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Prüfungskommission:

Referent:

Prof. Dr. Stefan Bonn,
Zentrum für Molekulare Neurobiologie (ZMNH),
Institut für Medizinische Systembiologie, Hamburg

Korreferent:

Prof. Dr. Tim Beißbarth,
Institut für Medizinische Statistik, Universitätsmedizin,
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Abstract

This thesis covers a very broad range of bioinformatics methods ranging from the devel-

opment of the analysis pipeline to the data integration and development of an expression

atlas (database and web application development). In addition, an in silco method was

developed to annotate genome with novel features, and predicting diseases based on the

expression profiles.

Development of online analysis of small RNA sequencing data

Small RNA (sRNA) are biomolecules that play important roles in organismal health and

disease; as such, sRNA dysregulation can cause severe diseases. The modern method

of choice for sRNA expression profiling is sRNA sequencing (sRNA-seq). There are

several sRNA-seq analysis platforms available that differ in their analysis portfolio, per-

formance, and user-friendliness. However, these analysis platforms lack one or more

important features such as disease biomarkers identification, detection of viral and bac-

terial infections in sRNA-seq samples, storage of novel predicted miRNAs, multivariate

differential expression(DE) analysis and automated submission of jobs via an application

programming interface (API).

To this end, we developed an online analysis tool called as Oasis 2, a fast and flexi-

ble web application which provide many different sRNA-seq analysis options on a single

platform. Its major functionalities include quantification of different sRNA species, mul-

tivariate differential expression (DE), identification of biomarkers for disease, prediction

and storage of novel miRNAs with proper universally accepted nomenclature, identifica-

tion of infection or contamination, functional/enrichment analysis. Additionally Oasis

2 enables users to perform all these different analysis over the web application, as well

as over API for automatic submission. Oasis 2 generates downloadable interactive web

reports for easy visualization, exploration, and analysis of data on a local system. In

future, small RNA editing, modification, and mutation events can be implemented in

Oasis 2. Additionally the reported output for bacterial and viral infections and contam-

inations can be enhanced.

Development of small RNA expression atlas (SEA)

As discussed in Section 2 that sRNAs have crucial role in organismal health and disease,

yet the number and scope of the currently available sRNA-seq expression repositories

are very limited. For example, most of the sRNA-seq repositories support one or two

organisms and none of these databases provide search by ontological terms.



Considering these shortcomings, we developed sRNA expression atlas (SEA), a data

repository to store sRNA expression profiles along with the experimental details such

as organism, tissue, cell type, disease, age, gender and technical details like sequencer,

kit and barcode etc. Additionally we built a web application that allows end users to

query and visualize sRNA expression profiles in an interactive manner. SEA allows

users to search for ontology-based queries, supporting single or combined searches for

five pre-defined terms such as organism, tissue, disease, cell type, and cell line across

different experiments. Currently it contains expression and meta-information of over

2,500 sRNA-seq samples across 10 organisms. As far as we are aware, SEA is the

only sRNA-seq database that supports ontology-based queries. In the future, additional

available meta-information such as age, gender, developmental stage, genotype as well as

technical experimental details can standardized (connect to ontologies) and the search

could be enhanced to allow users to query sRNA expression profiles based on them.

Moreover, further sRNA-seq datasets should be incorporated into SEA. Lastly, one can

store DE and biomarker prediction results for all the sRNA-seq datasets having at-least

two groups (such control and diseased) and make them query-able and comparable across

different datasets.

Prediction and validation of mutually exclusive splicing of exons

Mutually exclusive splicing of exons (MXEs) is a mechanism of functional gene and pro-

tein diversification with important roles in organismal development and diseases, such

as in SNAP-25 as part of the neuroexocytosis machinery [1]. Additionally mutations in

MXEs have been shown to cause diseases such as Timothy syndrome (missense mutation

in the CACNA1C gene) [2, 3]. Despite their important roles, the current knowledge of

human MXEs is very limited, that is to say, that the human genome annotation (Gen-

Bank v. 37.3) contains only 158 MXEs in 79 protein-coding genes.

To this end, an in silco method was developed to predict MXEs based on sequence sim-

ilarity, similar lengths, and reading frame conservation; predicted MXEs were validated

using the publicly available billions of RNA-seq reads. Based on this method the current

knowledge of human MXEs is increased by almost an order of magnitude from 158 to

1,399 MXEs. These MXEs shows tissue and developmental stage specific expression and

also have potential roles in diseases. As a heuristic approach was used for the prediction

of MXEs in this thesis, in the future a machine learning approach can be used for the

prediction of MXEs, which may increase the predicting power of the method and could

result in further novel MXEs.



List of publications and softwares

Published

1. Raza-Ur Rahman, Abhivyakti Gautam, Jörn Bethune, Abdul Sattar, Mak-

sims Fiosins, Daniel Sumner Magruder, Vincenzo Capece, Orr Shomroni and Ste-

fan Bonn. (2018). Oasis 2: improved online analysis of small RNA-seq data.

BMC Bioinformatics (volume19).

2. Raza-Ur Rahman, Abdul Sattar, Maksims Fiosins, Abhivyakti Gautam , Daniel

Sumner Magruder, Jörn Bethune, Sumit Madan , Juliane Fluck , and Stefan Bonn.

(2017). SEA: The small RNA Expression Atlas. bioRxiv preprint.

https://doi.org/10.1101/133199.

3. Hatje, Klas and Rahman, Raza-Ur and Vidal, Ramon O and Simm, Dominic and

Hammesfahr, Björn and Bansal, Vikas and Rajput, Ashish and Mickael, Michel

Edwar and Sun, Ting and Bonn, Stefan and Kollmar, Martin (2017). The land-

scape of human mutually exclusive splicing. Molecular Systems Biology (volume

13).

4. Vincenzo Capece, Julio C. Garcia Vizcaino, Ramon Vidal, Raza-Ur Rahman,

Tonatiuh Pena Centeno, Orr Shomroni, Irantzu Suberviola, Andre Fischer and

Stefan Bonn. . (2015). Oasis: online analysis of small RNA deep sequencing data.

Bioinformatics 31, 1–3

5. Rashi Halder, Magali Hennion, Ramon O. Vidal, Orr Shomroni, Raza-Ur Rah-

man, Ashish Rajput, Frauke van Bebber, Anna-Lena Schuetz, Susanne Burkhardt,

Eva Benito, Julio C. Garcia Vizcaino, Vincenzo Capece, Tonatiuh Pena Centeno,

Magdalena Navarro Sala, Sanaz Bahari Javan, Christian Haass, Bettina Schmid,

Andre Fischer, Stefan Bonn. DNA methylation changes in plasticity genes ac-

company the formation and maintenance of memory. Nature Neuroscience, 19(1),

102–110.

6. Tonatiuh Pena Centeno, Orr Shomroni, Magali Hennion, Rashi Halder, Ramon

Vidal, Raza-Ur Rahman, Andre Fischer, Stefan Bonn. Genome-wide chromatin

3



and gene expression profiling during memory formation and maintenance in adult

mice. Scientific data.

In preparation

1. Eugenio F. Fornasiero, Sunit Mandad, Raza-Ur Rahman, Tonatiuh Pena Cen-

teno, Ramon O. Vidal, Hanna Wildhagen, Burkhard Rammner, Sarva Keihani,

Felipe Opazo, Inga Urban, Till Ischebeck, Koray Kirli, Eva Benito, André Fischer,
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lein, Peter Rehling, Ivo Feussner, André Fischer, Stefan Bonn, Henning Urlaub,

Silvio O. Rizzoli. The analysis of protein lifetimes in the mouse brain reveals basic

turnover principles. Nature Neuroscience

Softwares

1. Oasis 2: Improved online analysis of small RNA-seq data. https://oasis.dzne.

de/.

2. SEA: Small RNA Expression Atlas. https://sea.dzne.de/sea/sea.jsp.

3. Memory-epigenome-browser: A genome browser for the interactive visualiza-

tion of (in house) NGS data. https://oasis.dzne.de/JBrowse-1.11.4/index.

html.

https://oasis.dzne.de/
https://oasis.dzne.de/
https://sea.dzne.de/sea/sea.jsp
https://oasis.dzne.de/JBrowse-1.11.4/index.html
https://oasis.dzne.de/JBrowse-1.11.4/index.html


Thesis structure

In this thesis, three main projects were developed.

1. Oasis 2: Improved online analysis of small RNA-seq data. The original publica-

tion is available at https://bmcbioinformatics.biomedcentral.com/articles/

10.1186/s12859-018-2047-z, and the corresponding web application can be ac-

cessed at https://oasis.dzne.de/.

2. SEA: Small RNA Expression Atlas. It is submitted to biorxiv and is available at

https://www.biorxiv.org/content/early/2017/08/04/133199, and the corre-

sponding web application can be accessed at https://sea.dzne.de/sea/sea.jsp.

3. Prediction and validation of mutually exclusive splicing of exons: The

original publication is available at http://msb.embopress.org/content/13/12/

959.

There are three main chapters in the thesis followed by the three above mentioned

articles.

• Chapter 1 : Provides biological background knowledge required for this thesis.

• Chapter 2 : Provides bioinformatics background knowledge required for this thesis.

• Chapter 3 : This chapter summarizes the three aforementioned articles, their

development, results and the outlook of the projects.

• Appendix [ A, B, C] : All the three aforementioned articles are provided in the

appendix.
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Chapter 1

Biological Background Knowledge

This chapter explains the biological background required for this thesis including: the

process of gene regulation, exon splicing, role of small RNAs (sRNAs) in gene regulation

and the basic mechanism of latest technologies such as next generation sequencing (NGS)

to obtain gene expression as well as sRNA expression data.

1.1 Deoxyribonucleic acid

Deoxyribonucleic acid (DNA) carries the genetic code that is used in the development

and growth of living organisms and also some viruses. DNA is a double-stranded

molecule that is composed of four bases: adenine (A), thymine (T), cytosine (C) and

guanine (G). In order to hold the double-stranded structure of DNA, these molecules

bind to each other in a particular order such as cytosine (C) binds to guanine (G) and

adenine (A) binds to thymine (T) as shown in Figure 1.1. In the double stranded struc-

ture of DNA, the strands are anti-parallel (the direction of nucleotides is opposite). The

ends of these strands are named, three prime (3’) end having a terminal hydroxyl group

and five prime (5) end having a terminal phosphate group. These DNA molecules are

used to make various ribonucleic acid (RNA) and protein molecules required by living

organisms to carry out different biological functions.

1.2 Gene expression

DNA is made up of nucleotides. Some strings of nucleotides form genes which convey

units of functionality. Genes are transcribed to a particular RNA molecule called as

messenger RNA (mRNA), which can further be translated into a protein as show in

6
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Figure 1.1: DNA consists of a deoxyribose backbone (light red) connected by phos-
phate groups (green circles). Strands are bound together by hydrogen bonds between
nucleotides A and T requires two hydrogen bonds where as C and G has three hydrogen

bonds between them

Figure 1.2. Transcription is a complex process and it involves many factors such as

transcription start site (TSS), RNA polymerase (Pol-II), promoter region, transcription

factors (TFs) and enhancers.

	
DNA	 mRNA	 Protein	

Translation	Transcription 
	

Figure 1.2: DNA is transcribed into mRNA and proteins are translated from mRNA
molecules

1.2.1 Transcription start site

As the name suggests transcription start site (TSS) is the location where transcription of

the gene into RNA begins [4]. TSS is the location where a molecule of RNA polymerase

II (pol II) binds.

1.2.2 RNA polymerase II

RNA polymerase II (Pol II), also called as RNAP II, is an enzyme that acts as a catalyst

for the transcription of DNA to synthesize precursors of mRNA, microRNA and most

snRNA [5]. A variety of different transcription factors are required for Pol II to bind

to upstream gene promoters and initiate transcription.
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1.2.3 Promoter

A promoter region can be found upstream of every gene and contains particular regions

where a protein complex can bind to initiate transcription. As shown in Figure 1.3 a

promoter is a part of DNA that helps in the initiation of transcription of a particular

gene. Promoters are located on the same strand and upstream on the DNA of genes

they transcribe. They have binding sites for proteins known as transcription factors that

engage RNA polymerase.

1.2.4 Enhancers

Enhancers play an important role in the transcription of a gene. Enhancers can be

located either upstream or downstream of the transcription initiation site. Enhancers

can be distal to TSS, which means they can interact from a distance of thousands of

base pairs away from the initiation site [6] as shown in Figure 1.3. Some other protein

complexes binds to enhancers in order to make the enhancer complex and bring it close

to the promoters and increase transcription.

1.2.5 Transcription factors

Transcription factors (TFs) also plays an important role in the regulation of transcrip-

tion. They bind to short DNA sequences 5-20 bp in length called as transcription factor

binding sites (TFBSs) and plays an important role in controlling the flow of genetic in-

formation from DNA to mRNA [7]. Some TFs bind to promoter sequences near the TSS

and form the transcription initiation complex, while others TFs can bind to regulatory

sequences, such as enhancer sequences, either encouraging or repressing transcription of

a particular gene as shown in Figure 1.3. TFs are one of the main reasons for cell and

tissue specific expression of genes.

1.3 Alternative Splicing

Many organisms’ DNA has introns and exons. Exons are the coding regions of a gene and

contains information for producing proteins whereas introns are the noncoding part of

the DNA, and are therefore spliced out of the primary RNA. Having functional blocks of

DNA (exons) enables a single gene to be spliced differently to generate various isoforms

(different mRNA from same gene), which can be translated into proteins with different

structures and functions. This mechanism that enables a single gene to code for multiple
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Figure 1.3: Interaction between enhancers, promoters along with transcription factors
is shown. Promoter and enhancer regions are recognized (bound) by specific TFs. An
enhancer promotes transcription and they could be distal to the gene. Activators bound
to the distal elements interact with TFs. As soon as all required TFs, activators and

Pol-II come together, transcription of DNA to RNA starts.

proteins is called as alternative splicing. Gene splicing occurs prior to mRNA translation,

by the differential exclusion or inclusion of different exons. During the splicing event, a

pre-mRNA transcribed from one gene can form different mature mRNA molecules that

produce different proteins. The different forms of alternative splicing are exon skipping

or inclusion, intron retention, alternative splice-site selection and mutually exclusive

exons as shown in Figure 1.4.

• Exon skipping

In this form of gene splicing, exon(s) are excluded in the final gene transcript that

leads to different mRNA isoforms.

• Intron retention

In this form of gene splicing, an intron is retained in the final transcript. As

the non-coding (intron) portions of the gene is retained, deformity in the protein

structure and function can occur.

• Alternative 3’ and 5’ splice site

In this form of gene splicing different 5’ and 3’ splice site are joined together. In

this type of gene splicing, two or more alternative 5’ splice site compete for joining

to two or more alternate 3’ splice site.

• Mutually exclusive exons

Mutually exclusive splicing makes alternative isoforms by retaining only one exon

of a cluster of neighbouring internal exons in the mature transcript and is one of

the ways to modulate protein function.
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Exon	skipping/inclusion	

Alternative	3’	splice	sites	

Alternative	5’	splice	sites	

Mutually	exclusive	exons	

Intron	retention	

Constitutive	exon	 Alternatively	spliced	exons	

Figure 1.4: Different forms of alternative splicing are shown, exon skipping or in-
clusion, intron retention, alternative splice-site selection and mutually exclusive exons.
Different types of alternative-splicing patterns of exons exits for each individual pre-

mRNA.

1.4 Small RNA (sRNA)

As explained in Section 1.3, coding region of DNA is transcribed into mRNA, which

results in proteins after being translated. However the non-coding region of the genome

may also be transcribed into non-coding RNAs (ncRNAs) which are never translated

into proteins. Based on their length, these ncRNAs are categorized into small ncRNAs

(sRNAs) and long ncRNAs (lncRNAs). sRNAs are the type of ncRNAs whose length is

less than 200 nucleotides (nt). Based on their biogenesis and biological functions major

types of sRNAs include: micro-RNA (miRNA), PIWI-interacting RNAs (piRNAs), small

interfering RNA (siRNAs), small nuclear RNAs (snRNAs) and small nucleolar RNAs

(snoRNAs).

1.4.1 MicroRNAs

MicroRNAs (miRNAs) are around 22 nt in length and play an important role in gene

regulation by targeting mRNAs for cleavage or translational repression. miRNAs are

the most abundant class of sRNAs and they effect the regulation of many protein-coding
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genes. miRNAs inhibits the translation of mRNA into protein by binding to comple-

mentary sequences in mRNA. There are two mode of action: either the miRNA cleaves

the mRNA strand into pieces or it destabilizes the mRNA through shortening of its poly

(A) tail. A mature miRNA is produced through the following mechanism as shown in

Figure 1.5. First RNA pol II produces pri-miRNAs which is then immediately processed

by an enzyme called Drosha in the nucleus to generate pre-miRNAs. These pre-miRNAs

are exported to the cytoplasm by Exportin 5. In the cytoplasm pre-miRNAs are pro-

cessed by Dicer to form the mature miRNA/miRNA* duplex. Once the mature miRNAs

are produced they get assembled into the RNA-induced silencing complex (RISC com-

plex). These mature miRNA inhibits the mRNA translation by complementarily pairing

to mRNA.

Figure 1.5: RNA pol II produces pri-miRNAs which is then immediately processed by
an enzyme called Drosha in the nucleus to generate pre-miRNAs. These pre-miRNAs
are exported to the cytoplasm by Exportin 5. In the cytoplasm pre-miRNAs are pro-
cessed by Dicer to form the mature miRNA/miRNA* duplex. Once the mature miR-
NAs are produced they get assembled into the RNA-induced silencing complex (RISC
complex). These mature miRNA inhibits the mRNA translation by complementarily

pairing to mRNA. Figure taken from [8]

1.4.2 PIWI-interacting RNAs

PIWI-interacting RNAs (piRNAs) are small noncoding RNAs that function as guardians

of the genome. piRNAs protect the genome from the invasive transposable elements

(DNA sequences in the genome, which can change their position) in the germline [9].



Chapter 1 Biological Background Knowledge 12

Intergenic repetitive (elements) regions, from which piRNAs are produced, are called

piRNA clusters [10]. piRNAs, around 24-32 nt long, are mostly expressed in the

germline [11]. They bind to the PIWI proteins which play a major roles in the main-

tenance of the genome stability in germline cells. piRNAs have an antisense comple-

mentarity to the transposon transcripts and can therefore silence them by hybridizing

with them [12]. Recent evidence suggests that piRNAs are not only involved in the

germline but also plays roles in the stability of somatic cells as well as in multigener-

ational inheritance [9]. However to date, very little is known about piRNA diversity

and its target specificity in human, nearly all piRNA studies have been conducted in

model organisms [13] such as mouse and drosophila. piRNAs are derived from mono or

bi-directional clusters and are mainly expressed as mainly as ssRNAs [11]. In order to

enforce the high expression of piRNAs in the germline primary piRNAs are subjected

to an amplification system (loop) called the ping-pong cycle [9]. To this end, addi-

tional piRNAs are produced through this cycle via sense and antisense intermediates.

The PIWI ribonucleoprotein (piRNP) complex functions in transposon repression, via

epigenetic silencing and target degradation, as shown in Figure 1.6.

1.4.3 Small nucleolar RNAs

Small nucleolar RNA (snoRNA) is a class of sRNAs that are responsible for the post-

transcriptional modification of ribosomal RNAs (rRNAs) [14]. They are usually 60-150

nt long. snoRNAs are known to reside inside the introns of protein coding genes as shown

in Figure 1.7. They are a part of the small nucleolar ribonucleoproteins (snoRNPs),

protein complexes that plays role in the pseudouridylation [15] and also in the sequence-

specific 2’-O-methylation of the ribosomal RNA (rRNA) [11]. These post-transcriptional

modifications of ribosomal RNAs (rRNAs) takes place in the nucleolus, which is a nuclear

compartment where ribosomes are formed. The nucleolus also supports rRNA folding

and stability [16].

1.4.4 Small interfering RNA

RNA interference is a process through which double-stranded RNA silences homolo-

gous genes [17]. Small interfering RNA (siRNAs) are around 20-25 nt double-stranded

RNA molecules that can target mRNAs based on perfect complementarity as shown in

Figure 1.8. In siRNAs biogenesis, two 21-nucleotide (nt) single-stranded RNAs form a

19-bp duplex with 2-nt overhangs at 3’. A Dicer and RDE-1 (RNAi deficient-1) complex

processes this double-stranded RNA (dsRNA) to form siRNAs. The RNA interference

(RNAi) silencing complex uses the antisense strand of the siRNA for mRNA cleavage
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Figure 1.6: piRNAs are derived from mono or bi-directional clusters and are mainly
expressed as ssRNAs. In order to enforce the high expression of piRNAs in the germline
primary piRNAs are subjected to an amplification system (loop) called as ping-pong
cycle. To this end, additional piRNAs are produced through this cycle via sense and
antisense intermediates. The PIWI ribonucleoprotein (piRNP) complex functions in
transposon repression via epigenetic silencing and target degradation. Figure taken

from [11].

and hence promoting mRNA degradation as shown in Figure 1.8. siRNAs are more sim-

ilar to miRNAs in their biogenesis and functions almost identically except: siRNAs can

only bind to mRNA sequences with perfect complementarity whereas miRNAs can bind

to mRNA even when it does not have perfect complementarity, secondly a siRNA can

target only a single mRNA whereas a single miRNA hundreds of mRNAs. Due to the

one-to-one mapping of siRNAs to mRNAs they are mostly used as a tool in molecular

biology to knock down a gene in an experiment.

1.4.5 Small nuclear RNAs

Small nuclear RNAs (snRNAs) are mostly found in eukaryotic cells and are also called

as U-RNA. They are known to have an important role in the splicing of introns from

primary genomic transcripts [18]. The average length of snRNA is around 150 nt. There

are four main steps in the biogenesis of snRNPs: [19]
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Figure 1.7: snoRNAs are mostly found in introns. Mature snoRNAs are formed
after splicing, de-branching and trimming. In case these mature snoRNAs remain in
the nucleus, they play role in alternative splicing, and if they are exported they get

involved in the rRNA processing. Figure taken from [11].

• Production of a large precursor snRNA.

• Processing of the large precursor snRNA into mature snRNA.

• Introduction of site-specific covalent nucleotide modifications.

• Formation of snRNA and RNP proteins complexe.

The biogenesis of snRNPs is very complex, as different classes of snRNP follow different

synthetic processing pathways; in addition, the steps are mostly dependant on the sub-

cellular compartments [19]. Each snRNA has an association with a set of proteins called

as ribonucleoproteins. The complex of snRNA and ribonucleoproteins is called as small

nuclear ribonucleoproteins (snRNP or snurps). Prominent components of these snRNA

complexes are spliceosomal RNA such as U1, U2, U4, U5 and U6, that plays a major

role in the maturation of the eukaryotic precursor messenger RNA. snRNPs binds to the

specific sequences on the precursor messenger RNA substrate [20] which results in two

reactions: first these reactions will produce free flowing intron and secondly they will

ligate the two exons in order to form a mature mRNA.



Chapter 1 Biological Background Knowledge 15

Figure 1.8: a) In siRNAs biogenesis, two 21-nucleotide (nt) single-stranded RNAs
form a 19-bp duplex with 2-nt overhangs at 3’. b) A Dicer and RDE-1 (RNAi deficient-
1) complex processes this double-stranded RNA (dsRNA) to form siRNAs. The RNA
interference (RNAi) silencing complex uses the antisense strand of the siRNA for mRNA

cleavage and hence promoting mRNA degradation. Figure taken from [17].

1.5 Next generation sequencing

The advent of next generation sequencing (NGS) technology has greatly accelerated

research in life sciences. Currently, NGS is widely used for whole genome sequencing,

protein-DNA interactions, methylated DNA and also for the detection and quantification

of gene as well sRNA expression profiles. NGS’s popularity in many research laboratories

can be contributed to its low cost and high throughput, [21, 22] e.g; the entire human

genome can now be sequenced in less than one day.

1.5.1 RNA sequencing

RNA sequencing (RNA-seq) is also called whole transcriptome shotgun sequencing. As

mentioned in Section 1.5 to detect and quantify RNA in a biological sample at a given

moment, NGS is widely used [21, 22].In addition to mRNA transcripts, RNA-seq can

look at different types of RNA such as total RNA, small RNA and ribosomal profiling.
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It can also determine intron and exon boundaries. One can validate or update existing

5’ and 3’annotated gene boundaries.

1.5.1.1 Method

• RNA Isolation: The first step towards RNA sequencing is to isolate RNA from

the samples such as tissue and mix it with deoxyribonuclease (DNase) to reduce

the amount of genomic DNA.

• RNA selection: Depending on the biological question to be addressed, the iso-

lated RNA can be kept- as it is or it can be depleted for ribosomal RNA (rRNA)-

or in the case where the requirement is to take into account only mRNA, it can

filtered for 3’ polyadenylated (poly(A)) tails. RNA’s with 3’ poly(A) tails are

mature, processed coding sequences.

• cDNA synthesis: The above selected RNA is reverse transcribed to cDNA for

sequencing. These cDNA fragments are then sheared, selected and amplified with

adaptors attached to one or both ends [22].

• Sequencing: Lastly, this library is sequenced from both ends (pair-end sequenc-

ing) or one end (single-end sequencing) using next generation sequencing technol-

ogy. This sequencing results in short sequences also called reads [22].

The above method can be used to sequence both mRNA and sRNA. In the case of

mRNA, the isolated RNA in the first step is filtered for 3’ poly(A) tails as shown in

Figure 1.9. RNA’s with 3’ poly(A) tails are mature, processed and coding sequences.

In the case of sRNA sequencing, the library preparation is modified a bit and the RNA

is isolated through size selection. This can done through different means such as size

selection via magnetic beads or with a size exclusion gel. After isolation, adaptors

are ligated to both ends of the small RNAs. Finally, the adaptor ligated sRNAs are

converted to cDNA clones.
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Figure 1.9: illustration of directional RNA-seq library preparation workflow for Illu-
mina. Figure taken from [23].



Chapter 2

Bioinformatics Background

Knowledge

This chapter explains the bioinformatics background knowledge required for this thesis.

Main areas of focus in this chapter are:

• Principles of database management systems.

• Standard workflows for NGS data analysis (gene and small RNA expression anal-

ysis).

• Principles of supervised machine learning methods.

2.1 Database management systems

A database is an organized or structured collection of data [24]. When there is a need to

store and process large amounts of data usually a database is applied. In general terms

the word database is not specific, it can be an excel sheet storing lists of names and

addresses of a company employees or a database server such as Oracle or MySQL. A

database management system (DBMS) is software that allows the creation and modifica-

tion of a database. There are many DBMS; some DBMS include: MySQL, PostgreSQL,

Oracle, SQLite, Microsoft SQL Server, SAP, dBASE, IBM DB2, MongoDB and Neo4j.

A DBMS offers the following features:

• Data definition: A DBMS allows definition, removal and modification of data

structures in the database.

18
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• A DBMS also facilitates to insert, modify, retrieve and delete data from the

database.

• A DBMS is also responsible for the database administration. Administration

means registering and monitoring users, enforcing data security, such as who can

access what, maintaining data integrity, concurrency control and information re-

covery if the system fails.

A database along with its model and its database management system is collectively

called as a database system [25].

2.1.1 DBMS Architecture

In classical DBMS architecture every user of the database has an abstract view of the

data and certain details are hidden from the users such as how the data is physically

stored. This feature of a DBMS enables the users to manipulate the data without

worrying about where and how the data is actually stored. A database can be defined

at three levels; such as internal, conceptual and external levels therefore it is named

three-level DBMS architecture. Figure 2.1 shows the three levels of DBMS architecture.

 

View 1 View 2 View n 

Conceptual schema 

Internal schema 

Database 

External level 

Conceptual level 

Internal level 

Figure 2.1: Three-level DBMS architecture
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• Internal level is also called as physical level because it deals with the physical

representation of the database on the machine (computer). This is the lowest

level of data abstraction, which describes physical storage of the data and its

organization on the storage medium.

• Conceptual level is also called as logical level as it deals with the logical structure

of a database. It explains the data and relationships between the data, which is

stored in the database. This level is not concerned with any physical organization

of the data on the storage medium.

• External level deals with the user’s view of the database, therefore it is also

called as view level. As most of the users and programs do not require the whole

data stored in the database. This level permits data access in a user’s customized

manner. In this way, it provides a powerful security mechanism by hiding some

parts of the database from certain users.

There are different ways to query a database, such as web applications, web forms or

even direct access to the database from a program. DBMS also offers command-line

interaction for users such as programmers and database administrators. A database

driver is required in order for programs to communicate to DBMS. The database drivers

handle the requests and send them to the database. Once the query is send to DBMS,

the query is analyzed by the query evaluation engine, then database management system

applies the query and the desired data is retrieved from the physical data storage.

On the other hand a DBMS also has a concurrency control mechanism to maintain data

consistency in situations such as manipulation of the same data by more than one user at

the same time. Importantly a DBMS also has a recovery manager that contains several

mechanisms to restore the database in case an abrupt system crash occurs. Figure 2.2

shows architecture of a DBMS and the different ways a database can be queried.

2.2 Types of databases

In general, databases can be categorized into relational and non-relational databases.

The main differences are highlighted in the following sections.

2.2.1 Relational database systems

Edgar Codd first introduced a relational model for the representation of data in 1970

[26]. A relation represents the form (structure) in which the data is stored [27]. A
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Figure 2.2: DBMS architecture along with different ways of querying the DBMS

relation could be an excel sheet or a mysql table. In a relational database data is usually

stored in tables. Every relation has a heading and a body. A set of attributes defines

the heading and the body is a set of tuples (rows) that corresponds to that heading. A

heading represents the columns and a row in the table denotes a tuple. Relations follow

the set theory, which means every row has to be different from each other in at least

one attribute value (there must not exist identical tuples in a relation). In a standard

relational database, tables also have relationships with each other. The following types

of relationships exist between relations in a database:

• One to one

If one element from relation 1 (R1) is associated to at most one element from

relation 2 (R2) and vice versa as shown in Figure 2.3.

• One to many, many to one

A relation is said to be one to many or many to one if an element from R1 is

associated to many elements of R2 whereas one element from R2 may have a

relation with at most one element from R1 as shown in Figure 2.3.
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• Many to many

A type of relationship in which an element from R1 has zero to many relations with

elements from R2. The same holds for elements from R1 as shown in Figure 2.3.

 
  

a)    
 
 

 
 
 
              b) 
 
 
 
 

 
    
             
             c) 
 
 
 

	
	

TableA	 relation	 TableB	1	 N	

TableA	 relation	 TableB	1	 1	

TableA	 relation	 TableB	N	 M	

Figure 2.3: Shown are two representations of ERD. The figure also shows different
types of relations between different tables (entities). (a) 1:1 relation (b) shows a 1:N
relation between two tables and (c) represents N: M relationship between the tables. In
each case the lower representation is from a DBMS where a primary key has a yellow

key sign and foreign key is shown with pink diamond

2.2.1.1 Constraints

In relational databases constraints are used to define the domain of an attribute or a

tuple. For example, a constraint on an integer attribute can restrict the integer to values

between 1 and 30 only. This is one of the methods to implement business rules in the

database. The two main rules for a relational model are referential integrity and entity

integrity. These rules are implemented with the help of keys as explained below:
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Keys

Keys are used to identify records (tuples) in a table

• Primary keys A primary key is used to identify a tuple in a table uniquely. This

could be a single attribute or combination of more than one attribute. This implies

that no two tuples may have the same values for this attribute(s). In order to avoid

duplicates a relation should always contain at least one primary key attribute. One

of the constraints on the primary key is that it can never have NULL value because

this leads to loss of the uniqueness. In short, a primary key is the minimal set of

attributes that identifies a certain tuple in a relation. Primary keys can be used

for indexing to allow faster access to the desired records.

• Foreign key A foreign key is used to build a relationship between different rela-

tions (tables). A foreign key is an attribute in a relation that matches the primary

key attribute of the other relation. A tuple from one relation may have reference

to one or several tuples in another relation with the use of a foreign key.

2.2.1.2 Entity relationship model (ER model)

An entity relationship model (ER model) is a data model for presenting a database in

a schematic way. In case of a relational database, diagrams are created to design tables

(entities) and their relationships to other tables (entities) , these diagrams are called

entity relationship diagrams (ERD) [28]. An example of a simple ERD is shown in the

Figure 2.3.

One of the important aspects of relational databases is the minimal duplication of data,

which makes them very consistent and efficient in certain transactional and concurrent

update operations. However relational database schema having to be predefined and

are only vertically scalable. It lacks the horizontal flexibility like NoSQL databases.

Additionally they are inefficient for the storage of large and sparse data (as empty

values also take space).

2.2.2 Non-relational database systems

As NoSQL database system was used in this thesis for the storage of unstructured

data (explained later in this chapter). This section provides brief overview on the non-

relational databases. They are also known as NoSQL databases. Few examples of NoSQL

database are MongoDB, Neo4j, DocumentDB, Cassandra, Coachbase and HBase. Typ-

ically they can be categorized into four groups: document stores, column stores, graph
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stores and key-value stores. In essence a NoSQL database is used for the storage of

data without predefined explicit structures or for the storage and retrieval of data that

is modeled in a non-tabular relations such as that used in relational databases. Some of

the reasons for using NoSQL databases are:

• Simple design

Mostly no need to join many tables together for a query like relational databases.

• Horizontal scalable

NoSQL databases can easily scale horizontally to the clusters of machines. Data is

automatically spread across servers without requiring application changes (auto-

sharding).

• Unstructured data

It can incorporate unstructured and semi-structured data, which means it is flex-

ible to accommodate any new type of data at any point and is not disrupted by

structure changes.

• Speed

Due to the use of JavaScript object notation (JSON) document-like data struc-

tures, many operations are faster in NoSQL than relational databases, as it does

not require joining tables (but this is achieved at the cost of space because of data

duplication). In fact, joins are not supported by most NoSQL databases.

• Cost

Opposed to relational database systems, which rely on expensive servers, and

storage systems, most of NoSQL databases usually use clusters of cheap servers.

Additionally many NoSQL databases are open source and therefore free.

2.2.2.1 Types of NoSQL databases

NoSQL is a family of databases that are all non-relational. Broadly there are four types

of NoSQL databases:

1. Key-value database systems

These databases stores key values as pairs. In case an update is required, the

entire value of a key has to be changed, as usually there are no fields to update.

It is easy to store but could limit the complexity of queries. Examples are: Redis,

Dynamo, MUMPS and MemcacheDB.
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2. Graph database systems

The concept of these databases is same as of typical graphs in computer science

terminology. They consist of edges and nodes. Nodes as well as their edges can

store additional properties like key-value pairs. These databases lack scalability,

as generally they require all data to be on one machine. Some examples of graph

based database systems are Neo4j, OrientDB and InfiniteGraph.

3. Column database systems

Column based databases stores all the values of a particular attribute together on-

disk, which makes retrieval of a big amount of a specific attribute fast. This could

be useful when analytical such as range queries over a specific field are required.

Some of examples of column based NoSQL databases are HBase, Cassandra and

Accumulo.

4. Document database systems

Records are stored as documents in these databases. A document can be a key

value pair. Keys are always strings, and values can be stored as Booleans, numeric,

strings, arrays, and other nested key-value pairs. Each document has its own

structure; they are not required to have the same structure like rows in a relational

database table. Examples of document based database systems are MongoDB,

Cloudant, Apache CouchDB, and Clusterpoint.

Some of the drawbacks of NosQL databases include large amounts of data redundancies

due to the lack of relationships. Additionally NoSQL databases are based on CAP theory

[29], which states that it is impossible for a distributed system to provide all the three

features (given below) at the same time. The three features are

1. Consistency: Same data is visible to all the requests at the same time.

2. Availability: Every request will always get a response regardless if it succeeded

or failed.

3. Partition tolerance: The system is always functional despite failures of part of

the system.

When a user meets two of the three conditions, he fails to achieve third one.
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2.3 Standard workflows for NGS data analysis

This section explains the standard steps taken for the analysis of next generation se-

quencing data. Due to the scope of the thesis, we focus here mainly on mRNA and

sRNA expression analysis workflows as shown in Figure 2.4.

	
FastQ	file(s)	

Quality	control	

Genome/transcriptome	
mapping	

High	quality	Fastq	file(s)	

Read	counts	(per	gene	or	exon	
or	sRNA)	

Differential	expression		
analysis	

Figure 2.4: The main steps of the NGS (RNA-seq and sRNA-seq) analysis involves
mapping of the FastQ files to the reference genome or transcriptome (sRNA-ome),

followed by DE analyses for genes and/or exons or sRNAs.

2.3.1 Raw data (FASTQ)

Next generation sequencing data analysis starts with the raw data obtained from a

sequencer, which is usually in FASTQ format. A FASTQ file stores both a biological

sequence as well as its corresponding sequencing quality scores.

The FastQ format consists of 4 lines per read as shown in Figure 2.5,

• First line corresponds to the read name.

• Second line has the biological sequence represented as strings of A, C, G and T.

• Third line begins with a ‘+’ and can be followed by the same sequence identifier

as in first line or can also be used for any optional description.

• Forth and last line for the read corresponds to the sequencing quality of each base

in the read.
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A base quality score is the probability that the corresponding base is called in-

correctly during sequencing. Phred quality score is used to represent these base

qualities, and these probabilities are used to calculate overall sequencing quality.

Figure 2.5: Shown is the fastq format, which is output from many sequencers, first
line corresponds to the read name.second line has the biological sequence, third line
begins with a ‘+’ and can be followed by any optional description and forth line quality

scores of each base in the read.

2.3.2 Quality control (QC)

One of the important and basic steps in NGS data analysis is quality control of the raw

data. Before drawing conclusions from the data, it is important to know if the data can

be trusted at all. There could be many issues with the data including both biological

and technical errors such as mishandled samples, incorrectly followed protocols, sample

contamination, high biological variance and sequencing errors. To this end various tools

(FastQC) and methods (principal components analysis) have been developed.

2.3.2.1 FastQC

FastQC [30] is a freely available tool and can used to determining sequencing quality.

As mentioned before a fastq file has the Phred quality scores that represent the prob-

ability of incorrectly calling a base. FastQC takes this file as an input and produces

a basic summary that includes the quality encoding used by the sequencer, total se-

quences, sequences flagged as poor quality and sequence length. FastQC also provides

many diagnostic plots for each input file (sample) such as per base, per tile and per se-

quence quality scores, per base sequence content, sequence length distribution, sequence

duplication levels, overrepresented sequences (k-mers) and adapter content. All of these

plots provide very detailed information on the quality of the sample file. These plots can

be used to judge the overall quality of a sample. For example, per-base quality scores

are shown for high quality (good) data (Figure 2.6a) and low quality (bad) data (Fig-

ure 2.6b). It is clear crystal that per-base quality drops a lot for the low quality data.

One more example shown in (Figure 2.7a, 2.7b) is the ‘per sequence quality scores’ plots.

These plots helps us to see if a subset of a sample sequences have overall low quality

values. Cases where a major proportion of the sequences in a sample have overall low

quality indicate a systematic problem.
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(a) Good per-base quality (b) Bad per-base quality

Figure 2.6: An overview of the range of quality values across all bases at each position.
For each position a Box-and-Whisker plot is shown. Each base has a certain distribution
of Phred scores from very low (red background), marginal (yellow) and high (green).

(a) Good sequence quality (b) Bad sequence quality

Figure 2.7: Shown are the average quality scores per sequence.

2.3.3 Adapter trimming

Once the QC is done and the data is of enough high quality to be considered for further

analysis, the first step of most NGS analysis is adapter removal. As for library prepara-

tion, adapters are always ligated to every single molecule to be sequenced; therefore the

adapters need to be removed before mapping to the reference genome or transcript-ome.

There are several tools available for the adapter trimming including Trimmomatic [31],

skewer [32], Trim Galore [33] and cutadapt [34]. All of these tools can be used for adapter

trimming with different tool specific options, but mostly they vary in their speed and

user friendliness.
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2.3.4 Alignment and counting

The next common step in the analysis of mRNA, as well as sRNA, is the alignment of raw

sequencing reads to the genome or transcript-ome or sRNA-ome. There are many tools

available for the alignment of raw sequencing data such as GSNAP [35], MapSplice [36],

RNA-Seq unified mapper (RUM) [37], Bowtie 2 [38] and STAR [39]. These aligners

output SAM (sequence alignment map) [40] or BAM (the compressed BGZF format of

the SAM file) file(s). The output of aligner has the information on each single read

that is mapped (mapping locations, mapping quality etc) and some aligners also output

the unaligned reads marking them as not aligned. Depending on the tool, the output

can have much more detailed information. For example the output of STAR aligner

produces a summary mapping statistics file (this file has information on the unique and

multi-mapped reads, which could be very useful for quality control) and a SAM file for

each sample. The SAM file has details on the genomic location of every single mapped

reads along with the mapping quality.

Once the alignment is done, the next step is to summarize the mapped reads as counts

for the desired features as sRNA, gene or even exon. The purpose of this is to make the

further downstream analysis easy (that is to have small files with the required informa-

tion only) and also many tools require these counts as input.

2.3.5 Differential expression (DE) analysis

Usually gene and sRNA expression sequencing experiments are performed to check quan-

titative changes in expression levels between different groups such as healthy versus

cancer patients, wildtype (WT) versus knockout (KO) genes or even various disease or

medical states. The purpose of such experiments is to identify genes or sRNAs that

plays role in a particular condition such as cancer. Raw read counts can not be com-

pared directly because there could be other factors involved in the difference of expression

changed such as sequencing depth. Additionally to check if the variation is not just by

chance, within group variation should also be considered. There are different methods

already available that can be used to decide whether, for a given sRNA, an observed

difference in read counts is significant or if this could also be seen just by chance due to

random variation. Some of the most widely used methods for DE are edgeR [41] and

DESeq2 [42] that are based on negative binomial (NB) distributions. These methods

can be applied to test differential expression of sRNAs, genes as whole or even at the

exon level.
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2.4 Biological ontologies

It is very common in health registries to have terms that means the same or similar

thing but written differently (e.g. stillbirth and fetal death) [43]. In order to be able

to integrate and compare such data, one would need to know the semantic meanings of

the terms. The field of computer science has established this, by using ontologies. An

ontology define terms, their properties, and their relations. More formally the variables,

concepts and their relationships is called an ontology. There are different ontology based

systems available for biological terms such as the Ontology Lookup Service (OLS) [44]

as shown in Figure 2.8. OLS provides latest biomedical ontologies at a single point

of access. It can be accessed interactively via web interface as well programmatically

through its API.

(a) Parkinson disease ontology example (b) Alzheimer’s disease ontology example

Figure 2.8: Shown are the ontologies for alzheimer and parkinson disease [44]. As
can be seen in both A & B they share the path till neurodegenerative disease in the
ontological order. It would be difficult to obtain both with single search term without
the ontology association, but now one can just search for neurodegenerative disease
and would get both of these diseases in the results and any other neurodegenerative

diseases.

2.5 Principles of supervised machine learning methods

In this thesis we have used supervised machine learning methods for the biomarker

detection in sRNA data and for disease prediction based on exon expression. Therefore

in this section we will summarize some basic principles of supervised machine learning

methods.

Supervised machine learning

Supervised learning is the task of inferring a function from labeled data [45]. In order

to train a supervised learning, a labeled dataset is partitioned into at least two sets,

referred to as training and test data. The training data is a set of pairs; each pair has

an input value(s) and a desired output value. A supervised learning algorithm infers

a function from this training data and then this function is used for predicting output
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for the unseen data also called as test data (has input value but no output value). The

algorithm tries to predict an output for each of these unseen input data based on the

function that was learned from the training data.

An illustration of supervised learning is shown in Figure 2.9. The supervised machine-

learning problem can be either classification (categorical value dependant variables) or

regression (continuous value dependant variables). We used only classification algo-

rithms in this thesis, so we will discuss only about classification.
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Figure 2.9: Supervised learning, the model (green line) is learned based on the 0 and
1 training examples and the unknown instance without a known class label (red circle)

is classified as 0 according to the model

2.5.1 Classification

When the task of a machine-learning algorithm is to predict a category of unseen data

based on the learned function from the training data, the task is termed as classifica-

tion. When there are only two classes, it is called a binary classification or two-class

classification, and when there are more then two classes to be predicted, this is known as

multiclass classification. Handwritten digit recognition is a good example of multi-class

classification, in which the objective is to assign each input vector (pixels from an image

of a handwritten digit) to one of a finite number of discrete categories (0,1,...,9).

2.5.1.1 Biological example

As an example, assume a set of N samples coming from healthy and individuals afflicted

with a disease. Each sample has M features. The idea is to use these samples and design

a system that predicts the condition of new samples (disease or healthy) that do not

belong to the initial set of samples. A machine learning classifier is a type of algorithm

that has been specifically designed for a task just as the one explained above, determine

whether a new sample belongs to a set of mutually exclusive classes: healthy or diseased.
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Machine learning algorithms are rules that need to be adjusted or trained based on the

presence of evidence, which in this case could be N samples coming from previously

attended healthy and patients afflicted with a disease. Once trained, the algorithm is

ready to be tested on the new patients just referred; where the test consists of making

a prediction: healthy or diseased. This last procedure is referred to as testing phase

because the tested patient does not belong to the initial set of N patients. Some of

the most widely used classification algorithms are support vector machines (SVMs) [46],

K-star (K*) [47] and random forest [48].

2.5.1.2 Random forest

Random Forest is an ensemble method [48] based on the classical decision tree, where

many decision trees (the forest) are produced. Each tree is given a randomly sampled

subset (with replacement) of the data - hence the name random forest. As in real life

the more the number of trees in a forest, the more robust is the forest. Similarly in the

random forest classifier, increasing the number of trees tends to increase the accuracy.

In brief random forest selects k features (randomly) from m total number of features. It

constructs a decision tree on each subset of data. The above two steps are repeated in

order to create n number of trees. At the end, each decision tree provides class prediction

for a particular input, and random forest considers the highest voted predicted class for

that instance. An illustration of random forest algorithm is shown in Figure 2.10.

	
Training	dataset	(m	features)	

Subset	(k	features)	 Subset	(k	features)	 Subset	(k	features)	

Tree	 Tree	 Tree	

Random	forest	prediction	(majority	vote)	

Figure 2.10: Illustration of random forest algorithm : Random forest selects k features
(randomly) from m total number of features. It constructs a decision tree on each subset
of data. The above two steps are repeated in order to create n number of trees. At
the end, each decision tree provides class prediction for a particular input, and random

forest considers the highest voted predicted class for that instance
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Feature importance

In many applications, it is not only important to obtain good classification performance,

but also to determine the features that were relevant the most to make a prediction.

Resorting once again to the example given above, a question to answer would be: what

are the genes that helped the machine-learning algorithm determine whether a person

(sample) is healthy or afflicted with a disease? There is extensive literature in the field

of feature selection in the statistics and machine learning, but for the purposes of this

thesis, a very common strategy to take is to train a classifier on several rounds using

subsets of the original feature set m and evaluating an optimality function, such as

the misclassification error. Then, after trying out all possible feature combinations, the

selected subset of most important features is the one that optimized the misclassification

error. In the case of random forest classifier the feature selection method is embedded

within the training procedure, so no additional processing is required. The importance

of a feature is usually estimated by computing the information gain of including an

additional feature mi into the classifier or by means of the gini index. In a real-life

application, a threshold is set so that the only features kept to train the classifier are

those whose information gain or gini value lies within the threshold.

2.6 Thesis related existing resources and research

This section describes the existing work that is related to this thesis. In addition this

section briefly mentions the available resources that were used in this thesis.

2.6.1 sRNA-seq analysis tools

sRNA-seq is the current method of choice for the quantification of the genome-wide

sRNA expression landscape. There are several local, as well as server-based, sRNA-

seq analysis workflows available that differ in their analysis portfolio, performance, and

user-friendliness. Some of the sRNA-seq analysis tools are described in this section.

2.6.1.1 sRNA workbench

sRNA workbench [49] is an interactive pipeline for the quantification of sRNAs. This

tool is able to perform quality checking and normalization of sRNA samples and to

detect differentially expressed sRNAs. Additionally it can also be used for the detection

of novel miRNA in the sequencing data.
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2.6.1.2 CAP-miRSeq

CAP-miRSeq [50] is a tool that can be used for the quantification of known and novel

miRNAs including variant calling and subsequent differential expression analysis. It also

supports data visualization.

2.6.1.3 omiRas

omiRas [51] is a web server that supports the quantification, differential expression and

interactive network visualization of ncRNAs. It provides users with static annotation

results such as mapping statistics, quantification tables, read length distribution, differ-

entially expressed sRNAs between differential experimental groups and also provide an

interactive network of user selected miRNAs and their target genes.

2.6.1.4 mirTools 2.0

mirTools 2.0 [52] is a web server that can profile different ncRNAs such as snoRNA,

snRNA, tRNA, rRNAs and piRNAs. It also supports functional annotation of mi-

croRNA targets genes. Additionally this tool not only supports the detection of novel

microRNAs but it also detects novel piRNAs. On the other hand, mirTools 2.0 can be

used for the identifying differentially expressed ncRNAs between experimental groups.

2.6.1.5 MAGI

MAGI [53] is another web application for the quantification and differential expression

of miRNAs as well as for the prediction of miRNA target genes. MAGI provide results

in an interactive web report. Additionally MAGI reports many diagnostic plots that

can be used for quality control.

2.6.1.6 Chimira

One of the latest and widely used tool that allows for the detection of miRNA edits and

modifications is Chimira [54]. It also supports differential expression of miRNAs.

2.6.1.7 sRNAtoolbox

Another recent addition to the sRNA-seq web applications is sRNAtoolbox [55]. sRNA-

toolbox is a set of interconnected, independent modules for the analysis of sRNA-seq
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data. It allows for the expression profiling, differential expression, target gene prediction

and visual exploration of sRNAs. It also supports the identification of non-host organ-

ism reads by performing a blast search of all the unmapped reads (reads not mapped to

the host organism). All of these modules can be used independently as well.

2.6.2 sRNA expression databases

sRNA annotation databases and knowledge repositories are freely and publicly avail-

able for quite sometime. The most widely used ones are miRBase (miRNA), piRNA-

Bank (piRNA), snoopy (snoRNAs) and ensemble (snRNAs, snoRNAs, and rRNAs), but

there are very few repositories to store sRNA expression data. Recent additions are

miRmine [56], DASHR [57], miratlas [58] and YM500v3 [59].

2.6.2.1 miRmine

miRmine [56] is publicly available database of human miRNA expression profiles. miRmine

contains the expression profiles of different publicly available miRNA-seq datasets and

information about the different miRNAs expression profiles across different tissues and

cell lines. Users can search for a single or multiple miRNAs across a particular tissue or

a cell line. Additionally users can browse for all the expressed miRNAs in a tissue or

cell line.

2.6.2.2 DASHR

DASHR [57] incorporates human small RNAs and their annotation. DASHR provides

expression profiles of different ncRNAs (miRNAs, piRNAs, snRNAs, snoRNAs, scRNAs,

tRNAs and rRNAs) across different human tissues. To date DASHR has 48000 sRNAs,

82% of them are expressed in one or more tissue types.

2.6.2.3 Miratlas

Miratlas [58] incorporate miRNA expression profiles and modifications from already

published datasets along with its description (could be any associated term such as

disease or tissue). Users can browse expression profiles by the description or by the

miRNA name. Additionally users can search a dataset and download the expression of

all miRNAs in that particular dataset.
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2.6.2.4 YM500v3

YM500v3 [59], is a database that contains expression profiles of miRNAs, snRNAs, snoR-

NAs, sncRNAs, piRNAs and RFs (tRNA-derived fragments) for various cancer studies.

YM500v3 hosts over 11000 cancer samples. It only supports cancer datasets and no

other disease types. Varieties of search and analysis options are available on YM500v3

web server including a search on sRNA for expression profile, search by cancer name

and survival analysis options.

2.6.3 Mutually exclusive splicing of exons

Mutually exclusive splicing of exons (MXEs) is a mechanism of functional gene and

protein diversification with important roles in organismal development and diseases.

The current knowledge of human mutually exclusive exons (MXEs) is very limited, that

is to say that currently in human the number of MXEs range from 118 [60] to at

most 167 cases [61]. Accordingly, the human genome annotation (GenBank v. 37.3)

contains only 158 MXEs in 79 protein-coding genes. Although only a limited number

of human MXEs is reported to date, MXEs have been shown to play a role in many

essential human genes such as in SNAP-25 as part of the neuroexocytosis machinery [1].

Additionally mutations in MXEs have been shown to cause diseases such as Timothy

syndrome (missense mutation in the CACNA1C gene) [2, 3].

2.7 Goals of the Thesis

This thesis covers a very broad range of bioinformatics methods from analysis pipeline

development to the data integration and development of expression atlas (database and

web application development). In addition, this thesis shows very nice usage of bioin-

formatics analysis for the genome annotation and predicting diseases based on the ex-

pression profiles. In brief the main goals of the thesis are discussed below.

2.7.1 Online analysis of small RNA deep sequencing data (Oasis)

As discussed in Section 2.6.1 many good web platforms for the analysis of sRNA-seq

data exist, but some important analysis features still needs to be integrated. For ex-

ample, no current web application allows for the identification of biomarkers of disease

via integrated machine learning modules. Additionally, except sRNAtoolbox explained
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in Section 2.6.1.7, there is currently no web application that allows detection of viral

and bacterial infections in sRNA-seq samples, and detection of potential cross-species

miRNAs.

Many of the aforementioned tools in Section 2.6.1 predict novel miRNAs, but none of

these tools store this information (integrated into the miRNA-ome), which means this

information is lost and the same miRNA might be predicted several times in different

datasets. Additionally the user would have to define a local name according to their

research as most of the prediction algorithms assign some random number with the ge-

nomic coordinates of the predicted miRNAs.

Finally, current sRNA-seq web services do not allow for automated analysis or batch

submission of jobs via an API, a feature that could greatly facilitate analysis workflows

for frequent users.

To this end, this thesis aims to develop an analysis pipeline for sRNA-seq data. The

goal is to provide many different sRNA-seq analysis options over the web on a single

plateform, such as quantification of different sRNA species, prediction and storage of

novel miRNAs with proper universally accepted nomenclature, identification of infec-

tion or contamination, differential expression analysis between different conditions of an

experiment, identification of biomarkers for disease in the sRNA-seq data. User should

be able to perform all these different analysis over the web application, as well as should

be provided with API for automatic submission.

2.7.2 sRNA expression atlas (SEA)

As discussed in Section 2.6.2 there are some new and functionally well equipped additions

to the sRNA expression profiles databases. Although there are still certain limitations

of the sRNA expression repositories mentioned in Section 2.6.2. For example, the only

database that supports more than one organism is miratlas (human and mouse), the

rest focus on human sRNAs only. Two of the four mentioned databases (DASHR and

YM500v3) have information on five types of sRNAs whereas the other two have infor-

mation only on miRNA. DASHR and YM500v3 have information on different sRNA

species but they are limited to human only or to a particular disease in the case of

YM500v3. Except for YM500v3 no other databases stores expression profiles of novel

predicted miRNAs. None of these databases provide search by ontology, for example to

search for “neurodegenerative disease” and get all the samples in the database that are

related to the term such as Alzheimer, Huntington or Parkinson’s disease as explained

in Section 2.4.

Moreover, the number and scope of the currently available sRNA-seq data repositories

do not reflect the recent attention that sRNAs has obtained in the recent years.
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Considering these shortcomings, one of the main goals of this thesis is to build an sRNA

expression repository to store sRNA expression profiles along with the experimental de-

tails such as organism, tissue, cell type, disease, age, gender and technical details like

sequencer, kit and barcode etc. Additionally to build a web application that allows

for the search of known and novel small RNAs across different organisms using stan-

dardized search terms and ontologies. The user should be able to query and visualize

sRNA expression profiles across different tissues, cell types, and diseases in an interactive

manner.

2.7.3 Mutually exclusive splicing of exons

Despite the important roles of mutually exclusive splicing in organismal development

and diseases as mentioned in Section 2.6.3, only limited number of human MXEs is

reported to date. To this end, the third major goal of this thesis is to build a method

to predicted and subsequently validate mutually exclusive exons (MXEs) in the human

genome.
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Results, Discussion and Outlook

In this chapter we will explain the development of Oasis 2 (online analysis of small RNA-

seq data) including different modules such as sRNA detection, differential expression,

classification and search modules as well as the development of small RNA expression

atlas (SEA) database system and the front end for the end users. Additionally this

chapter also explains the prediction of mutually exclusive splicing of exons (MXEs) and

their role in disease and development.

3.1 Online analysis of small RNA-seq data (Oasis 2)

One of the main applications developed, as part of this thesis is Oasis (online analysis

of small RNA deep sequencing data) and its second major release Oasis 2. Oasis 2 is a

web application that allows for the fast and flexible online analysis of sRNA-seq data.

Oasis 2 is intended for the end users in the laboratories, providing an easy-to-use web

frontend including video tutorials, demo data, and best practice step-by-step guidelines

on how to analyze sRNA-seq data. In this section we will highlight the main features of

Oasis 2.

3.1.1 Oasis 2’s module

There are four main modules of Oasis 2 as shown in Figure 3.1, sRNA detection, differen-

tial expression, classification and Oasis-DB module. sRNA detection is the first analysis

module of Oasis 2, and the rest of the three modules are dependant on the output of

the sRNA detection module. It examines sample qualities, as well as quantifies known

and novel sRNAs for each submitted sample. Oasis 2 allows for the upload of raw or

39
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compressed FASTQ files. Once the data is submitted to Oasis 2’s sRNA detection mod-

ule. It performs several alignment steps and quantify sRNA molecules in the input data

(sample). The sRNA detection module produces several diagnostic plots as explained in

Section 3.1.3 and counts for each molecule of sRNA. These counts can be used as input

to DE module to perform differential expression analysis between different experimental

conditions (such as healthy and cancer patients) and to classification module to identify

sRNA molecules that are distinguishing the two experimental conditions.

Figure 3.1: Oasis 2 modules and workflow : There are four main modules of Oasis
2, sRNA detection, differential expression, classification and Oasis-DB module. Oasis
2 allows for the upload of raw or compressed FASTQ files. Once the data is submitted
to Oasis 2’s sRNA detection module. It performs several alignment steps and quantify
sRNA molecules in the input data (sample). These counts can be used for DE and
classification modules. During the sRNA detection module Oasis 2 also predicts novel

miRNAs which are stored in Oasis-DB and can be searched later on.

Key features of Oasis 2 are:

• Multi-step alignment: Alignment of the input sample’s reads is split into several

steps. The reason for splitting alignment into several steps such as to miRNAome,

sRNAome, genome, pathogen genomes is to assure maximum annotation.
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• Speed: The new sRNA detection workflow is faster compared to it’s predeces-

sor Oasis as well as the latest additions for sRNA-seq analysis tools as shown in

Table 3.1.

• Model and non-model organism support: It supports the analysis of any

model and non-model organism. In case the user’s organism of interest is not one

of the 14 genomes available in Oasis 2, reads can be aligned to all novel predicted

and known miRNAs.

• Predict novel miRNAs: It supports the prediction of novel miRNAs in the input

samples using miRdeep2 [62]. It passes these novel miRNAs to Oasis 2’s ”Search

module”, which stores these in Oasis-DB with universally accepted nomenclature.

• Infection or contamination detection: One of the most useful features of

Oasis 2 is the support to detect pathogenic contamination or may be potential

pathogenic infections in the sRNA-seq samples.

• DE module: The second module of Oasis 2 is the DE Analysis module. It calcu-

lates differential expression of sRNAs between different experimental conditions,

makes target annotation and prediction for miRNAs, and lastly provides functional

analyses of miRNAs as exlained in Section 3.1.4. Apart from the DE analysis be-

tween two groups, Oasis 2 also supports multi-group comparisons as well as can

take into account the covariate information (such as age and gender) if available.

Additionally it provides the users with downloadable, interactive web reports.

• Classification module: The third module of Oasis 2 is the classification module.

In order to detect sRNA based biomarkers a binary classification using random

forest is applied to the sRNA expression profiles. Oasis 2 classification module is

augmented with sample balancing and feature pruning routines and it reports all

the four possible models for a single analysis such as balanced/unbalanced with

features optimized/non-optimized. The user can select any combination of the

models in the interactive web report. This module also provides end user with

downloadable and interactive web reports, which includes classifier’s performance

measures, feature importance along with predicted and known miRNAs as well as

their targets that allows for the functional analyses of miRNAs as explained in

Section 3.1.4.

• Search module: The fourth module of Oasis 2 is the search module. As explained

above that Oasis 2 predicts novel miRNAs using mirDeep2 [62]. In order to enable

users to search and retrieve these prediccted miRNAs, Oasis-DB was developed.

Oasis-DB not only stores novel predicted miRNAs by Oasis 2, but it also stores all

miRBase [63] miRNA entries. In case a miRBase update (new release in future)
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contains a miRNA with an identical location of a predicted miRNA in Oasis-DB, it

will be automatically linked to its corresponding miRBase entry. Currently Oasis-

DB contains over 700 (769) high-quality predicted miRNAs across 14 organisms.

The user can search by the mature/precursor id, precursor sequence, mature se-

quence and reference genome or their combination. The search results shows the

mature and precursor IDs of the miRNAs, their type (novel or known), the mature

sequence and its genomic coordinates (chromosome, start, end and strand), the

structure file (for novel miRNAs only) and the organism. Additionally the user can

select a miRNA for more details. For novel miRNAs, a new page with additional

details such as precursor sequence and its genomic coordinates and structure of

the predicted novel miRNA (produced by mirDeep2 [62]) is shown, where as for a

known miRNA, Oasis 2 redirects the user to the miRBase record for that miRNA.

• Batch job submission (API): Oasis 2 provide users with an API to submit

multiple jobs automatically (via programs) or to submit jobs from remote systems.

An API is available for the sRNA detection, DE and classification modules.

Demo Dataset Oasis 21 Oasis1 MAGI Chimira omiRas mirTools 2.07

AD (287 GB) 8 h31m50s 12h29m12s NA2 NA4 NA5 NA

Psoriasis (48 GB) 1h35m17s 5h49m4s 48h3 3h3m12s NA6 NA

Renal Cancer(9 GB) 31m43s 1h8m41s 8h3 47m11s 9h31m NA

Table 3.1: Runtime comparison of different sRNA-seq web applications: 1Run time
estimate includes the data compression by OasisCompressor and decompression on
Oasis 2 server side, the sRNA Detection, DE Analysis, and Classification.2 MAGI failed
to upload all AD files to server, may be it has a problem with the format or quality of
one of the files. 3 These values were obtained from the MAGI website. 4 We could not
estimate runtime for the AD dataset by Chimira as it can not analyse more than 25
files at a time. 5 We were not able to upload all AD samples to omiRas. 6 omiRas http
uploading error. 7 As maximum file size to upload for mirTools 2.0 is limited to 30 Mb,
we therefore were not able to estimate its runtime on these datasets. Table modified

from Article A of this thesis.

All these features are explained extensively in the Article A of this thesis, therefore in

this section we will focus on some of the secondary yet important features such as data

compression, QC reports (outlier detection) and enrichment analysis of Oasis 2.

3.1.2 OasisCompressor

As Oasis 2 is a web application and the input for the sRNA detection module is raw se-

quencing data from the sequencer that usually are FASTQ file(s) and their size can vary

from few megabytes (MBs) to gigabytes (GBs). Additionally some experiments have

many samples (fastq files); therefore, depending on the size of this data, the upload of

data to Oasis 2 server can take from minutes to hours. Extended uploads can easily
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fail due to network connection issues. To this end we developed a desktop application

(provided by Oasis 2) called as OasisCompressor as shown in Figure 3.2 that extracts

quality metrics and compresses the read information from FASTQ files. The data com-

pression depends on sequencing depth and sample (fastq file) entropy. For example,

OasisCompressor reduced the size of Alzheimer disease dataset [64], that has 70 FASTQ

files from 287 GB to 0.33 GB, achieving around 800 fold compression of the data. In

brief we used a hash table to store the sequence with its frequency in the sample, where

sequence is the key and its frequency (count) is the value. Depending on the entropy of

the data the compression rates are different but as small RNA are short and repetitive

sequences, the compression rate is mostly very high. For example psoriasis dataset [65]

with 20 samples was reduced from 48 GB to 0.19 GB. Similarly renal cancer dataset [66]

with 22 samples was reduced to 0.15 GB from 9 GB. Additionally, OasisCompressor

also takes care of the sequencing quality information to be passed to the server, that

is required by FASTQC [30]. The following quality information are extracted from the

raw fastq files while compressing and then sent to the server as precomputed statistics:

• Mean and median quality score for every position in the sequence.

• Frequency of quality scores in the whole FASTQ file.

• Quantile percentiles of quality score for every position in the sequence length:

Lower quartile (0.25), upper quartile (0.75), 10th quartile (0.1), and 90th quartile

(0.9).

Figure 3.2: Two mendatory fields are the selection of FastQ files by pressing on
the ‘Input file(s)’ button and selection of the output directory, an optional field is the

selection of number of parallel processes for OasisCompressor



Chapter 3 Results, Discussion and Outlook 44

In order to produce diagnostic plots (through FASTQC) for the Oasis 2 compressed data,

FASTQC was customized to be able to take the already calculated quality matrices and

plot them.

3.1.3 Quality Control (QC)

Quality assessment of sRNA-seq samples is the most critical step for performing down-

stream analyses, as keeping low-quality samples in the downstream analyses (Classifica-

tion and DE Analysis) might generate poor or not trustworthy results. Therefore all the

analysis modules of Oasis 2 produce certain diagnostic plots and statistics such as map-

ping percentages, unique mapping percentages, percentages of different sRNA species

in the sample such as miRNA, piRNA and snoRNA and principal component analysis

(PCA) plots. All these QC plots, statistics and sRNA expression profiles are presented

as interactive downloadable reports to the end user in the form of html pages as shown

in Figure 3.3.

Figure 3.3: Browser view of the primary output of sRNA detection module. The
different sub-pages with different result views can be reached via the menu marked with
a red square. Shown in the table are the total number of reads, percentage of trimmed
reads (adapter trimming), and percentage of uniquely aligned reads per sample. The
user can click on a particular sample in the table and browse the sample specific QC

plots and sRNA counts

Oasis 2 produces a comprehensive report on the QC of all the samples at different level.

Some of the main diagnostic plots produced by Oasis 2 are explained below :

• Principal component analysis (PCA) plot for all samples based on sRNA expression

profiles.

• Interactive bar plots for each sample to show how many reads are filtered for being

too short or too long based on the minimum and maximum read length filter.
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• Interactive bar plots for each sample to show percentage/number of reads mapped

per sRNA species such as miRNA, piRNA, snoRNA, snRNA and rRNA.

• Interactive bar plots for each sample to show initial total number of reads, num-

ber of reads after adapter trimming and length filtering and number of uniquely

mapped reads to the reference genome.

• PCA plots for different sRNA species (miRNA, piRNA, snoRNA, snRNA and

rRNA) using expressions of read belonging to a particular sRNA species.

• All the plots produced by FASTQC for each sample such as per base sequence

quality, per sequence quality scores, per base sequence content, sequence length

distribution and k-mer content.

• PCA plots for all samples in DE and classification modules colored by groups to

detect outliers in the data.

An example of Oasis 2 QC is shown in Figure 3.4. The Psoriasis dataset [65] seems to

contain an outlier (SRR330860 PP) and a mis-labelled (SRR330866 PP) sample. The

removal of these two samples from the Psoriasis dataset increased the classification

accuracy from the AUC of 0.9 to 1 and increased the number of significantly DE miRNAs

from 195 to 256 cases, providing strong evidence for the utility of Oasis 2’ QC plots.

3.1.4 Functional enrichment analysis

In order to make sense from a list of sRNAs that are differentially expressed or potential

biomarkers, functional enrichment analysis is required. To this end both DE and clas-

sification modules of Oasis 2 enable users to perform functional enrichment analysis for

miRNAs. These analysis can be performed on the fly from the interactive web reports

that the user obtained from Oasis 2’s DE or classification modules. Currently Oasis 2

supports functional enrichment analysis for miRNAs based on their gene targets. This

feature of Oasis 2 allows the investigation of specific biological functions for selected

miRNAs. In order to perform functional analysis the user has to select a single or mul-

tiple miRNAs, choose target types (only validated targets, predicted targets or both)

and lastly enrichment analysis tool(s) mentioned below. Currently Oasis 2 supports the

following enrichment analysis tools:

• gProfiler : [67] Provides users with enriched gene ontology (GO) categories,

REACTOME and KEGG pathways, TRANSFAC regulatory motifs, Human Phe-

notype Ontologies, BioGRID protein-protein interactions and CORUM protein

complexes for the targets of selected miRNAs.
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Figure 3.4: Shown is the PCA plot for sRNA Psoriasis data [65]. PCA sample
distances of psoriasis (green) and control (blue) is shown. (A) In this PCA an out-
lier sample (SRR330860 PP) and a potentially mis-annotated (SRR330866 PP) can be
seen. (B) PCA of psoriasis and control samples without misclassified/outlier samples.
Removal of the aforementioned two samples increased the number of significantly (ad-
justed p-value <0.1) DE miRNAs from 195 to 256 cases and increased the AUC from
0.9 to 1 in the classification module, providing strong evidence for the utility of Oasis

2’ QC plots. Figure taken from Article A of the thesis

• Genemania : [68]: Provides users with enriched GO categories and additionally

it also returns a protein-protein network, showing the protein products of the

selected gene targets and how they associate with each other.

• STITCH : [69] For the the gene targets of user selected miRNAs, STITCH com-

putes protein-protein networks and generate a single image of all the interacting

proteins. Additionally it also includes small molecules, drugs and ATPs associated

with the target proteins as well.

• STRING : [70] Like STITCH it also computes protein-protein networks and

present it as a single image for all the interacting proteins.

• DAVID : [71, 72] An enrichment test is performed for all target genes, us-

ing various functional annotations (GO categories, KEGG pathways, BIOCARTA

pathways, protein domains etc).
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In brief, we developed Oasis 2, a web based application for the fast and flexible anal-

ysis of sRNA-seq data. Its major features include sRNA detection (in any organism),

multivariate DE, classification, functional/enrichment analysis, detection of pathogenic

infections and contamination, search for novel and known miRNAs (14 organisms) and

an API that supports the batch submission of jobs from the command line.

3.2 Small RNA expression atlas (SEA)

This section summarizes Article B of this thesis. This section provides an overview of the

sRNA expression atlas developed in this thesis. The focus is to highlight the technical

details such as architecture of SEA and the workflow for the data integration.

Small-RNA Expression Atlas (SEA) is a web application that allows for the querying,

visualization, and analysis of over 2,500 published sRNA-seq expression datasets. SEA

automatically downloads published sRNA-seq expression datasets and re-analyze them

using Oasis 2. Additionally these sRNA-seq datasets and their respective samples are

annotated with metadata; such as organism, cell line, cell type, tissue, disease, age

and gender. Moreover, the available technical experimental data is also stored in SEA

for each sample and dataset. SEA can be searched for sRNAs that originate from

miRBase [63], ensembl [73] as well as from the repository of novel predicted miRNAs from

Oasis 2 as discussed in Article A of the thesis. The major highlight of SEA is the powerful

ontology-based search, and to our knowledge SEA is the only sRNA-seq database that

supports ontology-based queries as explained in Section 2.4. It currently supports 10

organisms which is far more than the latest sRNA expression based repositories as shown

in Table 3.2, and it is continuously updated with novel published sRNA-seq datasets and

relevant sRNA information from various online resources.

Feature SEA miRmine DASHR miratlas YM500v3

Organisms 10 1 1 2 1

sRNA types 5 1 5 1 5

Samples >2000 304 187 461 >8000*

Novel miRNAs + - - - -

Ontology search# + - - - -

Table 3.2: SEA comparison with other sRNA-seq repositories : Comparison of SEA
with latest publicly available sRNA expression databases based on a list of features we
deem relevant. *Supports mainly cancer-related datasets. # Use of ontological graphs

for the annotation and querying of samples.
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3.2.1 System design

Biological experiments vary in their experimental designs and also some experiments

may have information such as tissue, cell line, disease while others may completely lack

this. Due to this sparse nature of the biological experimental data we opted to use

NoSQL database management systems as discussed in Section 2.2.2. MongoDB was

used to store meta-information of the datasets and samples along with their expression

profiles. Ontologies for organism, cell line, cell type, tissue and disease were stored in

a NEO4J graph database. For sRNA genomic location, organisms and sequence, Oasis-

DB was used. SEA system architecture is shown in Figure 3.5, and the workflow is as

following:

• Data acquisition: SEA acquires raw SRA files of published sRNA-seq datasets

and their primary annotation from Gene Expression Omnibus (GEO) and NCBI’s

Sequence Reads Archive (SRA) repository. A custom script was written in order

to search and download sRNA-seq datasets.

• Meta-information extraction: Raw experimental annotations were obtained

from GEO database in an automated manner. These annotations are textual and

have therefore been parsed with certain keywords to obtain their values such as

disease, tissue, cell line, age and gender etc.

• Manual curation: As explained above, an automated pipeline from GEO gen-

erates annotations. The sample characteristics in the GEO database are highly

unstructured in terms of machine readability and the probability of false positive

and true negative annotation is very high. To this end we developed an applica-

tion with a graphical user interface to make annotations easier and faster for the

manual curation team as explained in Section 3.2.2.

• sRNA-seq analysis: In order to allow for the cross study comparisons (sRNA

expression across datasets), it was important to analyze all the sRNA-seq datasets

with exactly the same parameters and tools. To this end we used Oasis 2 as

explained Section 3.1 and Article A.

• Data integration: Once the datasets were downloaded, analyzed and annotated.

The next step was to integrate them into SEA as shown in Figure 3.6. To this

end an automated pipeline was developed. We took the advantage of Oasis 2’s QC

stats and plots. We only inserted high quality datasets into SEA, for example the

ones that had high mapping percentages (50% of uniquely mapped reads).

• SEA web application: In order to enable users to search for the data stored

in SEA, a web application for the end users was developed. The users can query
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Figure 3.5: SEA system architecture: Raw sequencing data (from SRA) and their
annotation (from GEO) are downloaded. Annotations are processed, normalized and
stored to graph-DB for ontology based search. Raw sequencing data is analyzed with
Oasis 2 and stored to ExpressionDB. SEA search and visualize data using these afore-

mentioned databases.

expression of certain sRNAs across diseases, tissues, cell lines, cell types and even

search for the experiments of their interests as explained in Section 3.2.3.

3.2.2 Annotation tool

We developed an in house tool for the curation of sRNA-seq sample’s annotation. Once

the curator logs in to the system, he/she can see all the datasets that are already

annotated and also the ones that still needs to be annotated. The curator can click on
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Figure 3.6: SEA data integration workflow : Datasets were downloaded, analyzed
and annotated and then integrated into SEA. An automated pipeline was developed
to check the quality of data (based on Oasis 2 QC) and check if the annotations are
marked as complete by the curator. Finally the pipeline stores the datasets in SEA and

notify in case there were some issues.

the dataset to annotate it and standardize/normalize its samples terms such as tissue,

cell type and disease etc. There are several advantages of this annotation tool: it is easy

and faster for the curator to standardize/normalize the terms by connecting them to

ontologies from the drop-down menu as shown in Figure 3.7. It automatically changes

the values for local annotations in case there is a change in global annotation, explained

in Section 3.2.2.1. It visually shows which terms are standardized with green background

and not standardized with red background as shown in Figure 3.7. Additionally this

tool also keeps track of changes by each curator. Lastly the datasets can be marked

as annotated, in order to make them available for search in the SEA database and

application system.

3.2.2.1 Annotation criteria

Since ontology based annotations are at the heart of SEA, in this section we will briefly

outline some basic rules for annotation of sRNA-seq samples.

Annotation rules

• Annotations can be defined as global-level or sample-level annotations. Global-

level annotations are exactly the same for all samples of the dataset. Sample-level

annotations differ among the samples of the dataset. Local annotation does not

override the global one.

• In cases, where there are alternatives for a term annotation, we tried to be as

specific as possible. For example, in case the sample is from breast fibrosarcoma

and the term ”breast fibrosarcoma” is available we will try to annotate it with the
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Figure 3.7: Annotation tool : Shown is an example of one dataset annotation. The
top panel is for global annotation and then are the per sample annotation. As shown
the curator is annotating disease at the global level, the curator is suggested different
ontologies with respect to what is typed in the dropdown menu and can select from it.
The terms such as cell type, cell line that are normalized are green background and has
an ontological key associated with them, where as the terms such as sample group has

a red background color as they are not normalized

same term, although it can be annotated with breast cancer as well i.e. we choose

the term deepest in the ontology tree.

• In cases where the relevant term cannot be found in an ontology, we tried to nor-

malize the terms with synonyms or slightly less specific. The aim was to annotate

as much as possible to have standard terms rather than just textual information.

3.2.3 SEA web application

Once the data was integrated, the next step was to provide a web interface for the end

users around the world to be able to query expression of certain sRNAs across diseases

or tissues and even search for the experiments of their interests. The home page of SEA

is shown in Figure 3.8. SEA has one global search field that can be used to search ex-

pression of particular sRNAs across different or specific tissue(s), disease(s), cell line(s)

or cell type(s). Alternatively it can be used to search for sRNA-seq datasets based on

specific tissue(s), disease(s), cell line(s), cell type(s) or even organism(s). For example

the user can ask questions such as: What is the expression of hsa-miR-100-5p across all

human diseases? Is hsa-miR-200-5p expressed higher in alzheimer’s disease as compared

to cancer? Is the tissue-specific expression of hsa-miR-488-5p conserved in mouse? How

many and which sRNA-seq datasets are available for cancer?

In summary, we developed SEA, a web application that allows for the search, visualiza-



Chapter 3 Results, Discussion and Outlook 52

Figure 3.8: SEA home page: This page shows basic statistics about the SEA data
repository such as total datasets, total samples, number samples with tissue, cell line
or disease information. Lastly it also shows the number of predicted miRNAs (by Oasis
2) that are found to be in the published datasets that is they are expressed in the
published datasets. The barplot shows number of samples per particular tissue, cell

type, disease or organism.

tion and comparisons of known as well as novel small RNAs expression profiles (across

ten organisms) using standardized search terms and ontologies for organism, tissue, dis-

ease, cell type, and cell line. Currently it contains expression and meta-information of

over 2,500 sRNA-seq samples.

3.3 Mutually exclusive splicing of exons

This section summarizes Article C of this thesis. The goal of this project of the thesis was

the prediction and validation of mutually exclusive splicing of exons (MXEs). Despite

the aforementioned important roles of MXEs mentioned in Section 2.6.3, the current

knowledge on the reported number of MXE is far from complete. To this end we build

a method to predict and subsequently validate MXEs.

3.3.1 Data sources

In order to predict and validate MXEs the following data sources were used:

• GenBank (v. 37.3) was used for human genome assembly and annotated proteins.
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• For MXEs validation, data from 515 publically available samples comprising 31

tissues and organs, 12 cell lines and 7 developmental stages [74, 75, 76, 77, 78, 79]

amounting to over 15 billion RNA-Seq reads was used.

3.3.2 Prediction of MXE candidates

In order to increase the current knowledge about MXEs in human, we decided to first

predict a list of potential MXE candidates and then validate those using published

RNA-seq data. Generally, MXEs are (cluster) characterized by splice-site compatibility,

mutually exclusive presence in protein isoforms and genomic vicinity. In a first step,

a set of MXE candidates from all the annotated protein-coding exons and from novel

exons predicted in intronic regions was generated. Annotated exons were further filtered

for those

• That appeared mutually exclusive in the transcripts.

• Neighbouring exons that have sequence similarity and are translated in the same

reading frame.

In order to generate novel exon candidates, first novel exons were predicted in the

existing intronic region based on sequence similarity and similar lengths [80] of the

neighbouring annotated exons. Moreover, MXEs containing in-frame stop codons and

exons overlapping annotated terminal exons were not included in the MXE candidates

list.

As a result a set of 6,541 MXE candidates was obtained of which 1542 were protein-

coding genes, including 1058 (68.6%) genes for which 1722 completely novel exons were

predicted.

3.3.3 Validation of MXE candidates

In order to validate the predicted MXE candidates as explained in Section 3.3.2, more

than 15 billion publicly available RNA-seq reads for different tissues, organs, cell lines

and developmental stages were taken into account. Of 6,541, transcription of 6,466 (99%)

MXE candidates were supported by RNA-seq reads mapped to the genome. However in

order to be validated as true MXE, each MXE of a cluster needs to have MXE-bridging

splice junction (SJ) reads to up or downstream gene regions in order to bridge the other

MXE(s) of the cluster as shown in Figure 3.9. In addition, the MXEs should not have any

SJ read amongst them (MXE-joining read should not exist), except for those leading to

a frame shift and therefore a premature stop codon. According to these three restraints,
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Figure 3.9: Illustration of different predicted and annotated exon types considered as
potential MXE candidates. In order to be considered as true validated MXE, minimum
of three restraints must be fulfilled: the MXEs should not be joined directly (the absence
of an MXE-joining read (R1)), except for those leading to frame shift, and the MXE-
bridging SJ reads (R2 and R3) must be present. Figure adapted from Article C of the

thesis.

1,399 MXEs were validated with at least one SJ read per exon (1SJ), increasing the total

number of human MXEs from 158 to 1,399. Moreover considering three splice junction

reads per exon (3SJ) 855 MXEs were still validated. A comprehensive overview on the

number of validated MXEs using different criteria is provided in the Article C of the

thesis.

3.3.4 Spatio-temporal expression of MXEs

MXEs would need spatial and temporal splicing regulation and expression in order to

modulate gene functionality. To this end, we performed a differential inclusion analysis

using the above mentioned data sources 3.3.1. Of the 1,399 MXEs, 608 MXEs (345

unique genes) from Human Protein Atlas [79], 573 MXEs (389 unique genes) from Em-

bryonic Development [78] and 552 MXEs (330 unique genes) from ENCODE datasets [75]

are differentially expressed, respectively (adjusted P-value <0.05) as shown Figure 3.10.

Interestingly, the differentially included MXEs comprise 43.5%, 40.9% and 39.5% of all

MXEs showing that MXEs have tissue and developmental stage specific expression. As

shown in Figure 3.10, many MXE clusters have one MXE which is expressed in specific

tissues or at specific developmental time. This suggests spatio-temporal functional roles

of MXEs in certain development and human diseases [74].
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Figure 3.10: A. Shown in heatmap are the differentially expressed MXE clusters.
Percent-spliced-in (PSI) value of the ubiquitous MXE is subtracted from the PSI value
of the specific MXE and scaled between -1 (broad tissue distribution) and 1 (tissue
specific). Gini coefficient is used to measure the inequality among values of a frequency
distribution, where ubiquitous MXE is the minimum Gini index and specific MXE is
the maximum Gini index of a cluster. Many MXE clusters have one MXE which is

expressed at specific tissues or developmental time.
B & C. Overview of the differentially expressed genes/MXEs for the Human Protein
Atlas, ENCODE and Embryonic Development datasets. Figure taken from Article C

of the thesis.

3.3.5 Disease pathology prediction

As explained in Section 3.3.4 MXEs have tight developmental and tissue-specific regu-

lation. This behavior of MXE expression can cause aberrant development and human

diseases. In order to use MXE expression to predict disease pathology, all MXEs were

annotated with pathogenic SNPs from ClinVar [81], resulting in 35 MXEs including 8

newly predicted exons. Of the 35 pathogenic SNP containing MXEs, 10 are associated

to neurologic, 7 to neuromuscular, 6 to cardiac, 3 to cancer and 9 to other diseases

based on their gene. As shown in Figure 3.11, many SNP containing MXEs are highly

expressed in disease associated tissues where as the respective non-SNP-containing pat-

ner MXEs are not or hardly expressed. However, non-SNP-containing MXEs have high

expression in early developmental stages. To assess this behavior of MXE specificity

in terms of pathogenicity, a machine learner (random forest) was trained on the MXE

expression data to predict the affected target tissue. Random Forest using leave-one-out
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cross-validation strategy was used for the prediction. In order to have a minimum of 10

observations per group, we categorized diseases into two groups: cardio-neuromuscular

(n = 10) and other diseases (n = 14). The classifier was able to predict Cardiac-

neuromuscular diseases with an accuracy of 83%, a sensitivity of 90%, a specificity of

79% and an area under the ROC curve (AUC) of 85% using MXE expression data. De-

spite having very few (24) observations, our data suggest that MXE expression might

predict disease pathogenicity in time and space. In brief, an in silico method was de-

Figure 3.11: MXE-ratio expression predicts disease pathology :
A. Shown in heatmap are the the delta PSI values of MXE clusters. Percent-spliced-in
(PSI) value of the non-SNP containing MXE is subtracted from the PSI value of the SNP
containing MXE and scaled between -1 (high expression non-SNP-containing MXE,
colored blue) and 1 (high expression SNP-containing MXE, colored red). Columns
represent a cluster of MXE (a SNP containing and it’s non-SNP containing patner).
The column bars shows counts where the non-SNP containing MXE is 1.5-fold less
expressed than the corresponding SNP-containing MXE. The same is shown for cell

type, tissue and developmental stage by the row bar graph.
B. ROC curve showing true- and false-positive rates for the prediction of
cardiomyopathy-neuromuscular disease based on MXE expression. Delta PSI values

were taken in both cases. Figure modified from Article C of the thesis.



Chapter 3 Results, Discussion and Outlook 57

veloped to predict MXEs based on sequence similarity, similar lengths, and reading

frame conservation and validate them using the publicly available billions of RNA-seq

reads. Based on this method the current knowledge of human MXE is increased by

almost an order of magnitude from 158 to 1,399 MXEs. These MXEs shows tissue and

developmental stage specific expression and also have a potential role in diseases.

3.4 Conclusion and outlook

The results discussed in the above sections shows that the goals of the work have been

fulfilled.

In summary, we developed Oasis 2, a fast and flexible web application for the analysis

of sRNA-seq data. Its major functionalities include sRNA detection, multivariate differ-

ential expression (DE), and classification of small RNAs in deep sequencing data. Both

DE and classification modules supports functional analyses including GO and pathway

enrichment for novel and known miRNA targets. Additionally, the sRNA detection

module supports the quantification of small RNAs in any organism as well supports

the identification of potential cross-species miRNAs. One of the most useful features

of Oasis 2 is the support to detect pathogenic contamination or potential pathogenic

infections in the samples. The search module of Oasis 2 enables users to search novel

(14 organisms) and known miRNAs across all miRBase supported organisms. Lastly it

has an API that supports the batch submission of jobs from the command line. This will

help the end users to automate the jobs submissions to Oasis 2 webserver and obtain

publishable results via email. Oasis 2 generates downloadable interactive web reports

for easy visualization, exploration, and analysis of data on a local system. In future,

small RNA editing, modification, and mutation events can be implemented in Oasis 2.

Additionally the reported output for bacterial and viral infections and contaminations

can be enhanced.

In the second part of this thesis we developed SEA, a data repository for sRNA expres-

sion profiles that allows end users to search for ontology-based queries, supporting single

or combined searches for five pre-defined terms such as organism, tissue, disease, cell

type, and cell line across all datasets. However, the SEA database system contains addi-

tional (meta)-information including age, gender, developmental stage, genotype as well

as technical experimental details such as the sequencing instrument and protocol details

(e.g. library kit, RNA extraction procedure), which are returned as part of the user

queried results. In short, SEA is a fast, flexible, and fully interactive web application

for the investigation of sRNA expression and different sRNA-species. In addition it also
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supports interactive result visualization at different levels, from querying and display of

sRNA expression information to the mapping and quality information for each of the

over 2,500 samples. As far as we are aware, SEA is the only sRNA-seq database that

supports ontology-based queries. In the future, additional available meta-information

such as age, gender, developmental stage, genotype as well as technical experimental

details can standardized and the search could be enhanced to allow users to query sR-

NAs based on them. Moreover, further sRNA-seq datasets should be incorporated into

SEA. Lastly, one can store DE and classification results for all the sRNA-seq datasets

having at-least two groups (such control and diseased) and make them query-able and

comparable across different datasets.

Lastly, in the third project of the thesis, a high-confidence atlas of 1,399 human

MXEs was generated based on sequence similarity, similar lengths, reading frame con-

servation and billions of RNA-seq reads. This high-confidence set of 1,399 MXEs extends

current knowledge of human MXEs by an order of magnitude. These MXEs shows tissue

and developmental stage specific expression and also have a potential role in diseases.

Furthermore, the data suggested that MXE expression reflects disease, which can be used

to predict yet unseen diseases from published expression data. As a heuristic approach

was used for the prediction of MXEs in this thesis, in the future a machine learning

approach can be used for the prediction of MXEs, which may increase the predicting

power of the method and could result in further novel MXEs.

The two web application Oasis 2 and SEA are available online and can be accessed at

https://oasis.dzne.de/ and https://sea.dzne.de/sea/sea.jsp respectively. All

the three articles Oasis 2, SEA and MXE can accessed at https://bmcbioinformatics.

biomedcentral.com/articles/10.1186/s12859-018-2047-z, https://www.biorxiv.

org/content/early/2017/08/04/133199 and http://msb.embopress.org/content/

13/12/959 respectively.

https://oasis.dzne.de/
https://sea.dzne.de/sea/sea.jsp
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2047-z
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2047-z
https://www.biorxiv.org/content/early/2017/08/04/133199
https://www.biorxiv.org/content/early/2017/08/04/133199
http://msb.embopress.org/content/13/12/959
http://msb.embopress.org/content/13/12/959
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Abstract

Background: Small RNA molecules play important roles in many biological processes and their dysregulation or
dysfunction can cause disease. The current method of choice for genome-wide sRNA expression profiling is deep
sequencing.

Results: Here we present Oasis 2, which is a new main release of the Oasis web application for the detection,
differential expression, and classification of small RNAs in deep sequencing data. Compared to its predecessor Oasis,
Oasis 2 features a novel and speed-optimized sRNA detection module that supports the identification of small RNAs
in any organism with higher accuracy. Next to the improved detection of small RNAs in a target organism, the
software now also recognizes potential cross-species miRNAs and viral and bacterial sRNAs in infected samples. In
addition, novel miRNAs can now be queried and visualized interactively, providing essential information for over
700 high-quality miRNA predictions across 14 organisms. Robust biomarker signatures can now be obtained using
the novel enhanced classification module.

Conclusions: Oasis 2 enables biologists and medical researchers to rapidly analyze and query small RNA deep
sequencing data with improved precision, recall, and speed, in an interactive and user-friendly environment.

Availability and Implementation: Oasis 2 is implemented in Java, J2EE, mysql, Python, R, PHP and JavaScript. It is
freely available at https://oasis.dzne.de

Background
Small RNAs (sRNAs) are a class of short, non-coding
RNAs with important biological functions in nearly all
aspects of organismal development in health and disease.
Especially in diagnostic and therapeutic research sRNAs,
such as miRNAs and piRNAs, received recent attention
[18]. The current method of choice for the quantifica-
tion of the genome-wide sRNA expression landscape is
deep sequencing (sRNA-seq).
To date several local as well as server-based sRNA-seq

analysis workflows are available that differ in their analysis
portfolio, performance, and user-friendliness. Analysis
workflows that need to be installed by the end-user
comprise, for example, sRNA workbench [1] for the

quantification and identification of differentially expressed
sRNAs and CAP-miRSeq [16] for the quantification of
known and novel miRNAs including variant calling and
subsequent differential expression analysis. While
workflows that are installed on a local machine offer
greater data security and may provide greater flexibility,
they require installation, availability of servers, software
and hardware maintenance as well as regular updates.
Recent additions to sRNA analysis web applications in-

clude omiRas [11], supporting quantification, differential
expression and interactive network visualization; mir-
Tools 2.0 [20] that allows for differential expression and
gene ontology analysis of detected sRNAs; MAGI, an
all-in-one workflow with detailed interactive web reports
[8]; Chimira that allows for the detection of miRNA
edits and modifications [17]; sRNAtoolbox [15] performs
expression profiling of sRNA-seq data, differential ex-
pression as well as target gene prediction and
visualization of analysis results; and Oasis [2], which
supports the detection and annotation of known and
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novel sRNAs, multivariate differential expression ana-
lysis, biomarker detection, and job automation via an ad-
vanced programming interface (API). Here we present
Oasis 2, an improved major release of the Oasis web ap-
plication with many new and enhanced features for Biolo-
gists and Bioinformaticians (Table 1).
At the heart of Oasis 2 lies the new sRNA detec-

tion workflow that is faster and identifies more
sRNAs with higher precision. In addition, Oasis 2
now supports sRNA-seq analyses for any organism,
detects potential cross-species miRNAs, and reports
viral and bacterial infections in samples with high
precision and recall. Oasis 2 predicts and stores
novel miRNAs in Oasis-DB and allows users to
search and extract information for over 700 predicted
high-quality miRNAs across 14 organisms. Oasis 2
classification module is improved with the use of bal-
anced sampling and feature pruning methods that en-
ables robust biomarker detection. Like its predecessor
Oasis, Oasis 2’s differential expression module sup-
ports multiple group comparisons (e.g. control vs.
treatment 1 vs. treatment 2) and differential expres-
sion using co-variates such as age, gender, and medi-
cation. The differential expression and classification
modules report various quality metrics including
known and predicted targets of miRNAs in a down-
loadable, interactive web report. This web report al-
lows for the subsequent functional enrichment
analysis of miRNAs using GeneMania (interactome
and GO analysis) [21], g:Profiler (GO, pathway-Kegg,
Reactome) [13], STRING (protein-protein interaction
network) [4], STITCH (chemical-protein interaction
network) [9], and DAVID (enrichment analysis based
on many biological databases) [6]. Oasis 2 is also at

the heart of the sRNA Expression Atlas (SEA,
https://sea.dzne.de), a web application for the interactive
querying, visualization, and analysis for over 2000 pub-
lished sRNA samples. Lastly Oasis 2 features many new
analysis and visualization options such as support for
adapter trimmed data, options to trim additional barcodes,
and interactive plots for sRNA detection and classification
output. It has no restrictions on the size or number of sam-
ples and has no limits on the analyses per user.

Implementation
The following paragraphs will describe the technical de-
tails of Oasis 2’s novel sRNA detection, database, and
classification modules. Additional information can be
found in the supplementary material.

sRNA detection
One of the key differences between Oasis 2 and its pre-
decessor is the fully revised detection of known and
novel sRNAs. The new detection workflow increases the
alignment speed, is more accurate, and supports the
analysis of any model and non-model organism (Fig. 1,
Additional file 1). While Oasis detected sRNAs using a
single genome alignment step, Oasis 2 is based upon a
four-tiered alignment strategy. Users can upload (un)-
compressed data that originates from one of the 14 dif-
ferent organisms provided in Oasis 2 and the data will
be aligned to the (i) target organism’s (TO) transcripts,
(ii) TO’s genome, (iii) pathogen genomes, and (iv) non-
target organism’s (NTO) miRNA transcripts in succes-
sion (Fig. 1). In the TO Transcript alignment (step 1),
reads are aligned to TO transcripts in Oasis-DB, a data-
base that contains transcript information of miRNAs
and other sRNA species (snRNA, snoRNA, rRNA and

Table 1 sRNA-seq web application comparison

Feature Oasis 2 Oasis omiRas mirTools 2.0 MAGI Chimira sRNAtoolbox

FASTQ compression ✓ ✓ ✓ ✓

miRNA prediction ✓ ✓ ✓ ✓ ✓ ✓

miRNA modifications and edits ✓ ✓

Novel miRNA database ✓

Infection and cross-species analysis ✓ ✓

Non-model organism ✓ ✓

Differential expression ✓ ✓ ✓ ✓ ✓ ✓ ✓

Multivariate differential expression ✓ ✓ ✓

Classification ✓ ✓

Novel miRNA target prediction ✓ ✓ ✓ ✓ ✓

Pathway/GO analysis ✓ ✓ ✓ ✓ ✓ ✓

Batch job submission (API) ✓ ✓

Genome browser ✓

Of note, this comparison does not include all available sRNA analysis web applications. It only considers the most recent web applications that we deemed most
competitive and we do not compare to standalone software solutions that have to be locally installed
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piRNAs) from miRBase, piRNAbank, Ensembl, predicted
novel miRNAs, and sRNA families. In this step reads of
length 15–19 nucleotides are aligned with no mis-
matches whereas reads of length 20–32 nucleotides are
mapped allowing for 1 mismatch (Step 2 in Fig. 1). In
the TO Genome alignment (step 2), reads that do not
align to TO transcripts are subsequently aligned to the
reference genome allowing for 1 mismatch and no more
than five potential genomic target regions to predict
novel, high-quality miRNAs (Additional file 1 section 1.2

‘Alignment and counting’). Predicted novel miRNAs are
then added to Oasis-DB as described in section 2.2 ‘De-
tection and storage of novel miRNAs’. In the Pathogen
Genome detection (step 3), reads that could not be
aligned to the TO transcriptome or TO genome are used
to identify pathogenic sRNA signatures from bacteria
and viruses, supplying information on potentially in-
fected samples (Fig.2 & Additional file 1). To this end,
we indexed Oasis Pathogen-Genome-DB that consists of
4336 viral and 2784 bacterial/archaeal genomes with

Fig. 1 Detection of sRNAs in Oasis 2: The web application allows for the upload of raw or compressed FASTQ files to Oasis 2’s sRNA detection
module. After pre-processing (adapter/barcode trimming and length filtering), reads are first aligned to target organism (TO) transcripts that are stored
in Oasis-DB (Step 1), including known miRNAs, piRNAs, snoRNAs, snRNAs, rRNAs, and high-stringency predicted miRNAs and their families. Unmapped
reads of Step1 are subsequently aligned to the TO’s genome (Step 2) to predict and subsequently store novel miRNAs in Oasis-DB. Unmapped reads
from step 2 are mapped to bacterial, archaeal, and viral genomes using Kraken (Step 3) to detect potential pathogenic infections or contaminations.
Finally, reads that could not be aligned in steps 1–3 are aligned to all non-target organism (NTO) miRNAs in miRBase (Step 4) to detect potentially
orthologous or cross-species miRNAs. In case the user’s data does not correspond to one of the 14 supplied organisms, Oasis 2 aligns the reads only
to NTO miRNAs (Step 4), supporting the detection of miRNA expression in any organism

Rahman et al. BMC Bioinformatics  (2018) 19:54 Page 3 of 10



Kraken [19] using a k-mer length of 18. In the Non-TO
miRNA alignment (step 4), reads that could not be aligned
to TO transcripts, the TO genome or pathogen genomes
are aligned without any mismatches to all NTO tran-
scripts of miRBase to detect potential orthologous or
cross-species miRNAs. In cases where the data does not
belong to one of the 14 supported genomes available in
Oasis 2, reads can be aligned to all known and novel pre-
dicted miRNAs and miRNA families stored in Oasis-DB
(Additional file 1).
In addition to the new alignment strategy, the sRNA

detection module also supports data with already
trimmed adapters. It also has an option for barcode re-
moval, which is required for the analysis of libraries gen-
erated with e.g. the NEXTflex kit. In the case of barcode
removal, Oasis 2 first discards the 3′ adapter sequence
(in case the adapter is not already trimmed), and then
removes an additional N (user defined, default is 0)
bases from the adapter-clipped reads.

Detection and storage of novel miRNAs
Another major improvement of Oasis 2 is the ability to
query and visualize detailed information for over 700
high-quality predicted miRNAs across 14 organisms
(Fig. 1, Additional file 1: Figure S1). Oasis-DB comprises
information on all MiRDeep2 [5] predicted miRNAs that
pass stringent selection criteria during the sRNA

detection step of Oasis 2 (2.1 & Additional file 1), in-
cluding the miRNA ID, organism, chromosomal loca-
tion, precursor and mature sequences, structure, read
counts, prediction scores, and detailed information on
the software and its versions used to predict the miRNA.
To assure that Oasis-DB contains only high-quality
miRNA entries, novel predicted miRNAs have to pass
the three criteria. The log-odds score assigned to the
hairpin by miRDeep2 (miRDeep2-score) should be
greater than 10, the predicted miRNA hairpin should
not have sequence similarity to reference tRNAs or
rRNAs, and the estimated randfold p-value of the ex-
cised potential miRNA hairpin should be equal to or
lower than 0.05.
Novel predicted miRNAs are added to Oasis-DB using

the standard nomenclature (Additional file 1 section 1.4
‘Oasis-DB miRNA insertion and naming’).
In addition to novel miRNAs, Oasis-DB also stores in-

formation on all other sRNAs and sRNA families (Addito-
nal file 1). To provide access to Oasis-DB we created a
novel web frontend, the Oasis 2 ‘Search’ module, which al-
lows users to query miRNAs by mature/precursor ID or
sequence, and the organism they come from. Information
on high-confidence novel miRNAs is also shared with
SEA, a web application that provides expression informa-
tion of known and novel miRNAs for over 2000 samples
(https://sea.dzne.de).

Fig. 2 Pathogen detection performance: To assess the performance of ‘pathogen detection module’, sRNA datasets with defined viral or bacterial
infections were analyzed and the F-score (a), recall (b), and precision (c) of the pathogen predictions were measured for the top 10 reported
organisms. Overall, the prediction of bacterial (M. abscessus) and viral (HIV, HHV4, HHV5, Gallid_herpesvirus_2) infections resulted in high F-scores,
recall, and precision, especially when the top 5 predicted pathogen species are reported. In consequence, Oasis 2 currently reports the top five
predicted pathogen species based on their read counts
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Classification and differential expression
To allow for enhanced sRNA-based biomarker detection
several profound changes to the Oasis 2 classification
module were made, resulting in more robust biomarker
detection with increased accuracy (Additional file 1: Fig-
ure S2 , Additional file 1 section ‘Oasis 2 classification
module’). To increase the performance of the Random
Forest-based (RF) classification module we first imple-
mented balanced sampling (Additional file 1), making sure
RF predictions would not be biased in the case of uneven
class distribution. Since RFs can perform poorly on data
that contains few informative and many non-informative
features, the classification module was augmented with a
feature pruning routine (Additional file 1), reporting pre-
diction performance for the full and best RF models. In
addition to providing information on model accuracy
using the out-of-bag (OOB) error, Oasis 2 now also pro-
vides model performance information based on cross-
validation. All classification results can be explored in inter-
active web reports, allowing for a detailed quality and per-
formance analysis of the predicted biomarkers.
Moreover, we have improved the quality of output plots

in the DE module and updated the DESeq2 version for
the analysis of differential sRNA expression. Further de-
tails about DE module can be found in Additional file 1
section 1.5 ‘Oasis 2 differential expression module’ and
Additional file 1: Table S3.

Technologies and compatibility
Oasis 2 is implemented in Java, J2EE, mysql, Python, R,
PHP and JavaScript. For the usage JavaScript should be
enabled in the browser. Oasis 2 functionality was tested
on all major browsers (Table 2). It has no restrictions on
the size or number of samples and has no limits on the
analyses per user. Potential user-specific problems can
arise when i) an institution or university has upload
limits, ii) proxy settings that would interrupt or prohibit
long uploads, or iii) JavaScript is disabled or blocked.
Oasis 2 is freely available at (https://oasis.dzne.de).

Results
We compared the set of analysis options and the analysis
speed of Oasis 2 to six state-of-the-art sRNA analysis
web applications, including Oasis, omiRas, mirTools 2.0,

MAGI, Chimira and sRNAtoolbox, and found that it
compares favorably in the number of analysis options
(Table 1) and the analysis speed (Table 3). When tested
on four publically available datasets, Oasis 2 detected 19
out of 27 (70%) differentially expressed (DE) genes that
were previously validated (true positives) and did not de-
tect 4/4 (100%) miRNAs that showed a significant DE in
deep sequencing but could not be validated with qPCR
(false positives), highlighting both the sensitivity and
specificity of Oasis 2. Finally, we compared the perform-
ance of the novel classification module to the one imple-
mented in Oasis, showing that prediction accuracy as
well as robustness are increased.

Detection and differential expression of sRNAs
To estimate if the novel sRNA detection workflow of
Oasis 2 identifies and quantifies sRNAs correctly we ana-
lyzed four published datasets containing validated sRNA
changes using Oasis 2 with default settings. Of note, none
of the above-mentioned publications looked into the DE
of other small RNA classes (snRNA, snoRNA and rRNA
and piRNAs), so the analyses were restricted to miRNAs.

Alzheimer disease data
We started by analyzing an Alzheimer disease (AD)
sRNA dataset that consists of 48 Alzheimer and 22 con-
trol samples [10] using Oasis 2 and default settings. The
original publication uses a Wilcoxon-Mann-Whitney test
detecting 125 known DE miRNAs. Oasis 2 detected 103
DE miRNAs using an adjusted p-value < 0.1, of which
62(60%) overlapped with the original analysis. The over-
lap of 60% seems reasonable, given the different statis-
tical approaches and miRBase versions used for the
detection and DE analysis of the miRNAs. In the original
publication 8/10 known miRNAs were validated to be
differentially expressed in the same direction, whereas
two miRNAs (hsa-miR-1285-5p and hsa-miR-26a-5p)
were not validated in the same direction (instead of up-
regulation they showed downregulation in qPCR). Inter-
estingly these two miRNAs were not detected to be
differentially expressed by Oasis 2. On the other hand
Oasis 2 was able to detect 3/3 upregulated miRNAs
(hsa-let-7d-3p, hsa-miR-5010-3p and hsa-miR-151a-3p),
3/5 downregulated miRNAs (hsa-miR-532-5p, hsa-miR-
26b-5p and hsa-let-7f-5p), and it did not detect two
downregulated miRNAs (hsa-miR-103a-3p, hsa-miR-
107). In summary, Oasis 2 was able to detect 6/8 (75%)
validated differentially expressed known miRNAs and
not detecting 2/2 false positives from the original study.
Unfortunately, two novel miRNAs validated in the ori-
ginal study are not added to miRBase yet, therefore we
were not able to compare to them.

Table 2 Oasis 2 browser compatibility

Browser Version

Chrome 61.0.3163.100, 62.0.3202.62

Mozilla Firefox 55.0.3, 56.0 (64-bit), 57.0 (64-bit)

Chromium 62.0.3202.75

Safari 11.0.1

Internet explorer 11

Browsers that are used to test Oasis 2 functionalities
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Psoriasis data
Oasis 2’s performance was next assessed using a set of
10 Psoriasis and 10 control samples [7]. The original
publication uses a hypergeometric test to assess differen-
tial expression (Pearson’s chi-square test) that is followed
by a Bonferroni multiple-testing correction.
In accordance with the analyses performed in the ori-

ginal publication, we only considered non-redundant
pre-miRNAs. Oasis 2 found 195 DE miRNAs (166 non-
redundant known pre-miRNAs) (adjusted p-value < 0.1)
whereas the original publication contains only 98 DE
miRNAs (70 non-redundant known pre-miRNAs). Of
the 70 DE pre-miRNAs in the original study, 51
(72.85%) could also be found in the list of Oasis 2 DE
miRNAs (Table 4). In addition, 5/8 (62.5%) experimen-
tally validated DE miRNAs (miR-21, miR-31,,, miR-944,
miR-135band miR-675) were detected by Oasis 2, not
identifying validated miRNAs miR-124, miR-431 and
miR-219-2-3p that show high expression variation in the
original publication. Furthermore, Oasis 2 identified 2/3
(67%) predicted novel DE miRNAs (hsa-miR-203b and
hsa-miR-3613) while missing hsa-miR-4490 (miRBase
v21). In addition, Oasis 2 did not detect the false positive
miR-431* (1/1, 100%) that was predicted to be DE in the
original Psoriasis study [7] but could not be validated by
qPCR. In summary, Oasis 2 was able to detect 7/11

(64%) validated differentially expressed known and novel
miRNAs and did not detect the only available false posi-
tive miRNA from the original study.
Of note, Oasis 2’ PCA analysis highlights a potentially

mis-annotated Psoriasis sample and another outlier sam-
ple (Fig. 3A). Removal of these two samples (Fig. 3B) in-
creased the number of significantly (adjusted p-value <
0.1) DE miRNAs from 195 to 256 cases. We would like
to emphasize that this data was already analyzed in two
publications and to our knowledge this is the first time
that these ‘problematic’ samples were detected, providing
strong evidence for the utility of Oasis 2’ QC plots.

Renal cancer data
In this work 11 renal cancer and 11 remission samples
[12] were analyzed. This is longitudinal data from 11 pa-
tients and as such paired but we were unable to extract
the pairing information from the GEO database annota-
tions. Therefore the data was analyzed with Oasis 2 in
un-paired mode and compared to the published, paired
analysis with edgeR [14]. Despite of these technical is-
sues the two analyses showed high overlap. Oasis 2
found 150 DE miRNAs (adjusted p-value < 0.1) whereas
the original publication lists only 70 DE miRNAs. Of
these 70 DE miRNAs 53 (76%) could also be found in
the significant Oasis 2 miRNAs (Table 4). Of note, with

Table 3 Runtime comparison of different sRNA-seq web applications

Demo Dataset Oasis 2 (total) 1 Oasis (total)1 MAGI
(total)

Chimira
(total)

omiRas mirTools7 2.0 sRNAtoolbox

AD
(287 GB)4

8 h31m50s 12h29m12s NA2 NA4 NA5 NA NA

Psoriasis
(48 GB)

1h35m17s 5h49m4s 48h3 3h3m12s NA6 NA NA

Renal Cancer
(9 GB)

31m43s 1h8m41s 8h3 47m11s 9h31m NA NA

1Run time estimate includes the data compression and decompression, the sRNA Detection, DE Analysis, and Classification. 2 We could not get MAGI to upload all
AD files. Most probably it has a problem with the quality or format of one of the files. 3 These values were obtained from the MAGI website. 4 Chimira does not
support the analysis of more than 25 files at a time, which prohibited us from getting runtime estimates for the AD dataset. 5 omiRas did not finish uploading
files, which prohibited us from getting runtime estimates for the AD dataset. 6 omiRas http uploading error. 7 We cannot compare the runtime of mirTools 2.0 as
maximum file size to upload is limited to 30 Mb. The sRNAtoolbox web application has been non-functional since 30/05/2017, which prohibited any runtime
comparison (http://bioinfo2.ugr.es:8080/srnatoolbox/quick-start/)

Table 4 Overlap of differentially expressed sRNAs using three datasets

Statistic1 Overlap2 Validated overlap3 FP overlap4

AD Wilcoxon-Mann-Whitney 60% 75%(6/8)5 0% (0/2)

Psoriasis Pearson’s chi-squared 73% 64% (7/11) 0% (0/1)

Renal Cancer edgeR [14] 76% 80% (4/5) NA

Schizophrenia DESeq2 (Dejian et al., 2015) 41% 67%(2/3) 0% (0/1)
1Oasis 2 uses a negative binomial distribution as basis for its statistical evaluation of the differential expression. A very similar approach is taken by the edgeR
package that has been used in the Renal Cancer study. The Psoriasis data was analyzed using a Pearson’s chi-squared test and the AD dataset was analyzed using
the non-parametric Wilcoxon-Mann-Whitney test. Schizophrenia dataset used the same approach like Oasis 2. 2Overlap of differentially expressed miRNAs compar-
ing Oasis 2’s results to published data. The percentage is calculated in reference to the shorter DE list. 3Overlap of differentially expressed miRNAs that have been
validated independently in addition to the sRNA-seq experiment. 4False positive (FP) differentially expressed miRNAs detected by Oasis 2. 5Only known validated
DE miRNAs are considered
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the exception of miR-122 all the validated miRNAs from
the original work were detected using Oasis 2 (miR-21-
5p, miR-210-3p, miR-199, miR-532-3p).

Schizophrenia and schizoaffective disorder data
In this experiment induced pluripotent stem cells were
used to study neuropsychiatric disorders associated with
22q11.2 microdeletions [3]. Controls and patients with
22q11.2 microdeletions diagnosed with a psychotic dis-
order were compared (9 controls and 7 patients). Oasis
2 found 34 DE miRNAs (adjusted p-value < 0.1) whereas
the original publication identified 45 DE miRNAs. Of
these 45 DE miRNAs 14 (41%) were also detected as dif-
ferentially expressed by Oasis 2 (Table 4). In the original

publication four miRNAs were validated by qPCR, two
significantly up-regulated (miR-23a-5p and miR-146b-
3p), one significantly down-regulated (miR-185-5p), and
a miRNA that showed no difference in expression (miR-
767-5p). Oasis 2 was able to confirm 2/3 (67%) validated
differentially expressed miRNAs (miR-23a-5p and miR-
185-5p) and did not confirm 1/1 (100%) false positive
miRNAs miR-767-5p.
Overall, Oasis 2 detected 19/27 (70%) independently

validated DE miRNAs in the published datasets despite
of the different statistical approaches and miRBase ver-
sions used (Table 4). Detailed analysis results are access-
ible in Oasis 2’s ‘Demo Data’ webpage. Our results
provide strong evidence that Oasis 2 provides biologic-
ally meaningful results to the end user.

Fig. 3 Oasis 2′ (QC) outlier detection: To assess the QC of Oasis 2 and its biological relevance, sRNA Psoriasis data (demo dataset) was analyzed. PCA
sample distances of psoriasis (green) and control (blue) is shown. (a) PCA of psoriasis and control samples showing a potentially mis-annotated
(SRR330866_PP) and an outlier sample (SRR330860_PP). (b) PCA of psoriasis and control samples without misclassified/outlier samples. Removal of
these two samples increased the number of significantly (adjusted p-value < 0.1) DE miRNAs from 195 to 256 cases and increased the AUC from 0.9 to
1 in the classification module, providing strong evidence for the utility of Oasis 2’ QC plots
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Pathogen detection and sample classification
To assess the performance of the pathogen detection we
analyzed 5 datasets with known viral or bacterial infec-
tions (Additional file 1: Table S6). We calculated the pre-
cision, recall, and F-score for the detection of the
particular pathogen strain in the dataset while consider-
ing only the top ranking, first two, three, and up to the
first ten reported species (Fig. 2). Species were ordered
based on the number of read counts. In general, the viral
or bacterial species and strains were detected with high
precision and recall, reaching F-scores of ~ 0.8 when the
top five viral and bacterial species were considered. In
consequence, Oasis 2 currently reports the top five bac-
terial, archaeal, and viral species found, allowing for the
detection of potential infective agents or the discovery of
experimental sample contaminations.
To benchmark the improved classification routine, we

compared the performance of the old Oasis classification
module (unbalanced sampling with all variables) to the
new Oasis 2 classification module using balanced sam-
pling and feature optimization using three demo datasets
(see Detection and Differential Expression of sRNAs and
Additional file 1: Figure S2). From a theoretical perspec-
tive, balanced sampling should increase prediction ac-
curacy only in the case of class imbalances. In
consequence, the novel classification module enhances
the AUC for the imbalanced AD (22 controls, 48 pa-
tients) demo dataset by 2% (old AUC 0.95, new AUC
0.97), while it marginally changes classification perform-
ance for the balanced Psoriasis (10 control and 10 Psor-
iasis samples) (old AUC 0.90, new AUC 0.91) and Renal
carcinoma (11 control and 11 cancer samples) (new and
old AUC 1.00) data. Feature pruning should be crucial
when a dataset contains a lot of uninformative features
and very few informative features. To this end we have
taken an unpublished dataset (6 controls, 6 treatments)
that contains at least one feature that perfectly separates
the two classes but otherwise contains mostly unin-
formative features. Whereas the old classification mod-
ule reaches an AUC of 0 on this dataset, the new
module reaches an AUC of 0.833.
Moreover, we also compared the accuracy of the new

Oasis 2 classification module on the AD dataset to the
published accuracy in the original manuscript [10]. Un-
fortunately, we were unable to obtain the primary output
of the SVM and could not follow the post-processing
steps of the machine learning results as performed in
the original publication (e.g. removal of miRNAs that
also occur in other diseases). In brief, the original publi-
cation provides a biomarker signature of 12 miRNAs (10
annotated and two novel) that reaches an average accur-
acy of 80%. The Oasis 2 classification reaches an accuracy
of ~ 87% (AUC of 0.97) using 320 features (no preprocess-
ing for other diseases) and has an out-of-bag error of ~

10%. Two miRNAs in the original paper list (has-miR-
151a-3p, hsa-let-7f-5p) were also found in the top 10
features (miRNAs) obtained with Oasis 2 classification.
The classification analysis of the three demo datasets

(see 3.1) yielded stable and robust biomarker predictions
that further corroborated the quality of the enhanced
classification module.

Runtime estimates
We next estimated the runtime of Oasis 2 using the
above-mentioned AD, Psoriasis, and Renal cancer data-
sets and compared the results to runtime estimates for
omiRas, mirTools 2.0, MAGI, Chimira and sRNAtool-
box, five recently developed web applications for the
analysis of sRNA-seq data (Table 3, Additional file 1:
Table S7). Performances of the sRNA Detection, DE
Analysis, and Classification modules were measured on
the Oasis 2 server. For benchmarking the Oasis 2 run-
time we compared it to the runtime estimates of the
above-mentioned web applications by submitting the
AD, Psoriasis, and Renal Cancer datasets to the respect-
ive services (Table 3). Of note, runtime estimates for
MAGI were taken from the MAGI webpage, which we
assume constitutes a ‘best case scenario’ in favor of
MAGI (low server analysis load). In addition, we could
not compare to mirTools 2.0 as the maximum upload
file size is limited to 30 Mb. Furthermore, the sRNAtool-
box web application was also not accessible during the
period of testing and writing this manuscript.
Overall, Oasis 2 is significantly faster than MAGI, Chi-

mira, and omiRas. For the smallest dataset (Renal Cancer)
Oasis 2 was ~ 1.5 times faster than Chimira, ~ 15 times
faster than MAGI, and ~ 18 times faster than omiRas.
While the runtime differences between Oasis 2 and Chi-
mira were rather small when only few samples were ana-
lyzed, Oasis 2 was ~ 2 times faster than Chimira, ~ 30
times faster than MAGI for the 48 Gb Psoriasis dataset.
Unfortunately, we were unable to estimate the runtime of
omiRas for the Renal Cancer dataset since it did not finish
file upload. Oasis 2 analyzed the largest dataset (AD, 287
Gb) in 8 h31m50s while none of the other tools men-
tioned above supported the analysis of the AD samples. In
summary, Oasis 2 is the fastest of the state-of-the-art web
applications we could compare to and has no restrictions
on the sample number or size.

Conclusions
Oasis 2 is fast, reliable, and offers several unique features
that make it a valuable addition to the ever-growing num-
ber of sRNA-seq analysis applications. Especially the ana-
lysis support for all organisms, the detection and storage
of novel miRNAs, the differential expression and classifi-
cation modules, and the interactive results visualization
supporting GO and pathway enrichment analyses enable
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biologists and medical researchers to quickly analyze,
visualize, and scrutinize their data. Oasis 2 also offers rich
per experiment and per sample quality control, which
might be one of the most important steps in the initial
data analysis. The utility of a good quality control is exem-
plified in the analysis of the Psoriasis dataset, which seems
to contain a mis-labelled (SRR330866_PP) and an outlier
(SRR330860_PP) sample (Fig. 3). The removal of the out-
lier and mis-labelled samples in the Psoriasis dataset in-
creased the number of significantly DE miRNAs from 195
to 256 cases and increased the classification accuracy for
the same dataset from AUC of 0.9 to 1. We would like to
emphasize that this data was already analyzed in two pub-
lications and to our knowledge this is the first time that
these ‘problematic’ samples were detected, providing
strong evidence for the utility of Oasis 2’ QC plots. Add-
itionally the modular structure of Oasis 2 (sRNA detec-
tion, DE and classification) makes this task even easier, as
the user can run only DE (without outliers) rather than
going through the sRNA detection step again. In addition
Oasis 2 provides PDF and video tutorials that explain its
usage and details on how to interpret its results. Future
developments will include the detection of small RNA
editing, modification, and mutation events as well as more
detailed reports on bacterial and viral infections and
contaminations.

Additional file

Additional file 1: Oasis2-Suppl-Material.docx: This file contains
supplementary material and figures as well. (DOCX 125 kb)
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Abstract 
Small RNAs (sRNAs) are important biomolecules that exert vital functions in organismal health 

and disease, from viruses to plants, animals, and humans. Given the ever-increasing amounts of 

sRNA deep sequencing data in online repositories and their potential roles in disease therapy and 

diagnosis, it is important to enable federated sRNA expression querying across samples, 

organisms, tissues, cell types, and diseases. Here we present the sRNA Expression Atlas (SEA), 

a web application that allows for the search of known and novel small RNAs across ten 

organisms using standardized search terms and ontologies. SEA contains re-analyzed sRNA 

expression information for over 2000 published samples, including many disease datasets and 

over 700 novel, high-quality predicted miRNAs. We believe that SEA’s simple interface and fast 

search in combination with its detailed interactive reports will enable researchers to better 

understand the potential function and diagnostic value of sRNAs across tissues, diseases, and 

organisms. 

 

Availability and Implementation: SEA is implemented in Java, J2EE, Python, R, PHP and 

JavaScript. It is freely available at http://sea.dzne.de 
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1 Introduction 
Small RNAs (sRNAs) are a class of short, non-coding RNAs with important biological functions 

in nearly all aspects of organismal development in health and disease. Especially in diagnostic 

and therapeutic research sRNAs such as miRNAs and piRNAs received recent attention (Witwer, 

2014). Reflecting the importance of sRNAs in biological processes as well as disease diagnosis 

and therapy is the increasing number of deep sequencing sRNA studies (sRNA-seq). To harvest 

the true potential of existing data it is important to allow for the querying, visualization, and 

analysis of sRNA-seq data across organisms, tissues, cell types, and disease states. This would 

allow researchers, for example, to search for disease-specific sRNA biomarker signatures across 

all disease entities investigated. Data integration and interoperability require (i) a streamlined 

analysis workflow to reduce analysis bias between experiments and (ii) also necessitate 

standardized annotation using ontologies to search and retrieve relevant samples. Here we are 

presenting the small-RNA Expression Atlas (SEA), a web application that allows for the 

querying, visualization, and analysis of over 2000 published sRNA-seq expression datasets. SEA 

automatically downloads and re-analyzes published data using Oasis 2, annotates relevant meta-

information using standardized terms, synchronizes sRNA information with other databases, 

allows for the querying of terms across ontological graphs, and presents quality curated sRNA 

expression information as interactive web reports (Capece et al., 2015). It currently supports 10 

organisms and is continuously updated with novel published sRNA-seq datasets and relevant 

sRNA information from various online resources. 
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2 System Design 
SEA stores sRNA expression information as well as deep and standardized meta-data on the 

samples, analysis workflows, and databases used. Data and meta-data information is normalized 

using ontologies to allow for standardized search and retrieval across ontological hierarchies (see 

section 2.3 for details). The following sections will detail the system design of SEA. 

2.1 Acquisition of sRNA datasets 
SEA acquires raw SRA files of published sRNA-seq datasets and their primary annotation from 

Gene Expression Omnibus (GEO) and NCBI's Sequence Reads Archive (SRA) repository. GEO 

makes two databases in SQLite format available for download: GEOmetadb for annotations and 

SRAdb for SRA sequences. An automated data acquisition pipeline searches for new sRNA data 

bi-weekly, keeping SEA continuously updated. Novel datasets are downloaded and stored in 

SEA’s raw data repository while corresponding annotations are stored in SEA’s annotation 

database. Raw data is subsequently processed automatically by SEA’s sRNA analysis workflow 

(2.2) while annotations are processed automatically with SEA’s annotation workflow (2.3). 

Processed files and annotations are subsequently semi-automatically curated. 

2.2 Data analysis and storage 
Following the acquisition of sRNA datasets, the SEA analysis workflow automatically analyzes 

new files using the Oasis 2.0 API  (see biorxiv.org for latest manuscript) (Capece et al., 2015) 

(https://oasis.dzne.de). The SEA analysis workflow determines data quality and detects and 

quantifies sRNAs, including the prediction of novel, high-quality miRNAs. Low quality files are 

flagged automatically and subjected to manual curation. Any files not passing manual curation 

are removed from SEA. Subsequently, sRNA counts of high-quality samples are stored in the 

sRNA expression database while corresponding quality information is saved in the data quality 

repository. SEA also stores expression information of high-quality predicted miRNAs including 

the ID, organism, chromosomal location, precursor and mature sequences, structure, read counts, 

prediction scores, and detailed information on the software and its versions used to predict the 

miRNA. SEA’s primary analysis results including per sample quality and expression information 

can be examined and downloaded as interactive web reports. Detailed information on the 

primary analysis of sRNAs and predicted miRNAs can be found in the Oasis 2 manuscript 

(biorxiv.org). 
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In order to reduce bias that could be introduced into the data by using different analysis routines, 

every sample in SEA has been analyzed by identical analysis workflows using identical 

databases and annotations. In case of changes in databases or analysis routines, SEA additionally 

stores versioning information about the software and databases used for an analysis. In addition, 

SEA contains information about the Geo series accession (GSE) and sample accession (GSM) 

identifiers along with the sample ID from the Sequence Read Archive (SRA) database (SRR) 

(Barrett et al., 2013). Given that most meta-data is quite different between experiments we opted 

to store this expression data and meta-data in a Not Only SQL (NoSql) MongoDB2 database 

management system. We optimized search and retrieval times by indexing for the most common 

queries and most relevant terms. 

2.3 Standardized annotation 
To allow for the interoperability of data it is important to standardize annotations using 

ontologies and semantic mapping (Schuurman and Leszczynski, 2008). Ontologies define 

standard terms, their properties, and the relations between them and dataset terms that are 

connected to Ontologies are called ‘normalized’. The Ontologies and the number of normalized 

terms in SEA are listed in Table 1. 

SEA’s sRNA annotation workflow maps free-text GEO annotations to standardized terms in 

three consecutive steps. In general, GEO data annotations are free text that can be parsed into 

key-value pairs. In a first fully automated step the annotation workflow extracts key-value 

relations and stores them in the annotation database. As GEO data information is unstructured 

and contains very different information, we opted for a NoSql annotation database with an 

optimized indexing for prototypical questions (see also section 2.2). 

The second fully automated step normalizes the extracted keys and values using Ontologies as 

standard dictionaries. SEA has a list of pre-defined keys, five of which (organism, tissue, 

disease, cell type, and cell line) can be currently queried for in SEA. Each extracted key is 

compared to pre-defined keys. For values, the ontologies are used as standard terminology 

dictionaries. For each pre-defined key, SEA has one of several corresponding ontologies. Each 

extracted value is searched in the corresponding ontologies and, if the same or a similar term is 

found, connected with it. 

                                                           
2 https://www.mongodb.com/ 
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Automatic annotation is followed by semi-automatic manual curation. For that purpose, we 

developed an internal curation Web interface using Groovy/Grails3, which allows browsing and 

editing of annotations from the annotation database as well as manual normalization of keys and 

values in annotations, searching among pre-defined keys and corresponding ontologies. Thus, 

curators examine all keys and values for consistency and update missing or additional 

information with standardized terms where necessary (e.g. protocols, kit version, lot and batch 

numbers, publications). At the moment, all SEA annotations are manually curated, a quality 

standard that we intend to keep for every future SEA entry. 

2.4 Querying and visualization 
To enable the search across ontological hierarchies we integrated the relevant ontologies into the 

graph database Neo4j4 (Figure 1). Graph databases are NoSQL databases which support storage 

of objects and connections between them, as is the case for ontologies. Following the manual 

curation (see section 2.3), sample annotations are uploaded to the SEA ontology graph database 

including all ontological parent terms (having an ‘is-a’ relation to it). This allows search by 

ontology terms, as well as by their parents, which are in fact groups of terms (e.g. ‘cancer’ or 

‘neurodegenerative disease’). SEA accesses the ontology graph database via the Ontology 

Lookup Service using a REST interface, supporting complex and compound queries and query 

auto-completion (Côté et al., 2010). 
  

                                                           
3 https://grails.org/ 
4 https://neo4j.com/ 
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3 Results & Conclusions 
SEA is designed for the biological or medical end-user that is interested to define where and 

when an sRNA of interest is expressed. Prototypical questions that can be addressed with SEA 

are: What is the expression of hsa-miR-488-5p across all human tissues? Is hsa-miR-488-5p 

expressed higher in adenocarcinomas as compared to other cancer types? Is the tissue-specific 

expression of hsa-miR-488-5p conserved in mouse? Its unique selling points are the deep and 

standardized annotation of meta-information, the re-analysis of published data with Oasis 2 to 

reduce analysis bias, a user-friendly search interface that supports complex queries, and the fast 

and interactive visualization of analysis results across 10 organisms (Table 2) and various sRNA-

species. SEA also contains information on the expression of over 700 high-quality predicted 

miRNAs, across organisms and tissues. Last but not least, SEA is continuously growing and 

aims to eventually encompass all sRNA-seq datasets across all organisms deposited in GEO and 

other repositories. Genome versions will be updated with every major release of SEA. SEA will 

be backwards compatible in the future by allowing users to choose previous genome versions 

and annotations. A detailed comparison of SEA to other existing sRNA expression databases 

highlights that SEA is superior in terms of supported organism, annotations, diseases, and 

tissues. SEA contains over 2000 samples in its database, which is considerably less than 

YM500v3 (Chung et al., 2016), which hosts over 8000 cancer samples. It is to be noted, 

however, that the YM500v3 database only supports cancer datasets and no other disease types 

(Table 3).  

As far as we are aware SEA is the only sRNA-seq database that supports ontology-based queries, 

supporting single or combined searches for five pre-defined keys (organism, tissue, disease, cell 

type, and cell line) across all datasets. However, the SEA database system contains additional 

(meta)-information including age, gender, developmental stage, genotype as well as technical 

experimental details such as the sequencing instrument and protocol details (e.g. library kit, RNA 

extraction procedure). We plan to normalize most of this additional information in future 

versions of SEA. This will allow users, for example, to query and analyze sRNA expression 

effects that are introduced by library kit or sequencing platform differences (both of these 

features can introduce large biases in the detection and expression of sRNAs). Other future 

developments will include information on sRNA editing, modifications, and mutation events. 
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In summary, SEA supports interactive result visualization on all levels, from querying and 

display of sRNA expression information to the mapping and quality information for each of the 

over 2000 samples. SEA is a fast, flexible, and fully interactive web application for the 

investigation of sRNA expression across cell lines, tissues, diseases, organisms, and sRNA-

species. As such, SEA should be a valuable addition to the landscape of sRNA expression 

databases.   
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Fig.1. Objects in the SEA graph database (Neo4j). A fragment of the SEA graph database is 
visualized, where green nodes represent datasets, red nodes represent samples and blue nodes 
represent ontology terms. Grey edges represent ‘is a’ relations between the different datasets, 
samples, and ontology terms.  

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/133199doi: bioRxiv preprint first posted online Aug. 4, 2017; 



Table 1. SEA keys and used ontologies (as of April, 21st 2017). 

Key Ontology(s) # Annotations # Terms 
Organism NCBI Taxonomy5 2105 10 
Tissue BRENDA tissue / enzyme source6 1595 86 
Disease Human Disease Ontology7 791 68 
Cell type Cell Ontology8 517 57 
Cell line Cell Line Ontology9 

Experimental Factor Ontology10 
39 
253 

12 
55 

 

  

                                                           
5 https://www.ncbi.nlm.nih.gov/taxonomy 
6 http://www.brenda-enzymes.info/ 
7 http://www.disease-ontology.org/ 
8 http://obofoundry.org/ontology/cl.html 
9 http://www.clo-ontology.org/ 
10 http://www.ebi.ac.uk/efo/ 
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Table 2. Supported SEA organisms and their corresponding genome versions. 

Organism genome-version genome-date 
Bos taurus UMD3.1 2009-11 
Caenorhabditis elegans WBcel235 2012-12 
Danio rerio GRCz10 2014-09 
Drosophila melanogaster BDGP6 2014-07 
Mus musculus GRCm38 2012-01 
Gallus gallus Galgal4 2011-11 
Rattus norvegicus Rnor_6.0 2014-07 
Homo sapiens GRCh38 2013-12 
Sus scrofa Sscrofa10.2 2011-08 
Anopheles gambiae AgamP4 2006-02 
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Feature SEA miRmine1 DASHR2 miratlas3 YM500v34 

Organisms 10 1 1 2 1 
sRNA types  5 1 5 1 5 
Samples >2000 304 187 461 >8000* 
Novel miRNAs + - - - - 

Ontology search# + - - - - 

Table 3. Comparison of sRNA expression databases. This table includes recent sRNA 

expression databases and a list of features we deem relevant. *Supports mainly cancer-related 

datasets. #Use of ontological graphs for the annotation and querying of samples. 1(Panwar et al., 

2017), 2(Leung et al., 2016), 3(Vitsios et al., 2017), 4(Chung et al., 2016) 
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Abstract

Mutually exclusive splicing of exons is a mechanism of functional
gene and protein diversification with pivotal roles in organismal
development and diseases such as Timothy syndrome, cardiomyo-
pathy and cancer in humans. In order to obtain a first genomewide
estimate of the extent and biological role of mutually exclusive
splicing in humans, we predicted and subsequently validated
mutually exclusive exons (MXEs) using 515 publically available
RNA-Seq datasets. Here, we provide evidence for the expression of
over 855 MXEs, 42% of which represent novel exons, increasing the
annotated human mutually exclusive exome more than fivefold.
The data provide strong evidence for the existence of large and
multi-cluster MXEs in higher vertebrates and offer new insights
into MXE evolution. More than 82% of the MXE clusters are
conserved in mammals, and five clusters have homologous clusters
in Drosophila. Finally, MXEs are significantly enriched in pathogenic
mutations and their spatio-temporal expression might predict
human disease pathology.
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Introduction

Alternative splicing of pre-messenger RNAs is a mechanism

common to almost all eukaryotes to generate a plethora of protein

variants out of a limited number of genes (Matlin et al, 2005; Nilsen

& Graveley, 2010; Lee & Rio, 2015). High-throughput studies

suggested that not only 95–100% of all multi-exon genes in human

are affected (Pan et al, 2008; Wang et al, 2008; Gerstein et al, 2014)

but also that alternative splicing patterns strongly diverged between

vertebrate lineages implying a pronounced role in the evolution of

phenotypic complexity (Barbosa-Morais et al, 2012; Merkin et al,

2012). Five types of alternative splicing have been identified to

contribute to most mRNA isoforms, which are differential exon

inclusion (exon skipping), intron retention, alternative 50 and 30

exon splicing, and mutually exclusive splicing (Blencowe, 2006; Pan

et al, 2008; Wang et al, 2008; Nilsen & Graveley, 2010). Mutually

exclusive splicing generates alternative isoforms by retaining only

one exon of a cluster of neighbouring internal exons in the mature

transcript and is a sophisticated way to modulate protein function

(Letunic et al, 2002; Meijers et al, 2007; Pohl et al, 2013; Tress

et al, 2017a). The most extreme cases known so far are the arthro-

pod DSCAM genes, for which up to 99 mutually exclusive exons

(MXEs) spread into four clusters were identified (Schmucker et al,

2000; Lee et al, 2010; Pillmann et al, 2011).

Opposed to arthropods, current evidence suggests that vertebrate

MXEs only occur in pairs (Matlin et al, 2005; Gerstein et al, 2014;

Abascal et al, 2015a), and genomewide estimates in human range

from 118 (Suyama, 2013) to at most 167 cases (Wang et al, 2008).

Despite these relatively few reported cases, mutually exclusive splic-

ing might be far more frequent in humans than currently antici-

pated, as has been recently revealed in the model organism

Drosophila melanogaster (Hatje & Kollmar, 2013). Apart from their

low number, MXEs have been described in many crucial and essen-

tial human genes such as in the a-subunits of six of the 10 voltage-

gated sodium channels (SCN genes) (Copley, 2004), in each of the

glutamate receptor subunits 1–4 (GluR1-4) where the MXEs are

called flip and flop (Sommer et al, 1990), and in SNAP-25 as part of
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the neuroexocytosis machinery (Johansson et al, 2008). Although

MXEs within a cluster often share high similarity at the sequence

level, they are usually not functionally redundant, as their inclusion

in the mRNAs is tightly regulated. Thus, mutations in MXEs have

been shown to cause diseases such as Timothy syndrome (missense

mutation in the CACNA1C gene) (Splawski et al, 2004, 2005),

cardiomyopathy (defect of the mitochondrial phosphate carrier

SLC25A3) (Mayr et al, 2011) or cancer (mutations in, e.g., the pyru-

vate kinase PKM and the zinc transporter SLC39A14) (David et al,

2010).

Despite the implications of mutually exclusive splicing in organ-

ismal development and disease, current knowledge on the magni-

tude of MXE usage and its relevance in biological processes is far

from complete. In order to obtain a genomewide, unbiased estimate

of the extent and biological role of mutually exclusive splicing in

humans, a set of 6,541 MXE candidates was compiled from anno-

tated and novel predicted exons, and rigorously validated using over

15 billion reads from 515 RNA-Seq datasets.

Results

The human genome contains 855 high-confidence MXEs

Compared to other splicing mechanisms, mutually exclusive splicing

in humans seems to be a rare event. MXEs are characterized by

genomic vicinity, splice-site compatibility and mutually exclusive

presence in protein isoforms. Accordingly, the human genome

annotation (GenBank v. 37.3) contains only 158 MXEs in 79

protein-coding genes (Appendix Figs S1–S3). MXEs are often

phrased “homologous exons” in the literature because they likely

originated from the same ancestral exon. We refrain from using this

term throughout our analysis, because several MXEs present in the

genome annotation do not show any sequence homology and many

neighbouring exons with high sequence similarity are not spliced in

a mutually exclusive manner.

In a first attempt to chart an atlas of genomewide mutually exclu-

sive splicing in humans, we decided to predict potential MXE candi-

dates and validate those using published RNA-Seq data. In a first

step, we generated a set of MXE candidates in the human genome

(v. 37.3) from all annotated protein-coding exons and from novel

exons predicted in intronic regions including only internal exons in

the candidate list (Fig 1A, Appendix Figs S1–S4). From the anno-

tated exons, we selected those that appeared mutually exclusive in

transcripts, and neighbouring exons that show sequence similarity

and are translated in the same reading frame. To generate novel

exon candidates, we predicted exonic regions in neighbouring

introns of annotated exons based on sequence similarity and similar

lengths (Pillmann et al, 2011). We did not consider potential MXEs

containing in-frame stop codons such as the neonatal-specific MXE

reported for the sodium channel SCN8A (Zubovi�c et al, 2012), and

exons overlapping annotated terminal exons (Appendix Fig S2). The

reconstruction resulted in a set of 6,541 MXE candidates in 1,542

protein-coding genes, including 1,058 (68.6%) genes for which we

predicted 1,722 completely novel exons in previously intronic

regions (Fig 1B). Most introns in human genes are extremely long

necessitating careful and strict validation of the MXE candidates to

exclude false-positive predictions (Lee & Rio, 2015).

To validate the predicted MXE candidates, we made use of over

15 billion publically available RNA-Seq reads, selecting 515 samples

comprising 31 tissues and organs, 12 cell lines and seven develop-

mental stages (Barbosa-Morais et al, 2012; Djebali et al, 2012;

Tilgner et al, 2012; Xue et al, 2013; Yan et al, 2013; Fagerberg et al,

2014; Dataset EV1). The data were chosen to encompass common

and rare potential splice events in a broad range of tissues, cell types

and embryonic stages. Accordingly, the transcription of 6,466

(99%) of the MXE candidates is supported by RNA-Seq reads

mapped to the genome (Appendix Fig S3A). To be validated as true

mutually exclusive splicing event, each MXE of a cluster needed to

exhibit splice junction (SJ) reads from every MXE to up- or down-

stream gene regions bridging the other MXE(s) of the cluster

(Fig 1A). In addition, MXEs should not exhibit any SJ reads to

another MXE except when the combined inclusion causes a frame

shift and therefore a premature stop codon (Fig 1A, Appendix Figs

S3A and D, S5, and S6). These stringent criteria define a high-confi-

dence set of MXEs, requiring three constraints for a cluster of two

MXEs and already 18 constraints for a cluster of five MXEs

(Appendix Fig S7). In case of clusters with more than two MXE

candidates, the validation criteria were applied to the cluster includ-

ing all MXE candidates as well as to all possible sub-clusters to

▸Figure 1. The human genome contains 1,399 high-confidence MXEs.

A Schematic representation of the various annotated and predicted exon types included in the MXE candidate list. For MXE validation, at least three restraints must be
fulfilled: the absence of an MXE-joining read (R1), except for those leading to frame shift, and the presence of two MXE-bridging SJ reads (R2 and R3).

B Prediction and validation of 1,399 1SJ (855 3SJ) human MXEs. Top: Dataset of 6,541 MXE candidates from annotated and predicted exons. Bottom left: MXE candidates
for which splice junction data are currently missing hindering their annotation as MXE or other splice variant. Bottom right: Validation of the MXE candidates using
over 15 billion RNA-Seq reads. The outer circles represent the validation based on at least a single read for each of the validation criteria (1SJ), while the validation
shown in the inner circles required at least three reads (3SJ).

C MXE saturation analysis. Whereas increasing amounts of RNA-Seq reads should lead to the confirmation of further MXE candidates, more RNA-Seq reads might also
result in the rejection of previously validated MXEs. The green curves show the number of validated MXEs in relation to the percentage of total RNA-Seq reads used
for validation. The orange curves indicate the number of initially “validated MXEs” that were rejected with increasing amounts of reads. Grey dashed lines indicate
the point of saturation, which is defined as the point where a twofold increase in reads leads to rejection of less than 1% of the validated MXEs. Of note, whereas the
rejection of validated MXEs saturates with 20% of the data, the amount of novel MXE validations is still rapidly increasing.

D Distribution of validated MXEs in two-exon and multi-exon clusters.
E Size and distribution of multi-cluster MXEs.
F The CUX1 gene (cut-like homeobox 1) contains two interleaved clusters of MXEs (clusters 1 and 2) and two standard clusters each with two MXEs (clusters 3 and 4).

The exon 3 and exon 4 variants each are orthologous exons. The exon 4 variants are mutually exclusive (cluster 2). Exon 3a is a differentially included exon and only
spliced together with exon 4a. The exons 3b, 3c, 3d and 3e are part of a cluster of four MXEs (cluster 1) and are only spliced together with exon 4b (Appendix Figs S16
and S17). Novel exons are labelled with an asterisk.
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identify the largest cluster fulfilling all MXE criteria. According to

these criteria, 1,399 MXEs were verified with at least one SJ read

per exon (1SJ), supported by 2.2 million exon mapping and

34 million SJ reads, increasing the total count of human MXEs by

almost an order of magnitude (158–1,399) (Fig 1B, Dataset EV2);

855 MXEs were found to be supported by at least three splice junc-

tion reads per exon (3SJ) validated by 1.5 million exon mapping

and 27 million SJ reads (Appendix Figs S3B and C, S8–S10). The

1,399 (855, numbers in brackets refer to the 3SJ validation) verified

MXEs include 122 (112) annotated MXEs (Fig 1B “annotated

MXE”), 623 (388) exons that were previously annotated as constitu-

tive or differentially included (“annotated other splicing”) and 654

(358) exons newly predicted in intronic regions (“novel exon”). Our

analysis also showed that 29 of the 158 annotated MXEs are in fact

not mutually exclusively spliced but represent constitutively spliced

exons or other types of alternative splicing (Appendix Figs S2 and

S3E). Finally, 1,741 (2,336) MXE candidates including 1,090 (1,402)

newly predicted exons and 17 (29) of the annotated MXEs are

supported by 0.5 million exon and 13 million SJ matching reads but

still have to be regarded as MXE candidates because not all annota-

tion criteria were fulfilled (Appendix Fig S3A and E).

To estimate the dependence of MXE confirmation and rejection on

data quantity, we cross-validated the MXE gain (validation) and loss

(rejection) events for several subsets of the total RNA-Seq data

(Fig 1C, Appendix Fig S11, Materials and Methods “Saturation analy-

sis”). The course of the curves provides strong evidence for the valid-

ity of the MXEs because a single exon-joining read would already be

sufficient to reject an MXE cluster while at least two SJ reads are

needed to validate one. Whereas even 15 billion RNA-Seq reads do

not achieve saturation for the amount of validated MXEs, the gain in

rejected MXE candidates is virtually saturated using 25% of the data.

To further validate the list of MXEs, we compared MXE clusters

that contained two “annotated other splicing” exons to splicing

information from GTEx portal (https://www.gtexportal.org/home/).

Although GTEx portal uses an alternative aligner and different align-

ment settings, all MXEs that we compared showed mutually exclu-

sive behaviour in GTEx portal (Appendix Fig S12), substantiating

our results. Lastly, we selected six brain-expressed novel MXEs for

qPCR validation in human brain total RNA. All assayed MXEs

showed perfect coherence with the alignment results, confirming

mutually exclusive splicing of all assayed novel MXEs in human

brain (Appendix Fig S13, Dataset EV3).

Many of the 1,399 (855) MXEs have roles in the cardiac and

muscle function and development, while cassette exons are

enriched for microtubule- and organelle localization-related terms

(Appendix Fig S14).

In summary, the high-confidence set of 1,399 (855) MXEs

extends current knowledge of human MXE usage by an order of

magnitude, (re)-annotating over a thousand existing and predicted

exons and isoforms, while suggesting the existence of further

human MXEs.

The human genome contains large cluster and multi-
cluster MXEs

In general, mutually exclusive splicing can be quite complex. This is

best demonstrated by genes in arthropods that contain both multiple

MXE clusters (“multi-cluster”) and large clusters with up to 53 MXEs

such as in the Drosophila Dscam genes (Graveley et al, 2004;

Pillmann et al, 2011). This is in strong contrast to mutually exclusive

splicing in vertebrates as there is to date no evidence of multi-cluster

or higher order MXE clusters (Matlin et al, 2005; Pan et al, 2008;

Wang et al, 2008; Gerstein et al, 2014; Abascal et al, 2015a,b).

The analysis of the 1,399 validated human MXEs provides first

evidence for clusters of multiple MXEs in the human genome

(Fig 1D, Appendix Fig S15). While most MXEs are present in clus-

ters of two exons (1,116 MXEs), a surprisingly high number of clus-

ters have three to 10 MXEs (283 MXEs in 71 clusters).

Interestingly, although a large part of the verified MXEs contain a

single MXE cluster (554 genes, Fig 1E), we could also provide

evidence for human genes containing multiple MXE clusters. Thus,

TCF3, NEB, ANKRD36C and MTHFD1L contain three clusters and

TTN, CAMK2D and CUX1 four clusters of MXEs. A very interesting

case of complex interleaved mutually exclusive splicing can be seen

for CUX1, the transcription factor cut-like homeobox 1. It contains a

cluster of MXEs (exons 3b–3e) that is differentially included into a

set of two exons (exon 3 and exon 4), and the two sets are them-

selves mutually exclusive (Fig 1F, Appendix Figs S16 and S17). The

identification of large clusters with multiple MXEs and many genes

with multiple clusters shows that complex mutually exclusive splic-

ing is not restricted to arthropods (Schmucker et al, 2000; Graveley,

2005; Lee et al, 2010; Hatje & Kollmar, 2013) but might be present

in all bilateria.

Mutually exclusive presence of coding exons in functionally
active transcripts

To understand which splicing mechanisms might be primarily

responsible for the regulation of mutually exclusive splicing in

humans, we investigated several mechanisms that were shown to act

in some specific cases and were proposed to coordinate mutually

exclusive splicing in general (Fig 2A; Letunic et al, 2002; Smith,

2005). We identified five cases (0.79% of all clusters) of U2 and U12

splice acceptor incompatibility (Appendix Fig S18) and 57 (9%) cases

of potential steric interference, a too short distance between splice

donor sites and branch points (< 50 bp; Fig 2B and Appendix Fig

S19). Although 377 (60%) of the MXE clusters contain exons with

exon lengths not divisible by three which would result in non-

functional transcripts in case of combined inclusion, MXE-joining

reads were found for only 83 (22%) of these clusters (Fig 2B;

Appendix Figs S3B and D, and S20). Surprisingly, the majority of the

annotated MXEs are of this type (91 of 122; 75%) as well as many

exons previously annotated as other splice types (44 of 662), but only

few of the novel MXEs predicted in intronic regions (25 of 615;

Appendix Fig S3A and D). These numbers suggest that splicing of the

remaining 484 MXE clusters is tightly regulated by other mechanisms

(Fig 2B) such as RNA–protein interactions, interactions between

small nuclear ribonucleoproteins and splicing factors (Lee & Rio,

2015), and competitive RNA secondary structural elements (Graveley,

2005; Yang et al, 2012; Lee & Rio, 2015). Competing RNA secondary

structures are, however, usually not conserved across long evolution-

ary distances. A potential case of a docker site and selector sequences

downstream of each exon variant was identified for the cluster of four

MXEs in the CD55 gene (Appendix Fig S21).

In contrast to cassette exons and micro-exons, which tend to be

located in surface loops and intrinsically disordered regions instead
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of folded domains (Buljan et al, 2012; Ellis et al, 2012; Irimia et al,

2014), all MXEs, whose protein structures have been analysed, are

embedded within folded structural domains as has been shown for,

for example, DSCAM (Meijers et al, 2007), H2AFY (Kustatscher

et al, 2005), the myosin motor domain (Kollmar & Hatje, 2014) and

SLC25A3 (Tress et al, 2017a). As we have shown in the beginning,

there is also a subset of 73 MXEs not showing any sequence homol-

ogy (“annotated no similarity”). It is unlikely that the encoded
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Figure 2. MXE presence is regulated at the RNA and protein folding level.

A Schematic representation of MXE splicing regulation via splice-site incompatibility, branch point proximity and translational frame shift leading to NMD.
B Observed usage of MXE splicing regulation in 629 MXE clusters.
C By mutually exclusive inclusion into transcripts, MXEs of a cluster are supposed to encode the same region of a protein structure. If the respective regions of the

protein structures are embedded within secondary structural elements (the ends of the exon-encoded peptides are part of a-helices and/or b-strands), it is highly
unlikely that the translation of a transcript will result in a folded protein in case the respective exon is missing (skipped exon). If the MXEs have highly similar
sequences and do not encode repeat regions, it seems unlikely that either could be present in tandem or absent at all in a folded protein. Here, we have combined
protein structure features (colours) with splicing regulation information (symbols). Accordingly, 87% of the MXE-encoded protein regions are embedded in secondary
structural elements (orange and green symbols), and most of the remaining MXEs can only be spliced mutually exclusive because splicing as differentially included
exons would lead to frame shifts (blue circles). As examples, we labelled many MXE clusters distinguishing annotated MXEs (purple letters), known exons that we
validated as MXEs (orange letters), and clusters containing novel exons (dark-grey letters).
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peptides account for identical secondary structural elements. Rather,

if the MXEs of this subset are true MXEs, there is a small subset

(about 5%) of MXEs whose mutual inclusion leads to considerably

altered protein folds or affects surface loops and disordered regions

similar to cassette exons.

Because MXEs are supposed to modulate protein functions

through variations and not alterations in specific restricted parts of

the structure, we thought it could be possible to distinguish MXEs

from cassette exons at a protein structural level. Such an analysis

could provide complementary evidence for the validation as MXE in

contrast to two (or more) neighbouring cassette exons. While one

and only one of the exons of a cluster of MXEs has to be included in

the transcript, the defining feature of a cassette exon is that it can

either be present or absent. If MXEs were mis-classified and in fact

neighbouring cassette exons, it would therefore be possible that all

exons of the cluster were present or absent from the transcript, and

accordingly the protein structure. These differences between MXEs

and cassette exons impose three restrictions on their localization

within protein folds (Appendix Fig S22). Thus, (i) if one or both

ends of the MXE-encoded peptide end within a secondary structural

element, it seems impossible that the respective peptide could be

absent from the protein because this would break up multiple

spatial interactions. This suggests that respective protein regions

cannot be encoded by cassette exons. (ii) High sequence similarity

between MXEs suggests important conserved structural interactions

even if the peptide ends are not part of secondary structural

elements. For example, it seems highly unlikely that a cluster of two

exons encoding transmembrane helices could be spliced as cassette

exons because absence or presence of both exons would switch the

membrane site of all subsequent sequence. (iii) In case of cassette

exons and absence of the exons, it must be possible that the remain-

ing sequence still folds correctly. This can be assessed if a protein

structure is available with the respective exon-encoded region

present. Supposing the respective region was absent, the remaining

ends would need to be joined to result in a correctly folded domain,

which seems extremely unlikely if the peptide ends are far apart.

Such regions are also more likely encoded by MXEs. To assess this

model, we mapped the validated MXEs against the PDB database

(Fig 2C, Appendix Fig S22, Dataset EV4; Rose et al, 2015). Of the

1,399 MXEs, 273 MXEs (20%) from 233 MXE clusters (37%)

matched to human or mammalian protein structures (Appendix Fig

S22). For 87% of these MXEs, at least one of the exon termini is

embedded within a secondary structural element, suggesting that

these exons are in fact true MXEs and not mis-classified cassette

exons (Fig 2C, yellow and green coloured symbols). This high level

of structural conservation also strongly supports the hypothesis that

MXEs modulate but do not considerably alter protein functions

(Letunic et al, 2002; Yura et al, 2006; Abascal et al, 2015a; Tress

et al, 2017a). Of the remaining 13% (Fig 2C, blue coloured

symbols), many MXEs would lead to frame shifts if they were

spliced as cassette exons (both exons present or absent in the tran-

script, blue circles), and in multiple cases (e.g. COL9A3, COL24A1

and COL13A1), the peptide ends are far apart indicating strong fold-

ing problems in case the respective exons were absent in the tran-

scripts. In total, there are only a handful cases such as the MXE

cluster in ARL15 (Fig 2C) whose mutually exclusive presence in

proteins cannot be explained by the analysed splicing restrictions,

by NMD targeting, or by folding constraints.

MXEs mainly consist of one ubiquitous exon and otherwise
regulated exons

To modulate gene functionality, mutually exclusive splicing would

need spatial and temporal splicing regulation and expression. To

understand the expression patterns of MXEs, we conducted a

differential inclusion analysis using the Human Protein Atlas

(Fagerberg et al, 2014), Embryonic Development (Yan et al, 2013)

and ENCODE datasets (Djebali et al, 2012). Of the 1,399 MXEs, 608

MXEs (345 unique genes), 573 MXEs (389 unique genes) and 552

MXEs (330 unique genes) are differentially expressed, respectively

(adjusted P-value < 0.05; Fig 3A, Appendix Figs S23–S26, Dataset

EV5 and EV6). Most notably, the differentially included MXEs

comprise 43.5, 40.9 and 39.5% of all MXEs indicating that MXEs are

to a very large extent tissue- and developmental stage-specifically

expressed.

The comparison of the genes containing differentially expressed

MXEs from these three projects shows that 519 (88.7%) of all 585

MXE cluster containing genes have at least a single MXE differen-

tially expressed in one of the covered tissues, cell types or develop-

mental stages (Fig 3B). The 519 genes contain 942 differentially

expressed MXEs (67% of the total 1,399 MXEs; Fig 3C). This

number is in agreement with earlier analyses on small sets of MXEs

(66 and 57%) (Wang et al, 2008; Abascal et al, 2015a). Expectedly,

the expression of novel MXEs seems to be considerably more tissue

specific than the expression of annotated MXEs and cassette exons

(Appendix Fig S23). Lastly, 208 MXEs from 113 genes are preferen-

tially expressed during embryonic development indicating that

many MXEs are specific to certain developmental stages (Fig 3B

and C).

The analysis of MXE specificity reveals that in many clusters one

MXE dominates expression, whereas other MXEs are expressed at

selected developmental time points and in specific tissues (Fig 3,

Appendix Figs S23–S26). This modulation suggests crucial spatio-

temporal functional roles for MXEs and can in many cases not be

observed at the gene level, as gene counts can remain largely invari-

ant. A well-known case for similar expression of MXEs in newborn

heart but expression of only one MXE variant in adult heart is the

ion channel CACNA1C (Diebold et al, 1992), an example for the

switch of expression are the MXEs of the SLC25A3 gene (Wang et al,

2008). We surmise that the observed specificity in combination with

a generally lower expression could also explain the discovery of 654

(358) novel exons that have so far eluded annotation efforts

(Fig 1A, Appendix Fig S23). In conclusion, the tight developmental

and tissue-specific regulation of MXE expression suggests that

changes in MXE function or expression might cause aberrant devel-

opment and human disease (Xiong et al, 2015). Pathogenic muta-

tions in MXEs are known to cause Timothy syndrome,

cardiomyopathy, cancer and kidney disease (Kaplan et al, 2000;

Splawski et al, 2004, 2005; David et al, 2010; Mayr et al, 2011).

MXEs are high-susceptibility loci for pathogenic mutations

To obtain a comprehensive overview of MXE-mediated diseases, we

annotated all MXEs with pathogenic SNPs from ClinVar (Landrum

et al, 2016), resulting in 35 MXEs (eight newly predicted exons)

with 82 pathogenic SNPs (Fig 4A, Dataset EV7). Disease-associated

MXEs show tight developmental and tissue-specific expression with
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prominent selective expression in heart and brain, and cancer cell

lines (Fig 4B and C, Dataset EV7). Interestingly, the percentage of

pathogenic SNP-carrying MXEs is twofold higher than the percent-

age of all pathogenic SNP-carrying exons (Fisher’s exact test,

P-value = 3 × 10�11). A similar enrichment can be found for

cassette exons (Fisher’s exact test, P-value = 2.2 × 10�16) suggest-

ing that in general alternative splicing-associated exons are suscepti-

bility loci for pathogenic mutations. The genes with MXEs carrying

pathogenic SNPs are predominantly associated with neurological

disease (10), neuromuscular disorders (7), cardiomyopathies (6)

and cancer (3) and are enriched in voltage-gated cation channels

(e.g. CACNA1C and CACNA1D), muscle contractile fibre genes (e.g.

TPM1), and transmembrane receptors (e.g. FGFR1-3; Fig 4,

Appendix Fig S27, Dataset EV7).

Disease-associated MXEs have high amino-acid identity (average

49.1%, SD 23.1%), reaching up to 89% in ACTN4 (Appendix Fig

S28), suggesting similar functional roles and in consequence similar

pathogenic potential for many MXE pairs (Fig 4C, Appendix Fig

S29). Four of all SNP-containing MXE clusters contain mutations in

both MXEs (FHL1, MAPT, CACNA1C and CACNA1D), whereas 31

currently have pathogenic SNPs in only one MXE. The MXE expres-

sion analysis shows that many SNP-carrying MXEs are highly

MXEs
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Figure 3. MXE expression is tightly regulated across tissues and development.
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values of a frequency distribution (Ceriani & Verme, 2012) and has successfully been used to determine tissue-enriched gene sets (Zhang et al, 2017), to determine
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B Overview of differentially expressed genes for the Embryonic Development, ENCODE and Human Protein Atlas datasets.
C Overview of differentially expressed MXEs for the Embryonic Development, ENCODE and Human Protein Atlas datasets.
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expressed, especially in disease-associated tissues where the

respective non-SNP-carrying MXEs are not or barely expressed

(Fig 4B and C, Appendix Fig S29). Examples include ACTN4,

TPM1 and SLC25A3 (Appendix Figs S28, S30, and S31). Moreover,

MXEs with pathogenic SNPs are usually not or non-exclusively

expressed at early developmental stages (Appendix Fig S28–S31),

while high and exclusive expression could lead to early embryonic

death or severe multi-organ phenotypes (e.g. FAR1, Appendix Fig

S32). Conversely, several non-SNP-carrying MXEs are highly

expressed in early development and are otherwise mainly

expressed at equal and lower levels compared to the SNP-carrying

MXEs (Appendix Figs S29E–S31). The absence of pathogenic SNPs

in these MXEs suggests functional compensation of the pathogenic

SNP-carrying MXEs or early lethality, both of which would result

in no observable phenotype.

Of the 35 MXE clusters with pathogenic mutations eight contain

novel exons (Fig 4C, Dataset EV7). A mutation in exon 9a

(p.Asp365Gly) of FAR1, a gene of the plasmalogen–biosynthesis

pathway, causes rhizomelic chondrodysplasia punctata (RCDP), a

disease that is characterized by severe intellectual disability with

cataracts, epilepsy and growth retardation (Buchert et al, 2014).

Novel MXE 9b is expressed in the same tissues but at eightfold

lower levels suggesting partial functional compensation of the MXE

9a mutation, which might be responsible for the “milder” form of

RCDP as compared to pathogenic mutations in other genes of the

pathway (PEX7, GNPAT and AGPS) (Appendix Fig S32). A tissue-

specific compensation mechanism had already been proposed but a

reasonable explanation could not be given because FAR2 expression

shows a different tissue profile and individuals with deficits in

peroxisomal b-oxidation, a potential alternative supply for fatty

alcohols, have normal plasmalogen levels (Buchert et al, 2014).

Because of the young age of the affected children, it is not known

yet whether a mutation in constitutive exon 4 (p.Glu165_Pro169de-

linsAsp), which could not be compensated in a similar way as the

exon 9a mutation, leads to a strong RCDP-like phenotype (no

survival of the first decade of life) or to a milder form such as the

one caused by the exon 9a mutation.

In conclusion, it is tempting to speculate that MXE pathogenicity

might be governed by high or exclusive expression in affected target

tissues that is usually absent from early developmental processes, a

pattern of expression that seems at least partially inversed for MXEs

without pathogenic SNP annotations. To assess whether MXE

pathogenicity follows observable rules, we trained a machine

learner on MXE expression data and predicted the affected target

tissue (Fig 4D, Dataset EV8). To obtain at least 10 observations per

category with an expression > 3 RPKM, diseases were grouped into

cardio-neuromuscular (n = 10) and other diseases (n = 14) and

predicted using leave-one-out cross-validation with a Random

Forest. Cardiac-neuromuscular diseases could be predicted with an

accuracy of 83% (P-value < 0.01), a specificity of 79%, a sensitivity

of 90% and an area under the ROC curve (AUC) of 85% (Fig 4D,

Dataset EV8, Appendix Fig S29). Conversely, cardiac-neuromuscular

disease could be predicted with an AUC of 72% using RPKM-based

gene expression values (Fig 4D). Although based on only 24 obser-

vations, our data suggest that MXE expression might predict disease

pathogenicity in space and potentially also in time.

Evolutionary dynamics of MXEs in mammals and bilaterians

While tissue-specific gene expression is conserved between birds

and mammals, the alternative splicing of cassette exons is

conserved only in brain, heart and muscles and is mainly lineage-

specific (Barbosa-Morais et al, 2012; Merkin et al, 2012). Accord-

ingly, a core set of only ~500 exons was found with conserved alter-

native splicing in mammals and high sequence conservation, which

was a small subset of the thousands of cassette exons identified in

total. In contrast, although the total number was considerably

smaller, most of the known human MXEs have been shown to be

highly conserved throughout mammals if not even vertebrates

(Letunic et al, 2002; Copley, 2004; Abascal et al, 2015b). In order to

assess the conservation of human MXEs across mammals, we identi-

fied orthologous proteins in 18 representative species from all major

sub-branches spanning 180 million years of evolution and predicted

MXEs therein (Fig 5, Appendix Fig S33, Dataset EV9). Based on a

◀ Figure 4. MXE-ratio expression predicts disease pathology.

A Thirty-five MXE clusters contain 82 pathogenic mutations causing neurologic (10), neuromuscular (7), cardiac (6), cancer (3) or other diseases (9).
B Sashimi plots showing exon as well as splice junction reads (including number of reads) in kidney and heart for SLC25A3.
C Heatmap showing the delta PSI values (PSI value of the non-SNP-containing MXE subtracted from the PSI value of the SNP-containing MXE) of MXE clusters

containing pathogenic SNPs scaled between �1 and 1 (blue = high expression non-SNP-containing MXE, red = high expression SNP-containing MXE). Columns
represent MXE clusters and rows tissues, cell types and developmental stages. The column bar graph summarizes counts where the SNP-containing MXE is 1.5-fold
more expressed than the non-SNP-containing MXE, whereas the row bar graph shows this for each tissue, cell type and developmental stage.

D Receiver-operating characteristic (ROC) curve showing true- and false-positive rates for cardiomyopathy-neuromuscular disease prediction based on spatio-temporal
MXE (coloured lines and black text) and RPKM-based gene (grey lines and text) expression (delta PSI values).

▸Figure 5. Evolutionary dynamics of MXEs in mammalian evolution.

Clusters of validatedMXEwere sorted by chromosome and chromosomal position. The names of the corresponding genes and the cluster-IDs are given in the outermost circle,
and the presence of the respective MXEs (MXE clusters) in other annotations andmammals is indicated by coloured bars. Because the generation of the set of MXE candidates
was based on the GenBank annotation, we analysed the presence of the validated MXEs in complementary annotations. Thus, the outer circles show whether the validated
MXEs are also annotated as MXEs in Ensembl and Aceview, and whether the validated MXEs are present at all as exons in the Ensembl annotation as indicated by the legend.
The lengths of the bars denote the percentage of matching exons for each cluster. For comparison, we show the annotation as MXE in two different Ensembl versions
highlighting the dynamics of exon annotations over time. The comparison of the GenBank with the latest Ensembl annotation (v. 37.75) showed considerably less exons
annotated as MXEs (58) in Ensembl although these include six of the “novel exons” (Appendix Fig S1). The presence of the respective validated MXEs in each of the analysed 18
mammals is shown by coloured bars. The 18 mammals, their phylogenetic relation and the total numbers of MXEs shared with human are presented at the bottom. The
innermost circle represents the number of exons within each cluster of MXEs.
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simple model expecting each shared cluster to be already present in

the last common ancestor of the respective species, we identified a

core set of at least 173 (28%) of the human MXE clusters conserved

throughout mammals (Fig 5, Appendix Fig S33). Other 122 MXE

clusters were most likely present in the last common ancestor of the

eutherians (16 species, placental mammals). The core set of

mammalian MXE clusters includes 83 clusters shared between at

least 16 of the species and 61 clusters shared between 17 species

suggesting that their spurious absence in single mammals is likely

due to genome assembly gaps or problems in identifying the correct

orthologous genes. The remaining 29 MXE clusters of the core set

have a scattered distribution across the 18 mammals indicating

multiple independent branch- and species-specific cluster loss

events. Such taxon-specific loss events include the MXE clusters in

the SRPK1 and PQBP1 genes, which are absent in Glires (including

mouse and pika), the cluster of 10 MXEs in ABI3BP that has been

lost in the ancestor of mouse and rat, and the MXEs in OSTF1 and

PTPRS, which are absent in Afrotheria. The MXE clusters in IKZF3,

MBD1 and ATP10B, for example, are present in all Eutheria but not

in Metatheria (marsupials). The MXE cluster gain rate within euthe-

rian evolution towards human is relatively constant over time with

about 23 clusters per 10 million years. Interestingly, each of the 16

eutherian species also lost a similar number of MXE clusters (127

clusters on average, Appendix Fig S33). In total, 82% of the human

clusters containing validated MXEs are found in at least one further

mammal (Fig 5). In summary, the large core set of mammalian

MXEs and the overall conservation of MXE clusters suggest that

MXEs are considerably more conserved than cassette exons. This

observation supports expectations from considering the encoded

protein structures where MXEs are supposed to provide alternative

sequences for conserved secondary structural elements, while

cassette exons are on average considerably shorter and add flexibil-

ity to surface loops (Buljan et al, 2012; Ellis et al, 2012; Irimia et al,

2014).

To get a first glimpse on mutually exclusive splicing evolution

across bilaterians, we identified a set of 44 orthologous genes from

genes containing MXEs in Drosophila (Hatje & Kollmar, 2013) and

human genes containing MXE candidates (Appendix Fig S34,

Dataset EV10). Of these orthologous genes, 28 contain validated

MXEs in human, nine were validated to be spliced differently in

human, and seven could not be validated in human because read

mapping data are still missing; 20 (71%) of the genes containing

validated MXEs represent cases of incompatible reading frames lead-

ing to NMD in case of joined inclusion, and for 18 of these MXE

clusters multiple MXE-joining reads were found (Appendix Figs S34

and S35). We further analysed the 28 orthologous genes with vali-

dated MXEs and found five genes with homologous MXE clusters

(identical position in gene, identical exon phase), 13 genes with

MXE clusters in human that have homologous exons in Drosophila

and eight genes with MXEs in human where the corresponding

sequence regions in the orthologous Drosophila genes are part of

larger exons (Appendix Figs S35 and S36). The presence of ortholo-

gous MXE clusters has been attributed to convergent evolution

(Copley, 2004), although the respective analysis was in part based

on the comparison of non-orthologous genes (e.g. comparing

human sodium channel genes [e.g. SCN1A] with the Drosophila

calcium channel cac gene and not the orthologous sodium channel

para gene). At least for muscle myosin heavy chain genes it could

be demonstrated that Drosophila already lost several MXE clusters

compared to, for example, Daphnia pulex (crustacean) and

lophotrochozoans (Kollmar & Hatje, 2014) and that the evolutionary

history of the MXEs within each cluster is remarkably complex with

multiple independent exon duplications and losses (Odronitz &

Kollmar, 2008). Thus, detailed studies including more bilaterian and

non-bilaterian taxa would be necessary to finally conclude conver-

gent or divergent evolution for each of the human and Drosophila

MXE clusters. Although the overlap of MXEs in orthologous genes

of human and Drosophila is very low, the MXE gain and loss rates

are very similar (Hatje & Kollmar, 2013) indicating a conserved role

of tandem exon duplication in bilaterians. Gene structures can be

highly conserved between kingdoms (Rogozin et al, 2003), and

certain exons therefore seem to be predisposed to undergo duplica-

tion. In summary, these findings provide strong evidence for many

MXE gain and loss events during mammalian evolution, suggesting

a pronounced role of these processes in speciation and establishing

phenotypic differences.

Discussion

Using stringent criteria, including sequence similarity, reading frame

conservation and similar lengths, and billions of RNA-Seq reads, we

generated a strongly validated atlas of 1,399 human MXEs providing

insights into mutually exclusive splicing mechanics, specific expres-

sion patterns, susceptibility for pathogenic mutations and deep

evolutionary conservation across 18 mammals. The presented

increase in human MXEs by an order of magnitude lifts MXEs into

the present-day dimension of other human alternative splice types

(Pan et al, 2008; Wang et al, 2008; Gerstein et al, 2014). Saturation

analysis and the existence of 1,816 expressed but unconfirmed MXE

candidates suggest a potential 27% increase in the MXE-ome with a

twofold increase in data. Although alternative splice variants are

abundant at the transcriptome level, recent mass spectrometry anal-

yses suggested only small numbers of alternative transcripts to be

translated (Abascal et al, 2015a; Ezkurdia et al, 2015; Blencowe,

2017; Tress et al, 2017a,b). Interestingly, MXEs were particularly

enriched in the translated alternative transcripts, compared to other

splice variants. However, ribosome profiling data showed high

frequencies of ribosome engagement of cassette exons indicating

that these isoforms are likely translated (Weatheritt et al, 2016).

Similar results have been obtained through polyribosome profiling

(Sterne-Weiler et al, 2013; Floor & Doudna, 2016). These observa-

tions suggest that most of the MXEs evaluated at the transcript level

will also be found in the proteome.

About half (47%) of the 1,399 MXEs represent novel exons,

which are often expressed at low levels and whose expression is

restricted to few tissues and cell types, possibly explaining their

absence from current genome annotations. Extrapolating these

observations to all splice types and genes suggests the existence of

thousands yet unannotated exons in introns. This estimation is in

accordance with a recent analysis of more than 20,000 human RNA-

Seq datasets that revealed over 55,000 junctions not present in

annotations (Nellore et al, 2016). In this analysis, junctions found

in at least 20 reads across all samples were termed “confidently

called”. Although the total number of reads required for MXE vali-

dation in our analysis is lower (≥ 2 SJ reads in the 1SJ case, ≥ 6 SJ
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reads in the 3SJ case), the numbers seem more conservative given

that we used 40 times less data for the validation.

The almost 10-fold increase in the human MXE-ome supports

recent suggestions that mutually exclusive splicing might play a

much more frequent role than anticipated (Pan et al, 2008; Wang

et al, 2008; Ezkurdia et al, 2012; Abascal et al, 2015a). By compar-

ing differentially expressed MXEs across cell types, tissue types and

development, we could show that 14% of all genes with MXE clus-

ters are shared between the three data sources, and 39% between

any two. Most notably, however, it is almost always a different

MXE from the same cluster that is differentially expressed, and only

3.3% of the MXEs are differentially expressed in all three data

sources. We believe that this indicates a high spatio-temporal regu-

lation of all MXEs in two-exon and multi-exon clusters. We rarely

observed switch-like expression with only one of the MXEs of each

cluster present in each cell- or tissue type or developmental stage.

Rather, one of the MXEs (“default MXE”) of each cluster was

present in most or all samples and the other MXEs were expressed

in several selected tissues and developmental stages (“regulated

MXEs”) in addition to the default MXE. Although the “regulated

MXE” is usually expressed at lower level compared to the “default

MXE”, there is almost always at least a single tissue or developmen-

tal stage where it is expressed at higher level. This supports previ-

ous assertions on the modulatory and compensatory effects of the

regulated MXE on the enzymatic, structural or protein interaction

functions of the affected protein domains (Letunic et al, 2002; Tress

et al, 2017a).

The concerted annotation and splicing analysis of novel exons

have deep implications for the detection and interpretation of

human disease (Bamshad et al, 2011; Gonzaga-Jauregui et al, 2012;

Xiong et al, 2015; Bowdin et al, 2016). For one, exome and panel

sequencing remains the method of choice for the detection of

genetic diseases and both methods rely on current exon annotations

(Chong et al, 2015). Furthermore, our data suggest that MXE

expression might reflect disease pathogenesis that could allow for

the prediction of the affected organ(s). It is intriguing to speculate

that the observed expression–disease association is a general

dogma, which could be used to predict yet unseen diseases from

published expression data, potentially bringing about a paradig-

matic shift in (computational) disease research.

Materials and Methods

Data sources

The human genome assembly and annotated proteins (all isoforms)

were obtained from GenBank (v. 37.3) (Benson et al, 2013). For MXE

candidate validation, we selected data from 515 publically available

samples comprising 31 tissues and organs, 12 cell lines and seven

developmental stages (Barbosa-Morais et al, 2012; Djebali et al,

2012; Tilgner et al, 2012; Xue et al, 2013; Yan et al, 2013; Fagerberg

et al, 2014) amounting to over 15 billion RNA-Seq reads. The data

were chosen to encompass common and rare potential splice events

in a broad range of tissues, cell types and embryonic stages. These

RNA-Seq data were obtained from either GEO (NCBI) or ENA (EBI)

databases (Dataset EV1). The description of the respective tissues and

developmental stages is also listed in Dataset EV1.

Reconstruction of gene structures

The gene structures for the annotated proteins were reconstructed

with Scipio (Keller et al, 2008; Hatje et al, 2013) using standard

parameters except –max_mismatch=7, –region_size=20000,

–single_target_hits, –max_move_exon=10, –gap_

to_close=0, –blat_oneoff=false, –blat_score=15,

–blat_identity=54, –exhaust_align_size=20000, and

–exhaust_gap_size=50. We let Scipio start with blat_

tilesize=7 and, if the entire gene structure could not be recon-

structed, reduced the blat_tilesize step by step to 4. All

parameters are less stringent than default parameters to increase the

chance to reconstruct all genes automatically.

Predicting mutually exclusive spliced exons

The human genome annotation does not contain specific attributes

for alternative splice variants and thus does not allow extracting

or obtaining lists for specific splice types. As mutually exclusive

spliced exons (MXEs), we regarded those neighbouring exons of a

gene locus that are present in only one of the annotated splice

variants. These MXEs were termed “annotated MXEs”. However,

exons appearing mutually exclusive are not necessarily spliced as

MXEs. Terminal exons, for example, are included in transcripts by

alternative promoter usage and by alternative cleavage and

polyadenylation. MXEs were predicted in the reconstructed genes

using the algorithm implemented in WebScipio (Pillmann et al,

2011). The minimal exon length was set to 10 aa (–min_exon_

length=10). WebScipio determines the length of each exon

(“search exon”) and generates a list of potential exonic regions

with identical lengths (to preserve the reading frame) within the

neighbouring up- and downstream introns. To account for poten-

tial insertions, we allowed length differences between search exon

length and potential new exonic region of up to 60 nucleotides in

steps of three nucleotides [–length_difference=20 (given in

aa)], thus obtaining a list of “exon candidates”. WebScipio then

translates all exon candidates in the same reading frame as the

search exon and removes all sequences that contain an in-frame

stop codon. In case of overlapping exonic candidate regions, we

modified the original WebScipio algorithm to favour exonic regions

with GT–AG splice junctions over other possible splice sites (GC–

AG and GG–AG). The translations of the exon candidates are then

compared to the translations of the search exons, and candidates

with an amino-acid similarity score of more than 10 (–min_

score=10) are included in the final list of MXE candidates.

Because the exon candidate scoring is done at the amino acid

level, WebScipio expects candidates for 50 exons of genes to start

with a methionine, and candidates for 30 exons of genes to end

with a stop codon. This minor limitation is due to WebScipio’s

original development as gene reconstruction software. MXE candi-

dates for terminal exons were only searched in direction to the

next/previous internal exon. The reason for looking for MXE

candidates of annotated terminal exons is that we cannot exclude

that further up- and downstream exons are missing in the annota-

tion, which would turn the new MXE candidates to internal exons.

Because of the described minor limitation, however, we can only

propose MXE candidates if supposed additional up- and down-

stream exons are non-coding exons. Because terminal exons are
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included in transcripts by alternative promoter usage and by alter-

native cleavage and polyadenylation, we treated the list of terminal

exon candidates separately (Appendix Fig S4). This list might be

of interest for further investigation for other researchers. Except

for this Appendix Fig S4, we entirely focused on internal MXE

candidates.

Definition of criteria for RNA-Seq evaluation of the
MXE candidates

While the sole mapping of RNA-Seq reads reveals the transcription

of the respective genomic region, it does not prove the inclusion into

functional transcripts. The mutually exclusive inclusion of the MXE

candidates into functional transcripts requires at least the following

splice junction (SJ) reads (Appendix Fig S5): (i) There must be SJ

reads matching from every MXE to up- or downstream gene regions

bridging the other MXEs of the cluster. The latter criterion takes into

account that the annotated exons neighbouring the clusters of MXEs

might not themselves be constitutive but alternative exons as, for

example, in NCX1 (Appendix Fig S6). (ii) SJ reads mapping from

one to another MXE candidate lead to MXE candidate rejection

except for those MXEs leading to a frame shift. Without this

constraint, which has not been set in earlier analyses (Wang et al,

2008), MXEs cannot be distinguished from neighbouring differen-

tially included exons, which are quite common in human (data not

shown; see e.g. Hammesfahr & Kollmar, 2012 and Appendix Fig

S6). Thus, there are three constraints for a cluster of two MXEs

while clusters of three and five MXEs, for example, already require

seven and 18 constraints, respectively (Appendix Figs S5 and S7).

Under more stringent conditions, also SJ reads from MXEs to the

neighbouring annotated exons independent of their splice type

would be required giving rise to five constraints for a cluster of two

MXEs (Appendix Fig S5).

Note that as a matter of principle the read coverage of MXEs and

other alternative splicing events is considerably lower than that of

constitutive exons due to their mutually exclusive inclusion in the

transcripts. For example, each of the exons of a cluster of three

MXEs is expected to only have, on average, one-third the coverage

of the constitutive exons of the same gene. The number of predicted

exons, of which both sites are supported by splice junction reads, is

also considerably lower than the total number of supported MXE

candidates (Appendix Fig S3), which we think is due to the general

low coverage of the exons and not due to read mapping and exon

border prediction problems (Appendix Fig S3).

Validation of the MXE candidates by RNA-Seq mapping

SRA files were converted to FASTQ files using fastq-dump soft-

ware (v. 2.1.18). FASTQ files were mapped onto the human refer-

ence genome (hg19) using the STAR aligner (v_2.3.0e_r291)

(Dobin et al, 2013). To this end, we first generated a reference

genome index with –sjdbGTFfeatureExon, –sjdbGTFtagEx

onParentTranscript, a splice junction overhang size of

99 (–sjdbOverhang) and GTF annotation files containing all

transcripts and all MXE candidates. The MXE candidate GTF file

was extracted from Kassiopeia database and is available for down-

load there (Hatje & Kollmar, 2014). The mapping was done for

each sample separately. We allowed a rather stringent maximum

mismatch of 2 (–outFilterMismatchNmax 2; STAR default is

10) and the output was forced to SAM format (–outStd SAM).

Otherwise, default settings were used. The resulting files with the

mapped reads were sorted, converted to BAM format and

indexed with SAMtools (sort -n) for further processing (Li et al,

2009).

Distinguishing MXEs from other splice variants

For the analysis of the read mapping data, we disassembled clusters

with more than two MXE candidates into all possible sub-clusters.

For example, a cluster with four MXE candidates [1,2,3,4] was frac-

tionated into the following sub-cluster: [1,2], [2,3], [3,4], [1,2,3],

[2,3,4], [1,2,3,4]. Each of these sub-clusters was analysed indepen-

dently according to the validation criteria (splice junction reads

present, exon-joining reads absent). If all criteria were satisfied for

one of the sub-clusters, all MXE candidates of the respective sub-

cluster were labelled “verified”. In a second analysis, each cluster of

MXE candidates was analysed for exon-joining reads, which denote

constitutive splicing or splicing as differentially included exons.

However, MXE candidates of clusters and sub-clusters with exon-

joining reads but exon lengths not divisible by three were also

flagged as “verified” because their combined inclusion would lead

to a frame shift in the translation of the transcript.

Limits of the MXE dataset

Similar to every genome annotation dataset, also the current dataset

of RNA-Seq validated MXEs has some limitations. Some are inherent

to the still incomplete human genome annotation that was used as

basis for generating the list of MXE candidates. As mentioned above

and shown in Appendix Fig S2C, there are genes with mis-annotated

terminal exons overlapping MXEs. Also, there are “transcripts” in

the GenBank dataset that combine exons from (now) different

genes. The presence of these “transcripts” in the genome annotation

might be the result of mis-interpreting cDNA data as coding

sequence although these might be the result of some level of mis-

splicing.

Similarly, mis-splicing might be an important reason for validat-

ing true MXEs as “non-MXEs”. A single exon-joining read turns

MXE candidates into non-MXEs, whose mutually exclusive splicing

might otherwise be supported by thousands of MXE-bridging SJ

reads. Given these limitations, we expect that many of the exons,

that we currently tag as constitutive or other alternative splicing,

might in fact be MXEs. On the other hand, our MXE dataset might

also contain some exons that are in fact non-MXEs. This is well

demonstrated in the saturation analysis (Fig 1C) showing that

although more data will lead to the validation of many more exons

as MXEs, for which SJ reads are currently missing, there will be

clusters that will be rejected as soon as more data include exon-

joining reads. In addition, some MXEs with only a few supporting SJ

reads might in fact be pseudoexons. However, we also did not

observe any SJ reads for about 15% of the annotated exons, which

are nevertheless not regarded as pseudoexons (Fig 1B, Appendix Fig

S3). Finally, some MXEs determined from transcripts showing

complex splicing might in fact be mutually exclusive in transcripts,

but not in the sense of a cluster of uninterrupted neighbouring

exons.
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Saturation analysis

Theoretically, increasing the number of samples should also

increase the number of validated MXEs, as the total increase in read

number for different observed or novel tissues should increase the

read evidence for the predicted MXEs. At the same time, increasing

the number of reads also heighten the chance of rejecting an MXE

candidate. This raises the question of what the expected number of

validated and rejected MXEs for increasing numbers of samples is.

Additionally, it would be interesting to obtain the theoretical point

of saturation, the maximum expected number of MXEs in the

human genome.

To obtain this information, sub-samples of STAR-aligned RNA-

Seq splice junction (SJ) reads were used to estimate the expected

recall and false-positive rate (Fig 1C, Appendix Fig S11). The

number of verified MXEs was calculated using SJ reads for different

percentages of the data. Similarly, the number of rejected MXEs was

obtained. To reduce the bias from data sampling, datasets were

chosen randomly and the saturation analysis was performed in 30

independent runs. To calculate the mean of validated and rejected

MXEs at respective percentages of the total RNA-Seq data used for

validation, we used the respective numbers from the 30 independent

runs.

To estimate the potential increase in MXEs given more sequenc-

ing data, we fit the sub-sampling data to the number of expected

MXEs f(x) using Matlab and the optimal fits were obtained for a

power function

fðxÞ ¼ a � xb þ c

with the linear coefficient a, the exponential coefficient b and the

error term c (Appendix Fig S11B). Given a twofold increase in the

number of reads, the expected number of validated MXEs (1SJ) is

1,769 � 47 (95% confidence interval), validated MXEs (3SJ) is

1,081 � 12, rejected MXEs (1SJ) is 227 � 9, and the number of

rejected MXEs (3SJ) is 95 � 5 (Appendix Fig S11B). While the

number of validated MXEs is far from saturation (a 100%

increase in data results in 27% increase in the number of valida-

tions), the number of rejected MXEs seems to be saturated (a

100% increase in data results in 2% increase in the number of

rejections).

qPCR validation of MXE candidates

Total RNA was purified from healthy human brain tissue (substantia

nigra) using Trizol kit (Tri Reagent, Sigma T9424) following manu-

facturer’s instructions. RNA was further purified using the RNA

Clean & Concentrator © TM -5 kit (Zymo Research, cat. R1013). The

RNA quality was investigated using the 6000 nano assay on a Bio-

analyzer 2100 (Agilent Technologies). Reverse transcription was

carried out using the iScript © cDNA Synthesis kit (cat# 1708890,

Bio-Rad) using approximately 500 ng of total RNA in a volume of

20 ll.
Relative expression levels of the genes of interest as well as one

housekeeping gene (glyceraldehyde 3-phosphate dehydrogenase

[Gapdh]) were determined by qPCR using a LightCycler� 480. All

qPCR experiments were performed in duplicates using SYBRTM

Green PCR Master Mix (cat # 4309155). For each PCR, 20 ng cDNA

was used and negative controls contained no cDNA. The qPCR was

run under the following conditions: pre-incubation at 95°C for

5 min, denaturation at 95°C for 10 s, annealing 60°C for 15 s, exten-

sion at 72°C for 10 s repeated for 40 cycles (Sybr green standard

protocol II). Detailed information on the primers and qPCR results

can be found in Dataset EV3.

Analysis of the splice mechanism

To determine the distance between intron donor site and branch

point, we analysed all introns smaller than 500 bp using the stan-

dalone version of SVM-BPfinder (beta) (Corvelo et al, 2010) to

predict branch point locations. Longer introns harbour high

numbers of branch point candidates, and the accuracy of the branch

point prediction considerably decreases. Longer introns also often

contain multiple branch points with different splicing kinetics

(Corvelo et al, 2010) so that a steric hindrance criterion for splicing

multiple MXEs into the same transcript might not apply anymore.

Branch points are usually located in the 30 regions of the introns and

it seems highly unlikely to identify only a single potential branch

point within an, for example, > 2,000-bp intron, which would in

addition be located within the 50 50 bps. Thus, the highest-scoring

location within the < 500-bp introns was taken as best guess for the

branch point and the distance to the intron donor site determined.

In order to identify U12-type introns, we analysed all donor

splice sites of the introns preceding the clusters of MXEs and those

subsequent to all MXEs using the consensus pattern described by

Sharp and Burge (Sharp & Burge, 1997). The acceptor splice sites of

U12-type introns do not show conserved patterns and were there-

fore not used here for verification.

Binding windows for competing intron RNA secondary structures

were predicted for all candidate clusters of MXEs using the SeqAn

package (Döring et al, 2008). The identified binding windows of all

homologous genes were aligned using MUSCLE (Edgar, 2004) and

the RNA secondary structures predicted by RNAalifold (ViennaRNA

package) (Lorenz et al, 2011).

Mapping MXE sequences onto protein structures

To identify the best structural models for the sequences encoded by

the MXEs, we mapped the protein sequences of the respective genes

against available protein structure data. To this end, we made use of

a recently developed database, called Allora (http://allora.motorpro

tein.de), in which genomic information is mapped onto protein

structures. Allora currently contains 94,148 PDB entries (derived

from the RCSB Protein Data Bank, http://www.rcsb.org, Rose et al,

2015) with 247,959 chains, of which 120,665 represent unique

sequences. Based on the database references in the PDB entries, the

full-length proteins were fetched from UniProt KB (UniProt Consor-

tium, 2015) or GenBank (Benson et al, 2013) and the corresponding

gene structures of the eukaryotic proteins reconstructed with

WebScipio (Hatje et al, 2013). In Allora, all PDBs belonging to the

same UniProt or GenBank entries are connected. BLAST+ (Camacho

et al, 2009) was used to search for the most similar UniProt/

GenBank protein sequence compared to the human proteins

containing MXEs. The hit with the lowest E-value was taken, and

the associated PDB chains were aligned to the human protein using

m-coffee (Wallace et al, 2006). The MXE part of the alignment was
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extracted for further analysis (=> “MXE structure”). As “intron

distances”, we determined the distances between the CA atoms of

the first and the last residues of the MXE structures.

Evaluating the differential inclusion of MXEs into transcripts

Splice junction read counts were extracted from STAR output

“SJ.out.tab” files. For each MXE in a cluster, the per cent-spliced-in

(PSI) value was calculated by dividing the number of junction reads

of the MXE by the sum of junction reads for all MXEs in the same

cluster. Differential inclusion analysis on the Human Protein Atlas,

Embryonic Development and ENCODE datasets was performed

using a Kruskal–Wallis rank sum test with a Benjamini–Hochberg

(BH) multiple testing correction. Values were computed using the

“kruskal.test” and “p.adjust” functions in R. For each project, we

created a design matrix with sample name and experimental condi-

tion and replicate numbers. The results of the differential inclusion

analysis are summarized in Dataset EV5.

Differential expression of pairs of annotated and novel MXEs

For each sample (tissue, cell type and developmental stage), we

calculated the median RPKM (reads per kilobase of transcript per

million mapped reads) from the replicates for each MXE. To compile

a set of MXEs with significant expression, only pairs of MXEs were

selected of which either the annotated or the novel exon had a

median expression of more than 3. The number of MXEs for this

analysis would not considerably decrease if a cut-off of 30 were

chosen (252 MXEs at a cut-off of 3 versus 240 MXEs at a cut-off of

30). For each pair of MXEs, we subtracted the PSI value of the ubiq-

uitous/known/non-SNP-containing MXE from the PSI value of the

respective specific/novel/SNP-containing MXE (delta PSI values)

and scaled those values between �1 (high PSI for ubiquitous/

known/non-SNP-containing MXE) and 1 (high PSI for specific/

novel/SNP-containing MXE) (see also Figs 3A and 4C, Appendix Fig

S23). In case an MXE pair was not expressed in a certain tissues

(NA or 0), the value was set to 0.

Inequality analysis

The mean PSI values of each MXE were calculated for each tissue in

the Human Protein Atlas project, each developmental stage in the

embryonic development (Peking University) project, and each cell

type in the ENCODE (Caltech) project. For each MXE, the Gini index

(Ceriani & Verme, 2012) was calculated independently for each

project based on the mean PSI values using the Gini function with

standard parameters from the ineq R package version 0.2-13 (Achim

Zeileis, Christian Kleiber, https://CRAN.R-project.org/package=ine

q; Cowell, 2011). For the analysis of MXE clusters, only those clus-

ters were taken into account that include at least two MXEs with an

RPKM ≥ 10 in at least one dataset within each project. Furthermore,

we excluded clusters where all MXEs have “NA” PSI values within

each project (244, 96 and 225 clusters, respectively).

Identification of pathogenic SNPs in MXEs

To identify potentially pathogenic SNPs in MXEs, the MXEs were

compared to the ClinVar SNP database (ClinVar VCF file

downloaded on 11 Aug 2016, version updated at 30 Jun 2016,

Landrum et al, 2016). The ClinVar variant summary file (VCF file)

was converted into a BED file keeping all original information. Posi-

tions overlapping between MXEs and ClinVar-SNPs were accessed

using the BEDTools feature intersection software (Quinlan & Hall,

2010). SNPs are classified as pathogenic or non-pathogenic accord-

ing to ClinVar’s “ClinicalSignificance” field annotation. All entries

containing “benign” and all structural variations were removed. All

ClinVar-SNPs overlapping with MXEs were manually verified in

order to keep only potentially pathogenic variations.

To access the statistical significance of disease enrichment in

MXEs and cassette exons, we compared the amount of pathogenic

SNP-containing to non-SNP-containing exons. Of 615,410 annotated

exons, 21,030 (3.4%) contain pathogenic SNPs; of 1,399 MXEs, 99

(7.1%) contain pathogenic SNPs; and of 31,745 cassette exons,

2,143 (6.8%) contain pathogenic SNPs. The ~2-fold enrichment of

alternative splicing-associated exons (MXEs and cassette exons) is

highly significant (Fisher’s exact test, P-value MXE = 3 × 10�11,

P-value cassette = 2.2 × 10�16).

Disease prediction using pathogenic SNPs in MXEs

In order to predict disease from MXE expression, we first filtered

for MXEs that had a minimal RPKM value of 3 and then subtracted

the expression of the non-SNP-containing MXE from the SNP-

containing MXE for all MXE pairs with mutations, across all devel-

opmental stages, tissues and cell types (49 features per MXE pair).

Delta PSI values (PSI for SNP-containing MXE—PSI for non-SNP-

containing MXE) were subsequently scaled and centred, and the

MXE pairs were annotated to two disease classes, cardiomyopathy-

neuromuscular disease (n = 10) or other diseases (n = 14). We

regrouped genes into these categories to obtain relatively balanced

categories while keeping a minimum of 10 observations per

category.

Classification with limited observations needs careful execution,

as over-fitting (high variance) and under-fitting (high bias) are

common problems. To avoid high variance or bias, several crucial

steps were taken. First, we did not optimize hyperparameters, using

a Random Forest with 250 trees and a maximum tree depth of 16

(number of predictors/3). Second, we used leave-one-out cross-vali-

dation to avoid sampling bias and model instability. Third, diseases

were grouped into two categories of relatively even size (see above).

Models were built using the R packages caret (Kuhn, 2008) and

randomForest, and ROC curves were generated with ROCR (Sing

et al, 2005).

Of note, models trained on PSI values (considering only the PSI

value of the SNP-containing MXE, data not shown) or RPKM values

(Appendix Fig S29) obtained similar accuracies as the model trained

on delta PSI values, indicating the stability of the prediction across

slight variations in feature pre-processing.

Gene ontology enrichment analysis

We used WebGestalt for Gene Ontology enrichment analyses (Wang

et al, 2013). The lists of unique genes in gene symbol format were

uploaded to WebGestalt and the GO Enrichment Analysis selected.

The entire human genome annotation was set as background and

0.05 as threshold for the P-value for the significance test using the
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default statistical method “hypergeometric”. Categorical enrichment

of MXEs and cassette exons was summarized in a heatmap.

Protein–protein interaction analysis

The protein–protein interaction network was built by using Gene-

MANIA webservice (Warde-Farley et al, 2010). The list of unique

genes containing a pathogen SNP was submitted to GeneMANIA’s

webservice, and we downloaded the resulting network in SVG

format and manually included disease and ontology information.

Assessing the dynamics of MXE annotations over time

MXEs might have already been annotated/described although not

been included in the NCBI reference dataset. This might especially

account for newer annotations based on the recently published

ENCODE project data. Therefore, we obtained alternative protein

sequence datasets from Aceview (Thierry-Mieg & Thierry-Mieg,

2006) and Ensembl (Yates et al, 2016). Further datasets like the

VEGA and GENCODE annotations are continuously integrated into

Ensembl and were therefore not considered separately. The Aceview

database has been built in the year 2000 to represent comprehensive

and non-redundant sequences of all public mRNA sequences. The

human dataset has last been updated in November 2011, thus

before the availability of the ENCODE data.

To assess the novelty of our MXE assignments with respect to

the timely updates and changes of the human annotations, we

compared our data with that of Aceview and with the latest annota-

tion from Ensembl (Fig 5, Appendix Fig S1). As at the beginning of

the project, only a few MXEs are annotated as such in other data-

bases. Surprisingly, however, many of the previously annotated

exons (independent of their splicing status) were removed from the

latest Ensembl annotation, although our RNA-Seq mapping not only

strongly supports their inclusion into transcripts but also their splic-

ing as MXEs. This shows that further collaborative efforts are

needed to reveal a stable and persistent human gene annotation.

Ab initio exon prediction

Exon prediction by ab initio gene finding software is another means

of generating a database of potential coding sequences. Ab initio

exon prediction was done with AUGUSTUS (Stanke & Waack, 2003)

using default parameters to find alternative splice forms and the

feature set for Homo sapiens.

Identifying orthologous proteins in 18 mammals

Cross-species searches in 18 mammals (Dataset EV9) were done

with WebScipio (Hatje et al, 2013) with same parameters as for

gene reconstructions except –min_identity=60, –max_mis-

match=0 (allowing any number of mismatches), –gap_to_-

close=10, –min_intron_length=35, –blat_tilesize=6

and –blat_oneoff=true. MXE candidates in cross-species gene

reconstructions were searched with –length_difference=20,

–min_score=15 and –min_exon_length=15, for all exons in

all introns but not in up- and downstream regions. Reasons for not

detecting clusters of MXEs might be gene and MXE loss events,

sequence divergence precluding ortholog identification, and

assembly gaps. For determining the origin of a conserved MXE clus-

ter, we used a simple model expecting each shared cluster to be

already present in the last common ancestor of the respective

species. This approach is equivalent to inferring ancestral character

states with Dollo parsimony (Farris, 1977).

Comparing human genes with MXEs to orthologous genes in
Drosophila melanogaster

Orthologous genes in D. melanogaster for all human genes

containing MXE candidates were obtained with the Ensemble

BioMart service (Yates et al, 2016). This list of orthologous genes

was filtered with the list of D. melanogaster genes containing

MXEs, which was obtained from Hatje and Kollmar (2013), to

obtain a list of genes with both types of exons, (i) MXEs in human

and MXEs in D. melanogaster, and (ii) MXE candidates in human

but validated to be spliced differently and MXEs in

D. melanogaster. Several of the human and D. melanogaster genes

contain multiple clusters of MXEs. Thus, we compared all genes

manually to determine whether MXEs are orthologous in both

species, whether MXEs in human have orthologous exons in

D. melanogaster, and whether MXEs in human do not correspond

to exons in D. melanogaster genes.

Data availability

All generated data can be searched, filtered and browsed at Kassio-

peia (www.motorprotein.de/kassiopeia; Hatje & Kollmar, 2014).

The primary RNA-Seq datasets used in this study are available in

the following databases:

http://www.ebi.ac.uk/ena/data/view/ERP003613

http://www.ebi.ac.uk/ena/data/view/ERP000546

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36552

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44183

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33480

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30567

Expanded View for this article is available online.

Acknowledgements
We would like to thank Prof. Paul Lingor and Lucas Araujo Caldi Gomes of the

University Medicine Göttingen for providing total RNA isolated from human

brain. We would like to thank Daniel Sumner Magruder from the Bonn group

for critical suggestions. In particular, we would like to thank André Ahrens

from the Kollmar group for his tremendous help in implementing the Allora

database and performing the mapping of MXEs onto protein structures. The

Kollmar group would like to thank Prof. Christian Griesinger for his continuous

generous support. We would like to thank Dr. Robert P. Zinzen and Dr. Carla

Margulies for critical reading of the manuscript.

Author contributions
MK initiated the study and designed the analyses together with SB. KH and

BH performed MXE predictions. KH integrated the human MXE data into the

Kassiopeia database. KH implemented MXE candidate extraction and RNA-Seq

analysis with help from ROV and SB. KH and MK did the cluster distribution,

splicing mechanism and protein structure mapping analyses. KH, ROV, R-UR,

VB, SB and MK performed the differential expression analysis. AR, MEM and TS

performed the RT–PCR experiments. ROV, R-UR, VB and SB performed the SNP

Molecular Systems Biology 13: 959 | 2017 ª 2017 The Authors

Molecular Systems Biology Human mutually exclusive splicing Klas Hatje et al

16

Published online: December 14, 2017 



mapping and prediction analysis. The comparison of different human gene

annotations was done by KH and DS. KH did the prediction of MXEs in other

mammals, and their comparison together with MK. MK and SB wrote the

manuscript. ROV, KH, VB and R-UR contributed to manuscript text and Supple-

mentary Materials. All authors read and approved the final manuscript.

Conflict of interest
The authors declare that they have no conflict of interest.

References

Abascal F, Ezkurdia I, Rodriguez-Rivas J, Rodriguez JM, del Pozo A, Vázquez J,

Valencia A, Tress ML (2015a) Alternatively spliced homologous exons have

ancient origins and are highly expressed at the protein level. PLoS Comput

Biol 11: e1004325

Abascal F, Tress ML, Valencia A (2015b) The evolutionary fate of alternatively

spliced homologous exons after gene duplication. Genome Biol Evol 7:

1392 – 1403

Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA,

Shendure J (2011) Exome sequencing as a tool for Mendelian disease gene

discovery. Nat Rev Genet 12: 745 – 755

Barbosa-Morais NL, Irimia M, Pan Q, Xiong HY, Gueroussov S, Lee LJ,

Slobodeniuc V, Kutter C, Watt S, Çolak R, Kim T, Misquitta-Ali CM, Wilson

MD, Kim PM, Odom DT, Frey BJ, Blencowe BJ (2012) The evolutionary

landscape of alternative splicing in vertebrate species. Science 338:

1587 – 1593

Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J,

Sayers EW (2013) GenBank. Nucleic Acids Res 41: D36 –D42

Blencowe BJ (2006) Alternative splicing: new insights from global analyses.

Cell 126: 37 – 47

Blencowe BJ (2017) The relationship between alternative splicing and

proteomic complexity. Trends Biochem Sci 42: 407 – 408

Bowdin S, Gilbert A, Bedoukian E, Carew C, Adam MP, Belmont J, Bernhardt B,

Biesecker L, Bjornsson HT, Blitzer M, D’Alessandro LCA, Deardorff MA,

Demmer L, Elliott A, Feldman GL, Glass IA, Herman G, Hindorff L, Hisama

F, Hudgins L et al (2016) Recommendations for the integration of

genomics into clinical practice. Genet Med 18: 1075 – 1084

Buchert R, Tawamie H, Smith C, Uebe S, Innes AM, Al Hallak B, Ekici AB,

Sticht H, Schwarze B, Lamont RE, Parboosingh JS, Bernier FP, Abou Jamra

R (2014) A peroxisomal disorder of severe intellectual disability, epilepsy,

and cataracts due to fatty acyl-CoA reductase 1 deficiency. Am J Hum

Genet 95: 602 – 610

Buljan M, Chalancon G, Eustermann S, Wagner GP, Fuxreiter M, Bateman A,

Babu MM (2012) Tissue-specific splicing of disordered segments that

embed binding motifs rewires protein interaction networks. Mol Cell 46:

871 – 883

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden

TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:

421

Ceriani L, Verme P (2012) The origins of the Gini index: extracts from

Variabilità e Mutabilità (1912) by Corrado Gini. J Econ Inequal 10: 421 –443

Chong JX, Buckingham KJ, Jhangiani SN, Boehm C, Sobreira N, Smith JD,

Harrell TM, McMillin MJ, Wiszniewski W, Gambin T, Coban Akdemir ZH,

Doheny K, Scott AF, Avramopoulos D, Chakravarti A, Hoover-Fong J,

Mathews D, Witmer PD, Ling H, Hetrick K et al (2015) The genetic basis of

Mendelian phenotypes: discoveries, challenges, and opportunities. Am J

Hum Genet 97: 199 – 215

Copley RR (2004) Evolutionary convergence of alternative splicing in ion

channels. Trends Genet 20: 171 – 176

Corvelo A, Hallegger M, Smith CWJ, Eyras E (2010) Genome-wide association

between branch point properties and alternative splicing. PLoS Comput

Biol 6: e1001016

Cowell F (2011) Measuring inequality. Oxford: Oxford University Press

David CJ, Chen M, Assanah M, Canoll P, Manley JL (2010) HnRNP proteins

controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer.

Nature 463: 364 – 368

Diebold RJ, Koch WJ, Ellinor PT, Wang JJ, Muthuchamy M, Wieczorek DF,

Schwartz A (1992) Mutually exclusive exon splicing of the cardiac

calcium channel alpha 1 subunit gene generates developmentally

regulated isoforms in the rat heart. Proc Natl Acad Sci USA 89:

1497 – 1501

Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A,

Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA,

Zaleski C, Rozowsky J, Röder M, Kokocinski F, Abdelhamid RF, Alioto T et al

(2012) Landscape of transcription in human cells. Nature 489: 101 – 108

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P,

Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner.

Bioinformatics 29: 15 – 21

Döring A, Weese D, Rausch T, Reinert K (2008) SeqAn an efficient, generic

C++ library for sequence analysis. BMC Bioinformatics 9: 11

Edgar RC (2004) MUSCLE: a multiple sequence alignment method with

reduced time and space complexity. BMC Bioinformatics 5: 113

Ellis JD, Barrios-Rodiles M, Colak R, Irimia M, Kim T, Calarco JA, Wang X, Pan

Q, O’Hanlon D, Kim PM, Wrana JL, Blencowe BJ (2012) Tissue-specific

alternative splicing remodels protein-protein interaction networks. Mol

Cell 46: 884 – 892

Ezkurdia I, del Pozo A, Frankish A, Rodriguez JM, Harrow J, Ashman K,

Valencia A, Tress ML (2012) Comparative proteomics reveals a significant

bias toward alternative protein isoforms with conserved structure and

function. Mol Biol Evol 29: 2265 – 2283

Ezkurdia I, Rodriguez JM, Carrillo-de Santa Pau E, Vázquez J, Valencia A, Tress

ML (2015) Most highly expressed protein-coding genes have a single

dominant isoform. J Proteome Res 14: 1880 – 1887

Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J,

Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, Asplund A, Sjöstedt

E, Lundberg E, Szigyarto CA-K, Skogs M, Takanen JO, Berling H, Tegel H,

Mulder J, Nilsson P et al (2014) Analysis of the human tissue-specific

expression by genome-wide integration of transcriptomics and antibody-

based proteomics. Mol Cell Proteomics 13: 397 – 406

Farris JS (1977) Phylogenetic analysis under Dollo’s law. Syst Zool 26: 77 – 88

Floor SN, Doudna JA (2016) Tunable protein synthesis by transcript isoforms

in human cells. Elife 5: e10921

Gerstein MB, Rozowsky J, Yan K-K, Wang D, Cheng C, Brown JB, Davis CA,

Hillier L, Sisu C, Li JJ, Pei B, Harmanci AO, Duff MO, Djebali S, Alexander

RP, Alver BH, Auerbach R, Bell K, Bickel PJ, Boeck ME et al (2014)

Comparative analysis of the transcriptome across distant species. Nature

512: 445 – 448

Gonzaga-Jauregui C, Lupski JR, Gibbs RA (2012) Human genome sequencing

in health and disease. Annu Rev Med 63: 35 – 61

Graveley BR, Kaur A, Gunning D, Zipursky SL, Rowen L, Clemens JC (2004) The

organization and evolution of the dipteran and hymenopteran Down

syndrome cell adhesion molecule (Dscam) genes. RNA 10: 1499 – 1506

Graveley BR (2005) Mutually exclusive splicing of the insect Dscam Pre-

mRNA directed by competing intronic RNA secondary structures. Cell 123:

65 – 73

ª 2017 The Authors Molecular Systems Biology 13: 959 | 2017

Klas Hatje et al Human mutually exclusive splicing Molecular Systems Biology

17

Published online: December 14, 2017 



Hammesfahr B, Kollmar M (2012) Evolution of the eukaryotic dynactin

complex, the activator of cytoplasmic dynein. BMC Evol Biol 12: 95

Hatje K, Hammesfahr B, Kollmar M (2013) WebScipio: reconstructing

alternative splice variants of eukaryotic proteins. Nucleic Acids Res 41:

W504 –W509

Hatje K, Kollmar M (2013) Expansion of the mutually exclusive spliced exome

in Drosophila. Nat Commun 4: 2460

Hatje K, Kollmar M (2014) Kassiopeia: a database and web application for

the analysis of mutually exclusive exomes of eukaryotes. BMC Genom 15:

115

Irimia M, Weatheritt RJ, Ellis JD, Parikshak NN, Gonatopoulos-Pournatzis T,

Babor M, Quesnel-Vallières M, Tapial J, Raj B, O’Hanlon D, Barrios-Rodiles

M, Sternberg MJE, Cordes SP, Roth FP, Wrana JL, Geschwind DH, Blencowe

BJ (2014) A highly conserved program of neuronal microexons is

misregulated in autistic brains. Cell 159: 1511 – 1523

Johansson JU, Ericsson J, Janson J, Beraki S, Stani�c D, Mandic SA, Wikström

MA, Hökfelt T, Ogren SO, Rozell B, Berggren P-O, Bark C (2008) An ancient

duplication of exon 5 in the Snap25 gene is required for complex neuronal

development/function. PLoS Genet 4: e1000278

Kaplan JM, Kim SH, North KN, Rennke H, Correia LA, Tong HQ, Mathis BJ,

Rodríguez-Pérez JC, Allen PG, Beggs AH, Pollak MR (2000) Mutations in

ACTN4, encoding alpha-actinin-4, cause familial focal segmental

glomerulosclerosis. Nat Genet 24: 251 – 256

Keller O, Odronitz F, Stanke M, Kollmar M, Waack S (2008) Scipio: using

protein sequences to determine the precise exon/intron structures of

genes and their orthologs in closely related species. BMC Bioinformatics 9:

278

Kollmar M, Hatje K (2014) Shared gene structures and clusters of mutually

exclusive spliced exons within the metazoan muscle myosin heavy chain

genes. PLoS One 9: e88111

Kuhn M (2008) Building predictive models in R using the caret package. J

Stat Softw 28: 1 – 26

Kustatscher G, Hothorn M, Pugieux C, Scheffzek K, Ladurner AG (2005)

Splicing regulates NAD metabolite binding to histone macroH2A. Nat

Struct Mol Biol 12: 624 – 625

Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, Gu B, Hart J,

Hoffman D, Hoover J, Jang W, Katz K, Ovetsky M, Riley G, Sethi A, Tully R,

Villamarin-Salomon R, Rubinstein W, Maglott DR (2016) ClinVar: public

archive of interpretations of clinically relevant variants. Nucleic Acids Res

44: D862 –D868

Lee C, Kim N, Roy M, Graveley BR (2010) Massive expansions of Dscam

splicing diversity via staggered homologous recombination during

arthropod evolution. RNA 16: 91 – 105

Lee Y, Rio DC (2015) Mechanisms and regulation of alternative pre-mRNA

splicing. Annu Rev Biochem 84: 291 – 323

Letunic I, Copley RR, Bork P (2002) Common exon duplication in animals and

its role in alternative splicing. Hum Mol Genet 11: 1561 – 1567

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis

G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The

sequence alignment/map format and SAMtools. Bioinformatics 25:

2078 – 2079

Lorenz R, Bernhart SH, Höner Zu Siederdissen CH, Tafer H, Flamm C, Stadler

PF, Hofacker IL (2011) ViennaRNA package 2.0. Algorithms Mol Biol 6: 26

Matlin AJ, Clark F, Smith CWJ (2005) Understanding alternative splicing:

towards a cellular code. Nat Rev Mol Cell Biol 6: 386 – 398

Mayr JA, Zimmermann FA, Horváth R, Schneider H-C, Schoser B, Holinski-

Feder E, Czermin B, Freisinger P, Sperl W (2011) Deficiency of the

mitochondrial phosphate carrier presenting as myopathy and

cardiomyopathy in a family with three affected children. Neuromuscul

Disord 21: 803 – 808

Meijers R, Puettmann-Holgado R, Skiniotis G, Liu J, Walz T, Wang J,

Schmucker D (2007) Structural basis of Dscam isoform specificity. Nature

449: 487 – 491

Merkin J, Russell C, Chen P, Burge CB (2012) Evolutionary dynamics of

gene and isoform regulation in mammalian tissues. Science 338:

1593 – 1599

Nellore A, Jaffe AE, Fortin J-P, Alquicira-Hernández J, Collado-Torres L, Wang

S, Phillips Iii RA, Karbhari N, Hansen KD, Langmead B, Leek JT (2016)

Human splicing diversity and the extent of unannotated splice junctions

across human RNA-seq samples on the sequence read archive. Genome

Biol 17: 266

Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by

alternative splicing. Nature 463: 457 – 463

Odronitz F, Kollmar M (2008) Comparative genomic analysis of the arthropod

muscle myosin heavy chain genes allows ancestral gene reconstruction

and reveals a new type of ‘partially’ processed pseudogene. BMC Mol Biol

9: 21

Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of

alternative splicing complexity in the human transcriptome by high-

throughput sequencing. Nat Genet 40: 1413 – 1415

Pillmann H, Hatje K, Odronitz F, Hammesfahr B, Kollmar M (2011) Predicting

mutually exclusive spliced exons based on exon length, splice site and

reading frame conservation, and exon sequence homology. BMC

Bioinformatics 12: 270

Pohl M, Bortfeldt RH, Grützmann K, Schuster S (2013) Alternative splicing of

mutually exclusive exons–a review. Biosystems 114: 31 – 38

Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for

comparing genomic features. Bioinformatics 26: 841 – 842

Rogozin IB, Wolf YI, Sorokin AV, Mirkin BG, Koonin EV (2003) Remarkable

interkingdom conservation of intron positions and massive, lineage-

specific intron loss and gain in eukaryotic evolution. Curr Biol 13:

1512 – 1517

Rose PW, Prli�c A, Bi C, Bluhm WF, Christie CH, Dutta S, Green RK, Goodsell

DS, Westbrook JD, Woo J, Young J, Zardecki C, Berman HM, Bourne PE,

Burley SK (2015) The RCSB Protein Data Bank: views of structural biology

for basic and applied research and education. Nucleic Acids Res 43:

D345 –D356

Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, Dixon JE,

Zipursky SL (2000) Drosophila Dscam is an axon guidance receptor

exhibiting extraordinary molecular diversity. Cell 101: 671 – 684

Sharp PA, Burge CB (1997) Classification of introns: U2-type or U12-type. Cell

91: 875 – 879

Sing T, Sander O, Beerenwinkel N, Lengauer T (2005) ROCR: visualizing

classifier performance in R. Bioinformatics 21: 3940 – 3941

Smith CWJ (2005) Alternative splicing–when two’s a crowd. Cell 123: 1 – 3

Sommer B, Keinänen K, Verdoorn TA, Wisden W, Burnashev N, Herb A, Köhler

M, Takagi T, Sakmann B, Seeburg PH (1990) Flip and flop: a cell-specific

functional switch in glutamate-operated channels of the CNS. Science 249:

1580 – 1585

Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano

C, Schwartz PJ, Joseph RM, Condouris K, Tager-Flusberg H, Priori SG,

Sanguinetti MC, Keating MT (2004) Ca(V)1.2 calcium channel dysfunction

causes a multisystem disorder including arrhythmia and autism. Cell 119:

19 – 31

Splawski I, Timothy KW, Decher N, Kumar P, Sachse FB, Beggs AH,

Sanguinetti MC, Keating MT (2005) Severe arrhythmia disorder caused by

Molecular Systems Biology 13: 959 | 2017 ª 2017 The Authors

Molecular Systems Biology Human mutually exclusive splicing Klas Hatje et al

18

Published online: December 14, 2017 



cardiac L-type calcium channel mutations. Proc Natl Acad Sci USA 102:

8089 – 8096; discussion 8086–8088

Stanke M, Waack S (2003) Gene prediction with a hidden Markov model and

a new intron submodel. Bioinformatics 19: ii215 – ii225

Sterne-Weiler T, Martinez-Nunez RT, Howard JM, Cvitovik I, Katzman S, Tariq

MA, Pourmand N, Sanford JR (2013) Frac-seq reveals isoform-specific

recruitment to polyribosomes. Genome Res 23: 1615 – 1623

Suyama M (2013) Mechanistic insights into mutually exclusive splicing in

dynamin 1. Bioinformatics 29: 2084 – 2087

Thierry-Mieg D, Thierry-Mieg J (2006) AceView: a comprehensive cDNA-

supported gene and transcripts annotation. Genome Biol 7(Suppl 1):

S12.1 – S1214

Tilgner H, Knowles DG, Johnson R, Davis CA, Chakrabortty S, Djebali S, Curado

J, Snyder M, Gingeras TR, Guigó R (2012) Deep sequencing of subcellular

RNA fractions shows splicing to be predominantly co-transcriptional in

the human genome but inefficient for lncRNAs. Genome Res 22:

1616 – 1625

Tress ML, Abascal F, Valencia A (2017a) Alternative splicing may not be the

key to proteome complexity. Trends Biochem Sci 42: 98 – 110

Tress ML, Abascal F, Valencia A (2017b) Most alternative isoforms are not

functionally important. Trends Biochem Sci 42: 408 – 410

UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic

Acids Res 43: D204 –D212

Wallace IM, O’Sullivan O, Higgins DG, Notredame C (2006) M-Coffee:

combining multiple sequence alignment methods with T-Coffee. Nucleic

Acids Res 34: 1692 – 1699

Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF,

Schroth GP, Burge CB (2008) Alternative isoform regulation in human

tissue transcriptomes. Nature 456: 470 – 476

Wang J, Duncan D, Shi Z, Zhang B (2013) WEB-based GEne SeT AnaLysis

toolkit (WebGestalt): update 2013. Nucleic Acids Res 41: W77 –W83

Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz

M, Grouios C, Kazi F, Lopes CT, Maitland A, Mostafavi S, Montojo J, Shao

Q, Wright G, Bader GD, Morris Q (2010) The GeneMANIA prediction server:

biological network integration for gene prioritization and predicting gene

function. Nucleic Acids Res 38: W214 –W220

Weatheritt RJ, Sterne-Weiler T, Blencowe BJ (2016) The ribosome-engaged

landscape of alternative splicing. Nat Struct Mol Biol 23: 1117 – 1123

Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, Yuen RKC, Hua Y,

Gueroussov S, Najafabadi HS, Hughes TR, Morris Q, Barash Y, Krainer AR,

Jojic N, Scherer SW, Blencowe BJ, Frey BJ (2015) RNA splicing. The human

splicing code reveals new insights into the genetic determinants of

disease. Science 347: 1254806

Xue Z, Huang K, Cai C, Cai L, Jiang C, Feng Y, Liu Z, Zeng Q, Cheng L, Sun YE,

Liu J, Horvath S, Fan G (2013) Genetic programs in human and mouse

early embryos revealed by single-cell RNA sequencing. Nature 500:

593 – 597

Yan L, Yang M, Guo H, Yang L, Wu J, Li R, Liu P, Lian Y, Zheng X, Yan J,

Huang J, Li M, Wu X, Wen L, Lao K, Li R, Qiao J, Tang F (2013) Single-cell

RNA-Seq profiling of human preimplantation embryos and embryonic

stem cells. Nat Struct Mol Biol 20: 1131 – 1139

Yang Y, Sun F, Wang X, Yue Y, Wang W, Zhang W, Zhan L, Tian N, Shi F, Jin Y

(2012) Conservation and regulation of alternative splicing by dynamic

inter- and intra-intron base pairings in Lepidoptera 14-3-3ξ pre-mRNAs.

RNA Biol 9: 691 – 700

Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, Cummins

C, Clapham P, Fitzgerald S, Gil L, Girón CG, Gordon L, Hourlier T, Hunt SE,

Janacek SH, Johnson N, Juettemann T, Keenan S, Lavidas I, Martin FJ et al

(2016) Ensembl 2016. Nucleic Acids Res 44: D710 –D716

Yura K, Shionyu M, Hagino K, Hijikata A, Hirashima Y, Nakahara T, Eguchi T,

Shinoda K, Yamaguchi A, Takahashi K-I, Itoh T, Imanishi T, Gojobori T, Go

M (2006) Alternative splicing in human transcriptome: functional and

structural influence on proteins. Gene 380: 63 – 71

Zhang JD, Hatje K, Sturm G, Broger C, Ebeling M, Burtin M, Terzi F,

Pomposiello SI, Badi L (2017) Detect tissue heterogeneity in gene

expression data with BioQC. BMC Genom 18: 277

Zubovi�c L, Baralle M, Baralle FE (2012) Mutually exclusive splicing regulates

the Nav 1.6 sodium channel function through a combinatorial mechanism

that involves three distinct splicing regulatory elements and their ligands.

Nucleic Acids Res 40: 6255 – 6269

License: This is an open access article under the

terms of the Creative Commons Attribution 4.0

License, which permits use, distribution and reproduc-

tion in any medium, provided the original work is

properly cited.

ª 2017 The Authors Molecular Systems Biology 13: 959 | 2017

Klas Hatje et al Human mutually exclusive splicing Molecular Systems Biology

19

Published online: December 14, 2017 



 
 Raza_Ur_Rahman_Cv.doc 1 

Raza Ur Rahman 
 Email: raza-ur.rahman@zmnh.uni-hamburg.de 
 
Education 
 
PhD, Bioinformatics          [Since 2014] 
Georg-August-Universität, Göttingen , Germany. 
 
Master in Bio-Informatics [MS (BI)]                          [Oct 2011 – Mar 2014] 
Saarland University, Saarbrucken, Germany. 
 
Bachelor of Sciences Major Bio-Informatics [BS (BI)]                    [August 2006 – June 2010] 
Mohammad Ali Jinnah University (M.A.J.U), Islamabad, Pakistan. 
 
Employment Background 
	
1. IMC information multimedia communication  

     As a Software Engineer (Java\J2EE)                                                    [1 Aug 2012 to 30th Nov 2012] 
 

  2. Digital Processing Systems Inc (DPS)  

    As a junior Software Engineer (Java\J2EE)                                             [Jan 05, 2011 to 19th Oct 2011] 
 

 3. Mohammad Ali Jinnah University, Islamabad Campus 

      Department of Computer Science and Bioinformatics                                           [Feb 02, 2009 to May 2010]. 
 

PUBLICATIONS 
• Published 

 
– Raza-Ur Rahman, Abhivyakti Gautam, Jörn Bethune, Abdul Sattar, Maksims Fiosins, Daniel Sumner 

Magruder, Vincenzo Capece, Orr Shomroni and Stefan Bonn. (2018). Oasis 2: improved online analysis 
of small RNA-seq data. BMC Bioinformatics (volume19). 
 

– Raza-Ur Rahman, Abdul Sattar, Maksims Fiosins, Abhivyakti Gautam , Daniel Sumner Magruder, Jörn 
Bethune, Sumit Madan , Juliane Fluck , and Stefan Bonn. (2017). SEA: The small RNA Expression 
Atlas. bioRxiv preprint https://doi.org/10.1101/133199 
 

– Hatje, Klas and Rahman, Raza-Ur and Vidal, Ramon O and Simm, Dominic and Hammesfahr, Björn 
and Bansal, Vikas and Rajput, Ashish and Mickael, Michel Edwar and Sun, Ting and Bonn, Stefan and 
Kollmar, Martin (2017). The landscape of human mutually exclusive splicing.  Molecular Systems 
Biology (volume 13). 
 

– Vincenzo Capece, Julio C. Garcia Vizcaino, Ramon Vidal, Raza-Ur Rahman, Tonatiuh Pena Centeno, 
Orr Shomroni, Irantzu Suberviola, Andre Fischer and Stefan Bonn. . (2015). Oasis: online analysis of 
small RNA deep sequencing data. Bioinformatics 31, 1–3 

 
– Rashi Halder, Magali Hennion, Ramon O. Vidal, Orr Shomroni, Raza-Ur Rahman, Ashish Rajput, 

Frauke van Bebber, Anna-Lena Schuetz, Susanne Burkhardt, Eva Benito, Julio C. Garcia Vizcaino, 
Vincenzo Capece, Tonatiuh Pena Centeno, Magdalena Navarro Sala, Sanaz Bahari Javan, Christian 
Haass, Bettina Schmid, Andre Fischer, Stefan Bonn. DNA methylation changes in plasticity genes 
accompany the formation and maintenance of memory. Nature Neuroscience, 19(1), 102–110. 



 
 

 Raza ur Rahman| CV 2 

– Tonatiuh Pena Centeno, Orr Shomroni, Magali Hennion, Rashi Halder, Ramon Vidal, Raza-Ur Rahman, 
Andre Fischer, Stefan Bonn. Genome-wide chromatin and gene expression profiling during memory 
formation and maintenance in adult mice. Scientific data 

 
• In Preparation 

– Eugenio F. Fornasiero, Sunit Mandad, Raza-Ur Rahman, Tonatiuh Pena Centeno, Ramon O. Vidal, 
Hanna Wildhagen, Burkhard Rammner, Sarva Keihani, Felipe Opazo, Inga Urban, Till Ischebeck, Koray 
Kirli, Eva Benito, André Fischer, Sven Dennerlein, Peter Rehling, Ivo Feussner, Henning Urlaub, Stefan 
Bonn, Silvio O. Rizzoli. The codon sequences predict protein lifetimes and other parameters of the 
protein life cycle in the mouse brain. eLife 

– Eugenio F. Fornasiero, Sunit Mandad, Hanna Wildhagen, Burkhard Rammner,Inga Urban,Till 
Ischebeck, Eva Benito, Koray Kirli, Raza-Ur Rahman, Sven Dennerlein, Peter Rehling, Ivo Feussner, 
André Fischer, Stefan Bonn, Henning Urlaub, Silvio O. Rizzoli. The analysis of protein lifetimes in the 
mouse brain reveals basic turnover principles. Nature Neuroscience 

 
 
 
 

Softwares 
 
 

– Oasis 2: Improved online analysis of small RNA-seq data. https://oasis.dzne.de 
– SEA:    Small RNA Expression Atlas. https://sea.dzne.de/sea/sea.jsp 
– Memory-epigenome-browser: A genome browser for the interactive visualization of (in house) NGS data. 

https://oasis.dzne.de/JBrowse-1.11.4/index.html 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


	List of Figures
	Acknowledgements
	Abstract
	List of publications and softwares
	Thesis structure
	1 Biological Background Knowledge
	1.1 Deoxyribonucleic acid
	1.2 Gene expression
	1.2.1 Transcription start site
	1.2.2 RNA polymerase II
	1.2.3 Promoter
	1.2.4 Enhancers
	1.2.5 Transcription factors

	1.3 Alternative Splicing
	1.4 Small RNA (sRNA)
	1.4.1 MicroRNAs
	1.4.2 PIWI-interacting RNAs
	1.4.3 Small nucleolar RNAs
	1.4.4 Small interfering RNA
	1.4.5 Small nuclear RNAs

	1.5 Next generation sequencing
	1.5.1 RNA sequencing
	1.5.1.1 Method



	2 Bioinformatics Background Knowledge
	2.1 Database management systems
	2.1.1 DBMS Architecture

	2.2 Types of databases
	2.2.1 Relational database systems
	2.2.1.1 Constraints
	2.2.1.2 Entity relationship model (ER model)

	2.2.2 Non-relational database systems
	2.2.2.1 Types of NoSQL databases


	2.3 Standard workflows for NGS data analysis
	2.3.1 Raw data (FASTQ)
	2.3.2 Quality control (QC)
	2.3.2.1 FastQC

	2.3.3 Adapter trimming
	2.3.4 Alignment and counting
	2.3.5 Differential expression (DE) analysis

	2.4 Biological ontologies
	2.5 Principles of supervised machine learning methods
	2.5.1 Classification
	2.5.1.1 Biological example
	2.5.1.2 Random forest


	2.6 Thesis related existing resources and research
	2.6.1 sRNA-seq analysis tools
	2.6.1.1 sRNA workbench
	2.6.1.2 CAP-miRSeq
	2.6.1.3 omiRas
	2.6.1.4 mirTools 2.0
	2.6.1.5 MAGI
	2.6.1.6 Chimira
	2.6.1.7 sRNAtoolbox

	2.6.2 sRNA expression databases
	2.6.2.1 miRmine
	2.6.2.2 DASHR
	2.6.2.3 Miratlas
	2.6.2.4 YM500v3

	2.6.3 Mutually exclusive splicing of exons

	2.7 Goals of the Thesis
	2.7.1 Online analysis of small RNA deep sequencing data (Oasis)
	2.7.2 sRNA expression atlas (SEA)
	2.7.3 Mutually exclusive splicing of exons


	3 Results, Discussion and Outlook
	3.1 Online analysis of small RNA-seq data (Oasis 2)
	3.1.1 Oasis 2's module
	3.1.2 OasisCompressor
	3.1.3 Quality Control (QC)
	3.1.4 Functional enrichment analysis

	3.2 Small RNA expression atlas (SEA)
	3.2.1 System design
	3.2.2 Annotation tool
	3.2.2.1 Annotation criteria

	3.2.3 SEA web application

	3.3 Mutually exclusive splicing of exons
	3.3.1 Data sources
	3.3.2 Prediction of MXE candidates
	3.3.3 Validation of MXE candidates
	3.3.4 Spatio-temporal expression of MXEs
	3.3.5 Disease pathology prediction

	3.4 Conclusion and outlook

	References
	Appendices
	A Article 1
	B Article 2
	C Article 3

