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1 Introduction 

In the last century, organic synthesis has made tremendous progress, which has 

affected the daily lives of billions of people. Valuable products of organic synthesis are 

used for a wide range of applications ranging from pharmaceuticals and crop-

protection agents to functional materials, such as OLEDs, coloring agents and 

polymers.[1] Although these products unarguably present a huge benefit in their diverse 

applications, their synthesis is associated with a number of drawbacks, for example a 

huge amount of toxic waste, the depletion of limited natural resources and overall high 

energy consumption.[2] 

Therefore, in 1998, Anastas and Warner proposed their 12 Principles of green 

chemistry,[3] which outlined ways to reduce the ecological footprint of organic synthesis 

and minimize the amounts of byproducts and waste. Among them are the use of 

catalytic transformations, avoidance of unnecessary prefunctionalization and 

auxiliaries to increase the atom economy, use of mild reaction conditions (e.g. ambient 

temperature) and renewable sources for chemicals and the use of nontoxic reagents 

and solvents. 

 

1.1 Transition Metal-Catalyzed C–H Activation 

Although the beginnings of transition metal-catalyzed coupling chemistry[4] can be 

traced back to inter alia the early copper-catalyzed reactions by Glaser[5] and 

Ullmann,[6] it was not until the discovery of palladium-catalyzed cross-couplings that 

these transformations found considerable use in organic synthesis.[7] However, once 

established, palladium-catalyzed cross-coupling chemistry soon became the 

benchmark process for the formation of C–C and C–Het bonds. In time, a wide range 

of methods using different organometallic coupling partners were realized, resulting in 

a range of well-known named reactions, such as Suzuki-Miyaura,[8] Negishi,[9] 

Kumada-Corriu,[10] Hiyama,[11] Stille[12] and Sonogashira-Hagihara[13] cross coupling 

reactions. Furthermore, although not a cross coupling reaction its traditional sense, the 

Mizoroki-Heck[14] reaction and the Buchwald-Hartwig amination[15] should be 

mentioned as milestones in palladium-catalyzed chemistry. These important 
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contributions were recognized with the award of the Chemistry Nobel Prize to Heck, 

Negishi and Suzuki in 2010.[16] 

Despite recent efforts to render cross-coupling chemistry more environmentally benign 

and cost effective by the use of earth-abundant metals, such as iron[17] or nickel,[18] and 

the use of renewable solvents,[19] the major drawback of cross-coupling chemistry 

remains, namely the need for prefunctionalized starting materials. Moreover, these 

materials are in most cases either not stable under ambient conditions (Grignard 

reagents, organolithium and organozinc compounds) or toxic (organotin compounds). 

Therefore, the direct functionalizations of C–H bonds is extremely desirable in terms 

of the step- and atom-economy of organic syntheses (Scheme 1.1).[20] 

 

Scheme 1.1. Comparison of traditional cross-coupling chemistry versus C–H activation. 

While the most atom efficient reaction is in principle the cross-dehydrogenative C–H 

activation, which formally only generates hydrogen as a byproduct, these reactions 

suffer from the need for a stoichiometric oxidant, resulting in additional waste (Scheme 

1.1c). Moreover, common oxidants include expensive and toxic silver(I) and copper(II) 

salts. While direct C–H functionalization using organic electrophiles requires a degree 

of prefunctionalization in one coupling partner (Scheme 1.1b), the substance classes 

most often employed, organic halides and phenol derivatives are accessible within a 

reasonable number of steps and largely stable under ambient conditions.[21] Traditional 

cross-coupling meanwhile (Scheme 1.1a) does not only require an electrophilic 

coupling partner, but also an additional nucleophilic organometalic reagent.  

In contrast to traditional cross-coupling reactions, C–H functionalization faces an 

additional challenge besides the activation of otherwise inert C–H bonds. While the 

new connection in cross-coupling chemistry is clearly defined by the substitution 
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pattern of the electrophile and nucleophile, organic molecules contain a large number 

of C–H bonds with similar bond dissociation energies (113.5 kcal/mol for C(sp2)−H 

bonds in benzene).[22] This problem can be overcome in mainly three ways: (i) the use 

of electronically activated substrates, where one C–H bond has a higher kinetic acidity 

than the others, (ii) steric shielding of C–H bonds where the reaction is undesired and 

(iii) the use of lewis-basic directing groups (DG) to coordinate to the transition metal 

catalyst in close proximity to the C–H bond to be functionalized (Scheme 1.2).[23] 

 

Scheme 1.2. a) Differentiation of C–H bonds. b) Influence of the directing group. 

While the first two options are severely limited in substrate scope, the directing group 

approach shows tremendous potential. This holds especially true if the directing group 

is an important building block of the target molecule or is easily removed or modified.[24]  

The key step for C–H functionalization reactions is often the cleavage of the C–H bond 

itself. Therefore, C–H bond cleavage was and still is studied in close detail, resulting 

in different modes of action being identified (Scheme 1.3).[25] 
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Scheme 1.3. Modes of action for various C–H cleavage mechanisms under transition metal assistance. 

Oxidative addition to cleave C–H bonds was mostly observed with electron-rich 

complexes of late transition metals.[25a] For early transition metals with d0-configuration, 

this mode of action is obviously not feasible. In contrast, σ-bond metathesis and 1,2-

addition are possible ways to achieve C–H activation with early transition metals,[25b] 

while electrophilic substitution was proposed for cationic complexes of late transition 

metals.[25c] In recent years, base-assisted C–H activation has gained traction as a 

model for C–H cleavage in C–H functionalizations using basic additives.[25a] 

This base-assisted C–H cleavage was the object of further research, resulting in the 

proposal of several transition states (Scheme 1.4). 

 

Scheme 1.4. Transition state models for base-assisted C–H metalation. 

Intramolecular electrophilic substitution (IES),[26] the mechanism for alkoxide bases 

relies on a highly strained, thus high-energy four-membered ring transition state.  
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Concerted metalation-deprotonation (CMD)[27] and ambiphillic metal-ligand activation 

(AMLA)[28] were disclosed independently and describe the interaction of metal, 

carboxylate-ligand and C–H bond especially for electron-deficient substrates. In 

contrast, base-assisted internal substitution (BIES)[29] was proposed to explain the 

preferred reactivity of electron-rich substrates in several transformations.  

Despite tremendous progress in the recent decades regarding C–H activation,[4, 30] 

most of these advances were realized using cost-intensive and toxic 4d and 5d 

transition metals, such as rhodium,[31] iridium,[32] palladium[33] and ruthenium.[34] Here, 

new opportunities remain for the development of 3d transition metal-catalyzed C–H 

activation with possible benefits due to the significantly lower toxicity, abundance and 

lower price of the employed metal catalysts. 

 

1.2 Cobalt-Catalyzed C–H Activation 

Cobalt is one of the more abundant elements in the earth crust, with a concentration 

of approximately 25 ppm, compared to 1 ppb for noble metals, such as iridium and 

rhodium.[35] The result is a relatively low price for cobalt salts, which makes the use of 

cobalt as a catalyst quite attractive.[36] 

 

Figure 1.1. Prices of metals in C–H activation. 

Therefore, a wide range of transformations are known employing cobalt catalysis, such 

as hydroformylation,[37] the Bönnemann pyridine synthesis,[38] the Pauson-Khand 

reaction,[39] the Jacobsen kinetic resolution of epoxides[40] and the coupling of Grignard 

reagents in the Kharash-coupling,[41] to name a few examples.  
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Indeed, even cobalt-catalyzed C–H activation is not a new concept, and the 

groundbreaking work published by Murahashi in 1955 is not only the first catalytic  

C–H activation with cobalt, but among the first examples of C–H activation in general 

(Scheme 1.5).[42] Although the reaction proceeded under harsh conditions and the 

scope was severely limited, it highlighted the use of simple and stable cobalt 

complexes as catalysts. 

 

Scheme 1.5. Murahashis cobalt-catalyzed carbonalytion of benzaldimine 1 and azobenzene 3.[42] 

Despite these early advances, cobalt-catalyzed C–H activation did not receive much 

attention for the next decades. The recent progress in the field will be discussed in the 

next chapters. For this thesis, cobalt-catalyzed C–H activation will be divided into four 

parts: (i) C–H activation with well-defined complexes, (ii) low-valent cobalt-catalyzed 

C–H activation, (iii) Cp*Co(III)-catalyzed C–H activation and (iv) oxidative C–H 

activation using simple cobalt salts. 

 

1.2.1 C–H Activation with Well-Defined Cobalt Complexes 

In the early 1990s, Klein showed in a stoichiometric reaction that the cobalt phosphine 

complex 5 was able to metalate C–H bonds of several substrates (Scheme 1.6).[43] 

Besides the depicted five-membered species,[43a-d, 43f] four-[43e] and six-membered[43d] 

rings could also be obtained. 
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Scheme 1.6. Stoichiometric C–H metalation using complex 5.[43f] 

Furthermore, Brookhart disclosed that well-defined cobalt ethylene complex 7 enabled 

deuterium scrambling if heated in benzene-d6. Through various steps of insertion and 

elimination, the completely deuterated complex [D]8-7 was thereby available (Scheme 

1.7).[44] 

 

Scheme 1.7: H/D scrambling in Brookhart’s complex 7.[44] 

In a groundbreaking contribution, Kisch reported on the hydroarylation of alkynes 8 

with catalytic amounts of cobalt-hydride complex 9.[45] Although limited in scope and 

practicability, this work presented the first substoichiometric use of a well-defined 

cobalt(I) complex in C–H activation (Scheme 1.8). 

 

Scheme 1.8: Hydroarylation of tolane 8 using Kisch’s complex 9.[45] 

Subsequently, similar work in this field was performed in the 2010s by Petit. However 

so far, these systems remain limited to the addition of C–H bonds to C–C double or 

triple bonds.[46] 
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1.2.2 C–H Activation using Low-Valent Cobalt Catalysis 

While the early work by Kisch highlighted the potential of low-valent complexes for 

C–H activation,[45] their instability towards air and moisture makes their handling rather 

difficult. In reference to the Kharash coupling,[41] Nakamura and coworkers proposed 

the generation of a low-valent cobalt species in situ from a cobalt salt and a Grignard 

reagent (Scheme 1.9).[47] Hence, a combination of Co(acac)3 and 

cyclohexylmagnesiumchloride was able to catalyze the hydroarylation as well as the 

direct alkylation of benzamides 11. 

 

Scheme 1.9. Alkylation of benzamides 11 by Nakamura.[47] 

Besides the fact that this method is more user-friendly than the direct use of cobalt(I) 

or cobalt(0) species, its biggest benefit may be the highly modular approach to 

optimizing the reaction conditions. After Nakamuras initial report, this flexibility was 

shown in subsequent reports by Ackermann and Yoshikai, among others.[48] A List of 

ligands commonly employed in low-valent cobalt catalysis is shown below (Figure 1.2). 

It should be noted, that most reactions are highly specific to the substitution pattern of 

the ligand, and even small changes can shut down the observed reactivity.  

 

Figure 1.2. Common (pre)ligands in cobalt-catalyzed C–H activation. 

In contrast to the reactions published using well-defined complexes,[45-46] this approach 

also enables coupling-type chemistry besides simple hydrofunctionalization. 
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Ackermann[49] disclosed the alkylation of 2-arylpyridines 22 and pyrimidylindoles 23, 

with a report from Yoshikai[50] broadening the scope of directing groups to ketimines 

26 (Scheme 1.10). 

 

Scheme 1.10. Cobalt-catalyzed primary and secondary C–H alkylations.[49-50] 

Both reports showed the possibility to utilize primary as well as secondary alkyl 

chlorides 12. Although the reaction conditions are somewhat similar, it should be noted, 

that CyMgCl is more cost effective than the corresponding neopentyl-

magnesiumbromide.[51] Along the same lines, an unprecedented benzylation was 

published by Ackermann (Scheme 1.10a).[52] 

Based on mechanistic experiments performed to gain insight into the mode of action 

of the low-valent cobalt-catalyzed alkylation, a plausible catalytic cycle was proposed 

(Scheme 1.11).[48d] The reaction is initiated by the formation of the ill-defined active 

species 28 from the cobalt salt, NHC (pre-)ligand and the Grignard reagent. This 

species can perform C–H metalation, either by oxidative addition of the C–H bond due 

to the electron-rich cobalt species or by ligand to ligand hydrogen transfer (LLHT).[48a] 

Subsequently, the alkyl halide 12 is activated by single electron transfer,[48d] followed 

by radical recombination to generate intermediate 30. Reductive elimination of the 

product 24 and transmetalation with another equivalent of the Grignard reagent 

regenerates the catalytically active species 28. 
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Besides alkylations, also C–H arylation reactions have been reported using this 

approach, beginning with Ackermann in 2012[49, 52] (Scheme 1.12). A variety of 

substrates, such as ketimines 26,[50] benzamides 12 and tetrazoles 31[53] as well as 

oxazolines 32[54] have here been utilized, highlighting the versatility of this strategy. 

 

Scheme 1.11. Plausible catalytic cycle for the cobalt-catalyzed C–H alkylation.[48d] 

The mechanism of low-valent cobalt-catalyzed C–H arylations is rationalized to be 

similar to the related alkylations.[48d] Additionally, besides halides 33, phenol 

derivatives 34 and 35 also proved to efficiently yield the desired products 36-38.  
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Scheme 1.12. Cobalt-catalyzed C–H arylations.[49-50, 52-54] 

Related electrophiles, enol acetates 40, phosphates 41, carbamates 42 and 

carbonates 43, which are easily accessible from the related ketones,[55] were shown 

by Ackermann to be viable substrates in cobalt-catalyzed direct C–H alkenylations 

(Scheme 1.13).[56] 

 

Scheme 1.13. Cobalt-catalyzed C–H alkenylation of indoles 23.[56] 

Advantages of this method are the excellent regioselectivity in cases of unsymmetrical 

substrates 40 and the possibility to use cyclic enol electrophiles 40-43, both of which 

are usually not achieved in alkyne hydroarylation.[48a] Indeed, for low-valent cobalt-

catalyzed C–H activation, several hydroarylation reactions are known. For alkynes 8, 

Yoshikai disclosed examples using simple phosphines as ligands and various directing 

groups, such as phenylpyridines 22,[57] indoles 23 and imidazoles 45[58] as well as 

aldimines 46 and ketimines 26 (Scheme 1.14).[59] Additionally, when alkenes 47 were 

used instead of arenes, heterocycle synthesis by hydro-functionalization proved 

possible.[60] Furthermore, Yoshikai also developed hydroarylations of alkynes 8 using 

the inherent kinetic acidity of heterocycles.[61] A catalytic cycle was rationalized to 
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include the generation of the active cobalt species 56, followed by precoordination of 

alkyne 8 to the metal center (Scheme 1.15).[48c] Then, C–H activation takes place, most 

probably by oxidative addition of the C–H bond. After cyclometallation, migratory 

insertion of alkyne 8 into the Co–H bond yields vinylic cobalt species 59, furnishing the 

desired product 49 via reductive elimination. 

Besides alkynes 8, also alkenes 60 were identified as viable substrates. Here, the 

possibility of branched or linear selectivity offers a further challenge. Beginning with 

work from Nakamura, who explored hydroarylation of unactivated alkenes 60,[47] 

Yoshikai broadened the field of cobalt-catalyzed alkene hydroarylation by the use of 

phenylpyridines 22[62] and imines 26 and 46[63] using activated alkenes 60 (Scheme 

1.16). It is noteworthy, that linear/branched products 61 and 62 could be selectively 

accessed using different combinations of ligand and Grignard reagents.  

 

Scheme 1.14. Hydroarylation of alkynes 8.[57-61] 
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Scheme 1.15. Proposed catalytic cycle for alkyne hydroarylation.[48c] 

 

Scheme 1.16. Hydroarylation of alkenes 60 with switchable selectivity.[62] 

The proposed mechanism was generally comparable to the mechanism proposed for 

the hydroarylation of alkynes 8.[48c]  

The branched-selective hydroarylation of alkenes 60 offers the potential to conduct 

these reactions in an enantioselective fashion. Indeed, Yoshikai disclosed a cobalt-

catalyzed asymmetric C–H alkylation by the use of Co(acac)2 and ligand 65 (Scheme 

1.17).[64] 
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Scheme 1.17. Enantioselective hydroarylation of styrenes 60.[64] 

While the majority of low-valent cobalt-catalyzed C–H functionalizations are based on 

the use of Grignard reagents, there are inherent drawbacks associated; for instance, 

limited tolerance for electrophilic functional groups, such as cyano groups and 

aldehydes. Therefore, the substitution of the Grignard reagent with another reductant 

would be beneficial. To this end, magnesium, zinc or indium were identified as viable 

reductants, however these reactions remain limited to simple 

hydrofunctionalizations.[65] Thus, hydroacylations were achieved in an intramolecular, 

enantioselective fashion by assistance of a chiral phosphines 71 and 72 (Scheme 

1.18). Although the first contributions using a metal reductant were reported in 2014, 

progress in this field has been limited, and the diversity of the disclosed reactions 

cannot be compared to that of low-valent cobalt catalysis employing Grignard-

reagents. 

 

Scheme 1.18. Low-valent cobalt-catalyzed C–H activation using metal reductants.[65] 
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1.2.3 C–H Activation using High-Valent Cobalt Catalysis 

Despite tremendous progress by low-valent cobalt catalysis under rather mild 

conditions,[48b, 48d] these transformations suffer from a lack of functional group 

tolerance. Especially the functionalization of molecules containing sensitive or protic 

functional groups, such as aldehydes, ketones, esters, nitro- and hydroxyl-groups are 

difficult or impossible. Therefore, demand for an air-stable, easy to handle and robust 

cobalt catalyst grew. Inspired by the Brookhart contributions,[44] this demand was met 

in a important work from Matsunaga and Kanai, establishing the known Cp*Co(III)-

complex 73[66] as a competent catalyst in the hydroarylation of imines 74 with 

phenylpyridines 22[67] (Scheme 1.19) and later pyrimidylindoles 23.[68] 

 

Scheme 1.19. Hydroarylation of imines 74 using Cp*Co(III).[67] 

While the reaction temperatures were mostly higher than in the low-valent cobalt 

catalysis, the catalyst is generally more stable and robust and therefore offers a larger 

functional group tolerance. Furthermore, the Cp*Co(III)-catalysis generally offers a 

wide range of C–X bond formations,[48a, 69] being somewhat orthogonal in reactivity to 

the low-valent systems. Over time, a variety of Cp*-derived Co(III)-complexes have 

been synthesized, the structures of which are summarized below (Figure 1.3).[48a] 

However, simple Cp*Co(CO)I2 (81) is by far the most commonly employed complex in 

Co(III)-catalysis.  
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Figure 1.3. Common complexes in Cp*Co(III)-catalyzed C–H activation.[48a] 

Cp*Co(III)-catalyzed hydroarylation was not limited to imines 74, as also a variety of 

other C–C and C–X multiple bonds reacted readily. Matsunaga established two 

protocols for alkyne hydroarylation of indoles 83 using carbamates as the directing 

group (Scheme 1.20). Simple dimethylcarbamates yielded the hydroarylation product 

85,[70] whereas morpholine substituted carbamates underwent directing group 

migration to yield the α,β-unsaturated compound 84.[71] The former protocol was later 

extended to include the mono-functionalization of 3-substituted pyrroles using the 

same directing group.[72] 

 

 Scheme 1.20. Hydroarylation of alkynes 8 using 2-carbamoylindoles 83.[70-71]  

Besides alkynes 8, also alkenes 60 were employed in hydroarylation reactions. 

Ackermann reported on a switchable Markovnikov/anti-Markovnikov hydroarylation of 

alkenes 60, dependent on the nature of the additive (Scheme 1.21).[29b] Extensive 

mechanistic studies and theoretical calculations revealed that the change in selectivity 

is based on an underlying change in the reaction mechanism. While the use of bulky 

adamantanecarboxylic acid promoted the BIES-type[29] mechanism, resulting in the 

branched product, the linear was furnished in the absence of further additives by ligand 

to ligand hydrogen transfer  (LLHT, Scheme 1.21).[29b] 
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Scheme 1.21. Switchable selectivity in C–H hydroarylation of alkenes 60.[29b] 

Further progress in Cp*Co(III)-catalysis for hydroarylation reactions was witnessed by 

Ackermann using challenging allenes,[73] as well as Li and coworkers using activated 

alkenes and maleimides.[74]  

Additionally, protocols for the synthesis of heterocycles were developed for Cp*Co(III)-

catalysts, ranging from indazoles and furanes,[75] isoquinolines[76] to indoles,[29c] and 

isoquinolines.[77]  

Further C–C forming reactions besides hydroarylations are also known for Cp*Co(III) 

complexes. A cobalt(III)-catalyzed alkynylation was published by Shi employing 

pyrimidylindoles 23 and hypervalent iodine based reagent TIPS-EBX (88) (Scheme 

22).[78] This method for cobalt-catalyzed C–H alkynylation suffers from poor functional 

group tolerance and harsh reaction conditions, that is the use of a strong alcoholate 

base, resulting in a limited scope. 

 

Scheme 1.22. Alkynylation using hypervalent iodine reagent 88.[78] 

Moreover, allylations have been established with different allylating reagents (Scheme 

1.23). Beginning with work from Glorius and Ackermann using pyrimidylindoles 23 and 

allylic electrophiles 90,[79] this field was extended among others[80] by Ackermann using 

cyclic carbonates 93[81] and Matsunaga who was able to directly utilize allylic alcohols 

95 as a coupling agent[82] and thus increased atom efficiency. 
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Scheme 1.23. Cp*Co(III)-catalyzed C–H allylations.[78, 79b, 81-83] 

Besides C–C forming transformations, the strength of Cp*Co(III) catalysts lies in the 

formation of C–X bonds, and here in in particular (pseudo-)halogenations and C–N 

forming reactions. Beginning with reports on the cyanation of (hetero)aromatic C–H 

bonds by Ackermann (Scheme 1.24)[84] and a publication by Glorius using NCTS 

(96)[79b] the field was extended by Chang to include arylpurines 97 and N-

cyanosuccinimide (98) as cyanating reagent.[85] 

 

Scheme 1.24. Cp*Co(III)-catalyzed C–H cyanation by Ackermann.[84] 

In his report, Ackermann also rationalized a catalytic cycle to explain the product 

formation (Scheme 1.25).[84] After the in-situ generation of the cationic cobalt complex 

101, a BIES-type C–H metalation[29] results in the formation of cobaltacycle 102, which 

can coordinate the cyanating reagent 96.[84] The key intermediate, seven-membered 

cobaltacycle 104 is generated by insertion of the C–N triple bond into the Co–C bond. 



19 
 

Subsequently, a β-elimination releases the product 100 and regenerates the active 

catalyst 101. 

 

Scheme 1.25. Plausible mechanism for the cobalt-catalyzed C–H cyanation.[84] 

Along the same lines, C–H halogenations were reported using Cp*Co(III) complexes 

by Glorius,[79b] and Pawar.[86] 

Beginning with a report by Matsunaga using sulfonylazides 105 as amidating reagents 

in 2014,[87] also C–N formation by cobalt(III) catalysis has seen significant advances. 

Ackermann[29e] and Jiao[88] reported that cyclic carbamates 108 were viable amidating 

reagents, while Chang  disclosed a protocol using acetoxycarbamates 110 (Scheme 

1.26).[89] Plausible mechanisms have been proposed, and the reaction is explained 

using as an example the reaction shown in 1.26b (Scheme 1.27). After generation of 

the active catalyst 101, a BIES-type C–H metalation[29] affords the five membered 

cobaltacycle 112. Coordination of the dioxazolone 108 is followed by extrusion of CO2, 

which yields intermediate 114,[29e] which itself can release the final product 109 upon 

proto-demetalation by acetic acid, thus regenerating the active catalyst 101. 
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Scheme 1.26. Cp*Co(III)-catalyzed amidations.[29e, 87, 89] 

 

Scheme 1.27. Plausible catalytic cycle for the C–H amidation.[29e] 
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1.2.4 Oxidative C–H Activation using Cobalt Salts  

As mentioned before, the use of high valent cobalt catalysts in C–H activation greatly 

enhances the simplicity of the experimental setup and user-friendliness. However, the 

most simple setup would be the direct use of air-stable cobalt(II) salts as the 

(pre)catalyst. In 2005, Daugulis popularized the use of bidentate, monoanionic 

directing groups in the form of 8-aminoquinoline (Q) benzamides for palladium-

catalyzed C–H activation.[90] This concept was applied to include other metals and 

directing groups, such as TAM,[91] PIP[92] and PyO[93] (Figure 1.3).  

 

Figure 1.4 Common bidentate directing groups in catalyzed C–H activation. 

However, it took nearly 10 years, before the 8-aminoquinoline directing group was 

applied to cobalt catalysis. Daugulis disclosed a cobalt-catalyzed C–H/N–H annulation 

of quinolinebenzamides 115 and alkynes 8 to generate isoquinolones 118 (Scheme 

1.28a).[94] It soon became apparent, that heterocycle formation by C–H/X–H annulation 

was one strength of oxidative cobalt-catalyzed C–H activation. Further heterocycle 

syntheses followed soon by the same group regarding tetrahydroisoquinolones 119,[95] 

cyclic phosphoramides 120[96] and isocoumarines 121 from benzoic acids 116 

(Scheme 1.28e, 1.28h, 1.28c).[97] Important contributions were also disclosed by 

Ackermann, establishing the formation of isoindolones 122 (Scheme 1.28d),[98] and 

furthermore the first use of molecular oxygen as a competent terminal oxidant for this 

reaction employing PyO substituted benzamide 117 (Scheme 1.28b).[99] Besides 

alkenes 60 and alkynes 8, also allenes 124 were shown to be reactive by Volla and 

Maiti.[100] Finally, the synthesis of sultam motifs 126 by cobalt catalysis was disclosed 

independently by Ribas and Sundararaju under identical conditions (Scheme 

1.28g).[101] 
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Scheme 1.28 Heterocycle formation by C–H/X–H annulation. 

All the above-mentioned C–H/X–H annulation protocols generally follow similar 

mechanistic pathways, which should be explained with the example of the cobalt 

catalyzed isoindolone synthesis (Scheme 1.29).[98] The initial step of the mechanism is 

proposed to be the base-assisted C–H activation of the chelating substrate-catalyst 

complex to form five membered cobaltacycle 128. This intermediate is reactive towards 

unsaturated multiple bonds and can undergo migratory insertion. The resulting seven-

membered intermediate 129 reacts by β-hydride elimination to yield the final product 

122. Subsequently, the cobalt species 131 is reoxidized to regenerate the active 

species 127. 
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Scheme 1.29. Proposed catalytic cycle for the cobalt-catalyzed isoindolone formation.[98] 

Furthermore, carbonylations have been reported as a method for heterocycle 

formation, for example by Daugulis in 2014.[102]  

Besides C–H/X–H annulations, C–C forming reactions have been reported. In 2016, 

Balaraman disclosed a cobalt-catalyzed oxidative alkynylation of benzamides 115 

(Scheme 1.30a).[103] Although the functional group tolerance on the benzamide moiety 

is generally good, the reaction suffers from a limited alkyne scope. In the same year, 

Lu and coworkers achieved a methylation under assistance of the PIP directing group 

in an elegant protocol using highly reactive dicumylperoxide 135 as the methylating 

reagent as well as the oxidant, avoiding the use of costly silver(I) salts (Scheme 

1.30b).[104] Although ortho-substituted benzamides 115 were used preferentially, other 

substitution patterns led to bis methylation. Further, Chatani reported on a cobalt-

catalyzed allylation protocol using terminal alkenes 137 (Scheme 1.30c).[105] 
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Scheme 1.30. Cobalt-catalyzed C–H activation for the formation of C–C bonds.[103-105] 

Without a doubt, the formation of biaryls is one of the most important applications of 

C–H activation, due to the abundance of biaryls in biologically active motifs and the 

deficits regarding sustainability and atom economy associated with cross coupling 

chemistry.[4] In oxidative cobalt-catalyzed C–H activation, biaryl formations have been 

established beginning with the dimerization of quinoline benzamides 115.[106] This 

approach was elaborated by the use of different directing groups to achieve selective 

C–H/C–H cross-activation,[107] while other methods used boronic acids 139 or 

activated heterocycles 52 or 53 (Scheme 1.31a).[108] A noteworthy example for an 

oxidative cobalt-catalyzed C–H arylation was published by Song, employing indoles 

23 and boronic acids 139. While arylations of this substrate have also been achieved 

using low valent cobalt catalysis,[49, 52] (vide supra) this example remains one of the 

very rare oxidative-cobalt catalyzed transformations not dependent on a bidentate 

directing group (Scheme 1.31b).[109] 
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Scheme 1.31. Arylations using oxidative cobalt-catalyzed C–H activation.[108-109] 

Oxidative cobalt-catalyzed C–H activation is not limited to C–C forming reactions, as 

also several C–X formations have been disclosed. C–N forming transformations have 

been realized using 8-aminoquinoline as well as pyridine-N-oxide directing groups 

using (cyclic) secondary alkyl amines 146 as well as arylamines 144 (Scheme 

1.32a).[110] With regard to C–O bond forming reactions, both alkoxygenations and 

acyloxylations have been reported, by Song and recently by Chatani (Scheme 

1.32b).[111] Both reactions proceeded with good to excellent functional group tolerance 

and good yields. Furthermore, also alkenes were viable substrates in the presented 

alkoxylation protocol.[111b] Moreover, an oxidative cobalt-catalyzed C–H halogenation 

was recently achieved by Chatani using molecular iodine 154 as the iodination reagent 

(Scheme 1.32c).[112] While the reaction showed good functional group tolerance, the 

directing group had to be modified to exclude undesired side reactions. The 

mechanism of these transformations shall be discussed with the example of the cobalt-

catalyzed C–H acyloxylation (Scheme 1.33).[111a] After coordination of the cobalt 

catalyst to the deprotonated amide 115, oxidation from cobalt(II) to cobalt(III) followed 

by C–H bond cleavage generates the five-membered intermediate 158. This species 

can then undergo ligand exchange with the present acid to form intermediate 159. 

From this complex, the product 152 can be released by reductive elimination, followed 

by reoxidation of the cobalt catalyst. 
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Scheme 1.32. Oxidative cobalt-catalyzed C–X formations.[109-112] 

 

Scheme 1.33. Plausible mechanism for the cobalt-catalyzed C–H acyloxylation.[111a] 
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Finally, besides the oxidative C–H activation of C(sp2)–H bonds, a few reports have 

highlighted the ability of cobalt to activate C(sp3)–H bonds. An intramolecular 

cyclizytion to generate small ring lactams was reported by He in 2015 (Scheme 

1.34a).[113] Intermolecular transformations using either terminal alkynes[114] or 

carbonmonooxide, (Scheme 1.34c)[115] as coupling partners were disclosed recently 

likewise. 

 

Scheme 1.34. Oxidative cobalt-catalyzed C(sp3)–H activation.[113-115] 

 

1.3 Manganese-Catalyzed C–H Activation 

After iron and titanium, manganese is the third most abundant transition metal in the 

earth’s crust.[35] Hence, it represents an essential trace element for life, with 

manganese cores being essential for a number of enzymes in human metabolism, 

such as arginases and manganese-superoxide dismutases.[116] Therefore, it is 

attractive as a catalyst, due to its availability, low price and low toxicity. The presence 

of manganese in many enzymes, led to the investigation of similar chemistry in 

laboratory model systems,[116c, 117] in due course realizing C–H functionalizations by an 
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outer-sphere mechanism for a number of transformations.[118] However, the focus of 

this chapter shall be manganese(I)-catalyzed organometallic C–H activation,[119] so 

outer-sphere transformations and recent advances in low valent manganese 

chemistry[120] will not be discussed. 

An early stoichiometric C–H activation by manganese was reported by Bruce and 

Stone, cyclometalating azobenzene 3 with MeMn(CO)5 (164) (Scheme 1.35).[121] While 

the same complex 165 had been prepared two years earlier by Heck,[122] his synthesis 

involved the transmetalation from palladium to manganese, and not C–H activation by 

manganese itself. In the following years, several cyclometalated manganese 

complexes were synthesized using various substrates and manganese precursors.[123]  

 

Scheme 1.35. Stoichiometric C–H activation with MeMn(CO)5 (164).[121] 

Groundbreaking progress in catalytic C–H activation by manganese(I) was achieved 

by Kuninobu and Takai in 2007 (Scheme 1.36). Using simple and stable MnBr(CO)5 

(169) as the catalyst, ortho functionalization of phenylimidazoles 166 was achieved in 

the presence of triethylsilane 168, albeit requiring stoichiometric silanes to ensure 

catalytic turnover .[124]  

 

Scheme 1.36. Manganese(I)-catalyzed hydroarylation/silylation of aldehydes 167.[124] 

In due course, hydroarylation of C–C and C–X bonds has become a broad field of 

application for manganese catalysis, with notable contributions by Wang[125] and 

Ackermann[126] among others.[127] Over time, hydroarylations have been reported by 

these groups for aldehydes, nitriles, imines, alkynes and activated alkenes. In addition 

to hydroarylations, also C–H/X–H annulations have been disclosed with diverse 

coupling partners to efficiently synthesize heterocycles.[128] 
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Besides these addition-based reactions, a significantly smaller number of substitutive 

protocols in manganese(I)-catalysis is known, although these reactions offer more 

synthetic diversity as they are not limited to C–C or C–X multiple bonds. Ackermann 

disclosed the substitutive allylation of indoles 23 and ketimines 26 by the use of 

allylcarbonates 90 as easily accessible allylating reagents (Scheme 1.37a).[129] A 

protocol for the C–H cyanation of similar substrates was reported by the same group, 

relying on NCTS (96) as a mild and safe cyanating reagent (Scheme 1.37b).[130] Finally, 

Glorius applied manganese catalysis to allenylation reactions by the use of similar 

alkynes 172 with an ester as the leaving group (Scheme 1.37c).[131] 

 

Scheme 1.37. Substitutive manganese(I)-catalyzed transformations.[129-131] 

Mechanistic proposals for these transformations were rationalized, which are 

discussed here with the example of the manganese-catalyzed C–H allylation (Scheme 

38).[129] The key intermediate, the five-membered manganacycle 176 is generated by 

a base-assisted C–H metalation. Coordination of allylcarbonate 90 in a chelating 

fashion sets the stage for a facile insertion of the double bond into the Mn–C bond. 

Subsequent β-elimination of the carbonate releases the final product 171 and 

regenerates the catalytically active species 174 (Scheme 1.38).[129] 
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Scheme 1.38.  Proposed mechanism for the manganese(I)-catalyzed C–H allylation.[129] 

Lastly, manganese(I) catalysis has been exploited to catalyze challenging C–H/C–F 

activation reactions. This is noteworthy, as C–F bonds are generally relatively inert due 

to the high bond strength and the reluctance of organofluorine compounds to 

coordinate to metal centers.[132] Despite these challenges, C–H/C–F activation has 

been successfully employed in the manganese-catalyzed perfluoroallylation by 

Ackermann (Scheme 1.39)[133] and in the monofluoroalkenylation by Ackermann[133] 

and Loh[134] in independent reports. 

 

Scheme 1.39. C–H/C–F activation by manganese(I)-catalysis.[133] 
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1.4 Electrochemical Transition Metal-Catalyzed C–H Activation 

The growing demands for renewable power sources, including solar energy, 

hydropower and wind energy (Figure 1.5),[135] makes the utilization of electricity to drive 

chemical transformations increasingly desirable. 

 

Figure 1.5. Share of energy sources of gross electricity production in Germany 2016.[135] 

Due to the increasingly sustainable energy production, the use of electricity in chemical 

synthesis would therefore significantly reduce the environmental footprint of molecular 

sciences.[136] Furthermore, if electricity is employed to substitute costly and potentially 

toxic stoichiometric oxidants and reductants the cost efficiency of organic synthesis is 

drastically improved (Figure 1.6).[137] Moreover, the use of electricity allows to tune the 

applied potential and current to a transformation, thus enabling milder conditions and 

potentially better selectivities. In case of chemical oxidation/reduction, the potential of 

the employed redox-reagent and the metal may not always overlap and thus leave 

room for more efficient reaction conditions by electrocatalysis (Table 1.1).[35] 
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Figure 1.6. Costs of common oxidants and reductants.[137] 

Table 1.1. Standard potentials of selected redoxreagents and transition metals.[35] 

Reaction Potential E0 [V] 

Oxidants  

H2O2 + 2 H+ + 2 e− → 2 H2O 1.78 

Mn(III) + e− → Mn(II) 1.54 

Ag(I) + e− → Ag(0) 0.79 

Cu(II) + e− → Cu(I) 0.15 

Reductants  

In3+ + 3 e− → In −0.34 

Zn2+ + 2 e− → Zn −0.76 

Mg2+ + 2 e− → Mg −2.37 

Transition Metals  

Co3+ + e− → Co2+ 1.92 

Pd2+ + 2 e− → Pd 0.95 

Ru2+ + 2 e− → Ru 0.46 

 

Electro-organic synthesis has been discussed in science, since the first reports by 

Volta, Faraday and Kolbe.[138] Oxidation reactions of activated substrates have been 

studied since the 1960s,[139] with recent progress broadening the applicability towards 

a range of activated substrates,[140] with key contributions from Waldvogel,[141] 

Baran,[142] Yoshida[143] and Xu,[144] among others.[145] In contrast, the focus of this 
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introduction is on C–H activations catalyzed by transition metals under the assistance 

of electricity. Moreover, outer-sphere transformations with early reports using noble 

metals[146] and recent advances towards 3d-metals[147] will also not be discussed in 

detail. 

 

1.4.1 Palladium-Catalyzed Transformations 

An elegant early example of palladium-catalyzed electrochemical C–H activation was 

achieved by Amatore and Jutand in 2007 (Scheme 1.40).[148] They reported on a 

Fujiwara-Moritani-type reaction,[149] using co-catalytic amounts of benzoquinone (182). 

While the reaction scope was severely limited, the authors provide a detailed 

mechanistic concept. The reaction is proposed to be initiated by base-assisted C–H 

activation, followed by an insertion of the double bond into the Pd–C bond (Scheme 

1.41). A subsequent β-elimination liberates the product 183 and a reductive elimination 

of acetic acid generates palladium(0). Intermediate 188 is then reoxidized by 

benzoquinone (182) and the thus formed hydroquinone 189 is then oxidized again at 

the anode. 

 

Scheme 1.40. Electrocatalytic palladium-catalyzed C–H alkenylation.[148] 

In 2009, Kakiuchi reported on a palladium-catalyzed C–H halogenation using 

electrochemistry (Scheme 1.42).[150] Here, electricity was essential to generate the 

electrophilic halonium cation from mineral acids, which presents an elegant and cost-

effective alternative to other halogenation reactions. This approach was extended to 

include C–H iodinations using molecular iodine (154) or potassium iodide.[151] 

Additionally, C–H chlorinations of benzamides 153, including the synthesis of marketed 

drug vismodegib,[152] were disclosed.[153]  
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Scheme 1.41. Electrocatalytic Fujiwara-Moritani reaction.[148] 

 

 

Scheme 1.42. Electrochemical C–H halogenation of phenylpyridines 23.[150]  

Along the same lines, Kakiuchi reported on the homodimerization of phenylpyridines 

23 in the presence of stoichiometric or co-catalytic amounts of iodine (154).[154]  
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C–H oxygenations were achieved by electrochemical transition metal-catalyzed C–H 

bond activation by Budnikova using palladium complexes in the coupling of 

perfluoroacids and phenylpyridines 23.[155] While the scope was limited, the authors 

supported their mechanistic proposal by detailed studies, including the isolation of key  

intermediates as well as cyclovoltammetric (CV) studies.[156] Moreover, besides the 

desired perfluoroalkoxylation, at higher current also significant amounts of 

perfluoroalkylated product were observed. This transformation was subsequently 

improved to yields of more than 80%.[157] Related transformations were also proposed 

in comparable yields by nickel[158] and iron[157a] catalysis. Recently, Mei disclosed C–H 

oxygenations using electrochemical palladium-catalysis.[159] This work constitutes the 

first C–H activation on C(sp3)–H bonds using transition metal-catalysis and 

electrochemistry. The desired reaction was achieved using palladium acetate as the 

catalyst in a divided cell setup using carboxylic acids 192 as the solvent and the 

corresponding sodium salt 193 as base (Scheme 1.43). 

 

Scheme 1.43. Palladium-catalyzed Oxygenation of C(sp3)–H bonds.[159] 

The mechanism was proposed to proceed by a proximity-induced base-assisted C–H 

metalation at the primary C–H bond (Scheme 1.44).[159] The thus formed intermediate 

196 is oxidized to a palladium(III) or palladium(IV) complex 197, which then undergoes 

reductive elimination to form the C–O bond, followed by a ligand exchange to furnish 

product 194 (Scheme 1.44). In a follow-up work, Mei could show that also the 

oxygenation of aromatic C–H bonds was feasable with a similar catalytic system.[160] 

Thereafter, Sanford disclosed a similar transformation, broadening the applicability to 

include quinoline and pyrazine as directing groups.[161]  
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Scheme 1.44. Plausible mechanism for the palladium-catalyzed C–H oxygenation.[159] 

Additionally, Mei discovered an oxidative alkylation by palladium catalysis using 

alkyltrifluoroborates 200 (Scheme 1.45a).[162] In the same report, Mei also disclosed a 

palladium-catalyzed benzoylation of oximes 199 (Scheme 1.45b). 

 

Scheme 1.45. Palladium-catalyzed alkylation and acylation.[162] 
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1.4.2 Transformations Catalyzed by other Transition Metals 

At the outset of this thesis, no electrocatalytic C–H activation was known employing 

metals other than palladium. However, during the course of this thesis, other reports 

were published, which shall be discussed in this following chapter.  

Ruthenium-catalyzed C–H activation under assistance of electricity was only recently 

realized by Xu based on a previously reported[163] oxidative indole synthesis (Scheme 

1.46).[164] Preliminary results also indicated that ruthenium-catalyzed [4+2] annulation 

of benzylamine to isoquinolines are viable.[164] 

 

Scheme 1.46. Ruthenium-catalyzed electrochemical indole synthesis.[164] 

Concurrently, Ackermann developed a ruthenium-catalyzed synthesis of 

isocoumarines 121  by C–H/O–H annulation (Scheme 1.47).[165] Noteworthy is the use 

of weakly coordinating benzoic acids 116[166] as substrates, showing for the first time 

electrochemical C–H activation by transition metals without the use of strongly 

coordinating nitrogen atoms. 

 

Scheme 1.47. Ruthenium-catalyzed electrochemical C–H/O–H annulation.[165] 

Moreover, besides benzoic acids 116, also benzamides 11 were found to be viable 

substrates.[165] A plausible catalytic cycle was proposed, which includes the formation 

of  five-membered ruthenacycle 208, followed by coordination and migratory insertion 

of alkyne 8 (Scheme 1.48).[165] From the resulting seven-membered species 210, 

reductive elimination generates the product, which is still attached to the ruthenium(0) 
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center in sandwich complex 211.  Upon anodic oxidation to regenerate ruthenium(II)-

carboxylate species 207, the desired product 121 is liberated (Scheme 1.48). 

 

Scheme 1.48. Plausible mechanism for the ruthenium-catalyzed C–H/O–H annulation.[165] 

Cobalt-catalyzed electrochemical cross-couplings have been known for over a decade 

through the pioneering work from Gosmini.[167] However, cobalt-catalyzed 

electrochemical C–H activation remained elusive. Although this thesis presents 

substantial contributions to the field of electrochemical cobalt-catalyzed C–H activation 

later, concurrently published contributions shall be discussed here shortly. 

Recently, Ackermann reported on the electrochemical cobalt-catalyzed isoquinolone 

formation by assistance of the pyridine-N-oxide directing group (Scheme 1.49).[168] This 

approach was later extended by Lei to also include the functionalization using gaseous 

ethylene and ethyne.[169] 
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 Scheme 1.49. Electrochemical cobalt-catalyzed C–H activation/annulation.[168] 
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2 Objectives 

In the last decades, C–H activation exerted a significant influence on organic synthesis, 

as it became more efficient, cost-effective and generally applicable.[4, 30] Also, 

considerable advances have been made in the use of earth-abundant 3d metals,[18a, 

119, 170] rendering these methods more suitable for sustainable organic synthesis. 

Especially in the field of cobalt-catalyzed reactions,[48, 69, 171] with the use of low-valent 

cobalt, Cp*Co(III)-complexes and simple cobalt salts, three independent and to some 

degree complementary regimes of catalytic action are available. 

Direct alkenylations using low-valent cobalt catalysis are known,[56] however, these 

transformations are highly dependent of the ligand, as even small changes in the 

substitution pattern can dramatically alter the outcome. Triazolium salts were rarely 

used in C–H activation, but a large number of triazolium salts are available due to their 

prominence in organo-catalysis.[172] Therefore, triazolium salts 212 were tested as 

(pre)ligands in cobalt-catalyzed alkenylations (Scheme 2.1). 

 

Scheme 2.1. Cobalt-catalyzed C–H alkenylation with triazolium salts 212 as (pre)ligands. 

Cobalt-catalysis by Cp*Co(III)-complexes does not feature the highly modular 

approach of low-valent cobalt catalysis. However, the functional group tolerance is 

considerably higher.[48a, 69] Allyl groups are important building blocks and offer the 

possibility to be functionalized in post-synthetic transformations, which makes the 

introduction of allyl groups by Cp*Co(III)-catalysis highly desirable (Scheme 2.2). 

 

Scheme 2.2. Cobalt-catalyzed C–H allylation. 
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Likewise, alkynes offer huge possibilities for post-synthetic functionalizations. This is 

especially important given the biorthogonal nature of the alkyne moiety and possible 

applications in late-stage peptide ligation.[173] Base metal-catalyzed protocols for 

alkynylations were at the outset of this thesis only known for cobalt using hypervalent 

iodine reagents 88 under harsh reaction conditions.[78] Therefore, a cobalt-catalyzed 

protocol at mild conditions using bromoalkynes 132 should be developed for the 

alkynylation of heteroarenes. Additionally, this transformation is interesting also for 

manganese-catalyzed processes, as substitutive transformations for this metal are 

scarce (Scheme 2.3).[119] 

 

Scheme 2.3. Base metal-catalyzed C–H akynylation. 

Cross-dehydrogenative couplings present the most atom-economical transformation in 

C–H activation, as the formal byproduct is solely H2.[174] However, to achieve these 

transformations sacrificial oxidants are needed, which greatly reduces the atom 

economy of C–H activation. Furthermore, most transformations rely on expensive 

silver salts as oxidants, which drive the cost of the overall reaction (see Figure 1.6).[137] 

Additionally, these chemical oxidants offer a specific potential associated with the 

redox couple, which can hardly be modified. In light of these facts, the use of electricity 

as the terminal oxidant would greatly increase the atom economy and reduce the 

associated costs of the reaction. Moreover, a modification of the potential to finely tune 

the reaction is possible, when needed. Here, a combination of cobalt-catalyzed C–H 

activation and electrocatalysis would be highly desirable in the formation of C–O and 

C–N bonds (Scheme 2.4). 

 

Scheme 2.4. Electrocatalytic cobalt-catalyzed C–H oxygenations and aminations. 
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Finally, electro-oxidative cobalt-catalyzed C–H/N–H annulations with alkynes 8 were 

realized following the same principles, and the mechanism should be investigated 

using different methods (Scheme 2.5). 

 

Scheme 2.5. Electro-oxidative cobalt-catalyzed C–H/N–H annulation. 
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3 Results and Discussion 

3.1 Cobalt-Catalyzed Alkenylation under Triazolylidene-Assistance 

by C–H/C–O Cleavage 

Based on the initial work from Yoshikai,[57] several cobalt-catalyzed C–H alkylations,[49-

50, 52] arylations[49, 52-54, 175] and alkenylations[56-61] were reported. However, the majority 

of C–H alkenylations are based on the hydroarylation of alkynes 8.[57-61] This presents 

a major limitation, due to the poor selectivity in the conversion of unsymmetrical 

alkynes 8 and the absence of cyclic alkynes 8 in small and medium ring sizes.[176] 

Low-valent cobalt-catalyzed C–H functionalization reactions mainly feature two 

classes of ligands (see Figure 1.1), namely phosphines and NHC ligands. For NHCs, 

imidazole-derived IMesHCl (14) and IPrHCl (15) are the most common preligands. 

In cooperation with the group of Prof. A. Berkessel from the University of Cologne, a 

small library of triazole derived NHCs 212 were synthesized (Figure 3.1)[177] and tested 

towards their performance in cobalt-catalyzed C–H alkenylation.   

 

Figure 3.1. Triazolium salts 212 for the cobalt-catalyzed C–H alkenylation. 

While generally employed as organocatalysts,[172a, 178] these triazolium salts were 

especially interesting in terms of their lower donating abilities[172b] and possible 

dispersion interactions[179] enabled by the distal phenyl group. Moreover, their 

application in cobalt-catalyzed C–H activation is without precedence.  

 



44 
 

3.1.1 Optimization 

Based on previous studies,[56] initially CoI2, DMPU and CyMgCl were chosen as 

components of the ternary catalytic system. With these conditions, the preligands 

212a-h were evaluated on their ability to promote the desired reaction (Table 3.1) 

Table 3.1 Ligand screening for the cobalt catalyzed C–H alkenylation under triazole assistance.a 

 

Entry L Yield [%] 

1 --- <5 

2 212a --- 

3 212b --- 

4 212c 14 

5 212d <5b 

6 212e 19 

7 212f <5 

8 212g 21 

9 212h 52 

a Reaction conditions: 23a (0.25 mmol), 40a (0.38 mmol), CoI2 (10 mol %), 212a-h (10 mol %), CyMgCl 

(0.50 mmol), DMPU (1.5 mL), 23 °C, 16 h. b Performed by J. Loup. 

The reaction was not effective in absence of a preligand (entry 1). Ligand 212a, as well 

as the N-phenyl-N-mesityl substituted triazole 212b did not lead to improvements in 

efficacy (entries 2 and 3), while 212c facilitated product formation to some extent (entry 

4). meta-Xylene derived ligand 212d was not effective (entry 5) while biphenyl-

substituted ligand 212e as well as 2-isopropylphenyl-substituted triazole 212g showed 

improved reactivities (entries 6 and 8). Triazolium salt 212f was not suitable (entry 7), 

while the best results were achieved using 2,6-diisopropylphenyl substituted triazolium 

salt 212h (entry 9), which is in good agreement with the observations from our previous 

studies.[56]  
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After the best preligand 212h was identified, further optimization studies were 

performed with a focus on the cobalt source, Grignard reagent and solvent (Table 3.2). 

Table 3.2 Optimization of the reaction conditions for the cobalt-catalyzed C–H alkenylation.a 

 

Entry [Co] Base Solvent Yield [%] 

1 CoI2 CyMgCl DMPU 52 

2 CoBr2 CyMgCl DMPU 48 

3 CoCl2 CyMgCl DMPU 33 

4 Co(OAc)2 CyMgCl DMPU --- 

5 Co(acac)2 CyMgCl DMPU <5 

6 CoI2 CyMgCl THF 33 

7 CoI2 CyMgCl Et2O <5 

8 CoI2 CyMgBr DMPU 51 

9 CoI2 PhMgBr DMPU <5 

10 CoI2 EtMgCl DMPU <5 

11 CoI2 Me3SiCH2MgCl DMPU --- 

12 CoI2 t-BuCH2MgCl DMPU <5 

13 CoI2 --- DMPU --- 

14 --- CyMgCl DMPU --- 

a Reaction conditions: 23a (0.25 mmol), 40a (0.38 mmol), [Co] (10 mol %), 212h (10 mol %), base (0.50 

mmol), solvent (1.5 mL), 23 °C, 16 h. 

The optimization commenced with a screening of various cobalt prescoursors. While 

cobalt(II) halides generally promoted the C–H alkenylation with similar efficacy (entries 

1-3), cobalt(II) acetate (entry 4) and cobalt(II) acetylacetonate (entry 5) only provided 

trace amounts of the desired product. Besides DMPU, THF proved amenable (entry 

6), while Et2O was not a suitable reaction medium (entry 7). Regarding the Grignard 

reagent, a comparison between CyMgCl and CyMgBr (entry 8) revealed no significant 

influence of the halide, while other alkyl and phenyl derived Grignard reagents (entries 
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9-12) proved not suitable. This is especially noteworthy, since Me3SiCH2MgCl and 

t-BuCH2MgCl, which were shown to be active in cobalt catalysis before,[57, 61-62] are 

quite costly compared to CyMgCl, which presents an advantage of this method. The 

essential nature of the base and the cobalt salt was confirmed by control experiments 

(entries 13 and 14). 

Next, different leaving groups on the alkenyl moiety were investigated on their ability 

to promote the cobalt-catalyzed C–H alkenylation (Table 3.3). 

Tabel 3.3 Leaving group performance in cobalt-catalyzed C–H alkenylation.a 

 

Entry R Yield [%] 

1 Ac (40b) 80 

2 P(O)(OEt)2 (41b) 84 

3 C(O)OEt (42b) 52 

4 C(O)NMe2 (43b) 72 

a Reaction conditions: 23a (0.25 mmol), 40b-43b (0.38 mmol), CoI2 (10 mol %), 212h (10 mol %), 

CyMgCl (0.50 mmol), DMPU (1.5 mL), 23 °C, 16 h. 

This evaluation established alkenyl acetate 40b and alkenyl phosphate 41b as 

competent alkenylating agents (entries 1 and 2). Carbonate 42b only showed 

moderate efficacy, while carbamate 43b performed somewhat better than carbonate 

42b. Based on these results, the scope of the cobalt-catalyzed alkenylation under 

triazole assistance was investigated using alkenyl acetates 40 and phosphates 41 with 

an optimized catalytic system comprising of CoI2, ligand 212h and CyMgCl in DMPU 

as the solvent. 

 

3.1.2 Scope of the Cobalt-Catalyzed Alkenylation using Alkenyl Phosphates 

With the optimized conditions in hand, the scope of the reaction was examined with 

different alkenyl phosphates 41 (Table 3.4). 
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Table 3.4 Scope of the cobalt-catalyzed C–H alkenylation using alkenyl phosphates 41.a 

 

Entry Phosphate Product Yield [%] 

1 

 

 

84 

2 

 

 

81 

3 

 

 

69 

4 

 

 

80 

5 

 

 

74 



48 
 

6 

 

 

71 

7 

 
 

73 

8 

 

 

69 

9 

 

 

55 

a Reaction conditions: 23a (0.25 mmol), 41 (0.38 mmol), CoI2 (10 mol %), 212h (10 mol %), CyMgCl 

(0.50 mmol), DMPU (1.5 mL), 23 °C, 16 h. 

The reaction proceeded with moderate to excellent yields for all substrates. 

Comparable efficacy was achieved for cyclohexenylphosphate (41b) as well as 4-

substituted cyclohexenylphosphates 41c-g (entries 2-6). This is indicative of only a 

minor influence of the substituent in C-4 position of the alkenyl phosphate. Good yields 

could be observed for acyclic bisalkyl alkenyl phosphates 41h and 41i (entries 7 and 

8), while alkenyl phosphate 41j with mixed aryl and alkyl substituents was converted 

with moderate yield (entry 9). It is noteworthy, that although a mixture of E/Z-isomers 

was employed in this reaction (30/70 for entries 41h and 41i, 25/75 for 41j), the E-

product was observed exclusively, indicating a stereoconvergent process being 

operative here.[56] 
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Furthermore, different indoles 23 were employed in the reaction using 

cyclohexenylphosphate (41b) as the alkenylating reagent (Table 3.5). 

Table 3.5. Scope of the cobalt-catalyzed C–H alkenylation of indoles 23.a 

 

Entry Indole Product Yield [%] 

1 

  

84 

2 

  

81 

3 

  

55 

a Reaction conditions: 23 (0.25 mmol), 41b (0.38 mmol), CoI2 (10 mol %), 212h (10 mol %), CyMgCl 

(0.50 mmol), DMPU (1.5 mL), 23 °C, 16 h. 

Unsubstituted 2-pyrimidylindole (23a) and 5-fluoroindole 23b were identified as 

excellent substrates for the C–H alkenylation (entries 1 and 2). Remarkable was the 

smooth conversion of indole 23c, because the ester group proved to be stable.[180]   

 

 

3.1.3 Scope of the Cobalt-Catalyzed Alkenylation using Alkenyl Acetates 

After establishing the scope of alkenyl phosphates 41, more atom-economical acetates 

40 were investigated for their use in the cobalt-catalyzed C–H alkenylation (Table 3.6).  
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Table 3.6. Cobalt-catalyzed C–H alkenylation with alkenyl acetates 40. 

 

Entry Acetate Product Yield [%] 

1 

  

80 

2 

 

 

78 

3 

 

 

75 

4 

 

 

 

71 

5 

  

 

--- 

6 

  

traces 



51 
 

7 

  

traces 

8 

  

 

52 

a Reaction conditions: 23a (0.25 mmol), 40 (0.38 mmol), CoI2 (10 mol %), 212h (10 mol %), CyMgCl 

(0.50 mmol), DMPU (1.5 mL), 23 °C, 16 h. 

Cyclohexenylacetate (40b) and its substituted analogues were smoothly converted 

with up to 80% yield (entries 1-4). However, α-Tetralone derived acetate 40l showed 

no reactivity. Smaller and larger cyclic enol acetates 40m and 40n (entries 6 and 7) 

were not suitable substrates, only resulting in traces of the desired products 44, while 

acyclic acetate 40a was converted with moderate yield, and again exclusively to the E-

product. 

Additionally, the scope of indoles 23 was investigated using cyclohexenylacetate (40b) 

as the standard alkenylation reagent (Table 3.7). 

Table 3.7. Cobalt-catalyzed C–H alkenylation of indoles 23. 

 

 

Entry Indole Product Yield [%] 

1 

  

 

80 



52 
 

2 

  

 

70 

3 

  

 

61 

4 

  

 

72 

5 

  

80 

6 

  

 

74 

7 

  

 

59 

8 

  

 

--- 

9 

  

--- 



53 
 

10 

  

85 

11 

  

 

74 

12 

  

 

--- 

a Reaction conditions: 23 (0.25 mmol), 40b (0.38 mmol), CoI2 (10 mol %), 212h (10 mol %), CyMgCl 

(0.50 mmol), DMPU (1.5 mL), 23 °C, 16 h. b CyMgCl (1.00 mmol) 

As shown in Table 3.7, diversely decorated indoles bearing fluoride, ester, alkyl and 

alkoxy substituents were amenable substrates (entries 1-6).  While 5-chloroindole 23g 

(entry 7) was converted with moderate yield, the corresponding 5-bromoindole 23h 

(entry 8) did not show any formation of the desired product 44hb. This can be attributed 

to the higher reactivity of bromo compounds in the cross coupling of bromoarenes and 

Grignard reagents,[181] and indeed the formation of 5-cyclohexylindole was confirmed 

by GC-analysis. Acetanilide 23i also showed no reaction, even when more base was 

used to account for initial deprotonation of the N–H bond which might occur under the 

reaction conditions (entry 9). Furthermore, sterically crowded indoles 23j and 23k 

reacted smoothly to the desired products (entries 10 and 11). Finally, 7-Azaindole 

derived substrate 23l proved not suitable, maybe due to a strong chelating coordination 

of the cobalt-catalyst between the pyridine and pyrimidine nitrogens.  

Besides indoles 23, pyrroles 217 were also suitable substrates for this reaction (Table 

3.8). 
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Table 3.8 Cobalt-catalyzed C–H alkenylation of pyrroles 217. 

 

Entry Pyrrole Product Yield [%] 

1 

  

 

74b 

2 

  

 

tracesc 

3 

  

 

53 

a Reaction conditions: 217 (0.25 mmol), 40b (0.38 mmol), CoI2 (10 mol %), 212h (10 mol %), CyMgCl 

(0.50 mmol), DMPU (1.5 mL), 23 °C, 16 h. b 40b (0.75 mmol) c 60 °C 

While simple unsubstituted 2-pyrimidylpyrrole (217a) was a very good substrate, 

reactions using 1.50 equivalents of the alkenyl acetate resulted in mixtures of mono- 

and bisalkenylated products. Selective conversion to the bis-alkenylated product was 

achieved using 3.00 equivalents of the alkenyl acetate 40b (entry 1). In contrast 2,4-

dimethylpyrrole 217b only provided trace amounts of product 218bb, even at elevated 

temperature (entry 2). Finally, tetrahydroindolone 217c was converted with a yield of 

53%, which is remarkable given that ketones usually undergo facile addition of 

Grignard reagents. (entry 3).[180] 

 

3.1.4 Mechanism of the Cobalt-Catalyzed Alkenylation  

The mechanism of the cobalt-catalyzed C–H alkenylation by triazole assistance is 

rationalized to be similar to the previously proposed mechanism using imidazolium 



55 
 

salts as preligands (Scheme 3.1).[56, 182] After generation of the active species 28, C-H 

activation occurs, and the enol reagent is coordinated. E/Z-isomerization takes place 

to give rise to the exclusively E-configured enol acetate or phosphate, followed by 

migratory insertion resulting in intermediate 222. Subsequent β-O elimination furnished 

the desired product and the active species 28 is regenerated upon transmetalation. 

 

 

Scheme 3.1. Proposed catalytic cycle for the cobalt-catalyzed C-H alkenylation of indoles 44. 

In summary, the first application of triazolylidenes in cobalt-catalyzed C–H activation 

could be realized in the C–H alkenylation of indoles 23 and pyrroles 217 using alkenyl 

acetates 40 and phosphates 41. Cyclic as well as acyclic enol acetates 40 and 

phosphates 41 were suitable coupling partners, and for acyclic compounds, a 

stereoconvergent reaction was observed. 

 

3.2 Cobalt-Catalyzed Allylation using Allyl Acetates 

While a range of C–H functionalizations has been established with low-valent cobalt 

catalysis,[48c, 48d] limitations exist with regard to the functional group tolerance due to 
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the omnipresent Grignard reagents. In this regard, Cp*Co(III)-complexes offer a 

versatile alternative, which should exhibit higher compatibility towards electrophilic 

functional groups.[48a, 69] 

Allyl groups present versatile handles for further post-synthetic diversification, for 

example by olefin metathesis[183] or allylic functionalization.[184] Therefore, the 

introduction of allyl groups is an interesting research area, especially using easily 

accessible allyl acetate 213. Indoles are a key structural motif in many biologically 

active compounds,[185] rendering them interesting substrates in C–H activation.  

3.2.1 Optimization and Scope 

Optimization studies on the cobalt(III)-catalyzed C–H allylation were conducted by M. 

Moselage[182] and after testing various cobalt complexes and additives, a catalytic 

system comprised of Cp*Co(CO)I2 (81) (5 mol %), AgSbF6 (10 mol %) and KOAc (10 

mol %) in DCE at 80 °C for 16 h was identified as optimal. With these optimized 

conditions in hand, the scope of the cobalt-catalyzed C–H allylation was explored 

regarding the indole moiety (Table 3.9). 

Table 3.9 Scope of the cobalt-catalyzed allylation of indoles 23.a 

 

Entry Indole Product Yield [%] 

1 

  

 

89 

2 

  

 

84 



57 
 

3 

  

 

93 

4 

  

 

91 

5 

  

 

78 

a Reaction conditions: 23 (0.50 mmol), 213 (1.00 mmol), 81 (5.0 mol %), AgSbF6 (10 mol %), KOAc (10 

mol %), DCE (1.5 mL), 80 °C, 16 h.  

The scope of indoles 23 showed a broad applicability of the cobalt(III)-catalyzed C–H 

allylation. Electron-rich as well as electron-deficient indoles 23 were converted (entries 

1 and 2). Sterically congested indole 23j (entry 3) was allylated with excellent yield and 

a nitro substituent was well tolerated (entry 4). Finally, the acetanilide containing 

substrate 23i proved amenable in the cobalt(III)-catalyzed C–H allylation (entry 5). 

In addition, M. Moselage established several other indoles 23 and  phenyl pyri(mi)dines 

22 as viable substrates, although at reduced catalytic efficiency.[182] Experiments with 

substituted allyl acetates revealed a high sensitivity towards the substitution patterns, 

resulting in significant loss of reactivity. After considerable optimization, J. Koeller 

could realize an example, in which crotonylacetate was converted with an overall yield 

of 63% for a mixture of isomers.[186] Finally, mechanistic studies were conducted by M. 

Moselage,[182] and a catalytic cycle was rationalized. 

Initial formation of the cationic complex 101 followed by reversible C–H cobaltation by 

BIES-type mechanism[29] delivers five-membered intermediate 219 (Scheme 3.2). 

Insertion of the allylic double bond into the cobalt-carbon bond generates intermediate 

220, stabilized by coordination of the carbonyl group. From intermediate 225, β-O 

elimination regenerates the active cobalt complex 101 and furnishes the desired 

product 91. 
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Scheme 3.2 Proposed catalytic cycle for the cobalt-catalyzed C–H allylation by C–H/C–O cleavage. 

 

3.3 Base Metal-Catalyzed C–H Alkynylation 

Alkynes are versatile building blocks in organic synthesis. Possible applications include 

selective reductions,[187] Sonogashira-Hagihara cross-coupling[188] and the so-called 

“Click-chemistry”,[173c, 189] among others. Therefore, alkynes represent valuable 

synthetic handles for further late-stage functionalization, rendering environmentally-

benign and cost-effective methods to introduce alkynes into the target molecules highly 

desirable. 

 

3.3.1 Optimization of the Cobalt-Catalyzed C–H Alkynylation 

At the outset of this study, base metal-catalyzed C–H alkynylations were identified as 

a research area in need of further development. Indeed, most known methods for 

C–H alkynylation previously used precious and cost intensive metals, like rhodium[190] 

and iridium.[191] 
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During the studies presented in this thesis, Shi independently reported on a cobalt-

catalyzed alkynylation under harsh conditions, that is 120 °C and the use of a strong 

alcoholate base.[78] Furthermore, the alkynylating reagent, TIPS-EBX (88) requires a 

three-step synthesis and is not very atom-economical.[192] Due to the desire to realize 

the cobalt-catalyzed alkynylation efficiently under mild reaction conditions, easily 

accessible and more atom efficient bromoalkynes 132 were chosen as the alkyne 

coupling partner.  

Therefore, the optimization of the envisioned cobalt-catalyzed C–H alkynylation was 

initiated using bromoalkyne 132a, 2-pyrimidylindole (23a) and Cp*Co(CO)I2 (81) as the 

catalyst (Table 3.10). 

Table 3.10 Optimization of the cobalt-catalyzed C–H alknynylation using bromoalkyne 132a.a 

 

Entry [Co] Additive 1 Additive 2 Solvent Yield [%] 

1 Cp*Co(CO)I2 AgSbF6 KOAc MeOH --- 

2 Cp*Co(CO)I2 AgSbF6 KOAc DCE 28 

3 Cp*Co(CO)I2 AgSbF6 KOAc TFE 68 

4 Cp*Co(CO)I2 AgSbF6 KOAc HFIP 17 

5 Co(OAc)2 AgSbF6 KOAc TFE --- 

6 [Cp*CoI2]2 AgSbF6 KOAc TFE 75 

7 [Cp*Co(C6H6)][PF6]2 --- KOAc TFE --- 

8 [Cp*CoI2]2 AgBF4 KOAc TFE 66 

9 [Cp*CoI2]2 AgPF6 KOAc TFE 72 

10 [Cp*CoI2]2 AgNTf2 KOAc TFE 58 

11 [Cp*CoI2]2 Zn(OTf)2 KOAc TFE --- 

12 [Cp*CoI2]2 KPF6 KOAc TFE --- 

13 [Cp*CoI2]2 AgOTf KOAc TFE --- 

14 [Cp*CoI2]2 AgSbF6 PivOH TFE <5 

15 [Cp*CoI2]2 AgSbF6 K3PO4 TFE 52 

16 [Cp*CoI2]2 AgSbF6 KOTs TFE --- 
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17 [Cp*CoI2]2 AgSbF6 NaOAc TFE 69 

18 [Cp*CoI2]2 AgSbF6 K2CO3 TFE 91 

19 [Cp*CoI2]2 AgSbF6 Na2CO3 TFE 86 

20 --- AgSbF6 K2CO3 TFE --- 

21 [Cp*CoI2]2 --- K2CO3 TFE --- 

22 [Cp*CoI2]2 AgSbF6 --- TFE --- 

23 [Cp*CoI2]2 AgSbF6 K2CO3 TFE 96b 

a Reaction conditions: 23a (0.50 mmol), 132a (1.00 mmol), [Co] (5.0 mol %), additive 1 (10 mol %), 

additive 2 (1.00 mmol), solvent (2.0 mL), 80 °C, 18 h. b 25 °C, 18 h. 

While MeOH was not a suitable reaction medium, DCE gave a promising result (entry 

2), which could be further improved by the use of 2,2,2-trifluoroethanol as the solvent 

(entry 3). Of the screened cobalt complexes, the dimeric species [Cp*CoI2]2 (82) 

proved to be the most efficient catalyst (entry 6), wile simple Cp*Co(CO)I2 (81) gave 

somewhat lower yields. In contrast, simple cobalt(II) acetate and cationic sandwich 

complex [Cp*Co(C6H6)][PF6]2 (73) were not competent catalysts for the C–H 

alkynylation (entries 5 and 7). Other silver additives with weakly coordinating counter 

ions[193] showed comparable results to AgSbF6 (entries 8-10), while additives such as 

zinc(II) triflate and KPF6, were not suitable. Furthermore, among a representative set 

of additives, several beneficial effects were obtained (entries 14-19), with the highest 

efficacy observed with the mild base K2CO3 (entry 18). Several control experiments 

highlighted the essential nature of the cobalt catalyst, silver salt and base (entries 20-

22). Finally, an experiment at ambient temperature of 25 °C confirmed the outstanding 

catalytic activity of this system, as nearly quantitative yield of 89aa was (entry 23). 

 

3.3.2 Scope of the Cobalt-Catalyzed C–H Alkynylation 

With the optimized catalytic system in hand, the robustness of the C–H alkynylation by 

cobalt catalysis was evaluated towards diversely substituted indoles 23 and amino 

acids 226 (Table 3.11). 

 

 

 



61 
 

Table 3.11 Scope of the cobalt-catalyzed C–H alkynylation of indoles 23, pyrroles 217 and amino acid 

226.a 

 

Entry Indole Product Yield [%] 

1 

  

96 

2 

  

91 

3 

  

94 

4 

  

82b 

5 

  

92b 

6 

  

87b 



62 
 

7 

  

--- 

8 

  

66b 

9 

  

91c 

10 

  

80 

11 

  

--- 

a Reaction conditions: 23 or 226 (0.50 mmol), 132a (1.00 mmol), 82 (2.5 mol %), AgSbF6 (10 mol %), 

K2CO3 (1.00 mmol), TFE (2.5 mL), 25 °C, 18 h. b 80 °C, 18 h. c132a (2.00 mmol). 

 

The reaction generally proceeded with good to excellent yields. It is noteworthy, that 

electronically neutral or electron-rich substrates reacted efficiently at room temperature 

(entries 1-3), while electron-deficient substrates, such as halide substituted indoles 

23o, 23h and 23p (entries 4-6) required a higher reaction temperature of 80 °C. 

Furthermore, sterically crowded substrate 23j was converted less efficiently (entry 8), 

while nitro-substrate 23n appeared to be completely insoluble in TFE (entry 7). Simple 

pyrimidylpyrrole 217a was converted with excellent yield (entry 9), however only 

double alkynylation was achieved selectively by increasing the amount of 132a. Lower 

amounts of bromoalkyne 132a led to an inseperable mixture of mono- and 
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bisalkynylated products. Moreover, tetrahydroindolone 217c was smoothly converted, 

once again highlighting the exceptional functional group tolerance of the cobalt 

catalysis (entry 10).  

For tryptophan derived substrate 226a, no reaction was observed (entry 11). Besides 

indoles 23, also pyrroles 217 were investigated regarding the substrate scope  

Finally, the use of different bromoalkynes 132 was tested, both regarding other silyl 

protecting groups as well as alkyl and aryl alkynes (Table 3.12). 

Table 3.12 Scope of the cobalt-catalyzed C–H alkynylation using bromoalkynes 132.a 

 

Entry Bromoalkyne Product Yield [%] 

1 

 

 

 

96b 

2 

 

 

 

62 

3 

 

 

 

73 

4 

 

 

 

--- 



64 
 

5 

 
 

 

--- 

a Reaction conditions: 23a (0.50 mmol), 132 (1.00 mmol), 82 (2.5 mol %), AgSbF6 (10 mol %), KOAc 

(1.00 mmol), TFE (2.5 mL), 25 °C, 18 h. b K2CO3 (1.00 mmol). 

Besides TIPS-alkyne 132a (entry 1), also DPMS- and TMS-alkynes 132b and 132c 

were successfully tolerated (entries 2 and 3), under a slight variation of the standard 

conditions. In contrast, aryl and alkyl substituted alkynes 132d abd 132e proved to be 

not reactive under the reaction conditions (entries 4 and 5). 

 

3.3.3 Mechanistic Studies 

After establishing the scope of the cobalt-catalyzed C–H alkynylation of indoles 23, 

mechanistic experiments were conducted to gain insights into its mode of action. To 

this end, a reaction using D2O as cosolvent was conducted in the absence of 

bromoalkyne 132a. Starting material 23a could be reisolated and deuterium 

incorporation was observed in the C-2 position with 50% deuteration. This is indicative 

of a reversible C–H metalation, while no deuteration could be observed in the C-3 or 

C-7 position (Scheme 3.3). 

 

Scheme 3.3 H/D Exchange experiment. 

 

Additionally, competition experiments were conducted with regard to the indole 23 

(Scheme 3.4).  
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Scheme 3.4 Intermolecular competition experiment between indoles 23o and 23d. 

The competition experiment between electron-rich and electron-deficient arenes 23d 

and 23o revealed a preferential reactivity in favor of the more electron-rich substrate 

23d. This is however not in line with a CMD/AMLA-type C–H activation,[27-28] where a 

preferred reaction of the electron-deficient arene is expected, due to the higher kinetic 

acidity of electron deficient arenes. Therefore, a BIES C–H activation seems plausible 

for the cobalt-catalyzed C–H activation.[29] Furthermore, a competition experiment 

between TMS-substituted alkyne 132c and TIPS substituted alkyne 132a was 

conducted by M. J. Gonzalez and showed a preference for the TMS-alkyne 132c under 

the reaction conditions.[194] This can, for example, be rationalized by a faster rection 

due to steric effects of the far less bulky TMS group. 

 

3.3.4 Proposed Catalytic Cycle 

Based on these findings, a mechanistic scenario for the cobalt-catalyzed C–H 

alkynylation of indoles 23 was proposed (Scheme 3.5). The active cobalt catalyst 229 

is formed in situ through the cleavage of the [Cp*CoI2]2-dimer upon coordination of the 

base and abstraction of the iodide ligands. Coordination of substrate 23a followed by 

a BIES C–H metalation event[29] generates cobaltacycle 230. Insertion of alkyne 132a 

into the Co–C bond generates seven-membered cobaltacycle intermediate 226, which 

can then undergo β-bromo elimination to liberate the desired product 89aa. A 

subsequent ligand exchange regenerates the active cationic complex 229. 
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Scheme 3.5 Proposed catalytic cycle for the cobalt-catalyzed C–H alkynylation. 

 

3.3.5 Diversification of the Alkynylated Indoles 

To highlight the synthetic potential of the devised cobalt-catalyzed C–H alkynylation, 

several modifications of the isolated products 89 were performed (Scheme 3.6). 

First, the selective deprotection of the silyl group was achieved using TBAF.[195] The 

generated terminal alkyne 233  was subsequently alkylated by a simple 

deprotonation/alkylation sequence using methyl iodide[196] or arylated by a 

Sonogashira-Hagihara coupling using Pd(OAc)2, CuI and PPh3 as the catalytic 

system.[197] Furthermore, a deprotection of both silyl group and pyrimidyl group was 

achieved using NaOEt in a DMSO/MeOH mixture at 60 °C.[79a] The generated 

ethynylindole 236 was then utilized in a copper-catalyzed 1,3-dipolar cycloaddition to 

synthesize triazole 237 (Scheme 3.6, bottom).[198]  
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Scheme 3.6 Diversification of alkynyl indoles 89. 

Overall, the synthetic value of the alkynyl group could be highlighted by these 

reactions, underlining the usefulness of the novel cobalt-catalyzed C–H alkynylation at 

exceedingly mild conditions. 

 

3.3.6 Optimization of the Manganese-Catalyzed C–H Alkynylation 

In recent years, the power of manganese(I) complexes as catalysts for C–H activation 

was discovered and exploited for numerous transformations.[119] Manganese is an 

important trace metal in living organisms, the third most abundant transition metal in 

the earth’s crust and advantageous regarding toxicity and availability.[35] So far a 

majority of transformations are hydrofunctionalizations of unsaturated C–C or C–Het 

multiple bonds, while substitutive transformations remained scarce.[119] Along these 

lines, Z. Ruan discovered the C–H alkynylation of indoles 23 using bromoalkynes 

132.[199] While the initial reaction was already convincing with an isolated yield of 93%,  

further optimization studies were conducted to identify the ideal conditions (Table 

3.13). 
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Table 3.13 Optimization of the manganese(I)-catalyzed C–H alkynylation.a 

 

Entry X Y Base Solvent T [°C] Yield [%] 

1 CH 10 Cy2NH 1,4-dioxane 120 93b 

2 CH 5.0 Cy2NH 1,4-dioxane 100 78b 

3 CH 5.0 Cy2NH DCE 80 85b 

4 N 10 Cy2NH 1,4-dioxane 120 94 

5 N 5.0 Cy2NH 1,4-dioxane 120 71 

6 N 5.0 NaOAc 1,4-dioxane 120 41b 

7 N 5.0 Na2CO3 1,4-dioxane 120 33b 

8 N 5.0 Cy2NH TFE 120 15b 

9 N 5.0 Cy2NH DCE 120 96 

10 N 2.5 Cy2NH DCE 120 71 

11 N 5.0 Cy2NH DCE 100 92 

12 N 5.0 Cy2NH DCE 80 95 

13 N 5.0 Cy2NH DCE 60 71 

14 N 5.0 Cy2NH DCE 80 99b, c 

15 N --- Cy2NH DCE 80 --- 

16 N 5.0 Cy2NH DCE 80 <5 

a Reaction conditions: 23 (0.50 mmol), 132a (0.75 mmol), 169 (Y mol %), Base (1.00 mmol), solvent 

(1.0 mL), T, 16 h. b performed by Z. Ruan. c 132a (0.60 mmol). 

It was observed that pyridyl as well as pyrimidyl directing groups were competent in 

the C–H alkynylation, with the pyrimidyl group being preferred due to the easy 

synthesis of the pyrimidyl indoles (entries 1-4).[200] A reduction of the catalyst loading 

to 5.0 mol % led to a reduced yield (entry 5), whereas bases other than 

dicyclohexylamine were not effective (entries 6 and 7). TFE was not suitable as the 

reaction medium (entry 8), however DCE showed very promising results (entry 9). 

Again, a further reduction of the catalyst loading led to a decrease in yield (entry 10), 

while the temperature could be reduced to 80 °C without a loss of reactivity (entries 11 
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and 12). Below 80 °C the transformation was not as efficient (entry 13). The amount of 

bromoalkyne 132a could be reduced to 1.2 equivalents (entry 14) and control 

experiments confirmed the essential role of the manganese catalyst 169 and the base 

(entries 15 and 16).  

Furthermore, due to the limitations known from the cobalt-catalyzed C–H alkynylation 

regarding aryl and alkyl substituted alkynes 132, further optimization studies using 

various Lewis-acidic additives were conducted (Table 3.14). 

Table 3.14 Optimization of the manganese(I)-catalyzed C–H alkynylation using aryl alkyne 132d.a 

 

Entry Additive X Yield [%] 

1 --- --- ---b 

2 BPh3 5.0 61b 

3 BPh3 5.0 ---b, c 

4 CuBr2 5.0 --- 

5 AlCl3 5.0 32 

6 BBr3 5.0 56 

7 ZnCl2 5.0 <5 

8 ZnBr2 5.0 <5 

9 ZnI2 5.0 ---b 

10 FeCl3 2.5 ---b 

11 MgCl2 5.0 --- 

12 BPh3 0.05 92b 

13 BPh3 0.05 95b, d 

14 BPh3 0.05 86b, e 

a Reaction conditions: 23a (0.50 mmol), 132d (0.60 mmol), 169 (5.0 mol %), Cy2NH (1.00 mmol), DCE 

(1.0 mL), 80 °C, 16 h. b performed by E. Manoni. c without 169. d 1 h. e 169 (2.5 mol %). 

The reaction did not not proceed in the absence of the additive (entry 1), while the 

addition of catalytic amounts of BPh3 provided beneficial results (entry 2). A control 

experiment confirmed that the manganese catalyst 169 is still essential (entry 3). 
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Furthermore, only additives containing group 3 elements were able to promote the 

catalytic activity. Simple aluminumtrichloride and borontribromide led to product 

formation, although at reduced efficacy (entries 5 and 6), whereas other Lewis-acidic 

additives, such as copper(II) bromide, zinc(II) halides and iron trichloride were not 

effective (entries 4, 7-11). The loading of the additive could be reduced (entries 12-14). 

Moreover, it was possible to lower the catalyst loading and the reaction time of the 

transformation (entry 13). 

 

3.3.7 Scope of the Manganese-Catalyzed C–H Alkynylation 

With the optimized reaction conditions being identified, the robustness of the 

discovered C–H alkynylation with regard to various functional groups was evaluated. 

First, the scope of pyrimidyl and pyridyl indoles 23 and pyrroles 217 was investigated 

(Table 3.15). 

Table 3.15 Manganese(I)-catalyzed C–H alkynylation of indoles 23 and pyrroles 217. 

 

Entry Indole Product Yield [%] 

1 

  

99 

2 

  

78 

3 

  

 

88 



71 
 

4 

  

 

91 

5 

  

 

63 

 

6 

  

89b 

7 

  

92 

8 

  

96 

a Reaction conditions: 23 or 217 (0.50 mmol), 132a (0.6 mmol), 169 (5.0 mol %), Cy2NH (1.00 mmol), 

DCE (1.0 mL), 80 °C, 16 h. b 132a (1.20 mmol). 

Besides the unsubstituted indole 23a, which was transformed with excellent yield 

(entries 1), electron-rich 5-methoxyindole 23d was converted with good yield (entriy 2).  

Further indoles 23 containing valuable electrophilic functional groups, such as fluoro, 

bromo and nitro, were smoothly converted (entries 3-5). Also, pyrroles were 

investigated regarding their use in this reaction. Simple 2-pyrimidylpyrrole (217a) was 

also readily alkynylated, however an excess of bromoalkyne 132a was necessary to 

ensure selective transformation to the bisalkynylated product 223aa (entry 6). Cyclic 

ketone 217c was converted with excellent yield, as was the sterically congested 2,4-

dimethylpyrolle 217b.  

The scope of silyl groups on the alkyne 132 was studied exclusively by Z. Ruan and 

will therefore not be shown in detail.[199] It was, however, observed that a variety of 
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different silylalkynes 132 reacted all with good to excellent yields  of more than 85%, 

regardless of the steric bulk.  

In addition, the scope of non-silyl substituted alkynes 132 was investigated using the 

optimized reaction conditions with the Lewis-acidic additive BPh3 as co-catalyst (Table 

3.16). 

Table 3.16 Scope of the manganese-catalyzed C–H alkynylation using bromoalkynes 132.a 

 

Entry Bromoalkyne Product Yield [%] 

1 

  

95 

2 

  

99 

3 

  

54 

4 

  

81 

a Reaction conditions: 23a (0.50 mmol), 132 (0.60 mmol), 169 (5.0 mol %), BPh3 (0.05 mol %), Cy2NH 

(1.00 mmol), DCE (1.0 mL), 80 °C, 16 h.   

The manganese-catalyzed C–H alkynylation proved to be amenable towards variety of 

aryl substituted 132 with electron-rich as well as electron-deficient substituents. While 
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electronically neutral and electron-rich alkynes are converted very effictively (entries1, 

2, 4), electron-deficient alkyne 132g (entry 3) was less efficient in the manganese-

catalyzed C–H alkynylation. Moreover, several other aryl as well as alkenyl and alkyl 

substituted bromoalkynes 132 were shown to be viable substrates by Z. Ruan and E. 

Manoni.[201] 

Finally, the C–H alkynylation of readily available tryptophan derivatives 221a and 

several oligopeptides 222 was investigated (Table 3.17). 

Table 3.17 Scope of the manganese-catalyzed C–H alkynylation of peptides 221.a 

 

Entry Peptide Product Yield [%] 

1 

  

82 

(>98% ee) 

2 

  

71 

(>98% ee) 

3 

  

69 

a Reaction conditions: 226 (0.50 mmol), 132a (0.60 mmol), 169 (5.0 mol %), Cy2NH (1.00 mmol), DCE 

(1.0 mL), 80 °C, 16 h.  
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Simple methyl- and Boc-protected tryptophan 226a reacted readily with bromoalkyne 

132a to alknynylated tryptophan 227aa (entry 1). Tripeptide 226b with the tryptophane 

moiety in the middle of the peptide chain (entry 2) and tripeptide 226c with the 

tryptophan in terminal position (entry 3) resulted both in efficient product formation. 

Furthermore, peptide 226c includes a handle for further ligation which was left intact 

during the transformation. 

To ensure the retention of stereoconfiguration during the manganese catalysis, the 

products 227aa and 227ba were analyzed by chiral HPLC and compared to their 

racemic analogues, showing that no racemization occured during the manganese 

catalysis (Figure 3.2 and 3.3) 

 

Figure 3.2 HPLC analysis of 227aa 

 

 

Figure 3.3 HPLC analysis of 227ba. 
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3.3.8 Mechanistic Studies for the Manganese-Catalyzed Alkynylation 

After the investigation of the scope of the manganese-catalyzed C–H alkynylation, 

detailed mechanistic experiments were conducted to gain insights into its mode of 

action. 

First, deuteration studies in the presence of D2O were conducted by Z. Ruan,[199] 

revealing the incorporation of deuterium in the reisolated starting material in C-2 

position of 61% and in C-3 position of 13%. Furthermore, the isolated product showed 

26% deuterium incorporation in the C-3 position (Scheme 3.7). 

 

Scheme 3.7 H/D-exchange with isotopically labeled co-solvent. 

These findings are indicative of a facile and reversible C–H cleavage. To gain further 

insight into the C–H cleavage, additional deuteration studies in the absence of alkyne 

132a (Scheme 3.8), in the absence of MnBr(CO)5 (169) (Scheme 3.9) and for the 

product 89aa under the otherwise optimized reaction conditions (Scheme 3.10) were 

conducted. 

 

Scheme 3.8 H/D-exchange in the absence of bromoalkyne 132a. 
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Scheme 3.9 H/D-exchange in the absence of the catalyst 169. 

 

Scheme 3.10 H/D-exchange of the product 89aa in the absence of catalyst 169. 

The results of the deuteration experiments confirmed that the catalyst 169 is involved 

in the deuteration at the C-2 position of indole 23a, while bromoalkyne 132a was not 

essential for the deuteration. The observed deuteration in C-3 position in the reisolated 

starting material 23a and product 89aa can be attributed to an electrophilic aromatic 

substitution pathway,[202] that is operative also in the absence of the manganese 

catalyst 169, for both the starting material 23a as well as the product 89aa (Schemes 

3.9 and 3.10). 

A KIE experiment conducted by Z. Ruan revealed a KIE of kH/kD = 1.0,[199] indicating 

that the C–H bond cleavage is not the rate-determining step of this reaction. Further 

reactions also conducted by Z. Ruan using various radical scavengers were 

inconclusive, as TEMPO did shut down the reaction nearly completely, while air and 

BHT reduced the catalytic efficiency, with yields over 50% could still be achieved.[199] 

Finally, a slight preference for the more electron-deficient arene could be observed by 

Z. Ruan.[199] However, the ratio of 1.1/1.0 showed only a minor preferance. 

A detailed analysis of the reaction order for indole 23a, alkyne 132a and manganese 

catalyst 169 was conducted (Figure 3.4). All orders were determined to be 1, indicating 

the involvement of one molecule of each component in or before the kinetically relevant 

steps. Furthermore, the results strongly support the hypothesis that the C–H cleavage 
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is not rate-determining, as the reaction order of alkyne 132a would have been 

(pseudo)-zeroth order if it enters the catalytic cycle after the rate-determining step. 

 

Figure 3.4 Kinetic analysis of the manganese(I)-catalyzed C–H alkynylation. 

To further investigate the mechanism of the manganese(I)-catalyzed C–H alkynylation, 

five-membered manganacycle 238, which is proposed to be an intermediate of the 

catalytic cycle, was synthesized according to a modified literature procedure[129] and 

characterized (Scheme 3.11). 

 

Scheme 3.11 Stoichiometric metalation of substrate 23a. 

The stable manganacycle 238 was formed in good yield in a reaction time of 30 min, 

with comparable yield in the presence of catalytic amounts of BPh3. Upon 

stoichiometric reaction with bromoalkyne 132, the desired product 89aa could be 

obtained in 84% yield in the absence of base after 30 min, hinting at the role of 

cyclometalated complex 238 as an intermediate of the reaction (Scheme 3.12). A 
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similar reaction with alkyne 132d in the presence of BPh3 yielded 73% of the desired 

product 89ad. 

 

Scheme 3.12 Stoichiometric alkynylation of complex 233.  

Finally, to support these findings, Z. Ruan conducted a reaction with 5.0 mol % of 

complex 238 as the catalyst, confirming its applicability as the catalyst.[199]  

Based on the thus obtained results, a catalytic cycle was proposed, which initiates by 

facile and reversible C–H metalation, followed by insertion of bromoalkyne 132a into 

the manganese–carbon bond to generate seven-membered intermediate 240. From 

this intermediate, the catalyst is regenerated by β-bromo elimination, which furnishes 

the desired product 89aa (Scheme 3.13). In case of the aryl and alkyl alkynes, the 

Lewis acid additive is proposed to accelerate the β-bromo elimination, which is not 

necessary for silyl alkynes due to the stabilization by the β-silicon effect.[203] 

 

Scheme 3.13 Plausible mechanism for the manganese(I)-catalyzed C–H alkynylation. 

In summary, two powerful methods have been developed to access alkynylated 

indoles 89 using base metal catalysis under mild conditions. Both protocols showed 
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good functional group tolerance and exclusive regioselectivity for the C-2 position of 

the indole. The mechanism of the manganese-catalyzed protocol was thoroughly 

investigated and analyzed. The applicability of this method to the modification of 

peptides highlights the potential of base metal catalysis for late-stage peptide 

diversification. 

 

3.4 Electrochemical Cobalt-Catalyzed C–H Oxygenation 

Cross-dehydrogenative transformations have greaat potential to realize C–H 

activations with formally only H2 as the stoichiometric byproduct. However, this 

approach suffers from the need for expensive transition metal oxidants, such as 

copper(II) and silver(I) salts to achieve catalytic activity.[174] Therefore, a merger of 

these C–H activations and electrochemistry would be highly desirable.[204] 

 

3.4.1 Optimization of the Cobalt-Catalyzed Electrochemical C–H Oxygentation 

For the optimization of the cobalt-catalyzed C–H oxygenation unsubstituted benzamide 

117a was chosen as the model substrate, and a constant potential of 2.0 V vs Ag/Ag+ 

was applied in a divided cell using a constant potential setup. As the initial step of the 

optimization, the electrode material was investigated regarding its efficiency for the 

envisioned transformation (Table 3.18). 

Table 3.18 Evaluation of electrode material.a 

 

Entry Anode Cathode Yield [%] 

1 Pt Pt 24b 

2 Pt RVC Tracesb 

3 RVC Pt 58 

4 RVC Pt 65c 
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a Reaction conditions: divided cell, 117 (0.25 mmol), Co(OAc)2
.4H2O (20 mol %), NaOAc (1.00 mmol 

each cell), 149a (14 mL), 23 °C, 16 h, 2.0 V. b Performed by T. H. Meyer. c Constant current 4.0 mA. 

A setup using only platinum electrodes showed promising conversion (entry 1), while 

the use of carbon as the cathode was not suitable (entry 2). However, a combination 

of a platinum cathode and a carbon anode proved to be the key for success (entry 3).  

A test reaction using constant current electrolysis (CCE) instead of constant potential 

revealed comparable efficacy (entry 4), thus making the constant current setup more 

attractive due to the much simpler equipment needed.[140c] 

For the further optimization, the reaction time was shortened to 6 h with the current 

increased accordingly. The reaction conditions were first investigated regarding the 

cobalt catalyst (Table 3.19). 

Table 3.19 Optimization of the cobalt catalyst.a 

 

Entry [TM] Yield [%] 

1 Co(OAc)2∙4H2O 58 

2 Co(napht)2 31 

3 Co(oxalate)2 21 

4 Co(acac)2 44 

5 Co(NO3)2 13 

6 CoCl2 64b, c 

7 CoBr2 55b, c 

8 Co(OAc)2∙4H2O 26d 

9 Cu(OAc)2 - 

10 - - 

a Reaction conditions: 117a (0.50 mmol), [TM] (20 mol %), NaOAc (1.00 mmol) in each cell, 149a (7.0 mL 

in each cell), constant current of 8 mA, 6 h. b Using NaOPiv (1.00 mmol) instead of NaOAc. c Performed 

by T. H. Meyer d [TM] (10 mol %).  
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The evaluation of cobalt catalysts established that common cobalt(II) salts are all 

competent catalysts to some extend. Cobalt(II)acetate tetrahydrate was identified as 

the best choice, CoCl2 and CoBr2 gave comparable yields, although with another base, 

which was later also shown to be beneficial when Co(OAc)2 was used (see Table 3.23). 

Reduced catalyst loadings of 10 mol % were not effective (entry 8), whereas 

copper(II)acetate did not promote the reaction at all (entry 9). The essential nature of 

the cobalt catalyst was highlighted by a control experiment in the absence of cobalt 

(entry 10). 

Table 3.20 Optimization of bases.a 

 

Entry Base Yield [%] 

1 NaOAc 58 

2 KOAc 57 

3 CsOAc 55 

4 n-Bu4NOAc trace 

5 Na2CO3 34b 

6 NaO2CMes 34 

7 NaOPiv 75 

8 - -b 

[a] Reaction conditions: 117a (0.50 mmol), Co(OAc)2
.4H2O (20 mol %), base (1.00 mmol) in each cell, 

149a (7.0 mL in each cell), constant current of 8 mA, 6 h. b Performed by T. H. Meyer. 

While the alkali metal cation of the base did not seem to have any significant influence 

(entries 1-3), carbonate and aryl carboxylate performed significantly worse (entries 5 

& 6). The ideal base was identified as sodiumpivalate, yielding 75% of the desired 

product (entry 7). The base was found to be essential here (entry 8), probably due to 

the need to deprotonate the amide to facilitate coordination to the catalyst. While the 

use of ethanol (149a) as the solvent has some benefits, such as  good solubility of the 

additive, which makes the use of costly supporting electrolytes unnecessary,[205] this is 
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not true for all alcohols which might be explored in the scope. Therefore, several 

solvents and solvent mixtures were evaluated during the optimization as well (Table 

3.21). 

 

Table 3.21 Optimization of solventsa 

 

Entry Solvent Yield [%] 

1 EtOH  75 

2 MeCN/EtOH (16/1) 12b 

3 MeCN/EtOH (1/1) 19b 

4 DMSO/EtOH (16/1) ---b 

5 DMF/EtOH (16/1) --- 

6 DMF/EtOH (1/1) --- 

7 Aceton/EtOH (1/1) 39 

8 THF/EtOH (1/1) 11 

9 CH2Cl2/EtOH (1/1) ---b 

[a] Reaction conditions: 117a (0.50 mmol), Co(OAc)2 (20 mol %), NaOPiv (1.00 mmol) in each cell, 

solvent (7.0 mL in each cell), 8 mA, 6 h. b Performed by T. H. Meyer. 

While a mixture of acetone and ethanol (149a) seemed to support catalytic turnover 

(entry 7), all other evaluated mixtures showed either stoichiometric conversion or no 

reaction at all. Therefore, EtOH (149a) was kept as the sole solvent, while for other 

alcohols with a lower conductivity, the addition of a supporting electrolyte was identified 

as the ideal solution. Moreover, also the reaction temperature and time were thereafter 

optimized (Tables 3.22 and 3.23). 
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Table 3.22 Effect of reaction temperature.a 

 

 

Entry   T [°C] Yield [%] 

1 0  17 

2 10 23 

3 20 71 

4 30 73 

5 40 68b 

6 60 58b 

[a] Reaction conditions: 117a (0.50 mmol), Co(OAc)2 (20 mol %), NaOPiv (1.00 mmol) in each cell, 149a 

(7.0 mL in each cell), 8 mA, 6 h. b Performed by T. H. Meyer. 

Table 3.23: Optimization of catalyst loading.a 

 

Entry X [mol %] Time [h] Current [mA] Yield [%] 

1 20  6 8 75 

2 10 6 8 26 

3 10 24 4 68 

4 5 24 4 46 

a Reaction conditions: 117a (0.50 mmol), Co(OAc)2 (X mol %), NaOPiv (1.00 mmol) in each cell, 149a 

(7.0 mL in each cell), 23 °C. 

Interestingly, the reaction was operative over a wide range of reaction temperatures. 

While the obtained yields are rather low at 0 °C and 10 °C (entries 1 & 2), the 
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transformation was still ongoing, hinting at a facile C–H cleavage. Optimal yields were 

observed at 20 °C and 30 °C (entries 3 and 4), while a slow decrease was observed 

at higher temperatures. As for the catalyst loading, 20 mol % were ideal regarding the 

short reaction time. Yet, the yield for a lower catalyst loading could however be 

significantly increased with a longer reaction time (entries 3 and 4, Table 3.24). 

 

 

3.4.2 Scope of the Cobalt-Catalyzed Electrochemical C–H Oxygentation 

With the optimized rection conditions in hand, we became interested in exploring the 

scope of benzamides 117 for the electrochemical cobalt-catalyzed C–H oxygenation. 

In initial test reactions, several N-substituents were evaluated regarding their potential 

to promote the envisioned C–H transformation (Table 3.24). 

Table 3.24 N-directing group effect for the electrochemical cobalt-catalyzed C–H oxygenation.a 

 

Entry Benzamide Product Yield [%] 

 

1 

  

 

75 

 

2 

  

 

---b 
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3 

  

 

36b 

 

4 

  

 

--- 

 

5 

  

 

--- 

a Reaction conditions: Benzamide (0.50 mmol), Co(OAc)2 (20 mol %), NaOPiv (1.00 mmol in each cell), 

149a (7.0 mL in each cell), 23 °C, 8.0 mA. b Performed by T. H. Meyer.  

Besides pyridine-N-oxide, 8-aminoquinoline was able to promote the electrochemical 

reaction with moderate yield (entry 3),[205] while with other directing groups no reaction 

could be observed. With the best N-substituent identified, the functional group 

tolerance of the C–H oxygenation was investigated (Table 3.25). 

Table 3.25 Electrochemical cobalt-catalyzed C–H oxygenation of benzamides 117a.a 

 

 

Entry Benzamide Product Yield [%] 

1 

  

75 



86 
 

2 

  

52 

3 

  

74 

4 

  

58 

5 

  

78 

6 

  

70 

7 

  

59 

8 

  

57 

9 

  

61 
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10 

  

--- 

11 

  

--- 

12 

  

--- 

13 

  

--- 

a Reaction conditions: 117 (0.50 mmol), Co(OAc)2 (20 mol %), NaOPiv (1.00 mmol in each cell), 149a 

(7.0 mL in each cell), 23 °C, 8.0 mA. 

Unsubstituted benzamide 117a (entry 1) was efficiently converted as substitutents in 

para-position to the benzamide were well tolerated, while a good yield was achieved 

for electron-rich 4-methoxybenzamide 117c (entry 3). Electron-deficient amide 117b 

(entry 2) was not transformed as efficiently and the chloro substitutent in amide 117d 

was left untouched (entry 4). 3-Methylbenzamide 117e and naphthylamide 117f were 

effectively oxygenated (entries 5 and 6). meta-Bromo arene 117h was well converted 

with moderate yield (entry 8). Tertiary amine 117g did not reduce the catalytic efficacy 

(entry 7), ketone 117i was well tolerated with moderate yield (entry 9), highlighting the 

mild reaction conditions of the electrochemical approach. However, also for this 

transformation, limitations regarding the scope remain. The use of benzamide with an 

ortho-substituent 117j was generally not feasible, as no reaction could be observed 

(entry 10). This can be rationalized by steric interactions between the ortho-substitutent 

and the amide in the relevant transition states of the catalysis.[206]  Moreover, also 

heterocyclic substrates did not show any reactivity, for both electron-rich (entry 11 and 

12) as well as electron-deficient heteroarenes (entry 13), as solely the remaining 

starting material could be observed. 
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With the scope of benzamides 117 established, the use of different alcohols 149 as 

coupling partners was explored for the cobalt-catalyzed C–H oxygenation under 

electrochemical conditions (Table 3.26). 

Table 3.26 Electrochemical cobalt-catalyzed C–H oxygenation using alcohols 149.a 

 

Entry Alcohol Product Yield [%] 

1 
MeOH 

(149b) 

 

71 

2 
n-BuOH 

(149c) 

 

52b 

3 
CF3CH2OH 

(149d) 

 

62c 

4 
ClCH2CH2OH 

(149e) 

 

76 



89 
 

5 
MeOCH2CH2OH 

(149f) 

 

64 

 

6 
AcOCH2CH2OH 

(149g) 

 

54d 

7 
NCCH2CH2OH 

(149h) 

 

61d 

8 

 

 

78d 

9 

 

 

74d 

10 

 

 

68d 



90 
 

11 

 

 

52d 

12 

 

 
 

---d 

13 

 

s-BuOH 

(149n) 

 

traced 

14 

 

 
 

---d 

15 

 

t-BuOH 

(149p) 

 

---e 

a Reaction conditions: 117a (0.50 mmol), Co(OAc)2 (20 mol %), NaOPiv (1.00 mmol in each cell), 149 

(7.0 mL in each cell), 23 °C, 8.0 mA. b n-Bu4NOAc (1.0 mmol in each cell) c 60 °C. d in MeCN and 

n-Bu4NPF6 (0.3 M). 

Simple methanol (149b) enabled the reaction efficiently (entry 1), while in n-butanol 

(149c) the conductivity was low, and no conversion was observed under standard 

conditions. However, upon addition of n-Bu4NOAc in each cell as supporting 

electrolyte, the reaction proceeded smoothly (entriy 2). Trifluoroethanol (149d) was 
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converted with moderate yield at an increased temperature of 60 °C (entry 3), while 

ethanol derivatives 149e and 149f were converted under the standard conditions 

efficiently (entries 4 and 5). Ethanol derivates 149g and 149h containing valuable 

functional groups, such as ester and nitrile (entries 6 and 7), were smoothly 

oxygenated. However, the addition of acetonitrile and a supporting electrolyte were 

necessary to ensure a sufficient conductivity. Especially noteworthy was the C–H 

oxygenation using benzylic alcohol 149j (entry 9) and its derivate 149k (entry 10), as 

these alcohols should be more prone to oxidation than the aliphatic alcohols.[206] (S)-

Citronellol (149l) could be employed upon the addition of a supporting electrolyte 

without racemization of the stereogenic center, as confirmed by HPLC analysis (Figure 

3.5). Finally, neopentyl alcohol (149m) (entry 13) was used, however no catalytic 

activity was observed. Besides primary alcohols, secondary alcohols were also 

evaluated towards this reaction. While s-BuOH (149n) showed only traces of the 

desired product, cyclohexyl alcohol 149o did not exhibit any reactivity (entries 13 and 

14). Finally, also tertiary alcohol t-BuOH (149p) was tested, but no reaction could be 

observed (entry 16). 

 

 

Figure 3.5: HPLC-Chromatogram of (rac)-150al and (S)-150al. 

Besides the scope of benzamides 117, T. H. Meyer could also show that alkenes are 

viable substrates for the cobalt-catalyzed C–H oxygenation.[208] 

Finally, a gram scale reaction was performed to highlight the easy upscaling and 

convenient electrochemical setup. For reasons of simplicity, an undivided cell was 

used, as no divided cells of the necessary size were available at this point (Scheme 

3.14). 
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Scheme 3.14 Gram scale reaction. 

 

3.4.3 Mechanistic Studies and Proposed Mechanism 

To get insight into the modus operandi of the electrochemical cobalt catalyzed C–H 

oxygenation, detailed mechanistic studies were conducted.  

To begin with, the Faradaic efficacy of the reaction was calculated. This can be done 

based on the observed yield. 

Efficacy =  
𝑛 ∗ 𝑦 ∗ 𝑧 ∗ 𝐹

𝑡 ∗ 𝐼
                                                         (1) 

In equation (1), n is the amount of starting material in mol, y is the yield observed for a 

given reaction, z the number of electrons needed to achieve turnover, F is the Faraday 

constant, t is the reaction time in seconds and I the applied current in ampere (coulomb 

per second). Based on equation (1), the electron efficacy was calculated for the C–H 

oxygenation of benzamide 117a: 

0.0005 mol ∗ 0.75 ∗ 2 ∗ 96485 C/mol

21600 s ∗ 0.008 C/s
= 0.418                               (2) 

The electron efficacy for the given reaction was thus calculated to be 42%, which is 

corresponding to a charge of 3.58 F passed through the solution per each mole of 

substrate 117a.  

Furthermore, deuteration studies using [D]1-methanol ([D]1-149b) as the solvent 

showed no significant H/D-incorporation in either the reisolated starting material nor in 

the product, suggesting an irreversible C–H activation event (Scheme 3.15). 
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Scheme 3.15 H/D Exchange experiment. 

Additionally, the kinetic isotope effect was studied by a comparison of the deuterated 

benzamide [D]5-117a and the standard substrate 117a in independent reactions. A 

minor KIE of kH/kD ≈ 1.05 suggests a facile C–H activation, which is not the rate 

determining step of the overall transformation (Scheme 3.16). 

 

Scheme 3.16 Measurement of the kinetic isotope effect. 

 

Figure 3.6 Initial rates analysis of 150aa and [D4]-150aa. 

To gain further insight into the reaction mechanism, competition experiments of 

electron-rich and electron-deficient arenes 117 as well as electron-rich and electron-

deficient alcohols 149 were conducted. For benzamides 117, a competition experiment 

of 4-methyl benzamide 117o and 4-trifluoromethyl benzamide 117b displayed a clear 
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preference for the more electron-rich benzamide 117 with a ratio of 1.9/1 in favor of 

the 4-methyl substituted arene 117o (Scheme 3.17 and Figure 3.7). This finding was 

further substantiated by a qualitative analysis of the initial rates for both substrates, 

which highlighted a faster initial reaction for the electron rich substrate (Figure 3.7). 

 

 Scheme 3.17 Competition experiment of arenes 117o and 117b. 

 

Figure 3.7. 1H-NMR spectra of the mixture of 150oa and 150ba and qualitative analysis of the initial 

rates. 

For the alcohol coupling partner 149, a similar competition experiment was conducted, 

showing a clear preference for electron-rich ethanol (149a) over trifluoroethanol (149c) 

(Scheme 3.18). 

 

Scheme 3.18 Competition experiment of different alcohols 149. 
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Finally, a kinetic profile of the catalysis was recorded under the electrochemical 

conditions, as well as under the chemical conditions reported by Song and coworkers 

(Figure 3.8).[111b] As can be seen in the figure, the overall shape of the kinetic profile is 

somewhat similar for both reactions, slowing down after approximately 3 h. 

 

Figure 3.8 Kinetic profile for the electrochemical (left) and chemical (right) oxidation. 

In addition, together with T. H. Meyer, detailed cyclovoltammetric studies were 

conducted in methanol as well as acetonitrile.[144d] In methanol (149b), the oxidation of 

cobalt(II) acetate in the presence of sodiumpivalate was observed in the absence or 

presence of the substrate at a potential of 1.19 VSCE. In contrast, the substrate 117a 

alone was oxidized at a much higher potential of 1.51 VSCE, being suggestive of a facile 

initial oxidation of cobalt(II) to cobalt(III) under the reaction conditions. In acetonitrile, 

similar potentials were observed. Furthermore, quenching experiments indicated the 

formation of a cyclometalated species which reacted in the presence of ethanol (149a) 

but is relatively stable in its absence (Figure 3.9). 

 

 

 

 

 

 

Figure 3.9 Cyclic voltammograms in MeCN (left) and MeOH (right). 
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From the data obtained by the aforementioned experiments, a plausible catalytic cycle 

can be proposed (Scheme 3.19). The reaction is initiated by the facile formation of the 

active cobalt(III) species 248 by anodic oxidation. Coordination to the deprotonated 

substrate 117 and facile BIES[29] C–H activation results in a five-membered 

intermediate 249. However, as shown in scheme 3.19, also one electron oxidation of 

117 seems possible based on CV data, although C–H activation of the radical cation 

would result in an open shell intermediate 249. Formation of the C–O bond occurs 

presumably by reductive elimination, resulting in a cobalt(I) species 250, from which 

product 150 is liberated by proto-demetalation. Finally, the active species 248 is 

regenerated by anodic oxidation. 

 

Scheme 3.19 Proposed catalytic cycle. 

In summary, the first oxidative cobalt-catalyzed C–H activation under electrochemical 

conditions was realized in the form of an electrocatalytic cobalt-catalyzed C–H 

oxygenation of benzamides 117. The protocol features exceedingly mild conditions, a 

broad and robust scope of functional groups and the possibility to perfrom an easy 

upscaling. Additionally, the unprecedented electrocatalytic cobalt catalysis was 

mechanistically investigated regarding its mode of action. 
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3.5 Electrochemical Cobalt-Catalyzed C–H Amination 

Inspired by the success of the electrochemical cobalt-catalyzed C–H oxygenations,[206] 

the formation of other C–X bonds became a next target. In the meantime, C–N 

formations were realized as part of a C–H/N–H annulation,[168] making also the 

intermolecular direct C–H/N–H cross-coupling highly desirable. 

 

3.5.1 Optimization of the Cobalt-Catalyzed Electrochemical C–H Amination 

Based on previous reports on cobalt-catalyzed amination,[110b, 110c] initially, an 

undivided cell setup using cobalt(II)acetate tetrahydrate, sodium acetate, and 

acetonitrile with a supporting electrolyte and a temperature of 60 °C were chosen as 

the starting conditions (Table 3.27). 

Table 3.27 Optimization of the cobalt catalyzed amination.a

 

Entry [Co] Base X Y Solvent Yield [%] 

1 Co(OAc)2∙4H2O NaOAc 4.5 12 MeCN 41 

2 Co(OAc)2∙4H2O NaOAc 4.5 12 DCE 16 

3 Co(OAc)2∙4H2O NaOAc 4.5 12 HFIP --- 

4 Co(OAc)2∙4H2O NaOAc 12 6 MeCN 54 

5 Co(acac)2 NaOAc 12 6 MeCN 21 

6 Co(acac)3 NaOAc 12 6 MeCN 33 

7 Co(ClO4)2 NaOAc 12 6 MeCN 41 

8 Co(oxalate)2 NaOAc 12 6 MeCN 12 

9 CoI2 NaOAc 12 6 MeCN 49 

10 [Co(NH3)6]Cl3 NaOAc 12 6 MeCN --- 

11 Co(OAc)2∙4H2O KOAc 12 6 MeCN 37 

12 Co(OAc)2∙4H2O CsOAc 12 6 MeCN 29 
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13 Co(OAc)2∙4H2O Na2CO3 12 6 MeCN 31 

14 Co(OAc)2∙4H2O Na3PO4 12 6 MeCN 15 

15 Co(OAc)2∙4H2O NaOAc 12 6 MeCN 30b 

16 --- NaOAc 12 6 MeCN - 

a Reaction conditions: 117a (0.50 mmol), [Co] (20 mol %), base (1.50 mmol), n-Bu4NPF6 (0.50 mmol) 

and 146a (1.00 mmol) in solvent (2.0 mL), time, constant current, 60 °C. b [Co] 10 mol %. 

The initial results of the chosen reaction conditions were promising (entry 1), while 

other solvents (entries 2 and 3) failed to deliver the desired product 148. An increase 

of the reaction time coupled with a decrease in applied current led to a significant 

improvement of the yield (entry 4). A representative set of cobalt salts were evaluated 

based on their catalytic ability (entries 5-10). Although several cobalt salts promoted 

the C–N bond formation with comparable efficacy, Co(OAc)2
.4H2O was identified as 

ideal. Based on these results, the effect of different bases was tested (entries 11-14), 

which established NaOAc as the base of choice. Finally, a reaction using a reduced 

catalyst loading resulted in a reduced yield, while a control experiment without catalyst 

did not provide any product (entries 15 and 16). 

Due to the relatively low yields observed during the optimization of the reaction in 

acetonitrile, it seemed improbable to find significantly improved conditions based on 

this solvent. Therefore, a careful evaluation of the reaction parameters, especially of 

the solvent was conducted again (Table 3.28). Furthermore, the reaction time was 

once more increased to 16 h and the current reduced to 4.0 mA. 

Table 3.28 Optimization of solvents.a 

 

Entry Solvent Yield [%] 

1 MeCN 41 

2 DCE 11 

3 HFIP --- 
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4 DMF --- 

5 DMSO --- 

6 i-PrOH/H2O 3:1 --- 

7 GVL 65 

8 GVL/H2O 3:1 --- 

9 2-MeTHF --- 

10 H2O --- 

a Reaction conditions: 117a (0.50 mmol), Co(OAc)2
.4H2O (20 mol %), NaOAc (1.50 mmol), n-Bu4NPF6 

(0.50 mmol) and 146a (1.00 mmol) in solvent (2.0 mL), constant current of 4.0 mA, 16 h. 

Clearly, the results for acetonitrile, DCE and HFIP are comparable to those obtained 

before. Polar solvents DMF and DMSO did not promote the reaction, which was also 

true for an i-PrOH/H2O mixture (entries 4-6). Surprisingly, a significant increase in yield 

could be observed upon the use of γ-valerolactone as the solvent (entry 7), while a 

mixture with water was not a viable solvent (entry 8). Due to its possible synthesis from 

renewable biomass,[19, 208] GVL as the solvent also improved the sustainability of the 

electrocatalysis. Further renewable biomass derived solvent 2-methyl-THF was tested 

as well, however, no catalytic activity was achieved in this solvent. Finally, water as 

the sole solvent was also not suitable for this reaction (entry 10). Based on these new 

information, the remaining reaction parameters were optimized again, this time with 

GVL as the solvent (Table 3.29). 

Table 3.29 Optimization of cobalt catalyst.a 

 

Entry [Co] Yield [%] 

1 Co(OAc)2
.4H2O 65 

2 Co(ClO4)2 58 

3 Co(acac)2 19 

4 Co(acac)3 35 
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5 [Co(NH3)6]Cl3 --- 

6 CoI2 49 

7 Co(oxalate)2 15 

8 --- --- 

[a] Reaction conditions: 117a (0.50 mmol), [Co] (20 mol %), NaOAc (1.50 mmol), n-Bu4NPF6 (0.50 mmol) 

and 146a (1.00 mmol) in GVL (2.0 mL), constant current of 4.0 mA, 16 h 

It could be shown, that cobalt(II)acetate (entry 1) remained the best choice. However, 

cobalt(II)perchlorate gave a comparable yield (entry 2). The results for the other salts 

were comparable to those obtained in MeCN as the solvent (entries 3-7). Finally, a 

control experiment confirmed the essential nature of the cobalt catalyst for the reaction 

also in GVL (entry 8). With the solvent and cobalt salt being optimized, the additive 

was investigated again (Table 3.30). 

Table 3.30 Optimization of the additive.a 

 

Entry Additive Yield [%] 

1 NaOAc  65 

2 NaOPiv 51 

3 Na2CO3 31 

4 KOAc 68 

5 K2CO3 30 

6 K3PO4 15 

7 --- --- 

[a] Reaction conditions: 117a (0.50 mmol), Co(OAc)2
.4H2O (20 mol %), additive (1.50 mmol), n-Bu4NPF6 

(0.50 mmol) and 146a (1.00 mmol) in GVL (2.0 mL), constant current of 4.0 mA, 16 h. 

In the screening of basic additives, sodium pivalate resulted in good, although lower 

yields than sodium acetate (entries 1 and 2), while sodium carbonate was clearly less 

active. Potassium acetate (entry 4) resulted in the highest catalytic efficacy, while other 
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potassium-based additives (entries 5 and 6) did not result in high yields. A control 

experiment confirmed the essential nature of the basic additive (entry 7). 

Finally, further reaction parameters, such as time and temperature were optimized to 

find the ideal conditions for this transformation (Table 3.31). 

Table 3.31 Optimization of further reaction parametersa 

 

Entry T [°C] t [h] Yield [%] 

1 60 16 68 

2 40 24 77b 

3 20 24 23b 

4 40 24 19c 

5 40 24 77b, d 

6 40 24 ---b, d, e 

a Reaction conditions: 117a (0.50 mmol), Co(OAc)2
.4H2O (20 mol %), additive (1.50 mmol) n-Bu4NPF6 

(0.50 mmol) and 146a (1.00 mmol) in GVL (2.0 mL), constant current of 4.0 mA, 16 h. b Co(OAc)2
.4H2O 

(10 mol %), constant current of 2.5 mA. c Co(OAc)2
.4H2O (5.0 mol %). d under air. e no current. 

A longer reaction time at lower temperature of 40 °C was beneficial (entry 2), even at 

reduced catalyst loading of 10 mol % and lower current of 2.5 mA. A further reduction 

in temperature resulted in a significant loss of activity (entry 3), as did a further 

reduction in catalyst loading (entry 4). A nitrogen atmosphere was not necessary (entry 

5), as air does not promote backround reactivity, which was confirmed by a control 

experiment without electric current (entry 6). Based on these results, the optimized 

conditions consisted of cobalt(II)acetate tetrahydrate as the catalyst, potassium 

acetate as the base in GVL with a supporting electrolyte at 40 °C, with a current of 2.5 

mA maintained for 24 h. 
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3.5.2 Scope of the Electrochemical Cobalt-Catalyzed C–H Amination 

With the optimized catalytic system being identified, an initial study was conducted to 

confirm that indeed, pyridine-N-oxide was the N-substituent of choice (Table 3.32). 

 

Table 3.32 N-directing groups for the electrochemical cobalt-catalyzed C–H oxygenation.a 

 

 

 

Entry Benzamide Product Yield [%] 

1 

 
 

77 

2 

  

--- 

3 

 
 

--- 
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4 

 
 

--- 

a Reaction conditions: benzamide (0.50 mmol), Co(OAc)2
.4H2O (10 mol %), KOAc (1.50 mmol) 

n-Bu4NPF6 (0.50 mmol) and 146 (1.00 mmol) in GVL (2.0 mL), 40 °C, constant current of 2.5 mA, 24 h, 

under air. 

Surprisingly, not only was pyridine-N-oxide the best directing group, but the only one 

that enabled the reaction under the optimized conditions.  

With the optimal N-substituent identified, the scope of benzamides 117 was 

established regarding the functional group tolerance of different substituents on the 

benzamide motif (Table 3.33). 

Table 3.33 Scope of the electrochemical cobalt-catalyzed amination of benzamdies 117.a 

 

Entry Benzamide Product Yield [%] 

1 

 
 

77 

2 

  

83 
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3 

 
 

62 

4 

 
 

51 

5 

 
 

72 

6 

 
 

65 

7 

 
 

59 

(81/19) 

8 

 

 

67 

9 

 

 

62 
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10 

 

 

57 

11 

 
 

--- 

a Reaction conditions: 117 (0.50 mmol), Co(OAc)2
.4H2O (10 mol %), KOAc (1.50 mmol) n-Bu4NPF6 (0.50 

mmol) and 246a (1.00 mmol) in GVL (2.0 mL), 40 °C, constant current of 2.5 mA, 24 h, under air. (site-

selectivities in parentheses). 

Besides the unsubstituted benzamide 117a, which was converted smoothly, various 

alkyl and aryl substituents were well tolerated (entries 2-4). Contrary to the 

electrochemical cobalt-catalyzed C–H oxygenation, the use of ortho-substituted 

benzamide 117p was possible, although only moderate yield was achieved (entry 4). 

Additionally, sensitive but also valuable functional groups, such as thioether and ester, 

were well tolerated (entries 5 and 6). An iodo substituent in the meta position was 

tolerated, but a mixture of regio-isomers was isolated (entry 7). Finally, electron-rich 

heterocycles were evaluated as substrates. Thiophene 117k was efficiently converted 

(entry 8), which holds also true for the annulated substrates 117s and 117t (entries 9 

and 10). Finally, the indole derived susbtrate 117l did not show any activity under the 

optimized conditions (entry 11) and was reisolated quantitatively. With a viable scope 

containing valuable functional groups in hand for benzamides 117, the amine coupling 

partner 146 was evaluated next (Table 3.34). 
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Table 3.34 Electrochemical cobalt-catalyzed C–H amination using amines 146.a 

 

Entry Amine Product Yield [%] 

1 

 

 
 

77 

2 

 

 

61 

3 

 

 

74 

4 

 
 

71 

5 

 

 

69 
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6 

 

 

54 

 

7 

 
 

55 

8 

 

 

trace 

9 

 
 

--- 

10 

 

 

--- 

11 

 

 

--- 

12 

 

 

--- 
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13  

 

 

trace 

14 

 

 

--- 

15 

 

 

trace 

16 

 

 

--- 

17 

 

 

--- 

18 

 

 

--- 

a Reaction conditions: 117a (0.50 mmol), Co(OAc)2
.4H2O (10 mol %), KOAc (1.50 mmol) n-Bu4NPF6 

(0.50 mmol) and 146 (1.00 mmol) in GVL (2.0 mL), 40 °C, constant current of 2.5 mA, 24 h, under air.  

The use of morpholine (146a) resulted in formation of the desired product 148aa in 

good yield (entry 1), while the thio analogue 146b (entry 2) showed slightly reduced 

efficacy. Unsubstituted piperidine (146c), as well as 4-methyl- and 4-phenylpiperidine 

146d and 146e were converted with good yields to the desired products (entries 3-5). 

Remarkable is the smooth conversion of 4-chloropiperidine (146f) with moderate yield, 
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which offers a potential handle for subsequent functionalization of the products (entry 

6). N-methylpiperazine (146g) was a competent substrate (entry 7), while the N-phenyl 

and N-Boc substituted analogues 146h and 146i showed only traces of the product or 

no conversion, respectively (entries 8 and 9). Tetrahydroisoquinoline (146j) as well as 

cyclic secondary amines 146k and 146l with different ring sizes (entries 10-12) did not 

lead to any observed product formation. Acyclic amines were generally not successful 

in this reaction. While trace amounts of the product could be observed in two cases 

(entries 13 and 15), all other experiments were not successful. The low reactivity of 

substrates 146p and 146o was initially attributed to a possible elimination of the α-

hydrogens or an oxidation to the iminium ion. However, amines without α-hydrogens 

(entries 14 and 16) showed even worse results, although especially in the case of bis-

t-butyl amine 146p sterics could also play a role. Finally, primary amines 146q and 

146r were evaluated and found to be not suitable for the amination under these 

optimized conditions (entries 17 and 18). 

 

3.5.3 Mechanistic Studies and Proposed Mechanism 

After evaluating the robustness of the electrochemical cobalt-catalyzed C–H amination 

in terms of functional group tolerance on both coupling partners, detailed mechanistic 

studies were conducted. Initially, the calculation of the current efficiency based on the 

formation of product 148aa, revealed a value of 34% (vide infra), which is slightly lower 

than the one determined for the cobalt-catalyzed C–H alkoxylation. 

Efficacy =  
𝑛 ∗ 𝑦 ∗ 𝑧 ∗ 𝐹

𝑡 ∗ 𝐼
=

0.0005 mol ∗ 0.77 ∗ 2 ∗ 96485 C/mol

86400 s ∗ 0.0025 C/s
= 0.344         (3) 

Additionally, an H/D-exchange experiment was conducted in the presence of D2O as 

the deuterated cosolvent which showed incorporation of deuterium neither in the 

product 148aa nor in the reisolated starting material 146a, suggesting an irreversible 

C–H metalation event (Scheme 3.20). 
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Scheme 3.20 H/D-exchange experiment in the presence of D2O. 

To gain further insights into the catalyst’s mode of action, an in-situ study using React-

IR technology was conducted, using acetonitrile as the solvent due to the strong IR 

bands of GVL overlaying the product signals. Initially a kinetic profile of the reaction 

was recorded over the complete reaction time. From the obtained surface plot, suitable 

peaks were identified, and the obtained values plotted against the reaction time to 

generate the kinetic profile (Figure 3.10).  

  

Figure 3.10 3D surface plot and kinetic profile of the electrochemical amination at 1115 cm−1 (red) and 

1096 cm−1 (black). 

The thus obtained data clearly showed, that an initiation period is not required, or 

extremely short, as the React-IR collected a measurement every minute and no 

initiation was observable for the cobalt catalyst. Moreover, a kinetic isotope effect (KIE) 

was measured using the same technique in two independent reactions for the standard 

substrate 117a and the penta-deuterated substrate [D]5-117a (Scheme 3.21). 



111 
 

 

Scheme 3.21 KIE studies by react-IR technology. 

From the data, no KIE (kH/kD = 1.0) was observed, which indicated that the C–H 

cleavage is facile and not involved in the rate, limiting step, which is in good agreement 

with our previous findings (Figure 3.11). 

 

Figure 3.11 Initial rates of the electrochemical cobalt-catalyzed C–H amination. 

Finally, the oxidative, cross-dehydrogenative protocol was suggestive of the formation 

of H2 as the stoichiometric byproduct. Therefore, the gas phase over the reaction 

medium was analyzed by headspace GC technology to explore the formation of H2. 

The analysis qualitatively confirmed the formation of H2, which can be seen in the 

obtained chromatogram (Scheme 3.22). 
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Scheme 3.22 GC headspace analysis of the reaction mixture. 

In addition to these studies, the reaction was also analyzed by CV studies of the 

reaction mixture in MeCN (Figure 3.12). While the oxidation of Co(OAc)2 in the 

presence of KOAc was observed at a potential of 1.05 VSCE, the substrate 117a was 

oxidized at a significantly higher potential of 1.58 VSCE. Interestingly a mixture of the 

cobalt salt, KOAc and 117a was shifted to significantly lower potentials with a local 

maximum observable at 0.73 VSCE and several new peaks were observed. Finally, 

upon addition of morpholine, no quenching could be observed, however oxidation of 

morpholine was overlaying with most of the CV curve. Nevertheless, the oxidation of 

morpholine occurs at a higher potential (1.17 VSCE), and thus the data strongly supports 

a cobalt catalyzed, organometallic transformation over a radical addition pathway, 

which is known for electrochemical, metal-free aminations of activated oxazole 

heterocycles.[210] 



113 
 

 

Figure 3.12 CV of the reaction mixture in MeCN. 

Based on the sum of these mechanistic experiments, a plausible catalytic cycle is 

proposed. After generation of the active cobalt(III) catalyst 254, the C–H activation 

occurs by BIES C–H cobaltation.[29] The thus formed cyclometalated complex 255 can 

undergo a ligand exchange of substrate 146a against the acetate to generate 

intermediate 256. Formation of the C–N bond followed by proto-demetallation 

generates the desired product 148 and cobalt(I) species 257, which is oxidized at the 

anode to regenerate the active catalyst 254 (Scheme 3.23). 
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Scheme 3.23 Plausible catalytic cycle. 

 

 

3.6 Mechanistic Studies on Transititon Metal-Catalyzed 

Electrochemical C–H Activation. 

During the studies on the cobalt-catalyzed C–H amination under electrochemical 

conditions, further electrochemical transition metal-catalyzed C–H functionalizations 

were developed. The optimization and scope of these reactions was investigated by 

Dr. R. Mei (cobalt)[211] and Dr. Y. Qiu, Dr. W.-J. Kong, J. Struwe and A. Scheremetjew 

(rhodium)[212] respectively, with theoretical considerations conducted by Dr. J. C. A. 

Oliveira and T. Rogge. Therefore, only a short overview over the general reaction will 

be given in the following chapter, with a detailed description of the mechanistic studies 

conducted in the range of this thesis. 
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3.6.1 Cobalt-Catalyzed Electrochemical Annulation of Terminal and Internal 

Alkynes using an Electrocleavable Directing Group 

During his studies, R. Mei identified N-methyl-N-pyridyl benzhydrazides 215 as viable 

substrates for the cobalt-catalyzed electrochemical C–H/N–H annulation using 

terminal as well as internal alkynes 8.[210] This is noteworthy, as previous protocols for 

C–H/N–H annulation by electrochemical cobalt-catalysis were limited to terminal 

alkynes 8.[168-169] The transformations of internal and terminal alkynes 8 were enabled 

under slightly different conditions, as shown below (Scheme 3.24).[211] 

 

Scheme 3.24 Electrochemical cobalt-catalyzed C–H/N–H annulation of alkynes 8. 

For this reaction, also the formation of hydrogen as a byproduct seems plausible. This 

was confirmed for the reaction of the internal alkyne 8a by headspace GC analysis 

(Scheme 3.25). 

 

Scheme 3.25 GC headspace analysis. 
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Additionally, a measurement of the kinetic profile by time-resolved UV/Vis 

spectroscopy was attempted. While the time-resolved spectra nicely showed several 

shifts in the UV/Vis region, no separated peaks could be obtained. A kinetic profile 

could be obtained by plotting peak intensities against time, however due to missing 

peak separation, this can only be a qualitative analysis not suited to calculate rate 

constants for the initial rates analysis (Figure 3.13). 

 

 

Figure 3.13 Time resolved UV/Vis spectra and kinetic profiles at 242 nm (left) and 266 nm (right). 

To get further insight into possible intermediates of the reaction, the crude reaction 

mixture was subjected to ESI mass spectrometry. Besides several aggregates of the 

starting materials and products, a mass was observed, which was identified as the 

seven-membered cyclometalated intermediate 259 (Figure 3.14). 
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Figure 3.14 ESI-MS of the proposed intermediate 253. 

Since a five-membered cyclometalated cobalt complex coordinating the alkyne (260, 

Figure 3.15) should have the same exact mass, this ion was isolated and analyzed by 

MS/MS technology. In the resulting spectra, only the loss of pivalic acid was observed, 

while a π-coordinated alkyne should be removed first due to its weaker coordination 

(Figure 3.16). Furthermore, the mass for the five membered cobaltacycle fragment 261 

(m/z = 284), which would be expected in this case was not observed, supporting the 

proposal that the mass does indeed belong to the seven-membered species 259. Also, 

a complex of the product 216aa coordinated to a Co(I)-species after reductive 

elimination seemed unlikely, as in this case the mass of 216aa should be observable 

after fragmentation, which was not the case here. The same experiment was 

conducted using deuterated [D]5-215a, and indeed, the loss of one deuterium confirms 

the structure of intermediate 259. 
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Figure 3.15. Possible Intermediates and Fragments. 

 

 

Figure 3.16 MS/MS spectra of the ion with m/z 495.1925. 

In addition to the previous experiments, CV studies were conducted on this reaction 

system. Initially, the reaction of internal alkyne 8a was studied, however the obtained 

spectra were inconclusive, as overlaying of the peaks occurred (Figure 3.17). In 

contrast, for terminal alkyne 8b also the use of methanol as the solvent was possible, 

therefore a second measurement using this system was performed, resulting in better 

data. While the alkyne 8b itself is not oxidized, the hydrazide 215a is easily oxidized, 

even at lower potential than the cobalt catalyst, which is oxidized at 1.31 VSCE. 

However, the complete reaction mixture is shifted to lower potential than the starting 

material 215a, supporting the oxidation of cobalt(II) to cobalt(III) in the presence of the 

starting material at much lower potential of 0.99 VSCE. 
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Figure 3.17 CV spectra of the reaction mixtures in MeOH (left) and TFE (right). 

 

3.6.2 Rhodium-Catalyzed C–H/O–H Annulation of Benzoic Acids 

Rhodium is one of the most powerful metals for transition metal-catalyzed C–H 

activation,[31c, 31d] and while tremendous progress has been achieved, especially 

oxidative rhodium catalyzed reactions remain limited by the need for expensive 

stoichiometric oxidants[31a, 31b, 32a, 213] with few exceptions utilizing hazardous O2
[214]

 as 

the terminal oxidant.[215] In this regard, Dr. Y. Qiu and Dr. W.J. Kong developed a 

rhodium-catalyzed C–H/O–H annulation of benzoic acids with acrylates under 

electrochemical conditions to avoid the need for costly chemical oxidants.[210] The 

overall reaction equation is shown in scheme 3.26. As the optimization, scope and 

mechanistic studies were performed by my colleagues, only the CV studies shall be 

discussed here. 

 

Scheme 3.26 Rhodium-catalyzed C–H/O–H annulation. 

In this transformation the formation of rhodium(I) sandwich complex 263 is proposed 

as an intermediate. Experiments to synthesize a related complex by a known method 

proved to be unsuccessful.[216] Therefore, this step was studied in its microscopic 
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reverse, e. g. a CV of the reductive region of [Cp*RhCl2]2 in the absence and presence 

of the product 262 (Figure 3.18). 

 

Figure 3.18 CV of [Cp*RhCl2]2 under various conditions. 

While the product 262 itself is not reduced under these conditions, [Cp*RhCl2]2 shows 

clear reduction peaks, although the spectra are highly complex, and no assignment of 

the peaks is possible. Remarkably, no new signals upon addition of KOAc are 

observed, indicating that formation of the acetate complex may not occur under these 

conditions. Upon addition of the product however, a new peak at –1.09 VSCE is 

observed.  

As the generation of the acetate complex would be highly important, another 

measurement was conducted using HOAc as the additive instead of KOAc (Figure 

3.19). 

 

Figure 3.19 CV spectra in the presence of HOAc. 
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As can be seen in figure 3.16, there is a massive shift from the chloride dimer to a new 

CV curve after addition of HOAc, indicating the formation of the acetate complex, as a 

control experiment showed no reduction of HOAc in this area. Unfortunately, this curve 

undergoes no significant change upon addition of the product, so that no prediction 

about the proposed intermediate is possible from these CV studies. 
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4 Summary and Outlook 

The sustainable and cost-efficient synthesis of key structural motifs for material 

sciences, medicinal chemistry and crop protection remains one of the biggest 

challenges in terms of declining resources and a heightened awareness of the 

ecological costs associated with many processes.[3] Therefore, C–H activation greatly 

improves the tools for synthetic chemists to achieve these goals.[1a, 25a, 25c, 31d, 32c, 33c, 

33d, 212c] 

In the first project, the unprecedented use of triazolium salts 212 as preligands in 

cobalt-catalyzed C–H activation, was examined based on a previously described 

reaction.[56] The reaction proceeded by facile C–H/C–O cleavage using easily 

accessible alkenyl acetates 40 and phosphates 41 (Scheme 4.1).[217]  

 

Scheme 4.1 Cobalt-catalyzed alkenylation by C–H/O–H cleavage. 

Compared to the known hydroarylation protocols,[57-61] this approach allows for the use 

of cyclic alkenes, a structural motif that is usually not achieved using alkynes 8 due to 

the high ring strain.[176] The yields achieved using triazolylidene 212h are good,[217] with 

excellent levels of selectivity for the (E)-configurated product. Although the formed 

products 44 do not contain a stereocenter, several chiral triazolylidenes are known and 

could prove applicable to future enantioselective processes. 

In a second project, Cp*Co(III) proved to be key to success for the efficient C–H 

allylation of indoles 23 and pyrroles 217 (Scheme 4.2).[79a] 
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Scheme 4.2 Cobalt-catalyzed C–H allylation by C–H/C–O cleavage. 

Due to the high robustness of the Cp*Co(III)-catalyst, a good functional group tolerance 

could be established, especially in contrast to low-valent cobalt catalysis.[48a] Valuable 

functional groups,[79a] such as amide, nitro and halides, were well tolerated and 

highlighted the chemoselectivity of the Cp*Co(III)-catalyst. 

Cobalt(III)-catalysis was also used in the base metal-catalyzed C–H alkynylation of 

heteroarenes 23 and 217 (Scheme 4.3).[194] 

 

Scheme 4.3 Base metal-catalyzed C–H alkynylation of heteroarenes. 

Initially, the C–H alkynylation of indoles 23 and pyrroles 217 was realized using 

Cp*Co(III)-catalysis. The cobalt-catalyzed reaction proceeded under very mild 

conditions, that is at ambient temperature and a broad range of indoles and pyrroles 

could be functionalized. However, the reaction was limited to silyl substituted alkynes, 

as aryl or alkyl substituents did not provide any product. Finally, the usefulness the 

devised C–H alkynylation could be highlighted by the derivatization of the synthesized 

products 89. Complementary to the cobalt-catalyzed C–H alkynylation, a 

manganese(I)-catalyzed C–H alkynylation with the same substrates was 

developed.[201] After extensive optimization, the transformation could be improved to 

include also alkyl and aryl alkynes 132, which were previously not suitable.[194] 
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Furthermore, a broad substrate scope was established,[201] including the 

functionalization of amino acids and peptides 226 without racemization (Scheme 4.4).  

 

Scheme 4.4 Base metal-catalyzed C–H alkynylation of peptides 

Finally, detailed mechanistic studies were conducted. The reaction order for the 

substrates and the manganese catalyst were determined and offered support for the 

C–H activation not being rate-determining. In addition, cyclometalated manganese 

complex 238 was isolated and identified as a competent catalyst for the reaction as 

well as suitable to form the product in stoichiometric reactionss suggesting that it is an 

on cycle intermediate. 

In a fourth project, a cobalt-catalyzed C–H oxygenation under electrochemical 

conditions was realized.[206] While electrochemical C–H activation using precious 

palladium catalysts is known,[204, 218] this represents the first electrochemical cobalt-

catalyzed C–H activation (Scheme 4.4).[206] 

 

Scheme 4.4 Electrochemical cobalt-catalyzed C–H oxygenation. 

The desired transformation could be realized under mild conditions, that is ambient 

temperature and using a mild base. The oxidative protocol was established using 

sustainable and cost-efficient electricity compared to previously employed 

stoichiometric amounts of silver(I)-salts as the terminal oxidant. The reaction was 

shown to tolerate various valuable functional groups,[206] including oxidatively labile 
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moieties. Additionally, several alcohols were found to be competent coupling partners. 

An enantiomerically pure alcohol was used and found to be stereochemically stable 

under the reaction conditions. Additionally, detailed mechanistic studies, including H/D- 

exchange experiments, KIE studies and competition experiments were conducted. 

Finally, the reaction was analyzed by CV and a plausible mechanism proposed. The 

synthetic significance was highlighted by the easy scaleup of the reaction and the user-

friendly handling of this technique. While primary alcohols were transformed very 

efficiently, secondary alcohols only resulted in trace amounts of product, a venue that 

should allow for future optimization to realize more sophisticated substitution patterns. 

Moreover, the use of the alcohol as the reaction medium greatly reduces the efficacy 

and is also prohibitive for the use of solid alcohols, therefore the identification of a 

suitable inert reaction medium would be highly desirable. 

Based on the C–H/N–H annulation reported in the meantime,[168] which involves an 

intramolecular C–N bond formation, an intermolecular C–N bond formation was 

devised (Scheme 4.5).[219] 

 

Scheme 4.5 Electrochemical cobalt-catalyzed C–H amination. 

After considerable optimization, biomass-derived GVL[19, 209] was identified as the best 

solvent. The reaction therefore was identified as the first electrochemical C–H 

activation in a renewable solvent, highlighting the potential to further increase the 

sustainability of this approach. Again, mild conditions could be achieved for the 

reaction,[219] including a reaction temperature of 40 °C. Several substrates were 

smoothly converted, including important heterocyclic arenes. In operando studies by 

React IR were applied to electrocatalysis and showed the absence of a meaningful 



126 
 

initiation period. Furthermore, a KIE measurement was performed by the same 

technique, in addition to standard mechanistic experiments, such as H/D exchange. 

Moreover, the formation of H2 as the sole byproduct was confirmed by headspace GC 

analysis of the gas phase over the reaction mixture.  

Finally, two projects from colleagues were supported with detailed CV studies under 

different conditions,[210] as well as headspace analysis and extensive studies on 

potential intermediates by ESI-MS,[211] and evidence for the key seven-membered 

intermediate 259 could be obtained. Furthermore, it could be shown that besides in 

situ IR technology also in situ UV/Vis was a viable method to record kinetic profiles for 

cobalt-catalyzed electrochemical C–H activation, with future potential when suitable 

reactions are identified. 
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5 Experimental Part 

 

5.1 General Remarks 

All rections involving air- and/or moisture-sensitive compounds were conducted under 

a nitrogen atmosphere using pre-dried glassware and standard Schlenk techniques. If 

not otherwise noted, yields refer to isolated compounds which were estimated to be 

>95% pure based on 1H-NMR and/or GC analysis. 

 

5.1.1 Vacuum 

A Vacuubrand RZ 6 vacuum pump was used throughout the course of this thesis. The 

pressure was measured to be 0.7 mbar (uncorrected value). 

 

5.1.2 Chromatography 

Thin Layer Chromatography (TLC) was performed using silica gel 60 F254 on aluminum 

sheets from Merck and either visualized under a UV-Lamp or developed using basic 

KMnO4 solution or a vanillin stain upon careful heating. Purifcation of the compounds 

was carried out by column chromatography using Merck Geduran silica gel, grade 60 

(40-63 µm, 70-230 mesh). 

 

5.1.3 Gas Chromatography 

Monitoring of the reaction progress or kinetic analysis was conducted using a 7890 

GC-system with or without mass detector 5975C (triple-axis-detector) or a 7890B GC-

system and a 5977A mass detector, both from Agilent Technologies. 

Headspace analysis by GC was performed on a Shimadzu S2014 GC system using 

a thermal conductivity detector and a 5Å MS column. 
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5.1.4 Nuclear Magnetic Resonance 

Spectra were recorded on a Varian Unity 300, Mercury 300, Inova 500 or Bruker 

Avance III 300, Bruker Avance III HD 400 and Bruker Avance III HD 500 in the solvent 

indicated; chemical shifts (δ) are given in ppm relative to the residual solvent peak. 

 1H-NMR 13C-NMR 

CDCl3 7.26 77.16 

DMSO-d6 2.50 39.52 

 

Analysis of the obtained spectra was conducted using MestreNova 10 software. 

 

5.1.5 Mass Spectrometry 

EI-MS-spectra were recorded on an AccuTOF from JEOL, ESI-MS- and HRMS-

spectra were recorded on a microTOF or maXis from Bruker Daltonic. The ratio of 

mass to charge (m/z) are indicated and the intensities relative to the highest peak (I = 

100) are given in parentheses. 

 

5.1.6 Melting Points 

Melting points were measured on a Stuart melting point apparatus SMP3, Barloworld 

Scientific, values are uncorrected. 

 

5.1.7 Infrared Spectroscopy 

IR spectra were recorded on a Bruker FT-IR Alpha device. Liquid samples were 

measured as a film and solid samples neat, spectra were recorded in the range of 

4000-400cm−1, absorption is given in wavenumbers (cm−1).  

In-situ IR measurements were carried out using the React-IR15 from Mettler Toledo 

equipped with a diamond probe. 
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5.1.8 Electrochemistry 

Platinum electrodes (10 mm×15 mm× 0.25 mm, 99.9%; obtained from ChemPur® 

Karlsruhe, Germany) and RVC electrodes (10 mm×15 mm×6 mm, SIGRACELL®GFA 

6 EA, obtained from SGL Carbon, Wiesbaden, Germany) were connected using 

stainless steel adapters. Electrolysis was conducted using an AXIOMET AX-3003P 

potentiostat in constant current mode, CV studies were performed using a Metrohm 

Autolab PGSTAT204 workstation and Nova 2.0 software. Divided cells separated by a 

P4-glassfrit were obtained from Glasgerätebau Ochs Laborfachhandel e. K. 

(Bovenden, Germany). 

 

5.1.9 Solvents 

Solvents for column chromatography or reactions not sensitive to air and moisture were 

distilled under reduced pressure prior to use. All solvents for reactions involving air- or 

moisture sensitive compounds were dried, distilled and stored under inert atmosphere 

according to the following procedures: 

Purified by solvent purification system (SPS-800, M. Braun): CH2Cl2, toluene, 

tetrahydrofuran, dimethylformamide, diethylether. 

Dried and distilled over sodium/benzophenone: tert-Amylalcohol, methanol, 1,4-

dioxane. 

Dried and distilled over CaH2: 1,3-Dimethyltetrahydropyrimidin-2(1H)-one, 1,2-

Dichlorethan. 

Degassed and stored over activated molecular sieves: γ-Valerolactone, acetonitrile. 

 

5.1.10 Chemicals 

Chemicals obtained from commercial sources with a purity >95% were used as 

received without further purification. The following compounds were known from the 

literature and synthesized according to previously known methods: 

(pyrimidine-2-yl)-indoles 23 and pyrroles 217,[200] alkenyl acetates 40,[55a] alkenyl 

phosphates 41,[55b] alkenyl carbonate 42b,[55c] alkenyl carbamate 43b,[55d] triazolium 
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salt 212a,[177] Cp*CoI2(CO) (81),[87] [Cp*Co(C6H6)][PF6]2 (73),[67] [Cp*CoI2]2 (82),[218] 

bromoalkynes 132,[221] benzamides 117[99] and alcohol 149g.[222]  

The following compounds were kindly synthesized and provided by the persons listed 

below: 

Joachim Loup: triazolium salt 212d. 

Marc Moselage: alkenyl acetates 40b, 40j and 40k. 

Tjark H. Meyer: amides 117a, 117o, 117q and 117k. 

Ruhuai Mei: hydrazide 215a. 

Berkessel group: triazolium salts 212b, c, e-h. 

Sier Sang: amides 117a, 117c, 117e and 117j. 

Elisabetta Manoni: indoles 23k, 23o and alkyne 132d. 

 

5.2 General Procedures 

General Procedure A for the Cobalt−Catalzed C–H/C–O Alkenylation: To a 

solution of 23 (0.25 mmol, 1.00 equiv), the enol derivative 40 or 41 (0.38 mmol, 

1.50 equiv), CoI2 (7.8 mg, 25.0 µmol, 10 mol %) and triazolium salt 212h (13.1 mg, 

25.0 µmol, 10 mol %) in DMPU (1.5 mL), CyMgCl (1.7 M in THF, 0.3 mL, 0.50 mmol, 

2.00 equiv) was added dropwise. The mixture was stirred for 16 h at 23 °C. After 

completion of the reaction, saturated aq. NH4Cl solution (10 mL) was added and the 

mixture was extracted with CH2Cl2 (3 × 5 mL). Drying over Na2SO4, evaporation of the 

solvents and purification by column chromatography on silica gel yielded the product 

44.  

General Procedure B for the Cobalt-Catalyzed Allylation: To a solution of 23 

(0.50 mmol, 1.00 equiv), [Cp*Co(CO)I2] (81) (25.0 µmol, 5.0 mol %), AgSbF6 

(0.05 mmol, 10 mol %) and KOAc (0.05 mmol, 10 mol %) in DCE (1.5 mL) allyl acetate 

213 (1.00 mmol, 2.00 equiv) was added. The mixture was stirred for 16 h at 80 °C. 

After completion of the reaction, saturated aq. NH4Cl solution (5 mL) was added at 

ambient temperature and the mixture was extracted with MTBE (4 × 5 mL). Drying over 
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Na2SO4, evaporation of the solvents and purification by column chromatography on 

silica gel or further preparative HPLC using n-hexane/EtOAc yielded the product 91. 

General Procedure C for the Cobalt-Catalyzed C–H Alkynylation: To a solution of 

23 (0.25 mmol, 1.00 equiv), [Cp*CoI2]2 (82) (6.25 μmol, 2.5 mol %), AgSbF6 

(25.0 µmol, 10 mol %) and K2CO3 (0.50 mmol, 2.00 equiv) in TFE (1.5 mL) 132 

(0.30 mmol, 1.20 equiv) was added. The mixture was stirred for 18 h at 25 °C. After 

completion of the reaction saturated aq. NH4Cl solution (5 mL) was added and the 

mixture was extracted with CH2Cl2 (4 × 5 mL). Drying over Na2SO4, evaporation of the 

solvents and purification by column chromatography on silica gel using n-

pentane/EtOAc yielded the product 89. 

General Procedure D for the Manganese-Catalyzed C–H Alkynylation using 

Silylalkynes: To a solution of substrates 23 (0.50 mmol, 1.00 equiv), MnBr(CO)5 (169) 

(6.9 mg, 5.0 mol %) and Cy2NH (181 mg, 1.00 mmol, 2.00 equiv) in DCE (1.0 mL), silyl 

bromoalkynes 132 (0.60 mmol, 1.20 equiv) was added. The mixture was stirred at 

80 °C for 16 h. After completion of the reaction, CH2Cl2 (3.0 mL) was added at ambient 

temperature and the volatiles were removed in vacuo. Purification by chromatography 

on silica gel afforded the desired product 89. 

General Procedure E for the Manganese-Catalyzed C–H Alkynylation: To a 

solution of substrates 23 (0.50 mmol, 1.00 equiv), MnBr(CO)5 (169) (6.9 mg, 

5.0 mol %), Cy2NH (181 mg, 1.00 mmol, 2.00 equiv) and BPh3 (25 μL, 0.05 mol %, 

0.01 M stock solution in DCE) in DCE (1 mL), aryl or alkyl bromoalkynes 132 

(0.60 mmol, 1.20 equiv) was added. The mixture was stirred at 80 °C for 16 h. After 

completion of the reaction, CH2Cl2 (3 mL) was added at ambient temperature and the 

volatiles were removed in vacuo. Purification by chromatography on silica gel afforded 

the desired product 89. 

General Procedure F for Electrochemical C–H Alkoxylation: The electrolysis was 

carried out in an H-type divided cell (P4 sintered glass membrane), with a RVC anode 

(10 mm × 15 mm × 6 mm) and a platinum cathode (10 mm × 15 mm × 0.25 mm). 

NaOPiv (122 mg, 1.00 mmol, 2.00 equiv) was added in the cathodic chamber and 

dissolved in alcohol 149 (7.0 mL). The anodic chamber was charged with 

Co(OAc)2∙4H2O (25.7 mg, 0.10 mmol, 20 mol %), NaOPiv (122 mg, 1.00 mmol, 2.00 

equiv) and benzamide 117 (0.50 mmol, 1.00 equiv) and dissolved in alcohol 149 

(7.0 mL). Electrolysis was started at ambient temperature with a constant current of 
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8.0 mA maintained for 6 h. Evaporation of the solvent and subsequent column 

chromatography on silica gel (CH2Cl2/acetone) yielded the desired product 150. 

General Procedure G for Electrochemical C–H Alkoxylation: The electrolysis was 

carried out in an undivided cell, with a RVC anode (10 mm × 15 mm × 6 mm) and a 

platinum cathode (10 mm × 15 mm × 0.25 mm). A mixture of NaOPiv (63.9 mg, 

0.50 mmol, 2.00 equiv), Co(OAc)2∙4H2O (12.7 mg, 0.05 mmol, 20 mol %), benzamide 

117 (0.25 mmol, 1.00 equiv), n-Bu4NPF6 (387 mg, 1.00 mmol, 4.00 equiv.) and alcohol 

149 (2.3 mL) in MeCN (0.9 mL) was added to the electrochemical cell. Electrolysis was 

started at ambient temperature with a constant current of 2.0 mA maintained for 12 h. 

Evaporation of the solvent and subsequent column chromatography on silica gel 

(CH2Cl2/acetone) yielded the desired product 150. 

General Procedure H for the Electrochemical C–H Amination: The electrolysis was 

carried out in an undivided cell, with a RVC anode (10 mm × 15 mm × 6 mm) and a 

platinum cathode (10 mm × 15 mm × 0.25 mm). Co(OAc)2∙4H2O (12.7 mg, 0.05 mmol, 

10 mol %), KOAc (149 mg, 1.50 mmol, 3.00 equiv) and benzamide 117 (0.50 mmol, 

1.00 equiv) were dissolved in GVL (2.0 mL) and then the amine 146 (1.00 mmol, 2.00 

equiv) was added. After heating to 40 °C, electrolysis was started with a constant 

current of 2.5 mA which was then maintained for 24 h. After 24 h, the mixture was 

transferred to a flask and the electrodes were rinsed with acetone (3 × 5.0 mL). Then 

the combined solvent was removed under reduced pressure, the residue diluted with 

EtOAc (10 mL) and washed with NaOH(aq) (2 M, 10 mL) and H2O (2 × 10 mL). Drying 

over Na2SO4 and evaporation of the solvent and subsequent column chromatography 

on silica gel (CH2Cl2/acetone) yielded the desired product 148. 
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5.3 Cobalt-Catalyzed C–H Alkenylation under Triazole Assistance 

5.3.1 Analytical Data and Experimental Procedures 

 

(E)-2-(1-Phenylpent-1-en-1-yl)-1-(pyrimidin-2-yl)-1H-indole (44aa) 

The general procedure A was followed using indole 23a (49.7 mg, 0.25 mmol, 

1.00 equiv) and enol acetate 40a (78.5 mg, 0.38 mmol, 1.50 equiv, E/Z = 24/76). 

Purification by column chromatography on silica gel (n-pentane/EtOAc 25:1) yielded 

44aa (44.7 mg, 129 μmol, 52%) as a yellow oil. 1H-NMR (300 MHz, CDCl3): δ = 8.55 

(d, J = 5.0 Hz, 2H), 8.03–7.99 (m, 1H), 7.61–7.57 (m, 1H), 7.23–7.18 (m, 2H), 7.11–

7.01 (m, 5H), 6.88 (t, J = 5.0 Hz, 1H), 6.72 (s, 1H), 6.15 (t, J = 7.0 Hz, 1H), 2.29 (dt, 

J = 7.0, 5.5 Hz, 2H), 1.49 (tq, J = 6.2, 5.5 Hz, 2H), 0.90 (t, J = 6.2 Hz, 3H). 13C-NMR 

(125 MHz, CDCl3): δ = 157.9 (CH), 157.6 (Cq), 142.8 (Cq), 138.8 (Cq), 137.7 (Cq), 134.5 

(Cq), 132.3 (CH), 129.8 (CH), 129.0 (Cq), 127.4 (CH), 126.6 (CH), 123.3 (CH), 121.9 

(CH), 120.4 (CH), 117.0 (CH), 113.0 (CH), 108.8 (CH), 31.5 (CH2), 23.4 (CH2), 14.1 

(CH3). IR (ATR): 2949, 2870, 1570, 1423, 1319, 1258, 1073, 852, 734 cm-1. MS (ESI) 

m/z (relative intensity): 362 (27) [M+Na]+, 340 (100) [M+H]+, 297 (30), 257 (7), 117 

(42). HR-MS (ESI) m/z calcd for C23H21N3 [M+H]+: 340.1808, found: 340.1818. The 

analytical data correspond with those reported in literature.[56] 

 

2-(Cyclohex-1-en-1-yl)-1-(pyrimidin-2-yl)-1H-indole (44ab) 

The general procedure A was followed using indole 23a (49.5 mg, 0.25 mmol, 

1.00 equiv) and enol acetate 40b (62.1 mg, 0.38 mmol, 1.50 equiv). Purification by 

column chromatography on silica gel (n-pentane/EtOAc 20:1) yielded 44ab (56.3 mg, 

204 µmol, 80%) as a yellow oil. Alternative preparations under otherwise identical 

conditions using enol phosphate 41b (88.7 mg, 0.38 mmol, 1.50 equiv) yielded 44ab 

(58.1 mg, 211 µmol, 84%), using enol carbonate 42b (64.7 mg, 0.38 mmol, 1.50 equiv) 
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yielded 44ab (36.7 mg, 129 µmol, 52%), using enol carbamate 43b (64.4 mg, 

0.38 mmol, 1.50 equiv) yielded 44ab (52.0 mg, 188 µmol, 75%). 1H-NMR (300 MHz, 

CDCl3): δ = 8.68 (d, J = 4.1 Hz, 2H), 8.18–8.15 (m, 1H), 7.59–7.56 (m, 1H), 7.27–7.18 

(m, 2H), 7.11 (t, J = 4.1 Hz, 1H), 6.55 (s, 1H), 5.88 (m, 1H), 2.20–2.17 (m, 2H), 2.09–

2.05 (m, 2H), 1.68–1.64 (m, 4H). 13C-NMR (125 MHz, CDCl3): δ = 158.4 (Cq), 158.2 

(CH), 143.0 (Cq), 137.3 (Cq), 132.0 (Cq), 129.1 (Cq), 126.9 (CH), 122.7 (CH), 121.8 

(CH), 120.0 (CH), 117.5 (CH), 112.8 (CH), 106.0 (CH), 28.8 (CH2), 25.4 (CH2), 22.7 

(CH2), 22.3 (CH2). IR (ATR): 2931, 1555, 1450, 1344, 1322, 794, 739, 718, 619 cm-1. 

MS (ESI) m/z (relative intensity): 298 (40) [M+Na]+, 276 (100) [M+H]+, 247 (22), 219 

(8). HR-MS (ESI) m/z calcd for C18H17N3 [M+H]+: 276.1501, found: 276.1497. The 

analytical data correspond with those reported in literature.[56] 

 

1-(Pyrimidin-2-yl)-2-(1,2,3,6-tetrahydro-[1,1'-biphenyl]-4-yl)-1H-indole (44ac) 

The general procedure A was followed using indole 23a (49.5 mg, 0.25 mmol, 

1.00 equiv) and enol phosphate 41c (106 mg, 0.38 mmol, 1.50 equiv). Purification by 

column chromatography on silica gel (n-pentane/EtOAc 13:1) yielded 44ac (71.3 mg, 

202 μmol, 81%) as a yellow solid. An alternative procedure using enol acetate 40c 

(82.1 mg, 0.38 mmol, 1.50 equiv) yielded 44ac (68.9 mg, 194 μmol, 78%) as a yellow 

oil.M. p. = 140−143 °C. 1H-NMR (300 MHz, CDCl3): δ = 8.78 (d, J = 4.8 Hz, 2H), 8.17 

(m, 1H), 7.60 (m, 1H), 7.34–7.20 (m, 6H), 7.13 (t, J = 4.8 Hz, 1H), 6.62 (s, 1H), 5.97–

5.96 (m, 1H), 2.97–2.89 (m, 1H), 2.50–2.42 (m, 1H), 2.37–2.27 (m, 2H), 2.20–2.15 (m, 

1H), 2.00–1.78 (m, 2H).13C-NMR (125 MHz, CDCl3): δ = 158.3 (Cq), 158.1 (CH), 146.7 

(Cq), 142.7 (Cq), 137.4 (Cq), 131.7 (Cq), 129.2 (Cq), 128.3 (CH), 126.8 (CH), 126.4 

(CH), 126.0 (CH), 123.0 (CH), 121.9 (CH), 120.2 (CH), 117.2 (CH), 113.1 (CH), 106.4 

(CH), 39.8 (CH), 33.8 (CH2), 29.9 (CH2), 29.4 (CH2). IR (ATR): 2918, 2845, 2005, 1563, 

1424, 1350, 1070 cm-1. MS (ESI) m/z (relative intensity): 374 (40) [M+Na]+, 352 (100) 

[M+H]+, 323 (8), 309 (73), 269 (5), 231 (9). HR-MS (ESI) m/z calcd for C24H21N3 

[M+H]+: 352.1808, found: 352.1805. The analytical data correspond with those reported in 

literature.[56] 
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2-(3',4'-Difluoro-1,2,3,6-tetrahydro-[1,1'-biphenyl]-4-yl)-1-(pyrimidin-2-yl)-1H-

indole (44ad) 

The general procedure A was followed using indole 23a (49.7 mg, 0.25 mmol, 

1.00 equiv) and enol phosphate 41d (131 mg, 0.38 mmol, 1.50 equiv). Purification by 

column chromatography on silica gel (n-pentane/EtOAc 14:1) yielded 44ad (67.2 mg, 

171 mmol, 69%) as a yellow oil. 1H-NMR (300 MHz, CDCl3): δ = 8.80 (d, J = 5.0 Hz, 

2H), 8.21 (d, J = 8.1 Hz, 1H), 7.56 (d, J = 8.1 Hz, 1H), 7.27–7.20 (m, 2H), 4.12 (t, 

J = 5.0 Hz, 1H), 7.12–7.08 (m, 2H), 6.97–6.94 (m, 1H), 6.60 (s, 1H), 5.94–5.92 (m, 

1H), 2.89–2.84 (m, 1H), 2.50–2.46 (m, 1H), 2.30–2.14 (m, 3H), 1.97–1.92 (m, 1H), 

1.82–1.77 (m, 1H). 13C-NMR (101 MHz, CDCl3): δ = 158.3 (Cq), 158.2 (CH), 150.2 (dd, 

1JC-F = 194 Hz, 2JC-F = 21.9 Hz, Cq), 148.4 (dd, 1JC-F = 194 Hz, 2JC-F = 21.9 Hz, Cq), 

143.9 (dd, 3JC-F = 6.2 Hz, 4JC-F = 3.8 Hz, CH), 142.4 (Cq), 137.6 (Cq), 132.0 (Cq), 129.2 

(Cq), 125.7 (CH), 123.2 (CH), 122.7 (dd, 3JC-F = 7.1 Hz, 4JC-F = 3.9 Hz, Cq), 121.8 (CH), 

120.2 (CH), 117.4 (CH), 117.0 (d, 2JC-F = 21.0 Hz, CH), 115.7 (d, 2JC-F = 20.8 Hz, CH), 

113.2 (CH), 106.6 (CH), 38.7 (CH), 33.5 (CH2), 29.8 (CH2), 28.9 (CH2). 19F-NMR (282 

MHz, CDCl3): δ −138.7, −142.5. IR (ATR): 2958, 1685, 1423, 1273, 1162, 965, 785 

cm-1. MS (ESI) m/z (relative intensity): 410 (8) [M+Na]+, 388 (61) [M+H]+, 345 (15), 185 

(5). HR-MS (ESI) m/z calcd for C24H19F2N3 [M+Na]+: 410.1439, found: 410.1449. The 

analytical data correspond with those reported in literature.[56] 

 

2-[4-(n-Pentyloxy)cyclohex-1-en-1-yl]-1-(pyrimidin-2-yl)-1H-indole (44ae) 

The general procedure A was followed using indole 23a (49.9 mg, 0.25 mmol, 

1.00 equiv) andenol phosphate 41e (93.2 mg, 0.38 mmol, 1.50 equiv). Purification by 

column chromatography on silica gel (n-pentane/EtOAc 10:1) yielded 44ae (73.9 mg, 

201 μmol, 80%) as a yellow oil. An alternative procedure using enol acetate 40e 



136 
 

(87.1 mg, 0.38 mmol, 1.50 equiv) yielded 44ae (69.3 mg, 189 μmol, 75%) as a yellow 

oil. 1H-NMR (300 MHz, CDCl3): δ = 8.75 (d, J = 5.3 Hz, 2H), 8.20 (m, 1H), 7.56 (m, 

1H), 7.22–7.19 (m, 2H), 7.13 (t, J = 5.3 Hz, 1H), 6.56 (s, 1H), 5.78–5.76 (m, 1H), 3.60–

3.57 (m, 1H), 3.51–3.47 (m, 2H), 2.57–2.52 (m, 1H), 2.23–2.09 (m, 3H), 1.98–1.93 (m, 

1H), 1.74–1.67 (m, 1H), 1.58–1.55 (m, 2H), 1.30–1.28 (m, 4H), 0.88 (t, J = 6.6 Hz, 3H). 

13C-NMR (125 MHz, CDCl3): δ = 158.2 (Cq), 158.0 (CH), 142.3 (Cq), 137.3 (Cq), 131.7 

(Cq), 129.2 (Cq), 124.3 (CH), 123.1 (CH), 121.9 (CH), 120.2 (CH), 117.8 (CH), 113.2 

(CH), 106.5 (CH), 73.9 (CH), 68.3 (CH2), 32.4 (CH2), 29.9 (CH2), 28.5 (CH2), 28.4 

(CH2), 28.0 (CH2), 22.6 (CH2), 14.1 (CH3). IR (ATR): 2934, 2852, 1558, 1449, 1340, 

822, 746 cm-1. MS (ESI) m/z (relative intensity): 384 (62) [M+Na]+, 362 (100) [M+H]+, 

274 (13). HR-MS (ESI) m/z calcd for C23H27N3O [M+H]+: 362.2227, found: 362.2226. 

The analytical data correspond with those reported in literature.[56] 

 

1-(Pyrimidin-2-yl)-2-[4-(trifluoromethyl)cyclohex-1-en-1-yl]-1H-indole (44af) 

The general procedure A was followed using indole 23a (49.8 mg, 0.25 mmol, 

1.00 equiv) and enol phosphate 41f (83.7 mg, 0.38 mmol, 1.50 equiv). Purification by 

column chromatography on silica gel (n-pentane/EtOAc 15:1) yielded 44af (63.1 mg, 

185 μmol, 74%) as a colorless oil. 1H-NMR (300 MHz, CDCl3) δ = 8.78 (d, J = 4.8 Hz, 

2H), 8.20 (dd, J = 7.9, 1.2 Hz, 1H), 7.54 (dd, J = 7.9, 1.2 Hz, 1H), 7.31−7.22 (m, 2H) 

7.18 (td, J = 7.2, 1.5 Hz, 1H), 7.15 (t, J = 4.8 Hz, 1H), 6.58 (s, 1H), 5.82–5.81 (m, 1H), 

2.44–2.33 (m, 2H), 2.29–2.20 (m, 3H), 2.07–2.03 (m, 1H), 1.67–1.60 (m, 1H). 13C-NMR 

(125 MHz, CDCl3): δ = 158.3 (Cq), 158.2 (CH), 141.8 (Cq), 137.3 (Cq), 132.1 (Cq), 129.4 

(Cq), 129.1 (q, 1JC-F = 278 Hz, Cq), 123.1 (CH), 123.4 (CH), 122.0 (CH), 120.3 (CH), 

117.2 (CH), 113.4 (CH), 106.9 (CH), 38.3 (q, 2JC-F = 30.5 Hz, CH), 28.3 (CH2), 24.6 (q, 

3JC-F = 2.6 Hz, CH2), 21.8 (q, 3JC-F = 2.6 Hz, CH2). 19F-NMR (282 MHz, CDCl3): δ = 

−74.07. IR (ATR): 2931, 1565, 1418, 1353, 1269, 1162, 824, 741 cm-1. MS (ESI) m/z 

(relative intensity): 344 (52) [M+H]+, 321 (100), 258 (23), 155 (19). HR-MS (ESI) m/z 

calcd for C19H16F3N3 [M+H]+: 344.1369, found: 344.1367. The analytical data correspond 

with those reported in literature.[56] 
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2-(4-Methylcyclohex-1-en-1-yl)-1-(pyrimidin-2-yl)-1H-indole (44ag) 

The general procedure A was followed using indole 23a (49.7 mg, 0.25 mmol, 

1.00 equiv) and enol phosphate 41g (85.7 mg, 0.38 mmol, 1.50 equiv). Purification by 

column chromatography on silica gel (n-pentane/EtOAc 20:1) yielded 44ag (52.1 mg, 

177 μmol, 71%) as a colorless oil. 1H-NMR (300 MHz, CDCl3) δ = 8.78 (d, J = 4.7 Hz, 

2H), 8.13 (dd, J = 7.4, 1.2 Hz, 1H), 7.56 (dd, J = 7.4, 1.2 Hz, 1H), 7.22−7.08 (m, 3H) 

6.53 (s, 1H), 5.83–5.81 (m, 1H), 2.29–2.06 (m, 3H), 1.83–1.64 (m, 3H), 1.36–1.29 (m, 

1H), 0.99 (d, J = 8.1 Hz, 3H). 13C-NMR (125 MHz, CDCl3): δ = 158.3 (Cq), 158.0 (CH), 

141.8 (Cq), 137.3 (Cq), 131.3 (Cq), 129.2 (Cq), 126.5 (CH), 122.9 (CH), 121.8 (CH), 

120.1 (CH), 117.8 (CH), 112.9 (CH), 106.0 (CH), 34.2 (CH2), 30.4 (CH2), 28.8 (CH2), 

28.0 (CH) 21.8 (CH3). IR (ATR): 2929, 1568, 1443, 1352, 1158, 822, 806, 738 cm-1. 

MS (ESI) m/z (relative intensity): 312 (25) [M+Na]+, 290 (100) [M+H]+, 270 (18), 198 

(15), 129 (19). HR-MS (ESI) m/z calcd for C19H19N3 [M+H]+: 290.1652, 

found: 290.1648.  

 

(E)-2-(Hept-3-en-4-yl)-1-(pyrimidin-2-yl)-1H-indole (44ah) 

The general procedure A was followed using indole 23a (49.2 mg, 0.25 mmol, 

1.00 equiv) and enol phosphate 41h (98.1 mg, 0.38 mmol, 1.50 equiv, E/Z = 30/70). 

Purification by column chromatography on silica gel (n-pentane/EtOAc 25:1) yielded 

44ah (54.4 mg, 183 μmol, 73%) as a colorless oil. 1H-NMR (300 MHz, CDCl3): δ = 8.78 

(d, J = 5.8  Hz, 2H), 8.12 (d, J = 8.0 Hz, 1H), 7.60 (m, 1H), 7.21–7.17 (m, 2H), 7.13 (t, 

J = 5.8 Hz, 1H), 6.58 (s, 1H), 5.58 (t, J = 6.9 Hz, 1H), 2.19–2.13 (m, 4H), 1.38 (dq, 

J = 6.9, 6.8 Hz, 2H), 0.96 (t, J = 6.9 Hz, 3H), 0.87 (t, J = 6.8 Hz, 3H). 13C-NMR (101 

MHz, CDCl3): δ = 158.4 (Cq), 158.1 (CH), 143.3 (Cq), 137.4 (Cq), 133.1 (Cq), 132.6 

(CH), 129.3 (Cq), 122.8 (CH), 121.7 (CH), 120.0 (CH), 117.2 (CH), 113.0 (CH), 106.9 

(CH), 33.0 (CH2), 21.8 (CH2), 21.5 (CH2), 14.1 (CH3), 14.0 (CH3). IR (ATR): 2950, 1558, 
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1453, 1419, 1247, 822, 745 cm-1. MS (ESI) m/z (relative intensity): 314 (27) [M+Na]+, 

292 (100) [M+H]+, 117 (8). HR-MS (ESI) m/z calcd for C19H21N3 [M+H]+: 292.1808, 

found: 292.1816. The analytical data correspond with those reported in literature.[56] 

 

(E)-2-(Non-4-en-5-yl)-1-(pyrimidin-2-yl)-1H-indole (44ai) 

The general procedure A was followed using indole 23a (49.8 mg, 0.25 mmol, 

1.00 equiv) and enol phosphate 41i (103 mg, 0.38 mmol, 1.50 equiv, E/Z = 30/70). 

Purification by column chromatography on silica gel (n-pentane/EtOAc 20:1) yielded 

44a (55.6 mg, 172 μmol, 69%) as a colorless oil. 1H-NMR (300 MHz, CDCl3): δ = 8.74 

(d, J = 4.5 Hz, 2H), 8.13 (m, 1H), 7.58 (m, 1H), 7.23–7.18 (m, 2H), 7.10 (t, J = 4.5 Hz, 

1H), 6.55 (s, 1H), 5.59 (t, J = 7.7 Hz, 1H), 2.20–2.12 (m, 4H), 1.46–1.31 (m, 2H), 1.28–

1.17 (m, 4H), 0.89 (t, J = 7.9 Hz, 3H), 0.80 (t, J = 7.4 Hz, 3H). 13C-NMR (101 MHz, 

CDCl3): δ = 158.4 (Cq), 158.1 (CH), 143.3 (Cq), 137.4 (Cq), 134.4 (Cq), 130.7 (CH), 

129.3 (Cq), 122.9 (CH), 121.8 (CH), 120.1 (CH), 117.2 (CH), 113.0 (CH), 106.9 (CH), 

30.9 (CH2), 30.8 (CH2), 30.2 (CH2), 22.7 (CH2), 22.6 (CH2), 13.9 (CH3), 13.8 (CH3). IR 

(ATR): 2927, 1558, 1451, 1342, 1317, 1251, 1161, 797, 732 cm-1. MS (ESI) m/z 

(relative intensity): 342 (12) [M+Na]+, 320 (100) [M+H]+, 290 (10) 149 (9), 117 (60). 

HR-MS (ESI) m/z calcd for C21H25N3 [M+H]+: 320.2121, found: 320.2129. The analytical 

data corresponds with those reported in literature.[56] 

 

(E)-2-(1-Phenylprop-1-en-1-yl)-1-(pyrimidin-2-yl)-1H-indole (44aj) 

The general procedure A was followed using indole 23a (49.8 mg, 0.25 mmol, 

1.00 equiv) and enol phosphate 41j (94.2 mg, 0.38 mmol, 1.50 equiv, E/Z = 25/75). 

Purification by column chromatography on silica gel (n-pentane/EtOAc 20:1) yielded 

44aj (44.6 mg, 139 µmol, 55%) as a yellow oil. 1H-NMR (300 MHz, CDCl3): δ = 8.53 

(d, J = 4.7 Hz, 2H), 8.02 (d, J = 8.0 Hz, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.27–7.21 (m, 
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2H), 7.10–7.05 (m, 4H), 6.99–6.96 (m, 1H), 6.84 (t, J = 4.7 Hz, 1H), 6.72 (s, 1H), 6.33 

(q, J = 10.4 Hz, 1H), 1.98 (d, J = 10.4 Hz, 3H). 13C-NMR (101 MHz, CDCl3): δ = 157.8 

(CH), 157.4 (Cq), 142.6 (Cq), 138.3 (Cq), 137.3 (Cq), 135.5 (Cq), 129.8 (CH), 128.9 (Cq), 

127.3 (CH), 126.5 (CH), 126.1 (CH), 123.3 (CH), 121.8 (CH), 120.4 (CH), 116.8 (CH), 

112.9 (CH), 108.8 (CH), 15.4 (CH3). IR (ATR): 2937, 2035, 1568, 1447, 1252,  1082, 

824, 793 cm-1. MS (ESI) m/z (relative intensity): 334 (24) [M+Na]+, 312 (100) [M+H]+, 

299 (13). HR-MS (ESI) m/z calcd for C21H17N3 [M+H]+: 312.1495, found: 312.1491. The 

analytical data corresponds with those reported in literature.[56] 

 

2-(Cyclohex-1-en-1-yl)-5-fluoro-1-(pyrimidin-2-yl)-1H-indole (44bb) 

The general procedure A was followed using indole 23b (53.2 mg, 0.25 mmol, 

1.00 equiv) and enol phosphate 41b (89 mg, 0.38 mmol, 1.50 equiv). Purification by 

column chromatography on silica gel (n-pentane/EtOAc 15:1) yielded 44bb (45.2 mg, 

153 μmol, 61%) as a pale yellow solid. An alternative procedure using enol acetate 

40b (62.1 mg, 0.38 mmol, 1.5 equiv) yielded 44bb (51.8 mg, 175 μmol, 70%) as a 

yellow solid. M. p. = 140−142 °C. 1H-NMR (300 MHz, CDCl3) δ = 8.72 (d, J = 4.8 Hz, 

2H), 8.10 (dd, J = 8.7, 4.2 Hz, 1H), 7.17 (dd, J = 8.7, 2.8 Hz, 1H), 7.15 (t, J = 4.8 Hz, 

1H), 6.91 (td, J = 8.7, 2.8 Hz, 1H), 6.50 (s, 1H), 5.86–5.83 (m, 1H), 2.17–2.14 (m, 2H), 

2.08–2.05 (m, 2H), 1.67–1.62 (m, 4H). 13C-NMR (101 MHz, CDCl3): δ = 159.0 (d, 

1JCF = 244 Hz, Cq), 158.2 (CH), 145.0 (Cq), 133.8 (Cq), 131.8 (Cq), 131.1 (Cq), 130.9 

(d, 3JCF = 10.8 Hz, Cq), 127.5 (CH), 117.4 (CH), 114.0 (d, 3JCF = 9.9 Hz, CH), 110.7 (d, 

2JCF = 27.0 Hz, CH), 106.1 (CH), 105.4 (d, 2JCF = 23.8 Hz, CH), 29.0 (CH2), 25.8 (CH2), 

23.6 (CH2), 22.0 (CH2). 19F-NMR (282 MHz, CDCl3): δ = −122.52. IR (ATR): 2931, 

1568, 1420, 1270, 1214, 806, 771 cm-1. MS (ESI) m/z (relative intensity): 316 (22) 

[M+Na]+, 294 (100) [M+H]+, 261 (34), 221 (8), 125 (5).  HR-MS (ESI) m/z calcd for 

C18H16FN3 [M+H]+: 294.1401, found: 294.1404. The analytical data correspond with those 

reported in literature.[56] 
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Methyl-2-(cyclohex-1-en-1-yl)-1-(pyrimidin-2-yl)-1H-indole-4-carboxylate (44cb) 

The general procedure A was followed using indole 23c (66.1 mg, 0.24 mmol, 

1.00 equiv) and enol phosphate 41b (91.2 mg, 0.38 mmol, 1.50 equiv). Purification by 

column chromatography on silica gel (n-pentane/EtOAc 7:1) yielded 44cb (55.1 mg, 

163 μmol, 65%) as a pale yellow oil. An alternative procedure using enol acetate 40b 

(62.3 mg, 0.38 mmol, 1.5 equiv) yielded 44cb (51.9 mg, 153 μmol, 61%) as a yellow 

oil. 1H-NMR (300 MHz, CDCl3) δ = 8.83 (d, J = 5.4 Hz, 2H), 8.23 (d, J = 8.3 Hz, 1H), 

7.89 (d, J = 8.3 Hz, 1H), 7.27–7.16 (m, 3H), 5.92–5.88 (m, 1H), 3.98 (s, 3H), 2.14–2.12 

(m, 2H), 2.05–2.04 (m, 2H), 1.64–1.61 (m, 4H). 13C-NMR (125 MHz CDCl3): δ = 167.9 

(Cq), 158.3 (Cq), 158.1 (CH), 145.4 (Cq), 138.1 (Cq), 131.6 (Cq), 129.2 (Cq), 128.2 (CH), 

124.9 (CH), 122.2 (CH), 121.2 (Cq), 117.8 (CH), 117.5 (CH), 106.7 (CH), 51.8 (CH3), 

28.9 (CH2), 25.7 (CH2), 22.8 (CH2), 21.9 (CH2). IR (ATR): 2931, 1714, 1444, 1341, 

1304, 1153, 821, 727 cm-1. MS (ESI) m/z (relative intensity) 356 (67) [M+Na]+, 334 

(100) [M+H]+, 316 (11), 302 (14). HR-MS (ESI) m/z calcd for C20H19N3O2 

[M+H]+: 334.1550, found: 334,1551. 

 

2-[4-(tert-Butyl)cyclohex-1-en-1-yl]-1-(pyrimidin-2-yl)-1H-indole (44ak): 

The general procedure A was followed using indole 23a (49.5 mg, 0.25 mmol, 

1.00 equiv) and enol acetate 40k (77.1 mg, 0.38 mmol, 1.50 equiv). Purification by 

column chromatography on silica gel (n-pentane/EtOAc 12:1) yielded 44ak (57.1 mg, 

176 μmol, 71%) as a colorless oil. 1H-NMR (300 MHz, CDCl3): δ = 8.76 (d, J = 5.1 Hz, 

2H), 8.15 (dd, J = 8.2, 1.2 Hz, 1H), 7.57 (d, J = 8.2 Hz, 1H), 7.26-7.14 (m, 2H), 7.15 (t, 

J = 5.1 Hz. 1H), 6.55 (s, 1H), 5.90-5.86 (m, 1H), 2.21-2.09 (m, 3H), 2.00-1.88 (m, 1H), 

1.83-1.75 (m, 1H), 1.37 (m, 1H), 1.24 (m, 1H), 0.86 (s, 9H). 13C-NMR (101 MHz, 
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CDCl3): δ = 157.4 (Cq), 157.2 (CH), 142.0 (Cq), 136.6 (Cq), 130.5 (Cq), 128.3 (Cq), 126.3 

(CH), 121.9 (CH), 120.8 (CH), 119.2 (CH), 116.3 (CH), 111.8 (CH), 105.3 (CH), 42.7 

(CH), 31.2 (CH2), 29.7 (CH2), 26.4 (CH2), 26.1 (CH3), 24.1 (Cq). IR (ATR): 2958, 1561, 

1454, 1340, 1262, 1116, 798, 675, 627 cm-1. MS (ESI) m/z (relative intensity): 354 (22) 

[M+Na]+, 332 (100) [M+H]+, 177 (8), 149 (11). HR-MS (ESI) m/z calcd for C22H25N3 

[M+H]+: 332.2121, found: 332.2126. The analytical data correspond with those reported in 

literature.[56] 

 

2-(Cyclohex-1-en-1-yl)-1-(pyrimidin-2-yl)-5-methoxy-1H-indole (44db) 

The general procedure A was followed using indole 23d (58.7 mg, 0.25 mmol, 

1.00 equiv) and enol acetate 40b (61.7 mg, 0.38 mmol, 1.50 equiv). Purification by 

column chromatography on silica gel (n-pentane/EtOAc 8:1) yielded 44db (54.6 mg, 

179 μmol, 72%) as a pale yellow oil. 1H-NMR (300 MHz, CDCl3) δ = 8.75 (d, J = 4.7 Hz, 

2H), 8.09 (d, J = 7.9 Hz, 1H), 7.10 (t, J = 4.7 Hz, 1H), 7.02 (d, J = 1.0 Hz, 1H), 6.84 

(dd, J = 7.9, 1.0 Hz, 1H)  6.43 (s, 1H), 5.87–5.84 (m, 1H), 3.84 (s, 3H), 2.18–2.13 (m, 

2H), 2.07–2.02 (m, 2H), 1.66–1.61 (m, 4H). 13C-NMR (125 MHz, CDCl3): δ = 158.3 

(CH), 158.1 (Cq), 155.5 (Cq), 144.1 (Cq), 132.4 (Cq), 132.2 (Cq), 130.1 (Cq), 126.2 (CH), 

116.9 (CH), 114.2 (CH), 111.9 (CH) 106.2 (CH), 102.5 (CH), 55.1 (CH3), 29.1 (CH2), 

25.6 (CH2), 22.7 (CH2), 22.1 (CH2). IR (ATR): 2934, 1557, 1441, 1317, 1157, 1027, 

807, 723 cm-1. MS (ESI) m/z (relative intensity): 306 (100) [M+H]+, 282 (33), 261 (40) 

219 (85). HR-MS (ESI) m/z calcd for C19H18N3O [M+H]+: 306.1601, found: 306.1601. 

  

2-(Cyclohex-1-en-1-yl)-1-(pyrimidin-2-yl)-5-methyl-1H-indole (44eb) 

The general procedure A was followed using indole 23e (52.7 mg, 0.25 mmol, 

1.00 equiv) and enol acetate 40b (61.7 mg, 0.38 mmol, 1.50 equiv). Purification by 

column chromatography on silica gel (n-pentane/EtOAc 14:1) yielded 44eb (58.6 mg, 
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202 μmol, 80%) as a pale yellow oil. 1H-NMR (300 MHz, CDCl3) δ = 8.69 (d, J = 4.7 Hz, 

2H), 7.89 (d, J = 7.9 Hz, 1H), 7.32 (d, J = 0.7 Hz, 1H), 7.05 (t, J = 4.7 Hz, 1H), 6.98 

(dd, J = 7.9, 0.7 Hz, 1H)  6.43 (s, 1H), 5.83–5.81 (m, 1H), 2.37  (s, 3H), 2.14–2.08 (m, 

2H), 2.02–1.95 (m, 2H), 1.66–1.61 (m, 4H). 13C-NMR (101 MHz, CDCl3): δ = 158.4 

(CH), 158.1 (Cq), 143.4 (Cq), 135.8 (Cq), 132.2 (Cq), 131.2 (Cq), 129.7 (Cq), 126.5 (CH), 

124.5 (CH), 120.2 (CH), 116.9 (CH), 112.9 (CH), 106.2 (CH), 28.9 (CH3), 25.6 (CH2), 

22.7 (CH2), 22.1 (CH2), 21.2 (CH2). IR (ATR): 2934, 1552, 1371, 1312, 1256, 1127, 

824 cm-1. MS (ESI) m/z (relative intensity): 312 (21) [M+Na]+, 290 (100) [M+H]+, 263 

(5). HR-MS (ESI) m/z calcd for C19H19N3[M+H]+: 290.1652, found: 290.1653.  

 

2-(Cyclohex-1-en-1-yl)-1-(pyrimidin-2-yl)-5-(trifluoromethyl)-1H-indole (44fb) 

The general procedure A was followed using indole 23f (68.7 mg, 0.25 mmol, 

1.00 equiv) and enol acetate 40b (63.4 mg, 0.38 mmol, 1.50 equiv). Purification by 

column chromatography on silica gel (n-pentane/EtOAc 15:1) yielded 44fb (64.9 mg, 

184 μmol, 74%) as a pale yellow oil. 1H-NMR (300 MHz, CDCl3) δ = 8.80 (d, J = 4.7 Hz, 

2H), 8.15 (dd, J = 7.3, 0.9 Hz, 1H), 7.85−7.82 (m, 1H), 7.45 (dd, J = 7.3, 1.9 Hz, 1H), 

7.21 (t, J = 4.7 Hz, 1H), 6.61 (s, 1H), 5.86–5.84 (m, 1H), 2.17–2.15 (m, 2H), 2.06–2.02 

(m, 2H), 1.67–1.61 (m, 4H). 13C-NMR (101 MHz, CDCl3): δ = 158.4 (CH), 158.0 (Cq), 

145.0 (Cq), 138.7 (Cq), 131.3 (Cq), 128.8 (Cq), 128.2 (CH), 125.1 (q, 1JC-

F = 269.1 Hz, Cq), 124.1 (q, 2JC-F = 31.5 Hz, Cq), 119.7 (q, 3JC-F = 3.9 Hz, CH) 118.0 

(CH), 117.6 (q, 3JC-F = 3.3 Hz, CH) 113.2 (CH), 105.9 (CH), 29.2 (CH2), 25.8 (CH2), 

22.7 (CH2), 21.5 (CH2). 19F-NMR (282 MHz, CDCl3): δ = −60.74. IR (ATR): 2933, 1557, 

1441, 1333, 1271, 1051, 796 cm-1. MS (ESI) m/z (relative intensity): 344 (100) [M+H]+, 

321 (11), 306 (15), 261 (10), 219 (13). HR-MS (ESI) m/z calcd for C19H16F3N3 

[M+H]+: 344.1369 found: 344.1366. The analytical data correspond with those reported in 

literature.[56] 
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2-(Cyclohex-1-en-1-yl)-1-(pyrimidin-2-yl)-5-chloro-1H-indole (44gb) 

The general procedure A was followed using indole 23g (59.7 mg, 0.25 mmol, 

1.00 equiv) and enol acetate 40b (62.2 mg, 0.38 mmol, 1.50 equiv). Purification by 

column chromatography on silica gel (n-pentane/EtOAc 20:1) yielded 44gb (45.6 mg, 

147 μmol, 59%) as a pale yellow oil. 1H-NMR (300 MHz, CDCl3) δ = 8.76 (d, J = 4.7 Hz, 

2H), 8.05 (d, J = 7.7 Hz, 1H), 7.49 (d, J = 0.8 Hz, 1H), 7.17–7.13 (m, 2H), 6.58 (s, 1H), 

5.83–5.81 (m, 1H), 2.14–2.08 (m, 2H), 2.08–2.02 (m, 2H), 1.62–1.57 (m, 4H). 13C-NMR 

(101 MHz, CDCl3): δ = 158.2 (CH), 158.0 (Cq), 144.7 (Cq), 135.8 (Cq), 131.5 (Cq), 130.5 

(Cq), 127.6 (CH), 127.1 (Cq), 123.0 (CH), 119.6 (CH), 117.6 (CH), 114.2 (CH), 106.4 

(CH), 28.9 (CH2), 25.6 (CH2), 22.8 (CH2), 21.8 (CH2). IR (ATR): 2934, 1572, 1423, 

1325, 1212, 1047, 802, 736 cm-1. MS (ESI) m/z (relative intensity): 312 (24) [M+H]+ 

(37Cl), 310 (90) [M+H]+ (35Cl), 280 (100), 254 (14), 229 (11). HR-MS (ESI) m/z calcd 

for C18H15N3
37Cl [M]+: 309.1027, found: 309.1019. 

 

2-(Cyclohex-1-en-1-yl)-3-methyl-1-(pyrimidin-2-yl)-1H-indole (44jb) 

The general procedure A was followed using indole 23j (53.4 mg, 0.25 mmol, 

1.00 equiv) and enol acetate 40b (62.7 mg, 0.38 mmol, 1.50 equiv). Purification by 

column chromatography on silica gel (n-pentane/EtOAc 18:1) yielded 44jb as a pale 

yellow solid (62.2 mg, 214 μmol, 85%). M. p. = 168−170 °C. 1H-NMR (300 MHz, 

CDCl3): δ = 8.74 (d, J = 4.4 Hz, 2H), 8.30 (m, 1H), 7.58–7.52 (m, 1H), 7.24–7.19 (m, 

2H), 7.085 (t, J = 4.4 Hz, 1H), 5.80–5.77 (m, 1H), 2.25 (s, 3H), 2.24–2.20 (m, 2H), 

2.04–1.99 (m, 2H), 1.69–1.67 (m, 4H). 13C-NMR (125 MHz, CDCl3): δ = 158.1 (Cq), 

157.8 (CH), 138.7 (Cq), 136.6 (Cq), 131.5 (Cq), 130.5 (Cq), 128.5 (CH), 123.2 (CH), 

123.1 (CH), 121.6 (CH), 118.2 (CH), 116.2 (CH), 113.3 (Cq), 29.8 (CH2), 25.6 (CH2), 

23.3 (CH2), 22.0 (CH2), 9.6 (CH3). IR (ATR): 2915, 1561, 1427, 1355, 1271, 1138, 824, 
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792. cm-1. MS (ESI) m/z (relative intensity): 312 (41) [M+Na]+, 290 (100) [M+H]+, 263 

(9), 247 (19), 159 (11). HR-MS (ESI) m/z calcd for C19H19N3 [M+H]+: 290.1652, 

found: 290.1652. The analytical data correspond with those reported in literature.[56] 

 

2-(Cyclohex-1-en-1-yl)-7-ethyl-1-(pyrimidin-2-yl)-1H-indole (44kb) 

The general procedure A was followed using indole 23k (59.9 mg, 0.25 mmol, 

1.00 equiv) and enol acetate 40b (61.8 mg, 0.38 mmol, 1.50 equiv). Purification by 

column chromatography on silica gel (n-pentane/EtOAc 20:1) yielded 44kb (56.6 mg, 

185 μmol, 74%) as a pale yellow oil. 1H-NMR (300 MHz, CDCl3) δ = 8.82 (d, J = 5.1 Hz, 

2H), 7.42 (d, J = 7.5 Hz, 1H), 7.29 (dd, J = 7.5, 7.2 Hz, 1H), 7.07 (t, J = 5.1 Hz, 1H), 

6.98 (d, J = 7.2 Hz, 1H),  6.53 (s, 1H), 5.63–5.61 (m, 1H), 2,29 (q, J = 6.8 Hz, 2H), 

2.14–2.03 (m, 2H), 1.98–1.91 (m, 2H), 1.62–1.46 (m, 4H), 0.89 (t, J = 6.8 Hz, 3H). 13C-

NMR (125 MHz, CDCl3): δ = 160.5 (Cq), 158.0 (CH), 144.2 (Cq), 136.3 (Cq), 129.9 (Cq), 

129.5 (Cq), 128.9 (CH), 127.9 (Cq), 123.0 (CH), 121.2 (CH) 119.6 (CH), 118.2 (CH), 

103.4 (CH), 28.9 (CH2), 25.7 (CH2), 25.2 (CH2) 22.7 (CH2), 21.8 (CH2), 14.4 (CH3). IR 

(ATR): 2937, 1558, 1371, 1227, 1162. 1039, 822, 744 cm-1. MS (ESI) m/z (relative 

intensity): 304 (100) [M+H]+, 279 (18), 219 (14), 179 (11). HR-MS (ESI) m/z calcd for 

C20H21N3 [M]+: 303.1808, found: 303.1796. 

 

2-[2,5-Bis(cyclohex-1-en-1-yl)-1H-pyrrol-1-yl]pyrimidine (218ab) 

The general procedure A was followed using pyrrole 217a (39.3 mg, 0.25 mmol, 

1.00 equiv) and enol acetate 40b (106 mg, 0.75 mmol, 1.50 equiv). Purification by 

column chromatography on silica gel (n-pentane/EtOAc 18:1) yielded 218ab as a 

colorless oil (58.0 mg, 186 μmol, 74%). 1H-NMR (300 MHz, CDCl3): δ = 8.77 (d, 

J = 4.6 Hz, 2H), 7.21 (t, 4.6 Hz, 1H), 6.07 (s, 2H), 5.35–5.32 (m, 2H), 1.97–1.90 (m, 

8H), 1.55–1.44 (m, 8H). 13C-NMR (125 MHz, CDCl3): δ = 159.4 (Cq), 158.1 (CH), 137.6 
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(Cq), 130.6 (Cq), 125.9 (CH), 120.2 (CH), 108.8 (CH), 28.6 (CH2), 25.5 (CH2), 22.8 

(CH2), 22.1 (CH2). IR (ATR): 2927, 1578, 1512, 1327, 1024, 824 cm−1. MS (ESI) m/z 

(relative intensity): 328 (25) [M+Na]+ 306 (100) [M+H]+, 219 (5), 117 (10). HR-MS (ESI) 

m/z calcd for C20H23N3 [M+H]+: 306.1965, found: 306.1976.  

  

2-(Cyclohex-1-en-1-yl)-1-(pyrimidin-2-yl)-1,5,6,7-tetrahydro-4H-indol-4-one 

(218cb) 

The general procedure A was followed using 1-(pyrimidin-2-yl)-1,5,6,7-tetrahydro-4H-

indol-4-one (217c) (80.3 mg, 0.50 mmol, 1.00 equiv) and enol acetate 40b (62.9 mg, 

0.38 mmol, 1.50 equiv). Purification by column chromatography on silica gel 

(n-pentane/EtOAc 1:2) yielded 218cb (39.3 mg, 134 μmol, 53%) as a white solid. 

M. p. = 112-116 °C. 1H-NMR (300 MHz, CDCl3): δ = 8.80 (d, J = 4.6 Hz, 2H), 7.31 (t, 

J = 4.6 Hz, 1H), 6.49 (s, 1H), 5.48-5.44 (m, 1H), 2.83 (t, J = 6.1 Hz, 2H), 2.47 (dd, 

J = 7.2, 5.5 Hz, 2H), 2.11 (tt, J = 7.2, 5.5 Hz, 2H), 2.02–1.91 (m, 2H), 1.89–1.81 (m, 

2H), 1.59–1.52 (m, 4H). 13C-NMR (125 MHz, CDCl3): δ = 194.3 (Cq), 158.4 (CH), 157.4 

(Cq), 145.2 (Cq), 138.3 (Cq), 129.6 (Cq), 126.9 (CH), 121.4 (Cq), 119.3 (CH), 105.3 

(CH), 37.9 (CH2), 28.7 (CH2), 25.6 (CH2), 23.8 (CH2), 23.7 (CH2), 22.7 (CH2), 21.9 

(CH2). IR (ATR): 2930, 1658, 1573, 1410, 1218, 1178, 1017, 834, 635 cm−1. MS (ESI) 

m/z (relative intensity): 332 (80) [M+K]+, 316 (28) [M+Na]+, 294 (100) [M+H]+. HR-MS 

(ESI) m/z calcd for C18H19N3O [M+H]+: 294.1606, found: 294.1602. The analytical data 

correspond with those reported in literature.[56] 
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5.4 Cobalt-Catalyzed Allylation of Indoles 

5.4.1 Analytical Data and Experimental Procedures 

 

2-Allyl-4-ethoxy-1-(pyrimidin-2-yl)-1H-indole (91m) 

The general procedure B was followed using indole 23m (118 mg, 0.50 mmol, 

1.00 equiv) and allyl acetate 213 (106 mg, 1.00 mmol, 2.00 equiv). Purification by 

column chromatography on silica gel (n-hexane/EtOAc 12:1) yielded 91m (125 mg, 

452 μmol, 89%) as a colourless solid. M. p. = 125−126 °C. 1H-NMR (300 MHz, CDCl3) 

δ = 8.75 (d, J = 4.8 Hz, 2H), 7.82 (d, J = 7.8 Hz, 1H), 7.13−7.09 (m, 2H), 6.62−6.60 (m, 

2H), 5.98 (ddt, J = 17.0, 10.3, 6.5 Hz, 1H), 5.01 (ddt, J = 17.0,  1.7 Hz,  1H), 5.00 (ddt, 

J = 10.3,  1.7 Hz,  1H), 4.16 (q, J = 6.9 Hz, 2H) 3.92 (dd, J = 6.5, 1.2 Hz, 2H), 1.48 (t, 

J = 6.9 Hz, 3H). 13C-NMR (125 MHz, CDCl3): δ = 158.3 (Cq), 158.0 (CH), 151.7 (Cq) 

138.4 (Cq), 138.0 (Cq) 135.7 (CH), 123.4 (CH), 119.8 (Cq), 117.1 (CH), 116.3 (CH2), 

107.0 (CH), 103.5 (CH), 103.2 (CH), 63.6 (CH2), 34.0 (CH2), 15.0 (CH3). IR (ATR): 

n (cm−1) = 2973, 1642, 1425, 1302, 736, 727, 654 cm-1. EI-MS: m/z (relative intensity): 

279 (91) [M]+, 264 (100), 250 (59), 236 (22), 222 (28) 79 (13), 43, (11). HR-MS (ESI): 

m/z calcd for C17H17N3O [M]+: 279.1372, found: 279.1376. 

 

2-Allyl-5-(trifluoromethyl)-1-(pyrimidin-2-yl)-1H-indole (91f) 

The general procedure B was followed using indole 23f (132 mg, 0.50 mmol, 

1.00 equiv) and allyl acetate 213 (107 mg, 1.00 mmol, 2.00 equiv). Purification by 

HPLC (n-hexane/EtOAc 80:20) yielded 91f (128 mg, 421 μmol, 84%) as a yellow oil. 

1H-NMR (300 MHz, CDCl3) δ = 8.80 (d, J = 4.8 Hz, 2H), 8.29 (d, J = 7.9 Hz, 1H), 7.79 

(s, 1H), 7.43 (d, J = 7.9, 1H), 7.19 (t, J = 4.8 Hz, 1H), 6.54 (s, 1H), 5.94 (ddt, J = 16.8, 

10.2, 6.3 Hz, 1H), 5.04 (ddt, J = 16.8,  1.7, 1.3 Hz, 1H),  5.00 (ddt, J = 10.2,  1.7 Hz, 
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1H), 3.95 (d, J = 6.3 Hz, 2H). 13C-NMR (125 MHz, CDCl3): δ = 158.2 (CH), 157.8 (Cq), 

141.7 (Cq) 138.5 (Cq), 135.0 (CH) 138.7 (Cq), 125.1 (q, 1JCF = 271 Hz, Cq), 124.0 (q, 

2JCF = 32.2 Hz, Cq), 119.3 (q, 3JCF = 3.8 Hz, CH), 117.7 (CH), 117.2 (q, 

3JCF = 3.8 Hz, CH), 116.8 (CH2), 114.0 (CH), 106.5 (CH), 33.9 (CH2). 19F-NMR 

(282 MHz, CDCl3): d = −61.17. IR (ATR): n (cm−1) = 2977, 1561, 1426, 1324, 1112, 

1058, 805 cm-1. EI-MS: m/z (relative intensity): 303 (26) [M]+, 288 (100), 275 (9), 219 

(11), 154 (8), 79, (6). HR-MS (ESI): m/z calcd for C16H12N3F3 [M+H]+: 304.1062, found: 

304.1056. 

 

N-(2-Allyl-1-(pyrimidin-2-yl)-1H-indol-5-yl)acetamide (91i) 

The general procedure B was followed using indole 23i (42.3 mg, 0.17 mmol, 

1.00 equiv) and allyl acetate 213 (34.0 mg, 0.34 mmol, 2.00 equiv). Purification by 

column chromatography on silica gel (n-hexane/EtOAc 12:1) yielded 91i (38.7 mg, 

132 μmol, 78%) as a yellow oil. 1H-NMR (300 MHz, CDCl3) δ = 8.73 (d, J = 5.7 Hz, 

2H), 8.19 (d, J = 7.2 Hz, 1H), 7.79 (d, J = 1.3 Hz, 1H), 7.39 (s, 1H), 7.15 (dd, J = 8.9, 

2.2 Hz, 1H), 7.09 (t, J = 5.7 Hz, 1H), 6.44 (s, 1H), 5.95 (ddt, J = 17.9, 10.4, 5.5 Hz, 1H), 

5.03 (ddt, J = 17.9, 1.4 Hz, 1H), 5.00 (ddt, J = 10.4, 1.4 Hz, 1H), 3.93 (d, J = 5.5 Hz, 

2H) 2.15 (s, 3H). 13C-NMR (125 MHz, CDCl3): δ = 168.2 (Cq), 158.1 (Cq), 158.0 (CH), 

140.7 (Cq) 135.4 (CH), 134.1 (Cq) 132.3 (Cq), 129.5 (Cq), 116.9 (CH), 116.4 (CH2), 

115.8 (CH), 114.3 (CH), 111.4 (CH), 106.7 (CH), 34.2 (CH2), 24.5 (CH3). IR (ATR): 

n (cm−1) = 2981, 1681, 1429, 1302, 1251, 730, 651 cm-1. EI-MS: m/z (relative 

intensity): 292 (43) [M]+, 277 (100), 249 (17), 235 (33), 79 (8), 43 (24). HR-MS (ESI): 

m/z calcd for C17H17N4O [M+H]+: 293.1402, found: 293.1398. 
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2-Allyl-5-nitro-1-(pyrimidin-2-yl)-1H-indole (91n) 

The general procedure B was followed using indole 23n (119 mg, 0.50 mmol, 

1.00 equiv) and allyl acetate 213 (104 mg, 1.00 mmol, 2.00 equiv). Purification by 

column chromatography on silica gel (n-hexane/EtOAc 12:1) yielded 91n (127 mg, 

455 μmol, 91%) as a yellow solid. M. p. = 106−108 °C. 1H-NMR (300 MHz, CDCl3) 

δ = 8.83 (d, J = 4.7 Hz, 2H), 8.43 (d, J = 2.3 Hz, 1H), 8.22 (d, J = 8.7 Hz, 1H), 8.09 (dd, 

J = 8.7, 2.3 Hz, 1H), 7.25 (t, J = 4.7 Hz, 1H), 6.60 (s, 1H), 5.93 (ddt, J = 16.9, 10.5, 

6.5 Hz, 1H), 5.06 (ddt, J = 16.9, 1.3 Hz, 1H), 5.04 (ddt, J = 10.5, 1.3 Hz, 1H),  3.94 (dd, 

J = 6.5, 1.3 Hz, 2H). 13C-NMR (125 MHz, CDCl3): δ = 158.4 (CH), 157.5 (Cq), 143.3 

(Cq) 143.0 (Cq), 140.0 (Cq) 134.5 (CH), 128.7 (Cq), 118.3 (CH), 118.0 (CH), 117.1 

(CH2), 116.3 (CH), 113.7 (CH), 107.0 (CH), 33.9 (CH2). IR (ATR): n (cm−1) = 2977, 

1610, 1570, 1421, 1071, 924, 745, 541 cm-1. EI-MS: m/z (relative intensity): 280 (34) 

[M]+, 265 (100), 219 (44), 207 (18). HR-MS (ESI): m/z calcd for C15H12N4O2 [M]+: 

280.0960, found: 280.0963. 

 

2-Allyl-3-methyl-1-(pyrimidin-2-yl)-1H-indole (91j) 

The general procedure B was followed using indole 23j (106 mg, 0.50 mmol, 

1.00 equiv) and allyl acetate 213 (105 mg, 1.00 mmol, 2.00 equiv). Purification by 

column chromatography on silica gel (n-hexane/EtOAc 15:1) yielded 91j (116 mg, 

467 μmol, 93%) as a colourless solid. M. p. = 79−81 °C. 1H-NMR (300 MHz, CDCl3) 

δ = 8.75 (d, J = 5.2 Hz, 2H), 8.23−8.21 (m, 1H), 7.52−7.50 (m, 1H), 7.22−7.19  (m, 2H), 

7.06 (t, J = 5.2 Hz, 1H), 5.90 (ddt, J = 16.7, 9.9, 5.9 Hz, 1H), 4.87 (ddt, J = 16.7, 1.9 Hz, 

1H), 4.84 (ddt, J = 9.9, 1.9 Hz, 1H), 3.97 (dd, J = 5.9, 1.8 Hz, 2H), 2.29 (s, 3H). 13C-

NMR (125 MHz, CDCl3): δ = 158.2 (Cq), 158.0 (CH), 136.2 (Cq), 135.9 (CH), 134.1 

(Cq), 130.4 (Cq), 122.9 (CH), 121.4 (CH), 118.0 (CH), 116.7 (CH), 115.0 (CH2), 113.8 
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(Cq), 113.5 (CH), 30.4 (CH2), 8.8 (CH3). IR (ATR): n (cm−1) = 2912, 1656, 1416, 1197, 

809, 734, 603, 440 cm-1. EI-MS: m/z (relative intensity): 249 (32) [M]+, 234 (100), 220 

(20), 154 (11), 43, (18). HR-MS (ESI): m/z calcd for C16H15N3 [M]+: 249.1266, found: 

249.1264. The analytical data correspond with those reported in literature.[79b] 

 

5.5 Base-Metal Catalyzed C–H Alkynyaltion 

5.5.1 Analytical Data and Experimental Procedures 

 

1-(Pyrimidin-2-yl)-2-[(triisopropylsilyl)ethynyl]-1H-indole (89aa) 

The general procedure C was followed using indole 23a (48.9 mg, 0.25 mmol, 

1.00 equiv) and 132a (79.1 mg, 0.30 mmol, 1.20 equiv). Purification by column 

chromatography on silica gel (n-pentane/EtOAc 8:1) yielded 89aa (90.3 mg, 241 μmol, 

96%) as a yellow oil. 

The general procedure D was followed using indole 23a (98 mg, 0.50 mmol, 

1.00 equiv) and 132a (157 mg, 0.60 mmol, 1.20 equiv). Isolation by column 

chromatography (n-hexane/EtOAc: 9/1) yielded 89aa (186 mg, 99%) as a colorless 

liquid. 1H-NMR (500 MHz, CDCl3) δ = 8.79 (d, J = 4.8 Hz, 2H), 8.28 (ddd, J = 8.1, 1.0, 

0.6 Hz 1H), 7.57 (ddd, J = 8.1, 1.0, 0.6 Hz 1H), 7.33 (ddd, J = 8.5, 2.0, 1.3 Hz, 1H), 

7.23 (ddd, J = 8.5, 2.0, 1.3 Hz, 1H), 7.18 (t, J = 4.8 Hz, 1H), 7.07 (d, J = 0.6 Hz, 1H), 

1.13–1.11 (m, 21H). 13C-NMR (125 MHz, CDCl3): δ = 158.1 (CH), 157.4 (Cq), 136.2 

(Cq), 128.5 (Cq), 124.8 (CH), 122.3 (CH), 120.9 (Cq), 120.7 (CH), 117.5 (CH), 115.7 

(CH), 114.0 (CH), 98.7 (Cq), 97.8 (Cq), 18.7 (CH3), 11.4 (CH). IR (ATR): 2940, 2862, 

2149, 1561, 1422, 1253, 715 cm-1. MS (EI) m/z (relative intensity): 375 (32), 332 (100), 

304 (16), 290 (32), 262 (18), 222 (24), 138 (9), 69 (14). HR-MS (ESI) m/z calcd for 

C23H29N3Si [M]+: 375.2131, found: 375.2132. The analytical data are in accordance with those 

previously reported in the literature.[78] 
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4-Ethoxy-1-(pyrimidin-2-yl)-2-[(triisopropylsilyl)ethynyl]-1H-indole (89ma) 

The general procedure C was followed using indole 23m (60.1 mg, 0.25 mmol, 

1.00 equiv), and 132a (78.9 mg, 0.30 mmol, 1.20 equiv). Purification by column 

chromatography on silica gel (n-pentane/EtOAc 6:1) yielded 89ma (63.8 mg, 

164 μmol, 91%) as a white solid. M. p. = 112−114 °C. 1H-NMR (500 MHz, CDCl3) 

δ = 8.76 (d, J = 5.0 Hz, 2H), 7.82 (ddd, J = 8.1, 1.6, 0.7 Hz, 1H), 7.22–7.17 (m, 2H), 

7.14 (t, J = 5.0 Hz, 1H), 6.59 (dd, J = 8.1, 0.7 Hz, 1H), 4.16 (q, J = 6.7 Hz, 2H), 1.48 (t, 

J = 6.7 Hz, 3H), 1.11–1.09 (m, 21H). 13C-NMR (125 MHz, CDCl3): δ = 158.0 (CH), 

157.5 (Cq), 152.1 (Cq), 137.4 (Cq), 125.7 (CH), 119.5 (Cq), 119.4 (Cq), 117.5 (CH), 

113.2 (CH), 107.0 (CH), 103.1 (CH), 99.0 (Cq), 97.0 (Cq), 63.6 (CH2), 18.7 (CH3), 14.9 

(CH3), 11.4 (CH). IR (ATR): 2941, 2863, 2142, 1571, 1417, 1246, 740, 727 cm-1. MS 

(EI) m/z (relative intensity): 419 (65), 376 (100), 348 (18), 334 (23), 304 (16). HR-MS 

(ESI) m/z calcd for C25H33N3OSi [M]+: 419.2393, found: 419.2395. 

 

5-Fluoro-1-(pyrimidin-2-yl)-2-[(triisopropylsilyl)ethynyl]-1H-indole (89oa) 

The general procedure C was followed using indole 23o (53.4 mg, 0.25 mmol, 

1.00 equiv) and 132a (78.8 mg, 0.30 mmol, 1.20 equiv) at 80 °C. Purification by 

column chromatography on silica gel (n-pentane/EtOAc 8:1) yielded 89oa (80.9 mg, 

206 μmol, 82%) as a white solid. 

The general procedure D was followed using indole 23o (108 mg, 0.50 mmol, 

1.00 equiv) and 132a (155 mg, 0.60 mmol, 1.20 equiv). Isolation by column 

chromatography (n-pentane/EtOAc: 8/1) yielded 89oa (174 mg, 88%) as a yellow solid. 

M. p. = 91−93 °C. 1H-NMR (500 MHz, CDCl3) δ = 8.77 (d, J = 4.7 Hz, 2H), 8.26 (dd, 

J = 9.1, 4.7 Hz 1H), 7.23–7.17 (m, 2H), 7.05 (ddd, J = 9.1, 3.0, 1.5 Hz, 1H), 7.01 (s, 
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1H), 1.13–1.11 (m, 21H).13C-NMR (125 MHz, CDCl3): δ = 159.2 (d, 1JCF = 238 Hz, Cq), 

158.1 (CH), 157.2 (Cq), 132.5 (Cq), 129.2 (d, 3JCF = 10 Hz, Cq), 122.4 (Cq), 117.7 (CH), 

115.3 (d, 3JCF = 12 Hz, CH), 115.2 (CH), 112.8 (d, 2JCF = 25 Hz, CH), 105.5 (d, 

2JCF = 23 Hz, CH), 98.6 (Cq), 98.3 (Cq), 18.6 (CH3), 11.4 (CH). 19F-NMR (282 MHz, 

CDCl3): −121.9. IR (ATR): 2940, 2862, 2143, 1573, 1556, 1419, 1253, 1211, 723 cm-1. 

MS (EI) m/z (relative intensity): 393 (22), 350 (100), 322 (19), 308 (30), 280 (22), 240 

(28), 147 (12). HR-MS (ESI) m/z calcd for C23H28N3FSi [M]+: 393.2037, found: 

393.2020. The analytical data are in accordance with those previously reported in the literature.[78] 

 

5-Bromo-1-(pyrimidin-2-yl)-2-[(triisopropylsilyl)ethynyl]-1H-indole (89ha) 

The general procedure C was followed using indole 23h (68.1 mg, 0.25 mmol, 

1.00 equiv) and 132a (78.4 mg, 0.30 mmol, 1.20 equiv) at 80 °C. Purification by 

column chromatography on silica gel (n-pentane/EtOAc 8:1) yielded 89ha (104.4 mg, 

231 μmol, 92%) as a white solid. 

The general procedure D was followed using indole 23h (137 mg, 0.50 mmol, 

1.00 equiv) and 132a (159 mg, 0.60 mmol, 1.20 equiv). Isolation by column 

chromatography (n-pentane/EtOAc: 8/1) yielded 89ha (204 mg, 91%) as a yellow solid. 

M. p. = 94−96 °C. 1H-NMR (500 MHz, CDCl3) δ = 8.76 (d, J = 5.4 Hz, 2H), 8.04 (ddd, 

J = 9.0, 1.5, 0.5 Hz 1H), 7.90 (dd, J = 1.5, 0.5 Hz, 1H), 7.53 (dd, J = 8.7, 1.9 Hz, 1H), 

7.18 (t, J = 5.4 Hz, 1H), 6.94 (d, J = 0.3 Hz, 1H), 1.11–1.08 (m, 21H).13C-NMR 

(125 MHz, CDCl3): δ = 158.1 (CH), 157.1 (Cq), 135.3 (Cq), 133.0 (CH), 130.9 (Cq), 

129.3 (CH), 121.7 (Cq), 117.9 (CH), 116.2 (CH), 114.3 (CH), 98.8 (Cq), 98.1 (Cq), 86.2 

(Cq), 18.6 (CH3), 11.4 (CH). IR (ATR): 2960, 2861, 2140,1572, 1420, 1256, 1014, 792, 

657 cm-1. MS (EI) m/z (relative intensity): 455 (21), 412 (100), 368 (33), 302 (24), 178 

(14). HR-MS (ESI) m/z calcd for C23H28N3BrSi [M]+: 453.1236, found: 453.1229. The 

analytical data are in accordance with those previously reported in the literature.[78] 
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5-Iodo-1-(pyrimidin-2-yl)-2-[(triisopropylsilyl)ethynyl]-1H-indole (89pa) 

The general procedure C was followed using indole 23p (80.1 mg, 0.25 mmol, 

1.00 equiv) and 132a (78.9 mg, 0.30 mmol, 1.20 equiv) at 80 °C. Purification by 

column chromatography on silica gel (n-pentane/EtOAc 8:1) yielded 89pa (109.4 mg, 

217 μmol, 87%) as a white solid. M. p. = 68−69 °C. 1H-NMR (500 MHz, CDCl3) 

δ = 8.77 (d, J = 4.9 Hz, 2H), 8.16 (ddd, J = 8.8, 1.4, 0.6 Hz 1H), 7.67 (dd, J = 2.0, 

0.6 Hz, 1H), 7.36 (dd, J = 8.8, 2.0 Hz, 1H), 7.19 (t, J = 4.9 Hz, 1H), 6.98 (d, J = 0.5 Hz, 

1H), 1.11–1.09 (m, 21H). 13C-NMR (125 MHz, CDCl3): δ = 158.1 (CH), 157.1 (Cq), 

134.7 (Cq), 130.2 (Cq), 127.5 (CH), 123.0 (CH), 122.1 (Cq), 117.9 (CH), 115.7 (CH), 

115.5 (Cq), 114.6 (CH), 98.9 (Cq), 98.1 (Cq), 18.6 (CH3), 11.4 (CH). IR (ATR): 2939, 

2860, 2149,1562, 1422, 1180, 782, 662 cm-1. MS (EI) m/z (relative intensity): 501 (32), 

458 (100), 430 (16), 416 (28), 388 (15), 348 (12), 201 (11). HR-MS (ESI) m/z calcd for 

C23H28N3ISi [M]+: 501.1097, found: 501.1104. 

 

5-Methoxy-1-(pyrimidin-2-yl)-2-[(triisopropylsilyl)ethynyl]-1H-indole (89da) 

The general procedure C was followed using indole 23d (56.4 mg, 0.25 mmol, 

1.00 quiv) and 132a (78.7 mg, 0.30 mmol, 1.20 equiv). Purification by column 

chromatography on silica gel (n-pentane/EtOAc 5:1) yielded 89da (94.9 mg, 234 μmol, 

94%) as a white solid. 

The general procedure D was followed using indole 23 (113 mg, 0.50 mmol, 

1.00 equiv) and 132a (157 mg, 0.60 mmol, 1.20 equiv). Isolation by column 

chromatography (n-pentane/EtOAc: 9/1) yielded 89da (158 mg, 78%) as a white solid. 

M. p. = 116−118 °C. 1H-NMR (500 MHz, CDCl3) δ = 8.74 (d, J = 4.8 Hz, 2H), 8.21 (m, 

J = 9.0, 1.1, 0.6 Hz 1H), 7.23 (ddd, J = 8.5, 2.0, 1.3 Hz, 1H), 7.15 (t, J = 4.8 Hz, 1H), 
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7.01–6.99 (m, 1H), 6.98 (d, J = 0.4 Hz, 1H), 3.86 (s, 3H), 1.13–1.11 (m, 21H). 13C-

NMR (125 MHz, CDCl3): δ = 158.0 (CH), 157.3 (Cq), 155.7 (Cq), 131.1 (Cq), 129.3 (Cq), 

121.3 (Cq), 117.3 (CH), 115.6 (CH), 115.3 (CH), 114.4 (CH), 102.2 (CH), 98.9 (Cq), 

97.8 (Cq), 55.6 (CH3) 18.7 (CH3), 11.4 (CH). IR (ATR): 2940, 2864, 2143, 1562, 1417, 

1335, 1207, 840, 741 cm-1. MS (EI) m/z (relative intensity): 405 (46), 362 (100), 320 

(29), 292 (11), 252 (13), 153 (10). HR-MS (ESI) m/z calcd for C24H32N3OSi [M+H]+: 

406.2315, found: 406.2318. The analytical data are in accordance with those previously reported 

in the literature.[78] 

 

3-Methyl-1-(pyrimidin-2-yl)-2-[(triisopropylsilyl)ethynyl]-1H-indole (89ja) 

The general procedure C was followed using indole 23j (53.4 mg, 0.25 mmol, 

1.00 equiv) and 132a (79.1 mg, 0.30 mmol, 1.20 equiv) at 80 °C. Purification by 

column chromatography on silica gel (n-pentane/EtOAc 20:1) yielded 89ja (63.8 mg, 

164 μmol, 66%) as a yellow oil. 1H-NMR (500 MHz, CDCl3) δ = 8.73 (d, J = 4.6 Hz, 

2H), 8.32 (ddd, J = 8.5, 1.2 Hz, 1H), 7.53 (ddd, J = 8.5, 1.2, 0.8 Hz, 1H), 7.31 (ddd, 

J = 7.4, 4.2, 2.0 Hz, 1H), 7.21 (ddd, J = 7.4, 4.2, 2.0 Hz, 1H), 7.10 (t, J = 4.6 Hz, 1H), 

2.45 (s, 3H), 1.11–1.09 (m, 21H). 13C-NMR (125 MHz, CDCl3): δ = 158.1 (Cq), 157.9 

(CH), 157.5 (Cq), 135.8 (Cq), 129.4 (Cq), 125.1 (Cq), 125.0 (CH), 122.0 (CH), 119.0 

(CH), 116.7 (CH), 114.2 (CH), 100.7 (Cq), 98.4 (Cq), 18.7 (CH3), 11.4 (CH) 9.9 (CH3). 

IR (ATR): 2940, 2862, 2143,1561, 1426, 727 cm-1. MS (EI) m/z (relative intensity): 389 

(57), 346 (100), 330 (40), 304 (24), 236 (14). HR-MS (ESI) m/z calcd for C23H32N3OSi 

[M+H]+: 389.2287, found: 389.2300. 
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2-(2,5-Bis[(triisopropylsilyl)ethynyl]-1H-pyrrol-1-yl)pyrimidine (223aa) 

The general procedure C was followed using pyrrole 217a (35.8 mg, 0.25 mmol, 

1.00 equiv) and 132a (79.0 mg, 0.30 mmol, 1.20 equiv). Purification by column 

chromatography on silica gel (n-pentane/EtOAc 5:1) yielded 218aa (114.5 mg, 

226 μmol, 91%) as a white solid. M. p. = 74−76 °C. 1H-NMR (500 MHz, CDCl3) 

δ = 8.76 (d, J = 4.3 Hz, 2H), 7.26 (t, J = 4.3 Hz, 1H), 6.51 (s, 2H), 1.00–0.97 (m, 42H). 

13C-NMR (125 MHz, CDCl3): δ = 158.3 (CH), 156.5 (Cq), 119.4 (CH), 117.6 (CH), 117.3 

(Cq), 97.7 (Cq), 95.2 (Cq), 18.5 (CH3), 11.2 (CH). IR (ATR): 2940, 2863, 2146, 1563, 

1421, 918, 767, 626 cm-1. MS (EI) m/z (relative intensity): 505 (42), 462 (100), 420 

(21). HR-MS (ESI) m/z calcd for C30H47N3Si2 [M]+: 505.3309, found 505.3300. 

 

1-(Pyrimidin-2-yl)-2-[(triisopropylsilyl)ethynyl]-5,6,7,7a-tetrahydro-1H-indol-

4(3aH)-one (218ca) 

The general procedure C was followed using pyrrole 217c (53.2 mg, 0.25 mmol, 

1.00 equiv) and 132a (78.6 mg, 0.30 mmol, 1.20 equiv). Purification by column 

chromatography on silica gel (n-pentane/EtOAc 5:1) yielded 218ca (79.3 mg, 

202 μmol, 80%) as a white solid.  

The general procedure D was followed using pyrrole 217c (107 mg, 0.50 mmol, 

1.00 equiv) and 132a (157 mg, 0.60 mmol, 1.20 equiv). Isolation by column 

chromatography (n-pentane/EtOAc: 4/1) yielded 218ca (187 mg, 96%) as a white solid. 

M. p. = 144−146 °C. 1H-NMR (500 MHz, CDCl3) δ = 8.78 (d, J = 4.9 Hz, 2H), 7.30 (t, 

J = 4.9 Hz, 1H), 6.96 (s, 1H), 2.96 (dd, J = 6.4, 5.2 Hz, 2H), 2.49 (dd, J = 9.2, 5.8 Hz, 

2H), 2.10 (dddd, J = 9.2, 6.4, 5.8, 5.2 Hz, 2H), 1.11–1.08 (m, 21H). 13C-NMR 
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(125 MHz, CDCl3): δ = 194.1 (Cq), 158.4 (CH), 156.1 (Cq), 145.4 (Cq), 121.6 (Cq), 119.5 

(CH), 117.3 (Cq), 115.1 (CH), 97.2 (Cq), 96.0 (Cq), 37.8 (CH2), 24.2 (CH2), 23.6 (CH2), 

18.5 (CH3), 11.2 (CH). IR (ATR): 2940, 2862, 2148,1660, 1573, 1415, 1135, 808, 720 

cm-1. MS (EI) m/z (relative intensity): 393 (35), 350 (100), 322 (18), 308 (22), 280 (10), 

240 (10). HR-MS (ESI) m/z calcd for C23H32N3OSi [M+H]+: 394.2315, found: 394.2309. 

 

2-[(Methyldiphenylsilyl)ethynyl]-1-(pyrimidin-2-yl)-1H-indole (89ab) 

The general procedure C was followed using indole 23a (49.8 mg, 0.25 mmol, 

1.00 equiv) and 132b (53.1 mg, 0.30 mmol, 1.20 equiv). Purification by column 

chromatography on silica gel (n-pentane/EtOAc 20:1) yielded 89ab (64.6 mg, 

156 μmol, 62%) as a yellow oil. 1H-NMR (500 MHz, CDCl3) δ = 8.66 (d, J = 4.8 Hz, 

2H), 8.32 (ddd, J = 8.4, 2.5, 0.8 Hz, 1H) 7.72–7.69 (m, 4H), 7.59 (ddd, J = 7.9, 1.9, 

1.0 Hz, 1H), 7.42–7.34 (m, 7H), 7.23 (ddd, J = 7.9, 1.9, 1.0 Hz, 1H), 7.15 (s, 1H), 7.10 

(t, J = 4.8 Hz, 1H), 0.76 (s, 3H). 13C-NMR (125 MHz, CDCl3): δ = 158.0 (CH), 157.2 

(Cq), 136.3 (Cq), 135.3 (Cq), 134.6 (CH), 133.9 (Cq), 129.6 (CH), 128.4 (Cq), 127.9 

(CH), 125.2 (CH), 122.5 (CH), 121.0 (CH), 120.3 (Cq), 117.6 (CH), 116.3 (CH), 114.3 

(CH), 100.4 (Cq), 97.2 (Cq), −2.2 (CH3). IR (ATR): 3046, 2959, 2152, 1562, 1425, 1115, 

868, 792 cm-1. MS (EI) m/z (relative intensity): 414 (100), 400 (20), 338 (14), 294 (11), 

108 (8). HR-MS (ESI) m/z calcd C27H20N3Si [M−H]+: 414.1426, found: 414.1422. 

 

1-(Pyrimidin-2-yl)-2-[(trimethylsilyl)ethynyl]-1H-indole (89ac) 

The general procedure C was followed using indole 23a (49.7 mg, 0.25 mmol, 

1.00 equiv) and 132c (53.3 mg, 0.30 mmol, 1.20 equiv). Purification by column 

chromatography on silica gel (n-pentane/EtOAc 80:1) yielded 89ac (52.9 mg, 

183 μmol, 73%) as a yellow oil. 1H-NMR (500 MHz, CDCl3) δ = 8.78 (d, J = 4.7 Hz, 
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2H), 8.28 (ddd, J = 8.4, 2.1, 0.7 Hz, 1H), 7.56 (ddd, J = 7.7, 2.4, 0.9 Hz, 1H), 7.31 (ddd, 

J = 7.7, 2.4, 0.9 Hz, 1H), 7.23–7.16 (m, 2H), 7.04 (s, 1H), 0.24 (s, 9H). 13C-NMR 

(125 MHz, CDCl3): δ = 158.0 (CH), 157.2 (Cq), 136.2 (Cq), 128.4 (Cq), 124.9 (CH), 

122.4 (CH), 120.9 (CH), 120.6 (Cq), 117.7 (CH), 115.4 (CH), 114.0 (CH), 101.1 (Cq), 

97.1 (Cq), 0.2 (CH3). IR (ATR): 2957, 2150, 1561, 1421, 1248, 839, 746 cm-1. MS (EI) 

m/z (relative intensity): 290 (100), 276 (29), 250 (8), 223 (11). HR-MS (ESI) m/z calcd 

C17H16N3Si [M−H]+: 290.1113, found: 290.1121. 

 

2-Ethynyl-1-(pyrimidin-2-yl)-1H-indole (233a) 

To a solution of 89aa (29.3 mg, 0.15 mmol, 1.00 equiv) in THF (1 mL), tetra-n-

butylammoniumfluoride trihydrate (141 mg, 0.45 mmol, 3.00 equiv) in THF (1 mL) was 

added and stirred at 25 °C for 1 h. H2O (5 mL) was added and the mixture was 

extracted with CH2Cl2 (3 × 5 mL). The combined organic phases were dried over 

Na2SO4 and the solvent removed at reduced pressure. Purification by column 

chromatography on silica gel (n-pentane/EtOAc 3:1) yielded 233a (26.5 mg, 121 μmol, 

81%) as a brown oil. 1H-NMR (500 MHz, CDCl3): δ = 8.82 (d, J = 5.5 Hz, 2H), 8.29 

(ddd, J = 8.3, 2.3, 1.0 Hz, 1H) 7.58 (ddd, J = 7.9, 1.9, 0.9 Hz, 1H), 7.34 (ddd, J = 8.3, 

2.3, 1.0 Hz, 1H) 7.22 (ddd, J = 7.9, 1.9, 0.9 Hz, 1H), 7.19 (t, J = 5.5 Hz, 1H), 7.10 (s, 

1H), 3.45 (s, 1H). 13C-NMR (125 MHz CDCl3): δ = 158.1 (CH), 157.2 (Cq), 136.2 (Cq), 

128.3 (Cq), 125.1 (CH), 122.5 (CH), 120.8 (CH), 119.5 (Cq), 117.7 (CH), 116.2 (CH), 

114.2 (CH), 83.3 (CH), 76.4 (Cq). IR (ATR): 3285, 1626, 1563, 1423, 806, 747 cm-1. 

MS (ESI) m/z (relative intensity): 219 (100), 192 (13), 169 (8), 85 (15). HR-MS (ESI) 

m/z calcd for C14H9N3 [M]+: 219.0796, found: 219.0788. 
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2-Ethynyl-5-fluoro-1-(pyrimidin-2-yl)-1H-indole (233b) 

To a solution of 89oa (32.0 mg, 0.15 mmol, 1.00 equiv) in THF (1 mL), tetra-n-

butylammoniumfluoride trihydrate (141 mg, 0.45 mmol, 3.00 equiv) in THF (1 mL) was 

added and stirred at 25 °C for 1 h. H2O (5 mL) was added (5 mL) and the mixture 

extracted with CH2Cl2 (3 × 5 mL). The combined organic phases were dried over 

Na2SO4 and the solvent removed at reduced pressure. Purification by column 

chromatography on silica gel (n-pentane/EtOAc 3:1) yielded 233b (28.9 mg, 122 μmol, 

81%) as a brown oil. 1H-NMR (500 MHz, CDCl3): δ = 8.81 (d, J = 5.2 Hz, 2H), 8.28 (dd, 

J = 9.4, 2.5 Hz, 1H) 7.23–7.19 (m, 2H), 7.06 (ddd, J = 8.6, 2.3, 1.0 Hz, 1H), 7.03 (s, 

1H), 3.47 (s, 1H). 13C-NMR (125 MHz CDCl3): δ = 159.0 (d, 1JCF = 235 Hz, Cq), 158.2 

(CH), 157.0 (Cq), 132.6 (Cq), 128.9 (d, 3JCF = 12 Hz, Cq), 121.0 (Cq), 117.9 (CH), 115.8 

(d, 4JCF = 5 Hz, CH), 115.4 (d, 3JCF = 9 Hz, CH), 113.2 (d, 2JCF = 27 Hz, CH), 105.7 (d, 

2JCF = 29 Hz, CH), 83.9 (CH), 76.0 (Cq). 19F-NMR (282 MHz, CDCl3): −121.6. IR (ATR): 

3278, 1631, 1562, 1425, 1103, 868, 791 cm-1. MS (ESI) m/z (relative intensity): 237 

(100), 210 (20), 187 (17), 157 (11). HR-MS (ESI) m/z calcd for C14H8N3F [M]+: 

237.0702, found: 237.0708. 

 

Methyl-4-{[5-fluoro-1-(pyrimidin-2-yl)-1H-indol-2-yl]ethynyl}benzoate (234) 

Following a published procedure,[197] 233b (32.2 mg, 0.15 mmol, 1.00 equiv), 

Pd(OAc)2 (1.7 mg, 7.5 μmol, 5 mol %), CuI (1.4 mg, 7.5 μmol, 5 mol %), PPh3 (3.9 mg, 

15.0 μmol, 10 mol %) and methyl-4-iodobenzoate (39.8 mg, 0.15 mmol, 1.00 equiv) 

were suspended in a mixture of DMF (0.4 mL) and NEt3 (1.2 mL) and stirred at 60 °C 

for 18 h. After completion of the reaction saturated aq. NH4Cl solution (5 mL) was 

added and the mixture was extracted with EtOAc (4 × 5 mL). Drying over Na2SO4, 

evaporation of the solvents and purification by column chromatography on silica gel 

using n-pentane/EtOAc (10:1) yielded the product 234 (42.3 mg, 114 μmol, 76%) as 



158 
 

an orange solid. M. p. = 152–154 °C. 1H-NMR (500 MHz, CDCl3): δ = 8.84 (d, 

J = 5.4 Hz, 2H), 8.33 (dd, J = 9.1, 4.3 Hz, 1H), 8.02 (d, J = 8.2 Hz, 2H), 7.54 (d, 

J = 8.2 Hz, 2H), 7.30–7.25 (m, 2H), 7.11–7.05 (m, 2H), 3.92 (s, 3H). 13C-NMR (125 

MHz CDCl3): δ = 166.5 (Cq), 159.2 (d, 1JCF = 251 Hz, Cq), 158.2 (CH), 157.1 (Cq), 133.7 

(d, 2JCF = 24 Hz, CH), 132.9 (Cq), 131.1 (CH), 129.6 (Cq), 129.5 (CH), 129.3 

(3JCF = 9 Hz, Cq), 128.4 (3JCF = 9 Hz, CH), 127.8 (Cq), 121.6 (Cq), 117.9 (CH), 115.6 

(4JCF = 6 Hz, CH), 115.0 (4JCF = 5 Hz, CH), 113.2 (2JCF = 26 Hz, CH) 105.7 (CH), 94.7 

(Cq), 85.2 (Cq), 52.3 (CH3). 19F-NMR (282 MHz CDCl3): δ = −121.4. IR (ATR): 2959, 

2202, 1720, 1562, 1424, 1224, 1155, 787, 539 cm−1. MS (EI) m/z (relative intensity) 

370 (100), 311 (33), 277 (15), 232 (10). HR-MS (ESI) m/z calcd for C22H13N3FO2 

[M−H]+: 370.0992, found: 370.0997. 

 

5-Fluoro-2-(prop-1-yn-1-yl)-1-(pyrimidin-2-yl)-1H-indole (235) 

In a modification of  a known procedure,[196] to a solution of 233b (32.2 mg, 0.15 mmol, 

1.00 equiv) in THF (1.5 mL) lithiumbis(trimethylsilyl)amide in THF (0.9 M, 0.185 mL, 

0.17 mml, 1.10 equiv) was added at –40 °C and stirred for 30 min. Then methyliodide 

(42.5 mg, 0.30 mmol, 2.00 equiv) was added and the mixture was slowly warmed to 

25 °C and stirred for 12 h. H2O (5 mL) was added and the mixture extracted with 

CH2Cl2 (3 × 5 mL). The combined organic phases were dried over Na2SO4 and the 

solvent removed at reduced pressure. Purification by column chromatography on silica 

gel (n-pentane/EtOAc 5:1) yielded 235 (18.6 mg, 137 μmol, 92%) as a brown oil. 1H-

NMR (500 MHz, CDCl3): δ = 8.82 (d, J = 5.2 Hz, 2H), 8.15 (dd, J = 8.7, 5.2 Hz, 1H) 

7.22–7.15 (m, 2H), 7.00 (ddd, J = 8.4, 2.5, 0.7 Hz, 1H), 6.86 (s, 1H), 2.10 (s, 3H). 13C-

NMR (125 MHz CDCl3): δ = 158.9 (d, 1JCF = 234 Hz, Cq), 158.1 (CH), 157.1 (Cq), 132.3 

(Cq), 129.3 (d, 3JCF = 13 Hz, Cq), 122.8 (Cq), 117.7 (CH), 114.9 (d, 4JCF = 6 Hz, CH), 

113.3 (d, 4JCF = 4 Hz, CH), 112.2 (d, 2JCF = 26 Hz, CH), 105.4 (d, 2JCF = 27 Hz, CH), 

92.6 (Cq), 72.1 (Cq), 5.1 (CH3). 19F-NMR (282 MHz, CDCl3): δ = −122.1. IR (ATR): 

3023, 1562, 1422, 1193, 855, 800, 630 cm−1. MS (ESI) m/z (relative intensity): 251 

(100), 223 (22), 197 (17), 172 (10) 125 (8). HR-MS (ESI) m/z calcd for C15H11N3F 

[M+H]+: 252.0937, found: 252.0932. 
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2-Ethynyl-5-fluoro-1H-indole (236) 

To a solution of 89oa (32.0 mg, 0.15 mmol, 1.00 equiv) in DMSO (1.5 mL) and CH3OH 

(0.5 mL), sodium ethanolate (30.6 mg, 0.45 mmol, 3.00 equiv) was added and stirred 

at 60 °C for 3 h. H2O (5 mL) was added and the mixture extracted with CH2Cl2 

(3 × 5 mL). The combined organic phases were dried over Na2SO4 and the solvent 

removed at reduced pressure. Purification by column chromatography on silica gel 

(n-pentane/EtOAc 2:1) yielded 236 (18.6 mg, 116 μmol, 77%) as a brown oil. 1H-NMR 

(500 MHz, CDCl3): δ = 8.19 (s, 1H), 7.23–7.18 (m, 2H), 6.98 (ddd, J = 8.2, 3.2, 2.3 Hz, 

1H), 6.75 (s, 1H), 3.31 (s, 1H). 13C-NMR (125 MHz CDCl3): δ = 158.2 (d, 1JCF = 247 Hz, 

Cq), 132.3 (Cq), 127.6 (d, 3JCF = 12 Hz, Cq), 119.2 (Cq), 112.4 (d, 2JCF = 28 Hz, CH), 

111.4 (d, 3JCF = 10 Hz, CH), 109.5 (d, 4JCF = 6 Hz, CH), 105.4 (d, 2JCF = 26 Hz, CH), 

81.1 (CH), 75.8 (Cq). 19F-NMR (282 MHz, CDCl3): −124.0. IR (ATR): 3422, 2383, 1484, 

1166, 854, 597 cm−1. MS (ESI) m/z (relative intensity): 159 (100), 132 (32), 118 (17). 

HR-MS (ESI) m/z calcd for C10H6NF [M]+: 159.0484, found: 159.0485. 

 

2-(1-Benzyl-1H-1,2,3-triazol-4-yl)-5-fluoro-1H-indole (237) 

Following a previously published procedure,[198] 237 (24.2 mg. 0.15 mmol, 1.00 equiv), 

CuI (2.9 mg, 15.0 μmol, 10 mol %) and benzyl azide (13.7 mg, 0.15 mmol, 1.00 equiv) 

were dissolved in DMF (1.5 mL) and stirred at 60 °C for 14 h. After completion of the 

reaction saturated aq. NH4Cl solution (5 mL) was added and the mixture was extracted 

with CH2Cl2 (4 × 5 mL). Drying over Na2SO4, evaporation of the solvents and 

purification by column chromatography on silica gel using n-pentane/EtOAc (2:1) 

yielded the product 232 (31.1 mg, 107 μmol, 71%) as a white solid. Decomposed at 

240°C. 1H-NMR (500 MHz, DMSO-d6): δ = 11.70 (s, 1H), 8.53 (s, 1H), 7.44–7.36 (m, 

6H), 7.28 (dd, J = 9.3, 2.5 Hz, 1H), 6.93 (dd, J = 7.3, 4.3 Hz, 1H), 6.76 (s, 1H), 5.67 (s, 

2H). 13C-NMR (125 MHz CDCl3): δ = 157.1 (d, 1JCF = 229 Hz, Cq), 140.6 (Cq), 135.8 

(Cq), 133.1 (Cq), 131.0 (Cq), 128.8 (CH), 128.5 (CH), 128.4 (CH), 128.2 (Cq), 121.6 

(CH), 112.3 (d, 3JCF = 11 Hz, CH), 109.4 (d, 2JCF = 25 Hz, CH), 104.5 (d, 2JCF = 27 Hz, 
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CH), 98.6 (d, 4JCF =6 Hz, CH) 53.0 (CH2). 19F-NMR (282 MHz, DMSO-d6): δ = −125.2. 

IR (ATR): 3288, 1624, 1419, 1216, 1013, 790, 690, 411 cm−1. MS (EI) m/z (relative 

intensity): 292 (48), 263 (100), 236 (35), 187 (22), 91 (51), 43 (44). HR-MS (ESI) m/z 

calcd for C17H13N4F [M]+: 292.1124, found: 292.1120. 

 

5-Nitro-1-(pyrimidin-2-yl)-2-[(triisopropylsilyl)ethynyl]-1H-indole (89na) 

 The general procedure D was followed using indole 23n (121 mg, 0.50 mmol, 

1.00 equiv) and 132a (158 mg, 0.60 mmol, 1.20 equiv) at 100 °C. Isolation by column 

chromatography (n-pentane/EtOAc: 3/1) yielded 89na (135 mg, 63%) as a yellow solid. 

M.p. = 127–129 °C. 1H NMR (400 MHz, CDCl3) δ = 8.83 (d, J = 5.9 Hz, 2H), 8.49 (d, J 

= 2.0 Hz, 1H), 8.29 (d, J = 9.5 Hz, 1H), 8.17 (dd, J = 9.5, 2.0 Hz, 1H), 7.28 (t, J = 5.9 

Hz, 1H), 7.17 (s, 1H), 1.11–1.09 (m, 21H). 13C NMR (125 MHz, CDCl3) δ = 158.4 (CH), 

156.7 (Cq), 143.5 (Cq), 138.8 (Cq), 128.0 (Cq), 124.2 (Cq), 119.7 (CH), 118.7 (CH), 

117.2 (CH), 115.7 (CH), 114.2 (CH), 100.5 (Cq), 97.1 (Cq), 18.6 (CH3), 11.3 (CH). IR 

(neat): 2940, 2863, 2163, 1568, 1414, 1209, 676, 659 cm-1. MS (ESI) m/z (relative 

intensity) 443 (100) [M+Na+], 421 [M+H+] (75), 383 (22), 301 (11), 242 (27), 182 (58). 

HR-MS (ESI) m/z calcd for C23H29N4O2Si [M+H+] 421.2060, found 421.2060. 

 

2-(3,5-Dimethyl-2-[(triisopropylsilyl)ethynyl]-1H-pyrrol-1-yl)pyrimidine (223ba) 

The general procedure D was followed using pyrrole 217b (87 mg, 0.50 mmol, 

1.00 equiv) and 132a (154 mg, 0.60 mmol, 1.20 equiv). Isolation by column 

chromatography (n-pentane/EtOAc:10/1) yielded 223ba (161 mg, 92%) as white solid. 

M.p. = 139–141°C. 1H NMR (400 MHz, CDCl3) δ = 8.70 (d, J = 4.7 Hz, 2H), 7.15 (t, J 

= 4.7 Hz, 1H), 5.86 (s, 1H), 2.34 (s, 3H), 2.15 (s, 3H), 1.07–1.03 (m, 21H). 13C NMR 

(125 MHz, CDCl3) δ = 158.0 (CH), 157.2 (Cq), 131.8 (Cq), 129.4 (Cq), 118.2 (CH), 113.7 
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(Cq), 111.8 (CH), 98.7 (Cq), 96.1 (Cq), 18.3 (CH3), 14.3 (CH3), 11.9 (CH3), 11.3 (CH). 

IR (neat): 2938, 2851, 2141, 1526, 1433, 1169, 1083, 740, 669 cm-1. MS (ESI) m/z 

(relative intensity) 376 (100) [M+Na+], 353 [M+H+] (72), 312 (5). HR-MS (ESI) m/z calcd 

for C21H31N3SiNa [M+Na+] 376.2179, found 376.2170. 

 

2-(Phenylethynyl)-1-(pyrimidin-2-yl)-1H-indole (89ad)  

The general procedure E was followed using indole 23a (98 mg, 0.50 mmol, 1.00 equiv) 

and 132d (108 mg, 0.60 mmol, 1.20 equiv) for 1 h. Isolation by column chromatography 

(n-pentane/EtOAc: 5/1) yielded 89ad (141 mg, 95%) as a colorless oil. 1H NMR (500 

MHz, CDCl3) δ = 8.85 (d, J = 4.9 Hz, 2H), 8.31 (d, J = 8.4 Hz, 1H), 7.60 (d, J = 7.6 Hz, 

1H), 7.52–7.48 (m, 2H), 7.35–7.31 (m, 4H), 7.25‒7.21 (m, 1H), 7.21 (t, J = 4.9 Hz, 1H), 

7.08 (s, 1H). 13C NMR (125 MHz, CDCl3) δ = 158.1 (CH), 157.4 (Cq), 136.4 (Cq), 131.3 

(CH), 128.8 (Cq), 128.4 (CH), 128.3 (CH), 124.8 (CH), 123.3 (Cq), 122.4 (CH), 120.9 

(Cq), 120.8 (CH), 117.7 (CH), 114.6 (CH), 114.1 (CH), 95.0 (Cq), 82.5 (Cq). IR (neat): 

3048, 2963, 2851, 1560, 1418, 1081, 741, 686, 521 cm-1. MS (ESI) m/z (relative 

intensity) 296 (5) [M+], 214 (11), 196 (100), 173 (20), 149 (15). HR-MS (ESI) m/z calcd 

for C20H14N3 [M+H+] 296.1182, found 296.1188. 

 

1-(Pyrimidin-2-yl)-2-(p-tolylethynyl)-1H-indole (89af)  

The general procedure E was followed using indole 23a (98 mg, 0.50 mmol, 1.00 equiv) 

and 132f (117 mg, 0.60 mmol, 1.20 equiv) for 1 h. Isolation by column chromatography 

(n-pentane/EtOAc: 9/1) yielded 89af (153 mg, 99%) as a colorless solid. M.p. = 100‒

102 °C. 1H NMR (500 MHz, CDCl3) δ = 8.84 (d, J = 4.8 Hz, 2H), 8.30 (d, J = 8.4 Hz, 

1H), 7.59 (d, J = 7.8 Hz, 1H), 7.39 (d, J = 8.0 Hz, 2H), 7.32 (ddd, J = 8.3, 6.9, 1.0 Hz, 

1H), 7.24‒7.21 (m, 1H), 7.19 (t, J = 4.8 Hz, 1H), 7.14 (d, J = 7.9 Hz, 2H), 7.06 (s, 1H), 

2.35 (s, 3H). 13C NMR (125 MHz, CDCl3) δ = 158.1 (CH), 157.4 (Cq), 138.5 (Cq), 136.3 
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(Cq), 131.2 (CH), 129.1 (CH), 128.8 (Cq), 124.6 (CH), 122.4 (CH), 121.0 (Cq), 120.7 

(CH), 120.2 (Cq), 117.7 (CH), 114.3 (CH), 114.0 (CH), 95.1 (Cq), 81.8 (Cq), 21.5 (CH3). 

IR (neat): 3046, 2920, 2851, 1557, 1422, 800, 739, 526 cm-1. MS (EI) m/z (relative 

intensity) 309 (100) [M+], 294 (15). HR-MS (ESI) m/z calcd for C21H16N3 [M+H+] 

310.1344, found 310.1339. 

 

2-[(4-Trifluoromethylphenyl)ethynyl]-1-(pyrimidin-2-yl)-1H-indole (89ag) 

The general procedure E was followed using indole 23a (98 mg, 0.50 mmol, 1.00 equiv) 

and 132g (148 mg, 0.60 mmol, 1.20 equiv). Isolation by column chromatography (n-

pentane/EtOAc: 7/1) yielded 89ag (96 mg, 54%) as a colorless oil. 1H NMR (500 MHz, 

CDCl3) δ = 8.84 (d, J = 4.5 Hz, 2H), 8.35 (d, J = 8.2 Hz, 1H), 7.63–7.59 (m, 5H), 7.36 

(dd, J = 8.2, 2.3 Hz, 1H), 7.24–7.20 (m, 2H), 7.13 (s, 1H). 13C NMR (125 MHz, CDCl3) 

δ = 157.9 (CH), 157.2 (Cq), 156.5 (Cq), 131.3 (CH), 129.8 (q, 2JCF = 32.0 Hz, Cq) 128.6 

(Cq), 127.1 (Cq), 125.2 (q, 3JCF = 12.0 Hz, CH), 125.1 (CH), 123.8 (q, 1JCF = 265.0 Hz, 

Cq), 122.6 (CH), 120.9 (CH), 120.0 (Cq), 117.7 (CH), 115.6 (CH), 114.3 (CH), 93.5 (Cq), 

85.1 (Cq). 19F NMR (282 MHz, CDCl3) δ = -62.8. IR (neat): 3041, 2960, 1562, 1449, 

1424, 805, 747, 690 cm-1. MS (EI) m/z (relative intensity) 363 [M+] (100), 344 [M–F+] 

(10), 293 (12), 214 (10), 147 (15), 43 (18). HR-MS (ESI) m/z calcd for C21H13N3F3 

[M+H+] 364.1056, found 364.1059. 

 

2-[(4-Methoxyphenyl)ethynyl]-1-(pyrimidin-2-yl)-1H-indole (89ah) 

The general procedure E was followed using indole 23a (98 mg, 0.50 mmol, 

1.00 equiv), 132h (128 mg, 0.60 mmol, 1.20 equiv) and MnBr(CO)5 (3.4 mg, 2.5 mol 

%). Isolation by column chromatography (n-pentane/EtOAc: 4/1) yielded 89ah (132 

mg, 81%) as a colorless oil. 1H NMR (500 MHz, CDCl3) δ = 8.85 (d, J = 4.6 Hz, 2H), 

8.29 (d, J = 7.6 Hz, 1H), 7.59 (d, J = 7.6 Hz, 1H), 7.43 (d, J = 9.4 Hz, 2H), 7.31 (dd, J 
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= 7.6, 1.8 Hz, 1H) 7.23–7.21 (m, 1H), 7.20 (t, J = 4.6 Hz, 1H), 7.03 (s, 1H), 6.86 (d, J 

= 9.4 Hz, 2H), 3.81 (s, 3H). 13C NMR (125 MHz, CDCl3) δ = 159.7 (Cq), 158.1 (CH), 

157.4 (Cq), 136.3 (Cq), 132.8 (CH), 128.8 (Cq), 124.6 (CH), 122.4 (CH), 121.2 (Cq), 

120.7 (CH), 117.7 (CH), 115.4 (Cq), 114.1 (CH), 114.0 (CH), 113.9 (CH), 95.0 (Cq), 

81.2 (Cq), 55.3 (CH3). IR (neat): 3041, 2931, 2835 1604, 1561, 1420, 1204, 801, 746, 

521 cm-1. MS (ESI) m/z (relative intensity). 348 [M+Na+] (95), 326 [M+H+] (100), 288 

(7), 198 (11), 149 (8). HR-MS (ESI) m/z calcd for C21H15N3ONa [M+Na+] 348.1107, 

found 348.1117. 

 

Methyl-(S)-2-[(tert-butoxycarbonyl)amino]-3-{1-(pyrimidin-2-yl)-2-

[(triisopropylsilyl)ethynyl]-1H-indol-3-yl}propanoate (227aa) 

The general procedure D was followed using substrate 226a (198 mg, 0.50 mmol, 

1.00 equiv) and 132a (154 mg, 0.60 mmol, 1.20 equiv). Isolation by column 

chromatography (n-pentane/EtOAc: 2/1) yielded 227aa (237 mg, 82%) as white solid. 

M.p. = 111–113 °C 1H NMR (400 MHz, CDCl3) δ = 8.75 (d, J = 5.0 Hz, 2H), 8.32 (d, J 

= 9.0 Hz, 1H), 7.60 (d, J = 7.3 Hz, 1H), 7.32 (dd, J = 7.3, 2.2 Hz, 1H), 7.23 (dd, J = 9.0, 

2.2 Hz, 1H), 7.14 (t, J = 5.0 Hz, 1H), 5.24 (d, J = 7.6 Hz, 1H), 4.55 (dd, J = 8.2, 7.6 Hz, 

1H), 3.67 (s, 3H), 3.41–3.31 (m, 2H), 1.33 (s, 9H), 1.15–1.13 (m, 21H). 13C NMR (125 

MHz, CDCl3) δ = 172.8 (Cq), 158.0 (CH), 157.2 (Cq), 155.3 (Cq), 135.9 (Cq), 128.3 (Cq), 

125.4 (CH), 123.2 (Cq), 122.4 (CH), 120.0 (Cq), 119.0 (CH), 117.4 (CH), 114.4 (CH), 

101.6 (Cq), 97.8 (Cq), 79.6 (Cq), 54.3 (CH), 52.2 (CH3), 28.2 (CH3), 28.0 (CH2), 18.7 

(CH3), 11.4 (CH). IR (neat): 2960, 2864, 2138, 1738, 1420, 1257, 996, 747, 675 cm-1. 

MS (ESI) m/z (relative intensity): 1175 [2M+Na+] (100), 599 [M+Na+] (77), 577 [M+H+] 

(23), 512 (11), 389 (13), 208 (5). HR-MS (ESI) m/z calcd for C32H44N4O4SiNa [M+Na+] 

599.3024, found 599.3024. The enantiomeric excess was determined to be >98% by 

HPLC analysis of compound (S)-227aa and a racemic sample (±)-227aa. 
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Methyl-{(S)-2-{(S)-2-[(tert-butoxycarbonyl)amino]propanamido}-3-{1-(pyrimidin-

2-yl)-2-[(triisopropylsilyl)ethynyl]-1H-indol-3-yl}propanoyl}glycinate (227ba) 

The general procedure D was followed using substrate 226b (132 mg, 0.25 mmol, 

1.00 equiv) and 132a (78 mg, 0.30 mmol, 1.20 equiv). Isolation by column 

chromatography (n-pentane/EtOAc: 1/2) yielded 227ba (124 mg, 71%) as a yellow 

solid. M.p. = 64–66 °C 1H NMR (400 MHz, CDCl3) δ = 8.75 (d, J = 5.4 Hz, 2H), 8.30 

(d, J = 8.8 Hz, 1H), 7.74 (d, J = 8.6 Hz, 1H), 7.33 (dd, J = 8.8, 2.7 Hz, 1H), 7.23 (dd, J 

= 8.6, 2.7 Hz, 1H), 7.15 (t, J = 5.4 Hz, 1H), 6.67 (d, J = 6.7 Hz, 1H), 6.50 (s, 1H), 4.93 

(s, 1H), 4.80 (dd, J = 7.0, 4.5 Hz, 1H), 4.03 (dd, J = 6.8, 3.3 Hz, 1H), 3.97 (dd, J = 10.2, 

5.6 Hz, 1H), 3.86 (dd, J = 10.2, 5.6 Hz, 1H), 3.60 (s, 3H), 3.47–3.41 (m, 2H), 1.33 (s, 

9H), 1.22 (d, J = 7.0 Hz, 3H), 1.15–1.13 (m, 21H). 13C NMR (125 MHz, CDCl3) δ = 

172.5 (Cq), 170.8 (Cq), 169.4 (Cq), 158.0 (CH), 157.3 (Cq), 155.5 (Cq), 136.0 (Cq), 128.0 

(Cq), 125.6 (CH), 123.2 (Cq), 122.7 (CH), 120.1 (Cq), 119.5 (CH), 117.5 (CH), 114.4 

(CH), 101.6 (Cq), 97.8 (Cq), 80.2 (Cq), 53.0 (CH), 52.1 (CH3), 50.9 (CH), 41.5 (CH2), 

28.2 (CH3), 28.0 (CH2), 18.7 (CH3), 18.3 (CH3), 11.4 (CH). IR (neat): 2926, 2861, 2144, 

1747, 1657, 1423, 1205, 710 cm-1. MS (ESI) m/z (relative intensity): 1431 [2M+Na+] 

(18), 727 [M+Na+] (100), 705 [M+H+] (9), 389 (11), 301 (7), 182 (14). HR-MS (ESI) m/z 

calcd for C37H53N6O6Si [M+H+] 705.3790, found 705.3789. The enantiomeric excess 

was determined to be >98% by HPLC analysis of compound 227ba and a racemic 

control sample. 
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Methyl-(6S,12S)-12-(4-iodobenzyl)-2,2-dimethyl-4,7,10-trioxo-6-{[1-(pyrimidin-2-

yl)-2-[(triisopropylsilyl)ethynyl]-1H-indol-3-yl]methyl}-3-oxa-5,8,11-triazatridec-

an-13-oate (227ca) 

The general procedure D was followed using substrate 226c (183 mg, 0.25 mmol, 

1.00 equiv) and 132a (78 mg, 0.30 mmol, 1.20 equiv). Isolation by column 

chromatography (n-pentane/EtOAc: 1/4) yielded 227ca (154 mg, 69%) as a colorless 

oil. 1H NMR (400 MHz, CDCl3) δ = 8.76 (d, J = 4.6 Hz, 2H), 8.31 (d, J = 7.7 Hz, 1H), 

7.61 (d, J = 8.5 Hz, 1H), 7.57 (d, J = 8.7 Hz, 2H), 7.31 (dd, J = 8.5, 1.7 Hz, 1H), 7.21 

(dd, J = 7.7, 1.7 Hz, 1H), 7.16 (t, J = 4.6 Hz, 1H), 6.86 (d, J = 8.7 Hz, 2H), 6.46 (dd, J 

= 6.4, 6.4 Hz, 1H), 5.38 (s, 1H), 4.70 (dd, J = 6.2, 4.4 Hz, 1H), 4.38 (dd, J = 6.8, 3.9 

Hz, 1H), 3.83–3.73 (m, 2H), 3.64 (s, 3H), 3.47–3.34 (m, 2H), 3.04 (dd, J = 11.0, 6.6 Hz, 

1H), 2.93 (dd, J = 11.0, 6.6 Hz, 1H), 1.33 (s, 9H), 1.18–1.14 (m, 21H). 13C NMR (101 

MHz, CDCl3) δ = 172.1 (Cq), 171.2 (Cq), 168.4 (Cq), 158.0 (CH), 157.9 (Cq), 157.1 (Cq), 

155.8 (Cq), 137.5 (CH), 135.8 (Cq), 131.2 (CH), 128.1 (Cq), 125.6 (CH), 123.2 (Cq), 

122.6 (CH), 119.9 (Cq), 119.3 (CH), 117.6 (CH), 114.3 (CH), 102.1 (Cq), 97.7 (Cq), 92.5 

(Cq) 80.5 (Cq), 58.8 (CH2), 56.1 (CH), 53.3 (CH), 52.2 (CH3), 43.1 (CH2), 37.2 (CH2), 

28.2 (CH3), 18.7 (CH3), 11.3 (CH). IR (neat): 2941, 2863, 2142, 1733, 1656, 1436, 

1339, 1163, 725 cm-1. MS (ESI) m/z (relative intensity): 1836 [2M+Na+] (27), 929 

[M+Na+] (100), 907 [M+H+] (9), 389 (12). HR-MS (ESI) m/z calcd for C43H55N6O6ISiNa 

[M+Na+] 705.3790, found 705.3789. 

5.5.2 Mechanistic Experiments for the Cobalt Catalysis 

Competition Experiments: 

 

Scheme 5.1. Intermolecular competition experiment between indoles 23o and 23d. 
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To a solution of 5-fluoro-1-(pyrimidin-2-yl)-1H-indole (23o) (63.8 mg, 0.30 mmol, 1.20 

equiv), 5-methoxy-1-(pyrimidin-2-yl)-1H-indole (23d) (65.9 mg, 0.30 mmol, 

1.20 equiv), [Cp*CoI2]2 (82) (5.6 mg, 6.25 μmol, 2.5 mol%), AgSbF6 (8.8 mg, 

25.0 µmol, 10 mol %) and K2CO3 (69.8 mg, 0.50 mmol, 2.00 equiv) in TFE (1.5 mL), 

132a (65.7 mg, 0.25 mmol, 1.0 equiv) was added. The mixture was stirred for 18 h at 

25 °C. The crude mixture was analyzed by GC using tridecane as an internal standart. 

 

 

H/D-Exchange Experiment 

 

Scheme 5.2. H/D-Exchange experiment. 

A solution of (pyrimidin-2-yl)-1H-indole (23a) (49.5 mg, 0.25 mmol, 1.00 equiv), 

[Cp*CoI2]2 (82) (5.6 mg, 6.25 μmol, 2.5 mol%), AgSbF6 (8.8 mg, 25.0 µmol, 10 mol %) 

and KOAc (50.1 mg, 0.50 mmol, 2.00 equiv) in TFE (1.6 mL) and D2O (0.4 mL) was 

stirred at 80 °C for 18 h. After completion of the reaction, the solvent was removed at 

reduced pressure and the mixture purified by column chromatography using n-

pentane/EtOAc 5:1. The amount of deuterium incorporation was determined by 1H-

NMR. 
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Figure 5.1. 1H-NMR spectra of the H/D-exchage experiment. 

 

5.5.3 Mechanistic Experiments for the Manganese Catalysis 

Studies on a potential racemization of L- and D-peptides 

In order to confirm that no racemization occurred within the peptides during the 

manganese-catalyzed C–H alkynylation, we prepared the racemic substrates methyl 

N-(tert-butoxycarbonyl)-1-(pyrimidin-2-yl)tryptophanate (rac-226a) and methyl N-[(tert-

butoxycarbonyl)alanyl]-1-(pyrimidin-2-yl)tryptophylglycinate (rac-226b). Alkynylation 

reactions were carried out under the optimized reaction conditions. The manganese-

catalyzed alkynylation of rac-226a and rac-226b yielded racemic products rac-227aa 

and rac-227ba, respectively. Chiral HPLC analysis showed that no racemization after 

the manganese-catalyzed C–H alkynylation process. HPLC chromatograms were 

recorded on an Agilent 1290 Infinity using the column CHIRALPAK® IC-3 and n-

hexane/iPrOH (90:10, 1 mL/min, detection at 274 nm).  
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Figure 5.2. HPLC Chromatograms of rac-227aa and (S)-227aa. 

 

Figure 5.3. HPLC Chromatogram of rac-227ba and (S)-227ba. 

 

 

Manganese-Catalyzed H/D Exchange Experiments 

 

Scheme 5.3. H/D exchange in the absence of bromoalkyne 132a. 
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1-(Pyrimidin-2-yl)-1H-indole (23a) (98.2 mg, 0.50 mmol, 1.00 equiv), MnBr(CO)5 (169) 

(6.9 mg, 5.0 mol %), Cy2NH (181 mg, 1.00 mmol, 2.00 equiv), DCE (0.9 mL) and D2O 

(0.1 mL) were placed in a 25 mL Schlenk tube under N2 and were then stirred at 80 °C 

for 16 h. At ambient temperature, the reaction mixture was diluted with H2O (10 mL) 

and extracted with EtOAc (3 × 15 mL). The combined organic layer was dried with 

Na2SO4 and concentrated under reduced pressure. Purification by flash column 

chromatography on silica gel (n-hexane/EtOAc: 10/1) yielded [D]n-23a (94.6 mg, 

0.25 mmol, 96%). The D incorporation was determined by 1H-NMR spectroscopy. 

  

Figure 5.4. 1H-NMR spectra of the H/D-exchage experiment in absence of bromoalkyne 132a. 

 

H/D Exchange Experiments in the Absence of MnBr(CO)5 
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Scheme 5.4. H/D-exchage experiment in the absence of catalyst 169. 

1-(Pyrimidin-2-yl)-1H-indole (23a) (49.0 mg, 0.25 mmol, 1.00 equiv), %), bromoalkyne 

132a (77.5 mg, 0.30 mmol, 1.20 equiv), Cy2NH (93.2 mg, 0.50 mmol, 2.00 equiv), DCE 

(0.9 mL) and D2O (0.1 mL) were placed in a 25 mL Schlenk tube under N2 and were 

then stirred at 80 °C for 3 h. At ambient temperature, the reaction mixture was diluted 

with H2O (10 mL) and extracted with EtOAc (3 × 15 mL). The combined organic layer 

was dried with Na2SO4 and concentrated under reduced pressure. Purification by flash 

column chromatography on silica gel (n-hexane/EtOAc: 10/1) yielded [D]n-23a (47.3 

mg, 0.24 mmol, 95%). The D incorporation was determined by 1H-NMR spectroscopy. 

 

  

Figure 5.5. 1H-NMR spectra of the H/D-exchage experiment in the absence of catalyst 169. 
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Scheme 5.5. H/D-exchage experiment of product 89aa. 

1-(Pyrimidin-2-yl)-2-[(triisopropylsilyl)ethynyl]-1H-indole (89aa) (95.3 mg, 0.25 mmol, 

1.00 equiv), bromoalkyne 132a (75.2 mg, 0.30 mmol, 1.20 equiv), Cy2NH (190 mg, 

0.50 mmol), DCE (0.9 mL) and D2O (0.1 mL) were placed in a 25 mL Schlenk tube 

under N2 and were then stirred at 80 °C for 3 h. At ambient temperature, the reaction 

mixture was diluted with H2O (10 mL) and extracted with EtOAc (3 × 15 mL). The 

combined organic layer was dried with Na2SO4 and concentrated under reduced 

pressure. Purification by flash column chromatography on silica gel (n-hexane/EtOAc: 

10/1) yielded [D]n-89aa (91.2 mg, 0.25 mmol, 97%). The D incorporation was 

determined by 1H-NMR spectroscopy. 

  

Figure 5.6. 1H-NMR spectra of the H/D-exchage experiment of product 169. 
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Kinetic Analysis 

 

 

Scheme 5.6. Determination of the reaction order in indole 23a. 

The reaction order with respect to indole 23a was examined using the initial rate 

method.[223] A Schlenk-flask was charged with indole 23a (0.80, 0.90, 1.00, 

1.10 equiv.), 132a (209 mg, 0.80 mmol), MnBr(CO)5 (169) (11 mg, 5.0 mol %) and n-

tridecane (80 µL). DCE (4.0 mL) was added and the mixture was divided into four pre-

heated Schlenk-tubes and stirred at 80 °C. After one minute the first reaction was 

opened and a sample removed by syringe, diluted with EtOAc, filtered through a short 

plug of silica gel and Na2SO4 and analyzed by gas chromatography. This was repeated 

for all reactions with a time difference of one minute between each sample. 

Equiv 23q ∆[89aa] ∆t-1 /  mol L-1 s-1 log(c / mol L-1) log(∆[89aa] ∆t-1 / mol L-1 s-1) 

0.8 2.188 −0.795 0.340 

0.9 2.500 −0.745 0.398 

1.0 2.858 −0.699 0.456 

1.1 3.069 −0.658 0.487 
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Figure 5.7. Reaction order in indole 23a. 

 

 

Scheme 5.7. Determination of the reaction order in bromoalkyne 132a. 

The reaction order with respect to alkyne 132a was examined using the initial rate 

method.[223] A Schlenk-flask was charged with indole 23a (156 mg, 0.80 mmol, 

1.00 equiv.), 132a (0.80, 1.00, 1.20, 1.40 equiv), MnBr(CO)5 (169) (11 mg, 5.0 mol %) 

and n-tridecane (80 µL). DCE (4.0 mL) was added and the mixture was divided into 

four pre-heated Schlenk-tubes and stirred at 80 °C. After one minute the first reaction 

was opened and a sample removed by syringe, diluted with EtOAc, filtered through a 

short plug of silica gel and Na2SO4 and analyzed by gas chromatography. This was 

repeated for all reactions with a time difference of one minute between each sample.  

Equiv 132a ∆[89aa] ∆t-1 /  mol L-1 s-1 log(c / mol L-1) log(∆[89aa] ∆t-1 / mol L-1 s-1) 

0.8 2.187 −0.795 0.340 

1.0 2.853 −0.699 0.455 

1.2 3.250 −0.619 0.512 

1.4 3.802 −0.553 0.580 
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Figure 5.8. Reaction order in bromoalkyne 132a. 

  

 

Scheme 5.8. Determination of the reaction order in catalyst 169. 

The reaction order with respect to the catalyst 169 was examined using the initial rate 

method.[223] A Schlenk-flask was charged with indole 23a (117 mg, 0.60 mmol, 

1.00 equiv.), 132a (188 mg, 0.72 mmol, 1.20 equiv), MnBr(CO)5 (2.5, 5.0, 7.5, 

10 mol %) and n-tridecane (80 µL). DCE (4.0 mL) was added and the mixture was 

divided into four pre-heated Schlenk-tubes and stirred at 80 °C. After one minute the 

first reaction was opened and a sample removed by syringe, diluted with EtOAc, filtered 

through a short plug of silica gel and Na2SO4 and analyzed by gas chromatography. 

This was repeated for all reactions with a time difference of one minute between each 

sample.  

Mol % catalyst ∆[89aa] ∆t-1 / 10-8 mol L-1 s-1 log(c / mol L-1) log(∆[89aa] ∆t-1 / mol L-1 s-1) 

3.5 0.889 −2.426 −0.051 

5.0 1.528 −2.125 0.184 

7.5 2.208 −1.948 0.344 
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10.0 3.589 −1.824 0.555 

 

Figure 5.9. Reaction order in catalyst 169. 

 

 

C–H Alkynylations with Cyclometalated Complex 238 

 

Scheme 5.10. Synthesis of manganacycle 238. 

Following a modification of a reported procedure,[129] 1-(pyrimidin-2-yl)-1H-indole (23) 

(195 mg, 1.00 mmol, 1.00 equiv), MnBr(CO)5 (169) (274 mg, 1.00 mmol, 1.00 equiv), 

Cy2NH (362 mg, 2.00 mmol, 2.00 equiv) and DCE (2.0 mL) were placed in a 25 mL 

Schlenk tube under N2 and then stirred at 80 °C for 30 min. At ambient temperature, 

the mixture was diluted with EtOAc (20 ml) and filtered through a short pad of celite. 

The solvent was removed by rotary evaporation and the residue was purified by flash 

column chromatography on silica gel (n-hexane/EtOAc: 20/1) afforded 238 (279 mg, 

0.77 mmol, 77%) as a yellow solid. An alternative preparation with catalytic amounts 

of BPh3 (0.05 mol %, 0.01 M stock solution in DCE) under otherwise identical 

conditions afforded the same product (268 mg, 0.74 mmol, 74%). M.p. = 150–151 °C. 

1H NMR (300 MHz, CDCl3) δ = 8.69 (dd, J = 4.8, 2.4 Hz, 1H), 8.57 (dd, J = 5.6, 2.4 Hz, 

1H), 8.50 (d, J = 8.0 Hz, 1H), 7.44 (d, J = 7.5 Hz, 1H), 7.20 (dd, J = 7.5, 7.3 Hz, 1H), 
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7.12 (dd, J = 7.5, 7.2, 1H), 6.85 (t, J = 5.2 Hz, 1H), 6.79 (s, 1H). 13C NMR (125 MHz, 

CDCl3) δ = 218.4 (Cq), 213.1 (Cq), 210.7 (Cq), 162.2 (CH), 161.3 (Cq), 160.9 (Cq), 160.1 

(CH), 138.5 (Cq), 136.0 (Cq), 122.9 (CH), 120.7 (CH), 119.3 (CH), 117.5 (CH), 114.1 

(CH), 113.6 (CH). IR (neat): 2078, 1974, 1937, 1920, 1575, 1491, 1380, 787, 639 cm-

1. MS (EI) m/z (relative intensity): 360 [M +] (5), 249 (35), 195 (100). HR-MS (EI) m/z 

calcd for C16H8MnN3O4 [M+] 360.9895, found 360.9880. 

 

Scheme 5.11. Stoichiometric C–H alkynylation using bromoalkyne 132a. 

Complex 238 (72.8 mg, 0.20 mmol, 1.00 equiv), bromoalkyne 132a (62.3 mg, 0.24 

mmol, 1.20 equiv), and DCE (0.5 mL) were placed in a 25 mL Schlenk tube under N2 

and were then stirred at 80 °C for 30 min. At ambient temperature, CH2Cl2 (2 mL) was 

added, and the reaction mixture was transferred into a round bottom flask with CH2Cl2 

and concentrated under reduced pressure. Purification by flash column 

chromatography on silica gel (n-hexane/EtOAc: 10/1) afforded 89aa (64.3 mg, 

0.17 mmol, 84%). 

 

Scheme 5.12. Stoichiometric C–H alkynylation 132d. 

Complex 238 (72 mg, 0.20 mmol, 1.00 equiv), bromoalkyne 132d (43.4 mg, 0.24 mmol, 

1.20 equiv), BPh3 (10 μL, 0.05 mol %, 0.01 M stock solution in DCE) and DCE (0.5 

mL) were placed in a 25 mL Schlenk tube under N2 and were then stirred at 80 °C for 

30 min. At ambient temperature, CH2Cl2 (2 mL) was added, and the reaction mixture 

was transferred into a round bottom flask with CH2Cl2 and concentrated under reduced 

pressure. Purification by flash column chromatography on silica gel (n-hexane/EtOAc: 

8/1) afforded 89ad (43.2 mg, 0.15 mmol, 73%). 
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5.6 Electrochemical Cobalt-Catalyzed C–H Oxygenation 

5.6.1 Analytical Data and Experimental Procedures 

   

2-(2-Ethoxybenzamido)pyridine-1-oxide (150aa) 

The general procedure F was followed using benzamide 117a (107 mg, 0.50 mmol, 

1.00 equiv) and ethanol (149a) (2 × 7.0 mL). Purification by column chromatography 

on silica gel (CH2Cl2/acetone 3:1) yielded 150aa (97.5 mg, 376 μmol, 75%) as a white 

solid. M. p.: 141–143 °C. 1H-NMR (500 MHz, CDCl3): δ = 12.29 (s, 1H), 8.72 (dd, 

J = 8.6, 1.9 Hz, 1H), 8.30–8.23 (m, 2H), 7.50 (ddd, J = 8.4, 2.1, 0.7 Hz 1H), 7.32 (dd, 

J = 8.6, 1.9 Hz, 1H), 7.11–7.01 (m, 2H), 6.97 (dd, J = 8.4, 2.1 Hz, 1H), 4.29 (q, 

J = 6.7 Hz, 2H), 1.69 (t, J = 6.7 Hz, 3H). 13C-NMR (125 MHz, CDCl3): δ = 163.8 (Cq), 

157.3 (Cq), 145.3 (Cq), 137.2 (CH), 134.2 (CH), 132.5 (CH), 127.7 (CH), 121.0 (CH), 

120.5 (Cq), 118.3 (CH), 115.7 (CH), 112.3 (CH), 65.3 (CH2), 14.8 (CH3). IR (ATR): 

3178, 3060, 1658, 1507, 1278, 1241, 1029, 737 cm−1. MS (EI) m/z (relative intensity): 

258 (10) [M]+, 241 (12), 197 (34), 149 (55), 121 (100), 93 (22). HR-MS (EI) m/z calcd 

for C14H14N2O3 [M]+: 258.1004, found: 258.1009. The analytical data correspond with those 

reported in the literature.[111b] 

 

2-(2-Ethoxy-4-(trifluoromethyl)benzamido)pyridine-1-oxide (150ba) 

The general procedure F was followed using benzamide 117b (141 mg, 0.50 mmol, 

1.00 equiv) and ethanol (149a) (2 × 7.0 mL). Purification by column chromatography 

on silica gel (CH2Cl2/acetone 3:1) yielded 150ba (85.3 mg, 262 μmol, 52%) as a white 

solid. M. p.: 186–189 °C. 1H-NMR (400 MHz, CDCl3): δ = 12.26 (s, 1H), 8.68 (dd, 

J = 8.4, 1.7 Hz, 1H), 8.37 (d, J = 8.0 Hz, 1H), 8.28 (dd, J = 6.7, 1.4 Hz, 1H), 7.39–7.30 

(m, 2H), 7.28 (s, 1H), 7.00 (ddd, J = 8.4, 6.4, 1.7 Hz, 1H), 4.39 (q, J = 7.0 Hz, 2H), 1.73 

(t, J = 7.0 Hz, 3H). 13C-NMR (125 MHz, CDCl3): δ = 162.7 (Cq), 157.4 (Cq), 145.0 (Cq), 

137.3 (CH), 135.6 (q, 2JC-F = 33.3 Hz, Cq), 133.5 (CH), 127.8 (CH), 123.5 (Cq), 123.4 
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(q, 1JC-F = 280 Hz, Cq), 118.9 (CH), 117.6 (q, 3JC-F = 3.8 Hz, CH), 116.0 (q, 3JC-F = 4.0 

Hz, CH), 109.5 (CH), 66.1 (CH2), 14.6 (CH3). 19F-NMR (282 MHz, CDCl3): d = –63.19. 

IR (ATR): 3180, 3061, 1654, 1501, 1268, 1071, 760, 744 cm−1. MS (EI) m/z (relative 

intensity): 326 (10) [M]+, 209 (19), 265 (31), 217 (40), 189 (100), 161 (28), 113 (10). 

HR-MS (EI) m/z calcd for C15H13F3N2O3 [M]+: 326.0878, found: 326.0876.  

 

2-(2-Ethoxy-4-methoxybenzamido)pyridine-1-oxide (150ca) 

The general procedure F was followed using benzamide 117c (123 mg, 0.50 mmol, 

1.00 equiv) and ethanol (149a) (2 × 7.0 mL). Purification by column chromatography 

on silica gel (CH2Cl2/acetone 2:1) yielded 150ca (106.3 mg, 369 μmol, 74%) as a white 

solid. M. p.: 191–193 °C. 1H-NMR (300 MHz, CDCl3): δ = 12.13 (s, 1H), 8.72 (d, 

J = 7.9 Hz, 1H), 8.28 (d, J = 2.1 Hz, 1H), 8.22 (d, J = 9.3 Hz, 1H), 7.29 (d, J = 7.9, 

2.1 Hz, 1H), 6.96 (dd, J = 7.4, 7.1 Hz, 1H), 6.60 (dd, J = 9.3, 2.5 Hz, 1H), 6.53 (d, 

J = 2.5 Hz, 1H), 4.27 (q, J = 7.0 Hz, 2H), 3.84 (s, 3H), 1.64 (t, J = 7.0 Hz, 3H). 13C-

NMR (125 MHz, CDCl3): δ = 164.5 (Cq), 163.6 (Cq), 158.8 (Cq), 145.7 (Cq), 137.3 (CH), 

134.3 (CH), 127.8 (CH), 117.7 (CH), 115.6 (CH), 113.6 (Cq), 105.7 (CH), 99.1 (CH), 

65.4 (CH2), 55.6 (CH3), 14.7 (CH3). IR (ATR): 3193, 3057, 2203, 2120, 1658, 1504, 

1030, 727, 516 cm−1. MS (EI) m/z (relative intensity): 288 (12) [M]+, 227 (10), 179 (100), 

151 (82), 95 (15). HR-MS (EI) m/z calcd for C15H16N2O4 [M]+: 288.1110, 

found: 288.1120. The analytical data correspond with those reported in the literature.[111b] 

 

2-(4-Chloro-2-ethoxybenzamido)pyridine-1-oxide (150da) 

The general procedure F was followed using benzamide 117d (125 mg, 0.50 mmol, 

1.00 equiv) and ethanol (149a) (2 × 7.0 mL). Purification by column chromatography 

on silica gel (CH2Cl2/acetone 3:1) yielded 150da (72.4 mg, 292 μmol, 58%) as a white 

solid. M. p.: 196–199 °C. 1H-NMR (300 MHz, CDCl3): δ = 12.14 (s, 1H), 8.68 (dd, 

J = 7.9, 1.8 Hz, 1H), 8.31 (dd, J = 7.0, 2.1 Hz, 1H), 8.17 (d, J = 7.6 Hz, 1H), 7.34 (dd, 

J = 7.9, 7.5, 2.1 Hz 1H), 7.09–7.01 (m, 2H), 6.99 (dd, J = 7.5, 7.0, 1.8 Hz, 1H), 4.31 (q, 
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J = 7.2 Hz, 2H), 1.68 (t, J = 7.2 Hz, 3H). 13C-NMR (125 MHz, CDCl3): δ = 162.8 (Cq), 

157.7 (Cq), 145.1 (Cq), 140.1 (Cq), 137.3 (CH), 133.7 (CH), 128.0 (CH), 121.4 (CH), 

119.1 (Cq), 118.5 (CH), 115.8 (CH), 113.0 (CH), 65.0 (CH2), 14.6 (CH3). IR (ATR): 

3184, 3054, 1653, 1502, 1268, 760, 744 cm−1. MS (EI) m/z (relative intensity): 294 (4) 

[37Cl-M]+, 292 (12) [35Cl-M]+, 277 (5), 275 (15),  185 (23), 183 (75), 157 (33), 155 (100), 

127 (19), 99 (15). HR-MS (EI) m/z calcd for C14H13N2O3
35Cl [M]+: 292.0615, 

found: 292.0617. The analytical data correspond with those reported in the literature.[111b] 

 

2-(2-Ethoxy-5-methylbenzamido)pyridine-1-oxide (150ea) 

The general procedure F was followed using benzamide 117e (114 mg, 0.50 mmol, 

1.00 equiv) and ethanol (149a) (2 × 7.0 mL). Purification by column chromatography 

on silica gel (CH2Cl2/acetone 3:1) yielded 150ea (106 mg, 389 μmol, 78%) as a white 

solid. M. p.: 183–186 °C. 1H-NMR (300 MHz, CDCl3): δ = 12.27 (s, 1H), 8.70 (dd, 

J = 8.7, 2.3 Hz, 1H), 8.27 (dd, J = 7.2, 1.8 Hz, 1H), 8.05 (d, J = 2.0 Hz, 1H), 7.35–7.26 

(m, 2H), 7.00–6.97 (m, 2H), 4.29 (q, J = 6.9 Hz, 2H), 2.33 (s, 3H), 1.67 (t, J = 6.9 Hz, 

3H). 13C-NMR (125 MHz, CDCl3): δ = 164.0 (Cq), 155.3 (Cq), 145.4 (Cq), 137.3 (CH), 

134.7 (CH), 132.6 (CH), 130.3 (CH), 127.7 (Cq), 120.0 (Cq), 118.2 (CH), 115.7 (CH), 

112.3 (CH), 65.3 (CH2), 20.4 (CH3), 14.8 (CH3). IR (ATR): 3176, 2918, 1657, 1508, 

1278, 795, 511 cm−1. MS (EI) m/z (relative intensity): 272 (19) [M]+, 255 (23), 163 (87), 

135 (100), 107 (26), 77 (21). HR-MS (EI) m/z calcd for C15H16N2O3 [M]+: 272.1161, 

found: 272.1165. The analytical data correspond with those reported in the literature.[111b] 

 

2-(3-Ethoxy-2-naphthamido)pyridine-1-oxide (150fa) 

The general procedure F was followed using benzamide 117f (132 mg, 0.50 mmol, 

1.00 equiv) and ethanol (149a) (2 × 7.0 mL). Purification by column chromatography 

on silica gel (CH2Cl2/acetone 3:1) yielded 150fa (108 mg, 351 μmol, 70%) as a white 

solid. M. p.: 191–193 °C. 1H-NMR (400 MHz, CDCl3): δ = 12.39 (s, 1H), 8.94 (s, 1H), 

8.76 (dd, J = 8.9, 1.5 Hz, 1H), 8.30 (dd, J = 6.8, 2.3 Hz, 1H), 7.91 (dd, J = 8.0, 0.9 Hz, 
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1H), 7.74 (dd, J = 9.2, 1.0 Hz, 1H), 7.54 (dd, J = 8.9, 6.9, 2.3 Hz, 1H), 7.39 (dd, J = 8.0, 

7.7, 1.0 Hz, 1H), 7.36 (dd, J = 6.9, 6.8, 1.5 Hz, 1H), 7.28 (s, 1H), 7.00 (dd, J = 9.2, 7.7, 

0.9 Hz, 1H), 4.43 (q, J = 7.1 Hz, 2H), 1.80 (t, J = 7.1 Hz, 3H). 13C-NMR (101 MHz, 

CDCl3): δ = 163.9 (Cq), 154.1 (Cq), 145.4 (Cq), 137.5 (CH), 136.5 (CH), 134.9 (CH), 

129.3 (CH), 128.9 (CH), 127.9 (CH), 126.3 (Cq), 124.7 (CH), 121.5 (CH), 118.6 (Cq), 

116.0 (CH), 107.5 (CH), 65.4 (CH2), 14.7 (CH3). IR (ATR): 3189, 2918, 1652, 1507, 

1278, 1200, 1038, 725 cm−1. MS (EI) m/z (relative intensity): 308 (13) [M]+, 291 (15), 

247 (30), 199 (89), 171 (100), 155 (22), 127 (19), 115 (41). HR-MS (ESI) m/z calcd for 

C18H16N2O3 [M]+: 308.1161, found: 308.1158.  

 

2-[5-(Dimethylamino)-2-ethoxybenzamido]pyridine-1-oxide (150ga) 

The general procedure F was followed using benzamide 117g (128 mg, 0.50 mmol, 

1.00 equiv) and ethanol (149a) (2 × 7.0 mL). Purification by column chromatography 

on silica gel (CH2Cl2/acetone 3:1) yielded 150ga (97.9 mg, 294 μmol, 59%) as a yellow 

solid. M. p.: 183–186 °C. 1H-NMR (400 MHz, CDCl3): δ = 12.35 (s, 1H), 8.67 (dd, 

J = 8.5, 2.3 Hz, 1H), 8.22 (dd, J = 8.0, 1.9 Hz, 1H), 7.60 (d, J = 2.3 Hz, 1H), 7.27 (dd, 

J = 8.0, 6.8, 2.3 Hz, 1H), 6.94–6.86 (m, 3H), 4.21 (q, J = 7.4 Hz, 2H), 2.87 (s, 6H), 1.59 

(t, J = 7.4 Hz, 3H). 13C-NMR (125 MHz, CDCl3): δ = 164.4 (Cq), 149.6 (Cq), 145.7 (Cq), 

145.4 (Cq), 137.5 (CH), 127.8 (CH), 120.5 (Cq), 119.3 (CH), 118.2 (CH), 116.2 (CH), 

115.7 (CH), 113.8 (CH), 65.6 (CH2), 41.3 (CH3), 14.8 (CH3). IR (ATR): 3196, 3057, 

2931, 1657, 1502, 1426, 1204, 725 cm−1. MS (ESI) m/z (relative intensity): 324 (19) 

[M+Na]+, 302 (100), [M+H]+, 288 (7), 209 (25), 192 (47). HR-MS (ESI) m/z calcd for 

C16H19N3O3 [M+H]+: 302.1499, found: 302.1497. The analytical data correspond with those 

reported in the literature.[111b] 

 

2-(5-Bromo-2-ethoxybenzamido)pyridine-1-oxide (150ha) 

The general procedure F was followed using benzamide 117h (146 mg, 0.50 mmol, 

1.00 equiv) and ethanol (149a) (2 × 7.0 mL). Purification by column chromatography 
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on silica gel (CH2Cl2/acetone 3:1) yielded 150ha (96.3 mg, 286 μmol, 57%) as a white 

solid. M. p.: 224–226 °C. 1H-NMR (300 MHz, CDCl3): δ = 12.22 (s, 1H), 8.67 (dd, J = 

8.1, 2.5 Hz, 1H), 8.37 (d, J = 3.0 Hz, 1H), 8.27 (dd, J = 7.5, 2.3 Hz, 1H), 7.58 (dd, J = 

8.1, 3.0 Hz, 1H), 7.34 (ddd, J = 8.1, 6.8, 2.3 Hz, 1H), 7.00 (ddd, J = 7.5, 6.8, 2.5 Hz, 

1H), 6.93 (d, J = 8.1 Hz, 1H), 4.23 (q, J = 7.2 Hz, 2H), 1.68 (t, J = 7.2 Hz, 3H). 13C-

NMR (125 MHz, CDCl3): δ = 162.4 (Cq), 156.3 (Cq), 145.1 (Cq), 137.2 (CH), 136.7 

(CH), 135.1 (CH), 127.7 (CH), 122.2 (Cq), 118.7 (CH), 115.8 (CH), 114.3 (CH), 113.5 

(Cq), 65.9 (CH2), 14.7 (CH3). IR (ATR): 3163, 2924, 1656, 1562, 1508, 1238, 1028, 747 

cm−1. MS (ESI) m/z (relative intensity): 361 (29) [81Br-M+Na]+, 359 (31) [79Br-M+Na]+, 

339 (39) [81Br-M+H]+, 337 (29) [79Br-M+H]+, 242 (100), 227 (10). HR-MS (ESI) m/z 

calcd for C14H13N2O3
79Br [79Br-M+H]+: 337.0182, found: 337.0184.  

 

2-(4-Acetyl-2-ethoxybenzamido)pyridine-1-oxide (150ia) 

The general procedure F was followed using benzamide 117i (129 mg, 0.50 mmol, 

1.00 equiv) and ethanol (149a) (2 × 7.0 mL). Purification by column chromatography 

on silica gel (CH2Cl2/acetone 3:1) yielded 150ia (92.1 mg, 307 μmol, 61%) as a white 

solid. M. p.: 131–133 °C. 1H-NMR (300 MHz, CDCl3): δ = 12.27 (s, 1H), 8.70 (dd, 

J = 8.7, 2.1 Hz, 1H), 8.34 (d, J = 8.8 Hz, 1H), 8.30 (dd, J = 8.0, 2.3 Hz, 1H), 7.63 (d, 

J = 1.4 Hz, 1H), 7.52 (dd, J = 8.8, 1.4 Hz, 1H), 7.32 (dd, J = 8.7, 7.7, 2.3 Hz, 1H), 7.01 

(dd, J = 8.0, 7.7, 2.1 Hz, 1H), 4.40 (q, J = 6.8 Hz, 2H), 2.62 (s, 3H), 1.71 (t, J = 6.8 Hz, 

3H). 13C-NMR (125 MHz, CDCl3): δ = 197.2 (Cq), 162.9 (Cq), 157.4 (Cq), 145.3 (Cq), 

141.4 (Cq), 137.5 (CH), 133.1 (CH), 127.9 (CH), 124.2 (Cq), 121.0 (CH), 118.7 (CH), 

115.8 (CH), 111.4 (CH), 65.8 (CH2), 26.8 (CH3), 14.6 (CH3). IR (ATR): 3183, 2924, 

1683, 1608, 1503, 1428, 1207, 756 cm−1. MS (EI) m/z (relative intensity): 300 (15) [M]+, 

283 (23), 256 (21), 191 (93), 163 (100), 147 (85), 119 (249, 91 (20), 43 (57). HR-MS 

(EI) m/z calcd for C16H16N2O4 [M]+: 300.1110, found: 300.1111. The analytical data 

correspond with those reported in the literature.[111b] 



182 
 

 

2-(2-Methoxybenzamido)pyridine-1-oxide (150ab) 

The general procedure F was followed using benzamide 117a (107 mg, 0.50 mmol, 

1.00 equiv) and methanol (150b) (2 × 7.0 mL). Purification by column chromatography 

on silica gel (CH2Cl2/acetone 2:1) yielded 150ab (86.8 mg, 256 μmol, 71%) as a white 

solid. M. p.: 121–124 °C. 1H-NMR (400 MHz, CDCl3): δ = 12.41 (s, 1H), 8.67 (dd, 

J = 8.3, 1.7 Hz, 1H), 8.28–8.25 (m, 2H), 7.53 (ddd, J = 7.9, 7.0, 1.7 Hz, 1H), 7.35 (ddd, 

J = 8.3, 7.0, 1.4 Hz, 1H), 7.10 (ddd, J = 8.5, 7.5, 2.1 Hz, 1H), 7.05 (dd, J = 8.5, 1.0 Hz, 

1H), 6.97 (ddd, J = 8.0, 7.5, 1.0 Hz, 1H), 4.13 (s, 3H). 13C-NMR (101 MHz, CDCl3): δ 

= 163.5 (Cq), 157.9 (Cq), 145.4 (Cq), 137.3 (CH), 134.3 (CH), 132.4 (CH), 128.3 (CH), 

121.3 (CH), 120.4 (Cq), 118.3 (CH), 115.5 (CH), 111.6 (CH), 56.3 (CH3). IR (ATR): 

3175, 1671, 1564, 1479, 1238, 1043, 744 cm−1. MS (EI) m/z (relative intensity): 244 

(18) [M]+, 227 (11), 197 (10), 135 (100), 110 (15), 92 (22), 77 (25). HR-MS (ESI) m/z 

calcd for C14H13N2O3
79Br [M]+: 244.0848, found 244.0851. The analytical data correspond 

with those reported in the literature.[111b] 

 

 

2-(2-n-Butoxybenzamido)pyridine-1-oxide (150ac) 

The general procedure F was followed using benzamide 117a (107 mg, 0.50 mmol, 

1.00 equiv), tetra-n-butylammonium acetate (150 mg, 0.50 mmol, 1.00 equiv in each 

cell) and n-butanol (149c) (2 × 7.0 mL). Purification by column chromatography on 

silica gel (CH2Cl2/acetone 4:1) yielded 150ac (74.8 mg, 262 μmol, 52%) as a white 

solid. M. p.: 73–75 °C. 1H-NMR (400 MHz, CDCl3): δ = 12.41 (s, 1H), 8.84 (dd, J = 9.3, 

1.6 Hz, 1H), 8.41 (dd, J = 7.4, 2.3 Hz, 1H), 8.33 (dd, J = 7.7, 2.1 Hz, 1H), 7.55 (ddd, 

J = 9.3, 8.0, 2.3 Hz, 1H), 7.29 (ddd, J = 8.0, 7.4, 1.6 Hz, 1H), 7.17–7.07 (m, 2H), 7.00 

(ddd, J = 7.7, 7.5, 1.8 Hz, 1H), 4.35 (t, J = 7.4 Hz, 2H), 2.19–2.09 (m, 2H), 1.65–1.55 

(m, 2H), 1.06 (q, J = 7.2 Hz, 3H). 13C-NMR (101 MHz, CDCl3): δ = 164.0 (Cq), 157.6 
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(Cq), 138.1 (Cq), 134.2 (CH), 132.6 (CH), 129.0 (CH), 128.1 (CH), 121.0 (CH), 120.6 

(Cq), 118.0 (CH), 115.4 (CH), 112.5 (CH), 69.6 (CH2), 30.5 (CH2), 19.2 (CH2), 13.7 

(CH3). IR (ATR): 3164, 1673, 1561, 1502, 1204, 796, 741 cm−1. MS (ESI) m/z (relative 

intensity): 309 (21) [M+Na]+, 287 (100) [M+H]+, 237 (19), 215 (13), 177 (45), 121 (19). 

HR-MS (ESI) m/z calcd for C16H18N2O3 [M+H]+: 287.1390, found: 287.1389. The 

analytical data correspond with those reported in the literature.[111b] 

 

2-[2-(2,2,2-Trifluoroethoxy)benzamido]pyridine-1-oxide (150ad) 

The general procedure F was followed using benzamide 117a (107 mg, 0.50 mmol, 

1.00 equiv) and trifluoroethanol (149d) (2 × 7.0 mL) at 60 °C. Purification by column 

chromatography on silica gel (CH2Cl2/acetone 4:1) yielded 150ad (97.6 mg, 312 μmol, 

62%) as a white solid. M. p.: 152–154 °C. 1H-NMR (300 MHz, CDCl3): δ = 11.93 (s, 

1H), 8.68 (dd, J = 7.8, 2.2 Hz, 1H), 8.33 (dd, J = 6.6, 1.2 Hz, 1H), 8.27 (dd, J = 7.9, 

1.6 Hz, 1H), 7.59 (ddd, J = 7.9, 7.8, 2.2 Hz, 1H), 7.38 (ddd, J = 8.1, 6.6, 1.7 Hz, 1H), 

7.29 (ddd, J = 8.1, 6.6, 1.2 Hz, 1H), 7.12 (dd, J = 8.1, 1.7 Hz, 1H), 7.03 (ddd, J = 7.9, 

7.8, 1.6 Hz, 1H), 4.76 (t, J = 8.6 Hz, 2H). 13C-NMR (125 MHz, CDCl3): δ = 163.0 (Cq), 

155.6 (Cq), 144.9 (Cq), 137.2 (CH), 134.1 (CH), 132.8 (CH), 127.6 (CH), 123.3 (CH), 

123.0 (q, 1JCF = 258 Hz, Cq), 122.3 (Cq), 118.7 (CH), 115.5 (CH), 113.5 (CH), 66.5 (q, 

2JCF = 34.5 Hz, CH2). 19F-NMR (282 MHz, CDCl3): d = –72.81. IR (ATR): 3172, 1669, 

1563, 1504, 1452, 1092, 670 cm−1. MS (EI) m/z (relative intensity): 312 (16) [M]+, 203 

(100), 197 (35), 183 (10) 155 (5), 120 (6), 92 (12). HR-MS (ESI) m/z calcd for 

C14H12F3N2O3 [M+H]+: 313.0795, found: 313.0791.  
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2-[2-(2-Chloroethoxy)benzamido]pyridine-1-oxide (150ae) 

The general procedure F was followed using benzamide 117a (107 mg, 0.50 mmol, 

1.00 equiv) and 2-chloroethanol (149e) (2 × 7.0 mL). Purification by column 

chromatography on silica gel (CH2Cl2/acetone 4:1) yielded 150ae (111 mg, 381 μmol, 

76%) as a white solid. M. p.: 142–144 °C. 1H-NMR (400 MHz, CDCl3): δ = 12.18 (s, 

1H), 8.69 (dd, J = 8.0, 2.0 Hz, 1H), 8.29–8.25 (m, 2H), 7.53 (ddd, J = 7.2, 6.8, 2.0 Hz, 

1H), 7.33 (ddd, J = 8.0, 6.8, 1.7 Hz, 1H), 7.14 (ddd, J = 7.7, 7.0, 1.9 Hz, 1H), 7.06–

6.94 (m, 2H), 4.49 (t, J = 7.9 Hz, 2H), 4.17 (t, J = 7.9 Hz, 2H). 13C-NMR (125 MHz, 

CDCl3): δ = 163.3 (Cq), 156.5 (Cq), 145.2 (Cq), 137.2 (CH), 134.3 (CH), 132.7 (CH), 

128.9 (Cq), 127.7 (CH), 121.9 (CH), 120.6 (Cq), 118.5 (CH), 115.6 (CH), 112.6 (CH), 

69.5 (CH2), 41.2 (CH2). IR (ATR): 3168, 1565, 1508, 1178, 1021, 741 cm−1. MS (ESI) 

m/z (relative intensity): 317 (30) [37Cl-M+Na]+, 315 (94) [35Cl-M+Na]+, 295 (35) [37Cl-

M+H]+, 293 (100) [35Cl-M+H]+, 242 (5), 183 (56), 121 (12). HR-MS (ESI) m/z calcd for 

C14H13N2O3
35Cl [35Cl-M+H]+: 293.0687, found: 293.0687.  

 

2-(2-(2-Methoxyethoxy)benzamido)pyridine-1-oxide (150af) 

The general procedure F was followed using benzamide 117a (107 mg, 0.50 mmol, 

1.00 equiv) and 2-methoxyethanol (149f) (2 × 7.0 mL). Purification by column 

chromatography on silica gel (CH2Cl2/acetone 2:1) yielded 150af (92.3 mg, 320 μmol, 

64%) as a white solid. M. p.: 107–109 °C. 1H-NMR (300 MHz, CDCl3): δ = 12.21 (s, 

1H), 8.70 (dd, J = 7.9, 1.3 Hz, 1H), 8.29–8.23 (m, 2H), 7.51 (ddd, J = 8.3, 7.2, 1.3 Hz, 

1H), 7.31 (ddd, J = 7.9, 7.2, 2.0 Hz, 1H), 7.14–7.07 (m, 2H), 6.97 (ddd, J = 8.0, 6.5, 

2.3 Hz, 1H), 4.41 (t, J = 5.1 Hz, 2H), 4.06 (t, J = 5.1 Hz, 2H), 3.45 (s, 3H). 13C-NMR 
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(125 MHz, CDCl3): δ = 163.8 (Cq), 157.4 (Cq), 145.4 (Cq), 137.3 (CH), 134.3 (CH), 

132.6 (CH), 127.7 (CH), 124.5 (CH), 120.8 (Cq), 118.4 (CH), 115.7 (CH),  112.8 (CH), 

70.4 (CH2), 69.0 (CH2), 59.0 (CH3). IR (ATR): 3171, 1656, 1560, 1422, 1251, 904, 

747 cm−1. MS (ESI) m/z (relative intensity): 311 (62) [M+Na]+, 289 (100) [M+H]+, 179 

(37), 147 (6), 123 (9). HR-MS (ESI) m/z calcd for C15H16N2O4 [M+H]+: 289.1183, 

found: 289.1184. The analytical data correspond with those reported in the literature.[111b]  

 

2-[2-(2-Acetoxyethoxy)benzamido]pyridine-1-oxide (150ag) 

The general procedure G was followed using benzamide 117a (53.5 mg, 0.25 mmol, 

1.00 equiv) and 2-hydroxyethylacetate (149g) (2.3 mL) in MeCN (0.9 mL). Purification 

by column chromatography on silica gel (CH2Cl2/acetone 3:1) yielded 150ag (42.5 mg, 

136 μmol, 54%) as a white solid. M. p.: 125–127 °C.  1H-NMR (300 MHz, CDCl3): δ = 

12.11 (s, 1H), 8.67 (dd, J = 7.4, 2.2 Hz, 1H), 8.27−8.22 (m, 2H), 7.51 (ddd, J = 8.2, 7.4, 

2.0 Hz, 1H), 7.32 (ddd, J = 8.2, 7.4, 2.2 Hz, 1H), 7.13 (dd, J = 8.2, 2.0 Hz, 1H), 7.04 

(dd, J = 8.4, 1.3 Hz, 1H), 6.96 (ddd, J = 8.2, 8.0, 1.3 Hz, 1H), 4.71 (t, J = 5.6 Hz, 2H), 

4.45 (t, J = 5.6 Hz, 2H), 2.01 (s, 3H). 13C-NMR (125 MHz, CDCl3): δ = 170.9 (Cq), 163.4 

(Cq), 156.8 (Cq), 145.1 (Cq), 137.1 (CH), 134.1 (CH), 132.6 (CH), 127.4 (CH), 121.7 

(CH), 121.0 (Cq), 118.4 (CH), 115.5 (CH), 112.7 (CH), 67.6 (CH2), 62.4 (CH2), 20.9 

(CH3). IR (ATR): 3241, 2924, 1730, 1671, 1599, 1505, 1222, 1046, 860, 721 cm−1. MS 

(EI) m/z (relative intensity): 316 (5) [M]+, 230 (41), 197 (53), 165 (100), 121 (81), 87 

(45) 43 (67). HR-MS (ESI) m/z calcd for C16H16N2O5 [M+H]+: 317.1132, 

found: 317.1140.  
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2-[2-(2-Cyanoethoxy)benzamido]pyridine-1-oxide (150ah) 

The general procedure G was followed using benzamide 117a (53.5 mg, 0.25 mmol, 

1.00 equiv) and 3-hydroxypropionitrile (149h) (2.3 mL) in MeCN (0.9 mL). Purification 

by column chromatography on silica gel (CH2Cl2/acetone 2:1) yielded 150ah (43.5 mg, 

153 μmol, 61%) as a white solid. M. p.: 183–185 °C. 1H-NMR (300 MHz, CDCl3): δ = 

12.07 (s, 1H), 8.70 (dd, J = 8.4, 1.8 Hz, 1H), 8.32−8.25 (m, 2H), 7.57 (ddd, J = 8.4, 7.9, 

2.1 Hz, 1H), 7.32 (ddd, J = 8.2, 7.4, 2.2 Hz, 1H), 7.13 (dd, J = 8.2, 2.0 Hz, 1H), 7.04 

(dd, J = 8.4, 1.3 Hz, 1H), 7.04–6.99 (m, 2H), 4.71 (t, J = 5.6 Hz, 2H), 4.45 (t, J = 5.6 Hz, 

2H), 2.01 (s, 3H). 13C-NMR (75 MHz, CDCl3): δ = 163.1 (Cq), 151.1 (Cq), 145.1 (Cq), 

137.2 (CH), 134.5 (CH), 132.9 (CH), 128.0 (CH), 122.4 (CH), 120.9 (Cq), 118.7 (CH), 

117.1 (Cq), 115.6 (CH), 112.4 (CH), 64.3 (CH2), 18.4 (CH2). IR (ATR): 3191, 2930, 

2257, 1662, 1599, 1428, 1267, 1205, 741 cm−1. MS (EI) m/z (relative intensity): 283 

(13) [M]+, 264 (8), 230 (44), 214 (17), 174 (69), 121 (100), 110 (53), 93 (27), 65 (25). 

HR-MS (ESI) m/z calcd for C15H13N3O3 [M]+: 284.1030, found: 284.1036.  

 

2-[2-(Cyclopentylmethoxy)benzamido]pyridine-1-oxide (150ai) 

The general procedure G was followed using benzamide 117a (53.7 mg, 0.25 mmol, 

1.00 equiv) and cyclopentylmethanol (149i) (2.3 mL) in MeCN (0.9 mL). Purification by 

column chromatography on silica gel (CH2Cl2/acetone 4:1) yielded 150ai (61.3 mg, 

196 μmol, 78%) as a white solid. M. p.: 124–126 °C. 1H-NMR (400 MHz, CDCl3): δ = 

12.17 (s, 1H), 8.71 (dd, J = 7.7, 1.9 Hz, 1H), 8.33–8.27 (m, 2H), 7.50 (ddd, J = 8.0, 7.6, 

1.9 Hz, 1H), 7.32 (dd, J = 8.0, 2.2 Hz, 1H), 7.10–7.03 (m, 2H), 6.97 (ddd, J = 8.0, 6.5, 
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2.2 Hz, 1H), 4.13 (d, J = 8.0 Hz, 2H), 2.82−2.74 (m, 1H), 2.00−1.92 (m, 2H), 1.66−1.54 

(m, 4H), 1.40−1.31 (m, 2H). 13C-NMR (125 MHz, CDCl3): δ = 164.1 (Cq), 157.6 (Cq), 

145.4 (Cq), 137.4 (CH), 134.2 (CH), 132.6 (CH), 127.5 (CH), 121.0 (CH), 120.6 (Cq), 

118.4 (CH), 115.8 (CH), 112.6 (CH), 74.3 (CH2), 38.3 (CH), 29.8 (CH2), 24.4 (CH2). IR 

(ATR): 3170, 2955, 1662, 1500, 1264, 1206, 1047, 746 cm−1. MS (EI) m/z (relative 

intensity): 312 (4) [M]+, 295 (10), 230 (37), 203 819), 197 (44), 121 (100), 110 (15). 

HR-MS (ESI) m/z calcd for C18H21N2O3 [M+H]+: 313.1547, found: 313.1543.  

 

2-[2-(Benzyloxy)benzamido]pyridine-1-oxide (150aj) 

The general procedure G was followed using benzamide 117a (53.9 mg, 0.25 mmol, 

1.00 equiv) and benzylalcohol (149j) (2.3 mL) in MeCN (0.9 mL). Purification by 

column chromatography on silica gel (CH2Cl2/acetone 6:1) yielded 150aj (58.9 mg, 

184 μmol, 74%) as a white solid. M. p.: 121–122 °C. 1H-NMR (400 MHz, CDCl3): δ = 

12.59 (s, 1H), 8.79 (dd, J = 7.9, 1.7 Hz, 1H), 8.28 (dd, J = 8.2, 1.3 Hz, 1H), 8.22 (dd, 

J = 8.5, 2.0 Hz, 1H), 7.49 (d, J = 7.9 Hz, 2H), 7.41–7.32 (m, 4H), 7.26 (ddd, J = 8.2, 

7.9, 1.7 Hz, 1H), 7.06 (ddd, J = 8.2, 7.9, 1.3 Hz, 1H), 7.01–6.98 (m, 2H), 5.53 (s, 2H). 

13C-NMR (125 MHz, CDCl3): δ = 163.7 (Cq), 156.6 (Cq), 145.4 (Cq), 137.3 (CH), 135.8 

(Cq), 134.0 (CH), 132.4 (CH), 128.7 (CH), 128.1 (CH), 128.0 (CH), 127.2 (CH), 121.4 

(CH), 121.2 (Cq), 118.4 (CH), 115.6 (CH), 113.7 (CH), 71.2 (CH2). IR (ATR): 3135, 

1671, 1599, 1504, 1422, 1196, 999, 732, 684 cm−1. MS (ESI) m/z (relative intensity): 

320 (8) [M]+, 303 (15), 211 (27), 197 (20), 183 (33), 121 (11), 91 (100), 65 (17). HR-

MS (ESI) m/z calcd for C19H16N2O3 [M]+: 320.1161, found: 320.1162. The analytical data 

correspond with those reported in the literature.[111b] 
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2-{2-[(2-Methylbenzyl)oxy]benzamido}pyridine-1-oxide (150ak) 

The general procedure G was followed using benzamide 117a (53.2 mg, 0.25 mmol, 

1.00 equiv) and 2-methylbenzylalcohol (149k) (2.3 mL) in MeCN (0.9 mL). Purification 

by column chromatography on silica gel (CH2Cl2/acetone 3:1) yielded 150ak (58.9 mg, 

184 μmol, 68%) as a white solid. M. p.: 161–162 °C. 1H-NMR (400 MHz, CDCl3): δ = 

12.50 (s, 1H), 8.69 (dd, J = 7.6, 1.5 Hz, 1H), 8.24 (dd, J = 8.2, 1.9 Hz, 2H), 8.41–8.36 

(m, 2H), 8.33 (ddd, J = 8.0, 7.6, 2.1 Hz, 1H), 7.21–7.14 (m, 3H), 7.08 (ddd, J = 7.6, 6.8, 

2.2 Hz, 1H), 6.98 (ddd, J = 8.0, 7.6, 1.5 Hz, 1H), 6.91 (dd, J = 7.9, 1.7 Hz, 1H), 5.53 

(s, 2H), 2.42 (s, 3H). 13C-NMR (125 MHz, CDCl3): δ = 163.7 (Cq), 156.0 (Cq), 145.4 

(Cq), 137.3 (CH), 135.4 (Cq), 134.0 (CH), 133.8 (Cq), 132.4 (CH), 130.4 (CH), 127.9 

(CH), 127.6 (CH), 127.1 (CH), 126.1 (CH), 121.6 (CH), 121.1 (Cq), 118.3 (CH), 115.5 

(CH), 113.7 (CH), 70.0 (CH2) 19.1 (CH3). IR (ATR): 3173, 2952, 1662, 1561, 1469, 

1236, 841, 748, 601 cm−1. MS (ESI) m/z (relative intensity): 334 (11) [M]+, 317 (7), 230 

(20), 197 (26), 121 (15), 105 (100), 79 (16). HR-MS (EI) m/z calcd for C20H18N2O3 

[M]+: 334.1317, found: 334.1325.  

 

(S)-2-{2-[(3,7-Dimethyloct-6-en-1-yl)oxy]benzamido}pyridine-1-oxide (150al) 

The general procedure G was followed using benzamide 117a (53.5 mg, 0.25 mmol, 

1.00 equiv) and (S)-citronellol (149l) (2.3 mL) in MeCN (0.9 mL). Purification by column 

chromatography on silica gel (CH2Cl2/acetone 8:1) yielded 150al (48.9 mg, 133 μmol, 

52%) as a yellow oil. 1H-NMR (400 MHz, CDCl3): δ = 12.22 (s, 1H), 8.69 (dd, J = 7.8, 

2.2 Hz, 1H), 8.29−8.22 (m, 2H), 7.50 (ddd, J = 8.0, 7.8, 2.2 Hz, 1H), 7.32 (ddd, J = 8.0, 
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7.8, 1.7 Hz, 1H), 7.09–7.04 (m, 2H), 6.96 (ddd, J = 7.9, 6.9, 2.0 Hz, 1H), 5.07–5.04 (m, 

1H), 4.35–4.24 (m, 2H), 2.17–2.11 (m, 1H), 2.03–1.90 (m, 2H), 1.72–1.65 (m, 2H), 1.62 

(s, 3H), 1.55 (s, 3H), 1.41–1.33 (m, 1H), 1.27–1.20 (m, 1H), 0.98 (d, J = 7.9 Hz, 3H). 

13C-NMR (125 MHz, CDCl3): δ = 163.9 (Cq), 157.4 (Cq), 145.3 (Cq), 137.2 (CH), 135.1 

(CH), 132.1 (CH), 131.2 (Cq), 127.4 (CH), 124.6 (CH), 120.9 (CH), 120.6 (Cq), 118.3 

(CH), 115.7 (CH), 112.5 (CH), 68.3 (CH2), 37.3 (CH2), 35.5 (CH2), 29.9 (CH3), 25.7 

(CH3), 25.5 (CH2), 19.5 (CH), 17.7 (CH3). IR (ATR): 3168, 2917, 1669, 1600, 1505, 

1426, 1207, 687 cm−1. MS (ESI) m/z (relative intensity): 368 (23) [M]+, 351 (11), 299 

(10), 230 (21), 214 (19) 197 (16), 147 (12), 121 (100), 110 (25), 95 (28), 81 (33), 69 

(53), 55 (33), 41 (44). HR-MS (EI) m/z calcd for C22H28N2O3 [M]+: 368.2100, 

found: 368.2099.  

 

Gram-Scale Synthesis of 150na 

In a three-neck flask fitted with a Pt-plate electrode (2.5 cm × 5 cm × 0.25 mm) and a 

RVC electrode (2.5 cm × 5 cm × 0.6 cm), Co(OAc)2∙4 H2O (257 mg, 1.00 mmol, 

20 mol %), NaOPiv (2.41 g, 20.0 mmol, 4.00 equiv) and benzamide 117n (1.45 g, 

5.00 mmol, 1.00 equiv) were dissolved in ethanol (149a) (70 mL) under N2 

atmosphere. Electrolysis was started at ambient temperature and a constant current 

of 16 mA maintained for 36 h. Evaporation of the solvent and subsequent column 

chromatography using CH2Cl2/Acetone (3:1 → 1:1) yielded 150na (1.02 g, 3.12 mmol, 

61%). 

 

5.6.2 Mechanistic Studies 

Studies on the Potential Racemization of 150al 

A racemic sample of 150al was synthesized following general procedure B using rac-

Citronellol. Analysis by chiral HPLC showed that no racemization took place. HPLC 

chromatograms were recorded on an Agilent 1290 Infinity instrument using 

CHIRALPAK ® IA-1 column and n-hexane/i-PrOH (95:5, 0.5 mL/min, detection at 250 

nm).  
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Figure 5.9. HPLC Chromatograms of rac-150al and (2)-150al. 

 

H/D Exchange Experiment 

 

Scheme 5.13. H/D exchange in the presence of [D]1-149b. 

In a divided cell with P4 sintered glass membrane, NaOPiv (122 mg, 1.00 mmol) was 

added in one cell, fitted with a Pt-plate electrode and dissolved in CH3OD (7.0 mL). In 

the other half cell Co(OAc)2∙4 H2O (25.7 mg, 0.10 mmol, 20 mol %), NaOPiv (122 mg, 

1.00 mmol) and benzamide 117aa (107 mg, 0.50 mmol) were dissolved in CH3OD 

(7.0 mL) and fitted with a RVC electrode. Electrolysis was performed at ambient 

temperature and a constant current of 8 mA maintained for 3 h. Evaporation of the 

solvent and subsequent column chromatography (CH2Cl2/acetone 2:1) yielded the 

desired product (57.8 mg, 235 μmol, 47%) as a white solid and the reisolated starting 

material (43.9 mg, 206 μmol, 41%) as a white solid. No deuteration could be detected 

in either compound by 1H-NMR spectroscopy and MS spectrometry. 
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Figure 5.10. 1H-NMR of 150ab from the H/D exchange experiment. 

 

Figure 5.11. 1H-NMR of 117a from the H/D exchange experiment. 
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Competition Experiments 

 

Scheme 5.14. Competition experiment between arenes 117o and 117b. 

In a divided cell with P4 sintered glass membrane, NaOPiv (122 mg, 1.00 mmol, 4.00 

equiv) was added in one cell, fitted with a Pt-plate electrode and dissolved in alcohol 

149a (7.0 mL). In the other half cell Co(OAc)2∙4H2O (25.7 mg, 0.10 mmol, 20 mol %), 

NaOPiv (123 mg, 1.00 mmol, 4.00 equiv), benzamide 117o (57.3 mg, 0.25 mmol, 1.00 

equiv) and benzamide 117b (70.5 mg, 0.25 mmol, 1.00 equiv) were dissolved in 

ethanol (149a) (7.0 mL) and fitted with a RVC electrode. Electrolysis was started at 

ambient temperature and a constant current of 8 mA maintained for 3 h. Evaporation 

of the solvent and subsequent column chromatography using CH2Cl2/acetone 3:1 

yielded a mixture of products. Analysis by 1H-NMR using CH2Br2 as the internal 

standard showed a product distribution of 1.9:1 in favor of 150oa. 
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Figure 5.12. 1H-NMR of the isolated mixture of 150oa and 150ba. 

 

The relative kinetic studies were conducted with 150oa and 150ba using LC-MS 

measurements with an internal standard. Two independent reactions under standard 

conditions were carried out using substrates 117o and 117b (0.50 mmol each). After 

10 minutes to reach a stable constant current of 8 mA aliquots of 0.3 mL were removed 

from the anodic chamber every five minutes. The mixture was diluted using MeCN (1.5 

mL) and filtered. After addition of a stock solution (60 μL) of 1,3,5-trimethoxybenzene 

(84.1 mg, 0.5 mmol) in MeCN (10 mL) each sample was analyzed by RP-LCMS using 

H2O/MeCN 1:1 as the eluent. 

Time [min] 5 10 15 20 25 30 

150oa [%] 0.4 2.3 4.6 7.3 10.4 14.0 

150ba [%]  - 0.4 1.6 3.3 4.7 6.7 
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Figure 5.13. Realtive initial rates of 150 oa and 150ba. 

 

 

Scheme 5.15. Competition experiment between alcohols 149a and 149c. 

In a divided cell with P4 sintered glass membrane, NaOPiv (124 mg, 1.00 mmol, 

2.00 equiv) was added in one cell, fitted with a Pt-plate electrode and dissolved in a 

mixture of TFE/ethanol (1:1, 7.0 mL). In the other half cell Co(OAc)2∙4H2O (25.6 mg, 

0.10 mmol, 20 mol %), NaOPiv (122 mg, 1.00 mmol, 12.00 equiv), benzamide 117a 

(107 mg, 0.50 mmol, 1.00 equiv) were fitted with a RVC electrode and dissolved in a 

mixture of TFE 149c/ethanol (149a) (1:1, 7.0 mL). Electrolysis was started at ambient 

temperature and a constant current of 8 mA maintained for 6 h. Evaporation of the 

solvent and subsequent column chromatography using CH2Cl2/acetone 3:1 yielded 

150aa (60.4 mg, 236 μmol, 47%) and 150ac (21.9 mg, 71.2 μmol, 14%). 
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KIE studies 

 

Scheme 5.16. KIE study of the cobalt-catalyzed C–H oxygenation. 

Two independent reactions under standard conditions were carried out using 

substrates 117a and [D5]-117a (0.50 mmol each). After 10 minutes to reach a stable 

constant current of 8 mA aliquots of 0.3 mL were removed from the anodic chamber 

every five minutes. The mixture was diluted using MeCN (1.5 mL) and filtered. After 

addition of a stock solution (60 μL) of 1,3,5-trimethoxybenzene (84.1 mg, 0.5 mmol) in 

MeCN (10 mL) each sample was analyzed by RP-LCMS using H2O/MeCN 1:1 as the 

eluent. 

Time [min] 5 10 15 20 25 30 

150aa [%] 1.2 3.8 8.4 11.8 16.2 21.2 

[D5]-150aa [%]  - 1.7 5.3 8.3 13.0 16.9 

 

Figure 5.14. Initial rates of 150aa and [D]4-150aa. 
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Kinetic Profile (Electrochemical Oxidation) 

 

Scheme 5.17. C–H oxygenation under electrochemical conditions. 

The general procedure F was followed using 117a and 149a. After 10 minutes to reach 

a stable constant current of 8 mA aliquots of 0.1 mL were removed from the anodic 

chamber every 10 minutes (first 3 h) and every 30 min (last 3 h). The mixture was 

diluted using MeCN (1.5 mL) and filtered. After addition of a stock solution (60 μL) of 

1,3,5-trimethoxybenzene (84.1 mg, 0.5 mmol) in MeCN (10 mL) each sample was 

analyzed by RP-LCMS using H2O/MeCN 1:1 as the eluent. 

Time [min] 10 20 30 40 50 60 70 80 90 100 110 

150aa [%] 0.3 3.0 6.2 11.2 14.8 18.3 22.3 26.5 30.4 34.6 37.2 

Time [min] 120 140 160 180 210 240 270 300 330 360  

150aa [%] 40.6 46.6 51.5 55.9 58.8 61.1 64.2 66.1 68.0 70.1  

 

 

Figure 5.15. Lifetime of the catalyst under electrochemical oxidation. 
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Kinetic Profile (Chemical Oxidation) 

 

Scheme 5.18. C–H oxygenation under chemical conditions. 

A reaction was carried out using substrate 117a (107 mg, 0.50 mmol, 1.00 equiv), 

Co(OAc)2∙4H2O (25.6 mg, 0.10 mmol, 20 mol %), NaOAc (82.2 mg, 1.00 mmol, 2.00 

equiv), Ag2O (232 mg, 1.00 mmol, 1.00 equiv) and ethanol (149a) (4.0 mL). Aliquots 

of 0.1 mL were removed from the reaction mixture every 10 minutes (first 160 min) and 

every hour (last 9h). The mixture was diluted using MeCN (1.5 mL) and filtered. After 

addition of a stock solution (60 μL) of 1,3,5-trimethoxybenzene (84.1 mg, 0.5 mmol) in 

MeCN (10 mL) each sample was analyzed by RP-LCMS using H2O/MeCN 1:1 as the 

eluent. 

Time [min] 10 20 30 40 50 60 70 80 90 100 110 

150aa [%] 0.3 3.1 4.8 6.1 9.2 12.3 15.5 18.5 20.2 24.2 27.5 

Time [min] 120 130 140 150 160 180 240 300 360 420 480 

150aa [%] 33.6 37.4 43.7 51.2 59.8 64.2 67.4 68.8 69.9 71.4 72.4 

Time [min] 540 600 660 720        

150aa [%] 73.0 74.1 75.2 76.0        
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Figure 5.16. Lifetime of the catalyst under electrochemical oxidation. 

 

Cyclic Voltammetry 

The cyclic voltammetry was carried out with a Metrohm Autolab PGSTAT204 

workstation and following analysis was performed with Nova 2.0 software. A glassy-

carbon electrode (3 mm-diameter, disc-electrode) was used as the working electrode, 

a Pt wire as auxiliary electrode and a SCE electrode was used as the reference. The 

measurements were carried out at a scan rate of 100 mVs-1 

 

Figure 5.17. Cyclic voltammograms at 100 mVs-1: n-Bu4NPF6 (1 M in MeCN), concentration of 

substrates 1 mM (NaOPiv 4 mM). (black) blank; (red) substrate 117a; (blue) Co(OAc)2∙4H2O and 

NaOPiv; (green) Co(OAc)2∙4H2O, NaOPiv and 117a; (purple) Co(OAc)2∙4H2O, NaOPiv, 117a and EtOH 

(1 mM); (orange) Co(OAc)2∙4H2O, NaOPiv and 117a and EtOH (2 mM); (magenta) Co(OAc)2∙4H2O, 

NaOPiv and 1a and EtOH (4 mM). 
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Figure 5.18. Cyclic voltammograms at 100 mVs-1: n-Bu4NPF6 (1 M in MeOH), concentration of 

substrates 1 mM (NaOPiv 4 mM). (black) blank; (red) substrate 117a; (blue) Co(OAc)2∙4H2O and 

NaOPiv; (green) Co(OAc)2∙4H2O, NaOPiv and 117a. 

 

 

5.7 Electrochemical Cobalt-catalyzed C–H Amination 

5.7.1 Analytical Data and Experimental Procedures 

 

2-(2-Morpholinobenzamido)pyridine-1-oxide (148aa) 

The general procedure H was followed using benzamide 117a (107 mg, 0.50 mmol, 

1.00 equiv) and morpholine (146a) (87.0 mg, 1.00 mmol, 2.00 equiv). Purification by 

column chromatography on silica gel (CH2Cl2/acetone 3:1→1:1) yielded 148aa 

(115 mg, 384 μmol, 77%) as a white solid. M. p.: 153–155 °C. 1H-NMR (500 MHz, 

CDCl3): δ = 13.62 (s, 1H), 8.75 (dd, J = 8.4, 1.8 Hz, 1H), 8.26 (dd, J = 6.4, 2.0 Hz, 1H), 

8.19 (dd, J = 7.7, 1.8 Hz, 1H), 7.54 (ddd, J = 8.4, 2.0, 1.8 Hz 1H), 7.35–7.23 (m, 3H), 

6.99 (ddd, J = 6.4, 2.0, 1.8 Hz, 1H), 4.08–4.05 (m, 4H), 3.05–3.02  (m, 4H). 13C-NMR 

(125 MHz, CDCl3): δ = 166.3 (Cq), 151.9 (Cq), 145.3 (Cq), 137.5 (CH), 133.5 (CH), 

132.2 (CH), 127.5 (CH), 127.2 (Cq), 125.1 (CH), 120.8 (CH), 118.6 (CH), 116.0 (CH), 

66.1 (CH2), 54.1 (CH2). IR (ATR): 2833, 1667, 1502, 1281, 1109, 764 cm−1. MS (ESI) 
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m/z (relative intensity): 322 (88) [M+Na]+, 300 (100 [M+H]+, 242 (62), 205 (14), 190 

(15), 169 (5). HR-MS (ESI) m/z calcd for C16H17N3O3 [M+H]+: 300.1343, 

found: 300.1348. The analytical data correspond with those reported in the literature.[110b] 

 

2-(4-Methyl-2-morpholinobenzamido)pyridine-1-oxide (148oa) 

The general procedure H was followed using benzamide 117o (114 mg, 0.50 mmol, 

1.00 equiv) and morpholine (146a) (87.2 mg, 1.00 mmol, 2.00 equiv). Purification by 

column chromatography on silica gel (CH2Cl2/acetone 3:1→1:1) yielded 148oa 

(129 mg, 416 μmol, 83%) as a white solid. M. p.: 197–199 °C. 1H-NMR (500 MHz, 

CDCl3): δ = 13.54 (s, 1H), 8.72 (dd, J = 8.0, 2.1 Hz, 1H), 8.24 (dd, J = 7.4, 1.9 Hz, 1H), 

8.08 (d, J = 7.7 Hz, 1H), 7.34 (ddd, J = 8.0, 2.1, 1.9 Hz, 1H), 7.11 (d, J = 1.0 Hz, 1H), 

7.07 (dd, J = 7.7, 1.0 Hz, 1H), 6.95 (ddd, J = 7.4, 2.1, 1.9 Hz, 1H), 4.10–4.05 (m, 4H), 

3.05–3.00  (m, 4H), 2.38 (s, 3H). 13C-NMR (100 MHz, CDCl3): δ = 165.3 (Cq), 152.0 

(Cq), 145.4 (Cq), 144.4 (Cq), 137.5 (CH), 132.2 (CH), 127.4 (CH), 126.0 (CH), 124.5 

(Cq), 121.6 (CH), 118.5 (CH), 116.1 (CH), 66.2 (CH2), 54.2 (CH2), 21.7 (CH3). IR (ATR): 

2832, 16665, 1558, 1502, 1311, 1210, 1115, 847, 755 cm−1. MS (ESI) m/z (relative 

intensity): 334 (87) [M+Na]+, 314 (100) [M+H]+, 296 (5), 242 (44), 204 (76), 174 (11). 

HR-MS (EI) m/z calcd for C17H19N3O3 [M+H]+: 314.1499, found: 314.1489. The analytical 

data correspond with those reported in the literature.[110b] 

 

2-[3-Morpholino-(1,1'-biphenyl)-4-carboxamido]pyridine-1-oxide (148na) 

The general procedure H was followed using benzamide 117n (146 mg, 0.50 mmol, 

1.00 equiv) and morpholine (146a) (86.4 mg, 1.00 mmol, 2.00 equiv). Purification by 

column chromatography on silica gel (CH2Cl2/acetone 5:1→2:1) yielded 148na 

(117.5 mg, 313 μmol, 62%) as a white solid. M. p.: 183–185 °C. 1H-NMR (400 MHz, 

CDCl3): δ = 13.72 (s, 1H), 8.70 (dd, J = 8.2, 2.0 Hz, 1H), 8.33–8.27 (m, 2H), 7.68–7.62 



201 
 

(m, 2H), 7.57–7.28 (m, 6H), 7.03 (ddd, J = 7.4, 2.3, 2.0 Hz, 1H), 4.20–4.12 (m, 4H), 

3.17–3.12  (m, 4H). 13C-NMR (101 MHz, CDCl3): δ = 166.1 (Cq), 152.1 (Cq), 146.5 (Cq), 

145.3 (Cq), 139.7 (Cq), 137.5 (CH), 132.8 (CH), 129.0 (CH), 128.4 (CH), 127.9 (CH), 

127.6 (CH), 125.1 (Cq), 123.8 (CH), 119.6 (CH), 118.7 (CH), 116.1 (CH), 66.2 (CH2), 

54.1 (CH2). IR (ATR): 2833, 1669, 1560, 1505, 1260, 1111, 759, 700 cm−1. MS (EI) 

m/z (relative intensity): 398 (100) [M+Na]+, 381 (70), 376 (45) [M+H]+,  336 (10). HR-

MS (EI) m/z calcd for C22H21N3O3 [M+H]+: 367.1656, found: 367.1657. The analytical data 

correspond with those reported in the literature.[110b] 

 

2-(2-Morpholino-9H-fluorene-1-carboxamido)pyridine-1-oxide (148pa) 

The general procedure H was followed using benzamide 117p (151 mg, 0.50 mmol, 

1.00 equiv) and morpholine (146a) (86.0 mg, 1.00 mmol, 2.00 equiv). Purification by 

column chromatography on silica gel (CH2Cl2/acetone 3:1→1:1) yielded 148pa 

(97.2 mg, 254 μmol, 51%) as a white solid. M. p.: 163–165 °C. 1H-NMR (400 MHz, 

CDCl3): δ = 13.13 (s, 1H), 8.63 (dd, J = 8.1, 2.3 Hz, 1H), 8.26 (dd, J = 8.4, 2.0 Hz, 1H), 

7.79 (d, J = 8.9 Hz, 1H), 7.63 (dd, J = 8.9, 2.3 Hz, 1H), 7.47 (ddd, J = 8.1, 2.3, 2.0 Hz, 

1H),  7.25–7.15 (m, 4H), 6.88 (ddd, J = 8.4, 2.3, 2.0 Hz, 1H), 4.19 (s, 2H), 3.98–3.90 

(m, 4H), 2.97–2.88  (m, 4H). 13C-NMR (100 MHz, CDCl3): δ = 166.0 (Cq), 150.5 (Cq), 

147.7 (Cq), 145.3 (Cq), 143.5 (Cq), 140.2 (Cq), 139.7 (Cq), 137.5 (CH), 127.6 (CH), 

127.0 (CH), 126.7 (CH), 124.8 (CH), 124.4 (Cq), 123.6 (CH), 119.6 (CH), 119.1 (CH), 

118.5 (CH), 115.6 (CH), 66.2 (CH2), 54.4 (CH2), 39.4 (CH2). IR (ATR): 2831, 1665, 

1559, 1503, 1264, 1107, 846, 753, 701 cm−1. MS (ESI) m/z (relative intensity): 410 

(100) [M+Na]+, 388 (87) [M+H]+, 339 (18), 276 (9), 244 (68), 222 (23). HR-MS (ESI) 

m/z calcd for C23H21N3O3 [M+H]+: 3888.1656, found: 388.1661.  
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2-[4-(Methylthio)-2-morpholinobenzamido]pyridine-1-oxide (148qa) 

The general procedure H was followed using benzamide 117q (176 mg, 0.50 mmol, 

1.00 equiv) and morpholine (146a) (87.2 mg, 1.00 mmol, 2.00 equiv). Purification by 

column chromatography on silica gel (CH2Cl2/acetone 3:1→1:1) yielded 148qa 

(124 mg, 358 μmol, 72%) as a white solid. M. p.: 229–237 °C. 1H-NMR (400 MHz, 

CDCl3): δ = 13.51 (s, 1H), 8.74 (dd, J = 8.2, 2.2 Hz, 1H), 8.31 (dd, J = 8.0, 1.5 Hz, 1H), 

8.15 (dd, J = 8.5 Hz, 1H), 7.36 (ddd, J = 8.2, 2.2, 1.5 Hz, 1H),  7.17 (d, J = 0.7 Hz, 1H), 

7.11 (dd, J = 8.5, 0.7 Hz, 1H), 7.02 (ddd, J = 8.0, 2.2, 1.5 Hz, 1H) 4.15–4.08 (m, 4H), 

3.02–2.97 (m, 4H), 2.57 (s, 3H). 13C-NMR (100 MHz, CDCl3): δ = 164.9 (Cq), 152.5 

(Cq), 146.2 (Cq), 145.3 (Cq), 137.5 (CH), 132.5 (CH), 127.6 (CH), 123.4 (Cq), 121.4 

(CH), 118.6 (CH), 117.8 (CH), 116.0 (CH), 66.1 (CH2), 54.1 (CH2), 14.9 (CH3). IR 

(ATR):2826, 1663, 1560, 1503, 1260, 1106, 890, 724 cm−1. MS (ESI) m/z (relative 

intensity): 368 (83) [M+Na]+, 346 (100) [M+H]+, 324 (28), 242 (73), 210 (55), 188 (44). 

HR-MS (ESI) m/z calcd for C17H19N3O3S [M]+: 346.1220, found: 346.1211.  

 

2-[4-(Methoxycarbonyl)-2-morpholinobenzamido]pyridine-1-oxide (148ra) 

The general procedure H was followed using benzamide 117r (135 mg, 0.50 mmol, 

1.00 equiv) and morpholine (146a) (87.8 mg, 1.00 mmol, 2.00 equiv). Purification by 

column chromatography on silica gel (CH2Cl2/acetone 3:1→1:1) yielded 148ra 

(116.1 mg, 325 μmol, 65%) as a white solid. M. p.: 173–175 °C. 1H-NMR (400 MHz, 

CDCl3): δ = 13.50 (s, 1H), 8.71 (dd, J = 8.1, 1.7 Hz, 1H), 8.32 (dd, J = 8.0, 1.6 Hz, 1H), 

8.15 (d, J = 8.1 Hz, 1H), 8.16 (dd, J = 8.1, 0.8 Hz, 1H),  8.0 (d, J = 0.8 Hz, 1H), 7.99 

(dd, J = 8.1, 0.8 Hz, 1H), 7.33 (ddd, J = 8.0, 2.2, 1.5 Hz, 1H), 7.01 (ddd, J = 8.0, 2.2, 

1.5 Hz, 1H), 4.06–4.04 (m, 4H), 3.91 (s, 3H), 3.12–3.08 (m, 4H). 13C-NMR (101 MHz, 

CDCl3): δ = 166.0 (Cq), 164.5 (Cq), 151.9 (Cq), 145.0 (Cq), 137.5 (CH), 134.5 (CH), 

132.4 (CH), 131.0 (CH), 130.8 (Cq), 127.5 (Cq), 125.7 (CH), 119.0 (CH), 116.1 (CH), 
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66.0 (CH2), 54.1 (CH2), 52.6 (CH3). IR (ATR): 2954, 2833, 1722, 1671, 1504, 1278, 

1110, 757 cm−1. MS (ESI) m/z (relative intensity): 380 (100) [M+Na]+, 358 (49) [M+H]+, 

305 (17), 248 (27), 214 (5). HR-MS (ESI) m/z calcd for C18H13N3O5 [M+H]+: 358.1397, 

found: 358.1398.  

 

2-(5-Iodo-2-morpholinobenzamido)pyridine-1-oxide (148ha) 

2-(3-Iodo-2-morpholinobenzamido)pyridine-1-oxide (148ha’) 

The general procedure H was followed using benzamide 117h (176 mg, 0.50 mmol, 

1.00 equiv) and morpholine (146a) (87.0 mg, 1.00 mmol, 2.00 equiv). Purification by 

column chromatography on silica gel (CH2Cl2/acetone 3:1→1:1) yielded 148ha 

(124 mg, 293 μmol, 59%) as a white solid, the ratio of 148ha and 148ha’ (81:19) was 

determined by 1H-NMR, in the following are the analytical data for 148ha. M. p.: 200–

204 °C. 1H-NMR (400 MHz, CDCl3): δ = 13.39 (s, 1H), 8.72 (dd, J = 7.6, 2.0 Hz, 1H), 

8.51 (d, J = 0.9 Hz, 1H), 8.31 (dd, J = 8.2, 2.0 Hz, 1H), 7.85 (dd, J = 8.8, 0.9 Hz, 1H), 

7.38 (ddd, J = 7.6, 2.0, 2.0 Hz, 1H), 7.10 (d, J = 8.8 Hz, 1H), 7.05 (ddd, J = 8.2, 2.0, 

2.0 Hz, 1H) 4.19–4.12 (m, 4H), 3.06–3.03 (m, 4H). 13C-NMR (100 MHz, CDCl3): δ = 

163.7 (Cq), 151.6 (Cq), 145.3 (Cq), 142.2 (CH), 140.9 (CH), 137.5 (CH), 127.7 (CH), 

125.1 (Cq), 122.6 (CH), 118.6 (CH), 116.1 (CH), 88.9 (Cq), 66.0 (CH2), 54.0 (CH2). IR 

(ATR): 2843, 1669, 1562, 1504, 1258, 1110, 925, 759 cm−1. MS (ESI) m/z (relative 

intensity): 448 (100) [M+Na]+, 426 (55) [M+H]+, 397 (24), 322 (55), 300 (9), 188 (22) 

170 (5). HR-MS (ESI) m/z calcd for C16H16N3O3I [M+H]+: 426.0309, found: 426.0315. 

The analytical data correspond with those reported in the literature.[110b] 
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2-(3-Morpholinothiophene-2-carboxamido)pyridine-1-oxide (148ka) 

The general procedure H was followed using benzamide 117k (110 mg, 0.50 mmol, 

1.00 equiv) and morpholine (146a) (87.2 mg, 1.00 mmol, 2.00 equiv). Purification by 

column chromatography on silica gel (CH2Cl2/acetone 3:1→1:1) yielded 148ka 

(104 mg, 336 μmol, 67%) as a white solid. M. p.: 212–214 °C. 1H-NMR (400 MHz, 

CDCl3): δ = 12.99 (s, 1H), 8.56 (dd, J = 8.3, 1.7 Hz, 1H), 8.12 (dd, J = 7.9, 2.1 Hz, 1H), 

7.45 (d, J = 5.5 Hz, 1H), 7.21 (ddd, J = 8.3, 2.1, 1.7 Hz, 1H), 7.09 (d, J = 5.5 Hz, 1H), 

6.88 (ddd, J = 7.9, 2.1, 1.7 Hz, 1H), 4.01–3.95 (m, 4H), 2.92–2.88  (m, 4H). 13C-NMR 

(100 MHz, CDCl3): δ = 160.3 (Cq), 153.5 (Cq), 145.0 (Cq), 137.5 (CH), 131.7 (CH), 

128.8 (Cq), 127.6 (CH), 122.7 (CH), 118.6 (CH), 115.9 (CH), 66.7 (CH2), 54.3 (CH2). 

IR (ATR): 2837, 1661, 1606, 1517, 1433, 1102, 920, 769, 671 cm−1. MS (ESI) m/z 

(relative intensity): 328 (100) [M+Na]+, 306 (15) [M+H]+, 237 (17), 159 (24). HR-MS 

(ESI) m/z calcd for C14H15N3O3S [M+H]+: 306.0907, found: 306.0911. The analytical data 

correspond with those reported in the literature.[110b] 

 

2-(3-Morpholinobenzo[b]thiophene-2-carboxamido)pyridine-1-oxide (148sa) 

The general procedure H was followed using benzamide 117s (135 mg, 0.50 mmol, 

1.00 equiv) and morpholine (146a) (87.0 mg, 1.00 mmol, 2.00 equiv). Purification by 

column chromatography on silica gel (CH2Cl2/acetone 3:1→1:1) yielded 148sa 

(108 mg, 310 μmol, 62%) as a white solid. M. p.: decomposed at 234 °C. 1H-NMR 

(400 MHz, CDCl3): δ = 12.88 (s, 1H), 8.71 (dd, J = 8.3, 1.7 Hz, 1H), 8.28 (dd, J = 7.4, 

2.2 Hz, 1H), 7.87 (dd, J = 8.2, 2.1 Hz, 1H), 7.61 (dd, J = 7.4, 1.6 Hz, 1H), 7.45  (ddd, 

J = 7.4, 2.1, 1.3 Hz, 1H), 7.37–7.27 (m, 2H), 7.01 (ddd, J = 7.4, 2.2, 1.7 Hz, 1H), 4.16–

4.08 (m, 4H), 3.42–3.34 (m, 4H). 13C-NMR (100 MHz, CDCl3): δ = 157.4 (Cq), 154.5 

(Cq), 144.9 (Cq), 139.7 (Cq), 137.6 (CH), 132.0 (Cq), 127.9 (CH), 127.8 (CH), 124.1 
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(Cq), 123.5 (CH), 122.5 (CH), 118.8 (CH), 115.8 (CH), 113.4 (CH), 67.0 (CH2), 52.7 

(CH2). IR (ATR): 2854, 1622, 1501, 1433, 1114, 961, 846, 752 cm−1. MS (ESI) m/z 

(relative intensity): 378 (100) [M+Na]+, 356 (82) [M+H]+, 300 (13), 210 (34), 188 (15). 

HR-MS (ESI) m/z calcd for C18H17N3O3S [M+H]+: 356.1053, found: 356.1063.  

 

2-(3-Morpholinobenzofuran-2-carboxamido)pyridine-1-oxide (148ta) 

The general procedure H was followed using benzamide 117t (127 mg, 0.50 mmol, 

1.00 equiv) and morpholine (146a) (86.2 mg, 1.00 mmol, 2.00 equiv). Purification by 

column chromatography on silica gel (CH2Cl2/acetone 3:1→1:1) yielded 148ta (94 mg, 

282 μmol, 57%) as a white solid. M. p.: decomposed at 225 °C. 1H-NMR (400 MHz, 

CDCl3): δ = 13.50 (s, 1H), 8.72 (dd, J = 8.3, 1.7 Hz, 1H), 8.30 (dd, J = 7.4, 2.2 Hz, 1H), 

8.22 (dd, J = 8.0, 2.1 Hz, 1H), 7.87 (dd, J = 7.9, 1.4 Hz, 1H), 7.47–7.36  (m, 2H), 7.33 

(ddd, J = 8.3, 2.2, 1.7 Hz, 1H), 7.00 (ddd, J = 7.4, 2.2, 1.7 Hz, 1H), 4.28–4.13 (m, 4H), 

3.52–3.56 (m, 4H). 13C-NMR (100 MHz, CDCl3): δ = 161.1 (Cq), 145.6 (Cq), 144.9 (Cq), 

139.8 (Cq), 137.6 (CH), 135.6 (CH), 133.0 (Cq), 127.6 (CH), 126.7 (CH), 124.9 (CH), 

124.3 (CH), 124.1 (Cq), 119.1 (CH), 116.3 (CH), 66.8 (CH2), 51.4 (CH2). IR (ATR): 

2847, 1631, 1501, 1427, 1261, 1109, 1025, 752 cm−1. MS (ESI) m/z (relative intensity): 

362 (100) [M+Na]+, 340 (75) [M+H]+, 301 (8), 242 (14), 188 (15). HR-MS (ESI) m/z 

calcd for C18H17N3O4 [M+H]+: 340.1297, found: 340.1294.  

   

2-(2-Thiomorpholinobenzamido)pyridine-1-oxide (148ab) 

The general procedure H was followed using benzamide 117a (107 mg, 0.50 mmol, 

1.00 equiv) and thiomorpholine (146b) (100 mg, 1.00 mmol, 2.00 equiv). Purification 

by column chromatography on silica gel (CH2Cl2/acetone 3:1→1:1) yielded 148ab 

(96.5 mg, 307 μmol, 61%) as a white solid. M. p.: 123–124 °C. 1H-NMR (400 MHz, 

CDCl3): δ = 13.68 (s, 1H), 8.69 (dd, J = 8.3, 2.0 Hz, 1H), 8.28 (dd, J = 7.7, 2.1 Hz, 1H), 
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8.21 (dd, J = 7.5, 1.8 Hz, 1H), 7.50 (ddd, J = 8.3, 2.1, 2.0 Hz 1H), 7.35–7.23 (m, 3H), 

6.97 (ddd, J = 7.7, 2.1, 2.0 Hz, 1H), 3.27–3.25 (m, 4H), 3.06–3.01  (m, 4H). 13C-NMR 

(101 MHz, CDCl3): δ = 166.1 (Cq), 153.1 (Cq), 145.3 (Cq), 137.6 (CH), 133.5 (CH), 

132.1 (CH), 127.3 (CH), 127.2 (Cq), 125.4 (CH), 121.8 (CH), 118.6 (CH), 116.1 (CH), 

56.3 (CH2), 27.3 (CH2). IR (ATR): 2832, 1665, 1695, 1500, 1382, 1209, 1115, 845, 746 

cm−1. MS (EI) m/z (relative intensity): 315 (8) [M]+, 298 (100), 242 (21). 204 (100), 176 

(27), 158 (52), 146 (68), 132 (87), 95 (63). HR-MS (ESI) m/z calcd for C16H17N3O2S 

[M+H]+: 316.1114, found: 316.1109. The analytical data correspond with those reported in the 

literature.[110b] 

 

2-[2-(Piperidin-1-yl)benzamido]pyridine-1-oxide (148ac) 

The general procedure H was followed using benzamide 117a (107 mg, 0.50 mmol, 

1.00 equiv) and piperidine (146c) (78.2 mg, 1.00 mmol, 2.00 equiv). Purification by 

column chromatography on silica gel (CH2Cl2/acetone 10:1→8:1) yielded 148ac 

(109 mg, 370 μmol, 74%) as a white solid. M. p.: 140–142 °C. 1H-NMR (500 MHz, 

CDCl3): δ = 13.63 (s, 1H), 8.74 (dd, J = 7.9, 2.0 Hz, 1H), 8.25 (dd, J = 7.8, 1.9 Hz, 1H), 

8.15 (dd, J = 7.0, 2.0 Hz, 1H), 7.49 (ddd, J = 7.9, 2.0, 1.9 Hz 1H), 7.32–7.29 (m, 2H), 

7.20 (ddd, J = 7.0, 2.5, 1.9 Hz 1H), 6.95 (ddd, J = 7.7, 2.1, 2.0 Hz, 1H), 2.98–2.94 (m, 

4H), 1.94–1.90 (m, 4H), 1.66–1.63 (m, 2H). 13C-NMR (125 MHz, CDCl3): δ = 166.8 

(Cq), 153.6 (Cq), 145.4 (Cq), 137.6 (CH), 133.2 (CH), 131.9 (CH), 127.3 (CH), 127.0 

(Cq), 124.3 (CH), 120.7 (CH), 118.5 (CH), 116.2 (CH), 55.6 (CH2), 25.3 (CH2), 24.1 

(CH2). IR (ATR): 2941, 2799, 1666, 1501, 1284, 1207, 1098, 753 cm−1. MS (ESI) m/z 

(relative intensity): 320 (70) [M+Na]+, 298 (100) [M+H]+, 242 (15), 204 (12), 188 (21). 

HR-MS (EI) m/z calcd for C17H19N3O2 [M+H]+: 298.1550, found: 298.1555. The analytical 

data correspond with those reported in the literature.[110b] 
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2-[2-(4-Methylpiperidin-1-yl)benzamido]pyridine-1-oxide (148ad) 

The general procedure H was followed using benzamide 117a (107 mg, 0.50 mmol, 

1.00 equiv) and 4-methylpiperidine (146d) (93.1 mg, 1.00 mmol, 2.00 equiv). 

Purification by column chromatography on silica gel (CH2Cl2/acetone 12:1→8:1) 

yielded 148ad (111 mg, 355 μmol, 71%) as a white solid. M. p.: 179–181 °C. 1H-NMR 

(400 MHz, CDCl3): δ = 13.53 (s, 1H), 8.71 (dd, J = 8.0, 2.4 Hz, 1H), 8.30 (dd, J = 7.2, 

1.9 Hz, 1H), 8.14 (dd, J = 7.1, 1.9 Hz, 1H), 7.47 (ddd, J = 8.0, 2.4, 1.9 Hz 1H), 7.32–

7.28 (m, 2H), 7.17 (ddd, J = 7.1, 2.0, 1.9 Hz 1H), 6.98 (ddd, J = 7.2, 2.4, 2.0 Hz, 1H), 

3.21–3.17 (m, 2H), 2.83–2.75 (m, 2H), 1.91–1.81 (m, 2H), 1.71–1.64 (m, 2H), 1.55–

1.43 (m, 1H), 1.01 (d, J = 8.8 Hz, 3H). 13C-NMR (101 MHz, CDCl3): δ = 166.8 (Cq), 

153.3 (Cq), 145.4 (Cq), 137.5 (CH), 133.1 (CH), 131.8 (CH), 127.1 (Cq), 126.9 (CH), 

124.1 (CH), 120.5 (CH), 118.4 (CH), 116.0 (CH), 54.9 (CH2), 33.3 (CH2), 30.4 (CH), 

21.6 (CH3). IR (ATR): 3049, 2832, 1664, 1593, 1505, 1269, 1122, 866, 759 cm−1. MS 

(ESI) m/z (relative intensity): 334 (52) [M+Na]+, 312 (100) [M+H]+, 241 (8), 218 (18), 

202 (22). HR-MS (EI) m/z calcd for C18H21N3O2 [M+H]+: 312.1707, found: 312.1709.  

 

2-[2-(4-Phenylpiperidin-1-yl]benzamido)pyridine-1-oxide (148ae) 

The general procedure H was followed using benzamide 117a (107 mg, 0.50 mmol, 

1.00 equiv) and 4-phenylpiperidine (146d) (164 mg, 1.00 mmol, 2.00 equiv). 

Purification by column chromatography on silica gel (CH2Cl2/acetone 12:1→8:1) 

yielded 148ad (124 mg, 342 μmol, 69%) as a white solid. M. p.: 194–196 °C. 1H-NMR 

(600 MHz, CDCl3): δ = 13.64 (s, 1H), 8.78 (dd, J = 7.8, 2.2 Hz, 1H), 8.30 (dd, J = 7.9, 

1.6 Hz, 1H), 8.16 (dd, J = 7.5, 2.2 Hz, 1H), 7.51 (ddd, J = 7.8, 2.2, 1.6 Hz 1H), 7.48–

7.46 (m, 2H), 7.34–7.28 (m, 4H), 7.24–7.19 (m, 2H), 6.97 (ddd, J = 7.9, 2.2, 1.6 Hz, 

1H), 3.37–3.32 (m, 2H), 2.95–2.91 (m, 2H), 2.64–2.58 (m, 1H), 2.55–2.47 (m, 2H), 
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1.86–1.82 (m, 1H). 13C-NMR (125 MHz, CDCl3): δ = 166.6 (Cq), 152.9 (Cq), 146.3 (Cq), 

145.3 (Cq), 137.1 (CH), 133.1 (CH), 131.9 (CH), 128.3 (CH), 127.3 (CH), 127.1 (Cq), 

126.9 (CH), 126.0 (CH), 124.2 (CH), 120.3 (CH), 118.4 (CH), 115.9 (CH), 55.4 (CH2), 

42.9 (CH), 32.8 (CH2). IR (ATR): 2917, 2932, 1666, 1501, 1282, 1212, 1108, 756, 

699 cm−1. MS (ESI) m/z (relative intensity): 396 (33) [M+Na]+, 374 (100) [M+H]+, 358 

(8), 264 (12), 242 (23), 123 (10). HR-MS (EI) m/z calcd for C23H23N3O2 

[M+H]+: 374.1863, found: 374.1864.  

 

2-[2-(4-Chloropiperidin-1-yl]benzamido)pyridine-1-oxide (148af) 

The general procedure H was followed using benzamide 117a (107 mg, 0.50 mmol, 

1.00 equiv) and 4-chloropiperidine (146f) (110 mg, 1.00 mmol, 2.00 equiv). Purification 

by column chromatography on silica gel (CH2Cl2/acetone 12:1→8:1) yielded 148af 

(89.0 mg, 269 μmol, 54%) as a white solid. M. p.: 132–134 °C. 1H-NMR (300 MHz, 

CDCl3): δ = 13.75 (s, 1H), 8.87 (dd, J = 7.8, 2.0 Hz, 1H), 8.35–8.27 (m, 2H), 8.16 (dd, 

J = 7.5, 2.2 Hz, 1H), 7.57 (ddd, J = 7.8, 2.1, 2.0 Hz 1H), 7.45–7.29 (m, 3H), 7.01 (ddd, 

J = 7.6, 2.1, 2.0 Hz, 1H), 4.60–4.48 (m, 2H), 3.40–3.29 (m, 2H), 3.06–2.96 (m, 2H), 

2.77–2.61 (m, 2H), 2.23–2.10 (m, 1H). 13C-NMR (75 MHz, CDCl3): δ = 166.4 (Cq), 

152.6 (Cq), 146.4 (Cq), 137.6 (CH), 133.5 (CH), 132.1 (CH), 127.6 (Cq), 127.0 (CH), 

125.0 (CH), 121.2 (CH), 118.6 (CH), 116.2 (CH), 57.2 (CH2), 50.2 (CH), 33.8 (CH2). IR 

(ATR): 2835, 1667, 1560, 1500, 1424, 1209, 1112, 757, 723 cm−1. MS (ESI) m/z 

(relative intensity): 354 (100) [M+Na]+, 332 (84) [M+H]+, 305 (15), 242 (71), 222 (55), 

165 (34). HR-MS (EI) m/z calcd for C17H18N3O2Cl [35Cl-M+H]+: 332.1160, 

found: 332.1164.  
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2-[2-(4-Methylpiperazin-1-yl)benzamido]pyridine-1-oxide (148ag) 

The general procedure H was followed using benzamide 117a (107 mg, 0.50 mmol, 

1.00 equiv) and 4-methylpiperazine (146f) (94.7 mg, 1.00 mmol, 2.00 equiv). 

Purification by column chromatography on silica gel (CH2Cl2/acetone 1:1→0:1) yielded 

148ag (85.9 mg, 276 μmol, 55%) as a white solid. M. p.: 185–186 °C. 1H-NMR 

(500 MHz, CDCl3): δ  = 13.47 (s, 1H), 8.74 (dd, J = 8.2, 2.4 Hz, 1H), 8.27 (dd, J = 7.7, 

1.8 Hz, 1H), 8.14 (dd, J = 7.2, 2.1 Hz, 1H), 7.57 (ddd, J = 8.2, 2.4, 1.8 Hz 1H), 7.34–

7.28 (m, 2H), 7.26–7.22 (m, 1H), 6.97 (ddd, J = 7.7, 2.4, 1.8 Hz, 1H), 3.13–3.05 (m, 

4H), 2.88–2.79 (m, 4H), 2.41 (s, 3H). 13C-NMR (125 MHz, CDCl3): δ = 166.5 (Cq), 152.2 

(Cq), 145.3 (Cq), 137.5 (CH), 133.4 (CH), 132.0 (CH), 127.6 (Cq), 127.2 (CH), 124.8 

(CH), 120.7 (CH), 118.5 (CH), 116.1 (CH), 53.9 (CH2), 53.9 (CH2), 45.9 (CH3). IR 

(ATR):2841, 1667, 1559, 1500, 1425, 1264, 1108, 758, 724 cm−1. MS (EI) m/z (relative 

intensity): 335 (10) [M+Na]+, 313 (100) [M+H]+, 219 (8), 203 (21). HR-MS (EI) m/z calcd 

for C17H20N4O2 [M+H]+: 313.1659, found: 313.1661.  

5.7.2 Mechanistic Studies 

Deuteration Experiment 

 

Scheme 5.19. H/D exchange experiment using D2O as the co-solvent. 

The general procedure H was followed using benzamide 117a (107 mg, 0.50 mmol, 

1.00 equiv) and morpholine (146a) (82.7 mg, 1.00 mmol, 2.00 equiv) using a mixture 

of GVL and D2O (10/1, 2.2 mL) as solvent. Electrolysis was performed at 40 °C and a 

constant current of 2.5 mA was maintained for 15 h. Column chromatography 

(CH2Cl2/acetone 2:1) yielded the desired product [D]n-148aa (83.8 mg, 275 μmol, 
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55%) as a white solid and the reisolated starting material [D]n-117a (40.9 mg, 

191 μmol, 38%) as a white solid. Deuteration could not be detected in neither of the 

two compounds 117a and 148aa as determined by 1H-NMR spectroscopy.  

 

Figure 5.19. 1H-NMR sepctra of 117a from the H/D exchange experiment. 
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Figure 5.20. 1H-NMR sepctra of 150aa from the H/D exchange experiment. 

 

Reaction Profile 

 

Scheme 5.20. Cobalt-catalyzed C–H amination. 

A solution of benzamide 117a (214 mg, 1.00 mmol, 1.00 equiv), Co(OAc)2
.4H2O (51.4 

mg, 20 mol %), KOAc (301 mg, 1.50 mmol, 1.50 equiv), n-Bu4NPF6 (386 mg, 0.50 

mmol, 0.50 equiv) and morpholine (146a) (176 mg, 2.00 mmol, 2.00 equiv) in MeCN 

(20 mL) was fitted with a carbon mesh electrode, a platinum electrode and a diamond 

probe connected to a Mettler Toledo ReactIR and heated for 20 min to 40 °C to achieve 

a stable temperature. Then, electrolysis was started using a constant current of 5.0 

mA. Every minute (first 4 h) and every 2 minutes (next 20 h) an IR spectrum was 
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recorded. Peaks at 1096 cm–1 and 1115 cm–1 were identified to belong to the starting 

material and the product, respectively. After 24 h, 148aa (82.0 mg, 274 μmol, 55 %) 

and 117a (44.3 mg, 207 μmol 41%) were isolated to scale the peak intensities.  

 

Figure 5.21. 3D-Surface plot of the observed vibrations at 1115 cm–1 and 1096 cm–1. 

 

Figure 5.22. Plot of the observed vibrations over time. 
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KIE Studies 

 

Scheme 5.21. KIE studies for the cobalt-catalyzed C–H amination. 

 

Two independent reactions were carried out following the above procedure for the 

ReactIR studies using substrates 117aa (1.00 mmol) and [D]5-117aa (1.00 mmol). For 

the first 4 h every minute an IR spectrum was recorded, then every 2 min for the 

following 18 h. The KIE was determined by measuring the initial rates from the increase 

of the peak at 1115 cm–1. After the reaction, the products 148aa and [D]4-148aa were 

isolated to correlate the peak intensity. Then, the measured yields for the first 2 h were 

plotted to analyze the initial rates of the reaction and a linear fit revealed a KIE of kH/kD 

≈1.0 (See Figures S-5 and S-6). 

  

Figure 5.23. Initial rates of 148aa and [D]4-148aa. 
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Headspace Analysis 

 

Scheme 5.22. Headspace analysisof the reaction mixture. 

Following the general procedure H, a reaction was performed under N2 in a two-neck 

flask, tightly sealed with two septa. After 24 h, the gas-phase above the solution was 

analyzed by headspace GC analysis using a Shimadzu S 2014 gaschromatograph 

equipped with a 5Å MS column (column length: 2 m, column width: 2 mm, column 

temp. 100 °C), carrier gas Argon, 25 mL/min, 1 mL volume was injected. The sample 

was analyzed by a temperature conductivity detector at 110 °C.  

 

 Figure 5.24. Chromatogram of the gasphase of the reaction mixture. 

 

Cyclic Voltammetry 

The cyclic voltammetry was carried out with a Metrohm Autolab PGSTAT204 

workstation and following analysis was performed with Nova 2.0 software. A glassy-

carbon electrode (3 mm-diameter, disc-electrode) was used as the working electrode, 

a Pt wire as auxiliary electrode and a SCE electrode was used as the reference. The 

measurements were carried out at a scan rate of 100 mVs-1. 
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Figure 5.25. Cyclic voltammograms at 100 mVs-1: n-Bu4NPF6 (0.1 M in MeCN), concentration of 

substrates 1 mM (KOAc 4 mM). (black) blank; (blue) substrate 117a; (red) Co(OAc)2∙4H2O and KOAc; 

(purple) Co(OAc)2∙4H2O, KOAc and 117a; (green) Co(OAc)2∙4H2O, KOAc, 117a and 146a. 

 

5.8 Mechanistic Experiments for Electrochemical C–H Activation 

Time-resolved UV/Vis measurements 

 

Scheme 5.23. Time resolved UV/Vis measurements. 

In a 5 mL vial, hydrazide 215a (113 mg, 0.50 mmol, 1.00 equiv), 8a (66.7 mg, 

0.60 mmol, 1.20 equiv), Co(OAc)2 (7.8 mg, 0.05 mmol, 10 mol %) and PivOH (101 mg, 

1.00 mmol, 2.00 equiv) were dissolved in TFE (2 mL), and stirred for 5 min. Then, 0.2 

mL of the prepared solution were transferred to a three-neck flask fitted with the UV/Vis 

probe and Pt (5.0 × 2.5 cm) and RVC (5.0 × 2.5 cm) electrodes containing PivOH 

(2.04 g, 20 mmol, 20 equiv) in TFE (200 mL). After start of the electrolysis, spectra 

were obtained every 2 min for 6 h in a range of 220 to 800 nm. 
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Figure 5.26. Time-resolved UV/Vis spectra for the cobalt-catalyzed annulation (region from 400-800 

nm omitted for clarity. 

 

Headspace Analysis 

 

Scheme 5.24. Headspace analysis for the cobalt-catalyzed C–H/N–H annulation. 

A reaction was performed under nitrogen in tightly sealed flask using hydrazide 215a 

(113 mg, 0.50 mmol, 1.00 equiv), 8a (66.9 mg, 0.60 mmol, 1.20 equiv), Co(OAc)2 (7.8 

mg, 0.05 mmol, 10 mol %) and PivOH (101 mg, 1.00 mmol, 2.00 equiv) in TFE 

(3.0 mL). Electrolysis was carried out at a constant current of 5.0 mA. After 16 h, the 

gas-phase above the solution was analyzed by headspace GC analysis using a 

Shimadzu S 2014 gaschromatograph equipped with a 5Å MS column (column length: 
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2 m, column width: 2 mm, column temp. 100 °C), carrier gas Argon, 25 mL/min, 1 mL 

volume was injected. The sample was analyzed by a temperature conductivity detector 

at 110 °C.  

 

ESI-MS studies on reaction intermediates 

ESI-MS of the reaction mixture 

 

Scheme 5.25. Reaction mixture for ESI-MS analysis. 

A reaction was conducted using 215a (56.8 mg, 0.25 mmol, 1.00 equiv), 8a (45.7 mg, 

0.28 mmol, 1.10 equiv), Co(Oac)2 (8.9 mg, 20 mol %) and PivOH (51.0 mg, 0.50 mmol, 

2.00 equiv) in TFE (3 mL) at 5.0 mA for 3 h. Then 0.1 mL of the solution was removed 

and analyzed by ESI-MS. Furthermore, the ion observed at m/z 495.1 was isolated 

and fragmented by MS/MS. 

 

Figure 5.27. ESI-MS spectra of the reaction mixture. 
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Figure 5.28. ESI-HRMS of the Peak at m/z 495.2. 

 

 

 

 Figure 5.29. MS/MS spectra of the Ion observed at m/z 495.1925. 
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ESI-MS of the Reaction Mixture without Alkyne 8a 

 

Scheme 5.26. Reaction mixture for ESI-MS analysis in the absence of alkyne 8a. 

A reaction was conducted using 215a (56.9 mg, 0.25 mmol, 1.00 equiv), Co(Oac)2 (8.9 

mg, 20 mol %) and PivOH (50.3 mg, 0.50 mmol, 2.00 equiv) in TFE (3 mL) at 5.0 mA 

for 3 h. Then 0.1 mL of the solution was removed and analyzed by ESI-MS. 

 

Figure 5.30. ESI-MS spectra of the reaction mixture. 

 

Figure 5.31. ESI-HRMS of the Peak at m/z 511.1. 
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ESI-MS of the Reaction Mixture using [D]5-215a 

 

Scheme 5.27. Reaction mixture for ESI-MS analysis of the reaction using [D]5-215a. 

A reaction was conducted using [D]5-1a (57.2 mg, 0.25 mmol, 1.00 equiv), 8a (46.0 mg, 

0.28 mmol, 1.10 equiv), Co(Oac)2 (8.9 mg, 20 mol %) and PivOH (50.3 mg, 0.50 mmol, 

2.00 equiv) in TFE (3 mL) at 5.0 mA for 3 h. Then 0.1 mL of the solution was removed 

and analyzed by ESI-MS. 

 

Figure 5.32. ESI-MS spectra of the reaction mixture. 

 

Figure 5.33. ESI-HRMS of the Peak at m/z 499.2. 
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Cyclic Voltammetry 

The cyclic voltammetry was carried out with a Metrohm Autolab PGSTAT204 

workstation and following analysis was performed with Nova 2.0 software. A glassy-

carbon electrode (3 mm-diameter, disc-electrode) was used as the working electrode, 

a Pt wire as auxiliary electrode and a SCE electrode was used as the reference. The 

measurements were carried out at a scan rate of 100 mVs-1. 

 

Figure 5.34. Cyclic voltammograms at 100 mVs-1: n-Bu4NPF6 (0.1 M in MeOH), concentration of 

substrates 1 mM (NaOPiv 4 mM). (black) blank; (blue) substrate 8a; (red) substrate 215a; (purple) 

Co(OAc)2 and NaOPiv; (green) Co(OAc)2, 215a and NaOPiv; (dark blue) Co(OAc)2, 215a, 8a and 

NaOPiv. 

 

Figure 5.35. Cyclic voltammograms at 100 mVs-1: n-Bu4NPF6 (0.1 M in TFE), concentration of substrates 

1 mM (NaOPiv 4 mM). (black) blank; (blue) substrate 8a; (red) substrate 215a; (purple) Co(OAc)2 and 

NaOPiv; (green) Co(OAc)2, 215a and NaOPiv; (dark blue) Co(OAc)2, 215a, 8a and NaOPiv. 
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Cyclic Voltammetry 

The cyclic voltammetry was carried out with a Metrohm Autolab PGSTAT204 

workstation and following analysis was performed with Nova 2.0 software. A glassy-

carbon electrode (3 mm-diameter, disc-electrode) was used as the working electrode, 

a Pt wire as auxiliary electrode and a SCE electrode was used as the reference. The 

measurements were carried out at a scan rate of 100 mVs-1. 

 

Figure 5.36. Cyclic voltammograms at 100 mV/s in MeCN: n-Bu4NPF6 (0.1 M in MeCN), concentration 

of substrates 1mM (KOAc 4 mM). (black) blank; (red) 262; (blue) [RhCp*Cl2]2; (pink) [RhCp*Cl2]2 + 

KOAc; (green) [RhCp*Cl2]2 + KOAc + 262. 

 

Figure 5.37. Cyclic voltammograms at 100 mV/s in MeCN. N-Bu4NPF6 (0.1 M in MeCN), concentration 

of substrates 1mM (HOAc 4 mM). (black) blank; (red) 262; (blue) [RhCp*Cl2]2; (pink) [RhCp*Cl2]2 + 

HOAc; (green) [RhCp*Cl2]2 + HOAc + 262; (dark blue) HOAc). 
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