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Summary

In this thesis we study population processes in two different settings. In Part I, which arose
in collaboration with Dr. Jan Swart, we consider a so-called cooperative branching process.
We construct this process as an interacting particle system which consists of a population of
individuals living on a discrete space Λ who reproduce cooperatively - that is to say that in
order to produce a new individual, it is necessary that two "parents" meet. The individuals
also die independently of each other and in some special cases we consider a version where
they can also move in the space and coalesce. The term cooperative branching was coined by
Sturm and Swart in [SS15] where they study a variant of this model without deaths and with
random walk dynamics on Z. In this thesis, we study the process in some of its variants on
a number of different graphs, namely the complete graph with N vertices, a regular tree of a
degree d and the d-dimensional lattice Zd.

The main part of Part I is Chapter I.2 where we study the model on a complete graph and
its mean-field limit. Here we show connections between a so called mean-field dual process
which arises naturally in the study of the mean-field limit of the cooperative branching process
and recursive tree processes studied by Aldous and Bandyopadhyay in [AB05]. In particular
we show that, roughly speaking, the mean-field dual process corresponds to a continuous-time
analogue of these recursive tree processes. In Chapter I.3 we provide some results about the
critical parameters for survival and existence of a nontrivial invariant law of the cooperative
branching process on various graphs. A more detailed introduction to Part I is provided in
Chapter I.1.

In Part II we consider a population of individuals which evolves according to a so called
Moran model and in which every individual consists of a chromosome with a finite number
of genes such that one gene has an effect on the fitness of the individual and other so called
neutral genes do not. We assume that the population is further affected by mutation and
recombination which, roughly speaking, is a phenomenon which causes two chromosomes to
split and form new chromosomes out of their parts during reproduction. We then study the
genealogy of a sample of these neutral genes in a setting where the population has evolved for
a long time and has reached stationarity. This is a generalization of a model introduced by
Barton, Etheridge and Sturm in [BES04] in which only a single neutral gene is considered. The
biological concepts mentioned here and the model we consider are introduced in more detail
in Chapter II.1.
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Part I

Particle systems
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Chapter I.1

Overview and previous results

I.1.1 History and motivation

An interacting particle system, as we will understand the term here, is a countable collection
of Markov chains, on the same, and typically countable or finite, state space. In addition to
that, the jump rates of each process are affected by the states of (some) other processes. It is
the last property which justifies the term interacting and which makes these models interesting
both mathematically and in terms of applications.

Typically, it is required that there be a geometric structure associated with the index set
(which is usually called a lattice) of the individual Markov chains, so that we can assume the
interactions to be local, i.e. only the current states of the processes which are in some sense
close to one of the chains affect its current jump rates. One simple and common example of
such a structure is the d-dimensional grid Zd equipped with the l1 metric. However, in large
part of this thesis we will be considering the lattice to have a structure of a complete graph
and we will be studying behaviour of the limit of a particular interacting particle system on
the complete graph as the size of the graph grows beyond all bounds.

The field of interacting particle systems first appeared as a distinct discipline in the late
1960’s with the work of F. Spitzer and R.L. Dobrushin (for example [Spi69] and [Dob71]),
originally motivated by problems of statistical mechanics such as the Ising model which has
been studied since 1925 already. Later, the scope of the field expanded, giving rise to models
which describe various phenomena ranging from physics and biology to social networks and
computer science. Liggett’s 1985 book [Lig85] covers the state of the field at the time, providing
a general construction of particle systems and showing several properties of four now-classical
models, the stochastics Ising models, the Exclusion process, the Contact process and the Voter
model. The latter three are then treated more exhaustively in Liggett’s 1999 book [Lig99].
These four models already cover a large area in terms of applications. For example, the contact
process on Z2 (i.e. with the index set Z2) has a natural interpretation as modelling a spread
of a population in a two-dimensional space. At a certain rate, an individual gives birth to an
offspring at one of its neighbouring unoccupied sites. Individuals then die at a constant rate.
Similarly, the Ising model on Zd can be interpreted as modelling the state of a collection of
atoms in a material, where each atom has either a positive or a negative spin and the spin of
each atom is affected by the spin of its neighbours.

While real-world populations rarely live on two-dimensional grids and interact strictly with
their neighbours based on a few simple rules, the behaviour of more realistic models often turns
out not to be substantially different. On the flip side, while interacting particle systems are
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indeed usually rather easy to formulate and construct, ascertaining their exact properties and
behaviour often proves remarkably difficult. While a lot of work has been done, particularly on
the classical processes mentioned above, many questions about their behaviour remain open
even after over 40 years of study, whereas answering others has required development of highly
non-trivial techniques.

In this thesis, we will concentrate on a particular model, which shares some similarities with
the contact process, at least in its biological interpretation. Just like in the contact process
we will assume to have a population of individuals on a countable space which reproduces
and dies at certain constant rates. However, we will assume that two parents are required
to successfully reproduce. This is why we call this model the cooperative branching process.
Apart from being more realistic, at least in case of a biological interpretation, this model is
also more challenging mathematically as we often need to use more general techniques to study
its behaviour.

A variation of the process was studied before in [SS15]. In their paper, Sturm and Swart
consider the process on Z with no deaths, but with additional coalescence dynamics. In
addition to the cooperative branching, the individuals act as random walkers who coalesce
into a single individual whenever they meet. Sturm and Swart provided an estimate for a rate
of branching such that the process eventually dies out (i.e. eventually all sites become empty)
whenever branching occurs at a smaller rate and conversely the process survives (i.e. some
sites are occupied at all times) with a positive probability if the branching occurs at a faster
rate. They also showed a similar result about the probability that a given site is occupied at
an arbitrarily late time. They then provided estimates for the behaviour of these probabilities
in time. In section I.3.2.2 we will show how their results change if we also allow deaths to
occur in addition to the coalescing random walk dynamics. We will see, as was conjectured in
[SS15], that when deaths are included the probability of survival and of a site being occupied
at a given time behave similarly as the corresponding probabilities for the contact process.

With the exception of Section I.3.2.2, we will however mostly be concerned with a model
without the coalescing dynamics. We will study the process on various lattices, namely on
Zd (in section I.3.2.1), on a d-dimensional regular tree (in section I.3.1) and on a complete
graph (in the majority of Chapter I.2). In the model on a complete graph our main object of
interest will in fact be what we call the mean-field dual process, which we obtain as a limiting
process of the so called dual process on the complete graph. A dual process is a process whose
behaviour relates to the behaviour of the cooperative branching process in a prescribed way
given by a so called duality function. We introduce the concept of duality in Section I.1.4.
Our main motivation to studying the dual process is its connection to the so called recursive
tree processes which were studied by Aldous and Bandyopadhyay in [AB05]. We discuss these
connections in Section I.2.2.

Part I of this thesis is organized as follows. In the remainder of Chapter I.1 we will provide
an overview of the construction of interacting particle systems in general, define a few selected
basic models, state some of their properties and discuss duality in the context of interacting
particle systems. We will also define the cooperative branching process in its most general
form.

In Chapter I.2 we study the cooperative branching process on the complete graph as well as
its mean-field dual process. We define the cooperative branching process and its dual process
on the complete graph and show that the ratio of occupied sites of the cooperative branching
process converges to a solution of the ordinary differential equation (I.2.1.17). Then we show
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that we can find a corresponding duality between the solutions of this equation and a particular
limit of the dual process which we call the mean-field dual process. We proceed to show some
further properties of the mean-field dual, particularly another form of duality between the
mean-field dual process and solutions of a measure-valued equation given in (I.2.1.33). We
show that the solutions of this equation have a natural interpretation related to the distribution
of finite collections of coupled cooperative branching processes on a complete graph and that
this can then be used to show some properties about a particular recursive tree process. These
results and some open questions related to the mean-field dual process and recursive tree
processes are summarized in more detail in Section I.2.5.

Chapter 3 provides various results about the cooperative branching process on regular trees
and the d-dimensional integer lattice Zd. We summarize these results in section I.1.3.

I.1.2 Basic construction and models

Let Λ be a countable set and S a finite set which we will call the local state space. By SΛ

we denote the Cartesian product of a number of copies of S corresponding to the number of
elements of Λ. An element x ∈ SΛ is then of the form x = (x(i))i∈Λ, where x(i) ∈ S for all
i ∈ Λ. We will call the elements of SΛ configurations and we will refer to the elements of Λ

as sites. For any site i ∈ Λ and any configuration x ∈ SΛ, we will call x(i) the (local) state
of (the configuration) x at (the site) i. Now, we define an interacting particle system as an
SΛ-valued continuous time Markov process

X = (Xt)t≥0 = (Xt(i), i ∈ Λ)t≥0. (I.1.2.1)

For any t ≥ 0 and any site i ∈ Λ we call Xt(i) the state of (the process) X at time t and site
i. In many cases, we can characterize the generator G of X by a so called random mapping
representation (for a general overview of Markov processes and their generators see for example
[EK86]). That is, denoting G as a set of functions m : SΛ → SΛ, we would like to write G in
the form

Gf(x) =
∑
m∈G

rm(f(m(x))− f(x)), x ∈ SΛ, (I.1.2.2)

where rm, m ∈ G are non-negative constants, which we will call rates. Hence, the process
jumps from state x ∈ SΛ to the state m(x) ∈ SΛ at an exponential rate given by rm. We
will now state sufficient conditions on the maps m ∈ G and their rates rm under which we can
indeed represent G in this way.

We will use the same notation as used in [SS16]. We now provide a general construction
of interacting particle systems via stochastic flows corresponding to local maps. For a more
detailed treatment and proofs see for example [Swa17], Chapters 2 and 4. For anym : SΛ → SΛ

we define
D(m) := {i ∈ Λ; ∃x ∈ SΛ such that m(x)(i) 6= x(i)},

i.e. D(m) is the set of sites i ∈ Λ such that m can change the state at the site i of at least one
configuration x ∈ SΛ. We will say that a site j ∈ Λ is m-relevant for i ∈ Λ if changing the
state x(j) for some x ∈ SΛ changes the value of m(x) at site i, that is if

∃x, y ∈ SΛ such that m(x)(i) 6= m(y)(i) and x(k) = y(k)∀k 6= j,

and for any i ∈ Λ we will denote by Ri(m) the set of all sites that are m-relevant for i. We
will say that a map m : SΛ → SΛ is local if
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• D(m) is finite

• Ri(m) is finite for all i ∈ Λ

• For any x, y ∈ SΛ and any i ∈ Λ, if x(j) = y(j) for all j ∈ Ri(m), thenm(x)(i) = m(y)(i).

We will restrict our attention (and construction) to interacting particle systems defined via
local maps, hence we assume that G is a set of local maps on SΛ and in addition to that we
also assume that

sup
i∈Λ

∑
m∈G, D(m)3i

rm(|Ri(m)|+ 1) <∞. (I.1.2.3)

Under these conditions it can be shown (see for example [Swa17]) that (I.1.2.2) indeed defines a
generator of a Markov process and that this process can be constructed via a suitable stochastic
flow with independent increments (whose definition depends on G). Let T be a metrizable
space. We will call a collection (Xs,t)s≤t, s,t∈R+ of random maps Xs,t : T → T a stochastic
flow if

(i) For each x ∈ T , the value Xs,t(x) is càdlàg as a function of both s and t.

(ii) Xs,t = Xs−,t = Xs,t− = Xs−,t− almost surely for deterministic s ≤ t (and all of these
functions are well-defined)

(iii) Xs,s is the identity map and Xt,u ◦Xs,t = Xs,u for all deterministic s ≤ t ≤ u.

A stochastic flow has independent increments if

Xt0,t1 , . . . ,Xtn−1,tn (I.1.2.4)

are independent for any t0 < · · · < tn. If (Xs,t)s≤t is a stochastic flow with independent
increments, then for any s ∈ R

Xt := Xs,s+t(X0), t ≥ 0 (I.1.2.5)

is a Markov Process. In particular, if G is a set of local maps and rm,m ∈ G are such that
(I.1.2.3) holds, then we obtain the stochastic flow corresponding to (I.1.2.2) as follows. For
each m ∈ G we define a Poisson process Nm = (Nm

t )t≥0 with rate rm and we assume that the
processes Nm,m ∈ G are all independent. For each m ∈ G let Ñm := {t > 0; Nm

t− 6= Nm
t }

be the set of jump times of the process Nm and put ω := {(m, t); t ∈ Ñm for some m ∈ G}.
Define

ωs,u := {(m, t) ∈ ω : t ∈ (s, u]}.

If Λ is finite, then ωs,u is a finite set and its elements can be ordered so that

ωs,u = {(m1, t1), . . . , (mn, tn)},

where t1 < . . . < tn. Then we can define the stochastic flow from s to u as

Xs,u := mn ◦ . . . ◦m1.

In the case when Λ is only countable, the construction becomes more complicated, because ωs,u
does not generally have to be finite. However, using the assumption that G are local maps and
that the summability condition (I.1.2.3) holds, we can show that for every site i ∈ Λ and every
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s ≤ u there exists a set ωi,us ⊆ ωs,u which is finite and which contains all events (m, t) ∈ G×R+

which are relevant for the state of Xs,u(x)(i). We can then define the stochastic flow by

Xs,u(x)(i) := mn ◦ . . . ◦m1(x)(i).

In the view of (I.1.2.5), we see that we obtain Xt by successively applying the relevant maps
m ∈ G to the initial stateX0 in the right order. The collection of the Poisson processesNm,m ∈
G form what we call a graphical representation of the process X. For a fixed realization of ω
we can visualise the path of X over a finite number of sites by denoting the points t ∈ Nm for
each relevant m with a particular symbol representing the map m. For a concrete example of
a graphical representation in case of the contact process on Z see figure I.1.1.

We will now define two simple classical models we have already mentioned earlier, namely
the voter model and the contact process.

I.1.2.1 Voter model

For each i, j ∈ Λ and x ∈ SΛ we define the voter map as

votij(x)(k) :=

{
x(i) if k = j,

x(k) otherwise,
(I.1.2.6)

In words, this means that when the voter map votij is applied, the local state at site k changes
to the local state at site i. Generally, for a fixed k ∈ N, the Markov process corresponding to
the voter model has a generator Gvot of the form

Gvotf(x) =
∑
i 6=j

wi,j (f(votij(x))− f(x)) , x ∈ SΛ, (I.1.2.7)

where wij are non-negative constants for all i, j ∈ Λ.
While Λ can be any countable set, it is often considered to have a structure of an undirected

graph (Λ, E), where Λ is the vertex set and E = EΛ the corresponding set of edges, that is
the set of unordered pairs of sites in Λ. In particular let (Λ, E) be a countable, connected,
vertex transitive, locally finite graph (see the Appendix, Section A.1 for the definitions of
these properties) with vertex set Λ and set of (undirected) edges E. For i, j ∈ V we denote
the (undirected) edge between i and j by 〈i, j〉 ∈ E. Since Λ is vertex transitive, each vertex
has the same degree, which we denote by D. With an appropriate choice of the rates wij we
obtain the nearest neighbour voter model on a (Λ, E) with the generator

Gvotnf(x) =
1

D

∑
i,j∈Λ

〈i,j〉∈E

(f(votij(x))− f(x)) , x ∈ SΛ. (I.1.2.8)

The maps votij , i, j ∈ Λ are local and by the choice of the edge set E we see that for any
i ∈ Λ the set {m ∈ G; D(m) 3 i} is finite for the voter model. Hence the condition (I.1.2.3) is
met and the voter model is a well-defined Markov process. Note that rescaling by 1

D ensures
that for each ∈ Λ the total rate at which the maps votij , 〈i, j〉 ∈ E are applied is equal to 1.
For example if Λ is the d-dimensional integer lattice Zd with nearest neighbour edges, we get
D = 1/2d.

One possible interpretation of the voter model (which gives it its name) is that of a network
of individuals indexed by Λ who each have one of the opinions from the set S. At rate wij
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the individual i talks to individual j and convinces j of his opinion. Another interpretation
is that of a population of different species such that the local state of the process at site i
denotes the species occupying i. Then at rate wij the individual occupying site j dies and is
replaced by an offspring of the individual who lives at site i. In Part II of this thesis we will be
studying a process which in its simplest form corresponds to the voter model with two species
on a complete graph.

I.1.2.2 Contact process

The contact process is a process with a local state space S = {0, 1} which models the spread
of a population in (a countable) space. In a given configuration x ∈ SΛ we interpret the sites
i ∈ Λ for which x(i) = 0 as unoccupied or empty and those where x(i) = 1 as occupied. Every
occupied site becomes unoccupied at a certain non-negative death rate. We interpret this event
as the individual occupying site i dying. Individuals produce offspring at a different (also non-
negative) branching rate, so that a site i becomes occupied if an individuals occupying one of its
neighbouring sites branches/gives offspring to site i. For a, b ∈ {0, 1} we put a∨ b := max(a, b)

and a ∧ b := min(a, b). Formally, we define the contact process via the branching maps
braij , i, j ∈ Λ and death maps deathi, i, j ∈ Λ, given for x ∈ SΛ by

braij(x)(k) :=

 x(i) ∨ x(j) if k = j,

x(k) otherwise,

deathi(x)(l) :=

{
0 if l = i,

x(l) otherwise.

(I.1.2.9)

The generator of the process on Λ is given by

Gcontf(x) :=
∑
i 6=j

b(i, j) (f((braij(x))− f(x)) +
∑
i

d(i)((f((deathi(x))− f(x)) , x ∈ SΛ,

(I.1.2.10)
where b(i, j) and d(i) are non-negative rates. Assuming that (Λ, E) is a countable, connected
vertex transitive locally finite graph of degree D, we obtain the generator of the nearest neigh-
bour contact process on Λ as

Gcontnf(x) := α
1

D

∑
i,j∈Λ

〈i,j〉∈E

(f((braij(x))− f(x)) + δ
∑
i∈Λ

(f((deathi(x))− f(x)) , x ∈ SΛ,

(I.1.2.11)
where α ≥ 0 is the branching rate and δ ≥ 0 the death rate. The maps braij and deathi

are local for any i, j ∈ Λ and by the choice of the edge set E we have that for the nearest
neighbour contact process the set {m ∈ G; D(m) 3 i} is finite. Hence, the condition (I.1.2.3)
is met and the nearest neighbour contact process is a well-defined Markov process. Note that
the rescaling 1

D of the branching rate ensures that for each site i ∈ Λ the maps braij , 〈i, j〉 ∈ E
are applied at a total rate α.

The contact process is in a sense a simplified version of the cooperative branching process
which we will define in the next subsection.

12



time

Z0 1 2 3 4 5 6

Figure I.1.1: A graphical representation of a contact process on Z started with sites i =

1, . . . , 5 occupied. The arrows and dots denote a particular realization of the Poisson processes
associated with the maps in G. A left arrow from site i to site j = i − 1 represents a point
of the Poisson process associated with the map braij and analogously for the right arrows. A
black rectangle at the site i denotes a point of the Poisson process associated with the death
map deathi. The green lines denote the sites which are occupied at a given time.

I.1.2.3 Cooperative branching process

Let Λ be a countable set and once again let S := {0, 1}, so that SΛ denotes the set of all particle
configurations x = (x(i))i∈Λ with x(i) ∈ {0, 1} for all i ∈ Λ. As before we will refer to the sites
i ∈ Λ for which x(i) = 1, as occupied in the configuration x and as empty otherwise. For each
i, j, k ∈ Λ with i 6= j 6= k 6= i, we define cooperative branching maps coopijk : SΛ → SΛ by

coopijk(x)(l) :=


(
x(i) ∧ x(j)

)
∨ x(k) if l = k,

x(l) otherwise,
(I.1.2.12)

In words, the map coopijk has the effect that if in the configuration x, both i and j are occupied
by a particle, and k is empty, then the two particles together produce a new particle at k. Apart
from the cooperative branching maps, we also consider the death maps deathi, i ∈ Λ as defined
in (I.1.2.9) and the coalescing random walk maps rwij , i, j ∈ Λ defined as

rwij(x)(k) :=


0 if k = i,

x(i) ∨ x(j) if k = j,

x(k) otherwise.

(I.1.2.13)

In words, if in a configuration x the site i is occupied the map rwij causes the particle occupying
that site to "move" to site j, so that i becomes unoccupied and j becomes occupied. If j were
already occupied in x before applying the map rwij the two particles coalesce into one. We
will be interested in the interacting particle system (Xt)t≥0 with state space SΛ and generator
of the form

Gf(x) :=
∑
ijk

c(i, j, k)
{
f
(
coopijk(x)

)
− f

(
x
)}

+
∑
ij

r(i, j)
{
f
(
rwij(x)− f

(
x
)}

+
∑
i

d(i)
{
f
(
deathi(x)

)
− f

(
x
)}
,

(I.1.2.14)
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where c(i, j, k), r(i, j) and d(i) are nonnegative rates and the first sum runs over all triples of
sites i, j, k such that i 6= j 6= k 6= i, whereas the second runs over all pairs of sites i, j such that
i 6= j. Under the summability conditions

sup
i

∑
jk

c(i, j, k) <∞, sup
i

∑
j

r(i, j) <∞ and sup
i
d(i) <∞, (I.1.2.15)

the cooperative branching, death and coalescing random walk maps all fulfil the condition
(I.1.2.3). In this thesis we will concentrate on a particular choice of the rates c(i, j, k), r(i, j)
and d(i) which give us the following model as special case of (I.1.2.14) in the same way we
obtained models (I.1.2.8) and (I.1.2.11) from the general models of the voter model and contact
process, respectively.

Once again, we assume that (Λ, E) is a countable, connected, vertex transitive, locally
finite graph of degree D. We now further assume that Λ has at least three elements which by
connectedness implies that D ≥ 2. Let α ≥ 0, β ≥ 0, γ ≥ 0, δ ≥ 0 all be non-negative constants
and put

Gf(x) :=α
1

D(D − 1)

∑
i,j,k∈Λ

〈i,j〉,〈j,k〉∈E

{
f
(
coopikj(x)

)
− f

(
x
)}

+β
1

2(D − 1)

∑
i,j,k∈Λ

〈i,j〉,〈j,k〉∈E

{
f
(
coopijk(x)

)
− f

(
x
)}

+γ
1

D

∑
i,j∈Λ

〈i,j〉∈E

{
f
(
rwij(x)

)
− f

(
x
)}

+δ
∑
i∈Λ

{
f
(
deathi(x)

)
− f

(
x
)}
.

(I.1.2.16)

In words, this can be described as follows. For each site j ∈ Λ, with rate α, two neighbouring
vertices i, k are selected uniformly without replacement from all neighbouring sites of j, and the
map coopikj is applied. For each (undirected) edge 〈i, j〉 ∈ E, with rate β, one of the vertices
neighbouring the edge 〈i, j〉 is selected at random with probability 1

2(D−1) if it is a neighbour
of i but not of j (or vice versa) and with probability 1

(D−1) if it neighbours both i and j. Then,
denoting this vertex by k, the map coopijk is applied. Finally, each particle jumps with rate γ
to a random neighbouring site, coalescing with any particle that may already have been present
there, and each particle dies at rate δ. All maps used in the construction of the cooperative
branching process are local and by the choice of the edge set E we see that for any i ∈ Λ the
set {m ∈ G; D(m) 3 i} is finite. Hence the condition (I.1.2.3) is met and the cooperative
branching process is a well-defined Markov process. Note that the choice of rescaling of the
rates α ensures that for each j ∈ Λ the total rate at which the maps coopikj , 〈i, j〉, 〈j, k〉 ∈ E
are applied is α. For β and γ the rescaling gives us analogous statements.

In figure I.1.2 we provide an example of the graphical representation of the cooperative
branching process with generator (I.1.2.16) on Z with α > 0, δ > 0 and β = γ = 0.

In this thesis we will be studying the model (I.1.2.16) on three particular graphs - the
complete graph with N ∈ N vertices in Chapter I.2, the regular tree Td, d ≥ 2 in Section I.3.1
and finally in sections I.3.2.1 and I.3.2.2 we study the model on an integer lattice Zd, d ≥ 1

with nearest-neighbour edges where D = 2d.
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time

Z0 1 2 3 4 5 6

Figure I.1.2: A left arrow from site i over site j = i − 1 to site k = i − 2 represents a point
of the Poisson process associated with the map braijk and analogously for the right arrows.
Once again, black rectangles represent deaths.

I.1.3 Phase transition

Put S = SΛ, where S is finite and Λ countable let µ and ν be two probability measures on
the partially ordered space S such that a µ-distributed random variable X and a ν-distributed
random variable Y can be coupled so that X ≤ Y . Then we say that µ and ν are stochastically
ordered and write µ ≤ ν. It holds that µ ≤ ν if and only if

∫
f(x)dµ(x) ≤

∫
f(x)dν(x) for

any monotone bounded measurable function f on S. For the proof of the equivalence, see for
example Theorem 5.1 in [Swa17] as well as Theorem II.2.4 in [Lig85] which [Swa17] refers to
for a part of the proof.

Let T be a σ-algebra on S. Then we say that a map K : S × T → [0, 1] is a probability
kernel on S if the map x → K(x,A) is measurable for every measurable set A and the map
A → K(x,A) is a probability measure on S for every x ∈ S. We will say that a probability
kernel K on S is monotone if K(x, ·) ≤ K(y, ·) for all x ≤ y ∈ S. A particle interacting system
is monotone if its transition probability kernels are monotone. The contact process, the voter
model as well as the cooperative branching process are all monotone since they can all be
represented using monotone maps only (see (A.2.5) for the definition of a monotone map).

We will now assume that S = {0, 1}Λ, where Λ is a countable lattice and concentrate on
the case when the particle interacting system in question is either the contact process with
generator (I.1.2.11) or the cooperative branching process with generator (I.1.2.16). We will
refer to the process as X = (Xt)t≥0. Denote by 1 := 1Λ := {1}Λ ∈ S the configuration in
which all sites in Λ are occupied and similarly by 0 := 0Λ := {0}Λ ∈ S the configuration in
which every site is empty. Let (Pt, t ≥ 0) be the transition kernel of X. We will say that an
invariant law ν of X is the upper invariant law if 1Pt := P1[Xt ∈ ·] converges weakly to ν.
In other words ν is the upper invariant law of the process X if the distribution of X started
in the initial state where all sites are occupied converges weakly to ν. The existence of the
upper invariant law is ensured for any monotone interacting particle system (see for example
[Lig85], Theorem III.2.31). The name upper invariant comes from the fact that if ν is an upper
invariant law of X, then we have for any invariant law µ of X that µ ≤ ν, where the inequality
is in the sense of stochastic order.

1The theorem is formulated for monotone spin systems only, but its proof remains the same for all monotone
interacting particle systems
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We will say that

a probability law ν on S is non-trivial if ν(0) = 0, (I.1.3.1)

that is the empty configuration has probability zero. Given a monotone interacting particle
system we can then ask whether the upper invariant law is non-trivial.

For x ∈ S we denote by |x| := #{i;x(i) = 1} the number of occupied sites in x. It is
clear that the configuration 0 is absorbing for both the contact process and the cooperative
branching process, that is the process remains constant if there are no occupied sites left.
This leads us to studying its survival. We say that the process X survives if there exists a
configuration x0, |x0| <∞ such that if X0 = x0,

P[Xt 6= 0 ∀t ≥ 0] > 0. (I.1.3.2)

That is, we say that the process survives if, when started from a finite configuration (i.e. one
with finitely many occupied sites), there is a positive probability that there exist some occupied
sites at all times. Otherwise, we say that the process dies out.

In case of the cooperative branching process with random walk dynamics but without
deaths (i.e. in the model (I.1.2.16) with γ > 0 and δ = 0) the process always survives in the
sense (I.1.3.2) since the process with a single occupied particle behaves like a random walk.
However, we can still define a similar concept. We say that the cooperative branching process
stays active if there exists an initial state x0, |x0| <∞ such that

P[∀t ≥ 0 ∃s > t s.t. |Xs| 6= |Xt|] > 0. (I.1.3.3)

In other words, the process stays active if the number of occupied states keeps changing. If
(I.1.3.3) does not hold, we say that the process becomes inactive. Note that in the cooperative
branching process with deaths (I.1.3.3) and (I.1.3.2) are equivalent.

The non-triviality of the upper invariant law, the survival of the contact process and the
cooperative branching process and staying active in the cooperative branching process without
deaths all depend on the choice of the underlying lattice Λ as well as the values of the rates
α, β, γ and δ. In the cooperative branching process, for fixed values of the rates α, γ, δ, we let

βsurv(α, γ, δ) = βsurv := inf{β > 0 : the process survives},

βupp(α, γ, δ) = βupp := inf{β > 0 : the upper invariant law is nontrivial}.
(I.1.3.4)

In case that δ = 0, we also define

βact(α, γ) = βact := inf{β > 0 : the process stays active}. (I.1.3.5)

We define the rates αsurv(β, γ) = αsurv, αupp(β, γ) = αupp and (in the case δ = 0) the rate
αact(β, γ) = αact := inf{α > 0 : the process stays active} analogously. In the same way we
also define the rates αsurv(δ) = αsurv and αsupp(δ) = αsupp for the contact process.

Both the cooperative branching process and the contact process are monotone which allows
us to use monotone coupling of the respective processes with different rates β to show that they
survive for all β > βsurv and die out for β < βsurv and their respective upper invariant laws
are nontrivial for all β > βupp and trivial for β < βupp (for an example of such coupling, see
the proof of Proposition 5.11. in [Swa17]). By monotone coupling we can also show analogous
statements for αsurv and αupp. It is also possible to show this for βact and αact (a detailed
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proof in the case when Λ is a one-dimensional integer lattice can be found in [SS15], Theorem
3). This is an example of what is usually called phase transition, i.e. a difference of the long
term behaviour if a model under and below a certain critical level of a parameter of the model.
In the view of that, we call αsurv, αupp, αact, βsurv, βupp, βact the critical parameters so that for
example αsurv or βsurv are the critical parameters for survival and αupp and βupp the critical
parameters for the nontriviality of the upper invariant law. Unless it is clear from the context,
we will specify in each case which of the parameters α, β, γ, δ we are assuming to be fixed.

In particular, the contact process on Zd with death rate δ = 1 survives and its upper
invariant law is non-trivial when α > α(d), where α(d) is a constant dependent on d and
the process dies out (and there exists no non-trivial invariant law) when α ≤ α(d). This can
be shown by a comparison to the oriented percolation, see for example [Swa17], Chapter 7.
Bezuidenhout and Grimmet ([BG90]) have further shown that in the critical case α = αsurv

the contact process dies out. Bezuidenhout and Gray ([BG94]) then expanded on those results
to give analogous statements about more general models. In Section I.3.2.1 we will show that
their methods can be used in a straightforward manner to show the following.

Proposition I.1.3.1 Let X be a cooperative branching process with the generator (I.1.2.16)
defined on Zd equipped with nearest neighbour edges and assume that γ = 0 (no random walks)
and δ > 0. Then

βupp ≤ βsurv,

that is the critical parameter for the non-triviality of the upper invariant law is smaller or equal
to the critical parameter for survival.

It can be shown for the contact process (see for example [Lig99], Part I.1.) that the corre-
sponding critical parameters αupp and αsurv are in fact equal which together with Proposition
I.1.3.1 suggests that this might also be the case of the cooperative branching process on Zd

with no random walks. For the process on a regular tree Td we obtain the following estimate
of the cricital parameter for survival in Section I.3.1.

Proposition I.1.3.2 Let X be the process with generator (I.1.2.16) defined on a regular tree
Td with α = γ = 0 and δ = 1. Then

βsurv ≥
d

d− 1
. (I.1.3.6)

Sturm and Swart [SS15] studied the cooperative branching process with the generator
(I.1.2.16) on Z in the special case when α = δ = 0 and γ = 1. In this case, rather than survival
as in (I.1.3.2) we are interested in whether the process stays active in the sense (I.1.3.3). Sturm
and Swart showed that βact ∈ [1,∞) and βupp ∈ [1,∞) and that for β < 1

2 when started from an
initial state X0 = xpair := 1{0,1} with only two neighbouring occupied particles, the probability
Pxpair [|Xt| ≥ 2] of staying active2 until time t has a polynomial decay (to zero). Under the
same conditions they also showed that the same holds for the probability P1Z [Xt(0) = 1] of
a particular site being occupied at time t with the initial state X0 = 1Z with all sites i ∈ Z

occupied. They also conjectured that this decay becomes exponential if deaths are allowed to
occur in addition to random walk dynamics, i.e. if δ > 0. In section I.3.2.2 we confirm their
conjecture, namely we show the following

2By the reccurence of of a one-dimensional random walk this probability is indeed equivalent to the left-hand
side of (I.1.3.3)
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Proposition I.1.3.3 Let X be the cooperative branching process with generator (I.1.2.16) on
Z (with nearest neighbour edges) and such that α = 0, γ = 1 and δ > 0 is fixed. Then for all
β ≤ 1 it holds that

Pxpair [|Xt| ≥ 1] ≤ 2e−δt and P1Z [Xt(0) = 1] ≤ e−δt. (I.1.3.7)

We also show corresponding lower bounds for these probabilities in Propositions I.3.2.2 and
I.3.2.3. Some of our results as well as other results cited in this section are obtained using
duality, which is a concept that we introduce in the next section.

I.1.4 Duality

We say that Markov processes X = (Xt)t≥0 and Y = (Yt)t≥0 with state spaces S and T

respectively are dual to each other if there exists a measurable function ψ : S × T → R such
that

E[ψ(Xt, Y0)] = E[ψ(X0, Yt)], t ≥ 0 (I.1.4.1)

whenever the initial state X0 of X is independent of Y and likewise the initial state Y0 of Y is
independent of X. We will say that X is subdual to Y if the left-hand side of (I.1.4.1) is lower
or equal than the right-hand side. This notion of duality with respect to a duality function is
classical and the above definition can be found for example in [CR84].

We can also define a duality between two maps. Let S and T be sets and m : S → S

and m̂ : T → T functions. We then say that m and m̂ are dual with respect to (the duality
function) ψ if

ψ(m(x), y) = ψ(x, m̂(y)), x ∈ S, y ∈ T. (I.1.4.2)

For processes which can be constructed from their corresponding stochastic flows as in
(I.1.2.5), we can also define a stronger version of duality as follows. Let (Xs,t)s≤t and (Ys,t)s≤t
be stochastic flows with independent increments such that Xs,t : T1 → T1 and Ys,t : T2 → T2

for all s, t ∈ R where T1 and T2 are some metrizable spaces. We say that (Xs,t)s≤t and (Ys,t)s≤t
are dual to each other with respect to the duality function ψ : T1 × T2 → R if

(i) (Xt0,t1 ,Y−t1,−t0), . . . , (Xtn−1,tn ,Y−tn,−tn−1) are independent for any t0 < · · · tn.

(ii) For each x ∈ T1, y ∈ T2 and s ≤ u, the function [s, u] 3 t → ψ(Xs,t−,Y−u,−t(y)) is
almost surely constant.

If the processes X and Y are constructed via stochastic flows (Xs,t)s≤t and (Ys,t)s≤t,
respectively, which are dual to each other, then we say that X and Y are pathwise dual. As
noted above, this is a stronger notion of duality than (I.1.4.1), since in particular we obtain
from the duality of their stochastic flows that for any x ∈ T1 and y ∈ T2 it holds that

ψ(x,Y−u,−s(y)) = ψ(Xs,u(x), y) almost surely,

which implies that the processes X and Y are also dual in the sense (I.1.4.1). The term
pathwise duality with respect to a function has been first introduced by Jansen and Kurt in
[JK14]. The same article also includes a survey of various other notions of duality.

We will now construct a process which is pathwise dual to the cooperative branching
process X with generator (I.1.2.14) without random walks. This includes all variations of the
cooperative branching process that we study in this thesis except for Section I.3.2.2 where we
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consider the random walk dynamics as well. Assume that X does not exhibit any random walk
dynamics, that is r(i, j) = 0 for all i, j ∈ Λ. Let Sfin := {y ∈ S(Λ) :

∑
i y(i) <∞} denote the

space of all finite particle configurations on Λ and denote by

H(Λ) := Pfin(Sfin(Λ)) := {E ⊂ Sfin : |E| <∞}

the set of all finite subsets of Sfin(Λ). Let brankij : S(Λ)→ S(Λ) be the map defined as

brankij(e)(l) :=


e(k) ∨ e(l) if l = i or l = j,

0 if l = k,

e(l) otherwise,

(I.1.4.3)

which can be described in words by saying that if in the configuration e there is a particle at
site k, then this particle disappears but two new particles appear at the sites i and j, provided
that these are empty. Next, for any E ∈ H(Λ), let brankij(E) denote the image of E under
the map brankij and define maps acting on the space H(Λ) by

coop•ijk(E) := E ∪ brankij(E). and death•i (E) := {e ∈ E : e(i) = 0}. (I.1.4.4)

Let (Yt)t≥0 be the continuous-time Markov process with state space H(Λ) and generator

G•f(Y ) :=
∑
ijk

c(i, j, k)
{
f
(
coop•ijk(Y )

)
− f
(
Y
)}

+
∑
i

d(i)
{
f
(
death•i (Y )

)
− f
(
Y
)}
. (I.1.4.5)

Note that H(Λ) is countable, and hence (Yt)t≥0 is a continuous-time Markov chain. It follows
from the Proposition 28 of [SS16] that under the summability conditions (I.1.2.15), the process
(Yt)t≥0 is non-explosive.

The following result is an immediate consequence of Theorem A.2.2, where we choose the
dual (A.2.1) as S′ := S but equipped with the reversed order and the bijection x→ x′ chosen
as the identity function.

Proposition I.1.4.1 (Cooperative branching duality, no random walks) Let χ : S(Λ)×
H(Λ)→ {0, 1} be defined by

χ(b, E) := 1{∃e ∈ E s.t. e ≤ b}
(
b ∈ S(Λ), E ∈ H(Λ)

)
. (I.1.4.6)

Let X = (Xt)t≥0 be an interacting particle system with generator as in (I.1.2.14) with r(i, j) =

0 for all i, j and let Y = (Yt)t≥0 be the continuous-time Markov process with generator as in
(I.1.4.5). Then X and Y can be coupled in such a way that they are pathwise dual.

The process (Yt)t≥0 in Proposition I.1.4.1 is very similar to the process (Y •t )t≥0 from
Theorem A.2.2, but not quite the same. The difference is that according to our definition
coop•ijk({111}) = {111, 110}, whereas (A.2.10) gives coop•ijk({111}) = {110}. Here 110 is
a short notation for the particle configuration for which (x(i), x(j), x(k)) = (1, 1, 0). Since
χ(x, {111, 110}) = χ(x, {110}) for any x ∈ S(Λ), this has no effect on the duality.
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Chapter I.2

Complete graph and the Mean-field
Model

I.2.1 Introduction and main results

I.2.1.1 The process on the complete graph

In this subsection, we concentrate on the case where Λ = ΛN := {1, . . . , N} is a finite set with
N ∈ N, N ≥ 3 elements and the rates c(i, j, k) and d(i) from (I.1.2.14) are given by

c(i, j, k) :=


α

(N − 1)(N − 2)
if i 6= j 6= k 6= i,

0 otherwise,
and d(i) := δ, (I.2.1.1)

where α, δ ≥ 0 are fixed constants. For this particular choice of rates, the dynamics of (Xt)t≥0

can be described as follows. For each site k ∈ ΛN , with rate α, two sites i, j are drawn at
random such that i, j, k are all different, and the cooperative branching map coopijk is applied.
Moreover, for each i ∈ Λ, with rate δ, the map deathi is applied. Since all sites play an equal
role, we can think of each site as being a neighbour of each other site, i.e., we picture ΛN as a
complete graph with N vertices.

From now on, unless stated otherwise, we will assume that the death rate δ is equal to 1.
Note that by time rescaling any positive δ > 0 can be reduced to this case.

Let (XN
t )t≥0 denote the cooperative branching process on ΛN with generator as in (I.1.2.14)

and rates as in (I.2.1.1). Since all sites play an equal role, the fraction of sites that is occupied
by a particle

X
N
t :=

1

N

∑
i∈ΛN

XN
t (i), t ≥ 0 (I.2.1.2)

is a Markov process with state space {0, 1
N , . . . , 1} that jumps from

x 7→ x+ 1
N at rate αN(1− x)x(x− 1

N )N−1
N−1

N−2
N−2 ,

x 7→ x− 1
N at rate Nx.

(I.2.1.3)

Here N(1− x)(N − 1)x(N − 2)(x− 1
N ) is the number of ordered triples of sites such that the

first site is empty and the other two are occupied.
The process XN

t contains all information about XN
t modulo permutations of the sites.

Similarly, for the dual process (Y N
t )t≥0 of (XN

t )t≥0, we will also use the fact that all sites in
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ΛN play an equal role to define a Markov process (Y
N
t )t≥0 such that Y N

t keeps track of the
information in Y N

t modulo permutations of the sites. We will describe the process Y N
t using

hypergraphs.
By definition, a hypergraph is a pair (V,E) where V is a set whose elements are called

vertices and E is a subset of the set P(V ) of all subsets of V . Elements e ∈ E are called
hyperedges. A hypergraph is finite if V and hence also E are finite sets. An isolated vertex
is an element v ∈ V such that v 6∈ e for all e ∈ E. A hypergraph without isolated vertices
is uniquely characterized by its edge set E. Two hypergraphs H = (V,E) and H ′ = (V ′, E′)

are isomorphic if there exists a bijection π : V → V ′ such that E′ = {π(e) : e ∈ E}, where
π(e) := {π(i) : i ∈ e} denotes the image of the set of e ⊂ V under the bijection π.

For any set Λ, identifying subsets with their indicator functions, there is a natural isomor-
phism Pfin(Λ) ∼= Sfin and hence we can identify H(Λ) with the set

Pfin

(
Pfin(Λ)

) ∼= H(Λ) = Pfin

(
Sfin(Λ)

)
. (I.2.1.4)

Each E ∈ H(Λ) defines a finite hypergraph without isolated vertices, with the edge set E and
the vertex set

VE :=
⋃
E :=

{
i ∈ N : ∃e ∈ E s.t. i ∈ e

}
. (I.2.1.5)

Clearly each finite hypergraph without isolated vertices is isomorphic to an element of H(N).
We define an equivalence relation ∼ on H(N) by

E ∼ E′ iff E is isomorphic to E′. (I.2.1.6)

Now, let E := {E′ ∈ H : E′ ∼ E} denote the equivalence class containing E and let

H := {E : E ∈ H(N)} (I.2.1.7)

denote the set of all equivalence classes. We call H the space of all hypergraphs without
isolated vertices modulo isomorphisms. Set

HN := H(ΛN ) = {E ∈ H : E ∈ H(ΛN )} with ΛN = {1, . . . , N}. (I.2.1.8)

Then we can describe HN as the space of all hypergraphs that have at most N vertices and
no isolated vertices, modulo isomorphisms.

Let (Y N
t )t≥0 denote the dual process of (XN

t )t≥0, which has the generator in (I.1.4.5) with
rates of the form (I.2.1.1). Then Y N

t takes values in the space H(ΛN ). From now on, we will
often view Y N

t as a hypergraph without isolated vertices, i.e., as a set of subsets of ΛN . In our
present language of hypergraphs,

coop•ijk(E) = E ∪ brankij(E) and death•k(E) = {e ∈ E : k 6∈ e}, (I.2.1.9)

where brankij(E) denotes the image of E ∈ H(ΛN ) under the map brankij , and

brankij(e) =

{ (
e\{k}

)
∪ {i, j} if k ∈ e,

e otherwise.
(I.2.1.10)

Hence, (Y N
t )t≥0 is a continuous-time Markov chain that jumps from a state E ∈ H(ΛN ) to

another state F ∈ H(ΛN ) at rate

rN (E,F ) =
α

(N − 1)(N − 2)

∑
ijk

1{
coop•ijk(E) = F

} +
∑
k

1{
death•k(E) = F

}, (I.2.1.11)
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where the first sum runs over all ordered triples (i, j, k) ∈ {1, . . . , N}3 such that i 6= j 6= k 6= i,
and the second sum runs over all k ∈ {1, . . . , N}.

For any E ∈ H(ΛN ), we let E ∈ HN denote the equivalence class that contains E. Then
(Y

N
t )t≥0 is a process taking values in the spaceHN defined in (I.2.1.8). It follows from (I.2.1.11)

that the process (Y
N
t )t≥0 jumps from a state E ∈ HN to another state F ∈ HN with rate

rN (E,F ) :=
α

(N − 1)(N − 2)

∑
ijk

1{
coop•ijk(E) = F

} +
∑
k

1{
death•k(E) = F

}, (I.2.1.12)

where we have used implicitly that since all sites play an equal role, these rates depend only on
the equivalence classes E,F ∈ HN and not on the choice of the representatives E,F ∈ H(ΛN ).

The duality of Proposition I.1.4.1 gives rise to a duality between the processes (X
N
t )t≥0

and (Y
N
t )t≥0 which we describe now. For any countable set Λ, b ∈ S(Λ), and E ∈ H(Λ), we

define Thinb(E) ∈ H(Λ) by

Thinb(E) := {e ∈ E : b(i) = 1 ∀i ∈ e}. (I.2.1.13)

We can think of sites i ∈ {1, . . . , N} such that b(i) = 1 (resp. b(i) = 0) as being open (resp.
closed). Then the effect of the map Thinb is to throw away all hyperedges that contain a closed
vertex. In terms of thinning, the duality function χ from (I.1.4.6) can be written as

χ(b, E) = 1{Thinb(E) 6= ∅}
(
b ∈ S(Λ), E ∈ H(Λ)

)
, (I.2.1.14)

where ∅ denotes the empty hypergraph whose edge and vertex sets are empty.
For p ∈ {0, 1

N , . . . , 1}, let B
N
p be a random variable that is uniformly distributed on the set

{b ∈ {0, 1}N , s.t. b = p}, where b := N−1
∑n

i=1 b(i). We also assume that BN
p is independent of

XN for eachN ∈ N and p ∈ {0, 1
N , . . . , 1}.We define a function φN : {0, 1

N , . . . , 1}×HN → [0, 1]

by
φ
N

(p,E) := P[ThinBNp (E) 6= ∅], (I.2.1.15)

where we have implicitly used that the right-hand side depends only on the equivalence class
E ∈ H and not on the choice of the representative E ∈ H.

Proposition I.1.4.1 implies that the processes (X
N
t )t≥0 and (Y

N
t )t≥0 are dual in the following

sense.

Proposition I.2.1.1 (Duality on the complete graph) Let (X
N
t )t≥0 and (Y

N
t )t≥0 be

Markov processes with jump rates as in (I.2.1.3) and (I.2.1.12). Then, assuming that XN
0 is

independent of Y N
t and XN

t is independent of Y N
0 , we have that

E[φ
N

(X
N
t , Y

N
0 )] = E[φ

N
(X

N
0 , Y

N
t )]. (I.2.1.16)

The proof of Proposition I.2.1.1 can be found in Subsection I.2.6.1.

I.2.1.2 The mean-field limit

We are interested in the process (X
N
t )t≥0 from (I.2.1.3) and its dual (Y

N
t )t≥0 with jump rates

as in (I.2.1.12) in the mean-field limit N → ∞. As N → ∞, the process (X
N
t )t≥0 converges

to a solution of an ordinary differential equation.
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Proposition I.2.1.2 (Mean-field forward process) Let (X
N
t )t≥0 be Markov processes as

in (I.2.1.3) started in deterministic initial states XN
0 that converge in probability as N → ∞

to some deterministic u0 ∈ [0, 1]. Let (ut)t≥0 denote the solution of the ODE

∂
∂tut = α(1− ut)u2

t − δut, t ≥ 0 (I.2.1.17)

with initial state u0. Then, for each T <∞ and ε > 0,

P
[
|XN

t − ut| ≤ ε ∀t ∈ [0, T ]
]
−→
N→∞

1. (I.2.1.18)

The proof of Proposition I.2.1.2 can be found in Subsection I.2.6.2.
We next set out to describe the mean-field limit of the process (Y

N
t )t≥0 from (I.2.1.12),

which is our main object of interest. The main idea is easily explained. We first observe that
for E ∈ HΛN we have coop•ijk(E) = E and death•k(E) = E if k is not a vertex of E. In view
of this, formula (I.2.1.11) can be described in words as follows. For each vertex k of E, with
rate α, two sites i, j ∈ {1, . . . , N} are drawn at random in such a way that i 6= j 6= k 6= i, and
the map coop•ijk is applied. Moreover, for each vertex k of E, with rate δ the map death•k is
applied. For large N , the probability that the random sites i, j are already vertices of E is
small, so in the limit N →∞, the map coop•ijk always adds two new vertices to E.

To formulate this more formally, for each E ∈ H(N), let VE :=
⋃
E denote its vertex set

and choose in some arbitrary way two sites iE , jE ∈ N such that iE , jE 6∈ VE and iE 6= jE .
Define

coop•k(E) := coop•iE jE k(E), E ∈ H, (I.2.1.19)

where coop•ijk is the map from (I.2.1.9). Recall from (I.2.1.7) that H denotes the set of all
finite hypergraphs without isolated vertices, modulo isomorphisms. Let (Y t)t≥0 denote the
continuous-time Markov chain with state space H that jumps from a state Y ∈ H to another
state Z ∈ H with rate

r(E,F ) := α
∑
k∈VE

1{
coop•k(E) = F

} +
∑
k∈VE

1{
death•k(E) = F

}. (I.2.1.20)

where once again we have implicitly used that these rates depend only on the equivalence
classes E,F ∈ H and not on the choice of the representatives E,F ∈ H. Informally, the
dynamics of (Y t)t≥0 can be described as follows. Let E be the current state of (Y t)t≥0. Then

(i) For each vertex k of E1, at rate α, two new vertices i, j are added to E and for every
hyperedge e of E that contains k, a new hyperedge e′ :=

(
e\{k}

)
∪ {i, j} is added to E.

(ii) For each vertex k of E, at rate 1, all hyperedges that contain k are removed from E.

We call (Y t)t≥0 the mean-field dual process.

Proposition I.2.1.3 (Mean-field limit of dual) The mean-field dual process is nonexplo-
sive. Moreover, if (Y

N
t )t≥0 are continuous-time Markov chains with values in HN and jump

rates as in (I.2.1.12), and
P[Y

N
0 ∈ · ] =⇒

N→∞
P[Y 0 ∈ · ] (I.2.1.21)

for some H-valued random variable Y 0, then

P
[
(Y

N
t )0≤t≤T ∈ ·

]
−→
N→∞

P
[
(Y t)0≤t≤T ∈ ·

]
, 0 ≤ T <∞ (I.2.1.22)

1Or more precisely of an arbitrary representative E of the equivalence class E.
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where (Y t)t≥0 is the mean-field dual process started in Y 0 and → denotes convergence of
probability measures in total variation norm distance on the space of piecewise constant, right-
continuous functions from [0,∞) into H, equipped with the Skorohod topology.

The proof of Proposition I.2.1.3 can be found in Subsection I.2.6.3.
The duality for processes on the complete graph (Proposition I.2.1.1) gives in the mean-field

limit N →∞ rise to a duality between the mean-field dual process and solutions to the ODE
(I.2.1.17). To describe the duality function, for any p ∈ [0, 1], let Bp be a random variable
with values in S(N) such that (Bp(i))i∈N are i.i.d. Bernoulli random variables with mean p.
We define φ : [0, 1]×H → [0, 1] by

φ(p,E) := P[ThinBp(E) 6= ∅], E ∈ H, (I.2.1.23)

where we have implicitly used that the right-hand side depends only on the equivalence class
E ∈ H and not on the choice of the representative E ∈ H.

Proposition I.2.1.4 (Mean-field duality) Let (Y t)t≥0 be the mean-field dual process de-
scribed above and let (ut)t≥0 be a [0, 1]-valued solution to the ODE (I.2.1.17). Then

E
[
φ(u0, Y t)

]
= E

[
φ(ut, Y 0)

]
, t ≥ 0. (I.2.1.24)

The proof of Proposition I.2.1.4 can be found in Subsection I.2.6.4.

I.2.1.3 Survival versus extinction

We will be interested in the mean-field dual process (Y t)t≥0, which is the continuous-time
Markov chain with state space H and jump rates as in (I.2.1.20). Our first result says that
the mean-field dual process survives with positive probability if and only if α ≥ 4. Below, ∅
again denotes the hypergraph whose edge and vertex sets are both empty and ∅ ∈ H is the
same thing modulo permutation of sites.

Proposition I.2.1.5 (Survival versus extinction) Let (Y t)t≥0 be the mean-field dual pro-
cess with branching rate α.
(a) If α < 4, then the process started in any initial law satisfies

P[∃t ≥ 0 s.t. Y t = ∅
]

= 1. (I.2.1.25)

(b) If α ≥ 4, then the process started in any deterministic initial state Y 0 6= ∅ satisfies

P[Y t 6= ∅ ∀t ≥ 0
]
> 0. (I.2.1.26)

Proof Since the proof contains some concepts that will be needed in what follows, we give it
here. For α < 4, the only fixed point of (I.2.1.17) is x0 := 0. For α ≥ 4, there are additional
fixed points at

x1 := 1
2 −

√
1
4 −

1
α and x2 := 1

2 +
√

1
4 −

1
α . (I.2.1.27)

For α > 4, the fixed points x0 and x2 are stable while x1 is unstable and separates the domains
of attraction of x0 and x2. For α = 4, the fixed points x1 and x2 coincide in one point that is
stable from the right but unstable from the left.

Let (ut)t≥0 be the solution to the ODE (I.2.1.17) with initial state u0 = 1. Then the
mean-field duality (Proposition I.2.1.4) implies that

P[Y t 6= ∅] = E
[
φ(1, Y t)

]
= E

[
φ(ut, Y 0)

]
, t ≥ 0. (I.2.1.28)
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If α < 4, then limt→∞ ut = 0 which implies part (a) of the proposition as (Yt)t≥0 takes values
on a countable state space and so limt→∞ Yt = ∅ if and only if ∃t ≥ 0 such that Yt = ∅. On
the other hand, if α ≥ 4, then limt→∞ ut = x2 > 0, which, together with the continuity of P,
shows that for the process started in a deterministic initial state

P[Y t 6= ∅ ∀t ≥ 0
]

= lim
t→∞

P[Y t 6= ∅] = φ(x2, Y 0), (I.2.1.29)

which is positive if Y 0 6= ∅.

I.2.1.4 A measure-valued dual

The duality of Proposition I.2.1.4 allows us to calculate expectations of the form E[φ(p, Y t)],
where p ∈ [0, 1] is a constant. In the present section, we generalize this duality by using a
different duality function that allows us to calculate the expectation of more general functions
of Y t.

Let E ∈ H be a deterministic hypergraph and let µ be a probability measure on [0, 1].
Let ω = (ωi)i∈N be an i.i.d. collection of [0, 1]-valued random variables with a common law
µ, and conditional on ω let Bω = (Bω(i))i∈N be a collection of independent Bernoulli random
variables with P[Bω(i) = 1|ω] = ωi (i ∈ N). Let M1[0, 1] denote the space of all probability
measures on [0, 1]. We define a function ρ :M1[0, 1]×H →M1[0, 1] by

ρ(µ,E) := P
[
P[ThinBω(E) 6= ∅ |ω] ∈ ·

]
, (I.2.1.30)

i.e., ρ(µ,E) is the law of the [0, 1]-valued random variable P[ThinBω(E) = ∅ |ω]. Note that
(I.2.1.30) is a good definition since the right-hand side does not depend on the choice of the
representative E in the equivalence class E. An equivalent way to chracterize ρ = ρ(µ,E) is
by the formula ∫

f dρ := E
[
f
(
P[ThinBω(E) 6= ∅ |ω]

)]
, f ∈ Bb[0, 1], (I.2.1.31)

where Bb[0, 1] denotes the space of bounded measurable functions f : [0, 1] → R. We will
prove that the mean-field dual process has a deterministic dual with respect to the duality
function ρ.

To define this dual process consider the nonlinear map ψ acting on probability measures
on [0, 1] defined by

ψ(µ) := P
[
ω1 + (1− ω1)ω2ω3 ∈ ·

]
if ω1, ω2, ω3 are i.i.d. with common law µ. (I.2.1.32)

The deterministic dual that we are looking for will be given by the solutions to the differential
equation

∂
∂tµt =

(
δ0 − µt

)
+ α

(
ψ(µt)− µt

)
. (I.2.1.33)

We interpret (I.2.1.33) as follows. For any measure µ and real measurable function f , write
〈µ, f〉 :=

∫
f dµ. Let C[0, 1] denote the space of continuous functions f : [0, 1] → R. We say

that a function [0,∞) 3 t 7→ µt ∈ M1[0, 1] solves (I.2.1.33) if for any f ∈ C[0, 1], the function
[0,∞) 3 t 7→ 〈µt, f〉 ∈ R is continuously differentiable and solves

∂
∂t〈µt, f〉 =

(
〈δ0, f〉 − 〈µt, f〉

)
+ α

(
〈ψ(µt), f〉 − 〈µt, f〉

)
. (I.2.1.34)

We need the following results.
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Proposition I.2.1.6 (Existence) For each probability measure µ0 on [0, 1] there exists a
M1([0, 1])-valued solution (µt)t≥0 of the equation (I.2.1.33) with initial state µ0.

The proof of Proposition I.2.1.6 can be found in Subsection I.2.6.5.
The next Lemma tells us that the k-th moment of µt only depends on the moments lower

than k.

Lemma I.2.1.7 (Moment equations) For k ∈ N let pt(k) be the k-th moment of a particular
solution (µt)t≥0 of the equation (I.2.1.33) such that µt ∈ M1([0, 1]) for all t ≥ 0. Let X be a
µt-distributed random variable. Then pt(k) solves the equation

∂

∂t
pt(k) = −pt(k) + α

(
k∑
l=1

(
k

l

)
E[Xk−l(1−X)l]p2

t (l)

)

= −pt(k) + α

 k∑
l=1

(
k

l

) l∑
j=0

(
l

j

)
(−1)jpt(k − l + j)p2

t (l)

 ,

(I.2.1.35)

where we put pt(0) := 1.

The proof of Lemma I.2.1.7 can be found in Subsection I.2.6.5.

Proposition I.2.1.8 (Uniqueness) For each probability measure µ0 on [0, 1], there exists a
uniqueM1([0, 1])-valued solution (µt)t≥0 of the equation (I.2.1.33) with initial state µ0.

The proof of Proposition I.2.1.8 can be found in Subsection I.2.6.5.
We are now ready to formulate the measure duality, which is our first main result. Below,

we define the expectation of a random measure in the usual way, i.e., if ν is aM1[0, 1]-valued
random variable, then E[ν] is the probability measure on [0, 1] defined by 〈E[ν], f〉 := E[〈ν, f〉]
(f ∈ Bb[0, 1]).

Theorem I.2.1.9 (Measure-valued dual) Let (Y t)t≥0 be the mean-field dual and let (µt)t≥0

solve (I.2.1.33). Then
E
[
ρ(µ0, Y t)

]
= E

[
ρ(µt, Y 0)

]
(t ≥ 0). (I.2.1.36)

The proof of Theorem I.2.1.9 can be found in Subsection I.2.6.5.
Let µ ∈ M1[0, 1] be a probability measure on [0, 1], E ∈ H be a hypergraph and for

b = {bi}i∈⋃E ∈ {0, 1}
⋃
E define

Thinb(E) := {e ∈ E; bi = 1 ∀i ∈ e}.

Denote by TE := {b ∈ {0, 1}
⋃
E s.t. Thinb(E) 6= ∅} the set of all configurations b such that

thinning E with b does result in an empty set. Let l denote the linear function l(x) = x and
put p :=

∫ 1
0 xdµ(x). Then using the fact that Bω(i), i ∈

⋃
E are independent and identically

distributed Bernoulli random variables with success probability p we see from (I.2.1.30) that

〈ρ(µ,E), l〉 = E[P[ThinBω(E) 6= ∅|ω]] =
∑
b∈TE

E[P[Bω = b|ω]]

=
∑
b∈TE

P[Bω = b] = P[ThinBp(E) 6= ∅] = φ(〈µ, l〉, E).
(I.2.1.37)

Hence, we see from (I.2.1.37) that

〈ρ(µ,E), l〉 = φ(〈µ, l〉, E), µ ∈M1[0, 1], E ∈ H. (I.2.1.38)
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If (µt)t≥0 solves the differential equation (I.2.1.33), then it is not hard to see that ut := 〈µt, l〉
(t ≥ 0) solves (I.2.1.17), so using (I.2.1.38) we obtain from (I.2.1.36) that

E
[
φ(u0, Y t)

]
= E

[
〈ρ(µ0, Y t), l〉

]
= E

[
〈ρ(µt, Y 0), l〉

]
= E

[
φ(ut, Y 0)

]
, t ≥ 0, (I.2.1.39)

which shows that the duality of Proposition I.2.1.4 is a special case of the more general Theo-
rem I.2.1.9.

Let {{1}} ∈ H denote the hypergraph that contains only a single hyperedge {1} which in
turn contains only the vertex 1, and let 1 := {{1}} ∈ H denote the same thing modulo isomor-
phisms, i.e., 1 is the hypergraph consisting of a single hyperedge containing a single vertex.
We let P1 denote the law of the mean-field dual process started in Y 0 = 1. Proposition I.2.1.4
allows us to calculate, for any p ∈ [0, 1], the expectation E1[φ(p, Y t)]. The following lemma
shows that we can in fact obtain the whole distribution of φ(p, Y t).

Proposition I.2.1.10 (Law of thinning probability) Let p ∈ [0, 1] and let (µt)t≥0 be the
solution of (I.2.1.33) with initial state µ0 = δp. Then

P1
[
φ(p, Y t) ∈ ·

]
= µt (t ≥ 0). (I.2.1.40)

The proof of Proposition I.2.1.10 can be found in subsection I.2.6.6.

I.2.1.5 Convergence of the measure-valued function

Recall from the proof of Proposition I.2.1.5 that for α ≥ 4, the ODE (I.2.1.17) has three fixed
points x0 < x1 ≤ x2. It follows from Proposition I.2.1.4 and the Markov property of (Y t)t≥0

φ(xm, ·), m = 0, 1, 2 are harmonic functions of the Markov process (Y t)t≥0. Therefore, the
processes (Hm

t )t≥0 defined by

Hm
t := φ(xm, Y t), m = 0, 1, 2, t ≥ 0 (I.2.1.41)

are bounded martingales. Hence, the almost sure limits

Hm
∞ := lim

t→∞
Hm
t a.s., m = 0, 1, 2 (I.2.1.42)

exist. By Proposition I.2.1.10,
P1
[
Hm
t ∈ · ] = µmt (I.2.1.43)

where (µmt )t≥0 is given by the unique solution of (I.2.1.33) with initial state µm0 := δxm . The
process H0

t is identically zero, but the other two processes are more interesting.

Proposition I.2.1.11 Assume that α ≥ 4 and let S := {Y t 6= ∅ ∀t ≥ 0} denote the event
that (Y t)t≥0 survives. Then one has

H2
∞ = 1S a.s. (I.2.1.44)

Furthermore, it holds that P[H2
∞ = 1] = x2.

Proof Put u0 = 1. Using the duality (I.2.1.24) we see for any Y 0 ∈ H that

PY 0 [Y t 6= ∅] = EY 0 [φ(1, Y t)] = φ(ut, Y 0)
t→∞−→ φ(x2, Y 0) = EY 0 [H2

∞], (I.2.1.45)
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where in the last equality we used the martingale property of H2. From (I.2.1.45) we see that
PY 0 [S] = EY 0 [H2

∞]. From the definition of H2
∞, we see immediately that H2

∞ = 0 almost
surely on the event Sc. Hence, we get that

EY 0 [H2
∞] = EY 0 [H2

∞|S]PY 0 [S] + EY 0 [H2
∞|Sc]PY 0 [Sc] = EY 0 [H2

∞|S]EY 0 [H2
∞] (I.2.1.46)

Equation (I.2.1.46) shows that H2
∞ = 1 almost surely on the event that the process Y survives.

It remains to note that H2
∞ is a Bernoulli random variable by (I.2.1.44) and so P[H2

∞ = 1] = x2

by (I.2.1.42) and the fact that (H2
t )t≥0 is a martingale such that E[H2

t ] = x2 for all t ≥ 0.

Lemma I.2.1.12 Assume that P[Y 0 6= ∅] > 0. Then for all α > 4 it holds that P[H1
∞ =

1|S] < 1 and P[H1
∞ ∈ (0, 1)] > 0.

Proof Since we will need some concepts from the proof in the next paragraph, we provide it
here. Function φ is strictly monotone in the first coordinate and so E[H1

0 ] < E[H2
0 ] as long as

P[Y 0 6= ∅] > 0. Since (H1
t )t≥0 and (H2

t )t≥0 are bounded martingales and H1
∞ and H2

∞ their
respective limits, it also holds that EY 0 [H1

∞] < EY 0 [H2
∞] and so by Proposition I.2.1.11 we

have EY 0 [H1
∞] < PY 0 [S]. Using the same calculation as in the Proof of Proposition I.2.1.11

(concretely as in (I.2.1.46)), we see that P[H1
∞ = 1|S] < 1.

Unlike H2
∞, H1

∞ is not a Bernoulli random variable. That can be seen as follows. We know
by Lemma I.2.1.7 that the second moment pt(2) of µt solves the equation

∂

∂t
pt(2) = αp3

t (2) + αp2
t (2)(1− 2pt(1))− pt(2)(1 + 2αp2

t (1)) + 2αp3
t (1). (I.2.1.47)

If we set µ0 = δx1 , with x1 as in (I.2.1.27), then the first moment pt(1) stays constant in t and
equal to x1, so (I.2.1.47) turns into

∂

∂t
pt(2) = αp3

t (2) + αp2
t (2)(1− 2x1)− pt(2)(1 + 2αx2

1) + 2αx3
1. (I.2.1.48)

Using the fact that x1 is a fixed point of the equation (I.2.1.17), we can easily check that it is
also a fixed point of (I.2.1.48) (We will denote it by m3 := x1) and using that we can calculate

the other two fixed points m1 and m2 of (I.2.1.48) as m1 =
x1−1−

√
13x2

1−6x1+1+4/α

2 and

m2 =
x1 − 1 +

√
13x2

1 − 6x1 + 1 + 4/α

2
. (I.2.1.49)

Let F : [0, 1] → R by defined as F (p) := αp3 + αp2(1− 2x1)− p(1 + 2αx2
1) + 2αx3

1. Then we
can write

∂

∂p
F (p)|p=pt(2) = 3αp2

t (2) + 2αpt(2)(1− 2x1)− 1− 2αx2
1. (I.2.1.50)

When pt(2) = x1, the right-hand side of (I.2.1.50) turns into

2αx1 − 3αx2
1 − 1. (I.2.1.51)

Since x1 = 1
2 −

√
1
2 −

1
α 6= 0 for α > 4 and x1 is a root of the equation (I.2.1.17), we see that

αx1 − αx2
1 − 1 = 0. Plugging that into (I.2.1.51), we see that (I.2.1.51) is positive whenever

x1 > 2x2
1. Since x2

1 = x1 − 1/α, we get from (I.2.1.27) that this holds whenever α > 4.
The fixed points x1 and m2 are given by (I.2.1.27) and (I.2.1.49), respectively, so by a simple
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calculation we get that also x1 > m2 for all α > 4. It holds therefore for all α > 4 that
x1 > m2 > m1. Hence, as ∂

∂pF (p) is positive for p = x1,

x1 and m1 are unstable fixed points of the equation (I.2.1.48). (I.2.1.52)

Since there are no other fixed points and since by (I.2.1.42) we know that the limit H1
∞ exists,

it follows that m2 is the second moment of H1
∞ provided that H1

0 is not Bernoulli distributed
(i.e. provided that p0(2) 6= x1. However from the definition (I.2.1.41) of H1

t it is clear that H1
0

cannot be Bernoulli distributed, since φ(x, Y 0) < 1 almost surely for any 0 ≤ x < 1. Hence
we see that P[H1

∞ ∈ (0, 1)] > 0 for α > 4, since a Bernoulli distribution on {0, 1} with a mean
x1 also has all higher moments equal to x1.

More generally, we want to study fixed points of (I.2.1.33) and their domains of attraction.

Theorem I.2.1.13 Let α ≥ 4, the equation (I.2.1.33) has the fixed points

ν0 := δ0, ν1 := (1− x1)δ0 + x1δ1, and ν2 := (1− x2)δ0 + x2δ1, (I.2.1.53)

where x1 and x2 are the fixed points (I.2.1.27) of (I.2.1.17). There exists at least one more fixed
point ν3 of (I.2.1.33) which corresponds to the law of H1

∞ = limt→∞ φ(x1, Y t) with Y 0 := 1.
The fixed point ν3 has the form

ν3 = (1− x2)δ0 + x2ν̂ (I.2.1.54)

for some probability law ν̂ on [0, 1]. For k ∈ N and ν ∈ M1[0, 1] denote by pν(k) :=
∫ 1

0 x
kdν

the k-th moment of ν. Then we have

pν3(1) = x1, pν3(2) = m2, (I.2.1.55)

where m2 is defined in (I.2.1.49) and the domains of attraction of ν0, ν1 and ν2 are as follows:

{ν ∈M1[0, 1]; pν(1) < x1} for ν0,

{ν ∈M1[0, 1]; pν(1) = x1, p
ν(2) = x1} for ν1,

{ν ∈M1[0, 1]; pν(1) > x1} for ν2.

(I.2.1.56)

The proof of Theorem I.2.1.13 can be found in section I.2.6.7.

Remark I.2.1.14 For α < 4 it is easy to see that ν0 is the only fixed point of (I.2.1.33).
Similarly, for α = 4, the fixed points ν1 and ν2 are equal (since x1 = x2) and the only fixed
points of (I.2.1.33) are ν0 with the domain of attraction {ν ∈ M1[0, 1]; pν(1) < x1} and ν2

with the domain of attraction {ν ∈ M1[0, 1]; pν(1) ≥ x1}. The last statement follows from
the fact that in this case, the only two fixed points of the first two moment equations (I.2.1.35)
are (x0, x0) and (x1, x1) and pt(1)→ x0 as t→∞ whenever p0(1) < x1.

Remark I.2.1.15 Under the conditions of Proposition I.2.1.11, if α > 4, simulations suggest
that 0 < H1

∞ < 1 almost surely on the event S, which is to say that ν̂ is a distribution
concentrated on (0, 1).

In the following two subsections we study the connections between the mean-field dual and
the function µt further and provide an interpretation for the moments of µt which will follow
from Theorem I.2.1.19 and Proposition I.2.1.20.
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I.2.1.6 Coupled processes on the complete graph

Put ΛN = {1, . . . , N} and let ΠN denote the group of all permutations of ΛN . For each
π ∈ ΠN , we define Tπ : S(ΛN )→ S(ΛN ) by(

Tπx
)(
i
)

:= x(π(i)) (i ∈ ΛN ). (I.2.1.57)

For any set E ⊂ S(ΛN ), we also write Tπ(E) := {Tπ(e) : e ∈ E} for the image of E under Tπ.
Note that the equivalence relation (I.2.1.6) can be written for E,E′ ∈ H(ΛN ) in terms of Tπ
as

E ∼ E′ if and only if E = Tπ(E) for some π ∈ ΠN .

For x = (x1, . . . , xn) ∈ S(ΛN )n, we define

xσ :=
1

N

∑
i∈ΛN

1{x(i)=σ} (σ ∈ {0, 1}n), (I.2.1.58)

where x(i) = (x1(i), . . . , xn(i)) and σ = (σ1, . . . , σn) ∈ {0, 1}n. In words, for each σ ∈ {0, 1}n,
xσ is the ratio of sites which are occupied in configurations xi such that σi = 1 and which are
empty in configurations xj such that σj = 0. Note that x := (xσ, σ ∈ {0, 1}n) contains all
information about (x1, . . . , xn) modulo a joint permutation of the sites, i.e., x = y if and only
if there exists a π ∈ ΠN such that (x1, . . . , xn) = (Tπy1, . . . , Tπyn). We let Mn

N denote the
space of all functions x : {0, 1}n → {0, 1/N, . . . , 1} such that

∑
σ∈{0,1}n x

σ = 1.
Let (Xt)t≥0 with

Xt = (X1
t , . . . , X

n
t ) (I.2.1.59)

be the Markov process with state space S(ΛN )n such that for each k = 1, . . . , n each component
Xk is a cooperative branching process on ΛN with generator as in (I.1.2.14) and rates as in
(I.2.1.1), and these components are coupled using the same graphical representation in terms
of the maps coopijk and deathi. Then (Xt)t≥0 = (X

N
t )t≥0 is a Markov process with state

spaceMn
N .

In the limit N → ∞ for fixed n, the process (Xt)t≥0 converges to a solution of an ODE
that is dual to the mean-field dual process with values in H. In the rest of this section
we will show this convergence and duality. First, we provide the duality between (Xt)t≥0

and (Y
N
t )t≥0. The construction is very similar to that used in Proposition I.2.1.1. For a

p ∈ Mn
N let BN

p := (BN,k
p , k ∈ {1, . . . , n}) be a random vector uniformly distributed on the

set {b ∈ S(ΛN )n; b(σ) = p(σ)}. Define φnN :Mn
N ×HN → [0, 1]

φnN (p, E) := P[Thin
BN,kp

(E) 6= ∅, k ∈ {1, . . . , n}]. (I.2.1.60)

For n = 1, the above definitions of BN
p and φnN correspond to BN

p and φN which we defined in
(I.2.1.15). We will base our duality on the following fact.

Proposition I.2.1.16 (Duality for coupled processes) Let χ be as in (I.1.4.6). For
i = 1, . . . , n, let Xi = (Xi

t)t≥0 be interacting particle systems with generator as in (I.1.2.14),
which are constructed using the same graphical representation in terms of the maps coopijk
and deathi. Let (Yt)t≥0 be the continuous-time Markov process with generator as in (I.1.4.5).
Then, assuming that (X1

0 , . . . , X
n
0 ) is independent of Yt and (X1

t , . . . , X
n
t ) is independent of

Y0, we have that

E
[ n∏
i=1

χ(Xi
t , Y0)

]
= E

[ n∏
i=1

χ(Xi
0, Yt)

]
(t ≥ 0). (I.2.1.61)
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Proof Proposition I.2.1.16 is an immediate consequence of Proposition I.1.4.1, i.e. of the fact
that we have a pathwise duality.

We use Proposition (I.2.1.16) to obtain a duality between the dual process and the coupled
processes on the complete graph, which is the same as the duality (I.2.1.16) in the case when
n = 1.

Proposition I.2.1.17 Let X0 be independent of (Y
N
t )t≥0 and Y N

0 independent of (Xt)t≥0.
Then

E[φnN (Xt, Y
N
0 )] = E[φnN (X0, Y

N
t )]. (I.2.1.62)

The proof of Proposition I.2.1.17 can be found in Section I.2.6.1.
We will now describe the dynamics of the process (Xt)t≥0. Let x be the current state of

the process and put 0 := {0, . . . , 0} ∈ {0, 1}n. First, we note that each site i ∈ {1, . . . , N}
is counted exactly once in the sense that it adds 1/N to the count xσ for one and only one
σ ∈ {0, 1}n. This means that any death event at site i only decreases xσ

′ by 1/N for the
particular σ′ such that xk(i) = 1 if and only if σ′(k) = 1. It also increases x0 by one and
leaves xσ unchanged for all other σ. Cooperative branching to a site i changes xj(i) from 0

to 1 for j ∈ J where J ⊆ {1, . . . , n}. In terms of x this means a change xσ → xσ + 1/N and
xσ
− → xσ

− − 1/N for some σ 6= σ−, σ− ≤ σ ∈ {0, 1}n while x(σ) remains unchanged for all
other σ. The quantity xσ

− should be thought of as the ratio of sites which can be the target
("birth site") of the branching event so that in that branching event the site becomes occupied
in exactly the coupled processes with indices i such that σ−i = 0 but σi = 1. To that end, we
put for σ− 6= σ, σ− ≤ σ

J(σ, σ−) := {σ′ ∈ {0, 1}n; σ′j = 1 whenever σj − σ−j = 1} (I.2.1.63)

and
K(σ, σ−) := {σ′ ∈ J(σ, σ−); σ′j = 0 whenever σj = 0}. (I.2.1.64)

In words, J(σ, σ−) is the set of all σ′ whose marginals are 1 whenever the corresponding
marginals of σ are 1 but those of σ− are 0. This should be thought of as follows. In an event
which increases xσ and decreases xσ

− , each σ ∈ J(σ, σ−) gives us a possible set of indices of
x = (x1, . . . , xn) such that one of the parent sites is occupied in configuration xj if and only
if σj = 1. This is necessary in order for it to be possible to "occupy" the site to which the
branching occurs at configurations xj such that σj = 1 but σ−j = 0. In the branching event
where xσ increases and xσ

− decreases, it is also necessary that the "birth site" does not become
occupied in any configuration xj such that σj = 0. That means that at least one of the parent
sites of the event has to be unoccupied at xj whenever σj = 0 which is where the definition of
K(σ, σ−) comes from.

Denote by Ox(σ, σ−) :=
∑

σ′∈J(σ,σ−) x(σ′) the frequency of sites occupied by the configura-
tions which need to branch to one of the sites corresponding to σ− in order to increase x(σ) by
1/N and by Ôx(σ, σ−) :=

∑
σ′∈K(σ,σ−) x(σ′) we denote the frequency of such sites where the

configurations which cannot branch in this event are excluded. Then the dynamics of (Xt)t≥0

are as follows.

xσ 7→ xσ + 1
N , x

σ− 7→ xσ
− − 1

N at rate αNxσ
−

(Ox(σ, σ−)− 1

N
)Ôx(σ, σ−),

xσ 7→ xσ − 1
N , x

0 7→ x0 + 1
N at rate Nxσ,

(I.2.1.65)
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where again σ− 6= σ, σ− ≤ σ. As N → ∞, the process X
N then converges a solution of a

2n-dimensional ODE.

Proposition I.2.1.18 (Coupled mean-field forward process) Let (X
N
t )t≥0 be Markov processes

as in (I.2.1.65) started in deterministic initial states XN
0 that converge in probability as N →∞

to some deterministic p0 ∈ Mn
∞ := {r : {0, 1}n → [0, 1] s.t.

∑
σ∈{0,1}n r(σ) = 1}. Let (pt)t≥0

denote the solution of the ODE
∂
∂tpt(σ) =α

∑
σ−≤σ,σ− 6=σ

pt(σ
−)Opt(σ, σ−)Ôpt(σ, σ−)

− α
∑

σ≤σ+,σ 6=σ+

pt(σ)Opt(σ+, σ)Ôpt(σ+, σ)− pt(σ), σ ∈ {0, 1}n\0,

∂
∂tpt(0) =(1− pt(0))− α

∑
σ 6=0

pt(0)Opt(σ,0)Ôpt(σ,0)

(I.2.1.66)

with initial state p0, where Op(σ, σ−) :=
∑

σ′∈J(σ,σ−) p(σ′) and Ôp(σ, σ−) :=
∑

σ′∈K(σ,σ−) p(σ′).
Then, for each T <∞ and ε > 0,

P
[
||XN

t − pt|| ≤ ε ∀t ∈ [0, T ]
]
−→
N→∞

1. (I.2.1.67)

The proof of Proposition I.2.1.18 can be found in section I.2.6.2.
Note that for n = 1 we obtain the equation (I.2.1.17). We now define independent iden-

tically distributed random variables Bp(i) = {Bk
p(i), k ∈ {1, . . . , n}}, i ∈ N on {0, 1}n with

distribution given by p = (p(σ), σ ∈ {0, 1}n) ∈Mn
∞. Let φn :Mn

∞ ×H → [0, 1] be defined as

φ
n
(p, E) := P[ThinBkp(·)(E) 6= ∅, k ∈ {1, . . . , n}] (E ∈ H), (I.2.1.68)

where we have implicitly used that the right-hand side depends only on the equivalence class
E ∈ H and not on the choice of the representative E ∈ H.

Theorem I.2.1.19 (Moment duality) Let n ∈ N and let (Y t)t≥0 be the mean-field dual
process. Furthermore, let (pt)t≥0 be aMn

∞-valued solution to the ODE (I.2.1.66). Then

E
[
φ
n
(p0, Y t)

]
= E

[
φ
n
(pt, Y 0)

]
(t ≥ 0). (I.2.1.69)

The proof of Theorem I.2.1.19 can be found in section I.2.6.4.

I.2.1.7 Interpretation of the moments

In the present section, we will assume that the random variables X1
0 , . . . , X

n
0 which formX0 are

independent and identically distributed (for any n,N ∈ N) which will significantly simplify the
equations (I.2.1.66). For any n, k ∈ N such that k ≤ n let {0, 1}nk := {σ ∈ {0, 1}n;

∑n
i=1 σ(i) =

k} be the subset of {0, 1}n where each element is a permutation of {0}n−k × {1}k. Then for
(pt)t≥0 as in (I.2.1.66) we have that

pt(σ) = pt(σ
′), t ≥ 0, k ≤ n, σ, σ′ ∈ {0, 1}nk .

In other words pt(σ) depends only on the number of indices i = 1, . . . , n for which σ(i) = 1

and we can therefore define

pt(l, n) :=pt(σ), σ ∈ {0, 1}nn−l
pt(n) :=pt(0, n).

(I.2.1.70)

Here, pt(l, n) is the limit as N →∞ of the ratio of sites at which n− l coupled processes are
occupied.
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Proposition I.2.1.20 For each n ∈ N and N ∈ N let (XN
t )t≥0 = (X1

t , . . . , X
n
t ) be a Markov

process defined as in (I.2.1.59) and assume that X1
0 , . . . , X

n
0 are independent and identically

distributed. Assume that for any n ∈ N, X
N
0 converges to p0 ∈Mn

∞ in probability as N →∞.
Let µ0 be a probability measure on [0, 1] whose k-th moment is equal to p0(k). Then pt(n) is
the solution of (I.2.1.35) and

pt(l, n) = E[Xn−l(1−X)l], (I.2.1.71)

for a µt-distributed random variable X, where (µt)t≥0 is a solution to (I.2.1.33).

The proof of Proposition I.2.1.20 can be found in the subsection I.2.6.8.
Proposition I.2.1.20 tells us that the k-th moment of µt is the limit as N → ∞ of the

probability that k cooperative branching processes on a complete graph with N vertices, which
are started in independent and identically distributed initial states and coupled using the same
graphical representation all simultaneously occupy a given site. For example, for n = 2, we
have by Proposition (I.2.1.20) that

pt({1, 1}) = pt(2) =

∫
x2 µt(dx),

pt({0, 1}) = pt({1, 0}) = pt(1, 2) =

∫
x(1− x)µt(dx),

pt({0, 0}) = pt(2, 2) =

∫
(1− x)2 µt(dx).

(I.2.1.72)

These quantities have the following interpretation. Consider two mean-field models X1, X2

on ΛN = {1, . . . , N} that are coupled using the same graphical representation and let X1
0

and X2
0 be independent and identically distributed (the last assumption is necessary for the

symmetry between pt({0, 1}) and pt({1, 0})). By Proposition I.2.1.16, such coupled processes
are naturally dual to Y . Now pt(0, 1), for example, is the limit as N → ∞ of the probability
that at time t, a given site i ∈ ΛN has X1

t (i) = 0 and X2
t (i) = 1.

I.2.2 Recursive tree processes

In this section, we will see the connections between the measure-valued function (µt)t≥0 (as
well as the mean-field dual process (Y t)t≥0) and recursive tree processes studied by Aldous and
Bandyopadhyay in [AB05]. We start with defining and constructing a recursive tree process
which corresponds to the limit limt→∞ µt of the measure-valued function (µt)t≥0.

I.2.2.1 A recursive tree process in discrete time

We define g : {0, 1} × {0, 1}3 → {0, 1} for any θ, x, y, z ∈ {0, 1} as

gθ(x, y, z) :=

{
0 if θ = 0,

(x ∧ y) ∨ z if θ = 1.
(I.2.2.1)

Comparing (I.2.2.1) to (I.1.2.12) and (I.1.2.9), we see that g1(x, y, z) = coopijk(b)(k) for
b ∈ S(Λ) such that b(i) = x, b(j) = y and b(k) = z and that g0(x, y, z) = deathi(b)(i) (for
any b ∈ S(Λ).

Denote byM1({0, 1}) the space of all probability measures on {0, 1}, i.e. the space of all
Bernoulli distributions. For any µ ∈M1({0, 1}) let X1

µ, X
2
µ and X3

µ be i.i.d. random variables
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with law µ. For a fixed α ≥ 0 let Θ be a Bernoulli distributed random variable with parameter
α/(α+1) and independent of X1

µ, X
2
µ and X3

µ and let Tα :M1({0, 1})→M1({0, 1}) be defined
as

Tα(µ) := P[gΘ(X1
µ, X

2
µ, X

3
µ) ∈ ·]. (I.2.2.2)

Using the terminology of [AB05], we will call the equation

Tα(µ) = µ (I.2.2.3)

the recursive distributional equation or RDE. We notice that the solutions of (I.2.2.3) cor-
respond to the solutions of the mean-field equation (I.2.1.17). Indeed, if µ is a solution of
(I.2.2.3), then

E[gΘ(X1
µ, X

2
µ, X

3
µ)] =

α

α+ 1
(p+ (1− p)p2), (I.2.2.4)

where p = P[Xµ
1 = 1]. Since (I.2.2.4) has the same dynamics as (I.2.1.17), both equations

have the same fixed points and since the solution µ of (I.2.2.3) is a Bernoulli distribution with
parameter p, we see that the parameters of these solutions are equal to the fixed points of
(I.2.1.17). In other words, if α < 4 then µ = Ber(0) is the only solution of (I.2.2.3) and if
α ≥ 4, then µ is a solution of (I.2.2.3) if and only if µ = Ber(xi), i ∈ {0, 1, 2}, with x0 = 0

and xi, i ∈ {1, 2} as in (I.2.1.27), where by Ber(p) we denote the Bernoulli distribution with
parameter p.

We will now follow [AB05] and construct a so called recursive tree process or RTP corre-
sponding to a solution of (I.2.2.3). Let T be the space of all finite words i = i1i2 · · · in, n ≥ 0

made of letters from the alphabet {1, 2, 3}. By ∅ we denote the empty word. We interpret
T as a trinary tree with root ∅ and for n ∈ N and i = i1i2 · · · in ∈ T we interpret the word
iin+1 = i1i2 · · · inin+1 as the in+1-th child of the parent i. We denote by |i| = |i1i2 · · · in| := n

the length of the word i. We let Td := {i ∈ T : |i| ≤ d} be the subspace of all words of length
at most d, which we can interpret as the set of individuals from the first d generations and
T ∗d := {i ∈ T : |i| = d} the set of all words of length exactly d, i.e. the collection of individuals
from the d-th generation. Let µ be a probability measure on {0, 1}. For each d ≥ 0 we can
construct collections of random variables (Θi)i∈Td−1

and (Θi, X
i)i∈Td such that

(i) (Θi)i∈Td−1
are i.i.d. with law Ber(α/(α+ 1)).

(ii) (X i)i∈T ∗d are i.i.d. with law µ and independent of (Θi)i∈Td−1

(iii) X i = gΘi
(X i1, X i2, X i3) for all i ∈ Td−1.

It follows for each 0 ≤ d′ ≤ d that

(X i)i∈T ∗
d′

are i.i.d. with law T d−d
′

α (µ). (I.2.2.5)

If µ is furthermore a solution of (I.2.2.3) then by Kolmogorov’s extension theorem there
exists a collection of random variables (Θi, X

i)i∈Td which is unique in distribution and such
that

(i) (Θi)i∈T are i.i.d. with law Ber(α/(α+ 1)).

(ii) (X i)i∈T ∗d are i.i.d. wth law µ for all d ≥ 0

(iii) X i = gΘi
(X i1, X i2, X i3) for all i ∈ T .
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Using the same terminology as [AB05], we will call (Θi, X
i)i∈Td the recursive tree process

(corresponding to µ). Put
G∅ := σ{Θi : i ∈ T}. (I.2.2.6)

By Definition 7 of [AB05] a recursive tree process is called endogenous if X∅ is G∅-measurable.
In other words, a recursive tree process is endogenous if the knowledge of (Θi)i∈T is enough to
determine the value X∅ at the root of the tree.

Let n ∈ N and let ν ∈ M1({0, 1}n) be a probability distribution on {0, 1}n. Denote by
(Xi,j , j ∈ {1, . . . , N})i∈{1,2,3} a collection of i.i.d. random variables with law ν which are
independent of Θ. Then we define T (n)

α :M1({0, 1}n)→M1({0, 1}n) as

T (n)
α (ν) := P[

(
gΘ(X1,j , X2,j , X3,j), j ∈ {1, . . . , n}

)
∈ ·]. (I.2.2.7)

For any µ ∈ M1({0, 1}), define µ↗ ∈ M1({0, 1}2) as µ↗ := P[(X,X) ∈ ·], where X is
a µ-distributed random variable. We say that the recursive tree process corresponding to
µ ∈ M1({0, 1}) has the bivariate uniqueness property if µ↗ is the only fixed point of T (2) in
the space P(2)

µ of probability laws on {0, 1}2 whose first and second marginals are both equal to
µ. Aldous and Bandyopadhyay show that bivariate uniqueness and endogeny are equivalent.
Specifically, the following holds.

Theorem I.2.2.1 The following conditions are equivalent:

(i) The recursive tree process corresponding to µ is endogenous.

(ii) The recursive tree process corresponding to µ has the bivariate uniqueness property.

(iii) (T (2))n(µ⊗ µ)⇒ µ↗ as n→∞, where ⇒ denotes weak convergence.

Proof This is a special case of Theorem 11 of [AB05].

Assume that α > 4 and let µ = Ber(xi) for some i ∈ {0, 1, 2}, where x0 = 0 and x1 and x2

are as in (I.2.1.27). Let (X1
t )t≥0 and (X2

t )t≥0 be two coupled cooperative branching processes
on a complete graph with N vertices which are started in i.i.d. initial states such that for each
j = 1, 2, Xj

0 has a distribution given by a product measure such that Xj
0(i) ∼ µ, i ∈ {1, . . . , N}

as in Subsection I.2.1.6. Then from Subsection I.2.1.6 we see that (T (2))n(µ⊗µ) is the discrete-
time analogue of the limit as N → ∞ of the distribution of local state (X1

t (i), X2
t (i)) at an

arbitrary fixed site i ∈ {1, . . . N}. We see by Proposition I.2.1.20 that this distribution is
characterized by the first two moments (see (I.2.1.35)) of (µt)t≥0. In particular, the limit
µ

(2)
T∞ := limn→∞(T (2))n(µ⊗ µ) exists and is characterized by µ(2)

T∞({(0, 1)} ∪ {(1, 1)}) = p∞(1)

and µ(2)
T∞({(1, 1)}) = p∞(2), where p∞(k) := limt→∞ pt(k), k = 1, 2 with pt(k) as in (I.2.1.35)

and such that p0(1) = xi = µ({1}) and p0(2) = x2
i = µ({1})2. Here p∞(1) corresponds to

the limit (taken first as N → ∞ and then t → ∞) of the probability that X2
t (i) = 1 and

p∞(2) is the limit of the probability that X1
t (i) = X1

t (i) = 1. We notice that µ(2)
T∞ is equal

to µ↗ if and only if p∞(1) = p∞(2). From Theorem I.2.1.13 we see that this is the case only
for µ = Ber(x0) = δ0 and µ = Ber(x2), since ν0 and ν2 as in (I.2.1.53) are the only fixed
points whose first and second moments are equal. When µ = Ber(x1), we see from (I.2.1.56)
that (p∞(1), p∞(2)) = (x1,m2). In other words, the recursive tree processes corresponding to
µ = Ber(x0) and µ = Ber(x2) are endogenous, whereas the RTP corresponding to µ = Ber(x1)

is not. In the next subsection, we conjecture a generalization of the concept of recursive tree
processes to continuous time.
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I.2.2.2 A recursive tree process in continuous time

We now let (σi)i∈T be a collection of i.i.d. exponentially distributed random variables with
P[σi > t] = e−(α+1)t for all t ≥ 0 and we assume that (σi)i∈T is independent of the random
variables (Θi)i∈T . We interpret σi as the amount of time the individual i lives. We write i ≺ j

if j = ik for some k 6= ∅, i.e. if i is an ancestor of j. We let τ−i :=
∑

j≺i σi be the time the
individual i is born and τ+

i := τ−i +σi the time the individual i dies. Analogously to the discrete-
time case of the previous subsection, for each t ≥ 0 we denote by T ∗t := {i ∈ T : t ∈ [τ−i , τ

+
i )}

the (random) collection of individuals who are alive at time t and by Tt :=
⋃

0≤s≤t T
∗
s we denote

the collection of all individuals alive at time t and all their ancestors.
For a fixed µ ∈ P({0, 1}) and t > 0, conditionally on (Θi, σi)i∈T we let (X i)i∈T ∗t be i.i.d.

random variables with law µ. We define X i, i ∈ Tt inductively so that

X i = gΘi
(X i1, X i2, X i3), i ∈ Tt\T ∗t . (I.2.2.8)

In the light of (I.2.2.5), we conjecture that the continuous-time analogue holds, namely that

(X i)i∈T ∗s are i.i.d. with law µt−s, (I.2.2.9)

where (µs)0≤s≤t is a solution to the differential equation

∂
∂sµs = (α+ 1)(Tα(µs)− µs), 0 ≤ s ≤ t. (I.2.2.10)

With g defined as in (I.2.2.1), the equation (I.2.2.10) has the form

∂
∂sµs = (δ0 − µs) + α(ψ′(µt)− µt), (I.2.2.11)

where we define ψ′ :M1({0, 1})→M1({0, 1}) as

ψ′(µ) := P
[
(X1 ∧X2) ∨X3 ∈ ·

]
if X1, X2, X3 are i.i.d. with common law µ.

Here we interpret the measure-valued equation (I.2.2.11) in the same sense we interpreted
(I.2.1.33). Specifically, we say that a function [0, t] 3 s→ µs ∈ M1({0, 1}) solves (I.2.2.11), if
for any function f : {0, 1} → R the function [0, t] 3 s 7→ 〈µs, f〉 =

∫
fdµs ∈ R is continuously

differentiable and solves

∂
∂s〈µs, f〉 =

(
〈δ0, f〉 − 〈µs, f〉

)
+ α

(
〈 ψ′(µs), f〉 − 〈µs, f〉

)
.

Notice that a µ ∈M1({0, 1}) is a fixed point of (I.2.2.11) if and only if it is solution of the RDE
(I.2.2.3). This means in particular that if (Θi, X

i)i∈T is a recursive tree process corresponding
to a solution of the RDE (I.2.2.3), then for each t ≥ 0, conditionally on (Θi, σi)i∈T , the random
variables X i, i ∈ T ∗t are i.i.d. with law µ.

We consider the differential equation

∂
∂tµt = (α+ 1)(T (2)

α (µt)− µt), t ≥ 0. (I.2.2.12)

and in the light of Theorem I.2.2.1 we conjecture that the continuous analogue of Theorem
I.2.2.1 holds:

Conjecture I.2.2.2 The following is equivalent:

(i) The recursive tree process corresponding to µ is endogenous.
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(ii) µ↗ is the only fixed point of (I.2.2.12) in P(2)
µ .

(iii) The solution of (I.2.2.12) started in µ0 = µ⊗ µ converges weakly to µ↗ as t→∞.

Let α > 4. Note that if the Conjecture I.2.2.2 holds, then by the continuous-time version
of the arguments in the last paragraph of the previous section, the recursive tree processes
corresponding to µ = Ber(x0) and µ = Ber(x2) are endogenous and RTP corresponding to
µ = Ber(x1) is not. Indeed, the solution (µt)t≥0 of (I.2.2.12) is equal to the limit as N →∞ of
the distribution of local states at a fixed site of two coupled cooperative branching processes
on a complete graph with N vertices started in the same i.i.d. initial states as in the previous
subsection.

I.2.2.3 A recursive tree process of random probability distributions

In this section we will show how the fixed points of (I.2.1.33) correspond to recursive tree
processes. First, we define gθ : {0, 1} × [0, 1]3 → [0, 1] for θ ∈ {0, 1} and ω1, ω2, ω3 ∈ [0, 1] by

gθ(ω1, ω2, ω3) :=

{
0 if θ = 0,

ω1 + (1− ω1)ω2ω3 if θ = 1.
(I.2.2.13)

Let ν ∈M1[0, 1] and let ω1, ω2, ω3 be i.i.d. random variables with law µ and Θ an independent
random variable with law Ber(α/(α+ 1)). Analogously to (I.2.2.7) we define Tα :M1[0, 1]→
M1[0, 1] as

Tα(ν) := P[gΘ(ω1, ω2, ω3) ∈ ·]. (I.2.2.14)

Now, we denote by
Gi := σ{Θij : j ∈ T}, i ∈ T . (I.2.2.15)

the σ-algebra generated by all random variables Θk corresponding to the individuals k whose
ancestor is the individual i. Note that this is a generalization of G∅ which we defined in
Subsection I.2.2.1. If (Θi, X

i)i∈T is a recursive tree process corresponding to µ = Ber(xk), k ∈
{0, 1, 2}, then we define ((ωi)i∈T ) ∈ [0, 1]T by

ωi := P[X i = 1|Gi], i ∈ T . (I.2.2.16)

If µ ∈M1({0, 1}) is a solution of (I.2.2.3), then (Θi, ωi)i∈T is itself a recursive tree process
corresponding to a ν = νµ ∈ M1[0, 1]. If the recursive tree process corresponding to µ is
endogenous, then Xi is Gi measurable, hence ωi = X i for all i ∈ T and the two recursive tree
processes are identical. However, this is no longer the case in the non-endogenous case. Let
α > 4 and µ = Ber(x1), in which case the RTP (Θi, X

i)i∈Td is not endogenous. Consider the
differential equation

∂
∂tµt = (α+ 1)(Tα(µ)− µt), t ≥ 0. (I.2.2.17)

From (I.2.2.14), we immediately see that (I.2.2.17) is the same as (I.2.1.33). Since the space
[0, 1] is isomorphic to P({0, 1}) and in the light of Proposition I.2.1.10, it makes sense to
view the solutions (µt)t≥0 of (I.2.2.17) at each t ≥ 0 as elements of M1(M1({0, 1})), i.e. as
probability distributions taking values in the set of probability distributions on {0, 1}. Let
ωt be M1({0, 1})-valued µt-distributed random variable. For each n ∈ N we define the n-th
moment measure µ(n)

t ∈M1({0, 1}n) of µt by the formula

µ
(n)
t ({x1, . . . , xn}) := E[ωt({x1}) · · ·ωt({xn})], x = (x1, . . . , xn) ∈ {0, 1}n. (I.2.2.18)
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We see from Proposition I.2.1.20 that the n-th moment measure of a solution of (I.2.2.17)
solves the n-variate equation

∂
∂tµt = (α+ 1)(T (n)

α (µt)− µt). (I.2.2.19)

In particular, as we have already seen in the previous subsection, the second moment measures
solve the bivariate equation (I.2.2.12).

In the next section we will see that the duality between the coupled cooperative branching
processes on a complete graph with N vertices and the dual process (Y

N
t )t≥0 with the jump

rates I.2.1.12 characterizes the distribution of the minimal elements of (Y
N
t )t≥0.

I.2.3 Distribution determining functions

This section is an excerpt from yet unpublished results of Jan Swart who provided all state-
ments and proofs of statements of Section I.2.3.

Lemma I.2.3.1 (Distribution of the forward process) Let Λ be a countable set and let
X,X ′ be random variables with values in S(Λ). Assume that

E
[
χ(X, {y})

]
= E

[
χ(X ′, {y})

] (
y ∈ Sfin(Λ)

)
. (I.2.3.1)

Then X and X ′ are equal in distribution.

The proof of Lemma I.2.3.1 can be found in subsection I.2.6.9.
Lemma I.2.3.1 shows that the duality of Proposition I.1.4.1 uniquely determines the law of

the process X. We next ask whether it also determines the law of Y . Let now Λ be a countable
lattice and let E ∈ H(Λ). Recall that an element e ∈ E is called minimal if 6 ∃f ∈ E s.t. f ≤ e,
f 6= e. Let E◦ := {e ∈ E : e is minimal}. It is easy to see that ∀e ∈ E ∃e′ ∈ E◦ s.t. e′ ≤ e,
and as a result

χ(x,E) = χ(x,E◦)
(
x ∈ S(Λ), E ∈ H(Λ)

)
. (I.2.3.2)

Thus, in a sense, only the set Y ◦t of minimal elements of the dual process Yt really matters
and it is clear from I.2.3.2 that the duality of Proposition I.1.4.1 cannot determine the law of
(Yt)t≥0. If Λ is a finite set then by Lemma 1 of [SS16] the process (Y ◦t )t≥0 is itself a Markov
process with state space H◦(Λ) := {E◦ : E ∈ H(Λ)} (and using the Proposition 30 of [SS16]
the same can be shown for Λ which is only countable) and by Proposition I.1.4.1 and (I.2.3.2),
the process (Y ◦t )t≥0 of minimal elements of the dual process Y ◦t is also dual to (Xt)t≥0 with
the duality function χ. Therefore, we can ask the same question about Y ◦t . However, the next
lemma shows that even the marginals of the process Y ◦ are not determined by the duality.

Lemma I.2.3.2 (Insufficiently many functions) Let Λ be a countable set with at least two
elements. Then there exist random variables Y, Y ′ with values in H◦(Λ) such that

E
[
χ(x, Y )

]
= E

[
χ(x, Y ′)

] (
x ∈ S(Λ)

)
, (I.2.3.3)

and such that Y and Y ′ are not equal in distribution.

The proof of Lemma I.2.3.2 can be found in subsection I.2.6.10.
Recall that ΛN = {1, . . . N} and note that if E ∈ H◦(ΛN ) and E ∼ E′, then also E′ ∈

H◦(ΛN ). Hence, we can define

H◦(ΛN ) := {E : E ∈ H◦(ΛN )}. (I.2.3.4)
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analogously to how we defined H(ΛN ) in (I.2.1.8) and we can define the process (Y
◦
t )t≥0 =

(Y
◦,N
t )t≥0 as H◦(ΛN -valued process of equivalence classes of Y ◦t analogously to how we defined

the process (Y
N
t )t≥0 in (I.2.1.12). By (I.2.3.2), we see that the duality (I.2.1.62) holds also

for the process (Y
◦
t )t≥0. The following Lemma tells us that this duality characterizes the

distribution of (Y
◦
t )t≥0.

Lemma I.2.3.3 (Products determine the law) Let Λ be a finite set and let Y, Y ′ be random
variables with values in H◦(Λ). Assume that

E
[ n∏
i=1

χ(xi, Y )
]

= E
[ n∏
i=1

χ(xi, Y
′)
]

(I.2.3.5)

for each x1, . . . , xn ∈ Sfin(Λ). Then Y and Y ′ are equal in distribution.

The proof of Lemma I.2.3.3 can be found in subsection I.2.6.11

Remark I.2.3.4 Since for any two hyperedges y ≤ y′ we have that y ⊆ y′, it is easy to see
that φn(p, {y, y′}) 6= ∅ if and only if φn(p, {y}) 6= ∅ for any n ∈ N, and so Theorem I.2.1.19
also holds with (Y t)t≥0 replaced by (Y

◦
t )t≥0.

I.2.4 The two-sex model

So far, we have always considered the cooperative branching process to model a population of
identical individuals. This is unrealistic for many biological populations where individuals are
male and female and one individual of each sex is required to produce an offspring. In this
section, we will discuss a modification of the model (I.1.2.16) which includes two sexes, so that
an offspring can only be produced when the two parents are of opposite sex and provide some
justification for why we study the simpler version of the cooperative branching process in the
rest of the thesis instead. We will limit ourselves to a situation without random walk dynamics
(i.e. γ = 0) so that the individuals only die and reproduce via the cooperative branching. We
will consider three variants of the two-sex model (which, as we will see, all have very similar
dynamics) on a complete graph and in their mean-field limits.

In the first model, two individuals of opposite sex can simultaneously occupy the same site
and the only interaction between the sexes occurs during the cooperative branching events. Let
{{0, 1}2}Λ be the space of all functions x = (mx, fx) : Λ→ {0, 1}2, where mx, fx : Λ→ {0, 1}.
We interpret mx(i) = 1 (resp. mx(i) = 0) for some i ∈ Λ as the site i being occupied (resp.
unoccupied) by a male particle and analogously fx(i) = 1 (resp. fx(i) = 0) indicates that the
site is occupied (resp. unoccupied) by a female particle. For each i, j ∈ Λ let the function
pairij be defined for x ∈ {{0, 1}2}Λ as

pairij(x) :=
(
mx(i) ∧ fx(j)

)
∨
(
fx(i) ∧mx(j)

)
. (I.2.4.1)

Function pairij tells us whether there is a pair of two individuals of different sex on the sites
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i and j. For each i, j, k ∈ Λ, we then define maps on {{0, 1}2}Λ by

coop1,mijk(x)(l) :=

{ (
pairij(x) ∨mx(k), fx(l)

)
if l = k,

x(l) otherwise,

coop1,fijk(x)(l) :=

{ (
mx(l), pairij(x) ∨ fx(k)

)
if l = k,

x(l) otherwise,

death1,mi(x)(l) :=

{ (
0, fx(l)

)
if l = i,

x(l) otherwise,

death1,fi(x)(l) :=

{ (
mx(l), 0

)
if l = i,

x(l) otherwise.

(I.2.4.2)

Map coop1,mijk can be described in words as follows. If there is a pair of a male and a female
particles at sites i and j and there is no male particle at site k, then the pair at i and j produces
a male offspring at k. The map coop1,fijk is the same, except that now the offspring is female.
Since in this model, two individuals can occupy the same site as long as their sex is different,
we also introduce two separate death maps for each sex.

The generator of the two-sex process which uses the cooperative branching and death
dynamics (I.2.4.2) has the following form

Gf(x) :=α
1

D(D − 1)

∑
i,j,k∈Λ

〈i,j〉,〈j,k〉∈E

{
f
(
coop1,mikj(x)

)
+ f

(
coop1,fikj(x)

)
− 2f

(
x
)}

+β
1

2(D − 1)

∑
i,j,k∈Λ

〈i,j〉,〈j,k〉∈E

{
f
(
coop1,mijk(x)

)
+ f

(
coop1,fijk(x)

)
− 2f

(
x
)}

+δ
∑
i∈Λ

{
f
(
death1,mi(x)

)
+ f

(
death1,fi(x)

)
− 2f

(
x
)}
.

(I.2.4.3)
Since a male and a female particle can occupy the same site simultaneously, it would perhaps
be more natural to define cooperative branching in such a way that pairs of male and female
particles which occuppy the same site produce offspring rather than those which occupy neigh-
bouring sites. However, defined as in (I.2.4.3) the process resembles more the process with
only one sex which we study in the rest of this section and since we only study the mean-field
behaviour of the process, the two different ways of producing offspring have no influence on
our results. Note that the parameters α and β in the two-sex model correspond to 2α and 2β

in (I.1.2.16). This will be the case with the two other variants of the two-sex model as well.
We will now consider the model (I.2.4.3) on the complete graph Λ = KN with N vertices

when β = 0 and δ = 1. In the mean-field limit N → ∞, we obtain (in the same way as
in Proposition I.2.1.2) the following differential equations for the fractions m(t) := mX(t) :=

N−1
∑N

i=1mX(t, i) and f(t) := fX(t) := N−1
∑N

i=1 fX(t, i) of sites occupied by male and
female particles, respectively.

∂
∂tm(t) =αm(t)f(t)(1−m(t))−m(t)

∂
∂tf(t) =αm(t)f(t)(1− f(t))− f(t).

(I.2.4.4)

For α < 4, the only fixed point of the system (I.2.4.4) is (x0, x0), where x0 = 0. For α ≥ 4,
there are two additional fixed points at (x1, x1) and (x2, x2) where x1 and x2 are as in (I.2.1.27).

40



When α > 4, x1 and x2 are distinct and (x1, x1) is an unstable fixed point which separates the
domains of attraction of the stable fixed points x0 and (x2, x2).

0 1

1

m

f

α = 6

Figure I.2.1: A phase diagram of the mean-field model (I.2.4.4). The blue and the purple
curve denote the points where the fraction of male and the fraction of female particles does
not change, respectively.

In Figure I.2.1 we see the phase diagram of the mean-field limit. From any starting point,
the process approaches the diagonal, i.e. the points in which the sex ratio is 1/2, in other words
where m(t) = f(t). Once it reaches the diagonal, its dynamics is the same as the dynamics of
the model (I.2.1.17). The process started in any point in the upper-right square (denoted by
the dotted red lines) survives and is attracted to the upper stable point. If started in any of
the points of the lower-left square, the process dies out. We conjecture that in each of the two
rectangles on the sides, there exists a particular solution which converges to the lower unstable
fixed-point (x1, x1) and whose path separates domains of attraction of the stable points (x0, x0)

(extinction) and (x2, x2) (survival).
Now, we will consider a model in which there can only be a single individual per site. In

this case, the model changes depending on whether we allow the offspring of a branching event
to replace the particles present at the “birth site” or not. We will first study the model in which
births are permitted only to those sites which are not occupied by a particle of a different sex
than the offspring. This corresponds to the following maps.

coop2,mijk(x)(l) :=

{ (
(pairij(x) ∨mx(k)) ∧ (1− fx(k)), fx(l)

)
if l = k,

x(l) otherwise,

coop2,fijk(x)(l) :=

{ (
mx(l), (pairij(x) ∨ fx(k)) ∧ (1−mx(k))

)
if l = k,

x(l) otherwise,

death2i(x)(l) :=

{ (
0, 0
)

if l = i,

x(l) otherwise.
(I.2.4.5)

Since a birth to a site occupied by the same sex has no effect on the process, this effectively
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describes a model in which births happen to empty sites only. This gives us the generator

Gf(x) :=α
1

D(D − 1)

∑
i,j,k∈V

〈i,j〉,〈j,k〉∈E

{
f
(
coop2,mikj(x)

)
+ f

(
coop2,fikj(x)

)
− 2f

(
x
)}

+β
1

2(D − 1)

∑
i,j,k∈V

〈i,j〉,〈j,k〉∈E

{
f
(
coop2,mijk(x)

)
+ f

(
coop2,fijk(x)

)
− 2f

(
x
)}

+δ
∑
i∈V

{
f
(
death2i(x)

)
− f

(
x
)}
.

(I.2.4.6)
Again setting β = 0 and δ = 1 and following the structure of the proof of Proposition (I.2.1.2)
we obtain in the mean-field limit the following equations for the fractions of occupied sites.

∂
∂tm(t) =αm(t)f(t)(1−m(t)− f(t))−m(t)

∂
∂tf(t) =αm(t)f(t)(1−m(t)− f(t))− f(t).

(I.2.4.7)

The dynamics of the model is similar to that of (I.2.4.4). If α < 8, the only fixed point is
again (x0, x0) = (0, 0). For α ≥ 8, there exist two additional fixed points (x1, x1) and (x2, x2),

where x1 = 1
4

(
1−

√
α−8
α

)
and x2 = 1

4

(
1 +

√
α−8
α

)
. As in (I.2.4.4), (x1, x1) is an unstable fixed

point, whereas the fixed points (x0, x0) and (x2, x2) are stable.

0 1

1

m

f

α = 12

Figure I.2.2: A phase diagram of the mean-field model (I.2.4.7).

Finally, we will consider a variant of the two-sex model in which branching can occur
even to the sites which are already occupied at which point the individual occupying that
site is replaced by the offspring of the cooperative branching event. This kind of cooperative
branching corresponds to the maps

coop3,mijk(x)(l) :=

{ (
(pairij(x) ∨mx(k), (1− pairij(x)) ∧ fx(k)

)
if l = k,

x(l) otherwise,

coop3,fijk(x)(l) :=

{ (
(1− pairij(x)) ∧mx(k), (pairij(x) ∨ fx(k)

)
if l = k,

x(l) otherwise.
(I.2.4.8)
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Since deaths occur the same way as in the model (I.2.4.6), we obtain the same generator as in
(I.2.4.6), only with coop2,mijk and coop2,fijk replaced by coop3,mijk and coop3,fijk, respectively.
Setting β = 0 and γ = 1, the mean-field equations for the occupied sites are

∂
∂tm(t) =αm(t)f(t)(1−m(t))− αf(t)m2(t)−m(t)

∂
∂tf(t) =αm(t)f(t)(1− f(t))− αf2(t)m(t)− f(t),

(I.2.4.9)

where the additional terms αf(t)m2(t) and αf(t)m2(t) correspond to the rate at which indi-
viduals are being replaced by the branching event offspring of the opposite sex. In this model,
the fixed points are exactly the same (and appear for the same values of α) as in the model
(I.2.4.7).

0 1

1

m

f

α = 12

Figure I.2.3: A phase diagram of the mean-field model (I.2.4.9).

We see that all three considered models, at least in the mean-field limits (I.2.4.4), (I.2.4.7)
and (I.2.4.9), the ratio of the two sexes approaches 1/2 and has the same dynamics as the
model with identical particles once it does so. Hence, while from a biological perspective, the
model with two sexes is more realistic for modelling populations of many species, the mean-
field behaviour limit behaviour indicates that its asymptotic behaviour is similar to that of
the simpler model I.1.2.16. Another reason not to study the two-sex models directly is that
unless we permit male and female particles to inhabit the same site simultaneously, the model
is no longer monotone and so many of the tools we used to study the model (I.1.2.16) are
no longer applicable. Model (I.2.4.2) is monotone as the only interaction between male and
female particles in model (I.2.4.2) happens through cooperative branching (unlike the other
two two-sex models).

I.2.5 Summary and outlooks

In Chapter I.2 we studied the cooperative branching process on a complete graph with N

vertices and particularly the mean-field dual process, which we obtained in I.2.1.3 as the limit
of the dual process on the complete graph as N → ∞. We have seen in Proposition I.2.1.2
that the ratio of occupied sites of the cooperative branching process on the complete graph
converges to a solution of the differential equation (I.2.1.17) as N → ∞ and in Proposition
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I.2.1.4 we showed that there is a duality between the solutions of that equation and the mean-
field dual process. In Proposition I.2.1.5 we used this duality to show the conditions under
which the mean-field dual process survives. In Section I.2.1.4 we showed that the duality of
the Proposition (I.2.1.4) is just a special case of a more general duality (I.2.1.36) between the
mean-field dual process and a probability measure-valued function (µt)t≥0 defined in (I.2.1.33).
In Section I.2.1.6 we provide an interpretation for the function (µt)t≥0 by showing that for each
k ∈ N and t ≥ 0 the k-th moment of µt arises naturally as a limit of the probability that a given
site is occupied at time t simultaneously in k cooperative branching processes on the complete
graph which are coupled using the same graphical representation and started in i.i.d. initial
states. In particular, the first moment of (µt)t≥0 corresponds to the solution of (I.2.1.17).
For the corresponding duality (I.2.1.62) the results of Jan Swart in Section I.2.3 show that
this duality given for any number of coupled cooperative branching processes characterizes the
distribution of the process Y ◦ of the minimal elements of the dual process.

In Section I.2.1.5, the fact that the duality of Proposition I.2.1.4 along with the fixed points
(I.2.1.27) of equation (I.2.1.17) give rise to bounded martingales of the form (I.2.1.41), we show
that the processes (H1

t )t≥0 and (H2
t )t≥0 generally have different limits as t→∞. We show that

H2
∞ = limt→∞H

2
t is Bernoulli distributed with a success probability equal to the probability

of survival of the mean-field dual process but we have not been able to retrieve the exact
distribution of H1

∞ = limt→∞H
1
t . These results lead us to study the fixed points of equation

(I.2.1.33) and their domains of attraction. We saw that the only fixed points of (I.2.1.33) which
have the first moment different from the fixed point x1 of the equation (I.2.1.17) are ν0 and ν2

as given in (I.2.1.53), where ν2 is also the distribution of H2
∞. We then showed that ν1 (which

is also defined in (I.2.1.53)) is an unstable fixed point of (I.2.1.33) and that there exists at
least one additional fixed point ν which corresponds to the distribution of H1

∞.
In Section I.2.2 we studied the connections between the mean-field dual process and re-

cursive tree processes studied by Aldous and Bandyopadhyay in [AB05]. In particular, we
have shown that the fixed points ν0 and ν1 of (I.2.1.53) correspond to endogenous recursive
tree processes and from the duality (I.2.1.36) between the mean-field dual process and the
M1[0, 1]-valued solutions of the equation (I.2.1.33) and based on the interpretation of its mo-
ments given by Proposition I.2.1.20 we conjecture that we can define a continuous time version
of recursive tree processes with an analogous characterization of endogeny. Theorem I.2.1.13
also tells us that there exists a nonendogenous recursive probability distribution-valued tree
process corresponding to ν3.

Finally, in Section I.2.4 we briefly discussed a variant of the cooperative branching processes
with individuals of different sexes and saw that at least in the mean-field model, the behaviour
of such processes does not fundamentally differ from the simpler model (I.1.2.14).

There are several questions that remain open. First, the conjectures (I.2.2.9) and I.2.2.2
should be shown rigorously. While Proposition I.2.1.11 gives us a partial insight into the form
of the fixed point ν3, the exact value of ν3 remains undetermined. Furthermore, we would
like to show whether νi, i = 0, 1, 2, 3 are the only fixed points of (I.2.1.33) or whether there
exist additional fixed points (and hence additional corresponding non-endogenous recursive
tree processes). Finally, while the results provided by Jan Swart in Section I.2.3 show that the
distribution of the process (Y

◦
t )t ≥ 0 of the minimal elements of the dual process (Y

N
t )t≥0 on

the complete graph is characterized by the duality of the Proposition I.2.1.17, it remains to be
shown whether the same can be said of the corresponding process of minimal elements of the
mean-field dual process and the duality of Theorem I.2.1.19.
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I.2.6 Proofs

We will group related proofs together so they do not necessarily appear in the same order
as the statements that they prove. In Section (I.2.6.1) we prove Propositions I.2.1.1 and
I.2.1.17. In fact, Proposition I.2.1.17 is just a multidimensional version of I.2.1.1. We stated
the Proposition I.2.1.1 separately to avoid unnecessary notation before we need it.

I.2.6.1 Proofs of propositions I.2.1.1 and I.2.1.17

Proof of Proposition I.2.1.1 Recall that we define Tπ : S(ΛN ) → S(ΛN ) as (Tπx)(i) :=

x(π(i)), i ∈ ΛN and let π be a permutation on ΛN . Then by Proposition I.1.4.1 we see that

E[χ(Tπ(XN
t ), Y N

0 )] = E[χ(Tπ(XN
0 ), Y N

t )].

Hence, for a random Π uniformly distributed on the set SN of all permutations on ΛN and
independent of both XN = (XN

t )t≥0 and Y N = (Y N
t )t≥0, we get

E[χ(TΠ(XN
t ), Y N

0 )] = E[χ(TΠ(XN
0 ), Y N

t )].

Since Π is independent of XN and uniformly distributed we note that BN

X
N
t

has the same

distribution as TΠ(XN
t ). Since Π is also independent of Y N , XN

t is independent of Y N
0 and

Y N
t is independent of XN

0 , we see that both TΠ(XN
t ) and BN

X
N
t

are independent of Y N
0 and

TΠ(XN
0 ) and BN

X
N
0

are independent of Y N
t . Therefore, we also get that

E[χ(BN

X
N
t

, Y N
0 )] = E[χ(BN

X
N
0

, Y N
t )].

Since χ(b, E) = 1{Thinb(E)6=∅}, we obtain (I.2.1.16). This completes the proof of Proposi-
tion I.2.1.1.

Proof of Proposition I.2.1.17 Let π ∈ ΠN . Recall the duality function χ from (I.1.4.6)
(which can also be written as (I.2.1.14)). By Proposition I.2.1.16 we see that

E[Πn
i=1χ(Tπ(Xi

t), Y0)] = E[Πn
i=1χ(Tπ(Xi

0), Yt)]. (I.2.6.1)

Hence, for a random π uniformly distributed on the set SN of all permutations on ΛN and
independent of both X = (Xt)t≥0 and Y = (Yt)t≥0, we get that (I.2.6.1) also holds. Since π is
independent of X and uniformly distributed, it follows for each k ∈ {1, . . . , n} that BN,k

X
N
t

has

the same distribution as Tπ(Xk
t ). Since π is also independent of Y , X is independent of Y0

and Yt is independent of X0, we see that for each k ∈ {1, . . . , n} both Tπ(Xk
t ) and BN,k

X
N
t

are

independent of Y0 and Tπ(Xk
0 ) and BN,k

X
N
0

are independent of Yt. Therefore, we also get that

E[Πn
i=1χ(BN,k

X
N
t

, Y0)] = E[Πn
i=1χ(BN,k

X
N
0

, Yt)].

Since Πn
i=1χ(bi, E) = 1{Thinbi (E)6=∅, i∈{1,...,n}} for any b = (b1, . . . , bn) ∈ (ΛN )n and E ∈ H(ΛN ),

we obtain (I.2.1.62).

In Section I.2.6.2 we prove Propositions I.2.1.2 and I.2.1.18. Once again, Proposition
I.2.1.18 is a multidimensional version of I.2.1.2.
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I.2.6.2 Proof of propositions I.2.1.2 and I.2.1.18

Proof of Proposition I.2.1.2 We apply [Swa17, Thm 3.2] which in turn is a simple conse-
quence of [DN08, Thm 4.1]. Let SN := {0, 1

N , . . . , 1} and for x, y ∈ SN , let

rN (x, y) :=


αN(1− x)x(x− 1

N ) if y = x+ 1
N ,

δNx if y = x− 1
N ,

0 otherwise

(I.2.6.2)

denote the rate at which Xt jumps from x to y. Define functions βN , γN : SN → R by

βN (x) :=
∑
y∈SN

rN (x, y)
(
y − x

)
,

γN (x) :=
∑
y∈SN

rN (x, y)
(
y − x

)2
.

(I.2.6.3)

Note that β and γ describe the local drift and quadaratic variation ofXt. By [Swa17, Thm 3.2],
in order to prove Proposition I.2.1.2, it suffices to check that

(i) sup
x∈SN

∣∣βN (x)− b(x)
∣∣ −→
N→∞

0 and (ii) sup
x∈SN

γN (x) −→
N→∞

0, (I.2.6.4)

where b : [0, 1]→ R is the function

b(u) := α(1− u)u2 − δu
(
u ∈ [0, 1]

)
. (I.2.6.5)

(Note that b is Lipschitz, which is one of the requirements of [Swa17, Thm 3.2].) We observe
that

βN (x) = α(1− x)x(x− 1
N )− δx = α(1− x)x2 − δx+O( 1

N ) (I.2.6.6)

and
γN (x) = 1

N (α(1− x)x(x− 1
N ) + δx) = O( 1

N ), (I.2.6.7)

where O( 1
N ) denotes a term that can be estimated as |O( 1

N )| ≤ K/N where K is a constant
that does not depend on x. This completes the proof of Proposition I.2.1.2.

Proof of Proposition I.2.1.18 The proof is mostly analogous to that of Proposition I.2.1.2.
Theorem 4.1. of [DN08] holds even in higher dimensions and so we can use Theorem 3.2.
of [Swa17] with just a few small changes. We define functions βN : Mn

N → R2n and γN :

Mn
N → R2n analogously to I.2.6.3, the only difference being that these functions are now

R2n-dimensional. By | · | we now denote the Euclidean metric on R2n and we require that

(i) sup
x∈Mn

N

∣∣βN (x)− b(x)
∣∣ −→
N→∞

0 and (ii) sup
x∈Mn

N

|γN (x)| −→
N→∞

0, (I.2.6.8)

where b :Mn
∞ → R2n is defined as

b(p)(σ) =α
∑

σ−≤σ,σ− 6=σ

p(σ−)Op(σ, σ−)Ôp(σ, σ−)

− α
∑

σ≤σ+,σ 6=σ+

p(σ)Op(σ+, σ)Ôp(σ+, σ)p(σ), σ ∈ {0, 1}n\0,

b(p)(0) =(1− p(0))− α
∑
σ 6=0

p(0)Op(σ,0)Ôp(σ,0).

(I.2.6.9)
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We see that b is Lipschitz (it is a bounded polynomial) and that b(p) + p for all p ∈Mn
∞

(i.e. the solutions do not leaveMn
∞) in other words, the equation ∂

∂tpt = b(pt) has a unique
Mn
∞-valued solution (pt)t≥0 for each initial state p0 ∈Mn

∞.
For x ∈ Mn

N and σ 6= σ− ∈ {0, 1}n let xσ,σ− ∈ Mn
N be defined as xσ,σ−(σ) = x(σ) +

1/N, xσ,σ−(σ−) = x(σ−) − 1/N and xσ,σ−(σ′) = x(σ′) for all σ, σ− 6= σ′ ∈ Mn
N . For

x,y ∈Mn
N , we let

rN (x,y) :=


αNx(σ−)(Ox(σ, σ−)− 1

N )Ôx(σ, σ−) if y = xσ,σ− and σ ≥ σ−,

Nx(σ) if y = x0,σ

0 otherwise
(I.2.6.10)

Then, for σ ∈ {0, 1}n\0, βN (σ) is given by

βN (x)(σ) =α
∑

σ−≤σ,σ− 6=σ

x(σ−)(Ox(σ, σ−)− 1/N)Ôx(σ, σ−)

− α
∑

σ≤σ+,σ 6=σ+

x(σ)(Ox(σ+, σ)− 1/N)Ôx(σ+, σ)− x(σ),
(I.2.6.11)

and
βN (x)(0) = (1− x(0))− α

∑
σ 6=0

x(0)(Ox(σ,0)− 1/N)Ôx(σ,0). (I.2.6.12)

Just as in the proof of the Proposition I.2.1.2 we see that (I.2.6.8) holds and so we can once
again use Theorem [Swa17, Thm 3.2] (whose proof in the higher-dimensional case remains
identical) to conclude that (I.2.1.67) holds.

I.2.6.3 Proof of Proposition I.2.1.3

The proof of Proposition I.2.1.3 depends on two lemmas for our processes of interest, and an
abstract result for continuous-time Markov chains. Note that the space H from (I.2.1.7) is
countable, so our processes are continuous-time Markov chains with countable state spaces.

Lemma I.2.6.1 (The mean-field dual process is nonexplosive) The continuous-time
Markov chain (Y t)t≥0 with state space H and jump rates as in (I.2.1.20) is nonexplosive.

Proof Let (Nt)t≥0 be the continuous-time Markov chain with state space N that jumps from k

to k+2 at rate αk. I.e., Nt is the number of particles in a branching process where each particle
gives birth to two new particles at rate α. It is well-known that (Nt)t≥0 is nonexplosive (see for
example [GS01], Section 6.8. Theorem (19)). For E ∈ H, let VE :=

⋃
E as in (I.2.1.5) denote

the vertex set of E and let ‖E‖ := |VE | denote the cardinality of VE . Similarly, let ‖E‖ := ‖E‖
denote the number of vertices of a hypergraph E ∈ H. Since ‖coop•k(E)‖ = ‖E‖+ 2 for each
vertex k of E and since ‖death•k(E)‖ ≤ ‖E‖, we can couple the processes (Nt)t≥0 and (Y t)t≥0

with initial states ‖Y 0‖ = N0 in such a way that ‖Y t‖ ≤ Nt (t ≥ 0) a.s. In particular, (Y t)t≥0

is nonexplosive.

Lemma I.2.6.2 (Convergence of the jump rates) Let rN and r be the rates defined in
(I.2.1.12) and (I.2.1.20), respectively. Then

rN (Y , Z) −→
N→∞

r(Y , Z) (Y, Z ∈ H, Y 6= Z). (I.2.6.13)
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Remark For each Y, Z ∈ H there exists an M such that Y , Z ∈ HN for all N ≥ M . In
particular, the left-hand side of (I.2.6.13) is well-defined for all N large enough.

Proof of Lemma I.2.6.2 Write

rN (Y , Z) = αr1
N (Y , Z) + r2(Y , Z) and r(Y , Z) = αr1(Y , Z) + r2(Y , Z), (I.2.6.14)

where
r1
N (Y , Z) :=

1

(N − 1)(N − 2)

∑
ijk

1{
coop•ijk(Y ) = Z

},
r1(Y , Z) :=

∑
k∈VY

1{
coop•k(Y ) = Z

},
r2(Y , Z) :=

∑
k∈VY

1{
death•k(Y ) = Z

}.
(I.2.6.15)

Since the rates r2 do not depend on N , it suffices to show that

r1
N (Y , Z) −→

N→∞
r1(Y , Z) (Y,Z ∈ H, Y 6= Z). (I.2.6.16)

Recall that we write E ∼ F when two elements E,F ∈ H are isomorphic and that ΛN =

{1, . . . , N}. Then, for each Y, Z ∈ H such that Y 6= Z and N large enough such that Y,Z ∈
H(ΛN ),

r1
N (Y , Z) =

1

(N − 1)(N − 2)

∑
ijk

1{
coop•ijk(Y ) ∼ Z

}
=

1

(N − 1)(N − 2)

∣∣{(i, j, k) ∈ Λ3
N : coop•ijk(Y ) ∼ Z}

∣∣. (I.2.6.17)

Similarly,
r1(Y , Z) =

∣∣{k ∈ VY : coop•iY jY k(Y ) ∼ Z}
∣∣, (I.2.6.18)

where iY , jY ∈ N\VY are chosen in some arbitrary way as in (I.2.1.19). Clearly, both expres-
sions are zero unless there exist (i′, j′, k′) ∈ N3 such that coop•i′j′k′(Y ) ∼ Z. Otherwise, we
may fix such i′, j′, k′ and write

(i) r1
N (Y , Z) =

1

(N − 1)(N − 2)

∣∣{(i, j, k) ∈ Λ3
N : coop•ijk(Y ) ∼ coop•i′j′k′(Y )}

∣∣,
(ii) r1(Y , Z) =

∣∣{k ∈ VY : coop•iY jY k(Y ) ∼ coop•i′j′k′(Y )}
∣∣. (I.2.6.19)

Since Y 6= Z, we must have k′ ∈ VY , and each element (i, j, k) of the set in (I.2.6.19) (i)
satisfies k ∈ VY .

If either i′ ∈ VY or j′ ∈ VY (or both), then |VZ | ≤ |VY |+ 1 and each element (i, j, k) of the
set in (I.2.6.19) (i) satisfies i ∈ VY or j ∈ VY . In particular, this set has cardinality at most
2N |VY |2 so r1

N (Y , Z) is of order 1/N while r1(Y , Z) = 0.
On the other hand, if i′, j′ 6∈ VY , then |VZ | = |VY |+ 2 and each element (i, j, k) of the set

in (I.2.6.19) (i) satisfies i, j 6∈ VY . Since for a given k ∈ VY , all choices of i, j 6∈ VY yield after
application of coop•ijk the same hypergraph (up to isomorphisms), we have in this case that

r1
N (Y , Z) =

(N − |VY |)(N − |VY | − 1)

(N − 1)(N − 2)

∣∣{k ∈ VY : coop•iY jY k(Y ) ∼ coop•i′j′k′(Y )}
∣∣, (I.2.6.20)

which converges to r1(Y , Z) as N →∞.

In view of Lemmas I.2.6.1 and I.2.6.2, Proposition I.2.1.3 is implied by the following general
result.
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Proposition I.2.6.3 (Convergence of continuous-time Markov chains) Let (XN
t )t≥0

(N ≥ 1) and (Xt)t≥0 be continuous-time Markov chains with countable state spaces SN and S,
respectively. Assume that (Xt)t≥0 is nonexplosive. Assume moreover that SN ⊂ S and the SN
approximate S in the sense that

∀x ∈ S ∃M s.t. x ∈ SN ∀N ≥M. (I.2.6.21)

For x 6= y, let rN (x, y) resp. r(x, y) denote the rate at which (XN
t )t≥0 resp. (Xt)t≥0 jumps

from x to y. Assume that for all x ∈ S

rN (x, y) −→
N→∞

r(x, y) uniformly in y ∈ S, y 6= x (I.2.6.22)

and that the law of XN
0 converges weakly to the law of X0 as N →∞. Then

P
[
(XN

t )0≤t≤T ∈ ·
]
−→
N→∞

P
[
(Xt)0≤t≤T ∈ ·

]
(T ≥ 0), (I.2.6.23)

where → denotes convergence of probability measures in total variation norm distance on the
space of piecewise constant, right-continuous functions from [0,∞) into S, equipped with the
Skorohod topology.

Remark In view of (I.2.6.21), for each x, y ∈ S such that x 6= y, there exists an M such that
x, y ∈ SN for all N ≥ M . In particular, the left-hand side of (I.2.6.22) is well-defined for all
N large enough.

Proof of Proposition I.2.6.3 For each x, y ∈ S with x 6= y, let π(x, y) ⊂ [0,∞)2 be a Poisson
point set whose intensity measure is the Lebesgue measure on [0,∞)2. Extend rN to S2 by
setting rN (x, y) := 0 if x or y are not elements of SN . Set

ωN (x, y) :=
{
t ≥ 0 : (t, r) ∈ π(x, y), r ≤ rN (x, y)

}
,

ω(x, y) :=
{
t ≥ 0 : (t, r) ∈ π(x, y), r ≤ r(x, y)

}
.

(I.2.6.24)

Then we can construct (XN
t )t≥0 from the Poisson processes

(
ωN (x, y)

)
x 6=y in such a way that

the Markov chain jumps only at times of these Poisson processes and at each time t ∈ ωN (x, y),
if XN

t− = x (i.e., just prior to time t the process is in x), then XN
t = y (i.e., the process jumps

to y). Likewise, we can construct (Xt)t≥0 from
(
ω(x, y)

)
x 6=y. We claim that for each T ≥ 0,

there exists a random M <∞ such that

(XN
t )0≤t≤T = (Xt)0≤t≤T ∀N ≥M. (I.2.6.25)

In particular, since limK→∞ P[M > K] = P[M = ∞] = 0, this implies (I.2.6.23). It remains
to show that (I.2.6.25) holds. For a given x ∈ S and y ∈ S, it holds for a time t ≥ 0

that t ∈ ωN (x, y)\ω(x, y) (resp. t ∈ ω(x, y)\ωN (x, y)) if and only if there exits a point
(s, r) ∈ π(x, y) such that r ∈ (r(x, y), rN (x, y)] (resp. r ∈ (rN (x, y), r(x, y)]). By (I.2.6.22), for
any T ≥ 0 and any realization of π(x, y) we can find an N(x, y) such that

ωN (x, y) ∩ [0, T ] = ω(x, y) ∩ [0, T ] ∀N ≥ N(x, y). (I.2.6.26)

Since the convergence (I.2.6.22) is uniform in y ∈ S, we can also find an N(x) which does not
depend on y ∈ S such that for all x ∈ RT we have

ωN (x, y) ∩ [0, T ] = ω(x, y) ∩ [0, T ] ∀N ≥ N(x), y ∈ S (I.2.6.27)
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where the uniformity of convergence (I.2.6.22) guarantees that N(x) does not depend on y ∈ S.
We note that by our assumption that (Xt)t≥0 is nonexplosive, the random set

RT :=
{
x ∈ S : Xt = x for some t ∈ [0, T ]

}
(I.2.6.28)

of points visited by (Xt)t≥0 until time T is a.s. finite and so M := maxx∈RT N(x) <∞ almost
surely. Since (I.2.6.27) holds for all x ∈ RT with N(x) := M , this implies (I.2.6.25).

This completes the proof of Proposition I.2.1.3.

In the next section we will prove Proposition I.2.1.4 and Theorem I.2.1.19. Once again,
Theorem I.2.1.19 is just a multidimensional version of Proposition I.2.1.4 and both proofs are
very similar.

I.2.6.4 Proofs of Proposition I.2.1.4 and Theorem I.2.1.19

Proof of Proposition I.2.1.4 Assuming that φ is continuous (which we will show later, see
(I.2.6.34)), if Y N

0 =⇒
N→∞

Y 0 and XN
0 −→

N→∞
u0 almost surely, we see by (I.2.1.18) that we have

E[φ(X
N
t , Y

N
0 )] −→

N→∞
E[φ(ut, Y 0)] (I.2.6.29)

and by (I.2.1.22) we obtain that also

E[φ(X
N
0 , Y

N
t )] −→

N→∞
E[φ(u0, Y t)]. (I.2.6.30)

If we can show that
E[φ

N
(X

N
t , Y

N
0 )] −→

N→∞
E[φ(ut, Y 0)] (I.2.6.31)

and
E[φ

N
(X

N
0 , Y

N
t )] −→

N→∞
E[φ(u0, Y t)], (I.2.6.32)

then the statement follows by I.2.6.29, I.2.6.30 and Proposition I.2.1.1.
For (I.2.6.31), it is enough to show that for any ε > 0 there exists an Nε ∈ N such that∣∣∣E[φ(X

N
t , Y

N
0 )]− E[φ

N
(X

N
t , Y

N
0 )]
∣∣∣ ≤ ε, N ≥ Nε. (I.2.6.33)

For an E ∈ H and E an arbitrary fixed representative of E, we denote by |E| = |E| :=

#{e : e ∈ E} the number of hyperedges and by ||E|| = ||E|| := max{|e| : e ∈ E} the
maximum number of occupied sites in an hyperedge of E. Let E ∈ H and let E be its
arbitrary representative and recall that by VE = {i ∈ ΛN ; ∃e ∈ E i ∈ e} we denote the set
of vertices of E. Since φ(p,E) does not depend on the choice of the representative E and the
event {Thinx̃(E) 6= ∅} only depends on the values x̃(i) for i ∈ VE we can write for any p ∈ [0, 1]

φ(p,E) = φ(p,E) =
∑

x̃∈S(ΛN )

P[(Bp(i), i ∈ ΛN ) = x̃]1{Thinx̃(E)6=∅}

=
∑

x∈S(VE)

p|x|(1− p)|VE |−|x|1{Thinx(E)6=∅}.
(I.2.6.34)

In words, we sum over all the probabilities of all possible configurations of open and closed
vertices such that thinning with that configuration leaves E nonempty. Here, for any i ∈ ΛN we
have that Bp(i) = 1 with probability p independently of Bp(j), j 6= i. In particular, (I.2.6.34)
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shows that φ is continuous, so our initial assumption is justified. Similarly for any N ∈ N and
any E ∈ HN let E be an arbitrary fixed representative of E. Since the event {Thinx̃(E) 6= ∅}
only depends on the values x̃(i) for i ∈ VE , for k ∈ {0, . . . N} we can write

φN
(
k

N
,E

)
=

∑
x̃∈S(ΛN )

P[BN
p = x̃]1{Thinx̃(E)6=∅}

=
∑

x∈S(VE)

|x|−1∏
i=0

(
k − i
N − i

∨ 0

) |VE |−|x|−1∏
j=0

(
N − k − j
N − |x| − j

∨ 0

)
1{Thinx(E) 6=∅}.

(I.2.6.35)
Here

∏|x|−1
i=0

(
k−i
N−i ∨ 0

)∏|VE |−|x|−1
j=0

(
N−k−j
N−|x|−j ∨ 0

)
is the probability that (BN

p (i), i ∈ VE) = x

if the ratio of occupied sites on ΛN is k
N . In words, (I.2.6.35) is the same as (I.2.6.34), except

that the number of open sites in ΛN is fixed and so the probabilities correspond to sampling
occupied and unoccupied sites without replacement.

Let p = k
N for some k ≤ N ∈ N. Then it holds for all i ≤ min(k, |VE |) that

p− k − i
N − i

=
i(N − k)

N(N − i)
<

|VE |
N − |VE |

= O(1/N)

and for k ≤ |VE | we have that k
N < NE

N = O(1/N). That means in particular that∣∣∣∣p− ( k − i
N − i

∨ 0

)∣∣∣∣ = O(1/N). (I.2.6.36)

Similarly, for m ≤ |VE |, j ≤ |VE | −m− 1 and k ≤ N we obtain∣∣∣∣(1− p)− ( N − k − jN −m− j
∨ 0

)∣∣∣∣ =
O(N)

O(N2)
= O(1/N). (I.2.6.37)

Since φ(p,E) is continuous in p for any E ∈ H, we see from (I.2.6.36) and (I.2.6.37) that also∣∣∣∣φN ( k

N
,E

)
− φ

(
k

N
,E

)∣∣∣∣ = O(1/N), (I.2.6.38)

where the right-hand side can be chosen so that it only depends on |VE | and N .
If for any t ≥ 0 the quantity |VY Nt | were uniformly bounded over all N ∈ N, we would

be done. Generally, that is not the case. However, we can find a bound for the number of
vertices of the hypergraph, at least on an event of an arbitrarily high probabilty and that will
suffice to show the convergence. The process (Y t)t≥0 takes values on finite subsets of finite
configurations on N. Therefore, for any ε > 0 we can find a k0

ε ∈ N and l0ε ∈ N such that the
event A0

ε := {||Y 0|| < k0
ε , |Y 0| < l0ε} has probability at least 1 − ε. Since both φ and φN are

bounded (uniformly for all N ∈ N), it is then enough to show that for any ε > 0 and Nε ∈ N

large enough we have∣∣∣1A0
ε

(
φ(X

N
t , Y

N
0 )− φN (X

N
t , Y

N
0 )
)∣∣∣ ≤ ε almost surely, N ≥ Nε. (I.2.6.39)

Denote by HεN := {E ∈ HN , ||E|| < kε, |E| < lε}. Since for any N ∈ N, Y N
0 is independent

of (X
N
t )t≥0, the left-hand side of (I.2.6.39) can be bounded from above by∣∣∣∣∣ max

E∈Hε
N

(
φ(X

N
t , E)− φN (X

N
t , E)

)∣∣∣∣∣ ,
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which is well-defined as for each ε > 0 as Y N
0 takes finitely many values (independently of N)

on the event A0
ε. Now (I.2.6.39) follows by (I.2.6.38) and the fact that on the event Aε and

for any representative Y N
0 of Y N

0 , |VY N0 | is bounded by nε = kεlε for all N ∈ N. From this,
(I.2.6.33) follows and so by (I.2.6.29) we see that (I.2.6.31) holds as well.

It remains to show (I.2.6.32). For any N ∈ N, processes (|Y N
t |)t≥0, (||Y N

t ||)t≥0, (|Y t|)t≥0

and (||Y t||)t≥0 are all integrable since each of them can be coupled with a pure birth process
(Mt)t≥0 (which is nonexplosive, see for example [GS01], Section 6.8. Theorem (19)) so that
||Y t|| ∨ ||Y

N
t || ≤ Mt and |Y t| ∨ |Y

N
t | ≤ Mt for all N ∈ N. Hence, for any ε > 0 and t ≥ 0

we can find a ktε and ltε such that Atε := {||Y t|| < ktε, |Y t| < ltε} has probability at least 1− ε.
Now, we can obtain (I.2.6.32) in the same way we obtained (I.2.6.31), noting that also XN

0 is
independent of (Y

N
t )t≥0. This completes the proof of Proposition I.2.1.4.

Proof of Theorem I.2.1.19 The proof is almost identical to that of Proposition I.2.1.4. For
N ∈ N, E ∈ HN and p ∈Mn we can write

φ
n
(p, E) =

∑
x∈S(VE)n

∏
σ∈{0,1}n

p(σ)|x(σ)|1{Thinx̂i (E)6=∅ ∀i=1,...,n}, (I.2.6.40)

where E is an arbitrary representative of E. Let p ∈ MN
n . Then we can write p = k

N where
k : {0, 1}n 7→ {0, . . . N} such that

∑
σ ∈ {0, 1}nk(σ) = N . We have

φ
n
(
k

N
,E) =

∑
x∈S(VE)n

|VE |−1∏
i=0

1

N − i
∏

σ∈{0,1}n

|x(σ)|−1∏
j=0

((k(σ)− j) ∨ 0)1{Thinxi (E)6=∅ ∀i=1,...,n}.

(I.2.6.41)
We can apply the estimates (I.2.6.36) and (I.2.6.37) to φnN and the remainder of the proof is
the same as in the proof of the Proposition I.2.1.4.

In the next subsection, we will prove the existence and uniqueness of solutions of the
equation (I.2.1.33) and the duality between those solutions and the mean-field dual process.

I.2.6.5 Proofs of Propostions I.2.1.6 and I.2.1.8, Lemma I.2.1.7 and Theo-
rem I.2.1.9

Let W be the space of all words over the alphabet {1, 2, 3}, i.e., elements of W are strings of
the form a1 · · · an with n ≥ 0 and ai ∈ {1, 2, 3} for all i = 1, . . . , n. In particular, ∅ denotes
the empty word of length n = 0. For any set S, we also let S ×W denote the set of all words
of the form a0 · · · an with a0 ∈ S and a1 · · · an ∈ W. If w ∈ S ×W and a ∈ {1, 2, 3}, then wa
denotes the word w with the letter a appended on the right. Similarly, for v, w ∈ W, we let
vw denote the word obtained by appending w on the right of v. We write v ≺ w if w = vu for
some u ∈ W and we say that w is a descendant of v. We set

Q(S ×W) :=
{
V ∈ Pfin(S ×W) : v 6≺ w ∀v, w ∈ V with v 6= w

}
, (I.2.6.42)

that is Q(S ×W) is the set of all finite sets V of words such that no word which is an element
of V is a descendant of any other element of V (other than of itself).

Let S be a countable set and let (V0, E0) be a finite hypergraph with V0 ⊂ S.2 In our
present setting, we do not require that

⋃
E0 = V0, i.e., (V0, E0) may contain isolated vertices.

2We allow for the case that S = W and hence S ×W = W. In this case we assume that V0 ∈ Q(W). In
particular, v 6≺ w for all v, w ∈ V0 with v 6= w.
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We will define a Markov process (Vt, Et)t≥0 such that at each time, Vt ∈ Q(S×W) and (Vt, Et)

is a finite hypergraph. Moreover, we construct the process in such a way that (Et)t≥0 is up to
isomorphisms equal in distribution to our mean-field dual process (Y t)t≥0.

We construct (Vt)t≥0 as a continuous-time branching process with the following description:

(i) Each element v ∈ Vt is with rate α replaced by three new elements v1, v2, v3.

(ii) Each element v ∈ Vt dies with rate 1.

We observe that the whole family structure of Vt can be read off from the labeling of its vertices
and that Vt ∈ Q(S ×W) for all t ≥ 0.

To define (Et)t≥0, we need some definitions. For any e, f ∈ Q(S ×W), we write e→ f and
say that e is a direct descendant of f if one of the following two conditions is satisfied:

(i) v1 ∈ e and f = (e\{v1}) ∪ {v},

(ii) v2, v3 ∈ e and f = (e\{v2, v3}) ∪ {v}.

We write e  f and say that e is a descendant of f if there exist n ≥ 0 and e0, . . . , en ∈
Q(S × W) such that e = e0 → e1 → · · · → en = f (in particular, e  e). With these
definitions, we set

Et := {e ⊂ Vt : ∃f ∈ E0 s.t. e f}, (I.2.6.43)

i.e. Et is the set of all subsets e of the vertex set Vt such that e is a descendant of some set of
words f which is an element of E0.

Lemma I.2.6.4 (Branching representation of the mean-field dual) There exists a bi-
jection m : S×W → N such that for every t ≥ 0, there exists a representative Yt of Y t such that
m(Et) = Yt, where for e ∈ Q(S ×W) we let m(e) := {i ∈ N : i = m(v) for some v ∈ e} be the
image of e under the map m and for E ∈ P(Q(S×W)) we denote by m(E) := {m(e) : e ∈ E}
the image of E under this image map.

Proof We want to show that there exists a bijection m such that m(Et) belongs to the
equivalence class Y t for every t ≥ 0. The set S × W is countable and therefore isomorphic
to the set N. In particular, there exists a bijection m : S × W → N. Unfortunately, we
cannot simply associate a particular representative (Yt)t≥0 of (Y t)t≥0 with (m(Et))t≥0 since
in a branching event, the "parent" word v is relabelled to v1 in the process (Et)t≥0 whereas
no relabeling of sites during a birth-death event occurs in our original representation of the
mean field-dual. However, m is a bijection and the set Q(S ×W) is defined in such a way that
v1 /∈ f for all f ∈ Et whenever v ∈ e for some e ∈ Et. Therefore, roughly speaking, at each
branching event we will switch from one representative of Y t to another where the change in
the representative corresponds to the relabelling of the parent vertex v of the branching event
to v1. We will give a construction for the process Et and show that m(Et) belongs to the
equivalence class Y t for every t ≥ 0.

First, we choose a particular representative Y0 of Y 0 such that m(E0) = Y0. Next, we let
D(v), v ∈ S ×W be a collection of independent Poisson processes with rate 1 and C(v), v ∈
S ×W a collection of independent Poisson processes with rate α which are also independent
of D(v), v ∈ S ×W.

For any t > 0 such that t ∈ D(v) if v ∈ Vt− we put Vt := Vt−\{v} and Yt := death•m(v)(Yt−).
The case of branching events is a bit more complicated. For v ∈ S × W and E ∈ H(N) let
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am(E, v) be the hypergraph E with the vertex m(v) replaced by m(v1) in every e ∈ E. In
other words, am(E, v) := {am(e, v), e ∈ E)}, where

am(e, v) :=

{
e if m(v) /∈ e,

e\{m(v)} ∪ {m(v1)} if m(v) ∈ e.
(I.2.6.44)

Note that if m(v1) /∈ E then am(E, v) and E both belong to the same equivalence class
E ∈ H(N). For t > 0 such that t ∈ C(v) and v ∈ Vt− put Vt := (Vt− ∪ {v1, v2, v3})\{v} and
Yt := coop•m(v2)m(v3)m(v1)(a

m(Yt−, v)). Otherwise, we set Vt := Vt− and Yt := Yt−.
We want to show that with this coupling, Yt = m(Et). It is enough to show this in case

when m(Et−) = Yt−. As long as Vt = Vt− this is trivially true, since then also Yt = Yt−. From
now on we will therefore assume that Vt 6= Vt−. If v ∈ Vt− is an isolated verted (i.e. if there
exists no e ∈ Et− such that v ∈ e) and t ∈ D(v) ∪ C(v), then Et = Et− since v /∈

⋃
Et−.

Likewise, am(Yt− , v) = Yt−, coop
•
ijm(v1)(Yt−) = Yt, i, j ∈ N and deathm(v)Yt− = Yt, since

m(v) /∈
⋃
Yt− and so Yt = Yt−. Next, we consider the case when v ∈ Vt− is not isolated and

t ∈ D(v). Here

Et = {e ⊂ Vt−\{v} : ∃f ∈ E0 s.t. e f}
= {e ⊂ Vt−\{v} : ∃f ∈ Et− s.t. e→ f} = {e ∈ Et− : v /∈ e}

and

Yt = death•m(v)(Yt−) = {y ∈ Yt− : m(v) /∈ y} = {m(e) ∈ m(Et−) : m(v) /∈ m(e)} = m(Et).

Finally, if v ∈ Vt− is not an isolated vertex and t ∈ C(v) then

Et ={e ⊂ (Vt− ∪ {v1, v2, v3})\{v} : ∃f ∈ E0 s.t. e f}
={e ⊂ (Vt− ∪ {v1, v2, v3})\{v} : ∃f ∈ Et− s.t. e→ f}
={e ∈ Et− : v /∈ e} ∪ {e\{v} ∪ {v1}, e ∈ Et− : v ∈ e}
∪ {e\{v} ∪ {v2, v3}, e ∈ Et− : v ∈ e}

and

Yt =coop•m(v2)m(v3)m(v1)(a
m(Yt−, v)) = am(m(Et−), v) ∪ branm(v1)m(v2)m(v3)(a

m(m(Et−), v))

=m({e ∈ Et− : v /∈ e} ∪ {e\{v} ∪ {v1}, e ∈ Et− : v ∈ e})
∪m({e\{v} ∪ {v2, v3}, e ∈ Et− : v ∈ e}) = m(Et).

(I.2.6.45)

Remark I.2.6.5 Lemma I.2.6.4 tells us in particular, that in order to prove Theorem I.2.1.9
it is enough to show the equivalent statement for the branching representation (Et)t≥0.

For any v ∈ V0, we let
V v
t := {w ∈ Vt : v ≺ w} (I.2.6.46)

denote the descendants of v, and we set

Evt :=
{
e ⊂ V v

t : e {v}
}
. (I.2.6.47)
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Then (V v
t , E

v
t )t≥0 has the same dynamics as (Vt, Et)t≥0 and its initial state is (V v

0 , E
v
0 ) =

({v}, {{v}}). By the definition of (Vt)t≥0 it is clear that Vt =
⋃
v∈V0

V v
t . Since V v

t ∩ V w
t = ∅

for any v 6= w ∈ V0, it follows that

Et =
{
e ⊂ Vt : ∃f ∈ E0 s.t. e ∩ V v

t ∈ Evt ∀v ∈ f
}
. (I.2.6.48)

Let E ∈ P(Q(S × W)) and let ω : S × W → [0, 1] be a function. Then we define
ψ(ω,E) ∈ [0, 1] by

ψ(ω,E) := P
[
ThinBω(E) 6= ∅

]
, (I.2.6.49)

where Bω := (Bω(v))v∈S×W is a collection of independent Bernoulli random variables with
P[Bω(v) = 1] = ω(v). Note that in this definition, E and ω are both deterministic.

Let ({1}, {{1}}) denote the hypergraph with a single vertex 1 and a single hyperedge {1},
and let (V 1

t , E
1
t )t≥0 denote the process given by (I.2.6.43) started in (V 1

0 , E
1
0) := ({1}, {{1}}).

For a given µ0 ∈M1[0, 1], we define aM1[0, 1]-valued function (µt)t≥0 by

µt := P
[
ψ(ω0, E

1
t ) ∈ ·

]
(t ≥ 0), (I.2.6.50)

where the random variables (ω0(v))v∈S×W are i.i.d. with common law µ0. Note that since

ψ(ω, {{1}}) = ω (ω ∈ [0, 1]), (I.2.6.51)

setting t = 0 in our definition of µt yields µ0.

Lemma I.2.6.6 (Independent branches) Let (Et)t≥0 be the process given by (I.2.6.43)
started in a deterministic initial state E0, and let µ0 be a probability law on [0, 1]. Fix t ≥ 0

and let (ω0(v))v∈S×W be i.i.d. with common law µ0 and independent of (Et)t≥0. Then the
random variables (ωt(v))v∈

⋃
E0

defined by

ωt(v) := ψ(ω0, E
v
t ) (v ∈

⋃
E0) (I.2.6.52)

are i.i.d. with common law µt given by (I.2.6.50). Moreover

ψ(ω0, Et) = ψ(ωt, E0) a.s., (I.2.6.53)

where we put ωt(v) := 0, v /∈
⋃
E0.

Proof The Evt , v ∈ V0 are i.i.d. by the construction given in the proof of Lemma I.2.6.4
and independent of ωv, v ∈ S × W, which are i.i.d. by definition. It remains to note that
ThinBω0

(E) is independent of ω0(v), v /∈
⋃
E for any E ∈ P(Q(S × Q)) and that by its

definition V v
t ∩ V u

t = ∅ for any u 6= v, u, v ∈ V0 and so also (
⋃
Eut ) ∩ (

⋃
Evt ) = ∅.

From (I.2.6.52) we see that for any v ∈
⋃
E0 we have

ψ(ωt, {{v}}) = P[ThinBωt ({{v}}) 6= ∅] = ωt(v) = ψ(ω0, E
v
t ) (I.2.6.54)

In particular, this means that (I.2.6.53) holds when E0 = {{v}} for any v ∈ S × W. For a
general E0, we see from (I.2.6.48) that

ψ(ω0, Et) = P(∃ e ⊆ Vt ∃f ∈ E0 s.t. e ∩ V v
t ∈ Evt ∀v ∈ f, Bω0(u) = 1∀u ∈ e)

= P[∃f ∈ E0 s.t. ThinBω0
(Evt ) 6= ∅ ∀v ∈ f ],

(I.2.6.55)
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and
ψ(ωt, E0) = P(∃f ∈ E0 s.t. Bωt(v) = 1∀v ∈ f}).

Now, (I.2.6.53) follows from the fact that for any v ∈
⋃
E0,

P[Bωt(v) = 1] = ωt(v) = P[ThinBω0
(Evt ) 6= ∅].

Proposition I.2.6.7 (Differential equation) For each µ0 ∈ M1[0, 1], the function (µt)t≥0

defined in (I.2.6.50) solves (I.2.1.33).

Proof The statement of the proposition follows from the fact that for any t ≥ 0 and ε > 0, it
holds for the law µt+ε of ω1

t+ε that

µt+ε = µte
−(α+1)ε + δ0(1− e−ε) + ψ(µt)(1− e−αε) + o(ε).

To show this, we note that the process (V 1
t )t≥0 admits to a graphical representation via in-

dependent Poisson processes which have independent increments and that E1
t is defined as in

(I.2.6.47). Using that and (I.2.6.52), we see that

µt+ε = µtP[Eε = E0 = {{1}}] + δ0P[Eε = {∅}] + ψ(µt)P[Eε = {{11}, {12, 13}}] + o(ε),

where ψ(µt) is defined by (I.2.1.32). Indeed, Eε = {{1}} if and only if there are no branching
or death events on the interval (0, ε).

Shifting by time ε the graphical representation with which we constructed the process
(Vt)t≥0, we construct the process (V ′t )t≥0, where we put V ′0 := {1}. Since the processes which
form the graphical representation of (Vt)t≥0 have independent increments, we have conditioned
on the event that there are no branchings or deaths on the interval (0, ε) that ωt+ε = ω′t, where
ω′t = ψ(E′t, ω0) and (E′t)t≥0 is obtained from (V ′t )t≥0 as in (I.2.6.47).

The probability that there is more than one event on the interval (0, ε) is of order o(ε). If
death appears on (0, ε), Vε = ∅ and so also Eε = {∅}. Conditioned on that (and again using
the that the increments of processes of the graphical representation are independent), ωt+ε =

0. Finally, if there is a branching event on (0, ε), then Eε = {{11}, {12, 13}}. Once again,
we can use the graphical representation shifted by time ε to construct branching processes
(V ′t )t≥0, (V ′′t )t≥0 and (V ′′′t )t≥0 started in V ′0 = {11}, V ′′0 = {12} and V ′′′0 = {13} and by the
independence of the increments of the graphical representation and (I.2.6.52), we have that
ωt+ε = ω′t + (1−ω′t)ω′′t ω′′′t , where ω′t = ψ(E′t, ω0) and ω′′t and ω′′′t are independent copies of ω′t.

Since P[Eε = E0 = {{1}}] = e−(α+1), P[Eε = E0 = {{1}}] = (1 − e−ε) and P[Eε =

{{11}, {12, 13}}] = (1− eαε), we are finished.

Proof of Proposition I.2.1.6 Proposition I.2.6.7 shows that there exists a solution of
(I.2.1.33) which isM1([0, 1])-valued by (I.2.6.50).

Proof of Lemma I.2.1.7 For any i.i.d. Xi, i = 1, 2, 3 with a distribution function F let ψ(F )

be the distribution function of X1 + (1 − X1)X2X3. Let Ft be the distribution function of
µt and Fψt the distribution function of ψ(µt). For the k-th moment pt(k) we have pt(k) =

k
∫ 1

0 x
k−1(1 − Ft(x))dx and ∂

∂tpt(k) = −k
∫ 1

0 x
k−1 ∂

∂tFt(x)dx. Hence, for Xi, i = 1, 2, 3 i.i.d.
with L(X1) = µt we obtain from (I.2.1.34) that
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∂

∂t
pt(k) = −k

∫ 1

0
xk−1

(
(1[x≥0] − Ft(x)) + α

(
Fψt (x)− Ft(x)

))
dx

= −pt(k) + α

(
−pt(k) +

k∑
l=0

(
k

l

)
E[Xk−l

1 (1−X1)lX l
2X

l
3]

)

= −pt(k) + α

(
k∑
l=1

(
k

l

)
E[Xk−l

1 (1−X1)l]p2
t (l)

)

= −pt(k) + α

 k∑
l=1

(
k

l

) l∑
j=0

(
l

j

)
(−1)jpt(n− l + j)p2

t (l)

 ,

where in the second equality we use the binomial theorem to see that the k-th moment of ψ(µt)

is equal to
∑k

l=0

(
k
l

)
E[Xk−l

1 (1−X1)lX l
2X

l
3] and in the last equality we use it again to expand

the term E[Xk−l
1 (1−X1)l]p2

t (l).

Proof of Proposition I.2.1.8 Since µt is concentrated on [0, 1] for all t ≥ 0, the moments
pt(k), k ∈ N determine the distribution of µt uniquely (see for example [Shi96], Chapter II,
§12., Theorem 7). Therefore there exists a unique solution to the equation (I.2.1.33) with
initial state µ0 if the equation (I.2.1.35) has a unique solutions for each k ∈ N whenever
p0(1), . . . , pn(k) are the first k moments of a probability distribution on [0, 1]. Note that the
existence of such a solution follows immediately from Propositon I.2.1.6, so it remains to show
uniqueness. We will take advantage of the fact that for each k ∈ N, the right-hand side of
(I.2.1.35) only depends on functions (pt(l))t≥0, l ≤ k. Fix k ∈ N and for each m ∈ N, m ≤ k

let fm : [0, 1]k → [0, 1] be defined as

fm(x1, . . . , xk) := −xk + α

 k∑
l=1

(
k

l

) l∑
j=0

(
l

j

)
(−1)jxk−l+jx

2
l

 , m = 1, . . . , k,

where we set x0 := 1. We can then rewrite the equations (I.2.1.35) for pt(1), . . . , pt(k) as a
k-dimensional differential equation( ∂

∂t
pt(1), . . . ,

∂

∂t
pt(k)

)
= f(pt(1), . . . , pt(k)),

where we put f(x1, . . . , xk) := (f1(x1, . . . , xk), . . . , fm(x1, . . . , xk)). The function f is a poly-
nomial and therefore globally Lipschitz continuous, so the uniqueness follows for example from
Theorem I-1-4 in [HS99].

Let E ∈ H and let µ be a measure on [0, 1]. Then we define a measure ρ(µ,E) on [0, 1] by

ρ(µ,E) := P
[
ψ(ω,E) ∈ ·

]
, (I.2.6.56)

where ω := (ω(v))v∈S×W is a collection of i.i.d. random variables with common law µ. Note
that in this definition, E and µ are deterministic. By (I.2.6.51),

ρ(µ, {{1}}) = µ (µ ∈M1[0, 1]). (I.2.6.57)

Proof of Theorem I.2.1.9 If Y 0 is deterministic, then Lemma I.2.6.6 together with Re-
mark I.2.6.5 imply that

E
[
ρ(µ0, Y t)

]
= P

[
ψ(ω0, Y t) ∈ ·

]
= P

[
ψ(ωt, Y 0) ∈ ·

]
= ρ(µt, Y 0). (I.2.6.58)

The general statement follows by integrating over the law of Y 0.
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I.2.6.6 Proof of Proposition I.2.1.10

This is a simple application of Theorem I.2.1.9. It is easy to see from (I.2.1.30) that

ρ(δp, E) = δφ(p,E)

(
p ∈ [0, 1], µ ∈M1[0, 1]

)
(I.2.6.59)

and
ρ(µ, 1) = µ

(
µ ∈M1[0, 1]

)
. (I.2.6.60)

It follows that for any f ∈ Bb[0, 1],

E1
[
f
(
φ(p, Y t)

)]
= E1

[
〈δφ(p,Y t)

, f〉
]

= E1
[
〈ρ(δp, Y t), f〉

]
= 〈ρ(µt, 1), f〉 = 〈µt, f〉, (I.2.6.61)

proving (I.2.1.40).

I.2.6.7 Proof of Theorem I.2.1.13

It is easy to see from the equation (I.2.1.33) that (I.2.1.53) are fixed points of (I.2.1.33). Since
ν0 is a degenerate distribution and ν1 and ν2 are Bernoulli distributions, it is sufficient to study
the first two moments of µt to obtain their domains of attraction as the Bernoulli distribution
on {0, 1} is the distribution with the largest variance of all distributions on [0, 1] with a given
mean.

Whenever we have for the mean p0(1) of µ0 that 0 ≤ p0(1) < x1, we see from (I.2.1.35) (or
(I.2.1.17)) that pt(1)→ 0 as t→∞ and therefore also µt → ν0 since µ is concentrated on the
interval [0, 1] and so for all k ∈ N we have pt(k) ≥ pt(k + 1).

If x1 < p0(1), then we see from the proof of Proposition I.2.1.5 that pt(1) converges to the
stable nontrivial fixed point x2. We will show that in this case, it also holds that pt(2) → x2

for all p0(2) ∈ [p0(1)2, p0(1)] (note that if p0(2) < p0(1)2 then µ0 cannot be a probability
distribution on [0, 1]). To do that we will first prove that the second moment of any solution
of (I.2.1.33) for which p0(1) = x2 can be bounded by the second moments of two particular
solutions and use that to obtain the domains of attraction of the fixed points.

By Proposition I.2.1.11 and martingale convergence, when µ0 = δx2 , we have that µt →
ν2 since ν2 is a distribution of a Bernoulli random variable with success probability x2. In
particular, we have that pt(2) → x2 in this case. Since δx2 is the distribution on [0, 1] with
the smallest second moment among all distributions with mean x2, it follows that the second
moment p1

t (2) of the solution of (I.2.1.33) with µ0 = δx2 is smaller or equal than the second
moment of any other solution of (I.2.1.33) with the first moment equal to x2 (which follows for
example from Theorem A.3.5). On the other hand the second moment p2

t (2) of the solution
of (I.2.1.33) with µ0 = ν2 is the distribution with the largest second moment among all
distributions on [0, 1] with mean x2. Hence we see that for any initial distribution µ0 with
mean x2 and the second moment p0(2) ∈ [x2

2, x2] we have that p1
t (2) ≤ pt(2) ≤ p2

t (2). Since
both p1

t (2)→ x2 and p2
t (2)→ x2 as t→∞ (in fact p2

t (2) = x2 for all t ≥ 0), it must also hold
that pt(2)→ x2.

We now consider the case that µ0 is such that p0(1) > x1 but p0(1) 6= x2. By Lemma
I.2.1.7 we know that the second moment pt(2) of µt solves the equation

∂

∂t
pt(2) = αp3

t (2) + αp2
t (2)(1− 2pt(1))− pt(2)(1 + 2αp2

t (1)) + 2αp3
t (1). (I.2.6.62)
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Define F : [0, 1]→ [0, 1] by F (p) := αp3 +αp2
t (1−2x2)−p(1 + 2αx2

2) + 2αx3
1. Since we already

know that pt(1)→ x2 whenever p0(1) > x1, we can rewrite (I.2.6.62) as

∂

∂t
pt(2) = F (pt(2)) + ε(t), (I.2.6.63)

where ε(t)→ 0 as t→∞. From the previous paragraph, we know that p2
t (2)→ x2 as t→∞

whenever µ0 is such that p0(1) = x2. It follows that F (pt(2)) → 0 as t → 0 and hence
also F (pt(2)) + ε(t) → 0 as t → ∞. Therefore there exists a limit z = limt→∞ pt(2). Since
pt(1)→ x2 and since ν2 = (1− x2)δ0 + x2δ1 is the only fixed-point of (I.2.1.33) with mean x2

it follows that z = x2.
Finally, we consider the case that the mean p0(1) is equal to the unstable fixed point x1.

In the proof of Lemma I.2.1.12 we saw in (I.2.1.52) that x1 is also an unstable fixed point of
the equation (I.2.1.48) and so µt → ν1 if and only if µ0 is already equal to ν1, i.e. if µ0 is a
Bernoulli distribution with parameter x1.

In summary of the proof so far, we have shown (I.2.1.56) and so we see that any other fixed
point of (I.2.1.33) has to have the first moment equal to x1. By (I.2.1.52) it is also necessary
that the second moment of such a fixed point is equal to m2. Finally, the existence of an
additional fixed point ν3 follows immediately from (I.2.1.42) and (I.2.1.43) since we obtain ν3

as the distribution of the limit H1
∞ of H1

t . The particular form of ν3 follows from the fact
that x2 is the survival probability of the mean-field dual process (Y t)t≥0 as we showed in
Proposition I.2.1.11 and the fact that H1

∞ = limt→∞ φ(x1, Y t) which is zero on the event that
(Y t)t≥0 dies out.

I.2.6.8 Proof of Proposition I.2.1.20

In Proposition I.2.1.18 we have already shown the convergence (I.2.1.67) of the process (X
N
t )t≥0

to the solution (pt)t≥0 of (I.2.1.66). It remains to show that (pt)t≥0 solves (I.2.1.35) where pt
is as in (I.2.1.70) for any t ≥ 0.

For any n ∈ N let 1n = (1, . . . , 1) ∈ {0, 1}n. We note that J(1n, σ) = K(1n, σ) for all
σ ∈ {0, 1}n, where J is as in (I.2.1.63) and K as in (I.2.1.64) and therefore also Op(1n, σ) =

Ôp(1n, σ). For each l ∈ {1, . . . , n} we have that∑
σ∈{0,1}nn−l

pt(σ) =
∑

σ∈{0,1}nn−l

pt(l, n) =

(
n

l

)
pt(l, n) (I.2.6.64)

is the limit as N → ∞ of the probability that a given site is occupied in n − l processes (at
time t).

For all k ≤ n,
(
n−k
l

)
pt(l, n) is the total ratio of sites which are occupied in a fixed set of k

processes (out of n processes in total) and such that any combination l sites of the remaining
n− k sites are unoccupied. This gives us

pt(k) =

n−k∑
l=0

(
n− k
l

)
pt(l, n), k, n ∈ N, k ≤ n. (I.2.6.65)

From (I.2.6.65) and (I.2.6.64) we get that for every 1 ≤ l ≤ n, the quantity
(
n
l

)
pt(l, n)(pt(l))

2

is the limit as N → ∞ of the probability that at time t a given site is empty in a set of l
coupled processes and two other sites are occupied in the same set of l processes. Hence, we
see from (I.2.1.66), (I.2.6.64) and (I.2.6.65) that
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∂
∂tpt(n) = −pt(n) + α

n∑
l=1

(
n

l

)
pt(l, n)(pt(l))

2. (I.2.6.66)

Formula (I.2.6.65) also yields that

pt(l, n) =

l∑
j=0

(
l

j

)
(−1)jpt(n− l + j). (I.2.6.67)

Plugging (I.2.6.67) into (I.2.6.66), we see that (I.2.6.66) is the same as (I.2.1.35).

I.2.6.9 Proof of Lemma I.2.3.1

Set
fy(x) := χ(x, {y}) = 1{y≤x}

(
x ∈ S(Λ), y ∈ Sfin(Λ)

)
. (I.2.6.68)

We claim that the functions (fy)y∈Sfin
separate points. Indeed, if x 6= x′, then there is some

i ∈ Λ such that x(i) 6= x′(i). Without loss of generality x(i) = 1 and x′(i) = 0. Set
y(i) := 1 and y(j) := 0 for all j 6= i. Then y ≤ x but not y ≤ x′. We moreover observe that
fy1fy2 = fy1∨y2 . It follows that the linear span F of (fy)y∈Sfin

is an algebra that separates
points. Since F moreover contains the constant function f0 = 1, by the Stone-Weierstrass
theorem, F is dense in the space C({0, 1}Λ) of all continuous real functions on the compact space
S(Λ) = {0, 1}Λ, equipped with the supremum norm. Now (I.2.3.1) implies E[f(X)] = E[f(X ′)]

for all f ∈ C({0, 1}Λ) and hence X and X ′ are equal in distribution.

I.2.6.10 Proof of Lemma I.2.3.2

It suffices to prove the statement when Λ has exactly two elements. Set

gx(Y ) := χ(x, Y ) = 1{∃y∈Y s.t. y≤x}
(
x ∈ S(Λ), Y ∈ H◦(Λ)

)
. (I.2.6.69)

Since Λ has two elements, the set {gx : x ∈ S(Λ)} has four elements and hence spans a linear
space of dimension at most four. On the other hand, since

H◦(Λ) =
{
∅, {00}, {10}, {01}, {01, 10}, {11}

}
(I.2.6.70)

has six elements, the space of all probability laws on H◦(Λ) is a five-dimensional simplex. In
particular, it is not possible to determine a general probability law µ on H◦(Λ) by specifying
the values of just four linear functionals of µ.

I.2.6.11 Proof of Lemma I.2.3.3

It is not hard to see that the functions (gx)x∈Sfin(Λ) defined in (I.2.6.69) separate points, i.e.,
for deterministic Y, Y ′ ∈ H◦(Λ) such that Y 6= Y ′, we can find some x ∈ Sfin(Λ) such that
either y ≤ x for some y ∈ Y while y 6≤ x for all y ∈ Y ′, or the same holds with the roles
of Y and Y ′ reversed. Let F be the linear span of the constant function 1 and all functions
of the form

∏n
i=1 gxi . Then F is an algebra that separates points. If Λ is finite, then by the

Stone-Weierstrass theorem, F is the space of all real functions on H◦(Λ). In particular, if Λ is
finite, (I.2.3.5) implies that Y and Y ′ are equal in distribution.
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Chapter I.3

Cooperative branching on other
lattices

I.3.1 Cooperative branching on regular trees

In this section, we study the cooperative branching process (I.1.2.16) on regular trees Td with
d ≥ 2. In this case each vertex has degree D = d+ 1. Our aim is to obtain a lower bound that
βsurv when α = γ = 0, i.e. when the individuals do not perform random walks and when there
are no births with both parent sites being the nearest neighbours of the offspring sites. For
simplicity, we will once again set δ = 1, i.e. the deaths will happen at rate 1. As we already
noted in Chapter I.2, by time-rescaling we can reduce any δ > 0 to this case.

Lemma I.3.1.1 (Sufficient conditions for extinction) It holds for the model in (I.1.2.16)
on the regular tree Td with α = γ = 0 and δ = 1 that

βsurv ≥
d

d− 1
(I.3.1.1)

The proof of Lemma I.3.1.1 can be found in subsection I.3.3.1.

I.3.2 The model on the integer lattice

I.3.2.1 Survival and nontriviality of the upper invariant law

In this subsection, we consider the model (I.1.2.16) on the integer lattice Zd with nearest
neighbour edges. First, we consider the case when γ = β = 0 but α, δ > 0. In other words,
deaths happen at a positive rate, there is no random walk dynamics and branching only occurs
if both parent sites in a branching event are the nearest neighbours of the offspring site. It is
easy to see that the process on Zd with these parameters can never survive. Indeed, on Z, since
new particles are placed only between existing particles, the distance between the right-most
and left-most particle is a.s. nonincreasing. In a similar way, on Zd, the process can never
escape from a cube of sites that contains all particles, since all sites outside such a cube border
at most one site in the cube.

In the case when γ = 0, δ ≥ 0, α ≥ 0 and β ≥ 0 Bezuidenhout and Gray show in the
Corollary 2.6 of [BG94] that the process dies out when β = βsurv (and other parameters held
constant). We also note that the model can be coupled with a so-called contact process with
double deaths as Sturm and Swart did in the Section 2.2. of [SS15] in order to show that
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βsurv < ∞. The coupling in [SS15] is done for the process on Z1 and with δ = 0, γ = 1/2.
In the case δ > 0 and γ = 0 we can still couple the cooperative branching process on Z1 with
with the contact process with double deaths, with the choice of a high enough death rate of
the contact process with double deaths. It remains to note that βsurv <∞ on Z1 implies that
also βsurv <∞ on Zd, d > 1. We will show that the methods of [BG94] can moreover be used
to show the following.

Proposition I.3.2.1 It holds for the process with generator (I.1.2.16) on Zd with γ = 0,

α ≥ 0 and δ > 0, that βsurv ≥ βupp.

The proof of Proposition I.3.2.1 can be found in Subsection I.3.3.2.

I.3.2.2 Random walk dynamics and deaths

In this subsection, we will consider the model (I.1.2.16) on Z with nearest-neighbour edges with
α = 0, γ = 1 and δ > 0. We fist prove Proposition I.1.3.3 and also provide lower bounds for
the probabilities appearing there. We will denote the cooperative branching process with these
parameters by X = (Xt)t≥0. Put S := S(Z) = {0, 1}Z. For i ∈ Z let 1i ∈ S be zero everywhere
except i, i.e. 1i(i) = 1 and 1i(j) = 0 for all j 6= i and denote by pair = pairi,j := 1i + 1j the
configuration with only the sites i and j occupied. In particular, we will put pair := pair0,1.
Note that since the process is translation invariant, it does not matter for the existence of
a nontrivial upper invariant law or the survival of the process whether the initial state is
X0 = pair0,1 or X0 = pairi,i+1 for any i ∈ Z.

Proposition I.3.2.2 Let X be the process with generator (I.1.2.16) on Z with α = 0, γ = 1

and δ > 0. Then it holds for every t ≥ 0 that

Ppair[|Xt| ≥ 1] ≥ e−δt (I.3.2.1)

The proof of Proposition I.3.2.2 can be found in subsection I.3.3.3.
Recall that by 1Z we denote the configuration with all sites i ∈ Z occupied.

Proposition I.3.2.3 For any t0 > 0 and any δ′ > δ there exists a constant c = c(t0, δ
′) such

that for all t ≥ t0 it holds that
P1Z [Xt(0) = 1] ≥ ce−δ′t. (I.3.2.2)

The proof of Proposition I.3.2.3 can be found in Subsection I.3.3.4.

Proposition I.3.2.4 Assume that β ≤ 1. Then it holds for all t ≥ 0 that

P1Z [Xt(0) = 1] ≤ e−δt, (I.3.2.3)

where 1Z ∈ {0, 1}Z is the configuration with all sites occupied.

The proof of Proposition I.3.2.4 can be found in Subsection I.3.3.5.

Proposition I.3.2.5 Let X be the cooperative branching process with generator (I.1.2.16) on
Z and assume that β ≤ 1. Then it holds for all t ≥ 0 that

Ppair[|Xt| ≥ 1] ≤ 2e−δt. (I.3.2.4)

The proof of Proposition I.3.2.5 can be found in Subsection I.3.3.5.

Remark I.3.2.6 In Propositions I.3.2.4 and I.3.2.5 we need to assume that β ≤ 1 in order for
our proofs to work. On the other hand, the statement should probably hold for any subcritical
β (which is, based on simulations done by Sturm and Swart in [SS15], likely to be at least any
β / 2.45).
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I.3.3 Proofs

I.3.3.1 Proof of Lemma I.3.1.1

We need to show that the process dies out almost surely if β ≤ d
d−1 . First, we will prove that

for the process started in any deterministic finite initial state X0 = x, one has

∂
∂tE[|Xt|]

∣∣
t=0
≤ 0. (I.3.3.1)

Let N := |x|. We will consider such X0 = x, which maximizes ∂
∂tE[|Xt|]

∣∣
t=0

. If particles
neighbour each other, then by the tree structure of the lattice, these particles form N − 1

nearest neighbour pairs. At rate β, each of these pairs produces offspring at a site chosen
uniformly from the 2d neighbours of the pair, which is successful only if such a site is not
blocked by being occupied already.

Building up our particle configuration one by one, we add new particles so that they always
neighbour exactly one particle already in the configuration. This way, we create N − 1 nearest
neighbour pairs such that each of them has 2d neighbouring sites and starting from the second
pair we form, with each pair we create, we block one site bordering an already existing pair,
and also one site bordering the newly created pair is blocked. The number of sites blocked in
this way is then 2(N − 2). Thus, of the 2d(N − 1) neighbouring sites of the (N − 1) pairs,
counting the number of empty neighbouring site for each pair separately and then summing
up, only 2d(N − 1) − 2(N − 2) are free. Note that some of the unoccupied neighbours are
shared between two different pairs, so we count them twice. We do that on purpose however,
as this also means that the birth rate at those sites is twice as high as at the other neighbouring
sites. Since particles die at rate one, there are N − 1 pairs in the configuration with a total of
2d(N − 1) neighbouring sites, it follows that

∂
∂tE
[
|Xt|

]∣∣
t=0

= β(N − 1)
2d(N − 1)− 2(N − 2)

2d(N − 1)
−N = β

(d− 1

d
N − d− 2

d

)
−N, (I.3.3.2)

which is non-positive provided that β ≤ d
d−1 . Given a fixed number N ≥ 2 of occupied

particles, a configuration constructed in such a way indeed maximizes the ∂
∂tE[|Xt|]

∣∣
t=0

. We
can see that as follows. For any set of sites on Td, let σS denote the total number of unoccupied
neighbours of sites in S counted for each pair of nearest neighbours in S separately (so we count
some of them twice, as we did above). First, assume that a configuration X0 = x such that
|x| = N is not connected in the sense that the set S of sites i ∈ Λ such that x(i) = 1 is not a
connected set. Assume that S = S1 ∪ S2, where S1 and S2 are connected sets. If either S1 or
S2 contains only one element, it is clear that x does not maximize ∂

∂tE[|Xt|]
∣∣
t=0

. If both S1 and
S2 contain at least two elements, we obtain a connected set S′ by creating an edge between
sites i ∈ S1 and j ∈ S2 such that both i and j share an edge with only one other site in S1

and S2, respectively. In the resulting set S′, two additional neighbours are blocked by putting
an edge between i and j but the additional pair (i, j) has (2d − 2) unoccupied neighbouring
sites, hence σS′ = σS − 2 + (2d− 2) so that σS′ ≥ σS for all d ≥ 2. Therefore we see that if x
maximizes ∂

∂tE[|Xt|]
∣∣
t=0

, it has to be connected. It remains to note that the construction above
minimizes σS among all connected sets S. Indeed, it is easy to see that if S is a connected set
on Td, there are at most two pairs of nearest neighbours in S with 2d − 1 neighbouring sites
which are not elements of S and the remaining N − 3 pairs each neighbour at least two sites
in S.
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Using (I.3.3.1), it is now easy to show that also E[|Xt|] ≤ |X0| for any t ≥ 0: For all s ≥ 0

and ε ≥ 0 put f(s, ε) := EXs [|Xs+ε|−|Xs|]
ε . For all s ≥ 0 we write

∂

∂t
E[|Xt|]

∣∣
t=s

= lim
ε↓0

E[|Xs+ε| − |Xs|]
ε

= lim
ε↓0

E
[EXs [|Xs+ε| − |Xs|]

ε

]
= lim

ε↓0
E[f(s, ε)], (I.3.3.3)

where in the second equality we used the Markov property of X. Since by coupling X
with a pure death process with rate 1 and a pure birth process with rate β and using that
on a tree, in a configuration with N particles there are at most (N − 1) pairs, we get that
|Xs|e−ε ≤ EXs [|Xs+ε|] ≤ |Xs|eβε and so for all ε < 1 we see that almost surely

|f(s, ε)| ≤ |Xs|max(|e
−ε − 1

ε
|, |e

βε − 1

ε
|) <∞.

Hence, using the fact hat E[|Xs|] <∞ we get by the Lebesgue Theorem that limε↓0 E[f(s, ε)] =

E[limε↓0 f(s, ε)]. Finally, we get from (I.3.3.1) and (I.3.3.3) that

∂

∂t
E[|Xt|]

∣∣
t=s
≤ E[

∂

∂t
EXs [|Xt|]

∣∣
t=0

] ≤ 0.

Since E[|Xt|] = |X0|+
∫ t

0
∂
∂sE[|Xs|]ds, it follows that

E[|Xt|] ≤ |X0| for all t ≥ 0. (I.3.3.4)

Showing that X almost surely dies out now follows as in the proof of Lemma 6 in [SS15]. We
include this here for completeness. Fix x ∈ S arbitrarily and put Fxt := σ(Xx

s , 0 ≤ s ≤ t),
where (Xx

t )t≥0 is the process X = (Xt)t≥0 started in X0 = x. Using (I.3.3.4)and the Markov
Property of X we can write

E[|Xx
t |
∣∣Fxs ] = E[|XXx

s
t−s|
∣∣Xx

s ] = |Xx
s |+

∫ t−s

0

∂

∂u
E[|XXx

s
u |
∣∣Xx

s ]du ≤ |Xx
s |, (I.3.3.5)

so we see that |Xx
t | is a supermartingale with respect to Fxt . By supermartingale convergence,

we get that there exists an N0-valued random variable N such that |Xx
t |

t→∞−→ N almost
surely. By AT := {|Xx

t−| 6= |Xx
t | for some t ≥ T} we denote the event that the number of sites

occupied by the process X changes at some time t ≥ T . Furtermore, let ρ(x) be the probability
of A0 as a function of the initial state A. By the continuity of conditional probabilities with
respect to the σ-algebra (for example [Bil86], Theorems 3.5.5 and 3.5.7), we see that for each
S ≤ T , it holds almost surely that

ρ(Xx
T ) = P[AT

∣∣FxT ] ≤ P[AS
∣∣FxT ]

t→∞−→ P[AS
∣∣Fx∞] = 1AS .

Therefore limT→∞ ρ(Xx
T ) = 0 almost surely on the complement of the event (

⋂
S≥0AS), that

is the event
{ lim
T→∞

ρ(Xx
T ) = 0} ∪ {∀S ≥ 0∃t ≥ S s.t.|Xx

t−| 6= |Xx
t |}

has probability 1. By the supermartingale convergence we conclude that limT→∞ ρ(Xx
T ) = 0

almost surely, which implies that N = 0 and X dies out almost surely.
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I.3.3.2 Proof of Proposition I.3.2.1

In this proof we will use an alternative (and equivalent) notation, used also by Bezuidenhout
and Gray in [BG94] for the process (I.1.2.16). Instead of configurations x ∈ SΛ we will now
consider the process to take values in P(Λ), i.e. the space of all subsets of Λ. To differentiate
between the notations, we will denote the version of the process on P(Λ) by (ξt)t≥0 instead of
(Xt)t≥0 as we do in the rest of this thesis. The state ξt of the process at time t ≥ 0 then consists
of the set of all sites in Λ which are occupied at time t. Formally, we define the set-valued
interacting particle system as a P(Λ)-valued continuous time Markov process ξ = (ξt)t≥0 with
the generator of the form

Gf(ξ) =
∑
m∈G

rm(f(m(ξ))− f(ξ)), ξ ∈ P(Λ), (I.3.3.6)

where G is again the set of local maps m : P(Λ) → P(Λ) with the definition of local maps
changed correspondingly in an obvious way. We define an attractive spin system on Zd1 as
a P(Zd)-valued Markov process in continuous time with the following dynamics. For a fixed
range r ≥ 0 we let Nr = {y ∈ Zd : maxi |yi| ≤ r} be the r-neighbourhood of 0 and put
N ′r = Nr\{0}. Finally, for ξ ∈ P(Zd) and i ∈ Zd we denote by ξ − i := {j − i; j ∈ ξ} the set ξ
shifted by i. Now we define

β := (β(η); η ⊆ N ′r)
δ := (δ(η); η ⊆ N ′r)

, (I.3.3.7)

where β(η) ≥ 0 and δ(η) ≥ 0. For any η ⊆ N ′r we will call β(η) a birth rate as it is the
rate at which an empty site i /∈ ξ becomes occupied when (ξ − i) ∩ N ′r = η, and we will call
δ(η) the death rate, since it is the rate at which an occupied site i ∈ ξ becomes empty when
(ξ − i) ∩N ′r = η. Furthermore we require that the parameter sets (β, δ) be attractive, that is

β(η) ≤ β(η′) and δ(η) ≥ δ(η′), η ⊆ η′ ⊆ N ′r. (I.3.3.8)

As for example Liggett notes in the Theorem 2.2. of Chapter III in [Lig85], the property
(I.3.3.8) is equivalent to the spin system being monotone. Both the contact process and the
(nearest neighbour) voter model on Zd are attractive spin systems and the same is true for the
process with generator (I.1.2.16) on Zd with γ = 0. Notice that when γ > 0 the cooperative
branching process cannot be described by the parameters of the form (I.3.3.7) since the random
walk chances the local state of the process at two sites simultaneously and so the process with
random walks is not a spin system.

In order to prove Proposition I.3.2.1 we will first need to introduce some terminology used
in [BG94]. For the most part we will prove our results for spin systems in Zd with translation-
invariant symmetric finite-range attractive rates, a class of processes which model (I.1.2.16) on
Zd belongs to if γ = 0. For w = (w1, . . . , wd) ∈ Rd, h > 0 and λ = (λ1, . . . , λd) we define

B(w, h;λ) := {(x, t) ∈ Rd ×R+ : 0 ≤ t ≤ h, −wi ≤ xi − t tanλi ≤ wi, i = 1, . . . , d} (I.3.3.9)

as a space-time box with of width 2wi in the i-th spatial coordinate, with height h and angles
λi of inclination from the vertical direction in the i-th spatial coordinate. For brevity, we will
also put B(w, h) := B(w, h; 0). By ξ̃A,t(B) = (ξ̃A,ts (B))s≥0 we denote the process ξ started at
time t ∈ R+ in the configuration A ⊆ Zd and restricted to the space-time set B ∈ Zd ×R+ so

1We could define attractive spin systems on more general lattices, but in this thesis we only need to consider
this particular choice of the underlying lattice.
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that if (x, t) /∈ B, then x /∈ ξt and any event in the process which affects such x at time t is
ignored.

Let pairi := {0, 1i}, where 1i ∈ Zd such that 1i(i) = 1 and 1i(j) = 0 for all j 6= i and
0 ∈ Zd is the origin. For any A,B ⊂ Zd and x ∈ Zd we put A+x = {a+x, a ∈ A} and A+B =

{a+ b, a ∈ A, b ∈ B}. In Proposition 5.3. of [BG94] Bezuidenhout and Gray have shown the
following Proposition with (I.3.3.10) replaced by the assumption that ξ{0} = (ξ

{0}
t )t≥0 survives

(or that it is viable as they call this property), i.e. that P[ξ
{0}
t 6= ∅ ∀t ≥ 0] > 0. The proof of

that proposition remains essentially unchanged if we instead assume that the process survives
when started in a pair of particles.

Proposition I.3.3.1 Suppose that {ξAt : t ≥ 0, A ⊆ Zd} is a spin system with symmetric
translation-invariant attractive rates (β, δ) with range r such that δ(N ′r) > 0. Further suppose
that

ξpairi = (ξ
pairi
t )t≥0 survives for all i = 1, . . . , d, (I.3.3.10)

i.e. P [ξ
pairi
t 6= ∅ ∀t ≥ 0] > 0 for all i =, 1 . . . , d. Then for every ε > 0 and k ≥ 1 there exists

a finite set D ⊆ Zd, constants w,wi > 0 and h > 0 such that, if we put

B0 :=B(0, . . . , 0, wd−1, wd, h),

B±k :=B

(
3kw1, . . . , 3kwd−2, 2wd−1, 2wd, (k + 1)h; 0, . . . , 0, arctan

(
±wd
3h

))
,

then it holds for every (x, s) ∈ B0 that with probability at least 1 − ε, after a suitable linear
change of space-time variables which leaves the time coordinate fixed, the set {(y, t) : y ∈
ξ̃D+x,s
t (B±k )} contains a translate of D × {0} lying in the set

B0 +
(
0, . . . , 0,±kwd

3
, kh) +R(k,w),

where

R(k,w) := {(x, 0) : xi ∈ [−3kw, 3kw] ∀ i = 1, . . . , d− 2, xd−1 = xd = 0}. (I.3.3.11)

Proof The proof stays the same as the proof of Proposition 5.3. in [BG94]. Proposition I.3.3.1
differs from it only in that we weaken the condition on the survival of the process ξ, namely
we only assume that we need to have at least one pair of neighbouring particles to survive,
whereas [BG94] require that the process started with a single occupied site does as well. With
some minor changes, the proofs of the results leading up to Proposition 5.1. of [BG94] also
hold in our setting. Specifically, Lemma 3.14 in [BG94] holds (and the proof stays exactly the
same) when we replace the assumption that the process started with a single occupied site
survives by the assumption that the process started in any occupied pair does. In Lemma 4.1.
the proof stays the same when we replace the requirement that ξ{0} survives by the condition
(I.3.3.10).

Finally, in the proof of Proposition 5.1. in [BG94] a sequence of space-time points
(xk, tk)

N ′
k=0, where N ′ is finite and random and (xk, tk) is chosen in a particular way pre-

scribed in that proof. A set of events (Ak(xk, tk))
N ′
k=0, is then defined such that Ak corresponds

to the process started at time tk with only the site xk occupied produces an occupied translate
D + xk of D within a fixed constant time. Since in our case at least one pair of neighbouring
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particles is needed for branching, we start the process in the state {xk, xk + 1d} in the event
Ak for each k instead of just {xk}.

Proposition I.3.3.1 tells us that if the process ξ survives with a positive probability for
certain parameters β and δ, then for any value of the scaling parameter k ∈ N, there exists a
setD such that (possibly after an appropriate relabelling of coordinates) with a high probability
the process ξ, started with the set D occupied and restricted to a box which is tilted in the d-th
coordinate and which is narrow in the (d− 1)-th and d-th coordinate, will contain a translate
of D×{0} in a region at the top of B±k which is like B0, but wider in the first d−2 coordinates
(see Figure I.3.1).

In the following proposition, following the construction in the Section 6.1. of [BG94], we will
compare the process ξ to an oriented site percolation. Let us first define the percolation (on Z2

which will be enough for our purposes) and some related terms which we will need in the proof
of Proposition I.3.3.5. Let V := {(x, n) ∈ Z2 : x + n is even}. We fix a so-called percolation
parameter p ∈ [0, 1] and let (ω

(x,n)
p )(x,n)∈V be a collection of i.i.d. Bernoulli random variables

with parameter p. We say there there exists an open path from site (x, n) ∈ V to a site (y,m) ∈
V if there exists an l ∈ N and a sequence (x, n) = (x0, n0), (x1, n1), . . . , (xn−1, nn−1), (xn, nl) =

(y,m) of sites in V such that |(xk, nk)− (xk+1, nk+1)| = 1 and ω(xk,nk)
p = 1 for all k = 1, . . . , l.

By i  j we denote that there exists an open path from i to j and we denote by 0  ∞
the existence of an infinite open path from the origin 0 ∈ Z2, that is the existence of a path of
length l ∈ N from (0, 0) for every l ∈ N. Using the Bernoulli random variables (ω

(x,n)
0 )(x,n)∈V

we define the so called oriented percolation process (Wn)n∈N0 which is a Markov chain given
for each initial state W0 = A ∈ Zeven := {x ∈ Z : x is even} by

WA
n := {x ∈ Z : (x, n) ∈ V, ∃y ∈ A s.t. (y, 0) (x, n)}. (I.3.3.12)

Furthermore, for (x, n) ∈ V we denote by −∞ (x, n) the event that there exists an infinite
open path starting at time −∞ and ending at at (x, n). Using the same Bernoulli random
variables as in the construction of the process (I.3.3.12) we define the process

Wn := {x ∈ Z : (x, n) ∈ V, −∞ (x, n)}, n ∈ Z. (I.3.3.13)

Then we obtain the following

Theorem I.3.3.2 For any K ≥ 0 and x ∈ Zeven

lim
n→∞

P[W {x}n 6= ∅ and Wn ∩ [−K,K] *W {x}n ] = 0. (I.3.3.14)

Proof See page 96 of [SS08] which itself refers to Theorem 5 in [BG90].

For our comparison with the oriented percolation we will obtain a set of so called K-
dependent random variables. Let K, d ∈ N. Then a collection (Xi)i∈Zd of random variables is
called K-dependent if for any A,B ⊂ Zd with inf{|i − j| : i ∈ A, j ∈ B} > K we have that
the collections (Xi)i∈A and (Xj)j∈B are independent of each other. We will use the following
two well-known theorems.

Theorem I.3.3.3 There exists a critical parameter pc ∈ [1
2 ,

80
81 ] such that P[0  ∞] = 0 for

all p < pc and P[0 ∞] > 0 for all p > pc.

Proof See for example [Dur88], Chapter 5a, pages 85-86.
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Theorem I.3.3.4 Let p ∈ (0, 1) and K < ∞. Assume that (Xi)i∈Zd are K-dependent
Bernoulli random variables such that P[Xi = 1] ≥ p for all i ∈ Zd. Then we can couple
(Xi)i∈Zd to a collection of independent Bernoulli random variables (X̃i)i∈Zd for which

P[X̃i = 1] = (1− (1− p)1/K)2, i ∈ Zd

in such a way that X̃i ≤ Xi for all i ∈ Zd.

Proof See for example Theorem 7.4 in [Swa17].

Proposition I.3.3.5 Let {ξAt : t ≥ 0, A ⊆ Zd} fulfill the conditions of Proposition I.3.3.1.
Then for all k ≥ 15 there exists a constant h > 0 and a constant c, which is independent of h
and k such that with positive probability for infinitely many n ∈ N,

{(x, t) ∈ Zd ×R+ : x ∈ ξZdt } ∩A2 contains a translate of paird × {0}},

where
A2 = An2 (c, k, h) := Zd−2 × [−c, c]2 × [nkh, (nk + 1)h]. (I.3.3.15)

Proof
We will use Proposition I.3.3.1 to compare the process ξ to an oriented percolation. Fix

an ε > 0 and for a given k ∈ N choose w, h,D so that the statement of the Proposition I.3.3.1
holds for (β′, δ′) = (β, δ). We will now define a discrete-time Markov process Ξ = (Ξn)n∈N :=

(In, Pn) which takes values in [{0, 1}× (Zd×R+)]Z
d−1 . We note that the spatial dimension of

the process Ξ is one lower than the spatial dimension of the original process. Here, the first
d − 2 spatial coordinates of each process correspond to each other, the (d − 1)st coordinate
in Ξ corresponds to the d-th coordinate in ξ and the (d − 1)st coordinate direction of the
original process will be restricted to the bounded interval [−wd−1, wd−1] so we no longer keep
track of it in the process Ξ. The In and Pn (which are defined below) should be thought of
as follows. Points (x, n) ∈ Zd−1 × N correspond to space-time boxes in the original process
{ξAt : t ≥ 0, A ⊆ Zd}. Then if In(x) = 1, it indicates that an event happened in that space-
time box in the original process ξ during which the set D is translated like in Proposition
I.3.3.1. If In(x) = 1, Pn(x) gives us additional information about the location of the translate
of D. For (i, n) ∈ Z× N0 such that i+ n is even we put

V (i, n) :=
(

0, ik
wd
3
, nkh

)
+ [−wd−1, wd−1]× [−wd, wd]× [0, h].

Let x = (x1, . . . , xd−1) ∈ Zd−1. The way we will define Pn(x), if xd−1 +n is even and if In(x) =

1, we will have for x = (x1, . . . , xd−1) ∈ Zd−1 that Pn(x) ∈ {x1} × · · · × {xd−2} × V (xd−1, n).

For (u, t) ∈ Zd ×R+ and (ud−1, ud, t) ∈ V (i, n) for some i and n, we define

χ±(u, t) =
{

(v, s) ∈ Zd ×R+ : v ∈ ξ̃D+u,t
s

(
(u1, . . . , ud−2, 0, ik

wd
3
, nkh) +B±k

)}
,

that is χ±(u, t) are the sets of all space-time points that occur in the process restricted to a
space-time slab which has the same form as B±k . By G

±(u, t) we denote the event that χ±(u, t)

contains a translate of D × {0} lying inside

(u1, . . . , ud−2, (i± 1)k
wd
3
, (n+ 1)kh) +B0 +R(k,w),
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h(k + 1)

h

Figure I.3.1: Comparison with oriented percolation (projected to the d-th spatial dimension).
Each small rectangle represents a translate of the box B0 (while the ones at the top of the
picture are wider in the first d − 2 dimensions) and the long tilted rectangles correspond to
space-time slabs B±k . We denote the translates of D × {0} with a full green line. The events
G± are represented by the dashed green arrows. If k is at least 15, the space-time slabs which
at the bottom contain different translates of B0 which are more than two boxes away from
each other have an empty intersection and therefore the processes restricted to each of those
slabs are independent of each other.

where R(k,w) was defined in (I.3.3.11).
By translation invariance, Proposition I.3.3.1 and the choice of w, h and D, we have for

every (u, t) ∈ Zd ×R+, where (ud−1, ud, t) ∈
⋃
i,n V (i, n), that

P(G±(u, t)) ≥ 1− ε0. (I.3.3.16)

We will put Ξ0 := (I0, P0), where I0(x) = 1[x=0] and P0(x) = (0, 0) ∈ Zd×R+ for all x ∈ Zd−1

(recall that the (d − 1)st coordinate of x corresponds to the d-th coordinate direction in ξ).
Now we assume that we have defined the random variables Ξk(x), k = 0, . . . , n and x ∈ Zd−1.

Let x ∈ Zd−1 be such that xd−1 + n+ 1 is even. Unless there exists a y ∈ Zd−1 such that

|xl − yl| ≤ 3wl for l = 1, . . . , d− 2

|xd−1 − yd−1| = 1,
(I.3.3.17)

and In(y) = 1, we define In+1(x) := 0 and Pn+1(x) = (0, 0). If such a y does exist and if also

(i) yd−1 = xd−1 ± 1,
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(ii) The event G∓(Pn(y)) occurs,

(iii) The lowest translate of D × {0} lying inside

χ± ((Pn(y)) ∩
[
(y1, . . . , yd−2, 0, xd−1kwd, (n+ 1)kh) +B0 +R(k,w)

]
is (D + (x1, . . . , xd−2, x̃d−1, x̃d))× {t̃} for some (x̃d−1, x̃d, t̃) ∈ V (xd−1, n+ 1),

then we define In+1(x) := 1 and we choose Pn+1(x) = (z, t) so that the lowest translate of
D × {0} contained in

{x1} × · · · × {xd−2} × V (xd−1, n) ∩
[
χ+(Pn(y)) ∪ χ−(Pn(y))

]
(I.3.3.18)

for some y which satisfies (I.3.3.17) is at (D + z)× {t}.
For x ∈ Z and n ∈ N such that x+n is even we now define random variables Zn(x) as follows.

We put Zn(x) = 1 if In(x1, . . . , xd−2, x) = 1 for some (x1, . . . , xd−2) ∈ Zd−2 and Zn(x) = 0

otherwise. We note that the conditional distribution of Ξn+1(x) given Fn := σ(Ξm, 0 ≤ m ≤ n)

depends only on the quantities Ξn(y) for y such that (I.3.3.17) holds. It follows that for
i ∈ {0, 1}

P(Zn+1(x) = i|Fn) = P(Zn+1 = i|{Ξn(y) : |yd−1 − x| = 1}).

From (I.3.3.16) we then see that

P(Zn+1(x) = 1|Fn) ≥ p(Zn(x− 1), Zn(x+ 1)),

where p(0, 0) = 0 and p(1, 0) = p(0, 1) = p(1, 1) = 1 − ε. Let Q0(x) := 1 for all x ∈
Z. For each n ∈ N0 and x ∈ Z we now define a random variable Qn+1(x) as follows. If
max{Zn(x − 1), Zn(x + 1)} = 1, then Qn+1(x) := Zn+1(x) and Qn+1(x) := 1 otherwise. The
parameter k "rescales" the distances between boxes in which the translation of D×{0} can be
found with a high probability. Choosing k large enough, we ensure that if (ud−1, ud, t) ∈ V (i, n)

and (vd−1, vd, r) ∈ V (j, n) for some n ∈ N and i, j ∈ Z such that |i−j| ≥ 3 then the space-time
slabs to which the process is restricted in the definitions of χ+(u, t) and χ−(v, r) have an empty
intersection (see Figure I.3.1). From the definition of B±k we obtain that we need to choose
k ≥ 15. Hence, for any n, conditioned on Fn, the random variables Qn+1(x), x ∈ Z are at most
1-dependent. By Theorem I.3.3.4 we can find a collection of independent Bernoulli random
variables (Q̃n(x))(x,n)∈V such that

Q̃n(x) ≤ Qn(x), n ∈ N0, x ∈ Z (I.3.3.19)

almost surely and P [Q̃n(x)] = (1− ε0)2. Choosing ε0 smaller if necessary, we see by Theorem
I.3.3.3 that in an oriented site percolation with (ω(x,n))(x,n)∈V := (Q̃n(x))(x,n)∈V it holds that

P[0 ∞] > 0. (I.3.3.20)

We now construct the oriented percolation process (W
{0}
n )n∈N0 as in (I.3.3.12) using

Bernoulli random variables (ω(x,n))(x,n)∈V := (Q̃n(x))(x,n)∈V and we couple it with the pro-
cess (Wn)n∈N0 using the same random variables. From (I.3.3.19) and the way we constructed
the process (W

{0}
n )n∈N0 we see that also

Zn(x) = 1 implies x ∈W {0}n a.s. ∀n ∈ N, x ∈ Z. (I.3.3.21)

From (I.3.3.20) and Theorem I.3.3.2 we see that limn→∞ P[0 ∈W {0}n ] > 0 and by (I.3.3.21)
we obtain that also
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P[Zn(0) = 1 for infinitely many n ∈ N] > 0. (I.3.3.22)

We observe that if Zn(0) = 1, then there exists a translate D′n × {tn} of D× {0} in A2. Since
we assume that the process started with paird occupied survives and paird ∈ D, there also
exists a translate of paird in A2.

Proposition I.3.3.5 tells us that if we start the process ξ with all sites occupied, there is a
positive probability that we can infinitely often find a space-time box centred around 0 ∈ Zd

and bounded in the d-th spatial dimension and the time dimension, such that each of the
space-time boxes contains a translate of paird × {0} and all these boxes are of equal size.

Proposition I.3.3.6 Let ξ meet the conditions of Proposition I.3.3.1. Then the distribution
of ξZdt converges to a non-trivial invariant law as t→∞.

Proof It is sufficient to show that we can find a sequence {τn}n≥0 of times where τn →∞ as
n→∞ such that

P[0 ∈ ξτn for all n ∈ N] > a > 0 (I.3.3.23)

for some constant a. Indeed, from (I.3.3.23) it follows that the process ξ has a nontrivial
upper-invariant law. Indeed, since ξ is an attractive spin system, we already know that the
distribution of ξt, started at ξ0 = Zd converges to the upper invariant law. If (I.3.3.23) holds,
then the upper invariant law cannot be trivial.

Fix T > 0. We would like to show that there is a positive probability that at times
τn := tn + T the origin is occupied and this probability is bounded away from zero. By
Proposition I.3.3.5 this holds if d = 2, since then An2 = An2 (c, k, h) (with An2 as in (I.3.3.15)) is
bounded and

max{|x|; (x, t) ∈ An2 for some t ∈ R+ and n ∈ N} ≤
√

2c2

and so there exists a K ∈ N independent of n, such that at most K independent events, all
of which have a positive probability, are necessary in order for the translate of paird × {0} in
An2 to "produce" a particle at the origin after time T > 0. To prove the same when d ≥ 3, we
have to show that An2 can be replaced by

And = And (c, k, h) := [−c, c]d × [nkh, (nk + 1)h], (I.3.3.24)

for which
max{|x|; (x, t) ∈ And for some t ∈ R+ and n ∈ N} ≤

√
dc2.

It can be checked (for details see the proof of Theorem 2.8. in [BG94]) that the construction
leading up to (I.3.3.22) also works if we consider the process I = (In)n∈N from the proof of
Proposition I.3.3.5 instead of ξ. More precisely, we obtain a process Ξ(2) = (Ξ

(2)
n )n∈N :=

(I
(2)
n , P

(2)
n ) which takes values in [{0, 1}× (Zd−1×R+)]Z

d−2 and random variables Z(2)
n (x), x ∈

Z defined as Z(2)
n (x) = 1 if I(2)

n (x1, . . . , xd−3, x) = 1 for some (x1, . . . , xd−3) ∈ Zd−3 and
Z

(2)
n (x) = 0 otherwise, such that (I.3.3.22) holds with Zn(0) replaced by Z(2)

n (0) and so we can
replace An2 in (I.3.3.15) by

An3 := Zd−3 × [−c, c]3 × [nkh, (nk + 1)h].

Since I(2) is the same type of process as I, we can repeat the same construction for I(2) and by
induction we see that An2 in (I.3.3.15) can indeed be replaced by And as defined in (I.3.3.24).

Finally, the process with generator (I.1.2.16) with δ > 0, β > 0, γ = 0 and α ≥ 0 is
an attractive spin system with symmetric translation-invariant rates which fulfils condition
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(I.3.3.10) and so it meets all the assumptions of Proposition I.3.3.1. Therefore, by Proposition
I.3.3.6 it has a nontrivial upper invariant law for any choice of β such that β > βsurv. It follows
immediately that βsurv ≥ βupp, showing Proposition I.3.2.1.

I.3.3.3 Proof of Proposition I.3.2.2

In Proposition I.3.2.2 we consider the process X with generator as in I.1.2.16 with α = 0, γ = 1

and δ > 0. This process can be coupled with a cooperative branching process X̂ = (X̂t)t≥0

which has the same parameters α, γ and δ as X and for which β = 0, so that Xt ≥ X̂t almost
surely. It holds then that

Ppair[|Xt| ≥ 1] ≥ Ppair[|X̂t| ≥ 1] = Ppair[|X̂t| = 2] + Ppair[|X̂t| = 1].

If δ = 0, the probability Ppair[|X̂t| = 2] would correspond to the probability that two
independent random walks started next to each other do not meet until time t. Sturm and
Swart show in Lemma 9 of [SS15] that this probability is equal to kt−1/2, where k is a constant.
Since we assume that δ > 0, the process X̂ survives with at least two particles only if moreover
neither of the two random walkers dies before time t. Since the paths of the random walkers
prior to their coalescence are independent, the death events on their paths are also and we
may therefore write

Ppair[|X̂t| = 2] ≥ kt−1/2e−2δt. (I.3.3.25)
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(d) One particle dies before time t and coalescence
happens after t

Figure I.3.2: Events that lead to the survival of exactly 1 particle in η̄ at time t

Since the Poisson processes that form the graphical representation of X̂ are all independent
and identically distributed and the branching rate of X̂t is zero, the survival of exactly one
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individual at time t has the same probability as the survival of a simpler model with only two
sites 0 and 1, where the deaths occur at each site as in X̂t and the two individuals coalesce
after time τ0,1 either by the individual at site 0 moving to 1 or vice versa. We define τ0,1 as
the first meeting time of two independent random walkers on Z which are started next to each
other. By τ †i we denote the time of the first death event at site i, i = 0, 1 in this simpler model.
There are four possible type of events that lead to the survival of exactly one individual at
time t. Namely, these events are as follows. First possibility is that the two particles coalesce
before either of them dies and then the single remaining particle survives until time t. This is
shown in Figure I.3.2a. In the second and third possible event the coalescence would have only
happened after one of the particles has already died and the second particle survives until time
t as shown in Figures I.3.2b and I.3.2c. The difference between the second and third event is in
that in I.3.2b it is the surviving particle that jumps (which would have resulted in a coalescence
if both particles were still alive) and in the third case the particle which dies is the one that
would have jumped and coalesced with the surviving one. Finally, the last type of event is one
in which the coalescence would have only happened after time t, one of the two particles dies
before time t and the other one survives as in Figure I.3.2d. In each of the pictures, red lines
represent the time during which the individual has to stay alive before time t while thick black
lines represent the presence of a living individual otherwise, coalescence events are denoted by
horizontal arrows (dashed if they have no influence on survival) and crosses represent death
events. Each of these events can also happen with the roles of 0 and 1 reversed with the same
probability (since τ †0 and τ †1 are independent and identically distributed). One of the first three
possible events shown in Figures I.3.2a,I.3.2b and I.3.2c occurs if there is a coalescence before
time t and if there also exists a path of length t with no death events on it. This has the
probability

P[τ †0 > t > τ0,1].

The last possibility, corresponding to the Figure I.3.2d is that coalescence only happens after
time t and therefore one individual has to survive until time t, whereas the other has to die
before that time. This has the probability

2P[τ †0 > t, τ †1 < t < τ0,1].

where the factor 2 appears because in this case we do not care whether the individual from
site 1 moves to 0 or the other way around (and we still can have either the individual at 0 or
the individual at 1 survive with equal probabilities). Going back to process X̂, we get that

Ppair[X̂t = 1] = P[τ †0 > t > τ0,1] + 2P[τ †0 > t, τ †1 < t < τ0,1]

= e−δt(1− kt−1/2) + 2e−δt(1− e−δt)kt−1/2

= e−δt(1 + kt−1/2 − 2e−δtkt−1/2)

Together with (I.3.3.25) we finally obtain

Ppair[X̂t ≥ 1] = e−δt + e−δtkt−1/2 − e−2δtkt−1/2 ≥ e−δt.

I.3.3.4 Proof of Proposition I.3.2.3

By Theorem 4, [SS15] we see that if δ = 0, then the left-hand side of (I.3.2.2) could be estimated
from below by kt−1/2, where k is a constant dependent on t0. Let us first consider the process
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X without cooperative branching and deaths, i.e. the process with generator (I.1.2.16) on
Z with β = δ = 0 in addition to α = 0 and γ = 1. This process is then just a process of
(symmetric) coalescing random walks on Z. Let N→i , i ∈ Z and N←i , i ∈ Z all be independent
Poisson processes with intensity 1/2 and denote by ω→ (resp. ω←) the set of Poisson events
corresponding to N→i (resp. N←i ). Then the Poisson processes N→i , i ∈ Z and N←i , i ∈ Z

define the graphical representation of X as follows. If s ∈ ω→i for some s > 0 and i ∈ Z then
we set

Xs(j) :=


0 if j = i,

Xs(i) ∨Xs(j) if j = i+ 1,

Xs−(j) otherwise
(I.3.3.26)

and analogously for N←i . If s /∈ ω→i ∪ ω←i for any i, then we put Xs := Xs−. For a fixed t ≥ 0

we define an open path on an interval I ⊂ R as a càdlàg function ξ : I 7→ Z which satisfies the
following conditions:

(i) If t ∈ ω← (resp. t ∈ ω→) for some t ∈ I then ξt = ξt− − 1 (resp. ξt = ξt− + 1)

(ii) If t ∈ I\(ω←(ξt−) ∪ ω→(ξt−) then ξt = ξt−.

In the process of coalescing random walks (i.e. the model with α = β = δ = 0 and γ = 1)
the probability P1Z [Xt(0) = 1] corresponds to the probability that there exists an open path
ξ : [0, t] 7→ Z such that ξt = 0. Sturm and Swart show in Section 3.2. of [SS15] that this
probability can be estimated from below by kt−1/2. Since the cooperative branching process
is monotone, this is also the lower estimate for the same probability in the case when β > 0.

If δ > 0, we also need that there exist a path ξ′ : [0, t] 7→ Z with no death events on it,
that is whenever ξ′s = i for some s ≥ 0 and i ∈ Z, no death events occur at time s at site i.
Since the death events occur independently at every site at a rate δ, the probability that there
are no deaths on ξ′ is e−δt. We can therefore bound the left hand side of (I.3.2.2) from below
by kt−1/2e−δt which can then be further estimated from below by ce−δ′t for any δ′ > δ and a
constant c = c(δ′, t0).

I.3.3.5 Proofs of Propositions I.3.2.4 and I.3.2.5

In both proofs we will use the following simple Lemma.

Lemma I.3.3.7 Let f : R+ → R be a continuously differentiable function such that

∂
∂tf(t) ≤ −af(t), t ≥ 0 (I.3.3.27)

for some a > 0. Then
f(t) ≤ f(0)e−at, t ≥ 0.

Proof This is a special case of Gronwall’s inequality. Since the proof is very short, we provide
it here for completeness. From (I.3.3.27) we get that that

∂
∂t(e

atf(t)) = eat( ∂∂tf(t) + af(t))) ≤ 0, t ≥ 0.

Hence
∫ t

0 ( ∂∂s(e
asf(s))ds ≤ 0 and so also f(t)eat − f(0) ≤ 0 from which the claim follows.

Proof of Proposition I.3.2.4 For x0, . . . , xn ∈ {0, 1} put pt(x0x1 · · ·xn) := P1Z [{Xt(i) =

x0, Xt(i+ 1) = x1, . . . , Xt(i+ n) = xn]. The definition does not depend on the choice of i ∈ Z
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since the process and the initial law δ1Z are translation invariant. From the generator (I.1.2.16)
of X we obtain that

∂

∂t
pt(1) = −pt(1) +

1

2
pt(10) +

1

2
pt(01) +

1

2
βpt(110) +

1

2
βpt(011)− δpt(1)

= −pt(11) + β(pt(11)− pt(111))− δpt(1)

= (β − 1)pt(11)− βpt(111)− δpt(1)

≤ −δpt(1),

(I.3.3.28)

where the second equality follows from the fact that pt(110) = pt(011) = pt(11)− pt(111) and
pt(10) = pt(01) = pt(1)− pt(11) and the inequality from the fact that β ≤ 1. The rest of the
proof follows from Lemma I.3.3.7 and the fact that P1Z [Xt(0) = 1] = 1.

Proof of Proposition I.3.2.5 For β ≤ 1 we get from (I.1.2.16) that

∂

∂t
Epair[|Xt|] =(β − 1)

∑
i∈Z

Ppair[Xt(i) = Xt(i+ 1) = 1]

− β
∑
i∈Z

Ppair[Xt(i) = Xt(i+ 1) = Xt(i+ 2) = 1]− δ
∑
i∈Z

Ppair[Xt(i) = 1]

≤− δ
∑
i∈Z

Ppair[Xt(i) = 1].

(I.3.3.29)

Here, the inequality follows from the fact that β ≤ 1. Since
∑

i∈Z Ppair[Xt(i) = 1] =

Epair[|Xt|], we then get by Lemma I.3.3.7 that Epair[|Xt|] ≤ Epair[|X0|]e−δt for all t ≥ 0.
Since Ppair[|Xt| ≥ 1] ≤ Epair[|Xt|], and Epair[|X0|] = 2, this completes the proof.
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Part II

Genealogy of neutral loci in a random
environment

76



Chapter II.1

Overview and previous results

In the second part of the thesis, we will be concerned with a generalization of a particular model
from population genetics which was studied by Barton, Etheridge and Sturm in the paper
[BES04]. They consider a population of individuals which reproduce and die. Their model
then describes a genealogy of a sample of neutral genes which are in each individual encoded
on a chromosome in close vicinity to a gene which has two variants and which is influenced
by selection. This genealogy is further influenced by a phenomenon called recombination in
which, roughly speaking, the chromosomes of the parents are split and rearranged into a new
one which then forms the chromosome of their offspring. The difference between the model
studied in [BES04] and the one considered here is that in [BES04] each individual is considered
to carry only one of these neutral genes, whereas we will study a model in which there are K
neutral genes for some fixed K ∈ N. This changes somewhat the structure of the genealogy.

We will first define more precisely the biological terms we mentioned above as well as some
others that we will be using in the thesis. We say that an organism is haploid if it only has
a single chromosome and diploid if it has two chromosomes (other numbers of chromosomes
also occur in nature). In our model, we will consider a population of haploid individuals.
We can also interpret the model as an approximation for a diploid population with half as
many individuals in the sense that in the haploid model we forget the way chromosomes are
paired together within the diploid organisms and consider each chromosome separately as an
independent individual.

Different variants of a single gene are called alleles, so that for example a gene coding for
the eye colour can have several alleles each of which manifests itself in a particular eye colour
of the animal with that allele.

A particular location on the chromosome where a gene is encoded is called a locus. We
refer to a locus as selective if the gene at that locus is influenced by natural selection in the
sense that changing the allele of the gene at that locus changes the fitness of the individual
carrying it. We say that a locus is neutral if the allele has no influence on the fitness of the
individual. In our model we will keep track of a single selective locus on a chromosome with a
fixed number of neutral loci which lie close to it.

In sexual reproduction in diploid organisms, the individuals form haploid cells called ga-
metes (eggs and sperm) which are obtained from the organism’s diploid cells (i.e. cells which
contain both of its chromosomes) via recombination. We can picture recombination as follows.
The two chromosomes are lined up next to each other and cut in several places (the same places
on both chromosomes). After that each cut segment of a chromosome switches places with the
corresponding segment on the other chromosome, so that two new chromosomes consisting of
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parts of each of the two original chromosomes are created by this process. Two gametes are
therefore produced in this way, each carrying a single chromosome. As was mentioned above,
in our model we treat the diploid population as a haploid population with twice as many in-
dividuals. From this point of view, the two chromosomes in the recombination can be seen as
the "parents" of the gamete "offspring" and the recombination can happen between any two
individuals instead of between the two chromosomes of each individual as in the diploid case.
In our setting, where we want to study the genealogy of the neutral loci in a finite sample
of individuals, the main consequence of recombination is that some or all of the neutral loci
might not necessarily trace their ancestry to the same parent as the selective locus. This is
important since the allele at the selective locus influences the fitness of the individual and it
might be different in each parent. In our model, we will call the parent which is ancestral to
the gene at the selective locus the first parent and we will call the other one the second parent.

S L1 L2 L3

First parent

S L1 L2 L3

Second parent

S L1

Offspring

L2 L3

Figure II.1.1: An example of a recombination. Here, the big ball denoted by the letter S
represents a selective locus and the smaller balls denoted by Li, i = 1, 2, 3 represent three
neutral loci which are close to the selective locus. The two "parent" chromosomes are cut at
the same location indicated by the dashed line and the "offspring" is created by combining the
part of the chromosome to the left of the cut in one parent and the rest from the other parent.

Finally, we assume that the gene at the selective locus undergoes mutation. This means
that the gene at the selective locus of the offspring mutates, i.e. its allele changes to one which
is different from the allele of the first parent. In our model, we will consider a simple case
where the gene at the selective locus only has two alleles called P and Q and a mutation always
either changes P to Q or the other way around.

Before we introduce the full model with selective and neutral loci, recombination and
mutation, we will describe a simple population model which our model is based on, namely
the so called Moran model. Assume we have a population of N ∈ N individuals such that
each individual is either of type P or of type Q. We assume that the population evolves (in
continuous time) in the following way. Each individual dies at rate 1 independently of all other
individuals. When that happens, the individual is replaced by a new individual whose type is
chosen uniformly from the current population. In other words, at rate N a so called birth-death
event happens in which two individuals are chosen uniformly at random from the population.
One individual from the pair is then chosen with equal probability. This individual dies and is
replaced by a copy of the other individual. We will refer to the individual which copied itself
(reproduced) as the parent and to its copy as the offspring of the birth-death event.

We notice that the Moran model is just a special case of the voter model (I.1.2.8) which
we defined in Part I of the thesis. Indeed, the Moran model above can be formally defined
as the nearest neighbour voter model on a complete graph with 2N vertices and a local state
S := {P,Q} or more precisely as this process modulo permutation of sites, since we do not
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care about the particular labelling of the individuals.
In our model we will consider a version of the Moran model where the population is subject

to mutation and selection which can depend on the ratio of each allele in the population. This
no longer corresponds to the voter model since even if the entire population has the same type
at a particular birth-death event, the offspring of the birth-death event can end up with the
other type. In contrast to that, in the voter model the process remains constant once the local
state is the same at every site.

In what follows, we will be studying a fixed size population of individuals who reproduce
according to the Moran model with selection and mutation. The individuals consist of a
selective locus with alleles P and Q, which influence the individual’s chance to reproduce
during a birth-death event, and K neutral loci which do not affect the reproduction chances
and which are situated close to the selective locus. We assume that the alleles at the selective
locus of the offspring of a birth-death event can mutate to the allele different from its parent
with a positive probability for both alleles and that there can be a recombination between the
parent and the deceased individual so that some (or all) of the neutral loci of the offspring
trace their genealogy to the dead individual instead of the parent.

We assume that the population has evolved for a long time and the process which keeps
track of the ratio of the alleles in the population has reached stationarity. We then take a
sample of a finite number of individuals from the population and study the genealogy of their
neutral loci. To do that, we will construct a process which keeps track of the distribution of
the ancestry of the neutral sample and the allele ratio backwards in time. The main result
of part II is Theorem II.2.3.1 where we show the convergence of this process to a diffusion
approximation obtained in the limit when the total size of the population grows beyond all
bounds and time is appropriately rescaled, and we describe the limiting process by the means
of its generator. Note that while we assume the population to evolve according to the Moran
model (with selection and mutation), previous results in the simple setting without selection
and mutation show that the same approximation will be obtained for a large class of models,
see for example [MS98]. One such model is the Wright-Fisher model in which the entire
population is replaced at each birth-death event and in which each individual "chooses" its
parent uniformly at random from the previous generation.

Barton, Etheridge and Sturm study this model in [BES04] in the case when K = 1, i.e.
when there is only a single neutral locus. The main difference between K = 1 and K ≥ 2

is that when K = 1 the neutral locus in each individual from the sample can trace their
ancestry to only a single individual, whereas if K ≥ 2 the neutral loci in an individual can
"split" due to recombination so that some of the neutral loci trace their ancestry to one
individual and a different part to a different one. In other words one can say that if K = 1,
then backwards in time the neutral individuals carrying the neutral sample can only coalesce
(when two individuals from the sample and so also their neutral loci trace their genealogy
to the same parent), whereas in the case when K ≥ 2 each individual may also split in the
sense above. From the point of view of applications, keeping track of multiple neutral loci
also allows us to study certain additional characteristics, such as pairwise differences between
the sampled individuals or the correlation between coalescence times of different neutral loci.
Unfortunately, while it is theoretically possible to obtain some analytical results about these
characteristics the same way as in [BES04], it becomes exceedingly technically difficult as K
increases. Given that, we limit ourselves to simulations in the applications we consider in
Section II.2.4. For a further discussion of the results of [BES04], particularly the equations
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of identities, see the accompanying paper [BE04]. There is a number of related results in the
literature. Taylor [Tay07] constructs the so-called common ancestor process which keeps track
of the background of an individual who eventually becomes the common ancestor of the entire
population, and discusses the model with multiple (i.e. more than two) alleles at the selective
locus. Kluth, Hustedt and Baake [KHB13] expand on [Tay07] as well as [Fea02]. Pokalyuk
and Pfaffelhuber [PP13] study the fixation of a beneficial allele in the regime of a strong
directional selection (and no mutation). In the case when K = 2, an analytical treatment of
the characteristics considered in Section II.2.4 in a similar model can be found in [BBE13].
The model of that paper differs from ours most notably in two ways. It does not assume a
random environment (i.e. the selective locus), but on the other hand it has a more complicated
birth-death mechanics where in addition to the birth-death events which we consider, there is
also a possibility of a "large" birth-death event in which a certain (possibly random) portion
of the population is replaced at once.

Similar models are often studied with the assumption of a selective sweep, see for example
[DS05], [EPW06], [PHW06], [PS07]. [HP08] or the dissertation [BS14]. In that setting, a
beneficial mutation is assumed to have happened in the past at the selective locus which
spreads through the population and eventually fixates (which never happens in our model).
[IS03] provides a method to distinguish between background selection with selective sweeps in
practice.

Part II is organized as follows. In Section II.2.1 we describe our model with multiple neutral
loci, mutation and recombination in detail. In Section II.2.2 we obtain the transition rates of
the model which keeps track of the allele ratio and the sampled individuals backwards in time
and in Section II.2.3 we show the convergence to the diffusion approximation whose generator
is given in Theorem II.2.3.1. Section II.2.4 discusses possible applications of this approximation
and illustrates some of its behaviour obtained by simulations. Finally, in Section II.2.5 the
proofs of the results from previous sections are provided.
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Chapter II.2

Multiple neutral loci

II.2.1 Model

Let N ∈ N be the (fixed) size of a population of diploid individuals which we will from here
on treat as a population of 2N haploid individuals instead. We will denote the two alleles at
the selective locus by letters P and Q, respectively. We will say that an individual comes from
the background P (or that it is a P -background individual) if it has the P allele present at its
selective locus. Similarly, will say that it comes from the background Q if it has the Q allele
at the selective locus.

We now define pt, t ≥ 0 as the proportion at time t of the P -background individuals in
the whole population. Similarly, qt = 1 − pt, t ≥ 0 will be the proportion of Q-background
individuals. We put p := (pt)t≥0 and q := (qt)t≥0 and call p the process of allele ratios.

Let S : [0, 1] 7→ [−1, 1] be a function. If two individuals from different backgrounds are
chosen in a birth-death event and the ratio of the P -background in the population is p, we will
assume that with the probability 1+S(p)

2 it is the P -background individual which reproduces
and the Q-background individual which dies. We will call S the selection coefficient.

Due to mutation, the offspring of a birth-death event can have a different allele at the
selective locus than its parent. More precisely, an offspring of a P -background parent will be
a Q-background individual with the probability µP > 0 and similarly an offspring of a Q-
background individual will have the allele P at its selective locus with probability µQ > 0. We
will call µP and µQ the mutation probabilities or mutation rates. Note that since the mutation
rates are both assumed to be positive, neither allele ever fixates in the population.

Finally, to use same version of the Moran model as in [BES04], we will assume that
branching-death events only happen at rate N instead of 2N as would be the case in the
simple version of the Moran model we introduced in II.1 with a population of size 2N .

As we mentioned in Chapter II.1, we want to study the genealogy of a neutral sample taken
from a population after reaching stationarity. To do that, we will need to keep track of the
allele ratio p and of those individuals (in each background and through time backwards) to
which at least one of the sampled neutral loci trace their genealogy. As a shorthand, we will
refer to these individuals as the individuals that come from the sample and we will refer to
those of its neutral loci which are ancestral to the neutral sample at present as active loci.
We assume there are K neutral loci situated close to the selective locus and we denote them
by L1, . . . , LK . To differentiate between individuals from the sample with different active
(neutral) loci, we will need the notion of a neutral type. Let I := P({1, . . . ,K})\∅. We say
that an individual from the sample is of the (neutral) type I ∈ I if and only if its neutral
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loci with indices in I are active and no other neutral loci are. Denote by nPI (resp. nQI ) the
number of individuals from the sample that are of type I and from background P (resp. Q).
For example if I = {2,K}, then nPI is the number of individuals from the sample that are in
the background P and whose set of active loci consists of the second and K-th neutral locus.

We need to keep track of the numbers of all possible kinds of individuals from the sample.
We define n

P := {nPI }I∈I as the collection of numbers of individuals from the sample in
background P and corresponding to each neutral type. Analogously we define nQ := {nQI }I∈I
as the collection of numbers of individuals from the sample in background Q corresponding to
each neutral type.

We will study the (backwards in time) process X(1) = (pt;n
P (t),nQ(t))t≥0 which keeps

track of the allele ratio p and the distribution of the ancestral sample in the population as well
as the background of all individuals which carry active loci.

In a birth-death event, viewed backwards in time, the neutral loci in an individual from the
sample either "move" to (i.e. trace their genealogy to) the parent if there was no recombination,
or some or all of them move to the individual who died during the event. Whenever there is
a recombination, we will call the parent of the selective locus the first parent and we will
refer to the individual who dies in the birth-death event and to whom a part of the neutral
sample traces its genealogy as the second parent. Since we will not differentiate between two
individuals from the same background and with the same neutral type, a recombination which
moves all the active neutral loci from the offspring to the second parent affects the process X(1)

only when the backgrounds of the offspring and of the second parent differ. However, when a
recombination occurs, which causes some but not all of the active loci to move to the second
parent, the ancestry of the neutral sample splits and we have to keep track of both the first
and the second parent regardless of their backgrounds.

We need to define the recombination probabilities. If Î ∈ I then by rÎ we denote the
probability of a recombination which results in (viewed backwards in time) moving the neutral
loci with indices in Î to the second parent. We assume that

∑
Î∈I rÎ ≤ 1. Naturally, the

recombination only has an effect on the genealogy of the sample if at least some of the neutral
loci that are to move to the second parent are active. Therefore, we define the recombination
probabilities for an individual of the neutral type I as

rI,Î :=
∑
J∈I

rJ1[I∩J=Î], Î ∈ I

and by rI,∅ we denote the probability that there is no recombination in an individual of (neutral)
type I, that is

rI,∅ := 1−
∑
Î∈I
Î⊆I

rÎ = 1−
∑
Î∈I

rI,Î . (II.2.1.1)

A natural way to define the recombination probabilities (for a given geometry) is given by the
following example.

Example II.2.1.1 Assume that all K loci are all aligned to the right of the selective locus.
We will also assume that they are ordered by their distance from the selective locus, i.e. Li
is closer to the selective locus than Li+1 for all i ∈ [K − 1]. For i ∈ [K] := {1, . . . ,K} put
ci ∈ [0, 1] arbitrarily and denote by L0 the selective locus. These will be the probabilities of a
chromosome being cut in between two neutral loci, so that a cut between Li−1 and Li occurs
with probability ci. Assume that these events are independent and for notational purposes
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put cK+1 := 1. Ordered by their distance from the selective locus, every odd cut causes all
the neutral loci to the right of it until the next cut to move to the second parent and every
even cut causes everything to the right of it, up to the next cut, to move to the first one. For
example, if three cuts appear during a single recombination event, such that their indices are
i, j and k where i < j < k, then all neutral loci with indices in the set {i, . . . , j − 1} move to
the second parent, all neutral loci with indices in {j, . . . , k − 1} move to the first one and all
those with indices in {k, . . . ,K} again move to the second parent. Set inf(∅) := ∞. Now for
I ∈ I, we put

β̂I0 := 0

α̂I0 := min{i ∈ I},

β̂Ij := inf{i > α̂Ij−1, i /∈ I}, j = 1, . . . ,K,

α̂Ij := inf{i > β̂Ij , i ∈ I}, j = 1, . . . ,K

and for j = 0, 1, . . .K

αIj :=

{
α̂Ij , α̂Ij <∞
K + 1, otherwise,

βIj :=

{
β̂Ij , β̂Ij <∞
K + 1, otherwise.

Then we obtain the recombination probabilities rI as

rI =

K∏
i=0

(
cαIi

cβIi+1

βIi+1−1∏
j=βIi +1

j 6=αIi

(1− cj)
)
, I ∈ I.

Remark II.2.1.2 The situation is simpler in the case where we only have one neutral locus
(i.e. K = 1). There we observe the (backwards in time) process X = (pt;n

P
t , n

Q
t )t≥0, where

nPt is the number of individuals at time t whose neutral locus is ancestral to the sample and
similarly for nQt . With just one neutral locus there is only one possible recombination event
which affects the process X, namely the one which moves the active locus (there can only
be one in this case) of an individual from the sample to the second parent. We assume that
the recombination happens in a birth-death event with a constant probability r. This case is
treated in [BES04].

II.2.2 Finite population size process

We would like to obtain the generator of the process X(1), but because of the abundance of
possible events that affect the process, we will not attempt to write down the generator in a
closed form (we will do that later with a generator of the diffusion approximation) and limit
ourselves mostly to describing those events which will also play a role later in the diffusion
limit and noting that all the others will not appear there. We will proceed the same way as in
the Lemma 2.4. in [BES04]. The argument is based on the reversibility of the Moran model.

Denote by pm and pm+1 the P allele frequency immediately (backwards in time) before
and after a birth-death event and let us define Pp,p̃ := P[pm+1 = p̃|pm = p]. It is easy to see
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that it holds for these probabilities that

Pp,p = p2(1− µP ) + (1− p)2(1− µQ) + 2p(1− p)
(

1 + S

2
µP +

1− S
2

µQ
)
,

Pp,p−1/(2N) = p

(
pµP + 2(1− p)1− S

2
(1− µQ)

)
,

Pp,p+1/(2N) = (1− p)
(

(1− p)µP + 2p
1 + S

2
(1− µP )

)
.

In each birth-death event, there are three individuals involved - the individual who died,
the parent and the offspring. We will write (D,A,O) with D,A,O ∈ {P,Q} for the event
that type of the deceased individual is D, type of the parent is A ("ancestor") and type of
the offspring is O. The individuals of the birth-death event are chosen with replacement, so
the parent can also be the individual who died. We will denote such events by (D,O) instead
of (D,A,O). Let pfm and pfm+1 be the forwards in time process immediately before and after
a birth-death event. Using Bayes rule and reversibility of the stationary distribution of the
Moran model, we obtain

P[(D,A,O)|pm+1 = p̃, pm = p] = P[(D,A,O)|pfm = p̃, pfm+1 = p]

=
P[(D,A,O) ∩ [pfm+1 = p]|pfm = p̃]

Pp̃,p

=
P[(D,A,O)|pfm = p̃]

Pp̃,p
1(D,A,O),p̃,p,

where 1(D,A,O),p̃,p is one if the event (D,A,O) results in a forward in time change in the
proportion of type P from p̃ to p and zero otherwise. Denote

p+ = p+
1

2N
, p− = p− 1

2N
,

q+ = q +
1

2N
, q− = q − 1

2N
,

S+ = S (p+) , S− = S(p−),

Then the events in which a P -background individual dies have the following probabilities

P[(P, P, P )|pm+1 = p, pm = p] =
1

Pp,p
pp−(1− µP ),

P[(P,Q,Q)|pm+1 = p+, pm = p] =
1

Pp+,p
p+q−(1− S+)(1− µQ),

P[(P,Q, P )|pm+1 = p, pm = p] =
1

Pp,p
pq(1− S(p))µQ,

P[(P, P,Q)|pm+1 = p+, pm = p] =
1

Pp+,p
p+pµ

P ,

P[(P, P )|pm+1 = p, pm = p] =
1

Pp,p
p

1

2N
(1− µP ),

P[(P,Q)|pm+1 = p+, pm = p] =
1

Pp+,p
p+

1

2N
µP ,

(II.2.2.1)
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and similarly we could obtain the probabilities of the events in which it is the Q-background
individual who dies. For a full list of these probabilities, see the proof of Lemma 2.4. in
[BES04].

Denote by n
P =

∑
I∈I n

P
I and n

Q =
∑

I∈I n
Q
I the total number of individuals from the

sample in background P and Q, respectively. We now consider the probabilities of events
on the neutral sample conditioned on the type of the birth-death event and the state of the
process X(1) just before (backwards in time) the occurrence of the birth-death event. There
are several types of events which can happen. We only down the probabilities for those events
in which the offspring is background P . The probabilities of events where the offspring is in
the background Q are obtained simply by exchanging P and Q and p and q in the list below.

(i) A coalescence of two individuals from the sample with identical neutral types and back-
grounds (without recombination). Let I be the type of both the parent and the offspring.
Then the probability of this event, conditioned on either (Q,P, P ) or (P, P, P ) occurring,
is (nPI

2

)(
2Np

2

)rI,∅. (II.2.2.2)

Here 2
(

2Np
2

)
is the total number of ordered pairs of individuals in background P and

2
(Np

I
2

)
is the number of such pairs where both individuals have the same neutral type I.

This event results in a decrease of nPI to nPI − 1.

(ii) A coalescence of two individuals from the sample with identical backgrounds and with
neutral types such that one is a subset of the other (without recombination). Let I be the
neutral type of the offspring and J the neutral type of the parent and let I ( J . Then
the probability of this event, conditioned on (Q,P, P ) or (P, P, P ), is

1

2

nPI n
P
J(

2Np
2

) rI,∅. (II.2.2.3)

Here, nPI n
P
J is the number of ordered pairs of individuals from background P and from

the sample such that the first individual has neutral type I and the second has neutral
type J . This again results in a decrease of nPI by one.

(iii) A coalescence of two individuals from the sample with identical backgrounds and different
neutral types with a non-empty symmetric difference (without recombination). Again,
let I be the neutral type of the offspring and J the neutral type of the parent and let
I∆J 6= ∅. The probability of such an event, conditioned on (Q,P, P ) or (P, P, P ), is
again

1

2

nPI n
P
J(

2Np
2

) rI,∅. (II.2.2.4)

This event results in a decrease of nPI and nPJ by 1 and an increase of nPI∪J , also by 1.

(iv) A coalescence of two individuals from the same background with recombination and with
only the offspring in the sample. Let I be the neutral type of the offspring individual.
Assume that there is a recombination in which the neutral loci with indices in J ( I

move to the second parent (i.e. the individual who died in the birth-death event). Then
the probability of this event conditioned on (Q,P, P ) or (P, P, P ) is

1

2

nPI (2Np− n
P )(

2Np
2

) rI,J . (II.2.2.5)
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Here, nPI (2Np−nP ) is the number of ordered pairs of individuals from background P such
that the first individual comes from the sample and has neutral type I and the second
individual does not come from the sample and rI,J is the probability of a recombination
described above. This leads to a decrease of nPI by 1 and depending on whether the
background of the second parent is P or Q, to an increase of nPJ and nPI\J , both also by

1, or to an increase of nQJ and nPI\J by 1.

(v) A coalescence of two individuals from different backgrounds and with only the offspring
in the sample (without recombination). Let I be the neutral type of the offspring. Then
conditioned on (Q,Q,P ) or (P,Q, P ) this event has the probability

nPI (2Nq − n
Q)

4N2pq
rI,∅. (II.2.2.6)

Here nPI (2Nq−n
Q) is the number of ordered pairs such that the first individual is from

the background P and the sample with neutral type I and the second individual is from
background Q and does not come from the sample and 4N2pq = 2Np(2N − 2Np) is the
number of all ordered pairs of individuals such that one is from background P and the
other from background Q. This yields a decrease of nPI by 1 and an increase of nQI , also
by 1.

The following two types of events appear in process X(1), but vanish later on in the diffusion
limit, which is our main point of interest. Therefore, they are described somewhat briefly.

• A coalescence of two individuals from the sample with different backgrounds and neutral
types (without recombination). Let I be the neutral type of the offspring and J the
neutral type of the parent. Conditioned on (Q,Q,P ) or (P,Q, P ) this event has the
probability

nPI n
Q
J

4N2pq
rI,∅. (II.2.2.7)

The effect on the process depends on the exact relationship of I and J similarly like in
(II.2.2.3) and (II.2.2.4) above.

• The parent dies. Let I be the neutral type of the offspring. Conditioned on (P, P ) or
(Q,P ), the probability of this event is

nPI
2Np

. (II.2.2.8)

This only has an effect on the process if there was a mutation (i.e. in the birth-death
event (Q,P )), otherwise nothing changes.

Any other event on the neutral loci either has a zero probability, does not affect the process
X(1) at all, or, as we will see, also vanishes in the diffusion limit.

The birth-death events that do not affect the individuals from the sample give rise to the
terms

T+ = (NPp,p+1/(2N) −R+)(f(p+,n
P ,nQ)− f(p,nP ,nQ) (II.2.2.9)

T− = (NPp,p−1/(2N) −R−)(f(p−,n
P ,nQ)− f(p,nP ,nQ), (II.2.2.10)

in the generator of X(1), where R+ (resp. R−) is the sum of the rates of all events which affect
the sample and which result in an increase (resp. a decrease) of the allele ratio p and the
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factor N is the rate at which birth-death events appear in the process. From the law of total
probability we get that all other generator terms have the form

N
(
cPp∗,pP[(D,A,O)|X(1)

t− = (p,nP ,nQ),X
(1)
t = (p∗, (nP )∗, (nQ)∗)]

×P[N|(D,A,O),X
(1)
t− = (p,nP ,nQ),X

(1)
t = (p∗, (nP )∗, (nQ)∗)]

)
×(f(p∗, (nP )∗, (nQ)∗)− f(p,nP ,nQ)),

(II.2.2.11)

where c =
Pp,p∗
Pp∗,p

, N denotes an event affecting the neutral sample and X
(1)
t− and X

(1)
t are the

values of process X(1) (backwards in time) before and after an arbitrary birth-death event.

II.2.3 Convergence to the diffusion limit

We now define the process X(N) as the process X(1) rescaled by the factor of N , that is the
process X(1) with mutation rates (µP )(N) := µP

N and (µQ)(N) := µQ

N , recombination rates
(r

(N)
I , I ∈ I) where r(N)

I := rI
N , I ∈ I and time fast-forwarded by the factor of N . In the

process X(N) we will define the selection coefficient through a Lipschitz continuous function
s : [0, 1] 7→ R in the following way. We let s(N) : [0, 1]→ [−1,∞) be defined as

s(N)(p) :=

{
s(p)
N if s(p) ∈ [−N,∞)

−1, otherwise,

Then we define the rescaled selection coefficient for p ∈ [0, 1] as

S(N)(p) :=
s(N)(p)

2 + s(N)(p)
=
s(p)

2N
+ o
(
1/N).

In Theorem II.2.3.1 we will need the following notation. For I ∈ I let 1I := {1I(J)}J∈I ,
where

1I(J) :=

{
1 if I = J

0 otherwise

and let 1∅(J) := 0 for all J ∈ I. Recall that by n
P (t) = {nPI (t)}I∈I and n

P (t) = {nPI (t)}I∈I
we denote the collection of numbers of individuals from the sample corresponding to each
neutral type in background P and Q at time t ≥ 0, respectively. For t ≥ 0 denote by
n
P (t) =

∑
I∈I n

P
I (t) and n

P (t) =
∑

I∈I n
P
I (t) the total number of individuals from the sample

at time t in background P and Q, respectively. Note that while the sample might split into
more individuals and so nPI (0) +nQI (0) might be smaller than nPI (t) for some t > 0 and I ∈ I,
each neutral locus is present at most n0 := n

P (0) + n
Q(0) times, since n0 is the same as the

number of individuals sampled at time 0 and so each individual neutral locus is present at
most n0 times. Therefore n0 is the upper bound for nPI (t) and nQI (t) for all I ∈ I and t ≥ 0.

Theorem II.2.3.1 Let

E := [0, 1]×
∏
I∈I
{0, . . . , n0} ×

∏
I∈I
{0, . . . , n0}

and let C2
1(E) be the space of all functions f : E 7→ R which are twice continuously differentiable

with respect to p. Then there exists a process X such that the processes X(N) converge weakly
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in DE [0,∞) as N → ∞ to X and X is generated by A, where A ∈ L(C2
1(E)) is defined as

follows.

Af(p,nP ,nQ) = AP f(p,nP ,nQ) +AQf(p,nP ,nQ)

+ (−µP p+ µQq + s(p)pq)
1

2

∂

∂p
f(p,nP ,nQ) + pq

1

4

∂2

∂p2
f(p,nP ,nQ) (II.2.3.1)

where

AP f(p,nP ,nQ) =

1

2p

∑
I∈I

[(
nPI
2

)(
f(p,nP − 1I ,n

Q)− f(p,nP ,nQ)
)]

(II.2.3.2)

+
1

2p

∑
I∈I

∑
J∈I
J)I

[
nPI n

P
J

2

(
f(p,nP − 1I ,n

Q)− f(p,nP ,nQ)
)]

(II.2.3.3)

+
1

2p

∑
I∈I

∑
J∈I

I∆J 6=∅

[
nPI n

P
J

2

(
f(p,nP + 1I∪J − 1I − 1J ,n

Q)− f(p,nP ,nQ)
)]

(II.2.3.4)

+
1

2

q

p
µQ
∑
I∈I

[
nPI
(
f(p,nP − 1I ,n

Q + 1I)− f(p,nP ,nQ)
)]

(II.2.3.5)

+
p

2

∑
I∈I

∑
Î∈I
Î(I

[
rI,În

P
I

(
f(p,nP + 1I\Î + 1Î − 1I ,n

Q)− f(p,nP ,nQ)
)]

(II.2.3.6)

+
q

2

∑
I∈I

∑
Î∈I
Î⊆I

[
rI,În

P
I

(
f(p,nP + 1I\Î − 1I ,n

Q + 1Î)− f(p,nP ,nQ)
)]

(II.2.3.7)

and AQf(p,nP ,nQ) is AP f(p,nP ,nQ) with P and Q and p and q reversed.

The proof of Theorem II.2.3.1 can be found in section II.2.5.

Remark II.2.3.2 The terms of the generator correspond to the possible events that affect the
process X. The first three terms describe coalescence. In particular, (II.2.3.2) corresponds to a
coalescence of two individuals of the same type and the same combination of neutral loci from
the sample, (II.2.3.3) corresponds to a coalescence of two individuals of the same type of which
one contains all the sampled neutral loci carried by the other and also some which the other
individual does not carry and (II.2.3.4) describes coalescences where the two individuals each
carry neutral loci that the other does not. The term (II.2.3.5) corresponds to an individual
moving to a different background due to mutation. The last two terms describe recombination
events in which the sampled loci in the individual split (backwards in time) and one part of
them moves to the second parent who is either in the same background (see (II.2.3.6)) or the
other background (see (II.2.3.7)) than the offspring. Note that in and (II.2.3.7) we also include
the scenario in which all sampled loci move to the other background, whereas such an event
has no effect on the process if the second parent comes from the same background, so it is not
included in (II.2.3.6).
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II.2.4 Applications

Denote [K] := {1, . . . ,K}. We will be interested in estimating some characteristics of the
process X, namely the distribution functions of T l, l ∈ [K], which we define as the first time
at least l of the neutral loci from the sample coalesce to a common ancestor, the correlation
between the coalescence times of different neutral loci and the expected number of pairwise
differences, i.e. the expected number of different mutations of neutral loci between two sampled
individuals. More precisely, we put nI(t) := nPI (t) + nQI (t), I ∈ I, t ≥ 0 and we define T 1 as

T1 := inf{t ≥ 0; ∃i ∈ [K] s.t.
∑
J∈I
i∈J

nJ(t) = 1}.

In other words, T1 is the first time at which the ancestry of the sample of at least one neutral
locus is concentrated in one individual (who can possibly also carry other ancestors from the
sample). The distribution function of T 1, conditioned on X0 = (p0, n

P (0), nQ(0)), can be
then written as follows.

FX0
1 (t) = PX0 [

⋃
i∈[K]

{∑
J∈I
i∈J

nJ(t) = 1
}

]. (II.2.4.1)

Generally, for l ∈ [K] we put

Tl := inf{t ≥ 0; ∃A ⊆ [K], |A| ≥ l, s.t.
∑
J∈I
i∈J

nJ(t) = 1 ∀i ∈ A}

and the corresponding distribution function is then

FX0
l (t) = PX0 [

⋃
A⊆[K]

|A|=l

⋂
i∈A

{∑
J∈I
i∈J

nJ(t) = 1
}

]. (II.2.4.2)

We will also be interested in the correlation of the times of coalescence of different neutral
loci. Let us denote by T̃i the first time the ancestral sample at the l-th neutral locus coalesces,
i.e.

T̃i := inf{t ≥ 0;
∑
J∈I
i∈J

nJ(t) = 1}. (II.2.4.3)

For each i, j ∈ [K] let F̃i denote the distribution function of T̃i and by F̃i,j the joint distribution
function of T̃i and T̃j . Then we have

F̃X0
i,j (s, t) = PX0

[{∑
J∈I
i∈J

nJ(t) = 1
}⋂{∑

J∈I
j∈J

nJ(t) = 1
}]
. (II.2.4.4)

From this we could calculate the correlation between the two times of coalescence. Assume
now that the neutral loci are also affected by mutation. Since neutral loci do not affect the
reproductive chances of an individual we can assume that these mutations occur at each locus
independently of each other and independently of the process of allele ratios. Denote by D the
number of pairwise identities between two sampled individuals, that is the number neutral loci
which have the same allele in both individuals (so then K−D is the number of pairwise differ-
ences). We see that EX0 [D] =

∑K
i=1 P

X0 [The neutral alleles at locus i are the same]. Letting
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νj be the mutation rate to a novel allele at locus j and rescaling these rates accordingly as in
the Section 3, we get that

EX0 [D] =
K∑
i=1

∫ ∞
0

e−2νkt
∂F̃X0

i (t)

∂t
dt. (II.2.4.5)

The summands can be then calculated exactly as in Section 6 of [BES04]. We can also obtain
the distribution of D as follows. Let Var

([K]
k

)
denote the set of subsets of [K] with k elements.

Then the distribution of D is given by

P[D = k] =
∑

V ∈Var([K]
k )

∫
RK+

(∏
i∈V

e−2νiti
∏
j /∈V

(1−e−2νjtj )
)∂K F̃X0(t1, . . . , tK)

∂t1 · · · ∂tK
dt1 · · · dtK , k ∈ [K]

(II.2.4.6)
where F̃X0 is the distribution function of T̃ := (T̃1, . . . T̃K).

In estimating (II.2.4.6) as well as other characteristics mentioned in this section, we will
limit ourselves to simulation results. The rationale for this is that in order to obtain the
distribution function of the time T1 of the first coalescence, one needs to solve 18 coupled
differential equations even in the simplest interesting case where K = 2, we start with a
sample of two individuals with both neutral loci from the sample.

Remark II.2.4.1 To obtain the number of equations for N ∈ N sampled individuals with
K ∈ N neutral loci, we need to introduce a few concepts. We call multiset a generalization
of a set in which elements may appear more than once. In particular, every set is a multiset.
The multiplicity χA(x) of an element x of a multiset A is the number of times that element
appears in the multiset A. A partition A of a set A is a system of disjoint subsets A′ ∈ A
such that their union forms the set A. By Part(A) we will denote the set of all partitions of
A. Finally we let MN

K be the system of all multisets M such that M is a multiunion of N
partitions of [K], where we define the multiunion A d B of sets A and B as a multiset which
consists of all elements in A and B and such that χAdB(x) = 2 for all x ∈ A ∩B. The system
of multisets MN

K contains all possible ways the NK sampled neutral loci can be distributed
between individuals if we do not distinguish between individuals with the same set of active
loci. To obtain the number of equations we would have to solve, we still need to take into
account the backgrounds of these individuals. Each individual can be either in background P
or Q and there are n + 1 unique combinations of backgrounds among n individuals who are
only differentiated by their background. The number of coupled differential equations that
need to be solved corresponds to all possible ways that the sample of NK neutral loci can be
distributed among individuals of different backgrounds so that each copy of a single neutral
locus is present in at least two individuals (i.e. that neutral locus has not yet entirely coalesced
to a common ancestor). Therefore we obtain, that the number of equations we need to solve
to calculate the distribution of T1 when we sample N individuals with K neutral loci is

CNK ≥
∑
M∈MNK

∏
A∈M

(χM(A) + 1). (II.2.4.7)

Here the right-hand side corresponds to all possible distributions of the sample in which none
of the N copies of theK loci are still distributed between N different individuals. In particular,
if N = 2 then we have an equality in (II.2.4.7). The sets A ∈M each correspond to a neutral
type of of an individual in the sample when the NK neutral loci are distributed in the way
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given byM. The number of elements of MN
K is

(
N+BK−1

N

)
, where BK (also referred to as the

Bell number) is the number of distinct partitions of [K]. We can get a (rather low) lower bound
for CNK by noting that χM(A) + 1 ≥ 2 and so CNK ≥ 2

(
N+BK−1

N

)
. For the Bell number it holds

that BK = 1
e

∑∞
n=0

nK

n! (see for example [Rot64]). We note that already for K = 5, B5 = 52

which means that C2
5 ≥ 2756 and for K = 10, we get B10 = 115975 and C2

10 ≥ 13450316600.

So far we have not made any assumptions about the way we define our recombination prob-
abilities or how the neutral loci are aligned around the selective locus (their geometry). In what
follows, we will commit ourselves to the following choice of recombination probabilities and the
geometry. In the discrete-time processes X(N), we will define the recombination probabilities
and the alignment of the loci as in the Example II.2.1.1, only with ci, i ∈ [K] (the probabilities
of cuts) rescaled to ci 7→ ci/N . Then all recombination events which consist of more than one
simultaneous cut are of order O(1/N2) and so do not appear in the limit. Thus in the process
X we only observe "single" recombinations, that is those which separate the chromosome into
two continuous parts so that the part which contains the selective locus moves to the first
parent and the part which does not moves to the second parent. A recombination event which
separates the chromosome between the (i− 1)-st locus Li−1 and i-th locus Li (where we again
denote by L0 the selective locus as in the Example II.2.1.1) happens at rate ci. We could also
assume a more general geometry where the selective locus is located between two neutral loci.
However, qualitatively, the only result which differs from the results in the one-sided alignment
is in the correlations of the times T̃k, so we will only discuss the two-sided geometry there.

The following discussion is based on simulations of the process X. As stated before, we
limit ourselves to the case where the process starts with two sampled individuals with all K
loci active. The selection s is always assumed to be balancing, more precisely it has the form
s(x) := s0(pb−x). This is motivated by the fact that the balancing selection is a common type
of frequency-dependent selection in nature, the standard example of which is the sickle-cell
allele in humans which which helps protect against malaria but which causes sickle cell anemia
when its copy is present on both chromosomes. In all simulations we choose s0 = 0.16 as the
selection strength and pb = 1

2 as the balancing allele ratio. We also start the process p in
p0 = 1

2 and choose the value 0.3 for the mutation rates µQ and µP . We simulate the process
via a discrete approximation on a finite time interval divided into 10000 steps and using the
rates given in Theorem II.2.3.1. We are above all interested in the way the recombination
rates influence the distribution of Tl, l ∈ [K] and the correlations of T̃i, i ∈ [K]. Unless stated
otherwise we assume that all recombination events happen at the same rate r, i.e. we set
ci := r for all i ∈ [K].

In Figures II.2.1a and II.2.1b we set K = 7 and observe the plotted the expected times
E[Tk], k = 1, . . . , 7 as a function of the recombination rate. The way recombination affects Tk is
very different when we start with both individuals in the same background as in Figure II.2.1b
(which we denote in the captions as a "PP start") and when we start with each individual
in a different background as in Figure II.2.1a (which the captions refer to as a "PQ start").
Heuristically, the reason this happens can be explained using a much simpler model of two
coalescing individuals which approximates some of the dynamics of our process.

Let Y = (Yt)t≥0 be a Markov chain on S := {0, 1, 2}. Here, the state 0 corresponds to the
two individuals being each in a different background and therefore unable to coalesce. State
1 corresponds to them being in the same background from which coalescence is possible and
finally, state 2 is an absorbing state and the presence of the process in it indicates that the
two individuals have coalesced. Y moves from 0 to 1 and from 1 to 0 at a constant rate m > 0
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Figure II.2.1: Expected times Tl of coalescence of the first l = 1, . . . , 7 (out of 7 in total)
neutral loci plotted as a function of the recombination rate.

and it moves from the state 1 to the absorbing state 2 at rate c > 0. The rate m of the process
Y corresponds to the rate at which the sampled loci change their background which in the
original process X can be caused either by mutation or by recombination. We also assume
that either Y0 = 0 almost surely or Y0 = 1 almost surely. The distribution of the time T
of absorption of the process Y in 2 (Distributions of similar absorption times are sometimes
referred to as phase-type distributions) can be easily obtained by calculating the transition
probability matrix of the Markov chain Y . Depending on whether the process Y starts in 0 or
1 we get the following distribution functions of T .

F T0 (t) :=
w−(2 exp(e+t)− exp(e−t))− w+ exp(e−t))

w− − w+
(II.2.4.8)

if Y0 = 0 almost surely and

F T1 (t) :=
w+(−2 exp(e+t) + exp(e−t)) + w− exp(e−t))

w− − w+
(II.2.4.9)

if Y0 = 1 almost surely, where w± := −−c±
√

4µ2+c2

2µ , and e± :=
−2µ−c±

√
4µ2+c2

2 .
Figure II.2.2 shows the mean time of absorption E[T ] as a function of m. We can see that

as the rate m increases, the expected absorption times converge to the same value when Y0 = 0

and when Y0 = 1. However, the effects of the faster transitions between states 0 and 1 on the
absorption time is exactly opposite. This gives us a heuristic explanation for the difference
between Figures II.2.1b and II.2.1a. Increasing the recombination rate if we start with two
individuals in different backgrounds causes them to come to the same background faster and
therefore speeds up the coalescence. On the other hand, if they already start in the same
background, increasing the recombination rate increases the average time spent in different
backgrounds and so the coalescence is slower. If the migration rate is high enough, then the
individuals spend on average the same amount of time in each background regardless of the
starting configuration.
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Figure II.2.2: The expected absorption time T of process Y

Recombination in the process X (at least as long as K > 1) not only causes the sampled
individuals to switch backgrounds but can also split the neutral sample and move a part of it
to the first parent and another part to the second parent. If in a recombination event a part
of the active loci of an individual move to the first parent, we will call that a split. We will
call a migration the event when some or all active loci of an individual move to a different
background. This can either be caused by mutation or by a recombination with a second
parent which is in a different background than the offspring individual. Recombination can
either have the same effect on the neutral loci as a mutation if there is no split or it can cause
a migration of only a subset of the active neutral loci of the individual (the one which moves
to the second parent).

The rates at which migration and splits occur both increase with the increasing recombina-
tion rate. However, these two events affect the coalescence times Tk differently and the exact
effect also depends on k and K. We can see from the generator A in the Theorem II.2.3.1
that the coalescence rate is not influenced by the configuration of the neutral loci, i.e. two
individuals will coalesce at the same rate regardless of which neutral loci are active in each
of them. Because of that, it is clear that TK will increase and T1 will decrease as the rate at
which splits occur increases, since the more splits happen, the faster some of the neutral loci
will coalesce but the longer it will take for all of them to do so. For k between 1 and K the
situation is less clear. Intuitively, the increase in the rate of splits should cause Tk to decrease
for k close to 1 and increase for k close to K, while the effect on Tk should grow weaker as
min{|K − k|, |1− k|} increases. It is possible to obtain (at least conditioned on the process p
of allele ratios) the upper and lower bounds bounds of the times T1 and TK by assuming the
process X starts and stays with all K neutral loci either carried by 2K individuals (one pair of
individuals for each locus) or that it starts as usually with two individuals with all their loci
active and stays that way until coalescence. In that case we can easily use the framework given
in [BES04] in Section 6. The reason we do not do it here is that the bounds obtained this way
will be very crude, since in both cases we ignore the splitting effect of recombination (which
is essentially the only things which makes the model different for K > 1). We cannot obtain
bounds on Tk for k other than K or 1 in the same way, since there is no single distribution
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of active neutral loci between individuals which would at all times lead to the slowest or the
fastest coalescence rates.

We would like to separate the migration and splitting effects of recombination to see how
changing the rate of one of those affect the process when the rate of the other does not change.
Since both are affected by the migration rate, we cannot separate the effects directly. We can
however at least observe a rather artificially constructed process where the migration caused by
recombination does not happen (even though we still observe migrations between backgrounds
due to mutation).

We modify the process X in such a way, that the rate of all recombinations which cause a
migration is set to zero. The generator of such a process, which we will call X̂ will look as the
generator A of the Theorem II.2.3.1 without the line (II.2.3.7). Since splits and migration can
happen simultaneously, this means that we also reduce the rate of splits. However, the effect
of the increasing recombination rate in the process X̂ is strictly that of an increased rate of
splits so by observing how the expected values of Tk change as we change the recombination
rate, we can approximately see how the increased rate of splits affects the process X.

The results from simulating the process X̂ are shown in Figures II.2.3a and II.2.3b. We
observe that unlike in the case where the recombination also causes migration, in the process
X̂ increasing the recombination rate affects the process in the same way regardless of whether
we start the process with two individuals in the same background or in different backgrounds.
Overall the effect on the times TK of increasing the recombination rate is a mixture of an
effect corresponding to that which we saw in the simpler model Y and Figure II.2.2 and that
observed in the process X̂ and Figures II.2.3a and II.2.3b. As we already noted, the splitting
effect of recombination leads to a larger TK and so we observe in Figure II.2.1a that the mean
of T7 first increases with the increasing recombination rate and then decreases because of the
increasing rate of migration. In the case when we start in the same background, both the splits
and the migration make TK larger, so we do not observe such a change in the Figure II.2.1b.
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Figure II.2.3: Expected times Tl of coalescence of the first l = 1, . . . , 7 (out of 7 in total)
neutral loci in the process X̂ plotted as a function of the recombination rate
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Another effect of recombination is that the correlation between the coalescence times T̃k
and T̃k+l increases as a function of k, i.e. with the distance from the selective locus. This is
an effect of the particular choice of recombination rates of the one-sided alignment given in
Example II.2.1.1. The further away a locus is from the selective locus, the more likely it is
to shift backgrounds due to recombination since there are more possible recombination events
that cause its migration to the other background. Hence if we start with both individuals in
the same background, the further the neutral loci are from the selective locus, the slower they
will coalesce and the opposite is true for an initial configuration in which each individual is in
a different background. Again, looking at the distribution of the absorption time of the simple
model Y , we can explain the observed increase of correlation by noting that the distribution
of T becomes flatter as the rate m increases.
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Figure II.2.4: The effect of the distance from the selective locus with r = 0.5 (PP start)

In Figure II.2.4 we can see the empirical correlation between two neutral loci in a simulation
with K = 2 and a recombination rates r and r0 where r is the rate of recombinations which
split the chromosome between the first and the second neutral locus and r0 := cr, c ∈ N is the
rate of recombinations which split it between the selective locus and the first neutral locus,
causing both neutral loci to move to the second parent. Here c ∈ N should be thought of as the
distance from the selective locus and the plot shows the correlation of T̃1 and T̃2 as a function
of c. Note that the correlations in Figure II.2.4 appear as close to but not quite monotone,
this is most likely an artefact of the simulation. Comparing the Figure II.2.4 to the Figure
II.2.5a of correlations between neighbouring loci and also to the Figure II.2.5b of the same
correlations in the process X̂, we see that the increase of the correlation of T̃i and T̃i+j as a
function of i is caused entirely by the distance from the selective locus.

In Figure II.2.6 we see the correlations between 6 neutral loci in the model where the
selective locus is located between L3 and L4 and it holds for all i = 1, . . . , 5 that Li is located
left of Li+1. The recombination is defined as before - only those recombination which split
the chromosome in two parts are allowed and they happen between any two neighbouring
loci (including the selective locus) at a constant rate r = 0.1. The part which includes the
selective locus again moves to the first parent and the part which does not moves to the second
parent. Again, we observe that the correlations of coalescence times of the individual neutral
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(a) Process X
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(b) Process X̃

Figure II.2.5: Correlations of the T̃i and T̃j , i, j = 1, . . . , 7 with r = 0.5 (PP start)
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Figure II.2.6: Correlations of T̃i and T̃j , i, j = 1, . . . , 6 in the model where the selective locus
is located between L3 and L4 with r = 0.5 (PP start)
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loci increase with their distance from the selective locus. Between pairs of loci in which both
are on the same side of the selective locus, we see the same pattern as in the model with one-
sided alignment. The correlation of those T̃i and T̃j , where Li and Lj are each on a different
side of the selective locus are much weaker. This is partly because (assuming that i < j) in
addition to the neutral loci Li+1, . . . , Lj−1, there is the selective locus between Li and Lj and
therefore they are further away from each other on the chromosome. It is also because, unlike
for a pair of loci on one side of the selective locus, there are no recombinations which could
simultaneously move both loci to the second parent.

Finally, we take a look at the distribution of the number D of pairwise identities between
individuals which we defined above the formula (II.2.4.5). Comparing the Figures II.2.7a
and II.2.7b and II.2.7c, the effect of increasing the recombination rate appears to be almost
entirely driven by the increased migration and increasing it results in a decrease or increase in
the individual coalescence times, depending on whether the process starts with two individuals
in the same background or in different ones.
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Figure II.2.7: The empirical distribution of D
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II.2.5 Proof of Theorem II.2.3.1

II.2.5.1 Existence of the limiting process

We follow (and at one point clarify) the proof of existence from [BES04] where it is done for
the case when K = 1. Since some of the rates in the generator A from Theorem II.2.3.1 tend
to infinity as the gene frequency p tends either to 0 or 1, it is not immediately clear that
there exists a process with generator A since such a process could possibly jump an infinite
number of times in a finite time interval. To prove that this does not happen, we will first
define "good" regions in the state space E where this cannot occur. Recall that we defined
n0 = n

P (0) + n
Q(0). We define the "good regions" as

U (k) :=

[
0,

1

k

]
× {0} ×

∏
I∈I
{0, 1, . . . , n0}

∪
[
1− 1

k
, 1

]
×
∏
I∈I
{0, 1 . . . , n0} × {0}

∪
[

1

k
, 1− 1

k

]
×
∏
I∈I
{0, 1 . . . , n0} ×

∏
I∈I
{0, 1 . . . , n0} ,

where 0 :=
∏
I∈I {0}. First, we will show that a process with generator A exists at least until

its first exit time from U (k) for each k ∈ N. Let

A
(k)
S f(p,np,nQ) := 1U(k)((p,nP ,nQ))ASf(p,nP ,nQ)

and
A

(k)
N f(p,np,nQ) := 1U(k)((p,nP ,nQ))ANf(p,nP ,nQ),

where AS is the part of operator A described by (II.2.3.1) and AN is the sum of AP and AQ.

Lemma II.2.5.1 Let C2(E) be the space of bounded functions f : E 7→ R which are twice
continuously differentiable with respect to to p. Then the closure of

{(f,A(k)f) : f ∈ C2(E)} = {(f,A(k)
S f +A

(k)
N f) : f ∈ C2(E)} (II.2.5.1)

generates a Feller semigroup on C(E).

Proof Since the selection coefficient s is Lipschitz continuous, we get from Lemma A.3.1 that
the closure of {f,ASf) : f ∈ C2([0, 1])} generates a Feller semigroup on C([0, 1]). Since for
a fixed p, the process generated by A(k)

N is continuous-time Markov chain with bounded rates
and on a finite state space, it follows that A(k)

N generates a Feller semigroup on continuous
functions (which in this case means simply all functions) on N :=

∏
I∈I{0, 1, . . . , n0}.

Denote n̄ :=
∑

I∈I(n
P
I (0) + nQI (0))|I| and r := maxI,Î∈I rI,Î . Both A(k)

N and A(k)
S can be

seen as acting on the whole E and since

||A(k)
N f || ≤ (kn̄2(2K + 22K) + n̄(k2K + r(2K + 22K)))||f ||,

we can apply Lemma A.3.2 to see that the closure of their sum generates a strongly contin-
uous contraction semigroup. From the Trotter formula A.3.3 we see, that the positivity and
conservative property also hold for the semigroup generated by the sum.

For any k ∈ N let X(k) be the process whose generator is the closure of (II.2.5.1).We can
see the process X(k) as a solution to a stopped martingale problem. Put

τk := inf{t ≥ 0 : (pt,n
P (t),nQ(t)) /∈ Uk}. (II.2.5.2)
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Then

f((pt,n
P (t),nQ(t)))−

∫ t∧τk

0
A(k)f((ps,n

P (s),nQ(s)))ds

= f((pt,n
P (t),nQ(t)))−

∫ t∧τk

0
Af((ps,n

P (s),nQ(s)))ds

is a martingale. Since A(k) generates a Feller semigroup, Theorem 4.1. in Chapter 5 of [EK86]
ensures, that the stopped martingale problem is well-posed. Our task is now to show the
existence of a process corresponding to the generator A on the whole E. We will use the
following result.

Theorem II.2.5.2 Let (E, r) be a complete and separable metric space and let A ⊂ Cb(E)×
B(E), where Cb(E) are bounded continuous functions on E and B(E) are bounded Borel mea-
surable functions on E. Let U1 ⊂ U2 ⊂ · · · be open subsets of E. Fix ν ∈ P(E) and suppose that
for each K there exists a unique solution Xk of the stopped martingale problem for (A, ν, Uk)

(where ν denotes the initial distribution of the solution) with sample paths in DE [0,∞). Setting

τk := inf{t : Xk(t) /∈ Uk orXk(t−) /∈ Uk}, (II.2.5.3)

suppose that for each t > 0,

lim
k→∞

P[τk ≤ t] = 0. (II.2.5.4)

Then there exists a unique solution of the DE [0,∞) martingale problem for (A, ν).

Proof [EK86], Chapter 4, Theorem 6.3.

To use the Theorem II.2.5.2 we need to show that (II.2.5.4) holds for Uk = U (k). First,
we will need some preliminary results. For a ∈ [0, 1] let γp0(a) be the first hitting time of a
by the process p = (pt)t≥0 with the initial state p0 ∈ [0, 1]. See A.3.4 for the definition of an
(in)accessible boundary of a one-dimensional diffusion on a bounded interval.

Lemma II.2.5.3 (i) Point 0 is an accessible boundary for the process of allele frequencies p
if and only if µ2 < 1/2. Point 1 is an accessible boundary for p if and only if µ1 < 1/2.

(ii) Let µ2 < 1/2 resp. µ1 < 1/2. Then for any fixed p0 ∈ (0, 1) and any K > 0 we have

lim
k→∞

Pp0

[ ∫ γ(1/k)

0

1

p(s)
ds > K

]
= 1, (II.2.5.5)

respectively

lim
k→∞

Pp0

[ ∫ γ(1−1/k)

0

1

1− p(s)
ds > K

]
= 1. (II.2.5.6)

Proof For the proof of (i) see [BES04], Lemma 4.4. As noted by Jesse Taylor, the second part
of the proof of Lemma 4.4. in [BES04] which corresponds to the proof of (ii) is wrong. For
the correct version of the proof see [Tay07], Lemma 2.1.

Lemma II.2.5.4 Let τk be as in (II.2.5.2). Then it holds for all t > 0 that

lim
k→∞

P[τk ≤ t] = 0.
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Proof The proof is almost the same as in the case when K = 1. However, since some details
were omitted in the proof of the corresponding Proposition 4.3. in [BES04], we provide the
proof here in full.

Choose t > 0 arbitrarily and assume that 0 is an inaccessible boundary for p. Then
P[γ(0) ≤ t] = 0 for all k ∈ N, where γ(0) is the first hitting time of p at 0. Let n ∈ NI0 and
0 6= i ∈ NI0 . Then it holds for X(k) that the probability that the process hits {1/k}×{i}×{n}
before time t tends to zero as k tends to infinity. A symmetrical argument applies for the case
when 1 is an inaccessible boundary.

Now, consider the case when 0 is an accessible boundary. For i ∈ NI0 define |i| =
∑

I∈I iI ·
|2I |, where |2I | denotes the number of nonempty subsets of I and let r := max{rI,Î ; I, Î ∈ I}.
Then for a fixed n

P (0) and n
Q(0) and n0 = n

P (0) + n
Q(0) it holds that n0rp

2 is the upper
bound for the rate of arrivals of the sampled individuals to background P due to recombination
and n0µP p

2(1−p) is an upper bound for the rate of arrivals due to mutation. Choose t > 0 and δ > 0

arbitrarily. For p ∈ (0, 1) define

λu(p) := n0

(
pµP

2(1− p)
+
rp

2

)
(II.2.5.7)

and

λl(p) :=
1− p
p

µQ

2
. (II.2.5.8)

Then λu is an upper bound for the rate at which sampled individuals arrive at P and λl is
a lower bound for the rate at which they jump away, provided that nP 6= 0. Now we would
like to estimate Pp0 [nP (γ(1/k)) = 0], that is we want to estimate the probability that for an
arbitrary p0 ∈ [0, 1], when pt hits 1/k for the first time the number of sampled individuals in
background P is zero.

For 0 ≤ a < x < b ≤ 1 we have that

Px[γ(a) < γ(b)] =
n(b)− n(x)

n(b)− n(a)
,

where n(x) is the scale function of (A.3.2) (see for example [Kal06], Theorem 23.7, page 456).
In our case the scale function is

n(x) =

∫ x

c
exp

(
−
∫ y

c

−µP z + µP (1− z) + s(z)z(1− z)
1
2z(1− z)

)
dz,

which can be approximated for small x by
∫ x

0 y
−2µQdy and for all N there exists an ε̃(N) such

that for all ε < ε̃(N) ∣∣∣∣∣n(Nε)− n(ε)

n(Nε)− n(0)
−
∫ Nε
ε y−2µQdy∫ Nε
0 y−2µQdy

∣∣∣∣∣ < δ/16.

If we choose N large enough so that∫ Nε
ε y−2µQdy∫ Nε
0 y−2µQdy

=
N1−2µQ − 1

N1−2µQ
> 1− δ/16

then
Pε[γ(0) < γ(Nε)] > 1− δ/8 (II.2.5.9)
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for all ε < ε̃(N). We use (II.2.5.9) to restrict our attention to the event that between the time
p first hits ε and then 1/k we always have p < Nε. Let SNε be an exponentially distributed
random variable with rate λu(Nε). Next, choose ε small enough so that

P[SNε > t] > 1− δ/8. (II.2.5.10)

Equation (II.2.5.10) ensures that there are no individuals in the sample which come to the
background P between the first hitting of 0 and of Nε since λu(p) is increasing in p, so the
actual arrival rate to the background P is always below λu(Nε). Let Y be a Poisson random
variable with mean K. Choose K large enough so that

P[Y > n0] > 1− δ/8. (II.2.5.11)

Suppose that p0 ≥ ε and using Lemma II.2.5.3 choose k0 = k0(δ) large enough that for k > k0,

Pp0

[∫ γ(1/k)
γ(ε) λl(ps)ds > K

]
> 1− δ/8. (II.2.5.12)

From (II.2.5.12) we have that the emigration rate in that time interval is at least K (at least as
long as there are any individuals still in P ) and (II.2.5.11) ensures that all individuals actually
jump out of P before the process hits 1/k. Putting together (II.2.5.9)-(II.2.5.12), we get that
with probability at least 1− δ/2 when the process p hits 1/k, nP = 0.

Starting from p0 = 1/k and n
P (0) = 0, we now let the process run until the first time T

that nP 6= 0. Let p1/k
t be the process of allele frequencies started at p1/k

0 = 1/k. We would
like to find a lower bound for T = T (1/k), at least for k high enough, which is independent of
ε, δ and X0. To do that, we first see from the Comparison Theorem A.3.5 that

P[p
1/2
t ≥ p1/k

t , t ≥ 0] = 1, k > 1.

Next, we construct a Cox process M̃(t) with rate

λ̃(t) =
p

1/2
t

q
1/2
t

µP
n0

2
+ r

n0p
1/2
t

2
, (II.2.5.13)

where q1/k
t := 1−p1/k

t for k ∈ N. This process, conditioned on the process of allele frequencies,
is a time inhomogeneous Poisson process. It is clear that for k > 1 it holds for the rates

λ1/k(t) =
1

2

p
1/k
t

q
1/k
t

µP
∑
I∈I

nQI (t) +
1

2
p

1/k
t

∑
I∈I

∑
Î∈I

rI,În
Q
I (t), k ∈ N (II.2.5.14)

of the arrivals of sampled individuals to P in process X that λ1/k(t) ≤ λ̃(t). Let N1(t) and
N2(t) two independent Poisson processes with rate 1. Then

M1/k(t) := N1

(∫ t

0
λ1/k(s)ds

)
is a Cox process with rate λ1/k(t) which is also the process of arrivals of sampled individuals
to the background P . If we put

M̃(t) := M1/k(t) +N2

(∫ t

0
(λ̃(s)− λ1/k(s))ds

)
,
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then it clearly holds for all k > 1 that

P[M̃(t) ≥M1/k(t), t ≥ 0] = 1

and the distribution of T̃ := inf{t ≥ 0, M̃(t) 6= 0} is a lower bound of T = T (1/k) for all k > 1,

independent of δ and ε, that is T̃
as
≤ T for any k ∈ N.

Next, we need to make sure that at time T the probability that the process p is greater
than ε is at least 1− δ/2 so that we can use the machinery above. It is possible to find an ε0
which satisfies this for p0 = 0. If it were not, then we would have P0[pT = 0] > 0. However,
letting λ0(t) be defined as in (II.2.5.14) but with p0 = 0 we see that

P0[pT = 0] = E0[P0[pT = 0|(pt)t≥0]] = E0

[∫ ∞
0

λ0(t)e−
∫ t
0 λ0(s)ds1[pt=0]dt

]
= 0,

since λ0(t) = 0 when pt = 0. Therefore we can find an ε0 > 0 small enough, so that

P0[pT ≥ ε0] ≥ 1− δ/12. (II.2.5.15)

Denote by V the first time the configuration of active loci in background Q changes, i.e.
V := inf{t > 0; nQ(t) 6= n

Q(0)}. Since if p0 = 0 then γ(1/k)→ 0 as k →∞ almost surely and
P(V = 0) = 0, we see that we can find a k1 ∈ N large enough so that

P0(V > γ(1/k)) ≥ 1− δ/12, k ≥ k1. (II.2.5.16)

From (II.2.5.15) we also obtain that P0[pT > 1/k] ≥ 1− δ/12 for all k > 1/ε0 and so it holds
for all k ≥ max(1/ε0, k1) and all ε > 0 that

P0[pT > ε] ≤ P0[pT > ε, T > γ(1/k), V > γ(1/k)] + δ/4

≤ δ/4 + P0[pT > ε|T > γ(1/k), V > γ(1/k)]P0[T > γ(1/k), V > γ(1/k)]

≤ δ/4 + P0[pT > ε|T > γ(1/k), V > γ(1/k)],

(II.2.5.17)
where the first inequality comes from the fact that if p0 = 0 then {T ≤ γ(1/k)} ⊆ {pT ≤ 1/k}.
We can write T = inf{t > 0;

∫ t
0

∫ λ(s)
0 N(dr, ds) > 0}, where λ = λp0 and N is a Poisson point

process on R2
+ with intensity 1 and independent of X. Denoting by (θt)t≥0 the shift operator,

we have on the event {T > γ(1/k)} that

T = γ(1/k) + inf{t > γ(1/k);
∫ t
γ(1/k)

∫ λ(γ(1/k)+s)
0 N(dr, ds) > 0} = γ(1/k) + T ◦ θγ(1/k).

Hence putting X0 := (0, 0,nQ(0)) we get

PX0 [pT > ε|T > γ(1/k), V > γ(1/k)] = PX0 [pγ(1/k)+T◦θγ(1/k)
> ε|Xγ(1/k) = (1/k, 0,nQ(0))]

= P(1/k,0,nQ(0))[pT > ε].

(II.2.5.18)
Combining (II.2.5.15),(II.2.5.17) and (II.2.5.18) we get for ε1 := min(ε0, 1/k1) that

1− δ/4 ≤ P0[pT > ε1] ≤ δ/4 + P1/k[pT > ε1]

and so we have shown that we have for all k > 1/ε0 that P1/k[pT > ε1] > 1− δ/2.
Putting all of the above together we see that the process p hits p = 1/k with n

P 6= 0 only
after a geometric number of hits of p at 1/k with n

P = 0. The success probability of this
geometric random variable is at most δ. Each failure adds a waiting time bounded below by
an independent copy of T̃ . Since δ was arbitrary, the proof is complete. The case when 1 is an
accessible boundary is treated symmetrically.
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II.2.5.2 Convergence

We still need to prove that the processes X(N) indeed do converge to X. We will start with
proving a pointwise convergence of their generators.

Lemma II.2.5.5 For p ∈ (0, 1), A(N)f(p,nP ,nQ)
N→∞−→ Af(p,nP ,nQ), where A(N) is the

generator of process X(N).

Proof The terms of the generator A(N) have the same form as (II.2.2.11), except that they
are multiplied by a further factor of N due to the time-rescaling and all mutation and recom-
bination rates as well as the selection coefficient are rescaled as at the beginning of Section
II.2.3.

We see that the events of the type described in (II.2.2.8) and (II.2.2.7) do not appear in
the limit. Indeed, (II.2.2.7) is of order O(1/N2) and the corresponding event only happens
if there is a mutation. With the rescaled mutation this shows that the corresponding term
in the generator A(N) is of order O(1/N3) and since birth-death events happen at rate N2

these type of events only happen at rate O(1/N) and so they vanish in the limit. Similarly,
(II.2.2.8) is of order O(1/N) and the corresponding event only occurs at rate O(1/N3) since
it only happens in a birth-death event of the form (P,Q) or (P, P ) whose probabilities are of
order O(1/N2) (see (II.2.2.1)). All other neutral loci events which include recombination are
also of rate O(1/N) and disappear in the limit with the exception for the event in which two
individuals of the same background coalesce with only the offspring in the sample with the
corresponding probability (II.2.2.5).

In the generator A(N) the difference between c (which was defined below the formula
(II.2.2.11)) and 1 will be of order O(1/N) and so the term c disappears in the limit. If we then
sum the terms of the generator A(N) which contain (II.2.2.2), sum the result over all possible
I ∈ I then in the limit we obtain (II.2.3.2). The terms (II.2.3.3) and (II.2.3.4) again arise in a
similar fashion from those terms in A(N) which contain (II.2.2.3) (or (II.2.2.4)). We only need
to differentiate between the case when the neutral type of one individual is a subset of the
neutral type of the other and when their neutral types have a non-empty symmetric difference
just as we did in the finite population case, since each event affects the process differently.
Similarly, we get (II.2.3.5) from the terms containing (II.2.2.6). The last two terms (II.2.3.6)
and (II.2.3.7) come from the terms in A(N) containing (II.2.2.5). Here, the process is affected
differently in the case when Î = I and when Î 6= I and the outcome in the latter case depends
on whether the inidividual that died in the selective event was from the background P or Q.
Finally, the terms (II.2.2.9) and (II.2.2.10) lead to (II.2.3.1) by Taylor expansion just as in the
proof of Lemma 3.1. in [BES04].

We want to show the convergence of the process X(N) generated by A(N) to the process
X generated by A. First, we will show for all k ∈ N the convergence of the stopped processes
X(N,k) corresponding to the generators A(N,k) := 1U(k)A(N) to the process Xk generated by
Ak. To that end, we will use the following theorem.

Theorem II.2.5.6 Let (E, d) be a complete separable metric space and A a Feller generator
on E corresponding to the Markov process X. For each N ≥ 1 let further X(N) be progressively
measurable E-valued process with full generators Â(N) and such that X(N)(0) converges weakly
to X(0) as N → ∞. Suppose that D(A) separates points and that the compact containment
condition holds for {X(N)}N≥1, that is, for every ε > 0 and every T > 0 there exists a compact
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set Γε,T ⊆ E for which

inf
N

P(X(N)(t) ∈ Γε,T for 0 ≤ t ≤ T ) ≥ 1− ε.

Suppose that for each (f, g) ∈ A and T > 0 there exist (f (N), g(N)) ∈ Â(N) and G(N) ⊆ E such
that

lim
N→∞

P(X(N)(t) ∈ G(N), 0 ≤ t ≤ T ) = 1, (II.2.5.19)

supN ||f(N)||∞ <∞ and

lim
N→∞

sup
x∈G(N)

|f(x)− f (N)(x)| = lim
N→∞

sup
x∈G(N)

|g(x)− g(N)(x)| = 0. (II.2.5.20)

Then X(N) converges weakly to X as N →∞.

Proof This is a special case of Corollary 8.3, Chapter 4 in [EK86].

We now fix k ∈ N. The compact containment condition of Theorem II.2.5.6 holds, since
E itself is compact. In condition (II.2.5.19) we can simply choose G(N) = E for all N ∈ N

and f (N) in (II.2.5.20) can be chosen as f (N) := f|E(N) . This proves the convergence of X(N,k)

to Xk for any k ∈ N and combining Theorem II.2.5.4 with the following lemma gives us the
convergence of X(N) to X.

Lemma II.2.5.7 Let {P(N)}N≥1 be a sequence of probability measures on the space DE [0,∞)

and suppose that T (k) is a nondecreasing sequence of stopping times (with respect to the natural
filtration) increasing to infinity almost surely. For each k ≥ 1, let {P(N,k)}N≥1 be a relatively
compact sequence of probability measures such that P(N,k) is equal to P(N) on FT (k). If the
probability measure P has the property that for any k ≥ 1 any limit point of {P(N,k)}N≥1

agrees with P on FT (k), then P(N) converges to P as N →∞.

Proof See [SV79], Lemma 11.1.1
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Appendix A

A.1 A few definitions from graph theory

Let G = (V,E) be a graph with a countable vertex set V and the set of edges E with each
edge e ∈ E of the form {v, w} for some v, w ∈ V .

We say that G connected if there exists a path between each two vertices of G, that is if
for all v, w ∈ V there exists a finite sequence (vi)i∈{1,...,N} of N ∈ N vertices such that v = v0,
w = vN and {vi, vi+1} ∈ E for all i ∈ {1, . . . , N}.

An automorphism of G is defined as a permutation π of V such that for all v, w ∈ V it
holds that {v, w} ∈ E if and only if {π(v), π(w)} ∈ E. We say that G is vertex transitive if
for any two vertices v, w ∈ V there exists an automorphism π of G such that π(v) = w.

We say that G is locally finite if every vertex v ∈ V has a finite degree, i.e. if degG(v) :=

|{w ∈W : {v, w} ∈ E| <∞ for all v ∈ V .

A.2 Pathwise duality for monotone interacting particle systems

Let S = (S,≤) be a partially ordered set. For any subset A ⊆ S we put

A↑ := {x ∈ S : y ≤ x for some y ∈ A}.

Clearly A ⊆ A↑. We say that A is increasing if also A↑ ⊆ A. We define A↓ and decreasing
sets analogously with the order reversed. We define the dual of a partially ordered set S as
a partially ordered set S′ together with a bijection S 3 x → x′ ∈ S′ where for all x, y ∈ S it
holds that

x ≤ y if and only if y′ ≤′ x′. (A.2.1)

For any set A ⊆ S we write A′ := {x′ : x ∈ A} and we denote by Amax := {x ∈ A : @y ∈
A, y 6= x such that x ≤ y} the set of maximal elements of A and analogously we denote by
Amin the set of its minimal elements.

We now assume that S is a finite partially ordered set bounded from above by an element
denoted by 1 and that Λ is a countable set. We equip the set SΛ with a product order

x ≤ y if and only if x(i) ≤ y(i) for all i ∈ Λ. (A.2.2)

Then also SΛ is bounded from above with the upper bound 1 given by 1(i) := 1 for all i ∈ Λ.
If S′ is the dual of S then (S′)Λ is the dual of SΛ where for any x ∈ SΛ and i ∈ Λ we put
x′(i) := (x(i))′. Since S and SΛ are bounded from above, the sets S′ and (S′)Λ are bounded
from below by 0 := 1′ and 0 := 1′ respectively. Now, for any x ∈ (S′)Λ and B ∈ P((S′)Λ) we
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put
supp(x) :={i ∈ Λ : x(i) 6= 0},

supp(B) :={i ∈ Λ : x(i) 6= 0 for some x ∈ B} =
⋃
x∈B

supp(x) (A.2.3)

and we let (S′)Λ
loc := {x ∈ (S′)Λ : |supp(x)| < ∞} be the set of finitely supported x ∈ (S′)Λ.

By P∗ := Pfin((S′)Λ
loc) we denote the set of finite subsets of (S′)Λ

loc. Finally, we define a duality
function φ : SΛ × P∗ → {0, 1} by

φ(x,B) := 1{x≤y′ for some y∈B}, x ∈ SΛ, B ⊆ P∗. (A.2.4)

Let (S,≤) and (T,≤′) be partially ordered sets. We say that a map m : S → T is monotone
if it is a (≤,≤′)-homomorphism, that is if

m(x) ≤′ m(y) whenever x ≤ y, x, y ∈ S. (A.2.5)

A particle system is called monotonically representable if it can be represented using monotone
maps only, that is if all m ∈ G in (I.1.2.2) are monotone maps. A monotonically representable
particle system is monotone and while the opposite is necessarily true in general, all processes
we are studying in Part I of this thesis are constructed using a random mapping representation
consisting of only monotone maps.

For monotone interacting particle systems we obtain the following theorem which appears
in [SS16] as Proposition 30 in a slightly different formulation.

Theorem A.2.1 (Pathwise duality for monotone systems, [SS16]) Let S be a finite
partially ordered set which is bounded from above, Λ a countable set and let X be a SΛ-valued
monotone interacting particle system with a generator of the form (I.1.2.2) where all elements
of G are monotone local maps which satisfy (I.1.2.3). Then the P∗-valued process Y ∗ and the
P† := {B ∈ P∗ : B = Bmin}-valued Markov process Y † are pathwise dual to X with respect to
the duality function φ as defined in (A.2.4), where the generators H† of Y † and H∗ of Y ∗ are

H†f(B) :=
∑
m∈G

rm
(
f(m†(B))− f(B)

)
,

H∗f(B) :=
∑
m∈G

rm
(
f(m∗(B))− f(B)

)
,

(A.2.6)

respectively, and for each m ∈ G the maps m† : P(S′) → P(S′) and m∗ : P(S′) → P(S′) are
dual to m (with respect to φ) and defined as

m†(B)′ := (m−1(B′↓))max and m∗(B)′ :=
⋃
x∈B

(m−1({x′}↓))max. (A.2.7)

The proof of Theorem (A.2.1) is based on the fact that the subspace of decreasing subsets
is invariant with respect to an inverse image of a monotone map and so we can encode a
decreasing set A ⊂ S in terms of a set B ⊂ S′ such that A = {y′ : y ∈ B}↓. As Sturm
and Swart noted, a monotone map m : S → S stays monotone if we reverse the order on
S. Therefore, the inverse map m−1 also maps increasing subsets into increasing subsets and
using completely analogous arguments as in the proof of Theorem (A.2.1), we can obtain the
following alternative duality.
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Theorem A.2.2 (Alternative monotone duality, [SS16]) Let S, X and Λ be as in the
previous theorem. Then the P∗-valued process Y • and the P♦ := {B ∈ P∗ : B = Bmax}-valued
Markov process Y ♦ are pathwise dual to X with respect to the duality function

φ̃(x,B) := 1{x≥y′ for some y∈B}, x ∈ SΛ, B ⊆ P∗, (A.2.8)

where the generators H♦ of Y ♦ and H• of Y • are

H♦f(B) :=
∑
m∈G

rm
(
f(m♦(B))− f(B)

)
,

H•f(B) :=
∑
m∈G

rm
(
f(m•(B))− f(B)

) (A.2.9)

respectively, and for each m ∈ G the maps m♦ : P(S′) → P(S′) and m•P(S′) → P(S′) are
dual to m (with respect to φ̃) and defined as

m♦(B)′ := (m−1(B′↑))min and m•(B)′ :=
⋃
x∈B

(m−1({x′}↑))min. (A.2.10)

For more details of the construction of the duals and the proof of the Theorem (A.2.1) see
[SS16].

A.3 Appendix to Section II.2.5

Lemma A.3.1 Let a : [0, 1] 7→ R+, a(x) = x(1 − x) and let b : [0, 1] 7→ R be Lipschitz
continuous for which b(0) ≥ 0 and b(1) ≤ 0. Then the closure of {(f,Gf) : f ∈ C2([0, 1])},
where

G :=
1

2
a(x)

d2

dx2
+ b(x)

d

dx
,

generates a Feller semigroup on C([0, 1]).

Proof See [EK86], page 375.

Lemma A.3.2 (Perturbation) Let A be a generator of a strongly continous contraction
semigroup on C(E) and B a dissipative linear operator on C(E), where D(A) = D(B). If B
is a bounded operator, then the closure of A + B generates a strongly continuous contraction
semigroup on C(E).

Proof See [EK86], page 37.

Lemma A.3.3 (Trotter formula) Let T, S and U be strongly continuous contraction semi-
groups on C(E) with generators A,B and C, respectively, so that D(A) = D(B) = D(C) and
A = B + C. Then for all f ∈ C(E) it holds that

lim
n→∞

[
S

(
t

n

)
U

(
t

n

)]n
f = T (t)f

for all t ≥ 0.

Proof See [EK86], page 33.
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Definition A.3.4 (Scale and speed, accessible boundary) Let b1 < b2 ∈ R and let X be
a one-dimensional diffusion process on [b1, b2] with generator

L =
1

2
a(x)

d2

dx2
+ b(x)

d

dx
. (A.3.1)

Then we define the scale n(x) and speed m(x) of the process for x ∈ [b1, b2] by

n(x) =

∫ x

c
exp

(
−
∫ y

c

2b(z)

a(z)
dz

)
dy, (A.3.2)

and
m(x) =

∫ x

c

2

a(y)
exp

( ∫ y

c

2b(z)

a(z)
dz
)
dy, (A.3.3)

where c ∈ (b1, b2) is fixed arbitrarily.
We say that bi, i = 1, 2 is an accessible boundary if it holds for u(x) =

∫ x
c m(y)dn(y) that

u(bi) <∞. Otherwise, we say that bi is inaccessible.

Theorem A.3.5 (Yamada, Comparison Theorem) Consider the equations

dX1
t = b1(Xt)dt+ σ(Xt)dWt, (A.3.4)

dX2
t = b2(Xt)dt+ σ(Xt)dWt, (A.3.5)

where b1 and b2 are continuous and σ is Lipschitz continuous on [0, 1] with a Lipschitz constant
L. Further, assume that

b1(x) ≤ b2(x), x ∈ [0, 1]. (A.3.6)

Let X1
t and X2

t be solutions of (A.3.4) and (A.3.5) respectively, such that

X1
0 ≤ X2

0 almost surely

Then
P(X1

t ≤ X2
t for all t ≥ 0) = 1.

Proof We will first prove the theorem for

b1(x) < b2(x), x ∈ [0, 1]. (A.3.7)

Define time ξ0 := inf{t ≥ 0;X2
t ≤ X1

t } until which X1
t ≤ X2

t almost surely and put τ0 :=

inf{t ≥ ξ0; b(X2
t )− b(X1

t ) ≤ 0}. The drifts b1 and b2 are continuous, X1
t and X2

t have almost
surely continuous paths and b(X1

ξ0
) < b(X2

ξ0
) almost surely, so clearly P(ξ0 = 0) = 0. Define

t′ := t ∧ τ0. We see that

E[X2
t′ −X1

t′ ] = E

[∫ t′

0
(b(X2

s )− b(X1
s ))ds

]
+ E[X2

0 −X1
0 ]

+ E

[∫ t′

0
(σ(X2

s )− σ(X1
s ))dWs

]
,

(A.3.8)

where the last integral on the right is zero.
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We would like to estimate E[|X2
t′ − X1

t′ |]. We will make a use of the Itô formula and
we construct a twice continuously differentiable approximation of the absolute value for that
purpose. To do that, first define {an}n∈N such that 1 = a0 > a1 > . . . > an

n→∞−→ 0 and∫ an−1

an

1

L2x2
dx = n, n ∈ N

which is possible since
∫ 1

0+ 1/x2 := limε→0+

∫ 1
ε 1/x2 = ∞. Then for each n ∈ N let fn ∈

C2([−1, 1]) be as follows. For each n ∈ N put fn(0) = 0 and construct the first and second
derivatives f ′n and f ′′n in such a way that

f ′n(x)


= 0, 0 ≤ x < an
∈ [0, 1], an ≤ x ≤ an−1

= 1, x > an−1,

and

f ′′n(x)


= 0, 0 ≤ x < an
∈
[
0, 2

n
1

L2x2

]
, an ≤ x ≤ an−1

= 0, x > an−1.

(A.3.9)

Next, make fn symmetric by putting fn(−x) := fn(x), x ∈ [0, 1]. For functions fn we now
have that

fn(x) ↑ |x|, n→∞. (A.3.10)

From the Itô formula we obtain

fn(X2
t′ −X1

t′) = fn(X2
0 −X1

0 ) +

∫ t′

0
f ′n(X2

s −X1
s )(b2(X2

s )− b1(X1
s ))ds

+

∫ t′

0
f ′n(X2

s −X1
s )(σ(X2

s )− σ(X1
s ))dWs

+
1

2

∫ t′

0
f ′′n(X2

s −X1
s )(σ(X2

s )− σ(X1
s ))2ds,

= fn(X2
0 −X1

0 ) + I1 + I2 + I3.

(A.3.11)

Obviously, E[I2] = 0. Since b1(X1
s ) ≤ b2(X2

s ) almost surely for s ∈ [0, t′] and |f ′(x)| ≤ 1 for all
x,

E[I1] ≤ E

[∫ t′

0
(b2(X2

s )− b1(X1
s ))ds

]
.

Using (A.3.9) we get that

E[I3] ≤ 1

2
E

[∫ t′

0
f ′′n(|X2

s −X1
s |)

1

L2(X2
s −X1

s )2

]
≤ t

2
· max
an≤x≤an−1

f ′′n(x)
1

L2x2
≤ t

2

2

n

n→∞−→ 0.

From (A.3.8), (A.3.10), (A.3.11) and (A.3.7) we see that

E[|X2
t′ −X1

t′ |] ≤ E[|X2
0 −X1

0 |] + E

[∫ t′

0
(b2(X2

s )− b1(X1
s ))ds

]
= E[X2

t′ −X1
t′ ] (A.3.12)

and so
E[|X2

t′ −X1
t′ |] = E[X2

t′ −X1
t′ ].
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This implies that X1
t′ ≤ X2

t′ almost surely and therefore X1
t ≤ X2

t for all t ∈ [0, τ0) almost
surely. Now, for k ∈ N put ξk := inf{t ≥ τk−1;X1

t ≤ X2
t } and τk := inf{t ≥ ξk; b2(X2

t ) ≤
b1(X1

t )} and proceed similarly as above. Since limk→∞ τk =∞ almost surely, we are done for
the case when (A.3.7) holds. To see that this is true, assume that there exists an almost surely
finite limit τ∞. Put ξ∞ := inf{t ≥ τ∞;X2

t ≤ X1
t }. We see from (A.3.6) that τ∞ cannot be

finite.
Generally for the case (A.3.6), put for n ∈ N bn1 := b1 − 1

n and bn2 := b2 + 1
n . Let X

1,n and
X2,n be the solutions of (A.3.4) and (A.3.5), respectively, with b1 replaced by bn1 and b2 by bn2 .
We have already shown that the theorem holds for X1,n and X2,n for all n ∈ N and since the
drifts are continuous, we have that X1,n → X1 and X2,n → X2 as n→∞ almost surely.

111



Bibliography

[AB05] D. Aldous and A. Bandyopadhyay. A survey of max-type recursive distributional equa-
tions. Annals of Applied Probability (2005), 1047-1110.

[BBE13] M. Birkner, J. Blath, B. Eldon. An ancestral recombination graph for diploid popula-
tions with skewed offspring distribution. Genetics 193.1 (2013): 255-290.

[BE04] N. Barton and A. Etheridge. The effect of selection on genealogies. Genetics 166.2
(2004): 1115-1131.

[BES04] N. Barton, A. Etheridge, A. Sturm. Coalescence in a random background. The Annals
of Applied Probability 2004, Vol. 14, No.2, pp. 758-785

[Bil86] P. Billingsley. Probability and Measure. Wiley, New York, 1986

[BG90] C. Bezuidenhout and G. Grimmett. The critical contact process dies out. The Annals
of Probability (1990): 1462-1482.

[BG94] C. Bezuidenhout and L. Gray. Critical attractive spin systems. The Annals of Proba-
bility (1994): 1160-1194.

[BS14] R. Brink-Spalink. Stochastic Models in Population Genetics: The Impact of Selection
and Recombination. (2015).

[CR84] J. Cox and U. Roesler. A duality relation for entrance and exit laws for Markov pro-
cesses. Stochastic processes and their applications 16.2 (1984): 141-156.

[DN08] R. Darling and J. Norris. Differential equation approximations for Markov chains.
Probability surveys 5 (2008): 37-79.

[Dob71] R. Dobrushin. Markov processes with many locally interacting components–the re-
versible case and some generalizations. Problemy Peredachi Informatsii 7.3 (1971): 57-66.

[DS05] R. Durrett and J. Schweinsberg. A coalescent model for the effect of advantageous
mutation on the genealogy of a population. Stochastic processes and their applications
115.10 (2005): 1628-1657.

[Dur88] R. Durrett. Lecture notes on particle systems and percolation. Brooks/Cole Pub Co,
1988.

[EK86] S. Ethier and T. Kurtz. Markov Processes: Characterization and Convergence. Wiley,
New York, 1986.

112



[EPW06] A. Etheridge, P. Pfaffelhuber, A. Wakolbinger. An approximate sampling formula
under genetic hitchhiking. The Annals of Applied Probability 16.2 (2006): 685-729.

[Fea02] P. Fearnhead. The Common Ancestor at a Nonneutral Locus. Journal of Applied Prob-
ability, Vol. 39, No. 1 (Mar., 2013 Appendix of part II2), pp. 38-54

[For84] O. Forster. Analysis 2: Differentialrechnung im Rn-Gewönliche Differentialgleichun-
gen. Vieweg Studium, 1984.

[GS01] G. Grimmett and D. Stirzaker. Probability and random processes. Oxford university
press, 2001.

[HP08] J. Hermisson and P. Pfaffelhuber. The pattern of genetic hitchhiking under recurrent
mutation. Electronic Journal of Probability 13.68 (2008): 2069-2106.

[HS99] P. Hsieh and Y. Sibuya. Basic theory of ordinary differential equations. Springer-Verlag,
1999

[IS03] H. Innan and W. Stephan. Distinguishing the hitchhiking and background selection mod-
els. Genetics 165.4 (2003): 2307-2312.

[JK14] S. Jansen and N. Kurt. On the notion (s) of duality for Markov processes. Probab.
Surveys 11 (2014).

[Kal06] O. Kallenberg. Foundations of modern probability. Springer Science & Business Media.
(2006)

[KHB13] S. Kluth, T. Hustedt, E. Baake. The Common Ancestor Process Revisited. Bulletin
of mathematical biology (2013), 75(11), 2003-2027.

[Lig85] T.M. Liggett. Interacting Particle Systems. Springer-Verlag, New York, 1985.

[Lig99] T.M. Liggett. Stochastic interacting systems: Contact, Voter and Exclusion processes.
Springer Science and Business Media, 1999.

[MS98] M. Möhle and S. Sagitov. A characterization of ancestral limit processes arising in hap-
loid population genetics models. Preprint. Johannes Gutenberg-Universität Mainz (1998).

[PHW06] P. Pfaffelhuber, B. Haubold, A. Wakolbinger. Approximate genealogies under genetic
hitchhiking. Genetics 174.4 (2006): 1995-2008.

[PP13] C. Pokalyuk and P. Pfaffelhuber. The ancestral selection graph under strong directional
selection. Theoretical population biology 87 (2013): 25-33.

[PS07] P. Pfaffelhuber, and A. Studeny. Approximating genealogies for partially linked neutral
loci under a selective sweep. Journal of mathematical biology 55.3 (2007): 299-330.

[Rot64] G. Rota (1964). The number of partitions of a set. The American Mathematical
Monthly, 71(5), 498-504.

[Shi96] A.N. Shiryaev. Probability. Springer-Verlag, New York (1996).

[Spi69] F. Spitzer. Random processes defined through the interaction of an infinite particle
system. Probability and Information Theory 89 (1969): 201-223.

113



[SS08] A. Sturm and J. Swart. Voter models with heterozygosity selection. The Annals of Ap-
plied Probability (2008): 59-99.

[SS15] A. Sturm and J. Swart. A particle system with cooperative branching and coalescence.
The Annals of Applied Probability 25.3 (2015): 1616-1649.

[SS16] A. Sturm and J. Swart. Pathwise duals of monotone and additive Markov processes.
Journal of Theoretical Probability (2016): 1-52.

[SV79] D. Stroock and S. Varadhan. Multidimensional Diffusion Processes. Springer-Verlag,
New York (1979).

[Swa17] J. Swart. A Course in Interacting Particle Systems. Lecture notes (2017),
ArXiv:1703.10007.

[Tay07] J. Taylor. (2007). The common ancestor process for a Wright-Fisher diffusion. Elec-
tronic Journal of Probability 12 (2007): 808-847.

114



Curriculum Vitae
Tibor Mach

1989 Born in Pilsen

2008-2011
Bachelor degree, Mathematics
Charles University, Faculty of Mathematics and Physics, Prague
Subject Field: General Mathematics

2011-2013
Master’s degree, Mathematics
Charles University, Faculty of Mathematics and Physics, Prague
Subject Field: Probability, Mathematical Statistics and Econometry
Concentration: Probability theory

2013-2017
Ph.D., Mathematics (advisor Prof. Dr. Anja Sturm)
Georg-August University Göttingen, Faculty of Mathematics and Computer Science,
Institute for Mathematical Stochastics, Göttingen


	Summary
	I Particle systems
	Overview and previous results
	History and motivation
	Basic construction and models
	Voter model
	Contact process
	Cooperative branching process

	Phase transition
	Duality

	Complete graph and the Mean-field Model
	Introduction and main results
	The process on the complete graph
	The mean-field limit
	Survival versus extinction
	A measure-valued dual
	Convergence of the measure-valued function
	Coupled processes on the complete graph
	Interpretation of the moments

	Recursive tree processes
	A recursive tree process in discrete time
	A recursive tree process in continuous time
	A recursive tree process of random probability distributions

	Distribution determining functions
	The two-sex model
	Summary and outlooks
	Proofs
	Proofs of propositions I.2.1.1 and I.2.1.17
	Proof of propositions I.2.1.2 and I.2.1.18
	Proof of Proposition I.2.1.3
	Proofs of Proposition I.2.1.4 and Theorem I.2.1.19
	Proofs of Propostions I.2.1.6 and I.2.1.8, Lemma I.2.1.7 and Theorem I.2.1.9
	Proof of Proposition I.2.1.10
	Proof of Theorem I.2.1.13
	Proof of Proposition I.2.1.20
	Proof of Lemma I.2.3.1
	Proof of Lemma I.2.3.2
	Proof of Lemma I.2.3.3


	Cooperative branching on other lattices
	Cooperative branching on regular trees
	The model on the integer lattice
	Survival and nontriviality of the upper invariant law
	Random walk dynamics and deaths

	Proofs
	Proof of Lemma I.3.1.1
	Proof of Proposition I.3.2.1
	Proof of Proposition I.3.2.2
	Proof of Proposition I.3.2.3
	Proofs of Propositions I.3.2.4 and I.3.2.5



	II Genealogy of neutral loci in a random environment
	 Overview and previous results
	 Multiple neutral loci
	Model
	Finite population size process
	Convergence to the diffusion limit
	Applications
	Proof of Theorem II.2.3.1
	Existence of the limiting process
	Convergence


	Appendix 
	A few definitions from graph theory
	Pathwise duality for monotone interacting particle systems
	Appendix to Section II.2.5

	Bibliography


