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A B S T R A C T

Collective mobility and demand-driven transport systems are vital to
proper, efficient and sustainable functioning of biological, technical and so-
cial systems. They are relevant to mastering several major transitions human
society is facing today on a global scale, and they have been attracting consid-
erable interest as on-demand ride-sharing systems are projected to disrupt
the individual mobility and public transport sector. In collective mobility sys-
tems and demand-driven transport systems alike, vehicles or other discrete
mobile units carry individual passengers, goods or other discrete immobile
loads. These systems do so upon individual request for transport from indi-
vidual origins to individual destinations, within individual time windows.
Coordination functions in these systems include assigning requests to trans-
porters and routing the transporters within the underlying geometry. When
transporters carry multiple loads at the same time, another function of the
system is to bundle spatiotemporally overlapping requests. Given both the
need and the recent interest and implementation of collective mobility and
demand-driven transport systems, it is imperative to understand their core
structural and dynamical properties and how they relate to their satisfactory
and efficient functioning.

Modelling and simulating such discrete-event systems involves untypical
technicalities that presumably have hindered progress in studying these sys-
tems from the network dynamics and statistical physics perspective so far. In
order to unlock collective mobility and demand-driven transport systems for
studies in these fields, I devise a modular framework to model and simulate
such systems.

Furthermore, a fundamental steady-state performance measure is the trans-
port capacity of the system. If overall demand exceeds capacity, the system
congests and ceases to function. Determining the capacity is henceforth cru-
cial to inform system design for optimized system efficiency and individ-
ual service quality. Intriguingly, the brink to congestion constitutes a critical
transition reminiscent of percolation in time. I develop a dynamic notion of
criticality of such stochastic processes, mapping the transition from stability
to instabilty to a hybrid percolation phase transition.

Overall, I anticipate this Thesis and the tools developed to be a starting
point for modelling and studying the dynamics of collective mobility and
demand-driven transport systems, and for understanding how the intricate
interplay of their structure and their dynamics governs their functioning.

This work is licensed under a Creative Commons “Attri-
bution 4.0 International” license.
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1 I N T R O D U C T I O N

Bypasses are devices that allow some people to dash from point A to
point B very fast while other people dash from point B to point A very
fast. People living at point C, being a point directly in between, (...)
often wish that people would just once and for all work out where the
hell they wanted to be. (Douglas Adams)

1.1 the case for collective mobility & transport

Collective mobility and demand-driven transport systems are vital to
proper, efficient and sustainable functioning of biological, technical and so-
cial systems. Functional differentiation and specialization, the separation of
tasks within a system and among systems, is a hallmark of biological, techni-
cal and social systems. In living organisms, vital tasks are separated among
several organs, among differentiated cells, and within cells among several
organelles, requiring transport mechanisms and distribution networks. [1,
2] Technical systems providing utilities such as water, electricity, informa-
tion and communication, spatially separate production and consumption of
the respective good, enabling virtualization at the consumer’s end. Think of
ancient aquaeducts and qanats, the steam engine, and as a recent example
cloud computing and storage services. [3–7] Modern human society heavily
relies on a global divison of labor to sustain population level and ubiquitous
access to a plethora of goods, as well as to fulfill higher-order functions. [8–
11] Functions humans demand in daily life are highly differentiated and
henceforth spatially separated in modern societies and include education,
work, leisure, shopping, sports, health. [12, 13]

Self-evidently, spatial separation of tasks entails the need for a transport
mechanism to move and exchange objects between the locations of the tasks.
For example, the vertebrate brain serves as a central sensory processing
and motor control unit. It relies on the transport of signals (action poten-
tials) through neurons extending into the rest of the body, to receive sen-
sory input and exert motor control. The vertebrate cardiovascular system
transports carbon dioxide and oxygen between the lungs and the rest of
the body, and exchanges nutrients between the cells. Within cells, motor
proteins actively transport vesicles loaded with biomolecules towards their
destination. [14–16] Transcontinental power grids transport electrical energy
provided by power plants to customers all across the continent. A global lo-
gistics network ensures the timely transport of raw materials and goods to
their customers. [17] Last but not least, aviation networks, railway networks,
road networks, and local public transport such as provided by omnibusses
or taxis, satisfy human travel and mobility demand. [18–23]
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4 introduction

Collective mobility and demand-driven transport systems are relevant to
mastering not one but several major transitions human society is facing to-
day on a global scale. In the outgoing fossil and analog age, private cars
and central planning have been dominating mobility and transport modes.
Several drivers of change underly the recent interest and trend towards col-
lective mobility and demand-driven transport systems. Globalization drives
complexity of supply chains, urbanization drives more efficient use of scarce
urban space, decarbonization drives more efficient use of scarce ressources,
planetary boundary conditions and the overall great transformation call for a
sustainable way of human civilization on Earth. [24–31] Furthermore, Indus-
try 4.0 and the Digital Revolution enable and require self-organized mobility
and logistics systems, and demographic change requires new solutions to mo-
bility and transport in increasingly ageing and depopulating rural areas. [32]

Collective mobility and demand-driven transport systems for human travel
and the movement of goods and other objects are on the rise. Of partic-
ular interest are on-demand ride-sharing services. [33–35] Their promise
is to provide reliable and affordable door-to-door mobility service and to
reduce emissions, congestion and space consumption especially in urban
centers, and to offer flexible mobility to rural areas. While taxi services, pre-
scheduled dial-a-ride and minibus services have been around for a long time,
the prevalence of mobile devices and cellular communication now render
spontaneous coordination and large-scale on-demand ride-sharing services
possible. Mobility on demand services developed by companies like Volk-
swagen Moia or ride-sharing services piloted by Helsinki Region Transport
(Kutsuplus) have the potential to provide satisfactory individual transport
and to efficiently use the available ressources at the same time. [36]

1.2 studying mobility and transport systems

Collective mobility and demand-driven transport systems feature vehicles
or other discrete transporting units that carry individual passengers, goods
or other discrete immobile loads from individual origins to individual des-
tinations, at individual times. As a physicist, I model transportation in such
systems as having the following properties:

• Transportation is demand-driven: there are no external fields such as
gravity or an electric field driving transport as in other systems studied
in physics (e. g. charge transport in solids). (Also, there are no fixed
schedules.)

• Transportation is on-demand or “urgent” in the sense that typical re-
quests are placed and require to be served within a time window which
is of the same order of magnitude as the travel time.

• Transportation is directed, as opposed to diffusive transport, or e. g. the
unspecific distribution of nutrients by the cardiovascular system. (Also,
there are no changes of transporters or modes.)

• Transported objects are discrete loads: there is no flow, there is no con-
tinuous quantity such as water.
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• The transported loads are immotile: they do not move on their own, as
opposed to conduction electrons in a metal.

• Loads are transported by discrete transporter units: there is no conveyer
belt, or pipes, such as the Internet distributes data packets on a contin-
uous basis.

• Transporters are costly: their number is of the order of the average
number of requests to be served within the average time it takes to
serve a request. In particular, not every load has its own transporter.

Mobility on demand and ride-sharing services motivate this focus on
demand-driven directed transport (D3T) models. Nevertheless, D3T models might
be relevant to a wider range of biological, technical and social transport sys-
tems, for example in intracellular transport.

Now, while there is an extensive and growing body of literature on various
aspects and various models and instances of such systems, what is lacking
so far is an integrated treatment that addresses how the core structural and
dynamical properties of such systems relate to their satisfactory and efficient
functioning. Of particular interest is whether and how decentralization and
self-organization lead to more performant, resilient and sustainable mobil-
ity and transport. From a physicist’s perspective, D3T systems are dynami-
cal systems embedded in a certain geometry and driven by the requests for
transport. These requests arrive according to a spatiotemporal stochastic pro-
cess. Further parameters are the number of transporters, their capacity, and
the algorithm to assign requests to transporters. We are interested in how
all these components of the system shape the transport dynamics (the pro-
cessing of the requests), and how the dynamics influences the performance
(output) of these systems. Performance measures include measures of indi-
vidual service quality, such as the waiting time distribution, and measures
of system efficiency, such as the number of transporters needed to serve a
given number of requests per time.

We aim at identifying universal principles and behavior that provide in-
sight and offer a unified explanation for a range of mobility and transport
systems and their parameters. Understanding these principles and relation-
ships informs system design, improves algorithms to assign and route trans-
porters to individual requests, and helps to prevent system breakdowns and
to mitigate service disruptions. A plethora of disciplines is concerned with
studying and designing mobility and transport systems, including regional
and urban planning, traffic and logistics engineering, operations research,
computer science, mathematics and physics. They aim to plan and improve
mobility and transport in facilities, cities, municipalities, and, potentially,
countries and across the globe.

Mathematicians and computer scientists excel at addressing the problems
of assigning requests to transporters and of routing the transporters on a
graph within the fields of combinatorics, optimization and graph theory. [37]
These search and optimization problems are typically NP-hard. That is, find-
ing an exact and optimal solution for a typical instance requires a number
of steps that grows exponentially with system size. Yet, frequently there are
search heuristics for finding some suboptimal but good enough solutions in
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polynomial time and also exact bounds on their optimality. The task is to
find these efficient algorithms and adapt them to the computational prob-
lem at hand. These computational problems are either static (offline problems),
with all requests known beforehand, or dynamic (online problems), with the
requests becoming known one at a time. These dynamic problems are inte-
gral to online decision-making in D3T systems. In D3T systems, an online
algorithm assigns requests to transporters, and it is crucial to determine the
performance of the assignment and routing algorithms. However, this is not
the end of the story, as the performance of an algorithm in isolation does
not relate the decisions by that algorithm to the transport dynamics and
system performance—for example, we still need to understand how certain
algorithms are more prone to congestion than others. Furthermore, we need
to compare the dynamic properties and performance of different systems
across different parameters.

Pure and applied probability theoreticians describe and study the stochas-
tic spatiotemporal demand process driving transport in D3T systems. They
also relate this input pattern to the individual service quality and the system
efficiency within the framework of queueing theory. [38] Notions of system
performance such as the average waiting time from queueing theory are
also appropriate for D3T studies. One caveat is that basic queueing theory
is without a notion of moving in a physical space. That is, basic queueing
theory only deals with temporal stochastic processes and their fluctuations,
and how they affect performance of systems in which the servers do not
need to move as transporters in a D3T system. While queueing theory is the
science of congestion, excelling at thoroughly describing queueing systems
under heavy load, it lacks a description of the transition from a stable queue
to an unstable queue in terms of statistical physics.

Engineers in Transportation Planning study specific instances of transport
systems and model them to great detail. In the absence of any prospect of an-
alytically tracting or even solving such models, they resort to full-scale sim-
ulations of human traffic and daily activity patterns. [13, 39] Their method-
ology yields immediate results for pressing real-world transportation prob-
lems and heuristics to apply to other such problems. What is generally miss-
ing is an abstraction and an insight into the underlying dynamical properties
and their dependence on structural parameters. This resembles the situa-
tion in the field of modeling electrical distribution networks also known as
power grids. [40] Electrical engineering employs detailed models with liter-
ally thousands of paramaters to model and monitor power grid operations
and to mitigate failures. However, these models are intractable and as such,
do not facilitate an understanding on how networks parameters relate to
grid performance.

Complexity scientists aim at explaining emergent properties of complex
adaptive systems in terms of simple microscopic rules, hence unifying a
seemingly disparate range of systems in a universal law, typically a power-
law scaling with system size or another scale-free distribution. Prominent
examples include the metabolic theory of ecology, preferential attachment,
and scaling of cities and most recently, scaling of urban ride sharing. [41–
44] In the past decade, comprehensive spatiotemporal records of individ-
ual human trips (or proxies thereof) or transport movements have become
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available (e. g. [45]). This has been fueling an on-going effort to uncover and
explain universal spatiotemporal patterns of human movements. [22, 23, 46–
48] Yet, while large-scale spatiotemporal data are useful for spotting uni-
versality across various systems and for testing predictions of models, such
analysis still comes short of providing insight into dynamical properties and
their fluctuations in D3T systems other than providing useful heuristics.

1.3 physics of collective mobility & transport

Physics of collective mobility and demand-driven transport systems is
about general principles that unify the description of the dynamics of a
large class of such systems (cf. [49]). These principles relate structure and
dynamics and quantify how dynamical system properties scale over a range
of magnitudes. They uncover when and how per se local interactions of the
constituents of the system or small perturbations lead to global effects, the
signatures of emergence and criticality. These include dynamical instabili-
ties as well as structural bifurcations and phase transitions – and qualifying
and quantifying their precursors. Physics is less about explicitly explaining
a particular system in detail. Instead, it aims at models as simple as possi-
ble that feature the phenomenon under study and allow to deduce general
properties. For critical transitions, universality is the prevalent notion in this
endeavour, as a universality class unifies a range of disparate systems with
different microscopic interactions but nevertheless same qualitative behavior
at critical transitions involving the system as a whole. [50]

Statistical physics of D3T systems includes studying how the parameters
and system components such as the underlying geometry and the assign-
ment and routing of transporters affects the dynamics and system perfor-
mance. For example, it is of immediate interest how dynamical performance
quantities scale with parameters such as system size, transporter number, re-
quest rate. Regarding the dynamics itself, the general question is how much
small parameter changes or spatiotemporally local fluctuations or perturba-
tions affect the system as a whole. Of particular relevance to the reliable
functioning of collective mobility and demand-driven transport systems are
such small changes when they inflict non-linear responses, as seen in bifur-
cations, deterministic chaos and phase transitions.

Modelling and studying D3T systems is not straightforward to physicists.
They are of high dimensionality, have a rich and rather technical state space
and they are not smooth. In fact, with pick-ups and deliveries, their time
evolution is governed by discrete events in continuous time, rather than con-
tinuous differential equations or low-dimensional mappings in discrete time.
What is more, albeit not unseen, the irreducible notion of passive immotile
loads transported by discrete transporter units is also rather unusal for mod-
els in the physics literature. Additionally, the combination of optimization
and routing algorithms as well as time-discrete events in continuous time
requires boilerplate abstraction in modelling and simulation, resulting in a
steep learning and implementation curve with unclear scientific and per-
sonal reward. However, it is in line with the recent trend of physicists in-
creasingly moving into domains of biological, socioeconomic and technical
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systems. They do so mainly within the methodology of network science and
network dynamics as a paradigm for systems of many elements with pair-
wise interaction other than through physical fields.

1.4 about this thesis

This Thesis along with the scientific software developed in its course is
conceptual work. This work is to facilitate modelling and simulation of col-
lective mobility and demand-driven transport systems, and to relate their in-
stabilities to phase transitions. With the goal of conducting domain science,
in studying the statistical physics and network effects of collective mobility
and demand-driven transport systems, this Thesis is a fundament to conduct
actual studies by providing a framework for rigorous modelling as well as
defining the relevant quantities to the statistical physicists, both formally
and computationally. In this approach, it complements existing approaches
such as data-driven science [34, 44] or mean-field theory [51]. In fact, in pro-
viding a modelling and simulation toolkit to the statistical physicist and net-
work scientist, my framework facilitates computational studies that bridge
the gap between these approaches. That several of these studies are actually
being conducted at the time of writing is a reassuring confirmation of this at
times somewhat technical but nonetheless fundamental scientific approach.
It would not have materialized without domain science expertise and with-
out designing domain science studies.

The structure of this Thesis is as follows. Part II gives fundamental theo-
retical background on critical transitions, stochastic processes and discrete-
event systems from standard works in these fields. Part III introduces the
formal and computational framework I developed to model, simulate and
analyze demand-driven directed transport (D3T) systems. This Part has been
partially published in a peer-reviewed conference proceeding published by
IEEE and partially presented at the 2017 DPG spring meeting. [52, 53] Part
IV shines light on the critical transition of simple models of such systems—
simple queues or random walks. The temporal percolation paradigm and
computational framework I develop links statistical physics and instabilities
of stochastic processes such as those modelling queues and collective mobil-
ity and demand-driven transport systems. This is so far unpublished work
(other than an invited talk in the Physics of Collective Mobility symposium
at the DPG spring meeting 2017, and a contributed talk at the DPG spring
meeting 2015). [54, 55] Finally, I conclude in Part V.

This Thesis is scripted and typeset with PythonTeX, ArsClassica and Clas-
sicThesis LATEX packages (among others). [56–60]. This is a selection of the sci-
entific Python packages this Thesis imports: NumPy [61], SciPy [62–64], Mat-
plotlib [65], IPython [66], Jupyter [67, 68], h5py [69], seaborn [70], dask [71,
72] For a detailed account of the computational environment this document
and its figures have been prepared with, see Listing C.1.
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2 C R I T I C A L T R A N S I T I O N S

2.1 introduction

Systems with many degrees of freedom, or many constituents, exhibit col-
lective behavior that is qualitatively different from the behavior of a single
or only a few of its constituents. It is this notion of emergence that simple
local interactions among the constituents generate new states of the system
as a whole (“more is different”): At each scale, a new effective but no less
fundamental theory is needed. [73] Statistical physics aims at a statistical
description of such systems, as a full microscopic description of the system
beyond its basic equations is out of reach and would anyway not capture the
emergent properties at the system scale. [74, 75]

As such large systems feature emergent states which are more than a lin-
ear juxtaposition of its parts, they also feature non-linear collective responses
such as abrupt changes in their qualitative behavior when subjected to a
small perturbation or small change in some parameter. Phase transitions
transform systems from one macroscopic state into another, involving all
scales of the system; somewhat analogously, bifurcations and similar crit-
ical transitions abruptly change the long-term behavior of dynamical sys-
tems. [76–79] Such transitions exist only in infinite systems as systems in-
volving only a finite number of finite quantities in analytical expressions
such as the partition sum do not generate singularities: Phase transitions
exist only in the thermodynamic limit of infinitely large systems, critical tran-
sitions in dynamical systems exist only in the asymptotic regime of infinite
duration. [50, 79]

Typically, phase transitions are discontinuous (first order) or continuous
(second order). In first-order transitions, macroscopic regions of different mi-
croscopic properties coexist at the critical point (such as water ice and liquid
water at the melting point). In particular, detail of local interaction is relevant
to the critical behaviour of the system. In contrast, continuous transitions let
the two phases coincide at the critical point. Instead, the correlation length of
fluctuations in the quantity of interest (the “order parameter”) distinguish-
ing the two phases diverges. This divergence in turn means that detail of
local (short-range) interaction becomes irrelevant at the critical point, giv-
ing rise to universal behavior. On the contrary, for first-order transitions, no
such universality exist as different microscopic configurations coexist at the
critical point. [75, 79]

While the notion of a “critical transition” of dynamical systems remains
elusive in the wider literature [78], it is susceptible to mathematical rigor
from dynamical systems and bifurcation theory [80, 81]. Both continuous
phase transitions as well as critical transitions in the sense of Scheffer [78]
and Kuehn [81] — henceforth all referred to as critical transitions — fea-
ture critical slowing down and increasing fluctuations in the vicinity of the

11
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transition. [79, 82]. These are precursors, also called early-warning signs, of
imminent critical transitions that help to predict and eventually mitigate or
prevent such a transition. [82–84].

Continuous phase transitions are characterized by an infinite susceptibility
and correlation length, as the phases on both sides of the transition coincide
at the critical point. Criticality refers to exactly this state of the system at
the transition, when the system is gripped by usually localized fluctuations
now collectively scaling up to become as large as the system itself. Instead of
coexisting microscopic phases in first-order transitions, at a critical transition
there is no microscopic any more: as a critical transition involves all scales
of the system, it transcends any meaningful separation of scales. [79]

Criticality is in an intricate sense a collective effect of collective effects at
all scales of a system. Usually, for each scale of collective behaviour, an ef-
fective theory describes the emergent behaviour on that scale and otherwise
averages the behavior on smaller and larger scales as there is a clear hier-
archical separation in space and time. As it is dominated by fluctuations,
criticality defies the very notion of averaging. As perturbations on different
scales strongly couple up to system size, there is no separation of scales
any more; the collective behavior and its correlations become self-similar, the
system becomes scale-free or scale invariant. [79]

The signature of quantified scale invariance of the system is its relevant
properties obeying power laws. Indeed, in the vicinity of a critical transition,
correlations decay slowly according to a power law. Such scaling laws allow
to infer the behavior of a system or the value of a property of a system at
any given scale from a known system at a particular scale. The exponents
of the relevant power laws describe the divergence of these properties near
the critical point. These critical exponents quantify the scale invariance and
the long-range collective fluctuations in the critial region. In fact, the scaling
hypothesis postulates that any property of the system that depends on the
parameter controlling the transition, only depends on the parameter indi-
rectly, through the scale of coherence. [76] As critical exponents of different
critical systems coincide, they signify the same critical behavior in otherwise
microscopically different systems, also referred to as universality. Hence, a
level of “understanding” a continuous transition is reached when finding or
characterizing its universality class by means of its critical exponents. [85]

2.2 percolation theory

2.2.1 Introduction

Percolation theory characterizes how global connectivity emerges in a sys-
tem of a large number of objects. These objects connect according to some
local rule constrained by an underlying topology such as a network or a
regular geometric lattice. Given the topology and the local rule, percolation
theory is about yielding the global, emergent behavior. [86, 87] Percolation
abounds in nature, technical systems and social networks (see Stauffer and
Aharony [86], Sahimi [88], Lee, Cho, and Kahng [89], and Saberi [90] and
references therein). Early occurrences of percolation theory in the literature
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include the classic works by Flory [91] and Stockmayer [92] on polymer-
ization and the sol-gel transition. However, it is only later that a theory of
percolation starts to emerge. [93]

We say that a system is at percolation, or that a system percolates, if suf-
ficiently many objects are locally connected such that global connectivity
emerges. [87] This global connection is a continuous chain or cluster of lo-
cally connected objects, which is unbound in size in infinite systems, or of
the order of the system size in finite systems. Typically, percolation also
refers to a stochastic process of increasing connectivity and eventual emer-
gence of the giant cluster. In an infinite system, this emergence in an ensem-
ble of system configurations constitutes a geometrical phase transition. In
fact, percolation is a phase transition paradigm. [86, 89] The central quantity
in percolation settings is the distribution ns of cluster sizes on a graph. A
classical setting is that of a regular lattice of sites connected to their near-
est neighbors. In site percolation, sites are subsequently picked or occupied,
forming larger and larger clusters. In bond percolation, it is the links that are
subsequently added to eventually form a giant cluster of connected sites.

In the following, we introduce the concepts and notation mainly according
to Stauffer’s and Aharony’s classic textbook [86], before sketching recent
developments in percolation theory.

2.2.2 The cluster size distribution

The cluster size distribution ns is the fundamental quantity in percolation
theory. In the regular lattice setting, a cluster is a maximum set of occupied
sites which are pairwise joined by paths on the lattice only traversing oc-
cupied sites. In general, a cluster is a component of (occupied or connected)
nodes of the underlying graph. The size s of a cluster is the number of nodes
in the component. Infinite graphs allow for infinite cluster sizes. The occu-
pation of sites, or the cluster sizes, typically depend on a (global) control
parameter. For example, the paradigmatic percolation model of Bernoulli per-
colation is that each site is independently occupied with some probability
p.

All the following statistics only require the general percolation setting of a
graph. Let p denote the general control parameter in a percolation setting. In
a finite system of N sites, the cluster number ns(p,N) is the number Ns(p,N)

of clusters of size s normalized by the total number N of sites:

ns(p,N) =
1

N
Ns(p,N). (2.1)

This definition also applies to systems of infinite size as

ns(p) = lim
N→∞ 1

N
Ns(p,N). (2.2)

2.2.3 Percolation threshold and characteristic cluster size

Typically, in an infinite system clusters grow with increasing parameter p,
and at some critical value pc, an infinite cluster appears. This value pc is
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the percolation threshold. At and above pc, there is an infinite cluster, and the
system is said to percolate.

The probability that a system of finite size N percolates at parameter p is
the probability Π(p,N) that it contains a cluster of order of the system size.
In an infinite system, we have the phase transition as

Π(p) = lim
N→∞Π(p,N) =

{
0 p < pc,

1 p > pc.
(2.3)

The percolation strength is the fraction of sites belonging to the largest (or
infinite) cluster. In the infinite system, the limit fraction is the typical order
parameter of the percolation transition.

A typical form of the asymptotic tail of the cluster size distribution is

ns(p) ∼ s
−τ exp(−s/sξ) , (s→∞), (2.4)

for large cluster sizes s and with some characteristic cluster size sξ. At the
percolation transition, the characteristic cluster size sξ diverges as a power
law

sξ ∼ |pc − p|
−1/σ , (p→ pc) (2.5)

with the critical exponent σ.
In general, clusters of size s < sξ dominate the moments of the cluster

size distribution. These clusters effectively follow a power-law distribution
ns(p) ∼ s

−τ, as clusters of all sizes do at the critical point with ns(pc) ∼ s−τ.
Meanwhile, in the vicinity of the critical point, for s� sξ, the distribution is
cut off exponentially. Thus, clusters larger than the charateristic cluster size
do not exhibit critical behavior.

2.2.4 Average cluster size and correlation length

For any given site of any given finite cluster, the average size S(p,N) of
the cluster is defined as

S(p,N) =

∑∞
s=1 s

2ns(p,N)∑∞
s=1 sns(p,N)

=
M2(p,N)

M1(p,N)
, (2.6)

which is the second moment divided by the first moment of the cluster size
distribution. Note that this average is different from the average of the (finite)
cluster sizes in the system. The average cluster size S(p,N) is defined with
respect to a site, and thus, it is an intensive quantity.

Further note that for infinite systems (N→∞), these statistics exclude the
infinite cluster. At the critical point, the average cluster size S(pc) neverthe-
less diverges as

S(p) ∼ |p− pc|
−γ , (p→ pc) (2.7)

with the critical exponent γ. As S is the second moment of the cluster size
distribution (up to the normalization factor), it is a measure of fluctuations
in the system. Thus, divergence of S actually defines the percolation phase
transition.
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The divergence of quantities at the critical point involves sums over all
cluster sizes s. The cutoff of the cluster number ns at the characteristic cluster
size sξ ∼ |p− pc|

1/σ marks the cluster sizes s ≈ sξ that contribute the most
to the sums and hence, to the divergence. This also holds for the correlation
length ξ, which is the radius of those clusters of sizes s ≈ sξ. As such, this is
the one and only length scale which characterizes the behavior of an infinite
system in the critical region.

The correlation length ξ defines the relevant length scale. As it diverges
at p → pc, a length scale is absent at the percolation transition p = pc.
This lack of a relevant length scale is a typical example of scale invariance
at a continuous phase transition. This implies that the system appears self-
similar on length scales smaller than ξ. As ξ grows infinite at pc, the whole
system becomes self-similar. The lack of a relevant length scale also implies
that functions of powers (power laws) describe the relevant quantities in the
critical region. In particular, the correlation length itself diverges according
to a power law as

ξ ∼ |p− pc|
−ν , (p→ pc). (2.8)

The functional form of this divergence is the same in all systems. The crit-
ical exponent ν depends only on general features of the topology and the
local rule, giving rise to universality classes of systems with the same critical
exponents.

2.2.5 Scaling relations

The scaling theory of percolation clusters relates the critical exponents of
the percolation transition to the cluster size distribution. [94] In the absence
of any length scale at the critical point, the cluster sizes also follow a power
law

ns(pc) ∼ s
−τ, (s→∞), (2.9)

with the Fisher exponent τ. [95] The scaling assumption is that the ratio
ns(p)/ns(pc) is a function of the ratio s/sξ(p) alone [94], such that

ns(p)

ns(pc)
= f

(
s

sξ(p)

)
, (p→ pc, s→∞). (2.10)

As in the critical region, the characteristic cluster size diverges as sξ ∼

|p− pc|
−1/σ, we have s/sξ(p) ∼ |(p− pc)s

σ|
1/σ, and hence

ns(p) ∼ s
−τf((p− pc)s

σ), (p→ pc, s→∞), (2.11)

with some scaling function f which rapidly decays to zero, f(x) → 0 for
|x| > 1(s > sξ). [86]

The correlation length ξ ∼ sσνξ is the crossover length separating the crit-
ical and non-critical regimes. [86] The following scaling law relates the sys-
tem dimensionality d and the fractal dimensionality D = 1

σν of the infinite
cluster to the exponents of the cluster size distribution: [87]

τ− 1

σν
= d, τ = 1+

d

D
. (2.12)
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Finally, consider the k-th raw moment of the cluster size distribution,

Mk(p) =
∑
s

skns(p) (2.13)

which scales in the critical region as

Mk(p) ∼
∑
s

sk−τ exp(−s/sξ(p)) ∼ |p− pc|
(τ−1−k)/σ (p→ pc). (2.14)

Similarly, in the critical region, the order parameter scales as

P(p) ∼
∑
s

s(ns(pc) −ns(p)) ∼
∑
s

s1−τ
(
1− exp

(
−

s

sξ(p)

))
(2.15)

∼ (p− pc)
(τ−2)σ = (p− pc)

β (2.16)

with critical exponent

β =
τ− 2

σ
. (2.17)

As the second raw moment M2(p) ∼ |p− pc|
(τ−3)/σ, we have the critical

exponent

γ =
3− τ

σ
, (2.18)

and the following relationships

σ =
1

β+ γ
, τ = 2+

β

β+ γ
. (2.19)

These are the scaling relations between the critical exponents, which all de-
rive from the exponents τ and σ of the cluster size distribution.

2.2.6 Bond percolation on a regular lattice

In Bernoulli percolation settings each site or bond has an identical prob-
ability to be occupied or unoccupied, independent of the others. Here, we
consider the classic bond percolation problems on a linear chain with two
neighbors and a square two-dimensional lattice with four neighbors. In one
dimension, when each bond is present with probability p, the probability to
have a cluster of size s is

ns = p
s−1(1− p)2. (2.20)

For p near the critical value pc = 1 we have

ns = s
−2(s(pc − p))

2ps = s−2(s(pc − p))
2 exp(−(pc − p)s) (2.21)

which is of the postulated scaling form with f(x) = x2 exp(−x). Hence, the
exponents of the cluster size distributions are τ = 2 and σ = 1, leading to
critical exponents β = 0,γ = 1,ν = 1 for the percolation transition. [96]
Actually, in one dimension, the transition is discontinuous, as the infinite
cluster emerges at pc = 1 and contains all sites, leading to a discontinuous
jump in the order parameter from 0 to 1 at pc.

For the two-dimensional regular square lattice, the Fisher exponent is τ =
187
91 ≈ 2.05 and σ = 36

91 ≈ 0.396, such that β = 5
36 ≈ 0.139,γ = 43

18 ≈ 2.39,ν =
4
3 ≈ 1.33. [79]
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2.3 diverse types of percolation transitions

Exactly how a percolating cluster emerges and how this transition mani-
fests itself in the cluster statistics is the main subject of percolation theory.
The conventional order parameter to characterize the transition is the frac-
tion of nodes that belong to the largest component. Whether the transition
is discontinuous or continuous determines the tunability of the system at
and towards the transition, as well as predictability due to precursors in the
lead-up to the transition. [97–99]

Classic percolation models exhibit a continuous transition. The order pa-
rameter grows continuously from zero to finite size at the transition in in-
finite systems. Furthermore, correlation lengths and cluster sizes scale as a
power law, the signature of criticality and a continuous transition. An ex-
ample is the Erdös-Rényi model, a random network with controlled bond
density p, the fraction of occupied bonds per node. [100] Another example
is random percolation on a regular two-dimensional lattice. The cluster sizes
scale as ns ∼ s−τ with Fisher exponent τ = 187

91 > 2.

A notable exception is the discontinuous transition (first-order phase tran-
sition) in one dimension. [101–103] In the infinite chain, the order parameter
jumps from 0 to 1 at full connectivity. There is no signature of criticality as
there is no power-law scaling: the cluster sizes distribute exponentially in
the lead-up to the transition.

In contrast to these classical percolation models, competitive and non-
reversible percolation models show intermediate behavior transcending the
continuous vs. discontinuous dichotomy. [89, 90, 97, 104] While Bernoulli
(random) percolation models add links independently, competitive processes
select the next bond to add that fits best according to some model-specific
rule. [105, 106] Typically, these rules delay the emergence of a giant compo-
nent, which leads to an “explosive” growth of the order parameter at the
transition. [89, 97, 107, 108] While this seemingly discontinuous transition
has been proven to be actually continuous at the critical point [109], discon-
tinuities can prevail [110] and shape the lead up to the transition. [98, 99]

Moreover, Sheinman, Sharma, Alvarado, Koenderink, and MacKintosh
[111] recently reported a transition with critical signature but nevertheless
discontinuous growth of the order parameter. Theoretically, and experimen-
tally, cluster sizes distribute according to a power law with Fisher exponent
τ ≈ 1.8 or τ ≈ 1.9. While the power law signifies a continuous transition,
the Fisher exponent smaller than 2 entails a discontinuous order parameter.
Indeed, the largest cluster size jumps from 0 to 1 at the critical point pc in
the thermodynamic limit. These findings are consistent with the notion of
hybrid percolation transitions (sometimes referred to as mixed-order tran-
sitions) featuring characteristics of both discontinuous (first-order) and con-
tinuous transitions at the critical point and have been reported for various
systems. [89, 112–115]
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2.4 finite-size scaling

Scale invariance of critical infinite system manifests itself in scaling laws
in the relevant quantities, and, moreover, according to the scaling hypothesis
that these scaling laws originate from the diverging coherence length ξ. [79]
How quantities that diverge in the infinite system scale with the size of a
truncated, finite version of that system, is subject of the following finite-size
scaling ansatz. According to the scaling hypothesis, a quantity A(p) that
diverges as |p− pc|

−ζ in the infinite system with some critical exponent ζ
should scale as

A(p,L) = |p− pc|
−ζ f

(
L

ξ

)
∼ ξζ/νf

(
L

ξ

)
= A(ξ,L) (2.22)

with system size L and coherence length ξ = ξ(p) of the infinite system
(L → ∞). [79, 116–118] For a system of size much larger than the coherence
length, the system is effectively infinite, and as such we have

A(ξ,L) ∼ ξζ/ν, (L� ξ,p→ pc). (2.23)

For a system of size much smaller than the coherence length of the infinite
system (L � ξ), the coherence is cut off already at L rather than ξ, and we
expect at or near the critical point a scaling with system size as

A(p,L) ∼ Lζ/ν, (L� ξ,p→ pc). (2.24)

These considerations constitute the finite-size scaling ansatz [116–118]

A(ξ,L) = ξζ/νf
(
L

ξ

)
, (L→∞,p→ pc). (2.25)

with the scaling function

f(x)

{
= const. for |x|� 1,

∼ xζ/ν for x→ 0.
(2.26)

The scaling function f(x) is a dimensionless function of the dimensionless
ratio L/ξ of the finite system size and the infinite-system coherence length in
the critical region. This ratio controls the finite-size effects. The conventional
scaling function is f̃(x) = x−ζf(xν) [116, 117] such that

A(p,L) = Lζ/νf̃
(
L1/ν(p− pc)

)
, (L→∞,p→ pc), (2.27)

with

f̃(x)

{
= const. for x→ 0 (L� ξ),

∼ L−ζ/ν(p− pc)
−ζ for |x|� 1 (L� ξ).

(2.28)



3 S TO C H A S T I C P R O C E S S E S

3.1 definitions

3.1.1 Overview

The time evolution of a typical deterministic dynamical system is the solu-
tion of some differential equation (in continuous time) or given by a map (in
discrete time). [119] This applies to both classical deterministic systems (e. g.
planetary trajectories in the solar system) and quantum-mechanical systems
(e. g. evolution of atomic states).1 [120]

In contrast, a stochastic process describes the non-deterministic time evo-
lution of a dynamical system. This does not only apply to inherently prob-
abilistic systems (e. g. radioactive decay). It also applies to thermodynamic
or chaotic systems (e. g. Brownian motion, or the weather) that evolve de-
terministically in a huge number of degrees of freedom. Nevertheless, the
probabilistic description as a stochastic process makes the time evolution of
these systems tractable.2

3.1.2 Probability spaces and random elements

The core notion of probability theory is a probability space and random vari-
ables defined on it. In the following, I assume familiarity with the distinct
concepts of metric spaces and measure spaces.

Definition 3.1 ([122, Definition 1.1]). A probability space is a triple (Ω,F,P)
where Ω is any set, referred to as the set of outcomes, and F is a σ-algebra of
subsets of Ω, referred to as events, and P : F 7→ [0, 1] a probability measure that
assigns a probability to each event, with P(Ω) = 1.

The concept of a random element unifies the notion of random variables,
stochastic processes and other quantities and mappings associated with a
probability space (Ω,F,P). Similarly, the concept of a Polish space unifies the
natural and real numbers, arbitrary countable sets, Euclidian spaces, as well
as function spaces equipped with a metric:

Definition 3.2 ([123, p. 409]). Let S be a metric space that is complete (each Cauchy
sequence is convergent) and separable (there is a countable dense set in S). Let S be
the (canonical) Borel σ-algebra generated by the open sets induced by the metric.
Then call the space (S, S) a Polish space.

Definition 3.3 ([123, p. 194]). Let S,S ′ be two Polish spaces. Let p be a function
S × S ′ → [0, 1] such that p(x, ·) : S ′ → [0, 1] is a probability measure on S ′

1 While quantum mechanics is inherently probabilistic, the time evolution of a quantum-
mechanical state according to the Schrödinger equation is deterministic.

2 See Werndl [121] for a discussion of observational equivalence of stochastic processes and
deterministic systems.
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and p(·,B) : S → [0, 1] is measurable for all x ∈ S,B ∈ S ′. Then p is called a
probability kernel from S to S ′.

Definition 3.4 ([123, p. 409]). Let (Ω,F,P) be a probability space, and let (S, S)
be a Polish space. A random element in S is a measurable mapping X : Ω 7→ S.
Its probability distribution is the probability measure

FX(B) = P {X ∈ B } = P ◦X−1(B), B ∈ S.

The probability distribution already contains all of the probability infor-
mation about a random element X without considering other random el-
ements, even without explicity constructing a rather abstract probability
space (Ω,F,P). [123, p. 406]

Definition 3.5. Let (Ω,F,P) be a probability space. A random variable X : Ω→
R is a random element in R. The function F : R→ [0, 1] with

F(x) = P {X 6 x } ≡ P {ω : X(ω) 6 x } , x ∈ R

is monotonously increasing and is called the distribution function of X.

Definition 3.6 ([123, p. 406]). Let (Ω,F,P) be a probability space. A statement
about events or random elements is said to hold almost surely if the statement holds
with probability one.

3.1.3 Random functions and stochastic processes

Following Khintchine [124], and subsequently Serfozo [123] and Capasso
and Bakstein [122], a stochastic process is a collection of random variables
on the same probability space, which take values in the same (Polish) state
space. Ultimately, one is interested in the probability law for the set of trajec-
tories of the stochastic process.

Definition 3.7 ([125, Definition 1.2]). Let (Ω,F,P) be a probability space, S be
a Polish space, and let T be any set. A random function X with state space S and
parameter set T is a family {X(t); t ∈ T } of random elements X(t) : Ω → S,ω 7→
X(t,ω) in S, indexed by elements t ∈ T.

A discrete-time stochastic process is a random function with parameter
set T = N:

Definition 3.8 ([123, p. 409]). Let (Ω,F,P) be a probability space, S be a Polish
space. A discrete-time stochastic process with state space S is a collection of
random elements X = {Xn : n ∈ N } in S on (Ω,F,P). The value Xn(ω) ∈ S is the
state of the process at time n associated with the outcome ω.

Serfozo [123, p. 409] points out that the discrete-time stochastic process X
is a random element in S∞.

A continuous-time stochastic process is a random function with parameter
set T = R+

0 :

Definition 3.9 ([123, p. 410]). Let (Ω,F,P) be a probability space, S be a Polish
space. A continuous-time stochastic process with state space S is a collection of
random elements X =

{
X(t) : t ∈ R+

0

}
in S on (Ω,F,P). The value X(t,ω) ∈ S

is the state of the process at time t associated with the outcome ω.
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Definition 3.10 ([125, p. 1]). Let X be a random function (stochastic process) with
state space S and parameter set T on some probability space (Ω,F,P). Given an
elementary outcomeω ∈ Ω, the function X(·,ω) : T→ S, t 7→ X(t,ω) is called the
trajectory, the realization or the sample path of the random function (stochastic
process) X associated with the outcome ω.

So far, the rather abstract probability space (Ω,F,P) holds all the probabil-
ity information about a stochastic process. [123, p. 410] To make this proba-
bility information accessible, one defines push-forward probability measures
on a finite set of points in time. For a fixed number m ∈ N of points in time
t1, . . . , tm ∈ T, consider the product state space (Sm, Sm) with the appro-
priately defined product σ-algebra Sm. Further consider the vector-valued
function Xt1,...,tm : Ω → Sm,ω 7→ (X(t1,ω), . . . ,X(tm,ω)). This function is
measurable, i. e. a random element with values in Sm.

Definition 3.11 ([125, Definition 1.3]). Let (Ω,F,P) be a probability space, and
let X be a random function (stochastic process) with state space S and parameter
set T. Let m ∈ N and t1, . . . , tm ∈ T. The push-forward probability measure
PXt1,...,tm : Sm → [0, 1] given as

PXt1,...,tm = P ◦X−1
t1,...,tm ,

PXt1,...,tm(B) = P {ω ∈ Ω : (X(t1,ω), . . . ,X(tm,ω)) ∈ B } ,

is called a finite-dimensional distribution of the random function (stochastic pro-
cess) X.

Furthermore, the set
{
PXt1,...,tm : m ∈ N, t1, . . . , tm ∈ T

}
is called the family

of finite-dimensional distributions of the random function (stochastic process) X.

According to the Kolmogorov extension theorem, a family of finite-
dimensional distributions that fulfill mild consistency conditions probabilis-
tically defines a stochastic process (and guarantees its existence). [125, The-
orem 1.1] The probability space (Ω,F,P) does not even need to be unique.
This is why stochastic processes are typically sufficiently defined via their
finite-dimensional distributions, or by specifying the time evolution of the
process, rather than through the explicit construction of a probability space.

3.2 point processes

3.2.1 General point processes

Let us capture the notion of a random set of points in some (Polish) space
(S, S). But first, observe that each finite or countable set of points { xn }n in S
induces a counting measure

N =
∑
n

δxn : S→ N,B 7→
∑
n

δxn(B)

with the Dirac measure δx : S→ { 0, 1 } , δx(B) = 1⇔ x ∈ B. Furthermore, the
set of points should have no accumulation points, i. e. the counting measure
shall be finite for each B ∈ Ŝ, where Ŝ ⊂ S is the family of bounded Borel
subsets of S.
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Definition 3.12 ([123, pp. 181–182]). Let (Ω,F,P) be a probability space and
(S, S) be a Polish space. Let Ŝ ⊂ S denote the family of bounded Borel sets in
S. A random set of points {Xn }n in S is a random element in the set of at
most countable subsets

{
{ xn }

N
n=0 | N ∈ N∪ {∞ } , xn ∈ S∀n

}
such that in each

bounded Borel set B ∈ Ŝ the number of points is finite:

N(B)(ω) =
∑
n

δXn(ω)(B) <∞, B ∈ Ŝ,ω ∈ Ω

where N now is a random element in the set of all counting measures ν on S for
which ν(B) <∞ for B ∈ Ŝ. N is called a point process on S and Xn are the points
of N.

Note that a point process is not a stochastic process, as the points are not
ordered but merely labelled in interchangeable order. In fact, the counting
measure N is invariant under permutation of the labels n of the set of points
{Xn }n that induces N.

A point process N is characterized (and guaranteed to exist) by specifying
the finite-dimensional distributions on bounded Borel sets that generate S,{

Pm(N(Bi) = ni, i = 1, . . . ,m) : m ∈ N,ni ∈ N,Bi ∈ Ŝ, i = 1, . . . ,m
}

,

a family of probability measures on
(
Sm, Ŝ

m
)

. [123, 126]

Definition 3.13 ([126, Definition 9.1.II]). Let S be a Polish space and let N be a
point process on S. N is called a simple point process on S if N({ x }) ∈ { 0, 1 } for
all x ∈ S.

In particular, all points of a simple point process are distinct.

3.2.2 Arrival processes

We now consider simple point processes with points { Ti }
∞
i=1 in time, i. e.

on the positive real half-line R+. The most general notion of such point
processes is that of an arrival process:

Definition 3.14 ([127]). 1. An arrival process is a sequence of increasing fi-
nite random variables { Ti }

∞
i=1 with 0 < T1 < T2 < · · · and Tn → ∞ as

n → ∞ almost surely. The random variable Ti is the i-th arrival epoch or
occurrence time.

2. Equivalently, an arrival process is a sequence of positive finite random vari-
ables {Xi }i∈N with

∑n
i=0 Xi → ∞ as n → ∞, where the random variable

Xi > 0 is called the i-th interarrival time or inter-occurrence time.

3. Equivalently, an arrival process is a simple point processN on R+ where the
counting random variable N(t) represents the cumulative number of arrivals
in the time interval (0, t] with N(0) = 0 and N(t)→∞ as t→∞.
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3.2.3 Marked point processes

Consider an arrival process N(t) where the occurrences are of different
types, i. e. each occurrence event Ti features a random mark Yi in a (Polish)
mark space (S, S). The mark Yi only depends on Ti according to a probability
kernel p : R+ × S → [0, 1], where p(t, ·) is the probability measure on S for
assigning a mark in a Borel set B ∈ S to an event occurring at time t. [123,
p. 194]

Definition 3.15 ([123, p. 194]). Let N(t) be an arrival process with arrival times
Ti, i. e. a simple point process N =

∑
n δTn on R+. Let p : R+ × S → [0, 1] be a

probability kernel. Let M =
∑
n δ(Tn,Yn) be a simple point process on R+ × S such

that

P { Yi ∈ Bi(i = 1, . . . ,n) } = p(T1,B1) · · ·p(Tn,Bn) Bi ∈ S,n ∈ N.

The point process M is called a marked point process associated with N, and Yi
is the mark of Ti.

3.3 renewal processes & poisson processes

The concept of a renewal process embodies the notion of a stochastic pro-
cess starting over and over again:

Definition 3.16 ([123, p. 100]). Let N be an arrival process with occurrence times
0 < T1 < T2 < . . . and inter-occurrence times {Xi = Ti+1 − Ti }i∈N with T0 = 0.
The arrival process N is called a renewal process if the inter-occurrence times
are independent and identically distributed. Its occurrence times { Ti } are called
renewal times or renewal epochs, its inter-occurrence times {Xi } are called inter-
renewal times, and N(t) is the number of renewals in the time interval (0, t].

To define a renewal process, it suffices to specify the distribution function
F with F(0) = 0 for the iid (independent and identically distributed) inter-
renewal times. [123] As the inter-renewal times are iid, for a renewal time
Tn = τ, the process {N(τ+ t) −N(τ), t > 0 } is again a renewal process with
iid inter-renewal times with the same distribution as the original process
N. [127] This is meant when it is said that a renewal process probabilistically
starts over again at each occurrence time. Furthermore, as Gallager [127]
notes, when studying stochastic processes with renewal occurrences (regen-
erative processes), this characteristic property of renewal processes allows to
separately investigate the long-term behavior (depending on the distribution
of the inter-renewal times), and the short-term behavior within each renewal
period.

To quantify the average long-term behavior of a renewal process, renewal
theory considers limiting time-averages for individual outcomes ω, such as
the limiting time-average renewal rate limt→∞ N(t)

t . Furthermore, it consid-
ers limiting ensemble averages such as the limiting ensemble average re-
newal rate limt→∞ E

[
N(t)
t

]
.

Definition 3.17. Let N(t) be a renewal process. Denote by E[X] the mean inter-
renewal time.
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Theorem 3.18 (Strong Law of Large Numbers for Renewal Processes [127]).
Let N(t) be a renewal process with finite mean inter-renewal time E[X] <∞. Then
almost surely limt→∞ N(t)

t = 1
E[X] .

Theorem 3.19 (Elementary Renewal Theorem [127]). Let N(t) be a renewal
process with mean inter-renewal time E[X] either finite or infinite. Then

lim
t→∞ E[N(t)]

t
=

1

E[X]
.

Hence, time average and limiting ensemble average inter-renewal time
coincide (if they exist).

Definition 3.20. LetN(t) be a renewal process with finite mean inter-renewal time
E[X] <∞. Then call 1

E[X] the renewal rate of N.

We have seen that renewal processes start over again at their renewal times.
Are there arrival processes that indeed probabilistically start over at any time
t, irrespective of an event occurring at t, and irrespective of when the last
event occurred before t?

Definition 3.21. Let N(t) be a renewal process with inter-renewal times that are
exponentially distributed with parameter λ > 0. The renewal process N(t) is called
a Poisson process with rate λ.

The exponential distribution and an exponentially distributed random
variable X are memoryless, as X satisfies [127]

P {X > t+ x | X > t } = P {X > x } ∀x, t > 0.

It is in this sense that the Poisson process "looks the same" from whichever
time one inspects it.

Let us define a Poisson process in terms of its finite-dimensional distribu-
tions:

Theorem 3.22 ([123, 127]). Let N(t) be a Poisson process with rate λ. Then N
has independent increments, i. e. N(I1), . . . ,N(In) are independent for disjoint
finite intervals I1, . . . , In. Furthermore, for each finite interval I ⊂ R+

0 , the random
variable N(I) is Poisson distributed with parameter λ |I|, i. e.

P {N(I) = n } =
1

n!
(λ |I|)n exp(λ |I| ) .

3.4 markov chains

Stochastic processes capture the probabilistic notion of a dynamic system
evolving in time. Classical time-discrete dynamical systems are represented
by maps f that evolve their next state xn+1 = f(xn) deterministically depend-
ing solely on their respectively current state xn (the very definition of state).
Arguably, a Markov chain is what comes closest to a map for time-discrete
stochastic processes, as its state Xn+1 depends solely on the last state Xn
(rather than the whole past of the process).
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3.4.1 Markov chains on countable spaces

Definition 3.23 ([123, 127, 128]). Let S be a countable set, and let X = {Xn : n ∈ N }

be a discrete-time stochastic process with values in S. Such a process X is a Markov
chain if its random state Xn for each n > 0 depends on the past only through the
previous state Xn−1 (Markov property), that is

P {Xn = j | X0 = i0, . . . ,Xn−1 = in−1 } = P {Xn = j | Xn−1 = in−1 }

for all n > 0, j, i0, . . . , in−1 ∈ S. For all x,y ∈ S, let P(x,y) denote the transition
probability from state x to state y,

P(x,y) = P {Xn = y | Xn−1 = x } ,

such that P(x,y) > 0 and
∑
z∈S P(x, z) = 1 for x,y ∈ S. Recursively define the

n-step transition matrix as

Pn(x, z) =
∑
y∈S

P(x,y)Pn−1(y, z)

with P0 defined as the identity P0(y, z) = δyz, so that for all x,y ∈ S, Pn(x,y) =
P {Xn = y | X0 = x }. The probability measure µ(x) = P {X0 = x } is the initial
distribution of the chain.

Theorem 3.24 ([128]). Let S be a countable space, and let µ : S → [0, 1] be an
initial probability measure on S, and further let P(x,y) be transition probabilities
such that P(x,y) > 0 and

∑
z∈S P(x, z) = 1 for x,y ∈ S. Then there is a Markov

chain Xn such that

P {Xn = y | Xn−1 = x, . . . ,X0 = x0 } = P(x,y) n > 0, x,y, x0 ∈ S.

and P {X0 = x0 } = µ(x0) for x0 ∈ S.

Theorem 3.25 ([123, p. 8]). Let S be a countable space, let S ′ be a Polish space, let
f : S× S ′ → S be measurable and let Xn be a time-discrete stochastic process on S
such that

Xn = f(Xn−1, Yn), n > 0

with Y1, Y2, . . . iid random variables with values in S ′ independent of X0. Then, Xn
is a Markov chain with transition probabilities P(x,y) = P { f(x, Y1) = y }.

3.4.2 Markov chains on general spaces

Theorem 3.26 ([128]). Let (S, S) be a Polish space (in fact, S could be any space
endowed with a countably generated σ-algebra S). Let µ be a probability measure on
S, and let P(x,B) be a probability kernel for all x ∈ S,B ∈ S. Then there exists a
discrete-time stochastic process Xn such that for n > 0,B0, . . . ,Bn ∈ S

P {X0 ∈ B0, . . . ,Xn ∈ Bn }

=

∫
x0∈B0

· · ·
∫
xn−1∈Bn−1

µ(dx0)P(x0,dx1) · · ·P(xn−1,Bn)

and P {X0 ∈ B0 } = µ(B0) for B0 ∈ S.
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Definition 3.27 ([128]). Such a discrete-time stochastic process Xn is called a
Markov chain on (S, S) with transition probability kernel P(x,B) and initial dis-
tribution µ. Recursively define the n-step transition probability kernel as

Pn(x,B) =
∫
S

P(x,dy)Pn−1(y,B) x ∈ S,B ∈ S

with P0(x,B) = δx(B), so that for all x,y ∈ S we have P {Xn = y | X0 = x } =

Pn(x,y).

3.4.3 First passages and returns

The following definitions are formulated for Markov chains on general
Polish spaces. The definitions easily transfer to Markov chains on a count-
able space by regarding single elements y instead of Borel sets B, where
applicable.

Definition 3.28 ([127, 128]). Let Xn be a discrete-time stochastic process on a
Polish space S, and let B ∈ S. The occupation number ηB is the random number
of (possibly infinite) visits of X to B:

ηB =

∞∑
n=1

δXn(B).

The event that the process visits the set B ∈ S infinitely often after starting at x ∈ S
has the probability

Q(x,B) = P { ηB =∞ | X0 = x } .

For n > 0 define the first-passage-time probability (kernel) fn : S× S → [0, 1]
from state x ∈ S to set B ∈ S as the probability that n is the smallest i for which
Xi ∈ B given that X0 = x:

fn(x,B) = P {Xn ∈ B,Xn−1 /∈ B, . . . ,X1 /∈ B | X0 = x }

with f1(x,B) = P(x,B). Furthermore, for n > 0, let Fn : S× S → [0, 1] be the
probability (kernel) that the process starting at x ∈ S visits a set B ∈ S between
times 1 and n, inclusive:

Fn(x,B) =
n∑
i=1

fi(x,B).

The first return time τB is the random time after 0 when the process first enters B
(or when it first returns to B, if X0 ∈ B):

τB = min {n > 0 : Xn ∈ B } .

Given that the process starts in x, the probability distribution of τB is

P { τB = n | X0 = x } = fn(x,B).

For x ∈ S and B ∈ S, define the return probabilities as the probability to return to
B (in finite time) when starting in x:

L(x,B) = P { τB <∞ | X0 = x } =

∞∑
n=1

P { τB = n | X0 = x } = F∞(x,B)
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Definition 3.29 ([128]). Let Xn be a Markov chain on a Polish space S with n-step
transition probability kernel Pn. Define the auxiliary probability kernel U : S× S as

U(x,B) =
∞∑
n=1

Pn(x,B) (x ∈ S).

We have for all x ∈ S,B ∈ S the expected number of returns to B after
starting at x as E [ηB | X0 = x] = U(x,B).

3.4.4 Irreducibility

Irreducibility of a Markov chain guarantees that the chain eventually visits
all regions of its state space:

Definition 3.30 ([128]). Let S be a Polish space. A Markov chain Xn on S is
ϕ-irreducible if there is a measure ϕ on S such that for all x ∈ S,B ∈ S:

ϕ(B) > 0⇒ L(x,B) > 0.

Theorem 3.31 ([128]). Let Xn be a Markov chain on a Polish space S. The following
statements are equivalent: X is ϕ-irreducible. ϕ(B) > 0 ⇒ U(x,B) > 0 for all
x ∈ S,B ∈ S.

Theorem 3.32 ([128]). Let X be a ϕ-irreducible Markov chain on a Polish space S
for some measure ϕ. Then there exists an “essentially unique maximal” irreducibil-
ity measure ψ on S such that

1. X is ψ-irreducible.

2. ψ(B) = 0⇒ ψ { x ∈ S : L(x,B) > 0 } = 0 for all B ∈ S.

3. ψ(S \B) = 0⇒ B = B0 ∪N : ψ(N) = 0,P(x,B0) = 1 for all x ∈ B0 (B0 is
absorbing).

Definition 3.33 ([128]). A Markov chain X is ψ-irreducible if it is ϕ-irreducible
for some measure ϕ and if the measure ψ is a maximal measure according to the
preceding theorem. Define the family of sets of positive ψ measure as

S+ = {B ∈ S : ψ(B) > 0 } .

The set S+ is the same for different maximal irreducibility measures, and
hence, S+ is well-defined. [128] For a countable state space S, the maximal
irreducibility measure is the counting measure.

3.4.5 Transience and recurrence

Recurrence is a weak notion of stability of a Markov chain X. A recurrent
chain X visits every set of positive measure infinitely often. Contrarily, a tran-
sient chain visits bounded sets only a finite number of times, and eventually
leaves any such set. Specifically, we consider recurrence and transience in
terms of the occupation number random variable ηB.
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Definition 3.34 ([128]). Let X be a Markov chain on a Polish space S. A set B ∈ S is
uniformly transient if there exists an upper boundM <∞ such thatU(x,B) 6M
for all x ∈ B. A set B ∈ S is recurrent if U(x,B) =∞ for all x ∈ B. A set B ∈ S is
transient if there is a countable cover of B by uniformly transient sets.

Definition 3.35 ([128]). Let X be a ψ-irreducible Markov chain on a Polish space S.
The chain X is recurrent if every set B ∈ S+ is recurrent. The chain X is transient
if S is transient.

Theorem 3.36 ([128]). Let X be a ψ-irreducible Markov chain on a Polish space S.
Then X is either recurrent or transient.

Definition 3.37 ([128]). Let X be a Markov chain on a Polish space S. A set B ∈ S

is Harris recurrent if Q(x,B) = 1 for all x ∈ B. The chain X is Harris recurrent
if it is ψ-irreducible and every set B ∈ S+ is Harris recurrent (or equivalently, it
holds that L(x,B) = 1 for all x ∈ S).

Hence, Harris recurrence is stronger than recurrence: The expected number
of visits to a recurrent set is infinite, while a Harris recurrent set is visited
infinitely often almost surely.

Theorem 3.38 ([128]). Let X be a recurrent Markov chain on a Polish space S.
Then

X = H∪N

with an absorbing and nonempty set H and a transient setN with ψ(N) = 0. Every
subset of H in S+ is Harris recurrent.

The theorem implies that the restriction of a recurrent chain X to H differs
to the original chain only by a ψ-null set. At the same time, the restriction
to H yields stronger stability results in terms of Harris recurrence. For a
countable state space S, the set N is empty: a recurrent chain on a countable
state space is also Harris recurrent.

3.4.6 Stochastic recursive sequences

Stochastic recursive sequences generalize the notion of Markov chains to
discrete-time stochastic processes. Rather than by a sequence of iid random
variables, they are driven by an arbitrary random sequence:

Definition 3.39 ([129, p. 507]). Let S and S ′ be two Polish spaces. Let ξn be a
sequence of random elements on S ′. Let f be a deterministic measurable function
S× S ′ → S. A time-discrete stochastic process Xn on S is a stochastic recursive
sequence driven by the sequence ξn if Xn satisfies the relation

Xn = f(Xn−1, ξn), n > 0

with X0 independent of ξn.

As Borovkov [129, p. 17] points out, each Markov chain is a stochastic
recursive sequence driven by iid ξn. Furthermore, there is a notion of reno-
vating events of the process Xn from which on only the driving sequence ξn
determines the evolution of the process rather than the states Xn before the
event. The notion of renovating events is weaker than renewals, but never-
theless allows to infer long-term behavior and ergodic properties. [129]
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4.1 system theoretic modeling and simulation

Studying entities in the real world means running experiments on them.
The experimental frame describes the conditions for real-world experimenta-
tion. In particular, the experimental frame of choice restricts the data that the
experimentator observes and how she views and records them. [130] Thus,
the experimental frame defines the questions one is able to ask, and possibly,
answer by experiment. [131]

A mathematical model of a real-world entity is an abstraction that facil-
itates analysis and understanding of the entity. Modeling aims at generat-
ing model behavior which matches the behavior of the real entity under
study. Accordingly, the experimental frame of the model describes the context
of the model, the simplifying assumptions, and possible questions and re-
sults. [131] A mathematical model is a set of equations. Solving the model
means solving these equations. Consequently, the solution of the model pre-
dicts the results of all possible experiments. Still, these predictions need
to match the experimental measurements on the real entity. Experimentally
checking the model predictions is the validation of the model.

There are models that lack a solution. For instance, a model might not have
a closed analytical solution, or the solution has not been found yet. However,
each model permits to numerically compute approximate results. Here it is
the computational experimental frame that describes the context of the compu-
tation. For example, this is the computer code that contains all the parame-
ters, provides an interface to output the results, and actually calls the com-
putation. The numerical results need to match the model predictions, and
ultimately, the real-world behavior. Checking the numerical computation ac-
cordingly is the verification of the computation. Computer-based numerical
computation is also called simulation. Simulation is particulary well-suited
to tackle complex problems inaccessible to detailed general analytical solu-
tions. That is, simulation simply computes the behavior for a particular set
of parameters.

Systems theory regards a system as a set of components and their interac-
tions. In this reductionist ansatz, the behavior of all individual components
and their interactions constitute the system behavior. [131] Commonly, non-
linear interactions among the components result in emergent system behav-
ior: an effective behavior on a different level of description that is more than
the simple sum of the component behaviors. [73] The system does not need
to be a natural, real entity; also artifical or abstract entities are systems, as
long as the components and interactions are mathematically describable.

In general, a model of a system specifies how the components interact
and evolve in time. A typical example is an ordinary differential equation
(ODE) that models how a certain physical quantity evolves continuously in

29
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time. A system provides observable input/output behavior. Hence, Zeigler,
Kim, and Praehofer [130] refer to the system as the source system. Each com-
ponent has its own input and output. How exactly a component reacts to
input and subsequently produces output depends on the internal state of
the component. The time evolution of these observables are the trajectories
of the input/output variables. Accordingly, the model of the source system
needs to produce trajectories that match the trajectories of the source system.

Specifically, a simulation model is a structure and a set of rules to repre-
sent the input/output behavior of a system at the relevant level of descrip-
tion. [130] This set of rules describes the step-wise dynamics of the model,
also called the local dynamics.

Simulation means some agent executes these local rules. Such a simulator is
an abstract concept, encompassing any computational entity that processes
the model set of rules to generate the model output trajectories. This in-
cludes algorithms, brains, and CPUs. The model output trajectories subject
to certain input trajectories is also called the global dynamics.

This Chapter is structured as follows. Section 4.2 introduces and discusses
models with trajectories that only change at discrete instants of time (discrete-
event models). Section 4.3 presents the Discrete-Event System Specification
(DEVS) and its formalism to formally define such discrete-event models and
their local rules. Finally, the global dynamics of a DEVS model is the subject
of Section 4.4.

4.2 discrete-event models

Models of dynamical systems in nature typically comprise a set of differ-
ential equations. These equations describe how the model state continously
changes over a continuous time interval. Conversely, human-engineered sys-
tems typically involve abrupt state changes. For instance, consider traffic
lights turning green, switching on the lights at home, an ICE high-speed
train arriving at Hamburg Hbf, etc. These abrupt state changes are also
called events. Events occur in a discrete instant of time, as opposed to a con-
tinuous state change progressing over a time interval. Accordingly, piecewise
constant trajectories model the time evolution of such entities.

Wainer [131] refers to systems with a model representation in which dis-
crete events occur at arbitrary points in time (continuous time) as discrete-event
dynamic systems (DEDS). In modeling and simulation of DEDS, only a finite
number of events is allowed to occur in any given (finite) time interval. There
are several mathematical formalisms which offer a unifying abstract language
to exactly specify models of DEDS. Such formalisms allow to abstract from
the concrete implementation in a programming language and algorithms. In
this Work, I choose to introduce and employ the discrete-event system specifi-
cation (DEVS) formalism developed by Chow and Zeigler [132] (see also Zei-
gler, Kim, and Praehofer [130]). There are other formalisms, such as Timed
Petri Nets, Timed Finite State Machines, and Event Graphs. [131]

Discrete-event modeling entails the subtle issue of simultaneous events.
There are two distinct mechanism which generate simultaneous events in
simulations (cf. Ref. [133]):
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1. The model intentionally schedules events at the same time, and

2. the finite precision of digital computers.

The latter implies that if a model schedules two events for sufficiently
close points in time, the computer represents the distinct times by the same
floating-point value. This is a fundamental restriction of simulators imple-
mented on digital computers. The model needs to address the former, in-
tentional, scheduling of simultaneous events. In simulation, finite precision
causes simultaneous events which for the computer are indistinguishable
from the first kind. Hence, the computer treats both kinds of simultaneous
events according to the single mechanism the model defines.

In discrete-event models, changes of the model state occur in instants
of time. The duration of such events is zero. The separation into discrete
and continuous models is conceptually and technically convenient. How-
ever, such a distinction is absent in the real world. Moreover, a digital com-
puter only has a finite but large number of states, and hence, finite precision.
Thus, each simulation of a continuous model on a digital computer is in-
herently discrete. Of course, the large number of states lets the simulation
still appear continuous in the appropriate frame. An approach to a discrete
model is to conceive it as a limit of a series of models in which the event
duration approaches zero. However, in general the discrete model with zero
event duration exhibits qualitatively different behaviour. [134] To this end,
all discrete-event models are wrong, but they are still useful as long as these
severe limitations are kept in mind.

4.3 discrete-event modeling with devs

4.3.1 The DEVS formalism

The DEVS formalism allows to model all discrete-event dynamic sys-
tems. [131] Wainer [131] further emphasizes the generality of the formalism,
as the reaction to input depends on the time the system spent in the previous
state. Moreover, the DEVS formalism features a hierarchical organization of
models. Furthermore, the internal states of the components are inaccessible.
Both features facilitate encapsulation, leading to more comprehensible mod-
els of complex systems. In addition, the DEVS framework features a clear
distinction and interface between its generic components and the model-
dependent implementation (see Figure 4.1).

In practice, using the DEVS formalism means employing the DEVS spec-
ification to mathematically model a DEDS. Indeed, the DEVS specification
is the (Parallel) Discrete Event System Specification (DEVS), which allows to
model an arbitrary DEDS. [130, 132] A DEVS model is a specific model that
satisfies the generic DEVS specification. A DEVS simulator is a generic sim-
ulation algorithm that calculates the global dynamics of a DEVS model by
interpreting the DEVS specification dynamically (cf. “Concept” row in Fig-
ure 4.1). The DEVS formalism comprises both the DEVS specification and a
DEVS simulator, offering a generic formalism to define and simulate specific
DEVS models. A possible software implementation of the DEVS formalism is



32 discrete-event systems

System System-specific
Model

Generic
Structure

Generic
Simulator

Concept DEVS
model

DEVS
definition

DEVS
simulator

Software
implementation

Software
model

Software
interface

Software
simulator

DEVS formalism

DEVS implementation

specifies

implements

calculates trajectories

specifies dynamics

satisfies
inter-
prets

dynami-
cally

implements

implements implements

operates
on

Figure 4.1: The Discrete Event System Specification (DEVS) framework for model-
ing and simulation after Zeigler, Kim, and Praehofer [130] and Nutaro
[133].

to provide a generic interface that implements the DEVS specification. The
software implementation of the DEVS model then in turn needs to imple-
ment this interface. A generic software implementation of the DEVS simula-
tor simply operates on this interface to compute the trajectories of the model
(cf. “Software implementation” row in Figure 4.1).

4.3.2 DEVS specification

The DEVS formalism comprises a state transition mechanism and an out-
put generation mechanism. Each DEVS model has an internal state, accord-
ing to which it reacts to input trajectories (state transition mechanism). Such
a model generates output trajectories, also depending on its internal state
(output generation mechanism).

Definition 4.1 (Parallel discrete event system specification, or simply DEVS spec-
ification, [132]). A DEVS model is a tuple M = (X,S, Y, ta, λ , δint, δext, δcon) with

1. X: a set of input events (input set),

2. S: a set of sequential states (state set),

3. Y: a set of output events (output set),

4. ta : S→ R0: the time advancement function,

5. λ : S → Yb: the output function, where Yb is the set of all bags (multisets
[135]) on Y,
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6. δint : S→ S: the internal transition function,

7. Q = { (s, e) : s ∈ S, 0 6 e < ta (s) } ⊂ S×R0: the set of total states, e is
the time elapsed since the last transition,

8. δext : Q× Xb → S: the external transition function, where Xb is the set of
all bags (multisets [135]) on X,

9. δcon : S×Xb → S: the confluent transition function.

For consistency, a DEVS model satisfies (cf. [130, p. 144])

ta (δext(s, e, ∅)) = ta (s) − e,

δcon (s, ∅) = δint(s).

A model that satisfies this definition works as follows: At any time t, the
model is in exactly one state s ∈ S. The model remains in this state for a
certain time, the lifespan ta (s) given by the time advancement function. At
the end of the lifespan, the model generates output. Output may comprise
several and even multiple simultaneous output events y ∈ Y. Hence, the
output given by the output function is a bag (or multiset) λ(s) = yb ∈ Yb. Im-
mediately after the model has generated the output, it changes into the state
δint(s) given by the internal transition function. Output is only generated at
the end of the state lifespan, immediately preceding the internal transition
function. The output function does not modify the state. The external transi-
tion function δext handles (external) input events. As with output, input may
comprise several and multiple simultaneous input events x ∈ X collected
in the input bag xb ∈ Xb. Formally, even empty input/output bags { } = ∅
are considered valid inputs/outputs. They are distinct from the “non-event”
symbolized as ∅̂. How a DEVS model reacts to input does not only depend
on the (partial) state s, but also on the time e elapsed since the last tran-
sition. An input xb to the total state (s, e) triggers a transition to the state
δext
(
s, e, xb

)
∈ S.

A DEVS model needs to handle simultaneity at two points: either when it
simply receives multiple external events (simultaneous events), or when input
triggers an external transition at the same time an internal transition is sched-
uled (collisions). After Chow and Zeigler [132], the Parallel DEVS formalism
allows the modeler to control the collision handling. It transparently imple-
ments parallelism of collisions and simultaneous events. The DEVS specifica-
tion provides for not only one input event, but multiple input events as an in-
put bag xb. Hence, the external transition function already equips the modeler
to handle simultaneous events in parallel. In addition, the output function λ
allows to generate simultaneous output events as an output bag yb. Further-
more, the confluent transition function δcon allows to specify how to handle
collisions of input events received at times e = ta (s) of internal transitions.
For example, a confluent transition function δcon

(
s, xb

)
= δext

(
δint(s), 0, xb

)
implies that internal transitions are handled before external input. Vice versa,
a confluent transition function δcon

(
s, xb

)
= δint

(
δext
(
s, e = ta (s) , xb

))
han-

dles external input first. Of course, instead of just serializing the treatment
of collisions, one is free to specify an interdependent confluent transition
function.



34 discrete-event systems

Simultaneity also accounts for a subtle definition of the total states that
co-determine the external transition function. On the one hand, δcon handles
all input events received at times of internal transitions. Hence, the external
transition function remains undefined for e = ta (s). One is also tempted to
expect the external transition function never to act on a total state with zero
elapsed time e = 0. On the other hand, this is possible in coupled models.
Immediately after a transition, e = 0, another model receiving the output
might transit into a transitory state (ta (s) = 0). Hence, it is possible that a
model receives input at e = 0 although it has just undergone a transition.

The generic transition function δ : Q × Xb of a DEVS model unifies the
handling of transitions: [130, 132, 133]

δ
(
s, e, xb

)
=


δint(s) if e = ta (s) , xb = ∅,
δcon

(
s, xb

)
if e = ta (s) , xb 6= ∅,

δext
(
s, e, xb

)
if 0 6 ta (s) < e, xb 6= ∅.

Here, the closed set of total states Q = Q∪
{
(s, e) ∈ S×R+

0 : e = ta (s)
}

.
A state swith lifespan ta (s) = 0 is called transitory, while a state of infinite

lifespan ta (s) = ∞ is called passive. Transitory states are not interrupted by
external events and produce output immediately. Passive states never pro-
duce output and state transitions are only triggered by external events. [130]

For some instructive examples of DEVS models from the literature, see
Section A.1.

4.3.3 DEVS with ports

The DEVS with Ports specification extends the DEVS specification by as-
signing a specific input port or output port to each I/O event. In the DEVS
formalism, the definition of ports is optional. However, ports increase clarity
and conciseness of a model.

Definition 4.2 ([130, p. 84]). Let M = (X,S, Y, ta, λ , δint, δext, δcon) be a DEVS
model. The DEVS model M is a DEVS model with ports if the input set X is of
form

X = { (p, v) : p ∈ X, v ∈ Xp } ,

and the output set Y is of analogous form

Y = { (p, v) | p ∈ Y, v ∈ Yp } .

Here, Xp denotes the set of possible events at the input port p, and Yp denotes the
set of possible events at the output port p.

4.3.4 Legitimacy

What happens to a DEVS model if it was stuck in a cycle of transitory
states? Or if it traverses a state sequence (sn)n with a convergent series∑
n ta(sn) of the state lifespans?
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In simulation, the DEVS model would generate an infinite number of tran-
sitions in finite time, and get stuck (cf. Thomson’s lamp, Achilles and the
tortoise [136–138]). This is referred to as illegitimate or Zeno system behavior,
reminiscent of Zeno’s paradoxes. [137, 138] On the contrary, a DEVS model
is well-defined and called legitimate if in any finite time interval, only a finite
amount of transitions occur. Equivalently, a DEVS model is legitimate if for
any internal state s0 ∈ S, it takes infinite time to traverse the (infinite) state
sequence (sn)n, sn+1 = δint(sn):

∀s0 ∈ S :
∑
n

ta(sn) =∞, sn+1 = δint(sn).

Sufficient conditions for a DEVS model to be legitimate are: [130]

1. If the set S of states is finite, every state cycle (periodic orbit of inter-
nal states) contains a non-transitory state (necessary and sufficient for
finite-state DEVS models):

|S| <∞⇒
∀s1 ∈ S :∃sk in s1 → s2 → · · · → sn → s1 : ta(sk) > 0.

2. If there is a positive lower bound on the lifespan of each state:

∃b > 0 : ∀s ∈ S : ta(s) > b.

4.3.5 Network models

One of the appealing features of the DEVS formalism is the possibility to
couple existing DEVS models to build new models. Such a DEVS coupled
model is also called a network model of component DEVS models. In fact, it is
the components of a network model that are solely responsible for process-
ing input to the network and producing its output. The network model itself
only specifies the input/output coupling of the components. The network
and its components only communicate via input and output. Indeed, the
internal state of a component is shielded from direct access or influence by
the other components and the network. A component of a network model is
either a DEVS model (also referred to as atomic model), or another network
model.

Like an atomic model, a network model has an internal state, a state transi-
tion function, and generates an output trajectory from an input trajectory. In
fact, a network model is indistinguishable from an equivalent atomic model
that produces the same output trajectory as the network model, for all in-
put trajectories. This atomic model is also referred to as the resultant of the
network model.

A network model specifies how its components handle input to the net-
work, and how its components generate output of the network. Input to each
component is either input to the network model, or output from other com-
ponents. Output of the network model stems from output of its components.

This presentation of network models also follows the presentation of Zei-
gler, Kim, and Praehofer [130] and Nutaro [133].
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Figure 4.2: An example DEVS network model with two components [133, Figure
3.4].

Definition 4.3 (Network model [133]). A network model N is a tuple

N = (XN, YN,D, I,Z) ,

with

1. the set of input events XN to the network model,

2. the set of output events YN of the network model,

3. the set of components D of the network model, i.e. each element d ∈ D is
an atomic model or a network model,

4. the family I = { Id ⊂ D∪ {N } \ { d } : d ∈ D∪ {N } } of sets Id of influ-
encers of a component d (or the network itself), where a component (or the
network) is not to directly couple to itself,

5. the set of coupling functions Z = { zd ′,d : d ′ ∈ Id,d ∈ D∪ {N } }, where a
coupling function couples output of a component d ′ ∈ Id to input of a compo-
nent d ∈ D output to component input, zd ′,d : Yb

d ′ → Xb
d, or network input

to component input, zN,d : Xb
N → Xb

d, or component output to network
output, zd ′,N : Yb

d ′ → Yb
N.

The output of the components d ∈ IN determines the network output via
the respective coupling function zd,N (cf. Figure 4.2). See Chapter 2.3 of Ref.
[131] for an instructive “Hello world” coupled DEVS model, and Section A.2
of this Thesis for another example.

4.4 devs simulation

4.4.1 Time base, trajectories, and segments

Simulating a DEVS model requires a notion of time. Usually, time instants
are a real number, and the passage of time means moving along the real
time axis R. However, transitory states in discrete-event systems require a
notion of events happening at the same time, but still one after the other (not
simultaneously). Thus, following Nutaro [133], the time base T for discrete-
event simulation includes a discrete event counter c ∈N0:

T = R+
0 ×N0.
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The total order of R and N0 induces a total order on the Cartesian product
T, the lexicographical order:

τ1 = (t1, c1) < τ2 = (t2, c2)⇔ t1 < t2 ∨ (t1 = t2 ∧ c1 < c2).

The total order on T allows to keep the notion of (open, connected) time
intervals (τ1 = (t1, c1), τ2 = (t2, c2)), with closed and half-open intervals
defined accordingly. The definition of a convenient time advance operator � is

τ�∆τ = (t, c)� (∆t,∆c) ≡

{
(t+∆t, 0) if ∆t > 0,

(t, c+∆c) if ∆t = 0,∆c > 0.

A trajectory is any function z : T → A that assigns a value a(t) ∈ A for
each point in time t ∈ T. The input trajectory of a DEVS model with input
set X is x : T → Xb ∪ { ∅̂ }, where ∅̂ is the non-event: x(t) = ∅̂ represents the
absence of input at the given point in time t. Similarly, the output trajectory
y : T → Yb ∪ { ∅̂ }, the state trajectory s : T → S and the total state trajectory
q : T→ Q.

A segment z[τ1,τ2) of a trajectory z : T → A is the restriction z[τ1,τ2) ≡
z
∣∣
[τ1,τ2)

to the interval [τ1, τ2). The length l(z[τ1,τ2)) of a segment [τ1, τ2) is
the duration of the continuous time:

l(z[τ1,τ2)) = t2 − t1.

Two segments z[τ1,τ2), z[τ3,τ4) of a trajectory z : T→ A are called contiguous if
and only if τ2 = τ3. The concatenation operator · concatenates two contiguous
segments z[τ0,τ1), z[τ1,τ2) in the obvious way:

z[τ0,τ2) ≡ z[τ0,τ1) · z[τ1,τ2).

A segment z[τ0,τn) : [τ0, τn) → A(n ∈ N0) is called piecewise constant if and
only if it is a concatenation of a finite number of segments, each of which is
a constant function:

∃τ1 < . . . < τn−1 ∈ (τ0, τn);a1, . . . ,an ∈ A :

z[τ0,τn) = z[τ0,τ1) · z[τ1,τ2) · · · z[τn−1,τn), z[τi−1,τi)(τ) = ai∀τ ∈ [τi−1, τi).

A piecewise constant trajectory is a trajectory which has only piecewise con-
stant segments (cf. state trajectories). A segment z[τ0,τ1) : [τ0, τ1)→ A∪ { ∅̂ }

is called a primitive event segment iff

z[τ0,τ1)(τ) =

{
a ∈ A∪ { ∅̂ } if τ = τ0,

∅̂ otherwise.

A primitive event segment either has exactly one event at the beginning of
the trajectory, or no event at all. A segment z[τ0,τn) : [τ0, τn)→ A∪ { ∅̂ } (n ∈
N0) is called an event segment if and only if it is a concatenation of a finite
number of primitive event segments:

∃τ1 < . . . < τn−1 ∈ [τ0, τn);a1, . . . ,an ∈ A :

z[τ0,τn)(τ) =

{
ai if τ = τi, i ∈ { 1, . . . ,n− 1 } ,

∅̂ otherwise.
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Accordingly, any event segment z[τ0,τn) can be decomposed into a chain of
contiguous primitive event segments zi:

z[τ0,τn) = z0 · · · · · zn,

zi : [τi, τi+1)→ A∪ { ∅̂ } , z0 = [τ0, τ1)→ { ∅̂ } ,

where the initial segment z0 does not contain events. All subsequent prim-
itive segments do have one event, which is at the beginning. If τ1 = τ0,
the initial segment has an empty domain. An event trajectory is a trajectory
which has only event segments (cf. input/output trajectories). In particular,
we demand that any input trajectory to a DEVS model is an event trajectory.
The following ensures piecewise constant state trajectories and event output
trajectories.

Theorem 4.4 ([133]). Let M be a legitimate DEVS model. If the input trajectory of
M is an event trajectory, the state trajectory is piecewise constanct and the output
trajectory is an event trajectory.

4.4.2 System state transition function

This Subsection describes the global dynamics of a DEVS model by the
state transition function ∆. Specifically, let M be a legitimate DEVS model in
the total state (s, e) ∈ Q at time τ0. Let M be subject to the input trajec-
tory segment x : [τ0, τf) → Xb ∪ { ∅̂ }. Then it transits to a new (total) state
(s ′, e ′) = ∆((s, e), x) at time τf. In other words, ∆ is the time evolution oper-
ator of the DEVS model under external input.

In order to be consistent, the state transition function ∆ needs to have the
following properties: [133] composition and concatenation need to commute,
and ∆ needs to be invariant under empty input:

∆((s, e), x1 · x2) = ∆(∆((s, e), x1), x2),

∆
(
(s, e), x

∣∣
[τ,τ)

)
= (s, e)

Furthermore, DEVS models are time-invariant. [133] That means, the response
of a DEVS model to an input does not depend explicitly on the time of input.
Time-dependent models can incorporate time as an internal state variable to
comply with this assumption.

The state trajectory s and total state trajectory q are determined by the
input trajectory x and the initial total state (s0, e0) at time τ0 = (0, 0):

q(τ) = (s(τ), e(τ)) = ∆
(
(s0, e0), x

∣∣
[(0,0),τ)

)
.

The decomposition of the input trajectory segment x into contiguous primi-
tive segments is

x = x0 · · · · · xn,

with input events at times τ1, . . . , τn. Therefore, the total state (s ′, e ′) at time
τf is

(s ′, e ′) = ∆((s, e), x)

= ∆((s, e), x0 · · · · · xn)
= δ(δ(· · · δ(δ((s, e), x0), x1) · · · ), xn),
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where δ is the state transition function for a primitive input segment. Hence,
the response of a DEVS model to an input trajectory segment is given by
recursively applying the state transition function δ to successive primitive
input segments. [133]

Let the DEVS model be in an initial total state (s, e) ∈ Q at time τ0. Let the
DEVS model be subject to the primitive input event segment x : [τ0, τ1) →
Xb ∪ { ∅̂ } at that time. Then, the state transition function δ maps the initial
total state to the total state at time τ1 at the end of that input segment.

Now, the state transition functions connects all the possible transitions and
input events of a DEVS model to produce dynamics:

(I) δ((s, e), x) = (s, e+ l(x)) for τ1 6 τ0 ∨ x(τ0) = ∅̂, ta(s) − e > l(x),

(II) δ((s, e), x) = δ
(
(s, ta(s)), x

∣∣
[τ0�(ta(s)−e,0),τ1)

)
for τ1 > τ0, x(τ0) = ∅̂,

e < ta(s) 6 e+ l(x),

(III) δ((s, e), x) = δ
(
(δ(s, e, x(τ0)), 0), x

∣∣
[τ0�(0,1),τ1)

)
for τ0 < τ1, e = ta(s)∨

x(τ0) 6= ∅̂

Accordingly, the state transition function differentiates three cases:

1. (I) The primitive input event segment x neither contains input nor
reaches an internal transition.

2. (II) The primitive input event segment x does not contain input, but
spans across an internal transition.

3. (III) The primitive input event segment x contains input, or an internal
transition is imminent.

In the absence of input and transitions (I), the state transition function δ sim-
ply increases the elapsed time of the total state by the length of the event
segment. The length of the event segment can also be zero. The other cases
treat ta(s) = e + l(x). For an internal transition within the event segment
(II), the state transition function δ fast-forwards recursively to the time of
the internal transition. (Primitive event segments provide input only at the
beginning—if any.) For an imminent transition (III), the state transition func-
tion δ applies the generic transition function δ and advances the discrete
time count by 1.

Inputs may arrive at discrete times c > 0. For example, if an input ar-
rives at time (0, 0), and another input arrives at the same real time, but at
a later discrete time, (0, 2), there are two non-simultaneous inputs at dif-
ferent points in time! In the formalism, this leads to two primitive event
segments x0 on [(0, 0), (0, 2)) and x1 starting at (0, 2). Case (I) perfectly deals
with the situation after the external transition: at time (0, 1), case (I) applies
(if ta(s) > 0), and δ simply advances the elapsed time by l(x0) = 0, fast-
forwarding to the next input time (0, 2).
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4.4.3 System output function

The total output function is defined on all total states. It yields the output
λ (s) immediately preceding an internal transition,

Λ : Q→ Yb ∪ { ∅̂ } , (s, e) 7→

{
λ (s) if e = ta(s),

∅̂ otherwise.

Hence, the output trajectory of a DEVS model is

y = Λ ◦ s,
y(τ) = Λ(s(τ)).

Due to the definition of the state transition function, there is a minimal time
delay between input and output, which is (0, 1). For example, a DEVS model
that receives input at time τ0, will have changed its state only at time τ0 �
(0, 1) (cf. case III in the state transition function δ). The same argument holds
for internal transitions which are due but not carried out yet at time τ0.
In essence, state transitions actually happen in-between the discrete times
τ0, τ0 � (0, 1). It is precisely this notion that allows to loosely speak of the
DEVS model being in two states at the same time t: the DEVS model is still
in the initial state at time τ0, but changed to the next state by time τ0� (0, 1).
Both discrete points in time are at the same point in real time t ∈ R+

0 .
See Section A.3 for an example of a table-based time evolution (simulation)

of a DEVS model.

4.4.4 Reducing a network model to its resultant atomic model

Still missing for a dynamical interpretation of DEVS models is a dynami-
cal interpretation of a network model. It is a hallmark of DEVS that for any
given network model, there is a representation as an atomic DEVS model.
This is referred to as closure under coupling. There is a constructive procedure
to reduce a network model N to an atomic model MN, called the resultant
model. The procedure is detailed in References [130, 133] as well as in Sec-
tion A.4. Conveniently, the construction of the resultant yields a simulation
algorithm for a network model.

The coupled DEVS specification allows to successively nest network mod-
els. Following Nutaro [133], each instance of a component is to belong to at
most one instance of a network model.

Indeed, every network model is the root of a tree-shaped hierarchy of
DEVS models, with atomic models as leaves and network models as internal
vertices. Since a network encapsulate the inner working of its components,
every model communicates only with its parent network model, and its child
nodes. Closure under coupling means that to collapse any subtree within
this hierarchy is to replace the subtree by the resultant of its root network
model.



Part III

Demand-Driven Directed
Transport Systems
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A B S T R A C T

Understanding the nonlinear dynamics, scaling behavior, critical transi-
tions and other emergent properties of collective mobility and demand-
driven transport systems is crucial to optimize system efficiency and individ-
ual service quality. As discrete events such as pick-ups and deliveries gov-
ern their time evolution, it is not straightforward to apply standard analyt-
ical and computational methods from statistical physics, nonlinear dynam-
ics and network science, as discrete-event systems typically feature a high-
dimensional, non-smooth and technical state space. Here, I outline a unify-
ing theoretical and computational framework to efficiently model, simulate,
and assess the performance of demand-driven directed transport (D3T) sys-
tems. By proposing a formal language (D3TS) based on the Discrete-Event
System Specification (DEVS), I facilitate modelling and performance analysis
of mobility and transport systems across disciplinary domains. Building on
this formal language, the D3T Python package (pyd3t) allows researchers to
easily assemble modules in a toolbox-like fashion. By providing a number of
topologies, with e. g. R2, and any kind of network among them, and a variety
of basic dispatching rules, the user may combine them to effortlessly build a
deterministic or stochastic spatio-temporal mobility or transport simulation
experiment. Furthermore, the user is free to specify her own modules. An
analysis module provides ample statistics to aggregate the dynamics and
assess the performance of the simulated instance, while a visualization mod-
ule enables visual inspection of the simulated transport dynamics. I envision
both the formal language of D3TS and the computational implementation of
pyd3t to facilitate studying collective mobility and demand-driven transport
and developing the necessary tools to do so in a reproducible manner.



5 I N T R O D U C T I O N

Studying and designing mobility transport systems is a multidisciplinary
endeavor. The quest to optimize transportation of goods and people in facili-
ties, cities, regions, or whole nations, unites engineers, operation researchers,
mathematicians, computer scientists, urban and regional planners, policy-
makers and physicists. They all bring their expertise and disciplinary lan-
guage to the table in the on-going extensive efforts to understand distributed,
collective systems. These complex systems under study are themselves as
diverse as the disciplines involved, including autonomous production and
distribution logistics, urban courier services, and demand-responsive trans-
port in human transit. [34, 38, 139–142] In general, models of these systems
are analytically intractable, and the optimization problems involved are NP-
hard and dynamical, [143] such that the method of choice to analyze these
systems is discrete-event simulation. Seemingly, what the field has been lack-
ing so far, is a common high-level language: a language that allows to state
the given transportation model and the optimization problem at hand in
an accessible but mathematically exact form, and at the same time immedi-
ately translates it into an executable simulation model. This way, attention
focusses on the dynamics, rather than on a purely structural optimization
problem description. On the other hand, such a language would add struc-
ture and reproducibility to simulation studies hitherto seemingly conducted
in an ad-hoc fashion.

This Part of this Thesis is a contribution towards such a cross-disciplinary
language and a computational implementation. In the following, I outline a
unifying theoretical and computational framework to efficiently model, sim-
ulate, and assess the performance of demand-driven directed transport (D3T)
systems. Chapter 6 introduces the Demand-Driven Directed Transport Sys-
tem Specification (D3TS), based on the Discrete-Event System Specification
(DEVS). This Chapter has been partially published as a peer-reviewed IEEE
conference proceeding (Sorge, Manik, Herminghaus, and Timme [144]) and
is based on an extensive unpublished technical report of the full D3T Speci-
fication (Sorge [52]). Section 6.5 outlines the computational implementation
of the formal D3TS language as the Python package pyd3t. The software
has been partially introduced in a contributed talk at the recent DPG Spring
Meeting (Sorge, Timme, and Manik [53]).1 Finally, Chapter 7 concludes this
Part and sketches avenues of further work.

1 While the abstract was mainly authored by the first author, the actual talk was prepared and
presented by my co-author and pyd3t co-lead developer Debsankha Manik.

43





6 M O D E L L I N G A N D S I M U L AT I N G D 3 T

6.1 the d3t framework

6.1.1 Overview

The Demand-Driven Directed Transport framework is a framework for
modelling transportation systems that serve transport requests of discrete
immotile loads in a physical transport space. In the system, transporters
process requests by travelling along paths of subsequent origins and destina-
tions and transporting the loads. Let me restate the characteristics of a D3T
model here (cf. Section 1.2):

• Transportation is demand-driven: there are no external fields such as
gravity or an electric field driving transport as in other systems studied
in physics (e. g. charge transport in solids). (Also, there are no fixed
schedules.)

• Transportation is on-demand or “urgent” in the sense that typical re-
quests are placed and require to be served within a time window which
is of the same order of magnitude as the travel time.

• Transportation is directed, as opposed to diffusive transport, or e. g. the
unspecific distribution of nutrients by the cardiovascular system. (Also,
there are no changes of transporters or modes.)

• Transported objects are discrete loads: there is no flow, there is no con-
tinuous quantity such as water.

• The transported loads are immotile: they do not move on their own, as
opposed to conduction electrons in a metal.

• Loads are transported by discrete transporter units: there is no conveyer
belt, or pipes, such as the Internet distributes data packets on a contin-
uous basis.

• Transporters are costly: their number is of the order of the average
number of requests to be served within the average time it takes to
serve a request. In particular, not every load has its own transporter.

This framework provides a unifying mathematical language to model D3T
systems and assess their performance. Typical performance measures of in-
terest are the throughput capacity (the maximum long-term average rate of
requests servable without overloading the system), the utilization of trans-
porters (system efficiency), and individual waiting and travel times (individ-
ual service quality). Formally, the D3T framework is a subset of the mighty,
general Parallel Discrete Event-System Specification (P-DEVS) language. [132]

45



46 modelling and simulating d3t

(As before, and in the following, when we speak of DEVS models, we refer to
P-DEVS models.) This is a crucial design decision. In summary, the (parallel)
DEVS formalism features the following properties: [132]

1. Collision handling: the modeler decides how to handle collisions of ex-
ternal and internal events (by the implementation of a confluent tran-
sition function).

2. Parallelism: simultaneity (both collisions and simultaneous events) is
integral in the formalism (confluent transition function, multisets of
input and output events).

3. Closure under coupling: the behavior of each network model compris-
ing coupled DEVS models is described by its resultant, which is an
atomic DEVS model itself.

4. Hierarchical consistency: the behavior of a nested network model is
independent of the specific implementation of a hierarchy (the modeler
is free to organize the structure of the nested network models as she
sees appropriate, as long as the functional coupling of the components
is preserved).

A crucial feature of the D3T framework is its strict modularity: it specifies
the abstract component classes and the protocol for interactions of compo-
nent modules. A D3T modeller may either implement her own component
modules, or choose from a set of pre-defined (and programmed) modules to
specify a D3T simulation.

In fact, I aim to provide a solid technical foundation for D3T modelling
and simulation such that no further modelling and programming is needed
to build a whole D3T model and run a full-scale D3T simulation.

6.1.2 Phenomenological D3T dynamics

In D3T systems, vehicles transport discrete loads (or passengers) in the
transport space from their respective origin to their respective destination.
These loads arrive to the system according to a stochastic birth process, with
their origin and destination determined and fixed at arrival time (see Fig-
ure 6.1 for a simple example). A D3T model is a dynamic model in the sense
of a dynamic optimization problem: not all information is available, but only
reveils in the course of the evolution of the system: a load arrival is only
known at the arrival time, and not before.

Load arrivals are independent of load transport. While load arrivals are
stochastic, load transport is deterministic. Load arrivals are the only exter-
nal events influencing the transportation dynamics: the load arrival process
feeds into the deterministic transportation dynamics.

A transporter picks up a load at its origin, and delivers a load at its destina-
tion. Once picked up, loads remain on-board the transporter until it reaches
the destination of the load. Loads do not change transporters.

Which of the transporters picks up a given load, is subject to the dis-
patching policy. The D3T framework allows the dispatching policy to reject
load requests. If rejected, a load leaves the transport system immediately.
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Figure 6.1: A trajectory of a simple D3T model with only 1 transporter and 3 trans-
port requests (l,#l,�l). The transporter is a myopic taxi that processes
transport requests on the real line R on a first-come-first-served basis,
one at a time. If all known requests have been served, the transporter
remains idle at its current position. The taxi also needs to travel empty
to pick-up a new load l at its origin #l, and deliver it at its destination
�l. The Figure shows origin and destination at the arrival time tl. The
point (t

p
l , •) in space-time marks the pick-up event at the load origin,

and the point (tdl ,�) in space-time marks the delivery event at the load
destination.

The travel time between any two points of the transport space is the met-
ric distance. In geodesic geometries, transporters travel at unit speed along
geodesic segments, i.e. shortest paths between subsequent waypoints. In net-
works, transporters jump along the nodes of the shortest path, where the
jump duration is the arc weight.

Even though loads arrive according to a continuous-time stochastic pro-
cess, and transporters move continuously in geodesic geometries, it is discrete-
time events governing the transportation dynamics. Transporters pick-up
and deliver loads, depart and arrive at positions, at intrinsically discrete in-
stants of time.

6.1.3 The transport space

Demand-driven directed transport (D3T) takes place in a physical space.
The mathematical model of such a transport space is a hemimetric space M

with a hemimetric d. [145] In particular, a hemimetric is a metric that does
not need to be neither discernible nor symmetric. Additionally, the transport
space M shall be either “continuous” (geodesic), or discrete (a network).

A geodesic hemimetric space M is a hemimetric space for which any two
distinct points x,y are connected by a geodesic directed segment (or shortest
path) from x to y. For example, the Euclidian space Rn with the standard
metric d(x,y) =

√∑n
i=1(yi − xi)

2 is a geodesic metric space for all n ∈N.
While geodesic metric spaces allow for continuous movements along

geodesic segments, networks are discrete metric spaces which only allow
jumps along paths of links (arcs) between their elements (nodes or vertices). A
network G = (V ,E,ω) is a weighted digraph which is simple and strongly
connected. The network is undirected, if ∀e = (v, v ′) ∈ E : e ′ = (v ′, v) ∈
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E,ω(e ′) = ω(e). A network G = (V ,E,ω) is endowed with the hemimetric
of the shortest-path length, yielding a hemimetric space.

See Section B.1 for a detailed specification of the transport spaces.

6.1.4 Transport requests and loads

Each transport request (l,#l,�l) defines a point-like material entity: a load.
A load l is immotile and demands active transport from its origin #l ∈ M

to its destination �l ∈ M in the transport space M. At time of arrival, a load
requests transport immediately, The load index l ∈ N enumerates the trans-
port requests in order of arrival. Transport requests arrive to a D3T system
according to a stochastic process, and precisely, according to a marked point
process { (Tn, Yn) ,n ∈N }. The random variable Tn is the arrival epoch of
the n-th load. If Tn =∞ for some n, no more loads arrive. The random vari-
able Yn denotes the mark (#n,�n,σn) of the n-th load, from the augmented
mark space M×M× Σ ∪ {∇ }. The elements of Σ are additional marks that
the dispatching policy and/or performance analysis may take into account.
For example, a D3T model may specify a mark for priority customers. Note
that Yn = ∇ if and only if Tn =∞.

6.1.5 Transporters

general properties A transporter is a point-like motile object in the
transport space M. Its purpose is to actively transport immotile loads. Each
transporter i is endowed with an integer (or infinite) capacity Ci, which is the
maximum number of loads it can transport at the same time. A D3T model
has a fixed number N of transporters which might differ in their capacity
but are otherwise identical.

In the D3T framework, transporters are actively transporting the loads,
but nevertheless they are myopic passive agents that merely execute the dis-
patching policy. A transporter typically lacks any but short-term knowledge
about its own queue of loads to transport and positions to travel to. Further-
more, transporters do not interact with other objects in the transport space,
i.e. loads or other transporters. Transporters are also ideal in the sense that
they are always in service, and they do not need to refuel or the like, un-
less explicitly told to do so. A transporter either moves at unit velocity, or
remains at its current position v ∈M. In geodesic spaces, transporters move
continuously along geodesic segments. In networks, transporters perform
discrete jumps along nodes of shortest paths, where each jump takes a time
given by the weight of the respective arc.

jobs This framework describes transporter operation as a sequence of jobs.
Each job j = (P, ṽ,D) is a tuple of

1. a pick-up set P of loads to pick up at the current location v of the
transporter,

2. the scheduled destination ṽ to travel to,

3. a delivery set D of loads to deliver at the new location ṽ.
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At any time t, a transporter either has a current transporter job to process,
or it is idle. The set P̃ denotes the loads scheduled for pick-up at the current
position v, the position ṽ ∈ M the destination to travel to, and the set D̃
denotes the loads scheduled for delivery at the destination ṽ.

picking up and delivering loads Picking up and delivering loads
takes the transporter a certain amount of time. The pick-up period and de-
livery period may depend on the position v ∈ M and on the set of loads
to pick-up (P) or deliver (D). The period does not depend on the particu-
lar transporter. The pick-up period function (delivery period function) τP(v,P)
(τD(v,D)) determines the time it takes a transporter to pick up (deliver)
loads P (D) at the position v.

queue Each transporter has a queue Q of transporter jobs to process. For-
mally, at any time t the queue Q =

(
j̃n
)
n

is a finite sequence of transporter
jobs j̃n =

(
P̃, ṽ, D̃

)
scheduled for the transporter to process sequentially in

ascending order. The job that the transporter currently processes is not part
of the queue (any more).

dispatcher action As stated before, the transporters merely execute the
dispatching policy. In practice, they receive commands from the dispatching
unit (called dispatcher). In the D3T framework, there are the following dis-
patcher actions a transporter willingly accepts at any time:

1. appending a sequence of jobs J to the transporter queue Q 7→ (Q, J)
(submit),

2. replacing the queue Q 7→ J with a new sequence of jobs J (submit and
replace)

3. emptying the queue Q 7→ ∅ (submit and replace empty job sequence),

4. canceling the current job c 7→ 1 (cancel). This implies also emptying the
queue (Q 7→ ∅) and makes the most sense if the dispatcher submits a
new sequence of jobs at the same time.

Note that the first 3 actions only modify the queue, but do not affect the
current job. The last action is the most intrusive, regarding the ongoing op-
eration of the transporter.

transporter states and state transitions At any time t, the state
of a transporter is given by the variables in Table 6.2. A transporter experi-
ences the following state transitions (see Table 6.3 and Figure 6.4): A trans-
porter starts a job (∗), when it has an non-empty queue (Q 6= ∅) and either
has just ended a job (†) or has been idle (I). Starting a job, a transporter tran-
sits to the pick-up phase (P) when the set of loads scheduled for pick-up is
non-empty (P̃ 6= ∅). After pick-up, the transporter starts moving (T), unless
it has been ordered to cancel (c). If there are not any loads to pick up (P̃ = ∅),
the transporter directly transits to the travel phase (T). After travelling, the
transporter transits to the delivery phase (D), unless there are not any loads
to deliver (D̃ = ∅), or it has been ordered to cancel (c = 1). A transporter



50 modelling and simulating d3t

Table 6.2: Transporer state variables in D3T models.

Symbol State variable
v ∈M Current position
w ∈ R+

0 Waiting time (remaining jump time) to arrive at ṽ
L Current cargo (set of loads on-board the transporter)
Q Current queue of transporter jobs
P̃ Current job: Set of loads scheduled for pick-up at current

position
ṽ ∈M Current job: Destination
D̃ Current job: Set of loads scheduled for delivery at destination
M Current mode, see Table 6.3.
c ∈ { 0, 1 } A Boolean variable that indicates whether the dispatcher

ordered the transporter to cancel its current job.

Table 6.3: Transporter modes in D3T models. We introduce the pseudo-modes for
the start of processing the current job (∗) and end of processing the cur-
rent job (†). The lifetime of a mode is the period a transporter spends in
that mode before it advances to the next mode. The idle mode is only
left at external input from the dispatcher, when it adds jobs to the trans-
porter queue. At the end of a mode, the transporter state autonomously
changes according to the effects column.

Symbol Mode Lifetime Entry condition Effect
I idle ∞ Q = ∅∧w = 0∧ ṽ =

v∧ P̃ = D̃ = ∅
∗ (job start) 0 Q 6= ∅ (P̃, ṽ, D̃) 7→

j̃1,Q 7→ (j̃n)
|Q|
n=2

P pick-up τP(v, P̃) P̃ 6= ∅∧¬c L 7→
L∪ P̃, P̃ 7→ ∅

T travel d(v, ṽ) P̃ = ∅∧ ṽ 6= v∧¬c v 7→ ṽ

D delivery τD(ṽ, D̃) P̃ = ∅∧ ṽ = v∧w =

0∧ D̃ 6= ∅∧¬c

L 7→
L \ D̃, D̃ 7→ ∅

† (job end) 0 (P̃ = ∅∧ ṽ = v∧w =

0∧ D̃ = ∅)∨ c
c 7→ 0

I• ∗

P

T

D

†

Q 6= ∅Q = ∅

Q 6= ∅

P̃ = ∅

P̃ 6= ∅

¬c

D̃ 6= ∅∧¬c

D̃ = ∅
∨c

c

Figure 6.4: Transition diagram of a transporter in a D3T model. See Table 6.2 for the
state variables and see Table 6.3 for the modes. Labels at the transition
arcs are the entry condition for the successive mode.
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ends a job (†) after delivery, unless there have not been any loads scheduled
for delivery, or the transporter was ordered to cancel. If the queue is empty
(Q = ∅) after ending a job, the transporter becomes idle.

When the dispatcher orders to cancel a job, the transporter queue is emp-
tied. Furthermore,

1. if the transporter is picking up loads (P), it regularly finishes pick-up
and, prematurely, ends the current job thereafter;

2. if the transporter is travelling (T), it stops as soon as possible (in a
geodesic geometry this means immediately, in a network this means
when the current jump to the next node is completed);

3. if the transporter is delivering loads (D), it regularly finishes delivery
and ends the current job thereafter.

6.1.6 Dispatching policy

The dispatching policy D is a set of rules that determine the instructions
for the transporters given the load arrivals up to the current time. The dis-
patching policy covers each load arrival: it either rejects a load request, or
assigns the load to a transporter (at least eventually). It is the dispatching
policy that governs the transporter queues. In the light of new load arrivals,
the dispatching policy may modify transporter queues, or even cancel the
job currently processed by any transporter.

In a simulation model, the dispatcher is the component that embodies the
dispatching policy. In a D3T model, the dispatcher contains all the model-
specific logic of the D3T transport. Therefore, its internal state is typically
rather intricate and highly model-specific. For sophisticated dispatching poli-
cies, the dispatcher will even contain an own view of the world: in this frame-
work, the dispatcher does not “own” the transporters, their states are hidden
from the dispatcher. The only way to know about the transporter states is
via signalling (input/output events).

6.1.7 Summary: Parameters of a D3T model

To conclude this Section, a D3T model

M =
(
(M,d),Σ, (T,Y) ,N, {Ci }

N
i=1 ,

{
v0i
}N
i=1

, τP, τD, DD,O
)
∈ M̂

is specified by the following parameters:

• the transport space M (either geodesic or network) and the associated
hemimetric d,

• the set Σ of additional load marks and the load arrival process (T,Y) =
{ (Tn, Yn) ,n ∈N } on the mark space M×M× Σ,

• the number N of transporters,

• the capacities {Ci }
N
i=1 of the transporters with Ci ∈N∪ {∞ },
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high-level description D3T model

structural description D3TS model

full simulation model DEVS model

Figure 6.5: Three-tier description of a D3T model, which maps unto a D3TS model
as described in this Section, and ultimately, unto a low-level but fully-
fledged DEVS simulation model.

• the initial positions
{
v0i
}N
i=1

of the transporters with v0i ∈M,

• the pick-up period function τP,

• the delivery period function τD,

• the dispatching policy D (the dispatcher model DD),

• and additionally, we also include the set of observer models O ={
Oj
}
j

that record simulation data for performance analysis.

6.2 the d3t specification (d3ts)

6.2.1 Overview

A D3TS model is a formal mapping of a D3T model onto a system of
interacting components in the system-theoretic sense. [130, 131] The DEVS
description of a D3TS model is the complete description for simulation of a
D3T model (cf. Figure 6.5). In other words, my contribution here is a com-
mon formal language (D3TS model) for specifying demand-driven directed
transport models in the general formal P-DEVS language. The existing P-
DEVS framework in turn comes with an abstract simulation algorithm and
general implementations such as the adevs C++ library. [133, 146]

The D3TS specification defines generic component classes of specific D3T
model components. There are four pairwise disjoint component classes:

• Load source class L̂, containing the load sources, the simulation compo-
nents which embody the load arrival process;

• Dispatcher class D̂,

• Transporter class T̂,

• Observer class Ô.

One of the characteristic design traits of DEVS and the D3T Specification
is that each simulation component is modelled as a black box: Internal states



6.2 the d3t specification (d3ts) 53

Load source class L̂
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Figure 6.6: The D3T system framework.

are inaccessible, the only way of knowing about the system and its other com-
ponents is via input and output events. This specification provides several
event types. Examples of events are load arrivals (requests) or a transporter
delivering loads (delivery).

Given an event type e, all event instances e ∈ e of that type originate from
component instances C of only one class Ĉe. For example, only load source
instances output request events, and only transporter instances output de-
livery events. The component classes and their event types define the D3TS
framework (Figure 6.6).

6.2.2 Event types

This Section introduces all event types e of this framework (Table 6.7).

request event A load source instance L outputs an event instance e? of
the request event type ? whenever a load arrives. The mark is (σl,#l,�l).
The output event instance is e? = (l,σ,#,�) with the load index l, the load
origin # = #l and the load destination � = �l.

assign event A dispatcher instance D outputs an event instance eX =

(l, i) of the assign event type X whenever it assigns a load l for transport by
transporter i. This event confirms the load request, i.e. assignment implies
acceptance of the load request.

reject event A dispatcher instance D outputs an event instance e× = (l)

of the reject event type × whenever it rejects a load request l.

submit event A dispatcher instance D outputs an event instance e+ =(
i, j̃, r

)
of the submit event type + to submit a sequence of jobs j̃ to a trans-

porter i. If the boolean replace variable r is true, the submitted jobs replace
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Table 6.7: Event types and their instance data tuples, names, and producing com-
ponent classes.

Name e Ĉe Instance e ∈ e
request ? L̂ (l,σ,#,�)
assign X D̂ (l, i)
reject × D̂ (l)

submit + D̂
(
i, j̃, r

)
cancel − D̂ (i)

busy � D̂ (i)

idle • D̂ (i)

init F T̂ (i, v,C)
job start ∗ T̂ (i, j)
pick-up p T̂ (i, j,P)
departure ↗ T̂ (i, j, ṽ, τ̃)
arrival ↘ T̂ (i, j, v)
delivery d T̂ (i, j,D)

job end † T̂ (i, j)
empty queue ∅ T̂ (i)

the transporter queue Qi. Otherwise, the submitted jobs are appended to
the queue.

cancel event A dispatcher instance D outputs an event instance e− = (i)

of the cancel event type + to order a transporter i to cancel processing its cur-
rent job. Hence, this command is particularly useful in combination with a
submit event that replaces the current transporter queue. In this combina-
tion, the transporter receives new instructions to follow immediately.

busy event A dispatcher instance D outputs an event instance e� = (i)

of the busy event type � to report that a transporter i has become busy.

idle event A dispatcher instance D outputs an event instance e• = (i) of
the idle event type • to report that a transporter i has become idle.

init event At the begin of the simulation, a transporter instance Ti out-
puts an event instance eF = (i, v,C) of the init event type F to report ini-
tialization of transporter i at position v with capacity C. Together with the
init event instance, the transporter instance outputs an empty queue event
instance (see below).

job start event A transporter instance Ti outputs an event instance
e∗ = (i, j) of the job start event type ∗ when transporter i starts processing
job no. j.

pick-up event A transporter instance Ti outputs an event instance ep =

(i, j,P) of the pick-up event type p when transporter i finishes picking up the
loads P̃ of its current job j.
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departure event A transporter instance Ti outputs an event instance
e↗ = (i, j, ṽ, τ̃) of the departure event type ↗ when transporter i departs
from its current position v to travel to the destination ṽ of its current job j.
The expected travel time is τ̃ = d(v, ṽ).

arrival event A transporter instance Ti outputs an event instance e↘ =

(i, j, v) of the arrival event type↘ whenever transporter i arrives (and stops)
at a position v. The transporter either stops at its scheduled destination ṽ, or
when the dispatcher canceled its current job j.

delivery event A transporter instance Ti outputs an event instance ed =

(i, j,D) of the delivery event type d whenever transporter i finishes delivering
the loads D̃ of its current job j.

job end event A transporter instance Ti outputs an event instance e† =
(i, j) of the job end event type † when transporter i ends processing the cur-
rent job j. This also includes jobs that have been prematurely canceled by the
dispatcher instance.

empty queue event A transporter instance Ti outputs an event instance
e∅ = (i) of the empty queue event type ∅ whenever transporter i has ended
processing its current job and finds its queue empty, Qi = ∅. It also out-
puts an empty queue event instance at time of initialization (as transporter
instances are initialized with empty queues).

transporter events We refer to the event types {F, ∗, p,↗,↘, d, †, ∅ }
as transporter events.

6.2.3 Mapping a D3T model to a D3T system

A D3T system contains a certain number of instances of the underlying
D3TS component model classes, as specified by mapping the D3T model.
Note that the behavior of a component model C(M) for a given D3T model
M depends on the other component models and the other parameters of the
D3T model.

load sources Given a D3T model M, the load source model L(M) em-
bodies the marked point process { (Tn, Yn) ,n ∈N }. A D3T system can con-
tain multiple load sources at the discretion of the modeler. Load sources do
not have any input events.

dispatcher A dispatcher component model DD ∈ D̂ implements a spe-
cific dispatching policy D. In each D3T system, there is only one instance
DD(M) of the dispatcher model. The framework requires each dispatcher
model to output submit, assign, busy, and idle events. The dispatcher model
may further output cancel and/or reject events, depending on the dispatch-
ing policy.



56 modelling and simulating d3t

Load source model L

Dispatcher model D1

Transporter model T

Observer model Oload

Observer model Otrapo

{ ? }

{+,− }

{X }

{↗,↘ }

{ p, d }

{ ∅ }

Figure 6.8: D3TS model graph of the example D3T model with the component mod-
els as nodes and arcs labelled by the event types.

transporter This framework specifies exactly one transporter compo-
nent model T ∈ T̂. For a given D3T model M, there is a transporter instance
Ti ∈ T(M) for each of the N transporters. An instance Ti is initialized with
initial position v0i and empty cargo L = ∅ at time t = 0.

observer An observer listens to simulation events but does not interfere
with the simulation: it is the simulator’s tool to record simulation statis-
tics, instead of accessing simulation components’ states directly. This design
pattern facilitates and enforces encapsulation and the black-box paradigm.
There are various observer component models O ∈ Ô. Each D3T model M
may specify multiple observer models Oi ∈ Ô, and in the D3T system there
will be exactly one instance Oi ∈ Oi(M) of each observer model. As ob-
servers are passive, they do not affect the dynamics of the D3T system. For
a D3T model, the observer models merely specify which observables are
accessible for recording.

6.2.4 A D3T model example

Let us illustrate the technicalities of the D3TS component and event frame-
work with a concrete example M1 of a D3T model. As there is only one load
source model L ∈ L̂ and one transporter model T ∈ T̂, we only need to spec-
ify the dispatcher model D1 ∈ D̂ and the observer models O. Specifically, let
the number of transporters be N = 3. Let the dispatcher model be D = D1,
and let the set of observer models be O =

{
Oload, Otrapo

}
.

Let us consider a dispatching policy which cancels transporter jobs (−
event type), and reacts upon transporters reporting empty queues (∅ event
type). Let observer model Oload record load statistics of arrivals, assignments,
pick-ups and deliveries, and let observer model Otrapo record transporter
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statistics such as departures and arrivals. These component input/output
ports determine the D3TS model graph (Figure 6.8) which is a directed graph
without loops.

6.2.5 On the mapping of a D3TS model to a DEVS model

To complete the presentation of the framework, I sketch the technical
mapping of a D3T model instance M to a parallel DEVS network model
N(M) = (XN, YN,D, I,Z) with ports. Each port p in the DEVS network model
is an event type. The DEVS network model coupling functions treat all event
instances independently and only couple output ports to input ports of the
same event type. The DEVS network model itself neither takes input nor
produces output (XN(M) = YN(M) ≡ ∅.) The set of components D(M) of the
network model contains a component d for each component instance C in
the D3T system as specified in Section 6.2.3. The family of sets of influencers
I directly derives from the D3T system framework (Figure 6.6). A coupling
function zd,d ′ ∈ Z transforms output of the DEVS network component d to
input of the DEVS network component d ′. Within the component and event
framework it is again particulary simple to define this transformation. From
any output bag yb that d generates, it selects all events (p, v) whose type p
is implemented as input at the receiving end.

The load source component model generates the load arrival events. In
fact, every instance of the DEVS network model (i.e. every simulation run)
implements one realization of the load arrival process, through the load
source. Note that it is in this sense that the deterministic DEVS formalism
accounts for random events: the DEVS model instance is formally initialized
with a single realization of the stochastic process. However, the software
implementation typically generates the respective random events on the fly.
Within the constraints of this framework regarding the event types, the D3T
modeler is free to specify dispatcher and observer component models as
generic DEVS atomic models. Finally, the transporter DEVS model derives
from the transporter states (Table 6.2), including modes (Table 6.3), and the
transition graph (Figure 6.4).

This completes the outline of the steps necessary to arrive at a formal
DEVS description of a D3T system.

6.3 observable data of d3t systems

6.3.1 Overview

Observables are the quantitative output of the transport dynamics of a
D3T instance.

Given a D3T instance M, each component C ∈ M has an output trajectory
yC(τ) (see Section 4.4.1).

Definition 6.1 (Total output trajectory). Let

M =
(
{ Lσ : σ ∈ Σ } , DD, { Ti }

N
i=1 , { O ∈ O(M) : O ∈ O }

)
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Figure 6.9: Load epochs and times as observables of D3T models.

be a D3T instance. At each time τ ∈ T, the total output trajectory of M is

yM(τ) =
⊎
σ∈Σ

yLσ(τ)] yDD
(τ)]

N⊎
i=1

yTi(τ),

where ] denotes multiset addition.

Hence, the total output trajectory aggregates the outputs of the dispatcher
and all load sources and transporters.

Observer instances preprocess the total output trajectory yM of a D3T in-
stance M. They provide recordable simulation data. Specifically, each ob-
server model implements a combination of

1. scalar values,

2. event trajectories, and

3. state trajectories,

as simulation output. While a scalar value aggregates a quantity over
the whole simulation run, a trajectory provides online time-discrete output
(event trajectories), or time-continuous output (state trajectories).

6.3.2 Load observables

overview Load observables relate the transport dynamics to individual
service quality. Figure 6.9, Table 6.10 and Table 6.11 summarize the observ-
ables regarding the arrival and transport of loads.
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Table 6.10: Load observables in D3T models.

Symbol Domain / Value Observable
l ∈ L = N load index
#l ∈M origin
�l ∈M destination
dl = d(#l,�l) direct travel time
tl ∈ R+

0 , tl > tl−1 arrival epoch
∆tl = tl − tl−1,∆t1 = t1 interarrival time
tXl > tl assignment epoch
t

p
l > tXl pick-up epoch
td
l > t

p
l + dl delivery epoch, departure epoch

ql = tXl − tl queueing time
wl = t

p
l − tl waiting time

el = t
p
l − t

X
l lead time

xl = td
l − t

X
l service time

πl = td
l − t

p
l travel time

sl = td
l − tl sojourn time, system time

q̂l = ql/dl relative queueing time
ŵl = wl/dl relative waiting time
êl = el/dl relative lead time
x̂l = xl/dl relative service time
π̂l = πl/dl relative travel time
ŝl = sl/dl relative sojourn time
nl = l(t−l ) system size at arrival epoch

Table 6.11: Derived load observables of D3T models.

Symbol Domain / Value Observable
L0(t) = { l : tl 6 t } arrival set
Ld(t) =

{
l : td

l 6 t
}

departure set
L(t) =

{
l : tl 6 t < tdl

}
= L0(t) \ Ld(t) system set

n0L(t) = |L0(t)| arrival number
nd
L(t) = |Ld(t)| departure number
l(t) = |L(t)| system size
nl = l(t−l ) system size at arrival epoch
lk(t) = 1

t

∫t
0 I{ t̃:l(t̃)=k } dt

′ system size fraction
nk(t) = |{ l : tl 6 t,nl = k }| arrival system size frequency
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load epochs The arrival time tl of the l-th load is implicitly defined as1

(?, (l,σ,#,�)) ∈ yM(tl, c).

Similarly, the origin #l = # and destination �l = �. Define the direct travel
time as the metric distance from origin to destination:

dl = d(#l,�l).

The inter-arrival time is

∆tl = tl − tl−1,

with ∆t1 = t1. The dispatcher assigns the load for transport to a transporter
i at the assignment epoch tXl . Its implicit definition is

(X, (l, il)) ∈ yM(tXl , c),

where il is the index of the transporter the load l is assigned to. Similarly,
the implicit definitions of the pick-up epoch tp

l and the delivery epoch td
l are

(p, (i,P)) ∈ yM(t
p
l , c), l ∈ P,

(d, (i,D)) ∈ yM(td
l , c), l ∈ D.

load times In queueing theory, the assignment epoch is the time instant
at which transporter i starts servicing load l. Hence, we call the period be-
tween arrival and assignment

ql = t
X
l − tl

the queueing time. The queueing time is less than the waiting time between
arrival and pick-up

wl = t
p
l − tl,

which also includes the lead time between assignment and pick-up

el = t
p
l − t

X
l .

During the lead time, a transporter travels to the origin of the load. In queue-
ing theory, the transporter would already serve the load. However, in trans-
portation, the transporter has not picked up the load yet. Besides the lead
time, the service time between assignment and delivery

xl = t
d
l − t

X
l

1 A note on potential confusion of queueing and physical notions here: in queueing theory,
arrival of a job or customer refers to the point in time a job enters the system, i.e. is known to
and dealt with by the queueing system. In transport, arrival refers to the physical arrival of
a load at its destination. In practice, we will not speak of arrival of a load, but rather of the
delivery of a load – which entails that the load departs (or exits, leaves) the system. Hence, if
not otherwise stated, arrival of a load means the arrival of a load to the (queueing) system.
Similarly, departure of a load refers to the load being delivered and subsequently, leaving the
queueing system.
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as defined in queueing theory also comprises the travel time between pick-up
and delivery

πl = t
d
l − t

p
l ,

which must be at least the direct travel time,

πl > dl.

Equality holds if the transporter travels directly from the load origin to the
load destination. To conclude, the overall sojourn time or system time of load
l between arrival and delivery

sl = t
d
l − tl

adds up as

sl = wl + πl = ql + xl = ql + el + πl.

For each of these times ql,wl, el, xl,πl, sl, we also consider the correspond-
ing relative period normalized by the direct travel time dl:

q̂l =
ql
dl

, ŵl =
wl
dl

, êl =
el
dl

, x̂l =
xl
dl

, π̂l =
πl
dl

, ŝl =
sl
dl

.

load sets The arrival set

L0(t) = { l : tl 6 t }

is the set of all loads that have arrived by time t. Similarly, the departure set

Ld(t) =
{
l : td

l 6 t
}

is the set of all loads that have departured by time t. Clearly, Ld(t) ⊂ L0(t).
The system set

L(t) =
{
l : tl 6 t < t

d
l

}
= L0(t) \ Ld(t)

is the set of loads currently in the system at time t.

load numbers The arrival number

n0L(t) = |L0(t)|

is the number of loads that have arrived by time t. Similarly, the departure
number

nd
L(t) = |Ld(t)|

is the number of loads that have departured by time t. The system size

l(t) = |L(t)| = n0L(t) −n
d
L(t)
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is the number of loads currently in the system. The system size at arrival
epochs tl, excluding the arrivals at tl, is denoted

nl = l(t
−
l ).

The fraction of time the system size equals k up to time t (system size frac-
tion) is

lk(t) =
1

t

∫t
0

I{ t̃:l(t̃)=k } dt
′.

The number of arrivals to a system of size k up to time t (arrival system size
frequency) is

nk(t) = |{ l : tl 6 t,nl = k }|.

system size busy periods and return time Given an integer number
c ∈ N, what is the distribution of periods during which the D3T system has
more than c loads? We call these periods c-busy periods. The intermediate
periods are the c-idle periods. The start epochs of the c-busy periods up to
time t are

t
b,c(t) =

{
t̃ : t̃ 6 t, l(t̃) > c, l(t̃−) < c

}
,

and the start epochs of the c-idle periods up to time t are

t
i,c(t) = { 0 }∪

{
t̃ : t̃ 6 t, l(t̃) < c, l(t̃−) > c

}
.

The start epochs of the c-idle periods are the end epochs of the c-busy pe-
riods, and vice versa. The symbol l(t̃−) refers to the right limit limt↗t̃ l(t).
The time-ordered sequences are (tb,c

n )n and (ti,c
n )n with 0 6 tb,c

1 6 t
b,c
2 6 . . .

and 0 = ti,c
0 6 t

i,c
1 6 t

i,c
2 6 . . .. Observe that by definition

0 = ti,c
0 6 t

b,c
1 6 t

i,c
1 6 t

b,c
2 6 t

i,c
2 6 . . .

The system size c-busy periods and system size c-idle periods are

bcn = ti,c
n − tb,c

n

icn = tb,c
n − ti,c

n−1.

The system size return times are the system size N-busy times

rn = bNn ,

where N is the number of transporters. The number of arrivals during a
system size c-busy period up to time t is

nb,c(t) = { l : tl 6 t,nl > c } ,

(system size c-busy arrival number) and the number of arrivals during a system
size c-idle period up to time t is

ni,c(t) = { l : tl 6 t,nl < c } ,
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the system size c-idle arrival number. Obviously,

n0L(t) = n
b,c(t) +ni,c(t).

The system size c-busy arrival fraction of arrivals up to time t is

pb,c(t) =
nb,c(t)

n0L(t)
.

The system size delay fraction is the system size N-busy arrival fraction up to
time t,

pb(t) = pb,N(t),

where N is again the number of transporters.

payload-weighted travel time The payload-weighted travel time of
load l is

ψl =

∫td
l

t
p
l

(nil(t))
−1 dt,

where nil(t) is the payload size trajectory of the transporter il that load l
was assigned to.

6.3.3 Transporter observables

overview Transporter observables relate the transport dynamics to sys-
tem efficiency. Each transporter i processes a sequence of jobs j1, j2, . . . , jj.
Consider an arbitrary transporter i throughout, unless otherwise stated.

transporter job epochs The time-ordered sequences of start epochs t∗ij
and end epochs t†ij of the j-th job are

t
∗
i = { t : (∗, (i, v,L)) ∈ yM(t) } = (t∗ij)j,

t
†
i = { t : (∗, (i, v,L)) ∈ yM(t) } = (t†ij)j.

By definition, it holds that 0 6 t∗i1 6 t
†
i1 6 t

∗
i2 6 t

†
i2 6 . . .. The pick-up epoch

t
p
ij, departure epoch t↗ij , arrival epoch t↘ij , delivery epoch td

ij of the j-th job are
implicitely defined as

(p, (i,P)) ∈ yM
∣∣
[t∗ij,t

†
ij)
(t

p
ij),

(↗, (i, ṽ, τ̃)) ∈ yM
∣∣
[t∗ij,t

†
ij)
(t↗ij ),

(↘, (i, v)) ∈ yM
∣∣
[t∗ij,t

†
ij)
(t↘ij ),

(d, (i,D)) ∈ yM
∣∣
[t∗ij,t

†
ij)
(td
ij).

If both respective epochs are defined, the pick-up epoch coincides with the
departure epoch, and the delivery epoch coincides with the job end epoch,

t
p
ij = t

↗
ij ,

td
ij = t

†
ij.
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Figure 6.12: Epochs, times, and payload sizes as observables of transporter jobs in
D3T models.

transporter payload For each transporter i, there is a payload trajec-
tory Li(t) which records the loads on-board the transporter for each time t.
The payload trajectory Li(t) is a piecewise constant trajectory that changes
only at pick-up epochs tp

ij and delivery epochs td
ij. The job residual payload

Lij is the payload of transporter i at the end of its j-th job. At the pick-up
epoch tp

ij, the pick-up setPij of loads is added to the payload and implicitely
defined as

(p,
(
i,Pij

)
) ∈ yM(t

p
ij).

Similarly, at the delivery epoch td
ij, the delivery set Dij of loads is subtracted

from the payload and implicitely defined as

(d,
(
i,Dij

)
) ∈ yM(td

ij).

If a pick-up epoch tp
ij is undefined, we formally let tp

ij ≡ t
↗
ij and Pij ≡ ∅.

Similarly, if a delivery epoch td
ij is undefined, we formally let td

ij ≡ t
†
ij and

Dij ≡ ∅. The recursive definition of the job payloads Lij is

Lij = Lij−1 ∪Pij \Dij,

with the initial empty payload

Li0 = ∅.

The job transport payload Lτij is the set of loads on-board transporter i during
the travel time of its j-th job,

L
τ
ij = Lij−1 ∪Pij.
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The constant segments of the payload trajectory are

Li

∣∣
[0,tp

i1)
(t) = ∅,

Li

∣∣
[t

p
ij,t

d
ij)
(t) = Lτij,

Li

∣∣
[td
ij,t

p
ij+1)

(t) = Lij.

For each transporter i, the payload size trajectory is the number of loads
on-board the transporter at any time t,

ni(t) = |Li(t)|.

As the transporter payload trajectory, the payload size trajectory is also piece-
wise constant. The job residual payload size nij is the number of loads the
transporter i carries at the end of its j-th job,

nij = |Lij|.

The pick-up number np
ij is the number of loads the transporter i picks up

during its j-th job,

n
p
ij = |Pij|.

Similary, the delivery number nd
ij is the number of loads the transporter i

delivers during its j-th job,

nd
ij = |Dij|.

The job transport payload size nτij is the number of loads the transporter i is
carrying during the travel time of its j-th job,

nτij = |Lτij|.

From the payload sets, we have the following relationships for the payload
sizes:

ni0 = 0,

nij = nij−1 +n
p
ij −n

d
ij,

nτij = nij−1 +n
p
ij.

The constant segments of the payload size trajectory are

ni
∣∣
[0,tp

i1)
(t) = 0,

ni
∣∣
[t

p
ij,t

d
ij)
(t) = nτij,

ni
∣∣
[td
ij,t

p
ij+1)

(t) = nij.

For k > 1, the time-ordered epochs at which a transporter i starts to carry
at least k loads are the k occupancy epochs

t
k
i (t) =

{
t̃ 6 t : ni(t̃) > k,ni(t̃−) 6= k

}
=

=
{
t

p
ij 6 t : n

p
ij > 0,k > nij−1 > k−n

p
ij

}
= (tki,n)n.
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The epochs at which the number of loads a transporter i carries drops below
k are the k occupancy end epochs

t
k̄
i (t) = { 0 }∪

{
t̃ 6 t : ni(t̃) < k,ni(t̃−) > k

}
= { 0 }∪

{
td
ij 6 t : n

d
ij > 0,k 6 n

τ
ij < k+n

d
ij

}
= (tk̄i,n)n

with tk̄i,0 = 0.
It should hold that

0 = tk̄i,0 6 t
k
i,1 6 t

k̄
i,1 6 t

k
i,2 6 t

k̄
i,2 6 . . . .

The k occupancy periods nki,n are the periods during which a transporter i
carries at least k loads,

nki,n = tk̄i,n − tki,n.

The empty periods ei,n are the periods during which a transporter i is empty,

ei,n = t1i,n+1 − t
1̄
i,n.

For any given k, the piecewise continuous k occupancy trajectory is

nki (t) = 1⋃
n[t

k
i,n,tk̄i,n)

(t).

The empty trajectory ei is piecewise continuous,

ei(t) = 1⋃
n[t

1̄
i,n,t1i,n+1)

(t).

transporter job times In the following, consider the j-th job of trans-
porter i. If the transporter picks up loads, that is, if the pick-up epoch tp

ij is
defined, the pick-up time is

pij = t
p
ij − t

∗
ij.

Analogously, if the delivery epoch td
ij is defined, the delivery time is

dij = t
d
ij − t

↘
ij .

The travel time is

τij = t
↘
ij − t

↗
ij .

The idle time between two successive jobs j and j+ 1 is

iij = t
∗
ij+1 − t

†
ij.

The piecewise continuous pick-up trajectory, delivery trajectory, travel trajectory,
and interjob-idle trajectory are

pi(t) = 1⋃
j[t
∗
ij,t

p
ij)
(t) = 1⋃

j[t
∗
ij,t
↗
ij )

(t),

di(t) = 1⋃
j[t
↘
ij ,td

ij)
(t) = 1⋃

j[t
↘
ij ,t†ij)

(t),

τi(t) = 1⋃
j[t
↗
ij ,t↘ij )

(t),

ji(t) = 1⋃
j[t
†
ij,t
∗
ij+1)

(t),
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transporter positions The transporter job position vij is implicitely de-
fined as

(↘,
(
i, vij

)
) ∈ yM(t↘ij )

with the initial condition vi0 = v0i .
The transporter job scheduled destination ṽij and transporter job scheduled

travel time τ̃ij are implicitely defined as

(↗,
(
i, ṽij, τ̃ij

)
) ∈ yM(t↗ij ).

The transporter job position trajectory is piecewise continuous, and its constant
segments are

vJi

∣∣∣
[0,t↘i1)

(t) = v0i ,

vJi

∣∣∣
[t↘ij ,t↘ij+1)

(t) = vij.

The transporter position trajectory is

vi(t) =

{
vij if t ∈ [t↘ij , t↗ij+1)

ν(vij−1, ṽij, τ̃ij − (t− t↗ij )) if t ∈ [t↗ij , t↘ij ),

where τ̃ij = d(vij−1, ṽij).

cumulative and average transporter times Let the simulation start
at time 0 and end at time T . We may discard an initial transient phase ending
at t0. For any given trajectory xi(t), we consider

• the total trajectory x(t) =
∑N
i=1 xi(t),

• the cumulative trajectory Xi(t) =
∫t
0 xi(t

′)dt ′, and the cumulative value
Xi = Xi(T) −Xi(t0),

• the cumulative total trajectory X(t) =
∑N
i=1 Xi(t) =

∫t
0 x(t

′)dt ′ =
∑N
i=1

∫t
0 xi(t

′)dt ′,
and the cumulative total X = X(T) −X(t0),

• the time average X̄i = 1
T−t0

Xi,

• the time-averaged total X̄ = 1
T−t0

X,

• the transporter average trajectory 〈x〉t = 1
Nx(t),

• the transporter-averaged cumulative trajectory 〈X〉t = 1
NX(t), and the

transporter-averaged cumulative value 〈X〉 = 〈X〉T − 〈X〉t0 ,

• the (time and transporter) average 〈X̄〉 = 1
N X̄ = 1

T−t0
〈X〉.

6.4 example dispatcher model

dispatching policy The Myopic Taxi FCFS Nearest-Transporter dispatch-
ing policy
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• is myopic: it

– assigns and submits a request to a transporter at the same time,

– only assigns requests to currently idle transporters,

– assigns a request to a transporter as soon as there are idle trans-
porters,

– assigns a transporter to a request as soon as there are pending
requests,

– does not cancel any jobs that it submits;

• dispatches taxis: all transporters have unit capacity 1;

• serves requests on a First-Come-First-Serve basis: if all transporters are
busy, it assigns the oldest request to the next transporter becoming idle,

• chooses the nearest idle transporter: if a transporter becomes idle and
there are no pending requests, it assigns the next request to the idle
transporter that is nearest to the request origin.

The component model is the Myopic Taxi FCFS Nearest-Transporter (MTFN)
Dispatcher DMTFN.

busy/idle events A transporter becomes busy when the dispatcher as-
signs a request to it. At the same time, the dispatcher submits the jobs to
serve that request. However, the transporter becomes busy only when it was
idle before. There is an exception to this rule: When the transporter has just
become idle, i.e. when it signals an empty queue at the same time the new
request arrives and the assignment is imminent, the transporter does does
become neither idle nor busy, but remains busy. Similarly, a transporter be-
comes idle when the dispatcher receives an empty queue event, but has not
assigned any new requests at the same time.

The dispatcher outputs all required events {X,+,�, • }. The dispatcher
needs transporter initialization and empty queue events as input. It also
needs to keep track of transporter positions through the arrival events:
{ ?,F,↘, ∅ }.

internal states The internal state s = (T , T∗,V ,R, I, I∗,A∗) stores

• the set of transporters T ,

• the set of newly initialized transporters T∗,

• the transporter positions V = (vi)i∈T ,

• the queue of pending requests R,

• the set of idle transporters I,

• the set of newly idle transporters I∗,

• the set of new assignments A∗.

As a convenience, we define the function T(A∗) = { i | ∃l : (l, i,#l,�l) ∈ A∗ }.
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time advancement The dispatcher remains passive unless there are re-
quests to assign or newly idle transporters to signal. If so, the dispatcher is
imminent:

ta (s) =

{
0 if A∗ 6= { } ∨ I∗ 6= { }∞ otherwise

output We partition the output function into the port output functions:

λ(s) =
⋃

e∈YDMTFF

yb
e

with the port output bags yb
e = { (e, e) | e ∈ λe(s) }.

λ+(s) =
{ (
i, j̃l, 0

) ∣∣ (l, i,#l,�l) ∈ A∗ }
λX(s) = { (l, i) | ∃l, i : (l, i,#l,�l) ∈ A∗ }
λ�(s) = { (i) | i ∈ T(A∗)∩ ((I \ I∗)∪ T∗) }
λ•(s) = { (i) | i ∈ I∗ \ T(A∗) }

with j̃l = ((∅,#l, ∅), ({ l } ,�l, { l })).

internal transition We partition the internal transition function δint

into transition functions dealing with clearing assignments and idle trans-
porters:

δint = δint,A ◦ δint,I

δint,I : I 7→ I \ T(A∗), I∗ 7→ ∅, T∗ 7→ ∅
δint,A : A∗ 7→ ∅

external transition We partition the external transition function δext

into transition functions dealing each with one event type, and the matching
transition function δmatch:

δext = δmatch ◦ δext,∅ ◦ δext,? ◦ δext,↘ ◦ δext,F

δext,F : T∗ 7→
{
i
∣∣∣ ∃v : (i, v) ∈ xb

F

}
T 7→ T ∪

{
i
∣∣∣ ∃v : (i, v) ∈ xb

F

}
V 7→ V ∪

{
v
∣∣∣ ∃i : (i, v) ∈ xb

F

}

δext,↘ : vi 7→

{
v∗i if ∃i, j :

(
i, j, v∗i

)
∈ xb
↘

vi otherwise

δext,? : R = (r1, . . . , r|R|) 7→ (r1, . . . , r|R|, r
∗
1, . . . , r∗

|xb
? |
)

with
{
r∗1, . . . , r∗

|xb
? |

}
= xb

? .

δext,∅ : I
∗ 7→

{
i
∣∣∣ (i) ∈ xb

∅

}
,

I 7→ I∪
{
i
∣∣∣ (i) ∈ xb

∅

}
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The port input bags are xb
e =
{
e
∣∣ (e, e) ∈ xb

}
.

δmatch : A
∗ 7→ { (lk, ik,#k,�k) }

n
k=1 ,

R = (r1, . . . , r|R|) 7→ (rn+1, . . . , r|R|),

with n = min { |R|, |I| }, R = ((lk,#k,�k))k, ik = arg mini∈I\{ i1,...,ik−1 } d(vi,#k)
for k ∈ { 1, . . . ,n }.

confluent transition Handle internal transition first, and then exter-
nal:

δcon = δext ◦ δint

example trajectory Let the transport space be a ring graph with 6 ver-
tices, labelled 10 to 15. The distance between any two adjacent vertices shall
be 1. Table 6.13 is an example of an input/output trajectory of such a dis-
patcher.

6.5 the pyd3t library

6.5.1 About pyd3t

pyd3t is a working computational implementation of the D3T Specification
introduced in the previous Sections. It is a Python package that provides to
the D3T simulationist all components, spaces and models to define her own
model in a modular, toolbox-like fashion, as well as a DEVS simulator and
interfaces to run these models and record and visualize their trajectories.
Furthermore, pyd3t is extensible by design: the user is free to specify her
own modules. In particular, I intended it to provide some basic dispatchers
for testing, basic models and educational purposes, and for users to imple-
ment their own dispatchers. This extensibility is purely abstract: all the stock
modules pyd3t ships are equivalent to any user-defined module as they use
the same public interface.

Under the hood, pyd3t depends on an abstraction layer that provides the
DEVS functionality, to which pyd3t adds the domain logic. This abstraction
layer is the pydevs Python package. pydevs is a Python package that pro-
vides abstract DEVS base classes and simulation functionality as a Pythonic
interface to the C++ adevs library. [146]

As of version 0.2, pyd3t consists of up to about 6,500 single lines of Python
code, with up to about 7,500 single lines of additional Python testing code
covering the codebase. The Appendix lists the implementations of the load
source, the transporters, and the example dispatcher (Listing C.2, Listing C.3,
Listing C.4).

6.5.2 An example simulation

To finally put the D3T framework and pyd3t into practice, we consider
an example D3T model. The transport space is a directed circle—the S1
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Table 6.13: Example input/output trajectory of a myopic taxi FCFS-nearest trans-
porter dispatcher. The jobs are j̃l = ((∅,#l, ∅), ({ l } ,�l, { l })).

t c yb xb ta∞
0 0 {(F, (2, 10)) , 0

(F, (4, 10)) ,
(∅, (2)) , (∅, (4)) ,
(?, (1, 11, 13))}

0 1
{ (

+,
(
a, j̃1, 0

))
, (X, (1,a)) , (�, (a)) , (•, (b))

} ∞
1 0 { (↘, (a, ·, 11)) } ∞
2.5 0 { (?, (3, 14, 15)) } 0

2.5 1
{ (

+,
(
b, j̃3, 0

))
, (X, (3,b)) , (�, (b))

} ∞
3 0 {(↘, (a, ·, 13)) , 0

(∅, (a))}
3 1 { (•, (a)) } ∞
4.5 0 { (↘, (b, ·, 14)) } ∞
5.5 0 {(↘, (b, ·, 15)) , 0

(∅, (b))}
5.5 1 { (•, (b)) } ∞
6 0 { (?, (5, 10, 12)) } 0

6 1
{ (

+,
(
b, j̃5, 0

))
, (X, (5,b)) , (�, (b))

} ∞
6.5 0 { (?, (7, 13, 11)) } 0

6.5 1
{ (

+,
(
a, j̃7, 0

))
, (X, (7,a)) , (�, (a))

} ∞
6.5 2 { (↘, (a, ·, 13)) } ∞
7 0 {(?, (9, 15, 13)) , ∞

(↘, (b, ·, 10))}
8 0 { (?, (17, 10, 15)) } ∞
8.5 0 {(↘, (a, ·, 11)) , 0

(∅, (a))}
8.5 1

{ (
+,
(
a, j̃9, 0

))
, (X, (9,a))

} ∞
9 0 {(↘, (b, ·, 12)) , 0

(∅, (b))}
9 1

{ (
+,
(
b, j̃17, 0

))
, (X, (17,b))

} ∞
10.5 0 { (↘, (a, ·, 15)) } ∞
11 0 { (↘, (b, ·, 10)) } ∞
12 0 {(↘, (b, ·, 15)) , 0

(∅, (b))}
12 1 { (•, (b)) } ∞
12.5 0 {(↘, (a, ·, 13)) , 0

(∅, (a))}
12.5 1 { (•, (a)) } ∞
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“sphere”, on which transporters can only travel in one direction. The cir-
cumference of the circle is 1. Loads arrive according to a Poisson process
with rate 1.75 in time, with origins and destinations independent and iden-
tically distributed uniformly on the circle, such that the average travel time
is 12 . There are 2 transporters, starting at the same point. Loads are assigned
to transporters according to the Myopic Taxi First-Come-First-Serve Nearest
Transporter dispatching policy. We simulate the system for 1000 time units.
In the following, we produce the code necessary to define this D3T model
with pyd3t, its stock modules, and to run the simulation with pyd3t.

First, import the necessary Python packages:

import numpy as np

import pandas as pd

import d3t

from d3t.d3tsystem import D3TSystem

from d3t.dispatchers import MyopicTaxiFCFSNearestTransporterDispatcherModel

from d3t.space import DirectedS1

from d3t.observers import RawDataObserver

from d3t import statistics

Next, define the D3T model:

def load_generator_directeds1_uniform(rate=1.0):

rng = np.random.RandomState(seed=42)

while True:

yield (

rng.exponential(scale=1.0 / rate),

rng.uniform(0.0, 1.0), rng.uniform(0.0, 1.0)

)

space = DirectedS1()

representation = d3t.Representation(space=space)

observer_models = [

(RawDataObserver, {'space': space}),

]

d3ts = D3TSystem(

space=space,

load_generators=[load_generator_directeds1_uniform(rate=1.75)],

transporter_num=2,

transporter_positions=2*[0.0, ],

dispatcher_model=MyopicTaxiFCFSNearestTransporterDispatcherModel,

dispatcher_initialization=dict(space=space),

observer_models=observer_models,

)

Run the simulation:

until = 1000.0

d3ts.execute_until(until)

obs = d3ts._observers[0]

Extract recorded statistics into standard pandas dataframes for further anal-
ysis:
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Figure 6.14: Histogram of the waiting times of a D3T example simulation.

raw_loads = pd.DataFrame(

data=list(obs._loads.values()),

index=list(obs._loads),

columns=obs.LOAD_COLUMNS)

raw_transporters = pd.DataFrame(

data=list(obs._transporters.values()),

index=list(obs._transporters),

columns=obs.TRANSPORTER_COLUMNS)

raw_jobs = pd.DataFrame(

data=list(obs._jobs.values()),

index=list(obs._jobs),

columns=obs.JOB_COLUMNS)

raw_idleperiods = pd.DataFrame(

data=obs._idleperiods, columns=obs.IDLEPERIOD_COLUMNS)

Compute statistics with pyd3t statistical routines:

loads = statistics.compute_loads(raw_loads, raw_jobs)

Plot a histogram of the waiting times (Figure 6.14), a bar chart of the fre-
quencies of the system sizes upon arrivals of requests (Figure 6.15), and the
total share of time 0, 1 or both transporters are busy (Figure 6.16):

loads['waiting time'].hist()

statistics.compute_arrival_system_size_frequencies(loads).plot()

statistics.compute_busy_transporter_number_time(

statistics.compute_busy_transporter_number_trajectory(

statistics.compute_transporter_busy_idle_periods(

raw_idleperiods, until), until))

6.6 discussion

In this Chapter, I have introduced a formal domain-specific language to
model demand-driven directed transport systems, and a Python package
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Figure 6.15: Frequencies of the system sizes at arrival epochs of a D3T example
simulation.
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Figure 6.16: Total duration of busy transporter number periods in a D3T example
simulation.
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to implement and simulate these models. As the underlying discrete-event
framework I chose the Discrete-Event System Specification (DEVS) for its
formal theory, abstraction, modularity, comprehensiveness and proven and
well-tested implementation as a C++ library. There are other frameworks
to simulate discrete-event systems, for example, the Python simpy package,
that do not offer such a formal background, and are typically implemented
in one specific programming language. DEVS is implementation-agnostic
and hence provides for specifying D3T models independent of their compu-
tational implementation, increasing abstraction and hence, conciseness and
robustness of models in separating the different functional layers of formal
definition, translation to a algorithmic implementation, and actual execution
of the simulation of a model. This enhances reproducibility of computational
studies of D3T systems carried out within the D3T framework. It also en-
ables the D3T researcher to focus on what matters in their particular study.
For example, if one wants to investigate the effects of different transport
geometries or of different spatiotemporal request patterns on D3T system
performance, pyd3t already provides the event-based D3T transport mecha-
nism and hides all the detail that would amount to a lot of boilerplate code
needed to be implemented and tested separately for each study. Abstraction
and modularity ensures and enforces that components such as dispatching
policies written for one particular study can be reused for other transport
spaces. The main reason why the D3T framework seems rather technical is
that this is precisely what is was designed for: to encapsule technical detail
in a well-defined and well-tested framework, such that the user does not
need to bother about it any more in individual computational studies. As
we saw in the pyd3t example, just a few lines of code suffice to produce rich
dynamics and statistics.

pyd3t is a prototypical implementation of the D3T framework. While it
is ready for production, there are caveats that one needs to keep in mind.
For example, the only abstraction the D3T framework and pyd3t provide
for the transport space so far is the low-level function of metric distance.
As spatial indexing becomes increasingly imperative for large-scale studies
with a large number of pending requests, or a large number of nodes in
a network, this is a computational bottleneck. For example, in Euclidian
geometries each call to the distance function invokes a square root operation.
A higher-level interface could alleviate this, such as providing an interface
to spatial indexing and querying. Each transport space in turn would need
to implement that interface, but could always resort to a fall-back dummy
implementation that just evokes the distance function.

Both the D3T framework and pyd3t so far do not feature requests with
individual time-windows (such as pick-up after a certain time, or delivery
before a certain time). Formally, it is easy to extend the request event def-
inition with the respective data. It is the dispatching policies that need to
process and adher to these time windows.

Typically, the dispatching policy involves the most complicated and tech-
nical part of any D3T model implementation. Specifying and implementa-
tion dispatching policies comes with a steep learning curve. Compared to
a vanilla implementation, the D3T framework surely adds further technical-
ities. However, D3T compatibility enables reusability in other D3T models
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and reduces development time—for example, the transporter is already im-
plemented in pyd3t, and statistics and visualization also come for free.



7 C O N C L U S I O N

In this Part of my Thesis, I have proposed and detailed a common high-
level language to model and simulate demand-driven directed transport sys-
tems. The D3T framework and its Python implementation pyd3t encapsule
and hide the technicalities of discrete-event systems and the domain-specific
logic of D3T models behind a high-level modular interface. This enables
focussed and concise computational studies of D3T systems. Furthermore,
the common framework and codebase facilitate collaboration and building
upon others’ contributions. Perhaps the most immediate illustration of these
principles is the fact that Marc Timme’s Network Dynamics Group at MPI
for Dynamics and Self-Organization has been assembling a team of domain
scientists to both advance the D3T approach and to employ the framework
in computational studies of collective mobility systems. To further reinforce
this approach, pyd3t is scheduled to be released as free and open source
software in due process.

The D3T framework contains basic models for myopic taxi dispatching
policies. These policies transport only one load at a time, and they do neither
take into account future requests, nor currently busy transporters which will
become idle in the near future, when assigning requests to transporters. Fur-
ther work needs to be done to implement forward-looking disciplines. For
example, these are disciplines that proactively reject requests if the individ-
ual service quality is projected to be too low. Given the interest in collective
mobility and on-demand ride-sharing systems, the immediate task at hand
is to implement ride-sharing disciplines such as those proposed by Santi,
Resta, Szell, Sobolevsky, Strogatz, and Ratti [34] and, in particular, Alonso-
Mora, Samaranayake, Wallar, Frazzoli, and Rus [36]. The D3T team currently
implements these dispatching policies in pyd3t extension modules.

Another intriguing extension of the D3T framework and pyd3t that would
unlock another avenue of future research is to implement feedback of the
transport dynamics onto the transport space. The current specification as-
sumes no such interaction. Basically, the nodes and links in a network trans-
port space have infinite capacity. In human mobility on street networks, the
effect of individual motorized vehicles and the congestion they cause are
represented by the average travel time along the respective link. (A first ex-
tension of the framework is to allow transport spaces with time-dependent
travel times to allow for intraday variation.) A negative feedback could
model finite capacities of links when D3T transporters dominate transport
along those links. On the other hand, a positive feedback could model rein-
forcement, for example, when heavily used transport links get upgraded in
man-made or in biological systems (ant trails, slime molds).

To conclude, D3T and pyd3t have already started facilitating reproducible
computational studies of collective mobility and transport systems. I envi-
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sion them to do even more so in the future, when both pyd3t and the first
studies have been published.



Part IV

Temporal Percolation in Critical
Queues

79



A B S T R A C T

Percolation theory characterizes the growth of discrete-unit systems upon
the addition of connections. How spatial systems and networks percolate
to become extensively connected reveals essential features of the underly-
ing growth process. In this Part I introduce temporal percolation to describe
the growth of return times in stochastic dynamical systems such as random
walks and queueing processes. I find that the critical point of the percola-
tion is exactly at the boundary between recurrent and transient dynamics.
Intriguingly, and in contrast to one-dimensional spatial percolation, finite
clusters persist even beyond the critical point. Finite-size scaling analysis in
the temporal dimension reveals where the system becomes unstable and the
critical exponents of the transition. These results establish a paradigm for
linking percolation phase transitions to instabilities of stochastic processes.



8 I N T R O D U C T I O N

Queues exist wherever several individual subject or objects demand ex-
clusive service from a shared resource. Queueing theory links individual
demand patterns to collective resource usage and performance predictions
when these demands are stochastic in nature and contend for limited server
resources. [147] While this theory of stochastic dynamical systems originated
from Erlang’s study of the operation of telephone exchanges at the beginning
of the 20th century, [148] queues form in all kinds of socioeconomic, techni-
cal and biological systems such as in demand-driven public transport, [38]
Internet data packet routing, [149] or gene expression. [150, 151] As in the
long run, stable queueing systems typically accommodate all arriving re-
quests, queues intermittently form due to the stochastic variability of the ar-
rival and service processes. If, however, overall demand exceeds the through-
put capacity, the system congests and ceases to function properly. The capac-
ity is arguably the most fundamental steady-state performance measure of
any given queueing system. It signifies the critical load below which the
system is asymptotically stable, and above which congestion occurs almost
surely. Queueing systems typically operate in a dynamical regime that bal-
ances individual demand for quality service and collective demand for ef-
ficient use of the available resources known as the quality-and-efficiency-
driven (QED) regime first described by Halfin and Whitt. [152, 153] This
regime is still subcritical (stable, uncongested) in finite queueing systems,
but operates close to criticality. In fact, the larger the queueing system is, the
closer the QED regime is to the critical point, eventually reaching it in the
limiting case of a system with an infinite number of servers. [154] Studying
the dynamics of these systems and informing their design for optimized sys-
tem performance and individual utility henceforth calls for a methodology
to determine the throughput capacity, charting the transition to congestion
and identifying scaling behavior und universal properties.

Queueing theory excels at the analytical and numerical description of the
performance measures of a queueing system at hand, depending on the uti-
lization of the server resources. Naturally, it is concerned with queues under
heavy load when ressources are well utilized while still providing satisfac-
tory quality to the individual user. There are analytical expressions for the
distributions of individual waiting times and system busy periods in simple
queueing models where the critical load is known. [147, 155]

Yet, when it comes to more intricate queueing models, queueing theory
lacks a general dynamical notion of a critical transition towards congestion.
It hitherto does not treat the structural transition from stability to instabil-
ity when increasing the arrival rate towards and beyond the critical point
of a queueing system. Even more so, in numerical studies of queueing sys-
tems the simulated system at hand typically eludes such analytical treat-
ment. Practitioners typically resort to applying a drift criterion to measure
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congestion in simulation. [128, 156] While queueing theory delivers general
results for systems under heavy load, the singularities at the critical point,
and how dynamical performance measures scale towards it with system pa-
rameters, are typically avoided in these treatments. This hampers a thorough
dynamical understanding of the collective phenomenon of congestion, how
it emerges from initially unsuspicious individual interaction such as the con-
trol policy of the servers, and which universal principles queueing models
adher to irrespective of such detail. Understanding precursors helps to miti-
gate or avert imminent overload of such a system and to keep it in a stable
operation regime.

Furthermore, computer simulations a priori do not allow to infer ensemble
criticality from a sample of simulated trajectories. In fact, given a queueing
or any other stochastic dynamical system, it is an open question how to infer
its stability or instability from a number of such trajectories. Computer simu-
lations draw sample paths of queues or other stochastic dynamical systems.
While a full realization of such a path would stretch over the whole time axis
from the origin to infinity, a simulation in finite time only produces trajecto-
ries as finite subsets of such paths. Given a single trajectory or a sample of
trajectories of simulated queues or other stochastic dynamical systems in fi-
nite time, it is impossible to decide whether the system eventually overloads
(becomes unstable) or not. Just as it is impossible to decide from simulating
a percolation setting on a finite lattice whether the infinite system percolates
almost surely or not. Specifically, when the dynamics is externally driven
away from stability, the question is how to characterize and to pinpoint the
transition to instability.

In the following, I develop a methodology to address these open problems.
In essence, I augment queueing theory with statistical physics by mapping
stochastic dynamical systems to a surprisingly well-known percolation set-
ting in the paradigm of temporal percolation. For clarity and conciseness, I
resort to the simplest model of a stochastic process relevant to the discussed
phenomena: a random walk. Chapter 9 condenses the necessary background
from the theory of stochastic processes and critical transitions. Chapter 10

introduces the temporal percolation paradigm. Chapter 11 assembles the the-
oretical and computational set of tools to study stochastic dynamical systems
in the critical region, while Chapter 12 details and demonstrates our method-
ology with the random walk. Section 12.5 critically discusses the method
before Chapter 13 lays out avenues of future research in the context of this
Thesis and concludes.



9 F U N DA M E N TA L S

9.1 stability of stochastic dynamical systems

Ever since Poincaré formulated his theorem, recurrence has been seen as
a pervasive characteristic of dynamical systems. A dynamical system with
volume-preserving flow and bounded orbits (that is, with finite invariant
measure), returns for almost every initial condition in an open set to that
open set infinitely often. [157] The dynamics of a time-discrete dynamical
system on a measure space S is given by a measure-preserving transforma-
tion T : S→ S. The first return time to a set B in phase space S is defined as

τB(x) = inf {n > 0 : Tn(x) ∈ B } . (9.1)

In hyperbolic and other systems, these return times have an exponential limit
distribution, with successive return times being independent. [158–160] Fur-
thermore, the recurrences already suffice to describe the long-term dynam-
ics. [161] In particular, recurrences characterize deterministic chaotic dynam-
ics as well as stochastic systems. [162–164]

Recurrence is one of the fundamental notions of stability of a dynamical
system. As for nonlinear dynamical systems, for stochastic systems there
are several concepts and methods to define and determine stability. [165]
For example, the drift criterion measures the average change (the “drift”) in
some norm or Lyapunov function over time. In the one-sided random walk
or in queueing systems, average zero drift signifies stability, whereas positive
drift means the random walk or queue length diverges. The drift criterion is
well-developed for Markov chains. [128, 165] Another notion of stability of
stochastic systems are renovating events. These are points in time at which
the process decouples from its past, that means it does not depend on states
before that time any more. [166] In particular, recurrence is a weak notion of
stability in Markov chains, and transience is a strong notion of instability, as
the process almost surely diverges and never returns. [128] In fact, Markov
chains exhibit a strict dichotomy: Under mild conditions, each Markov chain
is either recurrent or transient.

A theoretical and practical question for any such system at hand is: is it
stable or unstable – recurrent or transient? [167] In particular, we are inter-
ested in how tuning a system parameter (the driving) let the stochastic sys-
tem turn unstable. In fact, the transition from stability to instability, or from
recurrence to transience, constitutes a phase transition, whose critical point
and exponents we want to determine. [82, 167, 168] As a stochastic process
evolves in discrete time, we are going to conceive it as a one-dimensional
system with sites representing the discrete points in time. Sites between su-
cessive returns form clusters, subject to percolation when the system turns
transient and an infinite return period forms, just as infinite avalanches form

83



84 fundamentals

in overcritical extremal models. [169] Phase transitions in one-dimensional
spatial models have been well understood. [86, 170, 171]

We choose Markov chains on a countable space to introduce the temporal
percolation paradigm and to develop the methodology. Markov chains are
well understood, and at the same time general enough to model a plethora
of stochastic phenomena. [127] Let Xn be a Markov chain on a countable
state space S, and without loss of generality, let Xn be irreducible. Then Xn
is either positive recurrent, that is, the probability to visit a set infinitely
often is 1, the probability to visit a set at all is 1, and the expected return
time is finite. Or, the chain Xn is null-recurrent, as the expected return time
grows infinite. Finally, the chain Xn can be transient, when the probability
to return to a set at all is less than 1 – such that the probability to not return
at all any more is finite; consequently, the probability to return an infinite
number of times is zero: almost surely, the chain will diverge. It is instructive
to consider a (general) stochastic recursive sequence, [129] where the driving
sequence represents the (stochastic) drive away from some recurrent set with
some parameter ρ:

Xn = f(Xn−1, ξn, ρ) (9.2)

Without loss of generality, let us assume the countable state space to be N,
such that transience is signified by diverging towards +∞. In this case, we
postulate that

∂

∂ρ
f(x, ξ, ρ) > 0.

Hence, given a Markov chain and its strict dichotomy, there shall be a crit-
ical point ρc at which the chain turns null-recurrent and beyond which
the chain becomes transient. We can think of ξ as capturing the parameter-
independent drive, which basically could be that ξn is a sequence of random
numbers, while f embodies the functional impact of the drive on the state
Xn. This is consistent with using Common Random Numbers, or regarding
the whole sequence as one random element in S∞ which remains the same
for different values of the external parameter ρ.

9.2 the random walk

9.2.1 Definition

The random walk is an ideal system to introduce and study temporal per-
colation. Specifically, the one-sided random walk, i. e. the random walk on
N, is a simple model with rich behavior. It is a Markov chain and as such,
features the recurrence-transience dichotomy and the postulated temporal
percolation transition. Furthermore, an exact combinatorial expression for
its return-time distribution is available. The stochastic limit process of the
one-sided random walk is reflected Brownian motion. [154] As such, it is a
cornerstone for modelling queueing phenomena and flow systems in heavy
traffic as well as physical phenomena which involve reflected Brownian mo-
tion. [154, 172, 173]

To begin with, let us define the random walk on the half-line:
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Figure 9.1: Typical trajectories of the random walk on the half line in the positive
recurrent regime (p = 0.48), in the null recurrent regime (p = 1

2 ), and in
the transient regime (p = 0.52). All trajectories are drawn from the same
realization (using common random numbers). Vertical bars in the lower
panels highlight returns to the origin.

Definition 9.1. Let p ∈ [0, 1] and let Xn be the Markov chain on N with initial
distribution concentrated at the origin, i. e. µ(0) = 1 and hence, X0 = 0 almost
surely. Let the transition probabilities be

P(x→ x+ 1) = p

P(x→ x− 1) = 1− p x > 0

P(0→ 0) = 1− p

P(x→ y) = 0 otherwise.

Then Xn is a biased random walk on the half-line with parameter p starting
at the origin.

The random walk is irreducible and hence exhibits the recurrence–transience
dichotomy.

9.2.2 Recurrence and transience in finite-time trajectories

Let us consider typical trajectories of the random walk on the half-line
for various parameters in the recurrent and transient regimes (Figure 9.1).
While a typical trajectory in the positive recurrent regime frequently returns
to the origin, a typical transient trajectory approximates linear growth with
no return, with possibly a few returns to the origin in the beginning be-
fore eventually diverging. At first glance, it seems not to be difficult to tell
these regimes apart. However, in finite simulation time, different realizations
typically feature trajectories that counter-intuitively seem to belong to the
transient regime for p < 1

2 and others that seem to belong to the recurrent
regime for p > 1

2 (cf. Figure 9.2). When inspecting a number of finite-time
trajectories at the critical point, the attempt to sharply classify a given sys-
tem as recurrent or transient seems futile (cf. Figure 9.3). This becomes clear
in particular when inspecting a specific finite-time trajectory, that may seem
to embark on a long – possibly infinitely long – excursion away from the
origin, only to return within a larger time window (cf. Figure 9.4).
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Figure 9.2: Counter-intuitive trajectories of the random walk on the half line in
the positive recurrent regime (p = 0.48), in the null recurrent regime
(p = 1

2 ), and in the transient regime (p = 0.52). Trajectories are drawn
from different realizations (different random numbers). Vertical bars in
the lower panels highlight returns to the origin.
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Figure 9.3: Typical trajectories of the critical random walk on the half line (p = 1
2 ).

Vertical bars in the lower panels highlight returns to the origin.
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Figure 9.4: A single realization of the critical random walk on the half line (p = 1
2 )

in successive 10 times larger time windows. Vertical bars in the lower
panels highlight returns to the origin.
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9.2.3 Analytical return time distribution

Let us consider the probability that the biased random walk Xn on the half-
line with parameter p returns to the origin { 0 } after n steps when starting
at the origin, and th

fn(p) ≡ fn(0, 0)P {Xn = 0,Xn−1 6= 0, . . . ,X1 6= 0 | X0 = 0 } (9.3)

We have f1(p) = P(0→ 0) = 1− p. For n > 1 observe that

fn(p) = pfn−1(1, 0)

where fk(1, 0) is the first-passage-time probability from 1 to 0, i. e. the prob-
ability to reach the origin when starting at 1 in exactly k steps. Note that
this is zero for an even number of steps. For an uneven number of steps, we
further have

f2k+1(1, 0) = (1− p)pk(1− p)kCk

as a path of length 2k + 1 from 1 to 0 is a loop of length 2k from 1 to 1
without touching 0, and a final step from 1 to 0. The number of loops from
1 to 1 of length 2k without touching 0 is the number of paths that consist
of k steps to the right (+1) with probability p and k steps to the left (−1)
with probability 1− p, but with no initial segment of the path that has more
steps to the left than to the right. This is exactly the number of Dyck paths of
length 2k, such that the integer coefficients Ck are the Catalan numbers [174–
176] with

Cn =
1

n+ 1

(
2n

n

)
. (9.4)

The Catalan numbers follow the recursion

C0 = 1,Cn+1 =
2(2n+ 1)

n+ 2
Cn (9.5)

and asymptotically grow as

Cn ∼ 4nn−3/2 (n→∞). (9.6)

Their generating function is [174]

C(x) =

∞∑
n=0

Cnx
n =

2

1+
√
1− 4x

=
1−
√
1− 4x

2x

(
0 < |x| 6

1

4

)
(9.7)

and C(x) = 1 for x = 0. As x = p(1− p) and p ∈ [0, 1], we have 0 < x 6 1
4 for

p ∈ (0, 1) and x = 0 for p ∈ { 0, 1 }.
Hence, the return time distribution is

fn(p) =


1− p n = 1

Ck−1p
k(1− p)k n = 2k,k ∈ { 1, 2, . . . }

0 otherwise,

(9.8)

with the recursion f1(p) = 1− p, f2(p) = p(1− p) and

fn+2(p) =
n− 1

n+ 2
4p(1− p)fn(p) n = 2, 4, 6, . . . (9.9)
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The return time distribution asymptotically approaches

fn(p) ∼ n
−3/2(4p(1− p))n/2 (n→∞) (9.10)

for even n. The return probability is

L(p) ≡ L(0, 0) = F∞(0, 0) =
∞∑
n=1

fn(p)

= 1− p+ p(1− p)

∞∑
k=0

Ckp
k(1− p)k.

With x = p(1− p) we have L(p) = 1− p+ p(1− p)C(x) and hence,

L(p) =
3

2
− p−

∣∣∣∣p− 12
∣∣∣∣ =
{
1 p 6 1

2

2(1− p) p > 1
2 .

(9.11)

The average return time given that the walk returns is

τ̄ =
1

L(p)

∞∑
n=1

nfn(p) =
1− p

L(p)

(
1+ 2p

d

dx
(xC(x))

)

⇒ τ̄ =
1− p

L(p)

(
1+

p∣∣p− 1
2

∣∣
)

=

1− p+
p(1−p)

|p− 1
2 |

p 6 1
2

1
2 +

p

2|p− 1
2 |

p > 1
2 .

(9.12)

For p → 0 we have τ̄ → 1 and for p → 1 we have τ̄ → 3
2 . As p → 1

2 , the
average return time diverges.

9.3 the m/m/1 queue

9.3.1 Introduction

The M/M/1 queue is to queueing theory what the ideal gas is to thermo-
dynamics. [127, 147, 177, 178] It is a stochastic model of a queue with 1 server
that sequentially and exclusively processes jobs. The service times, i. e. the
time it takes for the server to process a job, are iid according to an exponen-
tial distribution with parameter µ, the service rate. Jobs arrive to the system
according to an arrival process tn, where the random variable tn denotes
the arrival time of the n-th job. Conventionally, an initial 0-th job arrives at
time t0 = 0. The inter-arrival times ∆tn = tn − tn−1 are independent and
identically distributed according to the exponential distribution with rate λ.
Both inter-arrival times and service times are exponentially distributed and
independent, hence the notation M/M/1 queue (“M” for memoryless).

If a job arrives to an empty system, as the initial job, the server starts
processing it immediately and exclusively. The random service time Xn is the
time it takes the server to process the n-th job. Upon completion of service,
the job leaves the system for good. If a job arrives to a system with a busy
server, it queues. Service commences as soon as the server has processed all
preceding jobs.
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It is a hallmark of queueing theory that the M/M/1 queueing system
will reach a steady state if the arrival rate is smaller than the service rate
(λ < µ or ρ = λ

µ < 1). In contrast, if the arrival rate equals or exceeds the
service rate, the queue will almost surely eventually grow infinitely long
(λ > µ or ρ > 1). In the following, we will study the transition from the
stationary regime (ρ < 1) towards the transient regime (ρ > 1). Without loss
of generality, we will let the service rate define the time scale such that µ = 1

and λ = ρ.

9.3.2 System size Markov chain

Let the random variable Ln denote the number of jobs in the system upon
arrival of the n-th job. Ln is also called the system size. The system size
excludes the arriving job, but includes a job in service, if any. Initially, when
the 0-th job arrives at t = 0, the system is empty, and L0 = 0. The system
size L1 at the arrival of the next job is either 1 or 0, depending on whether
the interarrival time ∆t1 is smaller than the service time X0 of the 0-th job
or vice versa. We immediately observe that from one arrival to the next
arrival, the system size at most increases by 1, but may drop all the way to
0. This depends on how many jobs the server finishes to process within the
interarrival time.

Due to memorylessness of the exponential distribution, the discrete-time
stochastic process Ln is a (homogeneous) Markov chain on the natural num-
bers N. There are several equivalent ways to describe the time evolution of
Ln. We consider deriving Ln by direct calculation from the original system
(without explicitly making use of it being a Markov chain), and by explicitly
stating the transition probabilities of the Markov chain Ln.

The time evolution of the M/M/1 queue is determined by the random
interarrival times ∆tn and the random service times Xn. As before, we have
the random arrival times tn = tn−1 +∆tn. We further consider the random
departure time dn of the n-th job. If the system is empty upon arrival of the
n-th job, service commences immediately and we have

P { dn = tn +Xn | Ln = 0 } = 1.

Now, let us consider as an auxiliary random variable the nonnegative resid-
ual workWn in the system at the time of arrival of the n-th job. If the system
is empty, we have Wn = 0. If the system is not empty, Wn denotes the time
it takes until the system finishes processing all previous jobs and starts pro-
cessing the n-th job. The random time Wn is given by the Lindley recursion
from queueing theory

W0 = 0,Wn = (Wn−1 +Xn−1 −∆tn)
+ , (9.13)

where (x)+ = x for x > 0 and (x)+ = 0 for x 6 0. Now, we have the departure
times

dn = tn +Wn +Xn. (9.14)
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Finally, the system size at any given time t is the number of jobs that have
arrived up to time t minus the number of jobs that have finished up to time
t: L(t) = |{ i : ti < t }|− |{ i : di < t }|. This translates to discrete time as

Ln = n− |{ i : di < tn }| . (9.15)

We now consider the transition probabilities P(i→ j) = P { Ln = j | Ln−1 = i }

of the system size Markov chain Ln. As by the very definition of an arrival
the system size does not increase between two successive arrivals at tn−1
and tn other than by the initial increase by 1 at tn−1, we immediately have
P(i → j) = 0 for j > i+ 1. System size decreases by the number N of jobs
that the server finishes within the interarrival period ∆tn = tn − tn−1. This
number N is a random variable that depends on ∆tn and on the system
size Ln at the last arrival. In particular, it does not depend on when service
started as the service time follows a memoryless exponential distribution.
The random variable N ranges between 0 (no job finished) and Ln−1 + 1 (all
jobs finished, including the (n− 1)-th job arriving at tn−1).

Now, the probability P(j→ k) for j > 0, 1 6 k 6 j+ 1 that of the j+ 1 jobs
present in the system (including the arriving job), exactly n = j− k+ 1 jobs
(with 0 6 n 6 j) have finished service before the next arrival is

P(j→ k) = P {N = j− k+ 1 | L = j }

=

∫∞
0

P {N = j− k+ 1 | L = j,∆t = t } f(t)dt,
(9.16)

where f(t) = ρ exp(−ρt) is the probability density function of the exponen-
tial interarrival time distribution with arrival rate λ = ρ. The server processes
jobs sequentially with independent service times identically distributed ac-
cording to the exponential distribution with rate µ = 1. Hence, the num-
ber of jobs the server processes in a time interval t at rate 1 is Poisson dis-
tributed with mean t. Specifically, the probability that the server processes
n = j− k+ 1 6 j jobs in a time interval t at rate 1 is t

n

n! exp(−t). Therefore,

P(j→ k) =
1

n!
ρ

∫∞
0

tn exp(−(1+ ρ)t) dt = ρ(1+ ρ)−(j−k+2) (9.17)

for 1 6 k 6 j+ 1. The probability to process all remaining j+ 1 jobs is

P(j→ 0) = 1−

j+1∑
k=1

P(j→ k) = (1+ ρ)−(j+1). (9.18)

This completes the transition probabilities (see also Figure 9.5) as

P(j→ k) =


(1+ ρ)−(j+1) (k = 0)

ρ(1+ ρ)−(j−k+2) (1 6 k 6 j+ 1)

0 (k > j+ 1).

(9.19)

In particular, the probability to increase the queue is P(j → j + 1) = ρ
1+ρ

which is exactly 1
2 at the threshold ρ = 1. This exposes a similarity to the

random walk at p = 1
2 . (In fact, both M/M/1 queue and random walk on

the half-line have Brownian motion as a limit process in the critical region
under certain mild conditions. [154])



92 fundamentals
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Figure 9.5: Markov chain of the system size Ln of an M/M/1 queue with parameter
ρ depicted for system size up to 3, including the nonzero transition
probabilities according to Equation 9.19.
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Figure 9.6: Typical trajectories of the M/M/1 queue system size Markov chain in
the steady-state regime (ρ = 0.923), at full capacity (ρ = 1), and in the
overloaded state (ρ = 1.083). All trajectories are drawn from the same
realization (using common random numbers). Vertical bars in the lower
panels highlight returns to the origin.
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Figure 9.7: Counter-intuitive trajectories of the M/M/1 queue system size Markov
chain in the steady-state regime (ρ = 0.923), at the threshold (ρ = 1),
and in the overloaded state (ρ = 1.083). Trajectories are drawn from
different realizations (different random numbers). Vertical bars in the
lower panels highlight returns to the origin.
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Figure 9.8: Typical trajectories of the critical M/M/1 queue system size Markov
chain (ρ = 1). Vertical bars in the lower panels highlight returns to the
origin.
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As with the random walk on the half-line, the M/M/1 queue system size
process renews at each return to the origin. Typical finite-time trajectories
show the same qualitative behavior as for the random walk with frequent
returns to the origin in the recurrent regime and approximate linear growth
in the transient regime (Figure 9.6), although the picture is not clear (Fig-
ure 9.7). As for the random walk, it also holds for the M/M/1 queue system
size process that inspecting a number of finite-time trajectories at the critical
point does not allow for classification of recurrence or transience (Figure 9.8).

9.3.3 Analytical return time distribution

The probability that the n-th job arriving to the M/M/1 queue with pa-
rameter ρ is the first one to arrive to an empty system after the initial 0-th
job is [179, 180]

fn(ρ) = Cn−1
ρn−1

(1+ ρ)2n−1
. (9.20)

To see this, first observe that each additional arrival after the initial arrival
is associated with a factor ρ

1+ρ , while each departure is associated with a
factor 1

1+ρ . For the n-th job to see an empty system (Ln = 0), there have to
be n− 1 additional arrivals and n departures. As for the random walk, the
number of Dyck paths to have n− 1 arrivals (incrementing the system size)
and n− 1 departures (decrementing the system size) without touching 0 and
a final departure to Ln = 0 is the Catalan number Cn−1. [180]

Identifying p = ρ
1+ρ and 1− p = 1

1+ρ establishes the equivalence to the
random walk. As we defined the random walk to remain at the origin with
probability P(0 → 0) = 1− p, the return time probabilities of the random
walk and the M/M/1 queue differ by a factor of 1− p and 1

1+ρ , respectively.
This is easily taken care of by demanding that P(0→ 1) = 1 for the random
walk.

The return time distribution for the M/M/1 queue asymptotically ap-
proaches

fn(ρ) ∼ n
−3/2

(
4

ρ

(1+ ρ)2

)n
(n→∞). (9.21)

For the threshold ρ = 1, the tail is a power law as fn(1) ∼ n−3/2, hinting at
a critical transition.

The return probability is

L(ρ) =

∞∑
n=1

∞∑
n=1

fn(ρ) =
1

1+ ρ
C(x), (9.22)

where C(x) is the generating function of the Catalan numbers with x =
ρ

(1+ρ)2
. We have

C(x) = (1+ ρ)
(1+ ρ) − |1− ρ|

2ρ
=

{
1+ ρ ρ 6 1
1+ρ
ρ ρ > 1,

(9.23)
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and hence

L(ρ) =

{
1 ρ 6 1,
1
ρ ρ > 1.

(9.24)

The average return time given that the queue returns is

τ̄ =
1

L(p)

∞∑
n=1

nfn(ρ) =
1

L(p)(1+ ρ)

d

dx
(xC(x)) =

1

L(p) |1− ρ|
(9.25)

such that

τ̄ =

{
1
1−ρ ρ < 1
ρ
ρ−1 ρ > 1.

(9.26)

The average return time diverges at the critical point ρc = 1 as (ρ− ρc)
−γ

with critical exponent γ = 1.

9.4 avalanches in extremal models

Avalanche dynamics in driven systems have been attributed to formation
of complex spatiotemporal patterns over all length and time scales. [169, 181,
182] Avalanches also are a dynamical mechanism for self-organized systems
to tune themselves to criticality. [183, 184] Instead developing and growing
in a linear fashin, avalanche dynamics comprise sudden bursts of activity.

In extremal models, there is a global parameter f0 that controls the size
of the avalanches and defines a hierarchy of sub-avalanches. [169, 182, 183]
In such models, every site is characterized by a random number fi. Let the
minimal value at some time n be fmin(n). An f0 avalanche starts at time n
when fmin(n) drops below f0. The avalanche terminates after s time steps
when fmin rises above f0 again. [169, 182] Given a smaller threshold f ′0 <

f0, every f ′0 avalanche is entirely contained in an f0 avalanche. Vice versa,
every f0 avalanche may contain several but non-overlapping f ′0 avalanches.
In these models, avalanche sizes are independent. [169, 182]

The critical state at fc features avalanches of all sizes, with the avalanche
size distribution following a power law as

P(s, fc) ∼ s−τ. (9.27)

For the critical region the usual scaling ansatz applies, [169, 182]

P(s, f0) = s−τg(s(fc − f0)1/σ), (9.28)

with the scaling function g(x) → 0 for x � 1 and g(x) = const. for x → 0.
Furthermore, the average avalanche size diverges at the critical point as

S̄ ∼ (fc − f0)
−γ, (9.29)

and we have the relationship γ = 2−τ
σ as in percolation theory. Similarly,

the cutoff diverges as sξ ∼ (fc − f0)
−1/σ. In one dimension, this is also the
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characteristic length scale ξ, which diverges as ξ ∼ (fc − f0)
−ν. Hence, we

have ν = 1/σ, and σ = 2− τ, as d = 1,D = 1 in one dimension. [169, 182]
Beyond the critical point, for f0 > fc, there is a finite probability that there

is an infinite avalanche. This probability scales as (fc− f0)β for f0 > fc, with
β = τ−1

σ = τ−1
2−τ . [169]

When the control parameter f0 is raised, avalanches merge. These merging
dynamics is another view on the lead-up to the critical transition, similar to
recent developments in percolation theory. [98, 169]



10 T E M P O R A L P E R C O L AT I O N

10.1 mapping return periods to clusters

In this Chapter, I introduce the mapping of recurrence dynamics of a
stochastic process to a one-dimensional percolation setting. This mapping
establishes an equivalence of the temporal transition from recurrence in a
dynamical system to transience to the spatial percolation transition on a lin-
ear graph.

Specifically, given a time-discrete stochastic process Xn on some state
space S, and given a return set B ⊂ S, each realization ω of the process
induces a graph G(ω) with nodes V = N = { 0, 1, 2, . . . } and edge set

E(ω) = { (n,n+ 1) | Xn+1(ω) /∈ B } . (10.1)

In other words, the sites represent time and a bond connects two successive
sites n and n + 1 if and only if the system does not return to B in that
time step n → n+ 1 (Figure 10.1). Equivalently, each return of the process
Xn induces a cluster of the same size as the time until the next return. Yet
another mapping is that of the dynamics of the process Xn to a random
binary return sequence Rn with Rn = 1 if Xn ∈ B and Rn = 0 otherwise.

How does this percolation setting represent the recurrence–transience di-
chotomy of the original process? In the recurrent regime, the process almost
surely returns infinitely often: sample paths of the process will almost surely
map to infinitely many finite clusters. This corresponds to the subcritical
regime of a percolation setting. At the critical point, while the process still
returns infinitely often, the expected return time diverges, and so does the
average size of the clusters. Finally, in the transient regime, the process has
a finite probability less than one to return. This means that eventually, the
process will not return any more almost surely. An infinite cluster emerges
in the percolation setting.

Hence, mapping the stochastic process dynamics onto a one-dimensional
percolation setting enables the description of the recurrence–transience tran-
sition in terms of a phase transition, and the usual statistical physics toolkit
applies. Intriguingly, as the process still returns for a finite number of times
in the transient regime, there are finite clusters remaining and coexisting
with the infinite cluster even beyond the percolation transition. This differs
from the conventional Bernoulli percolation setting in one dimension: this
setting features a discontinuous transition without finite clusters, as the in-
finite cluster extends to infinity on both sides of the linear chain. As our
temporal percolation setting is a one-sided chain, there is somehow para-
doxically more room at the bottom for finite clusters to persist.

Besides the finite-cluster peculiarity, the infinite cluster of temporal per-
colation is similar to the infinite cluster of spatial Bernoulli percolation in
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Figure 10.1: Mapping recurrence dynamics onto a one-dimensional percolation set-
ting. A sample path of a random walk on the half-line is depicted for
the first 8 time steps. Returns to the origin at times 0, 2, 3 are high-
lighted. In the percolation setting below, each time step is a site and
there is a bond between two sites if the process does not return in that
time step. If the process does return, the link is missing and a new
cluster starts.

one dimension. The spanning probability, or percolation probability, is the
probability of the existence of an infinite cluster:

Π(ρ) = 1−Q(x,B) =

{
0 ρ 6 ρc

1 ρ > ρc,
(10.2)

where ρc is the critical parameter value and Q(x,B) the probability to return
to B infinitely often, which is the same for almost all x in irreducible Markov
chains. The order parameter is the relative size of the largest cluster, also
called the percolation strength P(ρ). In temporal percolation, finite clusters
persist. However, there is almost surely a finite number of finite clusters, en-
compassing an expected finite number of sites, such that the infinite cluster
accrues weight 1:

P(ρ) =

{
0 ρ 6 ρc

1 ρ > ρc.
(10.3)

10.2 return times as fundamental quantity

The return time distribution fn is the fundamental quantity of tempo-
ral percolation, just as the cluster size distribution ns is in spatial percola-
tion. [86] Given a discrete-time stochastic process Xn on some state space S
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with parameter ρ that controls the drive to transience, and given a return set
B ⊂ S and the initial state x ∈ S, the return time distribution is [127]

fn(ρ) ≡ fn(x,B) = P { τB(ρ) = n | X0 = x } . (10.4)

The return probability is

L(ρ) ≡ L(x,B) ≡
∞∑
n=1

fn(ρ). (10.5)

In the recurrent regime, L(ρ) = 1, whereas in the transient regime L(ρ) < 1.
The probability not to return is 1−L(ρ), which takes up finite values between
0 and 1, while the probability that the process does eventually not return is
1 − Q(x,B) ≡ 1 − Q(ρ) ∈ { 0, 1 }, as pointed out before. We do have the
equivalence

L(ρ) < 1⇔ Q(ρ) = 0, L(ρ) = 1⇔ Q(ρ) = 1, (10.6)

where Q(ρ) is the probability that the process returns infinitely often. This
equivalence also holds at ρ = ρc as L(ρc) = 1,Q(ρc) = 1. The average return
time is the average of finite return times:

τ̄(ρ) = E[τ(ρ) | τ(ρ) <∞] =
1

L(ρ)

∞∑
n=1

nfn(ρ). (10.7)

As we have seen in extremal models and in the random walk and M/M/1

queue, the average return time diverges at the critical point, τ̄ → ∞ as ρ →
ρc.

Let us take a step back and see how this compares to percolation theory.
In percolation theory, the cluster number ns is an intensive quantity: it is
the relative number of clusters of size s as a fraction of system size. In the
temporal percolation setting, this would be the probability that any given
site starts a finite cluster of size s. In the recurrent regime, there is a simple
relationship between the distribution fs and the cluster number ns of return
times and cluster sizes of size or duration s, respectively:

ns(ρ) =
fs(ρ)∑
s sfs(ρ)

=
fs(ρ)

L(ρ)τ̄(ρ)
(ρ < ρc). (10.8)

Note that with all quantities being finite except for τ̄ diverging at ρc, the
cluster number ns vanishes at the critical point. In the transient regime, there
is an infinite cluster of weight 1, and hence we have ns = 0.

10.3 scaling relations

We have introduced the return time distribution as the fundamental quan-
tity of temporal percolation. Just as the scaling theory of percolation clusters
relates the critical exponents of the percolation transition to the cluster size
distribution, and the theory of extermal models relates the critical exponents
of self-organized critical spatiotemporal activity to the avalanche size dis-
tribution, we here relate the critical exponents of the temporal percolation
transition to the return time distribution. [94, 169]
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In line with these theories of critical transitions, and in line with the theory
of stability of Markov chains, we postulate a critical transition in Markov
chains signified by the return time distribution asymptotically following a
power law as

fn(ρc) ∼ n
−τ, (n→∞) (10.9)

with Fisher exponent τ. The scaling assumption is that the ratio fn(ρ)/fn(ρc)
is a function of the ratio n/ξ(ρ) only, with the characteristic return time ξ(ρ).
As we are in one dimension, the characteristic return time ξ(ρ) is also the
temporal coherence scale of the infinite system, which diverges as

ξ(ρ) ∼ |ρ− ρc|
−ν , (ρ→ ρc). (10.10)

Hence, the scaling ansatz implies the return time distribution

fn(ρ) = n
−τg

(
n

ξ(ρ)

)
(10.11)

with the scaling function g(x)→ 0 for x→∞ and g(x) = const. for x→ 0.
The probability of no return is 0 for ρ 6 ρc and finite for ρ > ρc. It scales

as

1− L(ρ) ∼
∑
n

n−τ

(
1− g

(
n

ξ(ρ)

))
∼

∞∑
n=ξ(ρ)

n−τ ∼ ξ(ρ)1−τ (10.12)

in the critical region (ρ > ρc, ρ → ρc). Hence, the probability of no return
scales as

1− L(ρ) ∼ (ρ− ρc)
β, (ρ > ρc, ρ→ ρc) (10.13)

with critical exponent β = ν(τ− 1).
The average return time τ̄(ρ) scales as

τ̄(ρ) =
∑
n

nfn(ρ) ∼
∑
n

n−τ+1g

(
n

ξ(ρ)

)
∼

ξ(ρ)∑
n=1

n−τ+1 ∼ ξ−τ+2, (10.14)

and hence, τ̄(ρ) ∼ |ρ− ρc|
−γ with critical exponent γ = ν(2− τ).

10.4 merging return periods

We now consider the process of merging return periods in the temporal
percolation setting when the control parameter ρ is tuned towards the tran-
sition at ρ = ρc. Without loss of generality, let us consider the Markov chain
Xn on N with returns to the origin in the form of a stochastic recursive
sequence

Xn = h(Xn−1, ζn, ρ) (10.15)

with independent and uniformly distributed random variables ζn ∈ [0, 1]
and

∂

∂ρ
h(x, ζ, ρ) > 0,

∂

∂ζ
h(x, ζ, ρ) > 0. (10.16)
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In the following, we will analyze sample paths Xn(ω) of the process deter-
mined by X0(ω) = 0 and ζn(ω). For some parameter value ρ < ρc, consider
the binary return sequence Rn(ρ), or equivalently, the sequence of ρ-return
times τi(ρ) defined as τi = min {n : n > τi−1,Rn = 1 } with the initial ρ-
return time τ1 = τ being the (first) return time.

We observe that almost surely, the ρ-return times τi(ρ) of any given real-
ization ω of the process form a hierarchy as

{ τi(ρ) }
∞
i=1 ⊇

{
τi(ρ

′)
}∞
i=1

(10.17)

for ρ < ρ ′; every ρ ′-return time is also a ρ-return time. This is analogous to
avalanches in extremal models and clusters in percolation settings. We see
this in the temporal percolation setting by noting that due to ∂

∂ρh(x, ζ, ρ) > 0,
the trajectory Xn(ρ ′,ω) dominates Xn(ρ,ω) as

Xn(ρ
′,ω) > Xn(ρ,ω), (ρ ′ > ρ). (10.18)

Furthermore, if and when two or more return periods merge, solely depends
on the first of these return periods. The reason is that the return times τi(ρ)
only depend on previous states (and being renewal points, in fact, only on
the preceding renewal period starting at τi−1(ρ)).
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11.1 finite-time scaling analysis

11.1.1 Rationale

The aim of finite-time scaling analysis is to recover the critical point ρc
and critical exponents β for the no-return probability 1 − L(ρ) and γ for
the average return time τ̄ from Monte Carlo simulations of finite-time tra-
jectories. Furthermore, finite-time scaling analysis produces estimates of the
exponents ν of the temporal coherence scale and τ of the return time dis-
tribution. This is achieved by collapsing the recorded data for the relevant
quantities onto a single master curve, respectively. To find the right choice of
values for the critical parameter and exponents is subject to an optimization
algorithm. Such an algorithm tunes the data collapse according to a goal
function quantifying the goodness-of-collapse.

11.1.2 The finite-time scaling ansatz

We have established that the exponents of the return time distribution
determine the critical exponents at the temporal percolation transition, and
vice versa. As a phase transition only occurs in an infinite system, numer-
ical simulation in finite time cannot probe the transition directly. Here, we
adapt the conventional remedy of finite-size scaling analysis to the temporal
percolation setting. This finite-time scaling analysis numerically recovers the
critical point ρc and the critical exponents.

Let T be the temporal extent of a dynamical system, i. e. the number of
time steps computed in a simulation. Let AT (ρ) be a quantity that diverges
as |ρ− ρc|

−ζ in the critical region of the infinite system (T → ∞, ρ → ρc).
The finite-size scaling ansatz translates to [116–118]

AT (ρ) = T
ζ/νf̃

(
T1/ν(ρ− ρc)

)
, (T →∞, ρ→ ρc), (11.1)

with the dimensionless scaling function f̃ and the critical exponent ν of the
temporal coherence scale ξ(ρ) in the infinite system. The scaling function
controls the finite-time effects.

A Monte Carlo study yields data aT ,ρ
i at system size T and parameter ρ

for each run i. Let aT ,ρ denote the average over all runs. Plotting T−ζ/νaT ,ρ

against T1/ν(ρ− ρc) should let numerical data collapse onto a single master
curve f̃(x). For this to happen, the critical values ρc, ζ,ν need to be cor-
rect. These assumptions hold for T → ∞, with systematic errors at finite
sizes. [116, 117].
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For quantities that jump at the critical point ρc, such as the size P(ρ) of
the largest cluster in temporal percolation, we have the finite-time scaling

PT (ρ) = P̄
(
T1/ν(ρ− ρc)

)
(11.2)

with scaling function P̄(x), as the critical exponent ζ of P(ρ) is zero. Hence,
independent of system size, we have PT (ρc) = P̄(0). The common intersec-
tion point of the measured data curves yields an estimate of the threshold ρc.
This estimate is unbiased with regards to the critical exponents, and “should
be free” from systematic errors due to finite system size. [116]

11.1.3 Quality of finite-time data collapse

The finite-time scaling ansatz (11.1) quantifies how a statistic AT (ρ) ob-
served in finite-time trajectories scales with time T and parameter ρ accord-
ing to a scaling function f̃, the critical parameter ρc, the critical exponent ζ
of the quantity itself, and the critical exponent ν of the temporal coherence
scale. [116, 117]

Finite-time scaling analysis takes numerical data aTi,ρj at system sizes Ti
and parameter values ρj. Plotting T−ζ/νi aTi,ρj against T1/νi (ρ− ρc) with the
right choice of ρc,ν, ζ should let the data collapse onto a single curve. The
single curve is the scaling function f̃ from the finite-time scaling ansatz. In
the following, we present a measure by Houdayer and Hartmann [185] for
the quality of the data collapse. Melchert [186] refers to some alternative
measures, for example those in References [187, 188], and to some applica-
tions of these measures in the literature.

Houdayer and Hartmann [185] refine a method proposed by Kawashima
and Ito [189]. They define the quality as the reduced χ2 statistic

S =
1

N

∑
i,j

(yij − Yij)
2

dy2ij + dY
2
ij

, (11.3)

where the values yij,dyij are the scaled observations and its standard errors
at xij, and the values Yij,dYij are the estimated value of the master curve
and its standard error at xij. The sum in the quality function S only involves
terms for which the estimated value Yij of the master curve at xij is defined.
The number of such terms is N. The quality S is the mean square of the
weighted deviations from the master curve. As we expect the individual

deviations yij − Yij to be of the order of the individual error
√
dy2ij + dY

2
ij

for an optimal fit, the quality S should attain its minimum Smin at around 1
and be much larger otherwise. [190]

Let i enumerate the system sizes Ti, i = 1, . . . ,k, and let j enumerate the
parameters ρj, j = 1, . . . ,n with ρ1 < · · · < ρn. The scaled data are

yij = T
−ζ/ν
i aTi,ρj (11.4)

dyij = T
−ζ/ν
i daTi,ρj (11.5)

xij = T
1/ν
i (ρj − ρc). (11.6)
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The master curve itself depends on the scaled data. For a given i or Ti,
we estimate the master curve at xij by the two respective data from all
other system sizes which respectively enclose xij: for each i 6= j, let j ′ be
such that xi ′j ′ 6 xij 6 xi ′(j ′+1), and select the points (xi ′j ′ ,yi ′j ′ ,dyi ′j ′),
(xi ′(j ′+1),yi ′(j ′+1),dyi ′(j ′+1)). Do not select points for some i ′ if there is no
such j ′. If there is no such j ′ for all i ′, the master curve remains undefined
at xij.

Given the selected point (xl,yl,dyl), the local approximation of the master
curve is the linear fit

y = mx+ b (11.7)

with weighted least squares. [191] The weights wl are the reciprocal vari-
ances, wl = 1/dy2ij. The estimates and (co)variances of the slope m and
intercept b are

b̂ =
1

∆
(KxxKy −KxKxy)

m̂ =
1

∆
(KKxy −KxKy)

σ̂2b =
Kxx

∆
, σ̂2m =

K

∆
, σ̂bm = −

Kx

∆

with Knm =
∑
lwlx

n
l y
m
l , K = K00, Kx = K10, Ky = K01, Kxx = K20, Kxy =

K11, ∆ = KKxx −K
2
x. [185] Hence, the estimated value of the master curve at

xij is

Yij = m̂xij + b̂ (11.8)

with error propagation

dY2ij = σ̂
2x2ij + 2σ̂bmxij + σ̂

2
b. (11.9)

11.1.4 A refinement of the quality function

In this Thesis, I further refine the quality function (11.3) to let the data for
each system size have equal weight. The original sum involves only terms for
which the master curve is defined. As the number of missing terms in gen-
eral differs from system size to system size, the sum implicitly weights sys-
tem sizes differently. This is unintended behavior, especially when it comes
to scalings with less dense coverage of the critical region at large system
sizes.

To alleviate this, I modify the sum (11.3) as follows:

S ′ =
1

k

∑
i

1

Ni

∑
j

(yij − Yij)
2

dy2ij + dY
2
ij

, (11.10)

where the number of system sizes is k (as before), and Ni is the number
of terms for the i-th system size. By separately averaging over all available
terms for each system size, and only then averaging over all system sizes,
the contributions of each system size have equal weight in the final sum.
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11.1.5 Parameter estimation

Following Melchert [186], we employ the Nelder–Mead algorithm to min-
imize the quality function and estimate the critical parameter value ρc and
exponents ν and ζ from Monte Carlo data.

The Nelder–Mead algorithm attempts to minimize a goal function f :

Rn → R of an unconstrained optimization problem. [192] As it only eval-
uates function values, but no derivatives, the Nelder–Mead algorithm clas-
sifies as a direct search method. [193] Although the method generally lacks
rigorous convergence properties, [194, 195] in practice the first few iterations
often yield satisfactory results. [196] Typically, each iteration evaluates the
goal function only once or twice, which is why the Nelder–Mead algorithm
is comparatively fast if goal function evaluation is the computational bottle-
neck. [196, 197] Nelder and Mead [192] refined a simplex method by Spend-
ley, Hext, and Himsworth [198]. A simplex is the generalization of triangles
in R2 to n dimensions: in Rn, a simplex is the convex hull of n+ 1 vertices
x0, . . . , xn ∈ Rn. Starting with the initial simplex, the algorithm attempts to
decrease the function values fi = f(xi) at the vertices by a sequence of ele-
mentary transformations of the simplex along the local landscape. The algo-
rithm succeeds when the simplex is sufficiently small (domain convergence),
and/or when the function values fi are sufficiently close (function-value con-
vergence). The algorithm fails when it did not succeed after a given number
of iterations or function evaluations. See Singer and Nelder [196] and refer-
ences therein for a complete description of the algorithm and the simplex
transformations.

In order to estimate the uncertainties of the critical paramter value ρc and
critical exponents ν and ζ, we employ the method suggested by Spendley,
Hext, and Himsworth [198] and Nelder and Mead [192]. Fitting a quadratic
surface to the vertices and the midpoints of the edges of the final simplex
yiealds an estimate for the variance–covariance matrix. The errors are the
square roots of the diagonal terms. [190]

The Nelder–Mead algorithm needs an initial guess for ρc,ν, ζ. This part
of the analysis requires human oversight and intervention. Inspecting the
data, we will have an idea of the approximate location of the critical point.
Given that the critical exponents of the percolation probability and the per-
colation strength should be zero, we determine ρc and ν by performing the
finite-time scaling analyses on these data first (assuming that ζ = 0). If the
Nelder–Mead simplex gets stuck in a local minimum, it is recommended to
simply restart the search, with slightly off, or considerably revised, initial
values. [196]

11.2 the fssa python package

11.2.1 About the package

pyfssa is a scientific Python package for algorithmic finite-size scaling
analysis at critical transitions. [199] It partially reimplements and enhances
the autoscale.py script by Melchert [186]. Is is open source and free soft-
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ware under the permissive ISC License. Unit tests cover about 95% of
its codebase. The package documentation is available online. [200] As
of 2015, Scientific Python implements the Nelder–Mead method for the
scipy.optimize.minimize routine. [62–64] Note that this implementation
returned the vertex with the lowest function value, but not the whole final
simplex. I wrote and submitted a patch to the scipy package that has been
incorporated by the release of version 0.17. [201] pyfssa has been cited in the
literature. [202, 203]

The pyfssa package depends on the python-future, NumPy and SciPy
packages. [61–64, 204] python-future ensures compatibility across Python
and Legacy Python. NumPy provides the numerical data array structure
and methods, and SciPy provides statistical and optimization methods. In-
stallation of pyfssa is straightforward with the Python packaging mechanism
and the pip setup tool. The user is free to download pyfssa either from the
Python package index or from the sources stored at the public repositories
at GitHub or Zenodo.

11.2.2 Finite-time scaling implementation

The pyfssa Python package implements the algorithmic finite-size scaling
analysis as inspired and implemented by Melchert [186]. The Nelder–Mead
algorithm numerically searches for those critical values that minimize the
quality function by Houdayer and Hartmann [185].

The fssa.scaledata function (Listing C.12) scales finite-size data in order
for the data to prospectively collapse onto a single universal scaling function,
also known as “the” master curve.

The fssa.quality function (Listing C.12) assesses the quality of the data
collapse onto a single curve. It returns the reduced χ2 statistic for a data
fit except that the master curve is fitted from the data itself. This is the
implementation of the modified quality function S ′ of Equation 11.10.

Finally, the fssa.autoscale function (Listing C.12) frames the data col-
lapse as an optimization problem and searches for the critical values that
minimize the quality function.

11.2.3 Verification

In order to verify the implementation of the autoscaling algorithm in pyf-
ssa, I tested it against a well-studied system for which all scaling exponents
are available. [200] The system of choice is the paradigmatic bond percola-
tion setting on a regular grid, in one dimension (linear chain) and in two di-
mensions (square lattice). I utilize the percolate Python package to generate
the percolation finite-size data. [205] pypercolate is a scientific Python pack-
age that implements the Newman–Ziff algorithm for Monte Carlo simulation
of percolation on graphs. [206] The finite system sizes of the linear chain
(number of nodes) are 26, 28, . . . 220, and the linear extensions of the square
lattices are 23, 24, . . . , 210. The total number of runs is 104, respectively. The
occupation probabilites are

{
1− 10−(1+i/10) : i = 0, . . . , 100

}
for the linear

chain and
{
1
2 +

i
500 : i = −50, . . . ,+50

}
for the square lattice. I obtain finite-
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Figure 11.1: pyfssa verification study for Bernoulli bond percolation on the linear
chain: Finite-size data from 104 simulations runs at different system
sizes L for the percolation strength P (size of largest cluster, upper
row) and the average cluster size S (lower row) on the linear chain.
The numerical data is scaled with the exponents from the literature
(center column) [96], and auto-scaled by pyfssa (right column), with
x = L1/ν(p− pc).

Table 11.3: Critical point and scaling exponents for the bond percolation problem
on the linear chain, as given by the literature [96] and as determined by
auto-scaling finite-size simulation data with pyfssa.

1D literature auto-scaled Π auto-scaled P auto-scaled S
pc 1 – 1.00000003(12) 1.0000002(14)
ν 1 – 1.003(7) 1.003437(5)
β 0 – 2.2(1.8) · 10−4 –
γ 1 – – 1.012(8)

size data for the percolation probability Π, the percolation strength (largest
cluster size) P, and the average cluster size S. Using the values for the critical
exponents from the literature, I scale the data by the fssa.scaledata routine
and visually assess the data collapse onto a single master curve. Further-
more, I algorithmically determine the critical exponents by the fssa.autoscale
routine. For better fits, I omit data from small system sizes and only feed
data from systems of more than 214 ≈ 104 sites. I initialize the Nelder–Mead
search with the literature values.

I extract the exponents and their errors from the return value of the
fssa.autoscale routine (Table 11.3 and Table 11.4).

For the linear chain, pyfssa recovers the critical point both for the percola-
tion strength and the average cluster size, where the analytical value pc = 1.0
lies within the negligibly small error intervals of sizes 10−6 and 10−7. The
percolation strength scaling further recovers the ν scaling exponent within
the small error interval of order of magnitude 10−3. While the interval for ν
derived from autoscaling the S data does not contain the literature value 1.0,
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Figure 11.2: pyfssa verification study for Bernoulli bond percolation on the linear
chain: Finite-size data from 104 simulations runs at different system
sizes L2 for the percolation strength P (size of largest cluster, upper
row) and the average cluster size S (lower row) on the L×L square grid.
The numerical data is scaled with the exponents from the literature
(center column) [79], and auto-scaled by pyfssa (right column), with
x = L1/ν(p− pc).

Table 11.4: Critical point and scaling exponents for the bond percolation problem
on the square lattice, as given by the literature [79] and as determined
by auto-scaling finite-size simulation data with pyfssa.

2D literature auto-scaled Π auto-scaled P auto-scaled S
pc

1
2 0.5000(11) 0.49999(15) 0.50007(9)

ν 1.333 1.328(36) 1.33(2) 1.33(3)
β −0.133 – −0.140(12) –
γ 2.4 – – 2.38(5)
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it deviates only by a small fraction of 10−3. The intervals for both the order
parameter exponent β and the susceptibility exponent γ do not contain the
true values. However, the algorithmically determined values for β and γ de-
viate from the true values by only a small fraction of the order of 10−4 and
10−2, respectively.

For the square lattice, the intervals for all exponents and all magnitudes
contain the literature value and are rather small: 10−2 for the critical expo-
nents ν, β and γ; 10−4 for the critical point pc.

In the light of this agreement, we need to keep in mind that I initialized the
auto-scaling algorithm with the literature values. This certainly helps mak-
ing the Nelder–Mead optimization results and error estimates well-defined.
All the usual advice with the Nelder–Mead search method applies here. For
example, the search is prone to getting stuck in a local minimum. Note that
the goal of this verification study is not to demonstrate the feasibility of the
Nelder–Mead method. The goal is to show that the algorithm reproduces
the known exponents in suitable initial conditions.

To conclude verification of pyfssa, both visual inspection (Figure 11.1 and
Figure 11.2) as well as algorithmic scaling analysis of the bond percolation
data reproduce well-established results from the literature. Even though the
finite-size scaling analyst needs to take the usual care of manually (visually)
approaching data collapse in order to initialize the Nelder–Mead search, I
conclude the foregoing computational analysis to support that pyfssa is cor-
rectly implemented.

11.3 algorithmic temporal percolation analysis

11.3.1 Introduction

In the following, I present a method to algorithmically analyse the tem-
poral percolation transition. At the heart of the method is the usual Monte
Carlo finite-size scaling analysis, so the major piece is to adapt finite-time
trajectories of stochastic processes to that methodology conceptually and
computationally. Here, I first define the input to the algorithmic temporal
percolation analysis, before I derive and review the relevant statistics for
finite-time analysis.

11.3.2 Input

The input to algorithmic temporal percolation analysis consists of

• a list of increasing finite simulation times Ti,

• a list of increasing control parameter values ρj covering the critical
region, and

• a list of seeds or initial conditions ωk for the simulator to generate
sample paths of the process Xn,

• a simulator φ of a time-discrete dynamical system Xn (n ∈ { 0, 1, 2, . . . }),
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with Tmax = maxi Ti. The simulator φ takes as input the finite simulation
time T , the control parameter ρ, the seedω. Basically, the simulator φ evolves
the system according to the stochastic recursive sequence Xn+1 = f(Xn, ζn, ρ),
where the ζn are determined by the random seed ω, such that ζn = ζn(ω).
For parameter ρj and realization ωk, the simulator shall (deterministically)
generate a finite binary return sequence Rn with Rn = 1 signifying a return
(Xn(ω) is in the return set) and Rn = 0 not. Note that we use the same set of
realizations ωk for all parameters ρj and finite times Ti. Conceptually, this
is consistent with the view of stochastic processes being random elements
on the sequence space of the state space (rather than the equivalent view
of stochastic processes as collections of time-ordered random variables on
the state space). Numerically, this is the variance reduction method of com-
mon random numbers, [207] which is, for example, also employed in the
Newman–Ziff algorithm. [206] In particular, for each parameter ρj and re-
alization ωk, the return sequence Rn for the maximal simulation time Tmax

already contains the return sequences for all other times Ti.
For each triple ijk ≡ (Ti, ρj,ωk) we recursively map the finite return se-

quence Rn (generated for Tmax and truncated at the individual Ti) to a finite
sequence of return epochs tl as t0 = 0 and tl+1 = min {n > tl : Rn = 1 }. Let
Lijk denote the number of such returns for n > 0within the finite simulation
time Ti. The return periods τijk,l are

τijk,l+1 =

{
tjk,l+1 − tjk,l for l < Lijk,

Ti − tjk,l for l = Lijk.
(11.11)

Note that in this mapping, the length of the first return period is agnostic to
whether there is a return at n = 0 or not. There are Lijk + 1 return periods,
including the additional return period after the last return. Let τijk,L denote
the last return period τijk,L = τijk,Lijk+1. If the last return coincides with
the finite simulation time, that is, tjk,Lijk = Ti, then the last return period
τijk,L = 0. However, if tjk,Lijk < Ti, we have a last return period that is
truncated at Ti—this last return period τijk,L could already be the onset
of an infinite return period in the transient regime of the infinite system
(T →∞).

11.3.3 Finite-time statistics

Given the Lijk + 1 return periods τijk,l including the last (truncated) re-
turn period τijk,L at finite time Ti, parameter value ρj and run ωk, we first
calculate the statistics for a single run k and subsequently, for averaging over
all runs.

We say a system at Ti has a “spanning cluster”, expressed by the Boolean
variable Πijk, if the last return period exceeds some threshold of the order
of the system size:

Πijk =

{
1 if τijk,L > (1− e−1)Ti ≈ 0.632 · Ti,
0 otherwise.

(11.12)
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The relative size of the largest return period (including the truncated last
return period) is

Pijk =
1

Ti
max

{
τijk,l : l = 1, . . . ,Lijk + 1

}
. (11.13)

The m-th empirical raw moment of the return periods is

Mijk,m =

Lijk∑
l=1

(τijk,l)
m, (11.14)

which excludes the last (and possibly infinite) return period.
In the next step, the temporal percolation method averages over all K runs

to arrive at data points Aij for finite time Ti and each parameter value ρj.
Statistical uncertainty of these averages are expressed in the form of (fre-
quentist) confidence intervals, or alternatively, Bayesian credible intervals
(see VanderPlas [208] and references therein for a discussion on why fre-
quentist intervals should be avoided). For both intervals, the parameter α
quantifies the extent of the uncertainty. For a confidence interval, the value
1 − α is the probability for the random confidence interval to contain the
fixed true average. For a credible interval, the value 1− α is the probability
that the (random) average is contained in the interval fixed by the data. We
quantify uncertainty on the 1σ level, such that α ≈ 0.317.

The finite-time temporal percolation strength Pij is the average size of the
largest return period:

Pij =
1

K

∑
k

Pijk, (11.15)

with the standard normal confidence interval based on the sample variance
1
K−1

∑
k(Pijk − Pij)

2.
The spanning probability Πij is a Binomial proportion, i. e. a series of

K independent Bernoulli trials with some (unknown) success probability p.
As Cameron [209] puts it the normal approximation to confidence intervals
“suffers a systematic decline in performance (...) towards extreme values of
p near 0 and 1, generating binomial [confidence intervals] with effective
coverage far below the desired level.” (see also References [210, 211]). This
is another reason to employ Bayesian inference. [212] For K independent
Bernoulli trials with success probability p, the likelihood to have k successes
given p is the binomial distribution

P(k | p) =

(
K

k

)
pk(1− p)K−k = B(a,b), (11.16)

where B(a,b) is the Beta distribution with parameters a = k+ 1 and b =

N− k+ 1. Assuming a uniform prior P(p) = 1, the posterior is [212]

P(p | k) = P(k | p) = B(a,b). (11.17)

Finally, the spanning probability is the posterior mean

Πij =

∑
kΠijk + 1

K+ 2
(11.18)
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with 1−α credible interval (Π↓ij,Π
↑
ij) given by

∫Π↓ij
0

B(a,b)dp =

∫1
Π
↑
ij

B(a,b)dp =
α

2
. (11.19)

We determine an upper bound for the probability of no return L̄ij as the
maximum-likelihood estimate of the parameter of a geometric distribution,
as the observation of Lijk returns implies Lijk subsequent failures to not
return in independent Bernoulli trials:

L̄ij =
K∑

k Lijk +K
. (11.20)

This is an upper bound as this assumes that every run terminates with a fail
to return, even though the return probability might well be 1, and hence, the
no-return parameter be 0. This is also the posterior mean for the conjugate
prior B(0, 0) distribution in Bayesian inference. The posterior is the B(a,b)
distribution with a = K and b =

∑
k Lijk. The Bayesian 1− α credible inter-

val (L̄↓ij, L̄
↑
ij) specifies the uncertainty in the upper bound as

∫ L̄↓ij
0

B(a,b)dp =

∫1
L̄
↑
ij

B(a,b)dp =
α

2
. (11.21)

Averaging the m-th raw moments Mijk,m needs to normalize to the num-
ber of returns. The straightforward way to define the average m-th raw mo-
ment as

Mij,m =
1

K

∑
k

Mijk,m

Lijk
(11.22)

with the normal confidence interval quantifying the uncertainty. As this is
prone to numerical instability especially at the critical point with a small
number of return periods merging to form the last return period, an alterna-
tive definition of a “combined” average is

M̃ij,m =
1

K

∑
kMijk,m∑
k Lijk

. (11.23)

The latter definition averages over the raw moments first and only then nor-
malizes them by the total number of returns in all runs. To calculate a confi-
dence interval, we employ the computationally fast Approximate Bootstrap
Confidence (ABC) method. [213]

11.4 the pytemper python package

11.4.1 About the package

pytemper is a Scientific Python package for finite-time analysis of the
recurrence–transience transition in the temporal percolation paradigm. [214]
I developed it to computationally implement the temporal percolation
method as detailed in the preceding Section. It is intended and designed
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to be open sourced as free software under a permissive license. Unit tests
cover about 83% of its codebase.

The pytemper package depends on the python-future, NumPy, SciPy and
scikits.bootstrap packages. [61–64, 204, 215]

11.4.2 Implementation of the temporal percolation analysis

The pytemper.single_run_statistics routine (Listing C.8) processes a
list of return periods τijk,l for a list of finite return times Ti. It returns a
structured NumPy array with finite-tif return periods τijk,l for a list of fi-
nite return times Ti. statistics. [216] The pytemper.statistics routine (List-
ing C.9) processes statistics of single runs to yield finite-time averages. It also
returns a structured NumPy array.

The pytemper packages further implements exam-
ple simulators (Listing C.10) such as the random walk
(pytemper.examples.random_walk_trajectories) or the M/M/1 queue
system size Markov chain (pytemper.examples.mm1q_trajectories). They
take as input the number of runs K, the number of steps to simulate (Tmax), a
list of control parameters ρj and a master seed to generate the K realizations
ωk. They return a NumPy array of finite-time trajectories.

The computational pipeline is as follows:

1. A simulator generates finite-time trajectories.

2. The trajectories are mapped onto returns periods.

3. pytemper.single_run_statistics map return periods to finite-time
statistics for every single run

4. pytemper.stats process single-run statistics to form averages

5. The finite-time scaling analysis is run, e. g. with pyfssa.autoscale.

11.4.3 First steps with pytemper

As a dry run for the pytemper packages, let us consider a toy example of
a small set of return periods:

>>> import pytemper

>>> ts = [1, 10, 100]

>>> return_periods = [2, 2, 2, 10, 124]

>>> single_run_stats = pytemper.single_run_statistics(

... ts=ts,

... return_periods=return_periods)

>>> for stat in single_run_stats.dtype.names:

... stat, single_run_stats[stat]

...

('last_return_period', array([ 1., 4., 84.]))

('has_spanning_cluster', array([ True, False, True], dtype=bool))

('max_finite_return_period', array([ 0., 2., 10.]))
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('max_return_period', array([ 1., 4., 84.]))

('number_of_returns', array([0, 3, 4], dtype=uint64))

('moments', array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,

0.00000000e+00],

[ 6.00000000e+00, 1.20000000e+01, 2.40000000e+01,

4.80000000e+01],

[ 1.60000000e+01, 1.12000000e+02, 1.02400000e+03,

1.00480000e+04]]))

now exiting Console...

We see that as promised, the single_run_statistics function extracts the
temporal percolation statistics for a single run. Note that while these usually
increase monotonously with Ti, a spanning cluster detected at some T might
disappear in a larger T ′ if a return period ends between T and T ′. As for raw
moments, all up to the fourth moment are recorded, where the first to fourth
moments are stored in the moments field of the returned NumPy array, and
the zeroth moment is the number of returns. For example, for T = 1 there
are no returns, and hence, all moments are 0.





12 C O N N E C T I N G T H E D OT S

12.1 temporal percolation of the random walk

In the following, we will apply the conceptual and computational tem-
poral percolation methodology developed in the preceding chapters to the
random walk on the half-line. As we noted before, the paradigmatic M/M/1

queueing system is similar to the random walk up to the point of having the
same analytical exponents of the return time distribution and the temporal
percolation transition. This is why I focus on an extensive treatment of the
random walk here.

Before I outline the structure of this Chapter, let me briefly consider the
merging of return periods when the control parameter is increased. First, in
the random walk, an increase of the control parameter p means that for a
given sample path ω, at one time step n the step will flip from Xn → Xn− 1

to Xn → Xn + 1 (or, if Xn = 0, a step that flips from 0 → 0 to 0 → 1). This
single flip entails a merger with all subsequent return periods (clusters) until
and including the second return period of length 1. The reason for this is that
a return period of length 1 means there is a step 0→ 0, that “consumes” one
additional step as it means that it will become a step 1 → 0 (or 2 → 1). (For
flips at the origin, is is until and including the next return period at length 1.)
The probability that any given return period is imminent to initiate a merger
with subsequent return periods is proportional to the size of the imminent
return period (that initiates the merger). Let n = 2k be the length of a return
period for n > 1. Then, it has k steps +1 and k steps −1. As p is increased,
each of the k steps −1 has an independent and identical probability to flip
when p is increased by dp, which is dp

1−p . Hence, the probability for a return
period to initate a merge when increasing p is proportional to its size. This
is known as the microscopic mechanism of preferential attachment in cluster
growth and has been shown to yield macroscopic power-law distribution in
cluster sizes. [42, 217, 218] We retreat to this familiar observation as we note
that the master equation involves sums over convolutions of variable order:
when a return period initiates a merge, it merges with a random number of
other return periods.

I demonstrate the computational temporal percolation method as follows.
First, we inspect the finite-time return period statistics of a single realiza-
tion of the critical random walk on the half-line at different finite times in
Section 12.2.1. Section 12.2.2 presents finite-time return period and temporal
percolation statistics of a single realization at different values of the control
parameter p in the critical region. Section 12.2.3 presents finite-time temporal
percolation statistics for a small ensemble of realizations, before Section 12.3
considers the average statistics of a large ensemble of realizations. Finally,
Section 12.4 presents a full-scale finite-time scaling analysis of the average

117
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Table 12.1: Single-run finite-time statistics of a critical random walk (see Figure 9.4
for the trajectories). Indices j, k = 1 as these are data for one single run
ω at one parameter value ρ = 1

2 .

Ti 102 103 104 105

Lijk 3 38 284 728

τijk,L 91 767 878 218

Πijk 1 1 0 0

Pijk 0.91 0.77 0.29 0.57
Mijk,1 9 233 9122 99782
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Figure 12.2: Histogram of the return periods τijk of one realization of the critical
random walk on the half-line (p = 1

2 ) for different overall finite simu-
lation time Ti. The histograms are overlayed and non-cumulative; e. g.,
the number of return periods between 1.778 and 3.162 until T = 105 is
181. The x axis and the bin edges are log-scaled. The bars are centered
at the geometric mean of the bins edges.

temporal percolation statistics of a large ensemble of realizations at large
system sizes.

12.2 single-run statistics

12.2.1 Single-run statistics at finite times

Straight-forward Monte Carlo simulation yields a single realization ω of
the critical random walk on the half-line (p = 1

2 ) up to a total number of
steps (or finite time) Tmax = 105 (see Figure 9.4 for the trajectory). As the
finite time Ti grows, the number of returns Lijk grows, and so do the raw
moments Mijk,m; the last return period τijk,L, whether there is a spanning
cluster or not (Πijk), or the relative size of the largest return period Pijk do
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Figure 12.3: A realization of a random walk on the half-line at different values of
the parameter p in the critical region. Upper panel: Finite-time trajecto-
ries. Lower panel: Vertical bars colored as the trajectory at the respec-
tive parameter value highlight returns to the origin (top to bottom:
growing p, less returns).

not necessarily grow (see Table 12.1 for the full statistics). The frequencies of
return periods τijk in a histogram grow with system size Ti and are reminis-
cent of a power law (as expected from the analytical return time distribution
at the critical point; see Figure 12.2).

12.2.2 Single runs for multiple parameter values

We extend the temporal percolation treatment from a single realization ω
at the critical parameter value (and different simulation times) to a single
realization ω at various values of the control parameter p in the critical
region (see Figure 12.3). (In fact, I use the same realization as in the last
Section.) The histograms of the return periods at different values of p feature
power-law-esque behavior with finite-time and/or exponential cut-offs for
critical p and below, while above p = 1

2 finite return periods are small (if
there are any; see Figure 12.4).

We further produce the temporal percolation statistics which exhibits
familiar finite-size behavior (Figure 12.5): The larger the system size, the
sharper the transition, as signified by the relative size of the largest return
period Pijk, the relative numbers of returns Lijk/Ti, or the mean finite return
period Mijk,1/Lijk. Note the second peak for large T in the mean return pe-
riod (Figure 12.5, Panel E): This peak signifies a large return period remain-
ing and growing in relative size as short return periods merge, reducing the
normalization factor of the total number of returns Lijk.
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Figure 12.4: Histograms of the return periods of finite-time trajectories (Tmax = 105)
of a single realization of the random walk on the half-line for multiple
parameter values p in the critical region. Both axes, the bin edges and
the frequencies, are log-scaled. Missing data points signify frequency
0. The data points are centered at the geometric mean of the bin edges.
The lines are a guide for the eyes.

12.2.3 Single-run statistics on multiple realizations

Once more, we extend our temporal percolation analysis: Now, we com-
pare the temporal percolation statistics for a small number of realizations of
the random walk, again at several values of the parameter p in the critical
region (see Figure 12.6 and Figure 12.7).

The temporal percolation statistics of the different realizations ωk at large
finite system size are qualitatively and quantitatively similar (Figure 12.7).

12.3 full ensemble statistics

Having carefully investigated and compared temporal percolation statis-
tics for several finite times Ti, parameter values pj, and realizations ωk, we
now turn to a larger ensemble of 400 realizations of the random walk on
the half-line for several finite system sizes Ti up to Tmax = 104 and several
parameter values in the critical region.

The averaged histograms of the return periods resemble power laws (Fig-
ure 12.9) up to the full simulation time.

The averaged finite-time temporal percolation statistics allow to visually
localize the transition as the points of intersection of the percolation prob-
ability Πij or the percolation strength Pij; whereas the peak in the average
return time Mij,1 is not very pronounced (yet) and exhibits large variance
(Figure 12.10). On the contrary, the combined-average finite return period
M̄ij,1 is numerically stable, as expected. However, algorithmic finite-size
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Figure 12.5: Finite-time statistics of a single realization ωk of the random walk
on the half-line for several finite system sizes Ti and parameter val-
ues pj in the critical region. Panel A shows whether there is a span-
ning cluster or not (Πijk, where “Yes” means Πijk = 1 and “No”
means Πijk = 0). Panel B shows the relative size of the largest re-
turn period (including the truncated last return period) Pijk. Panel C
shows the relative number of returns per time step Lijk/Ti. For com-
parison, Panel D shows the relative size of the largest finite return
period (excluding the truncated and possibly infinite last return pe-
riod) P ′ijk = 1

Ti
maxl6Lijk τijk,l. Finally, Panel E shows the mean finite

return period Mijk,1/Lijk. Lines are a guide for the eyes.
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Figure 12.6: A small ensemble of 6 realizations ωk of the random walk on the half-
line at several values of the parameter p in the critical region. Upper
panels: Finite-time trajectories. Lower panels: Vertical bars colored as
the trajectory of the respective realization ωk highlight returns to the
origin.

0 2000 4000 6000 8000 10000
n

0

50

100

150

200

〈X
n
〉

p = 0.51
p = 0.5032
p = 0.5
p = 0.4968
p = 0.49

Figure 12.7: Average position 〈Xn〉 = 1
K

∑
k Xn(ωk) of a small ensemble of K = 6

realizations of the random walk on the half-line at several values of the
parameter p in the critical region (see Figure 12.6 for the individual
trajectories)
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Figure 12.8: Finite-time statistics for each run ωk of a small ensemble of K = 6 re-
alizations of the random walk on the half-line at several values of the
parameter pj in the critical region (see Figure 12.6 for the individual
trajectories) for finite time Ti = 105. Panel A shows whether there is a
spanning cluster or not (Πijk). Panel B shows the relative size of the
largest return period (including the truncated last return period) Pijk.
Panel C shows the relative number of returns per time step Lijk/Ti.
For comparison, Panel D shows the relative size of the largest finite re-
turn period (excluding the truncated and possibly infinite last return
period) P ′ijk = 1

Ti
maxl6Lijk τijk,l. Finally, Panel E shows the mean

finite return period Mijk,1/Lijk for each realization ωk. Note the mag-
nification in the x scale as compared to the upper panels. Lines are a
guide for the eyes.
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Figure 12.9: Average histograms of the return periods of finite-time trajectories of
an ensemble of 400 realizations of the random walk on the half-line
over a simulation time of T = 104 for multiple parameter values p
in the critical region. Each data point is the average of the number
of return times in the respective bin over all realizations. Both axes,
the bin edges and the frequencies, are log-scaled. The data points are
centered at the geometric mean of the bin edges. Missing errorbars are
smaller than the marker at the respective data point. The lines are a
guide for the eyes.
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Figure 12.10: Average finite-time temporal percolation statistics of an ensemble of
400 realizations of the random walk on the half-line for several finite
system sizes Ti and parameter values pj in the critical region. Panel
A shows the percolation probability Πij. Panel B shows the percola-
tion strength Pij (the average relative size of the largest return period,
including the truncated last return period). Panel C shows the prob-
ability of no return L̄ij. For comparison, Panel D shows the average
relative size of the largest finite return period P ′ij (excluding the trun-
cated and possibly infinite last return period). Finally, Panel E shows
the average first raw moment, or the average finite return period,
Mij,1. For comparison, Panel F shows the combined-average finite re-
turn period, M̄ij,1. Missing errorbars are smaller than the marker at
the respective data point. Lines are a guide for the eyes.
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Table 12.13: Results of the algorithmic finite-time analysis of temporal percolation
statistics of a random walk on the half-line in 400 runs up to finite
simulation time Tmax = 106. The analysis yields the critical point pc,
the critical exponent ν of the temporal coherence scale and the critical
exponent β = ζ of the percolation strength P and the critical exponent
γ = ζ of the average return time τ̄, and their respective errors. For the
scaling procedure, finite-time data at Ti = 105.0, 105.5, 106.0 were used.

P τ̄

pc 0.4999 0.4999
dpc 0.0002 0.0013
ν 2.0407 2.0651
dν 0.1785 0.2943
ζ −0.0001 1.0023
dζ 0.0050 0.2337

scaling analysis needs larger system sizes to be reliable, and in particular,
it needs more pronounced peak in the susceptibility (average return time).

12.4 full-scale temporal percolation analysis

We now embark on a full-scale finite-time temporal percolation scaling
analysis of an ensemble of 400 realizations of the random walk on the half-
line for several large system sizes Ti up to Tmax = 106 and various parameter
values pj in the critical region.

The average temporal percolation statistics such as the percolation proba-
bility Πij, percolation strength Pij, probability of no return L̄ij and combined-
average return time M̄ij,1 feature more pronounced steps or peaks than be-
fore (Figure 12.11). As before, the average first raw moment Mij,1 remains
numerically unstable.

The algorithmic finite-time analysis with pyfssa yields critical values for
the critical point pc and the scaling exponent ν of the temporal coherence
length, as well as the scaling exponents β and γ for the percolation strength
P and the average return time τ̄ (Table 12.13). The agreement of the critical
point pc with the analytical value 12 is formidable with an absolute deviation
of 10−4. The numerical exponent ν deviates from the analytical value 2 by
about 3 %. The scaling exponents β and γ deviate by 10−4 or 2 · 10−3 from
their analytical values 0 and 1, respectively. All analytical values lie within
the error range of the numerical values. Relative errors are comparatively
large (> 5%) for ν and in particular for γ at 23%.

Visual inspection of the collapse of the scaled data of percolation strength
P and average return time τ̄ confirms the numerical agreement of finite-time
temporal percolation analysis with analytical values (Figure 12.12): Scaling
with the analytical critical values pc = 0.5,ν = 2.0,β = 0,γ = 1 instead
yields qualitatively identical plots with almost imperceptible quantitative
differences.
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Figure 12.11: Average finite-time temporal percolation statistics of an ensemble of
400 realizations of the random walk on the half-line for several large
finite system sizes Ti (cf. Figure 12.10) and parameter values pj in
the critical region. Panel A shows the percolation probability Πij.
Panel B shows the percolation strength Pij (the average relative size
of the largest return period, including the truncated last return pe-
riod). Panel C shows the probability of no return L̄ij. For comparison,
Panel D shows the average relative size of the largest finite return
period P ′ij (excluding the truncated and possibly infinite last return
period). Finally, Panel E shows the average first raw moment, or the
average finite return period, Mij,1. For comparison, Panel F shows
the combined-average finite return period, M̄ij,1. Missing errorbars
are smaller than the marker at the respective data point. Lines are a
guide for the eyes.
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Figure 12.12: Scaled average finite-time temporal percolation statistics of an ensem-
ble of 400 realizations of the random walk on the half-line for several
large finite system sizes Ti and parameter values pj in the critical
region. Scaled with the auto-scaled exponents. Panel A depicts the
scaled average finite-time percolation strength Pij with algorithmi-
cally determined critical values pc = 0.4999,ν = 2.0407,β = ζ =

−0.0001. Panel B depicts the scaled average return time τ̄ = M̄ij,1
with algorithmically determined critical values pc = 0.4999,ν =

2.0651,γ = ζ = 1.0023. Missing errorbars are smaller than the marker
at the respective data point.
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12.5 discussion

The precedings sections have shown that the temporal percolation method-
ology recovers the analytical exponents of the random walk and its return
times in the critical region.

The extensive numerical treatment and Monte Carlo simulation study of
the random walk on the half-line in the preceding sections confirm the ana-
lytical predictions of a critical transition from recurrence to transience. I also
explored the rough edges of the approach such as numerical instabilities in
the susceptibility (average return time), or estimating the uncertainties, and
established a framework that works.

I developed and demonstrated the temporal percolation methodology with
the random walk on the half-line as the paradigmatic stochastic system ex-
hibiting the recurrence–transience dichotomy. I introduced temporal perco-
lation statistics such as the probability of no return that augment the classic
percolation statistics to capture the peculiarities of temporal percolation on
the half-line. Numerical analysis confirms that finite clusters do persist; even
though the order parameter (the relative size of the largest cluster) jumps to
1 at the transition, the finite return probability signifies finite clusters even
beyond the critical transition.

What I did not show so far is how exactly the Markovianness of the
stochastic process, the iid return times, the exponents ν = 2, τ = 3

2 , γ = 1, the
recurrence–transience dichotomy interrelate to give rise to critical behavior
at a unique critical point. For example, does ν = 1

2−τ always hold in tem-
poral percolation in one dimensions, as suggested by Maslov [169], or does
it hold only for Markovian systems? Further finite-time scaling studies of
stochastic systems at the transition to instability are needed, to explore the
range of exponents, and ultimately, universality classes. At the same time,
one could test for independence of the return times, and relate these results
to the goodness of fit of the data collapse in the finite-time scaling analysis.
There might also be systems that do not exhibit a sharp transition at all.

There still remains room for improving the algorithmic finite-time scal-
ing analysis, in particular the estimation of the critical parameters and ex-
ponents. While the procedure pyfssa implements is well-tested and rests
on a well-proven methodology, it remains numerically fragile. For exam-
ple, the Nelder–Mead search method still needs careful manual inspection
and fine-tuning of initial conditions to produce a positive definite variance–
covariance matrix to define uncertainties for the estimated parameters. This
so far hampers full integration into an automatic computational pipeline.
Employing modern methods of statistical inference and parameter estima-
tion such as Approximate Bayesian Computation should address these short-
comings of the current implementation.
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In this Part, I established, implemented and illuminated the intricate con-
nection of dynamic instablities of stochastic processes and the geometric
phase transition of percolation theory. As finite clusters persist even beyond
the critical point, this temporal percolation is an example of a hybrid transi-
tion in one dimension: it displays characteristics of a first-order phase tran-
sition as the order parameter of relative size of the largest cluster discon-
tinuously grows from 0 to 1 at the critical point, while it features signature
behavior of a critical transition: the return times—the fundamental quantity
of temporal percolation—scale to all sizes at the critical point, as they dis-
tribute according to a power law.

This is certainly good news. Not only do we have the standard statistical
physics toolkit to pinpoint and analyze such a transition in computational
Monte Carlo finite-size studies available now, but also do we have a crit-
ical transition that exhibits early-warning signs (precursors) to detect and
possibly mitigate such a transition. Recall that in queueing systems, such a
transition to transience means congestion which is a bad thing as it entails
the breakdown of proper functioning of the system.

What I also outlined is that it is possible to establish a computational
pipeline to algorithmically analyze such systems. This opens up the prospect
of running full-scale parameter scans of queueing systems with the through-
put capacity (as determined by the critical point) automatically detected at
each point in parameter space. This Work is also an endeavour in establish-
ing reproducible computational research procedures. [219–222] In devising
an algorithmic temporal percolation and finite-size analysis scheme, manual
data manipulation and intervention of the numerical experimentalist is in-
tended to be eliminated, as it is subjective and prone to not being recorded
and accounted for in later proceedings. While we managed to implement
semi-automatical finite-size scaling, we also discussed how to implement
automatic finite-size scaling with statistical inference methods in the future.

Among the open conceptual problems that remain to be studied is how
we actually measure throughput capacity of non-Markovian systems. For ex-
ample, a queue more general than the paradigmatic M/M/1 queue is the
G/G/1 queue with a general (not necessarily Poisson) arrival process and
independent service times identically distributed according to a general (not
necessarily exponential) distribution. The return times of the G/G/1 queue
have been shown to also follow a power law of cumulative exponent 12 at the
critical point of full utilization ρ = 1 (where the average inter-arrival time
equals the average service time). [223, 224] Furthermore, if the service times
Xn themselves are distributed according to a power law P {X > x } ∼ x−ν

with exponent ν ∈ (1, 2), then the return time will be distributed according
to a power law P { τ > t } ∼ t−1/ν with reciprocal exponent; the heavier-tailed
the service time, the lighter-tailed is the return time. [224] I conjecture that
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our methodology does not rely on strict Markovianness and independence
of return times. Instead, I conjecture that the stochastic dynamical system
at hand only needs to ensure sufficient mixing such that a steady-state and
infinitely long trajectory eventually visits all regions of state space. This is
what weak, crude or semi-regeneration of the system at hand entails, which
means that subsequent return periods do not necessarily need to be inde-
pendent. [123, 177, 225–227] For example, in spatial queueing systems such
as transport systems even an empty system retains some memory of the
preceding return period in the form of the transporter positions. However, I
expect the system to lose that memory after some time, and hence, to feature
the recurrence–transience dichotomy of temporally percolating systems. As
already discussed, finite-time scaling analysis of further systems is needed
to pursue this hypothesis.

Another avenue of research is how a queueing system with time-dependent
arrival rate approaches the critical transition of the steady-state (constant-
rate) system, and how interventions such as rejecting requests need to be
designed to actually mitigate the transition instead of leading to an even
more abrupt—explosive—transition. [83, 97]
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This Thesis demonstrates and tackles a route to the computational study
of collective mobility and demand-driven transport systems by network
and statistical physics domain scientists. While studies within the Demand-
Driven Directed Transport (D3T) framework still involve the careful design
and implementation of numerical simulation, a typical study employing ex-
isting transport spaces and dispatching policies implemented as pyd3t mod-
ules should be of the same order of complexity as a comparable study of any
other network dynamical system. This immediately opens avenues of future
research into the interplay of the network structure and the transport dynam-
ics on that network. A prominent example of an emergent effect is Braess’
paradox, which arises when (supposedly) enhancing the network topology
by adding or strenghening a link has the counterintuitive systemic effect of
less overall transport capacity. [228]

Since recently, the scientific and socioeconomic interest and need for on-
demand ride-sharing and self-organizing logistic systems grows, thus de-
manding a thorough understanding of their intricate structural and dynami-
cal properties. Studying collective mobility systems governed by ride-sharing
dispatching policies such as those proposed by Santi, Resta, Szell, Sobolevsky,
Strogatz, and Ratti [34] and Alonso-Mora, Samaranayake, Wallar, Frazzoli,
and Rus [36] in the D3T framework and temporal percolation (stochastic
stability) framework of this Thesis complements the data-driven engineer-
ing approach in the current literature by studying the mechanisms that lead
from microscopic rules to systemic effects. For example, in the strive to avoid
congestive collapse as investigated by Hyytiä, Penttinen, and Sulonen [38],
one needs to carefully study precursors of the critical transition to overload-
ing the system. When delaying such a transition by a priori localized inter-
ventions, one needs to be aware of the possibility of abrupt congestive col-
lapse as the analogue of an explosive transition in percolation settings. [97]

Given the modelling, simulation and critical transition toolkit of this The-
sis, I project basic research into collective mobility systems to chart the pa-
rameter space and the dynamical regimes of simple, myopic taxi systems
to provide base models and benchmarks for any more involved dispatching
policy (such as ride-sharing). This includes the dependence of system perfor-
mance and dynamical properties on the transport geometry, as well as how
these scale with parameters such as the request rate, the size of the transport
space, the number and the capacity of the transporters. An enhanced taxi dis-
patching policy that proactively rejects transport requests if service quality is
too poor provides another baseline for ride-sharing policies with rejections.
A typical quest in these studies is to identify dimensionless quantities em-
bodying universal scaling behavior. Emergent effects—new physics—would
be signified by critical transitions or bifurcations that separate different dy-
namical regimes. Such systematic studies of collective mobility systems are
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currently being conducted by the D3T team of the Network Dynamics Group
at the MPI for Dynamics and Self-Organization, employing the tools devel-
oped in this Thesis as envisaged.
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A D I S C R E T E - E V E N T S Y S T E M S

a.1 examples of simple devs models

This Section presents a few examples from Zeigler, Kim, and Praehofer
[130].

a.1.1 Passive

The passive DEVS model has arbitrary input X which it completely ignores.
It never produces output, and forever remains in its single passive state:

Mpassive = (X, Y,S, δint, δext, δcon, λ , ta),

with
S = {passive},

δint(passive) = passive,

δext(passive, e, xb) = passive,

δcon(passive, xb) = passive,

λ (passive) = ∅
ta(passive) =∞.

a.1.2 Generator

Like the passive DEVS model, a generator DEVS model also ignores input. It
autonomously generates certain output. In this example, the model generates
a single output Y = {1} with some period T > 0:

Mgenerator = (X, Y,S, δint, δext, δcon, λ , ta),

with
Y = {1},

S = R+
0 ,

δint(s) = T ,

δext(s, e, xb) = s− e,

δcon(s, xb) = T ,

λ (s) = {1},

ta(s) = s.

The internal state variable s records the time until the next output event.
This is important to handle external transitions due to input. The input is
indeed ignored. However, the external transition resets the lifespan of the
internal state. Hence, the model needs to update the internal state to reflect
the reduced time until the next output event.
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a.1.3 Processor

A processor DEVS model complements a generator: this model “processes”
arbitrary input events (jobs) X = J one at a time. In this example, it takes the
time θ > 0 to process an arbitrary job:

Mprocessor = (X, Y,S, δint, δext, δcon, λ , ta),

with

Y = X = J,

S = {idle, busy}× [0, θ]× J,

δint(s̃,σ, j) = (idle, θ, j),

δext(s̃,σ, j, e, xb) =

{
(busy, θ, f(xb)) if s̃ = idle

(busy,σ− e, j) otherwise(s̃ = busy),

where f : PX → X selects one of the jobs and discards the others,

f(xb) = x ∈ xb,

δcon(s̃,σ, j, xb) = δext(δint(s̃,σ, j), 0, xb),

λ (busy,σ, j) = {j},

ta(s̃,σ, j) =

{
σ if s̃ = busy,∞ otherwise(s̃ = idle.

This model only accepts a job if it is idle: While processing, the model is
busy and discards incoming jobs. After the time θ, it outputs the job and
returns to the idle state. If jobs are input simultaneously, the external transi-
tion functions simply selects one of them according to some function f, and
discards the others. The confluent transition functions handles collisions as
follows:

1. It finishes the active job (internal transition from busy to idle phase).

2. Subsequently, it processes the submitted job (external transition from
idle to busy phase).

a.2 example of a coupled devs model

Consider a pipeline of a generator g and a processor p DEVS model as a
simple example of a DEVS coupled model. The pipeline has no input (XN =

∅), and the same simple output as the generator (and processor): Yg = Xp =

Yp = YN = { 1 }.
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XN = ∅ Generator Processor YN = {1}

N

zg,p zp,N

Figure A.1: An example DEVS network model.

XN = ∅,
Yg = Xp = Yp = YN = { 1 } ,

D = { g,p } ,

I = { Ig, Ip, IN } ,

Ig = ∅,
Ip = { g } ,

IN = { p } ,

Z =
{
zg,p, zp,N

}
,

zg,p = id,

zp,N = id.

a.3 time-evolution of a devs model

A table-based time evolution of a DEVS model illustrates the introduced
concepts and constitutes a simulator at the same time. Let M be an example
DEVS model with

S = { s0, s1 } ,

δint(s0) = s1, δint(s1) = s0,

λ (s) = 1,

ta(s0) = 0, ta(s1) = 1,

and no input:

Table A.2: Table-based time evolution of an example DEVS model with-
out external input.

τ q(τ) ta y x δ ∆((s0, e0), x)
δ((s1, 0), x

∣∣
[(0,0),(2,0)))

(0, 0) (s1, 0) 1 ∅̂ ∅̂ II δ
(
(s1, 1), x

∣∣
[(1,0),(2,0))

)
(1, 0) (s1, 1) 1 { 1 } ∅̂ III δ

(
(δint(s1), 0), x

∣∣
[(1,1),(2,0))

)
(1, 1) (s0, 0) 0 { 1 } ∅̂ III δ

(
(δint(s0), 0), x

∣∣
[(1,2),(2,0))

)
(1, 2) (s1, 0) 1 ∅̂ ∅̂ II δ

(
(s1, 1), x

∣∣
[(2,0),(2,0))

)
(2, 0) I (s1, 1)
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Consider the simulation of another simple example DEVS model, the pro-
cessor. Let J = { 1 } be a trivial job set, and θ = 1 be the job execution time.
The initial total state is q(τ = (0, 0)) = (s0, e0) = (s̃0,σ0, e0) = (I, 1, 0). For
simplicity, omit the trivial job variable j = 1 in the internal state.

Let there be input at times τ1 = (1, 0), τ2 = (2, 2), τ3 = (2.5, 0), τ4 =

(3, 0), and consider the time evolution of the system over the time interval
[(0, 0), (3, 1)). The input trajectory segment x on this interval splits into five
primitive event segments, x = x0 · · · · · x4.

Table A.3: Table-based time evolution of the example processor DEVS model with external in-
put.

τ q(τ) ta y x δ ∆((s0, e0), x)
δ((I, 1, 0), x0)

(0, 0) (I, 1, 0) ∞ ∅̂ ∅̂ I (I, 1, 1); δ((I, 1, 1), x1)

(1, 0) (I, 1, 1) ∞ ∅̂ { 1 } III δ
(
(δext(I, 1, 1, { 1 }), 0), x1

∣∣
[(1,1),(2,2))

)
(1, 1) (B, 1, 0) 1 ∅̂ ∅̂ II δ

(
(B, 1, 1), x1

∣∣
[(2,0),(2,2))

)
(2, 0) (B, 1, 1) 1 { 1 } ∅̂ III δ

(
(δint(B, 1), 0), x1

∣∣
[(2,1),(2,2))

)
(2, 1) (I, 1, 0) ∞ ∅̂ ∅̂ I (I, 1, 0); δ((I, 1, 0), x2)

(2, 2) (I, 1, 0) ∞ ∅̂ { 1 } III δ
(
(δext(I, 1, 0, { 1 }), 0), x2

∣∣
[(2,3),(2.5,0))

)
(2, 3) (B, 1, 0) 1 ∅̂ ∅̂ I (B, 1, 0.5); δ((B, 1, 0.5), x3)

(2.5, 0) (B, 1, 0.5) ∞ ∅̂ { 1 } III δ
(
(δext(B, 1, 0.5, { 1 }), 0), x3

∣∣
[(2.5,1),(3,0))

)
(2.5, 1) (B, 0.5, 0) 0.5 ∅̂ ∅̂ I (B, 0.5, 0.5); δ((B, 0.5, 0.5), x4)

(3, 0) (B, 0.5, 0.5) 0.5 { 1 } { 1 } III δ
(
(δcon(B, 0.5, { 1 }), 0), x4

∣∣
[(3,1),(3,1))

)
(3, 1) I (B, 1, 0)

a.4 reducing a devs network model

This Section covers the dynamical interpretation of a network model. It
presents the generic procedure by Zeigler, Kim, and Praehofer [130] and
Nutaro [133], to construct the resultant MN of a network model N. The
resultant MN is an atomic DEVS model. Conveniently, the construction of
the resultant yields a simulation algorithm for a network model. The ability
to reduce any given network model to an atomic DEVS model is also referred
to as closure under coupling.

a.4.0.1 Input set and output set

The possible input and output of the resultant are the network input set
XN and output set YN.

a.4.0.2 Internal states

The internal state of the resultant is defined by the total internal states of
all network components d ∈ D:

Sr = ×
d∈D

Qd,
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where Qd ⊂ Sd×R0. Here, as in the following definitions, the property of a
component which is a network model, is identified with the corresponding
property of the network resultant. Hence, the internal states Sd of a compo-
nent d are

Sd =

{
SM if d atomic model M,

Sr ′ if d network model N ′, r ′ resultant of N ′.

In general

(Sd,
d

δint,
d

δext, δdcon, λ d, tad) =


(SM, δint

M, δext
M, δMcon, λM, taM) if d atomic model M

(Sr ′ , δint
r ′ , δext

r ′ , δr
′

con, λ r ′ , tar ′) if d network model N ′,

r ′ resultant of N ′.

a.4.0.3 Time advancement function

The lifespan of the current internal state sr of the resultant is the minimum
lifespan of the current internal states of the network components

tar(sr) = min
d∈D

tad(sd) − ed.

Again, the time advancement function tad of a network component d is
recursively defined as

tad =

{
taM if d atomic model M,

tar ′ if d network model N ′, r ′ resultant of N ′.

a.4.0.4 Output function

Each internal transition of the network is triggered by an internal tran-
sition of a component. The time to the next such an event is tar(sr). All
the components that schedule an internal transition at that time are called
imminent:

IMM = { d ∈ D | tad(sd) − ed = tar(sr) } = arg min
d∈D

tad(sd) − ed.

Of all the components d ∈ IN coupled to the network output, it is the im-
minent components IN ∩ IMM that determine the output at this particular
transition:

λ r(sr) =
⊎

d∈IN∩IMM

zd,N(λ d(sd)),

where the output function λ d of the component is again recursively defined,
and the union

⊎
is a sum of multisets.

a.4.0.5 Internal transitions

The internal transition function not only has to take internal transitions
of the imminent components into account, but also external transitions of
components triggered by output of the imminent components. Specifically,
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component d ∈ D receives input xb
d ∈ PXd from the imminent components

d ′ ∈ Id ∩ IMM \ {N}:

xb
d =

⊎
d ′∈Id∩IMM\{N}

zd ′,d(λ d ′(sd ′)).

Since the network state is defined component-wise, transitions also occur
component-wise. An internal transition changes the total state (sd, ed) 7→
(s ′d, e ′d). The transition depends on whether the component d is imminent
or not, and whether it receives input or not: the component undergoes an
internal, external, or confluent transition, or merely advances its elapsed
time:

r

δint(sr) = s
′
r,

(s ′d, e ′d) =


(δint

d(sd), 0) if d ∈ IMM, xb
d = ∅,

(δdcon(sd, xb
d), 0) if d ∈ IMM, xb

d 6= ∅,
(sd, ed + tar(sr)) if d /∈ IMM, xb

d = ∅,
(δext

d(sd, ed + ta(sr), xb
d), 0) if d /∈ IMM, xb

d 6= ∅.

a.4.0.6 External transitions

At times when there is not any internal transition, external input xb
r to the

network triggers an external transition of the network model. The absence of
a network internal transition implies the absence of component internal and
confluent transitions. Thus, all components d ∈ D coupled to the network in-
put (N ∈ Id), and actually receive input (zN,d(x

b
r) 6= ∅), undergo an external

transition. All other components merely advance their elapsed times:

r

δext(sr, er, xb
r) = s

′
r

(s ′d, e ′d) =

{
(δext

d(sd, ed + er, zN,d(x
b
r)), 0) if N ∈ Id ∧ zN,d(x

b
r) 6= ∅,

(sd, ed + er) otherwise.

a.4.0.7 Confluent transitions

A confluent transition of the network occurs when the network receives
external input xb

r at the time of an internal transition. Considering the def-
inition of the confluent transition function, the only change to the internal
transition function is that components d ∈ D coupled to the network input
(N ∈ Id) have possible additional external input zN,d(x

b
r). For each network

component d ∈ D, the confluent input function ζd : PXd → PXd simply adds
external input to the input xb

d the component receives from other network
components:

ζd(x
b
d) =

{
xb
d ] zN,d(x

b
r) if N ∈ Id,

xb
d otherwise.

By the multiset addition ], the confluent input function ensures hierarchical
consistency [8].
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Based on the internal transition function, the confluent transition function
only substitutes xb

d by ζd(xb
d):

δrcon(sr, x
b
r) = s

′
r

(s ′d, e ′d) =


(δint

d(sd), 0) if d ∈ IMM, ζd(xb
d) = ∅,

(δdcon(sd, ζd(xb
d)), 0) if d ∈ IMM, ζd(xb

d) 6= ∅,
(sd, ed + tar(sr)) if d /∈ IMM, ζd(xb

d) = ∅,
(δext

d(sd, ed + ta(sr), ζd(xb
d)), 0) if d /∈ IMM, ζd(xb

d) 6= ∅.

a.4.1 Generic transition function of a network model

The generic transition function δr of the resultant of a DEVS network
model is:

δr(sr, er, xb
r) = s

′
r

(s ′d, e ′d) =

{
(δd(sd, ed, ζd(xb

d)), 0) if d ∈ IMM ∨ ζd(x
b
d) 6= ∅,

(sd, ed + tar(sr)) otherwise.

MN = (XN, YN,Sr,
r

δint,
r

δext, δrcon, λ r, tar).

a.5 list of devs symbols

Table A.4: List of symbols for DEVS modeling and simulation.

Symbol Value / Domain Meaning
∅ = { } the empty set, or empty bag
∅̂ the nonevent
R the real numbers
R+
0 = [0,∞) =

{ x ∈ R : x > 0 }
the nonnegative real numbers

R0 = [0,∞] =

{ x ∈ R : x > 0 }∪ {∞ }

the extended nonnegative real numbers

M =

(X,S, Y, ta, λ , δint, δext, δcon)

DEVS model

X input set of a DEVS model
x ∈ X input event
Xb ={

xb : x ∈ xb ⇒ x ∈ X
} the set of all bags on X

xb ∈ Xb input bag
S set of states of a DEVS model
Y output set of a DEVS model
y ∈ Y output event
Yb ={

yb : y ∈ yb ⇒ y ∈ Y
} the set of all bags on Y

yb ∈ Yb output bag
Continued on next page
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Table A.4 – continued from previous page
Symbol Value / Domain Meaning
ta : S→ R0 time advancement function of a DEVS model
λ : S→ Yb output function of a DEVS model
δint : S→ S internal transition function of a DEVS model
e ∈ [0, ta (s)] time elapsed since the last state transition
Q =

{ (s, e) : s ∈ S, 0 6 e < ta (s) } ⊂
S×R0

set of total states of a DEVS model

Q =

{ (s, e) : s ∈ S, 0 6 e 6 ta (s) } ⊂
S×R0

closed set of total states of a DEVS model

δext : Q×Xb → S external transition function of a DEVS model
δcon : S×Xb → S confluent transition function of a DEVS model
t ∈ R+

0 absolute time
δ : Q×Xb → S generic transition function of a DEVS model
X set of input ports of a DEVS model with ports
Y set of output ports of a DEVS model with ports
p ∈ X∪Y input port or output port of a DEVS model with

ports
Xp input set for input port p of a DEVS model with

ports
Yp output set for output port p of a DEVS model with

ports
v ∈ Xp ∪ Yp input/output event at the input/output port p of

a DEVS model with ports
N = (XN, YN,D, I,Z) DEVS network model
XN input set of a network model
YN output set of a network model
D set of components of a network model
d ∈ D component of a network model
Id ⊂ D∪ {N } \ { d } set of influencers of component d of a network

model N
I =

{ Id ⊂ D∪ {N } \ { d } : d ∈ D∪ {N } }

family of sets of influencers

zd ′,d : Yb
d ′ → Xb

d coupling function of a network modelN, coupling
component d ′ output to component d input

zN,d : Xb
N → Xb

d coupling function of a network modelN, coupling
network input to component d input

zd ′,N : Yb
d ′ → Yb

N coupling function of a network modelN, coupling
component d ′ output to network output

Z =

{ zd ′,d : d ′ ∈ Id,d ∈ D∪ {N } }

set of coupling functions of a network model

T = R+
0 ×N0 time base for discrete-event simulation

x : T→ Xb ∪ { ∅̂ } input trajectory of a DEVS model
y : T→ Yb ∪ { ∅̂ } output trajectory of a DEVS model
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b.1 continuous and network transport spaces

Demand-driven directed transport (D3T) takes place in a physical space.
The mathematical model of such a transport space is a hemimetric space M with
a hemimetric d:

Definition B.1 (hemimetric space [145]). A hemimetric is a function d : M×
M→ R+

0 on a set M if
d(x, x) = 0 ∀x ∈M (reflexivity),
and if it satisfies the oriented triangular inequality
d(x, z) 6 d(x,y) + d(y, z)
for any x,y, z ∈M.
The space M endowed with the hemimetric d is a hemimetric space.

In particular, a hemimetric is a metric that does not need to be neither
discernible nor symmetric.

Definition B.2 (metric, semimetric, quasi-metric [145]). A metric is a hemimetric
which additionally satisfies
d(x,y) = 0⇒ x = y (identity of indiscernibles)
and
d(x,y) = d(y, x) (symmetry).
A semimetric is a hemimetric which is symmetric. It does not need to identify

indiscernibles.
A quasi-metric is a hemimetric which identifies indiscernibles. It does not need

to be symmetric.
The space M endowed with a metric (semimetric, quasi-metric) d is a metric

space (semimetric space, quasi-metric space).

Additionally, the transport space M shall be either “continuous” (geodesic),
or discrete (a network).

b.1.1 Geodesic hemimetric spaces

The following presentation is largely taken from Deza and Deza [145].
A geodesic hemimetric space has a strong intrinsic property: its hemimet-

ric as a measure of “direct” distance between any two points x and y equals
the length of the shortest path from x to y. The shortest path is also called a
geodesic directed segment.

Definition B.3 (geodesic hemimetric space). A geodesic hemimetric space
M is a hemimetric space for which any two distinct points x,y are connected by a
geodesic directed segment from x to y.

147
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x = γ(a) γ
γ(b) = y

Figure B.1: An example path in the Euclidian plane.

In particular, for any intermediary point z ∈ γ([0,d(x,y)]) on a geodesic di-
rected segment γ from x = γ(0) to y = γ(d(x,y)) we have d(x, z) + d(z,y) =
d(x,y).

Note that the geodesic directed segment joining two points need not be
unique. For example, consider antipodes on a sphere which are joined by
infinitely many great circles.

Definition B.4 (Path). Let x,y be two distinct points in a hemimetric space M. A
(directed) path is a left-continuous and injective function γ : I→M. The interval
I = [a,b] ⊂ R such that γ(a) = x and γ(b) = y.

Definition B.5 (Length of a path). Let γ : [a,b] → M be a (directed) path.
The length l(γ) ∈ R0 of γ is the supremum of the sums of the distances across
all directed line segments γ([ti, ti+1]). The supremum is taken over all finite de-
compositions a = t0 < t1 < . . . < tn = b of [a,b] (n ∈ N0): l(γ) =

supa=t0<t1<...<tn=b
∑n
i=1 d(γ(ti−1),γ(ti))

By the triangle inequality holding for the hemimetric d, the length of the
directed path γ from γ(a) to γ(b) is at least the (direct) distance between
these points: l(γ) > d(γ(a),γ(b)).

The length does not depend on the parametrization: Let γ̃ : Ĩ = [ã, b̃] →
γ(I) and γ : I → γ(I) be two directed paths with the same image γ(I) ⊂ M,
and the same direction, i.e. γ̃(ã) = γ(a), γ̃(b̃) = γ(b). Then we regard γ̃ and
γ as the same path, only with different parametrizations γ(t̃),γ(t).

Definition B.6 (Rectifiable path and normalized path). A (directed) path γ
with finite length l(γ) ∈ R+

0 is called rectifiable. For such a rectifiable path γ :

[a,b] → M, we define the natural parameter by s = s(t) = l(γ|[a,a+t]), such
that s(a) = 0, s(b) = l(γ). We refer to a path with this natural parametrization
γ = γ(s) : [0, l(γ)]→M as normalized or of unit speed: since the path segment
γ([t, t ′]) for any t, t ′ ∈ [0, l(γ)] is of length l(γ|[t,t ′]) = |t ′ − t|.

Finally, we arrive at the definition for a geodesic directed segment:

Definition B.7 (Geodesic directed segment). Let x,y be two distinct points in
a hemimetric space M. A geodesic directed segment or shortest directed path
from x to y is a normalized directed path γ : [0,d(x,y)] → M from x = γ(0) to
y = γ(d(x,y)) with length l(γ) = d(x,y).

b.1.1.1 Examples

In particular, the Euclidian space Rn with the standard metric d(x,y) =√∑n
i=1(yi − xi)

2 is a geodesic metric space for all n ∈ N. In contrast, the
n-sphere Sn = {x ∈ Rn+1|

∑n+1
i=1 xi = 1} with the standard metric d|Sn
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dR2x

ydS1

S1

Figure B.2: The circle is a geodesic metric space under the spherical metric that
measures lengths of arcs. It is not under the Euclidian metric which
measures lengths of chords.
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Figure B.3: A sample weighted directed digraph with 6 vertices.

restricted to Sn is still path-connected, but not geodesic: Take the border of
the unit circle S1, shortest paths on which are clearly longer as the “direct”
shortcut through the inner of the circle.

Nevertheless, Sn with the spherical metric dSn(x,y) = arccos|
∑n+1
i=1 xiyi| is

a geodesic metric space, since dSn(x,y) is the length of the great circle arc
(which are the shortest paths in spheres) joining x and y.

b.1.2 Digraphs

Definition B.8 (Weighted digraph [229]). A weighted directed graph or weighted
digraph G = (V ,E,ω) has a finite set of vertices V , a finite set of directed edges
or arcs E ⊂ V ×V and a mappingω : E→ R+

0 which assigns a nonnegative weight
ω(e) to each arc e.

The digraph is simple if it does not contain any loops (∀v : (v, v) /∈ E), nor any
multiple arcs (E is a set, not a multiset).

Definition B.9 (Path [229]). A path in a digraph G = (V ,E,ω) from vertex v1 to
vertex vn is a finite alternating sequence v1e1v2e2v3 · · · vn−1en−1vn of vertices

1
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Figure B.4: A sample path from vertex 6 to vertex 4 in the sample digraph (bold
vertices and arcs).
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Figure B.5: Removing vertex 5 transforms the sample digraph into a network.
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Figure B.6: Shortest path of length 5 from vertex 6 to vertex 4 in the sample net-
work.

vi ∈ V , i ∈ { 1, . . . ,n } and arcs ei ∈ E, i ∈ { 1, . . . ,n− 1 } for some n ∈ N, such
that ei = (vi, vi+1) ∀i ∈ { 1, . . . ,n− 1 } and all vertices are pairwise distinct.

If a path from vertex v to vertex v ′ exists, we say that v ′ is reachable from v.

Definition B.10 (Strongly connected digraph [229]). A digraph G = (V ,E,ω) is
strongly connected if every vertex is reachable from any other vertex.

b.1.3 Networks

While geodesic metric spaces allow for continuous movements along geodesic
segments, networks are discrete metric spaces which only allow jumps along
paths of links (arcs) between their elements (nodes or vertices).

Definition B.11 (Network). A network G = (V ,E,ω) is a weighted digraph
which is simple and strongly connected.

The network is undirected, if ∀e = (v, v ′) ∈ E : e ′ = (v ′, v) ∈ E,ω(e ′) =

ω(e).

Definition B.12 (path length, shortest path). In a network (V ,E,ω), the length
of a path (v ≡ v1e1v2 · · · vn−1en−1vn ≡ v ′) (for some n) from v to v ′ is the arc
weight sum

∑n−1
i=1 ω(ei) along the path.

A shortest path from the source vertex v to the sink vertex v ′ is a path (v ≡
v1e1v2 · · · vn−1en−1vn ≡ v ′) (for some n) of minimal length of all paths from v

to v ′.
The symbol dvv ′ denotes the length of a shortest path from v to v ′.

Now all is set to endow each network G = (V ,E,ω) with a network-
specific hemimetric

dG(v, v ′) = min
paths(ve1v2···vn−1en−1v ′),n∈N

n−1∑
i=1

ω(ei),
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yielding a hemimetric space.
It is easy to show that for any intermediary vertex u along a shortest path

from v to v ′, we have

d(v,u) + d(u, v ′) = d(v, v ′).

Note that contrary to geodesic directed segments in geodesic hemimetric
spaces, which consist of infinitely many points, a shortest path in a network
only contains a finite number of vertices. Hence, for almost all numbers
σ ∈ [0,d(v, v ′)], there is not any intermediary vertex u such that σ = d(u, v ′)
(σ being the remaining time to v ′).

b.1.4 Intermediary positions

The intermediary position function ν(v, ṽ,σ) returns the nearest intermediary
element u of the transport space M along the geodesic directed segment or
shortest path γ from v to ṽ, with remaining time to destination σ ∈ [0,d(v, ṽ)]:

ν(v, ṽ,σ) = arg max
u∈γ:d(u,ṽ)6σ

d(u, ṽ).

The time-to intermediary position function θ(v, ṽ,σ) returns the time to the near-
est intermediary element u:

θ(v, ṽ,σ) = σ− d(ν(v, ṽ,σ), ṽ).

For geodesic transport spaces, the intermediary point u is the current posi-
tion on the geodesic directed segment γ, with σ = d(u, ṽ) such that θ(v, ṽ,σ) ≡
0.

For networks, the intermediary vertex u on the shortest path γ = (ve1v2 · · · vn−1en−1ṽ)
(for some n) is vk with k such that d(vk, ṽ) 6 σ and d(vk−1, ṽ) > σ. In other
words, the intermediary vertex is the next vertex to jump to along the path,
with remaining jump time θ(v, ṽ,σ).

b.2 list of d3t symbols

Symbol Value/Domain Meaning
∅ = { } the empty set
F(·) set of the finite or empty subsets of a set ·
N = { 1, 2, 3, . . . } the natural numbers
N = N∪ {∞ } the extended natural numbers
R+
0 = [0,∞) =

{ x ∈ R : x > 0 }
non-negative real numbers

R+ = (0,∞) =

{ x ∈ R : x > 0 }

positive real numbers

t ∈ R+
0 time

M transport space
d : M×M→ R+

0 transport space hemimetric
Continued on next page
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Table B.7 – continued from previous page
Symbol Value/Domain Meaning
γ : [0,d(x,y)]→M geodesic directed segment between x ∈M and y ∈M

V set of vertices of a digraph
v ∈ V vertex in a digraph
E ⊂ V × V set of arcs of a digraph
e ∈ E arc in a digraph
ω : E→ R+

0 weight function of a digraph
G = (V ,E,ω) network
dvv ′ ∈ R+

0 length of a shortest path from vertex v to vertex v ′

in a network
dG : V × V → R+

0 network hemimetric of shortest paths
ṽ ∈M scheduled transporter destination
σ ∈ R+

0 remaining travel time to scheduled destination
ν(v, ṽ,σ) ∈M intermediary position function
θ(v, ṽ,σ) ∈ [0,σ] time-to intermediary position function
L set of loads
l ∈ N load index
# ∈M origin of a load
� ∈M destination of a load
tl ∈ R+

0 arrival epoch of load l
t

p
l > tl pick-up epoch of load l
td
l > t

p
l delivery epoch of load l

Σ set of load sources
σ ∈ Σ load source of a load
(T,Y) = { (Tn, Yn) ,n ∈N } load arrival process
Tn R+ random variable of the arrival epoch of the n-th

load
Yn Σ×M×M∪ {∇ } random variable of the mark of the n-th load
∇ the irrelevant mark
N ∈ N number of transporters in a D3T model
i ∈ { 1, . . . ,N } transporter index
Ci ∈N capacity of transporter i
v0i ∈M initial position of transporter i
v ∈M transporter position
L ∈ F(L) transporter payload
w(t) ∈ R+

0 transporter waiting time to arrive at next position
v(t)

P ∈ F(L) pick-up set in a transporter job
D ∈ F(L) delivery set in a transporter job
j = (P, v,D) transporter job
P̃ ∈ F(L) set of loads scheduled for pick-up
D̃ ∈ F(L) set of loads scheduled for delivery
j̃ = (P̃, ṽ, D̃) scheduled transporter job
Q = (j̃n)n transporter queue
τP(v,P) ∈ R+

0 transporter pick-up period function
τD(v,D) ∈ R+

0 transporter delivery period function
c ∈ { 0, 1 } Boolean transporter cancel status

Continued on next page
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Table B.7 – continued from previous page
Symbol Value/Domain Meaning
M ∈ { I, ∗, P, T, D, † } transporter mode
I transporter idle mode
∗ transporter job start pseudo-mode
P transporter pick-up mode
T transporter travel mode
D transporter delivery mode
† transporter job end pseudo-mode
D dispatching policy
M =(

(M,d),Σ, (T,Y) ,N, {Ci }
N
i=1 ,

{
v0i
}N
i=1

, τP, τD, DD,O
)D3T model

DD ∈ D̂ dispatcher model with dispatching policy D

D̂ dispatcher class
O =

{
Oj
}
j

set of observer models
O ∈ Ô observer model
Ô observer class





C S C I E N T I F I C C O M P U T I N G C O D E

c.1 computational environment

Listing C.1: environment.yml, available online at https://gitlab.gwdg.de/asorge/
diss17/blob/pub/environment.yml

name: diss17

channels:

- conda-forge

- defaults

dependencies:

- cairo=1.14.6=4

- fontconfig=2.12.1=4

- freetype=2.7=1

- gettext=0.19.7=1

- glib=2.51.4=0

- icu=58.1=1

- jupyter_contrib_core=0.3.0=py36_1

- jupyter_contrib_nbextensions=0.2.6=py36_0

- jupyter_highlight_selected_word=0.0.11=py36_0

- jupyter_latex_envs=1.3.8.2=py36_1

- jupyter_nbextensions_configurator=0.2.4=py36_0

- libpng=1.6.28=0

- libtiff=4.0.6=7

- matplotlib=2.0.1=np112py36_0

- openjpeg=2.1.2=2

- pandoc=1.19.2=0

- pixman=0.34.0=0

- poppler=0.52.0=2

- poppler-data=0.4.7=0

- psutil=5.2.1=py36_0

- qt=5.6.2=2

- appdirs=1.4.0=py36_0

- bleach=1.5.0=py36_0

- cloudpickle=0.2.2=py36_0

- curl=7.52.1=0

- cycler=0.10.0=py36_0

- dbus=1.10.10=0

- decorator=4.0.11=py36_0

- entrypoints=0.2.2=py36_1

- expat=2.1.0=0

- future=0.16.0=py36_1

- git=2.11.1=0

- gitdb2=2.0.0=py36_0

- gitpython=2.1.3=py36_0

- gst-plugins-base=1.8.0=0

- gstreamer=1.8.0=0

- h5py=2.7.0=np112py36_0

- hdf5=1.8.17=1

- html5lib=0.999=py36_0

- ipykernel=4.6.0=py36_0
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- ipyparallel=6.0.2=py36_0

- ipython=5.3.0=py36_0

- ipython_genutils=0.2.0=py36_0

- ipywidgets=6.0.0=py36_0

- jinja2=2.9.6=py36_0

- jpeg=9b=0

- jsonschema=2.5.1=py36_0

- jupyter=1.0.0=py36_3

- jupyter_client=5.0.1=py36_0

- jupyter_console=5.1.0=py36_0

- jupyter_core=4.3.0=py36_0

- libffi=3.2.1=1

- libgcc=5.2.0=0

- libgfortran=3.0.0=1

- libiconv=1.14=0

- libsodium=1.0.10=0

- libxcb=1.12=1

- libxml2=2.9.4=0

- markupsafe=0.23=py36_2

- mistune=0.7.4=py36_0

- mkl=2017.0.1=0

- mpmath=0.19=py36_1

- nbconvert=5.1.1=py36_0

- nbformat=4.3.0=py36_0

- networkx=1.11=py36_0

- notebook=5.0.0=py36_0

- numpy=1.12.1=py36_0

- openssl=1.0.2k=1

- pandas=0.19.2=np112py36_1

- pandocfilters=1.4.1=py36_0

- path.py=10.1=py36_0

- pcre=8.39=1

- pexpect=4.2.1=py36_0

- pickleshare=0.7.4=py36_0

- pip=9.0.1=py36_1

- prompt_toolkit=1.0.14=py36_0

- ptyprocess=0.5.1=py36_0

- pygments=2.2.0=py36_0

- pyparsing=2.1.4=py36_0

- pyqt=5.6.0=py36_2

- python=3.6.1=0

- python-dateutil=2.6.0=py36_0

- pytz=2017.2=py36_0

- pyyaml=3.12=py36_0

- pyzmq=16.0.2=py36_0

- qtconsole=4.3.0=py36_0

- readline=6.2=2

- scipy=0.19.0=np112py36_0

- seaborn=0.7.1=py36_0

- setuptools=27.2.0=py36_0

- simplegeneric=0.8.1=py36_1

- sip=4.18=py36_0

- six=1.10.0=py36_0

- smmap2=2.0.1=py36_0

- sqlite=3.13.0=0

- sympy=1.0=py36_0

- terminado=0.6=py36_0

- testpath=0.3=py36_0

- tk=8.5.18=0

- tornado=4.4.2=py36_0
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- traitlets=4.3.2=py36_0

- wcwidth=0.1.7=py36_0

- wheel=0.29.0=py36_0

- widgetsnbextension=2.0.0=py36_0

- xz=5.2.2=1

- yaml=0.1.6=0

- zeromq=4.1.5=0

- zlib=1.2.8=3

- pip:

- devs==0.1.8

- doit==0.30.3

- fssa==0.7.6

- git+ssh://git@gitlab.gwdg.de/pycnic/pytemper@0.3.2#egg=pytemper

- pyinotify==0.9.6

- scikits.bootstrap==0.3.2

- yapf==0.16.1

- git+ssh://git@gitlab.gwdg.de/d3t/pyd3t@v0.2.2#egg=d3t

c.2 d3t python package

pyd3t version: 0.2.2

Listing C.2: d3t/loadsource.py

'''

3 Copyright 2014 The pyd3t Developers

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

8

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

13 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

'''

18

import itertools

import devs

from d3t import RequestEvent

23 from d3t.components import LoadSourceClass

class LoadSourceModel(LoadSourceClass):

28 MODEL_INPUT_CLASS = set()

MODEL_OUTPUT_CLASS = set(['request'])

new_load = itertools.count()
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33 def __init__(self, generator):

"""

generator must yield tuples of length 3

[0]: inter-arrival time

[1]: origin

38 [2]: destination

"""

self._preloads = []

self._next_preload = None

self._generator = generator

43 self.internal_transition()

def output(self):

ret = []

for preload in self._preloads:

48 load = next(LoadSourceModel.new_load)

ret.append(

RequestEvent(load, preload[1], preload[2])

)

return ret

53

def time_advance(self):

if self._preloads:

return self._preloads[0][0]

else:

58 return devs.infinity

def internal_transition(self):

self._preloads = []

if self._next_preload:

63 self._preloads.append(self._next_preload)

self._next_preload = None

while True:

try:

68 preload = next(self._generator)

except StopIteration:

break

if preload[0] > 0.0:

if self._preloads:

73 self._next_preload = preload

else:

self._preloads.append(preload)

break

else:

78 self._preloads.append(preload)

continue

def external_transition(self, elapsed_time, input_events):

raise RuntimeError(

83 "Load source external transition should not be called"

)

def confluent_transition(self, input_events):

self.internal_transition()

88 self.external_transition(0.0, input_events)

Listing C.3: d3t/transporter.py
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# -*- coding: utf-8 -*-

2

'''

Copyright 2014-2015 The pyd3t Developers

7 Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

12

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

17 limitations under the License.

'''

import itertools

22 import logging

from collections import deque

import d3t

import devs

27 from d3t.components import TransporterClass

class TransporterModel(TransporterClass):

32 MODEL_OUTPUT_CLASS = set([

'init',

'jobstart',

'pickup',

'departure',

37 'arrival',

'delivery',

'jobend',

'emptyqueue',

])

42 MODEL_INPUT_CLASS = set(['submit', 'cancel'])

HAS_PICKUP_PHASE = False

HAS_DELIVERY_PHASE = False

47 new_job_id = itertools.count()

def __init__(

self, space, id, position,

pickup_period_function=None,

52 delivery_period_function=None,

):

"""

Construct new Transporter instance.

57 Parameters

----------

space
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Transport space

62

"""

self._logger = logging.getLogger(

'd3t.' + self.__class__.__name__ + '.{}'.format(id)

)

67 self._logger.debug('Set up logging.')

self._space = space

self._id = id

self._position = position

self._ita = 0.0

72 self.HAS_INITIAL_PHASE = (

'init' in self.OUTPUT_PORTS

or 'emptyqueue' in self.OUTPUT_PORTS

)

self._pickup_period_function = pickup_period_function

77 self._delivery_period_function = delivery_period_function

self.HAS_PICKUP_PHASE = (pickup_period_function is not None)

self.HAS_DELIVERY_PHASE = (delivery_period_function is not None)

self._initial = self.HAS_INITIAL_PHASE

self._idle = not self.HAS_INITIAL_PHASE

82 self._pickup = False

self._travel = False

self._delivery = False

self._cancel = False

self._payload = set()

87 self._scheduled_pickup_set = set()

self._scheduled_destination = position

self._scheduled_delivery_set = set()

self._queue = deque()

self._current_job_id = None

92 self._next_job_id = next(TransporterModel.new_job_id)

def _is_delivery_imminent(self):

ret = bool(

self._travel and self._scheduled_delivery_set and not self._cancel

97 )

self._logger.debug('Delivery imminent: {}'.format(ret))

return ret

def _is_delivery(self):

102 ret = (

self._delivery if self.HAS_DELIVERY_PHASE

else self._is_delivery_imminent()

)

self._logger.debug('Delivery: {}'.format(ret))

107 return ret

def _is_job_end(self):

ret = (

(self._pickup and self._cancel)

112 or

(self._travel and not self._is_delivery_imminent())

or

self._is_delivery()

) if self.HAS_DELIVERY_PHASE else self._travel

117 self._logger.debug('Job end: {}'.format(ret))

return ret
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def _is_job_start(self):

ret = bool(

122 self._queue and (self._is_job_end() or self._idle)

)

self._logger.debug('Job start: {}'.format(ret))

return ret

127 def _next_pickup_set(self):

ret = (

self._queue[0][0] if self._is_job_start()

else self._scheduled_pickup_set

)

132 self._logger.debug('Next pick-up set: {}'.format(ret))

return ret

def _is_pickup_imminent(self):

ret = bool(

137 self._next_pickup_set() if self._is_job_start() else False

)

self._logger.debug('Pick-up imminent: {}'.format(ret))

return ret

142 def _is_pickup(self):

ret = (

self._pickup if self.HAS_PICKUP_PHASE

else self._is_pickup_imminent()

)

147 self._logger.debug('Pick-up: {}'.format(ret))

return ret

def _is_travel_imminent(self):

ret = (

152 (self._is_job_start() and not self._is_pickup_imminent())

or

(self._pickup and not self._cancel)

) if self.HAS_PICKUP_PHASE else self._is_job_start()

self._logger.debug('Pick-up imminent: {}'.format(ret))

157 return ret

def internal_transition(self):

self._logger.debug('Internal transition')

162

if self.HAS_INITIAL_PHASE:

if self._initial:

self._initial = False

self._idle = True

167 self._logger.info('INITIAL -> IDLE')

return

delivery_imminent = self._is_delivery_imminent()

delivery = self._is_delivery()

172 job_end = self._is_job_end()

job_start = self._is_job_start()

next_pickup_set = self._next_pickup_set()

pickup_imminent = self._is_pickup_imminent()

pickup = self._is_pickup()

177 travel_imminent = self._is_travel_imminent()

# FROM transition
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if pickup:

self._payload |= next_pickup_set

182 self._logger.info('Pick-up loads {}, new payload: {}'.format(

next_pickup_set, self._payload

))

if self._travel:

187 self._position = self._scheduled_destination

self._logger.info('Arrive at position {}'.format(self._position))

if delivery:

self._payload -= self._scheduled_delivery_set

192 self._logger.info('Deliver loads {}, new payload: {}'.format(

self._scheduled_delivery_set, self._payload

))

# NEXTJOB transition

197 if job_start:

next_job = self._queue.popleft()

(

self._scheduled_pickup_set,

self._scheduled_destination,

202 self._scheduled_delivery_set,

) = next_job

self._current_job_id = self._next_job_id

self._next_job_id = next(TransporterModel.new_job_id)

self._logger.info(

207 'Start new job {}: {}'.format(self._current_job_id, next_job)

)

# TO transition

if self.HAS_PICKUP_PHASE and pickup_imminent:

212 self._ita = self._pickup_period_function(

self._position,

self._scheduled_pickup_set

)

self._pickup = True

217 self._idle = self._travel = self._delivery = False

self._cancel = False

return

if travel_imminent:

222 self._ita = self._space.distance(

self._position, self._scheduled_destination

)

self._travel = True

self._idle = self._pickup = self._delivery = False

227 self._cancel = False

self._logger.info('-> TRAVEL to destination {}, ETA {}'.format(

self._scheduled_destination,

self._ita

))

232 return

if self.HAS_DELIVERY_PHASE and delivery_imminent:

self._ita = self._delivery_period_function(

self._position,

237 self._scheduled_delivery_set

)

self._delivery = True
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self._travel = False

return

242

if job_end and not self._queue:

self._ita = devs.infinity

self._idle = True

self._pickup = self._travel = self._delivery = False

247 self._cancel = False

self._logger.info('-> IDLE')

return

raise RuntimeError("Transporter delta_int error")

252

def external_transition(self, elapsed_time, input_events):

self._ita = max(self._ita - elapsed_time, 0.0)

257 if 'cancel' in self.INPUT_PORTS:

# look for cancel event

for event in input_events:

if event.type == 'cancel':

# received cancel event

262 self._cancel = True

self._queue.clear()

if self._travel:

self._scheduled_destination, self._ita = (

self._space.intermediate_point(

267 self._position,

self._scheduled_destination,

self._ita

)

)

272

# look for exactly one submit event

for event in input_events:

if event.type == 'submit':

jobs = event[1]

277 if event[2]: # replace?

self._queue.clear()

self._queue.extend(jobs)

def confluent_transition(self, input_events):

282 self.internal_transition()

self.external_transition(0.0, input_events)

def output(self):

287 ret = list()

current_position = (

self._scheduled_destination if self._travel else self._position

)

292

next_destination = (

self._queue[0][1]

if self._is_job_start() and self._is_travel_imminent()

else self._scheduled_destination

297 )

current_payload = set()
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if {'jobstart', 'jobend'} & self.OUTPUT_PORTS:

if (

302 ('jobstart' in self.OUTPUT_PORTS and self._is_job_start())

or

('jobend' in self.OUTPUT_PORTS and self._is_job_end())

):

current_payload |= self._payload

307

if self._is_delivery():

current_payload -= self._scheduled_delivery_set

if self.HAS_PICKUP_PHASE and self._pickup:

312 current_payload |= self._scheduled_pickup_set

if 'init' in self.OUTPUT_PORTS and self._initial:

ret.append(d3t.InitEvent(self._id, current_position))

317 if 'jobstart' in self.OUTPUT_PORTS and self._is_job_start():

ret.append(d3t.JobstartEvent(self._id, self._next_job_id))

if 'pickup' in self.OUTPUT_PORTS and self._is_pickup():

job_id = (

322 self._next_job_id

if self._is_job_start()

else self._current_job_id

)

ret.append(d3t.PickupEvent(

327 self._id, job_id, self._next_pickup_set()

))

if 'departure' in self.OUTPUT_PORTS and self._is_travel_imminent():

job_id = (

332 self._next_job_id

if self._is_job_start()

else self._current_job_id

)

ret.append(d3t.DepartureEvent(

337 self._id, job_id, next_destination, self._space.distance(

current_position, next_destination

)

))

342 if 'arrival' in self.OUTPUT_PORTS and self._travel:

ret.append(d3t.ArrivalEvent(

self._id, self._current_job_id, self._scheduled_destination

))

347 if 'delivery' in self.OUTPUT_PORTS and self._is_delivery():

ret.append(d3t.DeliveryEvent(

self._id, self._current_job_id, self._scheduled_delivery_set

))

352 if 'jobend' in self.OUTPUT_PORTS and self._is_job_end():

ret.append(d3t.JobendEvent(self._id, self._current_job_id))

if 'emptyqueue' in self.OUTPUT_PORTS:

if (

357 (self._is_job_end() and not self._queue)

or self._initial

):
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ret.append(d3t.EmptyqueueEvent(self._id))

362 self._logger.info('Output events {}'.format(ret))

return ret

def time_advance(self):

if self._idle:

367 return 0.0 if self._queue else devs.infinity

if self.HAS_INITIAL_PHASE and self._initial:

return 0.0

return self._ita

Listing C.4: d3t/dispatchers/myopic_taxi_fcfs_nearest_transporter_dispatcher.py

# -*- coding: utf-8 -*-

# Copyright 2015 The pyd3t Developers

#

5 # Licensed under the Apache License, Version 2.0 (the "License");

# you may not use this file except in compliance with the License.

# You may obtain a copy of the License at

#

# http://www.apache.org/licenses/LICENSE-2.0

10 #

# Unless required by applicable law or agreed to in writing, software

# distributed under the License is distributed on an "AS IS" BASIS,

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

# See the License for the specific language governing permissions and

15 # limitations under the License.

import copy

import logging

from collections import deque, namedtuple

20

import d3t

import devs

from d3t.components import DispatcherClass

from d3t.events import events_dict, Job

25

class MyopicTaxiFCFSNearestTransporterDispatcherModel(DispatcherClass):

MODEL_OUTPUT_CLASS = set([

30 'submit', 'assign', 'busy', 'idle'

])

MODEL_INPUT_CLASS = set([

'request', 'init', 'arrival', 'emptyqueue'

])

35

Request = namedtuple(

typename='Request',

field_names=['load', 'origin', 'destination'],

)

40

Assignment = namedtuple(

typename='Assignment',

field_names=['load', 'transporter', 'origin', 'destination'],

)
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45

def __init__(self, space):

self._space = space

self._positions = dict()

self._pending_requests = deque()

50 self._idle_transporters = set()

self._new_idle_transporters = set()

self._new_transporters = set()

self._assignments = list()

55 self._logger = logging.getLogger('d3t.' + self.__class__.__name__)

self._logger.debug('Set up logging.')

def __str__(self):

return (

60 "Myopic Taxi FCFS Nearest-Transporter (MTFN)"

)

def _assigned_transporters(self):

"""

65 Return the set of transporters in self._assignments

"""

return {

assignment.transporter

for assignment in self._assignments

70 }

def time_advance(self):

return (

0.0 if self._new_idle_transporters or self._assignments

75 else devs.infinity

)

def output(self):

ret = []

80

if 'submit' in self.OUTPUT_PORTS:

ret.extend(

d3t.SubmitEvent(

transporter=assignment.transporter,

85 jobs=[

Job(

pickup=set(),

destination=assignment.origin,

deliver=set()

90 ),

Job(

pickup={assignment.load},

destination=assignment.destination,

deliver={assignment.load},

95 )

],

replace=False,

)

for assignment in self._assignments

100 )

if 'assign' in self.OUTPUT_PORTS:

ret.extend(

d3t.AssignEvent(
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105 load=assignment.load,

transporter=assignment.transporter,

)

for assignment in self._assignments

)

110

if 'busy' in self.OUTPUT_PORTS:

transporters = (

self._assigned_transporters() & (

(

115 self._idle_transporters

- self._new_idle_transporters

)

|

self._new_transporters

120 )

)

ret.extend(

d3t.BusyEvent(transporter=transporter)

for transporter in transporters

125 )

if 'idle' in self.OUTPUT_PORTS:

transporters = (

self._new_idle_transporters

130 - self._assigned_transporters()

)

ret.extend(

d3t.IdleEvent(transporter) for transporter in transporters

)

135

self._logger.info('Output events {}'.format(ret))

return ret

def _internal_transition_idle_transporters(self):

140 self._logger.info('Clear idle transporters')

self._idle_transporters -= self._assigned_transporters()

self._logger.info('Idle transporters: {}'.format(

145 self._idle_transporters

))

self._new_idle_transporters.clear()

self._new_transporters.clear()

150

def _internal_transition_assignments(self):

self._logger.info('Clear assignments')

del self._assignments[:]

155 def internal_transition(self):

# idle transporters

self._internal_transition_idle_transporters()

160 # assignments

self._internal_transition_assignments()

def _external_transition_init(self, input_events):

self._new_transporters = {event.transporter for event in input_events}
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165 self._positions.update({

event.transporter: event.position for event in input_events

})

self._logger.info('Add transporters: {}'.format(

self._new_transporters

170 ))

def _external_transition_arrival(self, input_events):

self._positions.update({

175 event.transporter: event.position for event in input_events

})

def _external_transition_request(self, input_events):

180 for event in input_events:

self._pending_requests.append(

self.Request(

load=event.load,

origin=event.origin,

185 destination=event.destination,

)

)

def _external_transition_emptyqueue(self, input_events):

190 self._new_idle_transporters = {

event.transporter for event in input_events

}

self._idle_transporters |= self._new_idle_transporters

195 self._logger.info('New idle transporters: {}'.format(

self._new_idle_transporters

))

def _match_transition(self):

200

# only execute this function if there are idle transporters AND pending

# requests to match

if not self._idle_transporters or not self._pending_requests:

return

205

# make a copy of idle transporters

remaining_idle_transporters = copy.copy(self._idle_transporters)

while remaining_idle_transporters and self._pending_requests:

210

# match next request

request = self._pending_requests.popleft()

# function to return the distance to the load origin

215 def distance_to_load_origin(transporter):

return self._space.distance(

self._positions[transporter], request.origin

)

220 # implement the argmin

nearest_transporter = min(

remaining_idle_transporters,

key=distance_to_load_origin

)
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225

# match request with nearest transporter

self._assignments.append(

self.Assignment(

load=request.load,

230 transporter=nearest_transporter,

origin=request.origin,

destination=request.destination,

)

)

235 remaining_idle_transporters.remove(nearest_transporter)

def external_transition(self, elapsed_time, input_events):

events = events_dict(input_events)

240

# init transition

self._external_transition_init(events['init'])

# arrival transition

245 self._external_transition_arrival(events['arrival'])

# request transition

self._external_transition_request(events['request'])

250 # emptyqueue transition

self._external_transition_emptyqueue(events['emptyqueue'])

# match transition

self._match_transition()

255

def confluent_transition(self, input_events):

self.internal_transition()

self.external_transition(0.0, input_events)

c.3 devs python package

pydevs version: 0.1.8

Listing C.5: devs/devs.pyx, available online at https://github.com/andsor/

pydevs/blob/v0.1.8/devs/devs.pyx

'''

2

Copyright 2014 The pydevs Developers

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

7 You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

12 distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

https://github.com/andsor/pydevs/blob/v0.1.8/devs/devs.pyx
https://github.com/andsor/pydevs/blob/v0.1.8/devs/devs.pyx
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limitations under the License.

17 '''

from cpython.ref cimport PyObject, Py_INCREF, Py_XINCREF, Py_CLEAR, Py_DECREF

cimport cython.operator as co

cimport cadevs

22 import logging

import sys

import warnings

logger = logging.getLogger(__name__)

27

ctypedef cadevs.PythonObject PythonObject

ctypedef cadevs.Time Time

ctypedef cadevs.Port Port

ctypedef cadevs.CPortValue CPortValue

32 ctypedef cadevs.IOBag CIOBag

ctypedef cadevs.IOBagIterator CIOBagIterator

ctypedef cadevs.CDevs CDevs

ctypedef cadevs.Components CComponents

ctypedef cadevs.ComponentsIterator CComponentsIterator

37

infinity = sys.float_info.max

cdef class IOBag:

42 """

Python extension base type that wraps an existing C++ I/O bag

For constant bags, only the internal pointer _thisconstptr is used.

For non-const bags, both internal pointers _thisconstptr and _thisptr are

47 used.

"""

cdef CIOBag* _thisptr

cdef const CIOBag* _thisconstptr

cdef bint _is_const

52

cpdef unsigned int size(self):

return self._thisconstptr.size()

cpdef bint empty(self):

57 return self._thisconstptr.empty()

def __iter__(self):

"""

Generator to iterate over elements in bag

62

http://docs.python.org/3/library/stdtypes.html#generator-types

Return (port, value) tuples upon each iteration

"""

67

# get first and last element

cdef CIOBagIterator it = self._thisconstptr.begin()

cdef CIOBagIterator end = self._thisconstptr.end()

72 cdef const CPortValue* pv

while it != end:
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pv = &co.dereference(it)

yield pv.port, <object>(pv.value)

77 co.preincrement(it)

cdef object CreateOutputBag(CIOBag* bag):

"""

82 Create a new Python object output bag wrapped around an existing C++ I/O

bag

http://stackoverflow.com/a/12205374/2366781

"""

output_bag = OutputBag()

87 output_bag._thisptr = bag

output_bag._thisconstptr = bag

output_bag._is_const = False

return output_bag

92

cdef class OutputBag(IOBag):

"""

Python extension type that wraps an existing C++ I/O bag

97 To construct an instance in Cython, use the CreateOutputBag factory

function.

When inserting port/values, increase the reference counter for Python

objects.

102 """

cpdef insert(self, int port, object value):

pyobj = <PythonObject>value

self._thisptr.insert(CPortValue(port, pyobj))

107 Py_XINCREF(pyobj)

cdef object CreateInputBag(const CIOBag* bag):

"""

112 Create a new Python object input bag wrapped around an existing C++ I/O bag

http://stackoverflow.com/a/12205374/2366781

"""

input_bag = InputBag()

input_bag._thisconstptr = bag

117 input_bag._is_const = True

return input_bag

cdef class InputBag(IOBag):

122 """

Python extension type that wraps an existing C++ I/O bag

"""

pass

127

cdef class AtomicBase:

"""

Python extension type, base type for DEVS Atomic Model

132 Python modules subclass this type and overwrite the methods

How does it work?
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-----------------

137 When initialized, the constructor (__init__) creates a new instance

of the underlying C++ wrapper class Atomic (defined in the C++ header

file).

The C++ wrapper class Atomic inherits from adevs::Atomic and implements

all the virtual functions.

142 The C++ wrapper instance receives the function pointers to the cy_*
helper functions defined here, as well as a pointer to the Python extension

type instance.

Whenever adevs calls one of the virtual functions of the C++ wrapper

instance, the C++ wrapper instance routes it via the function pointer to

147 the corresponding cy_* helper function.

The cy_* helper function calls the corresponding method of the instance of

the Python extension type.

http://stackoverflow.com/a/12700121/2366781

152 https://bitbucket.org/binet/cy-cxxfwk/src

Reference counting

------------------

157

When initialized, the constructor (__init__) creates a new instance of the

underlying C++ wrapper class Atomic (defined in the C++ header file).

Upon adding the model to a Digraph, the Digraph increases the reference

count to this Python object, and decreases the reference count upon

162 destruction.

Note that the adevs C++ Digraph instance assumes ownership of the C++

wrapper instances.

The C++ Digraph instance deletes all C++ wrapper instances upon destruction.

So the Python object might still exist even though the C++ wrapper

167 instance is long gone.

When adevs deletes the C++ wrapper instance, the Python object is not

deleted, when it is still referenced in the Python scope, but we can live

with that.

172

Input/output

------------

The port type is integer.

The value type is a generic Python object.

177 This Python wrapper class abstracts away the underlying adevs C++ PortValue

type.

adevs creates (copies) the C++ PortValue instance.

https://github.com/smiz/adevs/blob/aae196ba660259ac32fc254bad810f4b4185d52f/

include/adevs_digraph.h#L194

182 https://github.com/smiz/adevs/blob/aae196ba660259ac32fc254bad810f4b4185d52f/

include/adevs_bag.h#L156

The only interface we need is to iterate over input (InputBag) in delta_ext

and delta_conf, and to add output events (OutputBag) in output_func.

Adding output events, the instance of this Python wrapper class increases

187 the reference counter of the value Python object.

The C++ wrapper class decreases the reference counter upon adevs' call to

the gc_output garbage collection function.

We deliberately break the adevs interface for the output_func method.

192 In adevs, a reference to a Bag is supplied to the method returning void.
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Here, we choose the Pythonic way and take the return value of the method as

the output bag.

This is converted automatically by the cy_output_func helper function.

output_func can either return

197 None (no output),

a tuple (of length 2: port, value),

or an iterable (of tuples of length 2: port, value).

For example, output_func can be implemented as a generator expression.

202 Similarly, the cy_delta_ext and cy_delta_conf helper functions convert the

input bag to a Python list of port, value tuples.

"""

cdef cadevs.Atomic* base_ptr_

207 cdef object _logger

def __cinit__(self, *args, **kwargs):

logger.debug('Initialize AtomicBase (__cinit__)...')

self.base_ptr_ = new cadevs.Atomic(

212 <PyObject*>self,

<cadevs.DeltaIntFunc>cy_delta_int,

<cadevs.DeltaExtFunc>cy_delta_ext,

<cadevs.DeltaConfFunc>cy_delta_conf,

<cadevs.OutputFunc>cy_output_func,

217 <cadevs.TaFunc>cy_ta,

)

logger.debug('Initialized AtomicBase (__cinit__).')

logger.debug('Set up logging for new AtomicBase instance...')

self._logger = logging.getLogger(__name__ + '.AtomicBase')

222 self._logger.debug('Set up logging.')

def __dealloc__(self):

if self.base_ptr_ is NULL:

logger.debug('AtomicBase: Internal pointer already cleared.')

227 else:

logger.debug('AtomicBase: Deallocate internal pointer...')

del self.base_ptr_

logger.debug('AtomicBase: Deallocated internal pointer.')

232 def _reset_base_ptr(self):

self._logger.debug('Reset internal pointer')

self.base_ptr_ = NULL

def delta_int(self):

237 warn_msg = 'delta_int not implemented'

self._logger.warning(warn_msg)

warnings.warn(warn_msg)

def delta_ext(self, e, xb):

242 warn_msg = 'delta_ext not implemented'

self._logger.warning(warn_msg)

warnings.warn(warn_msg)

def delta_conf(self, xb):

247 warn_msg = 'delta_conf not implemented'

self._logger.warning(warn_msg)

warnings.warn(warn_msg)

def output_func(self):

252 warn_msg = 'output_func not implemented, return None'
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self._logger.warning(warn_msg)

warnings.warn(warn_msg)

return None

257 def ta(self):

warn_msg = 'ta not implemented, return devs.infinity'

self._logger.warning(warn_msg)

warnings.warn(warn_msg)

return infinity

262

cdef void cy_delta_int(PyObject* object) except *:

logger.debug('Cython delta_int helper function')

cdef AtomicBase atomic_base = <AtomicBase>object

267 atomic_base.delta_int()

cdef void cy_delta_ext(

PyObject* object, cadevs.Time e, const cadevs.IOBag& xb

272 ) except *:

logger.debug('Cython delta_ext helper function')

cdef AtomicBase atomic_base = <AtomicBase>object

# wrap the C++ Bag in a Python Wrapper Bag class

277 cdef InputBag input_bag = CreateInputBag(&xb)

atomic_base.delta_ext(e, list(input_bag))

282 cdef void cy_delta_conf(

PyObject* object, const cadevs.IOBag& xb

) except *:

logger.debug('Cython delta_conf helper function')

cdef AtomicBase atomic_base = <AtomicBase>object

287

# wrap the C++ Bag in a Python Wrapper Bag class

cdef InputBag input_bag = CreateInputBag(&xb)

atomic_base.delta_conf(list(input_bag))

292

cdef void cy_output_func(

PyObject* object, cadevs.IOBag& yb

) except *:

297 logger.debug('Cython output_func helper function')

cdef AtomicBase atomic_base = <AtomicBase>object

# wrap the C++ Bag in a Python Wrapper Bag class

cdef OutputBag output_bag = CreateOutputBag(&yb)

302

output = atomic_base.output_func()

if output is None:

logger.debug('output_func returns None')

307 return

if type(output) is tuple:

logger.debug('output_func returns tuple')

if len(output) != 2:

312 err_msg = (
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'output_func needs to return tuple of length 2, got length {}'

).format(len(output))

logger.error(err_msg)

raise ValueError(err_msg)

317 output_bag.insert(output[0], output[1])

return

try:

iterator = iter(output)

322 except TypeError:

raise ValueError

for port, value in output:

output_bag.insert(port, value)

327

cdef Time cy_ta(

PyObject* object

) except *:

332 logger.debug('Cython ta helper function')

cdef AtomicBase atomic_base = <AtomicBase>object

return atomic_base.ta()

337

cdef class Digraph:

"""

Python extension type that wraps the C++ wrapper class for the adevs

Digraph class

342

Design decision

---------------

For now, we only provide Atomic models.

I.e. nested network models are not supported yet.

347

Memory management

-----------------

An instance of the C++ Digraph class takes ownership of added components,

i.e. deletes the components at the end of its lifetime.

352 This is why we increase the reference count to the Python object as soon as

we add it to the Digraph.

Upon deletion of the Digraph, the reference count is decreased.

https://github.com/smiz/adevs/blob/aae196ba660259ac32fc254bad810f4b4185d52f/

include/adevs_digraph.h#L205

"""

357 cdef cadevs.Digraph* _thisptr

cdef object logger

def __cinit__(self):

logger.debug('Initialize Digraph...')

362 self._thisptr = new cadevs.Digraph()

logger.debug('Initialized Digraph.')

def __init__(self):

logger.debug('Set up logging for new Digraph instance...')

367 self.logger = logging.getLogger(__name__ + '.Digraph')

self.logger.debug('Set up logging.')

def __dealloc__(self):

self.logger.debug('Temporarily store the Python objects')
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372 components = list(self)

self.logger.debug('Deallocate internal pointer...')

# this deletes all C++ Atomic models (and in turn, the references to

# the Python objects)

del self._thisptr

377 self.logger.debug('Deallocated internal pointer.')

self.logger.debug('Decrease reference counts of all Python objects')

for component in components:

Py_DECREF(component)

component._reset_base_ptr()

382

cpdef add(self, AtomicBase model):

self.logger.debug('Add model...')

self.logger.debug('Increase reference counter to Python object')

Py_INCREF(model)

387 self._thisptr.add(model.base_ptr_)

self.logger.debug('Added model.')

cpdef couple(

self,

392 AtomicBase source, Port source_port,

AtomicBase destination, Port destination_port,

):

self._thisptr.couple(

source.base_ptr_, source_port,

397 destination.base_ptr_, destination_port,

)

def __iter__(self):

"""

402 Generator to iterate over components of the digraph

http://docs.python.org/3/library/stdtypes.html#generator-types

Return AtomicBase Python objects upon each iteration

407 """

self.logger.debug("Start iteration")

cdef CComponents components

self._thisptr.getComponents(components)

412

# get first and last element

cdef CComponentsIterator it = components.begin()

cdef CComponentsIterator end = components.end()

417 cdef cadevs.Atomic* component

cdef PyObject* c_python_object

cdef object python_object

while it != end:

422 self.logger.debug("Retrieve next component")

component = <cadevs.Atomic*>(co.dereference(it))

self.logger.debug("Get C Python object")

c_python_object = <PyObject*>(component.getPythonObject())

self.logger.debug("Cast to Python object")

427 python_object = <object>c_python_object

self.logger.debug("Yield Python object")

yield python_object

self.logger.debug("Increment iterator")

co.preincrement(it)



C.3 devs python package 177

432

self.logger.debug("Stop iteration")

cdef class Simulator:

437 """

Python extension type that wraps the adevs C++ Simulator class

Memory management

-----------------

442 Note that the adevc C++ Simulator class does not assume ownership of the

model.

Hence, when using a Python wrapper Simulator instance, we need to keep

the Python wrapper Digraph or AtomicBase-subclassed instance in scope as

well.

447 When the model Python instance goes out of scope, the internal C++ pointer

gets deleted, rendering the Simulator defunct.

"""

cdef cadevs.Simulator* _thisptr

cdef object logger

452 cdef object sim_logger

def __cinit__(self):

pass

457 def __init__(self, object model):

logger.debug('Initialize Simulator...')

if isinstance(model, AtomicBase):

if type(model) is AtomicBase:

462 error_msg = (

'Model is AtomicBase instance, use a subclass instead'

)

logger.error(error_msg)

raise TypeError(error_msg)

467 logger.debug('Initialize Simulator with atomic model')

self._thisptr = new cadevs.Simulator((<AtomicBase>model).base_ptr_)

logger.info('Initialized Simulator with atomic model')

elif isinstance(model, Digraph):

logger.debug('Initialize Simulator with digraph')

472 self._thisptr = new cadevs.Simulator((<Digraph>model)._thisptr)

logger.info('Initialized Simulator with digraph')

else:

raise TypeError

477 self.logger = logging.getLogger(__name__ + '.Simulator')

self.logger.debug('Set up logging.')

def __dealloc__(self):

self.logger.debug('Deallocate internal pointer...')

482 del self._thisptr

self.logger.debug('Deallocated internal pointer.')

def next_event_time(self):

self.logger.debug('Compute time of next event')

487 return self._thisptr.nextEventTime()

def execute_next_event(self):

self.logger.info('Execute next event')

self._thisptr.executeNextEvent()
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492

def execute_until(self, Time t_end):

self.logger.info('Execute until time {}'.format(t_end))

self._thisptr.executeUntil(t_end)

497

logger.debug('devs imported.')

c.4 pytemper python package

pytemper version: 0.3.2

Listing C.6: pytemper/__init__.py

# encoding: utf-8

2

r"""

Finite-time analysis of the recurrence--transience transition

Implements the algorithmic finite-time analysis of the recurrence--transience

7 transition within the "temporal percolation" paradigm.

This package provides these high-level functions from the :mod:`temper.temper`

module:

12 .. autosummary::

temper.analyze_temper

See Also

17 --------

temper.temper : low-level functions

"""

22

from __future__ import absolute_import

from .singlerun import statistics as single_run_statistics

from .singlerun import epochs2periods, periods2epochs

27 from .temper import merge_runs

from .temper import analyze_temper

from .stats import statistics

import pkg_resources

32

try:
__version__ = pkg_resources.get_distribution(__name__).version

except:
__version__ = 'unknown'

Listing C.7: pytemper/temper.py
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# coding: utf-8

"""

4 Low-level routines for analyzing the recurrence--transience transition

See Also

--------

9 temper : The high-level module

"""

14 # Python 2/3 compatibility

from __future__ import (absolute_import, division, print_function,

unicode_literals)

from builtins import dict

19

import collections

import warnings

import numpy as np

24 import scipy

import scipy.stats

SPANNING_CLUSTER_THRESHOLD_FRACTION = 1. - np.exp(-1.)

29 alpha_1sigma = 2 * scipy.stats.norm.cdf(-1.0)

Histograms = collections.namedtuple(

typename='Histograms',

field_names=['counts', 'edges'],

34 )

def check_ts(ts):

"""

39 Helper function to validate `ts`

Check that all times are finite and not negative

"""

ts = np.asanyarray(ts)

44 if ts.ndim > 1:

raise ValueError

if not np.all(np.isfinite(ts)):

raise ValueError

if not np.all(ts > 0.0):

49 raise ValueError

if not ts.size:

raise ValueError

return ts

54

def check_omegas(omegas):

"""

Helper function to validate `omegas`

59 Check that all omegas are finite and not negative

"""
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omegas = np.asanyarray(omegas)

if omegas.ndim > 1:

raise ValueError

64 if not np.all(np.isfinite(omegas)):

raise ValueError

if np.any(omegas < 0):

raise ValueError

if not omegas.size:

69 raise ValueError

return omegas

def merge_runs(run_statistics):

74 """

Merge the statistics of several runs

Merges also the return period distributions if present.

79 Parameters

----------

run_statistics: list

List of outputs of :py:func:`single_run_statistics`

84 Returns

-------

ret : dict

Result dictionary with ``ret.keys() == ['has_spanning_cluster',

'max_return_period', 'number_of_returns', 'moments']``. If the `hist`

89 option was set to ``True``, there is another key

``return_period_histogram``.

The values are ndarrays. The first axis corresponds to the run.

The further axes are the outputs of the

:py:func:`single_run_statistics` function.

94

See also

--------

single_run_statistics

99 """

warnings.warn(

"Use of merge_runs is unpythonic and deprecated. Use np.stack instead.",

DeprecationWarning)

104 return np.stack(run_statistics)

def _get_single_run_statistics(

rho, omegas, ts, t_max,

109 return_epoch_generator, generator_options, dist=False

):

"""

Compute single-run statistics for several realizations

114 Helper function for :func:`analyze_temper`

See Also

--------

119 analyze_temper
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"""

for omega in omegas:

124

# initialize generator

return_epochs_gen = return_epoch_generator(

rho=rho, omega=omega, t_max=t_max, **generator_options

)

129 return_epochs = list(return_epochs_gen)

yield single_run_statistics(

ts, return_epochs, dist=dist

)

134

def _get_merged_single_run_statistics(

rho, omegas, ts, t_max,

return_epoch_generator, generator_options, dist=False

):

139 """

Merge single-run statistics

Helper function for :func:`analyze_temper`

144 See Also

--------

_get_single_run_statistics

149 analyze_temper

"""

single_run_statistics = list(_get_single_run_statistics(

154 rho=rho, ts=ts, t_max=t_max, omegas=omegas, dist=dist,

return_epoch_generator=return_epoch_generator,

generator_options=generator_options,

))

159 return merge_single_run_statistics(

omegas=omegas,

ts=ts,

single_run_statistics=single_run_statistics,

)

164

def _get_single_rho_statistics(

rho, omegas, ts, t_max,

return_epoch_generator, generator_options, dist=False

169 ):

"""

Compute temper statistics for a single control parametr value

Helper function for :func:`analyze_temper`

174

See Also

--------

_get_merged_single_run_statistics

179

analyze_temper
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"""

184 merged_single_run_statistics = _get_merged_single_run_statistics(

rho=rho, t_max=t_max, omegas=omegas, ts=ts, dist=dist,

return_epoch_generator=return_epoch_generator,

generator_options=generator_options,

)

189

return single_rho_statistics(

return_period_dist_bootstrap_samples=1,

ts=ts,

merged_single_run_statistics=merged_single_run_statistics,

194 )

def analyze_temper(

rhos,

199 omegas,

ts,

return_epoch_generator,

generator_options=None,

):

204 """

Analyze temporal percolation statistics

Deliver statistics for the temporal percolation transition for a given

dynamical system

209

Parameters

----------

rhos : 1-D array_like

214 control parameters

omegas : 1-D array_like

seeds for the random number generator (realizations)

219 ts : 1-D array_like

finite simulation times

return_epoch_generator

A generator function with signature ``rho, omega, t_max, **kwargs``.

224

generator_options : dict, optional

Options to pass as keyword arguments to the `return_epoch_generator`.

Default is ``None``.

"""

229

t_max = np.max(ts)

if generator_options is None:

generator_options = dict()

234

single_rho_statistics = [
_get_single_rho_statistics(

rho=rho, t_max=t_max, omegas=omegas, ts=ts, dist=False,

return_epoch_generator=return_epoch_generator,

239 generator_options=generator_options,

)



C.4 pytemper python package 183

for rho in rhos

]

244 return merge_single_rho_statistics(

single_rho_statistics

)

249 def merge_single_rho_statistics(

single_rho_statistics

):

"""

Merge the single-parameter statistics for all parameter values

254

Does not merge the return period distributions.

Parameters

----------

259 single_rho_statistics: list

List of outputs of :py:func:`single_rho_statistics`

Returns

-------

264 ret : dict

Result dictionary with ``ret.keys() == ['percolation_prob',

'percolation_prob_ci', 'percolation_strength',

'percolation_strength_ci', 'no_return_prob_ubound',

'no_return_prob_ubound_ci', 'moments', 'moments_ci']``.

269 The values are ndarrays. The first axis corresponds to the parameter.

The further axes are the outputs of the

:py:func:`single_rho_statistics` function.

See also

274 --------

single_rho_statistics

"""

279 stats = [

('percolation_prob', 1),

('percolation_prob_ci', 2),

('percolation_strength', 1),

('percolation_strength_ci', 2),

284 ('no_return_prob_ubound', 1),

('no_return_prob_ubound_ci', 2),

('moments', 2),

('moments_ci', 3),

]

289

ret = dict()

for stat, dim in stats:

if dim == 1:

294 ret[stat] = np.vstack((

single_rho[stat] for single_rho in single_rho_statistics

))

elif dim == 2:

ret[stat] = np.rollaxis(

299 np.dstack((

single_rho[stat] for single_rho in single_rho_statistics
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)),

2

)

304 elif dim == 3:

ret[stat] = np.concatenate([

single_rho[stat] for single_rho in single_rho_statistics

]).reshape([-1] + list(single_rho_statistics[0][stat].shape))

Listing C.8: pytemper/singlerun.py

# coding: utf-8

3 """

Low-level routines for analyzing the recurrence--transience transition in a

single run

See Also

8 --------

temper : The high-level module

"""

13

# Python 2/3 compatibility

from __future__ import (absolute_import, division, print_function,

unicode_literals)

18

from builtins import dict

import numpy as np

23 from .temper import SPANNING_CLUSTER_THRESHOLD_FRACTION, check_ts

RUN_DTYPE = [

(np.str(field[0]),) + field[1:]

for field in [

28 ('last_return_period', np.float),

('has_spanning_cluster', np.bool),

('max_finite_return_period', np.float),

('max_return_period', np.float),

('number_of_returns', np.uint),

33 ('moments', np.float, 4),

]

]

38 def check_return_periods(return_periods):

"""

Helper function to validate `return_periods`

Check that all return periods are finite and positive

43 """

return_periods = np.asanyarray(return_periods)

if return_periods.ndim > 1:

raise ValueError

if not np.all(np.isfinite(return_periods)):

48 raise ValueError
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if not np.all(return_periods > 0.0):

raise ValueError

return return_periods

53

def check_return_epochs(return_epochs):

"""

Helper function to validate `return_epochs`

58 Check that all return epochs are finite, ordered unique, and positive

"""

return_epochs = np.asanyarray(return_epochs)

if return_epochs.ndim > 1:

raise ValueError

63 if not np.all(np.isfinite(return_epochs)):

raise ValueError

if not np.all(return_epochs > 0.0):

raise ValueError

try:

68 np.testing.assert_equal(np.unique(return_epochs), return_epochs)

except:

raise ValueError

return return_epochs

73

def epochs2periods(return_epochs):

"""

Convert a single-run return epoch sequence to a sequence of return periods

78 The return periods are counted from the initial time instant `0`, no matter

whether that is a return epoch or not!

Parameters

----------

83 return_epochs: 1-D ndarray

an increasing sequence of return epochs

Returns

-------

88 1-D ndarray

sequence of return periods

"""

if return_epochs.size:

93 ret = np.ediff1d(

return_epochs,

to_begin=return_epochs[0] if return_epochs[0] > 0.0 else None

)

else:

98 ret = return_epochs

return ret

103 def periods2epochs(return_periods):

"""

Convert a single-run return period sequence to a sequence of return epochs

Parameters

108 ----------
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return_periods: 1-D ndarray

an sequence of return periods

Returns

113 -------

1-D ndarray

sequence of return epochs

"""

118 return np.cumsum(return_periods)

def last_return_epoch_index(ts, return_epochs):

"""

123 Determine the indices of the last return epochs of a single run

Returns an array of indices of the last return epochs of the same shape as

`ts`.

The index is ``-1`` if there is no such return epoch within the finite time

128 `t`.

Parameters

----------

ts : 1-D ndarray

133 finite simulation times

return_epochs: 1-D ndarray

an increasing sequence of return epochs

138 Returns

-------

1-D ndarray

indices of the last return epochs for each `t` in `ts`

"""

143 return np.searchsorted(return_epochs, ts, side='right') - 1

def last_return_epoch(ts, return_epochs, last_return_index):

"""

148 Determine the last return epochs of a single run

Returns an array of last return epochs of the same shape as `ts`.

The return epoch is ``-1`` if there is no such return epoch within the

finite time `t`.

153

Parameters

----------

ts : 1-D ndarray

finite simulation times

158

return_epochs: 1-D ndarray

an increasing sequence of return epochs

last_return_index: 1-D ndarray

163 the output of :py:func:`last_return_epoch_index`

Returns

-------

1-D ndarray

168 last return epochs for each `t` in `ts` with the same type as
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`return_epochs` if they are floats, otherwise (signed) integers

"""

# Return the same data type as return epochs if they are floats

173 # If they are not floats, they could be unsigned integers

# However, we need the value of -1, so in that case we choose the default

# (signed) integer type

ret_dtype = (

return_epochs.dtype

178 if np.issubdtype(return_epochs.dtype, float)

else np.int_

)

ret = - np.ones_like(ts, dtype=ret_dtype)

183 # determine the indices of the finite times t that have a return epoch

# (and hence, have a last return epoch)

with_return_epoch_indices = (last_return_index >= 0).nonzero()[0]

# set the last return epochs for all finite times t that have a return

188 # epoch

if with_return_epoch_indices.size:

ret[with_return_epoch_indices] = return_epochs[

last_return_index[with_return_epoch_indices]

]

193

return ret

def last_return_period(ts, last_return_epoch):

198 """

Determine the (truncated) last return periods of a single run

Returns an array of last return periods of the same shape as `ts`.

If there is no return epoch, the whole finite time `t` is counted as the

203 "last" return period.

The return period is counted from the initial time instant `0`, no matter

whether it was a return epoch or not!

The last return period is `0` if and only if the finite time `t` is a

return epoch.

208

Parameters

----------

ts : 1-D ndarray

finite simulation times

213

last_return_epoch: 1-D ndarray

the output of :py:func:`last_return_epoch`

Returns

218 -------

1-D ndarray

last return periods for each `t` in `ts`

"""

223 return np.where(

last_return_epoch >= 0,

ts - last_return_epoch,

ts

)

228
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def number_of_returns(last_return_index):

"""

The number of returns in a single run, excluding the initial "return" at

233 time instant `0` (if present at all)

Parameters

----------

last_return_index: 1-D ndarray

238 the output of :py:func:`last_return_epoch_index`

Returns

-------

1-D ndarray

243 number of returns for each `t` in `ts`

"""

return last_return_index + 1

248

def t_return_periods(

ts, return_periods, number_of_returns

):

"""

253 Determine the return periods for a finite simulation time from a single run

Generator that for every finite simulation time `t` yields a sequence of

return periods up to the finite simulation time `t`, excluding the last

(truncated) return period

258

Parameters

----------

ts : 1-D ndarray

finite simulation times

263

return_periods: 1-D ndarray

a sequence of return periods, output of

:py:func:`epochs2periods`

268 number_of_returns: 1-D ndarray

the number of returns in a single run, output of

:py:func:`number_of_returns`

Yields

273 ------

1-D ndarray

The sequence of return periods up to the finite simulation time `t`,

excluding the last (truncated) return period

"""

278

for t_index, t in enumerate(ts):

yield return_periods[:number_of_returns[t_index]]

283 def return_period_histogram(

ts,

ts_return_periods,

numbins=10,

logbins=False,

288 cumfreq=False,
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min_period=1.0,

max_period=None,

):

"""

293 The single-run histogram of return periods

The return period distribution only includes finite return periods.

That is, the last (truncated) return periods are excluded.

298 Parameters

----------

ts : 1-D ndarray

finite simulation times

303 ts_return_periods : iterable

output of :py:func:`t_return_periods`

numbins : int, optional

The number of bins to use for the histogram. Default is 10.

308

logbins : boolean, optional

If `True`, bin edges are on a logarithmic scale. Default is `True`.

cumfreq : boolean, optional

313 if `True`, cumulative frequencies are returned. Default is `True`.

min_period : int or float, optional

Lower value of the range of the histogram. Default is `1.0`.

318 max_period : int or float, optional

Upper value of the range of the histogram. Default is `None`.

If `None`, the upper value of the range is `np.sqrt(ts.max())`.

Returns

323 -------

hists : 2-D ndarray of ints

`hists[t_index]` is the histogram for the `t_index`-th finite

simulation time from `ts`.

328 bin_edges : 1-D ndarray of floats

The bin edges

"""

if not ts.size:

333 raise ValueError

if max_period is None:

max_period = np.sqrt(ts.max())

338 if min_period >= max_period:

raise ValueError

hist_range = (

min_period, max_period

343 )

if logbins:

hist_range = np.log(hist_range)

ret_dtype = [

348 (np.str(field[0]), ) + field[1:]
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for field in [

('histogram_counts', np.int, (numbins, )),

('histogram_edges', np.float, (numbins + 1, )),

]

353 ]

ret = np.empty(ts.size, dtype=ret_dtype)

# get return periods for finite time t

for t_index, t_return_periods in enumerate(ts_return_periods):

358 my_t_return_periods = (

np.log(t_return_periods) if logbins else t_return_periods

)

ret[t_index]['histogram_counts'], ret[t_index]['histogram_edges'] = (

np.histogram(

363 my_t_return_periods,

bins=numbins,

range=hist_range,

)

)

368 if cumfreq:

ret[t_index]['histogram_counts'] = (

ret[t_index]['histogram_counts'].cumsum()

)

if logbins:

373 ret[t_index]['histogram_edges'] = (

np.exp(ret[t_index]['histogram_edges'])

)

return ret

378

def has_spanning_cluster(

ts,

last_return_period,

383 threshold_fraction=SPANNING_CLUSTER_THRESHOLD_FRACTION,

):

"""

Determine whether a sequence of return epochs has a spanning cluster

388 In percolation theory, a *spanning cluster* is a cluster extending to the

system size. The temporal percolation setting is a one-ended 1-d infinite

chain. A "spanning cluster" is the (possibly infinite) last return period,

if it extends beyond a threshold fraction of the whole (finite) simulation

time.

393

Parameters

----------

ts : 1-D ndarray

finite simulation times

398

last_return_period: 1-D ndarray

the output of :py:func:`last_return_period`

threshold_fraction: float, optional

403 a fraction between 0 and 1 that the last return period needs to extend

to of the finite simulation time `t` in order to qualify as a spanning

cluster

Returns

408 -------
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1-D ndarray of bools

A boolean array, which indicates whether the sequence of return epochs

exhibits a spanning cluster or not, for each `t` in `ts`

"""

413

return last_return_period >= ts * threshold_fraction

def max_finite_return_period(ts_return_periods):

418 """

Determine the maximum finite return period in a sequence of return periods

This excludes the last return period, which is truncated at the finite

simulation time.

423

Parameters

----------

ts_return_periods : iterable

output of :py:func:`t_return_periods`

428

Returns

-------

1-D ndarray

maximum return periods with the same dtype as `ts_return_period[0]`

433 """

return np.fromiter(

(

t_return_periods.max() if t_return_periods.size else 0

438 for t_return_periods in ts_return_periods

),

dtype=ts_return_periods[0].dtype,

)

443

def max_return_period(last_return_period, max_finite_return_period):

"""

Determine the maximum return period in a sequence of return epochs

448 This includes the last return period, which is truncated at the finite

simulation time.

Parameters

----------

453 last_return_period: 1-D ndarray

the output of :py:func:`last_return_period`

max_finite_return_period : 1-D ndarray

output of :py:func:`max_finite_return_period`

458

Returns

-------

1-D ndarray

maximum return periods with the same dtype as

463 `max_finite_return_periods`

"""

return np.maximum(last_return_period, max_finite_return_period)

468



192 scientific computing code

def moments(ts, ts_return_periods):

"""

The first 4 empirical moments of the single-run return period distribution

473 Precalculates the empirical moments up to the 4th moment (for Binder

cumulant) for each `t` in `ts`

Parameters

----------

478 ts : 1-D ndarray

finite simulation times

ts_return_periods : iterable

output of :py:func:`t_return_periods`

483

Returns

-------

2-D ndarray

The first four empirical moments. The array has shape

488 ``(len(ts_return_periods), 4)`` and type ``np.float64``.

"""

ks = np.arange(1, 5)

ret = np.zeros((ts.size, ks.size), dtype=np.float64)

493 for t_index, t_return_periods in enumerate(ts_return_periods):

ret[t_index] = np.power(

np.tile(t_return_periods, (ks.size, 1)).T.astype(np.float64),

ks

).sum(axis=0)

498

return ret

def statistics(ts, return_periods, hist=False, hist_options=None):

503 """

Compute the statistics of a single run from the return periods

Parameters

----------

508 ts : 1-D array_like

finite simulation times

return_periods: 1-D array_like

a sequence of return periods

513

hist : bool, optional

Set to ``True`` to compute the return period distribution

hist_options : dict, optional

518 Keyword parameters to pass through to

:py:func:`return_period_histogram`

Returns

-------

523 ret : dict

Result dictionary with ``ret.keys() == ['last_return_period',

'has_spanning_cluster', 'max_finite_return_period',

'max_return_period', 'number_of_returns', 'moments']``.

If the `hist` option was set to ``True``, there is another key

528 ``return_period_histogram``.
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The values are the outputs of the respective functions.

See also

--------

533 last_return_period

has_spanning_cluster

max_finite_return_period

538

max_return_period

number_of_returns

543 moments

return_period_histogram

"""

548

# convert finite times to ndarray and validate

ts = check_ts(ts)

# convert return periods to ndarray and validate

553 return_periods = check_return_periods(return_periods)

# auxiliary statistics

return_epochs = periods2epochs(

return_periods=return_periods,

558 )

my_last_return_index = last_return_epoch_index(

ts=ts, return_epochs=return_epochs,

)

my_number_of_returns = number_of_returns(

563 last_return_index=my_last_return_index,

)

my_ts_return_periods = list(

t_return_periods(

ts=ts,

568 return_periods=return_periods,

number_of_returns=my_number_of_returns,

)

)

my_last_return_epoch = last_return_epoch(

573 ts=ts,

return_epochs=return_epochs,

last_return_index=my_last_return_index,

)

my_last_return_period = last_return_period(

578 ts=ts,

last_return_epoch=my_last_return_epoch,

)

my_max_finite_return_period = max_finite_return_period(

ts_return_periods=my_ts_return_periods,

583 )

ret_dtype = RUN_DTYPE

if hist:

588 if hist_options is None:
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hist_options = dict()

my_histogram = return_period_histogram(

ts=ts, ts_return_periods=my_ts_return_periods,

593 **hist_options

)

ret_dtype = list(ret_dtype)

ret_dtype += my_histogram.dtype.descr

598

ret = np.empty(ts.size, dtype=ret_dtype)

ret['last_return_period'] = my_last_return_period

ret['has_spanning_cluster'] = has_spanning_cluster(

603 ts=ts,

last_return_period=my_last_return_period,

)

ret['max_finite_return_period'] = my_max_finite_return_period

ret['max_return_period'] = max_return_period(

608 last_return_period=my_last_return_period,

max_finite_return_period=my_max_finite_return_period,

)

ret['number_of_returns'] = my_number_of_returns

ret['moments'] = moments(

613 ts=ts,

ts_return_periods=my_ts_return_periods,

)

if hist:

618 for field in my_histogram.dtype.names:

ret[field] = my_histogram[field]

return ret

Listing C.9: pytemper/stats.py

# coding: utf-8

"""

4 Low-level routines for statistics over multiple runs

See Also

--------

9

temper : The high-level module

"""

14

# Python 2/3 compatibility

from __future__ import absolute_import, division, unicode_literals

from builtins import dict

19

import itertools

import numpy as np
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import scipy.stats

24 import scikits.bootstrap as boot

from numpy import ma

ALPHA_1SIGMA = 2 * scipy.stats.norm.cdf(-1.0)

29 STATS_RETURN_DTYPE = [

(np.str(field[0]), ) + field[1:]

for field in [

('mean', np.float),

('ci', np.float, 2),

34 ]

]

STATISTICS_RETURN_DTYPE = [

(np.str(field[0]), ) + field[1:]

39 for field in [

('percolation_probability_mean', np.float),

('percolation_probability_ci', np.float, 2),

('percolation_strength_mean', np.float),

('percolation_strength_ci', np.float, 2),

44 ('infinite_period_mean', np.float),

('infinite_period_ci', np.float, 2),

('max_finite_period_mean', np.float),

('max_finite_period_ci', np.float, 2),

('return_number_mean', np.float),

49 ('return_number_ci', np.float, 2),

('no_return_prob_ubound_mean', np.float),

('no_return_prob_ubound_ci', np.float, 2),

('moments_mean', np.float, (4, )),

('moments_ci', np.float, (4, 2)),

54 ('combined_moments_mean', np.float, (4, )),

('combined_moments_ci', np.float, (4, 2)),

]

]

59

def _normal_ci(quantity, normalize_by=None, alpha=ALPHA_1SIGMA):

"""

Compute the mean and its normal confidence interval

64 Parameters

----------

quantity: 2-D ndarray

from a field of the output of :py:func:`merge_runs`

69 normalize_by

division factors for normalization of the quantity

alpha: float, optional

Significance level. ``1 - alpha`` is the confidence level

74

Returns

-------

ret[0]: 1-D ndarray of float

The estimated mean for each `t` in `ts`

79

ret[1]: 2-D ndarray of float

The lower and upper bounds of the confidence interval for each `t` in

`ts`
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84 See also

--------

merge_runs

single_run_statistics

89 """

ret = np.empty(quantity.shape[1:], dtype=STATS_RETURN_DTYPE)

ret['mean'] = quantity.mean(axis=0)

94 if normalize_by is not None:

ret['mean'] /= normalize_by

n = quantity.shape[0]

df = n - 1

99 s = quantity.std(axis=0, ddof=1)

if normalize_by is not None:

s /= normalize_by

ci = np.array(scipy.stats.t.interval(

104 1. - alpha,

df=df,

loc=ret['mean'],

scale=s / np.sqrt(n)

))

109

ret['ci'] = ci.T if quantity.ndim == 2 else np.rollaxis(

ci, axis=0, start=3

)

114 return ret

def percolation_probability(has_spanning_cluster, alpha=ALPHA_1SIGMA):

r'''

119 Compute the percolation probability and its confidence interval

The percolation probability is the Binomial proportion of spanning

clusters.

Employs the Bayesian credible interval as confidence interval.

124

Parameters

----------

has_spanning_cluster: 2-D ndarray of bool

from the ``has_spanning_cluster`` field of the output of

129 :py:func:`merge_runs`

alpha: float, optional

Significance level. ``1 - alpha`` is the confidence level

134 Returns

-------

ret[0] : 1-D ndarray of float

The estimated percolation probability for each `t` in `ts`

139 ret[1] : 2-D ndarray of float

The lower and upper bounds of the confidence interval for each `t` in

`ts`
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See also

144 --------

merge_runs

single_run_statistics

149 pytemper.singlerun.has_spanning_cluster

Notes

-----

Given :math:`k` runs with spanning clusters, out of a total of :math:`n`

154 runs, we adopt the Bayesian posterior mean :math:`\bar{p} =

\frac{k+1}{n+2}` as point estimator for the percolation probability.

See the :ref:`ci-proportions` Section in the manual.

The :math:`1-\alpha` credible interval is given by the

159 :math:`\frac{\alpha}{2}, 1-\frac{\alpha}{2}` quantiles of the Beta

distribution :math:`B(k+1, n-k+1)`.

See the :ref:`ci-proportions` Section in the manual.

References

164 ----------

.. [1] E. Cameron, Publications of the Astronomical Society of Australia

28, 128 (2011), `doi:10.1071/as10046

<http://dx.doi.org/10.1071/as10046>`_

.. [2] L. Wasserman, All of Statistics (Springer New York, 2004),

169 `doi:10.1007/978-0-387-21736-9

<http://dx.doi.org/10.1007/978-0-387-21736-9>`_

'''

number_of_ts = has_spanning_cluster.shape[1]

174 ret = np.empty(number_of_ts, dtype=STATS_RETURN_DTYPE)

n = float(has_spanning_cluster.shape[0])

k = has_spanning_cluster.sum(axis=0, dtype=np.float)

179 a = k + 1.

b = n - k + 1.

p_lower = scipy.stats.distributions.beta.ppf(alpha / 2., a, b)

p_upper = scipy.stats.distributions.beta.ppf(1. - alpha / 2., a, b)

184

ret['mean'] = (k + 1.) / (n + 2.)

ret['ci'] = np.vstack((p_lower, p_upper)).T

return ret

189

def percolation_strength(ts, max_return_period, alpha=ALPHA_1SIGMA):

"""

Compute the percolation strength and its confidence interval

194

The percolation strength is the average relative size of the maximum return

period.

Note this does not need to coincide with a spanning cluster.

Employs the normal confidence interval.

199

Parameters

----------

ts : 1-D array_like
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finite simulation times

204

max_return_period: 2-D array_like

from the ``max_return_period`` field of the output of

:py:func:`merge_runs`

209 alpha: float, optional

Significance level. ``1 - alpha`` is the confidence level

Returns

-------

214 ret[0]: 1-D ndarray of float

The estimated percolation strength for each `t` in `ts`

ret[1]: 2-D ndarray of float

The lower and upper bounds of the confidence interval for each `t` in

219 `ts`

See also

--------

merge_runs

224

single_run_statistics

pytemper.singlerun.max_return_period

229 """

return _normal_ci(

quantity=max_return_period,

normalize_by=ts,

234 alpha=alpha,

)

def infinite_period(ts, last_return_period, alpha=ALPHA_1SIGMA):

239 """

Compute the infinite return period and its confidence interval

The infinite period is the average relative size of the last return period.

Employs the normal confidence interval.

244

Parameters

----------

ts : 1-D array_like

finite simulation times

249

last_return_period: 2-D array_like

from the ``last_return_period`` field of the output of

:py:func:`merge_runs`

254 alpha: float, optional

Significance level. ``1 - alpha`` is the confidence level

Returns

-------

259 ret[0]: 1-D ndarray of float

The estimated infinite period for each `t` in `ts`

ret[1]: 2-D ndarray of float



C.4 pytemper python package 199

The lower and upper bounds of the confidence interval for each `t` in

264 `ts`

See also

--------

merge_runs

269

single_run_statistics

pytemper.singlerun.last_return_period

274 """

return _normal_ci(

quantity=last_return_period,

normalize_by=ts,

279 alpha=alpha,

)

def max_finite_period(ts, max_finite_return_period, alpha=ALPHA_1SIGMA):

284 """

Compute the maximum finite period and its confidence interval

The maximum finite period is the average relative size of the maximum

finite return period (excluding the last return period).

289 Employs the normal confidence interval.

Parameters

----------

ts : 1-D array_like

294 finite simulation times

max_finite_return_period: 2-D array_like

from the ``max_finite_return_period`` field of the output of

:py:func:`merge_runs`

299

alpha: float, optional

Significance level. ``1 - alpha`` is the confidence level

Returns

304 -------

ret[0]: 1-D ndarray of float

The estimated maximum finite period for each `t` in `ts`

ret[1]: 2-D ndarray of float

309 The lower and upper bounds of the confidence interval for each `t` in

`ts`

See also

--------

314 merge_runs

single_run_statistics

pytemper.singlerun.max_finite_return_period

319

"""

return _normal_ci(
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quantity=max_finite_return_period,

324 normalize_by=ts,

alpha=alpha,

)

329 def return_number(ts, number_of_returns, alpha=ALPHA_1SIGMA):

"""

Compute the normalized number of returns and its confidence interval

This is the average relative number of returns per time unit.

334 Employs the normal confidence interval.

Parameters

----------

ts : 1-D array_like

339 finite simulation times

number_of_returns: 2-D array_like

from the ``number_of_returns`` field of the output of

:py:func:`merge_runs`

344

alpha: float, optional

Significance level. ``1 - alpha`` is the confidence level

Returns

349 -------

ret[0]: 1-D ndarray of float

The estimated return number for each `t` in `ts`

ret[1]: 2-D ndarray of float

354 The lower and upper bounds of the confidence interval for each `t` in

`ts`

See also

--------

359 merge_runs

single_run_statistics

pytemper.singlerun.number_of_returns

364

"""

return _normal_ci(

quantity=number_of_returns,

369 normalize_by=ts,

alpha=alpha

)

374 def no_return_prob_ubound(number_of_returns, alpha=ALPHA_1SIGMA):

r'''

Compute the upper bound of the no-return probability and its confidence

interval

379 The upper bound of the probability of no return is the

maximum-likelihood-estimate of the parameter of a geometric distribution.

This is an upper bound as this assumes that every run terminates with a

fail to return, even though the return probability might well be 1, and
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hence, the "no-return" parameter be 0.

384

Use Bayesian inference with a Beta(0,0) conjugate prior for the confidence

interval.

Parameters

389 ----------

number_of_returns : 2-D array_like

from the ``number_of_returns`` field of the output of

:py:func:`merge_runs`

394 alpha: float, optional

Significance level. ``1 - alpha`` is the confidence level

Returns

-------

399 ret[0] : 1-D ndarray of float

The estimated upper bound of the no-return probability for each `t` in

`ts`

ret[1] : 2-D ndarray of float

404 The lower and upper bounds of the confidence interval for each `t` in

`ts`

See also

--------

409 merge_runs

single_run_statistics

number_of_returns

414

Notes

-----

Determine the parameter as the maximum likelihood estimate

419

.. math::

\hat{p} = \frac{n}{\sum_{i=1}^n k_i + n}.

424 This is also the posterior mean for the conjugate prior Beta(0,0)

distribution in Bayesian inference.

Determine the Bayesian credible interval according to the Beta(a,b)

posterior with

429

.. math::

a = n, b = \sum_{i=1}^n k_i.

References

434 ----------

.. [1] http://en.wikipedia.org/wiki/Geometric_distribution#

Parameter_estimation

.. [2] http://en.wikipedia.org/wiki/Beta_distribution#Bayesian_inference

439 '''

number_of_ts = number_of_returns.shape[1]
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ret = np.empty(number_of_ts, dtype=STATS_RETURN_DTYPE)

444 a = float(number_of_returns.shape[0])

b = number_of_returns.sum(axis=0)

ret['mean'] = a / (a + b)

ret['ci'] = np.array(scipy.stats.beta.interval(

449 1. - alpha, a=a, b=b,

)).T

return ret

454

def moments(number_of_returns, moments, alpha=ALPHA_1SIGMA):

"""

Empirical moments of the return period distribution and their confidence

intervals

459

The computation of the moments excludes the respective (truncated, and

possibly "spanning") last return period.

Employs the normal confidence interval.

464 Parameters

----------

number_of_returns : 2-D array_like

from the ``number_of_returns`` field of the output of

:py:func:`merge_runs`

469

moments : 3-D array_like

from the ``moments`` field of the output of

:py:func:`merge_runs`

474 alpha: float, optional

Significance level. ``1 - alpha`` is the confidence level

Returns

-------

479 ret[0] : 2-D ndarray of float

The average moment for each `t` in `ts`. ``ret[0][k - 1][i]`` is the

empirical k-th raw moments of the i-th simulation time. The shape of

the array is ``(4, ts.size)``.

484 ret[1] : 3-D ndarray of float

``ret[1][k - 1]`` are the lower and upper bounds of the confidence

interval for the k-th empirical raw moment for each `t` in `ts`.

The array `ret[1]` has shape ``(4, 2, ts.size)``.

489 See also

--------

merge_single

single_run_statistics

494

singlerun.moments

"""

ret = np.empty(moments.shape[1:], dtype=STATS_RETURN_DTYPE)

499

# moments: (omega, t, moment)

# number_of_returns: (omega, t)
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# normalized_moments: (omega, t, moment)

normalized_moments = np.rollaxis(

504 ma.masked_invalid(

np.rollaxis(moments, axis=2) / number_of_returns,

).filled(0.0),

axis=0,

start=3,

509 )

ret['mean'] = np.mean(normalized_moments, axis=0)

n = moments.shape[0]

514 df = n - 1

dtype = moments.dtype.type

# s: (moment, t)

s = normalized_moments.astype(np.float64).std(

519 axis=0, ddof=1

).astype(dtype)

ret['ci'] = np.rollaxis(

np.array(scipy.stats.t.interval(

524 1. - alpha,

df=df,

loc=ret['mean'],

scale=s / np.sqrt(n)

)).T,

529 1

)

return ret

534

def combined_moments(number_of_returns, moments, alpha=ALPHA_1SIGMA):

"""

Empirical moments of the return period distribution and their confidence

intervals, computed by summing over all runs first and then averaging

539

The computation of the moments excludes the respective (truncated, and

possibly "spanning") last return period.

Employs a poor man's confidence interval based on the ranks of the given

sample of moments.

544

TODO

Employ bootstrapping

Parameters

549 ----------

number_of_returns : 2-D array_like

from the ``number_of_returns`` field of the output of

:py:func:`merge_runs`

554 moments : 3-D array_like

from the ``moments`` field of the output of

:py:func:`merge_runs`

alpha: float, optional

559 Significance level. ``1 - alpha`` is the confidence level

Returns
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-------

ret[0] : 2-D ndarray of float

564 The average moment for each `t` in `ts`. ``ret[0][k - 1][i]`` is the

empirical k-th raw moments of the i-th simulation time. The shape of

the array is ``(4, ts.size)``.

ret[1] : 3-D ndarray of float

569 ``ret[1][k - 1]`` are the lower and upper bounds of the confidence

interval for the k-th empirical raw moment for each `t` in `ts`.

The array `ret[1]` has shape ``(4, 2, ts.size)``.

See also

574 --------

moments

single_run_statistics

579 singlerun.moments

"""

ret = np.empty(moments.shape[1:], dtype=STATS_RETURN_DTYPE)

584 # moments: (omega, t, moment)

# number_of_returns: (omega, t)

# ret['mean']: (t, moment)

ret['mean'] = ma.masked_invalid(

moments.sum(axis=0).T / number_of_returns.sum(axis=0)

589 ).filled(0.0).T

def combinedmean(mymoments, mynumber_of_returns, weights):

sum_returns = np.sum(np.multiply(mynumber_of_returns, weights))

return (

594 np.sum(np.multiply(mymoments, weights)) / sum_returns if sum_returns

else 0.0

)

# ret['ci']: (t, moment, 2)

599 n_ts = moments.shape[1]

n_moments = moments.shape[2]

ret['ci'] = np.zeros((n_ts, n_moments, 2))

for t_index, moment_index in itertools.product(range(n_ts), range(n_moments)

):

ret['ci'][t_index, moment_index] = boot.ci(

604 data=(

moments[:, t_index, moment_index],

number_of_returns[:, t_index],

),

statfunction=combinedmean,

609 method='abc',

multi=True,

alpha=alpha,

)

614 return ret

def histogram_counts(counts, alpha=ALPHA_1SIGMA):

"""

619 The per-bin averaged empirical return period histograms and their per-bin

confidence intervals
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The respective last return period is excluded.

Employs the normal confidence interval.

624

Parameters

----------

histograms : tuple of bin counts and bin edges

from the ``return_period_histogram`` field of the output of

629 :py:func:`merge_runs`

alpha: float, optional

Significance level. ``1 - alpha`` is the confidence level

634 Returns

-------

ret : singlerun.Histograms namedtuple

ret.counts.mean : 2-D ndarray of float

639 The average bin count for each `t` in `ts`. ``ret[0].mean[i][j]`` is

the average bin count of the i-th simulation time in the j-th bin.

ret.counts.ci : 3-D ndarray of float

``ret[0].ci[:, i, j]`` are the lower and upper bounds of the confidence

644 interval for the i-th simulation time in the j-th bin.

ret.edges : 1-D ndarray of floats

The bin edges

649 See also

--------

merge_runs

single_run_statistics

654

singlerun.return_period_histogram

"""

return _normal_ci(

659 quantity=counts, alpha=alpha,

)

def statistics(ts, merged_runs, alpha=ALPHA_1SIGMA):

664 """

Aggregate multiple runs and collect statistics

Includes the return period distribution if it is present in the merged

single-run statistics

669

Parameters

----------

ts : 1-D array_like

finite simulation times

674

merged_runs : dict

output of :py:func:`merge_runs`

alpha: float, optional

679 Significance level. ``1 - alpha`` is the confidence level
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Returns

-------

ret : dict

684 Result dictionary with ``ret.keys() == ['percolation_probability',

percolation_strength', 'infinite_period', 'max_finite_period',

'return_number', 'no_return_prob_ubound', 'moments']``.

If `merged_runs` contains a key

``return_period_histogram``, there is the key ``histograms``.

689 The values are the outputs of the corresponding function.

See also

--------

merge_runs

694

percolation_probability

percolation_strength

699 infinite_period

max_finite_period

return_number

704

no_return_prob_ubound

moments

709 combined_moments

histograms

"""

714 has_histograms = 'histogram_counts' in merged_runs.dtype.names

ret_dtype = list(STATISTICS_RETURN_DTYPE)

if has_histograms:

numbins = merged_runs.dtype['histogram_counts'].shape[0]

ret_dtype += [

719 (np.str(field[0]), ) + field[1:]

for field in [

('histogram_counts_mean', np.float, (numbins, )),

('histogram_counts_ci', np.float, (numbins, 2)),

('histogram_edges', np.float, numbins + 1)]

724 ]

ret = np.empty(merged_runs.shape[1], dtype=ret_dtype)

res = percolation_probability(

729 has_spanning_cluster=merged_runs['has_spanning_cluster'],

alpha=alpha,

)

ret['percolation_probability_mean'] = res['mean']

ret['percolation_probability_ci'] = res['ci']

734

res = percolation_strength(

ts=ts,

max_return_period=merged_runs['max_return_period'],

alpha=alpha,

739 )

ret['percolation_strength_mean'] = res['mean']
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ret['percolation_strength_ci'] = res['ci']

res = infinite_period(

744 ts=ts,

last_return_period=merged_runs['last_return_period'],

alpha=alpha,

)

ret['infinite_period_mean'] = res['mean']

749 ret['infinite_period_ci'] = res['ci']

res = max_finite_period(

ts=ts,

max_finite_return_period=merged_runs['max_finite_return_period'],

754 alpha=alpha,

)

ret['max_finite_period_mean'] = res['mean']

ret['max_finite_period_ci'] = res['ci']

759 res = return_number(

ts=ts,

number_of_returns=merged_runs['number_of_returns'],

alpha=alpha,

)

764 ret['return_number_mean'] = res['mean']

ret['return_number_ci'] = res['ci']

res = no_return_prob_ubound(

number_of_returns=merged_runs['number_of_returns'],

769 alpha=alpha,

)

ret['no_return_prob_ubound_mean'] = res['mean']

ret['no_return_prob_ubound_ci'] = res['ci']

774 res = moments(

number_of_returns=merged_runs['number_of_returns'],

moments=merged_runs['moments'],

alpha=alpha,

)

779 ret['moments_mean'] = res['mean']

ret['moments_ci'] = res['ci']

res = combined_moments(

number_of_returns=merged_runs['number_of_returns'],

784 moments=merged_runs['moments'],

alpha=alpha,

)

ret['combined_moments_mean'] = res['mean']

ret['combined_moments_ci'] = res['ci']

789

if has_histograms:

res = histogram_counts(

counts=merged_runs['histogram_counts'],

alpha=alpha)

794 ret['histogram_counts_mean'] = res['mean']

ret['histogram_counts_ci'] = res['ci']

ret['histogram_edges'] = merged_runs['histogram_edges'][0]

return ret
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Listing C.10: pytemper/examples.py

# coding: utf-8 # pylint: disable=invalid-name

2

"""

Examples for analyzing the recurrence--transience transition

"""

7 import itertools

import numpy as np

12 def mm1q_trajectories(seed, n_runs, n_steps, rho):

'''

Simulate n_runs M/M/1 queue sample paths with n_steps at parameters rho.

Initialize the seeds with the master seed parameter.

'''

17 rho = np.asanyarray(rho)

if not np.all(rho > 0.0):

raise ValueError

rng = np.random.RandomState(seed=seed)

22 trajectories = np.zeros((n_steps, n_runs, rho.size))

interarrival_time = np.zeros((n_steps, n_runs, rho.size))

interarrival_time[1:] = np.rollaxis(

np.tile(

27 rng.exponential(size=(n_steps - 1, n_runs)),

(rho.size, 1, 1)),

axis=0, start=3) / rho

service_time = np.empty((n_steps, n_runs, rho.size))

32 service_time[:] = np.rollaxis(

np.tile(

rng.exponential(size=(n_steps, n_runs)),

(rho.size, 1, 1)),

axis=0, start=3)

37

residual_work = np.zeros((n_steps, n_runs, rho.size))

for n in range(1, n_steps):

residual_work[n] = np.maximum(

residual_work[n - 1] + service_time[n - 1] - interarrival_time[n],

42 0.0)

arrival_time = interarrival_time.cumsum(axis=0)

departure_time = arrival_time + residual_work + service_time

47 arrivals = np.rollaxis(

np.tile(np.arange(n_steps), (n_runs, rho.size, 1)), axis=2)

departures = np.zeros((n_steps, n_runs, rho.size))

for i, j in itertools.product(range(n_runs), range(rho.size)):

departures[:, i, j] = np.searchsorted(

52 departure_time[:, i, j], arrival_time[:, i, j])

trajectories[:] = arrivals - departures

return trajectories

57
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def random_walk_trajectories(seed, n_runs, n_steps, p):

'''

Simulate n_runs one-sided random walks with n_steps at parameters p.

Initialize the seeds with the master seed parameter.

62 '''

p = np.asanyarray(p)

rng = np.random.RandomState(seed=seed)

random_numbers = rng.rand(n_steps, n_runs)

trajectories = np.zeros((n_steps + 1, n_runs, p.size))

67 for n in range(n_steps):

p_mesh, random_numbers_mesh = np.meshgrid(p, random_numbers[n])

trajectories[n + 1] = trajectories[n] + np.where(trajectories[n], 2 * (

random_numbers_mesh < p_mesh) - 1, random_numbers_mesh < p_mesh)

return trajectories

72

def random_walk_cdf(p, t_max):

"""

Calculate the cumulative distribution function of the return periods

77 of a random walk

p -- a numpy array of parameters p

t_max -- maximum return period

"""

82

p = np.asanyarray(p, dtype=np.longdouble)

x = p * (1. - p)

fn = np.zeros(

87 (p.size, t_max),

dtype=np.longdouble

)

# $f_0^p(1)$

92 fn[:, 0] = 1. - p

if t_max == 1:

return np.squeeze(fn)

97 # $f_0^p(2)$, $k = 1$

fn[:, 1] = x

for n in range(2, t_max - 1, 2):

# $f_0^p(n+2) = f_0^p(n) * x * 4 * (n - 1) / (n + 2)$

102 fn[:, n + 1] = fn[:, n - 1] * x * float(4 * (n - 1) / (n + 2))

return np.squeeze(fn.cumsum(axis=1))

c.5 fssa python package

fssa version: 0.7.6

Listing C.11: fssa/__init__.py, available online at https://github.com/andsor/

pyfssa/blob/0.7.6/fssa/__init__.py

1 #!/usr/bin/env python

https://github.com/andsor/pyfssa/blob/0.7.6/fssa/__init__.py
https://github.com/andsor/pyfssa/blob/0.7.6/fssa/__init__.py
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# encoding: utf-8

r"""

Implements algorithmic finite-size scaling analysis at phase transitions

6

This module implements the algorithmic finite-size scaling analysis at phase

transitions as demonstrated by Oliver Melchert and his superb autoscale.py

script.

11 The :mod:`fssa` module provides these high-level functions from the

:mod:`fssa.fssa` module:

.. autosummary::

16 fssa.scaledata

fssa.quality

fssa.autoscale

See Also

21 --------

fssa.fssa : low-level functions

Notes

26 -----

The :func:`fssa.scaledata` function scales finite-size data in order for the

data to hopefully collapse onto a single universal scaling function, also

known as master curve.

31 The :func:`fssa.quality` function assesses the quality of this very data

collapse onto a single curve.

Finally, the :func:`fssa.autoscale` function frames the data collapse as an

optimization problem and searches for the critical values that minimize the

quality function.

36

The **fssa** package expects finite-size data in the following setting.

.. math::

41 A_L(\varrho) = L^{\zeta/\nu} \tilde{f}\left(L^{1/\nu} (\varrho -

\varrho_c)\right), \qquad (L \to \infty, \varrho \to \varrho_c),

`l` is like a 1-D numpy array which contains the finite system sizes :math:`L`.

`rho` is like a 1-D numpy array which contains the parameter values

46 :math:`\varrho`.

`a` is like a 2-D numpy array which contains the observations (the data)

:math:`A_L(\varrho)`, where `a[i, j]` is the data at the `i`-th system size and

the `j`-th parameter value.

`da` is like a 2-D numpy array which contains the standard errors in the

51 observations.

This implementation uses the quality function by Houdayer & Hartmann [1]_

which measures the quality of the data collapse, see the sections

:ref:`data-collapse-method` and :ref:`quality-function` in the manual.

56 This function and the whole fssa package have been inspired by Oliver

Melchert and his superb **autoScale** package [2]_.

The critical point and exponents, including its standard errors and

(co)variances, are fitted by the Nelder--Mead algorithm, see the section

61 :ref:`neldermead` in the manual.
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Currently, the module only implements homogeneous data arrays:

Data must be available for all finite system sizes and parameter values.

66 References

----------

.. [1] J. Houdayer and A. Hartmann, Physical Review B 70, 014418+ (2004)

`doi:10.1103/physrevb.70.014418

<http://dx.doi.org/doi:10.1103/physrevb.70.014418>`_

71

.. [2] O. Melchert, `arXiv:0910.5403 <http://arxiv.org/abs/0910.5403>`_

(2009)

.. todo::

76

`Implement heterogeneous finite-size data handling`__

__ https://github.com/andsor/pyfssa/issues/2

"""

81 from __future__ import absolute_import

import pkg_resources

from .fssa import scaledata, quality, autoscale

86
__version__ = pkg_resources.get_distribution(__name__).version

Listing C.12: fssa/fssa.py, available online at https://github.com/andsor/pyfssa/
blob/0.7.6/fssa/fssa.py

#!/usr/bin/env python

# encoding: utf-8

4 r"""

Low-level routines for finite-size scaling analysis

See Also

--------

9

fssa : The high-level module

Notes

-----

14

The **fssa** package provides routines to perform finite-size scaling analyses

on experimental data [10]_ [11]_.

It has been inspired by Oliver Melchert and his superb **autoScale** package

19 [3]_.

References

----------

24 .. [10] M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical

Physics (Oxford University Press, 1999)

.. [11] K. Binder and D. W. Heermann, `Monte Carlo Simulation in Statistical

Physics <http://dx.doi.org/10.1007/978-3-642-03163-2>`_ (Springer, Berlin,

29 Heidelberg, 2010)

https://github.com/andsor/pyfssa/blob/0.7.6/fssa/fssa.py
https://github.com/andsor/pyfssa/blob/0.7.6/fssa/fssa.py
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.. [3] O. Melchert, `arXiv:0910.5403 <http://arxiv.org/abs/0910.5403>`_

(2009)

34 """

# Python 2/3 compatibility

from __future__ import (absolute_import, division, print_function,

unicode_literals)

39

import warnings

from builtins import *
from collections import namedtuple

44 import numpy as np

import numpy.ma as ma

import scipy.optimize

from .optimize import _minimize_neldermead

49

class ScaledData(namedtuple('ScaledData', ['x', 'y', 'dy'])):

"""

A :py:func:`namedtuple <collections.namedtuple>` for :py:func:`scaledata`

54 output

"""

# set this to keep memory requirements low, according to

# http://docs.python.org/3/library/collections.html#namedtuple-factory-

function-for-tuples-with-named-fields

59
__slots__ = ()

def scaledata(l, rho, a, da, rho_c, nu, zeta):

r'''

64 Scale experimental data according to critical exponents

Parameters

----------

l, rho : 1-D array_like

69 finite system sizes `l` and parameter values `rho`

a, da : 2-D array_like of shape (`l`.size, `rho`.size)

experimental data `a` with standard errors `da` obtained at finite

system sizes `l` and parameter values `rho`, with

74 ``a.shape == da.shape == (l.size, rho.size)``

rho_c : float in range [rho.min(), rho.max()]

(assumed) critical parameter value with ``rho_c >= rho.min() and rho_c

<= rho.max()``

79

nu, zeta : float

(assumed) critical exponents

Returns

84 -------

:py:class:`ScaledData`

scaled data `x`, `y` with standard errors `dy`

x, y, dy : ndarray
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89 two-dimensional arrays of shape ``(l.size, rho.size)``

Notes

-----

Scale data points :math:`(\varrho_j, a_{ij}, da_{ij})` observed at finite

94 system sizes :math:`L_i` and parameter values :math:`\varrho_i` according

to the finite-size scaling ansatz

.. math::

99 L^{-\zeta/\nu} a_{ij} = \tilde{f}\left( L^{1/\nu} (\varrho_j -

\varrho_c) \right).

The output is the scaled data points :math:`(x_{ij}, y_{ij}, dy_{ij})` with

104 .. math::

x_{ij} & = L_i^{1/\nu} (\varrho_j - \varrho_c) \\

y_{ij} & = L_i^{-\zeta/\nu} a_{ij} \\

dy_{ij} & = L_i^{-\zeta/\nu} da_{ij}

109

such that all data points :ref:`collapse <data-collapse-method>` onto the

single curve :math:`\tilde{f}(x)` with the right choice of

:math:`\varrho_c, \nu, \zeta` [4]_ [5]_.

114 Raises

------

ValueError

If `l` or `rho` is not 1-D array_like, if `a` or `da` is not 2-D

array_like, if the shape of `a` or `da` differs from ``(l.size,

119 rho.size)``

References

----------

124 .. [4] M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in

Statistical Physics (Oxford University Press, 1999)

.. [5] K. Binder and D. W. Heermann, `Monte Carlo Simulation in Statistical

Physics <http://dx.doi.org/10.1007/978-3-642-03163-2>`_ (Springer,

129 Berlin, Heidelberg, 2010)

'''

# l should be 1-D array_like

l = np.asanyarray(l)

134 if l.ndim != 1:

raise ValueError("l should be 1-D array_like")

# rho should be 1-D array_like

rho = np.asanyarray(rho)

139 if rho.ndim != 1:

raise ValueError("rho should be 1-D array_like")

# a should be 2-D array_like

a = np.asanyarray(a)

144 if a.ndim != 2:

raise ValueError("a should be 2-D array_like")

# a should have shape (l.size, rho.size)

if a.shape != (l.size, rho.size):



214 scientific computing code

149 raise ValueError("a should have shape (l.size, rho.size)")

# da should be 2-D array_like

da = np.asanyarray(da)

if da.ndim != 2:

154 raise ValueError("da should be 2-D array_like")

# da should have shape (l.size, rho.size)

if da.shape != (l.size, rho.size):

raise ValueError("da should have shape (l.size, rho.size)")

159

# rho_c should be float

rho_c = float(rho_c)

# rho_c should be in range

164 if rho_c > rho.max() or rho_c < rho.min():

warnings.warn("rho_c is out of range", RuntimeWarning)

# nu should be float

nu = float(nu)

169

# zeta should be float

zeta = float(zeta)

l_mesh, rho_mesh = np.meshgrid(l, rho, indexing='ij')

174

x = np.power(l_mesh, 1. / nu) * (rho_mesh - rho_c)

y = np.power(l_mesh, - zeta / nu) * a

dy = np.power(l_mesh, - zeta / nu) * da

179 return ScaledData(x, y, dy)

def _wls_linearfit_predict(x, w, wx, wy, wxx, wxy, select):

"""

184 Predict a point according to a weighted least squares linear fit of the

data

This function is a helper function for :py:func:`quality`. It is not

supposed to be called directly.

189

Parameters

----------

x : float

The position for which to predict the function value

194

w : ndarray

The pre-calculated weights :math:`w_l`

wx : ndarray

199 The pre-calculated weighted `x` data :math:`w_l x_l`

wy : ndarray

The pre-calculated weighted `y` data :math:`w_l y_l`

204 wxx : ndarray

The pre-calculated weighted :math:`x^2` data :math:`w_l x_l^2`

wxy : ndarray

The pre-calculated weighted `x y` data :math:`w_l x_l y_l`
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209

select : indexing array

To select the subset from the `w`, `wx`, `wy`, `wxx`, `wxy` data

Returns

214 -------

float, float

The estimated value of the master curve for the selected subset and the

squared standard error

"""

219

# linear fit

k = w[select].sum()

kx = wx[select].sum()

ky = wy[select].sum()

224 kxx = wxx[select].sum()

kxy = wxy[select].sum()

delta = k * kxx - kx ** 2

m = 1. / delta * (k * kxy - kx * ky)

b = 1. / delta * (kxx * ky - kx * kxy)

229 b_var = kxx / delta

m_var = k / delta

bm_covar = - kx / delta

# estimation

234 y = b + m * x

dy2 = b_var + 2 * bm_covar * x + m_var * x**2

return y, dy2

239

def _jprimes(x, i, x_bounds=None):

"""

Helper function to return the j' indices for the master curve fit

244 This function is a helper function for :py:func:`quality`. It is not

supposed to be called directly.

Parameters

----------

249 x : mapping to ndarrays

The x values.

i : int

The row index (finite size index)

254

x_bounds : 2-tuple, optional

bounds on x values

Returns

259 -------

ret : mapping to ndarrays

Has the same keys and shape as `x`.

Its element ``ret[i'][j]`` is the j' such that :math:`x_{i'j'} \leq

x_{ij} < x_{i'(j'+1)}`.

264 If no such j' exists, the element is np.nan.

Convert the element to int to use as an index.

"""

j_primes = - np.ones_like(x)
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269

try:

x_masked = ma.masked_outside(x, x_bounds[0], x_bounds[1])

except (TypeError, IndexError):

x_masked = ma.asanyarray(x)

274

k, n = x.shape

# indices of lower and upper bounds

edges = ma.notmasked_edges(x_masked, axis=1)

279 x_lower = np.zeros(k, dtype=int)

x_upper = np.zeros(k, dtype=int)

x_lower[edges[0][0]] = edges[0][-1]

x_upper[edges[-1][0]] = edges[-1][-1]

284 for i_prime in range(k):

if i_prime == i:

j_primes[i_prime][:] = np.nan

continue

289 jprimes = np.searchsorted(

x[i_prime], x[i], side='right'

).astype(float) - 1

jprimes[

np.logical_or(

294 jprimes < x_lower[i_prime],

jprimes >= x_upper[i_prime]

)

] = np.nan

j_primes[i_prime][:] = jprimes

299

return j_primes

def _select_mask(j, j_primes):

304 """

Return a boolean mask for selecting the data subset according to the j'

Parameters

----------

309 j : int

current j index

j_primes : ndarray

result from _jprimes call

314 """

ret = np.zeros_like(j_primes, dtype=bool)

my_iprimes = np.invert(np.isnan(j_primes[:, j])).nonzero()[0]

my_jprimes = j_primes[my_iprimes, j]

319 my_jprimes = my_jprimes.astype(np.int)

ret[my_iprimes, my_jprimes] = True

ret[my_iprimes, my_jprimes + 1] = True

return ret

324

def quality(x, y, dy, x_bounds=None):

r'''

Quality of data collapse onto a master curve defined by the data
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329

This is the reduced chi-square statistic for a data fit except that the

master curve is fitted from the data itself.

Parameters

334 ----------

x, y, dy : 2-D array_like

output from :py:func:`scaledata`, scaled data `x`, `y` with standard

errors `dy`

339 x_bounds : tuple of floats, optional

lower and upper bound for scaled data `x` to consider

Returns

-------

344 float

the quality of the data collapse

Raises

------

349 ValueError

if not all arrays `x`, `y`, `dy` have dimension 2, or if not all arrays

are of the same shape, or if `x` is not sorted along rows (``axis=1``),

or if `dy` does not have only positive entries

354 Notes

-----

This is the implementation of the reduced :math:`\chi^2` quality function

:math:`S` by Houdayer & Hartmann [6]_.

It should attain a minimum of around :math:`1` for an optimal fit, and be

359 much larger otherwise.

For further information, see the :ref:`quality-function` section in the

manual.

364 References

----------

.. [6] J. Houdayer and A. Hartmann, Physical Review B 70, 014418+ (2004)

`doi:10.1103/physrevb.70.014418

<http://dx.doi.org/doi:10.1103/physrevb.70.014418>`_

369

'''

# arguments should be 2-D array_like

x = np.asanyarray(x)

374 y = np.asanyarray(y)

dy = np.asanyarray(dy)

args = {"x": x, "y": y, "dy": dy}

for arg_name, arg in args.items():

379 if arg.ndim != 2:

raise ValueError("{} should be 2-D array_like".format(arg_name))

# arguments should have all the same shape

if not x.shape == y.shape == dy.shape:

384 raise ValueError("arguments should be of same shape")

# x should be sorted for all system sizes l

if not np.array_equal(x, np.sort(x, axis=1)):

raise ValueError("x should be sorted for each system size")
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389

# dy should have only positive entries

if not np.all(dy > 0.0):

raise ValueError("dy should have only positive values")

394 # first dimension: system sizes l

# second dimension: parameter values rho

k, n = x.shape

# pre-calculate weights and other matrices

399 w = dy ** (-2)

wx = w * x

wy = w * y

wxx = w * x * x

wxy = w * x * y

404

# calculate master curve estimates

master_y = np.zeros_like(y)

master_y[:] = np.nan

master_dy2 = np.zeros_like(dy)

409 master_dy2[:] = np.nan

# loop through system sizes

for i in range(k):

414 j_primes = _jprimes(x=x, i=i, x_bounds=x_bounds)

# loop through x values

for j in range(n):

419 # discard x value if it is out of bounds

try:

if not x_bounds[0] <= x[i][j] <= x_bounds[1]:

continue

except:

424 pass

# boolean mask for selected data x_l, y_l, dy_l

select = _select_mask(j=j, j_primes=j_primes)

429 if not select.any():

# no data to select

# master curve estimate Y_ij remains undefined

continue

434 # master curve estimate

master_y[i, j], master_dy2[i, j] = _wls_linearfit_predict(

x=x[i, j], w=w, wx=wx, wy=wy, wxx=wxx, wxy=wxy, select=select

)

439 # average within finite system sizes first

return np.nanmean(

np.nanmean(

(y - master_y) ** 2 / (dy ** 2 + master_dy2),

axis=1

444 )

)

def _neldermead_errors(sim, fsim, fun):
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449 """

Estimate the errors from the final simplex of the Nelder--Mead algorithm

This is a helper function and not supposed to be called directly.

454 Parameters

----------

sim : ndarray

the final simplex

459 fsim : ndarray

the function values at the vertices of the final simplex

fun : callable

the goal function to minimize

464 """

# fit quadratic coefficients

n = len(sim) - 1

469 ymin = fsim[0]

sim = np.copy(sim)

fsim = np.copy(fsim)

474 centroid = np.mean(sim, axis=0)

fcentroid = fun(centroid)

# enlarge distance of simplex vertices from centroid until all have at

# least an absolute function value distance of 0.1

479 for i in range(n + 1):

while np.abs(fsim[i] - fcentroid) < 0.01:

sim[i] += sim[i] - centroid

fsim[i] = fun(sim[i])

484 # the vertices and the midpoints x_ij

x = 0.5 * (

sim[np.mgrid[0:n + 1, 0:n + 1]][1] +

sim[np.mgrid[0:n + 1, 0:n + 1]][0]

)

489

y = np.nan * np.ones(shape=(n + 1, n + 1))

for i in range(n + 1):

y[i, i] = fsim[i]

for j in range(i + 1, n + 1):

494 y[i, j] = y[j, i] = fun(x[i, j])

y0i = y[np.mgrid[0:n + 1, 0:n + 1]][0][1:, 1:, 0]

y0j = y[np.mgrid[0:n + 1, 0:n + 1]][0][0, 1:, 1:]

499

b = 2 * (y[1:, 1:] + y[0, 0] - y0i - y0j)

q = (sim - sim[0])[1:].T

504 varco = ymin * np.dot(q, np.dot(np.linalg.inv(b), q.T))

return np.sqrt(np.diag(varco)), varco

def autoscale(l, rho, a, da, rho_c0, nu0, zeta0, x_bounds=None, **kwargs):
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509 """

Automatically scale finite-size data and fit critical point and exponents

Parameters

----------

514 l, rho, a, da : array_like

input for the :py:func:`scaledata` function

rho_c0, nu0, zeta0 : float

initial guesses for the critical point and exponents

519

x_bounds : tuple of floats, optional

lower and upper bound for scaled data `x` to consider

Returns

524 -------

res : OptimizeResult

res['success'] : bool

Indicates whether the optimization algorithm has terminated

529 successfully.

res['x'] : ndarray

res['rho'], res['nu'], res['zeta'] : float

534 The fitted critical point and exponents, ``res['x'] == [res['rho'],

res['nu'], res['zeta']]``

res['drho'], res['dnu'], res['dzeta'] : float

The respective standard errors derived from fitting the curvature at

539 the minimum, ``res['errors'] == [res['drho'], res['dnu'],

res['dzeta']]``.

res['errors'], res['varco'] : ndarray

The standard errors as a vector, and the full variance--covariance

544 matrix (the diagonal entries of which are the squared standard errors),

``np.sqrt(np.diag(res['varco'])) == res['errors']``

See also

--------

549 scaledata

For the `l`, `rho`, `a`, `da` input parameters

quality

The goal function of the optimization

554

scipy.optimize.minimize

The optimization wrapper routine

scipy.optimize.OptimizeResult

559 The return type

Notes

-----

This implementation uses the quality function by Houdayer & Hartmann [8]_

564 which measures the quality of the data collapse, see the sections

:ref:`data-collapse-method` and :ref:`quality-function` in the manual.

This function and the whole fssa package have been inspired by Oliver

Melchert and his superb **autoScale** package [9]_.
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569

The critical point and exponents, including its standard errors and

(co)variances, are fitted by the Nelder--Mead algorithm, see the section

:ref:`neldermead` in the manual.

574 References

----------

.. [8] J. Houdayer and A. Hartmann, Physical Review B 70, 014418+ (2004)

`doi:10.1103/physrevb.70.014418

<http://dx.doi.org/doi:10.1103/physrevb.70.014418>`_

579

.. [9] O. Melchert, `arXiv:0910.5403 <http://arxiv.org/abs/0910.5403>`_

(2009)

Examples

584 --------

>>> # generate artificial scaling data from master curve

>>> # with rho_c == 1.0, nu == 2.0, zeta == 0.0

>>> import fssa

>>> l = [ 10, 100, 1000 ]

589 >>> rho = np.linspace(0.9, 1.1)

>>> l_mesh, rho_mesh = np.meshgrid(l, rho, indexing='ij')

>>> master_curve = lambda x: 1. / (1. + np.exp( - x))

>>> x = np.power(l_mesh, 0.5) * (rho_mesh - 1.)

>>> y = master_curve(x)

594 >>> dy = y / 100.

>>> y += np.random.randn(*y.shape) * dy

>>> a = y

>>> da = dy

>>>

599 >>> # run autoscale

>>> res = fssa.autoscale(l=l, rho=rho, a=a, da=da, rho_c0=0.9, nu0=2.0,

zeta0=0.0)

"""

def goal_function(x):

604 my_x, my_y, my_dy = scaledata(

rho=rho, l=l, a=a, da=da, nu=x[1], zeta=x[2], rho_c=x[0],

)

return quality(

my_x, my_y, my_dy, x_bounds=x_bounds,

609 )

ret = scipy.optimize.minimize(

goal_function,

[rho_c0, nu0, zeta0],

614 method=_minimize_neldermead,

options={

'xtol': 1e-2,

'ftol': 1e-2,

}

619 )

errors, varco = _neldermead_errors(

sim=ret['final_simplex'][0],

fsim=ret['final_simplex'][1],

624 fun=goal_function,

)

ret['varco'] = varco
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ret['errors'] = errors

629 ret['rho'], ret['nu'], ret['zeta'] = ret['x']

ret['drho'], ret['dnu'], ret['dzeta'] = ret['errors']

return ret
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