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Chapter 1- Introduction 

Human control of locomotion is a fascinating area of ongoing research, where 

physiologists, neuroscientists and engineers are working to increase the 

understanding of the complex pattern of neural commands involved in the control of 

lower limb movements. Parts of this central nervous system motor network are the 

primary motor cortex, premotor areas, parietal cortex, basal ganglia, thalamus, and 

cerebellum. These areas dynamically interact during locomotor movements, such as 

reaching, walking, and postural control. Neurons in the motor cortex command the 

changes in muscle activity required for lower limb movements, and maintainance of 

postural equilibrium in daily life. Simultaneously, neurons in the brainstem reticular 

formation ensure that these modifications are superimposed on an appropriate base 

of postural support (1). 

Neuronal recordings and activation patterns revealed with neuroimaging 

methods have shown considerable plasticity of lower limb motor cortex 

representations and cell properties following pathological or traumatic changes and in 

relation to everyday experience, including motor skill (re-)learning (2). The process of 

motor (re-)learning for neurological patients depends on neuroplasticity, which is 

defined as the capacity of the brain to develop new neuronal/synaptic 

interconnections and thereby to develop and adapt new functions and roles or to 

reorganize to compensate for changes (3).  Non-invasive brain stimulation (NIBS) 

has been shown to be able to induce plasticity in the human brain (4). Transcranial 

application of weak direct currents (tDCS) is one of the respective NIBS tools. Its 

primary mechanism is a stimulation polarity-dependent alteration of neuronal resting 

membrane potentials. Sufficiently long stimulation results in neuroplastic alterations 
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of cortical excitability, and activity, which depend on the glutamatergic system, and 

share some features with learning-related plasticity (5).  

Therefore, in recent years, the potential to combine tDCS with rehabilitation to 

improve motor recovery of neurological patients by modulating synaptic efficacy with 

tDCS emerged (6). Respective recovery processes are intrinsically linked to shifts in 

cortical excitability, which may share mechanisms with tDCS-induced 

neuromodulation (7, 8). In principal accordance, studies combining tDCS with 

primarily upper limb motor task performance in healthy individuals (9-11) and in 

neurological patients (12-14) improved performance. Based on these studies, it can 

be postulated that NIBS may improve also leg functions following neurological 

impairment (15). In fact, tDCS transiently elevated leg pinch-force of the non-

dominant leg of healthy subjects during and up to 30min after its application (16). 

Furthermore, Madhavan and colleagues have shown that tDCS enhances motor 

control of the hemiparetic ankle in stroke patients (17). However, not much is known 

so far about tDCS protocols optimally suited to improve motor (re-) learning of lower 

limb functions (18).  

In this project we were interested to explore the impact of tDCS over lower 

limb motor cortex representations on motor learning and cortex plasticity, and the 

influence of different stimulation parameters on motor cortex excitability in healthy 

individuals. Furthermore, we investigated the effect of cerebellar tDCS on corporal 

balance control. The first chapter introduces basic mechanisms relevant for 

understanding the studies included in the thesis. The second chapter consists of the 

publications presenting the research results. The concluding chapter summarizes the 

main results of the studies and offers an outlook to future research in the field.  

 



 

- 3 - 

 

1.1.Lower limb motor control and corporal balance  

Sequentially coordinated periodic extension and flexion movements of the 

hips, knees, and ankles are common to a number of human locomotor movements, 

such as ground level walking, running or stair climbing. The required sensorimotor 

control enabling these periodic movements is achieved by the interaction of 

proprioceptive feedback, the central pattern generator (CPG) at the spinal level, and 

higher-level control signals from cortical and subcortical supraspinal centers (Figure 

1), i.e. premotor and motor cortex, cerebellum and brainstem (Duysens and Van De 

Crommert, 1998; Dietz, 2003; La Fougere et al., 2010). The latter regulates both the 

CPG and reflex mechanisms (Dietz, 2002). Recent findings from neuro-imaging 

studies indicate that the supraspinal areas might be involved in the control of gait to a 

higher extent than previously assumed (Miyai et al., 2001; Gwin et al., 2011). Also at 

the supraspinal level, information from vestibular and visual systems are 

incorporated, which are crucial for the maintenance of balance, orientation, and 

control of precise movement (Dietz, 2002). 

 

Figure 1. Nominal sensorimotor control loop for human locomotion [Adapted from Tucker et 

al., 2015 (19)]. 
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Locomotor patterns are also modulated by afferent feedback arising from 

muscle spindles, Golgi tendon organs, mechanoreceptors lining the joint capsules, 

tactile mechanoreceptors and free nerve endings of the skin that sense stretch, 

pressure, heat, or pain (19). The modulation via reflex pathways is twofold: taking 

place under normal conditions, principally to increase the efficiency of gait, and 

during unexpected perturbations, to stabilize posture (20, 21).  

Efferent nerve fibers, i.e. motor neurons, transmit the resulting motor 

commands to individual muscles, which are recruited to contract and thus to generate 

force on one or more joints of the skeletal system. Coordination of these forces 

through synergistic muscle activation and inter-joint coupling takes place during 

locomotor execution (22). Afferent nerve fibers, i.e. sensory neurons, transmit 

information from the musculoskeletal system to the central nervous system, thus 

closing the feedback loop for the nominal control of human locomotion (19). 

1.1.1. Lower limb motor control  

In order to execute a voluntary goal-directed motor task, the cerebral cortex 

communicates with the involved muscles via the corticospinal tract. The corticospinal 

neurons originate in the primary motor cortex (M1), project with their axons through 

the midbrain and pons, and decussate in the medulla to the opposite side of the 

spinal cord. The majority of these neurons terminates in the dorsolateral ventral horn 

of the spinal cord and communicates with interneurons or motoneurones (23). The 

respective motoneurones innervate multiple muscle fibers via neuromuscular 

junctions that convert the descending neural input into force output of a motor unit. 

Thus a motor unit is defined as all muscle fibres innervated by one motoneuron (24).  

Fine control of voluntary movements employs the use of specific neural 

networks that are responsible for executing motor programs. Information from 
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multiple areas of the cortex can influence motor output. For example, the primary 

motor cortex (M1), which produces and controls voluntary movements, receives 

information from the cerebellum (which coordinates movement), while the 

supplementary motor area (responsible for postural stabilization, sequencing of 

events) will receive input from the basal ganglia (which regulate inhibitory output to 

regulate movement) (23). Further, input from the prefrontal cortex, which receives 

and synthesizes input from the major sensory systems, basal ganglia and limbic 

system, provides information to the motor cortex via the premotor cortex to assist 

with planning, decision-making, and executive function tasks (23, 25). Executive 

functions (which include volition, planning, purposeful action, and action monitoring), 

anxiety, and stress are modulated in prefrontal cortical regions and the anterior 

cingulate cortex (26-29), and hereby affect motor activity (Figure 2).  

 

Figure 2. Brain network involved in lower limb motor function [Adapted from Staab et al., 

2013 and Moon et al., 2016 (30, 31)]. 

While a basic locomotor rhythm is centrally generated by spinal circuits, 

descending pathways are critical for ensuring appropriate anticipatory modifications 

of gait to accommodate for uneven terrain (1). Studies have shown that the activity of 
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a majority of cortical neurons, including those identified as projecting at least as far 

as to the more caudal regions of the pyramidal tract is modified during tasks that 

require skillful changes in gait. This includes e.g. fine-tuning of placing the foot 

accurately on the rungs of a horizontal ladder (32, 33), stepping over barriers on the 

ground (34), or attachment to a moving treadmill belt (35). 

Movement of the lower limbs has been shown to correlate with changes in 

BOLD  signal intensity (cortical activation) in M1 and the somatosensory cortex (36, 

37). Active and passive ankle dorsiflexion and plantarflexion tasks activated similar 

cortical regions (38, 39), and graded dorsiflexion movements of the right ankle have 

produced graded BOLD signal changes in motor areas (40). This is indicative for the 

critical involvement of and interaction between these areas for respective 

movements. In order to better understand the cortical activation mechanisms during 

leg movements, and to identify the cortical network associated with control of the 

lower limb motor functions, invasive electrical stimulation and non-invasive brain 

stimulation (NIBS) have been used. Experiments in which the motor cortex, or 

pyramidal tract, have been stimulated during locomotion (41-43) suggest that the 

effects of a corticospinal volley are mediated by interneuronal pathways that are 

influenced by, or part of, the spinal CPG for locomotion (44). NIBS studies have 

shown that anodal transcranial current stimulation (tDCS), a type of  NIBS, applied 

over the leg motor cortex, can influence corticomotor excitability of different 

structures that are considered to play a role in the control of walking (15, 45, 46). 

Accordingly, tDCS leads to an increase in maximal voluntary pinch force, generated 

by the toes (16). Additionally, tDCS has been suggested to enhance activity of 

subcortical structures (47), as it accelerated automatic postural responses which 

arise from subcortical structures (48).  
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1.1.2. Corporal balance 

The ability to stand, and to walk depends on a complex interaction of 

physiological mechanisms involved in the neuronal control of corporal balance. 

Corporal balance can be defined as the ability to maintain a stable body position 

based on weight support, whether stationary or dynamic (49). The maintenance of 

balance is essential for the majority of motor activities in daily life. This includes 

rather automated processes such as the maintenance of an upright posture as well 

as more complex movements during sports or when balance is disrupted 

unpredictably. It is a motor skill mediated mainly by the extrapyramidal tract, which is 

discernable from the pyramidal tract (corticobulbar and corticospinal tracts) which 

pass through the pyramids of the medulla (50). The extrapyramidal tract is found in 

the reticular formation in the medulla and pons. Its target neurons are found in the 

spinal cord and are responsible for movement, walking and reflexes. This tract is 

influenced by pathways from the basal ganglia, sensory cortex, vestibular nuclei and 

also the cerebellum (51). Therefore, corporal balance control is considered a 

complex motor function, since it is dependent on the integration of a large central 

nervous system network (52, 53).  

The cerebral cortex is involved in the central control of postural balance via 

two main loops, one including the cerebellum and one including the basal ganglia 

(Figure 3). Studies suggest that the cerebellar-cortical loop is responsible for 

adapting corporal balance based on prior experience, whereas the basal ganglia are 

responsible for pre-selecting and optimizing postural responses based on current 

context (54).  
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Figure 3. Neural pathways involved in central control of postural balance [Adapted from 

Jacobs and Horak, 2007(54)]. 

Through the processing of information from the spinal cord, brainstem, and 

cerebral cortex, the cerebellum is an important structure involved in static and 

dynamic balance control (55). The cerebellum is involved in adapting response 

magnitude and in tuning the coordination of postural responses based on practice 

and knowledge of results, similar to its contribution to adaptation and coordination of 

other movements (56). The cerebral cortex likely influences postural responses 

directly via corticospinal loops and indirectly via communication with the brainstem 

centers that harbor the synergies for postural responses, thereby providing both 

speed and flexibility for pre-selecting environmentally appropriate responses to a loss 

of balance (54). 
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1.2. Plasticity of the central nervous system  

  One fundamental function of the central nervous system is to control voluntary 

movements. Recent evidence suggests that this role emerges from distributed 

networks rather than discrete representations and that in adult mammals these 

networks are undergo modifications that are moderated by plasticity mechanisms 

(57). Neuroplasticity can be broadly defined as the ability of the nervous system to 

respond to intrinsic and extrinsic stimuli by reorganizing its structure, function and 

connections; it can be described at many levels, from molecular to cellular to systems 

to behaviour; and occurs during development, in response to environmental 

demands, in response to disease, or as a consequence of therapy. Plasticity can be 

viewed as adaptive when associated with a gain of function (58), or as maladaptive 

when associated with negative consequences such as loss of function or increased 

injury, as illustrated by animal models and human studies (59). Also, adaptive 

plasticity should be distinguished from compensatory behaviours, which subsume the 

appearance of new motor patterns resulting from the adaptation of remaining motor 

elements or substitution, meaning that functions are taken over, replaced, or 

substituted by different effectors or body segments (60). 

Functional neuronal plasticity is based on synaptic plasticity, which is the 

ability of the synapses to strengthen or weaken over time, in response to increases or 

decreases in their activity (61). Plasticity at synapses can be regulated at the 

presynaptic site by changing the release of neurotransmitters or postsynaptically by 

changing the number, types, or properties of neurotransmitter receptors (62). While 

most research attention is focused on the functional aspects of synaptic plasticity and 

their key contribution to learning and memory mechanisms, work in the last decade 

has also clearly demonstrated the importance of associated structural 

https://en.wikipedia.org/wiki/Synapses
https://en.wikipedia.org/wiki/Chemical_synapse#Synaptic_strength
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rearrangements. These consist of different types of morphological changes 

(enlargement, growth, pruning, stabilization), affecting different cellular compartments 

(spines, terminals, astrocytic processes), and take place on different time scales 

(minutes to days), making them sometimes difficult to relate to functional changes 

(63). 

Since memories are postulated to be represented by vastly interconnected 

networks of synapses in the brain, synaptic plasticity is one of the important 

neurochemical foundations of learning and memory (61).  Glutamatergic systems 

play a crucial role for synaptic plasticity relevant for learning and memory formation 

(64). Glutamate is the major excitatory neurotransmitter in the nervous system. 

Glutamate pathways are linked to many other neurotransmitter pathways, and 

glutamate receptors are found throughout the brain and spinal cord in neurons and 

glia (Altevogt et al., 2011). Studies using in vitro synaptic plasticity models have 

identified the regulated trafficking of postsynaptic alpha-amino-3-hydroxy-5-methyl-4-

isoxazolepropionate (AMPA) type glutamate receptors as a prevalent mechanism 

underlying activity-induced changes in synaptic transmission (65, 66). Excitatory 

synapses contain AMPA-type receptors to transmit signals and calcium-permeable 

N-methyl-D-asparate (NMDA) type receptors to trigger long-term changes in synaptic 

transmission: long term potentiation (LTP) and long term depression (LTD). While 

different mechanisms can regulate the onset or magnitude of LTP and LTD, in many 

cases, there appears to be one common mechanism controlling the postsynaptic 

expression: the addition and removal, respectively, of synaptic AMPA receptors (67, 

68). 

At the cellular level, LTP and LTD are the most widely studied neuroplastic 

mechanisms considered to be fundamental for learning and memory formation (69, 

https://en.wikipedia.org/wiki/Memory
https://en.wikipedia.org/wiki/Brain
https://en.wikipedia.org/wiki/Learning
https://en.wikipedia.org/wiki/Memory
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70). It is well known that increased postsynaptic intracellular calcium concentration is 

an important signal for the induction of LTP and LTD (71-73). High enhancement of 

intracellular calcium induces LTP, whereas low enhancement results in LTD (74). 

The mechanisms of synaptic alteration are in accordance to the rules of Hebbian 

plasticity, characterized by longevity, input specificity and associativity. Learning and 

memory formation are based on modifications of synaptic strength among neurons 

(75).   

LTP and LTD processes are most detailed studied at glutamatergic synapses, 

especially in the region of the hippocampus, but also in other cortical and subcortical 

areas (73). Plasticity of the glutamatergic system is accomplished primarily via 

calcium-permeable NMDA receptors (70). LTP is accomplished by activation of 

postsynaptic NMDA receptors and calcium-dependent protein kinases which results 

in the above-mentioned postsynaptic insertion of AMPA receptors (72). LTD is 

generated by moderate activation of NMDA receptors and another type of calcium-

dependent enzymes which leads to the internalization of postsynaptic AMPA 

receptors (72).  

These cellular mechanisms are important for adaptive reorganization of 

cortical networks of the brain following physiological or pathological changes (76). 

After cortical injury, the structure and function of undamaged parts of the brain are 

remodeled during recovery, and shaped by the sensorimotor experiences of the 

individual in the weeks to months following injury. This reorganization suggests that 

rehabilitative interventions may work via modulation of neuroplastic mechanisms 

(77). 
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1.2.1. Neuroplasticity of the human primary motor cortex  

The human motor system is reorganizing itself more or less permanently on 

the basis of input. This capacity to reorganize plays a crucial role not only in learning, 

but also in recovery of motor functions after damage to the brain (78). Human motor 

behavior is not the result of a stereotyped and static series of detailed muscle-

specific central commands, but is characterized by an extreme flexibility. It has been 

shown that neural representations of the limbs are flexible and continuously updated 

by body movements (79). Repetition of movement leads to the strengthening of 

motor cortex representations, whereas inactivity or non-use results in the shrinkage 

of these representations. This shows that the adult human brain is not a rigid system, 

but continuously undergoes plastic changes caused by alterations of the sensory flow 

from peripheral receptors and nerve fibers (78).  

Recent evidence has directly demonstrated that the primary motor cortex (M1) 

contains a substrate for and a mechanism to implement plasticity, thereby placing the 

intrinsic circuitry of M1 in a key position to account for brain network (re-)organization 

during a new skill training process, or after a neuronal injury (57). The interactions 

between cortico-thalamic-striatal and cortico-thalamic-cerebellar structures and the 

limbic system, and the specific associative-premotor and sensorimotor networks, are 

essential for M1 to successfully modulate synaptic efficacy, and promote 

neuroplasticy (80).  

Motor cortical plasticity has been studied in patients who had a unilateral 

immobilization of the ankle joint without any peripheral nerve lesion. The motor cortex 

area of the inactivated tibial anterior muscle dimished compared to the unaffected leg 

without changes in spinal excitability or motor threshold (81). This demonstrates that 

M1 has the intrinsic circuitry required for reorganization, and the results further 
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suggest that the details of M1 organization likely depend, probably moment to 

moment, on the precise balance of excitatory and inhibitory influences within the 

network of M1 connections. Representations increase or decrease depending on 

use, and to determine how fast such changes can occur, motor learning can be 

investigated (2). 

M1 networks seem to be active during different time points of motor learning 

(82-84). Motor learning can modulate functional connectivity of the cortical motor 

network, and early skill learning has been shown to lead to enhanced inter- and intra-

hemispheric coupling (85). M1 seems to play a crucial part in fast motor learning (86, 

87). Rodent studies have shown that motor learning can induce recruitment of 

neurons in the M1 and modulate synaptic efficacy through LTP and LTD (69, 88-90). 

These results are supported by human studies, which also suggest that LTP-like 

plasticity in the M1 is involved in motor learning (91-93). 

In humans, transcranial stimulation with electrical and magnetic devices has a 

been used to study M1 map plasticity (94-96). Transcranial magnetic stimulation 

(TMS), although with significantly less spatial resolution than intracortical techniques, 

has been established as a powerful mapping tool for clinical and research 

applications (97). TMS is a noninvasive technique that utilizes short, rapidly changing 

magnetic field pulses to induce electrical currents in underlying cortical tissue (98). A 

simple example of a TMS-based connectivity measure involves delivering a single 

TMS pulse to the primary motor cortex, and then measuring the induced contralateral 

muscle contraction in the form of a motor evoked potential (MEP). For the TMS pulse 

to reach the muscle it must cross synapses in the anterior horn of the spinal cord and 

at the neuromuscular junction (99). Non-invasive brain stimulation tools are probed 

as well as treatment approaches, since specific protocols are able to induce 
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neuroplasticity, and thus are able to enhance training-induced cognitive and motor 

learning (3). 

1.3. Non-invasive brain stimulation in humans  

In the past three decades, our understanding of brain-behavior-relationships 

has been significantly improved by research using non-invasive brain stimulation 

(NIBS) techniques. These methods, such as TMS, repetitive transcranial magnetic 

stimulation (rTMS), transcranial direct current stimulation (tDCS), and paired 

associative stimulation (PAS), allow the non-invasive and safe modulation of neural 

processes in the healthy and pathologically altered brain, enabling researchers to 

directly study neural plasticiy and its association with behavioral alterations. Here, we 

introduce TMS and tDCS, which are related to our studies. 

1.3.1. Transcranial magnetic stimulation (TMS)  

Transcranial magnetic stimulation is a neurostimulation and neuromodulation 

technique, based on the principle of electromagnetic induction of an electric field in 

the brain. It was introduced by Anthony Barker in 1985 (100). The induced electrical 

field is of sufficient magnitude and density to depolarize neurons, leading to induction 

of cortical activity, in physiological and pathological conditions (101). TMS is thought 

to not activate corticospinal neurons directly; rather it activates them indirectly 

through synaptic inputs from intracortical neurons. This assumption is based on the 

observation that motor cortex TMS produces a corticospinal volley with indirect 

waves rather than with the early direct wave (102). 

The design of TMS consists of a main stimulator and a stimulating coil, and it 

can be applied with one stimulus at a time, single-pulse TMS, in pairs of stimuli 

separated by a variable interval, paired-pulse TMS, or in trains, repetitive TMS. 
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Single-pulse TMS can be used, for example, for mapping motor cortical outputs, 

studying central motor conduction time, and studying causal chronometry in brain-

behavior relations. In paired pulse techniques, TMS can be delivered to a single 

cortical target using the same coil or to two different brain regions using two different 

coils. Paired pulse techniques can provide measures of intracortical facilitation and 

inhibition, as well as study cortico–cortical interactions (101). In our first two studies 

discussed below, single-pulse TMS was applied to the lower limb primary motor 

cortex (M1) for identification of the motor cortex representation of the  tibialis anterior 

(TA) muscle, and to monitor its cortical excitability. This was done via recording of 

motor evoked potentials (MEP), which we introduce in more detail below. 

1.3.1.1. Motor evoked potential (MEP)  

The Motor evoked potential (MEP) is an electrical muscular response elicited 

after artificial stimulation of the corticospinal tract anywhere above the spinal motor 

neuron. Usually, it is induced by stimulation over the motor cortex via single-pulse 

TMS, and recorded via surface electromyography (EMG) (103). The amplitude of the 

MEP reflects not only the integrity of the corticospinal tract, but also the excitability of 

the motor cortex and nerve roots and the conduction along the peripheral motor 

pathway to the muscles (104). 

To record MEP as a global measure of cortiço-spinal excitability, single-pulse 

TMS is applied to the primary motor cortex. To monitor excitability alterations of a 

target area due to an intervention, a baseline TMS intensity is defined which induces 

a moderately sized MEP amplitude of the target area (hot-spot), and then this 

intensity is kept constant throughout the experiment. Alterations of MEP amplitudes 

in this case index intervention-dependent excitability changes (105). Moreover, MEP 

amplitudes are altered after the application of modulators of inhibitory and excitatory 
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transmission in neuronal networks. For instance, the MEP is depressed by 

modulators of GABAA receptors, but increased by dopamine agonists and various 

norepinephrine agonists (106). 

1.3.2. Transcranial direct current stimulation (tDCS)  

Over the past two decades, the interest in human brain stimulation through the 

use of galvanic current has been increased. The history of electrical brain stimulation 

goes back to the nineteenth century, when the first reports describing the application 

of an electric current to an isolated area of the exposed brain made cerebral 

stimulation a great neuroscientific novelty of that time (107, 108). In 1802, Giovanni 

Aldini concluded, after electrical stimulation of the meninges and cortical surface of 

the corpses of two recently decapitated prisoners, that the cortical surface was 

electrically excitable (109). In the mid-1960s, it was obeserved that the gradient of 

electrical potentials produced by low intensity continuous currents, which did not 

induce action potentials, was able to alter neural excitability and spontaneous activity 

(110, 111). In 1998, Priori and colleagues observed a suppression of cortical 

excitability in the human motor cortex after anodal stimulation, when preceeded by 

cathodal stimulation of the target area with weak direct currents (112). Transcranial 

direct current stimulation (tDCS), as currently applied, was introduced by Paulus and 

Nitsche in 2000. The authors demonstrated in a pioneering study the polarity-

dependent effect of tDCS on cortical excitability in the motor cortex of healthy 

subjects (113). Since then, tDCS has been widely used for therapeutic purposes, and 

the analysis of brain functions of healthy humans.  

tDCS differs from the brain stimulation techniques applied in the early studies 

mentioned above, and from transcranial electrical stimulation and TMS, which induce 

neuronal firing by suprathreshold neuronal membrane depolarization (114). The 
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principal mechanism of action of tDCS is a subthreshold modulation of neuronal 

membrane potentials, which alters cortical excitability and activity dependent on the 

current flow direction through the target neurons (115, 116) via immediate changes of 

neuronal firing by hyperpolarizing or depolarizing brain tissue (117, 118). It has been 

shown that tDCS also modifies the synaptic microenvironment, for instance, by 

modifying synaptic strength NMDA receptor-dependently and altering GABAergic 

activity (117, 119, 120). tDCS interferes with brain excitability through modulation of 

intracortical and corticospinal neurons (121, 122). Sufficiently long stimulation 

moreover results in neuroplastic cortical excitability alterations, similar to LTP and 

LTD (113). The mechanistic aspects of the induction of LTP and LTD via tDCS is not 

fully understood, however, it is suggested that its effects occur by changes in the 

functional expression of proteins and depend mainly on the neuronal influx of calcium 

controlled by alterations of NMDA receptor activity (74, 123).  

The aftereffect of tDCS is thought to modulate cortical excitability in a polarity-

specific manner (5). Stimulation of M1 with an anode positioned over M1 hand area is 

usually reported to increase MEP size, while cathodal tDCS has the opposite effect 

(113). It is suggested that those excitability changes occur in the intracortical 

interneurons within the cortex. The aftereffects are dependent on modulation of both 

GABAergic and glutamatergic synapses. Anodal and cathodal tDCS reduce GABA, 

which might gate plasticity of glutamatergic synapses, which is controlled by tDCS. 

The respective stimulation-induced calcium alterations will then induce polarity-

dependent LTP- or LTD-like plasticity dependent on the mechanisms described 

above (118). 

The neurophysiological effects outlast the stimulation period by up to 90 min 

(113, 124). The duration, strength and direction of the effects depend on the duration, 
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polarity and intensity of tDCS. The expected effects of polarity on excitability 

(excitability enhancment after anodal stimulation, and decrease after cathodal tDCS) 

are observed after tDCS application of durations between 5 and 20 min using 1 mA 

(5). Further prolongation of duration or increasing intensity of stimulation can reverse 

the after-effects (125, 126).  

tDCS has been used as a probe to modulate attention, memory, motor, and 

language functions in humans, based on respective excitability and neuroplasticity 

alterations. On the basis of human neuroimaging studies, it was proposed that 

application of noninvasive stimulation with parameters that enhance motor cortical 

excitability, and plasticity could secondarily facilitate motor learning via boosting 

respective task-associated cortical alterations (127). Motor skill learning and 

adaptation are associated with functional and structural changes of a distributed 

brain network that includes primary motor, somatosensory, premotor, supplementary 

motor and posterior parietal cortex, as well as the cerebellum and basal ganglia (128-

130). Thus, several candidate brain networks are accessible to tDCS for investigating 

neuromodulatory effects on different features of motor learning (131). The effects of 

tCDS on motor learning seem to be strongest when tDCS is co-applied with motor 

training (132, 133) and applied over multiple days (134-136). 

Although most early tDCS studies have been performed in the motor cortex 

(i.e. M1), it should be noticed that tDCS does not only induce long-lasting alterations 

of motor-evoked potentials, but also affects somatosensory and visual-evoked 

potentials (114). It has been observed that tDCS can influence the human cerebellum 

(137, 138), and that transcutaneous DC stimulation modulates conduction along the 

spinal cord and the segmental reflex pathways (139, 140). 
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tDCS does not induce activity in resting neuronal networks, but modulates 

spontaneous neuronal activity (141). Consequently, the amount and direction of 

stimulation effects critically depend on the previous physiological state of the target 

neural structures (142, 143). This brain-state dependency could possibly explain 

interindividual variability of tDCS effects previously reported (144, 145) and the fact 

that differences in experimental protocols such as stimulation intensity or use of 

different behavioral tasks result in different outcomes (125, 142). 

1.3.2.1. Optimization of tDCS protocols 

Current protocols of tDCS use relatively standardized stimulation parameters 

(electrode size of 25–35 cm², current of 1–2 mA for up to 15–40 min, administered in 

multiple or single sections), which have been demonstrated to be safe (5, 118, 146). 

Considering that differences in stimulation protocols could result in distinct brain 

current flow patterns across the brain, tDCS dose parameters can be adjusted, in an 

application-specific manner, to target or avoid specific brain regions (147). Variability 

in tDCS results has been obersed. Several reasons that may explain this variability in 

the tDCS results may include (i) use of different stimulation parameters (current 

density, duration and electrode geometry) and (ii) differences across individuals 

(146). In order to better understand this variable effect of tDCS the interest to develop 

optimized tDCS protocols has been growing.   

The conventional strategy is to apply a continuous current via two rectangular 

electrodes, with one electrode placed over the target region and the other electrode 

placed remotely from the target region (148). The location of the electrodes is 

typically based on the International 10-20 EEG measurement system or 

electrophysiological markers, such as the motor hotspot defined by TMS (146).  

Because tDCS uses electrodes placed on the scalp to inject current, it is difficult to 
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precisely control the current flow in the head and brain in order to elicit the desired 

current density in a target brain region of interest (ROI). In particular, current delivery 

to the ROI is limited due to shunting via the scalp, cerebrospinal fluid (CSF), gyral 

depth, distance between anode and cathode, and electrode connector positions 

(149). At a constant current intensity level, differences in electrode size, 

configuration, and placement result in different distribution of the current across the 

ROI, and throughout the brain (150, 151). Therefore, not only the current intensity 

applied is critical to the tDCS results, but the shape, the size, the placement of the 

electrodes, and also the amount of contact medium (e.g. saline, gel or conductive 

cream) used has to be taken in account. 

In order to target as precisely as possible the ROI and optimize tDCS 

protocols, modelling systems based on finite element head models have been 

created to investigate the induced current density distribution by analysis of electrical 

field orientation (152-154). Taking the dependency of tDCS effects from the relation 

of electrical field and neural spatial orientation into account, it is important to calculate 

the distribution of electric field strength and orientation via computational modelling. 

Considering that the components of the field perpendicular and parallel to the cortical 

surface are of special importance, since pyramidal cells are mostly aligned 

perpendicular to the surface, while many cortical interneurons and axonal projections 

of pyramidal cells tend to align tangentially (155, 156), an important element in 

modeling is to provide the electric field distribution and orientation relative to the grey 

matter (GM) and white matter (WM) surfaces. The use of modelling systems to 

investigate the impact of stimulation electrode shape, placement and size of the 

electrodes on electrical field distribution is thus an important tool to optimize tDCS 

effects on cortical excitability and behaviour.  
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1.4. Aims of the study 

The purpose of this work was to investigate the impact of tDCS applied over 

the lower limb motor network on cortical excitability, motor learning, and corporal 

balance control in healthy humans. According to the literature, tDCS effects are 

stimulation parameter-dependent. In our first study, we investigated the effect of 

electrode size, and placement on lower limb motor cortex excitability in healthy 

subjects, for optimization of tDCS effcts over the lower limb motor cortex 

representation by systematically exploring the impact of electrode size, and current 

flow direction based on computational modeling.  

It was shown that administration of tDCS over M1 enhances motor 

performance, associated with respective physiological alterations, via its impact on 

cortical excitability, and plasticity. Most of these studies were however conducted for 

tDCS applied over the upper limb motor cortex area. Taking into account the 

importance of lower limb motor functions for daily life, for the second study, we 

explored the impact of tDCS on performance of a visuo-motor lower limb motor 

learning task in healthy humans. Based on the relevance of stimulation focality, which 

is particularly challenging for cortical areas remote from the brain surface as the leg 

motor cortex respesentation, we investigated the specificity of tDCS by finite element 

modeling regarding two different sizes of electrodes (8 cm2 vs. 35 cm2). As tDCS had 

interindividual heterogeneous effects on motor performance, and sensitivity to 

transcranial magnetic stimulation (TMS) has been revealed as a potential marker of 

responsivity to tDCS for the upper limb motor cortex (157), we furthermore aimed to 

explore the relevance of this parameter for the stimulation effects.  

Beyond its impact on motor cortex plasticity, recent studies have shown that 

tDCS applied over the cerebellum (ctDCS) impacts also on motor functions in 
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humans, thus for the third study, we explored the effects of cerebellar tDCS on 

corporal balance in healthy humans. The impact of tDCS on performance was 

explored via tests of static (right and left Athlete Single Leg tests) and dynamic 

balance (Limits of Stability test) performed using the Biodex Balance System before 

and immediately after cerebellar tDCS. The knowledge we aimed to gain via these 

studies might perspectively help to optimize the effects of tDCS on cortical plasticity 

and motor (re-) learning for clinical therapeutic interventions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

- 23 - 

 

Chapter 2- Original articles  

This chapter contains three published articles. The first and the second study 

focused on optimized tDCS protocol effects over lower limb motor cortex excitability 

and motor learning in healthy humans. The third study investigated the effect of 

cerebellar tDCS over balance control in healthy individuals. 

I. Foerster ÁS, Rezaee, Z, Paulus W, Nitsche MA, Dutta  A. (2018). Effects of 

cathode location and the size of anode on anodal transcranial direct current 

stimulation over the leg motor area in healthy humans. Frontiers of 

Neuroscience (Published). 

II. Foerster Á, Dutta  A, Kuo MF; Paulus W, Nitsche MA. (2018). Effects of anodal 

transcranial direct current stimulation over lower limb primary motor cortex on 

motor learning in healthy individuals. European Journal of  Neuroscience. 

2018 Feb 14. doi: 10.1111/ejn.13866 (Published). 

III. Foerster Á, Melo L, Mello M, Castro R, Shirahige L, Rocha S, Monte-Silva K. 

(2017). Cerebellar Transcranial Direct Current Stimulation (ctDCS) Impairs 

Balance Control in Healthy Individuals. Cerebellum 16(4):872-875 (Published). 

2.1.  Effects of cathode location and the size of anode on anodal transcranial 

direct current stimulation over the leg motor area in healthy humans 

The efficacy of transcranial direct current stimulation to induce physiological 

effects depends on different stimulation aspects, such as current density, electrode 

size, electrode placement/configuration, stimulation duration, and combination with 

task performance or rehabilitation therapy. The conventional tDCS strategy is to 

apply a continuous current via two rectangular electrodes, with one electrode placed 

over the target region and the other electrode placed remotely from the target region 

(113, 148, 158). Modelling systems based on finite element head models have been 

https://www.ncbi.nlm.nih.gov/pubmed/29443433
https://www.ncbi.nlm.nih.gov/pubmed/28456902
https://www.ncbi.nlm.nih.gov/pubmed/28456902
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created to investigate the induced current density distribution (152-154). The location 

of the electrodes is typically based on the International 10-20 EEG measurement 

system or electrophysiological markers, such as the motor hotspot defined by 

transcranial magnetic stimulation (TMS). In this study, we investigated the effects of 

cathode location and the size of anode for anodal tDCS of the right leg area of the 

motor cortex, which is challenging due to its depth and orientation in the inter-

hemispheric fissure.  We first computationally investigated the effects of cathode 

location and the size of the anode to find the best montage for specificity of 

stimulation effects for the targeted leg motor area using finite element analysis (FEA). 

We then compared the best electrode montage found from FEA with the conventional 

montage (contralateral supraorbital cathode) via neurophysiological testing of both, 

the targeted as well as the contralateral leg motor area. The conventional anodal 

tDCS electrode montage for leg motor cortex stimulation with a large-anode 

(5cmx7cm, current strength 2mA) affected the contralateral side more strongly in 

both the FEA and the neurophysiological testing when compared to the other 

electrode montages. A small anode (3.5cmx1cm, current strength 0.2mA) with the 

same current density at the electrode surface and identical contralateral supraorbital 

cathode placement improved specificity. The best cathode location for the small 

anode in terms of specificity for anodal tDCS of the right-leg motor area was T7 (10–

10 EEG system). Our results show that a small-anode (3.5cmx1cm) with the same 

current density at the electrode surface as a large anode (5cmx7cm) resulted in 

similar cortical excitability alterations of the targeted leg motor cortex respesentation 

while the small anode with the cathode placed at T7 resulted in the best specificity. 

These results might help to optimize future studies targeting modulation of lower limb 

motor cortex representations via tDCS. 
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2.2. Effects of anodal transcranial direct current stimulation over lower limb 

primary motor cortex on motor learning in healthy individuals 

Studies combining tDCS with motor task performance in healthy individuals (9-

11) and in neurological patients (12, 14, 159) have shown a performance 

improvement accomplished by tDCS. The majority of these studies were dedicated to 

upper limb performance, however few studies have investigated excitability-

enhancing and performance-improving effects of anodal tDCS over the lower limb 

motor cortex of healthy humans. To investigate the effect of anodal tDCS over the 

lower limb motor cortex (M1) on lower limb motor learning in healthy volunteers, and 

to explore the impact of stimulation protocol specifics as well as individual 

characteristics on stimulation effects, we conducted a randomized, single blind and 

sham-controlled study. Thirty three (mean age 25.81 ± 3.85, 14 female) volunteers 

were included, and received anodal or sham tDCS over the left M1 (M1-tDCS). 

0.0625 mA/cm2 anodal tDCS was applied for 15 minutes during performance of a 

visuo-motor task (VMT) with the right leg.  Motor learning was monitored for 

performance speed and accuracy based on electromyographic recordings. We also 

investigated the influence of electrode size and baseline responsivity to transcranial 

magnetic stimulation (TMS) on the stimulation effects. Relative to baseline measures, 

only M1-tDCS applied with small electrodes and in volunteers with high baseline 

sensitivity to TMS significantly improved VMT performance. The computational 

analysis showed that the small anode was more specific to the targeted leg motor 

cortex volume when compared to the large anode. We conclude that anodal M1-

tDCS modulates VMT performance in healthy subjects. Since these effects critically 

depend on sensitivity to TMS and electrode size, future studies should investigate the 

effects of intensified tDCS and/or model-based different electrode positions in low-

sensitivity TMS individuals.  
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2.3. Cerebellar Transcranial Direct Current Stimulation (ctDCS) Impairs Balance 

Control in Healthy Individuals 

The cerebellum is well known to play an important role in movement execution 

and motor control by modulation of the primary motor cortex (M1) through cerebello-

thalamocortical connections (160). There is a concensus that tDCS can effectively 

influence cerebellar functions in the motor domain, with effects on visually guided 

tracking tasks, motor surround inhibition, motor adaptation and learning (161). In this 

study, we aimed to investigate the effects of cerebellar tDCS (ctDCS) on postural 

balance in healthy individuals. Fifteen healthy and right-handed subjects were 

submitted to three sessions of ctDCS (anodal, cathodal and sham), separated by at 

least 48 h. In each session, tests of static (right and left Athlete Single Leg tests) and 

dynamic balance (Limits of Stability test) were performed using the Biodex Balance 

System before and immediately after ctDCS. The results revealed that cathodal 

ctDCS impaired static balance of healthy individuals, reflected in higher scores on the 

overall stability index when compared to baseline for right (p = 0.034) and left (p = 

0.01) Athlete Single Leg test. In addition, we found a significant impairment for the 

left Athlete Single Leg test in comparison to sham stimulation (p = 0.04). As far as we 

know, this is the first study that shows changes of balance control after ctDCS in 

healthy individuals. This finding raises insights useful for further investigations of 

cerebellar modulation in neurological patients. 



 

- 50 - 

 



 

- 51 - 

 



 

- 52 - 

 



 

- 53 - 

 

 

 

 

 



 

- 54 - 

 

Chapter 3- Summary 

3.1 General remarks 

The studies included in this thesis explored the impact of tDCS applied over 

the lower limb motor cortex and cerebellum on motor learning and cortical excitability 

in humans. In the first study, our results showed that a small-anode (3.5cmx1cm) with 

the same current density at the electrode surface as a large-anode (5cmx7cm) 

resulted in similar cortical excitability alterations of the targeted leg motor cortex 

respesentation, and that the small anode condition with the cathode placed over T7 

resulted in the best stimulation specificity. In the second study, our results showed 

that anodal tDCS applied over lower limb M1 modulates VMT performance in healthy 

subjects, and the stimulation effects critically depend on sensitivity to TMS and 

electrode size. In the third study, static balance was impaired by cathodal cerebellar 

tDCS. These findings add important information to our understanding of the 

mechanisms of tDCS on lower limb motor functions, including neuroplasticity, motor 

learning, and the impact of the cerebellum on balance.   

3.2 Functional implications  

Our findings confirm that, in healthy humans, tDCS impacts lower limb motor 

cortex and cerebellar excitability, and motor performance. For the field of clinical 

application, the results suggest that tDCS might have therapeutic effects on lower 

limb functions via enhancing motor performance by plasticity induction, and that 

cerebellar stimulation might be suited to alter balance control.  

The general interest to understand the mechanisms, and effects of tDCS 

applied over the lower limb M1 is growing. Studies in healthy humans (15, 16, 162-

166) and in stroke patients (16, 45, 48, 167) showed evidence for excitability-
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enhancing and performance-improving effects of anodal tDCS over the lower limb 

motor cortex of humans.  

However, missing knowledge about protocols inducing optimal tDCS effects 

hinders the use of tDCS as an adjuvant therapy aimed to improve lower limb motor 

functions. Regarding optimization of tDCS effects, it was recently shown that timing 

of stimulation relative to task performance is relevant, with better results when 

stimulation is applied during task performance (166). Our results add the information 

that the size of the target electrode, placement of the return electrode, and cortical 

baseline excitability are factors that should be taken into account for optimization of 

protocols when tDCS is applied over the lower limb motor cortex. Considering the 

possibility of using tDCS as a rehabilitation tool for gait disorders, future studies are 

needed to improve our understanding of the physiological effects of tDCS over the 

lower limb motor cortex, and to optimize stimulation protocols accordingly.  

3.3 Limitations  

Some potential limitations of the present work should be taken into account. 

First, we did not investigate direct neurophysiological effects of tDCS in our second 

and third studies, which would have enabled us to make a direct correlation between 

neuroplasticity and motor performance or balance control improvement observed in 

our results. Moreover, all studies in the thesis were conducted in healthy subjects. In 

neurological patients, brain function and reaction to stimulation might be different. 

However,  due to the limited time frame, we did not have the chance to explore our 

results in neurological patients with lower limb motor impairment, thus presumed 

functional  implications are speculative at present.   
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3.4 Future perspectives  

Our studies explored the impact of tDCS applied over the lower limb M1 and 

cerebellum on motor learning, cortical excitability, and corporal balance control in 

healthy humans. The results supply clear evidence for the relevance of tDCS to 

promote alterations of excitability of cortical representations of the lower limb and 

motor functions. Future studies should explore the mechanisms of action of tDCS 

applied over the lower limb M1 and cerebellum in larger detail, regarding stimulation 

parameters, electrode configuration, and neurophysiological outcomes in healty 

humans and in neurological patients.  

The ability to walk is one of the most important motor functions performed by 

the lower limbs, and this motor activity plays a big role for performance of activities of 

daily living and therefore determines quality of life. At present, a couple of studies are 

available, which showed that tDCS has an impact on the excitability of cortical 

representations of the lower limbs, and lower limb motor function in chronic stroke 

patients. So far it was shown that (i) anodal stimulation over the ipsilesional motor 

cortex increased paretic limb and decreased nonparetic limb motor excitability (45); 

(ii) a single session of anodal tDCS over the paretic lower limb motor cortex 

representation increased knee extensor force in patients with hemiparetic stroke for 

up to 30 minutes following intervention (167); and (iii) anodal tDCS over the lesioned 

hemisphere showed beneficial effects on coordinated motor output during walking 

with however large inter-individual variability (48). Considering the possibility of using 

tDCS as a rehabilitation tool for gait disorders, future studies exploring the 

association between neuroplasticity, cortical excitability, motor performance, and 

functional outcome are needed to improve our understanding of the physiological 
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effects of tDCS over the lower limb motor cortex, and to optimize stimulation 

protocols accordingly.  

Overall, improved knowledge about the mechanisms of neuroplasticity and 

excitability of the human brain will strengthen the possibility to shape the plastic 

potential of the brain, and might open a broader field of new therapeutic and research 

perspectives. However, we are still at the beginning of our understanding of the 

neurophysiological and functional effects of neuromodulatory brain stimulation 

techniques (e.g. tDCS) on the human central motor nervous system. The central 

command of motor performance involves a complex brain network, and knowledge 

about how to strenghten this network in health and disease makes related studies 

important for improving our understanding of brain functions, but also for 

development of new therapeutic strategies to treat people suffering from diseases 

involving pathological alterations of motor functions.  
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