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Chapter 1

Introduction

Charged colloidal dispersions are commonly used in commercial products, industry

and physical sciences. For example, such dispersions are used in paints, inks, film

coatings, and as model systems of charged-colloidal dispersions. The use of colloidal

particles has been popular for decades, since they can imitate phase behaviours of

simple atomic liquids and solids in colloidal fluids at the significant short-range cor-

relations between neighbouring particles. And they also are applied to predict phase

behaviours of hard-sphere colloidal crystals, which has been intensively studied, at

long-range spatial orders [1].

The crystallization of colloids is also one of the popular topics that such a model

system (or a dynamic model) allow to be investigated. Both numerical and experi-

mental studies provide insight into the mechanisms of structural phase transitions and

interparticle forces in order to answer a simple question what is the favourite structure

for colloidal particles that are dispersed in liquid, but only in the case of monodis-

perse spherical particles that have been satisfied answered [1–5]. For monodisperse

colloidal particles (or hard sphere) of PMMA, it was found, both experimentally and

computationally, that as the volume fraction of particles increases, the populations

in the colloidal particle can evolve from a simple liquid phase, to liquid and crystal

phases in coexistence [1]. Under this condition, one could find two types of struc-

tures: close-packed and body-center-cubic crystals, which depending on the range of

interparticle forces [5–7].

For polydisperse colloidal particle crystallization is more di�cult, which will be

discussed here in two examples. The first is in case of hard spheres interactions,
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a molecular dynamics (MD) simulation predicts that as the polydispersity (the size

distribution) exceeds a critical value (6 to 12%), the crystallization of hard spherical

colloids is suppressed [4, 8–10]. Even an increasing in size polydispersity of 1% is

enough to cause a change in the crystallization kinetics: for example by delaying or

enhancing nucleation times by ten-times in hard sphere colloids [10]. A prediction

of the equilibrium phases of polydisperse hard spheres also shows the e↵ect of size

polydispersity can stabilize multiple phases, when the size polydispersity is increased

[11, 12]. These ranges of the equilibrium phases prediction are various from fluid to

fluid-solid or fluid-solid-solid or solid-solid-solid-solid phases [11, 12]. This prediction

is supported by a observations of the crystallization of binary hard sphere mixtures at

various sizes that shows new two stable phases of colloidal crystals (AB2 and AB13)

can exist [13]. Second, in the case of dilute dispersions of a charged colloidal spheres

in deionized solution shows that under the long-range interactions allow charged par-

ticles to be more tolerant of the size polydispersity resulting in a crystal state that

can be maintained at low volume fractions [14]. Even there is a charging in size

polydispersities that crystal phases still exist [14].

From both of these two limits (long-range interactions and polydispersity), there is

a considerable gap in the phase space where could be studied whether homogeneous or

fractionated crystallizations exist. Recently, a carefully prepared experiment in a real

space of the intermediate-range interaction of charged polydisperse colloidal silica,

with a broad monomodal size distribution, has shown that despite a polydispersity of

14%, which would be a considerable high polydispersity for the crystallization of hard

spheres, the fractional crystallization can appear in charged polydisperse colloidal

population. As volume fractions are increased, they can crystallize with multiple

phases in coexistence (fluids, bcc, and AB2 crystal structures). This shows their

charming property to build a complex structure from polydisperse colloids with the

intermediate range of interparticle forces[15]. This experimental result is supported

by numerical simulation, the Gibbs ensemble Monte-Carlo method, on this fractional

crystallization in monomodal size distribution. The simulation shows that it is the

most popular particles (radius close to the mean) that gather to build the first crystal,

and that the residual population then resembles the binary mixture and crystallise as

such [16]
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From hard spheres to charged polydisperse colloids, however, there are other in-

teresting points that could be investigated for charged polydisperse colloids such as

how changing of interaction forces (ion concentration in solvent, particle size and

polydispersity) impacts crystallizations, or how and when the crystallization takes

place in the real space and what the preferred phase, or phases, are. Therefore, in the

first part of this thesis, I present small angle x-ray experiments on aqueous colloidal

dispersions based on the work in reference [15]. I have expanded the scope of the

study by searching for another more massive or more complex crystal structures to

build a phase diagram. Moreover, I present the observations of the crystal nucleation

of various colloidal dispersions (di↵erent sizes and polydispersities) in the real-time

which can exhibit the order of a fractional crystallization and the preferred structures.

The e↵ects of the electrostatic interactions of charged colloidal dispersions does

not play a role only in the microscopic aspect, but in macroscopic mechanical in-

stabilities as the colloidal dispersions transform from liquid phase to the solid phase

[17, 18]. The interesting application of this is that these colloidal dispersions are

widely used as an essential ingredient in industrial process such as catalysis, met-

allurgy, electronics, glass, ceramics manufacturing, paper and pulp technology, inks,

paints, optics, elastomers, food and health care [19]. However, when they dry, these

dispersions can show an intriguing variety of patterning mechanisms [17, 18, 20–24].

Consider a drying droplet of a colloidal dispersion, and the evaporations take place

near its boundaries. This loss of water from the evaporation causes a flow which

drags particles towards the solidification front. At the solidification front, a further

compression of dispersed particles is caused in the drying film by the drag forces. This

compression causes the deformation of the dried film as the strain releases [20–22, 25].

In chapter 4, I will give some examples of instabilities that can arise, alone or

coincident, in drying colloidal suspensions. Shear failure is coincident with stress,

which occurs when attractive capillary forces overcome electrostatic forces between

particles, in the liquid-solid transition [20, 21]. Cracks are also the response to stresses

that appear in the film when the stresses exceed the strength of materials. The

crack pattern can be manipulated by changing a sample thicknesses, the surface of a

substrate, particles size, or evaporation rates [26, 27], to give the final crack pattern as

a collections of spirals [26], waves [28], or straight and parallel line [29, 30]. Moreover,
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the evaporation can control the dried shape of a colloidal film in various pattern from

a co↵ee-ring [31] to textured surfaces [32, 33].

To understand the physics behind this instabilities, one should begin with a mass

and momentum balance for all phases to describe the compression of dispersed col-

loidal particles [22, 34–37]. The important idea of this system is Kynch’s theory of

sedimentation which explain the evolution of mixture with liquid-like properties [34]

and Biot’s theory of poroelasticity which describes flows and deformations in a mixture

with solid-like properties [35]. Recently, many general models have been developed in

order to smoothly connect between these two behaviours [36–38]. These models focus

on mean fields, or continuum, approximations of the behaviours of a large amount

of small interacting colloidal particles [22]. Moreover, many observations have shown

additional e↵ects with more complexity that go beyond what the model can predict.

Examples of such additional e↵ects, as mentioned above, include the formation of

crystals with fractionation and multiple-phases in coexistence [15], or crystallization

with rate-dependent structures [10]; flow pattern is influenced by crystalline domains

with grain boundaries [39]; plasticity during fracture [40]; structural anisotropy and

birefringence [41]; shear banding [20, 21]. These e↵ects take place at the liquid to

solid transition (or drying front). Therefore, it is necessary to understand what is

happening in this region during the drying process.

The second part of the thesis, a model, based on a mass and momentum balance

and the PoissonBoltzmann cell model, is presented to predict the osmotic compression

of a colloidal dispersion system and demonstrate the anisotropy in the liquid-solid

transition during the drying of colloidal dispersions. I also studied two instabilities,

shear banding and guiding cracks, which are influenced by the compression and the

anisotropy in the transition.

In this thesis, I report two types of experiments dealing with the crystallization of

charged polydisperse colloids, and instabilities of directional drying colloids. In the

first chapter, I give an idea of interactions in colloids and what have been studied on

colloidal dispersions in both microscopic and macroscopic aspects. In chapter 2, It

starts with the general theories which describe interparticle forces in between colloidal

particles. I explain the osmotic stress method that is used to prepare hundreds of

colloidal systems with a broad range of volume fractions, di↵erent size, polydispersity
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and ionic strength. In chapter 3, small-angle x-ray scattering experiments is reported,

which observe phase behaviours of colloidal systems, a phase diagram for each of

three types of the colloidal dispersion. In chapter 4, I present experimental results

of the directional drying of colloidal dispersions. Finally, I summarize the thesis and

discussed the future direction of this work in chapter 5.
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Chapter 2

Experimental setup and Methods

In this chapter, it begins with fundamental theories: the DLVO theory and Poisson-

Boltzmann cell model to giving an idea how we describe a single colloidal particle and

the interaction between colloids. Moreover, the experimental setup and the treatments

of data analysis used in this thesis are described. The first section introduces the

material and the osmotic stress method which is used to equilibrate given samples at

di↵erent volume fractions. The second section presents the equation of state (EOS) of

Polyethylene glycol (PEG) [42] and EOS of charge-stabilized colloids [22]. If a colloidal

system reaches the equilibrium, the calculated value of osmotic pressure from both

EOS has to be in the same order or equal. This is how we ensure that which sample

good or bad is. The last section in the chapter, I present essential factors that we

extract from SAXS experiments also how we index a crystal structure for the SAXS

scattering pattern.

2.1 Interactions in colloids

2.1.1 The DLVO theory

The DLVO theory of colloidal stability plays an important role in colloid science.

The theory is base on assumptions that colloids are spherical and charge stabilized,

therefore they are able to repel from each other. As the colloidal particles disperse

in an electrolyte solution, an electric double layer is formed around the surface of

colloid causing the repulsive force. On the other hand, the attractive van der Waals

force arises due to the colloidal particle core [43]. Both interactions are the core of
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Figure 2.1: A sketch showing the ion concentration, the structure of double layer
around a colloidal charged particle with a separation distance S.

the DLVO theory and a↵ect independently on DLVO potential. The forces can be

written as the linear combination of forces in colloidal particles between the van der

Waals (attractive) and electrical double layer force (repulsive)[43]:

F (s) = �AHa

12s2
+ 32⇡""0a

✓
kT

e

◆2

tanh2

✓
e 

4kT

◆
e

�s
, (2.1)

or as the potential

U(s) = �AHa

12s
� 32⇡""0a

✓
kT

e

◆2

tanh2

✓
e 

4kT

◆
e

�s
, (2.2)

where the first term is the Van der Waals force; AH is e↵ective Hamaker constant, a is

the radius of particle, s is the distance from the particle’s surface,  is the electrostatic

potential field, e is the fundamental charge, "0 is the permittivity of free space, " is

the dielectric constant of the fluid, kT is the thermal energy, and 

�1 is the Debye

length. The electrostatic force is derived by evaluating the e↵ective pair-potential

between neighboring particles and solving the Poisson-Boltzmann equation.

The Poisson-Boltzmann equation[6]:

""0r2
 = �e

X

i

zini0e
�ezi /kT

, (2.3)

and the Debye length as



�1 =

s
"kT

P
i (zie)

2
ni0

, (2.4)

where zi is the relative charge of chemical species i with some background number
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density ni0 (defined by the electrolyte concentration when  = 0)[22].

2.1.2 The Poisson-Boltzmann Cell model

Since the interactions in colloids comprise of two forces, the Van der Waals force

is a short interaction. Meanwhile, the electrostatic repulsive force has played the

important role to create an e↵ective potential barrier providing a mechanism of the

stability in colloids: colloidal particles will organize in the way that to keep themselves

as far as possible from repulsions. At the thermodynamically equilibrium, one can

now partition the total solution into cells, each cell containing one charged-particle,

radius of a, amount of counter-ions to make the cell neutral, and salt molecules as

well[44]. As a result of the assumed homogeneous distribution of particles, each cell

has essentially the same volume (radius of R > a), equals the total volume divided by

the number of particles. Self-organized behaviors of cells make them being neutral by

construction, so there is no strong electrostatic interaction between particles. Hence,

colloidal particles are a sphere and exist in the center of the spherical cell. This is

an advantage for the numerical work that the model can be considered as a one-

dimensional problem.

(a) (b) (b)

(d)

R
a

Figure 2.2: A graphic describing the approximation of the cell model. A dispersions
of colloids (radius of a) (a) is divided into cells (b) which are comfortably reshaped
as symmetric spheres(c). Accordingly, the system is scoped to one cell (radius of R)
which the counter-ions distribute around the core of the cell (d).

2.2 Osmotic stress method

The preparation of aqueous dispersions of colloidal silica, the osmotic stress method

was used to set the osmotic pressure no samples, as described in ref.[45–48]. Aque-
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ous dispersions of colloidal silica (Sigma-Aldrich: Ludox SM30, TM50, HS30 and

HS40; AkzoNobel: Levasil30 and Levasil50) were used as received from suppliers as

summarized in table 2.1.

First, all types of colloidal dispersions were filtered to 0.8 µm (Surfactant-free Cel-

lulose Acetate (SFCA) Syringe Filters, Sartorius™) and cleaned for 2 day by dialysis

against aqueous solution of NaCl (concentration between 0.5 and 50 mM), and NaOH

(0.1mM for controlling pH at 10) in a dialysis bags with molecular weight cuto↵s

14000 g/mole (Spectra/Por4 from Spectrum Laboratories, Inc). Each bag was filled

with approximately 10-15 mL of aqueous dispersions of colloidal silica and was care-

fully inspected during the washing, in case the bag has expanded due to the osmotic

pressure inside the bag. If so some aqueous dispersion was immediately removed to

reduce pressure inside the bag. The washed silica dispersions were concentrated in a

bath by dialysis against aqueous solutions of PEG35000 (Poly(ethylene glycol), Sigma

Aldrich)(concentration of 0.5 to 10% (w/w) for 6 days with changing the aqueous so-

lutions in a reservoir every 2 days. At early beginning, the osmotic stress compression

to the system of colloidal silica was very fast and is expected to have reached the

equilibrium several days later [45, 46]. At a high concentration of PEG (high osmotic

pressure), however, the system does not always reach the equilibrium, and some sam-

ples form heterogeneous mixtures since the aqueous colloidal silica becomes rigid at

the membrane’s inner wall [45]. However, these sample could still used for SAXS

experiments.

To determine volume fraction of a sample, drops (approximately 1 mL) of dialysed

aqueous dispersions were taken out of a container, measured weight mass as wet (or

total) mass mwet and dried overnight in an oven at 120 °C. After dispersions dried

completely, the solid of dispersions was measured as a dry mass mdry, during the

measurement we assume that there is no changing in the density of dried silica (no

humidity exchange between a dried sample and the air) [49]. The volume fraction �

of a dialysed dispersions is calculated by the equation 2.5:

� =

mdry

⇢SiO2

mdry

⇢SiO2

+
mwet � mdry

⇢H2O

, (2.5)
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grade particle radius (nm) size polydispersity supplier
TM50 13.3 11% Sigma-Aldrich
HS30 7.5 14% Sigma-Aldrich
HS40 7.9 15% Sigma-Aldrich
SM30 4.8 19% Sigma-Aldrich
Levasil30 48 11% AkzoNobel
Levasil50 49 36% AkzoNobel

Table 2.1: Colloidal silica that were used in the experiments.

where ⇢SiO2
is the density of silica 2.200 ± 0.050 g/cm3 [15, 19, 22, 48, 50] and ⇢H2O

is that for water, 1.0 g/cm3.

2.3 Osmotic pressure of an equilibrated sample

We consider a good dialyzed sample of colloidal dispersions at the equilibrium, the

osmotic pressure that arises in a system should have the same value across the system.

In other words, the osmotic pressure of the colloidal dispersions (inside the dialysis

membrane) and that of the reservoir (PEG) are equal. Thus, we can easily examine

whether a sample reaches its equilibrium or not by measuring osmotic pressures from

the equation of state (EOS) of PEG and the EOS of colloidal dispersions of a sample.

2.3.1 The equation of state of PEG

In order to convert the osmotic compression data into a usable form, I used the

equation of state (EOS) of osmotic pressure for polymer, especially for PEG, which

was investigated intensively by Cohen et al.[42]. Briefly, they combined the Van’t

Ho↵ equation which describes the osmotic pressure (⇧vH) [51] of a diluted solution

of polymers (low-concentration of PEG) and the des Cloizeaux (⇧dCl) [52] equation

which describes a polymer osmotic pressure (higher-concentration of PEG) in the

semidilute regimes.

The Van’t Ho↵ equation:

⇧vH = RTc = RT

✓
C

Mp

◆
=

RT

Mm

✓
C

N

◆
, (2.6)

where R is the universal gas constant, T is the temperature, c is the polymer molar

concentration, C is the polymer mass concentration, Mp is the polymer molecular
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weight, Mm is the monomer molecular weight, N is the number of monomer in a

polymer chain.

The des Cloizeaux equation:

⇧dCl = ↵⇧vH

✓
C

C

⇤

◆5/4

= ↵

RT

Mm

✓
C

N

◆✓
C

C

⇤

◆5/4

, (2.7)

where the parameter ↵ is determined by an empirical fit to the experimental data of

PEG in ref.[42], and C

⇤ is a characteristic polymer concentration associated with the

crossover between the dilute and semidilute regimes. C

⇤, normally, is calculated as

a semiquantitatively defined polymer concentration C

⇤ ⇠ N

�4/5
/V , where V is the

polymer partial specific volume [42]. Through the dilute to the semi dilute regimes,

the osmotic pressure is described as ⇧ = (⇧vH ! ⇧dCl), where the right arrow

(!) expresses the dilute - semi dilute transformation. One can introduce an osmotic

pressure equation in both regimes as using Equation (2.6) and Equation (2.7) in a

form:

⇧N9/5 =
RT

MmV

"✓
C

C

⇤

◆
! ↵

✓
C

C

⇤

◆9/4
#
. (2.8)

Equation (2.8) shows that the equation of state is constructed by two parts which

C/C

⇤
< 1 is leading in ⇧ = ⇧vH and C/C

⇤
> 1 for ⇧ = ⇧cCl regime. At this transition

Cohen et al.[42], they tested a linear combination Equation (2.6) and Equation (2.7)

by replacing C

⇤ with the precisely defined C

⇤
n, replacing“!” with “+”, and use ↵

as a single fitting parameter. Then, one can fit for polymer/solvent system by the

one-parameter non-virial interpolation function:

⇧N9/5 =
RT

MmV

"✓
C

C

⇤
n

◆
+ ↵

✓
C

C

⇤
n

◆9/4
#
. (2.9)

Figure 2.3 presents the fitting of equation 2.9 for PEG in water and PAMS in

toluene as reported by Cohen et al. According to their fitting [42], parameters that

will be used to calculate the osmotic pressure of PEG solution are ↵ = 0.49 ±0.01, V =

0.825 mL/g, and Mm = 44 g/mol. These parameters were confirmed by experimental

means as reported by Li et al.[46](see Fig.2.4) that the equation 2.9 gives a good

agreement of PEG20000 and a fairly good estimation of the osmotic pressures for

PEG35000 in the range 0.5-20% (w/w), which corresponds to the range 0.5-10%

(w/w) of PEG35000 that was used in our experiments.
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By use of C#, the collapsed data and fits for PEG/water and
PAMS/toluene can be compared. Normalizing the osmotic
pressure as Π̃ ≡ Π/(RT/MmVj), eq 4 takes the simple form:

All explicit R dependence factors out of the right side of the
equation; there are no undetermined prefactors. Π̃’s for the two
systems differ solely by their values of R, i.e., RPEG ) 0.49 and
RPAMS ) 0.162.

We plot Π̃N9/5R4/5 vs C/C# for both PEG and PAMS in Figure
4. The two datasets now collapse onto a single curve. When
superimposed on this curve, eq 5 is seen to provide a simple
and accurate one-parameter scaling equation of state for the
osmotic pressures of these two highly dissimilar polymer/solvent
systems.

Equation 5 provides an accurate representation of the
crossover region. The crossover width is independent of C# and
R. By use of an extrapolated-tangent method, the crossover
region can be shown to extend 8/(5 ln 10) log units to either
side of log(C/C#) ) 0. The van’t Hoff domain is Cj 0.2C#,
and the des Cloizeaux domain is CJ 5C#. The crossover extends
over a 25-fold range of C, or 1.4 units of log(C/C#).

Discussion

Our ansatz for the scaling form of the equation of state tidily
collapses the data for both polymers onto a universal curve.
For each system, all chemical specificities appear in only one

parameter, the crossover index R. Decomposition of the fit for
each system unambiguously defines a crossover concentration,
expressible in terms of R. Alpha is necessary to ensure accuracy
in the high-concentration limit. It encapsulates a number of
physical properties: microscopic structure, Flory radius, mono-
mer size and volume,20 and strength and range of interactions.
Although the PEG monomer size (∼3.5-7.2 Å)35 is less than
that of PAMS (∼7.2 Å),36 the complicated polymer-solvent
interactions for PEG/water6,29 lead to larger R, higher interaction
strength,37 hence a lower crossover concentration (cf. Figure
3), compared to PAMS/toluene. The interaction strength of PEG/
water is 4.4 times that of PAMS/toluene.37

Equation 5 depends crucially on the scaling exponents, T,
Mm, Vj , N, and R. The system is highly constrained. Systematic
error in any of these quantities would prevent the total collapse
of data. Our ansatz is validated by the fact that R is found to be
approximately independent of N.38 The double-limit formalism
precludes use of the virial expansion. The heuristic simple sum
of van’t Hoff and des Cloizeaux terms with a fitted des
Cloizeaux prefactor is accurate over the whole data range,
including the crossover region. It coincides almost exactly with
the much more complicated equation of state proposed by Ohta
and Oono23 on the basis of renormalization group analysis. Our
parameter R is related to an adjustable proportionality constant
in the Ohta-Oono formalism.40

Because the proposed phenomenological equation of state
contains only one parameter, a single Π measurement in the
semidilute regime in principle suffices to determine the entire
equation of state for each system of neutral flexible polymers
in good solvent, thus yielding Π’s for polymers of all sizes at

Figure 3. Fits, residuals, and crossover concentrations. Same data and axes as those in Figure 2. Blue (upper dataset) refers to PEG/water, red
(lower dataset) to PAMS/toluene. Heavy black lines are logarithmic fits of eq 4. Fitted values of R are RPEG ) 0.49 ( 0.01 (r2 ) 0.9926) and RPAMS

) 0.162 ( 0.002 (r2 ) 0.9972). Residuals are small with no systematic deviations (some smoothing results from integration of PAMS light-
scattering data). Straight lines are van’t Hoff and des Cloizeaux components of the fits. “Crossover concentrations” are where the van’t Hoff and
des Cloizeaux lines cross. C/CN

* values at crossover are PEG: 1.78 ( 0.03 and PAMS: 4.29 ( 0.05.34

Π̃N9/5R4/5 ) ( C

C#) + ( C

C#)9/4
(5)

3712 J. Phys. Chem. B, Vol. 113, No. 12, 2009 Cohen et al.

Figure 2.3: Fits of crossover concentrations of PEG/water(blue) and PAMS/toluene.
Straight lines are vant Ho↵ and des Cloizeaux components of the fits. Heavy black
lines are logarithmic fits for eq.2.9: fitted values of ↵ are ↵PEG = 0.49 ± 0.01 (r2 =
0.9926) and ↵PAMS = 0.162 ± 0.002 (r2 = 0.9972). Panels show residuals are small
with no systematic deviations. (Reproduced from [42])

.

Figure 2.4: The total osmotic pressure in Pascal as a function of concentration in
mg/ml for experimentally obtained pressure (black dot) and predicted pressure from
EOS by Cohen et al. using ↵ = 0.44 (red dash line) and 0.49 (blue dash line) for (a)
PEG20000 and (b) PEG35000, respectively. The insert panel shows a magnification
of the lower concentration regime, where the black dash line corresponds to the ideal
pressure. (Reproduced from [46])

2.3.2 The equation of state of charge-stabilized colloids

To approximate an equation of state (EOS) of the osmotic pressure of charged dis-

persions (⇧c), the osmotic pressure can be considered as contributions from the hard

sphere interactions of particles (⇧q), and from the electrostatic interactions due to

the clouds of ions around particles (⇧s). The EOS of the osmotic pressure of charge-
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stabilized colloids is given by

⇧c = ⇧q +⇧s = nkT (Zq + Zs). (2.10)

The EOS of the entropic term is well estimated by the Carnahan-Starling equation[53],

⇧s = nkT

✓
1 + �+ �

2 � �

3

(1 + �

3)

◆
= nkTZs(�) (2.11)

where Zs(�) is the compressibility factor, n is the number density of particles and �

is the volume fraction up to 0.55[22, 37]. On the other hand, the electrostatic term

can be evaluated by using the Poisson-Boltzmann cell (PBC) model (radius R) of

a particle (radius a) dialyzed against a monovalent salt solutions (concentration of

n0): with the cell, the distributions of positive ions and negative ions are giving by

n± = n0e
⌥', surface charge density of particle �. One then can simplify the equation

2.3 to

r2
' = 

2 sinh', for a < r < R, (2.12)

with a boundary condition:

@'

@r

= �4⇡LB�, at r = 0,

@'

@r

= 0, at r = R,

where

' =
e 

kT

, (2.13)

is the reduce electrostatic potential, LB is the Bjerrum length (0.7 nm in water at

room temperature) and the Debye length is defined as



2 =
2e2n0

""0kT
. (2.14)

At the equilibrium, the osmotic pressure of dispersions can be determined by consid-

ering the osmotic pressure in the cell. This pressure must be constant throughout

the cell: from the surface of the particle (r = a) to the surface of the cell (r = R).

The osmotic pressure is then approximated as the di↵erence between the chemical

potential of the ions in the cell and the ions at concentration n0 of the reservoir[22,
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54, 55]:

⇧q

kT

= (n+(R) � n0) + (n�(R) � n0) = n0

�
e

�'(R) + e

'(R) � 2
�
. (2.15)

The PBC model will be used to simulate the osmotic pressure of the dispersions in

various conditions. We calculated the PBC model in Matlab. The osmotic pressure

obtaining from this model will be compared with the osmotic pressure of PEG to

check that a dialyzed sample has reached the equilibrium or not.

2.4 Small Angle X-ray Scattering (SAXS)

In this part, I introduce the small angle X-ray scattering (SAXS) technique, which

is a powerful structural characterizing technique and has been widely used in various

fields of study. This technique is able to explore materials in real time and shows

a result as scattering patterns. These scattering patterns are treated and analyzed

giving in return, for example, a series of peak ratios of a crystal and properties of a

liquid phase. Here, I focus on using small angle X-ray scattering to investigate a given

system of colloidal dispersions at di↵erent osmotic pressures. I provide a foundation

of X-ray scattering, defining the form factor, and the scattering factor, as well as

the treatments that are used to determine particle sizes, polydispersity (particle size

distribution), and packing of particles.

2.4.1 Scattering theory

We consider an electromagnetic wave (photon) which is plane-polarized propagating

in a direction k towards a material. When the X-ray photon hits the material, it may

be scattered by electrons. To simplify the scattering model, the scattering is defined

in the principle elastic: there is no changing of wavelength (classical physics) or no

exchange of energy h⌫ (quantum mechanics). Figure 2.5 (a) shows the scattering

angle between incoming beam k
in

and outgoing beam k
out

is di↵ering by 2✓. The

scattered electric field is a superposition of all secondary waves that are generated

from the material. Consider the scattering angle (see Fig.2.5(a)), one can find the

vector q = k
out

� k
in

. Due to not changing the wavelength |k
in

| = |k
out

| = k =

14
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(a) (b)
Figure 2.5: (a) Demonstration of scattering of a incident beam kin and scattered beam
kout. The scattering vector is defined as q = kout � kin. (b) A sketch of the scattering
of x-ray beam by an colloidal crystal. The path di↵erence corresponds to the Bragg’s
law of di↵raction: 2d sin(✓) = �, where d is the spacing between two colloidal planes,
✓ is the scattering angle, and � is the wave length of the x-ray.

2⇡/�, so one can define q as:

|q| = q = 2k sin ✓ =
4⇡

�

sin ✓. (2.16)

Lattice
system

14 Bravais Lattices
Primitive Base-

centered
Body-
centered

Face-
centered

Cubic

Teragonal

Orthorhombic

Monoclinic

Triclinic

Hexagonal

Trigonal (Rhom-
bohedral)

Table 2.2: The seven crystal systems and 14 Bravis lattices in three dimension
(adapted from source wikipedia.org)
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The vector q is called the scattering vector or wave vector which is related to wave

length, � (k = 2⇡/�). Figure 2.5(b) showing, the scattering vector q is associated to

the X-ray di↵raction that originating from the colloidal particle which can be described

by the Bragg’s law of X-ray di↵raction: 2d sin ✓ = �. The interplanar spacing d in

the Bragg’s law gives the detail how long the distance between particles is. So one

can rewrite from above relations and on that in the equation 2.16 as:

|q| = q =
4⇡

�

sin ✓ =
2⇡

d

. (2.17)

The equation 2.17 shows the scattering vector q is a inverse proportion of interplanar

spacing which means at a small value of q is governed by a large interparticle distance,

and vise versa. To expand scattering theory into a scattering of a crystallite, several

scattering planes are involved. These specific planes that are hit by the incident X-ray

are described by the Miller indices (hkl) which are a set of integers calculated from

the reciprocal (1/a, 1/b, 1/c) of plane-intercepts of the crystal axis system at points

(a, b, c) (here, the detail how to construct the Miller indices will not be discussed).

The Bravais lattices is introduced to classify crystal structures (see Table 2.2).

2.4.2 Scattering function of monodisperse particles

The scattered intensities of a colloidal dispersion depends on sizes, shapes, and relative

positions of its particles. Here, only the spherical particle will be discussed since the

interested colloidal particles are assumed having a spherical shape. The scattered

intensity consists of a form factor P (q) of the system, which describes the interference

between scattering rays from di↵erent atoms inside a particle, and the second part is

a structure factor S(q) that describes the interactions between particles [48]:

I(q) = h�sVp (⇢solute � ⇢solvent)
2
P (q)S(q). (2.18)

Where I(q) is the scattering intensity, h is the thickness of a sample, containing

colloidal dispersions , �s is the volume fraction of colloidal dispersions, and ⇢solute and

⇢solvent are the densities of scattering length of solute and solvent ( in the work, the

solvent is water and the solute is silica). For a spherical particle, radius of Rp, the
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form factor P (q) is given [15]:

P (q) = 9


sin(qRp) � qRp cos(qRp)

(qRp)3

�2
. (2.19)

At high value of q, the form factor P (q) is proportional to:

lim
q!1


3 sin(qRp) � qRp cos(qRp)

(qRp)3

�2
/ 1

q

4
. (2.20)

The equation 2.20 is called the Porod’s limit. The structure factor S(q) is related

to the radial distribution function, (or pair correlation function) g(r) at interparticle

distances r away from the origin by

S(q) = 1 +
�s

Vp

Z 1

0

(g(r) � 1)
sin(qr)

qr

4⇡r2dr. (2.21)

At high q, the structure factor lim
q!1

S(q) ! 1. According to Cabane et al [15], the

liquid dispersion of monodisperse particles obeys the Verlet-Hansen criterion [56]

(sometimes called Verlet-Hansen freezing rule) which is strict for hard spheres. It

states that hard spheres in the liquid phase crystallizes when the first maximum

structure factor Smax(q) exceeds 2.85.

2.4.3 SAXS data acquisition

SAXS experiments were conducted using instruments of ID02 beam-line at the Euro-

pean Synchrotron Radiation Facility (ESRF) in Grenoble, France. The ID02 beam-

line was equipped with a two dimensional area (2D) moving detector, a CCD camera

(FReLoN 4M) with 2048 ⇥ 2048 pixels and 10 ⇥ 10 cm area [48]. The beam size was

200 µm in the vertical direction and 400 µm in the horizontal direction. The moving

detector can be placed at 0.8 m and 10m away from the sample. The wavelength of

the X-ray was 0.1 nm (12.4keV), giving q-range from 0.01 to 9 nm�1 [57].

Generally in SAXS measurement, the procedures starts with:

• Measuring background that arises from beam-line optics, the air, sample con-

tainer, and the water signal which has high contributions at high q�value .

• Measuring form factors of all colloidal types from very diluted dispersions, e.g.

0.1% by volume (See next section).
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Detector
Colloidal sample

X-ray beam 

0.8m – 10m
SAXS image

(a)

(b)

Figure 2.6: (a) Schematic of the SAXS equipments at the ESRF-ID02 beam-line in
Grenoble, France. (b) schematic representation of data acquisition of silica TM50 in
5mM of NaCl, X-ray beam is scattered by sample and collected on a 2D detector
(Figure(a) adapted from [57]).

• Exploring a sample by scanning across a sample (vertical scanning with the

moving interval of 5 mm for the equilibrium sample, and horizontal scanning

with moving interval of 0.5 mm for the interdi↵usion samples) and interpreting

SAXS 2D-images (see Fig. 2.7).

(a) (b)
Figure 2.7: There are two ways to align a sample during SAXS scan: (a) A horizontal
scan, the sample holder is moving to the left, while a sample is horizontally scanned
from the left to the right. (b) A vertical scan, the sample holder is moving up, while
a sample is vertically scanned from the top to the bottom. White arrows show the
direction of moving sample holders.

During the measurement, scattering photons, which are elastically scattered by

the sample, were collected on a movable 2D detector as the scattering signal and

turned into a SAXS image (see Fig.2.6). The position of each pixel on the SAXS

image was applied by a mask to remove faulty regions of image, normally caused by
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(a) Merging: Intensities of a sample at detec-

tor length of 0.8 m (black) and 10 m (red).
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(b) Background Subtraction: the background

intensity (blue), the merged intensity (black),

and the subtracted intensity (red)
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(c) Porod’s limit correction: at high q, the

subtracted intensity is corrected according to

the Porod’s limit I(q) / q�4

Figure 2.8: Example of data treatment of a colloidal system, TM50 � = 0.2044.

the CCD and the beam stop, and were then collapsed by azimuthal averaging to give

a one-dimensional (1D) scattering curve I(q). All processes, as described above, was

automatically analyzed by a software of ID02 beamline. Each sample was collected

its scattering data I(q) at the detector positions of 0.8 m and 10.0 m. These I(q)

were then merged together so that the scattering intensity covered the resolution, q

range, of 0.01 to 9.0 nm�1 (see Fig.2.8(a)). The merged scattering data I(q) still

contained a background signal. These backgrounds were removed by subtracting the

scattering intensity of the water in the container, which were measured earlier (see

Fig.2.8(b)). The background-subtracted intensity I(q) was then corrected by applying

Porod’s limit (I(q) / q

�4) at the high q, where the intensity was blurred out due to

the azimuthal averaging in the first step. The final intensity contained only the
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informations of a particle which consist of the form factor P (q) and the structure

factor S(q)
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Figure 2.9: Form factors of di↵erent colloidal in the experiments: TM50(red),
HS30(red), SM50(blue), and Levasil30(pink).
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Figure 2.10: Analysis of silica dispersions, TM50 � = 0.2044: the scattering intensity
(black), the form factor (blue), and the structure factor (red).

2.4.4 Form factor P (q) and structure factor S(q) analysis

Colloidal nanoparticles that are synthesized in the lab or are naturally occurring have

either di↵erent or identical shapes and a finite size distribution. It is necessary to

know information about the particle, here is colloidal silica, at the single particle

level.

In this work, I used the traditional treatment of the SAXS analysis. First, the

SAXS analysis of a sample begins with a form factor analysis to understand the
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native physical properties of the particles in the sample. To do this, all types of

colloidal dispersions in experiments were diluted to a very dilute dispersions (silica

volume fraction �s ⇡ 0.1%) and extracted their scattering spectra. After that, the

spectra were merged, background-subtracted, and tail-corrected (Porod’s limit). The

final scattering spectra were defined as the form factors P (q) of each kind, example

structure factors are giving in Fig.2.9. Following this, the subtracted form factor

is fitting with the SasV iew software [58] to obtain the radius of a particle and its

polydispersity. Meanwhiles, the information of the interactions between particles of

the system was expressed by the e↵ective structure factor S(q) which was calculated

from the ratios of the scattering intensity I(q) to the form factor P (q) under the

condition that S(q) ! 1 at large q. Example structure factors are giving in Fig.2.10.

2.4.5 Crystal structure analysis

For the 2D SAXS images that contain sharp di↵raction spots (Fig.2.11(a)), superim-

posed on the liquid-like scattering pattern. These spots are the powder-di↵raction

pattern of small crystallites and will show a series of a powder spectrum (Fig.2.11(b))

on a one-dimensional (1D) scattering curve I(q).
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Figure 2.11: Example of a SAXS pattern of HS40, � = 0.22: (a) The 2D-SAXS
pattern is superimposed by di↵raction patterns of crystals (showed as spots in red
(inner circle) and light blue (outer circles). The color scale shows the intensity of
scattering x-ray beam on the detector (also see Fig.2.6(b)). (b) The 1D-spectrum of
the scattering intensity I(q).

In order to not decompose the intensity I(q) in to form factor and the e↵ective

structure factor. However, here, the colloidal dispersions consist of two phases (liquid
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and crystal states), one can no long assume that all sites are occupied by equivalent

particles (see eq.2.18 and eq. 2.19). Therefore, the complex structure factor S(q) is

approximated as S(q) ⇠ I(q)q2 for identifying (indexing) a structure of crystal in a

colloidal system.

Lattice 1/d2hkl Unit volume V

Cubic
1

a

2
(h2 + k

2 + l

2) a

3

Orthorhombic
h

2

a

2
+

k

2

b

2
+

l

2

c

2
abc

Tetragonal
h

2 + k

2

a

2
+

l

2

c

2
a

2
c

Hexagonal
4

3

✓
h

2 + hk + k

2

a

2

◆
+

l

2

c

2

p
3
2 a

2
c

Table 2.3: Perpendicular distance, d, between neighboring lattice planes {hkl} which
used in this work, for di↵erent Bravais lattices (see Fig.2.2), and lattice constants a,
b, c.

The following, I present an example of a real experiment to give an idea of how

to identify the size and shape or packing of a crystallite from the X-ray di↵raction

scattering peaks. We will call this procedure “indexing”. The interplanar spacing dhkl,

the shortest distance between neighboring lattice planes, of di↵erent Bravais lattices

that are used in this work are shown in table 2.3. From the relationship between the

interplanar spacing dhkl and Miller indices hkl, the equation 2.17 can be derived as:

q

2 =
4⇡2

d

2
hkl

, (2.22)

In case of a cubic lattice, 1/d2hkl = (h2 + k

2 + l

2)/a2 (see table 2.3), then

q

2 =
4⇡2

a

2

�
h

2 + k

2 + l

2
�
, (2.23)

where a is the edge length of cubic unit cell such that
4⇡2

a

2
is a constant, where a is

the lattice constant. So the scattering vector q is proportion to the square root of the

Miller indices (N =
p
h

2 + k

2 + l

2).

The complex structure factor contains informations of the amplitude and the phase

of a scattering beam, is derived by [59]
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(hkl) N =
p
h

2 + k

2 + l

2 primitive body-centered face-centered
100

p
1 3 7 7

110
p
2 3 3 7

111
p
3 3 7 3

200
p
4 3 3 3

210
p
5 3 7 7

211
p
6 3 3 7

220
p
8 3 3 3

300, 221
p
9 3 7 7

310
p
10 3 3 7

311
p
11 3 7 3

222
p
12 3 3 3

Table 2.4: An example of selected Miller indices for reflections in cubic crystals

Shkl =
nX

i

fie
�2⇡(hxi+kyi+lzi) = S000 +

nX

i,(hkl) 6=(000)

fie
�2⇡(hxi+kyi+lzi)

, (2.24)

where Shkl is the complex structure factor, S000 is the structure factor at (000) or the

form factor of a particle, fi is the form factor of ith atom, xi, yi, zi are coordinates

of ith atom, and h, k, l are the Miller indices. Consider the equation 2.24, there is

a set of the Miller indices that canceling the contribution of scattering x-ray due to

the non-coherence in phases (destructive interferences). Therefore, when indexing a

powder spectrum, there is a specific set of Miller indices (hkl) that corresponds fo

each crystal structure. Powder spectra of basic crystal structures (e.g. bcc, fcc, and

hcp) were able to be indexing by Matlab software, but for a very complex powder

spectra, they were send to a crystallographer to index them.

Table 2.4 shows a rule of reflections for cubic systems. According to q / N ,

one can predict arbitrary scattering-peak positions of a crystal structure by using a

relationship:

qpre = q0
N

N0
, (2.25)

where qpre is a predicted scattering-peak positions, q0 is the primary peak position

appears in the spectrum, N0 and N are the square root of Miller indices at the first and

the predicted position. Table 2.5 presents a set of the Miller index ratios ((N/N0)2)

that was used in this experiments.

Figure 2.12 and table 2.6 show an indexing of a crystal of a colloidal sample, TM50
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Structure Ratio (N/N0)2

Cubic: BCC 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : 10 : 11 : 12 : 13 : 14 : ...
Cubic: FCC 3 : 4 : 8 : 11 : 12 : 16 : 19 : 20 : 24 : 27 : 32 : 35 : 36 : ...
Hexagonal:
primitive structure
(c =

p
(8/3)a)

9 : 32 : 36 : 41 : 68 : 81 : 96 : 105 : 113 : 128 : 132 : 137 :
144 : 164 : 176 : 177 : 209 : 224 : ...

Table 2.5: A Miller index ratios N/N0 of bcc, fcc, and hcp with c/a =
p
(8/3). These

crystal structures are observed in this experiments.
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Figure 2.12: A result of the peak detection software of a sample (TM50 � = 0.2044):
the predicted peak positions are labeled with dotted lines (pink). The dominant
peaks are marked by red cycles. The peak positions of a crystal appear at q =
0.1923, 0.2720, 0.3334, 0.3847, 0.4300, 0.4709, and 0.5088 which correspond to N =p
2,

p
4,

p
6,

p
8,

p
10,

p
12, and

p
14.

� = 0.2044. The complex structure factor (I(q) ⇥ q

2) is detected to have powder

spectrum with at least seven peaks coexistent. By taking every q peak positions (see

Fig. 2.12) and divided them by the primary peak q0 = 0.1923, one can obtain that

each q/q0 ratios agrees with the N/N0 ratios of a body-centered cubic structure (see

table 2.6).

The superimposing powder spectrum are separated from the liquid phase by a

Matlab code. All subtracted peaks are collected as power spectrum of a crystal phase

in colloidal dispersions. The residual spectrum is then interpolated in order to fill

holes from the subtraction process. Finally, the filled residual is used as a liquid

phase spectrum of a colloidal dispersion (see Fig. 2.13).
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h k l qexp qpre N [qexpn/qexp0 ]
2 (N/N0)2

1 1 0 0.1923 0.1923
p
2 1.000 1

2 0 0 0.2720 0.2720
p
4 1.999 2

2 1 1 0.3334 0.3331
p
6 3.004 3

2 2 0 0.3847 0.3847
p
8 4.000 4

3 1 0 0.4300 0.4301
p
10 4.998 5

2 2 2 0.4709 0.4711
p
12 5.994 6

3 2 1 0.5088 0.5089
p
14 6.998 7

Table 2.6: Peak positions of the experiment and prediction of the body centered cubic.
qexp are the peak position obtained from the experiment, while qpre are the predicted
peak positions calculated by eq. 2.25, q0 = 0.1923.
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Figure 2.13: The subtraction of a powder spectrum of TM50, � = 0.2044: (a) The
original complex structure factor s(q)) (black) and the residual or the liquid phase
(red). (b) and (c) Subtracted peaks are powder spectrum of colloidal dispersions.
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Chapter 3

Colloidal Crystals

Previous theoretical works [11, 12, 14, 60, 61] have predicted that polydisperse hard

sphere are able to build crystalline structures, and with the coexistence of di↵er-

ent complex phases, although a small changing in polydispersity can interrupt the

crystalline order. Recently, there are both experimental and simulation works of a

colloidal system [15, 16, 48]: the experiment showed that an aqueous dispersions of

colloidal silica with a broad monomodal size distribution (Ludox HS40 equilibrated

against NaCl solution, 5mM, pH 9-10) has a capability of fractionated crystallization

with di↵erent structures (bcc, Laves AB2, liquid) coexisting. Meanwhile the sim-

ulation showed a monomodal polydisperse populations, charge-stabilized, can build

complex colloidal crystals by fractional crystallization due to interact through a soft

potential increasing their tolerant to crystallize even at a high polydispersity .

The interesting questions that still need to be answered:

(1) Are there another possible structures could be discovered? Are they large or

small?

(2) How do the changing of interaction forces, the particle size, and the volume

fraction have the e↵ect on phases of a colloidal structure.

(3) How and when does the colloidal-crystal nucleation take place, and are the

colloidal crystals stable?

In this chapter, I report small-angle x-ray experiments on several osmotically com-

pressed systems of colloidal silica with a broad monomodal size distribution (see table

2.1). These colloidal particles were equilibrated under di↵erent osmotic pressures giv-
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ing various volume fractions of final aqueous samples. Moreover, I also observed the

nucleation and growth of crystals in a sample, and the appearance of crystals in the

di↵usion of two di↵erent volume fraction samples.

3.1 Ludox TM50 colloidal silica

3.1.1 Osmotic pressure curve

Aqueous dispersions of colloidal silica (Ludox TM50) were used as received. Ludox

TM50 of 80 samples were dialyzed against aqueous solution of PEG (0.5 - 5 mg/ml)

and NaCl (0.5 - 50 mM). After a dialysis was complete, most of the samples behaved

rheologically as fluids and were preserved in a tube with a closure preventing them

from the deterioration when stored for a long period of time. Volume fractions �

were measured by the dry extract method of section 2 and the osmotic pressures were

computed by equation 2.9. The results of volume fractions and osmotic pressures

measurement are presented in the Fig.3.1. The volume fraction increases with the

increasing of PEG concentration.
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Figure 3.1: (a) Volume fractions of dialyzed silica dispersions, Ludox TM50, as a
function of concentration of PEG. (b) Evolution of osmotic pressures in silica disper-
sions as a function of the colloidal volume fraction. The symbols shows results for the
di↵erent concentrations of NaCl solution between 0.5 - 50 mM.

The SAXS experiments have been performed in order to quantitative study the

phase diagram and the dynamics of nucleation. As mention earlier, the form factor

was quantified by a scattered intensity of a diluted dispersions, � = 0.1%. The best
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Figure 3.2: The form factor of Ludox TM50 is a scattered intensity of a diluted
dispersion of Ludox TM50 (circles), �s = 0.1% and a theoretical fitting line (red) by
Sasview software.

theoretical scattered intensity were fitted by using a small angle scattering analysis

software - SasV iew [58] using the polydispersity of 11.1 ± 0.3% and the radius of

colloidal spheres Rp = 13.3 ± 0.6 nm. Robert Botet, a collaboration in France, also

calculated the particle size of TM50 by using his own developed inversion formula for

SAXS of polydisperse spheres [62]. His result is shown in fig.3.3 with the article radius

of 13.75 nm and polydispersity of 10%. The particle size from this method agreed with

the fitting from SasV iew. Goertz et al. [63] have also measured particle sizes of TM50

and HS40 by other di↵erent means (They used analytical ultracentrifuge (AUC),

small angle x-ray scattering (SAXS), transmission electron microscopy (TEM)). The

averaged particle size and polydispersity of TM50 from their measurements were a

diameter of 25-28 nm and polydispersity of 12-15% as shown in fig.3.4, with in good

agreement with that from SasV iew.
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Figure 3.3: The size of Ludox TM50 is fitted by using the inversion formula for
SAXS of polydisperse spheres [62]. The fitting size particle of TM50 by Gaussian
distribution is 13.75 nm, and polydispersity of 10%. The top left panel is the inversed
radius distribution of TM50. (Reproduce with permission from Robert Botet)
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non-aggregated particles was correct. Using the interre-
lationship between the scattering vector of the first max-

ima qmax1 and the radius R (qmax1 !
!!!!!!
3!5

"
R " 4"5), a rapid

assessment of a spherical particle size can be made [25].
The diameter of TM50 is 29.8 nm and of HS40 15.9 nm.
For a preliminary estimation, the results agree very well

with TEM. Considering the depth of the minima, the
distribution of TM50 is narrower which is also con-
firmed by the TEM distributions.
In Figure 5 the experimental and calculated scattering
intensities are compared. Figure 5a shows the intensity
curves computed from the Gaussian distribution and
Figure 5b the intensity curves computed from the log
normal distribution. The scattering intensity data was
calculated using Eq. (4). The distribution parameters,
i.e., expected value and standard deviation, and the
number of dispersed particles were adjusted assuming
the Levenberg-Marquardt algorithm as the optimization
algorithm. Figure 5c shows the fitted intensity curves by
assuming the MEM.
In Figure 5a and 5b the calculated and the experimental
data agree in the range of the first maxima, whereas the
Gauss fits describe the experimental data for TM50 and
HS40 better than the log-normal fits, again in agreement
with the TEM results (Figure 3). In the range of small

http://www.ppsc-journal.com © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 2: TEM images of two Ludox samples: a) TM50, b) HS40.

Fig. 3: Histograms of the number density distributions as deter-
mined by TEM for the two Ludox samples. The continuous lines
present the Gaussian fits which were calculated from the mea-
sured chord lengths.

Table 1: Mean diameter and polydispersity reff of the particle size
distributions retrieved from TEM, SAXS and AUC for Ludox
TM50 and Ludox HS40.

Method
TM50

mean diameter
(polydispersity)

HS40
mean diameter
(polydispersity)

TEM 28.1 nm
(12.1 %)

16.3 nm
(14 %)

SAXS Gauss 26.3 nm
(12.9 %)

14.4 nm
(18.3 %)

Log Normal 27.0 nm
(12.8 %)

15.2 nm
(17.2 %)

MEM 27.1 nm
(15.5 %)

12.1 nm
(43.9 %)

AUC 25.3 nm
(14.8 %)

14.9 nm
(14.4 %)

Fig. 4: Small angle X-ray scattering curves for the two SiO2 colloi-
dal dispersions TM50 and HS40.

Figure 3.4: (top): A mean diameter and polydispersity obtained from TEM, SAXS
and AUC for TM50 and HS40. (bottom): The SAXS intensities of TM50 and HS40
according Goertz et al. (Reproduced from [63])

.
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3.1.2 Phase diagram

In order to investigate the electrostatic e↵ect on the crystal populations, five sets

of Ludox TM50 samples were dialyzed by changing the concentration of salt, NaCl,

in the bu↵er solutions as described in the previous section. A crystal structure of

colloidal particles in dispersions can be evaluated by detecting a pattern of sharp

di↵raction peaks which superimposed on the liquid phase intensity.
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Figure 3.5: A phase diagram of colloidal dispersions Ludox TM50 (radius of 13.3 nm
and polydispersity of 11%) equilibrated at NaCl concentrations of 0.5, 5, 10, 25, and
50mM. The symbols represent phases of colloidal at di↵erent volume fractions and
salt concentration; liquid (blue circle), fcc (red diamond), fcc+bcc (orange triangle),
bcc (green square), hcp (plus sign), and quenched (purple circle).

Figure 3.5 shows a phase diagram of Ludox TM50 with salt concentration and

Debye length as a function of �. At salt concentration of 5.0 mM shows results with

multiple crystals coexistence. For instance, in the Fig. 3.7 shows a structure analysis

by peak-position indexing of samples in 5 mM NaCl solution: below � = 0.16, particles

behaves as colloidal liquid, then at � = 0.19, the liquid phase appeared together with

the first sharp peak pattern indexing as a face centered cubic (fcc) structure. At � =

0.20, liquid phase superimposed by two crystal structures which were indexed as fcc

and body centered cubic (bcc) structure. At higher volume fraction � = 0.22, fcc

disappeared and only liquid phase and bcc were observed. At higher �, eventually,
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the colloidal crystal quenched.

Results

Figure  2:  Simulated  phase  distribution of  TM50 dispersions  at  various particle  volume fraction.  The TM50 silica

particles are in equilibrium with a bulk solution at pH 5 and a ionic strength of 5 mM. Note the cross-over at  f=0.2

between the FCC and BCC phase. Note, also, the quite abrupt solid-liquid transition at f~0.22.

Figure 2 gives the predicted composition and proportion of the phases for TM50 dispersions and

how they vary with the particle volume fraction, when equilibrated with a bulk solution at pH 9 and

a ionic strength of  5 mM. At  f = 0.16 a clear  liquid-crystal  transition is  found with colloidal

particles distributed in two distinct crystal phases, namely FCC and HCP,  in approximatively equal

amount, but no BCC phase is observed. At  f = 0.195, a solid/solid phase transition is predicted

between a FCC and a BCC crystal. Note that it also corresponds to the density where the liquid

phase starts to rapidly increase. Finally, at f = 0.23 all crystals are redissolved in a jammed liquid

phase. 

Figure 3 : tentative phase diagram obtained from simulations of the TM50 dispersions at various ionic strength and a set

pH of 9.

Similar observations were made when the TM50 dispersions are equilibrated at the same pH but at

higher ionic strengths, that is 10, 25 and 50 mM. The results so far obtained are summarized in a

tentative phase diagram, see Figure 3.
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Figure 3.6: A predicted phase diagram obtained from simulation of Ludox TM50,
radius of 13.75 nm and polydipersity of 10% equilibrated at NaCl concentrations of
5, 10, 25, and 50mM (Reproduced with permission from Guillaume Bareigts and
Christophe Labbez).

In order to compare to the results found in this study, the fractionation of Ludox

TM50 was investigated through Monte Carlo numerical simulations by Guillaume

Bareigts and Christophe Labbez, our collaborative researchers from Dijon, France.

The polydisperse cell model [64] and the charged regulation model [65] were used for

numerical simulations of identification between the fcc,bcc, and hcp phases . Figure

3.6 presents simulation results of Ludox TM50 equilibrated at NaCL of 5, 10 ,25 and

50mM. The simulations are in very good quantitative agreement with the experimental

data. The simulation was able to predict all crystal structures which found in the

experiments, the initial volume fraction where each crystal phases appeared in every

salt concentrations (5 to 5o mM, NaCl). It also predicted the coexistence of hcp

structure which was not noticed or dis not appear in a spectrum.

After the simulation results came out, all spectra were re-indexed, and a small

bump was found to be a possible scattering peak contributed by the hcp structure.

This small peak appeared in samples, in which contained a fcc phase, with a relative

ratio 0.94 ⇡
p

32/36 to the primary peak of fcc (111) (see fig.3.7), but it disappeared

when fcc was absent or at higher �. The origin of the additional peak is unknown,
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Figure 3.7: Example of peak detection (indexing) of Ludox TM50 and the evolution
of colloidal crystals: (a) at � = 0.19, particles were in the liquid phase, fcc, and hcp.
(b) at � = 0.20, coexisting of liquid phase and crystals (bcc, fcc, hcp). (c) at � = 0.22,
fcc and hcp were disappear, only the liquid and bcc phase existed.

but suggested to come from a local disorder of fcc structure causing the size or the

range order related to the hcp peak (100) at the additional peak. This can happen

in the case of high quality data of micelles or colloids because the energy di↵erence

between fcc and hcp is not so large [66]. According the packing configurations of

fcc and hcp are close packed structures with possible layers denoted by A, B and C;

the fcc structure has layer sequences A-B-C-B-A-B, while hcp structure has that of

A-B-A-B-A-B. If there is a changing in fcc layer from C to A, the hcp then exists.

This wrong alignment of a layer in the fcc structure may be the origin of the bump.

This bump was also found in the spectra of the bcc structure but very small.
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Since the primary peak of structure factors, q1st or q0, is related to the local volume

fraction of colloidal dispersions: when volume fraction of a colloidal dispersion is

increased, the primary peak q1st and its following q peak were shifted to the right

(larger q-value). One can plot a relationship between the primary peak of structure

factors q1st of each phase in a colloidal dispersion and its local volume fraction to

obtain a calibration curve for each phase by using a relationship from [48]:

(q1st)
3 =

36⇡2p3

(2Rp)3
�. (3.1)

Figure 3.8 shows calibration curves of liquid, bcc, and fcc phases for TM50 cor-

responding to equation 3.1. The calibration curve also show the relationship of the

relative density (V/�) or compare a unit cell size (↵ / R

3
p ) of each crystal structure

by only compare the ↵ of each phase, where ↵ is a slope of a calibration curve. These

calibration curves will be used to study, by observing a changing of volume fraction,

the interdi↵usion of colloidal mixtures, the nucleation and growth of a crystal or liquid

phase, as well as its drying in a Hele-Shaw cell.
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3.1.3 Interdi↵usion experiments

Theoretical prediction for the di↵usion of non-homogeneous dispersions

In this part, we consider the di↵usion process of colloidal particles in a sample,

length of l, which has di↵erent initial concentrations (�1 and �2) at both ends but

do not mix at the beginning (Fig.3.9 (b)). For a single sphere in liquid medium,

the movement of particles is caused by a thermal fluctuations the so-called Brownian

motion. The self-di↵usion coe�cient or di↵usivity (known as Stokes-Einstein relation)

is given by

D0 =
kT

6⇡µa
, (3.2)

where kT is thermal energy, µ is the viscosity of the fluid medium, and a is the radius

of the sphere. Since our colloidal system consists of a large number of charged spheres,

the calculation of mass transport, di↵usion, of particles is to consider the collective

process, the relaxation of a concentration gradient due to potential (thermodynamic

and osmotic pressure) and hydrodynamic interaction. From previous works [22, 67–

70], the collective di↵usivity Dc of particles was corrected as the Stokes-Einstein

di↵usivity with respect to the volume fraction � of the particles:

Dc = D0D̃(�). (3.3)

Here, D̃(�) is the dimensionless di↵usivity which can be calculate from the experiment.

Applying the Fick’s law of di↵usion with the collective di↵usivity to build a model for

the interdi↵usion experiment, one can predict the volume fraction �(x, t) as a function

of time t and position x from the di↵usion equation:

@�

@t

= Dc
@

2
�

@x

2
, (3.4)

with initial conditions

�(x, 0) =

8
><

>:

�1, for � l/2 < x < 0

�2, for 0 < x < l/2, where �2 > �1.

The analytic solution of equation 3.4 is calculated by the separation of variables
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method combined with Fourier series, the solution:

�(x, t) =
�2 + �1

2
+
�2 � �1

2

1X

n=1

4

(2n � 1)⇡
sin

✓
(2n � 1)⇡x

l

◆
e

� (2n�1)2⇡2

l2
Dct

. (3.5)

Note that, here Dc was assumed to be constant, rather than Dc = D0D̃(�),

otherwise the di↵usion equation will be written as:

@�

@t

=
@

@x

✓
D0D̃(�)

@�

@x

◆
. (3.6)

Therefore, the equation 3.4 is a simplified of equation 3.6.
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Figure 3.9: (a) Small angle X-ray scatterng (SAXS) setup of interdi↵usion samples.
(b) The interdi↵usion sample geometry showing the initial condition with two di↵er-
ent volume fraction dispersions, filled in a capillary with the same length l/2 (in the
experiments l ⇡ 30-35 mm). The (c) The SAXS image of a interdi↵usion sample of
Ludox TM50 prepared by using initial volume fractions � 0.190 and 0.317. Interpret-
ing of scattering stripe patterns of the sample; at position 0-38mm is the fcc structure,
38 - 42 mm is bcc structure ,and from 42 mm is liquid phase. At 60-65 mm, the beam
hit the sample holder resulting in no spectrum is detected.

Experiments

Four interdi↵usion samples of Ludox TM50 (equilibrated at NaCl solutions of

5mM, pH 10) were prepared by equally injecting two dispersions, with volume frac-
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tions � of 0.190 and 0.317, in a capillary and allowed both dispersions to inter-di↵use

over time. On the day of the experiment, samples were 5, 8, 15 and 23 days old. Each

sample was investigated through SAXS and extracted scattered intensity of liquid

phase and the primary peak of crystals were extracted if they appeared. Figure 3.9

shows a schematic of experimental setup and scanning SAXS-image over an interdif-

fusion sample. The primary peak position of fcc, bcc and liquid phases were converted

into a volume fraction by fitting with the calibration curve in the Fig. 3.8.
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Figure 3.10: Interdi↵usion experiments on colloidal dispersions Ludox TM50 (particle
size 13.3 nm, the initial volume fraction � of 0.190 and 0.317) shows time-evolution
of the di↵usion process building the bcc structure at the boundary of two dispersions.
The solid lines give a predictions from the di↵usion model (equation 3.5) with the
average dimensionless di↵usivity D̃ = 15.

Figure 3.10 presents the results of these experiments with the corresponding model

predictions. For particle volume fraction �= 0.190, the particles form the fcc structure

and liquid phase, meanwhiles � = 0.317 particles are in liquid phase. After few days of

the di↵usion of two particle volume fractions, the bcc structure is build at the volume

fraction between � 0.22 to 0.24 which agree well with the phase diagram (Fig. 3.5).

The numerical model, we quantify the dimensionless di↵usivity D̃ = Dc/D0 = 15 for

Ludox TM50 by best-fitting to the experiment data, only for volume fraction ranges

of 0.19 to 0.32. Indeed, the collective di↵usion Dc depends strongly on the volume

fraction � which will be discussed with experimental results in the next chapter.
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The gaps in the middle of each spectrum were approximately a position of a sample

holder that hinders the x-ray scattering. Meanwhile in the equilibrium samples of

TM50, the bcc structure appeared at � = 0.17 to 0.25 and at � = 0.17 to 0.22 for

the fcc structure. If the di↵usion process is end, the final volume fraction of TM50

mixtures will be � =0.25. At this volume fraction, liquid and bcc phase should be

accommodated by particles in the TM50 mixtures according to the phase diagram.

This corresponds to the phase space in capillaries that particles trend to behaviors in

order to stay in the liquid phase and the bcc phase rather than being in the fcc phase

and expressed on a decreasing of the length of position where fcc phase was detected.

3.1.4 Crystal nucleation and growth

In this part, we studied a real-time kinetics of crystals growth and nucleation by the

population of particles in the Ludox TM50 over about 24 hours. The experiments

was conducted after we have known the equilibrium phase behaviour of Ludox TM50.

We prepare a new set of samples as fresh by diluting a very concentrated dispersions

(quench liquid of Ludox TM50 equilibrated at 5mM of NaCl, pH =10) to the volume

fraction � of 0.19, 0.20 and 0.22, since within this range showed the presence of

crystals, samples were analyzing immediately after the dilution. The q-value of the

liquid and crystal peaks were obtained from SAXS and converted to their volume

fraction �. After 13 and 17 hours, samples were remeasured in order to observe the

evolution of phases.

TM50, �= 0.19: From the phase diagram (see Fig.3.5) at � = 0.19 is the middle

range where the fcc structure existed without coexistence of the bcc. In the kinetics

experiment, the system developed slowly with a small increasing of the liquid peak

height and on crystal structures was detected at this period. After 13 hours, the first

signal of a weak fcc structure appeared and grew up gradually (see Fig.3.11).

Figure 3.12 shows indirectly of creasing of the amount of a crystal phase and

changing of volume fractions over time. Here, the nucleation was slow, especially

at this volume fraction � = 0.19, where the phase boundary is. A shift of the area

I(q)· q2 may be a result of the electron filling in the beamline which does not e↵ect

on the volume fractions.
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Figure 3.11: The scattering intensities of Ludox TM50 at 5mM, � = 0.19. The fcc
structure peak appear superimposing on the liquid phase after 13 hours of nucleation.
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Figure 3.12: The nucleation analysis of TM50 � = 0.19: (top) The area under the
Iq

2· q(nm�3) curve which relate to the occupancy of particles in liquid and fcc phases.
(bottom) The evolution of volume fraction over time.

TM50, � = 0.20: From the phase diagram (see Fig.3.5) at � = 0.20, one expects

the liquid phase together with two crystal structures (bcc and fcc). In the kinetics

experiment, the fcc structure evolved rapidly with 10 minutes after dilution and con-

tinued growing in term of the number of the fcc crystals. After 12 hours, all crystal

peaks developed completely and were indexed to be an fcc structure (see Fig.3.13).
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Figure 3.13: The scattering intensities of Ludox TM50 at 5mM, � = 0.20. A symbol
* expresses the fcc structure peak appear superimposing on the liquid phase after 11
minutes of nucleation. After 18 hours, the fcc peaks continued growing without the
bcc structure peak coexisted.

Meanwhiles, the q-value of fcc did not change over time. Although at this volume

fraction the bcc structure can exist according the phase diagram, it was not detected

at this volume fraction. This is also true at � = 0.20 in the interdi↵usion samples,

the fcc structure existed without the bcc structure. However, the bcc structure may

take long time to nucleate or there could be a phase transformation from fcc to bcc

that also costs time longer than 18 hours.

Figure 3.14 shows the gradually increasing of a number of the fcc structure at � =

0.20, the growth was stop after 12 hours in resulting no changing in volume fraction

over time. Meanwhile the changing of liquid phase after 12 hours was high. This

may cause by a wrong estimation of the liquid peak due to a subtraction of a very

sharp power spectrum from the liquid peak. A jumping of volume fractions of the

liquid phase in Fig.3.14 was a result of the misleading interpolation of liquid phase

curve after a peak subtraction; If the primary peak of a crystal was so high and the

crystal-peak base occupied most of the peak area of liquid phase. After the peak

subtraction, the liquid phase will lose all of its peak area to the crystal phase. This

caused a di�culty to estimate the peak position q�value of the liquid phase after the

peak subtraction. These jumping volume fractions can be seen also in other results.
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Figure 3.14: The nucleation analysis of TM50 � = 0.20:(top) The area under the
Iq

2· q(nm�3) curve which related to the occupancy of particles in liquid and fcc phases.
A number of the fcc structure was increased over time and appeared to stop after 12
hours. (bottom) The evolution of volume fraction over time.

TM50, � = 0.22: From the phase diagram (see Fig.3.5) at � = 0.22 is the phase

boundary of fcc (� from 0.17 to 0.23) and is the middle of the bcc’s favorite place (

from � = 0.20 to 0.25) so that one expects bcc structure rather than the fcc structure.

In the kinetics experiment, the bcc structure has appeared since the first observation

and continued to grow rapidly. Until by the 25th minute there was no increase in the

number of bcc population. Meanwhiles, the fcc structure showed up after 11 hours

later in a relatively small amount compared to the bcc structure. At the same volume

fraction in interdi↵usion samples, only the fcc phase existed with the liquid phase at

the beginning, after few weeks of di↵usion process the bcc structure has invaded in

to this volume fraction.
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Figure 3.15: The scattering intensities of Ludox TM50 at 5mM, � = 0.22. The
fcc structure peak appear superimposing on the liquid phase after 11 minutes of
nucleation.

10 15 20 25 30 600 800 1000
10-2

10-1

100

101

 

 

A
re

a 
I*

q^
3 

(n
m
-3

)

Time (Minute)

 Liquid
 bcc
 fcc

10 15 20 25 30 600 800 1000
0.205

0.210

0.215

0.220

0.225

0.230

 
 

V
ol

um
e 

fr
ac

tio
n

Time (Minute)

 Liquid
 bcc
 fcc

Figure 3.16: The nucleation analysis of TM50 � = 0.22:(top) The area under the
Iq

2· q(nm�3) curve which relate to the occupancy of particles in liquid and fcc phases.
(bottom) The evolution of volume fraction over time.

3.2 Ludox HS30 and HS40 colloidal silica

3.2.1 Osmotic pressure curve

Ludox HS30 and HS40 were used as received. They were dialyzed against aqueous

solution of PEG (4-8 mg/ml) at NaCl (0.5-50 mM). The volume fraction � and the
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Figure 3.17: Results of dry-extracted volume fractions and the osmotic pressure of
dialyzed silica dispersions, Ludox HS30 and HS40 at di↵erent concentration of NaCl
(0.5-50 mM): (a) Volume fraction of colloidal silica as a function of PEG concentration.
(b) Evolution of the osmotic pressure in silica dispersions as a function of the colloidal
volume fraction.
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Figure 3.18: Form factors of (a) HS40 (Rp = 7.9 ± 0.4% nm, polydispersity = 15.0 ±
0.3%), and (b) HS30 (Rp = 7.5 ± 0.5% nm, polydispersity = 16.0 ± 0.2%) were
estimated by scattered intensity of diluted dispersions, � = 0.001 (circle) and the
theoretical fitting line (red) by SasV iew software.

osmotic pressure (⇧) were measured as described in section 3.1. The volume fraction

and the osmotic pressure of Ludox HS30 and HS40 are presented in the Fig. 3.17.

The form factors of Ludox HS30 and HS40 were analyzed through a sample of very
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Figure 3.19: The size of Ludox HS40 is fitted by using the inversion formula for
SAXS of polydisperse spheres [62]. The fitting size particle of HS40 by Gaussian
distribution is 8.06 nm, and polydispersity of 14%. The top left panel is the inversed
radius distribution of HS40. (Reproduced with permission from Robert Botet).

diluted dispersions by SAXS experiments. The best-fitted intensity were calculated

by SasV iew [58] using the polydispersity of 15.0±0.3% and radius of colloidal sphere

Rp = 7.9± 0.4 nm for HS40 and for HS30 using the polydispersity of 16.0± 0.2% and

Rp = 7.5 ± 0.5 nm (see Fig.3.18). Compare the particle size and the polydispersity

of HS40, measured by the inversion formula by Botet [62], HS40 had a radius of

8.06 nm and a polydispersity of 14%. Meanwhile, Goerzt et al. [63] reported that

HS40 had a diameter of 12-16 nm and polydispersity of 14-18%. Both results of

sizes and polydispersity are in good agreement with the measurement from SasV iew.

Meanwhile, Ludox HS30 has smaller average size and more polydisperse than Ludox

HS40.

3.2.2 Phase diagram

Ludox HS40

The same method as in TM50 (given in section 3.1) is used to identify structures

of colloidal crystals in dialyzed samples. For Ludox HS40 (polydispersity of 15%,

Rp=7.9 nm) various complex crystal structures were detected and superimposed with

the liquid phase. Such complex crystal systems were carefully analyzed by our collab-

orator, Dr. Franck Artzner, a crystallographer from the University of Rennes. At low
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Figure 3.20: Scattering intensities of HS40 samples (blue) and predicted peak posi-
tions (q-value) of colloidal crystal structures (red line). (a) At � = 0.1985, the silica
particles form a AB13 colloidal crystal with cubic unit cell along with the liquid phase.
(b) At � = 0.2176, the scattering spectra shows peaks of the bcc structure and liquid
phase. (c) At higher volume fraction, � = 0.2457, many shape peaks of a Laves AB2

appears along with a small peak of the bcc (the middle peak between two red lines)
and liquid phase. In all case there is coexisting with a colloidal liquid phase

volume fractions, �, HS40 dispersions has a liquid phase. At higher �, the colloidal

particles starts to form a large unit cell crystal of AB13 structure, as well as crystals

with a body-centered cubic structure (bcc), and Laves AB2 structure respectively.

The scattering spectra of these crystal structures are shown in the Fig. 3.20. Pre-

vious work by Cabane et al. [15] also reported of a coexistence of multiple complex

crystals (especially bcc and Laves AB2) in Ludox HS40 (polydispersity of 14%; Rp

= 8 nm), but there was no report of AB13 structure on their work, and that study

focused on identifying colloidal crystals at asingle salt concentration of 5mM NaCl.
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Figure 3.21: A phase diagram of colloidal dispersions Ludox HS40 (polydispersity,
15% ; radius, 7.9 nm) equilibrated at NaCl concentration of 0.5, 5, 10, and 50 mM.
The vertical axis presents the salt concentration in mM (on the l.h.s) and the Debye
length in nm (on the r.h.s) Symbols express di↵erent phases in the phase diagram of
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Figure 3.21 presents a phase diagram of Ludox HS40 (polydispersity of 15%,

Rp=7.9 nm) at NaCl concentrations of 0.5, 5, 10, and 50 mM. At 5 mM, the popula-

tions of silica particles have shown an interesting capability to form complex crystals

in the broad range of the volume fraction (typically liquid!AB13!bcc!Laves AB2!

glass), therefore these samples were repeatedly investigated three times over the peri-

ods of 2015-2017, in order to monitor their evolution and stability, and confirm that

they presented equilibrium phases . Figure 3.22 shows an evolution of the HS40 phase

diagrams at 5 mM from 2015 to 2017.

The first investigation of HS40 samples at 5mM was performed in 2015, the results

showed that at volume fraction � = 0.18 to 0.28 were an appropriate environment

which allowed a AB13 crystal structure to be formed. The bcc phase and Laves AB2

structure were arranged from � = 0.20 to 0.28 and � = 0.23 to 0.28 respectively. In

2016 these set of samples were sent for investigating with SAXS by our collaborator

Michael Stzucki at ESRF, France. The results showed that the bcc phase was forming

at slightly lower �. This could be a result of a settling of a large unit cell crystal at
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Figure 3.22: Measurements of the phase diagram from 2015 - 2017, showing only
relatively minor di↵erence in structure, seen, in HS40 equilibrated at 5mM NaCl.

the bottom of capillary after being kept for a long time, causing an inhomogeneous

of volume fraction in a capillary. This allow particles, which are in liquid phase, to

form a smaller structure (bcc) at the top of dispersions. Two samples were damaged

during the transport (seen as missing points on the phase diagram in the Fig. 3.22).

The third investigation was performed by me. Since crystals of HS40 are di↵erent

in sizes and densities, when samples are aligned vertically for a SAXS scanning, the

settling of large crystals at the bottom of samples may cause an nucleation of a small

crystal structure. To avoid this, we aligned samples in horizontal and scanned across

them from the left to the right and averaging the scattered intensities of each sample.

Indeed, we found a large unit cell of AB13 structure at the same volume fraction range

as in the first investigation. Moreover a new large structure was observed at a low

q-value of 0.074 - 0.082 and an preliminary analysis by Dr. Artzner suggested that it

is a colloidal crystal with the structure of carbon cluster C24. However, the structure

of the new crystal is not conclusive at this time (see Fig. 3.23).

The volume fraction � - q

3 calibration curve of Ludox HS30 is showed in the

Fig.3.24. One can compare unit cell size of crystal phases in HS40 due to ↵ / R

3
p, so

that one obtains that Ab13 and AB2 structures are five and two times the size of the

bcc structure respectively.
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Figure 3.24: A calibration curve of q31st in nm�3 vs volume fraction � for Ludox HS40.

Ludox HS30

There are two grades HS Ludox samples, classified by silica concentration 40%

(HS40) and 30% (HS30). In this part, I prepared a set of dialyzed samples of Ludox

HS30 (Rp = 7.5 ± 0.5 nm, polydispersity; 15.0 ± 0.3%) in order to compare a phase

diagram from HS30 and HS40. Results of the form factor analysis shows that the
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Figure 3.25: Scattering intensities of HS30 samples; at � = 0.17, colloidal particles
were in liquid phase (blue). At � = 0.20, the bcc structure appeared together with
the liquid phase (red). At � = 0.22, the Laves AB2 also appeared along with the
liquid and the bcc structure (green).

Ludox HS30 and HS40 have slightly di↵erent in size and polydispersity (see Fig.3.18).

Therefore, HS30 samples were dialyzed against NaCl solution at 5mM as a compara-

tive sample set of HS40. A set of Ludox HS30 samples was concentrated with volume

fraction � between 0.17 to 0.28 depending on the concentration of PEG. The scat-

tering pattern of the liquid phase and crystal structures were extracted to create a

phase diagram of HS30. The preliminary analysis of a phase diagram of Ludox HS30

showed that at low volume fraction the population of colloidal silica had a liquid

phase as expected. When the volume fraction was increased, the scattering pattern

of crystals appeared and were indexed as bcc and Laves AB2 structures, without the

AB13 structure (see Fig. 3.25). Figure 3.26 represented the evolution of Ludox HS30

phase diagram at 5mM NaCl which was analyzed by SAXS data. Due to access lim-

itations of the synchrotron radiation facility, the dialyzed HS30 samples were only

re-investigated in 2017 by SAXS. The results of crystal phase investigations after a

period of time showed that HS30 particles also started to form a large complex struc-

ture. This structure was indexed as a AB13 structure and had a sequence of scattering

peaks similar to AB13 structure that appeared in Ludox HS40. However, the larger

and more complex C24 phase was not found in Ludox HS30 samples.
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Figure 3.26: A phase diagram of Ludox HS30 showing development between 2015 to
2017.

3.2.3 Interdi↵usion experiments

Three interdi↵usion samples were prepared as described in section 3.1.3 using two

di↵erent volume fractions of Ludox HS40 at 5 mM NaCl which the lower one was

in the liquid phase (� = 0.17) and the higher one was in a glass phase (� = 0.29).

Two samples thus inter-di↵used spend 12, 19, and 26 days forming crystals, volume

fractions were characterized through SAXS scattering intensities, q-value of liquid

phase and peaks of crystals were then converted into a volume fraction � using a

calibration curve of Ludox HS40 (see Fig. 3.24). The di↵usion of particles in a

capillary were predicted by equation 3.5. Each sample were scanned with the interval

of 0.5 mm along its length. In the volume fraction range of 0.17 to 0.29 of HS40

at 5mM, one expects to see all crystal types in the HS40 phase diagram: the bcc

structure at � =0.21 to 0.26, the AB2 structure at � = 0.23 to 0.26, and the AB13

structure at � = 0.18 to 0.27. As the di↵usion process ends, the final volume fraction

should be � = 0.23 where all types of crystals in the HS40 phase diagram can be

appear.
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Figure 3.27: Interdi↵usion experiment on colloidal dispersions Ludox HS40 (initial
volume fraction � of 0.17 and 0.29). The vertical axis is the length in mm. The
volume fraction of dispersions in the capillary are converted from bcc peaks (green)
and Laves AB2 peaks (blue). The volume fraction (solid line) is predicted by the
interdi↵usion model (equation 3.5) with the dimensionless di↵usivity D̃ = 15.

Figure 3.27 shows the results of the interdi↵usion experiment with the correspond-

ing predictions of volume fractions. Due to a limitation of a sample alignment based

on the sample holder design, we were unable to explore samples in an entire length.

However, we attempted to collect SAXS data as much as possible from each sample.

After few days of di↵usion, the HS40 colloidal particles in capillaries stared to form a

bcc structure at the lower � and a Laves AB2 at the higher �. The bcc structure was

detected at every scanning positions in the capillaries, as expected. The Laves AB2

began to appear at � = 0.21, where the volume fraction is lower than that appears in

the HS40 phase diagram. There was no signal of AB13 structure in all three samples,

although the AB13 structure is found in a broad range of Ludox HS40 colloidal sys-

tems. The AB13 may take a longer time to form or after the di↵usion is finish. (see

HS40 phase diagram in Fig.3.21). After 26 days, particles were still in the bcc and

AB2.
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3.2.4 Crystal nucleation and growth

In this part, we investigated the kinetics of crystal nucleation and growth of Ludox

HS40 by direct observation (as described in Ludox TM50) over about 24 hours. Since

the phase diagram of Ludox HS40 showed that at 5mM NaCl the crystal structures

appeared over the volume fraction � = 0.19 to 0.27 (see Fig.3.21). Therefore, we

prepared four samples as fresh by diluting a concentrated solution of Ludox HS40,

� =0.29, to the volume fractions of 0.19, 0.21, 0.23, and 0.24. All sample were

immediately analyzed through SAXS after dilution and scanned repeatedly over the

24 hours following their nucleation. The q-value of the liquid and crystal peaks were

obtained from radial grouping of SAXS 2D-image and converted to a volume fraction

by the calibration curve in Fig. 3.24. According to the phase diagram of HS40 at

5mM NaCl, the bcc structure phase appears at � = 0.21 to 0.26, the AB2 at � =

0.23 to 0.26, and the AB13 at � = 0.18 to 0.27, one expects to see at least one crystal

structure in all samples.

HS40, � = 0.19: From Ludox HS40 phase diagram at 5 mM NaCl (see Fig.3.21),

at � = 0.19 the particles in dispersions should organize in the liquid and AB13 phases.

In the kinetics experiments, a sample volume fraction � = 0.19, particles remained

in the liquid phase; although even ten hours after the preparation the nucleation was

still not seen (see Fig.3.28). The AB13 structure may take more time to crystallize at

this volume fraction.

Figure 3.29 shows a coverted volume fraction from the q value of the liquid phase

without the existence of a crystal structure. Although the average volume fraction

liquid phase is � = 0.187, where expected AB13 to appear, no crystal nucleation is

seen.

HS40, � = 0.21: From the phase diagram of Ludox HS40 at 5 mM NaCl (see

Fig.3.21), at � = 0.21 the particles in dispersions should organize into the liquid,

the AB13, or the bcc phases. The kinetics experiment at � = 21 (see Fig.3.30), a

nucleation of the bcc structure was observed and continued growing rapidly. About

40 minutes after the preparation the nucleation was stop, and remained in the bcc

phase without coexistence of the AB13 structure. This suggests that AB13 is slow to

appear at this volume fraction. The average converted volume fraction was measured

as � =0.205 (see Fig3.31).
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Figure 3.29: The nucleation analysis of HS40 � = 0.19: The evolution of volume
fraction over time.
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Figure 3.30: The scattering intensities of Ludox HS40 at 5 mM NaCl, � = 0.21. The
bcc structure peaks appeared superimposing on the liquid peak.
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Iq

2· q(nm�3) curve which relate to the occupancy of particles in the liquid and the
bcc phase. (bottom) The evolution of volume fraction over time.

HS40, � = 0.23: From the phase diagram of Ludox HS40 phase diagram at 5

mM NaCl (see Fig.3.21), at � = 0.23 is expected to see particles in all phases. The

kinetics experiment at � = 0.23 (see Fig.3.32), the bcc structure appeared with sharp

peaks and, eventually, it remained in the bcc phase. The average converted volume

fraction remained at � ⇡ 0.228 (see Fig.3.33). The AB13 and AB2 may be slow to

crystallize at this volume fraction, they may crystallize after 15 hours.

HS40, � = 0.24: From the Ludox HS40 phase diagram at 5 mM NaCl (see

Fig.3.21), at � = 0.24, the liquid, AB13, bcc, and Laves AB2 phase are expected to

crystallize at this volume fraction. Also, this volume fraction is the phase boundary of

AB2 structure to appear. The kinetic experiment at � = 0.24, only the bcc structure

is observed to grow rapidly. After eight hours, the disperse particles still remained

in liquid and bcc phase. Meanwhile the AB13 and AB2 structures still did not ap-

pear. The time scale of AB13 and AB2 of HS40 populations to crystallize may take

longer time than that used in this experiments. However, they are good evidences of

fractional crystallization among the polydisperse population of HS40.

53



q(nm- 1)
0.1 0.2 0.3 0.4 0.5 0.6 0.7

I(q
)

100

101

102

103

104

105

15min
25min
37min
~10h
~15h

Figure 3.32: The scattering intensities of Ludox HS40 at 5 mM NaCl, � = 0.23. The
bcc structure peaks appeared superimposing on the liquid peak.
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Figure 3.33: The nucleation analysis of HS40 � = 0.23: (top) The area under the
Iq

2· q(nm�3) curve which relate to the occupancy of particles in liquid and bcc phase.
(bottom) The evolution of volume fraction over time.
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Figure 3.34: The scattering intensities of Ludox HS40 at 5 mM NaCl, � = 0.24. The
bcc structure peaks appeared superimposing on the liquid peak.
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Figure 3.35: The nucleation analysis of HS40 � = 0.24: (top) The area under the
Iq

2· q(nm�3) curve which relate to the occupancy of particles in liquid and bcc phases.
(bottom) The evolution of volume fraction over time.

3.3 Ludox SM colloidal silica

The same method, as described in TM50 is giving in section 3.1, were used to identify

structures of colloidal crystals in dialyzed samples. The Ludox SM30 (polydispersity

of 19.2 ± 0.5%, and Rp = 4.8 ± 0.3 nm) was used as received. Dialyzed samples
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Figure 3.36: Results of dry-extracted volume fractions and the osmotic pressure of
dialyzed silica dispersions (Ludox SM30) at 0.5 to 10 mM Nacl: (a) Volume fraction of
colloidal silica as a function of PEG concentration. (b) The evolution of the osmotic
pressure in silica dispersion as a function of the colloidal volume fraction

were prepared by dialyzing against aqueous solution of PEG at NaCl (pH= 9-10).

According to the particle size of Ludox SM30, they were the smallest particle size in

this work, we found a di�culty during the dialysis process. At high concentrations

of PEG (5 to 6 mg/ml), some dialyzed samples were inhomogeneous; the dispersions

aggregated on the inner wall of the dialysis bag resulting the dispersions were a high

viscous liquid and inhomogeneous in density and the volume fraction. Therefore,

only the inner part of these samples was taken and measured its volume fraction. The

volume fraction and the osmotic pressure (⇧) of Ludox SM30 samples were measured

and calculated as described in section 3.1.

Figure 3.36 presented the measured volume fractions and the osmotic pressure

of dialyzed samples of SM30. At high salt concentration, 10 mM, the samples may

not reach the equilibrium due to the aggregation occurred during the dialysis. At

5mM, some sample at low volume fraction showed obviously that they did not reach

the equilibrium. In fact, these samples were prepared hastily due to the limitation of

time. These may a reason why samples did not reach the equilibrium when harvesting.

Meanwhile at higher volume fraction samples, which was prepared earlier, agreed well

with the osmotic pressure curve.

The form factor of SM30 was analyzed through a sample of very diluted dispersions

by SAXS (see figure 3.37). The a best-fitting form factor of Ludox SM30 was simulated

by SasV iew software. The result shows that silica particles of SM30 had a small

radius and a high polydispersity (radius 4.8± 0.3 nm, polydispersity of 19.2± 0.5%).

56



1 2 3 4

10-4

10-3

10-2

10-1

100

101

SM-30, RP = 4.8 nm, polydispersity = 0.19

 

 

  Scattered Intensity
  Fitting

Sc
at

te
re

d 
In

te
ns

ity
 I e
xp

(q
)

q (nm-1)
Figure 3.37: The form factor of SM30 was estimated by the scattered intensity of
a diluted dispersions, � = 0.1 (grey circles) and the theoretical fitting line (red) by
SasV iew software. The results shows Ludox SM30 has a particle radius of 4.8 ± 0.3
nm and polydispersity of 19.2 ± 0.5%

File : sc4055_saxs_07114_0001 

df = -0.00003 
W = 0.0024 
qx =2.5 
s = 1/3 

radius distributiono 

q4 (I(q)+df) 

fit : <r> = 4.5 nm, polydispersity = 27% 
Radius (nm)

N
um

be
r 

of
 p

ar
tic

le
s

File : sc4055_saxs_07114_0001 

df = -0.00003 
W = 0.0024 
qx =2.5 
s = 1/3 

radius distributiono 

q4 (I(q)+df) 

fit : <r> = 4.5 nm, polydispersity = 27% 

< " > = 4.5 nm, 
polydispersity = 27%

Figure 3.38: The size distribution of Ludox SM30 is fitted by using the inversion
formula for SAXS of polydisperse sphere [62]. The fitting size particle of SM30 by
Guassian distribution is 4.5 nm and polydispersity of 27%. The top panel if the in-
versed radius distribution of SM30 (Reproduced with permission from Robert Botet).

Meanwhile the particle size measured by the inversion formula for SAXS obtained

the particle radius of 4.5 nm and the polydispersity of 27%. The polydispersity

of SM30 is quite high. After the dialysis, samples that were equilibrated at high

PEG concentration became hard solids such that they were not able to be injected

in a capillary. Therefore, only aqueous samples were investigated thought SAXS.

The scattering intensities of all Ludox SM30 samples behaved as liquid phase (see

Fig.3.39).

Sine all samples of SM30 did not crystallize, their phase diagram was not studied.

However, some dialyzed samples of Ludox SM30 were used for the drying colloids in
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Figure 3.39: Scattering intensities of SM30 at di↵erent volume fractions shows that
particles are in the liquid phase.

Hele-Shaw cell experiment which is presented in the chapter 4.

3.4 Levasil colloidal silica

3.4.1 Osmotic pressure curve

Levasil collodial sillica (AkzoNobel) were used as sources for the dialysis. There

were two grades Levasil samples: classified by silica concentration Levasil30 (30 wt%)

and Levasil50 (50 wt%). A set of Levasil30 and Levasil50 colloidal dispersions were

dialyzed against aqueous solution of PEG (0.5 to 1.5 mg/ml) at NaCl 0.5 mM to

obtain the volume fraction range of 0.15 to 0.45%. Since the received Levasil colloidal

silica were high concentrated, a set of diluted Levasil (1:1 dilution) were prepared

and dialyzed with the same procedure as non-diluted samples. The volume fraction

� and the osmotic pressure were measured as described above in section 3.1. The

volume fraction and the osmotic pressure of Levasil30 and Levasil50 were presented

in Fig.3.40. The predicted osmotic pressure are lower than the experimental data in

all case. However, colloidal particles of Levasil30 crystallized and due to their size

are quite large, considered as a good light reflector, they were used in the drying and

cracking experiments.
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Figure 3.40: Results of dry-extracted volume fraction and the osmotic pressure of
dialyzed silica dispersions, Levasil30 and Levasil50, at 0.5 NaCl: (a) Volume fraction
� of Levasil silica as a function of PEG concentration. (b) Evolution of the osmotic
pressure in equilibrated silica dispersions as a function of the volume fraction.

Form factors of Levasil30 and Levasil50 were quantified through SAXS by a very

diluted dispersions (� =0.1) and their best fitting form factors were obtained by

SasV iew software [58]. Figure 3.41, the form factor of Levasil30 showed a perfect

shape of a sphere with a radius of 48 ± 2 nm and polydispersity 11 ± 3%, meanwhile

the form factor of Levasil50 was e↵ected by a high polydispersity of 36 ± 4% and a

radius of 49 ± 3 nm.

0.25 0.50 0.75 1.00

10-4

10-3

10-2

10-1

100

101

102

103

Levasil-50, RP =  49 nm, polydispersity = 0.36

 
 

  Scattered Intensity
  FittingSc

at
te

re
d 

In
te

ns
ity

 I e
xp

(q
)

q (nm-1)
0.25 0.50 0.75

10-4

10-3

10-2

10-1

100

101

102

103

Levasil-30, RP = 48 nm, polydispersity = 0.11

 

 

  Scattered Intensity
  FittingSc

at
te

re
d 

In
te

ns
ity

 I e
xp

(q
)

q (nm-1)

(a) (b)

Figure 3.41: Form factors of Levasil colloidal dispersions: (a) Levasil30, Rp = 48±2nm
and polydispersity 11 ± 3%, and (b) Levasil50, Rp = 49 ± 3 nm and polydispersity
36 ± 4%, were estimated from a diluted dispersions, � =0.1 (circle), and(red) and
measured by SasV iew [58]

.
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3.4.2 Phase diagram

Levasil30

We used the same method as in TM50 (giving in section 3.1) to identify structure

of colloidal crystals dialyzed samples. A set of dialyzed Levasil30 samples at 5.0

mM Nacl (� of 0.15 to 0.47) were analyzed through SAXS technique. Samples were

analyzed in 2015 and were re-analyzed as a follow-up experiments in 2016. The

first SAXS experiment, an fcc crystal structure was observed in on sample at � =

0.31 (at this volume fraction was determined for the growth and nucleation study for

Levasil30). The second SAXS experiment showed a interesting results, at � = 0.31 the

crystal collapse into the liquid phase without a changing shape and q-peak position.

Levasil30 particles formed an fcc crystal structure at � = 0.35 where they managed

to be in the liquid phase on the first investigation (see Fig.3.42). We measured the

primary q-values of both the liquid and the fcc crystal phases creating a phase diagram

of Levasil30 (see Fig.3.43) and a calibration curve for Levasil30 (see Fig.3.44).
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Figure 3.42: SAXS results of dialyzed colloidal samples of Levasil30 in 2015(green)
compares with in 2016 (purple). Levasil30 samples were indexed a fcc structure at
� =0.31 of 2015 and at � =0.35 of 2016.
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Figure 3.44: A calibration curve of q31st in nm�3 vs the volume fraction � for Levasil30
with a constant ↵=1547.16.

Levasil50

Form factors of Levasil50 showed a high polydisperse property poisoning the shape

of the form factor of hard-sphere (see Fig.3.45). For dialysized samples of Levasil50,

they did not crystallized. Therefore, all dialyzed samples of Levasil50 were not inter-

esting for further investigation in this study.
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Figure 3.45: Form factors of Lesavil50 samples (� = 0.27 to 0.41%) were distorted
according to the high polydispersity in the population.

3.4.3 Crystal nucleation and growth

The 2015 SAXS experiment results revealed that the population of Levasil30 were

able to form a crystal (fcc structure) at � = 0.31. Therefore, we decided to observe

a crystal nucleation and its growth in Levasil30. We prepare three fresh dialyzed

samples at 5mM NaCl on the site by diluting a high volume fraction sample into � =

0.31, 0.32, and 0.33. After the dilution, three samples were immediately investigated

by SAXS.

Levasil30, � = 0.31: From the year 2015 phase diagram of Levasil30 (Fig.

3.43), at � =0.31 particles in dispersions behaved in liquid phase and formed the

fcc structure. Figure 3.46 shows the kinetics experiment at � = 0.31 that levasil30

particles behaved in a liquid phase and an fcc structure was detected to be growing all

times during the observation. And its volume fraction after ten hours of preparation

was measured as � = 0.308 by fitting with a calibration curve of Levasil30 (see Fig.

3.47).

Levasil30, � = 0.32: From the year 2015 phase diagram of Levasil30 (Fig. 3.43),

at � =0.32 we had no information about the particles phase. The kinetics experiment

at � = 0.32 (Fig. 3.48) showed levasil30 particles behaved in a liquid phase and

an fcc structure was detected to be growing all times during the observation. This

observation can also fill a missing point in the Levasil30 phase diagram. The volume
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fraction after ten hours of preparation was measured as � = 0.32 by fitting with a

calibration curve of Levasil30 (see Fig. 3.49). The kinetics experiment at � = 0.31

was agreed well with the phase diagram.

Levasil30, � = 0.33: From the year 2015 phase diagram of Levasil30 (Fig. 3.43),

at � =0.33 we had no information about the particles phase. Figure 3.50 showed

interesting results of the kinetics experiment at � =0.33. A few minute after the

dilution, particles still behaved in the liquid phase without a signal of the nucleation

of a crystal. An fcc structure was detected about four hours later. According to this

late nucleation, at volume fraction above 0.33 colloidal population of Levasil30 may

take a longer time for a nucleation of a crystal. These could be explanation why the

fcc structure was formed in the sample of � = 0.35 in the 2016 observation, a year

later after the preparation. The volume fraction after ten hours of preparation was

measured as � = 0.334 by fitting with a calibration curve of Levasil30 (see Fig. 3.51).
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Figure 3.46: The scattering intensities of Levasil30 at 5 mM NaCl, � = 0.31. The fcc
stricture was observed to be growing and superimposing on the liquid peak.
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Figure 3.47: The nucleation analysis of Levasil30 � = 0.31: (top) The area under the
Iq

2· q (nm�3) curve which relate to the occupancy of particles in the liquid phase.
(bottom) The evolution of volume fractions over time.
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Figure 3.48: The scattering intensities of Levasil30 at 5 mM NaCl, � = 0.32. The fcc
stricture was observed to be growing and superimposing on the liquid peak.
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Figure 3.49: The nucleation analysis of Levasil30 � = 0.32: (top) The area under the
Iq

2· q (nm�3) curve which relate to the occupancy of particles in the liquid phase.
(bottom) The evolution of volume fractions over time.
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Figure 3.50: The scattering intensities of Levasil30 at 5 mM NaCl, � = 0.33. The fcc
stricture was observed to be growing and superimposing on the liquid peak.
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Figure 3.51: The nucleation analysis of Levasil30 � = 0.33: (top) The area under the
Iq

2· q (nm�3) curve which relate to the occupancy of particles in the liquid phase.
(bottom) The evolution of volume fractions over time.
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3.5 Summary and discussion

Here I conclude results of three year follow-up of the fractional crystallization of

polydisperse silica nanoparticles and some part of our early published results which

have been impacted to the field of study. About hundred samples were prepared

by dialysis against standard solutions of PEG. This method allowed us to prepared

samples with di↵erent range of particles size, salt concentrations, and broad range of

solid volume fraction. The osmotic pressure was obtained from the equation of state

in [15, 46]. The SAXS experiments allow to identify properties of each nanoparticles

and the phase behaviors of population in dispersions (see table 3.1).

Type Particle size Polydispersity Phase The primary crystal
(nm) (%) (Kinetics experiment)

TM50 13.3 ± 0.6 11.1 ± 0.3 liquid, hcp, fcc, bcc fcc
bcc (� > 0.2)

HS30 7.5 ± 0.5 16.0 ± 0.2 liquid, AB13, bcc, Laves bcc
HS40 7.9 ± 0.4 15.0 ± 0.3 liquid, AB13, bcc, Laves bcc
SM30 4.8 ± 0.3 19.2 ± 0.5 liquid Not observe
Levasil30 48 ± 2 11 ± 3 liquid, fcc fcc
Levasil50 49 ± 3 36 ± 4 liquid Not observe

Table 3.1: Sample summary, showing the particle type, the particle size, the polydis-
persity, and observed phases.

To understand how population of polydisperse nanoparticles organize themselves

in which crystal phase, we compare HS40 results to the previous work of Cabane et

al.[15] which was using the same particle type of HS40. For HS40, we observed crystal

structures of the bcc+AB2 Laves+AB13 system, meanwhile Canabe and coworkers[15]

observed crystal structures of the bcc+AB2 Laves system. Botet et al. [16] reported

the numerical simulation results which was comprehension of Canabe et al.[15]. First,

they show that at the thermodynamic equilibrium of bcc + fcc system: when the

polydispersity is increased, particles more likely to build the bcc crystal than the

fcc since the bcc structure is more e�ciently in term of the energy than the fcc

structure. Second, it is the average-size particles hai (the most popular size) in particle

distribution to build the first set of crystal structure (bcc) with the lowest energy.

The rest of population then consist of bi-disperse mixtures and start to build another

crystals (AB2 Laves) (see Fig.3.53). This agree well with our kinetics experiment

(crystals nucleation and growth) result of HS40 that we always observe sharp peaks

67



Figure 3.52: Dialyzed samples of HS40 at 5mM. The phase separations were seen in
samples (� = 0.21 to 0.23) as di↵erent in colour (translucent on the top part and
milky-like at the bottom of samples) in the red dash square.

of the bcc structure with strong growth. This also confirm the existence of fractional

crystallization of polydisperse particles. Meanwhile, the secondary crystallization was

seen only once in the crystal nucleation of TM50 at � = 0.19, a fcc structure appeared

to coexistent with the bcc structure after about 11 hours of the sample preparation.

For HS40 at 5mM, there was an on/o↵ crystallizing behaviour of the bcc stracture in

the HS40 phase diagram (see Fig.3.22). These suggested to be an result of a phase

separation which occurred after the sample were kept vertically for a long time. This

phase separation was also observed to exist in real samples (see Fig. 3.52).

Figure 3.53: A schematic shows a radius distribution of particle of HS40: the initial
distribution (black line) with the hai = 8 nm. The bcc phase is formed by the particles
with radii close to hai (red). The residual particle on the left (blue) and the right
(yellow) hand side of distribution form the AB2 Laves (adapted graphic from [15,
16]).
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At the liquid to crystalline transition in charged colloids, the e↵ective structure

factor S(q) is comprised from the liquid scattering pattern and sharp di↵raction peaks

of crystals. For TM50 and HS40, we have observed abundance of crystallines in every

salt concentrations. The results showed that a crystal structure will form when the

maximum intensity of structure factor Smax(q) exceeds a value 2.85. This intriguing

results agreed well with the Hansen-Verlet criterion [56] for freezing of liquid to crys-

talline transition in a dilute monodisperse population. Although the dispersions in

this work were polydisperse, the Hansen-Verlet criterion is still valid (see Fig.3.54 and

Fig. 3.55).
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Figure 3.54: (a) E↵ective structure factor S(q)of TM50 at 5mM. At low volume
fraction, the dispersions has a liquid structure. When the intensity S(q) of the liquid
peak exceeds a value 2.85, the dispersions has liquid and crystal structures. (b) The
maximum e↵ective structure factors Smax(q) of TM50 at 5mM to 50mM. The points
below the vertical dashed-line show the dispersions being in the liquid structure, while
the points above the line being in the crystal or quench (glass) structure. The arrows
show the critical volume fraction where the first crystal structure appears.
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Figure 3.55: (a) E↵ective structure factor S(q) of HS40 at 5mM. At low volume
fraction, the dispersions has a liquid structure. When the intensity S(q) of the liquid
peak exceeds a value 2.85, the dispersions has liquid and crystal structures. (b) The
maximum e↵ective structure factors Smax(q) of HS40 at 0.5mM to 50mM. The points
below the vertical dashed-line show the dispersions being in the liquid structure, while
the points above the line being in the crystal or quench (glass) structure. The arrows
show the critical volume fraction where the first crystal structure appears.

In 2017, we published the early results of osmotic compression experiments on

colloidal SM30, HS40 and TM50 together with the equation of state(EOS) calcuted by

the PBC model[22] without a free parameter. However, the predicted osmotic pressure

and the experimental results were in good agreement at the lower salt concentration,

but failed at higher salt concentrations. Recently, Y. Hallez and M. Meireles have

published an improved model for an EOS of charged-colloidal dispersions[71]. They

introduced our experimental results on the osmotic pressure of HS40 [22] to show that

their new EOS agreed very well with the experimental results (Fig. 3.56).
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Figure 3.56: The osmotic pressure of HS40 at 0.5mM(green), 5mM(red), 10mM(blue),
and 50mM(black). The dashed lines are the prediction from our PBC model. The
solid lines are the prediction generated by the improved theory of Y. Hallez and M.
Meireles. (Reproduced from the reference [71])
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Chapter 4

Directional drying of colloids

During drying, colloidal dispersions can show a variety of transformations such as

buckling[25, 72], wrinkling[72], cracking [72, 73], delamination [73, 74], shear banding

[20, 21], structural anisotropy [40], etc. These phenomena are responses of microscopic

interactions, between particles and between the fluid medium. If we understand how

these interactions scale up to the macroscopic e↵ect, we then are able to control or

prevent these instabilities to occur during the drying of dispersions.

Here we present experimental results of responses of a drying colloidal dispersion

to explained:

(1) A structural anisotropy of drying colloidal dispersions by using an advection-

di↵usion model of a drying-colloidal dispersion with a Poisson-Boltzmann cell model

of inter-particle interactions.

(2) The formation of shear banding and guiding crack during the drying of colloidal

dispersions.

I will briefly introduce some necessary theories and setups of experiments that

were being used in these part. Theories are developed to support my experiments by

colleague.

4.1 Collective di↵usion

Consider a single spherical particle dispersed in unflowing water, one can describe its

movement by a random Brownian motion. A droplet of colloidal dispersions,about

1µl radius of 10 nm and volume fraction of 0.01, contains about ⇠ 1016 particles. As
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these particles move they may move past to the surrounding particles, consequently

generating an anisotropic distribution of neighbouring particles, also thermodynamic

forces which slow its movement [6]. These movement of a large number of particles

can be describes by the concentration (collective) di↵usion.

Here, we consider a colloidal dispersion that is drying in a Hele-Shaw cell as in

figure 4.1. A colloidal dispersion is injected in a cavity of the cell with the initial

volume fraction � = �0. At one end of the cell, the evaporation occurs at a rate Ė

leaving the deposit of colloidal particle behind with volume fraction � = �f , that is

growing back to the cell at speed of w. This evaporation causing a flow of liquid from

the other end to compensate the loss of evaporating liquid. The velocity within the

cell can be distinguished into the velocity of colloidal particles vs, the velocity of the

dispersant liquid vl, and a bulk velocity v̄ = �vs + (1 � �)vl. Since all velocities are

averaged over the cross section of the cell and the height of a cell is considered too

small that any e↵ects of gravity can be neglected. We assume that there is no material

losses in the cell, thus the flux at any point in the cell must balance the drying rate

v̄ = Ė at the edge. At the other end, far from the solidification front, the particle and

liquid will travel with the speed of v̄ = Ė. However, the mean velocity vs and volume

fraction � are able to evolve. Remarkably, at the solidification front the velocity of

particles will be forced to slow down to zero and the volume fraction will increase to

�f . This precess is sketched in fig. 4.1.

Since the total mass of colloidal particles is conserved, one can derive an advection

equation of particles:
@�

@t

+
@

@x

(�vs) = 0, (4.1)

where �vs is solid volume flux. In the transition region, from liquid to solid, particles

will slow down and dispersant liquid must speed up due to conservation of the total

flux. When the liquid current flows and hits particles, it cause a flow resistance

(drag) and the momentum transfer (liquid phase to dispersed phase). Forces act on

the dispersions can be described as the total pressure, or thermodynamic pressure, P

which comprising of both solid and liquid.

P = p+⇧, (4.2)

where ⇧ is the osmotic pressure of charged particles which can be derived by colloid-
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Figure 4.1: A sketch of a Hele-Shaw cell (a) and a directional drying colloidal disper-
sion in one dimension (b). The evaporation starts on the right of the cell at a rate
Ė, while the colloidal dispersions flow from the left with a volume fraction � = �0

(Reproduced with modifications from [22]).

colloid interaction, and p is the pressure of fluid phase alone which can be measured

as in references [36, 75]. Since there is no external force acting on dispersion, the

momentum balance can be expressed as rP = 0. We now apply this in a one

dimension problem, the equation 4.2 is rewritten to

@⇧

@x

= �@p

@x

= nFd, (4.3)

where n is the number density of particle (number of particle per volume; i.e. particle

radius of a, n = 3�/4⇡a3), and Fd is the average drag force per particle.

Consider a single particle of radius amoves at a relative speed vs�v̄ in a dispersant

fluid of viscosity mu0, and the average velocity v̄, the drag force can be determined

by the Stokes drag �6⇡µ0a(vs � v̄). In a dense dispersion, the hydrodynamic in-

teraction will enhance the drag by the factor r(�), here we use the semi-empirical

expression r = (1 � �)�6.55 [37, 76]. The osmotic pressure term can be evaluated by

an equation of state ⇧ = nkTZ, where Z(�) is the compressibility factor depending

on the the colloid-colloid interaction and the clouds of ions around a particle, kT is

the Boltzmann energy. Substituting these two expressions in the equation 4.3 gives

kT

@

@x

(nZ) = �6⇡µ0a(vs � v̄)rn. (4.4)

We rewrite the equation 4.4 by the Stokes-Einstein di↵usivity, D0 = kT/6⇡µ0a which
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is a di↵usion constant of a single spherical particle and introducing the chain rule:

�vs = �v̄ � D0D̃
@�

@x

, (4.5)

while

D̃(�) =
1

r(�)

@�Z

@�

=
D

D0
, (4.6)

where D̃ is the dimensionless di↵usivity, and D is the collective di↵usivity. Substitute

the equation 4.5 into the equation 4.1, we contain the advection-di↵usion model of

colloidal transport [22, 36, 37, 40, 77],

@�

@t

+
@

@x

✓
�v̄ � D0D̃

@�

@x

◆
= 0. (4.7)

We want to describe a changing in concentration in the liquid-solid transition region,

in this case a reference frame that co-moving with the drying front is considered by

the transformation x

0 = x � wt, where w is the velocity of the drying front that

growing backwards into the cell. We are interested in a steady-state solution with

a boundary condition � = �0 far from the transition front (x ! �1). Therefore,

inside the spatial derivative term in equation 4.7 is constant, and the evolution of the

volume fraction in the liquid-solid transition region is rewritten,

@�

@x

=
(v̄ � w)(�� �0)

D0D̃
=

(�� �0)

LD̃

, (4.8)

where L = D0/(v̄ � w) is the natural length-scale of the drying front.
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(a) (b)
Figure 4.2: (a) Dispersions were allowed to dry in a Hele-Shaw cell. (b) the sample
geometry is described by the moving solidification front with velocity w, and a receding
liquid meniscus with velocity v̄ = Ė, and one end where the evaporation occur and
the deposit of dispersions are formed (Reproduced with modifications from [22]).

We prepared thirteen samples of Hele-Shaw cell which were made from two glass

slides with mica sheets (35 - 50 µm thick) inserted along the rims of slides. All layers

were attached together by clips (as in fig. 4.2). We filled di↵erent colloidal dispersions,

which were dialyzed against a solution of PEG same as described in chapter 3, into
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cells and let them dry for approximately 8 hours. During the drying, we captured

images of cells every 10 minutes, and measured the evaporation rate Ė = v̄ by tracking

the retreating liquid meniscus in the cell as the average velocity v̄. Meanwhile, the

velocity of the front w was measured by the solid phase which growing into the cell.

After 8 hours of drying, all cells were examined by SAXS in order to observe how

volume fractions were changed along the drying direction in the cell.

4.1.1 Scattering of a drying colloidal dispersions by SAXS

The small angle x-ray scattering technique (SAXS) was used in this experiment to

observe changes in the liquid-solid transition region during the drying of colloidal

materials. To do this, we hung a cell in the vertical position and scanned a sample

along the drying direction (x�axis), and extracted scattering intensities throughout

the Hele-Shaw cell. Spectrum were azimuthally averaged over ± 5� to the x� and

y� directions (see fig.4.3) and we measured the main scattering peak of the structure

factors of both components: qx is parallel to the flow and qy is perpendicular to

the flow. Since dispersions are being compressed in x�direction, we assume for the

z�direction as qz = qy. The volume fraction in the cell then can be calculated as in

the reference [22] by

� = ↵(qxqyqz) = ↵(qxq
2
y), (4.9)

where ↵ is a constant of a calibration curve that depends on the colloidal type as in

chapter 3. We also measured deviatoric strain �, expressing any volume-pressing due

to the shear, as defined by [22, 40] :

� =
2

3

✓
qx

qy

� 1

◆
. (4.10)

In figure 4.4 is presented the results of SAXS experiments, together with numerical

predictions from [22]. For the experimental data, the origin of x axis was arbitrarily

set at the volume fraction � = 0.3 which also corresponding to the origin of the

volume fraction for proceeding the numerical prediction. For the model, we used the

initial volume fraction � from the smallest recorded experimental data and integrated

equation 4.8 from the origin. Both in the experiment and model were using data

of the particle size, salt concentration, and surface charge density � = 0.5e nm2, as
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Figure 4.3: Scattering spectra(a)-(b) were obtained from locations across the liquid-
solid transition region of drying dispersions in Hele-Shaw cells. (a) At low volume
fraction, the dispersions behave as liquids without anisotropy between x and y direc-
tions. (b) At higher volume fraction, dispersions are packing closer together along the
drying direction (x-axis) which cause a anisotropy on scattering spectra in x and y

directions. (c) An evolution of q�values from liquid to solid: qx value is higher than
qy, imply that dispersions are packed denser in x than y-axis. The averaged q�value
(qxq2y) is used to calculate for a volume fraction � and deviatoric strain � (Reproduced
from [22]).
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Figure 7. The liquid–solid transitionwas observed in the drying of five different dispersions, with various particle sizes and salt
concentrations. The solid volume fraction slowly increases from the left to the right of each graph, as the particles are packed
closer and closer to each other. Distances are rescaled by the advection–diffusion length L= D0/(v̄ − w), to highlight the
effects of charge on stretching out the transition region (for non-interacting particles, the transition should occur over a length
L). Shown are the volume fraction (φ, black points, equation (3.1)) and deviatoric strain (γ , blue points, equation (3.2)). The
results of themodel calculations are shown as solid curves, assuming a surface charge densityσ = 0.5 e nm−2. All figure data
are provided as the electronic supplementary material.

Figure 7 shows the results of these experiments, matched with the corresponding model
predictions. All data, including the unscaled observations, are provided in the electronic
supplementary material. For the experimental data, the origin of the x-axis was arbitrarily centred
where φ = 0.3. In the model, the initial volume fraction φ0 was taken to be the smallest recorded
experimental φ, and the origin of the x-axis was positioned by hand such that the model drying
curves coincided with the data as well as possible. Otherwise, there were no free parameters in the
model, which uses the same particle properties as in figure 5; in other words, the salt concentration
and particle size are set by the corresponding experimental dispersion, and we assume a particle
surface charge of σ = 0.5 e nm−2.

In both experiment and model, the particle volume fraction rises characteristically as one
crosses the liquid–solid transition. There is then a kink in the experimental compression curves
after the particles aggregate [17,55], followed by a much more gradual compression of the solid
phase in response to the large capillary pressures that occur there. Qualitatively, these trends
match the type of compression curves that have been seen in other drying droplets of complex
fluids [4,14,17,27,28,55,56]. Additionally, the drying dispersions all become anisotropic (i.e. qx ̸=
qy) after some critical volume fraction between φ = 0.33 (for the TM 50 at 0.5 mM) and 0.47 (for
the SM 30). As in [17] the deviatoric strain then rapidly accumulates in the dispersion, reaching a
maximum of about 0.1 by the end of the liquid–solid transition. This strain then decreases slightly
in the solid region, as cracks form to release the total stress in the film.

In all our experiments, the transition from a liquid-like dispersion to an aggregated solid
film extends over about 1–2 mm in real space. Rescaled by the advection–diffusion length,
L = D0/(v̄ − w), we can observe exactly how inter-particle interactions affect this compression of
the dispersion during drying. Point-like particles, behaving like an ideal gas, would lead to a
relatively sharp drying front where φ − φ0 ∼ ex/L. The high charge of the silica particles causes
strong electrostatic interactions, which increases the width of the solid–liquid transition by a
factor of about 10 above the non-interacting case. In particular, the fronts remain surprisingly
well fit by a simple exponential increase in concentration, but where the exponential behaviour
ranges from a characteristic length of 6.6l for the smaller SM 30 to 15.6 l for the larger
TM 50. This effect is captured by the advection–diffusion model, but the model somewhat
overestimates the width of the front in all cases; this is particularly apparent for the TM 50
dispersions.

 on April 4, 2017http://rsta.royalsocietypublishing.org/Downloaded from 

Figure 4.4: Observations of the liquid-solid transition region in the drying of five
di↵erent dispersions, with various particle sizes and salt concentrations. The volume
fraction � (black points) and the derivative strain � (blue points) are increasing from
the left to the right as particles are packed close to each other. Distances are rescaled
by the advection-di↵usion length L = D0/(v̄ � w). Solid lines show the model pre-
diction with a assumed surface charge density � = 0.5 e nm�2 (Reproduced from
[22]).

measured in the chapter 3. No other free parameters were used in the model.

The volume fraction is increasing as material is crossing the liquid-solid transition

region, both in the experiment and numerical model. In the experimental compression

curve the volume fraction � is then bent nearly flat, after the aggregation of particles

[40, 48]. Here, particles in the solid phase are gradually compressed due to the large

capillary pressure. This elastic feature of compression cures haven seen in other report

of drying droplets of complex fluids [15, 40, 46, 77–80]. At a critical volume fraction,
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anisotropy is sets in. This is at � = 0.33 for the TM50 at0.5 mM and � = 0.47 for

the SM30. The anisotropy between qx and qy occurs in drying dispersions. After this

point, the deviatoric strain is rapidly increasing and reaches a maximum value by the

end of the liquid-solid transition. As cracks form in the dried solid to relax the total

strain, the deviatoric strain curve is gradually decreasing into the solid phase.

In real space, the observed liquid-solid transition has a width about 1 to 2 mm

which is rescaled by the advection-di↵usion length (L = D0/(v̄ � w)) so that we

are able to observe the e↵ect of inter-particle interactions on the compression of the

dispersion during drying. In the model, particle behaviour is compared to that of

point-like masses, like an ideal gas, which would cause a sharp drying front where

(� � �0) ⇠ e

x/L. The high charge of silica particle can e↵ect on the electrostatic

interaction which leads to enhance of the width of the liquid-solid transition. The

drying fronts remain well fit by a exponential in increase concentration. However,

exponential behaviour give length scales which range from 6.6L, for the smaller SM30

to 15.6L for the larger TM50. Thus, although the advection-di↵usion model of non-

interacting particle, can provide a concept of the e↵ect, it underestimate the width of

the drying front in all cases. This is due to the enhanced interparticle interaction of

charged colloids.

As was described in equation 4.6, we can summarise interparticle interactions in

an e↵ective collective di↵usion coe�cient, D̃. We can now estimate this dimensionless

di↵usivity D̃ (the e↵ective di↵usivity) by applying a numerical derivative of data in

figure 4.4 in to equation 4.8. The results are shown in figure 4.5: both model and

experiment show that the larger particle size, the more the e↵ective di↵usivity D̃ is

enhanced by the inter-particle interactions. The e↵ective di↵usivity D̃ from our model

predictions do not agree with experiments which suggested as a result of non-DLVO

interactions [22]. However, the e↵ective di↵usivity D̃ from experiments show similar

feature with the contemporaneous observation of D̃ in Ludox AS40[80] which was

measured by di↵erent method, using Raman micro-spectroscopy (see fig.4.5(d)).

we also used a di↵erent modified Carnahan-Starling equation (ZP (�)) from Pepin,

Elliot and Worster[36] to estimate the e↵ective di↵usivity instead of equation 2.11, we

notice no di↵erence at below � = 0.60 until at � = 0.64 (near random close packing)

its turns upwards at large volume fraction. And if this compressibility factor ZP (�)
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surface and no deposit is formed. When the PDMS layers are
not carefully cleaned, the observed scenario is quite different
(see the movie M5.avi in Supplemental Material [45]). The
receding contact line may indeed pin at a given location, lead-
ing to the further buckling of the drop (often referred to as the
invagination instability). Such behaviors were reported ear-
lier by Pauchard et al. in similar experiments and such insta-
bilities were hindered by using glass wafers coated by liquid
lubricating layers [21]. In the following, we only focus on
experiments with clean wafers and the drops remain circular
during drying.

From image analysis, we extract the normalized drop area
� vs. t and thus the mean concentration �0/� within the drop.
The temporal evolutions �(t) are nicely fitted by Eq. (2) with
values for D̃ ranging from 2.3 to 3⇥10�10 m2/s for several ex-
periments. At t ⇡ 60 min, and thus � ⇡ 0.6, a deposit forms
on the PDMS layers and a sequence of mechanical instabil-
ities rapidly occurs, see Fig. 3. The drop first delaminates
from the PDMS layers, and a crack often appears across the
drop. At longer time scales, a sharp change of refractive index
suggests that air invades the drop from its outer boundary (e).
Ultimately, the final material does not evolve anymore (f), and
the corresponding SEM images show materials with sharp in-
terfaces (see the inset of Fig. 3(g)). We do not focus in the
present work on such mechanical instabilities, and we only
investigate the early stage of drying corresponding to the con-
centration process up to the final consolidation (t � 60 min).

B. Concentration profiles and collective diffusion coefficient

Figure 4 shows a typical temporal evolution of the colloid
concentration field measured using our Raman technique, see
Section III D. We plot in Fig. 4 only a few curves along the
drying process for the sake of clarity (the temporal resolution
of the full data is � 2 min, see Fig. 2(b)). These concentration
profiles clearly reveal that evaporation does not lead to the for-
mation of a thin crust of concentrated colloids at the receding
boundary, but only to slight gradients along the drop. These
profiles are well-fitted by

�(r, t) = �c(1+ �r2/R2
) , (10)

where �c is the concentration at r = 0 and � � 1, see the
continuous lines in Fig. 4.

Assuming that the description of the transport process
within the dispersion is correct, see Sec II and namely Eqs. (7-
8), we can now estimate the collective diffusion coefficient
D vs. � from such measurements. Indeed, both concentra-
tion gradients �r� and drying kinetics Ṙ are measured, and
the boundary condition Eq. (8) possibly gives an estimate of
D(�). To minimize the dispersion of D(�) induced by the
estimation of two numerical derivatives (�r� and Ṙ), R vs. t
is fitted using Eq. (2) to estimate precisely Ṙ (see Fig. 3(g)),
and the fits of the profiles by Eq. (10) yield estimates of the
gradients at r = R (see Fig. 4).

Figure 5 shows the output of such measurements for various
cell heights ranging from 80 to 250 µm. For the whole con-
centration range, D(�) deviates significantly from the Stokes-
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FIG. 4. Typical concentration profiles �(r, t) measured within
the drop using Raman spectroscopy (h = 170 µm, drop volume
0.75 µL). The continuous lines are parabolic fits, see Eq. (10). � (�
resp.): concentration profile corresponding to the start (the end resp.)
of the drop gelation (see Section IV C). The gray line is �c � 0.32.

Einstein estimate D0 = 2 ⇥ 10�11 m2/s as D(�) � 10–30D0,
evidencing the crucial role played by the electrostatic inter-
actions on the relaxation of concentration gradients, even for
such a stock dispersion (i.e. without removing ionic species).
Despite the spread of the data related to the estimate of two nu-
merical derivatives, our measurements outline the following
behavior: D(�) first decreases from � 6 to � 2 ⇥ 10�10 m2/s
for � increasing from �0 to � 0.35, and D(�) remains nearly
constant � 2±0.5⇥10�10 m2/s for larger � .
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FIG. 5. Collective diffusion vs. concentration estimated using the
combined measurements of the drying dynamics R(t) and the con-
centration profiles �(r, t), see Eq. (8). The different symbols cor-
respond to experiments performed with cells of different heights
h = 80, 170 and 250 µm. The continuous line is the Stokes-Einstein
estimate D0 � 2⇥10�11 m2/s. Inset: same data normalized by D0 in
a linear-linear plot.

Boulogne et al. performed similar experiments as those re-
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Figure 4.5: Measured and predicted dimensionless di↵usivities for colloidal silica of
Ludox (a) SM30, (b) HS40 and (c) TM50, equilibrated at 0.5mM (green) and 5mM
(red). Arrows show the volume fraction where the the deviatoric strain � is non-zero.
In (a), the modified hard-sphere compressibility factor ZP from Peppin et al. (dashed
line) is also used in order to compare with our model. In (d), results of measured
dimensionless (collective) di↵usivity of silica colloidal for AS40 by Loussert et al.

(Reproduced from [22, 80] with modifications).

was used replacing the equation 2.11, we see no di↵erence in response at � < 0.60

(see fig.4.5(a)). It also cannot explain the increasing in the e↵ective di↵usivity.

As the first structural anisotropy appears in dispersions, at this point, the devi-

atoric strain � 6= 0 and dispersions takes a yield stress and a finite shear modulus.

At this volume fraction, the individual particles will start being captured by strong

interactions with their surrounding neighbours. (marked in fig.4.5 with arrows). The

D̃ is suddenly increasing at, or shortly after, the particles start to behave as a weak,

soft solid.
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4.2 Pattern and instabilities driven by drying fronts

In the previous section, we have demonstrated both with theory and experiment

of the structural anisotropy in the liquid-solid transition during drying of colloidal

dispersions. The mass and force balance are able to predict how a colloidal dispersion

is compressed during directional drying, and how the compression a↵ects the state of

the dispersion (e.g. enhancing of the collective di↵usivity, anisotropy). In this section,

we focus on macroscopic mechanical instabilities which relate to compression during

the drying of a colloidal dispersion. First, we show that shear bands are formed and

scale with the film thickness. Furthermore, we show how to control shear bands by

changing the concentration of salinity which a↵ects to the electrostatic interaction in

colloidal dispersions. Then last, we show that paths of the later cracks, appear after

the drying of the colloidal film, are influenced by an anisotropic pre-stress or strain,

leftover from the liquid to solid transformation.

4.2.1 Shear bands

During the drying of colloidal dispersions, striped structures of bands frequently have

been observed (see fig.4.6): They are the first reported in sol-gels by Hull and Caddock

[74]. They found that bands were oriented at ±45� to the cracks which appeared later.

Similar band features also were observed and displayed in many figures of studies of

drying colloidal dispersions [30, 40, 81, 82]. However, there was no discussion on the

bands until Berteloot and his co-worker [83] report their appearance after the drying

front line. They suggest that the band could be either shear bands base on its visual

similarity to these feature in the stress loaded metal [84]. Yang et al. [20] also reported

that shear bands were controlled by the yield stress and strain rate (drying rate) of

dried standing films [20].

Here, we show by direct measurement that the bands are form as results of shear

deformations, how their pattern scale, how they can be restrained, and discuss about

the compressive forces that played an important roll during the drying of colloidal

dispersions. To dispose of any influence of a free surface or skin, we performed all

experiments of a directional drying of colloidal dispersions in the Hele-Shaw cell similar

to this shown in figure 4.1 or 4.2.
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100 µm
Figure 4.6: A micrograph of drying colloidal polystyrene in a free-standing film. The
drying front is the bright horizontal line between the liquid film (above, on textured)
and solid film (below, stripes). The shear bands in the solid film are tilted to the
left and the right away from the front. The chevrons, stripes in V-shapes, that open
towards to the front (black arrows) are sources of new bands, while the chevron that
open away from the front (white arrows) are where growing bands end (Reproduced
from [21]).

Colloidal material

For the study of shear banding in colloidal dispersions, we prepared banded films

with various of charge-stabilized dispersions. Polystyrene dispersions with particle

diameters d of 98, 100, 105, 115, 144, 198, and 283 nm were synthesized elsewhere.

Additional colloidal silica Ludox HS40 (d = 16 nm) was dialysis against NaCl aqueous

solution 5 mM, pH 9-10 as in section 2.2. Meanwhile, Levasil30 (d = 92 nm) was

used as received. All dispersions were then diluted by NaCl aqueous solutions to

prepare dispersions with concentrations of 0 to 60mM, and volume fractions � ⇠ 5%.

Deionized water (Millipore) was used for all steps.

We prepared colloidal films by pipetting 180µl of dispersions on a glass slide for

freestanding films, or in the cavity of Hele-Shaw cell. For Hele-Shaw geometries, cells

were made as shown in figure 4.1(a). The thickness of the cells was selected by using

various plastic spacers of 150, 230, 250, 300, 400, or 500 µm. After films dried, their

actual thickness h were confirmed by microscopy. For thinner films, the spacers were

built with heat-curable polymer sheets or double-sided tape which provided measured

thicknesses h of a cell between 36 to 72 µm.

Observation

We observed the growth of shear bands in dried colloidal films, both in freestanding
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2.3Materials and Experiment setup 
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To create a film with a steady thickness, drying experiments were performed in Hele-
Shaw cells. This geometry is built with two glass microscope slides, which are stuck 
together. Between the edges of them are interposed thin plastic sheets (fig. 2-7) of 
thickness 150, 250, 300, 400 or 500 µm. All three layers were held together by clips 
as shown in fig. 2-8 b. Dispersions were pipetted into the cavity in a cell and allowed 
to dry by evaporation from open sides of the cell at room temperature. To remove the 
air bubbles in the cell, one side of channel is lifted higher than the other with a few 
millimeters, so that all bubbles are moved to the higher side by buoyancy. 

A digital camera (Point Grey: Grasshopper2 GS2-GE-50S5C) attached to a 
microscope was used to consistently capture images, up to 10 frames per second of the 
drying cell.  From these, the positions, velocity, wavelength of shear bands, and crack 
spacing were measured  

 
 
 

 

 

 

 
Figure 2-8: (a) A dry thin film of dispersions on glass slide substrate. (b) Drying 

dispersion in a Hele-Shaw cell, with 150 µm plastic space. 
 

Figure 4.7: (a) A dry thin film of dispersions on glass slide substrate. (b) Drying
dispersion in a Hele-Shaw cell, with a spacer’s thickness of 150 µm.

films and in Hele-Shaw cells. The real-time observation shown that series of shear

bands appeared behind the drying front and propagated in the same direction of

the drying front at a comparable speed. One clear feature of shear bands that can

be seen as that they are tilted strips to either the left or the right of the drying

front. When the left and the right strips meet, they form boundaries that look-like

chevrons [20, 21] opening to the front, or away from it (see fig. 4.6). The chevrons

that opened towards the front repeatedly generated new bands on both sites of the

chevron. However, time the chevrons that opened away from the front were sinks

for growing bands. Some new shear bands, however, can propagate in the opposite

direction of the drying front. These backwards propagating shear bands can propagate

for short length and are forced to stop by the solidification of the (solid) film or can

halt when they intersect another bands. Surprisingly, we found that a new shear

band can form in between two existing shear bands and propagates in both direction

forwards and backwards respective to the drying direction (see fig.4.8).

At first, the shear bands penetrated into the liquid-solid region at an angle of

45� and were then compressed along the direction of drying overtime. This caused

the structure of the bands which can be seen in figure 4.6. During this compression

period the volume fraction of the liquid-solid film was increased since the evaporation

still draining water out of the film as described earlier in the anisotropy of a drying

film. Later, if the invasion of cracks occurred, the bands also were compressed by the

cracking opening (see figure 4.8(c)).

The independence of relative band spacing on thickness and particle size

We collected microscope images from 21 di↵erent fully dried films of di↵erent

in thicknesses and sizes, including both freestanding films and Hele-Shaw geometries.
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Figure 5-1: Time-lapse series of the emergence of shear bands: the first row shows 

directions of two propagating shear bands solutions, backwards propagating 
shear band (at t=1s) and forwards propagating shear band (at t=2s). The second 
row shows a developing shear band which propagates backwards and forwards. 

 

5.2 The speed of propagation of a shear band  
 
As mentioned earlier, a newly formed shear band has two different propagating 
speeds. As a shear bands occurred, series of images were captured at 10 frames/sec 
(9.92 - 9.89Hz). The speed of propagation was calculated and quantified from the 
positions of the shear band’s tip in each image by using image processing software 
ImageJ. 

 

 
 
Figure 5-2: Time-lapse series of propagating shear bands. The interested shear bands 

were labelled by number 1–4. The new-born shear band was labelled as track 
number 4 for the travelling part in the forward direction and track number 3 for 
that in the backward direction. 

 

(a)

(b)

(c)

Figure 4.8: Panels (a) and (b) show time-lapse series of images of the appearance
of new shear bands in a drying colloidal film of Ludox HS40. The first row (a)
shows two propagating shear bands, the backwards propagating shear band appears
at t = 1 s and the forwards propagating one appears at t = 2 s. The direction of
travel is indicated by white arrows. The second row (b) shows a new shear band that
develops between existing bands and then propagates backwards and forwards. (c)
The invasion of cracks in a drying film of Ludox HS40 occurs behind the drying front,
and the shear band front.

The final opening of chevron was 99�±7�, as a result of further compression after bands

formed, (see fig.4.9(a)) after the samples were fully dry. We observed the spacing �

between two stripes of bands was various in length. Therefore, the eight di↵erent

particle sizes of colloidal dispersions were prepared in 150-µm-thick Hele-Shaw cells

and pipetted with 180 µl of dispersions. After all films dried, each film was scanned

by digital microscopy under the transmitted light in order to capture images in ten

di↵erent locations. We measured about 20 band spacings and calculated their average

spacing, together with the standard deviations. We report the standard deviation

rather than the standard error, because the bands could have wide variations in the

spacing within a single cell, as shown in figure 4.6. Since the bands formed with

a range of band spacing from 0.2 to 0.5 times of the films thickness, we report the

relative band spacing �̄ = �/h.

In figure 4.9(a) we show that the relative band spacing �̄ did not depend on the

particle size or particle type, for the particle size from 16 to 283 nm. The spacing

�, on average, was 0.36 times the film thickness h. After shear bands occurred, they

was still a weak or soft solid, they were then compressed further by the compression
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Figure 4.9: The relative band spacing (squares, the left axis) and the average open-
ing angle (blue, the right axis) were measured in Hele-Shaw cells. Bars are standard
deviation of each measurement. The inset panels shows how the measurements are
conducted. Figure (a) shows results in 150-µm-thick cells, for colloidal polystyrene
(filled squares) and silica (open squares) at low ionic strength (1-5 µM), while fig-
ure (b) shows results for fixed particles d ⇡ 100nm, in cells of di↵erent thickness
(Reproduced from [21]).

due to the drag. These caused the opening of chevron larger than 90�, which was the

angle of between two bands when they intersected. We also dried an equal mixture

of two particles sizes, 98 and 198 nm, which was also consistent with this result

(�/h = 0.29 ± 0.13) (see fig.4.9(b)).

In another set of experiment, we fixed the particle size by using the dispersions

with diameter d ⇡ 100 nm (each experiment was repeated with 92 nm silica and

105 and 115 nm polystyrene particles) and then dried them in di↵erent thicknesses

from 36 to 500 µm. The results show in figure 4.9(b). We found that the relative

band spacing �̄ did not depend on the film thickness. Explaining more clearly, the

band spacing � scales linearly with the film thickness h. We measured the averaged

�̄ = 0.34 which also agrees with the results for the changing particle size experiment.

The electrostatic e↵ect on the shear bands
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Figure 4.10: The e↵ect of adding NaCl solutions on the spacing of shear bands. Shear
bands can be eliminated (�̄ = 0) by addition of salt, with a critical level depending on
particle size and composition. Arrows point where the strongest interactions between
nearby particles [eq. 2.1] drop below 5 kT . Panels above show how dried films
change with the salt concentration, for 105 nm polystyrene, and vanish above 15 mM
concentration. (Reproduced from [21])

Since all colloidal dispersions are charged-stabilized to proven them for the aggre-

gation, the balance between the repulsive electrostatic force and the attractive van

der Waals force in a colloidal system is controlled by the electrostatic screening ef-

fect and the salt concentration. This e↵ect can be described by the DLVO potential

theory. In this part, we study how the shear band was a↵ected when the strength

of electrolytes was changed by manipulating the salinity of the dispersions. We used

the DLVO potential theory and PB-cell model (as described in chapter 2) to explain

the end results. We used the three di↵erent particle sizes, 105 and 198 nm colloidal

polystyrene and 16 nm colloidal silica in NaCl solution of up to 60 mM, dried in 150-

µm-thick cells. Images of the band spacing were captured by microscopy and were

used to measure the band’s width.

Figure 4.10 shows that the increasing of salt concentrations has a direct e↵ect on

the spacing of shear bands. When salt concentrations are increased, more concen-

tration of electrolyte, the average spacing of shear bands decrease slightly, but not

vanish. However, when the salt concentration exceeds some critical salt concentra-

tion, bands did not form. This concentration depends on particle size and type and

can be estimated from the DLVO potential theory in equation 2.1. Below the critical
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concentration, band spacings appear to be a weak negative dependence on the salt

concentration. For our study, we found that shear bands disappeared at salt con-

centrations where the maximum value of the DLVO potential was lower than 5kT ,

calculated from equation 2.2. At the point, the repulsive forces between particles can

build the e↵ective cages, according to the PB cell model (see fig. 2.2), and freezing

particles into a semirigid arrangement. In other words, shear bands disappear when

the electrostatic interaction is weakened to the point that a soft repulsive solid do not

form during the transition of liquid to a solid film.

The birefringence of the shear bands

The directional dried colloidal films are birefringent, since they were compressed

along the direction of drying [40, 41]. The birefringence around shear bands is a tool

here to measure how the bands strain the film around themselves. We put fully dried

films under a microscope equipped with crossed polarizing filters and a half-wavelength

filter (first-order retardation plate). Sample were placed on a tunable table in between

two filters (see figure 4.11 (a)). We rotated the dried films and collected images of

each film at 10� intervals. The microscope was working in transmission mode for all

observations.

First, the observation was performed under white light, which showed the bire-

fringence in a film by shining in various colours (figure 4.11 (b) - (c)). As we turned a

film ( through 0��180�) and captured thier images, colors around bands also changed

suggested that there was a changing (twisting) in the optic axis around shear bands.

These images were then digitally counter-rotated, by this means we were able to mea-

sure the intensity I of the transmitted light through any particular point in the film,

as it was turned about an angle ✓.

Later, we put a 533 nm filter (green) in front of the first polarizer so that we can

observe the birefringence of bands from a monochromatic light. The intensity I(✓) of

the light will be minimized when the optic axis is oriented along one of the crossed

polarizers. We could measure the orientation  of the optic axis across the film, by

fitting a sinusoidal variations in light intensity, I(✓) = I0 sin
2(2(✓+  )) + Ibkg [22], at

each at pixel on images as shown in figure 4.12 (a). The root-mean-squared average of

the reorientation of the optic axis, or h| |2i1/2 that can be related to the average shear
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Figure 4.11: (a) A setup for polarized microscopy: the film is placed between crossed
polarizers and a half-wavelength filter. (b) Using white light, the film appears purple
when the optic axis is aligned with the initial polarizer. Birefringence appears by
colour changes in the film: clockwise rotation of optic axis shifts the colour to blue,
while counterclockwise to the red. (c) The addition of salt in the drying film reduces
the intensity of these colour variations. At high salt, the lighter shear bands can be
seen in between main bands. Scale bars are 200 µm (Reproduced from [22]).

which is taken up by shear bands [22]. Figure 4.12 (b) shows that the (root-mean-

squared) average in the film slowly decreases from 6� for the dried film of dispersions

at initial salt concentration, to 2� at about 100mM of salt concentration, just before

the shear bands disappear. If the shear bands form at the liquid-solid transition, we

can predict the strength of shear which is release by the bands and compare it to

what is observed. As described in the opening chevron, the drag forces cause the

uniaxial compression across the liquid-solid region, which results in increasing the

volume fraction. If particles have formed a soft repulsive solid, they can carry a shear

stress or anisotropic strain. To calculate the amount of shear strain available for the

shear bands, one assume the particle is compressed at the critical volume fraction �c,

where the first soft repulsive solid appears (or where � > 0 as shown in figure 4.4) to

the final volume fraction �f . Since the force is a uniaxial compression and materials

are not expanded in any other direction, the compressive strain that occurs by this

compression is relate to the volumetric strain, ✏x = (�f ��c)/�c. This is equivalent to

the shear strain of � = ✏x/2 at ± 45� to the direction of compression [21]. To estimate

the critical volume fraction �c, we defined �c as the volume fraction at the minimum

of DLVO potential reached 5kT , and assumed �f = 0.64 for random close-packed

particles.

In figure 4.12(b), we compared the accumulated shear strain � calculated from

above approximation and express as an engineering strain, with the average reori-

entation, h| |2i1/2, observed in dried Levasil films, for di↵erent salt concentrations.

Then, � were fitted to the data by a single scaling factor in the magnitude of �, of
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Figure 4.12: Shear bands can reorient the anisotropy in a colloidal film and can be
eliminated by addition of salt. (a) A sample with 43.5 mM NaCl was observed here.
The pattern of film distortion can be mapped by polarization microscopy, showing
that the bands localized the shear strains. (b) The (root-mean-squared) average
changes induced by the bands were measured for dispersions of colloidal silica with
various initial concentrations of NaCl. The average reorientations of the film (filled
points) are proportional to the total amount of uniaxial compression applied to the
film, between the gelation and aggregation fronts, as predicted by a DLVO calculation
(black line). (Reproduced from [21]).

order one, and we find that there is good agreement between the strain that is gen-

erated across the liquid-solid transition and the strain released by the formation of

shear bands.

Here we have shown how shear bands, which regularly appear in drying colloidal

films, form and scale. The shear bands relieve the compressive strain by slipping at

± 45� to the drying front. This compressive strain was proportional to the deviatoric

strain of the liquid-solid transition which not been released by the shear band. Adding

some salt concentration reduced the electrostatic e↵ect and lead to the decreasing in

the band spacing. At the critical salt concentration, where the DLVO potential about

5kT , shear bands disappeared.

4.2.2 Guiding cracks

In this part, we study the cracks that appear in solid film, due to capillary forces

[6]. Here we show that cracks in dried colloidal films can be guided by the structural

anisotropy of the dried film, and hence the memory of the drying direction. Similar

memory of drying has been seen in reference [85].

We performed the experiment by drying Levasil 30 in Hele-Shaw cells in which we

modified the pattern of evaporation by adding or covering up more opening channels

around the edge of each cell so that we can guide the drying fronts in relatively
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Figure 4.13: Guiding cracks in drying colloidal dispersions. (a) Colloidal silica (Levasil
30) is dried in a Hele-Shaw cell with a set of opening gaps around the edge to allow
evaporation. The series time-lapse images showing the film in steps of one hour. The
liquid dispersions (milky white) dries into dark solid deposit. The completely dried
cell with cracks and previous drying front profiles is show in the larger right-hand
panel. (b) The angle between a crack and the outward-pointing normal of the drying
front profile is measured. At 0� these are aligned in the same direction (mean of 463
measurements is 1± 1� and standard deviation 13± 1�). (c) Another experiment of a
drying cell, where one side was sealed after five hours and was taken in steps of four
hours. In this case, one can see how cracks bend to follow the memory of the drying
front. (Reproduced from [22]).

arbitrary ways. For example, the drying cell in figure 4.13 (a) had four small gaps

of 5-10 mm along the sides of the cell. At beginning of any experiments, aqueous

dispersions of Levasil 30 was pipetted into the cells, which were initially inclined

slightly to allow the dispersion to settle to one side. Until the solid layer appeared

on the edges, we hung the cells vertically and took images of their drying pattern.

During this, the cells can be refilled by pipetting additional dispersion into the top

edge.

In each film, we found that when cracks form, they preferentially align along the

direction which the dispersions had solidified. This is true for every points throughout

the film, even if cracks appeared hours after solidification (figure 4.13 (a)) or if the

drying front has move well on and had subsequently changed shape (figure 4.13 (c)).

Figure 4.13 (a) shows a drying cell at the one-hour intervals, with lines of the liquid-

solid front drawn in black. The final pattern of cracks, after the entire film has

solidified, clearly expresses the pattern of drying, in such a way that the cracks are

parallel to the direction of compression of the material everywhere in the dry deposit.

We also measured 463 intersections between the cracks and the drying front profiles in
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figure 4.13 (a), measured the misalignment between the outward-pointing normal to

the liquid solid transition at those points and the direction that a crack subsequently

followed. The result is presented in figure 4.13 (b) that the cracks are very well aligned

with a mean misdirection of 1± 1� and a standard deviation of 13± 1� (fitting by the

simple Gaussian distribution).

Here we showed the crack propagation was guided by the memory of drying front.

This memory was the structural anisotropy which arose in the liquid-solid transition

during the drying of a colloidal film.

4.3 Summary and discussion

Here we conclude the results of studies on the directional drying of colloidal disper-

sions and their instabilities. During drying, colloidal dispersions undergo complex

transformations such as solidification, bucking, cracking, shear band and the drain-

ing of liquid from pores. These responses are controlled by forces that occur from

microscopic interactions between nearby particles and between particles and fluid

around them. If we aim to control these instabilities, we must first understand these

microscopic interactions and how they scale up to the macroscopic e↵ect.

We showed that an advection-di↵usion model of drying colloidal in a Hele-Shaw

cell and explain much of the mechanical instabilities occured in drying. The model

is constructed by Poisson-Boltzmann cell model of the electrostatic interactions be-

tween particles and aims to predict the osmotic pressure, the collective di↵usivity of

a charged colloidal dispersion. This model had no free parameters.

We performed drying experiment in Hele-Shaw cell. The SAXS technique was

used to measure the changing of volume fraction across the liquid solid transitions of

a drying colloidal dispersion. We found that the model can predict the changing in

volume fraction of drying front, especially well for smaller particles. In fact, the con-

centration profiles across the liquid solid transition were stretched wider than would

be expected for only hard-sphere interactions and this stretching of front was stronger

for the large particles [22]. When the drying profiles were used to infer the e↵ective

di↵usivity of various colloidal dispersions, we found that the collective di↵usivity was

increased at intermediate-to-high volume fractions, where particles were behaving as
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a yield-stress material, like a paste or gel, not a simple fluid. The increase in volume

fraction was not captured by the model, and suggested that particles may present non-

DLVO interactions. We also explored the e↵ect of microscopic interaction through

shear bands and cracks. The shear bands release the uniaxial compression, which was

fed by drag force, of the film by slipping at ±45� to the direction of compression.

Furthermore we show that the amount of slip (average reorientations of the film) was

proportional to the amount of deviatoric strain of the liquid-solid transition which

not been released by the shear band. Shear bands can be eliminated by adding on

salts, in order to decrease the repulsive force between particles. Meanwhile, cracks

released strain energy to allow soft-solid dispersion to shrink more as it dried. We

showed that the structural anisotropy which the liquid-solid drying front left behind

could be the pathways of cracks.
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Chapter 5

Conclusion and Outlook

I have investigated instabilities in colloidal dispersions which can be considered in two

parts, the first part is a study of crystallizations of polydisperse colloids. The aim

of this part is to look for possible crystal structures that can occur under di↵erent

conditions (e.g. size, polydispersity, thermodynamically equilibrium) in order to con-

struct phase diagrams. I had presented a model to predict the osmotic pressure at the

equilibrium. I also observed the nucleation of a colloidal crystal and the di↵usion of

two colloidal mixtures. The second part is a study of instabilities of a drying colloidal

dispersion. The same model in the first part was used here to predict volume fractions

of the liquid-solid transition during the colloidal dispersion dried. I also observed and

explained how shear bands were formed and how to eliminate them by changing the

microscopic interaction of colloidal particles. Furthermore, I reported how cracks in

a directional drying colloidal film were guided by the drying front.

crystallizations of polydisperse colloids

I prepared about hundreds of colloidal systems, all samples were dialyzed against

a variety of salt solutions (0-50mM) and PEG concentration in order to reach volume

fractions � 0.10 to 0.40 at the equilibrium. A model was developed by Poisson-

Boltzmann cell (PBC) model of the electrostatic interactions between particles to

image the microscopic interaction between inter-particle interactions and predict the

concentration gradient of a drying colloidal dispersion. The model can predict the

osmotic pressure of a colloidal system at the equilibrium of charged colloidal disper-

sions, but appears to be unsuccessful for a system that has at a high salt concentration
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and large particle size. However, Y. Hallez and M. Meireles [71] have reported on an

improved model of the electrostatic interactions between colloidal particles and have

tested the model with our experimental data. The results showed that our osmotic

compression experiments and their predictions were in a very good agreement.

Dialyzed samples (liquid) were explored through the SAXS and were analyzed their

crystal structures by extracted structure factors S(q). The q�value of peak intensi-

ties were collected to create a calibration curve of q3 � �. From the structure-factor

analysis, I found plentiful crystal structures (from simple structures - bcc, fcc, laves to

large and complex structures- Ab13) coexisting with the liquid phase in Ludox TM50,

HS30 and Levasil 30. A phase diagram of TM50, collecting from the experimental

results, agreed well with a numerical prediction calculated by our collaborators (Guil-

laume Bareigts and Christophe Labbez) in France. Despite our colloidal dispersions

are charged and quite polydisperse, we found that a crystal structure always appears

at S(q)max > 2.85 which is in agreement with the the empirical Hansen-Verlet rule

of crystallization [56], which strictly for the monodisperse hard sphere. This will be

seen more clearly, when we look at the nucleation of these colloidal dispersion. I pre-

pared fresh colloidal dispersions at volume fractions where the first crystal appears

in the phase diagram in order to look their nucleation in real times. The nucleation

experiment showed that the first appearing crystal phase is a simple structure (either

bcc-structure or fcc-structure) which appears alone among the colloidal populations

without coexisting of any other larger structure. This behaviors could be a selec-

tive crystallization (fractionation) in the polydisperse colloidal populations that the

majority population (their size are close to the mean) involve in the first crystal nu-

cleation and let the rest of population, which are now di↵erent in sizes, cooperate to

build other complex structure [15, 16].

Furthermore, I studied the interdi↵usion of two di↵erent concentrated colloidal

system and showed that the di↵usivity was enhanced 15 times by the internal inter-

actions.

instabilities of a drying colloidal dispersion

In this part, I explored the structural anisotropy in the dried film. The films

were dried in Hele-Shaw cells and placed in the an X-ray beam. I performed SAXS
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experiments to measure the scattering vectors in two orientation at the liquid-solid

transition: qx parallel to the flow and qy perpendicular to the flow. I used in same PBC

model to predict the volume fraction and the di↵usivity at the liquid-solid transition

and compare them with the experimental results. At the liquid-solid transition, I

found that the drying colloidal dispersions become anisotropic (qx 6= qy), the strain

in drying film is rapidly increased. The model catch with the experiment at a small

particle, but again failed for the larger particle-size. I also estimated the e↵ective

di↵usivity in the liquid-solid transition and found that the larger the charged particle,

the more the e↵ective di↵usivity is enhanced by the inter-particle interactions. Here,

the experiment and the model tangibly disagree, although the observed di↵usivity

shows the same trends as the other experiments. The developing of a new model is

needed to match with the experiment.

Furthermore, I observed shear banding and guiding cracks in a drying film. I

showed that the shear bands are the mechanical response to the uniaxial compression

in film which is released by allowing for slip at ±45� to the direction of compression. In

particular, I show that the amount of slips created by shear bands was proportional to

the total amount of deviatoric strain that would have accumulated across the liquid-

solid transition [22]. I also show that shear bands can be optimized or eliminated

by adjusting the chemistry of the starting dispersion (by adding salt) before it dries.

The cracks appear after in order to release strain energy by allowing the dispersion

to shrink more as it dries. We showed that the pathway of cracks is guided by the

anisotropy that was left behind the liquid-solid transition.
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