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Chapter 1

Introduction

The human body consists of about 200 different cell types and an almost uncountable number

of single cells [1]. All of these cells have to perform as accurate as possible to keep the formed

organism viable and powerful. On the single cell level this means that all cells have to fulfill a

plethora of functions that, among other demands, require self-organization in space [2]. They

have to chemically and mechanically interact with each other and with their environment [3]

and adapt to diverse conditions. They need to rearrange, e.g. during cell division or differentia-

tion [4] and follow a complex construction plan when a new organism is formed.

Focusing on the mechanical challenges cells are exposed to, every single cell requires physical

properties which are adapted to its specific environment [5]. By comparing the shape and size

of cells which are as different as e.g. nerve cells, branched and connected by long, thin tubes, red

blood cells, tiny and in the mature state lacking a nucleus, and fibroblasts, loosely connected,

highly motile cells, one can get an impression of the diversity cells developed yet within one

organism [6]. However, the underlying architecture of all these shapes is the cytoskeleton, a

remarkable and complex system that is widely accepted to play a major role also for the me-

chanical strength of cells [2]. The three main filamentous building blocks of the cytoskeleton,

microtubules (MTs), microfilaments or actin filaments (MFs) and the protein family of interme-

diate filaments (IFs) [2] are shown fluorescently stained in Fig. 1.1.

Each of the three filament types has specific mechanical properties and fulfills its unique role

as a member of the cytoskeleton. To do so, hundreds of accessory, regulating and interlinking

proteins are involved. Three actin isoforms are known in vertebrates. While only muscle cells

express α-actin, almost all other cells express β- and γ-actin. Actin participates in the main-

tenance of the cell shape as well as in cell division and signalling [2]. It is also important for

muscle contraction, force generation and cell migration [2]. MTs are important, e.g., for the cor-

rect positioning of organelles and serve as a basis for directed intracellular transport [2, 5]. They

1



2 Chapter 1. Introduction

Figure 1.1: Fluorescence images of the cytoskeletal proteins actin or microfilaments (A), microtubules (B) and vi-
mentin (intermediate filaments) (C) of a 3T3 fibroblast cell. (D) shows the overlay of all channels. Images
courtesy of Dr. Ulrike Rölleke.

have also a prominent role in cell division where they form the mitotic spindle, a structure that

separates the chromosomes [2]. Within the cytoskeletal proteins, IFs are the least well studied

ones, however, they are believed to support the cell with mechanical resistance [2, 7]. A detailed

overview about the features and properties of the members of the cytoskeleton can be found,

e.g., in reference [2]. A more detailed review on the properties and functions of IFs is given in

Section 2.1 and 2.2.

In the context of this thesis, the response of individual vimentin IFs to applied strain was

directly probed in order to gain knowledge about their mechanical properties on the single

filament level. Using a combination of optical tweezers measurements, confocal fluorescent

microscopy and microfluidics the mechanical and physical properties of individual vimentin

filaments were measured in a highly controlled fashion and depending on e.g. loading rate [8]

or stretching history. From the experimental data and theoretical modeling, as well as Monte

Carlo simulations, it was possible to particularly link the mechanical properties to the molec-

ular structure and hierarchical architecture of IFs. The underlying concepts of conformational

changes due to applied strain and energy dissipation allow for speculations on the impact of

IFs for cellular integrity and resistance especially in situations of high stresses.

Chapter 2 provides an overview of the role of IFs by focusing on the hierarchical architecture

and assembly process. Some major differences between IFs and the other two cytoskeletal fila-

mentous proteins are pointed out. Section 2.2 presents a review on IF mechanics on the single

filament level as well as IFs in the context of cells and IFs in computer simulations and thereby

embeds the performed experiments into the existing literature. The second part of Chapter 2

deals with the background of the physical models that were used to fit and simulate the exper-

imental data. In the last part of Chapter 2 an introduction to optical tweezers (OTs) and a brief

description of the physics behind them is given. The chapter is closed by an overview on how

the calibration of the force readout of OTs can be performed.

A detailed explanation of the preparation of experiments, the experimental procedures, the
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production, purification, labeling and assembly of vimentin and a short description of the ex-

perimental setup are given in Chapter 3.

Chapter 4 is a reprint of the results which are published as "Nonlinear Loading-Rate-

Dependent Force Response of Individual Vimentin Intermediate Filaments to Applied Strain" [8],

and the results in Chapter 5 are published under the title "Viscoelastic Properties of Vimentin

Originate from Nonequilibrium Conformational Changes" [9]. Results obtained from glutaralde-

hyde stabilized vimentin IFs are presented and compared to non-stabilized filaments in Chap-

ter 6.

Finally, in Chapter 7, the most important results are summarized and their impact on under-

standing the mechanics of single IFs are pointed out. Reasonable speculations on the physical

functions of IFs as well as their role for the cell are presented and ideas for experiments are pro-

posed to further investigate the suggested molecular mechanisms that were already observed

in IF superstructures but not directly measured on the single filament level.
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Chapter 2

State of the Art

2.1 Intermediate Filaments

Comparing MFs, MTs, and IFs on the genetic and structural level already indicates that IFs have

a special role within the cell. While MFs and MTs are highly conserved along cell types and

species, at least 70 genes in human are known to encode different types of IFs [1] and a lot more

IF genes were found in other vertebrate and invertebrate [2]. All of these IFs are expressed in a

cell type specific manner. Typically, epithelial cells express keratins, while mesenchymal cells

are characterized by a network of vimentin IFs and neurons have IFs made of three neurofil-

ament proteins [3]. The nucleus of higher metazoan possesses an additional IF system made

of lamins which form the inner linning of the nucleus [3]. Via nuclear membrane proteins the

lamin network is directly coupled to the particular cytoplasmic IF network [3].

By sequence homology, IF proteins are grouped into five classes (type I to type V or SHC 1

(sequence homology class) to SHC 5) [4, 5], which also correspond to their biological origin

and function. Table 2.1 shows the five SHCs and some examples for IFs in human according to

Ref. [5].

2.1.1 Architecture of Intermediate Filaments

All IF proteins share a common secondary structure (see Figure 2.1, top left). The central α-

helical rod domain is conserved in size and in the specific pattern of its segments [6]. One ex-

ception concerning the size is the rod domain of the nuclear lamins, which shares the structure

but has a slightly extended coil 1B, which contains 42 amino acids more than the other (cyto-

plasmic) IF types [2].

The rod domain is substructured into three coils (1A, 1B, and 2) connected by linkers (L1 and

L12) [6]. The amino acid sequence follows, in general, a characteristic heptad repeat (abcdefg)n,

5



6 Chapter 2. State of the Art

Table 2.1: Sequence homology classes of intermediate filament proteins and their occurrence in mammals. Table
according to and adopted from Ref. [5]

Class IF proteins occurrence (in mammals)

SHC 1 acidic cytokeratins epithelial cells
SHC 2 basic cytokeratins epithelial cells
SHC 3 e.g. vimentin, desmin, glial

fibrillary acidic protein
(GFAP)

mesenchymal cells, muscle
cells, astrocytes, glia cells

SHC 4 α-internexin, neurofila-
ments (NF-L, NF-M, NF-H)

neurons

SHC 5 lamins (type A/C and B) nucleus

where position a and d are hydrophobic amino acids (e.g. Leu, Ile, Val, Met), which is typical for

proteins that form a left-handed coiled-coil [2, 7, 8]. However, in some places this periodicity

is different. In the beginning of coil 2 three hendecad repeats are found. Additionally one hen-

decad repeat is found in both, coil 1B and the second half of coil 2 [2, 8, 9]. The hendecad repeat

in the second half of coil 2 is traditionally called "stutter", as it causes a discontinuity within

the coiled-coil structure. The hendecad repeat in the beginning of coil 2 led to a definition as

coil 2A and linker 2 in earlier structure predictions as the hendecad repeat was only developed

as a motif for coiled coils in the late 90th of the last century [10].

X-ray crystallography of a fragment of a vimentin dimer (residues 328-411) revealed that the

coiled-coil locally unwinds at the stutter region and the two α-helices run parallel for a short

distance [11]. The same behavior of the stutter region was found for lamin A [12] and keratin

K5/K14 [13], indicating that this distinct structure is crucial for IFs [2]. Crytallography studies of

vimentin coil 2 revealed a parallel run of the two α-helices also for the hendecad repeat in the

beginning of coil 2 [14]. In general, the hendecad repeat, compared to the ideal heptad repeat,

leads to a non-optimal packing of the hydrophobic core of the coiled-coil and therefore to a

thermodynamically less stable structure [9].

The rod is flanked by intrinsically disordered "head-" and "tail-" domains, which both differ

considerable in size and amino acid sequence between the different IF proteins and between

the same IF proteins of different species [2].

2.1.2 Assembly of Intermediate Filaments

The assembly of IFs differs profoundly from the formation of the other two cytoskeletal fila-

ment systems. MFs and MTs are built from globular subunits that polymerize in a polar way

[16], while IF formation follows a strict hierarchical assembly mechanism. A schematic view of

this process by the example of vimentin is shown in Fig. 2.1. Starting from the monomers, par-
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Figure 2.1: Schematic view of the assembly of vimentin intermediate filaments, from the monomer to mature fil-
ament. For simplicity structures are drawn as sheets. The assembly starts from the monomer. Two
monomers form a parallel coiled-coil dimer and two dimers form an anti-parallel half staggered
tetramer. The parallel assembly of ULFs yields unit length filaments which finally assemble longitudinal
and form elongated filaments. Some IFs possess a final compaction step. Parts of this figure are repro-
duced from reference [15] with the permission of the American Physical Society under the terms of the
Creative Commons Attribution 3.0 License.

allel coiled-coils, either as heterodimers (e.g. keratins) or as homodimers (e.g. vimentin), are

formed. Two dimers come together to form anti-parallel half-staggered, and due to their anti-

parallel symmetry, non-polar tetramers [17]. At least up to this point, in vitro assembly occurs

spontaneously due to reduction of denaturing agencies in physiological buffer conditions.

Unusually for proteins, keratins already form stable dimers even in 5 M urea [18] and vi-

mentin forms dimers in 6 M urea and ordered tetramers in 5 M urea [19], underlining the very

strong attractive forces of these proteins. Hatzfeld and Franke also showed, that keratins from

different cell types, that would never be co-expressed naturally, and even keratins from different



8 Chapter 2. State of the Art

species, do form dimers [18].

The formation of IFs, in contrast to MFs and MTs, does not require any additional energy, e.g.

in terms of nucleoside-triphosphates. However, for in vitro assembly further than the tetramer

state, the addition of ions or a change in pH is needed. Filament formation continues via lat-

eral assembly of subunits into about 65 nm long [19] unit-length filaments (ULF), containing

an average number of tetramers that depends on the IF type. Even though, the assembly occurs

in this highly ordered manner, the number of tetramers per cross-section differs not only be-

tween different IF types. Mass-per-length measurements revealed that the number of subunits

per cross-section varies between filaments of the same IF type [2, 19–22] and even along one

filament [21, 22]. It was shown for vimentin that this "polymorphism" can be influenced by the

method used for initiation of assembly. When salt is added instantaneously, filaments are more

polymorphic than filaments that are assembled by dialysis into a salty buffer [19].

Finally ULFs come together and form µm-long filaments by longitudinal annealing. Due to

the non-polarity and the special architecture of IFs, additional assembly mechanisms are possi-

ble. End-to-end annealing of two assembled filaments was observed in vivo [23, 24] and in vitro

[25, 26]. Another observed phenomenon is the exchange of subunits from mature filaments.

Again this was found in vitro [26] and in cell experiments [23, 27]. However, both processes were

shown to be very slow [25, 26]. Some IFs, e.g. vimentin and desmin undergo a final compaction

step to form the mature filament [17].

The assembly speed is influenced by protein concentration and present ions, as well as tem-

perature [20]. The general assembly mechanism was revealed by electron microscopy [19, 20]

and atomic force microscopy [28, 29] and showed a ULF formation of vimentin within seconds

and very short filaments within minutes [28]. More recently, small angle X-ray scattering was

used to gain deeper knowledge about the structure of IFs [30, 31] and in combination with mi-

crofluidic systems confirmed a ULF formation of vimentin on a time scale of a second [32]. For

vimentin it was shown that the assembly speed is about 0.2 nm· (µM·s)−1 and therefore pro-

portional to the protein concentration [17, 29]. Even though this has not been investigated as

systematic for keratins, individual values suggest an assembly speed of about 23 nm· (µM·s)−1

[33], while it is in the range of a few nm· (µM·s)−1 for MFs and MTs [17, 34, 35].

2.1.3 Properties of Intermediate Filaments – Similar, but not Identical

Even though, all IFs share the secondary structure, they do not share all properties. Some dif-

ferences were already pointed out above, e.g. the different preferences in pH and ionic strength

for assembly. The tendency to form homo- or heterodimers and the variations in the number

of subunits per ULF. Further differences were found in the persistence length of different IFs, in
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charge- and hydrophobicity patterns and in the formation of networks both in vitro and in vivo

[17]. A detailed description of how properties differ between different IFs can be found e.g. in

references [2, 3, 6, 17, 36, 37].

2.2 Intermediate Filaments under Load

The outstanding features of hard-α-keratin in form of e.g. wool or human hair aroused the inter-

est of scientist already in the beginning of the 20th century. And even though the experimental

setups were not as sensitive and precise as today, as early as in 1924 Shorter explained the exper-

imentally found elastic behavior of wool using a two-spring model – with one spring acting free

and one spring acting in a viscous medium [38]. This model already covered different mechan-

ical regimes depending on the applied strain and also showed hysteresis. Experimentally, he

showed that wool, which was stretched to a strain of not more than 0.4, fully recovers in length

upon relaxation and that this process is faster when the wool is wet [38]. He also showed that

once extended fibers do not immediately recover structurally. Directly repeated load-extension

curves of the same fiber yielded a higher extensibility with lower tension. Only after staying

unstrained for several days the first load-extension curve was reproducible [38].

In 1927 John B. Speakman found the extensibility and the breaking load of wool fibers to

be loading rate dependent. From microscopic observations he concluded that the hierarchical

structure of wool is the reason for its elasticity and extensibility. Assuming the wool fiber to

behave like a single elastic cell, filled with a fibrillar structure surrounded by a viscous medium,

he hypothesized the elastic small strain extensibility to be due to stretching the elastic cell wall

which is acting as a Hookean spring. By exceeding a critical strain the fibrillar structure comes

into play which extends by the rotation of the fibrillae until they are all drawn into line. The

softening of the wool fiber is then due to breaking of fibrillae, while the recovery of fiber length

upon relaxation is due to the remaining intact fibrillae and the cell wall, which are pulling the

fiber back to its initial length [39]. However, at this point this was speculation and a satisfactory

proof was missing.

Some years later, William T. Astbury, who was a pioneer exploring the structure of biological

macromolecules using x-ray measurements, found an essential transformation in the x-ray pat-

tern of unstretched and stretched keratin by measuring the "Structure of Hair, Wool and Related

Fibers" [40–42]. He referred to the x-ray photograph of stretched hair, which is comparable with

that of natural silk, as β-keratin and that of unstretched hair as α-keratin. From these findings

he concluded that the difference between stretched and unstretched keratin is the structure of

the polypeptide chain which is extended in the stretched and folded in the unstretched keratin

[41]. A precise explanation on the molecular level was not possible before the definition of the
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α-helix and the β-sheet by Pauling and Corey in the 1950ths [43, 44].

In 1960 Bendit continued this work studying the α-β-transition in wool keratin by x-ray

diffraction measurements. His experiments showed that the transition from the α-state into

the β-state starts at 5 % extension or less and that the extension of the fiber and the extend of

transformation are usually proportional [45].

More recently, the α-helix to β-sheet transition was directly observed in vimentin as well.

Using fibers made from hydrogels of in vitro assembled vimentin Pinto et al. performed wide

angle x-ray scattering and found, subsequent to a single stretching event, peaks in the x-ray

pattern arising, which are typical for the spacing withinβ-sheets. They additionally found these

peaks to be more intense when a cross-linker like magnesium chloride was present [46].

2.2.1 Mechanics of Individual Intermediate Filaments

IFs do form superstructures and networks due to several influencing factors, e.g. ions or cross-

linking proteins [6, 17], and the mechanical properties of these structures were analyzed in a

plethora of experiments, as partly reviewed above for bundles and superstructures. Articles re-

viewing the mechanical properties of IF networks can be found for example in references [6, 17,

37]. A comparison of studies on networks of IFs and on MFs and MTs, shows that IFs are much

more stretchable than the other two cytoskeletal protein systems. This enormous elongation

potential (up to a maximum of 3.6 fold [47]) is most likely encoded in the secondary structure

of the monomers and in the hierarchical building up of the filaments as described above. Ad-

ditional to the α-helix to β-sheet transition, the slippage of subunits against each other [48–

50] and the unfolding of the head- and tail-domains were suggested to contribute to the exten-

sion [47, 51]. The α-β-transition is the only mechanism that was measured so far and is also

consistent with the observed thinning of the filaments subsequently to the stretching [47, 52].

However it can only account for a length increase of about 100 % [47, 53].

Probably due to experimental challenges, there are only very few publications about the me-

chanical properties of individual IFs. The usual experimental setup that was chosen for single

IF measurements was atomic fore microscopy (AFM). IFs were assembled in vitro and put on

a solid support where they adsorb to the surface. By driving an AFM tip laterally through the

adsorbed IFs, the filaments were locally displaced and subsequently imaged to measure the

elongation [47, 52], as shown in Fig. 2.2 A. Guzman et al. reduced the influence of the surface by

using a solid support with 250 nm holes over which the filaments were spanned. With the AFM

tip they deformed the filament into the hole and therefore tested the bending stiffness of vi-

mentin IFs without a direct solid support at the bending position [50]. Due to the experimental

setup, the measurements in all three publications [47, 50, 52] were performed on filaments not
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Figure 2.2: (A) Schematic representation of AFM experiment performed in reference [47]. IFs, adsorbed to a surface,
are manipulated by an AFM tip that is moved through the filament along the arrow in (b). The filament
is imaged by AFM tapping mode before (a) and after (c) the manipulation. Filament extension is calcu-
lated as depicted in (c). The figure is reprinted from reference [47] with permission of Elsevier. (B) (left)
AFM image of a single vimentin filament spanned over a hole in the underlying substrate. (right) The
same filament shown as 3D representation. The figure is reprinted from reference [50] with permission of
Elsevier.

longer than 250 nm, which is below the persistence length that was measured for different IF

types [17]. As in the higher order structures, different stretching regimes were found also on the

single filament level. IFs seem to be fully elastic at small strains (ε= 0.1 to 1) [50, 52] and forces

(60 to 130 pN) [50], while a further extension was found to be plastic/irreversible and accompa-

nied by strain hardening in AFM experiments [47]. However, the experiments were performed

on a solid support which might also block, at least partly, an elastic or reversible behavior at

higher strains [47].

Kiss et al. analyzed single desmin fibers adsorbed to a solid support by pressing an AFM tip

on the surface at a position where a desmin filament was lying and subsequently pulling it away

from the surface [49]. This experimental procedure would allow for a stretching event without

a solid support. Analyzing the imaged filaments subsequently to the stretching, they however

concluded that they never removed an entire filament from the surface, but only desmin sub-

units from the filament [49].

A more recent study is the publication of Ramm et al. on a vimentin coiled-coil consisting

only of the second part of vimentin coil 2 (former coil 2B). Using single molecule force spec-

troscopy they tested the stability and the folding of this part of the vimentin dimer by open-

ing up the coiled-coil from both ends respectively [54]. Even though, this is not a study on a

full filament, it provides interesting insights on the stability of the vimentin coiled-coil. Taking

their results together, they divide the second part of vimentin coil 2 into three stability sections.

While the coiled-coil is easily unzippable from the labile N-terminal end, the middle part of the

coiled-coil is medium stable and the C-terminal section highly stable. Ramm et al. hypothesize
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this stability profile to be important for assembly, as it may ensure that the coiled-coil stays

zipped and is stable during the formation of tetramers and ULFs [54].

2.2.2 Simulations of Intermediate Filament Mechanics

To date, only very few articles were published dealing with simulations of IF mechanics. Such

simulations are computationally very expensive and it is therefore not possible to exactly repeat

stretching experiments, like the ones performed in the scope of this thesis, in a simulation. No-

tably the stretching velocity that is used in experiments (0.5 to 5 µm/s) is, so far, not accessible

in atomistic molecular dynamics simulations [55]. Nevertheless, the simulations that were pub-

lished so far, provide highly interesting and helpful insights into the relationship between the

structure of IF proteins and their mechanical properties.

The above explained study of the vimentin coiled-coil by Ramm et al. [54] was accompanied

by in silico measurements. Mimicking their experiment in a simulation they aimed good agree-

ment between in silico and in vitro results and used this to verify their experimental results

[54].

Ackbarow et al. analyzed the mechanical properties of the vimentin coiled-coil part includ-

ing the stutter region and predicted the stutter to be a predefined unfolding region. Comparing

two parallelα-helices with a coiled-coil and a coiled-coil including a stutter they found the stut-

ter region to be the least resilient part of the structure [56]. By studying the coiled-coil further,

they also found a pulling rate dependent deforming mechanism and hysteresis when stretching

the vimentin coiled-coil cyclically [57]. From these results, they suggested two features to be en-

coded in the coiled-coil. For small pulling velocities and little deformations, the coiled-coil acts

fully elastic, while at higher deformations and pulling rates it is able to dissipate energy [57].

Vimentin dimers and tetramers, as well as their mechanical behavior due to tensile load were

simulated by Qin et al. [53, 58, 59]. By comparing their results to lab experiments performed

with IFs [50, 52], they found a good agreement of the results of the in silico and in vitro studies

[53]. On the molecular level they found the predicted α-β transition and for the tetramer sub-

sequent inter-dimer sliding. They also found the unfolding force of the α-helix to be strongly

pulling velocity dependent and suggested that the hierarchical structure of vimentin is crucial

for its mechanical properties [53, 58].

Chou et al. performed atomistic simulations of human trichocyte keratin dimers and

tetramers [60] as well as a mesoscopic coarse grained model of a keratin macrofilament fib-

ril [61]. In both studies they found the disulfide bonds to be important for the strength and

resilience. Antunes et al. also performed simulations of eight keratin chains of hair keratin and

found the less coiled structures to deform first [62]. However, their data also showed consider-
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able differences to stress-strain curves of in vitro experiments.

Figure 2.3: Results of simulated stretching events of vimentin dimers and tetramers. (A) Force-strain curves of a vi-
mentin dimer at pulling velocities of 1 m/s (blue) and 10 m/s (red). Numbered and colored regimes indi-
cate changes in molecular response: (I) linear stretching of a spring, (II) α-helix unfolding, (III) stiffening and
pulling the protein backbone of the dimer. (B) Force-strain curve of a vimentin tetramer at a pulling velocity of
10 m/s. The inlay shows the force-strain curves at pulling velocities of 1 m/s (blue) and 10 m/s (red) for a strain
smaller than 0.5. The pink line indicates the unfolding force of the dimer. The numbered and colored regimes
are interpreted as: (I) stretching of a spring, (II) unfolding of segment 2B, (III) unfolding of the whole protein
and (IV) interdimer sliding. (C) Possible molecular mechanism of the proposed α-helix to β-sheet transition as
a function of applied tensile strain. (D) Snapshots of the atomistic details of the α-helix to β-sheet transition of
the right part of coil 1A of a vimentin dimer (as indicated in (C)) Potential rupture and new formation of H-bonds
are sketched below the snapshots. This figure is reprinted from reference [53] under the Creative Commons
Attribution (CC BY) license.

2.2.3 Intermediate Filaments and the Mechanical Properties of Cells

Apart from e.g. material sciences, one goal of illuminating the mechanical properties of IFs is

to gain insights about their function within the cytoskeleton and their contribution to the me-

chanical properties of cells. The experimental design to answer this question is far more com-

plex than the design of in vitro experiments as there are so many unknown elements within a

cell. The most frequently used system is the comparison of a wild type cell line with a cell line

that does not possess IFs anymore (knock out cell line). Another requirement is a suitable ex-

perimental setup to test the deformability, stiffness or rigidity of whole cells in a comparable

way.

Using fluorescence microscopy, Fudge et al. found keratinocytes to survive strains as high as

133 % and that a strain of 100 % only caused minor damages in the keratin network [63]. Ramms
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et al. analyzed the mechanical properties of keratinocytes by AFM and magnetic tweezers and

found keratin lacking cells to be softer and showing a higher viscous contribution to the dis-

placement of magnetic beads [64]. They also showed that actin and MTs were not affected by

the absence of keratin and that the reexpression of keratin K5/K14 did almost restore the prop-

erties that were measured for the control cell line [64]. Optical stretcher experiments, invasion

assays and 3D growth assays, revealed murine keratinocytes with a keratin knock out to be 60 %

more deformable compared to cells were the actin network was disrupted by a Latrunculin A

treatment. The increased invasiveness due to a keratin knock out was recovered after the reex-

pression of a small amount of keratin K5/K14, while the cells still showed increased deforma-

bility [65]. With the same cell line Seltmann et al. also showed keratin knock out cells to adhere

faster to the extracellular matrix and migrate two times faster and with reduced directionality

compared to the wild type cells and the rescue cell line, which reexpressed keratin K5/K14 [66].

For T-lymphocytes it is important to be rigid while circulating with the blood flow, but to be

highly flexible when entering the tissue [67]. Brown et al. hypothesize that vimentin filaments

that form a cage like structure in the circulating lymphocyte and collapse into an aggregate like

structure to exit the vasculature are important for this cell type to control its deformability [67].

Investigating vimentin IFs in living cells, Wang et al. tested the stiffness due to applied strain

in vimentin deficient mouse embryonic fibroblasts by magnetic twisting cytometry. They found

the vimentin deficient cells to be less stiff compared to the wild type cells. The vimentin defi-

cient cells also showed decreased stiffening due to applied strain, except for the lowest stress

they applied [68]. They additionally observed a slower proliferation and DNA synthesis in the

vimentin deficient cells [68]. Guo et al. measured little contribution of the vimentin IFs to the

cortical stiffness in embryonic mouse fibroblasts but found a role for vimentin in regulating

intracellular mechanics. In their active microrheology experiments they revealed increased me-

chanical integrity due to vimentin and showed that vimentin contributes to the localization of

intracellular components [69]. Mendez et al. analyzed how vimentin influences the cell shape

due to the expression or knock out of the vimentin network. After the formation of a vimentin

network, epithelial cells adopted a mesenchymal cell shape and showed increased adhesion

and mobility. The disruption of the vimentin network in mesenchymal cells in contrast led to

an epithelial cell shape [70]. Following up on this work they analyzed the behavior of wild type

and vimentin-null mouse embryonic fibroblasts on substrates of different stiffness and in a 3D

matrix. Concluding their results, they hypopthesize a role for vimentin in the protection against

compressive stress, mechanical integrity and the elasticity of cells [71].

Even though this review of IF research makes no claim to completeness, to the best of my

knowledge a study of the mechanics of individual, freely fluctuating IFs, under physiologi-

cal buffer conditions, was not yet published (except the publications within the scope of the
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present thesis).

2.3 Mathematical Models for Biopolymers

Polymers are important building blocks of biological matter. Not only the filaments that form

the cytoskeleton, but also the DNA, which is a sequence of nucleotides, and proteins in general,

which are sequences of amino acids, are important polymer types. In order to describe and

compare the properties of such polymers, different physical concepts are used. Key criteria in

choosing the right theory are the basic characteristics of a polymer, such its flexibility and the

structure of its building blocks, the properties to be described (micro- or macroscopic), as well

as the needed degree of accuracy. Two basic and widely used concepts to describe biopolymers

are the freely-jointed chain (FJC) and the worm-like chain (WLC) model (see Fig. 2.4).

Figure 2.4: A: A freely-jointed or ideal chain, B: A worm-like chain. Adopted from [72]

.

2.3.1 Freely-jointed Chain and Worm-like Chain

The FJC, also referred to as ideal chain, random walk chain or Gaussian chain, is the simplest

model to describe a polymer [72]. In this model, any kind of interaction between the monomers

of the polymer are neglected and each monomer is treated as a point connected to the next

monomer by a linker of step length l . The total unfolded length or contour length Lc of such a

polymer of N links would then simply be [72]:

Lc = N · l = N · |li| (2.1)
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with li being the link vector between two subsequent monomers. Summing up all li results in

the end-point vector lE:

lE =
N∑

i=1
li (2.2)

Since the scalar product with itself yields the square of a length of a vector, the mean square

end-to-end distance
〈

R2
〉

can be calculated from:

〈
R2〉= 〈lE • lE〉 (2.3)

with 〈〉 indicating the ensemble average [72]. Based on the geometrical definition of the scalar

product a •b = |a| · |b| ·cos θab (see Fig. 2.5 B), equation 2.3 can be written as:

〈
R2〉=〈

N∑
i=1

li •
N∑

j=1
lj

〉
= N · l 2 +2· l 2 ·

N-1∑
i=1

N∑
j=2
i<j

〈
cos θij

〉
(2.4)

with
〈

li • lj
〉= l 2 ·

〈
cos θij

〉
and θ being the angle between to subsequent steps li and lj [72]. As

defined above, steps in the FJC are uncorrelated
(〈

li • lj
〉= 0 and

〈
cos θij

〉= 0
)
, therefore equa-

tion 2.4 is simplified to [72]: 〈
R2〉= N · l 2 (2.5)

Figure 2.5: (A) Schematic representation of a FJC with the link vector li and the end-point vector lE. Adapted from
[72]. (B) Geometrical scalar product a ·b = |a| · |b| · cosθab . (C) Representation of a part of an elastic fila-
ment with a constant curvature θ/s and the tangent vectors lt (s). Adapted from [72]

.

For the case where orientation correlation is not neglected, the mean square end-to-end dis-

tance can be calculated from equation 2.4. For a correlation over a distance of m monomers,
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the second term of equation 2.4 is approximately [72]:

N-1∑
i=1

N∑
j=2
i<j

〈
cos θij

〉' N-1∑
i=1

N∑
j=2

i<j<i+m

〈
cos θij

〉
(2.6)

In a homogeneous chain without end effects this assumption is true independent on i and

equation 2.6 can be rewritten as [72]:

N-1∑
i=1

N∑
j=2

i<j<i+m

〈
cos θij

〉' N ·
N∑

j=2

〈
cos θij

〉
(2.7)

The mean square end-to-end distance for a chain with short range orientation can therefore be

calculated from: 〈
R2〉= N · l 2 ·σ (2.8)

withσ= 1+2·
m∑

j=2
cos

(
θ1 j

)
[72]. Renormalizing the number of segments N and the step length l

by the factorσ yields the Kuhn chain with step length lK =σ · l and number of segments NK = N
σ

[72]. This renormalization eliminates the effects of the introduced orientation correlation by

rewriting the equations for the contour length and the mean square end-to-end distance [72]:

Lc = N · l = NK · lK (2.9)

〈
R2〉= NK · l 2

K (2.10)

From comparison of equation 2.1 and equation 2.9 it can be seen that the Kuhn-chain is equiv-

alent to the FJC, but with a step length lK that is a measure for the filaments stiffness and does

not directly coincide with the size of the monomers.

To transfer the FJC into a WLC, the step length tends to zero while the number of monomers

tends to infinity, yielding a filament that is continuously flexible.

A typical number to describe the stiffness or the flexibility of a polymer is the so-called per-

sistence length, which is defined as the length over which the filaments orientation correlation

is lost [72]. In a FJC the persistence length LP equals the step length l , while for a rod-like chain

the persistence length is equal to or even longer than the contour length. Fig. 2.5C shows a seg-

ment of an elastic filament of length s, which elastic bending energy can be described following

Hook’s law:

∆U = 1

2
· s ·κ ·

(
θ

s

)2

(2.11)
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with θ being the angle between the two tangent vectors separated by the filament length s, θ
s

being the curvature and the bending rigidity constant κ [72]. Equation 2.11 can be used to cal-

culate the mean square bending angle
〈
θ2

〉
as an ensemble average at thermal equilibrium [72]:

〈
θ2〉= 2·

∫
exp

[
−∆U
kBT

]
·θ2dθ∫

exp
[
−∆U
kBT

]
·dθ

= 2·
s

κ
·kBT (2.12)

As described above, the orientation correlation 〈cos θ(s)〉 of a WLC decreases when two tan-

gent vectors are separated by a distance s À LP along the filament’s contour. This decrease in

orientation correlation with increasing distance s can be described by an exponential decay

[72]:

〈cos θ(s)〉 = exp

(
− |s|

LP

)
(2.13)

For distances s ¿ LP and therefore small angles θ, it is possible to approximate both, the cosine

and the exponential, by series expansion up to the first order [72]:

1− 1

2
·
〈
θ2 (s)

〉≈ 〈cos θ (s)〉 = exp

(
− |s|

LP

)
≈ 1− s

LP
(2.14)

From this approximation it follows that
〈
θ2(s)

〉= 2· s
LP

and therefore LP = κ
kBT [72].

To calculate the end-to-end vector R and the mean square end-to-end distance
〈

R2
〉

of a

WLC the sum over segments – as performed for the FJC – is changed into an integral over the

contour length [72]:

R =
∫ Lc

0
lt (s)ds (2.15)

with lt (s) being the tangent unit vector, and:

〈
R2〉= ∫ Lc

0
lt (s) ds •

∫ Lc

0
lt (s′) ds′ (2.16)

=
∫ Lc

0

∫ Lc

0

〈
cos θ(s − s′)

〉
ds ds′

=
∫ Lc

0

∫ Lc

0
exp

[−|s − s′|
LP

]
ds ds′

= 2L2
P ·

[
Lc

LP
−1+exp

(
−Lc

LP

)]
with the two limiting situations Lc ¿ LP and Lc À LP. While the first one describes a rigid rod( 〈

R2
〉= L2

c

)
, the second one is the recovery of a FJC

( 〈
R2

〉= 2·Lc ·LP
)
. Comparing the recovery

of the FJC to equation 2.10 one reveals the relation lK = 2·LP. This also means that, according

to the definition of the Kuhn segments, there is no orientation correlation after twice the persis-
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tence length of a filament [72].

2.3.2 Entropic Springs

Counterintuitively, polymers, though being loosely collapsed (cf. Fig. 2.4) do exert a mechani-

cal force due to stretching [73]. This behavior is explained by a reduction of entropy due to a

reduced number of possible configurations in the stretched state compared to the completely

relaxed state. Such a behavior is called entropic elasticity or entropic spring [73]. For small dis-

placements both, the FJC and the WLC, act as ideal springs with spring constant 3kBT /lLc and

3kBT /LPLc, respectively [73]. Important to point out is the fact that the spring constants of both

the FJC and the WLC are dependent on the temperature.

For a FJC the force extension correlation can be estimated from [15, 74]:

x = Lc ·

(
coth

(
F · l

kBT

)
− kBT

F · l

)
(2.17)

For high forces this equation can be further approximated using coth
(

F · l
kBT

)
= 1:

x = Lc ·

(
1− kBT

F · l

)
(2.18)

A widely used approximation for the correlation between extension x and force F for a WLC

is [73, 75, 76]:
F ·LP

kBT
= 1

4·
(
1− x

Lc

)2 − 1

4
+ x

Lc
(2.19)

At high forces and therefore large extensions (x → Lc) the quadratic term dominates the force-

extension behavior of the WLC model:

F ·LP

kBT
≈ 1

4·
(
1− x

Lc

)2 (2.20)

Solving equation 2.20 for extension x results in:

x = Lc ·

(
1− 1

2

(
kBT

F ·LP

) 1
2

)
(2.21)

2.3.3 Two-State Model

For biopolymers that undergo conformational changes due to applied strain, models are

needed that take the change in contour length and the kinetics of the conformational transition
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into account. One model, which was first introduced by Burte and Halsey to explain the elon-

gation of wool fibers [77], and in a refined version shown to reproduce the experimental data

for various biopolymers [76], is an elastically coupled two-state model. For a polymer which

consists of monomers or modules that undergo a transition from state a (low energy state) to a

state b (high energy state) due to an applied strain, this model is summarized in the following

paragraphs for the transition from the a to the b state [76]. The transition from the b state to the

a state can be modeled in analogy to [76]. The contour length Lc of such a polymer is the sum

of the monomers in the a-state Na times the length of the a-state la and the monomers in the

b-state Nb times the length of the b-state lb [76]:

Lc = Na · la +Nb · lb (2.22)

The transition rate α from one state into another is given by [76]:

α=ω ·exp

[
− ∆E

kBT

]
(2.23)

with ω being the natural oscillating frequency [78] and ∆E being the energy barrier between

the two states as indicated in Fig. 2.6. Assuming a Bell-Evans kinetic [78, 79] the transition rate

Figure 2.6: Sketch of a double-well potential which is assumed to describe the transition between two energetically
different states of the same module of a polymer. ∆E is the energy barrier, xu the potential width of the
energy barrier for the transition from a to b.

becomes force dependent [76]:

α(F ) =ω ·exp

[
−∆E −F · xu

kBT

]
=α ·exp

[
F · xu

kBT

]
(2.24)
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where the energy barrier is, according to Bell [76, 78], linearly reduced by the applied force F

times the width of the energy barrier xu.

The extension x of the polymer is the product of stretching velocity v and time t [76]:

x = v · t (2.25)

From equation 2.19 the applied force F , corresponding to the extension x, can be calculated

and used to determine the probability dPa that modules of the polymer undergo the transition

from state a to state b [76]:

dPa = Na ·α(F ) ·dt (2.26)

Not all polymers are made from a single chain of monomers like e.g. DNA. In the case of IFs

a single filament contains several monomers in parallel, as described in detail in Section 2.1.2.

It was shown by Friddle et al. that the described two-state model is still suitable to describe

the transition behavior remarkably accurate [80]. According to their calculations, the potential

width xu is an apparent value as it is reduced depending on the number of parallel bonds (or

monomers that undergo a transition) [15, 80].

Detailed information on how these models were used and modified to fit and simulate the

stretching of single vimentin IFs can be found in Sections 4.6 and 5.5.

2.4 Optical Tweezers

"Accelerating and trapping of particles by radiation pressure" [81] was the seminal publication

by Arthur Ashkin, which led towards a new standard tool for biophysical research [82]. Optical

tweezers or optical traps (OTs) are based on the principle that dielectric particles, e.g. glass or

polystyrene beads, experience the so called gradient force when placed in the focus of a laser

beam [83]. The first OT – stable in three dimensions – was reported by Ashkin et al. [84] in 1986.

In the following years OTs were used to study, for example, single biological molecules, living

cells, mechanical forces and elasticity of polymers and cells, folding properties of polymers such

as DNA and the force generation as well as the kinetics of motor proteins [82]. Today, OTs are

commercially available and the combination with other techniques, such as high resolution

fluorescence microscopy, still opens up new possibilities for experiments.

2.4.1 Physics of Optical Trapping

The physics behind the retaining of a particle or bead in the focus of a laser beam and its posi-

tion restoring capability is most intuitively described by ray optics, momentum conservation
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and Snell’s law [85]. The optical momentum from refraction of the laser beam in a trapped,

transparent bead depends on its displacement from the laser focus. While the momenta of all

incident rays sum up to zero, for a bead that is perfectly located in the focus of the laser beam,

a slightly displaced bead will experience a restoring force ∆k due to momentum conservation

(see Fig. 2.7). The magnitude of refraction of an incident ray ki depends on the difference in the

Figure 2.7: Ray Optics in a highly focused laser beam. Adapted from reference [85]

refractive indices of the bead (typically glass or polystyrene) nbead and its environment (typi-

cally aqueous solution) nenv as well as its angle of incidence θ0. The refraction of an incident

wave vector ki at the bead’s surface results in a different outgoing wave vector kout beyond the

surface and these are connected by Snell’s law:

ki = k0 ·nenv · sin(θi) = k0 ·nbead · sin(θo) = kout (2.27)

with |k0| = 2π
λ being the wave vector in vacuum.

A ray of light obeys this rule every time it traverses a surface of two media with different re-

fractive indices i. e. twice while transiting the bead. Unless the ray hits the bead’s surface exactly

perpendicular, the incident wave vector ki and the wave vector scattered from the other side of
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the bead ks are different and a resulting optical momentum ∆k = ki −ks remains which acts as

restoring force for displaced beads.

The ray optics picture holds true for large particles, with sizes much larger than the laser wave-

length λ, which for OTs typically is about 1µm. A more sophisticated approach to the physics

of OTs is the so called Rayleigh approximation, whereby the particle is assumed to be much

smaller than the wavelength of the laser, acting as a simple dipole, when placed in the focus

of a laser beam [86]. The total optical force Fo acting on the particle has two components, the

scattering force Fs and the gradient force Fg and can be calculated by integrating over the whole

volume of the trapped particle (scatterer).

Fo = Fs +Fg =
∫
V

f dV (2.28)

There is no simple possibility to calculate Fs, but it can be assumed to be constant for all dis-

placements as long as they are in the linear force regime [85]. This means, for a tightly focused

beam, Fs generates a neglectable offset of the trapped particle from the laser focus along the

beam axis [83, 85] as long as Fg is larger than Fs [87]. Fg or the restoring force is no longer a

result of momentum conservation but a lorentzian force resulting from a moving dipole (the

bead) in an electro-magnetic field (the beam) [85]. Due to the intensity gradient of the Gauss-

shaped laser beam, Fg is acting towards the center of the beam [83] and for small displacements

depends linear on the displacement [85]. According to reference [85] Fg can be calculated from:

Fg = nenvRe(p)V

2c
·∇I (x) (2.29)

for particles with a diameter that is small enough so that the intensity gradient does not vary

much over the particle size. In this equation p is the polarizability, V the particle volume, c the

speed of light and I the intensity of the laser light. The accurate physics behind optical trapping

for experiments using particles in the size of the laser wavelength falls somewhere between the

two described theories. However, calculations using the better fitting theory of "Mie scattering"

are much more complicated [83] and the above described pictures of optical trapping give a

good idea about the physics behind this method, even though they are not completely accurate

for the bead size used for the experiments of this thesis.

2.4.2 Calibration of Optical Traps

To apply OTs as a tool for force spectroscopy in biophysical experiments (like the one performed

within the scope of this thesis) it is crucial to be able to measure the force which is currently
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acting on the sample. Several methods were described to calibrate OTs and some of them are

summarized or compared in references [83, 88, 89], among others.

A widely used method to calibrate OTs is based on the assumption that OTs act like Hookean

springs. In this case the applied force is directly proportional to the displacement of the bead

from the center of the trap following Hook’s law:

F =−κtrap · x (2.30)

where F is the force,κtrap the trap stiffness or spring constant and x the bead displacement from

the equilibrium position. One can therefore gain information on both, the particle position and

the applied force, by tracking the displacement of the bead from its equilibrium position in the

laser focus.

A commonly used method for bead position tracking is back focal plane (BFP) interferom-

etry, where the interference pattern of the forward scattered light and the incident laser beam

in the BFP is recorded. Typically this is performed placing a quadrant photodiode (QPD) in the

BFP of the OT yielding a very precise measurement of the particle displacement relative to the

laser focus in all three dimensions [85].

The calibration of the system is often performed by measuring the thermal fluctuation of a

trapped particle and analysis of the power spectrum density (PSD) [85]. The displacement x

due to a thermal force Ft (in one dimension) can be described by the Langevin equation:

γ · ẋ(t )+κtrap · x(t ) = Fth(t ) (2.31)

with the drag coefficient γ = 6πrη (Stokes law) for a bead of radius r surrounded by a fluid of

viscosity η [85]. In this system very low Reynolds numbers (Re ≈ 10−4 −10−5) allow to neglect

inertia [90] and the average over time of the random thermal force 〈Fth(t )〉 is zero [85]. From the

fluctuation dissipation theorem the spectrum of the thermal force of this Langevian equation

is described by white noise:

〈Fth(t )Fth(t +τ)〉 = 2γkBTδ(τ) (2.32)

with δ(τ) being the dirac delta function [85].

The power spectral density S(ω) is defined as S(ω) = |x̃(ω)|2 and is a value that describes

how the squared value of the signal is distributed over frequency, e.g. Volt2/Hertz [85]. With the

fourier transformation of equation 2.31:

F̃th(ω) =−γωi x̃(ω)+αx̃(ω) (2.33)



2.4. Optical Tweezers 25

where ω = 2π f is the angular frequency [85] and equation 2.32, the power spectral density is

given by:

S(ω) = 2·kBT

γ(ω2 +ω2
c )

(2.34)

with ωc being the roll-off or corner frequency which is related to the trap stiffness by ωc = κtrap

γ

[85]. In the power spectrum the corner frequency is the frequency where the almost constant

signal (bead is trapped) starts to drop and yields a slope of approximately −2 (freely fluctuating

bead) [91]. Fitting equation 2.34 to measured fluctuation data reveals the trap stiffness κtrap

from ωc and γ [85].

The power spectrum can also be used as a diagnostic tool for the setup as e.g. misalignment

in both the trapping and the detection part do result in a non-Lorentzian power spectrum [92].

The calibration algorithm and the fit function for the power spectrum are under constant de-

velopment. In Ref. [93], e.g., a detailed analysis of Lorentzian fitting of power spectra was per-

formed and a tool box for precise calibration of OTs is presented.

The described calibration method, even though it is widely used has one major drawback:

The approximation of a linear dependency between bead displacement and force is only valid

for small displacements of the bead from the laser focus [94]. Together with other drawbacks,

like its sensitivity on the size of the trapped particle [94], this method requires a frequent re-

calibration of the instrument and yields accurate force readout only for a small part of the OT

potential close to its center.

There is a more direct way to measure the force that is acting on the bead. The basic principle

is that the change in momentum flux of the trapping laser due to bead displacement equals di-

rectly the force that is applied to the trapped particle [95]. This method was ignored for a long

time as it has some tricky instrumental requirements. Most important, it is necessary to collect

all the scattered light [96, 97] which is strictly speaking experimentally not feasible [96]. How-

ever, Farré and Montes-Usategui showed that for a 1µm polystyrene bead in water about 95 %

of the light is scattered in the forward direction even when the bead is far displaced from the cen-

ter of the trap [98]. In a follow up publication they state that force measurements based on light

momentum changes are not restricted to instruments that are fully optimized for this approach

but the goodness of the force readout is mainly depending on the percentage of collected light

[99]. The light-momentum method is closely related to the above described calibration method

and thus a conventional BFP interferometry setup with some changes can be used [99]. Most

importantly a position sensitive detector (PSD) must be used instead of a QPD and a high NA

(numerical aperture) condenser (preferable NA ≥ 1.3) is required [97, 99].

Jahnel et al. directly compared the relationship of voltage and force as well as voltage and

displacement. They found the correlation of force and voltage to be linear almost over the full
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detector size with less than 5 % error. In contrast the assumption of a linear relationship be-

tween voltage signal and displacement yielded errors as large as 40 % for larger displacements

[94]. Other advantageous of the force calibration by measuring the change in momentum are

the independence on the shape and size of the trapped particle, refractive index of the buffer as

well as its viscosity and a number of other experiment specific properties [95, 97].

A detailed description on how to build and calibrate an OT that measures force on the basis of

the change in light momentum is given as a step-by-step instruction in reference [97]. Two ways

of calibration are possible to translate the signal on the PSD into a force value. The macroscopic

one is based only on setup parameters and yields the detector signal to force conversion factor

αsensor:

αsensor = rD

f ′ ·Ψ ·c
(2.35)

where rD is the effective radius of the detector, f ′ is the instruments’ focal length and c the

speed of light [97]. Ψ represents the responsivity of the setup [97].

Farré et al. also found a "hidden parameter" which is the product of the spring constant times

a calibration constant β yielding the detector signal to force conversion factor αtrap [99]. Both,

κ and β can be obtained from the power spectrum density as κ= 2πγ fc and β=
√

D
DV , with DV

being the fitted diffusion constant. Even though the product of κ and β is defined in the trap

center it was found to be valid for all bead positions [99].
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Chapter 3

Materials and Methods

Parts of this chapter are, either in full length or in shorter versions, also included in the publica-

tion [1], which is reprinted as Chapter 4 and in the publication [2] reprinted as Chapter5.

Full names of chemicals and proteins are listed in Tab. 3.1 in the end of this chapter. If not

stated differently, solutions and buffers were prepared with MilliQ-water.

All experiments described in this work were performed with a genetically modified version

of human vimentin. The cysteine at amino acid position 328 was replaced by alanine and two

glycine and one cysteine were incorporated at the C-terminal end of the protein. The plasmid,

containing the protein of interest, was kindly provided by Harald Herrmann (DKFZ, Heidelberg,

Germany).

3.1 Vimentin expression and purification

Vimentin was expressed recombinantly in Escherichia coli (E. coli) T61 cells (Zymo Research,

Irvine, CA, USA, #3017). Protein preparation was performed by the technician Susanne Bauch

following a protocol adapted from [3].

100µl E. coli solution was thawed, mixed with 1µl plasmid solution (about 1µg/µL, diluted

1:100) and incubated on ice for 5 minutes. Afterwards, 50µl of E. coli solution were plated on a

LB agar plate, containing ampicillin (AMP), and incubated at 37 ◦C over night. A single bacteria

colony was transferred into 50 mL autoclaved TB medium (47.6 g/L), containing glycerol (10-

11 g/L) and ampicillin (0.1 g/L), incubated for 6 h at 37 ◦C and 150 rounds per minute (rpm). For

the next step, cultured bacteria solution was transferred to 1 L fresh TB medium containing 0.1

g/L AMP and incubated at 37 ◦C and 150 rpm over night.

35
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For protein purification bacteria were pelleted using a Beckman centrifuge at 5000 g for

15 min at 4 ◦C (Beckmann Coulter Avanti J-26 XP, rotor JS5.3, Krefeld, Germany). The following

steps were all performed using cooled instruments or on ice. The pellet was homogenized with

16 mL 50 mM TRIS buffer, containing 25 % saccarose (FIXME), 1 mM EDTA and 10 g/L lysozym,

after transferring to a cooled douncer. The mixture was incubated on ice for 30 min.

800µl 1 M MgCl2, 80µl DNAse1 (50 g/L in 10 mM TRIS buffer, pH 7.5, containing 100 mM

NaCl), 80µl RNAse A (10 g/L in 100 mM TRIS buffer, pH 7.5), 800µl saturated PMSF and 1.6 mL

10 % NP40 were added and homogenized several times. 40 mL 20 mM TRIS buffer, pH 7.5, con-

taining 200 mM NaCl, 2 mM EDTA, 1 % NP40 and 1 % DOC was mixed with 800µl DTT, 1.2 mL

PMSF and 0.4 mL 50 mM Pefabloc SC and added to the douncer. After a 10 min incubation step,

the mixture was filled to Nalgene centrifuge bottles (250 mL PPCO-centrifuge bottles with seal-

ing closure, Fisher Scientific GmbH (part of Thermo Fisher Scientific), Schwerte, Germany) and

pelleted using a Beckman centrifuge (Beckman Coulter Avanti, J-26 XP, rotor JLA 16.250) at 4 ◦C

and 10,000 g for 25 min.

The supernatant was discarded, washing buffer (80 mL 10 mM TRIS buffer, pH 8.0, with 5 mM

EDTA and 1 % Triton-X100, 80µl 1 M DTT, 400µl PMSF, 200µl 50 mM Pefabloc SC) was added

and the pellet was washed by homogenization in the douncer. After 10 min incubation on ice,

centrifugation is performed as before. The supernatant was discarded. 80 mL washing buffer,

additionally containing 1.5 M KCl, was added and everything was mixed by homogenization in

a douncer. The mixture was incubated on ice for 30 min and centrifuged as before. As a third

washing step, the first washing step was exactly repeated. The buffer for washing step four con-

sisted of 80 mL TRIS buffer, pH 8.0, with 0.1 mM EDTA, 80µl DTT, 200µl 50 mM Pefabloc SC and

400µl PMSF. Following the same procedure as before, the pellet was washed, incubated on ice

for 10 min, centrifuged and the supernatant discarded.

The pellet was transferred to a douncer, warmed to room temperature and, to yield a high

protein concentration, dissolved in as little volume of 9.5 M urea solution (7.125 mL 9.5 M urea,

75µl 1 M TRIS, pH 7.5, 75µl 0.5 M EDTA, 75µl PMFS and 75µl 1 M DTT) as possible. The mix-

ture was centrifuged in a Beckman ultracentrifuge (Beckamn Coulter Optima L90K, rotor Ti70,

Krefeld, Germany) at 20 ◦C and 100,000 g for 60 min. The supernatant – containing the vimentin

– was transferred to a Falcon tube and MAC was added until a final concentration of 10 mM was

reached.

For the anion exchange chromatography a DEAE column (BioRad, Hercules, CA, USA, #737-

1522, inner diameter 15 mm, length 200 mm, volume 35 mL) was used. 10 mL column material

(DEAE sepharose) was mixed with 10 mL column buffer (400 mL urea (10 M), 50 mL 50 mM TRIS

(pH 8.0), containing EDTA (10 mM) and EGTA (1 mM), filled to 500 mL after mixing). Column

material was allowed to settle down according to the supplier instructions. A KCl gradient was



3.2. Labeling of Vimentin 37

used to eluate the protein. A gradient mixer (2 x 50 mL, Schütt 24, Göttingen, Germany) was

filled with 40 mL column buffer in the near chamber and 40 mL column buffer complemented

by 0.896 g KCl in the front chamber. The protein solution was added on the column. After the

sample had entered the column bed, it was washed with two column volumes of column buffer

(slow flow velocity). Sample collection began when the collected volume had reached the dead

volume of the column. Therefore, the salt gradient was started and the column volume was

kept constant by regulation of inflow and outflow. The sample volume was collected in 1.5 mL

Eppendorf cups and protein concentration was monitored by UV-Vis spectrometry (NanoDrop

ND-1000, ThermoScientific Technologies, Inc., Wilmington, USA).

As an additional quality control, an 8 % SDS-gel was performed prior to the final purification

step. Samples collected during the purification process and samples taken from protein frac-

tions after DEAE column were mixed with sample buffer – 10µl sample (in case of high protein

concentration 5µl protein solution and 5µl MilliQ water), 12.5µl sample buffer, 22.5 ml MilliQ

water and 5µl 1 M DTT. Prepared samples were denatured at 70 ◦C for 10 min and loaded on

the gel, a protein marker was added to the first well. The gel was placed in an electrophoresis

system (VWR/CBS, CBDCX-700, Darmstadt, Germany) and performed for 75 min at 100 mA (for

two gels 200 mA). Afterwards, the gel was stained using InstantBlueTM for 15 to 60 min.

The fractions with the highest protein concentration after DEAE column were pooled for a

cation exchange chromatography. This second chromatography was performed in analogy to

the anion exchange chromatography with the following changes. The column was filled with

CM-Sepharose as column material and 40 mL column buffer complemented by 1.792 g KCl,

were filled in the front chamber. After the sample was added to the column the salt gradient

was started directly. The protein concentration of the eluate was monitored by measuring the

absorption at 280 nm using the NanoDrop. Fractions with a high protein concentration were

pooled. Lastly, MAC was added until a final concentration of 10 mM was reached. Aliquots of

the protein solution were stored at -80 ◦C . The protein should, according to Harald Herrmann

(DKFZ, Heidelberg, Germany), not be used for longer than three years after production. Thaw-

ing and re-freezing should be avoided as much as possible.

3.2 Labeling of Vimentin

For fluorescence microscopy vimentin had to be labeled with a fluorescent dye, in this case

ATTO647N. OT stretching measurements of vimentin requested coupling to a bead. In most

of the experiments a biotin streptavidin reaction, with biotin labeled vimentin, was used for

coupling. The very specific sulfhydryl-reactive crosslinker chemistry was used to ensure that

only the cysteine at the tail domain was labeled and the interaction of the label with the α-
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helical rod domain and the hierarchical formation of the vimentin filament was minimal.

Figure 3.1: Reaction scheme of the maleimide cysteine coupling reaction.

3.2.1 Labeling with Fluorescent Dyes

The experimental procedure for vimentin labeling via maleimide chemistry was adopted from

references [4, 5]. 500µl vimentin (concentration approx. 2.7 g/L) was placed into a 50 kDa dial-

ysis tubing (Spectra/Por®7, dialysis membrane made of regenerated cellulose, MWCO 50000,

E883.1, Carl-Roth GmbH, Karlsruhe, Germany) and dialyzed into labeling buffer (50 mM

NaH2PO4, 50 mM Na2HPO4, 5 M urea, pH 7.0) at 10 ◦C over night.

After dialysis, vimentin solution was placed in an 1.5 mL reaction tube and the concentration

was adjusted to approximately 1 g/L by dilution with labeling buffer (monitored by UV-vis spec-

troscopy). 1 mL of this solution was filled into in a new 1.5 mL reaction tube. 20µl of 10 mM

ATTO647N-maleimide, dissolved in DMSO, were added stepwise in 5µl portions. Each addition

of ATTO647N was followed by an incubation step of 5 min, where the tube was placed on a

shaker. Subsequently, the sample was incubated for 120 min at room temperature to complete

the labeling reaction. Lastly 100µl 1 M L-cysteine were added and the mixture was incubating

for another 1 h at room temperature to ensure that the remaining maleimide reacted and did

not bind unspecific to vimentin.

Free dye and labeled protein were separated by size-exclusion chromatography, using a

300 mm Bio-Gel P polyacrylamide gel column with a bed volume of 24 mL. Column material

(BioGel P30) was hydrated in labeling buffer at room temperature over night and the column

was prepared as recommended in the instructions manual. The protein-label solution was

placed on top of the column and was allowed to enter the bed completely. Labeling buffer was

used to flush the column and fractions with labeled vimentin were collected in about 250µl

aliquots. Protein and dye concentration were monitored by UV-vis spectroscopy. Fractions with

the highest protein concentration were pooled. The final protein and dye concentrations was

measured (UV-vis spectroscopy) and the labeling ratio was calculated. Lastly the labeled vi-

mentin was dialyzed into storage buffer and stored at -80 ◦C in aliquots of about 50 to 100µl.
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Figure 3.2: Excitation and emission spectrum of ATTO647N. Ideal wavelength for excitation is λex =
646 nm and the maximum emission wavelength λem = 664 nm. Image from https://www.atto-
tec.com/attotecshop/product_info.php?info=p114_atto-647n.html.

Different from unlabeled vimentin, storage buffer for labeled vimentin only contained 2 mM

phosphate buffer, pH 7.5 and 8 M urea. Aliquots were used up within two years.

3.2.2 Labeling with Biotin

The procedure for labeling with maleimide-biotin was mostly identical to the labeling with fluo-

rescent dyes except for the size exclusion chromatography. Separation of labeled vimentin and

free maleimide-biotin was performed using three prepacked and disposable PD MidiTrap G-25

columns containing 3.5 mL Sephadex G-25 resin (GE Healthcare Europe GmbH, Freiburg, Ger-

many) which were equilibrated with labeling buffer. After labeling and addition of cysteine, the

sample was placed on the first column and eluted by adding 1.5 mL labeling buffer, yielding one

fraction of 1.5 mL. Half of this fraction was added to the other two columns, each. To completely

fill the columns, 250 mL labeling buffer was added to each of them after the protein solution

had entered the bed. Subsequently biotin-labeled vimentin was eluted using 1.5 mL labeling

buffer on both columns. The collected flow-through was pooled and, after dialysis into storage

buffer (as dye-labeled vimentin), aliquoted into 100 µl portions for storage at -80 ◦C . Different

from dye-labeled vimentin it was not straight forward to measure the protein and biotin con-

centration in the sample after labeling, even though a UV tracker biotin was used. Therefore,

biotin-labeled vimentin was only added to an amount that ensured that the total amount of

biotin-labeled vimentin in the sample did not exceed 10 %. The volumes that had to be mixed

were calculated due to the vimentin concentration of the unlabeled vimentin and the vimentin

prior to the labeling reaction. Because of the two MidiTRap column steps the sample is diluted
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by a factor of three and the vimentin concentration not higher than 0.3 g/L anymore.

3.3 Vimentin Reconstitution and Assembly

For optical trap experiments, unlabeled, ATTO647N-labeled and biotin-labeled vimentin was

mixed to a final content of 2.5 to 5 % ATTO647N labeled and about 10 % biotin-labeled vimentin

in the assembled filament. For reconstitution vimentin was dialyzed step-wise from denaturing

8 M urea buffer into phosphate buffer (2 mM NaH2PO4, 2 mM Na2HPO4, pH 7.5). Therefore, the

mixture was filled into 50 kDa dyalisis tubing and, for 30 min each, placed into a beaker contain-

ing 8, 6, 4, 2, 1 and 0 M urea in phosphate buffer. For a final cleaning step the sample was placed

into a fresh beaker containing pure phosphate buffer and was dialyzed either for two hours at

room temperature or at 10 ◦C over night. Prior to assembly, the sample was diluted to a protein

concentration of 0.2 g/L adding pure phosphate buffer. Protein concentration was monitored

using UV-vis spectroscopy. The sample was aliquoted into portions of at least 200 µl and stored,

protected from light, at 4 ◦C for a maximum of one week.

Assembly of vimentin is ion-driven, in this case 100 mM potassium chloride (KCl) was used

to initiate filament formation. For a slow assembly, that leads to more homogeneous filaments,

the sample was filled into 50 kDa dialysis tubing and placed in a beaker with assembly buffer

(2 mM NaH2PO4, 2 mM Na2HPO4, 100 mM KCl, pH 7.5), adjusted to 37 ◦C . For a kick-start as-

sembly vimentin with a concentration of 0.4 g/L was mixed 1:1 with assembly buffer containing

200 mM KCl, so the final concentrations for the kick-start assembly was 0.2 g/L vimentin and

100 mM KCl, too. Filament formation was in both cases performed over night at 37 ◦C . Assem-

bled filaments were kept at 4 ◦C .

3.4 Maleimide-functionalization of Beads

Beads were functionalized with a maleimide-group according to a protocol published by Janis-

sen et al. in 2014[6]. Carboxylated polystyrene beads (Kisker biotech GmbH & Co. KG, Steinfurt,

Germany – German reseller of Spherotech –, PPs-4.2COOH, 4.0-4-4µm, 5 % (w/v)) where placed

on a tilting mixer for 30 min to avoid aggregates. 100µl bead solution were placed in a 1 mL

Eppendorf tube and centrifuged (Eppendorf centrifuge 5417R, FA45-24-11) until 10000 rcf were

reached. The supernatant was discarded and the beads were washed twice with 1 mL of 100 mM

MES buffer, pH 4.7, for 10 min on a pulsing vortex mixer at 1200 rpm. Between and after the

washing steps the beads were centrifuged down and the supernatant was discarded.

For functionalization, beads were resuspended in 100µl of 100 mM MES buffer and another
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100µl MES buffer containing 4 mg maleimide-PEG-NH2 (kindly provided by Nynke Dekker

group, Delft University of Technology, Netherlands) were added. 8 mg NH2-PEG-OH and 20 mg

EDC were added. The mixture was thoroughly mixed for 2 min by vortexing and sonicated for

2 h with mixing for 30 s every 20 min.

Finally, the beads were washed with 1 mL 1 x PBS containing 2 % BSA three times for 10 min

on a shaker at 1200 rpm. After each washing step, beads were centrifuged down and the su-

pernatant was discarded. Functionalized beads were resuspended and stored in 1 mL 1 x PBS

containing 2 % BSA, pH 7.4 at 4 ◦C . The protocol of Janissen et al. recommends to use the beads

no longer than 30 days[6].

3.5 Optical Tweezers Experiments

Except four weeks during which the OT setup "C-Trap" (LUMICKS, Amsterdam, The

Netherlands) was installed in Göttingen, all experiments were carried out in the labs of

E. J. G. Petermann and G. J. L. Wuite (Department of Physics and Astronomy and LaserLab, Vrije

Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands). Experiments in Amsterdam

were performed with technical support by either Andrea Candelli, Jordi Cabanas-Danes or

Margherita Marchetti. Due to the traveling, one set of measurements in Amsterdam always

lasted from Monday morning to Friday afternoon.

3.5.1 Setup

Most of the measurements described in this thesis, were performed on a LUMICKS C-Trap. The

first two weeks of measurements were performed on a lab-built instrument (lab of G. Wuite and

E. Peterman). Both instruments use comparable dual-optical traps and equal microfluidic chips

in the following called flow cells. The lab-built instrument employed wide-field fluorescence mi-

croscopy, while the C-Trap employed confocal fluorescence microscopy. A detailed description

of the lab-built setup can be found in references [7, 8]. In contrast to the description in the

references, the NIR-laser (1064 nm) for trapping had a power of 12 W. The trapping laser incor-

porated in the C-Trap was a 20 W NIR (1064 nm) laser. The laser beam was split, in order to gain

two independently controlled traps. Due to their different properties, the two traps were used

for different purposes. Trap 1 was highly position stable and therefore used for force detection,

while trap 2 was smoothly movable and used for bead manipulation, as indicated in Fig. 3.3.

For force detection, the transmitted trapping light was collected via a high NA oil immersion

condensor and imaged using a position-sensitive detector, which for the C-Trap had a dimen-

sion of 10×10 mm and a rise time of 4µs. Trap steering was piezo based. The sample-holder was
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Figure 3.3: Illustration of a dual optical trap, showing two traps, including trapped beads and a labeled vimentin
filament. The left trap (trap one) is the "stable" trap which is used for force measurements. The right trap
(trap two) is used to actively manipulate the filament in between the two beads. The filament length
is quantified by tracking the distance between the centers of the two beads. The force is measured by
monitoring the displacement of the bead from the center of the optical trap.

a combination of a micro- and a nanostage, where the microfluidics system was incorporated.

Bead tracking was performed by acquiring bright field images of the LED illuminated trapped

beads using a CCD camera. The control software for both setups was TWOM, a LabView based

software that was originally developed in the lab of Wuite and Peterman. Fig. 3.4 shows the key

features of the setup (A) and the flow cell (B). The software was constantly improved by the

members of the Wuite and Peterman lab (especially by Onno Broekmans) during the duration

of this thesis. However, the operation control did not change much.

3.5.2 Calibration of Optical Traps

The force calibration of the optical trap was performed using a TWOM software internal calibra-

tion tool. This tool used the power spectrum analysis of the position of the trapped bead, which

is based on the correlation between the frequency component of the particle motion and the

trap stiffness as described in Section 2.4.
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Figure 3.4: (A) Key features of the experimental setup. Solutions are filled into syringes and flushed into the microflu-
idic chip by air pressure. Fluorescence microscopy is used for visualization. Dual optical tweezers are
used to manipulate the filaments and measure the responding force. (B) Schematic 3D view of the flow-
cell. All solutions are flushed into the channels, which, due to laminar flow, do not mix. channel 1: beads
in assembly buffer, channel 2: vimentin in assembly buffer, channel 3: assembly buffer, used for actual
measurements, channel 4: assembly buffer, containing manipulating chemicals like glutaraldehyde.

3.5.3 Sample Preparation

Four to three days before starting the measurement series, vimentin was dialyzed into phos-

phate buffer as described above. After dialysis, the protein concentration was adjusted to 0.2 g/L

and subsequently the sample aliquoted into five portions – one for every day of measurements.

For measurements in Amsterdam, the sample for Monday was assembled over night from Sat-

urday to Sunday in Göttingen, while for the other four days and for most of the measurements

in Göttingen vimentin was assembled freshly over night. In the beginning, assembled vimentin

was used for more than one day. This procedure was optimized during the work on this thesis.

Assembled protein was always kept in the fridge or on ice until it was filled into the setup.

3.5.4 Measurement Preparation and Basic Experimental Procedure

The microfluidic system, visualized in Fig. 3.4 is one of the key features of the setup. Starting

from four individual channels all needed solutions end up in one big channel. Due to laminar

flow, the solutions do not mix in the region where the measurements are situated. With this ge-

ometry it is possible to spatially separate the different experimental steps within one microflu-

idic chip. The flow is air-pressure driven. The solutions are filled to the syringes (syringe 1: beads

in assembly buffer, syringe 2: vimentin in assembly buffer, syringe 3: pure assembly buffer, sy-

ringe 4: assembly buffer, containing manipulating chemicals like glutaraldehyde), correspond-
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ing to the four channels.

Figure 3.5: Experimental Steps Diagram. Defined positions within the flow cell was used for the different steps of
each experiment. At position X1 beads were captured, at position X2 beads were incubated until vimentin
had bound to them. The actual experiments was conducted at position X3. For incubation with glu-
taraldehyde, position X5 was used. In order to get to position X5 the software needed to move via the
way-point X4.

For each data set a fresh pair of beads was captured in channel 1, and moved into the buffer

channel (channel 3) by moving the flow cell with respect to the optical tweezers. While moving

to channel 3, the vimentin channel (channel 2) was passed and eventually vimentin filaments

bound to the beads. Due to the flow, vimentin filaments, that had bound to the beads, were

stretched out along the channel and by bringing the second bead (bead in trap 2) closer to the

first bead (bead in trap 1) one filament eventually bound to the second bead, too. Other fila-

ments, that had bound to one of the beads, probably wrapped around the beads after the flow

was stopped for measurements. Fig. 3.5 illustrates the region of the flow cell where the exper-

iments took place. X1 to X5 denote the positions where the traps were stopped for bead and

filament capturing, incubation and measurements. Fluorescence microscopy was used to en-

sure that only one filament was measured per experiment (Fig. 3.6). Cross-diffusion, due to the

stopped flow and the therefore broken laminar conditions, would theoretically be possible but

is irrelevant for particles of the size of the used beads and the vimentin filaments. The diffu-

sion constant of the bead is on the order of 10−13 m2

s and its sink velocity is about 20 µm
s . This

means that the beads are already on the bottom of the flow cell after about 2 s. The vimentin

concentration is very low (2·10−4 g
L ), the diffusion constant in the same range as the one of the

beads and imaging (fluorecent filament imaging and bead tracking) ensured, that a disturbing

particle would be recognized during the measurement.
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Figure 3.6: Fluorescence microscopy was used to ensure that only one filament has bound to both beads. Subfigures
show confocal fluorescence images of (A) a single filament, (B) two or more filaments close to each other,
(C) at least two clearly separated filaments.

3.5.5 Measuring Procedures

In order to investigate the mechanical properties of vimentin filaments, several stretching pro-

cedures were used. For each individual measurement, that was taken into account for analysis,

a fresh vimentin filament was captured.

Simple force-distance curves, as shown exemplarily in Fig. 3.7A were performed at differ-

ent loading rates (or stretching velocities). A filament, captured between the two beads, was

stretched until failure of the filament or the trap. Failure of the trap means that due to the in-

creasing force the bead was pulled out of the trap while failure of the filament means that the fil-

ament was lost either due to rupture of the filament or due to breaking of the biotin-streptavidin

bond. The last two cases are not easily distinguishable. For force-distance curves where not only

the stretching but also the retraction curve was recorded, it was necessary to manually stop the

bead-movement as close as possible to the maximum force of the trap but before a bead was

pulled out of the trap. By clicking the reverse button immediately afterwards, retraction of the

filament was started. However, due to the manually performed steps in this procedure, a little

delay between the stretching and the retraction curve was technically unavoidable and can also
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be seen in the data sets.

Force-distance cycles were performed either to increasing distances as shown in Fig. 3.7B, or

to "constant" distances. Both procedures were executed at different loading rates. A plugin in

the TWOM software was used to automate the cycles. In this plugin a start- and an end-position

for the cycles was set. For cycles to increasing distances a number of equal steps to get from the

start-to the end-position was defined. For cycles to constant distances the number of cycles was

selected, additionally to the start- and end-position.

The position, the second bead was moved to, was not optically measured as the real distance

between the two beads, but the trap was moved to a specific position. Due to the filament

stretching, a force was acting on the bead, pulling it out of the center of the trap. Therefore,

the position of the bead and the center of the trap did not match while a force, especially a high

force, was applied. As the filaments’ properties changed due to repeated stretching, the distance

between the bead and the center of the trap changed with each stretching cycle. Consequently,

due to the softening of the filament, the actual distance between the two beads increased with

each cycle, even though, for constant-distance cycles, the trap moved to the same position ev-

ery time. For data acquisition this means that cycles to a constant distance were actually not

possible, especially at higher forces.

An example data set of a force clamp measurement is shown in Fig. 3.7C. For those measure-

ments a force clamp plugin in the TWOM software was used, which calculated the difference

between the actual force and the nominal value and subsequently adjusted the force by moving

the second bead further away from the first bead. While using this plugin, it was not possible to

define the loading rate for the stretching, but the software tried to reach the set force as fast as

possible. Force Clamp measurements were performed at several forces between 50 and 700 pN

and for 15 minutes to 8 hours.

Relaxing or creep experiments were performed starting from specified forces. Filaments

were stretched until the set force was reached, using the force clamp plugin which was sub-

sequently disabled and the filaments allowed to relax under force. Due to the physics of the

optical trap, also in this experiment a really constant distance during the relaxing process was

not possible as the beads, especially at higher forces, were displaced from the center. While the

filament relaxed, the beads more and more returned to the center of the traps and thereby in-

creased the distance between them. For the filaments this means that, even though there was

no active force applied on the beads, the restoring force or spring constant of the trap (which

was about 50 pN/nm) was still acting.

Simple force-distance curves, force-distance cycles and force clamps were repeated with glu-

taraldehyde fixed vimentin filaments. For those experiments, the filaments were captured be-

tween two beads and moved from channel 3 (buffer channel) to channel 4 (buffer, containing
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0.5 % glutaraldehyde) by moving the flow cell with respect to the optical traps. After an incuba-

tion time of 5 minutes, the filaments were returned to channel 3 for the actual measurement.

Moving the filament in direction of the filaments long axis was very robust, while moving per-

pendicular to the filaments long axis (moving into channel 4) had to be carried out very care-

fully.

3.5.6 Cleaning Protocol for the Flow Cell

Between measurements of the same series, the flow cell was cleaned by flushing with 1 mL

NaOH per syringe. Afterwards, assembly buffer was flushed until the pH at the exit of the mi-

crofluidic system was 7.5 again. Before a set of measurements was started, the flow cell was

cleaned following a protocol regularly used in the group of E. Petermann and G. Wuite. This

protocol uses a bleach solution of less than 5 % NaOCl, whose hypochloric ion has strongly ox-

idizing properties and, due to the fact that the corresponding hypochloric acid is weak, NaOCl

is almost as basic as NaOH. The hypochloric acid, which is formed by dilution, is metastable

and decomposes into chlorine gas, oxygen and water, thus enhancing the cleaning properties

compared to NaOH. During this cleaning protocol remaining biological material or dyes will

be degraded and washed out of the flow cell. The procedure requires the following steps (water

always means MilliQ water and all channels/syringes are treated the same way):

1. Syringes are fully filled with water, everything except 0.5 mL per syringe is removed by

pipetting and all channels are briefly flushed with about 200µl of the remaining water.

2. Remaining water is removed and all syringes are filled with about 700µl bleach solution.

To fill the whole flow cell with bleach solution channels are flushed rapidly first, thereafter

a week flow is applied for 20 to 30 min until the syringes are nearly empty.

3. 1.5 mL water are added per channel and all channels are briefly flushed with about 200µl.

4. Residual water is removed and, in case of very persistent dirt, all syringes are filled with

1 mL of 1 M HCl and channels are flushed briefly (about 200µl per channel).

5. All remaining solutions are removed and the syringes are fully filled with water. After

briefly flushing with about 200µl, residual water in the syringes is replaced by 1.5 mL fresh

water.

6. Sodium thiosulfate (Na2S2O3) is added to each syringe to a final concentration of about

10 mM. All channels are flushed for about 10 min.
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7. Residual solutions are removed from the syringes and the system is thoroughly flushed

with water.

After this cleaning protocol was completed, buffer was flushed in all channels first. Lastly, the

sample, beads and, if needed, further compounds were added to the system.

3.6 Data Processing

Each optical trap data set consists of a table, containing the measurement values as floating

point numbers, and a meta-data file, containing information about the settings of the setup and

the user settings (e.g. camera settings like ROI and acquisition time/rate, bead size, experiment

description), about the force calibration (e.g. corner frequency, trap stiffness) and about the file

itself (e.g. molecule number, date and time).

As the trap software was LabView based, these files are saved in a LabView data format and

have to be converted for further processing. The TWOM data viewer, developed in the Wuite

and Peterman lab, can be used to have a quick look on the data and export the table of measure-

ment data to either ASCII-format or as an Origin-file (OriginLab, Northampton, MA, USA).

For further data processing MATLAB (The MathWorks, Inc., Natick, MA, USA, versions 2014b

to 2016a) and Origin 8.5G (OriginLab, Northampton, MA, USA) was used. Additional data anal-

ysis, simulations and mathematical modelling, performed by Hannes Witt, were mainly con-

ducted using the open source programs Python (Python Software Foundation, python.org) and

Jupyter (jupyter.org).

3.6.1 Processing for further analysis

Depending on the experiment type, minimum requirements of filament stability were defined

and will be further explained in the description of the procedure-specific processing.

Some steps were performed due to software settings and software failure. The TWOM soft-

ware uses commas as decimal separator, which had to be replaced by points for further data

processing. And, as described above, the end-to-end distance of the filament is monitored by

bright-field imaging of the trapped beads (bead center to bead center). This bead-tracking did

not always perform accurately over a complete measurement. Data sets, where the bead track-

ing failed over several consecutive data points, with the effect that it was not possible to follow

the overall development of the force-distance curve, were rejected for any further analysis. De-

pending on the experiment and on the loading rate, this can mean that already two consecutive

missing data points were two much (high loading rate cycles) or that 50 consecutive missing

data points were no problem (long-lasting force clamps).
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The following steps were performed for every data set, that was taken into account, prior to

any experiment-specific analysis. Except the first one, all steps were carried out using MATLAB.

1. Data were exported to ASCII-format using the TWOM data viewer.

2. From the full data sheets, the relevant columns (time, bead-distance and force) were

saved to new files, which were used for all further steps.

3. Commas were replaced by points.

4. (If necessary) data rows, where the bead tracking had failed, were deleted.

5. To compensate for the bead tracking two bead radii were subtracted from the distance

measurement.

6. We defined the filament length as the distance value corresponding to the last force value

below 5 pN during the initial stretching. This was the point at which, for most of the fila-

ments, force and distance started to increase steadily. Below 5 pN a lot of fluctuations in

the force curve occurred.

7. The strain ε was calculated as ε = ∆L
L , where L is the length of the filament and ∆L the

difference between the length of the stretched filament and L.

8. Data points recorded before the initial filament length was reached and data points

recorded after the trap or the filament failed were neglected for analysis.

3.6.2 Processing Force-Distance Curves

Only filaments where a force of at least 450 pN was reached were taken into account for analysis.

This ensured that for all loading rates the three different domains of the force-distance curve

were reached.

The loading rate was set as a parameter in the operating software of the optical traps. How-

ever, the trap speed did vary from measurement to measurement. By linear fitting the measured

distance over time, the actual loading rate was calculated for every single measurement. This fit

was performed for the distance values corresponding to the force values between 50 and 450 pN

to account for some fluctuations in the loading rate at the beginning of each measurement and

due to the fact, that the shortest data sets ended at a force of 450 pN.

The average of all data sets of one loading rate was calculated using the MATLAB toolbox

"adsmoothdiff" written by Carlos J. Dias. This toolbox is based on the theory described in Ref. [9,

10]. As a first step it was necessary to define a vector with x-values, which was used for all data
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sets of one loading rate. Using the data set, that reached the highest strain, the new x-vector

was defined as a vector that reached from 0 to the maximum strain εmax in 100 equal steps.

Applying "adsmoothdiff" y-values corresponding to the new defined x-values were calculated

for all data sets by smoothing and interpolation. Only for the data set which reached εmax the

y-vector contained values corresponding to all x-values. For the other data sets missing y-values

were filled with "NaN". The new calculated y-values were used to calculate the mean stretching

curve per loading rate.

All data sets were fitted individually by Hannes Witt applying the "two-state" model de-

scribed in Ref. [1] and Chapter 4.

3.6.3 Processing of Force Clamp and Creep Data

As it was experimentally not possible to immediately apply a nominal force, data sets of force

clamp and creep experiments consisted of two parts, the inital phase where the force increased

from zero to the desired value and the actual clamp or creep experiment. Therefore, only data

points which were recorded while the desired force value was applied on the filament, were

used for analysis of force clamps. For analysis of creep experiments only data points recorded

after the applied active force was switched off were taken into account.

Step sizes in the data sets were analyzed by plotting the filament length as a histogram. The

procedure is explained in Chapter 5 and was performed by Hannes Witt.

3.6.4 Correction of Force Offset

In general, the force calibration and therefore the measurements were very stable and very eas-

ily comparable. Probably due to dirt on the objective, one set of measurements at the C-Trap

in Amsterdam had very different values for the force calibration (spring constant) than all other

measurements. To still gain comparable data, the data with the calibration outliner was cor-

rected by dividing the force values by the spring constant of the calibration that was performed

for this measurements. The new values were multiplied by the mean spring constant of the cal-

ibrations of the same experiments, performed during the other weeks of measurement. Data

sets, corrected by this procedure, fitted very well to the other experimental data. No other cor-

rection procedures were performed for any of the optical trap data sets.
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Table 3.1: List of Chemicals and Enzymes

Chemical/Protein Full Name, Company

AMP ampicillin sodium salt, Sigma-Aldrich, Munich,

Germany

ATTO 647N-maleimide ATTO-TEC GmbH, Siegen, Germany

Bio-Gel P medium BioRad, Hercules, CA, USA

biotin-maleimide Jena Bioscience GmbH, Jena, Germany

BSA bovine serum albumin, Sigma-Aldrich, Munich,

Germany, A7906-10G, Lot: SLBB476V

CM sepharose column material, GE Healthcare, Munich, Ger-

many

L-cysteine Carl-Roth GmbH, Karlsruhe, Germany

DEAE sepharose column material, GE Healthcare, Munich, Ger-

many

DMSO ≥ 99,8 %, p.A., dimethyl sulfoxide, Carl-Roth

GmbH, Karlsruhe, Germany

DNAse1 Sigma-Aldrich, Munich, Germany

C2H5OH ethanol, Carl-Roth GmbH, Karlsruhe, Germany

EDC 1-Ethyl-3-(3-dimethylaminopropyl)carboxi-

imide), Sigma-Aldrich, Munich, Germany,

E1769-1G

EDTA ethylenediaminetetraacetic acid, Carl-Roth

GmbH, Karlsruhe, Germany

EGTA ethylene glycol bis(β-aminoethyl)-ether

N,N,N’,N’ tetraacetic acid, Carl-Roth GmbH,

Karlsruhe, Germany

glutaraldehyde Polysciences Europe GmbH, Hirschberg an der

Bergstrasse, Germany

glycerol Carl-Roth GmbH, Karlsruhe, Germany

HCl hydrochloric acid, Carl-Roth GmbH, Karlsruhe,

Germany

DOC 3α-12α,dihydroxy-5β-cholanic acid sodium salt,

Sigma-Aldrich, Munich, Germany
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Chemical/Protein Full Name, Company

InstantBlueT M BIOZOL Diagnostica Vertrieb GmbH, #EXP-

ISBO1L, Eiching, Germany

LB agar plate lysogeny broth agar plate with ampicillin, Sigma-

Aldrich, Munich, Germany, L5667

lysozyme Roche Diagnostics, Mannheim, Germany

MgCl2 magnesium dichloride, Sigma-Aldrich, Munich,

Germany

Maleimide-PEG-NH2 MW 5000, PG2-AMM2-5k, Nanocs, New York,

NY, USA

MES buffer 2-(N-Morpholino)ethanesulfonic acid sodium

salt Sigma-Aldrich, Munich, Germany

MAC methylamine hydrochloride, Sigma-Aldrich, Mu-

nich, Germany

NP40 nonyl phenoxypolyethoxylethanol, Roche Diag-

nostics, Mannheim, Germany

Pefabloc SC serine protease inhibitor, Carl-Roth GmbH,

Karlsruhe, Germany

PMSF phenylmethylsulfonyl fluoride, Serva, Heidel-

berg, Germany

protein marker VWR, A5418.0250, Darmstadt, Germany

PBS phosphate buffer saline, Invitrogen AG, Carls-

bad, CA, USA, LOT: 73604799A

KCl potassium chloride, Carl-Roth GmbH, Karlsruhe,

Germany

RNAse Roche Diagnostics, Mannheim, Germany

saccharose D-sucrose, ≥ 99,5 %, p.A., Carl-Roth GmbH,

Karlsruhe, Germany

sample buffer for SDS-gel VWR/CBS, #FB31010, Darmstadt, Germany

NaCl sodium chloride, Carl-Roth GmbH, Karlsruhe,

Germany

NaH2PO4 sodium dihydrogen phosphate dihydrate, Carl-

Roth GmbH, Karlsruhe, Germany

NH2-PEG-OH Iris-Biotech, Marktredwitz, Germany
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Chemical/Protein Full Name, Company

SDS sodium dodecyl sulphate, Carl-Roth GmbH,

Karlsruhe, Germany

SDS-gel VWR/CBS, #FK00812-10, Darmstadt, Germany

Na2HPO4 disodium hydrogen phosphate dihydrate, Carl-

Roth GmbH, Karlsruhe, Germany

NaHSO3 sodium hydrogensulfit, Carl-Roth GmbH, Karls-

ruhe, Germany

TB terrific broth, Sigma-Aldrich, Munich, Germany,

#T0918

DTT 1,4-di-thiothreitol, Carl-Roth GmbH, Karlsruhe,

Germany

tricine N-[tris(hydroxymethyl)methyl]glycine, Carl-

Roth GmbH, Karlsruhe, Germany

TRIS-HCl Tris(hydroxymethyl) aminomethane, Carl-Roth

GmbH, Karlsruhe, Germany

Triton X100 4-(1,1,3,3-tetramethylbutyl)phenyl-

polyethylene glycol, Carl-Roth GmbH, Karlsruhe,

Germany

CH4N2O urea, Carl-Roth GmbH, Karlsruhe, Germany
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4.1 Abstract

The mechanical properties of eukaryotic cells are to a great extent determined by the cytoskele-

ton, a composite network of different filamentous proteins. Among these, intermediate fila-

ments (IFs) are exceptional in their molecular architecture and mechanical properties. Here

we directly record stress-strain curves of individual vimentin IFs using optical traps and atomic

force microscopy. We find a strong loading rate dependence of the mechanical response, sup-

porting the hypothesis that IFs could serve to protect eukaryotic cells from fast, large deforma-

tions. Our experimental results show different unfolding regimes, which we can quantitatively

reproduce by an elastically coupled system of multiple two-state elements.

4.2 Introduction

The eukaryotic cytoskeleton is a crucial determinant of many cellular properties, including cell

mechanics. Three types of filamentous proteins, microfilaments (MFs), microtubules (MTs) and

intermediate filaments (IFs) interact with numerous cross-linking proteins and molecular mo-

tors, and the emerging composite network spans the whole cell [1]. Whereas MFs and MTs are

conserved across tissues and organisms, IFs are expressed in a cell-type specific manner and 70

different IF coding genes have been found in humans [2]. Interestingly, IFs have recently been

found to play a direct role in cell mechanics [3, 4]. All cytoskeletal IFs share a tripartite monomer

structure consisting of a α-helical "rod" domain and intrinsically disordered "head" and "tail"

regions (see Fig. 4.1a, top). The molecular assembly of IFs follows a strictly hierarchical path,

including lateral assembly into dimers, tetramers and unit length filaments (ULFs), followed

by longitudinal annealing leading to 10 nm diameter filaments that can be many µm long, as

shown schematically in Fig. 4.1a, bottom.

IFs show interesting mechanical properties [2, 8–10] such as high flexibility, with a persis-

tence length of few µm [11, 12] and extreme extensibility [13, 14]. Both properties originate

from the open molecular architecture of the filaments. The extensibility of different IFs has

previously been measured by lateral stretching of adsorbed IFs using atomic force microscopy

(AFM) [13–15] and force-strain curves for vimentin dimers and tetramers have been modeled

by molecular dynamics simulations [16]. The AFM experiments have revealed that IFs can be

extended up to 3.6 times the original length before they rupture. However, it is in the nature of

the measurement that the filaments may be imaged before and after stretching, but not in situ

during the process. Since the filaments are stretched laterally and interact with the substrate

during the extension a precise and quantitative assessment of the elastic properties could not

be achieved.
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Figure 4.1: a) Schematic representation of vimentin filament formation. Vimentin monomers contain a head, a tail
and a central rod domain. The rod domain is composed of three α-helical coils (1A: 36 amino acids (aa),
1B: 92 aa and 2: 139 aa) and two linkers (L1 and L12) [5–7]. Two monomers form a parallel coiled-coil
dimer and two dimers form a half-staggered anti-parallel tetramer. Via unit-length-filaments (ULFs,
composed of typically eight tetramers, not shown) mature filaments are formed by longitudinal anneal-
ing. b) Overview of the experimental setup used for OT experiments, combining optical traps and confo-
cal imaging with a microfluidic device. The inset shows a fluorescently labeled vimentin filament trapped
between two beads.

Here, we directly probe the loading rate dependent mechanical properties of individual vi-

mentin IFs under physiological buffer conditions using optical traps (OT) and AFM to stretch

the filaments along their long axis up to a strain of 3.5. A strong loading rate dependency of

the mechanical response is found and explained by an elastically coupled system of multiple

two-state elements.
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4.3 Materials and Methods

Human vimentin C328A with an additional cysteine at the C-terminus was recombinantly ex-

pressed in E. coli and purified from inclusion bodies [17]. Labeling with ATTO647N-maleimide

(AttoTech GmbH, Siegen, Germany) or biotin-maleimide (Jena Bioscience GmbH, Jena, Ger-

many) was performed according to Ref. [18] with minor changes for the biotin labeling. The

biotin-labeled vimentin and any remaining free biotin were separated by 2 x elution over PD25

Miditrap columns (GE Healthcare Freiburg, Germany). In the first run, the column was equi-

librated with labeling buffer and eluted with strorage buffer (buffers according to [18]). In the

second run the column was equilibrated and eluted with storage buffer. The protein concentra-

tion was monitored by measuring the absorption at 280 nm (Nanodrop ND-1000, ThermoScien-

tific Technologies, Inc.,Wilmington, USA). Labeled and unlabeled vimentin was stored at -80 ◦C

[12, 18]. Prior to assembly into filaments, vimentin protein was dialyzed step-wise into 2 mM

sodium phosphate buffer, pH 7.5 [12]. Assembly was performed at a vimentin concentration of

0.2 g/L by dialysis into 2 mM sodium phosphate buffer, pH 7.5, containing 100 mM KCl (assem-

bly buffer), at 37 ◦C over night [19]. About 2 % of the monomers were ATTO647N labeled and

about 15 % were biotin labeled. Before OT and AFM measurements, vimentin filaments were

diluted 1:1000 and 1:10 with assembly buffer, respectively.

OT measurements were performed with a setup combining optical traps, a confocal fluores-

cence microscope and a microfluidic system (LUMICKS, Amsterdam, Netherlands) [20, 21]

(Fig. 4.1b). Streptavidin-coated polystyrene beads (4.5µm, Spherotech, Inc., Lake Forest, IL,

USA), filaments and buffer were flushed separately into the microfluidic channel by air pres-

sure. Due to laminar flow, the three solutions did not mix in the channel part where the mea-

surements were executed. Every measurement was started by capturing two beads with the

OTs. By moving the microfluidic device with respect to the OTs, filaments were attached to the

beads and moved into the buffer channel. Subsequently stopping the flow ensured that only

one filament was attached between the to beads, as controlled by imaging (see movie in the

Supplemental Material [22]). Filaments were stretched to a maximum force of about 800 pN

with different loading rates, varying from 0.05µm/s to 4.5µm/s.

AFM experiments were performed using a commercial instrument (MFP-3D Bio, Asylum Re-

search, Santa Barbara, CA, USA). Vimentin filaments were attached to a freshly cleaved mica

surface by physisorption. Cantilevers (MLCT, Bruker, Billerica, MA, USA) were calibrated using

the thermal noise method; spring constants were found to be 50 to 60 pN/nm. Stretching was

performed by catching the freely fluctuating end of only partly attached vimentin filaments

with the cantilever via physisorption and repeatedly displacing the cantilever from the mica

surface with a loading rate of 5µm/s. A final force of about 8 nN was reached without breaking
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Figure 4.2: Force-strain curves recorded with the OT at different loading rates (color code, see legend) of individual
vimentin filaments (thin lines) and corresponding average (thick line). The black lines show the averaged
fits for each stretching loading rate.

the filaments.

4.4 Results

The raw data (force-distance curves) are processed by self-written MatLab code to obtain force-

strain curves for every filament. The strain is defined as ε = ∆L/L, where ∆L is the difference

between the length of the extended filament and the length of the filament L. The unstretched

length L is measured at the largest measured force before reaching 5 pN. The individual experi-

mental data sets are shown in Fig. 4.2 (thin lines), where each color represents one loading rate,

altogether covering two orders of magnitude. The averages of the measured curves are calcu-

lated using a MatLab Toolbox written by Carlos J. Dias applying the theory described in Refs.

[23, 24] and are represented by the thick lines.

In the individual OT data sets, three different regimes can be discerned. Comparison of our data

to literature suggests that the steep linear increase at low strain represents the elastic stretching

of the α-helical domains [16, 25, 26], whereas during the second, plateau-like regime starting

at a strain of about 0.1 the α-helices are uncoiled and β-sheets are formed instead [16, 25, 27].

In the third regime a clear stiffening with respect to the plateau region can be observed which,

according to simulations [16], might be due to increased pulling on the β-sheets. Previously, it
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Figure 4.3: a) Sketch of the mechanical model consisting of a two-state eFJC and an elastic spring (top). A double-
well potential is assumed to describe the unfolding reaction of the α-helical subunits of a vimentin
monomer (bottom). b) Eq. (4.1) fitted to a typical force-time curve of a single vimentin filament stretched
at a loading rate of 0.6µm/s.

has been shown that cells are indeed able to resist strains in the same order of magnitude as

reached here [8].

Furthermore, we observe a clear loading rate dependence of the force-strain curves. With in-

creasing loading rate the force value of the plateau region increases and strain range of the

plateau regime decreases. Whereas the strain at which the plateau is reached does not change

much between the loading rates, the strain at which the stiffening starts decreases with increas-

ing loading rate.

To describe the force-extension-curves of vimentin filaments in the strain range accessible by

OT we adopt an elastically coupled two-level model introduced by Rief et al. [28]. In brief, the fil-

ament is modeled as a system of entropic springs coupled to an elastic element (Fig. 4.3a). Each

monomer can assume different states with distinct lengths and energies, in case of vimentin

a shorter α-helical ground state of length lα and an extended β-sheet of length lβ. It is known

that the vimentin monomer consists of three α-helices, which are assumed to react indepen-
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dently to the applied force and are indicated by subscripts (i = 1,2,3 corresponding to the 1A,

1B and 2 domain) in the following. The α-helices switch stochastically into a β-sheet conforma-

tion following a force-dependent Bell-Evans kinetic. This allows us to obtain the number Nβ,i

of monomers
dNβ,i

dt = (N0 −Nβ,i ) ·k0,i exp
(

F ·xu,i
kBT

)
, where the ith subunit is in the extended state.

Here, the total number of monomers arranged in series is N0 = Nα,i +Nβ,i , the zero-force transi-

tion rate of the respective three subunits is k0,i and their potential width is xu,i . In the vimentin

filament on average 32 monomers are arranged in parallel. We assume that parallel monomers

are captured by this model by decreasing the potential width xu as described by Friddle et

al. [29]. xu,i is therefore an apparent value dependent on the number of parallel monomers. The

contour length of the filament is Lc = N0 · l0+∑
i
(
Nβ,i · lβ,i +Nα,i · lα,i

)
, where l0 is the combined

length of linker regions. We use the equivalent Freely Jointed Chain (eFJC) model with the Kuhn

length LK, which gives a good description in the force range observed experimentally [30], to

model the entropic behavior of the filament under stress (see Supplemental Material [22] for a

more detailed description of the model). In combination with an effective spring constant keff,

which includes elastic behavior of the filament as well as the spring constant of the AFM can-

tilever or the OT, we obtain an expression for the time-dependent force F for a linear extension

of the filament with constant loading rate v :

F (t ) = keff

(
v · t −LC (F, t ) ·

(
1− FK

F

))
(4.1)

Eq. (4.1) is solved analytically for F using the numerical solution for the rate equation and fit-

ted to the data. The model describes the experimental data remarkably well (see Fig. 4.3b for

an example fit to an OT data curve). To reduce the number of fit parameters, lα,i and lβ,i are

estimated from structural data [5–7]: lα,1 = 5.4 nm, lα,2 = 13.8 nm, lα,3 = 20.9 nm, lβ,1 = 12.6 nm,

lβ,2 = 32.2 nm, lβ,3 = 48.7 nm, l0 = 29.7 nm. k0,i is set to k0,i = 3.3·10−5 s−1, as found by Rief et al.

for the unfolding of α-helical spectrin repeats [31].

All experimental data curves are fitted individually with independent starting parameters. We

find multiple local minima, i.e., sets of parameters able to describe all different experimental

curves with little variance (see Supplemental Material [22]). The parameter set with the lowest

variance is (mean ± SD) x̄u,1 = 0.09± 0.04 nm, x̄u,2 = 0.12± 0.04 nm and x̄u,3 = 0.18± 0.06 nm.

The effective spring constant of the filament was found to be k̄eff = 0.22± 0.06 pN/nm, corre-

sponding to a Young’s modulus E = keff
L
πr 2 ≈ 27 ± 10 MPa, and a persistence length of LP =

Eπr 4/(4kB T ) ≈ 3.3 µm. Here, we include that the spring constants of the OTs and the AFM (1.23

pN/nm and 50 pN/nm, respectively) are large compared to keff. Given that the radius r ≈ 10 nm

of the filament enters the persistence length with a power of 4, this result is in very good agree-

ment with previous measurements of LP [11, 12]. The average of all individual fits for each load-
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Figure 4.4: Comparison of AFM (open circles) and OT (solid symbols) experiments using approximately the same
loading rate. The top left inset shows a zoom-in of the part where the data of OT and AFM measurements
overlay. The bottom right inset shows an AFM image of vimentin filaments on a mica surface.

ing rate in the same strain range as the curves of the averaged experimental data sets is shown

as black lines in Fig. 4.2.

The OT setup provides superior control over the experiment due to the simultaneous imag-

ing modality and the microfluidic chip. However, the maximum forces reached are on the or-

der of 800 pN and Fig. 4.2 clearly shows that the maximum strain is not yet reached at these

forces. Previous AFM experiments have shown that rupture of the filaments occurs at a strain

of about 2.6 [13], whereas the maximum strain reached in our OT experiments is 1.5. There-

fore, we compare force-strain curves obtained by OT with AFM data, as shown in Fig. 4.4. The

open circles represent the average curve of all AFM measurements, including the standard de-

viations as error bars in direct comparison to the OT data (solid symbols) at a similar loading

rate. In the AFM experiment the filament is stretched between the AFM tip and a mica surface,

providing less control over the orientation of the filament compared to a filament trapped be-

tween two beads. Therefore, the variance of force between the individual filaments is higher

than for OT data. However, the average curves of both experiments overlap remarkably well in

the lower force regime confirming that we measure the response of individual filaments in the

AFM experiments. Additionally, the AFM measurement allows to apply forces up to 8 nN and

therefore to reach a strain of up to 3.5, albeit, still without breaking the filaments. For lower

strains AFM force-strain curves replicate the three stress regimes found in the OT experiments.

At larger strains, however, two additional regimes are observed: a second flat region with only
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little change in force at strains between 1.25 and 2, and a third linear regime at strains greater

than 2 is found. A second force plateau has been predicted by molecular dynamics simulations,

where it was assigned to sliding between dimers within a tetramer [16].

4.5 Discussion

In combination, OT and AFM measurements provide a precise and quantitative approach to

the force-strain relationship for individual vimentin IFs. The data can be well described up to a

strain of 1.2 by an elastically coupled system of multiple two-state elements supporting the hy-

pothesis that subsequent stochastically independent unfolding ofα-helices into more extended

β-sheet structures is responsible for the first force plateau and is thereby contributing to the re-

markable extensibility of these filaments. When a critical force defined by k0 and xu is reached

[32], the filament extends very rapidly leading to a force plateau as observed in the experiment.

It is necessary to assume an independent reaction of the three α-helical domains in the rod to

capture the change in plateau length between force curves at different loading rates while keep-

ing lβ,i fixed at the values known from structural data. The preferred order in which the three

subunits unfold is governed by the potential width xu,i : The subunit with the largest potential

width shows the strongest coupling to the applied force and has therefore the highest probabil-

ity to unfold first. Interestingly, our fits indicate a high preference that coil 2 (corresponding to

i = 3) opens up first. The reason could be the so-called stutter region which is found precisely

six heptads spaced from the C-terminal end of coil 2 in all IF types [33, 34]. At this position the

heptad repeat, characteristic of coiled-coils, is disrupted, either due to three missing or four

extra amino acids [33, 35]. Notably this defect does not compromise the coiled-coil geometry

but leads to an almost parallel run of the two α-helices [34, 36] and therefore changes the angle

between the direction of the applied force and the direction of the bonds that break during the

stretching process [26]. Thus, the stutter region is less stable than an intact coiled-coil and might

be the reason why coil 2 responds most sensitively to applied forces. From a biological point of

view this is in agreement with the hypothesis that IFs act as a "safety belt" for cells [16], that is

they are easily deformable and thus mechanically almost not detectable at slow deformation

but stiff and therefore preserving the cell shape at fast deformation. This aspect is reflected in

the shortened plateau regime (see Fig. 4.2) at higher loading rates. At slow deformation, the fila-

ments can be extended to about 2-fold their original length (strain of 1) at a comparatively low

force. When pulled on faster, however, already at a strain of 0.5, inceased forces are necessary

for further extension. Our numerical model implies a simple mechanism for this observation

based on the independent unfolding of the three individual coils forming the monomer. Forces

as strong as applied by AFM here occur rarely in nature, therefore the second nonlinear regime
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may be interpreted as a controlled failure mechanism, allowing the filament to withstand ex-

treme forces and large deformation.

Our data agree well with previous molecular dynamics simulations [16], not only with regard to

the different observed regimes in the force-strain curve, but even concerning the numerical val-

ues for strains, even though Qin et al. only modeled stretching of dimers and tetramers. Within a

fully assembled vimentin filament about 32 monomers, albeit with some variation to this num-

ber [37], are arranged in parallel. In our model we assume that both monomers in series and in

parallel arrangement react independently. It is, however, expected that the monomers elongate

in a coordinated way. Future experiments involving more sophisticated imaging in parallel to

the mechanical stretching may help to approach these aspects.

In conclusion, our experimental results support the hypothesis that IFs provide strength to cells

under large deformation and that unfolding enables them to absorb large amounts of energy

[34, 38]. During a slow deformation vimentin acts as a very soft material, while a faster deforma-

tion shortens the plateau region and leads to a "stiffening" of the filament. More generally, the

force dependent switching between α-helices to β-sheets as well as breaking of lateral bonds

between individual subunits can be understood in the light of molecular bond-breaking taking

place on different levels of hierarchy in soft biological matter, as recently, shown by Kurniawan

for the blood protein fibrin [39, 40]. Thus, we believe that our study of individual cytoskeletal

IFs will help to further quantify the underlying physical phenomena of soft matter mechanics.



68
Chapter 4. Nonlinear Loading-Rate- Dependent Force Response of Individual Vimentin

Intermediate Filaments to Applied Strain

Acknowledgements:

We are grateful for fruitful discussions and technical support by J. Cabanas Danes, H. Herrmann,

F. C. MacKintosh and K. Kroy. The work was financially supported by the Deutsche Forschungs-

gemeinschaft (DFG) in the framework of SFB755 (project B7), SFB937 (project A17), and the

GGNB (Grant No. GSC 226/2). The research leading to these results has received funding from

Laserlab-Europe (Grant Agreement No. 654148, European Union’s Horizon 2020 research and

innovation programme).



4.6. Supplementary Information 69

4.6 Supplementary Information

In this supplementary file we present a more detailed overview of the model we use to describe

the data as well as the fit results.

4.6.1 Theoretical model

Following Rief et al. [28] we assume a force-dependent Bell-Evans kinetic for the stochastic

switching between the α-helical and the β-sheet state for each of the subunits i = 1,2,3. Thus,

the number Nβ,i of monomers with the ith subunit in extended state is described by

dNβ,i

dt
= (N0 −Nβ,i ) ·k0,i exp

(
F · xu,i

kBT

)
, (4.2)

with the total number of monomers N0 = Nα,i +Nβ,i . k0,i is the zero-force transition rate and

xu,i is the potential width. We calculate the contour length of the filament as

Lc = N0 · l0 +
∑

i

(
Nβ,i · lβ,i +Nα,i · lα,i

)
, (4.3)

where l0 is the combined length of linker regions.

When stretched, the filament (length x = x1+x2) in the optical traps (OTs) or atomic force micro-

scope (AFM) acts as a Hookian spring (length x1, spring constant keff) in series with an entropic

spring (length x2), which we model as an equivalent Freely Jointed Chain (eFJC) with a Kuhn

length LK. LK sets the force scale FK = kBT
LK

. Thus,

x2 = Lc(F, t )

(
coth

(
F

FK

)
− FK

F

)
. (4.4)

In our experiments, FK is on the order of 10−15 N, therefore, we approximate

x2 ≈ Lc(F, t )

(
1− FK

F

)
. (4.5)

We write the force as

F = keffx1 = keff(x −x2). (4.6)

Applying a constant loading rate v , x = v t and thus using Eqs. (4.5) and (4.3)

F = keff

(
v t −Lc

(
1− FK

F

))
. (4.7)
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Eq. (4.7) can be solved analytically for F and is used to fit the numerical solution of Eq. (4.2)

with the boundary condition Nα,i = N0 for t = 0 to the data. The total number of monomers N0

is calculated from the length of the relaxed filament L and the length of the monomer in all-α

configuration N0 = L
l0+lα,1+lα,2+lα,3

. As described in the main text, l0, lα,i and lβ,i (i = 1, 2, 3) are

obtained from structural data [5–7], the applied force F and loading rate v are obtained from

the experimental data, and k0,i for anα-helix to β-sheet transition is known from literature [31].

Thus, the free fit parameters are keff and xu,i (i = 1, 2, 3), as shown below. The numerical solution

of Eq. 4.7 is implemented in Python using the NumPy and SciPy packages [41].

4.6.2 Comparison of Worm Like and Freely Jointed Chains

As demonstrated by Toan and Thirumalai [30] an equivalent Freely Jointed Chain gives a good

description for entropic chains in the force ranged observed experimentally. To demonstrate

this, we compare it to a Worm Like Chain using the description of Odijk [42]. This changes Eq.

4.5 to

x2 = Lc(F, t )

(
1− 1

2

(
FP

F

) 1
2

)
. (4.8)

using the force scale FP = kBT
LP

with the persistence length LP. Accordingly Eq. 4.7 changes to

F = keff

(
v t −Lc

(
1− 1

2

(
FP

F

) 1
2

))
. (4.9)

Eq. 4.9 is solved numerically. Fig. 4.5 shows a comparison of the resulting force-strain curve

using Eqs. 4.7 and 4.9, respectively. Both curves are calculated using the most likely parameters

obtained from the fit to the data (see below) at a loading rate of v = 0.5µm. Since LK ≈ 2LP, we

used FP = 0.5FK. The curves show only minor deviations in the onset of the first linear regime at

low strains.

4.6.3 Fit Results

Each experimental force-time-curve is fitted independently with identical starting parameters,

which are varied over multiple orders of magnitude. Based on the variance between the re-

sulting parameters for different curves starting from the same parameters, we can distinguish

which starting parameters lead to global minima conserved between different curves. The set

of parameters with the lowest variance yields average potential widths x̄u,1 = 0.09± 0.04 nm,

x̄u,2 = 0.12 ± 0.04 nm and x̄u,3 = 0.18 ± 0.06 nm. The average spring constant is found to be

k̄eff = 0.22±0.06 pN/nm. The most likely parameters, i.e. the maximum of the histograms shown
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in figure 4.6 and 4.7, are k∗
eff = 0.23 pN/nm, x∗

u,1 = 0.11 nm, x∗
u,2 = 0.13 nm and x∗

u,3 = 0.15 nm.

The spread of the values is partly due to experimental and numerical uncertainties. There are,

however, intrinsic sources of variance between individual filaments.

Figure 4.5: Comparison of WLC (black) and eFJC (red) models.

Figure 4.6: Fit results of keff. The black line shows the average value of the distribution.
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Figure 4.7: a) Fit results of xu,1, b) xu,2, c) xu,3, with the average values of the distributions (black lines).
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5.1 Abstract

Structure and dynamics of living matter rely on design principles fundamentally different from

concepts of traditional material science. Specialized intracellular filaments in the cytoskeleton

permit living systems to divide, migrate, and grow with a high degree of variability and dura-

bility. Among the three filament systems, microfilaments, microtubules, and intermediate fil-

aments (IFs), the physical properties of IFs and their role in cellular mechanics are the least

well understood. We use optical trapping of individual vimentin filaments to investigate energy

dissipation, strain history dependence, and creep behavior of stretched filaments. By stochas-

tic and numerical modeling, we link our experimental observations to the peculiar molecular

architecture of IFs. We find that individual vimentin filaments display tensile memory and are

able to dissipate more than 70% of the input energy. We attribute these phenomena to distinct

nonequilibrium folding and unfolding of α helices in the vimentin monomers constituting the

filaments.

5.2 Introduction

Vimentin belongs to the protein family of intermediate filaments (IFs), which, together with mi-

crofilaments (MFs) and microtubules (MTs), constitute the cytoskeleton of eukaryotic cells. It is

widely accepted that this composite network of biopolymers plays an important role in cell me-

chanics, motility, adhesion, and contraction. Each filament type contributes distinct mechani-

cal features; whereas MFs and MTs are well characterized from a physics point of view, IFs are

less well understood. In contrast to actin and MTs, which are evolutionary highly conserved, IFs

are encoded by 70 genes in humans [1], subdivided in five categories, and expressed in a cell-

type-specific manner. Vimentin not only is the typical IF protein in cells of mesenchymal origin

but is also overexpressed in cancer cells of epithelial origin and is associated with metastasis.

Moreover, IFs have been proposed to play a major role in mechanical resistance and integrity

of cells, especially in response to environmental stress[2–5].

All IFs share the secondary structure of the monomer (Fig. 5.1 A and Supporting Fig. 5.4),

including an α-helical rod domain and intrinsically disordered head and tail domains [6, 7].

The formation of extended filaments from cytoplasmic IF proteins follows a complex hierarchi-

cal scheme, distinct from MFs or MTs. First, lateral assembly of monomers via parallel coiled-

coil dimers and half-staggered anti-parallel tetramers yields unit-length filaments (ULFs) [6],

schematically shown in Fig. 5.1A (middle). Subsequently, longitudinal annealing of these ULFs

results in mature, elongated filaments of 10 nm in diameter. This hierarchical filament forma-

tion via dimers, tetramers, octamers, and ULFs and the protofibrillar organization, which was
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found, for example, for keratin [8], are in stark contrast to MFs and MTs, which are built from

globular subunits, and may be the reasons for the remarkable properties of IF. It should be noted

that IFs, and in particular keratins, also form very stable and resistant natural super-structures

such as wool and hair, whose overall mechanical resistance has been extensively studied since

the beginning of the last century [9, 10]. However, the properties of single cytoplasmic IFs,

which are the basis for understanding how IFs provide cells with mechanical resistance, can-

not be retrieved from these ensemble experiments.

Although IFs display intriguing mechanical characteristics [11–13], little is known about the

mechanisms involved at the single filament and molecular levels. Stretching experiments and

molecular dynamics simulations of IFs or subunits thereof have shown enormous extensibility

of strains up to 3.5 [14–16], different stretching regimes [14, 17], and a loading-rate dependent

force response [14]. Here, we directly probe the mechanical response of individual vimentin

filaments to one-time and repeated stretching-relaxation cycles and to clamping at forces of

50 to 700 pN [force clamp (FC)]. By theoretical modeling and Monte Carlo (MC) simulations

based on structure predictions of IF subunits and the hierarchical assembly model, we directly

link our experimental results to the molecular architecture of vimentin IFs. With this approach,

we find strong evidence for intricate dissipative behavior and suggest a mechanism for the ob-

served dependence of the mechanical properties on the strain history based on conformational

switching between α-helical and β sheet secondary structures. The compiled data reveal how

the molecular structure of the vimentin monomer imprints viscoelastic properties on larger

length scales and show how extension far from equilibrium permits to dissipate a large amount

of energy. We speculate that these concepts of controlled failure due to weak transient bonds

and reversible conformational changes are important to protect cells in situations of extreme

stresses. From a physics point of view, our observations give rise to single filament viscoelastic-

ity based on nonequilibrium transformation of the secondary and tertiary protein structure.

5.3 Results

5.3.1 Pronounced Energy Dissipation

To elucidate the energy dissipation mechanisms in vimentin filaments, single filaments were

stretched up to forces of 500 to 600 pN and subsequently relaxed (Fig. 5.1 B). Loading and un-

loading were performed at different velocities varying over two orders of magnitude. The exten-

sion curves show three regimes: a linear increase, a plateau (presumably caused by unfolding

of α helices in the vimentin monomers, the so-called α-β transition), and a second linear in-

crease with strain [14, 17]. In contrast, the relaxation curves do not exhibit a force plateau and
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Figure 5.1: Experimental setup, vimentin assembly and comparison of effective two-state model and experimental
data. (A) Top: Microfluidic chip. Middle: Schematic representation of vimentin assembly. Bottom: Sec-
ondary structure of the IF monomer; α-helical rod, subdivided into the three α helices, 1A, 1B and 2, and
intrinsically disordered head and tail domains. (B) Force-strain cycles of single vimentin filaments at dif-
ferent loading rates. (C) Force-strain cycles for different loading rates [color-coded as in (B)] calculated
by the effective two-state model. (D) Dissipated energy during individual stretching cycles. (E) Compari-
son between energy dissipation measured for 75 different filaments at five different velocities between 50
and 2450 nm/s (dark blue dots) and prediction by the two-state model (black); nonequilibrium transition
between α helices and β sheets (red); viscous dissipation (light blue). Error bars indicate SD.

are largely independent of the relaxation velocity, indicating a strong asymmetry of the free-

energy potential of the α-β transition [18]. A striking feature of the force-strain cycles is the pro-

nounced hysteresis between the extension and the relaxation curves. The area between these

two curves equals the energy uptake of the filament during one stretching-relaxation cycle and

is on the order of several femtojoules for a single filament. The energy uptake may not only be

directly dissipated but could also be stored in the altered conformation of the filament as poten-

tial energy. Since these processes cannot be distinguished easily, we refer to the area between

the two curves as apparent dissipation.

We have recently shown [14] that the experimental force-strain curves can be accurately repli-

cated by a model that was first proposed by Burte and Halsey [10] for the elongation of wool

fibers and among others used by Rief et al. [18] and Minin et al. [19]. In this model, we forego

the parallel monomers and model each ULF as a single effective element, which consists of

three helical domains (1A, 1B, and 2) that may switch between a short and an elongated confor-

mation depending on the applied force, corresponding to theα-helical or theβ sheet conforma-

tion, respectively. For simplicity, we refer to this approach as an effective two-state model, being

aware that it actually comprises a coupled system of multiple two-state elements. Although the
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model is not able to capture every aspect of vimentin stretching, it provides a good description

of initially, once-only, stretched filaments and their relaxation [14]. Since all elements start in

the α state and all parallel monomers switch in a rapid reaction cascade to the β state as they

are dilated, they can be mapped on a single effective element. Another proposed mode of elon-

gation for IFs is sliding of the subunits past each other [14, 17], which probably leads to viscous

behavior and is introduced into the model by adding an idealized viscous dash pot in series.

The effective two-state model is able to quantitatively reproduce the experimental force cycles

(Fig. 5.1, B and C). The main difference between the experimental curves and the corresponding

curves obtained from the effective two-state model is the shape of the retraction curve: For the

relaxation data, while the two-state model shows a sharp edge at the onset of α helix formation,

the experimental curve is more convex, in particular for the slowest loading rate. We may at-

tribute this effect to lowering of the persistence length upon stretching (fig. 5.5). The reduction

in persistence length might arise from the thinning of the filament [16], from the decoupling

of parallel monomers, or from a reduction of the persistence length of β sheets compared to α

helices [20].

The apparent energy dissipation comprises more than 70 % of the total energy (Fig. 5.1 D) put

into the filament, which is comparable to biological high-performance materials such as fibrin

fibers, spider silk or titin [20–24]. One might be tempted to attribute the apparent energy dissipa-

tion to viscous friction during sliding of IF subunits against each other. However, our analysis

indicates that the major contribution to the energy dissipation originates from the unfolding

and refolding of the α helices occurring far from equilibrium. Nonequilibrium conformational

changes have been identified as a mechanism for energy dissipation early on and can even be

considered as an origin of viscous behavior, in contrast to the prevalent "exchange of old neigh-

bors for new ones"-concept of viscosity [10]. For the sake of clarity, we will refer to the former

as nonequilibrium unfolding and to the latter as viscosity. We compare the contributions of

the two different mechanisms to the apparent energy dissipation by switching off the viscous

element in the model (light blue curve in Fig. 5.1 E). Surprisingly, we find that the apparent en-

ergy dissipation is indeed dominated by nonequilibrium unfolding (red curve), while viscous

contributions only become relevant at low loading and relaxation rates. Whether this viscous

contribution is due to sliding of subunits or due to the extension of head and tail domains in

the filament is not possible to reveal from our current data.

5.3.2 A Biopolymer with Tensile Memory

To address the question of filament adaption to mechanical stress, we performed repeated

stretching cycles to increasing distances with individual vimentin filaments (Fig. 5.2 A, and MC
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Figure 5.2: Response to repeated strain. (A) Top: Distance versus time. Bottom: Force versus strain for a typical fila-
ment. (B) Kinetic MC simulations of a simplified vimentin filament that take into account 32 monomers
per cross-section (inset) reproduce a curve progression resembling the experiment. The force and exten-
sion in (B) are given in arbitrary units (a.u.) of force and distance. (C) Fitting the linear regime of the
stretching part of every cycle [(A); up to 10 % strain] yields the stiffness for each cycle. The progression
with cycle number for 77 different filaments is shown. Magenta, average stiffness per cycle. Error bars
indicate SEM. (D) Every monomer within the simulated IF is traced by the MC simulation. Transition of
the 32 α helices of eight individual ULFs (color-coded) within one filament.

simulations in Fig. 5.2 B) and found a strong dependency on the strain history, which we refer to

as tensile memory. The initial slope of the force-strain curve, and therefore the stiffness of the fil-

aments (Fig. 5.2 C), considerably decreases from cycle to cycle. The filaments reach their initial

length after each full cycle. This complex tensile behavior cannot be explained by the effective

two-state model but requires that each element is able to adopt additional states [10]. Therefore,

we devise a stochastic model explicitly considering that the filaments consist of multiple (32 on

average [6]) monomers per cross-section. We assume that, during relaxation of the filament,

not all parallel monomers return to theα state but some remain in the β state. The length of the

ULF is set by the length of the shortest element, explaining why the filament reaches its initial

length after each cycle. For this reason, only the shorter elements experience the applied force

upon restretching; therefore these elements determine the filaments’ stiffness, which is approx-

imately proportional to the number of parallel α helices. After each force cycle, an increasing

number of helices remain in the β state, therefore lowering the stiffness of the filament with

each cycle. A similar mechanism has been proposed for fibrin and collagen networks, where

elongation of individual fibers was identified as the origin of the observed tensile memory [25].

We performed MC simulations of an idealized vimentin model consisting of 100 ULFs in series

(Fig. 5.2 B, inset, fig. 5.6), each containing 32 parallel elements. The simulation illustrates that

the model qualitatively reproduces the experimentally observed tensile memory.

Figure 5.2D shows tracking of the numbers of parallel elements in the α state in eight typi-

cal MC-modeled ULFs during stretching. In the beginning of the stretching cycle, the number

of closed, α-helical elements stays almost constant until all parallel elements in a ULF unfold

rapidly in a reaction cascade, justifying the mapping of those parallel monomers on a single
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element in the two-state model. In contrast, during the relaxation of the filament, the number

of elements in theα state in a ULF increases at a steady rate because they do not experience the

force acting on the filament, leading to an incomplete refolding of ULFs at high rates, which, in

turn, causes the observed softening. In unstressed vimentin monomers, the α helix is the most

stable secondary structure with a lower energy compared to the β sheet conformation. There-

fore, a part of the energy uptake during stretching, referred to here as apparent dissipation, is

stored in the filament as potential energy if monomers remain in the β state after stretching

and relaxing. The stored energy is dissipated when the stress is relieved from the filament, since

eventually all elements return to the α-helical conformation. Thus, the parallel architecture of

vimentin leads to increased apparent dissipation.

5.3.3 Two Modes of Filament Elongation

To gain deeper insights in the different mechanisms of vimentin elongation, we additionally

performed constant force experiments at different forces from 50 to 700 pN. Representative FC

curves at 500 and 50 pN are shown in Fig. 5.3 (A and B), respectively. The data of all individual

curves are presented in a double-logarithmic plot in Fig. 3C. We observe two distinct regimes in

filament behavior: a stepwise lengthening at low forces (50 and 100 pN) and a creep-dominated

elongation at high forces (500 and 700 pN), with an intermediate regime at 250 pN (Fig. 5.3C).

We still observe steps even at higher forces, but the percentage of lengthening due to steps is

reduced compared to lower forces. A histogram of step sizes shows a most likely step size of

10 nm independent of the applied force (Fig. 5.3 D, fig. 5.7). Additional FC experiments with

maleimide-coupling between filament and beads (fig. 5.8) and relaxation experiments without

force-feedback showing improved step height resolution (fig. 5.9 and 5.10) confirm that the

steps are intrinsic to the filaments.

The observation of discrete elongation steps in vimentin filament agrees with the hypothe-

sis that α-β transitions in the monomers are the main mechanism for vimentin elongation and

dissipation at low strains. For full unfolding of one of the threeα-helical domains, one would ex-

pect a length change between 7.2 nm for the unfolding of domain 1A and 27.8 nm for domain 2

[7, 14, 26]. This agrees well with the experimentally observed step sizes. Under FC conditions,

the two-state model can be solved analytically. The model predictions for a typical filament

length of 10µm are shown in Fig. 5.3C for FCs at 50, 100 and 250 pN as orange, green and ma-

genta lines, respectively, and agree well with the experimental observations.

FCs at forces larger than the plateau force show a qualitatively different progression than

at lower forces (Fig. 5.3C). The elongation is dominated by creep (Fig. 5.3A) and the time-

dependent change in length can be well described by a power-law [27]. Power-law behavior is
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Figure 5.3: Response of individual vimentin IFs to applied constant force. (A and B) Examples of single vimentin fila-
ments responding to a constant force (FC) of 500 and 50 pN, respectively. Top: Constant force versus time.
Bottom: Filament extension versus time. Right: Histogram of filament length; power-law fit (red line). (C)
Log-log plot of the filament strain versus time for FC experiments on about 100 vimentin filaments at dif-
ferent forces from 50 to 700 pN. The three single curves in orange, green and magenta show the prediction
of the two-state model for a filament responding to a constant force of 50, 100 and 250 pN, respectively.
The cartoons illustrate the two elongation mechanisms: Top: Viscous sliding. Bottom: α-β transition. (D)
Histogram of all steps. (E) Power-law coefficients found for filaments at 500- and 700- pN FCs.

indicative of viscoelasticity with a broad distribution of relaxation times. The power-law coeffi-

cient b is a measure of the system’s viscosity with a coefficient between 0 and 1 for purely elastic

to purely viscous systems, respectively. Here, we find power-law coefficients of 0.2 (Fig. 5.3E),

which are typically found for living cells when discussed in the framework of soft-glassy materi-

als [27, 28]. In vitro vimentin networks were found to display mostly elastic behavior dominated

by the filaments’ persistence length, the networks’ mesh size, and the concentration of cross-

linking ions [21, 29–31]. It is important to note that the power-law viscosity observed in the

present work is only observable at large strains and large prestresses and should not be linked

to rheological data of vimentin networks that fulfill a linear stress-strain relationship.

The physical picture behind power-law rheology describes the material as discrete elements

aggregated by weak interactions, which lead to an energy landscape of multiple wells with dif-

ferent depths [27]. Here, each element is a vimentin subunit, forming a filament by weak inter-

actions. In this picture, the observed viscous flow equals sliding of vimentin subunits, for exam-

ple, the dimers moving against each other and thereby transferring momentum, as proposed

by molecular dynamics simulations of the vimentin tetramer [17].
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5.4 Discussion

Vimentin has remarkable mechanical properties, such as tensile memory, an enormous degree

of energy dissipation upon stretching, mostly due to nonequilibrium α-β transitions, and high

durability sustaining stresses of several megapascals, properties otherwise only observed in

high-performance biomaterials like fibrin/fibrinogen or spider silk [20–24]. The mechanical fea-

tures of vimentin filaments are most distinct at high strains and large loads of several hundreds

of piconewton. This finding raises the following questions: To what extent are these properties

of physiological relevance? In particular, are IFs in the cytoskeleton are under tensile load and

do cells experience and survive strains of that magnitude? Fudge et al. [32] found not only that

keratinocytes survived strains of 138 % but also that large strains cause straightening of keratin

IFs, confirming tensile load, and lead to elongation of IFs. Although there are no direct observa-

tions of IFs within cells stretched to large strains in vivo, the strain resilience of cells observed

in vitro supports a physiological relevance of the strains applied here.

The use of two different levels of mechanical modeling, a stochastic model explicitly taking

the parallel monomers into account and a coarser numerical effective two-state model fore-

going parallel elements, allowed us to relate our experimental observations to molecular pro-

cesses. Both models are limited in their application. The numerical two-state model fails to

reproduce all phenomena related to parallel elements in different folding states, such as the

tensile memory, and can therefore only be applied to initially relaxed filaments. However, in

this case, the model is suitable to quantitatively reproduce the nonlinear force response and

the energy dissipation during vimentin elongation. By contrast, the stochastic parallel element

model is computationally much more demanding, rendering any attempt of direct data fitting

unfeasible, and is difficult to combine with additional elements such as viscous contributions.

Nevertheless, both models are consistent with each other and reflect well how the hierarchical

organization of the vimentin filament affects its overall mechanical behavior. Both the tensile

memory and the pronounced energy dissipation can be related to vimentin’s architecture of

parallel monomers. In our analysis, ULFs partially in α-helical and partially in β sheet config-

uration play a crucial role by allowing a change in the filament’s stiffness without altering its

length.

We were able to demonstrate that the observed energy dissipation can be mostly explained

by nonequilibrium α-β transitions in the vimentin monomer. This reaction has been observed

early on in strained wool fibers [9] and, more recently, was also directly measured in an engi-

neered vimentin superstructure using wide-angle x-ray scattering [33]. Simulations of strained

vimentin dimers and tetramers illustrate how this transition occurs on the molecular level [17].

While it is so far not possible to directly observe this conformational change at the level of single
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filaments, the good agreement between the experimentally recorded force-distance curves and

the modeled curves based on this known conformational transition support the computational

prediction [14]. The strategy to use a nonequilibrium transition providing additional length to

the vimentin filament to maximize energy dissipation is fundamentally the same mechanism

as observed for spider silk, titin or fibrin [20–24], albeit using the more subtle α-β transition

compared to the unfolding of globular protein domains in titin and fibrin or β sheet crystals in

silk.

Because of their low persistence length compared to MFs and MTs, IFs were often assumed

to be of minor relevance for cell mechanics. However, the pronounced energy dissipation ob-

served here might indicate that IFs act as intracellular shock absorbers against tensile stresses,

as they are able to efficiently dissipate large amounts of mechanical energy, thereby protecting

the cellular integrity. This agrees with the observation that the effect of a keratin knockout in

keratinocytes on the mechanical properties is much more pronounced when the cells are sub-

jected to tensile stresses compared to compressive loading [2, 3].

We found that individual vimentin filaments get softer upon repeated stretching, whereas

the filaments’ length is not influenced by the strain history. While a similar behavior was ob-

served in networks composed of fibrin or collagen [25], vimentin behavior is notably distinct

from the observations for single fibrin [25] or titin [34] fibers, which show a change in length

upon repeated stretching cycles while maintaining their mechanical properties. This behavior

is consistent with our proposed mechanism based on the supramolecular architecture of vi-

mentin filaments using numerous highly ordered parallel monomers in contrast to both titin

and fibrin.

Vimentin is found in cells of mesenchymal origin that are exposed to relevant stresses, and

the ability to dissipate large amounts of energy may help prevent mechanical damages. For ex-

ample, the endothelium and smooth muscles form the intima and the media of blood vessels.

The tensile memory could potentially help these cells to be compliant with the beating of the

heart and the repeated pressure shift between systolic and diastolic blood pressure. This hy-

pothesis is supported by the observation that vimentin expression is elevated in cardiovascular

segments subjected to high blood pressure such as the pulmonary trunk, the aorta and the left

ventricle [35].

To conclude, our data reveal how the molecular structure of the vimentin monomer imparts

viscoelastic properties at larger length scales and show how extension far from equilibrium per-

mits the dissipate of a large amount of energy. We were able to directly observe step-wise elon-

gation of vimentin filaments attributed to α-β transitions in the protein monomers. The ULF

architecture of parallel extensible monomers permits the establishment of tensile memory at

repeated load, while sliding of the filaments gives rise to a power-law viscoelasticity at large
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strain. Thus, our results explain the intriguing mechanical properties of vimentin IFs, such as

extreme extensibility, tensile memory and a nonequilibrium mechanism for energy dissipation

by the particular molecular architecture of IF reliance on weak bonds that display controlled

and reversible failure in the filaments.

5.5 Material and Methods

5.5.1 Vimentin Expression and Purification Protocol

Escherichia Coli T61 cells (#3017, Zymo Research) were used to recombinantly express human

vimentin C328A with additional amino acids GGC at the C-terminus (plasmid DNA from H.

Herrmann, German Cancer Research Center). The protocol was adopted from Herrmann et al.

[36] One hundered microliters of thawed bacteria solution and 1µl plasmid solution (1µg/µl;

diluted 1:100) were mixed and incubated on ice for 5 min. Fifty microliters of this mixture was

plated on an ampicillin-containing lysogeny broth agar plate (L5667, Sigma-Aldrich) and incu-

bated at 37 ◦C overnight.

Single bacteria colonies were picked, transferred into 50 mL terrific broth (TB; 47.6 g/liter;

#T0918, Sigma-Aldrich) medium containing glycerol (10-11 g/liter) and ampicillin (0.1 mg/ml;

Sigma-Aldrich), and incubated at 37 ◦C and 150 rpm. After 6 hours, the bacteria solution was

transferred to 1 liter fresh TB medium containing ampicillin (0.1 mg/ml) and was allowed to

grow at 37 ◦C and 150 rpm overnight.

Protein preparation started by pelleting bacteria with a Beckman centrifuge (Beckmann Coul-

ter Avanti J-26 XP, rotor JS5.3) at 5000 g for 15 min at 4 ◦C . During the subsequent steps, the

protein was always kept on ice. The pellet was transferred to a cooled douncer, homogenized

with 16 ml of tris buffer (50 mM; pH 8.0; Carl-Roth GmbH) containing saccharose (25 %, w/v),

EDTA (1 mM, Carl-Roth GmbH), and lysozyme (10 mg/mL, Roche Diagnostics), and incubated

on ice for 30 min. Eight hundred microliters of MgCl2 solution (1 M, Sigma-Aldrich), 80µl of de-

oxyribonuclease I (DNase 1; 50 mg/ml; Sigma-Aldrich) in tris buffer (10 mM; pH 7.5) containing

NaCl (100 mM; Carl-Roth GmbH), 80µl ribonuclease A (RNase A; 10 mg/ml; Roche Diagnostics)

in tris buffer (100 mM; pH 7.5), 800µl saturated phenylmethylsulfonyl fluoride (PMSF; Serva)

in ethanol, and 1.6 ml of 10 % NP-40 (Roche Diagnostics) were added and mixed several times

by homogenization. Forty milliliters of tris buffer (20 mM; pH 7.5), containing NaCl (200 mM),

NP-40 (1 %), EDTA (2 mM), and 3α,12α-di-hydroxy-5β-cholanic acid sodium salt (1 %; Sigma-

Aldrich), was complemented by 800µl of a 1 M 1,4-di-thiothreitol solution (DTT; Carl-Roth

GmbH), 1.2 ml PMSF and 400µl of a 50 mM Pefabloc SC solution (Carl-Roth GmbH), and added

to the douncer/bacteria solution. The mixture was incubated for 10 min, transferred to Nalgene
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centrifuge bottles (250-mL PPCO-centrifuge bottles with sealing closure, Thermo Fisher Scien-

tific) and centrifuged for 25 min at 10,000 g and 4 ◦C using a Beckman centrifuge (Beckman

Coulter Avanti J-26 XP, rotor JLA 16.250). The supernatant was discarded, and the pellet was

washed by homogenization in the douncer using washing buffer [80 ml of tris (10 mM; pH 8.0)

containing Triton X-100 (0.5 %, v/v; Carl-Roth GmbH) and EDTA (5 mM)] complemented by

80µl of a 1 M DTT solution, 400µl of PMSF, and 200µl of a 50 mM Pefabloc SC solution. The

mixture was incubated 10 min on ice and centrifuged using the same conditions as for the pre-

vious step. Supernatant was again discarded, and the pellet was washed using 80 ml of washing

buffer containing KCl (1.5 M) complemented by 80µl of a 1 M DTT solution, 400µl of PMSF, and

200µl of a 50 mM Pefabloc SC solution. After homogenization, the mixture was incubated for

30 min before centrifugation, which was performed as before. The third washing step was the

exact repeat of the first washing step. For the last washing step, 80 ml tris (10 mM; pH 8.0), con-

taining EDTA (0.1 mM) complemented by 80µl of a 1 M DTT solution, 400µl of PMSF and 200µl

of a 50 mM Pefabloc SC solution, was used. As before, the pellet was washed and incubated for

10 min, and the mixture was centrifuged. The supernatant was discarded, and the pellet was

transferred to a douncer, warmed to room temperature, and solubilized in urea solution (9.5 M).

The recipe for the urea solution was as follows: 7.125 ml urea (9.5 M; Carl-Roth GmbH), 75µl of

1 M tris (pH 7.5), 75µl of 0.5 M EDTA, 75µl of PMFS and 75µl of 1 M DTT. To yield a high pro-

tein concentration, as little of the urea solution as possible was used to dissolve the pellet. The

solution was homogenized and finally centrifuged using a Beckman ultracentrifuge (Beckman

Coulter Optima L90K, rotor Ti70) at 20 ◦C and 100,000 g for 60 min. The vimentin-containing

supernatant was transferred to a Falcon tube, and methylamine hydrochloride solution (MAC;

Sigma-Aldrich) was added to a final concentration of 10 mM.

For purification from the supernatant, an anion exchange chromatography step was followed

by a cation exchange chromatography step. For anion exchange chromatography, a chromatog-

raphy column (inner diameter, 15 mm; length, 200 mm; volume, 35 ml; #7317-1522; BioRad)

was prepared according to the user’s manual. As column material, 10 ml of DEAE sepharose

(GE Healthcare) was mixed with 10 ml of column buffer [400 ml of urea (10 M), 50 ml of 50 mM

tris (pH 8.0), containing EDTA (10 mM) and EGTA (1 mM), filled to 500 ml with MilliQ water and

complemented by 500µl of 1 M DTT] [a final pH of 7.5 was adjusted by hydrochloric acid (Carl-

Roth GmbH)]. A KCl gradient was used to elute the protein. To do so, a gradient mixer (2 x 50 ml;

Schütt 24) was filled with 40 ml of column buffer in the front chamber and 40 ml of column

buffer containing 0.896 g KCl (Carl-Roth GmbH) in the rear chamber. When the sample entered

the column, it was washed with two bed volumes of column buffer using a slow flow velocity.

When the collected flow-through was equal to the dead volume of the column, the KCl gradient

was started, and sample collection began (fractioning in 1.5 mL tubes). The protein concen-
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tration was monitored by measuring the absorption at 280 nm (NanoDrop, ND-1000, Thermo

Fisher Scientific).

As an additional quality control, an 8 % SDS gel was performed using samples collected after

each purification step and from fractions of interest after chromatography. Fractions with high

protein concentration after the DEAE column were pooled for a cation exchange chromatog-

raphy, which was performed in analogy to the anion exchange chromatography but with CM

Sepharose (GE Healthcare) as column material. In addition, the rear chamber was filled with

40 ml of column buffer containing 1.792 g KCl. The protein concentration of collected liquid

was again monitored by measuring the absorption at 280 nm and fractions with high protein

concentration were pooled. Lastly, MAC was added to the vimentin solution to a final concen-

tration of 10 mM. Aliquots of the protein solution were stored at -80 ◦C .

5.5.2 Vimentin Labeling

For fluorescence imaging of vimentin filaments and binding to streptavidin-coated beads, the

protein was labeled with ATTO647N-maleimide (AttoTech GmbH) and biotin-maleimide (Jena

Bioscience GmbH), respectively. Labeling was performed as described by Block et al. [14] and

Winheim et al. [37].

5.5.3 Vimentin Reconstruction and Assembly

Labeled and unlabeled vimentin was stored in 8 M urea at -80 ◦C . By step wise dialysis (8, 6, 4, 2,

1, 0 M urea) into phosphate buffer [2 mM, pH 7.5 disodium hydrogen phosphate (Sigma Aldrich)

and sodium dihydrogen phosphate (Sigma Aldrich)], vimentin renaturation and dimer and

tetramer formation were initiated. For dialysis, unlabeled and labeled vimentin was mixed in

the desired ratio and transferred to 50-kDa cutoff dialysis tubing (SpectraPor, Carl-Roth GmbH).

Each dialysis step had a duration of 30 min. Lastly, the dialysis tubing containing the vimentin

was placed in 2 mM phosphate buffer for 2 h at room temperature or at 10 ◦C overnight.

Filament formation was initiated by KCl. To do so, the vimentin concentration was adjusted

to 0.2 g/liter, monitored by ultraviolet-visible spectrometry, by adding phosphate buffer. After-

wards, vimentin was placed in a fresh piece of 50-kDa cutoff dialysis tubing, placed in phos-

phate buffer (2 mM; pH 7.5), containing KCl (100 mM), and kept at 37 ◦C overnight. This dialy-

sis procedure ensured filaments that were homogeneous in diameter [6]. Assembled filaments

were diluted 1:10 with KCl-containing phosphate buffer and kept at 4 ◦C or on ice until further

use. The morphology of the assembled filaments was monitored by epifluorescence microscopy,

atomic force microscopy, end electron microscopy and found to be the typical morphology of

IFs (see fig. 5.12).
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5.5.4 Maleimide Functionalization of Beads

Functionalization of carboxylated polystyrene beads (4.0-4-4µm; 5 % w/v; PPs-4.2COOH;

Kisker biotech GmbH & Co.KG) was performed according to Janissen et al. [38]. Beads

were coated using maleimide-PEG-NH2 (molecular weight 5000 Da; PG2-AMM2-5k, Scholz

Labor- und Klinikversorgungs GmbH), NH2 -PEG-OH (Iris-Biotech) and 1-ethyl-3-(3-dimethyl-

amino-propyl)-carboxiimide (E1769-1G, Sigma-Aldrich). Functionalized beads were stored in

1x phosphate-buffered saline (lot no. 73604799A, Invitrogen AG) containing 2 % bovine serum

albumin (A7906-10G, lot no. SLBB476V, Sigma-Aldrich).

5.5.5 Experimental setup and procedure

Vimentin force-extension experiments were performed using instruments combining dual op-

tical tweezers (for manipulation) and fluorescence microscopy (for visualization). Most experi-

ments were performed on a LUMICKS C-Trap equipped with confocal fluorescence microscopy.

Some experiments were performed on a laboratory-built instrument equipped with wide-field

fluorescence microscopy [39]. Both instruments use comparable, dual optical traps and an iden-

tical microfluidic flow cell containing at least three parallel laminar-flow channels (Fig. 5.1A,

top).

All solutions (beads in KCl-containing phosphate buffer, vimentin in KCl-containing phos-

phate buffer and pure KCl-containing phosphate buffer) were flushed into the microfluidic

chamber using air pressure. Because of laminar flow, they do not mix but flow parallel to each

other. For every data set, a fresh pair of beads (4.5µm streptavidin coated polystyrene beads,

Spherotech Inc.) was captured in the bead channel (channel 1) and, by moving the microfluidic

chamber with respect to the tweezers, passed through the vimentin channel (channel 2) into

the buffer channel (channel 3), where the measurement was performed after the flow had been

stopped. While passing through channel 2, vimentin filaments bound to the beads. By moving

the second bead closer to the first bead, one filament eventually bound to the second bead. To

be sure that there was only one filament between the two beads, confocal imaging was used.

Experiments were performed by moving the second bead, while the first stable bead was used

for the force measurement.

5.5.6 Analysis of Optical Tweezers Data

Data sets were exported in ASCII format from the measuring software (Twom, LUMICKS). The

bead diameter was subtracted from the distance measurements, and time and force values were

directly used as measured. Only data sets with filaments that were stable for at least three cycles
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were taken into account. As a threshold to determine the initial filament length, the measured

distance at the highest force still smaller than 5 pN at the beginning of the stretching process

was used. Using the initial filament length, the strain was calculated for all data sets. The data

point density was very high, and missing bead tracking occurred only rarely. Thus, data points

with falsely zero distance due to lost tracking were neglected for further analysis. We also ne-

glected data points recorded before the initial filament length was reached and after the fila-

ments broke.

The slopes of repeated force cycles were determined by fitting the force-distance curves for

strains between 0 and 0.1 by a straight line. The error bars in Fig. 5.2C show the SEM.

To determine the power-law coefficient b, a power-law ∆L
L0

= A
(

t
t0

)b
, with the power-law pref-

actor A, the initial length L0, and the time scale set arbitrarily to t0 = 1 s was fitted to the time-

dependent change in length ∆L during the FC experiment.

In order to access the size of the jumps in filament length during FC experiments, we ana-

lyzed the distribution of the measured filament lengths. The distribution is shown as histograms

on the y-axes in Fig. 5.3 (A and B) and fig. 5.10 (A and B). The plateaus between the jumps cor-

respond to peaks in the filament length distribution. Therefore, the step size can be obtained

as the distance between two adjacent peaks. To avoid artifacts due to binning, we used kernel

density estimates with a Gaussian kernel with width σ= 1.7 nm (the experimental uncertainty)

instead of histograms. Only peaks with a minimal height of 5 % of the highest peak were ana-

lyzed.

5.6 Models

5.6.1 Effective Two-State Model

The filament with length x is modeled as an elastic spring with extension x1 coupled to an

equivalent freely jointed chain (eFJC) with end-to-end distance x2. Since each monomer, and

hence the whole filament, is able to change its contour length LC in response to applied forces

via the transition of theαhelices into an elongatedβ sheet, the contour length, LC(F, t ) becomes

a function of time t and force F (t ) (for the sake of readability we will state neither explicit nor

implicit dependencies going forward).

Assuming a Bell-Evans kinetic for the α-β transition for each of the three α-helices in the

monomer (the three α helices, 1A, 1B, and 2, are indicated by subscripts i = 1,2,3), the number
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Nβ,i of monomers with the i th subunit in the β state is described by the following rate equation:

dNβ,i

dt
= (

N0 −Nβ,i
)

·kα→β

i ·exp

(
F · xα,i

kBT

)
−Nβ,i ·kβ→α

i ·exp

(
−F · xβ,i

kBT

)
(5.1)

with zero-force reaction rate kα→β

i and potential width xα,i for the α-β transition, zero force

reaction rate kβ→α

i and potential width xβ,i of the reverse β-α transition, and the total number

of monomers in a filament N0 = Nα,i + Nβ,i . Here we assume that parallel monomers can be

described by a single kinetic, as described by Friddle et al. [40]. From Nβ,i and the lengths of

α helices lα,i , β sheets lβ,i , and all combined linker regions l0 , we can calculate the contour

length LC of the filament

LC = N0 · l0 +
∑

i

(
Nβ,i · lβ,i +Nα,i · lα,i

)
(5.2)

Using the large-force approximation for an eFJC characterized by the Kuhn length LK, we can

calculate the extension of the entropic spring x2 as

x2 ≈ LC

(
1− FK

F

)
(5.3)

with the force scale FK = kBT
LK

. For a semiflexible chain, the Kuhn length is equivalent to twice the

persistence length LK = 2LP [41]. The serial Hookian spring, which combines elastic contribu-

tions from both the filament and the pulling apparatus, is characterized by its spring constant

keff and its extension x1. The force acting on the spring is F = keff · x1 = keff · (x − x2). With equa-

tion (5.3) we obtain:

F = keff

(
x −LC

(
1− FK

F

))
(5.4)

When the filament is stretched up to the time tmax and subsequently relaxed with a constant

velocity v , the extension of the filament changes to

x =
{

v t for t ≤ tmax

v tmax − v (t − tmax) for t ≥ tmax
(5.5)

The refolding of α helices from β sheets was neglected previously (kβ→α

i = 0) because refold-

ing was expected to be suppressed by the high forces during stretching of the filaments but

plays an important role during relaxation, which occurs at lower forces. Equation (5.1) includes

a nonobvious assumption: We describe all parallel elements by a single effective element, which

is possible since unfolding of all parallel elements occurs in a rapid reaction cascade, essentially

an all or nothing process (see Fig. 5.2 D). Describing the formation of α helices as the back re-

action of the α-β transition implies that both reactions have the same specific characteristics,
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that is, that all parallel elements react rapidly from β sheets to α helices. However, we actu-

ally know from repeated pulling and relaxation experiments that this assumption is not valid,

since we observe tensile memory attributed to a fraction of parallel elements remaining in the

β state (see also Fig.5.2D). Equation (5.1) still provides a useful effective description of both

the stretching and the relaxation curve of vimentin filaments, since the partially folded array of

parallel elements is similar in length to the all-α configuration. However, kβ→α

i and xβ,i should

be strictly considered apparent or effective values and not be over-interpreted numerically. In

the effective two-state model, a ULF will still appear as the shorter α helix, even if some of the

parallel elements in that ULF are in the extendedβ state. This means that, like in the experimen-

tal curves, the energy dissipation in the effective two-state model is an apparent value, since a

certain amount of energy is stored as potential energy in the β sheets.

Equation (5.1) can be solved numerically for each of the three α helices together with equa-

tion (5.2) and (5.4) to obtain F . It was shown previously for simple stretching experiments with-

out subsequent relaxation that this simple model is able to reproduce experimental curves

over a wide range of loading rates, even if real structural data to determine lα,i (5.4, 13.8,

and 20.9 nm), lβ,i (12.6, 32.2, and 48.7 nm), and l0 (29.7 nm) and literature data for kα→β

i =
3.3×10−5 s−1 were used (13). The most likely parameters in the fits of 244 experimental curves

were found to be keff = 0.23 pN/nm, xα,1 = 0.11 nm, xα,2 = 0.13 nm, and xα,3 = 0.15 nm. Since

the extension curve was only slightly affected by the inclusion of the backwards reaction, we

used the parameters determined previously for keff and xα,i · xβ,i was chosen such that there

was a fixed ratio between the two potential widths rF = xβ,i

xα,i
= 2.3 for all the helices. The back-

reaction rate was set to kβ→α

i = 5.4 s−1.

To account for creep behavior, we introduce a dashpot with length x3 as a third element in

series to the entropic and the linear spring such that the total length is x = x1 + x2 + x3. This

element shows idealized viscous behavior that can be described by

dε

dt
= σ

η
(5.6)

with the strain ε, the viscosity η and the stress σ = F
A with the area of the cross section A. The

cross-section area was estimated from the filaments diameter of d ≈ 10 nm. The time derivative

of the strain can be related to the time derivative of x3 via dx3/L0
dt = dε

dt with a typical value for

the initial filament length of L0 = 10 µm. Equation (5.6) is solved numerically together with

equation (5.1) using η= 3.2 GPas.

The shape of the experimental retraction curve indicates a strong decrease of the persistence

length of vimentin filaments during stretching andα-β transition. The persistence length of the

unstretched filament with all monomers in α-helical configuration is known from literature to
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be LP,α = 1000 nm, leading to the force scale FK,α ≈ 0.002 pN [42]. However, the shape of the

relaxation curve suggested a substantially smaller persistence length (see fig. 5.5). Therefore,

we introduced a second persistence length for the stretched filament LP,β with a corresponding

force scale FK,β. We interpolated linearly between the two different force scales, FKα for Nβ,i = 0

and FKβ for Nβ,i = N0, leading to a strain dependence of the persistence length.

5.6.2 Analytical Solution for FC Conditions

Under FC conditions, that is, at constant force, the analytical solution of equation (5.1) becomes

straightforward. Since we rarely observe any shortening of the filament during FC experiments,

even at the lowest force of 50 pN, we can neglect the restoration of α helices from β sheets.

When the force F is constant, the force-dependent reaction rate kα→β

i ,F = kβ→α

i ,0 ·exp
(

F ·xα,i
kBT

)
also

becomes a constant. Therefore, the solution of equation (5.1) reads

Nα,i ,F = N0 ·exp
(
−kα→β

i ,F · t
)

(5.7)

Equation (5.2) is then used to calculate LC, and equation (5.3) allows us to calculate x2. x =
x1 + x2 is used to calculate the filament length. The strain is calculated using ε = x−L0

L0
with a

typical value for the initial filament length L0 = 10 µm. The value used for L0 only affects the

contribution of the elastic extension x1 to the strain ε and has therefore only a minor impact on

the resulting curves.

5.6.3 MC Simulation of Unfolding and Refolding of Parallel Elements

More complex behavior of vimentin IFs, such as the tensile memory, cannot be described with-

out explicitly considering the architecture of ULFs consisting of parallel elements, as sketched

in fig. 5.6. It is convenient to introduce dimensionless force φ= F /Fα by normalization with the

force scale of the α-β transition Fα, dimensionless length scale λ = L/∆L using the length dif-

ference ∆L between α state and β state and dimensionless time τ= t ·kα→β
0 with the zero-force

reaction rate kα→β
0 of the α-β transition of a single monomer.

The dimensionless stiffness of the filament κTOT = ∆φ
∆λ depends on the stiffness of the ULF

κULF and the number of ULFs in the filament NS

κTOT =
(

NS∑
j=1

1

κULF, j

)−1

(5.8)

The simplest model to describe the elasticity of the ULF is a parallel arrangement of NT

springs with stiffness κP. Each of these springs is arranged in series to an element that can
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change its length in a force dependent manner, representing the α helices that can switch into

an extended β sheet, with NP elements in α-helical configuration. Together with an additional

spring with stiffness κV serial to this element representing linkers and the connection between

ULFs, the stiffness of one ULF is:

κULF, j =
(

1

κV
+ 1

κP · NP, j

)−1

(5.9)

To illustrate that this mechanism is suitable to generate tensile memory, we performed MC

simulations. For simplicity, we neglected entropic contributions to the elasticity and viscous

contributions and used only one extendable element for each ULF as opposed to the three he-

lices used in the numerical description above.

Each ULF j is characterized by the number of elements NP, j in the shorter α-helical state.

Since the elements can switch between α state and β state, the number of α-helical elements

in each individual ULF is described by the master equation

dPN

dt
= rβ→α

N−1 ·PN−1 + rα→β

N+1 ·PN+1 −
[

rβ→α

N + rα→β

N

]
·PN (5.10)

where PN represents the probability that N parallel elements are in the α-helical state, rα→β

N is

the rate of the α-β transition and rβ→α

N is the rate of the reverse reaction.

When all parallel elements are in the elongated state, that is, the β-state, the ULF is extended

by ∆L. Since the length scale is normalized by ∆L, the dimensionless extension of the j th ULF

λ j can be described as

λ j =
{

0 for NP, j > 0

1 for NP, j = 0
(5.11)

The total extension of the filament is λTOT = ∑NS
j=1λ j . The total force acting on a filament

with end-to-end distance x is given by φ = κTOT · (x −λTOT). The time-dependent end-to-end

distance of the filament x(t ) is calculated according to

x =
{
ν ·τ for τ≤ τmax

xmax −ν (τ−τmax) for τ≥ τmax
(5.12)

using the dimensionless velocity υ = δλ/δτ and the maximal extension xmax = υ ·τmax at the

time point τmax. The reaction rates were chosen similar to the ones for the effective two-state

model described above. The rates are a function of the force acting on each of the parallel ele-

ments φP, j . If there is at least one element in α state, then each of these elements experiences

φP, j = φ
NP, j

, while the extended elements are force-free. The reaction rate rα→β

NP, j
can therefore be
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expressed as

rα→β

NP, j
= NP, j ·exp

(
φ

NP, j

)
(5.13)

If all elements of an ULF are in the extended β sheet conformation, then the force will be

shared between them such that φP, j = φ
NT

. Therefore, the reaction rate is

rβ→α

NP, j
=

{ (
NT −NP, j

)
·γ for NP, j > 0

NT ·γ ·exp
(−φ

NT

)
for NP, j = 0

(5.14)

using the normalized rebinding constant γ = k
β→α
0

k
α→β
0

with the zero-force reaction rate kβ→α
0 of

refolding. The free-energy difference between α helix and β sheet is ∆G
kBT = ln

(
γ
)
.

This set of equations was solved by MC methods using the Gillespie algorithm with initial con-

dition NP (t = 0) = NT

(
1−exp

(
−∆G
kBT

))
, that is, the system being in thermal equilibrium. When

multiple consecutive pulling cycles are simulated, NP, j at the end of each cycle was used as

the initial condition for the next cycle. The parameters used to produce Fig. 5.2 (B and D) were

NS = 100, NT = 32, κP = 10, κV = 100, υ= 2000 and ∆G
kBT = 2. The Jupyter Notebook [43, 44] used

to produce the data shown in Fig. 5.2 (B and D) is included as supplementary information.
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5.7 Supplementary Materials

Figure 5.4: Vimentin Assembly: IF formation follows a complex and hierarchical scheme.
Vimentin Assembly: IF formation follows a complex and hierarchical scheme. Lateral assembly of
monomers via parallel coiled-coil dimers yields half-staggered anti-parallel tetramers. Upon the addi-
tion of salt (in this case 100 mM KCl) unit-length filaments (ULFs) are formed. Longitudinal annealing
of these ULFs results in mature, elongated filaments of 10 nm in diameter. This hierarchical architecture,
together with the secondary structure of each monomer, provides a basis for understanding the structure-
function relationship in the context of filament mechanics.
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Figure 5.5: Comparison of calculated (two-state-model) stretching and relaxation curves for different values of
the persistence lengths LP (color-coded; see legend). Persistence lengths of 0.5 nm and 1 nm are able to
reproduce the convex shape observed experimentally. LP values for relaxed vimentin were reported to be
on the order of a few µm [42, 45]. LP of a rod scales with the filament radius as r 4. Assuming volume
incompressibility, thinning of the filament at 120 % strain only predicts a reduction of LP by a factor
of approximately 5, which is not sufficient to reproduce the shape of the retraction curve, i.e. explain the
low LP. A more dramatic decrease in LP could, however, occur if the interaction between parallel elements
was partially lost due to the α-β-transition, such that they do not act as a single chain, but behave like
multiple uncoupled, parallel worm-like chains.
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Figure 5.6: Sketch of the equivalent circuit diagram used for setting up the MC simulations.

Figure 5.7: Step size analysis of force clamp data sets. Histograms show the step size distribution per force (50, 100,
250, 500 and 700 pN) and the total distribution of step sizes.
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Figure 5.8: Step size analysis of data sets with filaments covalently bond to beads via malemide-chemistry. His-
tograms show the step size distribution per force clamp force (50, 100, 250 and 500 pN) and the total
distribution of step sizes. Since the step size distribution is comparable to filaments coupled via biotin-
streptavidin interactions, we can exclude the filament-bead bond as the cause for the steps. The steps can
therefore unequivocally be assigned to intrinsic structural changes in the filament.

Figure 5.9: Step size analysis of relaxation data sets. Histograms show the step size distribution per starting force
(50, 100, 250, 500 and 700 pN) and the total distribution of step sizes. Individual filaments were pulled
until a certain force was reached, and were allowed to relax afterwards without force feedback.
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Figure 5.10: Vimentin relaxation experiments starting from different forces. (A, B) Examples of single vimentin
filaments. Filaments were stretched until a force of 500 or 50 pN, respectively, was reached and were
allowed to relax while the optical tweezers were kept at a constant position. The upper graph in each
example shows the force vs. time, the lower one shows the filament extension vs. time. On the right,
the filament length is shown as a histogram to illustrate steps in the extension curve more clearly. (C)
Log-log plot of force vs. time for creep experiments on numerous vimentin filaments at starting forces
between 50 and 700 pN (see color code). The time offset of several seconds is due to the experimental
setup. Filaments are stretched to the starting force while the data set is already acquired. Data recorded
before the starting force is reached, are not shown in this plot.
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5.7.1 Movie S1

The supplementary movie shows the epi-fluorescence recording of the stretching cycle which

is shown in Figure 5.2A in the main text. This video clearly shows that the filament softening

does not result in buckling events when the filament is relaxed, but the filament stays straight

and fully in focus. The buckling events, which are visible in the video, are due to the fact that

the beads were moved closer together than the initial filament length at the end of most of the

stretching-relaxation cycles. To clarify this point, the raw data of this measurement are shown

in fig. 5.11. Data acquisition was started with a delay relating to the fluorescence video. The

beads are moved close to each other in the beginning of the video to ensure that the filament

is completely relaxed, then the force measured by the system is set to zero, data acquisition is

started and the cycle begins. This means that the buckling in the very beginning of the video is

not visible in the data set. The length of the filament (the distance between the two beads at the

last force value below 5 pN, as defined in the Material and Methods section: "Analysis of optical

tweezers data") measured in this experiment was 8.996 µm. This value is marked by a blue line

in all graphs in fig. 5.11.

Neither with epi-fluorescence nor with confocal fluorescence microscopy it is possible to

resolve buckling of individual monomers within one ULF. However, it is true that length differ-

ences of the monomers as they occur when some of the monomers within the same ULF return

to the α state while others are still in the β state (illustrated in the cartoon in fig. 5.6) have to

result in buckling or compression of the "longer" monomers. Note, however, that a monomer

can even be partly in α state and partly in β state.
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Figure 5.11: Data corresponding to the cycle shown in movie S1. The blue line in all graphs marks the filament
length. (A) Bottom: distance vs. time, full data set, also shown in fig. 5.2A top; Top: distance vs. time,
zoom in y-direction to focus on the fact that the two beads are moved closer together than the initial
filament length. (B) Left: force vs. distance, full data set, also shown in fig. 5.2A bottom; Right: force vs.
distance, zoom in x and y-direction.

Figure 5.12: Quality control of labeled, assembled vimentin filaments. All three images show ATTO647N- and
biotin-labeled vimentin filaments with a total labeling ratio of less than 10% (A) atomic force mi-
croscopy (AFM) (image from Ref. [14]), (B) epi-fluorescence microscopy, (C) electron microscopy (EM).
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Figure 5.13: Simulations, cycles, and comparison for different numbers of monomers per ULF. (A) Kinetic MC
simulations as shown in Fig. 5.2B of the main text, 32 monomers per ULF/cross-section of the filament.
(B) Corresponding simulation for 48 monomers per ULF/cross-section. No qualitative difference is ob-
served.
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Chapter 6

Mechanical Response of Glutaraldehyde

Stabilized Vimentin IFs

6.1 Introduction

Glutaraldehyde has been widely used to stabilize and immobilize proteins, e.g. in histochem-

istry, AFM or EM [1, 2]. A standard protocol to prepare EM samples of Class III IFs involves

glutaraldehyde fixation prior to the adsorption to the EM grid in order to preserve their archi-

tecture [3]. Depending on the conditions glutaraldehyde is known to react with about half of

the amino acids in a reversible manner [1]. Yet, the highest reactivity is reported for lysine and

the lowest reversibility was found for pH 7.0 to 9.0 [1].

AFM images of glutaraldehyde fixed vimentin IFs on a mica surface revealed a pattern of

the surface structure with a repetition length of 21 nm along the axis of the filament both

for measurements in air and under physiological buffer conditions [4]. However, Mücke et al.

found a correlation between the morphology of glutaraldehyde fixed vimentin and the surface

type it is adsorbed to indicating that the observed structures were affected by the underlying

substrate. Depending on the surface type the filaments did more or less flatten and sponta-

neously rearrange without disrupting the global filament structure [5]. AFM measurements of

glutaraldehyde stabilized single vimentin filaments spanned over holes on a structured sub-

strate (Fig. 2.2 B) showed a two to three times increase in the bending modulus compared to

non-stabilized filaments [2].

In the early 1990th Steinert et al. looked into the lysine-lysine cross-linking by disulfosuccin-

imidyl tartrate (DST) in vimentin filaments [6]. They found 16 cross-links, where five were lo-

cated in the parallel coiled coil dimer, and eleven between different dimers. Fig. 6.1 shows a

sketch of the vimentin monomer, dimer and the different tetramer types. Nine of the eleven
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Figure 6.1: General monomer and dimer structure and different types of tetramers of vimentin IFs. The A11 tetramer
is most likely the basis for further lateral and subsequently longitudinal assembly. The A22 dimer was
observed in vitro [6] and is also found as part of the filament as the overlapping part of two ULFs has
the form of several A22 tetramers. The A12 "tetramer" does not exist in the tertameric form, but was only
found as cross-linking product in polymers and mature filaments.

cross-links were found in half staggered tetramers – six in the A11 and three in the A22 tetramer.

The A11 tetramer is believed to be the subunit of ULFs [7], but when two ULFs come together,

the overlapping parts combine and form approximately an A22 tetramer. The last two cross-link

types were only found in mature filaments, and were located in fully overlapping dimers in an

A12 arrangement [6]. Downing reanalyzed the data obtained by Steinert et al. and pointed out

that cross-links are unlikely to occur between two lysines which are both within an α-helical

region [8]. In fact, the five cross-links in the dimer are between lysines outside of α-helices and

only one of the reported cross-links connects two lysines which are both within an α-helix [8].

From the amino acid sequence and structure of the A12 tetramer there would be at least eight

more pairs of lysine that could be candidates for cross-linking but did not appear [8]. However,

this might be due to the architecture of the mature filament as this tetramer is not found as an

assembly intermediate.

Taking these studies together, there is evidence that inter-dimer sliding [9, 10] would not be

easily possible anymore in the cross-linked filament. Unfolding of α-helices (e.g. [10–12]) in-

stead might still be possible, however, it would most likely be necessary that several parallel

helices do unfold at the same time.

Here the mechanical properties of single, glutaraldehyde stabilized vimentin IFs are directly

tested by OT measurements and the results are compared to the properties of non-stabilized

filaments which are presented in the two previous chapters. Compared to the described AFM
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experiments [2, 5] two major differences can be pointed out. Firstly, as for the other experiments

performed in the scope of this thesis, there is no solid support during the measurements. The

filaments are freely fluctuating between the two beads in the buffer solution. The other differ-

ence is that not the whole sample solution is incubated with glutaraldehyde at the same time,

but a single filament is first captured between the two trapped beads and then moved into a glu-

taraldehyde containing buffer solution for five minutes. Importantly, the filaments are stretched

to their contour length while the fixation takes place. This means that cross-linking is restricted

to amino acids that are structurally closely related, no "loop" formation or fixation of buckling

is possible.

To ensure comparability the data of glutaraldehyde stabilized filaments were processed the

same way as the data of non-stabilized filaments. In the following sections the data of both, the

stabilized and the non-stabilized filaments, are shown next to each other and to the same scale.

6.2 Loading-Rate-Dependency

Untreated vimentin filaments exhibit a clear loading-rate dependent stretching behavior for

loading-rates ranging from 0.05 to 4.5µm/s [12] as shown in Fig. 6.2 B and D. In comparison,

filaments stretched with loading-rates ranging from 0.02 to 2.5µm/s after glutaraldehyde sta-

bilization, presented in Fig. 6.2 A do not show this clear dependency. Albeit, the average curves

per velocity (Fig. 6.2 D) reveal that filaments stretched with the fastest velocity (2.5µm/s) are

shifted towards slightly higher forces compared to filaments stretched with velocities ranging

from 0.02 to 1.25µm/s. It is therefore not possible to exclude a loading-rate dependent behavior

at higher loading-rates. However, compared to untreated vimentin filaments, the loading-rate

dependency is at least reduced and the plateau region, where in untreated filaments theα-helix

to β-sheet transition takes place, is clearly shifted to higher force values.

Taking the results from references [6] and [8] and the data presented in Fig. 6.2 together it is

plausible that the mechanism of α-helix unfolding is the basis for filament stretchability also in

glutaraldehyde stabilized filaments, though unfolding of several parallel subunits at the same

time is most likely required. This also explains the higher plateau force as presumably a higher

force is needed to unfold several cross-linked α-helices simultaneously than one parallel helix

after the other.

Interestingly, more force is needed to stretch glutaraldehyde stabilized filaments but the final

strain is comparable to untreated filaments that were stretched at medium to high loading rates.

According to the two-state model [12], the reduced final strain in untreated filaments can be

attributed to α-helices or parts of α-helices that do not unfold anymore. Looking into the cross-

links Steinert et al. found for vimentin, it might be possible that an unfolding of parts of the
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Figure 6.2: Velocity dependent behavior of untreated and glutaraldehyde stabilized vimentin filaments. Filaments
stretched with approximately the same loading rate are plotted in the same color for stabilized and
non-stabilzed filaments. Individual (A) and average (C) curves of glutaraldehyde stabilized filaments
stretched with five different loading rates covering two orders of magnitude (see color code). Individual
(B) and average (D) curves of non-stabilized filaments at five different loading rates covering two orders
of magnitude (see color code).

monomers is not possible anymore or that they are so tightly cross-linked that the amount of

force applied by an OT is not sufficient to unfold this parts.

Only four of the suggested cross-linking positions are directly related to the past-stutter-part

of the vimentin coil 2, two of those are at the very end of coil 2 and two lie within the coil. The

other 12 cross-links are within or at both ends of the coil 1 region, leading to the hypothesis

that coil 2 can still unfold more easily than the other parts of the monomer. This well fits the

unfolding behavior of untreated filaments at higher loading rates, as also here the coil 2 does

most likely unfold first and coil 1A and 1B are less likely to open up.

Fig. 6.3 shows examples of full stretching-relaxation cycles of glutaraldehyde stabilized

(Fig. 6.3 A) and untreated (Fig. 6.3 B) vimentin IFs. The full reversibility of the strain in stabilized
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Figure 6.3: Single force-strain cycles of individual vimentin filaments at five different loading rates (see color code).
(A) Full cycles of glutaraldehyde stabilized filaments – one example curve per velocity. (B) Full cycles of
untreated filaments – one example curve per velocity.

filaments further supports the hypothesis that the basic stretching mechanism in stabilized fil-

aments is the same as in untreated filaments. However, the relaxation curve possesses a slightly

different shape indicating a faster refolding at higher force values. This altered relaxation be-

havior compared to untreated filaments has an additional effect. The energy dissipated during

a full stretching-relaxation cycle in stabilized filaments is reduced by about half compared to un-

treated vimentin filaments. Fig. 6.4 shows a histogram of the dissipated energy for all filaments

as percent of the energy that is introduced in the system due to the applied force. Further analy-

sis of the dissipated energy, e.g. in matters of loading-rate and maximum reached strain can be

found in Appendix A.

Figure 6.4: Relative energy dissipation in glutaraldehyde stabilized and untreated filaments.
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6.3 Creep Behavior at Constant Force

Figure 6.5: Constant force experiments of glutaraldehyde stabilized and non-stabilized vimentin IFs presented in
force-strain plots and strain-time plots in a double logarithmic scale. (A,C) About 20 individual glu-
taraldehyde stabilized filaments stretched at constant forces ranging from 100 to 700 pN (see color code).
(B,D) About 100 individual untreated filaments stretched at constant forces ranging from 50 to 700 pN
(see color code).

Comparing constant force experiments of untreated (Fig. 6.5 B and D) and stabilized

(Fig. 6.5 A and C) vimentin filaments reveals several effects of the glutaraldehyde treatment. The

most prominent one is again the "unextensibility" at small forces. While FCs at 100 pN in un-

treated filaments on average yield a strain of 0.4 and the filaments are stable only for some

minutes to half an hour, the tested stabilized filament yielded a final strain of less than 0.03 af-

ter one hour of applied force. The effect is similar comparing the FCs at 250 pN of both filament

types. After one hour of constant pulling stabilized filaments yield a strain of less than 0.1, while

untreated filaments reached a strain of more than 1 in the same time. However, considering the
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FCs of glutaraldehyde stabilized filaments at 500 pN, there is a clear increase in filament exten-

sion which can be explained by the fact that the plateau, where the α-β-transition is presumed

to happen, starts at approximately that force in stabilized filaments (Fig. 6.2 A). As the plateau

in untreated filaments is reached at about 250 pN one should compare the 250 pN FC measure-

ments of untreated and the 500 pN FC experiments of stabilized vimentin. When stretched by a

force that overcomes the plateau force, the final strain in stabilized filaments levels of at about

0.8 while in untreated vimentin a strain of about 1.2 to 1.4 is reached.

The step size distribution of stabilized filaments under constant load is shown in Fig. 6.6 in

individual graphs per force. Again, the step sizes and the percentage steps contribute to the

elongation in stabilized filaments is similar compared to untreated vimentin filaments.

Figure 6.6: Step size histograms of glutaraldehyde stabilized vimentin filaments. (A) Data from one filament at 100
pN. (B) Data from three filaments at 250 pN. (C) Data from nine filaments at 500 pN. (D) Data from five
filaments at 700 pN.
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6.4 Discussion

Even though the glutaraldehyde reaction is known to be reversible [1], the one and two hour

force clamp measurements give evidence that this reversibility does not play a role under the

given experimental conditions. Especially the 100 and 250 pN FC data do not show any effect

that would indicate that glutaraldehyde is "washed out". The measurements are stable and the

filaments’ response does not change over time.

An effect due to glutaraldehyde stabilization is clearly visible, especially at forces below

500 pN. However, it is not straight forward to reveal how the molecular structure is modified

or rather which part of the transition or sliding is altered. Comparing all experiments it seems

to be clear that the stabilization with glutaraldehyde did not freeze one of the mechanisms ex-

clusively but altered the mechanical response bearing on the force level where the plateau is

reached and on the maximum strain that can be reached by this setup.

One explanation for the altered mechanical response of glutaraldehyde treated filaments

would be that parallel α-helices are cross-linked and require a simultaneous unfolding. This

presumable leads to a higher unfolding force as observed in the experiments refering to the

shifted force plateau and the reduced strain reached by FCs below 500 pN. Tight cross-linking

of parts of the filaments’ monomers could explain why the final strain is reduced compared

to fully unfolded untreated filaments. The comparable strain for glutaraldehyde stabilized fila-

ments and untreated filaments at medium to high loading rates also fits to this hypothesis as

many of the cross-linking positions were found in the region of coil 1A and 1B [8] and these are

also the parts that are more unlikely to unfold in untreated filaments at higher loading rates

[12].
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Chapter 7

Summary, Discussion and Conclusion

Single vimentin filaments show the remarkable physical properties of IFs that were already pre-

sumed from mechanical measurements of IF networks and fibers. Here, based on the literature,

two theoretical models, taking different levels of the architecture of mature vimentin filaments

into account, were used to fit and model the collected data. The elastically coupled two-state

model, adapted from references [1, 2], assumes that the parallel monomers in each ULF can be

modeled as one effective element [3] yielding a system of entropic springs connected to an elas-

tic module [4]. In this model it is taken into account that the vimentin monomer contains three

α-helical sections that are connected by linker regions. To incorporate the observed viscous be-

havior, a dashpot is introduced in the two-state model as a third element, additionally to the

elastic and the entropic springs. The second, stochastic, model takes the parallel elements into

account yielding a better description of the parallel elements in the ULF architecture. However

in this model viscous and entropic contributions to the mechanics of vimentin are neglected

and the architecture of the monomer containing three α-helical parts is not explicitly taken

into account. The filament is described as a chain of ULFs and each ULF contains one spring

describing the linker regions as well as the ULF to ULF connection, and 32 monomers described

by their spring constant and an element that can switch between the shorter α-state and the

elongated β-state. Being aware that both models are restricted concerning their application

(described in Section 5.4) it was possible to relate the molecular structure of vimentin to the

observed mechanical response.

The three different regimes that can be discerned in stretching curves of single vimentin IFs

[4] can be attributed to an elastic response of the stretched α-helices [5–7], the transition of

α-helices into β-sheets [5, 8, 9] and pulling on the beta-sheets [5], respectively. Even though it

was not possible to directly prove the α-helix to β-sheet transition in vimentin in the scope of

this thesis, the well fitting theory (Chapters 4, and 5) as well as computer simulations [5] and
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the direct observation of this mechanism in vimentin hydrogels [9] support this hypothesis.

Due to the loading-rate dependent behavior [4], vimentin is very soft when pulled slowly, but

much stiffer in consequence of a sudden, fast load. On the molecular level this behavior can be

described when the three α-helices that form the monomers possess different probabilities to

unfold and these probabilities are loading-rate dependent [4, 10].

By comparing the stretching and the retraction curve of single vimentin IFs that were

stretched to about 600 pN and subsequently relaxed, a pronounced hysteresis becomes evident.

Whether the energy uptake by the filament that is equal to the area between the stretching and

the relaxation curve in the force over strain graph is directly dissipated or stored in the changed

conformation of the filament is not easily distinguishable. Fitting the two-state model [4] to

the data indicates that the mechanism for the apparent energy dissipation is mainly the non-

equilibrium α-helix to β-sheet transition and only to a minor extend due to viscous contribu-

tions (Section 5.3.1).

An additional indicator for different modes of filament elongation was found by constant

force experiments. A qualitatively different elongation behavior was observed in filaments

pulled at constant forces below or in the force regime of the plateau compared to filaments

pulled at constant forces above the plateau force. While under low constant forces filaments

mainly elongate by discrete steps, the elongation under high forces is dominated by creep (Sec-

tion 5.3.3). Step detection revealed step sizes that correspond well to the transformation of

α-helices into β-sheets (Section 5.3.3 and Fig. 5.3 D) whereas the creep behavior could be ex-

plained by sliding of subunits against each other as suggested by simulations of the vimentin

tetramer [5].

Repeated stretching-relaxation cycles, where filaments were pulled to increasing distances,

revealed a complex dependency of the filaments’ mechanics on the strain history. While the

filaments soften with each cycle, which is indicated by the decrease of the initial slope of each

stretching event, they reach their initial length upon each relaxation (Section 5.3.2). The mech-

anism for this behavior could be encoded in the parallel subunits within a filament. Assuming

one ULF opens up after the other and the length of a ULF is determined only by its shortest

member, elongation of the filament would be based on the full α-helix to β-sheet transition

in ULFs. Upon force release the α-helices start to rebuild and when at least one of the parallel

monomers in each ULF has changed back to its α-helical state, the filament reaches its initial

length (Section 5.3.2).

The idea to restrict parts of the mechanical properties of vimentin by glutaraldehyde stabi-

lization of the filaments prior to the stretching experiment did not yield exclusive observation

of one of the hypothesized mechanisms. In fact it seems to restrict parts of both mechanisms,

the α-β-transition as well as sliding of subunits as the strain that can be reached by OT mea-
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surements is decreased but the observed basic mechanisms are the same in stabilized and un-

treated filaments. The differences in force and strain levels between stabilized and untreated

filaments may be explained by cross-linking of parallel helices and the requirement of simul-

taneous unfolding. Similarities between stabilized and untreated filaments stretched at higher

loading rates may be explained based on literature that predicts more cross-linking in vimentin

coil 1A and 1B than in coil 2 [11, 12] and the finding that loading-rate dependency may be origi-

nated in the higher probability of vimentin coil 2 to unfold [4].

How exactly the physical properties of vimentin IFs found in the scope of this thesis con-

tribute to the physical properties of cells, tissue and organisms is not straight forward to in-

terpret. The step from single filaments to cells or even organisms is also the step from single

filaments to a vimentin network that is incorporated in a complex, interactive system. Pure

vimentin networks in vitro show a similar behavior due to strain as seen in single filament ex-

periments. While the network is soft at small strains, it hardens at larger strain [13]. Revealing

the functions of a single protein and how it influences the others is not always straight forward

and the cooperation of different proteins not necessarily exclusive. Vimentin was found to ful-

fill several roles and interact with a plethora of other proteins. Disassembly of the vimentin

network in 3T3 fibroblasts by microinjection of vimentin 1A peptide (a 35 amino acids long vi-

mentin peptide) dramatically changes the cell shape and has a destabilizing effect on the other

cytoskeletal filaments and the adhesiveness of the cells [14]. As mentioned above, Brown et al.

hypothesize that vimentin is important to control the deformability of T-lymphocyte [15]. Ad-

ditionally vimentin was found to be important for the mechanical integrity of cells [16, 17] and

the localization of cell components [16].

However mice with a vimentin null mutation in their germ line were found to possess a nor-

mal phenotype, develop and reproduce, meaning that a complete deletion of vimentin is not

generally lethal under non-pathological conditions [18]. In pathological situations it was found

that wound healing in vimentin null mice is slower than in wild type mice especially concern-

ing the invasion of fibroblasts and the contraction of the connective tissue [19]. The ablation

of three quarters of the kidney mass was lethal by kidney failure for vimentin null but not for

wild type mice [20]. In this concern vimentin might be important to modulate the vascular tone

as reduction of kidney mass leads to vasodilation in the kideny in non-mutated mice. Lethality

was 100 % prevented by application of bosentan an endothelin antagonist [20]. A related finding

is that vimentin expression is elevated in vascular cells that are exposed to higher stress levels

like the blood pressure in the pulmonary trunk or the left ventricle [21].

Based on the literature findings reviewed above and in Section 2.2 there are reasonable ar-

guments to speculate about the relation between the mechanical properties of single vimentin

filaments and the role of vimentin in cells and tissue. One should keep in mind that all processes
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in the cell are highly complex and especially the kidney experiment [20] reveals that mechanical

properties, structural changes and the biochemistry of signalling are highly interconnected. Re-

garding vimentin and the vascular tone one could speculate that the structural changes in the

filaments due to applied strain also enable other binding partners to bind and therefore trigger

other protein pathways leading to an adaption to e.g. vasolidation or higher blood pressure of

the whole cell.

Already in 1997 Galou et al. summarized that tissue lacking its normal IFs is less stable and

cannot resist physical stresses as well as tissue without the IF knockout [22]. The tensile mem-

ory of the vimentin filaments may lead to endothelial cells that are very well adapted, e.g., to the

regular pressure shift in the vascular system due to the normal beating of the heart. The hypoth-

esized structural mechanism of incomplete β-sheet to α-helix re-transition may provide two

further advantages. The first one is that filaments reach their initial length after each stretching

event and therefore may prevent enlarging of the cells and the tissue. The second advantage ap-

pears at larger strains, when exposed to unusual high stresses vimentin filaments, even though

pre-streched for several times, may still protect the cells integrity due to the full transformation

of α-helices into β-sheets and subsequent stiffening.

For migrating cell types, e.g. fibroblasts, the loading-rate dependency of vimentin means that

the IF network is mechanically almost invisible at low velocities like cell migration but may

protect the cells when deformed very fast or to unusually large strains. In situations of extreme

extension vimentin may also serve as a "shock absorber" dissipating or storing large amounts

of energy by α-helix to β-sheet transition.

To conclude, the data collected in the scope of this thesis supports the hypothesis that IFs pro-

vide mechanical strength to cells and tissue and suggests an explanation why the importance

of IFs becomes visible especially in pathological situations or situations of unusual mechanical

load. Being aware that the models used are both limited concerning their application (described

in Section 5.4), it was shown that they are consistent with each other and allow to relate the

experimentally observed mechanical properties of vimentin to the underlying molecular pro-

cesses. The transition of α-helices into β-sheets enables vimentin to absorb or dissipate large

amounts of energy and forms the basis for a mechanism of tensile memory that allows vimentin

to be compliant with repeated stretching at small deformations and resistant against large de-

formations. Comparing vimentin to other filamentous structures it was found to have both, the

elasticity and energy absorbing/dissipating capacity of a transformable α-helix at lower strain

and force values as well as the resilience and stiffness of materials like spider silk, probably due

to the formation of β-sheets, when stretched to larger strains.

IFs are expressed in a tissue and cell-type dependent manner and are believed to support

them with different mechanical properties. Based on the results collected in the scope of this
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thesis it would now be interesting to expand the experiments on single vimentin filaments to

other IF types and compare their mechanical properties to each other and also to the possible

requirements of the cell types they are expressed in. Another application would be to test how

the mechanical response of mutated IFs is changed compared to their wild type as mutations

in IFs are known to cause several diseases.
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Appendix A

Supplementary Information – Energy

Dissipation

Energy dissipation was analyzed in data sets which contain a full stretching and retraction curve.

The energy that was introduced into the system by the applied force acting on the filament

was calculated from integrating the area enclosed by the stretching curve and the x-axis (blue-

striped area in Fig. A.1). The area enclosed by the stretching and the relaxing curve (red area

in Fig. A.1) equals the energy that is dissipated when the filament is relaxed. The relative or ap-

parent energy dissipation was calculated from dividing the dissipated energy by the introduced

energy.

The amount of energy that was introduced in the system when vimentin filaments were

stretched to forces of 550 to 650 pN is comparable in glutaraldehyde stabilized and untreated

filaments (Fig. A.2). By comparing the amount of introduced energy sorted by loading-rate, no

loading-rate dependent behavior is observed in glutaraldehyde stabilized filaments (Fig. A.2 A)

while from looking at the histograms the energy that is introduced in untreated filaments seems

to slightly increase with increasing loading-rate (Fig. A.2 B). However, when plotting the average

values of the introduced and dissipated energy per loading-rate (Fig. A.4) the tendency of the in-

troduced energy to increase with increasing loading-rate seems to be similar in untreated and

glutaraldehyde stabilized filaments. To proof whether there is a clear trend it would be neces-

sary to collect more data sets and data sets at different loading rates.

The amount of energy that is dissipated due to the relaxation of the filaments is shown in

histograms in Fig. A.3. Comparing again glutaraldehyde stabilized and untreated filaments, the

amount of energy that is dissipated in glutaraldehyde stabilized filaments seems to be slightly

lower than the energy dissipated due to relaxation in untreated filaments. A loading-rate de-

pendent behavior is not observed in both, the stabilized and the untreated filaments. A small
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Figure A.1: Schematic representation of areas integrated to calculate energy dissipation from full stretching-
relaxation data sets, exemplarily shown for one data set. The blue striped area represents the energy that
was introduced in the system due to an applied force acting on the filament. The red area equals the
energy that was dissipated while the filament was relaxed.

variation is only visible in untreated filaments stretched by the slowest loading-rate, where the

amount of dissipated energy is a bit lower.

To ensure that the difference in the relative dissipated energy (Fig. 6.4) is not due to the re-

duced strain that is reached in glutaraldehyde stabilized filaments (see Fig. 6.3 for comparison),

the data was binned by the reached strain. The filaments are binned by the maximum strain

(from 0.2 to 1.3) that was reached in the measurement with a bin size of 0.1. The introduced,

the dissipated and the relative energy are plotted in bar charts in Fig. A.5. The reduced strain

in glutaraldehyde stabilized filaments is clearly visible also in this representation. However, it

becomes also very clear, that the glutaraldehyde stabilized filaments that were stretched to the

same strains as pure filaments (0.65 to 0.95) show a higher introduced energy (Fig. A.5 A) and

a lower energy dissipation (Fig. A.5 B) which finally yields a lower relative energy dissipation in

stabilized filaments (Fig. A.5 C).
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Figure A.2: Histograms of introduced energy. (A) glutaraldehyde-stabilized filaments, histograms sorted by loading-
rate (B) untreated filaments, histograms sorted by loading-rate
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Figure A.3: Histograms of the amount of dissipated energy. Histograms are sorted from bottom to top by increasing
loading-rates. (A) glutaraldehyde-stabilized filaments, (B) untreated filaments.
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Figure A.4: Average and standard deviation of introduced and dissipated energy for glutaraldehyde stabilized and
untreated vimentin filaments sorted by loading-rate. (A) Introduced energy, (B) dissipated energy.



142

Figure A.5: (A) Introduced, (B) dissipated and (C) relative dissipated energy in glutaraldehyde stabilized and un-
treated vimentin filaments binned by the maximum reached strain with a bin size of 0.1.
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