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V  Summary 

Land-use change, particularly the conversion of natural forest to agriculture to sustain the 

growing global population, has severe environmental impacts, including emission of 

greenhouse gases, diminished biodiversity, and altered soil functions. Agriculture 

intensification further reduces the fertility of soil, negatively impacting the sustainability of 

agriculture production and increasing the loss of soil organic carbon, which contributes to 

climate change. This thesis aims to assess the impacts of land-use systems on soil fertility 

and carbon sequestration. 

 

Due to its agricultural based economy, land is the most valuable resource in Nepal. The 

study site ‘‘Chitwan district’’ lies in the Terai region, a plain in southern Nepal. Known as 

the grain house of Nepal, the Terai region covers 17% of the country’s total land area. 

Forests are dominated by Shorea robusta Roth and possess high economic value and 

biological diversity. People are extremely dependent on forests for timber and non-timber 

forest products. After eradication of malaria in the 1950s, the government introduced a 

resettlement and migration scheme from the Middle Mountain region to different parts of 

the Terai region, resulting in, massive deforestation to support cultivation and new 

settlements which continues to this day. Hence, the forest cover has been continuously 

declining. Agricultural intensification through conventional farming practices is also being 

implemented to feed the growing population.  

 

Soil samples were collected from three major land-use systems: forest, organic and 

conventional farming in Chitwan district, Nepal. The content of soil organic carbon (C), total 

nitrogen (N), microbial biomass (C and N) and six enzyme activities (β-glucosidase, 

cellobiohydrolase, chitinase, leucine aminopeptidase, tyrosine aminopeptidase, and 

sulfatase) were significantly higher under organic farming than conventional farming and 

forest, especially in topsoil layer. However, acid phosphatase activity was significantly 

higher (up to 6 fold) under conventional farming than forest and organic farming. The pools 

varying in P availability were estimated by P sequential fractionation approach (Hedley, 

1982). The concentration of microbial biomass P, easily-available P, moderately available 

P, non-available P, and total P were much higher under organic farming than conventional 

farming and forest. However, the ratio of C to organic P was greater (>100) under 

conventional farming and forest than under organic farming, indicating the limitation of P in 

the former two land use systems. Indeed, higher acid phosphatase activity under 

conventional farming and forest is responsible for hydrolyzing organic P to be made 



Summary                                                                                                                                                   

X 

 

available for plant growth. Various organic based management practices, i.e., application of 

farmyard manure and vermicompost, incorporation of crop residues, and cropping system 

under organic farming, contributed to increases in soil organic matter (SOM) and microbial 

properties, which play significant roles in maintaining soil fertility status. 

 

The decomposition of native SOM is regulated by availability of nutrients under different 

land use systems. Microbial-necromass, formed by fast growing r-strategist 

microorganisms under starvation conditions, contributed to increased decomposition of 

SOM (i.e. positive priming effect (PE)) following addition of 14C labelled glucose without 

nutrients to soil under organic farming. Conversely, K (slow growing) and L- (stress 

tolerant) microbial strategists in soil under conventional farming and forest, respectively, 

were responsible for the relatively low decomposition process. Addition of either a single 

nutrient (N or P) or multiple nutrients (N and P) with C showed opposing effects on 

decomposition processes in soil under different land use systems. Microorganisms utilized 

the added N and C under conventional farming and forest, which suppressed the 

decomposition process and caused a negative PE in these soils. Conversely, the 

microorganisms activated after P and C addition mined SOM to meet their demand for N, 

resulting in a positive PE in all land use systems. The decomposition of SOM was 

suppressed in soil under conventional farming and forest, however, microbial biomass was 

stable after addition of multiple nutrients. This could be due to reduction in active microbial 

biomass, which contributes to respiration in soil, instead of total microbial biomass. 

Additionally, bacterial community structure may be modified by protozoan infiltration 

following N addition, decelerating the decomposition process in these two land use 

systems. Microbial biomass increased by 18% in soil under organic farming after addition 

of multiple nutrients. Thus, the decomposition process increased to fulfil the metabolic 

requirements of an increased microbial population, resulting in a strong positive PE. The 

dominance of fast growing r-strategists in organic farming showed that microorganisms will 

utilize available C and nutrients for their growth, thus, higher incorporation of C into their 

biomass. Furthermore, microbial immobilization of N or P will be higher, which can be 

released and taken up by plants during turnover of microbial biomass or microbial death. 

Hence, organic farming has a great potential to promote soil fertility and C sequestration. 

 

In conclusion, the land-use change to organic farming positively affected soil and microbial 

properties, resulting in improved soil fertility and enhanced carbon sequestration. Farming, 

which aims at enhancing soil carbon pools and microbial activity, can address the 

challenge of sustaining food security while protecting the environment. 
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Zusammenfassung 

Landnutzungswandel, insbesondere die Umwandlung von Primärwaldflächen in Ackerland, 

um die steigende Weltbevölkerung zu ernähren, haben folgenreiche Folgen für die Umwelt, 

wie beispielsweise die Emission von Treibhausgasen, Biodiversitätsverlust und veränderte 

Bodenfunktionen. Die Intensivierung der Landwirtschaft mindert weiterhin die 

Bodenfruchtbarkeit, was sich negativ auf die Nachhaltigkeit der landwirtschaftlichen 

Produktion auswirkt, und weiter auch den Verlust von Bodenkohlenstoff verantreibt, was 

wiederum zum Klimawandel beiträgt. Diese Dissertation untersucht den Einfluss von 

Landnutzungsystemen auf Bodenfruchtbarkeit, dem Priming-Effekt, sowie 

Kohlenstoffsequestrierung. 

 

Aufgrund der stark agrarisch geprägten Wirtschaft, ist landwirtschaftliche Fläche die 

wertvollste Ressource in Nepal. Die Untersuchungsfläche im Chitwan-Bezirk liegt in der 

Region Terai, einer Ebene in Süd-Nepal. Bekannt als die Kornkammer Nepals nimmt die 

Region Terai 17% der Landesfläche ein. Die Shorea robusta (Roth)-Wälder besitzen eine 

hohe Biodiversität, sowie einen hohen wirtschaftlichen Wert. Die Menschen sind extrem auf 

den Wald als Quelle für Holz und Nichtholzprodukte angewiesen. Nach der Ausrottung der 

Malaria in den 1950er Jahren führte die Regierung ein (Rück-)siedlungsprogramm für 

Menschen aus dem Mittelland in die verschiedenen Gebiete der Region Terai ein, was eine 

massive Entwaldung zwecks Anlage neuer Siedlungen und landwirtschaftlicher Felder 

bewirkte, die bis heute andauert. Folglich sank die Waldfläche stetig ab. Gleichzeitig wurde 

die Intensivierung der Landwirtschaft mittels konventioneller Anbaumethoden 

vorangetrieben, um die wachsende Bevölkerung zu ernähren. 

 

Bodenproben wurden in den drei wichigsten Landnutzungsystemen des Chitwan-Bezirks 

genommen: Wald, organische Landwirtschaft, sowie konventionelle Landwirtschaft. Die 

Gehalte an organischen Bodenkohlenstoff (C), Gesamtstickstoff (N), mikrobieller 

Biomasse-Kohlenstoff, sowie-N und sechs Enzymaktivitäten (β-Glukosidase, 

Cellobiohydrolase, Chitinase, Leucin-Aminopeptidase, Tyrosin-Aminopeptidase, Sulfatase) 

waren signifikant erhöht in den Flächen, die ökologisch bewirtschaftet wurden, im Vergleich 

zum Wald oder den Flächen der konventionellen Landwirtschaft, insbesondere ausgeprägt 

in den Oberböden. Die Aktivität der sauren Phosphatase war signifikant (bis zu sechsfach) 

erhöht unter konventioneller Bewirtschaftung im Vergleich zur organischen oder zum Wald. 

Die Beiträge der unterschiedlichen Phosphorfraktionen (P) wurden mittels sequentieller 

Extraktion nach Hedley (1982) abgeschätzt. Die Konzentrationen des mikrobiellen 

Biomasse-P, pflanzenverfügbaren P, sowie mittel- oder nicht-verfügbaren P und Gesamt-P 
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waren viel höher bei organischer Landwirtschaft im Vergleich zu konventioneller bzw. 

Wald. Allerdings war das Verhältnis von C zu organischem P viel höher (>100) unter 

konventioneller Bewirtschaftung und im Wald im Vergleich zu organischen 

Bewirtschaftung, was auf eine P-Limitation in den beiden erst genannten 

Landnutzungsystemen hindeutet. Auch die Aktivität der sauren Phosphatase, welche 

rekalzitrante organische P-Verbindungen hydrolysiert und pflanzenverfügbar macht, war im 

Wald und konventioneller Bewirtschaftung erhöht. Das Aufbringen von Gülle und 

Vermikompost, das Einarbeiten von Ernterückständen und Fruchtfolgen trugen im 

organischen Bewirtschaftungsystem dazu bei, dass der Bodenkohlenstoff und die 

mikrobielle Biomasse erhöht war, welche wichtige Rollen für den Erhalt der 

Bodenfruchtbarkeit spielen. 

 

Der Abbau der organischen Bodensubstanz (oBS) wird von der Nährstoffverfügbarkeit in 

den verschiedenen Landnutzungsystemen beeinflusst. Mikrobielle Nekromasse, welche 

von schnell wachsenden Mikroorganismen (R-Strategen) bei Substratmangel aufgebaut 

wurde, trug zum erhöhten Abbau der oBS bei. Das heißt, sie bewirkte einen positiven 

Priming-Effekt (PE) nach Zugabe von C-14-markierter Glukose, aber ohne Zugabe weiterer 

Nährelemente, zu Bodenproben aus der organischen Bewirtschaftung. Im Gegensatz dazu, 

waren K- (langsam wachsende) und L-Strategen (stresstolerante Arten) für die relativ 

niedrigen Abbauraten im Wald bzw. konventionelle Bewirtschaftung verantwortlich. Die 

Zugabe von entweder einem (N oder P) oder mehreren (N und P) Nährstoffen bewirkte 

gegensätzliche Effekte bezüglich der Abbauprozesse in unterschiedlichen 

Landnutzungsystemen. Mikroorganismen nutzen präferentiell den zugegebenen N und C 

im konventionellen System bzw. im Wald, was den Abbau der oBS hemmte und damit 

einen negativen PE bedeutete. Hingegen aktivierte die C- und P-Gabe den Abbau der oBS, 

um den mikrobiellen N-Bedarf zu decken, das heißt ein positiver PE in allen 

Landnutzungsystemen. Der Abbau der oBS war in Wald und konventioneller 

Bewirtschaftungsweise gehemmt, allerdings veränderte sich die Menge der mikrobiellen 

Biomasse nicht bei Gabe mehrerer Nährstoffe. Dies könnte mit einer Reduktion der aktiven 

mikrobiellen Biomasse zusammenhängen, die die Umsatzprozesse im Boden durchführt, 

im Gegensatz zur gesamten mikrobiellen Biomasse. Weiterhin könnte sich die 

Zusammensetzung der bakteriellen Gemeinschaft nach der N-Zugabe aufgrund von 

Protozoen geändert haben, was die mikrobiellen Umsätze in diesen beiden 

Landnutzungsystemen abgebremst haben könnte. Bei mehrfacher Zugabe im organischen 

System wuchs die mikrobielle Biomasse um 18%. Damit erhöhte sich auch der Abbau der 

oBS zur Deckung des Nährstoffbedarfs der wachsenden mikrobiellen Population, was 
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insgesamt einen stark positiven PE bewirkte. Die Dominanz schnellwachsender r-

Strategen in der organischen Bewirtschaftungsweise zeigte, dass Mikroorganismen 

verfügbaren C und Nährstoffe für ihr Wachstum nutzen und vermehrt C in ihre Biomasse 

einbauen. Weiterhin immobilisieren sie N und P. Diese gespeicherten Nährstoffe können 

nach mikrobieller Umsetzung von Pflanzen aufgenommen werden. Eine organische 

Bewirtschaftungsweise hat also ein großes Potenzial für die Steigerung der 

Bodenfruchtbarkeit und C-Sequestrierung. 

  

Zusammenfassend kann sich ein Landnutzungswandel hin zu einer ökologischen 

Landwirtschaft positiv auf Boden- und mikrobielle Parameter auswirken, was widerrum 

verbesserte Bodenfruchtbarkeit und erhöhte C-Sequestrierung bedeutet. Eine 

Bewirtschaftungsweise, die auf Verbesserung der Bodenkohlenstoffmengen und 

mikrobielle Aktivität abzielt, könnte die Herausforderung der Ernährungssicherung lösen 

und dabei zum Umweltschutz beitragen. 
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1 Extended Summary 
 

1.1 General Introduction 

1.1.1 Land-use change  

Land-use change is one of the main drivers of global environmental disturbance, greatly 

contributing to climate change, loss of ecosystem services and species extinctions (Turner 

et al., 2007; Tilman et al., 2001). 800 years ago, 50% of the Earth’s surface area was 

covered by forests, compared with 30% today (Lambin et al., 2003). Over the last three 

centuries, total forests and woodlands has diminished by an estimated 1.2 billion ha 

globally, while area under pasture and grassland vegetation has decreased by 560 million 

ha. However, agricultural land has increased by 1.2 billion ha (Ramankutty and Foley, 

1998). During the period from 1980-2000, more than 50% of the new agricultural land 

across the tropics came mainly at the expense of intact forests and another 28% from 

disturbed forests (Lambin and Meyfroidt, 2011). 

1.1.2 Agricultural intensification and its consequences 

Land-use change, especially from forest to intensive agriculture, is driven by the increasing 

food demands of the growing world population (Tilman et al., 2001; Geisssen et al., 2009; 

Guillaume et al., 2015). During the “Green Revolution” beginning in the 1960s, food 

production was doubled by improving crop varieties; chemical fertilizers, pesticide, 

irrigation, and mechanization (Naylor, 1996; Maston et al., 1997), leading to intensive land 

use and the conversion of natural ecosystems into agroecosystems (Stevenson et al., 

2013). However, the multiple environmental impacts contingent upon this increased yield 

through intensive agriculture cannot be ignored (Tilman, 1999). Agricultural intensification 

has negative local consequences (i.e. erosion, lower soil fertility, and reduced biodiversity) 

(Dorzo and Raven, 2003), regional consequences (i.e. pollution of ground water and 

eutrophication of rivers and lakes) (Vistousek et al., 1997) and global consequences (i.e. 

impacts on atmospheric constituents, greenhouse gas emission and climate change) 

(Maston et al., 1997; Burnery et al., 2010). 

Intensive agriculture alters the physical, chemical, and biological properties of soil, affecting 

soil fertility and ultimately reducing the future capacity of the land for sustainable crop 

production (Geissen et al 2009; Maston et al., 1997; Mganga et al., 2015). Moreover, loss 

of soil organic carbon (SOC) is a well-known consequence of land-use change, especially 

from natural ecosystems to agricultural land (van Noordwijk et al., 1997; Houghton, 2012). 

Therefore, there is a growing global interest in the assessment of land use and 



Extended summary                                                                                                                                                 

2 

 

management effects on soil fertility, carbon dynamics, and sequestration, especially in 

tropical ecosystems. 

1.1.3 Soil fertility    

Soil organic matter is the main source of nutrients for plant growth. It represents the major 

C reservoir in biosphere-atmosphere system (Mganga, 2015) and forms the molecular 

frameworks on which SOM nutrients are bound (Guillaume, 2015). Consequently, SOC is 

regarded as an “umbrella” property of soil fertility because decreases in SOC result in 

reductions in other soil fertility properties (Guillaume, 2015). 

In terrestrial ecosystems, N and P are considered as the major limiting nutrients for plant 

growth, and are thus regarded as the main constraining factors in agricultural production. 

However, plants and microorganisms have developed strategies that allow them to persist 

under nutrient limitations (Maston et al., 1997). Extracellular enzymes, which are mainly 

secreted by microorganisms, play vital roles in nutrient cycling and SOM decomposition 

(Klose and Tabatabai, 2002). For example, β-glucosidase and cellobiohydrolase activity 

are enzymes responsible for cellulose degradation (German et al. 2011), xylanase is 

responsible for breaking down hemicelluloses (German et al. 2011), acid 

phosphomonoesterase hydrolyzes (mono) ester bonds of organic P to phosphate under 

acidic conditions (Eivazi and Tabatabai 1977; Malcolm, 1983), and sulfatase hydrolyzes 

sulfate esters. Activities of leucine and tyrosine aminopeptidase are involved in the 

hydrolysis of leucine and tyrosine residues from the amino-termini of protein or peptide 

substrates (Rawlings et al. 2006). Chitinase activity accomplishes the decomposition of 

chitin to lower molecular weight chitooligomers (Hamid et al. 2013). Extracellular enzymes 

involved in the C-cycle (xylanase, cellobiohydrolase, ß-glucosidase), N-cycle (chitinase, 

leucine and tyrosine aminopeptidase), P-cycle (acid phosphatase), and S-cycle (sulfatase) 

are important because they catalyze the rate-limited steps of decomposition and nutrient 

cycling (Koch et al., 2007; Blagodatskaya and Kuzyakov, 2008). Hence, enzyme activity 

has been suggested as indicator of soil productivity or microbial activity (Weaver et al., 

1994; Dick et al., 1996) and can be used as an accurate ‘soil fertility index’ (Skujins, 1976; 

Mganga et al., 2015). 

Land use and management practices i.e. fertilizer application, cropping system, tillage, and 

incorporation of crop residues have significant effects on soil and microbial properties, i.e., 

microbial biomass and enzyme activities (Maharjan et al., 2017). Hence, microbial and 

biochemical characteristics of soil have been proposed as indicators of soil quality in both 

natural and agricultural systems (Karlen et al., 1997; Mganga et al., 2015). Thus, this study 
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will try to develop a better understating how management practices under different land use 

systems affects soil microbial properties. 

1.1.4 Soil organic carbon, priming effect and global carbon cycle 

Land-use change is one of the most important factors affecting soil organic carbon (SOC) 

stock and dynamics (Van Noordwijk et al., 1997; Guillaume et al., 2015). Among the 

various soil properties affected by land-use change, the reduction of SOC draws the 

greatest attention, as it regulates the global terrestrial carbon cycle (Guillaume, 2015). With 

2300 Gt C (carbon) in the uppermost 3 m, SOC is considered as the largest terrestrial C 

pool that exchanges with the biological (560 Gt) and atmospheric (760 Gt) C pools 

(Jobbágy & Jackson, 2000; Lal, 2004). About 30 % of world’s SOC is stored in tropical soils 

(Jobbágy & Jackson, 2000). Hence, small changes to the tropical SOC pools can 

considerably alter the concentration of atmospheric CO2 (Guillaume, 2015). 

Priming effect (PE) is the phenomenon that describes changes in the decomposition rate of 

SOM due to changes in microbial activity as a response to altered availability of organic C 

and nutrients (Kuzyakov, 2010). In terrestrial ecosystems, labile C and nutrients are 

present in different amounts and ratios. Thus, it is essential to understand how PE 

responds to variations in the proportions of labile substrate additions to better understand 

the decomposition process (Qiao et al., 2016). Additionally, it is critical to understand the 

factors and mechanisms controlling PE, which has a significant effect on soil C storage and 

turnover. Abiotic factors, i.e., temperature and soil moisture, are the major indirect drivers 

of C turnover in soil. Additionally, biotic factors, i.e., soil fauna, enzymes, microbial 

community, microbial growth strategists, and rhizospheres, directly affect the 

decomposition of native SOM (Blagodatskaya and Kuzyakov, 2008; Blagodatskaya et al., 

2007). Prior studies showed that specific groups of microorganisms (e.g. fungi) produce 

enzymes using labile C to decompose SOM (De Deyn et al., 2008). Furthermore, K-

strategists (slow growing) are believed to be responsible for PE in nutrient-poor soils 

(Fontaine et al. 2003). However, both K-and r-strategists (fast growing) can induce PE by 

contrasting mechanisms depending on the availability of nutrients (Chen et al., 2014). 

Thus, PE is regulated by microbial growth strategies, which are influenced by the nutrient 

status of soils under different land use systems. 

Land use change from forest to intensive agriculture accelerates the depletion of SOM. 

Additionally, crop residues are removed via burning and/or livestock feeding (Mganga, 

2016). Consequently, soil becomes nutrient deficient, producing a major constraint for 

agriculture production. Hence, farmers apply organic and inorganic fertilizers to overcome 

soil nutrient losses and to increase plant productivity (MA, 2005). Soil biochemical and 
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biological properties are significantly affected by fertilization (Liang et al., 2014). Recent 

studies showed divergent results i.e. positive or negative or no PE after N fertilization 

(Cleveland and Townsend, 2006; Waldrop and Zak, 2006; Liu and Greaver, 2010). Thus, it 

is a challenging task to predict the ecosystem response to N fertilization in contrasting land 

use systems (Poeplau et al., 2016). However, evidence from previous studies 

demonstrates that P addition significantly increased soil CO2 respiration leading to C 

losses, mostly in forest soils (Cleveland et al., 2002; Cleveland and Townsend, 2006; Fisk 

et al., 2015). Not surprisingly, the potential effects of multiple nutrients addition on SOM 

decomposition have rarely been addressed under different land use systems (Fornara et 

al., 2013). Thus, the analysis of C sequestration remains incomplete without elucidating the 

effect of multiple nutrients addition on SOM decomposition. 

Thus, this study will try to develop a better understating of how SOM decomposition 

responds to the inputs of labile C and different nutrients and how it affects soil fertility and 

carbon sequestration.  

1.2 Objectives  

The main objectives of the present work were as follows: 

1. Impact assessment of land-use change on C and nutrient cycling (study 1) 

- quantify soil properties (organic C and Total N), and microbial properties i.e. 
(microbial biomass C and N and enzyme activities involved in C, N, P and S cycle) 
following forest conversion to organic and conventional farming. 

- identify the mechanisms controlling soil and microbial properties as indicators of soil 
fertility  
 

2. Assessment of  the impact of land-use change on P availability (study 2) 

- quantify different fractions of P in forest, organic and conventional farming.     

- identify the factors/mechanisms controlling P availability   

3. Analyze the effect of fertilization on soil organic matter decomposition in forest, 
organic and conventional farming (study 3 and study 4) 

- assess the effects of addition of low molecular weight C input, i.e. 14C labeled 
glucose with single nutrient (N or P) vs multiple nutrients (N+P) on decomposition of 
SOM in forest, organic and conventional farming (study 3) 

- identify mechanisms controlling decomposition process with addition of single vs 
multiple nutrients in forest, organic and conventional farming (study 3) 

- estimate the kinetics of microbial growth parameters in forest, organic and 
conventional farming (study 3 and 4) 
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1.3 Materials and Methods 

1.3.1 Description of the study site and soil sampling 

The study site in ‘‘Chitwan district’’ lies in the Terai region, a plain in southern Nepal. The 

Terai region covers 17% of the country’s total land area. It is also known as the grain house 

of Nepal. Forest covers 411,580 ha (20.41%) of the region’s total land area (2,016,998 ha) 

(FRA/DFRS, 2014), dominated by Shorea robusta and possessing high economic value 

and biological diversity. After eradication of malaria in the 1950s, a resettlement and 

migration scheme from the Middle Mountain region to different parts of the Terai region 

was induced. As the population increased, massive deforestation occurred to make way for 

cultivation and new settlements. Today, the population growth rate of the region is 1.75%, 

the highest in Nepal, and is consequently increasing the pressure on forest areas 

(FRA/DFRS, 2014). Agricultural intensification through conventional farming practices is 

also being implemented to feed the growing population. 

 

Soil samples were collected from three selected land-use systems: forest, organic farming 

and conventional farming. Both farming sites were located in Fulbari Village Development 

Committee (VDC) and the forest site was located in Patihani VDC. The climate is 

subtropical with annual rainfall of 1763 mm. The mean temperature is 22oC and annual 

average temperature is 30oC. The soils at the study sites are Gleyic Cambisols (organic 

farming and forest) and Eutric Cambisol for the conventional farming site (IUSS Working 

Group WRB, 2015). The texture of the soil at all sites is sandy loam.  

 

The organic farm site has been under organic farming practices for 15 years. The crop 

rotations are maize + rice + vegetables/ mustard and maize + rice + wheat/lentils for the 

organic and conventional farms, respectively. The organic farm was under vegetable 

farming during soil sampling while the conventional farm was fallow with remaining rice 

stubbles. The broad leaf forest is dominated by Shorea robusta, commonly known as Sal. 

The leaves of Sal are collected by local people for performing social and religious activities. 

Additionally, the canopy cover and regeneration is very low in forest. The application of 

pesticide was found only in conventional farming. Detailed descriptions of land uses are 

provided in Table S1 (Maharjan et al., 2017, modified). 
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Table S1 Description of land use and soil properties (Ap/Ah horizon) 

Land use Management 
Practices 

pH 
(H2O) 

Organic 
Carbon 

(mg C g-1) 

Total 
Nitrogen 
(mg N g-1) 

Total 
Phosphorus 
(mg P kg-1) 

Organic 

farming = 15 

years 

Farmyard 

manure:10 ton 

ha-1 yr-1 

Vermicomposting 

7.5 21 1.9 332 

Conventional 

farming 

Urea: 60 kg ha-1 

yr-1 

Potassium: 15 kg 

ha-1 yr-1 

5.0 15 1.2 130 

Forest Collection of leaf 

litter for social 

and religious 

activities 

5.5 9 0.7 89 

 

  

Figure S1 Location of the Nepal in Asia (top) and map of Chitwan district, Nepal (bottom).Source: 

https://www.thinglink.com/scene/693071828536524800,http://manakamanagroup.com/chitwan-

heritage/ 

https://www.thinglink.com/scene/693071828536524800
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Figure S2 Three land-use systems i.e. forest, organic and conventional farming in Chitwan district 
, Nepal (Source: Field work, January 2015) 
 

1.3.2 Experimental design, method and analysis-study 1 

Soils from the three land use systems were sampled from 0 to 100 cm depth at intervals of 

10 cm. Samples were kept cold (4oC) during transportation to the laboratory. Plant remains, 

debris, and roots were removed using tweezers. The field-moist soil (70% of WHC) was 

allowed to equilibrate at room temperature for 24 h prior to analysis. Soil and microbial 

properties were measured under different land use systems. A summary of the materials 

and methods used in this study is given in Table S2 below. 

 

 

Organic farm Conventional farm 

Forest 
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 Table S2 Summary of the materials and methods used in study 1 

Objective Method and Analysis 

Determination of organic 

C and Total N content in 

the soil 

Elementar Vario EL analyzer (Elementar Analysensysteme 

GmbH, Germany).  

 

Estimation microbial 

biomass (C and N)  

Chloroform fumigation-extraction method (Vance et al. 1987) 

with slight modification.  

 

Extracts (fumigated and unfumigated) were measured by 

catalytic oxidation (Multi N/C 2100) Analytik Jena, Jena.  

Measurement of enzyme 

activities 

Eight enzymes i.e. C-cycle enzymes (β-glucosidase activity, 

cellobiohydrolase activity, and xylanase activity), N-cycle 

enzymes (chitinase activity, leucine aminopeptidase activity, 

and tyrosine aminopeptidase activity), P-cycle enzyme (acid 

phosphatase activity), and S-cycle (sulfatase activity) were 

measured (SIGMA, Germany).  

 

Fluorescence was measured in microplates at an excitation 

wavelength of 355 nm and an emission wavelength of 460 

nm, slit width of 25 nm, with a Victor3 1420-050 Multi label 

Counter (PerkinElmer, USA). 

1.3.2 Experimental design, method and analysis-study 2 

To assess the effect of land use on P fractions, soils from the three land use systems were 

sampled from 0 to 20 cm depth at intervals of 10 cm. Twenty two grams of air-dried soil 

from three different land use systems were placed into a 100-ml jar. The soil was adjusted 

to 70% of the WHC and incubated for 14 days at 22oC prior to sequential extraction to 

restore the equilibrium due to disturbances from drying and sieving (Hedley et al., 1982). P 

stocks presented in kg P ha−1 were calculated for the soil depth intervals 0–10 and 10–20 

cm using the following equation (Maranguit et al., 2017): 

S = x* ρ*z ……………………     (1) 

where “S”  is the P stock for fixed depths and “x” is the soil P content at the selected depth 

“z”, and “ρ”  is the soil bulk density. A summary of the materials and methods used in this 

study are provided in Table S3 below.  
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Table S3 Summary of the materials and methods used in study 2 

Objectives Method and Analysis 

Determination of different 

fractions of P 

Sequential fractionation of P in soil (Hedley et al. 1982 

modified by Tiessen and Moir (1993). 

 

The following fractions are extracted (i) readily available P 

i.e.NaHCO3-inorganic (Pi) and organic (Po) ii) moderately 

available P i.e. NaHCO3-Pi and Po (iii) non-available P i.e. 

HCl-Pi and Po. 

Determination of 

microbial biomass P  

 

Chloroform fumigation-extraction method (Kouno et al., 1995; 

Cheesman et al., 2010 modified by Yevdokimov and 

Blagodatskaya, 2014) 

 

Measurement of easily available microbial P i.e. microbial 

biomass P. 

Measurement of enzyme 

activity  

Artificial fluorogenic substrate i.e. 4-methylumbiliferyl 

phosphate for acid phosphatase activity 

1.3.4 Experimental design, method and analysis-study 3 

Soil samples were collected from the upper 0-20 cm depth from four random sampling 

locations for each of the three land use systems. Twenty-two grams (oven-dried weight) of 

soil from each land use system was weighed into 100-ml jars. The soil was adjusted to 

50% of the WHC and pre-incubated for 15 days at 22oC. After pre-incubation, N as KNO3 

(200 kg ha-1) and P as KH2PO4 (120 kg ha-1) was added to all samples except for control 

and glucose only treatments. After 15 days of nutrient addition, soil was amended either 

with distilled water (control treatment) or with glucose (other treatments). Uniformly-labeled 

14C glucose was added at a rate of 239 μg C g-1 soil (final activity of 7514 DPM g-1 soil), 184 

μg C g-1 soil (final activity of 7401 DPM g-1 soil) and 132 μg C g-1 soil (final activity of 7485 

DPM g-1 soil ) in organic farming, conventional farming and forest, respectively. The amount 

of glucose addition was equivalent to 30% of initial MBC in each land use system. All in all, 

there were five treatments for each land use system: 1) Control (water only, Ctl), 2) 

Glucose only (C) 3) Glucose+Nitrogen (C+N), 4) Glucose+Phosphorus (C+P), and 5) 

Glucose+Nitrogen+Phosphorus (C+N+P). Each treatment had four replicates for each 

respective land use system at each sampling date.  

Priming effects (PE) was calculated via the following equation: 
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PE = [CO2] total- [CO2] G - [CO2] control    (2) 

where [CO2]total, [CO2]G and [CO2]control represent CO2 emissions from soil after nutrients 

treatment, only glucose treatment and without any amendment, respectively. Priming 

effects are presented as µg C of extra CO2 per gram of soil. A summary of the materials 

and methods used in this study are provided in Table S4 below.  

Table S4 Summary of the materials and methods used in study 3 

Objectives Method and Analysis 

Partitioning sources of 

CO2 produced from soil 

14C labeled glucose was uniformly added to soil as aqueous 

solution. 

Estimating soil respiration 

(Total CO2 )  

 

Static alkali absorption method was used to determine soil 

respiration. Total CO2 trapped in the alkali solution (1.0 M 

NaOH) was precipitated with 0.5 M barium chloride (BaCl2). 

NaOH was titrated with 0.025 M HCl (Hydrochloric acid) 

against phenolphthalein indicator using the Titronic ® Basic 

Burette (Camlab Ltd, Cambridge, UK). 

Determining the amount 

of added glucose 

mineralized to 14CO2 

14C activity trapped in alkali solution was mixed with 

scintillation cocktail Rotiszint Eco Plus (Carl Roth Company, 

Germany) and measured using Hidex 300 SL Automatic 

TDCR Liquid Scintillation Counter (Beckman Coulter Inc., 

USA) 

Determining 14C in 

microbial biomass 

Extracts (fumigated and unfumigated) were mixed with 

scintillation cocktail Rotiszint Eco Plus (Carl Roth Company, 

Germany) and measured using Hidex 300 SL Automatic 

TDCR Liquid Scintillation Counter (Beckman Coulter Inc., 

USA) 

 

1.3.5 Experimental design, method and analysis-study 4 

The kinetic parameters of microbial growth responses were estimated (Blagodatskaya et 

al., 2000 with modification). Soil samples (equivalent to 0.5 g dry soil) were amended with a 

solution (50μl) containing glucose (10 mg g-1 of soil) and a salts solution: (NH4)2SO4 1.9 mg 

g-1 and MgSO4 * 7H2O 3.8 mg g-1 of soil. The salt solution contained different 

concentrations of K2HPO4 for organic farming (2.03 mg g-1 soil), conventional farming (0.16 

mg g-1 soil), and forest soil (0.50 mg g-1 soil). Similarly, the concentration of KH2PO4 was 

0.18, 1.63, and 1.9 mg g-1 for soil under organic farming, conventional farming, and forest, 

respectively. The amount of mineral salts was selected based on the soil pH and buffering 
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capacity to change soil pH less than 0.1 after substrate addition (Blagodatskaya et al., 

2007). The following equation was used to calculate CO2 emissions (Gilmullina et al., 

2017). 

C (C- CO2) = (0.383* ΔEC) *V / m       (3) 

Where C (C- CO2) is C-CO2 concentration (μg g-1 soil), ΔEC is electrical conductivity 

change (μs), V is volume of alkali (ml) and m is weight of dry soil (g). A summary of the 

materials and methods used in this study are provided in Table S5 below. Model Maker-3 

software (SB Technology Ltd.) used to measure the growth parameters. Maximum specific 

growth rate of soil microorganisms was estimated by fitting the parameters of the equation. 

Lag period and % of active microbial biomass calculated by using equations (Blagodatsky 

et al., 2000). Total microbial biomass calculated by substrate induced respiration 

(Anderson and Domsch, 1978; Hoang et al., 2016). 

Table S5 Summary of the materials and methods used in study 4 

Objectives Method and Analysis 

Estimating soil respiration 

(Total CO2)  

 

Eppendrop containing soil sample was placed in plastic tubes 

containing 3 ml of NaOH. Then each cell was inserted to 

RABBIT (The Rapid Automated Bacterial Impedance 

Technique) system for measuring the CO2 emission at 25oC 

for 59 h (Gilmullina et al., 2017). 

 

1.4 Main results and discussion 

1.4.1 Soil and microbial properties 

Total organic C and N and soil microbial biomass were higher in organic farming than in 

conventional farming and forest topsoil (Fig S3). Enzyme activities other than xylanase and 

acid phosphatase were higher in organic farming than in conventional farming and forest 

topsoil. In the subsoil, microbial biomass was similar among land-use systems, although 

enzyme activities were slightly higher under organic farming. 

Various management practices under organic farming, i.e., application of farmyard manure 

and vermicompost, incorporation of crop residue, rhizodeposits through different cropping 

systems, support higher microbial biomass, leading to enhanced enzyme activities in 

organic farming soil compared to other land use systems. Incorporation of rice stubble and 

limitation of available phosphorus leads to higher xylanase and acid phosphatase activities, 

respectively, in conventional farming soil than other land use systems. Collection of leaf 
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litter for social and religious activities by villagers results in deficiencies of labile C and N, 

resulting in lower enzyme activities in forest soil (Fig. S4). 

 

 
Figure S3. Total C, N, and microbial biomass C and N depending on land use and depth. Values 
represent means ± SE (n = 3). 
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Figure S4. The effect of land use on carbon and nitrogen content in soil along with enzyme activities 
under different land use systems. 
 

1.4.2 Land-use type effects P availability  

Total Pi constituted between 58% and 82% of total P. Total Pi, Po, and P stocks were 

higher in organic farming than conventional farming and forest, and declined with depth in 

all soils (Fig. S5). Easily-available P fractions (microbial biomass P, NaHCO3-Pi and Po), 

moderately available P (NaOH-Po) and non-available P (HCl-Pi and Po) were much higher 

in organic farming than conventional farming and forest, especially in the topsoil layer. 
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Figure S5 Total content of organic and inorganic P (mg P kg

−1
) (top) and P stocks (kg P ha

−1
) 

(bottom) depending on land use. Values represent means ± SE (n= 4). Means followed by different 
letters within the same depth differ significantly (p < 0.05). 

 

The higher C: Po ratio (>100) in conventional farming and forest than organic farming 

indicates P limitations in these land use system. Thus, mineralization of Po is enhanced to 

release mineral P, corresponding with the higher activity of acid phosphatase in 

conventional farming and forest (Fig.S6). 

 

Figure S6 Ratio of soil carbon to organic phosphorus and acid phosphatase activity (nmol g
-1

 soil h
-

1
) depending on land use. Values represent means ± SE (n= 4). Means followed by different letters 

within the same depth differ significantly (p < 0.05). 
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Organic matter input, i.e., farmyard manure, crop rotation, and incorporation of residue, are 

the key factors responsible for the high P content under organic farming than other land 

use systems. The larger fraction of organic P (Po) than inorganic P (Pi) implies that total P 

is regulated by organic P in all three land use systems (Fig S7). 

 

 

Figure S7 Conceptual diagram representing the effects of land use on soil phosphorus. 

Colors: green=easily-available phosphorus, yellow=moderately-available phosphorus, 

brown= non-available phosphorus. Olive color upward arrow represents factors contribution 

for increasing different fractions of phosphorus in soil under organic farming. Light blue 

and light pink downward arrows indicates factors responsible for decreasing different 

fractions of phosphorus in soil under conventional farming and forest, respectively. The 

double circle arrows (peach color) indicate the phosphate activity. Color intensity of 

horizontal arrow i.e. light to dark purple represents the lower to higher status of phosphorus 

stock in soil under forest conventional farming and organic farming. Litter, crop residue and 

organic fertilizers are dominant factor controlling the soil phosphorus stock in forest, 

conventional farming and organic farming, respectively. Red line (——) shows P losses 

after land-use change. 
 
 
1.4.3 Microbial respiratory response to addition of nutrients with glucose  

Addition of C alone increased cumulative CO2 emissions (by 33%), i.e., initiated a positive 

PE, while reducing microbial biomass (by 16%) in soil under organic farming (Fig.S8 and 

S9, study 3). Additionally, results from substrate-induced respiration demonstrating higher 
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specific growth rates (µm, 0.48 h-1) and short lag times (5h) reveals the relative dominance 

of fast growing r-strategists under starvation conditions in soil under organic farming 

(Fig.S10, study 4). Conversely, the similar µm but longer lag times (15 h and 25 h in soil 

under conventional and forest, respectively) indicates the dominancy of different strategists 

under starvation conditions, with K-strategists (slow growing) dominant under convention 

farming and L-strategists (stress tolerant) dominating under forest. Thus, it is reasonable to 

conclude that r-strategists reduce their biomass through autolysis instead of maintaining 

their populations under unfavorable conditions. This results in the production of necromass, 

which can serve as a substrate for the remaining surviving microorganisms, thus 

contributing to the positive PE in soil under organic farming. However, K and L- strategists 

maintain their biomass under unfavorable conditions (Fig.S10, study 4), corresponding with 

the stable microbial biomass and relatively low PE noted in conventional farming and forest 

soils, respectively (Fig.S8 and S9, study 3). 

 

 

Figure S8 Cumulative priming over 45 days of incubation period and cumulative CO2 emission at 45 
days in soil under organic farming, conventional farming, and forest. Add dotted line indication PE 
and letters of significance to the bars. Values are means ± standard error (n = 4). 
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Figure S9 Microbial biomass derived from soil organic matter and from added glucose in soil under 
organic farming (a), conventional farming, (b) and forest (c) at the end of incubation. Control, C, 
C+N, C+P, and C+N+P in the figure represent the addition of water, glucose only, glucose + 
nitrogen, glucose + phosphorus, glucose + nitrogen + phosphorus, respectively. Values are means ± 
standard error (n = 4).  
 

 
Figure S10 Maximum specific growth rate and lag time in soil under different land use system. 
Values are means ± standard error (n = 3). 

 

 
N addition with C reduced SOM decomposition, i.e., induced a negative PE (33 and 52 µg 

C g-1 respectively) in soil under conventional farming and forest, supporting the preferential 

microbial substrate utilization theory. This implies that microorganisms prefer to utilize 

added C and N instead of decomposing SOM to fulfill their energy and nutrient 

requirements (Fig.S8). In contrast to the suppressive effects of N, P addition in combination 

with C enhanced (up to 42%) microbial respiration across all land use type. This could be 

attributed to the increased microbial biomass concentration and the resultant increases in 

N demand (Fig.S8). 
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Similar to N addition, C with multiple nutrient (N+P) addition decreased the decomposition 

of SOM, leading to negative PE (35 and 13 µg C g-1 respectively) in soil under conventional 

farming and forest. However, microbial biomass was stable, indicating that active microbial 

biomass, rather than total microbial biomass, drives soil respiratory rates. Furthermore, 

addition of N shifts microbial community structure by increasing the growth of bacterial 

grazing protozoans, which reduces decomposition rates in these land use systems. In 

contrast, the enhanced decomposition of SOM corresponded with increases in microbial 

biomass (by 18%) with the combined addition of N and P in soil under organic farming. 

Addition of further nutrients to nutrient rich organic soil stimulates microorganisms and 

enhances SOM decomposition to fulfill their increased metabolic requirements (Fig.S8 and 

S9). Overall, SOM decomposition is dependent on the availability of essential nutrients 

under different land use systems. 

 

1.4.4 Road to sustainability 

Crop yield has been significantly increased through conventional agriculture for supporting 

the livelihood of rising population (Stockdale et al., 2002). However, global concern is 

growing the effect of intensive agriculture on long-term soil fertility (Allen-Stevens 1999), 

due to reductions in soil organic matte content. It has been suggested that organic farming 

is realistic alternative approach which provide both agronomic and environmental benefits, 

especially improving soil quality (Stockdale et al., 2001). 

 

Conversion of forest to organic and conventional farming significantly alters the soil and 

microbial properties. Between two agroecosystems, regular application of farmyard manure 

under organic farming supplies available N and P for plant growth, resulting in higher plant 

biomass with organic farming (Mäder et al., 2002). Consequently, the higher incorporation 

of crop residues in organic farming results in higher levels of organic matter deposition for 

C (1.4 fold), N (1.5 fold), and Total P (by 3 fold) compared with conventional farming 

(Stockdale et al., 2001). This provides favorable environments for microorganisms, 

contributing to enhanced microbial properties, i.e., biomass and enzyme activities (up to 3 

fold higher than conventional farming); indicating higher soil fertility. Additionally, absence 

of pesticide use and application of organic fertilizers supports diverse active microbial 

communities which efficiently utilize the resources (Mäder et al., 2002). A combination of 

higher microbial activity and fertility supports the production of high yield and good quality 

crops (Mäder et al., 2002). Previous study showed that organic farming produces high 

quality wheat yield in the long period of time with less application of fertilizers and plant 
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protection agents (Mäder et al., 2007).Thus, organic farming practices can solve the 

problem of hunger as well as soil degradation. 

 

With the rapid increase of the human population, increasing global food production while 

conserving biodiversity and native environments are pillars of “sustainable development.” 

However, achieving these two needs is a challenging task for agricultural and 

environmental scientists in the 21st century (Tscharntke et al., 2012; Maston et al., 1997). 

The development of ecologically-based land use and management practices can contribute 

to meeting these challenges by linking sustainable agriculture production with biodiversity 

conservation. The organic based land use management approach, i.e., the use of organic 

based fertilizers and pesticides, are receiving global attention. Such approaches are 

pathways to sustainable agriculture production and reduction of off-site problems. The 

successful implementation of such strategies will require the contribution from different 

stakeholders, i.e., scientists, national and international agricultural research institutions, 

industry, policymakers, and farmers (Maston et al., 1997). 

 

1.5 Conclusions  

Land-use change from natural ecosystem to agricultural land has severe impacts on soil 

quality. Various management practices under organic farming, i.e. application of farmyard 

manure, vermicomposting, incorporation of crop residue, and various cropping systems, 

lead to an increase in SOM and provide favorable environments for microorganisms. 

Consequently, this leads to improvements to soil properties (organic C, total N, total P) and 

microbial properties (microbial biomass C, N, P and enzyme activities except xylanase and 

acid phosphatase), with organic farming, particularly in the topsoil. Microbial biomass, the 

living component of SOM, plays a crucial role in determining the physical, chemical and 

biological properties of soil. Hence, microbial biomass and enzyme activities are 

considered as potential indicators of soil fertility and soil quality. Application of local organic 

fertilizers (farmyard manure and animal manure), and elimination of pesticides reduce 

production costs for farmers while improving soil and crop quality, improving economic, 

ecological and human health outcomes. Additionally, the cultivation of diverse crops in 

organic farming systems provides diverse food products, improving food security and 

ultimately helping to reduce poverty. 

Globally, application of fertilizers (N or P or N+P) is the most common anthropogenic 

practice to increase crop yield. This leads to changes in the global carbon cycle, as 

decomposition of native SOM is affected by addition of glucose and nutrients. In soil under 
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organic farming, formation of microbial necromass from fast-growing r-strategist 

microorganisms under starvation conditions contributes to increase decomposition rates, 

i.e., induces positive PE, with addition of 14C labelled glucose only. In contrast, slow 

growing K- and stress tolerant L- strategists were responsible for the relatively low 

decomposition rates in soils under conventional farming and forest, respectively. This 

shows PE is determined by variations in the microbial growth strategies under different land 

use systems. Furthermore, addition of N with C strongly suppressed SOM decomposition 

processes in soils under conventional farming and forests, supporting the theory of 

preferential microbial substrate utilization, while addition of P with C accelerated 

decomposition of SOM in all lands use systems due to microbial mining of SOM to fulfill the 

increased demand for N. The interaction of multiple nutrients (N and P) showed divergent 

effect on decomposition processes in the different land use systems. Similar to N addition, 

decomposition of SOM was suppressed in nutrient limited soil under conventional farming 

and forest, indicating that the decomposition process responded more to N than to P 

addition. In contrast, decomposition was enhanced in soil under organic farming after 

multiple nutrients addition, corresponding with an increase in microbial biomass of 18%. 

Thus, decomposition of SOM increased to fulfil the metabolic requirements of an increased 

microbial population, resulting in a strong positive PE. Addition of multiple nutrients 

stimulated microorganism and enhanced soil organic matter decomposition to fulfill their 

nutrients demand, leading to positive priming in soil under organic farming. After addition of 

all nutrient combinations except P, the decomposition of SOM decreased while microbial 

biomass remained stable in conventional farming soil. However, this could be the short 

term microbial response to nutrient addition. In long term fertilization under intensive 

agriculture, microbial response to nutrient addition might change, potentially affecting the 

decomposition process.  

In modern conventional farming systems, farmers apply excessive mineral fertilizers to 

increase crop yields. Additionally, mineral fertilizers tend to leach away, necessitating 

repeated applications. This leads to the accumulation of toxic chemicals, adversely 

affecting microbial biomass and enzyme activities. Consequently, the decline of soil fertility 

leads to decreases in plant biomass. This leads to reductions in incorporation of crop 

residue, consequently, decreasing in the quality and quantity of SOM, ultimately reducing 

carbon sequestration. In organic farming, higher plant biomass due to farmyard manure 

leads to increase incorporation of higher crop residue, consequently increasing soil organic 

matter which enhanced microbial activity. Thus, microorganism decomposes soil organic 

matter to release nutrients, indicating higher soil fertility in organic farming. However, 

increased decomposition of soil organic matter leads to increase soil respiration. Beside, 
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carbon sequestration is balance between how much input of C and how much out of C out 

to ecosystem (Janzen, 2006). In organic farming, C input is much higher than conventional 

farming and forest. Thus, organic farming still has more potential to enhance carbon 

sequestration than other two land use systems (Janzen, 2006). 

Although belonging to agroecosystems, organic farming promotes sustainability by 

enhancing economic, social, and environmental benefits, i.e., increasing crop yield, 

reducing poverty through food security, and increasing soil fertility and carbon 

sequestration, respectively. It is therefore rational to conclude that organic farming is a 

more sustainable agricultural production system. 

 

Figure S11 Synthesis of the main results. Effect of land use on soil fertility, and carbon 

sequestration. SOM- soil organic matter. C-Sequ-carbon sequestration 
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3.1 Study 1: Effect of land use and management practices on microbial 

biomass and enzyme activities in subtropical top-and sub-soils 

Menuka Maharjan1, 2*, Muhammad Sanaullah1, 3, Bahar S. Razavi4, Yakov Kuzyakov1,4 

 

Status: Published in Journal of Applied Soil Ecology              
1 

Department of Soil Science of Temperate Ecosystems, University of Göttingen, 

Göttingen, Germany 

2
 Institute of Forestry, Tribhuwan University, Hetauda, Makwanpur, Nepal 

3
 Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan 

4
 Department of Agricultural Soil Science, University of Göttingen, Göttingen, Germany 

3.1.1 Abstract 

Land-use change, especially from forest to intensive agriculture, is negatively impacting soil 

quality and sustainability. Soil biological activities are sensitive indicators of such land-use 

impacts. We tested two hypotheses: i) land use and management practices affect microbial 

properties (microbial biomass and enzyme activities) in topsoil (0-20 cm), but have no 

effects in subsoil (20-100 cm); and ii) microbial properties in topsoil are highest in forest, 

followed by organic farming and then conventional farming. Total organic C and N contents 

as well as microbial biomass were significantly higher in the organic farming topsoil 

compared with conventional farming and forest. Except xylanase and acid phosphatase, 

enzyme activities (β-glucosidase, cellobiohydrolas, chitinase, sulfatase, leucine 

aminopeptidase, and tyrosine aminopeptidase) were also higher in organic farming soil. 

Crop residues and rhizodeposits support higher microbial biomass, leading to enhanced 

enzyme activities in organic farming soil. Incorporation of rice stubble and limitation of 

available phosphorus explain the higher xylanase and acid phosphatase activities, 

respectively, in conventional farming soil. Litter removal leads to a deficiency of labile C 

and N, resulting in lower enzyme activities in forest soil. Total C and N contents were 

higher in subsoil under organic farming. Although there was no effect of land use on 

microbial biomass in subsoil, activities of most enzymes were higher under organic 

farming. Overall, our results indicate that land-use change significantly alters microbial 

properties in topsoil, with modest effects in subsoil. Microbial properties should be 

considered in environmental risk assessments and models as indicators of ecosystem 

disturbance caused by land-use and management practices. 

Keywords: Land use; forest; organic farming; conventional farming; soil quality; soil depth 
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3.1.2 Introduction 

Land-use change is one of the main drivers of global environmental disturbance, greatly 

contributing to climate change, loss of ecosystem services and species extinctions (Turner 

et al., 2007; Tilman et al., 2001). The expansion of crop and pastoral land into natural 

ecosystems is the major form of land conversion (Lambin and Meyfroidt, 2011). 

Approximately 50% of the new arable land during the period of 1980-2000 came from intact 

forest in the tropics, while 28% came from disturbed forest. Land is becoming a scarce 

resource in the global context (Lambin and Meyfroidt, 2011) with the ever increasing need 

for agricultural land necessary to feed the growing human population.  

 

Conversion of forest to agriculture and agricultural intensification contribute to the loss of 

soil organic matter (Lagomarsino et al., 2011), alter microbial biomass and its activities, 

and ultimately affect soil quality (Schloter et al., 2003). There is a growing global interest in 

the assessment of land use and management effects on physical, chemical and biological 

properties of soils (Nguyen et al., 1995). Microbial and biochemical characteristics of soil 

have been proposed as indicators of soil quality in both, natural and agricultural systems 

(Karlen et al., 1997; Mganga et al., 2016), due to the central role of microorganisms in C, N 

and nutrient cycling, and their sensitivity to alternations in soil conditions (Nannipieri et al., 

2003). Extracellular enzymes, which are mainly secreted by microorganisms, play vital 

roles in nutrient cycling and soil organic matter (SOM) decomposition (Klose and 

Tabatabai, 2002). They can therefore be used as a ‘soil fertility index’ (Mganga et al., 

2016). Land use and management practices have significant effects on microbial and 

enzyme activities as a result of fertilizer application (Allison et al., 2010; Zimmermann and 

Bird, 2012; van Gestel et al., 2013), tillage (Deng and Tabatabai, 1997; Balota et al., 2004) 

and grazing (Holt, 1997). Enzyme activities are also significantly affected by crop species 

and residue management practices (Bolton et al., 1985; Friedel et al., 1996). While prior 

studies have investigated the effects of land use and management practices on enzyme 

activities and microbial process in tropical soils, most analyses were limited to the topsoil 

(Balota et al., 2004;  Acosta-Martínez et al., 2007; Tischer et al., 2014a;  Tischer et al., 

2014b; Mganga et al., 2015). Thus, although the effects of management practices on soil 

microbial properties are much discussed, our knowledge of their vertical distribution is 

scant.  
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The study site in ‘‘Chitwan district’’ lies in the Terai region, a plain in southern Nepal. 

Known as grain house of Nepal, the Terai region covers 17% of the country’s total land 

area. Forests, which cover 411,580 ha (20.41%) of the region’s total land area (2,016,998 

ha) (FRA/DFRS, 2014),are, dominated by Shorea robusta and possess high economic 

value and biological diversity. After eradication of malaria in the 1950s, a resettlement and 

migration scheme from the Middle Mountain region to different parts of the Terai region 

was induced. As the population increased, massive deforestation occurred to make way for 

cultivation and new settlements. The region’s current population growth rate is 1.75%, the 

highest in Nepal, is continuously increasing pressure on forest areas (FRA/DFRS, 2014). 

Agricultural intensification through conventional farming practices is also being 

implemented to feed the growing population.  

 

The objective of this study was to assess the effect of three land use systems, i.e. forest, 

organic and conventional farming, on soil microbial biomass and the activities of enzymes 

involved in the C-cycle (β-glucosidase, cellobiohydrolase and xylanase), N-cycle (chitinase, 

leucine aminopeptidase and tyrosine aminopeptidase), P-cycle (acid phosphatase) and S-

cycle (sulfatase) in subtropical soil. We hypothesized that i) land use and management 

practices affect microbial properties (microbial biomass and enzyme activities) in topsoil, 

but have no effect in subsoil; and ii) microbial properties in the topsoil are higher in forest 

followed by organic farming and conventional farming. To test our hypotheses, we 

determined microbial biomass and the activities of eight enzymes involved in soil organic 

matter decomposition.  

 

3.1.3 Materials and Methods 

 3.1.3.1 Site and soil sampling 

The study was conducted in Chitwan district (27°35′N 84°30′E) of Nepal. Three land-use 

systems were selected: forest, organic, and conventional farming. Both farming sites were 

located in Fulbari Village Development Committee (VDC) and the forest site in Patihani 

VDC. The climate is subtropical with annual rainfall of 1763 mm and an average 

temperature of 30 oC. The soils at the study sites are Gleyic Cambisols (organic farming 

and forest) and Eutric Cambisol for the conventional farming site (IUSS Working Group 

WRB, 2015). The soil texture at all sites is sandy loam.  

 

https://tools.wmflabs.org/geohack/geohack.php?pagename=Chitwan_District&params=27_35_N_84_30_E_type:adm2nd_region:NP_dim:100000
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The organic farm site has been under organic farming practices for 15 years. The crop 

rotations are maize+rice+vegetables/mustard and maize+rice+wheat/lentils for the organic 

and conventional farms, respectively. The organic farm was under vegetable farming 

during soil sampling while the conventional farm was fallow with remaining rice stubbles. 

The broad leaf forest is dominated by Shorea robusta commonly known as Sal. The leaves 

of Sal are collected by local people for performing social and religious activities. A detailed 

description of land uses is given in Table 1. 

 

Table 1 Description of land use in the study site 

Land use Vegetation type/  

Crop rotation 

Management 

Practices 

Pesticide 

Organic farming = 

15 years  

Maize+ rice+ vegetables 

/ mustard 

Farmyard manure:10 ton 

ha-1 yr-1 and 

Vermicomposting 

No 

Conventional 

farming 

Maize+ rice+ wheat/ lentil Urea: 60 kg ha-1 yr-1 

Potassium: 15 kg ha-1 yr-1 

Yes 

Forest Broad leaf dominated  

by Shroea robusta 

Collection of litter for social 

and religious activities 

No 

 

3.1.3.2 Soil sampling and preparation  

Soils from the three land use systems were sampled from 0-100 cm depth at intervals of 10 

cm. The samples were kept cold (~4 °C) during transportation to the laboratory. Plant 

remains, debris, and roots were removed using tweezers. The field-moist soil (70% of 

WHC) was allowed to equilibrate at room temperature for 24 h prior to analysis.  

3.1.3.3 Microbial biomass carbon and nitrogen 

Microbial biomass C and N was determined by the chloroform fumigation-extraction 

method (Vance et al., 1987), based on the difference between C or N extracted from 

fumigated and non-fumigated soil samples using 0.05 M K2SO4. A kEC factor 0.45 was used 

to convert microbial C flush into microbial biomass C (Joergensen, 1996), while a kEN of 

0.54 was used for microbial biomass N (Joergensen and Mueller, 1996).  

3.1.3.4 Enzyme assays 

Enzyme kinetics were assayed using fluorogenically labeled substrates based on 4-

methylumbelliferone (MUF) and amino-4-methyl coumarin (AMC)-, (Pritsch et al., 2004), 
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(Table S1). The MUF and AMC substrates were dissolved in 2-methoxyethanol (Hoppe, 

1983) and the dissolved substrates were further diluted with sterile water. Enzyme-

saturating concentrations of fluorogenic substrates were determined in a preliminary 

experiment (Razavi et al., 2015). All chemicals and substrates were purchased from 

Sigma, Germany.  

 

Briefly, soil (1 g) from each of the three land uses and different soil depths (0-100 cm depth 

at intervals of 10 cm) was suspended with 50 ml of sterile water using low-energy 

sonication (40 J s-1 output energy for 2 min). Following sonication, 50 μl of soil suspension 

was added to 100 μl of substrate solution and 50 μl of buffer (either MES, TRIZMA or 

sodium acetate, see Table S1) in a 96-well microplate and incubated for 2 h (Koch et al., 

2007). Fluorescence was measured at an excitation wavelength of 355 nm and an 

emission wavelength of 460 nm, split width of 25 nm, with a Victor3 1420-050 Multilabel 

Counter (PerkinElmer, USA). Calibration curves as well as controls for autofluorescence of 

the substrate were included in each series of enzyme measurements. Enzymes activities 

were expressed as MUF or AMC released in nmol per g dry soil per hour (nmol g-1 soil h-1), 

(Razavi et al., 2015). 

 

3.1.3.5 Elemental analysis 

Oven dried subsamples of soil (60 oC) were ground and analyzed for elemental C and N 

with an Elementar Vario El analyzer (Elementar Analysensysteme GmbH, Germany).  

 

3.1.3.6 Calculations and statistical analysis 

The effects of land use on microbial properties were analyzed using one-way analysis of 

variance (ANOVA) at a significance level of p<0.05 using the statistical software Statistica 

12. All displayed results represent means of 3 replicates ± standard error (SE). 

 

3.1.4 Results  

3.1.4.1 Soil and microbial carbon and nitrogen 

Land use had significant effects on total organic C and N contents in topsoil (Fig. 1). Total 

soil organic C was highest in organic farming (24 mg C g-1 soil) followed by conventional 

farming (15 mg C g-1 soil) and forest (9 mg C g-1 soil) in the topsoil layer (0-10 cm depth). 

Total C content declined with increasing soil depth, remaining highest in the organic 

farming soil al all depths tested. A similar trend was found for total N content in all three 
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land uses (Fig. 1), with organic farming soil possessing the highest total N content in both 

top and subsoil.  

Similarly, microbial C and N were also highest under organic farming, especially in the 

topsoil layer (350 and 46 μg g-1 soil, respectively), (Fig. 1). However, conventional farming 

and forest soils had similar microbial biomass content. In subsoil, there were no significant 

effects of land-use changes on microbial biomass C and N. Positive correlations were 

found for total soil C and N with microbial biomass C and N (R2 > 0.71 and R2 = 0.32-0.77, 

P< 0.05, respectively). 

 

 

 
 

Figure 1 Total C, N, and microbial biomass C and N depending on land use and depth. Values 
represent means ± SE (n = 3). 
 

3.1.4.2 Enzyme activities 

3.1.4.2.1 Carbon-cycle enzyme activities 

The activities of enzymes involved in the C-cycle (β-glucosidase, cellobiohydrolase, and 

xylanase) were significantly affected by land use, especially in topsoil (Fig. 2). The activity 

of β-glucosidase was higher in organic farming (199 nmol g-1 soil h-1) followed by 

conventional farming (130 nmol g-1 soil h-1) and forest soil (19 nmol g-1 soil h-1) in the topsoil 

layer. The activity of cellobiohydrolase was higher in organic farming compared to forest 
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soil, but was similar in organic and conventional farming soil. In contrast, xylanase activity 

was higher under conventional farming (27 nmol g-1 soil h-1) followed by organic farming (17 

nmol g-1 soil h-1) and forest soil (12 nmol g-1 soil h-1), (Fig. 2). Carbon-cycle-related activities 

were higher in organic farming subsoil, but were similar for the conventional farming and 

forest soils.  

 

 

Figure 2 Activities of C-cycle enzymes: β-glucosidase, cellobiohydrolase, and xylanase depending 
on land use and depth. Values represent means ± SE (n = 3). Enzyme activities are expressed in 
nmol g

-1
 soil h

-1
. 

 

3.1.4.2.2 Nitrogen-cycle enzyme activities 

The activities of N-cycle enzymes (chitinase, leucine aminopeptidase and tyrosine 

aminopeptidase) in the topsoil layer were higher under organic farming (138, 276 and 255 

nmol g-1 soil h-1, respectively) compared with other land-use systems (Fig. 3). The activities 

of tyrosine aminopeptidase and chitinase were also higher in subsoil under organic farming 

(Fig. 3). 
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Figure 3 Activities of N-cycle enzymes: chitinase, leucine aminopeptidase, and tyrosine 
aminopeptidase depending on land use and depth. Values represent means ± SE (n = 3). Enzyme 
activities are expressed in nmol g

-1
 soil h

-1
. 

 

3.1.4.2.3 Phosphorus- and sulfur-cycle enzyme activities 

Acid phosphatase (P-cycle) activity in topsoil was affected by land use (Fig. 4). In contrast 

to C- (except xylanase) and N-cycle enzymes, the activity of acid phosphatase in the 

topsoil layer was higher under conventional farming (936 nmol g-1 soil h-1) followed by forest 

(672 nmol g-1 soil h-1) and organic farming soil (118 nmol g-1 soil h-1). Under organic farming, 

acid phosphatase activity increased with increasing depth, while the opposite trend was 

noted for conventional farming and forest soil. The activity of the S-cycle enzyme, 

sulfatase, in the topsoil was higher in organic farming (39 nmol g-1 soil h-1) followed by 

conventional farming (14 nmol g-1 soil h-1) and forest (5 nmol g-1 soil h-1) (Fig. 4), with similar 

trends identified in the subsoil.  

 

Among C-cycle enzymes, β-glucosidase (except for forest), cellobiohydrolase and xylanase 

activities were positively correlated with microbial biomass C (Fig. S1). The activity of acid 

phosphatase showed a positive correlation with microbial biomass C in conventional 

farming and forest but a negative correlation in organic farming (Fig. S1). The activities of 

N-cycle enzymes were positively correlated with microbial biomass N (Fig. S2). There was 

positive correlation between sulfatase activity and microbial biomass C in both agricultural 

soils (Fig. S2). 



3 Publications and Manuscripts: Study 1 

37 

 

 

Figure 4 Activities of P and S-cycle enzymes: acid phosphatase and sulfatase depending on land 
use and depth. Values represent means ± SE (n = 3). Enzyme activities are expressed in nmol g

-1
 

soil h
-1

. 
 

 

3.1.5 Discussion 

3.1.5.1 Soil and microbial carbon and nitrogen 

Soil and microbial C and N decrease with depth due to declining C input (e.g. by plant 

residues) (Hu et al., 1997). However, soil C and N contents remained higher in subsoil 

under organic farming compared to other land uses, possibly due to effect of vermicompost 

application in organic management (Azarmi et al., 2008). In contrast to total C and N 

content, microbial biomass (C and N) in subsoil was similar among the different land use 

systems. This indicates that land use and management practices affected microbial 

biomass only in the topsoil (Liang et al., 2012), confirming our first hypothesis. 

 

Microbial biomass C and N in topsoil followed the order: organic farming > conventional 

farming = forest soil which contradicts hypothesis (ii), (Fig. 1). Higher soil C and N in 

organic farming is mainly due to the regular application of farmyard manure and 

vermicomposting (Table 1 and Fig. 5). Farmyard manure supplies readily available N, 

resulting higher plant biomass. As a result, more crop residues are incorporated through 

tillage, which maintains higher OM (C and N) levels in surface layers (Roldán et al., 2005). 

This also provides a favorable environment for microorganisms, contributing to a highly 

diverse and stable microbial community structure in organic farming systems (Wada and 

Toyota, 2007). In conventional farming, fallow periods in the crop rotation interrupt the 

continuous incorporation of crop residues, resulting in lower OM than for organic farming 
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(Fig. 1, 5). In addition, toxic effects of pesticides may reduce the microbial biomass in 

conventional farming (Table 1). In the forest system, regeneration and crown density is 

very low. Furthermore, litter is collected by villagers for performing social and religious 

activities (Table 1), leading to decreased C and N content relative to organic or 

conventional farming systems (Fig. 5). Consequently, microbial biomass was lower in forest 

than in the organic farming system. 

 

The correlation of microbial biomass C and N with total organic C and N, reflects that 

microbial biomass is determined by the quantity and quality of OM (Kallenbach and 

Grandy, 2011). Thus, an increase or decrease in soil and microbial C and N content is 

particularly dependent on management practices.   

   

3.1.5.2 Enzyme activities 

In topsoil, enzyme activities other than xylanase and acid phosphatase followed the order: 

organic farming ≥ conventional farming ≥ forest soil (Fig. 2, 3, 4), which is contrary to 

hypothesis (ii). Higher plant growth, due to farmyard manure input, supports high microbial 

biomass in the organic farming system. In addition, continuous plant cover as well as 

varied plant species provide different qualities and quantities of crop residue and root 

exudates, which are substrates for microorganisms and thereby support enzyme 

production (Nayak et al., 2007). The continuous application of farmyard manure enhances 

the substrate utilization capacity of microorganisms (Wada and Toyota, 2007). 

Consequently, microorganisms are activated, contributing to higher enzyme activities and 

accelerated SOM decomposition (Fig. 5). Elevated chitinase and sulfatase activities imply 

that fungal biomass is high in the organic farming system (Bandick and Dick, 1999; 

Badiane et al., 2001), indicating a difference in microbial community resulting from the input 

of organic matter (Marschner et al., 2003). However, activities of xylanase and acid 

phosphatase were higher in the conventional farming system (Fig. 2, 4). Incorporation of 

rice stubble explains the higher activity of xylanase. Hemicellulose is an insoluble 

substance contained in plant root detritus (Kandeler et al., 1999). The higher availability of 

these organic compounds stimulates the production of xylanase by the microbial 

community (Allison and Vitousek, 2005), demonstrating that enzyme activities are 

significantly affected by cropping and residue management practices (Kandeler et al., 

1999; Allison and Vitousek, 2005). The higher activity of acid phosphatase is mainly due to 

production of this common enzyme by both plants and microorganisms (Blagodatskaya and 

Kuzyakov, 2008; Nannipieri et al., 2012) and also probably high demand for P (Allison and 
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Vitousek, 2005; Frank and Groffman, 2009; Razavi et al., 2016). A weak or non-significant 

correlation between microbial biomass and enzyme activities (except acid phosphatase) in 

forest soil indicates that microorganisms are dormant due to the limited availability of labile 

C and N in this ecosystem (Fig. S1, S2, 5). Consequently, enzyme activities are low in the 

forest system (Fig. 2, 3, 4).  

  

Concerning the subsoil, the general trend of enzyme activities demonstrated a gradual 

decrease with depth (except for acid phosphatase and xylanase, in organic farming). 

Reduced enzyme activities along with microbial biomass in subsoil is connected to 

decreasing C input and content (Agnelli et al., 2004; Goberna et al., 2006). According to 

our hypothesis (i), we expected no effect of land use on subsoil. This hypothesis is partly 

supported by C-, N-, P- and S-cycle enzymes in all land-use systems, with the exception of 

seven enzymes in organic farming (Fig. 2, 3, 4). The activity of acid phosphatase was 

increased in subsoil in organic farming relative to other land uses. High activity of 

phosphatase in top- and sub-soil indicated a high investment of microorganisms and plants 

for the acquisition of P (Fig. 4). By this belowground C investment, plants regulate increase 

the availability of organically bound P from sub-soil in the tropics. Higher activities of 

enzymes involved in cellulose and hemicellulose decomposition in the organic farming 

system are due to the favorable environment for C-degrading microorganisms in the 

subsoil. The higher water content following rice cultivation could also be a contributing 

factor. Additionally, the higher activities of enzymes are indicate for the presence of 

complex substrates (German et al., 2011). This explains the similar behavior of enzymes 

degrading C-polymers, N-polymers (chitinase and tyrosine aminopeptidase) and S-

containing molecules in the organic farming system. In general, application of 

vermicomposts simulate activities of some enzymes (Atiyeh et al., 2001;  Benitez et al., 

2004) in organic farming. Positive correlations between enzyme activities and microbial 

biomass in conventional and organic farming systems (except for acid phosphatase) (Fig. 

S1, S2) reflect the microbial origin of the enzymes (Nayak et al., 2007; Wallenius et al., 

2011).  
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Figure 5 The effect of land use on carbon and nitrogen content in soil along with enzyme activities. 

 

3.1.6 Conclusions 

Total organic C and N, soil microbial biomass and enzyme activities other than xylanase 

and acid phosphatase were higher in organic farming than in conventional farming and 

forest topsoil. Organic matter input under various management practices is the most 

important factor for determining C and N content and microbial properties. In the subsoil, 

microbial biomass was similar among land-use systems, although enzyme activities were 

slightly higher under organic farming. These results demonstrate that land use and 

management practices have significant effects on microbial properties in surface layers, 

with lesser effects in subsoil. Microbial response to resource limitation and substrate 

availability determines the production of enzymes in different land use systems. Thus, 

microbial properties can serve as potential biological indicators of ecological changes 

resulting from land-use and management practices in subtropical top-and sub-soils.  
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3.1.9 Supporting information  

Table S1 Description of the substrates for estimation of enzyme activities 

 

 

Figure S1 Relationship between the activities of β-glucosidase, cellobiohydrolase, xylanase, acid 
phosphatase, and microbial biomass C. Microbial biomass C is expressed in μg C g

-1
 soil. Enzyme 

activities are expressed in nmol g
-1

 soil h
-1

. ***, **, * - Significance level at P<0.001, <0.01, <0.05, 
respectively. NS - not significant. 

Enzyme Substrate  Buffer 

C-cycle enzymes 

β-glucosidase 4-methylumbiliferyl-β-D-glucopyranoside MES 

Cellobiohydrolase 4-methylumbiliferyl-β-D-cellobioside MES 

Xylanase 4-methylumbiliferyl-β-D-xylopyranoside MES 

N-cycle enzymes 

Chitinase 4-methylumbiliferyl-N-acetyl-glucosaminide MES 

Leucine 

aminopeptidase 

L-leucien-7-amido-4-methylcoumarin  TRIZMA 

Tyrosine 

aminopeptidase 

L-Tyrosine-7-amido-4-methylcoumarin TRIZMA 

P-cycle enzyme 

Acid phosphatase 4-methylumbiliferyl phosphate MES 

S-cycle enzyme 

Sulfatase 4-methylumbiliferyl sulfate potassium salt Sodium acetate 
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Figure S2 Relationship between the activities of chitinase, leucine aminopeptidase, tyrosine 
aminopeptidase, and microbial biomass N, and sulfatase with microbial biomass C. Microbial 
biomass N and C are expressed in μg N g

-1
 soil and μg C g

-1
 soil, respectively. Enzyme activities are 

expressed in nmol g-1 soil h-1.***, **, * - Significance level at P <0.001, <0.01, <0.05, respectively. 
NS - not significant. 
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3.2.1 Abstract 

Land-use change from forest to agriculture, which is driven by the demands of sustaining 

the growing global population, affects nutrient dynamics and availability in soil. Although 

phosphorus (P) is one of the main limiting nutrients in agricultural production, little is known 

about the influence of soil microorganisms on the dynamics of P cycling in subtropical land 

use systems. The objective was to assess the impacts of land use on forms and distribution 

of P depending on microbial activity in soil under different land use system.  

Total P stock was highest in organic farming soil followed by conventional farming and 

forest. Cropping system, crop residue input and farmyard manure application supported 

high organic matter and microbial biomass content, leading to higher concentrations of soil 

P under organic farming. The larger fraction of organic P (Po) than inorganic P (Pi) implies 

that total P is regulated by organic P in all three land use systems. Easily-available P 

fractions (microbial biomass P, NaHCO3-Pi and Po), moderately available P (NaOH-Po) 

and non-available P (HCl-Pi and Po) were much higher in organic farming than 

conventional farming and forest, especially in the topsoil layer. Compared to organic 

farming, the higher C:Po ratio in conventional farming and forest indicates P limitation. 

Mineralization of Po is enhanced to release mineral P, corresponding with the higher 

activity of acid phosphatase in conventional farming and forest. Concluding, P status is 

considerably altered by land use and management practices, revealing the significance of 

soil organic matter in maintaining P reserves.  

Key words: Land-use change, phosphorus fractions, carbon-to-phosphorus ratio, acid 

phosphatase activity, soil organic matter 
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3.2.2 Introduction 

Land-use change, such as conversion of forest to intensively managed agriculture, is the 

largest global change of the last two centuries due to the increasing demands of feeding 

the growing human population (Tilman et al., 2001; Geissen et al., 2009a; Guillaume et al., 

2015). During the period of 1980–2000, approximately 50% of the new arable land came 

from intact forest, while 28% came from disturbed forest in the tropics (Lambin and 

Meyfroidt, 2011). Furthermore, land-use change significantly alters the physical, chemical 

and biological properties of soil, affecting soil fertility and ultimately reducing the capacity of 

land for sustainable crop production (Matson, 1997; Geissen et al., 2009; Mganga et al., 

2015). 

 

Land-use change has substantial effects on phosphorus (P) availability for plant uptake by 

increasing P losses or P transfer into recalcitrant pools, leading to significant alterations in 

P distribution and availability (Wright, 2009; Maranguit et al., 2017). The main sources of 

soil P are either parent material or application of mineral and/or organic fertilizers 

(Henriquez, 2002). Other than N, P is considered as the largest globally limiting nutrient for 

food production (George et al., 2006; Dieter et al., 2010 ). P availability may be limited due 

to 1) inherent characteristics of the parent material 2) strong sorption of PO4
3- to Al and Fe 

(hydro) oxides or 3) a low input of inorganic and organic fertilizers (Solomon et al., 2002). 

Plants and microorganisms have developed a broad range of mechanisms to enhance the 

acquisition of P, e.g., production of phosphatase enzymes, which are responsible for 

hydrolyzing recalcitrant forms of organic P to make it available to plants (Chen et al., 2002; 

Richardson et al., 2005). Microorganisms play a vital role in P mineralization from various 

organic sources (Gressel et al., 1996; Lopez-hernandez et al., 1998) and transformations 

of soil organic P (Setwart and Tiessen, 1987; Magid et al., 1996; Frossard et al., 2000). 

Thus, soil microorganisms are a key pool not only of C and N, but also of P. Furthermore, a 

majority of the P held in microorganisms can be released quickly and be readily available 

for plant growth (Macklon et al., 1997). Previous studies have examined the effects of land-

use change on P forms, distribution along soil depth, availability for plants and long term 

stability as a consequence of forest conversion to monoculture plantations (Maranguit et 

al., 2017) mineral and manure fertilization (Motavalli and Miles, 2002; Sharpley et al., 2004; 

van der Salm et al., 2017), tillage system (O’Halloran, 1993; Selles et al., 1999; Zamuner et 
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al., 2008) and cropping/vegetation systems (Zhao et al., 2008; Wright, 2009; Dieter et al., 

2010). These studies highlight that the status and distribution of P depends on land use 

and management practices. Although the effects of management practices on P fractions 

are intensively discussed, knowledge of the linkage between microbiological processes and 

P fractions is limited.  

 

Various methods have been developed to determine soil P fractions (Chang and Jackson, 

1957; Bowman and Cole, 1978; Hedley et al., 1982; Tiessen and Moir, 1993).  Hedley et 

al., (1982), developed a sequential chemical P fractionation method that extracts various 

inorganic and organic fractions from labile to stable forms. This has been widely used to 

investigate soil P fractions and P dynamics (Chimdi et al., 2014). Application of the 

sequential fractionation technique permits analysis of the specific extractable fractions of P 

pools to examine the effects of land use and management practices on P dynamics 

(Hedley et al., 1982;Tiessen et al., 1983). Hedley fractionation is based on the analysis of 

inorganic phosphorus (Pi) and organic phosphorus (Po) fractions of different availability 

and chemical binding ability by utilizing extractants of increasing strength (Hedley et al., 

1982; Guo et al., 2000). The following fractions are extracted (i) readily available P for 

plants, i.e., NaHCO3-Pi ii) easily mineralizable P, i.e., NaHCO3-Po and microbial biomass P 

(iii) strongly adsorbed P by aluminum (Al) and iron (Fe) oxides i.e. NaOH-P (iv) P 

associated with calcium (Ca-P), considered as non-available P to plants i.e. HCl-P. 

 

The study site in “Chitwan district” lies in the Terai region, a plain in southern Nepal. After 

eradiation of Malaria in the 1950’s, a people migration scheme was induced in Terai from 

Middle Mountain. The region’s current population growth rate is 1.75%, the highest in 

Nepal (FRA/DFRS, 2014). Consequently, massive deforestation has been utilized to 

support the livelihood of new settlements. Additionally, agricultural intensification through 

conventional farming was implemented for sustaining food security for the growing 

population. Most of the studies in Chitwan focused on the effects of land-use change on 

above and below ground carbon content and stocks (Maharjan et al., 2017). However, 

studies focused on various P pools and linking the response of microbe-induced P 

availability to different land use systems is absent. Thus, this calls for evaluation on the 

effects of land use on P forms and distribution in subtropical soils.  

 

The objective was to assess the impacts of three land use systems, i.e. organic farming, 

conventional farming, and forest, on the forms and distribution of soil P. We hypothesized 

that i) land use affects the availability of inorganic and organic P fractions ii) P stocks, 
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microbial P and acid phosphatase activity are higher in forest followed by organic farming 

and conventional farming.  

 

3.2.3 Materials and Methods 

 3.2.3.1 Site description 

The study was carried out in Chitwan district (27o350N 84o300E) of Nepal. The climate is 

subtropical with an average temperature of 30oC and an average rainfall of 1763 mm year-

1. Three land-use systems were selected (Table 1): forest, organic farming, and 

conventional farming. Both farming sites were located in Fullbari Village Development 

Committee (VDC) and the forest site in Patihani VDC. The soils are Gleyic Cambisols 

(organic farming and forest) and Eutric Cambisol for the conventional farming site (IUSS 

Working Group WRB, 2015). The soil texture at all sites is sandy loam. The organic farming 

site has been under organic farming practices for 15 years. The crop rotations are maize + 

rice + vegetables/mustard, and maize + rice + wheat/lentils for the organic and 

conventional farms, respectively (Table 1).  

 

The organic farm was under vegetable farming during soil sampling, while the conventional 

farm was fallow with remaining rice stubbles. Forest is dominated by the broad leaf Shorea 

robusta commonly known as Sal. The leaves of Sal are collected by local people for 

performing social and religious activities.  

 

Table 1 Description of land use and soil properties (Ap/Ah horizon) 

 

Land use  Management Pesticide pH (H2O) Carbon 

(mg C g-1) 

Nitrogen 

(mg N g-1) 

Organic farming 

= 15 years  

Farmyard 

manure:10 ton ha-1 

yr-1 

Vermicomposting 

No 7.5 21 1.9 

Conventional 

farming 

Urea: 60 kg ha-1 yr-1  

Potassium: 15 kg 

ha-1 yr-1 

Yes 5.0 15 1.2 

Forest Collection of leaf 

litter for social and 

religious activities 

No 5.5 9 0.7 
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3.2.3.2 Soil sampling and preparation  

To assess the effects of land use on P fractions, soils from the three land use systems 

were sampled from 0 to 20 cm depth at intervals of 10 cm. Plant remains, debris and roots 

were removed using tweezers. The samples were kept cold (at 4oC) prior to analysis.  

 

22 grams of air-dried soil from each land use system was placed into 100-ml jars. The soil 

was adjusted to 70% of the water holding capacity (WHC) and pre-incubated for 14 days at 

22oC prior to sequential extraction to restore equilibrium following the disturbance of drying 

and sieving (Hedley et al., 1982). 

3.2.3.3 Sequential P fractionation 

Various organic and inorganic P fractions were determined in soil via the Hedley et al. 

(Hedley et al., 1982)  sequential fractionation method with the modifications of Tiessen and 

Moir (Tiessen and Moir, 1993). This method uses extractants of increasing strength to first 

remove labile Pi and Po, followed by the stable P forms (Fig. S1). 

 

Microbial biomass P (MBP) was determined by chloroform fumigation-extraction (Kouno et 

al., 1995; Cheesman et al., 2010   modified by Yevdokimov and Blagodatskaya, 2014) . 

Briefly, approximately 3 grams of soil was placed into a 50-ml centrifuge tube filled with 30 

ml of deionized water for both fumigated and non-fumigated samples. For fumigated 

samples, 300 µl of chloroform was added to the sample. Both fumigated and non-fumigated 

samples contained one anion exchange membrane (AEM) strip and were kept for 24 h on 

an end-to-end mechanical shaker. After shaking, AEM strips were removed and washed 

three times by gently submerging the strip into deionized water. The AEM strips were 

subsequently immersed into centrifuge tubes filled with 45 ml of 0.25 M H2SO4 and were 

shaken for three hours. Finally, phosphate was measured in the extracts via the malachite 

green colorimetric method (D’Angelo et al., 2001 modified by Yevdokimov and 

Blagodatskaya, 2014). Following MBP extraction, the soils were further extracted 

sequentially for the rest of the P pools. Briefly, 3 grams of soil was placed into a 50-ml 

centrifuge tube and extracted with the following extractants in sequential order: (i) 30 ml 0.5 

M NaHCO3 at pH 8.5, which extracts relatively labile Pi and Po (ii) 30 ml 0.1 M NaOH, 

which extracts Fe and Al bound P iii) 30 ml 1 M HCl, which extracts Ca bound P. After 

addition of extractants, samples were shaken for 16 h and the soil suspensions were 

centrifuged at 3500 rpm for 15 min. The resulting supernatants were filtered using 

Whatman no. 42 filter papers and stored in small vials at 4 °C for P measurement. 
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3.2.3.4 Determination of phosphate 

Total P (TP) and Pi were determined directly from the extracts, while Po was calculated as 

the difference between the TP and Pi. For TP, 5 ml aliquots of each extract were digested 

by ammonium-persulfate and H2SO4 to oxidize dissolved Po to Pi forms. TP was 

determined as the concentration of soluble reactive P (Environmental Protection Agency, 

1997).  

 

For the measurement of Pi, a 150 µl aliquot from each extract was added to a disposable 

96-well polystyrene microplate. 30 µl of Reagent 1 (14.2 mmol L-1 ammonium molybdate 

tetrahydrate + 3.1 M H2SO4) was subsequently added to each sample and the microplate 

was shaken for 10 min. After shaking, 30 μl of Reagent 2 (aqueous polyvinyl alcohol+ 

deionized distilled water + MG carbinol hydrochloride) was added and the microplate was 

shaken for an additional 20 min. After shaking, microplates were incubated at 40 oC for 40 

min. Incubated microplates were read on a Victor microplate reader at 630 nm. The 

microplate was again read after 12 h for evaluation of the stability of measurements. 

Simultaneously, standards were prepared with the same extractants as used for extraction 

of phosphate i.e. NaHCO3, NaOH, HCl, and H2SO4. The standard varied depending on the 

P concentration range (D’Angelo et al., 2001 modified by Yevdokimov and Blagodatskaya, 

2014)). Values  for the residual P fractions and the Po fraction of organic soil at 10-20 cm 

were below the detection limit. Thus, they were not considered in the analyses.  

 
3.2.3.5 Microbial biomass carbon 

Microbial biomass C was determined by the chloroform fumigation-extraction method 

(Vance et al., 1987), based on the difference between C extracted from fumigated and non-

fumigated soil samples using 0.05 M K2SO4. A kEC factor of 0.45 was used to convert 

microbial C flush into microbial biomass C (Joergensen, 1996). 

3.2.3.6 Enzyme activities  

The activity of the enzyme targeting P containing organic compounds (acid phosphatase) 

was assayed using fluorogenically labeled substrates based on 4-methylumbelliferone 

(MUF) (Pritsch et al., 2004). The MUF substrates were dissolved in 2-methoxyethanol 

(Hoppe, 1983) and the dissolved substrate was further diluted with sterile water. All 

chemicals and substrates were purchased from Sigma, Germany.  

 

Briefly, 1 gram of soil from each of the three land uses at 0-10 and 10-20 cm was 

suspended with 50 ml of sterile water using low-energy sonication (40 J s-1 output energy 
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for 2 min). 50 μl of the resultant soil suspension was added to 100 μl of substrate solution 

and 50 μl of buffer (MES) in a 96-well microplate for 2 h (Koch et al., 2007). Fluorescence 

was measured at an excitation wavelength of 355 nm and an emission wavelength of 460 

nm, split width of 25 nm, with a Victor3 1420-050 Multilabel Counter (PerkinElmer, USA). 

Calibration curves, as well as controls for the autofluorescence of the substrate, were 

included in every series of enzyme measurement. Enzymes activities were expressed as 

MUF released in nmol per g dry soil per hour (nmol g-1 soil h-1) (Razavi et al., 2015). 

 

3.2.3.7 Bulk density and elemental analysis 

Bulk density measured by core sampling method. Cores were inserted horizontally at 0-10 

and 10-20 cm depth from the side of the pit. 40 mg of each air-dried, ground soil sample 

was weighted into tin capsules and carbon content determined via a Vario Elemental 

analyzer (Elementar Analysensysteme GmbH, Germany). 

 

3.2.3.8 Data analysis 

P fractions were expressed as the mean of the four field replicates and were presented in 

mg P kg−1 soil. P stocks presented in kg P ha−1 were calculated for the soil depth intervals 

0–10 and 10–20 cm using the following equation (Maranguit et al., 2017): 

  

S = x* ρ*z …………………… (1) 

 

where S is the P stock for fixed depths and (x) is the soil P content at the selected depth 

(z), and ρ is the soil bulk density.  

 

The effects of land use on microbial P, P fractions, total P content, P stocks, C/P ratio and 

phosphatase activity were analyzed using one-way analysis of variance (ANOVA) using the 

statistical software Statistica 12. Homogeneity was met by log transformation of the data 

(Total Pi, Total Po and P stock at 10-20 cm depth). Differences between land uses and 

between depths are accepted as significant at p < 0.05. 

 

3.2.4 Results 

3.2.4.1 Microbial biomass carbon and phosphorus 

Compared with conventional farming and forest, organic farming resulted in higher 

microbial C at both soil depths (350 and 240 µg g-1 soil, respectively at 0-10 and 10-20 cm 



3 Publications and Manuscripts: Study 2 

53 

 

depth) (Fig. 1,  Maharjan et al., 2017, modified). Similarly, microbial biomass P was higher 

(3.6 and 1.0 mg P kg-1 at 0-10 and 10-20 cm depth, respectively) in organic farming 

compared to conventional farming and forest at both depths (Fig. 1). Microbial C and P 

contents for conventional farming and forest were not significantly different. 

 

Figure 1 Microbial biomass carbon (mg C g
−1

) (Maharjan et al. 2017, modified) and Phosphorus (mg 
P kg

−1
) depending on land use. Values represent means ± SE (n= 4). Means followed by different 

letters within the same depth differ significantly (p < 0.05). 

 

 

3.2.4.2 Total phosphorus content and phosphorus stocks 

Total Pi constituted between 58% and 82% of total P. Total Po represented between 18% 

and 42% of total P (Fig. 2). Total Pi and Po was higher in organic farming than 

conventional farming and forest and declined with depth in all soils. After conversion of 

forest, the P stock in soil under organic farming significantly increased by 373% and 170% 

at 0-10 and 10-20 cm depth, respectively (Fig. 2). The resulting increase was much lower 

under conventional farming compared to forest (64% and 36% at 0-10 cm and 10- 20 cm 

depth, respectively). Overall, our results indicate that P stocks are strongly altered by land-

use change. 
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Figure 2 Total content of organic and inorganic P (mg P kg
−1

) (top) and P stocks (kg P ha
−1

) 
(bottom) depending on land use. Values represent means ± SE (n= 4). Means followed by different 
letters within the same depth differ significantly (p < 0.05). 

 

 

3.2.4.3 Phosphorus fractions in soil  

Easily available Pi, i.e., NaHCO3-Pi, was higher in organic farming (21 mg P kg-1 soil at 0-

10 cm depth) followed by conventional farming (11 mg P kg-1 soil at 0-10 cm depth) and 

forest (1 mg P kg-1 soil at 0-10 cm depth) (Fig. 3). A similar trend was observed at 10-20 

cm depth in all three land uses. Similar to NaHCO3-Pi, the highest NaHCO3-Po was found 

in organic farming (10 mg P kg-1 soil in 0-10 cm). However, conventional farming and forest 

soils had similar NaHCO3-Po. In contrast, NaHCO3-Po at 10-20 cm was highest in 

conventional farming, while the content of NaHCO3-Po was similar in organic farming and 

forest. Moderately-available Pi (NaOH-Pi) was higher in forest (26 mg P kg-1 soil) than 

organic farming (22 mg P kg-1 soil). However, NaOH-Pi had same content at 10-20 cm 

depth under different land use system. Moderately-available Po (NaOH-Po) was highest in 

organic farming (82 mg P kg-1 soil) and lowest in forest (10 mg P kg-1 soil). On the other 

hand, moderately-available Po at 10-20 cm depth followed the order: conventional farming 

= organic farming > forest. The content of non-available P (HCl-Pi and Po) ranged from 34-

247 mg P kg-1 soil in organic farming across both depths. Non-available P content was 

similar for conventional farming and forest. Non-available P notably increased (69-590%) 
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under organic farming and decreased by 7-44% under conventional farming (except 0-10 

cm) compared to native forest. Consequently, land use had significant effects on microbial 

P and on Pi and Po fractions (available, moderately-available and non-available), and 

these effects were more prominent in the topsoil. 

 

 

Figure 3 Inorganic and organic soil phosphorus fractions (mg P kg
−1

) depending on land use. Values 
represent means ± SE (n= 4). Means followed by different letters within the same depth differ 
significantly (p < 0.05). 
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3.2.4.4 Carbon to phosphorus ratios and phosphatase activity 

The carbon to organic P (C: Po) ratio ranged between 61 and 202, with the lowest values 

occurring in soils with the highest total soil P (Fig. 4). The highest (202) and lowest ratio 

(61) was detected in the topsoil layers under forest and organic farming, respectively. The 

ratio declined with depth in conventional farming and forest, whereas it increased in organic 

farming. Thus, there was no definite pattern of C:Po ratio with depth. 

 

The potential activity of acid phosphatase at 0-10 cm was higher under conventional 

farming (911 nmol g-1 soil h-1) followed by forest (256 nmol g-1 soil h-1) and organic farming 

(116 nmol g-1 soil h-1) (Fig. 4). A similar trend was observed at 10-20 cm depth in all soils. 

 

Figure 4 Ratio of soil carbon to organic phosphorus and acid phosphatase activity (nmol g
-1

 soil h
-1

) 
depending on land use. Values represent means ± SE (n= 4). Means followed by different letters 
within the same depth differ significantly (p < 0.05). 
 

3.2.5 Discussion 

3.2.5.1 Phosphorus status is influenced by land use 

Land-use type and management greatly influence P status in the soil. Total P which is an 

indicator of long-term P sustainability, especially for highly weathered tropical and 

subtropical soils, was affected by land-use. The high total P content and P stocks found 

under organic farming (Fig.2 ) was due to the high application of farmyard manure as an 

organic fertilizer, which was continuously applied for almost 15 years, as well as the 

influence of the cropping system (Table 2, Fig.5) (Aslam et al., 1999; Daroub et al., 2000; 

Solomon et al., 2002). These changes resulted in enhanced microbial activity, including 

immobilization of P, which resulted in higher microbial biomass P with organic farming. This 

P immobilization by microorganisms sustains long-term P availability after microbial 

biomass turnover (Condron and Tiessen, 2005). Likewise, the relatively large fraction of 
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total Po extracted with HCl, which is not available for plant uptake, is a very important P 

reserve. This will buffer P availability once P in the soil is insufficient for plant growth 

(Maranguit et al., 2017). This is possible through mineralization of organic P by 

phosphatases phosphatases (Chen et al., 2002; Castillo and Wright, 2008). The low total 

Po content in conventional farming and forest compared to organic farming (Fig.2) is due to 

the reduction of SOM in parallel with increasing mineralization of organic P (Fig.4) 

(Schoenau et al., 1989; Solomon et al., 2002). Fallow periods and less input of crop 

residue under conventional farming, and lack of leaf litter input under forest, leads to 

decreases in SOM content. The addition of fertilizers in conventional farming enhances P 

availability for biological uptake (plant and microorganisms). However, it is not sustainable 

in the long run, as this additional P is exported or lost during yield harvest (Schoenau et al., 

1989). While, fertilization in conventional farming may stimulate production of Po through 

microbial P immobilization (Stewart and Sharpley, 1987), which is reflected in increased 

MBP, the MBP content of conventional farming is still lower than under organic farming 

(Fig.1). Poor regeneration and low canopy cover in forest exposes the soil surface to 

sunlight and monsoon rainfall, making it more vulnerable to erosion. Intensive monsoon 

rainfall could erode soil, removing topsoil along with SOM and added fertilizer under forest 

and conventional farming, respectively (Shih et al., 1982). A combination of declining crop 

residue or leaf litter and increased soil erosion leads to reduction of P stocks under 

conventional farming and forest (Table 2, Fig.5) (Chimdi et al., 2014; Wright, 2009; 

Solomon et al., 2002).  

 

 The P status is particularly dependent on management practices i.e. cropping system, 

fertilization, residue management practice and tillage operation (Table 2, Fig. 5) (Motavalli 

and Miles, 2002; Solomon et al., 2002; Wright, 2009). 

 

3.2.5.2 Forms and distribution of soil P  

The higher content of easily- available Pi (NaHCO3-Pi; Fig. 3) and -mineralizable Po (i.e. 

NaHCO3-Po and MBP; Fig. 1 and 3, respectively) under organic farming compared to other 

land use systems (Fig. 3) can be explained by the continuous application of farmyard 

manure. Application of organic fertilizers provides readily available N to plants, which 

increases plant biomass. As a result, more crop residues are incorporated, resulting in 

accumulation of organic matter (C and N) (Paniagua et al., 1995; Roldán et al., 2005). This 

provides a suitable environment for microorganisms and supports higher microbial activity, 

as soil organic C is an important source of energy for microorganisms (Blagodatskaya et 
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al., 2007; Zamuner et al., 2008; Diacono and Montemurro, 2010). Higher microbial biomass 

contributes to increasing Po mineralization, resulting in higher availability of organic and 

inorganic P under organic farming especially in the topsoil (Fig. 1, 3 and 5) (Cooperband, 

1992; Paniagua et al., 1995; Motavalli and Miles, 2002). Under conventional farming, the 

application of pesticides suppressed microbial biomass C and P accumulation (Table 1, 

Fig. 1) (Oberson et al., 1996). However, application of mineral fertilizers can contribute to 

Pi availability under conventional farming (Neufeldt et al., 2000). Under forest, the lower 

availability of easily-available P can be attributed to leaf litter collection (Maranguit et al., 

2017) by villagers for performing social and religious activities. Additionally, the absence of 

fertilizer application leads to further reductions in availability of easily-available P compared 

with other land use systems (Table 2, Fig. 5). Depletion of NaHCO3-Po, especially in the 

topsoil, is due to P losses related to higher crop yields under conventional farming than 

under organic farming (Guo et al., 2000). 

 

Moderately-available P (NaOH-extractable P) involves long-term transformation of soil P to 

mostly absorbed forms associated with Al and Fe oxides (Hedley et al., 1982; Tiessen et 

al., 1984; Schoenau et al., 1989). Reduction of moderately-available Po (NaOH-Po) in 

conventional farming and forest (Fig. 3) is associated with low SOM levels resulting from 

the export of plant biomass during yield harvest and collection of leaf litter for religious 

activities, respectively (Table 2, Fig. 5). Under forest, the pattern of P cycling depends on 

differences in aboveground biomass compared to agroforestry systems (Chacón and 

Dezzeo, 2004). As litter input is lower under forest compared to organic farming, the soil 

capacity to retain P in the form of NaOH-extractable Po is diminished (Zamuner et al., 

2008). However, the Po content was 2-4 times higher than Pi content in organic and 

conventional farming soil, indicating the importance of Po as a P reserve in these land use 

systems. Altogether, Po is involved in the long-term transformation of soil P and in P 

cycling when soil Pi reserves are limited (Buehler et al., 2002). 

 

Ca-bound P extracted by HCl is regarded as more stable pool than other P fractions (Diaz 

et al., 2006). Ca-bound P is considered non-available for plant growth. However, non-

available P can become available for plants following desorption from Ca-bound 

compounds (Maranguit et al., 2017). Some plants produce specialized roots structures 

(e.g., cluster roots) that produce large amounts of carboxylates, which release P from 

strongly-sorbed forms (Lambers et al., 2008), thus allowing plants to mine desorbed P. 

Certain bacteria and plants have been shown to secrete low-molecular-weight-complexing 

molecules, such as organic acids, to increase the solubility/dissolution of inorganic P-bound 
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molecules (Hayes et al., 2000; George et al., 2004; Richter et al., 2006). Depletion of HCl-P 

under conventional farming compared with organic farming could be the result of intensive 

cropping and tillage (Guo et al., 2000; Zamuner et al., 2008). Intensive cropping with 

frequent tillage operation reduces masses of macroaggregates (Cabria et al., 2005) and 

decreases the concentration of Ca bound P. This leads to high levels of P mining. 

Considerably higher (4-8 times) fractions of non-available Po than Pi fractions were 

observed in organic farming soil than in the other soils (Fig. 3). Land-use change from 

forest to organic farming increases non-available Po, especially in the topsoil. The 

decrease of non-available Po with depth under all land use systems corresponds with a 

decline in soil organic matter (SOM), which is major source of P when mineralized (Magid, 

1993; Sarapatka, 2003; Maranguit et al., 2017). This demonstrates the significance of SOM 

for sustaining fertility in land use stems (Tiessen et al., 1994). Altogether, the fraction of 

inorganic and organic P forms is highly influenced by land use and management practices 

(Table 2, Fig. 5). 

 

3.2.5.3 Carbon to phosphorus rations and enzyme activity 

The ratio of soil organic C to organic P (C:Po) can be used to estimate P mineralization 

(Solomon et al., 2002; Chacón et al., 2005). Plants and microorganisms can mineralize 

organic P by synthesizing phosphatase enzymes according to the P requirement (McGill 

and Cole, 1981; Dieter et al., 2010). Sufficient concentrations of available P for plant 

growth suppresses the production of phosphatase and the mineralization of organic P, 

leading to the accumulation soil organic P and a diminishing C:Po ratio (Zhao et al., 2008; 

Dieter et al., 2010). However, limitations in available P for plant growth triggers 

phosphatase synthesis, which promotes P mineralization compared to C and results in an 

increased C:Po ratio (McGill and Cole, 1981; Dieter et al., 2010; Spohn and Kuzyakov, 

2013).  

 

If soil has sufficient available phosphate, the C:Po ratio is < 100, while a ratio of >200 

indicates insufficient phosphate availability (Smeck, 1985; Dieter et al., 2010). The C: Po 

ratio of soils ranged from 61-80 in organic soil, 131-144 in conventional farming soil and 

104-202 in forest soil (Fig. 4). C: Po ratios in organic farming soil were below 100, 

indicating a strong effect of farmyard manure. However, the C: Po ratios in conventional 

farming and forest soils are higher (>100), implying P limitations of P especially in forest 

soils. Thus, mineralization of organic P occurs under these land use systems to release 

mineral P (Frossard et al., 2000; Allison and Vitousek, 2005; Frank and Groffman, 2009). 
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This is evidenced by higher acid phosphatase activity under conventional farming and 

forest compared to organic farming (Fig. 4). As organic farming practices provide ample 

available P, this soil has the lowest acid phosphatase activity, indicative of low P demand 

(Smeck, 1985; Oberson et al., 2001). Although P limitation is more prominent under forest, 

acid phosphate activity was higher in conventional farming soil than forest soil. This 

discrepancy can be explained by the effect of the cropping system. Demand for available P 

is higher under conventional farming than forest due to the regular cultivation of crops (Fig. 

5). Additionally, microbial biomass P is higher in conventional farming, suggesting that 

microorganisms enhance the production of acid phosphatase to supply P for plant growth 

(Oberson et al., 1993; Oberson et al., 2001). This shows that microorganisms play key role 

in the mineralization of organic P and, consequently, the availability of soil P. 

 

 

 

Figure 5 conceptual diagrams representing the effects of land use on soil phosphorus. 

Colors: green=easily-available phosphorus, yellow=moderately-available phosphorus, 

brown= non-available phosphorus. Olive color upward arrow represents factors contribution 

for increasing different fractions of phosphorus in soil under organic farming. Light blue 

and light pink downward arrows indicates factors responsible for decreasing different 

fractions of phosphorus in soil under conventional farming and forest, respectively. The 

double circle arrows (peach color) indicate the phosphate activity. Color intensity of 

horizontal arrow i.e. light to dark purple represents the lower to higher status of phosphorus 

stock in soil under forest conventional farming and organic farming. Litter, crop residue and 

organic fertilizers are dominant factor controlling the soil phosphorus stock in forest, 

conventional farming and organic farming, respectively. Red line (——) shows P losses 

after land-use change.  
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3.2.6 Conclusions 

The distribution of soil P among various inorganic and organic P forms was strongly 

influenced by land use. P stock was highest under organic farming and lowest under forest. 

Soil concentrations of Po were higher than Pi under all land-use systems. Po was primarily 

composed of HCl-Po and NaOH-Po, with NaHCO3-Po comprising a small fraction, 

indicating that availability of total P is low. Organic matter input, i.e., farmyard manure, crop 

rotation, and incorporation of residue, are the key factors responsible for the high P content 

under organic farming. Lack of continuous cropping, of residue incorporation or of litter 

input are responsible for declining SOM concentrations, and consequently low P content, 

under conventional farming and forest. The relationship between the C: Po ratio and 

phosphatase activity elucidates the limitation of P under conventional farming and forest, 

leading to enhanced production of acid phosphatase activity. Overall, the observed 

differences in the distribution and amounts of P reflect the importance of SOM and 

microbial biomass for maintaining P reserves in subtropical soils. 
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3.2. 9 Supporting Information 

 

Figure S1 Sequential fractionation of phosphorus (P) in soil (Hedley et al., 1982 modified by Tiessen 
and Moir, 1993). The P fractions were classified into three groups: 1) easily-available P included 
NaHCO3-extractable P and microbial P; 2) moderately-available P included P extracted from 0.5 M 
NaOH and 3) non-available P included P extracted by 1 M HCl (Tiessen et al., 1984). Dashed line 
(——) shows microbial biomass P was measured based on the method of Kouno et al., (1995) and 
Cheesman et al., (2010) slightly modified by Yevdokimov and Blagodatskaya (2014). 
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3.3.1 Abstract 

Variations in land use systems and nutrient input (nitrogen (N) and phosphorous (P)) 

strongly affect carbon (C) dynamics and storage in soil. However, a mechanistic 

understanding of the effects of labile C and fertilizer input on soil organic matter 

decomposition among land use systems remains incomplete, especially in tropics areas. 

14C labeled glucose and nutrients were added to soils (0-20 cm) from organic farming, 

conventional farming, and forest. 14CO2 and total CO2 emissions were measured 

continuously over 45 incubation days and microbial biomass was measured at the 

experiment’s conclusion. Increased soil organic matter (SOM) decomposition was 

accompanied by decreasing microbial biomass with C addition in organic soil, pointing to 

microbial-necromass as the source of priming. Addition of N with C strongly suppressed 

SOM decomposition in conventional and forest soil, providing support for the preferential 

microbial substrate utilization mechanism. While addition of P with C accelerated 

decomposition of SOM in three land use type due to microbial mining of limiting nutrients 

(i.e. N). The interaction of N and P fertilization when combined with C has contrasting 

effects on the decomposition process. N and P fertilization promotes the decomposition 

process in organic soils, supporting the theory of stoichiometric decomposition. However, P 

fertilization suppressed the decomposition process in N-limited conventional and forest 

soils, indicating that SOM decomposition in more responsive to N addition than P. In 

Conclusion, SOM dynamics are regulated by the availability of essential nutrients (N and P) 

under different land use systems. Thus, N and P availability should be considered when 

analyzing C dynamics and sequestration in tropic ecosystems. 

 



3 Publications and Manuscripts: Study 3 

68 

 

 

Keywords: Land use; nutrients; soil organic matter decomposition; microbial-necromass 

Corresponding Author: Menuka Maharjan, menuka48maharjangmail.com 

3.3.2 Introduction 

Land-use change is one of the most important factors affecting soil organic carbon (SOC) 

dynamics (Van Noordwijk et al., 1997; Don et al., 2011; Guillaume et al., 2015). Global 

carbon loss due to land-use change was about 48-114 Pg C prior to 1850 (Houghton, 

2012). This figure increased dramatically in the last 150 years, with losses of 108–188 Pg 

C during the period of 1850-2005. While these losses mostly originate from biomass 

removal, 25 % resulted from accelerated soil organic matter (SOM) decomposition due to 

land-use change (Houghton, 2012; Lal, 2004). Therefore, loss of SOC is a well-known 

consequence of land-use change, especially in conversions of natural ecosystems to 

agricultural land (van Noordwijk et al., 1997; Houghton, 2012). 

The effect of land use on soil C content is mainly the result of fertilizer application 

(Townsend et al., 1996; Christensen and Johnston, 1997; Nadelhoffer et al., 1999), crop 

residue management practices (Shahbaz et al., 2015), conversion tillage and conversion of 

cropland to grassland (Smith et al., 2000; Six et al., 2002; West and Post, 2002). Fertilizer 

application is the most common anthropogenic practice to increase plant productivity for 

sustaining the growing population (MA, 2005). However, the effects of changes in 

management practices have not been thoroughly considered in estimations of global C loss 

(Kutsch et al., 2010). 

It has long been recognized that nutrient limitation restricts microbial respiration, however, 

it is challenging to predict which nutrients regulate respiratory activity in specific 

ecosystems (Reed et al., 2011; Fisk et al., 2015). Globally, N is considered as one of the 

most limiting nutrients for plant growth, significantly affecting plant productivity in most 

natural ecosystems (Bobbink et al., 2010). Hence, prior studies have focused on the 

potential role of N enrichment on CO2 emissions and SOC dynamics in different land use 

systems (Cleveland and Townsend, 2006; Waldrop and Zak, 2006; Janssens et al., 2010; 

Liu and Greaver, 2010). These studies have reached divergent conclusions, showing 

positive negative or no effect of N addition on SOM decomposition. In nutrient limited soil, 

N addition stimulates microorganisms to mine for nutrients from native SOM (Poeplau et 

al., 2016) (Zang et al 2017), enhancing decomposition of SOM, i.e., a positive priming 

effect (PE). However, in nutrient-rich soil, microorganisms will utilize added N instead of 

decomposing native SOM (Dijkstra et al., 2013; Cheng et al., 2014), reducing the 
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decomposition of SOM, i.e., a negative PE. These two mechanisms are referred to as SOM 

mining and preferential microbial substrate utilization, respectively (Dijkstra et al., 2013; 

Cheng and Kuzyakov, 2005). Importantly, it is challenging to predict ecosystem responses 

to N fertilization (Poeplau et al., 2016) in contrasting soil types. However, the diverse 

responses recorded in previous N fertilization studies indicate that the effect of N on SOC 

dynamics might depend on presence or absence of other nutrients in soils (Townsend et 

al., 2011) under varying environmental conditions. This calls for further analysis of the 

relationship between SOM decomposition and N fertilization (Chen et al., 2007) under 

different land use systems with diverse nutrients contents. Other than N, P is another 

limiting nutrient in soil across different ecosystems. The effect of P addition on SOC 

dynamics are not well studied (Poeplau et al., 2016). However, evidence from prior studies 

demonstrated that P addition significantly increases soil CO2 respiration leading to C 

losses, mostly in forest soils (Cleveland et al., 2002; Cleveland and Townsend, 2006; Fisk 

et al., 2015). This calls for further analysis for P addition on soil C sequestration under 

contrasting land use systems.  

While prior studies have investigated the effects of nutrient availability on SOM 

decomposition, most analyses were limited to single nutrients (N or P). Not surprisingly, the 

potential effects of multiple-nutrient additions (N in conjunction with P) on SOM 

decomposition have rarely been addressed under different land use systems (Fornara et 

al., 2013). Furthermore, the analysis of C sequestration remains incomplete without 

consideration of the effect of multiple nutrient additions on the decomposition process. 

Thus, understanding the interaction between single vs. multiple nutrient availability and C 

sequestration in soil deserves attention, and is essential to accurately predict the fate of 

soil C under changing nutrient regimes in response to environmental change (Paterson et 

al., 2009; Reed et al., 2011; Fisk et al., 2015).  

Thus, this study was motivated by the need to understand the mechanism of priming 

effects in response to single vs multiple nutrient additions under different land use systems, 

i.e., organic farming, conventional farming, and forest. We hypothesized that i) C addition 

with N addition suppresses decomposition of SOM ii) C with P addition accelerates 

emission of CO2 across land use systems, and iii) multiple nutrient (N+P) addition with C 

increases decomposition of SOM across land use systems. To test these hypotheses, we 

conducted a laboratory incubation experiment using soils from three land use systems with 

addition of labile C and other nutrients (N, P). We added nutrients both individually (N or P) 

and in combination, which allowed us to examine the effects of these different nutrient 

inputs on CO2 emissions and the soil priming effect. 



3 Publications and Manuscripts: Study 3 

70 

 

3.3.3 Materials and Methods 

3.3.3.1 Site description and soil sampling 

Soil samples were collected from three land use systems (organic farming, conventional 

farming, and forest) in the Chitwan district (27°35′N 84°30′E) of Nepal. The climate of this 

area is subtropical, with an average temperature of 30oC and annual rainfall of 1763 mm. 

The texture of the soil is sandy loam. 

 
The organic farm has been under organic management for 15 years. The crop rotation is 

maize+rice+vegetables/mustard in organic farming and maize+rice+wheat/lentils in 

conventional farming. About 10 ton ha-1 yr-1 of farmyard manure and vermicomposting are 

applied in organic farming, whereas urea (60 kg ha-1 yr-1) and potassium (15 kg ha-1 yr-1) 

are added in conventional farming. Forest is dominated by Shorea robusta, commonly 

known as Sal. Pesticides are applied only in conventional farming. Detailed descriptions of 

the study sites are provided in (Menuka Maharjan et al., 2017). 

Soil samples were collected from the upper 0-20 cm from four random sampling locations 

in each land use system. Fine roots, plant remnants, and debris were carefully removed 

using tweezers. The samples were kept cold (~4 °C) prior to analysis. The soils are 

classified as Gleyic Cambisols for the organic farm and forest, and Eutric Cambisol for the 

conventional farm (IUSS Working Group WRB, 2015). The chemical properties of the soils 

under different land-use system are presented in Table 1. 

Table 1 Description of chemical properties of soil under different land use systems 

 

Land use Total C (%) Total N (%) Total P (mg P kg-1soil) pH (H2O) 

Organic farming = 

15 years 

1.7 0.16 332.2 7.5 

Conventional 

farming 

1.3 0.11 130.0 5.0 

Forest 0.7 0.06 89.4 5.5 
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3.3.3.2 Experimental design 

22 g (oven-dried weight) of soil from each land use system was weighed into a 100-ml jar. 

The soil was adjusted to 50% of the water holding capacity (WHC) and pre-incubated for 

15 days at 22oC. After pre-incubation, N as KNO3 (200 kg ha-1) and P as KH2PO4 (120 kg 

ha-1) was added to the soils, except for control and only glucose addition treatments. After 

15 days of nutrient addition, soil was amended with either distilled water (control treatment) 

or with glucose (other treatments). Uniformly-labeled 14C glucose was added at a rate of 

239 μg C g-1 soil (final activity of 7514 DPM g-1 soil), 184 μg C g-1 soil (final activity of 7401 

DPM g-1 soil) and 132 μg C g-1 soil (final activity of 7485 DPM g-1 soil ) in organic farming, 

conventional farming and forest, respectively. The amount of glucose addition was 

equivalent to 30% of initial microbial biomass carbon (MBC) in the three land use systems. 

Glucose was applied to soil as a solution to reach the optimal soil moisture content of 70% 

of WHC. Each treatment had four replicates in respective land use system for each 

sampling date. In total, there were five treatments in each land use system: 1) Control 

(water only, Ctl), 2) Glucose only (C), 3) Glucose +Nitrogen (C+N), 4) Glucose 

+Phosphorus (C+P), and 5) Glucose+ Nitrogen+ Phosphorus (C+N+P). 

2.3.3.3 Incubation and sampling 

After adding distilled water or glucose solution to the soil, small vials with 3 ml of 1 M NaOH 

were placed in the incubation vessels to trap CO2. The vessels were immediately sealed 

and incubated for 45 days at 22oC, with moisture maintained at 70% WHC throughout the 

incubation period. The vials containing NaOH were removed and replaced by new vials at 

1, 3, 5, 7, 11, 14, 21, 28, 35 and 45 days. CO2 trapped in NaOH solution was precipitated 

with 0.5 M BaCl2 solution. The total amount of CO2 trapped in the vials was measured by 

titration of 0.25 ml of NaOH solution with 0.025 M HCl using phenolphthalein as an 

indicator. For 14C activity measurement, 1ml of 14CO2 enriched NaOH from the CO2 traps 

was mixed with 3 ml of the scintillation cocktail Rotiszint EcoPlus (Carl Roth Company, 

Germany) and measured using a Hidex 300 SL Automatic TDCR Liquid Scintillation 

Counter (Beckman Coulter Inc., USA). Prior to measurements, samples were properly 

mixed and homogenized for 10 s using a Vortex genie 2 (Scientific Industries INC, USA), 

and kept overnight. The 14C counting efficiency and the 14C activity measurement error 

were around 80% and 2% respectively. 
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3.3.3.4 Microbial biomass 

Microbial biomass C was measured at the end of the incubation period and determined by 

the chloroform fumigation method (Vance et al., 1987). Briefly, 8 g of soil was divided in 

two subsamples. One subsample (about 4 g) was fumigated with chloroform for 24 h. Both 

subsamples were shaken for 1 h with 20 ml of 0.05 M K2SO4. The obtained extracts were 

analyzed for the total C concentration using a 2100 TOC/TIC analyzer (Analytik Jena, 

Germany). The extracts of the non-fumigated subsamples were used to measure dissolved 

organic carbon (DOC). The total amount of extractable MBC was calculated based on the 

difference of K2SO4-extracable C between fumigated and non-fumigated subsamples using 

a kEC factor of 0.45 (Joergensen, 1996). The 14C activity both in fumigated and non-

fumigated extracts was measured in 5 ml aliquots added to 15 ml of scintillation cocktail. 

The 14C activity in microbial biomass was calculated by taking the difference of the activities 

from fumigated and non-fumigated samples. 

3.3.3.5 Calculation and statistical analysis 

The amount of glucose-derived C (CG-derived) was calculated based on the current 14C 

radioactivity (14C curr), the amount of added glucose (14CG), and the initial radioactivity of 

the added glucose (14Cinital) in each land use-system: 

CG-derived = 14Ccurr* CG / 14Cinitial       (1) 

Then, SOM-derived C was calculated by following equation: 

CSOM-derived = Ctotal - CG-derived       (2)  

      

where C total is the total amount of C in the corresponding pool (CO2, DOC, microbial 

biomass). 

At the final, priming effects (PE) were calculated by using following equation: 

PE = [CO2] total- [CO2]G - [CO2] control           (3) 

 

where [CO2]total, [CO2]G and [CO2]control represent CO2 emissions from soil after nutrients 

treatment, only glucose treatment and without any amendment, respectively. 

The effect of nutrients amendment on CO2 rate, cumulative CO2, priming effect, and MBC 

in different land-use system were analyzed using one-way analysis of variance (ANOVA) at 

a significance level of p<0.05 using the statistical software Statistica 12. 
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3.3.4 Results  

3.3.4.1 Cumulative CO2 and priming effects 

Initially, C and nutrient addition resulted in high CO2 emission rates, which sharply 

decreased within 24 h across all three land use system and recovered after 2 weeks of 

incubation (Fig.1). C addition increased SOM-derived CO2 emissions, causing positive PE 

(37 µg C g-1) in soil under organic farming over 45 days (Fig. 3a). In other soils, however, 

the PE was much lower. For example, slightly positive PEs were observed 45 days after C 

addition in soil under conventional farming (1 µg C g-1) and forest  (6 µg C g g-1), 

respectively (Fig. 3b, 3c). There was a strong interaction of added glucose and mineral N in 

all land use systems. SOM-derived CO2 in C+N treatments were significantly higher than 

for C-only treatments in soil under conventional farming and forest, causing strong negative 

PEs of 33 and 52 µg C g-1, respectively. However, SOM-derived CO2 was not significantly 

different in C+N and C treatments under organic fertilization. Application of P in addition to 

C stimulated the PE by 52–946% (Fig. 3). Interestingly, the addition of C and N in 

conjunction with P showed contrasting effects on SOM decomposition i.e. positive priming 

in soil under organic farming (66 µg C g g-1) and negative priming in conventional farming 

(35 µg C g g-1) and forest (13 µg C g g-1) (Fig. 3). Cumulative 14CO2 emissions were higher 

after C+P additions compared to other treatments in soil under organic farming. In soil 

under conventional farming and forest, the emission of cumulative 14CO2 was similar 

among treatments (Fig.S1). 

Overall, P addition accelerated decomposition of SOM in all land use systems, while N 

addition suppressed SOM decomposition under conventional farming and forest. Addition 

of N in conjunction with P promoted the decomposition process in soil under organic 

farming, while suppressing decomposition under conventional farming and forest (Fig.2). 

 

 



3 Publications and Manuscripts: Study 3 

74 

 

 

Figure 1 Rate of CO2 emission in soil under organic farming (a), conventional farming (b), and forest 
(c). Control, C, C+N, C+P, and C+N+P in the figure represent the addition of water, glucose only, 
glucose + nitrogen, glucose + phosphorus, glucose + nitrogen + phosphorus, respectively. Values 
are means ± standard error (n = 4). 
 
 

 

Figure 2 Cumulative CO2 derived from soil organic matter (blue) and from added glucose (blank) in 
soil under organic farming (a), conventional farming (b), and forest (c) at the end of incubation. 
Control, C, C+N, C+P, and C+N+P in the figure represent the addition of water, glucose only, 
glucose + nitrogen, glucose + phosphorus, glucose + nitrogen + phosphorus, respectively. Values 
are means ± standard error (n = 4). Capital letters indicate the significance difference among 
treatments for SOM derived cumulative CO2 emission. Small letters indicate the significance 
difference among treatments for Glucose derived cumulative CO2 emission. 
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Figure 3 Cumulative primed CO2 emission in soil under organic farming (a), conventional and 
farming (b) and forest (c). C, C+N, C+P, and C+N+P in the figure represent the addition of glucose 
only, glucose + nitrogen, glucose + phosphorus, glucose + nitrogen + phosphorus, respectively. 
Values are means ± standard error (n = 4). 
 

3.3.4.2 Microbial biomass 

C addition alone and C addition with N significantly decreased SOM-derived microbial 

biomass by 68 and 90 µg C g-1, respectively, in organic soil after 45 days incubation (Fig. 

4a). In contrast, SOM-derived microbial biomass increased after addition of C with P (by 

12%) and N+P (by 18%) in organic soil (Fig.4a). SOM-derived microbial biomass increased 

by 22% after C and P addition in conventional soil (Fig. 4b), whereas no effect was found 

for other treatments. There was no significant effect of C addition alone and in conjunction 

with nutrients on SOM-derived microbial biomass in forest soil (Fig. 4c). The incorporation 

of 14C was higher in organic soil (up to 24 µg C g-1) and conventional soil (up to 21 µg C g-1) 

than in forest soil ( up to 9 µg C g-1), but did not differ significantly between treatments in 

each land use type (Fig.4a, 4b, 4c). 
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Figure 4 Microbial biomass derived from soil organic matter and from added glucose in soil under 
organic farming (a), conventional farming, (b) and forest (c) at the end of incubation. Control, C, 
C+N, C+P, and C+N+P in the figure represent the addition of water, glucose only, glucose + 
nitrogen, glucose + phosphorus, glucose + nitrogen + phosphorus, respectively. Values are means ± 
standard error (n = 4).  
 

3.3.5 Discussion  

Varying microbial respiratory responses to the addition of single vs multiple nutrients in 

individual land use types (Fig.2) requires the mechanistic understanding of various 

sequestration responses under different nutrient availabilities (N vs P vs N+P). Specifically, 

C addition increased cumulative CO2 emission (by 33%) but decreased microbial biomass 

(by 16%) in soil under farming (Fig. 2a, 4a.). This is contrary to our general assumption of 

increased CO2 emissions linked to increases in microbial biomass. Moreover, the amount 

of the primed CO2 emission (37 µg C g-1) was comparable to decreased microbial biomass 

(i.e. 47 µg C g-1) (Fig.3a and 4a). Similarly studies have demonstrated an increase in SOM-

derived CO2 despite reductions in microbial biomass of up to 60% following addition of 

plant residue (Shahbaz et al., 2017). This reflects the primed CO2 arises from reutilization 

of microbial necromass (produced after a strong decrease in microbial biomass), indicating 

that necromass serves as an SOM primer (Miltner et al., 2009; Miltner et al., 2012; 

Shahbaz et al., 2017). Thus, our results provide further support for increases in microbial-

necromass as a new mechanism of PE induction. Labile C addition stimulates microbial 

activity, which can be verified by the fast mineralization of 14C-glucose in the beginning of 

incubation (Fig. S1). More than half of the added 14C-glucose was already mineralized to 

CO2 after 20 days. Thus, the stimulated microorganisms start to decompose SOM to fulfill 

metabolic requirements (Blagodatskaya and Kuzyakov, 2008; Mason-Jones and Kuzyakov, 

2017) in the organic treatment. However, microorganisms may utilize added labile C for 

maintaining their population, as no energy was present for decomposing SOM due to 
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strong limitation of nutrients (N and P) in soil under conventional and forest. This is 

evidenced by the stability of microbial biomass after C addition (Fig. 4 b, 4c), demonstrating 

negligible PE (Fig. 3b, 3c). 

In contrast to C addition, C with N addition caused a strong negative PE in soil under 

conventional farming and forest (Fig.3). Microbial respiration following N addition depends 

on N availability and total N content in soil, and is therefore a good marker of N availability 

in land use systems (Poeplau et al., 2016). The content of N and P was much lower (Table 

1) in conventional and forest soil, implying a higher limitation of nutrients (N and P) than in 

soil under organic farming. In nutrient limited soil, i.e., conventional farming and forest, 

microorganisms prefer to utilize added N instead of decomposing SOM for fulfilling N 

requirements, alleviated N-mining (Moorhead and Sinsabaugh, 2006; Craine et al., 2007; 

Poeplau et al., 2016). This is referred to as preferential microbial substrate utilization 

(Kuzyakov, 2002). However, short-term negative priming at the beginning and positive PE 

at the end of incubation was observed with C and N addition in soil under organic farming 

(Fig.3a). Added C and N is limited after long-term incubation, which is demonstrated by the 

fast utilization of 14C-glucose at the beginning of organic treatment (Fig S1). These energy 

and nutrient limitations may promote the transitions of microorganism from the active to 

dormant state, which was evident from a decrease in microbial biomass (by 23%) in the soil 

under organic farming (Fig. 4a). These results again reflect the reutilization of microbial 

necromass as primed CO2 (Miltner et al., 2009; Miltner et al., 2012), contributing to the 

decomposition of SOM to fulfill nutrient demands for the remaining microorganisms 

(Shahbaz et al., 2017). Thus, our first hypothesis that N addition suppresses the 

decomposition of SOM was confirmed in soil under conventional and forest. 

In contrast to the suppressive effects of N, P addition in combination with C enhanced (up 

to 42%) microbial respiration across all land use type (Fig 2). A lower C:P ratio of the DOM 

fraction as a result of P addition could lead to faster decomposition of SOM by the P-limited 

soil microbial community (Cleveland et al., 2006). In our study, addition of C+P compared 

to C alone increased microbial biomass up to 42% (Fig.4). These results indicate that P 

addition may activate microorganisms, increasing their demand for N. Thus, 

microorganisms likely increased SOM mining to meet this increased demand for N 

(Moorhead and Sinsabaugh, 2006; Meyer et al., 2017). Hence, our second hypothesis, 

which predicted that C with P addition would accelerate CO2 emissions, was confirmed by 

the increased CO2 emission in soil for land use systems. 
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Similar to N addition, C with multiple nutrient (N+P) addition strongly suppressed the 

decomposition of SOM in soil under conventional farming and forest (Fig.2b, 2c). The 

content of N and P was much lower (Table 1), implying greater N and P limitations in 

conventional and forest soil than in soil under organic farming. This is supported by the 

faster mineralization of added glucose after nutrient addition relative to C-only additions 

(Fig. S1). Furthermore, PE responded more to N than to P in soil under conventional 

farming and forest after addition of multiple nutrients. The potential explanation that the 

decrease in respiration resulted from a reduction in microbial biomass after N addition 

(Ramirez et al., 2012; Janssens et al., 2010; Liu and Greaver, 2010) is not valid in our 

study, where microbial biomass was stable following addition of N and N+P. Active 

microbial biomass, instead of total microbial biomass, contributes to soil respiration 

(Salazar-Villegas et al., 2016), and should thus be the focus when analyzing decomposition 

processes. Additionally, N addition alters the microbial community structure by increasing 

the growth of bacterial-grazing protozoans (Clarholm, 1985; Blagodatskaya et al., 2014). 

Therefore, we assume that active microbial biomass could decrease while total microbial 

biomass remained stable in these land use types. Furthermore, protozoans might modify 

the bacterial community structure after N addition, decelerating the decomposition process 

in conventional and forest soil. Notably, it implies that N availability could play a crucial role 

in microbial community structure. 

However, soil under organic treatment showed a strong positive PE after addition of 

multiple nutrients (Fig. 3a), which could be attributed to increased microbial biomass (by 

18%) (Fig.4a). SOM decomposition has the tendency to be faster in nutrient-rich than in 

nutrient-limited soil (Torn et al., 2005), further suggesting that increased nutrient availability 

could result in stronger soil respiration. Organic soil receives farmyard manure, leading to 

high organic C, total N (Maharjan et al., 2017) and total P (Table 1). Further additional 

nutrients stimulate microorganisms and enhance SOM decomposition to fulfill the 

enhanced microbial metabolic requirements, supporting the theory of stoichiometric 

decomposition (Hessen et al., 2004; Chen et al., 2014) in the soil under organic farming. 

Overall, the results of multiple nutrients addition showed that the effect of N addition was 

more pronounced than for P addition in conventional and forest soils. Our third hypothesis, 

that C addition with multiple nutrients increases decomposition of SOM across land use 

systems, was supported for soil under organic farming but rejected for soil under 

conventional farming and forest. 
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3.3.6 Conclusions 

Our findings highlight the various mechanisms involved in SOM decomposition under 

single vs multiple nutrients availability with organic, conventional and forest soil. C addition 

accelerated SOM decomposition, while no incorporation of SOM-derived C into microbial 

biomass was detected in organic soil. This suggests that the primed CO2 was derived from 

the reutilization of microbial necromass (produced after a strong decrease in microbial 

biomass), indicating that necromass served as an SOM primer. However, negligible or no 

PE corresponded with stable microbial biomass in conventional and forest soils. N addition 

with C resulted in reduced SOM decomposition in conventional and forest soil, which 

supports the preferential microbial substrate utilization theory. This implies that 

microorganisms prefer to utilize added C and N instead of decomposing SOM to fulfill their 

energy and nutrient requirements. In contrast to the suppressive effects of N, P addition in 

combination with C enhanced microbial respiration in all land use systems. This could be 

attributed to increases in microbial biomass and their resulting increased nutrient (i.e. N) 

demands. The accelerated SOM decomposition following combined N and P addition was 

more pronounced than for single nutrient additions, supporting the theory of stoichiometric 

decomposition in organic soil. SOM decomposition responded more to N than to P addition 

in conventional and forest soils, resulting in negative PEs after multiple nutrients addition. 

Our findings suggest that the direction and magnitude of SOM decomposition is regulated 

by the availability of essential nutrients under different land use systems.  
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Figure S1 Cumulative 
14

C-glucose decomposition in soil under organic farming (a), conventional 
farming, (b) and forest (c). C, C+N, C+P, and C+N+P in the figure represent the addition of glucose 
only, glucose + nitrogen, glucose + phosphorus, glucose + nitrogen + phosphorus, respectively. 
Values are means ± standard error (n = 4). 
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3.4.1 Abstract 

Decomposition of soil organic matter (SOM) significantly affects the soil organic carbon 

pool, contributing to greenhouse gas emissions and climate change. However, the 

mechanism behind environmental-induced alterations to SOM decomposition has yet to be 

elucidated. In natural ecosystems, soil under different land use systems exhibits diverse 

soil and microbial properties, all of which constitute soil quality. Soil under organic farming, 

conventional farming, and forest may be classified as rich, medium, and poor quality, 

respectively, due to different management practices. Differences in soil quality support 

diverse microbial growth strategies i.e. r, K and L- strategists in soil under organic farming, 

conventional farming, and forest, respectively. r- strategists form necromass via autolysis to 

cope with starvation, which corresponded with decreasing microbial biomass at the end of 

incubation. The surviving microorganisms were activated by utilizing the resultant 

necromass as source of substrate. This lead to increased SOM decomposition to fulfill the 

heightened nutrient requirements of activated microorganisms, which was evident from the 

positive PE in rich soil under organic farming. K- strategists went into dormancy, while L- 

strategists remained stable under starvation, reflecting negligible to fluctuating PE in 

medium quality soil under conventional farming and poor quality soil under forest, 

respectively. In conclusion, microbial growth strategies, which are influenced by soil quality, 

regulate the decomposition of SOM, revealing soil quality as the driver of PE in 

ecosystems. 

 

Keywords: Priming effect; microbial-necromass, soil quality, microbial growth strategies 

 Corresponding Author: Menuka Maharjan, menuka48maharjangmail.com 
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3.4.2 Introduction  

Soil organic matter (SOM) is recognized as the largest pool in the global terrestrial carbon 

(C) cycle and is thus a vital factor in global CO2 emissions or sequestration (Schlesinger, 

1977; Jobbágy and Jackson, 2000). Any alteration in stocks of SOM will, therefore, have 

significant effects on the concentrations of atmospheric CO2 (Bellamy et al., 2005).   

Decomposition of SOM is a vital process that is mediated by soil microorganisms. It has 

long been recognized that decomposition of SOM is significantly affected by the input of 

labile substrates. Furthermore, PE is the phenomenon that describes changes in 

decomposition of SOM due to changes in microbial activity as a response to change in 

amounts and availability of organic C and nutrients (Kuzyakov, 2010). Although priming 

effects after substrate addition have been extensively studied, most prior studies 

concentrated on reporting the magnitude of priming effects instead of the underlying 

mechanisms (Blagodatskaya and Kuzyakov, 2008). Most of the primary sources of labile 

organics in soil are of plant origin, i.e., root exudates, rhizodepositon, plant residues, etc. 

(De Nobili et al., 2001; Dijkstra et al., 2006; Chen et al., 2015; Shahbaz et al., 2017). Plant-

based organic compounds are processed by microorganisms and immobilized in microbial 

biomass. Microbial residues, therefore, represent a potential secondary source of PE. 

According to the purposed hypothesis (Miltner et al., 2009), microorganisms reduce their 

biomass under starvation and other unfavorable conditions. This leads to accumulation of 

microbial residues, known as necromass. The recalcitrant parts of microbial necromass 

(i.e., undecomposed components of cell envelopes) strongly contribute to the formation of 

stable SOM (Miltner et al., 2012; Wagner, 1968). The labile parts of microbial-necromass 

(e.g., cytosol ingredients) serve as available substrates for the surviving microorganisms, 

who re-utilize this necromass. Thus, the labile fraction of microbial necromass can 

contribute to priming by stimulating the decomposition of recalcitrant SOM (Shahbaz et al., 

2017). As the mechanisms of necromass formation in soil are not fully understood, here we 

propose an explanation which transfers the concept of common ecological strategies 

(Pianka, 1970) to the level of the soil microbial community. According to this concept, 

microbial populations exploit one of the three major life strategies r-, K- and L-strategists 

with the composition and size of active fraction dependent on environmental conditions 

(Swift et al., 1979). Among the three, the L- strategy is considered as stress tolerant and 

the r- strategy as fast growing in favorable environments but quickly failing in under any 

limitations. The K- strategy is characterized by universal slow and efficient growth in nearly 

all environments. In soil, however, the life strategy is not strictly fixed for individual 

microbial species, and microorganism can shift their strategy depending on the 
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environmental conditions. According to the microbial competition concept, K-strategists 

actively participate in decomposition of SOM by outcompeting r-strategists after exhaustion 

of labile substrates, thus inducing a real PE (Fontaine et al., 2003). However, both K-and r-

strategists were able to induce PE by contrasting mechanisms depending on the availability 

of nutrients (Chen et al., 2014). In contrast to L- and K-strategists maintaining their 

populations at the relatively stable level, the r-strategists strongly reduce their populations 

under starvation conditions in batch cultures. The ability to quickly upregulate growth rates 

enables the r-strategists to out-compete the other microorganisms and quickly recover their 

population following input of fresh substrate. Therefore, under unfavorable conditions, r-

strategists do not maintain their population. Instead, they activate the mechanisms of 

biomass reduction (e.g., by autolysis), producing necromass which serves as a substrate 

for the surviving microorganisms. Hence, r-strategists can form necromass and contribute 

to PE, and thus represent a microbial functional group with a strong potential to accelerate 

the decomposition of SOM. Therefore, accurate estimation of the dominant growth strategy 

for the microbial population is essential to determine the underlying mechanisms behind 

the PE. Determining the different functional groups in an individual microbial community is 

still a technically challenging task (Mau et al., 2015), but can be accomplished via the 

kinetic approach for estimating specific microbial growth rates (De Nobili et al., 2001; 

Blagodatskaya et al., 2007). Despite theoretical evidence, the concept that the priming 

effect may result from necromass formation in soils dominated by fast-growing (r-strategist) 

populations has yet to be proven experimentally. 

As microbial communities are very responsive to changing environmental conditions 

(Coleman et al., 2004; Heaton et al., 2012), we choose three different land use sites with 

contrasting soil properties forest (poor), conventional (medium) and organic farming (rich) 

but similar climatic conditions. This provides an opportunity to identify the existence of 

different microbial strategies under diverse soil conditions. Thus, this study was performed 

to link microbial growth parameters with observed priming effects in response to substrate 

addition in tropical land use systems. We hypothesized that in soil dominated by fast-

growing microorganisms, a decrease in microbial biomass can be detected under 

starvation conditions. Our second hypothesis was that a decrease in microbial biomass 

would be accompanied by increases in PE. To test these hypotheses, we conducted a 

laboratory incubation experiment with soils from three land use systems after addition of 

14C-labelled glucose. This allowed us to examine the effect of the added C on CO2 

emissions and microbial biomass. We also measured microbial growth parameters in situ 

via the kinetic approach based on substrate-induced growth respiration 
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3.4.3 Methodology  

3.4.3.1 Site description and soil sampling 

Soil samples were collected from three land use systems (organic farming, conventional 

farming, and forest) in the Chitwan district (27°35′N 84°30′E) of Nepal. The climate of this 

area is subtropical with an average temperature of 30 oC and annual rainfall of 1763 mm. 

The texture of the soil is sandy loam. The organic farm has been under organic 

management for 15 years. The crop rotation is maize+rice+vegetables/mustard in organic 

farming and maize+rice+wheat/lentils in conventional farming. About 10 ton ha-1 yr-1of 

farmyard manure and vermicomposting are applied in organic farming whereas urea (60 kg 

ha-1 yr-1) and potassium (15 kg ha-1 yr-1) in conventional farming. Although forest is 

dominated by broad leaf Shorea robusta, leaf litters are collected by villagers for social and 

religious activities. Pesticides are applied only in conventional farming. Detailed 

descriptions of the study sites are provided in Maharjan et al., (2017). 

 

Soil samples were collected from the upper 0-20 from four random sampling locations in 

each land use system. Fine roots, plant remains, and debris were carefully removed using 

tweezers. The samples were kept cold (~4 °C) prior to analysis. The soils are classified as 

Gleyic Cambisols for the organic farm and forest, and Eutric Cambisol for the conventional 

farm (IUSS Working Group WRB, 2015). The chemical properties of the soils under 

different land-use system are presented in Table 1. 

 

Table 1 Description of chemical properties of soils 

 

3.4.2.2 Experimental design 

About 22 g (oven-dried weight) of the soil from three land use was weighed into a 100-ml 

jar. The soil was adjusted to 60% of WHC and pre-incubated for 30 days at 22oC. There 

were two treatments in each land use: 1) water, the control, 2) C. After 30 days pre-

incubation, soil was amended either with distilled water (control) or with glucose at the 

Land use Total C (%) Total N (%) Total P (mg P kg-1soil) pH (H2O) 

Organic farming = 

15 years 

1.7 0.16 332.2 7.5 

Conventional 

farming 

1.3 0.11 130.0 5.0 

Forest 0.7 0.06 89.4 5.5 
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rates of 239 μg C g-1 soil, 184 μg C g-1 soil, and 132 μg C g-1 soil in organic farming, 

conventional farming, and forest, respectively. The amount of glucose addition was 

equivalent to 30% of initial microbial biomass carbon (MBC) in three land use system. 

Uniformly labeled 14C glucose (final activity of 7514 DPM g-1 soil, 7401 DPM g-1 soil, and 

7485 DPM g-1 soil in organic farming, conventional farming, and forest, respectively) was 

added to unlabeled glucose before adding to soil. Glucose was applied to soil as a solution 

to reach final soil moisture content of 70% of WHC. Each treatment has four replicates in 

respective land use system for each sampling date. 

 

3.4.3.2 Incubation and sampling  

After adding distilled water or glucose solution to the soil, small vials with 3 ml of 1 M NaOH 

were placed in the incubation vessels to trap CO2. The vessels were immediately closed 

air-tight and incubated for 45 days at 22oC and maintained at 70% WHC throughout the 

incubation period. The vials with NaOH were removed and replaced by new vials at 1, 3, 5, 

7, 11, 14, 21, 28, 35, and 45 days. CO2 trapped in NaOH solution was precipitated with 0.5 

M BaCl2 solution. The total amount of CO2 trapped in the vials was measured by titration of 

0.25 ml of NaOH solution with 0.025 M HCl using phenolphthalein as indicator. For 14C 

activity measurement, 1ml of 14CO2 enriched NaOH from the CO2 traps mixed with 3 ml of 

the scintillation cocktail Rotiszint EcoPlus (Carl Roth Company, Germany) and was 

measured using a Hidex 300 SL Automatic TDCR Liquid Scintillation Counter (Beckman 

Coulter Inc., USA). Before measuring, the samples were properly mixed and homogenized 

for 10 s using Vortex genie 2 (Scientific Industries INC, USA), and kept overnight. The 14C 

counting efficiency and the 14C activity measurement error maintained about 80% and 2% 

respectively. 

3.4.3.3 Microbial biomass 

Microbial biomass was measured at the end of the incubation period and determined by the 

chloroform fumigation method (Vance et al., 1987). About 4 g of soil was extracted with 20 

ml of 0.05 M K2SO4. Another 4 g of soil were firstly fumigated with chloroform for 24 h and 

then extracted in the same way. The extracts were analyzed for the total C concentration 

using a 2100 TOC/TIC analyzer (Analytik Jena, Germany). The extracts of the non-

fumigated samples were used to measure dissolved organic carbon (DOC). The total 

amount of extractable microbial biomass C (MBC) was calculated based on the difference 

of K2SO4-extracable C between fumigated and non-fumigated soil samples using the kEC 

factor 0.45 (Joergensen 1996). The 14C activity both in fumigated and non-fumigated 

extracts was measured using the above procedure (as 14C in CO2) in 5 ml aliquot added to 
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15 ml of scintillation cocktail. The 14C activity in microbial biomass was calculated by taking 

the difference of the activities from fumigated and non-fumigated samples. 

 

3.4.3.4 Kinetics parameters of microbial growth  

The kinetic parameters of microbial growth responses were estimated according to the 

modified method of (Blagodatsky et al., 2000). Soil samples (equivalent to 0.5 g dry soil) 

were amended with a solution (50μl) containing glucose (10 mg g-1 of soil) and a salt 

solution: (NH4)2SO4 1.9 mg g-1 and MgSO4 * 7H2O 3.8 mg g-1 of soil. The salt solution 

contained different concentrations of K2HPO4 for organic farming (2.03 mg g-1 soil), 

conventional farming (0.16 mg g-1 soil), and forest soil (0.50 mg g-1 soil). Similarly, the 

concentration of KH2PO4 was 0.18, 1.63, and 1.9 mg g-1 for soil under organic farming, 

conventional farming, and forest, respectively. The amount of mineral salts was selected 

based on the soil pH and buffering capacity to change soil pH less than 0.1 after substrate 

addition (Blagodatskaya et al., 2007). Immediately after addition of substrate, eppendrop 

containing soil sample was placed in plastic tubes containing 3 ml of NaOH. Then each cell 

was inserted into a RABBIT (The Rapid Automated Bacterial Impedance Technique) 

system for measuring the CO2 emission at 25oC for 59 h (Gilmullina et al., 2017). The 

following equation was used to calculating CO2 emissions (Gilmullina et al. 2017). 

C (C- CO2) = (0.383* ΔEC) *V / m            (1) 

Where C (C- CO2)) is C-CO2) concentration (μg g-1 soil), ΔEC is electrical conductivity 

change (μs), V is volume of alkali (ml) and m is weight of dry soil (g). 

Maximum specific growth rate (μm) of soil microorganisms was estimated by fitting the 

parameters of the equation.  

CO2 (t) = A+B exp (μm *t)        (2)  

Where A is the initial respiration rate uncoupled from ATP generation, B is the initial rate of 

the growing fraction of total respiration coupled with ATP generation and cell growth, μm is 

the maximal specific growth rate of soil microorganisms, and t is time (Panikov and Sizova, 

1996) (Blagodatsky et al., 2000) . The parameters of Eq. (2) were fitted by minimizing the 

least-square sum using Model Maker-3 software (SB Technology Ltd.). Three replication in 

each land use were used for respiration curves and growth parameters. 

Lag period (Tlag) calculated from Eqn (3) (Blagodatsky et al., 2000). Total microbial biomass 

(μg C g-1 soil) calculated by substrate induced respiration i.e. Eqn (4) (Anderson and 



3 Publications and Manuscripts: Study 4 

89 

 

Domsch, 1978) (Hoang et al., 2016) and % of active microbial biomass (% AMB, μg C g-1 

soil) were calculated by Eqn (5) equation (Blagodatsky et al., 2000). 

Tlag = ln (A / B) / μ         (3) 

TMB = 40.4*y + 0.37        (4)  

% AMB = TMB * r0        (5) 

In equation (3), y is initial rate of substate-induced respiration after soil amendment with 

glucose and salt mixture solution. In equation (5) r0 is the so-called physiological state 

index of the microbial biomass (MB) and was calculated from Eqn (6). Q is the total specific 

respiration activity and was calculated from Eqn (7). 

r0 = B (1- λ)/ A+B (1- λ)       (6) 

where λ means basic stoichiometric constant value i.e. 0.9 (Panikov and Sizova, 1996) 

Q = μ / λ Yco2         (7) 

The theory of the microbial growth kinetics was presented in detail (Panikov, 1995). 

3.1.2.6 Calculations and statistical analysis  

The amount of glucose-derived C (CG-derived) was calculated based on the current 14C 

radioactivity (14Ccurr), the amount of added glucose (14CG), and the initial radioactivity of the 

added glucose (14C inital) in each land use-system: 

 
CG-derived = 14C curr* CG / 14C initial       (8) 

 
Then, SOM-derived C was calculated by following equation: 

 
CSOM-derived = Ctotal - CG-derived       (9) 

        
where C total is the total amount of C in the corresponding pool (CO2, DOC, microbial 

biomass). 

 
At the final, priming effects (PE) were calculated by using following equation: 

 

PE = [CO2] treatment - [CO2] G - [CO2] control     (10) 

 

where [CO2] treatment, [CO2] G and [CO2] control represent CO2 emissions from soil after 

nutrients treatments, only glucose treatment and without any amendment, respectively. 
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The effect of nutrients amendment on CO2 rate, cumulative CO2, priming effect, MBC and 

growth parameters in different land-use system were analyzed using one-way analysis of 

variance (ANOVA) at a significance level of p<0.05 using the statistical software Statistica 

12. The data which didn’t pass homogeneity test were log transferred. 

 

3.4.4 Results 

3.4.4.1 Cumulative CO2 and priming effects 

Over the 45 day incubation period, C addition significantly accelerated the decomposition 

of SOM in organic farming soils (Fig.1). A slight PE was initially detectable (5 µg C g -1 soil), 

but significant increases were only observed after two weeks of incubation (> 20 µg C g-1 

soil). The significant increase in SOM-derived CO2 emissions at the conclusion of the 

experiment indicated a strong positive PE (37 µg C g-1 soil). However, relatively low 

positive PE was observed in conventional farming and forest soils throughout the 

incubation period (Fig. 1). 

 

 

Figure 1 Cumulative priming over 45 days of incubation period and cumulative CO2 emission at 45 
days in soil under organic farming, conventional farming, and forest. Values are means ± standard 
error (n = 4). 

 

3.4.4.2 Microbial biomass 

Strong reductions in SOM-derived microbial biomass C (by 24%) were observed in C-

amended soils compared to control under organic farming (Fig. 2). However, there was no 

significant effect of C addition in SOM-derived MBC in soils under conventional farming and 

forest. The incorporation of 14C was higher in soils under organic farming and conventional 

farming than in forest.  
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Figure 2 Microbial biomass at 45 days in soil under organic farming, conventional farming, and 
forest. Values are means ± standard error (n = 4). 
 
 

3.4.4.2 Microbial growth parameters 

Addition of glucose and nutrients to determine microbial growth parameters induced an 

exponential increase in CO2 emission rates in all land use systems (Fig.3). The increase in 

soil respiration rate occurred earlier in organic farming soil compared to the other land use 

systems. Thus, the lag period gradually increased and was the shortest in organic farming 

(5 h) as compared to conventional farming (15 h) and forest (25 h) (Fig. 3). AMB was lower 

in soil under forest (0.4% of TMB) than organic farming (1.0%) and conventional farming 

(1.4%, p<0.05). Maximum specific growth rate was higher (0.48 h-1) in soil under organic 

farming followed by conventional farming (0.14 h-1) and forest (0.13 h-1) (Fig. 3). The high 

µm showed relative dominance of r-strategists in organic farming. Overall, the addition of 

substrates activated different microbial community functional groups in different land use 

systems.   

 

Figure 3 Substrate-induced respiration rates, maximum specific growth rate and lag time in soil 
under different land use system. Values are means ± standard error (n = 3). 
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3.4.5 Discussion 

3.4.5.1 Mechanisms of priming effect in relation to microbial-necromass and growth 

strategists 

The increase in priming-derived CO2 was accompanied by MBC reductions of 24 % in 

organic soil at 45 days (Fig. 1 and 2). However, this response was absent in soil under 

conventional farming and forest. This raises the questions “which group(s) of 

microorganisms is contributing to this mechanism’’ and “why do they contribute?” This 

enigma can answered using common ecological principles of microbial life strategists. 

Here, we unify the concept of r-K selection with the common ecology concept for describing 

the life history pattern of soil microorganisms (Fierer et al., 2007). Microbial growth rate 

was significantly higher in organic farm soils corresponding with a greater µm (0.48 h-1, Fig. 

3), demonstrating the dominancy of r- strategists in these soils. Furthermore, the short lag 

time (5h, Fig. 3) in organic soils indicated that microorganisms vigorously activated with 

added substrate, resulting in early starvation. Under such circumstances, microorganisms 

will change their strategy to cope with unfavorable conditions. Thus, r-strategists induce 

autolysis to reducing their biomass, as they can grow faster whenever the situation again 

becomes favorable. This autolysis leads to the formation of microbial cell necromass 

(Miltner et al., 2009; Miltner et al., 2012). Interestingly, the amount of primed CO2 (37 µg C 

g-1) was comparable to the reduction in microbial biomass (47 µg C g-1) at the later stage of 

incubation. It is reasonable that the surviving microorganisms utilized necromass as source 

of substrates (Shabaz et al 2017). Consequently, activated microorganisms decompose 

native SOM to fulfill their metabolic requirements, leading to increased decomposition of 

SOM, i.e., positive priming. 

 

Although specific growth rates were similar in conventional and forest soils, the growth 

curve patterns were different (Fig. 3). This disparity can be related to the difference in lag 

time (25 h vs 15 h in soil under forest and conventional farming, respectively). This 

disparity indicates the dominance of two different kinds of strategists. Short lag time with 

high AMB (1.4 %) in soil under conventional farming indicates the occurrence of K-

strategists, possessing the tendencies of slow growth but faster recovery, while long lag 

time and low AMB (0.4 %) gives strong evidence of the existence of L-strategists in soil 

under forest, having high tolerance capacities and slow recovery under stressful 

environments. K-strategists undergo dormancy to cope with starvation conditions. Thus, no 

mining of SOM, and consequently no PE, occurs in conventional farming soils (Fig. 4). 
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However, L-strategists remain stable, as they can tolerate stress. Due to limited resources, 

these microorganisms are slightly able to mine SOM, resulting in fluctuating PE in forest 

soils (Fig. 4). These results support our hypothesis that soils dominated by fast-growing 

microorganisms have reductions in microbial biomass under starvation conditions, leading 

to increases in PE in soil under organic farming. 

 

3.4.5.2 Priming in relation to soil quality 

Soil under three land use systems i.e. forest, organic and conventional farming comprise 

diverse soil and microbial properties i.e. C, N, P microbial biomass, and enzyme activities 

(Table 1, Maharjan et al., 2017). Each land use holds specific management practices. 

Consequently, those land use and management practices controls soil quality i.e. soil and 

microbial properties. Organic management i.e. application of farmyard manure, 

vermicompost, crop residue incorporation, and cropping system significantly increase 

SOM; supporting higher microbial biomass. Thus, soil under organic farming consider as 

rich soil due to high concentration of soil and microbial properties. However, frequent tillage 

with less incorporation of residue, application of pesticides and chemical fertilizer 

significantly reduce the SOM, regarded as medium soil. Litter removal including low canopy 

cover and regeneration results the lowest soil and microbial properties in forest, reflecting 

as poor soil. It is evident that soil quality affects microbial growths strategies. Rich soil 

(organic farming) comprises r-strategies while medium soil (conventional farming) holds K-

strategies and L-strategies in poor soil (forest). Consequently, microbial growth strategies 

determine PE in soil under different land use systems. Thus it is logical to say that soil 

quality is driver of PE in natural ecosystem (Fig. 4) 
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Figure 4 Conceptual diagram representing the three types of life strategies corresponding to three 
types land use system (Panikov, 2010). PE-priming effect and MO-microorganism  
 
 

3.4.6 Conclusion 
 
Higher specific growth rates and short lag times revealed the dominancy of r-strategists in 

rich soils under organic farming. Due to starvation during incubation, r- strategists form 

necromass through autolysis. Consequently, the remaining microorganisms were activated 

after utilizing the necromass as a substrate source, increasing the decomposition of SOM 

to fulfill their metabolic requirements. Thus, positive priming with decreasing microbial 

biomass was observed in soil under organic farming. The short lag time with high active 

microbial biomass percentage in medium soil under conventional farming showed the 

dominancy of K-strategists. While the long lag time and lowest active microbial biomass 

percentage gives strong evidence for the existence of L-strategists in poor soil under forest. 

K-strategists undergo to dormancy while L-strategists remain stable under starvation 

conditions, resulting in no to fluctuating PE in soil under conventional farming and forest, 

respectively. All in all, PE is determined by the dominant growth strategy present in soil 

microbial communities, which is influenced by soil quality, revealing soil quality as the 

driver of PE. 
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4.1 Study 5: Spatio-temporal patterns of enzyme activities after manure 

application reflect mechanisms of niche differentiation between plants and 

microorganisms 
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4.1.1 Abstract 

Manure is an important source of nutrients for plants and stimulates a wide range of 

enzyme-mediated microbial processes. Such stimulation, however, depends on manure 

distribution and the duration of its decomposition in soil. For the first time, we investigated 

the spatio-temporal patterns of enzyme activities as affected by manure application 

strategies:1) Localized manure: manure application as a layer in the upper soil; 2) 

Homogenized manure: mixing manure throughout the soil; and 3) Control without manure. 

Tibetan barley was planted on soil managed with yak manure from the Tibetan Plateau. 

Soil zymography was used to visualize the two-dimensional distribution and dynamics of 

the activities of three enzymes responsible for cycling of carbon (β-glucosidase), nitrogen 

(N acetylglucosaminidase) and phosphorus (phosphomonoesterase) over 45 days. The 

manure detritusphere increased enzyme activities relative to the control (which had only 

the rhizosphere effect of barley) and this stimulation lasted less than 45 days. Enzyme 

activities in the manure-induced hotspots were higher than on the barley rhizoplane, 

indicating that the detritusphere stimulated microbial activities more strongly than roots. 

Homogenized manure led to 3-29% higher enzyme activities than localized manure, but 

shoot and root biomass was respectively 3.1 and 6.7 times higher with localized manure 

application. Nutrients released by high enzyme activities within the whole soil volume will 

be efficiently trapped by microorganisms. In contrast, nutrients released from manure 
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locally are in excess for microbial uptake and remain available for roots. Consequently, 

microorganisms were successful competitors for nutrients from homogeneous manure 

application, while plants benefited more from localized manure application. We conclude 

that localized manure application decreases competition for nutrients between the microbial 

community of manure and the roots, and thereby increases plant performance. 

 

Keywords: Manure application strategies, direct zymography, Tibetan Plateau, enzyme 

activity visualization, Barley roots, Hordeum vulgare 
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4.2.1 Abstract  

Drying and wetting cycles of the rhizosphere compared to the bulk soil impact microbial 

and enzymes activities. For instance, the rhizosphere of some plant species (e.g. Zea 

Mays L. or Lupinus Albus L.) becomes water repellent upon drying and this may limit 

microbial activity during repeated drying and wetting events. The objective of this study was 

to investigate the effects of rhizosphere water repellency on distribution and localization of 

enzyme activities. We hypothesized that an increase of rhizosphere wettability by a 

polymeric surfactant (here referred to as rhizoligand) raises enzyme activities, especially 

during repeated drying/rewetting cycles. Maize plants were grown in rhizoboxes and 

subjected to six drying/rewetting cycles for eight weeks. Half of the plants were irrigated 

with water and the other half with rhizoligand solution. After six drying/rewetting cycles, we 

measured: i) enzyme activities and distribution using zymography; ii) microbial biomass 

carbon; and iii) shoot and root biomass. Application of a rhizoligand: i) increased the β-

glucosidase and phosphatase activities by 5.3 and 2.9 times, respectively, in the regions 

close to the roots (0-0.5 mm distance from the root surface); ii) enlarged the area with high 

enzyme activity 1.46-fold for β-glucosidase and 1.2-fold for phosphatase; iii) increased 

microbial biomass content 1.57-fold; and iv) increased root biomass 1.24-fold. This general 

 



                                                                             4 Additional Studies                                                         

100 

 

stimulation of microbial activity is connected with the increase in rhizosphere wettability 

upon rhizoligand application. The higher wettability maintains the stability of microbial 

habitats and stimulates enzyme activities in the rhizosphere during repeated drying/wetting 

cycles. We propose that such biophysical rhizosphere interactions could open new 

avenues to improve plant performance in water deficit condition by rhizoligand application 

were determined following chloroform-fumigation method (Hedley et al., 1982). 

Phosphatase activity was determined in-situ by Zymography.   

   

Keywords: Microbial activity, enzyme activity, soil water repellency, rhizoligand, 

rhizosphere process, polymeric surfactant 
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