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Abstract 

After the successful eradication of smallpox, mass vaccination stopped and the herd immunity 

against orthopoxvirus (OPXV) infections has been waning. In the light of bioterrorism, the 

interest in the development of antiviral drugs and safer vaccines against OPXVs increases. 

Therefore, a non-human primate model for OPXVs was established. Common CM (CM, 

Callithrix jacchus) are intranasally infected with a cowpox virus that is lethal for this non-

human primate species and designated calpox virus. 

A pathogenesis study was performed to determine the portal of viral entry and to analyze the 

early dissemination of the virus and the pathological sequelae. Groups of three animals were 

infected with either 3.5x105 plaque forming units (pfu) calpox virus and euthanized on day 3, 

or with 8.3x103 pfu and euthanized on 5, 7, 10 and 12 days post infection (dpi). Blood and 

various organs were analyzed for infectious virus using the endpoint dilution assay and for 

viral DNA by real-time PCR. To detect the calpox virus infection in immune cells, PBMCs 

and buffy coat were analyzed by flow cytometry for calpox virus. Two vaccination studies 

aimed at identifying immune correlates of protection. Two attenuated smallpox vaccines, i.e. 

modified VACV Tian Tan (MVTT) and modified VACV Ankara (MVA) were tested for their 

efficacy after a 4- and 10-week waiting period. Humoral and cellular responses were analysed 

during immunization and after challenge, as well as viral DNA copy numbers and replicating 

virus after challenge.  

Occurrance of viremia (DNA copies in blood) was dose dependent and already observed at 3 

dpi (with the high inoculation dose) and after inoculation with the low viral dose at 7 dpi. The 

data suggests that the calpox virus initially replicated in the upper respiratory tract followed 

by systemic spread. In the prefinal phase, all organs became infected. Calpox antigen was de-

tected in immune cells at different time points. With respect to the vaccine studies, overall, 67 

% protection was observed following immunization with MVTT and 13 % after MVA vac-

cination independently of the waiting period. All vaccine failures became virus positive. Vi-

rus-specific T-cell proliferation was observed in some animals vaccinated with MVTT. How-

ever, binding and neutralizing antibodies as well as the proliferative activity were not associ-

ated with the protection of the CM from calpox virus challenge. Peptide microarrays revealed 

antibodies against linear B cell epitope regions in different proteins (A33, B5 and L1) that 

were present almost exclusively in protected animals post challenge. Phenotyping of innate 

and adaptive immune cells by flow cytometric staining revealed no significant differences 
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between vaccine groups in T and B cell numbers as well as in their expression of activation 

markers. 

In conclusion, intranasal infection of CM with calpox virus led to a first local viral replication 

in nasal tissue. From there, the virus spread to various organs and in the prefinal phase all or-

gans became infected. Highest protection was mediated by MVTT which therefore is superior 

to MVA in this model. So far, no obvious correlates of immune protection were identified. 

Keywords: Calpox virus, pathogenesis, non-human primate model, calpox virus/marmoset model, smallpox vaccine, MVTT, MVA, New 

World 
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1 INTRODUCTION 

1.1 Historical overview of orthopoxvirus infection 

1.1.1 The smallpox virus 

Origin of smallpox disease 

Smallpox is caused by the variola virus (VARV). The death rate of this devastating disease 

was estimated at 50 % or more in young or over 40-years olds (Hanna and Baxby, 2002). Va-

riola major and variola minor are the two known forms of the disease. Case-fatality rates be-

tween 5 % and 40 % were reported for variola major (Henderson and Moss, 1999). Variola 

minor occurs less often and is less severe than variola major with case-fatality rates between 1 

% and 2 %. Unfortunately, a therapy has not been found until today. Smallpox spreads be-

tween humans without another animal reservoir. 

Even though there is no evidence of the origin of smallpox, it is believed to have appeared in 

northeastern Africa at the time of the first agricultural settlement in 10,000 BC (Barquet and 

Domingo, 1997; Hopkins, 1983). It is assumed, that ancient Egyptian merchants were respon-

sible for the spread of the disease from northeastern Africa to India (Riedel, 2005). The earli-

est reports of skin lesions resembling those of smallpox were found on faces of mummies of 

18th and 20th Egytian Dynasties (1570-1085 BC). Evidence of the disease was found on the 

head of the mummy of the Egyptian pharaoh Ramses V, who died 1156 BC (Lyons and 

Petrucelli, 1987). Parallel to that, reports of a smallpox disease in ancient Asia appeared. In 

China, smallpox was described in ancient Sanskrit texts in 1122 BC. Smallpox first appeared 

in Europe between the 5th and the 7th centuries. 

History of variolation 

Material from smallpox-infected individuals was used in order to protect against pustules. 

During the 16th century, Asians and Indians, inserted the fluid of smallpox scabs from an in-

fected person into the nasal mucosa or carved into the skin of healthy persons (Needham, 

1980). The method of treatment was called variolation and it caused a disease that was less 

severe than the one acquired via the respiratory system. Variolated patients were protected 

from death but still highly contagious and the risk of a new epidemic outbreak was high. This 

variolation was the first immunization method against smallpox (Variola) and was later intro-

duced to Europe.  

However, other diseases such as tuberculosis and syphilis were also transferred by variolation 

(Langer, 1976; Riedel, 2005). In the 18th century, the method of immunization was replaced 
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by the smallpox vaccine (Henderson, 2011). The smallpox vaccine introduced by Edward 

Jenner (Figure 1-1) was found to be safer. This vaccine was based on the finding that the 

maidservants, who developed cowpox lesions, were protected against poxvirus infections. In 

1796, Jenner inoculated the eight year-old boy James Phipps with the material of a cowpox 

infection taken from the milkmaid Sarah Nelmes, and six weeks later with VARV (Paul, 

2008). His experiment was successful and it produced complete protection against the disease 

and in 1798 Jenner described the safer and effective alternative to variolation. He named the 

infectious material of a cowpox infection “vaccine” after the Latin word “vacca” for cow. 

Although misleading, the English word “vaccination” is nowadays still in use (1.6.2 Cowpox 

viruses). Jenners discovery ranks among one of the greatest achievements in human history 

(Belongia and Naleway, 2003). His report on the usage of cowpox for vaccination against 

smallpox led to the confusion of the vaccinia virus (VACV) with cowpox virus (CPXV). 

When it was realized that the virus used for vaccination was not, or no longer the same as 

CPXV, the name ´vaccinia´ was used for the virus in smallpox vaccine. Although the origin is 

unknown, it has been assumed that VACV was originally isolated from horses (Huygelen, 

1996). Even if they were often considered to be the same, VACV and CPXV represent a dis-

tinct species among the genus Orthopoxvirus (OPXV) (Huygelen, 1996). Nevertheless, it was 

also reported that all available smallpox vaccines were based on VACV (Downie, 1939). It 

remains unclear whether Jenner originally used VACV or CPXV for his vaccination (Paran 

and Sutter, 2009).  

 

Figure 1–1: Edward Jenner (1749-1823) (Riedel, 2005). Jenner described the safer and more effective alternative “vaccina-

tion” to variolation in 1798. His discovery of the cross protection of cowpox and smallpox led to the eradication of smallpox 

as certified by the World Health Organization (WHO) in 1980 and is known as one of the outstanding achievements of medi-

cine. Photo courtesy of the National Library of Medicine.  
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After the discovery of the first vaccine consisting of the material of a cowpox infection, vac-

cinations were later performed by transmitting material from pustules of a vaccinated person 

to another individuum with the arm-to-arm method. This also brought the disadvantage of the 

accidential transmission of other diseases via blood. A further improvement for vaccine pro-

duction was to grow the virus on calf skin. This method offered a safer and constant supply of 

vaccine material and increased the number of vaccinations in Europe (Moss and Henderson, 

1999). A stable freeze-dried vaccine was commercially processed for large-scale production 

and established in the late 1940´s (Collier, 1955). The smallpox vaccine was live vaccinia vi-

rus and belongs, like variola virus, to the OPXVs against which strongly cross-protective an-

tibodies are induced after an infection (Essbauer et al., 2010; Gilchuk et al., 2016). 

Smallpox eradication 

Smallpox´ lethal wanderings had an enormous influence on the human population (WHO, 

1980). Five reigning monarchs died of smallpox in the eighteenth century in Europe. An esti-

mated 400,000 Europeans were annually killed by the disease and by the end of the eighteenth 

century it was responsible for a third of blindness in Europe (Radetsky, 1999). Moreover, 

smallpox decimated Native American populations and thus facilitated the colonization of 

America (WHO, 1980). Except for Australia and on certain islands, smallpox was at its zenith 

endemic throughout the inhabited world (Buller and Palumbo, 1991). During the 20th century, 

estimated 300-500 million people died from smallpox infections before a global smallpox 

vaccination campaign was initiated (Smith and McFadden, 2002). Despite of the discovery of 

the vaccination, many people died from the disease worldwide.  

Following the decision of the Pan American Sanitary Organization in 1950, an eradication 

program was implemented. With the exception of Brasil, Argentina, Colombia and Ecuador, 

the attempt to eliminate smallpox in 1967 was successful in the Americas. The World Health 

Organization (WHO) initiated a global eradication program in 1959. The last naturally occur-

ing case of smallpox was diagnosed in the town of Merca, Somalia in 1977 and the eradica-

tion of smallpox was certified by the WHO on May 8, 1980 (Figure 1-2) (Deria et al., 1980; 

WHO, 1980).  
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Figure 1–2: Location of the world´s last known endemic case of smallpox (Deria et al., 1980). The last naturally occur-

ring case of smallpox was diagnosed in the town of Merca, Somalia. 

 

Because there was no effective animal reservoir for VARV, the global immunization program 

with the vaccinia virus was successful in eradicating this disease (Buller and Palumbo, 1991). 

Millions of lives were saved and the eradication of smallpox remains one of the outstanding 

medical achievements (Moss, 2011). In the case of smallpox, a virus was eradicated for the 

first and only time in human history. Officially, the variola virus is nowadays stored at only 

two institutes, the Vector Insitute in Novosibirsk, Russia and the Center for Disease Control 

and Prevention (CDC), USA.  

Many different strains of VACV have been used for vaccination in the last two centuries 

(1.9.1 Vaccinia virus (VACV)). Due to the lack of information (origin, history of serial pas-

sage) about these strains, the origin of the present VACV strains is unknown.  

1.1.2 The potential threat of bioterrorism and zoonotic events 

In order to avoid severe side effects, vaccination with VACV stopped soon after the success-

ful eradication of smallpox in 1980. Therefore, herd immunity is no longer given. If re-

introduced, the human population remains unprotected. Routine smallpox vaccination ended 

in Europe between 1976 and 1984 (Fenner et al., 1988c). Third generation smallpox vaccines 

do exist, but the main purpose of these vaccines is for the protection of the military personnel 

and selected laboratories that work with OPXVs.  

Because of the careful and exclusive storage of the virus, a voluntary or accidentially re-

introduction of VARV is less likely yet existent and VARV pose a potential thread. However, 

the existence of other unregistered VARV stocks cannot be excluded. In June 2014, tubes la-

beled as “variola” were found in an unsecured freezer of a laboratory in Bethesda (Reardon, 

2014). Furthermore, bioterrorist attacks, such as anthrax attacks in 2001, have sensitized the 

population and the awareness of the possible misuse of viruses in this context is ever present. 
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Biological weapons, including VARV, have accidentially been used or exposed in planned 

tests. Smallpox is included in the category A of the CDC list of potential biological weapons 

(CDC, 2008) because of VARV´s easy airborne transmission from one person to another as 

well as the high mortality rate and the low or not existing smallpox immunity in the majority 

of the human population (Wenzel, 2002). The re-introduction of VARV through a bioterrorist 

attack poses one of the greatest threats (Callaway, 2008; Henderson, 1999; Henderson et al., 

1999; Jahrling et al., 2005; Kortepeter and Parker, 1999). Because of the risk of accidential or 

voluntary reintroduction through bioterrorism, the constant monitoring of smallpox must con-

tinue (Morand et al., 2017).  

1.2 Orthopoxvirus diseases 

1.2.1 Virus transmission 

VARV is mainly transmitted through the respiratory route via virus containing droplets 

(Kempe et al., 1969), but infections via the conjunctiva have also been reported (Rao et al., 

1960). Epidemiological studies have shown that the presence of VARV in scabs do not play a 

noteworthy role in virus transmission. A fetus can presumably be infected in the placenta dur-

ing the second viremic phase of the mother (Marsden, 1936). No reports for infections via the 

alimentary tract or that of the involvement of arthropods exist.  

Monkeypoxvirus (MPXV) is a zoonotic poxvirus (Essbauer et al., 2004) and the virus is 

therefore transmitted to humans through contact with wild animals that includes infected non-

human primates (NHPs). The transmission rate increased from 30 % in 1988 (Fenner et al., 

1988a) to 73 % in 2008 (WHO, 1980). Transmission chains beyond secondary infection have 

been reported (Hutin et al., 2001; Learned et al., 2005), but are rare (Jezek et al., 1986; Jezek 

et al., 1988). Therefore, it is assumed that MPXV infections only persists in the human popu-

lation, if it is repeatedly re-introduced by the main reservoir (Fine et al., 1988). 

Unlike VARV that is mainly airborne-transmitted, CPXV is another zoonotic poxvirus that is 

mainly transmitted to humans via skin or mucosal lesions. Most of the time it derives from 

scratches or bites of infected cats or pet rats leading to skin lesions commonly on fingers and 

hands. Virus-transfer from these lesions can later infect the face. CPXV infections transmitted 

by pet rats or other pet or zoo animals are increasingly reported and the number of animal 

species that are susceptible to CPXV infections increase similarily (Figure 1-3) (Baxby et al., 

1979; Baxby et al., 1994; Becker et al., 2009; Campe et al., 2009; Kurth et al., 2009; Mätz-

Rensing et al., 2012; Pilaski et al., 1986; Schupp et al., 2011; Vorou et al., 2008; Wolfs et al., 
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2002). CPXV infections are usually self-limiting. Severe generalized infections can occur in 

atopic persons, who receive glucocorticoids for therapeutic reasons or immunsuppressed 

HIV-patients (Blackford et al., 1993; Czerny et al., 1991; Klingebiel et al., 1988). 

 

Figure 1–3: First proven case of rat-to-human transmission of cowpox in 2002 (Wolfs et al., 2002). Zoonotic infection of 

a 14-year-old girl who got infected (eyelid) after contact with a clinically ill wild rat that later succumbed to its infection.  

1.2.3 Clinical symptoms 

The most common clinical form of smallpox was the ordinary type and was caused by variola 

major and minor. Other clinical forms of smallpox were the modified type, the flat type and 

the hemorrhagic type where the last two types were usually fatal. Clinical symptoms of the 

ordinary type occur after an incubation period of approximately 12 days with a range from 7 

to 17 days. The symptoms include headache, backache, high fever, malaise, prostration, and 

vomiting in rare cases that is followed by a maculopapular rash lasting for two to five days. 

The maculopapular rash develops to papules, vesicles and then to pustules. Most of the pus-

tules are found on the soles of the foot, the face, the forearms, the palms of the hands, the 

mouth and the neck (Moore et al., 2006). Crusts start to form on day eight or nine. When they 

fall off, the skin underneath is pigment-free and remains scarred. Perhaps because of the de-

veloping antibodies, the fever sinks with the development of the rash and rises again with the 

development of the pustules. Conjunctivitis, which often leads to blindness in the patient, ap-

pears during the first eight days. The severeness of the disease is dependent on the immune 

response of the host and the cause of death is still not clear. The reason might be intravascular 

coagulation, massive secretion of cytokines and a cytopathic effect caused by a strong virus 

replication in the tissue that end in multi-organ dysfunction (Bray and Buller, 2004; Downie 

et al., 1953; Martin, 2002). Variola major was generally more severe than variola minor with a 

higher death rate.  
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Other clinical forms can be observed in CPXV infections. The first typical lesion appears as 

an inflamed macula that turns into a papule and a vesicle within 12 days. The vesicle begins 

to ulcerate and becomes increasingly hemorrhagic. At the end of the second week the vesicle 

becomes incrusted (Dugmore and Dabir, 1992; Simcock et al., 1993). The degree of inflam-

mation of the lesions varies, whilst the size of the extremely painful lesions ranges from one 

to three centimetres in diameter. An often marked and prolonged lymphadenopathy occurs. 

Systemic symptoms, such as fever, malaise, lethargy, in some cases vomiting and sore throat 

that lasts three to ten days, have been reported. It takes ten to 12 weeks or longer for the pa-

tient to fully recover. Ocular infections of the conjunctiva and cornea have occasionally been 

reported in localized CPXV infections (Hall and Stevens, 1987; Klingebiel et al., 1988). In 

more serious generalized infections, symptoms, such as atopic eczema, dermatitis, allergic 

asthma or immunosuppression, can occur and have a severe or lethal progression (Blackford 

et al., 1993; Czerny et al., 1991; Klingebiel et al., 1988).  

1.2.4 Pathogenesis  

Most of the information on the pathogenesis of VARV infections stem from previous small-

pox cases that originated from artificial infections of animals with different OPXV (Buller 

and Palumbo, 1991; Hahon and Wilson, 1960; Zaucha et al., 2001). VARV initally infects the 

mucosa and the upper respiratory tract, the mucosal membranes of the mouth, the nasal cavi-

ty, the oropharynx or the alveoli of the lungs. After local replication, the virus then spreads 

through infected macrophages via the lymph system to the regional lymph nodes, in which 

replication continues. B cell and cytotoxic T cell responses are induced in the regional lymph 

nodes. The following virus replication leads to a first asymptomatic viremia between day five 

and six post infection (Fenner et al., 1988a). The virus is then disseminated to many organs 

(e.g. spleen, bone marrow, lymph nodes). After the invasion of the mononuclear phagocyte 

system, a short second viremia follows and VARV is characterised by the entry of the virus 

into the bloodstream at day eight post infection. The virus completely disseminates through-

out the body and also the blood vessels of the dermis, the oral and pharyngeal mucosa in sec-

ond viremia. Because of infected macrophages, VARV is spread from small dermal vessels to 

the epidermis. This leads to the typical pox lesions in the epidermis that occur through the de-

velopment of edema, ballooning degeneration and splitting of the epidermis. The typical le-

sions (maculopapular, vesicular and papular rash) occur between days ten and 14 post infec-

tion. The infection starts with the occurance of the skin lesions. Skin lesions usually occur as 

soon as enanthems, mucosal lesions in the mouth and oropharynx occur. Fever and also cyto-
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kine secretion/cytokine storm occur during the second viremia. In addition, several Guarnieri 

bodies and extensive necrosis of epithelial cells of infected skin tissue can be detected through 

histological analyses. In hemorragic cases of VARV infections, the virus is only detectable 

after the death of the infected person in the pox lesions, spleen, kidney, liver, bone marrow 

and also other organs (Fenner et al., 1988a; Fenner et al., 1988b; Martin, 2002). Main source 

of virus transmission is oropharyngeal secret (saliva) that contaminates objects and can be 

easily transmitted via droplets. In some cases, the virus was also detected in urine. The conta-

giosity is highest in the first week after occurance of the skin lesions (Mac et al., 1950). Intra-

vascular coagulation, massive secretion of cytokines that is associated with circulating im-

mune complexes, soluble VARV antigens and a cytopathic effect based on massive virus rep-

lication in the tissues ending in multi-organ dysfunction have been discussed as the cause of 

death (Bray and Buller, 2004; Downie et al., 1953; Martin, 2002). Nevertheless, it remains 

unclear why individuals die. 

1.2.5 Calpox virus  

The studies presented herein are based on the findings of a private keeping of common CM 

(CM, Callithrix jacchus) in 2002 (Matz-Rensing et al., 2006). The animals developed a se-

vere systemic disease with hemorrhagic lesions that resembled human smallpox, fever, de-

pression, severe erosive-ulcerative lesions of the oral membranes and lymphadenopathy 

(Schmitt et al., 2014). The infected animals of a group of 30 to 80 New World monkeys died 

within one week after the onset of symptoms of the unknown disease. Mätz-Rensing and col-

leagues have found a new virus. The not yet fully characterized virus was named after its host 

Callithrix jacchus, calpox virus and was used to develop a promising OPXV model with CM. 

The virus was sequenced and identified to be the closest related to cowpox viruses. Neverthe-

less, calpox virus differs from the already described species and cannot be assigned to a pre-

viously known cowpox species (Carroll et al., 2011). It therefore represents a distinct and new 

CPXV strain. 

In order to identify the cause of the animals´ death, several pathological and histological ana-

lyzes and investigations in the CM followed (Kramski et al., 2010; Mätz-Rensing et al., 

2012). Previously conducted studies focused on the final stage of the disease. Mätz-Rensing 

and colleagues detected the characteristic pox-like lesions in skin, mucous membranes, lymph 

nodes, liver and spleen. In parallel, Schmitt and colleagues experimentally infected CM with 

the calpox virus and analyzed different organs and tissues by histopathology, immunohisto-

chemistry and transmission electron microscopy (Schmitt et al., 2017). The data indicates an 
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early replication in nasal and bronchial epithelia as well as secondary replication in sub-

mandicular lymph nodes and spleen. A monocytic-cell associated viremia is followed by the 

detection of the virus in mainly epithelial cells and macrophages, but also in endothelial cells. 

The incubation period lasts about 12 days and resembles that of human smallpox. The defini-

tion is based on the histological and ultrastructural lesions, the onset of clinical symptoms and 

the immunohistochemical distribution pattern of the virus. The immune system obviously col-

lapsed around day 12 post infection and animals start to die. Kramski and colleagues also 

found out that intranasal inoculation with very low infectious doses of the calpox virus leads 

to a severe, fatal disease course (Kramski et al., 2010). The intranasal inoculation route re-

sembles the natural transmission route of smallpox.   

1.3 Orthopoxviruses within the Poxviridae family 

Two subfamilies belong to the Poxviridae family, the Chordopoxvirinae and Entomopoxviri-

nae. Entomopoxvirinae infect insects, whilst Chordopoxviridae infect vertebrates (Buller and 

Palumbo, 1991). Orthopoxvirus belongs to the Chordopoxvirinae and is one of the four gene-

ra of the poxviruses, notably Orthopox, Parapox, Yatapox and Molluscipox that may infect 

humans. The genera Orthopoxvirus (OPXV) with the type species vaccinia virus can be sub-

divided into ten species: Camelpox virus, Cowpox virus, Ectromelia virus, Monkeypox virus, 

Raccoonpox virus, Skunkpox virus, Vaccinia virus, Variola virus and Volepox virus (Interna-

tional Committee on Taxonomy of Viruses (ICTV), 2017). All OPXV species are serological-

ly very closely related and therefore cross-reactive.  

1.4 Virus structure and genome 

With a size of 200 nm in diameter and 300 nm in length, the poxvirus virions are considered 

to be exceptionally large (Figure 1-4). The poxviridae viral particles (virions) are enveloped 

and generally brick shaped and carry the genome in a single, double-stranded DNA segment. 

The genome lies within a nucleoprotein complex in a biconcave capsid. In VACV, four dif-

ferent types of virions are produced in an infected cell: the extracellular enveloped virus 

(EEV), the intracellular enveloped virus (IEV), the cell-associated enveloped virus (CEV) and 

the intracellular mature virus (IMV). The virus particles differ in morphology, proteins and 

numbers of membrane layers. The enveloped virions (EV) have two membranes and are 

formed as long as the cell is still intact. After cell lysis, mainly mature virions (MV) are set 

free (Condit et al., 2006). Within CPXV- and ectromelia virus (ECTV)-infected cells also ac-

idophilic-type inclusion bodies (ATI), or A-type inclusion bodies are formed and can be 
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found in the cytoplasm (Patel et al., 1986). At the replication site (infected epithelial cells) B-

type inclusion bodies or Guarnieri bodies are found, also virus particles aggregate during the 

infection.  

 

Figure 1–4: Drawing of extracellular enveloped vaccinia virus particle (Fenner et al., 1988a). Orthopoxviruses are re-

markable large.  

 

OPXV have a linear double stranded, linear DNA-genome of 180-190 kb in length and en-

code over 250 genes (Craighead, 2000). The ends are coupled by covalent hairpin structures 

(VARV) (Shchelkunov et al., 2000). OPXV replicate in the cytoplasm. Since replication ma-

chinery of the host is located in the nucleus and cannot be used by the virus, poxviruses en-

code for the complete functions of the replication cycle including polymerases, RNA-capping 

and RNA-modifying enzymes. The genomes of the Chordopoxvirinae are highly homologous. 

In the center of the genome there are 90 conserved genes that encode proteins for basal func-

tions such as replication, transcription, virion assembly and release (Upton et al., 2003). The 

non-conserved genes are located at the ends of the genome and are species specific (Gubser et 

al., 2004; Shchelkunov et al., 1998). They determine the pathogenicity of the respective virus 

and encode for host range-factors and immunomodulators. Inverted terminal repetitions are 

located at the two ends of the OPXV genome (Garon et al., 1978). They consist of an AT-rich 

base-paired hairpin loop that connects the two DNA strands. The inverted terminal repetitions 

are variable in length but have a highly conserved region that is necessary for the processing 

of replicating concatemeric forms of DNA (DeLange and McFadden 1990; Merchlinsky 

1990).    
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1.5 Virus life cycle 

1.5.1 Virus entry and uncoating 

A ubiquitous receptor or the use of many cellular receptors has been assumed for OPXVs 

ability to infect a variety of cells. Although no specific cellular receptor has been detected for 

any of the OPXVs, glycosaminoglycans (GAGs) are thought to fulfill this function. The virus 

then enters the cell and uncoats in two steps. In the first step the outer membrane is removed 

when the virus enters the cell. In the second step the virus particle fuses with the cellular 

membrane and releases the virus core into the cytoplasm to express the virual genes (1.5.2 

Virus gene expression). Furthermore, different virus particle subtypes probably enter the cells 

via different routes. It has been suggested that EEVs enter the cell via endocytosis. It is as-

sumed that the low pH disrupts the virions outer membrane and released IMV fuses with en-

dosomal membranes (Doms et al., 1990; Vanderplasschen et al., 1998). It is also assumed that 

vesicles are formed by surface invaginations (Gong et al., 1990; Kochan et al., 2008; 

Senkevich and Moss, 2005; Townsley et al., 2005; Vazquez et al., 1998). 

There have been evidence that IMV and EEV have different binding sites (Vanderplasschen 

and Smith, 1997).  When two types of virus bind to a cell, efficacy of infection may increase. 

Different proteins are involved in the cell attachment of EEVs (Chung et al., 1998a; Hsiao et 

al., 1998; Lin et al., 2000). 

1.5.2 Virus gene expression 

Expression of early-, intermediate-, and late-phase genes takes place in the cytoplasm of the 

host cell (Broyles, 2003). Viral RNA-polymerase begins expression of early-phase genes at 

approximately 30 minutes post-infection. This process starts inside the viral core which in the 

meantime becomes completely uncoated.  At the time the early expression ends, the viral ge-

nome is released into the cytoplasm. Approximately half of all OPXVs genes belong to the 

early class (Oda and Joklik, 1967). The early mRNAs encode factors and enzymes that are 

needed for host interactions, viral DNA synthesis and transcription of the intermediate phase 

genes (Baldick and Moss, 1993). After early gene transcription, intermediate genes are ex-

pressed in the cytoplasm. At this time point, approximately 2 hours post infection, genomic 

DNA replication is triggered by viral DNA polymerase (1.5.3 DNA replication).  

The intermediate genes are expressed from 140 minutes to 48 hours post infection and encode 

structural proteins to form a new mature virus particle (1.5.4 Virion assembly, maturation and 

release).  
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1.5.3 DNA replication 

DNA replication by viral DNA polymerase takes place entirely in the cytoplasm of the infect-

ed host cell and involves several stages (Broyles, 2003). DNA-replication occurs in discrete 

cytoplasmic structures known as virus factories or virosome (foci of replication, termed virus 

factor areas or Guarnieri bodies). The two strands of the linear, double-stranded DNA are 

linked by hairpin ends. Several viral proteins are involved in DNA synthesis: a 117-kDa DNA 

polymerase, a helicase-primase, an uracil DNA glycosylase, a progressivity factor, a single-

stranded DNA-binding protein, a protein kinase and a DNA ligase (Moss, 2013). Replication 

begins with introduction of a nick in one of the viral DNA strands near the terminal region 

creating a free 3’OH primer. This leads to strand displacement and elongation of the newly 

formed 3’end by the viral DNA polymerase. The elongated DNA strand possesses self-

complementarity which allows it to fold back on itself and prime further elongation. This 

elongation can progress through the hairpin terminus. The replicated DNA appears as head-

to-tail concatemers, which could form by a rolling circle mechanism. In VACV about 10,000 

genome copies per cell are generated by DNA replication and half of them are packaged into 

new virions (Joklik and Becker, 1964).  

1.5.4 Virion assembly, maturation and release 

The assembly of the virus particles is a complex process consisting of five stages and occurs 

in the cytoplasm of the cell. The assembly and virus morphogenesis occur together with the 

transcription of the late genes and genome replication in the viral factories (Rodriguez et al., 

1997). Crescent membranes appear within the factories as first distinct structures of virus 

morphogenesis (Moss, 2015). It has been suggested that the crescent membrane is derived 

from the endoplasmatic reticulum. Crescents grow until they become three dimensional 

spheres to form the immature virion (IV). While crescent membranes develop, they become 

filled with viroplasm containing viral core proteins. Before the membrane is sealed, viral ge-

nomic DNA is packed into the viroplasm. The detailed mechanism of how the viral DNA is 

transported and incorporated into the virion remains unclear. VACV regulatory protein E6 is 

known to be essential for core protein association. By condensing into the dense brick-shaped 

mature virions (MVs), the IVs then maturate into intracellular mature virus (IMV), the infec-

tious particles (Gaylord and Melnick, 1953; Morgan et al., 1954; Morgan and Wyckoff, 

1950). The virus core condensates in this step and the major structural proteins enter the im-

mature envelopes by proteolytic processing (Morgan, 1976; Moss and Rosenblum, 1973). 

Depending on the poxvirus genus, IMVs/MVs can also remain within the cell or may be 
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wrapped into an additional membrane (Hiller and Weber, 1985; Schmelz et al., 1994; Tooze 

et al., 1993). The wrapped virions or intracellular enveloped viruses are transported to the cell 

periphery and in the final stage of maturation, the new extracellular enveloped virions are 

formed by exocytosis and exit the cell (Smith and Law, 2004). By losing the outermost Golgi-

derived membrane, the extracellular enveloped virions and cell-associated enveloped virions 

are formed. Cell-associated enveloped virions are important for cell-to-cell spread and remain 

attached at the cell surface. EEVs mediate the long-range dissemination of the virus in cell 

culture (Smith et al., 2002).  

1.6 Orthopoxviruses in humans 

1.6.1 Zoonotic poxvirus infections in humans 

Humans and other primates are susceptible to OPXV infections. Five OPXVs can infect hu-

mans: variola, vaccinia, cowpox, monkeypox and camelpox. 

One of the most devastating OPXV diseases in humans is known as the infection with VARV, 

the etiologic agent of smallpox (1.1.1 The smallpox virus). It has been assumed that VARV 

may have evolved from an enzootic pathogen of African rodents that spread from Africa, but 

no evidence exists (Li et al., 2007). Therefore, smallpox might have originally been acquired 

by humans as a zoonosis, from a terrestrial African rodent 16,000 to 68,000 years ago. How-

ever, smallpox was spread from human to humans without another animal reservoir.  

Monkeypox, vaccinia, camelpox as well as cowpox are zoonotic (Goyal et al., 2013) and 

therefore regarded as infectious diseases of animals that can be transmitted to humans. Vac-

ciniation of humans with live VACV against smallpox stopped soon after its eradication and 

since the waning herd immunity in the human population, other OPXV infections such as 

MPXV, CPXV or VACV in humans increased.  

Worldwide MPXV and CPXV are sporadically occuring and humans are more often affected, 

especially by MPXV in Africa and CPXV in Europe, respectively (Bourquain et al., 2013; 

McCollum et al., 2015; Reed, 2004; Vorou et al., 2008). 

MPXV-infection naturally occurs in Africa and particularly in the Democratic Republic of the 

Congo (DRC). MPXV is a zoonotic OPXV and an emerging infectious disease that causes 

serious smallpox-like illness in humans (Figure 1-5) (Rimoin et al., 2010; Thomassen et al., 

2013). MPXV is endemic to West- and Central Africa since the 1970s (Nalca et al., 2005; 

Orba et al., 2015) and has been considered to be the most important poxvirus that affects hu-

man health since the global eradication of smallpox in 1977 (Breman, 2000). During the last 
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30 years, human MPXV incidents have dramatically inreased in the DRC (Johnston et al., 

2015). A comparison of active surveillance data from 1980s and 2006-07 suggest a 20-fold 

increase in human monkeypox incidents in the central DRC (Rimoin et al., 2010).  

 

Figure 1–5: 7-year-old female child with the typical clinical presentation of human monkeypox, Sankuru District, 

Democratic Republic of Congo (Rimoin et al., 2010). Human monkeypox incidences increase 30 years after smallpox vac-

cination ceased in the Democratic Republic of Congo.  

 

Another MPXV case shows that it was even able to spread to another continent. In 2003 a 

mild form of MPXV infected 69 people in the United States of America. Rodents and infected 

prairie dogs were imported from Ghana and transmitted the disease to humans. It can be as-

sumed that vaccines against poxviruses also protect against MPXV and therefore the devel-

opment of new and safer vaccines becomes more important (Hammarlund et al., 2005).  

VACV occurs worldwide and infects a variety of host species such as cattle, rabbits, pigs, 

humans and buffalos (Bhanuprakash et al., 2010; Essbauer et al., 2004; Singh et al., 2008; 

Singh et al., 2007; Singh et al., 2006; Yadav et al., 2010). Since 1960 innumerous VACV 

outbreaks have been documented in different regions of Brazil. Also, reports of VACV spe-

cies transmitted to humans via cows or Indian buffaloes were reported in Brasil and India 

(Goyal et al., 2013; Pereira Oliveira et al., 2014). 

The number of reported VACV infections in humans are on the rise in South America and 

India, but it is not clear whether VACV infections are actually increasing or if the reports 

have just recently begun.  

Camelpox is a disease restricted to camels and its causative agent is the OPXV camelpox vi-

rus (CMLV). Except for Australia, the disease is enzootic in almost every region, where cam-

els are reared and naturally occurs on the African and Asian continents (Balamurugan et al., 

2013). Although it only rarely infects humans, Jezek and colleagues have shown that camel-

pox can be transmitted to humans and arthropods (Jezek et al., 1983). Therefore, it also be-

longs to the zoonotic diseases. The emergence of zoonotic camelpox outbreaks in India is a 

serious public health concern (Bera et al., 2011). Due to increasing reports of camelpox cases 
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and outbreaks in camels, Camelpox was considered an emerging public health problem 

(Balamurugan et al., 2013). 

Furthermore, the threat of new emerging zoonotic poxvirus species exists (Shchelkunov, 

2013). 

1.6.2 Cowpox viruses 

CPXV which is closely related to VACV is indigenous to Great Britain, and both the tradi-

tional cowpox virus strain and slightly different strains of the so-called `cowpox-like` viruses 

can be found in Europe (Baxby et al., 1979; Carroll et al., 2011; Fenner et al., 1988a) and ad-

jacent Russian states. Phylogenetic analyzes have shown that the CPXV isolates form two 

major monophyletic clades (cowpox-like and vaccinia-like) (Carroll et al., 2011). It can fur-

ther be split into five distinct monophyletic clusters. All German CPXV isolates are in the 

cowpox-like clade (group 1-4), a sister to camelpox virus (CMLV), taterapox virus (TATV) 

and variola virus (VARV), whereas the vaccinia-like clade (group 5) is a sister to MPXV 

clade. 

Of all the OPXVs, CPXV has the broadest host range. Contradictory to its name, CPXV rare-

ly occurs in cattle and it is doubtful if cowpox was ever common in cattle (Baxby, 1977). 

Human cowpox is uncommon, but more commonly reported than bovine CPXV cases (Baxby 

and Bennett, 1990). CPXV maintains a reservoir in wild rodents and is endemic in bank voles 

(Clethrionomys glareolus) and wood mice (Apodemus sylvaticus) in Great Britain (Chantrey 

et al., 1999). CPXV has also been reported to infect a variety of animals in European zoos, 

e.g. elephants that also resulted in human infections (Kurth et al., 2008). Although several 

carriers have been reported, it is mainly transmitted by cats and pet rats (Begon et al., 1999; 

Bonnekoh et al., 2008). Most reports of human cowpox infections can be traced back to con-

tact with infected cats (Casemore et al., 1987; Pether et al., 1986; Willemse and Egberink, 

1985). However, CPXV infections have also been reported in monkeys. A fatal cowpox virus 

infection in the cotton-top tamarins (Saguinus oedipus) a New World monkey, have been de-

tected in Germany (Figure 1-6) (Kalthoff et al., 2014). A low pathogenicity was found when 

the isolate was characterized in a Wistar rat model.  
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Figure 1–6: Cowpox virus-infected cotton-top tamarin (Kalthoff et al., 2014). The New World monkey shows the typical 

skin lesions on the face.  

 

Other CPXV infections in Germany and the Netherlands have also been reported in New 

World monkeys and macaques (Martina et al., 2006; Matz-Rensing et al., 2006) and a distinct 

and new CPXV strain, named calpox virus, was found in 2002 in common CM (CM, 

Callithrix jacchus) (Matz-Rensing et al., 2006) (1.2.4 Calpox virus). 

Because of its broad host range and genetic features, CPXV is assumed as a candidate and 

threat for new emerging zoonotic poxvirus species (Essbauer et al., 2010). Of all OPXV, 

CPXV has the largest genetic repertoire (Gubser et al., 2004). This underlines CPXV as an 

emerging hazard.  

1.7 Immune response 

The severeness of the disease, clearance of the virus and protection against (re-)infection is 

determined by the immune responses of the host. Humoral as well as the cellular immune re-

sponses play an important role in OPXV infections (Smith and Kotwal, 2002). The immune 

system is differentiated into the innate and adaptive immune system. The innate immune sys-

tem is fast and unspecific, whilst the adaptive immune system takes more time, but is specific 

and has memory.  

Innate immune response to poxvirus infection  

Following infection the immune system is activated, whereas the innate immune response 

constitutes the first line of defense against invading pathogens. At first, poxvirus infection 

induces the production of interferons as well as the activation of the complement system, nat-

ural killer (NK) cells and inflammatory cells (Smith and Kotwal, 2002). Monocytes and neu-

trophils are the most important parts in early innate immunity against poxvirus infection, be-

cause of their positive poxvirus antigen staining (Song et al., 2013b). Besides the cellular re-

sponse, the humoral-mediated immunity (e.g. complement system) is of importance. The 

complement system has the ability to recognize a large panel of viruses as well as virus-
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infected cells, and trigger effector pathways (Agrawal et al., 2017). Interferons can e.g. kill 

the virus directly. The complement system marks the infected cells (opsonization) and conse-

quently phagocytes can detect and kill them. 

Adaptive immune response to poxvirus infections – Cellular immune response  

The cellular immune response and the implied poxvirus-specific cytotoxic T-lymphocytes 

(CTLs) (CD8+) are thought to play an important role in controlling poxvirus infections (Smith 

and Kotwal, 2002). CD8+ T cells detect early expressed proteins whilst CD4+ T cells, like an-

tibodies, detect late expressed proteins (Sette et al., 2009). Experiments in knockout mice and 

macaques have shown that T cell response plays a more important role in the primary, acute 

infection than in the late phase (Gordon et al., 2011; Xu et al., 2004b). In addition, the devel-

opment of severe vaccination complications, such as a progressive vaccinia in humans with an 

impaired cellular immunity, leads to the assumption that T cells play an important role in pri-

mary infections (Bray and Wright, 2003).  

Poxviruses have a variety of immune evasion mechanisms to create an environment where the 

virus can not only survive but also replicate (Seet et al., 2003). There are two ways for the 

virus to interact with the host: the poorly understood inhibition of the host macromolecular 

synthesis by the virus and the defense of the virus against host antiviral mechanisms.  

Several viral defense proteins are expressed by OPXVs in order to modulate and combat the 

host´s antiviral response. They encode for proteins that induce the synthesis of steroids, inhib-

it the function of interferons, intercept interleukins and capture chemokines, inflammatory 

cytokines and antibodies. They also encode proteins that can interfere with the function of 

apoptosis. The activity of cytotoxic T-lymphocytes and NK cells can be inhibited and coun-

teract the complement system (Alcami and Koszinowski, 2000; Haga and Bowie, 2005; 

Kotwal et al., 1990; Lustig et al., 2004; McFadden and Murphy, 2000; Perdiguero and 

Esteban, 2009; Taylor and Barry, 2006). Poxviruses can also shut down the synthesis of the 

cell´s own products while keeping up their own protein synthesis (Langland et al., 2006). The 

immunomodulatory proteins are not shared across all OPXV species and each OPXV strain 

has its own combination of proteins. The deletion of some genes leads to the attenuation or an 

altered disease (Johnston and McFadden, 2004). Although each virus has its own variety of 

immunomodulatory proteins, some of the immunomodulatory viral genes are similar to cellu-

lar genes of the host. It is assumed that these genes were integrated into the viral genome via 

horizontal gene transfer through coevolution with the host.  
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Poxviruses can harm the host through replication in the tissue, cause immunomodulation and 

furthermore, a strong reaction of the immune system can be triggered: an exessive inflamma-

tory response (cytokine storm), which is discussed as the reason for many symptoms and for 

the cause of death of severe VARV-infections (Stanford et al., 2007). For instance, it has been 

reported that an intensive early inflammatory response by the host is thought to damage the 

host inadvertetly to such an extent that the individuum becomes ill or dies after the infection 

(Stanford et al., 2007). 

Adaptive immune response to poxvirus infections – Humoral immune response 

A human orthopoxvirus infection can elicit a complex B cell immune response that is reactive 

to antigens from diverse OPXV species (Gilchuk et al., 2016a; Gilchuk et al., 2016b).  

Neutralising antibodies (nAbs) - as part of the humoral arm of the adaptive immune response 

- are most important because they bind directly to the poxvirus, cause aggregation and also 

prevent the adsorption and intake into the cell. They also enable phagocytosis and antibody-

dependent cell-mediated cytotoxycity through their function at opsonisation (process of mark-

ing the virus and ingestion or elimination by phagocytosis) (Edghill-Smith et al., 2005).  

Results from animal studies indicated that neutralizing antibodies are essential and sufficient 

for an immunological protection (Edghill-Smith et al., 2005). Antibodies against specific 

OPXV-species have a wide cross-reactivity among the whole virus genus and depending on 

the antigenic relationship, they also have a wide cross-reactivity among the genus (Gilchuk et 

al., 2016a). NAbs are directed against gene products (Demkowicz et al., 1992) as well as dif-

ferent virus particles such as intracellular mature virions and enveloped virions generated dur-

ing the infection (Amanna et al., 2006; Demkowicz et al., 1992; Jones-Trower et al., 2005; 

Viner and Isaacs, 2005). 

In patients that suffered from non-hemorrhagic smallpox disease nAbs were detectable by day 

six of illness (about 18 days after infection). Titres increased over the course of the disease 

(Downie et al., 1969). A delayed, reduced or even missing antibody response was found in 

patients with a hemorrhagic-type of disease (Fenner et al., 1988c). NAbs were detected from 

day 12-14 and until day 25-30 in smallpox (Frey et al., 2003; McClain et al., 1997). Neutral-

izing antibodies are generated after 12-14 days when immunized with VACV and the highest 

titres are measured about two weeks later. After a re-vaccination the titres of nAbs increase 

already after seven days (Moss, 2011). Because of the eradication of VARV, it is difficult to 

calculate the protective effect of an immunization. Nevertheless, the antibody levels detected 

by ELISA or neutralization of VACV can persist for many decades as in memory B cells and 
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CD4+ and CD8+ T cells (Crotty et al., 2003; el-Ad et al., 1990; Frey et al., 2003; Hammarlund 

et al., 2003; Taub et al., 2008). Studies have shown that in 90 % of the observed individuals, a 

stable humoral immune response was detected up to 75 years after the immunization (Crotty 

et al., 2003; Hammarlund et al., 2003). It has also been observed that antibody titres were at a 

comparable level in immunized individuals and non-immunized individuals that survived 

VARV infections (Hammarlund et al., 2010; Taub et al., 2008).  

Studies that induced the protection of macaques against monkeypox have suggested that nAbs 

are sufficient for protection (Edghill-Smith et al., 2005). Different proteins of the inner and 

outer membrane of the virus have been identified as neutralising determinants (Moss, 2011). 

It is supposed that nAbs against both enveloped viruses well as mature viruses are necessary 

for the protection against OPXV infections (Bray and Buller, 2004; Fogg et al., 2004; Heraud 

et al., 2006; Hooper et al., 2000; Lustig et al., 2005; Viner and Isaacs, 2005). The inoculation 

with VACV elicits nAbs against major antigens on the extracellular enveloped virus and the 

intracellular mature virion and confer protection against smallpox (Davies et al., 2005; Davies 

et al., 2007; Lawrence et al., 2007; Putz et al., 2006). The neutralising determinants A27, D8 

and H3 are important for binding of the virus to the host cell on the inner membrane (Chung 

et al., 1998b; Hsiao et al., 1999). One protective antibody that binds to the heparan sulfate 

binding site of A27 was identified (Kaever et al., 2016). A17, L1 and A28 are involved in vi-

rus-cell membrane fusion (Nelson et al., 2008; Wallengren et al., 2001; Wolffe et al., 1995). 

A protective antibody response is induced by the protein B5 and A33 of the outer membrane, 

but only binding of antibodies to B5 has a neutralizing effect (Galmiche et al., 1999; Putz et 

al., 2006). The effect of neutralization of anti-B5-antibodies can be enhanced by the isotype-

specific complement system (Benhnia et al., 2009). Antibodies against A33 also function in 

association with the complement system. By destroying the outer membrane of the virus par-

ticle, the inner membrane is set free and binding of anti-mature virus-antibodies is enabled 

(Lustig et al., 2004).  

1.8 Immune correlates of smallpox virus protection 

The smallpox eradication occurred prior to modern techniques in virology and immunology 

(Moss, 2011) and some live vaccines of VACV strain caused generalized VACV infections in 

patiens with severe T cell abnormalies, but not in others with an immunodeficiency (agam-

maglobulinemia). Therefore, evidence for the importance of a cell-mediated immunity in con-

trolling the primary infection exists. Increased levels of cytokines correlated with low-grade 

fever, headache, myalgia, fatigue and regional lymphadenopathy after VACV infection. NAb 
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titres to VACV correlated with the “vaccine take” (i.e. development of pustules) in naive in-

dividuals (Mc et al., 1958). In individuals who were already vaccinated and re-vaccinated cor-

related the successful vaccination inversely with the pre-existing nAb levels (Orr et al., 2004). 

Studies have shown that the route of vaccination is important. A higher nAb response was 

induced by percutaneous vaccination than with intradermal or intramuscular vaccination 

(McClain et al., 1997). Children developed 83 % nAbs with percutaneous and 23 % nAbs 

with subcutaneous vaccination (Galasso et al., 1977). Some studies have also found that 

smallpox vaccination induced CD4+ and CD8+ T cells (Ennis et al., 2002; Rock et al., 2005).  

1.9 Prevention (vaccine) and treatment of OPXV infection 

1.9.1 Vaccinia virus (VACV) 

The origin of the vaccinia virus (VACV) remains unknown due to the lack of recording the 

repeatedly cultivating and passaging in research (Moss and Henderson, 1999). VACV is 

closely related to the cowpox virus (CPXV).  

The disease pattern of a VACV infection closely resembles that of the local human CPXV 

infections (Paran and Sutter, 2009). Naïve individuals inoculated with VACV through vac-

cination or by accident, develop local infections of the eye or skin. However, VACV infec-

tions of at-risk individuals that are for example immunocompromised can lead to a severe dis-

ease or fatalities.  

Vaccination with VACV comes with several advantages. Reports have shown that vaccination 

with VACV induces an antibody response that is developed much faster than after a natural 

VARV infection. Antibodies were detected ten days after primary vaccination and four to 

seven days after the second vaccination (Mc et al., 1958). The titres of neutralizing antibodies 

(nAbs) also increased as a reaction to the re-vaccination.  

VACV strains have been used to establish more virulent laboratory viruses like VACV West-

ern Reserve (WR) or VACV International Health Department-J (IHD-J) but have also been 

used for new vaccines. Various VACV strains were used as smallpox vaccines (McCollum 

and Damon, 2014; Verardi et al., 2012). The first generation smallpox vaccines were pro-

duced and used during the worldwide eradication program. Different VACV strains such as 

Lister-Elstree (Lister Institute, Elstree, England; propagated by the National Public Health 

Institute, Netherlands) (Fenner et al., 1988a), the New York City Board of Health strain 

(NYCBH e.g. Dryvax) (propagated by Wyeth Laboratories, USA) (Moss and Henderson, 

1999), the Tiantan strain (Temple of Heaven) that was used in Asia (Zhang et al., 2013) and 
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the EM-63 strain (NYCBOH) that was used in Russia (Fenner et al., 1988a) belongs to these 

first-generation smallpox vaccines. Because of the serious side effects, such as eczema vac-

cinatum, progressive vaccinia, generalized vaccinia, postvaccinal encephalopathy and en-

cephalitis in some individuals, the production and licensing of these vaccines stopped in the 

late 1980´s. 

The same smallpox vaccine strains employed for the manufacturing of first-generation vac-

cines were used for second-generation smallpox vaccines. These include the live attenuated 

smallpox vaccine ACAM2000 (NYCBOH; licensed in August 2007 by the FDA, USA) (Frey 

et al., 2007) or VACV LE-BN (Lister-Elstree strain produced by Bavarian Nordic, Mar-

tinsried, Germany) (Stittelaar et al., 2006; Uebler, 2008) produced in embryonic chicken fi-

broblast cells. Also, clonal virus variants plaque purified from traditional vaccine stocks were 

used. The second-generation vaccine strains were in vitro serially passaged in high numbers 

with sterile cultivation in cell culture with the purpose to increase attenuation and safety. 

Third-generation smallpox vaccines are even more attenuated vaccine strains that were devel-

oped by further passage in cell culture or animals as safer vaccines at the end of the eradica-

tion. A safer third-generation smallpox vaccine is for example the replication competent 

LC16m8 (licensed in 1975, Japan) (Kennedy et al., 2011) that was developed from Lister 

strain. It was passaged in primary rabbit kidney cells and has a deletion in B5R. Another 

third-generation vaccine is the replication-deficient MVA strain Imvanex (also designated 

Imvamune or MVA-BN, licensed in July 2013 by the European Commission) (Frey et al., 

2007; Garza et al., 2009) that was passaged on chicken embryo fibroblasts and its replication 

competency is limited in mammalian cell lines. Modified vaccinia virus Tiantan (MVTT) is a 

third-generation smallpox vaccine that was developed from the Asian Tiantan strain by re-

moving the hemagglutinin gene. Its mucosal application protected mice against the VACV 

Western Reserve (WR) strain (Yu et al., 2010). 

Fourth-generation smallpox vaccines represent non-infectious subunit vaccines that are com-

posed of few viral antigens or proteins  (Paran and Sutter, 2009). The proteins are expressed 

from DNA, recombinant viruses or replicons. The most frequently used proteins that were 

detected and used in combination are B5, L1, A33 and A27 (Aldaz-Carroll et al., 2005; 

Aldaz-Carroll et al., 2007; Fogg et al., 2004; Fogg et al., 2007; Golovkin et al., 2007; Heraud 

et al., 2006; Hooper et al., 2000; Hooper et al., 2004; Lustig et al., 2005; Xiao et al., 2007). 

They were effective in several animal models (e.g. non-human primates infected with MPXV) 

(Heraud et al., 2006). Fourth generation vaccines are for example a DNA vaccine that com-

prises a combination of IMV and EEV genes and core antigen and gave protection in rhesus 
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macaques against monkeypox challenge (Hirao et al., 2011). Another experimental vaccine 

consisted of a combination of IMV and EEV proteins and also provided protection in animal 

models (Buchman et al., 2010). A multi T cell epitope vaccine based on conserved VACV 

and VARV sequences is another fourth generation vaccine (Moise et al., 2011). It gave pro-

tection in a mouse model. 

1.9.2 Modified vaccinia virus Ankara (MVA) 

The highly attenuated strain modified vaccinia virus Ankara (MVA) belongs to the third gen-

eration of vaccinia strains and was developed in the 1960s. It was attenuated by more than 

570 passages in primary chicken embryo fibroblasts (CEFs). In comparison to the original 

strain, it contains six deletions that come with a 15 % loss of genetic information (Antoine et 

al., 1998; Meyer et al., 1991). The high number of MVA passaging led to a strongly reduced 

replication competency on most mammalian cell lines and the virus only replicated in CEFs 

(Earl et al., 2004; Meyer et al., 1991). MVA was proven to be avirulent (Mayr et al., 1978). 

Several studies have confirmed the good tolerability of MVA and in the 1970s over 120,000 

humans received primary vaccination in Germany (Hochstein-Mintzel et al., 1975; Mayr and 

Danner, 1978; Mayr and Danner, 1979). The ability of MVA to protect humans against 

VARV infections was not tested due to smallpox´ eradication (Frey et al., 2007; Garza et al., 

2009; Kennedy and Greenberg, 2009; Vollmar et al., 2006; von Krempelhuber et al., 2010). 

Studies later confirmed the good compatibility even in immunosuppressed individuals in dif-

ferent animal models (Cosma et al., 2003; Earl et al., 2004; Meyer et al., 1991; Stittelaar et 

al., 2001). MVA was also tested in an atopic mouse model and protective immunity against a 

lethal poxvirus challenge with VACV WR was proven (Knitlova et al., 2014). 

The smallpox vaccine Imvamune (also Imvanex or MVA-Bavarian Nordic (BN) is a deriva-

tive of MVA. It differs to all other MVA strains in that it has undergone six rounds of plaque 

purification and is based on a single clone from the passage MVA-597 that was derived from 

MVA-584 (i.e. 584th passage in CEF cells) and could induce an immune response in several 

studies. In several phase-II studies, Imvamune was tested to be safe in atopic and immuno-

suppressed individuals (Frey et al., 2007; Frey et al., 2013; Greenberg et al., 2013; von 

Krempelhuber et al., 2010; Walsh et al., 2013). However, Imvamune (also Imvanex or MVA 

BN) was tested in the calpox virus/marmoset model and did not induce protection (Dr. Stahl-

Hennig and Dr. Mätz-Rensing, personal communication). Its suitability as smallpox vaccine is 

yet unclear. 
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MVA (Imvamune and recombinant vaccinia virus) also gave solid protection in mice and ma-

caques against MPXV (Hatch et al., 2013; Zielinski et al., 2010). 

1.9.3 Modified vaccinia virus Tiantan (MVTT) 

During the smallpox eradication campaign in 1960-1970s, vaccinia Tian Tan (VTT) was the 

most extensively used smallpox vaccine in China for millions of people beween 1920 and 

1980 (Fang et al., 2005). The immunogenicity is good and the complications in humans are 

relatively mild. VTT is less virulent than VACV WR, but is still neurovirulent in mice and 

causes over 25 % body weight loss after an intranasal inoculation. Therefore, the use as a non-

invasive vaccine is restricted (Fang et al., 2005). The results showed that VTT should not be 

applied mucosally in humans and the need for further attenuation has been demonstrated 

(Fang et al., 2005). The virulence of VTT is of significant risk to children and immunocom-

promised adults (e.g. with HIV/AIDS, cancer, leukemia, lymphoma, multiple myeloma, etc) 

(Yu et al., 2010). As VTT was further attenuated through the deletion of inter alia, the he-

magglutinin gene, leading to the generation of the modified vaccinia virus Tiantan (MVTT) 

(Yu et al., 2010; Zhu et al., 2007). The weight loss and neurovirulence in mice after intranasal 

inoculation was not observed in MVTT. Unlike VTT, MVTT did not replicate in mouse brain 

and was also safe in immunideficient mice (Yu et al., 2010). Protection was induced after an 

infection with VACV WR after one-time intranasal and intramuscular vaccination with 

MVTT in a mouse model (Yu et al., 2010). So far it has only been tested in the mouse model 

and therefore represents a promising approach to test the vaccine efficacy in a primate model 

(Huang et al., 2009; Zhu et al., 2007).  

The needle-free mucosal application of MVTT was applied in the present studies (peroral and 

intranasal) and presents an easy alternative to intramuscular inoculation. It would also facili-

tate vaccination especially in developing countries (Meseda et al., 2005).  

1.9.4 Treatment of OPXV infections 

OPXV infections can be treated with ST-246, which is a specific inhibitor of EEV and pro-

vided 100 % protection against a lethal infection of different OPXVs in different animal mod-

els (Grosenbach et al 2008, Quenelle et al 2007, Quenelle et al 2007, Yang et al 2005). It was 

also efficiently used in the treatment of a two-year old with a severe eczema vaccinatum 

(CDC 2008). Although therapeutics for OPXV infections do exist (e.g. ST-246) cidofovir is 

the only approved treatment of OPXV infection. Cidofovir is a nucleoside analog and has 

been used for the treatment of Cytomegalovirus infections (De Clercq 2002). There are sever-
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al compounds for OPXVs existent that were studied in cell culture or in animal models (Har-

rison et al 2004, Smee et al 2002, Smee and Sidwell 2003, Kern 2003, Byrd et al 2004, 

Damaso and Moussatche 1998, Quenelle et al 2006, Reis et al 2006, Su et al 2005). Other an-

tiviral therapies like passive immunotherapy with anti-VACV immune serum (Berhanu et al 

2008), siRNAs against potential OPXVs (Dave et al 2006) or DNA aptamers with antiviral 

activity (Nitsche et al 2007) were tested. 

1.10 The common marmoset – Callithrix jacchus  

The common marmoset (CM, Callithrix jacchus) belongs to the Callitrichidae family and is a 

New World monkey. They are originally found in the northeastern coast of Brazil, in the 

states of Piaui, Paraiba, Ceará, Rio Grande do Norte, Pernambuco, Agolas and Bahia. The 

monkeys are brown, grey and yellow and have white ear tufts. They also have a long, banded 

tail (Zhang et al., 1996). The males and females have a small size of 16 to 21 cm and a weight 

of 300 to 350 g. Characteristic for this species are the claw-like nails (tegulaes) on their fin-

gers except for their halluxes (big toes). This characteristic is necessary for their diet and ar-

boreal lifestyle and is unique for this group. They live in small groups or in family organiza-

tions of about nine to 15 members with a flexible social structure and pairing system (Digby 

and Barreto, 1993; Rowe et al., 1996). Whilst most matings are monogamous, polygamy and 

polyandry have been observed in CM. CM commonly give birth to non-identical twins (Fig-

ure 1-7).  

 

Figure 1–7: Two adult Callithix jacchus individuals with twins (www.dpz.eu, 2017). Adults showing the typical white ear 

tufts. Photo by Manfred Eberle. 

 

The CM is exudativore-insectivore and feeds on plant exudates like gum, sap, latex and resin. 

They also feed on fruits, seeds, flowers, fungi, nectar, snails, lizards, tree frogs, bird eggs, 

nestlings and infant mammals. In the wild, CM can reach the age of 12 years (Rowe et al., 

1996). New World monkeys are increasingly used in biomedical research (Abbott et al., 

2003).  
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We used the CM as in the non-human primate model because compared to Old World mon-

keys it is more convenient and has certain advantages, such as lower breeding and animal 

husbandry costs and an easier handling. The CM is also immunological related to humans but 

natural chimerism occurs (bone marrow chimerism) (Uccelli et al., 1997). CMs are used in 

several animal models for human diseases e.g. infectious diseases like anthrax (Carrion et al., 

2007; Lever et al., 2008; Woollard et al., 2008), multiple sclerosis (Genain and Hauser, 1997; 

t Hart et al., 2000). Parkinson´s disease (Eslamboli, 2005; van Vliet et al., 2008), Alzheimer´s 

disease, stroke (Marshall and Ridley, 2003) and immunotoxicological studies (Neubert et al., 

1995) or spinal cord injury. Therefore, the CM represents a suitable model for studying vac-

cines and therapeutics. 

1.11 Animal models – a non-human primate model of OPXV infection 

Due to the fear of bioterrorism, and the increasing cases of MPXV and CPXV infections, re-

search for therapeutics and prevention of OPXV infection is ongoing e.g. DNA vaccines 

(Hirao et al., 2011; Hooper et al., 2003; Pulford et al., 2004; Sakhatskyy et al., 2008), protein 

vaccines (Buchman et al., 2010; Davies et al., 2005; Fogg et al., 2004), T cell epitope vac-

cines (Moise et al., 2011; Puissant and Combadiere, 2006; Sakhatskyy et al., 2006; Verardi et 

al., 2012).  

Beside mouse models, two well established NHP models exists: MPXV infection of cyno-

molgus macaques (Macaca fascicularis) (Hooper et al., 2004) and rhesus macaques (Macaca 

mulatta) as well as VARV-infected infection of cynomolgus macaques (Jahrling et al., 2004). 

So far, the best model for human smallpox is the MPXV-infected cynomolgus macaque mod-

el (Mucker et al., 2013). Because of the challenging handling with VARV (BSL-4), this mod-

el can only be used in BSL-4 laboratories. Howerver, working with MPXV (BSL-3) is lim-

ited. Compared to other, smaller animals, the macaques used in these studies are relatively 

expensive to keep. Also, a very high infectious dose via intravenous inoculation is necessary. 

Because of their close relation to humans these primates are the gold standard for OPXV 

models and for the testing of safer vaccines and antiviral drugs (Jordan and Hruby, 2006).  

The CPXVs, calpox virus, was accidentally discovered (1.2.5 Calpox virus) and represents a 

suitable virus to infect common CM (CM, Callithrix jacchus). It induces a reproducibly lethal 

and systemic disease that leads to cutaneous pox lesions (Kramski et al., 2010). CPXVs have 

been used in other non-human primate (NHP) models (Johnson et al., 2015; Johnson et al., 

2011) and the advantages and disadvantages of the here used calpox virus/marmoset model 

have been discussed in chapter 4.3.1 (4.3.1 Advantages and disadvantages of the calpox vi-
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rus/marmoset model). Schmitt and colleagues reviewed the different models of OPXV infec-

tions (see also Schmitt et al., 2014; Kramski et al., 2010). Mucker and colleagues successfully 

tested the susceptibility of CM to MPXV (Mucker et al., 2015). The CM were susceptible to 

MPXV but did not develop the classical pox-lesions (enanthema and exanthema) in contrast 

to the calpox virus where papulovesicular lesions were observed (Mätz-Rensing et al., 2012). 

Some of the main advantages of the here used calpox virus/marmoset model to other NHP 

models are their ability to work under BSL-2 conditions, the low infectious dose of calpox 

virus and the intranasal application route resembling the natural transmission route of human 

poxvirus infections. Furthermore, the disease in the calpox virus/marmoset model is compa-

rable to human smallpox infections. Therefore, this model was used to test the efficacy of two 

attenuated smallpox vaccines MVA and MVTT with different vaccination strategies. 

1.12 Aims and Scope 

The aim of the study was to give insight into the early pathogenesis of CPVX infection in the 

calpox virus/marmoset model. The study aimed to determine the portal of viral entry, analyze 

the early dissemination as well as the pathological sequelae of infection in a time-course 

pathogenesis study. 

The purpose of this study was also to analyze the immune response of the different vaccines 

and vaccination routes and the identification of protective immune correlates. 

This work is therefore composed of two parts (i) a pathogenesis study and (ii) vaccine studies. 

1.12.1 Pathogenesis study 

Earlier studies conducted with calpox virus primarily focused on the final stage of disease 

with characteristic pox-like lesions detected in skin, mucous membranes, lymph nodes, liver 

and spleen (Mätz-Rensing et al., 2012). The main purpose of this study was the further char-

acterization of calpox virus infection (1.2.4 Calpox virus) through the investigation of the ear-

ly phase of the disease for clarification of the pathogenesis since several aspects are still un-

clear (e.g. mode of transmission, reason of death).  

Therefore, a time-course pathogenesis study was conducted. Two different doses of calpox 

virus were used for intranasal inoculation of 15 CM. A group of three animals was infected 

with a high dose (3.5 x 105 pfu) of calpox virus and euthanized 3 dpi. Another group of 

twelve animals was infected with a 42-fold lower dose, with 10 median monkey infectious 

doses (MID50) 8.3 x 103 pfu of calpox virus. Each group consisted of three animals that were 

euthanized 5, 7, 10 and 12 days post inoculation. Serial necropsy was performed at predefined 
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time points to collect different samples and detect different parameters in organs and blood 

using virological analyses (2.1.5 Pathogenesis study). 

1.12.2 Vaccination studies 

Two vaccination studies were conducted to evaluate the protective effect of differently atten-

uated vaccines after intranasal inoculation of a lethal dose of calpox virus in common CM 

(CM). Kramski and colleagues have already reported on the calpox virus/marmoset model as 

a suitable animal model for the evaluation of new vaccination strategies and antiviral thera-

pies (Kramski et al., 2010).  

Vaccination experiments have been conducted using VACV LE BN, MVA and MVTT. 

The aim of this study was to analyze the cellular and humoral immune response of the differ-

ent vaccines and vaccination routes and to identify immune correlates of protection retrospec-

tively. 

Studies at the German Primate Center (Deutsches Primatenzentrum GmbH, DPZ) have shown 

that intradermal VACV LE BN vaccination protected the four tested CM against a calpox vi-

rus challenge after a 10-week, but not after a 4-week waiting period (unpublished data; Dr. 

Stahl-Hennig and Dr. Mätz-Rensing, personal communication). VACV LE BN is the “gold 

standard” for vaccine efficacy in this animal model.  

An early passage of MVA (MVA P568) was used in this study because the third generation 

smallpox vaccine Imvamune (also Imvanex or MVA BN) (Verardi et al., 2012) unexpectedly 

protected only two of four animals after a 4-week waiting period and did not induce protec-

tion after a 10-week waiting period in the calpox virus/marmoset model (Dr. Stahl-Hennig 

and Dr. Mätz-Rensing, personal communication) (1.9.2 Modified vaccinia virus Ankara 

(MVA)). Vaccination was done intramusculary (i.m.). While MVA provided solid protection 

in mouse and macaque models against MPXV infection, protection in the calpox vi-

rus/marmoset model is questionable. Here, CM were vaccinated intramuscularly with the ear-

ly passage of MVA (MVA P568) and challenged with calpox virus after a four and 10-week 

waiting period. 

Another attenuated vaccine used here was a MVTT, an attenuated variant of the vaccinia virus 

Tiantan that was used in China for vaccination against smallpox (Huang et al., 2009) (1.9.3 

Modified vaccinia virus Tiantan (MVTT)). MVTT is replication competent in many mamma-

lian cell lines but did not replicate in the mouse brain (Yu et al., 2010). Intranasal immuniza-

tion with MVTT protected mice from VACV WR (Knitlova et al., 2014). It is more attenuat-

ed than VACV LE BN, but less than MVA which did not provide solid protection of the CM. 
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In this study, CM were vaccinated with MVTT and challenged with calpox virus. Intranasally 

vaccinated macaques were challenged after a four and 10-week waiting period while perorally 

vaccinated macaques were challenged after a 10-week waiting period.  
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2 MATERIAL AND METHODS 

2.1 Material 

The in this study used materials are listed in the Tables 2-1 – Table 2-6. 

Table 2-1: General laboratory equipments and consumables.  

Name  Manufacturer  

-20 °C freezer 

-20 °C freezer, 4 °C fridge 

-80 °C freezer ultralow u57085 

4 °C fridge eco energysaver  

5-Plex Rotor-Gene Q  

96-well MaxiSorp Nunc-Immuno Plates  

Agar dishes (100 mm)  

Agilent DNA microarray scanner 

Centrifugation tube (15 ml, 50 ml) 

Centrifuge 3 s-r 

Centrifuge 5415R 

Centrifuge 5415R and 5424 

Centrifuge 5424 

Centrifuge sorvall discovery 90 with rotor tft 80.4 

Cover slips 

Cryotubes (1.8 ml) NUNC 

DNA-ExitusPlus 

Exsiccator, "Space Saver" F42025 

FACS tubes 

fine scale (0.1 mg-200 g) 

Flasks (750 mm2, 1750 mm2)  

Freezing device “mr. Frosty” 

Gel chamber 

Gel Documentation System 

Glascontainers 

Harmony MIXER UZUSIO VTX-3000L  

Hera freeze (-70 °C) fridge 

Heraeus Thermo Scientific, Multifuge 3S-R 

Hybridization System HybriWell HBW6L-2L 

Ice mashine 

Incubation chamber, Rotilabo-Dying chamber Stain Tray 

Incubator BBD6220 

Incubator Heracell 240i 

Incubator series 5400 

Inverted microscope, Axiovert 25 

L-60 Ultraspeed Centrifuge 

LSR II (multi-laser flow cytometer) 

magnetic stirrer MR 2002 

Multi well plates (12-well, 351143; 96-well, 353072) 

Grundig 

Liebherr 

Labotect 

Privileg  

Qiagen 

Thermo Scientific 

Sarstedt 

Agilent Technologies 

Greiner Bio-One 

Heraeus 

Eppendorf 

Eppendorf 

Eppendorf 

ThermoScientific 

ThermoScientific  

ThermoScientific  

AppliChem 

KNFLAB Neuberger 

GmBH 

Sarstedt 

Sartorius 

Sarstedt 

Nalgene 

BIO-RAD 

INTAS 

Schott 

LLG, Lab Logistic Group  

Heraeus 

Thermo Scientific 

Grace Bio-Labs 

Scotsman 

Carl Roth 

Heraeus 

ThermoScientific 

NAPCO 

Carl Zeiss GmbH 

Beckmann Coulter 

BD Biosciences 

Heidolph 
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Multichannel micropipette 

NanoDrop, ND-1000 Spectrophotometer  

Neubauer counting chamber  

Nitrogen tank 

Nitrogen tank -140 °C  

Non tissue culture treated plates (96-well) 

Öko -20 °C 

Parafilm m 

Pipette filter tips (10 µl, 100 µl, 200 µl, 1000 µl) 

Pipette tips rnase/dnase free (10 µl, 100 µl, 200 µl, 1000 µl) 

Pipettes (1-10 µl, 10-100 µl, 2-200 µl, 100-1000 µl) 

Polymax 1040 

PowerPac Basic power suppy 

Reaction tube (0.2 ml, 0.5 ml, 1.5 ml, 2 ml) 

Reaction tube (1.5 ml, 2 ml) 

Rotilabo-Dying chamber and slide holder 

Safe Lock Tubes 2.0 ml 

scale ED4202S-CW (0.01-4200 g) 

Serological pipette (2 ml, 5 ml, 10 ml, 25 ml)  

SONOPLUS ultrasound-homogenizer 

Sorvall Combi Plus Ultraspeed Centrifuge, DuPont 

Sorvall® RC-5B Refrigerated Superspeed Centrifuge; GS-3 

rotor 

sterile bench Safe 2020 

Sterile cell culture work bank 

Tecan Sunrise photometer  

Tissue culture treated paltes (96-well) 

TissueLyser, Retsch 

TruCount tubes 

Vortex Genie 2 

Water bath 

Water bath 
 

BD Falcon 

Eppendorf 

NanoDrop Technologies 

Carl Roth 

Chronos Messer 

Thermo Scientific  

BD falcon 

Privileg 

Carl Roth 

Eppendorf  

Sarstedt 

Eppendorf 

Heidolph 

BIO-RAD 

Sarstedt 

Eppendorf 

Carl Roth 

Eppendorf 

Sartorius 

Sarstedt  

Bandelin 

Thermo Scientific 

Thermo Scientific 

Thermo Scientific 

ThermoScientific 

Tecan Trading AG 

BD falcon 

Qiagen  

BD Biosciences 

Scientific Industries  

GFL 

Gebr. Rettberg 
 

 

Table 2-2: Chemicals and Reagents.  

Reagent/ chemical  Source  

3-Amino-9-EthylCarbazole 

3,3′,5,5′-Tetramethylbenzidine (TMB) Liquid Sub-

strate 

Agrose  

Albumin Fraction V 

anti-MVA rabbit immune serum 

anti-VACV serum 

Carboxyfluorescein succinimidyl ester  

casein 

Compensation beads 

Concanavalin-A  

Crystal Violet  

Sigma Aldrich 

Sigma Aldrich 

Biozyme 

Roth 

 
 Invitrogen 

Roth 

SpheroTech 

Sigma Aldrich 

Sigma Aldrich  
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Dimethylformamide 

Dimethylsulfoxid (DMSO) 

dNTPs  

Ethanol  

Ethanol for spectroscopy 

FACS flow, FACS rinse, FACS safe  

Fetal calf serum 

Fetal calf serum  

Formaldehyde (37 %)  

glucose (C6H12O6) 

Human TruStain FcX  

hydrogen chloride (HCl) 

Hydrogen peroxide (3 %) 

Isopropanol 

Loading dye (6x)  

Lymphocyte separation medium   

Methanol  

Milk powder 

Nuclease free water  

Pancoll 

PBS/0.5 % BSA 

Penicillin/streptomycin 

potassium chloride (KCl) 

potassium dihydrogen phosphate (KH2PO4) 

Primer  

RCB Lysis/Fixation Solution (10x) 

RPMI-1640 cell culture medium  

SecureSeal 

single-antibody-labeled compensation beads 

Sodium acetate (NaOAc) 

Sodium carbonate (Na2CO3) 

sodium chloride (NaCl) 

Sodium hydrogen carbonate (NaHCO3) 

Sodium hydrogen phosphate (Na2HPO4 ∙ 12 H2O) 

Streptavidin, V500 

TaqMan probes 

Trypsin, trypsin/EDTA 0.25%  

Tween 20 

Β-mercaptoethanol  
 

Sigma Aldrich 

Fermentas 

Sigma Aldrich 

Merck 

BD Biosciences  

PAN Biotech 

PAA laborato-

ries 

Roth 

Sigma Aldrich 

BioLegend 

Merck 

 Roth 

 PAA laborato-

ries  

Roth 

Roth 

Merck  

PAN Biotech 

BioLegend 

PAN Biotech 

Roth 

Roth 

TIB Molbiol 

BioLegend 

PAN Biotech 

Sigma Aldrich 

SpheroTech 

Merck 

Merck 

Roth 

Merck 

Roth 

BD Biosciences 

TIB Molbiol 

PAN Biotech 

Merck  

Roth 
 

 

Table 2-3: Reaction components and commercial kits.  

Kit/ component Source  

Fixable Viability Kit, Brilliant Violet 570 

ImmoMix 

Plasmid DNA purification NucleoSpin Plasmid  

QIAamp DNA Mini Kit (250)  

TaqMan® Universal PCR Master Mix  

BioLegend 

Bioline 

Macherey- Nagel  

Qiagen 

Life Technologies 
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Zombie yellow Fixable Viability Kit, Brilliant Violet 570, Live/Dead 
 

BioLegend  
 

 

Table 2-4: List of Antibodies. 

Antigen Clone Fluorochrome Manufacturer 

anti-CD45-Biotin 

anti-CD3 

anti-CD14 

anti-CD16    

anti-CD69 

anti-CD69    

anti-CD4  

anti-CD123   

anti-CD11b   

anti-HLA-DR    

anti-CD80 

anti-CD20    

anti-CD159a 

anti-CD45RA   

anti-CD8 

anti-CD28    

anti-CD95   

anti-CD95      

anti-CD4  

anti-CD11c    

anti-CD86    

anti-human IgG Fc   

anti-CD27  

anti-ɣδTCR  

anti-CD8a   

6C9 

SP 34-2  

M5E2 

3G8 

L78 

FN50 

RPA-T4 

9F5 

ICRF44 

L243 

L307.4 

H299 (B1) 

Z199.1 

2H4  

HIT8a 

L293 

DX2 

DX2 

L200 

3.9 

IT2.2  

HP6017 

O323 

5A6.E9 

DK25 

V500 

AF 700 

PerCP-Cy5.5 

APC-Cy7 

PerCP-Cy5.5  

APC 

V450 

PE 

Pacific Blue 

APC-Cy7 

V450 

FITC 

APC 

ECD 

PE 

PE-Cy7 

PE-Cy7 

APC 

PerCP-Cy5.5 

PE-Cy7 

APC  

PE 

Brilliant Violet 650 

FITC  

PE 

BD Biosciences 

BD Biosciences 

BD Biosciences 

BD Biosciences 

BD Biosciences 

BD Biosciences  

BD Biosciences 

BD Biosciences 

BD Biosciences 

BD Biosciences 

BD Biosciences 

Beckman Coulter 

Beckman Coulter 

Beckman Coulter 

BioLegend 

BioLegend 

BioLegend 

BioLegend 

BioLegend 

BioLegend 

BioLegend  

BioLegend 

BioLegend  

Caltag Laboratories 

Dako 

 

Table 2-5: List of secondary Antibodies.  

Antigen Manufacturer 

Alexa Fluor 647 peroxidase-conjugated AffiniPure F(ab´)2, 

(H+L1)-conjugated goat anti-human IgG antibody 

Cy5-conjugated AffiniPure F(ab´)2, (H+L1)-conjugated goat 

anti-mouse IgG antibody 

Alexa Fluor 647-conjugated AffiniPure F(ab´)2 fragment goat 

anti-human IgG (H+L1)    

Cy3-conjugated IgG Fraction Monoclonal Mouse Anti-Biotin 

 

 

 

Jackson ImmunoResearch Laboratories 

 

 

1detects heavy and light side chains 

 

Table 2-6: List of buffers and medium.  

Reagent/ chemical  Source/ ingredients  

FOXP3 Fix/Perm Buffer Set 

RBC Lysis/Fixation, 10x stock, diluted 

with ddH2O to 1x Solution 

PBS/BSA  

BioLegend 

BioLegend 

 

PBS/0.5 % BSA 
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FA-solution, 0.37 % formaldehyde (FA)-

solution 

Blocking buffer  

Coating buffer   

 

 

 

Phosphate-buffered saline (PBS) 

 

 

Dulbecco´s Modified Eagle Medium 

(DMEM) with 4.5 g/L Glucose 

tissue DMEM medium 

 

 

TMB-Substrate, 3,3′,5,5′ Tetra-

methylbenzidine (TMB) Liquid Substrate  

solution, System for ELISA, T0440  

1 mM TRIS buffer 

Stop solution 

Na2CO3 buffer  

 

Blocking buffer  

diluted in PBS 

 

2 % (w/v) milk powder + 10 % (v/v) FCS in PBS  

sodium carbonate (Na2CO3) buffer, 0.03 M (w/v), pH 11, diluted 1:2 in sodium 

hydrogen carbonate (NaHCO3) buffer, 0.07 M (w/v), pH 8 

1 % (w/v) sodium chloride (NaCl), 0.02 % (w/v) potassium chloride (KCl), 

0.289 % (w/v) sodium hydrogen phosphate (Na2HPO4 ∙ 12 H2O), 0.02 % (w/v) 

14 mM potassium dihydrogen phosphate (KH2PO4∙ 12 H2O), 1.37 mM sodium 

chloride (NaCl), 27 mM potassium chloride (KCl), 43 mM sodium hydrogen 

phosphate (Na2HPO4) 

PAN-Biotech 

 

DMEM, 2 % fetal calf serum (FCS) and a mixture of antibiotics (1 % penicillin-

streptomycin; 50 µg/ml neomycin; 100 µl/ml nystatin; 1 µg/ml amphotericin and 

1 % gentamycin)  

Sigma Aldrich  

 

 

1 mM TRIS, pH 9.0 

Hydrogen chloride, 1 M 

0.03 M (w/v), pH 11, diluted 1:2 in sodium hydrogen carbonate NaHCO3 buffer 

(0.07 M (w/v), pH 8)  

2 % (w/v) milk powder + 10 % (v/v) FCS in PBS 

 

2.2 Animal experiments 

2.2.1 Ethical statement 

All animal experiments were performed at the German Primate Centre Göttingen (Deutsches 

Primatenzentrum GmbH, DPZ) and followed the laws of the German Animal Welfare Act. It 

complies with the European Union guidelines (EU directive 2010/63/EU) on the use of non-

human primates for biomedical research. 

Animal experiments were supervised by governmental veterinary authorities. The experi-

ments were performed under licence number 33.9-42502-04-12/0745 issued by the LAVES 

(Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit). 

2.2.2 Non-human primates and animal husbandry 

All animals used for the present studies were bred and housed at the DPZ under standard con-

ditions. In total, 45 common CM (CM, Callithrix jacchus) were used for the present studies. 
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19 animals entered the pathogenesis study and 26 animals were used for the vaccination stud-

ies (Table 2-7 and 2-8).  

Prior to the experiments, CM were kept in the animal unit at Biosafety Level 2 (BSL-2) at the 

DPZ for acclimatisation purposes. They were housed in individual cages (130 x 58 x 80 cm), 

at room temperature (25 °C ± 1 °C). At any time, they had the opportunity to get in touch with 

each other. Balanced diet consisted of food pellets for primates supplemented with fresh fruits 

and mash. Fresh water was provided ad libitum. Naïve animals served as negative controls for 

the detection of calpox antigen by flow cytometry (3.2.2 Detection of calpox virus antigen in 

various immune cells by flow cytometry). 

Table 2-7: Specification of common CM (Callithrix jacchus) used for the pathogenesis study.  

Group Animal ID Sex  Age  

(years) 

Euthanasia 

(dpi) 

I 

 

 

14325 

14484 

14991 

m 

m 

m 

6 

5 

6 

31  

31 

31 

II 

 

 

14973 

14592 

14647 

f 

f 

m 

3 

4 

4 

52 

52 

52 

III 

 

 

14483 

14966 

14917 

f 

m 

f 

4 

3 

3 

72 

72 

72 

IV 

 

 

15149 

15121 

14306 

f 

f 

f 

2 

3 

4 

102 

10 2 

10 2 

V 

 

 

14702 

15122 

15095 

m 

m 

m 

5 

5 

5 

122 

122 

122,3 

control 15995 

15968 

16000 

15970 

f 

f 

m 

m 

5 

5 

5 

5 

-4 

-4 

-4 

-4 

1Animals were infected with 3.5 x 105 pfu calpox virus. 
2Animals were infected with 8.3 x 103 pfu calpox virus.  
3Animal was at the final stage of disease. 
4Naïve animals, not infected. 

dpi, days post infection; f., female; m., male. 

 

Table 2-8: Specification of common CM (Callithrix jacchus) used for the vaccination studies. 

Study  Vaccination  

group 

Vaccine Animal ID Sex  Age  

 

Waiting period  

between second  

immunisation 

and challenge1 

timepoint 

of death  

(dpi) 
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Study I  

 

 

 

 

 

 

 

 

 

I  

 

 

 

MVA i.m. 

 

 

14144 

14403 

14482 

14707 

f 

f 

m 

f  

5 

5 

5 

4 

4 weeks 

 

 

 

24* 

21* 

23* 

18*** 

control PBS i.m. 14406 

14646 

m 

m 

5 

5 

4 weeks 13* 

14* 

II MVTT i.n. 

 

 

14327 

14414 

14575 

15007 

f 

f 

m 

f 

5 

5 

5 

4 

4 weeks 84** 

90** 

90** 

19* 

control PBS i.n. 15006 

14415 

f 

f 

4 

5 

4 weeks 16*** 

12*** 

Study II III 

 

 

 

MVA i.m. 

 

 

14233 

14309 

14248 

14372 

m 

f 

m 

m 

6 

6 

6 

6 

10 weeks 

 

 

 

17* 

99** 

21* 

21* 

IV 

 

 

 

MVTT i.n. 

 

 

14169 

14603 

14409 

14469 

m 

f 

m 

f  

6 

6 

6 

6 

10 weeks 

 

 

 

17* 

16* 

99** 

101** 

control PBS i.n. 14365 f 5 10 weeks 12*** 

V MVTT p.o. 

 

 

15098 

14478 

14334 

15100 

m 

f 

m 

m 

5 

6 

6 

5 

10 weeks 

 

98** 

101** 

98** 

17* 

control PBS p.o. 14974 m 5 10 weeks 14* 

1The boost immunisation (control groups were mock-immunized with PBS) followed four weeks after the first vaccination in 

study I and ten weeks after first vaccination in study II. *Euthanasia because termination score was reached. **euthanasia at 

the end of the experiment. ***sudden death. dpi, days post infection; f., female; i.m., intramuscular; i.n., intranasal;  MVA, 

modified vaccinia virus Ankara ; MVTT, modified vaccinia virus Tiantan; m., male; PBS, phosphate-buffered saline; p.o., 

peroral. 

2.2.3 Necropsy 

All CM were adspected daily and checked for clinical symptoms. For the pathogenesis study 

animals were euthanised at predefined time points (2.1.6 Pathogenesis study). Serial necropsy 

was then performed at 3, 5, 7, 10 and 12 dpi. 

In the vaccination studies, animals were euthanized when the level of the predefined humane 

endpoint criteria was reached.  

Animals were anaesthetized with Göttinger Mixture II (GM II) (see Appendix: Table A.2–1) 

before intraperitoneal euthanasation with 100 mg/kg pentobarbital-sodium (Narcoren, Merial 

GmbH, Hallbergmoos, Germany).  
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2.2.4 Sampling 

Tissue  

Tissue samples of 29 organs (adrenal gland, axillary lymph node (LN), urinary bladder, bone 

marrow, buccal musoca, central nervous system (CNS), colon, esophagus, eyes, heart, ingui-

nal LN, kidney, liver, lung, mesenteric LN, muscle, nasal mucosa, ovar/epididymis, parotid 

gland, skin, small intestine, spleen, stomach, submandibular LN, tongue, tonsil, trachea, uter-

us/prostate, vagina/testicle) per animal were collected and stored -80 °C.  

Blood samples  

For taking blood animals were anaesthetized with 20-30 mg ketamine/kg body weight intra-

muscularly (i.m.). Syringes used for blood drawing contained EDTA to avoid clotting. Blood 

samples were collected at 0, 3, 5, 7, 10 and 12 dpi for the pathogenesis study. Samples were 

taken for the vaccination study I at 0, 5, 7, 10, 12, 14, 17, 19, 21, 28, 42, 56, 72 dpi and for the 

vaccination study II at 0, 5, 7, 10, 12, 14, 17, 21, 25, 29, 35, 42, 49 dpi.  

Plasma samples  

For vaccination study I and II plasma samples were obtained prior to vaccination and at 0 and 

14 dpi as well as at the latest available time points for serological assays.  

Plasma was either prepared from whole blood by centrifugation for 15 min at 3000 rpm or by 

centrifugation on a ficoll gradient for 25 min at 800 g.  

2.2.5 Design of the pathogenesis study 

For the pathogenesis study, in total 15 animals were infected intranasally with 100 µl of dif-

ferent doses of calpox virus suspension (Table 2-7). Initially, twelve animals were infected, 

three each group, with 10 median monkey infectious doses (MID50) corresponding to 8.3 x 

103 plaque forming units (pfu) of calpox virus according to Kramski et al. (2010), and three 

each were sacrificed at days 5, 7, 10 and 12 post inoculation (Figure 2-1). Because most sam-

ples from 5-dpi-animals were virus negative, another group of three animals was infected with 

a 42-fold higher dose (3.5 x 105 pfu) of calpox virus and euthanised at 3 dpi. All animals were 

infected by pipetting 50 µl of the calpox virus suspension into each nostril. 
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Figure 2–1: Design of the pathogenesis study. Three animals (group I, high dose) were infected intranasally with 3.5 x 105 

pfu of calpox virus and were sacrificed 3 days post infection. Each three CM of group II-V (low dose), were inoculated in-

tranasally with 10 median monkey infectious doses (MID50) corresponding to 8.3x 103 plaque forming units (pfu) of calpox 

virus and euthanised at days 5, 7, 10 and 12 post inoculation (low dose). 

 

Analysis plan of the pathogenesis study 

In total 29 organs (2.1.5 Sampling) per NHP were collected and tissue homogenates were 

prepared for virus titration and quantification of viral DNA by real-time polymerase chain 

reaction (PCR). In addition, 1 ml blood was collected from each animal for viral DNA quanti-

fication at the day of necropsy and only day 3 and day 12 animals for virus titration. Additon-

ally, in the day-3 and day-12 groups the presence of calpox virus antigen was determined by 

flowcytometric analysis of purified PBMCs and buffy coat. 

2.2.6 Vaccination studies 

Two vaccination studies were performed in the calpox virus/marmoset model to test the effi-

cacy of different live-attenuated vaccinia viruses (VACV), i.e. modified VACV Ankara 

(MVA) (kindly provided by Prof. Czerny, Microbiology and Animal Hygiene, Georg-August 

University Göttingen) and modified VACV Tiantan (MVTT) (kindly provided by Prof. Chen, 

AIDS Institute, Hong Kong University, China).  

Vaccination study I: Immunization and challenge 

Twelve animals were used for the vaccine study I (Figure 2-2) and distributed to three groups 

with four CM each. One group was immunized intranasally with 5x 107 plaque forming units 

(pfu) of MVTT. 50µl of the virus suspension was administered into each nostril. Another 
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group received MVA passage 568 intramuscularly at the same dose like that used for immun-

ization with MVTT. The applied volume was 1 ml, and 500 µl were injected into each ham-

string muscle. Four weeks after the final immunization (four-week waiting period) all vac-

cinees together with four mock-treated controls were exposed intranasally to 8.3x 103 pfu cal-

pox virus as described above (2.2.5 Design of pathogenesis study). Animals of the control 

group were mock immunized with PBS (Table 2-8). 

  

 

Figure 2–2: Scheme of vaccination study I. Four animals were immunized intramuscularly (i.m.) with 5x107 pfu of Modi-

fied Vaccinia virus Ankara (MVA) passage (P) 568 (vaccination group I). Vaccination group II was immunized with 5x107 

pfu of modified vaccinia virus Tiantan strain (MVTT) intranasally (i.n.). The respective control groups were mock immun-

ized. All animals were challenged i.n. with calpox virus four weeks after the second immunisation.  

 

Vaccination study II 

In the follow-up study (vaccination study II) fourteen CM were used (Figure 2-3). Four ani-

mals each were allocated to three vaccine groups, two mock-immunized animals served as 

controls. Two groups were identically immunized as described for vaccination study I. The 

third group received the same dose of MVTT identically as outlined above, but by the peroral 

route. For immunization with MVTT the two mucosal application sites were chosen because 

mucosal vaccination with the parental VTT in mice (i.n. or oral) induced higher and more sus-

tained levels of neutralizing antibodies then the i.m. and subcutaneous vaccination routes (Lu 

et al., 2011). In contrast to vaccination study I the time span between the booster immunisa-

tion and challenge virus exposure was prolonged to a 10-week waiting period to potentially 
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increase the protection of the CM. The challenge was performed as described (2.2.5 Design of 

pathogenesis study).  

 

Figure 2–3: Scheme of vaccination study II. The study design was modified from vaccination study I. Animals of Vaccina-

tion group III were immunized intramuscularly (i.m.) with 5x107 pfu of modified vaccinia virus Ankara (MVA) passage (P) 

568. Vaccination group IV was immunized with 5x107 pfu of modified vaccinia virus Tiantan strain (MVTT) intranasally 

(i.n.). Peroral (p.o.) immunisation with 5x107 pfu of MVTT was included as vaccination group V. There was a 10-week wait-

ing period between last vaccination and challenge with calpox virus. The control animals were mock immunized. i.m., intra-

muscularly; i.n., intranasally; MVA, Modified Vaccinia virus Ankara; P, passage. 

 

Analysis plan of the Vaccination studies 

Part of the results of vaccination study I were already compiled before the beginning of this 

thesis (detection and quantification of viral DNA copies in blood by real time-PCR). There-

fore, this study predominantly focused on the analysis of vaccination study II. The humoral 

response in plasma was analysed by ELISA, neutralisation assay, and antibody fine mapping 

by peptide microarray. In order to analyse subsets of innate and adaptive immune cells in 

whole blood, polychromatic flow cytometry was applied. The cellular response was analysed 

with the T cell proliferation assay using carboxyfluorescein succinimidyl ester (CFSE) for cell 

labelling. Calpox virus in blood was determined by virus isolation and real-time PCR.  

2.3 Cell culture 

Vero E6 cells are susceptible to calpox virus infection and were therefore used for analyses in 

these presented studies. According to the recommendations of the European Collection of 

Cell Cultures, Vero E6 cells were cultivated with Dulbecco´s Modified Eagle Medium 

(DMEM) with 4.5 g/L Glucose (PAN-Biotech GmbH, Aidenbach, Germany), 10 % FCS and 
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1 % Penicillin-Streptomycin in culture flasks (Sarstedt, Nümbrecht, Germany). When the 

cells reached 90 % confluence, they were washed once with phosphate-buffered saline (PBS) 

and incubated with trypsin/EDTA (PAN-Biotech GmbH, Aidenbach, Germany) at 37 °C. Af-

ter cells were properly detached from the surface of the culture flask which required approxi-

mately 5-7 min, they were washed in Vero E6 cell culture medium once. Thereafter, they 

were split 1:10 and seeded into new culture flasks.  

2.4 Viruses  

Calpox virus Calpox virus was isolated from the skin of an infected Callithrix jac-

chus, 2002, Robert Koch Insitute, Berlin, Germany, kindly provided by 

Dr. Ellerbrok, Robert Koch Institut, Germany 

VACV LE Vaccinia virus Lister Elstree, kindly provided by Prof. Czerny, Division 

of Microbiology and Animal Hygiene, Georg-August University of 

Goettingen, Germany 

MVTT Modified vaccinia virus Tiantan, working stock was kindly provided by 

Prof. Chen, AIDS Institute and Department of Microbiology, University 

of Hong Kong, China 

MVA, passage 568 Modified vaccinia virus Ankara, kindly provided by Prof. Czerny, Divi-

sion of Microbiology and Animal Hygiene, Georg-August University of 

Goettingen, Germany 

2.5 Isolation of peripheral blood mononuclear cells (PBMCs) and buffy coat 

from whole blood  

Whole blood was diluted 1:2 with PBS and added onto Pancoll (PAN-Biotech GmbH, Aiden-

bach, Germany). A centrifugation step followed at 800 x g for 25 min at room temperature. 

PBMCs banded at the interphase between Pancoll and plasma. Plasma was removed and 

stored at -80 °C for later analysis. Next, the PBMCs were removed and washed twice with 

PBS which included centrifugation at 135 relative centrifugal force (rcf) or xg (times gravity) 

for 10 min at room temperature in a total volume of 10 ml. Finally, the cell pellet was resus-

pended in 1 ml PBMC cell culture medium (RPMI-1640, PAN-Biotech GmbH, Aidenbach, 

Germany, + 10 % FCS, + 1 % P/S) and cell numbers were counted with a hemocytometer (2.3 

Cell culture). Purified cells were either immediately processed for further analyzes or shortly 

stored in the refrigerator.  
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Buffy coat was isolated from 600 µl of whole blood which was centrifuged for 15 min at 564 

x g. EDTA plasma was separated and stored at -20 °C for serological analyses. The phase un-

der the plasma contained the buffy coat and was visible as a white layer. The buffy coat was 

aspirated and washed in 1 ml PBMC cell culture medium, centrifuged for 5 min at 1200 rpm 

and the supernatant discarded. The pellet was resuspended in 120 µl PBS and 50 µl were used 

for flow cytometric analysis. 

2.6 Extraction of nucleic acid 

2.6.1 DNA extraction from blood samples 

Calpox virus DNA was extracted from whole blood. To this end, 100 µl of whole blood was 

diluted 1:2 with PBS. For DNA extraction the manufacturer´s protocol of the QIAamp® DNA 

Mini Kit was followed except that the DNA was finally eluted in 100 µl AE buffer provided 

from the kit. Eluates containing the DNA were stored at -20 °C. 

2.6.2 DNA extraction from tissue samples 

Calpox virus DNA was extracted from 29 tissue samples per animal (2.2.5 Design of the 

pathogenesis study). After defining the weight of each tissue sample, PBS and one 5 mm di-

ameter steel beads were added. The TissueLyser II (Qiagen) was then used for homogenisa-

tion. The homogenisation times varied among tissues (20 sec – 3 min). The supernatant was 

taken out gently after a centrifugation step (125 x g for 10 min). Aliquots of 100 µl served as 

the base for DNA extraction and for plaque assay. Manufacturer´s protocol of the QIAamp® 

DNA Mini Kit (Qiagen) was followed for DNA extraction from tissues. DNA was eluated in 

100 µl AE buffer and stored at -20 °C. 

2.7 Polychromatic flow cytometry  

Cells were stained with antibodies conjugated with fluorescent dyes and acquired using a LSR 

II (BD) equipped with three lasers (violet, blue and red). Compensation was calculated using 

appropriate single-antibody-labeled compensation beads (SpheroTech) to correct the overlap-

ping of emission spectra. The calculation was done by FACS DIVA software 6.1.3. Analysis 

was done with FlowJo 9.6 (Treestar, Ashland, Oregon). 
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2.7.1 Preparation of compensation controls 

Compensations were calculated with compensation beads (SpheroTech, Lake Forest, Illinois) 

and the respective antibodies and dyes. Compensation beads were resuspended in PBS and 20 

µl of this solution were added to FACS tubes. 1 µl of each antibody listed below was added to 

the respective FACS tube and the suspension mixed Beads were incubated at room tempera-

ture for 30 min in the dark. Next, 500 µl of RBC Lysis/Fixation solution (1x) were added. Af-

ter vortexing and incubation for 15 min in the dark at room temperature, the mixture was cen-

trifuged for 5 min at 1200 rpm and the supernatant discarded. 250 µl PBS/BSA were added, 

the mixture was vortexed and centrifuged. The supernatant was discarded and the single-

stained compensation beads were resuspended in 50 µl PBS/BSA, acquired and the compen-

sation was calculated using the FACS DIVA software 6.1.3. 

2.7.2 Polychromatic flow cytometric staining for calpox antigen in PBMCs  

PBMCs were stained and analysed by polychromatic flow cytometry in order to identify the 

type of immune cells infected with calpox virus. Blood from all animals sacrificed at the pre-

defined time points day 3 and 12 post infections were available for this kind of analysis (2.2.5 

Design of the pathogenesis study). First, 5 x 105 PBMCs purified from whole blood were 

stained for a number of cell surface markers. The staining cocktail comprised the following 

antibody conjugates: anti-human IgG Fc-PE, anti-CD45-Biotin, anti-CD3-AF700, anti-CD14- 

PerCP-Cy5.5, anti-CD16- APC-Cy7, anti-CD20-FITC, and anti-CD159a-APC, and a strep-

tavidin-V500 conjugate. All antibodies and the streptavidin were used at pretitrated concen-

trations. As a very first step, anti-CD45-Biotin was preincubated with Streptavidin-V500 for 

15 min (1:1000). 50 µl of the CD45-Biotin/Streptavidin mixture per test was added to 8 µl of 

the mixture of the antibody cocktail. This mixture (58 µl/test) was added to FACS tubes. 5 x 

105 PBMCs in 50 µl PBS/BSA were added and incubated with the antibodies for 30 min in 

the dark at room temperature (RT). Thereafter, one ml FOXP3 FIX/Perm Buffer (1x) was 

added, the mixture vortexed and incubated for 20 min in the dark at RT. Following centrifu-

gation for 5 min at 1200 rpm, the supernatant was discarded, and cells were resuspended in 

250 µl PBS/BSA and stored at 4 °C over night. The next day PBMCs were pelleted for 5 min 

at 1200 rpm, the supernatant discarded, and 1 ml FOXP3 Perm Buffer added. The mixture 

was then vortexed and incubated for 20 min in the dark at RT followed by cell pelleting for 5 

min at 1200 rpm. After that, the supernatant was discarded, 250 µl Perm Buffer added, and 

the mixture vortexed. The samples were centrifuged for 5 min at 1200 rpm and the superna-

tant was discarded again. 500 µl Perm Buffer were added, the mixture vortexed and incubated 
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for 15 min in the dark at RT. The samples were then centrifuged for 5 min at 1200 rpm and 

the supernatant was discarded. Next, 5 µl Human TruStain FcX™ in 100 µl PBS/BSA was 

added and vortexed. The mixture was incubated for 10 min in the dark at RT. 100 µl of anti-

VACV serum (1:50 or 1:100) in PBS/BSA were added. The mixture was incubated for 1 h in 

the dark at RT. 250 µl PBS/BSA were added, vortexed and centrifuged for 5 min at 1200 rpm. 

Thereafter, anti-human IgG antibody was added in 100 µl PBS/BSA according to the manu-

facturer´s instructions. The mixture incubated for another hour in the dark at RT. Finally, cells 

were washed once in Perm Buffer and then resuspended in 50 µl PBS/BSA. Cells were ac-

quired by flow cytometry and data analyzed by the FlowJo software.  

2.7.3 Polychromatic flow cytometric calpox antigen staining of cells from buffy coat 

In order to also test granulocytes for the presence of calpox antigen, buffy coats were isolated 

as described (2.5 Isolation of peripheral blood mononuclear cells (PBMCs) and buffy coat 

from whole blood) and analyzed essentially as described for PBMCs (2.5 Isolation of periph-

eral blood mononuclear cells (PBMCs) and buffy coat from whole blood). Blood from healthy 

donor animals was included to assess background reaction (Table 2-7), because no autologous 

prevalues were available.  

2.7.4 T cell proliferation assay 

T cell proliferation assay was performed through labeling PBMCs with carboxyfluorescein 

succinimidyl ester (CFSE), and analyzing cell division. After isolation (2.4 Isolation of pe-

ripheral blood mononuclear cells (PBMCs)) PBMCs were stained with 100 µl CFSE (10 µM) 

for 15 min at 37 °C and 5 % CO2. CFSE is a non-fluorescent and colourless cell staining dye, 

which passively diffuses into cells. It is covalently coupled with its succinimidyl group to in-

tracellular amines and is therefore retained within the cell. CFSE acetate groups are then 

cleaved by intracellular esterases, which convert CFSE molecules into fluorescent esters. 100 

µl FCS was added to stop the reaction. Cells were then washed in a centrifugation step at 350 

x g for 8 min at room temperature. After the supernatant was discarded, cells were resuspend-

ed in 1 ml PBMC cell culture medium (2.4 Isolation of peripheral blood mononuclear cells 

(PBMCs)). Subsequently, PBMCs were washed again (as decribed before), the supernatant 

was discarded and cell numbers were adjusted to 1.3 x 106 cells/ml PBMCs. 

One portion of the cells was left untreated as controls (RPMI), another portion was stimulated 

with 1 % concanavalin A (ConA, Sigma) and a further portion with inactivated modified vac-

cinia virus Ankara at a multiplicity of infection of 3. Cells were seeded for each formulation 
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in triplicate at a cell density of 2 x 105 cells per well of a U-bottom shaped 96-well plates in a 

total volume of 150 µl RPMI medium Next, either 50 µl of RPMI or the stimulating agents in 

the same volume were added and incubated at 37 °C and 5 % CO2 for six days. Cells were 

checked daily for proliferation using a microscope.  

Polychromatic flow cytometriy staining of the T cell proliferation assay   

After this stimulation period, cells were stained with a cocktail of fluorophore-labelled anti-

bodies to assess proliferation of T cell subsets. This cocktail contained anti-CD8-PE, anti-

CD45RA-ECD, anti-CD28-PerCP-Cy5.5, anti-CD69-PE-Cy7, anti-CD95-APC, anti-CD3-

AF700, anti-CD4-V450, and Zombie Yellow and fixable Viability kit for live/dead staining. 

CFSE-stained cells from triplicates were pooled, transferred to FACS tubes and washed once 

with 250 µl PBS/BSA. After centrifugation for 5 min at 1200 rpm, the supernatant was dis-

carded the cell pellet resuspended in 250 µl PBS/BSA, vortexed and the cells again centri-

fuged. Supernatant was discarded and the cells were stained with antibody mixture for 30 min 

in the dark at room temperature. All antibodies were used at pretitrated concentrations. Cells 

were then washed again with 250 µl PBS/BSA and were resuspended in 50 µl FA-solution. 

Cells were acquired and analyzed (see 2.7.2 Polychromatic flow cytometric staining for cal-

pox antigen in PBMCs).  

2.7.5 Polychromatic flow cytometric analysis of whole blood 

Polychromatic flow cytometric analysis of whole blood was performed in order to analyze the 

proportions of different adaptive and innate immune cells in the vaccination studies during 

immunization and after challenge.  

The staining cocktail comprised the following antibody conjugates: anti-CD45-Biotin, anti-

ɣδTCR-FITC, anti-CD3-AF700, anti-CD14- PerCP-Cy5.5, anti-CD16- APC-Cy7, anti-

ɣδTCR-FITC, anti-CD123-PE, anti-CD11c-PE-Cy7, anti-CD86-APC, anti-CD11b-Pacific 

Blue, and, and a streptavidin-V500 conjugate. All antibodies were used at pretitrated concen-

trations. CD45-Biotin was preincubated with Streptavidin-V500 for 15 min (1:1000). Per test 

50 µl of the CD45-Biotin/Streptavidin mixture was added to 23.5 µl of the mixture of the an-

tibodies. This mixture was added to FACS tubes. 50 µl of whole blood were incubated with 

this mixture for 30 min in the dark at RT. 1 ml of RBC Lysis/Fixation solution (1x) was add-

ed. The mixture was then vortexed and incubated for 15 min in the dark at RT. Cells were 

washed with 250 µl PBS/BSA, after pelleting dissolved in 50 µl PBS/BSA, and acquired and 

analyzed.  
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Results of the samples are given in % cell proportions after baseline correction. 

2.7.6 Polychromatic flow cytometric staining of whole blood for the determination of 

absolute numbers of different immune cell subsets 

Absolute cell numbers of different immune cells were assessed by staining whole blood. For 

this approach the staining cocktail comprised the following antibody conjugates:  anti-CD45-

Biotin, anti-CD3-AF700, anti-CD20-FITC, anti-CD8a-PE, anti-CD4-PerCP-Cy5, anti-CD69-

PE-Cy7, anti-CD159a-APC, anti-HLA-DR-APC-Cy7, anti-CD80-V450, anti-CD27-Brilliant 

Violet 650, and a streptavidin-V500 conjugate. All antibodies were used at pretitrated concen-

trations. CD45-Biotin was preincubated with Streptavidin-V500 for 15 min (1:1000). 50 µl of 

the CD45-Biotin/Streptavidin mixture per test was added to the mixture of the antibodies. 

This mixture was added to Trucount™ tubes. 50 µl of whole blood was carefully added above 

the metal retainer and the tube was vortexed. Then, cells were incubated with the mixture of 

the antibodies for 15 min in the dark at RT. Next, 450 µl of RBC Lysis/Fixation solution (1x) 

were added followed by vortexing followed by an incubation step for 15 min in the dark at 

RT. Each Trucount™ tube contains a known number of fluorescent beads, which are released 

when the lyophilised pellet is dissolved. Cells were acquired immediately after the incubation 

time and analyzed. The absolute number of positive cells (cells/µl) in each sample was then 

determined by comparing cellular events to bead events. The number of positive cellular 

events was divided by the number of bead events and then multiplied by the respective 

Trucount™ bead concentration divided by the used blood volume (50 µl). 

2.8 Virus quantification 

2.8.1 Virus quantification by endpoint dilution assay in tissue homogenates  

Infectious calpox virus in tissue homogenates was determined by endpoint dilution assay. For 

this, 100 µl of the tissue homogenate (2.6.2 DNA extraction from tissue samples) were used. 

The tissue homogenates were tenfold serially diluted from 10-1 to 10-4 with tissue DMEM 

medium. Viral dilutions were analysed in quadruplicate adding100 µl of each dilution to the 

pre-seeded Vero E6 cells in 96-well plates.  

Plates were kept at 37 °C and 5 % CO2. The cell monolayer was washed three times with 100 

µl PBS 24 h after inoculation and each well was supplemented with 100 µl of the tissue 

DMEM medium.  

Overall, the plates were incubates for four days at 37 °C and 5 % CO2. After that, intracellular 

immunostaining of the cells was performed. For permeabilization of cell membranes, the cells 
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were treated with methanol for 15 min at -20 °C. Thereafter, plates were washed PBS three 

times. Unspecific binding was blocked by incubating the cells with 2 % milk powder in PBS 

for 1 h, at 37 °C. To detect intracellular calpox virus antigen, a human anti-VACV hyperim-

mune serum kindly provided by Prof. Czerny. The human anti-VACV serum was diluted in 

1:100 in 2 % milk powder in PBS, and 50 µl were added to each well and incubated for 1 h at 

37 °C. After three washing steps with PBS an incubation with horseradish peroxidase-

conjugated secondary antibody (peroxidase-conjugated AffiniPure F(ab´)2, (H+L)-conjugated 

anti-goat anti-human IgG antibody) followed. The secondary antibody was 1:1000 diluted in 

2 % milk powder in PBS. 50 µl were added to each well and incubated for 1 h at 37 °C. The 

wells were then washed 3 times with PBS. Binding of conjugate to the calpox antigen was 

visualized by adding 50 µl per well of a substrate containing 2 µg AEC (3-Amino-9-

EthylCarbazole), 6 ml/l DMF (Dimethylformamide), 0.25 µl 3 % H2O2 (Hydrogen peroxide) 

and 1 ml/l 50 µl NaOAc (sodium acetate)) for 20 min. The colour reaction resulted in a dark 

reddisch-brown intracytoplasmic staining which was evaluated unter the microscope. Results 

are given as 50 % tissue culture infective dose (TCID50)/g tissue which were calculated ac-

cording to Reed and Muench method (Fridholm&Everitt, 2005; LaBarre& Lowy, 2001) 

2.8.2 Virus quantification by endpoint dilution assay in buffy coat  

A plaque assay was conducted to detect replicating calpox virus in blood by cocultivation of 

buffy coat leucocytes with Vero E6 cells. To this end, 100 µl of whole blood was used. Blood 

was centrifuged for 15 min at 2455 rpm. The upper phase containing the plasma was taken off 

and stored at -20 °C for serological analyses. The phase under the plasma contained the buffy 

coat and was visible as a white layer. The buffy coat was washed in 1 ml titration medium 

(Dulbecco´s modified Eagle´s medium (DMEM), 4.5 g/L glucose (PAN-Biotech) with 2 % 

fetal calf serum (FCS) and 1 % penicillin-streptomycin (P/S)), centrifuged for 5 min at 1200 

rpm, and the supernatant discarded. Leukocytes were resuspended in 1ml titration medium 

corresponding to an initial 1:10 dilution of the cell suspension. Samples were then serially 

diluted in log 2 steps up to 1:5120. 500 µl of each dilution were added to pre-seeded Vero E6 

cells in 12-well plates. As a control cells were incubated with 500 µl of Vero E6 cell culture 

medium. The plates were incubated for three days at 37 °C and 5 % CO2. In order to remove 

unadsorbed virus, cell monolayers were washed 24 h after inoculation, and 500 µl of fresh 

titration medium was added to each well. 

Further processing followed the protocol decribed in paragraph 2.8.1 except that the required 

volume were adapted to the 12-well plates. For the hyperimmune serum, the conjugated sec-
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ondar antibody and the substrate 500 µl per well were used. Primary plaques were defined as 

the biggest plaques of the same size and counted under the microscope. The secondary comets 

were not counted. Results are given in plaque forming units per µl blood [pfu/µl]. 

2.9 Detection of calpox virus 

Gating strategy for the detection of calpox virus antigen in immune cells 

The gating strategy for the identification of calpox infected innate and adaptive immune cells 

is depicted in Figure 2-4. In the first step, doublets were excluded from analysis by applying a 

singlets gate using forward scatter (FSC)-height (-H) against FSC-area (-A). Neutrophils, 

monocytes and lymphocytes as populations of leukocytes were analyzed based on side scatter 

(SSC)-area (-A) versus CD45 expression. Three different subsets of monocytes were classi-

fied by CD14 and CD16. Lymphocytes were characterized by CD3 and CD20 expression to 

distinguish between CD3+ T cells and CD20+ B cells as well as to identify CD3+CD20+ cells. 

NK cells were analyzed by gating on the CD3-CD20- population, followed by gating on 

CD159a+ cells. Intracellular calpox antigen was visualized through an anti-VACV immune 

serum.  
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Figure 2-4. Gating strategy for the detection of calpox virus antigen in immune cells from buffy coat by flow cytome-

try. Representative gating strategy is depicted. Following exclusion of doublets lymphocytes, monocytes and neutrophils 

were gated on CD45 expression. Within the lymphocyte population CD3+ T cells and CD20+ B cells were distinguished. NK 

cells were defined as CD3- CD20- CD159a+. Monocytes were further distinguished based on CD14 vs. CD16 expression. Cell 

populations are demonstrated as dot plots. Pink lines, one gate; pink number, events within a gate given as percentages of 

the previous population. 

2.10 Quantitative real-time PCR  

A real-time PCR assay was used for the detection and quantification of calpox virus DNA 

(Table 2-9 and 2-10). The plasmid standard contained the target sequence and was used for 

viral DNA quantification. The amplicon of the target region of the “ankyrin repeat-containing 

protein” (CAM58389.1, target size of 78 bp) was cloned into a TOPO-TA vector (Invitrogen, 

Karlsruhe, Germany) which was kindly provided by Dr. Constanze Yue (RKI, Berlin, Germa-

ny). Plasmid DNA was quantified in NanoDrop photospectrometer and plasmid copy numbers 

were calculated. The real-time PCR quantification of all samples was performed in duplicate. 

Primers used are given in Table 2-9, real-time PCR cycling conditions and components in Ta-

ble 2-10. Each real-time PCR run was analysed using the 5-Plex Rotor-Gene Q using the Ro-

tor-Gene Q Series Software 2.1.0. The viral DNA quantities were expressed as calpox DNA 

copy numbers per g tissue. The detection limit was 50,000 calpox DNA copy numbers/g tis-

sue. For blood the detection limit was 10 calpox DNA copies/µl blood. The data of viral load 

in blood in the vaccination study I were acquired by Tingchuan Shi preliminarily to this the-

sis. 
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Table 2-9: Oligonucleotides used in calpox virus-specific real-time PCR assay.  

Oligonucleotide name  Oligonucleotide sequence 5´3´ 

 

Calp1for 

Calp1rev 

TIB-1 

Amplicon length: 78 bp 

CCggCATgCgTgACTgAATT 

TAAgATgCgAgCCgAgAAgC 

FAM-TgCTCCgTgTTCTACCATCgTgCg-TMR 

The base “G” is given as small letter to avoid confusion with “C”; FAM = 5´-Modification 6-FAM label; TMR = 3´-

Modification TAMRA label. 

 

 

Table 2-10: Cycling conditions and components for calpox virus-specific real-time PCR.  

For detailed information about the oligo nucleotides, see Table 2-9. 

2.11 Serological analyses  

2.11.1  Binding antibodies by enzyme-linked immunosorbent assay (ELISA)  

An ELISA was performed to analyse the humoral plasma response for binding antibodies 

against whole viral particles of vaccinia virus (VACV) Lister Elstree (LE) and calpox virus. 

Antibody levels of different plasma samples (2.1.4 Sampling, Plasma samples) were deter-

mined to identify immune correlates. 

Virus purification 

To harvest and concentrate VACV LE and calpox virus which was then to be used as antigen 

for coating 17 tissue culture flasks (T175) were cultured with Vero E6 cells in a volume of 45 

ml. The cells were infected with a sufficient amount of the respective virus at 95 % confluen-

cy and harvested.  The cells were inoculated with VACV LE for two days and with calpox 

virus three days. Each virus/cell suspensions (VACV LE and calpox virus) were frozen at -80 

°C. Cell culture material was then thawed and centrifuged in a Sorvall centrifuge (Thermo 

Scientific, Sorvall® RC-5B Refrigerated Superspeed Centrifuge; GS-3 rotor) at 9000 rpm for 

Cycling conditions  

95 °C 10 min  

45  

repeats 

 

95 °C 

58 °C 

15 sec 

45 sec 

 

Approach 15 µl 

 

 

H2O 

Primer “Calp 1 for” 100 µM 

Primer “Calp 1 rev” 100 µM 

Probe “TIB-1” 100 µM 

TaqMan® Universal PCR Master Mix 

DNA 

4 µl 

1 µl  

1 µl 

0.5 µl 

7.5 µl 

1 µl 
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2 h, at 4 °C. The supernatant was discarded and the pellet resuspended in 40 ml 1 mM TRIS 

buffer, pH 9.0. Next, the resuspended cell debris was incubated for 30 min and then frozen at 

-80 °C. 

The next day the suspension was thawed in a waterbath at 37 °C, refrozen in liquid nitrogen 

and thawed again. The suspension was vortexted and treated thrice with a SONOPLUS ultra-

sound-homogenizer for one min followed by a centrifugation at 3218 rpm for 10 min, at 4 °C 

(Thermo Scientific, Heraeus, Multifuge 3S-R; 6446 rotor). Thereafter, the supernatant was 

transferred to a new falcon tube and purified with a sucrose cushion. To this end, as a first 

step purification was done with 10 ml of 36 % sucrose. A centrifugation step at 25000 rpm for 

90 min followed at 4 °C (Thermo Scientific, Sorvall Combi Plus, DuPont, Sorvall Ultraspeed 

Centrifuge, Sorvall AH0-629 Rotor 29000 rev/min MAX; SW 28 rotor). The pellet was re-

suspended in 200 µl 1 mM TRIS buffer, pH 9.0 and incubated overnight at 4 °C. The pellet 

was then again resuspended and transferred into a 1.5 ml E-cup. In the next step a sucrose 

gradient was prepared with a gradient mixer. For that, 20 % and 60 % sucrose and 1 mM 

TRIS buffer, pH 9.0 were used. The pellet was resuspended, vortexed and treated thrice with 

a SONOPLUS ultrasound-homogenizer for 1 min. After that, the virus was layered onto the 

sucrose gradient and a centrifugation step at 15000 rpm of 90 min at 4 °C followed (Beck-

mann Coulter Centrifuge, L-60 Ultraspeed Centrifuge; SW 40 rotor). The virus was visible as 

a band in the centrifugation tube and aspirated with a syringe by puncturing the tube. To elim-

inate the sucrose the concentrated virus suspension was then washed with 1 mM TRIS buffer, 

pH 9.0 in a centrifugation step at 25000 rpm of 1 h, at 4 °C (Beckmann Coulter Centrifuge, L-

60 Ultraspeed Centrifuge; SW 40 rotor). The pellet was incubated with 100 µl 1 mM TRIS, 

pH 9.0 at 4 °C overnight. The following day, the pellet was resuspended and aliquoted into 

cryotubes. After a protein determination according to LOWRY the aliquots were stored at -80 

°C. 

Enzyme-linked immunosorbent assay (ELISA)  

The respective antigen (VACV LE or calpox virus) was bound to 96-well MaxiSorp™ Nunc-

Immuno™ plates in a first coating step. For this, 100 µl/well of 5 µg/ml whole virus in coat-

ing buffer (Na2CO3 buffer) were added to each well. Plates were closed with a sealing foil. 

After an incubation period of 24 h at 4 °C, plates were washed three times with 200 µl/well of 

PBS. The plates were then treated with 100 µl/well of blocking buffer for 2 h at 37°C and 5 % 

CO2 to prevent unspecific binding of antibodies. Plasma samples were diluted 1:200 in block-

ing buffer and 100 µl/well were added in dublicate.  
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Plasma samples of each animal obtained prior to vaccination were used to calculate the cut-

off. Plates were closed with a sealing foil and an incubation step for 1 h at 37 °C. Plates were 

then washed five times with PBS. For detection of the primary antibody, the peroxidase-

conjugated AffiniPure F(ab´)2 Fragment Goat Anti-human IgG (H+L) antibodies were diluted 

1:1000 in blocking buffer and 100 µl/well was added to the plates. Plates were sealed fol-

lowed by incubation for 1 h at 37 °C. Plates were then washed ten times with PBS to elimi-

nate unbound secondary antibodies. In the next step, 100 µl/well TMB-substrate solution 

(3,3’,5,5’-tetramethylbenzidine) was added and incubated for 20 min at room temperature in 

the dark. The reaction was stopped by adding 50 µl/well Stop solution. Optical density was 

then measured using a Tecan Sunrise™ photometer equipped with the Magellan 6.4 Software. 

The samples were measured at 450 nm with a reference wavelength of 630 nm. A plasma 

sample with a known antibody status (anti-MVA rabbit 1987, kindly provided by Prof. Czer-

ny) served as positive control. 8 wells per plate were used as no template controls. 

Twice the OD value determined for each pre-immunization plasma was used to define the in-

dividual cut-off value and was subtracted from the values from immune plasma.  

2.11.2  B cell epitope fine mapping by peptide microarray  

2.11.2.1  Poxvirus peptide microarray layout 

The poxvirus peptide microarray was used to detect antibodies against linear epitopes of dif-

ferent orthopoxvirus antigens. 

15mer peptides overlapping by twelve amino acids were synthetised via SPOT technique 

(Frank, 1992), passed through the SC process (Dikmans, 2006) and spotted onto microscope 

glass slides. The spot size was between 200-250 µm and the peptide concentration in each 

spot was 360 fmol.  

Six proteins of VACV Western Reserve i.e. A27, A33, B5, D8, H3 and L1 were selected and 

used for synthesis of 475 peptides covering the entire proteins (Figure 2-5B).  

The GenBank accession numbers are as follows: A27 (YP_233032.1), A33 (YP_233038), B5 

(YP_233069.1) D8 (YP_232995.1), H3 (YP_232983.1) and L1 (YP_232970.1).  

The mature virion (MV) membrane-associated proteins (A27, D8, H3 and L1) and transmem-

brane proteins that are exposed on the outer surface of the enveloped virion (EV) (A33 and 

B5) were chosen because these determinants play a role in neutralization (Moss, 2011).  

In addition, ten cellulose-conjugated biotin spots served as positive controls and for orienting 

the Spot Calling program. Each chip contained eight identical arrays (Figure 2-5, A) with the 
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same arrangement of the spots on each array (Figure 2-5, B). An exemplary reaction of the 

first three peptides covering A27 and its respective amino acid sequence corresponding to 

spots #1-#3 in B is demonstrated (Figure 2-5, C).  

 

Figure 2–5: Layout of the poxvirus microarray chip. (A) The chip contained eight arrays arranged in the same manner. 

(B) Arrangement of spots on each array: yellow represents peptides of A27 antigen of Vaccinia virus Western Reserve; red, 

D8; blue, H3; grey, L1; green, A33 and orange, B5. The number serves as the batch identification and letters represent the 

chip name. (C) Amino acid sequence of the first three peptides covering A27, corresponding to spots #1-#3 in B (boxed in 

red).               

 

2.11.2.2  Microarray chamber  

The microarray chamber (Figure 2-6) was supposed to be used for the incubation of the mi-

croarray chips and was designed to analyze four microarray chips simultaneously. A home-

made microarray chamber was used (Hotop, 2014) to avoid leakage and for multiple analysis 

in a humidified system. It was slighty modified in this study. The D-197 metal springs ena-

bled a consistent pressure between the lid and the bottom that contains the microarray chips. 

To increase the pressure a 1 mm thick rubber cover (Figure 2-7) of 65 shore was glued with a 

special adhesive SB 2444 (Henkel AG & Co. KGaA, Düsseldorf, Germany) to the lid. 

   

Figure 2–6: The poxvirus microarray chamber was designed to analyze four microarray chips simultaneously. Four 

microarray chips were placed into the metal chamber and the first antibody mixture that contained the plasma samples was 

added to the microarray chip. 
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Figure 2–7: Rubber cover of the poxvirus microarray chamber´s lid depicted from below.               

2.11.2.3  Validation of the chip using mAbs against known epitope regions 

The poxvirus peptide microarrays were pretested to evaluate the reactions by using monoclo-

nal antibodies (mAbs) against a known epitope. The screening procedure of the microarray 

chip was performed as previously reported with few modifications (Hotop et al., 2014). Brief-

ly, the microarray chip was washed with absolute ethanol for 3 min. It was then washed with 

Tris-buffered saline (TBS) thrice for 3 min. The blocking step was done with blocking buffer 

using 2 % casein in 0.05 % Tween TBS (T-TBS) for 60 min, at room temperature to block 

unspecific reactions. Then it was washed with T-TBS three times, each for 3 min. Protein 

concentrations were measured using NanoDrop® ND-1000 Spectrophotometer (NanoDrop 

Technologies, Inc., Wilmington, DE, USA). Next, the monoclonal antibody was diluted to 20 

mg/µl in the blocking buffer. Then 60 µl of the diluted antibody were placed onto the chip. 

The poxvirus microarray chip was designed to screen 4 samples simultaneously in repeated 

determination, using an adhesive chamber (SecureSealTM, Sigma-Aldrich Co. LLC, USA) be-

cause the incubation had to be done under humidified conditions. Additionally, a microarray 

chamber, homemade press tool (2.11.2.2 Microarray chamber) was used to avoid leakage. Af-

ter incubation of the antibody was incubated overnight in a cooling room at 4 °C, three wash-

ing steps were performed with T-TBS for 5 min. Next, 60 µl of the secondary antibody mix-

ture containing 1:240 diluted Cy3-conjugated streptavidin and Cy5-conjugated goat anti-

mouse IgG (Jackson Immunoresearch Laboratories, West Grove, PA, USA) was added onto 

the chip together with an object plate.  

After an incubation of the chip for 90 min at room temperature in a humidified chamber it 

was washed two times with T-TBS, three times with distilled water, each for 5 min. The chip 

was then dried using compressed air and immediately analyzed with an Agilent DNA micro-

array scanner (Agilent Technologies, USA).  
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2.11.2.3  Poxvirus scanning chip in the calpox virus/marmoset model  

Samples from the vaccination studies I and II were tested with the optimized protocol. The 

blocking buffer was 2 % casein in 0.05 % Tween TBS (T-TBS) with 5 % Albumin Fraction 

V. The first antibody solution contained the plasma sample diluted 1:60 in blocking buffer. 

The mixture of secondary binding reagents contained 1:240 diluted Cy3-conjugated streptavi-

din and Alexa Fluor® 647-conjugated AffiniPure F(ab´)2 fragment goat anti-human IgG 

(H+L) (Jackson Immunoresearch Laboratories, West Grove, PA, USA). All other steps were 

identical to those described in the previous paragraph. 

2.11.2.4  Screening procedure and data acquisition of the microarray chip 

The microarray chips were scanned with an Agilent DNA microarray scanner (Agilent Tech-

nologies, USA). The true signals were identified by the semi-automated Spot Calling method 

(Hotop et al., 2014) as followed: after screening, the obtained photo was first saved as a TIFF 

file. The fluorescence intensity of each spot was calculated using the ImageJ Software 

(Schneider et al., 2012). Two times the averages of the sum of fluorescence intensities from 

all spots plus one standard deviation were calculated and used as cut off using Excel (Mi-

crosoft, version 2010).  

2.11.3 Plaque reduction neutralization test (PRNT)  

Staining reagents and antibodies 

Crystal Violet   Sigma-Aldrich C3886-25G; 077K07401 Crystal Violet 

anti-MVA rabbit  kindly provided by Prof. Czerny, Microbiology and animal 

immunserum;   hygiene, Georg-August University Göttingen 

11.06.1997 

 

To analyze the anti-poxvirus neutralization capacity of the different plasma samples of vac-

cination study I and II, a microtiter plaque reduction neutralization test (PRNT) was estab-

lished because of the small amounts of plasma available from each animal. First, 3 x104 Vero 

E6 cells/well were seeded into 96-well plates with DMEM and incubated for approximately 

24 h at 37 °C and 5 % CO2. The cells should be 70 % confluent at the start of the test for a 

good read-out.  Plasma samples were serially diluted with DMEM and 100 µl were mixed 

with 100 TCID50 of the respective virus (VACV LE and calpox virus) in 100µl. Sample/virus 

mixture incubated for 1 h at 37 °C and was then added to the Vero E6 cells. After adsorbance 

for 1 h at 37 °C and 5 % CO2 plates were washed twice with PBS. Cells were then incubated 

in 200 µl DMEM at 37 °C and 5 % CO2 for 72 h. After that, medium was removed and plates 
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were stained with 100µl crystal violet (1.5 % in 80 % ethanol)/well for 2 min and finally 

washed with H2O. The plaques per well were then counted. When 50 % plaque reduction 

compared to the virus control was observed, the reciprocal of the respective dilution was con-

sidered the neutralizing titre. The average result of a duplicate was determined. Anti-MVA 

rabbit immunserum was used as positive control (rabbit hyperimmune serum, anti-MVA anti-

body was kindly provided by Claus Peter Czerny). 

2.11.4 Gating strategy for the identification of innate and adaptive immune cells 

Gating strategy for the identification of innate and adaptive immune cells is depicted in Figure 

2-8. After gating on singlets, lymphocytes were analyzed by gating on SSC-Alow CD45+ cells. 

γδ T cells and T cells were analyzed in the next step (expression of γδ-TCR vs. CD3).  

To analyze monocytes and DCs, another gating scheme was used (Figure 2-8). Following ex-

clusion of doublets (by a single gate) as well as γδ T cells and conventional T cells, macro-

phages (MQs; CD14- CD16+) and monocytes (CD14+ and CD16+) were gated. The CD14- and 

CD16- population was further analyzed regarding CD11c and CD123 expression to differenti-

ate between myeloid dendritic cells (mDCs; CD11c+ CD123-) and plasmacytoid dendritic 

cells (pDCs; CD11c- CD123+). Expression of the activation marker CD86 was analyzed on 

monocytes and macrophages. 

 

                             
Figure 2-8. Gating strategy for the identification of innate and adaptive immune cells by flow cytometry. Representa-

tive dot plots of #15095 are shown. Following exclusion of doublets lymphocytes were gated based on CD45 expression. γδ 

T cells and T cells were then analyzed. Monocytes and DCs were analyzed using another gating scheme. Following exclu-

sion of doublets as well as γδ T cells and conventional T cells, macrophages (CD14- CD16+) and monocytes (CD14+ and 

CD16+) were gated. The CD14- and CD16- population was analyzed based on CD11c and CD123 expression to differentiate 

between myeloid dendritic cells (CD11c+ CD123-) and plasmacytoid dendritic cells (CD11c- CD123+). Expression of the 
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activation marker CD86 was analyzed on monocytes and macrophages and CD14++ cells. Pink lines, one gate; pink num-

ber, events within a gate given as percentages of the population before. 

2.11.5 Gating strategy to assess absolute cell counts of innate and adaptive immune cells 

The gating strategy for the identification of absolute counts of innate and adaptive immune 

cells is depicted in Figure 2-9. First, doublets were excluded by gating on singlets. Thereafter, 

lymphocytes were analyzed by gating on side scatter SSC-A against CD45 expression. CD3+ 

T cells and CD20+ B cells were analyzed in the next step. T cells were divided into CD4+, 

CD8+ and CD4+ CD8+ T cells and expression of the activation markers CD69 and HLA-DR 

(human leukocyte antigen – antigen D related). B cells were further analyzed for their expres-

sion of the activation marker CD80 and the memory marker CD27. NK cells were identified 

by gating on CD3- CD20- cells, followed by gating on CD8+ CD159a+ cells. Finally, CD69 

and HLA-DR expression by NK cells and T cells was analyzed.  

 

Figure 2-9. Gating strategy for the identification of absolute counts of innate and adaptive immune cells by flow cy-

tometry. Representative dot plots of #15095 are shown. To calculate absolute cell counts the number of cells of interest is 

put in relation to a defined amount of beads. The bead gate is set based on the fluorescence signal of FITC versus Alexa Fluor 

700. Following exclusion of doublets lymphocytes were gated based on CD45 expression. CD3+ T cells and CD20+ B cells 

were then analyzed. T cells were divided into CD4+, CD8+ and CD4+ CD8+ T cells and expression of the activation markers 

CD69 and HLA-DR. B cells were analyzed regarding expression of the activation marker CD80 and the memory marker 

CD27, NK cells were identified by gating on CD3- CD20- cells, followed by gating CD8+/- CD159a+ cells, CD69 and HLA-

DR expression by NK cells was analyzed. Pink lines, one gate; pink number, events within a gate given as percentages of 

the population before. 

2.11.6 Gating strategy for T cell proliferation assay 

The gating strategy is depicted in Figure 2-10. CD3+ T cell proliferation was analyzed by gat-

ing first on singlets (exclusion of doublets) by applying forward scatter FSC-A against FSC-

H. Then gating was done on CD3+ T lymphocytes excluding dead cells. Next CD4+, CD8+ 

and CD4+CD8+ cells (T cells) were identified. Stimulation of Callithrix jacchus T cells using 
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concanavalin A (Con A) results in activation, proliferation and differentiation of both CD4+ 

and CD8+ T cells and served as positive control. The proliferative activity of live CD3+ T 

cells treated with ConA, MVA or medium (negative control) were exemplified for one animal 

(#14478) at 29 days post challenge (dpc).  

CFSE- cells represent the proliferating cells. 

 

Figure 2-10. Representative gating strategy of CFSE-stained T cells from ConA or MVA-stimulated PBMCs from 

vaccination study II. PBMCs were labeled with the fluorescent dye CFSE to analyze T cell proliferation. PBMCs were ei-

ther left untreated or stimulated with MVA or ConA as a control for 6 days. Subsequently PBMCs were stained for flow 

cytometric analyses. Representative dot plots from #14478 are shown. Following exclusion of doublets, dead cells were ex-

cluded and CD3+ T cells were gated. These were further divided into CD4+, CD4+CD8+ and CD8+ T cells. Loss of CFSE 

signal was analyzed to evaluate proliferating cells (CFSE- cells). ConA, Concavalin A; MVA, modified vaccinia virus Anka-

ra; pfu, plaque forming units; pink lines, one gate; pink number, events within a gate given as percentages of the population 

before. 

2.12 Statistical analyses 

Statistical analyses were performed with GraphPad Prism v5.0. The mean  standard devia-

tion (SD) or median with range were determined. To detect significant differences in non-

related samples, the non-parametric Mann-Whitney-U-test was used. For related samples, the 

paired t-test was used. The differences were considered significant when the significance level 

(p-value) was smaller than 0.05 (* = p < 0.05; ** = p < 0.01; *** = p < 0.001).  
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3 RESULTS 

3.1 Pathogenesis study - portal of viral entry (I) 

3.1.1 Detection of calpox virus in organs 

The aim was to determine the portal of viral entry by sacrificing infected animals in the pre-

symptomatic phase at defined time points, i.e. 3, 5, 7, 10 and 12 days following inoculation. 

Therefore, a broad panel of different organs was analysed for the presence of calpox virus. 

The organs were analyzed for infectious calpox virus and calpox viral DNA.  

3.1.1.1  Replicating calpox virus and calpox DNA copies in different organs at dif-

ferent time points after infection 

Infectious virus was quantified in tissues by endpoint dilution assay and compared to qRT-

PCR results using the same tissue preparation (Figure 3-1 and 3-2). Data generated by the two 

different analyses were normalized to one gram tissue. As it was difficult to anticipate at 

which time point after viral inoculation first traces of virus were detectable by the different 

virological techniques, first of all animals being inoculated for five days with the low viral 

dose were sacrificed. Actually, low levels of viral DNA (7x104-4.7x106 copies/gram tissue) 

were found in two of the three animals in very few organs close to or representing the inocu-

lation site, i.e. in one animal in the tonsil and in the other one in nasal mucosa and subman-

dibular lymph node (Figure 3-1A), but no infectious virus was isolated from any of the tissues 

analysed. Next, animals inoculated with the same dose were euthanized at day 7, 10 and 12. 

In the day-7-animals the data indicated a systemic spread of the virus. When merging the 

findings of all three animals of this group, all organs tested positive for viral DNA and from 

half of them infectious virus was detected. Notably, highest viral loads were observed in one 

animal in the nasal mucosa (animal 14483: 2.2x1011 DNA copies and 2.3x108 TCID50). Viral 

loads were considerably lower in the other organs ranging from approximately 105-109 DNA 

copy numbers and 102-4x107 TCID50 (Figure 3-1B). At day 10, viral loads obviously had not 

increased compared to those observed in the animals sacrificed three days earlier. On this day 

of necropsy, however, infectious virus was more readily detectable in around 50% of the tis-

sues. Levels of infectivity were either similar to viral DNA copies (animal 15149, nasal mu-

cosa) or between one and five orders of magnitude lower than the copy numbers (Figure 3-

1C). Altogether, highest viral levels were observed in the animals sacrificed at day 12 reach-

ing up to 1016 copy numbers (animal 14702, nasal mucosa, bone marrow and adrenal gland) 

and up to 109 infectious units (animal 14702, bone marrow). Remarkably, from each organ of 
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mostly all three animals infectious virus was recovered at this late time point (Figure 3-1D). 

Taken into account the very low viral loads detected at day five following calpox infection 

thus rendering it unlikely to find any virus at an earlier time point, the viral dose was in-

creased 40-fold to study infection events on day 3.  In two of the three animals sacrificed at 

that day, viral DNA and infectious virus was found, one further animal remained negative for 

any viral parameter in any organ. Those two animals exhibited 6x108-5x109 viral DNA copy 

numbers as well as considerable levels of infectious virus (105 TCID50) in the nasal mucosa. 

Moreover, in one of the two, tonsil, tongue lung, and eyes tested positive for calpox DNA, but 

copy numbers were by three or more orders of magnitude lower compared to the nasal muco-

sa (≤106 copy numbers). Two thousandfold lower numbers of infectious virus (~ 50 TCID50) 

were recovered from tongue and esophagus when compared to the nasal mucosa. All the other 

organs remained negative for the two viral parameters (Figure 3-2). 

Figure 3-1. Calpox virus DNA copy numbers and TCID50 of infectious calpox virus in different tissues at different 

time points after i.n. infection. (A-D) Comparison of calpox DNA copy numbers per g tissue (red) and infectious calpox 

virus titre (black) at different time points after infection. Tissues are indicated at the x-axes. Calculation of the DNA copy 

numbers for calpox virus is based on the mean value of duplicate measurements and a plasmid standard for the real-time PCR 

assay. The detection limit is 50,000 calpox DNA copy numbers/g tissue. All day-5 animals were negative for infectious virus; 

BM, buccal mucosa; CNS, central nervous system; dpi, days post infection; gl, gland; ing, inguinal; int, intestine; LN, 

lymph node; mes, mesenteric; NM, nasal mucosa; sub, submandibular; TCID50, 50 % tissue culture infective dose.  
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Figure 3-2. Calpox virus DNA copy numbers and TCID50 of infectious calpox virus in different tissues three days after 

i.n. infection. Comparison of calpox DNA copy numbers per g tissue (red) and infectious calpox virus titre (black) at 3 dpi. 

Tissues are indicated at the x-axes. Calculation of the copy numbers for calpox virus is based on the mean value of duplicate 

measurements and a plasmid standard for the real-time PCR assay. The detection limit is 50,000 calpox DNA copy num-

bers/g tissue. One animal (#14991) was negative in real-time PCR and plaque assay; BM, buccal mucosa; CNS, central nerv-

ous system; dpi, days post infection; gl, gland; ing, inguinal; int, intestine; LN, lymph node; mes, mesenteric; NM, nasal 

mucosa; sub, submandibular; TCID50, 50 % tissue culture infective dose.  

3.2 Pathogenesis study - early dissemination and pathological sequelae of infec-

tion (II) 

In the pathogenesis study the analysis of the early dissemination and pathological sequelae of 

infection (II) was in focus. The detection of the start of viremia and calpox virus antigens in 

immune cells were aims of the study.  

3.2.1 Detection of calpox virus in blood 

The start of viremia as determined by real-time PCR is dose dependent 

Calpox viral DNA in blood was determined by real-time PCR at different time points after 

infection. Earliest calpox viral DNA in blood was detected in one of the two day-3 animals 

(#14484) (Figure 3-3) which also was positive for viral DNA and infectious virus in organs 

close to the virus application site. Following inoculation with the lower viral dose, calpox vi-

ral DNA became first detectable in two of three animals at 7 dpi (#14966 and #14483) while 

all day-5 animals did not exhibit viremia. Unexpectedly, one of the day-10 animals remained 

calpox viral DNA negative in blood, although virus could be isolated from a number of or-

gans. By contrast, all day-12 animals were viral DNA positive in blood exhibiting the highest 

copy numbers. The start of viremia is dose dependent since viremia was detected at 3 dpi with 

the high dose (3.5 x 105 pfu calpox virus) and at 7 dpi with the low dose (8.3 x 103 pfu calpox 

virus).  
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Figure 3-3. Calpox virus DNA in blood was determined by real-time PCR at the indicated time points after infection. 
d, day; The detection limit was 10 calpox DNA copy numbers/ µl blood. 

 

First replicating virus was detected by cocultivation of buffy coat in one animal of the 

low-dose group at 7 days post infection (dpi)  

To get an estimate on how calpox DNA copy numbers in blood translated into infectious vi-

rus, the calpox virus titre was determined by cocultivating leucocytes from buffy coat with 

Vero E6 cells. For this analysis, material was only available from the groups sacrificed on day 

3 and day 12 after infection. In addition to the day of necropsy, blood from the day-12 group 

was also tested at days 3, 7, and 10. In contrast to the results from tissues, in the day-3 group 

no replicating virus was isolated from blood (Figure 3-4). First replicating virus was found in 

buffy coat of one animal (#15095) from the day-12 group at 7 dpi. Infectious virus particles 

[pfu/µl] were detected in all tested animals at 10 dpi and at the last available time point at 12 

dpi. The highest number of 3808.51 pfu/µl was reached in animal 15095 at 12 dpi. 
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Figure 3-4. Replicating calpox virus in blood at different time points after infection by cocultivation of buffy coat with 

Vero E6 cells. First replicating virus (1/3) was detected in the low-dose group at 7 dpi. d, day; pfu, plaque forming units. 

3.2.2 Detection of calpox virus antigen in various immune cells by flow cytometry 

Although viremia was detectable either by PCR or limiting dilution assay, the infected cell 

type within the leucocytes could not be identified by these two techniques. To analyze which 

immune cells were infected, multicolour flowcytometry was used to differentiate between 

neutrophils, monocytes, T and B cells and NK cells. For this type of analysis again only blood 

from the groups sacrificed on day 3 and 12 after infection was available. The gating strategy 

is shown in the Materials and Method section (Figure 2-4).  

Calpox virus antigen positive (calpox+) cells were already detected in the day 3 group 

infected with the high calpox dose 

Flowcytometric analyses revealed that calpox antigen was detected in the CD3+CD20+ lym-

phocyte subset in two out the three monkeys, in the classical monocytes (CD14+CD16-) and in 

the intermediate monocytes (CD14+CD16+) of one of the day-3 animals (Figure 3-5, Figure 3-

6).  

In day-12 animals calpox antigen became readily detectable in all investigated immune cells 

at varying levels except for the neutrophils, which remained almost entirely negative for cal-

pox virus antigen. Strikingly, all different immune cells of animal 15095 were positive for 

calpox protein. The animal 15095 was euthanized at the planned 12 dpi and also for ethical 

reasons because of its moribund endpoint. In this animal the highest percentage of infected 

cells was observed in the CD3+CD20+ cell population (almost 100 %), followed by around 75 

to 90 % infection of B cells and the different monocyte subtypes. CD3+ T cells were infected 

by 40 % and NK cells by 55 %. The other two animals presented with a varying pattern of 
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infection in the different cell types. However, calpox virus antigen was preferentially ob-

served in the CD3+CD20+ subset and the monocytes.  

The results regarding the detection of calpox+ cells in PBMCs were similar to the results of 

buffy coat. The courses were identical to the results in buffy coat, but the values in the con-

troles were notably higher. Thus, only data from buffy coat staining are shown. 

In summary, calpox virus infected in the initial phase preferentially CD3+CD20+ and CD14+ 

cells, and in the later phase also NK cells and B cells. 

 

Figure 3-5. Calpox virus antigen was detected in immune cells of buffy coat by flow cytometry. The day-3 animals re-

ceived a higher dose (3.5 x 105 pfu calpox virus) than the animals euthanized on day 12 (8.3 x 103 pfu calpox virus). Medians 

with the range of percent calpox antigen positive (calpox+) stained cells are shown. Calpox+ stained cells of the control ani-

mals were used to determine the baseline level. Calpox+ cells of the day-3 animals were close to the calpox+ cells of naïve 

baselines, except for calpox+ cells of CD3+CD20+ cells and CD14+CD16+ monocytes. Levels of calpox+ cells in the day-12 

animals were all higher than the calpox+ cells of baselines except for the neutrophils. Calpox+ cells of CD3+ cells and calpox+ 

cells of CD14+CD16- cells were low at 12 dpi. The cut off was defined as the highest control value of each of the respective 

cells. dpi, days post infection; Calpox+, calpox virus antigen positive. 

 

Figure 3-6. Exemplary dot plot showing calpox antigen positive (calpox+) immune cell populations in buffy coat. Rep-

resentive dot plot of different calpox+ cells are depicted. Example of VACV antigen stimulated (1:100) cells of buffy coat 

(#15095) at 12 dpi. Pink lines, one gate; pink number, events within a gate given as percentages of the previous population; 

SSC-A, side scatter pulse area. 
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3.3 Vaccination studies – identification of immune correlates (II) 

3.3.1 Immunization with MVTT showed highest vaccine efficacy  

The efficacy of two different live-attenuated VACV vaccines was compared after different 

waiting periods following immunization and by varying the vaccination route for one vaccine. 

One read-out for comparing vaccine efficacy was to determine the survival time of the differ-

ent vaccinees after challenge with calpox virus (Figure 3-7). All mock immunized control an-

imals died between 12 and 16 days post challenge confirming the high lethality of calpox vi-

rus in CM. By contrast, among the tested live-attenuated VACV vaccines immunization with 

MVTT protected more animals (67 %) than MVA (13 %), independent of the vaccination 

route and waiting period.  

In study I that included a 4-week waiting period, 75 % animals of the animals vaccinated i.n. 

with MVTT survived whereas all animals immunized i.m. with MVA died within 24 dpi. 

In vaccination study II the waiting period was extended to 10 weeks after immunization. After 

this longer waiting period one MVA-vaccinated animal survived challenge virus exposure.  

Independently of the route of vaccination, MVTT conferred protection between 50 and 75 %, 

which is in line with the efficacy level of MVTT following challenge after the shorter waiting 

period. Notably, vaccine failures survived considerably longer than the untreated control ani-

mals. The time period until the animals died (days post challenge) differed significantly be-

tween the vaccine failures and the mock immunized group (***; p = 0.0002). 
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Figure 3-7. Kaplan-Meier plot on survival of vaccinated and unvaccinated CM after a lethal challenge with calpox 

virus. Comparing the survival of the different vaccinees shows that MVTT protected more individuals (67 %) than MVA (13 

%), independently of the vaccination route. When different vaccination strategies are compared vacciniation with MVTT p.o. 

protected more animals than MVTT i.n. in vaccination study II (10-weeks waiting period). All mock immunized control ani-

mals died between 12 and 16 dpc. dpc, days post challenge; i.m., intramuscular immunization; i.n., intranasal immunization; 

MVA, modified vaccinia virus Ankara; MVTT, modified vaccinia virus Tiantan; PBS, Phosphate-buffered saline; p.o., pero-

ral Immunization. 
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3.3.2 Post-challenge viral load confirms survival rates 

3.3.2.1  Detection of calpox DNA copies in blood 

Vaccination study I 

As a further read-out of the vaccination studies viral loads in blood were investigated. The 

second parameter besides survival to assess protection included measurement of calpox viral 

DNA copy number in and reisolation of infectious calpox virus from blood (see 3.3.2.2 Infec-

tious virus detected by viral plaque assay). Calpox viral DNA was detected in blood by RT-

PCR in all control animals and vaccine failures. Surprisingly, all three protected vaccinees 

from the MVTT group exhibited transient low-level calpox DNA blips (1.9 x 102 DNA copy 

numbers/µl blood) which appeared between days 14 and 21 and lasted in one animal until day 

42 after challenge (Figure 3-8). In all infected animals viral DNA copy numbers continuously 

increased reaching in the controls 105-107 copies/µl blood shortly before or at death. In vac-

cine breakthroughs mean peak loads at death were significant lower (p=0.0159) compared to 

the controls and ranged between 7.5x103- 1.9x105 copies.  

 

Figure 3-8. Calpox viral DNA in blood of vaccinees of study I by qRT-PCR longitudinally post challenge. Viral DNA 

was quantified by qRT-PCR and expressed as calpox DNA copy numbers per µl blood. The detection limit was 10 calpox 

DNA copies/µl blood. DL, detection limit; i.m., intramuscular immunization; i.n., intranasal immunization; MVA, modified 

vaccinia virus Ankara; MVTT, modified vaccinia virus Tiantan; P, passage; †, unprotected animals.  

 

Vaccination study II 

Calpox viral DNA loads in the second study confirmed peak levels and kinetics in control an-

imals and unprotected vaccinees similar to what was observed in vaccination study I (Figure 

3-9). While one control animal did not exceed peak viral loads above 105copies/µl blood, in 

the other one more than 1010 copies were measured. Again, mean peak DNA viral loads in the 

vaccine failures were lower (but not significantly) compared to the controls (3.7x103 - 1.9x105 

copy numbers). Also, in two of the protected vaccines (both from either of the MVTT groups) 
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transient blips of viral DNA appeared by day 14 after challenge, but dropped below the detec-

tion limit by day 21 and 29.  

 

Figure 3-9. Calpox viral DNA in blood of vaccinees of study II by qRT-PCR longitudinally post challenge. Viral DNA 

levels were determined by qRT-PCR and are expressed as calpox DNA copy numbers per µl blood. The detection limit was 

10 calpox DNA copies/ µl blood. DL, detection limit; i.m., intramuscular immunization; i.n., intranasal immunization; 

MVA, modified vaccinia virus Ankara; MVTT, modified vaccinia virus Tiantan; P; passage; †, unprotected animals.  

3.3.2.2  Infectious virus detected by viral plaque assay 

To find out whether the transient low-level DNA viral blips in blood of protected MVTT vac-

cinees form study I were also mirrored by the presence of replicating calpox virus, an end-

point dilution assay was set up to isolate and quantify infectious calpox virus.  

Replicating calpox virus increased strongest in all animals of the mock group (Figure 3-10). 

The highest value of 4.94x102 pfu/μl blood was measured in animal #14365 at the time of 

death. MVA immunized vaccine failures presented with viral titres between 2 pfu/µl and 

2.7x102 pfu/μl calpox virus at the time of death. In contrast, the two MVTT immunized vac-

cine failures had lower viral titres between 0.05 pfu/µl and 0.17 pfu/μl at the final stage.  

No infectious virus could be isolated from any of the protected animals. 
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Figure 3-10. Replicating calpox virus in blood of animals from vaccine study II. Virus was isolated by cocultivation of 

buffy coat with Vero E6 cells. i.n., intranasal; MVA, modified vaccinia virus Ankara; MVTT, modified vaccinia virus 

Tiantan; p.o., per oral; †, unprotected animals.  

3.3.3  Humoral responses following immunization 

3.3.3.1  No significant influence of binding serum Abs against whole virus parti-

cles on protection 

To identify possible immune correlates between humoral immune responses and vaccine effi-

cacy, at first binding antibodies against particles of VACV LE and calpox were analyzed by 

ELISA. In general, in both vaccine studies serum antibody levels against VACV LE (Figure 

3-11A; Figure 3-12A) were higher than against calpox virus (Figure 3-11B; Figure 3-12B) at 

the time of challenge.  

At challenge in vaccine study I, MVA vaccinees had considerably higher antibody levels 

against the VACV antigen (Figure 3-13A), while against calpox virus antigen responses were 

mixed and varied within the two vaccine groups (Figure 3-13B).  

Significant differences in binding antibodies against VACV between vaccination groups 

(MVTT, i.n. and MVA, i.m.) (p= 0.0286) were detected for vaccination study I at day of chal-

lenge (Figure 3-14). In vaccination study II involving the 10-week waiting period, antibody 

levels in the MVTT vaccinees against VACV antigen were similar to or even higher than 

those in the MVA vaccinated animals, but in each group high variation was observed. Also, 

the different vaccination routes chosen for MVTT had no influence on immunogenicity, as 

overall levels in the MVTT vaccinees were similar. 

Overall, at challenge the binding antibody level against VACV in MVA, i.m. vaccinees was 

higher than in the MVTT, i.n. group in study I. No other association between binding anti-

body levels, neither against VACV nor calpox antigen, and protection were noticed in any of 

the vaccinees.  
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Two weeks after challenge in all animals from vaccination study I immunized with MVA, 

antibody levels against both OPXV antigens markedly increased suggesting an anamnestic 

response (Figure 3-11). The same was true for three of the four animals vaccinated with 

MVTT. Interestingly, this rise was not only observed in the one vaccine failure, but also in 

two vaccinees which according to the criteria survival and viral load were considered to be 

protected. The majority of animals from vaccination study II independant of being protected 

or not protectd also developed anamnestic antibody responses against both viral antigens ex-

cept for two protected animals, i.e. one MVA vaccinee (# 14309) and one MVTT vaccinee 

(#14334) (Figure 3-12).    

                   

Figure 3-11. Levels of vaccine-induced binding antibodies were not associated with protection in vaccination study I. 

Binding antibodies against (A) VACV LE and (B) calpox virus were determined by ELISA in plasma from the day of chal-

lenge and after challenge. The cut-off  (0.21 and 0.23) was double the value of the highest OD of each of the negative con-

trols. Plasma samples were were diluted 1:200 in blocking buffer and 100 µl/well was used in double detection.  i.m., intra-

muscular Immunization; i.n., intranasal Immunization; MVA, modified vaccinia virus Ankara; MVTT, modified vaccinia 

virus Tiantan; p.o., peroral immunization; P, passage. 

 

All mock immunized control animals remained antibody negative.  
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Figure 3-12. Levels of vaccine-induced binding antibodies were not associated with protection in vaccination study II. 
Binding antibodies against (A) VACV LE and (B) calpox virus were quantified by ELISA. The cut-off value (0.21 and 0.23) 

was the double amount of the highest OD value of each of the negative controls. Plasma samples were diluted 1:200 in block-

ing buffer and 100 µl/well was used in dublicate. i.m., intramuscular immunization; i.n., intranasal immunization; MVA, 

modified vaccinia virus Ankara; MVTT, modified vaccinia virus Tiantan; p.o., peroral immunization; P, passage.  

 
 

     
Figure 3-13. Results for vaccination study I and II revealed no differences in binding antibodies between vaccination 

groups by ELISA at day of challenge. Binding antibodies against (A) VACV LE and (B) calpox virus were determined by 

ELISA. No significant differences were detected when vaccination groups in study I and II were compared together. Howev-

er, significant differences in binding antibodies against VACV between groups (MVTT, i.n. and MVA, i.m.) (p= 0.0286) 

were detected for vaccination study I at day of challenge (see Figure 3-14). Mean  SD of all animals per group are shown. 

i.m., intramuscular immunization; i.n., intranasal immunization; MVA, modified vaccinia virus Ankara; MVTT, modified 

vaccinia virus Tiantan; p.o., peroral immunization; P, passage. 
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Figure 3-14. Results for vaccination study I revealed significant differences in binding antibodies determined by ELI-

SA between vaccination groups at challenge. Coating with 5 µg/ml VACV. Mean  SD of all animals per group is shown. 

The mean value of the MVA immunized group was significantly higher than that of the MVTT immunized group at chal-

lenge. The cut-off value (0.21 and 0.23) was the double amount of the highest OD value of each of the negative controls. i.m., 

intramuscular immunization; i.n., intranasal immunization; MVA, modified vaccinia virus Ankara; MVTT, modified vaccin-

ia virus Tiantan; P, passage; p, significance level. 

 

The antibody levels against calpox virus of all protected animals were higher than those of the 

unprotected animals of vaccination study I and II (Figure 3-15A). However, differences did 

not reach significance.  

 

Figure 3-15. ELISA antibodies against viral particles of calpox virus at the day of challenge virus exposure. Medians of 

all protected animals against unprotected animals of vaccination study I (A) and vaccination study II (B) are shown. Statistics 

revealed no significance. 

3.3.3.2  Successful validation of the poxvirus peptide microarray chip 

MAbs against already known epitope regions were used to validate the poxvirus peptide mi-

croarray chip. All regions of the epitopes were mapped identically to the known epitope re-

gions by peptide microarrays (data not shown).  

3.3.3.3  High resolution mapping of antibody linear targets revealed unique 

epitopes in protected CM 

ELISA test applying whole viral particles cannot discriminate between the quality of antibody 

responses in protected and unprotected CM. Therefore, an OPXV-specific high-resolution 

peptide microarray assay was employed to map antibodies against calpox virus linear 
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epitopes, which can be correlated with protection from infection. Plasma samples from con-

trol animals as well as all vaccinees before and after challenge were screened with peptide 

microarray chips. In vaccinees before challenge, no reaction with unique epitopes can be cor-

related to protection (see Appendix: Table A.3-3 - A.3-14). Surprisingly, four epitopes from 

three of the six investigated proteins were exclusively observed in plasma collected post chal-

lenge from protected animals (Table 3-1).  

Table 3-1: List of detected epitopes in protected animals after challenge.  

Epitope  

no. 

Study Vaccine Protein Animal  

ID 

Spot 

no. 

Sequence 

1 

2 

3 

 

4 

 

5 

I 

I 

II 

 

II 

 

II 

MVTT, i.n. 

MVTT, i.n. 

MVTT, i.n. 

MVTT, p.o. 

MVTT, i.n. 

MVTT, p.o. 

MVTT, i.n. 

MVTT, p.o. 

L1 

A33 

L1 

 

A33 

 

B5 

14327 

14414 

14469 

15098 

14469 

15098 

14469 

15098 

245 

337-338 

240 

240 

370-371 

370-371 

452-455 

452-455 

28-ASAQTKCDIEIGNFY-421 

64-SANEAAITDAAVAVA-811 

79-LTPEQKAYVPAMFTA-931 

 

163-TSDYQDSDVSQEVRKYFC-1801 

 

235-PICVRTNEEFDPVDDGPDDETDLS-2582 

ID, identification; i.n., intranasal Immunization; MVTT, modified vaccinia virus Tiantan; no., number; p.o., peroral Immun-

ization; Study, Vaccination study. 
1
The epitopes 1-4 were only detected after challenge.  

2Epitope 5 was already detected at 2 weeks post second immunization. 

 

In study II the total number of epitopes (12 epitopes) identifies during immunization was 

higher than in study I (4 epitopes) (Table 3-2). 

Table 3-2: List of all mapped epitopes induced by vaccination.  

Study Epitope  

no.  

Vaccine Protein Animal  

ID 

Spot 

no. 

Sequence 

I 

 

 

 

 

 

 

 

 

 

 

1 

2 

 

3 

4 

 

 

 

 

 

 

MVA, i.m. 

MVTT, i.n. 

MVTT, i.n. 

MVTT, i.n. 

MVA, i.m. 

MVA, i.m. 

MVA, i.m. 

MVA, i.m. 

MVTT, i.n. 

MVTT, i.n. 

MVTT, i.n. 

B5 

D8 

D8 

B5 

B5 

B5 

B5 

B5 

B5 

B5 

B5 

14482 

14414 

14327 

14327 

14144 

14403 

14482 

14707 

14414 

14575 

15007 

458 

97 

97 

381-383 

398-400 

398-400 

398-400 

398-400 

398-400 

398-400 

398-400 

253-DETDLSKLSKDVVQY-267  

190-NIHSDQLSKFRTLLS-204 

190-NIHSDQLSKFRTLLS-204 

22-TVPTMNNAKLTSTETSFNDKQ-42 

73-KKMCTVSDYISELYNKPLYEV-93 

73-KKMCTVSDYISELYNKPLYEV-93 

73-KKMCTVSDYISELYNKPLYEV-93 

73-KKMCTVSDYISELYNKPLYEV-93 

73-KKMCTVSDYISELYNKPLYEV-93 

73-KKMCTVSDYISELYNKPLYEV-93 

73-KKMCTVSDYISELYNKPLYEV-93 

II 

 

 

 

1 

2 

3 

4 

 

5 

MVA, i.m. 

MVA, i.m. 

MVTT, p.o. 

MVA, i.m. 

MVTT, p.o. 

MVTT, p.o. 

A27 

A27 

D8 

D8 

D8 

D8 

14309 

14233 

15098 

14233 

15098 

15098 

3 

12 

34 

47 

47 

79-80 

7-PGDDDLAIPATEFFS-21 

34-AIVKADEDDNEETLK-48 

1-MPQQLSPINIETKKA-15 

40-GKLVRINFKGGYISG-54 

40-GKLVRINFKGGYISG-54 

136-NQLDSIRSANTSAPFDSV-153 
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6 

7 

8 

 

 

9 

10 

 

11 

 

 

 

 

 

12 

MVA, i.m. 

MVA, i.m. 

MVTT, i.n. 

MVTT, i.n. 

MVTT, p.o. 

MVTT, p.o. 

MVTT, i.n. 

MVTT, p.o. 

MVA, i.m. 

MVA, i.m. 

MVA, i.m. 

MVTT, i.n. 

MVTT, p.o. 

MVTT, p.o. 

MVA, i.m. 

MVA, i.m. 

MVA, i.m. 

MVA, i.m. 

MVTT, i.n. 

MVTT, i.n. 

MVTT, p.o. 

MVTT, p.o. 

MVTT, p.o. 

D8 

D8 

A33 

A33 

A33 

A33 

B5 

B5 

B5 

B5 

B5 

B5 

B5 

B5 

B5 

B5 

B5 

B5 

B5 

B5 

B5 

B5 

B5 

14233 

14372 

14469 

14409 

15098 

15098 

14469 

15098 

14309 

14248 

14372 

14603 

14334 

15100 

14233 

14309 

14248 

14372 

14469 

14603 

15098 

14334 

15100 

81 

102-103 

317-319 

317-319 

317-319 

370 

454-455 

452-455 

457-478 

457-478 

457-478 

457-478 

457-478 

457-478 

398-400 

398-400 

398-400 

398-400 

399-400 

398-400 

398-400 

399-400 

398-400 

142-RSANTSAPFDSVFYL-156 

205-SSNHDGKPHYITENYRNP-222 

4-PENDEEQTSVFSATVYGDKIQ-24 

4-PENDEEQTSVFSATVYGDKIQ-24 

4-PENDEEQTSVFSATVYGDKIQ-24 

163-TSDYQDSDVSQEVRK-177 

244-FDPVDDGPDDETDLSKLS-261 

235-PICVRTNEEFDPVDDGPDDETDLS-258 

250-GPDDETDLSKLSKDVVQY-267 

250-GPDDETDLSKLSKDVVQY-267 

250-GPDDETDLSKLSKDVVQY-267 

250-GPDDETDLSKLSKDVVQY-267 

250-GPDDETDLSKLSKDVVQY-267 

250-GPDDETDLSKLSKDVVQY-267 

73-KKMCTVSDYISELYNKPLYEV-93 

73-KKMCTVSDYISELYNKPLYEV-93 

73-KKMCTVSDYISELYNKPLYEV-93 

73-KKMCTVSDYISELYNKPLYEV-93 

73-KKMCTVSDYISELYNKPLYEV-93 

73-KKMCTVSDYISELYNKPLYEV-93 

73-KKMCTVSDYISELYNKPLYEV-93 

73-KKMCTVSDYISELYNKPLYEV-93 

73-KKMCTVSDYISELYNKPLYEV-93 

ID, identification; i.m., intramuscular immunization; i.n., intranasal immunization; MVA, modified vaccinia virus Ankara; 

MVTT, modified vaccinia virus Tiantan; no., number; p.o., peroral immunization; Study, vaccination study. 

3.3.3.4  Neutralizing antibodies did not correlate with protection 

Neutralizing antibodies against VACV LE and calpox virus were determined by a plaque re-

duction neutralization test (PRNT) in plasma collected at day of challenge (Figure 3-16).  In 

vaccination study I the titres against VACV LE varied between 1:20 and 1:320 in all immun-

ized animals. No differences between the two vaccine groups were evident. When samples 

were tested against calpox virus the titres varied between 1:10 and 1:80 in all immunized an-

imals indicating lower neutralizing capacity against the challenge virus compared to VACV. 

Two of the vaccinees (one protected MVTT immunized animal, #14414, and one unprotected 

MVA immunized animal, #14403) were tested negative for neutralizing antibodies against 

calpox virus. Neutralizing titres were not associated with protection. Being in line with this, 

neutralizing antibodies were also detected in animals that died, e.g. #15007. 
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Figure 3-16. Neutralizing antibodies against VACV LE and calpox virus in animals of vaccination study I at time of 

challenge. Values are shown as mean of duplicate testing. Plasma from control animals was always negative. i.m., intramus-

cular immunization; i.n., intranasal immunization; MVA, modified vaccinia virus Ankara; MVTT, modified vaccinia virus 

Tiantan; nt, neutralizing antibody titre as determined by PRNT; P, passage.  

The mean values against calpox virus were lower than against VACV LE (Figure 3-17). No 

significant difference between the mean values of the titres between the groups was detected. 

 

Figure 3-17. Titres of neutralizing antibodies per vaccination group in vaccination study I. Plasma samples were exam-

ined pre-immunization and at the day of challengefor the presence of VACV LE and calpox virus neutralizing antibodies by a 

plaque reduction test. The vaccine groups did not differ significantly from each other. Controls were alsways negative. Mean 

with SD is shown. i.m., intramuscular immunization; i.n., intranasal immunization; MVA, modified vaccinia virus Ankara; 

MVTT, modified vaccinia virus Tiantan; nt, neutralizing antibody titre as determined by PRNT; P, passage. 

In vaccinees from vaccination study II neutralizing antibody titres against VACV LE were 

lower compared to vaccination study I ranging between 1:10 and 1:80 (Figure 3-18). The neu-

tralizing activity against calpox virus was in the same range (Figure 3-19B). Notably, the 

mean neutralizing titre against VACV in the group vaccinated perorally with MVTT was sig-

nificantly higher compared to the MVA vaccinated animals (Figure 3-19, p = 0.0487). 

In summary, there were no significant differences between neutralizing titres in protected and 

unprotected animals in study II. 
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Figure 3-18. Neutralizing antibodiy titres in animals of vaccination study II. Plasma samples were examined at the day 

of challenge for the presence of VACV LE and calpox virus neutralizing antibodies by a plaque reduction test. The vaccine 

groups did not differ significantly from each other. Controls were always negative. i.m., intramuscular immunization; i.n., 

intranasal immunization; MVA, modified vaccinia virus Ankara; MVTT, modified vaccinia virus Tiantan; nt, neutralizing 

antibody titre as determined by PRNT; p.o., peroral immunization; P, passage 

M V T T  i.n . M V T T  p .o . M V A  P 5 6 8  i.m . M V T T  i.n . M V T T  p .o . M V A  P 5 6 8  i.m .
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Figure 3-19. Mean  SD of the detected titres of neutralizing antibodies per vaccination group for vaccination study 

II. Plasma samples collected at the day of challenge were examined for the presence neutralizing antibodies against VACV 

LE and calpox virus. The titres against VACV LE of the MVTT p.o. immunized group were significantly higher (p = 0.0487) 

than those of the MVA i.m. immunized group titre .m., intramuscular immunization; i.n., intranasal immunization; MVA, 

modified vaccinia virus Ankara; MVTT, modified vaccinia virus Tiantan; nt, neutralizing antibody titre as determined by 

PRNT; P, passage; *, p < 0.05. 

The analyses showed that the levels of neutralizing antibodies were higher after the 4-week 

waiting period, but there was no significant difference notable (i). 

Compared to the neutralizing antibody titres after the 4-week waiting period, the titres were 

lower after the 10-week waiting period (ii). 

No association was detectable between the development of levels of neutralizing antibodies 

and protection (iii). Animals mit moderate neutralizing antibody titres were not protected and 

animals without were protected as well. 
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3.3.4  Phenotyping of immune cells and cellular immune response 

3.3.4.1 Longitudinal phenotyping of innate and adaptive immune cells in whole 

blood 

The phenotyping of different immune cells was done to assess the influence of VACV im-

munization and of calpox virus infection on a variety of cell subsets of the innate and adaptive 

immune response. A particular focus was laid on monocytes/macrophages because this subset 

is discussed to be responsible for spreading the virus (Davies and Parekh, 2017). Moreover, 

the proliferative cellular response against VACV was investigated and related to challenge 

outcome. For these kind of analyses only material from vaccination study II was available. 

Longitudinal phenotyping of innate immune cells 

In CD14+ cells (monocytes) (Figure 3-20) and myeloid dendritic cells (mDCs) (Figure 3-21) 

was a cell drop detected after immunization. The cell numbers increased at 21 dpc. Cell num-

bers increased in moribund animals (#14248 and #14372).  

In pDCs (Figure 3-22), NK cells (Figure 3-23) and γδ T cells (Figure 3-24) no differences 

were observed in absolute cell numbers during the analyzed time.  

Longitudinal analysis of CD14+ cells (monocytes) and myeloid dendritic cells (mDCs) 

Absolute numbers of CD14+ monocytes (Figure 3-20) and myeloid dendritic cells (mDCs) 

(Figure 3-21) dropped after immunization and increased after challenge at day 21. Notably, 

cell numbers increased further in two moribund animals that were vaccinated with MVA 

(#14248 and #14372).  

No significant differences were detected in absolute cell numbers between vaccination groups 

at the day of challenge. There was also no significant difference between cell numbers of pro-

tected and unprotected animals at challenge.  
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Figure 3-20. Absolute cell numbers of CD14+ cells (monocytes) in vaccination study II are shown over time. Absolute 

cell numbers are given in percent baseline. abs, absolute cell numbers; dpc, days post challenge; i.n., intranasal; i.m., intra-

muscular; MVA, modified vaccinia virus Ankara; MVTT, modified vaccinia virus Tiantan; p.o., per oral; P, passage, w, 

weeks. 
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Figure 3-21. Absolute cell numbers of myeloid dendritic cells (mDCs) in vaccination study II are shown over time. 
Absolute cell numbers are given in percent baseline. abs, absolute cell numbers; dpc, days post challenge; i.n., intranasal; 

i.m., intramuscular; MVA, modified vaccinia virus Ankara; MVTT, modified vaccinia virus Tiantan; p.o., per oral; P, pas-

sage, w, weeks. 

 

Longitudinal analysis of pDCs, NK cell and γδ T cell numbers 

In the majority of animals, no significant changes in the absolute cell numbers of pDCs (Fig-

ure 3-22), NK cells (Figure 3-23), and γδ T cells (Figure 3-24) were observed. Notably, cell 

numbers increased in two moribund animals that were vaccinated with MVA (#14248 and 

#14372). Furthermore, one protected MVTT p.o. animal (#14334) had higher absolute γδ T 
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cell numbers compared to the other animals. They increased 900-fold at 8-weeks post second 

immunization, decreased 600-fold at challenge, but remained higher after challenge. 
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Figure 3-22. Absolute cell numbers of plasmacytoid dendritic cells (pDCs) in vaccination study II are shown over 

time. Absolute cell numbers are given in percent baseline. abs, absolute cell numbers; dpc, days post challenge; i.n., intrana-

sal; i.m., intramuscular; MVA, modified vaccinia virus Ankara; MVTT, modified vaccinia virus Tiantan; p.o., per oral; P, 

passage, w, weeks. 
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Figure 3-23. Absolute cell numbers of NK cells in vaccination study II are shown over time. Absolute cell numbers are 

given in percent baseline. abs, absolute cell numbers; dpc, days post challenge; i.n., intranasal; i.m., intramuscular; MVA, 

modified vaccinia virus Ankara; MVTT, modified vaccinia virus Tiantan; p.o., per oral; P, passage, w, weeks. 
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Figure 3-24. Absolute γδ T cells in vaccination study II are shown over time. Absolute cell numbers are given in percent 

baseline. abs, absolute cell numbers; dpc, days post challenge; i.n., intranasal; i.m., intramuscular; MVA, modified vaccinia 

virus Ankara; MVTT, modified vaccinia virus Tiantan; p.o., per oral; P, passage, w, weeks. 

 

Longitudinal phenotyping of adaptive immune cells 

Longitudinal analysis of CD3+, CD4+ and CD8+ T cell numbers  

In absolute CD3+, (Figure 3-25), CD4+ (Figure 3-26), CD8+ (Figure 3-27) and CD4+CD8+ 

(Figure 3-28) T cell numbers were no differences observed during immunization. The pox-

virus infection did also not have a strong effect cell numbers or frequencies (data not shown) 

of CD3+, CD4+, CD8+ and CD4+CD8+ T cells.  
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Figure 3-25. Absolute cell numbers of CD3+ T cells in vaccination study II are shown over time. Absolute cell numbers 

are given in percent baseline. abs, absolute cell numbers; dpc, days post challenge; i.n., intranasal; i.m., intramuscular; 

MVA, modified vaccinia virus Ankara; MVTT, modified vaccinia virus Tiantan; p.o., per oral; P, passage, w, weeks. 
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Figure 3-26. Absolute cell numbers of CD4+ T cells in vaccination study II are shown over time. Absolute cell numbers 

are given in percent baseline. abs, absolute cell numbers; dpc, days post challenge; i.n., intranasal; i.m., intramuscular; 

MVA, modified vaccinia virus Ankara; MVTT, modified vaccinia virus Tiantan; p.o., per oral; P, passage, w, weeks. 
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Figure 3-27. Absolute cell numbers of CD8+ T cells in vaccination study II are shown over time. Absolute cell numbers 

are given in percent baseline. abs, absolute cell numbers; dpc, days post challenge; i.n., intranasal; i.m., intramuscular; 

MVA, modified vaccinia virus Ankara; MVTT, modified vaccinia virus Tiantan; p.o., per oral; P, passage, w, weeks. 
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Figure 3-28. Absolute cell numbers of CD4+CD8+ cells in vaccination study II are shown over time. Absolute cell num-

bers are given in percent baseline. abs, absolute cell numbers; dpc, days post challenge; i.n., intranasal; i.m., intramuscular; 

MVA, modified vaccinia virus Ankara; MVTT, modified vaccinia virus Tiantan; p.o., per oral; P, passage, w, weeks. 

Longitudinal analysis of CD20+ B cells cell numbers  

Absolute CD20+ B cell numbers remained below or at baseline during the observation period 

in the majority of the animals (Figure 3-29). Only, in two MVA i.m. immunized animals 

(#14248 and #14372) the cell numbers of CD20+ B cells increased shortly before animals be-
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came moribund. Between groups there were no significant differences detected at the day of 

challenge.  
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Figure 3-29. Absolute cell numbers of CD20+ B cells in vaccination study II are shown over time. Absolute cell numbers 

are given in percent baseline. abs, absolute cell numbers; dpc, days post challenge; i.n., intranasal; i.m., intramuscular; 

MVA, modified vaccinia virus Ankara; MVTT, modified vaccinia virus Tiantan; p.o., per oral; P, passage, w, weeks 

 

Longitudinal analysis of the expression of activation marker CD86+ on CD14++, CD14+ 

CD16+ and CD16+ cells  

Expression of CD86+ was assessed on CD14++ (Figure 3-30), CD14+ CD16+ (Figure 3-31) and 

CD16+ cells (Figure 3-32). The frequencies of the activated cells dropped after immunization 

but increased strikingly after challenge at day 21. Thereafter the percentages decreased again 

and stayed below the baseline. Between groups there were no significant differences detected 

at the day of challenge.  
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Figure 3-30. Percentages of CD86+ cells of CD14++ cells in vaccination study II are shown over time. Percentages of cell 

numbers are given in percent baseline. dpc, days post challenge; i.n., intranasal; i.m., intramuscular; MVA, modified vaccin-

ia virus Ankara; MVTT, modified vaccinia virus Tiantan; p.o., per oral; P, passage, w, weeks. 
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Figure 3-31. Percentages of CD86+ cells of CD14+ CD16+ cells in vaccination study II are shown over time. Percentages 

of cell numbers are given in percent baseline. dpc, days post challenge; i.n., intranasal; i.m., intramuscular; MVA, modified 

vaccinia virus Ankara; MVTT, modified vaccinia virus Tiantan; p.o., per oral; P, passage, w, weeks. 
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Figure 3-32. Percentages of CD86+ cells of CD16+ cells in vaccination study II are shown over time. Percentages of cell 

numbers are given in percent baseline. dpc, days post challenge; i.n., intranasal; i.m., intramuscular; MVA, modified vaccin-

ia virus Ankara; MVTT, modified vaccinia virus Tiantan; p.o., per oral; P, passage, w, weeks. 

 

No significant differences in T and B cell numbers and their expression of certain activa-

tion markers  

No significant difference between vaccination groups in activation markers (e.g. CD69, HLA-

DR and CD80) expressed on T and B cells were detected at the day of challenge. The course 

of the cell frequencies was thus similar to the parental T and B cell numbers (data not shown). 

3.3.4.2  T cell proliferation assay 

Proliferating T cells over time 

CD3+ T cells as well as their subpopulations CD4+, CD4+CD8+ and CD8+ T cells were ana-

lyzed for their proliferating capacity after stimulation with orthopoxvirus antigen by evalua-

tion of percentages of CFSE- cells. Before immunization hardly any proliferating cells were 

detected. No significant differences between the vaccination groups were observed during the 

observation period (no data shown).  

Frequencies of CD3+CFSE-, CD3+CD8+, CD3+CD4+, and CD3+CD4+CD8+ cells (Figure 3-

33A, 33B, 34A and 34B) were increased at 4-weeks post first immunization in protected and 

unprotected animals, whereas the frequencies of CD3+CFSE- cells in mock immunized ani-

mals were also increased at that time point (Figure 3-33A). CD3+CD8+CFSE- cell frequencies 

(Figure 3-33B) increased at 8-weeks post second immunization. In the two protected animals 

#14478 and #14334 of the MVTT p.o. immunized group those frequencies slightly increased 

longitudinally even after challenge.  
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Figure 3-33. Proliferating CD3+ and CD3+CD8+ cells (CFSE-) frequencies were measured and increased at one time 

point (4-weeks post first immunization). PBMCs were labeled with the fluorescent dye CFSE to analyze T cell prolifera-

tion. PBMCs were stimulated with MVA for 6 days. Subsequently PBMCs were stained for flow cytometric analyses. Results 

of the MVA-stimulated samples are given as %CFSE- cells of A) CD3+ or B) CD3+ CD8+ cells. death, animals were not 

protected and died after calpox virus challenge; imm, immunization; i.m., intramuscular; i.n., intranasal; MVA, modified 

vaccinia virus Ankara; MVTT, modified vaccinia virus Tiantan; P, passage; p.o., per oral; protected, animals were protect-

ed, w, weeks. 

 

CD3+CD4+CD8+CFSE- cells slightly increased longitudinally in MVTT vaccination groups in 

protected as well as cells of the unprotected animals (Figure 3-34B), while these cells in the 

mock immunized animals did not proliferate. Eight weeks post second immunization (2 week 

before challenge) the MVTT vaccinees had higher CD3+CD4+CD8+CFSE- cell frequencies 

than MVA vaccinees and mock immunized animals. Highest cell frequencies were detected in 

one protected MVTT vaccinee (#15098) 4-weeks post challenge. The proliferative activity 

was not associated with the protection of the animals from the calpox virus challenge. After 

challenge, CD3+CD4+CD8+CFSE- cells did not proliferate in one protected animal (#14309) 

and in some unprotected animals an increase of cell frequencies was measured (#14248, 

#14603 and #15100). 
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Figure 3-34. Frequencies of CD3+CD4+CFSE- and CD3+CD4+CD8+CFSE- cells over time. T cells of the control group 

(mock immunized animals) did not proliferate. A) CD3+CD4+CFSE- cells. B) CD3+CD4+CD8+CFSE- cell frequencies. T cell 

proliferation in blood was analyzed at different time points by labeling PBMCs with CFSE. PBMCs were labeled with the 

fluorescent dye CFSE to analyze T cell proliferation. PBMCs were stimulated with MVA. Subsequently PBMCs were stained 

for flow cytometric analyses. Results of the MVA-stimulated samples are given as % of CFSE- of CD3+CD4+ or CD4+CD8+ 

cells. death, animals were not protected and died after calpox virus challenge; imm, immunization; i.m., intramuscular; i.n., 

intranasal; MVA, modified vaccinia virus Ankara; MVTT, modified vaccinia virus Tiantan; P, passage; p.o., per oral; pro-

tected, animals were protected, w, weeks. 
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4 DISCUSSION 

4.1 Pathogenesis study 

4.1.1 Following intranasal application calpox virus enters through the nasal epithe-

lium 

In 2010 the calpox virus marmoset model was first described offering a new non-human pri-

mate model to study OPXV pathogenesis, therapy and prophylaxis (Kramski et al., 2010). 

However, there have only been reports about the severe pathological alterations in the late 

stage of the disease caused by that orthopoxvirus (Kramski et al., 2010; Mätz-Rensing et al., 

2012). Therefore, a study was designed in which serial necropsies were carried out during the 

asymptomatic phase of calpox virus infection in CMs. At each defined time point, a broad 

spectrum of organs was collected. In parallel to the virological analyses, organs were analyzed 

histologically for the occurrence of alterations by the Pathology Unit of the DPZ. One aim (I) 

was to determine primary target cells and organs of infection as well as to determine the portal 

of viral entry. (II) Another aim was to shed light on the early viral dissemination and the 

pathological sequelae of infection by detection of replicating calpox virus and calpox viral 

DNA in different organs and blood. In addition, cells that replicate the virus should be identi-

fied by flow cytometry.  

Previous studies have shown that very low doses of calpox virus applied intranasally were 

sufficient for the infection of CM when compared to doses used in common OPXV models 

(Kramski et al., 2010). Since infection of the upper respiratory tract closely resembles the 

natural infection route of smallpox via aerosols, all animals were inoculated intranasally. Vi-

rus containg aerosols are inhaled, thereby passing the nasal, oral, and, pharyngeal mucosae or, 

if inhaled deeper reaching the lung and causing disease at this location (Barnewall et al., 

2012; Fenner et al., 1988b). Therefore, these tissues could be targets of initial replication. 

It is known that the initial site of the OPXV infection is the skin, a mucosal surface or the res-

piratory tract (Munoz, 2014a). For the calpox/marmoset model it was assumed that the nasal 

epithelium and the nasal-associated lymphoid tissue (NALT) represent the principal target for 

primary infection (Mätz-Rensing et al., 2012).  

To increase the likelihood for the detection of even minute quantities of virus at the earliest 

time point of euthanasia, i.e. day 3, approximately 3.5x105 PFU were administered. By qRT-

PCR and endpoint dilution assay, virus was detected in nasal mucosa and tongue at this early 

time point. Highest viral loads were found in nasal mucosa (epithelial layer of the mucous 

membranes) in the nose by both assays. Animals sacrificed at later time points after viral in-
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oculation received a 42-fold lower dose which had reliably infected 16 animals from unrelated 

studies (Kramski et al., 2010). Under these conditions in animals sacrificed at 5 dpi, only low-

level calpox viral DNA was detectable in the nasal mucosa (1/3 CM) and two adjacent organs, 

but no infectious virus was recovered. This also indicated viral replication at the site of inocu-

lation and was corroborated by high viral levels in the nasal mucosa of one out of three ani-

mals euthanized at 7 dpi. All these findings underline that nasal epithelial cells are the princi-

ple target cells for calpox virus. The results of the immunohistochemical analyses conducted 

by scientists of the DPZ Pathology unit demonstrated that the nasal epithelial cells serve as 

the portal of viral entry. Viral antigen was detected within inclusion bodies in this location at 

3 dpi (Schmitt et al., 2017). Additionally, first alterations in the nasal ciliated epithelium were 

visible as well as immunohistochemical reactivity in respiratory epithelium at this early time 

point (Schmitt et al., 2017).  

The nasal-associated lymphoid tissue (NALT) as well as the nasal epithelium have been as-

sumed to serve as the principal target for primary infection in this model (Mätz-Rensing et al., 

2012). The NALT is functionally active against infectious agents such as airborne transmitted 

viruses (e.g. VARV) or other pathogens and contains many immunocompetent cells like B 

cells, dendritic cells, macrophages and T cells (Bienenstock and McDermott, 2005). Further-

more, the NALT is rich in microfold cells. M cells take up viral antigen and transport them to 

the immune cells. Dendritic cells with captured antigen will then migrate to the draining 

lymph node and present the antigen to T cells (Xu et al., 2014).  

4.1.2. Identification of calpox virus replicating immune cells 

To identify cell subsets in blood harbouring calpox virus a flowcytometric assay was adapted 

for the analysis of purified PBMCs and buffy coat. An anti-VACV hyperimmune serum 

cross-reacting with calpox was used for viral detection. As no autologous preinfection values 

were available positivity was assessed by simultaneously analyzing blood from uninfected 

CM. Calpox virus antigen was observed in CD3+CD20+ cells in two of three animals and in 

intermediate CD14+CD16+ monocytes in one of three animals by day 3 post infection (high 

dose-infected animals). For cynomolgus macaques infected intravenously with the cowpox 

virus, it is known that especially monocytes and granulocytes became infected (Song et al., 

2013b), and to a lesser extent, B cells, NK cells and T cells. In this study, calpox virus antigen 

was mainly present in CD20+ B cells and CD3+CD20+ cells. Only a small proportion of neu-

trophils stained positive for calpox antigen in one animal of the day-12 group (Figure 3-5) 

while this subset was negative in all the other animals tested. By contrast, in monocytes 
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(CD14+CD16-, CD14+CD16+ and CD14+CD16-) calpox virus antigen was readily detected at 

12 dpi. Levels of infected CD3+ T cells and NK cells were lower compared to those of mono-

cytes and CD20+ B cells. With respect to infected immune cells in blood, CD3+CD20+ cells 

and monocytes appeared to be the preferred subset of calpox virus replication early in infec-

tion whereas the spectrum of infected cell types broadened in the late preclinical stage. 

These findings are in agreement with a study of VACV WR infection of human PBMCs 

(Sanchez-Puig et al., 2004). When macrophages become infected, their ability to act as acces-

sory cells to activate T-cells or natural killer (NK) cells and secrete cytokines is blocked 

which is of advantage for the virus (Smith and Kotwal, 2002). Perhaps the virus infects the 

immune cells that play an important role in host defense like NK cells in early (first three 

days) host immune response after poxvirus infection. The latter implies that a T cell response 

seems to play a more important role in early rather than the late phase of primary, acute infec-

tions (Gordon et al., 2011; Xu et al., 2004a).  

A novel finding was the detection of calpox virus antigen in CD3+CD20+ cells. To my 

knowledge, nothing is known about CD3+CD20+ cells in CM so far and further research is 

needed to clarify their function. The existence of CD3+CD20+ cells have been controversely 

discussed and were thought to be an artifact of flow cytometry (Henry et al., 2010). They 

were also described as a storage-dependent phenomenon (Nagel et al., 2014). By contrast, 

according to more recent studies (Neumann et al., 2015; Schuh et al., 2016) CD3+CD20+ T 

cells seem to represent a true population, pervading lymphatic organs and the cerebrospinal 

fluid. Functional properties of human CD3+CD20+ T cells comprise the production of differ-

ent cytokines (IL-4, IL-17, IFN-γ, TFN-γ). They also respond to multiple sclerosis disease 

modifying drugs (Schuh et al., 2016). 

4.1.3. Comparison of methods for the detection of calpox virus in blood samples 

Calpox virus levels were determined in blood by different methods, i.e. detection of the cal-

pox virus antigen by flow cytometry, by real-time PCR and by plaque assay. qRT-PCR and 

calpox virus antigen staining by flow cytometry were more sensitive than virus isolation. 

When samples from the day-3 animals were analyzed by the same techniques in parallel, cal-

pox virus DNA was detected in only one of three animals by real-time PCR, in two of three 

animals the fraction of CD3+CD20+ cells was positive for calpox virus antigen by flow cy-

tometry, but no virus could be isolated from buffy coat. In animals exhibiting highest percent-

ages of calpox virus positive cells as determined by flow cytometry, also highest levels of 

calpox DNA copy numbers were observed.  
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Real-time PCR and poxvirus antigen staining by flow cytometry were the most time-efficient 

methods. Moreover, staining for calpox virus antigen by flow cytometry has the advantage 

that antigen expression in different immune cells can be tested in one approach. Because of a 

lower background staining (baseline) in samples from the controls animals, the calpox virus 

antigen staining by flow cytometry with cells from buffy coat is preferred to PBMCs.  

4.1.4. (II)  The early dissemination and pathological sequelae of infection 

The pathogenesis study provides evidence that early dissemination starts in the nasal mucosa.  

Calpox viral DNA and replicating calpox virus were already detectable in the nasal mucosa of 

two animals of the high-dose group sacrificed at 3 dpi. Also, few organs adjacent to the inocu-

lation site were either positive for viral DNA or infectious virus. Presence of virus in tonsil, 

tongue, esophagus and lung most likely resulted from passing or swallowing of virus-

containing droplets and in the case of lung from deep inhalation.  The presence of viral DNA 

in the eye was unexpected, but might be explained by smear infection. In the animals infected 

with the lower calpox virus dose and sacrificed at day 5, low levels of viral DNA were detect-

ed in the nasal mucosa, tonsil and submandibular lymph node. Parallel analyses of the organs 

by immunohistochemistry for the detection of calpox virus antigen (Schmitt et al., 2017) sug-

gested that trafficking of infected macrophages presumably led to a secondary replication in 

the submandibular lymph nodes (Schmitt et al., 2017). Nasal mucosa was also positive for 

virus at day 7 in one animal (#14483) which exhibited high viral loads in that organ. Those 

were a couple of magnitudes higher compared to viral loads in the other organs of this animal 

or the loads in the other two animals of that group being either positive for viral DNA and/or 

infectious virus. Overall, in the day-7 animals only mild histological lesions were observed 

(Schmitt et al., 2017). 

In addition to the analyses of viral loads in a multitude of organs, also blood was investigated 

to define at which point in time viremia occurred. One animal of the day-3 high dose group 

presented with low level viremia based on viral DNA copy numbers (100 copies per µl). This 

animal was one of the two animals, which had comparable high levels of viral DNA and in-

fectious virus in the nasal mucosa. Thus, considerable viral replication at the portal of viral 

entry did not automatically resulted in viremia. Rather, early systemic viral spread might have 

been contained in the organ-positive, but blood-negative animal by short-lived innate immune 

responses. In the animals infected with the low calpox virus dose, viremia was only observed 

in two of three animals sacrificed at day 7. It can therefore be assumed that the onset of vire-

mia is dose dependent since it started later in low-dose infected animals. Most of the animals 
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became viremic at 10 and 12 dpi. The results of the endpoint dilution assay were in line with 

the results of the real-time PCR.  

Not surprisingly, the highest calpox DNA copy numbers in blood were detected in all animals 

euthanized at the latest predefined time point (12 dpi). The immune system probably collapses 

around that day followed by death within a few days. Discrepancies between pathological and 

molecular biological findings (e.g. trachea was negative for all 12 dpi animals in immuno-

histochemistry and no histological lesions were found (Schmitt et al., 2017), but had detecta-

ble calpox virus DNA and particles, (see Figure 3-1D)) can be explained by the different loca-

tions of primary material/tissue of an organ analyzed by the different techniques. This sug-

gests that even in the late preclinical stage of infection viral replication is still focal within an 

organ. 

The preferred organs of calpox replication before appearance of clinical signs appear to be 

nasal mucosa, bone marrow, liver and generally the lymphoid tissues, as indicated by high 

viral loads, i.e. 109-1017 calpox DNA copy number/g tissue and 107-109 TCID50/g tissue. 

Lower levels of calpox virus were observed in the central nervous system (CNS), parotid 

gland, small intestine and stomach. These findings are consistent with other studies (Tucker, 

2011). Overall, calpox virus replicated in a broad panel of organs tested, albeit to a different 

extent. 

My own data suggests that the calpox virus initially replicated in the upper respiratory tract, 

i.e. the nasal mucosa. From there the virus probably reaches via lymphatics the adjacent lym-

phatic tissue (submandibular LN and tonsil) in which secondary replication takes place. Next, 

the virus is transported through the blood stream all over the body (day 7). Lower viral loads 

(by real-time PCR and plaque assay) were found in the central nervous system (CNS), parotid 

gland, small intestine, stomach, esophagus, parotid gland and vagina/testicle indicating that 

the calpox virus replicated less inefficiently in these organs. These findings are consistent 

with other studies (Tucker, 2011).  

The viral dissemination/pathogenesis in the calpox virus/marmoset model is comparable to 

that of human smallpox infection (Fenner et al., 1988b), because it also starts in the respirato-

ry mucosa, spreads then to the draining lymph nodes and finally disseminates via blood to 

other organs. The same way of distribution was observed in a study in which cynomolgus ma-

caques were infected with aerosolized MPXV by using a head-only exposure chamber with a 

collision nebulizer (Zaucha et al., 2001). As in my study, the virus was detected in various 

organs in lethal MPXV infection. Moreover, Kramski and colleagues described the involve-

ment of organs of the digestive tract in the calpox virus/marmoset model as opposed to human 
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VARV infections (Fenner et al., 1988b; Kramski et al., 2010), which was also confirmed by 

this study. Following high-dose viral exposure, a monocytic cell-associated viremia was ob-

served in one animal at 3 dpi. By day 7, virus was detectable in a broad spectrum of organs. 

Mainly epithelial cells and macrophages, but also endothelial cells were infected (Schmitt et 

al., 2017). 

Because the last time point for predefined euthanasia (day 12) was very close to the time span 

of infection-related death, viral loads were highest compared to the earlier time point of nec-

ropsy. On that day, multiple immune cell subsets were also positive for calpox virus antigen. 

The broad cell tropism of the calpox virus is demonstrated in a study by Kramski and col-

leagues (Kramski et al., 2010). It has been shown that independent of the infection route and 

inoculated viral dose, high copy numbers of genomic viral DNA and virus-specific mRNA 

indicating active replication were found in a broad spectrum of organs and tissues (Kramski et 

al., 2010). Since VACV WR and MVA as well as the calpox virus seem to have also prefer-

ences for certain cell populations (Sanchez-Puig et al., 2004), this may indicate that factors 

other than host range genes like the accessibility and the amount of receptors, ability to inter-

nalize the virus and the metabolic state of the cell might influence the infection rate of 

PBMCs and immune cells. 

In lethal human monkeypox virus (MPXV) and variola virus (VARV) infection virus was also 

found in various organs (Fenner et al., 1988c). It has been shown for VARV infections in 

cynomolgus macaques that viral replication was probably associated with organ dysfunction 

and multisystem failure of all the organs (Jahrling et al., 2004), which assumably was also the 

case in this study. In the calpox virus/marmoset model, all animals that developed clinical 

signs died which is in contrast to natural human VARV and MPXV infections, where only 

part of the diseased patients became moribund. Seroconversion was not observed in animals 

that died within 12 days (Kramski et al., 2010) and was not analyzed in this pathogenesis 

study. Obviously, when the survival time is too short, virus-specific IgM antibodies are not 

mounted until the time point of death.  

In the calpox virus/marmoset model a clearly shorter time was reported between the first ap-

pearance of clinical signs until death, i.e. one or two days (Kramski et al., 2010), compared to 

human smallpox or MPXV infection. There, a period of two to five days was reported during 

which fever, malaise, prostration, headache and backache occurred that was followed by the 

development of a maculopapular rash. Animals of this study that were euthanized or died un-

expectedly between 12 or 16 dpi, showed varying clinical signs (Schmitt et al., 2017). Two 

animals from the group for which euthanasia was predetermined at 12 dpi had only very few 
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typical pox lesions on the skin, at mucocutaneous junctions and mild nasal discharge. The an-

imals with clinical signs showed fatigue, anorexia, moderate to severe seromucous nasal dis-

charge, and multiple pox lesions on skin and mucocutaneous junctions one to two days prior 

to death. Also, MPXV and VARV patients develop a more or less confluent rash (Fenner et 

al., 1988a; Fenner et al., 1988b; Fenner et al., 1988c; Jezek et al., 1987; Parker et al., 2007) 

which is lacking in the calpox virus infected monkeys (Kramski 2010). Only small, however 

multiple skin lesions distributed on the face, abdomen and thighs after i.n. infection with cal-

pox virus occurred in CM (Kramski et al., 2010). Studies have already shown that even a high 

calpox viral dose did not lead to confluent skin lesions, which are characteristic for and previ-

ously demonstrated in macaques infected with MPXV and VARV (Hooper et al., 2004; 

Jahrling et al., 2004; Paluku and Szczeniowski, 1988; Stittelaar et al., 2005).  

The morphology of the skin lesions induced by calpox virus differs from VARV or MPXV 

lesions. While in calpox infection skin lesions were flat and small in size (2-5 mm in diame-

ter), VARV- or MPXV-associated lesions reach a diameter of up to 10 mm. However, the size 

of the animal may also be related to the size of the skin lesions. A severe lymphadenopathy 

was found in calpox virus infection and represent a classic alteration in many OPXV infec-

tions. The lymphadenopathy is comparable to the clinical picture of cowpox virus (CPXV) 

and MPXV infections in humans and also in NHP, but is not observed in human smallpox 

(Fenner et al., 1988a; Heraud et al., 2006; Hooper et al., 2004; Sale et al., 2006). 

4.1.5. Virus titration and viral DNA quantification of organ homogenates 

The infectious virus titre of a tissue is known to be lower than the titre of the viral load since 

real-time PCR not only measures the replicating virus (like TCID50/g tissue) but also other 

viral particles. Results of endpoint dilution assay and real-time PCR mostly matched with the 

pathological finding e.g. nasal mucosa was negative for all 7 dpi animals, except in one ani-

mal (#14483) with the highest viral load and replicating viral titre at 7 dpi. In a parallel pro-

cessed dissertation (Schmitt, 2015), mild histological lesions were detected in this animal. 

Discrepancies between pathological and molecularbiological findings (e.g. trachea was nega-

tive for all 12 dpi animals in immunohistochemistry and no histological lesions were found, 

but had detectable viral load and was also positive in endpoint dilution assay, see Figure 3-

1D) can be caused by using different primary material/tissue of an organ.  

Expectedly, the highest TCID50/g tissue and calpox DNA copy number/g tissue were meas-

ured in 12 dpi animals, because of the close time to the expected moribund endpoint at 12 dpi. 
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Since the comparison of the two assays (real-time PCR and endpoint dilution assay) shows 

that the bone marrow, nasal mucosa and submand. LN were strongly positive organs in both 

tests, the calpox virus consequently replicated efficiently in these organs. Low viral levels in 

both assays were determined in the central nervous system (CNS), parotid gland, small intes-

tine and stomach, which indicate that the calpox virus replicated less efficiently in these or-

gans. These findings are consistent with other studies (Tucker, 2011).  

Both assays were positive at 3 dpi for nasal mucosa and tongue, the highest values however, 

were measured in nasal mucosa (epithelial layer of the mucous membranes in the nose) in 

both assays. The highest viral load in 5 dpi animals (with the low inoculation dose) was also 

detected in the nasal mucosa in one of three animals, which indicates earliest replication of 

the virus in the nose for both inoculation doses. There is no evidence for a viremia at 5 dpi, 

because no infectious virus was detected and only few tissues were positive in of two of three 

animals. Calpox DNA copy numbers and infectious virus titres were found in a broad spec-

trum of organs from 7 dpi to 12 dpi. In conclusion the viremia then starts between 5 and 7 dpi 

after a local virus replication at the viral application site. 

To sum up the results of the endpoint dilution assay and real-time PCR, the data provide evi-

dence that the calpox virus first replicates where the virus is applied (in the nose) and evi-

dence for viremia starting between 5 and 7 dpi is shown. 

4.1.6  (I) Portal of viral entry 

One of the aims was to determine the portal of viral entry. Only very mild histological altera-

tions were detected at day 5, 7 and 10 as described in a dissertation conducted in parallel 

(Schmitt, 2015). Also, in almost all day-5 animals, no calpox virus DNA and no infectious 

calpox virus was detected. Therefore, a second study was performed where 3 more animals 

were infected with an approximately 42-fold higher dose in order to increase sensitivity of the 

analyses.  

There have only been reports about the severe pathological alterations of the late stage of the 

disease caused by calpox virus. Therefore, a study where serial necropsies were carried out 

during the asymptomatic phase of calpox virus infection in common CM (CM) was designed. 

At each defined time point, a broad spectrum of organs was collected and analyzed for the 

occurrence of alterations (see dissertation by Schmitt, 2015). The aim was to determine pri-

mary target cells and organs of infection as well as to determine the portal of viral entry (I). 

Another aim was to investigate the early dissemination and the pathological sequelae of infec-

tion (II) by detection of replicating calpox virus and calpox viral DNA in different organs 
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(present study). In addition, the detection of replicating calpox virus and calpox virus DNA in 

blood was in focus. The aims of the study were to detect the start of viremia and to analyze by 

flow cytometry which are the preferred immune cell subsets for calpox infection. Studies have 

shown that in the calpox model when employing intranasal virus inoculation very low infec-

tious doses are sufficient to establish infection compared to common OPXV models (Kramski 

et al., 2010). Therefore, in this study, animals were inoculated via the intranasal (i.n.) route. 

Also, the infection of the upper respiratory tract closely resembles the natural infection route 

of smallpox, which occurs via aerosols. Aerosols with an infectious virus are inhaled, exposed 

to the oral, nasal, pharyngeal mucosae or if inhaled deeper to the lung, could lead to disease in 

the lower respiratory tract (Barnewall et al., 2012; Fenner et al., 1988b). 

It is known that the initial site of the orthopoxvirus (OPXV) infection is the skin, a mucosal 

surface or the respiratory tract (Munoz, 2014b). For the calpox/marmoset model it was as-

sumed that the nasal epithelium and the nasal-associated lymphoid tissue (NALT) represent 

the principal target for primary infection when the virus is administered intranasally (Mätz-

Rensing et al., 2012). To understand the pathogenesis of the calpox virus infection in CM the 

pathogenesis study was conducted to analyze the early replication site. The detection of repli-

cating calpox virus and viral DNA in the nasal mucosa three days after inoculation leads to 

the conclusion that calpox virus first multiplies at the inoculation site, the nasal mucosa. The 

portal of viral entry and the location of primary replication is thus the nasal mucosa (nose) 

when the virus is inoculated intranasally. Different findings underline the observation that na-

sal epithel cells are the principle target cells. First, viral DNA was also almost exclusively de-

tectable in the nasal mucosa at 5 dpi when the low infectious dose was given. In addition, the 

results of the immunohistochemical analyzes presented in a dissertation conducted in parallel, 

show that the nasal epithelial cells serve as the principal target cells for primary replication 

since viral antigen within inclusion bodies was detected in that study at 3 dpi (Schmitt, 2015). 

Additionally, first alterations in the nasal ciliated epithelium were visible as well as immuno-

histochemical reactivity in respiratory epithelium at 3 dpi.  

The nasal mucosa is the location of viral entry. The nasal mucosa´s immune system is the na-

sal-associated lymphoid tissue (NALT) that has been assumed to be the principal target for 

primary infection in this model (Mätz-Rensing et al., 2012). The NALT can protect against 

infectious agents such as airborne transmitted viruses (e.g. VARV) or other pathogens and 

contains many immunocompetent cells (e.g. B cells, dendritic cells, macrophages, T cells) 

(Bienenstock and McDermott, 2005). Furthermore, NALT consists of follicle-associated epi-

thelium, the overlying epithelium with microfold M cells. M cells take up viral antigen and 
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transport them to the immune cells. Dendritic cells with antigen will then migrate to the drain-

ing lymph node and present the antigen to T cells (Xu et al., 2014). 

Consistently, the first targets for naturally acquired smallpox infection are the cells of the mu-

cous membranes of the mouth, the nasal cavity, the oropharynx and the alveoli of the lungs. 

The findings in this study seem reasonable, because in other CPXV and ECTV species the 

replication site is the infected epithelia (Patel et al., 1986).   

4.1.7 Calpox virus detected in blood 

Infectious virus in buffy coat and viral DNA quantification from whole blood 

Earliest calpox viral DNA in blood was detected in two of three animals at 7 dpi (#14966 and 

#14483). Therefore, supposably viremia starts between 5 dpi (when no viral DNA was detect-

ed) and 7 dpi following inoculation with the lower viral dose (8.3 x 103 pfu). It is assumed 

that the dose was too low to cause viremia at 5 dpi animals, since all three animals at 5 dpi 

were negative in blood for viral DNA. Most of the animals became viremic after calpox infec-

tion at the following time points. 

To increase the probability to track down the virus, the day-3 animals received an approxi-

mately 42-fold higher dose (3.5 x 105 pfu) and one of three animals at 3 dpi became viremic. 

Earliest viral DNA in blood was found in one animal at 3 dpi (#14484) (3.2.1.2 Viral DNA 

quantification from whole blood), however, this did not coincide with detection of replicating 

virus in buffy coat. This can be explained by the fact that the infectious virus titre in buffy 

coat is known to be lower than the titre of viral load since real-time PCR method is more sen-

sitive. The real-time PCR measures the replicating virus as well as non-replicating viral parti-

cles.  

The results of the plaque assay using buffy coat for cocultivation with sensitive indicator cells 

appeared to be valid when compared to the results of the real-time PCR at 7 dpi. Day -5, -7 

and -10 group animals were not tested for replicating calpox virus in blood because the meth-

od was not established at that time point. Instead, the day-12 group was tested at 7, 10 and 12 

dpi. The first replicating virus was detected in one of three animals (#15095) of the day-12 

group (animals were infected with 8.3 x 103 pfu calpox virus) at 7 dpi, but analysis for viral 

DNA was not done. However, calpox viral DNA was detected in two of three animals 

(#14966 and #14483) from the day-7 group. 

Most of the animals became viremic at 10 and 12 dpi and at 10 dpi the replicating virus and 

calpox viral DNA increased because the end of the incubation period is at approximately 11 
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days post infection. As expected, the highest calpox DNA copy numbers in blood were de-

tected in all animals euthanized at the latest time point (12 dpi).  

To sum up the results of testing blood for infectious virus as analyzed by plaque assay with 

buffy coat and for viral DNA by real-time PCR with whole blood, it can be postulated that a 

start of viremia (DNA copies in blood) is dose dependent. In this model viremia starts at 3 dpi 

(with the high inoculation dose) or between 5 and 7 dpi (with the low inoculation dose). 

4.1.8 Detection of calpox virus infection with anti-vaccinia virus (VACV) serum  

The viremia starts at day 3 with the high dose (3.5 x 105 pfu calpox virus) 

Calpox virus antigen positive (calpox+) cells were detected in cells from buffy coat and 

PBMCs. The detection of calpox+ cells of CD3+CD20+ cells in two of three animals and the 

detection of calpox+ cells of intermediate CD14+CD16+ monocytes in one of three animals of 

the 3-day group indicates the start of viremia at day 3. These results are in line with other 

findings. Therein, the calpox virus was detected in the blood of one of three animals at that 

time point by real-time PCR (4.1.7 Calpox virus detected in blood).  

Early reports have indicated that VACV causes a cytopathic effect in human leukocytes and 

an infection of leukocytes has also been reported in monkeys. For cynomolgus macaques in-

fected intravenously with cowpox virus, it is known that especially monocytes and granulo-

cytes were positive for the virus (Song et al., 2013b). Monocytes and granulo-

cytes/neutrophils were also the major populations that were stained positive for pox antigen, 

whilst frequencies of B cells, NK cells and T cells were low in cynomolgus macaques. How-

ever, in the pathogenesis study presented herein neutrophils were tested negative in day-3 and 

only a very small proportion of neutrophils appeared to be positive in one day-12 animal. 

Monocytes (CD14+CD16-, CD14+CD16+ and CD14+CD16-) were tested calpoxvirus antigen 

positive at 12 dpi. But their proportion was not as high as that of CD20+ B cells and of 

CD3+CD20+ cells. To my knowledge, nothing is known about CD3+CD20+ cells in CM so far 

and further research is needed to clarify their function in common CM (CM). Double positive 

CD3+CD20+ cells are usually only detected in e.g. lymph nodes of rhesus macaques (Macaca 

mulatta), but not in blood. Schuh and colleagues reported that 3-5 % of the T cells in human 

blood express CD20 and that the CD3+CD20+ T cells produce different cytokines, pervade 

lymphatic organs and the cerebrospinal fluid. (Schuh et al., 2016). They also respond to MS 

disease modifying drugs. The existence of CD3+CD20+ cells have been controverely dis-

cussed and were thought to be an artifact of flow cytometry in the past (Henry et al., 2010). 
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They also have been described as a storage-dependent phenomenon (Nagel et al., 2014). Fol-

lowing recent studies (Neumann et al., 2015; Schuh et al., 2016) CD3+CD20+ T cells do exist. 

The function of human CD3+CD20+ T cells is the production of different cytokines (IL-4, IL-

17, IFN-γ and TFN-γ), pervading lymphatic organs and the cerebrospinal fluid. They also re-

spond to MS disease modifying drugs.  

This study clearly demonstrated the presence of the calpox virus antigen in different immune 

cells (neutrophils, monocytes, T and B cells and NK cells) by flow cytometry. In marmostes 

infected for 12 days, multiple immune cell subsets were positive for calpox virus antigen. Fur-

thermore, the results of this study point to a preference of calpox virus infecting certain cell 

types. Infection was detected in all tested immune cells (monocytes, T and B cells and NK 

cells) except for the neutrophils. Followed by CD20+ B cells and NK cells CD3+CD20+ cells, 

the monocytes were most susceptible. CD3+ T cells were infected at very low frequencies. 

These findings are conform with the results of VACV WR infection of human PBMCs by 

Sanchez-Puig and colleagues (Sanchez-Puig et al., 2004). When macrophages get infected, 

their normal ability to act as accessory cells to activate T-cells or natural killer (NK) cells and 

secrete cytokines is blocked which is of advantage for virus infection (Smith and Kotwal, 

2002). Perhaps the virus infects the immune cells that play an important role in host defense 

as e.g. NK cells play an important role in early (first three days) host immune response after 

poxvirus infection. The latter implies that T cell responses seems to play a more important 

role in the early rather than the late phase of primary, acute infections (Gordon et al., 2011; 

Xu et al., 2004b).  

Not only did Sanchez-Puig and colleagues find that VACV WR and MVA showed a prefer-

ence for certain cell populations (Sanchez-Puig et al., 2004), but this study also showed that 

the calpox virus seems to have preferences for certain cell populations. This may indicate that 

factors other than host range genes like the accessibility and the amount of receptors, ability 

to internalize the virus and the metabolic state of the cell might influence the infection rate of 

PBMCs and immune cells in the buffy coat. 

4.1.9 Detection method for calpox virus 

The calpox virus was detected in blood by using different methods. The first method was the 

detection of the calpox virus antigen in buffy coat and PBMCs by flow cytometry, secondly 

viral DNA was quantified by real-time PCR and the third method was the virus isolation from 

buffy coat by plaque assay. Comparison of the different calpox virus detection methods re-

vealed that real-time PCR and calpox virus antigen staining by flow cytometry are very sensi-
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tive methods and more sensitive than virus isolation. When the same animals were first tested, 

calpox virus DNA was detected in only one of three animals at 3 dpi by real-time PCR. Cal-

pox viral antigen was detectable in immune cells of at least two day-3 animals in CD3+CD20+ 

cells by flow cytometry. In animals that had the highest percentages of calpox+ cells by flow 

cytometry, the highest viral loads were also detected by real-time PCR. Aside from real-time 

PCR, calpox virus antigen detection in buffy coat and PBMCs by flow cytometry was the 

most sensitive method used here. 

The real-time PCR and poxvirus antigen staining by flow cytometry methods are also the 

fastest methods. Since replicating calpox virus detection by plaque assay was first observed at 

7 dpi in one of three animals, this seems to be the least sensitive of the tested methods. 

Calpox virus antigen staining by flow cytometry has its advantages. It is possible to test dif-

ferent immune cells in one approach and detect the infection of animals supplementing real-

time PCR and plaque assay. Because a lower background staining (baseline) was detected in 

cells from buffy coat of the controls animals compared to purified PBMCs, the calpox virus 

antigen staining by flow cytometry with cells from buffy coat is prefered.  

4.1.10 Onset of viremia is dose dependent as determined by real-time PCR, plaque 

assay and calpox viral antigen staining 

Viremia starts at 3 dpi in cases with high dose infection (3.5 x105 pfu calpox virus) as calpox 

virus antigen positive (calpox+) cells in buffy coat and PBMCs were detected at this time 

point (#14484 and #14991) and calpox virus DNA in blood was detected by real-time PCR at 

3 dpi (#14484). Replicating virus was not detected at 3 dpi.  

However, based on the results of calpox DNA copy numbers in different organs from 7 to 12 

dpi, it can be concluded that after a local virus replication at the viral application site the vi-

remia starts between 6 and 7 dpi (with the low inoculation dose). In the low-dose group (8.3 x 

103 pfu calpox virus) earliest calpox viral DNA in blood was detected in two of three animals 

at 7 dpi (#14966 and #14483) but not at 5 dpi. At 7 dpi the first replicating virus was also de-

tected in one of three animals (#15095). Evidence of a viremia that starts between 6 and 7 dpi 

with the low dose (8.3 x103 pfu calpox virus), exists and it can therefore be assumed that the 

onset of viremia is dose dependent.   

4.1.11 (II) Early dissemination and pathological sequelae of infection 

It has been reported that once cells became pox-antigen positive and remained positive, the 

non-human primates (NHPs) developed more severe symptoms and reached moribund end-
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points (Song et al., 2013a). Unfortunately, this was not analyzed here because animals were 

euthanized at defined time points even though in this study the CD3+CD20+ subset and inter-

mediate CD14+CD16+ monocytes were positive for calpox antigen as determined by flow cy-

tometry at 3 dpi. Future studies with the testing for poxvirus antigen positive cells in this 

model might give insights of a correlation between early positive poxvirus antigen staining, 

disease progression and lethality since early positive pox staining is also a strong predictor for 

lethality in the studies of Song and colleagues.  

Little was known about the early phase of the calpox virus pathogenesis. To understand the 

early dissemination and pathological sequelae of calpox virus infection in CM the pathogene-

sis study was conducted. The pathogenesis study provides evidence that after intranasal cal-

pox virus application the nose represents the portal of viral entry in the calpox/maroset model 

and therefore early dissemination starts in the nasal mucosa.  

Earliest and highest detection of calpox virus DNA and replicating calpox virus was in the 

nasal mucosa at 3 dpi (with the high inoculation dose). The earliest and highest detection of 

the calpox virus DNA was also detected in the nasal mucosa at 5 dpi (with the low inoculation 

dose). Therefore, this location is the portal of viral entry. Other organs (eyes, esophagus, lung, 

tongue and tonsil) were positive for calpox viral DNA and/or replicating calpox virus at 3 dpi 

and for calpox DNA copy numbers at 5 dpi (with the low dose) (nasal mucosa, submandibu-

lary LN and tonsil). When analyzing the early dissemination, viremia starts at 3 dpi (with the 

high inoculation dose) in the calpox/marmoset model after i.n. inoculation. The results out-

lined in a dissertation conducted in parallel show that the trafficking of infected macrophages 

presumably lead to a secondary replication in the submandibulary LN and the spleen 

(Schmitt, 2015).  

Virus replicated efficiently in the bone marrow, nasal mucosa and submandibulary LN. Two 

assays (real-time PCR and endpoint dilution assay) were compared and the organs contained 

high viral levels as manifested in both tests (between 1012 and 1017 calpox DNA copy num-

ber/g tissue and between 108 and 109 TCID50/g tissue). This also indicates a progressive in-

fection. In comparison to the intravenous (i.v.) inoculation route decribed by Kramski and 

colleagues, the highest viral loads were measured in skin, spleen, lung, lymph node, tonsils 

and trachea and indicate lower viral loads when compared to the results of this study (between 

107 and 108 calpox virus genome equivalents (GE)) (Kramski et al., 2010).  

The data suggests that the calpox virus initially replicated in the upper respiratory tract fol-

lowed by the systemic spread. Calpox virus probably disseminated through the blood stream 

(viremia; see 4.1.6). Onset of viremia is dose dependent as determined by real-time PCR, 
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plaque assay and VACV antigen staining. It is probable that the calpox virus first replicated in 

the nasal mucosa and then spread from the nasal mucosa to the surrounding lymphatic tissue 

(submandibulary LN and tonsil) where it leads to secondary replication. The virus probably 

spreads from there to other organs of the respiratory tract and other surrounding tissues (eyes, 

esophagus, lung and tongue) by viremia followed by diffuse dissemination in other organs. 

Low level infection as indicated by the results from both assays (real-time PCR and endpoint 

dilution assay) were determined in the central nervous system (CNS), parotid gland, small 

intestine, stomach, esophagus, parotid gland and vagina/testicle suggesting that the calpox 

virus replicated less efficiently in these organs. These findings are consistent with other stud-

ies (Tucker, 2011).  

The pathogenesis in this model is comparable to that of smallpox infection, because it also 

starts in the respiratory mucosa, spreads to the lymph nodes and is followed by viremia. The 

same process was observed in a study where cynomolgus macaques were infected with aero-

solized MPXV by using a head-only exposure chamber with a collision nebulizer (Zaucha et 

al., 2001). 

As in this study, the virus was detected in various organs in lethal human MPXV and VARV 

infections. Kramski and colleagues described the involvement of organs of the digestive tract 

in the calpox virus/marmoset model opposed to human VARV infections (Fenner et al., 

1988c), which was verified in this study. A monocytic cell associated viremia starts at 7 dpi 

and causes systemic dissemination of the virus. The virus is detectable in a broad spectrum of 

organs, mainly in epithelial cells and macrophages, but also in endothelial cells. The viremia 

proceeds in viral replication and typical calpox lesions in lung, liver, lymphatics, adrenal 

gland, mucocutaneous junctions, and skin as described in a parallel dissertation (Schmitt, 

2015). 

Because 12 dpi is already close to the moribund endpoint, the highest TCID50/g tissue and 

calpox DNA copy number/g tissue were measured in 12 dpi animals. In late state infection 

(12 dpi), multiple immune cell subsets were also positive for calpox virus antigen. The wide 

cell tropism of the calpox virus is demonstrated in a study of Kramski and colleagues. It has 

been shown that independent of the infection route and inoculated viral dose, high copy num-

bers of virus genomic DNA and virus-specific mRNA indicating active replication were 

found in a broad spectrum of organs and tissues (Kramski et al., 2010). In lethal human mon-

keypox virus (MPXV) and variola virus (VARV) infections, multiple organs are also general-

ly involved and the virus was also found in various organs (Fenner et al., 1988b). It has been 
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described that a systemic macrophage response is required to contain a peripheral poxvirus 

infection (Davies and Parekh, 2017). 

It has already been shown for VARV infections in cynomolgus macaques that the virus repli-

cation was probably associated with organ dysfunction and multisystem failure of all the or-

gans (Jahrling et al., 2004), which assumably was also the case in this study. In the calpox 

virus/marmoset model, all animals that developed clinical symptoms died. In natural VARV 

and MPXV infections, only part of the diseased patients had a lethal outcome. Seroconversion 

was not observed in animals that died within 12 days and was not analyzed in the pathogene-

sis study. Obviously, the survival time of the CM after infection is too short to detect titres of 

virus-specific IgM antibodies at the time point of death. It has also been reported that intrana-

sal infection of the calpox virus probably resulted in an overwhelming infection and death 

occurred before the humoral immune system could respond by developing IgG and neutraliz-

ing antibodies (Kramski et al., 2010). 

In the calpox virus/marmoset model, most of the clinical signs resemble those commonly 

found in smallpox. In this model, however a drastically shorter time was reported between the 

first appearance of clinical signs only one or two days before death (Kramski et al., 2010; 

Schmitt, 2015). In human smallpox and MPXV infection a longer period of two to five days 

were reported where fever, malaise, prostration, headache and backache occurred which were 

followed by the development of a maculopapular rash. The first symptoms rapidly developed 

into more severe clinical findings in the upper respiratory tract and the lymphatic system as 

well as hemorrhagic edema. As reported in a dissertation conducted in parallel (Schmitt, 

2015), animals that were euthanized or died unexpectedly between 12 or 16 dpi, showed vary-

ing symptoms. Two animals from the group that was euthanized at 12 dpi had only a very few 

typical pox lesions on the skin, mucocutaneous junctions and mild nasal discharge. The ani-

mals with symptoms showed signs of fatigue, anorexia, moderate to severe seromucous nasal 

discharge and multiple pox lesions on skin and mucocutaneous junctions one to two days pri-

or to death. Another difference to MPXV and VARV patients is that those present with a 

more or less confluent rash (Fenner et al., 1988a; Fenner et al., 1988c; Jezek et al., 1987; 

Parker et al., 2007). Only sporadic and small skin lesions distributed on the face, abdomen, 

and thighs after i.n. infection with calpox virus occurred in CM (Kramski et al., 2010). Stud-

ies have already shown that even with a high calpox virus dose it was impossible to induce an 

infection that led to skin lesions that were distributed confluently on the body of CM that is 

characteristic and previously demonstrated in macaques infected with MPXV and VARV 

(Hooper et al., 2004; Jahrling et al., 2004; Jezek et al., 1988; Stittelaar et al., 2005).  
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The morphology of the skin lesions differs between calpox virus and VARV or MPXV le-

sions. The calpox virus induced skin lesions were flat and small in size (2-5 mm in diameter) 

whereas the lesions induced by VARV or MPXV, reach a diameter of up to 10 mm, but the 

size of the animal might also play a role (Kramski et al., 2010). The severe lymphadenopathy 

was found in calpox virus infection and occurs as a classic alteration in many OPXV infec-

tions. The lymphadenopathy is comparable to the clinical picture of the cowpox virus (CPXV) 

and MPXV infections in humans and also NHP models but not in human smallpox (Fenner et 

al., 1988a; Heraud et al., 2006; Hooper et al., 2004; Kramski et al., 2010; Sale et al., 2006). 

4.2 Vaccination studies  

4.2.1 Vaccine efficacy 

In addition to efficacy testing of next-generation vaccines against orthopoxviruses in mouse 

models, further proof has to be provided by using suitable large animal models. In this respect 

animal models with an immune system very similar to the human one are preferable. This is 

the reason why non-human primates were chosen as large animals for such studies. To this 

end, efficacy of candidate vaccines has been investigated in macaques which were challenged 

with MXPV or VARV. However, mostly monkeys were exposed to high viral doses by the 

intravenous route, thus not representing the natural transmission route of the two human-

virulent viruses. Since in the calpox virus/marmoset model very low viral doses administered 

intranasally are sufficient for infection and rapidly lead to death of all animals, this model can 

provide meaningful efficacy data through a natural transmission setting in a short period of 

time. The primary read-outs for protection are viral loads and survival.  

Earlier studies in the calpox virus/marmoset model have shown that after a waiting period of 

ten weeks between single vaccination with vaccinia virus Lister Elstree (VACV LE) intra-

dermally (i.d.) and intranasal calpox challenge all vaccinees were protected. When vaccinees 

were already challenged four weeks after VACV LE was given, only one of four was protect-

ed (Kramski, 2009). The conventional VACV vaccine against smallpox is known to be asso-

ciated with considerable side effects, particularly in older or immunocompromised vaccinees 

(Mota et al., 2011). Thus, in this study the differently attenuated, safer VACV vaccines 

MVTT and MVA were evaluated in CM for their efficacy against intransal low-dose calpox 

virus exposure after a 4- (study I) or 10-week waiting period (study II) between last immun-

ization and viral challenge. To compensate for their reduced replication capacity compared to 

replication-competent VACV LE, both vaccines were given twice four weeks apart as was 
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reported for MVA before (Stittelaar et al., 2005). Because MVTT was highly immunogenic in 

mice after noninvasive mucosal administration, either through the intransal (Yu et al. 2009) or 

peroral route (Huang et al. 2009), the same routes were chosen for immunization of CM with 

MVTT. As numbers of monkeys were limited not allowing to test both mucosal routes com-

bined with the different waiting periods, relying on efficacy data in the mouse model (Yu et 

al., 2010) in vaccine study I only the efficacy of intranasal MVTT applicaton was investigat-

ed. By contrast, intranasal and peroral immunizations were compared side by side, when a 

longer waiting period (10 weeks) should allow for prolonged maturation of vaccine-induced 

immune responses and thus for better protective effects.  

When the time period until the animals died (days post challenge) is compared between the 

vaccine failures and the mock immunized control animals a significant difference was de-

tetcted (***; p = 0.0002). Therefore, a vaccination effect is present in the vaccine failures, but 

this effect can not be explained by the data raised in this thesis.  

Overall, independently of the waiting period immunization with MVTT protected 67 % of the 

animals whereas immunization with MVA was only protective in 13 % of the test animals.  

While MVA was not protective when last immunization and challenge were spaced four week 

apart, intranasal immunization with MVTT protected three out of four monkeys after this 

waiting period, thereby confirming MVTT efficacy findings in the mouse model (Yu et al., 

2010). The longer waiting period seemed to slightly improve protection in the MVA immun-

ized group as indicated by survival of one of four vaccinees, whereas in animals immunized 

with MVTT i.n. no increased protection rate was observed. Similar protective rates were ob-

served after peroral MVTT immunization. Thus, MVTT immunization by the two different 

mucosal routes seemed to provide similar protection levels, which however did not reach 

those achieved by the fully replication-competent VACV LE. The high efficacy of VACV LE 

still represents the gold standard for a prophylaxis against orthopoxviruses. This high level of 

protection could not be achieved by the more attenuated VACV vaccines, but considering the 

potential side effects of the conventional smallpox vaccine, MVTT seems to be a safe and 

well-tolerated smallpox vaccine candidate for humans. Compared to MVTT, MVA-mediated 

protection was poor in the calpox virus/marmoset model. This might be attributable to the 

stringency of the calpox virus challenge. If calpox virus replicates to a certain threshold, the 

virus is always lethal for CM. This is in contrast to the MPXV/macaque model in which dose-

dependent stages of infection occur. In that model MVA mediated protection from disease, 

but not from infection (Earl et al., 2004; Stittelaar et al., 2005). Because of the reduced repli-

cation competencies of MVA and MVTT (MVA < MVTT) in contrast to the fully replication 
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competent VACV LE development of protective immune responses through these vaccines 

may require even a longer period of time as compared to VACV LE. Still, MVTT- or MVA 

induced immune reactions may never be sufficient for complete protection in the calpox vi-

rus/marmoset model. Interestingly, and controversial to the own calpox challenge data, al-

ready four days after a single MVA immunization macaques were protected from pathogenic 

sequelae of a MPXV challenge, most likely due to rapidly developing antibody and CD8+ T 

cell responses (Earl et al., 2008).  

Kinetics of calpox viral DNA load in blood from all vaccine failures were comparable to 

those observed in mock immunized animals. Moreover, in study II the data on replicating vi-

rus confirmed those on viral DNA.  

In three protected MVTT-vaccinees of study I very low levels of calpox virus DNA were 

transiently observed starting on day 14 or 21. Whether this also translated into infectious vi-

rus, could not be assessed. In study II two protected vaccinees exhibited those viral blips as 

well, but remained negative for infectious virus. Thus, albeit calpox virus probably replicated 

in some protected animals, the immune responses were obviously able to control viral dissem-

ination and to finally eliminate the virus. Therefore, these animals were protected against cal-

pox virus-induced clinical manifestations and overall are regarded as protected. Vaccinees 

were considered being protected according to the criteria survival and viral load. 

Low-level viral DNA blips in blood of protected vaccinees were detected. It seems as when 

the calpox DNA copy numbers increase upon a certain threshold (between 103 and 104) ani-

mals die from disease. 

4.2.2 The role of the humoral immune response in the calpox virus/marmoset model 

In this study the role of humoral serum responses was analyzed by the analysis of binding an-

tibodies by enzyme-linked immunosorbent assay (ELISA), mapping antibodies against linear 

B cell epitopes and the investigation of neutralizing antibody titres. In non-human primates as 

well as mouse models, no protection was observed before antibodies were developed (within 

a period of seven to ten days after vaccination) (Staib et al., 2006; Stittelaar et al., 2006).  

In this system it was not possible to test the role of the complement due to the limited availa-

bility of plasma. Plasma samples were only tested without heat inactivation because of the 

type of sample used here.  
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Binding antibodies by enzyme-linked immunosorbent assay (ELISA) 

A correlation between the presence of serum antibodies and protection has been reported for 

human orthopoxvirus (OPXV) infections (Downie and Mc, 1958; Mack et al., 1972; Sarkar et 

al., 1975). In the vaccination studies presented here the antibody responses determined in the 

day-of-challenge plasma were not associated with protection. 

The reasons for this are not clear, but should not be a matter of immune response maturation. 

In this respect it has been reported that in macaques MVA immunization led to a more rapid 

development of cellular and humoral immune responses compared to Dryvax immunization 

and was already 100 % protective against a lethal MPXV dose ten days after vaccination (Earl 

et al., 2008). Furthermore, those reactions were stable and very similar in the two vaccine 

groups four weeks after vaccination. Thus, such stability of immune responses is also to be 

expected in the marmorset vaccinees, and lack of an immune correlation cannot be explained 

by waning immunity. It should be noted that ELISA antibody levels against calpox virus (ex-

pressed as OD450 nm) were considerably lower than against VACV which might me attributa-

ble to lower affinity of antibodies towards calpox viral particles.   

Interestingly, independent of the vaccine variant and the immunization routes used an anan-

mnestic antibody response was not only noticed in all MVA and MVTT vaccine failures, but 

also in 75 % of the protected MVTT vaccinates. This indicates that low-level calpox virus 

replication must have occurred in those protected animals displaying the stark rise in antibody 

levels after challenge, presumably at the vaccination site, however, not leading to viremia. 

When considering all protected animals, two MVTT and one MVA vaccinate lacked this re-

sponse which suggests sterile immunity. 

Specificity of antibodies against B cell linear epitopes in relation to challenge outcome 

Since binding antibody levels against whole orthopoxvirus antigen did not discriminate be-

tween protected and unprotected vaccines, antibodies were analyzed at a high resolution level 

by means of peptide microarrays. This technique allows to measure antibodies against linear 

epitopes of an antigen, in this case against vaccinia virus proteins. For the generation of over-

lapping peptide libraries, the immunodominant VACV WR proteins A27, A33, B5, D8, H3, 

and L1 (Matho et al., 2012) were chosen. They represent surface proteins and are targets of 

neutralizing and protective antibodies (Moss 2011). 

The proteins A27, D8, H3 and L1 are involved in virus entry and/or fusion (Moss, 2011), 

whereas the proteins A33 and B5 play a role in virus spread (Moss, 2011). 
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A27 is an enveloped protein and is anchored to the viral membrane of the MV and one of the 

three glycosaminoglycan adhesion molecules. Linear epitopes in A27 have already been de-

scribed as targets of protective antibodies induced by vaccination against smallpox (Kaever et 

al., 2016).  

A33 (Roper et al., 1996) and B5 (Engelstad et al., 1992; Isaacs et al., 1992) are transmem-

brane proteins that are exposed on the outer surface of the enveloped virion (EV), but are not 

found on the intracellular mature virions (IMV) (Chan and Ward, 2010). These proteins were 

chosen, because deletion of their genes resulted in decreased virus spread (Moss, 2011). A33 

and B5 have also been shown to be targets of comet-reducing antibodies. A33 and B5 are EV 

membrane proteins and were protective in the intranasal VACV and ectromelia virus (ECTV) 

footpad infection mouse models (Fang and Sigal, 2006; Fogg et al., 2004; Galmiche et al., 

1999). 

D8 is another membrane protein, which was chosen because the mAb LA5 binds to the 

VACV envelope protein D8 and is able to neutralize VACV when complement is present 

(Matho et al., 2012). D8 binds to the chondroitin sulfate on the host cell surface, but not to 

heparan sulfate like proteins H3 and A27 (Matho et al., 2012). 

H3 is, like A27, involved in cell adhesion of the MV to glycosaminoglycan heparan sulfate of 

the host cell (Matho et al., 2012). 

L1 is a capsid protein of the MV, which is located on the mature virion (MV) and functions as 

an entry/fusion protein. L1 is likely associated with the neutralization of VACV (Kaever et 

al., 2016). Furthermore, antibodies against A33, B5 and L1 were able to protect mice against 

lethal challenge with VACV (Fogg et al., 2004). 

In this study, unique antibodies against linear B cell epitopes in proteins L1, A33, and B5 

were only identified in protected animals almost exclusively after (epitopes 1-4), but in one 

case also before challenge (epitope 5). The failure to detect a specific reaction pattern of anti-

bodies directed against distinct amino acid sequences might be explained by (i) low antibody 

levels which were not sufficient to result in a reaction in the peptide array. Another reason for 

not detecting antibodies against B cell epitopes that correlate with protection might be that (ii) 

the sequences of the printed VACV WR peptides are too divergent to those of the vaccines 

(MVA and MVTT) thereby missing antibody responses. Alternatively, (iii) at least antibodies 

against epitopes 1-4 developed de novo post challenge. The theory behind this is that other 

antibodies may play a role in the exposure of these four epitopes to the immune system upon 

binding to the challenge virus thereby unmasking usually unaccessible regions. This phenom-

enon was observed (a change in the 3D structure) in the presentation of an important neutral-
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izing epitope in the haemagglutinin of the influenza virus upon binding of antibody to differ-

ent regions (Leikina et al., 2002). Finally, another plausible argument for lack of antibodies 

against linear amino acid sequences could be that (iv) almost all generated antibodies were 

directed against conformational or discontinuous epitopes which prevents any detection in the 

peptide microarray.   

A further reason why protective antibodies might not have been screened by peptide microar-

ray at challenge could be that the proteins that were synthetized and printed on the peptide 

microarrays did not include the relevant sequence.  

Also of note is that after the longer waiting period between last immunization and challenge 

in study II, the total number of identified epitopes (n=12) was higher than in study I (n=4) 

suggesting maturation of the humoral response over time.  

Despite the uniqueness of the development of antibodies against some epitopes after chal-

lenge (Table 3-3), because of the timing those responses could not have contributed to protec-

tion from the calpox challenge.  

Detection of neutralizing antibody titres 

Neutralizing antibodies play an important role in the protection against poxviruses (Gilchuk et 

al., 2016b; Moss, 2011). Since the level of neutralizing activity in immune serum in thought 

to be the best laboratory predictor of protective immunity to OPXV infections in humans 

(Mack et al., 1972), I analyzed the neutralizing antibody titres in this study.  

Assumably, vaccination with MVTT p.o. induced more neutralization than MVA i.m. Levels 

of binding antibodies and neutralizing antibody titres were lower against the calpox virus than 

the immunogen VACV LE.  

In vaccination study II the mean value of the MVTT p.o. immunized group titres was higher 

than MVTT i.n. followed by MVA i.m. immunized group titres when the serum samples were 

tested against VACV LE and calpox virus. One can assume that MVTT p.o. induced more 

neutralizing antibodies than MVTT i.n. and MVA i.m. 

There were no neutralizing antibody titres detected in some animals that were protected, e.g. 

#14414. Previous studies have shown that immunological protection can also be provided by 

preventing the release of virions rather than by neutralization (Vanderplasschen and Smith, 

1997) of the EEV particles. In that case antibodies against EEV particles can cause the aggre-

gation of EEV particles on the cell surface (Ichihashi, 1996).  

To sum up, there was no correlation between protected and unprotected animals in the devel-

opment of neutralizing antibodies as well as the other tests like B cell epitope fine mapping by 
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peptide microarray and ELISA when analyzing the humoral response at challenge. When ana-

lyzing the humoral response, it can be assumed that MVTT p.o. induced more neutralizing 

antibodies than MVTT i.n. and MVA i.m.. In peptide microarray, antibodies against different 

epitope regions that are exclusive in protected animals were detected at different time points 

after challenge (Table 3-1). There was no correlation between the level of binding antibody 

responses in protected and unprotected animals detected (ELISA).  

4.2.3 The role of the cellular immune response in the calpox virus/marmoset model 

Polychromatic flow cytometric staining of differently fluorescently marked cells in 

whole blood  

Significant differences in T and B cell numbers, their expression of activation markers CD69 

as well as HLA-DR and CD80, were neither observed between the different vaccine groups 

nor between protected and unprotected animals on the day of the challenge. This suggests that 

the different vaccination strategies did not affect innate and adaptive immune cell numbers. 

There was also no correlation between cell numbers of protected and unprotected animals at 

challenge (data not shown). Furthermore, the kinetics of the tested cell subset frequencies 

(e.g. T and B cell frequencies) were similar and no differences between vaccination groups 

were detected. Although cell numbers did not change and frequencies were similar as well, it 

is possible that differences in the vaccine-induced secretion of cytokines occur that might play 

an important role in the protection of CM in the calpox virus/marmoset model. To my 

knowledge, there are no reports on phenotyping of immune cells after poxvirus infection for 

CM. Mucker and colleagues (Mucker et al., 2015) infected CM with MPXV, but no pheno-

typing of immune cells was done after the infection. Song and colleagues found that a mon-

keypox virus (MPXV) infection of rhesus macaques led to expanded frequencies and absolute 

numbers of NK cells in blood (Song et al., 2013b). In the calpox virus/marmoset model, this 

effect was not detected by flow cytometric staining. Unfortunately, earlier studies in the cal-

pox virus/marmoset model with VACV LE BN vaccination did not include analyses of the 

vaccine induced cellular response.  

In the vaccination studies, cell numbers of CD20+ B cells, CD3+, CD4+ and CD8+ T cells, 

CD4+CD8+ T cells, CD14+ cells (monocytes), NK cells, mDCs, pDCs, CD16+CD86+cells, 

CD14++CD86+cells increased shortly before the animals became moribund. Also, increases in 

the expression of the activation marker CD86 in CD14+CD16+ cells were observed. This 
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strong increase of the absolute cell numbers shortly before death may be due to a possible cy-

tokine storm for which, however, no evidence exists. 

 

Proliferation of CD3+, CD3+CD8+ and CD3+CD4+ T cells 

Proliferation of  CD3+, CD3+CD8+ and CD3+CD4+ T cells upon stimulation with VACV (here 

MVA) was analyzed and at no measured time point were significant differences between the 

vaccination groups detected. Therefore, the different vaccines did not differ in their 

proliferating activities of T cells. 

Moise and colleagues evaluated a T cell epitope vaccine based on vaccinia/variola sequences 

and induced protective immunity against VACV infection in mice by T cell responses alone 

and without the necessity of  B cell priming (Moise et al., 2011). In contrast, the proliferative 

activity of CD3+CD4+CD8+ cells was present even though animals died (e.g. #15100). The 

proliferative activity was not associated with the protection of the animals from the calpox 

virus challenge. It needs to be clarified what exact role the T cell proliferation plays in 

protection.  

4.3  (III) Identification of immune correlates  

Little is known about the immune response in CM after a poxvirus infection (Kramski et al., 

2010).  Data from two vaccination studies were merged to identify any immune correlates of 

protection. So far, it is still unclear why the vaccine failures died. These animals all developed 

high viral load viremia and in case where analysis was possible, also moderate to high titres 

of infectious virus in whole blood when compared to unvaccinated control animals. Lower 

levels of infectious virus shortly before or at death were observed in MVTT vaccine failures 

independent of the vaccination route when compared to those not protected by MVA immun-

ization.  

This suggests that calpox virus replication was slightly reduced in MVTT vaccine break-

throughs which, however, did not prevent the animals from becoming moribund. A correla-

tion between the presence of serum antibodies and protection from death has already been 

reported for human orthopoxvirus (OPXV) infections (Downie and Mc, 1958; Mack et al., 

1972; Sarkar et al., 1975). There is, however, no relation between the levels of ELISA anti-

body responses and protection. If neutralizing antibodies (nAbs) are present, protection does 

not depend on a high level of antibody response in ELISA because animals were protected 

also with a low titre (e.g. #14478) and vice versa (e.g. #14603). No association was observed 
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between the breadth of high resolution antibody responses as determined by peptide microar-

ray and protection. Nevertheless, neutralizing antibodies seem to play an important role since 

B cell epitope fine mapping by peptide microarray revealed antibodies against epitope regions 

that are exclusicely present in protected animals at different time points post challenge. Neu-

tralizing antibodies were determined, because it has been reported that those play an im-

portant role in the protection against poxviruses (Edghill-Smith et al., 2005). Data from this 

study suggest that MVTT was a better inducer for neutralizing antibodies than MVA. Poorer 

induction of neutralizing antibodies through MVA compared to Dryvax immunization has 

also been reported for macaques (Earl 2008). Also, there was no correlation between titres of 

neutralizing antibodies determined in plasma from the day of challenge and protection. In-

deed, the MVTT vaccine failures developed moderate neutralizing antibody titres (e.g. 

#14169) suggesting that the presence of these functional antibodies did not influence the dis-

ease course. The phentopyping of immune cells was analyzed, but since no significant differ-

ences between groups were detected in the analyzed T- and B cells and activation markers at 

the day of challenge, the different vaccination strategies did not have an effect on the different 

cell numbers at challenge. The T cell proliferation assay also revealed no significant differ-

ences between the vaccine groups at the time points analysed. The proliferative activity was 

also not associated with the protection of the animals from calpox virus challenge.  

It is tempting to speculate that death of calpox-infected animals resulted from a collapse of 

the immune system and organ dysfunction. With the findings of a dissertation conducted in 

parallel (Schmitt, 2015), it seems to be reasonable that the deaths are related to multi-organ 

system failure, immune system compromise and resulting opportunistic bacterial infections 

with sepsis. Another explanation for the death of common CM (CM) might be a cytokine 

storm, since in human hemorrhagic smallpox the cause of death was often suggested as toxe-

mia or a cytokine storm (Councilman et al., 1904; Fenner et al., 1988b; Jahrling et al., 2004; 

Johnson et al., 2011; Martin, 2002; Ricketts, 1908). A cytokine storm is also assumed to play 

an important role in a MPXV model in cynomolgus macaques (Macaca fascicularis). Strong-

ly elevated levels of certain cytokines (CCL2, IL-6, IL-8, IFN-γ) were detected in cynomol-

gus macaques following intravenous infection with VARV and cowpox virus (Jahrling et al., 

2004; Johnson et al., 2011). The cytokines that seem to play an important role in poxvirus 

immune response were not analyzed here. Due to the limited availability of reagents for CM, 

details of the immunology of calpox virus pathogenesis have not been studied and are difficult 

to elucidate.  

In the studies of Zielinski and colleagues, cynomologous macaques were immunized with the 
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cell culture grown ACAM 2000 vaccine (Wyeth strain) Wyeth-IL15, the genome of Wyeth 

strain of VACV with the integrated human cytokine IL15, a cytokine with pleiotropic immune 

modulatory activities (Zielinski et al., 2010). Three years after immunization with that vac-

cine animals were challenged with a lethal dose of MPXV. Following challenge most vac-

cinates presented with milder clinical manifestations and complete recovery. This study 

showed that the immunization with Wyeth-IL15 confered long term protection. IL-15 is es-

sential in the functioning and differentiation of NK cells. Because of the positive effect of 

vaccination with Wyeth-IL15 as well as the clearance of VACV it contributes to the control 

(Hugin et al., 1993). Other cytokines (e.g. IL-18) were also detected in cowpox viruses 

(Smith et al., 2000) as well as cytopkine receptor homologs (e.g. vTNFR, vIFNγR, vIL-1R) 

(Alcami and Smith, 1992; Loparev et al., 1998; Smith and McFadden, 2002). 

In this study, no distinct immune correlates were identified. Poxviruses are able to defend 

themselves through encoded proteins that are involved in immune evasion and immune modu-

lation (Smith and Kotwal, 2002). Such proteins are able to block several strategies of the host 

defense, e.g. blocking the activity of many chemokines, cytokines, serine proteases and even 

complement.  

4.3.1 Advantages and disadvantages of the calpox virus/marmoset model  

When selecting an animal model for viral pathogenesis or prophylactic studies, different as-

pects (e.g. applicability, costs, ethics) must be considered. The advantages and disadvantages 

of different OPXV NHP models have been discussed in Schmitt and colleagues (Schmitt et 

al., 2014).  

One disadvantage of the calpox virus/marmoset model is the relatively high maintenance 

costs compared to rodents or other non-rodent species (Jagessar et al., 2013). For ethical rea-

sons, using this model has the disadvantage that the common marmoset (CM) is closer related 

to humans than rodents. The small size of the CM also plays a role: animal experimentation 

and sampling is more difficult to perform in small animals and also the blood volume which 

can be collected is limited. Another disadvantage of this model is the absence of disease stag-

es as observed for smallpox in humans and MPXV infection of macaques (Schmitt et al., 

2014). Although calpox virus belongs to the specific of cowpox viruses and therefore is po-

tentially infectious for humans, epidemiological investigations demonstrated no evidence of 

transmission to man because persons being in close contact to calpox virus infected and dis-

eased CM were all seronegative for OPXV antibodies (Mätz-Rensing et al., 2012). Still, in-

fectivity in general cannot be excluded (Dr. Stahl-Hennig, personal communication) (Schmitt 



 

 123 

et al., 2014). Furthermore, in non-human primate models there are less animals available than 

in smaller animal models (Schmitt, 2015). Also, the availability of some critical immunologi-

cal tools is still very limited for CM.  

In general, non-human primates including cynomolgus macaques, rhesus macaques, African 

green monkeys and CM are the gold-standard for pathogenesis studies and the evaluation of 

new medical countermeasures, because they fulfill the criteria of the FDA Animal Rule for 

the highly pathogenic viruses (Safronetz et al., 2013). Advantages of the CM compared to 

other NHPs are that they are not endangered, are inexpensive to keep and easy to handle 

(Kramski et al., 2010). Their reproductive rate in captivity is high and they are also available 

at a reasonable price. CPXV was reported as suitable to study human smallpox, because it 

shares 19 immunomodulatory genes with VARV, the smallpox agent (Johnson et al., 2011; 

Seet et al., 2003). Furthermore, the disease in the calpox virus/marmoset model is comparable 

to human smallpox. The incubation period is similar to that of human smallpox. Another ad-

vantage of the calpox virus/marmoset model is that infected animals can be kept at biosafety 

level (BSL) -2 whereas MPXV must be handeled at BSL-3, and VARV even at BSL-4. Ex-

periments with this virus can therefore be conducted by a larger number of laboratories 

(Mätz-Rensing et al., 2012). Also, the CMs develop a reproducible lethal, systemic disease 

with cutaneous pox lesions and die upon low-dose intranasal inoculation within 12-16 dpi 

(Kramski et al., 2010). Also, a very low infectious viral dose is sufficient to establish infec-

tion. The i.n. calpox virus application was established in CM because VARV infection in hu-

mans normally occurs via airborne transmission. By infecting the upper respiratory tract, the 

major natural route of the human VARV infection is mimicked. This inoculation route has 

been described as advantage to the non-physiological i.v. route because that one “bypasses the 

mucosa and circumvents a primary replication of the virus in regional lymph nodes and the 

successive systemic spread via the lymphatic system, altogether representing the first vire-

mia” (Kramski et al., 2010).  

This is why the calpox virus/marmoset model is a suitable animal model for the validation of 

vaccines and antiviral drugs, but also for studying OPXV pathogenesis.  

4.3.2 Relevance of modified vaccinia virus Ankara (MVA) and modified vaccinia 

virus Tiantan (MVTT) in developing a safer, but efficacious smallpox vac-

cine 

The studies of Chen and colleagues suggest that MVTT is a safe and noninvasive smallpox 

vaccine candidate which induces neutralizing antibodies upon i.n. immunization (Yu et al., 
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2010). MVTT replicates in many mammalian cell lines, but replication in the brain of mice is 

lacking underlining the safety of this vaccine (Yu et al., 2010). Mucosal immunization with 

MVTT protected mice from VACV Western Reserve (WR) challenge. Accordingsly, MVTT 

is not only a potentially safe and noninvasive smallpox vaccine, but also effective. The effica-

cy in CM remained to be tested in these studies. MVTT protected 67 % of the animals whilst 

MVA protected only 13 % of the vaccinees independently of the waiting period. Thus, MVTT 

seems to provide better protection, but because of small animal numbers per group careful 

interpretation is required. When comparing all MVTT-induced immune responses with those 

mounted after MVA, MVTT appeared to be more immunogenic than the highly attenuated 

MVA and thus looks like a promising new smallpox vaccine candidate. Yet, it is unclear why 

lethal vaccine breakthroughs occurred in some MVTT vaccinated animals. One explanation 

was previously given (Schmitt, 2015). The interaction of intranasally applied MVTT with the 

NALT could stimulate a local respiratory mucosal immunity (Xu et al., 2014). Cytotoxic T-

lymphocytes that recognize the intranasally calpox virus challenge could have evoked exces-

sive immune responses that resulted in severe pneumonia (Schmitt, 2015). This could have 

held true for MVTT vaccine failure. As MVA breakthroughs shared the same pathological 

alterations, local expansion of challenge virus at the portal of entry might have attracted sys-

temic virus-specific CTLs leading to a similar burst of immune reaction.  

This study could not clarify whether the mucosal application of MVTT led to a cytotoxic T 

cell response. Besides the fact that the virus-specific proliferative activity of the 

CD3+CD4+CD8+ subset was slightly higher in MVTT vaccines compared to that of MVA 

ones, there were no hints of a cytotoxic T cell response that may be the cause for the severe 

pulmonary lesions as described in a parallel dissertation (Schmitt et al., 2017). Another ex-

planation for the pulmonary changes might be a cytokine storm, which can occur inde-

pendently of the vaccination route. When a pathogen enters a susceptible host, the immune 

sytem fights against it, different cytokines signal the immune cells (e.g. T cells, macrophages) 

and then they migrate to the infection site.  

4.3.3 The role of the different vaccination routes 

Mucosal vaccination with VTT in mice (i.n. or oral) induced higher sustained levels of neu-

tralizing antibodies (nAbs) than i.m. and subcutaneous vaccination (Lu et al., 2011). There-

fore, the intranasal and peroral routes were tested here. MVTT was developed from the Asian 

Tiantan strain by removing the hemagglutinin gene and its mucosal application protected 

mice against the VACV Western Reserve (WR) strain (Yu et al., 2010). Mucosal immuniza-
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tion seems to be a successful application route using this vaccine. In comparison to systemic 

vaccine application, the mucosal application has the advantage that it triggers local (in the 

NALT) as well as systemic humoral and cellular immune responses (Holmgren and 

Czerkinsky, 2005). In addition, a better compliance with this noninvasive vaccination is ex-

pected. Technically, the application is easy and can be done by untrained personnel. The mu-

cosal application is also of advantage, because no injection needles are required thus prevent-

ing the risk of iatronic transmission of blood-borne infections (Lycke, 2012). A disadvantage 

is that the mucosally applied vaccine might be swallowed or eliminated through sneezing. 

Therefore, it would not be clear as to how much of the applied dose remains in the organism 

and whether there is enough time for antigen adsorption before mucociliary clearance 

(Velasquez et al., 2011). Therefore, in a future approach systemic vaccination of CM with 

MVTT should be analyzed. It would be interesting to know if the same dose given intranasal-

ly confers a higher level of protection. Huang and colleagues showed in a mouse model that 

mucosal application of MVTT led to higher levels of nAbs than an intramuscular injection 

(Huang et al., 2009), but the results in a monkey model might be different. 

Nevertheless, distinguishing between different mucosal application routes (i.n. or p.o.) in 

MVTT immunized animals in this study does not seem to be of importance when considering 

the humoral responses. Neutralising antoibody titres did not vary significantly between the 

MVTT p.o. group and the MVTT i.n. group. These data are in accordance with findings by 

Huang and colleagues in mice (Huang et al., 2009). MVA was chosen because of its high at-

tenuation resulting in lack of replication in most mammalian cell lines. Thus, it was important 

that all MVA particles were contained in the body through injection. 

The mucosal vaccination route does not seem to have an influence on the ELISA antibody 

titres because no significant difference in titres between the vaccine groups was observed. B 

cell epitope fine mapping resulted in the detection of antibodies against different epitope re-

gions that were exclusively found in protected animals with no notable difference in MVTT 

i.n. and MVTT p.o. immunized animals. Antibodies against epitope 2 were only discovered in 

one MVTT p.o. animal, but antibodies against the other epitopes appeared in both MVTT 

immunized groups. Therefore, mucosal immunization with MVTT is advantageous for many 

reasons, but the route seems to be less relevant.  

4.4 Conclusion and outlook 

From the findings of this thesis it can be concluded that the first replication of the calpox vi-

rus is located at the inoculation site, i.e. the nasal mucosa. It can be postulated that the onset 
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of dissemination of the virus via blood (viremia) (DNA copies in blood) is dose dependent 

and starts already at 3 dpi when a high inoculation dose is used and between 6 and 7 dpi when 

a low inoculation dose is administered. The data suggests that the calpox virus initially repli-

cated in the upper respiratory tract, most likely in the nasal mucosa, next in the surrounding 

lymphatic tissue (submandibular LN and tonsil) and finally spread systemically through vire-

mia. When a high dose of calpox virus is applied intranasally, a not quantifiable proportion of 

virus is probably swallowed, thereby leading to infection of tissues located more distant from 

the viral entry (tongue and esophagus). In the prefinal phase, all organs became infected. 

MVA did not provide solid protection to CM in this model. In this approach, the overall high-

est protection was mediated by MVTT independent of the vaccination route and waiting peri-

od. When comparing the serological findings in MVTT and MVA vaccinees, MVTT seemed 

to be more immunogenetic in this model. Accordingly, the mucosal needle-free application of 

MVTT appears to be a promising smallpox vaccine candidate. Little is known about the im-

mune response in CM after a poxvirus infection and unfortunately, no obvious immune corre-

lates of protection were found in this study.  

Details of the immunology of calpox virus pathogenesis (e.g. the role of cytokines in the cal-

pox virus/marmoset model) have not been studied so far, and due to the limited availability of 

reagents for common CM (CM), they are difficult to elucidate. This remains to be studied in 

the future.  

According to Zielinski and colleagues (Zielinski et al., 2010) studies with human cytokines 

integrated into VACV genome represent an interesting approach which is worthwhile to be 

investigated in the calpox virus/marmoset model. 

In further studies, recombinant proteins that are known to be determinants for the induction of 

protective and neutralizing antibody could be used for seroanalysis in order to ultimately dis-

cover immune correlates that could help to inform smallpox vaccine development. New stud-

ies could also show if efficacy of MVTT immunization is increased through systemic vac-

cination. Moreover, it would be interesting to test the efficacy of a further third generation 

live-attenuated smallpox vaccine (e.g. the Japanese strain LC16m8) and how it compares to 

MVTT and MVA in the calpox virus/marmoset model.  
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5 SUMMARY 

Li Lin Gan (2017) 

Smallpox was successfully eradicated in 1980 and mass vaccination stopped between 1976 

and 1984 in Europe. Herd immunity has been waning since then and left the population un-

protected against orthopoxvirus (OPXV) infections. In the light of bioterrorism and emerging 

zoonotic diseases an increasing interest in the development of antiviral drugs and safer vac-

cines against OPXVs arises. A non-human primate model was established in cooperation with 

the Robert Koch Institute (RKI). Common CM (CM, Callithrix jacchus) were intranasally 

infected with a cowpox virus that is lethal for this non-human primate species and designated 

calpox virus. The calpox virus/marmoset model was established to study pathogenesis and to 

evaluate new vaccines and therapeutics.  

The aim of this doctoral thesis is to contribute to the understanding of the pathogenesis of the 

calpox virus infection in CM and other OPXV infections in humans. The calpox vi-

rus/marmoset model was used to (i) determine the portal of viral entry, (ii) analyze the early 

dissemination as well as the pathological sequelae of infection in a time-course pathogenesis 

study. The purpose of this research is also to (iii) analyze the immune response of the differ-

ent vaccines and vaccination routes and to identify immune correlates of protection in two 

vaccination studies. The calpox virus/marmoset model, a hypothesized model for smallpox or 

other OPXV infections in humans was used to evaluate the protective effect of different at-

tenuated vaccines.  

For the pathogenesis study two groups of three animals each were formed. First group was 

infected with a 3.5x105 pfu calpox virus (low dose group) and euthanized on day 3 post in-

oculation. Second group was challenged with 8.3x103 pfu calpox virus (high dose group) and 

euthanized on days 5, 7, 10 or 12 post infection. Blood and various organs were collected 

from the animals and analyzed for infectious virus using a plaque assay, endpoint dilution as-

say and for viral DNA using real-time PCR. PBMCs and buffy coat were analyzed for the 

calpox virus antigen in immune cells by flow cytometry.  

The earliest replicating virus was detectable at the inoculation site, the nasal mucosa and at a 

much lower levels in the esophagus and tongue at 3 dpi after the high dose challenge. After 

the low dose challenge, earliest viral DNA was detected in the nasal mucosa, submandibular 

lymph nodes and tonsils at 5 dpi and in blood and several organs at 7, 10 and 12 dpi. In ani-

mals received high dose infection, double positive CD3+CD20+ cells and intermediate 
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CD14+CD16+ monocytes were already VACV antigen positive (calpox+). In late state of in-

fection (12 dpi) multiple immune cell subsets were tested positive for vaccinia virus antigen. 

In the performed vaccination studies, two attenuated smallpox vaccines, i.e. modified vaccinia 

virus (VV) Tian Tan (MVTT) and modified VV Ankara (MVA) were tested for their efficacy 

after a 4- and a 10-week waiting period. Binding antibodies were quantified with enzyme-

linked immunosorbent assay (ELISA). For the analysis of neutralizing antibodies (nAb´s) was 

B cell epitope fine mapping performed with peptide microarray as well as plaque reduction 

neutralization test (PRNT). The cellular immune response was analyzed by flow cytometric 

analysis of innate and adaptive immune cells in blood as well as T cell proliferation assay.  

When testing the different smallpox vaccines an overall protection of 67 % was observed fol-

lowing immunization with MVTT and 13 % after MVA vaccination, independently of the 

vaccination route and waiting period. All vaccine failures became virus positive by real-time 

PCR. MVTT-immunized vaccine failures had lower viral titres in blood than MVA immun-

ized vaccine failures at the final stage. Binding antibodies against viral particles measured by 

ELISA were not associated with the protection of the CM from the calpox virus challenge. In 

both vaccination studies binding antibodies did not significantly differ between the vaccine 

groups at day of challenge. Peptide microarrays revealed antibodies against linear B cell 

epitope regions in different proteins (A33, B5 and L1) that were exclusively found in protect-

ed animals post challenge. Neutralizing antibodies were detected in both vaccination studies 

at day of challenge by PRNT but no correlation of measured titres between protected and un-

protected animals was detected. When serum samples were tested against VACV Lister El-

stree (LE), the titres of the MVTT per oral (p.o.) immunized group were significantly higher 

(p = 0.0487) than the titres of the MVA intramuscularly (i.m.) immunized group at challenge. 

The cellular response was analyzed by flow cytometric staining. T and B cell numbers did not 

differ significantly between vaccination groups. The expression of activation markers (e.g. 

NK cells, γδ T cells, CD3+ cells, CD69, HLA-DR and CD80) were detected at the day of 

challenge. Virus-specific T-cell proliferation was observed in some animals vaccinated with 

MVTT, but the proliferative activity was not associated with the protection of the CM from 

the calpox virus challenge.  

In conclusion, the data suggests that the calpox virus initially replicated in the upper respirato-

ry tract followed by systemic spread. The calpox virus probably first replicated in the nasal 

mucosa and spread from the nasal mucosa to the surrounding lymphatic tissue (submandibular 

lymph node and tonsil), where secondary replication occured. Subsequently, the virus proba-

bly spreads to other organs of the respiratory tract and then to surrounding organs (eyes, 
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esophagus, lung and tongue). In the prefinal phase, all organs became infected. Furthermore, 

the onset of viremia (DNA copies in blood), is probably dose dependent and starts at 3 dpi 

(with the high inoculation dose) and at 7 dpi (with the low inoculation dose) in this model. 

The overall highest protection mediated by live-attenuated VV was observed with MVTT in-

dependently of the vaccination route and waiting period. Little is known about the immune 

response in CM after poxvirus infection and unfortunately, no obvious immune correlates of 

protection were found in this study. 

Since peptide microarrays revealed antibodies against linear B cell epitope regions in different 

proteins that were present exclusively in protected animals post challenge, neutralizing anti-

bodies seem to play an important role in poxvirus protection. Details of the immunology of 

calpox virus pathogenesis (e.g. the role of cytokines in the calpox virus/marmoset model) 

have not been studied so far and due to the limited availability of reagents for CM, their elu-

cidation is difficult and remains a future object for investigation. This study suggests, that re-

combinant proteins known as protective and neutralizing antibody-inducing determinants 

against linear epitopes should be analyzed. Further studies could also verify if the efficacy of 

MVTT immunization can be increased through systemic vaccination. Another third-

generation vaccine (e.g. the Japanese strain LC16m8) may represent another option to test for 

the efficacy in the calpox virus/marmoset model.  
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6 ZUSAMMENFASSUNG 

Li Lin Gan (2017) 

Die Pocken wurden 1980 erfolgreich ausgerottet und Massenimpfungen wurden in Europa 

zwischen 1976 und 1984 eingestellt. Seitdem nahm die Herdenimmunität gegen Orthopo-

ckenviren (OPV) ab und hinterlässt die Population gegen Infektionen des Orthopockenvirus 

ungeschützt. In Anbetracht des Bioterrorismus und neu entstehender zoonotischen Erkran-

kungen entsteht ein wachsendes Interesse an der Entwicklung von antiviralen Medikamenten 

und sichereren Impfstoffen gegen Orthopockenviren. In Zusammenarbeit mit dem Robert 

Koch Institut (RKI) wurde ein nicht-menschliches Primatenmodell etabliert. Die Weißbü-

schelaffen (WA, Callithrix jacchus) wurden intranasal mit einem Kuhpockenvirus infiziert, 

welches für diese nicht-humane Primatenart tödlich ist und Calpox Virus genannt wurde. Das 

Calpox Virus/Marmosetten Modell wurde etabliert um die Pathogenese und die Evaluierung 

von neuen Impfstoffen und Therapeutika zu studieren.  

Das Ziel dieser Doktorarbeit ist, zu dem Verständnis der Pathogenese der Calpox Virus Infek-

tion in WA und anderen OPV-Infektionen in Menschen beizutragen. Das Calpox Vi-

rus/Marmosetten Modell wird benutzt um (i) die virale Eintrittspforte zu ermitteln, (ii) die 

frühe Verbreitung sowie die pathologischen Folgen der Infektion in einem Zeitverlauf einer 

Pathogenesestudie zu analysieren. Auch die (iii) Analyse der Immunantwort der verschiede-

nen Impfstoffe und Impfrouten sowie die Identifizierung von schützenden Immunkorrelaten 

in zwei Impfstudien ist der Zweck dieser Forschung. Das Calpox Virus/Marmosetten Modell, 

ein hypothetisches Modell für Pocken oder andere OPV-Infektionen beim Menschen, wurde 

verwendet um die schützende Wirkung von unterschiedlich abgeschwächten Impfstoffen zu 

bewerten.  

Für die Pathogenesestudie wurden zwei Gruppen mit jeweils drei Tieren gebildet. Die erste 

Gruppe wurde mit 3,5x105 pfu des Calpox Virus infiziert (niedrige Dosis) und am Tag 3 nach 

der Infektion euthanasiert. Die zweite Gruppe wurde mit 8,3x103 pfu des Calpox Virus infi-

ziert (hohe Dosis) und an den Tagen 5, 7, 10 und 12 nach der Infektion euthanasiert. Von den 

Tieren wurden Blut und verschiedene Organe asserviert und mit dem Plaque-Assay, der End-

punkt-Verdünnungsanalyse, auf infektiöses Virus und mit Real-Time PCR auf virale DNA 

untersucht. PBMCs und Buffy Coat wurden mit der Durchflusszytometrie auf Calpox Virus 

Antigen in Immunzellen analysiert.  

Mit der niedrigen Infektionsdosis wurde am Tag 5 nach der Infektion die früheste virale DNA 

in der Nasenschleimhaut, submandibulären Lymphknoten und Tonsille nachweisbar und in 
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Blut und vielen Organen an den Tagen 7, 10 und 12 nach der Infektion. Die höchsten viralen 

DNA-Kopien wurden in Tieren nachgewiesen, die am Tag 12 nach der Infektion euthanasiert 

wurden. 

In Tieren, die mit der hohen Inkeftionsdosis behandelt wurden, waren die doppelten positiven 

CD3+CD20+-Zellen und intermediären-CD14+CD16+-Monozyten an Tag 3 nach der Infektion 

bereits Calpox Virus-Antigen-positiv gefärbt. Im späten Zustand der Infektion (12 Tage nach 

Infektion) waren mehrere Unterguppen der Immunzellen Calpox Virus-Antigen-positiv.  

In den durchgeführten Impfstudien wurden zwei attenuierte Pockenimpfstoffe, d. h. modifi-

ziertes Vaccinia-Virus (VV) Tian Tan (MVTT) und modifiziertes VV Ankara (MVA) nach 

einer 4- und 10-wöchigen Wartezeit auf ihre Wirksamkeit getestet. Bindende Antikörper wur-

den durch den enzyme-linked immunosorbent assay (ELISA) quantifiziert. Für die Untersu-

chung von neutralisierenden Antikörpern (nAb´s) wurde die B-Zell-Epitop-Feinkartierung mit 

dem Peptide-Mikroarray durchgeführt sowie der Plaque-Reduktions-Neutralisationstest 

(PRNT). Die zelluläre Antwort der angeborenen und adaptiven Immunantwort im Blut wurde 

mit der Durchflusszytometrieanalyse und dem T-Zell-Proliferationstest analysiert.  

Beim Testen der verschiedenen Pockenimpfstoffe wurde, unabhängig von der Impfroute und 

der Wartezeit, nach der Immunisierung mit MVTT 67 %-iger Schutz und 13 %-iger Schutz 

nach der MVA-Impfung beobachtet. Alle Impfdurchbrüche wurden in der Real-Time PCR 

Virus positive. Infektiöses Virus wurde im Blut nachgewiesen und in der Endphase erreichten 

MVTT-immunisierte Impfdurchbrüche im Blut niedrigere Virus-Titre durch den Plaque-

Assay als MVA-immunisierte Impfdurchbrüche. Bindende Antikörper gegen virale Partikel, 

die durch ELISA gemessen wurden, waren nicht mit dem Schutz des WA gegen den Calpox 

Virus Challenge assoziiert. In beiden Impfstudien waren die bindenden Antikörper zwischen 

den Impfgruppen zum Zeitpunkt des Challenge nicht signifikant unterschiedlich. Peptid-

Mikroarrays zeigten Antikörper gegen lineare B-Zell-Epitop-Regionen in verschiedenen Pro-

teinen (A33, B5 und L1), die ausschließlich bei geschützten Tieren nach dem Challenge vor-

handen waren. Neutralisierende Antikörper wurden an dem Tag des Challenge in beiden 

Impfstudien mit dem PRNT nachgewiesen, jedoch wurde keine Korrelation der gemessenen 

Titre zwischen geschützten und ungeschützten Tieren nachgewiesen. Zum Zeitpunkt des 

Challenge war der MVTT per oral (p.o.) immunisierte Gruppen Titre signifikant höher (p = 

0,0487) als der MVA intramuskulär (i.m.) immunisierte Gruppen Titre, als die Serumproben 

gegen VACV Lister Elstree (LE) getestet wurden.  

Die zelluläre Antwort wurde mit der durchflusszytometrischen Färbung untersucht. T und B 

Zellzahlen zeigten keine signifikanten Unterschiede zwischen den Impfgruppen. Am Tag des 
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Challenge wurde die Expression der getesteten Aktivierungsmarker (z. B. NK-Zellen, γδ-T-

Zellen, CD3+-Zellen, CD69, HLA-DR und CD80) nachgewiesen. Virusspezifische T-Zell-

Proliferation wurde bei einigen Tieren beobachtet, die mit MVTT geimpft wurden, aber die 

proliferative Aktivität war nicht mit dem Schutz des WA vor dem Calpox Virus Challenge 

assoziiert.  

Folglich deuten die Daten darauf hin, dass das Calpox Virus zunächst in den oberen Atemwe-

gen repliziert, gefolgt von systemischer Ausbreitung. Calpox Virus repliziert vermutlich zu-

erst in der Nasenschleimhaut und breitet sich von der Nasenschleimhaut zum umgebenden 

lymphatischen Gewebe (submandibuläre Lymphknoten und Tonsille) aus, wo es zur sekundä-

ren Replikation führt. Das Virus verbreitet sich wahrscheinlich durch eine Viremie von dort 

zu anderen Organen der Atemwege und anderen umgebenden Organen (Augen, Speiseröhre, 

Lunge und Zunge). In der präfinalen Phase wurden alle Organe infiziert. Außerdem ist der 

Beginn der Virämie (DNA Kopien im Blut) wahrscheinlich dosisabhängig und startet 3 Tage 

nach der Infektion (mit der hohen Dosis) und 7 Tage nach der Infektion (mit der niedrigen 

Dosis). Insgesamt wurde durch lebendiges abgeschwächtes VV der höchste Schutz durch 

MVTT beobachtet, unabhängig von der Impfroute und Wartezeit. In Weißbüschelaffen ist 

über die Immunantwort nach der Pockenvirus-Infektion wenig bekannt und leider wurden in 

dieser Studie keine offensichtlich schützenden Immunkorrelate gefunden.  

Neutralisierende Antikörper scheinen mit dem Schutz gegen Pockenviren eine wichtige Rolle 

zu spielen, da der Peptid-Mikroarray Antikörper gegen lineare B-Zell-Epitop-Regionen in 

verschiedenen Proteinen zeigte, die ausschließlich in geschützten Tieren nach dem Challenge 

vorhanden waren. Einzelheiten der Immunologie der Calpox Virus-Pathogenese (z. B. die 

Rolle von Cytokinen im Calpox Virus/Marmosetten Modell) wurden bisher auch noch nicht 

untersucht und sind aufgrund der begrenzten Verfügbarkeit von Reagenzien für WA schwer 

zu ermitteln und bleiben deswegen Gegenstand künftiger Untersuchungen. Weitere Studien 

könnten auch zeigen, ob die Wirksamkeit der MVTT-Immunisierung durch eine systemische 

Impfung erhöht werden kann. Ein Impfstoff der dritten Generation (z. B. der japanische 

Stamm LC16m8) könnte eine weitere zu testende Möglichkeit repräsentieren, der auch auf die 

Wirksamkeit im Calpox Virus/Marmosetten Modell analysiert werden könnte.  

 

 

 

 

 



 

 133 

7 LIST OF REFERENCES 

7.1 Literature cited 

Abbott DH, Barnett DK, Colman RJ, Yamamoto ME, Schultz-Darken NJ. 2003. Aspects of 

common marmoset basic biology and life history important for biomedical research. 

Comparative medicine 53(4):339-350. 

Agrawal P, Nawadkar R, Ojha H, Kumar J, Sahu A. 2017. Complement Evasion Strategies of 

Viruses: An Overview. Frontiers in microbiology 8:1117. 

Alcami A, Koszinowski UH. 2000. Viral mechanisms of immune evasion. Trends in 

microbiology 8(9):410-418. 

Alcami A, Smith GL. 1992. A soluble receptor for interleukin-1 beta encoded by vaccinia 

virus: a novel mechanism of virus modulation of the host response to infection. Cell 

71(1):153-167. 

Aldaz-Carroll L, Whitbeck JC, Ponce de Leon M, Lou H, Hirao L, Isaacs SN, Moss B, 

Eisenberg RJ, Cohen GH. 2005. Epitope-mapping studies define two major 

neutralization sites on the vaccinia virus extracellular enveloped virus glycoprotein 

B5R. Journal of virology 79(10):6260-6271. 

Aldaz-Carroll L, Xiao Y, Whitbeck JC, de Leon MP, Lou H, Kim M, Yu J, Reinherz EL, 

Isaacs SN, Eisenberg RJ and others. 2007. Major neutralizing sites on vaccinia virus 

glycoprotein B5 are exposed differently on variola virus ortholog B6. Journal of 

virology 81(15):8131-8139. 

Amanna IJ, Slifka MK, Crotty S. 2006. Immunity and immunological memory following 

smallpox vaccination. Immunological reviews 211:320-337. 

Antoine G, Scheiflinger F, Dorner F, Falkner FG. 1998. The complete genomic sequence of 

the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 

244(2):365-396. 

Balamurugan V, Venkatesan G, Bhanuprakash V, Singh RK. 2013. Camelpox, an emerging 

orthopox viral disease. Indian journal of virology : an official organ of Indian 

Virological Society 24(3):295-305. 

Baldick CJ, Jr., Moss B. 1993. Characterization and temporal regulation of mRNAs encoded 

by vaccinia virus intermediate-stage genes. Journal of virology 67(6):3515-3527. 

Barnewall RE, Fisher DA, Robertson AB, Vales PA, Knostman KA, Bigger JE. 2012. 

Inhalational monkeypox virus infection in cynomolgus macaques. Frontiers in cellular 

and infection microbiology 2:117. 

Barquet N, Domingo P. 1997. Smallpox: the triumph over the most terrible of the ministers of 

death. Annals of internal medicine 127(8 Pt 1):635-642. 

Baxby D. 1977. Poxvirus hosts and reservoirs. Brief review. Archives of virology 55(3):169-

179. 

Baxby D, Ashton DG, Jones D, Thomsett LR, Denham EM. 1979. Cowpox virus infection in 

unusual hosts. The Veterinary record 104(8):175. 

Baxby D, Bennett M. 1990. Low risk from feline cowpox. Lancet (London, England) 

336(8722):1070-1071. 

Baxby D, Bennett M, Getty B. 1994. Human cowpox 1969-93: a review based on 54 cases. 

The British journal of dermatology 131(5):598-607. 

Becker C, Kurth A, Hessler F, Kramp H, Gokel M, Hoffmann R, Kuczka A, Nitsche A. 2009. 

Cowpox virus infection in pet rat owners: not always immediately recognized. 

Deutsches Arzteblatt international 106(19):329-334. 



 

 134 

Begon M, Hazel SM, Baxby D, Bown K, Cavanagh R, Chantrey J, Jones T, Bennett M. 1999. 

Transmission dynamics of a zoonotic pathogen within and between wildlife host 

species. Proceedings Biological sciences 266(1432):1939-1945. 

Belongia EA, Naleway AL. 2003. Smallpox vaccine: the good, the bad, and the ugly. Clinical 

medicine & research 1(2):87-92. 

Benhnia MR, McCausland MM, Moyron J, Laudenslager J, Granger S, Rickert S, Koriazova 

L, Kubo R, Kato S, Crotty S. 2009. Vaccinia virus extracellular enveloped virion 

neutralization in vitro and protection in vivo depend on complement. Journal of 

virology 83(3):1201-1215. 

Bera BC, Shanmugasundaram K, Barua S, Venkatesan G, Virmani N, Riyesh T, Gulati BR, 

Bhanuprakash V, Vaid RK, Kakker NK and others. 2011. Zoonotic cases of camelpox 

infection in India. Veterinary microbiology 152(1-2):29-38. 

Bhanuprakash V, Venkatesan G, Balamurugan V, Hosamani M, Yogisharadhya R, Chauhan 

RS, Pande A, Mondal B, Singh RK. 2010. Pox outbreaks in sheep and goats at 

Makhdoom (Uttar Pradesh), India: evidence of sheeppox virus infection in goats. 

Transboundary and emerging diseases 57(5):375-382. 

Bienenstock J, McDermott MR. 2005. Bronchus- and nasal-associated lymphoid tissues. 

Immunological reviews 206:22-31. 

Blackford S, Roberts DL, Thomas PD. 1993. Cowpox infection causing a generalized 

eruption in a patient with atopic dermatitis. The British journal of dermatology 

129(5):628-629. 

Bonnekoh B, Falk K, Reckling KF, Kenklies S, Nitsche A, Ghebremedhin B, Pokrywka A, 

Franke I, Thriene B, Konig W and others. 2008. Cowpox infection transmitted from a 

domestic cat. Journal der Deutschen Dermatologischen Gesellschaft = Journal of the 

German Society of Dermatology : JDDG 6(3):210-213. 

Bourquain D, Dabrowski PW, Nitsche A. 2013. Comparison of host cell gene expression in 

cowpox, monkeypox or vaccinia virus-infected cells reveals virus-specific regulation 

of immune response genes. Virology journal 10:61. 

Bray M, Buller M. 2004. Looking back at smallpox. Clinical infectious diseases : an official 

publication of the Infectious Diseases Society of America 38(6):882-889. 

Bray M, Wright ME. 2003. Progressive vaccinia. Clinical infectious diseases : an official 

publication of the Infectious Diseases Society of America 36(6):766-774. 

Breman JG. 2000. Monkeypox: an emerging infection for humans?, Scheld W.M., Craig 

W.A., Hughes J.M. Emerging infections ASM Press, Washington DC 4:45-67, . 

Broyles SS. 2003. Vaccinia virus transcription. The Journal of general virology 84(Pt 

9):2293-2303. 

Buchman GW, Cohen ME, Xiao Y, Richardson-Harman N, Silvera P, DeTolla LJ, Davis HL, 

Eisenberg RJ, Cohen GH, Isaacs SN. 2010. A protein-based smallpox vaccine protects 

non-human primates from a lethal monkeypox virus challenge. Vaccine 28(40):6627-

6636. 

Buller RM, Palumbo GJ. 1991. Poxvirus pathogenesis. Microbiological reviews 55(1):80-122. 

Callaway E. 2008. Bioterror: the green menace. Nature 452(7184):148-150. 

Campe H, Zimmermann P, Glos K, Bayer M, Bergemann H, Dreweck C, Graf P, Weber BK, 

Meyer H, Buttner M and others. 2009. Cowpox virus transmission from pet rats to 

humans, Germany. Emerging infectious diseases 15(5):777-780. 

Carrion R, Jr., Brasky K, Mansfield K, Johnson C, Gonzales M, Ticer A, Lukashevich I, 

Tardif S, Patterson J. 2007. Lassa virus infection in experimentally infected CM: liver 

pathology and immunophenotypic alterations in target tissues. Journal of virology 

81(12):6482-6490. 



 

 135 

Carroll DS, Emerson GL, Li Y, Sammons S, Olson V, Frace M, Nakazawa Y, Czerny CP, 

Tryland M, Kolodziejek J and others. 2011. Chasing Jenner's vaccine: revisiting 

cowpox virus classification. PLoS One 6(8):e23086. 

Casemore DP, Emslie ES, Whyler DK, Baxby D, Bennett M, Davies AB. 1987. Cowpox in a 

child, acquired from a cat. Clinical and experimental dermatology 12(4):286-287. 

CDC. 2008. Bioterrorism Argents/Diseases. (10/08/2008). 

Chan WM, Ward BM. 2010. There is an A33-dependent mechanism for the incorporation of 

B5-GFP into vaccinia virus extracellular enveloped virions. Virology 402(1):83-93. 

Chantrey J, Meyer H, Baxby D, Begon M, Bown KJ, Hazel SM, Jones T, Montgomery WI, 

Bennett M. 1999. Cowpox: reservoir hosts and geographic range. Epidemiology and 

infection 122(3):455-460. 

Chung CS, Hsiao JC, Chang YS, Chang W. 1998a. A27L protein mediates vaccinia virus 

interaction with cell surface heparan sulfate. Journal of virology 72 (2):1577-1585. 

Chung CS, Hsiao JC, Chang YS, Chang W. 1998b. A27L protein mediates vaccinia virus 

interaction with cell surface heparan sulfate. Journal of virology 72(2):1577-1585. 

Collier LH. 1955. The Development of a Stable Smallpox Vaccine. The Journal of 

hygiene(53.1 ):76-101. 

Condit RC, Moussatche N, Traktman P. 2006. In a nutshell: structure and assembly of the 

vaccinia virion. Advances in virus research 66:31-124. 

Cosma A, Nagaraj R, Buhler S, Hinkula J, Busch DH, Sutter G, Goebel FD, Erfle V. 2003. 

Therapeutic vaccination with MVA-HIV-1 nef elicits Nef-specific T-helper cell 

responses in chronically HIV-1 infected individuals. Vaccine 22(1):21-29. 

Councilman WT, Magrath GB, Brinckerhoff WR. 1904. The Pathological Anatomy and 

Histology of Variola. The Journal of medical research 11(1):12-135. 

Craighead JE. 2000. Pathology and pathogenesis of human viral disease.366. 

Crotty S, Felgner P, Davies H, Glidewell J, Villarreal L, Ahmed R. 2003. Cutting edge: long-

term B cell memory in humans after smallpox vaccination. Journal of immunology 

171(10):4969-4973. 

Czerny CP, Eis-Hubinger AM, Mayr A, Schneweis KE, Pfeiff B. 1991. Animal poxviruses 

transmitted from cat to man: current event with lethal end. Zentralblatt fur 

Veterinarmedizin Reihe B Journal of veterinary medicine Series B 38(6):421-431. 

Davies DH, McCausland MM, Valdez C, Huynh D, Hernandez JE, Mu Y, Hirst S, Villarreal 

L, Felgner PL, Crotty S. 2005. Vaccinia virus H3L envelope protein is a major target 

of neutralizing antibodies in humans and elicits protection against lethal challenge in 

mice. Journal of virology 79(18):11724-11733. 

Davies DH, Molina DM, Wrammert J, Miller J, Hirst S, Mu Y, Pablo J, Unal B, Nakajima-

Sasaki R, Liang X and others. 2007. Proteome-wide analysis of the serological 

response to vaccinia and smallpox. Proteomics 7(10):1678-1686. 

Davies ML, Parekh NJ. 2017. A systemic macrophage response is required to contain a 

peripheral poxvirus infection.  13(6):e1006435. 

Demkowicz WE, Maa JS, Esteban M. 1992. Identification and characterization of vaccinia 

virus genes encoding proteins that are highly antigenic in animals and are 

immunodominant in vaccinated humans. Journal of virology 66(1):386-398. 

Deria A, Jezek Z, Markvart K, Carrasco P, Weisfeld J. 1980. The world's last endemic case of 

smallpox: surveillance and containment measures. Bulletin of the World Health 

Organization 58(2):279-283. 

Digby LJ, Barreto CE. 1993. Social organization in a wild population of Callithrix jacchus. I. 

Group composition and dynamics. Folia primatologica; international journal of 

primatology 61(3):123-134. 



 

 136 

Doms RW, Blumenthal R, Moss B. 1990. Fusion of intra- and extracellular forms of vaccinia 

virus with the cell membrane. Journal of virology 64(10):4884-4892. 

Downie AW. 1939. The Immunological Relationship of the Virus of Spontaneous Cowpox to 

Vaccinia Virus. British Journal of Experimental Pathology(20.2):158-176. 

Downie AW, Mc CK. 1958. The antibody response in man following infection with viruses of 

the pox group. III. Antibody response in smallpox. The Journal of hygiene 56(4):479-

487. 

Downie AW, McCarthy K, Macdonald A, Maccallum FO, Macrae AE. 1953. Virus and virus 

antigen in the blood of smallpox patients; their significance in early diagnosis and 

prognosis. Lancet (London, England) 265(6778):164-166. 

Downie AW, Saint Vincent L, Goldstein L, Rao AR, Kwmpw CH. 1969. Antibody response 

in non-haemorrhagic smallpox patients. J Hyg 67:609-618. 

Dugmore WN, Dabir ZM. 1992. Cowpox virus. The British journal of ophthalmology 

76(8):510. 

Earl PL, Americo JL, Wyatt LS, Eller LA, Whitbeck JC, Cohen GH, Eisenberg RJ, Hartmann 

CJ, Jackson DL, Kulesh DA and others. 2004. Immunogenicity of a highly attenuated 

MVA smallpox vaccine and protection against monkeypox. Nature 428(6979):182-

185. 

Earl PL, Americo JL, Wyatt LS, Espenshade O, Bassler J, Gong K, Lin S, Peters E, Rhodes L, 

Jr., Spano YE and others. 2008. Rapid protection in a monkeypox model by a single 

injection of a replication-deficient vaccinia virus. Proceedings of the National 

Academy of Sciences of the United States of America 105(31):10889-10894. 

Edghill-Smith Y, Golding H, Manischewitz J, King LR, Scott D, Bray M, Nalca A, Hooper 

JW, Whitehouse CA, Schmitz JE and others. 2005. Smallpox vaccine-induced 

antibodies are necessary and sufficient for protection against monkeypox virus. Nature 

medicine 11(7):740-747. 

el-Ad B, Roth Y, Winder A, Tochner Z, Lublin-Tennenbaum T, Katz E, Schwartz T. 1990. 

The persistence of neutralizing antibodies after revaccination against smallpox. The 

Journal of infectious diseases 161(3):446-448. 

Engelstad M, Howard ST, Smith GL. 1992. A constitutively expressed vaccinia gene encodes 

a 42-kDa glycoprotein related to complement control factors that forms part of the 

extracellular virus envelope. Virology 188(2):801-810. 

Ennis FA, Cruz J, Demkowicz WE, Jr., Rothman AL, McClain DJ. 2002. Primary induction 

of human CD8+ cytotoxic T lymphocytes and interferon-gamma-producing T cells 

after smallpox vaccination. The Journal of infectious diseases 185(11):1657-1659. 

Eslamboli A. 2005. Marmoset monkey models of Parkinson's disease: which model, when 

and why? Brain research bulletin 68(3):140-149. 

Essbauer S, Pfeffer M, Meyer H. 2010. Zoonotic poxviruses. Veterinary microbiology 140(3-

4):229-236. 

Essbauer S, Pfeffer M, Wilhelm S, Meyer H. 2004. [Zoonotic poxviruses]. 

Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz 47(7):671-679. 

Fang M, Sigal LJ. 2006. Direct CD28 costimulation is required for CD8+ T cell-mediated 

resistance to an acute viral disease in a natural host. Journal of immunology 

177(11):8027-8036. 

Fang Q, Yang L, Zhu W, Liu L, Wang H, Yu W, Xiao G, Tien P, Zhang L, Chen Z. 2005. 

Host range, growth property, and virulence of the smallpox vaccine: vaccinia virus 

Tian Tan strain. Virology 335(2):242-251. 

Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID. 1988a. Human monkeypox and other 

poxvirus infections of man, Smallpox and its Eradication. World Health Organization, 

Geniva, Switzerland:1287-1320. 



 

 137 

Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID. 1988b. Pathogenesis, pathology and 

immunology of smallpox. Smallpox and its Eradication. Geneva: WHO. p 121-168. 

Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID. 1988b. Smallpox vaccine and 

vaccination in the intensified smallpox 

eradication programme. In Smallpox and its Eradication. Geneva: World Health 

Organization:pp. 539–592. 

Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID, Organization WH. 1988c. Smallpox 

and its eradication. Geneva: World Health Organization. 

Fine PE, Jezek Z, Grab B, Dixon H. 1988. The transmission potential of monkeypox virus in 

human populations. International journal of epidemiology 17(3):643-650. 

Fogg C, Lustig S, Whitbeck JC, Eisenberg RJ, Cohen GH, Moss B. 2004. Protective 

immunity to vaccinia virus induced by vaccination with multiple recombinant outer 

membrane proteins of intracellular and extracellular virions. Journal of virology 

78(19):10230-10237. 

Fogg CN, Americo JL, Lustig S, Huggins JW, Smith SK, Damon I, Resch W, Earl PL, 

Klinman DM, Moss B. 2007. Adjuvant-enhanced antibody responses to recombinant 

proteins correlates with protection of mice and monkeys to orthopoxvirus challenges. 

Vaccine 25(15):2787-2799. 

Frey SE, Newman FK, Kennedy JS, Sobek V, Ennis FA, Hill H, Yan LK, Chaplin P, Vollmar 

J, Chaitman BR and others. 2007. Clinical and immunologic responses to multiple 

doses of IMVAMUNE (Modified Vaccinia Ankara) followed by Dryvax challenge. 

Vaccine 25(51):8562-8573. 

Frey SE, Newman FK, Yan L, Lottenbach KR, Belshe RB. 2003. Response to smallpox 

vaccine in persons immunized in the distant past. Jama 289(24):3295-3299. 

Frey SE, Winokur PL, Salata RA, El-Kamary SS, Turley CB, Walter EB, Jr., Hay CM, 

Newman FK, Hill HR, Zhang Y and others. 2013. Safety and immunogenicity of 

IMVAMUNE(R) smallpox vaccine using different strategies for a post event scenario. 

Vaccine 31(29):3025-3033. 

Fridholm H, Everitt E. 2005. Rapid and reproducible infectivity end-point titration of virulent 

phage in a microplate system J Virol Methods 128(1-2): 67-71. 

Galasso GJ, Tyeryar FJ, Jr., La Montagne JR. 1977. Overview of clinical trials of influenza 

vaccines, 1976. The Journal of infectious diseases 136 Suppl:S425-428. 

Galmiche MC, Goenaga J, Wittek R, Rindisbacher L. 1999. Neutralizing and protective 

antibodies directed against vaccinia virus envelope antigens. Virology 254(1):71-80. 

Garon CF, Barbosa E, Moss B. 1978. Visualization of an inverted terminal repetition in 

vaccinia virus DNA. Proceedings of the National Academy of Sciences of the United 

States of America 75(10):4863-4867. 

Garza NL, Hatkin JM, Livingston V, Nichols DK, Chaplin PJ, Volkmann A, Fisher D, Nalca 

A. 2009. Evaluation of the efficacy of modified vaccinia Ankara 

(MVA)/IMVAMUNE against aerosolized rabbitpox virus in a rabbit model. Vaccine 

27(40):5496-5504. 

Gaylord WH, Jr., Melnick JL. 1953. Developmental forms of vaccinia virus. Science (New 

York, NY) 117(3027):10-13. 

Genain CP, Hauser SL. 1997. Creation of a model for multiple sclerosis in Callithrix jacchus 

CM. Journal of molecular medicine (Berlin, Germany) 75(3):187-197. 

Gilchuk I, Gilchuk P, Sapparapu G, Lampley R, Singh V, Kose N, Blum DL, Hughes LJ, 

Satheshkumar PS, Townsend MB and others. 2016a. Cross-Neutralizing and 

Protective Human Antibody Specificities to Poxvirus Infections. Cell 167(3):684-

694.e689. 



 

 138 

Gilchuk I, Gilchuk P, Sapparapu G, Lampley R, Singh V, Kose N, Blum DL, Hughes LJ, 

Satheshkumar PS, Townsend MB and others. 2016b. Cross-Neutralizing and 

Protective Human Antibody Specificities to Poxvirus Infections. Cell 167(3):684-694 

e689. 

Golovkin M, Spitsin S, Andrianov V, Smirnov Y, Xiao Y, Pogrebnyak N, Markley K, 

Brodzik R, Gleba Y, Isaacs SN and others. 2007. Smallpox subunit vaccine produced 

in Planta confers protection in mice. Proceedings of the National Academy of 

Sciences of the United States of America 104(16):6864-6869. 

Gong SC, Lai CF, Esteban M. 1990. Vaccinia virus induces cell fusion at acid pH and this 

activity is mediated by the N-terminus of the 14-kDa virus envelope protein. Virology 

178(1):81-91. 

Gordon SN, Cecchinato V, Andresen V, Heraud JM, Hryniewicz A, Parks RW, Venzon D, 

Chung HK, Karpova T, McNally J and others. 2011. Smallpox vaccine safety is 

dependent on T cells and not B cells. The Journal of infectious diseases 203(8):1043-

1053. 

Goyal T, Varshney A, Bakshi SK, Barua S, Bera BC, Singh RK. 2013. Buffalo pox outbreak 

with atypical features: a word of caution and need for early intervention. Int J 

Dermatol 52(10):1224-1230. 

Greenberg RN, Overton ET, Haas DW, Frank I, Goldman M, von Krempelhuber A, Virgin G, 

Badeker N, Vollmar J, Chaplin P. 2013. Safety, immunogenicity, and surrogate 

markers of clinical efficacy for modified vaccinia Ankara as a smallpox vaccine in 

HIV-infected subjects. The Journal of infectious diseases 207(5):749-758. 

Gubser C, Hue S, Kellam P, Smith GL. 2004. Poxvirus genomes: a phylogenetic analysis. The 

Journal of general virology 85(Pt 1):105-117. 

Haga IR, Bowie AG. 2005. Evasion of innate immunity by vaccinia virus. Parasitology 130 

Suppl:S11-25. 

Hahon N, Wilson BJ. 1960. Pathogenesis of variola in Macaca irus monkeys. American 

journal of hygiene 71:69-80. 

Hall CJ, Stevens JD. 1987. Ocular cowpox. Lancet (London, England) 1(8524):111. 

Hammarlund E, Lewis MW, Carter SV, Amanna I, Hansen SG, Strelow LI, Wong SW, 

Yoshihara P, Hanifin JM, Slifka MK. 2005. Multiple diagnostic techniques identify 

previously vaccinated individuals with protective immunity against monkeypox. 

Nature medicine 11(9):1005-1011. 

Hammarlund E, Lewis MW, Hanifin JM, Mori M, Koudelka CW, Slifka MK. 2010. Antiviral 

immunity following smallpox virus infection: a case-control study. Journal of virology 

84(24):12754-12760. 

Hammarlund E, Lewis MW, Hansen SG, Strelow LI, Nelson JA, Sexton GJ, Hanifin JM, 

Slifka MK. 2003. Duration of antiviral immunity after smallpox vaccination. Nature 

medicine 9(9):1131-1137. 

Hanna W, Baxby D. 2002. Studies in smallpox and vaccination. 1913. Reviews in medical 

virology 12(4):201-209. 

Hatch GJ, Graham VA, Bewley KR, Tree JA, Dennis M, Taylor I, Funnell SG, Bate SR, 

Steeds K, Tipton T and others. 2013. Assessment of the protective effect of Imvamune 

and Acam2000 vaccines against aerosolized monkeypox virus in cynomolgus 

macaques. Journal of virology 87(14):7805-7815. 

Henderson DA. 1999. The looming threat of bioterrorism. Science (New York, NY) 

283(5406):1279-1282. 

Henderson DA. 2011. The eradication of smallpox--an overview of the past, present, and 

future. Vaccine 29 Suppl 4:D7-9. 



 

 139 

Henderson DA, Inglesby TV, Bartlett JG, Ascher MS, Eitzen E, Jahrling PB, Hauer J, Layton 

M, McDade J, Osterholm MT and others. 1999. Smallpox as a biological weapon: 

medical and public health management. Working Group on Civilian Biodefense. Jama 

281(22):2127-2137. 

Henderson DA, Moss B. 1999. Public Health. Vaccines 3rd edition, Philadelphia: Saunders. 

Henry C, Ramadan A, Montcuquet N, Pallandre JR, Mercier-Letondal P, Deschamps M, 

Tiberghien P, Ferrand C, Robinet E. 2010. CD3+CD20+ cells may be an artifact of 

flow cytometry: comment on the article by Wilk et al. Arthritis and rheumatism 

62(8):2561-2563; author reply 2563-2565. 

Heraud JM, Edghill-Smith Y, Ayala V, Kalisz I, Parrino J, Kalyanaraman VS, Manischewitz 

J, King LR, Hryniewicz A, Trindade CJ and others. 2006. Subunit recombinant 

vaccine protects against monkeypox. Journal of immunology 177(4):2552-2564. 

Hiller G, Weber K. 1985. Golgi-derived membranes that contain an acylated viral polypeptide 

are used for vaccinia virus envelopment. Journal of virology 55(3):651-659. 

Hirao LA, Draghia-Akli R, Prigge JT. 2011. Multivalent Smallpox DNA Vaccine Delivered 

by Intradermal Electroporation Drives Protective Immunity in Nonhuman Primates 

Against Lethal Monkeypox Challenge. J Infect Dis 203 ((1)):95-102. 

Hochstein-Mintzel V, Hanichen T, Huber HC, Stickl H. 1975. [An attenuated strain of 

vaccinia virus (MVA). Successful intramuscular immunization against vaccinia and 

variola (author's transl)]. Zentralblatt fur Bakteriologie, Parasitenkunde, 

Infektionskrankheiten und Hygiene Erste Abteilung Originale Reihe A: Medizinische 

Mikrobiologie und Parasitologie 230(3):283-297. 

Holmgren J, Czerkinsky C. 2005. Mucosal immunity and vaccines. Nature medicine 11(4 

Suppl):S45-53. 

Hooper JW, Custer DM, Schmaljohn CS, Schmaljohn AL. 2000. DNA vaccination with 

vaccinia virus L1R and A33R genes protects mice against a lethal poxvirus challenge. 

Virology 266(2):329-339. 

Hooper JW, Custer DM, Thompson E. 2003. Four-gene-combination DNA vaccine protects 

mice against a lethal vaccinia virus challenge and elicits appropriate antibody 

responses in nonhuman primates. Virology 306(1):181-195. 

Hooper JW, Thompson E, Wilhelmsen C, Zimmerman M, Ichou MA, Steffen SE, Schmaljohn 

CS, Schmaljohn AL, Jahrling PB. 2004. Smallpox DNA vaccine protects nonhuman 

primates against lethal monkeypox. Journal of virology 78(9):4433-4443. 

Hopkins DR. 1983. Princes and Peasants: Smallpox in History. Chicago: University of 

Chicago Press. 

Hotop SK. 2014. Feinkartierung humoraler Immunantworten von Makaken nach 

Immunisierung und/oder viraler Infektion mittels Peptid-Microarray. Dissertation. 

Hotop SK, Abd El Wahed A, Beutling U, Jentsch D, Motzkus D, Frank R, Hunsmann G, 

Stahl-Hennig C, Fritz HJ. 2014. Multiple antibody targets on herpes B glycoproteins B 

and D identified by screening sera of infected rhesus macaques with peptide 

microarrays. PLoS One 9(1):e86857. 

Hsiao JC, Chung CS, Chang W. 1998. Cell surface proteoglycans are necessary for A27L 

protein-mediated cell fusion: identification of the N-terminal region of A27L protein 

as the glycosaminoglycan-binding domain. Journal of virology 72 (10):8374-8379. 

Hsiao JC, Chung CS, Chang W. 1999. Vaccinia virus envelope D8L protein binds to cell 

surface chondroitin sulfate and mediates the adsorption of intracellular mature virions 

to cells. Journal of virology 73(10):8750-8761. 

Huang X, Lu B, Yu W, Fang Q, Liu L, Zhuang K, Shen T, Wang H, Tian P, Zhang L and 

others. 2009. A novel replication-competent vaccinia vector MVTT is superior to 



 

 140 

MVA for inducing high levels of neutralizing antibody via mucosal vaccination. PLoS 

One 4(1):e4180. 

Hugin AW, Flexner C, Moss B. 1993. Clearance of recombinant vaccinia virus expressing IL-

2: role of local host immune responses. Cellular immunology 152(2):499-509. 

Hutin YJ, Williams RJ, Malfait P, Pebody R, Loparev VN, Ropp SL, Rodriguez M, Knight 

JC, Tshioko FK, Khan AS and others. 2001. Outbreak of human monkeypox, 

Democratic Republic of Congo, 1996 to 1997. Emerging infectious diseases 7(3):434-

438. 

Huygelen C. 1996. [Jenner's cowpox vaccine in light of current vaccinology]. Verhandelingen 

- Koninklijke Academie voor Geneeskunde van Belgie 58(5):479-536; discussion 537-

478. 

Ichihashi Y. 1996. Extracellular enveloped vaccinia virus escapes neutralization. Virology 

217(2):478-485. 

ICTV. 2017. International Committee on Taxonomy of Viruses (ICTV) EC 47, London, UK, 

July 2015. 

Isaacs SN, Wolffe EJ, Payne LG, Moss B. 1992. Characterization of a vaccinia virus-encoded 

42-kilodalton class I membrane glycoprotein component of the extracellular virus 

envelope. Journal of virology 66(12):7217-7224. 

Jagessar SA, Vierboom M, Blezer EL, Bauer J, Hart BA, Kap YS. 2013. Overview of models, 

methods, and reagents developed for translational autoimmunity research in the 

common marmoset (Callithrix jacchus). Experimental animals 62(3):159-171. 

Jahrling PB, Fritz EA, Hensley LE. 2005. Countermeasures to the bioterrorist threat of 

smallpox. Current molecular medicine 5(8):817-826. 

Jahrling PB, Hensley LE, Martinez MJ, Leduc JW, Rubins KH, Relman DA, Huggins JW. 

2004. Exploring the potential of variola virus infection of cynomolgus macaques as a 

model for human smallpox. Proceedings of the National Academy of Sciences of the 

United States of America 101(42):15196-15200. 

Jezek Z, Arita I, Mutombo M, Dunn C, Nakano JH, Szczeniowski M. 1986. Four generations 

of probable person-to-person transmission of human monkeypox. American journal of 

epidemiology 123(6):1004-1012. 

Jezek Z, Khodakevich LN, Szczeniowski MV. 1988. [Human monkey pox: its clinico-

epidemiological characteristics]. Zhurnal mikrobiologii, epidemiologii, i 

immunobiologii(6):23-30. 

Jezek Z, Kriz B, Rothbauer V. 1983. Camelpox and its risk to the human population. Journal 

of hygiene, epidemiology, microbiology, and immunology 27(1):29-42. 

Jezek Z, Szczeniowski M, Paluku KM, Mutombo M. 1987. Human monkeypox: clinical 

features of 282 patients. The Journal of infectious diseases 156(2):293-298. 

Johnson RF, Hammoud DA, Lackemeyer MG, Yellayi S, Solomon J, Bohannon JK, Janosko 

KB, Jett C, Cooper K, Blaney JE and others. 2015. Small particle aerosol inoculation 

of cowpox Brighton Red in rhesus monkeys results in a severe respiratory disease. 

Virology 481:124-135. 

Johnson RF, Yellayi S, Cann JA, Johnson A, Smith AL, Paragas J, Jahrling PB, Blaney JE. 

2011. Cowpox virus infection of cynomolgus macaques as a model of hemorrhagic 

smallpox. Virology 418(2):102-112. 

Johnston JB, McFadden G. 2004. Technical knockout: understanding poxvirus pathogenesis 

by selectively deleting viral immunomodulatory genes. Cellular microbiology 

6(8):695-705. 

Johnston SC, Johnson JC, Stonier SW, Lin KL, Kisalu NK, Hensley LE, Rimoin AW. 2015. 

Cytokine modulation correlates with severity of monkeypox disease in humans. 



 

 141 

Journal of clinical virology : the official publication of the Pan American Society for 

Clinical Virology 63:42-45. 

Joklik WK, Becker Y. 1964. The Replication and Coating of Vaccinia DNA. Journal of 

molecular biology 10:452-474. 

Jones-Trower A, Garcia A, Meseda CA, He Y, Weiss C, Kumar A, Weir JP, Merchlinsky M. 

2005. Identification and preliminary characterization of vaccinia virus (Dryvax) 

antigens recognized by vaccinia immune globulin. Virology 343(1):128-140. 

Jordan R, Hruby D. 2006. Smallpox antiviral drug development: satisfying the animal 

efficacy rule. Expert review of anti-infective therapy 4(2):277-289. 

Kaever T, Matho MH, Meng X, Crickard L, Schlossman A, Xiang Y, Crotty S, Peters B, 

Zajonc DM. 2016. Linear Epitopes in Vaccinia Virus A27 Are Targets of Protective 

Antibodies Induced by Vaccination against Smallpox. Journal of virology 90(9):4334-

4345. 

Kalthoff D, Bock WI, Huhn F, Beer M, Hoffmann B. 2014. Fatal cowpox virus infection in 

cotton-top tamarins (Saguinus oedipus) in Germany. Vector borne and zoonotic 

diseases (Larchmont, NY) 14(4):303-305. 

Kempe CH, Dekking F, Saint Vincent L, Rao AR, Downie AW. 1969. Conjunctivitis and 

subclinical infection in smallpox. The Journal of hygiene 67(4):631-636. 

Kennedy JS, Greenberg RN. 2009. IMVAMUNE: modified vaccinia Ankara strain as an 

attenuated smallpox vaccine. Expert review of vaccines 8(1):13-24. 

Kennedy JS, Gurwith M, Dekker CL, Frey SE, Edwards KM, Kenner J, Lock M, Empig C, 

Morikawa S, Saijo M and others. 2011. Safety and immunogenicity of LC16m8, an 

attenuated smallpox vaccine in vaccinia-naive adults. The Journal of infectious 

diseases 204(9):1395-1402. 

Klingebiel T, Vallbracht A, Doller G, Stierhof YD, Gerth HJ, Glashauser E, Herzau V. 1988. 

A severe human cowpox infection in south Germany. The Pediatric infectious disease 

journal 7(12):883-885. 

Knitlova J, Hajkova V, Voska L, Elsterova J, Obrova B, Melkova Z. 2014. Development of 

eczema vaccinatum in atopic mouse models and efficacy of MVA vaccination against 

lethal poxviral infection. PLoS One 9(12):e114374. 

Kochan G, Escors D, Gonzalez JM, Casasnovas JM, Esteban M. 2008. Membrane cell fusion 

activity of the vaccinia virus A17-A27 protein complex. Cellular microbiology 

10(1):149-164. 

Kortepeter MG, Parker GW. 1999. Potential biological weapons threats. Emerging infectious 

diseases 5(4):523-527. 

Kotwal GJ, Isaacs SN, McKenzie R, Frank MM, Moss B. 1990. Inhibition of the complement 

cascade by the major secretory protein of vaccinia virus. Science (New York, NY) 

250(4982):827-830. 

Kramski M. 2009. Infection of Common CM with Calpox Virus: A Model for Smallpox Virus 

Infection. Dissertation. 

Kramski M, Matz-Rensing K, Stahl-Hennig C, Kaup FJ, Nitsche A, Pauli G, Ellerbrok H. 

2010. A novel highly reproducible and lethal nonhuman primate model for orthopox 

virus infection. PLoS One 5(4):e10412. 

Kurth A, Straube M, Kuczka A, Dunsche AJ, Meyer H, Nitsche A. 2009. Cowpox virus 

outbreak in banded mongooses (Mungos mungo) and jaguarundis (Herpailurus 

yagouaroundi) with a time-delayed infection to humans. PLoS One 4(9):e6883. 

Kurth A, Wibbelt G, Gerber HP, Petschaelis A, Pauli G, Nitsche A. 2008. Rat-to-elephant-to-

human transmission of cowpox virus. Emerging infectious diseases 14(4):670-671. 

LaBarre DD. 2001. Improvements in methods for calculating virus titer estimates from 

TCID50 and plaque assays. J Virol Methods 96(2):107-26. 



 

 142 

Langer WL. 1976. Immunization against smallpox before Jenner. Scientific American 

234(1):112-117. 

Langland JO, Kash JC, Carter V, Thomas MJ, Katze MG, Jacobs BL. 2006. Suppression of 

proinflammatory signal transduction and gene expression by the dual nucleic acid 

binding domains of the vaccinia virus E3L proteins. Journal of virology 80(20):10083-

10095. 

Lawrence SJ, Lottenbach KR, Newman FK, Buller RM, Bellone CJ, Chen JJ, Cohen GH, 

Eisenberg RJ, Belshe RB, Stanley SL, Jr. and others. 2007. Antibody responses to 

vaccinia membrane proteins after smallpox vaccination. The Journal of infectious 

diseases 196(2):220-229. 

Learned LA, Reynolds MG, Wassa DW, Li Y, Olson VA, Karem K, Stempora LL, Braden 

ZH, Kline R, Likos A and others. 2005. Extended interhuman transmission of 

monkeypox in a hospital community in the Republic of the Congo, 2003. The 

American journal of tropical medicine and hygiene 73(2):428-434. 

Leikina E, Ramos C, Markovic I, Zimmerberg J, Chernomordik LV. 2002. Reversible stages 

of the low-pH-triggered conformational change in influenza virus hemagglutinin. The 

EMBO journal 21(21):5701-5710. 

Lever MS, Stagg AJ, Nelson M, Pearce P, Stevens DJ, Scott EA, Simpson AJ, Fulop MJ. 

2008. Experimental respiratory anthrax infection in the common marmoset (Callithrix 

jacchus). International journal of experimental pathology 89(3):171-179. 

Li Y, Ropp SL, Zhao H, Damon IK, Esposito JJ. 2007. Orthopoxvirus pan-genomic DNA 

assay. Journal of virological methods 141(2):154-165. 

Lin CL, Chung CS, Heine HG, Chang W. 2000. Vaccinia virus envelope H3L protein binds to 

cell surface heparan sulfate and is important for intracellular mature virion 

morphogenesis and virus infection in vitro and in vivo. Journal of virology 74 

(7):3353-3365. 

Loparev VN, Parsons JM, Knight JC, Panus JF, Ray CA, Buller RM, Pickup DJ, Esposito JJ. 

1998. A third distinct tumor necrosis factor receptor of orthopoxviruses. Proceedings 

of the National Academy of Sciences of the United States of America 95(7):3786-

3791. 

Lu B, Yu W, Huang X, Wang H, Liu L, Chen Z. 2011. Mucosal immunization induces a 

higher level of lasting neutralizing antibody response in mice by a replication-

competent smallpox vaccine: vaccinia Tiantan strain. Journal of biomedicine & 

biotechnology 2011:970424. 

Lustig S, Fogg C, Whitbeck JC, Eisenberg RJ, Cohen GH, Moss B. 2005. Combinations of 

polyclonal or monoclonal antibodies to proteins of the outer membranes of the two 

infectious forms of vaccinia virus protect mice against a lethal respiratory challenge. 

Journal of virology 79(21):13454-13462. 

Lustig S, Fogg C, Whitbeck JC, Moss B. 2004. Synergistic neutralizing activities of 

antibodies to outer membrane proteins of the two infectious forms of vaccinia virus in 

the presence of complement. Virology 328(1):30-35. 

Lycke N. 2012. Recent progress in mucosal vaccine development: potential and limitations. 

Nature reviews Immunology 12(8):592-605. 

Lyons AS, Petrucelli RJ. 1987. Medicine—An Illustrated History. New York: Abradale Press, 

Harry N Abrams Inc. 

Mac CF, Mc Pherson C, Johnstone DF. 1950. Laboratory investigation of smallpox patients 

with particular reference to infectivity in the early stages. Lancet 2 6637:514-517. 

Mack TM, Noble J, Jr., Thomas DB. 1972. A prospective study of serum antibody and 

protection against smallpox. The American journal of tropical medicine and hygiene 

21(2):214-218. 



 

 143 

Marsden JP. 1936. A critical review of the clinical features of 13,686 cases of smallpox 

(variola 

minor), London County Council. Bulletin of hygiene 23:735-746. 

Marshall JW, Ridley RM. 2003. Assessment of cognitive and motor deficits in a marmoset 

model of stroke. ILAR journal 44(2):153-160. 

Martin DB. 2002. The cause of death in smallpox: an examination of the pathology record. 

Military medicine 167(7):546-551. 

Martina BE, van Doornum G, Dorrestein GM, Niesters HG, Stittelaar KJ, Wolters MA, van 

Bolhuis HG, Osterhaus AD. 2006. Cowpox virus transmission from rats to monkeys, 

the Netherlands. Emerging infectious diseases 12(6):1005-1007. 

Matho MH, Maybeno M, Benhnia MR, Becker D, Meng X, Xiang Y, Crotty S, Peters B, 

Zajonc DM. 2012. Structural and biochemical characterization of the vaccinia virus 

envelope protein D8 and its recognition by the antibody LA5. Journal of virology 

86(15):8050-8058. 

Matz-Rensing K, Ellerbrok H, Ehlers B, Pauli G, Floto A, Alex M, Czerny CP, Kaup FJ. 

2006. Fatal poxvirus outbreak in a colony of New World monkeys. Vet Pathol 

43(2):212-218. 

Mätz-Rensing K, Stahl-Hennig C, Kramski M, Pauli G, Ellerbrok H, Kaup FJ. 2012. The 

pathology of experimental poxvirus infection in common CM (Callithrix jacchus): 

further characterization of a new primate model for orthopoxvirus infections. Journal 

of comparative pathology 146(2-3):230-242. 

Mayr A, Danner K. 1978. Vaccination against pox diseases under immunosuppressive 

conditions. Developments in biological standardization 41:225-234. 

Mayr A, Danner K. 1979. [Significance of animal pox for man following elimination of 

compulsory vaccination against smallpox]. Berliner und Munchener tierarztliche 

Wochenschrift 92(13):251-256. 

Mayr A, Stickl H, Muller HK, Danner K, Singer H. 1978. [The smallpox vaccination strain 

MVA: marker, genetic structure, experience gained with the parenteral vaccination 

and behavior in organisms with a debilitated defence mechanism (author's transl)]. 

Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene 

Erste Abteilung Originale Reihe B: Hygiene, Betriebshygiene, praventive Medizin 

167(5-6):375-390. 

Mc CK, Downie AW, Bradley WH. 1958. The antibody response in man following infection 

with viruses of the pox group. II. Antibody response following vaccination. The 

Journal of hygiene 56(4):466-478. 

McClain DJ, Harrison S, Yeager CL, Cruz J, Ennis FA, Gibbs P, Wright MS, Summers PL, 

Arthur JD, Graham JA. 1997. Immunologic responses to vaccinia vaccines 

administered by different parenteral routes. The Journal of infectious diseases 

175(4):756-763. 

McCollum AM, Damon IK. 2014. Human monkeypox. Clinical infectious diseases : an 

official publication of the Infectious Diseases Society of America 58(2):260-267. 

McCollum AM, Nakazawa Y, Ndongala GM, Pukuta E, Karhemere S, Lushima RS, Ilunga 

BK, Kabamba J, Wilkins K, Gao J and others. 2015. Human Monkeypox in the Kivus, 

a Conflict Region of the Democratic Republic of the Congo. The American journal of 

tropical medicine and hygiene 93(4):718-721. 

McFadden G, Murphy PM. 2000. Host-related immunomodulators encoded by poxviruses 

and herpesviruses. Current opinion in microbiology 3(4):371-378. 

Meseda CA, Garcia AD, Kumar A, Mayer AE, Manischewitz J, King LR, Golding H, 

Merchlinsky M, Weir JP. 2005. Enhanced immunogenicity and protective effect 



 

 144 

conferred by vaccination with combinations of modified vaccinia virus Ankara and 

licensed smallpox vaccine Dryvax in a mouse model. Virology 339(2):164-175. 

Meyer H, Sutter G, Mayr A. 1991. Mapping of deletions in the genome of the highly 

attenuated vaccinia virus MVA and their influence on virulence. The Journal of 

general virology 72 ( Pt 5):1031-1038. 

Moise L, Buller RM, Schriewer J, Lee J, Frey SE, Weiner DB, Martin W, De Groot AS. 2011. 

VennVax, a DNA-prime, peptide-boost multi-T-cell epitope poxvirus vaccine, induces 

protective immunity against vaccinia infection by T cell response alone. Vaccine 

29(3):501-511. 

Moore ZS, Seward JF, Lane JM. 2006. Smallpox. Lancet (London, England) 367(9508):425-

435. 

Morand A, Delaigue S, Morand JJ. 2017. Review of poxvirus: emergence of monkeypox. 

Medecine et sante tropicales 27(1):29-39. 

Morgan C. 1976. Vaccinia virus reexamined: development and release. Virology 73(1):43-58. 

Morgan C, Ellison SA, Rose HM, Moore DH. 1954. Structure and development of viruses 

observed in the electron microscope. II. Vaccinia and fowl pox viruses. The Journal of 

experimental medicine 100(3):301-310. 

Morgan C, Wyckoff RW. 1950. The electron microscopy of fowl pox virus within the 

chorioallantoic membrane. Journal of immunology 65(2):285-295. 

Moss B. 2011. Smallpox vaccines: targets of protective immunity. Immunological reviews 

239(1):8-26. 

Moss B. 2013. Poxvirus DNA replication. Cold Spring Harb Persp Biol 5. 

Moss B. 2015. Poxvirus membrane biogenesis. Virology 479-480:619-626. 

Moss B, Henderson DA. 1999. Smallpox and Vaccinia, Plotkin, S.A., Orenstein, W.A., 

Vaccines third, W.B. Saunders Company, Philadelphia. . 

Moss B, Rosenblum EN. 1973. Letter: Protein cleavage and poxvirus morphogenesis: tryptic 

peptide analysis of core precursors accumulated by blocking assembly with 

rifampicin. Journal of molecular biology 81(2):267-269. 

Mota BE, Gallardo-Romero N, Trindade G, Keckler MS, Karem K, Carroll D, Campos MA, 

Vieira LQ, da Fonseca FG, Ferreira PC and others. 2011. Adverse events post 

smallpox-vaccination: insights from tail scarification infection in mice with Vaccinia 

virus. PLoS One 6(4):e18924. 

Mucker EM, Chapman J, Huzella LM, Huggins JW, Shamblin J, Robinson CG, Hensley LE. 

2015. Susceptibility of CM (Callithrix jacchus) to Monkeypox Virus: A Low Dose 

Prospective Model for Monkeypox and Smallpox Disease. PLoS One 10(7):e0131742. 

Mucker EM, Goff AJ, Shamblin JD, Grosenbach DW, Damon IK, Mehal JM, Holman RC, 

Carroll D, Gallardo N, Olson VA and others. 2013. Efficacy of tecovirimat (ST-246) 

in nonhuman primates infected with variola virus (Smallpox). Antimicrobial agents 

and chemotherapy 57(12):6246-6253. 

Munoz FM. 2014a. Manson's Tropical Infectious Diseases (32). 

Munoz FM. 2014b. Viral Exanthems. Manson's Tropical Infectious Diseases 23. 

Nagel A, Mobs C, Raifer H, Wiendl H, Hertl M, Eming R. 2014. CD3-positive B cells: a 

storage-dependent phenomenon. PLoS One 9(10):e110138. 

Nalca A, Rimoin AW, Bavari S, Whitehouse CA. 2005. Reemergence of monkeypox: 

prevalence, diagnostics, and countermeasures. Clinical infectious diseases : an official 

publication of the Infectious Diseases Society of America 41(12):1765-1771. 

Needham J. 1980. China and the origins of immunology. Eastern horizon 19(1):6-12. 

Nelson GE, Wagenaar TR, Moss B. 2008. A conserved sequence within the H2 subunit of the 

vaccinia virus entry/fusion complex is important for interaction with the A28 subunit 

and infectivity. Journal of virology 82(13):6244-6250. 



 

 145 

Neubert R, Helge H, Neubert D. 1995. Proliferative capacity of marmoset lymphocytes after 

tetanus vaccination and lack of 2,3,7,8-tetrachlorodibenzo-p-dioxin to reduce a booster 

effect. Life sciences 56(6):437-444. 

Neumann B, Klippert A, Raue K, Sopper S, Stahl-Hennig C. 2015. Characterization of B and 

plasma cells in blood, bone marrow, and secondary lymphoid organs of rhesus 

macaques by multicolor flow cytometry. Journal of leukocyte biology 97(1):19-30. 

Oda KI, Joklik WK. 1967. Hybridization and sedimentation studies on "early" and "late" 

vaccinia messenger RNA. Journal of molecular biology 27(3):395-419. 

Orba Y, Sasaki M, Yamaguchi H, Ishii A, Thomas Y, Ogawa H, Hang'ombe BM, Mweene 

AS, Morikawa S, Saijo M and others. 2015. Orthopoxvirus infection among wildlife in 

Zambia. The Journal of general virology 96(Pt 2):390-394. 

Orr N, Forman M, Marcus H, Lustig S, Paran N, Grotto I, Klement E, Yehezkelli Y, Robin G, 

Reuveny S and others. 2004. Clinical and immune responses after revaccination of 

israeli adults with the Lister strain of vaccinia virus. The Journal of infectious diseases 

190(7):1295-1302. 

Paluku KM, Szczeniowski MV. 1988. Human monkeypox: disease pattern, incidence and 

attack rates in a rural area of northern Zaire. Trop Geogr Med 40(2):73-83. 

Paran N, Sutter G. 2009. Smallpox vaccines: New formulations and revised strategies for 

vaccination. Human vaccines 5(12):824-831. 

Parker S, Nuara A, Buller RM, Schultz DA. 2007. Human monkeypox: an emerging zoonotic 

disease. Future microbiology 2(1):17-34. 

Patel DD, Pickup DJ, Joklik WK. 1986. Isolation of cowpox virus A-type inclusions and 

characterization of their major protein component. Virology 149 (2):174-189. 

Paul WE. 2008. Fundamental Immunology. Wolters Kluwer Health, Lippincott Williams & 

Wilkins:1236. 

Perdiguero B, Esteban M. 2009. The interferon system and vaccinia virus evasion 

mechanisms. Journal of interferon & cytokine research : the official journal of the 

International Society for Interferon and Cytokine Research 29(9):581-598. 

Pereira Oliveira G, Tavares Silva Fernandes A, Lopes de Assis F, Augusto Alves P, Moreira 

Franco Luiz AP, Barcelos Figueiredo L, …, Geessien Kroon E. 2014. Intrafamilial 

Transmission of Vaccinia virus during a Bovine Vaccinia Outbreak in Brazil: A New 

Insight in Viral Transmission Chain. . The American journal of tropical medicine and 

hygiene 90(6):1021-1023. 

Pether JV, Trevains PH, Harrison SR, Baxby D, Bennett M, Gibb AP. 1986. Cowpox from cat 

to man. Lancet (London, England) 1(8471):38-39. 

Pilaski J, Rosen A, Darai G. 1986 

Comparative analysis of the genomes of orthopoxviruses isolated from elephant, rhinoceros, 

and okapi by restriction enzymes. . Brief report, Arch Virol 88 (1-2):135-142. 

Puissant B, Combadiere B. 2006. Keeping the memory of smallpox virus. Cellular and 

molecular life sciences : CMLS 63(19-20):2249-2259. 

Pulford DJ, Gates A, Bridge SH, Robinson JH, Ulaeto D. 2004. Differential efficacy of 

vaccinia virus envelope proteins administered by DNA immunisation in protection of 

BALB/c mice from a lethal intranasal poxvirus challenge. Vaccine 22(25-26):3358-

3366. 

Putz MM, Midgley CM, Law M, Smith GL. 2006. Quantification of antibody responses 

against multiple antigens of the two infectious forms of Vaccinia virus provides a 

benchmark for smallpox vaccination. Nature medicine 12(11):1310-1315. 

Radetsky M. 1999. Smallpox: a history of its rise and fall. The Pediatric infectious disease 

journal 18(2):85-93. 



 

 146 

Rao AR, Prahlad I, Swaminathan M. 1960. A study of 1,000 Cases of Smallpox. Journal of 

the Indian Medical Association 1960 35  (7):296-307  

Reardon S. 2014. 'Forgotten' NIH smallpox virus languishes on death row. Nature 514(7524):544. 

Reed KD. 2004. Monkeypox, Marshfield Clinic and the Internet: leveraging information 

technology for public health. Clinical medicine & research 2(1):1-3. 

Ricketts TF. 1908. The diagnosis of smallpox. London: Cassell. 

Riedel S. 2005. Edward Jenner and the history of smallpox and vaccination. Proceedings 

18(1):21-25. 

Rimoin AW, Mulembakani PM, Johnston SC, Lloyd Smith JO, Kisalu NK, Kinkela TL, 

Blumberg S, Thomassen HA, Pike BL, Fair JN and others. 2010. Major increase in 

human monkeypox incidence 30 years after smallpox vaccination campaigns cease in 

the Democratic Republic of Congo. Proceedings of the National Academy of Sciences 

of the United States of America 107(37):16262-16267. 

Rock MT, Yoder SM, Wright PF, Talbot TR, Edwards KM, Crowe JE, Jr. 2005. Differential 

regulation of granzyme and perforin in effector and memory T cells following 

smallpox immunization. Journal of immunology 174(6):3757-3764. 

Rodriguez JR, Risco C, Carrascosa JL, Esteban M, Rodriguez D. 1997. Characterization of 

early stages in vaccinia virus membrane biogenesis: implications of the 21-kilodalton 

protein and a newly identified 15-kilodalton envelope protein. Journal of virology 

71(3):1821-1833. 

Rodriguez JR, Risco C, Carrascosa JL, Esteban M, Rodriguez D. 1998. Vaccinia virus 15-

kilodalton (A14L) protein is essential for assembly and attachment of viral crescents 

to virosomes. J Virol 72(2):1287-1296. 

Roper RL, Payne LG, Moss B. 1996. Extracellular vaccinia virus envelope glycoprotein 

encoded by the A33R gene. Journal of virology 70(6):3753-3762. 

Rowe MJ, Turman AB, Murray GM, Zhang HQ. 1996. Parallel organization of 

somatosensory cortical areas I and II for tactile processing. Clinical and experimental 

pharmacology & physiology 23(10-11):931-938. 

Safronetz D, Geisbert TW, Feldmann H. 2013. Animal models for highly pathogenic 

emerging viruses. Current opinion in virology 3(2):205-209. 

Sakhatskyy P, Wang S, Chou TH, Lu S. 2006. Immunogenicity and protection efficacy of 

monovalent and polyvalent poxvirus vaccines that include the D8 antigen. Virology 

355(2):164-174. 

Sakhatskyy P, Wang S, Zhang C, Chou TH, Kishko M, Lu S. 2008. Immunogenicity and 

protection efficacy of subunit-based smallpox vaccines using variola major antigens. 

Virology 371(1):98-107. 

Sale TA, Melski JW, Stratman EJ. 2006. Monkeypox: an epidemiologic and clinical 

comparison of African and US disease. Journal of the American Academy of 

Dermatology 55(3):478-481. 

Sanchez-Puig JM, Sanchez L, Roy G, Blasco R. 2004. Susceptibility of different leukocyte 

cell types to Vaccinia virus infection. Virology journal 1:10. 

Sarkar JK, Mitra AC, Mukherjee MK. 1975. The minimum protective level of antibodies in 

smallpox. Bulletin of the World Health Organization 52(3):307-311. 

Schmelz M, Sodeik B, Ericsson M, Wolffe EJ, Shida H, Hiller G, Griffiths G. 1994. 

Assembly of vaccinia virus: the second wrapping cisterna is derived from the trans 

Golgi network. Journal of virology 68(1):130-147. 

Schmitt A, Gan L, Stahl-Hennig C, Shi T, Ellerbrok H, Kaup F-J, Mätz-Rensing K. 2017. 

Dynamics of pathological findings during experimental calpox virus infection of 

common CM (Callithrix jacchus). 2017. Viruses 9, 363; doi:10.3390/v9120363. 



 

 147 

Schmitt A, Mätz-Rensing K, Kaup F-J. 2014. Non-Human Primate Models of Orthopoxvirus 

Infections veterinary sciences (1 ):40-62. 

Schmitt AE. 2015. Untersuchungen zur experimentellen Infektion von CM (Callithrix 

jacchus) mit dem Calpoxvirus. Dissertation. 

Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image 

analysis. Nature methods 9(7):671-675. 

Schuh E, Berer K, Mulazzani M. 2016. Features of Human CD3+CD20+ T Cells.  

197(4):1111-1117. 

Schupp CJ, Nitsche A, Bock-Hensley O, Bohm S, Flechtenmacher C, Kurth A, Saenger K, 

Hoferer M, Kusters U, Gunther P and others. 2011. A 14-year-old girl with a vesicle 

on her finger and lymphadenitis. Journal of clinical virology : the official publication 

of the Pan American Society for Clinical Virology 50(1):1-3. 

Seet BT, Johnston JB, Brunetti CR, Barrett JW, Everett H, Cameron C, Sypula J, Nazarian 

SH, Lucas A, McFadden G. 2003. Poxviruses and immune evasion. Annual review of 

immunology 21:377-423. 

Senkevich TG, Moss B. 2005. Vaccinia virus H2 protein is an essential component of a 

complex involved in virus entry and cell-cell fusion. Journal of virology 79(8):4744-

4754. 

Sette A, Grey H, Oseroff C, Peters B, Moutaftsi M, Crotty S, Assarsson E, Greenbaum J, Kim 

Y, Kolla R and others. 2009. Definition of epitopes and antigens recognized by 

vaccinia specific immune responses: their conservation in variola virus sequences, and 

use as a model system to study complex pathogens. Vaccine 27 Suppl 6:G21-26. 

Shchelkunov SN. 2013. An increasing danger of zoonotic orthopoxvirus infections. PLoS 

pathogens 9(12):e1003756. 

Shchelkunov SN, Safronov PF, Totmenin AV, Petrov NA, Ryazankina OI, Gutorov VV, 

Kotwal GJ. 1998. The genomic sequence analysis of the left and right species-specific 

terminal region of a cowpox virus strain reveals unique sequences and a cluster of 

intact ORFs for immunomodulatory and host range proteins. Virology 243(2):432-

460. 

Shchelkunov SN, Totmenin AV, Loparev VN, Safronov PF, Gutorov VV, Chizhikov VE, 

Knight JC, Parsons JM, Massung RF, Esposito JJ. 2000. Alastrim smallpox variola 

minor virus genome DNA sequences. Virology 266(2):361-386. 

Simcock PR, Noble JL, Tullo AB, Morris DJ, Morgan-Capner P. 1993. Cowpox virus. The 

British journal of ophthalmology 77(6):394. 

Singh RK, Balamurugan V, Hosamani M, Kallesh DJ, Bhanuprakash V. 2008. Sequence 

analysis of C18L gene of buffalopox virus: PCR strategy for specific detection and 

differentiation of buffalopox from orthopoxviruses. Journal of virological methods 

154(1-2):146-153. 

Singh RK, Hosamani M, Balamurugan V, Bhanuprakash V, Rasool TJ, Yadav MP. 2007. 

Buffalopox: an emerging and re-emerging zoonosis. Animal health research reviews 

8(1):105-114. 

Singh RK, Hosamani M, Balamurugan V, Satheesh CC, Shingal KR, Tatwarti SB, Bambal 

RG, Ramteke V, Yadav MP. 2006. An outbreak of buffalopox in buffalo (Bubalus 

bubalis) dairy herds in Aurangabad, India. Revue scientifique et technique 

(International Office of Epizootics) 25(3):981-987. 

Smith GL, Law M. 2004. The exit of vaccinia virus from infected cells. Virus research 106( 

2):189-197. 

Smith GL, McFadden G. 2002. Smallpox: anything to declare? Nature reviews Immunology 

2(7):521-527. 



 

 148 

Smith GL, Vanderplasschen A, Law M. 2002. The formation and function of extracellular 

enveloped vaccinia virus. The Journal of general virology 83(Pt 12):2915-2931. 

Smith SA, Kotwal GJ. 2002. Immune response to poxvirus infections in various animals. 

Critical reviews in microbiology 28(3):149-185. 

Smith VP, Bryant NA, Alcami A. 2000. Ectromelia, vaccinia and cowpox viruses encode 

secreted interleukin-18-binding proteins. The Journal of general virology 81(Pt 

5):1223-1230. 

Song H, Janosko K, Johnson RF, Qin J, Josleyn N, Jett C, Byrum R, St Claire M, Dyall J, 

Blaney JE and others. 2013a. Poxvirus Antigen Staining of Immune Cells as a 

Biomarker to Predict Disease Outcome in Monkeypox and Cowpox Virus Infection in 

Non-Human Primates. PLoS ONE 8(4). 

Song H, Janosko K, Johnson RF, Qin J, Josleyn N, Jett C, Byrum R, St Claire M, Dyall J, 

Blaney JE and others. 2013b. Poxvirus antigen staining of immune cells as a 

biomarker to predict disease outcome in monkeypox and cowpox virus infection in 

non-human primates. PLoS One 8(4):e60533. 

Staib C, Suezer Y, Kisling S, Kalinke U, Sutter G. 2006. Short-term, but not post-exposure, 

protection against lethal orthopoxvirus challenge after immunization with modified 

vaccinia virus Ankara. The Journal of general virology 87(Pt 10):2917-2921. 

Stanford MM, McFadden G, Karupiah G, Chaudhri G. 2007. Immunopathogenesis of 

poxvirus infections: forecasting the impending storm. Immunology and cell biology 

85(2):93-102. 

Stittelaar KJ, Kuiken T, de Swart RL, van Amerongen G, Vos HW, Niesters HG, van 

Schalkwijk P, van der Kwast T, Wyatt LS, Moss B and others. 2001. Safety of 

modified vaccinia virus Ankara (MVA) in immune-suppressed macaques. Vaccine 

19(27):3700-3709. 

Stittelaar KJ, Neyts J, Naesens L, van Amerongen G, van Lavieren RF, Holy A, De Clercq E, 

Niesters HG, Fries E, Maas C and others. 2006. Antiviral treatment is more effective 

than smallpox vaccination upon lethal monkeypox virus infection. Nature 

439(7077):745-748. 

Stittelaar KJ, van Amerongen G, Kondova I, Kuiken T, van Lavieren RF, Pistoor FH, Niesters 

HG, van Doornum G, van der Zeijst BA, Mateo L and others. 2005. Modified vaccinia 

virus Ankara protects macaques against respiratory challenge with monkeypox virus. 

Journal of virology 79(12):7845-7851. 

t Hart BA, van Meurs M, Brok HP, Massacesi L, Bauer J, Boon L, Bontrop RE, Laman JD. 

2000. A new primate model for multiple sclerosis in the common marmoset. 

Immunology today 21(6):290-297. 

Taub DD, Ershler WB, Janowski M, Artz A, Key ML, McKelvey J, Muller D, Moss B, 

Ferrucci L, Duffey PL and others. 2008. Immunity from smallpox vaccine persists for 

decades: a longitudinal study. The American journal of medicine 121(12):1058-1064. 

Taylor JM, Barry M. 2006. Near death experiences: poxvirus regulation of apoptotic death. 

Virology 344(1):139-150. 

Thomassen HA, Fuller T, Asefi-Najafabady S, Shiplacoff JA, Mulembakani PM, Blumberg S, 

Johnston SC, Kisalu NK, Kinkela TL, Fair JN and others. 2013. Pathogen-host 

associations and predicted range shifts of human monkeypox in response to climate 

change in central Africa. PLoS One 8(7):e66071. 

Tooze J, Hollinshead M, Reis B, Radsak K, Kern H. 1993. Progeny vaccinia and human 

cytomegalovirus particles utilize early endosomal cisternae for their envelopes. 

European journal of cell biology 60(1):163-178. 



 

 149 

Townsley AC, Senkevich TG, Moss B. 2005. The product of the vaccinia virus L5R gene is a 

fourth membrane protein encoded by all poxviruses that is required for cell entry and 

cell-cell fusion. Journal of virology 79(17):10988-10998. 

Tucker JB. 2011. Breaking the deadlock over destruction of the smallpox virus stocks. 

Biosecurity and bioterrorism : biodefense strategy, practice, and science 9(1):55-67. 

Uccelli A, Oksenberg JR, Jeong MC, Genain CP, Rombos T, Jaeger EE, Giunti D, Lanchbury 

JS, Hauser SL. 1997. Characterization of the TCRB chain repertoire in the New World 

monkey Callithrix jacchus. Journal of immunology 158(3):1201-1207. 

Uebler N. 2008. A phase I study to evaluate take rate, immunogenicity and safety of the 

2nd generation smallpox vaccine Elstree-BN, Bavarian Nordic, GMBH. 

Martinsried, Germany, 10/08/2008. 

Upton C, Slack S, Hunter AL, Ehlers A, Roper RL. 2003. Poxvirus Orthologous Clusters: 

toward Defining the Minimum Essential Poxvirus Genome. Journal of virology. 

van Vliet SA, Vanwersch RA, Jongsma MJ, Olivier B, Philippens IH. 2008. Therapeutic 

effects of Delta9-THC and modafinil in a marmoset Parkinson model. European 

neuropsychopharmacology : the journal of the European College of 

Neuropsychopharmacology 18(5):383-389. 

Vanderplasschen A, Mathew E, Hollinshead M, Sim RB, Smith GL. 1998. Extracellular 

enveloped vaccinia virus is resistant to complement because of incorporation of host 

complement control proteins into its envelope. Proceedings of the National Academy 

of Sciences of the United States of America 95(13):7544-7549. 

Vanderplasschen A, Smith GL. 1997. A novel virus binding assay using confocal microscopy: 

demonstration that the intracellular and extracellular vaccinia virions bind to different 

cellular receptors. Journal of virology 71(5):4032-4041. 

Vazquez MI, Rivas G, Cregut D, Serrano L, Esteban M. 1998. The vaccinia virus 14-

kilodalton (A27L) fusion protein forms a triple coiled-coil structure and interacts with 

the 21-kilodalton (A17L) virus membrane protein through a C-terminal alpha-helix. 

Journal of virology 72 (12):10126-10137. 

Velasquez LS, Shira S, Berta AN, Kilbourne J, Medi BM, Tizard I, Ni Y, Arntzen CJ, Herbst-

Kralovetz MM. 2011. Intranasal delivery of Norwalk virus-like particles formulated in 

an in situ gelling, dry powder vaccine. Vaccine 29(32):5221-5231. 

Verardi PH, Titong A, Hagen CJ. 2012. A vaccinia virus renaissance: new vaccine and 

immunotherapeutic uses after smallpox eradication. Human vaccines & 

immunotherapeutics 8(7):961-970. 

Viner KM, Isaacs SN. 2005. Activity of vaccinia virus-neutralizing antibody in the sera of 

smallpox vaccinees. Microbes and infection 7(4):579-583. 

Vollmar J, Arndtz N, Eckl KM, Thomsen T, Petzold B, Mateo L, Schlereth B, Handley A, 

King L, Hulsemann V and others. 2006. Safety and immunogenicity of IMVAMUNE, 

a promising candidate as a third generation smallpox vaccine. Vaccine 24(12):2065-

2070. 

von Krempelhuber A, Vollmar J, Pokorny R, Rapp P, Wulff N, Petzold B, Handley A, Mateo 

L, Siersbol H, Kollaritsch H and others. 2010. A randomized, double-blind, dose-

finding Phase II study to evaluate immunogenicity and safety of the third generation 

smallpox vaccine candidate IMVAMUNE. Vaccine 28(5):1209-1216. 

Vorou RM, Papavassiliou VG, Pierroutsakos IN. 2008. Cowpox virus infection: an emerging 

health threat. Current opinion in infectious diseases 21(2):153-156. 

Wallengren K, Risco C, Krijnse-Locker J, Esteban M, Rodriguez D. 2001. The A17L gene 

product of vaccinia virus is exposed on the surface of IMV. Virology 290(1):143-152. 

Walsh SR, Wilck MB, Dominguez DJ, Zablowsky E, Bajimaya S, Gagne LS, Verrill KA, 

Kleinjan JA, Patel A, Zhang Y and others. 2013. Safety and immunogenicity of 



 

 150 

modified vaccinia Ankara in hematopoietic stem cell transplant recipients: a 

randomized, controlled trial. The Journal of infectious diseases 207(12):1888-1897. 

Wei CM, Moss B. 1975. Methylated nucleotides block 5'-terminus of vaccinia virus 

messenger RNA. Proceedings of the National Academy of Sciences of the United 

States of America 72(1):318-322. 

Wenzel RP. 2002. Recognizing the real threat of biological terror. Transactions of the 

American Clinical and Climatological Association 113:42-55. 

WHO. 1980. The global eradication of smallpox. Final report of the global commission for 

the certification of smallpox eradication. History of International Public Health No4, 

Geneva, World Health Organization, No4  

Willemse A, Egberink HF. 1985. Transmission of cowpox virus infection from domestic cat 

to man. Lancet (London, England) 1(8444):1515. 

Wolffe EJ, Vijaya S, Moss B. 1995. A myristylated membrane protein encoded by the 

vaccinia virus L1R open reading frame is the target of potent neutralizing monoclonal 

antibodies. Virology 211(1):53-63. 

Wolfs TF, Wagenaar JA, Niesters HG, Osterhaus AD. 2002. Rat-to-human transmission of 

Cowpox infection. Emerging infectious diseases 8(12):1495-1496. 

Woollard DJ, Haqshenas G, Dong X, Pratt BF, Kent SJ, Gowans EJ. 2008. Virus-specific T-

cell immunity correlates with control of GB virus B infection in CM. Journal of 

virology 82(6):3054-3060. 

Xiao Y, Aldaz-Carroll L, Ortiz AM, Whitbeck JC, Alexander E, Lou H, Davis HL, Braciale 

TJ, Eisenberg RJ, Cohen GH and others. 2007. A protein-based smallpox vaccine 

protects mice from vaccinia and ectromelia virus challenges when given as a prime 

and single boost. Vaccine 25(7):1214-1224. 

Xu D, Regner M, Smith D, Ruby J, Johnstone R, Mullbacher A. 2004a. The multidrug 

resistance gene mdr1a influences resistance to ectromelia virus infection by 

mechanisms other than conventional immunity. Immunology and cell biology 

82(5):462-470. 

Xu R, Johnson AJ, Liggitt D, Bevan MJ. 2004b. Cellular and humoral immunity against 

vaccinia virus infection of mice. Journal of immunology 172(10):6265-6271. 

Xu Y, Yuen PW, Lam JK. 2014. Intranasal DNA Vaccine for Protection against Respiratory 

Infectious Diseases: The Delivery Perspectives. Pharmaceutics 6(3):378-415. 

Yadav S, Hosamani M, Balamurugan V, Bhanuprakash V, Singh RK. 2010. Partial genetic 

characterization of viruses isolated from pox-like infection in cattle and buffaloes: 

evidence of buffalo pox virus circulation in Indian cows. Archives of virology 

155(2):255-261. 

Yu W, Fang Q, Zhu W, Wang H, Tien P, Zhang L, Chen Z. 2010. One time intranasal 

vaccination with a modified vaccinia Tiantan strain MVTT(ZCI) protects animals 

against pathogenic viral challenge. Vaccine 28(9):2088-2096. 

Zaucha GM, Jahrling PB, Geisbert TW, Swearengen JR, Hensley L. 2001. The pathology of 

experimental aerosolized monkeypox virus infection in cynomolgus monkeys (Macaca 

fascicularis). Laboratory investigation; a journal of technical methods and pathology 

81(12):1581-1600. 

Zhang HQ, Murray GM, Turman AB, Mackie PD, Coleman GT, Rowe MJ. 1996. Parallel 

processing in cerebral cortex of the marmoset monkey: effect of reversible SI 

inactivation on tactile responses in SII. Journal of neurophysiology 76(6):3633-3655. 

Zhang Q, Tian M, Feng Y, Zhao K, Xu J, Liu Y, Shao Y. 2013. Genomic sequence and 

virulence of clonal isolates of vaccinia virus Tiantan, the Chinese smallpox vaccine 

strain. PLoS One 8(4):e60557. 



 

 151 

Zhu W, Fang Q, Zhuang K, Wang H, Yu W, Zhou J, Liu L, Tien P, Zhang L, Chen Z. 2007. 

The attenuation of vaccinia Tian Tan strain by the removal of the viral M1L-K2L 

genes. Journal of virological methods 144(1-2):17-26. 

Zielinski RJ, Smedley JV, Perera PY, Silvera PM, Waldmann TA, Capala J, Perera LP. 2010. 

Smallpox vaccine with integrated IL-15 demonstrates enhanced in vivo viral clearance 

in immunodeficient mice and confers long term protection against a lethal monkeypox 

challenge in cynomolgus monkeys. Vaccine 28(43):7081-7091. 

 

7.2 Internet cited 

http://www.dpz.eu/de/abteilung/primatenhaltung/primaten-am-dpz/weissbueschelaffe.html 

(24.11.2017) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 152 

A Appendix 

A.1 Abbreviations 

A  area 

aa  amino acid 

AEC   3-Amino-9-EthylCarbazole 

APCs  antigen-presenting cells 

BC  before Christ 

BN  Bavarian Nordic  

bp  base pairs  

BSL  Biosafety level 

b.w.  body weight 

calpox+  calpox virus antigen positive  

ConA   Concanavalin A 

CO2  Carbon dioxide 

CFSE  Carboxyfluorescein succinimidyl ester 

cm  centimetres 

CM  common CM 

CMLV  Camelpox virus  

CNS  central nervous system 

CPXV  cowpox virus 

°C  degree celsius 

ddH2O  double-distilled water 

DMEM Dulbecco’s modified Eagle’s medium 

DMF  Dimethylformamide 

dpc days post challenge 

dpi  days post infection 

DPZ  German Primate Centre (Deutsches Primatenzentrum GmbH) 

ECTV ectromelia virus 

EDTA Ethylenediaminetetraacetic acid 

EEV   extracellular enveloped virus 

e.g.  exempli gratia 

ELISA  Enzym-linked Immunosorbent Assay  

et al.  et alli 

EV   enveloped virion 
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FA  formaldehyde 

FAM  6-FAM (6-Carboxyfluorescein) 

FCS  fetal calf serum 

fmol  femtomole 

h  hour 

HLA-DR  human leukocyte antigen - antigen D related 

H2O2   Hydrogen peroxide 

i.d.  intradermally 

i.e.  id est 

IEV  intracellular enveloped virus 

i.m.  intramuscularly 

IMV  intracellular mature virus 

i.n.  intranasally 

i.p.  intraperitoneal 

i.v.  intravenous 

kb  kilobase 

KCl  potassium chloride 

kDa  kilodalton 

kg  kilograms 

LE  Lister Elstree  

LN   lymph node 

mM  Millimol 

M  molar mass 

mAbs  monoclonal antibodies 

min  minutes 

MOI   Multiplicity of infection 

MV   mature virion  

MVA  Modified vaccinia virus Ankara 

MVTT  Modified vaccinia virus Tiantan 

mDCs   myeloid dendritic cells  

mg  milligrams 

MID50  median monkey infectious doses  

ml  millilitres 

MPXV  monkeypox virus 

MQs   macrophages 
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nAb  neutralizing antibody 

NaCl  sodium chloride 

NALT  nasal-associated lymphoid tissue 

NaOAc  sodium acetate 

nm  nanometers 

NHP  non-human primate  

OD  optical density 

OPXV  orthopoxvirus 

pfu  plaque forming units 

pi  post infection 

p.o.  per oral 

P  passage 

PBMCs Peripheral blood mononuclear cells  

PBS  Phosphate-buffered saline 

pDCs  plasmacytoid dendritic cells  

PCR  Polymerase Chain Reaction  

pfu  plaque forming units 

P/S  Penicillin-Streptomycin 

rcf  relative centrifugal force 

RKI   Robert Koch Institute 

SD  standard deviation 

sec  seconds 

SSC   side scatter  

submand.  submandibular  

TBS   Tris-buffered saline  

™  Trademark 

TMB  3,3’,5,5’-Tetramethylbenzidine 

TMR  5-TAMRA (5-Carboxytetramethylrhodamine) 

T-TBS  Tween TBS  

VACV  vaccinia virus  

VARV  variola virus 

vIFNγR viral interferon gamma receptor 

vIL-1R  viral interleukin 1 receptor 

vTNFR viral tumor necrosis factor receptor 

WR  Western Reserve 
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wt   wild type 

xg  times gravity 

%  percent  

µg  micrograms 

µl  microlitres 

A.2 Tables and Protocols  

Table A.2-1: Göttinger Mixture II (GMII). 

Ketamine (100 mg/kg) 

Xylazine (10 %) 

Atropine (1 %) 

Aqua ad injectionem 

5 ml 

1 ml 

0.1 ml 

3.9 ml 

 

Table A.3-1: Detected replicating calpox virus in Callithrix jacchus individuals´ blood for the pathogenesis study by viral 

plaque assay. Infectious calpox virus was isolation from buffy coat. Plaque assay was processed at 3, 7, 10 and 12 dpi. From 

day-3-group (animals got the high dose of 3.5 x 105 pfu calpox virus) no replicating virus was detected. First replicating virus 

(1/3) was detected in the low-dose group at 7 days post infection (dpi) (animals were infected 8.3 x 103 pfu calpox virus). Infec-

tious virus particles [pfu/µl] were detected in all tested animals at 10 dpi and at the last available time point at 12 dpi.  

days post infec-

tion (dpi) 

Study Identification (Group)   

 

3 

7 

10 

12 

14325 (I) 

0 

n.d. 

n.d. 

n.d. 

14484 (I) 

0 

n.d. 

n.d. 

n.d. 

14991 (I) 

0 

n.d. 

n.d. 

n.d. 

14702 (V)   

n.d. 

0 

0.20 

1595.74 

15122 (V) 

n.d. 

0 

0.06 

446.81  

15095 (V) 

n.d. 

0.01 

0.16 

3808.51 

dpi, days post infection; Infectious virus particles [pfu/µl], final amount of infectious virus particles [pfu/µl]; n.d., not detected; 

pfu, plaque forming units. 

 

 

Table A.3-2: Virus isolation of infectious calpox virus from buffy coat.  

Study  Vac-

cination  

group 

Vaccine Study  

Identifica-

tion 

Plaque assay processed at different 

days post infection (dpi) 

Infectious virus particles  

[pfu/µl] 

Vac-

cination 

study II 

III 

 

 

 

MVA 

i.m. 

 

 

14233 

 

 

 

10 

12 

14 

17 

0 

0.067 

0.173 

3.95 

  14309 

 

 

 

 

 

 

 

10 

12 

14 

17 

21 

24 

29 

35 

0 

0 

0 

0 

0 

0 

0 

0 
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  14248 

 

 

 

 

10 

12 

14 

17 

21 

0 

0 

0 

0.1 

1.993 

  14372 10 

12 

14 

17 

21 

0 

0,001 

0 

0,166 

270.667 

IV 

 

 

 

MVTT 

i.n. 

 

 

14169 

 

 

 

10 

12 

14 

17 

0 

0.013 

0.013 

0.053 

  14603 

 

 

 

10 

12 

14 

16 

0 

0.033 

0.083 

0.2 

  14409 

 

 

 

 

 

 

 

10 

12 

14 

17 

21 

24 

29 

35 

0 

0 

0 

0 

0 

0 

0 

0 

  14469 10 

12 

14 

17 

21 

24 

29 

35 

0 

0 

0 

0 

0 

0 

0 

0 

control PBS i.n. 14365 10 

12 

1 

494 

V MVTT 

p.o. 

15098 

 

10 

12 

14 

17 

21 

24 

29 

35 

0 

0 

0 

0 

0 

0 

0 

0 
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14478 

 

10 

12 

14 

17 

21 

24 

29 

35 

0 

0 

0 

0 

0 

0 

0 

0 

  14334 

 

10 

12 

14 

17 

21 

24 

29 

35 

0 

0 

0 

0 

0 

0 

0 

0 

  15100 10 

12 

14 

17 

0 

0 

0.007 

0.173 

Vac-

cination 

study II 

control PBS 

p.o. 

14974 10 

12 

14 

0 

0.587 

1.66 
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Table A.3-3: Overview of the detected antibodies in A27 in vaccination study I. The samples of the animals were tested at 

different time points. When antibodies bound to a sequence of the A27 protein, the respective B cell epitope regions were 

marked red.   

 
Bold numbers, protected animals; i.m., intramuscular Immunization; i.n., intranasal Immunization; MVA, modified vaccinia 

virus Ankara; MVTT, modified vaccinia virus Tiantan. 
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Table A.3-4: Overview of the detected antibodies in D8 in vaccination study I. The samples of the animals were tested at 

different time points. When antibodies bound to a sequence of the D8 protein, the respective B cell epitope regions were marked 

red.  

 

Bold numbers, protected animals; i.m., intramuscular Immunization; i.n., intranasal Immunization; MVA, modified vaccinia 

virus Ankara; MVTT, modified vaccinia virus Tiantan. 
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Table A.3-5: Overview of the detected antibodies in H3 and L1 in vaccination study I. The samples of the animals were 

tested at different time points. When antibodies bound to a sequence of the H3 and L1 protein, the respective B cell epitope re-

gions were marked red.  

 

Bold numbers, protected animals; i.m., intramuscular Immunization; i.n., intranasal Immunization; MVA, modified vaccinia 

virus Ankara; MVTT, modified vaccinia virus Tiantan. 
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Table A.3-6: Overview of the detected antibodies in A33 in vaccination study I. The samples of the animals were tested at 

different time points. When antibodies bound to a sequence of the A33 protein, the respective B cell epitope regions were 

marked red. 

  
Bold numbers, protected animals; i.m., intramuscular Immunization; i.n., intranasal Immunization; MVA, modified vaccinia 

virus Ankara; MVTT, modified vaccinia virus Tiantan. 
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Table A.3-7: Overview of the detected antibodies in B5 in vaccination study I. The samples of the animals were tested at 

different time points. When antibodies bound to a sequence of the B5 protein, the respective B cell epitope regions were marked 

red.  

 
Bold numbers, protected animals; i.m., intramuscular Immunization; i.n., intranasal Immunization; MVA, modified vaccinia 

virus Ankara; MVTT, modified vaccinia virus Tiantan. 
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Table A.3-8: Overview of the detected antibodies in B5 in vaccination study I. The samples of the animals were tested at 

different time points. When antibodies bound to a sequence of the B5 protein, the respective B cell epitope regions were marked 

red.  

 
Bold numbers, protected animals; i.m., intramuscular Immunization; i.n., intranasal Immunization; MVA, modified vaccinia 

virus Ankara; MVTT, modified vaccinia virus Tiantan. 

 

 

 

 

 

 

 

protein:

spot #: 473

NHP I.D. #: time point:

14406

14646

14415

15006

14406

14646

14415

15006

14144

14403

14482

14707

14414

14327

14575

15007

14144

14403

14482

14707

14414

14327

14575

15007

14144

14403

14482

14707

14414

14327

14575

15007

14144

14403

14482

14707

14414

14327

14575

15007

14144

14403

14482

14707

14414 10 weeks post challenge

14327 6 weeks post challenge

14575 8 weeks post challenge

15007 10 weeks post challenge

Vaccine group 

I (MVA i.m.)
10 weeks post challenge

Vaccine group 

II (MVTT i.n.)

Vaccine group 

I (MVA i.m.)

2 weeks post 2nd 

immunization

Vaccine group 

II (MVTT i.n.)

Vaccine group 

I (MVA i.m.)

challenge

Vaccine group 

II (MVTT i.n.)

Vaccine group 

I (MVA i.m.)

2 weeks post challenge

Vaccine group 

II (MVTT i.n.)

Vaccine group 

I (MVA i.m.)

pre-immunization

Vaccine group 

II (MVTT i.n.)

420-422 452-455 457-458

B5

control PBS 

i.m.
pre-immunization

control PBS 

i.n.

control PBS 

i.m.
2 weeks post challenge

control PBS 

i.n.
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Table A.3-9: Overview of the detected antibodies in A27 in vaccination study II. The samples of the animals were tested 

at different time points. When antibodies bound to a sequence of the A27 protein, the respective B cell epitope regions were 

marked red.  

 

Bold numbers, protected animals; i.m., intramuscular Immunization; i.n., intranasal Immunization; MVA, modified vaccinia 

virus Ankara; MVTT, modified vaccinia virus Tiantan; p.o., per oral. 
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Table A.3-10: Overview of the detected antibodies in D8 in vaccination study II. The samples of the animals were tested at 

different time points. When antibodies bound to a sequence of the D8 protein, the respective B cell epitope regions were marked 

red.  

 

Bold numbers, protected animals; i.m., intramuscular Immunization; i.n., intranasal Immunization; MVA, modified vaccinia 

virus Ankara; MVTT, modified vaccinia virus Tiantan; p.o., per oral. 
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Table A.3-11: Overview of the detected antibodies in H3 and L1 in vaccination study II. The samples of the animals were 

tested at different time points. When antibodies bound to a sequence of the H3 and L1 protein, the respective B cell epitope re-

gions were marked red.  

 

 

Bold numbers, protected animals; i.m., intramuscular Immunization; i.n., intranasal Immunization; MVA, modified vaccinia 

virus Ankara; MVTT, modified vaccinia virus Tiantan; p.o., per oral. 
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Table A.3-12: Overview of the detected antibodies in A33 in vaccination study II. The samples of the animals were tested at 

different time points. When antibodies bound to a sequence of the A33 protein, the respective B cell epitope regions were 

marked red.  

 
Bold numbers, protected animals; i.m., intramuscular Immunization; i.n., intranasal Immunization; MVA, modified vaccinia 

virus Ankara; MVTT, modified vaccinia virus Tiantan; p.o., per oral. 
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Table A.3-13: Overview of the detected antibodies in B5 in vaccination study II. The samples of the animals were tested at 

different time points. When antibodies bound to a sequence of the B5 protein, the respective B cell epitope regions were marked 

red.  

 

Bold numbers, protected animals; i.m., intramuscular Immunization; i.n., intranasal Immunization; MVA, modified vaccinia 

virus Ankara; MVTT, modified vaccinia virus Tiantan; p.o., per oral. 
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Table A.3-14: Overview of the detected antibodies in B5 in vaccination study II. The samples of the animals were tested at 

different time points. When antibodies bound to a sequence of the B5 protein, the respective B cell epitope regions were marked 

red.  

 
Bold numbers, protected animals; i.m., intramuscular Immunization; i.n., intranasal Immunization; MVA, modified vaccinia 

virus Ankara; MVTT, modified vaccinia virus Tiantan; p.o., per oral. 

 
 

 

protein:

spot #: 473

NHP I.D. #: time point:

control PBS i.n. 14365

control PBS p.o. 14974

control PBS i.n. 14365

control PBS p.o. 14974

14233

14309

14248

14372

14469

14169

14603

14409

15098

14478

14334

15100

14233

14309

14248

14372

14469

14169

14603

14409

15098

14478

14334

15100

14233

14309

14248

14372

14469

14169

14603

14409

15098

14478

14334

15100

14233

14309

14248

14372

14469

14169

14603

14409

15098

14478

14334

15100

B5

420-422 452-455 457-458

pre-immunization

8 weeks post 2nd 

immunization

Vaccine group 

III MVA i.m.

pre-immunization
Vaccine group 

IV MVTT i.n.

Vaccine group V 

MVTT p.o.

Vaccine group 

III MVA i.m.

2 weeks post 2nd 

immunization

Vaccine group 

IV MVTT i.n.

Vaccine group V 

MVTT p.o.

Vaccine group 

III MVA i.m.

challenge
Vaccine group 

IV MVTT i.n.

Vaccine group V 

MVTT p.o.

Vaccine group 

III MVA i.m.

8 weeks post challenge
Vaccine group 

IV MVTT i.n.

Vaccine group V 

MVTT p.o.
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