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ABSTRACT

In a quantum field theory with a time-dependent background, as in an expanding uni-

verse, the time-translational symmetry is broken. We therefore expect loop corrections

to cosmological observables to be time-dependent after renormalization for interacting

fields.

In this thesis we compute and discuss such radiative corrections to the primordial

spectrum and higher order spectra in simple inflationary models. We investigate both

massless and massive virtual fields, and we disentangle the time dependence caused by

the background and by the initial state that is set to the Bunch-Davies vacuum at the

beginning of inflation.

For the investigated models, we find that the radiative corrections to the primordial

spectrum result in oscillatory features that are not present at tree-level. These features

are also present in higher order spectra and depend on the initial conditions of the

theory. In all the investigated cases the departure from near-scale invariance and from

Gaussianity is very small and it is in full agreement with the current Planck constraints.

Future cosmic microwave background measurements may improve the current

limits on feature-full primordial spectra, giving the hope to observe these effects in the

scenario of hybrid inflation.

Keywords: Primordial Power Spectrum, Trispectrum, Inflationary Perturbations,

Inflaton Field, Slow-Roll Inflation, Hybrid Inflation, Chaotic Inflation, Non-Linearity

Parameter, De-Sitter Spacetime, Renormalization in Curved Spacetime, Radiative

Corrections, Finite Time Contributions, CTP Formalism, WKB Propagator, Hyperge-

ometric Propagator
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CHAPTER 1

INTRODUCTION

Cosmic inflation [1–3] is a theory that describes an accelerating period of expansion

of the primordial universe. It is celebrated as one of the most successful paradigms

in cosmology. The success has come through relating the primordial fluctuations [4,

5] to observational data as the temperature anisotropies of the cosmic microwave

background or the observed large scale structure of the universe. Moreover, inflation

provides a solution to many issues that existed before the 1980s, e.g. to understand

the homogeneity and the flatness of our universe.

The spectrum of the primordial perturbations of the curvature tensor is predicted

to be nearly scale invariant in the slow-roll scenario and the current observations [6]

are consistent with the predictions of a simple single-field inflationary model [7, 8].

The classical dynamics of different inflationary scenarios has been studied in the last

40 years. Many effects were already addressed in the past for different models [9–16], in-

cluding non-gaussianities [17, 18] or oscillatory features in the primordial spectrum [19].

Less attention has been devoted to the understanding of the radiative corrections

to the correlation functions of the inflaton field. Since Lorentz invariance is broken

because of the expansion of the universe, one expects an intrinsic time dependence in

the quantum corrections arsing from the evolving background.

The main goal of this thesis is to investigate the time dependence of the one-loop

radiative corrections to the two- and four-point correlation functions that arises both

because of the background evolution and the initial conditions. The natural theoretical

framework is the Schwinger and Keldysh formalism, where the time-evolution of

expectation values is easily calculated, including quantum effects. In this scenario the

system is supposed to be in the Bunch-Davies [20] vacuum at the beginning of inflation,

giving periodic contributions to the physical observables. The initial time dependence
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is investigated by testing the correlation functions with different interaction profiles

and by addressing the question of the adiabatic limit. The issue how to consistently

define counter-terms [21–38] in order to absorb the UV divergences is also addressed,

together with the problem of IR divergences [39].

In the second part of the thesis the radiative corrections to the correlation functions

are applied to explicit inflationary models. The first example is a scalar field theory with

quartic self-interaction [40] which is one of the most studied models in inflation (despite

being excluded by the present bounds on the tensor-to-scalar ratio [6]). This discussion

is extended to models inspired by the hybrid scenario [41], where the dynamics of

the inflaton field is influenced by the presence of a heavy field that gives a richer

phenomenology.

The shape of the radiative corrections to the primordial spectrum and to higher

order spectra [42, 43] are predicted for different classes of inflationary models. It

is expected that the time dependence of the correlation functions leads to periodic

features in the spectra. The trispectrum has an initial time dependence also at tree

level.

Indeed, the study of features in the primordial spectrum and trispectrum is a

powerful tool to confirm the quantum nature of the inflation field and to discriminate

among the vast landscape of inflationary models.

The first chapters are devoted to the theoretical concepts relevant for this work.

In Chapter 2 the basic notions of cosmic inflation are presented. In Chapter 3 we

start with a brief introduction of quantum field theory in curved spacetime addressing

the problem of renormalization. In Chapter 4 the Schwinger and Keldysh formalism

is introduced and the theoretical tools needed for perturbation theory are presented.

The following chapters are related to the research that we carried on. In Chapter 5

the results about renormalization of the two- and four-point correlation functions are

presented. Particular attention is paid to the understanding of the origin of the time

dependence of our results. Indeed, in Chapter 6 the interaction profile dependence of

the correlation functions and the adiabatic limit is discussed. In Section 7 the radiative

corrections to the two- and four-point functions are applied to the primordial spectrum

and trispectrum, and an estimate to the cosmological parameter τNL is given. This

thesis ends with some concluding remarks in Chapter 8.



CHAPTER 2

COSMIC INFLATION

Standard cosmology [44–47] is a modern theory that addresses fundamental questions

as the formation and the evolution of the universe and gives an interpretation of the

astronomical observations. Before the 1980s, there were however certain questions 1

that had to be resolved. They were not genuine inconsistencies; the hot big bang

cosmology never had the intent to explain the physics of the very early universe. The

missing part at the epoch was a theory of the primordial universe that could explain

the initial conditions required by the big bang expansion.

In the 1980s [1], it was realized that the initial-condition puzzle could be solved

with the idea that during the primordial stage, the universe had a period of fast

acceleration called inflation [1–3, 48].

2.1 The Friedmann Lemâıtre Robertson Walker uni-

verse

The theoretical framework that allows a quantitative and qualitative description of an

expanding universe is given by the Friedmann Lemâıtre Robertson Walker universe [49–

56] (named also FRW model). It is based on the simple cosmological principle [57]

that at sufficiently large scale, the universe becomes homogeneous and isotropic.

The dynamic of the FRW expanding universe is described by the Einstein’s equa-

tions [58–62]

Gµν := Rµν −
1

2
gµνR =

1

M2
P

Tµν , (2.1)

1The most often mentioned are the horizon problem, the flatness problem and the large-scale
structure problem.



4 Cosmic inflation

where gµν denotes the spacetime metric while Rµν and R are the Ricci tensor and

Ricci scalar, and MP is the reduced Planck mass. This equation describes how matter

and radiation (the right-hand side of eq. (2.1)) influences the spacetime background

(the left-hand-side) and the other way around.

The cosmological principle gives a simple form for the metric. The physical distance

ds between two infinitesimally close comoving spherical coordinates (r, θ, φ) and (r +

dr, θ + dθ, φ+ dφ) reads

ds2 = dt2 − a2(t)

[
dr2

1− κr2
+ r2dθ2 + r2 sin2 θdφ2

]
, (2.2)

where t is the physical time and κ is a constant that can be chosen to be 1, 0 or

-1 for a space with positive, zero or negative spatial curvature. The scalar a(t) is a

parameter that depends on time and quantifies the relative expansion of the universe.

An accelerating and expanding universe means a positive first and second derivative of

the scale factor, i.e. ȧ(t) > 0 and ä(t) > 0.

The famous Hubble law [63, 64], which is the first important result supporting the

idea of an expanding universe, is related to the derivative of the scale factor. Indeed,

the Hubble rate H(t) is defined as

H(t) =
ȧ(t)

a(t)
. (2.3)

A strong prediction of inflation is the fact that the universe should be spatially flat,

which is described by the FRW metric (2.2), setting κ = 0. In the semi-classical approach

of quantum field theory the metric is considered as a classical background. The time

dependence of the scale factor breaks the Poincaré symmetry of the expanding universe.

The appropriate theoretical framework to study expectation values for time-dependent

setups is the Schwinger and Keldysh formalism and is discussed in Chapter 4.

Often it is useful to write the metric in conformal time as (for κ = 0)

ds2 = a2(τ)
[
dτ 2 − dr2 − r2dθ2 − r2 sin2 θdφ2

]
, (2.4)

where we defined

dτ =
dt

a(t)
⇒ τ = τin +

∫ t

tin

dt

a(t)
. (2.5)

The assumption of the cosmological principle simplifies the Einstein equation (2.1)
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into a set of two independent relations called the Friedmann equations

H2 =
ȧ2

a2
=

ρ

3M2
P

− κ

a2
,

Ḣ +H2 =
ä

a
= − 1

6M2
P

(ρ+ 3p), (2.6)

where p is the pressure and ρ is the energy density. The first expression directly gives

the value for the Hubble parameter, and the second the acceleration ä.

Through the second Friedmann equation in (2.6) one can relate the condition of an

accelerating universe to the requirement of a negative pressure

p < −ρ
3
< 0. (2.7)

In order to study the theoretical properties of an inflationary universe, it is conve-

nient to examine the particular case where the pressure p is exactly given by −ρ. This

case is called a de-Sitter universe [45, 65–68] and is one of the most studied cosmological

backgrounds. This is analogous to assume that in the slow-roll approximation ρ and

H are constant. In a de-Sitter spacetime the conformal time assumes the simple form

a(τ) = − 1

Hτ
, (2.8)

where τin has been chosen such that t = ∞ corresponds to τ = 0. Therefore the

conformal time is always negative.

Let’s assume a simple linear relationship between the pressure p and the energy

density ρ

p = wρ, (2.9)

where w is the equation of state parameter. For a de-Sitter universe we already found

that w = −1. For other values of w one has

a(t) ∝ t
2

3(1+w) , for w 6= −1. (2.10)

In a non-relativistic matter dominated era the pressure is vanishing, therefore

p = 0 and w = 0. On the other hand for a radiation dominated universe the energy

momentum tensor is traceless and therefore the equation of state is given by ρ = 3p,

which means a value of the equation of state parameter equals to 1/3. In Table 2.1 all

the solutions are summarized.

In the previous examples the scale factor is estimated for systems where only one

component of the matter-energy field content contributes. In order to have a more
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Table 2.1: Solutions of the Einstein equation for a spatially flat universe dominated by
a de-Sitter era or by a non-relativistic matter (MD) or radiation (RD) epoch.

w a(t)
de-Sitter -1 eHt

MD 0 t2/3

RD 1/3 t1/2

realistic scenario one has to consider the case where all the components can contribute

to the pressure and to the energy density. Let p and ρ be given by

p =
∑
i

pi,

ρ =
∑
i

ρi, (2.11)

where the index i spans all the fields content of the theory. Let’s define the parameter

Ω that represents the energy density ratio today with respect to the critical energy

density 2 ρcrit = 3H2M2
P as

Ωi =
ρi(t0)

ρcrit

. (2.12)

By assuming that each component has an equation of state given by eq. (2.9), and

assuming that the scale factor today is normalized to 1, the Friedmann equation

becomes
H2

H2
0

=
∑
i

Ωia
−3(1+wi) + Ωκa

−2, (2.13)

where the last term is the curvature density parameter

Ωκ = − κ

H2a2(t0)
. (2.14)

By evaluating eq. (2.13) today, one finds the so-called golden rule of cosmology, i.e.∑
i

Ωi + Ωκ = 1. (2.15)

Experimental constraints on the different parameters Ωi and Ωκ can be found in the

latest Planck data release [69].

2The critical energy density ρcrit is the value required in order to have a spatially flat spacetime.
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2.2 Motivations for inflation

As pointed-out before, cosmic inflation provides one of the most successful scenario

in order to solve the several issues of hot big bang cosmology. In the following we

will briefly discuss these problems as a motivation for an inflationary phase in the

primordial history of the universe.

The Horizon problem

In the hot big bang cosmology the primordial universe had a phase dominated by

radiation. Then, the universe evolved to a non-relativistic matter scenario [70–72]. In

both cases the Hubble constant was depending on time as

a(t) ∼ tα ⇒ H(t) ∼ t−1, (2.16)

giving a negative acceleration ä(t) < 0. The particle horizon 3 is set by the Hubble

constant and increases with time as ∼ H−1 ∼ t.

In the big bang theory scenario, at the present time t0, we should have causally

access only to the regions of size of the order of ∼ t0. Therefore we expect that the

universe is originated from various disconnected regions, since the causal size decreases

going back in time. In particular we expect that for the cosmic microwave background,

at the time of emission, during last-scattering, there are photons that are causally

disconnected. The observed anisotropies in the cosmic microwave background appear to

be the same in all directions, even for photons that have never been in causal contact.

This problem was solved by supposing a phase of rapid acceleration where all the

scales are reduced. Therefore by supposing a sufficiently long inflationary epoch, the

causal correlations in the cosmic microwave background are consistently explained.

In order to quantify the previous statement, one usually defines the number of

e-folds

N(t) =

∫ tend

t

dτ H(τ), (2.17)

where tend is the time at the end of inflation. In order to solve the horizon problem a

number of e-folds [73] N > 60 is typically required.

3The particle horizon is the maximum distance from which particles could have reached the
observer from the origin of the universe [71].
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The Flatness problem

The second problem that we would have without an inflationary phase arises from the

observation that the universe seems to be flat at large scales. From the equation of the

curvature one has

Ω(t)− 1 =
κ

H2(t)a2(t)
, (2.18)

where Ω = ρ(t)/ρcrit. During the radiation and matter domination period, the value

Ω− 1 increases in time. This means that in order to explain the flatness of the space

observed today, the value of Ω− 1 should have started from a value extremely close to

zero in the primordial universe.

Inflation provides an elegant solution to the flatness problem. Since the Hubble

rate is almost constant during the inflationary phase, one has a deviation from Ω− 1

that is suppressed exponentially with time

Ω(t)− 1 ∝ 1

a2(t)
. (2.19)

In order to get a vanishing value of Ω(t)− 1 today, it is required that the inflationary

epoch lasted for at least 70 e-folds [73]. It should be noted that the flatness problem is

a fine-tuning problem. It is not a genuine inconsistency, but it requires a very unnatural

value of |Ω− 1| ∼ 10−60 at the beginning of the radiation dominated era.

As pointed-out before, inflation provides an appealing scenario where the quantum

fluctuations [74–76] of the primordial fields are streched to macroscopic scales and

are responsible for the initial primordial curvature perturbations required by the

hot big bang theory. The statistical properties of the initial perturbations can be

directly related to late time observables as the temperature anisotropies in the cosmic

microwave background or the observed large scale structure of our universe.

2.3 Slow-roll inflation

An inflationary period in the early universe is characterized by a positive acceleration

of the scale factor ä > 0. From the Friedmann equations (2.6), this requires a negative

pressure p < −ρ
3
. In the following, the case of slow-roll inflation where p ∼ −ρ

is discussed. An almost exponential expansion of the universe can be achieved by

considering a single field model where the inflaton field is slowly rolling down a potential

V (φ) that dominates over the canonical kinetic energy. Therefore an inflationary period
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can be obtained from a Lagrangian density

L =
√
−g
[
−1

2
∂µφ∂

µφ− V (φ)

]
, (2.20)

where g is the determinant of the FRW metric. Restricting to the case of a perfect

fluid, the pressure and the energy density for an homogeneous field are given by

ρ =
1

2
φ̇2 + V (φ), p =

1

2
φ̇2 − V (φ). (2.21)

The equation of state becomes

w =
p

ρ
=

1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (2.22)

Therefore if the potential dominates over the kinetic term, the conditions for

a de-Sitter universe are recovered and the scalar field becomes responsible for the

accelerated expansion of the universe. The equation of motion for the inflaton field is

described by the FRW equation

φ̈+ 3Hφ̇+ V ′(φ) = 0, (2.23)

and

H2 =
1

3M2
P

ρ. (2.24)

Slow-roll parameters

In the limit of slow-roll inflation the scalar field is slowly rolling down the potential

with a subdominant kinetic energy. This is achieved by requiring that φ̇2 � V (φ).

It is also expected, being the potential flat, that also φ̇ can be neglected. The FRW

equation becomes

H2 =
1

3M2
P

V (φ), (2.25)

where it is assumed that the inflaton field is dominating the energy density of the

universe. The equation of motion becomes

φ̇ = −V
′(φ)

3H
. (2.26)
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The slow-roll conditions then require

φ̇2 � V (φ)⇒ V ′(φ)2

V (φ)
� H2 (2.27)

and ∣∣∣φ̈∣∣∣� ∣∣∣3Hφ̇∣∣∣⇒ |V ′′(φ)| �
∣∣H2

∣∣ . (2.28)

It can be useful to introduce the slow-roll parameters

ε = − Ḣ

H2
=
M2

P

2

(
V ′(φ)

V (φ)

)2

, (2.29)

η = M2
P

(
V ′′(φ)

V (φ)

)
, (2.30)

δ = η − ε. (2.31)

It should be noted that ε represents the slope of the potential and η the curvature. An

inflationary period is characterized by ε < 1 and slow-roll inflation by the condition

that the potential is approximately constant, i.e. |η| , ε� 1.

2.4 Inflationary perturbations

Because of the rapid expansion in the inflationary epoch, the early universe was nearly

uniform. This very small deviation from homogeneity is the initial seed that explains

our understanding of the origins of structures in the universe. This is one of the

big success of inflation that was confirmed by the measurement of the temperature

anisotropies in the cosmic microwave background. The following introduction is based

on [70–73].

The main idea of cosmological perturbation theory is to separate the fields χ(t, x)

into a homogeneous part χ(t) that depends only on time and a small perturbation

δχ(t, x) := χ(t, x)− χ(t) that depends also on the spatial coordinates. This approach

is justified considering that at the time of decoupling the inhomogeneities were very

small, of the order of δρ/ρ ∼ 10−5.

In the following we consider how the perturbations of a generic scalar field χ

behaves on a de-Sitter background. Let δχk be the Fourier transform with respect to

the spatial coordinates of the field fluctuations δχ.

The equation of motion in the case of a massless field reads

δχ̈k + 3H δχ̇k +
k2

a2
δχk = 0. (2.32)
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For scales within the Hubble radius λ� H−1, the friction term 3Hδχ̇k of eq. (2.32)

can be neglected and the equation of motion reduces to the equation of an harmonic

oscillator with a time-dependent frequency k2/a2(t). Therefore for wavelengths smaller

than the Hubble radius H−1, the fluctuation is mostly oscillating. On the other hand

for scales larger than the Hubble radius λ� H−1 the term proportional to k2/a2(t)

can be neglected and a constant value |δχk| = H/
√

2k3 becomes a solution to the

equation of motion.

Eq. (2.32) has an exact solution given by

δχk =
1

a(t)

[
C
e−ikτ√

2k

(
1− i

kτ

)
+D

eikτ√
2k

(
1 +

i

kτ

)]
, (2.33)

where C, D are two constants that are determined by the initial conditions and τ is

the conformal time. The constants C and D are fixed by imposing that at τ → −∞
the mode δχk is given by the positive-frequency Minkowski solution δχk ∝ e−ikτ , i.e.

lim
τ→−∞

δχk(τ) =
1

a(t)

e−ikτ√
2k
, (2.34)

which corresponds to the minimal excitation state. The initial condition sets the

constants to C = 1 and D = 0. Eq. (2.33) reduces to

δχk =
1

a(t)

e−ikτ√
2k

(
1− i

kτ

)
, (2.35)

which reproduces the previous qualitative considerations in the two different regimes,

i.e. for k � aH and for k � aH.

An important quantity that characterizes the properties of the perturbation is the

power spectrum which is defined as

(2π)3δ(3)(k + k′)Pδχ(k) = 〈δχkδχk′〉 . (2.36)

The power spectrum is directly connected to the Fourier modes δχ as

Pδχ(k) =
k3

2π2
|δχk|2

∣∣∣∣
k=aH

, (2.37)

where the power spectrum is evaluated at horizon exit k = a(t)H(t) giving an expression

dependent only on the momentum variable k. After the horizon exit the spectrum of

the field perturbations δχ is constant
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Pδχ(k) =
k3

2π2

H2

2k3
=
H2

4π2
. (2.38)

We discuss now the example of a massive scalar field with small mass mχ in de-Sitter

spacetime. The equation (2.32) becomes

δσ′′k +
(
k2 +M2(τ)

)
δσk = 0, M2(τ) =

1

τ 2

(
m2
χ

H2
− 2

)
, (2.39)

where M(τ) is a time-dependent mass and τ is the conformal time. We also define

δσk = a(t) δχk (2.40)

in order to absorb the scale factor dependence into the field definition. By defining the

index νχ as

ν2
χ =

(
9

4
−
m2
χ

H2

)
, (2.41)

the massive equation of motion (2.39) reads then

δσ′′k +

[
k2 − 1

τ 2

(
ν2
χ −

1

4

)]
δσk = 0. (2.42)

For a real index, the last equation has a solution given in terms of the Hankel’s

functions of the first and second kind H
(1)
νχ and H

(2)
νχ given by

δσk =
√
−τ
(
A(k)H(1)

νχ (−kτ) +B(k)H(2)
νχ (−kτ)

)
, (2.43)

where A and B are two coefficients that have to be fixed with the initial conditions.

After imposing that in the ultraviolet regime, i.e. for scales k � aH, we recover

the plane-wave solution e−ikτ/
√

2k and with the known limits [77]

H(1)
νχ (−kτ � 1) ∼

√
−2

kτπ
ei(−kτ−

π
2
νχ−π4 ),

H(2)
νχ (−kτ � 1) ∼

√
−2

kτπ
e−i(−kτ−

π
2
νχ−π4 ), (2.44)

the constants are fixed to

A(k) =

√
π

2
ei(νχ+ 1

2)π2 ,

B(k) = 0. (2.45)
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The exact solution finally reads

δσk =

√
π

2
ei(νχ+ 1

2)π2
√
−τH(1)

νχ (−kτ). (2.46)

For scales larger than the horizon the Hankel’s function H
(1)
νχ is approximated to [77]

H(1)
νχ (−kτ � 1) ∼

√
2

π
e−i

π
2 2(νχ− 3

2
)

(
Γ(νχ)

Γ(3/2)

)
(−kτ)−νχ , (2.47)

where Γ is the gamma function. Returning to the original cosmological perturbation

δχk, one finds that for scales larger than the horizon −kτ � 1, the fluctuation of a

scalar perturbation of a massive field is not constant but acquires a small dependence

on time. Indeed

|δχk| ∼
H√
2k3

(
k

aH

) 3
2
−νχ

, −kτ � 1. (2.48)

Before we considered the quantum fluctuations of a generic scalar field in a pure

de-Sitter background where the expansion of the universe is described by the scale

factor a(τ) = −1/(kτ). However, during the inflationary epoch the Hubble rate has

a little change in time as Ḣ = −εH2 (quasi de-Sitter expansion), where ε is a small

parameter. The scale factor becomes

a(τ) = − 1

Hτ 1+ε
. (2.49)

The scalar fluctuations are described by eq. (2.39) with the mass term now given by

M2(τ) = m2
χa

2(τ)− a′′(τ)

a(τ)
' m2

χa
2(τ)− 1

τ 2
(2 + 3ε), (2.50)

where ′ denotes the derivative respect to the conformal time. Therefore for small values

of ε and ηχ ≡ m2
χ/(3H

2) we get eq. (2.42) with νχ given by

νεχ =
3

2
+ ε− ηχ. (2.51)

The power spectrum evaluated at the horizon crossing reads now

Pδχ(k) =

(
H

2π

)2(
k

aH

)3−2νεχ

(2.52)
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and one can define the spectral index of the perturbation as

nδχ − 1 =
d ln Pδχ
d ln k

= 3− 2νεχ. (2.53)

The tiny tilt in the power spectrum arises both because the Hubble rate is not constant

during inflation and because the inflaton field was considered massive.

The previous considerations can be directly applied to the case of a scalar inflaton

field. As discussed before, the inflaton is dominating the energy density of the universe

in the inflationary stage and any perturbation of the field δφ leads to perturbation of the

energy momentum tensor. Moreover, the Einstein’s equations relate the perturbation

of the stress energy-momentum tensor to perturbations of the metric

1

M2
P

δTµν = δGµν . (2.54)

This chain is closed by noticing that a perturbation of the metric changes the Klein-

Gordon equation of the inflaton field giving back the inflaton perturbations. This

procedure suffers from the complication of the backreaction effect. Moreover the

splitting into background and fluctuations depends on the choice of coordinates.

In order to avoid problems related to the gauge dependence of the results, one

typically introduces gauge independent quantities from the matter and metric pertur-

bations [78]. The first gauge-invariant quantity is measuring the spatial curvature of

hypersurfaces with a constant energy density and reads [79]

− ζ := Ψ +
H

ρ̇
δρ, (2.55)

where Ψ is the curvature perturbation on a generic slicing and ρ are the density

perturbations.

During inflation the quantity ζ remains constant after the horizon exit (for k � aH).

During slow-roll, eq. (2.55) simplifies to

− ζ = Ψ +
H

φ̇
δφ. (2.56)

With a proper choice of gauge that has spatially flat hypersurface, the gauge-invariant

parameter ζ can be connected to late time observables through

ζ ∼ δρ

ρ+ p
. (2.57)

The second gauge-invariant quantity which is used in the literature is the comoving
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curvature perturbation

R :=
H

φ̇
δφ, (2.58)

and by construction it represents the gravitational potential on comoving hypersurfaces,

i.e. hypersurfaces with δφ = 0. Any linear combination of R and ζ will preserve the

gauge-invariance. Moreover, in slow-roll inflation, on super-Hubble scales one has

ζ ∼ R.

We conclude this section by relating the power spectrum of the curvature fluctua-

tions Rk to the power spectrum of the inflaton fluctuations δφk. The longitudinal gauge

is a convenient choice in order to compute the cosmological perturbations because one

has

Rk ' H
δφk

φ̇
. (2.59)

The power spectrum of the comoving curvature perturbation after the horizon exit

reads then

PR =
k3

2π2

H2

φ̇2
|δφk|2. (2.60)

If the power spectrum of the inflaton fluctuations δφ is described by eq. (2.52), one

finally has

PR =
H2

φ̇2

(
H

2π

)2(
k

aH

)3−2νεχ

. (2.61)

2.5 Selection of classes of models

Inflationary models are classified according to their properties. In the following three dif-

ferent categories are considered: large-field, small-field, and hybrid models. Generically,

a single-field potential is described by

V (φ) = Λ4f

(
φ

µ

)
, (2.62)

where the amplitude Λ4 corresponds to the vacuum energy density and the width µ

is related to the field’s change during the inflationary phase. Different inflationary

models consider different functions f . In Figure 2.1 we show an example of a slow-roll

single-fields model.
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Figure 2.1: Example of a slow-roll single-field inflation. The accelerating expansion of
the universe occurs when the potential V (φ) is dominating over the canonical kinetic
energy 1

2
φ̇2. Inflation ends at φend when the kinetic term becomes comparable to the

inflaton potential. The cosmic microwave background fluctuations are generated about
60 e-folds before the end of inflation from quantum fluctuations. The Figure was taken
from [80].

Large-field models

Large-field inflation is an interesting class of models where the prototype potential is

given by the chaotic scenario [40] of a monomial interaction, i.e.

V (φ) = λ

(
φ

µ

)n
. (2.63)

For these models, the scalar field is displaced from the minimum of the inflaton

potential by an amount of the order of the Planck mass. These models are characterized

by potentials with positive curvature, i.e. V ′′(φ) > 0. The large potential V (φ) ∼M4
P

results in a large friction in the Friedmann equation with the consequence that the

inflaton slowly rolls down the potential. An important feature of the chaotic scenario

is that the slow-roll conditions are independent from the coupling λ and that they

produce an amount of gravitational waves that potentially can be observed in the

future. The simplest model is given by a quadratic potential

V (φ) =
1

2
m2φ2, (2.64)

where m represents the mass of the inflaton. Inflation ends when the field’s magnitude

becomes comparable to the Planck’s mass, because the slow-roll conditions are violated.
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Small-field models

Small-field models are in general obtained from the spontaneous symmetry breaking and

inflation starts from near an unstable vacuum. The field is rolling down the potential

to the stable minimum. Small-field scenarios typically have a negative curvature of the

potential, i.e. V ′′(φ) < 0 and ε is very close to zero. A simple example is given by the

Higgs-type potential

V (φ) = V0

[
1−

(
φ

µ

)2
]2

, (2.65)

that can be interpreted as the lowest-order expansion of generic potentials. These

models predict negligible production of tensor perturbations [81].

An interesting model is given by natural inflation [82] described by the potential

V (φ) = V0

[
cos

(
φ

f

)
+ 1

]
, (2.66)

where the inflaton field could be identified with an axion. Depending on the value of f

this could be a small-field or a large-field model.

Hybrid models

A richer phenomenology is given by multi-field inflation [83], where models with more

than one field contribute to the inflationary dynamics. On the other hand, this will also

increase the number of parameters of the theory with the consequent loss of predictive

power. This class is popular for models inspired by supersymmetry and supergravity

since they provide the additional fields required by the hybrid inflation.

Here we consider only the hybrid model where the inflaton field φ evolves toward a

minimum of the potential with non-zero energy. The end of inflation is determined

from a second field σ that act as a clock of the inflationary phase. These models have

a positive curvature in the inflaton field direction. An example of a hybrid theory is

given by the following potential

V (φ, σ) =
m2

2
φ2 +

1

4g
(M2 − gσ2)2 + λ2

hφ
2σ2. (2.67)

For an inflaton field φ larger than the critical value φc = M/(
√

2λh) the only minimum

is at σ = 0. Therefore at the beginning of inflation the field σ is rolling down the

potential to σ = 0 while φ remains large and drives inflation. Inflation ends when φ

becomes smaller than M/(
√

2λh). Then a phase transition occurs and the two fields φ

and σ rapidly fall into the absolute minimum of the potential at φ = 0 and σ2 = M2/g.
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CHAPTER 3

QUANTUM FIELD THEORY IN CURVED SPACETIME

Quantum field theory 1 (QFT) is one of the most successful theory of modern physics

and it combines quantum mechanics with special relativity. Quantum mechanics is a

non relativistic theory and cannot consistently describe processes where the number

and the type of particles change, as in the case in most reactions in nuclear and particle

physics. Moreover, any attempt to construct relativistic wave equations had the problem

that negative energy solutions were appearing without a clear interpretation. Quantum

field theory gave a different theoretical framework where these difficulties could be

solved. In the new point of view, particles are identified as the field’s modes and the

interactions between particles are described by the interaction of the corresponding

underlying fields. It is also a universal language used in many fields of science and it

gives a consistent description of collective phenomena. Unfortunately one finds some

technical difficulties in the attempt to describe gravity with a complete quantum field

theory because it becomes non-renormalizable.

In Section 3.1 we will introduce the problem of non-renormalizability and motivate

the use of a semi-classical approach where gravity is described as a classical background.

Then, in Section 3.2 we will review the standard renormalization techniques in quantum

field theory in order to avoid the nonphysical divergences that arise naturally from

the formalism. In Section 3.3, the adiabatic renormalization is discussed for quantum

field theories on a FRW background. The formal approach to renormalization is also

presented in Section 3.4. The perturbative approach within the closed-time-path (CTP)

formalism is finally explored in Chapter 4.

1See [84, 85] for a general review and [86] for a recent introduction to quantum field theory.
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3.1 Introduction

In the classical theory of general relativity the Einstein’s equations [58–62] can be

derived from the Einstein-Hilbert action

S =
M2

P

2

∫
d4x
√
−g(R− 2Λ), (3.1)

where MP is the reduced Planck mass, g is the determinant of the metric, R is the

scalar Ricci curvature, and Λ is the cosmological constant. After imposing a null

variation of the action, the Einstein’s equations in vacuum are found, i.e.

Rµν −
1

2
gµνR+ Λgµν = 0. (3.2)

This equation is generalized by adding into the action a term that takes into account

the matter content of the system. One finds

Rµν −
1

2
gµνR+ Λgµν =

1

M2
P

Tµν , (3.3)

where Tµν is the energy momentum tensor associated to the matter component.

Here the metric gµν plays a twofold role. On one side, it describes the physical

background of the theory. On the other side it is dynamical as one can see in eq. (3.3).

When one tries to consider gµν as a field whose dynamics is described from an action

principle, the theory becomes non-renormalizable.

A possible way around is to consider the semi-classical approach of quantum field

theory, where one considers quantum fields in a classical background and gravity

enters into the theory as an overall factor
√
−g in front of the Lagrangian density. By

imagining the metric given by a perturbative expansion

gµν = g(0)
µν + ~ g(1)

µν +O(~2), (3.4)

the semi-classical approach consists of the zeroth order in ~. This is the theoretical

framework that will be used in this work.

Other solutions are of course possible. For example, one can forget about the non-

renormalizability of the quantum field theory of gravity and consider an effective theory

with higher graviton loops. Another solution is to treat the background classically and

to consider the back-reaction from the Einstein’s equation in the following way

Rµν −
1

2
gµνR+ Λgµν =

1

M2
P

〈Tµν〉φ , (3.5)
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where the expectation value of stress energy-momentum tensor is quantized in some

state φ.

Moreover, the Lorentz invariance plays a fundamental role in quantum field theory in

a flat spacetime. Since in this case one can identify a unique vacuum state for the theory,

one has a well-defined procedure in order to construct and interpret quantum states

and physical observables. In an arbitrary spacetime, where the Poincaré invariance is

broken, there is in general no unique definition for a vacuum state. Therefore notions

like particles or the scattering amplitude become ambiguous. For a general review

about quantum field theory in curved spacetime see [37, 87–90].

In Minkowski spacetime, after the second canonical quantization we typically find

the following Fourier expansion of the field [87]

φ(x) =
∑
i

(
aiui + a†iu

∗
i

)
, (3.6)

where ui are the field’s modes and a†i , ai the creation and annihilation operators. This

expression gives a unique definition of the vacuum state |0〉 as the state such that

ai |0〉 = 0 for all i. In a curved spacetime the situation changes. Since there is no unique

choice for the field’s modes ui, the vacuum is not unique. As a consequence one cannot

describe the particle content of a state because there is no notion of vacuum, except

for asymptotic states where it is supposed that at infinity the curvature vanishes.

The non-uniqueness of the vacuum gives rise to physically interesting scenarios of

particle creation in cosmological and black holes spacetimes that are reviewed in [91, 92].

One example is given by the Hawking effect [93–95], where black holes emit a thermal

spectrum of radiation. The creation of particles is an important feature in order to be

consistent with the second law of thermodynamics. Another important phenomenon is

given by the Unruh effect [96] that predicts that an accelerating observer detects a

black body radiation, not seen by the inertial observer.

In this thesis we are mostly interested in scalar field theories in a de-Sitter spacetime.

In this particular scenario the vacuum state is typically defined by requiring that the

high frequency asymptotic form is given by the Minkowski vacuum and by requiring

also de-Sitter invariance. This gives a preferred set of modes [80]

uk =
e−ikτ√

2k

(
1− i

kτ

)
. (3.7)

This state is called the de-Sitter invariant vacuum or the Bunch-Davies vacuum [20]

and is the most natural vacuum state in order to calculate the explicit form of the

propagators and expectation values in a FRW spacetime.
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3.2 Renormalization in Minkowski spacetime

In quantum field theory, renormalization [84, 85] is the collection of techniques used

in order to deal with infinities that arise in the perturbative calculation of physical

quantities. For example, for a scalar field theory with interaction λφ4, the following

integral appears in the first order perturbative expansion of the 2 → 2 scattering

amplitude [86]

I(p) =
(−iλ)2

2

∫
d4k

(2π)4

i

k2 −m2 + iε

i

(p− k)2 −m2 − iε
, (3.8)

where ε→ 0+, p represents the external momenta, and m the mass of the field. This

integral is related to a scattering amplitude that can be measured and therefore it

should be finite. In order to understand the general ideas of renormalization let’s

discuss how to extract a meaningful quantity from I(0). The first step is to regularize

the theory by making the integral (3.8) finite. For example, we can introduce a cutoff 2

Λ in the momentum integral, i.e.

[I(0)]reg =
iλ2

2

1

(2π)4
(2π2)

∫ Λ dk

k
+ finite contributions

= iλ2 1

16π2
log Λ + finite contributions, (3.9)

where the factor (2π2) is due to the solid angle integration. In the previous expression

the divergence was isolated to a logarithmic term. This term can be subtracted from

eq. (3.9) and what remains is a meaningful quantity that can be confronted to the

observations and that is predictive. This is the beauty of renormalization. The formal

approach of renormalization in the language of distribution theory will be addressed

in Section 3.4.

In the previous case, with the prescription 3 where only the divergent contributions

are removed, the renormalized I(0) reads

[I(0)]ren = finite contributions. (3.10)

Another example is given by the one-loop correction to the two-point function,

which is represented by a tadpole diagram. The integral is of the form of

−iλ
2

∫
d4k

(2π)4

1

k2 +m2
. (3.11)

2There are other convenient choices of regularization schemes as dimensional regularization [84].
3This prescription is called the minimal subtraction scheme.
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After the introduction of a cutoff the regulated tadpole reads

− i λ

32π2

(
Λ2 −m2 log

(
Λ2 +m2

m2

))
. (3.12)

This integral has quadratic and logarithmic divergences, both arising in the ultraviolet

regime. This and similar divergences are found in the perturbative calculation of higher

order correlation functions and can be absorbed in the definition of physical quantities

in the Lagrangian. For example for a theory with quartic interaction considered before

one can define counter-terms δL in the Lagrangian that depend on the cutoff Λ of the

regulated theory

L[φ] =

(
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4

)
+ δL, (3.13)

where

δL =

(
1

2
δZ ∂µφ∂

µφ− 1

2
δm2 φ2 − δλ

4!
φ4

)
. (3.14)

As a consequence of this procedure, the renormalized coupling constants depend on

the energy scale of the measurement. In this thesis we will mainly work in the minimal

subtraction scheme (MS) [97, 98] where the counter-terms are defined in order to

absorb only the divergent terms of the radiative corrections.

With the previous examples we saw that by introducing the counter-terms in

eq. (3.13) one is able to cure all the divergences of the two- and four-point correlation

function. In principle we could continue and investigate loop diagrams appearing for the

six-point function and so on. It can be proven [85] that for the scalar field theory (3.13),

all the divergences can be absorbed by a redefinition of the counter-terms given in

eq. (3.14). In this case the theory is called renormalizable. If this were not the case

and genuinely new divergences appear in the calculation of higher order correlation

functions, we should introduce new counter-terms in the Lagrangian (e.g. a term

proportional to φ6). If this process never stops and for each higher order amplitude one

has to introduce new counter-terms, the theory is said to be non-renormalizable. This

class of theories are less predictive, because one has to introduce an infinite amount

of parameters that have to be fixed by experiments. Nevertheless non-renormalizable

theories are still predictive at low-energy because the higher order corrections can be

neglected.

In the next section, we will introduce the adiabatic regularization, which is a

prescription used for calculating finite expectation values that involve quadratic

products of fields in a FRW background. The other example of renormalization in

curved spacetime is given by renormalization in the CTP formalism, that allows
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to use the renormalization techniques developed in Minkowski spacetime also for

time-dependent backgrounds. The formalism is discussed in Chapter 4.

3.3 Adiabatic renormalization

In the following the adiabatic expansion procedure [92, 99] in a Friedmann Lemâıtre

Robertson Walker universe is discussed. The metric is assumed to be of the form

ds2 = dt2 − a2(t) dx2, (3.15)

where (t, x) ∈ R4 are the usual comoving coordinates and a(t) is the scale factor which

takes into account the expansion of the universe.

This explicit time dependence in the scale factor breaks the time-translation

invariance of the system, therefore the first question that has to be addressed is how

to construct a Hilbert space when the system has less symmetries. We mainly have

two conditions, first one requires that our chosen basis can reproduce all the physical

expectation values that one can construct. Secondly, one expects that particles are not

created in the limit where the single-particle energy is larger compared to the scale of

energy of the curvature. In other words, the number of particles has to remain almost

invariant for a varying a(t). This condition guarantees that quantities like the number

of particles or the energy-momentum tensor give the expected values in the limit of

small curvature. The asymptotic condition is often called the adiabatic condition.

It is useful to introduce a dimensionless parameter T in order to quantify the

slowness of the scale factor, i.e. a(t)→ a(t/T ). If we expand a(t/T ) around T =∞
one has

a(t/T ) = a(0) +
t

T
a′(0) +

t2

2T 2
a′′(0) +O(T−3). (3.16)

The zeroth-order of the adiabatic expansion gives precisely a flat and static universe.

Usually in the literature [100], the power of T−1 is called the adiabatic order. We

remark that the number of derivatives in the expansion are directly correlated with

the adiabatic order.

In order to construct the Hilbert space of the system, we start from the equation

of motion

(�−M2(t))φ = 0, (3.17)

where M is a time-dependent mass. The differential equation can be solved by intro-

ducing a set of complete orthonormal functions uk that satisfy the adiabatic condition.
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A scalar field can be expressed in terms of creation and annihilation operators a†k, ak

φ(x) =

∫
dkn−1

(
akuk(x) + a†ku

∗
k(x)

)
. (3.18)

Since the choice of the basis of the Hilbert space is not unique, the adiabatic

vacuum (and consequently the Fock space) will depend on the chosen uk. Even if the

Fock space is not unique, this representation can be used to describe physical events

because it will uniquely determine the large momenta behavior.

Let’s start with an Ansatz for the fields modes uk

uk(x) =
1√

2(2π)n−1a(t)n−1
hk(t)e

ikx, (3.19)

where the system is supposed to be on a n-dimensional spacetime for further convenience

and

hk(t) =
1√
W
e−i

∫ t dt′W . (3.20)

Assuming that our spacetime is described by a FRW-type metric, one can expand

W adiabatically

W = c0 + c1
ȧ

a
+ c2

Ṁ

M
+ c3

ȧ2

a2
+ c4

Ṁ2

M2
+ c5

ä

a
+ c6

M̈

M
+ c7

ȧṀ

aM
+O

(
T−3

)
, (3.21)

where ci are functions of the scale factor a(t) and the effective mass M(t). We define

now the A-th order of uk as in eq. (3.19), where we have considered W up to adiabatic

order A. The approximated modes are denoted as u
(A)
k and they are explicitly computed

in [34, 35, 101]. This choice of modes also defines the creation and annihilation operators

and the adiabatic vacuum
∣∣0(A)

〉
. Therefore one has

φ(x) =

∫
dkn−1(a

(A)
k u

(A)
k + a

†(A)
k u

∗(A)
k ). (3.22)

The adiabatic expansion will be applied to the energy-momentum tensor in order

to have a theoretical framework where renormalization can be performed. First of all,

the action is defined as [34]

S[ϕ, gµν ] = Sm[ϕ, gµν ] + Sg[g
µν ], (3.23)
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where gµν is the metric and Sm, Sg are the matter and gravitational part, i.e.

Sm[ϕ, gµν ] = −1

2

∫
dnx
√
−g
[
∂µϕ∂

µϕ+m2ϕ2 + ξRϕ2 + 2
λ

4!
ϕ4

]
, (3.24)

Sg[g
µν ] =

∫
dnx
√
−g
[
Λ + αR+ βR2 + ε1RαβR

αβ + ε2RαβγδR
αβγδ

]
, (3.25)

where Rµν and R are the Ricci tensor and scalar, Rµνρσ is the Riemann curvature

tensor, Λ is the cosmological constant and g is the determinant of the metric gµν .

The energy-momentum tensor is obtained taking the variation of the action with

respect to the metric

Tµν = − 2√
−g

δSm[ϕ, gµν ]

δgµν
. (3.26)

In the following the adiabatic regularization methods are discussed and applied to

the case of the energy-momentum tensor Tµν .

Adiabatic regularization

Adiabatic subtraction [100, 102–105] is considered one of the most efficient methods

for calculating finite expectation values that involve quadratic product of fields 4.

It can be proven that the ultraviolet behavior of a quantity is contained in the

lowest orders of its adiabatic expansion, or, equivalently that higher orders are less

divergent. Consequently, one can define a regularization and renormalization procedure

called adiabatic subtraction where the finite part is obtained by taking the expectation

value of the full energy-momentum tensor 〈Tµν〉, containing the ultraviolet divergences

and by subtracting all the divergent adiabatic orders 5, i.e.

〈Tµν〉finite = 〈Tµν〉 − 〈Tµν〉(0) − 〈Tµν〉(2) − 〈Tµν〉(4) . (3.27)

The previous method has the advantage that it simultaneously regulates and

renormalizes quantities. On the other hand, one might want to know the explicit form

of the infinities and give an explicit expression for the counter-terms.

An alternative procedure was introduced in [34, 35, 106], where they first used

dimensional regularization in order to make all the quantities finite. Thus, renormal-

ization is applied only to the first adiabatic orders that contain all the divergences. In

the following, the last method will be applied to the energy-momentum tensor.

In order to get the one-loop corrections to the energy-momentum tensor, it is

4For example
〈
φ(x)2

〉
or 〈Tµν(x)〉.

5For the energy-momentum tensor it can be shown that the ultraviolet behavior is contained in
the adiabatic expansion up to order 4.
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convenient to expand ϕ, that from now will be denoted as ϕ̂, about the classical

background ϕ = 〈ϕ̂〉
ϕ̂ = ϕ+ φ̂, (3.28)

where φ̂ is supposed to be Gaussian 6 at one-loop order. By replacing eq. (3.28) in

(3.24) and considering terms up to quadratic order, one obtains the explicit expression

for the energy-momentum tensor at one-loop order [34]

Tµν = −gµν
2

[
∂ρϕ∂

ρϕ+m2ϕ2 + 2
λ

4!
ϕ4

]
+ ∂µϕ∂νϕ+ ξ [Gµν −∇µ∇ν + gµν�]ϕ2

− gµν

2

[
∂ρφ̂∂

ρφ̂+m2φ̂2 +
λ

2
φ̂2ϕ2

]
+ ∂µφ̂∂νφ̂+ ξ [Gµν −∇µ∇ν + gµν�] φ̂2

= TCµν + TQµν . (3.29)

In order to have the renormalized expression for the energy-momentum tensor, the

following counter-terms δTµν are introduced

Tµν = TCµν + TQµν + δTµν , (3.30)

where

δTµν = −gµν
2

[
δm2ϕ2 + 2

δλ

4!
ϕ4

]
+ δξ [Gµν −∇µ∇ν + gµν�]ϕ2 − δT gµν (3.31)

and

δT gµν = −gµνδΛ + 2δαGµν + 2δβ (1)Hµν + 2δε1
(2)Hµν + 2δε2Hµν . (3.32)

The H functionals represent the quadratic order tensors in the curvature and they are

defined as

(1)Hµν :=
1√
−g

δ

δgµν

∫
dnx
√
−gR2,

(2)Hµν :=
1√
−g

δ

δgµν

∫
dnx
√
−g RµνRµν ,

Hµν :=
1√
−g

δ

δgµν

∫
dnx
√
−g RµνσρRµνσρ. (3.33)

6This implies that at one-loop order all
〈
φ̂k
〉

vanishes for odd k.
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By replacing the quantum field φ̂ with the Ansatz given in eq. (3.22), one has

〈
TQ00

〉
=

∫
dn−1k

{
1

2

[
|u̇k|2 +

(
k2/a2 +M2

)
|uk|2

]
+ ξ

[
G00 + (n− 1)

ȧ

a
∂0

]
|uk|2

}
,

(3.34)

where M2 = m2 + λ/2ϕ2. The adiabatic expansion procedure can be applied in order

to regularize the 00-component of the energy-momentum tensor. First, the operator

TQ00 can be expanded adiabatically up to order 4. The other terms are neglected since

they do not contribute to the ultraviolet behavior〈
TQ00

〉
=
〈
TQ00

〉(0)

+
〈
TQ00

〉(2)

+
〈
TQ00

〉(4)

. (3.35)

Finally T00 is renormalized using dimensional regularization 7 with the well-known

procedure. The explicit calculation are performed in Section 5.4, where the energy-

momentum tensor is renormalized in the case where the renormalization conditions

are given in Minkowski and de-Sitter spacetime. This gives an independent calculation

of counter-terms that can be compared with alternative regularization prescriptions in

curved space-time. In the next section the issue how to formally approach the problem

of renormalization is addressed.

3.4 From distribution theory to the Epstein-Glaser

renormalization

This chapter introduces the basic concepts regarding distribution theory. In particular,

the question how to define the singular structure of distributions is approached. The

issue how to consistently extend the domain of definition for supports that include the

singularities is known as the Epstein-Glaser renormalization [107] and it is related to

the renormalization procedure used in particle physics.

In the first part of this section the basic definitions of distribution theory are shown,

including the definition of singular support. Then, the notions of renormalization of dis-

tribution and renormalization freedom are presented. This section concludes with a dis-

cussion of the wavefront set and of the singular structure of the different propagators.

Distribution theory

In physics one has often to deal with objects that have similar properties to functions

despite they are not. The typical example is the delta function δ, that is sometimes

7See Appendix C for more details or [160] for the original reference.
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(wrongly) defined as the real function δ : R→ R such that

δ(x) =

∞, x = 0

0, otherwise
, (3.36)

with
∫
dx δ(x) = 1. It can be proven that no functions can reproduce these two

properties. Nevertheless, the previous definition of δ can be used in order to get

meaningful results. As a representative example, mδ(x) corresponds to the physical

description of the mass distribution of an ideal particle of mass m. Since the particle

is point-like, all the mass is concentrated at x = 0 and the total mass is given by∫
R
dxmδ(x) = m

∫
R
dx δ(x) = m. (3.37)

Similar objects appear also as solutions of partial differential equations or as funda-

mental objects in QFT. In the following the basic definitions about distribution theory

are introduced (for a general review see [108]). In order to simplify the notation, they

are given for subregions of Rn. Let U ⊂ Rn be a non-empty open set.

Definition 3.4.1 (Test functions).

The space D(U) is defined as the space of smooth, compactly supported functions, also

denoted as D(U) = C∞0 (U). A function f ∈ D(U) is called test function.

To introduce the notion of convergence on this space, we equipD with the topological

structure of a Fréchet space, defined by the semi-norms [109]

pα,K(f) = sup
x∈K
|∂αf(x)|, (3.38)

where K ⊂ U is a compact set and α is a multiindex. Therefore, a sequence of functions

fn ∈ D converges to f ∈ D if and only if pα,K(fn − f) → 0 as n → ∞ for all α on

compact subsets. Distributions are defined as the space of continuous linear functionals

on D(U).

Definition 3.4.2 (Space of distributions).

The space of distributions D′(U) is defined as the topological dual of D(U).

Moreover a distribution is a linear functional 8 u : D(U)→ C, such that for each

sequence of test functions fn
D→ 0, one has u(fn)→ 0. In the following, the notions of

support and singular support of a distribution are defined. These notions will be used

in order to characterize the singular structure later.

8The action of the distribution u on a test functions f is also denoted 〈u, f〉.
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Definition 3.4.3 (Support).

The support of a distribution u ∈ D′(U), denoted by supp u, is the smallest closed set

K such that u|U\K = 0.

Definition 3.4.4 (Singular support).

The singular support of a distribution u ∈ D′(U), denoted by sing suppu, is the smallest

closed subset K such that u|U\K ∈ C∞(U \ K).

We have everything we need to correctly define the Dirac δ distribution which is

the first example of distribution which is not a function.

Definition 3.4.5 (Dirac delta distribution δ). The Dirac delta distribution δx0 ∈ D′(U)

at a point x0 ∈ U is defined as

δx0 : D(U)→ C, f 7→ f(x0). (3.39)

The δ distribution is singular and has singular support given by {x0}.
The most popular linear functional is the integral. It is therefore natural to define

distributions from locally integrable functions. In effect let g ∈ L1
loc(U). Then

f 7→ ug(f) =

∫
U
dx g(x)f(x) (3.40)

defines a distribution in D′(U) and the map g → ug is injective. Using duality, one

can define operations on distributions. The most relevant are listed below.

Definition 3.4.6 (Product with a function).

The product of a distribution with a smooth function g ∈ C∞ is defined by

(g · u)(f) = u(g · f). (3.41)

Definition 3.4.7 (Derivative).

The derivative of a distribution u ∈ D′ is defined by

(∂αu)(f) = (−1)|α| u(∂αf), (3.42)

where α is a multiindex.

The consistency of the last definition can be verified for distributions constructed

from smooth functions. In fact, for the simple case U = R it is trivial to verify that

the minus sign comes from the integration by parts∫ ∞
−∞

dxf ′(x)g(x) = [f(x)g(x)]∞−∞ −
∫ ∞
−∞

dxf(x)g′(x). (3.43)
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Definition 3.4.8 (Pullback).

Let g be a smooth function from U to V and f a test function in D(V). Then the

pullback g∗f ∈ C∞(U) is defined as

g∗f(x) = f(g(x)). (3.44)

Similarly, by duality, let u ∈ D′(V) be a distribution. If g is a submersion, then the

pullback g∗u ∈ D′(U) is well defined as

g∗u(f) = u(f ◦ g−1| det(g−1)|). (3.45)

In order to introduce the concept of Fourier transform of a distribution, we define

the space of tempered distributions in open subsets of Rn. First, the Schwartz space is

defined as the functional space of all functions whose derivatives are rapidly decreasing.

Definition 3.4.9 (Schwartz space). The Schwartz space is defined as

S = {f : Rn → C, sup
x∈Rn
|xα∂βf | <∞, ∀α, βmultiindex}.

Tempered distributions are defined as the space of continuous linear functional

on S(Rn).

Definition 3.4.10 (Schwartz distributions (tempered distributions)). The space of

tempered distributions S ′(Rn) is defined as the topological dual of S(Rn).

To conclude, the Fourier transform of a distribution is defined.

Definition 3.4.11. Let u ∈ S ′. Then it is possible to define the Fourier transform û

as

û(f) = u(f̂), ∀f ∈ S. (3.46)

where S is the Schwartz space.

Scaling and renormalization of distributions

In quantum field theory, in order to renormalize divergent quantities as loop integrals,

it is important to identify their divergence and degree of singularity. In principle

it is possible to have an analogous characterization for distributions. In this case

the problem of renormalization translates into the problem of extension of singular

distributions to the whole domain [110–112]. Let us introduce the notions of scaling

degree and singular order.
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A possible definition for the scaling of a function f : Rn → C about 0 is sd(f) :=

infω {ω : limλ→0 λ
ωf(λx) = 0, 0 < |x| < +∞}. By duality we can imagine a similar

definition for distributions.

Definition 3.4.12 (Scaling degree [113]).

The Scaling Degree sd of a distribution u ∈ D′ is defined by

sd(u) := inf
ω

{
ω : lim

λ→0
λωuλ = 0

}
. (3.47)

The singular properties of the distribution will also depend on the dimensionality

of the space. Let us include this in our definition and define the singular order of a

distribution.

Definition 3.4.13 (Singular order).

The Singular Order or Divergence Degree div of a distribution u ∈ D′ is defined by

div(u) := sd(u)− n. (3.48)

These definitions can be applied to the Dirac delta distribution δ in Rn. It is a

trivial exercise to check that sd(δ) = n and div(δ) = 0. Similarly on R4 the scaling of

∆F = 1
x2

about x = 0 is sd(∆F ) = 2 and div(∆F ) = −2. The natural question here is

about the possibility of extension of a distribution where it is not well-defined.

Let’s suppose that u is not defined at the singular point x = 0, i.e. u ∈ D′(Rn \{0}).
An extension of u to the whole domain should satisfy these two properties: it should

have the same singular structure as u and the same behavior for x 6= 0. Therefore we

define the extension of a distribution as

Definition 3.4.14 (Extension).

Let u ∈ D′(Rn \ {0}) be a distrubution. An extension ũ of u in 0 satisfies

• ũ(f) = u(f), ∀f ∈ D(Rn \ {0})

• sd(ũ) = sd(u)

The possibility to extend a distribution is given by the following theorem

Theorem 3.4.1 (Extension or renormalization of a distribution [107]).

Let u ∈ D′(Rn \ {0}) be a distrubution. Then

• If div(u) < 0 there exists a unique extension ũ such that sd(ũ) = sd(u)

• If 0 ≤ div(u) < ∞ there exist extensions ũ of u with sd(ũ) = sd(u) and they

differ by a term of the form
∑
|α|≤div(u) cαδ

(α)
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In the case where the singular order is smaller than 0, let’s discuss how to construct

the extension from the singular distribution [25, 26, 114]. Let u ∈ D(Rn \ {0}) and

div(u) < 0, the extension of u to D(Rn) is constructed through a sequence of smooth

functions θn such that θn(0) = 0 and θn(x) = 1 for x ∈ U c
n, where Un are neighborhoods

of the origin and U c
n denotes the complement of Un. In the limit n→∞, the sequence

θn is required to converge to the following limit

θn
n→∞−−−→ θ∞ =

0 , x = 0

1 , otherwise
. (3.49)

The extended distribution is given by ũ = limn→∞ θnu and it is independent of the

choice of the sequence {θn}n∈N.

An example of θn functions is θn(x) = 1 − e
(2nx)2

(2nx)2−1χ[−2−n, 2−n] and it shown in

Figure 3.1.

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

θ
n
(x
)

Figure 3.1: Cutoff function θn(x) = 1 − e
(2nx)2

(2nx)2−1χ[−2−n, 2−n] for different parameters:
n = 0.1 (blue line), n = 1 (orange line), n = 2 (green line) and n = 4 (red line).

The extension theorem guarantees a unique extension on test functions that vanish

at the origin up to order ω.

Definition 3.4.15 (W -operation).

Let Dω(Rn) ⊂ D(Rn) be the subspace of function vanishing up to order ω at 0. The

function W is a projection into that subspace

Wω : D(Rn)→ Dω(Rn), ϕ 7→ Wωϕ, (3.50)
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where

(Wωϕ)(x) = ϕ(x)− w(x)
∑
|α|≤ω

xα

α!

(
∂α
ϕ

w

)
(0), (3.51)

with w ∈ D(Rn), w(0) 6= 0.

Now we are able to recall the main theorem of this section. It will be used as

the reference for the construction of extensions of distributions and to identify the

extension freedom that one has.

Theorem 3.4.2 (Main Theorem, renormalization freedom [115]).

Let u0 ∈ D′(Rn \ {0}) be a distribution with singular order ω. Given a Wω operation

and constants Cα ∈ C, then there is one distribution u ∈ D′(Rn) with singular order ω

such that

• u(ϕ) = u0(ϕ), ∀ϕ ∈ D(Rn \ {0})

• u(wxα) = Cα, α ≤ ω.

The extension u is then given by

u(ϕ) = uext
0 (Wωϕ) +

∑
|α|≤ω

Cα

α!

(
∂α
ϕ

w

)
(0). (3.52)

We point out that w is a function used in order to make quantities like u(wxα)

meaningful. In the following we will call renormalization the extension of a distribution

and renormalization freedom, the freedom in the choice of the constants Cα.

The advantage of this construction based on distribution theory is that it is deeply

local in spirit, as it does not depend on the global structure of Rn. It can thus be easily

generalized to the case of a quantum field theory in curved spacetime [112, 116].

Singular structure and Wavefront Set

This introduction about renormalization of distribution is concluded with the character-

ization of the singular structure of distributions [117] and of propagators [108]. It was

first observed by Radzikowski [118] that microlocal analysis and the definition of the

wavefront are well suited in order to formally describe the singularities of distributions

on curved spacetimes [119, 120].

In quantum field theory, divergences arise when we consider loop diagrams. One

possibility is the tadpole, ∆(0), which is not considered in the algebraic QFT since

it vanishes after a proper choice of normal ordering. Another possibility that will be

considered in the last part of this section is given by the product of two or more
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propagators at the same spacetime point, e.g. ∆2(x− y). In the formal language, this

product is ill-defined because we are trying to multiply two distributions that are too

singular. We will discuss this issue here.

The Wavefront Set (WF) is the quantity that contains the information about the

singular properties of the distribution, i.e. the singularities and all the directions in

Fourier space that contribute to the singular support. It is defined as

Definition 3.4.16 (Wavefront Set). For a distribution u ∈ D′(U) the wavefront set

WF(u) is the complement in U × Rn \ {0} of the set of points (x, ξ) ∈ U × Rn \ {0}
such that there exist

• a function f ∈ D(U) with f(x) = 1

• an open conic neighborhood Γ of ξ with

sup
ξ∈Γ

(1 + |ξ|)N |f̂ · u(ξ)| <∞, ∀N ∈ N0. (3.53)

The WF is a local concept and is related to the possibility of defining the product

of two singular distributions. The usual multiplication of functions f1, f2 ∈ C(U) can

be understood as the tensor product f1 ⊗ f2 restricted to the diagonal in U × U , i.e.

(f1⊗f2)(x, x) = f1(x)f2(x). This remains valid also for distributions, with the difference

that the restriction to the diagonal is not always well-defined. The Hörmander criterion

gives a sufficient condition in order to have a consistent definition [108] of the product

of two distributions.

Corollary 3.4.2.1 (Hörmander Criterion). The product of two distributions u1, u2 ∈
D′(U) can be defined as the restriction of u2 ⊗ u1

9 to the diagonal if the following

condition is satisfied

(x, ξ) ∈WF(u1)⇒ (x,−ξ) /∈WF(u2). (3.54)

The corollary says that one can define a meaningful product of two distributions

because the growth of u1 in the ξ direction is suppressed by the decay of u2 in the −ξ
direction. When the Hörmander criterion is not satisfied it might be possible to define

the product of two distributions as the renormalized product.

As a trivial example we can imagine the product of two ∆F = 1
x2

distributions

on a 4 dimensional space. The product ∆2
F ∈ D(R4 \ {0}) is singular at 0 and has

sd(∆2
F ) = 4 and therefore div(∆2

F ) = 0. This means that the extension of ∆2
F to

D(R4) exists but is not unique. Let ∆̃2
F and ∆̄2

F be two extensions, then there exists

9Here the term restriction means the pullback of u2 ⊗ u1 under the diagonal map.
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a constant c such that ∆̃2
F = ∆̄2

F + cδ. This is an example of renormalization of the

propagator ∆F in the language of distributions where c represents the freedom in the

renormalization scheme. In Figure 3.2 the scheme of the singular structure of the most

important propagators used in physics is shown.

GR = θ(x0)∆ GA = −θ(−x0)∆ F = i{φ(f), φ(g)} GF = i 〈Tφ(f)φ(g)〉

ξ

x = 0

ξ

x = 0

ξ

ξ

x = 0

ξ

ξ

x = 0

Figure 3.2: Singular structure of the advanced and retarded propagators GA/R, of the
Schwinger propagator F and of the Feynman propagator GF in Minkowski spacetime.
The commutator is denoted by ∆ = i[φ(f), φ(g)].

This concludes our discussion about the Epstein-Glaser renormalization in quantum

field theory. As stated before, this construction can be easily generalized for theories

defined in curved spacetime since it is based only on local concepts. Moreover the

construction of the renormalized distribution in eq. (3.52) is very general and it is not

based on any physically motivated scheme. The high level of abstraction reflects on

the difficulties in explicitly renormalizing concrete examples of radiative contributions

for general spacetimes. In this regard, progress has been done in [38] where an explicit

regularization scheme in position space was invented, with the peculiarity that it is

compatible with the algebraic quantum field theory approach.



CHAPTER 4

THE SCHWINGER AND KELDYSH FORMALISM

Primordial fluctuations are an important part of the early universe scenario and

they provide the initial space inhomogeneities of the universe required in order to

explain the observed temperature anisotropies in the cosmic microwave background

and the large scale structure of the universe. Differently from the standard approach

in particle physics, the theory describing the primordial universe contains an explicit

time dependence arising from the expanding universe. In this picture the cosmological

observables acquire an explicit time dependence inherited from the background. In this

perspective we are interested in a formalism that allows to follow the time-evolution of

expectation values from an initial state including the quantum effects of the theory.

Moreover for certain systems that are not invariant under the Poincaré symmetries,

the scattering matrix [121–124] cannot be defined consistently [125]. This approach is

different to the traditional one where the focus is on the understanding of scattering

properties of quantum particles.

The Schwinger and Keldysh formalism [126–131] is the appropriate formalism in

order to study the time-evolution of cosmological observables including the radiative

corrections even for systems where the time-translational symmetry is broken, as

it happens for example in an expanding universe. These methods are well-known

in the condensed matter community and often applied to non-equilibrium quantum

theories [132].

The Schwinger and Keldysh formalism 1 is introduced in Section 4.1 for time-

dependent setups [133] with cosmological backgrounds. In particular the theoretical

tools used in order to obtain a perturbative expression for the expectation values are

1The Schwinger and Keldysh formalism is also called the closed-time-path (CTP) formalism or
the in-in formalism.
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discussed. In Section 4.2 the system is evaluated perturbatively and the closed-time-

path propagators are discussed. The explicit form of the propagators for a Minkowski

and de-Sitter background for massless and massive theories are given in Section 4.3.

4.1 Introduction

In a Lorentz-invariant quantum field theory one can break explicitly the Poincaré

symmetry by considering for example systems that are governed by a time-dependent

Hamiltonian H(t) or a time-dependent background gµν for the case of an expanding

Friedmann Lemâıtre Robertson Walker universe. Here the metric is considered as a

classical background. The time dependence on the scale factor a(t) then breaks the

Poincaré symmetry and we cannot rely on in-out approach of quantum field theory.

In the closed-time-path formalism one considers a system described by a time-

dependent Hamiltonian H(t) in a state defined by the density matrix ρ(t). The

expectation value of an observable O at time t > tin is given by

〈O(t)〉 = Tr (ρ(t)O(t)) . (4.1)

For practical reasons, it is convenient to work on the interaction picture where the

time-evolution of the density matrix is described by the Liouville equationi
∂ρ(t)
∂t

=
[
ĤI(t), ρ(t)

]
ρ(tin) = ρin

, (4.2)

where the full Hamiltonian is split into the free and interacting part Ĥ(t) = Ĥ0(t) +

ĤI(t). The solution is given in terms of the time-evolution operator UI(t, tin) introduced

as the solution of the Dyson equationi
∂UI(t,tin)

∂t
= ĤI(t)UI(t, tin)

UI(tin, tin) = 1
. (4.3)

Therefore, ρ(t) can be expressed in terms of U , U † and the initial condition ρin

ρ(t) = UI(t, tin)ρinU
†
I (t, tin). (4.4)

The last equation can be verified by showing that (4.4) is a solution of (4.2). To

compute ρ at time t it is sufficient to find the solution of equation (4.3) which is
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formally given by

UI(t, tin) = Te
−i

∫ t
tin

dτĤI(τ)
, (4.5)

where T means the time-ordered product. The expression for ρ follows immediately

ρ(t) =
(

Te
−i

∫ t
tin

dτĤI(τ)
)
ρin

(
Te
−i

∫ t
tin

dτĤI(τ)
)†
. (4.6)

Now we have an explicit expression for 〈O(t)〉

〈O(t)〉 = Tr

{
ρin

(
Te
−i

∫ t
tin

dτĤI(τ)
)†
O(t)

(
Te
−i

∫ t
tin

dτĤI(τ)
)}

(4.7)

that can be understood as the time-evolution from the initial time tin up to time t,

where the observable O is evaluated. Then the system evolves backwards to the initial

time.

It is convenient to extend the time-evolution to t = +∞. A common trick is to

insert I = U †I (∞, t)UI(∞, t) to the left of O(t). Then the expectation-value reads

〈O(t)〉 = Tr

{
ρin

(
Te
−i

∫∞
tin

dτĤI(τ)
)† (

Te−i
∫∞
t dτĤI(τ)

)
O(t)

(
Te
−i

∫ t
tin

dτĤI(τ)
)}

, (4.8)

that represents the time-evolution along the closed time contour C shown in Figure 4.1.

It should be noted that the observable O(t) is evaluated in the forward part of the

contour C, because we have inserted the identity operator U †I (+∞, t)UI(+∞, t) to

the left of O(t). The same manipulations can be performed by inserting the identity

operator to the right of O(t). In this case, the same result is obtained with the only

exception that O(t) is evaluated in the backward part of the contour. Conventionally,

all the observables are evaluated in the forward part.

tin t
TIME +∞

φ+

φ−

Figure 4.1: Closed-time contour C representing the time-ordering TC.

From this expression, perturbation theory can be applied by defining Feynman rules

for the computation of perturbative corrections. Indeed one can define the time-ordering

TC along the contour given in Figure 4.1 and split the field φ in two components φ±,

where the + component propagates along the upper part of the contour and is governed

by the Hamiltonian Ĥ+
I (t) = ĤI [φ

+] and the − component propagates in the lower part
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of the contour and is governed by Ĥ−I (t) = ĤI [φ
−]. Finally the expectation value (4.8)

can be expressed as

〈O(t)〉 = Tr
{
ρinTC

[
O+(t)e

−i
∫+∞
tin

dτ [Ĥ+
I (τ)−Ĥ−I (τ)

]}
, (4.9)

where the operator O+ is evaluated in the upper part of the contour.

4.2 Perturbation theory

By supposing that the interaction in eq. (4.9) is small with respect to the free part,

one can treat the expectation value perturbatively.

Since the two components propagate on the two independent parts of the contour,

between tin to infinite time or opposite, we can exploit the traditional Feynman rules

introduced in the in-out approach of quantum field theory [84] in order to compute

the perturbative correction to the expectation value. The Feynman rules for a simple

scalar field model with quartic self-interaction and for a hybrid model with two scalar

fields with quartic symmetric interaction are given in the Appendix A.

In this framework, for every scalar field of the theory there are four possible

contractions of the field components and therefore four propagators

G±±(x, y) = i
〈
φ±(x)φ±(y)

〉
. (4.10)

The Green functions can be expressed more explicitly as

G+−(x, y) = i〈φ(y)φ(x)〉, (4.11)

G−+(x, y) = i〈φ(x)φ(y)〉, (4.12)

G++(x, y) = θ(x0 − y0)G−+(x, y) + θ(y0 − x0)G+−(x, y), (4.13)

G−−(x, y) = θ(x0 − y0)G+−(x, y) + θ(y0 − x0)G−+(x, y). (4.14)

The 4 propagators are not independent because the two field’s components satisfy the

boundary condition φ+(∞) = φ−(∞). Indeed, they are connected through the simple

relation

G++(x, y) +G−−(x, y) = G+−(x, y) +G−+(x, y), (4.15)

and can be regrouped together in a matrix form

G(x, y) =

(
G++(x, y) G+−(x, y)

G−+(x, y) G−−(x, y)

)
. (4.16)
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Since the two components of the field φ are not two independent degrees of freedom,

one can transform φ+ and φ− into a more convenient basis. We define R as the matrix

R =

(
1/2 1/2

1 −1

)
(4.17)

representing the change of basis. The new fields φ(1) and φ(2) and the new propagators

GR are (
φ(1)

φ(2)

)
= R

(
φ+

φ−

)
=

(
(φ+ + φ−)/2

φ+ − φ−

)
(4.18)

and

GR = R G RT =:

(
iF GR

GA 0

)
. (4.19)

The new basis is called the Schwinger basis and has the peculiarity that the φ(2)-φ(2)

contraction is always vanishing. We recognize GR and GA as the retarded and advanced

propagators and F as the Schwinger or Hadamard propagator 2. In the Schwinger

basis the propagators are given by

F (x, y) = − i
2

(
G−+(x, y) +G+−(x, y)

)
,

GR(x, y) = θ (x0 − y0)
(
G−+(x, y)−G+−(x, y)

)
,

GA(x, y) = GR(y, x). (4.20)

Finally the three propagators are connected to the familiar Feynman propagator GF

GF (x, y) = i 〈T [φ(x)φ(y)]〉 =
1

2
(GR(x, y) +GA(x, y)) + iF (x, y). (4.21)

In our analysis the radiative corrections to the expectations values are evaluated in

the case of a spatially flat FRW metric. The spatial coordinates of the propagators

can be Fourier trasformed in momentum space giving a dependence on 3 independent

variables: the momentum k and two times t1 and t2, i.e. they assume the form

GA/R(k, t1, t2) or F (k, t1, t2). The invariance under spatial translations insures that

GA/R(~x1, t1, ~x2, t2) = GA/R(~x1 − ~x2, t1, t2). (4.22)

2In [134] the Schwinger function −iG(1) is defined as −2iF .
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4.3 Closed-time-path propagators

In the following, the closed-time-path propagators are examined for different back-

grounds and in different limits. First, the propagators of a scalar field theory in

Minkowski spacetime are shown for an initial state given by the vacuum state of the

free theory. Then, the propagators in de-Sitter spacetime are presented with the initial

state given by the Bunch-Davies vacuum [135]. This section ends with the discussion

about the WKB propagators that are a good approximation for very massive theories.

Minkowski propagators

The propagators (4.10) are presented for a scalar field theory in Minkowski spacetime

where the density metric ρin is given by the free vacuum state. The +− contraction is

given by [124]

G+−(x, y) = i〈φ(y)φ(x)〉 = i

∫
d3k

(2π)3

1

2wk
e−ik·(y−x)

= i

∫
d3k

(2π)3
e−ik·(x−y)

[
1

2wk
eiwk·(x

0−y0)

]
, (4.23)

where wk =
√
k2 +m2. The same calculation can be performed for G−+. From this

expression we recognize the 3-dimensional Fourier modes

G+−(wk, x0, y0) =
i

2wk
e+iwk·(x0−y0), (4.24)

G−+(wk, x0, y0) =
i

2wk
e−iwk·(x

0−y0). (4.25)

Finally the expressions for the last two propagators read

G++(wk, x0, y0) =
i

2wk

{
e+iwk·(x0−y0) − 2i θ(x0 − y0) sin

[
wk(x

0 − y0)
]}
, (4.26)

G−−(wk, x0, y0) =
i

2wk

{
e−iwk·(x

0−y0) + 2i θ(x0 − y0) sin
[
wk(x

0 − y0)
]}
. (4.27)

The previous propagators can be easily transformed into the Schwinger basis (4.19).

The explicit expressions are

F (wk, t1, t2) =
cos(wk(t1 − t2))

2wk
,

GR(wk, t1, t2) = θ(t1 − t2)
sin(wk(t1 − t2))

wk
,

GA(wk, t1, t2) = GR(wk, t2, t1). (4.28)
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De-Sitter propagators

In de-Sitter spacetime, for small masses, the propagators in momentum space can be

expressed in terms of the Bessel functions Jν [136–138]

G−+(k, τ1, τ2) =
H2πJν(z)J−ν(z

′)

2 sin(πν)
(τ1τ2)3/2, (4.29)

G+−(k, τ1, τ2) =
H2πJ−ν(z)Jν(z

′)

2 sin(πν)
(τ1τ2)3/2, (4.30)

where τ1,2 is the conformal time, z = −kτ1, z′ = −kτ2, and

ν =

√
9

4
− m2

H2
, where m is the field’s mass.

In the case of a massless field ν = 3/2 the propagators assume a simple form in

terms of the Hankel functions H
(1)
3
2

, H
(2)
3
2

as

G−+(k, τ1, τ2) =
iπH2

4
H

(1)
3/2(z)H

(2)
3/2(z′) (τ1τ2)3/2, (4.31)

G+−(k, τ1, τ2) =
iπH2

4
H

(2)
3/2(z)H

(1)
3/2(z′) (τ1τ2)3/2, (4.32)

where

H
(1)
3
2

(z) =

√
2

πz
eiz
(

1

iz
− 1

)
,

H
(2)
3
2

(z) = H̄
(1)
3
2

(z). (4.33)

For a massless scalar field theory in de-Sitter spacetime the propagators (4.31) and

(4.32) in the Schwinger basis read

F (k, τ1, τ2) =
H2

2k3

(
(1 + k2τ1τ2) cos k(τ1 − τ2) + k(τ1 − τ2) sin k(τ1 − τ2)

)
,

GR(k, τ1, τ2) =
H2

k3
θ(τ1 − τ2)

(
(1 + k2τ1τ2) sin k(τ1 − τ2)− k(τ1 − τ2) cos k(τ1 − τ2)

)
.

(4.34)

The expansion for small |kτ | is given by

F (k, τ1, τ2) =
H2

2k3

[
1 +O

(
k2τ 2

i

)]
,

GR(k, τ1, τ2) = θ(τ1 − τ2)
H2

3k3

[
k3(τ 3

1 − τ 3
2 ) +O

(
k5τ 5

i

)]
. (4.35)
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Finally, in the equal-time limit, the Schwinger propagator simplifies to

F (k, τ, τ) =
H2

2k3

(
1 + k2τ 2

)
. (4.36)

By integrating the two-point function in momentum space one realizes that the

integral has to be regulated both in the infrared and in the ultraviolet regime. In order

to cure the IR-behavior we consider

ν =

√
9

4
− m2

H2
, (4.37)

which gives a deviation from the massless case ν = 3
2

given by a term proportional to

m� H. By expanding the Hankel functions for a small mass and small momenta we

get

F (k, τ, τ) =
H2

2k3
(k|τ |)2ε , (4.38)

with ε = m2/3H2.

Another interesting form for the propagator in de-Sitter spacetime is given in terms

of the hypergeometric function in position space which is the exact two-point function

for a massive field in de-Sitter spacetime [20]

G−+(τ1, τ2, x1,x2) =
H2Γ(3/2− ν)Γ(3/2 + ν)

4π2 2F1 (3/2− ν, 3/2 + ν, 2, 1− r/4) ,

(4.39)

ν =

√
9

4
− m2

H2
, r =

(−(τ1 − τ2)2 + |x1 − x2|2)

τ1τ2

, (4.40)

where the Hypergeometric function 2F1 is defined for |z| < 1 by the power series

2F1(a, b, c, z) =
∞∑
0

(a)n(b)n
(c)n

zn

n!
. (4.41)

In our analysis we preferred to work in the Schwinger basis because it highlights

the physical properties of the field. The Hadamard propagator F is directly connected

to the real part of the contraction G−+

F (τ1, τ2, x1, x2) = R
[
H2Γ(3/2− ν)Γ(3/2 + ν)

4π2 2F1 (3/2− ν, 3/2 + ν, 2, 1− r/4)

]
.

(4.42)

Because there is no analytic formulation of the Fourier transform of this propagator,

we proceed numerically and evaluate the massive propagator in Fourier space with

numerical methods with Mathematica [139]. The Fourier transform is given by
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F (k, τ1, τ2) = 2π

∫ ∞
0

dx x2 2 sin(kx)

kx
F (τ1, τ2, x, 0). (4.43)

Unfortunately, the numerical integration is not always stable, especially for small

masses, because of the appearance of oscillations that are enormously amplifying the

numerical error. Nevertheless we found that the Fourier transformation is well-behaved

for masses m > H. In the hybrid model where we will perform our calculations using

the hypergeometric propagator we are considering very massive quantum fields and

our procedure can be trusted.

In Figure 4.2 we show the behavour of the Schwinger propagator reconstructed

from eq. (4.43) for different masses and we compared it with the massless propagator.

In the plot we can observe that the hypergeometric function is well-behaved in the

infrared regime as expected because it describes a massive theory. On the other hand

the massless propagator diverges for k = 0.

0.5 1 5 10 50 100
0.001

0.010

0.100

1

10

k/H

F
H

Figure 4.2: Hadamard propagators derived from the hypergeometric (full massive)
function for different masses: the yellow curve represents m = 2H, the green curve
m = 5H, the red curve m = 10H and the purple curve m = 15H. The blue curve is
the massless propagator given by the Hankel function with ν = 3/2.

The advantage of the propagator constructed from the hypergeometric function is

that it exactly describes the free dynamics for a massive scalar field theory. Nevertheless

the price to pay is that we have to deal with a function that was constructed numerically.

In particular when we will consider the radiative corrections we will be confronted

with the problem of renormalizing the integral of the propagator. The real issue here is

how to properly disentangle the divergences from the finite contribution in a numerical

integration.
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WKB propagator

In the following we will introduce the massive propagator in the semi-classical WKB

approximation in order to get an analytic expression for the counter-terms. This is a

crucial point in the renormalization procedure. Since the WKB propagator has the

same UV behavior of the full massive propagator (4.39), one can exploit it in order

to have an explicit expression for the massive counter-term. We will regularize the

numerical integral by introducing an explicit cutoff on momentum space. Subsequently

the cutoff dependence is removed by manually subtracting the analytic contribution of

the WKB counter-terms.

For a very massive quantum field with a Bunch-Davies vacuum [135] as the initial

state, a good solution of the free field equations is given by the WKB approximation.

The Hadamard propagator can be defined from the field solution V (k, τ)

F (k, τ1, τ2) = R [V (k, τ1)V ∗(k, τ2)] . (4.44)

Then in the WKB approximation H/m� 1 one can approximate V as [140–142]

V (k, τ) =
exp

[
−i
∫ τ
τin
dτ1

√
k2 +m2a(τ1)2

]
√

2a(τ) (k2 +m2a(τ)2)1/4
, (4.45)

and define the Hadamard propagator obtained in the WKB approximation

FWKB(k, τ1, τ2) =
cos
[∫ τ2

τ1
dτ
√
k2 +m2a(τ)2

]
2a(τ1)a(τ2) (k2 +m2a(τ1)2)1/4 (k2 +m2a(τ2)2)1/4

. (4.46)

It should be noted that this propagator is suppressed by m−1a−3(τ1) for equal time

τ1 = τ2 and for k � ma(τ1) [29], while in the UV regime the dependence is weaker

and proportional to a−2(τ1).

In Figure 4.3 we plotted both the Fourier transform of the full massive propagator

on discrete points for large masses and we compared them with the propagator obtained

in the WKB approximation. We see that the matching is almost perfect.

This means that the WKB propagator provides a very good approximation of the

full massive propagator in eq. (4.39) in the UV regime and for masses m� H. In the

following we will use the WKB approximation in order to get an explicit expression

for the mass counter-term.

The equal-time two-point correlation function in the WKB approximation is given
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Figure 4.3: Comparison of the massive Hadamard propagator reconstructed from the
hypergeometric function (4.39) (list of points) and the WKB propagator (4.46) (dashed
blue lines) for a mass of 10H (red points) and 20H (green points).

by

FWKB(k, τ, τ) =
H2τ 2

2
√

m2

H2τ2
+ k2

, (4.47)

where F is the usual Hadamard propagator.

This concludes our discussion about the Schwinger and Keldysh formalism for

time-dependent setups where the time translational symmetry of the system is broken

both because of the background and because of the explicit time dependence of the

Hamiltonian. The main difference with respect to the in-out approach of quantum

field theory is that in scattering processes the initial free vacuum states are given in

the infinite past. In the closed-time-path formalism instead the time-evolution starts

from the initial time where the system is supposed to be in an eigenstate of the free

theory. Therefore in the in-out approach only one time-evolution operator U(∞,−∞)

appears, which is different from our case where the time-evolution is given by the two

operators U(−∞, tin) and U †(∞, tin) that cannot be combined in eq. (4.8) because the

system is not invariant under time translations.
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CHAPTER 5

RENORMALIZATION IN THE CLOSED-TIME-PATH

FORMALISM

In this chapter the renormalization procedure for quantum field theories in curved

spacetime for time-dependent setups is explored. We will investigate in details the

ultraviolet behavior of the two- and four-point function in Minkowski and de-Sitter

backgrounds in the theoretical setting of the Schwinger and Keldysh framework

(see [143] as a guideline of the techniques that we use).

Having as a final goal the study of radiative corrections to cosmological observables

during the inflationary epoch, the quantum behavior of a simple scalar field theory

with quartic self-interaction is investigated. The theory can be easily extended to a two

scalar fields setup where the light field gets radiative corrections from virtual effects of

the heavier field.

The time-evolution of observables is started at a finite initial time where the theory

is assumed to be in the vacuum state of the free theory. As a consequence the system is

out-of-equilibrium since it is not starting from an eigenstate of the interacting system.

In the closed-time-path formalism one tries to overcome the breaking of the Poincaré

symmetry by splitting the four-vector xµ into two components: the time and the spatial

coordinates. Despite the fact that one cannot use the traditional perturbative approach

of quantum field theory in Fourier space since the plane waves are no longer solutions

of the Klein-Gordon operator, one can anyway exploit the symmetries of the spatial

coordinates in order to obtain quantities that depend on time and on the 3-momentum.

This approach, which is necessary because we do not have the full set of symmetries,

has the advantage that it clarifies how divergences emerge from space and time.

In the Schwinger and Keldysh theoretical framework the time-translational sym-

metry is broken in two distinct ways. The first is a consequence of the formalism and
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is connected to the fact that the interacting theory starts at a finite initial time tin.

Using a different perspective one can interpret this non-locality as a time-dependent

interaction in the Lagrangian proportional to the step-function θ(t−tin). In this picture

the system evolves according to the free theory before the initial time and according

to the full theory after the interaction is switched-on. We will study the imprint of

the initial time in Chapter 6, where the time evolution of the two-point function in

Minkowski and de-Sitter background is analyzed, using different interaction profiles.

The second property that affects the time dependence of observables is connected to

the cosmological background that has an explicit time dependence in order to describe

the time evolution of the universe. By dealing with renormalization in curved spacetime

in the framework of the CTP formalism we therefore expect that observables will

depend on time both because of the background and because of the finite initial time

where the interaction starts.

In the first sections the one-loop corrections to the equal-time two-point function

(Section 5.1) and four-point function (Section 5.2) are computed both in Minkoswski

and de-Sitter spacetime. In Section 5.3, the massive counter-term in de-Sitter spacetime

in the WKB approximation is computed. Finally, in Section 5.4 the counter-terms

found in the CTP approach are compared to those obtained with the completely

independent renormalization scheme of adiabatic renormalization.

5.1 The equal-time two-point correlation function

The first case that we will study is the renormalization of the equal-time two-point

function. The only tree-level contribution is given by the Hadamard propagator F (k, t, t)

(see Figure 5.1). The other contributions GR(k, t, t) and GA(k, t, t) are identically

vanishing for equal times. It is interesting to observe that even the one-loop corrections

to these propagators are not contributing because of their causal properties 1.

t t

Figure 5.1: Tree-level equal-time two-point correlation function F (k, t, t).

We will therefore proceed with the analysis of the one-loop corrections to the

equal-time Hadamard two-point function since it is the only propagator that has a

1The advanced and retarded propagators are proportional to the step-function θ(t1 − t2) that
defines their causal properties. The product GR(k, t1, t2)GA(k, t1, t2) vanishes.
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non-zero tree-level contribution and gets radiative corrections at one-loop level. In

the following we will refer to the one-loop corrections as the tadpole contribution. We

will start with the analysis of the tadpole in Minkowski spacetime in order to test

the methods since the calculations can be easily performed analytically and compared

with the results present in the literature. In the second part we will perform the same

analysis in a more relevant background, i.e. de-Sitter spacetime, for a (quasi) massless

scalar field.

One-loop radiative corrections in Minkowski spacetime from a

massless scalar field

In the following, we will calculate the one-loop contributions to the two-point function

for a massless scalar field theory with quartic coupling λφ4. The theory is described in

Chapter 4 and the Feynman rules are given in Appendix A.1.

Considering that the propagators GR and GA vanish for coinciding time, there

is only one possible vertex (the one proportional to (φ(1))3φ(2)) for the one-loop

corrections and therefore only the tadpole diagram in Figure 5.2 survives. One has to

consider also the mirror diagrams where the only difference is the interchange of the

two external propagators from GR(k, t, t1)F (k, t1, t) to F (k, t, t1)GA(k, t1, t). Because

the F -propagator is symmetric under the exchange of the two time arguments and

GA(k, t, t1) = GR(k, t1, t) both diagrams give the same contribution.

t t
t1

t t

Figure 5.2: Tadpole diagram and its counter-term for a quartic self-interacting scalar
field theory in Minkowski spacetime. The mirror diagrams should also be considered
and give the same contributions.

The amplitude corresponding to the tadpole diagram of Figure 5.2 with an additional

factor 2 in order to take into account the mirror diagram is∫ t

tin

dt1
(
−iGR(k, t, t1)

)
F (k, t1, t)

[
2

(
−iλ

2

)∫
dp3

(2π)3
F (p, t1, t1)

]
, (5.1)

where F and GR are the propagators of the theory in the Schwinger basis. For a

massless scalar field theory in Minkowski background they are given by the massless
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limit of eq. (4.28). It should be noted that the square brackets, that we name Aamp, is

divergent in the ultraviolet regime and has to be renormalized in order to make the

correlation function physically meaningful. By introducing an explicit UV cutoff Λ we

can solve the integral analytically

Aamp =

(
−iλ
2π2

)∫ Λ

0

dk
k

2
=

(
−iλ
8π2

)
Λ2. (5.2)

We renormalize the amplitude by identifying and subtracting only the UV diver-

gences from the regulated amplitude Aamp with the definition of the following mass

counter-term

δm2 =

(
λ

16π2

)
Λ2. (5.3)

The result is in agreement with the results of dimensional regularization present in

the literature [84, 85, 144]. We are now able to perform the time integral in order to

take into account the contribution of the external propagators. A simple integration

gives

− iAamp ·
sin(k(t− tin))

2k3

2

. (5.4)

This term will not contribute to the final amplitude because it is completely canceled

by the mass counter-term δm2. In principle, we could use a different renormalization

scheme and define a different counter-term δm̃2 = δm2 + C, where C is a constant

constrained to be independent on time because of the symmetry of the system and

exploit the renormalization freedom in order to get a non-zero amplitude

− C · sin(k(t− tin))

2k3

2

. (5.5)

From the last equation we observe that the only time dependence of the renormalized

correlation function comes from the external propagators. Since we are working on a

flat spacetime it is clear that the time dependence is a consequence of the finite initial

time introduced in the Schwinger and Keldysh formalism. We will analyze and discuss

the finite time contributions in Chapter 6 where we will compute the same quantity

using different interaction profiles 2.

2In the CTP formalism the interaction is switched-on exactly at the initial time tin.
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One-loop corrections in Minkowski spacetime from a massive

scalar field

In the next example, we consider the quantum corrections from a massive scalar field

in Minkowski spacetime. This case generalizes our discussion about loop corrections

from a massless scalar field where we found the mass-independent contribution to the

UV counter-term δm2, which is universal.

Let us consider a massive scalar field theory with quartic coupling. The propagators

are given by eq. (4.28). The one-loop correction to the two-point correlation function

is given by the tadpole in Figure 5.2 plus the mirror diagrams that give an additional

factor 2∫ t

tin

dt1
(
−iGR(wk, t, t1)

)
F (wk, t1, t)

[
2

(
−iλ

2

)∫
dp3

(2π)3
F (wp, t1, t1)

]
, (5.6)

where F and GR are the massive propagators and the square brackets is the loop

contribution that we name Aamp. As before the loop integral is UV divergent and can

be integrated analytically after having introduced an explicit cutoff Λ in momentum

space. We obtain

Aamp =
−iλ
8π2

(
Λ2

√
1 +

m2

Λ2
−m2arcsinh

(
Λ

m

))
(5.7)

=
−iλ
8π2

(
Λ2 +

1

2
m2 +m2 log

(m
2Λ

))
+O

(
Λ−2

)
. (5.8)

This result is in agreement with the analogous in-out results in the literature [84].

In addition to the quadratic divergence that we found before in eq. (5.3), we have a

logarithmic divergence proportional to the mass squared regulated by Λ. Moreover

the limit for vanishing mass is finite and it is consistent with eq. (5.2). Indeed for the

massless theory we already found that the loop integral is finite in the infrared regime.

By applying the minimal subtraction scheme in order to remove only the terms

that depend on Λ, we found the finite amplitude

[Aamp]ren =
−iλm2

16π2

(
1 + log

(
m2

4µ2

))
, (5.9)

where µ is the arbitrary renormalization scale. The massive counter-term for the chosen

scheme is

δm2 =
λ

16π2

(
Λ2 −m2 log

(
Λ

µ

))
(5.10)

and in the limit for vanishing mass we recover the massless counterterm (5.3).
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Unlike the massless case where we had to consider a different renormalization

scheme in order to have a non-zero contribution, here the renormalized amplitude is

non vanishing because of the finite terms and because of the residual contribution from

the logarithmic divergence. Even in this case the full two-point correlation function

can be integrated analytically. By considering the full integral with the contribution

from the external propagators we found the final amplitude

− i[Aamp]ren ·
sin
(√

k2 +m2(t− tin)
)2

2 (k2 +m2)3/2
. (5.11)

Because we are dealing with renormalization on flat spacetime we can interpret the

time dependence as a consequence of the time-evolution of the interacting theory from

the initial time tin, where we have set abruptly the initial Minkowski vacuum state.

Again in the limit for vanishing mass we consistently recover the massless result (5.5).

To conclude the discussion, it should be noted that since we are on a flat spacetime

we expect that in the adiabatic limit, i.e. in the limit t− tin →∞, the dependence on

the initial time should disappear. It is clearly not the case because the limit

lim
tin→∞

sin (t− tin)2 (5.12)

does not exit. Nevertheless the oscillatory factor can be treated in the language of

distribution theory. We will investigate this issue more in details at the end of Chapter 6.

One-loop corrections in quasi de-Sitter space from a (nearly)

massless field

We will now consider a background of cosmological interest and apply the in-in

formalism to the computation of the two-point correlation function for a scalar field

in quasi de-Sitter spacetime. At tree-level only the Hadamard propagator F is non

vanishing and has radiative one-loop corrections. For a massless scalar field theory in

de-Sitter the equal-time propagator is given by eq. (4.36). The limit of the propagator

for a small mass and small momenta is given in eq. (4.38). Let us consider the one-

loop radiative corrections in the case of a (almost) massless scalar field in de-Sitter

spacetime. We will use the theory described in Section 4 and the Feynman rules given

in Section A.1.

As in the case of a Minkowski spacetime, only the Hadamard two-point function

gets radiative corrections and they are given in Figure 5.3 plus the same contributions

from the mirror diagrams.
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τ ττ1
τ τ

Figure 5.3: Tadpole diagram and its counter-term for a quartic self-interacting scalar
field theory in de-Sitter spacetime. The mirror diagrams should also be considered and
give the same contributions.

The corresponding integral of the total amplitude reads∫ τ

τin

dτ1

(
−iGR(k, τ, τ1)

)
F (k, τ1, τ)

[
2

(
−iλ

2
a4(τ1)

)∫
dp3

(2π)3
F (p, τ1, τ1)

]
, (5.13)

where F and GR are the de-Sitter Hadamard and retarded propagators in the closed-

time-path formalism and the additional factor 2 is inserted in order to take into account

the mirror diagrams. On a de-Sitter background for a massless scalar field theory the

propagators are given by eq. (4.34).

The loop integral can be solved analytically after the introduction of a cutoff in

momentum space Λa(τ1) [32]. We remark that the scale factor dependence is important

here because Λ is a physical cutoff and regulate integrals over physical momenta kphys.

Since we are considering loop integrals over comoving momenta k = kphysa(τ), the

cutoff assumes the form Λa(t).

The loop integral is solved analytically. First we introduce an arbitrary mass scale

M and we split the integral in two parts∫
dp3

(2π)3
F (p, τ1, τ1) =

[∫ M

0

+

∫ ∞
M

]
dp

2π2
p2F (p, τ1, τ1). (5.14)

In the first integral we used the asymptotic expansion for the propagator in eq. (4.38)∫ M

0

dp

2π2
p2F (p, τ1, τ1) =

1

2π2

∫ M

0

dp
H2

2p

(
p2τ 2

1

)ε
=
H2 (M2τ 2

1 )
ε

8π2ε

=
H2

8π2

(
1

ε
+ log

(
M2τ 2

1

))
+O(ε). (5.15)

In the last line we used the Laurent expansion in ε to extract the singular behavior

of the IR-cutoff. It should be noted that in this case the loop integral contains an



56 Renormalization in the CTP formalism

IR-divergence for massless fields, which is not present for a flat background. The second

integral can be regularized in the UV regime by introducing a physical cutoff Λ∫ Λa(τ1)

M

dp

2π2
p2F (p, τ1, τ1) =

1

2π2

∫ Λa(τ1)

0

dp
H2

2p

(
1 + p2τ 2

1

)
=
H2

8π2

(
τ 2

1

(
Λ2a2(τ1)−M2

)
+ 2 log

(
Λa(τ1)

M

))
. (5.16)

The total integral is finally given by[∫
dp3

(2π)3
F (p, τ1, τ1)

]
reg

=
H2

8π2

(
1

ε
+ log

(
M2τ 2

1

)
+ τ 2

1

(
Λ2a2(τ1)−M2

)
+ 2 log

(
Λa(τ1)

M

))
=
H2

8π2

(
1

ε
+ 2 log

(
Λ

H

)
+

(
Λ

H

)2
)
, (5.17)

where we sent the mass scale M to 0 because it is arbitrary and the limit is well-defined.

This gives us directly the amputated two-point correlation function

[Aamp]reg = −iλa(τ1)4H2

8π2

(
1

ε
+ 2 log

(
Λ

H

)
+

(
Λ

H

)2
)
. (5.18)

The amplitude can be renormalized in the minimal subtraction scheme by identifying

and subtracting the UV-divergences from the regulated expression. This requires the

definition of the mass and curvature counter-terms

δm2 =
λ

16π2
Λ2, (5.19)

δξ =
λ

8π2

1

12
log

(
Λ

µ

)
, for the case ξ = 0. (5.20)

We remark that the expressions (5.18) and (5.19) seem to have a different normal-

ization. The reason is that eq. (5.18) is the total amputated amplitude which takes into

account also the contribution of the mirror diagram. To regulate the full contribution

one has to consider also the mirror mass counter-term that gives exactly the same

cancellation and provides the additional factor 2.

The regulated amplitude has the same quadratic and logarithmic divergences that

we found Minkowski spacetime. This is expected because it has been proven in the

algebraic QFT framework that the UV divergences in curved spacetime are of the

same order as in Minkowski spacetime, which means that the type and the number

of the counter-terms is the same [111, 112, 115]. Because in the FRW spacetime the

curvature is given by R(τ) = 12H2(τ), we can interpret the logarithmic contribution
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proportional to H2 in eq. (5.18) as a covariant correction of the curvature term. Both

the mass counter-term and the curvature counter-term are in agreement with similar

results in the literature using dimensional regularization [33] and the effective action

method [34]. Moreover the counter-terms are covariant expressions of geometrical

quantities in agreement with [145] and they can be reabsorbed into the redefinition of

the wave function, mass, and coupling constant parameters in the Lagrangian.

After the subtraction of the divergences we obtain the renormalized amputated

amplitude

[Aamp]ren = −iλa(τ1)4H2(τ1)

8π2

(
1

ε
− 2 log

(
H(τ1)

µ

))
. (5.21)

The result has a logarithmic dependence onH(τ1) which is consistent with the discussion

on loop corrections of [32]. This dependence comes from the scale factor of the comoving

cutoff Λa(t). With the improper definition of the cutoff without the scale factor

correction we would have found a logarithmic dependence log (Ha/µ). The scale factor

dependence of a(τ1)4 is related to the definition of the vertices and will be compensated

when considering the external legs.

Now we can finally include the contribution of the external propagators as in

eq. (5.13) in order to have the full loop correction to the two-point correlation function.

The integral can be performed analytically using the massless scalar field propaga-

tors (4.34). The result is

−i
6k3

[
Aamp a(τ1)−4

]
ren
×

[
2 +

(
Ci(2kτ)− Ci(2kτin)

)( (
−1 + k2τ 2

)
cos(2kτ)− 2kτ sin(2kτ)

)
+
(

Si(2kτ)− Si(2kτin)
)(

2kτ cos(2kτ) + (−1 + k2τ 2) sin(2kτ)
)

+
1

2k3τ 3
in

(
4k2τinτ +

(
1 + k2τ 2

in

) (
1− k2τ 2

))
sin (2k(τ − τin))

+
1

2k3τ 3
in

(
2kτin

(
1− k2τ 2

)
− 2kτ

(
1 + k2τ 2

in

))
cos (2k(τ − τin))

]
,

(5.22)

where Ci and Si are the sine and cosine integral (see Figure 5.4) defined as

Ci(x) = −
∫ ∞
x

dt
cos t

t
,

Si(x) =

∫ x

0

dt
sin t

t
. (5.23)

It should be noted that in eq. (5.22) the argument of the cosine integral is negative
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Figure 5.4: Cosine integral (blue line) and sine integral (red line) given in eq. (5.23).
The cosine integral is defined only for positive numbers and has a logarithmic behavior
about the origin. The sine integral is an even function and is well defined for all real
numbers.

and therefore not well defined. Nevertheless the difference Ci(2kτ) − Ci(2kτin) is

well-behaved. Alternately one can consider the analytic extension to the complex

plane.

In eq. (5.22) we observe a periodic behavior that has its largest impact in the early

times. The oscillations are suppressed for large times where the logarithmic behavior

dominates. We point-out that for larger elapsed time τ − τin when the oscillations are

damped-out and before the logarithmic regime, the dominant contribution is given

by a constant value independent from τin. We will elaborate more about the constant

contribution of the two-point correlation function in Chapter 6.

At lowest order in kτ the solution simplifies to

λH2(τ)

4π212k3

[(
1

ε
− 2 log

(
H

µ

))(
log

(
τ

τin

)
+

1

3
− τ 3

3τ 3
in

)]
, (5.24)

where ε is the IR-regulator and µ is an arbitrary renormalization energy scale. In

eq. (5.24) we observe a logarithmic and polynomial dependence on the conformal time.

The logarithmic divergence for small conformal times (that corresponds to an infinite

coordinate time t) is a true divergence and it is present also in the full expression

(as one can see in Figure 5.5). The secular terms in τ are an artifact that we are

approximating an oscillatory function with a polynomial Taylor expansion for small

kτ .

The full solution is shown in Figure 5.5 for three different initial conditions in order

to show the dependence on the initial time. One recognizes the logarithmic behavior at
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Figure 5.5: Time dependence of the renormalized two-point correlation function in
de-Sitter spacetime for Hτin = −40 (blue curve), Hτin = −30 (orange curve), and
Hτin = −10 (green curve) with k/H = 1, ε = 1/(16π2), H/µ = 1 and λ = 1.

late time (about τ = 0) and the spectral oscillations connected to the initial state, as

in the Minkowski case. We will discuss more in details the origin of these oscillations

in Chapter 6 where we discuss the interaction profile dependence of our result. As in

Minkowski spacetime we cannot simply take the limit of τin → −∞ because it is not

well-defined. Moreover we decided to set the initial conditions to the Bunch-Davies

vacuum [20, 135] at the beginning of inflation.

This concludes our discussion of the two-point function renormalization in Minkowski

and de-Sitter spacetime using the closed-time-path formalism. In Chapter 7 we will

discuss the physical consequences of our results and we will give our predictions to the

primordial spectrum.

5.2 The equal-time four-point correlation function

We will now proceed with the investigation of the renormalization of the equal-time

four-point function for different backgrounds. Higher order correlation functions are

important quantities because they describe non-Gaussian features of the scalar field.

In particular the four-point function is related to the connected trispectrum TR which

is defined as [42, 43]

〈
δφ~k1δφ~k2δφ~k3δφ~k4

〉
c

=
φ̇4

H4
(2π)3δ

(∑
i

~ki

)
TR(~k1, ~k2, ~k3, ~k4). (5.25)
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We remark that the three-point function 〈δφk1δφk2δφk3〉 and all the other odd correla-

tion functions are identically zero at first order because in our models the system is

invariant under the field transformation φ→ −φ.

We will now apply the closed-time-path formalism and investigate the time-

dependence of the tree-level and radiative corrections to the equal-time four-point

function with the same techniques used in the previous section.

First we will present our results for the tree-level contributions for a massive scalar

field in Minkowski spacetime where the time dependence necessarily arises from the

finite time of the initial conditions. Subsequently we will perform the same analysis for

a massless scalar field in quasi de-Sitter spacetime where the time dependence arises

both from the background and from the finite time. In the second part of the chapter

we will investigate one-loop radiative corrections both in Minkowski and de-Sitter

spacetime with analogous considerations about the time dependence.

Tree-level contributions in Minkowski spacetime from a mas-

sive scalar field

We consider here the tree-level contributions to the four-point function from a massive

scalar field in Minkowski spacetime. Only two diagrams T1 and T2 are contributing

to the four-point correlation function and they are listed in Table 5.1, where the

propagators are given by eq. (4.28). We start our calculations with the analysis of

the tree-level in Minkowski spacetime in order to study the properties of the time

dependence arising from the initial time tin. The integrals assume a simple form only in

Table 5.1: Inequivalent Feynman diagrams for the tree-level contributions to the
four-point function from a massive scalar field in Minkowski spacetime where
wki =

√
k2
i +m2, ki are the external momenta, t is the external time, and tin is the

initial time.

τ1 = 6(−i)
(−iλ

3!

) ∫∞
tin
dτ GR(wk1 , t, τ)F (wk2 , t, τ)F (wk3 , τ, t)F (wk4 , τ, t),

= 6i
(−iλ

4!

) ∫∞
tin
dτ GR(wk1 , t, τ)F (wk2 , t, τ)GA(wk3 , τ, t)G

A(wk4 , τ, t),

the limit of coinciding momenta {ki}4
i=1 = k. Since we are interested in the properties

of the time dependence we will consider only this limit. After the inclusion of all

possible contributions coming from the permutation of the external propagators we
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found the analytic expression for the two diagrams

T1 = − λ

8
(√

k2 +m2
)5

(
1− cos

(√
k2 +m2(t− tin)

)4
)
, (5.26)

T2 =
λ

8
(√

k2 +m2
)5 sin

(√
k2 +m2(t− tin)

)4

, (5.27)

where k is the external momentum and t−tin is the elapsed time. The total contribution

assumes the simple form of a periodic function that is well-defined in the limit of a

vanishing mass

T = T1 + T2 = − λ

16
(√

k2 +m2
)5 sin

(
2
√
k2 +m2(t− tin)

)2

. (5.28)

In Figure 5.6 we show the tree-level contributions to the four-point function from

a massive scalar field. We observe that the time dependence is a consequence of the

time integral of the external propagators as for the two-point function. Since we are

working on a flat spacetime we do not expect any contribution from the background.

This time-dependence is not present in the in-out approach because of the different

picture. In the Schwinger and Keldysh formalism we consider the time evolution from

an initial state where we assume the system to be in the free vacuum of the theory. As

for the two-point function in the adiabatic limit the Poincaré symmetry is recovered.

0 2 4 6 8 10
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p
lit
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Figure 5.6: Tree-level contributions T1 (blue line), T2 (yellow line) and T1 + T2 (green
line) from the massive propagators in Minkowski spacetime for k/m = 1 and λ = 1.



62 Renormalization in the CTP formalism

Tree-level contributions in de-Sitter spacetime from a (nearly)

massless scalar field

We will now move to the discussion of the tree-level contribution on a background

of cosmological interest during the inflationary epoch, i.e. quasi de-Sitter spacetime.

We will investigate the tree-level contributions in de-Sitter spacetime from a (nearly)

massless scalar field for a quartic interaction term. We will use the de-Sitter mass-

less propagators defined in eqs. (5.15) since they are a good approximation for all

superhorizon scales.

At tree-level only two finite diagrams T1 and T2 contribute to the four-point

correlation function and they are listed in Table 5.2.

Table 5.2: Inequivalent Feynman diagrams for the tree-level contributions to the
four-point function from a (nearly) massless scalar field in de-Sitter spacetime where
ki are the external momenta, τ is the external conformal time, and τin is the initial time.

τ1 = 6(−i)
(−iλ

3!

) ∫∞
τin
dτ1 a

4(τ1)GR(k1, τ, τ1)F (k2, τ, τ1)F (k3, τ1, τ)F (k4, τ1, τ),

= 6i
(−iλ

4!

) ∫∞
τin
dτ1 a

4(τ1)GR(k1, τ, τ1)F (k2, τ, τ1)GA(k3, τ1, τ)GA(k4, τ1, τ),

The integrals cannot be computed analytically using the full propagators. We will

therefore show the analytic results where we assumed the external propagators F and

GR to be in a super-Hubble regime, i.e. taking the first Taylor order in the limit of

small |kτi|. The full result is shown in Figure 5.7.

By considering all possible permutations of the external momenta we found

T1 = −λ
H4 (k3

1 + k3
2 + k3

3 + k3
4)
(
τ3

τ3in
+ 3 log

(
τin
τ

)
− 1
)

72k3
1 k

3
2 k

3
3 k

3
4

, (5.29)

T2 = λ
H4 (k3

2k
3
3k

3
4 + k3

3k
3
4k

3
1 + k3

4k
3
1k

3
2 + k3

1k
3
2k

3
3)
(

2 τ9

τ3in
+ 3τ 6 − 6τ 3τ 3

in + τ 6
in + 18τ 6 log

(
τin
τ

))
1296k3

1 k
3
2 k

3
3 k

3
4

.

We observe a logarithmic dependence on the conformal time that was present in

the analogous calculation for the two-point function. We remark that the logarithmic

dependence is not present in the Minkowski tree-level contribution and it is therefore

a true time dependence coming from the background. The secular terms in τ
τin

are the

first-orders of the early time oscillations visible in Figure 5.7. These oscillations (and as
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Figure 5.7: Tree-level contributions T1 (blue line), T2 (yellow line) and T1 + T2 (green
line) in de-Sitter spacetime from the massless propagators for k1,2,3,4/H = 1, λ = 10−13

and Hτin = −10.

a consequence also the secular terms) are a consequence of the initial conditions that

we set in our theoretical framework. We point-out that the logarithmic dependence

log(τ) of T1 is not visible in the plot.

We found that the trispectrum for a simple scalar field theory with quartic self-

interaction has a non-trivial contribution already at the tree-level. We remark that the

size of the oscillation is proportional to the amplitude of the coupling constant λ.

This concludes our analysis of the tree-level contributions in the closed-time-path

formalism for different backgrounds. In Section 7.5 we will investigate the cosmological

implications and give our prediction for the cosmological parameter τNL which is an

observable quantity directly connected to the non-Gaussian features in the primordial

universe.

One-loop corrections in Minkowski spacetime from a massless

scalar field

We are going to analyze the one-loop radiative corrections to the four-point correlation

function in Minkowski spacetime from a massless scalar field with quartic self-coupling

in order to understand how divergences arise in the closed-time-path formalism. We

will then define the ultraviolet counter-term δλ which is universal because the UV

divergences in curved spacetime are of the same type and degree as in Minkowski

spacetime.

In Section 3.4 the singular structure of the propagators is shown. For the considered

case the Hörmander Criterion (see the Corollary 3.4.2.1 for the details) is not satisfied

for the products F GR, F GA, F 2, (GR)2, and (GA)2. We therefore expect to get new

divergences for all of these products. In fact this will not be the case because as we
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will show in the next section with the explicit calculation in de-Sitter spacetime, the

sum (GA)2 + (GR)2 − F 2 is finite. On the other hand the singular product F GR will

give rise to a true divergence.

As a consequence only two diagrams give new divergences and have to be renormal-

ized. Here we are only interested in the divergent part and we will consider only the

divergence coming from the two diagrams in Figure 5.8. The mirror diagrams should

also be considered and they are given by the interchange of the two virtual times τ1

and τ2. The other possible contractions give finite contributions or vanish because of

the causality restrictions of GR.

k2

k1

k4

k3

τ1 τ2

Figure 5.8: Fish diagrams A1 (left) and A2 (right). In addition one has to consider also
the mirror diagrams.

In the following, we show our calculations for the amputated amplitude only for

diagram A1. The other amplitude will involve the same loop integral with a different

normalization due to the different vertices. To get the expression for A2 it is enough

to perform the following replacement(
−iλ
3!

)2

→
(
−iλ
3!

)(
−iλ
4!

)
. (5.30)

The counter-term δλ that will be defined in order to cancel the divergence of A1

will also cancel the divergence of A2 and of mirror diagrams. The amputated amplitude

of diagram A1 is given by

(−i)
(
−iλ
3!

)2 ∫
d3p1

(2π)3

∫
d3p2

(2π)3
F (p1, t1, t2)GR(p2, t1, t2)(2π)3δ(k1 + k2 − p1 − p2).

(5.31)

Using the massless propagators in Minkowski spacetime given by (4.28) in the limit

m→ 0, we are able to find the amputated amplitude

iλ2θ(t1 − t2) sin(k(t1 − t2)) sin2((t1 − t2)Λ)2

8π2k(t1 − t2)
. (5.32)

In the limit of small external momenta, we can neglect higher orders in |k(t1 − t2)|
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and get (
iλ2π

(2π)3

)
θ(t1 − t2) sin2((t1 − t2)Λ)

(t1 − t2)
. (5.33)

In order to understand the singular behavior of sin2((t1 − t2)Λ), one has to study

the previous expression in the language of distributions. In [143] it has been proven

that the following equality holds

θ(∆τ)
sin2(Λ∆τ)

∆τ
=

1

2

(
θ(−η + ∆τ)

∆τ
+ δ(∆τ)(γ + log(2Λη))

)
, (5.34)

where η is a time regulator that will be sent to zero at the end. The amputated fish

diagram reads(
iλ2π

2(2π)3

)(
θ(−η + (t1 − t2))

(t1 − t2)
+ δ(t1 − t2)(γ + log(2Λη))

)
. (5.35)

The Lagrangian counter-term δλ can be identified in the minimal subtraction

scheme by subtracting only the divergent contributions from the regulated expression.

One finds directly that

− 3

(
iπλ2

2(2π)3

)
log

(
Λ

µ

)
=: iδλ, (5.36)

where the additional factor 3 comes from the contribution of different channels s, t,

and u.

The renormalized amputated amplitude for the fish diagram simplifies to

iπλ2

2(2π)3

(
θ(−η + (t1 − t2))

(t1 − t2)
+ δ(t1 − t2)(γ + log(2µη))

)
. (5.37)

The result is in agreement with the results in the literature of dimensional regulariza-

tion [84, 85, 144]. Moreover, as observed in the radiative corrections of the two-point

function, we do not have any explicit time dependence in the amputated amplitude.

The non-local dependence on the elapsed time t− tin will arise when considering the

effect of the external propagators.

One-loop corrections in de-Sitter spacetime from a (nearly)

massless scalar field

In the following section we will consider the one-loop radiative corrections to the

four-point function on a quasi de-Sitter background in the theoretical framework of

the Schwinger and Keldysh formalism. As observed in Minkowski spacetime, this com-
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putation involves the singular product of two propagators and has to be renormalized.

All the inequivalent contributions are listed in Table 5.3.

Table 5.3: Inequivalent Feynman diagrams for the one-loop correction to the four-point
function. In the last column τ1 and τ2 denote the time of the left and right vertex and
τ is the external time.

Id Coeff Graph Loop Ext. contrib. Time constraints

A1 36
k2

k1

k4

k3

τ1 τ2 −iGRF −iGRFFF τ2 < τ1, τ1 < τ

A11 36 −iGAF −iFFGAF τ1 < τ2, τ2 < τ

A2 36 −iGRF iGRFGAGA τ2 < τ1, τ1 < τ

A21 36 −iGAF iGRGRGAF τ1 < τ2, τ2 < τ

B 18 FF −GRFGAF τ1 < τ, τ2 < τ

C1 18 −GRGR −GRFGAF τ2 < τ1, τ1 < τ

C2 18 −GAGA −GRFGAF τ1 < τ2, τ2 < τ

As observed in Minkowski spacetime, for all diagrams the loop contribution is

singular. Nevertheless the sum (GA)2 + (GR)2 − F 2 is regular in the ultraviolet regime

and will give a finite contribution. The only true UV divergence is given by the singular

product F GR and is described by the following loop integral∫
d3p1

(2π)3

∫
d3p2

(2π)3
F (p1, t1, t2)GR(p2, t1, t2)(2π)3δ(k1 + k2 − p1 − p2). (5.38)

This and similar integrals are the same as those that appear in the one-loop

corrections to the two-point function for a scalar field theory with a cubic self-interaction

and were already computed in [143] for a massless field in de-Sitter spacetime. We will
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use their results in the following when calculating the amputated contributions.

The integral of eq. (5.38) can be simplified by exploiting the spherical symmetry in

momentum space. Let’s write the general form of all loop diagrams listed in Table 5.3.∫
d3p

∫
d3p′ δ3(k + p + p′)f(k, p, p′). (5.39)

We can use the Dirac delta function in order to simplify the momentum integral over

p′ ∫
d3p f(k, p, |p + k|). (5.40)

Now, by exploiting the radial symmetry of the function f in the first two arguments

we can write the integral in spherical coordinates and integrate over the inclination

angle ϕp

2π

∫ ∞
0

dp p2

∫ 1

−1

d cos θ f(k, p,
√
k2 + p2 + 2k p cos θ). (5.41)

The integral can be simplified with the definition of the new variable p′ =√
k2 + p2 + 2k p cos θ to

2π

∫ ∞
0

dp p2

∫ p+k

−|p−k|
dp′

p′

p k
f(k, p, p′) =

2π

k

∫ ∞
0

dp p

∫ p+k

|p−k|
dp′ p′f(k, p, p′). (5.42)

The integration in the momentum variables cannot be performed analytically

without any simplification of the propagators. In the rest of the section we assume

that the external momenta are super-Hubble, i.e. with wavelengths above the Hubble

radius and we consider the virtual particles to be massless. In the infrared regime we

will use ν = 3/2− ε as an infrared regulator as we did in the renormalization of the

two-point function.

Contribution B + C1 + C2

Let us consider the finite contribution to the four-point function of diagrams B, C1

and C2. In this case the product of the distributions F 2, (GR)2 and (GA)2 diverge

linearly, but the sum (GA)2 + (GR)2 − F 2 is UV finite.

The amputated amplitude of diagram B including the contribution of the two

vertices reads

Bamp =

(
−iλ

3!

)2

a4(τ1)a4(τ2)

∫
d3p

(2π)3

∫
d3p′ δ3(k− p− p′)F (p′, τ1, τ2)F (p, τ1, τ2)

=

(
−iλ

3!

)2

a4(τ1)a4(τ2)
1

k(2π)2

∫ ∞
0

dp p

∫ p+k

p−k
dp′ p′ F (p′, τ1, τ2)F (p, τ1, τ2), (5.43)
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where τ1 and τ2 are the virtual times, k = k1 + k2 = k3 + k4, and F is the Hadamard

propagator in de-Sitter spacetime. Similarly we have the expression for diagrams C1

and C2

C1,amp = −
(
− λ2

4!3!

)
a4(τ1)a4(τ2)

1

k(2π)2

∫ ∞
0

dp p

∫ p+k

p−k
dp′ p′GR(p′, τ1, τ2)GR(p, τ1, τ2),

(5.44)

C2,amp = −
(
− λ2

4!3!

)
a4(τ1)a4(τ2)

1

k(2π)2

∫ ∞
0

dp p

∫ p+k

p−k
dp′ p′GA(p′, τ1, τ2)GA(p, τ1, τ2).

(5.45)

The full expression corresponding to the different diagrams is given by the renor-

malized amputated amplitude with the inclusion of the external propagators. Since in

the fish diagram there are two vertices, we have to integrate over time twice. The full

amplitude reads 3

[B]ren = −18

∫ τ

τin

dτ1

∫ τ

τin

dτ2G
R(k1, τ, τ1)F (k2, τ, τ1)GA(k3, τ1, τ)F (k4, τ1, τ)[Bamp]ren,

[Ci]ren = −18

∫ τ

τin

dτ1

∫ τ

τin

dτ2G
R(k1, τ, τ1)F (k2, τ, τ1)GA(k3, τ1, τ)F (k4, τ1, τ)[Ci,amp]ren.

(5.46)

To perform the momentum integration of the singular product of the Hadamard

propagator F 2 of diagram B, one can split the integral in two parts: the small momentum

contribution where the Hankel propagators are taken as in eqs. (4.29) and (4.30) with

ν = 3/2− ε and the large momentum contribution. The small momentum contribution

reads

Bs =
H4
(
2 log (k2τ1τ2) + k

M
− 1

2
log
(
k+M
M−k

)
+ 1

ε

)
8π2k3

, (5.47)

where k = k1 + k2 and M is the mass scale used as the upper limit for the momentum

integral. The large momentum is

Bl =
H4
(

1
2

log
(
k+M
M−k

)
− k

M

)
8π2k3

− H3Λτ 2
1 τ

2
2 sin(k(τ1 − τ2))

16π2kτx(τ1 − τ2)
. (5.48)

Here τx comes from the physical cutoff −Λ/(Hτx), where τx = min(τ1, τ2). In other

words we regulate our theory with the largest cutoff max(Λ a(τ1), Λ a(τ2)). The linear

dependence of this expression will be compensated with the contribution from diagrams

C1 and C2.

3The small and large momenta contributions Bs, Bl and Cl are taken from [143].
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Diagram C is regular in the infrared regime and does not give late time contributions.

The large momenta contributions for diagrams C1 and C2 is calculated in a similar

way and read

C l
1 =

H3Λτ 2
1 τ

2
2

4kπ2(τ1 − τ2)τx
sin (k(τ1 − τ2)) θ (τ1 − τ2) ,

C l
2 =

H3Λτ 2
1 τ

2
2

4kπ2(τ2 − τ2)τx
sin (k(τ2 − τ1)) θ (τ2 − τ1) . (5.49)

The two contributions can be easily summed-up. We observe that the sum does

not depend on any step-function because the factor θ (τ1 − τ2) is compensated by the

symmetric contribution θ (τ2 − τ1). We have

C l = C l
1 + C l

2 =
H3Λτ 2

1 τ
2
2

4kπ2(τ1 − τ2)τx
sin (k(τ1 − τ2)) . (5.50)

The amputated contribution [B + C1 + C2]amp is finally given by the sum of all

small and large momenta contributions with the inclusion of two vertices λ2a4(τ1)a4(τ2)

with the corresponding combinatorial factor.

[B + C1 + C2]amp =

(
−iλ

3!

)2

a4(τ1)a4(τ2)(Bs +Bl) +

(
−iλ

4!

)(
−iλ

3!

)
a4(τ1)a4(τ2)C l.

(5.51)

The explicit expression reads

−
λ2
(
2 log ((k1 + k2)2τ1τ2) + 1

ε

)
288π2H4(k1 + k2)3τ 4

1 τ
4
2

, (5.52)

and is infrared divergent and finite in the ultraviolet regime (as expected from previous

considerations). The last part consists in the evaluation of the full contribution to the

correlation function considering also the external propagators as in eq. (5.46). In order

to perform the time integrals analytically we assumed the propagators in the limit of

small |kτ | and they are given in eq. (4.35).

Using the integrals (B.1) and (B.2) in Appendix B, we obtain the full expression

for the contribution B + C1 + C2 that reads

H4λ2 (k3
1 + k3

2) (k3
3 + k3

4)
(

3 log
(

τ
τin

)
+ 1
)

15552π2(k1 + k2)3k3
1k

3
2k

3
3k

3
4

(
9 log

(
τ

τin

)(
2 log

(
k2τ τin

)
+

1

ε

)
+ 12 log(−kτ) + 4 +

3

ε

)
. (5.53)
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As for the two-point function the correction has a logarithmic dependence on

the conformal time, in this case quadratic, and the first-order contributions of the

oscillatory terms. It depends also on the infrared cutoff ε as expected.

Contribution A1 + A11

Similarly we discuss the contribution of diagrams A1 and A11, that involve the singular

product of the propagators F and GA/R. In this case we deal with a true divergence

that is not compensated by the other diagrams and we need to renormalize it with the

universal coupling constant counter-term that we found in Minkowski spacetime

δλ = −3
λ2

16π2
log

Λ

µ
, (5.54)

which fully agrees with similar results in the literature (see [84] and the computations

in different schemes in [33] and [34]).

The amputated amplitudes for diagrams A1 and A11 including the contribution

from the vertices are

A1,amp = −i
(
−iλ

3!

)2

a4(τ1)a4(τ2)
1

k(2π)2

∫ ∞
0

dp p

∫ p+k

p−k
dp′ p′GR(p′, τ1, τ2)F (p, τ1, τ2),

(5.55)

A11,amp = −i
(
−iλ

3!

)2

a4(τ1)a4(τ2)
1

k(2π)2

∫ ∞
0

dp p

∫ p+k

p−k
dp′ p′GA(p′, τ1, τ2)F (p, τ1, τ2),

(5.56)

where we used the same notation of the previous example. The full amplitudes with

the inclusion of the external propagators read

[A1]ren = −36i

∫ τ

τin

dτ1

∫ τ

τin

dτ2G
R(k1, τ, τ1)F (k2, τ, τ1)F (k3, τ1, τ)F (k4, τ1, τ)[A1,amp]ren,

[A11]ren = −36i

∫ τ

τin

dτ1

∫ τ

τin

dτ2 F (k1, τ, τ1)F (k2, τ, τ1)GA(k3, τ1, τ)F (k4, τ1, τ)[A11,amp]ren.

(5.57)

Similarly to what it has been done before, we investigate the contribution of

diagrams Ai s, that involve the singular product of the propagators F and GA/R. The

UV behavior was studied in [143] for a λφ3-theory. They found an analytic expression

for the renormalized product F GR, that in our setup corresponds to
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− iH4

24π2
θ(τ1 − τ2)

[
2τ 3

1 log


∣∣∣ τ2
τ1−τ2

∣∣∣
2


+

3

2
τ 2

1 τ
2
2

(
δ(τ1 − τ2)

(
log

(
− 2ηµ

Hτ1

)
+ γ

)
+
θ(−η + τ1 − τ2)

τ1 − τ2

)
− 2τ 3

2 log

(
τ1

2(τ1 − τ2)

)
− 2τ1τ2(τ1 − τ2) +

(
1

ε
+

14

3
− 2γ

)(
τ 3

1 − τ 3
2

) ]
, (5.58)

where again ε is the mass regulator introduced to cure the infrared divergence and µ is

the arbitrary renormalization energy scale. The ultraviolet divergence is regulated with

the coupling constant counter-term found in Minkowski spacetime (5.54). We remark

that the previous expression is consistent with the calculation of [37] performed with

the analytic regularization scheme in position space, with the peculiarity that it is

compatible with the Epstein-Glaser renormalization in the algebraic quantum field

theory approach. They found a renormalized amplitude in Fourier space given by

(∆2
F )ren = −1 + 2 log(a)

16π2a4(τ1)
iδ(τ1 − τ2)+

1

2π(8π2)a2(τ1) a2(τ2)
(∂2
τ1

+k2)

∫
R3

d3p

(
1

2

(
1

p3

)
ren

+
i|τ1 − τ2|

2p2

)
e−ip|τ1−τ2|

e−i|k−p||τ1−τ2|

2|k − p|
,

(5.59)

where ∆F is the Feynman propagator.

The first line is compatible with eq. (5.58), where we both observe a dependence on

log a(τ). This term is originated from the renormalization of the logarithmic divergence

in the four-point function. We remark that the overall factor 1/(16π2a4(τ1)) of eq. (5.58)

is consistent with eq. (5.59). The only difference is the constant γ in eq. (5.58) which

is not present in the second expression because they used a different prescription. The

second line is instead expressed in terms of a momentum integral where the finite part

depends on the renormalization scheme and therefore cannot be directly compared to

eq. (5.58).

By assuming the external propagators in the limit of |kτ | � 1 and by using the

integrals (B.3) - (B.6) in Appendix B, we obtain the full expression for the contribution

A1 + A11 that reads
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− H4λ2 (k3
1 + k3

2 + k3
3 + k3

4)

62208π2k3
1k

3
2k

3
3k

3
4

[
51π2 + 126γ − 776 + 126 log(2)− 36

ε

+ 54
(

log
( µ
H

)
+ 4ζ(3)

)
+ 18 log2

(
τ

τin

)(
2 log

(
8τin

τ

)
+ 2(3γ − 8)− 3

ε

)
+ 6 log

(
τ

τin

)(
27 log

( µ
H

)
+ 6π2 + 51(γ + log(2))− 127− 12

ε

)]
. (5.60)

We observe that the correction to the correlation function has a quadratic loga-

rithmic dependence on the conformal time that was present also in diagrams B and

Ci s. The first orders of the early oscillations are also present. Finally the result is

consistently regulated with the infrared cutoff ε.

Contribution A2 + A21

To conclude, we compute the contribution of the remaining diagrams A2 and A22 that

are renormalized with the coupling constant counter-term (5.54). The loop contribution

is given by the singular product F GR that was calculated before. The amputated

amplitudes with the inclusion of the contributions of the vertices read

A2,amp = −i
(
− λ2

4!3!

)
a4(τ1)a4(τ2)

1

k(2π)2

∫ ∞
0

dp p

∫ p+k

p−k
dp′ p′GR(p′, τ1, τ2)F (p, τ1, τ2),

(5.61)

A21,amp = −i
(
− λ2

4!3!

)
a4(τ1)a4(τ2)

1

k(2π)2

∫ ∞
0

dp p

∫ p+k

p−k
dp′ p′GA(p′, τ1, τ2)F (p, τ1, τ2).

(5.62)

The full amplitudes are given by

[A2]ren = 36i

∫ τ

τin

dτ1

∫ τ

τin

dτ2G
R(k1, τ, τ1)F (k2, τ, τ1)GA(k3, τ1, τ)GA(k4, τ1, τ)[A2,amp]ren,

[A21]ren = 36i

∫ τ

τin

dτ1

∫ τ

τin

dτ2G
R(k1, τ, τ1)GR(k2, τ, τ1)GA(k3, τ1, τ)F (k4, τ1, τ)[A21,amp]ren.

(5.63)

Now the full amplitude differs from that computed for diagrams A1 and A11 because

of the different external propagators (and vertices). Therefore, with the integrals (B.7)
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- (B.10) given in Appendix B we obtain the full contribution A2 + A21

− H4λ2τ 6
in (k3

1k
3
2k

3
3 + k3

1k
3
2k

3
4 + k3

1k
3
3k

3
4 + k3

2k
3
3k

3
4)

186624π2k3
1k

3
2k

3
3k

3
4

(
9 log

( µ
H

)
+

1

ε
log

(
τ 6

in

τ 6

)
+

2

(
3 log

(
4τin

τ

)
+ 6γ − 17

)
log

(
τ

τin

)
+ 2π2 + 19γ − 48 + 19 log(2)− 5

ε

)
. (5.64)

Again we observe the expected logarithmic dependence on the conformal time and

the first-order contributions of the periodic terms. We remark that the corrections are

proportional and suppressed by the overall factor λ2. Therefore the loop contributions

are negligible compared to the tree-level result.

The tree-level contribution and the sum of all one-loop corrections are shown in

Figure 5.9, where the radiative corrections have been enhanced by a factor of 1013. It

should be noted that the loop corrections do not have any periodic features since we

considered the external propagators to be in the super-Hubble regime. We expect that

the oscillations are present in the general result obtained with the full propagators.
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Figure 5.9: Tree-level (yellow line) and one-loop contributions (blue line) to the four-
point function where we set k1,2,3,4/H = 1, λ = 10−13 and Hτin = −10. The loop
contribution is amplified by a factor 1013.

We are at the end of our discussion about the equal-time four-point function

renormalization in Minkowski and de-Sitter spacetime using the closed-time-path

formalism. In Chapter 7 we will discuss the physical consequences of our results and

we will give our predictions to the non-linearity parameter τNL that describes the

non-Gaussian properties of the inflationary physics in the primordial universe.
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5.3 Massive WKB counter-term in de-Sitter space-

time

The full propagator for a massive theory in de-Sitter spacetime is given by the

hypergeometric function (4.39), which is an implicit function of the coordinates. It is

therefore difficult to disentangle the divergences from the finite contributions in the

perturbative expansion of the correlation functions.

The WKB propagator (4.46) gives a very good approximation of the full massive

propagator in the UV regime and for very large masses m� H. In the following we

study the massive counter-term for a two scalar field theory with Feynman rules given

in the Appendix A.2 where the light field gets radiative corrections from the heavy

field described by the WKB propagator.

After having introduced a physical cutoff Λ that regulates the momentum integral

of the WKB propagator (4.47), the one-loop correction to the two-point function 5.13

reads

[Aamp]reg = −iλ2
h

Λ
√

Λ2 +m2 −m2 sinh−1
(

Λ
m

)
8π2

. (5.65)

In order to renormalize this amplitude, we extracted the UV divergence and defined

the mass counter-term

δm2 =
λ2
h

4π2

(
Λ2 −m2 log

(
Λ

µ

))
, (5.66)

which is consistent with the analogous counter-term (5.10) found in Minkowski space-

time 4. The second term in eq. (5.66) is not present in the massless case, because it is

proportional to the squared mass.

After the subtraction of the ultraviolet divergences we obtain the analytic expression

for the renormalized one-loop correction in the WKB approximation

[Aamp]ren =
−iλ2

hm
2a4(τ)

4π2

(
1 + log

(
m2

4µ2

))
. (5.67)

Contrary to the massless case, where the one-loop correction was proportional to

the Hubble parameter H2(τ), now it is proportional to m2, which is larger than H2(τ)

for non dynamical fields during inflation.

It is therefore not sufficient to renormalize the tadpole derived numerically with the

full massive propagator by subtracting only the UV divergences found in the massless

case, because there will be the residual logarithmic divergence that depends on the

4It should be noted that here we are using the Feynam rules for the hybrid model, explaining the
different normalization.
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mass. Our strategy is to subtract instead the counter-term computed analytically

with the WKB propagator, which is consistent to the analytic expression found in

Minkowski spacetime in eq. (5.10), and to include the contribution of the massless

counter-term (5.20), that does not appear in the WKB approximation.

In Figure 5.10 we show the squared mass dependence of the residual finite part for

the amputated diagram with the full massive propagator in the minimal subtraction

scheme which consistently matches the one predicted in eq. (5.67).
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Figure 5.10: Mass dependence of the amputated tadpole diagram with the full hyper-
geometric propagator after renormalization with the WKB couter-term.

The last part of this section is devoted to the precision of the numerical methods

that we used in order to approximate the Schwinger propagator obtained from the

hypergeometric function. The hypergeometric propagator is evaluated in momentum

space for a finite set of points as shown in Figure 4.3. The discrete points are sub-

sequently fitted with a polynomial function in order to be able to proceed with the

renormalization procedure analytically. In Figure 5.11 we show the relative difference

between the hypergeometric and the WKB propagator for a very massive field.

We observe very small oscillations in the difference and an apparent increase at

large k. This can be consistently explained considering that we are fitting the Fourier

transformed hypergeometric function on a discrete set of points with a polynomial

function exactly on this range. We expect that at the boundaries the fit becomes less

reliable. So the last part of that range will be excluded in the analysis. Additionally we

verified for the masses of interest that the integrated difference, which is the important

quantity for the loop integral, is always well-behaved and less than 0.001%.
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Figure 5.11: Relative difference between the Hypergeometric and the WKB propagator
for a scalar field of mass 60H.

5.4 Comparison of the counter-terms obtained in

the adiabatic regularization scheme

In the previous sections the two- and four-point correlation functions were renormalized

in the language of the Schwinger and Keldysh formalism for a massless and massive

theory in Minkowski and de-Sitter spacetime. In order to obtain finite quantities we used

the minimal subtraction scheme where we defined the mass, curvature and coupling

constant counter-terms (5.10), (5.20), (5.66), and (5.54). It would be interesting to

compare our results with counter-terms obtained using a completely different and

independent renormalization scheme.

In the following section, the methods of adiabatic renormalization introduced in

Section 3 will be applied to give an independent calculation of counter-terms. Here

we will renormalize the adiabatic energy-momentum tensor (3.30) on a n-dimensional

FRW spacetime. The methods that we use are explained in [34] and combine the

benefits of adiabatic subtraction and the effective action approach.

The one-loop corrections of eq. (3.30) were computed using the methods of the

effective action where the integral is regular because we are working on a n-dimensional

spacetime. Counter-terms δTµν are fixed by requiring that the effective theory matches

the classical one. In the case of the energy-momentum tensor (3.30) the one-loop

corrections are regularized by subtracting the 4th order adiabatic expansion 5. This

procedure will give an explicit expression for all counter-terms defined in eq. (3.31)

and they can be found by comparing the regularized energy-momentum tensor (3.30)

with the classical one [34]

5It is necessary to consider the subtraction at least at the 4th order to cancel completely all the
divergences that appear in the regulated expression. Higher orders are not relevant and will have an
impact only on the finite part.
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TC00 =
1

2

[
ϕ̇2 +m2ϕ2 + 2

λ

4!
ϕ4

]
+ ξ

[
(n− 1)

(n
2
− 1
)( ȧ

a

)2

ϕ2 + 2(n− 1)
ȧ

a
ϕ̇ϕ

]
.

(5.68)

In the following this procedure is tested by assuming the renormalization conditions

in Minkowski spacetime and in de-Sitter spacetime. In the first case we expect to

recover the same results as in [34]. In the second case we expect a difference only in

the finite part because of the universality of the divergences in curved spacetime.

It should be noted that by comparing the adiabatic counter-terms with those found

in our previous calculations the finite part will differ because here we are not working in

the same prescription and the adiabatic finite part strongly depends on the order in the

adiabatic expansion. We point-out that since the procedure is fully covariant, including

the counter-terms defined in eq. (3.31), we expect that the results will preserve this

covariance.

Renormalization conditions on a Minkowski background

In the following section we express the counter-terms by comparing the regulated

energy-momentum tensor in eq. (3.31) with the classical expression in eq. (5.68) by

imposing the renormalization conditions on a flat spacetime a(t) = 1. These conditions

can be read directly from eq. (5.68)

∂2 〈T00〉
∂ϕ̇2

∣∣∣∣
a=1

= 1,
∂2 〈T00〉
∂ϕ2

∣∣∣∣
a=1

= m2,
∂4 〈T00〉
∂ϕ4

∣∣∣∣
a=1

= λ,

∂3 〈T00〉
∂ϕ∂ϕ̇∂(ȧ/a)

∣∣∣∣
a=1

= 2ξ(n− 1), 〈T00〉|a=1 = 0,
∂2 〈T00〉
∂(ȧ/a)2

∣∣∣∣
a=1

= 0,

∂3 〈T00〉
∂(ȧ/a)2∂(ä/a)

∣∣∣∣
a=1

= 0,
∂2 〈T00〉
∂(ä/a)2

∣∣∣∣
a=1

= 0,
∂4 〈T00〉
∂(ȧ/a)4

∣∣∣∣
a=1

= 0. (5.69)

With these renormalization conditions with a fourth order adiabatic expansion in

the subtraction scheme we found the following counter-terms



78 Renormalization in the CTP formalism

δm2 =
−m2λ

16(n− 4)π2
+
m2λ

32π2

(
1− γ + log

(
4πµ2

m2

))
,

δλ =
−3λ2

16(n− 4)π2
+

3λ2

32π2

(
−γ + log

(
4πµ2

m2

))
,

δΛ =
m4

32(n− 4)π2
+

m4

128π2

(
−3 + 2γ − 2 log

(
4πµ2

m2

))
,

δξ =
(1− 6ξ)λ

96(n− 4)π2
+
λ(−1 + 6ξ)

192π2

(
−γ + log

(
4πµ2

m2

))
,

δα =
m2(−1 + 6ξ)λ

96(n− 4)π2
+
m2(−1 + 6ξ)

192π2

(
−1 + γ − log

(
4πµ2

m2

))
, (5.70)

where n denotes the dimensionality of the space, µ is the renormalization scale and

the pole in 1/(n− 4) is the usual pole that one finds in dimensional regularization. As

expected the results are covariant expression and no time dependence appears because

we set the initial condition to be on a flat spacetime. These results are of course

consistent with those in [34] because we applied the same method. The normalization is

also consistent with our previous results and with analogous results in the literature [33]

where they computed the same counter-terms using a similar prescription.

Renormalization conditions on a de-Sitter background

The same procedure is applied using the same renormalization conditions for a different

background. In the following example we will extend the results of [34] by choosing

the initial conditions given on a curved background described by the de-Sitter metric,

where the scale factor is expressed in coordinate time a(t) = eHt. The renormalization

conditions read

∂2 〈T00〉
∂ϕ̇2

∣∣∣∣
a=eHt

= 1,
∂2 〈T00〉
∂ϕ2

∣∣∣∣
a=eHt

= m2,
∂4 〈T00〉
∂ϕ4

∣∣∣∣
a=eHt

= λ,

∂3 〈T00〉
∂ϕ∂ϕ̇∂(ȧ/a)

∣∣∣∣
a=eHt

= 2ξ(n− 1), 〈T00〉|a=eHt = 0,
∂2 〈T00〉
∂(ȧ/a)2

∣∣∣∣
a=eHt

= 0,

∂3 〈T00〉
∂(ȧ/a)2∂(ä/a)

∣∣∣∣
a=eHt

= 0,
∂2 〈T00〉
∂(ä/a)2

∣∣∣∣
a=eHt

= 0,
∂4 〈T00〉
∂(ȧ/a)4

∣∣∣∣
a=eHt

= 0.

(5.71)
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The time dependence of the scale factor complicates the calculation of the counter-

terms. It is still possible to find the full analytic solution

δm2 =
−m2λ

16(n− 4)π2
+
m2λ

32π2
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1− γ + log
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4πµ2

m2

))
−6H2ξ+

+
5H2λ(1− 6ξ)

96π2
+

H4λ

160m2π2
(33 + 10ξ(−31 + 72ξ)),
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−3λ2

16(n− 4)π2
+

3λ2

32π2
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+

3H2λ2

32π2m2
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32(n− 4)π2
+

m4
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(209 + 2520ξ(−1 + 3ξ)),

δξ =
(1− 6ξ)λ

96(n− 4)π2
+
λ(−1 + 6ξ)

192π2
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H2λ
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+
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(
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(
4πµ2

m2
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+

+
H2

8540π2
(−61 + 720(1− 3ξ)ξ). (5.72)

We found that the counter-terms are given by the dimensional regularization poles

in 1/(n− 4) that are universal and do not depend on the background we consider. The

finite part that we found in the case of a Minkowski spacetime is also contributing.

The only difference is in those terms that are written in blue color that depend on the

squared Hubble parameter H2. Because in a FRW spacetime the curvature is given by

R(t) = 12H2(t), the finite part can be expressed in terms of geometrical quantities

and the contribution proportional to H2 can be interpreted as a covariant correction

to the curvature term. Moreover by sending the curvature R to zero, we consistently

recover the results obtained on a flat spacetime.

In this section we analyzed the one-loop correction to the energy-momentum tensor

in the effective action approach using adiabatic regularization in order to obtain an

independent derivation of counter-terms. The results are fully consistent with those

obtained in the theoretical framework of the Schwinger and Keldysh formalism. The

only difference is in the finite part that nevertheless could be expressed in terms of

geometrical covariant quantities as the metric and the curvature. We point-out that in

the counter-terms defined in the CTP formalism the finite part is zero because we are

subtracting the divergences in the minimal subtraction scheme.
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CHAPTER 6

INTERACTION PROFILE AND THE ADIABATIC LIMIT

In the previous chapter the Schwinger and Keldysh formalism was applied in order

to calculate the explicit time-evolution of the renormalized two- and four-point cor-

relation function for different backgrounds. In the case of a flat spacetime, because

the background is not breaking the time translational symmetry of the system, no

explicit time dependence from the metric was found. On the other hand, because the

closed-time-path formalism sets an initial time tin where the interaction is switched-on,

we found in both cases oscillatory features arising from the contribution of the external

propagators that depend on the initial time. In quasi de-Sitter spacetime we found

periodic contributions arising from the external propagators and a logarithmic time

dependence logH coming from the time-evolution of the universe encoded in the

background.

In the considered examples of renormalization in Minkowski spacetime we expect

to recover the Poincaré invariance in the limit of large elapsed time t− tin � 1. This

can be seen by interpreting the in-in formalism in the equivalent scenario of a scalar

field theory that freely evolves from infinite negative time to the initial time according

to the free theory. At this time the interaction is switched-on and the system evolves

according to the full theory and we stop to be on an eigenstate of the system. This

picture can be analytically represented through a step-function θ(t− tin) multiplied

with the interacting Lagrangian, i.e.

S[φ] =

∫ ∞
−∞

dt

∫
d3x

{
L0[φ] + θ(t− tin)Lint[φ]

}
. (6.1)

In this perspective the non-local periodic terms that appear in the two- and four-

point function should disappear in the limit where the interaction is always switched-on

as in the traditional in-out approach. We remark that this limit cannot be taken by
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simply sending t− tin →∞ because it is not defined for our oscillatory terms.

In Section 6.1 we discuss the profile dependence of the two-point correlation function

in different backgrounds in order to understand the dependence of our results on the

initial time. In Section 6.2 the issue how to properly define the adiabatic limit to

recover the Poincaré invariance in Minkowski spacetime is discussed.

6.1 Profile dependence of the two-point correla-

tion function

In the following we first study the interaction profile dependence of our results for

the two-point function both in Minkowski and de-Sitter spacetime. We first construct

an interaction profile that mimics the properties of a nearly adiabatic switching-on

of the interaction. Then we will use it in order to better understand the finite time

dependence of our results.

We are interested in a function g with regularity Cn(R) that is 0 before the initial

time t < tin and 1 after the transition, i.e. for t > tin + ∆t. Here ∆t is a parameter

that represents the transition time. Let f be a function Cn(R) at 0 and f(0) = 0, then

g(t) =
f(t− tin)

f(t− tin) + f(∆t− t+ tin)
(6.2)

is the interacting profile that we were looking for. The function f can be chosen to be

x 7→ xn+1 or x 7→ e−1/x2 in order to get a Cn or C∞-extension of the interaction. We

show few examples in Figure 6.1.

∆t

tin tin + ∆t

1

∆t

tin tin + ∆t

1

Figure 6.1: Interaction profiles with C2(R) and C∞(R) extensions during the transition

It is important to notice that for small ∆t, a less regular switching-on of the

interaction should be preferred for two main reasons. First, less regular functions are

simpler to treat analytically. Secondly, functions that are too regular tend to stay

constant after the initial time and before the transition, giving us extensions that are

similar to the θ-profile.
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Profile-dependence of the tadpole in Minkowski spacetime

In the following we compute the regulated amplitude for a linear profile, i.e. f : t 7→ t.

First we remind the time dependence of the renormalized two-point function in

Minkowski spacetime (5.11)

λ
sin (wk(t− tin))2

2w3
k

, (6.3)

where wk =
√
k2 +m2. Now, by replacing λ with the new time-dependent coupling

constant λ(t) = λg(t), the new dependence on the external propagators can be

computed. We found that before the transition the time dependence of the amplitude

becomes proportional to

λ

8

2wk(t− tin)− sin (2wk(t− tin))

∆t w4
k

, t < tin + ∆t, (6.4)

and after the transition to

λ

8

[
2

w3
k

+
sin (2wk(t− tin −∆t))− sin (2wk(t− tin))

∆t w4
k

]
, t > tin + ∆t. (6.5)

In other words the first expression represents the amplitude during the transient

region and the second one represents the analogous of the periodic oscillations that

were found in (5.11). The last expression has a finite time-independent limit for large

transition time ∆t. It is given by
λ

4w3
k

. (6.6)

In position space this term becomes

F−1( · ) = 4π

∫ ∞
0

dk
sin(kr)

kr
k2 λ

4w3
k

= λπK0(mr), (6.7)

where K0 is the modified Bessel function of second kind.

Finally, the limit ∆t → 0 consistently gives us the contribution of the θ(t − tin)

function

λ
sin (wk(t− tin))2

2w3
k

. (6.8)

In Figure 6.2 we show the renormalized two-point function with an interaction

profile g(t) constructed from a quadratic and cubic function f . We see that using the

construction in eq. (6.2), the oscillations are always present and they are suppressed

by the transition time ∆t. For a longer transition time we found a smaller amplitude

of the oscillation. The amplitude and the form of the oscillations clearly depend also

on the chosen switching-on profile. It should be noted that the constant contribution
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Figure 6.2: Renormalized two-point function using different continuous interaction
profiles λ(t) where λ(t − tin < 0) = 0 and λ(t − tin > 5/m) = 1 for k/m = 1 and
m/(2µ) = 1. The blue line corresponds to an interaction profile with a cubic behaviour
about time 0 and before the transition. The red line corresponds to a quadratic
switching-on.

that we obtain after suppressing the oscillations does not depend on the chosen profile

and is in agreement with the values of the amplitude found in the literature [84] in the

in-out approach.

It is interesting to test the profile dependence with other functions that do not

depend on the previous construction. The most natural function that simulates the

switching-on of an interaction is given by the arc-tangent shown in Figure 6.3.

-100 -50 0 50 100

0.0

0.2

0.4

0.6

0.8

1.0

m(t-tin)

λ

Figure 6.3: Switching-on profile constructed from the arc-tangent function with y = 0,
x = 1 (blue line) or x = 10 (red line). The coupling λ is normalized to 1.

Let’s define the following interaction profile

λ(t) =
λ

π

(π
2

+ atan(x−1(t− tin)− y)
)
, (6.9)
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where x is a parameter that quantify the width of the switching-on and y is a parameter

that identifies the jump at tin.

The result is shown in Figure 6.4 and is similar to the previous simulations, with

the difference that the tadpole seems to always depend on the initial time tin without a

clear suppression of the oscillations. This is not surprising, because λ(t)/λ is a function

that is 1 (or 0) only for positive (or negative) infinite times. This means, that for a

finite initial time tin, there is always a jump that is quantified by y. In fact

λ(tin)/λ =
1

2
+ atan(y). (6.10)
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Figure 6.4: Renormalized two-point function using the arc-tangent interaction profile
with k/m = 1 and m/(2µ) = 1, y = 0, x = 1 (blue line) or x = 10 (red line).

From the previous considerations, we conclude that the time-dependent periodic

features in the renormalized two-point function in Minkowski spacetime depend on

the chosen interaction profile and are therefore a consequence of the fact that in

the Schwinger and Keldysh formalism we are describing the physical situation of an

interacting time evolution from an initial time where we suppose the system to be on

the vacuum state of the free theory. The periodic features can be suppressed by taking

an adiabatic switching-on of the interaction where we observed a residual constant

contribution given by eq. (6.6).

Profile dependence of the Feynman tadpole in Minkowski space-

time

In this thesis we calculated the renormalization of the correlation functions in the closed-

time-path formalism, i.e. we calculated the radiative corrections to the correlation

function of the field component φ(1). The two-point function of the field φ(1) is called
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the Hadamard or Schwinger propagator and it is related to the Feynamn propagator

GF . It is interesting to investigate the profile dependence for the tadpole amplitude

obtained with Feynman propagators in order to have a direct comparison with the

results in the literature for the in-out approach.

The Feynman propagator can be defined from the Schwinger and advanced/retarded

propagators [134]

GF (x, y) = i 〈T{φ(x)φ(y)}〉 =
1

2
(GR +GA) + iF. (6.11)

We found that the difference between the radiative correction to the two-point

function computed in the Schwinger and Keldysh formalism and the loop correction

to the tadpole in the in-out approach is given by

〈T{φ(x, ta)φ(y, tb)}〉(1)
CTP = 〈T{φ(x, ta)φ(y, tb)}〉(1)

STD

+
λm2C

64π2w3
k

cos (wk(ta + tb − 2tin)) , (6.12)

where C is the renormalization freedom. The label CTP denotes the tadpole obtained in

the Schwinger and Keldysh formalism and STD denotes the traditional in-out approach

of quantum field theory.

We expect that with an adiabatic switching-on of the interaction the cosine function

is strongly suppressed and the two tadpoles obtained with different approaches coincide.

Indeed we found that using the profile construction described in (6.2), the amplitude

of the oscillations given by the cosine function is suppressed to zero. In this case there

is no residual constant contribution and we consistently recover the in-out result.

We tried to compute the analytic result using a linear switching-on function

f(x) = x. We found that the contribution of the external Feynman propagators gives

the standard result plus a periodic (non-covariant) contribution that becomes negligible

for a large transition time ∆t, as expected. The non-local contribution reads

− iCλ

64π2w4
k

[
sin (wk(ta + tb − 2tin))− sin (wk(ta + tb − 2(tin + ∆t)))

] 1

∆t
. (6.13)

We remark that in the previous examples the constant residual of the oscillations

after the adiabatic switching-on is exactly given by the midpoint of the oscillatory

functions. Indeed we found a constant contribution of 1/2 for the sin2 function and 0

for the cosine function.
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Profile-dependence of the tadpole in de-Sitter spacetime

We are going to study the profile dependence of the renormalized two-point function

in de-Sitter spacetime. As pointed-out in the introduction, here we do not expect only

the finite time contributions arising from the external propagators but also an explicit

time dependence originated from the background.

In the following we proceed with the same strategy used for a flat background.

First we will present our analytic results by changing the interaction profile using the

construction of eq. (6.2) for a linear auxiliary function f : x→ x. Unfortunately we

were not able to extract an analytic result with the full expression (5.22) and we could

only consider the limit where the external propagators are on scales |kτ | � 1. To

conclude we will show the full result obtained numerically with the full propagators.

We start by reminding the time dependence of the renormalized two-point correla-

tion function in de-Sitter spacetime (5.24), where we considered only the first orders

in |kτ | for the external propagators

λ

2

(
log

(
τ

τin

)
+

1

3
− τ 3

3τ 3
in

)
. (6.14)

Now, by replacing the coupling constant λ with the time-dependent interaction

profile λ(t) = λ g(t) with a linear switching-on function f : t→ t, after the transition

the following time dependence was found

1

6

[
4 + 3 log

( τ

∆τ

)

+
3
(
τin log

(
τin

τin+∆τ

)
+ ∆τ log

(
∆τ

τin+∆τ

))
∆τ

+
−τ 3(2τin + ∆τ)

2τ 2
in(τin + ∆τ)2

]
. (6.15)

This result considers only the smallest order in kτ for the external propagators. As it

can be noticed, the dependence on the initial time disappears for a large transition

∆τ � 1. The result is still time-dependent because of the manifest logarithmic time-

dependence. This is consistent with the idea that the logarithmic time dependence

arises from the background and is not a consequence of the finite initial time of the

theory.

By taking the limit ∆τ → 0 we recover the result obtained with the θ-profile.
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Indeed

1

6

[
4 + 3 log

( τ

∆τ

)
+

3
(
τin log

(
τin

τin+∆τ

)
+ ∆τ log

(
∆τ

τin+∆τ

))
∆τ

+
−τ 3(2τin + ∆τ)

2τ 2
in(τin + ∆τ)2

]

=
1

6

(
4− 3τin

1

τin

+ 3 log
( τ

∆τ

)
+ 3 log

(
∆τ

τin

)
+
−2τ 3τin

2τ 2
inτ

2
in

)
=

1

6

(
1 + 3 log

(
τ

τin

)
+
−τ 3

τ 3
in

)
. (6.16)

To conclude our discussion we show in Figure 6.5 the profile dependence of the

renormalized tadpole in de-Sitter spacetime considering the massless expression for

the external propagators (4.34).
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Figure 6.5: Interaction profile dependence of the renormalized tadpole diagram in
de-Sitter spacetime where λ(τ−τin < 0) = 0 and λ(τ−τin > 5/H) = 1 for Hτin = −40,
k/H = 1, ε = 1/(16π2) and H/µ = 1. The blue line corresponds to an interaction
profile with a quartic behaviour about time 0 and before the transition. The red line
corresponds to a quadratic switching-on.

The result for different profiles should be compared to Figure 5.5, where we

computed the two-point function with the usual θ-profile. We see that the amplitude

of the periodic features depends on the switching-on profile and is suppressed for large

transition time. As in Minkowski spacetime we observe a residual constant contribution

that does not depend on the switching-on of the interaction.

This concludes our analysis of the profile dependence of the two-point correlation

function for different backgrounds. We found that for different profiles the oscillatory

features that we found in Minkowski and de-Sitter spacetime depend on the chosen

profile and that the initial time dependence is suppressed for an adiabatic switching-on.

This is in agreement with the consideration that in Minkowski spacetime one should

recover the Poincaré symmetry with an adiabatic switching-on of the interaction.
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On the other hand, in de-Sitter spacetime we expect also contributions arising from

the time-dependent evolving background. This is indeed the case, we found that the

logarithmic divergence that is expected to be a contribution coming from the geometry

of the background is not suppressed with a different choice of the profile.

In the next section, we will approach the issue how to properly define the adiabatic

limit in order to get the constant contribution directly from the oscillations.

6.2 Proper definition of the adiabatic limit of the

tadpole

In the previous section we described the profile dependence of our results about the

renormalization of the two-point correlation function in Minkowski and quasi de-Sitter

spacetime. In Minkowski spacetime, we expect to recover the exact Poincaré covariance

in the limit t− tin →∞.

In eqs. (6.8) and (6.12) the time dependence of the tadpole propagator in Minkowski

spacetime was described. It is clear that one cannot directly take the adiabatic limit

t − tin → ∞ of these expressions because it is not well-defined. In other words, the

limits limt→∞ sin(t)2 and limt→∞ cos(t) do not exist.

We will try to overcome this issue by treating the adiabatic limit in the language

of distributions in time. Let’s consider the following time-integral that represents the

contribution coming from the external propagators∫ ∞
tin

dτ
(
−iGR(k, t, τ)

)
F (k, τ, t). (6.17)

As discussed before one cannot directly take the limit tin → −∞. This issue can

be approached by considering the previous expression as a distribution in D(R), i.e.∫ ∞
tin

dτ
(
−iGR(k, t, τ)

)
F (k, τ, t)fs(τ), (6.18)

where fs(τ) is a family of test-functions that depend on a continuous parameter s. In

this picture the adiabatic limit consists in the limit fs(t)→ 1. Let’s suppose that fs is

a function that satisfies this property for s→∞. The adiabatic limit becomes

lim
s→∞

∫ ∞
−∞

dτ
(
−iGR(k, t, τ)

)
F (k, τ, t)fs(τ). (6.19)

In order to be more quantitative, we consider the example where fs is given by the
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following family of functions (see Figure 6.6)

fs : τ → e
−τ2
s2 . (6.20)

-200 -100 0 100 200
0.0
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t

f s
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)

Figure 6.6: One-parameter family of test functions fs(t) = e
−t2
s2 for different parameters:

s = 10 (blue line), s = 50 (orange line), s = 100 (green line) and s = 1000 (red line).

In this case the limit of eq. (6.19) is well defined and does not depend on τ , as

expected. In Figures 6.7 and 6.8 we show the time-evolution of the tadpole amplitude

for large values of s and the continuous dependence of the amplitude on s for a

fixed time. In both cases we found that by increasing the parameter s, the amplitude

of eq. (6.18) tends to a constant value consistent with the results obtained in the

discussion of the profile dependence of the two-point function.
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Figure 6.7: Time-evolution of the tadpole amplitude (blue line) to show the constant
contribution (orange line) in the adiabatic limit. We fixed s = 105.

This concludes our discussion of the interaction profile and of the proper definition

of the adiabatic limit for the amplitudes of the two-point correlation function. By
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Figure 6.8: Tadpole amplitude (blue line) for different parameters s to show the
constant contribution (orange line) in the adiabatic limit. We fixed τ = 2.

approaching the limit of the external propagators in the language of distributions we

were able to define the adiabatic limit in a consistent way and to recover the constant

contributions found when we discussed the interaction switching-on profiles with a

large transition time. This discussion is needed in order to explain why we were not

recovering the Poincaré covariance in the limit where the interaction is always on. We

remark that in the next chapter we will discuss the physical situation where the system

is explicitly set to the Bunch-Davies vacuum at the beginning of inflation. We will

therefore use the Schwinger and Keldysh formalism without changing the interaction

profile and without taking the adiabatic limit, because this would change the physics

and would give a different description of the system.
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CHAPTER 7

COSMOLOGICAL APPLICATIONS OF

RENORMALIZATION IN DE-SITTER SPACETIME

In this chapter the results obtained in the renormalization of the two- and four-point

correlation functions in quasi de-Sitter spacetime are applied to cosmology in order to

study the physical importance of radiative corrections in the primordial universe. The

main goal is to estimate the effects of loop corrections to observable quantities such as

the power spectrum and the non-linearity parameter τNL for different models.

In Section 7.1 the classical dynamics of the inflationary models of interest is

introduced. In particular the details of monomial inflation with a quartic interaction

(Section 7.3) and the models inspired by hybrid inflation (Section 7.4) are discussed.

In Section 7.2 the primordial spectrum of the inflaton field is analyzed in the in-in

formalism in order to have a theoretical framework where the power spectrum can

be treated perturbatively. At the end of the chapter, in Section 7.5, the effects of the

time-dependent contributions to the trispectrum arising at tree-level are discussed.

In particular we give our predictions for the non-linearity parameter τNL which is an

important cosmological observable describing the non-Gaussian nature of the primordial

power spectrum.

7.1 Classical dynamics of the inflationary models

In this section the classical dynamics of different inflationary models is discussed and

the results obtained in Chapter 5 are directly applied in order to compute and estimate

the influence of radiative corrections to the power spectrum and trispectrum.

We first consider a simple model of a scalar field theory with monomial self-

interaction in curved spacetime with a canonical kinetic term and potential V (φ). The
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Lagrangian density reads

L[φ] =
√
−g
(

1

2
∂µφ∂

µφ− 1

2
m2φ2 − V (φ) +

ξ

2
R φ2

)
+ δL, (7.1)

where gµν is the metric describing the background with signature (+−−−), g = det(gµν)

is the determinant, and δL are the counter-terms

δL =
√
−g
(

1

2
δZ ∂µφ∂

µφ− 1

2
δm2 φ2 − δV (φ) +

δξ

2
R φ2

)
. (7.2)

In the following we suppose that the curvature coupling is vanishing at-tree-level,

i.e. we will neglect the term proportional to ξ R in the Lagrangian (7.1) supposing

that it does not affect the classical dynamics 1. Nevertheless in Section 5.1 we found

that a contribution δξ will be generated at one-loop level.

A period of slow-roll inflation is possible if the inflaton potential V (φ) fulfills the

slow-roll conditions [7]

ε =
M2

P

2

(
V ′

V

)2

� 1, |η| = M2
P

∣∣∣∣V ′′V
∣∣∣∣� 1,

where MP = 2.4 × 1018 GeV is the reduced Planck mass. During slow-roll the equation

of motion of the classical value of the field is simplified to

φ̈+ 3Hφ̇+ V ′(φ) ∼ 3Hφ̇+ V ′(φ) = 0, (7.3)

that implies

φ̇ = −V
′(φ)

3H
. (7.4)

The second FRW equation can also be simplified in the slow-roll regime and reads

H2 =
V (φ)

3M2
P

. (7.5)

The number of e-folds from the value of the classical field φ to the one at the end

of inflation φend is given by

N(φ) =

∫ tend

t

dt H(t) =

∫ φend

φ

dφ
dt

dφ
H2

(
1

H

)
=

∫ φ

φend

dφ
dt

dφ

(
V (φ)

3M2
P

)(
3φ̇

V ′(φ)

)
=

1

M2
P

∫ φ

φend

dϕ
V (ϕ)

V ′(ϕ)
, (7.6)

1This is not true for example for Higgs inflation [146].
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where in the last line we used the slow-roll equations (7.4) and (7.5).

In the standard scenario of inflation the quantum fluctuations of the inflaton field

δφ are responsible for the primordial curvature perturbations δR and they can be

directly related to late time observables as the temperature anisotropies in the cosmic

microwave background or the observed large scale structure of the universe.

In the slow roll approximation, the power spectrum of the curvature perturbations

could be expressed in terms of the inflaton potential V (φ) as [80]

PR(k) =
1

12π2M6
P

V 3

V ′2

∣∣∣∣
k=aH

, (7.7)

where the potential V (φ) and its first derivative V ′(φ) are evaluated at the horizon

exit 2, i.e. the scales k are set to k = a(t)H. One can connect the comoving scale k at

horizon exit and the corresponding value of the classical inflaton through the number

of e-folds using eq. (7.6) to get

log

(
kend

k

)
= log

(
a(tend)H(tend)

a(tk)H(tk)

)
∼ N(φ(k)) , (7.8)

where kend is the comoving scale leaving the horizon at the end of slow-roll inflation.

We assumed H(tend) ∼ H(tk). From the previous relations one can express the spectral

index ns as a function of the slow-roll parameters at first-order to be

ns(k)− 1 =
dPR
d ln k

= 2η(φ(k))− 6ε(φ(k)). (7.9)

Chaotic inflationary scenario

The simplest class of models that realizes slow-roll inflation is given by the class of

large field models where the scalar field is typically displaced from the minimum of

the potential by a quantity of the order of the Planck mass. In the following we will

discuss one of the most studied inflationary models consisting of a scalar field with

monomial quartic self-interaction

V (φ) =
λ

4!
φ4 . (7.10)

In the chaotic scenario the universe is assumed to emerge from a quantum gravi-

tational energy density comparable to the Planck density. Therefore, because of the

large friction term in the Friedmann equations, the field is slowly rolling down the

potential. Inflation ends when the field is of the order of the Planck scale. This can be

2The curvature perturbation R freezes (Ṙk ≈ 0) once the mode crosses the horizon.
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seen by explicitly expressing the slow-roll parameters in terms of the classical value of

the inflaton field φ

ε =
M2

P

2

(
λ
6
φ3

λ
24
φ4

)2

=
M2

P

2

16

φ2
=

8M2
P

φ2
� 1, (7.11)

η = M2
P

(
λ
2
φ2

λ
24
φ4

)
=

12M2
P

φ2
=

3

2
ε� 1, (7.12)

giving directly

ns(k)− 1 = 2η − 6ε = −3ε = −24M2
P

φ2
= − 3

N(k)
, (7.13)

where the number of e-folds N(k) was estimated from eq. (7.6)

N(k) =
1

M2
P

∫ φ

dϕ

(
λ
24
ϕ4

λ
6
ϕ3

)
=

1

8M2
P

φ2. (7.14)

Because the only parameter in the model is the self-coupling λ, this will directly

fix the prediction of the normalization of the power spectrum. In fact

PR(k∗) =
1

12π2M6
P

V 3

V ′2

∣∣∣∣
k∗=aH

=
1

12π2M6
P

((
λ
24
φ4
∗
)3(

λ
6
φ3
∗
)2

)

=
1

12π2M6
P

λφ6
∗

384

=
λ φ6

∗
4608π2M6

P

=
λN3
∗

9π2
, (7.15)

where N∗ = 3/(1− ns(k∗)) and k∗ is the pivot scale giving

λ =

(
9π2

N3
∗

)
PR(k∗) =

π2

3
(1− ns(k∗))3 PR(k∗) = 2.97× 10−13 , (7.16)

for the observed values of PR(k∗) = As = (2.20± 0.08)× 10−9 and ns(k∗) = 0.9655±
0.0062 [6]. In this class of models the normalization of the power spectrum imposes

very small couplings, i.e. very flat inflaton potential in order to be able to generate

the observable fluctuations. It should be noted that the λφ4 model is excluded by the

current observation because it lies outside the 99.7% confidence level to be consistent

with the latest Planck data [147]. In fact the scalar-to tensor ratio r = 16/N is too
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large with respect to the predicted value. Nevertheless it is interesting to study the

properties of the radiative corrections to this simple case since it is one of the most

studied models of inflation.

The large suppression of the coupling that we found in the chaotic scenario will also

kill all the effects of the one-loop radiative contributions because, as we have shown in

Section 5.1, the first order corrections are proportional to the coupling λ.

Models inspired by the hybrid scenario

In order to enhance the radiative effects on the classical dynamics of the inflaton field,

the class of models that include more than one scalar field is considered. Indeed, in

the case of the two-scalar fields hybrid model that we will discuss in the following,

much larger couplings are allowed. The simplest version of this model is given by the

effective potential

V (φ, σ) =
m2

2
φ2 +

1

4g
(M2 − gσ2)2 + λ2

hφ
2σ2 + ∆VCW (φ), (7.17)

where ∆VCW (φ) is the one-loop correction to the effective potential à la Coleman-

Weinberg [148]

∆VCW (φ) =
∑
i

(−1)F
m4
i,eff(φ)

64π2

(
ln

(
m2
i,eff(φ)

µ2

)
− 3

2

)
, (7.18)

where (−1)F gives a minus sign for fermionic fields and a positive sign for bosonic fields,

the sum runs over all the fields of the theory and µ is an arbitrary renormalization

energy scale.

For the considered potential, in the case of σ = 0, its effective mass is given by

mσ = 2λ2
hφ

2 −M2 and the effective mass of the inflaton field φ is m2. Therefore we

have

∆VCW (φ) =
(2λ2

hφ
2 −M2)2

64π2

(
ln

(
2λ2

hφ
2 −M2

µ2

)
− 3

2

)
+

m4

64π2

(
ln

(
m2

µ2

)
− 3

2

)
.

(7.19)

The last term is constant and does not contribute to the dynamics as long as the field

σ is vanishing.
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If the inflaton mass dominates the slope of the potential one has

ε =
M2

P

2

(
m2φ
m2

2
φ2

)2

=
M2

P

2

4

φ2
=

2M2
P

φ2
� 1, (7.20)

η = M2
P

(
m2

m2

2
φ2

)
=

2M2
P

φ2
= ε� 1. (7.21)

The comoving scale k at horizon exit is related to the corresponding value of the

classical inflaton field by

ns(k)− 1 = 2η − 6ε = −4ε = − 8M2
P

φ2(k)
= − 2

N(k)
, (7.22)

where we used the number of e-folds given by

N(k) =
1

M2
P

∫ φ

dϕ

(
m2

2
ϕ2

m2ϕ

)
=

1

4M2
P

φ2. (7.23)

The normalization of the power spectrum reads

PR(k∗) =
1

12π2M6
P

V 3

V ′2

∣∣∣∣
k∗=aH

=
1

12π2M6
P


(
m2

2
φ2
∗

)3

m4φ2
∗


=

1

12π2M6
P

m2φ4
∗

8

=
m2 φ4

∗
96π2M6

P

=
m2N2

∗
6π2M2

P

(7.24)

and imposes the constraint

m2

M2
P

=

(
6π2

N2
∗

)
PR(k∗) =

3π2

2
(1− ns(k∗))2 PR(k∗) = 0.38× 10−10 , (7.25)

giving a value for the inflaton mass of m = 6.22× 10−6MP that has to be compared to

H2 =
1

3M2
P

m2

2
φ2
∗ =

2

3
N(k∗)m

2 > m2. (7.26)

In the case of a vanishing inflaton mass m ∼ 0, the slope can be provided by the

radiative corrections related to the coupling λ2
h. By comparing the first derivative of
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the potential, the one-loop corrections dominate for

λ4
hφ

3

4π2
> m2φ ⇔ λ4

hφ
2 > 4m2π2, (7.27)

which means a quartic coupling larger than

λ2
h ≥ 2π

m

φ
. (7.28)

The models of inflation where quantum corrections dominate the inflationary poten-

tial have been studied especially in supersymmetry [149, 150] and supergravity [151].

In these cases one can obtain a much larger value for the quartic coupling, of the order

of λh ∼ 0.001. We will use this as a maximal value in order to enhance the radiative

effects.

Motivated by the large value of the coupling, we will discuss the dynamics of a

hybrid model inspired by supersymmetry described by the following approximated

scalar potential [151]

V = λ2
h|M2

G − Σ2|2 + 4λ2
h|Φ|2|Σ|2 +M4

S + ∆VCW (7.29)

= λ2
hM

4
G +

λ4
hM

4
G

8π2

[
ln

(
2λ2

hφ
2

µ2

)
+O

(
M4

G

φ4

)]
, (7.30)

where Φ,Σ are complex scalar fields, MS is the supersymmetry breaking scale and

1/
√

2φ denotes the real part of Φ. In the last line we assumed Σ = 0 in order to

obtain the potential during inflation. The slow-roll parameters can be derived from

the potential V in eq. (7.30)

ε =
M2

P

2

 λ4hM
4
G

8π2
2
φ

λ2
hM

4
G

2

=
λ4
h

32π4

M2
P

φ2
,

η = M2
P

−λ4hM
4
G

8π2
2
φ2

λ2
hM

4
G

 = − λ2
h

4π2

M2
P

φ2
.

They are both small for small couplings λh and large value of φ. As we did for the

previous models we can express the spectral index, the number of e-folds and the

normalization of the power spectrum in terms of the parameters of the model. The

spectral index reads

ns(φ)− 1 = 2η = − λ2
h

2π2

M2
P

φ2
= −

(
N +

2π2

λ2
h

M2
G

M2
P

)−1

, (7.31)
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where we used that the number of e-folds is given by

N(k) =
1

M2
P

∫ φ

φc

dϕ

 λ2
hM

4
G

λ4hM
4
G

8π2
2
ϕ

 =
2π2

λ2
h

(
φ2

M2
P

− φ2
c

M2
P

)
. (7.32)

In the region of large λh, which is the region where the loop-corrections are enhanced,

the normalization of the power spectrum fixes the scale MG

PR(k∗) =
1

12π2M6
P

V 3

V ′2

∣∣∣∣
k∗=aH

=
1

12π2M6
P

 (λ2
hM

4
G)

3(
λ4hM

4
G

8π2
2
φ∗

)2


=

4π2M4
G

3λ2
hM

4
P

φ2
∗

M2
P

=
4π2M4

G

3λ2
hM

4
P

(
λ2
hN∗
2π2

+
M2

G

M2
P

)
=

2N∗M
4
G

3M4
P

+
4π2M6

G

3λ2
hM

6
P

, (7.33)

where the second term is negligible. Taking N∗ = 1/(1− ns(k∗)) the scale MG is fixed

to
MG

MP

=

(
3

2
(1− ns(k∗)) PR(k∗)

)1/4

= 3.26× 10−3 . (7.34)

This value is comparable to the grand unification scale. We remark that for this model

the spectral index (7.31) and the power spectrum normalization (7.33) do not depend

on the coupling λh.

By requiring that the slow-roll conditions are satisfied up to the critical point

φc = MG, from the slow-roll condition |η| < 0.1 we can estimate the maximally allowed

value of the coupling via

|η| = λ2
h

4π2

M2
P

M2
G

< 0.1, (7.35)

which means

λh < 2π
MG√
10 MP

= 6.8× 10−3 . (7.36)

To conclude the discussion about two-scalar fields models inspired by hybrid

inflation we discuss the example of a massive spectator field. The potential is similar

to the hybrid model in eq. (7.17) but without any symmetry breaking in the spectator

direction. By requiring that the classical dynamics is determined by the m2φ2 term

and not affected by the spectator field σ, the spectator’s mass mσ has been found to be
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smaller than mσ < 5× 10−2MP and the coupling constrained to be λ2
h < 10−5 [152].

We remark that in this case the quartic coupling is smaller than in the hybrid case,

but still larger than in the chaotic scenario. On the other hand the smallness of λh is

compensated by the value of mσ which can be larger.

In the last part of this chapter the radiative corrections to the power spectrum will

be analyzed in the language of the Schwinger and Keldysh formalism. In Section 7.3

the radiative corrections to the primordial spectrum for the chaotic model are analyzed.

Because of the smallness of the self-coupling, which is fixed by the normalization of

the power spectrum we expect that the corrections are too small to be observed. In

Section 7.4 we will investigate the time dependence of the one-loop corrections in the

non-supersymmetric and supersymmetric hybrid model, and the spectator field model

where we expect an enhancement of the radiative effect because of the larger coupling.

7.2 Radiative corrections to the primordial power

spectrum

The power spectrum of primordial curvature perturbations is an important theoretical

prediction that can be compared to cosmological observations. Because of its dependence

on theoretical models, it becomes a powerful discriminator for distinguishing among

different inflationary models. For example, from the primordial power spectrum one

can predict the spectral index that is a measurement of the shape of the inflaton

potential. This quantity can be directly compared to the observations. Unfortunately,

for the investigated models, the loop corrections did not give any significant deviation

to the tree-level prediction.

Nevertheless in Chapter 5 we found that the two-point correlation function gets

radiative corrections with time-dependent oscillatory features. We expect to see the

imprint of these oscillations in the one-loop corrections to the power spectrum. Periodic

features are also predicted at tree-level for extended models [6, 19] or for non-standard

initial states [153].

In the following, the power spectrum is defined in the theoretical framework of

the Schwinger and Keldysh formalism. This will set the physical scenario where one

can follow the time-evolution of observables including quantum effects arising from

perturbation theory.

For a single scalar field inflationary model the power spectrum of the primordial

fluctuations is directly connected to the two-point correlation function of the inflaton

fluctuations. Let δφ(t, x) be the quantum fluctuations of the inflaton field φ(t). The

Fourier transform of the two-point correlation function of the inflaton fluctuations



102 Cosmological applications of renormalization in de-Sitter spacetime

defines the power spectrum Pδφ in the following way

(2π)3δ(3)(k + k′)Pδφ(k) = 〈δφkδφk′〉 , (7.37)

where δφk are the Fourier modes. In the language of the closed-time-path formalism

the power spectrum is given by the time-evolution from an initial state where we

assume the system to be in the Bunch-Davies vacuum ρBD

Pδφ(k) = Tr
{
ρBDTC

[
|δφk|2 e−i

∫∞
tin

dτ[Ĥ+
I (τ)−Ĥ−I (τ)]

]}∣∣∣
k=aH

, (7.38)

where the horizon exit condition on time k = a(t)H(t) implies that the spectrum is

dependent only on the momentum variable k.

The in-in setup has the advantage that even if the Poincaré symmetry of the

system is broken because of the time dependence of the background, one can still

compute the radiative corrections. The perturbative expansion of the power spectrum

has the following diagrammatic representation

Pδφ(k) =

 + + . . .

 .

What is typically extracted from data is the power spectrum of the curvature

fluctuations that for single scalar field models has a simple relation to the power

spectrum of the inflaton fluctuations

PR(k) =
k3

4π2

(
H2

φ̇2

)
Pδφ(k) =

k3

4π2

1

2ε M2
P

Pδφ(k). (7.39)

where in the last equality the slow roll approximation is used and is equivalent to

eq. (7.7). Because the power spectrum is evaluated at the horizon crossing, one expects

to see the imprint of the early oscillations also in the primordial spectrum. We note

that we assume this equality to be valid also for loop corrections, i.e.

PR(k) =
k3

4π2

1

2ε M2
P

(
Ptree
δφ (k) + P loop

δφ (k) + . . .
)
. (7.40)

In principle the one-loop corrections for the scalar potential in eq. (7.18) should be

included, but for simple monomial potentials they can be neglected [30].

In the following sections we will discuss the imprint in the power spectrum of the

time-dependent oscillations that we found in the radiative corrections to the two-point
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function. The hope is that in some regime and for some particular inflationary models

these effects become important and can become observable. The power spectrum

becomes an interesting tool in order to test also the quantum nature of the primordial

physics.

7.3 One-loop corrections to the power spectrum

with a monomial interaction

In this section the one-loop corrections to the primordial power spectrum of the inflaton

field is computed. The classical dynamics of the inflationary epoch was introduced in

Section 7.1 and the radiative corrections to the power spectrum in Section 7.2. We will

now apply the closed-time-path formalism in order to include the radiative corrections

to the two-point correlation function computed in Chapter 5.

Because the correlation function is related to the primordial spectrum we expect

to see the imprint of the early oscillations that arise from the initial conditions also

in the power spectrum. The radiative corrections to PR can be included using the

perturbative expansion in eq. (7.38). As we discussed previously the correction is

proportional to the coupling constant λ, which is the only parameter of the theory

and it is fixed to be very small from the spectrum normalization in eq. (7.16).

In Figure 7.1 we show our results for the one-loop correction to the power spectrum

for different initial times where the loop contribution P loop
R (k) is amplified by a factor

1.5× 1012 in order to be visible in the plot. Here the IR-cutoff is taken to the order

of the slow-roll parameters 2ε ∼ 2η = 3ε. For a quartic potential they are of order of

O(0.1) and the effects of the infrared divergence are limited. In the literature other

prescriptions found larger effects that could become visible for a sufficiently long

inflationary phase. For example in [154] the infrared cutoff is the Hubble scale at the

beginning of inflation and the IR correction depends on the duration of the inflationary

phase [155]. For a long inflationary period, the oscillations are damped out and only

the constant term contributes to the primordial spectrum. Since the main topic of

this thesis is the study of the early oscillations, we will use the conservative choice of

η as the IR cutoff. It should be noted that the periodic behavior that we found at

one-loop is different from the oscillations found for models that predict a feature-full

power spectrum at tree-level (see [19] for a review of different models).

The power spectrum is plotted in a range of scales that are of physical interest today.

We see that the largest effects are realized for large scales (small k). Unfortunately the

spectral oscillations are suppressed for smaller scales. We remark that the one-loop

corrections to the two-point function in eq. (5.22) describes the oscillations about a
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Figure 7.1: Relative difference and power spectrum for a scalar field theory with
monomial interaction with λ = 2.97 × 10−13. The renormalization scale was set to
µ = 1016 GeV and the initial times to τin = −1/k∗ exp(Ntot − N∗) with Ntot = 62,
k∗ = 0.05 Mpc−1 and N∗ = 57.5 (blue line) or N∗ = 59 (red line). In the right panel
the corrections to the tree-level are amplified by a factor 1.5× 1012.

constant value independent from the initial time. This constant contribution gives a

tiny shift in the primordial spectrum and can be reabsorbed into a redefinition of the

coupling constant λ giving an overall rescaling of the spectrum normalization. The

shift is visible in the Figure 7.1 because it is enhanced by an artificial amplification

factor of 1.5× 1012.

As expected the correction to the power spectrum is found to be very small and the

order of magnitude is fixed by the smallness of the coupling λ. We found a departure

from the tree-level power spectrum given by

|∆PR(k)|quartic :=

∣∣∣∣∣P loop
R (k)

Ptree
R (k)

∣∣∣∣∣
quartic

≤ 0.5× 10−13. (7.41)

The correction is compatible with the current Planck observations [6] and it is too

small to be observed even in future experiments. In the next section we consider a

class of inflationary models inspired by hybrid inflation where the one-loop effects are

enhanced because of the larger quartic coupling.

7.4 One-loop corrections to the power spectrum in

hybrid inflation

In order to have a richer phenomenology the case of the hybrid inflationary model

describing an inflaton field φ and a hybrid field σ with the effective potential (7.17)

is discussed. In this model one has to consider the loop corrections from the massive

scalar field during inflation.
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The amputated tadpole is computed both using the WKB propagators and the

hypergeometric function, in order to get the general solution renormalized with the

counter-term found in the WKB regime. We found that the renormalized ampli-

tude (5.67) has a quadratic dependence on the mass of the heavy field. This would

enhance the effect of many orders of magnitude with respect to the chaotic scenario.

In [29] they found that the IR modes are suppressed by negative powers of a(τ). This

does not apply in the UV regime where the scale factor suppression of the WKB

propagator is compensated by the scale factor dependence of the comoving cutoff [32]

Λa(τ). The techniques and the renormalization strategy is developed in details in

Section 5.3.

In the following we discuss the one-loop contributions to the primordial spectrum

for three models: the non-supersymmetric and supersymmetric hybrid inflation and

quadratic inflation with a spectator field that does not influence the inflationary

classical dynamics.

Non-supersymmetric hybrid model

The hybrid model described by the potential given in eq. (7.17) is the first example of

radiative corrections to the primordial spectrum from a massive field. The classical

dynamics was discussed in Section 7.1. In this case the mass that appears in the

amputated amplitude in eq. (5.67) is the mass of the heavy field m2
σ = 2λ2

hφ
2 −M2. If

the mass term dominates the inflaton dynamics one has from eq. (7.22)

m2
σ ' 2λ2

hφ
2 ' 8λ2

hM
2
PN(k), (7.42)

where N(k) is the e-folds number from the time where the scale k leaves the horizon

to the end of inflation. We remark that we have a slow adiabatic variation in the mass.

Indeed
ẇk
w2
k

∼ ṁσ

m2
σ

=
1

mσ

Ṅ

2N
=

H

2 mσ N
� 1. (7.43)

The renormalized WKB amputated amplitude (5.67) becomes

[Aamp]ren =
−2iλ4

h

π2

N(k)M2
P

H4τ 4

(
1 + log

(
λ2
hM

2
PN(k)

µ2

))
. (7.44)

The one-loop corrections to the power spectrum are given by

P loop
R (k) ≈ k3

4π2

(
λ4
h

π2

N(k)

ε

)
(−if(k, τ, τin)), (7.45)
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where f is an oscillatory function that includes all the oscillatory contributions arising

from the external propagators, as given in eq. (5.22). The radiative corrections are

compared to the tree-level contribution given by

Ptree
R (k) =

H2

8π2εM2
P

, (7.46)

giving a relative difference of

P loop
R (k)

Ptree
R (k)

=
2λ4

hN(k)

π2

M2
P

H2
(−ik3f(k, τ, τin)). (7.47)

We define the quantity C(k) in order to take into account all the time dependence

of the amputated amplitude, i.e. the contribution of the external propagators plus the

factor a(τ)4 of the vertex, then

C(k) =
∣∣−ik3f(k, τ, τin)

∣∣ . (7.48)

In Figure 7.2 we show the oscillatory behavior of C(k). Note that for a very long

inflationary phase, i.e. a large number of e-folds N(k), the oscillations are suppressed

and the factor C(k) simplifies to a constant of order ∼ 0.2.
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Figure 7.2: Oscillatory contribution arising from the external propagators C(k) =
|−ik3f(k,−1/k, τin)|. The initial time is set to τin = −1/k∗ exp(Ntot−N∗) with Ntot =
62, k∗ = 0.05 Mpc−1, and N∗ = 57.5.

In order to have a correction of 10−2 to the tree-level power spectrum, i.e.∣∣∣∣∣P loop
R (k)

Ptree
R (k)

∣∣∣∣∣ =
2λ4

hN(k)

π2

M2
P

H2
C(k) < 10−2, (7.49)
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we need a coupling constant of

λ2
h ∼

π

10

H

MP

√
2N(k)C(k)

. (7.50)

Moreover, the Hubble constant can be estimated in the slow-roll approximation from

eq. (7.22)

H2 =
1

3M2
P

m2φ2

2
=

2

3
m2N(k). (7.51)

In order to remain in the mass-dominated regime the coupling constant is constrained

to be small. From eq. (7.28) one finds

λ2
h < 2π

m

2MP

√
N(k)

=
π√
N(k)

m

MP

, (7.52)

and the maximal loop correction is estimated to be∣∣∣∣∣P loop
R (k)

Ptree
R (k)

∣∣∣∣∣ ≈ 2N(k)

π2

M2
P

H2
C(k)

(
λ4
h

m2

)
m2

=
2N(k)

π2

M2
P

H2
C(k)

(
π2

N(k)

1

M2
P

)(
3H2

2N(k)

)
<

3 C(k)

N(k)
∼ 10−2. (7.53)

We see that for the non-supersymmetric hybrid model, larger corrections cannot be

reached because they are suppressed by the oscillatory function C(k). Moreover, the

e-folds number dependence N(k) of the squared mass (7.42) is compensated by the

contribution from the coupling λh giving an overall factor 1/N(k). A larger number of

e-folds would suppress both, the constant correction and the oscillations.

The power spectrum is shown in Figure 7.3 and was computed using the full massive

propagators. The radiative corrections are amplified by a factor 50 in order to be visible

in the plot. The oscillations appear when the contribution of the external propagators

is included. As discussed in Chapter 6, the oscillations are a consequence of the initial

state that was set to the Bunch-Davies vacuum at the beginning of inflation. The effect

is much larger compared to the one estimated in the chaotic scenario.

This is expected for hybrid models since here the coupling is many order of

magnitude larger with respect to monomial inflation. Moreover the correction here is

proportional to the effective squared mass and we therefore expect contributions also
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Figure 7.3: Relative difference and renormalized power spectrum for hybrid inflation
obtained with the full propagator with λh = ×10−3 and µ of the order of mσ, ∗/2. The
initial times are set to τin = −1/k∗ exp(Ntot − N∗) with Ntot = 62, k∗ = 0.05 Mpc−1

and N∗ = 57.5 (blue line) or N∗ = 59 (red line). In the right panel the corrections to
the tree-level are amplified by a factor 50

from the heavy field. In the most optimistic case we found a relative difference of

|∆PR(k)|hybrid =

∣∣∣∣∣P loop
R (k)

Ptree
R (k)

∣∣∣∣∣
hybrid

≤ 3× 10−3, (7.54)

which is still too small to be seen in the current observations and also in the future.

Supersymmetric hybrid model

In this subsection the radiative corrections are studied for the model that gave the

most optimistic scenario, i.e. the hybrid model inspired by the supersymmetric theory

with the scalar potential given in eq. (7.30), where the coupling determines the slope of

the inflaton potential due to the one-loop Coleman-Weinberg potential. As pointed-out

in the discussion of the classical dynamics in Section 7.1, here an inflationary phase is

possible for values of λh of the order of 10−3.

From eq. (7.30) the mass of the scalar component of the superfield Σ and the

Hubble scale can be esimated as

m2
Σ = 2λ2

h(φ
2 −M2

G), 3H2 ≈ V

M2
P

= λ2
h

M4
G

M2
P

. (7.55)
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Therefore we obtain

m2
Σ

H2
≈ 2λ2

h(φ
2 −M2

G)

(
3M2

P

λ2
hM

4
G

)
=

(
λ4
hM

2
PN

π2

)(
3M2

P

λ2
hM

4
G

)
=

3λ2
hN M4

P

π2 M4
G

∼ 1.35× 107 . (7.56)

The one-loop contribution is enhanced with respect to the quartic monomial inflation

by a factor of 107 due to the hybrid field’s mass.

The power spectrum is shown in Figure 7.4. It was computed numerically with

the full propagators with the Bunch-Davies vacuum set at the beginning of inflation.

Moreover, because the massless de-Sitter counter-term in eq. (5.20) has a quadratic

dependence on H and the WKB counterterm in eq. (5.66) has a quadratic dependence

on the mass, the effects of the former are negligible. The oscillatory features in the

power spectrum emerge after the inclusion of the external propagators.
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Figure 7.4: Relative difference and renormalized power spectrum for the hybrid su-
persymmetric model obtained with the full propagator with λh = 3 × 10−3 and µ
of the order of 3λhMG. The initial times are set to τin = −1/k∗ exp(Ntot −N∗) with
Ntot = 62, k∗ = 0.05 Mpc−1 and N∗ = 57.5 (blue line) or N∗ = 59 (red line).

In this case the radiative effects on the power spectrum are visible without any

amplification. Indeed, the supersymmetric model has the largest coupling λh that with

the heaviness of the hybrid field gave us the most relevant scenario to see the periodic

features in the primordial spectrum. In the most optimistic case we found a relative

difference of

|∆PR(k)|hybrid, S =

∣∣∣∣∣P loop
R (k)

Ptree
R (k)

∣∣∣∣∣
hybrid, S

≤ 0.7× 10−1, (7.57)

that is still too small to be detected with the current sensitivities of the today’s

instruments.
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An analytic estimate of the largest possible effect can be obtained from the spectrum

normalization. For the most optimistic value of the coupling constant in eq. (7.36) the

relative difference is estimated to be of order O(1)∣∣∣∣∣P loop
R (k)

Ptree
R (k)

∣∣∣∣∣ =
λ2
h

4π2

m2
Σ

H2
C(k) =

1

4π2

(
3N M4

P

π2 M4
G

)
λ4
hC(k)

<
1

4π2

(
3N M4

P

π2 M4
G

)(
16π4 M4

G

100M4
P

)
C(k)

= 0.12N(k)C(k) ∼ 1, (7.58)

giving an interesting range for large contributions. We remark that in this case the

relative difference is proportional to the number of e-folds N(k) because there is no

compensation from the coupling λh. Therefore a larger number of e-folds would increase

the constant effect but suppress more the oscillations as shown in Figure 7.2.

It should be noted that here we are considering only the loop contributions of the

hybrid scalar field, while in the full supersymmetric model also the corresponding

fermionic fields have to be considered [156] and they would give a negative contribution

that will suppress the effect because of the cancellation of the quadratic divergence 3.

The fermion propagator in de-Sitter spacetime [157] is very similar to the scalar

propagator given in terms of the hypergeometric function. We leave the explicit

calculations for future works.

Spectator field model

To conclude our analysis about the radiative corrections to the primordial spectrum

we present our results for the spectator field model. The renormalized amputated

amplitude is given by eq. (5.67) where the mass m is simply given by the spectator’s

mass mσ. The one-loop corrections to the power spectrum are given by

P loop
R (k) ≈ k3

4π2

(
λ2
hm

2
σ

8π2εM2
P

)(
1 + log

(
m2
σ

4µ2

))
(−if(k, τ, τin)). (7.59)

The classical dynamics was discussed in Section 7.1 where the largest effects are

given for a spectator’s mass of mσ ∼ 10−2MP and the coupling constant λ2
h ∼ 10−6. In

these cases we estimated a maximal correction of∣∣∣∣∣P loop
R (k)

Ptree
R (k)

∣∣∣∣∣ =
3λ2

h

8π2

m2
σ

m2

C(k)

N(k)
< 0.4× 10−3, (7.60)

3The fermionic contribution is exactly canceling the quadratic divergence in the loop. A contribution
proportional to difference between the scalar and fermion masses should survive, see [151].
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where Ptree
R is given in (7.46) and the Hubble constant is estimated from (7.51). The

expression is similar to the one for chaotic inflation with the enhancement due to the

larger mass and coupling. On the other hand it is suppressed by the number of e-folds,

giving a smaller contribution compared to the discussed hybrid models.

The power spectrum is shown in Figure 7.5 where the loop-correction was amplified

by a factor 100. The loop-correction was computed numerically with the full propagators

as in the previous cases. The oscillatory features are smaller compared to the hybrid

models as predicted in the estimate. With the discussed parameter choice we found a

relative difference of

|∆PR(k)|spect =

∣∣∣∣∣P loop
R (k)

Ptree
R (k)

∣∣∣∣∣
spect

≤ 4× 10−4. (7.61)
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Figure 7.5: Relative difference and renormalized power spectrum for the spectator field
model obtained with the full propagator with λh = 10−3, mσ = 10−2MP , and µ of the
order of mσ/2. The initial times are set to τin = −1/k∗ exp(Ntot −N∗) with Ntot = 62,
k∗ = 0.05 Mpc−1 and N∗ = 57.5 (blue line) or N∗ = 59 (red line). In the right panel
the corrections to the tree-level are amplified by a factor 102

In this section the physical impact of radiative corrections to the power spectrum

was presented. In particular the massless and massive two-point correlation function in

de-Sitter spacetime derived in Section 5.1 and 5.3 are applied to simple models as the

chaotic scenario and the hybrid models introduced in Section 7.1. Because the one-loop

corrections are proportional to λ, the effects in the chaotic scenario of a monomial

quartic interaction are suppressed by a factor of the order of 10−13. In the case of

hybrid inflation the largest effect is given by the supersymmetric model given by the

potential (7.29) where the corrections are of the order of ∼ 0.1. Unfortunately, with

the current instrument sensitivities the effects are not enough to be detected. In all

examples the loop-corrections gave a tiny shift in normalization that can be reabsorbed

in the definition of λ. The inclusion of the external propagators is responsible for the
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features in the power spectrum. Their origin was discussed in Chapter 6. Note that

they had no impact in the overall normalization and on the spectral index.

7.5 The non-linearity parameter τNL

This section is devoted to the discussion of the physical consequences of loop corrections

to the trispectrum in the Schwinger and Keldysh formalism. We will present our

prediction of the cosmological parameter τNL that is a good indicator for potential

non-Gaussian features in the primordial spectrum. The τNL parameter is of particular

interest because it can be estimated from CMB measurements [158]. Unfortunately the

actual constraints are very weak and there is no clear indication of periodic features in

the trispectrum. On the other hand they are not excluded.

The connected trispectrum was defined in eq. (5.25) and is the first non-zero higher

order correlation function on a scalar field theory with quartic interaction term. The

bispectrum and all the higher odd correlation functions are identically zero at first

order because our system is invariant under the symmetry φ → −φ. A model with

precise Gaussianity predicts TR = 0 at tree-level. Departures from exact Gaussianity

can be described by introducing the dimensionless cosmological parameter τNL [42]

TR(~k1, ~k2, ~k3, ~k4) =
1

2
τNL

[(
2π2

k1 k2 k14

)3

PR(k1)PR(k2)PR(k14) + 23 permutations

]
,

(7.62)

where ~kij = ~ki + ~kj and
∑

i
~ki = 0.

The non-linearity parameter τNL is an observable quantity that depends on the infla-

tionary model. Therefore it could be used to disentangling among different inflationary

scenarios. From eqs. (5.25) and (7.62) we have

τNL =
1

2 ε2M4
P

1

(2π2)3

〈δφk1δφk2δφk3δφk4〉
′
c

PR(k1)PR(k2)PR(k14)

k31k
3
2k

3
14

+ 23 permutations
, (7.63)

where the prime means that the overall δ-function in eq. (5.25) is factorized out. All

the external momenta ki are on super-Hubble scales, i.e. min(ki)τ = −1.

In Section 5.2 we analyzed the time dependence of the tree-level contribution

and of the radiative one-loop corrections to the four-point correlation function. In

Figure 5.9 and in eq. (5.29) we presented the tree-level contribution for a massive scalar

field with quartic interaction term. The one-loop corrections are shown in Figure 5.7.

Unfortunately they are suppressed by the overall factor λ2 and they can be neglected

when compared to the tree-level result.
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In the following we will consider the effects of the tree-level contribution to the

four-point function on τNL for an equilateral configuration 4. As already discussed

the oscillatory features arise because we set the Bunch-Davies vacuum state at the

beginning of inflation. We expect to see the imprint of these spectral effects also on

the non-linearity parameter τNL.

In Figure 7.6 the non-linearity parameter is plotted for the equilateral configuration

for the maximal case of cos θ1i = −1/3 for all i. We found a function that is strongly

oscillating around the value of 4× 10−7. This value is too small to be observed in the

current Planck observations that measure a value of glocalNL = (−9± 7.7)× 104, where

τNL ∼ 18
25
glocalNL . Because of the weak constraints on τNL due to the large error bars, the

present observations do not exclude our prediction.
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Figure 7.6: Non-linearity parameter |τNL| calculated from the contribution T1 +T2 for a
λφ4-theory with λ = 2.97× 10−13. The initial time is set to τin = −1/k∗ exp(Ntot−N∗)
with Ntot = 62 and N∗ = 57.5.

Massive one-loop

In Section 5.2 we did not calculate the perturbative contributions to the four-point

functions from massive fields in de-Sitter spacetime. The main reason is that the

numerical calculations involving the hypergeometric function were already very involved

for the renormalization of the two-point function where only one momentum integral

had to be performed. In principle one could use the WKB propagator (4.46) as for the

massive two-point function. However, in this case there are two distinct virtual times

for the internal propagators and the full WKB propagator has to be used, making

the calculations more difficult. The finite time effects of the tree-level and one-loop

4By denoting θ1i the angle between ~k1 and ~ki, the maximal effect is obtained for cos θ1i = −1/3
for all i [42].
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radiative corrections from a massive field for a de-Sitter background is left for a future

work. Before concluding, we give a rough estimate of the massive contribution to the

four-point function.

In the case of hybrid inflation we do not have a tree-level contribution because

of the absence of the self-coupling in the theory that we neglected in our hybrid

models. Therefore the first dominant contribution in the massive case comes from the

one-loop perturbative correction. For dimensional reasons we expect that the first order

radiative corrections contain only terms proportional to m4
Σ, m2

Σ H
2, and H2. Since H2

is suppressed compared to m2
Σ, the maximal contribution will be proportional to m4

Σ.

The ratio between the hybrid and the chaotic model contribution is estimated to be

[A4,amp]hybrid

[A4,amp]chaotic
∝ λ4

hm
4
Σ

λH4
= 7.1× 108 . (7.64)

In our naive estimation τNL may become of order 1, but it is still not big enough to be

observed.

For the case of a spectator field that is not influencing the inflaton classical dynamics,

with mσ ∼ 10−2MP and λ2
h ∼ 10−6, we estimated a larger contribution

[A4,amp]hybrid

[A4,amp]chaotic
∝ λ4

hm
4
σ

λH4
= 2.3× 1011 , (7.65)

which may become relevant if it is not canceled by the other terms that appear in the

full calculation.

The results presented here show the physical impact of the finite time contributions

to the non-linearity parameter τNL in the case of a scalar field theory with a quartic

self-interaction term. The oscillatory features that we predict for the four-point function

are imprinted also in the trispectrum and are shown in Figure 7.6. The non-linearity

parameter strongly oscillates about the value of 4 × 10−7, which is too small to be

observed with current constraints. We also neglected the one-loop corrections because

they are suppressed by a factor λ2. Our rough estimates for hybrid models have shown

that in the case of an inflationary scenario with a spectator field the contribution may

reach an interesting regime where the effect can be large enough to be observed. The

full calculation in the case of hybrid inflation is left for future works.



CHAPTER 8

SUMMARY AND CONCLUSIONS

Cosmic inflation is one of the most successful and fundamental theories in cosmology.

It describes a period of accelerating expansion of the very primordial universe. This

theory provides the most natural scenario to solve the main issues of the big bang

theory. The inflationary paradigm provides the initial conditions required by the big

bang expansion to explain current cosmological observations.

In the standard scenario, the quantum fluctuations of the inflaton field δφ generate

the primordial fluctuations of the curvature tensor and are responsible for the tem-

perature anisotropies in the cosmic microwave background and the origin of the large

scale structure of the universe.

The spectrum of the primordial perturbations is predicted to be nearly scale

invariant due to the slow-rolling of the inflaton field. The power-law behavior is

well-fitted with the latest Planck data [6] where they found no evidence for any

particular deviation. The primordial spectrum provides the point of connection between

observations and inflationary scenarios because of its model dependence.

The classical dynamics of various inflationary scenarios [7] have already been

investigated for many models and the resulting cosmological parameters are in good

agreement with observations. Less attention has been devoted to the time dependence

of the intrinsic quantum corrections arising both due to the background evolution and

from the initial Bunch-Davies vacuum state. This gives a time dependence that leaves

an imprint on observable quantities like the power spectrum as well as higher order

spectra.

In this thesis the renormalization procedure in curved spacetime was studied for the

simple example of a scalar field model with a quartic self-interaction term in the closed-

time-path formalism for a (quasi) de-Sitter universe. The model was subsequently
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extended to the scenario of two scalar fields with a quartic symmetric coupling. In

both cases, quantum corrections generate time-dependent oscillations in the two- and

four-point correlation function. The appearance of the spectral features was analyzed

in Minkowski spacetime, where it is expected that the non-local time dependence

is due to the initial time and was investigated by testing the renormalized physical

observables with different continuous switching-on interaction profiles. The issue about

the adiabatic limit was also discussed.

Two- and four-point correlation functions were renormalized in the minimal sub-

traction scheme. The counter-terms found in de-Sitter background are independent

from the geometry of the spacetime, as proven in the algebraic QFT framework. The

counter-terms are in agreement with similar results using dimensional regulariza-

tion [33], the effective action method [34], or in axiomatic field theory [37, 38]. In the

adiabatic subtraction scheme the analysis of [34] was extended to the case where the

renormalization conditions are given in de-Sitter spacetime, giving extra covariant

contributions to the finite part of the counter-terms.

In the FRW universe, the background generates time-dependent terms proportional

to the logarithm of the Hubble parameter. The oscillations were found to be a conse-

quence of the initial conditions. The one-loop corrections to the two-point function

are suppressed by the quartic coupling and enhanced by the infrared cutoff. Here,

we conservatively used an IR-cutoff of the order of the perturbation’s effective mass

∝ |ns− 1|. Other prescriptions [154] used the Hubble scale at the beginning of inflation

as an infrared cutoff, and predicted an effect that depends on the duration of the

inflationary phase. In this case the constant contribution of the radiative corrections

becomes dominant and the early oscillations are suppressed. The same considerations

are valid for the four-point function where the loop-corrections are suppressed by the

squared value of the coupling. In this case the tree-level contributions also depend on

the initial state and generate non-local contributions. These oscillations are in general

damped during the inflationary epoch and therefore they affect strongly the large

scales (since they leave the horizon earlier). The calculated correlation functions were

finally used in order to test the quantum nature of the inflaton field and to predict

the radiative corrections to observable quantities, such as the power spectrum and the

non-linearity parameter that indicates a deviation from Gaussianity.

In the second part of the thesis the effects of one-loop corrections were predicted

for simple inflationary models. For the chaotic scenario of the λφ4 model the one-loop

correction is suppressed by the coupling constant that is fixed to be of the order of

10−13 by the normalization of the primordial spectrum. The effect is very small and a

relative difference of |∆PR(k)| ≤ 10−13 was found. This result strongly depends on the
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IR cutoff and much larger values can be reached with other prescriptions [154, 155],

which however have the disadvantage of suppressing the oscillations.

The second class of models that was investigated consisted of a two scalar field

model where the inflaton gets radiative corrections from virtual effects of the heavier

field. In this hybrid scenario, the field in the loop is very massive and the coupling

can take values up to order λh ∼ 10−3. The contribution to the power spectrum was

computed for the first time with the full massive propagator given in terms of the

hypergeometric function and the counter-terms were computed analytically in the

WKB regime. The larger coupling and the presence of the heavier field increased the

size of the radiative correction up to a relative difference of |∆PR(k)| ≤ 3× 10−3. In

order to enhance even more the one-loop contribution, the supersymmetric hybrid

model [151] was discussed and gave a relative difference of |∆PR(k)| ≤ 10−1 in the

most optimistic scenario. It should be noted that in a supersymmetric setup, the

quadratic divergence is canceled by the fermionic contribution. The full calculation

with the inclusion of the fermion contribution is of particular interest and is a suggested

direction for future works. The model of a quadratic inflation with a spectator field

was also investigated and gave weaker bounds. Unfortunately the oscillations, even if

they are non-negligible for the hybrid model, are too small to be observed or excluded

by the present data.

Finally, the one-loop corrections to the trispectrum were computed by focusing on

the effects on the non-linearity parameter. In the chaotic scenario, oscillations were

found with an amplitude around the value of |τNL| ∼ 4× 10−7, which is too suppressed

to be observed. It was estimated that it could become relevant for hybrid models or

for spectator fields. The explicit calculations for the massive contributions is left for a

future work.

The latest Planck data seem to prefer a power-law primordial spectrum without

any particular feature [6]. Nevertheless, a departure from scale invariance is allowed

due to the weak constraints on featured power spectra. In the future, progress in the

reconstruction of the primordial universe are expected and stronger constraints on the

power spectrum and higher order spectra will give the possibility to see the imprint of

the quantum nature of the inflaton field for models with a sufficiently large coupling,

as in the hybrid scenario.
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APPENDIX A

FEYNMAN RULES

In this appendix the Feynman rules for the two main models considered in this thesis are

described, i.e. a single scalar field model with quartic self-interaction and a two-scalar

fields model with a quartic symmetric coupling.

A.1 λφ4-theory

The action for the λφ4-interacting field theory of eq. (7.1) is, in the closed-time-path

formalism with a classical background gµν , given by

S[φ+, φ−] =

∫ ∞
τin

dτ

∫
d3xL[φ+, φ−], (A.1)

where τin is the initial time where we assumed the system to be in a vacuum state, φ+

and φ− are the two components of the field according to the CTP notation, and

L[φ+, φ−] =
√
−g

[
1

2
∂µφ

+∂µφ+ − 1

2
m2(φ+)2 − λ

4!
(φ+)4 +

ξ

2
R (φ+)2

− 1

2
∂µφ

−∂µφ− +
1

2
m2(φ−)2 +

λ

4!
(φ−)4 − ξ

2
R (φ−)2

]
+ δL. (A.2)

In the previous expression the metric gµν has signature +−−−, g = det(gµν) and

the counter-terms are defined as

δL =
√
−g
(

1

2
δZ ∂µφ

+∂µφ+ − 1

2
δm2 (φ+)2 − δλ

4!
(φ+)4 +

δξ

2
R (φ+)2

)
− φ+ ↔ φ− .

(A.3)
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In the Schwinger basis (4.17) the Lagrangian reads

L[φ(1), φ(2)] =
√
−g

(
∂µφ

(1)∂µφ(2) −m2φ(1)φ(2) − λ

4!
φ(1)(φ(2))3

− λ

3!
(φ(1))3φ(2) +

ξ

3
R φ(1)φ(2)

)
+ δL. (A.4)

From this Lagrangian one can easily extract the CTP Feynman rules needed in our

perturbative analysis. In Table A.1 we list the rules for the two-point functions, the

self-interacting vertices and the counter-terms for ξ = 0. We represent φ(1) with a solid

line and φ(2) with a dotted line.

Table A.1: Feynman rules for the λφ4 theory. The scalar field φ(1) is represented by a
solid line and the field φ(2) by a dotted line.

Graph Expression

F (k, τ1, τ2)

−iGR(k, τ1, τ2) = −iGA(k, τ2, τ1)

−ia4(τ1) λ
4!
δ(τ1 − τ2)δ(τ1 − τ3)δ(τ1 − τ4)

−ia4(τ1) λ
3!
δ(τ1 − τ2)δ(τ1 − τ3)δ(τ1 − τ4)

−ia4(τ1)δm2δ(τ1 − τ2)

−ia4(τ1) δλ
4!
δ(τ1 − τ2)δ(τ1 − τ3)δ(τ1 − τ4)

−ia4(τ1) δλ
3!
δ(τ1 − τ2)δ(τ1 − τ3)δ(τ1 − τ4)
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A.2 Hybrid model

The in-in action for a two-scalar field theory with a quartic interaction term λ2
hφ

2σ2

reads

S[φ+, φ−, σ+, σ−] =

∫ ∞
τin

dτ

∫
d3xL[φ+, φ−, σ+, σ−], (A.5)

where also the second field was split in the two components σ+ and σ−. The Lagrangian

density is given by

L[φ+, φ−, σ+, σ−] =
√
−g

[
1

2
∂µφ

+∂µφ++
1

2
∂µσ

+∂µσ+−1

2
m2(φ+)2−1

2
M2(σ+)2−λ2

h(φ
+)2(σ+)2

− 1

2
∂µφ

−∂µφ− − 1

2
∂µσ

−∂µσ− +
1

2
m2(φ−)2 +

1

2
M2(σ−)2 + λ2

h(φ
−)2(σ−)2

]
+ δL,

(A.6)

where the counter-terms are defined as

δL =
√
−g

(
1

2
δZφ ∂µφ

+∂µφ+ +
1

2
δZσ ∂µσ

+∂µσ+

− 1

2
δm2 (φ+)2 − 1

2
δM2 (σ+)2 − δλ2

h(φ
+)2(σ+)2

)
− {φ+, σ+} ↔ {φ−, σ−} . (A.7)

In the Schwinger basis (4.17) the Lagrangian reads

L[φ(1), φ(2), σ(1), σ(2)] =
√
−g

(
∂µφ

(1)∂µφ(2) + ∂µσ
(1)∂µσ(2) −m2φ(1)φ(2) −M2σ(1)σ(2)

−2λ2
hφ

(1)φ(2)(σ(1))2−2λ2
h(φ

(1))2σ(1)σ(2)− λ
2
h

2
(φ(2))2σ(1)σ(2)− λ

2
h

2
φ(1)φ(2)(σ(2))2

)
+δL.

(A.8)

From the Lagrangian, the closed-time-path Feynman rules can be identified. They

are listed in Table A.2 for the two-point functions, the self-interacting vertices and

the counter-terms. The field φ(1) is represented by a solid single line, φ(2) by a dotted

single line, σ(1) by a solid double line, and σ(2) by a dotted double line.
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Table A.2: Feynman rules for the two scalar field theory (A.8). In the expressions we
omitted the Dirac delta functions that can be reconstructed from Table A.1. The light
fields φ(1) and φ(2) are represented by a solid and dotted single line, the heavy fields
σ(1) and σ(2) by a solid and dotted double line.

Graph Expression Graph Expression

Fφ(k, τ1, τ2) Fσ(k, τ1, τ2)

−iGR
φ (k, τ1, τ2) −iGR

σ (k, τ1, τ2)

−ia4(τ1)
λ2h
2

−2ia4(τ1)λ2
h

−ia4(τ1)
λ2h
2

−2ia4(τ1)λ2
h

−ia4(τ1)δm2 −ia4(τ1)δM2

−ia4(τ1)
δλ2h

2
−2ia4(τ1) δλ2

h

−ia4(τ1)
δλ2h

2
−2ia4(τ1) δλ2

h
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USEFUL INTEGRALS

In this appendix we list the integrals 1 needed in Section 5.2 for the one-loop corrections

to the four-point function in de-Sitter spacetime.

I1 =

∫ τ

τin

dτ1

∫ τ

τin

dτ2
(τ 3 − τ 3

1 ) (τ 3 − τ 3
2 )

τ 4
1 τ

4
2

=
1

9

(
3 log

(
τ

τin

)
+ 1

)2

+O
(
τ

τin

)
, (B.1)

I2 =

∫ τ

τin

dτ1

∫ τ

τin

dτ2
(τ 3 − τ 3

1 ) (τ 3 − τ 3
2 ) log (k2τ1τ2)

τ 4
1 τ

4
2

=
1

27

(
3 log

(
τ

τin

)
+ 1

)(
9 log

(
τ

τin

)
log
(
k2ττin

)
+ 6 log(−kτ) + 2

)
+O

(
τ

τin

)
,

(B.2)

I3 =

∫ τ

τin

dτ1

∫ τ1

τin

dτ2
(τ 3 − τ 3

1 ) (τ 3
1 − τ 3

2 )

τ 4
1 τ

4
2

=
1

6

(
2 + log

(
τ

τin

)(
3 log

(
τ

τin

)
+ 4

))
,

(B.3)

I4 =

∫ τ

τin

dτ1

∫ τ1

τin

dτ2
(τ 3 − τ 3

1 ) (τ1 − τ2)

τ 3
1 τ

3
2

=
1

12

(
−11− 6 log

(
τ

τin

))
, (B.4)

1The integrals are evaluated with the analytic methods of Mathematica [139].
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I5 =

∫ τ

τin

dτ1

∫ τ1

τin

dτ2

(τ 3 − τ 3
1 )
(
−τ 3

2 log
(∣∣∣ τ1

2(τ1−τ2)

∣∣∣)+ τ 3
1 log

(∣∣∣ τ2
2(τ1−τ2)

∣∣∣))
τ 4

1 τ
4
2

=
1

108

{
6 log

(
τ

τin

)[
3 log

(
τ

τin

)(
log

(
τ

8τin

)
+ 1

)
− 3π2 + 13− 12 log(2)

]

− 108ζ(3)− 12π2 + 97− 36 log(2)

}
, (B.5)

I6 =

∫ τ

τin

dτ1

∫ τ1

τin

dτ2

(τ 3 − τ 3
1 )
(

log
(
− 2ηµ
Hτ1

)
+ γ
)

τ 4
1

δ(τ1−τ2)+
(τ 3 − τ 3

1 )

τ 2
1 τ

2
2 (τ1 − τ2)

θ(τ1−τ2−η)

=
1

6

[
−6

(
log

(
2µ

H

)
+ γ − 1

)
log

(
τ

τin

)
− 2 log

( µ
H

)
− π2 − 2γ + 8− log(4)

]
+O

(
τ

τin

)
,

(B.6)

I7 =

∫ τ

τin

dτ1

∫ τ1

τin

dτ2
(τ 3 − τ 3

1 ) (τ 3 − τ 3
2 ) (τ 3

1 − τ 3
2 )

τ 4
1 τ

4
2

= − 1

36
τ 6

in

(
6 log

(
τ

τin

)
+ 5

)
,

(B.7)

I8 =

∫ τ

τin

dτ1

∫ τ1

τin

dτ2
(τ 3 − τ 3

1 ) (τ 3 − τ 3
2 )

2
(τ1 − τ2)

τ 3
1 τ

3
2

=
τ 6

in

12
+O

(
τ

τin

)
, (B.8)

I9 =

∫ τ

τin

dτ1

∫ τ1

τin

dτ2

(τ 3 − τ 3
1 ) (τ 3 − τ 3

2 )
2
(
τ 3

1 log
(∣∣∣ τ2

2(τ1−τ2)

∣∣∣)− τ 3
2 log

(∣∣∣ τ1
2(τ1−τ2)

∣∣∣))
τ 4

1 τ
4
2

=
1

216
τ 6

in

[
−18

(
log

(
τ

4τin

)
+ 1

)
log

(
τ

τin

)
+ 6π2 − 29 + 30 log(2)

]
+O

(
τ

τin

)
,

(B.9)

I10 =

∫ τ

τin

dτ1

∫ τ1

τin

dτ2

(τ 3 − τ 3
1 )

3
(

log
(
− 2ηµ
Hτ1

)
+ γ
)

τ 4
1

δ(τ1−τ2)+
(τ 3 − τ 3

1 ) (τ 3 − τ 3
2 )

2

τ 2
1 τ

2
2 (τ1 − τ2)

θ(τ1−τ2−η)

=
1

6
τ 6

in

(
log

(
2µ

H

)
+ γ − 1

)
+O

(
τ

τin

)
. (B.10)
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VARIOUS RESULTS

This appendix collects various minor results obtained during the first part of my work.

They represents a reinforcement of the outcomes shown in this thesis.

In the first section the tadpole amplitude in Minkowski spacetime is fully Fourier

transformed in momentum spacetime in order to obtain a quantity that can be compared

to the analogous results in the literature. The next section compares the results of

the thesis about the two-point function with those obtained using the dimensional

regularization prescription both in Minkowski and de-Sitter spacetime. The comparison

of the Minkowski tadpole with the analogous in-out results follows. Subsequently

the de-Sitter propagators and the tadpole amplitude is compared to the Minkowski

results in the limit of a flat spacetime. Then the fish diagram for a massive theory in

Minkowski spacetime is discussed. The last two sections are devoted to the discussion

of the finite time dependence that was found in the renormalization of composite

operators and to our consideration about the issue of defining the tadpole diagram as

a product of two distributions.

Fourier Transform of the tadpole diagram in Minkowski

spacetime

In cosmology a special class of spacetimes of particular interest is given by the expanding

Friedmann Lemâıtre Robertson Walker universe. In this case the spatial part describes

a maximally symmetric space and one can still have a proper definition of the Fourier

transform as it was discussed in Chapter 4.

Here we consider the Fourier transform of the tadpole diagram (5.11) in Minkowski

spacetime. The full amplitude is a function of momentum and time Aamp(k, t) with the
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additional dependence on the initial time tin. The momentum variable can be Fourier

transformed back in order to obtain a quantity depending only on the four-vector

xµ = (t, xi)

A(x) =
−iAamp

4

1

(2π)3

∫ ∞
0

∫ 1

−1

∫ 2π

0

k2dk d cos θ dφ
sin
(√

k2 +m2(t− tin)
)2

(k2 +m2)3/2
e−ikr cos θ

(C.1)

=
−iπAamp

(2π)3

∫ ∞
0

k2 dk
sin
(√

k2 +m2(t− tin)
)2

(k2 +m2)3/2

sin(kr)

kr
.

This integral cannot be solved analytically and we could not go further. Alternatively

we Fourier transformed the time coordinate in order to get an amplitude where all the

coordinate are in Fourier space

A(k, w) =
−iAamp

4

∫ ∞
−∞

dt
sin
(√

k2 +m2(t− tin)
)2

(k2 +m2)3/2
eiwt (C.2)

=
iAamp

16

∫ ∞
−∞

dt
1

(k2 +m2)3/2

(
e2i
√
k2+m2(t−tin) + e−2i

√
k2+m2(t−tin) − 2

)
eiwt

=
iAampπ

8

1

(k2 +m2)3/2

[
δ
(
w + 2

√
k2 +m2

)
e−2i

√
k2+m2tin

+ δ
(
w − 2

√
k2 +m2

)
e2i
√
k2+m2tin − 2δ (w)

]
.

The found amplitude in the full momentum space has to be compared to the

analogous results in the literature [84]. It should be pointed-out that the Fourier

transform does not cancel the dependence on the initial state which is an intrinsic

contribution due to the fact that the vacuum state is not an eigenstate of the interacting

theory. As discussed in Chapter 6 we expect that in the adiabatic limit and with a

different interaction profile the time dependence is suppressed.

Dimensional Regularization of the tadpole diagram

Dimensional regularization is a method that was introduced in [159, 160] for regularizing

divergent integrals in particle physics. The idea is to perform an analytic continuation

of the number of spacetime dimensions n where the integral can be performed. The

result will be given as a Laurent expansion about the value n− 3 1. Renormalization

1In the closed-time-path formalism the poles are powers of (n− 3)−1, because we are integrating
over the 3-momentum p.
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consists in subtracting the poles from the regularized integral in order to obtain a

finite quantity in the limit n→ 3.

In the following the one-loop amplitude is regularized with dimensional regular-

ization in Minkowski and de-Sitter spacetime in order to test the renormalization

procedure for a different prescription.

Dimensional Regularization in Minkowski spacetime

In dimensional regularization the loop integral in Minkowski spacetime is generalized

to [(
−iλ

2

)∫
dp3

(2π)3
F (wp, t1, t1)

]
→
[(
−iλ µ3−n

2

)∫
dpn

(2π)n
F (wp, t1, t1)

]
, (C.3)

where wp =
√
p2 +m2, µ is an arbitrary mass scale, and n < 3 is chosen in order to

have a finite integral. The found amplitude is consistent with analogous results in the

literature [84].

Aamp =

(
−iλ µ3−n

2

)∫
dpn

(2π)n
1

2
√
p2 +m2

=
−iλm2

32π2

(
2

n− 3
− 1 + γ + log

(
m2

4πµ2

))
. (C.4)

Dimensional Regularization in de-Sitter spacetime

The same calculation is performed in de-Sitter spacetime. The ultraviolet contribution

to the de-Sitter tadpole in eq. (5.16) is analytically continued to a spacetime of

dimension n

−iλ
2H4τ 4

1

∫ ∞
Ma(τ1)

d3p

(
1

p3
+
τ 2

1

p

)
→ −iλµ

3−n

4H4τ 4
1

∫ ∞
Ma(τ1)

dnp

(2π)n

(
1

p3
+
τ 2

1

p

)
. (C.5)

Using the spherical symmetry of the integral, the volume element can be simplified to∫
dnp =

∫
pn−1 2πn/2

Γ(n/2)
dp. (C.6)

Therefore the integral is regulated to a Laurent expansion about the pole in n− 3

iλ

16π2H4τ 4
1

(
2

n− 3
− 2 + γ + log

(
M2a(τ1)2

πµ2

))
. (C.7)
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After having included the infrared contribution given in eq. (5.15), where the IR

divergence was cured with the mass cutoff ε, the full regulated integral reads

−iλ
16π2H4τ 4

1

(
1

ε
− 2

n− 3
+ 2− γ + log

(
πµ2τ 2

1

))
. (C.8)

The simple pole in n− 3 consistently represents the logarithmic divergence that

we found with the cutoff prescription. The quadratic divergence is not intercepted by

dimensional regularization. In the thesis divergent integrals were regulated using a

cutoff in momentum space because it is a better prescription for analytic and numerical

purposes and it physically represents our ignorance of physics of very high energy

scales.

Comparison with the in-out approach

In this section the results obtained in the Schwinger and Keldysh formalism with

the Hadamard propagators are compared with those given in the literature with the

Feynman propagators. They are connected through the simple relation

GF = i 〈T{φ(x)φ(y)}〉 =
1

2
(GR +GA) + iF. (C.9)

The sum of all contributions up to first order in λ for a quartic interaction scalar

field theory is

〈T{φ(x, ta)φ(y, tb)}〉CTP = −iGF
(0) +

(
−λm2

128π2w3
k

)
C×

×
{
− cos (wk(ta + tb − 2tin)) + θ(tb − ta)eiwk(ta−tb)

[
1− iwk(ta − tb)

]
+ θ(ta − tb)e−iwk(ta−tb)

[
1− iwk(tb − ta)

]}
+O(λ2), (C.10)

where GF
(0) is the tree-level Feynman propagator and C is a constant that represents the

renormalization freedom since a different scheme is used in order to have a non-vanishing

contribution.

It is interesting to compare this expression with the traditional tadpole in the

in-out approach. In order to have similar quantities, we consider the expression in the



129

basis of time and momentum. The result is

〈T{φ(x, ta)φ(y, tb)}〉(1)
k,t =

(
λm2

32π2

)
C

∫
dw

2π

(
1

k2 +m2 + iε

)2

e−iw(ta−tb)

=

(
λm2

64π3

)
C
[
− θ(ta − tb)Resw=wk+iε

(
1

−w2 + w2
k + iε

)2

e−iw(ta−tb)

+ θ(tb − ta)Resw=−wk+iε

(
1

−w2 + w2
k + iε

)2

e−iw(ta−tb)
]

=

(
λm2

128π2w3
k

)
C
[
θ(ta − tb)e−iwk(ta−tb) (1− iwk(tb − ta))

+ θ(tb − ta)eiwk(ta−tb) (1− iwk(ta − tb))
]
. (C.11)

It is interesting to note that eqs. (C.10) and (C.11) differ only by a periodic term

that oscillates with a frequency of wk.(
λm2

128π2

)
C

cos (wk(ta + tb − 2tin))

w3
k

. (C.12)

The origin of the time dependence was analyzed in Chapter 6, where it was shown

that this contribution vanishes in the adiabatic limit, i.e. the analogous result in the

in-out approach is consistently recovered.

Comparison between the de-Sitter and the Minkowski

propagators

In the following section the zero-order expansion in the Hubble constant of the massless

de-Sitter propagators (4.34) is given in order to show that the correct Minkowski

propagators are recovered in the limit of flat FRW universe. Indeed, the Taylor

expansions

F (k, τ1, τ2) =
H2

2k3

[
(1 + k2τ1τ2) cos(k(τ1 − τ2)) + k(τ1 − τ2) sin(k(τ1 − τ2))

]
=
H2

2k3

[(
1 +

k2

H2
e−H(t1−t2)

)
cos

(
k

H

(
e−Ht2 − e−Ht1

))
+
k

H

(
e−Ht2 − e−Ht1

)
sin

(
k

H

(
e−Ht2 − e−Ht1

)) ]
=
H2

2k3

k2

H2
cos k(t1 − t2) +O(H) =

1

2k
cos k(t1 − t2) +O(H) (C.13)
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and

GR(k, τ1, τ2) = θ(τ1 − τ2)
H2

k3

[
(1 + k2τ1τ2) sin(k(τ1 − τ2))− k(τ1 − τ2) cos(k(τ1 − τ2))

]
(C.14)

= θ(t1 − t2)
H2

k3

[(
1 +

k2

H2
e−H(t1−t2)

)
sin

(
k

H

(
e−Ht2 − e−Ht1

))
(C.15)

− k

H

(
e−Ht2 − e−Ht1

)
cos

(
k

H

(
e−Ht2 − e−Ht1

)) ]
(C.16)

= θ(t1 − t2)
H2

k3

k2

H2
sin k(t1 − t2) +O(H) = θ(t1 − t2)

1

k
sin k(t1 − t2) +O(H).

(C.17)

consistently give the Minkowski limit at zeroth-order in the Hubble constant. Moreover

it was checked that the de-Sitter tadpole given in eq. (5.22) gives the correct limit (5.5)

for a vanishing Hubble constant H, i.e.

ADS = −iAamp ·
sin(k(t− tin))

2k3

2

+O(H). (C.18)

The massive fish diagram in Minkowski spacetime

In the following the divergences that arise in the one-loop calculations for the four-

point functions are calculated for a massive theory with a quartic self-interaction in

Minkowski spacetime. As for the massless scalar field theory, only the divergences of

the singular contributions in Figure 5.8 are studied.

For the two diagrams, only the following momentum integral has to be renormalized∫
d3p1

(2π)3

∫
d3p2

(2π)3
F (wp1 , t1, t2)GR(wp2 , t1, t2)(2π)3δ(k1 + k2 − p1 − p2), (C.19)

where wpi =
√
p2
i +m2 and F and GR are the massive propagators in the Schwinger

basis. In order to extrapolate an analytic expression from the integral, the external

momenta are supposed to be small and the approximation wp1−k = wp1 was used,

where k = k1 + k2. The integral is simplified and reads∫
d3p

(2π)3
F (wp, t1, t2)GR(wp, t1, t2) (C.20)
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or more explicitly∫
dp

(
p2

8π2(m2 + p2)

)
θ(t1 − t2) sin

(
2
√
m2 + p2(t1 − t2)

)
. (C.21)

The integral is divergent and cannot be integrated analytically. Nevertheless, it can

be shown that the integral has the same singular behavior of the following integral, i.e.

they differ only by finite terms

∫
dp

(
p

8π2
√

(m2 + p2)

)
θ(t1 − t2) sin

(
2
√
m2 + p2(t1 − t2)

)
=

(
1

16π2

)
θ(t1 − t2)

[
cos (2m(t1 − t2))− cos

(
2
√
m2 + Λ2(t1 − t2)

)
t1 − t2

]
. (C.22)

The last expression can be integrated analytically. Inspired by the massless case in

eq. (5.35) one finds the explicit form

θ(t1 − t2)

[
cos (2m(t1 − t2))− cos

(
2
√
m2 + Λ2(t1 − t2)

)
t1 − t2

]

= θ(−η + ∆t)
cos (2m∆t)

∆t
+

1

2
δ(∆t) log

(
1 +

(
Λ

m

)2
)
, (C.23)

where η is a time regulator and is sent to zero at the end. The equality holds in the

distributional sense. The final regulated expression for the amputated diagram is finally

given by (
1

16π2

)[
θ(∆t)

cos (2m∆t)

∆t
+ δ(∆t) log

(
Λ

m

)]
. (C.24)

It should be noted that the the massive fish diagram in Minkowski spacetime is also

regulated in the minimal subtraction scheme by the coupling constant counter-term

δλ defined for the massless theory in eq. (5.36). This term is universal and could be

used in order to regulate the four-point function in de-Sitter space also for the massive

theory.

Comment on the finite dependence of renormalized

composite operators

In quantum field theory the product of operators at coinciding points are called

composite operators and are singular. These operators appear often in physics, as in
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the stress-energy tensor or in the number operator. They are of particular interest

because these quantities can be measured. In [36] the non-local effects depending on

the initial state were computed in the case of a two scalar field theory in de-Sitter

spacetime similar to the hybrid model (7.17) that we described in this work.

They found that the renormalized composite operators had a local logarithmic

dependence on the scale factor, similar to the one we found in the amputated two-point

function in eq. (5.18) plus a non-local oscillatory contribution. In the limit of a flat

spacetime they found that the oscillation arising from the external propagators are

proportional to the kernel function K(t− tin), where

K(t) =

∫
d3k

(2π)3

cos(2wkt)

(wk)3
, (C.25)

wk =
√
k2 +m2, and m is the field’s mass. This extra term has an amplitude which

decreases faster than [m(t− tin)]−3/2 and consistently disappears for t− tin →∞ where

the Poincaré symmetry is restored.

This result is fully consistent with our discussion about the initial time dependence

of the non-local contribution and the profile dependence in Chapter 6.

Comment on the tadpole seen as an extension of

distributions

From the point of view of functions the tadpole is an ill-defined quantity, i.e. ∆F (x−x) =

∆F (0) is divergent. In momentum space it is given by
∫
d4p 1

p2
and has a quadratic

divergence that can be renormalized to 0 after a proper choice of the counter-term.

This renormalization, which in momentum space looks similar to the renormalization

techniques used for other diagrams, is in fact different when we try an extension in

the language of distributions. The reason is that ∆F (0) is ill defined everywhere. To

try to avoid this problem, one can see ∆F (0) as an extension to the diagonal of the

product of two distributions, like for example

∆F (0) =

∫
d4x δ(4)(x)∆F (x). (C.26)

In this case, δ4(x)∆F (x) is identically zero for test functions whose support does

not include the origin. This means that the singular order of eq. (C.26) is −∞ and

the unique extension is the null function. In other words, this would suggest that

[∆F (0)]ren = 0.
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We point out that in the algebraic approach, tadpoles are not considered since the

interaction is always given as the Wick ordering of polynomial functions of fields. This

means that after a proper choice of normal ordering, :φ2(x) : becomes regular. In fact

in the Dyson representation of the S-matrix, ∆F (0) never appears.
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dottorato a Gottinga, in Germania. È successo un po’ per caso e un po’ per fortuna. Ho
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per la sua attività di ricerca universitaria! Devo ringraziare Gottinga per le infinite
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a Magdeburgo, durante i nostri primi mesi di dottorato, un ristoratore italiano ci ha

consigliato di scappare dalla Germania il prima possibile.

Durante questi anni a Gottinga ho avuto la possibilità di veder nascere delle
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