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Abstract 

DEAD/H-box RNA helicases are ubiquitously expressed enzymes, which are characterised by 

a conserved helicase core of two RecA-like domains containing sequence motifs required for 

substrate binding and hydrolysis of NTP. Since this helicase core predominantly interacts with 

the sugar phosphate backbone of its target RNA, additional N- and/or C-terminal ancillary 

domains are thought to confer substrate specificity and/or mediate cofactor interactions. On 

the molecular level, some RNA helicases were shown to have unwinding activity, but others 

can also anneal RNA duplexes or mediate the release of proteins from protein-RNA 

complexes. Through their key functions in structural remodelling of RNAs and RNP complexes, 

RNA helicases are implicated in all aspects of RNA metabolism including transcription, 

translation, pre-mRNA splicing, RNA turnover and ribosome biogenesis. 

The biogenesis of ribosomes is a complex and energy-consuming process, which involves the 

synthesis and processing of four ribosomal RNAs (rRNAs) and their assembly with 

approximately 80 ribosomal proteins. Ribosome synthesis involves in excess of 200 

biogenesis cofactors, including snoRNPs that introduce rRNA modifications co-

transcriptionally as well as enzymes such as nucleases, NTPases and RNA helicases, which 

act in a strict hierarchical order to mediate the correct assembly and maturation of 40S and 

60S subunits. In the yeast Saccharomyces cerevisiae, 21 RNA helicases are proposed to act 

during the synthesis of ribosomes, where they likely contribute to different steps along the 

maturation pathway. Some RNA helicases are required for the release of specific snoRNPs 

from pre-ribosomal complexes, whereas other RNA helicases are suggested to be involved in 

structural rearrangements of rRNA and remodelling of pre-ribosomal complexes. However, 

many of the RNA helicases implicated in ribosome biogenesis remain uncharacterised and the 

lack of information about their binding sites on pre-ribosomal complexes has impeded further 

functional characterisation of these proteins. 

In this work, we focused on three essential RNA helicases, Has1, Spb4 and Mak5, which are 

implicated in both SSU and LSU biogenesis (Has1) or in the later stages of LSU biogenesis 

(Spb4 and Mak5). Using a crosslinking technique with subsequent analysis of cDNA (CRAC) 

we revealed their putative binding sites on pre-ribosomal complexes. The observed CRAC 

sites for Has1 were consistent with its previously reported functions in the release the U14 

snoRNA from pre-40S particles and regulating the release of a subset of trans-acting ribosome 

biogenesis factors from pre-60S complexes, but the identification of two Has1 crosslinking 

sites in the 18S rRNA suggests that Has1 may have an additional function in the biogenesis 

of small ribosomal subunits. DMS structure probing experiments demonstrated that the 

crosslinking sites identified for Spb4 and Mak5 by CRAC are bona-fide protein binding sites. 

In the case of Spb4, the structure probing data further suggest that one of the identified 
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crosslinking sites likely represents a binding platform for the helicase whereas the other 

crosslinking site might represent a region of the pre-rRNA that is remodelled by Spb4. 

Interestingly, this rRNA region is in close proximity to the known binding site of the ribosome 

biogenesis factors Nog2 and Arx1, suggesting that Spb4 may play a direct role in recruitment 

or release of these proteins from pre-60S complexes. Excitingly, for Mak5, our data have 

revealed a function of the helicase in restructuring a region of the pre-ribosome to enable 

recruitment of the ribosomal protein Rpl10 to cytoplasmic ribosomal particles. Together, these 

findings extend the range of functions linked to RNA helicases in ribosome biogenesis and add 

to the understanding of important events during assembly of the large ribosomal subunit.
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1  Introduction 

1.1 RNA helicases 

The functions of RNA extend from being solely the messenger between the genetic information 

in DNA and the ribosome where proteins are produced (messenger RNAs; mRNAs) to also 

include various non-coding RNAs, such as ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), 

small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs) and long non-coding RNAs 

(lncRNAs). RNA therefore plays important roles in facilitating and regulating almost all aspects 

of gene expression. These various functions of RNAs require correct folding into secondary 

and finally tertiary structures, as well as assembly with protein components to form larger 

ribonucleoprotein complexes (RNPs). Nascent transcripts, produced by any of the three RNA 

polymerases (Pol I, II or III), can immediately fold into secondary structures. However, in the 

case of longer transcripts that form long-range intramolecular interactions in their final 

topology, it is possible that aberrant basepairing interactions are formed first because of the 

low variety of bases in the RNA. These kinetic traps necessitate RNA structural transitions to 

enable the RNAs to establish their correct folds (Russell, 2008). Furthermore, most RNPs are 

highly dynamic and require numerous structural rearrangements during their biogenesis to fulfil 

their functions. Such RNA remodelling often requires assistance by proteins. RNA helicases, 

which are ubiquitous enzymes that are best known for their functions in unwinding double-

stranded nucleic acids by cooperative binding and hydrolysis of nucleotide triphosphates 

(NTPs), are major contributors to chaperoning RNA folding or conformational rearrangements 

of RNAs (Banroques et al., 2008; Jankowsky, 2011). 

1.1.1 Helicase families 

RNA and DNA helicases are highly related but sequence alignments have allowed 

classification of these proteins into six superfamilies (SF), SF1 to SF6 (Gorbalenya and 

Koonin, 1993; Singleton et al., 2007). All eukaryotic RNA helicases belong to SF1 and SF2, 

and are characterised by a conserved helicase core, which consists of two RecA-like domains. 

Both RecA-like domains are crucial for helicase function as they provide the binding sites for 

NTP and nucleic acids (Fig. 1.1). The helicase core contains up to twelve consensus sequence 

motifs, which are similar in number and type within families, but differ between families 

(Fairman-Williams et al., 2010). Accordingly, helicases from SF2 can be subdivided into nine 

families (DEAD-box, DEAH-box, Ski2-like, RecQ-like, RecG-like, T1R, Swi/Snf, RIG-I-like and 

Rad3/XPD). The vast majority of RNA helicases are found in DEAD- and DEAH-box families, 

which can be collectively described as DExD/H-box proteins. The DExD/H-box RNA helicases 

commonly contain eight conserved sequence motifs. Motifs I and II (Walker A and B), which 

are also found in non-helicase proteins, are required for NTP binding and its hydrolysis (Fig. 
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1.1; Walker et al., 1982). Energetic coupling of NTP binding and hydrolysis with helicase 

activity is suggested to be mediated by motif III (Pause and Sonenberg, 1992). Although motif 

VI was initially thought to participate in RNA binding, it is also implicated in the hydrolysis of 

NTP (Pause et al., 1993). The remaining motifs Ia, Ib, IV and V constitute the scaffold for RNA 

substrate binding (Cordin et al., 2006). Interestingly, these motifs contact only the sugar-

phosphate backbone of RNAs, which suggests that most RNA helicases have little or no 

sequence specificity. However, an important feature of RNA helicases is that their function as 

NTPases is stimulated by RNA (Hilbert et al., 2009). Additionally, a ninth conserved motif, 

which only occurs in DEAD-box proteins and is characterised by an invariant glutamine, was 

identified (Tanner et al., 2003). This Q motif is thought to sense the NTP bound state, 

suggesting a role in functional regulation of RNA helicase activity (Tanner et al., 2003; Cordin 

et al., 2004). Furthermore, many SF2 helicases contain ancillary domains at the carboxyl-

terminus that are structurally conserved and are characteristic features of DEAH-box and Ski2-

like proteins (Fig. 1.1A). Several RNA helicases also contain additional N- and/or C-terminal 

extensions, which are more flexible and heterogeneous (Fairman-Williams et al., 2010; He et 

al., 2010; Walbott et al., 2010). 

1.1.2 Structure and molecular function of RNA helicases 

Responsible for the mode of action and common for all RNA helicases of SF1 and SF2 is their 

conserved helicase core with its tandem RecA-like domains, which are in juxtaposition with 

each other. In absence of either NTP or RNA, the helicase core adopts an inactive, open 

conformation presenting an inter-domain cleft. Binding of NTP cooperatively enhances RNA 

substrate binding, which subsequently results in a conformational change inducing closure of 

the inter-domain cleft (ON conformation). In this conformation, the interaction between the 

protein and the sugar-phosphate backbone of the RNA substrate introduces a kink, which 

compromises basepairing between the two strands of the RNA duplex and is therefore key for 

the unwinding mechanism. Hydrolysis of NTP triggers a conformational switch back to the 

open conformation (OFF conformation), bringing about release of inorganic phosphate and the 

dissociated RNA strands. This substrate release enables the RNA helicase to be recycled and 

available for additional rounds of unwinding. 

Conventionally, DNA helicases separate duplexes by translocation along a single nucleic acid 

strand and DEAH-box and Ski2-like RNA helicases also unwind RNA duplexes by this 

mechanism (Singleton et al., 2007). For unwinding, they require a single stranded extension 

adjacent to the RNA duplex, which allows loading of the helicase and translocation in 3’ to 5’ 

or 5’ to 3’ directionality (Jankowsky et al., 2000). In DEAH-box proteins, the inter-domain cleft 

is rather narrow in the OFF conformation due to their family specific C-terminal domains, which 

keep the two RecA-like domains in close proximity (He et al., 2010; Walbott et al., 2010). 
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Several rounds of NTP binding and hydrolysis suggest a stepping model along the loading 

RNA strand, which leads to dissociation of the top strand (Myong and Ha, 2010). 

 

Figure 1.1: Structural composition of RNA helicases. (A) Arrangement of structural domains of 
members of the helicase SF2 (Ski2-like, DEAH-box and DEAD-box proteins). Conserved motifs in the 
helicase core are indicated in red (implicated in NTP binding), in blue (implicated in RNA binding) and 
yellow (implicated in coupling of NTP hydrolysis and helicase activity). NTD = N-terminal domain; WH = 
winged helix; OB-fold = oligonucleotide/oligosaccharide-binding fold (modified from Jarmoskaite and 
Russell, 2014). (B) Helicase core domain of the Drosophila melanogaster DEAD-box protein Vasa. 
Conserved motifs are coloured as in (A). (C) Schematic view of key residues of the ATP binding pocket 
of Vasa. Conserved motifs and the corresponding residues are coloured as in (A). Modified from Linder 
and Jankowsky, 2011. 

 

In contrast, DEAD-box proteins promote RNA duplex unwinding by non-processive local strand 

separation (Bizebard et al., 2004; Yang and Jankowsky, 2006). Loading of a DEAD-box protein 

locally opens the RNA duplex, and this can occur irrespective of whether the duplex is at the 

end of an RNA molecule or internal (Yang et al., 2007). Further unwinding of neighbouring 

basepairs can often occur without the direct action of the protein (Yang et al., 2007). As a 

result, DEAD-box proteins have relatively low unwinding efficiency for longer RNA duplexes 

and ATP hydrolysis by DEAD-box proteins is not required for the unwinding mechanism 

(Rogers et al., 1999; Chen et al., 2008; Liu et al., 2008; Henn et al., 2010). As they are 

connected by a flexible linker sequence, the two RecA-like domains of DEAD-box proteins 

confer high mobility towards each other (Caruthers et al., 2000). Although double stranded 

RNA is unwound by directly loading onto the RNA helix, it is suggested that ancillary protein 

sequences bind single stranded RNA regions, bringing the helicase core in close proximity to 
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its site of action, thereby promoting efficient duplex unwinding (Jankowsky, 2006; Yang and 

Jankowsky, 2006; Halls et al., 2007; Hilbert et al., 2009; Jarmoskaite and Russell, 2011). 

Consistent with this hypothesis, such single stranded regions do not have to be contiguous 

with the target RNA duplex (Yang and Jankowsky, 2006; Halls et al., 2007). 

In addition, binding of cofactor proteins to the catalytic core of RNA helicases can influence 

their NTPase activity by modulating the transition between the open and closed conformational 

states by providing a structural scaffold that is similar to the ON conformation of the two RecA-

like domains (Oberer et al., 2005; Schütz et al., 2008). Various RNA helicase cofactors are 

known, many of which are characterised by specific protein domains, such as the G-patch or 

MIF4G-domain, that mediate interactions with the corresponding RNA helicases. For example, 

substrate release by Dbp5 was shown to be stimulated by an interaction with its MIF4G-

domain-containing cofactor Gle1 and the molecule inositol hexakisphosphate (IP6; Alcazar-

Roman et al., 2006; Weirich et al., 2006; Montpetit et al., 2011). Reciprocally, cofactors can 

also stabilise the closed ON conformation preventing recycling of the protein, or can out-

compete RNA helicases for RNA substrate binding, causing inhibitory effects on RNA helicase 

activity (Von Moeller et al., 2009). The human DEAD-box protein eIF4AIII (DDX48), an RNA 

helicase involved in pre-mRNA splicing as a component of exon junction complexes, was 

reported to be negatively regulated by the MIF4G domain of CWC22 by holding eIF4AIII in an 

inactive conformation (Buchwald et al., 2013) 

1.1.3 Cellular functions 

Due to their mechanistic features and modes of action, the functions of RNA helicases are not 

limited to RNA duplex unwinding. Instead, there is evidence for a broad diversity of functions 

concerning RNA remodelling, such as RNA strand annealing (Yang and Jankowsky, 2005), 

displacement of proteins (Jankowsky and Bowers, 2006) or RNA clamping (Liu et al., 2014), 

which stabilises pathway intermediates during assembly of ribonucleoprotein complexes. RNA 

helicases are therefore present throughout the cell and play important roles in all aspects of 

RNA metabolism from transcription to pre-mRNA splicing, RNA editing, ribosome biogenesis, 

RNA export, translation and RNA decay. Since the helicase core only forms contacts with the 

sugar-phosphate backbone of RNA and helicases show almost no sequence specificity in vitro, 

an important question is how these proteins are distributed to their sites of action to fulfil very 

specific functions. Protein cofactors can not only stimulate or inhibit helicase activity, but they 

can also confer substrate specificity by increasing the binding selectivity of the protein to its 

particular RNA substrate. The DEAD-box protein Dbp8, for example, physically interacts with 

Esf2, which directs the helicase to ribosome biogenesis, where it is essential for 18S rRNA 

maturation within pre-40S particles (Hoang et al., 2005; Granneman et al., 2006). Recruitment 

to specific substrates by cofactors is particularly important as some RNA helicases are known 
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to be multifunctional, being required for several pathways of RNA metabolism. The Ski2-like 

RNA helicase Mtr4 is a component of the TRAMP complex that functions together with the 

nuclear exosome in RNA processing and the degradation of structured non-coding or aberrant 

RNAs (Schuch et al., 2014; Wasmuth et al., 2017). Nop53 and Utp18 share a consensus motif 

that mediates their interaction with Mtr4 and recruits the nuclear exosome either to pre-rRNA 

processing or rRNA degradation respectively (Thoms et al., 2015). Furthermore, Dbp2 was 

reported to participate in RNA decay as well as in ribosome biogenesis (Bond et al., 2001; 

Cloutier et al., 2012). RNA export and pre-mRNA splicing both require Sub2 (Jensen et al., 

2001; Cordin and Beggs, 2013) and the DEAD-box protein Dbp5 is proposed to function in 

nuclear RNA export, translation termination and ribosome biogenesis (Tseng et al., 1998; 

Gross et al., 2007; Neumann et al., 2016). The DEAH-box RNA helicase Prp43, which has 

various functions in ribosome biogenesis and pre-mRNA splicing, is directed to its diverse 

cellular functions by a set of G-patch protein cofactors, which compete for helicase binding in 

order to regulate its subcellular localisation (Heininger et al., 2016). Pxr1 (Gno1) and Sqs1 

(Pfa1) act together with Prp43 in ribosome biogenesis and Prp43 is bound by Spp382 (Ntr1) 

in order to direct the helicase to post-catalytic spliceosomes, where the helicase is required for 

release of the intron-lariat (Lebaron et al., 2009; Tsai et al., 2007; Chen et al., 2014). 

Indeed, pre-mRNA splicing is a well-characterised process that relies on several helicase-

mediated structural transitions. Eight RNA helicases are known to function in different steps of 

spliceosome assembly, rearrangement and factor recycling. Here, the DEAD-box proteins 

Sub2 and Prp5 chaperone the assembly of spliceosomes on pre-mRNAs by promoting 

branchpoint recognition (Ruby et al., 1993; Kistler and Guthrie, 2001). Prp28, another DEAD-

box protein, facilitates the release of U1 snRNP to expose the 5’ splice site for binding of U6 

snRNP (Staley and Guthrie, 1999). More extensive remodelling events at intermediate and 

late steps of pre-mRNA splicing are mediated by DEAH-box proteins, including dissociation of 

proteins from the branchpoint region by Prp2 (Warkocki et al., 2009; Lardelli et al., 2010) and 

intron-lariat release by Prp43 (Arenas and Abelson, 1997). However, the cellular process that 

involves the most RNA helicases is the synthesis of ribosomes. 

1.2 Ribosomes: structure and function 

Mature eukaryotic ribosomes consist of two ribosomal subunits, named according to their 

sedimentation coefficient in sucrose density gradients: the 40S or small ribosomal subunit 

(SSU) and 60S or large ribosomal subunit (LSU). For translating the genetic information 

encoded in mRNA into proteins, the two subunits engage to form a catalytically active 80S 

ribosome (Fig. 1.2). The SSU harbours the mRNA entry and exit sites and decodes the mRNA 

by selection of complementary aminoacyl-tRNAs in the decoding centre. Peptide bond 

formation is catalysed in the peptidyl-transferase centre (PTC) of LSU, which additionally 
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contains the polypeptide exit tunnel and provides binding sites for GTPases that promote 

translation. 

Constituents of the Saccharomyces cerevisiae (yeast) SSU are the 18S ribosomal RNA (rRNA) 

and 33 ribosomal proteins (RPs), whereas the yeast LSU is composed of three ribosomal 

RNAs (25S, 5.8S and 5S) and 46 RPs. Recent advances in cryo-electron microscopy (cryo-

EM) and crystallographic methods, which were applied to yeast and Tetrahymena ribosomes, 

rapidly enhanced the understanding of ribosome architecture (Armache et al., 2010a,b; Ben-

Shem et al., 2011; Klinge et al., 2011, Rabl et al., 2011; Jenner et al., 2012; Klinge et al., 2012; 

Melnikov et al., 2012). There are four phylogenetically conserved secondary structural 

domains in the 18S rRNA (Petrov et al., 2014a), called the 5’, central, 3’ major and 3’ minor 

domains, which fold together with RPs into tertiary structures termed the body, shoulder, 

platform, head and beak. In LSU, there are six defined conserved secondary structure 

elements (domain I – VI), which includes basepairing of 25S with 5.8S rRNA in domain I. 

Besides the central protuberance (CP), which is formed by the 5S rRNA together with its 

associated RPs, Rpl5 (uL18) and Rpl11 (uL5), there are two other defined tertiary features: 

the L1 and the acidic stalks. Prokaryotic and eukaryotic ribosomes share a conserved 

structural core, mostly devoid of RPs, containing the sites of ribosome function (Melnikov et 

al., 2012; Petrov et al., 2014b). Rather than having a catalytic function, RPs create a protein-

RNA interaction network, which provides a stable structural scaffold that ensures correct 

positioning of the RNA core and shields it from the solvent exposed surface. 

 

Figure 1.2: Structure of the yeast 80S ribosome. 3D structure depicting the 80S yeast ribosome, 
composed of the large ribosomal 60S subunit (LSU) and small ribosomal 40S Subunit (SSU; Ben-Shem 
et al., 2011; PDB-ID: 4V88). Ribosomal RNA is shown in grey, ribosomal proteins in blue. 
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1.2.1 Yeast ribosome biogenesis 

Ribosome biogenesis is an energy-consuming process that requires the action of all three 

cellular RNA polymerases to produce the necessary components. Pol I and III transcribe 

rRNAs, whereas Pol II transcribes mRNAs coding for RPs and trans-acting ribosome 

biogenesis factors. More than 2,000 ribosomes are synthesised per minute in actively 

proliferating yeast cells to meet the constant demand for functional ribosomes (Warner, 1999) 

and therefore, approximately 70 % of cellular RNAs are directed to the synthesis of ribosomes 

(Li et al., 1999; Warner, 1999). Ribosome biogenesis takes place in three different cellular 

compartments as it is initiated in the nucleolus, and continues in the nucleoplasm but final 

maturation steps occur in the cytoplasm. 

Correct pre-rRNA processing, modification and folding as well as assembly of the 79 RPs 

require a multitude of cofactors, including 76 small nucleolar RNAs (snoRNAs) and more than 

200 trans-acting ribosome biogenesis cofactors (Fromont-Racine et al., 2003). Already co-

transcriptionally, early RPs and ribosome biogenesis factors assemble with the nascent 

transcript, which forms the earliest detectable intermediate, the 90S pre-ribosome (Grandi et 

al., 2002). After a central pre-rRNA cleavage event at site A2, the pathways of 40S and 60S 

biogenesis diverge and subsequent maturation steps are independent (Turowski and 

Tollervey, 2015). While pre-40S subunits are rapidly exported from the nucleus for final 

maturation in the cytoplasm, pre-60S subunits undergo several compositional and structural 

changes in the nucleoplasm, including assembly of the 5S RNP (Zhang et al., 2007), before 

they reach their final destination in the cytoplasm. 

1.2.2 Transcription and pre-rRNA processing 

The process of ribosome biogenesis starts with the synthesis of a pre-rRNA transcript from the 

RDN locus, which in yeast appears in approximately 150 tandem repeats on chromosome XII 

(Long and Dawid, 1980). A single repeat contains the genetic information for the 18S, 5.8S 

and 25S rRNAs, which are transcribed by RNA Pol I as a 35S primary transcript, also 

containing several spacer elements (Fig. 1.3). Internal transcribed spacers (ITS1 and ITS2) 

separate the mature rRNA sequences, whereas external transcribed spacers (5’ETS and 

3’ETS) constitute the ends of this transcript. The 5S rRNA is transcribed by RNA Pol III in 

reverse orientation and is separated within the RDN locus by a non-transcribed spacer region 

(NTS). To allow a high rate of rRNA transcription, multiple transcripts can be simultaneously 

produced from a single RDN repeat, creating a high density of involved factors around these 

gene loci. This generates a non-membrane delimited sub-compartment within the nucleus, 

known as the nucleolus (Thiry and Lafontaine, 2005). Early RPs and ribosome biogenesis 

factors that associate with the nascent transcript already co-transcriptionally are important for 
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structural assembly and subsequent pre-rRNA processing events (Chaker-Margot et al., 

2015). 

 

Figure 1.3: Pre-rRNA processing in the yeast Saccharomyces cerevisiae. Simplified schematic 
representations of pre-rRNA processing intermediates in yeast and the pathway by which they are 
generated are shown. Black lines represent transcribed sequences, with mature rRNA sequences 
indicated by thicker bars and spacer fragments that are removed by endonucleolytic cleavages and 
exonucleolytic processing shown as thinner lines. Spacer regions are named in blue, and mature rRNAs 
and processing intermediates are labelled in black. Pre-rRNA cleavage sites are indicated in red. Nu = 
nucleus; Cy = cytoplasm. Modified from Martin, 2014 (PhD thesis). 

 

Elimination of the pre-rRNA transcribed spacer regions requires a complex series of endo- and 

exonucleolytic cleavages (Fig. 1.3; Henras et al., 2015). For 18S maturation, endonucleolytic 

cleavages are carried out at sites A0, A1 and A2, which all require the formation of the SSU 

processome (Phipps et al., 2011). Central to this complex is the U3 snoRNA, which basepairs 
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with 5’ETS and 18S rRNA in order to chaperone pseudoknot formation, a structural 

prerequisite for endonucleolytic cleavages at sites A0, A1 and A2 (Watkins and Bohnsack, 

2012). A1 and A2 cleavages are suggested to be mediated by the PilT N-terminus (PIN) domain 

containing endonuclease Utp24 (Wells et al., 2016), whereas the endonuclease responsible 

for cleavage at site A0 still needs to be identified. After export to the cytoplasm, cleavage at 

site D by the endonuclease Nob1 defines the 3’ end of 18S rRNA (Fatica et al., 2003a). 

Interestingly, a proofreading mechanism for pre-40S complexes has been proposed that 

involves recruitment of 60S subunits and a translation-like cycle prior to Nob1 cleavage 

(Lebaron et al., 2012; Strunk et al., 2012). 

Cleavage at A2 separates the pathways of SSU and LSU biogenesis and can occur either co- 

or post-transcriptionally according to nutrient availability and/or cell cycle progression (Kos and 

Tollervey, 2010; Talkish et al., 2016). Processing of LSU rRNAs after A2-cleavage involves the 

coordinated 5’ end formation of 5.8S rRNA and development of the mature 3’ end of 25S rRNA. 

The endonuclease Rnt1 cleaves at B0, an event which is thought to be coupled with 

transcription termination, to create an overhang that is trimmed by the 3’-5’ exonuclease Rex1 

(Kempers-Veenstra et al., 1986; Nemeth et al., 2013). For maturation of 5.8S rRNA, two 

alternative processing pathways exist leading to the formation of two alternative forms of the 

5.8S rRNA that differ at their 5’ end. On the one hand, an unknown endonuclease defines the 

5’ end of 5.8S rRNA by cleavage at B1L on 27S-A2, generating the 5’ end of the minor form 

(5.8SL; Faber et al., 2006). On the other hand, after A3-cleavage, catalysed by the RNase MRP 

(Torchet and Hermann-Le Denmat, 2000), two sequentially acting exonucleases, Rat1 and 

Rrp17, perform trimming to site B1S, which results in the major form of 5.8S rRNA (5.8SS; Henry 

et al., 1994; Oeffinger et al., 2009; Granneman et al., 2011). Following the 5’ end formation of 

5.8S and 3’ end formation of 25S rRNA, the transcript is processed endonucleolytically at site 

C2 in ITS2 by the endonuclease Las1 (Allmang et al., 1999; Gasse et al., 2015). The 3’-5’ 

exosome containing Rrp6 and the 3’-5’ exonuclease Ngl2, trims the 7S precursor rRNA to 

generate the mature 3’ end of 5.8S rRNA (Mitchell et al., 1996; Briggs et al., 1998; Allmang et 

al., 1999). Besides 7S rRNA, C2-cleavage results in a 26S rRNA, which is processed to 

produce the mature 5’ end of the 25S rRNA by the 5’-3’ exonucleolytic activity of Rat1 

(Geerlings et al., 2000). 

1.2.3 rRNA modifications 

Besides being processed, rRNAs undergo extensive modification, largely mediated by 

snoRNPs, which introduce 2’-O-methylations or catalyse the isomerisation of uridine to 

pseudouridine (reviewed in Watkins and Bohnsack, 2012; Sloan et al., 2016). Modifications in 

rRNA are not evenly distributed, but cluster in important functional regions, such as the PTC, 

the decoding site or the site of subunit joining in the mature ribosome (Ben-Shem et al., 2011; 
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Decatur and Fournier, 2002). Lack of individual modifications has been shown to increase 

sensitivity towards stress conditions or ribosome specific antibiotics, but in general the 

absence of single modifications does not impair cell viability under laboratory conditions 

(Esguerra et al., 2008; Baudin-Baillieu et al., 2009). However, the absence of certain groups 

of modifications disrupts ribosome biogenesis or function and compromises cell growth (King 

et al., 2003; Liang et al., 2007; Liang et al., 2009). This implies that the landscape of 

modifications is important for efficient and accurate translation and additionally creates a 

source for regulation of ribosome function. In general, it is thought that 2’-O-methylation 

stabilises basepairing and promotes rRNA folding, whereas pseudouridylations maintain rRNA 

secondary structures and facilitate interactions between rRNA and RPs (Helm, 2006). 2’-O-

methylations in rRNAs are introduced by box C/D snoRNPs, which are characterised by a 

snoRNA scaffold containing conserved sequence motifs, which form intramolecular basepair 

interactions (box C with box D, box C’ with box D’). The snoRNA is associated with the common 

core proteins Nop56, Nop58 and Snu13, which additionally stabilise a certain RNA structure. 

Specific sequences between the C/D and C’/D’ elements are complementary to the target 

regions of the rRNA and snoRNA-pre-rRNA basepairing allows 2’-O-methylation five 

nucleotides (nts) upstream of box D or D’ by the enzyme component Nop1. This reaction 

requires S-adenosyl methionine (SAM), which serves as methyl group donor (Singh et al., 

2008; Lin et al., 2011). Although it was shown that 10 nts of complementary sequence is 

sufficient for target site identification and efficient modification, box C/D snoRNAs often form 

longer stretches (up to 21 nts) of basepair interactions (van Nues et al., 2011). This extensive 

interaction is proposed to facilitate snoRNA recruitment and to extend the residence time of 

snoRNAs, preventing premature folding of the pre-rRNA target sequences (Yang et al., 2016). 

Box H/ACA snoRNPs are also characterised by their snoRNA component, which contains a 

box H and the ACA motif, and form a hairpin structure containing a pseudouridylation loop, 

which is stabilised by the box H/ACA core proteins Nhp2, Nop10 and Gar1. This loop forms 

short basepairing interactions (from 4 to 8 nts) with the pre-rRNA, exposing an unpaired uridine 

to the catalytically active site of the pseudouridine synthase Cbf5 for the isomerisation reaction 

(Lafontaine et al., 1998). Some snoRNPs establish long-range interactions between distant 

sites within the primary sequence of rRNA and lack of these snoRNAs leads to defects in pre-

rRNA processing (Morrissey and Tollervey, 1993; Enright et al., 1996; Samarsky et al., 1998; 

Martin et al., 2014). In contrast to snoRNAs that guide modification, most snoRNAs required 

for pre-rRNA processing are essential. They are suggested to maintain an open rRNA 

conformation that exposes cleavage sites for endonucleolytic cleavage and to prevent 

premature formation of structural folds found in mature ribosomes. Generally, snoRNPs 

participating in pre-rRNA processing are devoid of modification activity, but exceptions include 

the U14 and snR10 snoRNAs that have maintained both functions. The vast majority of 
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snoRNA-guided rRNA modifications occur co-transcriptionally, indicating an early engagement 

of snoRNPs with the nascent transcript. If binding of snoRNAs happens stochastically or if it 

follows a defined hierarchy is still under debate. The high density of modifications in 

functionally important regions of the ribosome leads to overlapping pre-rRNA binding sites for 

several snoRNAs, suggesting a stepwise recruitment mechanism. 

Besides snoRNP-derived modifications, eight different types of base modifications are present 

in rRNA, which are introduced by stand-alone enzymes. Interestingly, although the majority of 

these enzymes are essential, their catalytic activity is not always critical, indicating that these 

proteins also contribute to other aspects of ribosome assembly. How many of these enzymes 

identify their target residues still remains elusive, but some lines of evidence suggest 

recognition mechanisms involving RNA consensus sequences, secondary structures or 

multiple contacts with pre-rRNA and proteins within the context of assembling pre-ribosomes. 

1.2.4 Ribosomal proteins 

Of the 79 known yeast RPs, 64 are essential for growth under standard laboratory conditions, 

likely due to their functions in ribosome assembly and translation fidelity (Steffen et al., 2012). 

Due to gene duplications, 59 RPs have paralogs that only differ in few amino acids (Simoff et 

al., 2009). Although these paralogs are very similar, deletion and depletion experiments have 

shown variation of their phenotypes, indicating the existence of specialised ribosomes, which 

might be required for the translation of certain subsets of mRNAs. Prokaryotic and eukaryotic 

ribosomes share a conserved structural core, mostly devoid of RPs, containing the sites of 

ribosome function. Instead, RPs are mostly found in the periphery of ribosomes, where they 

thread across the surface and partially penetrate the rRNA core (Armache et al., 2010a; Ben-

Shem et al., 2011; Rabl et al., 2011). After being translated in the cytoplasm, the vast majority 

of RPs need to be imported into the nucleus for assembly into pre-ribosomal complexes. 

Although they are very small in size and could passively diffuse through the phenylalanine-

glycine (FG)-network of nuclear pore complexes, RPs contain nuclear localisation signals 

(NLS) and their import is facilitated by different ß-karyopherins (Rout et al., 1997). In order to 

prevent misfolding or aggregation of these basic proteins, there are examples of chaperones 

that bind to newly synthesised RPs and escort them to the nucleus to be incorporated into 

nascent pre-ribosomal particles (Koch et al., 2012; Pillet et al., 2015). High-resolution crystal 

structures of mature ribosomal subunits revealed the location of each RP on rRNA (Ben-Shem 

et al., 2011), but do not provide insight into the temporal aspect of RP assembly. It is suggested 

that most RPs assemble early into ribosomal precursors, where they play important roles in 

folding of the nascent rRNA transcript (Gamalinda et al., 2013, Ohmayer et al., 2013). In 

general, it is proposed that RPs form multiple interactions with the rRNA, some of which are 

formed early in the pathway and others that are formed later, which supports the idea of 
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progressive stabilisation of maturing ribosomes (Ferreira-Cerca et al., 2007; Sahasranaman 

et al., 2011; Ohmayer et al., 2013). This loose tethering of early RPs creates binding sites for 

later RPs and ribosome biogenesis factors as well as keeping rRNA domains in close 

proximity. Furthermore, the binding of RPs to pre-rRNAs also triggers conformational changes 

that facilitate pre-rRNA processing (Ohmayer et al., 2015). Similar to assembly of prokaryotic 

ribosomes, RPs in yeast SSU biogenesis are recruited sequentially with the formation of key 

structural features in 18S rRNA following a 5’-3’ directionality (Ferreira-Cerca et al., 2007; 

Woodson, 2008). Systematic examination of LSU RPs revealed differentiation into early, 

intermediate and late RPs, according to subcellular localisation of incorporation, depletion 

phenotypes in pre-rRNA processing and stoichiometric distributions of RPs in purified pre-

ribosomal particles (Gamalinda et al., 2014). Although much more complicated than SSU 

biogenesis, assembly of 60S subunits also occurs in a hierarchical fashion. Early binding 

events are required for formation of the convex solvent surface, followed by intermediate steps, 

where the polypeptide exit tunnel is formed, and late RPs assemble around the CP and PTC, 

functionally important regions of the ribosome (Gamalinda et al., 2014). 

1.2.5 Trans-acting factors and nuclear export 

The biogenesis of eukaryotic ribosomes requires more than 200 non-ribosomal factors, 

(Fromont-Racine et al., 2003). In addition to numerous structural/scaffold proteins, these 

include many enzymes, such as the previously described endo- and exonucleases and 

modification enzymes. These enzymes catalyse irreversible reactions thereby conferring 

directionality to the ribosome biogenesis pathway and providing a means for regulation and 

quality control (Strunk and Karbstein, 2009). Other enzymes that act in ribosome biogenesis 

are NTP-dependent RNA helicases, which play an important role in RNP structure modulation 

and will be described in more detail in section 1.3. Phosphorylation of RPs and ribosome 

biogenesis factors by kinases, observed in 40S and 60S maturation, are key regulatory steps 

in subunit assembly (Schäfer et al., 2006; Ray et al., 2008). Similarly, AAA-ATPases and 

GTPases, which are known regulators in many different cellular pathways, are implicated in 

the release of non-ribosomal factors and in mediating the incorporation of RPs and late-acting 

ribosome biogenesis factors (Karbstein et al., 2005; Pertschy et al., 2007). 

In addition to these enzymatic components, an important group of ribosome biogenesis factors 

are those that facilitate the nuclear export of pre-ribosomal particles. Nuclear export of these 

large ribonucleoprotein complexes (> 2 MDa) is a major challenge, as they have to pass 

through the hydrophobic FG-meshwork of the nuclear pore complex (NPC). Nuclear export of 

pre-ribosomes is achieved by the binding of multiple export factors that interact with the FG-

repeats to direct transport (Hurt et al., 1999; Stage-Zimmermann et al., 2000). The nuclear 

export signal (NES)-containing adaptor protein Nmd3 binds to pre-60S particles in order to 
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recruit the exportin Crm1 (Xpo1), which shuttles through the NPC in a Ran GTPase cycle-

dependent manner (Gadal et al., 2001). Additional factors including Arx1, Ecm1, Bud20 and 

Npl3 act as non-essential export factors that facilitate rapid export of pre-60S particles by 

directly binding FG-rich nucleoporins (Gerhardy et al., 2014). Although Crm1 is also required 

for pre-40S export, export adaptor proteins still have to be identified. The ribosome biogenesis 

factors Ltv1, Dim2 and Rio2 all contain NES-sequences and are therefore likely candidates 

(Seiser et al., 2006; Vanrobays et al., 2008; Zemp et al., 2009). The Mex67-Mtr2 hetero-dimer, 

which is known for its essential function in mRNA export, is required for the transport of both 

ribosomal subunits through the NPC in a Ran GTP-independent manner (Yao et al., 2007; 

Faza et al., 2012). In the cytoplasm, export factors are released and final maturation steps, 

such as pre-rRNA trimming and modification, dissociation of assembly factors and 

incorporation of remaining RPs, take place (Fatica et al., 2003b). 

The generation of export competent pre-ribosomes is an important quality control checkpoint 

in the ribosome biogenesis pathway (Matsuo et al., 2014). For example, a hierarchical model 

of pre-60S biogenesis factor recruitment was suggested, which ultimately leads to the 

incorporation of Nog2 into pre-60S ribosomes. This GTPase acts as a placeholder for the 

essential export adaptor protein Nmd3 ensuring that pre-60S export can only occur after earlier 

maturation events have taken place (Talkish et al., 2012; Matsuo et al., 2014).  

1.2.6 Structural dynamics of yeast pre-ribosomes 

As described above, the assembly of the ribosomal subunits follows a strictly ordered series 

of events brought about by the sequential association and dissociation of numerous biogenesis 

factors. Functional analysis of individual biogenesis factors and steps in the pathway give 

insight into the complex remodelling events that occur during subunit assembly. However, a 

broader view of the major structural rearrangements that take place in ribosome biogenesis 

requires structural analysis of pre-ribosomal complexes. High-resolution structures of the 

mature yeast 40S and 60S subunits generated by cryo-electron microscopy (cryo-EM) 

provided the first detailed views of the molecular architecture of mature ribosomes (Ben-Shem 

et al., 2011). However, these structures lack information regarding the binding sites of trans-

acting ribosome biogenesis factors and the conformations of the pre-rRNAs. Excitingly, cryo-

EM studies of late pre-40S particles uncovered the binding sites of several late-acting SSU 

biogenesis factors, such as Nob1, Dim1, Dim2 and Rio2. Furthermore, they revealed structural 

features of the beak region that are incompatible with binding of 60S subunits and translation 

initiation factors, suggesting that the presence of biogenesis factors in pre-40S complexes 

prevents premature translation after export of pre-40S particles to the cytoplasm (Strunk et al., 

2011). The kinase Hrr25 is suggested to be involved in the release of ribosome biogenesis 

factors Enp1 and Rsp3, which recruits Rps3 (uS3) for final maturation of the beak structure 
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(Schäfer et al., 2006). More recently, the structure determination of the Chaetomium 

thermophilum 90S pre-ribosome provided information about early ribosome biogenesis steps 

on the level of nascent transcripts (Kornprobst et al., 2016). 

 

Figure 1.4: Structural dynamics of late pre-60S particles. Three sequential pre-60S particles are 
depicted: the Nog2-particle (Wu et al., 2016; PDB-ID: 3JCT), the Arx1-Alb1-Rei1-particle (Greber et al., 
2016; PDB-ID: 5APN) and the mature 60S subunit (Ben-Shem et al., 2011; PDB-ID: 4V88). The particles 
were aligned according to their 25S rRNA component, thereby highlighting the rotation of the 5S RNP, 
removal of the ITS2 sequence, release of Arx1 and incorporation of the ribosomal protein Rpl19. 
Ribosomal RNAs and ribosomal proteins are indicated in grey and blue respectively. Features that 
undergo major conformational changes are labelled. 

 

Due to their large size and compositional complexity, pre-60S complexes undergo many 

structural transitions during their assembly. Several recent publications have reported cryo-

EM structures of pre-60S particles, which were purified via different transiently binding 

ribosome biogenesis factors (Fig. 1.4). In contrast to earlier particles, the higher stability and 

reduced complexity of later pre-60S complexes have made the successful structure 

determination of Nog2-, Nmd3-, Arx1- and Rix1-derived late nuclear and early cytoplasmic 

particles possible (Bradatsch et al., 2012; Barrio-Garcia et al., 2016; Wu et al., 2016; Ma et al., 

2017). Besides structural features, which are also found in mature subunits, these structures 

contain substantial additional mass, referred to as foot, knob and nose elements. These 

expansions represent associated ribosome biogenesis factors or unprocessed spacer 

elements as well as rRNA structures that are not yet folded to their final topology (Leidig et al., 

2014). Mass spectrometry analysis of the corresponding particles combined with available 

crystal structures or homology models of many pre-60S factors enabled the positions of 

numerous biogenesis factors to be assigned on different pre-60S complexes. In line with the 

proposal of a hierarchical recruitment and spatiotemporal binding of ribosomal proteins and 

biogenesis factors, the solvent side of the ribosome is largely devoid of ribosome biogenesis 

factors in pre-60S complexes. Instead, at these late steps in ribosome biogenesis, these can 

be mostly found in functionally important regions like the PTC, the CP or the intersubunit 

bridge. In the Nog2-derived pre-60S particle, portions of the ITS2 spacer sequence could be 
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resolved in contact with ITS2 binding factors, such as Nop53, which is required for the 

recruitment of Mtr4 and its associated exosome components for ITS2 removal (Fig. 1.4; Wu et 

al., 2016). With the available series of crystal structures, a major unpredicted structural 

transition in the head region of pre-60S particles could be reconstructed. They revealed that 

the 5S RNP, a sub-complex of 5S rRNA, Rpl5 (uL18) and Rpl11 (uL5), is initially assembled 

in a pre-mature conformation. Following a stepwise mechanism, possibly triggered by ATP 

hydrolysis of the AAA-ATPase Rea1 and removal of a subset of ribosome biogenesis factors, 

the 5S RNP performs a 180 ° rotation to adopt its final topology (Fig.1.4; Leidig et al., 2014). 

This rotation enforces conformational changes of proximal rRNA helices in 25S rRNA, which 

are key for the formation of the CP (Leidig et al., 2014). Due to increasing flexibility of pre-

rRNA and the dynamic changes of ribosome biogenesis factors, crystallisation of earlier 

particles upstream the ribosome biogenesis pathway remains a major challenge and 

alternative approaches may be required to gain insight into the binding sites of earlier ribosome 

biogenesis factors and the dynamics of these complexes. 

1.3 RNA helicases in ribosome biogenesis 

Due to their biochemical activities in remodelling RNA duplexes and RNP complexes, RNA 

helicases are key effectors and/or regulators of compositional and structural changes of pre-

ribosomal complexes. Localisation assays, including cell fractionation, have revealed that 

numerous RNA helicases are present in the nucleolus, the initiation site of ribosome 

biogenesis. So far, 21 putative RNA helicases were suggested to directly participate in the 

process of ribosome biogenesis (see Table 1.1). Based on which pre-rRNA intermediates 

accumulate in response to depletion of each helicase and in which pre-ribosomal complexes 

each helicase has been identified in affinity purification experiments, eight were classified as 

SSU helicases (Dbp4, Dbp8, Dhr1, Dhr2, Rok1, Kre33, Fal1, Rrp3) and ten as LSU helicases 

(Dbp2, Dbp3, Dbp6, Dbp7, Dbp9, Dbp10, Drs1, Mak5, Spb4, Mtr4), while three were shown to 

be required for both pathways (Has1, Prp43 and Dbp5). Interestingly, with the exception of 

Dbp2, Dbp3 and Dbp7 all these proteins are essential for cell viability. With the exception of 

the Ski2-like helicase Mtr4, which contributes to processing of the 3’ end of the 5.8S rRNA, all 

these helicases are DEAD- or DEAH-box proteins. The precise functions of many RNA 

helicases in ribosome biogenesis are not known but putative functions are unwinding of 

snoRNA-rRNA duplexes, rearrangement of rRNA secondary structures and remodelling 

events, such as the release of ribosome biogenesis factors in order to allow access of other 

ribosome biogenesis factors or RPs. 
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Table 1.1: RNA helicases involved in ribosome biogenesis. RNA helicases proposed to function in ribosome 
biogenesis are listed. The data presented in this table are supported by comprehensive mutational analyses of RNA 
helicases implicated in the maturation of small and large ribosomal subunits (Granneman et al., 2006b; Bernstein 
et al., 2006). 

RNA 
helicase 

Helicase 
family 

Function in ribosome 
biogenesis Essential References 

Fal1 DEAD SSU yes Kressler et al., 1997 

Dbp4 DEAD SSU; snoRNA release; 
SSU processome formation yes 

Kos and Tollervey, 2005; 
Turner et al., 2009; 
Soltanieh et al., 2015 

Dbp8 DEAD SSU yes Daugeron and Linder, 2001 

Rok1 DEAD SSU; snoRNA release yes 
Venema et al., 1999;  
Bohnsack et al., 2008;  
Martin et al., 2014 

Kre33 DEAD SSU; snoRNA mediated 
acetylation yes Sharma et al., 2015 

Rrp3 DEAD SSU yes O'Day et al., 1996 

Dhr1 DEAH SSU; snoRNA release yes 
Colley et al., 2000;  
Sardana et al., 2015;  
Zhu et al., 2016 

Dhr2 DEAH SSU yes 
Colley et al., 2000;  
Choque et al., 2011 

Dbp2 DEAD LSU; pre-rRNA processing 
(proposed) no Bond et al., 2001 

Dbp3 DEAD LSU; pre-rRNA processing 
(proposed) no Weaver et al., 1997 

Dbp6 DEAD LSU yes 
Kressler et al., 1998, 1999; 
Daugeron et al., 2001;             
de la Cruz et al., 2004 

Dbp7 DEAD LSU no Daugeron and Linder, 1998 
Dbp9 DEAD LSU yes Daugeron et al., 2001 
Dbp10 DEAD LSU yes Burger et al., 2000 
Drs1 DEAD LSU yes Ripmaster et al., 1992, 1993 

Spb4 DEAD LSU yes de la Cruz et al., 1998;    
Garcia-Gomez et al., 2011 

Mak5 DEAD LSU yes Zagulski et al., 2003;  
Pratte et al., 2013 

Mtr4 Ski2-like LSU; pre-rRNA processing yes de la Cruz et al., 1998 

Has1 DEAD 
SSU/LSU; snoRNA 
release; pre-rRNA 
processing (proposed) 

yes 
Emery et al., 2004;             
Liang and Fournier, 2006; 
Dembowski et al., 2013 

Dbp5 DEAD SSU/LSU; export yes Neumann et al., 2016 

Prp43 DEAH 
SSU/LSU; snoRNA 
release; snoRNA access; 
pre-rRNA processing 

yes 

Lebaron et al., 2005;           
Combs et al., 2006;     
Bohnsack et al., 2009;    
Pertschy et al., 2009;          
Chen et al., 2014 
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The vast majority of snoRNPs are already recruited to pre-ribosomes co-transcriptionally and 

a function that has been described for several RNA helicases that act early in the pathway is 

the release of snoRNPs. Based on sucrose density gradient separation of ribosomal and non-

ribosomal complexes and subsequent northern blotting, the DEAD-box proteins Has1 and 

Dbp4 were shown to be required for the release of the U14 snoRNA from pre-ribosomes (Kos 

and Tollervey, 2005; Liang and Fournier, 2006). Similarly, the DEAH-box protein Dhr1 was 

reported to facilitate the release of U3 from pre-rRNA (Sardana et al., 2015). Furthermore, a 

combined approach of sucrose density centrifugation and quantitative polymerase chain 

reaction (qPCR-) analysis enabled monitoring of the levels of all snoRNAs on pre-ribosomes 

upon depletion of any one of the eight SSU RNA helicases (Bohnsack et al., 2008). This 

revealed that the snR30 snoRNA significantly accumulates on pre-ribosomal complexes when 

Rok1 is depleted (Bohnsack et al., 2008). The direct interaction of Rok1 with the snR30 

snoRNA and the region of the 18S rRNA, which snR30 basepairs with, was confirmed by in 

vivo crosslinking approaches (Martin et al., 2014). The detection of snR30-pre-rRNA hybrids 

bound by Rok1 would support a model of direct unwinding of the snR30-18S duplex by Rok1 

(Martin et al., 2014). However, Rok1 has also been shown to interact with and be regulated by 

the ribosome biogenesis factor Rrp5 (Young et al., 2013) and it has been suggested that Rok1 

releases Rrp5 leading to spontaneous dissociation of snR30 (Khoshnevis et al., 2016). One of 

the best characterised RNA helicases in yeast, is the DEAH-box protein Prp43, which was 

originally identified as being required for the release of the intron-lariat and recycling of splicing 

factors in spliceosome disassembly (Arenas and Abelson, 1997) and which has also been 

shown to act in spliceosomal quality control by degrading aberrant spliceosomes (Fourmann 

et al., 2013). In ribosome biogenesis, Prp43 was suggested to exhibit a similar function in 

recycling of snoRNPs and ribosome biogenesis factors during pre-rRNA processing (Leeds et 

al., 2006). Using the UV crosslinking and analysis of cDNA (CRAC) approach, the binding sites 

of Prp43 on pre-ribosomal complexes could be identified (Bohnsack et al., 2009). Based on 

this, Prp43 was found to be required for the release of a subset of snoRNPs that introduce 

modifications into domain II of the 25S rRNA (Bohnsack et al., 2009). Interestingly, analysis of 

snoRNA levels on pre-ribosomes also lead to the suggestion that Prp43 promotes association 

of certain snoRNPs with pre-60S complexes. Additionally, the identification of a Prp43 binding 

site at the 3’ end of the 18S rRNA (Bohnsack et al., 2009) was in line with a proposed function 

of Prp43 in remodelling of cytoplasmic SSU particles to allow cleavage at site D at the 3’ end 

of 18S rRNA by Nob1 (Pertschy et al., 2009). Like Prp43, which is directed to its various sites 

of function by competing cofactor interactions (Heininger et al., 2016), other RNA helicases 

are recruited to the pathway of ribosome biogenesis by the interaction with additional ribosome 

biogenesis factors. Dbp10 is recruited to the immature PTC by the GTPase Nug1, where 

nucleotide binding of Nug1 and the helicase activity of Dbp10 are proposed to be required for 
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PTC formation (Manikas et al., 2016). The DEAD-box protein Dbp6 was shown to form an 

RNA-independent subcomplex with the ribosome biogenesis factors Npa1 (Urb1), Npa2 

(Urb2), Nop8 and Rsa3, which is recruited to pre-60S particles, where it was proposed to 

interact with two additional RNA helicases, Dbp7 and Dbp9 (Rosado et al., 2007). Genetic 

analysis and synthetic lethal screens lead to the proposal that the ribosome biogenesis factors 

Ebp2, Nop16 and Rpf1 together with the RP Rpl14 (eL14) may arrange a local pre-60S 

structure to efficiently recruit Mak5, where it might get activated by its pre-rRNA binding site or 

another not yet identified protein cofactor (Pratte et al., 2013). RNA helicases were also shown 

to be required for efficient pre-rRNA processing. The DEAD-box protein Dbp3 was proposed 

to be involved in A3 site processing in ITS2, because depletion experiments resemble the 

defects observed due to the inactivation of MRP, the RNase that mediates A3-cleavage 

(Weaver et al., 1997). More recently, the acetyltransferase Kre33 was shown to be required 

for the modification of two cytosines in 18S rRNA. Interestingly, the helicase activity of the 

DEAD-box module at the N-terminus of the protein is crucial for the modification reaction and 

it was proposed that the RecA-like domains facilitate annealing of the orphan box C/D 

snoRNAs snR4 and snR45 to its 18S rRNA target sequences. Similarly to the 

pseudouridylation pocket formation in box H/ACA snoRNPs, these snoRNAs expose their 

target site to the C-terminal acetyltransferase domain of Kre33 for efficient acetylation. This 

mechanism introduced a novel function of snoRNAs in directing RNA base modifications, 

which could be reasonable especially for several box C/D snoRNAs in higher eukaryotes, 

where no specific function could be assigned so far (Sharma et al., 2015, 2017). Besides its 

function in mRNA export and translation termination, the DEAD-box protein Dbp5 was reported 

to be involved in the nuclear export of pre-ribosomal particles. Although including the same 

export factors, the proposed export mechanism was suggested to be mechanistically different 

compared to the export of mRNAs and not to rely on the ATPase cycle of the RNA helicase 

(Neumann et al., 2016).  
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1.4 Aims and Objectives 

ATP-dependent RNA helicases are enzymes that participate in several processes of RNA 

metabolism like transcription, translation, pre-mRNA splicing and ribosome biogenesis. The 

synthesis of ribosomes is a very dynamic and complex process that requires a plethora of 

trans-acting ribosome biogenesis factors that guide rRNA transcription, pre-rRNA processing, 

modification, structure formation and assembly of ribosomal proteins. Here, RNA helicases 

were suggested to mediate snoRNA release or remodelling of pre-rRNA structures, which 

dissociates ribosome biogenesis factors from pre-ribosomes or provides accessibility for 

ribosomal proteins and late ribosome biogenesis factors to be recruited into maturing particles. 

The role of RNA helicases in SSU biogenesis was investigated in much more detail compared 

to their LSU counterparts. Especially the functions of late-acting RNA helicases, which are 

suggested to be involved in rearrangements of structural important features of LSU, remained 

elusive, mostly due to the information lacking on their binding sites. 

The objectives of this study were to identify the binding sites and characterise the interactions 

of RNA helicases Has1, Spb4 and Mak5 by UV crosslinking and analysis of cDNA (CRAC), in 

order to elucidate their functional relevance in late nuclear steps of LSU biogenesis. 

This study therefore aimed to: 

• Confirm depletion phenotypes of Has1, Spb4 and Mak5 

• Identify the crosslinking sites of Has1, Spb4 and Mak5 on RNA 

• Compare Has1 CRAC data with reported functions in the literature 

• Characterise Spb4 and Mak5 in vitro and in vivo, including mutational analyses 

• Analyse the role of Has1, Spb4 and Mak5 in mediating snoRNA levels 

• Confirm Spb4 and Mak5 binding sites on pre-rRNA by DMS structure probing 

• Study the function of Mak5 in LSU biogenesis 
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2 Materials and Methods 

2.1 Chemicals 

Chemicals used for experiments in this study were obtained from AppliChem GmbH 

(Darmstadt, Germany), Carl Roth GmbH + Co. KG (Karlsruhe, Germany), Roche (Penzberg, 

Germany), VWR International GmbH (Darmstadt, Germany), Sigma-Aldrich Chemie GmbH 

(Munich, Germany), Life Technologies (Darmstadt, Germany), Promega GmbH (Mannheim, 

Germany) and Merck Chemicals GmbH (Schwalbach, Germany). Enzymes were purchased 

from ThermoFisher Scientific (St. Leon-Roth, Germany) or New England Biolabs (Frankfurt am 

Main, Germany). Antibodies were supplied by Aviva Systems Biology (San Diego, USA), 

Covance Inc. (Munich, Germany), Life Technologies GmbH (Darmstadt, Germany), Roche 

(Penzberg, Germany), Jackson ImmunoResearch Europe Ltd. (Suffolk, UK) or Sigma-Aldrich 

(Mannheim, Germany). Kits that were used for standard RNA or DNA techniques were 

obtained from Machery-Nagel (Dueren, Germany) or Qiagen (Hilden, Germany). DNA and 

RNA oligonucleotides were ordered from Sigma-Aldrich (Mannheim, Germany) and IDT 

(Coralville, USA) respectively, 32P-g-ATP was delivered by Perkin-Elmer (Rodgau, Germany). 

2.2 Molecular cloning 

In order to perform molecular cloning, including DNA amplification, detection of amplified 

products, restriction by enzymes, ligation reactions and transformation of Escherichia coli (E. 

coli), the standard methods according to Sambrook were followed (Sambrook et al., 1989). 

These methods were used, for example, to generate constructs for expression of tagged yeast 

proteins containing specified mutations. 

2.2.1 DNA amplification and detection of products 

The polymerase chain reaction (PCR) was used to amplify DNA sequences either from 

genomic DNA isolated from yeast cells or from plasmid DNA obtained from E. coli cells. 

Amplification was achieved using the catalytic activity of the PfuT polymerase using a thermal 

cycling programme (Biometra), where an example of the standard reaction components and 

cycling conditions is given in Table 2.1. PCR products were precipitated by the addition of 1 Vol 

Milli-Q(MQ)-H2O, 0.6 Vol 3 M sodium acetate pH 5.2 and 6 Vol of 100 % ethanol, and 

incubation at -20 °C for 16 h. After centrifugation (20,000 rcf, 4 °C, 30 min), the obtained DNA 

pellet was washed with 700 µl of 70 % ethanol and again, centrifuged using the above-

mentioned conditions. For further steps in molecular cloning, the DNA was resupended in 16 µl 

of MQ-H2O. 
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Table 2.1: Components and cycle conditions of a standard PCR reaction.  

In order to visualise DNA, a 6 x DNA loading dye (0.2 % bromophenol blue, 0.2 % xylene 

cyanol, 60 % glycerol, 60 mM EDTA) was added to a 1 x final-concentration. According to the 

expected fragment length, samples were loaded onto a 1.2 % (w/v) or up to 3 % (w/v) agarose-

gel containing SafeView (abm, 3 µl in 30 ml gel-mix) and separated at 120 V for 60 min in 1 x 

TAE buffer (40 mM Tris/HCl, 20 mM acetic acid, 1 mM EDTA). The separated DNA was then 

detected under UV light using an INTAS transilluminator. 

Table 2.2: Oligonucleotides used for molecular cloning. 

Name Sequence (5' to 3') 

FW Spb4 + 500 bp (PstI) ATATACTGCAGCCTGAAGTCTCTCTCTCCAACAAAATATGATGCG
GC 

RV Spb4 + 500 bp (SmaI) TATATCCCGGGCTACTTCTTAACCTCTAATTACCAACGGGTC 
FW Mak5 + 500 bp (PstI) TATATATCTGCAGACCTTTAATACTTAACCTGATAATTTTG 
RV Mak5 + 500 bp (NotI) TATATATGCGGCCGCAAGTCGTTTGCTATTGACAAAG 
FW Spb4 (BamHI) ATATATGGATCCATGTCAAAGTCATTGGAATGG 
RV Spb4 (NheI) ATATATGCTAGCTAAGTCGTCAAAATTGCCTTG 
FW Mak5 (BamHI) ATATATGGATCCATGGGTAAGAAAAGGGCTCC 

RV Mak5 (NheI) ATATATGCTAGCATTATTTCTCTTTTTCTTTTTCTTCAAAGTTTCTA
AGG 

FW Has1 (BamHI) ATATATGGATCCATGGCTACCCCGTCAAATAAACG 
RV Has1 (NheI) ATATATGCTAGCCTTATGAGTTTTACGTCTTTTGGTATTTGG 

 

2.2.2 Restriction digestion and ligation of DNA 

For cloning PCR products into target plasmids, restriction sites were introduced upstream and 

downstream within the oligonucleotide sequences used for amplification (see Table 2.2). Both 

the PCR product (insert DNA) and 2 µg of plasmid DNA were digested in a final volume of 

20 µl using 10 U of the appropriate restriction enzyme(s) in 1 x enzyme buffer, according to 

manufacturer’s recommendations, at 37 °C for 1 h. In order to dephosphorylate the plasmid 

DNA, 1 µl alkaline phosphatase (ThermoFisher Scientific) was added to the corresponding 

reaction mix and reactions were incubated for further 20 min at 37 °C. To purify the obtained 

DNA fragments, 4 µl 6 x DNA loading dye were added into the reaction mix, which was loaded 

Component Final concentration 
10 x PfuT buffer 1 x 
2 mM dNTPs 120 µM 
Forward (FW) 
oligonucleotide 0.4 µM 

Reverse (RV) 
oligonucleotide 0.4 µM 

Template DNA 80 – 100 ng  
PfuT polymerase 2.5 U 
MQ-H2O To 50 µl 

 

Temperature Time Cycles 
95 °C 5 min 1 x 
95 °C 30 sec 

39 x 52 °C 30 sec 
72 °C 1 min/kbp 
72 °C 10 min 1 x 
4 °C - - 
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onto an agarose gel. DNA was separated, visualised on a UV table and fragments with the 

expected lengths were excised from the gel. DNA from the gel slices was purified using the 

NucleoSpin Gel and PCR Clean-Up kit (Machery-Nagel) following the manufacturer’s 

instructions.  

Subsequent ligation of the purified DNA fragments was achieved by setting up reactions 

containing a 5:1 molar ratio of insert:plasmid DNA, using 50 ng of plasmid, together with 1 µl 

of T4 DNA Ligase (ThermoFisher Scientific) and ATP-containing 1 x T4 DNA Ligase Buffer 

(ThermoFisher Scientific) in a total volume of 30 µl. The reaction mix was incubated at 16 °C 

overnight. 

2.2.3 E. coli transformation and plasmid extraction 

The ligation mix was used for transformation of E. coli strains TOP10 or DH5a, which were 

also used for amplification of plasmids. To do so, 50 µl of chemically competent cells were 

thawed on ice and incubated with either the ligation mix or 5 ng of plasmid DNA for 30 min on 

ice before applying a heat shock for 1 min at 42 °C. 700 µl of Luria Broth (LB) medium was 

added and cells were incubated at 37 °C for 20 – 30 min with gentle agitation in a thermoblock. 

After centrifugation (1,000 rcf, room temperature (RT), 3 min), cells were resuspended in 100 µl 

LB and spread on selective plates containing the relevant antibiotic. These plates were 

incubated overnight at 37 °C and resulting colonies were used to inoculate 4 ml LB + antibiotic, 

which was again incubated at 37 °C overnight while shaking. The enriched plasmid DNA was 

extracted using the NucleoSpin Plasmid kit (Machery-Nagel) according to the manufacturer’s 

instructions. 

The obtained plasmid DNA was sent to GATC Biotech for sequencing using oligonucleotide 

primers, where the sequenced regions covered the length of the PCR insert and the ligation 

sites, to check incorporation of the correct insert DNA into the plasmid backbone. 

2.2.4 Site-directed mutagenesis 

Exchanging single or multiple bases in existing plasmid DNA constructs, e.g. to swap amino 

acids in the encoded protein, was achieved by site-directed mutagenesis. Three PCR 

reactions, containing 5, 20 or 50 ng of plasmid DNA, together with 10 µl 5 x GC/HF buffer 

(ThermoFisher Scientific), 1.25 µl (10 µM) forward oligonucleotide and 1.25 µl (10 µM) reverse 

oligonucleotide (reverse complement of the forward oligonucleotide, both containing the 

desired nucleotide swap; Table 2.3), 0.4 mM dNTPs and 1 µl Phusion polymerase in a total 

volume of 50 µl, were set up. The reaction mix was heated at 95 °C for 30 sec before it was 

cycled 16 x through: 30 sec of 95 °C, 2 min of 55 °C and 68 °C for 1 min per kbp. After a final 

elongation step for 10 min at 68 °C, the reaction mix was cooled down to 4 °C. To remove 
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methylated template DNA, 1 µl of DpnI (ThermoFisher Scientific) was added and the reactions 

were incubated for 2 h at 37 °C. Afterwards, the reaction mixes were pooled and the DNA was 

precipitated by the addition of 7.5 µl 3 M sodium acetate pH 5.2, 450 µl 100 % ethanol and 

incubation at -20 °C overnight. By centrifugation (20,000 rcf, 4 °C, 30 min), the DNA was 

pelleted, then the supernatant was removed and the pellet was washed with 500 µl 70 % 

ethanol. After repeating the centrifugation and removal of the supernatant, the DNA was dried 

and resuspended in 10 µl of MQ-H2O. This DNA was then used to transform E. coli cells for 

amplification. After extraction of plasmid DNA, sequencing was used to check that the mutation 

had been introduced. 

Table 2.3: Oligonucleotides used for site-directed mutagenesis. 

Name Sequence (5' to 3') 
FW Spb4-DEAD GCATGCAGTATGGTAGTTATGGATCAGGCAGACAGATTGTTGGATATGAG 
RV Spb4-DEAD CTCATATCCAACAATCTGTCTGCCTGATCCATAACTACCATACTGCATGC 
FW Mak5-DEAD CGAAAGTAAATACGCTAATCCTTGATCAGGCTGATAGGCTGTTACAAG 
RV Mak5-DEAD CTTGTAACAGCCTATCAGCCTGATCAAGGATTAGCGTATTTACTTTCG 
FW Mak5-SAT GGCAAACTTTGATCTTTGCGGCCGCCTTCTCCATCGACTTGTTTGATAAGC 
RV Mak5-SAT GCTTATCAAACAAGTCGATGGAGAAGGCGGCCGCAAAGATCAAAGTTTGCC 

 

Table 2.4: Plasmids for recombinant expression and in vivo complementation. 

ID Name Application Source 

pMB-031 pRS415 empty Empty vector for protein 
expression in yeast New England Biolabs 

pMB-311 A21 Mak5 Recombinant expression in E.coli Bohnsack lab 
pMB-317 A21 Spb4 Recombinant expression in E.coli Bohnsack lab 
pMB-586 A21 Spb4 SAT Recombinant expression in E.coli Bohnsack lab 
pMB-1245 pRS415 Spb4 WT In vivo complementation (yeast) This study 
pMB-1319 pRS415 Mak5 WT In vivo complementation (yeast) This study 
pMB-1323 pRS415 Mak5 DEAD In vivo complementation (yeast) This study 
pMB-1341 A21 Mak5 DEAD Recombinant expression in E.coli This study 
pMB-1343 A21 Mak5 SAT Recombinant expression in E.coli This study 
pMB-1347 A21 Spb4 DEAD Recombinant expression in E.coli This study 
pMB-1357 pRS415 Spb4 SAT In vivo complementation (yeast) This study 
pMB-1358 pRS415 Mak5 SAT In vivo complementation (yeast) This study 
pMB-1359 pRS415 Spb4 DEAD In vivo complementation (yeast) This study 

 

2.3 Yeast cultivation 

Routinely, yeast strains used in this study (see Table 2.5), which are derived from the BY4741 

background (Brachmann et al., 1998), were cultured in YPD medium containing 1 % (w/v) 

yeast extract, 2 % (w/v) peptone and 2 % (w/v) glucose. If the DNA sequence in front of an 
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essential gene was exchanged for a galactose-dependent promoter sequence, cells were 

grown in YPG medium, where the carbon source was exchanged to 2 % galactose instead of 

2 % glucose. For selection of cells using auxotrophic markers, synthetic dropout media lacking 

certain amino acids (ForMedium) were used. 

Table 2.5: List of yeast strains used in this study. 

ID Name Genotype Source 

YMB 006 BY4741a MATa; hisD1; leu2D0; met15D0; ura3D0 Brachmann et al., 
1998 

YMB 145 pTetO7-Mak5 YMB 279; pTetO7-3xHA-Mak5 (NatNT2) Bohnsack lab 
YMB 149 pTetO7-Spb4 YMB 279; pTetO7-3xHA-Spb4 (NatNT2) Bohnsack lab 

YMB 279 pTetO7 parent YMB 006; tTA::LYS2; tetR'::URA3; 
K.l.::LEU2 

Alexander et al., 
2010 

YMB 323 pTetO7-Has1 YMB 279; pTetO7-3xHA-Has1 (NatNT2) Bohnsack lab 
YMB 341 Ssf1-cTAP YMB 006; Ssf1-TAP::HIS Bohnsack lab 
YMB 343 Arx1-cTAP YMB 006; Arx1-TAP::HIS Bohnsack lab 
YMB 345 Nip7-cTAP YMB 006; Nip7-TAP::HIS Bohnsack lab 
YMB 428 Has1-cHTP YMB 006; Has1-HTP::URA3 Bohnsack lab 
YMB 474 Mak5-cHTP YMB 006; Mak5-HTP::URA3 Bohnsack lab 
YMB 493 Spb4-cHTP YMB 006; Spb4-HTP::URA3 Bohnsack lab 
YMB 540 Npa1-cTAP YMB 006; Npa1-TAP::URA3 Bohnsack lab 

YMB 979 pTetO7-Mak5 Nop2-
cHTP YMB 145; Nop2-HTP::HIS This study 

YMB 991 pTetO7-Has1 Nop2-
cHTP YMB 323; Nop2-HTP::HIS This study 

YMB 998 pGal1-Spb4 Nop2-
cHTP 

YMB 279; pGal1-3xHA-Spb4 (KanMX); 
Nop2-HTP::HIS This study 

YMB 1097 pGalS-Prp43 Rpf2-
cHTP 

YMB 006; pGalS-3xHA-Prp43 (NatNT2); 
Rpf2-HTP::HIS This study 

YMB 1139 Erb1-cHTP YMB 006; Erb1-HTP::HIS This study 
YMB 1173 Rlp24-cHTP YMB 006; Rlp24-HTP::HIS This study 

YMB 1453 pTetO7-Mak5 Nop2-
cHTP + EV YMB 979; pMB-031::LEU2 This study 

YMB 1455 pTetO7-Mak5 Nop2-
cHTP + Mak5-WT YMB 979; pMB-1319::LEU2 This study 

YMB 1457 pTetO7-Mak5 Nop2-
cHTP + Mak5-DEAD YMB 979; pMB-1323::LEU2 This study 

YMB 1459 pTetO7-Mak5 Nop2-
cHTP + Mak5-SAT YMB 979; pMB-1358::LEU2 This study 

YMB 1405 pGal1-Spb4 Nop2-
cHTP + EV YMB 998; pMB-031::LEU2 This study 

YMB 1407 pGal1-Spb4 Nop2-
cHTP + Spb4-WT YMB 998: pMB-1245::LEU2 This study 

YMB 1464 pGal1-Spb4 Nop2-
cHTP + Spb4-DEAD YMB 998; pMB-1359::LEU2 This study 

YMB 1466 pGal1-Spb4 Nop2-
cHTP + Spb4-SAT YMB 998; pMB-1357::LEU2 This study 

 

From glycerol stocks (yeast cells in medium containing 15 % glycerol, stored at -80 °C), cells 

were streaked out on appropriate plates and incubated at 30 °C for 2 d. Single colonies were 
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inoculated in 4 ml cultures, which were grown at 30 °C overnight while shaking. These starter 

cultures were either used directly or used to inoculate larger cultures that were maintained in 

exponential phase before harvesting by centrifugation at 2,000 rcf. 

2.4 Yeast transformation 

In order to generate yeast strains for genomic expression of tagged proteins or for expression 

of proteins from a regulatable promoter either genomically or from plasmids (Table 2.4), 

exogenous DNA had to be transferred into yeast strains. For homologous recombination, PCR 

cassettes were amplified from template plasmids using oligonucleotides listed in Table 2.6. 

For introducing N- or C-terminal epitopes as well as promoter or terminator sequences with its 

obligatory selection markers, plasmids from the BlueScript or the Longtine (Longtine et al., 

1998) collection were used (see Table 2.7). 

Table 2.6: Oligonucleotides for amplification of PCR cassettes for homologous recombination. 

Name Sequence (5' to 3') Application 

FW Nop2-cHTP GGGTGTCAATCCAAAAGCTAAAAGACCTTCTAACGAAAA
ATCCATGGAGCACCATC genomic tagging 

RV Nop2-cHTP GAGAAAACTATGCTAACATGATGCCACTACGTTTGTGGG
TACGACTCACTATAGGGCG genomic tagging 

FW pGal1-Spb4 GCCCATTGATTTGAGGTGTAGTAAGATAATATTAAAAGC
TCAGCAGCAATAAAAACATCGAGCTCGTTTAAAC promoter swap 

RV pGal1-Spb4 CCTTATCCAGGGAAGTAAAGAAAACCCGAGATTATCCCA
TTCCAATGACTTTGACATGCACTGAGCAGCGTAATCTG promoter swap 

 

Table 2.7: Plasmid templates for amplification of cassettes used for homologous recombination. 

ID Name Application Source 
pMB-439 pBS1539-HIS3-HTP cHTP tagging (HIS) Bohnsack lab 

pMB-778 pFA6a-kanMX-pGal1-3xHA pGal1 promoter transfer 
(KanMX) Longtine et al., 1998 

 

PCR products were precipitated and resuspended in 12 µl of H2O in order to be used according 

to the transformation protocol. For transforming yeast, cells of the parental strain were 

inoculated in 4 ml of permissive medium and grown overnight at 30 °C, with constant shaking. 

A 50 ml culture was then grown to mid-log phase and cells were harvested by centrifugation 

(2,000 rcf, 4 °C, 5 min). The cell pellet was washed with 10 ml of MQ-H2O, pelleted again by 

centrifugation and resuspended in 1 ml of MQ-H2O in order to transfer the cells to a 1.5 ml 

reaction tube. After pelleting the cells by centrifugation (2,000 rcf, 4 °C, 1 min), they were 

washed with 1.5 ml TE/LiAc buffer (10 mM Tris/HCl pH 7.4, 1 mM EDTA, 100 mM lithium 

acetate), centrifuged (2,000 rcf, 4 °C, 1 min) and resuspened in 200 µl TE/LiAc buffer. 
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For each transformation, 50 µl of cells together with 5 µl denatured salmon sperm DNA (Sigma-

Aldrich, 10 mg/ml, pre-heated to 95 °C for 20 min then cooled on ice for 2 min) and 5 µg of 

plasmid DNA (or 12 µl of resupended PCR product) were mixed and 300 µl of PEG buffer 

(40 % PEG4000, 10 mM Tris/HCl pH 7.4, 100 mM lithium acetate) was directly added. This 

suspension was incubated at 30 °C and 750 rpm in an Eppendorf thermoblock for 30 min 

before a heat shock at 42 °C for 15 min was applied. 

When using an auxotrophic marker, 800 µl of MQ-H2O was added and the cell suspension was 

centrifuged (20,000 rcf, RT, 10 sec). The cell pellet was resuspended in 100 µl MQ-H2O, plated 

onto selective plates and incubated for 2 d at 30 °C. 

When using an antibiotic marker, instead of plating the resuspended cell pellet onto selective 

plates, they were plated onto permissive medium and incubated at 30 °C for 16 h before replica 

plating onto selective plates. In order to avoid mixed colonies from different genetic 

background, single colonies from selective plates were spread and selected twice. 

2.5 Preparation of genomic DNA from yeast 

For extracting genomic DNA from yeast cells, 1.5 ml of a yeast overnight culture was harvested 

by centrifugation (2,000 rcf, RT, 5 min). The cell pellet was resuspendend in 250 µl Lysis buffer 

(0.05 % Tween 20, 100 mM Tris/HCl pH 7.4, 1 mM EDTA, 1 % SDS). Together with 150 µl of 

glass beads, 250 µl phenol-chloroform-isoamylalcohol (PCI 25:24:1) were added and cells 

were lysed by vortexing at 4 °C. Centrifugation (20,000 rcf, 4 °C, 5 min) was used to separate 

the aqueous and organic phases, and the upper aqueous phase was transferred into a new 

reaction tube. It was supplemented with 20 µl 3 M sodium acetate pH 5.2 and 600 µl ethanol 

to precipitate the genomic DNA overnight at -20 °C. The precipitate was pelleted by 

centrifugation (20,000 rcf, 4 °C, 30 min). After washing the pellet with 500 µl 70 % ethanol and 

repeating the previous centrifugation step, the supernatant was removed, the DNA pellet was 

dried and resuspended in 50 µl MQ-H2O. The integrity of genomic DNA could be tested on an 

agarose gel and after confirmation the DNA was used as template for polymerase chain 

reactions. 

2.6 Protein extraction, SDS-PAGE, western blotting, Coomassie 
staining 

For checking proteins from generated yeast strains or E. coli lysates after recombinant 

expression, denaturing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) was used according to instructions from Laemmli (Laemmli, 1970). In order to extract 

proteins from yeast cells, 1.5 ml of an overnight culture was harvested (2,000 rcf, RT, 5 min). 

The cell pellet was resuspended in 100 µl MQ-H2O and 50 µl glass beads were added. Cells 
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were disrupted by vortexing for 5 min at 4 °C. After addition of 1 ml 15 % trichloroacetic acid 

(TCA) and vortexing, the reaction was incubated on ice for 10 min. The suspension was 

vortexed once again and kept on ice for 10 sec to allow the glass beads to settle prior to 

transferring the supernatant into a fresh reaction tube. Centrifugation (20,000 rcf, 4 °C, 30 min) 

pelleted the precipitated proteins, which were washed with 1 ml acetone before another 

centrifugation step (20,000 rcf, 4 °C, 30 min). After removal of the supernatant, the protein 

pellet was dried and resuspended in 30 µl 1 x SDS-buffer (60 mM Tris/HCl pH 6.8, 2 % SDS, 

0.01 % bromophenol blue, 1.25 % ß-mercaptoethanol). 

Protein samples were incubated for 5 min at 95 °C before they were used for SDS-PAGE, 

which separates denatured proteins according to their molecular weight. Gels contained a 4 % 

stacking gel for focusing of proteins and a 10 – 15 % resolving gel, using different 

concentrations of polyacrylamide for larger (>100 kDa) and smaller proteins (<50 kDa) 

respectively. Using a BioRad system, the process of electrophoresis was done at 25 mA for a 

gel of 0.75 mm thickness for 1 h. Afterwards, proteins were visualised by incubation of the gel 

with Coomassie Blue (0.1 % Coomassie Blue (w/v), 40 % methanol (v/v), 10 % acetic acid 

(v/v)) for 1 h while shaking. Destaining was carried by washing with Destain Solution (40 % 

methanol (v/v), 10 % acetic acid (v/v)) at least for 16 h.  

Table 2.8: Antibodies used in this study. 

Name Source Fold dilution 
Anti-HA Covance Inc. 1:1,000 
Anti-PAP Sigma-Aldrich Chemie GmbH 1:5,000 
Anti-Pgk1 Life Technologies GmbH 1:7,500 
Anti-GFP Roche 1:1,000 
Anti-Rpl15 Aviva Systems Biology 1:1,000 
Goat-anti-mouse Jackson ImmunoResearch Europe Ltd. 1:10,000 
Goat-anti-rabbit Jackson ImmunoResearch Europe Ltd. 1:10,000 

 

To detect specific or epitope-tagged proteins, Western blot analysis was performed after 

proteins were separated by SDS-PAGE. Transfer of proteins from polyacrylamide gel onto 

nitrocellulose membranes (GE Healthcare) was achieved by wet blotting in Western Blot buffer 

(25 mM Tris, 192 mM glycin, 0.05 % SDS, 20 % methanol) at 100 V for 1 h using the BioRad 

system. To avoid unspecific binding of antibodies to the membrane, it was incubated with 

Blocking Solution (5 % milk in phosphate buffered saline containing Tween (PBS-T, 137 mM 

NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, 1 % Tween2000 (v/v)) for 1 h at RT 

with gentle agitation. Before use, primary antibodies (see Table 2.8) were diluted in Blocking 

Solution according to manufacturer’s instructions. Membranes were incubated with the primary 

antibody overnight at 4 °C and afterwards, were washed three times with PBS-T for 10 min. 
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For binding of a secondary antibody (see Table 2.8), membranes were incubated with 

appropriate dilutions of the antibody in Blocking Solution at RT for 1 h before they were washed 

again three times with PBS-T for 10 min. Since the secondary antibodies used are conjugated 

to horseradish peroxidase (HRP), the specific proteins were detected by enhanced 

chemiluminescence using substrate solutions (ECL, Millipore) when exposed to X-ray films. 

2.7 Serial dilution growth assay 

For testing growth of yeast strains in permissive or non-permissive medium, cultures were 

grown in exponential phase and cells corresponding to 1 ml of OD600 = 1 were harvested 

(2,500 rcf, RT, 5 min). The cell pellet was washed with 1 ml of the following medium (permissive 

or non-permissive) and centrifuged once again (2,500 rcf, RT, 5 min). Following three serial 

1:10 dilutions, 5 µl of each cell suspension were spotted on plates with different conditions. 

Plates were incubated for 3 d at 30 °C and growth of cell spots could be recorded. 

2.8 Depletion of essential proteins and growth analysis 

As the deletion of essential genes leads to non-viable strains, we made use of different 

depletion systems, where an artificial promoter is inserted in front of our gene of interest 

allowing regulation of gene expression by addition of a chemical or by changing the carbon 

source. On one hand, we used a pTetO7-3xHA-promoter that allows repression of gene 

expression by addition of the non-hydrolysable tetracycline variant doxycycline by activating 

the genomically encoded Tet repressor. On the other hand, a pGal1-3xHA-promoter was 

inserted, enabling gene expression to be blocked by changing the carbon source from 

galactose to glucose. In order to prevent secondary effects after repression of protein 

expression, an appropriate depletion time, where the decreasing protein level becomes limiting 

for growth, was estimated. For this reason, yeast cultures were grown under permissive 

conditions to mid-log phase before the depletion was initiated either by addition of doxycycline 

to a final concentration of 10 µg/ml (20 µg/ml in synthetic medium) or by changing the carbon 

source by harvesting (2,000 rcf, RT, 5 min), washing the cells with medium containing the new 

carbon source (2,000 rcf, RT, 5 min) and resuspending them in new medium for further growth. 

Every 2 h the OD600 was measured and samples corresponding to 1 ml of OD600 = 1 (1 ml of 

OD600 = 5 in synthetic medium) were taken. The resulting growth curves under permissive and 

non-permissive conditions were compared to each other and also compared with the protein 

levels that were determined by TCA precipitation of proteins from the taken cell samples and 

immunoblotting using an antibody against the N-terminal HA-epitope. We determined the 

depletion time as the time where the growth curves under permissive and non-permissive 

conditions diverge and the protein was no longer detectable. 
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2.9 Yeast RNA isolation 

Yeast cells were grown in 30 ml cultures to mid-log phase and harvested by centrifugation 

(2,000 rcf, 4 °C, 5 min) in a 15 ml falcon-tube. Cell pellets were resuspended in 300 µl GTC 

mix (2 M guanidine thiocyanate, 25 mM Tris/HCl pH 8.0, 5 mM EDTA pH 8.0, 1 % (v/v) N-

lauroylsarcosine, 150 mM ß-mercaptoethanol) and 300 µl Roti-Aqua-Phenol (Roth). After 

adding 600 µl of glass beads, cells were disrupted by vortexing for 5 min at 4 °C. An additional 

3 ml of GTC and 3 ml of phenol were added and the suspension was vortexed before 

incubation at 65 °C for 5 min. Following incubation at 4 °C for 5 min, 1.6 ml sodium acetate-

mix (100 mM sodium acetate, 1 mM EDTA pH 8.0, 10 mM Tris/HCl pH 8.0) and 3 ml chloroform 

were added and the suspension was vortexed. The aqueous and organic phases were 

separated by centrifugation (2,000 rcf, 4 °C, 30 min), and the upper, aqueous phase (approx. 

5 ml) was transferred into a new 15 ml falcon-tube. This was mixed with PCI in a 1:1 ratio. 

Again, phases were separated by centrifugation (2,000 rcf, 4 °C, 5 min) and the aqueous phase 

(approx. 4.5 ml) was mixed with chloroform in a 1:1 ratio by inverting. After separating the 

phases (see previous centrifugation), the aqueous phase was transferred into another 15 ml 

falcon-tube and 11 ml of 100 % ethanol, together with 1 µl of glycogen were added. The 

reactions were thoroughly mixed by inverting and stored overnight at -20 °C. 

Precipitated RNA was pelleted by centrifugation (2,000 rcf, 4 °C, 30 min) and the supernatant 

was removed. The remaining pellet was washed with 2 ml of 70 % ethanol and the suspension 

was centrifuged (2,000 rcf, 4 °C, 30 min). After the supernatant was removed, the RNA pellet 

was dried and resuspended in 30 µl of MQ-H2O at 50 °C and 100 rcf. 

2.10 Polyacrylamide- and agarose gels for RNA + northern blotting 

For separation of small RNAs, RNA samples were supplemented with 2 x formamide loading 

dye (80 % formamide, 10 mM EDTA pH 8.0, 1 mg/ml xylene cyanol FF, 1 mg/ml bromophenol 

blue), denatured at 95 °C for 5 min and loaded onto denaturing (7 M urea) 10 % polyacrylamide 

gels in 1 x TBE (89 mM Tris/HCl, 89 mM boric acid, 2 mM EDTA). RNA samples were generally 

separated at 30 W for 1.5 h or depending on required separation. Afterwards, the RNA was 

transferred, in 0.5 x TBE at 60 V and 4 °C for 2 h, onto a Hybond N membrane (GE Healthcare) 

using the Trans Blot Cell system (BioRad). The RNA was crosslinked to the membrane by the 

UV Stratalinker 2400 (Stratagene) applying UV light of 0.12 J/cm2 twice. 

Larger RNA molecules like rRNA precursors were separated on 1.2 % agarose gels in 

1 x BPTE (10 mM Pipes, 30 mM Bis-Tris, 1 mM EDTA pH 8.0). 6 µg of RNA were mixed with 

4 Vol Glyoxal loading dye (20 % (v/v) glyoxal, 61 % DMSO (v/v), 5 % glycerol, 0.1 % ethidium 

bromide (v/v) in 1 x BPTE) and heated at 55 °C for 1 h before loading. Gels were run at 60 V 

for 16 h. Afterwards, gels were washed for 20 min in 100 mM NaOH for fragmentation of RNA, 
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followed by two washes in a quenching Tris/NaCl buffer (0.5 M Tris/HCl pH 6.4, 1.5 M NaCl) 

for 15 min each and a final wash step in 6 x SSC buffer (150 mM NaCl, 15 mM sodium citrate) 

for another 20 min. The RNA was then transferred onto a Hybond N membrane using the 

vacuum blotting system VacuGene XL (GE Healthcare), where vacuum was applied at 

300 mbar for 3 h. Finally, transferred RNA was crosslinked to the membrane by exposure to 

UV light of 0.12 J/cm2 twice. 

By methylene blue staining (10 min in 0.03 % methylene blue (w/v), 0.3 M sodium acetate 

pH 5.2), the most abundant RNAs on the membrane could be visualised. For detection of 

specific, lower abundance RNAs, membranes were hybridised with radioactively-labelled 

antisense DNA-oligonucleotides. For labelling, 2 µl 10 mM oligonucleotide were incubated with 

2 µl 32P-g-ATP (Perkin-Elmer), 2 µl T4 polynucleotide kinase buffer (Fermentas) and 1 µl T4 

polynucleotide kinase (PNK, Fermentas) in a 20 µl reaction at 37 °C for 30 min. After the 

phosphorylation, the reaction mix was diluted in 40 ml SES1 buffer (0.5 M sodium phosphate 

pH 7.2, 7 % SDS, 1 mM EDTA pH 8.0). Membranes to be incubated with radiolabelled 

oligonucleotides (see Table 2.9) were pre-incubated with SES1 buffer at 37 °C for 30 min 

before hybridisation with the probe overnight at 37 °C. After washes with 6 x SSC and 2 x SSC 

containing 0.1 % SDS at 37 °C for 30 min each, the membranes were dried and exposed to a 

phosphorimager screen. Detection of radioactive signals was carried out using a Typhoon FLA 

9500 phosphorimager (GE Healthcare). 

Table 2.9: Oligonucleotides used for northern blotting.  

Name Sequence (5' to 3') Application 
004 CGGTTTTAATTGTCCTA Northern probe ITS1 
020 TGAGAAGGAAATGACGCT Northern probe ITS2 
scR1 ATCCCGGCCGCCTCCATCAC Northern probe 

 

2.11 Recombinant protein expression in E. coli 

In order to purify a protein of interest, it was recombinantly expressed from a multi-copy 

plasmid under the control of an isopropyl-beta-D-thiogalactopyranoside (IPTG) inducible 

promoter in the E. coli strain BL 21 Codon Plus. The plasmid used (A21) enables expression 

of an N-terminally His10-ZZ-tagged fusion protein, allowing specific enrichment, via the His10-

tag, on Ni2+ beads (Roche). After transforming the plasmid into the bacterial strain and 

selection by antibiotic markers (see section 2.2.3), a single colony was used to inoculate a 

20 ml culture of LB medium containing 100 µg/ml ampicillin (Amp) and 12.5 µg/ml 

chloramphenicol (Chl), which was then grown at 37 °C while shaking overnight. This overnight 

culture was then used to inoculate 1 L of LB + Amp + Chl, which was grown at 37 °C while 

shaking to an OD600 = 0.5. The culture was cooled by incubation for at least 30 min at 4 °C 
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before recombinant protein expression was induced by addition of IPTG to a final concentration 

of 1 mM and the cells were grown overnight at 18 °C. 

After adding 1 mM PMSF to the culture, it was centrifuged (4,000 rcf, 4 °C, 20 min) to pellet 

the cells. The cells were then washed with 20 ml 1 x PBS and transferred to a 50 ml falcon-

tube. After another step of centrifugation (2,000 rcf, 4 °C, 5 min), cells were resuspended in 

20 ml of Lysis buffer (50 mM Tris/HCl pH 7, 500 mM NaCl, 1 mM MgCl2, 10 mM imidazole, 

1 mM PMSF, 10 % glycerol). The cell suspension was sonicated (4 x 30 sec, 45 % amplitude, 

0.7 sec in, 0.3 sec off) on ice. The lysate was then cleared of cell debris by centrifugation 

(20,000 rcf, 4 °C, 20 min) in a JA30.50 rotor (Beckman-Coulter). To precipitate protein-

associated nucleic acids, polyethyleneimine (PEI) was added to a final concentration of 0.05 % 

and the lysate was incubated, rotating at 4 °C for 15 min. Precipitates were pelleted by 

centrifugation (33,000 rcf, 4 °C, 30 min) and the supernatant was mixed with Ni-NTA beads 

(1 ml slurry), which had been pre-equilibrated in Wash buffer I (50 mM Tris/HCl pH 7, 500 mM 

NaCl, 1 mM MgCl2, 30 mM imidazole, 10 % glycerol), for incubation at 4 °C while rotating for 

1 h. The lysate-beads-suspension was transferred to a gravity-flow column and the beads were 

washed with 10 ml of Wash buffer I, followed by a high-salt wash with 10 ml Wash buffer II 

(50 mM Tris/HCl pH 7, 1 M NaCl, 1 mM MgCl2, 30 mM imidazole, 10 % glycerol) and another 

wash with 10 ml of Wash buffer I. For elution, the beads were incubated with 3 ml of Elution 

buffer (50 mM Tris/HCl pH 7, 500 mM NaCl, 1 mM MgCl2, 10 % glycerol, 300 mM imidazole) 

for 5 min and fractions of 1 ml were collected. This procedure was repeated three times over 

and 1 µl of each elution fraction was spotted onto a nitrocellulose membrane. Protein was 

visualised by amidoblack staining (0.1 % (w/v) in 50 % ethanol) and fractions containing the 

highest protein content were pooled for dialysis. In order to prevent precipitation of the protein 

during dialysis, glycerol to an end-concentration of 20 % was added and the protein was 

dialysed against Dialysis buffer (50 mM Tris/HCl pH 7, 120 mM NaCl, 2 mM MgCl2, 20 % 

glycerol) overnight at 4 °C through a 30 kDa cutoff dialyse membrane (Spectrum Laboratories), 

which had previously been equilibrated in 5 mM EDTA. 

A final centrifugation step (20,000 rcf, 4 °C, 30 min) separated the soluble supernatant from 

any precipitates that occurred during the dialysis procedure. The protein concentration was 

estimated by Bradford assay and, if necessary, the protein was concentrated using 

concentrator columns (Corning). 

2.12 Steady state ATPase activity of recombinant proteins 

To study the steady state ATPase activity of recombinantly expressed and purified RNA 

helicases, we used an indirect NADH-coupled ATPase assay (Kiianitsa et al., 2003). Reactions 

containing 2 µM protein and increasing amounts of RNA (0 – 4 µM), 45 mM Tris/HCl pH 7.4, 

25 mM NaCl, 2 mM MgCl2, 4 mM ATP, 1 mM phosphoenolpyruvate (PEP, Sigma-Aldrich), 
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20 U/ml pyruvate kinase/ lactic dehydrogenase (Sigma-Aldrich) and 300 µM ß-nicotinamide 

adenine dinucleotide (NADH) were set up. The hydrolysis of ATP causes increasing ADP 

levels leading to the conversion of phosphoenol pyruvate (PEP) to pyruvate by the available 

pyruvate kinase. The pyruvate afterwards was converted to lactate by the enzyme lactate 

dehydrogenase. This step is coupled to the oxidation of NADH to NAD+, which could be 

measured by the decrease of absorption at 340 nm (A340), the absorbance maximum of NADH. 

Measurements were done at 30 °C using a BioTEK Synergy HT microplate spectrophotometer. 

The ATP hydrolysis rate of proteins was estimated using the following equation, where Kpath is 

the molar absorption coefficient for a given optical pathlength, specified by the fill volume of 

150 µl per well and background NADH decomposition. 

ATPase	rate	
ATP
min

=
dA340
dt

OD
min

Kpath	 ∗ 	moles	ATP
 

2.13 UV crosslinking and analysis of cDNA (CRAC) 

The UV crosslinking and analysis of cDNA (CRAC) technique is a method to detect protein-

RNA interaction sites as described in Bohnsack et al. (2012) and Granneman et al. (2009) (see 

Fig. 2.1). The CRAC method was performed with the help of Maike Ruprecht and Philipp 

Hackert. 

Two alternative approaches for covalent crosslinking of proteins to their associated RNAs were 

used: applying UV light of 254 nm to actively growing yeast cells in culture (in culturo; UV-

CRAC) or applying light of 365 nm to pelleted cells that were resuspended in a small volume 

and spread onto a petri dish (in vivo; PAR-CRAC). In order to perform in culturo UV crosslinking 

a custom-built crosslinker (iTRIC: in culturo temperature regulated interaction crosslinker) was 

used that allowed 254 nm UV irradiation of cells with 1.6 J/cm2 while the culture (1 l in mid-log 

phase) was actively cooled down, so that a constant temperature of approx. 22 °C was 

maintained. After centrifugation (4,600 rcf, 4 °C, 5 min), the irradiated cells were washed with 

20 ml 1 x PBS, transferred in a 50 ml falcon tube and pelleted again (4,600 rcf, 4 °C, 5 min). 

photoactivatable ribonucleoside-enhanced (PAR-) CRAC is based on the incorporation of 4-

thiouridine (4SU) that can be crosslinked to adjacent amino acids by irradiation at 365 nm. For 

PAR-CRAC, cells of 1 l culture were grown in the presence of 4-thiouracil, which is converted 

to 4SU by yeast, for 4 h before harvesting in mid-log phase (6,000 rcf, 4 °C, 10 min). After 

washing with 1 x PBS and resuspending in 1 Vol 1 x PBS, the cell suspension was spread 

onto a petri dish, which was placed on ice in a Stratalinker 2400 (Stratagene). Cells were then 

irradiated with 2 x 600 mJ/cm2 and transferred to a 50 ml falcon tube. Remaining cells in the 

petri dish were taken up by washing twice with 10 ml of 1 x PBS and transfer to the falcon 

containing cells pelleted by centrifugation (4,600 rcf, 4 °C, 5 min). 
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Figure 2.1: UV crosslinking and analysis of cDNA (CRAC). Schematic representation of the (PAR-) CRAC 
protocol. Yeast cells expressing an RNA helicase (Hel) with a C-terminal His6(His)-TEV cleavage site-
ProteinA(ProtA)-tag were grown in the presence of 4-thiouracil, which is converted to 4-thiouridine (4SU) by yeast 
and incorporated into nascent RNAs, then irradiated at 365 nm (PAR-CRAC), or directly irradiated at 254 nm (in 
culturo UV-CRAC). A purification under native conditions via IgG-sepharose is followed by trimming of RNA 
sequence not bound, and therefore protected by the protein of interest. A second denaturing purification step via a 
Ni-NTA matrix is then followed by ligation of linkers. After extraction of the RNA, it is used as a template for reverse 
transcription and a PCR amplification step, generating a library of cDNA, which can be analysed by Illumina deep 
sequencing. Modified from Haag et al., 2017. 

 

After cell lysis, both crosslinking methods follow the same protocol, where initially the cell pellet 

was resuspended in 1 Vol (approx. 2 ml) of TMN150 buffer (50 mM Tris/HCl pH 7.8, 150 mM 

NaCl, 1.5 mM MgCl2, 0.1 % NP-40, 5 mM ß-mercaptoethanol) containing a protease inhibitor 

(+ PI; 1 tablet cOmplete Mini protease inhibitor mix in 25 ml TMN150, Roche). Addition of 4 ml 

of zirconia beads (Thistle Scientific) allowed disruption of cells by vortexing on ice for five 

minutes. 1.5 Vol (approx. 3 ml) of TMN150+PI buffer were added before the suspension was 

centrifuged (2,000 rcf, 4 °C, 20 min) and the supernatant was transferred to 1.5 ml reaction 

tubes. The remaining insoluble cell components were pelleted by high speed centrifugation 

(20,000 rcf, 4 °C, 20 min). The cleared lysate was incubated with IgG-sepharose (500 µl slurry; 

GE Healthcare), which had been pre-equilibrated in TMN150, for 2 h at 4 °C with gentle 

agitation. 

The beads were then washed with 10 ml TMN150 (100 rcf, 4 °C, 20 sec), twice with 10 ml 

TMN1,000 (50 mM Tris/HCl pH 7.8, 1 M NaCl, 1.5 mM MgCl2, 0.1 % NP-40, 5 mM ß-

mercaptoethanol) (100 rcf, 4 °C, 20 sec) and twice with 10 ml TMN150 (100 rcf, 4 °C, 20 sec). 

With 600 µl TMN150 buffer, the beads were transferred to a new 1.5 ml reaction tube, where 

10 µl of GST-TEV (glutathione-S-transferase - tobacco etch virus) protease were added to the 

suspension for incubation overnight at 4 °C. 

The supernatant was transferred to a fresh 1.5 ml reaction tube and 0.1 U RNace-IT (Agilent 

Technologies) was added and samples were incubated for 30 sec at 37 °C. The reaction mix 

was then transferred into a stopping reagent (6 M guanidinium-HCl, 300 mM NaCl and 10 mM 

imidazole pH 8.0). For purification of protein-RNA complexes under denaturing conditions, 

100 µl of Ni-NTA matrix slurry (Qiagen) was first equilibrated with WB1 buffer (50 mM Tris/HCl 

pH 7.8, 300 mM NaCl, 10 mM imidazole, 6 M guanidinium-HCl, 0.1 % NP-40, 5 mM ß-
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mercaptoethanol) (500 rcf, 4 °C, 20 sec) before incubation with the RNase-treated cell extract 

for 2 h at 4 °C with gentle agitation. Afterwards, the beads were washed two times with 750 µl 

WB1, followed by three washing steps with 1 x PNK buffer (50 mM Tris/HCl pH 7.8, 10 mM 

MgCl2, 0.5 % NP-40, 5 mM ß-mercaptoethanol) (500 rcf, 4 °C, 20 sec). With the last wash, the 

beads were transferred to a Mobicol spin column (BioRad; 35 nm pore size). Treatment with 

alkaline phosphatase removes phosphates at 5’ and 3’ ends that occur as products after 

cleavage by RNace-IT. For this reason, remaining buffer was removed by centrifugation 

(500 rcf, 4 °C, 20 sec) and the beads were resuspended in a TSAP-mix (1 x PNK, 8 U thermo 

sensitive alkaline phosphatase (TSAP; Promega), 80 U RNasin (Promega)) for incubation at 

37 °C for 30 min. The beads were then washed once with 400 µl WB1, followed by three 

washes with 1 x PNK buffer (500 rcf, 4 °C, 20 sec) with centrifugation (500 rcf, 4 °C, 20 sec) 

between washing steps. For on-bead ligation of a linker to the 3’ end of the RNA, a DNA 

oligonucleotide was used that contained an activated adenosine (App) at the 5’ end as well as 

a blocked 3’ end (ddC) to enable a ligation reaction without addition of ATP and prevented 

inter-linker ligations (see Table 2.10). The beads were resuspended in 80 µl of 3’ linker mix 

(1 x PNK buffer, 1.25 µM CRAC 3’ linker, 10 % PEG8000 (Sigma-Aldrich), 60 U RNasin, 800 U 

T4 RNA ligase II mutant (Epicentre)) and incubated overnight at 16 °C. 

The supernatant of the reaction mix was removed by centrifugation (500 rcf, 4 °C, 20 sec) and 

then the beads were washed once with 400 µl WB1 and three times with 400 µl 1 x PNK. The 

5’ ends of co-precipitated RNAs were radioactively phosphorylated to enable detection of the 

protein-RNA complexes by autoradiography in later steps and was achieved by incubating the 

beads with 80 µl of PNK mix (1 x PNK, 80 U T4 PNK (New England Biolabs), 60 U RNasin, 

40 µCi 32P-g-ATP) for 40 min at 37 °C. After addition of 1.25 µM Li-ATP (Roche), the reaction 

was incubated for further 20 min at 37 °C. The beads were again washed with 400 µl WB1 and 

three times with 400 µl 1 x PNK buffer, centrifuging 500 rcf, 4 °C, 20 sec) in between each 

washing step. For ligation to the 5’ linker, the beads were resuspended in 80 µl of 5’ linker-mix 

(1 x PNK, 1.25 µM CRAC 5’ linker, 1 mM ATP (Roche), 60 U RNasin, 40 U T4 single-strand 

RNA ligase I (New England Biolabs)) and incubated at 16 °C overnight. The CRAC 5’ linker is 

a DNA-RNA hybrid, which contained an inverted ddT at the 5’ end that blocks multimerisation 

of the oligonucleotide, and additionally five nucleotides of randomised sequence that allows 

bioinformatic identification of PCR artefacts after sequencing (see Table 2.10). Following the 

ligation reaction, the beads were washed three times with 400 µl WB2 buffer (50 mM Tris/HCl 

pH 7.8, 50 mM NaCl, 10 mM imidazole pH 8, 0.1 % NP-40, 5 mM ß-mercaptoethanol) before 

200 µl of Elution buffer (50 mM Tris/HCl pH 7.8, 50 mM NaCl, 150 mM imidazole pH 8, 0.1 % 

NP-40, 5 mM ß-mercaptoethanol) were added for 5 min. The eluate was collected by 

centrifugation into a fresh tube and this elution step was repeated once, giving a final elution 

volume of 400 µl. The eluate was supplemented with 2 µg of bovine serum albumin (BSA), 
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20 µg of glycogen and trichloroacetic acid (TCA) was added to a final concentration of 20 %. 

Samples were vortexed and incubated on ice for 30 min before protein-RNA precipitates were 

pelleted by centrifugation (20,000 rcf, 4 °C, 30 min). The pellet was washed with 500 µl of 

100 % acetone (20,000 rcf, 4 °C, 20 min) and air-dried for at least 5 min before resuspension 

in 30 µl of 1 x NuPAGE buffer, containing 50 mM DTT (Invitrogen). 

The resulting protein-RNA-complexes were resolved on a 4 – 12 % Bis-Tris NuPAGE gradient 

gel (Invitrogen) by electrophoresis for 1.5 h at 100 V. Complexes were transferred onto a 

Hybond C nitrocellulose membrane (GE Healthcare) for 2 h at 80 V and 4 °C and subsequently 

visualised by exposure of the membrane to an x-ray Hyperscreen (GE Healthcare) for up to 

16 h at -80 °C. Membrane areas containing radioactive signal, corresponding to the expected 

protein-RNA-complex size, were excised and subjected to proteinase K digestion to elute the 

bound RNA. For this, 400 µl WB2 (containing 1 % SDS, 5 mM EDTA) and 6.5 µl commercial 

proteinase K (Roche) was added and the reaction mix was incubated overnight at 55 °C. For 

RNA precipitation, 50 µl 3 M sodium acetate pH 5.2 and 500 µl PCI were added, the reaction 

tube was inverted and phases separated by centrifugation (20,000 rcf, 4 °C, 5 min). The 

aqueous phase was transferred to a fresh 1.5 ml reaction tube, supplemented with 1 ml of 

100 % ethanol and 20 µg of glycogen, and incubated overnight at -20 °C. 

Table 2.10: Oligonucleotides used during application of the CRAC method. The CRAC 5’ linker contains an 
inverted dideoxythymine at the 5’ end to prevent formation of concatemers, as well as five random nucleotides (N5) 
at the 3’ end, which allows collapsing of PCR amplified cDNAs. The CRAC 3’ linker ends with a dideoxycytosine at 
3’ and is preadenylated at the 5’ end to enable ligation reactions in the absence of ATP. In order to be able to 
multiplex different CRAC samples in a single lane for deep sequencing, four FW CRAC oligonucleotides are listed, 
which differ in six internal alternative sequences (underlined). 

Name Sequence (5' to 3') 
CRAC 5' linker InvddGTTCAGAGTTCTACAGTCCGACGATCNNNNNAGC 
CRAC 3' linker rAppTGGAATTCTCGGGTGCCAAGGddC 
CRAC RT GCCTTGGCACCCGAGAATTCCA 

RPI5 CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCCTTGGCA
CCCGAGAATTCCA 

RPI6 CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCCTTGGCA
CCCGAGAATTCCA 

RPI12 CAAGCAGAAGACGGCATACGAGATTACAAGGTGACTGGAGTTCCTTGGCA
CCCGAGAATTCCA 

RPI19 CAAGCAGAAGACGGCATACGAGATTTTCACGTGACTGGAGTTCCTTGGCAC
CCGAGAATTCCA 

RP1 AATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTCTACAGTCCGA 
 

Precipitated RNA was pelleted by centrifugation (20,000 rcf, 4 °C, 30 min), washed with 500 µl 

70 % ethanol, pelleted again by centrifugation (20,000 rcf, 4 °C, 30 min) and air-dried. The 

RNA pellet was then resuspended in 13 µl of RT-mix, containing 1 µl CRAC RT oligonucleotide 

(sequence is a reverse complement sequence to the 3’ linker sequence; Table 2.10) and 2 µl 

of 5 mM dNTP Mix (Roche). To anneal the primer to the RNA template, the mixture was heated 

at 80 °C for 3 min and subsequently incubated on ice for 5 min. 6 µl of Extension buffer (4 µl 
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5 x first-strand buffer (Invitrogen), 1 µl 100 mM DTT, 1 µl 40 U/µl RNasin) were added and 

incubated at 50 °C for 3 min. 1 µl SuperScript III reverse transcriptase (Invitrogen) was then 

added to initiate the transcription reaction, which was allowed to proceed for 1 h at 50 °C. The 

reaction was terminated by incubating the reaction mix at 65 °C for 15 min and the template 

RNA was digested by the addition of 2 µl of RNase H (New England Biolabs) and incubation 

for another 30 min at 37 °C. 

1 µl of cDNA was subjected to amplification by PCR using 0.2 µM oligonucleotides binding in 

the 5’ and 3’ linker regions (Table 2.10), 1 x LA Taq buffer + MgCl2, 2.5 U LA TakaRa Taq 

polymerase (Takara Bio Inc.) and 125 µM dNTPs. PCR products from three individual 50 µl 

reaction mixes were pooled and supplemented with 30 µl 3 M sodium acetate pH 5.2, followed 

by a PCI treatment as described previously (section 2.9.) and precipitation overnight in 3 Vol 

100 % ethanol at -20 °C. 

Precipitated DNA was pelleted by centrifugation (20,000 rcf, 4 °C, 30 min), washed with 500 µl 

70 % ethanol and after another round of centrifugation (20,000 rcf, 4 °C, 20 min), the DNA was 

air-dried and resuspended in 20 µl Gel pilot Loading Dye (Qiagen). Products were separated 

on a 3 % Metaphore agarose gel (Lonza) in 1 x TBE and fragments with lengths between 150 

and 400 bps were excised and eluted from the gel using the Qiagen MINIelute kit. The DNA 

concentration of the eluates was estimated using the Qubit quantification system (Invitrogen) 

and cDNA libraries were sent for single-end deep sequencing (Illumina). 

2.14 Bioinformatic analysis of sequencing data 

A sequence read obtained by Illumina deep sequencing of a CRAC sample consists of 50 

nucleotides, including a random barcode at the 5’ end to identify reads amplified from the same 

template RNAs, followed by AGC, then the sequence of the purified RNA and, potentially, 

nucleotides of the 3’ linker. For data analysis, software packages from the pyCRAC software 

suite (Webb et al., 2014) and self-written python 2.7 scripts available in the Bohnsack group 

or developed in the context of this work were used. In a first step, the barcode sequences were 

identified by pyBarcodeFilter and sequences containing identical barcode sequences were 

regarded as PCR artefacts and collapsed to a single read by pyDuplicateRemover. Remaining 

reads were quality checked using the quality score assigned to each individual nucleotide 

during the sequencing reaction. Using Flexbar 2.7, reads were trimmed such that the overall 

read reaches a certain quality threshold. This software also removed remaining 3’ linker 

nucleotides and all reads that were subsequently shorter than 18 nucleotides were discarded 

from further analysis. 

After fulfilling the above-mentioned criteria, the sequence reads were mapped onto the yeast 

genome (Saccharomyces_cerevisiae.EF2.59.1.0). During the PAR-CRAC protocol, specific T 
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to C mutations are introduced at sites of protein-RNA crosslinking. Therefore, the Bowtie 1.1.2 

software was used for alignment of sequence reads with the genome as this allows single 

mismatches to be selected for and a self-written python 2.7 script was used to extract reads 

containing T to C mutations. For in culturo UV-CRAC, the Bowtie 2.2.6 aligner was used to 

align sequence reads with zero, one or more mismatches to the genome, allowing for deletions 

and substitutions in the sequence reads. Further scripts from the pyCRAC package 

(pyReadCounters, pyPileup, pyReadAligner) and self-written python 2.7 scripts created “hit 

tables” showing read distributions between different RNAs or overviews reflecting the quality 

of the sequencing data.  

In order to visualise the read distribution of RNA helicase CRAC data on ribosomal RNA, using 

python 2.7 scripts, the data was plotted over the primary sequence of RDN37, the gene locus 

of ribosomal RNA. Furthermore, the data was also mapped onto the secondary structures of 

the ribosomal RNAs (Petrov et al., 2014a; 

http://apollo.chemistry.gatech.edu/RibosomeGallery) as well as onto available 3D structure of 

yeast pre-60S particles (Wu et al., 2016; PDB entry: 3JCT) or mature yeast ribosomal subunits 

(Ben-Shem et al., 2011; PDB entry: 4V88). 

Identification of chimeric reads consisting of two distinct RNA sequences bound to the protein 

of interest was done using the Hyb-pipeline (Travis et al., 2014). This analysis is analogous to 

the CLASH analysis (Crosslinking, ligation and sequencing of hybrids) developed in the Kudla 

lab. In brief, the CRAC data was first filtered using parameters like barcode and adapter 

removal, quality control and short read length as described above, before the remaining reads 

were mapped onto the yeast genome and reads containing two different RNA sequences, 

which are separated by more than four nucleotides, were selected. The pipeline also included 

a clustering of resulting hybrids, which allowed mapping of frequently occurring snoRNA-rRNA 

hybrids on the rRNA secondary structure.  

2.15 Purification of pre-ribosomal complexes 

To purify pre-LSU particles, yeast strains genomically expressing C-terminally TAP- or HTP-

tagged trans-acting ribosome biogenesis factors were used. These factors served as bait 

proteins for affinity chromatography under native conditions using IgG-sepharose. 500 ml of 

mid-log phase yeast cells were harvested (6,000 rcf, 4 °C, 10 min), washed with 20 ml 1 x PBS 

(2,000 rcf, 4 °C, 5 min) and resuspended in 1 Vol TMN150+PI buffer. Cells were disrupted by 

grinding in liquid nitrogen and, after samples were thawed on ice, the lysate was cleared by 

centrifugation (20,000 rcf, 4 °C, 30 min). 400 µl of IgG-sepharose slurry were equilibrated in 

TMN150 buffer (100 rcf, 4 °C, 20 sec), the cleared lysate was added and incubated with the 

beads for 3 h at 4 °C with gentle agitation. Four washes with 2 ml TMN150 buffer (100 rcf, 

4 °C, 20 sec) were performed to provide specificity to the immunoprecipitation. RNA that co-



Materials and Methods 

	 38	

purified with the bait proteins was eluted from beads using the RNA extraction protocol (section 

2.9) and was analysed by northern blotting (section 2.10). To verify the presence of particular 

proteins in the pre-ribosomal complexes, the IgG-beads were resuspended in 600 µl TMN150 

buffer and 5 µl of GST-TEV protease was added for incubation overnight at 4 °C while rotating. 

The reaction mix was then transferred to a Mobicol spin column (BioRad, 35 nm pore size), 

and the supernatant was retrieved from the beads. The supernatant was transferred to 100 µl 

glutathione sepharose slurry (GE Healthcare), which has been pre-equilibrated in TMN150 

buffer, and incubated at 4 °C for 1 h with gentle agitation. Once more, the Mobicol spin columns 

were used to separate the supernatant from GST beads. Proteins in the supernatant were 

subjected to TCA precipitation as previously described (section 2.15) and were separated by 

SDS-PAGE followed by western blotting using epitope- or protein-specific antibodies. 

2.16 DMS structure probing 

The method of structure probing using the chemical dimethyl sulfate (DMS) was adapted from 

Swiatkowska et al. (2012). In general, it is a used to identify structural alterations of RNAs in 

the absence or presence of as associated protein or its catalytically inactive mutant. In each 

case, 500 ml of yeast culture was grown under permissive or non-permissive conditions to 

reach an OD600 of approx. 0.8 in the determined depletion time. In addition to the genomically 

integrated repressible promoter in front of the RNA helicases (Has1, Spb4 and Mak5), the 

yeast strains used in this experiment expressed a C-terminal HTP-tagged version of Nop2 

from its genomic locus. Nop2 is a trans-acting ribosome biogenesis factor that acts at a similar 

stage of pre-60S maturation as the investigated RNA helicases and allows purification of pre-

ribosomal complexes containing these helicases. In order to purify pre-ribosomes, cell lysates 

were subjected to pull-downs using IgG-sepharose like previously described (section 2.15), 

but with the difference that instead of elution, beads carrying immobilized pre-ribosomal 

complexes were subjected to three washes with 2 ml of TMN150 buffer (100 rcf, 4 °C, 20 sec). 

The last washing step was used to split the beads in half and into fresh 15 ml falcon tubes. 

Both sets of beads were resuspended in 1 ml of TMN150 before 0.5 % DMS (final 

concentration) was added to one sample for 2 min at RT while shaking. The methylation 

reaction was quenched by the addition of 1 ml quenching solution containing 0.5 M ß-

mercaptoethanol and 1.5 M sodium acetate pH 5.2. After centrifugation (100 rcf, 4 °C, 1 min), 

the supernatant was removed and co-precipitated RNA was extracted by the previously 

described RNA extraction protocol (section 2.9). 

Primer extension was used to detected methylated nucleotides and this for, DNA 

oligonucleotides (Table 2.11) were radiolabelled with 32P-g-ATP by incubation of 2 µl 10 mM 

oligonucleotide, 2 µl 32P-g-ATP (Perkin-Elmer), 2 µl T4 PNK buffer A and 1 µl T4 PNK (both 

Fermentas) in a 20 µl reaction at 37 °C for 45 min. After the phosphorylation reaction, 80 µl 
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MQ-H2O were added to dilute the labelled primer. Annealing was achieved by mixing 1 µl 

radiolabelled oligonucleotide with 500 ng of co-purified RNA (for sequencing ladder 2 µg of 

total RNA) in a total volume of 8 µl. Reactions were incubated at 85 °C for 3 min and then 

cooled down slowly to 50 °C in the thermoblock. Extension was carried out by addition of 4.5 µl 

Extension buffer (2.5 µl 5 x first-strand buffer, 0.4 µl 0.1 M DTT (Invitrogen), 0.3 µl RiboLock 

(ThermoFisher Scientific), 0.3 µl SuperScript III reverse transcriptase, 0.5 mM dNTPs, 0.5 µl 

MQ-H2O) and incubation at 50 °C for 50 min. In order to create a sequencing ladder, four 

primer extension reactions were set up and supplemented with 1 µl 2 mM ddCTP, ddATP, 

ddTTP or ddGTP respectively. An incubation step at 85 °C for 5 min inactivated the polymerase 

and stopped the extension reaction. After cooling the samples on ice, the cDNA was 

precipitated overnight by adding H2O to a final volume of 50 µl as well as 2.5 µl 3 M sodium 

acetate, 1 µl glycogen and 150 µl 100 % ethanol. Samples were the incubated at -20 °C 

overnight. 

Table 2.11: Oligonucleotides used for structure probing experiments. 

Name Sequence (5' to 3') Application 
25S_1171 GAGCGTGTATTCCGGCACC Structure probing - Mak5 
25S_1979 GCAGTCCACAAGCACGCCCGC Structure probing - Spb4 
25S_3377 CAAATCAGACAACAAAGGC Structure probing - Spb4 

 

Centrifugation (20,000 rcf, 4 °C, 30 min) pelleted the precipitated nucleic acids, and the pellet 

was washed with 200 µl 70 % ethanol, followed by another centrifugation (20,000 rcf, 4 °C, 

20 min). Following the removal of the supernatant, the pellet was air-dried carefully and 

resuspended in 10 µl formamide loading dye at 50 °C shaking at 750 rpm in an Eppendorf 

thermoblock. Prior to loading onto a denaturing (7 M urea), 10 % polyacrylamide sequencing 

gel in 1 x TBE, samples were heated at 95 °C for 5 min. Products were separated for 2 h at 

60 W, then the gel was dried on a gel-drier for 3 h and exposed to an phosphorimager screen. 

Radioactive signals were then detected using the Typhoon FLA 9500 phosphorimager. 

2.17 Sucrose density gradients 

To separate (pre-)ribosomal complexes according to their sedimentation coefficient, yeast cell 

lysate was subjected to sucrose density gradient centrifugation. 100 ml of mid-log phase yeast 

cells were pelleted (2,000 rcf, RT, 10 min) and resuspended in 1.5 Vol Extract buffer (50 mM 

Tris/HCl pH 7.4, 100 mM NaCl, 5 mM MgCl2, 1 mM DTT). Cells were disrupted in liquid nitrogen 

using a pestle and mortar. After the powder was thawed on ice, the sample was transferred to 

a 1.5 ml reaction tube, which centrifuged (20,000 rcf, 4 °C, 30 min) to clear the lysate. The 

cleared lysate was transferred into a fresh reaction tube and stored on ice until loading onto 

gradients. 
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6 ml of Extract buffer containing 45 % sucrose was layered below 6 ml of Extract buffer with 

10 % sucrose in a 12 ml Sw40Ti gradient tube. To generate a 10 – 45 % sucrose gradient the 

GradientMaster system (Biocomp) and the “short sucrose 10 – 45 %” setting (rotation time: 

1 min 25 sec, angle: 82.0 °, speed: 19) programme was used. The gradient was incubated at 

4 °C for 1 h before 300 µl from the top of the gradient were removed and the same volume of 

cleared lysate was carefully loaded onto the top of the gradient. A 10 % (= 30 µl) sample of 

cleared lysate were retained to serve as an input control. 

Centrifugation of the gradient was carried out for 16 h at 23,500 rpm and 4 °C (Beckman L7-

80 centrifuge) using a Sw40Ti rotor. After centrifugation, 23 fractions of approx. 530 µl volume 

each were taken using a fraction collector (BioRad). The fraction collector measures the RNA 

concentration at 254 nm, enabling a profile of the collected fractions to be generated. 

2.18 Quantitative PCR for analysing snoRNA levels on pre-ribosomes 

To monitor snoRNA levels of pre-ribosomal complexes upon depletion of a particular helicase, 

a method combining sucrose density centrifugation and quantitative PCR (qPCR) was used 

(see Fig. 2.2). This method was performed as described in Bohnsack et al., 2008, with the help 

of Roman Martin. Depletion of the RNA helicases Has1, Spb4 or Mak5 was achieved using 

yeast strains in which they were expressed under the control of a tetracycline repressible 

promoter and as a control, a yeast strain was used, which harbors only the tetracycline 

repressor gene. Cells were grown to mid-log phase in the estimated depletion time, harvested 

by centrifugation (6,000 rcf, 4 °C, 10 min) and resuspended in 1 Vol of Lysis buffer (50 mM 

Tris/HCl pH 7.5, 100 mM NaCl, 5 mM MgCl2, 1 mM DTT, 5 mM vanadyl ribonucleoside 

complexes (VRC; New England Biolabs), 1 tablet cOmplete Mini protease inhibitor mix (Roche) 

per 10 ml buffer). Disruption of cells was accomplished by grinding in liquid nitrogen. After the 

sample was thawed on ice, the lysate was cleared by centrifugation (20,000 rcf, 4 °C, 12 min) 

and the supernatant was loaded on a 10 – 45 % sucrose gradient as previously described in 

section 2.17. 

After RNA extraction from all collected gradient fractions (section 2.9), fractions which 

contained free (low sedimentation coefficient) or pre-ribosome bound (high sedimentation 

coefficient) snoRNAs were pooled. For polyadenylation, 5 – 10 µg total RNA were incubated 

with 8 U poly(A) polymerase (Life Technologies), 2.5 mM MnCl2 and 5 mM (free snoRNAs) or 

2.5 mM (pre-ribosome bound snoRNAs) ATP (Roche) for 2 h at 37 °C. Using the MirVana 

miRNA isolation kit (Life Technologies) polyadenylated RNAs were purified and eluted in a 

volume of 40 µl of H2O. Subsequently, reverse transcription was initiated by annealing 12.5 µg 

(free snoRNAs) or 7.5 µg (pre-ribosome bound snoRNAs) of poly-dT oligonucleotide to the 

eluted RNA samples by heating at 65 °C for 10 min and then incubating for 5 min on ice). 
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Extension Mix (2.5 µl RNasin, 1,000 U Superscript III reverse transcriptase, 1 x first-strand 

buffer, 1 mM dNTPs, 5 mM DTT) was added in a total volume of 100 µl, and samples were 

incubated at 50 °C for 1 h. The extension reaction was stopped by heat inactivation at 70 °C 

for 15 min. The template RNA was afterwards degraded by incubation with 25 U RNase H and 

10 U RNase A (New England Biolabs) for 2 h at 37 °C. 20 min at 65 °C denatured the degrading 

enzymes and the resulting cDNA was purified using the QIAquick PCR purification kit (Qiagen). 

 

Figure 2.2: Schematic representation of the qPCR approach to quantify snoRNA levels. SnoRNAs that are 
either pre-ribosome bound or in the free pool of snoRNAs are first separated by sucrose density centrifugation. 
After isolation of RNAs from corresponding gradient fractions, they are polyadenylated in order to allow adapter 
ligation and subsequent reverse transcription from an oligo-d(T) primer. Template RNA is digested and the 
remaining cDNA provides template material for quantitative PCR using a snoRNA-specific forward and a general 
reverse oligonucleotide. Modified from Bohnsack et al., 2008. 

 

A common reverse, and a snoRNA-specific forward, oligonucleotide (see Bohnsack et al., 

2008) allowed determination of the relative level of 75 known yeast snoRNAs in parallel using 

qPCR, which was performed in a Mx3000P qPCR machine (Agilent Technologies). Data 

analysis was performed according to Bohnsack et al., 2008, following the ddCt-method using 

self-written python 2.7 scripts. Individual cycle threshold (Ct) values for each snoRNA were 

normalized to the median of all 75 Ct values of surveyed snoRNAs and to the Ct value of the 

control sample. This enable the ratio of pre-ribosome bound:free snoRNA to be calculated.



Results 

	 42	

3 Results 

3.1 Depletion of Has1, Spb4 or Mak5 leads to pre-rRNA processing 
defects 

In yeast, there are 21 RNA helicases proposed so far to be involved in ribosome biogenesis. 

Ten of them act in the maturation of the large ribosomal subunit, eight in small subunit 

biogenesis and three are involved in the maturation of both subunits. Along the pathway of 

ribosome biogenesis, trans-acting factors, such as RNA helicases, are proposed to accomplish 

irreversible steps promoting directionality of this process and preventing kinetic trapping of pre-

mature particles. Has1, Mak5 and Spb4 are three RNA helicases that are suggested to function 

at relatively late nuclear steps in the maturation of large ribosomal subunits. Has1 was reported 

to be localised in the nucleolus, where the DEAD-box protein carries out essential functions in 

both SSU and LSU biogenesis, concomitant with delayed pre-rRNA processing detected by 

pulse-chase experiments and sedimentation of Has1 with high-molecular-weight complexes in 

sucrose gradients (Emery et al., 2004). The DEAD-box protein Spb4 was shown to be essential 

for cell viability (Sachs and Davis, 1990) and was initially identified as a suppressor of the 

thermosensitive phenotype of a polyA-binding protein mutant (suppressor of polyA-binding 

protein; Sachs and Davis, 1989). Cold-sensitive mutations in SPB4 revealed decreased levels 

of LSU and reduced synthesis of 25S rRNA, which indicated an involvement of the protein in 

LSU biogenesis (Sachs and Davis, 1989, 1990). The MAK5 gene was identified as one of thirty 

MAK genes (maintenance of killer) that were reported to be required for propagation of the 

dsRNA virus M1 (Ohtake and Wickner, 1995). However, the Mak5 protein, containing the 

classical DEAD-box helicase motifs as well, was shown to be an essential nucleolar protein. 

Depletion of Mak5 caused reduction of LSUs, half-mer polysome formation and a delay in 25S 

as well as 5.8S rRNA production, indicating its role in LSU biogenesis (Zagulski et al., 2003). 

Deletion/depletion experiments are a method that can be used to investigate the requirement 

of proteins for particular cellular processes, such as the maturation of ribosomal subunits. 

Analysis of pre-rRNA processing by northern blotting allows the accumulation or reduction of 

pre-rRNA intermediates to be detected, which can be used to monitor defects in subunit 

assembly. Because these three RNA helicases, which all belong to the family of DEAD-box 

proteins, are essential proteins, the generation of deletion strains was not possible. In order to 

analyse defects in ribosome biogenesis caused by the lack of any of these proteins, depletion 

cassettes were genomically integrated upstream the desired open reading frames. Besides 

the selection marker, this cassette contained a repressible promoter. HAS1 and MAK5 were 

placed under a tetracycline-repressible promoter (pTetO7), which necessitated the presence 

of a plasmid-encoded repressor (TetR). In contrast, SPB4 was placed under the control of a 
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pGal1 promoter, which could be repressed by the exchange of carbon source from galactose 

to glucose. Additionally, the cassette encoded a 3xHA-tag expressed at the amino-terminal 

end of the protein, making it possible to detect the helicase by western blotting. 

The optimum time that yeast strains should be grown under restrictive conditions needed to 

be determined for each protein as the stability of mRNAs varies, as does the half-life of different 

proteins. Furthermore, if cells are grown too long in the absence of essential proteins, 

secondary effects can be observed. The time taken for Has1, Mak5 and Spb4 to become 

limiting was first determined by investigating growth; upon repression, the decreased protein 

levels over time lead to cell death and growth retardation, which can be monitored by 

measuring the optical density of yeast cultures at 600 nm (OD600). The OD600 of exponential 

phase cultures was measured before initiation of repression and then over a time-course, 

where the obtained values were compared to untreated control samples. The time point at 

which the growth rates of depletion and control cultures diverged, was estimated as the 

depletion time. For Has1, the depletion time was 7 h, whereas Mak5 and Spb4 showed longer 

depletion times with 10 h and 12 h respectively. To demonstrate the specific reduction of the 

desired protein(s) at this time, cells were harvested and extracted proteins were subjected to 

a western blot using antibodies against the HA-tag and the cytoplasmic protein Pgk1, as a 

loading control. This showed that the levels of each of the RNA helicases was specifically 

reduced in the non-permissive medium at the estimated depletion time, demonstrating the loss 

of each of these proteins in cultures under repressive conditions (Fig. 3.1). 

Figure 3.1: Establishment of depletion conditions for Mak5, 
Has1 and Spb4. Yeast strains were generated in which the genes 
coding for the RNA helicases Has1, Mak5 or Spb4 were under the 
control of a repressible promoter, which additionally introduced a 
3xHA-epitope at the N-terminus of each protein. (A) Transcription 
of MAK5 (pTetO7-MAK5) and HAS1 (pTetO7-HAS1) was 
repressed by the addition of 10 µg/ml doxycycline (Dox) for 10 and 
7 h respectively. After reaching the depletion time, proteins were 
extracted from normalised amounts of cells. Extracted proteins 
were subjected to western blotting using antibodies against the 
HA-epitopes or endogenous Pgk1. (B) Yeast cultures expressing 
Spb4 from a pGal1-promoter (pGal1-SPB4) were grown for 12 h in 
galactose (Gal) or glucose (Glu) containing medium for checking 
protein depletion and protein samples were analysed by western 
blotting as in (A). 

 

Having established an appropriate depletion time for Has1, Spb4 and Mak5, defects in 

ribosome biogenesis could be visualised by the detection of mature rRNA and pre-rRNA 

processing intermediates within yeast cultures, when the protein of interest was limiting. To 

achieve this, exponentially growing cells of each of the yeast strains were grown in permissive 

and non-permissive conditions and total RNA was extracted after the culture had reached its 

depletion time. These RNAs were subjected to denaturing agarose gel electrophoresis in order 

to separate RNA according to its length, and this was followed by northern blotting. Mature 
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rRNAs were visualised by methylene blue staining, whereas radioactively labelled probes 

hybridising to the ITS1 or ITS2 regions of the pre-rRNAs (Fig. 3.2A) enabled changes in the 

levels of pre-rRNA intermediates between depletion and control samples to be detected. 

 

Figure 3.2: Depletion of Has1, Spb4 or Mak5 causes defects in pre-rRNA processing. (A) Simplified pre-rRNA 
processing scheme with generally occurring processing intermediates, including spacer regions (blue) and mature 
rRNAs (black). Binding sites of radioactively labelled probes are shown in green. Sites of relevant endonucleolytic 
cleavage events are shown in red. (B-D) The pTetO7-Has1 (B) and pTetO7-Mak5 (C) and pGal1-Spb4 (D) yeast 
strains were grown in exponential phase under permissive (-Dox or Gal) and restrictive (+ Dox or Glu) conditions 
for the appropriate depletion time for each protein. Total RNA was extracted and subjected to denaturing agarose 
gel electrophoresis for subsequent northern blotting. After transfer of RNAs to a nylon membrane, mature rRNAs 
were visualised by methylene blue staining. Pre-rRNA processing intermediates were detected using radioactively 
labelled probes against sequences in ITS1 (004) and ITS2 (020). Asterisks mark an aberrant 23S pre-rRNA species. 

 

Upon depletion of any of the three RNA helicases, the mature 25S rRNA levels decreased, but 

to variable extents depending on which of the three investigated proteins was lacking (Fig. 

3.2B-D). The strongest effect was observed for Has1, where depletion of the protein caused a 

strong reduction of both the 25S and 18S rRNAs as well as concomitant accumulation of the 

initial 35S pre-rRNA and decreases in the levels of the 27S-A and 20S pre-rRNAs (Fig. 3.2B). 

These observations are in line with the requirement of Has1 for the maturation pathways of 



Results 

	 45	

both ribosomal subunits and suggests that Has1 is required for the processing of the 35S pre-

rRNA to early downstream intermediates for both the SSU and LSU. Depletion of Spb4 

resulted in a decrease of 25S, but not 18S rRNA, consistent with a role in LSU biogenesis. 

Furthermore, accumulation of 27S rRNA precursors, especially 27S-B, was observed as well 

as a visible increase of the 35S pre-rRNA levels (Fig. 3.2C). This suggests that Spb4 acts in 

the later stages of LSU assembly when the 27S pre-rRNAs are processed, with the 

accumulation of the 35S pre-rRNA likely caused by a feedback mechanism. This result is in 

line with previous pulse-chase labelling experiments (de la Cruz et al., 1998) and pull-down 

analyses, which suggested that although Spb4 may bind to early 90S pre-ribosomal particles, 

it dissociates late from pre-60S complexes after processing of 27S-B pre-rRNA (Garcia-Gomez 

et al., 2011). Similarly, the depletion of Mak5 caused a reduction in the level of the mature 25S 

rRNA, accumulation of the 35S pre-rRNA and a decrease in the level of the 27S-B intermediate 

(Fig. 3.2D). In summary, for all three investigated RNA helicases their requirement for 

biogenesis of the large ribosomal subunit could be confirmed by the observation of pre-rRNA 

processing defects in the absence of each of the proteins. However, the changes in the levels 

of pre-rRNA observed upon depletion of each of the helicases, suggests that they are required 

at slightly different stages of LSU biogenesis, with Has1 likely acting earliest and Spb4 latest. 

3.2 The RNA helicases Has1, Spb4 and Mak5 crosslink at distinct sites 
in the rRNA sequences 

Functional characterisation of ribosome biogenesis factors like RNA helicases is often 

impeded by a lack of information about their binding sites on pre-ribosomal complexes, as this 

provides evidence on the targets of their remodelling activity. For this reason, after 

demonstrating the requirement of Has1, Mak5 and Spb4 for the biogenesis of ribosomal 

subunits, these proteins were subjected to crosslinking and analysis of cDNA (CRAC) in order 

to identify their RNA binding sites (see Bohnsack et al., 2012). This approach is based on the 

introduction of covalent bonds between the protein of interest and its associated RNAs by 

applying high-energy light. For this, yeast strains were generated expressing either Has1, 

Mak5 or Spb4 with a tri-partite tag (His6-TEV protease cleavage site-Protein A; HTP), fused to 

the carboxyl-terminal end of each RNA helicases so that the proteins could be purified with 

their bound RNAs stepwise under native and denaturing conditions. Two alternative variants 

of the CRAC methodology were applied (UV-CRAC and PAR-CRAC), which mainly differ in 

the crosslinking approach used. For UV-CRAC, in culturo crosslinking using UV radiation at 

254 nm was applied to actively growing yeast cells. In order to perform PAR-CRAC, yeast cells 

were grown for several hours in the presence of 4-thiouracil, which is converted to the 

nucleoside analogue 4-thiouridine (4SU) so that this could be incorporated into nascent RNA 

transcripts before harvesting the cells. Resuspended cells were subsequently spread onto a 
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petri dish and in vivo irradiated on ice using light at 365 nm. Afterwards, samples from both 

methods were handled in the same way, starting with a native purification of helicase-RNA 

complexes via the ProteinA-tag using IgG-sepharose. Following specific proteolytic TEV 

cleavage of protein-RNA complexes, RNA not directly bound by the helicase was trimmed by 

mild RNase treatment, resulting in a protein footprint on the RNA. Denaturing purification of 

complexes by Ni-NTA chromatography then ensured that only covalently bound RNAs were 

subjected to subsequent adapter ligation and cDNA library preparation. After 3’ linker ligation, 

co-purified RNAs were 5’ end labelled using 32P, a 5' linker was ligated and protein-RNA 

complexes were separated by polyacrylamide gel electrophoresis and transferred to a 

nitrocellulose membrane. 

Autoradiography revealed RNAs specifically crosslinked to all three RNA helicases in the PAR-

CRAC approach, whereas RNAs were only detected as bound to Spb4 in the UV-CRAC 

samples. The areas of the membrane containing specific signals, and the corresponding 

regions from the lane containing the WT samples, were excised. Following protein digestion 

and RNA isolation, the adapters were used for reverse transcription and PCR to generate a 

cDNA library, which was subjected to Illumina deep sequencing. 

The obtained sequence reads, which correspond to RNA molecules co-purified with the RNA 

helicase, were checked bioinformatically according to several parameters, such as read quality 

and read length after adapter removal. Afterwards, the remaining reads were aligned to the 

yeast genome. For UV-CRAC experiments, none or only a single mismatch (deletion or 

substitution) was allowed during the mapping. Such mutations often arise from errors during 

elongation of the polymerase at crosslinking sites. At these sites, residual amino acids were 

still attached to the RNA after protein digestion and caused polymerase skipping or 

misincorporation of nucleotides. In contrast, reads of PAR-CRAC were obliged to contain a 

specific thymine to cytosine conversion, because, due to the increased hydrogen-bonding 

capacity of 4SU compared to uracil, this is complemented by guanine instead of an adenine 

during reverse transcription. Alignment of reads to annotated yeast genomic features allowed 

identification of the transcripts classes bound by each of the proteins (Fig. 3.3). 

In comparison to control samples, which were WT yeast cells that were devoid of an HTP-tag, 

all investigated RNA helicases showed an enrichment of sequences that map to rRNA, which 

is in line with their role in ribosome biogenesis (Fig. 3.3). To determine where these proteins 

crosslinked within the rRNA sequences, we focused on the sequence reads that were mapped 

onto RDN37, the gene locus of a single rDNA repeat. In order to directly compare the different 

CRAC experiments, the determined number of reads at each nucleotide was normalised to the 

total number of mapped reads per million. For visualisation, the resulting values were plotted 

on the primary sequence of RDN37 corresponding to the 35S primary transcript containing the 

mature 18S, 5.8S and 25S rRNAs (Fig. 3.4). 
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Figure 3.3: Crosslinking and analysis of cDNA (CRAC) revealed crosslinking of Has1, Spb4 and Mak5 to 
rRNAs. (A-F) Wild-type (WT) yeast cells or cells expressing HTP-tagged RNA helicases Has1, Spb4 or Mak5 were 
crosslinked in culturo (A, B) or by the PAR-CRAC approach (C-F). After purification of protein-RNA complexes and 
trimming of protruding RNA sequences, adapters were ligated, which were used for generating a cDNA library for 
Illumina deep sequencing. Obtained sequence reads were analysed bioinformatically, including quality control of 
the sequencing reaction, adapter removal and disregarding short reads. Remaining sequences were aligned to the 
annotated yeast genome and the distribution of reads corresponding to different classes of RNAs are shown. The 
category “Others” includes small nuclear RNAs, pseudogenes, mitochondrial-encoded RNAs and long non-coding 
RNAs. (A) WT control in culturo CRAC (UV). (B) Spb4 in culturo CRAC. (C) WT PAR-CRAC. (D) Has1 PAR-CRAC. 
(E) Mak5 PAR-CRAC. (F) Spb4 PAR-CRAC. Crosslinking experiments were performed with Maike Ruprecht and 
Philipp Hackert. 
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Figure 3.4: RNA helicases crosslink at distinct sites within ribosomal RNA. Within the gene locus of RDN37, 
representing rRNA on genomic level, the number of hits was determined according to the total number of sequences 
that overlap with each nucleotide. In order to compare different experiments, this number was normalised to the 
total number of mapped reads per million. Peaks represent a high number of reads corresponding to those 
nucleotides and resemble crosslinking sites. The relative position of mature rRNAs within RDN37 are indicated. (A) 
Read distribution of WT control (grey) and Spb4 (green) in culturo CRAC (UV) within RDN37. (B) Deletions or 
substitutions within mapped reads of WT in culturo CRAC. (C) Deletions or substitutions within mapped reads of 
Spb4 in culturo CRAC. (D) Read distribution of WT control (grey), Has1 (red), Mak5 (blue) and Spb4 (green) PAR-
CRAC within RDN37. (E) T to C substitutions within mapped reads of WT PAR-CRAC. (F) T to C substitutions 
within mapped reads of Has1 PAR-CRAC. (G) T to C substitutions within mapped reads of Mak5 PAR-CRAC. (H) 
T to C substitutions within mapped reads of Spb4 PAR-CRAC. 
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For the UV-CRAC (in culturo), in comparison to the WT control, the Spb4 sample revealed 

large numbers of reads mapping to two specific regions within 25S rRNA (peaks) suggesting 

that these sequences are bound by Spb4 in vivo (Fig. 3.4A). The high rate of mutations within 

the observed peaks strongly suggested that these are real protein binding sites, because they 

indicate direct contacts between protein and RNA (Fig. 3.4B/C). The PAR-CRAC data revealed 

peaks corresponding to crosslinking sites for all three RNA helicases, which were distinct from 

each other and, most importantly, distinct from the WT control (Fig. 3.4D-H). 

Interestingly, the peak distribution between SSU und LSU RNAs was in line with the observed 

pre-rRNA processing defects and the proposed requirement of each of these proteins for LSU 

and/or SSU biogenesis. Therefore, Has1 crosslinked within both the 18S and 25S rRNA 

sequences, whereas Mak5 and Spb4 crosslinked only to 25S rRNA sequences (Fig. 3.4A/D). 

In the case of Spb4, the crosslinking pattern observed in the PAR-CRAC experiment 

resembled the peaks detected using in culturo UV crosslinking, further supporting these as 

genuine protein binding sites. For consistency, only the further analysis of the PAR-CRAC data 

of the three RNA helicases will be presented in the following sections. 

3.3 Has1 has multiple functions in ribosome biogenesis 

Amongst the three investigated RNA helicases, Has1 is the best characterised protein and it 

was shown already to be an RNA-dependent ATPase in vitro and to unwind DNA as well as 

RNA duplexes in an ATP-dependent manner (Rocak et al., 2005). Depletion of Has1 causes 

reduced dissociation of snoRNPs from pre-ribosomes, which was most prominent for the U14 

snoRNP, and a role for Has1 in U14 release was further emphasised by mutational analyses 

showing accumulation of U14 on pre-rRNA in ATP deficient mutants of Has1 (Liang and 

Fournier, 2006). The U14 snoRNA is known to have dual functions in small subunit biogenesis, 

being required for pre-rRNA processing and also for a 2’-O-methylation reaction in 18S rRNA 

(Liang and Fournier, 1995; Dunbar and Baserga, 1998). In line with this, U14 has two known 

basepairing sites in the 18S rRNA: one at its modification site (18S-Cm414) and the other on 

the opposite strand of helices 5 and 6, where it is involved in forming long-range interactions. 

However, whether Has1 has a direct role in release of U14 has remained elusive, because of 

the lacking information about the binding sites of the helicase on the pre-rRNA. 

Mapping of Has1 PAR-CRAC data onto the primary sequence of 35S pre-rRNA already 

revealed putative binding sites on both ribosomal subunits. In order to get insight into the 

functional relevance of these sites, we first focused on the SSU and the number of normalised 

hits were mapped onto the available secondary structure (2D) of 18S rRNA following a colour 

gradient representing the peak height of the mapping on the primary sequence. SSU 2D 

mapping highlighted two Has1 crosslinking sites in the 18S rRNA within helices 30 - 35 of the 

3’ major domain and in helices 6 and 6a of the 5’ domain (Fig. 3.5). Notably, the Has1 
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crosslinking site in the 5’ domain of 18S rRNA overlapped with one of the known basepairing 

sites of the C/D box snoRNA U14. 

 

Figure 3.5: Has1 crosslinks at two sites within 18S rRNA. Has1 PAR-CRAC data depicted as colour-coded hit 
representation above a 10 % threshold from yellow (low value) to red (highest value) in correlation to all hits across 
RDN37. Mapping onto the secondary structure of mature SSU is shown (Petrov et al., 2014a). Secondary structure 
elements of 18S rRNA are indicated in green. Boxed M or Y represent 2’-O-methylations or pseudouridylations 
respectively, and the corresponding snoRNAs are given below. 

 

Interestingly, CRAC analysis enables the transcriptome-wide detection of RNA interactions 

and closer inspection of the hit distribution between individual snoRNAs indicated a significant 

enrichment of sequences mapping to the U14 snoRNA in the Has1 dataset compared to the 

WT control (Fig. 3.6A). This demonstrates that Has1 also directly associates with the U14 

snoRNA. Furthermore, mapping of the crosslinking sites of Has1 on the U14 sequence 

revealed that Has1 binds to the B domain of U14 (Fig. 3.6B), which is responsible for forming 

basepairing interactions with the 18S rRNA (Fig. 3.6C).  

During the ligation reactions of the CRAC procedure, chimeric reads consisting of two non-

consecutive sequences can be produced. After RNase treatment, free 5’ and 3’ ends of 

individual RNA strands crosslinked to the helicase can be in close proximity and are therefore 

ligated. Alternatively, template switching of the reverse transcriptase during final cDNA 

synthesis can be another source of producing chimeric reads (Houseley and Tollervey, 2010). 

In order to detect these hybrids, sequence reads obtained from the Has1 PAR-CRAC 

experiment were subjected to bioinformatics CLASH (crosslinking, ligation and analysis of 

sequence hybrids) analysis (Kudla et al., 2011). 
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Interestingly, a significant number of sequence hybrids detected within the Has1 PAR-CRAC 

data, were chimeric reads of U14 and 18S rRNA sequences, indicating simultaneous binding 

of Has1 to U14 and 18S rRNA, likely while they are basepaired. Mapping the 18S rRNA fraction 

of identified chimeric reads onto the secondary structure of 18S rRNA (Fig. 3.6D) showed that 

CLASH hybrids detected corresponded to the crosslinking site observed for Has1 (Fig. 3.5) 

and the known binding sites of U14 (Fig. 3.6C). Taken together, these findings strongly support 

the model that Has1 is directly involved in the release of U14 from pre-40S particles. 

 

Figure 3.6: Has1 crosslinks to U14 sequences involved in basepairing with the 18S rRNA. (A) Relative 
distribution of obtained Has1 PAR-CRAC (Has1) sequence reads that map to snoRNAs reads in comparison to the 
WT PAR-CRAC control (WT). (B) Read distribution of WT control (grey) and Has1 (red) PAR-CRAC within U14. 
(C) Basepairing interactions between the U14 snoRNA (black) and the 18S rRNA (green and red). (D) CLASH 
hybrids identified within PAR-CRAC sequence reads. Indicated by coloured nucleotides are 18S rRNA sequences 
that were found in chimeric reads together with sequences of the U14 snoRNA. Colours correspond to sequences 
shown in (C). 
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Notably, in the 1D mapping of the Has1 PAR-CRAC data, another crosslinking site in the 3’ 

major domain of the 18S rRNA was observed. This appeared distinct from the 3’ minor domain 

where the known basepairing sites of the U14 snoRNA are. However, as RNA has the potential 

to form features of higher structural order, to see if Has1 binding to this site may be linked to 

its role in U14 release, the Has1 PAR-CRAC data was also mapped onto the tertiary (3D) 

structure of the mature small ribosomal subunit (Fig. 3.7). This also showed distinct 

crosslinking sites for Has1, where one site directly overlaps with the known U14 basepairing 

site, but the other is spatially distant. Since the structure of the early pre-40S complexes, which 

Has1 is thought to associate with, is probably very different to the mature SSU structure, this 

Has1 binding site could still reflect a role for Has1 in mediating U14 release, if these sites within 

the 18S rRNA are in closer proximity in a pre-40S particle. Alternatively, this crosslinking site 

could be linked to a so far unknown function of Has1 in the maturation of the small ribosomal 

subunit. 

 

 

 

 

 

 

 

Figure 3.7: Has1 crosslinks at two sites 
within the small ribosomal subunit. 
Has1 PAR-CRAC data was mapped onto 
the 3D structure of mature SSU (Ben-
Shem et al., 2011; PDB-ID: 4V88). 
Ribosomal RNA and ribosomal proteins 
are indicated in grey and blue respectively. 
Colour-code reflects peak height above a 
10 % threshold from yellow (low value) to 
red (highest value). 

 

In order to elucidate the function of Has1 in the biogenesis of the large ribosomal subunit, the 

obtained Has1 PAR-CRAC data was also mapped onto the mature LSU secondary structure 

(Fig. 3.8). Here, a single putative binding site in domain I of 25S rRNA was found to efficiently 

crosslink to Has1. Remarkably, this site was reported to be a binding site of another trans-

acting factor Erb1, which is recruited to the pre-ribosome in an ATP-independent manner as 

part of a cluster of several “A3-factors” required for ITS2 processing (Granneman et al., 2011; 

Dembowski et al., 2013). Furthermore, it was shown that in the absence of Has1, Erb1 and 

other A3-factors accumulate on pre-ribosomal particles (Dembowski et al., 2013). Together 

with the newly identified crosslinking site of Has1 in domain I of the 25S rRNA, these findings 

suggest that Has1 is directly involved in the release of Erb1 during pre-60S biogenesis. 
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Figure 3.8: Has1 shares an overlapping binding site with the trans-acting ribosome biogenesis factor Erb1. 
Has1 PAR-CRAC data depicted as colour-coded hit representation above a 10 % threshold from yellow (low value) 
to red (highest value) in correlation to all hits across RDN37. Mapping onto the secondary structure of mature LSU 
is shown (Petrov et al., 2014a). Secondary structure elements of 25S rRNA are indicated by green numbers. 5S 
and 5.8S rRNA are labelled in brown. The green line represents the reported binding site of Erb1 (Granneman et 
al., 2011). 

 

3.4 In vitro characterisation of the putative RNA helicases Spb4 and 
Mak5 

While ATPase and unwinding activity has been previously shown for Has1, although Spb4 and 

Mak5 contain a helicase core domain, the activity of these putative enzymes had not been 

demonstrated so far. Therefore, before addressing in-depth functional characterisation of 

these proteins, it was important to determine whether they have catalytic activity, which was 

addressed using in vitro biochemical approaches. Due to their conserved sequence motifs, 

Spb4 and Mak5 resemble classical DEAD-box RNA helicases, which conventionally exhibit 

RNA-dependent ATPase activity. To test whether Spb4 and Mak5 have such activity, yeast 

SPB4 and MAK5 were cloned into a plasmid, which contained an IPTG-inducible promoter for 

expression of proteins with a His-ZZ-tag fused to the N-terminus. These plasmids were 

transformed into E. coli cells for recombinant expression and subsequently, proteins were 

purified via their His-tags. The obtained eluates and protein samples taken throughout the 

purification procedure were separated by SDS-PAGE and analysed by Coomassie-staining 

(Fig. 3.9). This revealed that the final preparations contained high concentrations of Spb4 and 

Mak5 without major contamination of unspecific E. coli proteins. In order to allow any ATPase 

activity observed to be attributed to Spb4 or Mak5, the SPB4- and MAK5-containing A21 

plasmids were subjected to site-directed mutagenesis, to modify sequences encoding for motif 
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II (DEAD) and III (SAT). These two motifs are known to be involved in ATP hydrolysis and the 

coupling of ATP hydrolysis with helicase activity respectively. To achieve disruption of the 

Spb4 DEAD motif, glutamate 173 (E334 in Mak5) was substituted by a glutamine. Similarly, 

serine 203 (S378 in Mak5) and threonine 205 (T379 in Mak5) of the SAT motif were exchanged 

for alanine. These protein mutants, Spb4DEAD/SAT and Mak5DEAD/SAT, were recombinantly 

expressed, purified and analysed as well by Coomassie-stained SDS-PAGE (Fig. 3.9), which 

revealed pure products available for subsequent analyses. 

 
Figure 3.9: Recombinant expression and affinity purification of Spb4 and Mak5. His-ZZ-Spb4WT/DEAD/SAT and 
His-ZZ-Mak5WT/DEAD/SAT were expressed in E. coli and subjected to Ni-NTA chromatography. (A) Protein samples 
from indicated steps during expression and purification of Spb4WT (left) as well as purification products of all Spb4 
variants (right) were separated by SDS-PAGE, and proteins were visualised by Coomassie-staining. (B) Protein 
samples from indicated steps during expression and purification of Mak5WT (left) as well as purification products of 
all Mak5 variants (right) were separated by SDS-PAGE, and proteins were visualised by Coomassie-staining. 

 

Using an NADH-coupled ATPase assay allowed the in vitro activity of the purified WT proteins 

and their mutant versions to be tested. Here, in the presence of ATP, 2 µM of protein were 

incubated with an increasing amount of RNA (0 – 4 µM), which was supplemented with 

phosphoenol pyruvate, NADH as well as an enzymatic mix of pyruvate kinase and lactic 

dehydrogenase under physiological salt conditions. Increasing ADP levels, which are due to 

ATP hydrolysis, allow conversion of phosphoenol pyruvate to pyruvate with the help of added 

pyruvate kinase. The following reaction step, where pyruvate is converted to lactate by the 

lactate dehydrogenase, is coupled to the oxidation of NADH to NAD+. The assay measured 

the reduction of absorption at 340 nm at 30 °C as the consequence of NADH oxidation, which 

responded indirectly to the protein mediated hydrolysis of ATP (Kiianitsa et al., 2003). 
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Figure 3.10: Mutations in conserved RNA helicase motifs compromises the RNA-dependent ATPase activity 
of Spb4 and Mak5. Recombinantly expressed and purified Spb4 and Mak5 variants were subjected to NADH-
coupled ATPase assays. 2 µM of protein were incubated with increasing amounts of RNA (0 – 4 µM RNA) and the 
rate of ATP hydrolysis was estimated by measuring NADH oxidation resulting in loss of absorption at 340 nm. (A) 
Comparative analysis of Spb4 variants. (B) Comparative analysis of Mak5 analysis. 

 

Spb4 and Mak5 WT proteins exhibited increasing ATPase activities in the presence of 

increasing amounts of RNA, confirming their activities as RNA-dependent ATPases (Fig. 3.10). 

This ability was completely diminished in the Spb4DEAD mutant and significantly compromised 

in the Mak5DEAD mutant, demonstrating that the observed ATP hydrolysis is specifically due to 

the presence of the putative helicases. In contrast, the Spb4SAT mutant showed reduced 

ATPase activity, but was still able to slowly hydrolyse ATP (Fig 3.10A), whereas the Mak5SAT 

mutant hardly showed any ATPase activity (Fig. 3.10B). 

3.5 The catalytic activity of Spb4 and Mak5 is required for their 
functions in LSU biogenesis 

Having demonstrated that Spb4 and Mak5 possess ATPase activities in vitro, the next step 

was to address the question of whether this activity is required for their functions in biogenesis 

of the large ribosome subunit. For this reason, complementation systems were constructed, 

which allowed depletion of the endogenous protein while expressing a plasmid-encoded WT 

or mutant protein from its endogenous promoter. Here, SPB4 and MAK5 were cloned, with 

500 bp up- and downstream of their coding sequences, into a low-copy plasmid (pRS415). 

After site-directed mutagenesis in order to produce constructs for expression of the DEAD and 

SAT mutants characterised by the in vitro assays, the plasmids were transformed into their 

corresponding depletion strains (see Fig. 3.1 and 3.2). 

Growing these cells into mid-log phase and spotting a serial dilution onto plates with permissive 

and non-permissive medium, allowed monitoring of growth behaviour of cells containing the 

introduced plasmids in the presence or absence of endogenous proteins.  
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Figure 3.11: The catalytic activity of Spb4 and Mak5 is required for cell growth. Endogenous RNA helicases 
were depleted under non-permissive conditions, which was complemented by an empty vector (EV) or by the 
expression of indicated plasmid encoded proteins. Cells were grown under permissive conditions to mid-log phase 
and spotted onto plates in a series of 1:10 dilutions. Growth was recorded after 3 d of growth at 30 °C. (A) Spb4 
depletion strain (pGal1-SPB4) with complementation plasmids was spotted onto galactose- or glucose-containing 
plates. (B) Mak5 depletion strain (pTetO7-MAK5) with complementation plasmids was spotted onto plates, which 
contained 20 µg/ml doxycycline or which were devoid of doxycycline. 

 

Investigation of growth after 3 d of incubation at 30 °C indicated a strong correlation between 

cell growth and ATPase activity, which was nearly identical for both RNA helicases, Spb4 and 

Mak5 (Fig. 3.11A/B). Growth under permissive conditions, where the endogenous RNA 

helicases were continuously expressed, did not show any growth defects. In contrast, when 

the endogenous proteins were depleted, complementation with the empty vector (EV) revealed 

growth defects. Expression of the WT proteins were able to complement this phenotype, such 

that cell growth was comparable to growth under permissive conditions. In contrast, cells 

expressing RNA helicase DEAD mutants under non-permissive conditions showed strong 

growth defects. These defects were more significant than the phenotypes observed upon 

complementation with the EV, suggesting that these mutations could have a dominant negative 

effect. Growth of the yeast strains expressing the Spb4SAT or Mak5SAT mutants under non-

permissive conditions, showed reduced growth compared to the cells complemented with 

plasmids expressing WT protein (Fig. 3.11A/B). The growth defects observed were not as 

strong as those seen when the helicases carrying mutations in the DEAD motif were 

expressed. This correlates with the compromised, rather than abolished, ATPase activity seen 

in the previous in vitro assay for Spb4 and suggests that the DEAD motif is more important 

than the SAT motif for the function of Mak5 in vivo. Together, these results demonstrate that 

the ATPase activity of both Mak5 and Spb4 is important for their cellular functions. 

Next, investigation of pre-rRNA processing using the complementation systems allowed to 

determine if the catalytic activity of Spb4 and/or Mak5 or the presence of the proteins is 

required for their functions in ribosome biogenesis. To analyse this, the complementation 
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strains were grown to mid-log phase in permissive medium before they were shifted to non-

permissive medium for the appropriate depletion time of each RNA helicase. After harvesting 

of cells and RNA extraction, total RNA was subjected to denaturing agarose gel 

electrophoresis and subsequent northern blotting. Mature rRNAs (18S and 25S rRNA) were 

visualised by methylene blue staining and pre-rRNA processing intermediates were detected 

using radioactively labelled probes hybridising to the ITS1 and ITS2 sequences (Fig. 3.12). 

In the case of Spb4, the pre-rRNA processing defects (accumulation of the 35S and 27S pre-

rRNAs) seen for protein depletion without complementation (Fig. 3.2B), were reproduced by 

depletion of endogenous Spb4 while adding back EV (Fig. 3.12A). However, these defects 

could be rescued by expression of Spb4WT from the complementation plasmid, confirming that 

these defects arise due to a lack of Spb4. In contrast, expression of either catalytically deficient 

mutant (Spb4DEAD or Spb4SAT) showed strong pre-rRNA processing defects, which were slightly 

more pronounced for Spb4DEAD. 

 
Figure 3.12: The catalytic activity of Spb4 and Mak5 is required for processing of pre-ribosomal RNA. 
Northern blot analysis in order to visualise pre-rRNA processing using the complementation systems. Genomic 
Spb4 and Mak5 were depleted by growth in non-permissive medium for the appropriate depletion time, which was 
complemented by the indicated plasmid encoded protein variants. Total RNA was extracted and 6 µg were 
subjected to denaturing agarose gel electrophoresis and subsequent northern blotting. Mature rRNAs (18S and 
25S rRNA) were visualised by methylene blue staining, while pre-rRNA precursors were detected by 
autoradiography. The aberrant 23S pre-rRNA intermediate is indicated by an asterisk. (A) The Spb4 depletion strain 
containing EV, Spb4WT, Spb4DEAD or the Spb4SAT complementation plasmid was grown in galactose (Gal) or glucose 
(Glu) for 12 h. (B) The Mak5 depletion strain containing EV, Mak5WT, Mak5DEAD or the Mak5SAT complementation 
plasmid was grown in medium supplemented with 20 µg/ml doxycycline (+Dox) or in medium that was devoid of 
doxycycline (-Dox) for 10 h. 

 

Depletion of Mak5 in the presence of EV only lead to a small processing defect (Fig. 3.12B), 

which was more intense in the previously shown depletion experiment in the absence of a 

complementation plasmid (Fig. 3.2D). As expected, adding back Mak5WT did not change the 
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levels of mature and pre-rRNAs. However, complementing the depletion of genomic Mak5 with 

Mak5DEAD showed a significant accumulation of pre-rRNA intermediates, which could also be 

detected for Mak5SAT, although to a much lesser extent. In conclusion, for both proteins, Spb4 

and Mak5, their catalytic activity is not only required for cell viability, but more precisely for 

processing of pre-rRNA in the context of ribosome biogenesis. 

3.6 The RNA helicases Spb4 and Mak5 are not implicated in snoRNA 
recruitment or release from pre-ribosomal complexes 

By basepairing to pre-rRNAs, snoRNAs direct 2’-O-methylation or pseudouridylation reactions 

on the pre-rRNA, which are mediated by the associated enzymes (Watkins and Bohnsack, 

2012). However, another reported function for snoRNAs is to assist in RNA folding and 

establish long-range interactions to bring more distant rRNA sequences in closer proximity 

(Liang and Fournier, 1995; Martin et al., 2014). Several RNA helicases have been shown to 

be required for the release of specific snoRNAs from pre-ribosomal complexes after they have 

carried out their modification and/or RNA folding functions (see for example Kos et al., 2005; 

Liang and Fournier, 2006; Bohnsack et al., 2008; Sardana et al., 2015). Moreover, Prp43 was 

suggested to be involved in facilitating the association of two snoRNAs with pre-ribosomal 

particles, most likely by remodelling their binding sites, making them available for snoRNA 

basepairing (Bohnsack et al., 2009).  

It would be possible that the roles of Spb4 or Mak5 in LSU biogenesis are to regulate the 

interaction of specific snoRNAs with pre-ribosomal complexes. This could particularly be the 

case for Mak5 as its crosslinking site on the 25S rRNA is in close proximity to several known 

rRNA modifications. To investigate this, whole cell extracts from WT yeast or cells depleted of 

either Has1, Spb4 or Mak5 were subjected to sucrose density gradient centrifugation to 

separate (pre-)ribosomal complexes from non-ribosome-associated proteins. Here, Has1 

served as a positive control, because it was already shown that the U14 snoRNA accumulates 

on pre-ribosomal particles upon depletion of U14 (Liang and Fournier, 2006). Fractions 

containing “free” snoRNAs and pre-ribosome-bound snoRNAs were pooled, then RNAs were 

extracted, reverse transcribed and analysed by qPCR to determine the levels of all 75 

snoRNAs in each of these two pools. The relative distribution of snoRNAs (pre-ribosome 

bound versus free snoRNAs) were normalised to the values of control (WT) samples, which 

were processed and analysed in parallel. According to this normalisation, a value of 1 

corresponded to no difference in snoRNA distribution between RNA helicase depletion and 

WT conditions, a value of 2.1 or below 0.48 (corresponding to the 95 % confidence limit) was 

regarded as accumulation or deficiency of snoRNAs on pre-ribosomes upon depletion of the 

helicase. 
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Figure 3.13: Spb4 and Mak5 are not involved in mediating snoRNA release or access. Has1 (A), Spb4 (B) 
and Mak5 (C) depletion strains were cultivated for their appropriate depletion times under non-permissive conditions 
before cells were harvested and lysed. Soluble cell components were subjected to sucrose density centrifugation. 
Fractions containing free snoRNAs and fractions containing pre-ribosomal bound snoRNAs were pooled and RNA 
was extracted. Reverse transcription provided templates for determination of the relative levels of all 75 snoRNAs 
by qPCR analysis. Relative distributions of bound versus free snoRNAs in the absence of RNA helicases were 
normalised to WT control levels. The average values of three independent experiments are shown as bars with the 
corresponding error bars reflecting the standard deviation. SnoRNAs are grouped according to their classification 
as C/D box or H/ACA box snoRNA and their rRNA target. These experiments were performed by Roman Martin 
and Markus Bohnsack. 

 

A clear accumulation of U14 on pre-ribosomes with a value of 11.22 could be observed upon 

depletion of the RNA helicase Has1 (Fig. 3.13A). This result confirmed the previously 

described investigations. Notably, there was no other snoRNA, which was significantly affected 

by depleting Has1. Upon depletion of neither Spb4 nor Mak5, there was a significant 
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accumulation or deficiency of any snoRNA detectable. This suggests that neither of these RNA 

helicases regulates the interactions of snoRNAs with pre-ribosomes, and indicates that 

instead, these two proteins have other functions in the process of ribosome biogenesis. 

3.7 Spb4 binds to two regions of the 25S rRNA sequence, which may 
be a helicase binding platform and an rRNA region that is 
remodelled 

Recently, investigations addressing the assembly of so called “B-factors”, which are required 

for processing of the 27S-B pre-rRNA intermediate, revealed that Spb4 is required for the 

efficient recruitment of the GTPase Nog2, a factor implicated in C2 cleavage and a known 

placeholder for the export adaptor Nmd3 (Saveanu et al., 2001; Talkish et al., 2012; Matsuo 

et al., 2014). However, elucidation of the precise role of Spb4 in Nog2 recruitment and whether 

Spb4 has additional functions in LSU biogenesis has been hampered by the lack of information 

on its binding site. 

Mapping of the obtained Spb4 PAR-CRAC data onto the primary sequence of RDN37 showed 

two peaks within the 25S rRNA sequence corresponding to sequences that were enriched with 

Spb4 (Fig. 3.4D). Akin to Has1 analysis, in order to get a closer view onto the physiological 

relevance of these peaks, the Spb4 PAR-CRAC data was mapped onto the secondary 

structure of mature LSU rRNAs (Fig. 3.14). 

 
Figure 3.14: Spb4 crosslinks at two distinct sites within the 25S rRNA secondary structure. Spb4 PAR-CRAC 
data depicted as colour-coded hit representation above a 10 % threshold from yellow (low value) to red (highest 
value) in correlation to all hits across RDN37. Mapping onto the secondary structure of mature LSU is shown (Petrov 
et al., 2014a). Secondary structure elements of 25S rRNA are indicated in green. 5S and 5.8S rRNA are labelled 
in brown. 
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This showed that a significant proportion of Spb4 crosslinked to the very 3’ end of 25S rRNA, 

in helices 99 - 101 of domain VI. The other Spb4 crosslinking site was located in domain IV at 

helices 62 and 63 at the base of a protruding eukaryotic specific expansion segment (ES27). 

Although an enrichment of reads mapping to the 5S rRNA was observed, this was not 

considered significant because this pattern was also detected in WT control samples. Mapping 

the Spb4 PAR-CRAC data onto the 3D structure of the pre-LSU Nog2-particle (Wu et al., 2016; 

PDB-ID: 3JCT) showed that although the two Spb4 crosslinking sites are on the same face of 

the pre-ribosome and in relatively close proximity to each other, they are still somewhat 

spatially separated (Fig. 3.15A). It is possible that the observed crosslinking sites reflect 

binding of a single Spb4 molecule and because the Nog2-particle is downstream of the Spb4 

functional particle in the context of ribosome biogenesis, these two sites might be even closer 

in the pre-ribosomal particle that Spb4 associates with. Interestingly, the identified Spb4 

crosslinking site was in close proximity to the GTPase Nog2 (Fig. 3.15B). It has recently been 

suggested that Spb4 is required for the recruitment of Nog2 (Talkish et al., 2012) and these 

data suggest that Spb4 may play a direct role in this process. 

 
Figure 3.15: Spb4 crosslinks at two distinct sites within the Nog2 pre-60S particle. (A) Spb4 PAR-CRAC data 
was mapped onto the 3D structure of the pre-LSU Nog2-particle (Wu et al., 2016; PDB-ID: 3JCT). Colour-code 
reflects peak height above a 10 % threshold from yellow (low value) to red (highest value). (B) Magnified view 
shows the GTPase Nog2 (magenta) in close proximity to the Spb4 crosslinking site. 

 

The identification of crosslinking sites of Spb4 on the 25S rRNA sequence by PAR-CRAC 

strongly suggests that these regions are bound by the helicase, however, an independent 

experiment was applied in order to confirm the presence of Spb4 at these sites in pre-ribosomal 
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complexes. Ex vivo dimethyl sulfate (DMS) structure probing was employed, as this approach 

enables the presence of proteins bound to RNAs to be detected as well as RNA structural 

changes caused by the action of a protein, such as an RNA helicase (Wells et al., 2000). The 

reactive chemical donates methyl groups, preferentially to hydrogen-bond accepting ring 

nitrogens of adenines and cytosines, and this is prevented if the nucleotide forms basepairing 

interactions or is bound by a protein. The modification pattern of an RNA molecule can be 

monitored by diagnostic primer extension analysis using a radioactively labelled 

oligonucleotide, because once installed, these methyl groups cause stops in the elongation 

reaction during reverse transcription. Comparison of the modification pattern of RNAs from 

RNA helicase-depleted and non-depleted samples as well as RNAs from DMS-treated and 

non-treated control samples allows structural transitions caused by depletion of the protein to 

be monitored. As Spb4 functions in pre-ribosomal particles, but binds to the 25S rRNA 

sequence, which is also present in mature ribosomes, purification of ribosome biogenesis 

intermediates was necessary for structure probing analyses. Otherwise, the majority of the 

observed signals would be derived from the much more abundant, mature 25S rRNA and 

differences in the modification pattern caused by lack of Spb4 would be undetectable. To 

enable purification of pre-ribosomal complexes that contain Spb4 under normal conditions, the 

methyltransferase Nop2, which was reported to associate with pre-60S particles in an 

intermediate step and to be released before ribosomal export to the cytoplasm (Hong et al., 

1997; Talkish et al., 2012), was genomically HTP-tagged. To verify that Spb4 was present in 

pre-60S complexes purified via Nop2-HTP and to determine, which pre-rRNA species were 

present in these particles, pull-down assays were performed (Fig. 3.16). A yeast strain 

expressing Nop2-HTP and 3xHA-tagged Spb4 was grown in exponential phase and after 

harvesting and cell lysis, Nop2-containing complexes were retrieved on IgG-sepharose. Both 

proteins and RNAs were extracted from the eluates and analysis of the protein by western 

blotting using an HA-antibody revealed the presence of Spb4 co-purified with Nop2, 

demonstrating its presence in the isolated pre-ribosomal particles (Fig. 3.16A). Northern blot 

analysis of the RNAs co-purified with Nop2-HTP demonstrated the enrichment of the 27S-A/B 

pre-rRNAs in the eluates (Fig. 3.16C). As these are the pre-rRNA intermediates that 

accumulate when Spb4 is depleted, this suggests that pre-60S complexes isolated via Nop2 

are appropriate for DMS structure probing experiments to analyse the function of Spb4. For 

subsequent functional analysis of Mak5, the presence of this helicase in the Nop2-HTP particle 

was also confirmed by western blotting (Fig. 3.16B). 

To perform structure probing experiments, the Spb4 depletion strain in which Nop2 was HTP-

tagged, was grown under permissive and non-permissive conditions before cells were 

harvested, disrupted and lysates were subjected to native purification using IgG-sepharose. 

When purified pre-60S particles were still attached to the beads, DMS was either added or, as 
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a control, were left untreated. The chemical reaction was quenched and RNA was 

subsequently extracted providing template material for primer extension analyses. As Spb4 

PAR-CRAC revealed two sites of interaction between the helicase and the 25S rRNA 

sequence, both sites were addressed individually, using specific oligonucleotides for the primer 

extensions. First, an oligonucleotide was used that annealed downstream of the observed 

crosslinking site at the 3’ end of 25S rRNA and the primer extension products were separated 

by denaturing PAGE alongside a sequencing ladder generated using the same 

oligonucleotides to enable identification of the nucleotides at which extension reactions had 

stalled (Fig. 3.17A/B). Comparing the modification pattern of DMS treated samples in the 

presence or absence of Spb4, the nucleotide A3336 showed increased sensitivity towards 

DMS in the absence of Spb4, indicating exposure of this nucleotide when Spb4 is absent from 

the purified pre-60S particles. In close proximity of A3336, several nucleotides showed an 

altered modification pattern upon depletion of Spb4, whereas other more distant nucleotides 

seemed to be unaffected. This result independently confirmed the crosslinking site at the 3’ 

end of 25S rRNA, obtained by PAR-CRAC analysis, to be a bona-fide Spb4 binding site. 

 

Figure 3.16: Nop2-HTP co-immunoprecipitates 
Spb4, Mak5 and 27S pre-rRNAs. (A) A yeast 
culture containing genomically HTP-tagged Nop2 
and 3xHA-Spb4 was grow to mid-log phase. Cell 
lysate was subjected to pull-down analysis using 
IgG-sepharose. 0.2 % of taken Input and Flow 
samples, together with 20 % of the elution fraction 
were analysed by SDS-PAGE and western blotting 
using anti-ProteinA, anti-HA and anti-Pgk1 (control) 
antibodies. (B) Yeast cells expressing Nop2-HTP 
and 3xHA-Mak5 were grown to mid-log phase and 
analysed by western blotting as in (A). (C) Yeast 
cells expressing Nop2-HTP only were grown to 
mid-log phase. Cell lysate was subjected to pull-
down analysis using IgG-sepharose. 2.5 % of taken 
Input and Flow samples, together with 50 % of the 
elution fraction were subjected to agarose gel 
electrophoresis and subsequent northern blotting. 
Mature rRNAs (25S and 18S rRNA) were visualised 
by methylene blue staining, whereas pre-rRNA 
intermediates were detected by radiography using 
radioactively labelled probes hybridising to 
sequences in ITS1 (004) and ITS2 (020). 

 

In order to analyse the second putative Spb4 binding site, an oligonucleotide was used for 

primer extensions that annealed to the 25S rRNA sequence downstream of helix 63 (Fig. 

3.17C/D). Analogous to the first Spb4 site, several nucleotides within the Spb4 crosslinking 

site showed altered sensitivity towards DMS in the absence of the protein (A1907, C1926, 

A1933). These changes therefore confirmed the association of Spb4 also with the region 

around helix 63. Since the observed changes in this region included both nucleotides that 



Results 

	 64	

became more and less accessible for DMS modification when Spb4 was depleted, this raises 

the possibility that this region is actively remodelled by the helicase activity of Spb4. 

 
Figure 3.17: DMS structure probing to confirm Spb4 binding at two distinct sites within the 25S rRNA 
sequence. The yeast Spb4 depletion strain containing genomically HTP-tagged Nop2 was cultivated for the 
appropriate depletion time of 12 h in permissive or non-permissive medium (+Spb4; -Spb4). After cell lysis, pre-60S 
complexes were co-immunoprecipitated using IgG-sepharose. On beads, complexes were treated with DMS 
(+DMS) and RNA was extracted, which was used as template for primer extension analyses, starting from a 
radiolabelled oligonucleotide downstream of the detected Spb4 crosslinking sites. Reaction products were 
subjected to denaturing PAGE, so that fragments, which derived from stops in transcription due to DMS 
modifications, could be detected using a phosphorimager. As a reference, primer extensions were performed on 
total RNA after spiking in individual ddNTPs, which created a sequencing ladder as indicated above. (A) DMS 
structure probing analysis of Spb4 crosslinking site at the 3’ end of 25S rRNA. (B) Spb4 PAR-CRAC data mapped 
to the secondary structure of LSU with focus on 3’ end of 25S rRNA (as shown in Fig. 3.14. (C) DMS structure 
probing analysis of Spb4 crosslinking site at helices 62 and 63 within 25S rRNA. (D) Spb4 PAR-CRAC data mapped 
to the secondary structure of LSU with focus on helices 62 and 63 within 25S rRNA (as shown in Fig. 3.14). 

 

3.8 Mak5 is involved in structural rearrangements of helices 37 - 39 of 
the 25S rRNA that are ultimately bound by Rpl10 

To better understand the functional relevance of the crosslinking sites identified in the 25S 

rRNA sequence for Mak5 (Fig. 3.4D), the Mak5 PAR-CRAC data was mapped onto the 

secondary structure of mature LSU rRNAs, which showed that the two peaks, which were 
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distant on the primary sequence, came into close proximity at helices 37 – 39 in domain II of 

25S rRNA (Fig. 3.18). To gain a more detailed view of the interactions Mak5 forms with pre-

ribosomal complexes, mapping was also carried out onto the available 3D structure of the 

Nog2-particle (Wu et al., 2016; PDB-ID: 3JCT). 

 

 
Figure 3.18: Mak5 crosslinks at helices 37 – 39 of domain II in the 25S rRNA sequence. Mak5 PAR-CRAC 
data depicted as colour-coded hit representation above a 10 % threshold from yellow (low value) to red (highest 
value) in correlation to all hits across RDN37. Mapping onto the secondary structure of mature LSU is shown (Petrov 
et al., 2014a). Secondary structure elements of 25S rRNA are indicated in green. 5S and 5.8S rRNA are labelled 
in brown. 

 

Not surprisingly, the two distant peaks from the primary transcript cluster together in this pre-

ribosomal particle as well (Fig. 3.19A), indicative for a single binding site of the Mak5 RNA 

helicase. Mutations in MAK5 have been shown to supress the phenotype of mutations in 

NSA1, suggesting that these proteins are functionally linked (Pratte et al., 2013), and 

interestingly, the essential trans-acting ribosome biogenesis factor Nsa1 binds to pre-60S 

complexes in close proximity to the Mak5 binding site (Fig. 3.19B). Mak5 was additionally 

proposed to be involved in a functional cluster with Ebp2, Nop16 and promoting the formation 

of a certain structural surface of pre-60S complexes including assembly of ribosomal proteins 

Rpl6 (eL6), Rpl14 (eL14) and Rpl16 (uL13; Pratte et al., 2013). Although none of the ribosomal 

proteins directly contacts the Mak5 crosslinking site, they are present on the surface of the 

pre-60S complex in close proximity to the identified Mak5 crosslinking site. 

Analogous to the analysis of Spb4, DMS structure probing experiments were performed in 

order to confirm the crosslinking sites of Mak5 identified by CRAC as bona-fide protein binding 

sites and to explore rRNA structural changes in this region caused by lack of the helicase. Pull-
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down analysis of Nop2-HTP particles had shown co-immunoprecipitation of Mak5 and late pre-

rRNA precursors with these complexes, making them suitable also for analysis of Mak5 

function (Fig. 3.16B/C). Primer extension analysis on DMS-treated and non-treated pre-rRNA 

isolated from cells in which Mak5 was present or absent, were initiated downstream of helix 

39. 

 

 
Figure 3.19: Mak5 crosslinks at helices 37 – 39 of domain II in the Nog2 pre-60S particle. (A) Mak5 PAR-
CRAC data was mapped onto the 3D structure of the pre-LSU Nog2-particle (Wu et al., 2016; PDB-ID: 3JCT). 
Colour-code reflects peak height above a 10 % threshold from yellow (low value) to red (highest value). (B) The 
magnified view shows the close proximity of the trans-acting ribosome biogenesis factor Nsa1 (magenta) to the 
Mak5 crosslinking site. 

 

Two nucleotides in the loop of helix 39 were highly accessible for DMS modification when 

Mak5 was present, leading to the detection of strong primer extension stops at positions A1129 

and A1130 of the 25S rRNA sequence (Fig. 3.20). Interestingly, the observed signal (and 

therefore the extent of DMS-mediated modification) decreased significantly in the absence of 

Mak5, which suggests that these nucleotides are involved in basepairing or protein-RNA 

interactions in earlier pre-ribosomal complexes that are dissolved if the RNA helicase is 

present. 

Therefore, the question arose of how the DMS accessibility of these nucleotides is affected 

during the process of ribosome biogenesis. For this reason, a series of pre-60S particles along 

the pathway of LSU maturation was isolated and structure probing analysis was performed. 

The pre-60S biogenesis factors Ssf1, Nip7, Nop2, Erb1 and Rpf2 were selected as bait 

proteins for the analysis of early and middle pathway intermediate particles and Arx1 as well 

as Rlp24 were chosen for the affinity purification of late nuclear/cytoplasmic pre-60S 
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complexes. First, yeast strains expressing HTP- or TAP-tagged versions of these trans-acting 

ribosome biogenesis factors were generated. After cultivation, harvesting, cell disruption and 

affinity purification using IgG-sepharose, these particles were subjected to DMS treatment (or 

left untreated for comparison) in order to investigate the modification behaviour and therefore 

accessibility of A1129 and A1130 along the time line of ribosome biogenesis (Fig. 2.21). 

 

 
Figure 3.20: DMS structure probing confirmed Mak5 binding to helix 39 in domain II in 25S rRNA. The yeast 
Mak5 depletion strain containing genomically HTP-tagged Nop2 was cultivated for the appropriate depletion time 
of 10 h in permissive or non-permissive medium (+Mak5; -Mak5). After cell lysis, pre-60S complexes were co-
immunoprecipitated using IgG-sepharose. On beads, complexes were treated with DMS (+DMS) if applicable and 
RNA was extracted, which was used as template for primer extension analysis, starting from a radiolabelled 
oligonucleotide downstream of the detected Mak5 crosslinking site. Reaction products were subjected to denaturing 
PAGE, so that fragments, which derived from stops in transcription due to DMS modifications, could be detected 
using a phosphorimager. As a reference, primer extensions were performed on total RNA after spiking in individual 
ddNTPs, which created a sequencing ladder. (A) DMS structure probing analysis of Mak5 crosslinking site in 
domain II of 25S rRNA. (B) Mak5 PAR-CRAC data mapped to the secondary structure of LSU with focus on domain 
II of 25S rRNA (as shown in Fig. 3.18). 

 

Interestingly, the extent of DMS-mediated modification of A1129 and A1130 changed twice 

over the time-course of pre-60S biogenesis. In early particles, these nucleotides were 

protected from DMS treatment, suggesting that they are either basepaired or protected by the 

presence of a protein. However, in the case of intermediate particles, starting with the Nop2-

HTP particle in which Mak5 is present and that was used in the previously described DMS 

structure probing experiment, these nucleotides became readily accessible for modification. 

This suggests that the observed transition of accessibility of A1129 and A1130 to DMS, which 

occurs in Nop2-HTP particles, was triggered by Mak5. Interestingly, in late pre-60S particles 

after their export to the cytoplasm, as well as in the mature LSU, these nucleotides again 

became inaccessible for modification, indicating another structural or compositional change in 

this region of the pre-ribosome. 
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Figure 3.21: A1129 and A1130 in domain II of 25S rRNA are temporarily accessible for DMS during ribosome 
biogenesis. Several strains with different ProteinA-tagged trans-acting ribosome biogenesis factors were grown to 
mid-log phase. After harvesting and cell disruption, lysates were subjected to pull-down analysis and subsequent 
DMS treatment (-DMS; +DMS). The modification level of extracted RNA was monitored by primer extension 
analyses using an oligonucleotide annealing downstream of helix 39 in domain II of 25S rRNA (analogous to Fig. 
3.20). Primer extensions on total RNA in the presence of ddNTPs provided the sequencing ladder on the left. Baits 
for co-immunoprecipitations are indicated above and arrows indicate pre-ribosomal export as well as the Nop2-
particle, which contains Mak5. 

 

Excitingly, analysis of the location of A1129 and A1130 in the structure of the mature LSU 

revealed that these two nucleotides are directly bound by Rpl10 (uL16; Fig. 3.22). This 

ribosomal protein is known to assemble late into pre-60S particles, only joining after they have 

been exported to the cytoplasm. Taken together, this suggests that the RNA helicase Mak5 is 

required at a relatively late step of LSU biogenesis for a structural rearrangement that makes 

helix 39 in domain II of 25S rRNA accessible for the recruitment of Rpl10 after the export of 

the pre-60S complex to the cytoplasm. 

 

 

 

 

 

 

Figure 3.22: Rpl10 (uL16) binds to A1129 and A1130 
in domain II of 25S rRNA in the mature large 
ribosomal subunit. The 3D structure of mature LSU is 
shown (Ben-Shem et al., 2011; PDB-ID: 4V88). The 
ribosomal protein Rpl10 is indicated in magenta and 
binds to the tip of helix 39, where nucleotides A1129 and 
A1130 are located, explaining the loss of accessibility of 
these residues (Fig. 3.21), when pre-60S particles are 
exported to the cytoplasm and Rpl10 is recruited to pre-
ribosomes. 

 



Discussion 

	 69	

4 Discussion 

4.1 Identification of the binding sites of RNA-binding proteins on 
cellular RNAs 

RNA-binding proteins (RBPs) play key roles in the formation of ribonucleoprotein (RNP) 

complexes required for gene expression, such as the ribosome and the spliceosome, as well 

as in the regulation of different aspects of the gene expression process. Furthermore, RBPs 

can determine the fate of cellular RNAs by influencing their processing, assembly into RNP 

complexes and functions. Many RBPs contain characterised RNA-binding domains that have 

common structures and are relatively low in diversity. Amongst the best characterised RNA-

binding domains are the RNA recognition motif (RRM), the zinc finger (ZNF), the KH domain, 

the S1 fold, the dsRBD and the R3H domain (Lunde et al., 2007). Interestingly, many of the 

known RNA-binding domains are limited in their RNA sequence specificity but often particular 

domains favour interactions with specific types of RNAs, e.g. single-stranded RNAs, double-

stranded RNAs, RNAs with 5’ or 3’ overhangs, etc. Furthermore, numerous enzymes that 

mediate processing, folding or modification of RNAs, such as nucleases, methyltransferases 

and helicases, form direct contacts with substrate RNAs via their catalytic sites. Often RBPs 

make multiple contacts with their RNA substrates via different RNA-binding motifs, which are 

presented in a particular structural topology, improving specific target recognition and 

extending the functional repertoire of RBPs. 

The increasing knowledge about the importance of non-coding RNAs in gene expression and 

the extensive regulation of both coding and non-coding RNAs that takes place, has stimulated 

research into the proteins that interact with RNAs. While techniques such as RNA-seq can be 

used to identify transcripts that are affected by the lack of a particular protein and RIP-seq 

providing information about protein-RNA complexes, in order to identify targets directly 

contacted by RNA-binding proteins, a variety of different crosslinking and immunoprecipitation 

(CLIP)-based techniques with subsequent analyses of high-throughput sequencing data were 

established (CLIP: Ule et al., 2003; HITS-CLIP: Licatalosi et al., 2008; PAR-CLIP: Hafner et 

al., 2010; iCLIP: König et al., 2010). All these methods involve covalent crosslinking of 

associated RNAs and proteins followed by the isolation of these complexes using protein 

specific antibodies, which bind the RNA-binding protein of interest with high affinity. In contrast, 

the UV crosslinking and analysis of cDNA (CRAC) approach does not require protein specific 

antibodies and makes use of a His6-TEV cleavage site-ProteinA epitope fused to the RNA-

binding protein of interest enabling a tandem affinity purification including a purification step 

under very stringent and denaturing conditions. The CRAC approach is therefore especially 

useful to gain information about protein-RNA interactions in complex ribonucleoprotein 
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particles, such as pre-ribosomal particles or intermediates of the spliceosome, as the inclusion 

of the purification step under denaturing conditions ensures that only RNAs directly contacted 

by the protein of interest are isolated (Bohnsack et al., 2012). Importantly, both the CLIP and 

CRAC approaches include a partial RNase digestion step in which RNAs co-purified with the 

protein of interest are trimmed to leave a specific footprint of the protein on its target RNA. This 

means that as well as identifying RNAs bound by the protein of interest, the precise binding 

sites of the proteins on the RNAs can be determined, which is especially relevant for proteins 

that bind to long RNAs, such as rRNAs and mRNAs, as it provides important insight into the 

potential functions of the protein binding to the RNA. For CRAC, a variety of different 

techniques have been reported that differ in the preparation of yeast cultures and the 

crosslinking wavelength. In vivo crosslinking describes that yeast cells were harvested, 

resuspended and spread onto a petri dish, where they can be irradiated on ice. In culturo 

crosslinking is carried out on actively growing yeast cells that are irradiated without harvesting, 

which has the advantage of capturing transient interactions and avoiding triggering stress 

responses that might lead to the formation of non-typical protein-RNA interactions. Irradiation 

can be applied at 254 nm, whereas incorporation of photoactivatable ribonucleosides like 4-

thiouridine (4SU) or 6-thioguanosine (6SG) allows irradiation at 365 nm, which was shown to 

increase the efficiency of nucleic acid crosslinking (Hafner et al., 2010). In both cases, covalent 

links are primarily formed between uridines in the RNAs and aromatic amino acids (e.g. 

tryptophan, tyrosine and phenylalanine) in the proteins, meaning that the close proximity of 

these features is essential for efficient protein-RNA crosslinking. For some modification 

enzymes like 5-methylcytosine RNA methyltransferases, alternatively, chemical crosslinking 

can be used. Incorporation of 5-azacytidine (5-AzaC) into nascent RNAs, traps the 

methyltransferase in a covalent intermediate with its target RNA during the catalytic step of the 

methylation reaction (Haag et al., 2017). This approach has the advantage that crosslinked 

protein-RNA complexes are only formed during catalysis, meaning that the identified RNAs 

represent methylation substrates not just RNAs that are contacted by the methyltransferase. 

Several different alternatives for cDNA library preparation prior to next generation sequencing 

have also been developed for such CLIP/CRAC approaches. Typically, this involves ligation 

of adaptors to the 3’ and 5’ ends of the co-purified RNAs, which serve as a platform for reverse 

transcription and PCR amplification. Alternatively, following reverse transcription, a 

circularisation step of cDNA products using a single adapter sequence can be used to 

circumvent the problem of frequently occurring premature stops at the introduced crosslinking 

sites (König et al., 2010). During the process of reverse transcription, the reverse transcriptase 

is prone to stalling or pausing at nucleotides that are crosslinked to amino acids remaining 

after protease digestion. This behaviour can be advantageous if the reverse transcriptase 

overcomes this site by misincorporation of a random nucleotide, which is most likely an 
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adenine, or by skipping the lesion, thereby generating a specific reverse transcriptase 

signature that can be detected during the subsequent bioinformatics analysis. In the PAR-

CRAC approach, it was shown that at sites of crosslinking, which are restricted to the PAR-

CRAC specific 4SU residue, the reverse transcriptase incorporates an adenine because it 

reads this nucleotide as a thymine. This characteristic can be selected for bioinformatically 

during analysis of the obtained sequence reads allowing to differentiate reads that are derived 

from specific crosslinking events from reads that come from background RNAs (Ascano et al., 

2012). 

With UV-CRAC and PAR-CRAC, two alternative crosslinking methods were applied in this 

study. For technical reasons, the UV-CRAC protocol was coupled to in culturo irradiation, 

whereas the PAR-CRAC approach was performed using in vivo irradiation. For Spb4, both the 

PAR- and UV-CRAC had similar crosslinking efficiencies and also, mapping of the sequence 

reads indicated the same crosslinking sites on the 25S rRNA. However, for both Has1 and 

Mak5, only the PAR-CRAC method crosslinked the proteins efficiently to their RNA target and 

allowed subsequent data analysis. Spb4 is proposed to be recruited to early pre-ribosomal 

complexes but remains associated until the later stages of pre-60S maturation. In contrast, the 

interactions of Has1 and Mak5 with pre-ribosomal complexes is thought to be much more 

transient. This hypothesis is supported by our observations that in a series of pull-down 

experiments, which represented a time course of the pathway of ribosome biogenesis, Has1 

and Mak5 could hardly be detected in different pre-ribosomal particles whereas Spb4 could 

readily be detected (data not shown). It is possible therefore that the transient interactions of 

Mak5 and Has1 with pre-ribosomes prevented efficient crosslinking with UV, but that the 

increased crosslinking efficiency of the PAR-CRAC approach (Hafner et al., 2010) enabled 

Has1 and Mak5 to be stably bound to their substrate RNAs. Studies analysing the behaviour 

of mutant RNA helicases indicated that some mutants, e.g. the DEAD mutant used in this 

study, cannot be recycled from their substrates, suggesting that an alternative version of the 

CRAC protocol using a catalytically inactive protein could increase the crosslinking efficiency 

of helicases that normally only transiently bind to RNA. Additionally, if applied in parallel to 

CRAC of a WT helicase, the RNA sites that are contacted by the helicase core or by ancillary 

domains, which do not rely on the helicase function, could be differentiated. Interestingly, such 

an approach was applied to investigate the binding sites of the translocating human SF1-RNA 

helicase MOV10 (Gregersen et al., 2014). In contrast to DEAD-box proteins, translocating RNA 

helicases show a more dispersed distribution along their target RNAs, with the majority of 

sequence reads corresponding to their starting and end positions on the RNA substrate, where 

they have an increased residence time. Using a MOV10 helicase deficient mutant in PAR-

CLIP analysis revealed an enrichment of sequence reads upstream of highly structured 
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3’UTRs of mRNAs, implying that these structures are resolved by the translocation of MOV10 

along the RNA (Gregersen et al., 2014).  

In the case of Has1, Spb4 and Mak5, the target RNAs could already be anticipated from the 

finding that these proteins are required for biogenesis of the large ribosomal subunit. However, 

the genome-wide characteristic of the CRAC approach enables an unbiased search for 

substrate RNAs of an uncharacterised protein without prior knowledge. Such unbiased 

approaches recently allowed the identification of the target sites of the uncharacterised human 

methyltransferases NSUN3 and NSUN6, which methylate the mitochondrial tRNAMet and 

generate m5C72 on a subset of cytoplasmic tRNAs, respectively (Haag et al., 2015; Haag et 

al., 2016). In the case of mRNA-interacting proteins, hits on specific subsets of mRNAs can be 

identified using the CRAC approach coupled with a bioinformatics peak calling approach and 

the relative distribution of crosslinking sites in mRNA features (e.g. 5’UTR, start codon, ORF, 

stop codon, introns and 3’UTR) can be monitored. For example, a novel level of translational 

control of gene expression was uncovered, where the DEAD-box RNA helicase Dhh1 unwinds 

highly structured regions especially in the 5’UTR and beginning of ORFs in order to facilitate 

ribosome translocation on mRNAs mainly encoding secreted or membrane proteins 

(Jungfleisch et al., 2017). 

4.2 Recruitment and regulation of RNA helicases 

In particular for multifunctional RNA helicases that have more than one target RNA, the 

mechanism of recruitment to its RNA targets remains an important question. Although RNA 

helicases are predicted to have almost no sequence specificity as their core domains primarily 

interact with the RNA backbone, a sequence motif within its target RNA of 23S rRNA was 

reported for the E. coli DEAD-box RNA helicase DbpA (Fuller-Pace et al., 1993). N- and C-

terminal extensions of RNA helicases in proximity to the helicase core are proposed to mediate 

substrate specificity, potentially by forming sequence specific interactions with RNA 

substrates. Therefore, for multifunctional proteins for which many target RNAs can be 

identified, nucleotide motifs within the retrieved CRAC sequence reads can be examined using 

bioinformatics software tools. Additionally, other possible mechanisms of recruitment and 

enzymatic regulation are thought to be mediated through specific secondary or tertiary 

structural features of RNA substrates and/or cofactor interactions. 

Several RNA helicase cofactors have been identified so far although it is likely that many more 

remain to be discovered. For example, in yeast ribosome biogenesis, Rrp5 was proposed to 

interact with the DEAD-box RNA helicase Rok1, which is implicated in the release of snR30 

from pre-ribosomes (Vos et al., 2004; Bohnsack et al., 2008; Young et al., 2013) and the RNA 

helicase Dbp8 was shown to be recruited to pre-ribosomal complexes by its interaction with 

Esf2, which additionally also stimulates the ATPase activity of the protein (Granneman et al., 
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2006a). In contrast, the mRNA binding protein Yra1 was reported to inhibit the unwinding 

activity of Dbp2 (Ma et al., 2013). A common structural fold that is present in numerous RNA 

helicase cofactors is the MIF4G-domain that mediates interactions with DEAD-box helicases 

of the eIF4A-like family. Synergistic stimulating effects were observed for the interaction 

between eIF4A and its cofactors eIF4G and eIF4B in the context of translation initiation 

(Nielsen et al., 2011; Andreou and Klostermeier, 2014). Interestingly, the MIF4G-domain 

containing protein Gle1 was reported to independently modulate the activity of two RNA 

helicases, Ded1 and Dbp5, playing a role in translation initiation as well as in mRNA export 

(Weirich et al., 2006; Aryanpur et al., 2017). G-patch proteins are another known family of 

cofactors, which regulate the recruitment and activity of RNA helicases by interactions formed 

between their characteristic glycine-rich region and the OB-fold of DEAH-box helicases. 

Excitingly, several G-patch proteins were shown to compete for the interaction with the 

multifunctional DEAH-box RNA helicase Prp43, influencing its subcellular localisation for 

directing the protein to its different functional sites (Heininger et al., 2016). Another interesting 

model of helicase recruitment was reported for the mitochondrial DEAD-box protein Mss116, 

which is implicated in splicing of group I and group II introns (Huang et al., 2005). This protein 

contains a basic tail containing several positively charged amino acids at the C-terminus, which 

was proposed to tether the helicase to structured RNA substrates, which promotes unwinding 

activities of neighbouring RNA duplexes (Mohr et al., 2008; Mallam et al., 2011). Due to the 

multitude of trans-acting factors that are present on pre-ribosomes at the same time, the 

identification of RNA helicase cofactors in the context of ribosome biogenesis remains a major 

challenge. In addition to the action of dedicated protein cofactors, the activity of RNA helicases 

can be regulated in other ways. For example, the activity of the human DEAD-box protein 

DDX21 was recently shown to be regulated by binding of the SLERT lncRNA (Xing et al., 

2017). Also, the action of DDX21 on R-loops was shown to be post-translationally regulated 

by acetylation, which is carried out by CBP for inhibition and deacetylation mediated by SIRT7 

activates the protein (Song et al., 2017).  

By applying CRAC, we were able to determine the interaction sites of Has1, Spb4 and Mak5 

on pre-ribosomal complexes. Identification of distinct crosslinking sites of Has1 on the 18S 

rRNA as well as on the 25S rRNA, to which Has1 likely binds at separate times during ribosome 

biogenesis, suggests specific recruitment mechanisms for its functions in the biogenesis of 

each of the ribosomal subunits. A dedicated protein cofactor has not been identified for Has1 

so far, but it is likely that the association of Has1 with pre-40S and pre-60S complexes involves 

specific protein interactions, which may either be formed on the pre-ribosome or Has1 may be 

recruited as part of a protein subcomplex. It is proposed that Mak5 interacts only very 

transiently with its target site in 25S rRNA suggesting that recruitment to the pre-ribosome is 

concomitant with the use of its RNA helicase activity, thereby triggering its rapid recycling. 
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Genetic interaction studies defined a functional cluster of proteins composed of Mak5, Ebp2, 

Nop16, Rpf1 and Rpl14 (eL14) and it was suggested that these proteins provide a structural 

interface promoting the recruitment of Mak5 to its RNA substrate (Pratte et al., 2013). Mapping 

the Mak5 binding site on the Nog2 pre-60S particle revealed that Rpl14 does not directly 

contact the rRNA sequence bound by Mak5, but it is located in close proximity at the surface 

of this particle. Given the relatively large size of the Mak5 protein, it is likely that Mak5 and 

Rpl14 may contact each other on the pre-ribosome, which would be consistent with their inter-

dependent recruitment to pre-60S particles. 

In contrast to the transient pre-ribosome binding of Mak5, Spb4 is recruited early to pre-

ribosomal particles and is released relatively late in the pathway, but prior to export of pre-60S 

particles. This suggests that the recruitment and RNA helicase activity of Spb4 are uncoupled. 

Spb4 was proposed to be part of a hierarchical recruitment pathway for factors involved in pre-

60S biogenesis; Spb4 needs the Rpf2-subcomplex to be recruited to pre-ribosomes and in 

turn, Spb4 is required for the recruitment of the GTPase Nog2 (Talkish et al., 2012). 

Interestingly, the binding site of Spb4 in helices 62 and 63 of the 25S rRNA is in close proximity 

to the position of Nog2 determined in a recent cryo-EM structure of a pre-ribosomal complex, 

suggesting a direct link between Spb4 and Nog2. In line with this, it was further proposed that 

Nog2 might regulate the activity of Spb4 (Talkish et al., 2012), but it remains to be determined 

if this is the case. 

Interestingly, sequence analysis of Mak5 and Spb4 revealed that both proteins contain 

numerous positively charged amino acids at their C-terminus beyond the conserved helicase 

core domain, reminiscent of the C-terminal end of Mss116, which provides a platform for 

interactions with a helix structure in its RNA substrate. This raises the possibility that the basic 

tails of Spb4 and Mak5 similarly contribute to the interactions of these proteins with their 

ribosomal RNA substrates. For Mak5 it was shown in truncation experiments that its C-terminal 

tail is essential for the function of Mak5, but it is still unclear if the C-terminus is involved in 

recognition of the RNA target or if it is involved in mediating cofactor interactions (Pratte et al., 

2013). Interestingly, the interaction site of Spb4 at the 3’ end of 25S rRNA (Fig. 3.14) 

constitutes a helical secondary structure, similar to the structure bound by the C-terminus of 

Mss116, making this a likely candidate for such an RNA interaction platform. This model is 

further supported by our structure probing analysis, which indicates that this region of the 25S 

rRNA might be bound, but not remodelled by Spb4. To determine the regions/amino acids of 

Spb4 that contact the rRNA, a mass spectrometry-based approach focusing on protein 

components crosslinked or bound to the RNA could provide additional information about the 

25S rRNA-Spb4 interaction sites on the protein level and further support our hypothesis that 

the two Spb4 crosslinking sites on the 25S RNA represent a binding platform and a functional 

site. It is possible that Spb4 is recruited to its binding platform with the help of the Rpf2-
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subcomplex and its basic C-terminal end to rRNA as soon as the 3’ end of 25S rRNA is 

synthesised. Spb4 would then remain bound until the helicase core has access to its functional 

site, which could be prevented during the early stages of pre-60S biogenesis by steric 

hindrance. The interaction of Spb4 with its functional site could promote the recruitment of 

Nog2 and stimulate ATP hydrolysis by Spb4, triggering its release from pre-60S. 

4.3 Diverse functions of RNA helicases in ribosome biogenesis 

Regulating snoRNA levels on pre-ribosomes is the best described function of RNA helicases 

involved in ribosome biogenesis and links these proteins to the functions carried out by the 

interacting snoRNPs. As box C/D snoRNAs form long basepairing interactions with their target 

rRNA (up to 21 nts), the release of some snoRNAs after they have successfully performed 

their functions has been suggested to require the unwinding activity of RNA helicases. This 

can influence rRNA modification either by releasing snoRNAs that have overlapping 

basepairing sites to enable modification of adjacent or nearby sites by successive snoRNAs. 

Alternatively, as some snoRNAs guide modifications at more than one site in the rRNAs, 

helicase-mediated release of such snoRNAs may help efficient recycling, ensuring that 

sufficient amounts of snoRNAs are available for modification of newly synthesised pre-rRNA. 

Finally, RNA helicases may also remodel rRNA-rRNA interactions that prevent efficient 

basepairing of snoRNAs with their target sites in the pre-rRNA. Such pre-ribosome remodelling 

by the RNA helicase Prp43 has been suggested to enable the pre-ribosomal recruitment of 

the snoRNAs snR64 and snR67 (Bohnsack et al., 2009), and a corresponding decrease in the 

extent of 2’-O-methylation at C2337 guided by snR64 in cells lacking Prp43 was reported 

(Leeds et al., 2006). Interestingly, a sequencing based method for monitoring the levels of 2’-

O-methylation in rRNA (RiboMeth-Seq) revealed partial modification of several residues 

targeted by box C/D snoRNAs (Birkedal et al., 2015). By regulating the levels of snoRNAs on 

pre-ribosomes, RNA helicases contribute to regulating the modification pattern of rRNAs. 

Together with alternative pre-rRNA processing and incorporation of different RP paralogs, the 

detection of substoichiometic rRNA modifications strengthens the model of ribosome 

heterogeneity. This model suggests the presence of ribosomes with different composition and 

specificity, to promote expression of specific mRNAs in response to different cellular stresses, 

during particular developmental phases and to modulate protein expression levels in different 

tissues or subcellular localisations. 

In addition to their functions in guiding snoRNP-mediated rRNA modifications, snoRNAs are 

also implicated in maintaining an open rRNA conformation in early pre-ribosomes to allow 

efficient recruitment of other snoRNPs, trans-acting ribosome biogenesis factors and 

ribosomal proteins. However, binding of snoRNAs to sites within the rRNAs also affects 

secondary and tertiary structure formation. For example, basepairing interactions by the 
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snoRNA U3 are required for central pseudoknot formation, which is a conserved structural fold 

in the small ribosomal subunit essential for translation (Dutca et al., 2011). Furthermore, 

binding of other snoRNAs to sites in rRNA, which are distant on the primary sequence, 

establishes long-range rRNA interactions that bring rRNA sequences in close proximity to form 

new basepairing interactions (Martin et al., 2014). The RNA helicases Dhr1 and Rok1 are 

required for the release of U3 and snR30 respectively from pre-40S complexes, enabling 

progress of the pre-40S maturation pathway once these structural features have been 

established (Martin et al., 2014; Sardana et al., 2015). In this study, the identification of the 

binding sites of the DEAD-box RNA helicase Has1 on 18S rRNA and U14 (Fig. 3.4 – 3.7) 

supported its proposed function in mediating the release of U14 (Liang and Fournier, 2006). 

Interestingly, U14 has maintained both snoRNA functions in 2’-O-methylation of 18S-C414 and 

bringing distant 18S rRNA helices of the 18S rRNA 5’ domain into close proximity and it 

therefore forms several basepairing interactions with the 18S rRNA. CLASH hybrids within the 

obtained CRAC data provided evidence for a basepairing interaction between U14 and 18S 

rRNA while Has1 is present on the pre-40S complex (Fig. 3.6). Taken together with the 

crosslinking of Has1 to the 18S rRNA and U14 sequences involved in forming basepairing 

interactions, this suggests that the observation of U14 accumulation on pre-ribosomes in the 

absence of Has1 (Fig. 3.13) could be a direct effect. The RNA helicase Dbp4 was also reported 

to be required for the release of the U14 snoRNA from pre-ribosomes (Liang et al., 1997), 

which could suggest either a partial redundancy with Has1 in directly releasing U14 or that an 

indirect effect is responsible for U14 accumulation on pre-ribosomes in the absence of Dbp4. 

Notably, a second identified crosslinking site of Has1 on the 18S rRNA, which is distant on the 

mature small ribosomal subunit (Fig. 3.4, 3.5 and 3.7) was also identified. On the one hand, it 

is possible that this region of the 18S rRNA is closer to the U14 basepairing sites in a pre-SSU 

conformation and that these two separate crosslinking sites actually represent binding of a 

single protein, and that crosslinking of Has1 to this site also reflects the role of this protein in 

mediating U14 release. Similar to the model for Spb4, it is possible that the two binding sites 

correspond to rRNA interactions made by different domains of Has1. On the other hand, the 

crosslinking sites of Has1 at helices 30 - 35 in the 3’ major domain of the 18S rRNA could 

derive from a second hitherto unknown function of Has1 during pre-40S biogenesis. 

RNA helicase function is typically connected to structural transitions in RNAs. As well as 

mediating the release of snoRNAs, which triggers conformational changes in the rRNA, 

structural transitions in the context of rRNA-rRNA interactions are another proposed function 

for RNA helicases, and this can lead to a variety of consequences during biogenesis of the 

ribosomal subunit. Like this, the DEAH-box RNA helicase Prp43 is required for efficient D site 

cleavage by the endonuclease Nob1 (Pertschy et al., 2009). Structural transitions in rRNA as 

a result of RNA helicase action also can induce compositional changes in pre-ribosomal 
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complexes, if the affected structure promotes efficient binding, or triggers release, of trans-

acting ribosome biogenesis factors or ribosomal proteins.  

The function of the DEAD-box RNA helicase Has1 in LSU biogenesis appears to be uncoupled 

from its snoRNA release function in SSU biogenesis. In previous publications, Has1 was 

suggested to mediate the release of several trans-acting ribosome biogenesis factors from 

pre-60S particles (Dembowski et al., 2013). The six affected biogenesis factors, including a 

trimeric subcomplex composed of Nop7-Erb1-Ytm1, functionally cluster together and are 

required after pre-rRNA cleavage at site A3 for downstream steps of ribosome biogenesis 

(Miles et al., 2005). Interestingly, Ytm1 is homologous to Rsa4 and both proteins share a 

structural motif that mediates their interaction with the MIDAS domain of the AAA-ATPase 

Rea1 and it was shown that Rea1 removes both proteins from pre-60S particles (Baßler et al., 

2010; Thoms et al., 2016). It was further proposed that the removal of Ytm1 triggers the release 

of its interaction partner Erb1 (Thoms et al., 2016), whereas, in contrast, the removal of Rsa4 

does not induce the release of its interaction partner Nsa2, which was predicted to form 

stronger pre-rRNA interactions (Baßler et al., 2010). These observations, together with our 

data showing that the 25S rRNA crosslinking site of Has1 overlaps with the binding site of Erb1 

(Fig. 3.8; Granneman et al., 2011), suggest a model where the RNA helicase Has1 weakens 

the pre-rRNA interactions of Erb1, ultimately leading to its release from the pre-60S particle 

through its interactions with Ytm1 and Rea1. Removal of these “A3-cluster” factors was 

proposed to allow pre-rRNA rearrangements and subsequent binding of other trans-acting 

ribosome biogenesis factors promoting turnover of ITS2 (Konikkat et al., 2017). 

The identified binding site of Spb4 in helices 62 and 63 of the 25S rRNA could also indicate a 

structural transition during late pre-60S biogenesis (Fig. 3.14). This Spb4 crosslinking site is 

located at the base of a eukaryotic expansion segment (ES27), which appears to be very 

flexible at earlier stages of ribosome biogenesis (Bradatsch et al., 2012), whereas its position 

on the pre-ribosome is restricted during pre-60 export by its interaction with the export adaptor 

Arx1. Our DMS structure probing experiment of this region in the presence of Spb4 resembles 

the structural composition in mature large ribosomal subunits. However, in the absence of 

Spb4, the mature rRNA structure of this region seems not to be formed yet, allowing a higher 

degree of flexibility for ES27 (Fig. 3.17). Co-immunoprecipitation experiments from various 

publications indicate that Arx1 and Spb4 are not present in the same pre-60S particles, 

suggesting that the remodelling activity of Spb4 at helices 62 and 63 of 25S rRNA and the 

subsequent release of Spb4 might be required for efficient recruitment of Arx1 to pre-ribosomal 

particles. To test this hypothesis, we have generated yeast strains that allow the isolation of 

late pre-60S complexes from cells that contain Spb4 or where Spb4 is depleted. With these 

strains, we will monitor the level of Arx1 on pre-60S complexes upon depletion of Spb4 and a 

decrease in the amount of Arx1 detected would support the hypothesis that Spb4 is required 
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for Arx1 recruitment to ES27. As mentioned earlier, Spb4 is required for the pre-ribosome 

recruitment of Nog2, which also associates in close proximity to ES27. Interestingly, Nog2 acts 

as a placeholder for the essential export factor Nmd3 meaning that the action of Spb4 on 

helices 62 and 63 of the 25S rRNA might facilitate recruitment of another export factor, Arx1. 

Thus, Spb4 might play an important function in generating export competence of pre-ribosomal 

particles. How these processes are physically and/or regulatory interconnected should be 

addressed by further research. This model is proposed based on the proximity of the identified 

Spb4 crosslinking site and the binding sites of Arx1 and Nog2 as shown by cryo-EM structures 

of pre-60S complexes. However, it is also possible that remodelling of helices 62 and 63 of the 

25S rRNA by Spb4 leads to long range conformational changes that affect other regions of the 

pre-ribosome. Therefore, an experiment combining DMS structure probing and next 

generation sequencing to monitor changes in the DMS modification pattern along the entire 

length of the 25S rRNA in the presence or absence of Spb4 would be a powerful tool to analyse 

the conformational changes in a whole range of pre-60S particles. A similar approach was 

already used in order to define the flexibility of pre-rRNA in late pre-40S particles, which could 

not be detected by the use of cryo-EM reconstructions (Hector et al., 2014). 

The Mak5 binding site in 25S rRNA identified in this study allowed further functional studies 

into the structural and compositional transitions that take place within domain I of pre-60S 

ribosomal subunits. After confirmation of the putative Mak5 binding site in helix 39 of the 25S 

rRNA by DMS structure probing (Fig. 3.20), the observed changes in the intensity of DMS-

specific modification of A1129 and A1130 at the very tip of helix 39 upon depletion of Mak5 

prompted us to further investigate the interactions of these two nucleotides in the temporal 

context of ribosome synthesis. Intriguingly, applying DMS structure probing to a series of 

purified pre-60S complexes revealed two structural transitions involving A1129 and A1130 

along the pathway of 60S biogenesis (Fig. 3.21). The two adenines were protected from DMS 

modification during the early stages of LSU biogenesis until the Nop2-particle was formed. 

Importantly, this is the pre-60S particle where it could be shown that the accessibility of A1129 

and A1130 is dependent on the presence of Mak5 (Fig. 3.20). As helix 39 in mature ribosomes 

constitutes a stem-loop structure, rather than being composed of sequences from distance 

regions of the pre-rRNA transcript, it is unlikely that this sequence participates in alternative 

basepair interactions, which would need additional help for being formed. In contrast, we 

speculate that Mak5 might rather be involved in the release of an unidentified trans-acting 

ribosome biogenesis factor, which binds to helix 39 during the early steps of ribosome 

assembly. However, in cytoplasmic pre-ribosomal complexes, as well as in mature ribosomes, 

A1129 and A1130 were no longer exposed to modification by DMS (Fig. 3.21). Investigating 

the position of these nucleotides in the available crystal structures of mature 60S subunits 

revealed that A1129 and A1130 are buried within a binding pocket of Rpl10 (uL16), a ribosomal 
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protein, which is known to be recruited to pre-ribosomes at a very late and cytoplasmic step 

(Fig. 3.22; Hedges et al., 2005). Therefore, we concluded that the presence, and most likely 

the unwinding activity, of the DEAD-box protein Mak5 during the nuclear steps of ribosome 

biogenesis is required for efficient binding of Rpl10 to domain I of 25S rRNA. Interestingly, as 

well as being an essential component of the mature LSU, together with the cytoplasmic 

GTPase Lsg1, binding of Rpl10 facilitates the release of Nmd3 and preventing the stable 

association of Rpl10 was suggested to affect the dynamics of Nmd3 loading, which impairs 

the export of pre-ribosomal particles (West et al., 2005; Hofer et al., 2007). It was also shown 

that mutations in Mak5 are able to suppress the phenotype of mutations in the essential trans-

acting ribosome biogenesis factor Nsa1 (Pratte et al., 2013). Excitingly, Nsa1 binds to pre-60S 

complexes in very close proximity to the identified binding site of Mak5, suggesting a potential 

interplay between these proteins (Fig. 3.19). Future experiments will investigate on the one 

hand, which ribosome biogenesis factor binds to helix 39 during the early stages of 60S 

biogenesis and requires the help of Mak5 to be efficiently released from pre-ribosomes, and, 

on the other hand, explore how Mak5 and Nsa1 might be functionally linked. 

In eukaryotes, 21 RNA helicases, including 16 DEAD-box proteins, are implicated in ribosome 

biogenesis and this work alongside various other studies, suggests that the action of these 

enzymes has diverse effects on pre-ribosome assembly. In general, the suggested helicase 

functions in the biogenesis of the large ribosomal subunit are related to conformational and 

compositional changes that promote a more compact pre-60S structure, i.e. the release of 

snoRNAs that help maintain an open pre-rRNA structure and the release of trans-acting 

biogenesis factors. However, it is likely that all these enzymes have the same functions on a 

molecular level. This raises the question of why so many different helicases are required during 

ribosome biogenesis. It is likely that each helicase is optimised for a specific task through its 

interactions with other proteins. Although the ATPase activity of Mak5 and Spb4 was found to 

be essential for their functions in pre-60S biogenesis, the presence of these proteins is 

probably also important for subunit maturation. The large number of RNA helicases required 

for eukaryotic ribosome biogenesis compared to prokaryotic ribosome biogenesis, likely 

reflects that complexity of this process. This is due to the larger size of the rRNAs and the 

numerous additional ribosomal proteins that are present on eukaryotic ribosomes, meaning 

numerous structural transitions are required during subunit assembly. 

It is important that this complicated pathway takes place correctly as ribosome biogenesis has 

a high metabolic cost (Warner, 1999) and only functional ribosomes should be produced so 

that translation of cellular proteins is efficient and accurate. The structural transitions induced 

by energy-driven enzymes such as RNA helicases promote the progression and directionality 

of the pathway, and can therefore provide a platform for quality control checkpoints. Quality 

control mechanisms for pre-ribosomal subunits have been suggested; a model was proposed 
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where degradation of ribosome biogenesis intermediates is kinetically controlled and RNA in 

kinetically trapped pre-ribosomal particles gets oligoadenylated by the TRAMP complex, which 

activates rRNA degradation by the nuclear exosome (Houseley et al., 2006; Karbstein, 2009). 

Once in the cytoplasm, non-functional ribosomes trapped on mRNAs are identified as stalled 

translation machineries, and are resolved with the help of Hbs1 and Dom34, which promotes 

subsequent degradation of the ribosomal subunits and the bound mRNA by exonucleases in 

a pathway called NRD (non-functional ribosome decay) (reviewed in Lafontaine et al., 2010). 

4.4 Analysis of structural transitions during LSU biogenesis 

Innovative technical advances like new direct detectors in cryo-EM have significantly improved 

the resolution and number of available structures of mature ribosomes and pre-ribosomal 

complexes, which has significantly enhanced our understanding of structural composition and 

transitions taking place at late stages during LSU biogenesis. During the late stages of LSU 

biogenesis, a more compact pre-60S structure is formed ready for nucleo-cytoplasmic 

transport, minimising the heterogeneity of purified pre-ribosomal complexes and making 

determination of their structures possible. The already available structures of late pre-60S 

complexes have revealed the 5S RNP rotation as a prerequisite for export of pre-ribosomal 

particles and identified the positions of still attached ITS2 sequences and their interactions with 

associated factors, providing valuable insights into the structural dynamics of these particles 

(Biedka et al., 2017). Notably, the pre-ribosomal complexes purified via a given bait protein 

constitute a non-homogenous mixture of several pre-60S intermediates. Of the to date earliest 

resolved pre-60S structure, the Nog2-particle, three major structural forms were detected and 

could be differentiated by advanced computational analysis (Wu et al., 2016). The appearance 

and loss of additional masses, which clustered around the subunit interface and could be 

assigned as specific trans-acting ribosome biogenesis factors by crosslinking coupled with 

mass spectrometry, revealed the dynamic association and dissociation of assembly factors 

during this phase of LSU biogenesis. Together with the conformational changes observed in 

ITS2 and its subsequent removal, these structures provided insights into the construction of 

important functional regions within 60S subunits, namely the peptidyl transferase centre and 

the peptidyl exit tunnel (Biedka et al., 2017). 

Structure determination of even earlier pre-ribosomal particles represents a major challenge, 

as the rRNA exhibits more flexibility and multiple conformational and compositional changes 

occur at the same time at different sites across the pre-ribosome. Nevertheless, further 

structural information regarding earlier ribosome biogenesis intermediates can also be 

obtained by structural methods with lower resolution (e.g. negative stain electron microscopy) 

as well as classical genetic and biochemical approaches, such as genetic interaction screens, 

co-immunoprecipitations of pre-ribosomal particles, protein-protein interaction studies, 
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purification and structural analysis of pre-assembled pre-ribosomal subcomplexes, 

identification of protein-rRNA interaction sites by CRAC and chemical structure probing of pre-

rRNA. Since structural transitions are frequently co-ordinated by the function of energy-

consuming enzymes such as RNA helicases, the identification of the binding sites of such 

factors on pre-ribosomes provides important information regarding transitions they might 

regulate, and enables further functional studies to understand the transitions to be carried out. 

In this study, the binding sites of three RNA helicases, Has1, Spb4 and Mak5 on pre-ribosomal 

complexes were identified. Although these proteins carry out the same biochemical activity on 

a molecular level, namely unwinding of RNA duplexes, the physiological consequences of their 

actions in ribosome biogenesis differ. Has1 was shown to crosslink to 18S rRNA and to the 

U14 snoRNA indicating a direct role in releasing U14 from pre-40S particles (Fig. 3.6; Liang 

and Fournier, 2006). The overlapping binding site of Has1 with the trans-acting ribosome 

biogenesis factor Erb1 supports the observation that Has1 is involved in the release of the 

Erb1-Ytm1 subcomplex from pre-60S subunits, a step which also involves the AAA-ATPase 

Rea1 and is required for subsequent C2-cleavage and turnover of the ITS2 sequence (Fig. 3.8; 

Konikkat et al., 2017). Identification of the binding sites of Spb4, together with DMS structure 

probing experiments, indicates a structural rearrangement involving the expansion segment 

ES27, which is subsequently tethered by Arx1 for efficient export of pre-ribosomal particles 

into the cytoplasm (Fig. 3.14 and 3.17) and also provides mechanistic insight into the role of 

Spb4 in recruitment of Nog2 to pre-60S particles. Structural probing addressing the pre-rRNA 

structure in vicinity of the identified Mak5 binding site revealed that Mak5 is required for a 

structural rearrangement that is important for efficient recruitment of Rpl10 in the cytoplasm 

(Fig. 3.21 and 3.22). Together, these findings expand the knowledge of the functions of RNA 

helicases in ribosome biogenesis as well as the structural and compositional changes that 

occur during the biogenesis of ribosomal subunits.
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