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Chapter 1
Introduction

In the last decades our daily lives have become dominated by increasingly intercon-
nected and interdependent systems [64, [128]. The internet and the large number of
online shopping, social, or video sharing platforms are probably the most obvious ex-
amples, allowing almost instant communication over large distances with anyone in the
world at any time. But also the electricity we use to power our computers and access
the internet is transmitted from a distant generator via a power grid spanning more
than half of Europe and connecting thousands of power plants, growing in complexity
with every wind farm or solar power plant added to the grid [34} [I85]. Many products
we buy will have seen more of the world than we have, they may have been assembled
in China with resources from Africa, running software from America with the techni-
cal support situated in India, all together requiring a closely coordinated production
and supply chain around the world. Similarly, a complex net of dependencies defines
today’s financial markets, where individual banks loan money to a large number of
different clients and take out loans from other banks themselves [65] [73, [169]. Finally,
traveling for work or to visit a friend often relies on long-distance flights, connecting
trains, buses, cars, and other, more innovative forms of public transport [33] [69].

While these systems make our lives easier every day, they come with their own,
new, and sometimes unexpected problems [85], 86]. If any part of one of these systems
fails, such as one transmission line in the power grid, one flight or train is late or
canceled, or one bank is unable to pay back its loans, the repercussions of this small
disruption in normal operation may be enough to bring down the whole system. A
broken transmission line in the power grid leads to redistribution of the power flow,
potentially causing other lines to be overloaded and fail, eventually resulting in a large
scale blackout [I95]. One late train results in tracks being blocked and other trains
waiting for connections, causing more and longer delays, even in places very far from
the cause of the initial delay [69]. In a similar way, an initial outbreak of a disease
will spread through the whole world via the global air traffic network, reaching geo-
graphically distant countries in a few days [32,[90]. The situation becomes even more
complicated with increasing interdependence among these systems. If the power grid
fails, the communication network loses power and may fail as well. If communication
fails, power plant operators cannot coordinate their reactions, potentially resulting in
an even larger blackout of the power grid and a cascade of failures in both systems
135, 133].

Increasingly faster changes and innovations add new layers of complexity and in-
terdependencies to the already complex connectivity and interactions in all of these



2 Introduction

systems, making it difficult to predict or control their behavior and to prevent failures
[85] 86]. Due to the wide range of scale and function of these systems, detailed case
studies on single examples like specific online platforms or parts of the power grid
will often only give results applicable to the specific system. To gain deeper insight
into how these systems work and understand the sometimes unintuitive phenomena,
a common framework and fundamental theory is required.

Complex networks

All examples mentioned above can be described as complex networks with nodes,
such as power plants, airports, or people, connected by links, like transmission lines,
flights, or friendships. Historically first used by Euler to solve the well-known Kénigs-
berg bridge problem [I93] the study of networks was applied in social sciences to
describe acquaintances or different types of relations in social groups already in the
early 20th century [I122]. In the last few decades network science has developed into
a field of its own, combining approaches from social sciences, graph theory and theo-
retical physics and developing new tools to study and understand networked systems.
Network science has been used to describe a variety of different systems ranging from
online communities over technical system like power grids to biological systems like
neural networks in the brain or the interactions between different genes and proteins
5, 64, (127, [128].

Initially, the analysis focused on understanding the complex topology, that means
on how the individual elements are connected and if there are common patterns. One
of the most famous examples for social networks is Stanley Milgram’s small-world
experiment in 1967, where participants were asked to send a letter to a given target
by only forwarding it to people they know by their first name [186] [I87]. Even though
the initial participants had little information about the final target, the letters arrived
on average in about 6 steps, leading to the popularized “Six Degrees of Separation”E]
Derivatives of this concept later appeared in other communities such as the “Six De-
grees of Kevin Bacon” connecting all actors and the “Erdés Number” in the scientific
community of mathematicians and network scientists [81], [82] [172].

The analysis of the structure of social networks also showed a high tendency of tri-
angles, meaning that two of my friends are very likely also friends [9, [64], T91]. Another
example of patterns in these seemingly random networks was found in biological ex-
amples of gene interaction and neural networks, where most of the connections make
up a few very common “motifs”, small sub-networks that are repeated very often, like
the triangles in social networks [119]. Many of these motifs can be linked to a specific
function, for example feed-back loops to regulate the expression of specific genes in
different situations [7, [117].

LOf the 96 letters only 18 arrived at the target. Even though this number may seem low, it is
surprising in itself that people are able to find such short paths in social networks.



The earliest theoretical model to describe the structure of such networks was stud-
ied by the mathematicians Erdos and Rényi already in the 1950s, assuming completely
random connections, and is still used in many basic models to date [66] 67]. With all
the patterns found in real networks, however, most networks are anything but random
and people investigated more detailed mechanisms to explain the observed structures
[0, 127, 128]. Starting with Watts and Strogatz in 1998 giving a possible explanation
for the small world effect in social networks observed by Milgram [191], scientists from
various disciplines have proposed many models explaining how networks with specific
patterns might form, grow, or restructure [14, 93, 153, [189]. Borrowing tools from
statistical physics and percolation theory it is often even possible to analytically de-
scribe the resulting ensembles of networks. This interdisciplinary approach revealed
a broad range of fundamental implications of the network structure for the function,
efficiency, and resilience of networks across different applications. For example, many
networks like the internet are naturally surprisingly resistant to failures of random
links or nodes. That means most of the nodes remain connected even when a large
fraction of random nodes or links fail. At the same time, however, these networks
are very susceptible to targeted destruction of the most important nodes and links
[6, 52, (3], [60].

Dynamical systems

Dynamical systems theory is a cornerstone of the mathematical description of any
(not just physical) process. Historically, the first example dates back to Newton’s
description of the motion of the planets [130]. Now ubiquitous, the description of the
dynamics with differential equations or iterated maps goes far beyond simple mechan-
ical systems and is used to also describe electronics, chemical reactions, the behavior
of neurons and even to model the dynamics of populations of animals, the process
of opinion formation, or the prevalence of a disease in a population [I7, 57]. Even
though many of the resulting equations cannot be solved exactly, that means there is
no explicit equation that describes the state of the system at any given time, dynami-
cal systems theory provides many insightful qualitative results. Especially, dynamical
systems theory describes the long term behavior of a system, the stability of fixed
points or periodic orbits, and the response to small changes to these states [178]. In
terms of the examples above this may correspond to answering questions like: Will a
population of animals recover when a small fraction of the population dies? If not,
which other species becomes dominant? How easily can an opinion be influenced and
what is the easiest way to do this? How quickly will a disease cause an outbreak?

More complex phenomena than fixed points and closed, periodic orbits were discov-
ered in higher dimensional nonlinear systems. One of the best known examples here
is the concept of chaos, that means aperiodic, never repeating behavior where two
identical systems starting from slightly different states will behave completely differ-
ently after a short time [I78]. An often depicted example is Lorenz’ simplified model
resulting from the study of atmospheric convection [116]. The sensitive dependence
on initial conditions of chaotic systems means that they are inherently unpredictable,



4 Introduction

no matter how well we understand the system as even a very small error in our mea-
surement its state will quickly grow. However, chaotic systems are not without order.
In fact, one of the most famous examples of universality comes from Feigenbaum’s
discovery that the transition to chaos behaves similarly in different systems [178].
General results like these provide a deeper understanding for more complex systems
that cannot be easily analyzed in such detail.

Networked dynamical systems

Clearly, most dynamical systems are far from isolated. Neurons in the brain in-
teract via millions of connections, opinion formation depends on the specific inter-
actions of the individuals and electronic devices regularly send and receive signals
[12, (17, 21), 128| [I80]. However, the connections in these systems are not regular.
In such systems the individual units are dynamical systems that are coupled via a
network of interactions between these units. Together these networked dynamical
systems describe a broad range of dynamic processes from the activity of neural net-
works over the dynamics of power grids to the spreading of disease via traffic and
transportation networks [32] 68, 6], 152]. Instead of simply analyzing the structure
of the networks, networked dynamical systems allow more detailed predictions about
the processes over time, for example describing the robustness of a system from a
dynamical instead of simply from a topological point of view.

In particular, many phenomena depend on the interplay between the network struc-
ture and the dynamics of the units. One example is the Braess’ Paradox, originally
found in a simple traffic model [64]. Adding a new street to a network intuitively
allows faster travel. However, sometimes it may lead to longer travel times instead. A
similar effect appears when considering the structure of the power grid and the effect
of additional transmission lines on its dynamic stability [194]. Another typical ex-
ample is the emergence of collective dynamics, most prominently of synchronization,
meaning identical behavior of all units [I78]. Synchronization is important for exam-
ple for communication, the stable operation of power grids, and consensus in models
of opinion formation [12} [77]. Due to this general importance and broad applicability,
it is a widely studied problem how to achieve, enable, or stabilize synchronization.
The topology of the interaction network between the individual units plays a large
role in determining the stability of the synchronized state [139} 165, [184]. The com-
bination of tools from network science and dynamical systems theory allows a deep
understanding of these systems and of the effects of the interaction network structure
on the collective dynamics of the units [12, 21} 128, [180].

Analyzing such phenomena in basic models makes it possible to identify common
patterns and interactions with implications for more complicated systems with a simi-
lar structure. For example, how were the people in Milgram’s small world experiment
able to deliver the letter to the target so quickly? Given only the name, city and
occupation of the target, even though they only know their own friends, how could
they successfully navigate the social network of the millions of people living in the



US? Solutions for this problem not only uncover aspects of social networks and our
communication, but also help technical applications such as efficient package routing
in the internet [4, 107, 192]. Similarly, notions that identify central individuals in
social networks are helpful to find the most relevant search results in the world wide
web, find out which nodes of a network are most important to control to achieve
a desired behavior, or which airports to observe to quickly identify the spreading
of diseases [12), 104, [128] [134]. For this reason, these problems are often studied in
simple model systems to identify the general mechanisms behind the observed phe-
nomena and to understand how network topology affects the dynamics and vice versa.

Controlling network dynamical systems under economic
constraints

Many of these networked systems like the internet, transportation, or the power grid
are central to our modern world. We rely on their correct functioning and our thor-
ough understanding of how these systems behave and react to changes. More impor-
tantly, however, we rely on controlling these systems in order to maintain the desired
function. Control often has different goals depending on the specific system. In some
systems it is necessary to avoid an undesired state, such as controlling fluctuations in
the power grid to prevent a power outage [157, (158 [I85] or vaccination and quaran-
tine to prevent the outbreak of a disease [90, [I37]. In other systems we want to force
the system into a specific state [55] [74, [IT5], relevant for example for controlling gene
regulation networks and marketing in social networks.

Controlling networked systems is typically difficult and any control action is costly.
Often the system is not directly or only partially accessible, like most biological sys-
tems, or it is not economically feasible to directly control the entire network, such as in
large social networks. For example, it would be extremely difficult to vaccinate every
person in a short time to stop the outbreak of a disease. Efficient control strategies
are required to enable control under such constraints and with minimal costs. Despite
this importance to almost any system [85, 86], explicit economic considerations are
largely missing from the theoretical analysis of most network dynamical systems.

Often control schemes are designed without economic constraints, minimizing the
time until the control achieves the desired effect or maximizing the effect of the con-
trol [10} 20} I57]. In some cases, economic constraints are considered implicitly in the
analysis of control strategies. One such example is the identification of optimal tar-
gets for vaccination such that the vaccination of only a few central individuals stops
a disease from spreading [46, 123]. Similarly, in other systems it may be possible to
externally determine the state of the whole system by controlling only a few central
units, taking advantage of the internal dynamics of the other units to synchronize
automatically [I84] 201]. This structural control minimizes the number of targets
for the control actions, often also reducing the costs for control, and is an important
step to designing efficient control schemes. However, explicit consideration of limited
resources and optimization of the control schemes under this constraint may require
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different approaches or reveal new interactions that are not apparent otherwise [167].

Similarly, the standard models of network formation usually do not include any
economic constraints or only model them implicitly or in weaker form. For example
the “explosive” percolation rules that model control of network formation do not in-
clude explicit cost for controlling the link addition process. Instead, restrictions are
considered implicitly by assuming that only one of every two links may be rejected
[3, 147). While such models provide some insight into the effects of economic con-
straints, the examples of the collective phenomena given above clearly demonstrate
that complex interactions can cause entirely new and qualitatively different phenom-
ena [64], [128] [178]. It is therefore necessary model economic constraints explicitly in
fundamental models in order to reveal and study their effects.

Finally, it is not only important to understand the effect of such constraints on
control schemes but also their impact in the basic models themselves. Most mod-
els of network formation, for example, are based on stochastic processes imitating
more complex underlying dynamics. While these models reproduce observed network
structures, the effects of underlying economic considerations and optimization driv-
ing the formation of many social, technical, and biological networks often cannot be
understood with these models [76, 93, 95]. It is therefore of current interest to under-
stand the impact of economic considerations on a fundamental level [85] [86]. Limited
resources in particular and optimization principles in general have the potential to
dramatically change the dynamics of networks and network formation and the effect
of control on these systems.

Synopsis and structure of this thesis

In this cumulative thesis we discuss the effect of economic considerations and opti-
mization on network dynamical processes and network formation. In the main part of
this thesis we explore the effects on the control of such processes as well as on the pro-
cesses themselves in five articles, each summarized below. In particular, we consider
how to reduce interaction costs by restricting the interactions between coupled dy-
namical units. We study how these restricted interactions affect the synchronizability
of the network and identify an efficient control strategy to guarantee synchronization.
Similarly, we consider control of network formation where control of each link is as-
sociated with an explicit cost and identify an efficient control strategy in a standard
percolation model. Finally, we study how the network formation process changes
when economic considerations are driving the formation of the network, linking a
complex optimization problem to a local percolation model.

In chapter 2 we give a brief introduction into the most fundamental concepts
of networks and dynamical systems. We specifically focus on methods and results
relevant for the following articles. We discuss network formation models and random
percolation as well as chaotic systems and synchronization. Finally, we also briefly
discuss the typical numerical implementation since a large part of the work is done



with extensive simulations when the systems become too complicated for a compre-
hensive analytical treatment.

In chapter 3 we discuss the impact of restricted interactions on the synchroniz-
ability of two chaotic oscillators. We introduce the concept of “transient uncoupling”,
that means switching off the coupling between the oscillators depending on their state.
In contrast to many other coupling schemes requiring continuous control of the cou-
pling strength [55], 97, [140], transient uncoupling requires only on-off control over the
coupling in the system. We show that, even though we reduce the interactions, tran-
sient uncoupling can in fact increase the synchronizability and extend the range of
favorable coupling strengths. This allows transient uncoupling to induce synchrony
in systems with fixed coupling strengths or limited access to the system parameters.

In chapter 4 we extend the discussion of the previous chapter to arbitrary net-
works of chaotic oscillators. The dependence of the synchronizability of a network on
the network topology means that a wide range of networks cannot be synchronized
with standard coupling. While many tools have been discussed to solve this problem,
from changing the network structure to adaptively changing the coupling strength, we
show that simply uncoupling the units depending on their state can guarantee stable
synchronization, independent of the topology of the interaction network. Application
of such a synchronization scheme might save a large fraction of interaction costs, for
example from signal transmission, making it an efficient tool to control network dy-
namics by enabling synchronization to a desired target state.

Efficient control of networked systems not only requires efficient control schemes
but also accurate descriptions and measurements of the state of the system.

In chapter 5 we present a new order parameter to measure the coherence of cou-
pled phase oscillators in the prototypical Kuramoto model. Applications to networks
so far have introduced various adaptations of the original Kuramoto order parameter
to account for the disordered interaction structure [77), 911 [148] 149]. However, none
of the parameters cover the full range of behavior from initial phase locking of indi-
vidual oscillators to full synchronization. Our proposed order parameter accurately
describes the degree of phase coherence with respect to the network structure in all
stages of phase locking and synchronization for all network topologies and sizes. A
direct relation to the stability of the synchronous state allows analytical calculations
and application to similar models and finite networks such as power grids.

In the last two manuscripts we study the impact of economic considerations on
network formation models.

In chapter 6 we consider optimal control of random percolation subject to limited
resources. Numerous network percolation models have been designed to model the
impact of control on the network formation process, notably leading to very abrupt
but still continuous, so called “explosive” transitions [3, 10 47, 147]. However, all
these rules allow for, in principle, unlimited interventions. Here, we consider the ef-
fect of a limited budget when interventions in the link addition process are costly
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explicitly. In order to efficiently use the limited resources we derive an efficient con-
trol scheme. In particular, we show that optimal control of percolation directly leads
to a discontinuous transition, an unintended consequence since the network structure
becomes effectively uncontrollable when a single link can have a macroscopic impact
on the size of the largest connected component.

In chapter 7 we analyze network formation driven by local economic consider-
ations. Instead of a random process in typical percolation models, we develop a
deterministic network formation model based on a fundamental network supply prob-
lem where each node individually satisfies a fixed demand with minimal cost. The
resulting coupled nonlinear optimization problem and similar game-theoretic mod-
els of network formation are typically hard to solve for larger networks [76], 94, [95].
We prove that our model exactly maps to a local percolation model that allows an
efficient solution. Studying the network formation process, we reveal parameter de-
pendent continuous or discontinuous transitions and hysteresis of the global network
structure as a result of the individual optimization of the local network structure.

In chapter 8 we summarize the results of the individual manuscripts. We discuss
their importance in the context of current topics in network science and dynamical
systems and highlight potential applications and promising extensions.









Chapter 2

Fundamentals

In this chapter we provide an overview over theoretical concepts and the mathematical
description of networks and dynamical systems. Due to the sheer amount of content
related to these fields we cannot possibly cover every aspect. We focus on the most
fundamental concepts and provide the basic information relevant to understanding
the manuscripts in chapters [3|to |7} We outline other related concepts and ideas and
refer the interested reader to the numerous textbooks and review articles on these top-
ics [B), 12} 127, 128, [142] 178]. Since much of the work on percolation and nonlinear
dynamical systems requires numerical simulations, in each part we also give a brief de-
scription of the basic aspects of relevant numerical concepts and their implementation.

Specifically, we first discuss the mathematical representation of networks and net-
work formation models as well as the basic concepts of percolation theory. We then
introduce the fundamentals of dynamical systems and chaos before finally discussing
the most important aspects of networked dynamical systems and synchronization for
the following manuscripts.

2.1 Graphs and networks

Networks (graphs) consist of nodes, also called vertices or simply units, connected by
links (edges) between them [128]. Many examples were already mentioned in the in-
troduction, for example social networks where nodes represent people and connections
represent friendships. In the simplest case connections are reciprocal or undirected,
for example two people being — usually mutual — friends. However, links can also
be directed, for example the relation of followers and followees on Twitter. An il-
lustration of a small undirected network and a similar directed network is shown in
Fig. For ease of presentation we will mostly restrict ourselves to undirected net-
works and mention extensions to directed networks where relevant. We do not cover
more complex structures, where there may be multiple links describing different types
of relationships between the nodes, like multi-graphs, multi-layer networks and similar
generalizations of networks. Instead we refer to the corresponding literature for the
extensions of the concepts discussed here [22] [102].
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Figure 2.1: (a) A small undirected network with N = 5 nodes and M = 7 links

connecting nodes in both directions. (b) A small directed network with
N = 5 nodes and M = 8 directed links, indicated by the arrows.

2.1.1 Representation of graphs

A graph as a mathematical object consists of a vertex set V', typically V.= {1,2,..., N},
describing all nodes and an edge set E, for example E = {{1,2},{1,4}...}, de-
scribing the links between these nodes represented as pairs of vertices [193]. For
directed graphs the edges set is given by a set of ordered pairs of vertices such as
E={(21),(1,4),...}. A graph G is then defined by the combination of these two
sets G = (V,E). For example, the vertex- and edge-set of the network shown in

Fig. (a) is
V ={1,2,3,4,5)
E={{1,2} ,{1,3},{1,4},{2,4},{3,4},{3,5},{4,5}} .

The size of a graph usually refers to the number of nodes |V| = N in the network.
The number of links in the network is usually denoted by |E| = M.

(2.1)

While the representation of a graph via this egde list is very compact and sometimes
used to encode large networks for digital storage, it is cumbersome for most calcu-
lations or algorithms. A more convenient representation is given by the adjacency
matriz A. Every entry A;; € {0,1} indicates if the link from node j to 4 is present,
A;; = 1, or missing from the network, A;; = OEI If the network is undirected and a
connection from j to ¢ also implies the reverse connection, the adjacency matrix is
symmetric A;; = Aj;. The adjacency matrices for the two networks in Fig. are,
respectively,

01110 01100
10010 00010

Amdr— 11 0 0 1 1 A =10 0 0 0 1 (2.2)
11101 10100
00110 00110

'Note that there are different conventions depending on the field and the order of indices may be
reversed. A;; = 1 may imply a (directed) connection from i to j instead of a connection from j
to 1.
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The adjacency matrix naturally generalizes to weighted graphs by assigning scalar
properties to the links, where typically A;; > 0 signifies that a link is present in the
networkﬂ For example, in financial networks a directed link may represent a loan
and the value A;; may describe the amount of money loaned. For most analytical
calculations the adjacency matrix is the most convenient representation of networks.

Numerical representation

The adjacency matrix is ideal to represent small networks numerically due to direct
access to every link to check whether a link exists and to potentially modify it. How-
ever, for larger networks with thousands of nodes but only few links per node, so
called sparse networks [128], most of the information in the adjacency matrix refers
to absent connections A;; = 0 and storing this information explicitly quickly uses too
much memory. Similar to the numerical representation of sparse matrices, a numer-
ically very efficient representation of sparse networks is the so called adjacency list.
As a middle ground between an edge list and an adjacency matrix, the adjacency
list stores for each node ¢ individually the nodes j it is connected to. One can think
of it as multiple edge lists sorted by nodes, for example for the network shown in
Fig.[2.1)(a) the adjacency list is

{2,3,4}

1,4}

{1,4,5} (2.3)
{1,2,3,5}

{3,4}

Depending on the specific requirements of the numerical computations, different data

structures are used to represent the adjacency list to allow for fast look-up of specific
edges, iteration over all links or insertion and removal of links [98] [128], 145].

(S S N O R N

2.1.2 Describing the network structure

So far, we only discussed how to represent a network mathematically. However, it
is difficult to understand and compare the structure of networks directly from these
representations and direct visualizations quickly become unintelligible for larger net-
works. Unsurprisingly, there are numerous measures to quantify different aspects of
connectivity, that means how well a node is connected to other nodes in the networks,
or the importance of individual nodes to the structure or function of the network.
Here we introduce the most fundamental concepts.

2The meaning of A;; in weighted graphs depends on the context. For example A;; < 0 may signify
inhibitory connections in neural networks. Similarly, if A;; describes travel times in transportation
networks, absent links correspond to A;; = oo.
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Degree

The easiest way to quantify the connectivity of a node is simply by counting its links,
k; = Zj Aji, where sums in this section run over all nodes j € {1,2,..., N} unless
explicitly noted otherwise. k; is called the degree of node ¢ [193]. For example, the
nodes in the network in Fig. (a) have degrees 3,2,3,4 and 2, respectively. The
notion of degree easily extends to directed networks: simply count the amount of
outgoing links as the out-degree k{"* = >_j Aji and the amount of incoming links as
the in-degree k;" =3 ; Ai;. A single number that summarizes the connectivity of the
whole network [5] is the mean degree

(k) = =2 = —— (2.4)

A more detailed measure of connectivity than the mean degree is the list of the
degrees of all nodes in a network, called the degree sequence. However, the degree se-
quence does not uniquely determine the network structure and often different networks
with identical degree sequence exist. An example for the degree sequence {1,1,2,2,2}
is illustrated in Fig. [193]. For very large networks the degree sequence is often
simply represented as the degree distribution p(k), indicating the fraction of nodes
with degree k. Alternatively, in models of network formation, where the degree of a
vertex is a random variable, the degree distribution p(k) is usually interpreted as the
probability of a (uniformly) randomly chosen vertex to have degree k. Many network
formation models (see below) are constructed in such a way that they reproduce the
observed degree distributions of the networks they are meant to model [50]. However,
as with the degree sequence, an identical degree distribution alone is not a sufficient
condition that the resulting networks will have similar properties.

OD—@E) ®
(5) (5)
O O (4

Figure 2.2: Two networks with identical degree sequence {1,1,2,2,2} but different
structure.

Paths, distances, and connected components

While the degree of a node describes its local connectivity, the non-local connectivity
in the whole network structure is often even more important. For example, communi-
cation networks like the internet would not function if not all parts were connected in
some way. In this example, there needs to exist a way to reach every node from every
other node via a sequence of links for the network to be able to transmit information
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between the nodes. Graph theory defines a path IL,, ,, from node v; to v, as an
ordered set of links II,, ., = ({vi,v2},{ve,v3},...{vn—1,v,}) where each link starts
at the node where the last link ended [I93]. In addition, no edge and no node may
be visited more than once when following the path. An exception are closed paths
(cycles) where the first node v; is also the last node v, = vy in the path. There
are multiple generalizations of this notion called walks or trails allowing, for example,
links to be used multiple times. For obvious reasons of similarity, a network without
a cycle is called a tree, or a forest if the network consists of multiple trees, see below
[128].

The length of a path is given by the number of links in the path. For example a
path Iy ; = ({1,2},{2,3},{3,5},{5,4}) between nodes 1 and 4 would have length
[II41] = 4 as illustrated in Fig. [2.3] With this definition of path length, paths also
allow for an intuitive definition of distance in networks. The (shortest path) dis-
tance d;; from node j to i is simply the length of the shortest path between them,
dij = ming,; II;;| where the minimum is taken over all possible paths from j to i
[193]. In the network shown in Fig. the shortest path between node 1 and 4 has
length ds1 = 3. If there is no shortest path the distance is usually defined to be
d;j = co. The longest shortest path d = max; ; d;; is called the diameter of the graph
[128]. In the example in Fig. the diameter is 3, given by the length of the shortest
path between nodes 1 and 4 (or 5).

The notion of a path and distances is immediately applicable to directed networks.
The sequence of links must now explicitly respect the directionality of the links,
Iy, v, = ((v1,v2), (v2,v3),...(Upn—1,vp)). Similarly, the length of paths in weighted
networks, where the weight of a link describes the distance between the nodes, can be
defined as the sum of the weights of all links along a path, instead of simply counting
the number of links [12§],

Bi= 3 Ay (2.5)

(k,D)€elli

Figure 2.3: A path in a small network. The marked path (dashed lines) between nodes
1 and 4 includes four links and consequently has length 4. The shortest
path defining the distance d4 ;1 = 3 only consists of three links. Since this
is also the longest shortest path of this graph, the graph’s diameter is
d=3.

Paths define connectivity in terms of which node can be reached from which other
node. A connected component of a graph, sometimes also called cluster, is a set of
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nodes where there is a path from every node in the set to every other node in the
set [I128]. Recalling the example of the internet, to function properly there must be
a path between every pair of nodes. The internet must be a single giant connected
component, a connected graph, like the example network in Fig. (a), but unlike the
network in Fig. [2.2{(b). This example illustrates that the concept of connectivity and
connectedness is very important for the function of many networks and it is thus the
main focus of many network formation models and specifically of percolation theory
(see below). In directed networks, where there may be a path from node ¢ to j but
not from j to ¢, the notion of a connected component is more nuanced [128| [I83]. In a
strongly connected component there is a directed path every node to every other node.
Otherwise one can define different types of components: the out-component of node i
comprises all those nodes that can be reached from ¢ and conversely the in-component
comprises all nodes that can reach node i.

Centrality

Whereas connectivity describes the overall structure of the network, we are often more
interested in individual nodes. One of the most widely used concepts is the idea of
centrality in networks, that means describing which nodes are most important given
only the network structure. Different aspects of the structure are more or less impor-
tant to a the centrality of a node, depending on the specific network, its function and
the question. Therefore, these measures are often motivated by functional considera-
tions and their significance depends on the context [64, 93] 12§].

One intuitive measure for structural importance is simply the degree of a node, in
this context called the degree centrality C?eg = k;. An example where this measure
is actually applied is judging the impact of scientific publications in the network of
citations: if a publication has a high (in-)degree that means it is cited often and often
considered to be impactful and central to its field. However, the degree centrality is a
local measure. It only considers the direct connections of a given node but not which
other nodes it is connected to or other aspects of the large scale network structure.

A measure that directly takes into account the neighboring nodes is the eigenvector
centrality c{¥ in connected networks. Based on the idea that a node is likely to
be important if it is connected to other important nodes, it is defined via the self-
consistency equations for every node i € {1,2,... N}

)\C?V = Z Aijcjv y (26)
J

with the additional condition that all ¢§¥ > 0 and at least one non-zero entry. Since
all entries of the adjacency matrix A;; > 0 and the network is connected, this is
equivalent to the eigenvector ¢® of the adjacency matrix A corresponding to the
largest eigenvalue Ap,

Aic® = Ac® (2.7)

and is usually normalized to ), ¢§¥ = 1. Note that this definition naturally extends to
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weighted network with non-negative edge weights A;; > 0. A slightly more involved
version of this concept is the basis for ranking the importance of search results of web-
sites, though the actual algorithms used are much more complicated [31], 106}, 128].

Another concept of centrality is based on a different function of networks. In social,
communication, or transport networks, for example, a node may play an important
role simply by relaying messages or connecting two large cities [36] 64, [72]. This
idea is captured by the concept of betweeness centrality c?et [128]. Betweeness simply
counts the number of shortest paths nflb through node i between pairs of nodes b and
a. Normalized by the total number of shortest paths ng, from b to a this defines the

betweeness centrality ‘
(2

C?et _ Z M

. 2.8
2 ar (2.8)

This concept of centrality also extends to the betweenness centrality of links with
an analogous calculation, allowing efficient community detection by identifying links
“between” the different communities [128].

There are many more centrality measures, for example directly based on distance
measures in the network, and corresponding extensions to directed networks, hyper-
graphs, multi-layer networks and other generalizations [61, [128]. Many of these mea-
sures not only describe the structural importance in a given network but are also
related to the dynamics of networked systems (see below).

Clustering

Finally, we discuss one aspect of the network structure that does not describe indi-
vidual nodes but small local structures, so called motifs already mentioned in the
introduction. The simplest case are triangles between the nodes, that means cycles of
length 3. In many social networks, links often form such triangles, meaning that two
friends of mine are likely also friends. This property is called clustering and quantified
by the clustering coefficient cc; of a node zE| It is defined as the fraction of triangles
including node i relative to all possible triangles given its number of neighbors k;,

Zj k AZ]AjkAkZ
. & 2.9
o ki(ki— 1) (29)
where A;jA;pAj, = 1 if all links between the three nodes exist and 0 otherwise

[64, 128, 191]. Note that both the nominator as well as the denominator count each
triangle twice, once for each direction (i, j, k) and (7, k, j), and this factor cancels out.

3Not to be confused with the concept of a cluster as a connected component in networks. Clustering
is also sometimes called transitivity, due to its similarity to the mathematical concept: if the links
(i,7) and (J, k) exist, then the link (i, k) also (likely) exists.
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Similarly, we can define this property for the whole network. The global clustering
coefficient is then given by the total number of triangles relative to the number of
potential triangles, that means paths of length two where at most one link is missing
to form a triangle,

o A A A
e = ik AiiAiAri (2.10)
Ditjtk AijAjk
Here, the nominator counts each triangle six times, once for each permutation of i, j,
and k, and the denominator counts all paths between three mutually distinct nodes.

The factor 6 cancels since each triangle contributes six paths of length two.

2.1.3 Network formation

To understand how the topology of a network impacts different processes we cannot
solely rely on individual examples of measured network structures. Instead, we need
to compare the behavior in large sets of different networks to identify common pat-
terns. Network formation models are used to construct such surrogate networks and
act as baseline models to compare processes across network with different properties.
More complicated models following observed or expected behavior may even help to
identify some of the fundamental forces guiding the formation of real world networks.
Most network formation models are based on stochastic processes, randomly adding
nodes or links to the network. This results in an ensemble of random networks, that
means a set of possible structures {G1,Ga,...} where each structure is assigned a
corresponding probability p(G;), depending on the network formation model [5 [128].

In this section we will discuss the most common network formation models and the
most important properties of the resulting networks. We first discuss the most ba-
sic random network formation model before moving on to a model that more closely
reproduces the scale-free degree distribution observed in many networks. We then
discuss the small world model as an example of a random network formation model
designed to explain other structural aspects of real world networks. Finally, we briefly
discuss one example of a game theoretic model of network formation.

Poisson random graphs

The simplest model of random networks are Poisson random graphs, sometimes re-
ferred to simply as random graphs, and named Erdds-Rényi graphs after Paul Erdés
and Alfréd Rényi who thoroughly analyzed this model already in 1960 [66], 67, [127].
In this model the network consists of a given number of N nodes where each link
(i,7) is present with a fixed probability p, independent of all other links. The result-
ing graph ensemble is usually denoted G(N, p), where the two arguments refer to the
two parameters of the model. Two different realizations of a small network from the
ensemble G(50,0.05) are illustrated in Fig.
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(b)

Figure 2.4: Poisson random networks. (a,b) Two realizations of the Poisson ran-
dom graph model for identical parameters N = 50 and p = 0.05. In fact,
every possible network has a non-zero probability, however, some network
structures are more likely than others.

The independence of the links simplifies the analysis of most properties of the
resulting networks. For example, the number of links |E| = M of graphs in G(N, p)
is distributed binomially as

N(N-1) N1
p(M) = ( o )pM(l -p = M (2.11)
with mean (M) = pN(N — 1)/2, where N(N — 1)/2 is the total number of links
possible in the network. Similarly, the degree distribution is given by

p(k) = (Nk 1)19’“ 1-p)N (2.12)

with mean degree (k) = (N — 1)p, since each node is connected to at most N — 1
other nodes. In the limit of large networks, N — oo, and if the mean degree (k) =
(N—1)p — Np remains constant, the degree distribution is approximated by a Poisson
distribution, giving the name for this network ensemble [5] [127],

(Np)ke=Np

p(k) — u

(2.13)

One important difference of a Poisson random networks compared to regular lat-
tices is the small diameter. For example, in a square lattice with N = L? nodes the
longest shortest path connecting two opposite corners has length d = 2L = O (N 1/ 2).
In contrast, the diameter of the largest connected component of a Poisson random
graph scales at most as d = O (log N) for large networks [12§].

A closely related model, denoted G(N, M), fixes the number of links |E| = M in
the graph and assumes the M links are uniformly randomly distributed among all
possible N(N — 1)/2 links (see section below). The two ensembles G(N, p) and
G(N,M = pN?/2 ~ pN(N —1)/2) behave identically with respect to most properties



20 Fundamentals

when considering large networks, that means when N — oo and M a~ pN?/2 — oo,
since the fluctuations in the number of links in G(N, p) are small compared to the total
number of links [27), 28] 127, 128]. In particular, this condition fulfilled in the typi-
cal limit of networks with a constant mean degree (k), such that p ~ N~! and M ~ N.

The Poisson random graph model is often used as a baseline model to illustrate
processes and phenomena in network dynamical systems without assuming any addi-
tional structural properties of the networks. Consequently, there are many properties
of real networks it cannot reproduce. For example, the degree distribution of many
real networks is not Poisson and the clustering coefficient of many social networks is
much higher than in Poisson random graphs.

Scale-free networks

In contrast to Poisson random networks, a large number of real networks have an (al-
most) scale-free degree distribution, that means p(k) ~ k™%, usually with 2 < a <3
[15, 50]. This means there are some nodes with a much larger degree in the network
than one would expect for independently randomly distributed links, so called hubs.
The configuration model [93] [127] creates random networks with any given degree dis-
tribution and can therefore also create scale-free networks[f] However, here we focus
on another model that offers a mechanistic explanation for the emergence of a scale-
free degree distribution instead of only a way to replicate the observed distribution.

Introduced by Albert-Laszlé Barabési and Réka Albert in 1999 the Barabdsi-Albert
model creates a network by sequentially adding more and more nodes until a given
size N is reached [I4]. Starting from a small, completely connected network with
Ny = m + 1 nodes, at each step a new node is added to the network and connected
to m existing nodes. However, the links are not established uniformly at random.
Instead, the links are established following preferential attachment [14), 146, 200],
meaning a node i is selected for the link with probability proportional to its degree
k;. Fig. shows the first few steps of the evolution, one realization of a larger net-
work, and the resulting degree distribution.

This model is supposed to mirror the “rich-get-richer” phenomenon observed in real
networks, for example a scientific article with a large number of citations is likely to
be cited again by new publications [64]. This preferential attachment mechanism then
creates networks where the degree distribution follows a power law

p(k) ~ k73 (2.14)

for large k when N — oo, illustrated in Fig. (f) This can, for example, be shown
by solving the mean-field master equation describing the degree distribution of the
network [14].

4More specifically, the configuration model creates a network with a given degree sequence, possibly
randomly drawn from a specific degree distribution.
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Figure 2.5: Barabési-Albert scale-free networks. (a-d) One example of the evo-
lution of the Barabési-Albert model with m = 2. (e) Example of a larger
network with NV = 50 nodes. The two nodes from the initial networks
are still well visible and have accumulated a large number of connections.
(f) The degree distribution of a single network with N = 10% nodes. The
degree distribution approximately follows a power law with exponent —3
(grey dashed line).

Networks created by this model also serve to illustrate the so called core-periphery
structure observed and quantified in many networks [29], 88]. The idea is that there
are a few highly connected nodes (the hubs), which are critical for the connectivity
and shortest paths in the network, form the core of the network and many weakly
connected, less important nodes form the periphery. One example for this structure is
the airline network, where a few large airports are densely connected by long distance
flights and form the core of the network. Many smaller, local airports are often only
connected to relatively few, close-by airports and form the periphery [189].

Related models based on a very similar premise were already analyzed by Yule in
1925 and Price in 1976, studying the network of citations of scientific publications
[146] 200]. Other network formation models built on describing growing networks
include generalizations of preferential attachment, leading to power law degree dis-
tributions with different exponents, or vertex copying models, used to describe the
emergence of scale-free degree distributions in biological contexts, where preferential
attachment is an implausible mechanism [105], [173].

Small world networks

Yet another large difference between real world networks and the basic Poisson ran-
dom graphs is the so called small world effect. This means that a network that has
a comparatively low mean degree has a high clustering coefficient (many triangles)
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but at the same time has a very small diameter. Intuitively, these two properties are
at odds with one another since high clustering means that most links are in local,
densely connected communities whereas a small diameter means that nodes must also
be well connected across their local neighborhood [127].

The Watts-Strogatz model solves this apparent paradox by considering a systematic
change from a regular network with high clustering to a random network with a low
diameter [I9I]. The basis for this model is a ring with N nodes, where every node
is connected to its (k) /2 nearest neighbors on each side. The model then interpo-
lates between this regular network and a random network by rewiring each link in
the network with probability grew. Rewiring means the link is disconnected from one
of its end nodes and reconnected to another, uniformly randomly chosen node. This
creates “shortcuts” in the network. For small g there are only few shortcuts and
for grew — 1 the network becomes completely random. Examples for the resulting
network structures are illustrated in Fig.
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Figure 2.6: Watts-Strogatz small world networks. (a,b) Watts-Strogatz model
networks with N = 20 nodes and (k) = 4 for different parameters grew =
0 and grew = 0.2, respectively. (c) Diameter and clustering coefficient
relative to their initial value at ¢ew = 0 for large networks with N =
1000 nodes and (k) = 20 (results averaged over 20 realizations). For
intermediate values of ¢ew the networks show the small world effect: a
high clustering coefficient (grey line) and a small diameter (black line) at
the same time.

In the regular network nodes are only connected to their local neighbors and there-
fore the network has a high clustering coefficient but a large diameter. As the rewiring
probability ¢ew increases some links are rewired and act as shortcuts to strongly de-
crease the diameter of the network. At the same time most of the triangles are
preserved and the clustering coefficient remains large. This is called the small world
effect in networks, in reference to structures often found in real social networks. It
shows that a small number of shortcuts in the network are sufficient to strongly reduce
its diameter. When ¢ev becomes large almost all links become randomly rewired and,
while the diameter remains small, the triangles in the network are destroyed. While
this network formation model reproduces the small world effect, the degree distribu-
tion does not match those of real networks.
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This model easily generalizes to different initial topologies, such as two dimensional
lattices, and links may be added instead of rewired without strongly affecting the
resulting network characteristics for small ey [103, [107]. The Watts-Strogatz model
and similar models based on hierarchical network construction have been used to
study routing and message passing in complex networks and explain the results of
Milgram’s letter experiment described in the introduction [23], 24], 192]. In general,
the Watts-Strogatz model is a very convenient model to illustrate processes or phe-
nomena across different network structures, ranging from regular to random, with a
single network formation model with only one parameter gey-

Game theoretic models

Another approach to network formation is to directly construct the networks from
basic principles, often resulting in optimization models [26, [76, [153]. Specifically in
social networks it is plausible that people form links not randomly but based on the
individual benefit they obtain from the links. This leads to game theoretic models of
network formation [I3], 64].

One such model is the distance based utility model [93-95] where each node obtains
a utility u; from the network given by

where the function b(d;;) > 0 and the constant c are parameters. A node gains utility
from all nodes it is connected to via shortest paths of length d;; but each direct link
a node establishes is associated with a cost ¢. The utility a node gains from being
connected to other nodes (directly or indirectly) is usually assumed to decay with
increasing distance, that means b(d;;) is a decreasing function. One example is access
to information from different people where it is easier to ask a friend for help than
a friend of a friend of a friend. The cost ¢ then represents the time investment to
maintain the direct friendships.

Such game theoretic network formation models allow deeper analysis, defining re-
fined concepts such as efficiency, that means the optimal network structure that max-
imizes the total utility. At the same time there is a natural definition of (pairwise)
stability, that means a link is only stable if it is beneficial for both its nodes. Analyzing
this model shows, for example, that efficient networks (maximizing the total utility)
are not always (pairwise) stable as individual nodes would like to form or cut links
[92, ©93]. It is possible to solve the distance based utility model for efficient network
structures, revealing three possibilities: the network either has no links, forms a star,
or is completely connected (see Fig. .

Other models based on optimization are often applied to model network formation
directly from physical, technical or economical constraints. Examples include models
for the venation network in plant leafs [99, [153], the structure of the world airline



24 Fundamentals

(a) ‘ (b)

Figure 2.7: Distance based utility. (a-c) Efficient network structures resulting from
the distance based utility model. If the costs per link are too large the
network remains empty. If the cost are very small, all links are formed.
For intermediate values of the cost a star-network is the overall efficient
solution. However, the network may not be stable when no node wants to
become the center due to the costs associated with the direct links.

network or similar distribution networks [76] [189], whose structure depends on trade-
offs between the travel distance and the cost of links. Often these models very closely
reproduce real network structures of a specific system. However, they are difficult to
analyze due to their high complexity and only provide insight in their specific contexts.

2.1.4 Percolation

Percolation is the formation of global connectivity from initially unconnected indi-
vidual components [80, 156, 177]E| Examples of percolation include the aptly named
coffee filters (percolators), where water flows through connected spaces between the
coffee grounds, similar behavior in porous rocks important for oil extraction, and the
gelation of polymers described by Flory, often cited as the first application of per-
colation [70} [I77]. Tools from percolation theory are also applied in the description
of epidemic spreading, where global connectivity means that an initial outbreak will
affect a non-vanishing fraction of the whole population, or to study the robustness of
different networks to random (or targeted) failures [37), 54} [60, 121, 128]. Addition-
ally, many standard percolation problems are analytically solvable [80]. As such the
percolation transition is one of the simplest and most studied examples of a phase
transition in statistical physics [170].

In this section we first discuss the basic idea of percolation on simple lattices to
introduce the concepts of percolation theory. We then consider the emergence of
global connectivity in random network percolation (Erdés-Rényi networks) and dis-
cuss properties of the phase transition, the critical exponents, and how to measure
them in finite size simulations. Finally, we briefly discuss the numerical implementa-
tion of simulating percolation in very large networks.

®Sometimes the term percolation is also used in the reverse context, meaning the breakdown of
global connectivity.
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Percolation on a lattice
Chain - discontinuous percolation

The simplest percolation problem is percolation on a one dimensional lattice (chain)
with IV nodes and, consequently, M = N — 1 links [177]@ Similar to the Poisson
random graph model, we assume each link is present independently of other links
with probability p and absent otherwise. This is called bond percolation. The same
concepts also apply to site percolation, where the nodes of the network are present
with a given probability and a link exits only if both its nodes are present. Clearly,
if p = 0 the network is disconnected since no links are present, all nodes are isolated.
On the other hand, for p = 1 all links are present and the network is globally con-
nected. Between these two extremes, there is a percolation transition from individual,
disconnected nodes to global connectivity. This is illustrated in Fig.

For a lattice it is easy to define global connectivity. The system “percolates” if there
is a path from one end of the system to the opposite end, if a so called spanning cluster
exists [156] [I77]. For percolation models on networks without an underlying geom-
etry global connectivity is usually measured via the size S; of the largest connected
component or cluster in the network relative to the size of the network N [5], [12§]. In
both cases we are interested in the limit NV — oo of infinitely large networks for both
the mathematical analysis and to draw parallels with phase transitions known from
statistical physics. Percolation is then defined as the transition from S;/N — 0 to
S1/N > 0 where a macroscopic (giant) cluster emerges in the limit N — oo.

In our one dimensional example a spanning cluster must contain all links in the
network. The probability P = pV~! that such a cluster exists vanishes for any p < 1
as N — oo. It follows that the percolation threshold p. where a spanning cluster
appears is p. = 1, as illustrated in Fig. [2.§(f).

Another quantity of interest is the cluster size distribution n(S). It describes the
number n(S) of clusters of size S in the network. The quantity Sn(S)/N then de-
scribes the probability that a uniformly randomly chosen node belongs to a cluster of
size S. For the line graph, this is easy to calculate ignoring as

T (2.16)
when ignoring the boundaries of the chain, since a cluster with S nodes must contain
all § — 1 links in the chain between these nodes but the two links on the ends of the
cluster must not be present [I77]. This also shows that for any p < 1 the number of
clusters of size S decreases exponentially with increasing cluster size. Just as with
the spanning cluster, there will be no macroscopic cluster S;/N > 0 for any p < 1 as
N — o0.

50ne may consider a circle with periodic boundary conditions instead of a line. The analysis is
identical in both cases. In the limit of N — oo effects of the different boundary conditions
disappear.
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Figure 2.8: One-dimensional bond percolation. (a-e) The chain network for dif-
ferent probabilities p € {0,0.25,0.5,0.75,1}. (f) Probability P = p¥~!
that a spanning cluster exists for different system sizes N = 10 (black),
N =100 (grey dashed), and N = 1000 (light grey dashed). In the limit
of large systems N — oo the system only percolates at p. = 1.

This percolation transition is an example of a discontinuous phase transition where
the order parameter, the probability that a spanning cluster exists, jumps discontin-
uously from 0 to 1 as the control parameter, the probability p of a link being present,
is changed [63, 156, 170].

Bethe lattice - continuous percolation

A slightly more interesting transition occurs in another analytically solvable example,
the Bethe lattice [177]E| The Bethe lattice is a regular, infinitely branching tree
where each node has the same number of neighbors (k), illustrated in Fig. Here
we will only consider (k) = 3 for ease of presentation but equivalent calculations
are possible for larger (k). The Bethe lattice is effectively an infinite dimensional
structurdﬂ and we measure the global connectivity in terms of the relative size of the
largest connected component. To understand bond percolation on the Bethe lattice,
consider an arbitrary node. Let ¢ be the probability that one of its links does not
connect this node to the giant cluster. Since all nodes in the lattice are equivalent,
the self-consistency equation

qg=1-p+pd (2.17)

holds, since either the link is not present with probability (1 —p) or the link is present
but none of the other two links on this branch are connected to the giant cluster
with probability pg?. This equation has the two solutions ¢ = 1 (corresponding to a
network without a giant cluster) and ¢ = (1 — p) /p. With this, the probability that
a node belongs to the giant component, which is equal to the fraction of nodes in the

"The Bethe lattice is also called Cayley tree, which technically should refer to a finite version of the
lattice.

8The number of nodes on the “surface” at distance d from a central node increases exponentially
and is half the total number of nodes up to this distance. This means the “volume” is proportional
to the “surface” making the Bethe lattice effectively infinite dimensional [I77].
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giant component is given by

3 1-p)°
Si/N=1—-¢"=1- () (2.18)
p
above the percolation threshold p. = 1/2. In this case the phase transition is con-
tinuous, it corresponds to a critical, second order phase transition similar to the
spontaneous magnetization in the Ising model [, 156 177]. The order parameter
S1/N varies continuously but is not differentiable at the transitionﬂ As for the tran-
sitions known from thermodynamics, one can define critical exponents characterizing
the behavior at and around the transition [I70]. For example, for the Bethe lattice
we find S;/N ~ (p —p.)? by expanding equation , defining the exponent 8 = 1.
We will discuss these critical exponents and how to measure them in simulations in
more detail below.

@) G
- /o 0.8
e = 06
~
i
w 04
T~ 0.2
- ~ -
- \
\ % 02 0% 0% 08 1.0
[ p

Figure 2.9: Bond percolation on the Bethe lattice. (a) Structure of the Bethe
lattice for (k) = 3. (b) Size of the largest cluster S; relative to the total
number of nodes in the system NN in the thermodynamic limit N — oc.
As derived in the text, a macroscopic cluster emerges continuously after
the percolation threshold p. = 1/2.

Random network percolation

Random network percolation follows the same idea as the above examples but without
any underlying structure. Instead, links between any pair of nodes may be present
or absent. Note that this model is equivalent to the construction of Poisson random
graphs discussed above. Using the degree distribution of the resulting network in the
limit of large N — oo and p ~ N~!

_ (Np)Fe NP

pl) = =2 (2.19)

9To be precise, the correct order parameter is the average (S1/N), since S1/N can only take discrete
values in finite systems and will always jump discontinuously in individual realizations. For ease of
notation we drop the (-) but understand that these statements refer to the corresponding ensemble
average.
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we can easily derive the size of the largest cluster. Similar to the above argument,
assume the probability that with probability ¢ a given node does not belong to the
giant component. This is only true if none of the neighbors of the node belongs to
the giant component. We again find a self consistency equation, similar to that for
the Bethe lattice, by averaging over the possible number of neighbors of that node

g="Y p(k)g" = e NP0-9), (2.20)
k

or in terms of the largest cluster size
Si/N=1—q=1—e NPSUN, (2.21)

Note that we consider the limit where (k) = (N — 1)p — Np is constant such that
the exponent is always finite. This equation has a positive solution S1/N only for
p > pe = 1/N or equivalently (k) > 1 [5, 127, 12§].

Many percolation rules, especially for simulations, are formulated in terms of net-
work growth, where links are added sequentially, one at a time. One then defines the
link density | = M/N as the control parameter. As discussed above, for the Poisson
random graph the two ensembles G(N,p) and G(N, M) behave similarly for large
networks. Following the above argument, in this setting random network percolation
occurs at I = p.N/2 = 1/2, illustrated in Fig. [2.10] [127].

0 0.2 0.4 0.6 0.8 1.0

I=M/N

Figure 2.10: Random network percolation. Average size of the largest cluster
S1/N relative to the total number of nodes in the system N. The grey
lines show numerical averages over 1000 realizations for systems with
size N = 2'0 (dotted) and N = 2% (dashed). The black line shows the
analytical results in the thermodynamic limit N — co. As derived in the
text, a macroscopic cluster emerges continuously after the percolation
threshold I, = 1/2 (p. = 1/N).

As for the Bethe lattice, the percolation transition is a second order critical phase
transition. The behavior of the system close to the percolation threshold is defined
by power laws with critical exponents characterizing the behavior of the different
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observables above, at, or below the critical point [I70], for example

S o~ (le=D7Y" for 117,

Si/N ~ (1—1.)° for 1— 17, (2.22)
(S) ~ Jl—=1]7" for 1 —1F, '
n(S) ~ ST for 1=1..

For random network percolation these exponents are

o = 1/2, (2.23)
B = 1, (2.24)
v o= 1, (2.25)
T = 5/2. (2.26)

With the help of equation (2.21)) it is easy to verify that § = 1, finding S1/N =~
4 (1 —I.) in random network percolation [5] 80, [177].

Finite size scaling

The discussion of phase transitions and critical (power law) behavior only strictly
applies in the limit of large systems N — oco. In finite systems the behavior is only
approximately described by a power law but modified by effects from the finite system
size, such as boundaries of the system. For example, the (average of the) relative size
of the largest cluster S1/N will vary smoothly with p, converging to the critical tran-
sition and becoming non-analytic at p. only as the system size diverges, see Fig. 2.10]
[177]. Understanding the transition in finite systems is important since any simula-
tion, experiment, or application is necessarily finite. Finite size scaling provides a
framework to describe this behavior at the transition in finite systems and enables us
to accurately measure the critical exponents from direct simulations of finite systems.

The basic idea of finite size scaling can be understood by starting from the critical
scaling of an observable O, O(p) ~ |p — p¢|*. Assuming there is only a single relevant
length scale in the system, we define the correlation length & ~ |p — p|", for example
via the typical diameter of clusters in percolation problems [80, 156, 177]. At the
transition, when an infinite cluster spans the whole system, this length scale itself
diverges and the system becomes self—similarm However, in finite size systems the
typical length scale cannot exceed the linear size L of our system and we (naively) set
€ = L at p.. Then O(p) ~ |p — pe|® ~ €~4* becomes

O(p.) ~ L™ (2.27)

relating the scaling of our observable in finite systems of size L at the critical point
to the scaling in the infinite system near the critical point with the exponent —a/v.

0There is no discernible length scale in the system anymore and no matter how much we zoom in
or out, the system will look identical. The system has a fractal structure at the transition.
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In a more rigorous derivation, one assumes a scaling ansatz of the form

0) = L~F' (G ) = I*F (o= pd 117 (2.29)

where F'is a scaling function depending on the observable and the process. This leads
to the same relation with a constant factor F'[0].

With the above relation determines the ratios of critical exponents from measure-
ments of the corresponding observables at the critical point in finite size systems. A
similar argument also allows us to determine v via measuring a finite size (pseudo)
critical point p.(L), scaling as pe(L) — p. ~ L~V [147, [I77]. p.(L) is usually defined
via the observed maximum of the correlation length or certain observables such as the
susceptibility or, correspondingly, the maximum of the mean cluster size (excluding
the largest cluster) in percolation systems [80, [I77]. In some cases analytic calcula-
tions to determine the critical point and some of the critical exponents are possible
with the help of renormalization group approaches, relating the behavior of systems
of different sizes L and L’ at different states p and p’ [80} [177].

The simple argument given above does not quite work in all dimensions, however.
Specifically, the Bethe lattice or random networks are effectively infinite dimensional
and thus have no linear extension L. In fact, it is well known that above an upper
critical dimension d. the critical exponents characterizing a phase transition become
independent of the dimension and are identical to results for the mean field. In
the context of percolation, this means the random graph where any two nodes may
be connected. This critical dimension for percolation is d. = 6 [84], [I56]. Above
this dimension, and thus also for random graphs, the system behaves as if it had
dimension d = d,. Thus, for random network percolation we set L = N/% to obtain
the scaling form

N_a/(dcl’)
NG E [(p—pe) NV

O(pe) ~
(2.29)

O(p) ~

resulting in the finite size scaling relation S;/N ~ N~8/(de¥) with —3/(d.v) = —1/3

[197.

In fact, the rigorous mathematical analysis and universality of the scaling ansatz
and the (hyper)scaling relations relating the different critical parameters and the di-
mension of the system are still subject of ongoing research. For example, the scaling
above the upper critical dimension may depend on the chosen boundary conditions,
resulting in different critical exponents, even if the systems are identical otherwise
[79, 100} 196]. Still, for our application to random percolation finite size scaling is a
well established and reliable method.
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Beyond random percolation

Many extensions of random percolation are possible. Relevant for real world networks
is the study of percolation in arbitrary, for example scale-free networks. The critical
behavior is different to random network percolation and a macroscopic component
already emerges at p. = 0. In this sense, scale-free networks are resilient to random
failures since a large connected component always exists. On the other hand, the
study of targeted percolation, that means adding nodes or links in a specific order,
shows that scale-free networks are less resilient than random networks under targeted
attacks. Another famous example is the study of interdependent networks or networks
of networks, where the function of a node in one network depends on a corresponding
node in another network. An often cited example is the interdependence of the power
grid and communication network, leading to a large blackout in Italy, analyzed in
[35]. In such networks a small failure in one network can cause a cascade of failures in
both networks eventually leading to the breakdown of connectivity of both networks
in a discontinuous phase transition [22].

Another interesting finding that sparked a large amount of interest in percolation
was the observation of explosive percolation. In an attempt to model control of the
percolation transition Achlioptas et al. introduced a percolation rule where at each
step two links are selected randomly. One of these links is then added to the network
based on some selection rule [3,[147]. In this specific example, the product rule always
selects the link that minimizes the product S(i)S(j) of the sizes S(i) and S(j) of the
two clusters connected by the link. Achlioptas et al. found a seemingly discontinuous
transition, unexpected in random network percolation. Detailed study of the model
and even rigorous mathematical analysis finally showed that the transition is continu-
ous but behaves very differently from standard random percolation [58) [78], 150, [151].
The transition is extremely sudden with a critical exponent 8 = 0.08, compared to
8 = 1 for standard random percolation. Even in very large but finite systems the
largest cluster S increases in size by a large fraction of the total system size in a sin-
gle step. This largest gap AS;/N ~ N~° disappears only very slowly with b around
0.05, depending on the specific model [126].

Based on this research many percolation models have been developed to reveal
many more diverse phenomena and unexpected critical and super-critical behavior
[63]. In particular, much effort has been focused on finding genuinely discontinuous
percolation transitions, for example via direct control of the (largest) clusters in the
system, and what properties models must have to allow for a discontinuous transition
[10, 25, 42, [44] [49]. It was shown that any finite fraction of randomly added links
during the percolation process will always lead to continuous percolation [I63]. Sim-
ilarly, the proof showing the continuity of explosive percolation shows the same for
the general class of Achlioptas processes, where at each step a finite number of links
is evaluated and one of those links must be added [I50}, [151].
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Numerical implementation

The numerical implementation of percolation is not always straightforward, especially
for very large systems. Most percolation models are simulated by adding links to the
network (or lattice) one by one. By correctly weighting each step these results can
be easily transformed to the percolation models discussed above, where each link is
present of absent with a given probability p [129]. More complicated percolation mod-
els are, however, already formulated as a sequential link addition process and usually
directly adopt the link density [ = M /N as the control parameter.

In order to track the sizes of the components, and avoid recalculating the con-
nected components after each step, one typically uses a union-find structure (disjoint
set data structure) for percolation on lattices. This algorithm allows fast updating of
the cluster sizes for any underlying network structure when links are added [129]. For
random networks, where any link between two nodes can be added, it is possible to
simplify the simulation considerably with a small approximation. Instead of consid-
ering the individual nodes and the detailed network structure, we only consider the
cluster size distribution ng, that is the number ng of clusters of size S. Effectively,
we simulate the master equation of a cluster merging process instead of the detailed
network structure [48, [I50]. Of course this will not exactly reproduce the percolation
process, since we potentially add a link that is already present in the network. How-
ever, for sufficiently large systems, this probability quickly disappears and only about
15 errors are made in a simulation with N = 220 nodes.

To take full advantage of this idea, we employ a data structure called a binary tree
[128, [145] to store the clusters as pairs (S,n(S)). This structure allows us to quickly
find and update clusters with a specific size. By keeping track of the total number
of nodes Y g Sn(S) in all clusters in the sub-trees of each node of the binary tree,
we can also very quickly select a random node and corresponding cluster. This algo-
rithm is slightly improved by using two different structures for ordering the clusters
and selecting a random cluster as well as by empirical adaptations depending on the
specific percolation model, such as explicitly tracking very large clusters individually.
Specifically, we use a binary heap [128] to pick a random cluster and a sorted binary
tree to find clusters of a specific size [162].
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2.2 Dynamical systems

Most systems, including many networks, are not static but change over time, they
are dynamic. We describe a dynamical system by its state z(t) and its evolution in
time ¢ [17), 87, [142) (178, 180]. In general, both the state as well as the time may be
continuous or discrete variables. For example, when we describe the motion of a car
or the motion of planets, where the state is simply the position in space, both time
and space are continuous variables. On the other hand, when we describe the daily
number of passengers on a bus, time is measured in discrete days and the number
of passengers is measured in (hopefully) discrete persons. Dynamical systems theory
provides tools to understand both kinds of systems but here we restrict the presenta-
tion to continuous time and state variables. This means we have a time t € R and a
state z(¢) € R at each time. In general, the state x(t) € R” may be an n-dimensional
vector-valued variable, denoted by bold-face notation, for example position and ve-
locity in classical mechanical systems.

Mathematically, a dynamical system in continuous time is characterized by a flow
® describing the evolution of the state x(¢) of the system in time as x(t+17T) =
¢ (x(t),T) [87, 178]. The flow is typically given as the solution of a differential
equation describing the change of the state x(t),

dx(t)
— =f(x(1)). 2.30

() (2:30)
In the following, we drop the explicit time dependence denoting the state only as x
when there is no possibility of confusion.

In this section we briefly present the basic concepts of attractors and (linear) sta-
bility with examples in one and two dimensional systems and then discuss higher
dimensional chaotic systems. Finally, we outline the basic ideas of the numerical im-
plementation to measure the exponents characterizing the linear stability.

Attractors and stability

In many cases we are interested in the long term behavior of the system. For example,
when modelling a population of animals, we want to know whether the animals die
out or the population settles to a fixed level and how this depends on the system
parameters. We answer this question by considering states z*(¢) that, once reached,
do not change. Rigorously, we are looking for minimal closed invariant sets X* C R™.
That means if a trajectory starts in X*, x(¢) € X*, it remains in X* for all times,
x(T > t) € X*. If all trajectories that start arbitrarily close to this set X* converge to
X* for t — oo, the set is called an attractor [I78]. This is quantified by the (linear)
stability of X*. For example, we can think of at least two simple invariant states for
the animals: (i) if there are no animals left, no new animals are born and the popu-
lation remains extinct and (ii) if the same number of animals are born and die, the
population remains constant. Which of the possibly many attractors a system settles
on depends on the specific initial conditions.
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Figure 2.11: Fixed points. (a) Phase space plot of the dynamical system dz/dt =
x — 23, (b) Evolution of the trajectories for multiple initial conditions.
The system has three fixed points given by the solutions to f(z*) = 0, two
of which are stable (filled dots, dashed lines) and one which is unstable

(open circle, dotted line).

In a one dimensional system dz/dt = f(z) the state x only either increases (f(z) >
0), decreases (f(x) < 0), or does not change at all (f(z) = 0). The points where x
does not change are the only possible attractors, called fized points, of the dynamics.
As an example, consider the system

d

di:’ = f(z) =z —2° (2.31)
with three fixed points 27 = —1, 25 = 0 and =5 = 1. From the illustration in Fig. [2.11
we easily see that the system will move to either 27 = —1 or x5 = 1 for large ¢,

these fixed points are called (asymptotically) stable. In contrast, the system will move
away from the unstable fixed point 25 = 0 (unless it starts exactly at this fixed point)
[87, [178].

To quantify the stability of the fixed points we consider an infinitesimal change
dxr < 1 away from the fixed point, x = z* + dx. If the system returns to the fixed
point from this initial condition, x — z* (dx — 0) for large times ¢ — oo, the fixed
point is considered linearly stable. The linear stability of the fixed point is described
by the evolution of this infinitesimal change

déz _ df(z*)

= o) - fa) =

2 2.32
g” oz + O(0x*), (2.32)

where we disregard the higher order terms. This system has the solution dx(t) ~
exp (At). The exponent A = df(z*)/dx corresponding to this fixed point, called the
Lyapunov exponent, characterizes the (linear) stability of the fixed point [87] [178].
Here we use the notation df(z*)/dz to indicate that the derivative should be evalu-
ated at the point z*. If A < 0 a small perturbation decays and the system returns
to the fixed point, the fixed point is linearly stable. If A > 0 the system is unstable.
For our example system Eq. , it is easy to verify the stability of the fixed points
with exponents \; = —2, Ao = 1 and A3 = —2, respectively.
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A similar idea applies to fixed points in higher dimensional systems. Here, the
linear system becomes
dox  df(x*)

" 2y * 2
g” I 0x 4+ O(6x*) = J(x*)ox + O(0x7) (2.33)

with the Jacobian matriz J evaluated at the fixed point x* and the solution dx(t) ~
exp (J(x*)t). In this case each fixed point has multiple associated exponents given
by the eigenvalues A12 .. of J. The fixed point is only stable if the real part of all
eigenvalues is negative, otherwise it is unstable [87] [178].
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Figure 2.12: Two dimensional dynamical systems. Phase space plot of a stable
limit cycle in the system dr/dt = 1 — 72, df/dt = r?, given in polar
coordinates. Arrows indicate the direction of the flow. The stability of
the limit cycle illustrated with two example trajectories.

In two dimensional systems fixed points are not the only possible attractors: the
system may move along closed periodic orbits, similar to the rhythmic motion of an
undamped pendulum. As fixed points, these periodic orbits may be attracting or
repelling nearby trajectories and are called limit cycles if there is a trajectory that
approaches the orbit as ¢ = f+oo. One example of a two dimensional system with a
limit cycle and one unstable fixed point is illustrated in Fig. 2.12 We determine the
(linear) stability in a similar way as above in equation by considering the evolu-
tion of a small perturbation. However, now the Jacobian J(x*(t)) along the periodic
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orbit is not constant but changes over time[l]] The Poincaré-Bendixon theorem proves
that in two dimensions fixed points and limit cycles are the only possible attractors
[178]. Higher order systems admit more complicated dynamics, such as chaotic orbits,
discussed in the next section.

Chaotic systems

Dynamics in three or more dimensions may be much more complicated than fixed
points and limit cycles. Whereas a limit cycle in two dimensions separates the phase
space into two disjoint parts, see Fig. this is no longer true in three dimensions.
In fact, the trajectories of a three dimensional system can settle on aperiodic, fractal
attractors that have no volume but are more than surfaces. This is possible since the
trajectories can still fold and circle around each other without ever crossing, in con-
trast to two dimensional systems. Perhaps even more surprising is the fact that nearby
trajectories on these attractors diverge exponentially. This means, even though the
system settles on an attractor, a small change in initial condition will grow over time,
resulting in so called sensitive dependence on initial conditions. Such an attractor is
called a chaotic attractor, as the dependence of the dynamics on the initial conditions
seems random, even though it is defined by a deterministic differential equation. Due
to their fractal geometries these attractors are also sometimes referred to as strange
or fractal attractors [87, [178].

One example for chaotic dynamics is the Rossler system [I55] given by

Loy

dt - y )

d

d—zt/ = z+ay, (2.34)
% = b+z(x—rc)

with only one nonlinear equation. For parameters a = 0.2, b = 0.2 and ¢ = 5.7 the
system exhibits a chaotic attractor illustrated in Fig. 2.I3] Calculating the linear
stability of the attractor we find |[0x| ~ exp (At) with the real part of the largest
Lyapunov exponent A =~ 0.07, even though the attractor itself is stable. We discuss
chaotic dynamics more in the context of synchronization below and in the articles in
chapters [3] and [

1A perturbation along the periodic orbit will necessarily result in — after one full period — constant
displacement and thus an exponent of A\ = 0 associated with any periodic orbit. Therefore, to
determine the (linear) stability of the orbit one should consider only transverse perturbations
perpendicular to the orbit.
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Figure 2.13: Chaotic systems. Chaotic attractor of the Rossler system described

by equation .

Numerical implementation

For the numerical solution of the differential equations we use either the standard
fourth order Runge-Kutta algorithm or a fifth order Runge-Kutta algorithm with
adaptive time steps [145].

In order to calculate the largest Lyapunov exponent from those simulations we
directly work in the corresponding linear system [I9]. This means we consider a
perturbation dx with time evolution given by

déx

o = @) ox (2.35)

along the trajectory x*(¢). Writing dx = exp (r) u we separate the perturbation into
its amplitude exp(r) and its direction u. With the additional constraint u-u = 1,
where - denotes the scalar product of two vectors, the derivative du/d¢t must be
orthogonal to u and we find

dr %

o = VUBK®u)-u

du * dr

o = @Ol (236)

From these variables we directly calculate the real part of the largest Lyapunov ex-
ponent as A = lim;_,oo 7(t)/t when starting with r(0) = 0 as initial condition.
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2.3 Networked dynamical systems

So far we have discussed the structure of networked systems and the dynamics of
individual units. Often, these two aspects are not separate. Many networked systems
are not static but change their state or structure over time. Similarly, most dynamical
systems are not isolated but interact with many other systems. Networked dynamical
systems refer to such systems where the nodes are dynamical systems and the links in
the network describe the interactions between the units [17, 180]@ For example, we
could describe the population of animals in different geographical areas with identical
population dynamics in each area and coupling via a network of migration between
these areas [I8| [143]. Other examples include the dynamics of epidemics, where cou-
pling is given by the transportation network [32, B8], the dynamics of power grids,
where units are individual generators coupled by transmission lines [152), 157, 195],
or the activity of neural networks, where the interactions describe signal transmission
between neurons via synapses [59, 96].

In general, we consider a network of N coupled units with adjacency matrix A,
A;; € {0,1}. The dynamics of an individual unit ¢ are then given by

dXi N
e £ (xi) + > Aijgij (%i,%;5) (2.37)
=1

for i € {1,2,...N} and x; € R". The function f; describes the internal dynamics
of the unit and the function g;; describes the coupling between the units, summed
over all nodes with a connection to 7 [I28]. Typically, the internal dynamics and the
coupling functions are identical for all nodes. In particular, we only consider systems
with identical coupling g;; = g and f; (x;) = f (x;,w;), where the functional form of
the dynamics is identical for all nodes but may depend on different parameters w;.

There are also many examples where the structure of the network changes dynami-
cally, sometimes depending on the dynamics of individual units. The most prominent
examples are the brain, where individual neurons form new synapses based on their
mutual activity, and our continuously changing social networks [9, 59, 89, 109]. How-
ever, in this section we consider only networks with a fixed topology and mainly discuss
synchronization phenomena in networks of dynamical units described by Eq. .
First, we discuss phase locking and synchronization in the Kuramoto model, then we
consider synchronization of chaotic units and stability in these systems.

12There is no fundamental difference between a high dimensional dynamical system and a network
formed by many small, coupled dynamical systems. However, often the individual units have very
similar or even identical dynamics, giving these systems additional structure. This allows us to
apply tools from both network science as well as dynamical systems theory to study these systems.
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2.3.1 Synchronization

One of the most common collective dynamical phenomena is synchronization, where
different units align their behavior such that they are in the same state at the same
time [12), 142]. There are many examples such as clapping, singing, or dancing to a
song, marching to a beat, and even our circadian rhythm synchronizing to the day-
night cycle. In these cases the behavior is determined by an external driving force. In-
terestingly, in some systems synchronization also emerges without an external rhythm,
seen in the famous example of synchronization of the walking of pedestrians on Lon-
don’s Millennium Bridge [I81]. Many more biological systems show synchronization,
including cell activity and the blinking of fireflies synchronizing to a common on-off
frequency [12] [I78]. Synchronization also plays an important role in many technical
systems, for example for the function of communication and positioning system such
as GPS [120]. Due to the strongly interconnected financial markets, even the prices of
goods, stocks, or different currencies are related and sometimes exhibit weaker forms
of synchronization [I74]. In more abstract models, synchronization is interpreted as
the emergence of consensus in opinion formation [17].

Mathematically, synchronization between two units ¢ and j means that their state
is identical x;(t) = x;(t) for all times ¢. This is called identical or complete synchro-
nization. Often this condition is not exactly fulfilled and there are extensions to the
definition of synchrony that also cover weaker forms of synchronization [142].

Phase oscillators, phase locking and the Kuramoto model

The examples above show that synchronization is a ubiquitous phenomenon in a broad
range of systems. For a general understanding of synchronization, we need to under-
stand what all of these systems have in common. Individually, many of the systems
mentioned above are limit cycle oscillators. They exhibit a stable limit cycle, such as
the system shown in Fig. If the limit cycle is strongly attractive, the fluctuations
around the stable periodic orbit are small. We can then describe the state x of such
a system with a single scalar variable, its phase ¢; € [0,27) along the periodic orbit,
ignoring the amplitude of the oscillations. Such a system is called a phase oscillator.
Consequently, for sufficiently weak coupling the system will remain close to its limit
cycle and interactions between two units are also limited to functions of their phases
¢; and ¢; along the periodic orbit [2].

Synchronization between two phase oscillators ¢ and j then simply means ¢;(t) =
¢;(t) for all times t. A weaker condition does not require identical phases but only
identical, typically constant frequencies d¢;(t)/dt = d¢;(t)/dt, such that the differ-
ence ¢;(t) — ¢;(t) is constant. In this state the two oscillators are called (fully) phase
locked [2, 178]. This is relevant, for example, for power grids, where all generators
should run with identical frequency to guarantee stable operation [68].
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The Kuramoto model is one of the most basic models to describe coupled phase
oscillators [2) 110, 111, 179]. It consists of a collection of N oscillators, each moving
with an intrinsic frequency w; and interacting with attractive sinusoidal coupling with
coupling strength K. In the original model, all units are coupled to all other units

do;
dt

K N
=w; + N; sin (¢; — ;) (2.38)

In terms of our definition of networked dynamical systems in equation this
means fi(¢;) = w; and g(¢;, ¢;) = K/Nsin(¢; — ¢;). For weak coupling the oscil-
lators move with their individual frequency. As the coupling becomes stronger indi-
vidual oscillators become partially phase locked, that means their phase differences
become bounded and the oscillators move with the same average frequency. For suf-
ficiently large coupling all oscillators become fully phase locked with constant phase
differences and finally synchronize completely as K — oo.

In order to study the phase locking and synchronization, Kuramoto introduced an
order parameter to quantify the phase coherence of the oscillators. Interpreting the
phases of the oscillators as phases of complex variables with absolute value 1, we
define

N
(1) exp [9(1)] = = 3 exp (i65(0) (239)
j=1

with the collective phase ®(¢) and amplitude r(¢). If the phases ¢; are disordered
their contributions cancel out and r(t) is small. If all phases are similar r(t) becomes
larger and approaches r(¢) — 1 in the limit of complete synchronization. The order
parameter is then defined as the long time average r = (r(t)),, measuring the average
phase coherence of the oscillators. In the limit of N — oo mean field calculations show
that there exists a critical coupling strength K. below which no phase locking takes
place, r(K < K.) = 0. At K. some oscillators become partially phase locked and the
order parameter becomes positive |2, [12], 179]. The system undergoes a second order
phase transition, similar to the percolation transition in random networks, illustrated

in Fig. [2.14

Kuramoto oscillators will also synchronize if the coupling network is not completely
connected. However, synchronization emerges in a different way, depending on the
network structure. As in percolation, individual clusters of connected nodes with
similar phases become (partially) phase locked first. These clusters slowly grow and
merge as the coupling strength increases [77, 911, [148| [149]. Again, it is possible to
estimate the critical coupling depending on the degree distribution with mean field
calculations and the definition of the order parameter can be extended to take into
account the specific network topology. An overview of the Kuramoto model, the order
parameter, and its extensions to complex coupling networks is given in the introduc-
tion of the article in chapter
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Figure 2.14: Kuramoto model of coupled limit cycle oscillators. (a,b) Trajec-
tories of N = 10 coupled Kuramoto oscillators for weak (K = 0.5) and
strong (K = 1.5) coupling, respectively. (c¢) Order parameter r in the
limit of N — oo with frequencies distributed normally with mean 0 and
variance 7/8 [2, [12], 179].

2.3.2 Chaos synchronization

In principle it is easy to imagine that any two identical, coupled systems synchronize
eventually, even if the coupling strength is small. However, chaotic systems discussed
above challenge this intuition. Due to their chaotic dynamics, even a small initial
difference in the state of two identical chaotic systems grows exponentially. Perhaps
surprisingly, it is still possible to synchronize chaotic systems [138, [140} 141]. In fact,
depending on the system and the coupling, chaotic systems exhibit a variety of dif-
ferent types of synchronization. These relations between the units’ states range from
complete synchronization over lag synchronization, where one unit follows another
unit with a time lag x;(¢) = x;(t + 7) even when there is no explicit delay in the cou-
pling itself to arbitrary functional relations x; = h (x;) in generalized synchronization
of possibly non-identical units [56, 140, 142 154} 159, 178]@ Here, however, we focus
only on complete synchronization of identical chaotic systems.

13The phase locking of limit cycle oscillators is a form of lag synchronization, as one oscillators will
lag behind the other by a fixed phase, which means by a fixed time if they rotate with constant,
non-zero frequency.
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To illustrate chaotic synchronization we consider two coupled Réssler oscillators ¢
and j coupled only in their x-coordinate

dl’i

i —vyi — 2z + K (v — ;) ,

dyi

(Tyt = 2 +ay;, (2.40)
dz;

d—i = b+zi(xi—c),

and equivalently for the other oscillator j. The two systems become completely syn-
chronized for sufficiently large coupling K but desynchronize again when K becomes
too large. Fig. [2.15] shows the largest Lyapunov exponent of the synchronized state.
This non-trivial behavior depends strongly on the system and its parameters as well
as the topology of the interaction network and the type of coupling between the units.
However, in the next section we will see how it is possible to determine the stability
of the synchronized state separating the network topology from the specifics of the
dynamical system. This allows us to understand the stability of the synchronized
state in any network in relation to a system of only two coupled units.

0.2

0 2 4 6

K

Figure 2.15: Synchronization of chaotic oscillators. Stability of the completely
synchronized state of two z-coupled Réssler oscillators [Eq. (2.40))] char-
acterized by the largest transverse Lyapunov exponent A%, depending
on the coupling strength K.

Master stability function

A big question when dealing with large networks of oscillators is how to control or
synchronize them efficiently. Depending on the task, one can find many connections
between the structure of the interaction network and the synchronizability of the
units [16] (71, 115 124]. The master stability function relates the stability of the
synchronized state in any network to the topology of the interaction network and the
stability of the synchronized state of two coupled units [128], 139]E In the following

The idea of the master stability function is also described in the articles in chapter [3|and [4] for the
specific model studied.
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we assume a network of identical coupled dynamical systems described by

dXZ'

N
a =f (XZ) + Z Aijg (Xi, Xj) , (241)

i=1

where x; € R". We assume diffusive coupling with coupling strength K and constant
coupling matrix C' € R™*" with Cy; € {0, 1} such that

g (Xi,Xj) =KC (Xj — Xi) . (242)

T and similarly F(X) = (f(x1),...,f(xx))" such that

We write X = (x1,...,Xy)
(fi(x;)), fori e {1,2,... N} and k € {1,2,...n}. Equation

Xk = (x4);, and F(X) i, =
then becomes
dx
dt
where L = A — diag (ky,...,ky) € RVXN is the Laplacian matriz of the coupling
network and ® denotes the direct product

=F(X)+K(L2C)X, (2.43)

—k1C AppC

such that (L ® C),;;; = LijCi with i,j € {1,2,... N} and k,l € {1,2,... n}ﬁ Given
a synchronous state X* = (x*,x*, ... )T, small perturbations around this state are
subject to the linear dynamics

PX _ ok (X) + K (L €)] 5% = 3 (X°) oX. (2.45)

The important observation here is that both parts of J (X*) have an N x N block

structure and DF (X*) = 1y xn®Df (x*) is diagonal in this block structure. Thus, it
is possible to diagonalize the system using the diagonalization of L without affecting
the block-diagonal first part. This separates the perturbation into the eigenvectors &
to the eigenvalues 7, of L with dynamics

%k _ [DF (") + K. (2.46)
for k € {1,2,... N}. This is the same as the variational equation of a system of two
coupled units with coupling strength K~,. This means the stability of a synchronous
state in an arbitrary network of coupled identical units with coupling strength K is
defined by the largest Lyapunov exponents A (K+y) of a system of two coupled units
with coupling strengths K~; given by the eigenvalues of the Laplacian of the interac-
tion network.

The product (L ® C') X is then given by ((L ®C) X)ik = Z;\jzl >y LijCu (x5),
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Finding conditions that support synchronization is a fertile and active area of research with applications
across multiple disciplines. Here we present and analyze a scheme for synchronizing chaotic dynamical
systems by transiently uncoupling them. Specifically, systems coupled only in a fraction of their state space
may synchronize even if fully coupled they do not. While for many standard systems coupling strengths
need to be bounded to ensure synchrony, transient uncoupling removes this bound and thus enables
synchronization in an infinite range of effective coupling strengths. The presented coupling scheme
therefore opens up the possibility to induce synchrony in (biological or technical) systems whose
parameters are fixed and cannot be modified continuously.

DOI: 10.1103/PhysRevLett.115.054101

Synchronization is one of the most prevalent colle-
ctive phenomena in coupled dynamical systems [1].
Synchronization and related consensus phenomena have
been frequently found in biological, ecological, physical,
engineering, and social systems such as in predator-prey
dynamics, the spread of epidemics, the migration of large
populations, systems of self-driven particles, and systems
of social or technical dynamics [2-12]. For chaotic sys-
tems, synchronization typically emerges only within a
specific range of coupling strengths and is impossible
otherwise [1,13-15].

In this Letter, we propose and analyze a way of inducing
synchronization between coupled chaotic oscillators by
transient uncoupling: If the system is in a certain predefined
subset of its state space, coupling is active; otherwise
it is inactive. We systematically study the dependence of
successful synchronization on the fraction of state space
where coupling is active. Synchronization may emerge
even for systems that do not synchronize when coupled
continuously in time (i.e., standard coupling). Furthermore,
the system may synchronize for an infinite range of
coupling strengths, even though this is often not possible
for ordinarily coupled chaotic systems. A systematic
numerical analysis reveals how transverse stability proper-
ties vary across the attractor with the location of active
coupling, not only between more or less stable synchrony,
but all the way from stability to instability for the same
system. This demonstrates that transient uncoupling modi-
fies the collective dynamics in a nontrivial way. These
results may find applications in inducing synchrony in
systems whose local coupling parameters cannot be con-
tinuously varied with ease, but only switched on or off.

Standard coupling.—To start, consider a system of two
unidirectionally coupled chaotic oscillators

Xm
k), m

0031-9007/15/115(5)/054101(5)

054101-1

PACS numbers: 05.45.Xt, 05.45.Gg

P _F)taCx(x-x). ()
where x (1), x,(#) € R? denote the states of the driving and
driven unit, respectively, C is a square coupling matrix,
and a is the coupling constant that determines the
overall strength of coupling [13]. As an explicit example
throughout this Letter we consider identical x-coupled
Rossler oscillators defined by F(x) = ( — (v + z), x + ay,
b+z(x—c))" [16] and C € R¥3, where C;; =1 for
i=j=1 and C;; =0 otherwise. Further, a = b = 0.2,
¢ =57, and we take X; =t (x;,y;,z;)7 as a convenient
notation. Other chaotic systems exhibit qualitatively the
same phenomena as those presented below [17].

Depending on the coupling strength «, such systems
do or do not synchronize towards x;(7) = x,(#) =: x4(¢).
In particular, like many other coupled chaotic systems,
Rossler oscillators are known to typically synchronize for
intermediate coupling strengths a, but not if coupled too
strongly or too weakly [Figs. 1(a)-1(c)].

These qualitative synchronization properties depend on
the (“transverse”) dynamics of the difference x| =x; —X,.
A Taylor expansion to first order in the (x, ), yields

x, =F(x;) = F(x,) —aC x (x; — x,)
~ [J(x5(1)) — aClx 3)

where J(x) = 04F(x) is the local Jacobian of F. For the
system (3) to relax to x, (f) — 0, its maximum transverse
Lyapunov exponent

%L (0)]
%.(0) @)

needs to be negative [1]. Figure 1(d) illustrates A,y as a
function of the coupling constant a. This clearly links,

1
Jx = lim —1In
t—oo |

© 2015 American Physical Society
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FIG. 1 (color online).
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Synchronization depends on coupling strength. Trajectories of the driving (solid line) and driven (dashed line)

unit of two coupled chaotic oscillators for (a) @ = 0.05, (b) @ = 1.5, and (c) @ = 5 as indicated in panel (d). (d) The maximum transverse

1

Lyapunov exponent A, indicates synchronization for intermediate coupling only.

in a quantitative way, the coupling strength and the
qualitative changes in collective dynamics observed before
[Figs. 1(a)-1(c)].

Transient uncoupling.—We now introduce transient
uncoupling via a factor

(%) {l for x, € A; 5)
X,) =
Falka 0 for x,¢A
in the coupling term,
dx
7: =F(x;) + ara(x2)C x (x; — x). (6)

Here A € R? is a subset of the driven unit’s state space
where coupling is active. The two units are thus effectively
coupled only within a subset R x A of their common state
space. For A = R, the units are ordinarily coupled con-
tinuously in time.

Practically relevant subsets A are defined by clipping a
region of state space along the direction of a particular
coordinate axis,

Ay ={x; € R":|(xy), — (x3),| < A}, (™)
where X7 is a suitable point and the subscript “1” refers to
the first coordinate of x, and x3. Thus, coupling is only
active within a column of width 2A centered around (x3);.
Here, (x3); = 1.2 was chosen as the center of the attractor
in the x direction. An example realization for Rossler
oscillators is illustrated in Fig. 2.

Such transient uncoupling modifies the collective dynam-
ics of the coupled system in a nontrivial way (Figs. 3 and 4).
Specifically, for a fixed coupling strength a, for which
standard coupling would not lead to synchronization, clip-
ping in an intermediate interval A induces synchronization.

Obviously, for A — 0 the units become completely
uncoupled and cannot synchronize. Similarly, for no clip-
ping A — Q/2 (where Q is the width of the attractor along
the clipping direction) we reobtain the original system with
standard coupling that does not synchronize. For intermedi-
ate clipping, however, we find stable synchronization. As the
clipping fraction A becomes just one additional parameter
of the system, we expect the Lyapunov exponent to vary
continuously with respect to A. An analysis of the transverse
Lyapunov exponent as a function of the clipping fraction
A" =2A/Q confirms this (Fig. 3).

FIG. 2 (color online). Transient uncoupling through state-space
clipping. The dynamics of two synchronized chaotic oscillators
in the x-y plane with x* = (x3), = 1.20, A = 4.16, and a = 7.0
(driving: solid curve; driven: dashed curve). Coupling is only
active in the interval x, € [x* — A, x* + A] (shaded in gray).

054101-2
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FIG. 3 (color online). Synchronization induced by transient
uncoupling. Maximum transverse Lyapunov exponent for two
transiently uncoupled chaotic oscillators (for parameters see
text) for @ = 5 and clipping with (x}), = 1.20. Synchronization
emerges for moderate clipping, i.e., for intermediate values of A’,
though not without clipping (A" = 1).

Intriguingly, we find that for a fixed clipping interval A,
the dependence on the coupling strength « is changed not
only quantitatively but also qualitatively (compare Fig. 4 to
Fig. 1). In particular, for intermediate transient uncoupling
(intermediate values of A), synchrony emerges in an
infinite range of coupling strengths a, thus in particular
for arbitrarily large coupling [Fig. 4(d)]. This is in contrast
to many chaotic oscillators which, when ordinarily
coupled, exhibit an upper bound above which synchroni-
zation fails [13]. In fact we explicitly checked that the same
phenomenon also emerges in Rossler oscillators with other
parameters, and in pairs of coupled Lorenz and coupled
Chen oscillators as well as for larger networks [17].

(a) 15
=005
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o
=)

Time t

10 20 30 40 50
Time t

FIG. 4 (color online).

Optimal uncoupling.—We now analyze direction depen-
dencies of transient uncoupling. Interestingly, the range of
coupling strengths a for which the system synchronizes
increases when the clipping fraction decreases from
A’ =1, as Fig. 5(a) illustrates. Moreover, the range of
clipping fractions for which synchronization emerges
depends on the exact direction in state space along which
clipping is applied. For instance, clipping along the
X axis seems more synchronizing in this sense than clipping
along the y axis [compare Fig. 5(a) to Fig. 5(b)]. Oblique
directions exhibit even broader ranges of clipping fractions
where synchrony emerges [Fig. 5(c)].

In fact, certain directions of clipping are optimal.
Because of the shape of the attractor, excursions of
trajectories that substantially vary z are rare compared to
those that vary the other two coordinates. Thus, clipping
is desirable in the x-y plane. To quantify the effectiveness
of clipping depending on its direction in the x-y plane,
we measure the fraction of clipping

1
s0) = ['str.0)as (®)
for which the system synchronizes when « is fixed. Here,
we have measured the angle € counterclockwise from the
x axis and have defined the synchrony indicator

(f.0) { 1 for AL, <0; 9
s(f,0) =
0 for AL, >0
and the temporal clipping fraction
1T
f= Jim = xa(xo(1))dt (10)
—00 O
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Time t
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Transient uncoupling induces synchronization in an infinite range of coupling strengths. Trajectories of the

driving (solid line) and driven (dashed line) units for (a) @ = 0.05, (b) a = 1.5, and (c) @ = 5, the same as in Fig. 1. The clipping is given

€L

by Egs. (5) and (7) with (x3); = 1.20 and A = 4.16 as in Fig. 2. (d) Maximum transverse Lyapunov exponent A, as a function of the

1

coupling strength a; note the logarithmic scale. The gray line shows A« for normal, unclipped coupling. With transient uncoupling,

synchronization is stable for arbitrarily large coupling strengths.
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FIG. 5 (color online).

Extended synchronization range by transient uncoupling and optimal clipping. (a)-(c) Depending on the coupling

strength a and the percentage (A’ = 2A/Q) of the state space where coupling is active, the system may or may not synchronize. The dark
area marks the parameters where the synchronized state is stable, i.e., Ay < 0. Clipping is (a) in x direction [x* = (x3); =1.2],(b)iny
direction [y* = (x}), = —1.5], and (c) in the direction y ~ 3.1x (9" = 0.47). Accordingly, the direction of clipping can be optimized to
achieve the largest possible clipping range. (d) Effectiveness S(6) [Eq. (8)] of clipping along the direction 6 for fixed a = 10.

such that larger values of S(6) indicate that synchronization
emerges in a larger range of clipping fractions.

The curve S(6) has two local maxima [Fig. 5(d)],
indicating two locally optimal clipping directions, one of
which is globally optimal (at 6* = 0.47). Why is there such
a complicated dependence on direction?

Transverse stability depends on uncoupling location.—
We can better understand the synchronization of the system
by characterizing the stability for a family of clipping
functions y(x) = y4(x) where

A=Ay, ={x €R:[xy —x3] < r(x3)}.

(11)

)\L

max

-0.04

-0.08

FIG. 6 (color online). Multiple switches between stability and
instability depending on the coupling location. The color of the
points indicates the maximum transverse Lyapunov exponent of
the system with clipping to sets A = Ay . [Eq. (11)], indicating
stable synchronization (light) and no synchronization (dark)
depending on the coupling location on the attractor. Parameters
are @« =5 and f = 0.05.

Coupling is thus active if and only if x, is in a sphere
of radius r(x3) around x3. We sample the center points
randomly from the attractor (i.e., the invariant measure) of
the uncoupled system and choose the size r(x}) such that
the coupling is active during a fraction f of the time.

The results show that the impact of the uncoupling
strongly depends on the position where clipping is applied.
In particular, at identical system parameters, synchrony
can be either stable or unstable, depending on where
the coupling is active (Fig. 6). This holds even though the
coupling is active for the same fraction f of time. The
attractor regions of positive and negative transverse
Lyapunov exponents alternate depending on the direction
from the origin. As these different regions of stability and
instability each occur two times on the 2z phase cycle
(circulating the origin) and at roughly equal phase
distance, this explains the two maxima (and the two
minima) of the curve S(0) found above [Fig. 5(d)]. This
heterogeneous dependence on the exact location indicates
that transient uncoupling, despite being represented by a
linear reduction of the coupling term, modifies the
collective dynamics of the system in a strongly nonlinear
way. As a consequence, the clipping sets A need to be
determined individually for each given system to be
synchronized.

Conclusion.—In summary, we have proposed transient
uncoupling to modify whether a system of coupled chaotic
oscillators synchronizes. Most generally, these results
demonstrate that continuous-time coupling is not required
for synchronization, even for very simple coupling schemes
[21]. Interestingly, uncoupling can synchronize systems
that would fail to synchronize if ordinarily coupled.
Furthermore, it can even remove any upper bound on

054101-4
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the coupling strengths that enable synchronization. As a
natural extension, it would be challenging to explore how
systems capable of weaker forms of collective dynamical
coordination, such as phase synchronization, lag synchro-
nization, or generalized synchronization, would behave if
transiently uncoupled [1]. Additionally, our scheme may
extend synchronization regimes not only in continuous-
time systems (described by differential equations and
discussed throughout the Letter), but also for chaotic maps
and systems temporally switching between different con-
tinuous dynamics, cf. e.g., [22,23].

Stability properties of chaotic systems are known to
vary locally with the system’s state as quantified by the
local Lyapunov exponent [24-26]. For transverse systems,
studied above, local stability depends on the direction of
the difference vector x|, = X; — X,. For small coupling
strengths, the direction of this vector in the uncoupled
transverse system accurately indicates the regions of state
space where coupling will be most effective. However,
when the coupling is stronger or active in an extended
region of state space, the trajectories are more strongly
modified by the coupling. In particular, whether coupling at
one point is effective or not in general depends nonlinearly
on the coupling in the rest of state space. Optimizing the
regions of active coupling in this respect might enhance
synchronizability even further.

As experimental chaotic systems often exhibit intrinsi-
cally fixed, or at least restricted, internal and coupling
settings, the question emerges how to synchronize them.
Transient uncoupling by state-space clipping may help to
induce synchronization for a wider range of coupling
strengths, with potential applications to chaotic lasers,
electric and electronic circuits, communication systems,
and chaos-based cryptography [27-37].
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Supplementary Material
accompanying the manuscript
Transient Uncoupling Induces Synchronization

Malte Schroder, Manu Mannattil, Debabrata Dutta, Sagar Chakraborty, Marc Timme

In the main manuscript, we introduce the idea of transient uncoupling and demonstrate that it can not only extend
the range of coupling strengths enabling synchronization. Transient uncoupling does also induce qualitative changes.
One key example is that in systems allowing synchronization only in some bounded interval, transient uncoupling can
induce synchronization for an infinite range of coupling strengths. Thus, in particular it can stabilize synchronization
for arbitrarily large coupling strengths, where the normally coupled system would fail to synchronize.

In the main manuscript the ideas and novel phenomena are presented in a general way and illustrated for the
well-known system of two coupled Rossler oscillators. Yet a wide variety of different dynamical systems, from other
oscillatory units to larger networks, exhibit qualitatively the same behavior.

This Supplementary Material repeats the analysis of the manuscript for several additional examples, in particu-
lar illustrating the phenomenon for unidirectionally coupled master-slave systems of Rossler oscillators at different
parameters, for Lorenz as well as for Chen oscillators and finally for larger networks (extending the master stability
formalism [1] to include transient uncoupling, with explicit applications to two exemplary networks).

Furthermore, as explicitly requested by a referee, we present our simple probabilistic argument describing the exten-
sion of the interval of coupling strengths that lead to stable synchronization. The results indicate that this argument
does capture rough trends describing the synchronizability regime, but can neither quantitatively nor qualitatively
capture the novel phenomena we observed. As explained in the manuscript (in particular see Fig. 6) this is due to
the complex dependence of stability on the position in state space where coupling is active.

Throughout this supplement we use the general notation for our coupled chaotic systems

dxq
W = F(Xl), (1)
% = F(x2) + axa(x2)C x (x; — x2), (2)

where o denotes the coupling strength, C is a square coupling matrix and x; =: (2, 1;, ;). xa(X2) is the indicator
function describing the transient uncoupling

1 forxg € A;
= 3
Xa(x2) {0 for xo ¢ A. ®)

Rossler oscillator for different parameters. We again consider two z-coupled Rossler oscillators [2] with
dynamics [Eq. (1)] given by

—(y+2)
Fix)= | +ay (4)
b+ z(x —¢)
and coupled only in the z-coordinate, i.e., C;; = 1 for i = j = 1 and C;; = 0 otherwise. However, we use a different

set of parameters: a = b = 0.1, ¢ = 14. Transient uncoupling is again realized by clipping a region of state space in
z-direction with

Ap = {x2 € R?: |(x2)1 — (x3)1] < A}, (5)

where (x2); denotes the first component of (x3) and we chose (x3); = 1.325 as the center of the attractor in z-direction.
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As in the main manuscript, for standard coupling the synchronized state is only stable for a in a bounded interval,
illustrated in Fig. 1. Again, intermediate clipping A’ &~ 0.48 (A = 10) removes the upper bound on the coupling
strength « and stabilizes the synchronized state for arbitrarily large coupling strengths (see Fig. 2). We calculate
the maximal transverse Lyapunov exponent of this system for a fixed coupling strength o = 20 and different clipping
fractions A’ = 2A/Q, where Q is the width of the attractor in z-direction. We find again that transient uncoupling
with intermediate clipping stabilizes the synchronized state (see Fig. 3) while it is unstable for standard coupling

(A =1).

a a=01
20+ ' PR
L I B i
— ] 1
“a 10 i
R |
= Of
T ‘
-10+ ! / Vi 4
4 Syl Ul
r y I v vy 0o y
205 20 40 60 80 100
Time t Time t
a=1
c 3, d 0.2
20F i I
L || 0
510 A i s 01
\>.</ | é h \ 1
~ O {4 A o
- 1]~ -04 1
£ 1 i
-10r v Yo 0.6 0.1 ]
| vy ¥ H‘ 0 0.1 0.2
2920 . L H IV AL 0.8 . . .
0 20 40 60 80 100 0 5 10 15 20
Time t «

FIG. 1. Stable synchronization only for a bounded interval of coupling strengths. Trajectories of the driving (red solid line)
and driven (green dashed line) units of two coupled Réssler systems for (a) @ = 0.1, (b) a = 1, and (¢) @ = 15 as marked in
panel d). (d) Maximum transverse Lyapunov exponent indicates synchronization only for intermediate coupling strengths.
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FIG. 2. Synchronization for arbitrarily large coupling strengths by transient uncoupling. Trajectories of the driving (red solid
line) and driven (green dashed line) units of two coupled Réssler systems for (a) o = 0.1, (b) @ = 1, and (¢) a = 15, the
same as in Fig. 1 and marked in panel d). Transient uncoupling is realized by the clipping given by Eq. (3) and (5) with
(x3)1 = 1.325 and A’ ~ 0.48 (A = 10). (d) Maximum transverse Lyapunov exponent as a function of the coupling strength a,
note the logarithmic scale. The light grey line shows the result of unclipped coupling for comparison. With transient uncoupling
synchronization is stable for arbitrarily large coupling strengths.

FIG. 3. Synchronization induced by transient uncoupling. Maximum transverse Lyapunov exponent for two transiently coupled
Réssler oscillators [Eq. (4)] for @ = 20 and clipping [Eq. (3) and (5)] with (x3)1 = 1.325. Synchronization emerges for moderate
clipping, i.e., intermediate values of A’; although not without clipping (A" = 1).
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Lorenz system. As another example we consider two z-coupled Lorenz systems [3] with dynamics [Eq. (1)] given

by
o(y—x)
Fx)=|z(p—2)—y (6)
ry — Bz

with 0 = 10, p = 28 and 8 = 8/3 and coupled with C;; =1 for i = j = 3 and C;; = 0 otherwise. Transient uncoupling
is realized by clipping a region of state space in z-direction with

Aa = {x2 €R?: |(x2)3 — (x3)3] < A}, (7)
where we chose (x3)s = 25 approximately in the center of the attractor in z-direction.

For this system transient uncoupling also enhances the stability of the synchronized state for arbitrarily large
coupling strengths « as shown in Fig. 4 for strong clipping A’ ~ 0.04. However, we find that transient uncoupling
is not always favorable for synchronization. Intermediate clipping can strongly destabilize the system compared to
normal coupling as illustrated in Fig. 5(a) (A’ =~ 0.5) and Fig. 5(b) for fixed coupling strength o = 1000.
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FIG. 4. Trajectories of the driving (red solid line) and driven (green dashed line) units of two coupled Lorenz systems for
(a) a = 40, (b) a = 200, and (c) a = 1000. The clipping is given by Eq. (3) and (7) with (x3); = 25 and A’ ~ 0.04. (d)
Maximum transverse Lyapunov exponent as a function of the coupling strength «, note the logarithmic scale. Synchronization
is stabilized for strong coupling compared to standard coupling without clipping (light grey line).
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FIG. 5. Transient uncoupling induces synchronization for arbitrarily large coupling strengths. (a) Maximum transverse
Lyapunov exponent for two transiently coupled Lorenz oscillators [Eq. (6)]. The clipping is given by Eq. (3) and (7) with
(x3)s = 25. Depending on the extent of transient uncoupling synchronization can be enhanced (strong clipping A’ ~ 0.04
(A = 1), red solid line) or hindered (intermediate clipping A’ ~ 0.5 (A = 12), green dashed line) compared to standard
coupling (no clipping A’ = 1, blue dotted line). (b) Maximum transverse Lyapunov exponent of the same system for fixed
o = 1000. Synchronization is most stable for strong clipping, i.e., small values of A’, while intermediate clipping destabilizes
the system.
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Chen system. As a further example we consider two z-coupled Chen systems [4] with dynamics [Eq. (1)] given by

aly—x)
F(x)=|(c—a)z—zz+cy (8)
Ty — bz

with a = 35, b = 3, ¢ = 28 and coupled with C;; = 1 for i = j = 3 and C;; = 0 otherwise. Transient uncoupling is
realized by clipping a region of state space in z-direction with

An = {x2 € R |(x2)3 — (x3)3] < A}, 9)
where we chose (x3)s = 26.5 approximately in the center of the attractor in z-direction.

The Chen systems coupled in this way synchronize only for coupling strengths in a bounded interval as was the
case for the Rossler oscillators. Again, transient uncoupling allows for synchronization for arbitrarily large coupling
strengths as shown in Fig. 6, depending on the extent of transient uncoupling [Fig. 7(a)]. Similarly, transient un-
coupling induces synchronization for intermediate clipping but not when clipping is too weak A’ — 1 or too strong
A" — 0 [see Fig. 7(b)].
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FIG. 6. Transient uncoupling induces synchronization for arbitrarily large coupling strengths. Trajectories of the driving (red
solid line) and driven (green dashed line) units of two coupled Chen systems for (a) a = 40, (b) a = 200, and (c) o = 1000. The
clipping is given by Eq. (3) and (9) with (x3)s = 26.5 and A’ ~ 0.2 (A = 5). (d) Maximum transverse Lyapunov exponent as a
function of the coupling strength «, note the logarithmic scale. Transient uncoupling stabilizes synchronization for arbitrarily
large coupling strengths compared to standard coupling without clipping (light grey line).
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FIG. 7. Transient uncoupling induces synchronization for arbitrarily large coupling strengths. (a) Maximum transverse
Lyapunov exponent for two transiently coupled Chen oscillators [Eq. (8)]. The clipping is given by Eq. (3) and (9) with
(x3)s = 26.5. Depending on the extent of transient uncoupling the range of coupling strengths that lead to stable synchronization
can be extended (A =5 (A’ ~ 0.2), red solid line and A’ ~ 0.3 (A = 7), green dashed line) or only shifted (A =12 (A’ = 0.5),
blue dotted line) compared to standard coupling (no clipping A’ = 1, purple dashed-dotted line). (b) Maximum transverse
Lyapunov exponent of the same system for fixed o = 2000. Synchronization emerges for moderate clipping, i.e., intermediate
values of A’, although not without clipping (A" = 1)
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Extension to networks. The effects of transient uncoupling on larger networks of chaotic oscillators can be
described easily by following the master stability function formalism introduced in [1]. We realize transient uncou-
pling homogeneously across all interactions in the network, i.e., the set A where coupling is active is the same for all
interactions.

The equation describing our network of N coupled, identical oscillators is then given by

7 = F +oxa (9(G2 C)x, (10)

where x € R describes the vector of states of all oscillators, G € RY X]Y describes the coupling network, C € R4*4
defines the coupling as above, G ® C is the direct product and we use F(x) = (F(x1), F(x2),...)". For the asym-
metrically coupled master—slave systems used above the coupling network is given by

= (f fl) . (1)

The variational equations around the synchronous orbit xg then read

d (6%)
dt

= DF(x5)0x + axa (xs) (G ® C) 6x 4+ a [Dxa (x5) 6x] (G ® C) x5

- [Dﬁ(xs) +axa (xs) (G ® C)] ox, (12)
since (G ® C)xg = 0. These equations can then be described in terms of eigenvectors of the coupling matrix

& = [DF(xs) + avexa (xs) Cl& (13)

for k € {1,2... N} where 7 are the eigenvalues of G, the &, € R? are small variations with respect to the synchronous
orbit and DF(xg) is the Jacobian matrix of a single system. It is thus sufficient to study the master stability function,
the largest Lyapunov exponent of the system

&, = [DF(xs) + oxa (x5) Cl &, (14)

to determine the stability of arbitrary networks with transient uncoupling.

We now present two examples of networks of coupled Réssler oscillators [Eq. (4)] with parameters as in the main
manuscript (¢ = b= 0.2, ¢ = 5.7). We realize transient uncoupling via

A = {x3 € R?: |[(x2)1 — (x3)1] < A}, (15)
where we chose (x3); = 1.2 in the center of the attractor in z-direction and A = 4.16 as in the main manuscript.

As expected by the applicability of the master stability function formalism, results identical to those for the two-
node case can be found in larger networks: first, we consider an undirected chain of N = 9 oscillators [Fig. 8(a)|. In
this case the eigenvalues of the coupling network G are such that the synchronous state is unstable for all coupling
strengths « when coupled normally. Applying transient uncoupling stabilizes the synchronous state for coupling
strengths larger than some lower bound ayyi, & 2.75 [Fig 8(c)]. Secondly, we show the effects of transient uncoupling
on an undirected Erdés-Rényi-random network with N = 50 nodes and M = 100 edges [Fig. 8(b)]. This network has
a stable synchronized state only for a small range of coupling strengths 0.3 < a < 0.4 when coupled normally. With
transient uncoupling, however, the oscillators in the network synchronize for the open interval o = 0.7 as shown in
Fig. 8(d).
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FIG. 8. Extension of transient uncoupling to networks. a) and b) show the (undirected) coupling networks, a linear chain
with N = 9 nodes and an Erdés—Rényi random network with N = 50 nodes and M = 100 edges. c) and d) show the resulting
largest transverse Lyapunov exponent for the networks a) and c), respectively. The red (dark) line shows the result for standard
coupling (no clipping A’ = 1), the green (light) line the results with transient uncoupling A’ = 0.4 (A = 4.16). As in the case
of the master—slave system, transient uncoupling allows for synchronization in an infinite range of coupling strengths, thus even

for arbitrarily large coupling strengths.
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10

Why a simple probabilistic argument fails. A simple analytical argument that can be made in an attempt
to explain the effects of transient uncoupling ignores all structure of the attractor and considers only the fraction of
time the coupling is active

1 (T

= jim = | xa(x2(t))dt. (16)
This leads to the description of the transiently uncoupled system as a system normally coupled with an effective
coupling strength of

T
Qe = lim %/0 axa(xa(t))dt = fo. (17)

T—o0
A system that normally coupled synchronizes for o € [Qmin, ®max] should then synchronize for a range aeg €
[@min, Omax], OF @ € [min/ S, max/f]. We therefore expect a wider, but by construction always bounded, range of
coupling strengths for stable synchronization.

This simple probabilistic argument, however, does not describe the observed phenomenon of stable synchronization
in an open interval o > auin. Indeed, while it describes the trend of an extended range of coupling strengths leading
to stable synchronization, it fails to capture both the qualitative as well as quantitative change in the dynamics with
transient uncoupling. Fig. 9 shows the largest transverse Lyapunov exponent (color-coded) of the system used in
the main manuscript and the fraction S(a) of clipping ranges leading to stable synchronization together with the
predictions by the probabilistic argument (black lines). S(a) is calculated as in Eq. 8 in the main manuscript:

1
S(a) = / s(f.0)df (18)

with the synchronization indicator

1 for AL <0;
— max I 1
s(f,0) {o for AL, >0. (19)

Evidently, there is a large discrepancy between the prediction and results of the numerical simulations. As we showed
in the main manuscript, the effect of coupling depends strongly on the position where it is applied (Fig. 6 in the main
manuscript). The chaotic evolution of the state of the system then leads to complex, non-linear interactions between
coupling applied at different positions. For example, applying coupling at positions A and B can destabilize the
system compared to applying coupling individually at either A or B. Due to this complex dependence of transverse
stability on the location of active coupling on the attractor, the simple probabilistic argument, that ignores all of this
structure of the attractor, can neither quantitatively nor qualitatively capture the novel phenomena we observed.



Supplementary material 61

11

Q
>
[

12

Coupling strength «

1 1 — ———
0 0.2 0.4 0.6 0.8 1.0
Temporal clipping fraction f

0.8

/\0-6_
)

9 og4t

0.2

0 1 1 1
10" 10° 10! 10?
(87

FIG. 9. Probabilistic description does not predict synchronization in an infinite range of coupling strengths. (a) Largest
transverse Lyapunov exponent (color-coded) for two x-coupled Réssler oscillators [Eq. (4), a = b = 0.2, ¢ = 5.7] with clipping
in z-direction [Eq. (5), (x3)1 = 1.2] for different coupling strengths and clipping fractions. The temporal clipping fraction f
increases monotonically, though not linearly, with the clipping parameter A’ used in the other figures (i.e., f = 0 corresponds
to A’ = 0 and f = 1 corresponds to A’ = 1 but values in between differ). Synchronization is stable in the blue region (dark
region in the middle). The black lines show the prediction of the probabilistic argument for the boundaries of the region
of stable synchronization. (b) Synchronization region S(a) [Eq. (18)] showing a finite, non-zero range of temporal clipping
fractions f leading to stable synchronization, even for large coupling strengths. The black line shows the prediction of the
probabilistic argument: a decreasing synchronization range for large coupling. Evidently, the predictions neither quantitatively
nor qualitatively capture the actual dynamics of the system under transient uncoupling.
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‘Interaction Control to Synchronize
Non-synchronizable Networks

Malte Schroder?, Sagar Chakraborty?, Dirk Witthaut®“, Jan Nagler® & Marc Timme®-¢

Synchronization constitutes one of the most fundamental collective dynamics across networked
. systems and often underlies their function. Whether a system may synchronize depends on the internal
Accepted: 24 October2016 : ynit dynamics as well as the topology and strength of their interactions. For chaotic units with certain
Published: 17 November 2016 : interaction topologies synchronization might be impossible across all interaction strengths, meaning
© that these networks are non-synchronizable. Here we propose the concept of interaction control,
generalizing transient uncoupling, to induce desired collective dynamics in complex networks and apply
it to synchronize even such non-synchronizable systems. After highlighting that non-synchronizability
prevails for a wide range of networks of arbitrary size, we explain how a simple binary control may
localize interactions in state space and thereby synchronize networks. Intriguingly, localizing
interactions by a fixed control scheme enables stable synchronization across all connected networks
regardless of topological constraints. Interaction control may thus ease the design of desired collective
dynamics even without knowledge of the networks’ exact interaction topology and consequently have
implications for biological and self-organizing technical systems.

Received: 30 September 2016

One of the simplest and most common types of collective dynamics of a networked system is synchrony, the state
in which all units behave identically2. Synchrony emerges, and is often essential, in natural and artificial systems
alike, e.g. in the dynamics of circadian oscillators and neural circuits as well as in communication networks and
power grids*!%. More than 25 years ago, Pecora and Carroll'!~'3 uncovered that even chaotic units may syn-
chronize; under certain conditions they coordinate their dynamics even though individually the units generate
dynamics that are sensitive to small variations in the initial conditions.

The types of chaotic units jointly with their interaction topology and strength determine whether synchroni-
zation is possible at all'*. Some combinations of system types and interaction topologies do not enable synchroni-
zation of the units for any coupling strength, rendering those systems non-synchronizable'>. Yet, several technical
systems demand synchronization of their units'®!>-!%, requiring generic methods to achieve synchronization,
ideally despite such obstacles. In fact, chaos synchronization has attracted a broad range of applications from
secure communication to new paradigms of network analysis!720-24,

In this article, we investigate how a simple control of network interactions guarantees reliable synchroniza-
tion independent of the specific interaction topology. We first highlight that a wide range of systems with sparse
connectivity are non-synchronizable, even if they exhibit at least indirect connections (paths) between any two
units. We then systematically extend a method of transient uncoupling that has been studied for two coupled
oscillators® to propose a general scheme of interaction control applicable to any network. We show that localizing
the interactions among the units to small regions of state space not only extends the synchronization range but
newly creates synchrony, even for non-synchronizable networks. We further show that interaction control in fact
enables synchronization regardless of the underlying interaction topology. The proposed scheme of interaction
control leaves the system entirely non-interacting in most of state space, potentially saving interaction costs.
Interaction control may thus help establishing collective dynamical states desired for network function in a simple
and efficient way.
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a synchronizable b non-synchronizable

Figure 1. Synchronizable or not? Similar networks may exhibit different synchronization properties.
(a,b) Two networks, despite having the same number of units, identical units, identical coupling strength and
identical degree sequences exhibit different synchronizability (here for N= 12 coupled Rossler oscillators
with identical parameters (see text), and identical coupling strength a = 0.5). (¢) Network (a) enables stable
synchronization. (d) For network (b) the synchronized state is unstable. More generally, no choice of « results
in stable synchronization: in this sense, the network is entirely non-synchronizable.

Results
Problem setting. Consider networks of N units with dynamics given by

dx;

— = f(x; C.(x;, x),
= = (x) + C,(x, ) 0
where x; € R is the state of unit i, f(x;) describes the internal dynamics and C(x;, X) represents the pairwise
interactions between the unit’s state variable x; with the full network’s state x € R, The interactions are given by

N
C;(x;, x) = c(x))Y A;h(x; — x),
jgl i ] (2)

where A; € {0, 1} denotes the adjacency matrix of the undirected interaction network and h is the interaction
function. For the control scheme introduced below, we write ¢(x;) to be a general control function that localizes
interactions in state space (see below). For a system without control we have constant c(x;) = a.

For the numerical examples presented throughout this article we consider the units as Rossler systems? given
byf(x) =(—y -z, x+uy, v+ z(x — w))¥ with parameters u =v=0.2 and w=>5.7 and diffusive coupling
with h(x; — x)) = [(x; — x)), 0, 0" for x= (x, y, 2). Interaction control is equally applicable in other settings,
speciﬁcafly for Rossler oscillators with different parameters, networks of other chaotic units and systems with
various types of limited observability (see Supplementary Information for details).

Prevalence of non-synchronizable networks. Synchronizability of such networks of chaotic units
depends on the interaction topology. Trivially, if the network is not connected synchronization is impossible.
Yet, even connected networks exhibiting (at least) indirect interaction paths among every pair of units may be
non-synchronizable, compare also?”?. Indeed, whereas some networks may be synchronizable, similar networks
with similar statistics of their topologies are non-synchronizable: Fig. 1 illustrates topology and dynamics of two
networks, where one is synchronizable and the other is not, despite both having identical dynamical units and
identical degree sequence. More generally, we highlight that a large fraction of sparse networks with heterogene-
ous degree sequence is indeed non-synchronizable (Fig. 2).

Controltolocalize interactions.  The mostobvious way to change the synchronizability of a non-synchronizable
network is modifying the network topology such that the synchronized state becomes stable, an approach fol-
lowed previously?*’. However, changing the topology is often costly, if not impossible, in particular if the exact
network topology is unknown. Can stable synchronization be achieved for these non-synchronizable networks
atall?

Let us control the interactions to a small, local part of state space and now take ¢(x;) in Eq. (2) to be a binary
switch as in ref. 25: the control function then regulates whether the units are coupled at strength c(x;) = o, if
the local state is in some small region of state space where ||x; — s|| < r (for some offset point s), or whether the
units do not interact, c(x;) =0 otherwise. In the limit of r — oo, the units interact for all x; in state space such that
¢(x;) = o and we recover the original network of coupled chaotic units.

For small r the control strongly localizes the interactions (e.g., in the following examples with r=2.75 interac-
tion is active only about 5% of the time), thereby vastly reducing the information exchanged across the network.
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Figure 2. Prevalence of non-synchronizable networks. Synchronizability of ensembles of Barabasi-Albert
networks* of N units with M= Nk links. The main panel shows the probability p,,,.., that these networks are
synchronizable (measured as the fraction of 100 networks that enable stable synchronization for some value of
the coupling strength «). The panel shows a clear transition to non-synchronizable networks with increasing
sparseness (decreasing k). Insets: examples of the largest transverse Lyapunov exponent as a function of the
coupling strength « for networks of N= 1000 units. Top left: synchronizable network (k= 16); the range of
coupling strengths o enabling synchronization is shaded. Bottom right: Non-synchronizable network (k=4).

For communication systems, for instance, where information exchange comes with energetic or other costs, such
interaction control might reduce these costs by limiting the interactions. At the same time, localizing the inter-
actions in this way stabilizes synchrony for a range of choices of s and . In the following examples, we employ
s~ (—8.7,2.3,0.01)" (see Supplementary Information “Choice of the coupling region” and Fig. S1) and systemat-
ically vary the localization radius r of the coupling as well as the coupling strength .

Enabling synchronization by interaction control. Intriguingly, we find that interaction control may
reliably enable synchronization of networks if the interactions become strongly localized. In particular, synchro-
nization is achieved even for systems that are non-synchronizable without control. We first illustrate the effects
of interaction control for the small non-synchronizable network displayed in Fig. 1(b) in dependence of cou-
pling strength o and localization radius r, see Fig. 3. For small r (highly localized coupling), synchronization
becomes stable as long as the coupling strength is sufficiently large. For moderate r, synchronization is still pos-
sible, but only in some interval of coupling strengths. Without control (r = 00), however, the network is entirely
non-synchronizable.

To understand how interaction control is successful in enabling synchronization, consider the following intui-
tive argument: compare the local Lyapunov exponents (expansion or contraction) of the system with and without
coupling. In some regions of state space the coupled system will be less expanding (more contracting) than the
uncoupled system while in other regions the coupled system is more expanding (less contracting). Intuitively,
applying interaction control and activating coupling only at the former, more contracting regions will lead to
overall stronger contraction and will thus be beneficial for synchronization. This is the basic mechanism of inter-
action control. Note, however, that this argument is only approximate as it neglects the impact of interaction
control on the local Lyapunov exponents: for instance, activating coupling only in one region, A or B, might be
beneficial for synchronization, whereas activating coupling in both, A and B, might destabilize the synchronized
state due to the effect of coupling in A on the effectiveness of coupling in B (see also Supplementary Information
“Choice of the coupling region” and Fig. S1). Nevertheless, the general mechanism is applicable for a wide range
of network structures and chaotic systems:

In fact, the qualitative behavior is robust for larger networks and, intriguingly, generalizes to all connected
network topologies: Fig. 4 illustrates the typical characteristics for a network of N= 1000 units taken from the
regime of non-synchronizability displayed in Fig. 2, now with interaction control localizing the coupling up to
a parameter r. Systematically varying both r and a shows a common pattern: (i) For large r, i.e. without control
or only weak localization, the system remains non-synchronizable (ii) For moderate r, the system becomes syn-
chronizable for a finite interval of coupling strengths. (iii) For some sufficiently small r, even non-synchronizable
networks become synchronizable for an infinite range of coupling strengths. Combined with the fact that every
finite network has a finite and thus bounded spectrum the theory of master stability'* implies that interaction
control may enable stable synchronization for all connected network topologies by strongly localizing where the
units interact: for sufficiently large coupling strengths all eigenvalues of any finite, undirected graph fall within the
range of negative transverse Lyapunov exponents, see Fig. 5.

Furthermore, interaction control can enable synchronization not only across network topologies but is
successful for a range of different dynamical units and under various observability conditions. For instance,
for different parameters in the chaotic regime of the Rossler oscillator we find qualitatively the same results
to those presented above [see Supplementary Information “Réssler oscillator for different parameters” and
Fig. S2 (a,b)]. Additionally, we find similar effectiveness of interaction control for different other dynamical sys-
tems, e.g., Lorenz® and Chen® oscillators (see Supplementary Information “Lorenz System”, “Chen System” and
Fig. $3 and $4 respectively). Moreover, interaction control is applicable in networks with limited observability or
limited controllability: All of the above examples already demonstrate successful interaction control with only one
of the dynamical variables (for example only x) observed for each unit. We also find that interaction control can
enable synchronization when measurements are possible at only a few discrete points in time [see Supplementary
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Figure 3. Interaction control to synchronize non-synchronizable networks. Panels display the average
convergence or divergence of trajectories for the non-synchronizable interaction network displayed in Fig. 1(b).
Averages are taken over R=>500 initial conditions randomly drawn from boxes of linear size 0.01 around points
drawn randomly on the attractor. Each panel displays the relative average divergence of the states of the units
d(t) = eXP[%Zle log (8 (t)/&(O))] where §(f) = Zﬁ.:l\ [x; — x;||. The black lines illustrate the scaling expected
from the maximum transverse Lyapunov exponent. Without control (r= 0o) the network is non-synchronizable,
independent of the coupling strength .. For moderate control, the system is synchronizable (negative exponent,
highlighted by green shading) for some intermediate range of cv. For strong control where interactions are highly
localized, stable synchrony prevails at sufficiently large coupling strengths (highlighted by blue shading).

Information “Réssler oscillator for different parameters” and Fig. S2(c)]. Finally, we considered interaction con-
trol in networks where a fraction of units is not observable and thus not directly controllable. Depending on the
interaction topology of the entire network, all units may become synchronizable through interaction control
under some conditions on the coupling strengths. Generally, the controlled part of the network stays or even
becomes synchronizable in the presence of interaction control, irrespective of its topology (see Supplementary
Information “Partially controlled networks” and Fig. S5).

Conclusion

Many networks are non-synchronizable for various types of coupled units and across all interaction strengths
because synchronizability is intrinsically limited by the topology of the interaction network. Here we propose
interaction control to synchronize arbitrary networks, even if they are entirely non-synchronizable without con-
trol. Generalizing the idea of transient uncoupling previously suggested for two coupled oscillators® to arbitrary
networks is thereby generically successful and operates by localizing interactions in state space. The interaction
control scheme requires no changes to the network topology and exploits only a binary switch to strongly localize
interactions to a small region in state space. As it works across all network topologies, the topology of any given
network even need not be known.

Previous studies discussing time or state dependent uncoupling enhanced the stability of the synchronized
state and extended synchronizability of systems that are already synchronizable*>**-*. Related works aimed at
enabling synchronization in non-synchronizable networks focused on topological constraints and permanent
changes to the network topology®®-*® or adaptive coupling strengths requiring permanently active interactions
and detailed control over the coupling of the individual units®®*. In contrast, in this article we demonstrate
how interaction control may synchronize previously non-synchronizable networks. Specifically, interaction
control induces a qualitative rather than a quantitative change of the synchronizability interval that cannot be
explained by extending existing ranges of synchronizability or modifying effective coupling strengths. As we
report, non-synchronizability prevails among sparse networks with heterogeneous degree sequence, emphasizing
the range of systems for which interaction control may be valuable.

Intuitively, interaction control increases synchronizability by disabling coupling in regions of state space
where the trajectories of the coupled system diverge more than those of the uncoupled system. Thus, interac-
tion control enables synchronization with little information transmission between the units, thereby providing
a potentially efficient control for engineered systems where interaction generates costs in terms of energy or
other resources®**!, for example for communication with chaos synchronization'”*2. At the same time, interaction
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Figure 4. Control generically enables synchronization for large networks. Localized interactions induce stable
synchronization even in large networks with arbitrary topology. Panel (a) shows the largest transverse Lyapunov
exponent for a non-synchronizable Barabasi- Albert network of N=1000 units and k =4 without control (light
gray line, compare Fig. 2) and with interaction control. Moderately localized interactions (control parameter
r=14.5) enable stable synchronization in a small range of coupling strengths only (shaded in green). Stronger
localization (r=2.75) enables stable synchronization for all sufficiently large coupling strengths (shaded in blue).
Panel (b) illustrates the synchronizability for all combinations of coupling strength o and localization radius r.
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Figure 5. Stable synchronization for arbitrary network topologies. Master stability function p for real values
~a, where y are the eigenvalues of the Laplacian of the interaction network and « is the coupling strength (see
also Supplementary Information “Extension of the master stability formalism”). The light blue points mark yo
for the eigenvalues of the non-synchronizable network displayed in Fig. 1(b). (a) Without control the network is
non-synchronizable because some transverse modes are unstable regardless of the choice of o (shown here for
a=1). (b) With interaction control (r=2.75) all transverse modes are stable (negative )\nfax ) if the coupling
strength is large enough (o= 15), since the master stability function is negative for large ya. Similarly,
interaction control can be used to synchronize any connected, undirected network independent of its topology,
since for sufficiently large coupling strengths all transverse modes will become stable.

control can be successfully applied to induce synchronization even in systems with limited observability. For
instance access may only be possible to some of the dynamical variables of each node, measurements at discrete
points in time or in the presence of unobservable and thus uncontrollable units (see Supplementary Information),
opening up potential perspectives, e.g., also for natural and synthetic biological systems*>*. Following the intu-
itive mechanism, from a general dynamical systems perspective interaction control might be applicable to any
collective state that exhibits instabilities due to coupling among variables. Specifically, this includes potentially
inducing different collective dynamics, for instance phase synchronization, or enabling coordinated dynamics
also for delayed or pulsed interactions®374%.
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In summary, interaction control offers a generic control scheme for collectively coordinated networks.
Although requiring interaction only in a small region of state space, interaction control enables synchroni-
zation in all connected networks independent of their specific topology, even if the network would normally
be non-synchronizable. Generally, interaction control may functionally help beyond enabling synchrony, for
instance to create consensus among interacting agents*. Interaction control may thus offer a complementary net-
work control method** and thereby a valuable paradigm for enabling a number of different collective dynamical
phenomena in a range of networked systems.
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Supplementary Material
accompanying the manuscript
Interaction Control to Synchronize Non-synchronizable Networks

Malte Schroder, Sagar Chakraborty, Dirk Witthaut, Jan Nagler, Marc Timme

In the main manuscript, we discuss how interaction control creates synchronizability for networks of coupled chaotic units.
Specifically, we demonstrated that interaction control enables to synchronize networks that are non-synchronizable without
control, irrespective of their network topology. Here, we first discuss the choice of the offset point s used for the examples in
the main manuscript. Second, we formally extend the master stability formalism' to include interaction control. Third, we
illustrate the universality of this approach by applying interaction control to networks of Rdssler systems at different parameters,
to networks of Lorenz and to networks of Chen systems with qualitatively the same results as those presented in the main
manuscript. Finally, we consider three aspects of interaction control in systems with limited observability, specifically, when we
only have access to a single variable of each unit, to measurements at discrete points in time and in the presence of unobservable
(and thus uncontrollable) units in the network.

Throughout this supplement we use the same notation as in the main manuscript

dXi — . . .
E—f(x,)JrC,(x,,x), (1)

where x; € R? is the state of unit i, f(x;) describes the internal dynamics and C;(x;,x) represents the pairwise interactions
between local state variable x; and the remaining network’s state x € RN for a network of N units. Again, the interactions are
defined as

N
Ci(xi,x) = c(x;) }_ Aijh(x; —xi), @

where A;; € {0,1} denotes the adjacency matrix of the undirected interaction network, h is the interaction function and c(x;) is
a general control function that localizes interactions in state space.
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Supplementary Note 1

Choice of the coupling region.
In the examples in the main manuscript we employed interaction control via

c(xi):{a if ||xfs||<r7 3

0 else

where s ~ (—8.7,2.8, 0.01)T and r controls the size of the coupling region. Here we explain how to choose s. To find suitable
parameters for interaction control we computed the stability of the synchronized state of two coupled Rossler systems for
various choices of potential offset points s’ and a suitable distance r(s’). We chose R = 10000 points randomly from the
attractor (invariant measure) as potential offset points. For each point we calculate r(s’) such that c¢(x;) = « for a fraction of
5% of points on the invariant measure. With these parameters and & = 5 we calculated the maximum transverse Lyapunov
exponent A .. The point s for which the maximum transverse Lyapunov exponent is minimal is chosen as the offset point.
Results of the simulations are shown in Fig. S1. Depending on choice of s, interaction control will be more or less efficient. If
one effectively optimizes the function ¢(x;) to increase stability one might expect even better results, allowing for example

stable synchronization with minimal coupling effort.

A faster way to determine a feasible, though probably less efficient, coupling region can be understood by considering a
simple argument that qualitatively explains how interaction control works: comparing the local Lyapunov exponents for the
uncoupled and coupled system provides a measure of how effective coupling is at any given point in state space. A suitable
coupling region restricts coupling to efficient points and, more importantly, disables it at points where coupling is detrimental
to synchronization. One would then naturally expect more stable synchronization. This method requires only derivatives of
the individual dynamics f(x;) which are either known or can be estimated from measurements and will provide a feasible
coupling region for general systems that is expected to enhance synchronizability. Note, however, that this method uses only
local indicators but ignores global effects, such as coupling at one point changing the effectiveness of coupling at another point.
Thus, while this method might serve as an efficient way to determine a feasible coupling region, it is not guaranteed to result in
an efficient one.
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Figure S1. Largest transverse Lyapunov exponent of two coupled Rossler systems, figure adapted from”. Simulations were
done with parameters s’ (marked by the location of the points), r(s’) such that ¢(x;) = a for a fraction of 5% of points on the
invariant measure and o¢ = 5 (see text). The color indicates the resulting largest transverse Lyapunov exponent. The most stable
synchronized state (minimum largest transverse Lyapunov exponent) is achieved for s ~ (—8.7,2.8, 0,01)T (indicated by the

arrow) and marks our choice for the offset point.
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Supplementary Note 2

Extension of the master stability formalism. Here we derive the extension of the master stability function formalism intro-
duced in' for interaction control. We assume the same dynamics as described in Eq. 1.

The equation describing our network of N coupled, identical units with dynamical variables x; € R? in d dimensions can
then be written as

X F+ ) (GoH)x ®

where x € R4V describes the vector of states of all oscillators and we write F(x) = (f(x;),f(x2),...)" [similarly for C (x)
combining the individual ¢(x;)]. The coupling is defined by G € R¥* describing the Laplacian of the coupling network,
H € R?*? defining the coupling between the coordinates and G ® H representing the direct product. As an example, two
bidirectionally coupled units with coupling between the x-coordinates would be described by

1 1 00
G:(1 —l)’ H=10 0 0]. 5)
0 0 0
The variational equations around the synchronous orbit xg then read

d(8%)
dr

DF(x5)6x + C (xs5) (G®H) 8x+ [DC (x5) 8x] (G @ H)xs

= [DF(xs)+ C(x5)(G® H)| 6x, (6)
since (G ® H)xg = 0. These equations can then be described in terms of eigenvectors of the coupling network

dgk

& itxs) + e (xo) M) )
for k € {1,2...N} where ¥, are the eigenvalues of G, the & € R? are small variations with respect to the synchronous orbit
and Df(xs) is the Jacobian matrix of a single unit. It is thus sufficient to study the master stability function u (ya), defined as
the largest Lyapunov exponent of the system

d
% _ Dt +7e (x5) HIE ®
to determine the stability of arbitrary networks with interaction control.

In the following we use ¢ (x;) € {0, a} as in the main manuscript. We compute the master stability function for real values

of the parameter Yo (undirected networks) both with and without control. To illustrate the effect of interaction control we show
results for eigenvalues of a non-synchronizable network, illustrating how it becomes synchronizable with interaction control.
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Supplementary Note 3

Rassler oscillator for different parameters. We again consider a network of Rossler units’ with dynamics [Eq. (1)] given by

—(v+2)
f(x) = x—+uy &)
v+z(x—w)

and coupled only in the x-coordinate, i.e., h(x; —x;) = [(x; —x;) ,0, 0]" for x = (x,y,2)T. However, we use a different set of
parameters: u =v = 0.1, w = 14. Here, we choose the control function for interaction control as

it |y—xt|<d
cy=1% I mmxl<d (10)
0 else

where x* = 1.325 is the center of the attractor in x-direction, i.e. we localize control to a box of width 2d in x-direction. We
illustrate results for the master stability function without and with control for d = 10 in Fig. S2 (a,b). Note that both the coupling
as well as the coupling region only depend on the x-coordinate, thus showing that interaction control can be successfully applied
without access to the y and z variable of the system. Furthermore, in Fig. S2 (c), we assumed limited observability in the sense
that measurements of the unit’s states are only possible at discrete time points with only about five measurements per full
oscillation. Consequently, we can only adjust the control function at these times: at the time of a measurement, the state of the
coupling is fixed as active (¢ = &) or inactive (¢ = 0) depending on the current state of the unit for a time Afpe,s until the next
measurement. Note that the coupling input [i.e. X; —x;] is still continuous in time. As in the main manuscript, all networks
become synchronizable regardless of their specific topology due to the interaction control, even if they were non-synchronizable
without control.

a 0.2 uncontrolled b 0.2 _with interaction control
0_\: __1//_ 0 I oed
S S
-0.2} -0.2
-0.4 -0.4
102 100 44 107 w0t 107 10° o 10 10t

c (.2,discrete observations

0 f -3
3
-0.2
-0.4 ,
102 100 o 107 10t

Figure S2. Master stability function of coupled Rossler units for real values yor, where y are the eigenvalues of the Laplacian
of the coupling network and « is the coupling strength. The light blue points illustrate eigenvalues of a non-synchronizable
network with o = 2 [panel (a)] and o = 10 [panel (b)]. a) Without control the network is non-synchronizable, some transverse
modes are unstable. b) With interaction control (Eq. (10), d = 10) all transverse modes are stable if the coupling strength is
sufficiently large, since the master stability function is negative for all sufficiently large yc¢r. Similarly, interaction control can
be used to synchronize any undirected network independent of its topology, since for large coupling strengths all transverse
modes will be stable. ¢) Even with limited observability, i.e., only about five measurements per full oscillation (Atpeas = 1),
interaction control is still successful in enabling stable synchronization regardless of network topology.
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Supplementary Note 5

Lorenz system. As another example we consider Lorenz units” with dynamics [Eq. (1)] given by

o (y—x)
f(x)=|x(p—2)—y (1
xy— Pz

with ¢ = 10, p = 28 and B = 8/3 and coupled with h(x; — x;) = [0,0, (z; — z)]". Interaction control is realized with

if P d
)= lamTled (12)
0 else

where we chose z* = 25 approximately in the center of the attractor in z-direction. We illustrate results for the master stability
function without and with control for d = 1 in Fig. S3. While all networks of coupled Lorenz oscillators are synchronizable for
very large coupling strengths, interaction control both decreases the coupling strength necessary to induce stable synchronization
and increases the stability of the synchronized state, enhancing synchronizability of all networks.

a uncontrolled b with interaction control
1 /\ 1

2 ool I . v
-1 -1 \/‘
102 100 4o 107 10t 1072 100 107 10t

Figure S3. Master stability function of coupled Lorenz units for real values Yo, where ¥ are the eigenvalues of the Laplacian
of the coupling network and o is the coupling strength. The light blue points illustrate eigenvalues for an example network with
a =3 [panel (a)] and o = 100 [panel (b)]. a) Without control the synchronized state is unstable since some transverse modes
are unstable. Synchronization would be (weakly) stable only for very large coupling strengths. b) With interaction control
(Eq. (12), d = 1) all transverse modes are stable if the coupling strength is sufficiently large, since the master stability function
is negative for all sufficiently large yor and the stability of the synchronized state is enhanced. Similarly, interaction control can
be used to synchronize any undirected network independent of its topology, since for large coupling strengths all transverse
modes will become stable.

6/9
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Supplementary Note 6

Chen system. As a final example we consider Chen units’ with dynamics [Eq. (1)] given by

u(y—x)
f(x)=| (w—u)x—zx+wy (13)
Xy —vz

with u = 35, v =3, w = 28 and coupled with h(x; —x;) = [0,0, (z; — z)]". Interaction control is realized with

if P d
)= @ lamTled (14)
0 else

where we chose z* = 26.5 approximately in the center of the attractor in z-direction. We illustrate results for the master stability
function without and with control for d =5 in Fig. S4. As in the main manuscript, all networks become synchronizable
regardless of their specific topology with interaction control, even if they were non-synchronizable without control.

a uncontrolled b with interaction control
2 2
1 1
S S
0 m\r} 0 ¢ 3
_1 _1 \/_,__»
102 100 44 107 10" 1072 100 107 10t

Figure S4. Master stability function of coupled Chen units for real values ya, where ¥ are the eigenvalues of the Laplacian
of the coupling network and « is the coupling strength. The light blue points illustrate eigenvalues of a non-synchronizable
network with o = 8 [panel (a)] and o = 100 [panel (b)]. a) Without interaction control the network is non-synchronizable,
some transverse modes are unstable. b) With interaction control (Eq. (14), d =5) all transverse modes are stable if the coupling
strength is sufficiently large, since the master stability function is negative for all sufficiently large yo. Similarly, interaction
control can be used to synchronize any undirected network independent of its topology, since for large coupling strengths all
transverse modes will become stable.
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Supplementary Note 7

Partially controlled networks. We consider a network where some units are not observable and thus not affected by interaction
control, these uncontrolled nodes are instead continuously coupled to their neighbors [¢(x;) = ¢]. In such partially controlled
networks, success of the method, by construction, depends on the set of controlled units and the network structure. The general
effect can be readily understood considering the simplified case of a single uncontrolled unit: we split the network into two
disjoint sets, a (connected) set of controlled units A and a set of the single uncontrolled unit B, as sketched in Fig. S5(a).
Consider now the two parts separately: the controlled part A will synchronize as any other network under the effect of interaction
control for coupling strength & > Qi a. Considering input from B to A as a small outside perturbation, interaction control still
enables stable synchronization of the controlled part A.

Assuming A is synchronized, unit B receives input in form of the synchronized state from all its connections to A.
Synchronization will typically be stable only in a finite range of coupling strengths, &¢ € [0tmin B, Otmax,B] (€.g. for Rossler or
Chen systems). Thus, synchronizability of the complete network A and B is either possible in a finite interval of coupling
strengths if Otmin A < Ofmax,B OF sSynchronization is only stable in part A of the network if Ginin A > Omax B-

For larger sets of uncontrolled units the structure of the individual sets and their interaction becomes more important. The
general idea, however, holds: both parts of the network must be synchronizable for the same coupling strength in order to allow
synchronization of the complete network [illustrated in Fig. S5(b-¢)].

In summary, success of interaction control in partially controlled networks depends on the network structure. Whereas
synchronization of the whole network possible under the (necessary) condition Qimin,a < Gmax,B, the controlled part A of the
network will always be synchronizable for large enough coupling strengths (disregarding the perturbation by part B). This
potentially enables selective control over specific parts of a given network as long as the outside disturbance of the uncontrolled
units is not too large.

a t ” d Qmin, A < Omax,B Qmin, A > O'max,B
contro e b AB synchronizable C AB non-synchronizable
synchronized
5
~<
. . A synchronizable
synch. input perturbation
«
9 € 0.08 d60ree 1 ncontotied - —|
—0.1 £0.04
uncontrolled S
I 0.05 N
& V%%

0 100 200 300 400 500
t

Figure S5. Panel (a) shows a schematic of a partially controlled network: we consider two sets of units, controlled (A) and
uncontrolled (B). Panel (b) and (c) show a sketch of the maximum transverse Lyapunov exponent for the two parts A and B in
two different cases. While interaction control guarantees synchronizability of the controlled part A as long as it is connected
(disregarding the perturbation from B), synchronization of part B is typically only possible in a small range of coupling
strengths, if at all. Consequently, synchronization of the complete network is only possible in the the finite range of coupling
strengths illustrated in panel (c) if both A and B are synchronizable for the same coupling strength. Panel (d) shows an example
of a partially controlled network of Rossler units (see above: “"Rossler oscillator for different parameters”). Two sets of
uncontrolled nodes are marked in green and red, the corresponding maximum Lyapunov exponent is shown in the inset of panel
(e). If nodes with large degree [green in panel (d)] are uncontrolled, complete synchronization of the network is not possible
and the system diverges. For another set of uncontrolled nodes [red in panel (d)] synchronization is possible in a finite range of
coupling strengths. Panel (e) shows one set of trajectories for the second case with @ = 5, the differences between the units
disappear and all units synchronize.
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We analyze the properties of order parameters measuring synchronization and phase locking in
complex oscillator networks. First, we review network order parameters previously introduced and
reveal several shortcomings: none of the introduced order parameters capture all transitions from
incoherence over phase locking to full synchrony for arbitrary, finite networks. We then introduce
an alternative, universal order parameter that accurately tracks the degree of partial phase locking
and synchronization, adapting the traditional definition to account for the network topology and its
influence on the phase coherence of the oscillators. We rigorously prove that this order parameter
is strictly monotonously increasing with the coupling strength in the phase locked state, directly
reflecting the dynamic stability of the network. Furthermore, it indicates the onset of full phase
locking by a diverging slope at the critical coupling strength. The order parameter may find
applications across systems where different types of synchrony are possible, including biological

networks and power grids. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4995963]

Many dynamical systems in physics, biology, or engi-
neering can be described as coupled phase oscillators,
often in a network with a complex interaction topology.
The prototypical model considered in this context is net-
works of Kuramoto oscillators. To study the synchroni-
zation in such systems, several order parameters have
been introduced, adapting the original Kuramoto order
parameter, defined for all-to-all coupled oscillators, to
complex interaction networks. However, none of the
order parameters manages to fully track the transition
from oscillators moving at their individual frequencies
to full synchronization of the network. Here, we propose
a universal order parameter to study synchronization in
finite networks of phase oscillators, tracking all stages of
synchronization. This order parameter may be used to
study systems where different stages of synchrony are
relevant. Additionally, we rigorously prove several help-
ful qualities, relating the order parameter not only to
the synchrony, but also to the dynamical stability of the
network.

I. INTRODUCTION

Many oscillatory systems enter stable limit cycles as their
dynamic steady state. If such systems are coupled, they often
interact only through their positions along their periodic orbit,
their phases. The simplest prototypical model to describe such
coupled phase oscillators is the celebrated Kuramoto model."
It characterizes the collective dynamics of a variety of phase
oscillator systems ranging from chemical reactions’ and neural

1054-1500/2017/27(7)/073119/7/$30.00

27,073119-1

networks™ to coupled Josephson junctions,’ laser arrays,” opto-
mechanical systems,® and mean-field quantum systems.”'°

Studies of the Kuramoto model and more general
phase oscillator networks typically focus on the onset of
synchronization between the individual oscillators.' 112
Starting from the analytical results for the mean field
behavior in the all-to-all coupled Kuramoto model, cor-
rectly predicting the emergence of partial phase locking,
extensions of this result to various network topologies
were developed.”‘16 These extensions often use a similar
methodology and define an adapted order parameter to
analyze the transition to synchrony. Interestingly, none of
these order parameters captures all transitions from the
incoherent to the completely synchronized state for arbi-
trary, finite networks.

Depending on the application, different states of phase
ordering are relevant and a different order parameter is appropri-
ate. Commonly, the onset of partial phase locking has received
most interest.' For example, partial phase locking indicates the
growth of number fluctuations in quantum mean-field mod-
els.” In contrast, in technical systems such as power grids, a
fully phase locked state is required for stable operation.'” "

We propose a universal order parameter that accurately
reflects the phase coherence of phase oscillators in any net-
work, describing the initial growth of partially phase locked
clusters as well as the convergence to full synchrony. This
order parameter is particularly suited to study the fully phase
locked state as it directly reflects the dynamic stability of this
steady state. It increases monotonically with the coupling
strength, in contrast to previously defined mean field order
parameters.

Published by AIP Publishing.
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Il. PHASE OSCILLATORS AND THE KURAMOTO
MODEL

Limit cycles are ubiquitous as dynamically stable states
in a wide range of systems. When such systems are coupled,
interactions can typically be approximated as interactions
between their phases 0;. The Kuramoto model

do; <
E:wi—i—K;A,-Jsm (8,-—0,-), (l)

is one of the simplest models for such coupled phase oscillators.
It describes the dynamics of N oscillators with natural frequen-
cies w; and sinusoidal coupling. The parameter K denotes the
coupling strength of the interactions and A;; € {0, 1} is the
adjacency matrix of the interaction network, describing which
nodes interact with which other nodes. The results easily extend
to inhomogeneous coupling strengths with A;; € R. In many
applications, interactions between individual oscillators are
reciprocal, and in the following, we assume an undirected net-
work, i.e., a symmetric adjacency matrix A;;=A;;. Similarly,
we can without loss of generality consider a co-rotating frame
such that the natural frequencies of the oscillators are centered
around 0 and we have ), w; = 0, where the sum runs from 1
to N. In the following, we only consider connected networks, as
otherwise we can treat the connected sub-systems individually.
The dynamics of coupled Kuramoto oscillators depends
strongly on the strength K of the interactions. For small coupling
K, all oscillators rotate (almost) independently with their natural
frequencies w;. In this state, the phases are incoherent. Above
some critical coupling strength K > K., a subset of the oscilla-
tors stans to synchronize such that their time averaged frequen-
cies ( i), become identical. The phases of these oscillators then
move together in a partially phase locked state and their phase
differences 0; — 0, are bounded. When the coupling becomes
even stronger, K > K, a fully phase locked state appears. All
oscillators synchronize to a common frequency dT{Z' = const. =0
and the phase differences between all nodes become constant 0;
— 0;=const. Further increasing the coupling reduces the phase
differences until complete synchronization of the oscillators,
defined by 0; — 0,=0, is achieved as K — oo. The details of
this evolution and specific transitions between the different sta-
ble steady states depend on the structure of the interaction net-
work and the distribution of the natural frequencies.>'%*'** An
example illustrating the dynamics of a small random network of
oscillators for various coupling strengths is shown in Fig. 1.
Most studies focus on the transition from incoherent
oscillators moving at their individual frequencies to a par-
tially phase locked state.'>!12 In a variety of technical sys-
tems, however, partial phase coherence is not sufficient for
stable function. For instance, Kuramoto-like dynamics
appear in a second order model describing the frequency

dynamics of power grids”‘m'zz‘25
d?0; a0, N .
Mip +Digy =Pit ) Kaysin(6-6). @
=1

Here, M; is the inertia, D; the damping coefficient, and P; the
power injection at node i. The phases 0(¢) describe the state

Chaos 27, 073119 (2017)

of rotating machines (generators or motors) and the coupling
their interactions via power transmission lines. In the steady
state dd—f’ = 0, required for stable operation of the power grid,
all machines work at the same frequency. This state is char-
acterized by the same equations that describe a fully phase
locked state in the Kuramoto model. The stability of this
state and how the phase cohesiveness in the network scales
with the coupling strength is an important question.26

Ideally, a universal order parameter would be able to
characterize both the transition to partial and to full phase
locking and the properties of a phase locked state in arbi-
trary, especially finite networks.

lll. KURAMOTO ORDER PARAMETERS

To quantitatively study the transitions from an incoher-
ent state to a fully synchronous state, one typically introdu-
ces an order parameter to measure the phase coherence. For
the original all-to-all coupling model, Kuramoto introduced
the complex order palrameterz’3

1%
1 __ i0;
,ﬁ;e : 3)

where /(7) describes the collective phase of all oscillators
and r(¢) the degree of phase coherence. A single measure for
the phase ordering is then given by the long time average of
the absolute value of the order parameter

rlz(uramolo = <| ( ) adl ‘ >r = <I”(l‘)
1 N

22 cosH—H ) 4)
ij=1

2400 i)y,

This order parameter measures the average of the phase
differences of all pairs of oscillators. If the oscillators are
incoherent, the time average vanishes and the order parame-
ter is 0. When a fraction of the oscillators are partially phase
locked, the cosine of their phase differences becomes posi-
tive and does not disappear in the time average; the order
parameter becomes positive.

In the original case for N all-to-all coupled oscillators
with natural frequencies m; following a distribution g(w), the
mean-field theory correctly predicts the transition to partial
phase coherence at the critical coupling K., =2/[ng(0)] if
the frequency distribution g is unimodal and symmetric
around zero. For larger coupling strengths K >K,,
the order parameter then grows continuously as r(K) o
V1-K,/K 2 As such, this order parameter characterizes
the transition from an incoherent state to a partially phase
locked state.

This original order parameter is clearly unsuited when
studying more general interaction networks. One would
compare the phases of two oscillators in the network that are
only interacting indirectly via a (possibly very long) chain of
intermediate oscillators. As such, several adaptations of the
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FIG. 1. Synchronization in the Kuramoto model. Dynamics of the Kuramoto model for N = 10 oscillators with a random interaction network. The phase coher-
ence between neighboring oscillators increases with the coupling strength, eventually leading to full synchrony of all oscillators. (a) Topology of the interac-
tion network, the numbers denote ; of the respective oscillator. (b) For small coupling, the oscillators move (almost) independently with their individual
frequencies (slope). (c) and (d) As the coupling strength increases beyond K., = 0.1 some oscillators enter a partially phase locked state and their phases evolve
with the same time-averaged frequency. (e) If the coupling strength becomes larger than K., = 1, all nodes are phase locked and move with the same constant

frequency %

achieved for K — oo.

order parameter have been introduced to study the effect of
the network topology on the synchronization of Kuramoto
oscillators:

The first definition used by Restrepo et al.'®?”*® consid-
ers an intuitively defined local order parameter

N

i0
E :Al}/'<e J>t
J=1

for oscillator i, measuring the phase coherence of all neigh-
boring oscillators. A global order parameter is then easily
defined as the average of the local order parameters

N

D1l
N bl

> it ki

where k; = Z/Ai ; 1s the degree of node i.
A second definition'*?’ adapts the original order param-
eter Eq. (3) weighting each node with its degree

ny:l ke

Zﬁ\/:] ki '
This order parameter ignores the specific network topology
in favor of a mean-field view of network ensembles to sim-
plify analytical calculations.

Finally, a definition of an order parameter to study local
synchronization used in Ref. 15 derives from the original
order parameter Eq. (4), restricting it to the network topology
and only averaging over the phase differences between
directly connected nodes

rp =

: )

(6)

Tnet =

@)

Fmf =

. A
= Ay
link leki; € )il ®)

The above order parameters work well for their respective
use, for example, to study synchronization analytically in

= 0. (f) and (g) Further increasing the coupling strength reduces the phase differences of the oscillators until complete synchrony 0; — 0,=0 is

mean-field network models. However, none of them accurately
captures the whole transition to synchronization, especially in
smaller networks. We illustrate this in Fig. 2 for a small random
network: While 7, clearly captures the transition to full phase
locking at K, =1, it is effectively O before full phase locking
becomes stable and does not indicate where individual nodes
enter the partially phase locked state for K < 1. Conversely, rnx
describes these transitions but cannot cover the convergence to
full synchrony as r, =1 in the fully phase locked state,
regardless of the network topology. Finally, r,s works well to
describe the behavior for a large ensemble of networks but is
clearly unsuited for use with specific, particularly small, net-
works as it ignores the specific network structure and is large
already for weak coupling. It is easy to construct further exam-
ples where, for instance, the mean field order parameter r,¢ is
non-monotonous with respect to the coupling strength K, even
in the fully phase locked state.

IV. AUNIVERSAL ORDER PARAMETER FOR
COMPLEX NETWORKS

In order to have both a practically applicable and rele-
vant order parameter as well as describe the whole evolution
from an incoherent state to complete synchronization, we
propose a universal network order parameter:

Definition 1. Given a network of coupled Kuramoto
oscillators Eq. (1), phase ordering is measured by

| 4
Tuni = —v—— A[A'<%(€1(0'70/))>
S kii; ! [
1 N
= W A,’_j< Cos (91 — 0j)>t’ (9)
i=1Kiij=1

As 1k this definition respects the topology of the inter-
action network and considers only phase differences between
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FIG. 2. Order parameters to measure phase coherence in networks. Different order parameters measuring the phase coherence in complex networks of
Kuramoto oscillators, describing the transition from a completely incoherent state [K = 0, cf. Fig. 1(b)] to full synchrony [K — oo, cf. Fig. 1(g)]. None of the
order parameters used in the literature rpe, 'mf, and iy, captures all transitions. (a) Topology of the interaction network, cf. Fig. 1(a). (b) 7y, is almost 0 until
the fully phase locked state becomes stable at K = 1. It fails to capture transitions in the partially phase locked regime. (c) In contrast, ;. captures the transi-
tions in the partially phase locked regime well. However, ry;, = 1 in the fully phase locked state for K > 1 and does not capture the convergence to complete
synchrony. (d) r,s measures globally averaged phase coherence. It fails to accurately represent the incoherent and partially phase locked state with respect to
the actual network topology, especially for small networks. (¢) Our universal order parameter r,,; accurately reflects the degree of phase coherence in all stages
of synchronization. All results show the long time limit of the order parameter starting from identical initial conditions 0; = 0; the black dashed lines mark tran-
sitions where single nodes enter a (partially) phase locked state.

neighboring nodes. In contrast to 7y, the definition of ryy;
reduces to the original Kuramoto order parameter Eq. (4) for
a completely connected network as desired. Figure 2(d) illus-
trates the behavior in comparison to the other network order
parameters, showing that it accurately captures the transi-
tions in all stages of phase locking (cf. Fig. 3).

A. Synchronization and stability

The order parameter r,, gives a full account of the

prove this result for the transition to full phase locking below
(cf. Theorem 1).

The universal order parameter has further advantages
compared to the alternatives discussed above. First, ryy;
quantifies the dynamical stability of a phase-locked steady
state (cf. Lemma 1). This becomes most apparent in a ring of
N oscillators with identical natural frequencies, w; =0 for all
i €{1, 2,..., N}, where all interactions have identical cou-
pling strength K = 1. Clearly, in a fully phase locked state all

phase differences between neighboring nodes need to be
identical while the cumulative phase difference around the
ring must be a multiple of 27.3°3! Under these conditions,
we can characterize the phase locked states by a mode m
describing the total phase change around the ring 2zwm. The
individual phases are then given by

emergence of synchrony. It accurately follows both the tran-
sitions to partially and fully phase locked states as well as
the convergence to complete synchrony.

We illustrate this central result in Fig. 2 for a small ran-
dom network. Whenever one of the nodes enters a partially
phase locked state, we observe a strong kink in ryy(K).
Hence, we can directly track the growth of phase locked

clusters. In fact, the slope dr,,;/dK diverges when approach- 0 — 2mim (10)
ing these transition points from the right. We rigorously ! N’
partial full complete | classifies finite
phase locking | phase locking | synchrony | stability | networks

Tnet x v v v X

Tlink v v X X v

T'mf X v v X X

Tuni v v v v v

FIG. 3. A universal order parameter. None of the order parameters used in the literature 7y, I'ms, and ryn capture all transitions. Following the observations in
Fig. 2, rye fails to capture transitions in the partially phase locked regime. It also fails to describe phase coherence for some small networks, most easily seen
for just two connected oscillators. 1y, does not capture the transition to complete synchrony and, since ry;, = 1 in the fully phase locked state, it does not clas-
sify stability. r,,s does not reflect the phase ordering in networks for partially or fully phase locked states, since it measures global phase coherence. As such, it
does not represent stability of the phase locked steady states which depends on local phase differences and is not suited for small networks. The order parame-
ter ryn; accurately reflects the transitions for all stages of synchronization and correctly classifies stability of different phase locked states in arbitrary, even
small networks.
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unstable

FIG. 4. Order parameters and stability. Steady states in a ring network with N = 10 nodes and the corresponding values of the different order parameters (shifted
horizontally for better visibility). The state 7 =0 is the most stable as the phase differences between neighboring nodes are the smallest. The phase locked states
become more unstable with increasing m. r,,¢ and 7y, do not provide information about the stability of the steady state, being either zero for most of the states or
identical to one for all phase locked states, respectively. Our universal order parameter r,,; accurately reflects the stability of the different states.

with m € {—=N/2,-N/2 +1,...,N/2}, illustrated for m >0
in Fig. 4. Here and in the following, we use an asterisk * to
denote a phase locked steady state 0; of the Kuramoto model
Eq. (1).

The phase locked states with |07 — 607 || < m/2, that
means m € {—N/4, N/4}, are linearly stable, and the remaining
states are unstable. Our order parameter r,; reflects the linear
stability of these different steady states - the state with perfectly
aligned phases (m = 0) is most stable and has r,,; = 1. All other
states have larger phase differences, which impede dynamical
stability, and consequently lower values of r,,;. This information
is completely lost for the alternatives 7y, and 7y, the first one
being identically one for all phase-locked states and the second
one being one for the fully aligned state and zero otherwise.

The classification of stability is due to the fact that ryy;
Eq. (9) counts only the phase differences in the stable
region as positive contributions, i.e., when [0; — 07| < m/2.
As the stability of a phase locked state is directly related to
these phase differences, with phase differences close to 0
corresponding to more stable states, the order parameter
directly reflects the systems stability of any phase locked
state, relevant, for example, for applications to power grids.

A further advantage of ry,; for the analysis of phase-
locked states is monotonicity (cf. Theorem 2). Intuitively,
we expect that an increase in the coupling K leads to a stron-
ger alignment of the phases and thus to an increase in the
order parameter. This expectation can be violated for the
mean-field order parameter ry,, as it measures global align-
ment, but an increase in the coupling acts only locally on the
links. In contrast, we rigorously prove below that the order
parameter r,; is monotonic in the coupling strength K for a
phase-locked steady state.

B. Analytical results

To formalize these observations, first consider the linear
stability of a phase locked state 0" for K > K.,: A small per-
turbation & around the steady state, 0; = Hf + ¢, evolves as

d, 2
i=JE+0(@), (11)

where we make use of vector notation & = (&, ..., éN)T. The
Jacobian matrix J quantifies the linear stability of a phase-

locked steady state. It always has one trivial eigenvalue
A1=0 with eigenvector v; = (1,1,..., I)T, representing a
global uniform shift of all phases which does not affect the
phase-locking of the nodes. In a stable phase locked state, all
other eigenvalues are negative 0 > 1, > 43 > -+ > Ay. We
denote the associated eigenvectors as vy, ..., Uy.

We can then formalize the above observations about 7,;
in the following theorems:

Theorem 1. Given a network of coupled Kuramoto oscil-
lators Eq. (1) with Y, w; = 0 and o - v, # 0, the derivative of
the order parameter r,,; Eq. (9) diverges when the fully phase
locked state becomes unstable at the critical coupling K .,

dryni/dK — 0o for K —KJ.

Theorem 2. Given a network of coupled Kuramoto
oscillators Eq. (1) with Y, w; =0, in a fully phase locked
regime K> K, the order parameter r,,; Eq. (9) is strictly
larger than zero for every stable phase locked state and
increases monotonically with increasing K.

In the remainder of this section, we provide the proof
for these theorems with the help of two lemmas, relating the
order parameter to the eigenvalues of the Jacobian:

Lemma 1. Given a network of coupled Kuramoto oscil-
lators Eq. (1) with Y, w; =0 and K>K., in the stable
phase locked state, the order parameter r,,; Eq. (9) is given
by the negative trace of the Jacobian J

1
————1r
N
KZi:l ki

1 N
=———F ) /. 12
KZi‘Vzlk'Z ’ (42

=2

)

Tuni =

Proof. Explicit calculation of the Jacobian matrix J in
Eq. (11) yields

Jij = KA;jcos (07 — 07) for i+#],
N
Jl'y,' = *KZA,‘J COS (9: - 9]*) (13)

J=1

The lemma then follows directly by calculating the trace.
The second equality follows from the fact that the largest
eigenvalue of J is 4; =0. U
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Given that the eigenvalues of the Jacobian Z,,...,Ay < 0 are
all negative for a stable phase locked state, K > K, it immedi-
ately follows that the order parameter r,;; must be positive.

To finish proving the theorems above, we now also
relate the derivative dr,,;/dK to the eigenvalues Ai,..., Ay of
the Jacobian matrix and their corresponding eigenvectors
Vly ..., UN:

Lemma 2. Given a network of coupled Kuramoto oscillators
Eq. (1) with )", w; = 0 and K > K », the derivative of the order
parameter with respect to the coupling strength is given by

druni

2 K 5
T > — (v @)’ >0. (14)

K>S ki n=2 —/n

i=1

Proof. Consider a global change of the coupling strength
K' = K + k. This perturbation induces a small change of the
steady state phases of the network, 0 — 0/ =0; + &,.
Expanding the steady state condition

N
K) ZA[.m sin (6;, + ém - 01* - éi)u

m=1

0=w;+ (K

to leading order in x and the ¢, yields

N
ZA/msm

lml

0= KZA msm 0*

= Z-]Lmém =
m=1

for all i € {1,..., N} using the definition of the Jacobian Eq.
(13) and the Kronecker ¢ symbol. In vectorial notation, this
set of equations can be written as

=—= E A/,,,sm

[m 1

—07) (31 — im),

—0.)4(tm)» (15)

where we define the vector ¢(,,,), whose ith component is
given by gy, ; = di¢ — ;. The matrix J is singular, but the
vectors ¢, are orthogonal to its kernel [v; = (1,1, ..., ]
such that we can solve Eq. (15) using the Moore-Penrose
pseudo-inverse J. Decomposing J into eigenvalues and
eigenstates, we thus obtain

_ K Z Avmsin (0, = 0,)J " q(0m)
lm 1

= —— Z ZAé m Sin 0:7 — 0*) (vn . q(f,m))v”'
(m In=

We then find for the change of the phases

-0)_ i 0K £ 1) = 0(K)
dK () k—0 K
=¢/x
&
- _ E/ZIAA,,, sin (0, — 0;)
N
X Zz " (4(em) - Vn)(4(ji) - On)
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Hence, the derivative of the order parameter is given by

drm 1 N, dcos (0] —07)

N ZA"J' d1i<

g 0=0)

ij

*)( 4(j.iy " Un)

_ ! 7 ZA,J sm
ZZk e

Now, we use the steady state condition to simplify this expres-
sion. We write 4(j) - Vn = Unj = Onjs where v, ; denotes the
Jjth component of the vector v, and we obtain

N
D Aisin (07 = 67) (47 o)
=1

N N
:Z Z ,,sm 0* 9;‘)
=

=—w;/K
N N
— Z'U,,J' ZA,'J' sin (07 — 9]*)
=1 =
=+w;/K
= —I% UV, 0. (16)

The derivative of the order parameter then becomes

dr, uni 2 ul 1 2
= N —1 (Vn - @)%,
K2 Z ki n=2 n
i=1
finishing the proof of Lemma 2. O

For any stable steady state, we have 4, <0 for all n €
{2,..., N} such that the slope is non-negative. It can become
zero only if v, - @ = 0 for all n € {2,..., N}. As the eigen-
vectors form an orthonormal basis, this would imply that @
is parallel to v;. As we assume Zj ; = 0, this is only possi-
ble if @ = 0 and we have dr,;/dK > 0 for K > K ..

Finally, as K — K, from above the phase locked state
becomes unstable with 1, — 0. With the assumption
o - vy # 0, it follows that the derivative diverges, conclud-
ing the proofs for both theorems.

C. Extension to general coupling functions

The proposed order parameter provides a measure for
the phase coherence in any network of phase oscillators,
independent of the coupling function. We have derived the
above analytical results specifically for the most common
model, Kuramoto phase oscillators. The proofs relied on the
fact that the order parameter directly involves cos ((9] — 9[)
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that also appears in the Jacobian matrix of the system. Thus,
while the results are not, in general, valid for arbitrary cou-
pling functions, the above arguments can in many cases be
extended to other common models of phase oscillators.

In particular, we consider the second order Kuramoto
model Eq. (2) as an application of a related system describ-
ing the frequency dynamics of power grids. Since the condi-
tion describing the steady operating state [Eq. (2) with
derivatives set to 0] is exactly identical to that describing a
fully phase locked state in the first order Kuramoto model,*
the arguments given in the proof of Lemma 2 hold without
modifications. The new order parameter r,, describes the
phase coherence and increases with the coupling strength in
the phase locked state also in the second order model.
Similarly, the order parameter will always be positive. While
the order parameter is not given directly by the trace of the
Jacobian of the second order model, it is still closely related
to its Eigenvalues, since the Jacobian of the first order sys-
tem is a sub-block of the second order Jacobian. For exam-
ple, it is under certain conditions possible to easily express
the Eigenvalues of the second order system in terms of the
first order Eigenvalues.22 In these cases, this relation directly
translates to the order parameter as well.

Similarly, the Kuramoto-Sakaguchi-model*? is a com-
mon modification, introducing an off-set in the coupling
function sin (9]- — 0; —a). In this case, Lemma 1 can be
adapted with an additional factor 1/ cos («), easily seen by
direct calculation. However, depending on the topology of
the interaction network, the existence of frustrated states>>
means that an increase in the coupling strength does not nec-
essarily result in stronger phase coherence. As such, dry,/
dK > 0 cannot be expected to hold. The new order parameter
uni NONetheless provides a way to quantify the phase coher-
ence of such systems, even if they cannot reach full
synchrony.

V. CONCLUSION

Kuramoto oscillators are the prototypical systems used
to study the synchronization behavior of limit cycle oscilla-
tors. The order parameters introduced to study this synchro-
nization capture different aspects of the transition to
synchrony. None of the order parameters previously sug-
gested for Kuramoto oscillators on complex networks
describes all transitions to partial and full phase locking as
well as the convergence to full synchrony in arbitrary
networks.

Here, we have proposed a universal order parameter
accurately describing the phase coherence in networks of
phase oscillators. This order parameter recovers the original
Kuramoto order parameter for a fully connected network of
oscillators. We have analytically shown that the slope of the
order parameter diverges when the fully phase locked state
becomes stable, accurately marking this transition even in
small networks. For larger coupling strengths, a monotonic
increase reflects the slow convergence to complete syn-
chrony and directly relates to the stability of the phase
locked state, important, for example, for applications to

Chaos 27, 073119 (2017)

power grid models where a fully phase locked state is
required for stable operation.
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Connectivity, or the lack thereof, is crucial for the function of many man-made systems, from financial and

economic networks over epidemic spreading in social networks to technical infrastructure. Often, connections
are deliberately established or removed to induce, maintain, or destroy global connectivity. Thus, there has been a
great interest in understanding how to control percolation, the transition to large-scale connectivity. Previous work,
however, studied control strategies assuming unlimited resources. Here, we depart from this unrealistic assumption
and consider the effect of limited resources on the effectiveness of control. We show that, even for scarce resources,
percolation can be controlled with an efficient intervention strategy. We derive such an efficient strategy and study

its implications, revealing a discontinuous transition as an unintended side effect of optimal control.

DOI: 10.1103/PhysRevE.96.062302

We are living in a globalized world. Large-scale connec-
tivity, in particular, is essential for the proper functioning
of many socioeconomic and technical systems. Examples
include technical networks like the internet [1-3] or the world
aviation network [4] and a wide range of socioeconomic
and financial systems [5-7]. In other cases connectivity may
be a liability, allowing the spreading of diseases and other
contagion processes [8—10]. Ideally, control of connectivity
has the goal to prevent widespread failure, for example, by
immunizing a subset of the population to prevent an epidemic.
Identifying efficient strategies that use minimal resources is
an ongoing problem [11-13]. In many cases, however, one
cannot completely prevent an undesirable transition, such as
a recession or financial crisis, and tries to delay it as long as
possible, often resulting in more severe consequences when
the transition inevitably occurs [6,14,15]. Thus, it is essential
to understand how to control and delay the emergence of
connectivity under the constraint of limited resources and what
such unintended consequences may be.

Percolation theory describes the emergence or breakdown
of global connectivity depending on the structure of the
underlying network with stochastic link addition processes
[16-20]. A large body of work has studied the impact of an
unlimited number of small interventions in modified models
of network growth with the goal to delay the percolation
transition. Most of these processes are based on a specific
link addition rule. Typically, two (or more) possible candidate
links are evaluated at each step and the link is added that
delays (or enhances) the percolation transition the most [21].
This “competitive” percolation [22] leads to an extremely
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sudden, but still continuous transition, sometimes referred to as
“explosive” [22-24]. Other models introduce explicit control
over the largest cluster, which further delays the transition and
can result in a genuine discontinuous percolation transition
[25-28]. Many more models with similar motivation have
been studied, leading to a surprising diversity of phenomena
[18,21-24,29-37].

In all these examples control is inherent to the link addition
process, implicitly assuming unlimited resources and allowing
indefinite control. Control in realistic settings, however, will
be restricted by limited resources. Here, we derive an efficient
resource limited control strategy to delay percolation and dis-
cuss the consequences for the resulting percolation transition.
In particular, while the delayed transition remains smooth for
suboptimal interventions, optimizing the control parameters to
maximize the delay results in a discontinuous transition.

I. RESULTS
A. Model

We develop our framework to efficiently delay the perco-
lation transition based on the prototypical model of classical
network formation, percolation of a random graph: new links
e;j between nodes i and j are chosen uniformly at random and
sequentially added to a set of N initially unconnected nodes
[38]. We implement control of link addition by preventing the
chosen link from being added (see Fig. 1). This control is costly
and preventing a link incurs a cost c[S(i),S(j)], where S(i)
and S(j) are the sizes of the respective connected components
(clusters) that include the nodes i and j. Once a total budget B
is spent, we can no longer control the link addition process. We
track the evolution of the relative size of the largest connected
component S;/N as a function of the link density p = L/N,
where L is the number of links added to the network. For
the results presented here, the cost of an intervention is kept
constant c[S(i),S(j)] = 1 and we assume a budget that scales

©2017 American Physical Society
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FIG. 1. Controlling the percolation transition. (a) Random percolation: in each step a link is selected uniformly at random and added
to the network. (b) Controlled percolation: In each step, we can prevent the chosen link from being added to the network, paying a cost
c[S(i),S(j)] from a limited budget B. The constraint of a limited budget requires an efficient control strategy. As described in the text, we only
prevent links when the probability that the intervention is successful is sufficiently large, Prob(success) >1 — €. We consider an intervention
unsuccessful if a similarly large cluster is likely to appear again with the next link e;;. Consequently, we intervene when the probability of
such a failure Prob(failure) ~Prob[S(k) + S(/) > S§;;] < € is small (the expected time until a similarly large cluster appears is large). When this
failure probability is too large or the budget is exhausted, we do not intervene. As illustrated, this control delays the creation of large clusters

and the onset of percolation.

linearly with the number of nodes, B = bN, where b is a
(finite) constant. Corresponding results are obtained for other
cost functions that scale with the size of the clusters, such as
c[S@),S(j)] = SGE) + S(j) (see Supplemental Material [39]).
In this case, avoiding the transition completely would clearly
require preventing most of the links, which is impossible with
limited resources.

In order to efficiently utilize the available resources and de-
cide which links to prevent, we derive a control protocol based
on the effect of a single intervention. Consider preventing a
link ¢;; that, when added to the network, would create a cluster
of size S;; = S(@@) + S(j). If the next link ¢;; creates a cluster
of size Sy = S(k) + S(I) > S;;, we spent some of our budget
in vain, since we did not delay the emergence of a large cluster.
Conversely, we can consider the intervention effective, when
the next links ey only create smaller clusters Sy < S;; and
the emergence of a large cluster was delayed. Based on this
idea we propose a control protocol where we prevent a link ¢;;
only if the expected impact is sufficiently large. We measure
this impact by the (expected) number of links ALg, until a
cluster of size at least §;; appears again. Clearly, if ALg,
is large, the intervention is more likely to delay the growth
of a large cluster. If this delay is larger than some threshold
A Lnes, we consider the intervention effective and prevent the
link, otherwise we do not intervene. In practice, we estimate
the expected ALg, from the current cluster-size distribution
ng as the inverse of the probability that a new link ey, creates

a cluster Sy, > Sj;,

~ Prob[Sy; = S(k) + S(I) > Sij]

(ALSi/)
Z S(knswy SOnsq
(£S5 N N -1
S(k)‘FS(I)?SU

QY

Sknswy Sk)msgy — 1)
+ > N

25(k)>S;; N-1

where the first sum describes the probability of a merger
of clusters of different size resulting in a cluster at least as
large as S;; and the second sum describes similar mergers
between clusters with equal size. For simplicity, we ignore
that a link already present cannot be added again. Hence, we
prevent a link from being added if Prob[S(k) 4+ S(I) > S;;] <
1/ALpyes := €, where € denotes the “intervention intensity,”
which is the expected link rejection rate. This protocol is
equivalent to stopping the e-fraction most extreme events
during the percolation process given sufficient budget. Other
control strategies based, for example, on constraining the vari-
ance of the cluster size distribution are less efficient but give
qualitatively similar results (see Supplemental Material [39]).

062302-2
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FIG. 2. Effects of resource limited control of percolation. (a)
Single realization of the evolution of the relative size of the largest
cluster for N = 2% (red solid line) and remaining fraction of the
budget (red dashed line) for budget parameter b = 0.05 and inter-
vention intensity € = 0.1. Compared to zero budget, the percolation
threshold is shifted from p.= 0.5 (gray line, showing random
percolation without control) to p, & 0.67. Interestingly, the transition
remains continuous and in the same universality class. (b) Single
realizations of the evolution of the relative size of the largest cluster
for N = 2%, ¢ = 0.1, and different values of b. Surprisingly, when b
becomes large enough, the transition becomes discontinuous. Inset:
the largest gap max(AS,/N), averaged over 2'° to 2° realizations;
error bars indicate the standard deviation. For small b, the scaling
is the same as expected for random percolation, max(AS;/N) ~
N~'/3, However, for a sufficiently large budget, the largest gap is
independent of the network size and the transition is discontinuous.

B. Efficient control of percolation

How much and how efficiently can the percolation transition
be delayed with limited resources? As shown in Fig. 2, even
with a small budget B = bN = 0.05N, meaning less than one
intervention in ten link additions until p. > 1/2, we can sig-
nificantly delay the percolation transition compared to random
percolation. Compared to the sudden transitions in the models
of explosive percolation [21-24,31,37], our control protocol
is more effective in delaying the transition (see Appendix A).
Interestingly, the transition remains smooth and still belongs
to the same universality class as random percolation when
the budget is exhausted before the transition (see Table I and
Appendix B for results of a finite-size scaling analysis).

Note that in Fig. 2(a) the budget runs out at p=: pjast<pe»
before the percolation threshold p., and the transition itself

PHYSICAL REVIEW E 96, 062302 (2017)

TABLE 1. Finite-size scaling. Exponents —f/v (top) and y /v
(bottom) found by finite-size scaling analysis. The corresponding
fits are shown in Fig. 7 in Appendix B. The values agree with
the exponents expected for random percolation —8/v = —1/3 and
y/v = 1/3 when the interventions end before the transition. For
€ = 0.1 and b = 0.1 the result is consistent with the expected g = 0
of a discontinuous transition.

—B/v
b\e 0.1 0.2 0.5
0.01 —0.325(3) —0.338(8) —0.337(9)
0.05 —0.35(1) —0.336(3) —0.333(8)
0.10 —0.03(5) —0.338(6) —0.337(5)
y/v
0.01 0.331(3) 0.338(5) 0.331(2)
0.05 0.347(5) 0.343(7) 0.333(7)
0.10 0.40(5) 0.334(7) 0.339(5)

is uncontrolled. We can estimate how long the budget
lasts: With a constant intervention rate € we would expect
ALy = € ALy interventions to occur during the sampling
of AL links. During this period, we add only NAp =
AL = (1 — €)A Loy links. Taking ALjyy = AB = NAb, we
find the budget used in this interval Ab = = Ap.

However, the budget decays nonlinearly, as seen in Fig. 2(a),
which means the true intervention rate also varies with p.
This nonlinear dependency results from the behavior of the
intervention rate oscillating around an effective linear increase
ceir(p) = €(1 + p/p™)/2 for p < p., where pI™ is the
position of the critical point of controlled percolation with
intervention intensity € and infinite budget (see Appendix C
for details). This observation, together with integration over
P, then yields the closed expression defining piag

Past e (p)
b= ————dp. 2
/0 1 — eerr(p) P @

As expected, a larger (effective) intervention rate requires
a larger budget. Consequently, for a small budget, (i) the
budget runs out before the onset of percolation at pjg < pe
(interventions stop), (ii) the process is uncontrolled in a short
but extensive window prior to the transition point, and (iii) one
observes a continuous transition in the same universality class
as random percolation. In contrast to previous percolation rules
where delaying the transition changes its universality class,
the limited resources in our model are exhausted before the
transition. At this point the largest cluster has a fixed finite
size and uncontrolled random percolation takes over, resulting
in a continuous transition similar to random percolation for
different initial cluster-size distributions [40].

C. Optimal control leads to discontinuity

Increasing the budget also increases the delay of the
transition. Interestingly, too large a budget also leads to a
discontinuous transition [see Fig. 2(b)]. At the same time,
increasing the budget further no longer increases the delay
of the transition and p. becomes constant. Clearly, when
the budget survives the percolation threshold, additional
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FIG. 3. Discontinuous transition above a critical budget. Perco-
lation threshold p. measured by the position of the largest gap of
S, for different values of b. Results are averaged over 1024 and
256 realizations for networks of size N = 2% and 2%, respectively.
Error bars indicate the standard deviation. The delay increases with
an increasing budget until it becomes constant above a critical
budget b. ~ 0.058. At the same time, the transition changes from
continuous to discontinuous at b = b,.. Inset: The size of the largest
gap max(AS;/N) for different b.

interventions have no effect on the transition. This suggests
that the optimal delay is achieved for an optimal budget lasting
exactly until the percolation threshold, pj.ss = p.. At this point
no uncontrolled window exists before the transition and the
transition becomes discontinuous.

A similar logic defines the optimal parameters for speeding
up the percolation transition (see Appendix D): interventions
taken after the transition have no effect, while intervention-free
uncontrolled link addition will reduce the effect of previous
interventions. Optimal interventions necessarily end exactly at
the percolation threshold, regardless of the intended result of
the control.

Substituting prase = pr* 2 0.72 in Eq. (2) as the largest
observed value of the critical point, we predict the critical
budget required for a discontinuous transition for e = 0.1 to be
be* ~ 0.058. Indeed, this is confirmed by the numerical results
shown in Fig. 3: the transition is continuous for b < 0.05, while
the transition for » > 0.06 is already discontinuous.

But how can the transition become discontinuous for
b > b.? Stopping the e-fraction most extreme events prevents
any cluster above a certain size Cypresh to appear in the network.
As more links are added, this threshold slowly increases. This
is similar to the dynamics of the Bohman-Frieze-Wormald
(BFW) model [41]. In fact, we observe comparable behavior in
the subcritical regime: there is a hierarchy of thresholds p; >
0, k = 3,4, ... where a new largest cluster of size S| = k first
appears. As in the BFW model, these p; converge to constant,
finite values 0 < py < p. for large systems and announce the
critical transition as py — p. for k — oo (see Appendix C).
Thus, the same mechanism that leads to a discontinuous
transition in the BFW model causes a discontinuous transition
for optimal resource limited control of percolation [27,41,42].

We have studied other control strategies and cost func-
tions, for example, cost proportional to the size of the
clusters involved in the link, c[S(),S(j)] = S@) + S(j) (see
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Pc

FIG. 4. “Phase diagram” and discontinuous transition as a result
of optimal control. Position of the transition p. for budget parameter
b =0.05 as a function of intervention intensity € and intervention
start pg.q. Results for system size N = 2%, averaged over R = 128
realizations. The largest delay with p, ~ 0.72 is achieved for a set
of optimal intervention parameters (bright yellow) that separate the
continuous from the discontinuous transition regime. The transition
becomes discontinuous as a result of the optimal resource limited
control. The black dashed line represents our estimate for this optimal
parameter set in (€, pyar) Space (see text). The thin lines indicate lines
of constant p,.

Supplemental Material [39]). We find for all of the studied cost
functions that a small budget leads to a continuous transition,
whereas a larger budget further delays the transition and
eventually leads to a discontinuous transition. However, when
the cost scales with the size of the clusters, the transition only
becomes discontinuous when the budget scales superlinearly
B ~ O(N%) witha > 1.

D. Limited observability

One realistic limitation to the control of connectivity is
observability. In particular, we might not be aware of problems,
such as emerging large clusters, early on in the process and only
begin interventions after some time pg,. Under these condi-
tions, how do we best utilize a limited budget? Adapting Eq. (2)
to include pgyur leads to the relation b = zf: ::X Iffc(ﬁ’z)p)dp
describing the optimal intervention parameters (see also
Appendix C). Calculating the optimal start and intensity of the
interventions with » = 0.05 and the observed p"** = 0.72, we
obtain good agreement with the numerical results in Fig. 4. As
explained above, the line of optimal control parameters sepa-
rates the regimes of continuous and discontinuous transitions.
As required by the constraint of limited resources, our control
scheme is much more efficient than explosive percolation
models at controlling percolation: We achieve p, = 0.72 with
only about one intervention per 15 added links; much less than
comparable competitive percolation models, which reject one
link for each link added (see Appendix A).

Interestingly, we find that for fixed intervention cost
interventions close to the percolation threshold are slightly
more effective than early interventions (p. slowly increases
as a function of pg, along the critical line). This result,
however, is specific to constant intervention costs as other
cost functions can lead to a different behavior: interventions
as early as possible, pgar = 0, are optimal for intervention
costs that grow with the size of the connected clusters (see
Supplemental Material [39]).
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II. DISCUSSION

We have derived a control strategy to efficiently delay
percolation with limited resources. In contrast to previ-
ous models constructed to delay the percolation transition
[18,21-24,29-37], we find that the transition remains smooth
and in the same universality class as random percolation for
nonoptimal control when the resources are exhausted before
the transition. Given a fixed budget, maximal delay of the
percolation transition is achieved by optimizing the control
protocol such that the budget is exhausted exactly at the
percolation threshold. While the percolation transition can be
delayed by control interventions, this resource optimal delay
inevitably results in a discontinuous percolation transition that
becomes effectively uncontrollable, since the addition of a
single link induces a macroscopic change in the connectivity.

It is commonly believed that interventions taken as early
as possible can have the biggest impact to avoid large-scale
connectivity [6]. We have shown that this is not always
the case: a strong effort to intervene right at the beginning
can diminish the budget to such an extent that more timely
interventions become impossible in crucial stages.

The framework we developed on the basis of random net-
work growth highlights the unintended consequences of trying
to control the percolation transition by delaying it [6,14,15].
Likely, similar effects will occur for other control schemes as
well. This work may thus help to design control schemes in
other networks, specific to the underlying network dynamics
and its constraints, in particular when resources are scarce.

ACKNOWLEDGMENTS

We gratefully acknowledge support from the Gottin-
gen Graduate School for Neurosciences and Molecular
Biosciences [DFG Grant No. GSC 226/2 (M.S.)], the

PHYSICAL REVIEW E 96, 062302 (2017)

1.0 —— Budget limited interventions
Product rule

0.8F
> 0.6
=
»n 0.4F

0.2t

%5 0:90 ) 0.95 T.00

FIG. 5. Effectiveness of resource limited control. Single realiza-
tions of the largest cluster size for the budget limited control (red
solid line) and the product rule (green dashed line) [21] resulting
in explosive percolation (N = 2%°). The parameters are b = 0.88
and € = 0.62. In both models L ~ 0.88N links are rejected until
the phase transition occurs. This illustrates that the intervention rule
defined in the main text is more effective in delaying the transition
and at the same time keeps the transition smoother.

Portuguese Foundation for Science and Technology
(FCT) under Contracts No. UID/FIS/00618/2013 and No.
1F/00255/2013 (N.A.), the SNF [“The anatomy of systemic
financial risk,” Grant No. 162776 (J.N.)], and the ETH Risk
Center [RC SP 08-15 (J.NJ)].

APPENDIX A: COMPARISON TO THE PRODUCT RULE

To illustrate the effectiveness of the proposed control
protocol, we explicitly compare it to the product rule of
explosive percolation [21]. The product rule is defined as
follows: in each step choose two links uniformly at random

e=20.1 e=0.2 e=0.5
1.00) 1.00) 1.00)
2 0.75) 0.7 0.75)
b = 0.01] ~ox 0.50) 0.50)
N —
& g2 0.25 0.25
¢ 055 080 005 100 095 050 045 100 035 050 045 100
1.00 1.00 1.00
Z 0.75) 0.7 0.75)
b — 0 05 . 0.50] 0.50) 0.50
* —
N 023 0.25) 0.25)
0 0 " _ 0
025 050 045 100 0 02 050 045 100 095 050 045 100
1.00) 1.00 1.00)
2 0.75) 0.7 0.75)
b = 0.10] om0 0.50) 0.50)
M —
& g2 0.25 0.25
¢ 035 050 045 L0 05 050 005 L0 025 050 075 100

FIG. 6. Controlled percolation. Single realizations of the largest cluster size (red solid lines) and the remaining fraction of the budget (green
dashed lines) for various parameter combinations and N = 2%, Depending on the parameters the delay between the last interventions (budget
reaching 0) and the percolation transition changes. The transition is smoothest when this gap is large. When the budget lasts until after the

percolation transition, the transition becomes discontinuous.
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FIG. 7. Finite-size scaling for controlled percolation. Results for finite-size scaling for the estimated critical point and two values of p
slightly below and above. The error bars indicate the standard deviation; lines are guides to the eye. Averages are taken over 1024 to 64
realizations for system sizes from N = 2% to N = 2%. The black dashed lines indicate the best fits; the resulting exponents are listed in
Table I above. (a) Results for the exponent —f/v ~ —1/3, showing the same behavior as expected for random percolation for all continuous
transitions. For b = 0.1, ¢ = 0.1 we find 8 ~ 0, corresponding to a discontinuous transition. (b) Results for the exponent y /v &~ 1/3, showing
the same behavior as expected for random percolation for all continuous transitions.

and add the link that minimizes the product S(i)S(j). This
significantly delays the percolation transition, but results in a
very abrupt, explosive transition that is continuous but almost
indistinguishable from a discontinuous transition even in very
large systems. To compare the models, consider the “budget”
required for the product rule: in each step one link is rejected,
thus for constant cost, c[S(i),S(j)] =1, the product rule
requires a budget B(p) = pN up until p. Therefore, until the
phase transition at pP® ~ 0.889 it uses a budget B = 0.88N.

We use the same budget, » = 0.88, for our intervention rule and
choose a good (although not optimal) intervention intensity
€ = 0.62. As shown in Fig. 5 our intervention rule delays the
percolation transition more efficiently while also keeping the
transition in the same universality class as random percolation.

APPENDIX B: FINITE-SIZE SCALING ANALYSIS

Compared to explosive percolation our control scheme does
not change the universality class of the transition when the
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FIG. 8. Critical cluster size distribution. Cluster size distribution ng for various system sizes N [N = 2%°, 2%, and 2*° averaged over 1024,
256, and 64 realizations, respectively (N = 22°, 222, and 2% for b = 0.1, € = 0.1)]. Here, ns describes the relative frequency of clusters of size

S. The results are aggregated into logarithmic bins for clusters with size § > N

13 up to § = 16N'/2. The scaling is expected to follow a power

law ng ~ S for large S; the dashed black lines show the scaling expected for random percolation with exponent T = 5/2 (not normalized).
The peak in the cluster size distribution for small S is a signature of the finite size of clusters in the system when the interventions stop. Larger
budgets allow for more interventions shifting the peak to larger S and making it more pronounced. Higher intervention intensities use the

budget earlier, shifting the peak to lower S.

budget is exhausted before the transition. To demonstrate this,
we conduct a finite-size scaling analysis for various values
of the parameters b and €. Figure 6 shows single realizations
for these parameters. The transition is continuous in all cases
where the budget is exhausted early. Only for » = 0.1 and
€ = 0.1 does the budget last until after the transition and the
transition becomes discontinuous.

With the standard assumption of the critical scaling S;(p) ~
|p — pel? and (S)(p) ~ |p — pe| ™7 for the size of the largest
cluster and the mean cluster size, respectively, as well as for the
correlation length £(p) ~ |p — p.|™", we find the exponents
—pB/v and y /v from the finite-size scaling fits shown in Fig. 7.
The results for the exponents are shown in Table I above. All
exponents of the continuous transitions agree well with those
expected for random percolation. For » = 0.1 and € = 0.1
we obtain exponents expected for a discontinuous transition,
—pB/v = 0. In particular, the transition never becomes weakly
discontinuous or explosive. Similarly, we find the exponent
T = 5/2 for the cluster size distribution at the critical point
in all cases, the same as for random percolation. The
corresponding results are shown in Fig. 8.

APPENDIX C: OPTIMAL CONTROL PARAMETERS

In order to estimate optimal intervention parameters, we
need to predict the point pj,s When the budget is exhausted.

We first illustrate that the intervention rate is not constant
as one might have expected from the definition of the
intervention rule. Instead it fluctuates, dropping to small values
immediately after the largest cluster size in the system grew
(see Fig. 9). This is easiest to understand by considering the
first link: we never prevent the first link since the probability
to create a cluster of size 2 is Prob[S(k) + S(I) > 2] =1 > €.
Thus the probability of an intervention €(p = 0) = 0. Simi-
larly, the first few links are unlikely to be prevented, since a link
creating a cluster of size 3 or larger is chosen with vanishing
probability.

We can think about the intervention rule in the following
way: We always prevent the most extreme links. This is
equivalent to preventing all clusters above a certain size (until
these links become too likely). This means, when the size
of the largest cluster just changed to Sj, the probability to
create a larger cluster is usually smaller than €. However,
the links creating a cluster of size §; are not prevented as
the probability to create a cluster larger or equal to S; is
larger than €. Thus, after these microtransitions of the largest
cluster size, the intervention probability drops. In fact, we find
that these transitions to a new largest cluster size happen at
well defined times, constant across different system sizes (see
Fig. 9). This behavior is similar to the subcritical evolution of
the BFW model [41,42]. This observation also supports the
discontinuity of the transition.
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FIG. 9. Distribution of interventions. (a) Single realization of
the largest cluster size in the subcritical regime for N = 2% with
unlimited budget and € = 0.1. (b), (c) Probability of an intervention
for a single link chosen at p for two different system sizes averaged
over 100 realizations each. When a new cluster size appears in
the network the intervention probability “resets.” This causes the
transitions to S; = 3 at p3, S| = 4 at p4, and so on to occur at fixed
positions. This behavior is similar to the subcritical evolution of the
largest cluster in the BFW model, leading to a discontinuous transition
at py — p. fork — oo.
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FIG. 10. Estimating the intervention rate. Probability of an
intervention for a single link chosen at p for system size N = 2%
averaged over 100 realizations. The red and green lines illustrate
the approximation used to define the effective intervention rate €.
(green), describing a local average of the true intervention rate (here
for Pstart = 0).

We can use the observed intervention rate to derive an
estimate for the budget used for interventions up to p. Since
we do not know the exact form of €(p), we use an empirically
determined “effective intervention rate” €.g(p), describing a
local average of e(p) (illustrated in Fig. 10 for pga = 0).
This intervention rate depends on the intervention parameter €
and the position p"™* of the critical point of the process with
unlimited budget. When pg > 0, the uncontrolled evolution
before the control starts will cause the intervention rate to be
larger than in the fully controlled process. We assume that the
effective intervention rate at pgr 1S €efr( Pstart) = Pstart€ + €/2
(the value obtained by setting p'** = 1/2). Directly at and
after p. the effective intervention rate is €.(p = p.) = €.
Together this gives

P — Dstart

€fi(p) = » (€/2 = pstarc€) + €/2 + psane, (C1)
start

max __
c

for pgat < p < pe. Obviously, before pg. the interven-
tion rate is € =0 and above p. the intervention rate
iS €cff = €.

We can now use the argument we gave above and integrate
Eq. (C1) over all interventions to find the total budget used.
We arrive at the approximate relation

—2(PP — par) €[ Prasi+ P =2 pyart (14 Pras — p)] )

(PP = pyar ) (€ +2 Potarce —2)

= Dstart — Plast —

assuming again p™ > pj is the critical point of the process

with parameters € and pg,y given unlimited budget.

(1 = 2psar)e ' €2

Substituting pja = pi™* gives the condition for optimal

intervention parameters, which can be solved numerically to
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FIG. 11. Enhancing percolation. Single realizations of the largest cluster size (red solid lines) and the remaining fraction of the total budget
(green dashed lines) for various parameter combinations for interventions enhancing percolation (N = 22°). Depending on the parameters the
transition is enhanced more or less strongly. As for delaying the transition, interventions are most efficient when the interventions last exactly

until the transition.

find the optimal budget or intervention rate (see Fig. 4). The
estimate becomes worse for large values of € and pg, and very
small values of b, where interventions occur only in a small
interval and averaging to €. becomes inaccurate. For the same
reason, the effective intervention rate is a good approximation
when estimating the optimal intervention parameters, where
interventions last until p. and the error from averaging is small.

APPENDIX D: ENHANCING PERCOLATION

We have illustrated our results for interventions that are
designed to delay the percolation transition. Interestingly,
the same logic describing the optimal intervention strategy
also applies to enhance percolation. Instead of stopping
the e-fraction most extreme events, we simply reverse the
protocol, Prob[S(k) + S(I) < S;;] < 1/ALyes := €, and stop

the e-fraction least extreme events, where we specifically
include links connecting nodes in the same cluster as creating
a new cluster of size 0. Additionally, we always prevent
such intracluster links as there are no less extreme events.
However, this is only relevant for nonoptimal interventions
after the transition.

Also in this case optimal interventions necessarily end
at the percolation threshold. Interventions lasting longer
have no additional effect on the threshold and interventions
ending earlier create an extensive interval of uncontrolled
percolation before the transition, partially negating the effect
of the interventions. In Fig. 11 we show examples for single
realizations of percolation enhancing interventions. The results
confirm that the effect is largest (p. is smallest) when the
budget runs out exactly at pj, = p.. The budget used also
shows that it is much more difficult to enhance the percolation
than to delay it.
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Controlling percolation with limited resources

Malte Schroder, Nuno Araujo, Didier Sornette, Jan Nagler

In the main manuscript we discussed the control of percolation with limited resources for interventions. In particu-
lar, we considered a growth model where, starting from an empty network with IV nodes and no links, at each step we
choose a link e;; uniformly at random to add to the network. Control is implemented by a choice to prevent this link,
paying a cost ¢[S(i), S(j)] from a limited budget B. To decide whether we intervene in the link addition process we
consider the € fraction of links that, when added to the network, would create the largest clusters and prevent those
links. Interventions are only possible as long as we have sufficient budget B > ¢[S(i), S(j)], starting from B = bN.
In the main manuscript we discussed the main features of this model for constant cost ¢[S(i), S(j)] = 1, showing that
even a relatively small number of interventions can significantly delay the percolation transition. For small budgets
this transition is continuous, but becomes discontinuous at some critical values b. and ¢.. We also showed that the
transition is maximally delayed for a given budget when the intervention intensity e is exactly equal to this critical
value.

Here, we provide further evidence that the transition indeed becomes discontinuous for a sufficiently large bud-
get. Specifically, we consider unlimited budget in line with the (implicit) assumption in many other percolation
rules. Finally, we also illustrate the robustness of our results with respect to different cost functions, among others
c[S(i),S(j)] = S(i) + S(j). These results are qualitatively similar and we can establish a direct mapping between
results for the different cost functions. A given budget “fixes” the number of interventions up to small fluctuations and
there is a direct correspondence between the budget and intervention parameters for both cost functions. Contrary
to the results from the main manuscript, however, early interventions are more effective in this case.
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UNLIMITED BUDGET — DISCONTINUOUS TRANSITION

To clearly show the discontinuity of the transition when the budget survives until the transition we now consider
interventions with an unlimited budget in more detail. We study the largest gap of the largest cluster, following a
method from [4] to resolve multiple jumps of the size of the largest cluster. We divide the region around the transition
into intervals of width Ap = 4-107% and record the largest jump in each of these intervals (Fig. S2). While the
transition is blurred out for small systems, a double transition is revealed for larger system sizes. The same behavior
can also be seen for averages over the multiple realizations shown in Fig. S1.

We find that the largest gap of the first transition does not decay for increasing system size (even taking into account
the smaller spread and thus expected larger averages). In the case of € = 0.2, we can quantify this by assuming a single
large jump of size AS; and negligible contributions of all other changes for a given realization (this approximation
becomes better the larger the system). If this assumption is correct, the resulting average should simply be the
product of the size of the jump AS; and the probability that the jump occurs in a given interval. Consequently, we
can (approximately) determine the size of the jump AS; by fitting a Gaussian distribution multiplied by AS; to the
measured average jump size. We find AS$*t ~ 0.3 for the smallest system N = 220 decaying to only AS$t ~ 0.12
for the larger systems N = 22° and 2%7. The fact that AS$** does not decay to zero shows that the jump is indeed
macroscopic and the transition is discontinuous (Fig. S2, inset).

0.5

— N_215
0.4}
5 0.3}
A 0.2}
0.1}
0.712 0.714 ) 0.716 0.718

FIG. S1. Average size of the largest cluster during the transition for interventions with unlimited budget and ¢ = 0.1. Averages
are taken over 1024 to 64 realizations. This figure illustrates the difficulty in studying properties of the transition across different
realizations: the transition is blurred out even for large finite systems, and the double transition is only revealed for very large
systems.
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FIG. S2. Average maximum gap in the size of the largest cluster over p. The figures show the maximum size of the largest
cluster in intervals A = 4107, averaged over 16384 to 1024 realizations for ¢ = 0.1 [panel (a)] and ¢ = 0.2 [panel (b)].
Results show that even though the jumps are initially indistinguishable, only two distinct jumps appear for large systems. An
estimation of the expected size AS; of the first jump for e = 0.2 shows that it is becoming constant for large systems (inset,
see text for more details), further evidencing that the transition is discontinuous.
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RESOURCE-LIMITED CONTROL OF PERCOLATION UNDER VARIOUS COST FUNCTIONS

In order to illustrate the universality of our results, in the following we consider control of percolation using different
cost functions as well as intervention rules based on other observables. First, we discuss a theoretical argument, why
our results naturally extend to different cost functions.

Due to the self-averaging behavior of the percolation model, the number of interventions for a given cost function
c[S(4), S(j)] with given parameters € and b is fixed with a negligible variance (relative to the system size). For large
systems we thus find a direct correspondence to a system with constant cost ¢ = 1 and parameters ¢ and b’ = V' (b, ),
where b’ N is simply given as the average number of interventions.

We mostly discuss results using the cost function ¢[S(i), S(j)] = S(i) + S(j), where the cost of an intervention
scales with the size of the clusters involved. In this case, for any budget B = bN with constant b we always observe a
continuous transition (this means the corresponding b’ < b..). This is illustrated in an overview of single realizations
in Fig. S3. This can be understood with the following (rough) argument: consider the average budget used for
interventions up to a point p

(b(p)>=1/N< > S(i)+5(j)>

Interventions

<IN > 2<s>52€/0p<5>(p')dp’. (1)

Interventions

With the standard assumption for the critical scaling < S > (p’) ~ |p. — p’|” " this integral is finite for all p < p. but
diverges at p.. Thus any constant, finite budget b will run out at some point pj.st < pe, regardless of the value of e,
and the transition will be continuous. Conversely, we can reach any piast < pe with a finite budget B = O(N). We
can thus establish a direct mapping between the two cost functions with b € [0, 00) for ¢[S(), S(j)] = S(i) + S(j) and
b € ]0,b.) for constant cost (main manuscript). A delayed start of the interventions at pstart does not qualitatively
change this mapping.
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Due to the different cost of interventions, it becomes much more important to intervene early, when interventions
are cheap. Finding the optimal € for a given budget now does not mean keeping the interventions up the longest: if
the intensity is too large we prevent relatively unimportant links. If the intensity is too small, some interventions are
executed close to the critical point and are very costly, reducing the total number of interventions. The optimal delay
is obtained for intermediate values of ¢, balancing the observed effectiveness of interventions close to the critical point
(see main manuscript) with the increasing costs.

The resulting delay of the percolation transition for various parameters, shown in detail in Fig. S4 and S5, illus-
trates the findings summarized above: (i) a larger budget will always increase the delay of the percolation transition
(Fig. S4a), (ii) starting the interventions early and (iii) using an intermediate intensity results in the largest delay of
pe (Fig. S4b, S5).

However, we recover the discontinuous transition observed in the main manuscript for superlinear budget scaling
B ~ O(N“) with @ > 1 (Fig. S6). This is required for interventions to last until (after) the percolation transition,
where a single intervention will (likely) cost an extensive amount AB = O(N). Specifically, considering the scaling of
the cluster sizes before the transition, we can expect a critical budget on the order of B, ~ O [N log(N)]. However,
strong finite size effects make this prediction impossible to verify numerically.
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FIG. S3. Single realizations of the largest cluster size and the budget for various parameter combinations with ¢[S(4), S(j)] =
S(i) 4 S(j) for system size N = 2%5. The panels show the relative size of the largest cluster (red lines) and the remaining
fraction of the total budget (green line) for different initial values B = bN and intervention intensities e. Depending on the
parameters the delay between the last interventions (budget reaching 0) and the percolation transition changes. The transition
is smoothest when this gap is large. As discussed in the text, the transition is always continuous, since the budget runs out
before the transition.
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FIG. S4. Position of the percolation transition for various parameter combinations and cost function ¢ [S(z), S(5)] = S(¢)+S(j),
averaged over 256 realizations of N = 22°. Error bars indicating the standard deviation are smaller than the symbol size.
(a) pe when interventions are possible for all p (pstars = 0). Obviously, a larger budget allows more interventions and leads to
larger p.. Considering a fixed budget, it is clearly visible that different values of the intervention intensity € are optimal, e.g.,
large € are feasible for large budgets, while they are sub-optimal for smaller budgets. (b) Resulting p. for the same e versus
Dstart, Now for fixed b = 1. Clearly, starting the interventions earlier always results in a larger p.. Considering a fixed pstart, the
optimal intervention intensity e changes: small intensities are sub-optimal when interventions are possible early but become
optimal as pstart approaches pER =1/2.
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FIG. S5. Position of the phase transition p. for cost function ¢[S(i), S(j)] = S(i) + S(j) and interventions with b = 1 |panel
(a)] and b = 5 [panel (b)] and parameters e and psars (N =2°), averaged over 256 realizations. The qualitative behavior is
identical in both cases. Early interventions with intermediate intensity are optimal. Since more budget is available for b = 5,
the optimal intervention intensity as well as the possible delay is larger than for b = 1.
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FIG. S6. Discontinuous transition with super-linear budget scaling for cost function ¢[S(4), S(j)] = S(i) + S(j). Error bars
indicate the standard deviation, averages are taken over 1024 to 64 realizations. (a) The largest gap is constant with increasing
system size for unlimited budget and different values of the intervention intensity, evidencing a discontinuous transition. (b)
The largest gap does not disappear with increasing system size for superlinear budget scaling. The black line shows a power
law scaling expected for a continuous transition (slope chosen by eye to approximate the data for small systems). While finite
size effects make it difficult to study the behavior for arbitrary super-linear scaling, it is clear that for all B > O (N 1'2) the
largest gap in the size of the largest cluster does not disappear, evidencing a discontinuous transition.
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To further illustrate the universality of these results, depending only on the scaling but not the specific choice
of the cost function, we considered other intervention cost functions, specifically ¢[S(4), S(j)] = min [S(¢), S(j)] and
c[S(i), S(4)] = S(¢) + S(j) as above (Fig. S7), as well as ¢[S(7), S(j)] = max[S(¢),.S(j)] (not shown) with equivalent
results. Note that cost scale linearly with the size of the clusters in all cases. In all cases we can map the parameters
to corresponding parameters for constant intervention cost with a budget b’ < b/, as discussed above.
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FIG. S7. Results for the intervention rule as used in the main manuscript, but for different intervention costs as noted above the
two columns (N = 2%). Error bars indicate the standard deviation, averages are taken over 1024 to 64 realizations, depending
on the system size. (a,c) Single realizations of the size of the largest cluster as well as the remaining fraction of the total budget.
(b,d) The largest gap of the size of the largest cluster for various parameter combinations. The transition is continuous and

behaves as expected for random percolation in all cases.
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10

Similarly, we consider different intervention rules. In the main manuscript we derived the intervention rule using an
intuitive argument to achieve at least a given effectiveness of the intervention. Here we explicitly demonstrate other
intervention rules (Fig. S8 and S9), showing that the qualitative behavior is similar. We again consider intervention
cost proportional to the size of the clusters ¢ [S(7), S(j)] = S(7) + S(J)-

Specifically, we consider an intervention rule based on the variance of the cluster size distribution: we prevent a
link if the change AV of the variance is larger than a certain threshold ¢/N, in order to keep cluster sizes in the
network similar (and thus prevent large clusters). While this rule is less complex numerically, as we can track the
variance as the network grows, it is also less efficient than the protocol derived in the main manuscript. Additionally,
the threshold does not easily scale with the system size: the scaling changes depending on the shape of the cluster
size distribution at any given time.

Similarly, we consider the entropy £ = 3¢ nglog(ng) instead of the variance, where ng is the probability that a
random cluster has size S. In both cases we find qualitatively similar results as above: interventions should be applied
early and with an intermediate threshold (intensity) adjusted to the budget.
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FIG. S8. Results for the variance intervention rule (see text) for N = 2%5. Error bars indicate the standard deviation, averages
are taken over 256 realizations. (a,b) show two examples of single realizations for different intervention thresholds.

(c,d) show the same colormap plots as in Fig. S5, illustrating the position of the phase transition versus different parameters:
due to the cost function, early interventions are preferable.

(e,f) show the resulting position of the percolation transition versus the start of the interventions and the budget, respectively
(compare Fig. S4). We find the same qualitative behavior: early interventions are optimal and a larger budget obviously allows
for a larger delay. Non-monotonicities in the resulting curves for p. are due to the non-monotonous scaling of the changes in
the variance. The simplest example is the following: for e = 0 we prevent the first link when pgtare = 0 and thus use all budget
at p = 0. However, when pstart > 0 there are links which actually reduce the variance and our interventions are not useless.
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FIG. S9. Results for the entropy intervention rule (see text) for N = 22%. Error bars indicate the standard deviation, averages
are taken over 1024 realizations. Results are qualitatively similar to the other interventions rules considered: a larger budget will
always delay the transition and, due to the cost function, early interventions are preferable. As for the variance interventions,
it is possible to choose a parameter ¢ that always stops the first merger at p = 0 (datapoints at € = 1075, p ~ 0.5).
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The emergence of large-scale connectivity underlies the proper functioning of many networked sys-
tems, ranging from social networks and technological infrastructure to global trade networks. Per-
colation theory characterizes network formation following stochastic local rules, while optimization
models of network formation assume a single controlling authority or one global objective function.
In socio-economic networks, however, network formation is often driven by individual, locally opti-
mal decisions. How such decisions impact connectivity is only poorly understood to date. We study
how large-scale connectivity emerges from decisions made by rational agents that individually mi-
nimize costs for satisfying their demand. We establish an exact mapping of the resulting nonlinear
optimization problem to a local percolation model and analyze how locally optimal decisions on the
micro-level define the structure of networks on the macroscopic scale.

The proper functioning of networked systems funda-
mentally relies on their established large-scale connecti-
vity. The global connectivity of social, economic and
technological networks, such as the internet, trade and
transportation networks, enables global communication
and exchange, but also the rapid spreading of diseases
[1-7]. The loss of connectivity, or even of a single con-
nection, may cause catastrophic effects such as the col-
lapse of ecological networks, blackouts of power grids and
other infrastructures, or even a global economic crisis [8-
15]. Understanding how global connectivity emerges thus
constitutes a key challenge in the field of network science.

Two major theoretical approaches have been establis-
hed for revealing core properties of the emergence of
large-scale connectivity. First, the theory of percolation
provides fundamental insights about network formation
processes by assuming that new links are established sto-
chastically according to some local rule [16, 17]. For
such percolation models, a variety of distinct structure-
forming phenomena have been observed, where diverse
network topologies emerge even for simple link formation
rules |7, 18-24]. Second, global optimization models ex-
plain network formation controlled by a central authority
or driven by a single global objective function. These mo-
dels have been studied to construct and understand as-
pects of the structure of various man-made or biological
networks [25-32]. The formation of many socio-economic
networks, however, is driven by local agents making in-
dividual decisions based on optimizing their own goals.
Such settings result in networks constrained by many in-
dividual, yet interacting optimization problems. A simi-
lar motivation underlies game-theoretic models of net-
work formation [33-38]. These models allow a more de-
tailed analysis of the formation process and the stability
of the resulting network. Unsurprisingly, however, they

are often hard, if not impossible, to solve, especially for
larger networks, which limits mechanistic insights.

In this Letter we study network formation processes
based on rational agents that individually optimize their
own local objective function. Given costs for production
and transaction (including transport) in an underlying
transport network, each agent satisfies its own demand
at minimal costs [39, 40]. For the resulting class of
nonlinear optimization problems, we establish an exact
mapping to a local percolation model, enabling us to
efficiently investigate the collective network formation.
The proposed framework bridges the gap between global
optimization models of network formation and stochastic
local percolation models.

From optimization to percolation — We analyze a net-
work formation model based on the following fundamen-
tal network supply problem. Consider an underlying net-
work of N nodes and M links, describing agents and
potential transportation routes, where each agent must
satisfy its demand. We study the network of trades that
actually evolves between the nodes, similar to bond per-
colation on an underlying network or random graph [16].

Specifically, we assume each node i € {1,...,N} is an
agent with a fixed demand D;. The agent satisfies this
demand by purchases Si; from any nodes k, including
its own node, under the constraint that »_, Si; = D;.
(Throughout the manuscript all sums run over all nodes,
here k € {1..., N}, unless otherwise noted.) Each agent
will try to achieve this with minimal cost

including both production costs K,f;- at node k as well as
transaction costs K7, between the two nodes (see Fig. 1).
The production costs depend on the total amount Sy =



Main article

117

(Specific) transaction costs
KIZ; = pTXSki X Ths

(Specific) production costs
K =prxSk;

Economies
of scale
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Costs =
Production + Transaction

Ky = Kl + KF
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Figure 1. Cost structure of the supply problem. Each
agent ¢ satisfies its demand by purchases Sk; from nodes k at
minimum costs, including production and transaction costs
|Eq. 1]. The specific production cost at node k decrease with
the total production S at k, describing economic scale ef-
fects. The transaction costs are proportional to the shortest
path distance T%; between k and ¢ in the underlying transport
network and to the specific transaction costs pp .

> y Sk; produced at node k and are proportional to the
amount of purchased goods Sk;, resulting in the nonlinear
dependence

K = pr(Sk) Sk (2)

on the purchases Si;. The specific production cost pg
describe scale effects, for example increasing efficiency
with increasing production. The transaction costs are
proportional to the amount of transported goods Sk, the
distance T}y; between the two nodes in the underlying
transportation network and the specific transaction costs

pr,s
KL = prSkiTe: (3)

where Ty; = )t is given as the sum of the distances
t. of all links e along the (shortest) path between k
and 7 in the underlying transport network. All agents
solve their individual nonlinear optimization problem
[Eq.(1)] simultaneously, defining the network of optimal
purchases Si;. The resulting state of this network then
corresponds to a Nash-equilibrium [41], where no agent
can reduce its cost by changing its purchases given that
all other purchases remain constant,.

Results — A simple, yet efficient solution to this pro-
blem can be found for non-increasing specific production
costs p. In this case, we find that any agent i chooses
a single supplier i*, such that S;«; = D; and Si; = 0 for
k # i*. In general each agent would have to check each
node in the network to find its optimal supplier. Interes-
tingly, if the demand of all agents is identical, D; = D,
this optimal supplier can be found locally: An agent ¢
just has to query its direct neighbors about their current
suppliers to find the optimal supplier i*.

Here, we provide a brief intuitive argument: Any pur-
chase of agent i has to be transported via one of its neig-

2

min(costs)«»min(x™) medium K7

min(costs)«» min(k ")
[economies of scale]

Decreasing transaction costs

Figure 2. Local percolation induced by optimization.
The multipartite optimization problem illustrated in Fig. 1 is
solved by a local percolation algorithm. Dashed lines show
potential transportation routes. As the specific transaction
costs pr decrease, agents start to purchase from other nodes
and a network of trades emerges (arrows). When a cluster
is established, the specific production costs decrease due to
scale effects, enabling discontinuous network growth.

hbors j. Note that the specific production costs only de-
pend on the supplier and transaction costs are additive
over the shortest path. If j is buying optimally from j*,
this supplier must also be optimal for 7 as any other sup-
plier transporting via j would be more expensive. Thus,
¢ will learn about its optimal supplier locally from one
of its neighbors (see Supplemental Material Sec. I and II
for a rigorous proof and details of the simulation [42]).

We investigate this local percolation model starting
with large transaction costs pr = oo and, correspon-
dingly, only internal production ¢* = i and S;; = D;.
As the specific transaction costs pr decrease, agents
minimize their costs by establishing external purchases
Ski- Finally, transaction costs disappear at pr = 0
and all agents will have the same supplier (Fig. 2).
We study the size C(i*) of the connected components
(clusters) in the network defined by these purchases, this
means the number of agents {iy,is,...} with the same
supplier i*. As for standard percolation we record the
size Cy(pr) of the currently largest cluster (and Cy for
the second largest cluster and so on). In the following
examples we consider linearly decreasing specific costs
pr(Sk) = by, — aSk, where a > 0 determines the strength
of the scale effects.

Discontinuous percolation and hysteresis — We illus-
trate the emergence of connectivity in a random spatially
embedded network in Fig. 3, revealing the importance of
scale effects. Weak scale effects (small a) lead to a conti-
nuous growth of the largest cluster. Strong scale effects
(large a) lead to a discontinuous evolution of the size of
the largest cluster in the network. A microscopic decre-
ase of the transaction costs triggers a cascade of decisi-
ons: As a suppliers’ production costs decrease, a large
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Figure 3. From continuous transitions to discontinuous
transitions and hysteresis. The type of the transition to
a single globally connected component changes depending on
the size of the scale effects in the cost function. (a) Exam-
ple of a small random network embedded in the unit square
(see Supplemental Material Sec. III [42]). Parameters b; are
taken as values of a random function b(z,y). (b)-(d) Single
realizations of the evolution of the relative size of the largest
cluster for different system sizes N. Small scale effects lead to
a continuous growth of the largest cluster. Sufficiently large
scale effects lead to a discontinuous transition. Reversing the
process, i.e., increasing the transaction costs, leads to a direct
reversal for small scale effects, but hysteresis is observed for
large scale effects.

fraction of agents join a connected component with only
a single supplier. In the language of percolation, a gi-
ant connected component emerges in a continuous (small
scale effects) or discontinuous (strong scale effects) phase
transition.

Moreover, multiple stable states exist for strong scale
effects. In an intermediate interval of transaction costs
pr the network settles on one of the possible structures,
depending on the previous state of the network: hyste-
resis emerges. Thus, a large cluster may remain stable
after it has emerged for decreasing pr, even when pr is
increased again [Fig. 3(d)].

Underlying mechanism — To understand the mecha-
nism underlying these different transitions, we analyze
a mathematically tractable system in detail: consider a
complete graph as underlying network in which ¢, = 1 for
all links, b; € [0, 1] uniformly randomly distributed and
D; = 1/N, illustrated in Fig. 4 (a). We consider the limit
of large N and assume a mean field distribution of the
b;, allowing us to re-order the nodes such that b; ~ i/N
forie {1,...,N}.

We now track individual decisions by considering the
cost K;(k) agent i pays at a supplier k. Since transaction
costs across all links are identical, clearly the first link to
be established will be between the node with the highest

Figure 4. Theoretical analysis of the mechanism of
discontinuous transitions and hysteresis. (a) A small
example of a complete graph: all nodes are connected with
Ti; = ti; = 1 and random b; € [0,1] (see text). (b)-(d) A
single realization of the relative size of the largest cluster for
different scale effects a for a small system of N = 10% nodes
and the predicted behavior in the mean field limit N — oo
(see text). For small scale effects the largest cluster grows
continuously. For sufficiently large scale effects the transition
becomes discontinuous as a single agent changing its supplier
changes the cost enough to induce a cascade. For even lar-
ger scale effects, we find hysteresis for increasing transaction
costs. This is the same qualitative behavior as observed for
the spatially embedded network (Fig. 3) and will be qualita-
tively unchanged for different distributions of the b;.

specific production cost (node N) and the one with the
smallest (node 1). This happens when the cost per unit
Ky (1) for agent N to import from node 1 become smaller
than the cost Ky (N) to buy internally: Ky (1) =1/N —
2a/N +pr < 1 —a/N = Ky (N), that is for py < p¥ =
1-1/N+a/N. Similarly, we can calculate when the next
link between agent N —1 and node 1 appears: Kn_1(1) =
1/N —3a/N +pr < (N =1)/N —a/N = Ky_1(N — 1),
that is for pr < pY~' = 1 —2/N + 2a/N. The other
agents follow the same pattern.

Considering the two links, we now have to distinguish
two cases: if a < 1, then pé\f*l < péY and the agents
N and N — 1 will establish their links sequentially at
different values of pr. The largest cluster will grow con-
tinuously with a slope of (1/N)/(py ' —pY) =1/(a—1).
However, if the scale effects are strong enough (a > 1),
the cost at node 1 decrease sufficiently for the next
link to be established immediately since pgfl > p¥.
The cluster grows discontinuously in a single cascade
[Fig. 4 (c)]. If the scale effects are even stronger (a > 1),
the cluster is stable with respect to single agents
changing their supplier for larger values of pr, causing
hysteresis when increasing pr [Fig. 4 (d)]. In this case
the line with slope 1/(a — 1) describes an unstable equili-
brium state (see also Supplemental Material Sec. VI [42]).
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Figure 5. Impact of the network structure on the per-
colation transition. Size and discontinuities of large con-
nected components for an underlying Watts-Strogatz small
world network (N = 10, k = 8, see Supplemental Mate-
rial Sec. III and V [42]). (a),(b) Single realizations for the
size of the components C(i*) of three specific large suppliers
i € {i1,13,13}. In a network with large diameter [panel (a),
Qrew = 10_5] multiple clusters grow simultaneously and merge
for small pr. In a network with small diameter [panel (b),
grew = 1072] one large cluster emerges in a single cascade.
(c) Maximum size of the n-th largest cluster as a function of
the topological randomness grew (error bars omitted for visi-
bility). (d) Largest change of the size of the largest cluster
(error bars indicate the standard deviation). For large net-
work diameters (small grew) multiple large clusters emerge
independently in different parts of the network. For small
network diameters only one large cluster emerges in a single
large cascade, characterized by a large value of the size of the
largest jump max (AC1/N). Averages are taken over R = 100
realizations.

Impact of network topology — Besides the scale effects,
the network growth is further determined by the under-
lying physical transportation network. For constant scale
effects we find different routes of network formation de-
pending on the structure of the network. If the network
diameter (the longest shortest path between any two no-
des) is small, only one cluster emerges. If the diameter
is large, multiple large clusters appear. This difference is
already evident when comparing the spatially embedded
(large diameter) and complete network (small diameter)
for @ = 1 [compare Fig. 3(c) and 4 (c)].

To systematically study this effect we consider a net-
work class introduced by Watts and Strogatz [23]. Star-
ting from a regular ring network where each node is con-
nected to its k neighbors (large diameter) each link is
randomly rewired with probability grew, which introdu-
ces shortcuts and reduces the diameter of the network. If
the diameter is large [gyew small, Fig. 5 (a)], different sup-
pliers can attract large clusters of agents from their local
part of the network when py decreases. Fig. 5 (c) illustra-
tes the maximum size of the n-th largest cluster, showing

4

that multiple large clusters emerge for quew < 107° (less
than one shortcut per node). Only for small values of
pr do these clusters interact and finally merge in small
cascades to a single giant cluster. If the diameter is small
[grew large, Fig. 5(b)], only a single cluster emerges, at-
tracting nodes from all parts of the network. The largest
cluster then grows in a single cascade until it fills the
entire network [Fig. 5 (c),(d)].

As an example of a realistic transportation network we
consider an elementary model of a world transport net-
work (Fig. 6). We explore different network structures by
varying the costs for different modes of transportation,
modifying the effective distances of transport via land
and sea. If transport via sea is expensive the network
has a large diameter and multiple large clusters appear
in different regions of the world, merging when pr
becomes small [Fig. 6 (a)-(d)]. Conversely, if transport
via sea is cheap, the network becomes densely connected
with a small diameter and a single largest cluster grows
in a sudden cascade [Fig. 6 (e)-(g)].

Discussion — We have studied a network formation
model based on fundamental economic considerations,
describing a network of trading agents minimizing their
costs to satisfy a fixed demand. Link addition in this mo-
del is driven by local decisions of the individual agents
instead of random chance. We showed that under simple
conditions the resulting complex, nonlinear optimization
problem can be solved with a local percolation model,
bridging the gap between optimization-based approaches
of network formation [25-32] and prototypical percola-
tion models [7, 18-24]. We revealed how local optimiza-
tion affects the phase transition to global connectivity. In
particular, we illustrated how scale effects and the topo-
logy of the underlying transport network determine the
emergence of a discontinuous transition and hysteresis in
the network formation process.

The observed effects are not only of interest to under-
stand explosive phase transitions but also have impor-
tant consequences in political economics. First, globali-
zation is not necessarily a continuous process. Very small
changes in the transportation processes can change the
equilibrium from local to centralized production. Such
discontinuous transitions are associated with hysteresis
so that large common markets are hard to disentangle.
Our results suggest that a small increase of transporta-
tion costs through taxes or customs will not undo the
formation of a giant connected component.

Furthermore, our model highlights the importance
of the transportation network for global economics
[39, 40]. Both, economic parameters as well as the
current structure of the network, determine whether
there may be only one, several, or no giant connected
component. Expressed in economic terms, whether
there emerges a monopoly, oligopoly, or polypoly
is not only a matter of the micro-level dynamics al-



120 Hysteretic percolation from locally optimal decisions

(a) Sea/land transport cost ratio Ts =5 (b)
LO—T 7 USA Wid-East -
| ermany — -
0.8 1 N e
. o -
So6p '
Soab 1o '
Sodr 1 f
0.2 ! ! 1
|
ol (e _
( 1 2 3
pr
(e) Sea/land transport cost ratio7’s = 0.2 (f)
LOM&stchim — =,
0.8 i
B 1
206 !
N 4 v
S 0.4 !
0.2 i
o, . ts-moro- 1
4 6 8 10

Figure 6. Preferred modes of transport change network evolution. Global connectivity induced by locally optimal
decisions in a model of a world transport network (see Supplemental Material Sec. VII for details [42]). (a) Evolution of the
size C(i*) of specific clusters identified by a supplier ¢* when transport via sea is more expensive than transport via land (by a
factor T's = 5). Due to the high costs of sea transport, the network diameter is large and multiple large clusters can emerge in
different parts of the world. (b)-(d) Network structure and active transport links for different values of the transactions costs
pr. Land routes are preferred to transport via sea. (e) Evolution of the size of the emerging cluster for small sea transport
costs (Ts = 0.2). Due to sea routes connecting most countries cheaply, only one large component emerges in a single large
cascade. This transition happens for larger pr as the overall diameter of the network is much smaller. (f),(g) The state of the

network immediately before and after the transition.
one, but also of the actual structure of the trade network.

We thank J. Tébben and S. Klipp for helpful dis-
cussions.  We gratefully acknowledge support from
the Gottingen Graduate School for Neurosciences and
Molecular Biosciences (DFG Grant GSC 226/2), from
the Helmholtz association (grant no. VH-NG-1025), the
German Ministry for Education and Research (BMBF
grants no. 03SF0472A and 03SF0472E), the German
Science Foundation (DFG) by a grant towards the
Center of Excellence Center for Advancing Electronics
Dresden (cfaed), the ETH Risk Center (RC SP 08-15)
and SNF Grant The Anatomy of systemic financial risk,
No. 162776.

* malte.schroeder@ds.mpg.de
T jnagler@ethz.ch
¥ marc.timme@ds.mpg.de
§ d.witthaut@fz-juelich.de
[1] R. Albert, H. Jeong, and A.-L. Barabasi, Nature, 406,
378 (2000).
[2] R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett.,
86, 3200 (2001).
[3] L. Hufnagel, D. Brockmann, and T. Geisel, Proc. Natl.
Acad. Sci. U.S.A., 101, 15124 (2004).
[4] D. Brockmann, L. Hufnagel, and T. Geisel, Nature, 439,
462 (2006).
[5] D. Brockmann and D. Helbing, Science, 342, 1337
(2013).

[6] R. Albert and A.-L. Barabasi, Rev. Mod. Phys., 74, 47
(2002).

[7] M. Newman, SIAM Review, 45, 167 (2003).

[8] R. V. Sole and M. Montoya, Proc. Roy. Soc. London Ser.
B, 268, 2039 (2001).

[9] F. Schweitzer, G. Fagiolo, D. Sornette, F. Vega-Redondo,
A. Vespignani, and D. R. White, Science, 325, 422
(2009).

[10] S. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and
S. Havlin, Nature, 464, 1025 (2010).

[11] S. Havlin, D. Y. Kenett, E. Ben-Jacob, A. Bunde, R. Co-
hen, H. Hermann, J. Kantelhardt, J. Kertész, S. Kirkpa-
trick, J. Kurths, J. Portugali, and S. Solomon, Eur. Phys.
J. Special Topics, 214, 273 (2012).

[12] M. Elliott, B. Golub, and M. O. Jackson, Am. Econ.
Rev., 104, 3115 (2014).

[13] D. Witthaut, M. Rohden, X. Zhang, S. Hallerberg, and
M. Timme, Phys. Rev. Lett., 116, 138701 (2016).

[14] H. Ronellenfitsch, D. Manik, J. Horsch, T. Brown, and
D. Witthaut, IEEE Trans. Power Syst., 32, 4060 (2017).

[15] J. Nagler, A. Levina, and M. Timme, Nat. Phys., 7, 265
(2011).

[16] D. Stauffer and A. Aharony, Introduction To Percolation
Theory (Taylor & Francis, London, 1992).

[17] G. Grimmett, Percolation (Springer, Berlin, 1999).

[18] D. Achlioptas, R. D’Souza, and J. Spencer, Science, 323,
1453 (2009).

[19] O. Riordan and L. Warnke, Science, 333, 322 (2011).

[20] M. Schréder, S. E. Rahbari, and J. Nagler, Nat. Com-
mun., 4 (2013).

[21] M. Schréder, W. Chen, and J. Nagler, New J. Phys., 18,
013042 (2016).

[22] R. M. D’Souza and J. Nagler, Nat. Phys., 11, 531 (2015).

[23] D. J. Watts and S. H. Strogatz, Nature, 393, 440 (1998).

[24] T. Verma, F. Russmann, N. Aratjo, J. Nagler, and
H. Herrmann, Nat. Commun., 7 (2016).



Main article 121
6
[25] D. P. Bertsekas, Network optimization: continuous and (1996).
discrete models (Athena Scientific, Belmont, 1998). [34] M. Jackson and A. Watts, J. Econ. Theory, 106, 265
[26] M. T. Gastner and M. E. J. Newman, Phys. Rev. E, 74, (2002).

016117 (2006).

[27] S. Bohn and M. O. Magnasco, Phys. Rev. Lett., 98,
088702 (2007).

|28] E. Katifori, G. J. Szollgsi, and M. O. Magnasco, Phys.
Rev. Lett., 104, 048704 (2010).

[29] H. Ronellenfitsch and E. Katifori, Phys. Rev. Lett., 117,
138301 (2016).

[30] D. B. Chklovskii, T. Schikorski, and C. F. Stevens, Neu-
ron, 34, 341 (2002), ISSN 0896-6273.

[31] R.-M. Memmesheimer and M. Timme, Physica D, 224,
182 (2006), ISSN 0167-2789, dynamics on Complex Net-
works and Applications.

[32] R.-M. Memmesheimer and M. Timme, Phys. Rev. Lett.,
97, 188101 (2006).

[33] M. Jackson and A. Wolinsky, J. Econ. Theory, 71, 44

[35] M. O. Jackson, Social and economic networks, Vol. 3
(Princeton University Press, Princeton, 2008).

[36] D. Easley and J. Kleinberg, Networks, crowds, and mar-
kets: Reasoning about a highly connected world (Cam-
bridge University Press, 2010).

[37] V. Bala and S. Goyal, Econometrica, 68, 1181 (2000).
[38] M. D. Konig, S. Battiston, M. Napoletano, and
F. Schweitzer, Games Econ. Behav., 75, 694 (2012).

[39] P. R. Krugman, Geography and trade (MIT press, 1991).

[40] P. R. Krugman, J. Pol. Econ., 99, 483 (1991).

[41] M. J. Osborne and A. Rubinstein, A course in game the-
ory (MIT Press, Cambridge, MA, 1994).

[42] See Supplemental Material at [URL will be inserted by
publisher].

[43] D. Saupe, in The science of fractal images (Springer, New
York, 1988) pp. 71-136.



122 Hysteretic percolation from locally optimal decisions

Supplemental Material
accompanying the manuscript
Hysteretic percolation from locally optimal decisions

Malte Schroder, Jan Nagler, Marc Timme and Dirk Witthaut

In the main manuscript we introduced a network formation model where link addition is based on individual
decisions of local agents in a fundamental network supply problem. In general the resulting individual optimization
problems are too complex to be solved efficiently for large systems. We discussed how these optimization problems
map to a local percolation model with an efficient solution, bridging the gap between global optimization models
of network formation and stochastic local percolation models. This mapping allowed us to efficiently study the
phenomena emerging in this network formation model.

In this supplementary information we give the rigorous proofs for the mapping as well as additional details and
examples for the model. First, we consider the mapping of the optimization problem to a percolation model. In
particular, we discuss in detail the assumptions and requirements on the cost functions and other parameters for this
mapping to be valid and give a rigorous proof. We also describe the simulation procedure resulting from these condi-
tions. Second, we discuss in more detail the parameter choices made for the examples shown in the main manuscript in
relation to properties of the model, describing how and why we take the limit of an increasing number of nodes N — oo
as a fine-graining rather than an expansion of the system in relation to the underlying network topology (for example
random and small world networks). Third, we provide an additional example for an analytically solvable system in a
continuous interpretation of the model, linking the equilibrium states and transitions to bifurcations of stable states
of a corresponding self-consistency equation. Finally, we include a detailed description of the data used for the world
transport network simulations in the main manuscript and a brief comparison of the exact solution for the world trans-
port network to the approximate solution with our local percolation algorithm, which is shown in the main manuscript.

THE NETWORK SUPPLY PROBLEM

To begin, we reiterate the basic idea of the network formation model as defined in the main manuscript: Starting
with an underlying network of N nodes and M potential transport links, we consider each node i to be an agent with a
fixed demand D; that it satisfies by purchases Si; from nodes k, possibly internally from k& = i. These purchases incur
a cost of two parts: First, the production cost K 15 = Skipi(Sk) at node k depending on the total amount of production
Sk at that node. Second, a transaction cost (e.g., transport cost) in the underlying network, K,Z; = prSkiTyi, where
Thi = X cerir,q) te is the sum over the transaction costs of all links e along the shortest (cheapest) path II(k, i) from
k to i. The parameter py describes a global scaling of transaction cost across the network, i.e., the importance
of transaction costs relative to production costs. We assume that each agent only decides its purchases and the
production at a node is always given as the sum of all purchases made from that node, Sy = >_, Ski. As in the main
manuscript we assume that sums run over all nodes i € {1,..., N}) unless noted otherwise. Similarly, each agent
always satisfies its demand exactly, such that D; = >, Si;. Each agent ¢ then individually optimizes its purchases
Ski to minimize its cost K; while satisfying its demand:

minimize K; = Z Skipk(Sk) + pr Z Ski Z te (1)

k k e€Tl(k,i)

subject to Z Ski = D;
k

Ski >0V k.

We consider the evolution of the network of trades described by the purchases Si;, when the transaction cost pr
decrease, starting from pr = oo with initially only internal production S;; = D; and Si; = 0 for i # k. Large
transaction costs pr mean that no external purchases are made across the network. As pr decreases, some agents
start buying at cheaper neighbors and small, localized connected components (clusters) start to grow. Specifically, as
in standard percolation theory, we are interested in the evolution of the size of the largest cluster C;(pr).
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To allow easier readability, we use different indices to denote nodes or agents based on their role in the current
context wherever possible. We summarize the variables together with their meaning in the following table:

N The number of nodes in the system, system size

€ij Link (potential transport link) between nodes ¢ and j

te, tij Transaction cost per unit for the link e from node i to j

II(k,i)  Shortest (cheapest) path from k to i, II(k,%) = {exji,€j1jss--->€5,i}

Thi Total transaction cost per unit between the nodes k and ¢, Ty; = ZeeH(k,i) te

pr Specific transaction cost, relative importance of transaction cost

i,7 Index of an agent (currently looking to make purchases)

k,l Index of a node (currently considered as a supplier)

i Index of the current supplier of agent 1, j

g Index of the/an optimal supplier of agent i, j

D, The (fixed) demand of agent ¢

Sk The current, total production of node k

Si The production of node k disregarding possible purchases by agent i, S; = Sy — Sk
Shki The amount agent 7 purchases from node &

pr (Sk)  The specific production cost at node k with a total production Sy

K; The total cost, including transaction costs and production costs, of all purchases of agent ¢

The total cost of agent ¢ when only purchasing from node k
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I. MAPPING TO A LOCAL PERCOLATION MODEL

In general the optimization problem described above is very complex and quickly grows intractable for larger
systems. Here we derive a general updating scheme in terms of a local percolation model, showing that it exactly
solves all individual optimization problems under certain conditions. We first consider the cost function of a single
agent ¢

K; = Z [Skipk (). + Ski) + prSkiTei] , (2)

k
where S} = Zj 2i Sk; denotes the production of node k ignoring purchases by agent i, such that S, = Si + Sy, and
we write the total transaction cost per unit over all links from & to ¢ as Ty;. The problem becomes considerably easier
for the family of cost functions describing economies of scale, this means decreasing specific production costs with
increasing production. In this case the problem of finding the optimal Sk; reduces to finding a single optimal supplier.

Lemma 1. Given an individual minimization problem of agent i defined by Eq. (1) with non-increasing specific
production costs at each node, g%’; (Sk) <0 for all k € {1,..., N}, there is a node i* such that K; is minimal with
Si«i = D; and S; = 0 for k #i*.
Proof. Choose the node [ for which

P (S + Di) = pu(Si + D;) + prTy (3)
is smallest. Together with dpy/9S) < 0 for all nodes k we then obtain
(8] + Di) < pi(S) + Di) < pi(S) + Ska) (4)

for all nodes k =€ {1,..., N} and arbitrary purchases 0 < Si; < D;. Using the constraint that D; = Zk Sk this
implies
K;(51:=0,52;=0,...,5;,=D;,S4+1,=0,...)
= Dipi™ (S} + Di)
< Z Skipit (Sk + Ski)
k

= K;(S1i, S2, S3i, .. .) -

for all possible purchases (514, S2;, S3i,...). Thus the costs K; assume a global minimum if agent ¢ satisfies its entire
demand by purchases from a single node i* = [, this means for

Si<i=D; and Sig; =0fork #£i*.
O

In particular this class of non-decreasing functions includes the affine-linear specific production cost py (Si) =
by — a - S with @ > 0 used in the main manuscript. However, we are not restricted to identical slopes or even cost
functions of the same form for different nodes. We therefore cover a broad range of cases where the cost functions of
all nodes are non-increasing in the range of possible production Sy € [0,>", D;].

With the above simplification, we now consider the optimization problem of agent ¢ of finding the best i* to minimize

K; (i) = Dipi~ (St + Di) + prDi Y te. (6)
e€T(i* i)

To find an equilibrium, we can in principle simply try all possible alternatives, as formulated in the following algorithm.
However, such a brute-force approach can become quickly infeasible for large networks such that we will consider
further simplifications in the following sections.

Definition 1 (Equilibrium). Consider the optimization problem defined above [Eq. (1)] with non-increasing specific
production costs py(Sk) for all agents k € {1,2,...,N}. An agent i is in equilibrium at its current supplier i', if and
only if there is no node k such that K;(k) < K;(i'). This means the agent cannot change its supplier to reduce its
costs, given that all other agents keep their current supplier.

We say that the network is in equilibrium if all agents in the network are in equilibrium.

Note that this corresponds to the notion of a Nash-equilibrium, where no agent can decrease its cost by changing
only its own supplier. Note also, while the network might be in equilibrium, this does not necessarily mean that the
total cost for all agents, ), K;, is minimal.
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General algorithm

Consider the optimization problem defined above with non-increasing specific production costs py(Sy) for all agents
k=1{1,2,...,N}. Given a fixed value pr, for each agent i, individually,

find i*e{l,...,N}
minimizing K; (i*) = D;p; (SZZ + Di) + prD; Z te . (7)

e€TI(i* i)

In general, the following algorithm yields an equilibrium (though not necessarily a global optimum) when it terminates:

Algorithm 1 General optimization

1: repeat
2 U+—o
3 for alli € {1,2,...,N} do
4: for all k € {1,2,...,N} do
5: Calculate K;(k) [where Sk; = D; and Si; = 0 for all | # k.
6: if K;(k) < K;(i') where currently S;;; = D; then
7 U+ UU{K(k)}
8: end if
9: end for
10: end for
11: if U # & then

12: Calculate {4, } such that K;(i*) = miny K;(k)
13: Sixi <+ D
14: Siri <0

15: end if
16: untilf = &

In words, for every step we calculate the cost for all agents and possible suppliers. If an agent i would prefer a
new supplier k to its current supplier i we add the corresponding cost to the list of possible updates . Here, we use
K;(k) to denote both the final cost for agent i as well as the corresponding update itself. In the end we execute the
update with the smallest final cost (clearly any update will find the currently optimal choice i* for agent 4, since we
check all possible suppliers in the network). We repeat this process until no further update is possible.

Theorem 2. Algorithm 1 will always terminate in finite time. When it terminates the network will be in an equilibrium
state, where no agent can reduce its costs by changing its supplier.

Proof. Firstly, the algorithm only terminates when there are no possible updates, i.e., when no single agent can further
reduce its costs by changing its supplier. As we assumed non-increasing specific production costs, a single supplier is
always an optimal solution. Thus no single agent ¢ can reduce its costs at all and we always end in an equilibrium.

Conversely, if the network is in equilibrium, no agent can reduce its cost. The update list will be empty and the
algorithm will terminate.

Secondly, consider the possibility of the algorithm not terminating at all. This can only happen if the algorithm
runs into a loop, executing the same updates repeating a finite set of states of the network. We now show that such
a loop is impossible:

Assume an initial state Z of the network, defined by the pairs of agents and current suppliers Z = {(¢,7'),...}. A
loop can only occur if the network now reaches a state Z — 1, where a single agent i has a different supplier k, but
would like to return to the supplier ¢’ it has in state Z (K;(i') < K;(k)).

To reach this state we need a chain of updates including, at least, one update u, where agent i switches supplier
to k. However, if the reverse update u_ ! is strictly beneficial in state Z — 1, clearly u, is not beneficial in state Z.
Thus the chain needs to consist of more than a single update.

Given that one update alone is not possible, we need another update to enable it. We thus have to consider a chain
of updates uy o uy © ub_17 where u; enables u, and is reversed in the end to arrive at state Z — 1. The main idea is
illustrated in Fig. S1. There are only two possible ways how a beneficial update u; can enable u,:

(1) either an agent j switches from its supplier 5’ to the the new supplier k. But then the update u, decreases the
cost K(k) further. The reverse update u, * would then never be executed since K;(k) < K;(j').
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(2) up could have an agent j switch away from the current supplier j* = i’ to a different node [. But then u, further
increases the cost Ky (') and we again find K;(I) < K;(i’), making the reverse update impossible.

Following this line of argument, we need another update u. to enable the update ub_l, e.g., a chain of updates
Up O Uq O U O u;1 ou_!. This clearly requires a partial ordering of the updates, such that us, u., u;l and u;! are
executed in this order (otherwise the update u. will have no effect on the update u;l). However, by the same logic
as above u;l would change the cost unfavorably for u_!. We then find the same problem that u_ ! would never be

executed at the end of the chain. Repeating the argument, we find the same problem for every finite chain of updates.
Thus, we cannot construct a finite chain of updates to reach Z — 1. Consequently, we cannot repeat a state and thus

would visit every possible state, but then the algorithm would terminate in (one of) the equilibrium states. Together,
we find that the algorithm must terminate in finite time.

(@) @
.

O

“bl@ D

O

FIG. S1. Illustration of the main argument. Starting from an initial state Z, we cannot find a chain of updates that leaves
us in a state Z — 1 where agent i buys from k but wants to switch back to i’. (a) Clearly, a single update is not enough, as i
would not want to switch to k. (b) Using another agent j to enable the switch of ¢ to k leaves j buying at k, the reverse update
required to reach state Z — 1 is not possible. (c¢) Following the same logic, a chain with three (or more) updates will also not
be able to reach state Z — 1 (see text).
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A. When local information is sufficient

With the above simplification of non-increasing specific production costs, we still consider the individual optimiza-
tion problem of node i of finding the best ¢* to minimize

Ki(i*) = Dipi= (Si- + Di) +prDi > te, (8)
e€TI(i* i)

in principal considering every node in the network as a possible supplier. We now show that in certain cases we can
further simplify this optimization by only considering the local neighborhood of agent ¢ to find its best supplier i*.

Lemma 3. Given the optimization problem defined above with non-increasing specific production costs py(Sk) and
homogeneous demand D; = D for all agents i € {1,...,N}. If all other agents are in equilibrium, then either i is its
own optimal supplier or there exists a neighbor j of i such that the optimal supplier j* of j is also an optimal supplier

of i.

Proof. Obviously, if i* = ¢, we are done.
Otherwise, consider the external optimal supplier i* of i. The path from * to ¢ will pass through a neighbor j of
i, such that

H(i",7) = (€ikys Chykar - - €4i) 9)

Ti*,i:ti*kl+tk1k2+-~-+tji- (10)

We give a proof by contradiction, assuming that j* is not an optimal supplier of i, i.e., 7* # ¢* and K;(j*) > K;(i*).
Using the fact that j* is the optimal supplier of j we obtain the inequality

K;(5* ;
][()] ) = pj= (Sj* +D> +pr Z te (11)
e€ll(5*,5)
; K, (3~
<pi (St +D)+pr D>, te= f[() ). (12)
e€Il(i*,5)
Since j is in equilibrium we have
Sl +D=S8;-+D, (13)
and for agent ¢ we have also
S <S85.+D<S8;-+D
Sie <SL+D<Si-+D, (14)

where 9, again denotes the production of j* ignoring purchases of agent j and the second set of inequalities simply
states that ¢ may currently be buying from any node, possibly even i* or j*. Using these observations together with
the fact that all pi are non-increasing we find

~pi- (S + D) +pi- (. + D) = pj- (8 + D) +pj- (S} + D)
= —pi+ (S}- + D) + pi= (Si= + D) —pj= (Sj+) + pj» (S« + D)

<0 <0

<0. (15)
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We can combine the above inequalities to obtain

K;(5* .
(DJ):pj*(Sj*-FD)-i-pT ot

e€Il(j*,1)
<pj (S4D)+pr Y. tetprty
e€T(j*j)
=pj (S;; + D) tpr Y te—p (Sj; + D) +p;- (SL + D) + prty;
e€TI(5*,5)
D) +pr Y te—pj (S; + D) +pj (S} + D) + prtji
e€Il(i*,5)
= pi- (S + D) +pr Z te + priji
e€II(i*,5)

—pie (St + D) +pi- (L + D) = pj- (8] + D) +p;- (S} + D)
<pi- (Sh+D)+pr Y te

e€TI(i* i)

A
=
—
n
<2
+

_KG(3Y)
=5

(16)

where the first inequality is due to j* being an optimal supplier for j and the second inequality follows from Eq. (15).
Hence, we know that

Ki(5%) < Ki(i), (17)

contradicting our original assumption. Therefore j* has to be an optimal supplier of ¢ which concludes the proof. [J

We note that this optimal supplier i* = j* does not necessarily have to be unique, it is possible that there are
multiple optimal suppliers with identical (minimal) costs.

We briefly summarize the results so far: if we have non-increasing specific production costs and sufficiently ho-
mogeneous demand [Eq. (15)], we can in principle solve the optimization problem of a single agent ¢ by considering
only its local, direct neighborhood. In particular, this condition is fulfilled under the stronger assumption of identical
demand D; = D; = D for all agents. However, we assumed a network in (almost) equilibrium, specifically we
assumed that j is already buying at j*. If this is not the case, it remains to be shown that we can order simultane-
ous updates in such a way that we perform only local updates and still always find the optimal supplier for each agent.

Corollary 3.1. We call the set {i1,12,...} of agents with i* as their optimal (and current) supplier the cluster C (i*)
of i*. In a network in equilibrium the individual clusters are connected: for every node i € C (i*) there is a shortest
(cheapest) path I1(i*,3) = (i*, j1, jo, - .-, Jn,1) from i* to i such that all nodes j1,j2...jn € C (i*).
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B. Local percolation algorithm

Above we showed that we can always find an optimal supplier for an agent ¢, given the other agents are in equilibrium,
by considering its neighbors when we have non-increasing specific production costs and homogeneous demand D; = D
for all agents i € {1,...,N}. We use this result to derive a simplified, local percolation algorithm to solve this
optimization problem in an efficient way. Since individual purchase decisions can lead to larger changes in the
network, we still need to consider updates in a network out of equilibrium. Here, one can easily construct examples
where there exists an agent that cannot find its (currently) optimal supplier locally. In these cases, however, other
agents will also want to update their purchases and at least one agent can find its optimal supplier locally. Below, we
introduce the algorithm and the ordering of the local updates such that we always update agents who can find their
optimal supplier locally. We show that this defines a local percolation rule taking the network from any state into an
equilibrium with only local updates to find optimal suppliers.

Algorithm 2 Local percolation algorithm

1: repeat

2 U<+ .

3 for alli € {1,...,N} do

4: for all j € Neighborhood(i) do

5: Calculate K;(j') and K;(i'), where currently, S;/; = D; and S;/; = D;
6: if Ki(j') < Ki(i") where currently S;;; = D; then

7 U+ UUL{K:()}

8

: end if
9: end for
10: Calculate K;(z)
11: if Kl(l) < Kz(l’) then
12: U<+~ UU{K;(1)}
13: end if

14: end for
15: if U # & then

16: Calculate {4,7"} such that K;(i*) = miny K;(k)
17: Sixi 4= D;

18: Siri <0

19: end if

20: untilf = @

This algorithm is a local version of the general algorithm, where we check for every agent i only the suppliers j’ of
its neighbors j and itself as possible new suppliers. As before we then execute the update with the smallest final cost
and repeat the process until no further update is possible.

Theorem 4. Consider the optimization problem defined above with non-increasing specific production cost py(Sk) and
homogeneous demand D; = D for all agents i € {1,...,N}. Algorithm 2 only executes updates finding the optimal
supplier for an agent and terminates in finite time in an equilibrium state, where no agent can reduce its costs further.

We now proof this theorem with two supporting Lemmas:
Lemma 5. Given algorithm 2, for every K;(k) € U, either k =1i* or there is K;(1) € U with K;(l) < K;(k).
Proof. If k = i* we are done.

Otherwise, assuming that k # ¢*, then also i’ # i* since K;(i*) < K;(k) < K;(¢'), thus 4 is not already buying at
i*. Then, following the path II(i*,7) backwards from 7 to i*, we will find an agent j (possibly j = i* or j = i), where

a local update K;(i*) is possible and the current supplier j' # i*.
We now consider this update K;(i*). First we show that this update is in the update list by contradiction. Assume
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9
K;(j') < K;(i*), then similar to the above proof we find
Ki(j
% = Dy’ S +D) +pTTj’z
Sp j’ S +D) +pT11]j +pTT]1
Sp j’ S )+pTT7] +pTT]1
= K;(j") +prTy;
<K; Z*)+pTTji
< pix (Si= + D) + prTi=; + prl}i
K
2 (19)

D )
leading to the contradiction K;(j") < K;(i*) (¢* is not the optimal supplier). Otherwise we have K;(j') = K;(¢*) and
we can simple repeat the above argument with i* + j’ (at most until we reach j = ¢). This shows that there is an
update K;(i*) on the list U for some optimal supplier ¢* of ¢ and an agent j on the path II(i*,7).

Finally, we find

= pi (SJ; + D) + prTi;
< pi+ (Si» + D) + prTij + prTyi
= pi» (Sl + D) + prTi;
= pir (Sj- + D) + prTi;

K;(i%)
= 19
w) (19)
since Sf = S!{ = S; since none of the two agents are buying at i*. This means that the update K;(i*) with
K;(i*) < K;(i*) < K;(k) is in the update list before K;(k), which concludes the proof. O

It then follows directly that:

Corollary 5.1. The update on the list K;(k) = miny K; (1) is optimal with k = i*.

Lemma 6. The network is in an equilibrium, if and only if U = @.

Proof. We proof this by showing that the network is not in equilibrium, if and only if U # @.
Clearly, if there is a possible update on the list, the network is not in equilibrium.

Otherwise, if the network is not in equilibrium there is an agent ¢ currently buying from i’ # ¢* which is not its
optimal supplier. We then have K;(i*) < K;(i'). If there was no update on the list, then also the update K;(i*) via
i’s neighbor j is not on the list. However, this can only be because j is buying from j’ # i*. But then either

(1) the node j’ would also be an optimal supplier for i (following the same chain of inequalities as above) and the
update K;(j') would be on the list

(2) or j would also want to update to buy at i*.

In the second case we simply repeat the argument above with i < j (at most until ¢ < ¢* itself) until we find a
possible update which must be on the list. This shows that there is always an update on the list when the network
is not in equilibrium and thus concludes the proof. O
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Proof of Theorem 3. By means of Corollary 4.1 we know that the update executed is always an optimum one. Hence
every iteration of the algorithm will find the optimal supplier for an agent. Lemma 5 shows that, when the algorithm
terminates as soon as U is empty, the network is in equilibrium. The proof that the algorithm always terminates in
finite time is identical to the one given above for Algorithm 1. Together these two results proof theorem 3. O

In contrast to O(N?) updates that are checked in the general algorithm, we further reduce the number of possibili-
ties to O(M) local updates, where M is the number of links in the network. In sparse networks, where O(M) = O(N),
networks this significantly reduces the required operations of the algorithm.

Together, we have now shown that for non-increasing specific production cost pg(Sy) and identical demand of all
agents D; = D;j = D, we can ezactly map the interacting individual optimization problems to a local percolation
model when ordering simultaneous updates by their new final cost. These updates will always lead to an equilibrium
state where no agent wants to change suppliers and agents never make sub-optimal updates. Note, however, that due
to the individual optimization the resulting equilibrium is, in general, not the globally optimal state with minimal
total cost ), K; over all agents.

Here, we always use the algorithm in the following way: We start in an equilibrium state, usually the trivial
equilibrium ¢* = ¢ for all ¢ at pr = oo. Then we consider a decrease (or increase) of pr and calculate the next value
p} for which a agent would change its supplier (i.e., when U # @). We then execute the update and iterate until
no further updates occur at the current value of pr. As we have shown that the algorithm always makes correct
updates, it is also possible to study other initial conditions, reactions to changes in the network structure or sudden
large changes of pr.

Finally, in the last part of this section we briefly give small examples illustrating some assumptions in the proofs
above such as homogeneous demand, before describing the actual implementation in the next section.
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11
C. Examples

In order to illustrate the model, the proofs given above and especially the assumptions going into the proofs, we
give two examples of simple systems. For all examples we will use the same cost per unit functions as in the main
manuscript py (Sk) = by — a - S with a = 1.

to=01 _ by=04

1

Un o =
[N T
_=oO Olw

~.
o~
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A

1
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=
3884 Z g ol

1
Soolw
=N O

FIG. S2. Example for non-homogeneous demand at pr = 1. The tables describe the model parameters and the costs if agent
¢ would buy (is buying) at node k. Current suppliers are marked in green, if they are optimal, otherwise they are marked
in blue. Optimal decisions are marked in yellow or red, depending on whether they can/cannot be found by a local update,
respectively. Here, agent 1 could buy optimally from node 3 but cannot find out about it via a local update (marked in red),
since agent 2 is buying from 1. Conversely, agent 2 and 3 are already buying optimally at node 1 and 3, respectively (marked
in green). Therefore the only possible update is 1 buying from 3 but it cannot be found with a local update. This illustrates
the requirement of homogeneous demand for the local percolation algorithm.

7 1 2 3 4 5
D 1 1 1 1 1

b 0 o0 1 o0 -0.1
S 2 0 2 0 1

K;(k)

Nk 1 2 3 4

1 -2 o0 -2 o0 -2.1
2 -2 o -2 o0 -2.1
3 -3 o0 -1 o0 -2.1
4 -3 o0 =1 o0 -2.1
5 -3 o0 -2 o0 -1.1

FIG. S3. Example for homogeneous demand at pr = 0 and the importance of update order. The tables describe the model
parameters and the costs if agent ¢ would buy (is buying) at node k. Current suppliers are marked in green, if they are optimal,
otherwise they are marked in blue. Optimal decisions are marked in yellow or red, depending on whether they can/cannot
be found by a local update, respectively. Here, all agents want to update their current purchases (marked in blue), but only
agent 4 can find its optimal supplier locally through its neighbor (marked in yellow). Of all possible local updates, this update
has the smallest K;(k) and would be executed first, allowing other agents to follow and find their optimal supplier locally. As
shown above, with homogeneous demand if the network is not in equilibrium we will always find an optimal local update by
sorting for the smallest K;(k).
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II. SIMULATION

With the algorithm introduced above we can solve the the individual optimization problems with only local updates
for a given value of pr when the specific production costs are non-increasing and the demand of all agents is identical.
We now discuss how we exactly track the evolution of the system for the whole range of decreasing transaction costs
pr (increasing transaction costs are handled analogously). First, we note that it is not necessary to calculate the
transaction costs per unit Tj; for all shortest (cheapest) paths, since these paths will be found automatically during
the optimization.

We track for each agent 4 its current supplier 7/ and the current transaction costs per unit Tj/;, starting from the
trivial initial condition ¢ = ¢ for all agents at pr = oo (T;; = 0). For all (directed) links we then explicitly calculate
the values p where the link would be active, i.e., when ¢ starts buying via j from j’, where j' is the supplier of ’s
neighbor j. As in the algorithm above, we also explicitly consider returning to internal production as a special case.
Comparing the cost of the current supplier i’ and the new supplier j':

Ki(i') = D -pi [S) + D] + D - pr - T, (20)
Ki(j' via j) = D pjs [Sj + D] + D pr - (Tjrj + t5) (21)
we find that ¢ would prefer to buy from j’ when
Ki(j' via j) < K@)
pr - (tji + Tjrj = Tys) < pir [S} + D] = pjr [S5 + D] . (22)

AT Ap

With this inequality we can easily calculate p%f We create the sorted list U = {(p];, K;(5), eji> e }7 ordering all
links in descending order in p’T‘ . If multiple links have the same pf}i, e.g., for simultaneous updates during cascades,
we use the new final costs K;(j’) as a secondary criterion for ordering the updates (increasing in K;(j')), as discussed
above. We then have to distinguish three different cases to determine p7':

e AT >0
in this case we simply have the condition pr < %. We thus set p? = % if the condition is not yet fulfilled
and pJ’ = pr otherwise. To calculate K;(j’) for the secondary ordering we use the transaction costs p7:, as this
is the value when the ordering will be relevant. If no other changes occur and this link is not updated again,
this secondary ordering is then already accurate when pr decreases far enough (and will be updated in between
otherwise).

e AT =0
in this case the switch does not depend on the transaction costs at all but the condition is Ap > 0. If this
condition is fulfilled, we set pXr = pr, such that the switch will be applied immediately. As above, the secondary

ordering is given by the final cost. Otherwise we set p%f = —1 and the switch is never executed.

e AT <0
in this case the condition becomes pr > —‘ﬁ—gl (note the change in the sign of the inequality). In case the

condition is true, the change is applied instantly and we set p%f = pr, otherwise we set p]; = —1. This case will
mostly be relevant when considering increasing transaction cost.

We then use this list U to iteratively execute single updates. The link with the largest pj; (and smallest final
total cost K;(j'), if applicable) will become active first, meaning ¢ will start buying via j from j’s supplier j'. The
algorithm then follows an event-based methodology:

Starting from pr = oo and only internal production i* = ¢ for all nodes ¢ € {1,..., N}, we first decrease the
value of pr to the value of the next update pr < maxy p!’. Then we update i’ + j' and Ty; <+ Tjrj + tji.
We also adjust the production of the involved suppliers i and j' accordingly. Due to the scale effects in production
these changes will affect all p& of all links adjacent to agents currently buying from 4’ or 5/, for which we recalculate p%'.

We then repeat the updating process working through all links with p]TZ = pr and keep updating the purchases
until no further changes occur and the next entry in the update list occurs for pJ: < pr. Finally, we repeat this whole
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process by further decreasing pr. In contrast to the algorithm for a single update step given above, we will never
have Y = @. Instead, we terminate once all pJ: < 0 and the transaction cost cannot be reduced further.

The final state of the network will then be given at pr = 0, where generally all agents have the same supplier
and form one large cluster. Note that this updating scheme models a very slow decrease of the transaction costs. In
principle it is also possible to include sudden jumps in py. Due to the individual optimization, this generally leads to
a different evolution of the clusters (see Sec. VI for examples).

We then reverse the process and consider increasing transaction cost in the same way by adjusting the conditions
for pJ' and reversing the ordering (executing updates with the smallest pJ first). In this case we terminate when
pl = oo for all possible updates. Overall, this allows us to exactly track the evolution of all clusters in the network
for both increasing as well as decreasing transaction costs.
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III. NETWORK MODELS
A. Spatially embedded random networks

We create a spatially embedded random network with NV nodes by distributing NV points uniformly at random in
the unit square. The links of the network are then created using the Delaunay-triangulation of these points. Each
link e is assigned a transaction cost t. equal to the euclidean distance between its two endpoints. We further assume
an identical demand D; = 1/N for all nodes.

In order to reasonably study different system sizes (see Supplementary Information Sec. III for a detailed discussion)
we define the parameters b; of the cost functions as values of a random function on the unit square. The function
is generated by spectral synthesis of 10242 Fourier-modes with Gaussian distributed amplitudes with mean 0 and
expected power spectrum (w2 + w?) “?[1]. This function is then interpolated at the positions of the nodes and finally
scaled such that b; € [0,1] with min;(b;) = 0 and max;(b;) = 1.

While this technically allows negative specific production costs when including the scale effects, a constant shift
b, — by, + const. for all nodes k € {1,..., N} does not change the solution of the minimization problem. Therefore,
for simplicity we only consider normalized by € [0, 1] in all examples.

B. Small world networks

To illustrate the effects of the underlying network topology we consider Watts-Strogatz small-world networks [2].
This model allows generating networks that interpolate between regular and random topologies with a large or small
network diameter, respectively: Start from a ring of N nodes where each node is connected to its k/2 nearest neighbors
on each side. Each link in the network is then rewired with probability gew, i-€., disconnected on one end and connected
to another node in the network, chosen uniformly at random. This procedure interpolates between regular networks
with a large diameter for ¢eww — 0 and completely random networks with a small diameter for gy — 1.

For the parameters of our model we assume identical transaction costs for all links t. = 1/N as well as identical
demand D; = 1/N for all nodes. The cost function parameters are taken as ¢ = 1 and uniformly randomly chosen
b; € [0,1] (see also Supplementary Information Sec. IV).
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IV. EXPANSION VS. FINE-GRAINING

Usually, in percolation models the thermodynamic limit of large systems N — oo is relevant for studying the
transition to global connectedness. We will now motivate our choice to consider an increased system size N as a
fine-graining of the system.

Apart from the obvious inconsistencies with the models motivation arising for infinitely expanding systems, e.g., an
infinite system size would also mean infinite demand, other problems arise due to the interplay between scale effects
and transaction costs. To illustrate this, we assume finite, bounded intervals for all parameters. Specifically we take
the specific production cost to be pi(S) = by —aS(k) with by, € [bmin, bmax] and similarly, D; = D and ¢;; € [tmin, tmax]
with ¢y, > 0. For simplicity, we consider the model without scale effects in the limiting case a = 0.

For a given value of the transaction cost pr we will now derive a (very loose) upper bound for the size of a cluster.
Consider the longest shortest path Ilj; max in one cluster between agent ¢ and its supplier ¢*. The transaction cost
along those paths cannot be higher than the difference between the specific production costs of the two nodes:

by« + prTi-; < b;
= pTTi*i < bz - bz* < bmax - bmin ’

which means that there are at most dy,ax links involved in the path, where

Ti*i bmax - bmin
< -max — Tmin (23)

dmax < —
pr tmin

" tmin

If the underlying network has a maximum degree ky,.y, we can then find an upper bound for number of nodes in the
largest cluster as

dmax

Cl (pT) <1+ kmax + klleaX +oee kgi];;x = Z kgqax < oo (24)
d=0

for any pr > 0. Thus for a given range of parameters as assumed above in any network with bounded degrees we find
that in the limit of N — oo the size of the largest cluster will be finite for any pr > 0. Thus the fraction of nodes in
the largest cluster will follow

0 for pr>0

25
1 for ppr=0, (25)

ol/N_{

describing a trivial transition at pr = 0. More importantly, this even holds in cases where, for example, kpax ~ In(V),
such as simple random graphs. Similarly, for a > 0 the infinite demand will (in most cases) cause an infinite hysteresis
loop for the system in the limit N — oo.

While these are interesting results, the more reasonable assumption of fine-graining the system maintains the balance
between scale effects and transaction cost such that the transitions and all related phenomena can be observed in a
finite, non-trivial parameter interval and results for different system sizes can be compared more easily. Of course
this requires the correct scaling of transaction costs, demand and network structure when increasing the system size.
For two-dimensional, spatially embedded networks, for example, this is simple. However, for networks without an
underlying geometry this can be more difficult and often arbitrary, as we discuss below for small world networks.
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V. SMALL WORLD NETWORKS

In the main manuscript we studied the model on an underlying small world network [3]: Start from a ring of N
nodes where each node is connected to its k/2 nearest neighbors in each direction. Each link in the network is then
rewired with probability ¢ew, i.e., disconnected on one end and connected to another node in the network chosen
uniformly at random.

In the main manuscript we showed for systems of size N = 10* how the topology changes the abruptness of the
transition and the number of large clusters emerging. For completeness, Fig. S4 shows the (inverse) size of the largest
gap for different scale effects a for the same system parameters (N = 10%, t. = 1/N, D; = 1/N, b; uniformly random
in [0,1]). A network with large diameter (grew — 0) allows different clusters to emerge in remote parts of the network
since the distances are large. Hence the jumps of the size of the largest cluster, denoted by AC1, are typically smaller
(1 — (maxAC}/N) is large). However, very strong scale effects (a > 1) can compensate for the large distances. Small
fluctuations are amplified and one cluster will grow in a single cascade even in the network with large diameter. In
contrast, for small diameters (ge,y = 0.01) the jump AC; grows already for moderate values of a.
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FIG. S4. Large scale effects lead to large cascades, independent of network topology. The inverse size of the largest gap in the
size of the largest cluster (1 - largest gap) depending on the size of the scale effects a. For very small scale effects the cascades
are small (the inverse is large), independent of the network topology a single agent does not have a large enough effect on the
production costs. As the scale effects become larger, the average size of the largest cascade increases quickly in small world
networks; due to the shortcuts a large cluster can affect all parts of the network. For regular networks with a large diameter
(grew — 0) cascades stay small as transaction costs are still comparatively large. Unsurprisingly, for very large scale effects a
single agent will change the production cost enough that the largest cluster grows discontinuously in a single cascade, even if
the distances in the network are large.

Additionally, we want to highlight some difficulties with this network structure in our model. As discussed above,
to avoid trivial behavior in the limit N — 0o, we need to scale all parameters, such that an increased system size
corresponds to a fine graining of the system. However, in this case choosing a scaling of all variables to effectively
fine-grain the system with increasing system size is not possible across different rewiring probabilities: the required
scaling for a regular network will not be appropriate for a random network.

Similarly, the scaling of k and the choice of the b; over different system sizes is not uniquely defined. The behavior
of the model in the limit of large systems N — oo thus depends on the choice of the other parameters of the system.
For example, if we choose b; uniformly at random without correlations between neighboring nodes and keep the cost
per link constant, the limiting behavior will be a single cascade for very small py where a microscopic cluster grows
discontinuously to span the whole network (similar to the discussion above).
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VI. ANALYTICALLY SOLVABLE EXAMPLE

In addition to the complete graph discussed in the main manuscript we present another analytically solvable
example. We consider a square lattice with a well defined single source and the same affine linear production costs
per unit as in the main manuscript. The qualitative results are similar to those obtained for the complete graph,
however, the actual evolution is more similar to the results obtained for the random spatial network.

We place N = L? nodes as a square grid in the unit square. We index the nodes as node (z,y) at position
(x/L,y/L), z,y € {1,2,...,L}. Asin all other cases we have a homogeneous demand distribution D, ,) = 1/N. The
production cost parameter b, ,) at each node is given as b, ) = 1 for all nodes, except for the node in the middle
of the grid, where b(|1/2), /2)) = O (see Fig. S5). Increasing the number of nodes in this system is equivalent to a
fine-graining of the unit square.
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FIG. S5. Continuum illustration of the single source square lattice model. We have b,y = 1 for all points except for the center
point in the lattice at (1/2,1/2). The distance between two points Ty, y,:e0,y, 1S given by the l-norm, corresponding to the
shortest path in the square lattice. This continuum form of the model can easily be solved analytically while the corresponding
lattice model can be simulated efficiently.

Due to the symmetry and the single source only one cluster will emerge and we can easily calculate its size. For
simplicity we consider the continuous version of the problem illustrated in Fig. S5, i.e., the limit N — co. Due to
the symmetry of the problem, all agents at the same distance dist [(z,y); (1/2,1/2)] = |z — 1/2| + |y — 1/2] to the
central supplier will behave identically. Note that distances are given as the 1-norm due to the underlying square grid
network structure. Thus, we can derive a self-consistency equation, describing the size of the cluster in terms of the
maximum distance d of an agent still willing to buy from the central supplier. For d < 1/2 the shape of a cluster is a
diamond (due to the 1-norm), but for d > 1/2 the corners are cut off, as we only consider points in the unit square.
For given scale effects a and transaction costs pr we determine d as the value where the cost of internal production
is equal to the cost of buying from the central supplier:

—a(2d®) +prd=1 d<1/2 (26)
—a [2d2—4(d—1/2)2] Yprd=1  d>1/2, (27)

where the first term describes the scale effects due to the size of the cluster and the second term is the transaction cost.

Solving these equations for d and keeping in mind that 0 < d(pr) < 1 yields
pry/pi-8a for d<1/2

_ 4a
R =V b

This equation has no, one or two possible solutions for d for each pr, however, each expression is valid only for some
values of d. Therefore, as long as the bifurcation in the d < 1/2 (lower branch) solution happens for d > 1/2, only
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one valid solution exists. We calculate the position of the bifurcation as p?it’l = v/8a and the corresponding distance

derig1 = 1/ v2a. Thus, as long as a < 2 there is only one continuous solution for d < 1 /2. We find a similar result
for the solution of the d > 1/2 branch. Together, for a < 2 the two solutions join continuously and describe a single,
continuous solution for d(pr). As the size of the largest cluster is a continuous function of d, these results apply
equally to C;. Together, we find that the evolution of the largest cluster is continuous for a < 2, the slope of Cy
becomes infinite for a = 2 [see Fig. S6(a)-(c)].

For a > 2, however, the first solution for d < 1/2 disappears at pgflt‘l = +/8a with derit,1 = 1/\/% < 1/2. There

is no solution for smaller values of ppr < pgfit"l and two valid solutions for larger values. Similarly, the solution for

the d > 1/2 branch does not exist for pr > pf}“t"2 = 4a — y/8a(a — 1) with dei,2 > 1/2, but has two valid solutions
for smaller values of pr. The two solutions are still joined continuously, but now by an unstable branch: a slightly
smaller cluster will rapidly shrink to a small stable size, while a slightly larger cluster will grow to the larger stable
size. The transition for decreasing/increasing transaction costs becomes discontinuous and a hysteresis loop emerges
in between [see Fig. S6(d)].

We illustrate these analytical results in Fig. S6 together with simulations for N = 25600 for different values of
a, showing good agreement with our analytical calculations. Contrary to the complete graph example in the main
manuscript, the cluster grows by a finite amount already before the discontinuous transition takes place (similarly
for increasing transaction costs). This is explained by the fact that close to the source in the middle of the grid, the
difference in production cost per unit is constant while the transaction costs disappear for agents that are arbitrarily
close to the center. Since the growth of the cluster is driven by these differences, the cluster grows as soon as pr < oo
whereas transaction costs (per link) are constant in the complete graph model and thus the cluster can only grow
once pr decreases below a fixed, finite value.
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FIG. S6. Simulation of the single source square lattice model for L = 160 (N = 25600) and different a. (a),(b) The transition
is continuous for small a, becoming steeper as a increases. (c) At a = 2 the slope becomes infinite. (d) For larger a the
transition becomes discontinuous with a hysteresis loop. In the continuum self-consistency equation this structure emerges
from a bifurcation of the possible solutions (dashed green lines) with an unstable branch in the middle (dotted line).
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VII. WORLD TRANSPORT NETWORK

In the following we describe the data used to create the world transport network. The nodes of the network describe
individual countries or smaller regions of large countries (China, Russia, USA, Canada). The location of each node
is given as the centroid of the respective country or the largest city in the corresponding region. For each of these
countries we collected the total gross domestic product (GDP) and the total population as additional parameters.
Further, we assign a harbor to each country with access to the sea, using the largest harbor in the country/region. The
full world map with the location of all nodes is shown in Fig. S7. See the Supplementary Data for all data and sources.

Transport links exist via land between countries sharing a border. The transaction cost of these links is simply given
as the geodesic distance between the connected nodes. Transport links via sea exist between all countries/regions with
a harbor. Here, the transaction cost is given as the sum of the distance of the corresponding node to the respective
harbor for both countries and the length of the actual sea route, t.,, = tharbor t?arbor + Tstsea, where t?“bor is the
distance of the node corresponding to country 4 to its largest harbor. These sea routes were determined as shortest
paths across a triangulation of the worlds oceans, explicitly including important routes and channels (for example the
Panama and Suez channel). In order to change the preferred mode of transport we introduce the factor Ts describing
the relative cost of sea travel compared to land travel. To determine the transaction cost for sea links we scale the
length of the sea route with this factor, such that Tg < 1 effectively means that sea travel is preferred, while for
Ts > 1 land travel is comparatively cheaper.

To determine the parameters for our model we used the population and GDP of each country: b; = b = const.,
a=1and D; ~ 1.15P; + G;, where P; and G; are the population and GDP of the corresponding region relative to the
world total. The demand is then scaled such that, as in the other examples, the total demand is ), D; = 1. Even
though the demand is not identical for all nodes, we use the local percolation algorithm to solve the optimization
problem. Differences to the exact solution are negligible.

FIG. S7. Location of all nodes for the world transport network. Possible transport links (not shown) exist between countries
sharing a border (via land) and between all countries with access to a harbor (via sea).
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In the simulations shown in the main manuscript we defined the demand of each agent as D; ~ 1.15P(3) + G (i),
where P(i) and G(¢) are the population and GDP of the region relative to the world total. We then applied the local
percolation algorithm (algorithm 2) to solve the optimization problem, even though the demand is not homogeneous
(as required in the proof given above). As discussed above, this means the algorithm does not necessarily make an
optimal update each step and the solution using the exact algorithm may be different. For comparison, we show the
exact solution (algorithm 1) in Fig. S8. The qualitative and quantitative behavior is almost identical to the results
shown in the main manuscript.

Note, that this similarity is not a-priori obvious. Especially, differences will be larger in networks with a more
heterogeneous demand distribution. Additionally, the structure of the network will affect the results: in this case, the
differences are smaller when transport via sea is cheap. The shortest paths are the direct connections between nodes
via sea such that the local percolation algorithm checks almost all nodes regardless. Results are more likely to differ
for very sparse networks with a large diameter.

We also illustrate here the impact of large changes in the transaction costs. In the main manuscript and all previous
discussions we assumed a slow, gradual decrease/increase of the transaction cost, but the algorithms also allow to
simulate arbitrary changes. In Fig. S9 we compare an instant decrease from very large transaction costs to a given
value with the results obtained for a gradual decrease. Different suppliers emerge in both cases. More importantly, in
the case of instantaneous reduction of transaction cost, the center of the emerging cluster changes, depending on the
final value of the transaction costs, in a different way compared to the results for the gradual decrease. This further
illustrates the impact of history on the evolution of the model.
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FIG. S8. Exact solution of the optimization model in a global transportation network. (a) Evolution of the connected
components of individual suppliers for large sea travel costs (I's = 5). (b)-(d) Evolution of the individual clusters for different
values of the transaction cost parameter pr, land routes are preferred to transaction via sea. (e) Evolution of the connected
components of individual suppliers for small sea travel costs (Ts = 0.2). (f),(g) State of the network immediately before and
after the cascade. The results are almost identical to those obtained with the local percolation algorithm (see main manuscript).
The only difference is a small shift of pr for some of the transitions.

[1] D. Saupe, in The science of fractal images (Springer, New York, 1988) pp. 71-136.
[2] D. J. Watts and S. H. Strogatz, Nature, 393, 440 (1998).
[3] D. Watts and S. Strogatz, Nature, 393, 440 (1998).
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FIG. S9. Comparison of instantaneous and gradual decrease of the transaction cost. (a)-(c) Resulting network, when the
transaction cost pr are reduced instantaneously to a given value (parameters are identical to other simulations, large sea travel
costs Ts = 5). (d)-(f) Resulting network, when the transaction cost pr are reduced gradually. Depending on the final value of
the transaction cost, different nodes emerge as suppliers of large clusters. Interestingly, if transaction costs are decreased far
enough, the resulting network differs from the one obtained by gradual reduction of pr [panels (d-f)|. If only a few changes
occur in the network [large transaction costs, panels (c) and (f)], there is no difference in the history and the resulting networks
are identical. Otherwise, a gradual reduction leads to different updates before the final value of pr is obtained and consequently
to generally different states. This further illustrates the multitude of stable states for any given value of the transaction costs.









Chapter 8
Discussion

In this thesis we investigate collective dynamical and topological phenomena in net-
worked systems in different contexts. We analyze the impact of economic considera-
tions when modelling these systems and designing control schemes for these systems.
In particular, we focus on efficient control schemes for dynamical processes, and the
effect of costs and optimization on network formation. We derive and analyze efficient
control schemes to synchronize coupled chaotic systems and to control random net-
work percolation and study their impact on the dynamics. Additionally, we consider
costs as a driving force of network formation, studying how local optimization changes
the network formation process compared to stochastic percolation models.

Control of networked systems

One major challenge, beyond understanding network dynamical processes and the
interplay between topology and dynamics, is the control of these processes, either
to prevent failures or to guide the system to a desired state [114, 115, [125] [144].
Such interventions are difficult and costly in many systems, for example in biological
or ecological contexts [I99, 201], and there is great interest in understanding how
to efficiently control network dynamical systems [55] [74, 118, 190} 198]. One major
application of control in networked systems is the synchronizability of coupled oscilla-
tors, depending on both the topology as well as the actual dynamics and the coupling
between the units. While a number of different mechanisms have been suggested
to ensure synchronization, such as adaptively or periodically changing the dynamics
of the coupling [39, 40, 97, 108, 202] or optimizing the topology of the interaction
network itself [62), 131, 132} I71], most of the methods require strong access to the
individual units as well as ongoing, potentially strong interactions.

In chapters [3| and [4] we introduce and analyze transient uncoupling, a new and
efficient control mechanism of the interactions in networked systems. Transient un-
coupling modifies the coupling of the systems with a state-dependent binary factor,
controlling whether the coupling is active or inactive. We show that this not only
enhances synchronizability of coupled chaotic oscillators but may even enable and
guarantee it, independent of the topology of the interaction network. By limiting
the interactions to states where coupling is strongly beneficial, this state-dependent
uncoupling guarantees stable synchronization while reducing the overall interaction
between the units to as little as coupling only 5% of the time. This is especially
relevant when interaction and communication between the individual units is costly.
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Additionally, the proposed coupling scheme requires minimal accessibility to the sys-
tem, not changing the coupling dynamics or permanently modifying the structure of
the interaction network, in contrast to many previously proposed control schemes. In-
stead, we need to be able to only turn interactions on or off, depending on the systems
state. Furthermore, we illustrate the robustness of the method, showing that it can
be effective even when controlling only a fraction of the units or observing the units’
state only at discrete times. The simplicity of the method also allows its application
in combination with other control schemes to efficiently control the dynamics of large
systems with arbitrary interaction topology.

In contrast to structural control [199, 201], transient uncoupling requires no knowl-
edge of the interaction network, providing a complementary approach. Since we take
advantage of the internal dynamics, however, we have to adapt the state dependence
of the uncoupling to the dynamics of the individual units. Even with a known model,
it is not trivial to predict the effect of uncoupling in a given state. While it is possible
to make an educated guess about an appropriate uncoupling region, as demonstrated
in [I82], in the manuscripts in chapters [3|and 4} we have chosen the state-dependence
of the coupling by (extensive) trial-and-error. A more efficient way to apply transient
uncoupling would combine the (un)coupling scheme with an optimization approach
in order to automatically learn the state-dependence of the coupling. A successful
optimization approach might effectively eliminate the need for knowledge of the dy-
namics. This could potentially lead to a coupling control scheme that guarantees
synchronizability of arbitrary coupled systems, without knowledge of the internal dy-
namics nor of the interaction network structure [199) 201].

Similarly, transient uncoupling would become even more effective if it becomes
possible to analytically predict efficient or optimal (un)coupling states depending
on the units’ dynamics. Such analysis would relate the local divergence of trajec-
tories and state-dependent observability to the controllability of networked systems
[11} 135, 136]. However, this is not a local problem. The effectiveness of (un)coupling
the system in one state may be strongly affected by whether the system is coupled
in other states. Therefore, this analysis would require more than instantaneous mea-
sures of stability like local Lyapunov exponents [I82] to also include these non-local
effects. Finally, one may consider transient uncoupling to optimize other measures
relevant to synchronization or to the stability of networked systems. For example, a
similar approach might be able to efficiently contain the spreading of perturbations
in networked systems.

Synchronization

As one of the most common collective dynamic phenomena, synchronization is studied
in a broad range of systems [12], [142]. Especially the prototypical Kuramoto-model
and its variants are still widely studied and find new and relevant applications, for ex-
ample in modeling the dynamics of power grids [I152] [I57, [194] 195]. Such applications
require a way to accurately measure the phase coherence in these systems, for example
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to quantify and compare the effects of control strategies. Previous works have already
introduced extensions of the original Kuramoto order parameter to networks in order
to analyze the formation of synchronized clusters in specific network topologies or to
allow more detailed mean field calculations [77), 911 [148], 149]. However, none of these
order parameters covers the whole dynamical range from incoherent oscillations to
complete synchrony.

In chapter [5| we introduce a new, universal order parameter for such phase oscil-
lators that accurately quantifies the coherence of the oscillators with respect to the
interaction network through all stages of phase locking and synchrony. In particular,
the new order parameter is directly related to the stability of the phase locked state,
enabling analytical calculations as exemplified in the manuscript. We show that the
order parameter can also be interpreted for other related systems, such as the second
order Kuramoto model describing the dynamics of power grids. The direct correspon-
dence of the stable operating state of power grids to the fully phase locked state of
the standard Kuramoto model even allows us to transfer some of the analytic results.
Importantly, the order parameter also quantifies the phase coherence accurately in
small networks. This is especially relevant when considering possible applications, for
example to power grids, where real networks are necessarily finite or only a small part
of the whole network may be of interest.

Beyond measuring the global phase coherence in networks, the order parameter
may also be used to study local phase coherence, for example to identify network mo-
tifs or specific regions of a network that are susceptible to desynchronization. Such
a local measure may help to better identify links in power grids that are critical for
the stability of the phase locked state [194] [195]. In general, a universal order param-
eter for Kuramoto-like models allows efficient and unified prediction of transitions in
different models [12] 142], a necessary preliminary step to design control schemes for
these systems and to quantify and compare their efficiency.

Control of percolation

Efficient control of networks is also relevant from a topological point of view, for exam-
ple to prevent the spreading of diseases, to facilitate marketing in social networks, or to
prevent or delay the failure of networked financial systems. Based on this motivation,
a number of recent works have studied the identification of optimal spreaders and,
related to that, the optimal immunization of networks [8] 46} [51), TOT, 123 137, [188].
There is great interest in understanding how to delay or, if possible, prevent fail-
ure of complex networks due to this general relevance for many social and economic
systems [75}, [83] [86, 175]. However, even before, research in percolation theory con-
sidered the impact of control and interventions to delay and modify the percolation
transition, leading to the well-known “explosive” percolation model by Achlioptas et
al. [3, 147, [147]. This triggered a broad investigation into the possibility of and the
requirements for a discontinuous percolation transition [42] [43] [63] 156} [163]. These
studies showed, for example, that local information may not be sufficient to control a
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stochastic link addition process [150], [151]. Many models were studied that extended
the idea of control and indeed result in discontinuous transitions [10} [24], 160, [161].
However, none of these models explicitly include the cost of interventions and (implic-
itly) assume unlimited resources to enact control decisions, an unrealistic condition
in any real world system.

In chapter [6] we derive and study an efficient control scheme to delay random net-
work percolation under the constraint of limited resources. By targeting interventions
to prevent only those links that would create clusters that can be delayed significantly,
we are able to delay the percolation transition with very few interventions. We ex-
tend the proposed control scheme to include limited observability, where control is
only applied after some time has already passed, for example because the impending
transition might not be apparent at first. We show with a detailed finite size analysis
that the percolation transition remains smooth and in the same universality class as
random percolation, characterized by a supercritical scaling of the relative size of the
largest cluster C1 /N ~ (p —p.)? with 8 = 1. This is in stark contrast to the known
abrupt transition with 0 < 8 < 1 of explosive percolation. Furthermore, we establish
an analytical approximation to estimate optimal control parameters and reveal that
optimal control, leading to maximal delay of the transition, also causes a discontin-
uous percolation transition. This transition becomes effectively uncontrollable since
a single link can cause a macroscopic change in the size of the largest cluster. In
summary, we reveal how optimal control to delay the transition has the unintended
consequence to make the system uncontrollable once the transition happens [167].

While the presented framework is efficient, it is not strictly optimal. In particular,
comparison to the Bohman-Fireze-Wormald model suggests that a linearly increasing
intervention rate instead of a constant one might yield even better results [25] [44].
Similarly, while we discussed different cost functions in the framework of our control
scheme, optimal control strategies for different cost functions likely differ qualitatively
as well. Finding a way to directly apply optimal control theory to understand the
impact of the cost function would therefore be an interesting and relevant next step
[85, [86]. Another relevant extension of the model would focus on the information
and observability of the system. As presented, the model assumes perfect informa-
tion of the current cluster size distribution and observation of all links added to the
network. While we considered limited observability affecting the start of the control,
other constraints will likely have a bigger impact on the control. Ideally, it would
be possible to estimate or predict the transition point during the percolation process
[45] 162] to adjust the control and budget usage adaptively, independent of the und-
derlying link addition process. Finally, the presented framework might be adapted or
extended to also allow control of other network formation or percolation models, for
example percolation on an underlying scale-free or small world network. In particular,
in such networks one might consider control optimizing different objectives, such as
path lengths or searchability, instead of simply the size of the largest cluster and the
possible (unintended) consequences resulting from optimal control in these settings
51, 123].
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Network formation

Many network formation models are based on stochastic link addition, such as the
percolation models discussed above [3], [42], 43 [63], 156, 163]. However, many real
world networks are not formed by (entirely) random processes but are designed or
optimized for a certain function. Examples include technical and transport networks,
like road or airline connections [76] 189], as well as distribution networks in biolog-
ical systems, like leaf venation networks [99, [I53]. This optimization is often done
on the scale of the entire network governed by a single, global objective function.
In contrast, many networks are formed by individual decisions of the nodes of the
network, such as people in social networks. Some game theoretic models exist to de-
scribe network formation in this way based on individual optimization [94, 95]. Yet,
due to the complexity of the optimization problems, most models that describe net-
work formation in such a way are difficult to analyze and often provide only limited
general insight. At the same time, while simpler stochastic models may be capable
of recreating observed structural properties [14] 191] and perhaps hint at underlying
mechanisms, they may be missing important interactions and effects. Establishing
a connection between these two types of network formation models would enable an
efficient analysis of the effects of individual decisions and economic considerations on
network formation. This would be one important step to developing a general theory
describing the underlying mechanisms. However, such a connection has not yet been
established.

In chapter [7] we introduce and analyze a new model of network formation driven by
global optimization by the individual nodes in the network. Based on a simple, eco-
nomically motivated supply problem, the network structure is determined by these
interacting individual optimization problems. We derive an exact mapping of our
model to a local percolation rule. This mapping makes it possible to exactly solve
the optimization problem, even for large networks, and study the formation of a large
component as interaction costs between the nodes decrease. We reveal the existence
of a parameter dependent continuous or discontinuous transition as well as hysteresis,
in contrast to standard percolation transitions. Additionally, we analyze the impact
of model parameters as well as of the structure of the underlying network of potential
transport links. We analytically show how the transition is related to the collective
interactions in the model, similar to dynamics observed in other models such as co-
infection models and cascading failures [30} 41, 112]. This may explain the existence
of discontinuous transitions and rare events beyond power law fluctuations expected
from continuous transitions [112] 113} [176].

The proposed model may provide a way to understand aspects of network forma-
tion processes introduced by individual optimization and economic considerations as
driving forces. Future work will show in detail how the formation of global connec-
tivity depends on the underlying structure of potential transport links, for example
analyzing the correlation of the cluster growth with the centrality or other connectiv-
ity measures. Some extensions of the presented model are immediately possible, such
as multiple goods resulting in multiple parallel (uncoupled) supply problems. Many
other extensions, however, would not retain the mapping to a local percolation model.
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Such extensions include, for example, variable interaction costs or more general cost
functions. Here, more detailed investigations are required to determine if simplifica-
tions in other aspects are possible to maintain the relation to local percolation models
and keep the system solvable for large networks.

A different view on the model is possible from the perspective of a stochastic sys-
tem. Instead of strict optimization, we can interpret the cost minimization as energy
minimization, potentially resulting in a model similar to exponential random network
models [I28]. In general, the model opens a way to study the impact of economic
forces and individual optimization on the formation of large scale networks as well
as providing an efficient basic model to study control of network formation in such a
setting.

Summary

Networked systems are steadily increasing in complexity with new and often un-
predicted phenomena and interactions emerging between the different parts. This
requires the development of new, more detailed theories to describe, understand, and
predict these interactions. This is particularly relevant for ubiquitous constraints such
as limited resources, information, or observability that affect almost any system. It is
important to develop a general understanding of how these constraints affect network
dynamical systems and of the underlying mechanisms. This will not only help to
better predict the dynamics of such systems but also to design more efficient control
methods.

Overall, we hope that this thesis will help to develop such a fundamental under-
standing of the effects of economic considerations on the formation and dynamics of
networked systems.
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