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Abstract

For a Spin manifold M the Rosenberg index α([M ]) is an obstruction against
positive scalar curvature metrics. When M is non-Spin but Spinc, Bolotov
and Dranishnikov suggested to apply the Rosenberg index to a suitable S1-
bundle L → M . We study this approach, in particular for the case π1(L) 6=
π1(M). We explain how the bundle construction can be turned into a non-
trivial natural transformation of bordism groups ΩSpinc → ΩSpin . Then we
show that α([L]) ∈ KO(C∗(π1(L))) always vanishes, but also give an example
where L nonetheless does not admit a positive scalar curvature metric.

The second part of the thesis concerns the relation of α([N ]) and α([M ])
for certain codimension-2 submanifolds N ⊂ M . Following a construction of
Engel we extend the Thom map KO∗(M)→ KO∗−2(N) to KO∗(Bπ1(M))→
KO∗−2(Bπ1(N)), and then further to KOπ1(M)

∗ (Eπ1(M))→ KO
π1(N)
∗−2 (Eπ1(N)).
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1. Introduction

The notion of scalar curvature is perhaps the simplest way to measure how
the local geometry of a Riemannian manifold differs from Euclidean space.
For a long time there has been interest in the question which scalar curvature
functions can be realized by a Riemannian metric on a given smooth closed
manifold M . As it turns out, this problem mostly boils down to the ques-
tion whether M allows a Riemannian metric such that the scalar curvature is
(strictly) positive everywhere.

One main tool in the study of this problem are index-theoretical obstruc-
tions against positive scalar curvature (psc) metrics. When the manifold M is
Spin, the Dirac operator gives rise to a fundamental class [M ]KO ∈ KO(M) in
real K-homology. If M allows a psc metric, then the Rosenberg index of this
class, α([M ]) ∈ KOn(C∗(π1(M))) is the zero element in the real K-theory of
the group C∗-algebra of the fundamental group. This means that α([M ]) can
be used as an obstruction against the existence of psc metrics on M .

There are also several geometrical constructions that can be used to study
the psc question, such as fiber bundles, submanifolds and bordism. In this the-
sis we study how the index-theoretical obstruction combines with and relates to
certain geometrical constructions in two different settings: In the first part, we
apply the index obstruction to S1-principal bundles over a Spinc manifold M
and investigate if it can be used as an obstruction against psc metrics on M .
In the second part, we consider certain codimension-2 submanifolds N ⊂ M
and try to relate the Rosenberg index of M to that of the submanifold N .

We will begin by recapitulating in Section 2 the most essential concepts
used in the following sections. This includes the notion of Spin- and Spinc-
structures, bordism groups and the index-theoretical obstruction.

In a small detour, we calculate in Section 3 the effect that a change of the
Spin-structure on M has on the Rosenberg index α([M ]). This recovers the
known fact that the vanishing of α([M ]) does not depend on the choice of the
Spin-structure on M .

Theorem 1.1. Let s1, s2 be two Spin-structures on a closed connected smooth
manifold M , related by the action of an element x ∈ H1(M ;Z2).

Then the Rosenberg indexes of the corresponding fundamental classes [M ]1,
[M ]2 are related by the formula

α([M ]2) = (Φx)∗ ◦ α([M ]1),

where Φx : C∗(π1(M))→ C∗(π1(M)) is a C∗-automorphism that only depends
on the class x.

In Section 4, the main part of this thesis, we investigate an approach that
was suggested by Bolotov and Dranishnikov ([BD14]) in order to deal with a
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3

manifold M that is not Spin but Spinc. In this setting the index obstruction
cannot be applied directly, but it is possible to construct an S1-principal bundle
L→M such that L is Spin. Then the obstruction can be applied to L and a
differential geometry argument shows that if L is not psc, then neither is M .

In the case π1(L) = π1(M) considered by Bolotov and Dranishnikov it turns
out that the obstruction for L always vanishes due to a bordism argument.
When π1(L) 6= π1(M), however, things are much less clear. We explain the
S1-bundle construction and the role of the fundamental group of the bundle,
which is a group extension of π1(M). We also show how the choices made in
the S1-bundle construction can be made in a canonical way, giving rise to a
natural transformation of bordism groups ΩSpin

∗ → ΩSpinc

∗+1 .

Theorem 1.2. For every odd number n ∈ N, n > 1, there is a non-trivial
natural transformation ΩSpinc

∗ (·)→ ΩSpin
∗+1 (· ×BZn).

In the general case (with not necessarily canonical choices) we investigate
the bordism group ΩSpin(Bπ1(L)) and the K-theory group KO(C∗(π1(L))) and
show that in many cases the absence of odd torsion in the latter groups forces
the index obstruction to vanish. At the same time, however, a related example
due to Rosenberg suggests that the obstruction might be non-zero in some
cases. By using equivariant Spin-bordism groups we show that the obstruction
does vanish in all cases. On the other hand, we give an example where the
minimal hypersurface method of Schoen and Yau can be used to show that
the S1-bundle does not allow a psc metric.

Theorem 1.3. Let M be a closed connected Spinc manifold such that M̃ is
not Spin and let L→M be an S1-bundle that is Spin.

Then the Rosenberg index of L inside KO(C∗(π1(L))) always vanishes. At
the same time there are examples where L does not allow a metric of positive
scalar curvature.

In Section 5 we consider the Rosenberg index of a codimension-2 sub-
manifold N ⊂M with trivial normal bundle. Hanke, Pape and Schick showed
([HPS15]) that if the induced map π1(N) → π1(M) is injective and π2(N) →
π2(M) is surjective, then α([N ]) ∈ KOn−2(C∗(π1(N))) is an obstruction against
psc metrics on M . The relation between α([M ]) and α([N ]) is unknown; ide-
ally there might be a homomorphism KOn(C∗(π1(M)))→ KOn−2(C∗(π1(N)))
sending one to the other.

So far such a homomorphism has not been found. However, we can make
a step in this direction by constructing on the topological side a transfer map
trM : KOn(Bπ1(M)) → KOn−2(Bπ1(N)) that sends the class uM ∗([M ]KO) to
uN ∗([N ]KO), where uM and uN are classifying maps for the universal coverings.
We explain the construction of this extension and discuss some examples where
it can be applied. Then we show that the transfer map can be extended even
further to KOπ1(M)

n (Eπ1(M))→ KO
π1(N)
n−2 (Eπ1(N)).
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Theorem 1.4. Let M be a closed connected Spin-manifold and N a closed
connected codimension-2 submanifold with trivialized normal bundle. Assume
that π1(N)→ π1(M) is injective and π2(N)→ π2(M) is surjective.

Then there is, for any generalized multiplicative equivariant cohomology
theory E with lf-restrictions, a map

trπ1(M) : Eπ1(M)
∗ (Eπ1(M))→ E

π1(N)
∗−2 (Eπ1(N))

such that the following diagram commutes:

E∗(M) E
π1(M)
∗ (Eπ1(M))

E∗−2(N) E
π1(N)
∗−2 (Eπ1(N))

trM
trπ1(M)

Moreover, the transfer trπ1(M) is natural for multiplicative transformations of
equivariant cohomology theories with lf-restrictions.
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2. Preliminaries

2.1 Positive scalar curvature metrics

When M is a Riemannian manifold, the scalar curvature function κ : M → R
is defined to be the trace of the Ricci tensor. It is the simplest notion of
curvature and measures how the volume of a small ball in M differs from the
volume of a ball of the same radius in Euclidean space:

Vol(Bε(x) ⊂M)

Vol(Bε(0) ⊂ Rdim(M))
= 1− ε2 · κ(x)

6 · dim(M) + 2
+O(ε4).

In dimension 2 the scalar curvature is just twice the Gaussian curvature. In
arbitrary dimension its value at a point x ∈ M equals twice the sum of the
sectional curvatures of all planes ei∧ ej, i < j, where {ei}≤n is an orthonormal
basis of TxM .

It is natural to ask which scalar curvature functions can be realized by a
Riemannian metric on a given manifold. This question is largely answered
by the following Trichotomy Theorem due to Kazdan and Warner ([KW75a],
[KW75b]):

Theorem 2.1.1. Let M be a closed connected smooth manifold of dimension
≥ 3. Then exactly one of the following statements is true:

1. All smooth functions µ : M → R can be realized as the scalar curvature
of a Riemannian metric on M .

2. A smooth function µ : M → R can be realized as the scalar curvature
of a Riemannian metric on M iff it is either negative at some point or
identically 0. In the latter case the Riemannian metric must be Ricci-flat,
meaning its Ricci curvature vanishes everywhere.

3. A smooth function µ : M → R can be realized as the scalar curvature of
a Riemannian metric on M iff it is negative somewhere.

Setting aside the special case of Ricci-flat metrics, the crucial question
remains whether a given manifold admits a metric of positive scalar curvature.
In this case we say that M is psc. We say that M is not psc if it does not
allow a positive scalar curvature metric.

Example 2.1.2. For n ≥ 2 the usual metric on the sphere Sn, that comes
from the standard embedding into Rn+1, has positive scalar curvature. 4

Example 2.1.3. WhenM is an arbitrary closed manifold, the productM×S2

allows a positive scalar curvature metric. Indeed, the scalar curvature of a
product manifold is just the sum of the scalar curvatures of the individual
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6 2. Preliminaries

manifolds. Since M is closed, the scalar curvature of an arbitrary fixed metric
on M is bounded below. By scaling the metric of S2, the curvature on S2

can be made as large as needed such that the product metric on M × S2 has
positive scalar curvature. 4

Example 2.1.4. In any dimension n the torus Tn can be given a flat metric.
But with the index-theoretical methods described below it can be shown that
Tn does not allows a psc metric. 4

The main tool for showing that a given manifold does allow a psc metric
is surgery. Gromov and Lawson, and independently Schoen and Yau, showed
the following ([GL80], [SY79]):

Theorem 2.1.5. Let N be a closed psc manifold, and let M be obtained
from N by surgery of codimension ≥ 3. Then M allows a psc metric.

The idea here is that the codimension is high enough for the transversal
sphere of the surgery to allow a psc metric. The difficult part is to find a
suitable transition from the psc metric on the handlebody to the psc metric
on N near the points where the handle is attached to N .

What makes Theorem 2.1.5 particularly powerful is the fact that a bor-
dism W from M1 to M2 has a handle decomposition without handles of di-
mension ≤ 2 if the inclusion M1 ⊂ W is 2-connected ([Ran02], proof of 8.31).
Reversing the handlebody decomposition, M1 can then be obtained from M2

by surgery in codimension ≥ 3. Therefore, if M2 is psc, then so is M1.
This observation suggests that the psc question for a manifold M can be

decided by looking at the bordism classes u∗([M ]Spin) ∈ ΩSpin(Bπ1(M)) or
u∗([M ]SO) ∈ ΩSO(Bπ1(M)), where u : M → Bπ1(M) is the classifying map
for the universal covering of M . (The reference map u is used to avoid surgery
in low (co)dimension.)

Gromov and Lawson showed ([GL80]):

Theorem 2.1.6. Let M be a simply connected closed smooth manifold of
dimension ≥ 5 such that M̃ is not Spin.

Then M allows a psc metric.

Stolz and Jung showed ([RS01], 4.11):

Theorem 2.1.7. Let M be a closed connected oriented manifold of dimension
≥ 5 such that M̃ is not Spin.

If the class u∗([M ]) ∈ Hn(Bπ1(M);Z) can be represented by a psc manifold,
then M is psc.

To show that a manifold does not allow a psc metric, there are three main
tools. Firstly, in dimension 4 the Seiberg-Witten invariant can be used. The
second tool is the minimal hypersurface method due to Schoen and Yau [SY79],
presented here in the formulation of Schick ([Sch98], 1.6):
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Theorem 2.1.8. Let X be any topological space and let

H+
m(X) = {f∗([M ]) ∈ Hm(X;Z) | f : M → X and M is a psc manifold} .

For 3 ≤ m ≤ 7 taking cap product with any a ∈ H1(X;Z) maps H+
m(X)

into H+
m−1(X).

Since H+
2 (X) is just the image of the Hurewicz map π2(X) → H2(X;Z),

it can be computed easily. Theorem 2.1.8 can then be applied iteratively, for
example to f = id: M →M , in the hope of leading the assumption that M is
psc into a contradiction.

The reason for the dimension restriction is that the proof uses Federer’s reg-
ularity theorem [Fed70] to show that a codimension-1 immersed submanifold
with (locally) minimal volume is in fact embedded. Lohkamp has announced a
way to overcome these technical limitations [Loh] and very recently there is a
preprint by Schoen and Yau where the result is proved without the dimension
constraints [SY17].

Finally, if M allows a Spin-structure on its tangent bundle, index theory
provides an obstruction against the existence of a positive scalar curvature
metric. We will explain this in more detail below.

2.2 Spin-structures, Spinc-structures and their

obstructions

In this section we recapitulate some basic facts about Spin-structures and
Spinc-structures.

Definition 2.2.1. Let ψ : G→ H be a homomorphism of topological groups
and let PH → X be a concrete (i.e., not up to bundle isomorphism) principal
H-bundle over X.

Then a G-structure on PH is represented by a principal G-bundle PG → X
and a bundle map Φ: PG → PH such that ψ(g).Φ(q) = Φ(g.q) for all g ∈ G,
q ∈ PG.

Two bundle maps Φ: PG → PH and Φ′ : P ′G → PH represent the same
G-structure iff there exists a G-bundle isomorphism Ψ: PG → P ′G making the
following diagram commutative:

PG P ′G

PH

Ψ

Φ Φ′

4



8 2. Preliminaries

For example, an n-dimensional vector bundle E → X is orientable iff there
exists an SO(n)-structure on the O(n)-bundle of orthonormal frames in E
(for any metric on E). Different orientations correspond to different SO(n)-
structures.

We are interested in Spin(n)- and Spinc(n)-structures over a given SO(n)-
or O(n)-bundle.

Definition 2.2.2. For n ≥ 3 the topological group Spin(n) is defined to be
the universal covering of SO(n), which is a two-fold covering. For n = 2,
Spin(n) is the non-trivial two-fold covering, for n = 1 it is the discrete group
with two elements. Z2 acts on Spin via deck transformation.

Spinc(n) is defined as the topological group

Spinc(n) = Spin(n)×Z2 S
1 = (Spin(n)× S1)/Z2,

where Z2 acts on S1 = U(1) by multiplication with ±1.

There are canonical maps Spin(n)→ Spinc(n)→ SO(n) given by inclusion
and projection. 4

Remark 2.2.3. When PSO(n) → PO(n) represents an SO(n)-structure on a
given O(n)-bundle PO(n), and PSpin(n) → PSO(n) represents a Spin(n)-structure
on PSO(n), then the concatenation PSpin(n) → PO(n) represents a Spin(n)-
structure on PO(n).

In the other direction, if PSpin(n) → PO(n) represents a Spin(n)-structure
on PO(n), it induces an SO(n)-structure on PO(n), which is represented by
the associated bundle PSpin(n) ×Spin(n) SO(n), and which only depends on the
original Spin(n)-structure.

Furthermore, if PSpin(n) → PO(n) and P ′Spin(n) → PO(n) give rise to the same

SO(n)-structure, then the associated SO(n)-bundles are isomorphic over PO(n).
In this particular case (SO(n) → O(n)) the isomorphism is uniquely deter-
mined, making it possible to compare PSpin(n) → PSpin(n) ×Spin(n) SO(n) with
P ′Spin(n) → P ′Spin(n) ×Spin(n) SO(n) as Spin(n)-structures over a fixed SO(n)-

bundle. In this sense one can say that picking a Spin(n)-structure over an
O(n)-bundle is the same as first picking an orientation and then picking a
Spin(n)-structure over any SO(n)-bundle representing this orientation.

This simplification does not work for the situation Spin(n)→ Spinc(n)→
SO(n) because the bundle isomorphism between two representatives for the
same Spinc(n)-structure on PSO(n) is not unique. 4

There is a second – homotopy-theoretic – definition of G-structures.

Definition 2.2.4. Let the classifying spaces BG and BH be represented by
models such that the map BG → BH induced by the group homomorphism
ψ : G→ H is a fibration. And let f : X → BH be a concrete topological map
(i.e. not up to homotopy).
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Then a G-structure on f is represented by a lift over f

BG

X BH
f

and two lifts represent the same G-structure iff they can be connected by a
homotopy over f . 4

In the case that the (concrete) bundle PH is pulled back from BH this
definition is equivalent to the first one (see [Las63]).

The homotopy-theoretic definition is not only more general, it can also
be used to answer the existence question for G-structures on a given H-
bundle in a nice way. In particular, for n ≥ 3 the maps Spin(n) → SO(n),
Spinc(n) → SO(n) and Spin(n) → Spinc(n) induce isomorphisms on all ho-
motopy groups except for the fundamental group, where they induce either
injections or surjections. It follows that the homotopy fibers of the induced
maps on the classifying spaces are Eilenberg-MacLane spaces:

K(Z2, 1) → BSpin(n) → BSO(n)
K(Z, 2) → BSpinc(n) → BSO(n)
K(Z, 1) → BSpin(n) → BSpinc(n)

From obstruction theory (see [DK01]) it follows that the obstruction against
existence of a Spin(n)- or Spinc(n)-structure on a Spinc(n)- or SO(n)-bundle
P → X is given by an element of a cohomology group of X. And also the set of
such structures, if non-empty, has a free and transitive action of a cohomology
group of X (this gives rise to a non-canonical correspondence).

lifting problem obstruction in action of
Spin(n)→ SO(n) H2(·;Z2) H1(·;Z2)
Spinc(n)→ SO(n) H3(·;Z) H2(·;Z)

Spin(n)→ Spinc(n) H2(·;Z) H1(·;Z)

The obstruction for Spin(n) → SO(n) is given by the second Stiefel-
Whitney class w2, the obstruction for Spinc(n) → SO(n) is given by the
third integral Stiefel-Whitney class W3, which is the image of w2 under the
Bockstein boundary map. This means that a Spinc(n)-structure exists iff the
obstruction against Spin(n)-structures has an integral lift w̃2 ∈ H2(·;Z).

Remark 2.2.5. The action of the cohomology groups on the sets of Spin-
and Spinc-structures can also be described within the classical definition of
G-structures (see [LM89] for Spin(n) → SO(n) and [Fri00] for Spinc(n) →
SO(n)). For example, if a ∈ H1(X;Z2) is the pullback of the generator
of H1(SO(n);Z2) under some map f : X → SO(n), then the action of a
on the set of Spin(n)-structures is just post-composition with the bundle
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automorphism PSO(n) → PSO(n) given by f . This situation necessarily oc-
curs when dim(X) ≤ n: In this case a is the pullback of the generator of
H1(RP n;Z2) under some map, and this generator is the pullback of the gen-
erator of H1(SO(n);Z2) under the map φ : RP n = Sn/Z2 → SO(n) where φ
sends q ∈ Sn to the linear map Rn → Rn that consists of reflection along the
hyperplane perpendicular to q followed by reflection along some fixed hyper-
plane.

In particular, it follows that for dim(X) ≤ n representatives PSpin(n),
P ′Spin(n) of different Spin(n)-structures must be isomorphic as abstract Spin(n)-
bundles, and the only difference is in the map to PSO(n). 4

2.3 Bordism and KO-homology

Spin- and Spinc-bordism

We give a short review of bordism groups. For a detailed account see [Koc96].
For the classes of groups B(n) = O(n), SO(n), Spin(n), Spinc(n) there are

canonical inclusions B(n) → B(n + 1) → . . . that commute with the group
homomorphisms B(n) → O(n). For every principal B(n)-bundle PB(n) → M
these inclusions induce inclusions of principal bundles PB(n) → PB(n+1) → . . . .
A stable B -structure on a principal O(n)-bundle is represented by a B(n+k)-
structure on the induced O(n + k)-bundle for some k. Two representatives
are stably equivalent if the induced B(n+ k+ k′)-structures are equivalent for
some k′.

In the homotopy theoretic picture this definition of stable B -structures
translates as an equivalence class of lifts of the classifying map M → BO(n)→
BO(n+ 1)→ . . . along the sequence of fibrations

BB(n) BB(n+ 1) . . .

BO(n) BO(n+ 1) . . .

γn γn+1

Stable Spin- and Spinc-structures are therefore examples of (multiplicative)
stable (B , γ)-structures as defined by Lashof.

A B -structure on a smooth manifold M is defined as a stable B -structure
on the principal bundle of orthonormal frames in the normal bundle ν(M) of
any embedding i : M → RN . It is non-trivial but true that this definition does
not depend on the choice of the embedding. If M has a boundary, then we can
arrange that i(M) is contained in the half-space {xN ≥ 0} ⊂ RN and i(∂M)
is contained in the hyperplane RN−1 = {xN = 0} ⊂ RN . Then ν(M)|∂M is
identified with the normal bundle of ∂M inside RN−1 and a stable B -structure
on M defines by restriction a stable B -structure on ∂M .

Definition 2.3.1. Let X be a topological space.
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A closed singular manifold with B -structure f : (M, bM) → X is null-
bordant if there exists a compact manifold with boundary W , a B -structure
bW on W and a singular map F : W → X such that ∂W = M , bW restricts to
bM on ∂W and F restricts to f on ∂W .

The B-bordism groups ΩB
k (X) are defined as the bordism-equivalence classes

of singular k-manifolds with B -structure (f : (M, bM)→ X). The group addi-
tion is disjoint union. 4

Remark 2.3.2. By the 2-out-of-3 principle one could equivalently define B -
structures using the stable tangent bundle. Furthermore, in the case of B =
SO , Spin, Spinc it follows from the description of the obstruction against and
classification of Spin- and Spinc-structures in terms of cohomology classes that
B -structures on the stable tangent bundle correspond to B -structures on the
non-stabilized tangent bundle. This simplifies the definition of B -bordism in
the case of B = SO , Spin, Spinc. 4

The KO-fundamental class of a Spin-structure

When M is a manifold with a given Spin-structure, one can construct the cor-
responding Dirac differential operator which then gives rise to a fundamental
class in the real K-homology of M . This is described in [HR00]. We give a
short recapitulation.

The Clifford algebra Cl0,n of a real Euclidean vector space V = Rn (n =
dim(M)) is the algebra generated by V subject to the relations v · v = −‖v‖2.
There is an embedding ρ : Spin(n) → Cl0,n

× of the spin group into the group
of invertible elements of the Clifford algebra. Spin(n) then acts on the Clifford
algebra by conjugation. On V ⊂ Cl0,n this action coincides with the action
Spin(n)→ SO(n) y V .

Let now s : PSpin → PSO be a Spin-structure on the tangent bundle of M ,
and let Cl(M) be the Clifford-algebra bundle associated to the conjugation
action of Spin. Inside Cl(M) sits the vector bundle PSpin ×Spin V and the
Spin-structure s defines an isomorphism PSpin ×Spin V ∼= PSO ×SO V = TM .
Therefore, we can think of TM as a sub-vector bundle of Cl(M). Now let the
spinor bundle S → M be the vector bundle associated to PSpin via the left-
regular action Spin y Cl0,n. The fibers of S are left and right modules for the
Clifford algebra. And the left-regular and conjugation actions fit together in
just the right way that there is a well-defined left action of the algebra bundle
Cl(M) on S.

The Clifford algebra can be given a scalar product such that the left-regular
representation of Spin is unitary. This induces a metric on S. Furthermore,
when a Riemannian metric is given on M , the Levi-Civita connection defines
a principal connection on the bundle PSO . Then there is a unique lift to a
principal connection on PSpin which in turn induces a connection on S. The
Dirac operator corresponding to the Spin-structure s is the elliptic first-order
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differential operator /D : Γ(M,S)→ Γ(M,S) given by

/D(u)(x) =
n∑
i=1

ei.∇eiu(x)

where {ei}≤n is any orthonormal basis of TxM .
/D commutes with the right action of Cl0,n on S. When M is complete

with regard to the Riemannian metric, /D can be extended to an unbounded
self-adjoint operator on L2(M,S). Using functional calculus it can then be
turned into a bounded operator χ( /D) that commutes with the multiplication
operators of C0(M) up to compact operators and therefore defines an element
[C0(M) y L2(M,S), χ( /D)] ∈ KOn(M) in the Fredholm-module picture of
real K-homology. This element behaves similarly to the fundamental class
[M ] ∈ Hn(M ;Z) of an oriented manifold. We call it the KO-fundamental
class and denote it by [M ]KO . The class [M ]KO depends on the differential
structure of M and on the choice of the Spin-structure. It does not depend on
the Riemannian metric.

The natural transformation ΩSpin → KO

The construction of the fundamental class [M ]KO corresponding to a Spin-
structure is compatible with taking boundaries: If (W, sW ) is a compact Spin-
manifold with boundary (M, sM) and i : M → W is the inclusion, then
i∗([M ]KO) = 0 ∈ KO(M). Therefore, one can construct a natural transfor-
mation ΩSpin

∗ (·) → KO∗(·) by the assignment [f : (M, s) → X] 7→ f∗([M ]KO)
where [M ]KO is determined by s.

This transformation gets even simpler when one uses the geometric picture
of K-homology due to Baum and Douglas [BD82], which is equivalent to the
definition via Fredholm modules (see [BHS07]).

Definition 2.3.3. Let X be a topological space. Elements of KOn(X) are
represented by quadruples (M, s,E, f) where M is a closed smooth manifold of
dimension n mod 8, s a Spin-structure on M , E →M a real vector bundle and
f : M → X a continuous map. Two quadruples represent the same element
of KOn(X) if they are equivalent under the equivalence relation generated by
the following rules:

1. Direct sum of vector bundles:

(M tM, s t s, E1 t E2, f t f) ∼ (M, s,E1 ⊕ E2, f)

2. Bordism:

(M1, s1, E1, f1) ∼ (M2,−s2, E2, f2) whenever there is a manifold with
boundary W , with a Spin-structure sW , vector bundle EW → W and
map W → X such that ∂W ∼= M1tM2 and s1,2, E1,2, f1,2 is the induced
structure (−s2 is obtained from s2 by reversing the orientation).
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3. “Vector bundle modification”:

For any 8-dimensional vector bundle π : H → M with a Spin-structure
sH it holds (M, s,E, f) ∼ (Z, sZ , F ⊗ π∗E, f ◦ π) where Z is the unit
sphere bundle inside H ⊕ (M × R), sZ is determined by s and sH , and
F is the reduced spinor bundle obtained from the Spin-structure sH (see
[BHS07]). This rule enforces Bott periodicity.

The addition is disjoint union. 4

With this definition of K-homology the natural transformation sends the
class [M, s, f ] ∈ ΩSpin(X) to [M, s,M × R, f ] ∈ KO(X).

2.4 The index-theoretical obstruction

We now give an overview over the classical results about index-theoretical
obstructions. More information can be found in the survey [RS01].

The basis for the index-theoretical obstructions against positive scalar cur-
vature is the Lichnerowicz-Schrödinger-Weitzenböck formula:

Theorem 2.4.1. Let M be a Riemannian manifold with Spin-structure, S →
M the corresponding spinor bundle, ∇ : Γ(M,S) → Γ(M,T ∗M ⊗ S) the con-
nection induced by the metric on M and /D : Γ(M,S) → Γ(M,S) the Dirac
operator.

Then it holds

/D
2

= ∇∗∇+
1

4
κ

where ∇∗ is the formal adjoint and κ is the scalar curvature function on M .

In particular, if M has a metric of positive scalar curvature, then /D
2

has
a spectral gap at 0 and therefore /D is invertible. From the Fredholm-module
picture of K-homology it then follows that q∗([M ]KO) = 0 ∈ KOn(pt) where q
is the collapse map. The other way around, this means that q∗([M ]KO) is an
obstruction against positive scalar curvature on M .

This obstruction can be combined with the positive results obtained from
surgery. Stolz showed ([Sto92]):

Theorem 2.4.2. Let M be a simply connected Spin manifold of dimension
≥ 5.

Then M is psc if and only if q∗([M ]KO) = 0 ∈ KOn(pt).

In the non-simply connected case the obstruction q∗([M ]KO) = 0 ∈ KOn(pt)
is too crude. For example, the torus M = T3 is Spin-null bordant, and this
implies q∗([M ]KO) = 0. The solution is to replace KO(pt) with the K-theory
of the (real) group C∗-algebra, KO(C∗(π1(M))):

Using the Mishchenko-Fomenko bundle and the biproduct of KK-theory
one can construct an assembly map KO(Bπ1(M)) → KO(C∗(π1(M))) (see
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[Kas88, 6.2]). This map can be precomposed with the morphism induced by
a classifying map uM : M → Bπ1(M). Including the natural transformation
ΩSpin → KO we get the following diagram:

ΩSpin
n (M) ΩSpin

n (Bπ1(M))

KOn(M) KOn(Bπ1(M)) KO(C∗(π1(M)))

u∗

u∗ β

The natural transformation ΩSpin → KO also factors through the connec-
tive covering ko of the homology theory KO , and the assembly map β factors
through the Baum-Connes map KOπ1(M)(Eπ1(M))→ KO(C∗(π1(M))).

We call the image of the fundamental class [M ]Spin = [M, s, id] ∈ ΩSpin(M)
under the concatenation α : ΩSpin(M)→ KO(C∗(π1(M))) the Rosenberg index
of M . Intuitively speaking, it is obtained by forming a C∗(π1(M))-bundle
over M , with a twist given by the left-regular action π1(M) y C∗(π1(M)),
and then taking the (graded) kernel of the Dirac operator twisted with the
C∗-algebra bundle.

Using the fact that the C∗(π1(M))-bundle is flat, Rosenberg refined the ar-
gument of Lichnerowicz-Schrödinger-Weitzenböck and showed that the Rosen-
berg index α([M ]Spin) ∈ KOn(C∗(π1(M))) is an obstruction against positive
scalar curvature.

Remark 2.4.3. We have tacitly assumed – and will continue to assume – that
the classifying map u : M → Bπ1(M) is fixed at least up to homotopy. If we
replace u by another map u′ that also induces an isomorphism of fundamental
groups, then up to homotopy u′ factors as u′ = aφ ◦ u where aφ : Bπ1(M) →
Bπ1(M) is induced by a group automorphism φ : π1(M) → π1(M). By natu-
rality of the assembly map it then holds

β ◦ u′∗([M ]KO) = β ◦ aφ∗ ◦ u∗([M ]KO) = Φ∗ ◦ β ◦ u∗([M ]KO),

where Φ: C∗(π1(M)) → C∗(π1(M)) is the C∗-algebra automorphism induced
by φ. In particular, the vanishing of α([M ]Spin) does not depend on the choice
of u.

The Rosenberg index also depends on the choice of the Spin-structure.
This will be discussed in Section 3. 4

Remark 2.4.4. The C∗-algebra C∗(π1(M)) can be taken to be either the
maximal or the reduced group C∗-algebra, the Rosenberg index can be con-
structed in both cases. The Baum-Connes conjecture KOπ1(M)(Eπ1(M)) ∼=
KO(C∗(π1(M))) assumes that the reduced C∗-algebra is used.

On the other hand, while every group homomorphism induces a homo-
morphism of maximal group C∗-algebras, this is not always the case for the
reduced C∗-algebras (it is true if the kernel of the group homomorphism is
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amenable, which is the case for the homomorphisms we will consider in the fol-
lowing sections). Furthermore, the reduced version of the Rosenberg index fac-
tors through the induced map of the canonical quotient map C∗max (π1(M))→
C∗red(π1(M)) and therefore will never contain more information than the max-
imal version.

We will take C∗(π1(M)) to be the maximal group C∗-algebra, if not indi-
cated otherwise. 4

The Rosenberg index is a very effective obstruction. Indeed, Rosenberg
and Stolz showed ([RS01], 4.13):

Theorem 2.4.5. Let M be a closed connected Spin manifold of dimension
≥ 5 and uM : M → Bπ1(M) a classifying map.

Assume that the assembly map KO(Bπ1(M))→ KO(C∗(π1(M))) is injec-
tive, and that the map ko(Bπ1(M))→ KO(Bπ1(M)) is injective.

Then M is psc if and only if α([M ]Spin) = 0 ∈ KOn(C∗(π1(M))).

For general fundamental groups the statement is wrong. In [Sch98] Schick
constructs a counterexample where the Rosenberg index vanishes but the min-
imal hypersurface method shows that the manifold is not psc.

One reason why Theorem 2.4.5 may fail – especially in low dimensions –
is Bott periodicity. If Bt is an 8-dimensional simply-connected Spin manifold
with Â(Bt) = 1, then α([M × Bt ]Spin) = α([M ]Spin). But it may happen that
M×Bt is psc andM is not. This motivates a “stable” version of Theorem 2.4.5.
Stolz showed ([Sto02]):

Theorem 2.4.6. Let M be a Spin manifold and uM : M → Bπ1(M) a clas-
sifying map. Let Bt be a simply connected Spin manifold of dimension 8
with Â(Bt) = 1. Assume that the Baum-Connes map KOπ1(M)

∗ (Eπ1(M)) →
KO∗(C

∗
red(π1(M))) is injective.

Then α([M ]Spin) = 0 ∈ KO(C∗(π1(M))) if and only if the product manifold
M × Bt × · · · × Bt allows a psc metric for sufficiently many Bt-factors.

If the manifold M is not Spin but has a Spinc-structure, there is still a
Dirac operator that defines a fundamental class in the complex K-homology
group Kn(M). Indeed, the group Spinc embeds into the group of invertible
elements inside the complexification of the Clifford algebra Cl0,n ⊗R C. This
can be used to construct a complex spinor bundle and a Dirac operator on this
bundle.

One important difference to the real case is that the connection on the com-
plex spinor bundle is not uniquely determined by the Riemannian metric on M .
Instead, it is determined uniquely only when one fixes in addition to the Levi-
Civita connection on M a principal connection on the S1-bundle determined by
the Spinc-structure. The analog of the Lichnerowicz-Schrödinger-Weitzenböck
formula then takes the following form ([LM89] D.12):
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Theorem 2.4.7. Let M be a Riemannian manifold with Spinc-structure and
S → M the corresponding spinor bundle. Let further ω be the curvature 2-
form of a fixed connection of the S1-bundle associated to the Spinc-structure,
let ∇ : Γ(M,S) → Γ(M,T ∗M ⊗ S) be the induced connection on the spinor
bundle and /D : Γ(M,S)→ Γ(M,S) the Dirac operator.

Then

/D
2

= ∇∗∇+
1

4
κ+

i

2
ω,

where κ is the scalar curvature function on M and ω denotes Clifford multi-
plication by the 2-form ω.

In the special case where the S1-bundle associated to the Spinc-structure
is classified by a torsion element in H2(M ;Z), the S1-bundle can be given a
flat connection and the fundamental class [M ]K can be used to construct an
obstruction against positive scalar curvature as before.

In Section 4 we will try a different approach where no control over the
connection of the S1-bundle is assumed and instead its fundamental group
becomes important.



3. The effect of changing the Spin
structure

Let M be a Spin manifold with fundamental group Γ. Different choices of
Spin-structures on M lead to different fundamental classes [M ]Spin ∈ ΩSpin

n (M)
and [M ]KO ∈ KOn(M). This leads to the question how the image α([M ]Spin)
behaves when the spin structure is changed. In particular, is it possible that
the obstruction vanishes for one spin structure, but not for another?

Already in [Ros86] it was noted that the answer to the last question is no.
The idea is that the group H1(M ;Z2) acts on the set of Spin-fundamental
classes as well as on the group KOn(C∗(Γ)), and α intertwines the actions.
Therefore, if the spin structures s1 and s2 are related by x.s1 = s2, x ∈
H1(M ;Z2), then α([M ]s1) = 0 implies α([M ]x.s1) = x.α([M ]s1) = x.0 = 0. In
[Ros86] all details of this argument are omitted. In this section we will use
the calculus of KK-theory to explicitly calculate the effect that a change of
Spin-structures has on the Rosenberg index.

Let M be a closed connected smooth Spin manifold of dimension n, and
let the orientation of M be fixed. Let s1, s2 : PSpin → PSO be representatives of
two Spin-structures on TM . As explained in Remark 2.2.5, s2 can be obtained
from s1 by postcomposing with an SO-bundle automorphism which is given
by a map ax : M → SO(n). This map determines a group homomorphism
ϕx : Γ→ π1(SO)→ Z2 = {±1} ⊂ R. Via the isomorphism

Hom(Γ,Z2) ∼= Hom

(
Γ

[Γ,Γ]
,Z2

)
∼= Hom(H1(M,Z);Z2) ∼= H1(M ;Z2)

it also determines an element x ∈ H1(M ;Z2), and since the Eilenberg-MacLane
space K(Z2, 1) classifies Z2-bundles, this element defines a principal Z2-bundle
Yx →M .

Following the construction of the Dirac operators as in Section 2.3 we
see that the spinor bundles S1,S2 determined by the two Spin-structures are
canonically isomorphic as vector bundles with a right Clifford action. The
difference lies in the Clifford-actions λ1/2 : TM → End(S1/2). Under the iden-
tification S1 = S2 as vector bundles, λ1 = λ2◦Ψ(ax) where Ψ(ax) : TM → TM
is the vector bundle automorphism given by ax. Passing to the universal cov-
ering M̃ we have the tangent bundle T̃M = TM ×M M̃ , sitting inside the

Clifford algebra bundle C̃l(M) = Cl(M)×M M̃ , and the two Clifford module

bundles S̃1/2 = S1/2×M M̃ , with Γ acting on all of them. The lifted actions λ̃1/2

differ by precomposition with Ψ(ax ◦ pM̃). But ax ◦ pM̃ : M̃ → M → SO(n)
has a lift η : M → Spin(n) ⊂ Cl(Rn), which satisfies γ.η = ϕx(γ) · η for γ ∈ Γ.

17
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Let now T : S̃1 → S̃2 be given by the fiberwise Clifford multiplication with
η−1 from the left. Then T is a bundle isomorphism, compatible with the right

Clifford action, and it intertwines the actions λ1/2. Indeed, if i2 : T̃M → C̃l(M)
is the inclusion from the second lifted Spin-structure and ? denotes Clifford
multiplication, then for m ∈ M̃ , ξ ∈ T̃Mm, ζ ∈ S̃1:

λ1(ξ)(ζ) = λ2(ax(pM̃(m)).ξ)(ζ)

= i2(ax(pM̃(m)).ξ) ? ζ

= η(m) ? i2(ξ) ? η(m)−1 ? ζ

= T−1(i2(ξ) ? T (ζ))

= (T−1 ◦ λ2(ξ) ◦ T )(ζ).

By quotienting out the Γ-action we obtain S2
∼= Yx×Z2S1 as spinor bundles

with left Clifford action by TM and right action by Cl(Rn) (The twist is the
result of the twisted equivariance of η and T ).

Since Z2 is discrete, the connection on S1 induces a connection on S2 =
Yx ×Z2 S1. This is a Dirac connection in the sense of [HR00, 11.1.9.] and
can therefore be used to construct the Dirac operator representing [M ]2 ∈
KOn(M).

Instead of twisting S1 with Yx we can also construct the R-line bundle
Zx = Yx ×Z2 Z0 by twisting the trivial line bundle Z0 = R ×M with Yx, and
we can write

S2 = Yx ×Z2 S1 = Yx ×Z2 (Z0 ⊗ S1) = (Yx ×Z2 Z0)⊗ S1 = Zx ⊗ S1.

We will use the following classes in (real) KK-Theory:

• [M ]1 ∈ KK(C(M),Cl0,n) is represented by the (normalized) Dirac op-
erator χ( /D1) acting on the first spinor bundle S1.

• [M ]2 ∈ KK(C(M),Cl0,n) is represented by the (normalized) Dirac op-
erator χ( /D2) acting on the modified spinor bundle S2.

• β ∈ KK(R, C(M)⊗̂C∗(Γ)) is represented by the zero operator on the
Hilbert module F of continuous sections from M into the C∗(Γ)-bundle
twisted by the fundamental group action, i.e.,

F = {f ∈ C(M̃, C∗(Γ)) | f(g.x) = g.f(x) ∀g ∈ Γ}.

• φ ∈ KK(C∗(Γ), C∗(Γ)) is represented by the zero operator on C∗(Γ)
viewed as a Hilbert module over itself. The left action is given by
Φ: C∗(Γ)→ C∗(Γ), δg 7→ ϕx(g) · δg. (Note that Φ−1 = Φ)

• z ∈ KK(C(M), C(M)) is represented by the zero operator on the Hilbert
module Z of continuous sections from M into the line bundle Zx, i.e.,

Z = {f ∈ C(M̃,R) | f(gx) = φ(g)f(x), g ∈ Γ}.
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Finally, for any C*-algebras A,B,D let

τD : KK(A,B)→ KK(A⊗̂D,B⊗̂D)

be given by tensoring the Hilbert module with D and the operator with
id : D → D. With this notation

α([M ]1/2) = β⊗̂C(M)⊗̂C∗(Γ)τC∗(Γ)([M ]1/2)

(see [Kas88, 6.2]).
The following is a special case of twisting the KK-class of a differential

operator with a vector bundle:

Lemma 3.1. Let [M ]1, [M ]2, z be as above, then it holds

[M ]2 = z⊗̂C(M)[M ]1.

Proof. Working with the representatives above, we show that χ( /D2) acting
on L2(M,S2) represents the Kasparov product of z and [M ]1, as in definition
18.4.1 in [Bla98].

As Hilbert bimodules, L2(M, /S2) = Z⊗̂C(M)L
2(M, /S1). Also, the represen-

tative of z has the zero operator and χ( /D2) is a Fredholm operator, so we just
have to check that χ( /D2) is a χ( /D1)-connection in the sense of [Bla98, 18.3.1],
i.e., that for any ξ ∈ Z

Tξ · χ( /D1)− χ( /D2) · Tξ ∈ K(L2(M,S1), L2(M,S2)),(3.1)

χ( /D1) · Tξ∗ − Tξ∗ · χ( /D2) ∈ K(L2(M,S2), L2(M,S1)),(3.2)

where Tξ(y) = ξ⊗̂y and Tξ
∗(y⊗̂y′) = 〈y, ξ〉y′.

We partition M into a finite number of pieces Pi, such that each piece has
an open neighborhood Ui over which Zx can be trivialized in a way that is
compatible with the connection. This trivialization is unique up to a sign and
determines a unitary equivalence of L2(U,S1) and L2(U,S2). The equivalence
intertwines the actions of C(M). Furthermore it identifies /D1|Ui with /D2|Ui
and by [HR00, 10.8.4] it follows that also χ( /D1)|Ui and χ( /D2)|Ui are identified

modulo compact operators. Because the operators χ( /D1/2) commute with the
action of C(M) up to compacts, they map L2-functions supported in Pi to L2-
functions supported in Ui (modulo compacts). Finally, under the identification
L2(U,S1) = L2(U,S2) the operators Tξ and Tξ

∗ restrict to multiplication with a
function in C(Ui), determined by ξ. Since such multiplications commute with
χ( /D1/2) up to compacts, it follows that the conditions above are satisfied when
we restrict the domain of the operators to L2-functions over a single piece Pi.
Because the number of pieces is finite, this means that the conditions hold in
general.

This shows that χ( /D2) acting on L2(M,S2) represents the Kasparov prod-
uct of z and [M ]1, concluding the proof.



20 3. The effect of changing the Spin structure

The next lemma contains the key observation of this computation.

Lemma 3.2. Let β, τ , x, φ be as above, then

β⊗̂C(M)⊗̂C∗(Γ)τC∗(Γ)(z) = β⊗̂C(M)⊗̂C∗(Γ)τC(M)(φ).

Proof. Since the operators of the representatives on both sides are zero and
the left action is just R · id, it suffices to show that the (C(M)⊗̂C∗(Γ))-Hilbert
modules are unitarily equivalent. Both Hilbert modules have the trivial grad-
ing. The left one can be written as

F⊗̂C(M)⊗C∗(Γ)(Z ⊗ C∗(Γ)) = Cµ⊗λ(M̃, C∗(Γ))⊗C(M)⊗C∗(Γ) C
µ⊗ϕ(M̃, C∗(Γ)).

Here C ·⊗·(M̃, C∗(Γ)) denotes the subset consisting of those bounded con-

tinuous functions in Cb(M̃, C∗(Γ)) = Cb(M̃)⊗ C∗(Γ) that are invariant under
the action of Γ specified by · ⊗ ·. The actions used are λ for left multiplica-
tion with g, ϕ for multiplication with ϕ(g), tr for the trivial action and µ for
translation, i.e., (µ(g)f)(·) = f(g−1·).

The right Hilbert module can be written as

F⊗Φ
C(M)⊗C∗(Γ)(C(M)⊗C∗(Γ)) = Cµ⊗λ(M̃, C∗(Γ))⊗Φ

C(M)⊗C∗(Γ)C
µ⊗tr(M̃, C∗(Γ)).

Here the Φ above the tensor is a reminder of the non-standard left action
of C∗(Γ) on the right hand module.

Both Hilbert modules are in fact unitarily equivalent to Cµ⊗ϕλ(M̃, C∗(Γ)).
The equivalences are given by

u1 : Cµ⊗λ(M̃, C∗(Γ))⊗C(M)⊗C∗(Γ) C
µ⊗ϕ(M̃, C∗(Γ))→ Cµ⊗ϕλ(M̃, C∗(Γ)),

q ⊗ r 7→ q · r,
u2 : Cµ⊗λ(M̃, C∗(Γ))⊗Φ

C(M)⊗C∗(Γ) C
µ⊗tr(M̃, C∗(Γ))→ Cµ⊗ϕλ(M̃, C∗(Γ)),

q ⊗ r 7→ (Φ ◦ q) · r.

Both maps are well defined on the algebraic tensor product. To see that they
indeed map into Cµ⊗ϕλ(M̃, C∗(Γ)) we compute for u1

(µ(g)⊗ ϕ(g)λ(g))(qr)(y) = ϕ(g)g · q(g−1y) · r(g−1y)

= (µ(g)⊗ λ(g))(q)(y) · (µ(g)⊗ ϕ(g))(r)(y)

= q(y) · r(y) = qr(y)

and for u2

(µ(g)⊗ ϕ(g)λ(g))((Φq) · r)(y) = ϕ(g)g · (Φq)(g−1y) · r(g−1y)

= Φ(g) · (Φq)(g−1y) · r(g−1y)

= Φ(g · q(g−1y)) · r(g−1y)

= Φ((µ(g)⊗ λ(g))(q)(y)) · (µ(g)⊗ tr(g))(r)(y)

= Φ(q(y)) · r(y) = ((Φq) · r)(y).
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Both maps respect the right action of C(M)⊗C∗(Γ) and they respect the
(C(M) ⊗ C∗(Γ))-valued scalar product. This means that they extend to an
injective map on the C*-tensor product.

It just remains to check that the maps are surjective. Let an element
s ∈ Cµ⊗ϕλ(M̃, C∗(Γ)) be given. After applying a Γ-invariant partition of unity

on M̃ , we may assume that s is supported in a small Γ-neighborhood of a
point, that can be trivialized as U × Γ.

Now the function q0 : U × 1 → C∗(Γ), q0(u × 1) = δ1 can be extended

to a function q1 ∈ Cµ⊗λ(M̃, C∗(Γ)). Define r1(y) to be q1(y)−1 · s(y) on ΓU

and zero elsewhere. Then u1(q1 ⊗ r1) = s. Also, Φs ∈ Cµ⊗λ(M̃, C∗(Γ)) and
u2(Φs⊗ 1) = s.

Finally, we piece it all together.

Theorem 3.3. Let M be a connected closed smooth spin manifold with fixed
orientation, let s1, s2 be two spin structures on M and [M ]1, [M ]2 the KO-
fundamental classes corresponding to these spin structures. Let x ∈ H1(M ;Z2)
be the unique element that modifies s1 into s2 and let Φ = Φx be the corre-
sponding automorphism of C∗(Γ).

Then
α([M ]2) = Φ∗(α([M ]1)).

Proof. To simplify notation we abbreviate A = C(M)⊗̂C∗(Γ). We use the
properties of the Kasparov product described in [Bla98, 18.9] to calculate:

α([M ]2) = β⊗̂AτC∗(Γ)([M ]2)

= β⊗̂AτC∗(Γ)(z⊗̂C(M)[M ]1)

= β⊗̂AτC∗(Γ)(z)⊗̂AτC∗(Γ)([M ]1)

a)
= β⊗̂AτC(M)(φ)⊗̂AτC∗(Γ)([M ]1)

= β⊗̂A(Φ⊗̂id)∗(τC∗(Γ)([M ]1))

b)
= β⊗̂A(Φ⊗̂id)∗(τC∗(Γ)([M ]1))

= β⊗̂A(τC∗(Γ)([M ]1))⊗̂τCl0,n(φ)

= α([M ]1)⊗̂C∗(Γ)⊗̂Cl0,nτCl0,n(φ)

= Φ∗(α([M ]1))

Equality a) is by Lemma 3.2 and equality b) is by [Bla98, 17.8.6].



4. The S1-bundle construction

4.1 Motivation: Bolotov and Dranishnikov’s

article

The starting point for our investigation of the circle bundle construction is
the preprint of an article by Bolotov and Dranishnikov ([BD14]), in which
they examine the connection between positive scalar curvature and Gromov’s
([Gro96]) notion of macroscopic dimension:

Definition 4.1.1. The macroscopic dimension of a metric space X, denoted
dimmc(X) is the smallest number n ∈ Z≥0 ∪ {∞} such that there exists an
n-dimensional simplicial complex K and a continuous map f : X → K such
that

∃C ∈ R ∀k ∈ K : diam(f−1(k)) ≤ C.

4

Remark 4.1.2. The given requirement on the map f is called “uniformly
cobounded” by Dranishnikov. We note that f is not required to be proper. 4

Example 4.1.3. The macroscopic dimension of a simplicial complex is al-
ways bounded above by the dimension of the complex. Gromov showed that
for complete, uniformly contractible Riemannian manifolds equality holds:
dimmc(M) = dim(M).

In particular, dimmc(Rn) = n. 4

Example 4.1.4. For any (n− 2)-dimensional manifold M ,

dim(M̃ × S2) = n, but dimmc(M̃ × S2) ≤ n− 2.

This shows how macroscopic dimension can see the large scale features of
a space. Note also that M × S2 is psc by Example 2.1.3. 4

Example 4.1.5. For X = (Tn)(k), the k-skeleton of the torus, k ≥ 2, the

universal covering X̃ is coarsely equivalent (in the sense of [HR00, 6.1.17])

to Rn. But dimmc(X̃) ≤ k.

This shows how macroscopic dimension can see the small scale features of
a space. 4

Generalizing Example 4.1.4 Gromov conjectured:

Conjecture 4.1.6. Let M be a closed psc manifold.

Then dimmc(M̃) ≤ dim(M)− 2.

22
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Both Bolotov and Dranishinikov investigated Gromov’s notion of macro-
scopic dimension and made progress towards his conjecture. One sufficient
condition for dimmc(M̃) ≤ n − 2 is when the classifying map uM : M →
Bπ1(M) of the universal covering M̃ can be deformed into the (n−2)-skeleton

Bπ1(M)(n−2). The question when such a deformation is possible can be at-
tacked with obstruction theory. In [BD10] Bolotov and Dranishnikov showed
that the obstruction can be seen in connective K-homology:

Theorem 4.1.7. Let M be a closed Spin n-manifold with n > 3, and suppose
that a classifying map uM : M → Bπ1(M) takes the ko-fundamental class to
zero: uM ∗([M ]ko) = 0 ∈ kon(Bπ1(M)).

Then uM can be homotoped into Bπ1(M)(n−2).

Because the image of uM ∗([M ]ko) under the map

ko(Bπ1(M)) KO(Bπ1(M)) KO(C∗(π1(M)))

is the Rosenberg index, which vanishes for psc manifolds, it follows:

Corollary 4.1.8. Conjecture 4.1.6 is true for Spin-manifolds whose funda-
mental groups satisfy the following conditions:

• The map ko(Bπ1(M))→ KO(Bπ1(M)) is injective.

• The map KO(Bπ1(M))→ KO(C∗(π1(M))) is injective.

Remark 4.1.9. The conditions on the fundamental group are the same as
in Theorem 2.4.5. Bolotov and Dranishnikov call them the Rosenberg-Stolz
conditions. 4

In the preprint [BD14] Bolotov and Dranishnikov tried to show the follow-
ing statement (Theorem 5.3):

Proposition 4.1.10. Let M be a closed psc manifold of dimension ≥ 5, such
that M is orientable but not Spin and π1(M) satisfies the Rosenberg-Stolz
conditions. And let uM : M → Bπ1(M) be a classifying map.

Then uM ∗([M ]) = 0 ∈ Hn(Bπ1(M);Q).

Their argument proceeds as follows: They find a Spin manifold N ′ with
π1(N ′) = π1(M) such that uN ′∗([N ]) ∈ Hn(Bπ1(M);Z) is a non-zero multiple
of uM ∗([M ]). By taking the connected sum with CP 2 × Sn−4 and applying
surgery they create a manifold N with π2(N) ∼= Z, such that N is Spinc but

Ñ is not Spin (compare Example 4.2.1). Because M is psc, Theorem 2.1.7
implies that N is psc.

Next, Bolotov and Dranishnikov construct an S1 principal bundle πL : L→
N such that L is psc and Spin, π2(N) = 0 and πL∗ : π1(L) → π1(N) is an
isomorphism. From the last condition it follows that a classifying map uL : L→
Bπ1(L) factors through M and hence uL can be deformed into the (dim(L)−1)-
skeleton. Using obstruction theory they argue that uL can be deformed further
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into the (dim(L) − 3)-skeleton and by a rather long and technical argument
involving spectral sequences they conclude that uN ′∗([N

′]) = uN ∗([N ]) = 0 ∈
Hn(Bπ1(M);Z).

The problem with their argument is that the S1-bundle L is the Spin-
boundary of the corresponding disk bundle (see Lemma 4.2.2). And because
the bundle projection πL induces an isomorphism of fundamental groups,
uL∗([L]Spin) = 0 ∈ ΩSpin(Bπ1(L)). This means that also uL∗([L]KO) = 0 ∈
KO(Bπ1(L)) and α([L]Spin) = 0 ∈ KO(C∗(π1(L)). Because π1(M) satisfies
the Rosenberg-Stolz conditions, it follows that L automatically has positive
scalar curvature, even if the original manifold M does not.

Actually, Bolotov and Dranishnikov need the fact that L is psc only to
show that uL∗([L]ko) = 0 ∈ ko(Bπ1(L)). And this follows directly from
uL∗([L]Spin) = 0 ∈ ΩSpin(Bπ1(L)), again independent of whether or not M
is psc.

Therefore, the same argument could also be applied to M = T2n#CP n,
the manifold of Example 4.2.1, for which the statement is false. Assuming
that mathematics is consistent, the proof has to be wrong. In the final version
of their article ([BD16]) Bolotov and Dranishnikov abandoned the argument
altogether.

4.2 The S1-bundle construction

Although the proof as a whole is flawed, Bolotov and Dranishnikov’s argument
in Proposition 4.1.10 includes the following interesting idea: If a manifold is not
Spin but Spinc, then we can form an S1-principal bundle over the manifold that
does allow a Spin-structure. The index obstruction can be computed for this
bundle. Finally, a differential geometry argument shows that any obstruction
against positive scalar curvature on the bundle is also an obstruction for the
original manifold.

If this argument could provide non-vanishing obstructions against psc, it
could possibly give new results about some manifolds where none of the clas-
sical methods works, including the following motivating example.

Example 4.2.1. Let M = T12#CP 6, the connected sum of a torus with a
complex projective space. By computing the Stiefel-Whitney classes w2 and
W3 one can see that CP 6 is not Spin but Spinc, and that the same is true for
M and M̃ . In fact, M is perhaps the simplest example of a Spinc manifold
with non-trivial fundamental group and non-spin universal covering.

Because M has a non-trivial fundamental group, Theorem 2.1.6 does not
apply. Since the dimension is > 7, the original theorem of Schoen and Yau
does not work. Finally, M is not Spin, hence index theory cannot be applied.
In fact, it is not known (pending Schoen and Yau’s latest preprint [SY17]), if
M admits a psc metric, although it is expected that it does not. 4
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We consider now a general closed Spinc manifold M such that M̃ is not
Spin. The bundle construction works as follows: The obstruction against the
existence of a Spin-structure on the tangent bundle of an orientable mani-
fold M is the second Stiefel-Whitney class w2 ∈ H2(M ;Z2), and if M admits
a Spinc-structure, then the obstruction lifts to H2(M ;Z).

But H2(M ;Z) also classifies the S1-principal bundles over M , since the
Eilenberg-MacLane space K(Z, 2) = CP∞ is also the classifying space for
S1-bundles. Therefore, any lift w2 ∈ H2(M ;Z) of w2 defines an S1-bundle
πL : L→M .

Lemma 4.2.2. L is a Spin manifold.

Proof. L is the boundary of the corresponding disk bundle πL : L→M sitting
inside the complex line bundle L◦ → M . The tangent space of this disk
bundle is the direct sum TD = π∗L(TM ⊕ L◦). But the Stiefel-Whitney class
for L◦ is just the mod 2 reduction of the Euler class w2, that is w2(TM). And
w1(TM) = w1(L◦) = 0.

Therefore,

w2(TL) = πL
∗(w2(TM ⊕ L◦))

= πL
∗(w2(TM) + w2(L◦))

= πL
∗(w2(TM) + w2(TM))

= πL
∗(0) = 0 ∈ H2(L;Z2).

This means that the disk bundle has a Spin-structure, hence the S1-bundle
as its boundary also has a Spin-structure.

Finally, we have to see that if M admits a metric of positive scalar curva-
ture, then so does L. To do this, fix a metric gM of positive scalar curvature
on M , an S1-invariant metric gS1 on S1, and use a partition of unity to ob-
tain a principal S1-connection on L → M . Then by Vilms’ theorem ([Bes08,
9.59]) there exists a unique metric gL on L such that (L, gL) → (M, gM) is a
Riemannian submersion, gL restricts to gS1 on the fibers and the horizontal
distribution of the submersion is given by the principal connection.

If one multiplies the metric gS1 by some constant t > 0, then the resulting
metric gL changes with t. This is called the canonical variation. The scalar
curvature of L can be computed as follows ([Bes08, 9.70d]):

Theorem 4.2.3. Let κS1 and κM denote the scalar curvatures on the fiber
and base space of a Riemannian submersion with totally geodesic fibers, and
let κtL be the scalar curvature of the total space as a function of the scaling
by t.

Then it holds:

κtL =
1

t
· κS1 + κM ◦ πL − t · |A|2,

where A is a tensor field on M that is obtained from gL at t = 1.
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Because κS1 = 0, |A|2 is bounded and κM is bounded below by some ε > 0,
it follows that κL > 0 for t > 0 sufficiently small. Geometrically, this means
that the fiber is made small.

Remark 4.2.4. Theorem 4.2.3 could also be applied to fiber bundles with
a different fiber than S1 (if it can be made a totally geodesic Riemannian
submersion). But it is important that S1 admits a metric of vanishing scalar
curvature, such that the summand 1/t · κS1 does not blow up.

And it is important that S1 does not admit a metric of positive scalar
curvature because otherwise, by starting with this metric and then making t
small, one would always get a psc metric on L, independent of (M, g). 4

One obvious problem with the circle bundle construction is that L is the
Spin-boundary of the associated disk bundle and therefore represents zero in
both ΩSpin(pt) and ΩSpin(BΓ1(M)). Since the index map factors through Spin
bordism, it follows that the obstruction must be zero in KO(C∗(Γ1(M))). In
fact, if π1(L) = π1(M), then Wiemeler showed ([Wie16, 1.5]) that L admits a
non-S1-invariant psc metric.

Things are much less clear, however, when π1(L) differs from π1(M) and
when one takes the index in KO(C∗(π1(L))). In this case the disk bundle
associated to L does not provide a singular null-bordism of L→ Bπ1(L). And
in the case where the manifold M is Spin there are simple examples, like the
trivial S1-bundle over a torus, where the Rosenberg index does not vanish for
the bundle.

4.3 The fundamental group of the S1-bundle

Let, as before, M be a Spinc manifold such that M̃ is not Spin, and let
πL : L→M be an S1-bundle such that L is Spin. In this section we investigate
the fundamental group π1(L), which depends on the S1-bundle, and which
plays a crucial role for the question when the index obstruction α([L]Spin) ∈
KO(C∗(π1(L))) vanishes.

Lemma 4.3.1. Let M be a closed manifold with universal covering pM̃ : M̃ →
M , such that M is Spinc but neither M nor M̃ are Spin. Let L → M be an
S1-bundle over M such that L is Spin, and let xL ∈ H2(M ;Z) be the element
that classifies L.

Then π1(L) is a central extension of π1(M) by a finite odd cyclic group Zn.

Here n is the largest integer k such that pM̃
∗(xL) = 0 ∈ H2(M̃ ;Zk).

Proof. From the long exact sequence of the fibration S1 → L→M

. . . π2(M) π1(S1) π1(L) π1(M) π0(S1) . . .

it follows that π1(L) is an extension of π1(M) by a quotient of π1(S1) = Z.
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To see that this is a central extension, consider the restriction of the S1-
bundle to the 1-skeleton of M . This is the trivial S1-bundle S1×M (1). Every
element in π1(M) can be represented by a map S1 → M (1) which can then
be lifted to {pt} × M (1) ⊂ S1 × M (1) ⊂ L. All of these lifts commute in
π1(S1 ×M (1)) with the generator of π1(S1), and this still holds true in π1(L),
which is a quotient of π1(S1 ×M (1)).

To find n we have to consider the map ∂2 : π2(M) → π1(S1) ∼= Z of the
long exact sequence above. This map is precisely the evaluation map of the
homomorphism

pM̃
∗(x) ∈ H2(M̃ ;Z) = Hom(H2(M̃,Z)) = Hom(π2(M),Z).

Indeed, when φ : S2 →M represents an element [φ] ∈ π2(M), let πL′ : L
′ →

S2 be the pullback of L → M along φ. L′ is the S1-bundle classified by
φ∗(x) ∈ H2(S2;Z).

L′ L

S2 M

The identification π1(S1) ∼= Z is made with the same isomorphism that was
used for the correspondence of S1-bundles with elements in H2(·;Z) (coming
from a choice of orientation on the fibre of the canonical bundle over CP∞),
and the identification π2(S2) ∼= Z is made with the same isomorphism that
was used in the Hurewicz map above. Then ∂2([φ]) = ∂2(φ∗(1)) = φ∗(∂2(1)),
which is equal to the generator of π1(S1) multiplied with the evaluation of x
on [φ].

But now Im(∂2 : π2(M)→ π1(S1)) is the same as Im(pM̃
∗(x) : H2(M̃ ;Z)→

Z), which is the submodule of Z generated by the largest integer k such that

pM̃
∗(x) = 0 ∈ H2(M̃ ;Zk).

Finally, the condition that M̃ is not Spin means that pM̃
∗(x) 6= 0 ∈

H2(M̃ ;Z2), hence pM̃
∗(x) ∈ Hom(H2(M̃ ;Z),Z) must assume an odd value

on some homology element. But then the image of ∂2 : π2(M) → π1(S1) is
generated by an odd element.

This implies the following corollary about the set of Spin-structures on L:

Corollary 4.3.2. Let πL : L → M be as above and let L be the disk bundle
associated to L. The map{

Spin-structures on L
}
→ {Spin-structures on L}

induced by taking the boundary of the disk bundle is a bijection.

Proof. The set of Spin-structures has a free transitive action of H1(·;Z2)
and this action is compatible with taking boundaries. Therefore, it suffices



28 4. The S1-bundle construction

to show that πL
∗ : H1(L;Z2) → H1(L;Z2) is a bijection. But H1(·;Z2) =

Hom(π1(·),Z2). And because n is odd, the kernel of every homomorphism
π1(L) → Z2 must contain the kernel of the extension Zn → π1(L) → π1(M).
Hence every homomorphism π1(L) → Z2 is the pullback of a (unique) homo-
morphism π1(L) ∼= π1(M)→ Z2 under the inclusion L ⊂ L.

The isomorphism classes of central group extensions

0 Zn Γ′ Γ 0

correspond to elements in H2(Γ;Zn). This is usually described in the language
of 2-cocycles on the group Γ (see [Bro82], IV.3). But the correspondence can
also be seen in the picture of classifying spaces:

By [Mil56, 3.1] every model for the Eilenberg-MacLane space K(Zn, 2) that
has countably many cells can be seen as the base space of a classifying bundle
E → K(Zn, 2) for principal bundles of a certain topological group G, which by
the long exact sequence of homotopy groups has to be homotopy equivalent to
BZn.

For φ : BΓ → K(Zn, 2) a representative of an element [φ] ∈ H2(BΓ;Zn),
the pullback φ∗(E) is aspherical. As in the proof of Lemma 4.3.1 one sees that
the map π1(φ∗(E))→ π1(BΓ) induced by the projection is a central extension
of Γ by Zn.

Lemma 4.3.3. The central extension π1(φ∗(E)) → π1(BΓ) is given by the
element [φ] ∈ H2(BΓ;Zn).

Proof. For simplicity we choose a model for BΓ with one 1-cell for every group
element and one 2-cell for every relation g1g2 = g3. We also assume that
K(Zn, 2) has a base point pt , a trivial 1-skeleton and a single 2-cell, and that
the map φ is cellular. Consider now the following diagram of maps between
pairs of spaces, where the vertical maps are the bundle projections:

(φ∗(E), π−1
φ∗(E)(BΓ(1))) (E,BZn)

(BΓ,BΓ(1)) (K(Zn, 2), pt)

φ̂

πφ∗(E) πE

φ

φ maps the 1-skeleton of BΓ to the base point of K(Zn, 2), and this de-
fines a trivialization of φ∗(E) over the 1-skeleton, which in turn defines a
set-theoretical section s : Γ → π1(φ∗(E)). The 2-cocycle determined by this
section is defined as ξ(g1, g2) = ξ(g1)ξ(g2)ξ(g1g2)−1. To find its value on (g1, g2)
we consider the 2-cell D of the corresponding relation. There is a trivialization
τ : φ∗(E)|D → D×BZn. On ∂D the difference between this trivialization and
the first trivialization is given by a map η : S1 → BZn, and ξ(g1, g2) is given
by the homotopy class [η] ∈ π1(BZn) = Zn.
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To find this value let ψ : D → φ∗(E) be the section determined by the

trivialization τ . ξ(g1, g2) is given by ∂2 ◦ (πE)∗ ◦ φ̂∗([ψ]) ∈ π1(BZn) ∼= Zn,
where [ψ] ∈ π2(D, ∂D) is the relative homotopy class represented by ψ and
∂2 : π2(K(Zn, 2))→ π1(BZn) is the boundary map of the long exact sequence.

But ∂2 is an isomorphism. Furthermore, by commutativity of the above
diagram,

(πE)∗ ◦ φ̂∗([ψ]) = φ∗ ◦ (πφ∗(E))∗([ψ]) = (φ|D)∗([D, ∂D]) ∈ π2(K(Zn, 2)).

This means that ξ(g1, g2) captures the mapping degree of φ|D. After choosing
compatible generators of H2(K(Zn, 2);Zn), π2(K(Zn, 2)) and π1(BZn) the re-
sult is just the pullback of the 2-cocycle representing 1 ∈ H2(K(Zn, 2);Zn),
evaluated on the cell D.

This finishes the proof.

We can now describe the central extension π1(L)→ π1(M) in terms of the
cohomology class xL ∈ H2(M ;Z) that classifies L.

Lemma 4.3.4. Let L→M be an S1-bundle such that Zn → π1(L)→ π1(M)
is a central extension, and uM : M → Bπ1(M) a classifying map. Let further
xL ∈ H2(M ;Z) be the element that classifies the bundle L and let µn(xL) ∈
H2(M ;Zn) be its image under the coefficient change.

Then µn(xL) has a unique lift y ∈ H2(Bπ1(M);Zn) and this lift classifies
the central extension π1(L)→ π1(M).

Proof. First we lift µn(xL) to H2(Bπ1(M);Zn). Note that Bπ1(M) can be
obtained from M by attaching cells of dimension ≥ 3. For the problem of
extending xL to Bπ1(M) only the attaching of 3-cells is relevant. We have
to check that for every attaching map φ : S2 → M of a 3-cell the pullback
φ∗(µn(xL)) is zero.

But φ factors through M̃ , and Lemma 4.3.1 implies

φ∗(µn(xL)) = φ̃∗(pM̃
∗(µn(xL))) = 0.

The lift is unique because one can assume that Bπ1(M) and M have identical
2-skeleta. Then every 2-cochain on Bπ1(M) that restricts to a coboundary
on M is already a coboundary on Bπ1(M).

Next we have to show that the lift y ∈ H2(Bπ1(M);Zn) classifies the
central extension. Let K(Z, 2) → K(Zn, 2) be the map representing the coef-
ficient change µn : H∗(·;Z) → H∗(·;Zn). Because the total bundle E(Z, 2) is
contractible, the map E(Z, 2) → K(Z, 2) → K(Zn, 2) lifts to a bundle map
E(Z, 2) → E(Zn, 2). By naturality of the long exact sequence of homotopy
groups this map induces a surjection on the fundamental groups of the fibers.

µn(xL) defines via pullback a BZn-bundle L̂→M and a map of fiber bun-

dles (not compatible with the group action) L→ L̂ that induces a surjection on

the fundamental groups of the fibers. Then the induced map π1(L) → π1(L̂)
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is a surjection. It is also an injection because the kernel is generated by n
times the generator of π1(S1) and this element is already zero in π1(L) by

assumption. Hence π1(L) = π1(L̂).

But since µn(xL) is also the pullback of y, L̂ is isomorphic to the pullback

of the BZn-bundle K̂ → Bπ1(M) that corresponds to y. And the map L̂→ K̂

induces an isomorphism of fundamental groups. Then π1(L) ∼= π1(L̂) ∼= π1(K̂),
which is the central extension corresponding to y.

Finally, we address the question which central extensions of π1(M) can
be realized as the fundamental group of a Spin S1-bundle over the non-Spin
manifold M .

Theorem 4.3.5. Let M be a manifold such that M is Spinc but M̃ is not
Spin, and let n be odd and y ∈ H2(Bπ1(M);Zn). Furthermore, assume that
there exists a map φ : S2 →M such that φ∗ is surjective on H2(·;Z).

Then the following are equivalent:

1. There exists an S1-bundle L→ M such that L is Spin and π1(L) is the
central extension given by y.

2. δB(uM
∗(y)) = 0 ∈ H3(M ;Z), where δB is the boundary map in the Bock-

stein sequence for the change of coefficients µn : Z→ Zn.

Proof. 1⇒ 2 : Let xL ∈ H2(M ;Z) classify L. Then

δB(uM
∗(y)) = δB(µn(xL)) = 0.

2 ⇒ 1 : Let δB(uM
∗(y)) = 0 ∈ H3(M ;Z). Then by exactness of the

Bockstein sequence there is some x1 ∈ H2(M ;Z) such that uM
∗(y) = µn(x1).

x1 is unique up to n ·H2(M ;Z).
Now x1 defines an S1-bundle L1, but L1 will not necessarily be Spin. As be-

fore let w2 ∈ H2(M ;Z2) be the obstruction against M having a Spin-structure
and let w2 ∈ H2(M ;Z) be any integral lift.

Let x2 = x1 + n(w2 − x1). Then µn(x2) = µn(x1) = uM
∗(y). Furthermore,

µ2(x2) = w2. As in Lemma 4.2.2, it follows that the S1-bundle L2 correspond-
ing to x2 is Spin.

Finally, by Lemma 4.3.1, we have to ensure that n is the largest integer such
that µn(pM̃

∗(x)) = 0. Let ξ ∈ H2(M ;Z) be such that φ∗(ξ) is a fixed generator
1 ∈ H2(S2;Z). And let x3 ∈ H2(M ;Z) be obtained from x2 by adding a
multiple of 2nξ, such that φ∗(x3) equals n or 2n, depending on whether or not
the pullback of TM along φ is Spin.

Then the S1-bundle corresponding to x3 is also Spin and µn(x3) = uM
∗(y)

as before. Furthermore, since φ factors through φ̃ : S2 → M̃ , µk(pM̃
∗(x3)) can

only be zero if k divides 2n. But such a k also has to be odd, whence n is
indeed the largest suitable integer. Now the S1-bundle L3 corresponding to x3

is Spin, and its fundamental group is the extension of π1(M) by Zn which is
given by y.
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Remark 4.3.6. δB(y) = 0 ∈ H3(M ;Z) is a sufficient – but not necessary –
condition for δB(uM

∗(y)) = 0 ∈ H3(Bπ1(M);Z). 4

Finally, the structure of the fundamental group Γ′ = π1(L) leads to the
first result about the index α([L]Spin) ∈ KO(C∗(Γ′)):

Lemma 4.3.7. Let πL : L → M as before, Γ = π1(M), Γ′ = π1(L) and uM ,
uL classifying maps.

Then uL∗([L]Spin) ∈ ΩSpin(BΓ′) has odd order.

In particular, it follows that α([L]Spin) ∈ KO(C∗(Γ′)) has odd order.

Proof. Let q̂ : BΓ′ → BΓ be the map induced by the group homomorphism
q : Γ′ → Γ. The proof uses spectral sequences in order to show that the map
q̂∗ : ΩSpin

∗ (BΓ′) → ΩSpin
∗ (BΓ) becomes an isomorphism after tensoring with

Z[n−1], i.e., after making n invertible.

Because q̂∗ ◦uL∗([L]Spin) = uM ∗ ◦πL∗([L]Spin) = 0 ∈ ΩSpin(BΓ), this implies
that uL∗([L]Spin) = 0 ∈ ΩSpin(BΓ′) ⊗ Z[n−1] and therefore uL∗([L]Spin) must
be an element of odd order.

First, note that H∗(BZn, {pt};Z) consists purely of n-torsion. Hence the
collapsing map BZn → {pt} induces an isomorphism H∗(BZn;Z)⊗ Z[n−1] ∼=
H∗({pt};Z) ⊗ Z[n−1]. Because Z[n−1] is a flat module over Z, it follows that
also the induced map

Tor(H∗−1(BZn;Z), A)⊗ Z[n−1] Tor(H∗−1({pt}), A)⊗ Z[n−1]

is an isomorphism for all coefficient rings A. By applying the Five Lemma to
the short exact sequence of the Universal Coefficient Theorem, using again flat-
ness, one sees that the collapsing map induces an isomorphism H∗(BZn;A)⊗
Z[n−1]→ H∗({pt};A)⊗ Z[n−1].

The collapsing map induces a map between the spectral sequences E and
F converging to ΩSpin

∗ (BZn) and ΩSpin
∗ ({pt}), respectively. By the previ-

ous observation, the collapsing map induces an isomorphism E2 ⊗ Z[n−1] →
F 2 ⊗ Z[n−1] between the second pages. Because Z[n−1] is flat, the induced
map on E3 ⊗ Z[n−1] → F 3 ⊗ Z[n−1] is still an isomorphism, and the same is
true for the following pages up to E∞. The Five Lemma then shows (again
using flatness) that the collapsing map induces an isomorphism between the
iterated extensions ΩSpin

∗ (BZn) ⊗ Z[n−1] and ΩSpin
∗ ({pt}) ⊗ Z[n−1]. As be-

fore, it follows from the Universal Coefficient Theorem that the induced map
H∗(X; ΩSpin

∗ (BZn))⊗Z[n−1]→ H∗(X; ΩSpin
∗ ({pt}))⊗Z[n−1] is an isomorphism

for any space X.

Next, consider the generalized Atiyah-Hirzebruch spectral sequences E ′

and F ′ converging to the Spin-bordism groups of the spaces BΓ′ and BΓ,
both viewed as a fibration over BΓ with fiber BZn and {pt}, respectively.
In the case of BΓ′ the homotopy action of the fundamental group Γ on the
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fiber BZn is trivial because the fiber bundle, being classified by an element in
H2(BΓ;Zn) is trivial over the 1-skeleton of BΓ.

The projection map q̂ : BΓ′ → BΓ is a map of fibrations and therefore
induces a map between the spectral sequences E ′ and F ′. By the computation
above the induced map is an isomorphism on E ′2 ⊗ Z[n−1] → F ′2 ⊗ Z[n−1].
Again it follows from flatness of Z[n−1] that the induced map gives an isomor-
phism on E ′∞⊗Z[n−1]→ F ′∞⊗Z[n−1] and finally on ΩSpin

∗ (BΓ′)⊗Z[n−1]→
ΩSpin
∗ (BΓ)⊗ Z[n−1].

4.4 A natural transformation from ΩSpinc
to ΩSpin

The S1-bundle construction as described in Section 4.2 involves choices for the
S1-bundle and the Spin-structure on it. In this section we will try to make
these choices canonical; the goal is to turn the bundle construction into a
natural transformation from ΩSpinc to ΩSpin .

First, we consider the choice of the S1-bundle. When M is given with
a specific Spinc-structure sc : M → BSpinc(k), then associated to the Spinc-
structure there is a 1-dimensional complex line bundle called the determinant
bundle (see [Fri00, p. 52]). The U(1)-bundle inside the determinant bundle is
classified by the pullback along sc of a generator ek ∈ H2(BSpinc(k);Z) (the
choice of the generator corresponds to the choice of orientation on S1). Since
(sc)∗(ek) = w2(TM) mod 2, the corresponding S1-bundle πL : L→ M allows
a Spin-structure.

When we fix an orientation on the group S1 acting on L, this determines an
orientation on L. However, the Spin-structure on L is not determined by the
Spinc-structure on M . For example, when M = S1 with a given orientation,
there is only one Spinc-structure on M , but there are four Spin-structures on
the total space of the induced bundle L = T2 → M . Motivated by Corol-
lary 4.3.2 we want to restrict ourselves to Spin-structures that are the bound-
ary of Spin-structures on the determinant bundle. But for M = S1 that still
leaves two options.

Before we consider this further, however, we must also deal with a second
problem, which is that the bundle L → M is Spin-null-bordant. In partic-
ular, for any choice of Spin-structures on the determinant bundle the map
ΩSpinc

∗ (·) → ΩSpin
∗+1 (·) given by (M, f) 7→ (L, f ◦ πL) is the zero map. This

problem can be circumvented by mapping ΩSpinc

∗ (·) not into ΩSpin
∗+1 (·) but into

ΩSpin
∗+1 (·×BZn) for some fixed odd n. Here ΩSpin

∗ (·×BZn) is a functor, mapping
f : X → Y to (f × id)∗ : ΩSpin(X ×BZn)→ ΩSpin(Y ×BZn).

In order to implement this, we start by fixing once and for all an odd
number n ∈ N, n > 1, and generators ek ∈ H2(BSpinc;Z). We do this in such
a way that ek+1 maps to ek under the map induced by the canonical inclusion
γk : BSpinc(k)→ BSpinc(k + 1).
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Then for all k ∈ N the element n · ek ∈ H2(BSpinc(k);Z) classifies an S1-
bundle Kk → BSpinc(k). It satisfies π1(Kk) = Zn, and we fix a classifying map
(up to homotopy) uk : Kk → BZn. Kk is isomorphic to the pullback bundle
γ∗k(Kk+1) and we choose the maps uk in such a way that uk factors through
uk+1.

If now (M, sc, f) is a manifold with Spinc-structure sc : M → BSpinc(k)
and a singular map f : M → X, we let πL : L→M be the pullback of Kk along
sc and we let L → X ×BZn be the map f ◦ πL × uk ◦ ŝc, where ŝc : L → Kk

is the map of the pullback. This construction is compatible with passing to
stable Spinc-structures.

The Spin-structure on L has yet to be determined and we have yet to show
that the construction is compatible with the bordism relation. But first we
give two examples that show that the construction can produce non-trivial
elements in ΩSpin(X ×BZn).

Example 4.4.1. If f : M = pt → X = pt , then the above procedure yields[
ψ̂ : (S1, sbord)→ BZn

]
∈ ΩSpin

1 (BZn)

where sbord is the bordant Spin-structure and ψ̂ the inclusion of the 1-skeleton
BZn(1).

This is a non-zero element of ΩSpin(BZn). 4

Example 4.4.2. If f = id : M = S1 → X = S1, then the procedure yields

χ =
[
(id, ψ̂) : (S1 × S1, s)→ S1 ×BZn

]
where s is the bordant Spin-structure on the first S1 factor and not yet deter-
mined on the second factor.

The projection S1 × BZn → BZn and the inclusion BZn → S1 × BZn
induce a splitting ΩSpin

2 (S1 × BZn) = ΩSpin
2 (BZn) ⊕ ΩSpin

2 (ΣBZn). We show
that for both possible choices of s the bordism class χ is non-zero in the second
summand, which means that the map ΩSpinc

1 (S1)→ ΩSpin
2 (S1×BZn) given by

our construction does not factor through ΩSpin
2 (BZn).

Indeed, the boundary map of the Mayer-Vietoris sequence induces an iso-
morphism ∂ : ΩSpin

2 (ΣBZn) ∼= ΩSpin
1 (BZn), and to compute ∂(χ) we have to

restrict (id, ψ̂) to the preimage of {pt} × BZn ⊂ S1 × BZn. This means

that ∂(χ) =
[
ψ̂ : (S1, sbord)→ BZn

]
, which is non-zero by the previous exam-

ple. 4

We have to check that it is possible to choose the Spin-structure on the
S1-bundles in a consistent way. This is a serious issue as the following related
problem shows:

Problem 4.4.3. Let n ∈ N be fixed. For every Spinc manifold (M, sc) choose
on the S1-bundle Ln, produced from (M, sc) by the above construction, a Spin-
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structure s (and therefore a Spin orientation [Ln]Spin ∈ ΩSpin(Ln)), such that
the following condition is fulfilled:

For every S1-bundle map

Ln L′

M M ′

Φ

Φ

Φ∗([Ln]Spin) = 0 ∈ ΩSpin(L′) holds whenever Φ∗([M ]Spinc) = 0 ∈ ΩSpinc(M ′).

Theorem 4.4.4. There is no solution to this problem.

Proof. Consider the case M = T2 with the Spinc-structure corresponding to
a trivial bundle Ln → M . And consider three maps Φ1,0, Φ0,1 and Φ1,1 from
M to S1. The first map is the projection onto the first S1 factor of M , the
second the projection onto the second factor, and the third is the product of
these two, using the group structure of S1. Let Φ·,· = Φ·,· × id : Ln → S1 × S1

be the corresponding maps between the total spaces of the bundles.
In all three cases the induced map on ΩSpinc sends the class [M ]Spinc to

0 ∈ ΩSpinc

2 (S1) = ΩSpinc

2 (pt) ⊕ ΩSpinc

1 (pt). The image of [M ]Spinc in ΩSpinc

2 (pt)

is zero because M is null-bordant and ΩSpinc

1 (pt) = 0.
Now let s′ be any chosen Spin-structure on Ln = T2 × S1 and [Ln]Spin

the corresponding Spin-orientation. The fixed orientation on the S1-fiber de-
termines a trivialization of the normal bundle of M × pt ⊂ Ln. Let s′ be
the induced Spin-structure on M and [M ]Spin the corresponding orientation

class. Consider (Φ·,·)∗([Ln]Spin) ∈ ΩSpin
3 (S1 × S1) ∼= ΩSpin

3 (S1) ⊕ ΩSpin
2 (S1),

where the direct sum decomposition is made along the S1-factor that is the
fiber of the bundle S1 × S1 → S1. The image of [Ln]Spin in the second
summand is obtained by restricting Φ·,· to the preimage of S1 × pt , yielding

(Φ·,·)∗([M ]Spin) ∈ ΩSpin
2 (S1).

After a second decomposition ΩSpin
2 (S1) = ΩSpin

2 (pt)⊕ΩSpin
1 (pt) the image

of [M ]Spin in the summand ΩSpin
1 (pt) is again obtained by restricting Φ·,· to

the preimage of some point, which is a circle with either the bording or the
non-bording Spin-structure. The problem demands that the image of [Ln]Spin
has to be zero for all three maps. In particular, it has to be zero in the
summand ΩSpin

1 (pt), which means that for all three maps Φ·,· the restriction

to the preimage (Φ·,·)
−1

(pt) ⊂ (M, s) must be the circle with the bordant
Spin-structure.

Since M is parallelizable, the bundle PSO(M) of oriented orthonormal
frames in TM is trivializable. A trivialization ξ : PSO(M) → M × SO(2)
determines a Spin-structure PSpin(M) = M × Spin → M × SO ∼= PSO(M),
and by retrivializing with a suitable map M → SO(2) we can achieve that the
determined Spin-structure is s. When S is any of the three preimage circles,
we choose an orientation of the normal bundle ν(S) of S ⊂ T2. Then the
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induced Spin-structure on S is determined by ξ|S which is a trivialization for
the bundle of oriented orthonormal frames in TS ⊕ ν(S) = TS ⊕ (S × R).
We can compare ξ|S to the trivialization η that comes from the decomposition
TS⊕ ν(S) = (S×R)⊕ (S×R) (where the orientation is chosen to match that
of ξ) and determines the non-bordant (S1-equivariant) Spin-structure.

The difference between the trivializations ξ|S and η is given by a map
α(S) : S → SO(2). The two trivializations determine the same Spin-structure
on S iff the induced map α(S)∗ : π1(S)→ π1(SO(2))→ Z2 is trivial, such that
it can be lifted to α′(S) : S → Spin(2). Therefore, the induced Spin-structure
on S is the bordant one iff α(S)∗(1) 6= 0 ∈ Z2. Thinking of S as an immersed
circle, this property does not change under regular homotopies. But we can
homotope the preimage circles S1,0, S0,1, S1,1 such that S1,1 follows the path of
first S0,1 and then S1,0. This means that α(S1,1)∗ = α(S0,1)∗+α(S1,0)∗. Hence
at least one of the three maps has to be trivial and at least one of the three
preimage circles is not Spin-null-bordant. This gives a contradiction.

Although Problem 4.4.3 has a negative answer, there is still a way out: In
the counterexample of the above proof we were working with ΩSpin(L′), but in
the actual setting we only have ΩSpin(M ′ ×BZn), losing some information.

Theorem 4.4.5. Let (f ◦ πLn × ψ̂) : Ln → X × BZn be constructed from a
singular Spinc manifold (f : (M, sc)→ X) as explained above.

Then the bordism class (f ◦ πLn × ψ̂)∗([Ln]Spin) ∈ ΩSpin(X×BZn) does not
depend on the choice of the (bordant along the S1-fiber) Spin-structure on Ln.

Proof. Let [Ln]1 and [Ln]2 be the Spin orientations corresponding to two differ-

ent Spin-structures on Ln. Then [Ln]1−[Ln]2 and hence (f ◦ πLn × ψ̂)∗([Ln]1)−
(f ◦ πLn × ψ̂)∗([Ln]2) lies in the kernel of the natural transformation η : ΩSpin →
ΩSO . Furthermore, since both Spin-structures on Ln are induced from a Spin-
structure on the corresponding disk bundle, both [Ln]1 and [Ln]2 map to zero

in ΩSpin(X), which means that (f ◦ πLn × ψ̂)∗([Ln]1) − (f ◦ πLn × ψ̂)∗([Ln]2)
lies in the kernel of the map pr ∗ : ΩSpin(X ×BZn)→ ΩSpin(X).

The proof of Lemma 4.3.7 also works in this situation to show that every
element in Ker(pr ∗) has odd order. Similarly, we now show that every element
in the kernel of η has order 2m for some m ∈ N. Both results together imply
the claim.

To see that every element of Ker(η) has order 2m, we note that the map

η(pt) : ΩSpin(pt)→ ΩSO(pt)

becomes an isomorphism after inverting 2 (see [LM89, II.2]). For a general
space X we use the Atiyah-Hirzebruch spectral sequences

E2
j,k = Hj(X; ΩSpin

k (pt))⇒ ΩSpin(X) , E ′2j,k = Hj(X; ΩSO
k (pt))⇒ ΩSO(X).

The natural transformation η induces a map between these spectral se-
quences. This map is an isomorphism on E2 ⊗ Z[2−1] → E ′2 ⊗ Z[2−1]. Since
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Z[2−1] is a flat module over Z, it is still an isomorphism on E3 ⊗ Z[2−1] →
E ′3 ⊗ Z[2−1] and on the following pages up to E∞. The Five Lemma then
shows (again using flatness) that η is an isomorphism even between the iter-
ated extensions ΩSpin(X)⊗ Z[2−1]→ ΩSO(X)⊗ Z[2−1].

This result means that the choice of the Spin-structure on the S1-bundle in
our construction is irrelevant. For every topological space X we now define the
map T (X) from the set of isomorphism classes of singular Spinc-manifolds in
X to the bordism group ΩSpin(X ×BZn) by sending (M, sc, f) to the bordism
class [Ln, s, f ◦ πLn × uKk ◦ ŝc] ∈ ΩSpin(X ×BZn), where πLn : Ln →M is the
bundle constructed above, f ◦ πLn × uKk ◦ ŝc the map constructed above, and
s is any Spin-structure on L.

If (M, scM , f) is the boundary of a singular Spinc-manifold (W, scW , F ), then
T ((M, sc, f)) is the oriented boundary of the Spin-manifold T ((W, scW , F )), and
we can rechoose the Spin-structure on T ((M, scM , f)) such that it is even the
Spin-boundary. This means that T (X) sends bordant manifolds to zero and
thus defines a map

ΩSpinc

∗ (X)→ ΩSpin
∗+1 (X ×BZn).

This map is natural because the singular map f : M → X is not used in the
construction of the S1-bundle, and it is compatible with the group addition
[M1, s

c
1, f1] + [M2, s

c
2, f2] = [M1 tM2, s

c
1 t sc2, f1 t f2].

It also respects the boundary map of the Mayer-Vietoris exact sequence.
Indeed, a Mayer-Vietoris decomposition X = A ∪ B induces a decomposition
X ×BZn = (A×BZn)∪ (B×BZn). If (M, sc, f) is a singular Spinc-manifold
on X and N ⊂ M a codimension-1 submanifold such that f(N) ⊂ A ∩ B,
then (M ′, f ′) = T ((M, sc, f)) is a singular Spin-manifold on X × BZn and
(N ′, f ′|N ′) = T ((N, sc|N , f|N)) is a codimension-1 submanifold inside it with

f ′(N) ⊂ (A × BZn) ∩ (B × BZn). The Mayer-Vietoris boundary map sends
[M, sc, f ] to [N, sc|N , f|N ] and [M ′, f ′] to [N ′, f ′|N ′ ], and thus commutes with the
natural transformation induced by T .

In summary we have shown:

Theorem 4.4.6. For every odd number n ∈ N, n > 1, there is a non-trivial
natural transformation of homology theories ΩSpinc

∗ (·)→ ΩSpin
∗+1 (· ×BZn).

Remark 4.4.7. The construction always leads to an S1-bundle that corre-
sponds to an element in n ·H2(M ;Z), with n odd. In the remaining sections
we will again work in the most general setting where the S1-bundle and the
Spin-structure on it may be arbitrary. 4

4.5 Rosenberg’s example

The result of Lemma 4.3.7 is somewhat disheartening – any obstruction that
arises from the S1-bundle construction would have to be quite subtle. The
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following example, due to Rosenberg ([Ros86]), deals with a very similar situ-
ation where such subtleties may occur. It shows that a non-psc manifold may
have a finite, n-fold covering that is psc, even when n is odd.

Consider the group G = Z2 oA Z where Z acts on Z2 via the matrix

A =

(
−1 −1

1 0

)
∈ SL(2,Z).

As BG one can take the 2-torus bundle over S1 with twist given by A.
The homology groups H∗(BG;Z) can be computed directly: BG can be

decomposed into two parts by cutting S1 along two points and cutting BG→
S1 accordingly. The Mayer-Vietoris sequence is

Hn(T2)⊕Hn(T2) Hn(T2)⊕Hn(T2) Hn(BG)

Hn−1(T2)⊕Hn−1(T2) Hn−1(T2)⊕Hn−1(T2) Hn−1(BG)

A

A

with A =

(
1 1
1 A∗

)
. We may simplify this to

. . . Hn(T2) Hn(T2) Hn(BG)

Hn−1(T2) Hn−1(T2) Hn−1(BG) . . .

A∗−1

A∗−1

a special case of the Wang sequence.
Here A∗ = det(A) = 1 in degree n = 2 and in degree n = 1 the map A∗− 1

is injective with a cokernel of order 3. The only non-trivial extension problem
is that for H1, which is the abelianization of G, i.e., Z⊕ Z3. We compute:

H0(BG;Z) = Z ; H1(BG;Z) = Z⊕Z3 ; H2(BG;Z) = Z ; H3(BG;Z) = Z

The E2 page of the Atiyah-Hirzebruch spectral sequence that converges to
KO∗(BG) looks like this:

...
...

...
...

...

5 0 0 0 0

4 Z Z⊕ Z3 Z Z
3 0 0 0 0

2 Z2 Z2 Z2 Z2

1 Z2 Z2 Z2 Z2

0 Z Z⊕ Z3 Z Z
−1 0 0 0 0

...
...

...
...

...
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The E2 page of the Atiyah-Hirzebruch spectral sequence that converges to
ΩSpin
∗ (BG) looks the same in the region that is shown here because the first

few coefficients of the two homology theories coincide. Moreover, the natural
transformation ΩSpin

n (X)→ KOn(X) is a bijection for X = pt and −3 ≤ n ≤ 7
(In [Mil63] Milnor gives generators for ΩSpin

n (pt), n < 8, and by [LM89, Section
II.7] these map bijectively onto the generators of KO(pt)).

The entry E2
1,4 = Z⊕Z3 survives to the E∞ page and therefore is a subgroup

of ΩSpin
5 (BG):

0 Z⊕ Z3 ΩSpin
5 (BG) Z2 0

In E2
1,4 = H1(BG; ΩSpin

4 (pt)) there is an element of order 3, which can be
represented by a singular Spin manifold [f : M → BG]. By performing 0- and
1- surgery onM , we can arrange for f to induce an isomorphism of fundamental
groups without changing the bordism class [M, f ] ∈ ΩSpin(BG).

Therefore, f∗([M ]KO) ∈ KO5(BG) has order 3. Since the group G is
torsion-free and solvable, it follows ([Ros86], 1.5) that the assembly map
KO∗(BG) → KO∗(C∗r (G)) is an isomorphism. Hence the Rosenberg index
does not vanish for M and M is not psc.

Because A3 = 1, Z3 embeds into G as a subgroup of index 3. Thus
pT3 : T3 → BG is a threefold covering. Let M ′ be the pullback of this covering:

M ′ T3

M BG

f ′

pT3

f

Then [M ′, f ′] = pT3
!([M, f ]) ∈ ΩSpin(T3) is the image under the transfer

homomorphism and must also have order three. But ΩSpin(T3) does not contain
elements of odd torsion, so [M ′, f ′] = 0 ∈ ΩSpin(T3). Because f ′ is a classifying
map for the universal covering of M ′, it follows that α([M ′]Spin) = 0. By
Theorem 2.4.5 it follows further that M ′ admits a psc metric.

4.6 The operator algebra side

As before let L → M be a Spin circle-bundle over a Spinc manifold with M̃
non-Spin, and let Γ′ → Γ be the induced central extension of fundamental
groups. In Lemma 4.3.7 it was shown that the index α([L]Spin) must always
have odd torsion.

In this section we look at the algebra C∗(Γ′) in order to determine when
KO(C∗(Γ′)) can contain odd torsion and when it cannot. In this section we
take C∗(Γ′) to be the reduced group C∗-algebra. We think of it as a Real
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C∗-algebra, that is, as a complex C∗-algebra with a given involution τ (see
[HR00, Appendix B]).

Because Zn is a central subgroup of Γ′, there is a (non-real) homomorphism

ζ : C({ek/n·2πi}0≤k<n) = C∗r (Zn)→ Z(C∗r (Γ′))

from the algebra of continuous C-valued functions on the spectrum σ(C[Zn]) ⊂
C into the center of C∗r (Γ′). In particular, there exist in C∗r (Γ′) n central
projections pj = 1/n ·

∑
k∈Zn e

kj/n·2πiδk with the property that
∑

j∈Zn pj = 1.
Therefore, C∗r (Γ′) splits as a complex C∗-algebra into

C∗r (Γ′) =
⊕
j∈Zn

pjC
∗
r (Γ′).

The involution τ maps pj to p−j. Hence it maps pjC
∗
r (Γ′) bijectively onto

p−jC
∗
r (Γ′). As a Real C∗-algebra C∗r (Γ′) splits into

C∗r (Γ′) = p0C
∗
r (Γ′)⊕

⊕
0<j<n/2

(pjC
∗
r (Γ′)⊕ p−jC∗r (Γ′)) .

In K-theory this becomes

(4.1) KO(C∗r (Γ′)) = KO(p0C
∗
r (Γ′))⊕

⊕
0<j<n/2

KO(pjC
∗
r (Γ′)⊕ p−jC∗r (Γ′)).

The map q∗ : C
∗
r (Γ′) → C∗r (Γ) induced by q : Γ′ → Γ (the induced map

exists, because the kernel of the group extension is finite) is surjective because
q is surjective (and C∗-homomorphisms have closed images). It sends p0 to 1 ∈
C∗r (Γ) and pj to 0 for j 6= 0. Restricted to p0C

∗
r (Γ′) the map is injective because

it is injective on the dense subspace p0C[Γ′]. Therefore, p0C
∗
r (Γ′) ∼= C∗r (Γ) as

Real C∗-algebras and in the decomposition of Equation 4.1 the map q∗ is just
the projection onto the first summand.

On the topological side, the push-forward uL∗([L]KO) ∈ KO(BΓ′) gets
mapped to zero under the map KO(BΓ′) → KO(BΓ). Since the assembly
map is natural, the index must be zero in the summand KO(C∗r (Γ)). This
only leaves the summands KO(pjC

∗
r (Γ′)⊕ p−jC∗r (Γ′)). Because the involution

exchanges pjC
∗
r (Γ′) and p−jC

∗
r (Γ′), these groups are isomorphic to the complex

K-theory groups K(pjC
∗
r (Γ′)).

The complex C∗-algebra pjC
∗
r (Γ′) can be viewed as a twisted group C∗-

algebra of the group Γ.

Definition 4.6.1. Let G be a discrete group and ω : G×G→ T a 2-cocycle on
G (i.e., ω(s, t)ω(r, st) = ω(r, s)ω(rs, t), ω(1, s) = ω(s, 1) = 1 for all r, s, t ∈ G).

The algebraic twisted group algebra C[G;ω] is defined as the vector space of
finitely supported functions from G to C, with multiplication and involution
given by

δg · δh = ω(g, h)δgh, δ∗g = ω(g, g−1)−1δg−1
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The left-regular ω-representation of C[G;ω] on `2(G) is given by (the linear
extension of)

δg.δh = ω(g, h)δgh

The reduced twisted group algebra C∗r (G;ω) is the completion of C[Γ;ω]
with respect to the left-regular ω-representation. 4

If two cocycles ω1, ω2 are cohomologous, the resulting C∗-algebras are iso-
morphic.

The following is a special case of a classical result (see, e.g., [EL69, Section
3]).

Lemma 4.6.2. Let Γ′ → Γ be a central extension of a discrete group by a
finite cyclic group Zn, and let pj be the central projections in C∗r (Γ′) as above.

Then pjC
∗
r (Γ′) is (isomorphic to) a twisted group C∗-algebra C∗r (Γ;ωj) with

the twist ωj determined by the cohomology class that classifies the central ex-
tension.

Proof. Let s : Γ→ Γ′ be any (set-theoretic) split of the quotient map q : Γ′ →
Γ, and let ξ : Γ × Γ → Zn, ξ(γ1, γ2) = s(γ1)s(γ2)(s(γ1γ2))−1 be the resulting
cocycle, representing the extension Γ′ → Γ (see [Bro82, IV.3]). s extends
linearly to a (non-multiplicative) map between the group algebras C[Γ] and
C[Γ′]. The (non-multiplicative) linear maps ηj : C[Γ] → pjC[Γ′] defined by
δγ 7→ pjs(γ) are bijective. The multiplication transforms in the following way:

ηj(δγ1) · ηj(δγ2) = pj · s(δγ1) · s(δγ2)
= pj · ξ(γ1, γ2) · s(δγ1γ2)
= ej·ξ(γ1,γ2)·2πi/j · pj · s(δγ1γ2)
= ej·ξ(γ1,γ2)·2πi/j · ηj(δγ1γ2)

Therefore, pjC[Γ′] can be identified with the twisted group algebra C[Γ;ωj]
where ωj ∈ Z(Γ;T) is the cocycle j · ξ.

The C∗-algebra pjC
∗
r (Γ′) is the completion of pjC[Γ′] with respect to the

left action on the Hilbert space pj`
2(Γ′). Because ηj is an isometry up to a

factor of
√
n, it extends to an isomorphism of Hilbert spaces betweeen `2(Γ)

and pj`
2(Γ′). With this identification the action satisfies

ηj(δγ1).δγ2 = ωj(γ1, γ2) · δγ1γ2 .

Therefore, the left-regular action pjC[Γ′] y pj`
2(Γ′) is equivalent to the

left-regular ωj-representation of C[Γ;ωj]. Hence pjC
∗
r (Γ′) ∼= C∗r (Γ;ωj).

For the K-theory of twisted group C∗-algebras there is the following result
(proved in [ELPW10, Theorem 0.3] for locally compact groups).

Theorem 4.6.3. Let ω1, ω2 ∈ Z2(Γ;T) be homotopic cocycles and assume
that Γ satisfies the Baum-Connes conjecture with coefficients.

Then K∗(C
∗
r (Γ;ω1)) ∼= K∗(C

∗
r (Γ;ω2)).
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This theorem can be applied to the motivating Example 4.2.1.

Lemma 4.6.4. For M = CP 2k#T4k the circle bundle construction never
gives a non-vanishing obstruction.

Proof. By Lemma 4.3.7 α([L]Spin) must be an element of odd order. Hence it
suffices to show that KO(C∗r (Γ′)) ∼= KO(C∗r (Γ)) ⊕

⊕
K(C∗r (Γ;ωj)) does not

contain odd torsion.
The group Γ = Z4k is amenable and hence ([HK01, Theorem 1.1]) satis-

fies the Baum-Connes conjecture with coefficients. Furthermore, we have the
following commutative diagram, where all maps are changes of coefficients:

H2(Γ;Z) H2(Γ;Zn)

H2(Γ;R) H2(Γ;T)

The twists ωj ∈ H2(Γ;T) come from H2(Γ;Zn). For Γ = Z4k the top
horizontal map is surjective. Therefore, the ωj can be lifted to H2(Γ;Z) and
hence to H2(Γ;R). There, every cocycle is null-homotopic via the homotopy
ωj(t) = t · ωj, t ∈ [0, 1]. Therefore, by the previous theorem,

KO∗(C
∗
r (Γ′)) ∼= KO∗(C

∗
r (Γ))⊕

⊕
K∗(C

∗
r (Γ)) ∼= KO∗(T4k)⊕

⊕
K∗(T4k),

which does not contain odd torsion.

It is clear that this reasoning also works for many other examples of circle
bundles. It does not apply if either KO(C∗r (Γ)) contains odd torsion, or the
Bockstein map H2(Γ;Zn) → H3(Γ;Z) is non-zero, or Γ does not satisfy the
Baum-Connes conjecture with coefficients.

4.7 Vanishing of the index

As before let πL : L→M be a Spin circle bundle over a closed Spinc manifold
with M̃ non-Spin. And let Γ = π1(M), Γ′ = π1(L) be the fundamental groups.
Γ′ is a central extension of Γ by a finite cyclic group.

We will now show that the Rosenberg index of the bundle L always vanishes.
Therefore, no index-theoretic obstruction against positive scalar curvature can
be obtained from the bundle construction. The proof requires equivariant
bordism groups and equivariant K-homology groups, which we briefly recall.

The equivariant viewpoint

Definition 4.7.1. Let M be a smooth manifold and Γ yM a proper action
of a discrete group. In this case there exists a Γ-invariant Riemannian metric
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on M and hence the derivative of the action defines an action of Γ on the
O(n)-bundle PO of orthonormal frames in TM .

A Γ-Spin-structure on TM consists of a principal Spin(n)-bundle PSpin , an
action Γ y PSpin and a Γ-equivariant bundle map PSpin → PO that restricts
in each fiber to the canonical map Spin(n) → O(n). Two Spin-structures
PSpin → PO and P ′Spin → PO are equivalent if there is an equivariant bundle
isomorphism PSpin → P ′Spin that is compatible with the maps to PO. 4

As in the non-equivariant case we can pass to stable Spin-structures. If the
Γ-manifold M has a boundary, then we can stabilize T∂M by adding to it the
normal bundle of ∂M ⊂M , which is canonically identified with ∂M×R. Then
the restriction of a Γ-Spin-structure on TM to ∂M defines a Γ-Spin-structure
on T∂M ⊕ (∂M × R).

Example 4.7.2. If M̃ is the universal covering of the closed manifold M and
s : PSpin → PO is a Spin-structure onM , then the bundle of orthonormal frames

on TM̃ can be identified with the pullback PO ×M M̃ , and the Spin-structure
s defines a π1(M)-Spin-structure on M̃ given by PSpin ×M M̃ → PO ×M M̃ .

In the other direction, if a π1(M)-Spin-structure on M̃ is given, then by
quotienting out the π1(M)-action one gets a Spin-structure on M . 4

The equivariant Spin-bordism groups are now defined analogously to Def-
inition 2.3.1.

Definition 4.7.3. Let X be a topological space and Γ y X a proper action
of a discrete group.

The equivariant Spin-bordism group ΩΓ
k (X) is the abelian group of bordism

classes of Γ-equivariant maps (M, s) → X, where M is a Γ-compact, proper
Γ-manifold of dimension k, without boundary, and s is a Γ-Spin-structure on
M . 4

There is also an equivariant version of geometric K-homology that is equiv-
alent to the analytic version. It is the equivariant analogue of Definition 2.3.3.
See [BHS10] for a complete definition, the proof of equivalence in the complex
case (the real case is analogous, see their Remark 4.1) and the relation to the
Baum-Connes map. See also [BOOSW10] and [GMW].

Definition 4.7.4. Let (X,A) be a pair of topological spaces and Γ y (X,A)
a proper action of a discrete group. Elements of KOΓ

n(X,A) are represented
by quadruples (M, s,E, f), where M is a Γ-compact, proper Γ-manifold of
dimension n mod 8, s is a Γ-Spin-structure on M , E → M a real Γ-vector
bundle and f : M → X a continuous Γ-equivariant map such that f(∂M) ⊂ A.
The equivalence relation is generated by:

1. Direct sum of vector bundles equals disjoint union

2. Equivariant bordism

3. Equivariant vector bundle modification
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4

As in the non-equivariant case there is the natural transformation that
sends [M, s, f ] ∈ ΩΓ

∗ (X) to [M, s,M × R, f ] ∈ KOΓ
∗ (X).

Furthermore, as expected for equivariant homology theories (see [Lüc02a])
there are induction structures on the equivariant Spin-bordism groups and the
equivariant K-homology groups: If X is a Γ-space and φ : Γ → G a group
homorphism with kernel acting freely on X, then there are functorial isomor-
phisms

ΩΓ
k (X) ∼= ΩG

k (X ×Γ G) and KOΓ
k (X) ∼= KOG

k (X ×Γ G).

In the special case where π1(M) acts freely on the universal covering M̃
of a closed Spin-manifold (M, s) and φ : π1(M) → {e} is the trivial map

this correspondence sends [M, s, id ] ∈ ΩSpin
n (M) to [M̃, s̃, id ] ∈ ΩΓ

n(M̃) and

[M, s,M × R, id ] ∈ KOn(M) to [M̃, s̃, M̃ × R, id ] ∈ KOΓ
n(M̃).

The vanishing of the index

As mentioned in Section 2.4, the Rosenberg index

α : ΩSpin(M)→ KO(C∗(π1(M)))

factors through the equivariant K-homology group KOΓ(Eπ1(M)). Here EΓ
denotes the classifying space for proper Γ-actions (see [Lüc02b], 1.28). It is
a proper Γ-CW-complex, determined up to Γ-equivariant homotopy by the
requirement that for every x ∈ EΓ the isotropy group Γx = {g ∈ Γ | g.x =
x} is finite and for every finite subgroup H ⊂ Γ the fixed-point set EΓH is
contractible. It has the universal property that for every (numerably) proper
Γ-space X there is a unique (up to Γ-homotopy) equivariant map X → EΓ.

Using the equivariant setup, the Rosenberg index α is the map from the
top left to the bottom right in the following commutative diagram:

Ω∗(L) ΩΓ′
∗ (L̃) ΩΓ′

∗ (EΓ′) ΩΓ′
∗ (EΓ′)

KO∗(L) KOΓ′

∗ (L̃) KOΓ′

∗ (EΓ′) KOΓ′

∗ (EΓ′) KO∗(C
∗(Γ′))BC

Here the dashed arrows denote the transfer to the equivariant theories, the
vertical arrows denote the maps from the natural transformation, BC is the
Baum-Connes map and all other horizontal arrows are induced by the classi-
fying topological maps.

We want to show that the fundamental class [L, s, id ] ∈ Ω∗(L) (s being
a Spin-structure on L) is mapped to zero in KO∗(C

∗(Γ′)). By the preceding
commutative diagram it suffices to show that its image in ΩΓ′

∗ (EΓ′) is zero.
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Consider the following commutative diagram where all morphisms are in-
duced by the topological maps and the Γ′-action on the spaces in the bottom
row factors through Γ:

ΩΓ′
∗ (L̃) ΩΓ′

∗ (EΓ′) ΩΓ′
∗ (EΓ′)

ΩΓ′
∗ (M̃) ΩΓ′

∗ (EΓ) ΩΓ′
∗ (EΓ)

EΓ with the action Γ′ → Γ y EΓ is a proper Γ′-CW-complex because
the kernel of the extension Γ′ → Γ is finite. Because it satisfies the necessary
requirements on the isotropy groups and the fixed point sets, it is therefore
also a model for EΓ′. By the universal property of EΓ′ the map EΓ′ → EΓ
can then be taken to be the identity and therefore induces an isomorphism on
the bordism groups.

By the commutativity of the diagram it therefore suffices to show that the
image of [L̃]Spin vanishes in ΩΓ′(M̃), i.e., that the singular manifold L̃→ M̃ is
Γ′-equivariantly Spin-null-bordant.

The key observation is now that the universal covering L̃ can be viewed
as an S1-bundle over the universal covering M̃ . Let L′ be the pullback of
pM̃ : M̃ →M and πL : L→M :

L′ M̃

L M

πL′

pL′ p
M̃

πL

Then L′ → L is the covering corresponding to the subgroup Zn ⊂ Γ′. And
at the same time L′ → M̃ is the S1-bundle corresponding to xL′ = pM̃

∗(xL)
(where xL ∈ H2(M ;Z) classifies the bundle L).

Lemma 4.3.1 implies xL′ ∈ n · H2(M̃ ;Z). Also, H1(M̃ ;Z) = 0 is torsion-

free, and by the universal coefficient theorem the same is true for H2(M̃ ;Z).

Therefore, let L′′ be the unique S1-bundle over M̃ classified by xL′′ = 1/n ·xL′ ∈
H2(M̃ ;Z). Then there is a well defined map L′′ → L′′/Zn ∼= L′ given by
quotienting out the action of Zn ⊂ S1 y L′′. This map is a covering. Because
M̃ is simply connected, the fundamental group π1(L′′) is generated by the
inclusion of the fiber S1 → L′′. But this inclusion maps to a null-homotopic
circle under the covering map L′′ → L′, thus it is itself null-homotopic. This
means that L′′ is simply connected and hence the universal covering of L′ and
of L.

Now, the S1-bundle L̃ → M̃ is the boundary of the corresponding disk
bundle L. The action Γ′ y L̃ extends to L, on the zero-section of the disk
bundle it is just Γ′ → Γ y M̃ . Because both L̃ and L are connected and
the Γ′-action on L̃ respects the orientation, it also respects the orientation on
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L. It remains to check that L can be equipped with a Γ′-Spin-structure that
restricts on the boundary to the Spin-structure on L̃.

First we check that L admits a non-equivariant Spin-structure. Indeed,
this is true for the disk bundle L̂ of the lifted S1-bundle L′. Then, because
n is odd (this is where the assumption that M̃ is non-Spin comes in through
Lemma 4.3.1), xL′′ = xL′ mod 2. It follows (compare Lemma 4.2.2)

w2(TL) = (πTL)∗(w2(TM̃) + w2(L
◦
)) = (πTL)∗(w2(TM̃) + w2(L̂◦)) = 0,

hence L is Spin. Because both L and L̃ are simply connected, there is, when
neglecting the Γ′ action, exactly one Spin-structure s : P Spin → P SO on L,

and its boundary is the unique Spin-structure s̃ : P̃Spin → P̃SO on L̃. After

stabilizing we may assume that P Spin and P̃Spin are Spin(k) principal bundles

for the same k. Then P̃Spin ⊂ P Spin and taking the boundary of s just means

restricting the map to P̃Spin . We have to lift the Γ′-action from P SO to P Spin

such that it coincides with the given (stabilized) Γ′-action on P̃Spin .

But both s and s̃ are the universal coverings of P SO and P̃SO , respectively.
Therefore, if we fix any point v0 ∈ P̃Spin ⊂ P Spin , then for every γ ∈ Γ′ the

assignment v0 7→ γ.v0 extends uniquely to a map on both P Spin and P̃Spin .
The resulting map Γ′ × P Spin → P Spin is a group action because it is one on

the orbit of v0. It agrees with the given action on P̃Spin and it makes the map
P Spin → P SO equivariant.

This finishes the proof of the first part of Theorem 1.3:

Theorem 4.7.5. Let M be a closed Spinc manifold such that M̃ is not Spin
and let πL : L→M be an S1-bundle that is Spin.

Then the Rosenberg index of L inside KO(C∗(π1(L))) always vanishes.

Remark 4.7.6. By interpreting the cohomology class xL′ as a Γ-invariant
element of Hom(π2(M), nZ) one sees that xL̃ = 1/n · xL′ ∈ Hom(π2(M),Z) is

also Γ-invariant. This, however, does not necessarily mean that xL̃ ∈ H2(M̃ ;Z)
is the pullback of an element y ∈ H2(M ;Z) (which would be equivalent to the
corresponding S1-bundle being a pullback from a bundle over M).

In the general setting pX̃ : X̃ → X there are two possible reasons why

a π1(X)-invariant element x ∈ H2(X̃;Z) might not be a pullback of an ele-
ment in H2(X;Z). The first reason is that x might have non-zero values on

ker
(
pX̃∗ : H2(X̃;Z)→ H2(X;Z)

)
. This can happen when the classifying map

uX : X → Bπ1(X) does not induce a surjection on H3, for example when X is
the 2-skeleton of T3. For more information see [Bro82], Theorem VII.7.9 and
Exercise 6 on the Cartan-Leray spectral sequence. This problem, however,
does not arise in the above setting: Because the coefficient ring Z is torsion-
free, xL̃ evaluates to zero exactly when n · xL̃ = xL′ evaluates to zero and xL′
is the pullback of xL.
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If x evaluates to zero on ker
(
pX̃∗ : H2(X̃;Z)→ H2(X;Z)

)
, it defines an

element of Hom
(

Im
(
pX̃∗ : H2(X̃;Z)→ H2(X;Z)

)
,Z
)

. The second problem

that may occur is that this homomorphism might not extend to H2(X;Z).

By the Hurewicz isomorphism Im
(
pX̃∗ : H2(X̃;Z)→ H2(X;Z)

)
is the sub-

group of H2(X;Z) that can be represented by singular 2-spheres, and this sub-
group in turn is precisely ker (uX∗ : H2(X;Z)→ H2(Bπ1(X));Z)). Therefore,
the second problem may occur if H2(Bπ1(X));Z) contains torsion.

As an example take as X the 2-skeleton of the classifying space for

G = Z× Zn =
{
z, a | zaz−1a−1, an

}
and let y ∈ H2(X;Z) evaluate to 1 on the relation zaz−1a−1. Then 1/n·pX̃∗(y) ∈
H2(X̃;Z) is not the pullback of any y′ ∈ H2(X;Z). 4

4.8 Example for a non-psc circle bundle

Finally, we give an example where the S1-bundle produced by our construction
does not admit a psc metric. This means that the bundle construction does
not in itself remove all information pertaining to positive scalar curvature.
Instead, it will, in some cases, lead to non-psc Spin manifolds with vanishing
index-theoretical obstruction. Such manifolds have been known to exist for
some time. They are, however, considered to be the exception. The bundle
construction might be used to construct a class of examples where this behavior
occurs.

The first example for a non-psc manifold with vanishing Rosenberg index
was given by Schick in [Sch98]. Schick realizes an element of odd order inside
ΩSpin

5 (B(Z4 × Z3)) by a singular manifold (M, f). After doing surgery one can
assume that f is a classifying map for π1(M). Then, because KO∗(C

∗(Z×Z3))
does not contain odd torsion, α([M ]Spin) = 0 ∈ KO5(C∗(Z × Z3)). But with
the minimal hypersurface method it can be shown that M is non-psc.

Our circle bundle situation is very similar to this counterexample and we
can use essentially the same proof.

Example 4.8.1. Let M = T4#CP 2 and x ∈ H2(M ;Z) the element that
comes from the generator of H2(CP 2;Z) = Z. The circle bundle L→M given
by 3x is a Spin manifold with fundamental group G = Z4 × Z3. 4

To show that L is non-psc, we first calculate (uL)∗([L]) ∈ H5(BG;Z). Let
S = S3 be the transversal sphere of the connected sum M = T4#CP 2 and
let S × [0, 1] be a neighborhood of S. Because L is a trivial S1-bundle over
S × [0, 1], there is a bordism W between L and an S1-bundle L′ = L1 t L2 →
T4tCP 2. Namely, W is obtained from M × [0, 1] by attaching D4× [0, 1]×S1

along S × [0, 1]× S1 × {0} ⊂ M × [0, 1]. The bundle L′ again corresponds to
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3x ∈ H2(T4 t CP 2;Z), meaning, in particular, that L1 is the trivial bundle
over T4. The inclusion M ⊂ W is 2-connected and thus the map uL : L→ BG
extends to uW : W → BG.

In H5(W ;Z) one has 0 = ∂[W ] = i0∗([L]) − i1∗([L1]) − i2∗([L2]) (where
i0, i1, i2 are the obvious inclusions). Hence

(uL)∗([L]) = (uW ◦ i0)∗([L]) = (uW ◦ i1)∗([L1]) + (uW ◦ i2)∗([L2]).

Now (uW ◦ i1)∗([L1]) = [T4] × y ∈ H5(BG;Z) where y ∈ H1(BZ3;Z) is a
generator. And because CP 2 is simply connected, uW ◦ i2 factors through
BZ3 × pt ⊂ BG, such that (uW ◦ i2)∗([L2]) ∈ H5(BZ3) ⊂ H5(BG). It follows
that if a1, a2, a3 ∈ H1(BG;Z) correspond to the first three S1 factors of BG,
then

a1 ∩ (a2 ∩ (a3 ∩ (uL)∗([L]))) 6= 0 ∈ H2(BG;Z).

On the other hand, there is the following corollary of the minimal hyper-
surface method ([Sch98, 1.6]):

Theorem 4.8.2. Let X be any topological space and let

H+
m(X) = {f∗([M ]) ∈ Hm(X;Z) | f : M → X and M is a psc manifold} .

For 3 ≤ m ≤ 7 taking cap product with any a ∈ H1(X;Z) maps H+
m(X)

into H+
m−1(X).

By the above theorem, if L were psc, then 0 6= a1 ∩ (a2 ∩ (a3 ∩ f∗([L]))) ∈
H+

2 (BG). But H+
2 (BG) is trivial because S2 is the only psc 2-manifold and

all maps S2 → BG are null-homotopic. Therefore, L does not allow a metric
of positive scalar curvature.
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5.1 Motivation

When the Spin manifold M has a suitable codimension-2 submanifold N , an
obstruction against positive scalar curvature on M can also be obtained by
applying the Rosenberg index α to N instead of M . Building on the work of
Gromov and Lawson ([GL83]) Hanke, Pape and Schick showed the following
([HPS15]):

Theorem 5.1.1. Let M be an n-dimensional Spin manifold and N ⊂ M
a connected submanifold of codimension 2 with trivial normal bundle ν(N).
Assume that π1(N)→ π1(M) is injective and π2(N)→ π2(M) surjective.

Then α([N ]Spin) ∈ KOn−2(C∗(π1(N))) is an obstruction against the exis-
tence of psc-metrics on M .

Remark 5.1.2. Actually, the statement given in [HPS15] assumes that π2(M)
is trivial. But the proof still works for π2(N) → π2(M) surjective, and even
for π2(N)⊕ π2(M \N)→ π2(M) surjective.

Indeed, the only place where the requirement π2(M) = 0 is needed is to
show that the map π1(∂Dν(N)) → π1(M \ Dν(N)) is an injection, where
Dν(N) denotes the disk bundle inside the normal bundle of N ⊂ M , ∂Dν
denotes its boundary, M → M is the covering corresponding to the subgroup
π1(N) ⊂ π1(M) and the inclusion Dν(N) → M is a lift of the inclusion
Dν(N) ⊂M .

If (a, t) ∈ π1(∂Dν) = π1(N) × Z lies in the kernel of this map, then com-
mutativity of the van Kampen pushout diagram

π1(N)× Z π1(N)

π1(M \N) π1(M)

implies a = 0. But if t 6= 0, then the null-homotopy of (0, t) inside M \ Dν
together with the null-homotopy inside D2 ⊂ Dν forms a singular sphere
φ : S2 → M . The homology class defined by this sphere has non-trivial inter-
section with the homology class given by N . The contradiction now follows
from the weakened condition that π2(N) ⊕ π2(M \ N) → π2(M) is surjec-
tive. (Because π2(N) → π2(M) factors through π2(M \ N), this is actually
equivalent to π2(M \N)→ π2(M) being surjective.)

The proof also uses π2(M) = 0 to show that H2(M,N ;Z) = 0. But what
is needed is only H2(M ;Z) → H2(M,N ;Z) surjective, and this follows from
H1(N ;Z)→ H1(M ;Z) injective and the long exact sequence of homology. 4

48
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It is unclear how the obstruction α([N ]Spin) relates to the obstruction
α([M ]Spin). For example, when α[M ]Spin = 0 and the Baum-Connes map
is injective for π1(M), then by Theorem 2.4.6 M ×Bt × · · · ×Bt is psc. Then
by Theorem 5.1.1 it holds α([N ]Spin) = α([N × Bt × · · · × Bt ]) = 0. But it is
not known if in general α([M ]Spin) = 0 implies α([N ]Spin) = 0.

The best possible result would be if there existed transfer homomorphisms
tr top : KO∗(M) → KO∗−2(N), trC∗ : KO∗(C

∗(π1(M))) → KO∗−2(C∗(π1(N)))
such that tr top([M ]KO) = [N ]KO and the diagram

KOn(M) KOn(C∗(π1(M)))

KOn−2(N) KOn−2(C∗(π1(N)))

α

trtop trC∗

α

commutes. The obvious candidate for the map tr = tr top is the composition

KO∗(M)→ KO∗(M,M \Dν(N)) ∼= KO∗(Dν(N), ∂Dν(N))→ KO∗−2(N)

where the first map is the forgetful map and the second one is the Thom isomor-
phism, obtained by taking the cap product with f ∗(e), where e ∈ KO2(D2, S1)
is the doubly suspended unit and f : (Dν(N), ∂Dν(N)) → (D2, S1) is the
trivialization.

A suitable map trC∗ has been found by Zeidler ([Zei17, 1.8]) in the case
where N ⊂ M is a codimension-1 submanifold. In the codimension-2 case no
appropriate map has been found so far.

Since the map α factors through KO(Bπ1(·)) and KOπ1(·)(Eπ1(·)), we con-
sider the intermediate step of extending the transfer map tr top on the topolog-
ical side to KO∗(Bπ1(M)) → KO∗−2(Bπ1(N)) and to KOπ1(M)

∗ (Eπ1(M)) →
KO

π1(N)
∗−2 (Eπ1(N)). If π1(M) satisfies the Baum-Connes Conjecture, this will

also give the homomorphism trC∗ . The first extension can be done by general-
izing a construction of Engel ([Eng17]). We do this in Section 5.3. The second
extension is made in Section 5.4. Both extensions will be part of the upcoming
article [NSZ] of Nitsche, Schick and Zeidler.

5.2 Examples and restrictions on the funda-

mental groups

The situations where Theorem 5.1.1 can be applied include the following two
classes of examples:

Example 5.2.1. The lowest-dimensional examples (except for N = {pt})
consist of the embedding of N = S1 into an orientable 3-dimensional mani-
fold M . From the Wu formulas it follows that M is automatically Spin. One
still has to require that the inclusion N →M induces an injection on π1, and
that π2(M) = 0 (which implies that M is aspherical, see Lemma 5.3.9).
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These examples were investigated by Gromov and Lawson in [GL83], sec-
tion 8. 4

Example 5.2.2. A second class of examples consists of M a fiber bundle with
base space Σ an orientable surface of genus > 0, and N → M the inclusion
of a fiber. Because the base space of the bundle is aspherical, the long exact
sequence of homotopy groups

π2(N) π2(M) π2(Σ) π1(N) π1(M)

shows that the inclusion N → M always induces a surjection on π2 and an
injection on π1. We have to require that M is Spin, then N is also Spin. 4

Next, we examine the restrictions that the conditions Dν(N) ∼= N × D2,
π1(N) → π1(M) injective and π2(N) → π2(M) surjective pose on the funda-
mental groups of N , M and M \N .

Lemma 5.2.3. The conditions π1(N) → π1(M) injective, π2(N) → π2(M)
surjective imply that the groups π1(N), π1(∂Dν(N)) ∼= π1(N)×Z, π1(M) and
π1(M \N) fit into the following pushout diagram:

π1(N)× Z π1(N)

π1(M \N) π1(M)

The vertical maps in the diagram are injections.

Proof. The existence of the pushout diagram follows from van Kampen’s The-
orem applied to the decomposition M = Dν(N)∪(M \Dν(N)). The argument
that the map π1(N×S1)→ π1(M \N) is injective is the same as the one given
in Remark 5.1.2.

This leads to the question which pushout diagrams can occur.

Lemma 5.2.4. For any injective group homomorphism i : H → G of finitely
presented groups there is a manifold pair N ⊂ M of closed connected Spin
manifolds to which Theorem 5.1.1 can be applied, with π1(N) = H, π1(M) = G
and the map π1(N)→ π1(M) given by i.

Proof. By using 0-, 1- and 2-surgery one can construct a high-dimensional
Spin-manifold N ′ with π1(N ′) = H and π2(N ′) = 0. The surgery can be
performed in such a way that the tangent bundle of N ′ is stably trivializable.
In particular, N ′ is Spin. Now let N = N ′ × S3, M ′ = N ′ × S5 and N → M ′

induced by an embedding S3 → S5. Since S5 \ S3 ' S1 and the induced
map π1(∂Dν(S3 ⊂ S5)) → π1(S5 \ S3) is an isomorphism, π1(∂Dν(N)) →
π1(M ′ \Dν(N)) is also an isomorphism.
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Next, we apply 0- and 1- surgery to M ′ – away from Dν(N) – such that
π1(M ′ \Dν(N)) = (G∗Z)/〈[H,Z]〉 and π1(∂Dν(N))→ π1(M ′ \Dν(N)) is the
canonical map. Finally, we apply 2-surgery to M ′ away from Dν(N) to ensure
π2(M ′ \Dν(N)) = 0 and let M be the resulting manifold. Then π1(M) = G
and π1(N) → π1(M) is the prescribed map i. Again, the surgeries can be
made in such a way that M ′ is Spin. It remains to check that π2(M) = 0.

Consider the Mayer-Vietoris sequence for the decomposition of M̃ as the
union of A = p−1

M̃
(Dν(N)) and B the closure of M̃ \ A.

H2(A;Z)⊕H2(B;Z) H2(M̃ ;Z) H1(A ∩B;Z) H1(B;Z)
∂2

A∩B is homotopy equivalent to a disjoint union of circles, with one circle S[g]

for each coset [g] ∈ π1(M)/π1(N). Since B is the pullback of M̃ along the
inclusion M \Dν(N)→M ,

π1(B) = ker(π1(M \Dν(N))→ π1(M)),

which in this example is the free group with one generator a[g] = gzg−1 for
every coset [g] ∈ π1(M)/π1(N) (here z = 1 ∈ Z). The image of the circle S[g]

under the inclusion A ∩B → B represents the generator a[g].
This means that the map H1(A∩B;Z)→ H1(B;Z) is injective, and hence

the boundary map ∂2 is zero. By exactness of the Mayer-Vietoris sequence and
the Hurewicz Theorem applied to π2(M̃), this means that π2(M) ∼= H2(M̃ ;Z)
is a quotient of H2(A;Z) ⊕ H2(B;Z) = H2(B;Z). Since the construction of
M gives π2(B) = π2(M \ Dν(N)) = 0, the classifying space for π1(B) can
be obtained from B by attaching cells of dimension > 3. Hence H2(B;Z) =
H2(Bπ1(B);Z) = 0. This means that the quotient π2(M) is also trivial, fin-
ishing the proof.

The examples produced in the preceding proof are psc manifolds and there-
fore have trivial Rosenberg indexes. However, Lemma 5.2.4 shows that if we
want to construct the transfer map KO∗(C

∗(π1(M))→ KO∗−2(C∗(π1(N))) on
the level of C∗-algebras, we cannot rely on any special properties of the groups
involved.

When including the group π1(M \ N), the question of which pushout di-
agrams can be realized becomes more difficult. For example, the following
pushout diagram cannot be realized:

Example 5.2.5. Consider the pushout diagram of groups

Z 1

Z2 Z

where the left vertical map is the inclusion into one of the factors. Assume
that the diagram is realized by a suitable inclusion N → M . Let Y be the
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CW-complex obtained from M \Dν(N) by killing the second homotopy group
with 3-cells, and let X = Dν(N) ∪∂Dν(N) Y . Then π2(X) = 0 because we
require that π2(N)→ π2(M) is surjective and π2(N) ∼= π2(∂Dν(N)).

Since Bπ1(M) and Bπ1(M \N) can be obtained from X and Y , respec-
tively, by attaching only cells of dimension ≥ 4,

H2(X;Z) = H2(Bπ1(X);Z) = H2(Bπ1(M);Z) = H2(BZ;Z) = 0,

H2(Y ;Z) = H2(Bπ1(Y );Z) = H2(Bπ1(M \N);Z) = H2(BZ2;Z) = Z.

But since N is simply connected, the map H2(N ×S1;Z)→ H2(N ×D2;Z) is
an isomorphism. This is a contradiction to the exactness of the Mayer-Vietoris
sequence of the decomposition of X = Dν(N) ∪ Y

H2(N × S1;Z) H2(N ×D2;Z)⊕H2(Y ;Z)︸ ︷︷ ︸
Z

H2(X;Z)︸ ︷︷ ︸
0

4

Smith ([Smi78]) investigated which groups can occur for π1(M \ N) in
the case that N → M induces an isomorphism of fundamental groups. The
following is his main result specialized to the case of a trivial normal bundle.

Theorem 5.2.6. Let f : N → M be a codimension-2 inclusion of compact
connected manifolds with trivial normal bundle, such that π1(N) → π1(M) is
an isomorphism, π2(N)→ π2(M) is a surjection and dim(N) ≥ 3.

Then a finitely presented group G can be realized as the fundamental group
of the complement of an embedding homotopic to f iff G fits into an extension
q : G→ π1(N)× Z with split s such that q−1(1× Z) is normally generated by
s(0, 1) and H2(q−1(1× Z);Z) = 0.

Using surgery as in the proof of Lemma 5.2.4, the required initial inclusion
f : N → M can be constructed for every fundamental group H = π1(N) =
π1(M). Therefore, it follows:

Corollary 5.2.7. Let H and G be finitely presented groups. Then the follow-
ing are equivalent:

1. There exists a codimension-2 inclusion of compact connected Spin mani-
folds N ⊂M with trivial normal bundle, such that π1(N) = π1(M) = H,
π1(M \N) = G and π2(N)→ π2(M) surjective.

2. G is an extension q : G → H × Z with split s such that q−1(1 × Z) is
normally generated by s(0, 1) and H2(q−1(1× Z);Z) = 0.

5.3 Extending the transfer map

Adapting the method of Engel ([Eng17]), the codimension-2 transfer map can
be extended to B(π1(M)). The idea for this goes back to Schick. In this
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section we give a proof that works for general equivariant homology theories
on Γ-CW-complexes. In addition to the usual axioms (see [Lüc02a]) we will,
however, demand that the homology theory allows an operation that we call
“lf-restriction” (the “lf” stands for locally finite).

Definition 5.3.1. Let Γ be a countable discrete group, let π be a subgroup,
and let Y be a Γ-CW-complex. A π-invariant CW-subcomplex K ⊂ Y is called
Γ-locally π-finite, if for every cell c ⊂ K the subset {γ ∈ Γ | γ.c ⊂ K} ⊂ Γ is
a union of only finitely many right-translates of π ⊂ Γ. 4

Remark 5.3.2. In the following we always assume that Γ acts properly on Y .
In this case the definition is saying that given any Γ-cell of Y the subcomplex K
may contain only finitely many of the π-cells that together form the Γ-cell.
Equivalently, K ⊂ Y is Γ-locally π-finite iff for every Γ-compact subspace
X ⊂ Y the space K ∩X is π-compact.

If, however, the Γ-action is not proper, then π-finiteness is determined
by looking at the group Γ, not at the complex K. For example, when Y is
compact, then K can only be Γ-locally π-finite if K is empty or |Γ : π| <∞.

The reason why the above definition is made this way is to ensure that the
preimage of a Γ-locally π-finite subcomplex under a Γ-equivariant map is still
Γ-locally π-finite. 4

If K ⊂ Y is a subcomplex of a CW-complex, we will in the following denote
by Y \K the sub-CW-complex that is the closure of the complement, and by
∂K the subcomplex K ∩ (Y \K).

Definition 5.3.3. We say that a generalized equivariant homology theory E
has lf-restrictions if for every inclusion of groups π ⊂ Γ, for every proper Γ-
CW-complex Y and for every Γ-locally π-finite subcomplex K ⊂ Y there is a
natural homomorphism rK : EΓ

∗ (Y )→ Eπ
∗ (Y, Y \K) ∼= Eπ

∗ (K, ∂K).
Furthermore, we require these maps to be compatible with the induction

isomorphisms in the following sense: When Γ acts freely on Y and UK is a
π-invariant neighborhood of K such that γ.UK ∩ UK 6= ∅ only for γ ∈ π ⊂ Γ,
then there are automatically induction isomorphisms

EΓ
∗ (Y ) ∼= E∗(Y/Γ), Eπ

∗ (K, ∂K) ∼= E∗(K/π, ∂K/π).

There is also the usual forgetful map

E∗(Y/Γ)→ E∗(Y/Γ, Y/Γ \K/π) ∼= E∗(K/π, ∂K/π).

We require that the following diagram commutes:

EΓ
∗ (Y ) Eπ

∗ (K, ∂K)

E∗(Y/Γ) E∗(K/π, ∂K/π)

rK

∼= ∼=

4
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Lemma 5.3.4. K-homology has lf-restrictions.

Proof. As in Section 4.7 we use the geometric picture of equivariant K-homology.
Let π,Γ, Y,K as before. And let (M, s,E, f) be a singular Γ-Spin manifold
with a Γ-vector bundle, representing a K-homology class in KOΓ

∗ (Y ).
To define the lf-restriction map we have to find any π-invariant π-compact

submanifold with boundary M ′ ⊂M , such that f(M \M ′) ⊂ Y \K. The re-
stricted K-homology cycle (M ′, s|M ′ , E|M ′ , fM ′), with an action of only π, then
defines an element in KOπ

∗ (Y, Y \K) ∼= KOπ
∗ (K, ∂K) that does not depend on

the concrete choice of M ′. The construction is compatible with taking disjoint
unions, with vector bundle addition and with vector bundle modification. Be-
cause the method given below to find M ′ can also be applied to bordisms, the
construction is compatible with the bordism relation and therefore defines a
natural group homomorphism from KOΓ

∗ (Y ) to KOπ
∗ (K, ∂K).

If Γ acts freely on Y and UK/Γ = UK/π for a π-invariant neighborhood
of K, then it also holds that Γ acts freely on M and VK/Γ = VK/π for a
π-invariant neighborhood VK of f−1(K). We may arrange that M ′ ⊂ VK . The
induction isomorphisms are given by quotienting the group action out of a
given K-homology cycle. Therefore, we can see on the level of cycles that the
diagram of Definition 5.3.3 is commutative.

It remains to construct the submanifold M ′ ⊂ M . Because M is smooth
and Γ y M acts properly, M allows a Γ-CW-structure ([Ill00]) and we can
equivariantly homotope the map f : M → Y to a cellular map. By Re-
mark 5.3.2 the preimage f−1(K) is Γ-locally π-finite in M . Because M is
Γ-compact, f−1(K) is π-compact. Now we choose a Γ-invariant Riemannian
metric on M and consider the function d : M → R that assigns to m ∈ M
the distance from m to f−1(K). This function is π-equivariant. The induced
function d : M/π → R is the distance function (in the metric induced from M)
to the compact set f−1(K)/π. Hence d is proper.

Next, we need an equivariant smooth approximation of d. Because the
action Γ y M is proper, every point m ∈ M has a Γ-invariant neighborhood
of the form

⊔
[γ]∈Γ/ Stab(m) Wm,[γ], where Stab(m) is the stabilizer of m. Because

M is Γ-compact, it is covered by a finite set of such neighborhoods. Because all
stabilizer groups are finite, one can construct a Γ-invariant smooth partition
of unity subordinate to the covering. Using the partition of unity we can
now smoothen d separately on each neighborhood. This works by choosing a
smoothening on one Wm,[γ], averaging it over the finite stabilizer group and
extending it equivariantly to the whole neighborhood.

Finally, pick any regular value r > 0 of d such that d−1([r,∞))∩ f−1(K) =
∅. The preimage M ′ = d−1((−∞, r]) ⊂ M is a π-invariant submanifold with
boundary. Because d is still a proper function after smooth approximation,
M ′ is π-compact.

Remark 5.3.5. In the above construction we could have included an interme-
diate step where we consider the original K-homology cycle (M, s,E, f) with
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only a π-action and think of it as representing a class in some sort of locally
finite K-homology (this is the motivation for the name “lf-restrictions”). From
a conceptual viewpoint it would be best to formulate axioms for a locally finite
equivariant generalized homology theory, from which the lf-restrictions could
be obtained as a special case. But for the moment we are mostly interested in
applying the lf-restrictions to extend the transfer map. 4

Now we use lf-restrictions to construct the extension of the transfer map.

Theorem 5.3.6. Let M be a closed connected smooth manifold and let N be
a codimension-2 closed connected submanifold with trivialized normal bundle.
Assume that π1(N)→ π1(M) is injective and π2(N)→ π2(M) is surjective.

Then there is, for any generalized multiplicative cohomology theory E that
has lf-restrictions, a map

trπ1(M) : E∗(Bπ1(M))→ E∗−2(Bπ1(N))

such that the following diagram commutes:

E∗(M) E∗(Bπ1(M))

E∗−2(N) E∗−2(Bπ1(N))

uM∗

trM trπ1(M)

uN∗

Moreover, the transfer trπ1(M) is natural for multiplicative transformations of
equivariant cohomology theories with lf-restrictions.

Proof. As before let Dν be the disk bundle inside the normal bundle of N .
The transfer map trM : E∗(M)→ E∗−2(N) is given by passing to the relative
group E∗(M,M \Dν) ∼= E∗(Dν, ∂Dν) and then taking the cap product with
the Thom class f ∗(e) ∈ E2(Dν, ∂Dν), which is the pullback of the suspended
unit e ∈ E2(D2, S1) under a map f : (Dν, ∂Dν) → (D2, S1) representing the
trivialization of the normal bundle.

Using the equivariant picture the same map can also be expressed as follows:
Let M be the covering of M corresponding to the subgroup π1(N) ⊂ π1(M)
and let N ⊂M be a lift of the inclusion N ⊂M .

Then π1(N)→ π1(M) is an isomorphism and π2(N)→ π2(M) is surjective.
From the long exact sequence of homotopy groups it follows πk(M,Dν) = 0
for k ≤ 2, and by the relative Hurewicz theorem the same is then true for
Hk(M,Dν) ∼= Hk(M \ Dν, ∂Dν). But now the long exact sequence of the
pair (M \Dν, ∂Dν) shows that the map H1(∂Dν;Z)→ H1(M \Dν;Z) is an
isomorphism. And by the Universal Coefficient Theorem the same is then true
for the map H1(M \Dν;Z)→ H1(∂Dν;Z).

Since S1 is the Eilenberg-MacLane space K(Z, 1), this means that the
trivialization map (Dν, ∂Dν)→ (D2, S1) of the normal bundle can be extended
to a map f : (M,M \ Dν) → (D2, S1), and the extension is unique up to
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homotopy. Precomposition with the projection of the universal covering M̃ →
M gives a π1(N)-invariant map f̃ : (M̃, M̃ \ D̃ν)→ (D2, S1).

Let now rD̃ν : E
π1(M)
∗ (M̃) → E

π1(N)
∗ (D̃ν, ∂D̃ν) be the lf-restriction associ-

ated to the inclusion of groups π1(N) ⊂ π1(M) and the π1(M)-locally π1(N)-

compact subspace D̃ν ⊂ M̃ . And let f̃ ∗(e) ∈ E2(M̃, M̃ \ D̃ν) ∼= E2(D̃ν, ∂D̃ν)
be the pullback of the doubly suspended unit e ∈ E2(D2, S1).

Then there is a map

t̃rM : Eπ1(M)
∗ (M̃)→ Eπ1(N)

∗ (D̃ν, ∂D̃ν)→ E
π1(N)
∗−2 (D̃ν)

given by t̃rM(x) = rD̃ν(x)∩ f̃ ∗(e). Via the induction isomorphisms this corre-
sponds to a map E∗(M) → E∗−2(N). Because the lf-restriction is compatible
with induction isomorphisms, this map coincides with the transfer map trM .

Next, let ũM : M̃ → Eπ1(M) be a classifying map. We will construct
a π1(N)-invariant map f̂ : (Eπ1(M),Eπ1(M) \ K) → (D2, S1) such that the
subspace K ⊂ Eπ1(M) is π1(M)-locally π1(N)-compact, ũM becomes a map

of pairs (M̃, M̃ \ D̃ν) → (Eπ1(M),Eπ1(M) \K) and f̂ ◦ ũM is homotopic to

f̃ as a map of pairs.
Then, if iK : K → Eπ1(M) and rK : E

π1(M)
∗ (Eπ1(M)) → E

π1(N)
∗ (K, ∂K)

are the inclusion and the lf-restriction, there is a map

t̃rπ1(M) : Eπ1(M)
∗ (Eπ1(M))→ E

π1(N)
∗−2 (Eπ1(M))

given by t̃rπ1(M)(x) = (iK)∗(rK(x) ∩ f̂ ∗(e)).
But Eπ1(M) is also a model for Eπ1(N) (and Ñ → M̃ → Eπ1(M) a

classifying map). Therefore, under the induction isomorphisms this gives
a map trπ1(M) : E∗(Bπ1(M)) → E∗−2(Bπ1(N)). The naturality of the cap-

product implies t̃rπ1(M) ◦ (ũM)∗ = (ũN)∗ ◦ t̃rM and therefore trπ1(M) ◦ (uM)∗ =
(uN)∗ ◦ trπ1(M). Furthermore, the transfer map trπ1(M) only depends on the

homotopy class of f̂ , and if for f̂ fixed the set K is made larger (within the
allowed bounds), the transfer map will not change by naturality of the cap
product.

It remains to find f̂ and K. Note that Eπ1(M) can be obtained from M̃ by

adding free π1(M)-orbits of cells of dimension ≥ 3. Starting with f̂0 = M̃ and

K0 = D̃ν, we proceed inductively on the dimension of added cells, extending
f̃ and possibly extending K in each step.

When a π1(M)-orbit of k-cells is added, then by the induction hypothesis
on local compactness of K on the (k − 1)-skeleton only finitely many of the
π1(N)-orbits inside it attach to cells lying in K. These finitely many π1(N)-

orbits have to be added to K. On the other π1(N)-orbits the map f̃ can be
extended with values in S1 because πk(S

1) = 0 for k > 1. The resulting map
f̂ : (Eπ1(M),Eπ1(M)\K)→ (D2, S1) is unique up to homotopy and enlarging
of K.
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Remark 5.3.7. As mentioned in the proof, the transfer map trπ1(M) does

not depend on the choices made for f̂ and K. Just like trM it does, however,
depend on the embedding N ⊂ M and on the choice of the trivialization of
the normal bundle Dν. 4

Remark 5.3.8. As in Theorem 5.1.1 the assumption that π2(N) → π2(M)
be surjective can be weakened to π2(N)⊕π2(M \N)→ π2(M) surjective. 4

It is a natural question whether the extension of the transfer map could
also be defined in the non-equivariant setting, i.e., using only the base spaces
Bπ1(M), Bπ1(N), Bπ1(M \N) of the classifying spaces. This works if the
pushout diagram of the fundamental groups induces a pushout diagram of the
corresponding classifying spaces:

π1(∂Dν) π1(N)

π1(M \Dν) π1(M)

⇒
Bπ1(∂Dν) Bπ1(N)

Bπ1(M \Dν) Bπ1(M)

In this case the classifying map ∂Dν → Bπ1(∂Dν) = Bπ1(N)× S1 can be
extended to classifying maps N → Bπ1(N)×D2 and M \Dν → Bπ1(M \Dν)
and these maps combine to a classifying map M → Bπ1(M) that respects the
decomposition. Because the classifying maps induce isomorphisms of funda-
mental groups and S1 = K(Z, 1), the trivialization map (Dν, ∂Dν)→ (D2, S1)
extends to a map g : (Bπ1(N)×D2,Bπ1(N)×S1)→ (D2, S1) (uniquely up to
homotopy). Taking the cap product with g∗(e) defines a transfer map

E∗(Bπ1(M))→ E∗(Bπ1(N)×D2,Bπ1(N)× S1)→ E∗−2(Bπ1(N)×D2)

To see that this map coincides with the transfer constructed in Theo-
rem 5.3.6, note that the construction in the first part of the proof can be
applied to Bπ1(N)×D2 ⊂ Bπ1(M).

The resulting map f̃ : (Eπ1(M),Eπ1(M) \ Eπ1(N) × D2) → (D2, S1) is
a suitable candidate for f̂ : (Eπ1(M),Eπ1(M) \ K) → (D2, S1). Then, by
uniqueness of (f̂ , K), the two transfer maps are equal.

In fact, this non-equivariant approach can be applied to both classes of
examples given in Section 5.2.

Lemma 5.3.9. In both Example 5.2.1 and Example 5.2.2 it is true that

Bπ1(N)×D2 ∪Bπ1(N)×S1 Bπ1(M \N)

is a model for Bπ1(M).

Proof. For Example 5.2.1 – the embedding of S1 into an oriented 3-manifold
– we simply show that the spaces N , ∂Dν, M and M \Dν are all aspherical.

This is obvious for N and ∂Dν. Furthermore, since π1(M) is infinite, M̃ is
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non-compact and therefore H3(M̃ ;Z) = 0. Also, π2(M̃) = 0 by assumption.

Therefore M̃ is contractible by the Hurewicz Theorem. It just remains M \Dν.
Because M is aspherical, the Sphere Theorem implies that M is an irre-

ducible and hence a prime 3-manifold (see for example [Hat]). This means
that π2(M \N) = 0. Otherwise, the Sphere Theorem would give an embedded
sphere S2 → M \ N ⊂ M representing a non-trivial element of π2(M \ N).
This sphere would determine a decomposition, which would be trivial since
M is prime: M = M ′#D3. Then N has to be contained in one of the two
summands, and since π1(N) → π1(M) is injective, N ⊂ M ′. But now the
embedded sphere has a null-homotopy inside the D3-summand, which lies in
M ⊂ N , giving a contradiction.

In addition to π2(M \N) = 0, H3(M̃ \N ;Z) = 0 holds as before, and from
the Hurewicz Theorem it follows that M \N is aspherical.

For Example 5.2.2 assume that N → M → Σ is a fiber bundle over an
aspherical surface. Then π1(M) is an extension of π1(Σ) with kernel π1(N).
The induced map Bπ1(M) → Bπ1(Σ) = Σ can be turned into a fiber bundle
by passing to the model Eπ1(M) ' Eπ1(M)×Eπ1(Σ) with the diagonal action
of π1(M) and π : Bπ1(M)→ Bπ1(Σ) = Σ induced by the projection onto the
second factor of the new model.

But now Bπ1(M) decomposes as Bπ1(M) = π−1(D2 ⊂ Σ) ∪ π−1(Σ \D2).
The pieces π−1(D2 ⊂ Σ), π−1(Σ \D2) and the intersection π−1(∂D2 ⊂ Σ) are
classifying spaces for the groups π1(N), π1(M\N) and π1(N×S1), respectively.

On the other hand, the conditions on π1(N)→ π1(M) and π2(N)→ π2(M)
do not imply that the classifying spaces always fit into a pushout diagram. The
fundamental group G occurring in the following example was given in [Hil02,
Section 14.10] as an example for a high-dimensional knot group that is not a
2-knot group. The space Bπ1(G) was first constructed in [CS76] as an example
for a “fake projective space”.

Example 5.3.10. Consider the group G = Z3 oB Z where Z acts on Z3 by
the matrix

B =

 0 1 0
0 0 1
−1 1 0

 .

Because the matrix (B − 1) is invertible, G is normally generated by the
generator of Z. It fits into the following pushout diagram:

Z {e}

G {e}

The homology of G can be computed just like in Section 4.5 with the Wang
sequence
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. . . H4(T3;Z) H4(BG;Z)

H3(T3;Z) H3(T3;Z) H3(BG;Z)

H2(T3;Z) H2(T3;Z) H2(BG;Z)

H1(T3;Z) H1(T3;Z) . . .

det(B)−1

B∧B−1

B−1

Using the basis {e1 ∧ e2, e1 ∧ e3, e2 ∧ e3} for Z3 ∧ Z3 we calculate that the
matrices

B ∧B − 1 =

−1 0 1
1 −1 0
0 1 −2

 B − 1 =

−1 1 0
0 −1 1
−1 1 −1


are both invertible. Also, det(B)− 1 = −2. Hence

H0(BG;Z) = Z ; H1(BG;Z) = 0 ; H2(BG;Z) = 0 ; H3(BG;Z) = Z2.

In particular, this shows that in the pushout diagram

S1 = BZ D2 = B{e}

BG X

the space X has a non-trivial third homology group and hence cannot be a
classifying space for the trivial group.

To see that the pushout diagram of fundamental groups can occur in a
situation where the transfer map exists, construct a high-dimensional manifold
with fundamental group G. Perform 1-surgery on the generator of Z ⊂ G that
normally generates G. Let M be the resulting manifold and let N → M be
the inclusion of the transversal sphere of the 1-surgery. 4

Remark 5.3.11. Even though the classifying spaces of the previous example
do not fit into a pushout diagram, it is not clear if one can pass from π1(M\Dν)
to a quotient, such that the classifying spaces of the resulting groups do fit
into a pushout diagram.

More generally, disregarding the group π1(M \Dν), one could try to embed
Bπ1(N)×D2 into a model of Bπ1(M) such that

H1(Bπ1(M) \Bπ1(N)×D2;Z)→ H1(Bπ1(N)× S1;Z)

is an isomorphism, and try to find a map M → Bπ1(M) restricting to maps
N → Bπ1(N) and M \Dν → Bπ1(M) \Bπ1(N) ×D2. It is not clear if this
is possible. 4
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5.4 Extending the transfer map further to EG

In this section we extend the transfer map from Eπ1(M) to the classifying
space for proper actions Eπ1(M). The basic idea is the same as in the proof of
Theorem 5.3.6: To describe the transfer map in terms of a map into the pair of
spaces (D2, S1) and then to extend this map. Just as with the free classifying
space EΓ we can, for every subgroup π ⊂ Γ, use EΓ as a model for Eπ.

Definition 5.4.1. Let Γ be a countable discrete group, π a subgroup and X
a Γ-CW-complex.

A reference map on X is a π-invariant cellular map of pairs

(X,X \K)→ (D2, S1),

where K ⊂ X is a Γ-locally π-finite subcomplex.
Two reference maps fi : (X,X \Ki) → (D2, S1), i ∈ {0, 1} are equivalent

if f0 = f1 as maps from X to D2.
Two reference maps f0, f1 on X are homotopic if there is a reference map F

on X× [0, 1], such that the restrictions to X×{0} and X×{1} are equivalent
to f0 and f1. 4

Remark 5.4.2.
1. If (f,K) is a reference map on X and φ : Y → X is a morphism of Γ-CW

complexes, then the pullback (f ◦ φ, φ−1(K)) defines a reference map on
Y .

2. The requirement that the homotopy F must be a reference map itself
means that “most” cells in X must be mapped to S1 ⊂ D2 during the
entire homotopy. 4

A reference map (f,K) on a Γ-CW-complex X gives rise to a transfer
homomorphism

tr f : EΓ
∗ (X)→ Eπ

∗−2(X), x 7→ (iK)∗(rK(x) ∩ f ∗(e)).

Here iK is the inclusion K → X, rK is the lf-restriction EΓ
∗ (X)→ Eπ

∗ (K, ∂K)
and e is the twice-suspended unit of the cohomology theory.

Equivalent reference maps give rise to the same transfer homomorphism.
Indeed, for K1 ⊂ K2 this is true by naturality of the cap product. And for
general K1, K2 we note that K1 ∪K2 is also a Γ-locally π-finite subcomplex.
Furthermore, homotopic reference maps give rise to the same transfer map.
Finally, if (f,K) is a reference map on X and φ : Y → X is a morphism of
Γ-CW complexes, then φ∗ ◦ tr f◦φ = tr f ◦ φ∗. To extend the transfer map con-

structed in Theorem 5.3.6 further to E
π1(M)
∗ (Eπ1(M)) it is therefore sufficient

to find a lift (up to homotopy of reference maps) of the reference map f̂ that
induces the transfer map.

Next, we rephrase reference maps in terms of cohomology:
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Definition 5.4.3. Let Γ be a countable discrete group and π a subgroup.
A π-invariant cellular cochain with values in Z on a Γ-CW-complex is called

a Γ-π-almost-cocycle if its coboundary is non-zero only on Γ-locally π-finitely
many cells.

Two Γ-π-almost-cocycles x0, x1 are cohomologous if there is a π-invariant
1-chain y, such that x1 − x0 = ∂y outside of a Γ-locally π-finite subcomplex.
In this case we write x1 − x0 ≈ ∂y. 4

Lemma 5.4.4. There is a correspondence between homotopy classes of refer-
ence maps and Γ-π-almost-cohomology classes in degree 1.

Proof. A reference map f gives rise to a Γ-π-almost-cocycle by assigning to a
1-cell c the value f|c

∗(1) with 1 ∈ H1(S1;Z) a fixed generator. Conversely, if a
Γ-π-almost-cocycle x is given, the requirement f|c

∗(1) = x(c) defines a (unique
up to homotopy) map f on the 1-skeleton. By the almost-cocycle-property of
x this map can be extended to a reference map on the 2-skeleton. And because
S1 is aspherical, it can be extended further to all of X. The extensions are
unique up to homotopy (of reference maps), because S1 is aspherical.

Similarly, if xf0 , xf1 are the cocycles corresponding to two reference maps,
then a homotopy F between these reference maps determines a 1-almost-
cocycle on X×[0, 1], which in turn gives a 0-cochain y such that xf1−xf0 ≈ ∂y.
In the other direction, if x1 − x0 ≈ ∂y, then x0, x1 and y together de-
fine a 1-almost-cocycle on X × [0, 1] which in turn gives a reference map on
X × [0, 1].

We now want to show that up to homotopy every reference map on the
classifying space EΓ can be lifted to the proper classifying space EΓ. By the
correspondence this amounts to lifting a Γ-π-almost-cocycle.

The lifting problem does not depend on the concrete models for EΓ,EΓ
because two different models are always Γ-homotopy equivalent, and the Γ-
homotopies give rise to homotopies of reference maps.

For EΓ we take any Γ-CW-complex model that is locally compact. For ex-
ample, such a model can be obtained by starting with the simplicial model de-
scribed in Mislin’s appendix to [Val02], where n-simplices correspond to finite
subsets of Γ of cardinality n+ 1. After passing to the barycentric subdivision
this becomes a Γ-CW-complex with countably many Γ-cells. We fix an enu-
meration of the Γ-cells, such that every n-cell occurs in the enumeration after
the (≤ n)-cells it is attached to. Then we build the iterated mapping cylinder
of the (countably infinite) chain of inclusions ∅ = F0 ⊂ F1 ⊂ F2 ⊂ . . . , where
Fk is obtained from Fk−1 by adding the k-th Γ-cell in the enumeration. Be-
cause all stabilizers are finite, the iterated mapping cylinder of all finite chains
of inclusions F0 ⊂ · · · ⊂ Fk is locally compact (as a simple CW-complex with-
out group action) and the same then holds for the whole iterated mapping
cylinder.

For EΓ we also start with a locally compact Γ-CW-complex model EΓ0 that
we similarly obtain from any Γ-CW-complex model with countably many cells.
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Then we set EΓ = EΓ0 × EΓ with the diagonal Γ-action and the canonical
map q̃ : EΓ → EΓ becomes the projection onto the second factor. The quo-
tient spaces π\EΓ and Γ\EΓ are locally compact CW-complexes. Since our
coefficient module Z has the trivial Γ-action, H∗π(EΓ;Z) = H∗(π\EΓ;Z) and
H∗π(EΓ;Z) = H∗(π\EΓ;Z) (here H∗π is the Bredon equivariant cohomology).

The map q : π\EΓ → π\EΓ is not a fibration, but with sheaf cohomology
there is still the Leray spectral sequence. Using the terminology of Bredon
[Bre67] we let the “families of supports” Ψ and Φ be the families of compact sets
on π\EΓ and π\EΓ respectively. Then both Ψ and Φ are paracompactifying in
the sense of [Bre67, I.6.1], which means that sheaf cohomology with supports
in Ψ, Φ and constant coefficient module Z coincides with singular cohomology
([Bre67, III.1.1]). By [Bre67, II.10.5] all fibers q−1(y) are Ψ-taut. Then by
[Bre67, IV.6.1] there is a spectral sequence Hp(π\EΓ;Ar) ⇒ Hp+r(π\EΓ;Z)
where the germ of the sheaf Ar at a point y ∈ π\EΓ is given by Hr(q−1(y);Z).
From the choice of the model for EΓ it is clear that the preimages f−1(y) are
models for the classifying spaces Bπy of the stabilizer groups πy ⊂ π.

Theorem 5.4.5. Let π ⊂ Γ be finitely presented groups, EΓ and EΓ be rep-
resented by the models above, and let q̃ : EΓ → EΓ represent the canonical
map. Then any Γ-π-almost-cocycle of degree 1 on EΓ can be lifted to a Γ-π-
almost cocycle on EΓ. Furthermore, any two lifts of the same almost-cocycle
are cohomologous as almost-cocycles.

Proof. Let a 1-almost-cocycle ξ be given on EΓ. We can remove Γ-locally π-
finitely many cells from EΓ such that ξ becomes a true π-invariant cocycle on
the remaining CW-complex EΓ \K0. Indeed, we have to remove the Γ-locally
π-finitely many 2-cells where ξ is not a cocycle, and then inductively all cells
of higher dimension that attach to already removed cells. In each step we only
have to remove Γ-locally π-finitely many cells, then this is also true in total.

Because q̃ is Γ-invariant and the action of Γ on both EΓ and EΓ is proper,
the image of the removed set q̃(K) is Γ-locally π-finite. By Remark 5.3.2
the preimage of this set K = q−1(q(K0)) is also Γ-locally π-finite. Since in
our model q̃ is just the projection onto the second factor, both EΓ \ K and
EΓ \ q(K) are (π-invariant) sub-CW-complexes of EΓ and EΓ, respectively.

The restricted map q|BΓ\(π\K) : π\(EΓ \ K) → π\(EΓ \ q(K)) still has a
Leray spectral sequence as described above. Because the stabilizer groups
πy are all finite, H1(Bπy;Z) = 0. It follows that E0,1

2 = 0 on the second
page of the spectral sequence. On the ∞-page we then have E0,1

∞ = 0 and
E1,0
∞ = E1,0

2 = H1(π\(EΓ \ q(K));Z). This means that

H1(π\(EΓ \K);Z) ∼= H1(π\(EΓ \ q(K));Z)

and the isomorphism is given by q|BΓ\(π\K).

In particular, ξ lifts to a π-invariant (true) cocycle on EΓ\q(K) which then
defines an almost-cocycle on EΓ. And any two lifts are cohomologous.
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From the previous theorem, together with the description of the transfer
map in terms of almost-cocycles, it follows:

Corollary 5.4.6. The transfer map can be extended to the classifying space
for proper actions EΓ:

Let M be a closed connected Spin manifold and N a closed connected sub-
manifold of codimension 2 with trivialized normal bundle. Assume that the
induced map π1(N)→ π1(M) is injective and π2(N)→ π2(M) is surjective.

Then there is, for any generalized multiplicative equivariant cohomology
theory E with lf-restrictions, a map

trπ1(M) : Eπ1(M)
∗ (Eπ1(M))→ E

π1(N)
∗−2 (Eπ1(N))

such that the following diagram commutes:

E∗(M) E
π1(M)
∗ (Eπ1(M))

E∗−2(N) E
π1(N)
∗−2 (Eπ1(N))

trM
trπ1(M)

Moreover, the transfer trπ1(M) is natural for multiplicative transformations of
cohomology theories with lf-restrictions.

Remark 5.4.7. Since the lift of the reference map is unique (up to homotopy),
the extension of the transfer map should be canonical in some sense. Recall
however that already the construction of Theorem 5.3.6 depends not only on
the groups π1(N) ⊂ π1(M), but also on the specific embedding N ⊂ M and
the trivialization of the normal bundle. 4

Generalization to higher cohomology degrees

By setting π = Γ and not removing any cells it is clear that the proof of
Theorem 5.4.5 also works to show that q̃ induces an isomorphism H1

Γ(EΓ;Z) ∼=
H1

Γ(EΓ;Z).
The spectral sequence can be exploited further to give results in higher

degrees. The next simplest step is to relate Hn
Γ(EΓ;Z) to Hn

Γ(EΓ;Z) under
the assumption that Hk(BG;Z) = 0 for all finite subgroups G ⊂ Γ and all
1 ≤ k < n.

In particular, for n = 2 the assumption is automatically fulfilled. This
case might also play a role in future work on the codimension-2 transfer: If
the normal bundle of N ⊂ M is orientable but not trivializable, its twist is
described by a second cohomology class. When we try to extend the transfer
map, the information about the twist has to be carried around. Therefore it
is natural to ask when an element ξ ∈ H2

G(EG;Z) can be lifted to H2
G(EG;Z).

The following theorem provides the answer:
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Theorem 5.4.8. Let Γ be a countable discrete group and q : BΓ→ Γ\EΓ the
canonical map from the classifying space for free Γ-actions to the classifying
space for proper Γ-actions. Assume that n ≥ 2 and Hk(BG;Z) = 0 for all
finite subgroups G ⊂ Γ and all 1 ≤ k < n.

Then q induces an injection q∗ : Hn(Γ\EΓ;Z)→ Hn(BΓ;Z). Furthermore,
an element ξ ∈ Hn(BΓ;Z) lies in the image of the induced map iff iG

∗(ξ) =
0 ∈ Hn(BG;Z) for all inclusions of finite subgroups iG : BG→ BΓ.

Proof. We use the same spectral sequence as in Theorem 5.4.5. For the com-
putation of Hn(BΓ;Z) there are only two relevant (i.e., non-vanishing) entries
on the E∞ page: One is En,0

∞ = En,0
2 = Hn

Γ(EΓ;Z), the other one is E0,n
∞ which

is a subgroup of E0,n
2 . Together they produce the extension problem

0 En,0
∞ Hn(BΓ;Z) E0,n

∞ 0 .

This shows that the induced map q∗ is injective.
If ξ lies in the image of q∗ and G ⊂ Γ is a finite subgroup, then the

commutative diagram

EG EΓ

pt EG EΓ

iG

'

implies iG
∗(ξ) = 0 ∈ Hn(BG;Z). Conversely, if ξ is not in the image of q∗ then

it maps to a non-trivial element of E0,n
2 . This group is by definition the group

of global sections from Γ\EΓ into the sheaf A with germs Ay = Hn(BΓy;Z).
Since the image of ξ is a non-trivial section, there is a point y ∈ Γ\EΓ such
that the restriction of ξ to q−1(y) is non-trivial. Recall now that q−1(y) is
a model for BΓy and the inclusion of the fiber represents the canonical map
BΓy → BΓ. This finishes the proof.

Remark 5.4.9. With the same approach as in Theorem 5.4.5 this result can
also be applied to almost-cohomology classes. 4
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2002. From notes taken by Indira Chatterji, With an appendix
by Guido Mislin.

[Wie16] Michael Wiemeler. Circle actions and scalar curvature. Trans.
Amer. Math. Soc., 368(4):2939–2966, 2016.

[Zei17] Rudolf Zeidler. An index obstruction to positive scalar curvature
on fiber bundles over aspherical manifolds. to appear in Algebr.
Geom. Topol., https://arxiv.org/abs/1512.06781, 2017.

https://arxiv.org/abs/1704.05490
https://arxiv.org/abs/1704.05490
https://arxiv.org/abs/1512.06781

	Introduction
	Preliminaries
	Positive scalar curvature metrics
	Spin-structures, Spinc-structures and their obstructions
	Bordism and KO-homology
	The index-theoretical obstruction

	The effect of changing the Spin structure
	The S1-bundle construction
	Motivation: Bolotov and Dranishnikov's article
	The S1-bundle construction
	The fundamental group of the S1-bundle
	A natural transformation from Spinc bordism to Spin bordism
	Rosenberg's example
	The operator algebra side
	Vanishing of the index
	Example for a non-psc circle bundle

	The codimension-2 transfer
	Motivation
	Examples and restrictions on the fundamental groups
	Extending the transfer map
	Extending the transfer map further to E bar G

	Bibliography

