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1 Introduction and Theoretical Background 

Proteins are involved in all biological processes within living cells and their specific 

function is intrinsically related to their structure. Hence, to gain a better understanding 

about their function, it is essential to investigate their structural and dynamic features. 

By far the most dominant techniques regarding detailed structural investigation of 

biomolecules, are X-ray crystallography and nuclear magnetic resonance (NMR) 

spectroscopy. However, limitations of their application become especially visible in the 

case of integral membrane proteins, which are responsible for many processes at the 

surface of and within the cell membrane. In particular, the associated lipid-protein 

complex is highly difficult to crystallise and the crystalline state as determined by X-ray 

diffraction might not reflect the biologically active one.[1,2] On the contrary, NMR offers 

the opportunity to investigate proteins in more physiologically relevant conditions, but 

this method is so far system-size limited (solution NMR ~60 kDa).[3,4]  

To overcome these restrictions, complementary and sensitive analytical electron 

paramagnetic resonance (EPR) techniques such as pulsed electron double resonance 

(PELDOR; also known as double electron-electron resonance, DEER) have been 

developed. The PELDOR technique is based on the dipole-dipole interaction between 

two paramagnetic centres. This magnetic interaction bears structural, dynamical and 

conformational information about biomolecules.  

Until the late 1980s, EPR techniques were mostly limited to biomolecules with intrinsic 

paramagnetic centres like amino acid radicals, metal ions and iron sulfur centres. Then 

HUBBELL and co-workers successfully introduced paramagnetic centres by site-directed 

spin labelling (SDSL) onto the diamagnetic bacteriorhodopsin at specific positions via 

cysteine mutation.[5] This pioneering work showed the possibility to synthetically attach 

suitable paramagnetic spin systems (‘spin label’) to formerly inaccessible diamagnetic 

biomolecules. Over the years a range of different spin labels was postulated with 

different properties regarding application, labelling approach and rigidity of the labels, 
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and sensitivity within the EPR experiment. Besides transition metal-based spin labels 

with copper(II)[6], gadolinium(III)[7], manganese(II)[8] or nickel (II)[9], and carbon-centred 

radicals[10], nitroxides are dominantly used in EPR based studies, since they are small, 

relatively stable and due to the concentrated location of the unpaired electron, they 

improve the accuracy of EPR experiments. Furthermore, as highlighted recently in 

reviews from LOVETT and ANDERSON, the heterocyclic scaffold that constitutes these 

labels is highly ‘tuneable’ and allows a variety of orthogonal labelling strategies.[11,12]  

This thesis focuses on the synthesis of new rigid nitroxide-labelled amino acids and their 

twofold incorporation into transmembrane peptide models. Furthermore, these double 

labelled transmembrane peptides are thoroughly characterised and their usability in 

PELDOR experiments is comprehensively investigated.  

In the following, common nitroxide spin labels and labelling methods are described in 

more detail. 

1.1 Nitroxide Spin Labels  

The nitroxyl (N‒O•) radical is characterised by a N‒O three electron bond which results 

from the overlap of the 2pz orbitals of the nitrogen and oxygen atom. The spin density 

is distributed between the nitrogen and oxygen atom, whereby it is slightly higher on 

the latter, and not delocalised over the adjacent framework.[13]  

The nitroxide radical is commonly generated through oxidation of the corresponding 

secondary amine (Scheme 1).[11]  

 

Scheme 1: General procedures to generate nitroxide radicals.  
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The oxidation of the secondary amine 1 to the corresponding hydroxyl amine 2 can be 

achieved by using an excess of H2O2 with a catalytic amount of Na2WO4, or meta-

chloroperoxybenzoic acid (m-CPBA). The hydroxyl amine can be further oxidised to the 

nitroxide radical 3 in the presence of atmospheric oxygen or using mild oxidants such 

as MnO2, NaNO2 or Cu(II) salt in the presence of oxygen (path A).  

The relatively strong tungsten(VI) oxidant can oxidise the hydroxylamine to the 

oxoammonium salt 4 (path B), which in turn is able to oxidise H2O2 to O2 and reduces 

itself to the nitroxide radical 3. It is also possible that the salt 4 reacts with residual 

hydroxyl amine 2 to form two nitroxide radical molecules (path C). 

 

1.1.1 Basic Structures 

The structures of nitroxides are mainly based on three cyclic families: six-membered 

rings (piperidines), five-membered rings (pyrrolines, pyrrolidines, imidazolines, 

imidazolidines and oxazolidines) or fused ring systems (isoindolines), whereby the 

nitroxide radical is often flanked by two gem-dimethyl substituted quaternary carbon 

atoms (Figure 1). 

 

Figure 1: The parent nitroxide structures are six-membered, five-membered, or fused 
ring systems. 

 

Substitutions on the C atoms contribute to the stability of the radical, since they 

sterically shield the radical to prevent reduction, which especially has to be considered 

in biological media (redox reaction see Scheme 2).[14] Furthermore, due to the absence 

of -protons the nitroxide radical does not decompose to the corresponding nitrone 

(Scheme 2).[13]  



Introduction and Theoretical Background  

 

 
4 
 

 

Scheme 2: Top: The redox process of a nitroxide radical. Bottom: Hydrogen atom on C 
can lead to decomposition. 

 
The ring size of nitroxides also influences reduction processes, since it was shown that 

five-membered rings are more stable towards reduction than six-membered rings.[15] It 

is conceivable that due to the hybridisation effects of the nitrogen atom the reduction 

of six membered rings is favoured compared to five-membered rings.[11]  

Furthermore, the stability of the radical can be increased by the replacement of the two 

gem-dimethyl groups through two gem-diethyl groups or bis(spirocyclohexyl) groups 

(Figure 2).[16]  

 

Figure 2: The nitroxide radical can be stabilised by sterically demanding groups such as 
ethyl- or spirocyclohexyl groups. 

 
The higher flexibility of the ethyl groups increases the shielding effect compared to the 

more restricted spirocyclohexyl groups.[16,17] Besides the increased stability of the 

radical, it is proposed that bulky and rigid (i.e. spirocyclic) residues have a positive 

influence on the spin relaxation time (Tm).[11,18] Normally, spin labels with gem-methyl 

groups have an optimal Tm for a PELDOR experiment at 50 K.[11] Above 70 K the rotation 

of the methyl groups leads to a significant decrease of Tm.[11] Thus, increasing Tm will 

enable PELDOR experiments at higher temperatures that allow measurements using 

liquid nitrogen instead of expensive liquid helium as cooling medium, or even allow 
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experiments at physiological temperatures. Indeed, a comparative study made by 

BAGRYANSKAYA and co-workers in 2016 demonstrated that spirocyclohexyl substituents 

show an advantage in the temperature range of 100‒180 K over standard gem-dimethyl 

groups.[19] At ambient temperature this benefit became incremental though. Yet, a year 

before, EATON and co-workers were able to measure a 3.2 nm distance at 295 K by 

PELDOR on a double labelled T4 lysozyme using nitroxide labels with spirocyclohexyl 

substituents.[20] Therefore, it is suggested that for room temperature PELDOR 

measurements Tm is not only determined by the substituents adjacent to the radical but 

also by the extended environment within a biomolecule.[19] 

 

1.1.2 Selected Spin Labels and Labelling Methods 

Since the development of the SDSL technique the methanethiosulfonate spin label 

(MTSSL, 5) is the most frequently used label in literature, especially in EPR distance 

measurements.  

protein backbone

 

Scheme 3: Left: The MTSSL 5 can be attached to the protein of interest via a disulfide 
formation (linked side chain known as R1, 6). Right: Rotating single bonds which 
increase the conformational space for the spin density. Reprinted with permission from 
[21]. Copyright 2009 by Springer Science. 

 
MTSSL reacts selectively with thiol groups and therefore, it can be easily attached to 

cysteine residues in proteins via disulfide formation (6, disulfide-linked side-chain 

commonly known as R1).[5] Due to the small size and the flexible linker between the 

pyrroline-oxyl moiety and the protein backbone, the influence on the native fold of 

proteins is minimal. However, this flexibility allows rotational dynamics which opens a 

large conformational space and leads to a ’blurring’ of the spin density (Scheme 3, right). 
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The internal dynamics and rotamers have been intensively studied and rotamer libraries 

have been developed for -helices and -sheets, which allow plausible distance 

prediction.[22,23] Yet, e.g. in 2013, MATALON et al. published a PELDOR study on a labelled 

WALP23 peptide in a lipid environment that illustrates the limitations of 6.[24] The 

distance distributions were broadened and did not match the calculated distribution 

due to the variety of possible rotamers of the label, which are furthermore influenced 

by the lipid environment.[24]  

In order to decrease the internal motion, MTSSL analogues have been created (Figure 

3).  

 

Figure 3: Derivatives of MTSSL. The motion of the label is restricted through substitution 
on the pyrroline-oxyl moiety (7) or by two-point binding (8). 

 
It was demonstrated that the motion of the label can be restricted either by substitution, 

like in the case of the 4-pyridyl substituted label 7 (R1p)[25], or by two-point binding 

strategies which effectively reduce the conformational freedom like in the case of label 

8 (RX)[26]. The latter was successfully applied in a membrane protein study and delivered 

narrow distances.[27] However, its usage is obviously limited, since it requires two 

suitable proximal binding sides for each label. 

 
The methanethiosulfonate linkage (9) is most commonly used owing to its 

straightforward handling but over the years different linker and labelling methods were 

developed. These allow orthogonal labelling strategies. Also, the aspects of increased 

rigidity with minimal impact on the protein’s structure and the use in cells were 

addressed. Several linkers are illustrated in Figure 4. 
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Figure 4: Selected structures of common nitroxide linkers. Top: 9 and 10 linkers react 
with thiol groups. Centre: Linkers address serine (11), tyrosine (12) and arginine (13). 
Bottom: 14 and 15 linkers which give the opportunity for click reactions to introduce 
the spin label. 

 
Besides the MTSSL also maleimide linked nitroxides (10) address cysteine residues 

within a peptide and due to the different coupling chemistry, it can be used under mild 

reducing conditions.[28] However, side reactions have to be considered, like hydrolysis 

to the maleamic acid which in turn may react with other maleimides.[29] Besides 

cysteine also amino acids like serine (11)[30], tyrosine (12)[31] and arginine (13)[32] can be 

specifically addressed, which enables orthogonal linker chemistry.  

Furthermore, KÁLAI et al. showed that nitroxide modified azides (14) and alkynes (15) 

can be linked to biomolecules via Cu(I) catalysed ‘click-chemistry’ and thus showed that 

site-selective labelling is also possible by forming triazoles.[33] Another linking strategy 

exploits the specific binding to polyhistidine motifs (known as His6-tags), which are 

often attached to the N- or C-terminus to enable the purification of recombinant 

proteins. One example is the label 2,2,5,5-tetramethylpyrrolidine-1-oxyl (PROXYL) tris-

nitrilotriacetic acid (P-trisNTA, 16). 
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Figure 5: Structure of the P-trisNTA label (16). The label binds to a His6-tag. 

 
It was shown by BALDAUCH et al. in 2013 that this label binds successfully to an His6-

tagged MalE in cell lysate.[34] This may open up a new route towards the use of spin 

labels in living cells.  

 
Nitroxide labels can also be introduced by unnatural amino acids via endogenous 

expression of specifically coded DNA.[35] This in vivo method enables the selective 

labelling of cysteine rich proteins. It is possible to introduce amino acids which already 

bear a paramagnetic centre like 17[36] as well as amino acids which can be modified after 

the insertion like the popular p-acetylphenylalanine (modified to 18, K1)[37] or p-

azidophenylalanine (modified to 19, T1)[38,39].  

 

Figure 6: The unnatural amino acids are introduced into the peptide via endogenous 
expression. In the cases of 18 and 19 the nitroxide label is attached after the expression. 

 
The motif 19 was successfully incorporated into T4-lysozym via a copper-free click 
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cycloaddition.[38] However, these labels contain flexible linkers and the post-

modification method usually requires harsh labelling conditions.[37] 

Finally, non-native amino acids can also be introduced in peptide sequences during 

solid-phase peptide synthesis (SPPS). This has the advantage that no connection to a 

flexible linker is needed which then allows the investigation of peptide backbone 

conformations. So far, the most frequently used nitroxide peptide building block in this 

field is 2,2,6,6-tetramethyl-N-oxyl-4-amino-4-carboxylic acid (TOAC, 20)[40] (Figure 7).  

 

Figure 7: Structures of TOAC, -TOAC and POAC which are used as peptide building 
blocks in SPPS. The motion of the TOAC is restricted due to the cyclic property of the 
label. Reprinted with permission from [21]. Copyright 2009 by Springer Science. 

 

TOAC belongs to the family of C,-disubstituted glycines and due to the cyclic structure, 

its flexibility is effectively restricted (the cyclic ring has one degree of freedom (Figure 

7)). It has been applied in several studies to deliver details about dynamics[41,42], 

backbone conformation[40,41,43] and orientation[44] of peptides. Yet, its restricted 

conformational space can disrupt the functional structures of peptides.[40,45] Other 

labels derived from this cyclic nitroxide are -TOAC (21)[46] and 3-amino-1-oxyl-2,2,5,5-

tetramethyl pyrrolidine-4-carboxylic acid (POAC, 22)[47].  

To circumvent the impact of the restricted backbone conformation, STOLLER et al. 

developed the non-natural amino acid 4-(3,3,5,5-tetramethyl-2,6-dioxo-4-

oxylpiperazine-1-yl)-L-phenylglycine (TOPP, Figure 8, 23).[48] 
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Figure 8: Structure of the TOPP label. The label has two rotatable single bonds on the 
same axis as the nitroxide radical. 

 
The label is designed based on the amino acid phenylglycine (Phg). As hinted in Figure 

8 the C‒C bond and the nitroxyl group are aligned on the same axis, since the 

piperazine-2,6-dione moiety is nearly planar, which was confirmed by density functional 

theory (DFT) calculations.[48] A first study on a double TOPP-labelled alanine-rich 

peptide showed that the TOPP label 23 does not influence the secondary structure 

formation in solution and delivers a narrow distance distribution that confirms the 

calculated distance from the computationally modelled peptide (Figure 9).[48] 

 

Figure 9: Left: The computationally modelled alanine-rich peptide labelled with two 
TOPPs. The inter-spin vector was calculated as 2.7 nm. Right: The distance distribution 
measured by PELDOR. The predominantly measured distance was 2.8 nm. Reprinted 
with permission from [48]. Copyright 2011 by Wiley-VCH. 

 
In order to utilise its rigidity, the label was also employed in an orientation-selective 

PELDOR study performed by TKACH and co-workers.[49] The experimental data suggests 

that the label has a certain rotational freedom around the two single bonds, since a fit 
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to a libration of ±20° around the two bonds was required.[49] Note that through one-axis 

librational averaging this did not alter the position of the nitroxide moiety in space, thus 

this has no impact on the distance and the width of distribution. Hence, the TOPP is a 

promising candidate for further applications in the field of structural investigations of 

e.g. transmembrane peptides and it is a suitable spin label motif that allows a variety 

of modifications to further enhance its abilities. 
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2 Outline  

The TOPP label 23 was developed for universal application in the field of the structural 

investigation of peptides without influence on the secondary structure formation. First 

PELDOR distance measurements on a TOPP-labelled peptide in solution demonstrated 

its potential as tool for conformational studies of peptides due to its remarkable rigidity 

compared to established labels such as the MTSSL (5).[48]  

Thus, it is assumed that the TOPP is a suitable spin label for further applications in the 

field of transmembrane peptides. Furthermore, the TOPP motif can serve as basic 

framework for the development of new spin labels. This thesis addresses both issues 

and proves its usability to deliver sharp distance distributions that contain reliable 

information about the peptide structure, especially in lipid bilayers. 

 

Synthesis and investigation of a TOPP double labelled transmembrane -peptide  

The first part of the thesis is about the synthesis of the rigid TOPP amino acid L-TOPP-

OH 23 (Figure 10) and a comprehensive set of twofold labelled transmembrane 

-peptides. The latter are thoroughly characterised and their straightforward and 

revealing application is shown in PELDOR distance measurements.  

 

Synthesis and investigation of TOPP double labelled transmembrane -peptides 

In the second part of the thesis the development and synthesis of a new TOPP based -

amino acid D-3-hTOPP-OH 24 is presented (Figure 10). Again, a comprehensive set of 

twofold labelled transmembrane -peptides is synthesised and thoroughly 

characterised. Additionally, computationally generated models will be discussed. This 

complements the final structural investigation of the transmembrane -peptides by 

PELDOR.  
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Figure 10: Structures of L-TOPP-OH (23) and the newly developed D-3-hTOPP-OH (24).  

  



Synthesis and Structural Investigation of Labelled Transmembrane α-Peptides  

 

 
14 
 

3 Synthesis and Structural Investigation of Labelled 

Transmembrane α-Peptides  

There is a strong interest to investigate the structure of integral membrane proteins 

(transmembrane proteins), since these are responsible for a large number of processes 

within the membrane and on the membrane surface. It is assumed that the protein’s 

specific function, activity and organisation is strongly depended on the interaction 

between protein and lipid environment. Integral membrane proteins are often deeply 

anchored within the lipid bilayer, which makes it challenging to investigate these by 

X-ray and NMR.[1–4] Alternatively, EPR techniques offer a good opportunity to examine 

spin labelled membrane proteins in their natural environment and can deliver details 

about protein-membrane interactions.[50,51]  

E.g. the pulsed EPR technique PELDOR allows the determination of distances in a 

nanometre range (1.5‒8.0 nm) between two paramagnetic centres.[52] The TOPP label 

(23, Figure 8) is conformationally restricted, since it has only two rotating single bonds 

on the same axis as the nitroxide radical.[48] The most frequently used spin label is 

MTSSL (5). In comparison to the TOPP label, MTSSL is highly flexible due to various 

possible rotations.  

In order to get information which is directly related to the natural peptide structure, it 

is necessary to use spin labels which do not influence the peptide structure formation 

or bias the distance results by their own conformational states. Both factors can make 

the interpretation of the PELDOR results more complicated. Indeed, a study on a double 

TOPP-labelled -peptide showed that the rigid TOPP label does not influence secondary 

structure formation in solution and delivers a sharp and reliable distance distribution 

(Figure 9, section 1.1.2).[48] Thus, it was shown that the TOPP label acts well in solution 

and allows straightforward interpretation of EPR data. 

 

In this thesis the capability of the rigid TOPP label to deliver sharp and reliable distances 
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of a transmembrane peptide within a lipid environment is investigated using the 

PELDOR technique. Therefore, the TOPP label was re-synthesised under the aspects of 

simplifying the reaction/purification steps and increasing the yield. Then, a double 

TOPP-labelled WALP peptide, which should serve as a transmembrane model -peptide, 

was synthesised. Additionally, a corresponding MTSSL-labelled WALP peptide was 

prepared for comparison. Both peptides were investigated in solution and lipid bilayer 

by circular dichroism (CD) spectroscopy to elucidate their influence on the -helical 

structure formation. Finally, the performance of the TOPP within a lipid bilayer was 

investigated by PELDOR. 

The synthesis of the peptides, and the CD and PELDOR results described in this part 

were published in the Biophysical Journal.[53]  
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3.1 Peptide-Lipid Interactions 

As of today, membrane proteins are too complex to examine specific organisation and 

dynamics in the lipids environment. Hence, simple peptide models which mimic 

transmembrane regions of proteins as well as membrane models are used to gradually 

explore protein-lipid interactions. In literature, a series of different transmembrane 

model peptides have been studied (a detailed review see [54]). KILLIAN and co-workers 

introduced so-called WALP peptides (for detailed reviews see [54–56]) which were also 

chosen as a suitable model in this thesis. 

 

3.1.1 WALP Transmembrane Model Peptides 

WALP peptides consist of a hydrophobic stretch with alternating Ala and Leu residues, 

flanked by two Trp residues on both termini of the peptide sequence (Figure 11).[57] 

 

Figure 11: General peptide sequence of WALP peptides. The length of the hydrophobic 
core can be varied by the number (n) of the alternating Ala/Leu residues. The 
hydrophobic stretch is flanked on both sides by two Trp residues. 

 

Ala and Leu residues are known to form an -helical peptide structure and indeed, CD 

spectroscopy demonstrated -helical structure formation of WALP peptides within a 

lipid bilayer.[55,57] Thus, these peptides were used to mimic the -helical regions of 

transmembrane proteins, since this is one of the common motifs of natural membrane 

spanning proteins such as the potassium KscA channel (Figure 12).[57] 
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Figure 12: Basic structure of the membrane spanning protein KcsA and in comparison, 

the -helical WALP peptide. Left: The structure of the potassium channel KcsA (Protein 

Data Base entry 1J95). The transmembrane regions are -helices. The Trp residues are 
concentrated at the polar-apolar interface. Right: The structure of a WALP peptide. 

WALP peptides form an -helical structure within a lipid bilayer. They were designed to 

mimic the -helical transmembrane moieties of membrane proteins such as the KcsA 
protein. 

 
Due to their polarity the tryptophans have a positional preference at the polar-apolar 

interface and are located in close proximity to the carbonyl groups of the lipids (Figure 

12).[58,59] It is assumed that, as a result of this property, Trp residues serve as membrane 

anchors and orient the proteins in the lipid bilayer. E.g. this residue was found 

cumulative at the membrane-water interface of membrane proteins such as the 

potassium channel KcsA and maltoporin.[54,59,60]  

The length of the hydrophobic core can be modified to fit in any kind of synthetic lipid 

bilayer (in turn the membrane thickness can be varied to fit a specific kind of peptide 

as well). Using this flexibility, peptide-lipid interactions were investigated systematically, 

and new insights were obtained regarding hydrophobic (mis)match situations between 

peptide and lipid environment.  

 

3.1.2 Hydrophobic Matching 

A hydrophobic match situation between a peptide and a lipid environment is achieved 

when the hydrophobic stretch of the peptide and the hydrophobic thickness of the lipid 
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bilayer are similar (Figure 13). For the description of match situations between peptide 

and lipid, one quantifies the thickness of a lipid bilayer by the hydrophobic thickness 

2DC. It is defined by the length of the two opposing lipid acyl chains of the lipid bilayer 

starting from carbon C2 (Figure 13, left).[55,61]  

 

 

 

Figure 13: (Mis)match situations between peptides and lipids, and definition of the 
hydrophobic thickness 2DC. Left: Schematic illustration of the hydrophobic thickness 
value 2DC at a phospholipid. Peptide and lipid bilayer match when the hydrophobic 
stretch of the peptide and the hydrophobic thickness of the lipid bilayer are similar. 
Right: Two different mismatch situations are possible. A positive mismatch: The peptide 
is longer than the thickness of the bilayer. Or a negative mismatch: the peptide is 
shorter than the thickness of the lipid bilayer.  

 
Several studies were performed using WALP peptides to investigate possible 

organisation and dynamic processes of protein-lipid interactions. Experiments showed 

that WALP peptides interact strongly with the lipid environment and are sensitive to so-

called mismatching situations (Figure 13, right).[54,55]  

The idea of positive and negative hydrophobic matching was intensively studied, since 

it might explain phenomena which were observed in natural membranes. Many 

possible processes, in which the peptides or the lipids adopt the mismatch, were 
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postulated and examined by diverse techniques such as X-ray, CD spectroscopy, 

fluorescence spectroscopy, solid-state NMR and EPR.[57,62,63–66]  

In case of a positive hydrophobic mismatch the peptide is relatively long compared to 

the hydrophobic thickness of the lipid bilayer. To avoid that hydrophobic parts of the 

peptides get in contact with the aqueous phase, different adaptation processes of 

peptides and lipids were postulated (Figure 14).[54,55]  

 

Figure 14: Possible adaptation mechanisms of peptide and lipid in a positive mismatch 
situation. a) Tilting of the peptide. b) Stretching of the lipid acyl chains. c) Aggregation. 
d) Changes in the effective hydrophobic length of the peptide. e) Kinking or flexing of 
the peptide helix. f) No integration. 

 
The adaptation mechanisms depend on the considered peptide/lipid system but in 

general there are six motifs. The peptide can tilt to fit in the membrane (a), the lipid 

acyl chains in the vicinity of the peptide can stretch to surround the peptide (b), 

aggregation and oligomerisation can occur to minimise unfavourable peptide-lipid 

contacts (c), the peptide backbone is strained to reduce the total length of the peptide 

(d), the peptide kinks or flexes (e) or if the mismatch is too high, there can be exclusion 

of the peptide from the lipid bilayer (f).[54–56] 

Similar mechanisms occur for a negative hydrophobic mismatch in which the peptide is 

shorter than the hydrophobic thickness of the lipid bilayer. In this case the unfavourable 

interaction arises between hydrophobic acyl chains and polar moieties and can be 

avoided by several adaptation mechanisms (Figure 15).[55] 
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Figure 15: Selective adaptation of a negative hydrophobic mismatch. a) Acyl chain 
disordering. b) Peptide backbone stretching. c) Aggregation. d) Disruption of the 
lamellar phase formation. e) Exclusion. 

 
Possible adaptations are: The length of the lipid acyl chains can change to accommodate 

the peptide (a), the peptide backbone can be stretched (b), peptide self-association can 

occur (c), a non-lamellar phase is formed (d) or no peptide is incorporated (e).[55] 
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3.2 Project Details 

3.2.1 Peptide Design 

A WALP peptide was chosen as model peptide, since WALP peptides show a well-

defined and stable -helical structure and a high incorporation extent into a lipid 

environment.[54] Furthermore, due to the Trp residues WALP peptides are highly 

anchored within the lipid bilayer and show a lower tendency to aggregate compared to 

other transmembrane model peptides.[63,64] Thus, the WALP peptide seems to be a good 

test peptide to estimate the TOPP performance in a lipid environment using the PELDOR 

technique. 

 
In this thesis, the WALP24 peptide was chosen for further experiments. This peptide 

consists of overall 24 amino acids and its sequence is presented in Figure 16.  

 

Figure 16: Sequence of the WALP24 model peptide and the estimated length/distance 
values: whole peptide has a length of 3.60 nm, hydrophobic stretch is 2.70 nm long. The 
X symbolises the labelling positions of the two labels. The inter-spin vector is estimated 
as (2.25 + x) nm. The variable x symbolises an additional distance value due to the 
lengths and orientations of the spin labels. 

 
Compared to the commonly used WALP peptides described in literature, a lysine 

residue was attached to the N-terminus instead of a glycine and the N- and C-termini 

were not protected in order to increase the solubility of the mainly hydrophobic peptide. 

Each amino acid contributes an estimated length of 0.15 nm in an ideal -helical 
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structure.[55] Thus, the length of the whole peptide is estimated as 3.60 nm. The 

hydrophobic stretch, which is the crucial value for selecting the right lipid system, 

consists of 18 amino acids and the length is estimated as 2.70 nm. 

The positions of the labels (marked by X, Figure 16) were chosen according to two 

criteria: first, the intramolecular distance between the two spin labels has to be over 

2.0 nm which is a requirement for a PELDOR experiment and second, the TOPP and the 

Trp residues should not be on the same side or at least not in direct proximity to avoid 

interactions between these. To take both aspects into account, position 5 and 20 seem 

to be a good compromise. The distance between the labelling positions was estimated 

as (2.25 + x) nm due to the assumed length of 0.15 nm for one amino acid.[55] The 

variable x should illustrate that orientation of the label, thus an additional length, must 

be additionally taken into account.  

Consequently, two labelled WALP24 peptides were synthesised to investigate the 

behaviour of the TOPP label in a lipid bilayer. In one case the peptide was labelled with 

the rigid TOPP and in the other with MTSSL for comparison.  

 

3.2.2 Membrane Systems 

Due to the design of the WALP24 peptide its length is fixed. Thus, a matching lipid 

environment must be chosen to investigate the performance of the TOPP label within a 

membrane. To get a match situation, the length of the hydrophobic stretch of the 

peptide and 2DC of the lipid bilayer should be similar. The hydrophobic part of WALP24 

has a length of 2.70 nm. Thus, the lipid bilayer should also have a hydrophobic thickness 

of approximately 2.70 nm.  

The literature values of 2DC for particular lipids vary, since the hydrophobic thickness is 

influenced by the experimental conditions such as the temperature and the hydration 

level. Nonetheless, in consideration of the studies made by KILLIAN and co-workers 2DC 

of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC, 2DC ≈ 2.6 nm) seems to be 

in the right range to expect a matching situation between peptide and membrane.[55] 
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Some selected values for POPC taken from different sources are listed in Table 1. 

Table 1: Selected values of 2DC [nm] for POPC taken from different sources. 

2DC (POPC) 2.58[67] 2.71[68] 2.88[61] 

 

The structure investigation of the WALP24 peptides within the lipid bilayer by CD 

spectroscopy was performed in small unilamellar vesicles (SUV). The vesicles were 

formed in a natrium phosphate buffer with a slightly basic pH (pH = 7.5) to prevent the 

acid labile nitroxide radicals from decomposition. 

 
To potentially determine a tilt angle of the peptide within a membrane, the TOPP-

labelled WALP24 was introduced into a non-matching lipid as well. Therefore, the 

peptides were investigated in a lipid bilayer consisting of 1,2-dimyristoyl-sn-glycero-3-

phosphocholine (DMPC) with a hydrophobic thickness which is (on average) 0.25 nm 

thinner than POPC. Selected thickness values of DMPC are listed in Table 2.  

Table 2: Selected values of 2DC [nm] for DMPC taken from different sources.  

2DC (DMPC) 2.30[69] 2.54[68] 2.57[61] 

 

Hence, the peptide might tilt in DMPC to avoid a mismatch situation in the lipid bilayer. 

This adaptation mechanism was observed and examined with a WALP23 peptide in 

bilayers of varying thickness by solid-state NMR.[64,70]   
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3.3 Synthesis 

3.3.1 Synthesis of the α-TOPP Label 

The synthetic route of the TOPP label 23 was established by SVEN STOLLER and consists 

of 11 steps in a linear synthesis.[48] The chosen reaction conditions generate the final 

L-configurated label 23 with a high enantiomeric excess (ee) of 86%. Enantiopure 

peptide building blocks are desirable, since already small impurities lead to a decreased 

yield of the final peptide due to the formation of unwanted diastereomers. 

Furthermore, a separation of a large number of diastereomers by high performance 

liquid chromatography (HPLC) can be challenging. Finally, remaining stereochemical 

impurities could lead to incorrect distances measured by EPR because of the inaccurate 

peptide structure.  

 
The TOPP label 23 was synthesised according to literature.[48] Due to the long and linear 

synthesis of 23, there was a strong demand for a revised procedure aiming at the 

simplification of synthesis steps and the enhancement of yields. 

The synthesis started with the protection of the amine and carboxylic function of the 

commercially available L-4-hydroxyphenylglycine (Hpg) (25), to inhibit side reactions of 

the amino acid backbone, followed by a conversion of the hydroxyl group into a more 

suitable leaving group (Scheme 4). 

 

Scheme 4: Protection of the L-4-hydroxylphenylglycine (25) using CbzCl and BnBr and 
functionalisation of the hydroxyl group to a triflate group using Tf2O.  
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The protection of the amine group was performed using the standard SCHOTTEN-

BAUMANN conditions. Therefore, the free amino acid 25, dissolved in aq Na2CO3 and 

1,4-dioxane, was treated first at 0 °C with benzyl chloroformate (CbzCl) and then 

warmed to room temperature (rt). The NMR of the crude product showed the pure 

Cbz-L-Hpg-OH. Hence, the carboxylic function was directly protected in an overnight 

reaction in dimethylformamide (DMF) with a benzyl group using benzyl bromide (BnBr) 

as electrophile and NaHCO3 as base. In contrast to literature, the crude Cbz-L-Hpg-OBn 

(26) was just purified by washing the precipitate with pentane to remove excesses of 

BnBr.[48] The pure product 26 was verified by NMR spectroscopy. This simplification 

increased the yield from 57% to 73%.[48] In order to use the MIYAURA cross-coupling 

reaction between the aromatic system and a boronic ester, the hydroxyl group of 26 

was changed to a triflate group. Therefore, the hydroxyl group was deprotonated with 

pyridine in DCM. Subsequently, the phenolate ion attacked the trifluoromethane-

sulfonic anhydride (Tf2O) in a nucleophilic substitution reaction with nearly quantitative 

conversion in overall 35 min. The resulting Cbz-L-Hpg(Tf)-OBn (27) was used directly 

without further purification in the next reaction step, since the NMR spectra again 

showed the pure product 27. In literature, the direct cross-coupling between amino acid 

27 and bis(pinacolato)diborone (B2pin2) afforded the racemic product.[48] To avoid this, 

the carbamate group of 27 was changed in a 2-step reaction to a benzyl-protected 

amine followed by the MIYAURA cross coupling (Scheme 5).  

 

Scheme 5: Change of the amine protecting group and MIYAURA borylation. 

 
Therefore, compound 27 was treated overnight with a high excess of dimethyl sulfide 
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dissolved in trifluoroacetic acid (TFA). After removal of TFA via co-evaporation with 

toluene, the unprotected amino acid was dissolved in dimethyl sulfoxide (DMSO) and 

for the benzyl re-protection NaHCO3 was subjoined and BnBr was added drop-wise. Bn2-

L-Hpg(Tf)-OBn (28) was formed in 25 h. Finally, the fully protected product 28 was 

obtained in a yield of 77% over two steps. It should be noticed that the elution system 

of the flash-column chromatography was changed, compared to literature, to pure 

pentane for removing excesses of BnBr.[48] The column was then flushed with pure DCM 

to get product 28 with an increase of yield from 69% to 77%.[48] Afterwards, product 28 

was converted into Bn2-4-pinacolboryl-L-Phg-OBn (29) via a Pd-catalysed MIYAURA 

borylation. This reaction was carried out under dry and inert conditions in degassed 

dioxane at 80 °C using B2pin2, PdCl2(dppf) (dppf = 1,1’-bis(phenylphosphino)ferrocene) 

as catalyst and KOAc as base. The reaction time was decreased from 10 h to 7 h as the 

thin-layer chromatography (TLC) already showed full conversion after this time. Since 

the TLC showed only one moving spot, flash-column chromatography was used to 

separate the catalyst from product 29. The product 29 was obtained in a good yield of 

90%. 

The basic structure of the TOPP label 23 is formed in a CHAN-LAM cross-coupling reaction 

(see below). However, the synthesised arylboronic ester 29 is less reactive than the 

corresponding boronic acid in this cross coupling.[71–73] Hence, pinacol boronate 29 was 

dissolved in a mixture of H2O and acetone, and hydrolysed at rt over 2 d using NaIO4 as 

oxidant to oxidise the released pinacol to aceton and NH4OAc to afford Bn2-4-

dihydroxyboron-L-Phg-OBn (30) with a yield of 87% (Scheme 6). 
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Scheme 6: Hydrolysis of the boronic ester 29 to the boronic acid 30.  

 
Note that the iodate selectively oxidises the released pincol to aceton whereas oxidants 

like H2O2, NaBO3 or NH2OH would further oxidise the boronic acid to phenols.[74] 

 
Next, 3,3,5,5-tetramethylpiperazine-2,6-dione (33) was generated in three steps 

(Scheme 7). 

 

Scheme 7: Synthetic route for the preparation of 3,3,5,5-tetramethylpiperazine-2,6-
dione (33).  

 
In the first reaction step acetone (31) reacted with aqueous NH3, NH4Cl and KCN over 

5 d at rt to 2-amino-2-methylpropionitrile and then under reduced pressure and heat 

over 3 d to 2,2’-imino-bis(2-methylpropionitrile) (32). The crude nitrile 32 was purified 

by distillation and was obtained in 36% over two steps. Afterwards, 32 was converted 

to the desired cyclic dione 33 under acidic conditions and increased temperature over 

4 d. The yield was only 27%, since the work-up of dione 33 included the neutralisation 

with 1 M aq NaOH. Compound 33 is not stable under basic conditions, since hydroxyl 
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ions can attack the carbonyl function of the heterocycle and lead to the ring opening. 

Yet, all reagents are cheap, readily available and the reactions can therefore be 

performed in a relatively large scale. 

 
The active boronic acid 30 was coupled with piperazine-2,6-dione 33 using a copper-

mediated CHAN-LAM amination (Scheme 8). 

 

Scheme 8: CHAN-LAM cross coupling reaction. 

 
In contrast to other popular C‒N cross coupling reactions, the CHAN-LAM reaction works 

under mild conditions, which are rt, the use of weak bases and ‘open flask’ chemistry 

(oxygen atmosphere).[71–73,75] Additionally, a variety of functional groups are tolerated. 

In this reaction C‒N bond formation is favoured between the amidic nitrogen and the 

aromatic system. The other amine is unfavourable because it is sterically hindered due 

to the four methyl groups. Bn2-4-(3,3,5,5-tetramethyl-2,6-dioxopiperazine-1-yl)-L-Phg-

OBn (34) was formed in 14 d using triethylamine (Et3N) as base, anhydrous Cu(OAc)2, 

powdered molecular sieves (4 Å) and DMSO as solvent. After the reaction, instead of 

filtration through Celite® as mentioned in literature, a glass fiber filter was used to 

remove the molecular sieve and other precipitations.[48] To improve phase separation 

during the work-up, the aqueous phase was acidified with 1 M aq HCl. Compared to the 

published purification conditions, the isocratic column purification was changed to a 

gradient elution from 2:1 to 1:1 (pentane/ethyl acetate (EtOAc)) to decrease the 

retention time (tR) of product 34. Amino acid 34 was isolated in a yield of 68%.  
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In summary, the CHAN-LAM reaction can be considered as one of the crucial steps of the 

TOPP synthesis due to the extremely long reaction time of 14 d and the formation of 

the basic structural motif of the TOPP label. 

 
The last steps of the synthetic route involved the conversion of the protecting groups 

into fluorenylmethyloxycarbonyl (Fmoc)-SPPS suitable groups, followed by the 

generation of the nitroxide radical. (Scheme 9).  

 

Scheme 9: Generation of the Fmoc-protected amino acid 35, and oxidation of 35 to 
obtain the desired Fmoc-L-TOPP-OH (36). 

 
First, the benzyl groups of compound 34 were removed through hydrogenation on a 

Pd/C surface using the PEARLMAN’s catalyst. Therefore, compound 34 was dissolved in 

methanol (MeOH) and a small amount of DCM. Then, a hydrogen flow was passed 

through the solution to saturate the solvent and the atmosphere in the flask with 

hydrogen. The reaction was stirred at rt overnight under a hydrogen atmosphere. 

Previous attempts to perform this reaction showed that best results were obtained in a 

0.85 mmol scale. With larger amounts, a precipitation occurred which was not soluble 

in any kind of polar/nonpolar solvent. During work-up, instead of filtration over Celite®, 

as used in literature, the suspension was pre-purified through a normal pleated filter 

and then the filtrate was passed through a micron syringe filter to remove any traces of 

catalyst.[48] The Fmoc protection of the amine group was performed overnight at rt in 

DMF using NaHCO3 and N-(9-fluorenylmethoxycarbonyloxy)succinimide (Fmoc-OSu), 
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which was preferred over the more reactive Fmoc-Cl, since it was shown in literature 

that this reagent supported racemisation of the amino acid.[76] During flash-column 

chromatography, the gradient and the amount of acetic acid (AcOH) was increased 

compared to literature which decreased tR of Fmoc-4-(3,3,5,5-tetramethyl-2,6-

dioxopiperazine-1-yl)-L-Phg-OH (35) and enabled a better separation.[48] Finally, the 

amino acid 35 was obtained in a yield of 62%. The final step of the synthesis was the 

oxidation of the secondary amine to a nitroxide radical. This oxidation was performed 

in DCM over 5 h using m-CPBA. Compared to literature the gradient was decreased in 

the purification step to prevent mixed fractions of the desired product Fmoc-L-TOPP-

OH (36) and by-product m-chlorobenzoic acid.[48] The nitroxide radical was generated in 

a good yield of 85%.  

Scheme 10 summarises the synthetic route. The final Fmoc-protected product 36 was 

obtained in an overall yield of 15%. The TOPP-labelled amino acid was further 

integrated in a transmembrane WALP24 peptide (see section 3.3.2) and investigated by 

EPR spectroscopy (see chapter 3.5).  
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Scheme 10: Overview of the complete synthetic route. The whole synthesis of 
Fmoc-L-TOPP-OH 36 involving 13 isolated intermediate products. The overall yield of 
this route is 15%.  
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3.3.2 Synthesis of the TOPP-Labelled WALP24 Peptide 

 

 

Figure 17: Peptide sequence of the TOPP-labelled WALP24 peptide P1. 

 
The synthesis of the WALP24 peptide labelled with TOPP (P1) (Figure 17) was 

performed using the efficient Fmoc-based solid-phase peptide synthesis (SPPS) by 

means of microwave irradiation. The cyclic SPPS strategy is based on the repetition of 

deprotection and coupling steps on a solid support (polymeric resin) and was developed 

by R.B. MERRIFIELD in 1963.[77] In 1978, Fmoc-based SPPS was published by MEIERHOFER 

and SHEPPARD.[78] 

The main advantage of SPPS is that the peptide chain will elongate while bound to a 

solid support and the excess of reagents can be very easily removed by washing the 

solid support. Additionally, the final cleavage of the peptide from the solid support can 

include the simultaneous removal of the side-chain protecting groups. E.g. if the 

peptide is synthesised based on the Fmoc SPPS, all acid-labile protecting groups such 

as the tert-butyloxycarbonyl (Boc) group will be removed during the acidic cleavage 

process using e.g. TFA. 

Due to the challenging and long synthesis of the TOPP label 23, it is necessary to 

increase the efficiency of the peptide synthesis by choosing most suitable conditions. 

The synthetic route of P1 is illustrated in the following Scheme 11 (for experimental 

details see subsection 5.3.2.1). 
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Scheme 11: Reaction scheme for the synthesis of peptide P1. After selected steps of 
the synthesis test cleavages were performed to monitor chain elongation (marked with 
peptide P1a, P1b, etc.). The natural amino acids were coupled as mentioned in the 
lower panel. The Fmoc SPPS is based on the repetition of deprotection and coupling 
steps on a solid support. First, the Fmoc protecting group is removed by piperidine (20% 
in DMF). In the coupling step the amine group of the amino acid bound to the resin 
attacks the carbonyl group of the active ester. A new amino acid is incorporated. The 
TOPP label (X) is coupled under special conditions (DEPBT, NaHCO3, at 0 °C up to 12 h). 

 
Test cleavages were performed after selected steps of the peptide synthesis to monitor 

the elongation process via mass spectrometry. Therefore, a small amount of peptide 

was cleaved from the resin under acidic conditions (TFA/H2O/TIS (95:2.5:2.5, v/v/v)). 
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WALP peptides and their synthesis are well-studied, however they have never been 

labelled with TOPP 23. Problems which lead to unsuccessful coupling, might occur with 

‘difficult sequences’ such as hydrophobic peptides (intermolecular hydrophobic 

aggregation, e.g. lower solubility) or peptides including unnatural amino acids with 

relatively high steric demand such as the TOPP label 23.[79] These difficult sequences 

require repeated test-cleavages to get a better control of the peptide chain elongation. 

Thus, manual synthesis was performed which, in contrast to automatic procedures, 

allows straightforward observation and adjustments in case of unsuccessful couplings. 

As solid support a low loaded Rink Amide MBHA resin was utilised. Low loaded resins 

can minimise steric effects during the peptide synthesis due to the low level of 

substitutions.[80] Additionally, low loaded resins can minimise aggregation of the 

peptide chains during the synthesis. Aggregation is unwanted, since interchain inter-

actions could decrease the swelling ability of the resin. Nevertheless, a good solvation 

of the peptide-resin complex is essential for a successful chain elongation.[79–81] 

Especially in the case of hydrophobic peptides, such as transmembrane peptides, 

aggregations could occur during synthesis.[82,83]  

The solvent system also influences the efficiency of the synthesis. A mixture of 

N-methyl-2-pyrrolidone (NMP) and DMF (1:1) was chosen, since both of these solvents 

present good solvation properties for the peptide-resin as well as the reactants.[83,84] 

The standard coupling reagent system N,N,N’,N’-tetramethyl-O-(1H-benzotriazol-1-

yl)uronium hexafluorophosphate (HBTU)/ 1-hydroxybenzotriazole (HOBt), which is 

known to be an efficient coupling mixture with low tendency towards racemisation of 

the amino acid, was used to form the active ester with the natural amino acids.[85] As 

base N,N-diisopropylethylamine (DIEA) was utilised, which is one of the most frequently 

used bases in peptide synthesis. In summary, the final coupling mixture contained an 

excess of 5.00 equivalents (eq) amino acid, 5.00 eq HOBt, 4.90 eq HBTU and 10.0 eq 

DIEA dissolved in NMP/DMF. The chain elongation was performed by repeating Fmoc 

deprotection steps with 20% piperidine in DMF and double coupling steps of the amino 
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acids supported by microwave irradiation (50 °C, 25 W, 10 min). The resin was 

thoroughly washed between steps with different solvents (NMP, DCM and DMF) to 

remove residual reagents. Before insertion of the first TOPP label the P1a peptide 

sequence was examined by mass spectrometry. Since the mass spectrum included the 

peak of the desired product P1a, the synthesis could further progress by incorporating 

the TOPP amino acid 36 using special coupling conditions. Previous studies showed that 

the use of the standard peptide coupling conditions led to racemisation of the TOPP 

amino acid.[76] Therefore, the dry resin was transferred to a SCHLENK flask and the 

coupling was performed under an argon atmosphere in dry tetrahydrofuran (THF), at 

low temperature (0 °C) and a coupling time of 5 h using NaHCO3 as base and 

3-(diethoxyphosphoryloxy)-1,2,3-benzotriazin-4(3H)-one (DEPBT) as coupling reagent, 

which is known to reduce racemisation.[48,86] Additionally, to save material only 2.00 eq 

of amino acid 36 was used for coupling. After this step, the resin was suspended in DCM 

and transferred back to a syringe. Mass spectrometry verified successful coupling and 

the desired peptide sequence P1b. However, small amounts of P1a were observed as 

well, hence in a further attempt double coupling was performed with a longer reaction 

time of 12 h. The mass spectrum still included a peak corresponding to peptide P1a. 

Attempts to further increase the yield by additional coupling steps were dismissed to 

save valuable TOPP label. Therefore, after coupling the TOPP label, the free amine 

groups that remained uncoupled were acetylated using acetic anhydride (Ac2O)/2,6-

lutidine/NMP (1:2:7, v/v/v). This effectively eliminated peptide fragments with wrong 

sequences in the further synthesis. 

Coupling of the next amino acid (Ala) (P1c) was again evaluated by mass spectrometry, 

since the coupling of the TOPP was incomplete and its steric demand might also 

influence the coupling of the next amino acid. Yet, the mass spectrum revealed 

formation of peptide P1c without the miscoupled sequence P1b.  

Further chain elongation was executed under the standard microwave-assisted 

conditions described above for the natural amino acids and under likewise described 
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specific conditions for the second TOPP. It is worth to note that before coupling of the 

second TOPP in the peptide sequence, two additional test cleavages were performed, 

one after achieving peptide sequence P1d and the other before the integration of the 

second TOPP. Mass spectrometry confirmed the desired peptide sequences P1d and 

P1e.  

The incorporation of the second TOPP label was also not efficient, hence, a third 

coupling was performed to increase the amount of peptide P1f. Free amine groups 

were capped as mentioned above. The coupling of the following Leucin was successful, 

since mass spectrometry showed the peak corresponding to the expected mass of P1g. 

After peptide sequence P1h was obtained, the whole peptide was cleaved from the 

resin under acidic condition (TFA/H2O/TIS (95:2.5:2.5, v/v/v)). Triisopropylsilane (TIS) 

and H2O served as scavenger to avoid side reaction during the cleavage process. Pre-

purification can be achieved by precipitation of the peptide in cooled diethyl ether (Et2O) 

in which the cleavage reagents are soluble. 

It should be noted that nitroxide radicals are not stabile under the utilised cleavage 

conditions. The low pH and the reductive properties of TIS lead to the formation of 

hydroxyl amine (Scheme 12).[48,87] 

 

Scheme 12: Redox reaction of TEMPO. Treatment with TIS and acid leads to the reduced 
species. 

 
A hydroxyl amine can be oxidised to a nitroxide radical by using copper(II) as oxidant.[48] 

Initially, the oxidation was performed on the purified peptide P1 but due to the removal 

of impurities, the solubility of the peptide in the solvent (MeOH) decreased. Therefore, 

the crude peptide was treated for 2 h with Cu(OAc)2 in MeOH and only then purified by 
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analytical HPLC (Figure 18) and investigated by mass spectrometry (mass spectrum see 

Appendix).  

 

Figure 18: HPLC chromatogram of the crude peptide P1. Absorption was recorded at 
280 nm. Analytical HPLC was performed using a gradient 80 → 100% B (A: H2O + 0.1% 
TFA and B: MeOH + 0.1% TFA) in 30 min, flow 1.0 mL/min. 

 
Because the radical might not be stable over a sufficiently long period of time, P1 was 

oxidised and purified only in small amounts to provide fresh samples for each PELDOR 

experiment. Additional information about the stability of the radical will be given in 

section 3.5.1 and subsection 4.3.1.2. 

 

3.3.3 Synthesis of the MTSSL-Labelled WALP24 Peptide 

Compared to spin labels like the TOPP (23) or TOAC (20) that must be elaborately 

introduced into the peptide sequence, MTSSL (5) benefits from a much easier 

incorporation. In general, it is only attached to a cysteine mutated peptide after the 

peptides synthesis via disulfide bond formation. 

The sequence of the cysteine mutated WALP24 peptide P2 is illustrated in Figure 19. 
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Figure 19: Sequence of peptide P2. 

 
Peptide P2 was synthesised using a microwave-assisted automatic peptide synthesiser, 

since the peptide sequence only consists of natural amino acids. Like in the case of the 

manual SPPS, the synthesiser elongates the chain by repeating Fmoc deprotection steps 

with 20% piperidine in NMP, double coupling steps of the amino acids supported by 

microwave irradiation (75 °C, 25 W, 5 min) and washing steps.  

For routine peptide synthesis the automation will outperform manual SPPS in terms of 

time and obtained yields.  

As solid support Rink amide MBHA resin was used and the coupling mixture contained 

HOBt/HBTU (5.00 eq/4.90 eq) and DIEA (10.0 eq) in NMP. Note that the cysteine was 

coupled at reduced temperature (50 °C) to avoid racemisation.  

After the synthesis, the whole peptide was cleaved under acidic conditions 

(TFA/H2O/TIS (95:2.5:2.5, v/v/v)). The scavengers TIS, 1,2-ethanedithiol (EDT) and H2O 

should prevent side reactions on the peptide chain. Especially EDT should suppress 

alkylations of the thiol groups. Then, the peptide P2 was pre-purified by Et2O 

precipitation.  

Initially, peptide P2 was purified by HPLC before attaching the MTSSL. However, due to 

the exposure of oxygen inter- and intramolecular disulfide bond formation occurred 

and was observed in the mass spectrum. Therefore, the functionalisation of the peptide 

with MTSSL was performed using the crude peptide dissolved in MeOH and the reaction 

with MTSSL could proceed overnight under an argon atmosphere. Afterwards, the 

labelled peptide P3 was purified by analytical HPLC (Figure 20).  
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Figure 20: Top: Peptide sequence of P3. Bottom: HPLC chromatogram of the crude 
peptide P3. Absorption was recorded at 254 nm. HPLC was performed using a gradient 
80 → 100% B (A: H2O + 0.1% TFA and B: MeOH + 0.1% TFA) in 30 min, flow 1.0 mL/min. 

 
To provide fresh samples for each PELDOR experiment, the labelling procedure and 

purification were executed only in small amounts right before those measurements. 
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3.4 Secondary Structure Determination by CD Spectroscopy 

CD spectroscopy is a straightforward tool to investigate secondary structure formation 

of peptides and proteins in different environments, e.g. in solution or in lipid bilayers. 

It is based on the differential absorption of left- and right-handed circularly polarised 

light by optically active molecules such as peptides and proteins.[88]  

WALP peptides were designed to mimic -helical transmembrane regions of membrane 

proteins.[57] A typical -helical peptide shows highly characteristic negative bands at 

around 208 and 222 nm and a strong positive band at 190 nm in its CD spectrum. This 

is attributed to electron transitions in the amide chromophores of the peptide bond.[89]  

 

3.4.1 Labelled WALP24 Peptides in Solution and in Lipid Bilayer 

The CD spectra of P1 in solution (MeOH) as well as in matching (POPC) and mismatching 

(DMPC) lipid bilayer are illustrated in Figure 21.  

 

Figure 21: CD spectra of P1 in MeOH, POPC and DMPC SUVs. Conditions in MeOH 

c(P1) = 9.8 M at 10 °C. Conditions in the lipid bilayers P/L = 1/30, c(P1) = 9.8 M, 
phosphate buffer (50 mM, pH 7.5) at 25 °C.  

 
The CD spectra recorded for peptide P1 in MeOH, POPC and DMPC show the typical 

pattern of an -helical structure. In MeOH, two minima can be observed at 208 and 

224 nm and a maximum at 192 nm. Compared to the solution measurement, the bands 
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observed in the lipid bilayers are slightly shifted to higher wavelengths. In POPC the two 

minima are registered at 209 and 225 nm, and the maximum at 193 nm. In DMPC the 

bands occur at 210, 225 and 193 nm. Changes in the environment can lead to shifts in 

the CD spectra, since different dielectric media can influence the electron transitions of 

the amide bonds in different ways.[90,91]  

In summary, the obtained CD measurement suggest that the labelling with TOPP did 

not inhibit secondary structure formation, confirming results presented in literature.[48] 

Also, the situation of a mismatch between peptides and membrane thickness such as 

in the case of the DMPC bilayer did not influence the formation of the -helix. 

Obviously, differences in the intensity of the ellipticity ΘM can be explained with a 

variance of peptide concentration within vesicles, since the peptide incorporation 

within the lipid bilayer was not quantitative and can vary between experiments with 

the same conditions.  

Similar to P1, peptide P3 showed an -helical structure in all the tested environments 

(Figure 22).  

 

Figure 22: CD spectra of P3 in MeOH, POPC and DMPC SUVs. Comparison with P2 in 

MeOH. Conditions in MeOH c(P2/P3) = 33.2 M at 10 °C. Conditions in the lipid bilayers 

P/L = 1/30, c(P3) = 16.6 M, phosphate buffer (50 mM, pH 7.5) at 25 °C. 

 
In MeOH, the CD spectrum of P3 shows two minima at 208 and 217 nm and a maximum 

at 192 nm. In the case of the non-labelled peptide P2 in MeOH the bands are like P3, 
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only the second minimum is shifted to 224 nm. Due to the different physical properties 

of the cysteine’s thiol group compared to those of the MTSSL, small changes like this 

one can occur in a CD spectrum. The bands observed for P3 in the lipid bilayers are 

again slightly shifted to higher wavelengths compared to those measured in MeOH. In 

POPC the CD spectrum reveals two minima at 210 and 223 nm and a maximum at 

194 nm. In DMPC the bands occur at 210, 224 and 193 nm. These slight shifts and the 

variance in the intensity of the ellipticity ΘM can also be explained through the change 

in environment and the peptide uptake into the vesicles. 

It is worth to note that the distance measurements of peptide P1 and P3 by the PELDOR 

technique had to be performed at strongly decreased peptide-to-lipid ratio (P/L) 

(around 1/6000) to avoid aggregation effects which were observed at a P/L ratio of 

around 1/250.[53] Aggregation leads to an increased number of measurable distances 

between spin labels, since not only the intramolecular distance will be measured but 

also intermolecular distances.  

Aggregation effects may also lead to changes in the secondary structure which are 

detectable by CD spectroscopy.[92] Thus, P3 was investigated at P/L ratios of 1/50 and 

1/100. CD spectra with different P/L ratios are illustrated in Figure 23. 

 

Figure 23: CD spectra of P3 in POPC and DMPC SUVs with different P/L ratios. Conditions 

in the lipid bilayers P/L = 1/30, 1/50, 1/100 c(P3) = 16.6 M, phosphate buffer (50 mM, 
pH 7.5) at 25 °C.  
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Assays with higher P/L ratios were not reported, since the transparency of the peptide-

lipid suspension decreased drastically. Consequently, the CD signal intensity is 

sophisticated because the transmitted light was reduced due to light scattering and 

absorption by the sample. 

All CD spectra in Figure 23 reveal the typical pattern of an -helix with two minima 

around 210 and 223 nm, and a maximum around 195 nm. No changes in the secondary 

structure formation can be observed, since the spectra do not show any differences 

within the different P/L ratios besides a slight increase of the intensity of ΘM from 1/30 

to 1/100. This observation might be explained by a more quantitative uptake of the 

peptide into the lipid bilayer, i.e. a higher final concentration of peptide within the 

ubiquitous vesicles (1/100). 

In summary, for the studied range of P/L ratios, no changes of the crucial -helical 

structure formation were observed by CD spectroscopy. This hints that either no 

aggregation occurs within this range or aggregation occurs and the -helical structure 

is preserved. An EPR study about aggregation of a WALP23 by HUBER and co-workers 

demonstrated that WALP23 peptides were not associated in the liquid-crystalline phase 

of the lipid but in the gel phase.[51] Compared to the liquid-crystalline phase, the gel 

phase is solid-like and the acyl chains are highly ordered.[93] The PELDOR experiments 

were carried out at 50 K which means that the membrane is in the gel phase. All CD 

experiments were performed at 25 °C, thus in the liquid-crystalline phase. 
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3.5 Inter-Spin Distance Determination by PELDOR  

The pulsed EPR technique PELDOR is frequently employed to determine distances 

between two paramagnetic centres. The PELDOR experiment is based on a two-

frequency four pulse sequence (Figure 24).[94] 

 

Figure 24: General principle of the two-frequency four pulse PELDOR experiment. Two 
different spin systems (SA and SB) are addressed selectively by two different frequencies 

(A and B, respectively). The pump pulse B occurs at different times and influences the 
intensity of the echo signal of SA. The resulting time trace includes the distance 
information and data processing leads to the distance distribution. 

 
Twofold labelled biomolecules show inhomogeneous electron spin resonance spectra 

in which spin systems SA (violet) and SB (blue) can be selectively addressed by two 

adjusted frequencies A and B, respectively. In a series of experiments the detected 

spin system SA is excited by a spin echo sequence while SB experiences a pump pulse 

excitation. Since both spins are dipolar coupled, the echo intensity of SA can be 

modulated by varying the time at which the pump pulse occurs. The resulting time trace 

of the spin echo is characterised by a dipolar frequency which is proportional to 1/r3. 

Usually, distances up to 10 nm can be observed.[95] Appropriate processing of the time 

trace data reflects the spatial uncertainty, mainly due to a certain conformational 
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allocation of the label, and thereby gives a distance distribution. To get sharp distance 

distributions, it is necessary to use rigid spin labels like the TOPP label 23, which has 

only two rotating single bonds on the same axis as the nitroxide radical. A study 

performed in solution on an -helical alanine-rich peptide showed that this label gave 

sharp, reliable distance distributions. Thus, it was demonstrated that the TOPP label 23 

performed well in solution.[48] 

A previously published PELDOR study of a WALP23 peptide in a lipid environment was 

carried out using different flexible labels such as the MTSSL (5).[24] The distance 

distributions were broadened and did not match the calculated distribution due to the 

different possible conformations of the label which were in turn additionally influenced 

by the lipid environment.[24] 

In this study, the capability of the rigid TOPP label within a lipid environment is 

investigated by PELDOR. Two WALP24 peptides (hydrophobic stretch ~ 2.7 nm) were 

used for the study, which were labelled in one case with TOPP (P1) and the other with 

MTSSL (P3) for comparison. The PELDOR experiments were performed in two different 

lipid systems, namely in POPC (match situation, 2DC = 2.58‒2.71 nm) and DMPC 

(mismatch situation, 2DC = 2.30‒2.54 nm).[55,68] To evaluate these results, theoretical 

structures of the peptides were prepared.[53,55,68] Molecular modelling and EPR 

experiments were performed by KARIN HALBMAIR, MPI for Biophysical Chemistry.  

 

3.5.1 Results and Discussion of Measurements in Solution 

The PELDOR experiments were carried out at Q-band frequencies and corresponding 

fields (34 GHz/1.2 T) at 50 K using peptide concentrations of 20‒30 M. The PELDOR 

results of both peptides P1 and P3 in MeOH (20% glycerol) are illustrated in Figure 25. 
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Figure 25: Top: Theoretical structure obtained by molecular modelling for (left) MTSSL-
labelled WALP24 peptide P3 with overlay of possible rotamers of the label and (right) 
TOPP-labelled WALP24 peptide P1. Bottom: Results of the PELDOR experiments in 
MeOH. Left: Distance distribution of peptide P3 including the time trace. Right: Distance 
distribution of peptide P1 including the time trace. Distance distributions derived from 
(different) rotamer models are shown for comparison (grey). 

 
The time traces of both labels show visible dipolar oscillations. However, the 

modulation of the MTSSL-labelled peptide P3 includes multiple frequencies and leads 

to a distance distribution with three discernible maxima. The maxima correspond to 

one main inter-spin distance of r = 2.25 nm and two others at r = 1.60 and r = 2.93 nm. 

This pattern was expected, since a calculation of the distance distribution using a 

theoretical model of P3 and possible rotamers of MTSSL (obtained from rotamer 

libraries[23,96] using the open-source program: MMM (ETH Zürich)) results in a similar 

distribution, illustrated in Figure 25 left.  

Thus, already in solution the interpretation of distance measurements using MTSSL is 

more complex, since the distance information is biased by different energetically 

favoured conformations of the label.  
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Notably, the deviations between model and experiments could occur due to differences 

between a simplified structural model and experimental behaviour of the peptide P3 in 

solution. 

Compared to the multiple-distance distribution of MTSSL, the time trace of the 

TOPP-labelled WALP24 P1 in MeOH shows one dominating dipolar frequency and the 

analysis gave a single-peak distance distribution with a maximum at r = (2.45 ± 0.05) nm 

and a narrow half width at half maximum (HWHM) of 0.2 nm (Figure 25 right). The 

comparison with the calculated distance distribution, which was estimated from a 

simplified theoretical model of P1 and shows a maximum at r = 2.33 nm (for details see 

literature[53]), demonstrates that both values are in good agreement ( ≈ 0.1 nm).  

A minor peak occurs in the distance distribution of P1 at approximately r = 3.00 nm, 

which in previous published studies was assigned to be a not well-defined species of 

the peptide.[48] The CD measurement did not show any indication of a different 

structure than -helical. Moreover, this population is minuscule compared to the main 

distance distribution. 

 
Since the TOPP is a quasi-rigid label, orientation selection might occur in the PELDOR 

distance measurement which influences the distance determination. Therefore, to 

exclude the possible effect of orientation selectivity, more detailed studies were 

performed and it was proven that there is no orientation selection under the utilised 

experimental setup.[53]  

 
The labelling efficiency, i.e. the number of spins within the molecule, can be determined 

by the direct comparison of the spin concentration measured by CW EPR spectroscopy 

with the total peptide concentration determined by e.g. ultraviolet (UV) absorbance of 

the tryptophans. For the MTSSL-labelled peptide P3, labelling efficiencies reached 80‒

90% for different batches.  

Due to a potential overlap of the TOPP label and the tryptophan residues in the UV 
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absorption spectrum, the labelling efficiency of P1 had to be estimated by an alternative 

approach: In this case the labelling efficiency was approximated through the software 

DEERanalysis (see reference[53]). Here, PELDOR results (i.e. the modulation depth) from 

P3 (for which the spin concentration was known) were correlated with results for P1. 

According to this procedure labelling efficiencies reached about 65‒75% for different 

batches.  

The decreased labelling efficiency of P1 can be further examined: It is known that five-

membered ring nitroxides are more stable towards reduction than six-membered 

rings.[11] However, experiments on the Fmoc-protected TOPP amino acid 36 showed 

that after purification with HPLC and lyophilisation a small amount of the radical 

underwent reduction (37, Figure 26). 

 

 

Figure 26: HPLC chromatogram of the Fmoc-protected TOPP label 36. Absorption was 
recorded at 215 nm. Analytical HPLC was performed using a gradient 10 → 100% C (A: 
H2O + 0.1% TFA and C: MeCN + 0.1% TFA) in 30 min, flow 1.0 mL/min. Investigation of 
the stability of the nitroxide radical after HPLC purification and lyophilisation. Both 
species were observed, the EPR active radical species 36 and the inactive hydroxyl 
amine species 37. 

 

In the HPLC chromatogram the radical species of the -TOPP label 36 and a small 

amount of the hydroxyl amine species 37 are observed. The mass spectrum gave no 

hint for this observation.  
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Further stability studies were performed with the 3-hTOPP label 24. For more details 

see subsection 4.3.1.2.  

 

3.5.2 Results and Discussion of Measurements in Lipid Bilayers 

The distance measurements in a lipid environment were performed in multilamellar 

vesicles (MLVs) using deuterated phospholipids POPC and DMPC in a P/L ratio of around 

1:6000 and a peptide concentration of approximately 20 M (which translates into a 

spin concentration of 40 M if the labelling efficiency was 100%). An aggregation study 

within DMPC (mismatch situation) demonstrated that at this ratio clustering of peptides 

did not occur and thus, intermolecular distances did not influence the experiment.[53] 

Normally, WALP peptides show no tendency to aggregate in a matching situation and 

slightly aggregate to a dimer in mismatch situation at very high P/L ratio of ~1:30.[63] It 

should be mentioned that in literature self-association experiments were carried out at 

an extremely low final peptide concentration (≤ 1M) within the lipid bilayer.[63,97] Thus, 

higher concentrations might force the peptides to form aggregates. Additionally, it is 

important to note that PELDOR experiments were carried out at 50 K which means that 

the membrane is in the gel phase. This phase is solid-like and the acyl chains are highly 

ordered.[93] Experiments in the gel phase showed a preferred formation of oligomerises 

compared to the liquid-crystalline phase.[97,98] Nonetheless, a simple decrease of the P/L 

led to the desired monomeric state of the peptide at 50 K. The results of the 

measurements in DMPC and POPC are illustrated in Figure 27. For comparison, the 

solution measurements are also shown. 
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Figure 27: PELDOR traces and distance distributions of P1 and P3 in MeOH, POPC and 
DMPC. Left: MTSSL-labelled peptide P3. Right: TOPP-labelled peptide P1. 

 
In the case of the MTSSL-labelled peptide P3, the PELDOR experiment gives a different 

distance for each environment and compared to the measurement in MeOH the 

distributions are massively broadened. This presumably results from an increased 

number of energetically favourable rotamers. All PELDOR distance distribution maxima 

(r) and the distribution widths (HWHM) of P3 and P1 in the different environments and 

the 2DC values for POPC and DMPC are summarised in Table 3.  

Table 3: PELDOR distance r [nm] and the HWHM values [nm] of P3 and P1 in the 
different environments and the 2DC values [nm] for POPC and DMPC.  

  P3 (MTSSL) P1 (TOPP) 

 2DC  r  HWHM r  HWHM 

MeOH - 2.25 a) 2.45 ± 0.2 

POPC 2.58‒2.71 2.65 ± 0.6 2.47 ± 0.4 

DMPC 2.30‒2.54 2.29 ± 0.5 2.43 ± 0.4 

a) No specification in the width of the distribution, since it consists of multiple peaks. 

 

In DMPC the distance of r = 2.29 nm is slightly larger ( = 0.04 nm) than in MeOH. This 

might be in the range of experimental error (no error was determined for MTSSL, for 

TOPP the error was 0.05 nm). The difference of  = 0.4 nm in POPC (measured distance 

r = 2.65 nm) is more conspicuous. Compared to solutions the environment of a 
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phospholipid bilayer is inhomogeneous due to its amphiphilic nature – hydrophobic 

core and hydrophilic headgroup region. Because of its dominant hydrophobic character, 

it was expected that the MTSSL is preferentially oriented towards the hydrophobic lipid 

chains.[24,99] But the results of the PELDOR measurement might indicate that the 

nitroxide moiety is favourably located in the interface of the head group region and acyl 

chains, since the measured distances between the nitroxides reflected 2DC of the lipid 

bilayers. This is supported by a previous EPR study performed by FREED and co-workers 

about the behaviour of spin-labelled lipids in the gel phase.[100] The authors suggest that 

the spin label is excluded from the highly organised core region (due to the gel phase) 

of the lipids and located at the interface of the head and chain region. As mentioned 

above, the presented PELDOR experiments were carried out at 50 K. Thus, the lipids are 

also in the gel phase and a very similar effect can be expected in which the two MTSSL 

bend towards the ‘inner and outer’ interface, respectively. This corresponds to a small 

separation in case of DMPC and a larger for POPC.  

 

As mentioned in section 3.1.2, different adaptation mechanisms to avoid a mismatch 

situation between peptide and lipid are possible. A conceivable adaptation to a 

mismatch can be a distortion of the -helical structure. However, this was not expected 

for the peptides because of the results for the TOPP-labelled WALP peptide (see below).  

 

In conclusion, by using MTSSL the information about the internal peptide structure and 

possible responsive actions of the peptide to a mismatch situation, like tilting, 

compression, or kinking (a, d and e, Figure 14), within a lipid bilayer are massively 

influenced by the label’s conformational bias. Hence, their interpretation becomes 

increasingly challenging. 

On the contrary, the PELDOR distance measurement using the rigid TOPP label did not 

show any dependence on the lipid environment. The reported distances are all close to 

r = 2.45 nm (Figure 27, Table 3). Additionally, the distance distributions are only slightly 
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broader than those in solution ( ≈ 0.2 nm). Taking these distance results into account, 

two assumptions can be made, either the peptide tilted to fit in the membrane or the 

lipid chains in vicinity to the peptide stretched to accommodate the peptide. All the 

other possible adaptations can be excluded because these lead to a change of the inter-

spin distance (compare Figure 14). Both adaptations have been observed for WALP 

peptides before.[64,101] In the present study, the MTSSL-labelled peptide P3 delivered a 

shorter distance of about r = 2.3 nm in DMPC, which indicates that the lipid acyl chains 

do not stretch. Therefore, the study points towards the tilting mechanism, which 

remains to be further elucidated. In turn, the rigid TOPP-labelled peptide seems to be 

a promising test peptide for ongoing projects which aim at the development of an 

EPR-based method to observe the tilt angle within the lipid bilayer.  
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3.6 Summary: Labelled WALP24 Peptides 

In this part the synthetic route towards the -TOPP label 23 was thoroughly described 

and the importance of mild reaction steps that preserve the stereochemistry of the 

amino acid was highlighted. The -TOPP label 23 was successfully re-synthesised with 

substantial simplifications during the purification steps that shortens this otherwise 

time- and material-consuming linear synthesis. 

Solution distance measurement by PELDOR demonstrated that the rigid TOPP label is a 

suitable label for distance measurements.[48] In this study the TOPP label performance 

in a lipid environment was investigated. Therefore, a TOPP-labelled WALP24 (P1) and a 

MTSSL-labelled WALP24 (P3) were effectively synthesised and it was demonstrated by 

CD spectroscopy that the -helical structure formation was not hindered due to the 

labels.  

Already in solution, the distance measurements by PELDOR showed impressive 

differences between the two label types: The TOPP label delivered one distinct distance 

while the MTSSL label delivered a multiple-distance distribution. Thus, MTSSL clearly 

gave information on the peptide that is biased by the conformation of the label and 

makes the interpretation of the results more challenging. 

The measurements in a lipid environment proved even more that the TOPP label is a 

suitable label for the structure investigation of transmembrane peptides, since it again 

delivered a constant distance of approximately r = 2.4 nm and a sharp distance 

distribution in POPC and DMPC. Thus, the inter-spin distance was not influenced by the 

environment. Compared to that, the flexible MTSSL delivered a different distance in 

each environment and the distributions were extensively broadened.  

In summary, it was demonstrated that the TOPP label is a useful label to investigate 

peptides in different environments as it delivers reliable distances directly related to 

the peptide structure, whereas the MTSSL gives information that is biased by the 

conformation of the label.  
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3.7 Extended Results and Outlook for the α-TOPP Label 

3.7.1 Enhancement of the TOPP Rigidity  

So far, it was suggested that the rotation around the C‒C and C‒N bond is restricted 

and that the two ring systems preferably adopt a perpendicular orientation (Figure 28).  

 

Figure 28: The TOPP label 23 allows rotation about two single bonds which are on the 
same axis as the nitroxide moiety. Quantum mechanical calculations suggested that the 
two ring systems are oriented in perpendicular planes.  

 
However, high-field/frequency (3.5 T/94 GHz) orientation-selective PELDOR measure-

ments showed that the TOPP label 23 undergoes subtle orientational modifications that 

can only be detected with difficulties in the experiment and further require more 

complex theoretical treatment/modelling.[49] The experimental data suggests that the 

label has a certain rotational freedom around the two single bonds, since the data fit to 

a libration of ±20° around the two bonds. The synthesis of a more rigid TOPP label 

derivative has become a main goal of a new research project. Several possible synthesis 

concepts and preliminary results will be described in the following part in which one of 

the still existing ‘rotating single bonds’ (C‒N bond) will be restricted by substitution at 

the aromatic moiety (Scheme 13). Thus, compared to the TOPP label 23 only one degree 

of freedom will remain, which might allow simplified theoretical treatment/modelling 

in orientation-selective experiments. 





23
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Scheme 13: Enhanced restricted structure of the TOPP label. Substitution of the 
aromatic moiety should stop libration of the C‒N bond. 

 
The insertion of alkyl groups in ortho-positions to the piperazine-2,6-dione moiety at 

the aromatic ring should increase the rotation energy. In a first approach the suitability 

of iso-propyl groups was tested. Preliminary but extended studies on an iso-propyl 

derivative of the TOPP label are included in the Appendix and should be consulted in 

future attempts.  

A conceivable retrosynthetic route which is mainly based on the -TOPP synthesis is 

illustrated in Scheme 14.  

 

Scheme 14: Retrosynthesis of 4-(3,3,5,5-tetramethyl-2,6-dioxo-4-oxylpiperazine-1-yl)-
L-2,6-diisopropyl-Phg (38). Compound 38 might be generated using phenol derivative 
39 and piperazine-2,6-dione 33. X should illustrate the functionalisation which is 
needed to introduce the amino acid backbone. 

 
Preliminary attempts showed that the commercially available 2,6-diisopropylphenol (40) 

can be converted into the functionalised 2,5-diisopropylphenyl trifluoromethane-

sulfonate (41), but not to the boronic ester 42 under the used conditions (MIYAURA 
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borylation) (Scheme 15).  

 

Scheme 15: Functionalisation of phenol derivative 40 using Tf2O and MIYAURA borylation. 

 
Most probably, the steric demand of the iso-propyl groups limits the possible synthesis 

strategies, hence, a substitution with methyl groups might be more suitable (Scheme 

16).  

 

Scheme 16: Retrosynthesis of 4-(3,3,5,5-tetramethyl-2,6-dioxo-4-oxylpiperazine-1-yl)-
L-2,6-dimethyl-Phg (43). Compound 43 might be generated using phenol derivative 44 
and piperazine-2,6-dione 33. X should illustrate the functionalisation which is needed 
to introduce the amino acid backbone. 

 
Due to the spatial proximity to the carbonyl groups of the piperazine-2,6-dione, the 

rotation of the C‒N bond should also be restricted through two methyl groups in ortho-

position.  

A possible synthetic route for amino acid 46 using 2,6-dimethylphenol (44) as starting 

material is illustrated in Scheme 17. 
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Scheme 17: A conceivable synthetic route for generating amino acid 46. The phenol 
derivative 45 is functionalised in para position to make it suitable for a Pd-catalysed 
cross coupling[102] to generate the amino acid backbone. 

 
Preliminary attempts were performed using the commercially available 2,6-

diisopropylphenol (47) of compound 45. Phenol 47 was formylated according to 

SMITH[103] using urotropine and TFA (2,5-diisopropyl-4-hydroxy benzylaldehyde (48)) and 

then directly protected with benzyl to avoid side reactions during functionalisation (2,5-

diisopropyl-4-benzyloxy benzylaldehyde (49), Scheme 18). 
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Scheme 18: Test reaction with the phenol derivative 47. Formylation of the aromatic 
ring (compound 48) and benzyl protection of the hydroxyl group (compound 49).  

 
It was proven that there is a possibility to obtain two first products from the designed 

synthetic route. Thus, due to similar properties the used reaction conditions should be 

applicable for the dimethyl analogue 45. The proposed subsequent reaction steps are 

literature known and can be performed in large scale. 

Coupling of the amino acid 46 and the piperazine-2,6-dione 33 might be achieved using 

the same procedure described for the -TOPP label 23. 

 

3.7.2 Future Application of the α-TOPP Label  

The -TOPP label 23 gives important information about peptide structures due to sharp 

and reliable distance distributions. To extend the application of the TOPP label 23, it 

could be incorporated into small proteins (transmembrane proteins) to determine their 

structures in their natural environment by PELDOR. To reach this goal, however, 

preliminary studies on a less complicated model system need to be done. Therefore, 

first the possibility to connect two peptide sequences containing the TOPP label via 

native chemical ligation (NCL) has to be determined (Scheme 19).  
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Scheme 19: General principle of NCL. Both peptide sequence fragments are connected 
through a newly formed amide bond. 

 
Problems during the NCL process like side reactions with or due to the nitroxide radical 

might be solved using a suitable protecting group. E.g. in 2014, GÖBEL and co-workers 

developed a promising photolabile protecting group strategy for nitroxides.[104] 
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4 Synthesis and Structural Investigation of Labelled 

Transmembrane β-Peptides  

Since the discovery that -peptides can form stable and well-defined secondary 

structures, this versatile class of unnatural oligomers has been extensively studied. It 

turned out that -peptides have unique chemical characteristics and can adopt various 

structural motifs (for reviews see [105–107]). Compared to natural peptides and 

proteins, -peptides are enzymatically[108] and metabolically[109] stable in vitro and in 

vivo, which makes them a feasible starting point for new peptide-based biomedical 

applications such as antibiotics[110] and antifungals[111]. Furthermore, the variety of 

secondary structures makes them a promising framework for the design of specific 

foldamers and therefore allows an extended examination of protein structures. 

Especially, as a new class of transmembrane model systems they can give further 

insights into protein-lipid interactions which supposedly influence function, activity and 

organisation of proteins to a large extent.  

 

Of all -peptide structures, the 314-helical structure (also less precisely referred to as 

14-helix) is the most comprehensively investigated foldamer. So far, it was mainly 

studied in solution by NMR[112–114] and in solid-state by X-ray diffraction[114–116].  

In part 3 it is demonstrated that the TOPP label is an additional powerful and 

straightforward tool to investigate peptides, which gives information that was directly 

related to the peptide structure. To enable PELDOR examinations of -peptides by this 

tool, a synthetic route for the so called 3-hTOPP label 24 was developed and the label 

was synthesised. Several reaction steps were investigated regarding their 

enantioselectivity. Furthermore, the stability of the label was investigated. Then, four 

double TOPP-labelled transmembrane 3-peptides were synthesised which allow the 

examination of one turn of the 314-helix. All 3-peptides were investigated in solution 

and in a lipid bilayer by CD spectroscopy to test any influence of the label on the 
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secondary structure formation. Finally, the 314-helical structure was investigated in 

solution and preliminary examined within a lipid bilayer by PELDOR.  
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4.1 β-Peptides 

This part is focussed on the preparation and structural details of 3-amino acids and 

their corresponding -peptide structure, in particular the 314-helix. 

 

-Peptides are oligomers consisting of a sequence of -amino acids. Compared to -

amino acids they have an additional methylene group in the amino acid backbone 

(Figure 29).  

 

Figure 29: General structure of - and -amino acids. Compared to -amino acids -

amino acids have an additional methylene group (marked grey). In 3-amino acids the 

side-chain is located at the C. 2-amino acids have the residue at the C. 2,3-amino 

acids have substitutions on both, C and C. 

 
Due to the additional methylene group two different regioisomers are possible, 

denoted as 3- and 2-amino acids.[106,117] In the case of 3- amino acids the residue is 

located at the C and in the case of 2 at the C. Substitution on both positions, C and 

C, leads to a 2,3-amino acid.[106]  

-amino acids can be prepared using various methods.[118,119] In the mid-1990s, SEEBACH 

and co-workers described a way to synthesise enantiomerically pure 3-amino acids 

with proteinogenic side-chains via the ARNDT-EISTERT reaction (Scheme 20), variants of 

this approach are still frequently used.[120–122] 

 

Scheme 20: ARNDT-EISTERT homologation of -amino acids. First, the activated -amino 
acid is converted into the corresponding diazo ketone using diazomethane and 

afterwards the -amino acid is obtained in a silver(I)-catalysed WOLFF rearrangement. 

-amino acid 3-amino acid 2-amino acid 2,3-amino acid



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In this homologation -amino acids are used as starting material (homologated 

-amino acids have prefix h). This is a substantial benefit, since -amino acids are cheap, 

commercially available and enantiopure.[121] In general, the first step of the ARNDT-

EISTERT reaction transforms the activated N-protected -amino acid into the 

corresponding diazo ketone using diazomethane.[123,124] Then, the diazo ketone is 

converted into the 3-amino acid via a WOLFF rearrangement which is catalysed by 

silver(I) ions.[123–125]  

 

4.1.1 Secondary Structures 

Initially, it was expected that because of the increased flexibility due to the additional 

rotating single bond between C and C(Figure 29), -peptides may not form stable 

foldamers that are analogous to -peptides. Yet, intensive structural investigations 

demonstrated that -peptides form various types of stable ‘protein-like’ helices[105,107], 

parallel[121,126,127] and antiparallel[114,126,128] sheets and hairpin turns[129] (detailed 

information about several -peptide structures can be found in excellent review articles 

[105–107]). Stable helical structures can be formed with as little as six residues whereas 

comparable -peptides require more than ten residues under the same 

conditions.[114,119,126–128,130] These observations have led to the general perception that 

the stability of helices formed by -peptides is superior to those formed by -peptides. 

It is further known that -peptides can form different types of helical structures: namely 

the 14-, 12-, 10/12- and 8-helix, where the numbers are defined by the atoms within a 

‘helix-specific’ hydrogen-bond ring (Figure 30).[107,131] E.g. the 14-helix includes 14 

members in the hydrogen bond ring between N‒H (i) and C═O (i+2). 
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Figure 30: Helical structures of -peptides. The helix type is defined by the number of 
atoms of a hydrogen-bond ring. The arrows illustrate the hydrogen bond. 

 

The conformation of the -peptide backbone is defined by the three torsion angles ϕ, 

ψ and ω[132] -peptides are characterised by an additional angle ϑ (Figure 31). 

 

Figure 31: Torsion angles of - and -peptides. For -amino acids the torsion angle ψ is 

defined by the planes containing atoms NCC═OC and CC═OCN’ (short: NCC═OCN’), ϕ by 

CC═OCNC’C═O and ω by CNCC═OC’.[132] For -amino acids this scheme is extended by 

the torsion angle ϑ which is defined through CC═OCCN according to BALARAM.[133] 

 

The torsion angle ψ is defined by the planes containing atoms NCC═OC and CC═OCN’ 

(short: NCC═OCN’), ϕ by CC═OCNC’C═O and ω by CNCC═OC’[132] Due to the additional 

single bond between C and C a torsion angle ϑ which is described through CC═OCCN 

must be defined for -amino acids (Figure 31). 

The torsion angle ϑ plays an important role in the formation of secondary structures of 

-peptides, since -peptides prefer a gauche (60°) conformation about this torsion 

angle.[131] As ϑ is additionally affected by the location of the residues in the -amino 

acid the substitution pattern also influences the secondary structure formation.[131] E.g. 
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a -peptide consisting of alternating 2- and 3-amino acids prefers to fold in a 

10/12-helix, whereas the 14-helix is preferably formed by acyclic, monosubstituted -

amino acids (2 or 3).[107,134]  

The 14-helix is particularly well documented and several of its characteristics such as 

pitch (vertical distance between consecutive turns of the helix) and net dipole, which 

can be readily compared to the typical -helix, are illustrated in Figure 32. 

 

Figure 32: Comparison of -helix and 14-helix. The diameter of a 14-helix is slightly 
larger (0.48 nm vs 0.42 nm) and the pitch is shorter (0.50 nm vs 0.54 nm).[106] In addition, 

the net dipole is converse oriented, and the 14-helix is left-handed whereas the -helix 
is right-handed (in both cases consisting of L-amino acids). 

 

An -peptide consisting of L-amino acids folds into a right-handed helix, whereas the 

3-amino acids lead to a left-handed helical -peptide. Compared to the -helix, the 

diameter of a 14-helix is slightly larger (0.42 nm vs 0.48 nm).[131] The-helix repeats 

after 3.6 residues with a pitch of 0.54 nm, the 14-helix repeats after about 3 residues 

with a pitch of 0.50 nm.[106] In an ideal 14-helix the residues i and i+3 are exactly atop 

of each other as observable in an oligopeptide consisting of trans-2-aminocyclohexane-

carboxylic acid (ACHC) (Figure 33).[106]  
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Figure 33: Structure of ACHC.  

 

Since ACHC is conformationally constrained and the C‒C bond is incorporated into the 

six-membered ring, the torsion angle ϑ is locked at ± 55°.  

By NMR spectroscopic investigations of a 3-eicosapeptide consisting of the 20 

homologated proteinogenic amino acids (L-3-amino acids) SEEBACH and co-workers 

observed an offset from the ideal 314-helix by approximately 15° in a right-handed 

direction.[135] This means that the turn of the helix is defined by approximately 3.2 

residues.  

 

Recently, DIEDERICHSEN and co-workers showed that transmembrane -peptides (like P4, 

Figure 34) with proteinogenic side-chains form a stable 314-helix in solution and in a 

lipid bilayer.[136,137] 

 

Figure 34: Peptide sequence of the transmembrane -peptide P4. 

 

The -peptide consists of a hydrophobic stretch with 3-hVal flanked by two 3-hTrp and 

two 3-hLys at each side of the sequence. 

Similar to other transmembrane peptides (such as the WALP peptides, see section 3.1.1) 

the hydrophobic stretch of the transmembrane -peptide P4 consists of hydrophobic 

residues. Here, 3-hVal residues were chosen, since it has been demonstrated that 

3-hVal residues stabilise the 314-helix.[138] It is furthermore assumed that the indole 
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moieties of tryptophan serve as membrane anchors and orient proteins in the lipid 

bilayer as they have a positional preference at the polar-apolar interface.[58,59] Indeed, 

for the transmembrane -peptide P4 X-ray diffraction[136] and tryptophan fluorescence 

spectroscopy[137] showed that the indole residues are located in close proximity to the 

carbonyl groups of the lipids. 

Since the peptide P4 consists mainly of hydrophobic residues, lysine residues were 

attached to the N- and C-termini of the peptide to increase the solubility in aqueous 

medium.[136] Lysine residues are often used in the design of transmembrane -peptides 

such as KALP peptides.[65] Compared to the tryptophan residues the lysine residues are 

located near the polar region of the head groups and the aqueous phase.[66]  
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4.2 Project Details 

4.2.1 Peptide Design 

To get further information about the structure of 3-peptides (314-helix) in solution and 

within a lipid environment, 3-hTOPP-labelled derivatives of peptide P4 (Figure 34) 

were chosen as model peptide for PELDOR studies. This peptide is especially promising, 

since it was successfully incorporated into a lipid environment before and showed a 

well-defined and stable 314-helical structure.[136,137] Furthermore, FÖRSTER resonance 

energy transfer (FRET) studies demonstrated that this type of peptide is monomeric in 

the lipid bilayer which is desirable, since assembled peptides can make the 

interpretation of the PELDOR results more ambiguous.[137] 

 
Peptide P4 consists of overall 27 homologated proteinogenic amino acids. To investigate 

one turn of the 314-helix, four 3-hTOPP double labelled 3-peptide were designed 

(Figure 35). 

 

Figure 35: The label positions within the peptide sequence of P4 and estimated 
distances. Sequence of the model peptide, label positions (symbolised by the coloured 
R) and the estimated length/distance values: the whole peptide has a length of 4.50 nm, 
and a hydrophobic stretch of 3.17 nm. The inter-spin vectors are estimated as 
(2.17 + x) nm (P5), (2.33 + x) nm (P6), (2.50 + x) nm (P7) and (2.67 + x) nm (P8). The 
variable x should show that there is an additional distance value due to the lengths and 
orientations of the spin labels. 

 

The ideal 314-helix is defined by three -amino acids per turn and a pitch of 0.5 nm. 



Synthesis and Structural Investigation of Labelled Transmembrane β-Peptides 

 

 
69 

 

Taking this basic data into account, the length of the whole peptide is estimated to be 

4.50 nm. The hydrophobic stretch consists of 19 3-hVal residues and the length is 

estimated to be 3.17 nm. 

As already stated for the -peptides, the positions of the labels were chosen according 

to two criteria: The intramolecular distance between the two spin labels has to be over 

2.0 nm, which is a requirement for the PELDOR experiment, and the TOPP and the Trp 

residues should not be on the same side or at least not in direct proximity to avoid 

interactions between these. Therefore, the peptides were labelled at the position 9, 22 

(P5), 8, 22 (P6), 7, 22 (P7) and 6, 22 (P8). The distances between the labelling positions 

were estimated to be (2.17 + x) nm (P5), (2.33 + x) nm (P6), (2.50 + x) nm (P7) and 

(2.67 + x) nm (P8). The variable x should illustrate that the orientation of the labels will 

certainly add to these approximations to give larger final inter-spin distances (precise 

distances are listed in chapter 4.5: Inter-Spin Distances from Modelled 3-Peptides).  

Consequently, four 3-hTOPP-labelled 3-peptides were designed and synthesised to 

investigate the 314-helix in solution and within a lipid bilayer using the PELDOR 

technique.  

 

4.2.2 Membrane Systems 

Previously published studies using the peptide motif P4 were performed in 1,2-dioleoyl-

sn-glycero-3-phosphocholine (DOPC).[136,137] In order to keep comparability, CD 

measurements of the four peptides were performed in DOPC as well.  

Analogous to the peptide-lipid interaction investigations using transmembrane 

-peptides, a hydrophobic match situation between peptide and lipids environment is 

expected when the hydrophobic stretch of the peptide and the hydrophobic thickness 

of the lipid bilayer are similar (Figure 13, section 3.1.2). Recall, that an useful reference 

value for the hydrophobic thickness of a lipid bilayer is 2DC which, however, varies 

between different sources, since the hydrophobic thickness is influenced by the 

experimental conditions. Some selected values for DOPC taken from different sources 
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are listed in Table 4. 

Table 4: Selected values of 2DC [nm] for DOPC taken from different sources. 

2DC (DOPC) 2.70[69] 2.68[68] 3.00[136] 

 

The hydrophobic stretch of the peptide can be estimated by the basic parameters of 

the ideal 314-helix (3.014) (three amino acids per turn and a pitch of 0.5 nm). For 

completeness Table 5 already shows additional values that are estimated from 

structural models as explained in chapter 4.5.  

Table 5: Estimated values of the hydrophobic stretch of the -peptide P4. The 
hydrophobic stretch is given in nm. The terms 314 lit., 314 crystal and 314 ideal are taken 
from chapter 4.5 and symbolise the specific helical structures of theoretical models of 
peptide P4 (details see chapter 4.5). 3.014 is based on the basic parameters of the ideal 
3.014-helix (three amino acids per turn and a pitch of 0.5 nm). 

 314 lit. 314 crystal 314 ideal  3.014 

hydrophobic stretch 2.86 2.80 2.52 3.17 

 

In consideration of 2DC and the hydrophobic stretch of the peptide a match situation 

between peptide and membrane can be expected. The hydrophobic stretch of the 

peptide might be slightly larger than the hydrophobic thickness of the peptide. From a 

recently published study the positive hydrophobic mismatch situation was adapted by 

the peptide via tilting by 16°.[136] 

The PELDOR measurements of -peptides (part 3) have been performed in deuterated 

POPC. The deuterated lipid led to longer electron spin relaxation times which enhance 

the quality of data in the PELDOR experiment.[53] Unfortunately, deuterated DOPC is not 

commercially available. Therefore, the PELDOR experiments are performed in POPC. 

Note that DOPC and POPC (confer (cf.) Table 4 and section 3.2.2 Table 1) have similar 

2DC values and a match is expected as well. To evaluate this estimation, additional CD 

measurements were performed in POPC.  
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4.3 Synthesis  

4.3.1 Development and Synthesis of the β3-hTOPP Label 

The development of the synthetic route for the 3-amino acid version of the TOPP label 

is based on the established synthesis of the -TOPP label 23 which afforded, besides 

various other desirable factors, a high ee-value of the label (see chapter 3.3).  

The -hydrogen atom of 3-amino acids is not as acidic as the -hydrogen of -amino 

acids due to its distance to the carboxyl group. Thus, the reaction conditions used in the 

-TOPP synthesis should indeed influence the stereogenic centre of a 3-amino acid 

even less and therefore, products of high enantiomeric purity should be obtained. For 

details about the determination of the ee values see subsection 4.3.1.1. 

All preceding studies about 3-peptides in the group of DIEDERICHSEN were done with 

D-3-amino acids. Therefore, to keep the comparability to previous studies the label was 

synthesised in D-configuration. 

 

To avoid side reactions at the TOPP residue, first, the homologation of the -amino acid 

to the 3-amino acid was performed. Thus, the synthesis of the 3-hTOPP label 24 

started with the protection of the amine function under SCHOTTEN-BAUMANN conditions 

and the protection of the hydroxyl group to inhibit side reactions during the 

functionalisation (Scheme 21).  

 

Scheme 21: Protection of the amine group and the hydroxyl group of the phenol moiety. 

 
Therefore, the commercially available D-4-Hpg (50) was dissolved in aq Na2CO3 solution 

and 1,4-dioxane, cooled to 0 °C, treated with CbzCl and then allowed to warm up to rt. 
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The reaction was stirred for 1 h and after work-up the NMR showed the pure Cbz-D-

Hpg-OH (51). The Cbz-protected amino acid 51 was synthesised in a high yield of 93%. 

Next, the hydroxyl group of the phenol moiety was protected with a silyl ether, since 

previous attempts showed that this hydroxyl group also reacted with the activation 

reagents in a subsequent ARNDT-EISTERT homologation.[139] The silyl ether was chosen 

due to its orthogonal cleavage conditions to the other protecting groups (Cbz and Bn) 

and its stability against acidic treatment. Thus, as described by COREY the hydroxyl 

function was protected with tert-butyldimethylsilyl (TBDMS) in an overnight reaction in 

DMF using TBDMSCl as electrophile with imidazole as catalyst and base.[140] Note that 

initially the crude Cbz-D-Hpg(TBDMS)-OH (52) was then used without further 

purification. However, loss of product in the first step of the ARNDT-EISTERT reaction 

occurred after repetition of the synthesis step (see below) and therefore, the crude 

product 52 was purified by flash-column chromatography and was obtained in a yield 

of 63%. 

The -amino acid 52 was converted into the corresponding 3-amino acid by insertion 

of an additional methylene group via the ARNDT-EISTERT homologation (Scheme 22).  

 

Scheme 22: ARNDT-EISTERT homologation using -amino acid 52 as starting material. 

 
The first step of the ARNDT-EISTERT homologation consists of the activation of the 

carboxyl group and the nucleophilic reaction with diazomethane. Therefore, the 

carboxyl group of amino acid 52 was first deprotonated with Et3N and then activated 

with iso-butyl chloroformate (i-BuOCOCl) at a low temperature (-15 °C). Afterwards, the 
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carbonyl group was addressed by a nucleophilic attack through diazomethane (CH2N2) 

to give Cbz-D-Hpg(TBDMS)-CHN2 (53) after 5 h. The crude diazo ketone 53 was purified 

by flash-column chromatography and was obtained in a yield of 61%. It is important to 

note that in subsequent repetitions of this synthesis yields dropped to values as low as 

39%. This was addressed by first evaluating the influence of the temperature. Yet, even 

at -78 °C, side reactions were not markedly reduced compared to -15 °C.[141] However, 

with different batches of diazomethane again yields of roughly 60% were achieved. 

Hence, the reaction should be performed using freshly distilled diazomethane. In the 

second step of the homologation the diazo ketone 53 was converted to the 3-amino 

acid Cbz-D-β3-hHpg(TBDMS)-OH (54) via a WOLFF rearrangement catalysed by silver(I) 

ions with a good yield of 98%. Therefore, the diazo ketone 53 was dissolved in a 9:1 

mixture of THF/H2O and catalytic amounts of silver(I)-benzoate (AgOCOPh) were added. 

Afterwards, the reaction was sonicated for 2 h, N2 was released and after the 

nucleophilic attack of H2O the carboxylic acid 54 was formed.  

Then, the silyl ether of compound 54 was cleaved using hydronium ions to get the free 

hydroxyl group for further functionalisation steps. As the carboxyl group is also 

activated under acidic conditions, a simultaneous protection of this functionality is 

possible using various alcohols. In a previous work, attempts to deprotect the TBDMS 

were performed in MeOH because of the good solubility of compound 54 and conc. HCl 

in this solvent (Scheme 23).[139]  

 

Scheme 23: The deprotection of the TBDMS group using HCl in MeOH led to Cbz-D-β3-
hHpg-OMe (55). 

 

Hence, the methyl ester 55 was formed. In the following route towards the 3-hTOPP 
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label 24 this proved to be highly problematic. After several subsequent steps 

deprotection of the methyl ester involved basic LiOH (Scheme 24).[139] However, this not 

only led to the free carboxylic acid (product 56) but also to the ring opening of the 

piperazine-2,6-dione moiety (compound 58, Scheme 24).[139]  

 

Scheme 24: Basic deprotection of the methyl ester leads to ring opening of the 
piperazine-2,6-dione moiety (compound 58). 

 
Hence, to avoid the basic deprotection conditions another protecting group was chosen 

for the carboxyl group. Due to its stability and the opportunity to deprotect the Cbz 

group under the same conditions (hydrogenation catalysed by Pd/C), the benzyl group 

seemed to be a suitable protecting group (cf. chapter 3.3) (Scheme 25).  

 

Scheme 25: Deprotection of the silyl ether and simultaneous protection of the carboxyl 
group with Bn.  

 
Due to its prevalent hydrophobic properties BnOH is not soluble in purely aqueous 

solution of HCl. Therefore, DCM was added which enhanced the solubility of BnOH in 

the reaction mixture. Hence, compound 54 was dissolved in DCM and BnOH, and conc. 

HCl was added. The conversion was controlled by TLC and after 4 h the starting material 
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was no longer observable. After purification by flash-column chromatography the pure 

Cbz-D-β3-hHpg-OBn (59) was obtained in a yield of 50%. This yield was not as high as 

under MeOH-solvent/reactant conditions (82%) (Scheme 23) which is probably because 

of the insufficient solubility of BnOH in aq HCl. Better yields can be observed by 

protecting the carboxylic group directly during the WOLFF rearrangement, which was 

shown by MATTHIAS KRULL (Scheme 26).[141]  

 

Scheme 26: The WOLFF reaction catalysed by silver(I) ions led to Cbz-D-β3-
hHpg(TBDMS)-OBn (60) using BnOH, and the subsequent deprotection reaction in 
HCl/MeOH led to 59.  

 
Here, BnOH was used as nucleophile instead of H2O. After standard work-up the crude 

Cbz-D-β3-hHpg(TBDMS)-OBn (60) with remaining traces of BnOH was directly utilised in 

the TBDMS deprotection step. Therefore, MeOH and conc. HCl were added to the crude 

compound 60, and the reaction was performed at rt for 1 h. It is worth to note, that 

longer reaction times led to the replacement of the benzyl ester by the methyl ester. 

After purification of the crude product 59 via flash-column chromatography and 

compared to the first approach (see Scheme 22 and Scheme 25), the yield was 

increased from 49% (taking into the account the WOLFF rearrangement and the 

deprotection) to 70%.  

 

After the successful formation of the protected 3-amino acid backbone, the next steps 

included the functionalisation of the 3-amino acid residue. 

First, the hydroxyl group of compound 59 was converted to a triflate group, since this 

group is a suitable leaving group in a subsequent MIYAURA borylation (Scheme 27).  
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Scheme 27: Triflate functionalisation using amino acid 59 as starting material and 
MIYAURA cross coupling which led to Cbz-4-pinacolboryl-D-β3-hPhg-OBn (62). 

 
The phenol derivative 59 was dissolved in DCM and cooled to 0 °C. The hydroxyl group 

was then deprotonated using pyridine and the resulting phenolate ion attacked the Tf2O 

in a nucleophilic substitution. Cbz-D-β3-hHpg(Tf)-OBn (61) was formed with nearly 

quantitative conversion (99%) in overall 35 min. Amino acid 61 was utilised in the 

following MIYAURA cross coupling without further purification, since the NMR spectra 

showed the pure 3-amino acid 61. Next, the Pd-catalysed MIYAURA borylation 

transformed 3-amino acid 61 into the Cbz-4-pinacolboryl-D-β3-hPhg-OBn (62). This 

cross coupling was performed under dry and inert conditions in degassed dioxane at 

80 °C utilising B2pin2, PdCl2(dppf) as catalyst and KOAc as base. After 7 h the TLC showed 

full product formation of the boronic ester 62. TLC showed only product 62 and flash-

column chromatography was then used to separate the catalyst and the desired amino 

acid 62. The product 62 was obtained in a good yield of 96%. 

Afterwards, the arylboronic ester 62 was hydrolysed to Cbz-4-dihydroxyborane-D-β3-

hPhg-OBn (63) (Scheme 28).  
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Scheme 28: Compound 62 was hydrolysed to the corresponding boronic acid 63. 

 
According to literature, boronic esters are less reactive than the corresponding boronic 

acids in a subsequent CHAN-LAM cross coupling.[71,72,75] Hence, boronate 62 was 

dissolved in H2O and acetone, and hydrolysed to the boronic acid 63 in a yield of 90% 

at rt over 2 d. NaIO4 oxidised the released pincol to aceton selectively. 

Then, the basic structure of the 3-hTOPP label 24 was formed via a copper-mediated 

CHAN-LAM amination (Scheme 29).  

 

Scheme 29: Copper-mediated CHAN-LAM coupling using 3-amino acid 63 and 
piperazine-2,6-dione 33. 

 
The used piperazine-2,6-dione 33 was synthesised according to the procedure 

described in chapter 3.3.  

As already stated for the-amino acid, the CHAN-LAM coupling is a mild amination and 

the optimal choice for the ‘stereochemistry-conserving’ formation of the basic 

structure of the 3-hTOPP motif. Hence, boronic acid 63 and piperazine-2,6-dione 33 
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were dissolved in DMSO and Et3N, anhydrous Cu(OAc)2 and powdered molecular sieves 

(4 Å) were added, and within 14 d product Cbz-4-(3,3,5,5-tetramethyl-2,6-

dioxopiperazine-1-yl)-D-β3-hPhg-OBn (64) was formed. After the reaction the 

suspension was filtered through a glass fiber filter to remove the molecular sieve and 

other precipitations. During the normal work-up the phase separation between organic 

phase and aqueous phase decreased. The aqueous phase was acidified with 1 M HCl 

and phase separation was increased. After flash-column purification compound 64 was 

isolated in a yield of 71%. Note that this reaction led only to the C‒N bond formation 

between the amidic nitrogen and the aromatic system. The other sec. amine is 

unfavoured because of the steric demand of the four methyl groups in the vicinity.  

 

In order to use the 3-hTOPP amino acid 24 in a Fmoc-based SPPS, the next two steps 

involved the deprotection of the Cbz and the Bn group of compound 64 to get the free 

amino acid, and the re-protection of the primary amine with Fmoc (Scheme 30).  

 

Scheme 30: Deprotection of Cbz and Bn group and subsequent Fmoc protection.  

 
The Cbz and Bn group of amino acid 64 were cleaved through hydrogenation on a Pd/C 

surface using the PEARLMAN’s catalyst. Therefore, the protected compound 64 was 

dissolved in MeOH and DCM. The DCM increased the solubility of amino acid 64 in 

MeOH. Afterwards, a hydrogen flow was passed through the solution to saturate the 

solvents and the atmosphere in the flask with hydrogen. The reaction was stirred at rt 

under a hydrogen atmosphere overnight. Results for the -TOPP label demonstrated 
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that this reaction worked best at a 0.85 mmol scale (see chapter 3.3). After the reaction 

the catalyst was removed in two filtration steps. First, the suspension was pre-purified 

through a normal pleated filter and then the filtrate was passed through a micron 

syringe filter to remove any traces of Pd catalyst. The crude 4-(3,3,5,5-tetramethyl-2,6-

dioxopiperazine-1-yl)-D-β3-hPhg-OH (65) was obtained and used in the next step 

without further purification. In order to introduce a Fmoc group on the amine group, 

compound 65, NaHCO3 and Fmoc-OSu were suspended in DMF and the reaction was 

carried out at rt overnight. Recall that the application of Fmoc-Cl led to the racemisation 

of the -TOPP and therefore the less reactive Fmoc-OSu was introduced and 

substantially improved the ee.[76] Thus, Fmoc-OSu was used for the protection of the 

3-hTOPP as well. After flash-column chromatography the Fmoc-protected amino acid 

Fmoc-4-(3,3,5,5-tetramethyl-2,6-dioxopiperazine-1-yl)-D-β3-hPhg-OH (66) was isolated. 

The yield over the simultaneous deprotection of the amine and carboxyl group, and the 

subsequent protection of the NH2 function was 84%. In the final step of the synthesis 

the nitroxide radical was generated via the oxidation of the sec. amine using m-CPBA 

(Scheme 31).  

 

Scheme 31: Oxidation of the sec. amine of the 3-amino acid 66 yielded the desired 

Fmoc-protected 3-hTOPP amino acid 67. 

 
The m-CPBA mediated oxidation was carried out in DCM and compound 66 was oxidised 

to the desired Fmoc-D-3-hTOPP-OH (67) in 5 h. It is worth to note, that initially, label 

67 was purified by flash-column chromatography using the same gradient 
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(DCM/MeOH/AcOH, 99.5:0.5:0.1  96.5:3.5:0.1, v/v/v) as for the Fmoc-protected 

-TOPP label 37, since the only difference between these two labels is the additional 

methylene group. Interestingly, first attempts of coupling label 67 into a 3-peptide 

sequence then did not lead to the desired peptide product. This is hinted by a peak in 

the mass spectrum which did not belong to the expected mass of the peptide sequence. 

Due to this unexpected problem, the 3-hTOPP label fraction from the flash-column 

chromatography was further purified by HPLC (Figure 36).  

 

Figure 36: HPLC chromatogram of the Fmoc-protected 3-hTOPP amino acid 67 purified 
by flash-column chromatography using DCM/MeOH/AcOH, 99.5:0.5:0.1  96.5:3.5:0.1. 
Absorption was recorded at 254 nm. Analytical HPLC was performed using a gradient 
75 → 100% B (A: H2O + 0.1% TFA and B: MeOH + 0.1% TFA) in 30 min, flow 1.0 mL/min. 

 
Two intensive peaks occurred, one with tR = 7 min and one with tR = 12 min. Both 

compounds were investigated by NMR and mass spectrometry. It turned out that the 

compound with tR = 7 min is m-chlorobenzoic acid (69), which is the reduced product 

of m-CPBA (68) (Scheme 32).  
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Scheme 32: Redox reaction between amine 66 and m-CPBA (68).  

 

The compound with tR = 12 min is the desired 3-hTOPP label 67. Due to the additional 

methylene group of the Fmoc-protected 3-hTOPP amino acid 67 compared to the 

Fmoc-protected -TOPP amino acid 37, tR is changed and has the same tR as m-chloro-

benzoic acid (69) under the above-mentioned conditions used for the flash-column 

chromatography. Furthermore, benzoic acid 69 can also form an ester in the coupling 

step of SPPS. Calculation of the peptide mass indeed confirmed that acid 69 was 

coupled to the peptide sequence, instead of the 3-hTOPP amino acid 67. Due to this 

observation the gradient of the flash-column purification step was optimised to 

100:0:0.1  98:2:0.1 (DCM/MeOH/AcOH, v/v/v). The pure Fmoc-protected 3-hTOPP 

label 67 was then obtained in a yield of 68% (HPLC chromatogram: Figure 37). 
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Figure 37: HPLC chromatogram of 3-hTOPP amino acid 67 purified by flash-column 
chromatography using the optimised gradient (DCM/MeOH/AcOH 100:0:0.1  
98:2:0.1). The absorption was recorded at 215 nm. Analytical HPLC was performed 
using a gradient 10 → 100% C (A: H2O + 0.1% TFA and C: MeCN + 0.1% TFA) in 30 min, 
flow 1.0 mL/min. The small peak with tR = 22 min is the hydroxyl amine of 73 (see 
subsection 4.3.1.2).  

 

The complete synthetic route for the preparation of the Fmoc-protected 3-hTOPP label 

67 is summarised in Scheme 33. The synthesis involved 15 isolated intermediary 

products and the overall yield of this route was 9%. 
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Scheme 33: Overview of the complete synthetic route. The whole synthetic route for 

Fmoc-D-3-hTOPP-OH (67) involving 15 isolated intermediate products. The overall yield 
of this route is 9%. 

 

Pairs of the Fmoc-D-3-hTOPP-OH (67) were further used for the synthesis of double 

labelled transmembrane 3-peptides (see section 4.3.3) which in turn were investigated 

by CD spectroscopy (see chapter 4.4) and EPR spectroscopy (see chapter 4.6) in order 

to examine the 314-helix in solution and lipid bilayer. 
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4.3.1.1 Investigation of the Enantioselectivity of Selected Reaction Steps 

Already small enantiomeric impurities lead to a decreased yield of the final peptide due 

to the formation of unwanted diastereomers. Furthermore, the separation of a large 

number of diastereomers by HPLC can be challenging. Finally, remaining stereochemical 

impurities could lead to biased distances measured by EPR.  

Hence, several reaction steps of the 3-hTOPP label synthesis were investigated 

regarding their enantioselectivity via HPLC using chiral columns. For this approach 

references are needed. This is usually the racemate of the corresponding product of the 

synthesis step. The racemate was synthesised using the same condition as for the D-3-

amino acids (see section 4.3.1 and for more details 5.3.5) starting with a mixture of 

D-4-Hpg (50) and L-4-Hpg (25) (1:1).  

The ee was not examined for the first two compounds 51 and 52 (Scheme 34), since the 

enantioselectivity of the Cbz protection (ee ≥ 99%) is already well described in 

literature.[48]  

 

Scheme 34: Introducing of Cbz and TBDMS protecting group. The ee value (≥ 99%) of 
compound 51 was taken from literature.[48] The ee value for 52 was not determined, 
since the TBDMS protection was performed under mild conditions, no epimerisation 
was expected. 

 
The TBDMS protection is also assumed to be enantioselective, since it was carried out 

under mild reaction conditions.[140] 

Whereas common amino acids, such as Lys, Trp and Val, can convert into the 

enantiopure -analogous by the ARNDT-EISTERT reaction, Phg undergoes epimerisation 

(90:10, i.e. ee ≥ 80%) during the activation of the carboxyl group.[120,142]  

Since the 3-hTOPP label is a derivative of Phg, the ARNDT-EISTERT reaction might not be 
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enantioselective in this case as well. Thus, product 60 was investigated regarding its ee 

by HPLC (Figure 38). 

 

 

Figure 38: Investigation of compound 60 regarding its ee by HPLC. Top: ARNDT-EISTERT 
reaction using compound 52 as starting material. Bottom: Normalised HPLC 
chromatograms of 60 and the racemate 70 recorded at 254 nm. HPLC was performed 
using a Chiralpak® IA column and hexane/isopropanol as eluent (isocratic 92:8 
(150 min), flow 0.6 mL/min).  

 
Indeed, in the HPLC chromatogram a small amount of the L-enantiomer occurred. 

Integration of the peak areas yielded in an ee value of 86% (93:7) which was higher than 

for the common Phg and still sufficient for the successful peptide synthesis. Recall that 

the final -TOPP label 23 has an ee of 86% which was high enough to get good yields of 

the peptides.[48]  

For the TBDMS deprotection it was not possible to conclusively separate the two 

enantiomers (Figure 39).  
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Figure 39: Investigation of compound 71 regarding its ee by HPLC. Top: Deprotection 
reaction which led to compound 71. Bottom: HPLC chromatograms of 71. Absorption 
was recorded at 254 nm. Left: HPLC was performed using a Chiralpak® IA column and 
hexane/isopropanol as eluent (isocratic 87/13 (100 min), flow 0.6 mL/min). Right: HPLC 
was performed using a Chiralcel® OD column and hexane/isopropanol as eluent 
(isocratic 80/20 (90 min), flow 0.6 mL/min).  

 
Different ratios of the eluent (hexane/isopropanol) and two different columns 

(Chiralpak® IA and Chiralcel® OD) were used but unfortunately, no condition lead to 

baseline separation of the two enantiomers. This might result from the polarity of the 

hydroxyl group. At this point, product 59 (section 4.3.1, Scheme 26) was not 

investigated as the racemate of the next reaction step (triflate functionalisation, 

compound 61) showed better separation properties using the Chiralpak® IA column 

(Figure 40). 
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Figure 40: Investigation of compound 61 regarding its ee by HPLC. Top: Reaction 
conditions which were used to convert compound 59 into product 61. Bottom: 
Normalised HPLC chromatograms of 61 and the racemate 72 recorded at 254 nm. HPLC 
was performed using a Chiralpak® IA column and hexane/isopropanol as eluent 
(isocratic 90:10 (90 min), flow 0.6 mL/min).  

 
The integration of the peak areas in the HPLC chromatogram (Figure 40) yielded an ee 

of 86% (93:7). Thus, it was demonstrated that over two reaction steps (TBDMS 

deprotection and triflate group insertion) the ee value did not change.  

Due to its distance to the carboxyl group, the -hydrogen of 3-amino acids are not as 

acidic as the -hydrogen of the -analogous. It is known that 3-amino acids ‘cannot 

racemise during activation and coupling’.[143] Thus, the reaction conditions for the 

3-hTOPP synthesis, which are similar to those of the -TOPP label should not alter the 

stereogenic centre of the 3-amino acids in an unwanted manner.  

Hence, for the final Fmoc-protected D-3-hTOPP label 67 two peaks were expected in a 

ratio of 93:7. Therefore, the Fmoc-protected D-3-hTOPP amino acid 67 was examined 
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via HPLC using a chiral column. Two different columns Chiralpak® IA and Chiralcel® OD-

R were tested. Figure 41 shows two selected HPLC chromatograms.  

 

 

Figure 41: Investigation of compound 67 regarding its ee by HPLC. Top: Illustration of 

the Fmoc-protected 3-hTOPP label 67. Bottom: Absorption was recorded at 254 nm. 
Left: HPLC was performed using a Chiralpak® IA column and gradient 45 → 55% C (A: 
H2O + 0.1% TFA and C: MeCN + 0.1% TFA) in 30 min, flow 1.0 mL/min. Right: Excerpt 
HPLC chromatogram (full chromatogram see Appendix). HPLC was performed using a 
Chiralcel® OD-R column and a gradient 10 → 100% C (A: H2O + 0.1% TFA and C: 
MeCN + 0.1% TFA) in 30 min, flow 1.0 mL/min.  

 
The tested HPLC conditions did not lead to an unambiguous result. In the case of using 

MeCN/H2O (0.1% TFA) as eluent and Chiralpak® IA as column (Figure 41, left) no hint of 

the L-enantiomer is observed. In the case of MeCN/H2O (0.1% TFA) and Chiralcel® OD-

R column (Figure 41, right) a small peak is observed at tR = 23.4 min, which might be 

the L-enantiomer, since the ratio between the two peaks would fit to the ee value (86%) 

observed before. But, nevertheless, it is also conceivable that this is the hydroxyl amine 
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species 73 of the Fmoc-protected 3-hTOPP label 67 (cf. HPLC chromatograms 

illustrated in Figure 43, subsection 4.3.1.2). Mass spectrometry of the small peak could 

not answer this question.  

In conclusion, over two steps it was shown that the ee value was constant (86%, 

compound 59 and 61). For the final Fmoc-protected 3-hTOPP label 67 an unambiguous 

result for the ee was not possible. Thus, a reference is needed. However, the peptide 

synthesis (synthesis of diastereomers) and the corresponding HPLC experiments 

(separation of diastereomers) (section 4.3.3), CD (chapter 4.4) and PELDOR results 

(chapter 4.6) demonstrated that the 3-hTOPP label was synthesised with a sufficient 

ee value.[143] 

 

4.3.1.2 Stability of the Radical 

To test the stability of the radical species 67 against reduction to the hydroxyl amine 

species 73 (Figure 42), both compounds were examined under conditions which were 

similar to those used during the cleavage form the resin/purification of the labelled 

peptides (e.g. see section 5.3.7).  

 

Figure 42: The 3-hTOPP label 67 and the hydroxylamine species 73. 

 
HPLC was performed to verify a possible reduction of the radical species. 

Chromatograms are illustrated in Figure 43. 
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Figure 43: Investigation of the stability of the radical species 67. Analytical HPLC 
experiments were performed with a gradient 10 → 100% C (A: H2O + 0.1% TFA and C: 
MeCN + 0.1% TFA) in 30 min, flow 1.0 mL/min. Absorption was recorded at 254 nm. A: 
HPLC chromatogram after pre-purification by column chromatography. B: HPLC 
chromatogram after HPLC purification and lyophilisation. C: HPLC chromatogram 
(normalised to 0) after HPLC purification and direct injection of the collected HPLC peak 
67. D: HPLC chromatogram of the HPLC purified and lyophilised fraction 67 which was 
kept at rt and overnight dissolved in MeCN/H2O. 

 
The radical 67 was first pre-purified by flash-column chromatography and then isolated 

by HPLC (Figure 43, A). The HPLC separated compounds were identified as radical 

species 67 and hydroxyl amine species 73 by mass spectrometry. After lyophilisation 

the radical was still the main species (Figure 43, B). Integration of the peak areas yielded 

a 67/73 ratio of 22:3 (radical species 88%). The isolated radical 67 was directly re-

examined by HPLC (Figure 43, C). The hydroxyl amine species occurred again but its 

amount was just about 2%. Surprisingly, storage of the HPLC purified and lyophilised 

radical in MeCN/H2O at rt for 12 h led to a nearly quantitative conversion into the radical 
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species (96%) (Figure 43, D; cf. B).  

Similar experiments were then performed with the hydroxyl amine species 73. The 

HPLC chromatograms are illustrated in Figure 44. 

 

Figure 44: Investigation of the stability of the hydroxyl amine species 73. Bottom: 
Analytical HPLC experiments were performed with a gradient 10 → 100% C (A: H2O + 
0.1% TFA and C: MeCN + 0.1% TFA) in 30 min, flow 1.0 mL/min. Absorption was 
recorded at 254 nm. A: HPLC chromatogram of the crude hydroxyl amine 73. B: HPLC 
chromatogram after HPLC purification and lyophilisation of peak 73. C: HPLC 
chromatogram (normalised to 0) after HPLC purification and direct injection of the 
collected HPLC peak of 73.  

 
To generate the hydroxyl amine species 73, compound 67 was treated under the same 

conditions (TFA/TIS/H2O (95:2.5:2.5, v/v/v)) as used for cleavage of the peptide from 

the resin, at rt for 2 h (see section 5.2.9). The reagents were removed under a N2 stream 

and the crude hydroxyl amine was purified by HPLC (Figure 44, A). 

The HPLC chromatogram showed that the reaction was not quantitative. Besides the 
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reduced compound 73, the nitroxide radical species 67 was still present. Integration of 

the peak areas led to a 73/67 ratio of 37/13 (hydroxyl amine species 74%). After 

purification, amino acid 73 was lyophilised and the purity was checked by HPLC (Figure 

44, B). Again, the radical species 67 is observed. Integration of the peak areas yielded 

in a 73/67 ratio of 63/37. After collecting the peak of compound 73, it was directly re-

investigated by HPLC (Figure 44, C). The HPLC chromatogram again showed both 

compounds. Integration of the peak areas gave a ratio of 29/21 (hydroxyl amine species 

58%). In literature a similar observation was made in which exposition with air led to a 

quantitative yield of a nitroxide radical.[144] 

In summary, the results presented above strongly suggest that unwanted hydroxyl 

amine 73 was oxidised back to the wanted radical species 67, presumably by 

atmospheric oxygen. This further increases the applicability of the 3-hTOPP radical 24.  
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4.3.2 Synthesis of β3-Amino Acids for the β-Peptides 

The transmembrane -peptides P5, P6, P7 and P8 consist of three further 3-amino 

acids: Fmoc-D-3-hLys(Boc)-OH (74), Fmoc-D-3-hTrp(Boc)-OH (75) and Fmoc-D-3-hVal-

OH (76) (Figure 45). 

 

Figure 45: Structures of the 3-amino acids used in the 3-peptide synthesis: Fmoc-D-

3-hLys(Boc)-OH (74), Fmoc-D-3-hTrp(Boc)-OH (75) and Fmoc-D-3-hVal-OH (76).  

 

SEEBACH and co-workers published synthetic routes towards enantiomerically pure 3-

amino acids based on the ARNDT-EISTERT reaction. [120,122] The three building blocks 74, 

75, 76 were synthesised according to a variant described by GUICHARD et al. (Scheme 

35).[122] 

 

Scheme 35: ARNDT-EISTERT homologation. R correspond to the appropriate amino acid 

side-chain. First, the-amino acid 77 was activated, then attacked by CH2N2 and 

afterwards converted into the 3-amino acid 79 via the WOLFF rearrangement using 
silver(I) ions. 

 

First the commercially available protected D--amino acid 77 (Fmoc-D-Lys(Boc)-OH, 

Fmoc-D-Trp(Boc)-OH or Fmoc-D-Val-OH) was dissolved in dry THF. Then the carboxylic 

group was deprotonated by Et3N and activated using i-BuOCOCl. The resulting reactive 

anhydride was directly converted into the diazo ketone 78 using diazomethane. 
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Without purification the diazo ketone 78 was transformed to the corresponding 3-

amino acid 79 via a WOLFF rearrangement. Therefore, compound 78 was dissolved in a 

mixture of THF/H2O (9:1) and AgOCOPh was added. Sonication at rt for 2 h led to the 

crude 3-amino acid 79. In the cases 74 and 75 the crude amino acid was purified by 

precipitation within cold pentane (-22 °C). -amino acid 76 was purified by flash-column 

chromatography using a DCM/MeOH/AcOH mixture as eluent. This gave pure products 

as signalled by corresponding NMR spectra. The yields of these reactions are listed in 

Table 6. 

Table 6: Overall yields given in % of the -amino acids Fmoc-D-3-hLys(Boc)-OH (74), 

Fmoc-D-3-hTrp(Boc)-OH (75) and Fmoc-D-3-hVal-OH (76). 

-amino acid Yield  

Fmoc-D-3-hLys(Boc)-OH (74) 82 

Fmoc-D-3-hTrp(Boc)-OH (75) 79 

Fmoc-D-3-hVal-OH (76) 68 

 

The 3-amino acids 74, 75 and 76 were further used for the synthesis of transmembrane 

3-peptides (see section 4.3.3).  
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4.3.3 Development and Synthesis of the TOPP-Labelled β3-Peptides 

All four TOPP-labelled transmembrane 3-peptides P5, P6, P7 and P8 were synthesised 

using manual microwave-assisted Fmoc SPPS. The peptide sequences are shown in 

Figure 46. 

 

Figure 46: Peptide sequences of the TOPP-labelled -peptides P5, P6, P7 and P8.  

 

The synthesis strategy for the TOPP-labelled -peptides is based on modern Fmoc SPPS 

protocols especially from the group of DIEDERICHSEN.[137,143,145–147] However, expensive 

building blocks (especially the 3-hTOPP label) required further developments to 

achieve highly efficient, material-saving synthesis strategies as shown in the following 

discussion.  

The synthetic route of P5 is shown in Scheme 36. The scheme in particular illustrates 

intermediary peptide fragments (P5B, P5C, P5D, …, P5I) which were verified by HPLC 

and mass spectrometry after test cleavages. 
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Scheme 36: Synthesis route of P5. The proteinogenic 3-amino acids are designated 

after the one letter code and the 3-hTOPP label is symbolised by X. The chain 
elongation was performed on a NovaPEG Rink Amide resin and the resin was pre-loaded 

with 3-hLys (P5A). After selected steps of the synthesis test cleavages were performed 
to monitor chain elongation (marked with peptide P5B, P5C, P5D, …, P5I). The Fmoc 
SPPS is based on the repetition of deprotection and coupling steps on a solid support 
by means of microwave irradiation.  

 
This extensive test cleavage protocol allows a comprehensive examination of the 

efficiency of the utilised conditions.  

As mentioned in section 3.3.2, low loaded resins can minimise aggregation of the 

peptide chains and steric hinderance due to the steric demand of the 3-hTOPP label 

24.[80,148] Furthermore, polyethylene glycol (PEG) based resins have been proven to 

additionally prevent aggregation of hydrophobic peptides.[149] Hence, the peptides were 

synthesised on a low loaded NovaPEG Rink Amide resin. Additionally, this type of resin 

shows good swelling behaviour in the commonly used solvents for SPPS.[149] A good 

solvation of the peptide-resin complex is also essential for a successful chain 
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elongation.[79–81,150] Thus, a mixture of NMP/DMF/DMSO (1:0.8:0.2, v/v/v) was used as 

solvent system, since these solvents are known to fulfil this demand.[83,84] Additionally, 

this mixture grants the solubility of all subsequently utilised reactants.[83,84] Note that in 

particular DMSO is known to have the ability to disaggregate unwanted peptide bundles 

and it has been demonstrated that the addition of DMSO increases the yields of difficult 

sequences.[151] 

 

The resin was loaded with 3-hLys (P5A) using Fmoc-3-hLys(Boc)-OH (2) under the 

standard microwave-assisted (60 °C, 35 W, 15 min) procedure as described for -

peptides using N,N′-diisopropylcarbodiimide (DIC) and HOBt as coupling reagents and 

NMP as solvent. Double coupling was performed. After the first amino acid coupling 

step, to prevent the formation of wrong peptides sequences, uncoupled positions on 

the resin were acetylated using Ac2O/2,6-lutidine/NMP (1:2:7, v/v/v). 

The following amino acids were coupled using 1-[Bis(dimethylamino)methylene]-1H-

1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU)/1-hydroxy-7-

azabenzotriazole (HOAt) as coupling reagent system and a mixture of 2,6-lutidine/DIEA 

as base. The activation reagents HATU/HOAt form a highly reactive active ester with the 

amino acid, which is more reactive than the corresponding ester using HBTU/HOBt.[152]  

In conclusion, the final coupling mixture contained an excess of 4.00 eq amino acid, 

4.00 eq HOAt, 3.90 eq HATU and 4.80 eq/3.20 eq 2,6-lutidine/DIEA dissolved in 

NMP/DMF/DMSO. In the case of double coupling the second mixture consists of 3.00 eq 

amino acid, 3.00 eq HOAt, 2.90 eq HATU and 3.60 eq/2.40 eq 2,6-lutidine/DIEA in 

NMP/DMF/DMSO. The chain elongation was performed by repeating microwave-

assisted Fmoc deprotection steps with 20% piperidine in NMP and coupling steps of the 

amino acids. The resin was washed thoroughly between the steps with different 

solvents (NMP, DCM and DMF) to remove remaining reagents. 

Thus, the initial synthesis of 3-peptide P5 was performed using Fmoc-3-hLys(Boc)-OH 

(74), Fmoc-3-hTrp(Boc)-OH (75) and Fmoc-3-hVal-OH (76) and microwave irradiation 
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(60 °C, 35 W, 15 min). For the second hLys in the peptide sequence single coupling was 

performed. The hTrp and hVal were added to the sequence by using double coupling. 

To validate peptide sequence P5B, a test cleavage was performed under acidic 

conditions (TFA/H2O/TIS (95:2.5:2.5, v/v/v)). The coupling success was verified by HPLC 

and mass spectrometry (see Appendix). Next, the hTOPP label 23 was inserted. In 

contrast to the -analogous of the TOPP, no special coupling conditions were used 

because 3-amino acids are not prone to racemise during coupling.[143] To save material, 

2.00 eq of Fmoc-3-hTOPP-OH (67) were used. In summary, the hTOPP was coupled 

using microwave irradiation (60 °C, 25 W, 15 min) and HATU/HOAt, 2,6-lutidine/DIEA, 

and double coupling was performed. The HPLC chromatogram of the products obtained 

after a test cleavage is shown in Figure 47. 

 

Figure 47: HPLC chromatogram of the crude peptide P5C. Absorption was recorded at 
215, 254 and 280 nm. Analytical HPLC was performed using a gradient 10 → 100% B (A: 
H2O + 0.1% TFA and B: MeOH + 0.1% TFA) in 30 min, flow 1.0 mL/min.  

 
HPLC demonstrated the effective coupling of the hTOPP label (tR = 19.6 min). Two 

additional, smaller peaks appeared in the chromatogram. The peak at tR = 19 min 

belongs to a diastereomer of P5C, since the hTOPP label was not fully enantiopure (see 

subsection 4.3.1.1). It is assumed that the second small peak at tR = 20 min belongs to 

an aggregate of P5C because the mass spectrum only showed a species that has the 

same mass as peptide P5C (see Appendix).  
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The hVal after the TOPP was coupled as mentioned above (60 °C, 35 W, 15 min) and 

double coupling was performed. P5D was obtained in high purity (see Appendix).  

According to literature, single coupling was then performed to achieve P5E.[137] The 

coupling efficiency was verified by HPLC and mass spectrometry. It turned out that the 

used conditions were not favourable and the conditions had to be improved. Figure 48 

left shows the HPLC chromatogram of peptide sequence P5E under the above-

mentioned conditions and Figure 48 right illustrates the HPLC chromatogram using 

improved conditions. 

 

Figure 48: HPLC chromatograms of the crude P5E using different coupling conditions. 
Absorption was recorded at 215, 254 and 280 nm. Left: Analytical HPLC was performed 
using a gradient 50 → 100% B (A: H2O + 0.1% TFA and B: MeOH + 0.1% TFA) in 30 min, 
flow 1.0 mL/min. An unwanted species P5E – 1 hVal occurred. Right: HPLC 
chromatogram using improved coupling conditions (P5E-6, Table 7) for synthesising P5E. 
Analytical HPLC investigation was performed using a gradient of 10  100 B (A: 
H2O + 0.1% TFA and B: MeOH + 0.1% TFA) in 30 min, flow 1.0 mL/min. 

 
In the HPLC chromatogram (Figure 48 left) a significant portion of unwanted peptide 

species occurred at tR = 15 min. This species belongs to a peptide sequence without one 

hVal (P5E – 1 hVal, mass spectrum see Appendix). Due to this observation coupling 

conditions of the steps from peptide sequence P5D to P5E were optimised. In particular, 

this involved changes in coupling time, temperature and the addition of LiCl. According 

to literature, chaotropic salts can improve the coupling efficiency of difficult - and -
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peptide sequences by disrupting aggregation and secondary structure formation.[145,153] 

The tested conditions are illustrated in Table 7. 

Table 7: Tested conditions to improve the coupling conditions of the synthesis from 
peptide sequence P5D to P5E. The different conditions are named after P5E. 

Term Condition 

P5E-1 60 °C, 25 W, 15 min, NMP/DMF/DMSO, 
double coupling 

P5E-2 60 °C, 25 W, 20 min, NMP/DMF/DMSO, 
double coupling 

P5E-3 45 °C, 25 W, 20 min, 0.8 M LiCl in 
NMP/DMF/DMSO, double coupling 

P5E-4 60 °C, 25 W, 20 min, 0.8 M LiCl in 
NMP/DMF/DMSO, double coupling 

P5E-5 60 °C, 25 W, 20 min, 0.8 M LiCl in NMP, 
double coupling 

P5E-6 60 °C, 20 W, 30 min, 0.8 M LiCl in 
NMP/DMF/DMSO, double coupling 

 

The most suitable condition was determined according to the efficiency of the coupling 

as estimated by the appearance of the unwanted peaks in the chromatogram (also see 

Appendix). Since the HPLC chromatogram of P5E-6 (Figure 48 right) mainly showed the 

desired peptide, these conditions were chosen as the most promising conditions. The 

amino acids were double coupled using HATU/HOAt, 2,6-lutidine/DIEA dissolved in a 

solvent mixture of 0.8 M LiCl in NMP/DMF/DMSO and microwave irradiation (60 °C, 

30 min). Due to the ionic strength of the LiCl the power of the microwave had to be 

decreased (for specific details see section 5.3.7).  

Test cleavages and mass spectrometric measurements were performed after each 

coupling of hVal, and it turned out that only the fourth hVal after the hTOPP label has a 

lower tendency to couple. Since -peptides can form stable secondary structures 

already with six residues[106] at this point of the synthesis, the -peptide might have 
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started to form a secondary structure which prevented successful coupling. A similar 

phenomenon was observed for natural peptides before.[80] Additionally, aggregates 

might have occurred which were not fully disrupted by the Li salt and DMSO. HPLC 

experiments at different temperatures showed that indeed P5E has a tendency to 

aggregate (Figure 49).  

 

Figure 49: HPLC chromatograms of the crude peptide P5E at different temperatures. 
Absorption was recorded at 215, 254 and 280 nm. Left: Analytical HPLC investigation of 
P5E was performed at rt using a gradient of 20  60% C (A: H2O + 0.1% TFA and C: 
MeCN + 0.1% TFA) in 30 min, flow 1.0 mL/min. Right: Analytical HPLC was performed as 
described for the rt experiment but at 60 °C. Mass spectrometry confirmed that the 
compound at tR = 23 min is the desired peptide P5E. 

 
The HPLC chromatogram illustrated in Figure 49 left, shows that at rt multiple peaks 

occurred (P5E-agg). In contrast to that at higher temperature (60 °C), Figure 49 right, 

only one intensive peak occurred while using the exact same conditions as before (also 

note the reduced intensity of peaks at rt). Mass spectrometry confirmed that the single 

peak (Figure 49 right) belongs to a species which has the same mass as peptide P5E. 

Thus, it is assumed that at rt several distinct aggregates exist which interact differently 

with the column material and therefore, show different tR. By increasing the 

temperature, the monomer is favoured (or there is a fast interconversion between all 

species) and only one distinct peak is observed. 

Nevertheless, the fourth hVal after the hTOPP label was finally coupled with a longer 
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reaction time of 35 min and the miscoupled peptide species was eliminated by capping. 

The resin was then washed with 5% DIEA in NMP. Unfortunately, not only an acetylated 

species missing one hVal was included in the mass spectrum but also an acetylated 

species of P5E (P5E-cap, tR = 26.3 min) was observed (HPLC chromatogram Figure 50, 

mass spectrum see Appendix).  

 

Figure 50: HPLC chromatograms of P5E after acetylation. Absorption was recorded at 
215, 254 and 280 nm. Analytical HPLC investigation of P5E was performed at rt using a 
gradient of 10  100% B (A: H2O + 0.1% TFA and B: MeOH + 0.1% TFA) in 30min, flow 
1.0 ml/min.  

 
Indeed, it is very likely that the nitroxide moiety was acetylated, which then prohibited 

further capping steps after insertion of the hTOPP label.  

The following 3-amino acids, including the hTOPP label, were all coupled according to 

the novel and successful coupling protocol, i.e. using HATU/HOAt, 2,6-lutidine/DIEA 

dissolved in a solvent mixture of 0.8 M LiCl in NMP/DMF/DMSO and microwave 

irradiation (60 °C, 30 min). Every fourth amino acid after the first TOPP and the second 

hTOPP label were coupled for 35 min. Test cleavages of P5F, P5G, P5H and P5I were 

investigated by HPLC and mass spectrometry (HPLC chromatograms and mass spectra 

see Appendix). All peptides were obtained in high purity. The last four -amino acids 

(hTrp and hLys) were coupled with an increased reaction time of 40 min. After 

successful synthesis of the complete peptide sequence (P5J), the peptide was cleaved 
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from the resin under acidic condition (TFA/H2O/TIS (95:2.5:2.5, v/v/v)). The 

trialkylsilane TIS and H2O are used as scavengers to minimise the formation of by-

products during the cleavage. Then the 3-peptide was pre-purified by precipitation in 

cooled Et2O. 

As mentioned in section 3.3.2, the nitroxide radicals within the peptide are reduced to 

the hydroxyl amine under the acidic cleavage conditions and due to the reductive 

properties of TIS.[11,48,87] Hence, the hydroxyl amine was re-oxidised to the nitroxide 

species by using copper(II) ions as oxidant. Therefore, the crude peptide was treated 

with Cu(OAc)2 in a solvent mixture of MeCN and MeOH for 2 h and purified by analytical 

HPLC. First attempts to purify peptide P5 were performed using MeOH/H2O as eluent 

for the HPLC (Figure 51 left). However, no separation between peptide P5 and the 

unwanted peptide sequences was possible. Thus, the solvent system was changed to 

MeCN/H2O (Figure 51 right). The chromatograms obtained for both eluent systems are 

presented in Figure 51. 

 

Figure 51: HPLC chromatograms of P5 using different eluent systems. Absorption was 
recorded at 215, 254 and 280 nm. Left: HPLC chromatogram of P5 using a gradient 72.5 
 97.5% B (A: H2O + 0.1% TFA and B: MeOH + 0.1% TFA) in 30 min at 60 °C, flow 
1.0 ml/min. Right: HPLC chromatogram of P5 using a gradient 68  80% C (A: H2O + 0.1% 
TFA and C: MeCN + 0.1% TFA) in 40 min at 60 °C, flow 1.0 ml/min.  

 
The HPLC chromatogram showed a sufficient separation of peptide P5 (tR = 29.43 min) 

and unwanted peptides (mass spectrum see Appendix). 
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The peptides P6, P7 and P8 were synthesised according to the novel and successful 

coupling protocol, which is summarised in detail in Table 8. Recall that the position of 

the TOPP is changed according to Figure 46. 

Table 8: Conditions of the -peptide synthesis. The conditions are listed from the C- to 
the N-terminus of the peptides. The power of the microwave irradiation (MW) differs 
because of the ionic strength of the Li salt. For details see 5.3.7.  

 Conditions 

hLys (loading of the first amino acid) 60 °C, 35 W, 15 min, HOBt/DIC in NMP, 
double coupling 

Until the 7th amino acid, including the 
first hTOPP label 

60 °C, 25 W, 15 min, HATU/HOAt, 
2,6-lutidine/DIEA in NMP/DMF/DMSO, 

double coupling 

The 7th and the following amino acids 60 °C, MW, 30 min, HATU/HOAt, 
2,6-lutidine/DIEA in 0.8 M LiCl 

NMP/DMF/DMSO, double coupling 

Every 4th amino acid after the first 
hTOPP and the second hTOPP label 

60 °C, MW, 35 min, HATU/HOAt, 
2,6-lutidine/DIEA in 0.8 M LiCl 

NMP/DMF/DMSO, double coupling 

The last 4 amino acids  60 °C, MW, 40 min, HATU/HOAt, 
2,6-lutidine/DIEA in 0.8 M LiCl 

NMP/DMF/DMSO, double coupling 

 

After acidic cleavage (TFA/H2O/TIS (95:2.5:2.5, v/v/v)) from the resin the crude reduced 

species of P6, P7 and P8 were oxidised using Cu(OAc)2 dissolved in MeCN/MeOH, 

purified by HPLC and verified by mass spectrometry (HPLC chromatograms and mass 

spectra see Appendix). 

 

For subsequent investigations by PELDOR all -peptides were oxidised and purified only 

in small amounts to provide fresh samples.  
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4.4 Secondary Structure Determination by CD Spectroscopy 

CD spectroscopy has proven valuable in the study of -peptides, as shown in chapter 

3.4, since information about secondary structure formation of peptides can be readily 

obtained.  

314-Helical -peptides have been intensively investigated through CD spectroscopy by 

SEEBACH and co-workers.[113,121,154,155] They characterised the CD pattern of a left-handed 

314-helix in MeOH with specific characteristics: a maximum near 200 nm, a zero-

crossing between 205 and 210 nm, and a minimum between 215 and 220 nm.[155]  

Recently, DIEDERICHSEN and co-workers published CD data of right-handed 314-helical 

transmembrane peptides, which are similar to the peptides P5‒P8 that are investigated 

in this thesis, in trifluoroethanol (TFE) and within lipid bilayers.[136,137,147] In TFE a 

minimum near 190 nm, a zero-crossing at approximately 201 nm and a maximum 

around 211 nm were observed. In the lipid bilayers a minimum between 186 and 

196 nm, a zero-crossing at 199 nm, and a maximum between 205 and 220 nm were 

detected. These mirrored results (due to right-handed 314-helical peptides) are in good 

agreement with SEEBACH’s observations for the left-handed 314-helix.  

It is known from literature that aromatic amino acids such as Trp can show characteristic 

CD bands in the 220‒250 nm region.[156] Since there are indeed four aromatic hTrp in 

the transmembrane -peptides, an additional weak maximum (shoulder) was described 

at approximately 230 nm.[136,137] 

The transmembrane peptides P5, P6, P7 and P8 were designed to form a right-handed 

314-helix. Thus, to validate this behaviour, CD measurements were performed in 

solution as well as in lipid bilayers.  

 

4.4.1 Results and Discussion of Measurements in Solution 

The secondary structure formation of the peptides was investigated in solution (TFE, 

MeOH) with a peptide concentration of 10 M. The CD spectra of P5, P6, P7, P8 and the 

reference peptide P4 (transmembrane peptide without hTOPP labels (see Figure 34, 
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section 4.1.1); synthesised by BRIGITTE WORBS (GEORG-AUGUST University Göttingen) 

according to the protocol developed in section 4.3.3) in TFE and MeOH are illustrated 

in Figure 52 left in TFE and right in MeOH. 

 

Figure 52: CD investigation of the -peptides P5, P6, P7, P8 and the reference peptide 

P4 in solution. The peptide concentration was 10 M and the measurements were 
performed at 10 °C. The spectra show the typical pattern of a right-handed 314-helix 
(minimum at approximately 194 nm, a zero-crossing at 202 nm and a maximum at 
about 210 nm) and an additional shoulder at approximately 224 nm which is typical for 
aromatic residues (here hTrp). Left: CD spectra recorded in TFE. Right: CD spectra 
recorded in MeOH.  

 
First, all peptides were investigated in TFE, since this alcohol is known to stabilise the 

secondary structure formation.[157,158] It is assumed that TFE disrupts interaction 

between peptide and solvent molecules, which strengthens intramolecular interactions 

like the structure-stabilising hydrogen bonds.[157] Thus, the TFE measurement should 

show a ‘reference’ helical structure without disrupting effects. Additionally, the 

structure formation was investigated in MeOH which is also the solvent for subsequent 

PELDOR experiments. Both CD experiments demonstrated that all 3-peptides, 

including the reference peptide P4, had the same secondary structure. The 

characteristic CD peaks are listed in the following Table 9. 
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Table 9: CD bands of the solution measurement in TFE and MeOH. All observed CD 
signals in nm are listed according to solvent, peptides (P5, P6, P7, P8 and P4 as reference) 
and characteristic key values.  

  P5 P6 P7 P8 P4 

TFE Minimum 

Zero crossing 

Maximum 

Shoulder 

195 

202 

210 

224 

195 

202 

210 

224 

195 

202 

210 

224 

195 

202 

210 

224 

192 

200 

209 

224 

MeOH Minimum 

Zero crossing 

Maximum 

Shoulder 

194 

203 

211 

226 

194 

203 

211 

226 

194 

201 

210 

226 

194 

202 

211 

226 

193 

201 

210 

226 

 

In TFE the CD spectra of all labelled peptides show a minimum at 195 nm, a zero-

crossing at 202 nm and a maximum at 210 nm. A small shoulder occurs in the spectra 

at 224 nm. The non-labelled reference peptide P4 shows only small changes (192, 200, 

209 and 224 nm). Similar results can be observed in MeOH. A minimum occurs at 

193 nm, a zero crossing at about 202 nm, a maximum at 211 nm and a small shoulder 

at 226 nm. For P4 similar bands occur at 193, 201, 210 and 226 nm. The results fit 

perfectly to the observations for a 314-helix in literature as mentioned above. 

In conclusion, the CD spectra indicated right-handed 314-helical structure formation in 

solution for all peptides. The comparison of the data between labelled peptides and the 

reference peptide P4 demonstrated that the 3-hTOPP label 24 did not influence the 

structure formation of the 3-peptides in TFE and MeOH. The higher intensity of the 

molar ellipticity ΘM of peptide P4 might result from approximations that were used for 

the determination of concentrations: The determination was based on the absorption 

of the hTrp at 280 nm in the UV/vis spectrum and the literature value of the Trp 

absorption coefficient. It is likely that the absorption of the aromatic hTOPP label 

overlaps with the hTrp absorption at 280 nm. Thus, the concentration of solutions of 
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peptides P5, P6, P7 and P8 may be underestimated and finally result in the decreased 

intensity. 

 

4.4.2 Results and Discussion of Measurements in Lipid Bilayers 

To determine the structure formation within a lipid environment all peptides were 

investigated in SUVs of DOPC and POPC (P/L = 1/20, c(-peptides) = 20 M, phosphate 

buffer (50 mM, pH 7.5) at 20 °C). The CD spectra of P5, P6, P7, P8 and the reference 

peptide P4 in DOPC and POPC are illustrated in Figure 53 (left in DOPC and right in 

POPC). 

 

Figure 53: CD investigation of the -peptides P5, P6, P7, P8 and the reference peptide 

P4 in lipid bilayers. DOPC and POPC SUVs (P/L = 1/20, c(-peptides) = 20 M, phosphate 
buffer (50 mM, pH 7.5)). The CD measurements were performed at 20 °C. Left: CD 
spectra recorded in DOPC. The data illustrate an average of three spectra (P5, P6 and 
P7) and of two spectra (P8). Right: CD spectra recorded in POPC.  

 
The illustrated CD spectra of P5, P6 and P7 in DOPC are an average of three data sets, 

for P8 an average of two sets is taken (each spectrum is illustrated in the Appendix). In 

both lipid systems (DOPC and POPC, Figure 52) all peptides, including the reference 

peptide P4, show the same typical CD pattern of a right-handed 314-helical structure. All 

characteristic CD bands are listed in detail in Table 10. 
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Table 10: CD bands of the measurement in lipid bilayers of DOPC and POPC. All 
observed CD signals in nm are listed according to lipid system, peptides (P5, P6, P7, P8 
and reference peptide P4) and characteristic key values. All values are in nm and given 
as an approximate value.  

  P4 P5 P6 P7 P4 

DOPC Minimum 

Zero crossing 

Maximum 

Maximuma) 

193 

201 

208 

230 

193 

203 

211 

230 

192 

200 

209 

- 

195 

202 

210 

- 

192 

200 

209 

232 

POPC Minimum 

Zero crossing 

Maximum 

Maximuma) 

194 

201 

209 

229 

194 

202 

211 

229 

196 

203 

213 

- 

196 

203 

211 

- 

192 

201 

208 

232 

a) due to the aromatic hTrp a second maximum with low intensity was observed. In the case of 
P6 and P7 this maximum was (nearly) vanished. 

 

In DOPC the CD spectra of all labelled peptides show a minimum between 193 and 

195 nm (P4: 192 nm), a zero-crossing at 202 nm (P4: 200 nm) and a maximum between 

208 and 211 nm (P4: 209 nm). A second maximum occurs at 230 nm in the spectra of 

P5 and P6 (P4: 232 nm). Interestingly, this band (nearly) vanishes in the spectra of P7 

and P8. This might be due to the closer contact between the aromatic hTOPP amino 

acid and the hTrp residues in the lipid environment. Both aromatic functionalities might 

interact with each other and influence conformational states which induces subtle 

electronic changes also visible in the CD spectra.[159] Similar results are observed in 

POPC. A minimum occurs between 194 and 196 nm (P4: 192 nm), a zero crossing at 

202 nm (P4: 201 nm), a maximum between 209 and 211 nm (P4: 208 nm) and a small 

shoulder for P5 and P6 at 229 nm (P4: 232 nm). Slight shifts in the lipid bilayer within 

the four peptides might be explainable due to the heterogeneous lipid environment and 

the slightly different peptide sequences. As mentioned in 3.4.1, different dielectric 

media can influence the electronic transitions of the amide bonds.[90,91]  
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Differences in the intensity of the molar ellipticity ΘM might occur due to varying 

concentrations of peptides within vesicles, since their incorporation within the lipid 

bilayer was presumably not quantitative and differed between attempts using the same 

conditions (see Appendix). Analogous results are presented in section 4.4.1, the molar 

ellipticity ΘM of the reference peptide P4 is increased in DOPC which further 

corroborates the assumption of a systematically overestimated concentration for this 

particular peptide. In POPC the molar ellipticity ΘM is lower than in DOPC; most 

probably due to inconsistencies in the concentration calculation. This assumption must 

be verified in future experiments. 

In summary, the CD results prove that the transmembrane peptides P5, P6, P7 and P8 

also form a right-handed 314-helix in the lipid bilayers.  

Further PELDOR experiments within solution and POPC allow a more detailed 

discussion of the 3-peptides.  
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4.5 Inter-Spin Distances from Modelled 3-Peptides 

To obtain more reliable distance estimations between the two labels, theoretical 

models of the four right-handed 314-helical peptides were designed. Therefore, 

coordinates of the backbone atoms were generated from literature known torsion 

angles (see Table 11).  

Table 11: Backbone torsion angles of the 314-helix for generating the theoretical models 

of the -peptides. The angles are given in degrees. 

helix ψ    ω 

314 lit.a) 139.9 -60 134.3 -180 

314 crystalb) 132.3 -54.2 135.1 -180 

314 idealc) 139.3 -55 123.4 -180 

a) Derived from quantum mechanics optimisation.[160] 
b) Derived from a crystal structure.[116] 
c) Derived from energy optimisation using the basic parameter of an ideal 314-helix.[161] 

 

Since there were several definitions of the backbone torsion angles, each peptide was 

generated according to three backbone angle sets derived from i) quantum mechanics 

optimisation designated as 314 lit.[160], ii) a crystal structure designated as 314 crystal[116] 

and iii) the computed ideal 314-helix via an energy-optimised backbone designated as 

314 ideal[161]. E.g. the three theoretical models for P5 are shown in Figure 54.  
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Figure 54: Theoretical models of -peptide P5. Top: Side view. Bottom: Top view in the 
direction from the C- to the N-terminus. Left: Model created according to 314 lit. Centre: 
Model created according to 314 crystal. Right: Model created according to 314 ideal. To 
introduce the TOPP moiety, its DFT optimised structure[48] as well as the peptide 
backbone were kept fixed. Then both fragments were forced by molecular mechanics 
(MMFF94[162] force field as implemented in Avogadro[163]) to rotate about their 
connecting bond and thereby adopt a reasonable mutual orientation. Note that the 
models are individually scaled. 

 
The labelled peptide models were built by first generating peptide backbones from the 

angular data of 314 lit., 314 crystal and 314 ideal. These fixed angles allow to cut-down 

the structure, i.e. the valine and lysine side-chains were dismissed. Next, two DFT 

optimised (planar) TOPP residues[48] had to be introduced into each model. Therefore, 

the peptide backbone and the TOPP geometry were kept fixed, yet their mutual 

orientation about the connecting bond was adjustable. A reasonably adjusted 

orientation was achieved by applying the MERCK molecular force field (MMFF94[162]; 

algorithm: steepest descents, convergence: 10-9) as implemented in Avogadro[163].  
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The distances between the two nitroxide radicals were determined as the average of 

distances OTOPP I‒OTOPP II, NTOPP I‒OTOPP II, OTOPP I‒NTOPP II and NTOPP I‒NTOPP II, since the radical 

is delocalised over the N‒O bond. The determined distances are listed in Table 12 (all 

values are given in the Appendix).  

Table 12: Calculated inter-spin distances of the labelled -peptides. The distances r [nm] 

were determined as averages of the distances between the atoms OTOPP I‒OTOPP II, 

NTOPP I‒OTOPP II, OTOPP I‒NTOPP II and NTOPP I‒NTOPP II. Numbers in the brackets symbolise 
the label positions. 

 P5 (9, 22) P6 (8, 22) P7 (7, 22) P8 (6, 22) 

r (314 lit.) 2.06 2.88 2.94 2.53 

r (314 crystal) 2.33 3.09 2.36 2.71 

r (314 ideal) 2.17 2.92 2.13 2.43 

 

In comparison to the basic data of an ideal 314-helix (three amino acids per turn and a 

pitch of 0.5 nm) the distances do not increase linearly. Due to the label orientation and 

the helical structure the curve of the distances is ‘wavelike’ (Figure 55). 
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Figure 55: Graphical illustration of the inter-spin distances. Top: The curves are based 
on the basic parameters of an ideal 314-helix (grey curve) and on a theoretical model of 
P5 (314-helix which was generated using the torsion angles 314 lit. (Table 11)). The curves 
illustrate all inter-spin distances between the fixed label position (position 22 of the 
peptide sequence), a hypothetical second label (positions 21‒10) and the ‘real’ label 

positions of the second 3-hTOPP label 24 (position 6, 7, 8 and 9). The x-axis reflects the 
number of amino acids between label position 22 (set as 0) and the other positions. 
Bottom: The curves illustrate the inter-spin distances of all theoretical generated 
peptide models of P5, P6, P7 and P8. The values are taken from Table 12 and the basic 
parameters of the ideal 314-helix (grey curve). 

 
The curves illustrated in Figure 55 top are based on the basic parameters of an ideal 

314-helix and a 314-helix theoretically generated using the torsion angles from 314 lit. in 

Table 11. The curves show all distances between the fixed label position (position 22 
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within the peptide sequence), hypothetical second label positions (positions 21‒10) 

and the ‘real’ second label positions of the 3-hTOPP label 24, i.e. the positions that 

were synthetically achieved (position 6, 7, 8 and 9 within the peptide sequence). The 

x-axis reflects the number of amino acids between label position 22 (x-axis set as 0) and 

the other positions. 

The graphs illustrated in Figure 55 bottom show the distances of the ‘real’ labelled -

peptides. The data are based on the computationally determined distance parameters 

mentioned in Table 12 and the basic parameters of the ideal 314-helix. 
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4.6 Inter-Spin Distance Determination by PELDOR 

To get information which is directly related to the natural peptide structure, it is 

necessary to use spin labels which do not influence the peptide structure formation or 

distort the distance results by their own conformational states. In part 3 it was 

demonstrated that the -TOPP label 23 is a useful tool to investigate peptides in 

different environments, since it delivers reliable distances directly related to the 

peptide structure. 

Thus, in this study the capability of the 3-hTOPP label was exploited to investigate the 

314-helical structure of a 3-peptide (P4).  

EPR experiments in solution were performed by KARIN HALBMAIR, MPI for Biophysical 

Chemistry.  

 

4.6.1 Results and Discussion of Measurements in Solution 

The PELDOR experiments were carried out at Q-band frequencies and corresponding 

fields (34 GHz/1.2 T) at 50 K using peptide concentrations of ~50 M. The obtained 

distance results of all four 3-peptides (P5, P6, P7 and P8) in MeOH (10‒20% glycerol) 

are illustrated in (Figure 56, B and C). 
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Figure 56: A: Side view of the theoretical peptide models generated from the backbone 
torsion angles of 314 lit. B: PELDOR distance distributions of all peptides (P5, P6, P7 and 
P8). C: PELDOR experimental time traces and their fits for each peptide (curve colours 
according to B).  

 
The time traces of all peptides show visible dipolar oscillations with just one dominating 

dipolar frequency for each peptide (Figure 56, C). The analysis of each modulation gave 

a single-peak distance distribution with a narrow HWHM (Figure 56, B). The detailed 

values are listed in Table 13 and are illustrated in comparison to the inter-spin distances 

of the theoretical models in Figure 57 (for models see chapter 4.5).  
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Table 13: PELDOR distribution maxima r [nm] and the HWHM values [nm] of P5, P6, P7 
and P8 in MeOH. 

 P5 (9, 22) P6 (8, 22) P7 (7, 22) P8 (6, 22) 

r 2.17 3.09 2.95 2.55 

HWHM 0.24 0.15 0.21 0.21 

 

 

Figure 57: PELDOR distance results in comparison with the calculated distances from 

theoretical 3-peptide models. The black curve represents the PELDOR distance results. 
The other curves are based on the theoretical models which were generated using the 
torsion angle sets 314 lit., 314 crystal, 314 ideal (for all three sets see chapter 4.5 Table 
11) and on the basic parameter of an ideal 314-helix (three amino acids per turn and a 
pitch of 0.5 nm; grey curve). The curves illustrate the inter-spin distances between the 
fixed label position (position 22 of the peptide sequence) and the label positions of the 

second 3-hTOPP label 24 (position 6, 7, 8 and 9). The x-axis reflects the number of 
amino acids between the label position 22 (set as 0) and the other positions.  

 
As shown in Figure 57 the PELDOR distance results (inter-spin distance and the 

corresponding shape of the curve) are in close agreement with distances calculated 

from the model 314 lit. (see chapter 4.5). Slight deviations (aa 13 and aa 15 show 

differences of 0.12 nm and 0.21 nm, respectively) are acceptable, since variances 
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between models and experiments could occur especially due to the cut-down peptide 

structure and the disregard of solvent. However, the curve shape of the PELDOR results 

is characteristic and by far best matched by the structure 314 lit. This implies that the 

helical turn is defined by 3.25 amino acid residues[160] (ideal 314-helix is defined by three 

amino acid residues per turn). This finding is confirmed by an NMR study in MeOH made 

by SEEBACH and co-workers.[135] A 3-eicosapeptide consisting of all 20 homologated 

proteinogenic amino acids (L-3-amino acids, left-handed 314-helix) showed that there 

is an offset from the ideal 314-helix by 10 to 20° in a right-handed direction.[135] This gives 

3.1 to 3.4 residues per turn.[135]  

In conclusion, it was demonstrated that the newly developed 3-hTOPP label 24 delivers 

sharp and reliable distances directly related to the peptide structure and that the four 

labelled peptides P5, P6, P7 and P8 fold into a “3.214”-helix (in accordance with 

SEEBACH[107]) in MeOH. Considering the consistent CD results the “3.214”-helix can be also 

expected for the non-labelled peptide P4. 

 
The labelling efficiency which gives evidence about the number of spins within the 

molecule was determined to be approximately 50% for different batches.  

However, it was shown that after purification with HPLC and lyophilisation a small 

amount of the radical underwent reduction (see subsection 4.3.1.2). Yet, it was also 

demonstrated that the hydroxyl amine species 73 is indeed re-oxidised under exposure 

to atmospheric oxygen. Thus, the spin concentration might be increased by longer 

exposure to oxygen.  
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4.7 Summary: β3-hTOPP-Labelled -Peptides 

In this part the development and the successful synthesis of the new 3-hTOPP label 24 

was thoroughly described. The Fmoc-protected 3-hTOPP label 67 was synthesised in a 

linear synthesis with a yield of 9% over 12 steps. The importance of mild reaction 

conditions that preserve the stereochemistry of the amino acid was highlighted and it 

was demonstrated that 3-amino acids are not prone to racemisation. Furthermore, it 

was shown that the reduced species of the label 73 can be easily oxidised to the radical 

species by atmospheric oxygen which allows a very convenient handling. 

A novel and successful coupling protocol for 3-peptides was developed and all four 

3-hTOPP-labelled -peptides (P5, P6, P7 and P8) were effectively synthesised. It was 

demonstrated by CD spectroscopy in solution and in lipid bilayers that the 314-helical 

structure formation was not hindered due to the labels. Furthermore, distance 

measurements in MeOH by PELDOR demonstrated that the newly developed rigid 

3-hTOPP 24 delivers sharp ‘single-distance’ distributions. 

Additionally, the distance measurements by PELDOR were compared to 

computationally modelled peptides. Of these models, 314 lit. showed by far the best 

agreement with the PELDOR measurements (this is additionally confirmed in an NMR 

study by SEEBACH and co-workers[135]). Hence, the labelled -peptides P5, P6, P7 and P8 

and the non-labelled -peptide P4 probably fold into a “3.214”-helix in MeOH. This 

showed that EPR measurements of peptides labelled with the 3-hTOPP label 24 in 

combination with theoretical means, allow straightforward and reliable structure 

determination. 
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4.8 Extended Results and Outlook for Labelled Transmembrane 

β-Peptides  

4.8.1 Preliminary PELDOR Measurements in Lipid Bilayer 

Preliminary EPR experiments in lipid bilayer were performed by GABRIELE VALORA, MPI 

for Biophysical Chemistry. PELDOR experiments for P5 and P8 in a lipid environment 

were performed in MLVs using deuterated phospholipids POPC in a P/L ratio of 1:6000 

and a peptide concentration of 20 M (related to a spin concentration of 40 M if 

labelling efficiency was 100%). The peptide/lipid vesicles for the PELDOR experiment 

were prepared as described in literature for the labelled WALP peptides P1 and P3. This 

includes hydration at rt for 1 min, three freezing-thawing cycles using liquid N2 and 

intermittent vortexing.[53] The results of the PELDOR experiments for P5 and P8 are 

illustrated in Figure 58.  

 

Figure 58: PELDOR distance results of P5 and P8 in POPC. Left: Time traces of -peptides 
P5 (top) and P8 (bottom). Right: Corresponding distance results.  
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In both cases the time traces of the peptides show visible dipolar oscillations. The 

modulation for P5 includes multiple frequencies and gives a distance distribution with 

three discernible maxima at 2.39, 3.23 and 3.90 nm (Figure 58, top). -Peptide P8 

shows one hardly visible, long dipolar oscillation which gives a single, broadened 

distribution centred around 2.73 nm (Figure 58, bottom). However, these results should 

not be discussed further, since supplementary electron spin-echo envelope modulation 

(ESEEM) experiments indicate that the -peptide was not incorporated in the lipid 

bilayer (Figure 59, left). 

 

Figure 59: ESEEM results using P5 and P8, and the TOPP-labelled WALP24 peptide P1 in 
lipids. Left: Just a weak ESEEM is observed for P5 and P8 in deuterated POPC. Right: 
TOPP-labelled WALP24 P1 showed a discernible modulation of the ESEEM signal in 
deuterated DMPC whereas in D2O just a weak modulation is visible. Hence, the peptide 
P1 is incorporated in DMPC. 

 
ESEEM is based on the interaction between the electron spin of the nitroxide radical 

and a nearby nuclear spin (here 2H). The amplitude of the ESEEM signal is influenced by 

the number of these nearby nuclei and their distances towards the electron spin.[164] 

Only a very weak ESEEM is observed for the 3-hTOPP-labelled peptides P5 and P8 in 

the deuterated POPC. Usually, a control experiment in D2O is necessary to qualitatively 

distinguish between strong and weak intensity (Figure 59 right) and thereby determine 

the close and distant environment, respectively. However, in the case of P5 and P8 the 
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pronouncedly weak ESEEM in deuterated POPC directly indicate that the peptides were 

not taken up into the lipid bilayer. This is additionally supported by a preliminary CD 

experiment of reference peptide P4 in MLVs of POPC (Figure 60).  

 

Figure 60: CD investigation of the -peptide P4 in MLVs and SUVs of POPC. POPC 

MLVs/SUVs (P/L = 1/20, c(-peptides) = 20 M, phosphate buffer (50 mM, pH 7.5)). The 
CD measurements were performed at 20 °C. In MLV no secondary structure formation 
is visible whereas after formation of SUVs the CD spectrum show the typical pattern of 
a 314-helix. 

 
The MLVs were prepared in a slightly different manner by hydrating the peptide/lipid 

film at rt for 1 h, followed by vortexing the mixture for 1 min in 5 min intervals (3 x). In 

this case the typical features of a 314-helical peptide structure are missing in the CD 

spectrum. Indeed, the spectrum is almost featureless and exhibits only low intensities. 

Preparing SUVs from the exact same solution, i.e. sonication of the MLV sample for 30 

and 60 min according to section 5.2.11 dramatically alters the CD pattern. Intensities 

increase and the typical signs for 314-helical peptide structure formation are visible at 

192, 201, 208 and 232 nm.  

In summary, the 3-hTOPP label 24 again reliably delivered distance distributions for the 

-peptides P5 and P8 by PELDOR measurements. However, the distributions 

themselves do not give reliable information about transmembrane peptides, since it 
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must be assumed that the peptides were not incorporated into the lipid bilayer during 

EPR measurements. This was supported by CD spectroscopy. These findings illustrate 

the importance of vesicle preparation which has not been addressed in detail so far and 

must clearly be in the focus of future investigations. 

The mild MLV preparation was initially applied in order not to alter the spin 

concentration within the peptide. Yet, it has been demonstrated in this thesis that the 

nitroxide radical species is highly stable. Thus, the sample preparation for the PELDOR 

measurements in POPC can be promptly adjusted. Besides sonication to obtain SUVs, 

an increased MLV preparation temperature (from rt to 40 °C) allows to test the 

dependence of peptide incorporation into lipid bilayer on the provided (thermal) energy. 

Eventually, the transmembrane peptides will certainly be incorporated into the lipid 

bilayer. Then PELDOR experiments might show changes in the 314-helical structure of 

P4 in POPC. A recently published study by DIEDERICHSEN and co-workers showed that the 

-peptide motif P4 tilted by 16° in DOPC.[136] This tilting might indeed result from a 

mismatch situation between lipid and peptide.[136] If the tilting process is the only 

mechanism within the membrane, the distances and corresponding curve shape in a 

diagram (see graph in Figure 57, section 4.6.1) should be similar. It is also conceivable 

that the 314-helix structure of the -peptide varies within the lipid environment 

compared to the solution measurement, since other stabilisation/destabilisation 

effects may influence the structure formation.  
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5 Experimental Part 

5.1 Materials and Methods 

 
Solvents 

Solvents for the syntheses were used in the highest quality available (p.a., absolute). 

Extra-dry solvents were purchased from SIGMA-ALDRICH (Taufkirchen, Germany) and 

ACROS ORGANICS (Geel, Belgium) covered with a rubber septum and stored over 

molecular sieves. All technical grade solvents were distilled before use. Analytic and 

HPLC grade solvents were provided by FLUKA (Taufkirchen, Germany), VWR INTERNATIONAL 

(Fontenay-sous-Bois, France), ACROS ORGANICS (Geel, Belgium) and SIGMA-ALDRICH 

(Taufkirchen, Germany). Solvents for the NMR experiments were supplied by DEUTERIO 

(Kastellaun, Germany). The ultra-pure water (electrical conductivity 18 M·cm) was 

obtained by purification of demineralised water using the purification systems 

SYMPLICITY from MERCK MILLIPORE (Bedford, UK) and arium® mini from SATORIUS (Göttingen, 

Germany). Degassing of solvents were obtained by passing argon through them. 

 
Reagents 

All utilised, commercial available materials and chemicals were purchased in the highest 

quality available by ABCR (Karlsruhe, Germany), ACROS ORGANICS (Geel, Belgium), ALFA 

AESAR (Karlsruhe, Germany), BACHEM (Bubendorf, Switzerland), CARL ROTH (Karlsruhe, 

Germany), FISCHER SCIENTIFIC (Nidderau, Germany), FLUKA (Taufkirchen, Germany), MERCK 

(Darmstadt, Germany), RIEDEL-DE HAËN (Seelze, Germany), TCI (Eschborn, Germany) and 

VWR (Darmstadt, Germany) and were used as supplied. 

The Fmoc-protected -amino acids, coupling reagents and the resins were obtained 

from GL BIOCHEM (Shanghai, China), IRIS (Marktredwitz, Germany), ACROS ORGANICS (Geel, 

Belgium) and MERCK (Darmstadt, Germany). MTSSL was purchased by SANTA CRUZ 

BIOTECHNOLOGY (Texas, USA). All used lipids were supplied by AVANTI POLAR LIPIDS (Alabama, 

USA). 
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Reactions 

Air and moisture sensitive reactions were performed in dried laboratory glassware 

under an argon atmosphere (> 99.996%). Therefore, the glass apparatus was heated 

under reduced pressure. After cooling down to rt the glassware was purged with dried 

argon. This procedure was repeated three times overall. Solids were added in a counter 

stream of argon and solutions through a septum via a syringe equipped with a cannula. 

 
Freeze-drying 

Building blocks and peptides were dissolved/suspended in water with minimal amounts 

of MeCN or MeOH were frozen in liquid nitrogen and freeze-dried using a CHRIST 

ALPHA-2-4 lyophiliser (Osterode am Harz, Germany) equipped with a high vacuum pump. 

Samples with a volume bigger than 2 mL were lyophilised in round bottom flasks, 

whereas samples with volumes smaller than 2 mL in an EPPENDORF safe-lock 

microcentrifuge tube in speedvac devices RVC 2-18 or RVC 2-18 CD plus of CHRIST 

(Osterode am Harz, Germany) connected to the lyophiliser. 

 
Thin layer chromatography (TLC) 

The stationary phase consisted of aluminium-backed plates coated with a 0.20 nm thin 

silica gel 60 F254 layer provided by MERCK (Darmstadt, Germany). Substances on the TLC 

plates were visualised by fluorescence quenching at 254 nm or by dipping in a ninhydrin 

solution (3% ninhydrin in ethanol (EtOH)) followed by heat-drying to detect amine 

groups. 

 
Flash column chromatography 

Flash column chromatography was performed using silica gel of the type 60 with a 

particle size of 40‒63 m supplied by MERCK (Darmstadt, Germany) and a pressure of 

0.1‒1.0 bar. The silica gel was suspended in the elution system and filled in an 

appropriated glass column equipped with a glass frit. The samples were loaded either 
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by pre-loading on silica gel or as concentrated solution. 

 
High performance liquid chromatography (HPLC) 

High performance liquid chromatography was performed on JASCO (Gross-Umstadt, 

Germany) instruments equipped with an analytical column (Nucleodur® RP C-18 

analytical HPLC column (250 nm x 4.6 mm, 5 m) from MACHEREY-NAGEL (Düren, 

Germany) with a flow of 1.0 mL/min. The compounds were detected by UV absorptions 

at 215, 254 and 280 nm. Applied elution systems were either A: bi-demineralised 

H2O + 0.1% TFA and B: MeOH + 0.1% TFA or A: bi-demineralised H2O + 0.1% TFA and C: 

MeCN + 0.1% TFA (see relevant chapters for more information). Compounds and 

elongation of peptide sequences were investigated on a JASCO system equipped with a 

MD-2010plus multiwavelength detector, LC-Net II/ADC, CO-2060plus intelligent column 

thermostat, AS-2055plus intelligent sampler and two PU-2085plus semi-micro HPLC 

pumps. Peptides were purified with a JASCO system equipped with a MD-2010plus 

multiwavelength detector, LC-Net II/ADC, a DG-2080-53 3-line degasser and two PU-

2086plus intelligent HPLC pumps. For the purification of the -peptides the column was 

heated in a PHARMACIA LKB HPLC column oven 2155. The samples were dissolved in 

mixtures of bi-demineralised water and either MeOH or MeCN followed by filtering 

through CHROMAFIL® RC-45/15 MS (MACHERY-NAGEL) filter.  

 
Nuclear Magnetic Resonance (NMR) 

NMR experiments for the characterisation of synthesised compounds were performed 

on VARIAN (California, USA) instruments (Mercury (VX) 300, Unity 300, Inova-500). The 

sample temperature was set for CDCl3 to 298 K and for CD3OD, D2O and DMSO-d6 to 

either 298 K or 308 K. The effective measuring frequencies are mentioned in the 

analytic data of the substances. All 13C-NMR experiments were proton-decoupled. The 

chemical shift δ is indicated in ppm (TMS = 0 ppm). The chemical shift of the solvents 

served as internal standard [CDCl3: 7.26 ppm (1H) and 77.16 ppm (13C), CD3OD: 
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3.31 ppm (1H) and 49.00 ppm (13C), D2O: 4.79 ppm (1H), DMSO-d6: 2.50 ppm (1H) and 

39.52 ppm (13C)]. Signal multiplicities are abbreviated as followed s = singlet, 

d = doublet, t = triplet, q = quartet, hept = heptet, m = multiplet and sbr = broadened 

singlet. The coupling constant nJX,Y is indicated in Hertz (Hz) (n = number of the bonds 

between the coupling nuclei, X,Y = coupling nuclei). 

 
Mass spectrometry 

The characterisation by mass spectrometry was performed using the ionisation 

techniques electrospray ionisation (ESI) or electron ionisation (EI). The data is presented 

in mass-to-charge ratio (m/z). The ESI and high resolution ESI (HR-ESI) experiments were 

carried out using either a BRUKER (Massachusetts, USA) micrOTOF-Q II or a BRUKER maXis 

ESI-QTOF-MS instrument. EI-experiments were performed using a JEOL (Tokyo, Japan) 

AccuTOF GCv device. 

 
UV/vis spectroscopy 

UV/vis spectroscopy was utilised for the concentration determination of peptide 

solutions by means of the absorption of Trp at 280 nm ( = 5600 cm-1 M-1 )[165] and for 

the analysis of the resin loading efficiency (see 5.2.3). Concentration determination was 

performed in the case of -peptides (dissolved in MeOH) on a V-650 JASCO 

spectrophotometer equipped with a JASCO temperature controller ETCS-761 and a 

thermostat from JULABO F250 (Seelbach, Germany) and in the case of -peptides 

(dissolved in EtOH) on a THERMO SCIENTIFIC device (NanoDrop 2000c, cuvette function 

[d = 1 cm]). The quartz glass cuvettes Suprasil® (QS) were provided by HELLMA (Müllheim, 

Germany). The concentration was calculated using the LAMBERT-BEER law  

𝑐 =  
𝐴

𝜀 ∙ 𝑑
 (1) 

 

and the variables are defined as A = measured absorption at 280 nm,  = molar 
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extinction coefficient in cm-1·M-1 and d = path length in cm (1 cm). The pure solvent 

served as reference.  

 
Circular Dichroism (CD) spectroscopy 

CD spectroscopy for the investigation of secondary structure formation of peptides was 

performed on a J-1500 spectropolarimeter provided by JASCO equipped with a JASCO 

PTC-510 peltier thermostatted rectangular cell holder and a JULABO F250 thermostat. 

The device was purged with nitrogen before and during the operations. All experiments 

were carried out in a 1.0 mm quartz glass cuvette of HELLMA (Suprasil® QS) and the 

temperature was controlled by the sensor in the holder. The following specific 

parameters were used for the experiments:  

 

Parameter WALP24-TOPP 
 MeOH lipid 

Measurement range [nm]  260‒190 
Data pitch [nm] 0.1 

CD scale [mdeg/dOD] 200/0.1 

FL scale [mdeg/dOD] 200/0.1 

D.I.T. [sec] 4 

Bandwidth [nm] 1.0 

Scanning speed [nm/min] 50 

Accumulation 30 

 

Parameter WALP24-MTSSL 
 MeOH lipid 

Measurement range [nm]  260‒190 
Data pitch [nm] 0.2 

CD scale [mdeg/dOD] 200/0.1 

FL scale [mdeg/dOD] 200/0.1 

D.I.T. [sec] 1 

Bandwidth [nm] 1.0 

Scanning speed [nm/min] 50 

Accumulation 3 5 
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Parameter -peptide 
 TFE MeOH lipid 

Measurement range [nm]  260‒180 260‒190 
Data pitch [nm] 0.1 

CD scale [mdeg/dOD] 200/1.0 

FL scale [mdeg/dOD] 200/1.0 

D.I.T. [sec] 4 

Bandwidth [nm] 1.0 

Scanning speed [nm/min] 50 

Accumulation 20 25 

 

All illustrated data are background-corrected. Control samples without peptides served 

as background. 

Note that the background-corrected data of the WALP24-MTSSL were smoothed using 

a SAVITZKY-GOLAY filter (convolution width = 13). The ellipticity unit Θ [mdeg], which is 

given by the instrument’s program, was converted into the molar ellipticity ΘM 

[deg·cm2·dmol-1] by the means of the JASCO software SpectraManager™, which uses 

following equation (2):  

𝛩M =  
𝛩

100 ∙ 𝑐 ∙ 𝑑
 

(2) 

The variables are defined as Θ = ellipticity in mdeg, c = concentration in mol/L and 

d = path length in cm.  

 
Enantiomeric excess (ee) value 

The experiments for the determination of the ee value were performed on a SHIMADZU 

(Kyōto, Japan) or JASCO HPLC system. The SHIMADZU HPLC system was equipped with a 

DGU-20A3/prominence degasser, two pumps LC-20AD/prominence liquid 

chromatography, a CBM-20A/prominence communication BUS module, a SPD-M20A/ 

prominence diode array detector and a SIL-20AC/prominence auto sampler. The JASCO 

system was equipped with a MD-2010plus multiwavelength detector, LC-Net II/ADC, 

CO-2060plus intelligent column thermostat, AS-2055plus intelligent sampler and two 
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PU-2085plus semi-micro HPLC pumps. Chiral columns from DAICEL (Mainz, Germany) 

(Chiralpak® IA, Chiralcel® OD and OD-R) were used. 

 

Melting point 

The melting point was measured using a STUART melting point SMP10 device in a 

capillary tube (75 x 2.0 mm) from MARIENFELD (Lauda-Königshofen, Germany). 

 
Programs 

NMR data were processed using the software MestReNova (version: 10.0.2-15465). All 

graphs were created with the program OriginPro 8.5G. Calculation of molecular masses 

and the design of molecular structures were performed by ChemBioDraw (PERKIN ELMER 

(Waltham, USA), version: 14.0.0.117). The theoretical peptide models were created 

using the molecular editor Avogadro[163] (Version 1.1.1). 
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5.2 General Synthetic Procedures  

5.2.1 Synthesis of D-β3-Amino Acids (ARNDT-EISTERT Homologation)  

The Fmoc-protected -amino acids were synthesised according to the procedure 

described by GUICHARD et al.:[120,122] 

Under an Ar atmosphere, the Fmoc-protected D--amino acid (15.5 mmol, 1.00 eq) was 

dissolved in dry THF (73.0 mL) and cooled to 0 °C. Then, Et3N (1.10 eq) and i-BuOCOCl 

(1.10 eq) were added and the reaction mixture was stirred at 0 °C for 30 min. 

Afterwards, diazomethane (0.6 M in Et2O, 2.00 eq) was added under light exclusion. The 

mixture was allowed to warm up to rt and was stirred 5 h at this temperature. The 

reaction was quenched with AcOH (4.00 eq). Then, 6% aq NaHCO3 (100 mL) and EtOAc 

(100 mL) were added and the phases were separated. The aqueous phase was extracted 

with EtOAc (2 x 100 mL). The combined organic phases were washed with a saturated 

aq NH4Cl solution (2 x 100 mL) and a saturated aq NaCl solution (2 x 100 mL), dried over 

MgSO4 and removal of the solvent in vacuum led to the desired diazo ketone. The crude 

diazo ketone was used without further purification steps. 

The diazo ketone was dissolved in THF/H2O (9:1, 94.0 mL) and AgOCOPh (0.10 eq) was 

added under light exclusion. The reaction mixture was sonicated in an ultrasound bath 

at rt for 2 h. Afterwards, H2O and EtOAc were added and the aqueous phase was 

acidified with 2 M HCl solution to a pH of 2. The aqueous phase was extracted with 

EtOAc (3 x 100 mL) and the combined organic phases were washed with saturated aq 

NaCl solution (3 x 50.0 mL), dried over MgSO4 and the solvent was removed under 

reduced pressure to give the desired crude D-3-amino acid. 

 

5.2.2 Loading of the First Amino Acid  

In a BD Discardit II syringe (BECTON DICKINSON, Fraga, Spain) equipped with a PE frit, the 

resin (1.00 eq) was swollen in solvent (-peptides: DMF or -peptides: DCM) for a 

specific time (-peptides: 2 h or -peptides: 30 min) at rt. Afterwards, it was washed 
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with NMP (5 x) followed by microwave-assisted Fmoc deprotection with 20% piperidine 

in solvent (-peptides: DMF or -peptides: NMP) (1: 50 °C, 25 W, 30 s; 2: 50 °C, 25 W, 

3 min) using a DISCOVER microwave (CEM, North Carolina, USA). Between the two 

deprotection steps the resin was washed with NMP (3 x) and afterwards with NMP, 

DCM, DMF (10 x each) and NMP (3 x). Then, a solution of the specific amino acid 

(5.00 eq), HOBt (5.00 eq) and DIC (5.00 eq) in solvent (-peptides: DMF or -peptides: 

NMP) was added and the coupling was carried out by microwave irradiation (-peptides: 

40 °C, 20 W, 10 min; -peptides: 60 °C, 35 W, 15 min) using a DISCOVER microwave (CEM). 

Double coupling was performed for each peptide. Between the coupling steps the resin 

was washed with NMP (3 x) and after final coupling thoroughly with NMP, DCM, DMF 

(10 x each), then with MeOH, Et2O and DCM (5 x each) and dried in vacuo. After 

synthesis, the loading density was estimated via UV analysis (5.2.3), followed by capping 

(5.2.4) and washing with NMP, DCM, DMF and NMP (10 x each). 

 

5.2.3 UV/vis Analysis of the Resin Loading Efficiency  

The experimental procedure was performed according to literature.[166] Dry resin was 

placed in a 10 mL graduated flask, 2 mL of a 2% DBU solution in DMF was added and 

the mixture was slowly shaken at rt for 2 h. Then the flask was filled up with MeCN to 

10 mL. Afterwards, 2 mL of this solution were taken, and it was fill up with MeCN to 

25 mL. A reference solution was prepared using the same procedure, but without resin. 

The absorption of the solution was measured at 304 nm and 20 °C. The following 

equation (3) was used for calculating the resin loading: 

resin loading [
mmol

g
] = (𝐴𝑏𝑠sample − 𝐴𝑏𝑠ref) ∙

16.4

(mg of resin)
 (3) 

 

5.2.4 Capping  

For the acetylation of free amine groups, a solution of Ac2O/2,6-lutidine/NMP (1:2:7, 

v/v/v) was added to the swelled resin and the mixture was shaken at rt for 5 min. Then, 
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the capping solution was removed, and the procedure was repeated. After removing of 

the reaction mixture, the resin was washed thoroughly with NMP, DCM (10 x each) and 

DMF (5 x).  

 

5.2.5 Manual SPPS: α-Peptide 

The Fmoc-Ala-preloaded resin (0.05 mmol, 1.00 eq) was swollen in DMF in a 2 mL BD 

Discardit II syringe equipped with a PE frit at rt for 2 h, followed by washing with NMP 

(5 x). Each coupling cycle was started with microwave-assisted double Fmoc 

deprotection by adding 20% piperidine in DMF (1: 50 °C, 25 W, 30 s; 2: 50 °C, 25 W, 

3 min) using a DISCOVER microwave (CEM). Washing between the deprotection steps with 

NMP (3 x) was performed and afterwards thoroughly with NMP, DCM, DMF and NMP 

(10 x each). The coupling mixture consisted of the respective amino acid (5.00 eq) in 

NMP (0.25 mL), a solution of HOBt/HBTU (5.00 eq/4.90 eq) in DMF (500 L) and a 2 M 

solution of DIEA (10.0 eq) in NMP (250 L). The mixture was added, and the coupling 

was carried out by microwave irradiation (50 °C, 25 W, 10 min) using a DISCOVER 

microwave (CEM). Double coupling was performed, and the resin was washed between 

the coupling steps with NMP (3 x) and afterwards thoroughly with NMP, DCM, DMF and 

NMP (10 x each). The following amino acids were coupled using standard conditions as 

mentioned above. Upon completion of the sequence, the resin was dried in vacuo. 

 

5.2.6 Manual SPPS: β-Peptide 

The Fmoc--amino acid loaded resin (1.00 eq) was swollen in DCM in a BD Discardit II 

syringe equipped with a PE frit at rt for 30 min, followed by washing with NMP (5 x). 

Each coupling cycle was started with microwave-assisted double Fmoc deprotection by 

adding 20% piperidine in NMP (1: 50 °C, 25 W, 30 s; 2: 50 °C, 25 W, 3 min) using a 

DISCOVER microwave (CEM) and washing between the deprotection steps with NMP (3 x) 

and afterwards thoroughly with NMP and DCM (10 x each), DMF (5 x) and NMP (3 x). 

The -amino acid (4.00 eq) and the activation reagents HOAt/HATU (4.00 eq/3.90 eq) 
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were placed in a small sample vessel. Then a solvent mixture of NMP/DMF/DMSO 

(1:0.8:0.2, v/v/v) was added and the solution was sonicated. Afterwards, the activation 

bases (2,6-lutidine/DIEA, 4.80 eq/3.20 eq) were added and the mixture was subjoined 

with the resin. The coupling was carried out by microwave irradiation (60 °C, 25 W, 

15 min) using a DISCOVER microwave (CEM). Double coupling was performed (3.00 eq 

amino acid; 2,6-lutidine/DIEA, 3.60 eq/2.40 eq) and the resin was washed between the 

coupling steps with NMP (3 x) and afterwards thoroughly with NMP and DCM (10 x 

each), DMF (5 x) and NMP (3 x). The coupling conditions described above were changed 

after the 7th coupled amino acid. Then, the solvent mixture contained 0.8 M LiCl in 

NMP/DMF/DMSO (1:0.8:0.2, v/v/v), the power was changed (for more details see 

section 5.3.7) and the reaction time was increased to 30 min (for every 4th amino acid 

after the 3-hTOPP it was increased to 35 min and for the last 5 amino acids to 40 min 

coupling time). Upon completion of the sequence, the resin was dried in vacuo. 

 

5.2.7 Automatic SPPS 

The Fmoc-amino acid preloaded resin (1.00 eq) was swollen in NMP at rt for 2 h. The 

chain elongation was performed using a microwave-assisted automatic peptide 

synthesiser LibertyTM (CEM) equipped with a DISCOVER microwave (CEM). Each coupling 

cycle started with a microwave-assisted double Fmoc deprotection by a 20% piperidine 

solution in NMP (1: 50 °C, 25 W, 30 s; 2: 50 °C, 25 W, 3 min) followed by the coupling 

step. Each amino acid was activated by HOBt/HBTU (5.00 eq/4.90 eq) and DIEA 

(10.0 eq). Double coupling was performed with microwave irradiation (75 °C, 25 W, 5 

min). Cysteine was coupled at a lower temperature (50 °C, 25 W, 5 min). After synthesis, 

the resin was dried in vacuo. 

 

5.2.8 Coupling of the β-TOPP Label 

All -peptides contained two hTOPP labels within the sequence. Both hTOPP labels 

were coupled with 2.00 eq using the activation reagents HOAt/HATU (2.00 eq/1.90 eq) 
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and the activation bases 2,6-lutidine/DIEA (2.40 eq/1.60 eq). The first label was coupled 

in a solvent mixture of NMP/DMF/DMSO (1:0.8:0.2, v/v/v) and microwave irradiation 

(60 °C, 25 W, 15 min). The coupling of the second label was carried out in a solvent 

mixture of 0.8 M LiCl in NMP/DMF/DMSO (1:0.8:0.2, v/v/v) and by microwave 

irradiation (60 °C, power see Chapter, 35 min). Afterwards, the resin was successively 

washed with NMP and DCM (10 x each), DMF (5 x) and NMP (3 x). 

 

5.2.9 Cleavage and Post-Cleavage Work-Up 

The peptide cleavage from the resin and simultaneous deprotection of the protecting 

groups were performed at rt for 2 h in a mixture of 

• TFA/H2O/TIS (95:2.5:2.5, v/v/v) for all peptides without cysteine 

• TFA/H2O/EDT/TIS (94:2.5:2.5:1, v/v/v/v) for the cysteine mutated peptide. 

After cleavage of the peptide from the resin, the resulting solution was concentrated in 

a nitrogen stream and the addition of ice-cold Et2O led to precipitation of the peptide. 

The resulting suspension was centrifugated at -5 °C followed by decanting of the 

supernatant and washing of the peptide pellet with ice-cold Et2O (3 x). The crude 

peptide was dried in vacuo. 

 

5.2.10 Re-oxidation of the TOPP Label  

The crude peptide (1.00 eq) was dissolved in MeOH (-peptide) or in MeCN/MeOH 

(-peptide; ratio see section 5.3.7) (100 L for 2 mg), Cu(OAc)2 (3.00 eq for each TOPP 

label) was added and the resulting mixture was stirred at rt for 2 h followed by 

purification via HPLC.[48] 

 

5.2.11 Preparation of Peptide-Lipid Vesicles: SUV 

The CD experiments in lipids (-peptides: POPC and DMPC, -peptides: DOPC and POPC) 

were performed using a P/L ratio of 1/30 for the -peptides and 1/20 for the -peptides 

in a 50 mM sodium phosphate buffer (pH 7.5, 150 L) and peptide concentrations of -

peptides: 9.80 M (0.03 mg/mL) for P1 and 16.6 M (0.05 mg/mL) of P2 and P3 and -
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peptides: 20 M for all peptides. For the preparation of the SUVs, solutions of the 

peptide in MeOH (150 L) and the lipids in CHCl3 were mixed, followed by removal of 

the solvents in a nitrogen stream. The resulting lipid film was dried over night in vacuo 

at 50 °C. The buffer was added, and the film swollen for a specific time (-peptides: at 

rt for 30 min, -peptides: 40 °C for 2 h) followed by vortexing the mixture for 1 min in 

5 min intervals (3 x). To form SUVs, the mixture was treated with the ultrasound sonifier 

sonoplus HD2076 (BANDELIN, Berlin, Germany; 30 min, Cycle 4, 60% power).  
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5.3 Synthesis 

5.3.1 Synthesis of Fmoc-L-TOPP-OH 

The -TOPP building block 36 was synthesised according to the procedures described 

by SVEN STOLLER.[48] Changes in the synthesis are mentioned in chapter 3.3. 

5.3.1.1 Cbz-L-Hpg-OBn (26) 

 

 

 

4-Hydroxyphenylglycine (25) (5.59 g, 33.5 mmol, 1.00 eq) was dissolved in an aqueous 

solution of Na2CO3 (10%, 75.0 mL) and was cooled to 0 °C. Then, CbzCl (5.21 mL, 6.05 g, 

35.5 mmol, 1.10 eq) in toluene (5.21 mL) and dioxane (56.0 mL) was added drop-wise 

to the stirred solution. The final reaction mixture was stirred at 0 °C for 30 min and then 

at rt for 1 h. The organic solvent was evaporated. Ice-water (185 mL) was added to the 

residual aqueous phase and the aqueous phase was washed with EtOAc (3 x 50.0 mL). 

Afterwards, the aqueous phase was acidified with 2 M aq HCl to pH 2 and extracted with 

EtOAc (3 x 75.0 mL). The combined extracts were washed with water (50.0 mL), 

saturated aq NaCl solution (50.0 mL), and then dried over MgSO4. The solvent was 

evaporated under reduced pressure and the Cbz-protected amino acid (9.62 g, 

31.9 mmol, 95%) was obtained as a colourless solid. 

A suspension of the Cbz-protected amino acid (8.50 g, 28.2 mmol, 1.00 eq) and NaHCO3 

(2.47 g, 29.3 mmol, 1.04 eq) in dry DMF (142 mL) was cooled to 0 °C and BnBr (5.85 g, 

34.2 mmol, 1.21 eq) was added drop-wise. Then, the reaction mixture was stirred at rt 
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for 15 h. Afterwards, H2O (213 mL) was added to the mixture. The aqueous phase was 

extracted with EtOAc (3 x 100 mL). The combined organic phases were washed with 

H2O (160 mL), saturated aq NaCl solution (3 x 100 mL) and dried over MgSO4. The 

solvent was removed under reduced pressure. The crude residue was washed with 

pentane to give the pure product 26 (8.53 g, 21.8 mmol, 77%) as a colourless solid. 

 

1H-NMR (300 MHz, CDCl3):  (ppm) = 7.47‒6.98 (m, 12 H, aromatic CH), 6.79‒6.61 (m, 

2 H, aromatic CH), 5.80 (d, 3JHH = 7.0 Hz, 1 H, NH), 5.32 (d, 3JHH = 7.0 Hz, 1 H,-CH), 

5.27-4.92 (m, 4 H, CH2). 

13C-NMR (126 MHz, CDCl3):  (ppm) = 170.89 (COOBn), 156.18, (aromatic C-OH), 155.54 

(Cbz CONH), 136.13, 135.19, 128.62, 128.60, 128.50, 128.43, 128.29, 128.20, 128.02, 

121.58, 116.00, 115.93 (aromatic C), 67.60, 67.43 (CH2), 57.76 (-C). 

ESI-MS: m/z = 392.2 [M+H]+, 414.1 [M+Na]+, 805.3 [2M+Na]+, 390.1 [M-H]-, 781.3 

[2M-H]-. 

ESI-HRMS: m/z calculated for C23H21NO5Na [M+Na]+: 414.1312, found: 414.1311.  
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5.3.1.2 Cbz-L-Hpg(Tf)-OBn (27) 

 

 

 

A solution of Cbz-L-Hpg-OBn (26) (4.79 g, 11.8 mmol, 1.00 eq) and pyridine (2.75 mL, 

2.69 g, 35.4 mmol, 3.00 eq) in dry DCM (36.0 mL) was cooled to 0 °C. Then, Tf2O 

(2.89 mL, 5.00 g, 17.7 mmol, 1.50 eq) was added slowly and the reaction mixture was 

stirred at 0 °C for 15 min. The solution was allowed to warm up to rt and then stirred 

for 20 min. The reaction was quenched with saturated NaHCO3 solution (62.0 mL) and 

the resulting aqueous phase was extracted with DCM (3 x 50.0 mL). The combined 

organic phases were washed with saturated aq NaCl solution (3 x 50.0 mL), dried over 

MgSO4 and the solvent was removed under reduced pressure. Pyridine was removed as 

an azeotropic mixture with toluene to give the product 27 (6.26 g, 11.6 mmol, 99%) as 

an orange solid. 

 

1H-NMR (300 MHz, CDCl3):  (ppm) = 7.49‒7.03 (m, 14 H, aromatic CH), 6.04 (d, 

3JHH = 7.0 Hz, 1 H, NH), 5.46 (d, 3JHH = 7.0 Hz, 1 H,-CH), 5.22‒4.97 (m, 4 H, CH2). 

13C-NMR (126 MHz, CDCl3):  (ppm) = 169.86 (COOBn), 155.35 (aromatic C-OTf), 149.49 

(Cbz CONH), 137.41, 136.01, 134.77, 129.22, 128.70, 128.67, 128.44, 128.33, 128.13, 

121.88 (aromatic C), 118.84 (q, 1JCF = 321.3 Hz, CF3), 67.96, 67.45 (CH2), 57.35 (-C). 

19F-NMR (282 MHz, CDCl3):  (ppm) = -72.81 (s, 3 F, CF3). 

ESI-MS: m/z = 524.1 [M+H]+, 546.1 [M+Na]+, 1069.2 [2M+Na]+. 

ESI-HRMS: m/z calculated for C24H20F3NO7SNa [M+Na]+: 546.0805, found: 546.0787.  



Experimental Part 

 

 
141 

 

5.3.1.3 Bn2-L-Hpg(Tf)-OBn (28) 

 

 

 

A solution of Cbz-L-Hpg(Tf)-OBn (27) (9.84 g, 18.8 mmol, 1.00 eq) and (CH3)2S (41.3 mL, 

35.0 g, 564 mmol, 30.0 eq) in TFA (168 mL) was stirred at rt for 17 h. Then, TFA was 

evaporated as an azeotropic mixture with toluene to give the crude deprotected amino 

acid. DMSO (99.0 mL) and NaHCO3 (9.47 g, 113 mmol, 6.00 eq) were added to the crude 

intermediate. Afterwards, BnBr (28.0 mL, 57.8 g, 338 mmol, 18.0 eq) was added drop-

wise. The reaction mixture was stirred at rt for 25 h. Then, H2O (600 mL) and EtOAc 

(200 mL) were added and the aqueous phase was extracted with EtOAc (2 x 200 mL). 

The combined organic phases were washed with H2O (200 mL), saturated aq NaCl 

solution (3 x 200 mL) and dried over MgSO4. The solvent was removed under reduced 

pressure. The crude product was purified by flash-column chromatography (100% 

pentane, then 100% DCM) to give the product 28 (4.12 g, 7.23 mmol, 77%) as a 

colourless oil. 

 

1H-NMR (300 MHz, CDCl3):  (ppm) = 7.59‒7.05 (m, 19 H, aromatic CH), 5.35 (d, 

2JHH = 12.0 Hz, 1 H, CH2), 5.23 (d, 2JHH = 12.0 Hz, 1 H,CH2), 4.66 (s, 1 H, -CH), 3.79 (d, 

2JHH = 15.0 Hz, 2 H,CH2), 3.79 (d, 2JHH = 15.0 Hz, 2 H,CH2), 3.71 (d, 2JHH = 12.0 Hz, 

2 H,CH2). 

13C-NMR (126 MHz, CDCl3):  (ppm) = 171.18 (COOBn), 149.07 (aromatic C-OTf), 139.01, 

137.49, 135.66, 130.71, 128.85, 128.75, 128.73, 128.68, 128.51, 121.29 (aromatic C), 
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118.86 (q, 1JCF = 318.8 Hz, CF3), 66.67 (CH2), 65.07 (-C), 54.43 (CH2). 

19F-NMR (282 MHz, CDCl3):  (ppm) = -72.80 (s, 3 F, CF3). 

ESI-MS: m/z = 570.2 [M+H]+, 592.1 [M+Na]+. 

ESI-HRMS: m/z calculated for C30H27F3NO5S [M+H]+: 570.1557, found: 570.1549. 
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5.3.1.4 Bn2-4-pinacolboryl-L-Phg-OBn (29) 

 

 

 

Under an Ar-atmosphere, a suspension of hydroxyphenylglycine derivative 28 (3.17 g, 

5.57 mmol, 1.00 eq), B2pin2 (1.69 g, 6.69 mmol, 1.20 eq), KOAc (1.65 g, 16.8 mmol, 

3.02 eq), PdCl2(dppf) (410 mg, 560 mol, 0.10 eq) and dppf (310 mg, 560 mol, 0.10 eq) 

in degassed dioxane (57.0 mL) was stirred at 80 °C for 7 h. Afterwards, the suspension 

was mixed with EtOAc (254 mL). Then, the organic phase was washed with saturated aq 

NaCl solution (3 x 100 mL), dried over MgSO4 and the solvent was removed under 

reduced pressure. Purification by flash-column chromatography (pentane/EtOAc, 97:3 

 3:2) led to the desired product 29 (2.75 g, 5.03 mmol, 90%) as a light yellowish oil.  

 

1H-NMR (300 MHz, CDCl3):  (ppm) = 7.78 (d, 3JHH = 8.1 Hz, 2 H, aromatic CH), 7.41‒7.17 

(m, 17 H, aromatic CH), 5.31 (d, 2JHH = 12.0 Hz, 1 H, CH2), 5.19 (d, 2JHH = 12.0 Hz, 1 H,CH2), 

4.67 (s, 1 H, -CH), 3.75 (s, 4 H,CH2), 1.34 (s, 12 H, CH3). 

13C-NMR (126 MHz, CDCl3):  (ppm) = 171.92 (COOBn), 139.82, 139.50, 135.92, 134.87, 

128.90, 128.65, 128.58, 128.43, 128.36, 128.30, 127.12 (aromatic C), 83.94 (C(CH3)2), 

66.34 (CH2), 66.01 (-C), 54.32 (CH2), 25.15, 25.02, 24.96 (CH3). 

ESI-MS: m/z = 548.3 [M+H]+. 

ESI-HRMS: m/z calculated for C35H39BNO4 [M+H]+: 548.2973, found: 548.2967.  
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5.3.1.5 Bn2-4-dihydroxyboron-L-Phg-OBn (30) 

 

 

 

Boronic ester 29 (3.46 g, 6.32 mmol, 1.00 eq) was dissolved in acetone (287 mL) and 

H2O (253 mL). Then, NaIO4 (4.19 g, 19.6 mmol, 3.10 eq) and NH4OAc (1.46 g, 19.0 mmol, 

3.00 eq) were added. The resulting reaction mixture was stirred at rt for 2 d. Afterwards, 

the organic solvent was evaporated under reduced pressure and the residual aqueous 

phase was extracted with Et2O (3 x 100 mL). The combined organic phases were washed 

with saturated aq NaCl solution (3 x 50 mL) and dried over MgSO4. Removal of the 

organic solvent under reduced pressure gave the final product 30 (2.55 g, 5.48 mmol, 

87%) as a colourless solid.  

 

1H-NMR (300 MHz, CDCl3):  (ppm) = 8.22 (d, 3JHH = 7.9 Hz, 2 H, aromatic CH), 7.51 (d, 

3JHH = 7.9 Hz, 2 H, aromatic CH), 7.48‒7.18 (m, 15 H, aromatic CH), 5.39 (d, 2JHH = 12.2 

Hz, 1 H, CH2), 5.26 (d, 2JHH = 12.2 Hz, 1 H,CH2), 4.78 (s, 1 H, -CH), 3.83 (s, 4 H,CH2). 

13C-NMR (126 MHz, CDCl3):  (ppm) = 171.82 (COOBn), 141.51, 139.44, 135.89, 135.77, 

128.94, 128.70, 128.59, 128.50, 128.44, 127.22 (aromatic C), 66.47 (CH2), 66.04 (-C), 

54.44 (CH2). 

ESI-MS: m/z = 480.2 [M+CH3+H]+, 502.2 [M+Na]+. 

ESI-HRMS: m/z calculated for C30H32BNO4 [M+CH3+H]+: 480.2346, found: 480.2360.  
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5.3.1.6 Bn2-4-(3,3,5,5-tetramethyl-2,6-dioxopiperazine-1-yl)-L-Phg-OBn (34) 

 

 

 

A suspension of the boronic acid 30 (3.56 g, 7.65 mmol, 1.00 eq), piperazine-2,6-dion 

33 (1.30 g, 7.65 mmol, 1.00 eq), Cu(OAc)2 (1.39 g, 7.65 mmol, 1.00 eq), Et3N (1.48 mL, 

1.08 g, 10.70 mmol, 1.40 eq) and 4 Å molecular sieve powder (4.00 g) in DMSO (160 mL) 

was stirred at rt under an oxygen atmosphere for 14 d. Afterwards, the reaction mixture 

was filtered using a glass fiber filter. EtOAc (220 mL), H2O (200 mL) and 1 M aq HCl 

(100 mL) were added to the filtrate and the phases were separated. The aqueous phase 

was extracted with EtOAc (3 x 100 mL). Then, the organic phases were combined and 

washed with saturated aq NaCl solution (3 x 100 mL) and dried over MgSO4. The solvent 

was removed under reduced pressure. Purification via flash-column chromatography 

(pentane/EtOAc, 2:1  1:1) gave the product 34 (3.07 g, 5.21 mmol, 68%) as a light 

yellowish solid. 

 

1H-NMR (300 MHz, CDCl3):  (ppm) = 7.47 (d, 3JHH = 8.4 Hz, 2 H, aromatic CH), 7.41‒7.22 

(m, 15 H, aromatic CH), 7.07 (d, 3JHH = 8.4 Hz, 2 H, aromatic CH), 5.36 (d, 2JHH = 12.2 Hz, 

1 H, CH2), 5.19 (d, 2JHH = 12.2 Hz, 1 H,CH2), 4.69 (s, 1 H, -CH), 3.83 (d, 2JHH = 14.0 Hz, 

2 H, CH2), 3.73 (d, 2JHH = 14.0 Hz, 2 H,CH2), 1.52 (s, 12 H, CH3). 

13C-NMR (126 MHz, CDCl3):  (ppm) = 176.61 (CONR2), 171.49 (COOBn), 139.18, 136.90, 

135.81, 135.01, 129.47, 128.84, 128.64, 128.58, 128.42, 128.36, 128.25, 127.13 
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(aromatic C), 66.38 (-C), 65.47 (CH2), 56.05 (C(CH3)2), 54.29 (CH2), 28.54, 28.51 (CH3). 

ESI-MS: m/z = 590.3 [M+H]+. 

ESI-HRMS: m/z calculated for C37H40N3O4 [M+H]+: 590.3013, found: 590.3015. 
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5.3.1.7 Fmoc-4-(3,3,5,5-tetramethyl-2,6-dioxopiperazine-1-yl)-L-Phg-OH (35) 

 

 

 

Amino acid 34 (500 mg, 850 mol, 1.00 eq) was dissolved in MeOH (20.0 mL) and DCM 

(3.00 mL). Then, Pd(OH)2/C (50% H2O, 100 mg, 71.2 mol, 0.08 eq) was added and the 

solvent was degassed with H2. Afterwards, the reaction mixture was stirred at rt under 

a H2 atmosphere for 20 h. The suspension was filtered through a pleated filter and then 

the filtrate was passed through a micron syringe filter. The filtrate was concentrated in 

vacuo and the residue was dissolved in DMF (5.10 mL) and NaHCO3 (143 mg, 1.70 mmol, 

2.00 eq). After, Fmoc-OSu (287 mg, 850 mol, 1.00 eq) was added. The mixture was 

stirred at rt for 21 h. Then, to the suspension was added H2O (25.0 mL). The aqueous 

phase was acidified with 2 M aq HCl to pH 2 and extracted with EtOAc (3 x 50.0 mL). The 

combined organic phases were washed with saturated aq NaCl solution (50.0 mL), dried 

over MgSO4 and the solvent was removed under reduced pressure. Purification by flash-

column chromatography (DCM/MeOH/AcOH, 98:2:0.1  96:4:0.5) led to the product 

35 (285 mg, 560 mol, 62%) as a colourless solid.  

 

1H-NMR (300 MHz, DMSO-d6):  (ppm) = 8.27 (d, 3JHH = 8.1 Hz, 1 H, NH), 7.89 (d, 

3JHH = 7.5 Hz, 2 H, aromatic CH), 7.83‒7.70 (m, 2 H, aromatic CH), 7.53 (d, 3JHH = 8.0 Hz, 

2 H, aromatic CH), 7.45‒7.07 (m, 6 H, aromatic CH), 5.27 (d, 2JHH = 8.1 Hz, 1 H, -CH), 

4.36‒4.20 (m, 3 H, Fmoc CH, Fmoc CH2), 1.41 (s, 12 H, CH3). 
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13C-NMR (126 MHz, DMSO-d6):  (ppm) = 176.55 (CONR2), 171.72 (COOH), 155.82 

(CONH), 143.75, 143.74, 140.65, 136.93, 135.72, 128.82, 128.59, 128.23, 128.11, 

127.57, 127.02 119.99 (aromatic C), 65.99 (Fmoc CH2), 57.69 (-C), 55.36 (C(CH3)2), 

46.60 (CH2), 27.99 (CH3). 

ESI-MS: m/z = 542.2 [M+H]+, 559.3 [M+NH4]+, 564.2 [M+Na]+, 1083.5 [2M+H]+, 540.2 

[M-H]-, 1081 [2M-H]-. 

ESI-HRMS: m/z calculated for C31H32N3O6 [M+H]+: 542.2286, found: 542.2279. 
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5.3.1.8 Fmoc-4-(3,3,5,5-tetramethyl-2,6-dioxo-4-oxylpiperazine-1-yl)-L-Phg-OH (36) 

 

 

 

Fmoc-protected amino acid 35 (400 mg, 740 mol, 1.00 eq) was dissolved in DCM 

(98.0 mL) and cooled to 0 °C. Then, a solution of m-CPBA (70%, 364 mg, 1.48 mmol, 

2.00 eq) in DCM (2.00 mL) was added. The reaction mixture was stirred at 0 °C for 

15 min and then at rt for 5 h. The solvent was removed under reduced pressure and the 

crude product was purified by flash-column chromatography (DCM/MeOH/AcOH, 

99.5:0.5:0.1  96.5:3.5:0.1) to get the final product 36 (350 mg, 630 mol, 85%) as an 

orange solid. 

 

ESI-MS: m/z = 574.3 [M+NH4]+, 579.2 [M+Na]+, 1135.4 [2M+Na]+, 555.2 [M-H]-. 

ESI-HRMS: m/z calculated for C31H29N3O7 [M-H]-: 555.2011, found: 555.2006. 
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5.3.1.9 2,2’-Imino-bis(2-methylpropionitrile) (32)[167] 

 

 

 

KCN (78.1 g, 1.20 mol, 1.24 eq), NH4Cl (77.0 g, 1.44 mol, 1.48 eq) and aq NH3 (33%, 

500 mL) were mixed and cooled to 0 °C. At this temperature acetone (31) (71.2 mL, 

56.3 g, 970 mmol, 1.00 eq) was added drop-wise over 1 h. The resulting reaction 

mixture was stirred at rt for 5 h. Afterwards, the aqueous phase was extracted with 

DCM (3 x 250 mL). The combined organic phases were dried over MgSO4 and the 

solvent was removed in vacuo. Purification via distillation (20 mbar, 52 °C) of the 

residue gave the pure intermediate product 2-amino-2-methylpropionitrile (62.2 g, 

0.74 mmol, 74%). Afterwards, this was stirred at 20 mbar and 100 °C for 3 d to form 

product 31. The crude compound 32 was purified via distillation (20 mbar, 40 °C) to get 

the pure product 32 (27.7 g, 180 mol, 36%) as a yellowish solid. 

 

1H-NMR (400 MHz, CDCl3):  (ppm) = 1.65 (s, 12 H, CH3).  

13C-NMR (101 MHz, CDCl3):  (ppm) = 123.46 (CN), 49.20 (C(CH3)2), 29.14 (CH3). 

ESI-HRMS: m/z calculated for C8H14NO2 [M+H]+: 152.1182, found: 152.1176; m/z 

calculated for C8H13NO2Na [M+Na]+: 174.1002, found: 174.1005. 
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5.3.1.10 3,3,5,5-Tetramethylpiperazine-2,6-dione (33)[167] 

 

 

 

H2SO4 (68%, 62.0 mL) was cooled to 5 °C and compound 32 (8.85 g, 58.5 mmol, 1.00 eq) 

was added portion-wise over 2 h. The resulting solution was stirred at rt for 3 d. Then, 

the mixture was stirred at 100 °C for 1 h and finally at rt for 16 h. Afterwards, the 

reaction mixture was added to ice (750 g) and 10 M aq NaOH solution was added slowly 

until the aqueous phase was neutralised. The solvent was removed under reduced 

pressure. The residue was suspended in MeOH. The white precipitation (Na2SO4) was 

filtered off and the filtrate was concentrated in vacuo. The crude product was washed 

with H2O and pentane to give the pure product 33 (2.62 g, 15.4 mmol, 26%) as a 

colourless solid. 

 

1H-NMR (300 MHz, DMSO-d6):  (ppm) = 10.60 (s, 1 H, NH), 2.72 (s, 1 H, NH), 1.27 (s, 

12 H, CH3).  

13C-NMR (126 MHz, DMSO-d6):  (ppm) = 177.67 (CONHR), 54.67 (C(CH3)2), 27.73 (CH3). 

ESI-MS: m/z = 171.1 [M+H]+, 193.1 [M+Na]+, 169.1 [M-H]-. 

ESI-HRMS: m/z calculated for C8H15N2O2 [M+H]+: 171.1128, found: 171.1131. 
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5.3.2 α-Peptide Synthesis 

5.3.2.1 Synthesis of P1 

 

 

 

The peptide synthesis of P1 was performed on a Rink Amide MBHA resin LL (50.0 mol, 

0.36 mmol/g, 1.00 eq). Loading of the resin with Fmoc-Ala-OH was carried out 

according to procedure described in section 5.2.2. Chain elongation was performed 

according to the procedure shown in section 5.2.5 using the amino acids Fmoc-

Trp(Boc)-OH, Fmoc-Leu-OH, Fmoc-Ala-OH and Fmoc-Lys(Boc)-OH. The amino acid 

Fmoc-TOPP-OH (2.00 eq) was coupled under inert atmosphere in a flask with the 

coupling reagent DEPBT (2.00 eq) and the base NaHCO3 (2.00 eq) in dry THF (1.00 mL) 

at 0 °C for 4.5 h and then at rt for 30 min. After coupling, the resin was washed with 

NMP, DCM, MeOH, Et2O and DCM (10 x each). Double coupling was executed with a 

longer reaction time of the second coupling (at 0 °C for 11.5 h and at rt for 30 min). 

Afterwards, capping was performed using the protocol described in section 5.2.4. The 

native amino acids were coupled using standard conditions as mentioned in section 

5.2.5. The second TOPP label was coupled as mentioned above. A third coupling was 

performed with the same reaction time as for the second coupling. The peptide was 

cleaved from the resin using procedure described in section 5.2.9. The re-oxidation of 
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the two radicals were carried out using the protocol given in section 5.2.10. 

 

HPLC: (gradient 80 → 100% B in 30 min): tR = 23.05 min.  

ESI-MS: m/z = 1023.5 [M+3H]3+, 1534.8 [M+2H]2+.  

ESI-HRMS: m/z calculated for C157H227N34O30 [M+3H]3+: 1534.8629, found: 1534.8638. 
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5.3.2.2 Synthesis of P3 

 

 

 

The synthesis of the cysteine mutated peptide P2 was performed on a Rink Amide 

MBHA resin (1.00 mmol, 0.57 mmol/g, 1.00 eq). Loading of the resin with Fmoc-Ala-OH 

was carried out using procedure described in section 5.2.2. Chain elongation was performed 

via automatic SPPS according to the protocol described in section 5.2.7 using the amino 

acids Fmoc-Trp(Boc)-OH, Fmoc-Leu-OH, Fmoc-Ala-OH and Fmoc-Cys(Trt)-OH. The peptide 

was cleaved from the resin using the procedure shown in section 5.2.9. 

To attach the MTSSL, the raw cysteine mutated peptide P2 (1.00 eq) was dissolved in 

MeOH (100 L for 2.00 mg) and MTSSL (3.00 eq for each cysteine) was added. The 

resulting mixture was shaken at rt over night, and then purified by HPLC to get the pure 

P3. 

 

HPLC (gradient 80  100% B in 30 min): tR = 24.20 min. 

ESI-MS: m/z = 753.7 [M+4H]4+, 1004.2 [M+3H]3+, 1505.8 [M+2H]2+.  

ESI-HRMS: m/z calculated for C149H229N32O26S4 [M+3H]3+: 1004.2170, found: 1004.2181. 
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5.3.3 Synthesis of a Spin label with Enhanced Rigidity 

5.3.3.1 2,5-Diisopropylphenyl trifluoromethanesulfonate (41)[168] 

 

 

 

The reaction was performed using procedure described in subsection 5.3.1.2 and 

compound 40 (2.19 mL, 2.11 g, 11.8 mmol, 1.00 eq) was used as starting material. 

Product 41 (3.25 g, 10.5 mmol, 89%) was isolated as a pale yellow liquid. 

 

1H-NMR (400 MHz, CDCl3):  (ppm) = 7.37‒7.30 (m, 1 H, aromatic CH), 7.28‒7.23 (m, 

2 H, aromatic CH), 3,37 (hept, 3JHH = 6.8 Hz, 2 H,CH), 1.27 (d, 3JHH = 6.8 Hz, 12 H, CH3). 

13C-NMR (101 MHz, CDCl3):  (ppm) = 143.73, 142.20 (aromatic C), 118.87 (q, 

1JCF = 324.2 Hz, CF3), 27.49 (CH), 23.74 (CH3). 

19F-NMR (376 MHz, CDCl3):  (ppm) = -73.45 (s, 3 F, CF3). 

EI: m/z = 135.1 [M+H-CF3SO3-(Me)2]+, 310.1 [M]+. 
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5.3.3.2 2,5-Diisopropyl-4-hydroxy benzylaldehyde (48)[169] 

 

 

 

Compound 47 (2.08 mL, 2.00 g, 11.2 mmol, 1.00 eq), urotropine (3.15 g, 22.4 mmol, 

2.00 eq) and TFA (11.0 mL) were mixed and the resulting reaction mixture was stirred 

at 90 °C for 12 h. Afterwards, the reaction mixture was cooled to rt and the aqueous 

phase was neutralised with saturated aq NaHCO3 solution and extracted with EtOAc 

(3 x 50.0 mL). The solvent was removed under reduced pressure. Then, the residue was 

suspended in 3 M aq HCl and the mixture was stirred at 80 °C for 3 h. The precipitate 

was filtered off and washed with H2O. Recrystallisation from EtOH gave product 48 

(1.43 g, 6.94 mmol, 62%) as a pale yellow solid.  

 

1H-NMR (300 MHz, CDCl3):  (ppm) = 9.86 (s, 1 H, COH), 7.62 (s, 2 H, aromatic CH), 3.19 

(hept, 3JHH = 6.6 Hz, 2 H,CH), 1.31 (d, 3JHH = 6.9 Hz, 12 H, CH3). 

13C-NMR (101 MHz, CDCl3):  (ppm) = 191.95 (COH), 156.17 (aromatic C-OH), 134.59 

(aromatic CH), 129.83 (aromatic C), 126.37 (aromatic CH), 27.23 (CH(CH3)2), 22.66 (CH3). 

ESI-MS: m/z = 207.2 [M+H]+, 229.1 [M+Na]+, 205.1 [M-H]-. 

ESI-HRMS: m/z calculated for C13H19O2 [M+H]+: 207.1380, found: 207.1836. 
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5.3.3.3 2,5-Diisopropyl-4-benzyloxy benzylaldehyde (49)[170] 

 

 

 

Aldehyde 48 (500 mg, 2.42 mmol, 1.00 eq) was dissolved in acetone and BnBr (291 L, 

419 mg, 2.45 mmol, 1.01 eq) and K2CO3 (670 mg, 4.85 mmol, 2.00 eq) were added to 

the solution. The suspension was stirred at rt for 14 h. Then, the solvent was removed 

under reduced pressure. The residue was dissolved in EtOAc (20.0 mL) and washed with 

H2O (20.0 mL) and saturated aq NaCl solution (20.0 mL). The organic phase was dried 

over MgSO4 and the solvent was removed under reduced pressure to give the final 

product 49 (717 mg, 2.42 mmol, quant.) as a pale yellow oil. 

 

1H-NMR (300 MHz, CDCl3):  (ppm) = 9.96 (s, 1 H, RCOH), 7.70 (s, 2 H, aromatic CH), 

7.53‒7.30 (m, 5 H, aromatic CH), 4.86 (s, 2 H, CH2), 3.41 (hept, 3JHH = 6.9 Hz, 2 H,CH), 

1.28 (d, 3JHH = 6.9 Hz, 12 H, CH3). 

13C-NMR (101 MHz, CDCl3):  (ppm) = 192.08 (RCOH), 158.84 (aromatic C-OBn) 143.44, 

137.05, 133.38, 128.79, 128.37, 127.54, 126.44 (aromatic C), 76.70 (CH2), 26.95 

(CH(CH3)2), 24.02 (CH3). 

ESI-MS: m/z = 297.2 [M+H]+, 319.2 [M+Na]+. 

ESI-HRMS: m/z calculated for C20H24O2Na [M+Na]+: 319.1669, found: 319.1662. 
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The following subsections describe synthetic routes of compounds which are 

mentioned in the Appendix. 

5.3.3.4 2-Aminoisobutyric ethylester hydrochlorid (A-7)[171] 

 

 

 

EtOH (9.8 mL) was cooled to -78 °C and SOCl2 (900 L, 1.46 g, 12.2 mmol, 1.25 eq) was 

added drop-wise. After addition of 2-aminoisobutyric acid (A-6) (1.00 g, 9.79 mmol, 

1.00 eq), the reaction mixture was warmed up to rt and then stirred under reflux for 2 

h. The reaction was cooled to rt and the solvent was removed under reduced pressure. 

The crude product was dissolved in MeOH (10.0 mL) and the solvent was removed 

under reduced pressure to give the final product A-7 (1.64 g, 9.79 mmol, quant) as a 

colourless solid. 

 

1H-NMR (301 MHz, CD3OD):  (ppm) = 4.29 (q, 3JHH = 7.1 Hz, 2 H, CH2), 1.58 (s, 6 H, CH3), 

1.32 (t, 3JHH = 7.1 Hz, 3 H, CH3). 

13C-NMR (126 MHz, CD3OD):  (ppm) = 172.71 (COOEt), 63.88 (C(CH3)2), 57.79 (CH2), 

24.00 (C(CH3)2), 14.30 (CH3). 

ESI-MS: m/z = 132.1 [M+H-HCl]+. 

ESI-HRMS: m/z calculated for C6H14NO2 [M+H-HCl]+: 132.1019, found: 132.1018. 

Mp = 158 °C [Lit. 156‒157 °C]. 
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5.3.3.5 2-Tosyl-isobutyric ethylester (A-9) 

 

 

 

Ethyl 2-hydroxyisobutyrate (A-8) (510 L, 500 mg, 3.78 mmol, 1.00 eq) and TsCl (2.20 g, 

11.4 mmol, 3.00 eq) were dissolved in dry CHCl3 (4.00 mL), cooled to 0 °C and pyridine 

(1.47 mL, 1.44 g, 18.9 mmol, 5.00 eq) was added. The reaction mixture was warmed up 

to rt and stirred at rt for 40 h. Afterwards, the reaction was quenched with 2 M aq HCl 

(20.0 mL) and the phases were separated. The aqueous phase was extracted with CHCl3 

(3 x 50.0 mL). The combined organic phases were washed with saturated aq NaCl 

solution (50.0 mL) and dried over MgSO4. The solvent was removed under reduced 

pressure. Purification of the crude product via flash-column chromatography 

(pentane/DCM, 7:3  DCM) led to the desired product A-9 (660 mg, 2.32 mmol, 61%) 

as a colourless solid.  

 

1H-NMR (400 MHz, CDCl3):  (ppm) = 7.81‒7.52 (m, 2 H, aromatic CH), 7.34‒7.29 (m, 

2 H, aromatic CH), 4.27 (q, 3JHH = 7.1 Hz, 2 H, CH2), 2.47‒2.40 (m, 3 H, Tosyl CH3), 1.69 (s, 

6 H, CH3), 1.32 (t, 3JHH = 7.1 Hz, 3 H, CH3). 

13C-NMR (101 MHz, CDCl3):  (ppm) = 171.56 (COOEt), 144.49, 136.01, 129.67, 127.65 

(aromatic C), 86.08 (C(CH3)2), 62.13 (CH2), 25.95 (C(CH3)2), 21.75 (Tosyl CH3), 14.12 (CH3). 

ESI-MS: m/z = 309.1 [M+Na]+, 595.2 [2M+Na]+. 

ESI-HRMS: m/z calculated for C13H18O5SNa [M+Na]+: 309.0767, found: 309.0773. 
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5.3.3.6 3,3,5,5-Tetramethylmorpholine-2-one (A-12)[172] 

 

 

 

Under argon atmosphere, A-11 (10.0 g, 112 mmol, 1.00 eq), acetone (82.0 mL, 65.0 g, 

1.12 mol, 10.0 eq) and CHCl3 (13.5 mL, 20.0 g, 168 mmol, 1.50 eq) were placed in a 

250 mL three neck flask and cooled to 0 °C with an acetone/ice bath. The mixture was 

stirred vigorously with a KPG stirrer. Then, powdered NaOH (22.4 g, 560 mmol, 5.00 eq) 

was added keeping the internal temperature below 5 °C. The resulting suspension was 

stirred vigorously at 10 °C and afterwards at rt for 16 h. The reaction mixture was 

filtrated over Celite® and washed with acetone and MeOH. The filtrate was 

concentrated in vacuo to give the crude sodium carboxylate as a white solid. To this 

solid conc. HCl (150 mL) was added and the mixture was stirred under reflux for 6 h. 

The mixture was cooled to rt and HCl was removed under vacuum. Then, the flask was 

placed in an ice bath and a saturated aq NaHCO3 solution was added slowly until the 

solution became basic. The mixture was extracted with EtOAc (3 x 100 mL). The 

combined organic phases were washed with saturated aq NaCl solution (100 mL), dried 

over MgSO4 and the solvent was removed under reduced pressure to give product A-

12 (9.01 g, 57.0 mmol, 51%) as a brownish liquid. 

 

1H-NMR (300 MHz, CDCl3):  (ppm) = 4.08 (s, 2 H, CH2), 1.33 (s, 6 H, CH3), 1.10 (s, 6 H, 

CH3).  

13C-NMR (76 MHz, CDCl3):  (ppm) = 175.16 (COOR), 78.05 (CH2), 54.60, 49.14 (C(CH3)2), 

30.65, 26.45 (CH3). 
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ESI-MS: m/z = 158.1 [M+H]+, 180.1 [M+Na]+. 

ESI-HRMS: m/z calculated for C8H16NO2 [M+H]+: 158.1176, found: 158.1177. 

  



Experimental Part  

 

 
162 
 

5.3.3.7 N-(1-Carboxy-1-methylethyl)-2-methylalanine (A-3)[76] 

 

 

 

Conc. HCl (37%, 4.10 mL) was added to compound 32 (1.05 g, 6.96 mmol, 1.00 eq) and 

the mixture was stirred first at rt for 30 min, then under reflux for 2 h. Afterwards, the 

reaction mixture was neutralised with conc. aq NH3 and the solvent was removed in 

vacuo. The residue was recrystallised from H2O to give the final product A-3 (400 mg, 

2.08 mmol, 30%) as a colourless solid. 

 

1H-NMR (300 MHz, D2O):  (ppm) = 1.65 (s, 12 H, CH3).  

13C-NMR (126 MHz, D2O):  (ppm) = 175.05 (COOH), 55.66 (C(CH3)2), 21.07 (CH3). 

ESI-HRMS: m/z calculated for C8H14NO4 [M-H]-: 188.0928, found: 188.0925. 
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5.3.3.8 4-Bromo-2,6-diisopropyl aniline (A-5)[173]  

 

 

 

Compound A-4 (1.06 mL, 1.00 g, 5.46 mmol, 1.00 eq) was dissolved in DMF (12.4 mL) 

and cooled to 0–5 °C under an argon atmosphere. Then, over a period of 20 min NBS 

(1.00 g, 5.64 mmol, 1.00 eq) dissolved in DMF (6.60 mL) was added drop-wise to the 

solution. The reaction mixture was stirred at 0–5 °C for 2 h. Afterwards, H2O (20 mL) 

was added and the mixture was stirred at rt for 2 h. EtOAc (50.0 mL) was added and the 

phases were separated. The aqueous phase was extracted with EtOAc (2 x 50.0 mL). 

Then, the combined organic phases were washed with saturated aq NaS2O3 solution 

(25.0 mL), H2O (25.0 mL), saturated aq NaCl solution (25.0 mL) and dried over MgSO4. 

The solvent was removed under reduced pressure to give product A-5 (1.40 g, 

5.46 mmol, 97%) as a red, brown liquid. 

 

1H-NMR (300 MHz, CDCl3):  (ppm) = 7.14 (s, 2 H, aromatic CH), 2.97‒2.82 (m, 2 H, CH), 

1.27 (d, 3JHH = 6.8 Hz, 12 H, CH3).  

13C-NMR (76 MHz, CDCl3):  (ppm) = 139.33, 134.64 (aromatic C), 125.80 (aromatic CH), 

111.20 (aromatic C), 28.22 (CH), 22.45(CH3). 

ESI-MS: m/z = 256.1 (41) [M+H]+, 254.1 (17) [M-H]-. 

ESI-HRMS: m/z calculated for C12H19BrN [M+H]+: 256.0695, found: 256.0696. 
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5.3.4 Synthesis of Fmoc-D-β3-hTOPP-OH 

5.3.4.1 Cbz-D-Hpg-OH (51)[48] 

 

 

 

4-Hydroxy-D-phenylglycine (50) (5.00 g, 29.9 mmol, 1.00 eq) was dissolved in an 

aqueous solution of Na2CO3 (10%, 67 mL) and cooled to 0 °C. CbzCl (4.48 mL, 5.42 g, 

31.7 mmol, 1.06 eq) in toluene (4.48 mL) and dioxane (50.0 mL) was added drop-wise 

to the solution. The final reaction mixture was stirred at 0 °C for 30 min and then at rt 

for 1 h. The organic solvent was evaporated. Ice-water (166 mL) was added to the 

aqueous phase and it was washed with EtOAc (3 x 50.0 mL). Afterwards, the aqueous 

phase was acidified with 2 M aq HCl to pH 2 and extracted with EtOAc (3 x 75.0 mL). The 

combined organic phases were washed with water (50.0 mL), saturated aq NaCl 

solution (50.0 mL) and then dried over MgSO4. Finally, evaporation of the solvent under 

reduced pressure gave compound 51 (8.35 g, 27.7 mmol, 93%) as a colourless solid. 

 

1H-NMR (300 MHz, DMSO-d6):  (ppm) = 12.51 (s, 1 H, COOH), 9.52 (s, 1 H, aromatic 

OH), 7.89 (d, 3JHH = 8.0 Hz, 1 H, NH), 7.55‒7.26 (m, 5 H, aromatic CH), 7.23 (d, 

3JHH = 8.5 Hz, 2 H, aromatic CH), 6.76 (d, 3JHH = 8.5 Hz, 2 H, aromatic CH), 5.17‒4.98 (m, 

3 H, CH2, -CH). 

13C-NMR (75 MHz, DMSO-d6):  (ppm) = 172.50 (COOH), 157.19 (aromatic C-OH), 

155.82 (CONH), 137.00, 128.97, 128.33, 127.80, 127.71, 127.28, 127.18, 115.18 

(aromatic C), 65.56 (CH2), 57.61 (-C). 
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ESI-MS: m/z = 302.1 [M+H]+, 324.1 [M+Na]+, 625.2 [2M+Na]+, 300.1 [M-H]-, 601.2 

[2M-H]-. 

ESI-HRMS: m/z calculated for C16H15NO5Na [M+Na]+: 324.0842, found: 324.0843. 
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5.3.4.2 Cbz-D-Hpg(TBDMS)-OH (52) 

 

 

 

Under an argon atmosphere, amino acid 51 (3.00 g, 9.97 mmol, 1.00 eq) and imidazole 

(1.70 g, 24.9 mmol, 2.50 eq) were dissolved in dry DMF (6.00 mL). Then, TBDMSCl 

(1.80 g, 11.9 mmol, 1.20 eq) was added and the final reaction mixture was stirred at rt 

for 25 h. Afterwards, the mixture was diluted with EtOAc (50.0 mL) and H2O (50.0 mL) 

and the two phases were separated. The aqueous phase was extracted with EtOAc 

(3 x 50.0 mL). The combined organic phases were washed with saturated aq NaCl 

solution (50.0 mL) and then dried over MgSO4. Afterwards, the solvent was evaporated 

under reduced pressure. Purification by flash-column chromatography 

(DCM/MeOH/AcOH, 9:1:0.1  7:1:0.1) gave the pure product 52 (2.70 g, 6.58 mmol, 

66%) as a white solid. 

 

1H-NMR (300 MHz, DMSO-d6):  (ppm) = 7.90 (d, 3JHH = 7.9 Hz, 1 H, NH), 7.41‒7.24 (m, 

7 H, aromatic CH), 6.81 (d, 3JHH = 8.5 Hz, 2 H, aromatic CH), 5.11‒5.00 (m, 3 H, CH2, -CH), 

0.95 (s, 9 H, 3 x CH3), 0.19 (s, 6 H, 2 x CH3). 

13C-NMR (126 MHz, DMSO-d6):  (ppm) = 172.11 (COOH), 155.65 (Cbz CONH), 154.66 

(aromatic C-O(TBDMS)), 136.88, 130.14, 128.90, 128.21, 127.67, 127.59, 119.48 

(aromatic C), 65.45 (CH2), 57.49 (-C), 25.46 (C(CH3)3), 17.69 (C(CH3)3), -4.63 (CH3). 

ESI-MS: m/z = 416.2 [M+H]+, 438.2 [M+Na]+, 853.3 [2M+Na]+, 300.1 [M-H]-, 601.2 

[2M-H]-. 



Experimental Part 

 

 
167 

 

ESI-HRMS: m/z calculated for C22H29NO5SiNa [M+Na]+: 438.1707, found: 438.1696.  
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5.3.4.3 Cbz-D-Hpg(TBDMS)-CHN2 (53) 

 

 

 

Amino acid 52 (3.99 g, 9.60 mmol, 1.00 eq) was dissolved in dry THF (48.0 mL) under an 

argon atmosphere and cooled down to -15 °C. Subsequently, Et3N (1.07 mL, 1.46 g, 

10.6 mmol, 1.10 eq) and isobutyl chloroformate (1.44 mL, 1.37 g, 10.6 mmol, 1.10 eq) 

were added to the mixture and stirred at -15 °C for 45 min. The reaction was warmed 

up to 0 °C and then treated with diazomethane solution (0.60 M in Et2O, 32.0 mL, 

2.00 eq) under light exclusion. The reaction mixture was stirred at 0 °C for 30 min. 

Afterwards, the mixture was warmed up to rt and stirred at rt for 5 h. The reaction was 

quenched with AcOH (2.20 mL, 2.30 g, 53.2 mmol, 4.00 eq). Then 6% aq NaHCO3 

solution (100 mL) and EtOAc (50.0 mL) were added. The phases were separated, and 

the aqueous phase was extracted with EtOAc (2 x 50.0 mL). The combined organic 

phases were washed with saturated aq NH4Cl solution (3 x 50.0 mL), saturated aq NaCl 

solution (3 x 50.0 mL), dried over MgSO4 and the solvent was removed under reduced 

pressure. Purification by flash-column chromatography (pentane/EtOAc, 7:1  3:1) 

gave the desired compound 53 (2.98 g, 6.78 mmol, 61%) as a yellow oil. 

 

1H-NMR (300 MHz, DMSO-d6):  (ppm) = 8.04 (d, 3JHH = 8.2 Hz, 1 H, NH), 7.43‒7.23 (m, 

7 H, aromatic CH), 6.82 (d, 3JHH = 8.5 Hz, 2 H, aromatic CH), 6.11 (s, 1 H, CH), 5.22 (d, 

3JHH = 8.2 Hz, 1 H, -CH), 5.06 (s, 2 H, CH2), 0.95 (s, 9 H, 3 x CH3), 0.19 (s, 6 H, 2 x CH3). 

13C-NMR (75 MHz, DMSO-d6):  (ppm) = 192.38 (COCHN2), 155.65 (Cbz CONH), 154.85 
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(aromatic C-O(TBDMS)), 136.77, 129.64, 129.13, 128.21, 127.70, 127.63, 119.66 

(aromatic C), 65.62 (CH2), 61.42 (-C), 53.52 (COCHN2), 25.43 (C(CH3)3), 17.79 

(C(CH3)3), -4.65 (CH3). 

ESI-MS: m/z = 462.2 [M+Na]+, 901.3 [2M+Na]+, 438.2 [M-H]-. 

ESI-HRMS: m/z calculated for C23H29N3O4SiNa [M+Na]+: 462.1820, found: 462.1819. 
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5.3.4.4 Cbz-D-β3-hHpg(TBDMS)-OH (54) 

 

 

 

Diazo ketone 53 (2.57 g, 5.90 mmol, 1.00 eq) was dissolved in THF/H2O (9:1, 24.0 mL), 

cooled to 0 °C and then treated with AgOCOPh (110 mg, 470 mol, 0.08 eq) under light 

exclusion and sonication at rt for 2 h. Afterwards, H2O (50.0 mL) and EtOAc (50.0 mL) 

were added and the aqueous phase was acidified with 2 M aq HCl solution to a pH of 2. 

Then, the aqueous phase was extracted with EtOAc (3 x 50.0 mL). The combined 

organic phases were washed with saturated aq NaCl solution (3 x 50.0 mL) and dried 

over MgSO4. The solvent was removed under reduced pressure to give the Cbz-

protected -amino acid 54 (2.48 g, 5.80 mmol, 98%) as a yellowish oil. 

 

1H-NMR (300 MHz, DMSO-d6):  (ppm) = 12.17 (sbr, 1 H, COOH), 7.78 (d, 3JHH = 8.7 Hz, 

1 H, NH), 7.43‒7.27 (m, 5 H, aromatic CH), 7.21 (d, 3JHH = 8.5 Hz, 2 H, aromatic CH), 6.78 

(d, 3JHH = 8.5 Hz, 2 H, aromatic CH), 5.03‒4.87 (m, 3 H, -CH, CH2), 2.75‒2.55 (m, 2 H, 

-CH2), 0.95 (s, 9 H, 3 x CH3), 0.18 (s, 6 H, 2 x CH3). 

13C-NMR (75 MHz, DMSO-d6):  (ppm) = 171.61 (COOH), 155.20 (Cbz CONH), 153.98 

(aromatic C-OTBDMS), 137.02, 135.57, 128.22, 127.65, 127.59, 127.55, 119.36 

(aromatic C), 65.21 (CH2), 59.66 (-CH2), 51.03 (-CH), 25.49 (C(CH3)3), 17.83 

(C(CH3)3), -4.61 (CH3). 

ESI-MS: m/z = 430.2 [M+H]+, 452.2 [M+Na]+, 881.4 [2M+Na]+, 428.2 [M-H]-. 

ESI-HRMS: m/z calculated for C23H31NO5SiNa [M+Na]+: 452.1864, found: 452.1855.  
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5.3.4.5 Cbz-D-β3-hHpg-OBn (59) 

 

 

 

To amino acid 54 (500 mg, 1.16 mmol, 1.00 eq) dissolved in DCM (3.00 mL), BnOH 

(1.50 mL) and conc. HCl (37%, 14.5 mL) were added. The final reaction mixture was 

stirred at rt for 4 h. Then, H2O (50.0 mL) and EtOAc (50.0 mL) were added and the 

aqueous phase was extracted with EtOAc (3 x 50.0 mL). The combined organic phases 

were washed with saturated aq NaCl solution (3 x 20.0 mL), dried over MgSO4 and the 

solvent was removed under reduced pressure. After purification by flash-column 

chromatography (pentane/EtOAc, 5:1  1:1) the desired product 59 (240 mg, 580 mol, 

50%) was obtained as a colourless solid.  

 

1H-NMR (300 MHz, DMSO-d6):  (ppm) = 9.29 (s, 1 H, aromatic C-OH), 7.80 (d, 

3JHH = 8.8 Hz, 1 H, NH), 7.44‒7.21 (m, 10 H, aromatic CH), 7.13 (d, 3JHH = 8.5 Hz, 2 H, 

aromatic CH), 6.70 (d, 3JHH = 8.5 Hz, 2 H, aromatic CH), 5.08‒4.89 (m, 5 H, -CH, 2 x CH2), 

2.97‒2.62 (m, 2 H, -CH2). 

13C-NMR (75 MHz, DMSO-d6):  (ppm) = 170.03 (COOBn), 156.45 (aromatic C-OH), 

155.19 (Cbz CONH), 137.00, 135.99, 132.52, 128.26, 128.23, 127.80, 127.69, 127.63, 

127.62, 127.60, 127.46, 114.97 (aromatic CH), 65.40, 65.27 (CH2), 51.18 (-CH), 41.18 

(-CH2). 

ESI-MS: m/z = 406.2 [M+H]+, 428.2 [M+Na]+, 833.3 [2M+Na]+. 

ESI-HRMS: m/z calculated for C24H23NO5Na [M+Na]+: 428.1468, found: 428.1450.  
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5.3.4.6 Cbz-D-β3-hHpg-OBn (59)  

 

 

 

The benzyl protection was performed according to the procedure described by MATTHIAS 

KRULL.[141] Therefore, diazo ketone 53 (5.55 g, 12.6 mmol, 1.00 eq) was dissolved in dry 

THF/BnOH (9:1, 24.0 mL), cooled to 0 °C and then treated with AgOCOPh (230 mg, 

1.01 mmol, 0.08 eq) under light exclusion and sonication at rt for 2 h. Afterwards, H2O 

(100 mL) and EtOAc (100 mL) were added. The aqueous phase was acidified with 2 M 

aq HCl solution to a pH of 2. Then, the aqueous phase was extracted with EtOAc 

(3 x 75.0 mL) and the combined organic phases were washed with saturated aq NaCl 

solution (3 x 50.0 mL), dried over MgSO4 and the solvent was removed under reduced 

pressure to give the benzyl-protected -amino acid. The crude TBDMS-protected 

product containing residual BnOH was dissolved in MeOH (142 mL), conc. HCl (37%, 

15.8 mL) was added and the final reaction mixture was stirred at rt for 1 h. Then, H2O 

(100 mL) and EtOAc (100 mL) were added and the aqueous phase was extracted with 

EtOAc (3 x 100 mL). The combined organic phases were washed with saturated aq NaCl 

solution (3 x 50.0 mL), dried over MgSO4 and the solvent was removed under reduced 

pressure. After purification by flash-column chromatography (pentane/EtOAc, 3:1  

1:1) the desired product 59 (3.57 g, 8.82 mmol, 70%) was isolated as a colourless solid.  

 

1H-NMR (300 MHz, DMSO-d6):  (ppm) = 9.29 (s, 1 H, aromatic C-OH), 7.80 (d, 

3JHH = 8.9 Hz, 1 H, NH), 7.42‒7.20 (m, 10 H, aromatic CH), 7.13 (d, 3JHH = 8.5 Hz, 2 H, 
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aromatic CH), 6.70 (d, 3JHH = 8.5 Hz, 2 H, aromatic CH), 5.14‒4.83 (m, 5 H, -CH, 2 x CH2), 

2.94‒2.61 (m, 2 H, -CH2). 

13C-NMR (75 MHz, DMSO-d6):  (ppm) = 169.98 (COOBn), 156.39 (aromatic C-OH), 

155.14 (Cbz CONH), 136.77, 135.95, 132.47, 128.22, 128.19, 127.76, 127.65, 127.59, 

127.56, 127.41, 127.34, 114.92 (aromatic C), 65.35, 65.22 (CH2), 51.13 (-CH), 41.13 (-

CH2). 

ESI-MS: m/z = 406.2 [M+H]+, 428.2 [M+Na]+, 833.3 [2M+Na]+, 404.2 [M-H]-. 

ESI-HRMS: m/z calculated for C24H23NO5Na [M+Na]+: 428.1468, found: 428.1459. 
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5.3.4.7 Cbz-D-β3-hHpg(Tf)-OBn (61) 

 

 

 

To a 0 °C cooled solution of Cbz-D-3-hHpg-OBn (59) (4.79 g, 11.8 mmol, 1.00 eq) and 

pyridine (2.75 mL, 2.69 g, 35.4 mmol, 3.0 eq) in dry DCM (36.0 mL) Tf2O (5.00 g, 

17.7 mmol, 1.50 eq) was added slowly and stirred at 0 °C for 15 min. The mixture was 

warmed up to rt and stirred at rt for 20 min. The reaction mixture was quenched with 

saturated aq NaHCO3 solution and the resulting aqueous phase was extracted with DCM 

(3 x 50.0 mL). The combined organic phases were washed with saturated aq NaCl 

solution (3 x 50.0 mL), dried over MgSO4 and the solvent was removed under reduced 

pressure. The pyridine was removed as an azeotropic mixture with toluene to give the 

product 61 (6.26 g, 11.6 mmol, 99%) as brown solid. 

 

1H-NMR (300 MHz, DMSO-d6):  (ppm) = 8.03 (d, 3JHH = 8.5 Hz, 1 H, NH), 7.53 (d, 

3JHH = 8.8 Hz, 2 H, aromatic CH), 7.43 (d, 3JHH = 8.8 Hz, 2 H, aromatic CH), 7.39‒7.17 (m, 

10 H, aromatic CH), 5.15‒4.94 (m, 5 H, -CH, CH2), 2.98‒2.74 (m, 2 H, -CH2). 

13C-NMR (125 MHz, DMSO-d6):  (ppm) = 169.71 (COOBn), 155.30 (Cbz CONH), 148.11, 

143.23, 136.82, 135.88, 128.69, 128.34, 128.25, 128.23, 127.87, 127.74, 127.65, 121.28 

(aromatic C), 118.20 (q, 1JCF = 318.8 Hz, CF3), 65.59, 65.48 (CH2), 51.35 (-C), 40.50 (-

CH2). 

19F-NMR (282 MHz, DMSO-d6):  (ppm) = -72.88 (s, 3 F, CF3). 

ESI-MS: m/z = 560.1 [M+Na]+, 1097.3 [2M+Na]+, 536.1 [M-H]-. 
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ESI-HRMS: m/z calculated for C25H22F3NO7SNa [M+Na]+: 560.0961, found: 560.0961.  
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5.3.4.8 Cbz-4-pinacolboryl-D-β3-hPhg-OBn (62) 

 

 

 

Under argon atmosphere, compound 61 (1.68 g, 3.12 mmol, 1.00 eq) was dissolved in 

degassed dioxane (20.0 mL) and subsequently B2pin2 (948 mg, 3.74 mmol, 1.20 eq), 

KOAc (925 mg, 9.42 mmol, 3.02 eq), PdCl2(dppf) (228 mg, 312 mol, 0.10 eq) and dppf 

(173 mg, 132 mol, 0.10 eq) were added. The reaction mixture was stirred at 80°C for 

7 h. Then, EtOAc (300 mL) was added to the suspension and the organic phase was 

washed with saturated aq NaCl solution (3 x 100 mL) and dried over MgSO4. Afterwards, 

the solvent was removed under reduced pressure. Purification by flash-column 

chromatography (pentane/EtOAc, 5:1  2:1) gave the pure product 62 (1.55 g, 

3.01 mmol, 96%) as a light yellow solid.  

 

1H-NMR (300 MHz, DMSO-d6):  (ppm) = 7.96 (d, 3JHH = 8.6 Hz, 1 H, NH), 7.62 (d, 

3JHH = 8.0 Hz, 2 H, aromatic CH), 7.42‒7.15 (m, 12 H, aromatic CH), 5.10‒4.93 (m, 5 H, 

CH2, -CH), 2.93‒2.73 (m, 2 H, -CH2), 1.29 (s, 12 H, 4 x CH3). 

13C-NMR (126 MHz, DMSO-d6):  (ppm) = 169.74 (COOBn), 155.19 (Cbz CONH), 145.51, 

136.85, 135.86, 134.42, 128.18, 127.75, 127.65, 127.59, 125.82 (aromatic C), 83.49 

(C(CH3)2), 65.43, 65.30 (CH2), 51.69 (-C), 40.68 (CH2), 24.54 (C(CH3)2). 

ESI-MS: m/z = 516.3 [M+H]+, 538.3 [M+Na]+, 1053.5 [2M+Na]+. 

ESI-HRMS: m/z calculated for C30H34BNO6Na [M+Na]+: 538.2377, found: 538.2369.  
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5.3.4.9 Cbz-4-dihydroxyborane-D-β3-hPhg-OBn (63) 

 

 

 

Compound 62 (3.74 g, 7.26 mmol, 1.00 eq) was dissolved in acetone (330 mL) and H2O 

(291 mL). Then, NH4OAc (1.68 g, 21.8 mmol, 3.00 eq) and NaIO4 (4.81 g, 22.5 mmol, 

3.10 eq) were added and the reaction mixture was stirred at rt for 2 d. Afterwards, the 

organic solvent was removed under reduced pressure and the residual aqueous phase 

was extracted with Et2O (3 x 100 mL). The combined organic phases were washed with 

saturated aq NaCl solution (100 ml) and dried over MgSO4. The organic solvent was 

removed in vacuo to provide the final product 63 (2.83 g, 6.54 mmol, 90%) as a white 

solid.  

 

1H-NMR (300 MHz, DMSO-d6):  (ppm) = 8.06‒7.88 (m, 3 H, NH, aromatic CH), 7.76 (d, 

3JHH = 8.0 Hz, 2 H, aromatic CH), 7.41‒7.24 (m, 10 H, aromatic CH), 5.11‒4.89 (m, 5 H, 

2 x CH2, -CH), 2.93‒2.73 (m, 2 H, -CH2). 

13C-NMR (126 MHz, DMSO-d6):  (ppm) = 169.93 (COOBn), 155.29 (Cbz CONH), 144.00, 

136.95, 135.93, 134.14, 128.26, 128.23, 127.83, 127.71, 127.66, 125.35 (aromatic C), 

65.49, 65.34 (CH2), 51.71 (-C), 40.68 (CH2). 

ESI-MS: m/z = 448.2 [M+H]+, 470.2 [M+Na]+, 917.4 [2M+Na]+. 

ESI-HRMS: m/z calculated for C24H24BNO6Na [M+Na]+: 470.1750, found: 470.1740.  
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5.3.4.10 Cbz-4-(3,3,5,5-tetramethyl-2,6-dioxopiperazine-1-yl)-D-β3-hPhg-OBn (64) 

 

 

 

A suspension of 63 (2.80 g, 6.47 mmol, 1.00 eq), piperazine-2,6-dione 33 (1.10 g, 

6.47 mmol, 1.00 eq), Cu(OAc)2 (1.17 g, 6.47 mmol, 1.00 eq), Et3N (1.26 mL, 920 mg, 

9.06 mmol, 1.40 eq) and powdered 4 Å molecular sieve (4.00 g) in DMSO (135 mL) was 

stirred at rt under an oxygen atmosphere for 14 d. Then, the mixture was filtrated over 

Celite®. The filtrate was mixed with EtOAc (100 mL), H2O (100 mL) and 2 M aq HCl 

(100 mL) and the phases were separated. The aqueous phase was extracted with EtOAc 

(3 x 100 mL). The combined organic phases were washed with saturated aq NaCl 

solution (3 x 100 mL), dried over MgSO4 and the solvent was removed under reduced 

pressure. Purification by flash-column chromatography (pentane/EtOAc, 1:1  1:3) 

gave the final product 64 (2.58 g, 4.62 mmol, 71%) as a white solid. 

 

1H-NMR (300 MHz, DMSO-d6):  (ppm) = 7.98 (d, 3JHH = 8.7 Hz, 1 H, NH), 7.41 (d, 

3JHH = 8.3 Hz, 2 H, aromatic CH), 7.37‒7.28 (m, 10 H, aromatic CH), 7.05 (d, 3JHH = 8.3 Hz, 

2 H, aromatic CH), 5.14‒4.94 (m, 5 H, 2 x CH2, -CH), 2.91‒2.82 (m, 2 H, -CH2), 1.39 (s, 

12 H, 2 x CH3). 

13C-NMR (126 MHz, DMSO-d6):  (ppm) = 176.50 (CONR2), 169.85 (COOBn), 155.26 (Cbz 

CONH), 141.98, 136.82, 135.87, 134.93, 128.46, 128.25, 128.20, 127.81, 127.72, 127.67, 
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126.70 (aromatic C), 65.54, 65.39 (CH2), 59.61 (C(CH3)2), 51.17 (-C), 40.67 (CH2), 27.95 

(C(CH3)2). 

ESI-MS: m/z = 558.3 [M+H]+, 580.3 [M+Na]+, 1137.5 [2M+Na]+. 

ESI-HRMS: m/z calculated for C32H35N3O6Na [M+Na]+: 580.2418, found: 580.2411. 
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5.3.4.11 Fmoc-4-(3,3,5,5-tetramethyl-2,6-dioxopiperazine-1-yl)-D-β3-hPhg-OH (66) 

 

 

 

Amino acid 64 (500 mg, 897 mol, 1.00 eq) was dissolved in MeOH (21.2 mL) and DCM 

(3.00 mL). Then, Pd(OH)2/C (50% H2O, 101 mg, 717 mol, 0.80 eq) was added and H2 

was passed through the suspension at rt for 1 h, and subsequently it was stirred at rt 

under a H2 atmosphere for 21 h. Afterwards, the suspension was first filtered through 

a pleated filter and then the filtrate was passed through a micron syringe filter. The 

solvent was removed under reduced pressure to give the crude unprotected amino acid. 

To the crude intermediate NaHCO3 (152 mg, 1.79 mmol, 2.00 eq) and DMF (5.23 mL) 

were added. Then, Fmoc-OSu (303 mg, 897 mol, 1.00 eq) was added and the reaction 

mixture was stirred at rt for 20 h. Afterwards, H2O was added to the reaction. The 

aqueous phase was acidified to pH 2 with 2 M aq HCl and extracted with EtOAc 

(3 x 50.0 mL). The combined organic phases were washed with saturated aq NaCl 

solution (50.0 mL), dried over MgSO4 and the solvent was removed under reduced 

pressure. Purification by flash-column chromatography (DCM/MeOH/AcOH, 100:0:0.1 

 94:6:0.1) gave the pure product 66 (419 mg, 750 mol, 84%) as a white solid. 

 

1H-NMR (300 MHz, DMSO-d6):  (ppm) = 8.00 (d, 3JHH = 8.7 Hz, 1 H, NH), 7.42 (d, 

3JHH = 8.4 Hz, 2 H, aromatic CH), 7.39‒7.29 (m, 8 H, aromatic CH), 7.06 (d, 3JHH = 8.4 Hz, 

2 H, aromatic CH), 5.08‒4.96 (m, 1 H, CH), 4.32‒4.17 (m, 3 H, CH2, -CH), 2.77‒2.65 (m, 
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2 H, -CH2), 1.41 (s, 12 H, 2 x CH3). 

13C-NMR (126 MHz, DMSO-d6):  (ppm) = 176.52 (CONR2), 171.54 (COOH), 155.27 

(Fmoc CONH), 143.77, 143.73, 142.50, 140.61, 134.78, 128.38, 127.49, 126.98, 126.70, 

125.07, 119.97, 119.20 (aromatic C), 65.38 (CH2), 55.31 (C(CH3)2), 51.19 (-C), 46.65 

(CH), 40.83 (CH2), 27.96 (C(CH3)2). 

ESI-MS: m/z = 556.3 [M+H]+, 578.3 [M+Na]+, 1111.5 [2M+H]+. 

ESI-HRMS: m/z calculated for C32H33N3O6Na [M+Na]+: 578.2262, found: 578.2242. 
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5.3.4.12 Fmoc-4-(3,3,5,5-Tetramethyl-2,6-dioxo-4-oxylpiperazine-1-yl)-D-β3-hPhg-

OH (67) 

 

 

 

Compound 66 (413 mg, 743 mol, 1.00 eq) was dissolved in DCM (99.0 mL) and the 

solution was cooled to 0 °C. Then, m-CPBA (70%, 366 mg, 2.12 mmol, 2.00 eq) was 

added and the resulting reaction mixture was stirred at 0 °C for 15 min followed by 

stirring at rt for 5 h. The solvent was removed under reduced pressure and the crude 

product was purified by flash-column chromatography (DCM/MeOH/AcOH, 100:0:0.1 

 98:2:0.1) to give product 67 (288 mg, 505 mol, 68%) as an orange solid. 

 

ESI-MS: m/z = 571.2 [M+H]+, 588.3 [M+NH4]+, 593.2 [M+Na]+, 1163.4 [2M+Na]+. 

ESI-HRMS: m/z calculated for C32H32N3O7Na [M+Na]+: 593.2132, found: 593.2130. 
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5.3.5 Synthesis of Racemic Cbz-β3-hHpg(Tf)-OBn 

The synthetic routes of the racemic amino acids were performed as described in section 

5.3.4. A mixture of D-Hpg-OH (50) and L-Hpg-OH (25) (1:1, 4.00 g, 23.8 mmol) was used 

as starting material. 

5.3.5.1 Cbz-D/L-β3-hHpg(TBDMS)-OBn (70) 

 

 

 

The synthesis of 70 was performed by using the procedure described in subsection 

5.3.4.6. D/L-Diazo ketone (1.83 g, 4.16 mmol, 1.00 eq) was used as starting material. 

Small amounts of the crude 3-amino acid 70 were purified by HPLC and lyophilised. 

Then, the two enantiomers of the pure amino acid 70 dissolved in hexane/isopropanol 

(1:1, 500 L) were separated via HPLC using a chiral column. 

 

HPLC: (analytical, gradient 70 → 100% B in 30 min): tR = 28.00 min. 

ESI-MS: m/z = 520.3 [M+H]+, 1039.5 [2M+H]+. 

ESI-HRMS: m/z calculated for C30H38NO5 [M+H]+: 520.2514, found: 520.2490. 

 

HPLC: (chiral, Chialpak® IA, flow 0.6 mL/min, isocratic (hexane/isopropanol, 98:2 in 

150 min): tR1 = 71.4 min, tR2 = 91.7 min. 
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5.3.5.2 Cbz-D/L-β3-hHpg(Tf)-OH (72) 

 

 

 

The synthesis of compound 72 was performed according to the procedure described in 

5.3.4.7. The phenol derivative (1.83 g, 4.16 mmol, 1.00 eq) was used as starting 

material. The crude product 72 (1 mg) were directly dissolved in hexane/isopropanol 

(1:1, 500 L) and the enantiomers were separated via HPLC using a chiral column. 

 

Analytical data are in accordance with the data mentioned in subsection 5.3.4.7. 

 

HPLC: (chiral, Chialpak® IA, flow 0.6 mL/min, isocratic (hexane/isopropanol, 90:10 in 

90 min): tR1 = 34.5 min, tR2 = 58.0 min. 
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5.3.6 Synthesis of β-amino acids 

5.3.6.1 Fmoc-D-β3-hLys(Boc)-OH (74)  

 

 

 

The synthesis of 74 was performed according to 5.2.1. Fmoc-D-Lys(Boc)-OH (5.00 g, 

10.7 mmol, 1.00 eq) was used as starting material. The crude 3-amino acid was 

dissolved in DCM (10.0 mL) and was added drop-wise to cold pentane (-22 °C) (1.00 L). 

The white solid was filtered off and washed with cold pentane. Drying in vacuo gave the 

desired product 74 (4.22 g, 8.74 mmol, 82%) as a white solid. 

 

1H-NMR (300 MHz, DMSO-d6):  (ppm) = 12.10 (sbr, 1 H, COOH), 7.88 (d, 3JHH = 7.5 Hz, 

2 H, Fmoc CHAr), 7.69 (d, 3JHH = 7.2 Hz, 2 H, Fmoc CHAr), 7.48‒7.28 (m, 4 H, Fmoc CHAr), 

7.14 (d, 3JHH = 8.6 Hz, 1 H, Fmoc NH), 6.75‒6.61 (m, 1 H, Boc CH), 4.35‒4.15 (m, 3 H, 

Fmoc CH, Fmoc CH2), 3.85‒3.67 (m, 1 H, -CH), 2.88 (q, 3JHH = 6.6, 2 H, -CH), 2.41‒2.24 

(m, 2 H, -CH2), 1.49‒1.12 (m, 15 H, -CH2, -CH2, -CH2, Boc CH3). 

13C-NMR (126 MHz, DMSO-d6):  (ppm) = 172.13 (COOH), 155.30, 155.26 (Boc CONH, 

Fmoc CONH), 143.73, 143.60, 140.49, 127.39, 127.34, 126.80, 126.78, 124.96, 124.93, 

119.85 (aromatic C), 77.15 (C(CH3)3), 65.02 (Fmoc CH2), 47.82 (-CH), 46.75 (Fmoc CH), 

33.82 (-CH2), 29.23 (-CH2), 28.20 (C(CH3)3), 22.69 (-CH2). 

ESI-MS: m/z = 505.3 [M+Na]+, 987.5 [2M+Na]+, 481.3 [M-H]-. 

ESI-HRMS: m/z calculated for C27H34N2O6Na [M+Na]+: 505.2309, found: 505.2311.  
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5.3.6.2 Fmoc-D-3-hTrp(Boc)-OH (75) 

 

 

 

The synthesis of 75 was carried out as described in 5.2.1 and Fmoc-D-Trp(Boc)-OH 

(5.00 g, 9.5 mmol, 1.00 eq) as starting material. The crude Fmoc-D-3-hTrp-OH (15) was 

dissolved in DCM (10.0 mL) and was added drop-wise to cold pentane (-22 °C) (1.00 L). 

The solid was filtered off and washed with cold pentane. Drying in vacuo led to the 

product 75 (4.07 g, 7.53 mmol, 79%) as a white solid. 

 

1H-NMR (300 MHz, DMSO-d6):  (ppm) = 12.30 (sbr, 1 H, COOH), 8.03 (d, 3JHH = 8.2 Hz, 

1 H, aromatic CH), 7.87 (d, 3JHH = 7.6 Hz, 2 H, aromatic CH), 7.70 (d, 3JHH = 7.8 Hz, 2 H, 

aromatic CH), 7.65‒7.58 (m, 2 H, aromatic CH), 7.51 (s, 1 H, aromatic CH), 7.46‒7.15 (m, 

7 H, NH, aromatic CH), 4.30‒4.00 (m, 4 H, Fmoc CH, Fmoc CH2, -CH), 2.92‒2.81 (m, 2 H, 

-CH2), 2.53‒2.44 (-CH2, overlapped with the DMSO signal), 1.55 (s, 9 H, CH3). 

13C-NMR (126 MHz, DMSO-d6):  (ppm) = 172.13 (COOH), 155.24 (Fmoc CONH), 148.78 

(Boc CONH), 143.57, 140.44, 134.57, 132.54, 130.54, 129.01, 128.29, 127.33, 126.75, 

124.93, 124.89, 124.04, 123.45, 122.25, 119.83, 119.05, 117.17, 114.50 (aromatic C), 

83.26 (C(CH3)3), 65.24 (Fmoc CH2), 47.95 (-CH), 46.66 (Fmoc CH), 40.11‒39.02 (-CH2 

overlapped with DMSO signal), 29.54 (-CH2) 27.59 (C(CH3)3). 

ESI-MS: m/z = 541.2 [M+H]+, 563.2 [M+Na]+, 1103.4 [2M+Na]+, 539.3 [M-H]-. 

ESI-HRMS: m/z calculated for C32H32N2O6Na [M+Na]+: 563.2153, found: 523.2141.  
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5.3.6.3 Fmoc-D-3-hVal-OH (76)  

 

 

 

Synthesis of 76 was performed by using procedure 5.2.1 and Fmoc-D-Val-OH (5.00 g, 

14.7 mmol, 1.00 eq) as starting material. The crude amino acid was purified via flash-

column chromatography (DCM/MeOH/AcOH, 40:1:0.1) to give the pure product 76 

(3.55 g, 10.0 mmol, 68%) as a white solid.  

 

1H-NMR (300 MHz, DMSO-d6):  (ppm) = 12.07 (sbr, 1 H, COOH), 7.87 (d, 3JHH = 7.4 Hz, 

2 H, aromatic CH), 7.77‒7.64 (m, 2 H, aromatic CH), 7.41 (t, 3JHH = 7.4, 2 H, aromatic CH), 

7.36‒7.27 (m, 2 H, aromatic CH), 4.38‒4.11 (m, 3 H, Fmoc CH, Fmoc CH2), 3.82‒3.67 (m, 

1 H, -CH), 2.46‒2.23 (m, 2 H, -CH2), 1.80‒1.65 (m, 1 H, CH), 0.83 (d, 3JHH = 6.7 Hz, CH3). 

13C-NMR (126 MHz, DMSO-d6):  (ppm) = 172.75 (COOH), 155.28 (Fmoc CONH), 143.95, 

143.77, 140.66, 140.65 (Fmoc CAr), 127.52, 126.99, 126.95, 125.19, 125.16, 120.01, 

120.00 (Fmoc CHAr), 65.16 (Fmoc CH2), 53.00 (-CH), 46.78 (Fmoc CH), 36.69 (-CH2), 

31.70 (CH), 18.81, 17.96 (CH3). 

ESI-MS: m/z = 354.2 [M+H]+, 376.1 [M+Na]+, 729.3 [2M+Na]+, 352.2 [M-H]-, 705.4 

[2M-H]-. 

ESI-HRMS: m/z calculated for C21H23NO4Na [M+Na]+: 376.1519, found: 376.1518. 
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5.3.7 β-Peptide Synthesis 

5.3.7.1 Synthesis of P5 

 

 

 

Peptide synthesis of P5 was carried out using a NovaPEG Rink Amide resin LL 

(0.19 mmol/g, 50.0 mol, 263 mg) and all amino acid coupling steps were performed in 

a solvent volume of 600 L. The resin was loaded with Fmoc-3-D-hLys(Boc)-OH as 

described in section 5.2.2. The chain elongation was performed as mentioned in section 

5.2.6 and the amino acids Fmoc-3-D-hLys(Boc)-OH (74), Fmoc-3-D-hTrp(Boc)-OH (75) 

and Fmoc-3-D-hVal-OH (76). The first hTOPP label 67 was coupled according to section 

5.2.8. After the 7th amino acid the power was reduced to 15 W. The second hTOPP label 

67 was attached using conditions in section 5.2.8. The other amino acids were coupled 

as mentioned in section 5.2.6. The resin was cleaved using procedure shown in section 

5.2.9 and the re-oxidation of the radical (MeCN/MeOH, 1:1) was carried out using the 

procedure described in section 5.2.10. 

 

HPLC: (60 °C, gradient 68 → 80% C in 40 min): tR = 29.43 min. 

ESI-MS: m/z = 662.8 [M+6H]6+, 795.1 [M+5H]5+, 993.7 [M+4H]4+, 1324.5 [M+3H]3+, 

1986.3 [M+2H]2+. 

ESI-HRMS: m/z calculated for C212H339N40O33 [M+5H]5+: 795.1222, found: 795.1227. 

  



Experimental Part 

 

 
189 

 

5.3.7.2 Synthesis of P6 

 

 

 

Peptide synthesis of P6 (17.0 mol) was performed as described in subsection 5.3.7.1. 

All amino acid coupling steps were performed in a solvent volume of 300 L. After the 

7th amino acid the power was reduced to 8 W. The re-oxidation of the radical 

(MeCN/MeOH, 1:1) was carried out using procedure described in 5.2.10. 

 

HPLC: (60 °C, gradient 69 → 79% C in 40 min): tR = 33.93 min. 

ESI-MS: m/z = 662.8 [M+6H]6+, 795.1 [M+5H]5+, 993.7 [M+4H]4+, 1324.5 [M+3H]3+, 

1986.3 [M+2H]2+. 

ESI-HRMS: m/z calculated for C212H339N40O33 [M+5H]5+: 795.1222, found: 795.1225. 
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5.3.7.3 Synthesis of P7 

 

 

 

Peptide synthesis of P7 (17.0 mol) was carried out as described in subsection 5.3.7.1. 

All amino acid coupling steps were performed in a solvent volume of 300 L. After the 

7th amino acid the power was reduced to 8 W. The re-oxidation of the radical 

(MeCN/MeOH, 1:1) was carried out using procedure described in 5.2.10. 

 

HPLC: (60 °C, gradient 68 → 80% C in 40 min): tR = 30.80 min. 

ESI-MS: m/z = 662.8 [M+6H]6+, 795.1 [M+5H]5+, 993.7 [M+4H]4+, 1324.5 [M+3H]3+, 

1986.3 [M+2H]2+. 

ESI-HRMS: m/z calculated for C212H339N40O33 [M+5H]5+: 795.1222, found: 795.1238. 
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5.3.7.4 Synthesis of P8 

 

 

 

Peptide synthesis of P8 (17.0 mol) was performed as described in subsection 5.3.7.1. 

All amino acid coupling steps were performed in a solvent volume of 300 L. After the 

7th amino acid the power was reduced to 8 W. The re-oxidation of the radical 

(MeCN/MeOH, 1:3) was carried out using procedure described in 5.2.10. 

 

HPLC: (60 °C, gradient 68 → 80% C in 40 min): tR = 29.01 min. 

ESI-MS: m/z = 662.8 [M+6H]6+, 795.1 [M+5H]5+, 993.7 [M+4H]4+, 1324.5 [M+3H]3+, 

1986.3 [M+2H]2+. 

ESI-HRMS: m/z calculated for C212H339N40O33 [M+5H]5+: 795.1222, found: 795.1227. 
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6 Appendix 

A.1 Synthesis and Structural Investigation of Labelled Transmembrane α-Peptides 

A.1.1  Synthesis of the TOPP-Labelled WALP24 Peptide 

 

 

Figure A 1: ESI mass spectra of P1. Top: ESI mass spectrum. Bottom: ESI-HRMS spectrum 
of the [M+2H]2+-species. 
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A.1.2 Synthesis of the MTSSL-Labelled WALP24 Peptide 

 

 

Figure A 2: ESI mass spectra of P3. Top: ESI mass spectrum. Bottom: ESI-HRMS spectrum 
of the [M+3H]3+-species. 
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A.1.3 Enhancement of the TOPP Rigidity 

 

Other preliminary approaches and attempts: One conceivable retro-synthetic route is 

illustrated in Scheme A 1. 

 

Scheme A 1: Retrosynthesis for compound 38. Compound 38 might be generated using 
aniline derivative A-2 and N-(1-carboxy-1-methylethyl)-2-methylalanine (A-3). X should 
illustrate the functionalisation which is needed to introduce the amino acid backbone 

 
In this synthesis the piperzine-2,6-dione moiety will be generated through the reaction 

of the aniline A-2 with a N-(1-carboxy-1-methylethyl)-2-methylalanine (A-3) (activated 

as anhydride or acyl chloride). The amino acid back functionalisation should be 

performed via enantioselective Pd catalysis as described in literature[102,174]. 

First, the commercially available 2,6-diisopropyl aniline (A-4) was transformed into to 

4-bromo-2,6-diisopropyl aniline (A-5) using NBS (Scheme A 2) to generate a suitable 

leaving group for the Pd-catalysed amino acid functionalisation.  

 

Scheme A 2: Bromination of aniline A-4 which led to product A-5. 

 
To obtain the dicarboxylic acid A-3 several synthetic routes were tested. For a 

nucleophilic substitution 2-aminoisobutyric ethylester hydrochlorid (A-7) and 2-tosyl-
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isobutyric ethylester (A-9) were synthesised (Scheme A 3).  

 

Scheme A 3: The synthesis of the nucleophile A-7 and the electrophile A-9 for the 
nucleophilic substitution. Amine A-7 was generated using SOCl2 and EtOH. The 
electrophile A-9 was obtained using alcohol A-8 and p-toluenesulfonyl chlorid (TsCl). 
Tested reaction conditions for a nucleophilic substation (see Table A 1) did not lead to 
the desired product A-10. 

 
Both compounds were added together under various conditions (Table A 1), yet none 

of these led to the desired product A-10.  

Table A 1: Tested conditions for the nucleophilic substitution. 

conditions 

K2CO3, DMF, 3 h MW (17 bar, 90 °C, 50 W) 

K2CO3, EtOH, 8 h reflux 

K2CO3, EtOH, 4 h MW (100 °C, 50 W), 48 h reflux 

K2CO3, H2O/EtOH (4:1), 4 h MW (100 °C, 50 W) 

K2CO3, DMF, 4 h MW (120 °C, 50 W) 

 

The steric demand of the methyl groups and the partial charge of C (compound A-9) 

are not suitable for this reaction typ. Thus, another synthetic route was examined which 

included the synthesis of 3,3,5,5-tetramethylmorpholine-2-one (A-12) using 2-amino-

2-methylpropan-1-ol (A-11), acetone and CHCl3 as starting materials, and should 
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proceed via a procedure described by MCNALLY et al.[175]. Then, basic hydrolysis and 

oxidation of A-12 using KMnO4 did not lead to the desired product A-3 (Scheme A 4).  

 

Scheme A 4: The synthesis of dicarboxylic acid A-3 via lactone formation followed by 
basic hydrolysis and oxidation. The lactone A-12 was synthesised according to a 
literature protocol described by MCNALLY et al.[175] The basic hydrolytic oxidation did not 
lead to the dicarboxylic acid A-3. 

 
The mass spectrum gave no hint for the product A-3. However, the hydrolysis of the 

nitrile 32 led to the desired product A-3 (Scheme A 5).[76]  

 

Scheme A 5: Acidic hydrolyse of nitrile 32. The treatment with acid led to the 
dicarboxylic acid A-3. 

 
Unfortunately, it was not possible to activate (transformation into an anhydride or an 

acyl chloride) the dicarboxylic acid A-3 for further reactions, since it was only slightly 

soluble (used solvents DMSO, DMF, THF, NMP and dioxane). Thus, in future attempts 

the insertion of groups, which increase the solubility, might be reasonable.  
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A.2 Synthesis and Structural Investigation of Labelled Transmembrane β-Peptides 

A.2.1 Development and Synthesis of the β3-hTOPP Label 

 

 

Figure A 3: ESI mass spectra of the 3-hTOPP label 25. Top: ESI mass spectrum. Bottom: 
ESI-HRMS spectrum of the [M+2H]2+-species. 
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A.2.1.1 Investigation of the Enantioselectivity of Selected Reaction Steps 
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Figure A 4: HPLC chromatogram of compound 67 regarding its ee by HPLC. Absorption 
was recorded at 254 nm. HPLC was performed using a Chiralpak® OD column and a 
gradient 10 → 100% C (A: H2O + 0.1% TFA and C: MeCN + 0.1% TFA) in 30 min, flow 
1.0 mL/min). 
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A.2.2 Development and Synthesis of the TOPP-Labelled β3-Peptides 

 

 

Figure A 5: HPLC chromatogram and ESI mass spectra of P5B. Top: HPLC chromatogram. 
Absorption was recorded at 215, 254 and 280 nm, 10  100% B (A: H2O + 0.1% TFA and 
B: MeOH + 0.1% TFA) in 30 min, flow 1.0 mL/min. Centre: ESI mass spectrum. Bottom: 
ESI-HRMS spectrum of the [M+2H]2+-species. 
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Figure A 6: ESI mass spectra of P5C. Top: ESI mass spectrum. Bottom: ESI-HRMS 
spectrum of the [M+2H]2+-species. 
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Figure A 7: HPLC chromatogram and ESI mass spectra of P5D. Top: HPLC chromatogram. 
Absorption was recorded at 215, 254 and 280 nm, 10  100% B (A: H2O + 0.1% TFA and 
B: MeOH + 0.1% TFA) in 30 min, flow 1.0 mL/min. Centre: ESI mass spectrum. Bottom: 
ESI-HRMS spectrum of the [M+3H]3+-species. 
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Figure A 8: ESI mass spectrum of P5E – 1 hVal.  

 

 

Figure A 9: ESI mass spectrum of P5E. Top: ESI mass spectrum. Bottom: ESI-HRMS 
spectrum of the [M+H]+-species. 
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Figure A 10: HPLC chromatograms of different coupling conditions for synthesising P5E. 
Absorption was recorded at 215, 254 and 280 nm, 10  100% B (A: H2O + 0.1% TFA and 
B: MeOH + 0.1% TFA) in 30 min, flow 1.0 mL/min. 
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Figure A 11: ESI mass spectrum of P5E-cap. 
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Figure A 12: HPLC chromatogram and ESI mass spectra of P5F. Top: HPLC chromatogram. 
Absorption was recorded at 215, 254 and 280 nm, 50  100% B (A: H2O + 0.1% TFA and 
B: MeOH + 0.1% TFA) in 30 min, flow 1.0 mL/min. Centre: ESI mass spectrum. Bottom: 
ESI-HRMS spectrum of the [M+3H]3+-species. 
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Figure A 13: HPLC chromatogram and ESI mass spectra of P5G. Top: HPLC 
chromatogram. Absorption was recorded at 215, 254 and 280 nm, 75  100% B (A: 
H2O + 0.1% TFA and B: MeOH + 0.1% TFA) in 30 min at 60 °C, flow 1.0 mL/min. Centre: 
ESI mass spectrum. Bottom: ESI-HRMS spectrum of the [M+3H]3+-species. 
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Figure A 14: HPLC chromatogram and ESI mass spectra of P5H. Top: HPLC 
chromatogram. Absorption was recorded at 215, 254 and 280 nm, 70  95% B (A: 
H2O + 0.1% TFA and B: MeOH + 0.1% TFA) in 30 min at 60 °C, flow 1.0 mL/min. Centre: 
ESI mass spectrum. Bottom: ESI-HRMS spectrum of the [M+3H]3+-species. 
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Figure A 15: HPLC chromatogram and ESI mass spectra of P5I. Top: HPLC chromatogram. 
Absorption was recorded at 215, 254 and 280 nm, 75  100% B (A: H2O + 0.1% TFA and 
B: MeOH + 0.1% TFA) in 30 min at 60 °C, flow 1.0 mL/min. Centre: ESI mass spectrum. 
Bottom: ESI-HRMS spectrum of the [M+3H]3+-species. 
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Figure A 16: ESI mass spectrum of P5. Top: ESI mass spectrum. Bottom: ESI-HRMS 
spectrum of the [M+5H]5+-species. 

 

                                                  

                                                                                                    

                                      

                                                   

       

                     

                                                       
                                    

                                                          
                                                                

        

        
      

        
      

        
      

        
      

        
      

        
      

        
      

        
      

        
      

        
         

                       

        

        

        

        

        

        

        
                

                             
    

    

    

    

    

    

    

       

 

   

    

    

    

    

    

                                                         

              

                                                                      

                                                  

                                                                                                    

                                      

                                                   

       

                     

                                                       
                                    

                                                          
                                                                

     
      

     
      

     
           

      

     
      

     
      

     
      

     
      

      
      

      
      

                       

   

   

   

   

   

   

    

       

                                    

              

                                                                      



Appendix  

 

 
210 
 

 

Figure A 17: HPLC chromatogram and ESI mass spectra of P6. Top: HPLC chromatogram. 
Absorption was recorded at 215, 254 and 280 nm, 69  79% C (A: H2O + 0.1% TFA and 
C: MeCN + 0.1% TFA) in 40 min at 60 °C, flow 1.0 mL/min. Centre: ESI mass spectrum. 
Bottom: ESI-HRMS spectrum of the [M+5H]5+-species. 

                                                   

                                                                                                    

                                      

                                                   

       

                     

                                                       
                                    

                                                          
                                                                

     
      

     
      

     
      

     
      

     
      

     
      

     
      

      
      

                 

   

   

   

   

    

       

                                         

              

                                                                      

                                                   

                                                                                                    

                                      

                                                   

       

                     

                                                       
                                    

                                                          
                                                                

        
      

        
      

        
      

        
      

        
      

        
      

        
      

        
      

        
      

        
      

        
         

                 

        

        

        

        

        

        

        
                

                             
   

   

   

   

   

    

       

 

   

    

    

    

    

    

                                                         

              

                                                                      

0 5 10 15 20 25 30 35 40 45 50 55

0

200

400

600

800

1000

In
te

n
si

ty
 [

m
A

U
]

t [min]

 215 nm

 254 nm

 280 nm



Appendix 

 

 
211 

 

 

Figure A 18: HPLC chromatogram and ESI mass spectra of P7. Top: HPLC chromatogram. 
Absorption was recorded at 215, 254 and 280 nm, 68  80% C (A: H2O + 0.1% TFA and 
C: MeCN + 0.1% TFA) in 40 min at 60 °C, flow 1.0 mL/min. Centre: ESI mass spectrum. 
Bottom: ESI-HRMS spectrum of the [M+5H]5+-species. 
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Figure A 19: HPLC chromatogram and ESI mass spectra of P8. Top: HPLC chromatogram. 
Absorption was recorded at 215, 254 and 280 nm, 68  80% C (A: H2O + 0.1% TFA and 
C: MeCN + 0.1% TFA) in 40 min at 60 °C, flow 1.0 mL/min. Centre: ESI mass spectrum. 
Bottom: ESI-HRMS spectrum of the [M+5H]5+-species. 
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A.2.3 Secondary Structure Determination by CD Spectroscopy 
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Figure A 20: CD spectra of the -peptide P5 in lipid bilayer. DOPC SUVs (P/L = 1/20, 

c(-peptides) = 20 M, phosphate buffer (50 mM, pH 7.5)). The CD measurements were 
performed at 20 °C.  
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Figure A 21: CD spectra of the -peptide P6 in lipid bilayer. DOPC SUVs (P/L = 1/20, 

c(-peptides) = 20 M, phosphate buffer (50 mM, pH 7.5)). The CD measurements were 
performed at 20 °C. 



Appendix  

 

 
214 
 

190 200 210 220 230 240 250 260
-40

-20

0

20


M

 *
 1

0
3

 [
d

eg
 c

m
2

 d
m

o
l-1

]

 [nm]
 

Figure A 22: CD spectra of the -peptide P7 in lipid bilayer. DOPC SUVs (P/L = 1/20, 

c(-peptides) = 20 M, phosphate buffer (50 mM, pH 7.5)). The CD measurements were 
performed at 20 °C. 
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Figure A 23: CD spectra of the -peptide P7 in lipid bilayer. DOPC SUVs (P/L = 1/20, 

c(-peptides) = 20 M, phosphate buffer (50 mM, pH 7.5)). The CD measurements were 
performed at 20 °C. 
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A.2.4 Inter-Spin Distances from Modelled 3-Peptides 

 

Table A 2: Calculated distances r [nm] from the theoretical model of -peptide P5.  

 314 lit. 314 crystal 314 ideal 

r (O‒O) 

r (O‒N) 

r (N‒O) 

r (N‒N) 

2.0525 

2.0461 

2.0753 

2.0597 

2.3656 

2.3336 

2.3227 

2.2861 

2.2133 

2.1609 

2.1912 

2.1337 

 

 

Table A 3: Calculated distances r [nm] from the theoretical model of -peptide P6. 

 314 lit. 314 crystal 314 ideal 

r (O‒O) 

r (O‒N) 

r (N‒O) 

r (N‒N) 

2.9592 

2.8830 

2.8843 

2.8084 

3.1896 

3.0809 

3.1000 

2.9943 

3.0241 

2.9099 

2.9277 

2.8161 
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Table A 4: Calculated distances r [nm] from the theoretical model of -peptide P7. 

 314 lit. 314 crystal 314 ideal 

r (O‒O) 

r (O‒N) 

r (N‒O) 

r (N‒N) 

3.0211 

2.9533 

2.9345 

2.8688 

2.3708 

2.3659 

2.3583 

2.3488 

2.1480 

2.1420 

2.1241 

2.1129 

 

 

Table A 5: Calculated distances r [nm] from the theoretical model of -peptide P8. 

 314 lit. 314 crystal 314 ideal 

r (O‒O) 

r (O‒N) 

r (N‒O) 

r (N‒N) 

2.5312 

2.5383 

2.5234 

2.5234 

2.7378 

2.7051 

2.7245 

2.6884 

2.4616 

2.4261 

2.4456 

2.4066 
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