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Chapter 1

Preface

Darwin’s evolutionary theory [1] relocated humans from their divine place to the animal

kingdom. Nevertheless, amongst all animals humans still occupy a privileged place,

with traits believed to be exclusive and often superior. Jane Goodall was one of the

first to challenge this belief when she reported the usage of tools by wild chimpanzees

in the 60s [2]. Since then multiple studies have joined reporting animal behaviours

that were believed to be exclusive to humans. Nowadays it is known that animals

experience emotions and communicate them with individuals of their species [1, 3],

they suffer from depression, have different personalities [4, 5] and cultures [6, 7, 8, 9],

can be creative [10] and innovative [11, 12]. Still, there is one trait reserved for humans:

language. Humans’ faculty of language, is what still pays the bills for the privileged

place humans have among animals [13]. But is language an exclusive human attribute

that sets us apart from all other animals? This provocative question has not only

inspired tales and fables through history but is central to the controversial discussion

about the origins of language [1, 14, 15].

Many animals communicate by exchanging vocal signals with diverse purposes such

as attracting mating partners [16, 17], defending territory [18, 19], maintaining group

cohesion [20, 21] or alerting danger to other group members [22, 23]. Animal com-

munication can be complex and even display parallels with human language such as

semantics, syntax and vocal learning [24]. Many monkeys use semantic calls to refer

to different predators. Campbell’s monkeys, for instance, have one call for eagles and

another call for leopards [25]. But the story does not end here, these calls are also

used in syntactic combinations. Similarly to the way adding the suffix -hood at the end
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1. PREFACE

of the word brother changes its meaning to brotherhood, Campbell’s monkeys use the

suffix -oo to soften the function of these highly specific alarm calls. So that, adding

-oo turns the leopard call into a call used for general disturbances within the canopy

and the eagle call into a call used for less serious areal threats, such as the presence of

eagles in the neighbouring groups or a branch falling [26]. Critical for speech, however,

is the ability to learn and produce novel sounds, an ability that falls short in primates

— due to the limited control they have over their vocal organs — but that is widely

developed in many birds and marine mammals. Parrots and whales are vocally very

flexible; well known for their abilities for mimicking human and other artificial sounds.

Beyond human entertainment, these animals also use mimicking in their natural com-

munication. These animals learn sounds by copying group members, a capacity known

as vocal learning [27]. Certainly, animal communication systems are not as complex

nor developed as human language. Yet, the parallels between language and animal

communication invite us to consider that language may not be an isolated human at-

tribute but may lay in a continuum with other animal capabilities. Studying animal

communication may shade light on this open question.

Like language, animal vocal communication exhibits diverse structures that reveal

aspects about the signaller. To illustrate this point, let us do a thought experiment.

Consider for a moment we are aliens studying humans trough their vocal signals —

speech. We do not understand the meaning of these vocal signals, let alone their minds.

Yet, similar to the way astronomers know about stars they never visited, can tell their

age and distance from structures in the light, we may learn about humans through

structures present in their vocal signals. One of these structures is how these signals

cluster geographically. These geographical patterns are, of course, a consequence of

the different languages and tell that humans’ vocal capacity is not genetically coded

but learned. Looking in more detail, we would see that in addition to the learned

aspects, there are universal characteristics that do not depend on the geographic loca-

tion. For example, syntax will show in the way speech is made out of vocal units that

are combined in non random ways. Another characteristic of speech, is how its tempo

variations often correlate with the emotional state of the speaker. High arouse levels

correlate with a higher tempo than low arouse levels. Tempo is a prosodic cue impor-

tant to paralinguistic communication. The existence of languages, their syntax and

prosody is essential to the way humans use sounds to communicate. Notice that these

2



characteristics do not depend on understanding the meaning of words, yet they reveal

important aspects of human communication. Likewise, we can learn about animals by

studying their vocalisations.

Animal vocalisations are acoustic signals that fall within the scope of bioacoustics,

a cross-disciplinary field that studies life sounds, mostly1 of animals. Besides studying

animal vocalisations, bioacoustics finds applications in areas such as monitoring ecosys-

tems [29, 30, 31, 32], environmental conservation [33, 34], mitigation [35, 36] and even

the search for extraterrestrial intelligence [37]. Bioacoustics studies sound production,

sound detection and sound propagation. While the first two are involved biophysi-

cal processes, sound propagation is a purely physical phenomenon. Understanding the

physical properties of sound can be insightful in trying to adopt an animal’s perspective

(Appendix A) and so, their communication needs.

Because of its physical properties, sound is an effective means of communication.

Sound is a mechanical wave that propagates transporting information from its source at

a speed determined by the medium (Appendix A). Sound needs a medium to propagate

and it can travel large distances in dense environments like water [38, 39]. Electromag-

netic waves on the other hand, get absorbed underwater and reflected by obstacles like

tree leaves. Sound therefore, is more effective than light to communicate in such bulky

environments.

The sound we hear typically comes from a vast range of sources, e.g. people speak-

ing, birds singing, cars passing. Animal brains are very good at separating sound into

its sources [40]. After all, natural selection favoured those individuals capable of differ-

entiating the growl of a leopard from the yawn of a mate within complex soundscapes.

While being an easy task for us, separating sound sources is challenging for a machine.

A common early step in most bioacoustic studies is that of annotating audio record-

ings with relevant information, such as animal vocalisations. This step is often ad-

dressed manually by listening to the sounds or by looking at spectrograms (graphical

representations of sound, see Appendix B). However, observer-based analyses are sus-

ceptible to errors and slow compared to machines, thereby limiting in the amount of

data that can be processed. It is desirable to automatise the extraction of information

from audio files, a step also referred as audio annotation.

1 yet, not exclusively. Plant bioacoustics is also a matter of study [28].
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This thesis proposes methods to investigate structure in bioacoustic signals. For

this two frameworks are proposed. The first concerns the automatic annotation of au-

dio recordings by using supervised machine learning methods. The second concerns

a quantitative analysis of temporal and combinatorial patterns in vocal sequences of

animals by using non-parametric statistics. These methods are used to investigate

vocalisations of two wild living animals — known very little — in their natural ecosys-

tems: lilac crowned parrots (Chapter 7) and pilot whales (Chapter 6). All definitions

and methods particular of each framework are explained in detail in the introductory

sections of Part I and Part II of this thesis.

Structure of the thesis

Figure 1.1 illustrates the structure of the thesis. Part I describes methods for auto-

matically extracting information out of the recordings. Chapter 2 revises applications

of machine learning for bioacoustics and presents the core methods developed in this

thesis for automatically annotating recordings. These methods are used later for de-

tecting whale calls (Chapter 3) and classifying them into call types (Chapter 4). Part

II delves into structures of animal vocal sequences. Chapter 5 overviews the study of

animal vocal sequences and presents the methods used in the later chapters to quantify

patterns in vocal sequences of pilot whales (Chapter 6) and of parrots (Chapter 7).

4



Figure 1.1: Illustration of the challenges addressed in this thesis. The graphs show

the spectrogram (a three dimensional representation of sound in terms of its short time

power spectral density) of a recording with whale vocalisations. Raw data are recordings

of animal sounds for which detection and classification methods are presented in the first

part of the thesis. Temporal and combinatorial patterns of the sounds are analysed in the

second part of the thesis.
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Chapter 2

Background

Bioacoustic studies often start by extracting information out of recordings. This in-

formation can expressed in terms of text annotations –a standard and flexible format,

handleable by many audio processing platforms. This chapter presents a framework

for automatically annotating audio recordings with a supervised machine learning ap-

proach. The framework is applied in the next two chapters to address two bioao-

custic tasks: detecting whale calls (Chapter 3) and classifying them into call types

(Chapter 4).

2.1 Why annotating bioacoustic recordings?

Bioacoustic data is a valuable resource in the study of animal communication, ecology,

environmental conservation, among other applications (see Chapter 1). The number

of projects constantly monitoring ecosystems has increased substantially over the last

years skyrocketing the amount of bioacoustic data. Some of these projects include mon-

itoring stations at the sea such as Darewin, orcalab, palaoa observatory, MobySound

[41]; crowd sourcing projects such as xeno-canto, bird biodiversity [42], and other in-

stitutions like the Alberta biodiversity monitoring Institute from the Cornell lab of

ornithology [43]. Not only the monitoring of ecosystems has benefited from the data

collection technologies, but also studies of individual species are often performed with

automatic recorders such as the Dtags [44] used for marine mammals.

Technology has boosted the ease of data collection but processing methods for ex-

tracting information out of these datasets has not paired up. The complex soundscapes
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2. BACKGROUND

of wild bioacoustic scenarios produce datasets that are challenging to process. Humans

are good at detecting patterns but this way of processing data imposes temporal and

observer bias limitations. Automating the annotation of acoustic recordings would

enable to investigating large datasets in a reproducible fashion.

2.2 Machine learning in bioacoustic tasks

The need for processing large volumes of bioacoustic data has driven many proposals for

automating this step. A variety of bioacoustic tasks have been addressed automatically,

such as: species classification [45], individual identification [46, 47], sound type sorting

[48, 49, 50, 51, 52] and sound clustering [53, 54]. Despite these proposals for automating

annotation, observer-based analysis are a common approach. Thus this step forms

an important bottleneck in bioacoscutic studies. Ravenpro and avisoft are powerful

softwares for analysing bioacoustic data, but both require paid licenses, their source

code is not available and their graphical user interfaces makes them user friendly but

not flexible to large scale applications. Other alternatives like ARBIMON [55] and the

orchive [56] are cloud hosted meaning that one needs to export the recordings to a

server were these are processed, losing control over the data.

This chapter presents a framework for annotating bioacoustic signals using the

Python programming language, deemed appropriate given the popularity of it across

the scientific community. The rest of the chapter describes the information flow for

annotating recordings using supervised machine learning methods and the architecture

of the code that I have developed for this project.

2.3 Framework for the annotation of bioacoustic signals

Annotation files are a convenient way of summarising the information in audio record-

ings (Fig. 2.1). These are plain text files, which can be loaded and exported by most

audio processing software. The aim of the proposed framework is to generate such

files from unknown audio recordings (Fig. 2.2). This problem can be approached using

supervised machine learning, where a classifier is trained with labelled data —in this

case annotated recordings— to distinguish patterns from annotations.

10



2.3 Framework for the annotation of bioacoustic signals

Figure 2.1: Recording annotations. Raw audio files are one dimensional (for mono

channel) time series of pressure levels, whose segments can be annotated with relevant

information, e.g. animal sounds, represented in the diagram with the letters A, B and C.

Annotations are simple text files with the temporal coordinates and labels of the annotated

segment. Each row of the text file contains one segment with typically three columns two

for the temporal coordinates and one for the label. The temporal coordinates are often the

starting and ending time of the segment.

Figure 2.2: Information flow for the generation of audio annotations. Diagram of

a system for automatically annotating recordings. Features are extracted from raw audio,

represented in the diagram with a matrix X̂, and fed to a model (black box) that predicts

labels, that are transformed into annotations. Black box represents a model trained with

previously annotated data (Fig. 2.3).

Classification tasks are often separated into two steps: feature extraction, where

data is put into a suitable representation for the desired task; and training, where an

algorithm minimises a chosen evaluation metric to find the best parameter values for

the model given the data at hand.

Below I go through each of these steps and describe how they are handled by the

code developed for this thesis. Descriptions of the spectral features can be found in

Appendix B.

2.3.1 Feature extraction

In the feature extraction step, raw audio is transformed into classification instances.

Raw data is handed as collection of audio and annotation files (Fig. 2.4) from which

11



2. BACKGROUND

Figure 2.3: Model training. A classifier (black box) is trained with labelled data.

Features X̂ are extracted from audio and labels ~y from annotations and together are

used for training a model that tries to minimise a cost function of the error between the

prediction ~p (a function of X̂) and the ground truth ~y.

Figure 2.4: Collection of annotated audio files. Text file with two columns, first

column has the path to an audio file and second column has the path to its corresponding

annotation file.

12



2.3 Framework for the annotation of bioacoustic signals

features are extracted into a data structure of the form X̂ ~y, where X̂ is a matrix of m

instances (rows) and n features (columns); and ~y a vector of size m with the instance

labels. Each row of matrix X̂ quantifies one classification instance with a column for

each feature. All instances (rows) must have the same number of features (columns).

From the raw audio to the X̂ ~y form there is room for multiple preprocessing and

feature extraction steps. In this thesis, preprocessing steps denote transformations that

maintain the data dimensionality, IRn → IRn, whereas feature extraction steps refer to

transformations that change the waveform representation to a (Euclidean) space of

possibly different dimension than the raw signal space IRn → IRm, e.g. a spectral

representation.

In the context of my code, preprocessing and feature extraction steps are instances of

the class Transformation which can be stacked using class transformationsPipeline

(details in section 2.4).

2.3.2 Training

The sklearn python module [57] contains a variety of machine learning functionalities

that I combine in my workflow. Sklearn classifiers take data in the form X̂ ~y, out

of which a model can be trained calling the fit method. Classifier hyperparameters

are tuned with a cross validation GridSearchCV. In this thesis, I use support vector

machines (SVMs) as classifier of choice. It is well known to be one of the best off-the-

shelf classifiers, a detailed description can be found Appendix C.

2.3.3 Evaluation of the classifier performance

Classes are said to be unbalanced when the number of samples between the classes

differs. In such cases the metric chosen to evaluate the classifier is crucial, since this is

the mean through which we tell the algorithm what our aim is. Classifier evaluation is

important, first for tuning the classifiers hyperparameters, typically done with a cross

validation set; and second for assessing the final score of a classifier over a test dataset.

Some common evaluation metrics are described below.

13
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Figure 2.5: Confusion matrix. Example of a confusion matrix of two arrays with three

classes.

Confusion Matrix

The confusion matrix is a table that compares the labels of two vectors. In a classifica-

tion problem, the vector of true labels ~y and the vector of predictions ~p. The diagonal

elements of the matrix count correctly classified instances whereas off diagonal elements

the misclassified instances.

The confusion matrix carries all information about how ~p compares to ~y, the problem

is however, that being a matrix there is not a single number denoting the quality of fit

so we need to define a score which is a scalar value based on this matrix that we aim

to maximise. Some common ways of summarising the confusion matrix are presented

below.

Accuracy

The accuracy is based on the diagonal elements of the confusion matrix divided by the

total number of classified samples. Given the true labels ~y and the predicted labels ~p,

the accuracy is given by

ACC(~y, ~p) =
1

m

m∑
i=1

δyi,pi , (2.1)

where m is the number of instances and δ is the Kronecker delta that is 1 if both entries

are equal and 0 otherwise.

The problem with the accuracy is that it does not distinguishes classes and when

dealing with unbalanced datasets can be misleading since classes with fewer instances

14



2.3 Framework for the annotation of bioacoustic signals

will be underrepresented in the final score.

The metrics described below are defined for binary labels, typically called positive

(p) and negative (n). Multi-label vectors can be mapped into binary vectors by focusing

on one class. So that the class of interest is p and all other labels are n.

Precision

The precision measures the relevance of the prediction and is given by the fraction of

true positives, Tp, with respect to the number of predicted positives,

P =
Tp

all positive predicted
=

Tp
Tp + Fp

, (2.2)

where Fp is the number of false positives. High precision indicates low false positive

rate and low precision indicates high false positive rate.

Recall

The recall measures the sensitivity to detect the class of interest and is given by the

fraction of true positives with respect to the total number of positives

R =
Tp

all the positives data
=

Tp
Tp + Fn

, (2.3)

where Fn is the number of false negatives. High recall indicates low false negative rates

and low recall indicates high false negative rates.

F1 score

The F1 score is the harmonic mean of precision and recall

F1 = 2
P ×R
P +R

. (2.4)

In this thesis scores are reported in percentage scale. So instead of ranging from

zero to one, the equations above are multiplied by 100, thereby ranging the scores from

zero to 100, with 100 the highest score.
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2.4 Code architecture and core programming tools

The developed code integrates audio signal processing tools of the python module

librosa [58], with machine learning tools from the python module sklearn [57], in order

to effectuate machine learning tasks on audio data. The modular architecture of the

code facilitates the execution of experiments (Fig. 2.6) by allowing to easily exchange

the datasets, feature extraction methods and machine learning estimators. Below I

describe the core programming classes used for the classification experiments, in a top

down order.

WARNING: The following section contains considerable amounts of Python slang.

Experiment class

The class experiment bounds the settings for the machine learning task (experiment):

(1) input data, through a collection of annotated audio files, (2) feature extraction

settings through a TransformationsPipeline (3) the classification settings through

sklearn’s pipeline and GridSearchCV and (4) the path to an output file where the

classification performance scores are printed. An experiment can be iterated to scan

different combinations of parameters, e.g. feature extraction settings and classification

parameters.

Transformation pipeline

The class TransformationsPipeline contains instructions —processing steps— for

extracting features. For instance, three processing steps can be: normalise the wave-

form, apply a band pass filter and compute the spectrogram. Some attributes of

this class are: a list of the names of processing steps, a callable that can be used

to extract the features, a string with the feature extraction settings, among others.

The class can be initialised with the function makeTransformationPipeline which

takes a list with the processing steps. The processing step are handled as tuples

with two entries. The first entry is a string used to identify the processing step,

e.g. “normalise waveform” and the second entry contains an instance of the class

Transformation used to apply the processing steps.

16



2.4 Code architecture and core programming tools

Figure 2.6: Diagram illustrating the information flow for a classification ex-

periment with audio data. A classification experiment is regarded as the process of

training and testing a classifier, given a dataset (raw data), and the settings for feature

extraction and classification. An experiment can be initialised and carried using the class

experiment that bounds the experiment settings with an output file meant to keep

records of the classification scores. Settings can be easily modified to evaluate the per-

formance of a classier under different conditions, e.g. using different feature extraction

parameters.

17
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Transformation

The class Transformation defines processing steps used for extracting features. For

instance, one can use a Transformation to set-up a band pass filter. A Transformation

can be initialised with a tuple of two entries. The first entry should have a string with

the name of the processing step and in the second entry its settings as a dictionary

of key word arguments (kwargs). Going back to our example with the band-pass fil-

ter, the first entry would be “band filter” and the second entry a dictionary with the

filtering bands.

18



Chapter 3

Automatic detection of whale

calls with spectral features

3.1 Introduction

Many algorithms for processing bioacoustic recordings focus on the classification of

sounds from presegmented data. However, a real speed-up in the processing of large

scale datasets can only be achieved by eliminating manual steps. The aim of this

chapter is to automate this step by training a model to segment whale calls. In terms

of the annotations, this means generating the temporal coordinates of the calls.

In this chapter, I adjust the framework from Chapter 2 to train support vector ma-

chine (SVMs) classifiers (Appendix C) to segment pilot whale calls from four recordings

collected in the wild. Classification performance is compared between two spectral fea-

tures (Appendix B) mel-spectrum and MFCC. For each of these feature representations,

a range of parameters are scanned in order to assess their influence on the classification

performance.

3.2 Dataset

The dataset consists of four audio files (tapes named 111, 113, 114 and 115) with pilot

whale sounds recorded in the wild. Raw data is in wav format and has a sampling

rate of 48 kHz. Environmental sounds cannot be controlled in the wild and made our

recordings highly heterogeneous in terms of the sources of background noise, signal to

noise ratio and the proportion of call segments in the sample. These factors affect the
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Figure 3.1: Waveform and spectrogram. Low signal to noise ratio impedes extracting

the calls by simply thresholding the waveform (upper panel). Spectrogram shows a whale

call labelled as c and the echo of the call labelled as w.

a b

c d

Figure 3.2: Challenges in the dataset. Examples of recordings with (a) echoes labelled

as w, (b) missing signal, (c) overlapping calls low signal to noise ration and (d) presence

of other whale sounds such as clicks and buzzes.
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3.3 Design of the machine learning task

Figure 3.3: Information flow for training a classifier to detect whale calls. Raw

audio is annotated with segments of calls (c) and weak sounds (w). Classification instances

are frames of the recording for which spectral features are extracted and summarised

for each spectral band with the mean and the standard deviation. A support vector

machine (SVM) classifier is trained with 70% of the data and tested over the rest. Classifier

hyperparameters are tuned with a 5-fold cross validation.

quality of the recordings in different ways. To assess their effect on the classification

performance, each recording was treated as an independent dataset.

Signal to noise ratio was generally low impeding to extract the whale sounds by

simply thresholding the spectrogram (Fig. 3.1) as it is often done in controlled envi-

ronments like labs or aquariums. Background noise sources included engines, vessels

and sounds from other animals. Different physical constraints also affected the quality

of the recordings such as the acoustics due to the rugged relief of the fjords; and the

distance, deepness and direction of the whale with respect to the hydrophone.

The dataset was manually annotated using audacity [59]. Segments with whale calls

were labelled with a c (Fig. 3.2). Because the aim of the classier is to extract the whale

calls, other whale sounds like clicks and buzzes were regarded as background noise.

Weak tonal sounds such as low intensity calls and call echoes occurred frequently in

our dataset. Their acoustic properties are similar to those of calls, so they were labelled

as another class with the letter w (Fig. 3.2). Unannotated sections were regarded as

background noise and were automatically tagged with the label b.

3.3 Design of the machine learning task

The aim of the classifier is to compare the performance of two spectral feature repre-

sentations: mel-spectrum and MFCC; in the task of extracting pilot whale calls from

a recording (Fig. 3.3). This is done training a classifier with frames from recordings
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labelled with either of the three classes: c for calls, w for weak sounds and echoes, and

b for the rest of the recording.

Feature extraction

The mel-spectrum and the MFCC features are both spectral representations since they

are based on a Fourier transform of the raw signal. The spectral resolution of these

representations is mediated by the number of mel-filters and the number of MFCCs,

here referred to as frequency bands. Experiments varying the number of frequency

bands are carried out to investigate their effect on the classification performance.

Three steps were involved in the feature extraction. First, waveforms were nor-

malised by the maximum amplitude. Then spectral features were extracted (Appendix

B) using an FFT window of 512 samples with 0% overlap. Finally, features were tempo-

rally summarised computing the mean and the standard deviation for each frequency

band over a number of summarisation frames (Appendix B). In addition to the

number of frequency bands, the number of summarisation frames are varied in the

experiment.

The proportion of b samples exceeded the other two classes, sometimes in more than

one order of magnitude. Unbalances in the dataset can yield bad results. Due to the

aim to detect whale calls, the number of samples of classes b and w was balanced to

number of samples of class c. This was done by randomly disregarding samples from

classes b and w so that their numbers match the ones of c samples.

Classification

A support vector machine classifier (SVM) (see Appendix C) with linear kernel was

trained with 80% of the data. Classifier hyperparameters were tuned with a 5 fold cross

validation. Classifier performance was assessed with the F1 score for class c.

Experimental parameters

Temporal and spectral resolution was varied to assess its effect on the classification

performance. The number of frames ranged per instance from 2 to 40 and the number

of frequency bands form 1 to 20.
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3.4 Segmentation of whale calls with spectral features

a

b

Figure 3.4: Classification performance with spectral features. F1 score of class

c (calls) as a function of the spectral bands for the four tapes with (a) mel-spectral and

(b) MFCC features. Score expressed in percentage scale. Colours indicate the different

number of frames per classification instance.

3.4 Segmentation of whale calls with spectral features

I found that the classification performance with both feature representation increases

with the spectral resolution, yielding highest scores between 10 to 20 frequency bands

(Fig. 3.4). Contrary to this parameter, the number of frames did not influence the clas-

sifier performance with a clear trend. However, care should be taken when comparing

the scores for the different number of frames since the number of samples decreases

with the number of frames.

Mel-spectral features yielded better scores than MFCC features (Fig. 3.5). This

was observed consistently for the four tapes and different parameter combinations. The

performance of the fitted model depended strongly on the dataset. The scores of both

feature representations varied more than 20% between the different tapes. Regardless

of the feature representation and the parameter combination, tape 111 always yielded

the highest score among the tapes. This was due to the small proportion of w samples

this tape has (Fig. 3.6).

23
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Figure 3.5: Comparison of the classification performance with mel-spectral and

MFCC for each tape. Classification performance, measured as the F1 score of class c

(calls) as a function of the number of spectral bands, being the number of mel-filters for the

mel-spectral features and the number of MFCCs for the MFCC features. Score expressed

in percentage scale.

Figure 3.6: Sample composition of the datasets. Proportion of the samples of each

class weak sounds (w), calls (c) and background noise (b) in each tape.
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3.5 Summary and discussion

3.5 Summary and discussion

Classifier performance was found to be susceptible to the chosen features, their com-

bination of parameters and the dataset. Differentiating calls from background noise

yielded better scores with mel-spectral features than with MFCC features. Because

differentiating calls from background noise is easily done from the power spectral den-

sity, higher order structures like the periodicity in the harmonics —well captured by

the MFCC features— are not relevant for this task.

The fitted model depended highly on the dataset and the composition of samples

of each class. By training models for each tape independently we were able to identify

the proportion of weak sounds in the sample to be the major challenge for detecting

whale calls successfully. The acoustic properties of class w lay between the two other

classes and distinguishing these samples is challenging even for the human eye, thus,

it is not surprising that higher proportions of these samples have yielded worse scores.

This stresses how the scores of a classifier depend on the characteristics of the dataset.

Besides MFCC and mel-spectral features other spectral features could have been

tried, like pure spectrogram or a cepstrogram. Pure spectral features are high dimen-

sional which imposes two difficulties over lower dimensional features: (1) they are more

vulnerable to overfitting and (2) training models takes more time. As for the cepstro-

gram, this representation is similar to the MFCC features in that both compress the

periodicities of the power spectral structure with a second power spectral transforma-

tion. Given that the mel-spectrum outperformed the MFCCs, it is unlikely that the

cepstrum would outperform the mel-spectrum.
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Chapter 4

Automatic classification of whale

calls with spectral features

4.1 Introduction

Many toothed whales such as orcas and pilot whales produce sounds, named calls, with

distinctive spectro-temporal characteristics. Calls can be sorted into types according

to their acoustic characteristics. These types have been found to reflect the social

structure of many marine mammals [60], and are a frequently studied object of these

animals. It would be desirable for naturalists to automate the sorting of call types,

speeding up the process and preventing human errors. In terms of the annotations

(Chapter 2), this means generating call type tags for the segments identified previously

in Chapter 3.

In this chapter, I train support vector machine (SVM) classifiers (Appendix C)

to distinguish 71 call types from pilot whales using spectral features (Appendix B).

We compare the classifier performance using three spectral features —cepstrum, mel-

spectrum and MFCC— based on the analysis defined within the framework proposed in

Chapter 2. For each of these feature representations, a range of parameters is scanned

in other to assess their influence on the classification performance. A second batch of

experiments is carried out over a benchmark dataset of killer whale calls to test the

robustness of the features in a different dataset.
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Figure 4.1: Information flow for training a classifier of call types. Audio files

with annotated call types are transformed into classification instances. Spectral features

are extracted from each call and sliced into N segments of equal length, figure shows N = 4.

Two kinds of spectral features are tried here: mel-spectral and mel Frequency Cepstral Co-

efficients (MFCC). Features are summarised with the mean (µ) and the standard deviation

(σ) for each spectral band. A support vector machine (SVM) classifier is trained with 80%

of the data and tested over the rest. Classifier hyperparameters are tuned with a 5-fold

cross validation.

4.2 Design of the machine learning task

The aim of the task is to compare three spectral feature representations —cepstral,

mel-spectral and MFCC— in terms of their performance in classifying whale calls with

an SVM. Spectral representations depend on a series of parameters that control their

temporal and spectral resolution, e.g. the window size of the fast Fourier transform

(FFT). Thus we carry out experiments to scan combinations of these parameters to

assess their influence on the classification task. Details on the feature extraction and

classification settings are explained below.

Feature extraction

Classification instances were prepared through a three step feature extraction proce-

dure: (1) waveforms are normalised by the maximum absolute value, then (2) spectral

features are extracted (details of the features in Appendix B) and (3) different instance

lengths —due to differences in the duration of the audio files— are normalised. The

last step is important since the classifier can only compare vectors of the same size.

Length normalisation is done by slicing each instance into equally spaced segments

and computing the mean and the standard deviation of each frequency band in each
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4.2 Design of the machine learning task

Figure 4.2: Phase space of scanning parameters. Each dimension represents a

parameter, e.g. the size of the FFT, the number of slices, or the number of spectral

bands and each dot a combination of parameters. The planes indicate sets of points with

parameter pk fix to value x.

segment (Fig. 4.1). The number of slices is one of the parameters scanned in the ex-

periments. Parameters such as the number of coefficients, or number of quefrencies, of

the cepstrum; the number of mel filters of the mel spectrum; and the number of MFCCs

of the MFCC features; tune the spectral resolution. Here these parameters are referred

to as spectral bands and combination of them are scanned in the experiments.

Classification and evaluation

Features are used to train a support vector machine classifier with radial basis function

Gaussian kernel. Classifier hyperparameters such as the penalty C, and the kernel

coefficient γ were tuned with a 5-fold cross validation grid search algorithm from sklearn

[57] (Appendix C). The dataset was split using 80% for training and the rest for testing.

Because the classes are unbalanced the accuracy is not a suitable metric for eval-

uating the classifier’s performance. Instead we use the macro average of the F1 score,

which averages the score using the same weight for all the classes

〈F1〉c =
1

N

N∑
i=1

F1(ci), (4.1)

where F1(ci) is the F1 of the i-th call class ci and N the the number of classes.

For each spectral representation several combination of parameters were tried (Fig. 4.2).

Given a metric S (Chapter 2), we define ∆pi(x) as the mean of S in the subspace of
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Figure 4.3: Pilot whale calls. Randomly selected samples from the pilot whale

catalogue. Labels in the top left indicate the call type, with an alphanumeric tag, and the

quality for the recording, with alphabetical ranking from A (best) to D (worst).

scanned parameters with pk fixed to x,

∆pi(x) = 〈S(~p |pi=x)〉. (4.2)

∆pi is a function of the value x so I use the range of ∆pi to assess the influence of a

parameter pi along its scanned values.

4.3 Classification of pilot whale calls

The experimental set-up described above was used to classify calls from pilot whales.

This section presents results of the classifier performance for each of the spectral features

cepstral, mel-spectral and MFCC. We start describing the dataset and then move on

to the results.

4.3.1 Dataset

The dataset consists of 3885 audio files of ca. 1 s with pilot whale calls extracted

manually from longer recordings with a sampling rate of 48 kHz. The identified calls

were inspected in terms of their spectro-temporal features —frequency modulation,
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Figure 4.4: Distribution of call samples. Number of samples of each call type. Colours

indicate quality of the recording ranked alphabetically from A (best) to D (worst).

parameter, pi scanned parameters, x range of ∆pi(x)

FFT window size 256, 512, 1024 1.8

# quefrencies 1 - 39 41.9

# slices 1 - 15 8.8

Table 4.1: Cepstral feature parameters and their influence on the call classifi-

cation task. Parameter influence measured as the range of ∆pi
(Eq. 4.2) with the macro

average of F1 as metric.

distance between harmonics and presence of tonal and noisy elements— and placed

into 71 call categories by Dr. Vester. Details of the class definition are reported here

[61]. Quality of the recordings was assessed “manually” and ranked alphabetically in

either of the four qualities from A (best) to D (worst). Figure 4.3 shows the spectrogram

of 18 samples randomly drawn from the dataset. Each class has at least 10 samples,

yet the number of samples for each call type is highly unbalanced. The most frequent

call class has more than 400 samples while one third of the call classes has less than 20

samples (Fig. 4.4). Additionally, most samples are poor quality recordings with almost

80% belonging to the lowest two qualities (Fig. 4.4).

4.3.2 Cepstral features

Classifying calls with cepstral features yielded a maximum F1-score of 53.6±0.1 (5-fold

cross validation), with 35 cepstral bands, a Fourier transform window of 512 samples

with 50% overlap and 5 slices. Below, I describe the performance of the classifier under
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a b

Figure 4.5: Classification performance with cepstral features. a, Classification

score as a function of the number of cepstral coefficients. b, Classification score as a

function of the number of cepstral coefficients and the number of slices. Using the macro

average of the F1 score and a 5-fold cross validation.

Figure 4.6: Influence of the number of cepstral bands. Classification performance

as a function of the number of cepstral coefficients (> 15) for different number of slices and

the three FFT window sizes. Classification performance measured with the macro average

of the F1 score and a 5-fold cross validation.
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parameter, pi scanned parameters, x range of ∆pi(x)

FFT window size 256, 512, 1024 4.4

# mel filters 1-96 48.6

# slices 1-15 14.2

Table 4.2: Mel-spectral parameters and their influence on the call classification

task. Parameter influence is measured as the range of ∆pi
(Eq. 4.2) with the macro

average of F1 as metric.

different parameter combinations.

Table 4.1 shows the scanned parameters and their effect on the classification per-

formance. Among the scanned parameters, the number of quefrencies influenced most,

then the number of slices and least the size of the FFT.

The classification performance increases with the number of cepstral bands, stag-

nating around 15 bands (4.5 (A)). Above this point, the influence of other parameters,

the size of the FFT window and the number of slices become more important. Figure

4.5 (B) shows the relation between the number of quefrencies and the number of slices,

in which, the region with 4 to 7 slices and more than 20 cepstral coefficients shows

highest performance.

The size of the Fourier transform has a small effect in the classification performance,

being only relevant when the number of slices is: greater than 7 for a FFT window of

1024 samples; and greater than 10 for a FFT window of 512 samples (Fig. 4.6). Large

FFT windows compromise the temporal resolution, yielding few temporal samples and

an inefficient temporal summarisation. However, in the optimal region of 4-5 slices the

size of the Fourier window has no important effects.

4.3.3 Mel-spectral features

Classifying calls with mel spectral features yielded a maximum F1-score of 65 ± 1 (5-

fold cross validation) with an FFT window of 1024, 76 mel-filters and 3 slices. Table

4.2 shows the scanned parameters, their variation range and their effect on the call

classification task with mel-spectral features. The number of mel-filters is the most

influential of the scanned parameters.
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a b

Figure 4.7: Classification performance using mel-spectral features. a, Classifica-

tion score as a function of the number of mel-filters. b, Classification score as a function of

the number of mel-filters and the number of slices, with a Fourier window of 512 samples,

50% of overlap. Classification performance measured with the macro average of the F1

score and a 5-fold cross validation.

The classifier performance improves with the number of mel-filters; beyond the

stagnation at ca. 16 filters the other parameters become important (Fig. 4.7a). The

number of slices displays an optimal region between 3 and 7 slices (Fig. 4.7b). The

FFT window is the least influential parameter. Its effect in the optimal region for the

number of mel-filters (> 16) and the number of slices (between 2 and 9) is shown in

Fig. 4.8. The smallest FFT window (256 samples) does not capture enough frequency

resolution, having a maximum score almost 5% below the maximum score obtained

with the larger FFT windows. The FFT windows 512 and 1024 yielded best scores

with 4 and 5 slices. Beyond this point larger FFT windows are less effective capturing

meaningful information.

4.3.4 MFCC features

Classifying calls with MFCC features yielded a maximum F1-score of 73.28±1.4 (5-fold

cross validation), with 128 MFCC, 37 mel-filters, a Fourier window of 512 samples a 50%

overlap and 4 slices. Table 4.3 shows the varied parameters and their influence in the

classification task. The number of MFCC has the strongest effect in the classification

performance, with an influence of 58% over the classification score, followed by the

number of slices, then the size of the FFT window and at the end the number of

mel-spectral filters.
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Figure 4.8: Influence of the number of mel-filters. Classification performance

using mel-spectral features as a function of the number of mel-filters (> 16) for different

number of slices and the three FFT window sizes scanned.

parameter, pi scanned parameters, x range of ∆pi(x)

FFT window size 256, 512, 1024 5.6

# mel filters 32, 64, 128, 256 3.5

# slices 1-15 9.5

# MFCC 1-39 58.4

Table 4.3: MFCC parameters and their influence on the call classification task.

Parameter influence is measured as the range of ∆pi
(Eq. 4.2) with the macro average of

F1 as metric.

a b c

Figure 4.9: Classification performance using MFCC features. a, Classification

score as a function of the number of MFCC. b, Classification score as a function of the

number of MFCC and the number of slices, with a Fourier window of 512. c, Classification

score as a function of the number of slices for the three FFT window sizes with more than

15 MFCCs. Classification score is given by the macro average of the F1 score with a 5-fold

cross validation.
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Figure 4.10: Influence of the number of mel filters. Classification performance

using MFCC features as a function of the number of mel-filters, for different number of

slices and the three FFT window sizes. Macro average of the F1 score with a 5-fold cross

validation was used to estimate classification performance.

Classification score improves with the number of MFCCs up to 20 where it stagnates

and the other parameters become more important (Fig. 4.9a). Beyond 20 MFCCs, the

number of features starts playing an important role and the number of MFCCs must

be traded off with the number of slices. This can be appreciated in Fig. 4.9b where the

classification score, as a function of the number of MFCCs and the number of slices,

displays a region of optimal performance between 3 and 7 slices and more than 20

MFCCs.

All FFT window sizes yielded scores above 80% (Fig. 4.9c). The number of mel-

filters has no important effects on the classification performance.

4.4 Classification of killer whale calls; benchmark dataset

In the previous section was obtained that MFCC features outperformed mel-spectral,

and cepstral features. Now we test the robustness of this result comparing the perfor-

mance of the two top representations —MFCC and mel-spectral— on the classification

of killer whales calls from a benchmark dataset.
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Figure 4.11: Counts of the call samples in the orchive call catalogue. Call classes

are tagged with an N and a number. Call types are sorted according to their frequency.

The orchive dataset

The orchive [62] is an open dataset (available at http://data.orchive.net/) with record-

ings of sounds from northern resident killer whales from the western coast of Canada.

Sounds include calls, whistles buzzes among other whale sounds. Releasing the dataset

was a collective effort of OrcaLab, who collected the recordings and Steven Ness who,

at the time at University of Victoria, prepared the dataset as part of his PhD thesis

[56]. The catalogue consists of individual audio files of ca. 1 s with sampling rate of

44kHz. Calls are annotated according to John Ford’s call catalogue [63], where call

types are labelled with a capital N and a number, indicated in the file name.

The dataset was prepared parsing call types from file names and keeping the subset

of calls with at least 10 samples per call type. This yielded 1340 samples with 10

categories (4.11) which I used for the classification task. Figure 4.12 shows some samples

of the dataset.

Machine learning task

The tasks were carried out scanning combinations of parameters in the optimal perfor-

mance regions identified in section 4.3. For both features we use FFT window of 512

samples with 50% overlap and tried 2, 4 and 5 slices. For the mel spectral features

we use 32 and 54 mel-filters and for the MFCC we use 31 and 36 MFCC with 64 mel-

filters which in section 4.3 were observed not to influence the classification performance

significantly. I use 80% of the calls for training the classifier and the rest for testing it.
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Figure 4.12: Orchive calls. Randomly selected samples from the orchive call catalogue.

Labels in the top left indicate the call type.

Results

The classification performance obtained with the orchive dataset agreed with our results

from the previous section that MFCC outperform mel-spectral features. The scores

obtained for the pilot whales are higher than for the orchive, yet the superiority of the

MFCC over the mel-spectrum was confirmed by the cross validation F1 score and the

4 metrics over the test set —accuracy, precision, recall and F1— which consistently

scored higher for the MFCC than for the mel-spectrum (Fig. 4.13).

4.5 Summary and discussion

Out of the three spectral representations we tried here, MFCC features performed best

classifying whale calls with a support vector machine. For the pilot whale classification,

MFCC outperformed mel-spectral features by almost 10% and mel-spectral features

outperformed cepstral features by 10%. The superiority of the MFCC features was

confirmed classifying killer whale calls from the orchive dataset.

Feature extraction parameters influenced the performance of the classification. Among

them, the most influential parameters were the number of frequency bands and the
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Figure 4.13: Classification scores obtained with the orchive dataset. All scores

shown are macro-averages (Section 2) of the call types, except for the accuracy whose

definition is independent of the classes. Features were extracted with FFT window of 512

samples, 50% overlap, and 2, 4 and 5 slices. For the mel-spectrum 32 and 64 filters were

used and for the MFCC 31 and 36 coefficient over a 64 mel-filtered spectrogram.

features # spectral bands # slices best score

pilot whales orchive

cepstrum > 20 3-5 53.6± 0.1 NA

mel-spectrum > 20 3-7 65± 1 52± 10

MFCC > 15 4-7 73± 1 59± 7

Table 4.4: Summary of results. Best classification scores and region of optimal pa-

rameters for the classification of pilot whale calls and killer whale calls from the orchive

dataset.
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number of temporal slices. MFCC and mel-spectral allowed better temporal resolu-

tions than the cepstral features as indicated by the number of slices of highest scores

—which for the first two were higher than for the later. This may be the reason why

MFCC and mel-spectral outperformed cepstral features. The superiority of the mel-

scale over the linear scale does not mean that whales perceive frequencies according to

the mel-scale. However, for the classification task carried out, the mel-scale proved to

be more effective than the linear scale.
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Part II

Quantifying animal vocal

sequences
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Chapter 5

Background

Many animals combine vocal units (e.g. parrot notes, whale calls, dolphin whistles)

into sequences that can carry information about their identity, behaviour and context.

Vocal sequences feature two main characteristics: (1) timing and (2) combinatorial.

Here we propose methods to quantify animal vocal sequences using a non-parametric

statistical approach. These methods are used to investigate vocal sequences of pilot

whales (Chapter 6) and parrots (Chapter 7).

5.1 Why quantifying animal vocal sequences?

Humpback whales are perhaps the most famous whales. It was after them that the

popular term “whale song” was coined [65]. Their songs have literally brought this

species to the stars, featuring in the interstellar album “Voyager Golden Record” [66]

on board both Voyager spacecraft launched by NASA in 1977 (Fig. 5.1). Humpback

whales, however, have not always been so dear to humans. Only thirty years before the

golden record these animals were mere marine beasts that supplied humans with oil.

So, what made these whales and their songs so popular? Humpback whale songs were

first recorded by an antisubmarine warfare station during World War II. Under the

suspicion of coming from a Soviet submarine [67], these sounds were classified as top

secret and only identified as whale sounds a decade later [68]. Yet, this was not what

led humpback whales to the stars. Many animals produce sounds after all. It was not

until the 70s that the complex structure of their songs was recognised [69]. Humpback

whale songs are made up of units that are combined and repeated in a hierarchical
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a b c

d

Figure 5.1: Humpbacks whales through history. a, bottle of whale oil. b, Humpback

whale breaching. c, The Voyager Golden Record at both Voyager spacecraft. d, Diagram

of the hierarchical structure of an idealised humpback whale song [64]. Song’s base units

combine into sub-phrases, that combine into phrases, that repeat for 2 to 4 minutes to

form themes, that finally combine into songs. Diagram redrawn from [64], page 12. (All

images were taken from Wikipedia, License CC-BY-SA-3.0).

manner [69]. Because of their beauty and complex structure, these vocal sequences

were called songs [69].

Besides humpback whales, many other animals including birds, insects, frogs, pri-

mates, combine vocal elements into sequences (for review [70]). The reason why animals

emit vocal sequences is often not clear [70]. Even though it is hard to decrypt the mean-

ing of these sequences, it seems clear that these sequences carry information —much like

other symbolic sequences occurring in biological and artificial contexts, like nucleotide

sequences (DNA and RNA), amino acid sequences (proteins) and digital data (bit se-

quences). For animals, coding and decoding information out of vocal sequences could

boost their fitness as a species. It has been hypothesised that species living in groups

with complex social interactions, the complexity of their interactions is an important

drive for the evolution of complex communication systems [71, 72]. This is known as

the social complexity hypothesis and it has been tested in different species including

rodents [73, 74], bats [75], non-human primates [76] and chickadees [72]. Investigating

animal vocal sequences is important for understanding the forces driving their evolution

and thereby the evolution of language [77].
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5.2 Temporal and combinatorial structures
in vocal sequences

Multiple studies have investigated vocal sequences on a diversity of taxa, yet there is

very little agreement on how to approach this problem [70]. Some studies focus on the

order of the vocal units as Markov chains [78, 79, 80, 81] or other models that account

for sequential order [82, 83]; while other studies have recognised the importance of

temporal dimension in the rhythm, calling rate and inter calling intervals [84, 85, 86].

Despite both dimensions —temporal and unit combinatorial— feature animal vocal

sequences, very few studies investigate these two variables together. This chapter pro-

poses a framework for quantifying animal vocal sequences taking these two dimensions

into account. The framework consist of analysing recording annotations (described in

Part I, see Fig. 2.1) using non-parametric statistical methods at two stages. In the first

stage, the proposed methods are used to quantify temporal and combinatorial struc-

tures (Section 5.3) and in the second stage the proposed methods are used to compare

the quantified structures (Section 5.4). Before presenting the mathematical tools we

describe the approach to the problem (Section 5.2).

5.2 Temporal and combinatorial structures

in vocal sequences

Man has an instinctive tendency to speak, as we see in the babble of our

young children; whilst no child has an instinctive tendency to brew, bake,

or write. (Charles Darwin)

Vocal sequences, like speech and unlike written languages, are intrinsically temporal.

Writing can be characterised in terms of words (semantic objects) and the arrangement

of the words (syntax). Speech, on the other had, is a stream of utterances that be-

yond words and syntax, timing aspects —such as the speech’s pace (also called speech

tempo or speech rate) and the duration of words and pauses (silences)— play important

communicative roles. For example, pause variance and syntax are strongly correlated

[87]. The pauses at the end of sentences are longer than the pauses within a sentence

[88, 89]. Speech rates can convey cues about the emotional state of the speaker. Slow

rates are associated with low moods, while fast rates are associated with high levels of

sympathetic arousal, during states of anger, fear, or excitement [90, 91, 92, 93].
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Figure 5.2: Annotations are segments of a time series. Sound is a time series that

can be visualised as a spectrogram (upper panel). Annotations, represented with bars,

indicate the temporal coordinates (t0, tf ) of the calls, c; first bar shows the coordinates

explicitly for call 128i. Lower panel shows only the annotations, which is the information

used in Part II of this thesis. Image exported from sonic visualiser [99].

Calling rates of animals are neither stationary but have been observed to vary from

context to context [94, 95, 96, 97, 98]. So, investigating animal vocalisations using

speech-like approaches instead of pure syntax-like approaches might reveal structures

important to the communication process. The proposed framework studies animal

vocalisations as segments of a time series; by including the temporal coordinates of the

vocal units, this is an approach closer to speech than that of most studies dealing only

with the order of the units. In this part of the thesis we no longer deal with recordings

themselves. Instead we will work with time series segments loaded from annotation

files. These files are convenient for investigating animal vocal sequences because they

summarise acoustic information in a light format and because of it being standard

across audio processing software, errors can be easily checked at any point of the study.

Below we define the variables of the problem and the kind of vocal structures we aim

to quantify.
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5.2 Temporal and combinatorial structures
in vocal sequences

Segments of a time series

Recording annotations segment a time series with sounds of particular interest, in our

case vocal units (Fig. 5.2). Each segment is characterised by a categorical variable that

encodes the type of vocal unit c (e.g. a pilot whale call, Chapter 4) and their temporal

coordinates (Fig. 5.2): stating t0 and ending time tf .

Vocal units

There are diverse criteria for defining vocal units [70], and the one chosen may de-

pend on the taxa and the hypothesis being tested [70, 100]. Examples of commonly

investigated units are songbird syllables, parrot notes, whale calls and dolphin whis-

tles, among others. This examples are defined as vocal segments separated by silence

gaps. However, units can also be defined in terms of sub-elements, or as a collection

of elements, for instance humans’ letters, syllables, words, sentences, etc. One should

be careful not to take the human analogy too far, because while words have clear se-

mantic meanings and are combined into sentences with more complex meanings, we do

not know if animals vocal sequences share this characteristic1. Testing this hypothesis

requires the assistance of ethological experiments, such as the study of an animal’s

response to playback sounds.

The next chapter uses the methods presented here to quantify structures in se-

quences of pilot whale calls. To save one word, throughout this thesis we use the term

call to refer to the vocal units, unless indicted different (e.g. in Chapter 7 parrot

vocal units are studied, which are called notes). However, one should bare in mind that

the methods presented here are not exclusive to calls and without loss of generality

they may be used to quantify the structures using other vocal units.

Quantified structures

The vocal structures quantified in this thesis can be separated into three types. The

first type are timing structures, for patterns quantified using only the temporal co-

ordinates of the annotations (Fig. 5.2). Timing patterns can be encountered in the

distribution of call durations, the distribution of inter-call intervals (ICIs), and how the

1This property of language is called compositional syntax and up to last year was believed to be

exclusive to human languages; demonstrated in [101] for bird calls.
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calls chunk temporally. The second type are combinatorial structures, for patterns

quantified using only the labels of the annotations, in our case the call types. Combi-

natorial patterns can be encountered in the ordering of calls in a sequence. This kind

of structures are sometimes referred as syntax and are commonly investigated in bird

vocalisations who tend to combine vocal units in highly structured sequences [102, 103].

The third type are timing-combinatorial structures, for patterns that combine the

two kind of variables, temporal and call type coordinates. Investigating both variables

together would allow us to explore correlations between the two (as have been observed

in speech), i.e. in whether the distribution of call lengths depends on the call type, or

whether certain call combinations have characteristic time intervals.

Having identified the variables of the problem: two continuous temporal coordinates

and one categorical encoding the call type; and the structures we are aiming to quantify

we are ready to go for the mathematical tools.

5.3 Quantifying vocal sequences

The framework here proposed aims to quantify timing and combinatorial structures

embedded in animal vocal sequences. In this section we describe mathematical tools

for such, starting with the timing patterns and the methods for quantifying them and

continuing with the combinatorial patterns and the methods for quantifying them.

5.3.1 Timing patterns

We use the term timing patterns to refer to structures embedded in the temporal

coordinates of the calls. Given a call c, the temporal coordinates are onset time t0(c)

and the offset time tf (c) of the sound (Fig. 5.2). Out of these coordinates one can

explore vocal aspects such as the call and silence duration, and the way calls chunk

temporally.

Duration of a call c with temporal coordinates t0(c) and tf (c) is given by the differ-

ence tf (c)− t0(c).
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5.3 Quantifying vocal sequences

a b

Figure 5.3: Comparison of a histogram and kernel density estimate (KDE).

Estimate of the pdf of a random variable x with an histogram (a) and a KDE (b). Sticks

at the bottom of both distributions indicate the data points. In the KDE, each data point

contributes with a Gaussian kernel (dashed red line) to the whole distribution. (Image

from Wikipedia, License CC BY-SA 3.0).

Inter-call interval (ICI) is the duration of the silence gap between two calls. Given

the consecutive calls ci and ci+1 indexed by i, i.e. t0(ci) < t0(ci+1), the ICI between

the calls is

ICIi = t0(ci+1)− tf (ci). (5.1)

ICIs are sometimes defined with respect to the start of two consecutive calls. Here

we opted to use the end and the start times to detach the length of the first call from

ICI, which, as we will see in the next chapters it is often larger than the ICI itself.

Another advantage of this definition is that it allows us to keep track of overlapping

calls, for which ICIs are negative.

Call duration and ICIs were defined as differences of continuous variables, so both

of them are continuous variables. One can get an overview of the values a continuous

variable takes by looking at its distribution, or its normalised version: the probability

density function (pdf). Below is presented an approach for estimating pdfs out of a

sample.
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Kernel density estimation (KDE)

Histograms are a common approach for estimating the probability density of a random

variable from a sample (Fig. 5.3a). The problem with this approach is that histograms

are highly dependent on the bin size and can be discontinuous even when the pdf is

continuous. An alternative to histograms is to estimate the probability density by

fitting a kernel density function (Fig. 5.3b). The method consist of parametrising a pdf

as a sum of kernels (often times a Gaussian kernels is chosen) centred at each point of

the sample. Given a sample with n points X1, X2, . . . Xn the KDE at the point x is

given by

ρ̂(x) =
1

nh

n∑
i=1

K
(x−Xi

h

)
(5.2)

where 1
nh is a normalisation factor. For a Gaussian kernel, K takes the form

K(x;h) ∝ exp
(
− x2

2h2

)
. (5.3)

Chunk structure

Animal vocalisations are emitted with different rates that can be linked to behavioural

or environmental factors [94, 95, 96, 97, 98]. Changes in the calling rate additionally

structure the vocalisations into temporal chunks.

We can investigate the temporal chunks in terms of a thresholding silence gap τ , as

follows. Given τ , a call chunk is a sequence of calls

c1c2 . . . ck, (5.4)

indexed by i with inter-calling intervals ICIi, such that ICIi < τ ∀ i ∈ 1, . . . , k− 1, i.e.

the ICIs between the calls in a sequence are smaller than τ ; and t0(c1) < t0(c2) · · · <
t0(ck), i.e. the order of the calls is determined by the initial time.

Notice that the temporal coordinates were only used to define a sequence, and this

no longer carries temporal information. Also, in the case of overlapping calls, the one

that starts earlier will appear before in the sequence.

From the definition of call chunks it follows that the number of calls in a sequence

k, also called the sequence length, depends on the value of τ . The number of calls

conforming a sequence is more restricted the smaller the value of τ ; increasing τ relaxes

the condition yielding longer sequences.
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5.4 Comparing vocal structures

5.3.2 Combinatorial patterns

All methods described so far use only the temporal coordinates of the annotations,

here we turn toward the categorical variable: the call type. In Section 5.3.1 we defined

sequences of calls; a follow up question is whether the calls in a sequence occur in a

particular order, e.g. whether the probability of having a particular call type depends

on the former call. If we think of the call sequences as Markov chains we can compute

the transition probabilities between consecutive calls. Determining ordering patterns

in a sequence is a common query in the study of natural languages (e.g. the order of

letter, syllables, words, etc.), where a pair of consecutive elements is called a bigram.

Bigrams probabilities

Given a sequence of calls c1c2 . . . ck, the probability of having a call b in the n-th

position, given the previous call was a is

pa,b = P (cn = b|cn−1 = a). (5.5)

The transition probabilities P (cn|cn−1) can be estimated through a maximum likeli-

hood [104], which normalises the conditional counts of consecutive calls in a sequence

N(cn−1cn) by the counts of the starting call N(cn−1)

P (cn|cn−1) =
N(cn−1cn)

N(cn−1)
. (5.6)

5.4 Comparing vocal structures

Often, the motivation behind quantifying things is the possibility to compare them

through the solid bedrock of numbers. By comparing the probabilities and pdfs as-

sessed with the methods presented in the section above we can: insight on the signifi-

cance of the probabilities, and assess dependences between the timing patterns and the

call types. Below we present statistical methods for performing significance tests and

comparing pdfs.

5.4.1 Statistical significance test

In statistics, significance tests are used for assessing the likeliness of an observation

against a null hypothesis often symbolised as H0. Null hypothesis are statements
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Figure 5.4: Illustration of a significance test. Null hypothesis is represented with the

curve, the distribution of the test statistic. The p-value (shaded green area) is the fraction

of times a value at least as extreme as the observed one was obtained assuming the null

hypothesis is true. (Image modified from Wikipedia, License CC BY-SA 3.0).

one tries to evidence against, like the equality of means from two populations, or the

relevance of the order of the items in a sequence. Besides the null hypothesis, important

concepts in statistical hypothesis testing are: the test statistic, the p-value and the

significance level α.

When carrying out a significance test, the null hypothesis is represented as the

distribution of a random variable called the test statistic (e.g. the t-statistic, χ2-

statistic). Using confidence intervals one can measure the probability of obtaining a

result at least as extreme as the one observed assuming the null hypothesis is true. This

probability is called the p-value (Fig. 5.4). So, small p-values indicate a small chance

that H0 is true, in which case the null hypothesis is rejected. The p-value’s threshold

for rejecting or not the null hypothesis is the significance level α, which is often a

number between 0.1 and 0.01 depending on the area of study.

Common test statistics such as the s-statistic, the t-statistic and the χ2-statistic,

rely on assumptions that are not always met by the data concerned, e.g. normality of

the sample, homogeneity of variance, a minimum number of samples. An alternative

for such cases is to generate the sampling distribution of the test statistic numerically

using computer power. Synonyms for such tests are exact tests, permutations tests or

randomisations test.
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5.4 Comparing vocal structures

Figure 5.5: Illustration of a two sample Kolmogorov-Smirnov statistic. Red and

blue curves are two empirical cumulative distributions and black arrow is the D-statistic.

(Image: Bscan@wikipedia CC0).

Permutation test

In a permutation test the distribution of the null hypothesis for any test statistic is

generated numerically by randomising the labels of the data. In such tests the p-value

is computed as the fraction of times that randomising the labels yielded a value is at

least as extreme as the observed one (Fig. 5.4). Permutation test produce good results

(p-values) with 1000 randomisations [105].

Kolmogorov-Smirnov test (KS-test)

The Kolmogorov-Smirnov test or KS-test is a non-parametric statistical test for as-

sessing the probability that two continuous variable samples were drawn from the same

distribution. It is often used for testing the normality of a sample, but here we focus

on the comparison of two generic samples.

The KS-test uses the D-statistic, which is the maximum distance between the cu-

mulative distributions of the two samples being compared (Fig. 5.5). The p-values of

the D-statistic indicate the probability of getting a D-statistic at least as large as the

one observed.
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5.4.2 Comparison of continuous variable distributions

Kullback-Leibler divergence

The KullbackLeibler divergence from Q to P , two discrete probability distributions, is

given by

DKL(P ||Q) =
∑
i

P (i) log
P (i)

Q(i)
. (5.7)

The KL-divergence is an information theoretical measure of the divergence of two prob-

ability distributions. It is non negative and equal to zero if and only if P = Q so

something like a distance —in fact it often called KL-distance— but not quite since is

not symmetric and does not satisfies the triangle inequality.
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Chapter 6

Vocal sequences of pilot whales

In collaboration with Heike Vester from Oceansounds Norway1

Long-finned pilot whales are highly social and vocal dolphins. They are often seen

in large groups that can exceed hundreds of individuals [106]; they display altruistic

behaviours like alloparenting (babysitting the calves from other group members) [107];

and they have been even seen socialising with other dolphin species [108]. Like humans

(and most mammals), these animals are unable to survive on their own2.

Little is known about long-finned pilot whales, catalogued as data deficient (a cat-

egory for species whose conservation status cannot be properly assessed due to insuffi-

cient information) by the International Union for Conservation of Nature (IUCN) [111].

Studying these animals is challenging because they spend most of the time deep under-

water where visibility is limited; and playback experiments —the best ally for studying

animal behaviour— are not feasible. Fortunately pilot whales, as many other marine

mammals, are highly vocal and their acoustic signals may reflect aspects about their

social structures [60, 112] and contextual behaviour [113].

Pilot whales depend on acoustic communication and have complex vocal repertoires

with clicks, buzzes, whistles and a range of calls mixing tonal and noisy sounds [61,

1www.ocean-sounds.org
2 Do not worry, no brutal experiments were conducted to test this hypothesis, but pilot

whales’ social behaviour suggest this to be the case (more details in the next section). The strong

social bonds and herding behaviour of pilot whales make these animals highly vulnerable to massive

stranding [109, 110]. Single standers are rare and have only been observed in ill whales, whereas massive

standings tend to be of mostly healthy individuals.
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6. VOCAL SEQUENCES OF PILOT WHALES

113, 114, 115]. Therefore studying their sounds is a good alternative for improving our

understanding on this species. In the present chapter we focus on calls, deem relevant

in keeping group cohesion and coordination [112, 116], both important social roles.

Pilot whales emit calls in rhythmic repetitions, while this aspect has been indicated

in early bioacoustic studies [114], the focus has been mostly on the vocal repertoires

[61, 113, 115, 117, 118], disregarding the temporal structure of the vocal sequences.

This study quantifies temporal and combinatorial call patterns in vocal sequences

of Norwegian pilot whales deepening into their rhythmic structures. Patterns are quan-

tified over annotations extracted from recordings with pilot whale calls using non para-

metric statistical methods (described in chapter 5). Before entering into the vocal

structures some words are said about the whales and our dataset.

6.1 Long-finned pilot whales

The long-finned pilot whale (Globicephala melas) is a dolphin species encountered in

the north Atlantic and southern hemisphere oceans. These animals feed mainly on

squid [119], reason why they spend long time deep under the sea surface.

Pilot whales have a social structures that resembles those of Killer whales [120,

121, 122]. They form tight knit matrilines of c.a. 10 whales [123] and are often seen

travelling with other matrilines forming groups with hundred individuals [123]. The

social structure of pilot whales is more fluid than that of killer whales, similar to the

fission-fusion societies encountered in many dolphins, but at the level of group instead

of individuals [123]. It has been observed that the acoustic communication of whales

reflects aspects of their social structures [60]. Thus, pilot whales acoustic signals may

have: signature whistles [21, 124], often encountered in dolphins living in fission-fusion

societies; and group specific calls similar to those of resident killer whales [125].

6.1.1 Dataset

Free living pilot whales were recorded in July, 2010 at the Vestfjord by the Lofoten

archipelago in Norway (Fig. 6.1) with an estimate of 45 whales present during the

encounter. Sounds were recorded with a hydrophone Reson TC4032 with a sampling

frequency of 92kHz and downsampled to 46kHz prior to analysing.
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a

b

c

Figure 6.1: Pilot whales and location of the encounters. a, Pilot whale jumping

(photo Heike Vester). b, Pilot whales raising their heads out of the water, this position

is common during social contexts and is called spy hopping (photo Heike Vester). c, Map

of the Vestfjord by the Lofoten archipelago in Norway where the whales were recorded

indicated with an x (image edited from OpenStreetMap R© CC BY-SA).

a b

Figure 6.2: Examples of annotated recordings. Segment of a recording with a

sequence starting with (a) call 128 subtype i and (b) call subtype ii. Subtype ii has an

U-shape element at the end. Height of the labels was arranged for visualisation purposes

and has no other meaning. Spectrogram exported from Sonic Visualiser [99].
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The recordings were annotated with the call type (see chapter 4) and its starting

time and duration (Fig. 6.2). Continuous sound segments were labeled as call types,

with a 2-3 digit code, according to the catalogue in [61]. Pilot whales often use calls with

similar spectrotemporal features, these were not placed into different call categories but

were named as call subtypes and labeled with the same digit code and different number

of i’s at the end (Fig. 6.2).

Annotations were generated automatically, with the algorithms described in chap-

ters 3 and 4 and curated by a human observer. I revised the temporal labels of the

calls and Heike Vester revised the call labels.

In this chapter we use two datasets: one with only the temporal coordinates of the

calls and a fully annotated one with call types and their temporal coordinates. The first

dataset has 497 calls from 4 recordings and we use it in section 6.2 to investigate the

temporal patterns of the calls. The second dataset has 127 calls from a single recording

and we use it in section 6.3 to investigate the combinatorial patterns of the calls in

connection with their temporal structure.

6.2 Rhythm and temporal structure

Here we analyse the temporal structure of 497 calls regardless of the call type by looking

at patterns within the call lengths, inter-call intervals (ICIs) and correlations between

these two variables.

Call length

The distribution of call lengths ranged from in 0.1 s to 2.5 s in our sample with 3

characteristic call lengths roughly separated as follows (Fig. 6.3a): short calls, < 0.4 s,

with 52% of the calls; medium length calls, between 0.4 s and 1 s with 42% of the calls;

and long calls, > 1 s, with 1.5% of the calls.

Inter call intervals

Our sample had a wide distribution of ICIs; with a minimum at -0.5 s, corresponding to

overlapping calls; and a maximum above 4 minutes. Despite the wide rage, more than

50% of the ICIs are smaller than 1 s. Thus, it makes sense to look at the distribution

of the logarithm of the ICIs (log-ICIs) instead of the distribution of ICIs, in order to
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6.2 Rhythm and temporal structure

a b

Figure 6.3: Distribution of call lengths and ICIs. a, Distribution of call lengths

shows three dominant sizes indicated with different colours. b, Distribution of the loga-

rithm of the ICIs with two characteristic lengths indicated with different colours. Prob-

ability density function fitted with a Gaussian kernel density estimate shown with solid

line.

capture the short and long time scale structures together (Fig. 6.3b). The log-ICIs can

be roughly split into two kinds: short < 0.4 s with 41% and long > 0.4 s with 59%.

Correlation between the call length and the length of the following silence

Call duration carries information about the length of subsequent silence. This can

be illustrated by plotting the joint distribution between call length and following ICI

(Fig 6.4b) and comparing it with the joint distribution of call length and following ICI

assuming no dependence; destroying correlations by randomising the data (Fig 6.4c).

Differences in the observed and the randomised distributions suggests that the call

length and the following ICI are indeed correlated. Such differences may be quanti-

fied using the KL-divergence (see chapter 5), DKL(P ||Q), with P being the observed

joint distribution and Q the shuffled distribution (Fig. 6.4d). Because the DKL(P ||Q)

measures the divergence from Q to P (it can be thought as a distance), larger values

indicate a stronger correlation between the call length and the following ICI. Compar-

ing this distance with the distance between two uncorrelated variables (Fig 6.4c), we

observe that the call length and the following ICI are more correlated than expected

by chance. This correlation suggests that short calls are more often followed by short
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a b c d

Figure 6.4: Correlation between call length and following ICI. a, Scatter plot of

the call length and following log-ICI. b, Joint probability of the call lengths and the log-

ICIs obtained with a two dimensional Gaussian kernel estimate of the points in panel a. c,

Joint probability of the call lengths and log-ICIs assuming no correlation, with randomised

data. Probability density function was estimated with a Gaussian kernel. d, KL-divergence

of P , the joint probability between the call length and the ICI (panel c) and Q, the joint

the probability with shuffled data (blue distribution). In green the distribution of the KL-

divergence between two shuffled distributions. For both distributions data was randomised

1000 times.

ICIs and long calls are more often followed by long ICIs (comparison of panels (b) and

(c) from Fig. 6.4).

Correlation between inter-call intervals

As the call length and the following ICI are correlated, the duration of nearby silences

is also correlated. Analogous to our previous analysis, we plot the joint distribution

of consecutive silences (Fig. 6.5b) and compare it with its randomised counterpart

(Fig. 6.5b) and do the same for silences separated by two calls (Fig. 6.5c-d). The

observed distributions look different from the randomised ones. These differences are

quantified using the KL-divergence (see chapter 5), measuring the distance between the

observed and randomised distributions for consecutive silences and for silences k calls

away. We observe that the strength of the correlation peaks for consecutive ICIs, yet

for silences up to 20 calls away the correlation is still stronger than expected by chance

(Fig 6.5). This correlation suggests that close ICIs are clustering into time scales; short

ICIs are more often followed by short ICIs and long ICIs are more often followed by

long ICIs (Fig 6.5a-d).
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a b

c d

b

Figure 6.5: Correlation between close ICIs. Joint probability between (a) consecu-

tive ICIs (b) consecutive ICIs assuming no correlation (with randomised data) (c) between

ICIs 2 calls away and (d) between ICIs 2 calls away assuming no correlation (with ran-

domised data). d, KL-divergence of the joint probability between silences k-calls away and

the joint probability with randomised data (blue). In red the KL-divergence between two

joint probabilities with randomised data. Data was shuffled 10 times for each k.
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a b

Figure 6.6: Dataset. a, Distribution of the logarithm of the ICIs. Dominant ICIs are

indicated with different colours: blue for ICIs smaller than 0.4 s and green for ICIs larger

than 0.4 s. b, Call composition in the dataset sorted by counts.

6.3 Temporal and combinatorial patterns

In section 6.2 we investigated vocal structures based exclusively on the temporal coor-

dinates of calls. Here we take the call types into account to investigate combinatorial

patterns between the calls in connection with the temporal variables. For this I use a

sample of 127 calls, all from the same tape, with 13 call types (6.6b). Call counts for

different call types were not the same; 4 most frequent calls follow a power law relation

with their rank as can shown in Fig. 6.6b. Like in the sample from section 6.2, ICIs in

this sample also show a bimodal distribution; where 68% of the ICIs are smaller than

0.4 s (Fig. 6.6).

Call types and their timing patterns

Different call types have different temporal distributions. Call types have characteristic

lengths that can be ad hoc separated into: Brief calls shorter than 0.2 s; short calls

between 0.2 s and 0.4 s; and long calls, longer than 0.4 s(Fig. 6.7a).

ICIs also depend on the call type; the distribution of silences prior and after the

call differs for most calls (Fig. 6.7b). The asymmetries in the distributions of calls 128i,

128ii, 123A and 131ii (and possibly 131ii and 131iii but we have very few samples for

these two calls) suggests that these are used as introductory calls; mostly preceded by
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a

b

c

Figure 6.7: Temporal properties of the calls. a, Distribution of call lengths with

a Gaussian kernel fitting. b, Distribution of the log-ICIs with a Gaussian kernel fitting.

Sticks inside the distributions show observed values. c, Fraction of times a call was recorded

in overlap with another call.
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a b

Figure 6.8: Chunk structure of the call. a, Call grouping as a function of τ in the

interval 0 s to 2 s. b, Call composition (normalised for each call) for different sequence

sizes defined with τ = 0.4 s. Calls sorted according to their rank.

long silences and followed by short ICIs. Unlike, call 132B seems to be an ending call.

Calls 129 and 130 have similar distributions; both calls are often preceded by short

ICIs (of approximately 0.1 s) and succeeded by silences that range from small, of the

order of cents of a second, to silences of the order of seconds.

The log-ICI does not include overlapping calls, so we looked at these calls separately,

computing the probability of call to occur overlapped (Fig. 6.7c). Some calls like 126i,

131i, 126i and 131ii occur overlapped more often than others, say 93ii, 128ii and 132A,

despite the latter occurring much more often in our sample.

6.3.1 Chunk structure

Here we investigate how the calls are chunked in time and whether different call types

have different ”chunknesses” (the likeliness of a call to be grouped). Clearly the way

calls temporally chunk depends on the largest interval between consecutive calls in

a sequence, τ . (chapter 5). Figure 6.8a shows the distribution of sequence sizes as

a function of τ , where we observe that for τ ∈ [0.2, 0.6] s, the distribution of chunk

remains reasonably stable, in agreement with our observation from Fig. 6.6a. Within

this region, calls are grouped in chunks of up to seven calls, with a higher number of

chunks of 4 calls.

Different call types tend to occur in different group sizes (Fig. 6.8). Taking τ = 0.4 s

we observe that most calls are emitted within the vicinity of another call, and only calls
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93ii, 127 are more likely to occur in isolation than grouped. Out of the grouped calls,

types 132A and 132B often occur in sequences with 2 calls while 129, 130 occur more

often in sequences with 3 to 5 calls.

6.3.2 Call combinations

Having noticed that calls are emitted in groups, we are ready to investigate whether

calls follow an order within these groups or whether whales just dump them randomly.

Transition probabilities between consecutive calls in sequences with τ = 0.4 s indi-

cate that call types are preferentially combined (Fig. 6.9). By assessing the significance

of these transition probabilities with a permutations test, we obtain that the observed

probabilities cannot be explained by pure chance (Fig. 6.9b-c). Three kind of patterns

stand out from Fig. 6.9: (1) bigrams occurring more often than expected by chance

(128ii 129, 128ii 130, 132A 132B, 131i 129 and repetitions of calls 129 and 130) (2)

calls likely to occur at the beginning of a sequence (128i, 128ii and 132) and (3) calls

occurring in isolation (93ii and 127 potentially do, but we do not have enough samples

to confirm the latter).

Some call types pattern similarly. For instance, calls 129 and 130 are most likely

followed by repetitions or by each other, and despite being the two most frequent call

types, they never occur at the beginning of a sequence. Calls 128i and its variation

128ii were never observed at the end of a sequence and occurred most times at the

beginning.

Call repetitions occur more often than expected by chance (Fig. 6.10a) and the

probability of having a repetition is affected by the call type and the ICI (Fig. 6.10)b.

6.3.3 Transitioning times of the bigrams

Along the chapter we have seen that call types and timing properties are strongly

connected; through the distribution of call lengths and ICIs and the way calls get

grouped. This suggests a call type explanation for the bimodal distribution of ICIs

we observed in Fig. 6.6b. Looking at the distribution of ICIs for specific bigrams, we

distinguish two groups (Fig. 6.11bc): one group with ICIs shorter than 0.3s; and a

second group with ICIs typically of the order of seconds. This observation favours the

hypothesis that different bigrams have different transitioning times, which is confirmed

by carrying a KS-test (Fig. 6.11bc).
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a d

b

c

e

Figure 6.9: Transition probabilities between the calls in sequences with τ = 0.4

s. a, First order transition probabilities between the calls in our sample. Bigrams observed

less than three times are masked and shown on grey. Call labels are sorted according

to their rank. Labels ini and end indicate the beginning and end of a sequence for a

given τ . Significance for the bigram probabilities is assessed with a permutations test,

where the observed transitions probabilities are compared with the distribution of the null

hypothesis that calls order is irrelevant, obtained by randomising the calls 1000 times.

Transition probabilities for bigrams 130 129 (b) and 130 130 (c); vertical line indicates

observed values and in black the null hypothesis distribution. d, p-values for all bigrams

observed at least three times. Bigrams with p-values larger than 0.05 are shown on yellow.

e, Diagram of call (nodes) transitions represented as arrows with widths proportional to

the transition probabilities. Only transitions with statistically significant probabilities are

shown.
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Figure 6.10: Call Repetitions. a, Probability of having two consecutive calls of the

same type within 10 s: observed (vertical line) and null hypothesis that call order is

irrelevant. Null hypothesis distribution obtained by permuting the calls within a tape 1000

times and then computing the proportion of repetitions for each realisation. b, Proportion

of bigrams with the same calls for different time intervals, using logarithmically increasing

bin widths.

a

b

c

Figure 6.11: Inter-call intervals of the bigrams. a, In grey the histogram of the

log-ICIs in the interval zero to 20 seconds. Overlaid the histogram of log-ICI for specific

bigrams observed more than five times indicated with different colours. b, Distribution of

the log-ICIs for the bigrams occurring more than five times with Gaussian kernel fitting.

Lines inside the distribution indicate observed values. c, p-values of a KS-test comparing

the distribution of ICIs for all bigrams against each other.
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Bigrams with long ICIs have a larger variance than those with short ICIs. In other

words, the ICIs of the bigrams with typically short ICIs are more precise than those

with typically long ICIs.
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6.4 Summary, discussion and outlook

Pilot whales produce calls in highly structured vocal sequences, so far, mostly described

qualitatively. Here, I quantified temporal and call combinatorial patterns (summarised

in table 6.1) in these animal’s sequences. The significance of the encountered patterns

was confirmed in spite of our small sample size by using non parametric statistical

methods. These results are discussed below, first in terms of similar vocal patterns

reported in pilot whales and other marine mammals; and later with respect to the

context and possible functions these patterns may have for the animals.

6.4.1 Structured vocal sequences of marine mammals

Repeated call types are often encountered in delphinids. This kind of vocal sequences

have been reported in: northern right whale dolphin Lissodelphis borealis [126], Guiana

dolphin Sotalia guianensis [127], melon headed dolphins [128], short-finned pilot whales,

Globicephala macrorhynchus [129], log-finned pilot whales Globicephala melas [130].

Our sample also had a high amount of call repetitions with a higher probability than

expected by chance. Besides, it was found that the likeliness of a repetition depends

on the call type and the ICI.

The analysis carried here disclosed a strong connection between the call types and

the inter call intervals (ICIs). This connection has been recognised before yet very few

studies have delve into this dimension. One of these studies investigated the transition-

ing times in whistles from bottlenose dolphins [131]; Janik et al. found that signature

whistles [124] were emitted in bouts with characteristic ICIs between 1 s and 10 s

whereas chirps (shorter whistles) [124] have shorter ICIs. Sayigh et al. also looked

into the distribution of ICIs in vocal sequences from short-finned pilot whales and

found that call types occurring often tend to have shorter ICIs (< 1 min) than less fre-

quently occurring call types [129]. Here, it was found that the distribution of silences,

prior and after a call, is highly dependent on the call type and that bigrams —specific

call combinations— have characteristic transitioning times. Additionally, bigrams with

short ICIs have more precisely defined ICIs than bigrams with typically larger ICIs.

Esch et al. observed a similar pattern in the ICIs of bottle-nose dolphin signature

whistles [132]. Because of the broad nature of the silences between calls, examining

them in terms of the logarithm of the ICIs instead of the ICIs is more convenient, since
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Observed pattern Figure

Temporal

• The distribution of call lengths shows three characteristic sizes, ad hoc: 6.3a

– short calls < 0.4 s

– medium calls between 0.4 s and 1 s

– long calls, larger than 1 s

• ICIs have a broad distribution with 2 characteristic time scales, ad hoc: 6.3b

– short ICIs < 0.4 s

– long ICIs > 0.4 s

• Call lengths are correlated with the ICIs 6.4

• Close ICIs are more correlated that expected by chance 6.5

Call combinatorial

• Some call types are emitted more often that others 6.6a

• Call type 126i always occurred overlapped 6.7c

• Call types can be preferentially combined in sequences (τ = 0.4 s)

– bigrams 128i 129, 128ii 130, 131i 129 and repetitions of 130 and 130

occurred more often than expected by chance

6.9

• Repetitions of consecutive calls occur more often than expected by

chance (τ = 10s)

6.10a

• Likeliness of having a call repetition depends on the ICI 6.10b

Temporal and call combinatorial

• ICIs depend on the transitioning calls 6.11

– a fraction of the bigrams have transitioning times shorter than 0.3 s

– another fraction has transitioning of the order of a second

• 128i, 128ii and 132A are introductory calls 6.7b, 6.9

• Call types (1) 129 and 130, and (2) 128 i and subtype ii share various

similarities

– in their distribution of call lengths 6.7a-b

– their distributions of ICIs, prior and after 6.7a-b

– 128i and 128ii are both introductory calls followed most often by calls

129 and 130

6.9

– 129 and 130 are often followed by repetitions or by each other 6.9

Table 6.1: Temporal and call combinatorial patterns. Summary of the temporal

and combinatorial patterns encountered in our sample. Patterns are separated by category:

temporal, call combinatorial and temporal and call combinatorial together. The sequence

definition parameter τ thresholds the maximum ICI between consecutive calls in a sequence.
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this transformation enables to appreciate the rich structure in the small time scales

together with the few, yet not negligible, ICIs in the large time scales.

The distribution of call types in our sample showed different counts for different call

types; with the four most frequent calls following a power law relation with their rank.

Words in human languages have this trait known as Zipf’s law [133], and underneath

it a least effort lexical principle has been proposed [133, 134]. Our sample size is too

small to claim that pilot whale calls follow Zipf’s law, but this scaling was found in

bottle-nose dolphin whistles [79]. The implications of Zipf’s law are debatable [135,

136, 137, 138, 139], yet deepening into which features characterise life signals is an

important matter with a deep potential in the search for extraterrestrial intelligence

[37].

Pilot whale calls were found to occur in preferred ordered combinations, here called

bigrams. These kind of call associations have been reported for a variety of marine

mammals including: bottlenose dolphins (Tursiops) [79], killer whales (Orcinus orca)

[140, 141], short-finned pilot whales (Globicephala macrorhynchus) [129], humpback

whales (Megaptera novaeangliae) [142]. The significance of the call transition probabil-

ities was assessed here in spite of the small sample by carrying an exact test.

It is possible that the probability of having a particular call type is not only de-

pendent on the call immediately before, but on the previous n calls. With the analysis

carried here we would not be able to detect these higher order associations. As in other

studies [79, 129, 141], we were limited by the size of the sample. Ferrer I Camacho

and McCowan turned around the sample size problem measuring the long range corre-

lations in dolphins whistles [143]. Their analysis neither takes into account the exact

arrangement of previous whistles but the authors found that dolphin whistles can be

correlated up to the 4th whistle using a local randomisation test.

Sequences with a specific introductory sound have been widely reported for birds

[144, 145] and monkeys [146] but not much for marine mammals. Here, three call types

used at the beginning of sequences were identified.

Overlapping calls are common in recordings of social marine mammals, yet these

are not investigated and often omitted from studies. Here we saw that some call types

have a higher likeliness to occur overlapped. Call type 126i always happened in overlap

with at least another call. Our sample size is too small to draw conclusions out of this

observation, but it suggest that overlapping calls might have valuable information.
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6.4.2 Relation to context and possible function of the patterns

Pilot whales produce dense sequences of repeated call types that resemble the way

bootlenose dolphins produce signature whistles [147]. Given this similarity, it was

hypothesised that pilot whale calls might function as bottlenose signature whistles

[129]. However a recent study found no evidence in support of this hypothesis [130] so

the function of this the repetitive signals is still an open question.

One of the challenges in studying pilot whale vocal repertoires is the diversity of

similar calls, here referred as call subtypes. Call subtypes are essentially the same

call type with a small modification such as the addition of an independent frequency

component or a noise segment at the beginning or the end of the calls [148]. Zwamborn

[148] inquires on the possible function of this call embellishments, whether they are

emotional indicators or have the potential to convey location —this last hypothesis is

based in one for killer whales, where the directional nature of upper frequency is believed

to be used for coordination [149]. While the function of these call modifications is not

clear, evidence in this chapter suggests that call subtypes might have similar ways of

patterning. For instance, call 128i and 128ii both function as introductory calls followed

by calls 129 or 130, these last two calls are also similar, being the two shortest calls in

our sample (< 0.2 s). Quantifying the temporal patterns of the calls, as done in this

study can lead to new ways of assessing similarities in the call usage, an interesting

hypothesis to investigate in the future on a larger sample.

We detected several vocal patterns with potential prosodic content. On example is

the wide distribution of inter-call intervals and its large span of correlations. Another

example is the large variance in the length of calls of the same type. Particularly

outstanding are call types 128i and 128ii whose length varied more than 50% in our

sample. Regardless of these aspects being intentional or unintentional information

about the signaller is cued acoustically [3]. The relevance of this information may be

investigated further with larger datasets and conducting behavioural studies.

Valuable insights on the origin of language can be achieved through comparative

studies in animal communication [3, 150]. Whales and humans are closely related, we

both are mammals, share similar brain structures, are capable of vocal mimicry and

vocal learning. Hence studying pilot whale communication can reveal phylogenetic

traits that could have led to the acquisition of language [3, 150].
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6.4.3 Outlook

In this chapter we describe diverse temporal and call combinatorial patterns in pilot

whale call sequences. While these patterns might not appear exactly the same in further

samples, the structural aspect will most certainly be present and its quantification gets

us closer to assessing the function of these organized sequences. Calls of resident killer

whales were initially thought of as simple curious sound that later turned up to be a

fingerprint of these animals tight-knit social structures [140]. Bottlenose dolphins, who

live in fission-fusion societies develop individual distinctive whistles and exchange them

when meeting at the sea [151]. These two examples illustrate how intricately related

sounds can be to the animals’ social structure [112]. Vocal repertoires only capture one

aspect of the vocalisations —the sound types— living temporal aspects aside. However,

important biological cues can be encoded in the organisation of the vocal sequences.

For instance, phylogeny on songbirds is correlated with syntactic patterns in the songs

[152]. Therefore, quantifying vocal sequential patterns opens paths, beyond sound type,

for advancing our understanding on the mysterious mammals living under the sea.
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Chapter 7

Vocal sequences of parrots

In collaboration with Christian Montes-Medina and Katherine Renton.

Estación de Bioloǵıa Chamela, Instituto de Bioloǵıa, Universidad Nacional Autónoma

de México.

Many birds combine vocal units into sequences following certain syntactic rules [145,

153, 154, 155, 156] (derived from the term linguistic syntax, set of rules that govern

the structure of a sentence, see chapter 5). Quantifying structures within the animal

signals can be an important step towards determining their function [70, 157].

Parrot vocal units —so called notes— can carry information like: identity, sex, and

micro-geographic differences in their composition and syntax [95, 158]. Few studies

have analysed the syntactic structure in parrot vocalisations and these are limited to

mated pairs of yellow-naped amazons, Amazona auropalliata [158, 159].

In this chapter we aim to identify structures —both temporal and note combinatorial—

in the vocal sequences of lilac-crowned amazons (Amazona finschi), a parrot species

whose syntax has not been studied yet. More specifically, we want to know: whether

the notes are emitted with any rhythmic pattern; whether all notes occur with the

same frequency or if this depends on the note type; whether certain notes are more

likely to be combined than others; among other structural characteristics of the vocal

sequences. We use non-parametric statistical methods (described in Chapter 5) to as-

sess syntactic rules in vocalisations from lilac-crowned amazons. Before we enter into

the results section some words are said about the parrots and our dataset.
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7.1 Lilac crowned amazon

Lilac crowned amazons are an endangered species [111] endemic to the Pacific slopes

of Mexico (Fig. 7.1) [160]. These parrots are most vulnerable during early life stages.

Eggs and chicks are mainly threatened by predators that include mammals like the coati

(Nasua narica) and the virginia opossum (Didelphis virginiana); reptiles; scorpions; and

illegal trade [161]. Adults are neither safe, haws lurk these birds, especially threatening

young birds of less than three weeks after leaving the nest [161]. Parrots form flocks

to sleep in places known as dormitories [161]. Seasonality in the rainy and dry season

affects the birds migration patterns [161] and diet, which consist of seeds and fruits

[162, 163, 164].

Pairs of parrots nest inside tree cavities —a limited resource in the forest— where

they raise 1-3 chicks for 3 months [165]. Acoustic signals are especially important for

cavity nesting birds since these are the only means females have for identifying the

male when coming back to the nest after foraging.

7.1.1 Dataset

Vocalisations from 18 free-living lilac-crowned parrots were recorded in the Biosphere

Reserve Chamela-Cuixmala (Fig. 7.1), on the coast of Jalisco, Mexico (research permits

granted by the Secretaria del Medio Ambiente y Recursos Naturales). Parrots were

recorded during opportunistic encounters along the nesting season, using Marantz PMD

660 or Marantz PMD 670 solid state digital recorders, and a directional ME66/k6

microphone (Sennheiser Electronic) on a shock-mount pistol-grip.

The recordings were manually annotated 1 using audacity [59], indicating the note

type and the temporal coordinates: initial time and duration of the note. Notes were

defined as continuous sounds delimited by silences [166] and classified visually according

to qualitative spectro-temporal characteristics. In total, 2845 notes were identified and

categorised into 17 types (labelled with one or two capital letters). Similar note types

with low observation frequency were label as: NL for long notes; NP for shrieking

notes; and BF for all other notes observed in 3 or less occasions. Figure 7.2 shows a

spectrogram with an annotated tape section and table 7.1 summarises our dataset.

1Collection and annotation of the data was done by Montes-Medina.
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Figure 7.1: Lilac crowned amazon, predator and nest locations. a, Picture of

a lilac-crowned amazon peering out of the nest (Photo: Montes-Medina) b, Picture of

a Hawk, a predator bird (CC BY-SA 2.0). c, Biological reserve Chamela (19◦ 22’N 104◦

56’W to 19◦ 35’N 105◦ 03’W) with the location of the nests in the three regions of Chamela,

Careyes and Cuixmala.
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Figure 7.2: Annotated recording. Spectrogram of a recording section, ca. four seconds

long. Spectrogram annotated with the parrot’s notes. Annotations represented as horizon-

tal bars, indicating the temporal coordinates of the note and the note type. Spectrogram

exported from Sonic Visualiser [99].

7.2 Structure in the vocal sequences

Combinatorics is a way to achieve large numbers rapidly. Consider the 17 note types we

have in our sample; there are 289 possible combinations of two notes sequences; 4913

combinations of three notes sequences; and the number grows rapidly with the sequence

size. From the sample in Fig. 7.2 we know that parrots can at least produce sequences

7 notes long, yielding to 410338673 combinations. However, it is very unlikely that all

these combinations occur as birds were to vocalise randomly —it is neither the case

for human languages nor for most animal communication systems studied so far. But,

which are those patterns? and why do they occur? Are the questions propelling this

chapter (yet we only progress on the first one, as for the second question there are

multiple theories, a popular one is the Zipf’s least effort theory [134, 167]).

Using the statistical tools from chapter 5 we explore parrot vocalisations aiming to

shrink the explosive number of combinations to a set of more comprehensible principles

shaping their vocal sequences. We start with the descriptions of the temporal structure

and note diversity to then move on to the structure within the vocal sequences.

7.2.1 Timing

In this section we consider only the temporal coordinates (ignoring the note type) of

the vocalisations to focus on their temporal structure. We present patterns concerning:
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parrot area # notes # note types # recordings

CJ Cuixmala 181 9 4

GU Cuixmala 253 9 4

CM Cuixmala 117 14 4

CB Cuixmala 107 8 4

CA Cuixmala 160 9 3

K3 Cuixmala 561 13 6

KR Cuixmala 184 12 4

GB Cuixmala 227 9 3

GA Cuixmala 265 12 4

GJ Cuixmala 140 13 3

UC Cuixmala 102 11 4

CO Careyes 85 7 4

CP Careyes 17 5 2

1C Careyes 11 6 2

HE Careyes 64 11 4

FH Chamela 155 10 4

AS Chamela 95 7 3

FC Chamela 128 13 3

Table 7.1: Summary of the dataset. List of the 18 recorded parrots with the number of:

notes, note types and recordings.
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Figure 7.3: Note lengths. Distribution of note lengths in the range zero to 0.5 seconds.

Distribution presents two dominant note lengths indicated with different colours, short

notes in blue and long notes in green. Short and long scales were ad hoc split at 0.22 s.

note duration, inter-note intervals (here referred as ICI to keep consistency with the

previous chapters) and the correlations between these two.

Note length

Our sample had notes with durations that ranged from 0.05 s to 1 s, with 96.7% of

them between 0.12 s and 0.35 s (Fig. 7.3). Within this interval, the distribution of

note lengths presents two modes: one for short notes around 0.18 s and another one

for longer notes around 0.25 s (Fig. 7.3).

Inter-note intervals

Time intervals between consecutive notes ranged from 0.04 s to 129 s in our sample. To

disclose the structure over this large range we look at the distribution of the logarithm

of the ICIs (Fig. 7.4b). This trimodal distribution suggests that the parrots exploit

the time resource emitting their vocalisations using three different time scales roughly

separated as follows: one for short ICIs shorter than 0.4 s, one for medium ICIs between

0.4 s and 2 s, and one for long ICIs longer than 2 s. Despite the ICIs having a very

wide distribution, 50% of the notes have ICIs shorter than 1.2 s (Fig. 7.4c). Zooming

into this range reveals three peaks: two in the short time scales around 0.12 s and 0.2

s (Fig. 7.4b), and another in the medium size time scale around 0.8 s (Fig. 7.4c).
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a

b c d

Figure 7.4: Distribution of inter-note intervals (ICI). a, Distribution of log-ICIs,

highlighting three time scales with different colours. Distribution of ICIs for the time

scales: (b) short, ICIs < 0.4 s; (c) medium, 0.4 < ICIs < 2 s and (d) long, 2 < ICIs.

Correlation between note and silence lengths

A scatter plot between the note length and the succeeding ICI suggests that the two

variables are correlated (Fig. 7.5a). The high density of points obscures the patterns

in the plot, which can be better appreciated in terms of a joint probability (Fig. 7.5b).

This plot shows that: short notes (< 0.4 s) are often followed by very short silences

(< 0.4 s), but may also be followed by longer ones; while long notes (> 0.2 s) are rarely

followed by short silences and are most likely followed by very long silences (> 1.2 s).

As a baseline for our observations in Fig. 7.5c we plotted the joint probability between

the note lengths and ICIs assuming no relation between the two (shuffling the data).

Differences between the observed distribution and the shuffled one stresses the strength

of the correlation we observe between the note and the duration of the following silence

(Fig. 7.5b).
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a b c

d

Figure 7.5: Correlation between the length of a note and the length of the

succeeding silence as the log-ICIs. a, Scatter plot of the note lengths and the log-ICIs.

b, Joint probability of the note lengths and the log-ICIs. c, Joint probability of the note

lengths and log-ICIs assuming no correlation between this two, with randomised data. d,

Distribution of the KL-divergence obtained by comparing the joint probability between the

note lengths and the log-ICIs P (panel b) and the joint the probability between these two

assuming no correlation, randomising the data (blue distribution). In green the distribution

of the KL-divergence between two randomised distributions. For both distributions data

was randomised 1000 times.
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a b c

Figure 7.6: Correlation between consecutive inter-note intervals (ICIs).

a, Scatter plot of consecutive ICIs. b, Joint probability of two consecutive ICIs in log

scale. c, Joint probability of two consecutive ICIs assuming no relation, randomising the

data.

Correlation between the ICIs

In Figure 7.6 we explore the correlation between the length of consecutive silences or

ICIs. The joint probability in Fig. 7.6b shows that consecutive silences are clustered

into time scales, i.e.: short ICIs are most likely followed by short ICIs, medium ICIs by

medium ICIs, and long ICIs by long ICIs. Moreover, the joint probabilities are qualita-

tively different than those expected assuming no correlation (Fig. 7.6c) sustaining the

importance of correlation between consecutive ICIs.

The correlation we observe is not limited to consecutive ICIs only but it extends

to silences several notes away (Fig. 7.7c). The correlation between ICIs more than 10

notes away stagnates around 0.1 s, but is still higher than expected by chance.

7.2.2 Note composition

The 2852 notes were classified into 17 types. The note’s frequencies are not homoge-

neous but depends on the note type (Fig. 7.8) with notes C and B the most frequent

ones representing more than 50% of the notes in our sample.

We observe a large amount of note sharing between the birds, especially for notes

A, B and C (Fig. 7.8b and c). Note H5 was only recorded from 4 birds yet these covered

the three areas (Fig. 7.8b). All note types were recorded from at least two birds so no

bird specific note was observed in our data (Fig. 7.8c).
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Figure 7.7: Span of correlations between inter-note intervals (ICIs). We use the

KL-divergence to compare: the observed correlation between silences at a k-distance (via

the joint probability of the two); and the joint probability assuming no correlation between

the silences (shuffling the ICIs). Blue line shows the distance between the joint probability

of the ICIs at a k-distance P (k) = p(τi, τi+k) and the joint probability of the shuffled data

Q(k) = p∗(τi, τi+k). The red line acts as a baseline showing the distance between two

uncorrelated joint probabilities of ICIs at a k-distance, both obtained by shuffling the ICIs.

Data was randomised ten times for each k.

Timing properties —note length and ICI— depend on the note type. The distribu-

tion of notes’ duration is pretty stable for each note type as it can be confirmed from

the proximity of the quartile lines in Fig. 7.9a. Inter-note intervals also depend on the

note type (Fig. 7.9b). Firstly, we see that different notes roughly occur at different

time scales: notes C, E and C2 mostly occur within short ICIs, note B mostly occurs

at short and medium ICIs and the rest of the notes occur mostly within long ICIs.

Secondly, the distribution of ICIs prior and after a note is fairly symmetric in most

cases, only notes A, B and C, differ from this pattern. Note C belongs to the short

time scale regime, but the distribution of silences prior to the note is bimodal while the

distribution after the note has only one mode. For note B, the preceding silences are

generally longer than the succeeding ones, which also have a bimodal distribution with

one mode in the short time scale and another one in the medium time scale. Similarly,

the silences after note A are shorter than silences prior to the note. This asymmetry in

the distribution of prior and after note silences might be related to the preceding or the

succeeding note type respectively. Section 7.2.5 investigates further this hypothesis.

Finally, comparing panels a and b from figure Fig. 7.9 we see that long notes, longer

than 0.22 s, rarely occur within short (< 0.4 s) ICIs, in agreement with our observation
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Figure 7.8: Note composition. Note counts for: (a) all data, (b) by area and (c) by

bird. Counts in plots b and c are shown in log scale.
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a

b

Figure 7.9: Timing properties of the notes. a, Note lengths in the range 0 s to

0.4 s with a Gaussian kernel fitting. b, Inter-note intervals (ICIs) prior (red) and after

(blue) with a Gaussian kernel. Dashed lines inside the distributions indicate the median

and doted lines the quartiles. Notes are sorted according to frequency.

from the last section (Fig. 7.5).

7.2.3 Chunk structure

In section 7.2.1 we found that notes are produced either in isolation or within a small

vicinity (typically shorter than 0.4 s) of another note. Here we investigate groups of

shortly spaced notes in terms of their size and note composition.

Sequences are chains of consecutive notes whose size, or number of chained notes,

depends on how sequences are defined. Let τ be the threshold for the longest ICI

between consecutive notes in a sequence. A small τ , being very restrictive, would
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a

b c

Figure 7.10: Chunk structure of the notes. a, Note grouping as a function of τ in

the interval 0 s to 1.2 s. Note composition (normalised for each note) for different sequence

sizes at (c) τ = 0.4 s and (c) τ = 1 s.

87



7. VOCAL SEQUENCES OF PARROTS

hardly yield sequences larger than one, whereas a large τ would group many notes

together missing intrinsic structure. From section 7.2.1 we know that more than half of

the notes in our sample are separated by ICIs shorter than 1.2 s. Inspecting the chunk

structure of the notes in the interval 0 to 1.2 s we observe preference for sequences with

7 or less notes (Fig. 7.10a). For τ between 0.2 s and 0.4 s we notice that the distribution

of sequence sizes remains steady (consistently with our findings from section 7.2.1).

For τ = 0.4 s, grouped notes represent 45% of the total notes, with 87% of them in

sequences of sizes 3 to 7. Notes occurring in groups are: C2, E and C, and sometimes A

and B (a result in agreement with our findings in section 7.2.2). Notes C2, E and C are

rarely emitted isolatedly or in sequences of size two and most frequently in sequences

of 5 notes (Fig. 7.10b). Most other notes occur only in isolation with the exception

of notes J4, F5 and G2 which were recorded in sequences at least once (Fig. 7.10b).

At τ = 1 s more than half of the notes in our sample appear grouped. As for note

composition with τ = 1 s, the most drastic change happens for note B which occurs

mostly in isolation at τ = 0.4 s, while at τ = 1 s occurs mostly grouped (Fig. 7.10c).

Summarising, some notes tend to be produced in sequences of size 3 to 7, whereas

other notes are more likely to occur in isolation. The remaining part of the chapter is

dedicated to the question of how notes are combined in sequences.

7.2.4 Note combinations and ordering

For τ = 1.2 s most notes appear isolated (Fig. 7.11a), and only bigrams C C, B C, C2

C, B B, A B, D B, F F, E E, C2 J, C2 C2 and C2 E (bigram NP NP was not included in

the list because NP is a class with different note types) occur more often than expected

by chance. Out of these 11 bigrams, almost half of them are note repetitions.

Note C is the most frequent in our sample, but it occurs in very precise ways: either

followed by B or in repetitions, and (essentially) never at the beginning of a sequence.

Notice also that while B C occurs more often than expected by chance, C B does not

(Fig. 7.11b).

For τ = 20 s we observe that notes are often produced in repetitions as indicated

by the prominent diagonal in Fig. 7.12 (a and b). With the exception of notes A and

J (and possibly note K, but more data would be needed to confirm the pattern), the

transition probabilities for the repetition of all other notes are significantly higher (with

a significance level α = 0.1) than expected by chance.
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a c

b d

Figure 7.11: Transition probabilities between notes in sequences with τ = 1.2 s.

a, First order transition probabilities between the notes in our sample. Significance for the

bigram probabilities is assessed with a permutations test, where the observed transition

probabilities are compared with the distribution of the null hypothesis that note order

is irrelevant, obtained randomising the notes 1000 times. b, Transition probabilities for

bigrams C B (top) and B C (bottom); vertical lines indicate observed value, and in black

the null hypothesis distribution. c, Significance of the observed probabilities; red-yellow

colourmap shows the p-values for the bigrams less likely than expected by chance, and

blue-green colourmap shows the p-values for the bigrams more likely than expected by

chance. p-values larger than 0.1 are shown in grey. Note labels are sorted according to

their rank. Labels ini and end indicate the beginning and end of a sequence. d, Diagram

of note (nodes) transitions represented as arrows with widths proportional to the transition

probabilities. The node “other notes” represents the rest of the notes not appearing in the

diagram which are more likely to occur in isolation. Only transitions with statistically

significant arrows are shown.
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a b

c d

Figure 7.12: Note repetitions. (a) Transition probabilities with τ = 20 s and

(b) p-values of a permutations test carried out to assess the significance of the bigrams.

c, Probability of having two consecutive notes of the same type within 10 s: observed

(vertical line) and distribution of the null hypothesis that notes order is irrelevant. Distri-

bution of the null hypothesis was obtained permuting the notes within a tape 1000 times

and then computing the proportion of repetitions for each realisation. d, Proportion of

bigrams with the same notes for different time intervals, using logarithmically increasing

bin widths.

Note repetitions are a prominent pattern. A permutations test over all bigrams in

sequences with τ = 20 s confirms that the probability of having a note repetition is

significantly higher than expected by chance (Fig. 7.12c). Examining this probability

as a function of the ICI (Fig. 7.12d) we obtain that for short ICIs the probability

of having repetitions fluctuates largely and for long ICIs the probability of having

repetitions stabilises around 0.4 s for ICIs between 1 and 11 s, and around 0.3 s for

longer ICIs.
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7.2.5 Inter-note intervals of the bigrams

Throughout this chapter we encountered multiple connections between the note types

and the duration of the silences between the notes. Here we examine the distribution

of ICIs in connection with the transitioning notes.

In section 7.2.1 we found that the distribution of ICIs has two prominent peaks in

the short time scale and one more in the medium time scale (Fig. 7.4). Looking at

the ICIs by bigram reveals that these peaks correspond to particular note transitions:

0.12 s for C C, 0.2 s for B C and 0.9 for B B (Fig. 7.13a and b). The fact that these

peaks are so prominent may be due to the amount of B and C notes occurring in our

dataset, yet this suggests that note transitions might be characteristic ICIs. To test

the significance of this hypothesis we carry out a KS-test (chapter 5) to compare the

distribution of ICIs for each bigram with the distribution of all bigrams and obtain

p-values way below 10−4, hence we can safely say that the ICIs depend on the bigram.

To get a sense on the similarity of the bigrams in terms of their transitioning times we

plot the p-values of the KS-test obtained from comparing the distribution of ICIs for

all bigrams (Fig. 7.13c).
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a b

c d

Figure 7.13: Inter note intervals (ICIs) by bigram. Distribution of ICIs with

bigrams observed 20 or more times indicated with different colours in ranges (a) 0 to

0.4 s and (b) 0.4 s to 2 s. c, Distribution of the ICIs with a Gaussian kernel fitting for

the bigrams with 30 or more observations. d, Comparisons of the distribution of ICI by

bigram, using the p-values of the KS-test between the distribution of ICI of the bigrams

against each other. Only bigrams with more than 20 observations.

92



7.3 Discussion

7.3 Discussion

We found that parrot vocal sequences embed a rich temporal and note combinato-

rial structure. The encountered patterns are summarised in table 7.2. This list boils

down the explosive number of possible note combinations we started with, to a more

manageable set of syntactic principles shaping the vocalisations.

We found that inter calling intervals are strongly correlated with the transitioning

notes. Similar rhythmic patterns have been observed in songs from sedge warblers

[96] and humpback whales [97, 98]. We also found that close inter note intervals are

correlated. The strength of the correlation peaks for consecutive ICIs, but remains

higher than expected by chance for ICIs as far as 30 notes away. This aspect might be

linked to the general mood of the parrot; whether it was agitated, or in a more relaxed

state [95].

Vocal signals with one or more repetitions of an element are common across animals

[128, 129, 130, 168, 169] and parrots are not an exception. Our sample also contained

many note repetitions with a rate much higher than expected by chance. However,

addressing note repetitions as a general statement misses important aspects of the

anatomy of this common form of animal signalling. In addition to the high amount of

repetitions in our sample we encountered that its likeliness depends on the note types,

e.g. note A is more likely to be followed by note B than by the same note. Besides the

note type, the ICI also affects the likeliness of having repeating notes. Repetitions of

note B occur with a high frequency in our dataset and more often than expected by

chance, however, for short ICIs around 0.2 s, note B is almost certainly not followed

by another note B, but by note C.

One syntactic pattern we encountered often is note B followed by repetitions of note

C. This kind of syntactic rule of an introductory note followed by note repetitions is

common among birds [144, 170]. For chickadees (Poecile atricapillus) it is believed that

notes types encode different qualitative information whereas note repetitions encode

intensity [144, 170]. An interesting question to investigate in the future would be

whether similar syntactic patterns have similar functions across different species.

Animal vocalisations are a form of response to contextual stimulus, finding the link

between these two is central to behavioural biology. The function of the syntactic
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observed pattern Figure

Temporal

• ICI have broad distribution with 3 characteristic time scales: 7.4

– short ICIs < 0.4 s

– medium ICIs between 0.4 s and 2 s

– long ICI > 2 s

• Long note (> 0.2 s) are rarely followed by short ICIs 7.5

• Lengths of consecutive ICI are correlated 7.6

• The ICIs within a tape are more correlated that expected by chance 7.7

Note composition and diversity

• Some notes are emitted more often that others 7.8

– most frequently occurring notes were C and B

• No bird specific notes were observed 7.8

– notes A and B were observed for all birds and note C in all but one

Temporal and combinatorial

• Notes can be combined into sequences (τ = 0.4 s) 7.10

– notes C, C2, E occur most often in sequences of 3 to 7 notes and

rarely in isolation

– notes A and B occur both in sequences and in isolation

– all other notes occur in isolation (some outliers for notes NP, G2,

F5 and J4)

• Notes are preferentially combined 7.11

• Bigrams occurring more often that expected by chance (τ = 1.2 s)

are:

7.11

– B C, C2 C, E C2, C2 J

– repetitions of notes: C, B, E and C2

• Note repetitions occur more often than expected by chance (τ = 10 s) 7.12

• Likeliness of having a note repetition depends on the ICI 7.12

• ICIs depend on the transitioning notes 7.13

– C C 0.12 s

– B C 0.2 s

– B B between 0.6 s and 1 s

Table 7.2: Patterns identified in the parrots vocalisations. The patterns are

separated by category: timing, note composition and diversity, and note sequences. The

sequence definition parameter τ thresholds the maximum ICI between consecutive calls in

a sequence.
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patterns here described goes beyond the scope of this study, but is certainly an im-

portant question for its potential to recalibrate our place in the animal kingdom. In a

recent study, Suzuki et al. [101] found that great tits are capable of compositional syn-

tax; where element combinations are linked to the creation of more complex meanings.

Campbell monkeys can alter the meaning of two alarm notes by adding a suffix [26].

The syntactic mechanisms described in the previous two examples are analogous to

the way human languages combine words to create sentences [150] —also called lexical

syntax— a property that was thought to be exclusive to humans [101, 150, 171].

Note types and inter calling intervals are deeply connected in the vocal sequences

from lilac-crowned amazons. These structures open up a series of questions such as

whether the strong dependence between the ICIs and the transitioning notes is im-

portant for the parrots, or whether parrots mind about the correlations we found be-

tween close ICIs. These questions regarding the parrots view point on the encountered

patterns certainly deserve further investigation with the aid of playback experiments.

While the function of the patterns presented in this study is not known, distinguishing

them equips us with framework for asking further questions about the implications of

these patterns.
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Chapter 8

Discussion and outlook

This thesis proposes methods for studying bioacoustic signals, from the segmentation of

animal sounds (part I) —by annotating recordings with vocal units— to the analysis of

vocal sequences —by quantifying temporal and call combinatorial structures (part II).

For part I, we used supervised machine learning methods to annotate recordings with

whale calls and, for part II, we used non-parametric statistical methods to quantify

vocal sequences of parrots and pilot whales. Below I summarise and discuss the main

outcomes of this thesis, starting from the methods and results of part I, then continuing

with the methods and results of part II, and ending with a discussion of how the

developed methods and the study of parrots and pilot whales may contribute to the

ongoing search for the origin of language.

8.1 Automatic annotation of bioacoustic recordings

In part I of this thesis, we propose a framework for automatically annotating sound files

(Chapter 2) and we use it for the two bioacoustic tasks of: (i) detecting tonal sounds of

pilot whales (Chapter 3), and (ii) classifying pilot whale call types (Chapter 4). Both

tasks were supervised, trying different spectral features (Appendix B) and scanning

over a large range of parameters that regulate the spectral and temporal resolution.

Optimal features depended on the task. For the detection task, Mel-spectral fea-

tures outperformed MFCC by 4% to 10% (depending on the dataset) whereas for the

call classification task MFCC outperformed Mel-spectral features by 8%. This asym-

metry on the performance of the features can be understood in terms of the differences
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between the tasks. Whale calls are tonal sounds, so detecting them is mostly a matter

of comparing the distribution of the power spectral densities over time. Call phonol-

ogy is not relevant for the detection of whale calls, thus the MFCC’s effectiveness in

compressing spectral information does little for this task. On the other hand, the clas-

sification of whale calls is all about comparing the evolution of phonological properties.

This is confirmed by the way MFCC features seized relevant information for this task

—summarising effectively spectral information while allowing a better temporal resolu-

tion through the number of temporal slices. The way these two feature representations

assist the learning tasks carried out here stresses the importance of carefully choosing

features that suit a particular task.

The modular architecture of the code developed here enables to easily combine

different feature extraction mechanisms and machine learning estimators for machine

learning tasks with audio data. This framework is not limited to the analysis of bioa-

coustic signals but can be used for other machine learning tasks such as speech pro-

cessing and music classification. Having a flexible framework is desirable because on

the one hand there are multiple paths for processing audio signals, and on the other

the outcome of a machine learning task depends on a variety of factors —the extracted

features, the machine learning algorithm, the dataset, and the aim of the task— it

is not easy then to know in advance which combination of parameters will yield best

results.

Propelled by the big data revolution of the last years machine learning has gained

great popularity. Similarly, audio signal processing is a popular science given the mul-

tiple applications in the processing of music, speech and other sounds. Standard algo-

rithms for both tasks —machine learning and audio signal processing— are available on

multiple programming languages. One of the contributions of this thesis was to develop

code in the Python programming language to combine the sklearn Python module for

machine learning [57] and the librosa Python module for audio signal processing [58].

The main features of the developed code are (i) the ease to process raw audio data

together with annotation files through the stacking of preprocessing and feature ex-

tracting steps and (ii) the wrapping of these steps into machine learning experiments.

This code can be cloned from the github repository pylotwhale.
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8.2 Quantifying animal vocal sequences

The second part of this thesis proposes using non-parametric statistical methods to

quantify temporal and combinatorial patterns in animal vocal sequences (Chapter 5).

We applied these methods to investigate vocal sequences of pilot whales (Chapter 6)

and parrots (Chapter 7). Below I discuss the main outcomes regarding part II of this

thesis: first in terms of the proposed methods and then by comparing the structures

found for parrots and whales.

8.2.1 Framework for quantifying vocal sequences

Investigating animal vocal sequences as a segmented time series —sound being the

time series and the call types the segments— allowed us to delves into the temporal

and combinatorial structures of the sequences in great detail. Each segment is char-

acterised by a triad with one categorical variable for the call type and two numerical

variables with the beginning and ending times of the call. The segments were handed as

annotation files, a format that advantages other ways of investigating vocal sequences

as, for instance, with the usage of cut audio files and excel tables. Annotation files

summarise acoustic information in a format standard across audio processing software.

Being simple text files information can be easily retrieved, facilitating error checking

at any point of study —something that with cut audio files would otherwise be chal-

lenging. Here, we annotated the recordings with the call type, however they may be

annotated with other kind of information such as the caller, as was done in [172] where

the authors investigated communication networks in birds.

The distribution of inter calling intervals (ICIs) for both species studied here showed

a wide distribution across multiple time scales that ranged from hundredths of second to

minutes. This is an expected feature of the ICIs since animals adjust their calling rates,

being more vocal in some contexts than in others [94, 95, 96, 97, 98]. Analysing the inter

calling intervals in terms of the log-ICI revealed rich short time scale structures together

with long time scale structures of the few —yet not negligible— large ICIs. Logarithmic

transformations have also proved to be useful in neuroscience when analysing inter-

spiking intervals [173].

Structures in animal vocal sequences have been reported for a diversity of taxa

(for reviews, see [70, 100]). Identifying these structures can be an important step
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Figure 8.1: Phase space of vocal sequences. Illustration of a phase space for

sequences with a maximum of three calls. a, calls produced randomly. b, sequence CAC.

in determining their function [70]. If we think of the vocal sequences as points in

a discrete phase space of dimension equal to the number of elements in a sequence

(Fig. 8.1), randomly combined units would populate the phase space uniformly. No

animal is expected to vocalise randomly, so identifying sequential patterns shrinks the

explosive number of points in the vocal phase space to a set of more comprehensible

syntactic principles that might be related to the context and to the behaviour of the

animals.

8.2.2 Comparison between the vocal sequences of whales and parrots

Both species studied in this thesis, long-finned pilot whales (Chapter 6) and lilac

crowned amazons (Chapter 7) produce richly structured vocal sequences. In the sam-

ples of both species the temporal structure is strongly linked to the call/note types

—two aspects rarely studied together. The distribution of ICIs, the likeliness of the

calls to occur grouped, and the distribution of ICIs for specific bigrams were highly

dependent on the call types.

The vocal patterns from pilot whales appear to be less rigid than those identified

for the parrots. However we should not go too far with this comparison, first because

sample sizes are different and second because the identified patterns have different

interpretations. The parrots’ dataset only contains notes emitted by males during the

nesting phase with only one bird singing in each recording, so we know who the signaller

is. In turn, the pilot whales’ dataset comes from an encounter with an estimated 45
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animals, so we do not know whether the vocal sequences come from one animals or

several. Not knowing the caller is not an obstacle for quantifying such vocal structures

—if a specific pattern occurs significantly often its prevalence is pointing at an intrinsic

structure, regardless of whether it comes from one or more signallers. An example

of structured sequences orchestrated by two individuals are duets reported for diverse

taxa including whales [174, 175, 176] and birds [152, 159, 177]. Further, outliers of

prevalent vocal patterns draw attention to extreme episodes that might be reflecting

contextual outliers or behavioural outliers.

8.3 Outlook on the quantification of animal vocal sequences

The timing patterns quantified here —ICIs and call duration— are highly intertwined

with the call types, and their combinatorial structures (syntax-like structures). Human

speech also exhibits timing patterns as pausing, word lengthening, and rhythm. In the

context of linguistics these aspects fall under the scope of prosody.

Prosody —sometimes referred as the musicality of speech— studies how acoustic

patterns, such as rhythm, stress and intonation, contribute to meaning. Humans use

prosody to communicate a variety of features of the speaker that range from involuntary

emotional states to cues that aid comprehension through irony, sarcasm, or the form

of a statement e.g. question or command. Additionally, prosodic modulations help

coordinate communication by signalling turn taking between interlocutors [178, 179,

180] and aid syntax acquisition in infants [181, 182, 183].

Structures with potential prosodic content were quantified for both whales and

parrots species studied here. Specifically, we observed that pauses (ICIs) are highly

dependent on the transitioning calls. The correlations between the call lengths and

pauses, and the long range correlations between the pauses, contribute to quantify

rhythm. The length of some calls varied widely while other call types had more precise

lengths. For instance, the length of call 128i from the pilot whales and note A from the

parrots varied more than 50%. Whether these prosodic variations convey information

to the receiver is a question that may be addressed conducting behavioural experiments.

In addition to the temporal prosodic dimension quantified here, sound’s amplitude

and spectrum are as well prosodic dimensions important in animal interactions [3]. So,

further studies may find additional structures within these dimensions.
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Animals can interact emotionally through prosody. High levels of arousal in pri-

mates [184, 185, 186] pandas [187] and elephants [188, 189] can be expressed through

prosodic features such as an increase in call duration and elevation of pitch. Another

form of prosodic interaction are the duets reported for a variety of birds [190] and

the antiphonal vocalisations reported for some species of primates [191, 192, 193] and

elephants[188].

Prosodic modulations in the voice have been suggested as an evolutionary precur-

sor for language [1, 194, 195, 196, 197, 198, 199]. Insight into this hypothesis can be

achieved through comparative studies across animals [3]. In which, similarities in closely

related species, like primates and other mammals, might be derived from a common

feature [3, 150] whereas similarities in distant species, like birds, may point at environ-

mental forces favouring the convergent evolution of a trait [3, 150]. Quantifying vocal

sequences of animals by including prosodic content may contribute to understanding

how language originated. Quoting Darwin

The suspicion does not appear improbable that the progenitors of man,

either the males or females, or both sexes, before they had acquired the

power of expressing their mutual love in articulate language, endeavoured

to charm each other with musical notes and rhythm.
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Appendix A

Physics of sound

Sound is an important communication channel for humans and most animal species.

Consider for example a quiet garden with birds and insects singing in the background

in comparison to a bar filled with bouncy, chatty echoes on a music background. Ac-

cording to the sounds around us we adjust our speech’s volume, tone and pace. Sound

also predisposes our brain. For instance, a newborns’ perception of speech sounds is

influenced by prenatal maternal speech [200]; sound can alter our visual motion per-

ception [201] and even induce visual illusions [202]. Sound perception (hearing) is an

involved neurophysiological process specific to each animal. However sound is a physi-

cal phenomenon, and understanding its physics can be insightful in trying to adopt an

animal’s perspective.

Sound is a vibration that propagates as a longitudinal wave when the particles of a

medium oscillate, deforming it into regions of high and low pressure (Fig. A.1). This

deformation travels from its source at a speed c transporting acoustic energy.

At the point of reception —e.g. ear or microphone— sound is determined by its

pressure levels as a function of time, p(t). Bringing this function to the frequency space

helps us understand sound better. Take for instance the tone A of the third octave

whose frequency is 220Hz. This sound is described by the equation

p(t) = a cos(2πft). (A.1)

where a is the amplitude, associated to the loudness, and f is the frequency of the

wave, associated to the pitch. While loudness and pitch are two subjective perceptual

characteristics, the amplitude and the frequency of a wave are two objective physical
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Figure A.1: Sound propagation. Illustration of a longitudinal pressure wave with

wavelength λ, frequency f and speed c.

Figure A.2: Note A of the third octave (220Hz) of a synthetic piano and a

guitar. The timber is the characteristic that allows us to differentiate the sounds from

two instruments even when playing the same note. Physically this is related to the temporal

(upper row) and the spectral (lower row) envelopes of the sound. The spectral envelope is

characterised by the relative intensities of the harmonics.
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Figure A.3: Underwater sound speed and light absorption as a function of the

depth. a, Speed of sound underwater as a function of the depth. Physicochemical

conditions of sea water (e.g. pressure, temperature and salinity) change with the depth

which affects the speed of sound. (Image by Nicoguaro CC BY-SA 4.0, via Wikimedia

Commons). b, Light gets attenuated underwater due to light absorption which differs

for the wavelength. (Image by National Oceanic and Atmospheric Administration, U.S.

(Public domain).

characteristics. The tones produced by instruments are not composed of a single fre-

quency, as the one of Eq. A.1, but of a collection of them. These frequencies are usually

related harmonically with specific intensities for each instrument, which is why we can

differentiate between an A when played on a piano or on a guitar (Fig. A.2).

Our ears respond to sound with frequencies between 20 Hz and 20kHz [203]. Sound

is not limited to the human spectral range; many insects, baths and toothed whales can

hear ultrasonic sounds (above 20kHz), and, on the other side of the spectrum, animals

such as elephants and some baleen whales can communicate with infrasonic sounds

(below 20Hz).

The human ear can resolve sounds with pressures between 20 µPa and 200 Pa.

Because of this wide range —along 8 orders of magnitude— and our almost logarithmic

perception of sound intensity, it is customary to measure sound pressure levels (SPL)

in decibels (dBr), a logarithmic scale relative to a reference pressure pr. Thus a pressure

p in dBr is given by

SPL = 20 log10

(
p

pr

)
. (A.2)

The logarithms has no units so the decibels are not units in the typical sense but
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indicate a relative sound level; thus the importance of mentioning the reference level

when reporting measurements in decibels. The decibels in air are different from the

decibels in water, for the former pr = 20µPa and for the latter pr = 1µPa.

Another difference between sound in air and in water is its propagation speed. The

speed of sound is determined by the physical properties of the material and is given by

the equation

c =

√
K

ρ
, (A.3)

where K is the elasticity bulk modulus of the medium and ρ the density. Water is

almost 1000 times denser than air but its elasticity bulk modulus is more than 15000

time greater than that of air, yielding underwater sound speeds more than 4 times

faster than those of air.

Electromagnetic waves get quickly absorbed underwater due to the high density of

the medium (Fig. A.3). Sound, instead, waves can travel long distances [38, 39]. Hu-

mans use sound for underwater communication and navigation. Underwater acoustics

is used in oceanographic and marine animals research, industrial applications such as

fishing and seismic oil exploration and military defence with sonars. Marine animals

also use sound for communication and navigation. Marine mammals have evolved spe-

cialised ears for listening underwater; some toothed whales can echolocalise being able

to reconstruct 3D spaces out of sound. The excellent conditions for sound propagation

underwater also make this medium highly vulnerable to acoustic pollution.
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Spectral representations of sound

B.1 Spectral features

Having the right features is for a machine learning task like having the right glasses

for a shortsighted like me. Certainly the right features depend on the classification

task, and when working with sound, spectral features capture well the characteristics

perceived by humans, such as the pitch. So analysing sound in the frequency domain

often does a good job in machine learning tasks involving sound data.

One can decompose sound into its spectral components (Fig. B.1a-b) using Fourier

analysis. For digital signals this is done with the discrete Fourier transform (DFT).

Given a digital signal one dimensional x(n) with N samples n = 1, . . . , N , its discrete

Fourier transform is

X(k) =

N−1∑
n=0

x(n) · e−i2πkn/N , (B.1)

where e−i2πkn is the k-th element of the Fourier basis with k ∈ N̄ . Each basis element

describes a complex sinusoid with a particular frequency k. X(k) is a complex func-

tion that weights k-th spectral component of x(n). The power spectral density P (k)

measures the energy content of the signal in the frequency domain and is given by

P (k) =
1

N
|X(k)|2 (B.2)

The fast Fourier transform is an algorithm for numerically computing the discrete

Fourier transform effectively [204]. The algorithms requires the number of samples N

to be powers of 2.
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B. SPECTRAL REPRESENTATIONS OF SOUND

a b c

Figure B.1: Sound of a whale in the (a) time domain (waveform), (b) in the frequency

domain (power spectral density) and (c) in a mix of the temporal and frequency domain,

as a spectrogram. Power spectral density in log scale, computed with N = 256 and 50%

overlap.

Below we describe 4 different feature representations based on the spectral decom-

position of sound.

B.1.1 Spectrogram

The ear processes sound spectral information dynamically. So, neither representing

sound in the time domain (Fig. B.1a) nor in the frequency domain (Fig. B.1b) is ade-

quate. While the first one lacks spectral information the later lacks temporal informa-

tion. An in between point is the short time power spectral density —or spectrogram.

The spectrogram is computed by framing a signal into short time windows and

computing the power spectral density for each frame. Given xi(n), the i-th frame of a

signal x(n), its power spectral density Pi(k) is given by

Pi(k) =
1

N
|Xi(k)|2, (B.3)

where Xi(k) is the DFT of xi(n). The number of samples per frame N determines

the spectro-temporal resolution. Larger windows increase the spectral resolution and

decrease the temporal resolution whereas smaller windows increase the temporal reso-

lution and decrease the spectral resolution. The datasets we work in this thesis have

sampling rates around 40 kHz, for which window sizes between 256 samples and 1024

samples are a good trade off between frequency and temporal resolution. Framing the

signal with a rectangular window causes power leakage, which can be reduced using

windows like the Hanning or Hamming. Additionally, window effects in the borders

can be counteracted analysing overlapping frames.
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B.1 Spectral features

Figure B.2: Hearing ranges of animals. (Image By Cmglee - Own work, CC BY-SA 3.0,

via Wikipedia)

One disadvantage of the spectrogram is its high dimensionality. Take for instance a

one second signal with a sample rate of 44kHz and N = 512, without overlap. Encod-

ing this signal with a spectrogram requires a 21760-dimensional vector (85 time bins

times 256 frequency bands). The temporal axis can be summarised by averaging the

frequencies over the time frame (more a about it will me mentioned in section B.2)

but this still leaves 256 frequency components. The features discussed below comprise

different ways of summarising the spectral information.

B.1.2 Mel-spectrogram

The range of frequencies humans and many mammals can resolve extends over several

orders of magnitude (Fig. B.2). The range of frequencies differs for different species

but the wideness of the frequency range is present across species. Humans can hear
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B. SPECTRAL REPRESENTATIONS OF SOUND

sounds with frequencies between ca. 20 Hz and 20 kHz; below our hearing range sound

is referred as infrasound and above our hearing range sound is referred as ultrasound.

The sensitivity is not the same for all the frequencies along this wide range. We

resolve low frequencies better than we do for high frequencies. The mel-scale is a

logarithmic frequency scale that tries to resemble human perception [205], mapping

frequencies to mel-scale frequencies (Fig. B.3a)

M(f) = 1125 log10(1 + f/700), (B.4)

with f the frequency in Hz. f is related to k through the sampling frequency fs via

f(k) =
kfs
N
. (B.5)

The mel-scaling can be implemented with a filterbank. A filterbank splits a signal

into different regions of the spectrum (Fig. B.3b). For digital signals, the mel-scale

filterbank can be implemented as a collection of triangular filters centred around fc

[206]

Hm(k) =


0 for f(k) < fc(m− 1)
f(k)−fc(m−1)
fc(m)−fc(m−1) for fc(m− 1) ≤ f(k) < fc(m)
f(k)−fc(m+1)
fc(m)−fc(m+1) for fc(m) ≤ f(k) < fc(m+ 1)

0 for f(k) ≥ fc(m+ 1)

(B.6)

where m = 1, . . .M , with M the number of filters. The mel-spectrum of the i-frame is

given by

X̃i(m) = log10

(N−1∑
k=0

Pi(k)Hm(k)

)
. (B.7)

Notice that the high frequencies are not dismissed but encoded with less resolution

than lower frequencies (Fig. B.3c).

B.1.3 Mel-frequency cepstrogram

The mel-frequency cepstrogram (MFC), commonly referred as the mel-frequency cep-

stral coefficients (MFCC) are widely used in speech recognition systems for they can

efficiently encode sound features. Their efficiency lays in the compression of redundan-

cies in the harmonics by taking the discrete cosine transform (DCT) of the mel-scale

spectrogram (Fig. B.1a). The l-th MFCC for the i-th frame is given by

ci(l) = DCT{X̃i(m)}l (B.8)

For speech recognition tasks typically only the first 20 cepstral coefficients are used.
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B.2 Temporal summarisation

a b c

Figure B.3: a Graph of the mel scale mapping. b Mel filterbank with 10 triangular

basis elements. c Mel-spectrogram in log scale from the soud in Fig B.1 with 68 mel-scale

frequency bands.

B.1.4 Cepstrogram

The cepstrogram is similar to the MFCC but without using the mel-scale (Fig. B.1b).

So, it is given by the cosine transform of the logarithm of the power spectral density

gi(q) = DCT{ln(Pi(k))}. (B.9)

a b

Figure B.4: (a) Mel-frequency cepstrogram (b) Cepstrogram of the whale sound in

(Fig. B.1)

B.2 Temporal summarisation

The mel-spectrum, the MFCC and the cepstrogram are ways of compressing spectral

features. Now we talk about how to compress features in the temporal dimension.

The aim is to reduce the number of temporal features. Let L be the size of the

summarisation window. We can summarise the temporal information computing the

mean and the standard deviation over L frames along the frequency bands of some
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B. SPECTRAL REPRESENTATIONS OF SOUND

spectral features. Where the frequency bands can be given as frequencies, mel-scale

frequencies, mel-scaled cepstral coefficients or cepstral coefficients.

Therefore, the summarised features are given by

µl(k) =
1

L

l+L−1∑
i=l

si(k) (B.10)

σl(k) =

√√√√ 1

L

l+L−1∑
i=l

(si(k)− µl(k))2 (B.11)

where si(k) is the k-th frequency band of the i-frame and l is the index of the new

time-summarised features.
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Appendix C

Support vector machines

Support vector machines (SVM) are models that can be used to classify datasets sep-

arating them with hyperplanes called decision boundaries. Hyperplanes are such

that maximise the margin between sets with different labels (Fig. C.2). Because SVM

classifiers seek to separate datasets based on predefined labels, they belong to the kind

of supervised machine learning models.

Given an unknown classification instance ~u, the predicted label y~u will depend on

which side of the hyperplane ~u is. For a dataset with binary labels {−1,+1} this can

be expressed mathematically as

y~u =

{
+1 if ~w · ~u+ b > 0

−1 if ~w · ~u+ b ≤ 0
(C.1)

where the decision boundary is defined points x in satisfying the plane equation ~w ·~x−
b = 0, with ~w a normal vector and b a scalar.

Training a SVM classifier consists of finding the hyperplane, ~w ·~x+b = 0, that max-

imises the margin between two sets, subject to the correct classification (Fig. C.1b). For

training samples ~x(i) (indexed by i) with binary labels y(i) ∈ {−1,+1}, the constraint of

correctly classifying samples can be expressed mathematically as y(i) (~w·~x(i)+b) ≥ 1 ∀ i;
which states that samples with different labels should lay in different sides of the hy-

perplane. Therefore, the problem to solve is

maximise margin subject to y(i) (~w · ~x(i) + b) ≥ 1. (C.2)

Below we develop on the definition of the margin and the classification constraint.
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C. SUPPORT VECTOR MACHINES

a b

Figure C.1: Optimal hyperplane. Illustration of a binary dataset in a two dimensional

feature space. The SVM classifier searches the hyperplane with the maximum margin

subject to the least misclassification error. a, Various lines separating the two sets. b,

Hyperplane with maximum margin, given by the distance between the planes with the

support vectors (filled symbols) (Image modified from opencv.org CC BY-SA 3.0).

Defining the margin of SVM classifier involves two important concepts: the support

vectors and the decision boundary (already mentioned). The support vectors are the

points of each class closest to the decision boundary. The support vectors of each class

define parallel planes that sandwich the decision boundary equidistantly (Fig. C.1b).

The distance between the support vectors and the decision boundary is the margin

whose width is 1
||w||2

1.

Separating datasets with hyperplanes may not always be possible, especially for real

datasets. In such cases is important to relax the constraint to ensure the convergence

of the optimisation problem under the adequate penalisation for misclassification. This

is done introducing a “slack” variable ξ, that is zero for correctly classified samples.

Gathering the concepts above, the optimisation problem for training a SVM consists

of finding the support vectors that

minimise
1

2
||~w||2 + C

∑
i

ξ(i) subject to y(i)(~w · ~x(i) + b) ≥ 1− ξ(i). (C.3)

The first term corresponds to the margin maximisation, expressed as the minimisation

of the inverse of the margin. The second term is a penalisation for misclassification

tuned by the parameter C; with larger values of C penalising more than smaller values.

1this expression is derived around the web and in multiple machine learning books such as [207]

using some algebra and geometry. Here we focus on the overall characteristics of the SVM classifiers.
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Figure C.2: Kernel trick. Comparison of a linear and a Gaussian kernel (Image by

Alisneaky, svg version by Zirguezi Own work CC BY-SA 4.0, via Wikimedia Commons)

The last term is the constraint for correctly classifying labels as in expression C.2) but

considering ξ.

SVMs as described above can only separate samples linearly by drawing hyper-

planes. A nice aspect of SVMs is that they can easily be extended to non linear

classification through the kernel trick [208]. The trick consists of mapping the samples

to a space where they can be separated with hyperplanes. Because the optimisation

problem C.3 only depends on inner products between the feature vectors ~x(i) · ~x(j),
the linear functions can be replaced with non linear kernel functions φ( ~x(i), ~x(j)). A

common choice the Gaussian radial basis function given by

φ( ~x(i), ~x(j)) = e−γ||~xi−~xj ||
2
. (C.4)

The parameter γ sets the influence of the instances. Larger values of γ give more

influence to the samples and smaller give less influence to the samples thus being more

prone to overfitting.

Training a SVM classifier requires tuning the parameter C that penalises misclas-

sification and γ when using radial basis function (Fig. C.3).

SVM classifiers were proposed in the 90’s [208, 209] and quickly gained great pop-

ularity. Advantages of SVMs over other machine learning classifiers include that they

do not get stuck in local minima given their convex cost function and that they are

easy to kernelise allowing to implement non linear classification.
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C. SUPPORT VECTOR MACHINES

Figure C.3: Parameters of the SVM with radial basis function. Influence of

parameters C and γ for a binary classification problem (Image from the Sklearn online

documentation, BSD License).
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Akçay, Gregory Backus, Mark A Bee, Kirsten Bohn, Yan Cao, Ger-

ald Carter, Cristiane Cäsar, et al. Acoustic sequences in non-human

animals: a tutorial review and prospectus. Biological Reviews, 91(1):13–52,

2014. 44, 45, 47, 75, 99, 100

[71] Todd M Freeberg, Robin IM Dunbar, and Terry J Ord. Social com-

plexity as a proximate and ultimate factor in communicative complex-

ity, 2012. 44

[72] Todd M Freeberg. Social complexity can drive vocal complexity group

size influences vocal information in Carolina chickadees. Psychological

Science, 17(7):557–561, 2006. 44

[73] Daniel T Blumstein and Kenneth B Armitage. Does sociality drive

the evolution of communicative complexity? A comparative test with

ground-dwelling sciurid alarm calls. The American Naturalist, 150(2):179–

200, 1997. 44

[74] Kimberly A Pollard and Daniel T Blumstein. Evolving communica-

tive complexity: insights from rodents and beyond. Phil. Trans. R. Soc.

B, 367(1597):1869–1878, 2012. 44

[75] Gerald S Wilkinson. Social and vocal complexity in bats. 2003. 44

[76] Karen McComb and Stuart Semple. Coevolution of vocal communica-

tion and sociality in primates. Biology Letters, 1(4):381–385, 2005. 44

[77] RIM Dunbar. Group size, vocal grooming and the origins of language.

Psychonomic Bulletin & Review, pages 1–4, 2016. 44

126



REFERENCES

[78] John G Robinson. An analysis of the organization of vocal communica-

tion in the titi monkey Callicebus moloch. Ethology, 49(4):381–405, 1979.

45

[79] BRENDA McCOWAN, Sean F Hanser, and Laurance R Doyle. Quan-

titative tools for comparing animal communication systems: informa-

tion theory applied to bottlenose dolphin whistle repertoires. Animal

behaviour, 57(2):409–419, 1999. 45, 71

[80] Laurance R Doyle, Brenda McCowan, Sean F Hanser, Christopher

Chyba, Taylor Bucci, and J Ellen Blue. Applicability of information

theory to the quantification of responses to anthropogenic noise by

southeast Alaskan humpback whales. Entropy, 10(2):33–46, 2008. 45

[81] Todd M Freeberg and Jeffrey R Lucas. Information theoretical ap-

proaches to chick-a-dee calls of Carolina chickadees (Poecile carolinen-

sis). Journal of Comparative Psychology, 126(1):68, 2012. 45

[82] Ryuji Suzuki, John R Buck, and Peter L Tyack. Information entropy

of humpback whale songs a. The Journal of the Acoustical Society of America,

119(3):1849–1866, 2006. 45

[83] Arik Kershenbaum, Ann E Bowles, Todd M Freeberg, Dezhe Z Jin,

Adriano R Lameira, and Kirsten Bohn. Animal vocal sequences: not

the Markov chains we thought they were. Proceedings of the Royal Society

of London B: Biological Sciences, 281(1792):20141370, 2014. 45

[84] Michel Andre and Cees Kamminga. Rhythmic dimension in the echolo-

cation click trains of sperm whales: A possible function of identification

and communication. Journal of the Marine Biological Association of the UK,

80(01):163–169, 2000. 45

[85] H Carl Gerhardt and Franz Huber. Acoustic communication in insects

and anurans: common problems and diverse solutions. University of Chicago

Press, 2002. 45

127



REFERENCES

[86] Marc David Hauser, Bryan Agnetta, and Christine Perez. Orienting

asymmetries in rhesus monkeys: the effect of time-domain changes on

acoustic perception. Animal Behaviour, 56(1):41–47, 1998. 45

[87] Eric Brown and Murray S Miron. Lexical and syntactic predictors of

the distribution of pause time in reading. Journal of Verbal Learning and

Verbal Behavior, 10(6):658–667, 1971. 45

[88] François Grosjean and Alain Deschamps. Analyse contrastive des vari-

ables temporelles de langlais et du français: vitesse de parole et vari-
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