C197-Oregon Green):SNAP25a (C130-Texas Red):Munc18-1 

complex.  

This complex was then used as a tool to study the effect of the SNARE-disassembly 

machinery (NSF and αSNAP) in the given system. The changes in the donor emission 

observed upon addition of NSF- αSNAP to this complex was used as a read-out to study 

the effect of these proteins on the syntaxin1a/SNAP25a/Munc18-1 complex. The 

results from these experiments have been depicted in Figure 3.9-1.  
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The results from the above experiments gave a very interesting insight into the 

property of the syntaxin1a/SNAP25a/Munc18-1 complex as an acceptor complex. The 

unchanged donor emission upon the addition of NSF-αSNAP (in the presence of ATP 

and magnesium) to the syntaxin1a/SNAP25a/Munc18-1 complex (Figure 3.9-1 A, 

black curve) was a clear indication of the resistance of the 

syntaxin1a/SNAP25a/Munc18-1 complex to disassembly by NSF-αSNAP. 

 

 

 

 

 

Figure 3.9-1. Effect of NSF-αSNAP on the syntaxin1a/SNAP25a/Munc18-1 complex. 
No increase in the donor emission was observed when NSF-αSNAP was added to the 
syntaxin1a/SNAP25a/Munc18-1 complex in the absence of ATP and magnesium (red curve). 
Incorporation of ATP and magnesium to the reaction mixture also did not result in any changes 
in the donor emission (black curve). A slow increase in the donor emission was, however, 
observed when a highly concentrated salt solution (1M NaCl) was added to the reaction 
mixture (green curve). 
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However, in order to further establish the validity of the experimental system 

discussed above, I used the fluorescently-labeled syntaxin1a (C197-Oregon Green) and 

SNAP25a (C130-Texas Red) proteins to assemble and purify a double-labeled 

syntaxin1a/SNAP25a (2:1) complex. The effect of NSF-αSNAP on this double-labeled 

acceptor complex was also monitored by measuring the dequenching of the donor 

emission. As shown in Figure 3.9-2  (black curve), a sharp increase in the donor 

emission was observed when NSF-αSNAP was added to the syntaxin1a/SNAP25a (2:1) 

complex in the presence of ATP and magnesium. As a negative control, the reaction was 

performed in the absence of ATP and magnesium. No increase in the donor emission 

was recorded in this case (Figure 3.9-2, red curve), indicating that the effect was 

exclusive to the effect of NSF-αSNAP on the complex. These experiments led to the 

conclusion that NSF-αSNAP can efficiently disassemble the syntaxin1a/SNAP25a (2:1) 

complex but not the ternary syntaxin1a/SNAP25a/Munc18-1 complex.  

 

 

 

 

 
 

Figure 3.9-2. NSF-αSNAP can disassemble the syntaxin1a/SNAP25a (2:1) complex. 
Addition of NSF-αSNAP to the syntaxin1a/SNAP25a complex, in the presence of ATP and 

magnesium resulted in a very fast increase in the donor emission (black curve). This increase 

could be completely blocked when the addition of NSF-αSNAP was performed in the absence 

of ATP and magnesium (red curve).  
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To gain additional support for the resistance of the syntaxin1a/SNAP25a/Munc18-1 

complex to NSF- αSNAP, I tried to study the reaction using an alternative approach. The 

syntaxin1a/SNAP25a/Munc18-1 complex was incorporated on small unilamellar 

vesicles (SUVs) and the proteoliposomes were incubated with NSF- αSNAP in the 

presence of ATP and magnesium.  

 

 

 
 

Figure 3.9-3. NSF-αSNAP does not disassemble the syntaxin1a/SNAP25a/Munc18-1 
complex. 
(A) Incubation of SUVs containing the syntaxin1a/SNAP25a/Munc18-1 complex with NSF, 
αSNAP, ATP and magnesium. Subsequent co-flotation analysis and western blotting showed 
the presence of (B) NSF, (C) SNAP25a and (D) Munc18-1 on the top liposomal fractions. The 
left lane in each blot indicates purified monomeric proteins and the right lanes indicate the 
liposomal fractions containing the syntaxin1a/SNAP25a/Munc18-1 complex after incubation 
with NSF-αSNAP. 
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The proteoliposomes were separated from the unbound/displaced proteins by co-

flotation analysis and the top liposomal fractions were analyzed by SDS-PAGE, followed 

by western blotting against NSF, Munc18-1 and SNAP25a. As a positive control for 

western blotting, purified monomeric proteins were added alongside each liposomal 

fraction being analyzed.  

As clearly shown in Figure 3.9-3, all the three tested proteins, namely NSF, Munc18-1 

and SNAP25a were seen to be present in the liposomal fractions. The presence of NSF 

in the liposomal fraction implicated that NSF is able to bind to the membrane-

incorporated syntaxin1a/SNAP25a/Munc18-1 complex but is unable to disassemble 

this complex, as indicated by the presence of both Munc18-1 and SNAP25a in the 

liposomal fractions. These observations corroborated the results from the FRET 

experiment, thereby validating the resistance of the syntaxin1a/SNAP25a/Munc18-1 

complex to disassembly by NSF-αSNAP.  

At this point, it however, becomes worthwhile to mention that the incorporation of 

protein/protein complexes into liposomes can result in the formation of liposomes 

with proteins being oriented either in a 'right-side out' or an 'inside-out' orientation. In 

order to properly interpret the results of the co-flotation assay discussed above, it 

became important to assess the orientation of the syntaxin1a/SNAP25a/Munc18-1 

complex after their incorporation into liposomes. Therefore, in order to exclude any 

ambiguities pertaining to the resistance of the syntaxin1a/SNAP25a/Munc18-1 

complex to NSF- αSNAP, I performed a concluding experiment using the limited 

proteolysis assay described in section 2.17. In this assay, the proteolysis of membrane-

incorporated syntaxin1a/SNAP25a/Munc18-1 complex by the protease, trypsin was 

monitored in the presence or absence of a detergent (TritonX-100). After the 

proteolysis reaction, the liposomes were analyzed by SDS-PAGE, followed by western 

blotting against Munc18-1. As shown in Figure 3.9-4, Munc18-1 was only seen to be 

present on the liposomal fraction when both trypsin and TritonX-100 were missing 

from the reaction mixture (lane 1 from the left). However, when either trypsin alone or 

in combination with the detergent was present in the reaction mixture, Munc18-1 was 

seen to be absent from the liposomes (lanes 2 and 3 from the left). These observations 

indicated complete proteolysis of Munc18-1 both in the absence and presence of the 

detergent. The complete cleavage of Munc18-1 in the absence of detergent indicated 

that the entire population of Munc18-1 was accessible to the protease, without being 

protected by the liposomal membrane. These observations established that the 

syntaxin1a/SNAP25a/Munc18-1 complex gets incorporated with an almost 100% 

'right-side out' orientation on the liposomes. 
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The overall experiments performed in this section established the 

syntaxin1a/SNAP25a/Munc18-1 complex as an acceptor complex that is resistant to 

disassembly by NSF-αSNAP.

 

 
 

Figure 3.9-4. Determination of the orientation of the syntaxin1a/SNAP25a/Munc18-1 
complex after its incorporation into liposomes.  
The presence of Munc18-1 on the liposomes only in the absence of both trypsin and TritonX-

100 was indicative of   ̴100% ‘right-side-out’ orientation of the syntaxin1a/SNAP25a/Munc18-

1 complex after their incorporation into liposomes. 
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4 Discussion 

In this work, I have thoroughly characterized a novel complex containing syntaxin1a 

(1-288), SNAP25a and Munc18-1 and established it as an efficient acceptor complex 

for synaptobrevin-binding, using several biochemical and biophysical techniques. The 

use of all full-length proteins provide tremendous strength to the study, giving it a 

‘near-native’ scenario for the behaviors of the proteins being discussed. 

In addition to understanding the functional importance of this complex, I also attained 

its structural overview using chemical crosslinking assays. And, finally, by testing the 

resistance of this complex to disassembly by NSF-αSNAP, I could establish that the 

syntaxin1a/SNAP25a/Munc18-1 complex can allow SNARE-assembly to proceed in an 

NSF-αSNAP-resistant manner. 

 

4.1 Structural precision fine-tunes protein-protein interactions. 

SNARE-complex assembly proceeds through distinct stages involving a series of 

intermediates. The SM-protein, Munc18-1 has been implicated to have a crucial role in 

synaptic vesicle exocytosis, with its involvement being crucial at multiple steps of the 

process. It has, till date, been difficult to understand whether Munc18-1 functions to 

support SNAREs or whether it itself, constitutes an integral part of the SNARE-engine 

(121).  

Despite extensive research performed with Munc18-1 in the past few decades, a clear 

view on its mechanism of action remains vague. The body of evidence for the 

involvement of Munc18-1 at the early stages (docking, priming) of neuronal exocytosis, 

however, appear to outweigh the evidence supporting its role at later stages of the 

pathway (fusion).  The work done in this thesis has provided a deeper insight into the 

mechanistic details of the interaction of Munc18-1 with the Q-SNAREs, and has 

implicated a physiological role of Munc18-1 in priming the synaptic vesicles to the 

neuronal plasma membrane.  

It has been established for a very long time that syntaxin1a and Munc18-1 exhibit very 

high affinity for one another (39), and enter into a tight syntaxin1a/Munc18-1 complex 

(39, 73), where syntaxin1a is incompatible for SNARE-complex assembly (122). This 

tight interaction between syntaxin1a and Munc18-1 has been shown to exist in the 

intracellular compartments to prevent futile interactions with other SNAREs during 

the transport of syntaxin1a from the endoplasmic reticulum to the plasma membrane 

(40).  

The tight binding of syntaxin1a to Munc18-1 can be abolished by mutating two 

residues (L165A, E166A) lying in the linker region of syntaxin1a, that connects its 

Habc-domain to its SNARE-motif (122).  These two mutations have been proposed to 

cause a conformational switch in syntaxin1a from its ‘closed’ to ‘open’ conformation, 
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consequently causing a loss in its binary interaction with Munc18-1 (122). Consistent 

with the conformational switch, the LE-mutant of syntaxin1a also partially bypasses 

the need for Munc13-1 for synaptic vesicle priming in C.elegans (123). 

The transition of syntaxin1a from its ‘closed’ to ‘open’ conformation has also been seen 

to result from a deletion of the Habc-domain of syntaxin1a (124). A deletion of the 

Habc-domain is, however, accompanied by a decrease in the intracellular levels of 

Munc18-1 (unlike the LE- mutation), indicating the importance of this interaction in 

maintaining the stability of Munc18-1 (124). Interestingly, even though the Habc-

domain deletion and the LE-mutation had similar effects on syntaxin1a conformation, 

they were seen to produce contrary effects on synaptic vesicle fusion in intact cells. 

Experiments performed in-vivo indicated that the L165A, E166A  mutation increases 

the levels of synaptic vesicle fusion, but a deletion of the Habc-domain of syntaxin1a 

results in decreased levels of synaptic vesicle exocytosis (124), thereby attributing 

additional functions to the Habc-domain in the process of SNARE-mediated 

neurotransmitter release. 

Likewise, a double knock-out of Munc18-1 in mice was seen to cause a tremendous 

reduction in the intracellular levels of syntaxin1a (83). The interaction between 

syntaxin1a and Munc18-1, thus appears to be important for the stability of both 

syntaxin1a and Munc18-1 and also, for maintaining the readily releasable pool for 

synaptic vesicle exocytosis. The tight association between these two proteins has, 

however, been proposed to undergo changes upon reaching the plasma membrane 

(115, 123, 126) making the syntaxin1a in the syntaxin1a/Munc18-1 complex available 

for SNARE-complex assembly. Although considerable progress has been made in 

understanding the role of Munc18-1 in the process of synaptic vesicle exocytosis, the 

field remains surrounded by conflicting views on the precise function of this protein. 

(39, 75, 80).  A closer look at the experimental systems used in the different reports 

can, however, provide a reasonable explanation for the observed discrepancies.  

At this point, it needs to be highlighted that during the characterization of the 

interaction between syntaxin1a and Munc18-1, a cytoplasmic fragment of syntaxin1a, 

lacking its transmembrane domain (Syx 1-262) had been used. Although the 

cytoplasmic fragment of syntaxin1a provides the ease of handling for in-vitro studies, 

it depicts a deviation from the in-vivo situation, where the SNARE-motif of syntaxin1a 

is connected to the transmembrane domain by a linker region. The transmembrane 

segment of syntaxin1a has been shown to modulate its interactions with the partner 

proteins (114). The presence of the transmembrane segment of syntaxin1a has been 

implicated in lowering its affinity for Munc18-1 and SNAP25a and, to increase its 

interaction with synaptotagmin and synaptobrevin (114). Additionally, reconstitution 

studies have shown that syntaxin1a/Munc18-1 complexes with syntaxin1a lacking its 

transmembrane domain are unable to facilitate SNARE-complex assembly (127), 

whereas syntaxin1a/Munc18-1 complexes with syntaxin1a containing its 

transmembrane domain can interact with SNAP25a and synaptobrevin to form SNARE-

complexes (113).   These observations clearly highlighted the importance of the C-
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terminal transmembrane segment of syntaxin1a in mediating protein-protein 

interactions. 

Similar observations have been made for the syntaxin3/Munc18-2 and 

syntaxin4/Munc18-3 interactions. Munc18-2 has been reported to bind to a 

preassembled SNARE-complex consisting of syntaxin3, SNAP23 and VAMP8, only 

when syntaxin3 C-terminus was immobilized on affinity beads (128). Similarly, a 

binary complex of syntaxin4/Munc18-3 could be driven into SNARE-complex assembly 

only when syntaxin4 was immobilized into affinity beads via its C-terminus (77).   

Another important feature of syntaxin1a that has been reported to have a key effect on 

its interaction with Munc18-1, is the N-peptide. The N-peptide of syntaxin1a has been 

speculated to regulate the gating of syntaxin1a/Munc18-1 complexes into functional 

SNARE-complexes. The presence of the N-peptide of syntaxin1a in the 

syntaxin1a/Munc18-1 complex has an inhibitory effect on in-vitro SNARE-complex 

assembly, with its truncation causing a complete relief of the inhibition (39). This 

observation was, however, contradictory to another study performed with the 

cytoplasmic variant of the core-SNARE complex and Munc18-1, which suggested that 

Munc18-1 can interact with a fully assembled SNARE-complex, with a continued 

association between the N-peptide and Munc18-1 throughout the assembly process 

(88). 

The physiological importance of the interaction between the N-peptide and Munc18-1 

is, however, debatable. Mutations of Munc18-1 (L130K and F115E) designed to impair 

binding to the N-peptide, tend to disrupt the binding of Munc18-1 to the neuronal 

SNARE-complex in-vitro, but support normal docking, priming and fusion in-vivo (41). 

The synaptic plasticity in these mutants also remains unaltered (27).   

Reconciling the role of N-peptide from different studies (41, 42, 80, 124), it has been 

collectively proposed that the N-peptide might disengage from Munc18-1 in the 

syntaxin1a/Munc18-1 complex and rebind Munc18-1 after the association of 

syntaxin1a with SNAP25a (39). The continued association of Munc18-1 with the 

SNAREs, however, appears to be dispensable after SNARE-complex assembly. A 

pictorial representation of this hypothesis has been provided in Figure 4.1-1. 
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The syntaxin1a used for the assembly of the syntaxin1a/SNAP25a/Munc18-1 complex 

characterized in this study, contained both N-peptide and the C-terminal 

transmembrane domain thereby, ruling out any artifacts in protein-protein 

interactions arising from the use of truncated proteins. 

 

 

 

 

 

 
 

Figure 4.1-1. The association between syntaxin1a and Munc18-1 is indespensable for 
synaptic vesicle docking and priming, but becomes dispensable at a later stage in 
synaptic vesicle exocytosis.  
Left panel. The association of Munc18-1 (shown in cyan) with syntaxin1a (shown in red) in its 
‘closed’ conformation is considered as an important regulatory step to prevent the syntaxin1a 
from assembling into large multimers on the neuronal plasma membrane. The conformation 
of syntaxin1a in the syntaxin1a/Munc18-1 complex then changes (by yet unclear mechanisms) 
to mediate interaction with SNAP5a (shown in green), resulting in the formation of a 
syntaxin1a/SNAP25a/Munc18-1complex. This complex can then act as an acceptor for the 
initial binding of synaptotagmin (shown in yellow), causing vesicle docking. The binding of 
synaptobrevin (shown in blue) to this complex then results in the formation of a partially 
zippered SNARE-complex, causing vesicle priming. Right panel. The continued association of 
Munc18-1 with syntaxin1a or the partially assembled trans-SNARE complex, however, appears 
to be dispensable for synaptic vesicle exocytosis.[Adapted from (41)]. 
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Moreover, it becomes compelling to state that, although a ternary association between 

syntaxin1a, SNAP25a and Munc18-1 had been proposed almost a decade ago (126),  a 

complex containing these three proteins could not be characterized till date, probably 

due to a lack of using full-length syntaxin1a. Identifying the importance of these 

domains and incorporating it in the experimental system has, however, helped me in 

achieving this long-sought goal.  

The most direct support for the existence of this complex in intact neuronal cells has 

been obtained by studies of the neuronal plasma membrane using ultra-high resolution 

microscopy, which indicate micro-domains containing syntaxin1a,SNAP25a and 

Munc18-1 (46). Additionally, assemblies of the syntaxin1a/Munc18-1 complexes on 

plasma membrane sheets from PC12-cells had earlier been shown to be driven into 

SNARE-complex assembly upon addition of synaptobrevin (126). A pre-association of 

SNAP25a with the syntaxin1a/Munc18-1 complex in these studies could, however, not 

be deduced. A recent study using electron paramagnetic resonance has reported that 

the association of Munc18-1 with the syntaxin1a/SNAP25a complex can result in the 

formation of a complex containing syntaxin1a, SNAP25a, Munc18-1 in a 1:1:1 

stoichiometry, which in turn, can act as an acceptor complex for SNARE-mediated 

neuronal exocytosis (79).  

The functional characterization of the syntaxin1a/SNAP25a/Munc18-1 complex in this 

thesis has established this complex as an efficient acceptor for synaptobrevin-binding 

(see Figure 3.4-2), with kinetics similar to the C-terminally stabilized ΔN-complex 

(101). This finding has been an important step forward in understanding the positive 

role of Munc18-1 in synaptic vesicle exocytosis.  

Moreover, using mass spectrometry (MS/MS), I could establish the structural details 

underlying the functional efficiency of the syntaxin1a/SNAP25a/Munc18-1complex 

(see Figure 3.6-2). The close association between SNAP25a and Munc18-1 in this 

ternary complex is indicative of an N-terminal association of Munc18-1 with 

syntaxin1a, making the SNARE-motif of syntaxin1a, available for interaction with its 

partner SNARE, SNAP25a. It is conceivable that in this complex, syntaxin1a exists in a 

partially ‘open’ conformation, which allows it to enter into a loose association with 

SNAP25a, while still maintaining a binding site for Munc18-1 (with albeit much lower 

affinity as compared to the binary syntaxin1a/Munc18-1 interaction). The syntaxin1a 

in the syntaxin1a/SNAP25a/Munc18-1complex can be speculated to be only partially 

open, because Munc18-1 does not bind to a constitutively ‘open’ mutant of syntaxin1a 

(126). This explains how Munc18-1 could interact with the Q-SNAREs to form an 

intermediate that sets the stage for SNARE-complex assembly. 

The versatility of the syntaxin1a/SNAP25a/Munc18-1 complex for synaptobrevin-

binding can be attributed to two possible roles of Munc18-1 in this complex. First, the 

association of Munc18-1 with syntaxin1a/SNAP25a could prevent the formation of the 

“off-pathway” 2:1 syntaxin1a/SNAP25a complex (89). Alternatively, Munc18-1 could 
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induce helicity in the C-terminus of the Q-SNAREs, thereby providing a smooth 

template for SNARE-complex assembly (129).  

 

4.2 Munc18-1 as a key player for SNARE-complex assembly. 

An important point in understanding SNARE-mediated exocytosis, is to decipher how 

the assembly of the SNARE-complex proceeds in the presence of the AAA-ATPase, NSF 

and its co-factor αSNAP, which together, constitute the disassembly machinery of the 

SNARE-apparatus (5). NSF-αSNAP have been shown to dismantle the 

syntaxin1a/SNAP25a complex (106) as well as the fully assembled SNARE-complex 

(130). 

The susceptibility of the syntaxin1a/SNAP25a complex to NSF-mediated disassembly 

questions its role as an acceptor complex for synaptobrevin-binding. The only complex 

that has, till date, been reported to be resistant to disassembly by NSF-αSNAP is the 

binary syntaxin1a/Munc18-1 complex (85). This makes the  syntaxin1a/Munc18-1 

complex, a strong candidate for serving as the starting point of SNARE-complex 

assembly (43). Interestingly, the syntaxin1a/SNAP25a/Munc18-1 complex 

characterized in this study also shows resistance to disassembly by NSF-αSNAP (see 

Figure 3.9-1 and Figure 3.9-3), indicating that the association of Munc18-1 with the Q-

SNARE complex (syntaxin1a/SNAP25a) might help in shielding it from the dismantling 

effect of NSF and αSNAP.  A similar role has recently been hinted for Vps33, which is 

the vacuolar orthologue of the SM-protein Munc18-1 (87).  In the light of current and 

earlier research, it thus becomes intuitive to speculate that one of the additional roles 

of Munc18-1 in SNARE-complex assembly would be to shield the assembling SNARE-

complexes against disassembly by NSF and αSNAP. 

The function of Munc18-1 in synaptic vesicle exocytosis, however, might not be limited 

to the above-mentioned roles. In addition to its interaction with syntaxin1a (39, 47, 

113) and the syntaxin1a/SNAP25a complex (30, 31, 61, this work), Munc18-1 has been 

proposed to interact with the R-SNARE synaptobrevin (44, 74, 131, 132) and also with 

the fully-assembled SNARE-complexes (42, 75, 133).   

Studies with cross-linking provided evidence for the interaction of the domain3a of 

Munc18-1 with the membrane-proximal residues of synaptobrevin,  placing Munc18-

1, at the site of membrane-fusion (74). Four years later, a specific region in the 

domain3a of Munc18-1, helix 12, was shown to undergo a conformational switch 

during synaptic vesicle exocytosis, promoting both an ‘open’ conformation of 

syntaxin1a and activating synaptobrevin-2 for SNARE-complex assembly (86). 

Additionally, a single point mutation in the helix 12, L348R, has been shown to abolish 

both the binding of Munc18-1 to synaptobrevin-2, as well as the stimulatory effect of 

Munc18-1 on membrane-fusion (86). Alternatively, another point mutation, P335A at 

the N-terminus of the helix 12 was shown to result in an extended conformation of this 
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helix, favoring an ‘open’ conformation of syntaxin1a, allowing it to bind to SNAP25a 

(86). The effects of these mutations have only recently been tested in Munc18-1 null 

mouse adrenal chromaffin cells, rescued with either L348R or P335A mutants of 

Munc18-1 (132). Consistent with the results from the in-vitro experiments, a decrease 

in vesicle priming was observed for L348R, whereas P335A showed an increase in the 

secretory amplitude, indicative of increased vesicle priming. However, neither of these 

mutants showed a change in the fusion kinetics, indicating that the interaction of 

synaptobrevin with Munc18-1 is critical for vesicle priming, but not for fusion (132).  

On similar lines, a recent study has reported that Munc18-1 can provide a template for 

SNARE-complex assembly through simultaneous interactions with syntaxin1a and 

synaptobrevin (44). In this study, single-molecule force-measurements were used to 

study SNARE-complex assembly in the presence of SNAP25a and Munc18-1, starting 

with a construct containing crosslinked syntaxin1a and synaptobrevin. The use of a 

crosslinked construct, however, made the system quite constrained, making it nearly 

impossible to detect any intermediate states containing syntaxin1a, SNAP25a and 

Munc18-1 (as reported in this study), that could form during SNARE-complex 

assembly.  

An analogous mechanism has lately been proposed for Vps33, the SM-protein which 

forms a part of the HOPS complex to facilitate vacuolar fusion in yeast (87).  Crystal 

structures of Vps33 have been obtained in complex with the Qa-SNARE, Vam1 and the   

R-SNARE, Nyv1. An overlay of these structures have implicated the involvement of 

Vps33 in providing a template for SNARE-complex assembly by interacting 

simultaneously with both of these SNAREs (87).  However, since these conclusions 

have been made only by overlaying two separate structures and not by obtaining a 

single complex containing Vps33, Vam3 and Nyv1, the conclusions derived from this 

study remain dubious. Also, the conclusions obtained from this study cannot be directly 

extrapolated for the mammalian syntaxin1a/Munc18-1 system. This is mainly because 

the R-SNARE-binding site on Munc18-1 is not accessible in the syntaxin1a/Munc18-1 

complex, thereby posing an additional regulatory step before synaptobrevin-binding 

can occur (87). A comparison of the structure of Vps33/Vam3 complex and the 

syntaxin1a/Munc18-1 complex has been shown in Figure 4.2-1. The R-SNARE-binding 

site on Munc18-1 only becomes exposed when syntaxin1a transitions from a ‘closed’ to 

an ‘open’ state. It can thus be speculated that upon ‘opening’, the syntaxin1a could 

possibly bind first to SNAP25a, resulting in a syntaxin1a/SNAP25a/Munc18-1 

intermediate (as shown in this study), to which synaptobrevin-binding can be 

facilitated via an SM-template. 

Alternatively, interactions between Munc18-1 and the fully-assembled SNARE-

complex have also been established (40, 74, 75, 80), indicating that the interaction of 

Munc18-1 with the fully-assembled SNARE complex on the plasma membrane could 

accelerate fusion by causing the expansion of the fusion-pore. A major support from 

this hypothesis came from in-vitro lipid-mixing assays, where Munc18-1 was reported 

to cause acceleration of fusion between liposomes containing neuronal SNAREs (31). A 
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closer look at the experimental system, however, revealed that this accelerating effect 

could be observed only when the liposomes containing reconstituted SNAREs were 

pre-incubated with Munc18-1 for several hours. The pre-requisite of long incubations 

in these experiments indicate that the effect of Munc18-1 could possibly have been 

observed due to a rearrangement of the Q-SNAREs by Munc18-1 and not by its effect 

on an already assembled trans-SNARE-complex. 

The fine experimental details in the different studies have thus helped us to reconcile 

the regulatory role of Munc18-1, underlining its critical importance mainly in the early 

stages (docking, priming) of SNARE-complex assembly. 

  

 

 

 

 

 

 

 

 
 

Figure 4.2-1. Crystal structure of Vps33 with the SNARE-motif of the Qa-SNARE, Vam3 
and its comparison with Munc18-1/syntaxin1a interaction. 
Left. Crystal structure of Vps33 (grey) and the SNARE-motif of Vam3 (shown in pink). The pink 
sphere indicates the residue of Vam3 that forms the zero-layer in the SNARE-complex. Middle. 
A superimposition of syntaxin1a containing its SNARE-motif (shown in dark blue) and the 
Habc domain (shown in purple) on the structure of Vps33-Vam3. Vam3 has been shown in 
pink. Right. Crystal structure of Munc18-1/syntaxin1a complex. The R-SNARE binding-site on 
Munc18-1 is not accessible in this binary complex and becomes accessible only upon ‘opening’ 
of syntaxin1a. [Adapted from (87)]. 
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4.3 Understanding the transition of an acceptor-complex to a fully-assembled 

SNARE-complex. 

SNARE-zippering is speculated to proceed from the N-termini of the SNARE-proteins 

towards their C-termini, slowly bringing the two opposing membranes in close 

apposition for membrane-fusion (134). In-vitro studies in a membrane environment 

have indicated that the SNAREs zipper at their membrane-distal ends, with the 

membrane proximal ends remaining unassembled, due to opposing forces from the 

juxtaposed membranes (135). 

In this study, I attempted to study the mechanism of SNARE-zippering, starting with 

the ternary syntaxin1a/SNAP25a/Munc18-1 complex, by using different truncations of 

the cytoplasmic fragment of synaptobrevin. The results obtained in this thesis 

indicated that a truncation of 44 residues from the C-terminus (Syb 1-52) and a 

truncation of 48 residues from the N-terminus (Syb 49-96) of the cytoplasmic fragment 

of synaptobrevin results in a complete loss of binding to the 

syntaxin1a/SNAP25a/Munc18-1 complex. This result was very intriguing and 

provided clues for the existence of an alternative zippering mechanism, where SNARE-

zippering would nucleate not at the conventionally proposed N-terminus, but 

somewhere downstream, and then proceed bi-directionally in a co-operative fashion. 

The results from these experiments can, however, also be interpreted in the light of a 

recent report for Vps33 (87). A deletion of the N-terminal and the C-terminal residues 

of Nyv1 (R-SNARE), was shown to result in reduced affinities for binding to the SM-

protein, Vps33 (87). A similar trend was observation in response to the truncation of 

the neuronal R-SNARE, synaptobrevin in this study. In addition to the complete loss of 

binding observed for Syb 1-52 and Syb 49-96, a considerable decrease was observed 

in the binding kinetics of a fragment (Syb 1-65) in which 31 residues from the C-

terminus of synaptobrevin had been truncated. The complete cytoplasmic fragment of 

synaptobrevin, however, exhibited fast binding kinetics to the 

syntaxin1a/SNAP25a/Munc18-1 complex. These observations could therefore, be 

indicative of SNARE-complex assembly via an R-SNARE-SM-protein intermediate.  

A very interesting question with respect to Munc18-1 that still remains unclear is its 

mode of interaction with the SNARE-protein(s) after SNARE-complex assembly. Some 

studies indicate that SNARE-complex assembly can cause the dissociation of Munc18-

1 from the neuronal SNAREs (78, 126), whereas others indicate that Munc18-1 can 

remain attached to the fully-assembled SNARE-complex, either by a close interaction 

with the core SNARE-complex (42, 75, 80) or, through a distal interaction with the N-

terminus of syntaxin1a (39, 41). The work done in this thesis supports the latter 

hypothesis by providing evidence for a continued association of Munc18-1 with the 

SNARE-complex via the N-terminus of syntaxin1a (see Figure 3.7-2 and Figure 3.7-4). 

However, as indicated in one of the previous section, the physiological relevance of this 

interaction still remains to be deciphered.  
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4.4 Physiological relevance of the syntaxin1a/SNAP25a/Munc18-1 complex.  

Almost forty years of intensive research in the SNARE-field has provided immense 

progress in the understanding of the details that define the spatial and temporal 

precision of SNARE-mediated membrane fusion. However, a clear step-by-step 

transition of the complexes in the SNARE-pathway remains missing. To cite an 

example, a consensus mechanism underlying the transition of syntaxin1a from its 

‘closed’ conformation (in the intracellular compartments) to an ‘open’ conformation 

(on the neuronal plasma membrane), largely remains unknown. 

There are three major candidates for the so-called ‘plasma-membrane factors’ that 

could be responsible for bringing about this transition. The first and one of the most 

well-characterized factor is the CATCH-R protein, Munc13-1. In-vitro studies have 

indicated that the incubation of syntaxin1a/Munc18- 1 complexes with Munc13-1 can 

result in a conformation of syntaxin1a which is compatible for SNARE-complex 

assembly (54).  A closer look at the mechanistic details of this transition has been 

reported only recently, where two residues in the linker region of syntaxin1a, R151 

and I155, were identified to be critical for the interaction of Munc13-1 with the 

syntaxin1a/Munc18-1 complex (136). These residues were shown to be crucial for the 

formation of a ternary complex between syntaxin1a, Munc13-1 and Munc18-1, where 

syntaxin1a still exists in a ‘closed’ conformation, but structural changes in its linker 

region promoted by Munc13-1, allows the gating of the syntaxin1a/Munc18-1 complex 

for functional SNARE-complex assembly (136).  

Former studies have attributed the key function of Munc13- to its MUN-domain, which 

has been shown to completely rescue neurotransmitter release in hippocampal 

neurons lacking Munc13-1/2 (52).  In contradiction to this observation, a recent study 

has reported that rescue experiments performed with the MUN-domain in autaptic 

neuronal cultures from Munc13-1/2 double knock-out mice, could rescue 

neurotransmitter release only by a very small level in comparison to the wild-type (32). 

The discrepancies observed in these two reports was found to result from differential 

levels of protein expression. The rescue experiment in the latter study was performed 

with a lentiviral expression vector, which results in moderate levels of protein 

expression as compared to the Semliki Forest Virus that causes protein expression 

much above the intracellular levels. This fact underlined any artifacts caused due to 

extremely high levels of proteins in the study reported earlier (52). Additionally, a 

fragment of Munc13-1 encompassing the region C1C2BMUNC2C of Munc13-1 was seen 

to cause much higher levels of rescue as compared to the MUN-domain, indicating a 

functional synergy between the different domains to promote the function of Munc13-

1in neurotransmitter release (32). 

Another candidate which is considered important for altering the interaction between 

syntaxin1a and Munc18-1 is protein kinase C (PKC), a second messenger that has been 

proposed to play a key role during neuronal exocytosis. Two sites on Munc18-1, serine 

306 and serine 313 can be phosphorylated by protein kinase C in-vitro, which in turn, 
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has been reported to attenuate the interaction of Munc18-1 with syntaxin1a (137). The 

phosphorylation of serine 313 in intact chromaffin cells has also been shown to affect 

kinetics of vesicle fusion and release (137). On similar lines, Munc18-1 has been 

reported to show redistribution and clustering at the synapse upon calcium influx and 

phosphorylation by PKC (138). In fact, a direct correlation has been obtained between 

synaptic strength and the PKC-dependent clustering of Munc18-1 at the synapse (138). 

Other studies, however, indicate that the facilitation of vesicle docking by Munc18-1 is 

independent of phosphorylation by protein kinase C, but the phosphorylation could 

play a post-docking role by potentiating vesicle pool replenishment (139). In a non-

neuronal system, another kinase, CdK5, has been speculated to weaken the 

interactions between syntaxin3 and Munc18-2, making way for a tripartite complex 

containing syntaxin3, SNAP25 and Munc18-2. The so formed 

syntaxin3/SNAP25/Munc18-2 complex is hypothesized to function as an intermediate 

for SNARE-complex assembly and subsequent secretion of gastric acid in epithelial 

cells (76). The interaction with plasma membrane Q-SNAREs can therefore be 

considered to be a universal feature of the mammalian SM-proteins. 

A third candidate which has been proposed to have a role in altering 

syntaxin1a/Munc18-1 interaction for promoting SNARE-complex assembly is 

arachidonic acid. Arachidonic acid is a poly-unsaturated fatty acid that has been shown 

to increase SNARE-complex formation in chromaffin cells and bovine cortical brain 

extracts in a dose-dependent manner (140). It has also been shown to promote long-

term plasticity in hippocampal neurons (141). Arachidonic acid can be released from 

the plasma membrane phospholipids by the action of phospholipases and can act as a 

potential second messenger in a micro-molar concentration range (115). Other studies 

have reported that the stimulatory effect of arachidonic acid on SNARE-mediated 

fusion can be blocked by the use of botulinum neurotoxins (142), thereby indicating 

that arachidonic acid acts by modulating the SNARE-machinery and not by increasing 

the general fusogenicity of the membrane lipids. Arachidonic acid has been speculated 

to positively regulate membrane fusion by relieving the inhibition of syntaxin1a by 

Munc18-1 (115, 140, 143). Studies using synaptosomes from rat brains indicated that 

the arachidonic acid could activate SNARE-complex assembly by causing the 

dissociation of syntaxin1a from Munc18-1 (115). Subsequent studies with more 

detailed characterizations, however, suggested that the effect of arachidonic acid is 

brought by causing a conformational change in syntaxin1a, allowing syntaxin1a to 

assemble into a tripartite complex containing syntaxin1a, SNAP25a and Munc18-1 

(143). This mechanism of action for arachidonic acid appears to be consistent in other 

syntaxin isoforms like syntaxin3 and syntaxin4 (143). Yet another study has proposed 

that an additional binding site on Munc18-1 can be exposed upon the action of 

arachidonic acid on the syntaxin1a/Munc18-1 complex (140), thereby facilitating the 

interaction of syntaxin1a with its partner SNAREs.  
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Figure 4.4-1. Schematic model representing the association of Munc18-1 with the SNARE-
proteins at different stages of SNARE-complex assembly.  
(A) The classical interaction of syntaxin1a with Munc18-1 in the binary syntaxin1a/Munc18-1 

complex, with syntaxin1a being in a ‘closed’ conformation.  (B) The syntaxin1a/Munc18-1 

complex can be acted upon by certain ‘in-vivo’ factors to alter the tight association of syntaxin1a 

and Munc18-1, making way for the association of syntaxin1a with SNAP25a, within a ternary 

syntaxin1a/SNAP25a/Munc18-1 complex. Syntaxin1a in this ternary complex is speculated to 

exist in a ‘partially open’ conformation. (C) Upon synaptobrevin-binding to this complex, 

syntaxin1a transitions to a ‘fully open’ conformation, leading to SNARE-complex assembly. This 

transition is accompanied by major structural rearrangements, causing the translocation of 

Munc18-1 to the N-terminus of syntaxin1a. 
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Taken together, it becomes conceivable, that the interaction between syntaxin1a and 

Munc18-1 gets altered by some in-vivo factors upon reaching the plasma membrane, 

resulting in the formation of an intermediate consisting of syntaxin1a, SNAP25a and 

Munc18-1 that forms a template for synaptobrevin-binding and SNARE-complex 

assembly. A cartoon representation of the associations of Munc18-1 with the SNARE-

proteins at different stages in SNARE-complex assembly has been shown in Figure 

4.4-1. 

Several studies performed earlier had highlighted the role of Munc18-1 in structuring 

the t-SNAREs for SNARE-complex assembly and, this study has helped in advancement 

of this understanding by providing direct mechanistic details underlying this function 

of Munc18-1.  

The conclusions from this study have highlighted the syntaxin1a/SNAP25a/Munc18-1 

complex as a strong candidate for a physiological intermediate in the SNARE-assembly 

pathway. The role of other accessory proteins such as Munc13-1, synaptotagmin and 

complexin, however, remain to be encompassed, to reconcile the significance of each 

of these components to specific stages of the SNARE-pathway. 
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5 Conclusions and perspectives 

This thesis has aimed at defining the long-speculated role of Munc18-1 during the early 

steps of synaptic vesicle exocytosis. The characterization of the novel 

syntaxin1a/SNAP25a/Munc18-1 complex has provided tremendous support to the 

speculations on the progress of SNARE-complex assembly via a Q-SNARE/SM-protein 

template.  Precise details of synaptobrevin-binding to this complex via interactions 

with Munc18-1, however, need to be unraveled.  

The use of full-length proteins in this study has provided a closer understanding of the 

physiological behaviors of the proteins. Most of the experiments in this study were, 

however, performed using detergent micelles, without the use of lipid bilayers or 

vesicles. The role of protein-lipid interactions thus, remained ignored in this work. An 

effort to optimize the system in a membrane-environment would strengthen the 

conclusions obtained from this study and would help to faithfully extend the 

conclusions towards a physiological scenario. 

Additionally, due to technical limitations of the experimental system, it was only 

possible to obtain an overview of the architecture of the 

syntaxin1a/SNAP25a/Munc18-1 complex using chemical crosslinking assays. In 

future, it would be interesting to figure out if the syntaxin1a/SNAP25a/Munc18-1 

complex can be stabilized by other accessory factors (for example, Munc13-1) and to 

probe the structural details of this macromolecular assembly using a more precise 

structural technique, such as X-ray crystallography. 

The spatial and temporal coupling of calcium-influx on the arrival of an action potential 

and synaptic vesicle exocytosis is achieved by the calcium-sensor synaptotagmin (56). 

Another protein, complexin has also been speculated to undergo conformational 

changes to promote SNARE-mediated fusion upon increase in the intra-cellular calcium 

levels (144). Therefore, a next big step for future research would be to figure out the 

role of these accessory proteins in the system. This would help us in obtaining a closer 

look at the intermediate steps, highlighting precisely at which step the trans-SNARE 

complex gets clamped and how the influx of calcium helps in promoting membrane 

fusion and neurotransmitter release.  

One of the major aims of this work was to detect the functional significance of 

association of Munc18-1 with the Q-SNAREs, syntaxin1a and SNAP25a. It still remains 

unknown when and how exactly during the process of neuronal exocytosis this 

interaction comes into play. Nonetheless, the work done in this thesis has, in the least, 

been able to establish that the association between the Q-SNAREs and Munc18-1 helps 

in greasing the wheels of the SNARE-engine and the subsequent binding of 

synaptobrevin to this complex sets the wheels rolling, resulting in SNARE-complex 

assembly. The resistance of the syntaxin1a/SNAP25a/Munc18-1 complex to 

disassembly by NSF-αSNAP has also highlighted an additional role of Munc18-1, in 
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providing a protective shield against disassembly for the intermediates formed in the 

SNARE-pathway.  

The work done in this thesis has thus provided a step forward in understanding the 

pre-fusion role of Munc18-1 in neuronal exocytosis. Subsequent progress will help in 

further unraveling the secrets that underlie the beauty of the exquisitely regulated 

process of synaptic vesicle exocytosis.
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Appendix Table 1. A representative view of the crosslinks obtained upon the chemical                                                       

crosslinking and MS/MS analysis of the syntaxin1a/SNAP25a/Munc18-1 complex. 

 

   
       Type 

  
    Protein 1 

 
     Protein 2 

 
     Residue 1 

 
     Residue 2 

 
       Inter 

 
    SNAP25a       

 
    Syntaxin1a 

 
        40  

 
       94 
      
 

 
      Inter 

  
   SNAP25a       

 
   Syntaxin1a 

 
       96 

         
       94 
       252 
       256 
       260 

       
       Inter 

      
    SNAP25a       

     
    Syntaxin1a 

 
       102 

 
       94 
       252 

    
       Inter 

 
    SNAP25a      

 
    Syntaxin1a 

 
       103 

        
       94 
      252 
      260 

      
       Inter 

  
    SNAP25a 

 
    Syntaxin1a 

 
        189 

 
       252   
       260 

       
       Inter 

 
    Munc18-1 

 
    SNAP25a 

 
        46 

 
        72 

   
       Inter 

 
    Munc18-1 

 
    SNAP25a 

 
        13 

 
        103 

 
       Inter 

 
    Munc18-1 

 
    Syntaxin1a 

 
        125                                            

 
        3 

 
       Intra 

 
    Munc18-1 

 
    Munc18-1 

 
        125 

       
        92 
        98 
        120 
        294 
        583 

    
       Intra 

 
    Munc18-1 

 
    Munc18-1 

 
        294 

         
        125 
        277 



                                                                            Appendix                                                                                                                                                            
                              

122 
 

        294 
        308 
        526 
        562 

 
       Intra 

 
    Munc18-1 

 
    Munc18-1 

 
        583 

 
        125 
        587 

 
       Intra 

 
    SNAP25a       

 
    SNAP25a             

 
        40 

 
        102 
        103 

 
       Intra 

 
    SNAP25a       

 
    SNAP25a       

 
        96 

 
        103 
        201 

 
       Intra 

 
    SNAP25a       

 
    SNAP25a       

 
        102 

 
         40 
        103 
        201 

 
       Intra 

 
    SNAP25a 

 
    SNAP25a 

 
        103 

 
        40 
        96 
        102 
        103 
        184 
        201 
 

 
       Intra 

 
    Syntaxin1a 

 
    Syntaxin1a 

 
        1 
 

 
        70 
        117 
 

 
       Intra 

 
    Syntaxin1a 

 
    Syntaxin1a 

 
        12 

       
        88 
        94 
        117 

 
       Intra 

 
    Syntaxin1a 

 
    Syntaxin1a 

 
        84 

 
        46 
        88 

 
       Intra 

 
    Syntaxin1a 

 
    Syntaxin1a 

 
       88 

 
        12 
        37 
        63 
        70 
        83 



Appendix 

123 
 

        94 
        118 

 
       Intra 

  
    Syntaxin1a 

 
    Syntaxin1a 

 
        83 

 
        75 
        79 
        117 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                            Appendix                                                                                                                                                            
                              

124 
 

Appendix Table 2. A representative view of the peptide-crosslinks obtained upon the 

chemical crosslinking and MS/MS analysis of the syntaxin1a/SNAP25a/Munc18-1 

complex after addition of synaptobrevin. 
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