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General introduction  

Origin and history of potato 

Potatoes were first cultivated by the Inca people in the Andes mountains in ancient time (Lee 2006). They are supposed 

to have been introduced from their origin South-America to Europe in the 1570s. The first records can be assigned to 

Spain from where it was disseminated to Italy, England and finally to Germany in 1600 (Brown 1993). The nowadays 

cultivated potato is classified as Solanum tuberosum L. consisting of seven subspecies of which the subspecies ssp. 

tuberosum has been introduced to Europe (Hawkes 1956; Hawkes 1990). However, there are high controversies about 

the number of existing subspecies (Huamán and Spooner 2002). Besides, there are still around 200 wild species 

distributed from the southwestern Unites States to Argentina and Chile (Hawkes 1990; Spooner and Hijmans 2001), 

comprising further desirable traits and a high potential for progress in breeding, especially with respect to resistances 

against pests or diseases (Spooner and Salas 2006). The potato belongs to the nightshade family (Solanaceae), which 

are known to have poisonous properties, why they were regarded in Europe a quit long time with great suspicion. 

People awarded it a potential to cause leprosy or to have narcotic properties (Brown 1993; Lee 2006). Hence, the 

potential of potato as food crop was underestimated and unexploited for years and it was more considered as a botanic 

novelty (Brown 1993). The potential of potato as a food crop was first discovered in Europe in Ireland at the end of 

the 17th century. Probably a suitable climate and appropriate soils on the one hand and societal and economic reasons 

based on an immense growth of the Irish population on the other hand led to an increase of the importance of potato 

as a food crop (Bradshaw and Ramsay 2009). Today potatoes are grown in more than 100 countries and it is propagated 

from latitudes 65° N to 50° S and at altitudes from sea level to 4000m (Hijmans 2001).  

 

Potatoes in Germany – in the past and today 

In Germany the potato mainly served as animal feed until an economical cultivation started in the 70s and 80s of the 

18th century (Schick and Klinkowski 1962). In the following 100 years the potato production and consumption 

experienced first a progressing growth followed by a sudden decrease which is persistent until today (Burton 1983). 

Since the 18th century the potato yield recorded a steady increase what mainly can be referred to breeding progress, 

the introduction of certified seed use, inorganic fertilizers and plant protection agents (Evans and Fischer 1999; Walker 

et al. 1999). While the harvested amount of potatoes in Germany accounted 33 million tons in 1964, in 2014 it 

decreased more than twice to 11 million tons. Contrary to this, the yield accounted about 20 t/ha in 1964 and increased 
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more than twice to 47 t/ha until 2014 (FAO 2017). So while there was still an increase in the potato´s yield potential 

in the last 50-60 years, the demand and consumption of potato heavily decreased. There are assumptions about a 

distinct relation between the consumption of potatoes and the people´s income. While under low income levels the 

contribution of potatoes to the energy intake of the diet is much higher it severely drops down with rising income level 

(Burton 1983; Walker et al. 1999). Besides, in developed nations there has been a clear change in dietary habits. 50 

years ago, people spent much more time on preparation of food and not every kind of food, for instance tropical fruits 

or vegetables, were available all year around. Today pre-cut vegetables or complete prepared meals are available 

everywhere (Regmi 2001). With respect to potatoes, the consumption of fresh potatoes has declined while the demand 

for processed potato products like chips has increased (Camire et al. 2009).  

 

Nutritional aspects of potato 

Nowadays, potatoes have sometimes a poor reputation as they have a high content of rapidly digestible starch why 

they can be classified as a high-glycemic-index food. Long-term and high consumption of food with an high glycemic 

index might increase the risk of diet related disorders such as cardiovascular disease and type-2 diabetes (Kakoschke 

et al. 2014). Furthermore, there has been a rising interest in low-carbohydrate diets with respect to the intention of 

weight loss in the last years (Last and Wilson 2006) what likely lowered the appeal of potato consumption (McGregor 

2007). Besides, fried potatoes and potato chips might have a carcinogenic potential due to potentially high 

concentrations of acrylamide which can be found in starch-containing foods that have been processed under high 

temperatures (Pelucchi et al. 2003). Nonetheless, potatoes combine several advantageous nutritional properties. The 

tubers are rich in vitamin C and are a good source for several B vitamins and minerals like potassium, magnesium and 

iron (Andre et al. 2014; Camire et al. 2009). Moreover, tubers are low in fat and offer protein with an excellent 

biological value of 90-100 (Andre et al. 2014). Especially colored potato cultivars additionally contain a number of 

phytochemicals like phenolics, flavonoids, or carotenoids which are supposed to be health-promoting (Ezekiel et al. 

2013). However, the health benefit of potato consumption may heavily depend on the preparation method (Tian et al. 

2016).  

 

Usages and quality determinants of potatoes  

As indicated previously, there are various usages of potatoes. First, there is the fresh potato market (McGregor 2007), 

which, however, lost in importance in developed countries (Kirkman 2007). Besides, potatoes are processed to mainly 
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French fries or potato chips (Keijbets 2008) or they are used for starch production which is utilized in the food or 

textile industry (Grommers and van der Krogt 2009; Jobling et al. 2002). Finally, there is a seed potato market and an 

usage as animal feed - but today only to a very small extend (Lange and Kawchuk 2014). The majority of potato 

production in Germany can be assigned to potatoes for fresh consumption and processed potato products, although 

likewise in Germany there was a sharp decline for the consumption of fresh potatoes (Lange and Kawchuk 2014). Each 

usage has special quality requirements although there might be some conformability. For the fresh potato market 

especially the external experience is of central importance and mainly influences on the consumers purchase behavior 

(Fiers et al. 2010). Consumer preferences can differ between individual or origin, but generally tuber sizes of 150-200 

g, tuber shapes without protuberances, recessed eyes or stolon attachments and without superficial blemishes such as 

tuber cracks are preferred (Burton 1974). But also for other intended usages than for fresh consumption the absence of 

superficial blemishes is of interest as injuries of the tuber skin might be entrance point for secondary infections (Hide 

and Lapwood 1992). The mineral status of tubers might be a further important quality trait, especially for tubers for 

fresh consumption. Potato tubers can be a good source for several minerals in diet (Andre et al. 2007; Subramanian et 

al. 2011). However, minerals can show distinct distribution patterns in the tubers (Subramanian et al. 2011; Johnston 

et al. 1968).  

For the production of French fries as well as for chips the dry matter (DM) content is a central quality parameter. High 

DM contents are desired to achieve a high yield of product but low oil content (Lulai and Orr 1979; Sayre et al. 1975). 

Furthermore, the texture of chips produced with tubers of high DM content is supposed to be harder and more desirable 

compared to chips produced with tubers of low DM content which are supposed to have a more greasy or sticky texture 

(Kita 2002). Likewise for the starch production a high DM content is aspired (Haase 2003) as starch is the most 

important component of DM (Poberezny and Wszelaczynska 2011). For the seed tuber market the most important 

quality requirements are the absence of diseases and pests, a sufficient growth vigor of the seed and an appropriate 

tuber size. With respect to the tuber size, smaller tubers are preferred as they can produce more stems per unit weight 

compared to bigger tubers (van Loon 2007). 

Besides the previously mentioned quality determinants, there are several further factors which might influence on the 

potato tuber quality. However, not all determinants are objective of the present thesis why only a section of important 

quality determinants is considered.  
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Factors influencing on potato tuber quality 

Tuber quality can be affected by several parameters such as the cultivar (Cabezas-Serrano et al. 2009; Elmore et al. 

2015), the type and time of storage (Arvanitoyannis et al. 2008; Elmore et al. 2015), agronomic practices prior and 

during plant growth – for instance irrigation or tillage methods (Alva et al. 2002) – and tuber handling during and after 

harvest (Daniels-Lake et al. 2014; Peters 1996). According to Peters (1996) mechanical injuries, which can occur 

during or after harvest – for example whilst tuber grading – are the most serious threats for losses of marketable tubers. 

Such mechanical impacts can favor for instance the emergence of tuber cracks (Hiller et al. 1985). But also internal 

factors like changes in moisture content can favor the emergence of tuber cracks (Bohl and Thornton 2006). Indeed, 

the current knowledge regarding physiological reasons that make potatoes more susceptibly for mechanical impacts 

which can results in cracking of the tuber is rare.  

With respect to agronomic practices prior or during plant growth the nutrient supply is a further central factor of 

influence (Westermann 2005). Potassium (K) is that mineral which is needed in the largest amount by the potato plant 

(Westermann 2005). The predominantly applied nutrients in potato production are nitrogen (N), phosphorus (P) and K 

(Ierna et al. 2011; Lin et al. 2004). While for K there has been profound research related to its functions and need for 

crop production – including potato – the role and importance of Mg often has been neglected (Cakmak and Yazici 

2010; Guo et al. 2016). A search of the ISI Web of Science on 17 December 2017 at 11:00 h CET by using the topic 

key word 'potato' in combination with the title key word 'potassium' by simultaneous exclusion of 'magnesium' from 

the title (and vice versa) returned a total of 270 'potassium articles' but only 55 'magnesium articles' published since 

1945. The search was filtered for the research areas 'agronomy', 'agriculture multidisciplinary', 'food science 

technology', 'plant sciences', 'environmental sciences', 'biochemistry molecular biology', 'soil sciences', and 

'horticulture'. Moreover, each 'potassium article' was cited on average 9.52 times with 2571 total cites while each 

'magnesium article' was cited on average only 5.25 times with 289 total sites. A further search of the ISI Web of 

Science on December 17 2017 at 11:10 h CET by using the topic key words 'potato' and 'quality' in combination with 

the title key word 'potassium' by simultaneous exclusion of 'magnesium' from the title (and vice versa) returned a total 

of 43 'potassium articles' but only 12 'magnesium articles' published since 1945. The search was filtered for the research 

areas 'agronomy', 'agriculture multidisciplinary', 'food science technology', 'plant sciences', and 'biochemistry 

molecular biology'. Each 'potassium article' was cited on average 14.19 times with 610 total cites while each 

'magnesium article' was cited on average only 6.67 times with 80 total sites. Finally, first a search of the ISI Web of 

Science on December 17 2017 at 11:20 h CET by using the topic key words 'potato' in combination with the title key 
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words 'potassium' and 'magnesium' returned a total of only 3 'potassium and magnesium articles' which were sited on 

average 3 times with 9 total sites. Second, a search of the ISI Web of Science on 17 December 2017 at 11:25 h CET 

by using the topic key words 'potato' and 'quality' in combination with the title key words 'potassium' and 'magnesium' 

returned a total of 20 'potassium and magnesium articles' which were sited on average 10 times with 200 total sites. 

Both search (topic key word 'potato' in combination with title key words 'potassium' and 'magnesium' and topic key 

words 'potato' and 'quality' in combination with title key words 'potassium' and 'magnesium') were filtered for the 

research areas 'agronomy', 'agriculture multidisciplinary', 'food science technology', 'plant sciences', 'soil sciences', 

'horticulture' and 'biochemistry molecular biology'.  

These findings emphasize that there is huge lack of research and awareness about the importance of Mg for potato 

production and especially for potato quality. Besides, the outcomes of the search of the ISI Web of Science illustrate, 

that there has been only less research about the importance of K in combination with Mg for potato production and 

potato quality since 1945. Thus, there is a high need for current research about the importance and effect of Mg but 

also of K and Mg in combination for potato production and quality.  

 

Roles of K and Mg in plant growth and metabolism 

Both K and Mg are essential macronutrients for plant growth and are needed for a myriad of processes in plant 

metabolism (Marschner 2011). A main focus of this thesis is set on the roles of K and Mg for photosynthesis and the 

partitioning of photoassimilates from source to sink organs. Potato tubers are strong sink organs. Thus, an impact of 

the K and Mg supply on potato tuber development and likely quality can be expected. K has an outstanding role due 

to its osmotic properties in plants. Based on these properties it facilitates cell and root elongation (Mengel and Arneke 

1982; Song et al. 2017), leaf area expansion (Jordan-Meille and Pellerin 2004), and plant movements such as stomata 

opening and leaf movement (Ahmad and Maathuis 2014). With regard to the mentioned functions K is crucial for 

photosynthesis for two main reasons: First, K ensures CO2 diffusion through the leaf mesophyll (Jákli et al. 2017) and 

second, K is thought to cause a reduction in the activity of the enzyme ribulose-1,5-bisphosphate 

carboxylase/oxygenase (Rubisco) which catalyzes the first step in CO2 fixation (Hu et al. 2016). This may be attributed 

to a decrease of CO2 at the catalytic site of the enzyme based on a restricted CO2 diffusion through the leaf mesophyll 

(Asif et al. 2017; Oosterhuis et al. 2013). The predominant role of K in source to sink transport of assimilates is likewise 

based on its previously mentioned function, namely its osmotic properties. Here, K establishes an osmotic gradient 
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which is causing a driving force for sucrose, the main transport form of carbohydrates in the phloem (Cakmak et al. 

1994a; Hayashi and Chino 1990; Vreugdenhil 1985).  

Mg is activator for a huge number of enzymes (Senbayram et al. 2015; Verbruggen and Hermans 2013). One of these 

enzymes is Rubisco (Belknap and Portis 1986) what makes Mg essential for photosynthesis. Beside, Mg is central 

atom of chlorophyll (Walker and Weinstein 1994) why it may additionally influence on photosynthesis. A further 

major role of Mg is located in the loading of the phloem why it is pivotal, like K, for the source to sink transport of 

assimilates in plants. Here, Mg is required by ATPases as allosteric activator. These ATPases create a proton gradient 

that provides energy for the phloem loading process (Hermans et al. 2005).  

Finally, nutrient shortages, including K and Mg, have been shown to negatively impact on the plants root architecture 

(Cakmak et al. 1994b; Gruber et al. 2013; Mengutay et al. 2013; Sattelmacher et al. 1993). Cakmak et al. (1994b) 

refers this to a negatively affected photoassimilate partitioning which has been caused by K and Mg deficiency.  

 

Impact of individual and interactive effects of K and Mg nutrition  

Mineral nutrition can significantly affect the plant´s mineral status and in turn plant growth (Fageria 2001; White et 

al. 2009). It was shown that mineral nutrition of N, P, K, Calcium (Ca) and Mg can increase the particular element 

concentrations in tubers (for detailed literature references see White et al. (2009)). However, the application of one 

nutrient can change the concentrations of other minerals by affecting the absorption, distribution or function of another 

nutrient (Robson and Pitman 1983; White et al. 2009). These nutrient interactions can be of synergistic, antagonistic 

but also neutral nature. Interactions between nutrients are often observed between ions of similar chemical properties, 

such as K, Mg and Ca (Jakobsen 1992; Robson and Pitman 1983) as they might compete for the same uptake 

mechanism from the soil solution (Mayland 1990). With respect to potato, the interaction between K and Mg often has 

been research issue – however with contradictory outcomes: Hossner and Doll (1970) examined an antagonistic effect 

between K and Mg in form of decreasing tuber yield under decreasing Mg but increasing K plant mineral status. 

Contrary, Allison et al. 2001 concluded, that there is no interactive effect between K and Mg. Ding et al. (2006) could 

determine a synergistic effect of increasing Mg supply on the uptake and translocation of K from the root to shoot – 

though, this study was conducted with rice (O. sativa L. ssp. Japonica) plants.  
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Objectives of the thesis 

An initial objective of the present thesis is to review the current state of knowledge about i) the importance of K and 

Mg for plant growth in general and for potato production in particular. Furthermore, ii), it is aimed to point out the 

current state of knowledge about the importance of K and Mg for potato quality. These aspects beside the importance 

of other nutrients than K and Mg are reviewed in the first two chapters of this thesis. The following chapters deal with 

the subsequent mentioned research objectives:  

1. The functional impacts of K and Mg on photosynthesis and the partitioning of photoassimilates from source 

to sink organs are well resolved. However, it is unclear to which extent a K or Mg deficiency affect these 

processes in potato. Moreover, as tubers are strong sink organs for photoassimilates, an impairment on tuber 

development and quality is expected.  

Thus, central objectives of this study are: 

1a) Examining the severity of photosynthetic restriction and parameters, which give indication about the 

source to sink transport of photoassimilates under K and Mg deficiency. 

1b) How K and Mg restriction affect tuber development and quality. 

  

2. Several studies in literature are available about nutrient uptake interactions between K and Mg, though with 

contradictory outcomes: Some studies report about antagonistic nature between K and Mg, some could not 

determine an interaction at all and some even demonstrated a synergistic effect. Therefore, the K and Mg 

status of different plant tissues under various combined K and Mg supplies is investigated to preserve 

clarification about the nature of interactive effects between K and Mg in potato.  

 

3. Common bean (Phaseolus vulgaris), wheat (Triticum aestivum), maize (Zea mays) and the model plant 

Arabidopsis show a reduced root growth under Mg deficiency (Cakmak et al. 1994b; Gruber et al. 2013; 

Mengutay et al. 2013). This was never reported for potato. Thus, further aims of this thesis are 

3a) Testing if Mg deficiency causes a reduced root growth in potato.  

3b) Examining if such a putative root growth reduction can be ameliorated by Mg resupply via roots or leaves, 

respectively.  
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4. The absence of superficial blemishes such as tuber cracks is an important quality determinant of potatoes. 

Knowledge regarding physiological reasons that make potatoes more susceptibly for mechanical damage, 

which can result in cracking or fracture of the tuber skin, is rare. Therefore we aimed to elucidate: 

4a) Physiological parameters that might be linked with the resistance of tubers against mechanical impacts. 

4b) If a K and Mg supply is affecting these physiological parameters.  
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The importance of nutrient management for potato production 

Part I: Plant nutrition and yield parameters 

 

Mirjam Koch1, Marcel Naumann1, Elke Pawelzik1*, Andreas Gransee2, Heike Thiel2  

1 Quality of Plant Products, Department of Crop Sciences, Faculty of Agricultural Sciences, University of 

Goettingen, Carl-Sprengel-Weg 1, 37075 Goettingen 

2 K+S KALI GmbH, Bertha-von-Suttner-Str. 7, 34131 Kassel, Germany 

 

*Corresponding author: epawelz@gwdg.de 

 

Abstract 

Research from the last few decades has shown that, in potato production, optimal yield and optimal quality do not 

necessarily correlate. Agronomic strategies in potato production have mainly focused on improving yield and related 

parameters. In recent years, however, the quality aspect attracts more attention. As part of a successful agronomic 

strategy, adequate nutrient management of the potato crop is essential throughout the whole growth period. In this 

review, the importance of balanced fertilization for potato yield formation and yield security is addressed by taking 

advantage of the results of own field trials and current literature. Due to their various functions in plant metabolism, 

the impact of plant nutrients on specific yield parameters is complex, particularly under abiotic and biotic stress 

conditions. Specific and non-specific nutrient interactions in the soil and the plant have to be taken into account as 

well. In conclusion, the development of site-specific fertilization recommendations as part of an agronomic strategy 

strongly depends on soil and plant nutrient status.  
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Introduction 

Potato (Solanum tuberosum) is a highly attractive crop in agricultural production systems since it combines an 

extraordinarily high yield potential of, on average, more than 45 t ha-1 in high-input agriculture (Table 1) with a high 

nutritional value. For example, it is a good source of energy, minerals, proteins, fats, and vitamins (Ekin 2011, 

Drewnowski and Rehm 2013; King and Slavin 2013). Besides, potatoes are not just an important food source (Andre 

et al. 2014). They are also increasingly serving as feedstock for industrial products (Izmirlioglu and Demirci 2015; 

Jagatee et al. 2015). Therefore, unlike most other crops, potatoes have an unusually high range of utilization 

possibilities, which makes their production even more attractive (Stearns et al. 1994; Feltran et al. 2004; Kaur and 

Singh 2009). Table 1 summarizes data on the potato production in different regions of the northern hemisphere and 

Africa. These data base on cultivation area and taking the top five countries into account as well as the total potato 

production worldwide.  

The yield, a potato crop can potentially realize at a specific production site, is mainly determined by its specific genetic 

background (Evans and Fischer 1999). There is a gap between the actual yields and the yield potential (Van Keulen 

and Stol 1995; Michel 2015). According to the yield potential concept, the potential yield is never fully reached in 

natural production systems, as biotic and abiotic factors, interfering with the potato crop negatively affect plant growth 

and tuber development. Important biotic stress factors in potato production include late blight (caused by Phytophthora 

infestans) (Nowicki et al. 2012) and other fungal infections, like early blight (caused by Alternari solani), silver scurf 

(Helminthosporium solani) and black scurf (Rhizoctonia solani), as well as Fusarium and Verticillium wilt (Rich 2013). 

Furthermore, other kinds of pathogens (Giordanengo et al. 2013), and various bacterial and viral diseases (Rich 2013) 

affect potato yield and production. The abiotic stresses that reduce yield include high radiation, heat and cold stress. 

But the most important abiotic factor affecting yield and quality is drought stress (van Loon 1981; Obidiegwu et al. 

2015). 

To a certain degree, growers can reduce the negative effects of the environmental impacts by using balanced agronomic 

management strategies. Apart from the choice of cultivar, plant protection, and continuous water supply, the most 

important agronomic measure for potato production is adequate nutrient management. An sufficient supply of mineral 

nutrients (1) fortifies the potato plants against adverse growth conditions (only well-nourished plants have the potential 

to withstand the challenges of climate change), (2) is crucial for achieving high yield, and (3) is essential for producing 

potatoes that meet the desired quality requirements. According to the law of the minimum developed by Carl Sprengel 

and, later, spread by Justus von Liebig in the early 19th century, optimal crop growth can take place only if all required 
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nutrients are at the optimum level (Sprengel 1828; cited in van der Ploeg et al. 1999; von Liebig 1841; von Liebig 

1855). In detail, it states that plant growth is controlled not by the total amount of nutrients available, but by the amount 

of the scarcest nutrient. This law points to the importance of balanced nutrition for optimal plant growth. The law of 

the diminishing yield increase is of similar importance. It states that the higher the nutrient supply the lower the yield 

increase obtained from the increase in fertilization, which means that the yield response to fertilization follows a 

saturation curve (Spillman 1923). Both laws are the basis for modern approaches to develop fertilization 

recommendations—like the ‘4R plant nutrition concept’ compiled by International Plant Nutrition Institute (IPNI), for 

example (IPNI 2012; Johnston and Bruulsema 2014). 

In the following sections, this review aims to give an overview on the role of nutrients on yield formation, yield security 

and fertilization practice in potato production. 
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Table 1: Potato production details from Europe, America, Asia and Africa in total plus top five countries according to 

the cultivation area, the amount of harvested product, and the average yield in 1994 and 2014. 

Country Cultivation area (ha)* Quantity (t)* Average yield (t/ha)* 

 1994 2014 1994 2014 1994 2014 

Russia1 3,336,960 2,101,461 33,827,620 31,501,354 10.1 15.0 

Eu
ro

p
e

 

Ukraine 1,527,000 1,342,800 16,102,000 23,693,350 10.5 17.6 

Germany 322,775 244,800 10,635,400 11,607,300 33.0 47.4 

France 165,000 168,519 5,463,000 8,085,184 33.1 48.0 

Poland 1,697,247 276,927 23,057,540 7,689,180 13.6 27.8 

Total 9,795,116 5616844 138,208,334 124,542,089 14.1 22.2 

USA2 558,350 425,370 21,185,000 20,056,500 37.9 47.2 

A
m

erica 

Peru 188,531 318,380 1,767,247 4,704,987 9.4 14.8 

Canada 132,900 138,942 3,676,600 4,589,200 27.7 33.0 

Brazil 171,853 132,058 2,488,461 3,689,836 14.5 27.9 

Colombia 184,397 107,598 2,938,631 2,157,568 15.9 20.1 

Total 1,721,011 1,576,901 38,591,256 42,241,119 22.4 26.8 

China3 3,207,600 5,645,000 43,800,000 95,515,000 13.7 16.9 

A
sia 

India 1,047,100 2,024,000 17,392,400 46,395,000 16.6 22.9 

Bangladesh 131,245 461,710 1,438,055 8,950,000 11.0 19.4 

Iran 149,512 158,958 3,184,840 4,717,266 21.3 29.7 

Turkey 190,000 128,392 4,350,000 4,166,000 22.9 32.4 

Total 5,743,038 9,932,183 84,477,948 186,886,889 14.7 18.8 

Algeria 75,300 156,176 715,936 4,673,516 9.5 29.9 

A
frica 

Egypt 64,779 172,005 1,324,649 4,611,065 20.4 26.8 

South Africa 55,197 63,907 1,316,000 2,247,495 23.8 35.2 

Rwanda 17,000 164,152 114,900 2,213,556 6.76 13.5 

Morocco 58,800 63,515 1,037,950 1,950,982 17.7 30.7 

Total 747,477 1,933,185 8,359,620 2,639,1538 11.2 13.7 

World  18,056,805 19,098,328 271,244,596 381,682,144 15.0 20.0 
1 Russian Federation, 2 United States of America, 3 China, mainland 

* All data were taken and re-calculated from faostat (http://faostat3.fao.org) 
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Roles of macronutrients in plant metabolism and their role in yield formation  

Reports on the nutrient uptake and removal mainly rely on data produced decades ago. Therefore, a comprehensive 

study on the nutrient demand of and removal by modern varieties of potatoes is urgently needed. Perrenoud (1993) 

summarized the literature on the nutrient uptake of and removal by potatoes. The mean values are presented in Figure 

1. From the removal per ton of tubers, the removal in kg ha-1 was calculated a tuber yield of 40 t ha-1. The most 

important nutrients, as shown in Figure 1 (with the exception of sulphur), are highlighted with respect to their 

physiological functions in plant metabolism and for tuber yield formation in this review. Unfortunately, often less 

current literature is available dealing with nutrient functions in the potato crop. In this case, the most important nutrient 

roles are addressed exemplary on other crop plants with view on the importance for the potato crop. A critical review 

on all essential nutrients in potato growth is beyond the scope of this review. 

 

 

Figure 1: Removal of N, P2O5, K2O, MgO, and CaO by potato tubers. Mean values per ton of tubers (as shown on the 

right axis), calculated according to Perrenoud (1993) [and literature cited therein]. Calculations on nutrient removal 

per ha (as shown on the left axis) were based on a 40 t ha-1 tuber yield.  

 

Nitrogen 

Nitrogen (N) is one of the most crucial macronutrients for plant growth and biomass development. It can limit potato 

yield formation most amongst all essential macronutrients (Bucher and Kossmann 2011; Silva et al. 2013). It has a 

decisive impact on the number of emerging leaves and the rate of leaf expansion, and, therefore, on the leaf area index 

(LAI) of plants. Hence, it has a positive impact on photosynthesis efficiency by increasing the interception rate of 
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radiation and photons (Vos 1995; Vos and van der Putten 1998; Mauromicale et al. 2006), and, as a consequence, on 

tuber yield formation (Ahmed et al. 2015). Besides this, N is mandatory for the plant as it is a component of chlorophyll, 

amino acids, proteins, nucleic acids, coenzymes, and membrane constituents (Andrews et al. 2013; Ahmed et al. 2015). 

Plants can use N in different forms. Their major sources are nitrate (NO3
-) and ammonium (NH4

+) (Silva et al. 2013).  

While adequate use of N fertilization can improve yield as well as plant quality, an inappropriate supply of N can lead 

to increasing vegetative growth but delayed flowering and impaired tuber formation (Nitsch 2003; Bucher and 

Kossmann 2011; Ahmed et al. 2015). In addition, an excessive supply of N can lead to the accumulation of reactive N 

compounds in the atmosphere or leaching to the groundwater, both of which have negative impacts on our ecosystems 

(Singh and Lal 2012 Silva et al. 2013). Leaching, in particular, is likely to occur under a high supply of N, as potatoes 

have shallow roots that are unable to capture N from deeper soil layers. Therefore, the potato crop can be referred to 

as N-inefficient crop (Cameron et al. 2013). Optimal N fertilization practices should be achieved to meet both economic 

and environmental demands (Zebarth et al. 2012). Therefore, an appropriate N supply should be based on calculations 

that meet the actual plant demand and should include other N sources—for example, delivered by catch crops or 

intercrops, like N-fixing leguminous plant species (Bucher and Kossmann 2011; Zebarth et al. 2012; Cameron et al. 

2013). In order to meet the actual demand of the plant, splitting N application is commonly used approach (Kelling et 

al. 2015; Rens et al. 2016). Furthermore, optimal N usage can be improved upon by inducing and maintaining high 

plant growth and biomass production through appropriate irrigation strategies, controlling pest and observation of 

disease development, and avoiding nutrient deficiencies (Cameron et al. 2013). 

Due to the disturbance of chloroplasts, N deficiency becomes obvious as leaf chlorosis that is equally distributed over 

the whole leaf. Unlike symptoms of potassium (K) or magnesium (Mg) deficiency, severe necrosis of the leaves due 

to N deficiency usually appears late in the growth stages. The symptoms of N deficiency may also be similar to ferric, 

calcium (Ca), or sulphur (S) deficiency. These symptoms occur first on younger leaves as those nutrients cannot be 

translocated within the plant (Mengel and Kirkby 2001). 

 

Phosphorus  

Phosphorus (P) is required in relatively high amounts by the potato crop compared to others (Figure 1) (Rosen et al. 

2014). P serves various functions in plant metabolism, where the most prominent role is cellular energy transfer by 

dephosphorylation of Adenosine triphosphate (ATP) to Adenosine diphosphate (ADP), which is the primary source of 

energy in the processes of photosynthesis, respiration, or biosynthesis - like starch synthesis. Besides this, P is a 
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structural component of nucleic acids as units in deoxyribonucleic acid and ribonucleic acid molecules, of many 

coenzymes, and of phospholipids in biomembranes ( Raghothama 2000; Marschner 2011; Rosen et al. 2014). 

Economically speaking, especially in the early growth states, P has a significant impact on number of potato tubers 

and settings ( Jenkins and Ali 2000; Hopkins et al. 2014). 

Most soils cannot sufficiently cover the P demand of potatoes or P may only be plant-available to a limited extend due 

to its absorption by soil particles, clay minerals, or Ca and Mg carbonates (Bucher and Kossmann 2011; Rosen et al. 

2014). Besides this, similar to the N usage in deeper soil layers, P uptake is difficult for the potato crop due to its 

shallow and inefficient rooting system (Hopkins et al. 2014). However, there are various strategies for exploiting 

limited accessible P sources. Any factor that is able to increase the rooting zone can lead to better P absorption. 

Therefore, the best management practice, including the avoidance of root pruning by tillage and toxicities of salts or 

other compounds that can impair the root development, and pest and disease management in order to maintain healthy 

roots, are of central relevance (Hopkins et al. 2014). Another option is using the advantages of the symbiotic 

associations of potato roots with arbuscular mycorrhizal fungi (McArthur and Knowles 1993). These fungi colonize 

roots with hair-like hyphae, which increase the root area, and lead to higher water and nutrient uptake, especially the 

uptake of P. In turn, the fungi receive sugars in form of photosynthates from the plant (Smith and Smith 2012). 

Furthermore, the placement (banding or broadcast) and soil pH value seem to have an influence on P acquisition, but 

inconsistent results are noted in different studies, as described by Hopkins et al. (2014) and Rosen et al. (2014). 

The potato plant can tolerate moderate P stress without any severe deficiency symptoms until photosynthesis and 

respiration processes are reduced heavily so much that carbohydrates start to accumulate. This becomes obvious in 

dark green to purple leaf discolorations, as described by Hoppo et al. (1999) and cited in Grant et al. (2001). 

 

Potassium 

Out of all the macronutrients, potassium (K) has the highest concentrations in potato tubers, accounting for about 400 

mg per 100 g fresh weight (White et al. 2009) or for about 1.7% of dry matter (Schilling et al., 2016). In the remaining 

plant tissues, it is also the most abundant inorganic cation—in potato leaves with up to 6% of dry matter, for instance 

(Leigh and Wyn Jones 1984; Zorn et al. 2016). These facts are also reflected in the high amounts of K removal by 

potatoes (Figure 1). Beside this, K is one of the most important nutrients affecting potato tuber quality as is described 

e.g. by Zörb et al. (2014). 
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The major functions of K in plants are controlling enzyme activity, cation-anion homeostasis, and membrane 

polarization, or they are based on its osmotic nature, which is why it is needed for cell extension, turgor regulation, or 

stomatal movement (Walker et al. 1996; Liu et al. 2006; Wang and Wu 2013; Adams and Shin 2014; Shabala and 

Pottosin 2014). One important role of K for the potato crop in enzyme functions is, for example, stimulating the starch 

synthase for starch synthesis (Hawker et al. 1979). A sufficient supply of K is also needed for yield-decisive high 

biomass production and leaf area development. Under K deficiency, there can be a decreased number of leaves as well 

as a decrease in the leaf size. This can be attributed to K’s role in osmoregulation and cell extension (Gerardeaux et al. 

2010; Jákli et al. 2016). Besides the mentioned functions, K is crucial for photosynthesis and the distribution of 

photosynthates via the phloem. To maintain a proper working photosynthesis, an accurate working stomatal movement 

is needed to take up considerable amounts of CO2 for fixation in the Calvin cycle (Cakmak 2005; Zörb et al. 2014). 

Moreover, the processes involved in photosynthesis require a fine-tuned pH regulation because photosynthetic 

enzymes need a specific pH to function efficiently (Rumberg and Siggel 1969; Woodrow and Berry 1988). For 

instance, this is true for ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) as a key enzyme involved 

in photosynthetic carbon fixation. However, the maintenance of photosynthesis is also dependent on the export of 

photosynthates from source to sink organs. Under K deficiency, there can be an accumulation of sucrose in leaves, 

which result in a decline in photosynthetic activity (Hermans et al. 2006). The accumulation of sucrose in the leaves 

of K-deficient plants occurs due to an impaired phloem loading and transport of sucrose in phloem. For phloem loading, 

K is again needed for stabilizing a specified pH value for energy-providing ATP production, whereas for distribution 

of sucrose within the phloem, K establishes the needed osmotic pressure (Cakmak et al. 1994a). Based on the 

mentioned roles of K in enzyme regulation, photosynthesis and partitioning of carbohydrates within the plant, it can 

be assumed that a K has central relevance in the potato crop for establishing desired tuber and starch yields.  

In addition, the form of K application—for example, as sulphate or chloride—can have tremendous effects on 

assimilate distribution and, therefore, on the important quality aspects of potato. In general, independent of the K 

source that is supplied (either as K2SO4 or KCl), the yield can be increased with increasing K fertilization (Panique et 

al. 1997). But it is assumed that fertilization of K in chloride form leads to a higher osmotic potential in the crops, 

compared to the sulfate form, as the osmotically active chloride is accumulated in higher amounts than sulphate. This 

leads to higher water uptake and, therefore, higher vegetative growth. Higher vegetative growth rates, particularly of 

the above-ground plant parts, leads to an increased competition for assimilates between shoot and tuber, as the shoot 

is a strong sink for such assimilates. In addition, the chloride-induced high growth rates of the shoot as a result of 
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increased water uptake leads to a dilution of K (and other nutrients) in the plant. As K is important for phloem loading 

and distribution processes in plants, such reduced K concentrations in the plant matter could impair assimilate 

translocation to the roots and, therefore, to the tubers (Beringer et al. 1990). 

When K is depleted in the potato plant leaves start to develop chlorosis, even on leaf edges or in the form of dots (Zorn 

et al. 2016). As K is phloem-mobile, the symptoms of K deficiency occur first on older leaves because K will be 

translocated from older to younger developing leaves. In addition, an increased root-to-shoot ratio can be observed 

(Cakmak et al. 1994a; Cakmak et al. 1994b). 

 

Magnesium 

Magnesium (Mg) can be designated as ‘the forgotten element in crop production’ as its supply and the need for are 

usually underestimated. But due to its several key roles, especially in photosynthesis, the partitioning of 

photoassimilates, protein synthesis, and enzyme regulation, Mg deficiency can lead to impaired growth and yield 

formation (Cakmak and Yazici 2010; Senbayram et al. 2015). Mg serves as a cation, together with K, in similar 

physiological processes—for example, in the regulation of the cation-anion balance—and as an osmotically active ion 

in the turgor regulation of cells (Marschner 2012). In addition, Mg contributes, like K, to maintain a stable pH for 

proper activity of photosynthetic enzymes—for example, for Rubisco (Woodrow and Berry 1988; Yuguan et al. 2009). 

Moreover, Mg specifically binds to RuBP, and thereby, enhances its catalytic activity (Belknap and Portis 1986). 

Besides, Mg is an allosteric activator of more than 300 enzymes (Verbruggen and Hermans 2013; Senbayram et al. 

2015). The most commonly known function of Mg in photosynthesis is its role as a central atom of the chlorophyll 

molecule - the organic molecule capable of scavenging sunlight and transforming it into electron transport, and, hence, 

chemical energy ( Walker and Weinstein 1994; Verbruggen and Hermans 2013). In protein synthesis, Mg is vital for 

bridging two subunits of ribosomes - the location of the translation of proteins - to its active form (Sperrazza and 

Spremulli 1983). One more essential role that Mg shares with K is located in the partitioning of carbohydrates. Mg is 

required for phloem loading with sucrose as it is an allosteric activator of ATPases, which create a proton gradient that 

provides energy for the transport of sucrose and protons via sucrose/H+ symporters (Hermans et al. 2005). As pointed 

out, Mg serves like K in crucial functions for photosynthesis and carbohydrate partitioning, why it can be presumed 

that also Mg is of main importance for establishing favored tuber and starch yields.  

Cakmak et al. (1994a) and Ceylan et al. (2016) reported as a consequence of impaired phloem loading that plants which 

were deficient in Mg (and also K) accumulated sucrose in the leaves, whereas simultaneously the concentration of 
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sucrose in the phloem sap decreased. Evidence was also provided that particularly a re-supply of Mg to Mg-deficient 

plants for only one day was very effective in restoring the phloem transport of sucrose (Cakmak and Kirkby 2008). 

This rapid correction of the phloem transport system following a re-supply of Mg indicates that foliar applications of 

soluble Mg fertilizers in field crops can provide a fast and effective remedial treatment for Mg deficiency. 

Furthermore, there is evidence that Mg has an impact on root growth and morphology, but with contradictory results. 

Cakmak et al. (1994a, b) showed a decrease in dry matter production in the roots compared to the shoots of bean plants 

grown in a nutrient solution under conditions of Mg deficiency, while Hermans et al. (2005) documented almost no 

effect on root biomass development after transferring sugar beet plants into an Mg-depleted nutrient solution. This 

might be explained by the fact that both authors used different approaches: Cakmak et al. (1994a, b) induced Mg 

deficiency already at germination or at a very early growth stage, while Hermans et al. (2005) grew their plants first 

under conditions of sufficient Mg supply before transferring them into an Mg-depleted nutrient solution. It seems as if 

plants are able to overcome Mg depletion in the later growth stages without any severe impact on the root growth or 

morphology when they had been earlier sufficiently supplied with Mg. The symptoms of Mg deficiency as well as K 

deficiency, can first be observed on older leaves as Mg can be easily translocated to active growing plant parts in the 

form of intercostal leaf vein chlorosis (Cakmak and Kirkby 2008; White and Broadley 2009; Gransee and Führs 2013). 

It is likely, depending on growth conditions, that under Mg depletion, plants develop an increased root-to-shoot ratio 

(Cakmak et al. 1994a, b). 

 

Potassium-magnesium antagonisms 

The competition of cations for uptake is a well-known phenomenon (Jacoby 1961; Diem and Godbold 1993; Fageria 

2001; Marschner 2011; Chen and Ma 2013). One of the most commonly observed phenomena based on cation 

antagonism is K-induced Mg deficiency. This could be the effect of the specificity of K transporters on the one hand 

and the unspecifity of Mg transporters on the other hand involved in K and Mg uptake from the soil solution. The 

delivery of K and Mg to the roots typically follows different mechanisms: While Mg mainly is delivered by massflow 

and to a smaller proportion by interception; K mainly is delivered by diffusion (Strebel and Duynisveld 1989; Barber 

1995; Marschner 2011). To ensure delivery to the roots, plants need to decrease the K concentration in the soil solution 

of the rhizosphere in order to drive K flux to the roots via diffusion. In contrast, Mg is present in the soil solution in 

much higher concentrations. Hence, the delivery to the plant roots is mainly enabled by mass flow (Zhang and George 

2002). It may occur that the delivery by mass flow is higher than the uptake by plants, which would result in the 
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accumulation of Mg in the rhizosphere (Zhang and George 2002). In addition, Mg adsorbs less to the soil matrix due 

to its high hydrated radius and therefore can be leached out what reduces, compared to K for instance, the availability 

of Mg to the roots (Deng et al. 2006). However, the main reason leading to different uptake rates of K and Mg may be 

due to the unspecificity of Mg transporters, which also take up, beside Mg, other cations like K. Therefore, under high 

plant available K concentrations in the soil solution Mg uptake can be blocked while K uptake can be advantaged by 

Mg transporters (Gransee and Führs 2013). At the same time there are existing very specific K transporters which 

ensure, depending on the K concentration in the soil solution, K uptake as well at low (HATS = High Affinity Transport 

System) as at high K concentrations (LATS = Low Affinity Transport System) (Britto and Kronzucker 2008). But 

these specific K transporters do not transport Mg (Gransee and Führs 2013). Hence, while the uptake of K is ensured 

- even under low K concentrations - due to the uptake by specific K transport systems as well as by unspecific Mg 

transporters, Mg uptake can be impaired even if there is enough Mg available in the soil solution due to the 

unspecificity of Mg transporters as well as of K transporters for Mg. 

But with view on the described antagonistic effects, it is often wrongly concluded that particularly K and Mg should 

not be applied together in order to prevent antagonistic effects during uptake. However, this is the wrong conclusion, 

as can be seen in Figure 2: The yield of the control treatment receiving Mg in the form of 400 kg ha-1 as 

Magnesiumsulphat (ESTA® Kieserit) but no K was higher than the yield of the plants that received the highest amount 

of K in the form of 300 kg K2O as K2SO4 ha-1 but no Mg. Moreover, in view of the comparably low soil Mg status, the 

high K supply further reduced Mg uptake by the potato plants. Hence, at least a slight Mg deficiency in the single K 

treatment could be expected, finally leading to a reduced yield. Only the combination of K and Mg supply revealed 

the highest yield.  
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Figure 2: Effect of combined K and Mg fertilization on yield of potato. The experimental site was Lüsche (Bakum), 

Northwest Germany, predominantly characterized by silty sand. Soil analysis showed 13.6 mg K2O 100 g-1 soil after 

calcium acetate lactate (CAL) extraction and 3.2 mg Mg/100 g-1 soil after CaCl2 extraction; ESTA® Kieserit = 25% 

MgO (water-soluble) and 50% SO3 (water soluble); *as KALISOP® gran. = 50 % K2O (water-soluble) and 45% SO3 

(water-soluble) 

 

Calcium 

Calcium (Ca) is essential for the potato crop mainly due to its role in cell wall and membrane stabilization (Kirkby and 

Pilbeam 1984; White and Broadley 2003), its function as a counter-cation for inorganic and organic anions in the 

vacuole (White and Broadley 2003; Marschner 2011), and as a second messenger in intracellular signal transduction 

processes (Pottosin and Schonknecht 2007).  

The most abundant polysaccharide of primary cell walls is pectin (Jarvis 1984). Due to its divalent nature, Ca is able 

to form a bridge between the galacturonates of pectin via carboxylate groups, thus contributing to the characteristic 

structure of cell walls (Subramanian et al. 2011). Besides the structural function in cell walls, Ca is fundamental for 

the stability of membranes. Here, it bridges the phosphate and carboxylate groups of phospholipids and proteins at 

membrane surfaces ( Legge et al. 1982; Kirkby and Pilbeam 1984). Based on these roles for stabilizing membranes it 

can be suspected that Ca is also of importance for establishing and maintaining potato skin firmness, for instance.  

Ca has extremely low cytosolic concentrations of less than 1 µM. A major part of Ca is present in bound form—to cell 

walls, for instance. However, the most water-soluble Ca is stored in vacuoles (Pottosin and Schonknecht 2007), where 

it contributes to the anion-cation balance (White and Broadley 2003; Marschner 2011). The resulting huge 

concentration differences between cytosol and vacuole form the basis for Ca’s role as a second messenger (Pottosin 
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and Schonknecht 2007). Ca enables the plant to communicate information about the environment at the plant cell level 

(Whalley and Knight 2013). This forwarding of information can be triggered by different abiotic and biotic stimuli of 

the surrounding outside environment like, drought or oxidative stress as well as pathogens (McAinsh and Pittman 

2009). Due to Ca´s roles in stabilizing the plant cell wall and membranes, and as a second messenger, Ca can contribute 

towards reducing disease severity (Ngadze et al. 2014). 

The potato crop is known to tolerate low soil pH values and is often grown under very acidic soil conditions, for 

example at pH values of 4.6 (van Lierop et al. 1982; Lazarevic et al. 2014). Although liming usually can increase 

potato yields, people often refrain from liming these soils—as soils with higher pH-values could favor the development 

of common scab (Streptomyces spp.) (van Lierop et al. 1982; Waterer 2002). However, there may arise other and 

severe problems related to low soil pH conditions why it is difficult to determine a recommendation for an ideal pH-

value for growing potatoes. The acidification of soils is frequently associated with deficiency of essential plant cations 

like Ca and Mg due to an antagonistic and inhibited uptake of these cations by metals like aluminum (Al) and 

manganese (Mn). Moreover, Al and Mn can cause toxic reactions in the plant. Therefore, under acidic soil conditions, 

liming with materials such as CaCO3, CaO, or Ca(OH)2 can not only improve the supply of Ca but also neutralize the 

soil pH and reduce the risk of Al or Mn toxicity in the plant (Mengel and Kirkby 2001; Lazarevic et al. 2014). On the 

other hand, when pH is raised it is possible that essential plant nutrients—like phosphorus or zinc—can be less plant 

available (Haynes 1990).  

Ca moves within the plant via the xylem; therefore, Ca transport strongly depends on the transpiration of the plant ( 

White and Broadley 2003; Subramanian et al. 2011). There are studies available that indicate Ca concentrations also 

in phloem sap but without further transport (Clarkson 1984). Clarkson (1984) argue these observations with the fact 

that Ca easily interacts with macromolecules and therefore transport must occur along extracellular pathways together 

with water. In addition, Ca cannot be translocated from older to younger leaves, as Ca is not mobile within the phloem 

and young leaves usually have a low transpiration rate. Consequently, deficiency symptoms regularly occur first on 

young leaves (White and Broadley 2003). Potato tubers have very low Ca concentrations, which can also be attributed 

to Ca transport mainly occurring via the xylem and the fact that tubers transpiring very less. The most Ca is distributed 

in the aboveground parts of the plant (Ozgen et al. 2006; Kärenlampi and White 2009). Besides growth reduction, a 

Ca deficiency can appear as browning phenomena or severe necrosis of the plant tissue (Brown et al. 2012).  
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Sulphur 

Compared to other crops, like the Brassica species, potato has a comparatively low demand for S, but several high-

yielding years can remove considerable amounts of S from the soil (Barczak and Nowak 2015; Klikocka et al. 2015; 

Koprivova and Kopriva 2016). In addition, S is essential for many cellular metabolites and, therefore, often represents 

the nutrient that limits plant yield and quality (Koprivova and Kopriva 2016). For instance, S is a component of amino 

acids like methionine and cysteine, which are the essential building blocks of proteins (De Kok et al. 2005; Galili and 

Amir 2013) or of the vitamins biotin and thiamine (Imsande 1998). 

Although atmospheric S can be absorbed by higher plants in the form of SO2, the highest amount of S is absorbed by 

the roots (De Kok et al. 2005). Atmospheric S concentrations strongly depend on anthropogenic SO2 emissions and 

vary among continents and regions (Smith et al. 2011). While there has been a decrease in emissions by up to 50% in 

the last years in USA, Canada, and Central and Western Europe, there has been a two or three fold increase in emissions 

in Africa, China, Australia and New Zealand, for instance. Plants with S deficiency develop a similar yellowish 

phenotype, as described under N deficiency, for example. Both are based on a loss of chlorophyll. Though under S 

deficiency there is no direct impact on chlorophyll, an S deficiency inhibits the synthesis of thylakoid membranes and, 

therefore, promotes chlorophyll deficiency (Imsande 1998). S can be translocated within the plant via both phloem and 

xylem although, translocation via the phloem from older to younger leaves can be restricted. This is why deficiency 

symptoms (as yellowing similar N deficiency) often occur first on younger leaves (Mengel and Kirkby 2001). 

 

Approaches to develop fertilization recommendations 

There are numerous approaches for developing fertilization recommendations. Describing such approaches is beyond 

the scope of this review but they are described in detail by Marschner (2011), for instance. The most used approaches 

are soil analysis, plant analysis, or both in order to get information on the potential and/or actual nutritional level at a 

given production site. Some approaches include yield expectations, crop rotation and fertilization history, and 

additional site-specific parameters as well (Table 2). In general, both plant and soil analyses have advantages and 

disadvantages. Soil analysis gives an idea of the potential actual nutrient availability to the crop, but cannot forecast 

the availability. Plant analysis gives a good indication of the actual nutritional level of the crop, but does not provide 

information on the actual availability of nutrients to the crop. Hence, where applicable, soil and plant analysis in 

combination—when performed regularly—allows the development of the most reliable fertilization recommendations. 
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Table 2: Fertilization recommendations of different production areas in Europe, South Africa, and India. Shown are 

the locally recommended amounts of nutrients for potato production derived from the region-specific fertilization 

recommendation system. The procedure applied to develop a fertilization recommendation differs among regions. 

Country/Region Soil type Recommended fertilization dose (kg ha-1) 

  N P2O5 K2O MgO CaO 

Germany (Agricultural Chamber of 

Lower Saxony) 

Varying 1160 270—100 80—300 60 - 

Germany (Agricultural Chamber of 

North Rhine-Westphalia) 

Varying 1120—160 2 150—300 70 - 

United Kingdom (DEFRA 

recommendation system)3 

Varying 40—270 0—250 0—360 0—120 - 

Netherlands Varying 0 – 1404 20—185 0—320 

(440) 

0—200  

India (North-western hill zone) 5 Acidic hill soil 120—150 100—150 120 - - 

India (North-eastern hill zone) Acidic hill soil 100—120 120—150 60 - - 

India (North-western, -eastern and -

central plain zone) 

Alluvial 180—240 80—100 100—150 - - 

India (Plateau zone) Black 100—120 60 60 - - 

India (Nilgiri zone) Acidic hill 90—120 135—150 90 - - 

South Africa6 Varying 110—1307 70—3008 60—3409 0—10510 0—1,125 
1 Desired value, adaptations are needed according to the site-specific fertilization and crop rotation history and potato variety. 
2 Based on soil content class ‘C’. Soil content classes were established empirically by conducting field trials for a wide range of soil types (explaining 

the wide range of some recommendations). Content classes are named A—E with A being very low and E very high. For content class ‘C’, 

fertilization at the height of nutrient removal from the field is recommended. Nutrient removal thereby depends on the expected yield level. 
3 The wide application ranges are a consequence of including agronomic factors like the length of the growing season (<60 to >120 days), the 

variety, and the UK-specific Soil Index system and the Soil Nitrogen Supply (SNS) Index system (taking soil type, rainfall, etc., into account). 

Values are calculated on a total yield of 50 t ha-1. 
4 Calculations based on studies conducted by the University of Wageningen, including Nmin, organic fertilization history, and intended use of potato 

(starch or fresh market potatoes), for P and K the water-extractable P, the HCl-extractable K, the NaCl-extractable Mg, and the demand of the 

crop (potato) is taken into account. In brackets: river and marine clay. Ca is not mentioned; instead, it is stated that Ca is typically sufficiently 

supplied with liming and/or fertilizers together with N or P. 
5 Official recommendation of the Central Potato Research Institute (CPRI), a federal research organization with a mandate on potato crop research. 
6 Fertilization guidelines according to the Potatoes South Africa and the National Potato Working Groups in South Africa 

(http://nbsystems.co.za/potato/index_12.htm) 
7 All nutrients are based on the yield potential of 30 t ha-1 and the clay content of the soil und rain-fed production 
8 Based on soil analysis according to Bray 1-2, Olsen, and AMBIC 1. 
9 Calculations for K and Ca based on cation exchange capacity (K: 80 mg/kg, Ca: 750 mg/kg, Mg: 121 mg/kg, Na: 77 mg/kg, H: 0.18 me%);  

H+ expressed as percentage milli-equivalents (me%); the fertilization recommendation range shown here covers cation exchange capacity of 

me greater and smaller six 
10 For Ca and Mg, no yield potential, but only the soil analysis is taken into account. The values shown here cover the range of soil contents. 

 

 

 

Conclusion 

Beside other agronomic strategies, an adequate supply of nutrients is of main importance for achieving desired potato 

yield. In order to find the optimal level of nutrient supply it is important to understand and know basic laws of nutrient 

management, the individual physiological functions of each nutrient and resulting features, like nutrient antagonism 

for instance. Based on this fundamental knowledge the potato grower can decide for an accurate choice and application 

of fertilizers.
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Abstract 

In the first part of these reviews, the focus was on yield and related parameters, as affected by nutrient management, 

which formed part of an agronomic strategy for potato production. The focus of the second review is on the quality of 

potato production. The term ‘quality’ is a complex parameter in potato production and the desired quality traits depend 

heavily on the intended use. Important quality traits for potatoes are dry matter and starch content, as well as firmness 

and resistance against mechanical stress—for example, during harvest. These quality traits are closely interrelated. It 

has been demonstrated that all these parameters are also strongly linked to the nutrient status of the plant and/or the 

tubers. Another important factor is the susceptibility to the formation of discolorations in potatoes for both fresh market 

and processing. In principle, enzymatic and non-enzymatic processes cause such undesired discolorations as ’black 

spot bruising‘ and ’after-cooking darkening‘. The potential of formation of carcinogenic compounds like acrylamide 

from precursors during the deep-frying of potato products and the accumulation of toxic substances like glycoalkaloids 

represent important quality criteria. The effect of fertilization management on these various quality aspects is addressed 

and important nutrients are highlighted. 

 

Keywords: nutrient management, potato quality parameters, discoloration, fresh market, processing quality 
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Introduction 

The nutrient composition and other quality traits of potato tubers are influenced by the supply and availability of 

macro- and micronutrients. However, the impact of nutrients on potato quality is influenced or overlapped by many 

other factors. The fertilization management and nutrient availability for the plant has a certain effect on tuber yield and 

size as well as on the content of N-compounds (Pawelzik and Möller 2014). Many studies emphasize besides the 

nutrient management the effect of individual characteristics of the cultivar and/or interaction with environmental 

factors (e.g. Bártová et al. 2013; Lombardo et al. 2013; Brazinskiene et al. 2014). The aim of the second part of this 

review is to evaluate the current state of knowledge about the functions of potassium, magnesium, and nitrogen in 

plant physiology with focus on potato quality formation but not in relation to interactions with other environmental 

factors. 

 

Important potato quality traits 

Particularly in potato production, the term ‘quality’ is a multifaceted trait that depends heavily on the intended use of 

the final product ( Talburt and Smith 1987; Hiltrop 1999; Gerendas and Führs 2013). For potatoes used for fresh 

consumption, among the external quality parameters, even the cooking type—described as floury or mealy, medium, 

waxy or hard-boiling—is important. The cooking type as an internal quality trait is mainly determined and influenced 

by the starch content, which, in turn, is positively correlated with the specific gravity and the dry matter content of the 

tubers (Smith 1977; Talburt and Smith 1987; Feltran et al. 2004). When potatoes are produced for starch production, 

the starch concentration in the tubers is the most important quality parameter. Meanwhile, the dry matter content 

represents an important quality criterion when producing potatoes for further processing, such as for French fries or 

crisps. High dry matter content and its distribution within the tuber ensure a lower oil absorption, which results in a 

higher yield per unit of oil and improves the texture and shape of the product (Kita 2014). In addition to the various 

internal quality traits described here, the tendency of potatoes to form undesirable discolorations of various origins 

represents an important quality criterion. The mechanical impact on potato tubers during harvest and post-harvest 

handling causes, besides external damage and physiological aging during storage, also the internal discoloration of 

tuber tissue. Enzymatic oxidative processes lead to black spot incidence, especially in the tissue beneath the 

perimedullary tissue—inside the vascular ring (Baritelle and Hyde 2003). Upon mechanical impact, free phenolic 

compounds are oxidized by polyphenol oxidases (PPOs) to dopaquinone. These will be transformed to the dark 

pigment melanin (McGarry et al. 1996). 
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Figure 3 shows a schematic illustration of these processes. The same reaction occurs during the processing of raw 

potatoes and it is called as raw pulp discoloration. Beside enzymatic caused reactions the discoloration of potato tuber 

products can be caused non-enzymatically during the Maillard reaction and as after-cooking darkening. The Maillard 

reaction takes place during the frying and baking of potato products (crisps, French fries, baked potatoes), processes 

that involve reducing sugars (e.g. glucose, fructose) and amino acids. This non-enzymatic browning reaction influences 

flavor, color, and aroma formation (Belitz et al. 2009). When the reducing sugars specifically react with asparagine, 

the reaction intermediates may form acrylamide. Acrylamide is known to be neurotoxic and carcinogenic, thus 

indicating potential risks to human health ( Rice 2005; Medeiros Vinci et al. 2012). The after-cooking darkening of 

potato tubers is an undesirable quality trait, which may occur when tubers are exposed to air after boiling (Wang-

Pruski and Nowak 2004). The darkening is a result of the reaction of chlorogenic acid and ferric ions in presence of 

oxygen, leading to a bluish-grey color (Smith 1977).  

 

 

Figure 3: Mechanism leading to black spot formation (adapted from Ernst et al. (2008)). 

 

Glycoalkaloids are potentially health-threatening compounds in potatoes. They occur in the tubers mainly as alpha-

solanine and alpha-chaconine. A glycoalkaloid content higher than 100 mg/kg fresh weight (FW) leads to a bitter flavor 
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in potatoes (Friedman 2006). Most importantly, as they are toxic for humans (McMillan and Thompson 1979), the 

recommended safety level for human consumption is 200 mg/kg FW since many years (FAO/WHO 2011). 

In addition, the accumulation of glycoalkaloids is associated with the greening of tubers (Maga and Fitzpatrick 1980), 

as both are light-induced processes (Bamberg et al. 2015). But a link between the two processes does not exist (Edwards 

et al. 1998). The greening of tubers occur due to non-toxic chlorophyll formation, and therefore, greening can be used 

as a helpful indicator that tubers have been exposed to light and, thus, should not be consumed anymore (Bamberg et 

al. 2015). But glycoalkaloid formation can also occur in even the non-green parts of tubers. That is why it is agreed 

that glycoalkaloid formation and the greening of potatoes are physiologically unrelated processes (Dao and Friedman 

1994; Edwards and Cobb 1999). Figure 4 gives an overview about potato tuber properties as affected by important 

macronutrients. Particularly the fertilization strategy has a substantial impact on important potato quality parameters 

(Marschner 2012). Especially for the macronutrients K, Mg and N various studies over the last 40 years showed a 

direct impact on important quality traits of potatoes. But the results of these studies usually show varying responses to 

nutrient supply, as illustrated for Mg in Table 3.  

 

Figure 4: Potato tuber quality properties as affected by macronutrient supply: traits (grey), main compounds (green) 

and susceptibility to discoloration (yellow) of tubers and food. Blue: positive effects, orange: negative effects of 

minerals. 
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Table 3: Contribution of increasing Mg supply to yield, quality formation, and storability of potato tubers shown as 

relative changes compared to the control; green-red scale represents increased or decreased of the trait, while yellow 

represents no change. 

Trait Changes by 

increasing Mg 

supply compared to 

control samples 

Mg supply, field (F), 

or pot (P) experiments 

References 

Dry matter  + (40—50%)  0—0.3 g/pot, (P)  Addiscott (1974) 

∞ 0—60 kg/ha, (P)  Miča (1979) 

+ (5—8%)  0—100 kg/ha, (F)  Poberezny and Wszelaczynska 

(2011) 

∞ 0—60 kg/ha, (F)  Miča and Vokal (1983) 

Starch ∞ 0—60 kg/ha, (P) Miča (1979) 

+ (0.5 %) 0—100 kg/ha, (F) Poberezny and Wszelaczynska 

(2011) 

∞ 0—60 kg/ha, (F) Miča and Vokal (1983) 

Nitrate - (0.5—10%) 0—75 kg/ha, (F)  Rogozińska et al. (2005) 

∞ 0, 56 kg/ha, (F)  Mondy and Ponnampalam (1985) 

Glycoalkaloids + (70—200%) 0—112 kg/ha, (F) Evans and Mondy (1984) 

+ (50—70%) 0, 56 kg/ha, (F)  Mondy and Ponnampalam (1985) 

∞ 0—40 kg/ha, (F) Rogozińska and Wojdya (1999) 

Phenols - (10—20%) 0, 56 kg/ha, (F)  

0—112 kg/ha, (F)  

Mondy et al. (1987) 

Klein et al. (1981) 

Lipids + (0.5—10%) 0, 56 kg/ha, (F)  

0—112 kg/ha, (F)  

Mondy et al. (1987) 

Klein et al. (1981) 
Changes in yield and content of quality traits: + increase, - decrease, ∞ no trend  

 

The following passage aims to provide an overview of the most crucial impacts of K, Mg, and N on potato quality 

traits while considering results that are either contradictory or could not yet to be proven.  

 

Potassium 

Potassium (K) has an important impact on tuber quality. It acts as an osmotically active ion so that its accumulation in 

the cytosol drives water uptake into the cell and increases the cell turgor. Also, it contributes substantially to the 

equilibrium of soluble and insoluble ions (Marschner 2011). The positive effect of K supply on the content of organic 

acids as ascorbic acid in the tuber is well known (e.g. Hamouz et al. 2009). An average K concentration in tubers of 

about 2.2—2.5 % dry weight (DW) is assumed to be optimal for high yield and good quality (Winkelmann 1992). 

Field trials conducted by K+S KALI GmbH in Germany in 2002 and 2004 have also shown that an increased K supply 

increased the ascorbic acid concentration in tubers (Figure 5). By increasing the cell turgor in the tuber the risk of 
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internal enzymatic discoloration (black spot; shown in Figure 3) caused by mechanical impact stresses potentially 

decreases (Praeger et al. 2009) (Figure 6). As ascorbic acid counteracts the formation of reactive oxygen species, it 

may be involved in limiting the enzymatic formation of melanin (Delgado et al. 2001). In addition, high ascorbic acid 

contents in potato tubers can be regarded as a positive quality trait because the antioxidative capacity of ascorbic acid 

has a positive impact on human health as well (Delgado et al. 2001).  

 

 

Figure 5: Effect of increasing K supply on the ascorbic acid content of potato tubers; 

(A) cultivar: Saturna; year of cultivation: 2002; experimental site: Langwedel (Lowery saxony, Germany); 

(B) cultivar: Lady Claire; year of cultivation: 2004; experimental site: Langwedel (Lowery saxony, Germany). 
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Figure 6: Effect of combined K and Mg fertilization on black spot incidence. The experimental site was Lüsche 

(Bakum), Northwest Germany, predominantly characterized by silty sand. Soil analysis showed 13.6 mg K2O 100 g-1 

soil after calcium acetate lactate (CAL) extraction and 3.2 mg Mg/100 g-1 soil after CaCl2 extraction; ESTA® Kieserit 

= 25% MgO (water-soluble) and 50% SO3 (water soluble); *as KALISOP® gran. = 50 % K2O (water-soluble) and 

45% SO3 (water-soluble). 

 

Increasing K concentration in tubers, generated by K supply, lead to lower content of reducing sugars (Figure 7) which 

are important precursors of acrylamide formation during Maillard reaction (Matthäus and Haase 2014). The cause of 

the after-cooking darkening can be encountered through high contents of citric acid, as citric acid competes with the 

phenolic compound chlorogenic acid to bind ferric ions (in fact, citric acid is in plants the transport form of Fe) (Wang-

Pruski and Nowak 2004). Indeed, in potato, a positive correlation between the K content in tubers and the citric acid 

content was also found in field trials in 2002 and 2004 (Figure 8). 
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Figure 7: Effect of increasing K concentration in potato tubers on the reducing sugar content of potato tubers. Data 

from K+S KALI GmbH, unpublished. 

 

 

 

Figure 8: Effect of increasing K concentration in potato tubers on the citric acid content of potato tubers. Data from 

K+S KALI GmbH, unpublished. 
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As K is involved in many physiological processes, including enzyme-activation processes, a deficiency of K can lead 

to the accumulation of low-molecular-weight compounds, such as soluble sugars, organic acids, or amino acids, and 

decrease the synthesis of high-molecular-weight compounds, such as proteins, starches, or cellulose (Wang et al. 2013). 

For instance, K is required for the activity of starch synthase; therefore, a deficit of K can limit the formation of starch 

(Nitsos and Evans 1969; Subramanian et al. 2011), impair the ATP formation and the phloem loading of carbohydrates 

and increase the plant respiration as well (Römheld and Kirkby 2010; Marschner 2011); hence, the formation of potato 

tubers can be delayed and restricted, particularly under very severe K deficiency stress. Considering the effect of K 

supply on glycolalkaloids, Ahmed and Müller (1979) ascertained a decreasing effect of increasing K supply on the 

glycoalkaloid content of tubers, whereas the contents in leaves and stems remained unaffected. The storability of 

potatoes is positive influenced by K supply. Poberezny and Wszelaczynska (2011) showed that intermediate K doses 

ranging from 0—240 kg K2O ha-1 (optimum: 160 kg K2O ha-1) reduced fresh weight losses in two mid-early cultivars 

during their storage for six months. 

The form of K application particularly—for example as sulphate or chloride—has a significant impact on tuber 

quality traits. Figure 9 summarizes the effect of different K fertilizers on yield, starch yield, and starch content. 

Independent of the K-form supplied (either as K2SO4 or KCl), the yield is increased with increasing K fertilization. 

However, fertilization with KCl reduced the starch content of the potatoes by about 2%, finally leading to a starch 

yield that was about 1 t ha-1 lower than after K application in the sulphate form. What could be the reason for this 

phenomenon? It is assumed that application of K in chloride form leads—in comparison to the sulphate form—to a 

lower osmotic potential in crops, as the osmotically active chloride is accumulated in higher amounts than sulphate; 

subsequently, it leads to a higher water uptake and, therefore, a higher vegetative growth. Higher vegetative growth 

rates, particularly of the above-ground plant parts, lead to an increasing competition for assimilates between shoot and 

tubers, as the shoot is a strong sink for such assimilates K is also osmotically active (Marschner 2011). Hence, a very 

high accumulation of K in tubers leads to an increased uptake of water by the tuber, which can result in a dilution of 

the starch content independent of the form of K application.  
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Figure 9: Effect of increasing K supply either as sulphate or as chloride on yield, starch yield, and starch content of 

potato; Mg supply in all variants: 320 kg ha-1 ESTA® Kieserit gran.. Data from the Agricultural Chamber of Lower 

Saxony, Germany, 2003. 

 

Magnesium 

Limited studies are available to review the functions of Mg on tuber quality. Mg might contribute to the stabilization 

of cell wall associations (Andersson et al. 1994) and it can be assumed that Mg tends to improve the resistance towards 

mechanical stress that affect tubers. Findings regarding the effect of Mg supply on enzymatic discoloration and the 

accumulation of minor compounds are not consistent, as reviewed by Gerendas and Führs (2013). For example, Klein 

et al. (1981) found that fertilization with MgSO4 reduced enzymatic discoloration and the concentration of phenolics, 

whereas Mondy et al. (1967) showed a positive correlation between them. These contradictory results may indicate 

that possible interactions with other production system-related factors may mask the involvement of Mg in this specific 

quality response. It is commonly known that the enzymatic cascade finally leading to melanin formation and, 

subsequently, to black spot occurrence is inhibited by a low pH value and antioxidants (Altunkaya and Gökmen 2008). 

As proof of concept, increasing citric and/or ascorbic acid in the tubers contribute to the reduction of enzymatic 

discolorations. The synthesis of ascorbic acid originates from glucose (Marschner 2011), and a positive influence of 

favorable environmental conditions for photosynthesis (e.g. high light intensity) on ascorbic acid concentrations in 

various crops was reported (e.g. Noctor and Foyer 1998). The significance of Mg for assimilation and carbohydrate 
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translocation may imply a positive effect of increased Mg supply on ascorbic acid formation. However, Mondy and 

Ponnampalam (1986) did not observe significant effects of increasing Mg supply on the concentration of ascorbic acid, 

which agrees with the early reports of (Karikka et al. 1944). Gerendas and Führs (2013) concluded from these 

contrasting results on phenol and ascorbic acid contents with respect to the occurrence of black spots that all these 

parameters are associated with several environmental factors that were not controlled in the field experiments referred 

to and therefore these factors may have masked the effect of Mg.  

With respect to non-enzymatic browning, to our knowledge, no results have been published yet on the effect of Mg 

supply on the content of reducing sugars, asparagine or acrylamide formation in tubers and processed food, even though 

an effect can be expected considering the Mg function in protein biosynthesis and carbohydrate partitioning (Gerendas 

and Führs 2013). Future studies are necessary to clarify this point.  

Numerous reports are available on the effect of Mg supply on glycoalkaloid accumulation in potato tubers. Evans and 

Mondy (1984) as well as Mondy et al. (1987) observed a significant increase in glycoalkaloid concentration in tubers 

(see Table 3). The authors suggested that this is due to a stimulation of sugar metabolism, and/or an increase in amino 

acid production. This theory is supported by reports referring to the same field experiments, where it was shown that 

Mg application increased both the total N and the protein concentration (Klein et al. 1982; Mondy and Ponnampalam 

1985). Thereby, the maximal total amino acid concentration correlated with the maximal total glycoalkaloid 

concentration (Evans and Mondy 1984). However, contradictory results were described by (Rogozińska and Wojdya 

1999). They found no influence of the Mg supply on the glycoalkaloid concentration of potato tubers.  

Regarding the storability of potatoes, also very limited results on the effect of Mg are available. However, in the above 

cited study, Poberezny and Wszelaczynska (2011) showed that intermediate Mg doses ranging from 0—100 kg MgO 

ha-1 (optimum: 60 kg MgO ha-1) reduced similar to K also fresh weight losses during six months of storage.  

 

Nitrogen and interactions with potassium  

Nitrogen is essential for many physiological functions in the cell and subsequently, for plant growth and yield 

formation (see part I of the review). However, many quality traits are affected adversely (Figure 4). It is obvious that 

the N nutrition has a substantial impact on the formation of amino acids (Marschner 2012). Potato tubers contain 

considerable amounts of free amino acids (Farré et al. 2001); thereby, the amino acid pattern is typically characterized 

by high amide contents which include mainly asparagine and glutamine. About 14—31% of the total amino acids in 

tubers were shown to be asparagine (Elmore et al. 2015). An accumulation of particularly asparagine in response to a 
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high N supply has been observed, which is typically referred to the favorable low C/N ratio of this storage and transport 

form of N in plants (Muttucumaru et al. 2013). As mentioned, the formation of acrylamide is specifically formed by 

the reaction of reducing sugars with asparagine (Matthäus and Haase 2014). Therefore, the formation of acrylamide 

also depends heavily on the N nutrition (De Wilde et al. 2006). This is particularly true during a K deficiency, as not 

only the production of amides is increased by a high N supply, but also the transformation of amides into proteins is 

reduced by a K deficiency. Therefore, in principle, the higher the N/K supply ratio, the higher is the risk of acrylamide 

formation. Decreasing the ratio by decreasing the N supply and increasing the K supply instead reduces the risk of 

acrylamide formation (Gerendás et al. 2007).  

 

Other nutrients 

Beside potassium, magnesium and nitrogen, further nutrients are having tremendous impact on quality formation in 

potato. Calcium (Ca) is needed for cell wall and membrane stabilization (Palta 2010; Hirschi 2004). In cell walls Ca 

contributes to their characteristic structure by bridging galcturonates of pectin via carboxylate groups (Subramanian et 

al. 2011) while membrane stabilization is caused by bridging the phosphate and carboxylate groups of phospholipids 

and proteins at membrane surfaces (Legge et al. 1982; Kirkby and Pilbeam 1984). Based on these functions for cell 

wall and membrane stability it can be expected that Ca is essential for establishing and maintaining potato skin firmness 

and in addition giving tubers higher resistance against pathogens as for example has been shown by McGuire and 

Kelman (1984). They found a reduced severity of bacterial soft rot caused by Erwinia carotovora pv. atroseptica with 

increased calcium concentrations of tubers. Unfortunately potato tubers showing naturally very low Ca contents which 

can be contributed to the fact that Ca is mainly transported together with water via the xylem and potato tubers are 

transpiring very less (White and Broadley 2003; Subramanian et al. 2011). Ca deficiency can even lead to cell death 

(Palta 2010) and causing therefore internal brown spots for instance which can also reduce potato tuber quality (Clough 

1994). But already Collier et al. (1978) could show that an additional supply of Ca can increase tuber Ca concentrations 

and reduce the occurrence of internal brown spots. Moreover studies by Kratzke and Palta (1986 and 1985) and Palta 

(2010) could show that Ca concentrations of tubers can be increased if Ca is directly applied to the tuber-stolon area.  

Beside nitrogen also sulphur (S) has decisive impact on amino acid formation and hence protein synthesis. Therefore 

under S-deprivation the proportion of S-containing essential amino acids, namely cysteine and methionine, can be 

reduced while the proportions of other amino acids can be increased (Eppendorfer and Eggum 1994; Marschner 2011). 

As described above acrylamide is formed by reducing sugars reacting with asparagine. Prosser et al. (2001) are 
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discussing different studies with different cultures than potato which observed under S-deficiency an increase of the 

transport amino acids glutamine and asparagine. In potato, Elmore et al. (2007) could show a variety dependent 

increase of acrylamide precursors under S deprivation but no increase of acrylamide itself. They arguing their findings 

that the acrylamide formation depends on the separate amounts of amino acid and sugar precursors and that in their 

case of study precursor amino acids were present in a much higher amount than precursor sugars which may also react 

with acrylamide non-precursor amino acids.  

Up to 75 % of the potato tuber is formed by carbohydrates while starch represents the predominant carbohydrate 

(McGill et al. 2013). Potato starch quality is dependent on different physical and chemical characteristics which are 

mainly determined by its amylose content, granule size and glucose-6-phosphate content (Christensen and Madsen 

1996; Haase and Plate 1996). The bound phosphorus (P) in starch, mainly present as glucose-6-phosphate, is 

responsible for its unique properties in view of gelatinization temperatures and cross linking ability (Christensen and 

Madsen 1996). ThereforeTherefore, also P is of central relevance for potato tuber quality development, especially in 

case of potatoes for starch production.  

 

Conclusion 

An adequate supply of potatoes with nutrients is important for achieving not only high yield but also the desired quality. 

Besides appropriate nutrients and their ratios even the choice of fertilizer can be of particular relevance. Among the 

principles of adequate potato nutrition, other agronomic measures like choice of cultivar and plant protection need to 

be considered as well. 
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Abstract  

Potassium (K) and magnesium (Mg) are essential macronutrients for plants; they play crucial roles for photoassimilate 

production and transport. The knowledge on both individual and interactive effects of K and Mg nutrition in potato is 

limited. As potato tubers are strong sink organs for photoassimilates, we aimed to determine if and how K- or Mg-

deficiency impairs photoassimilate production and transport, and consequently, plant and tuber development. Potato 

plants were grown in pots using sand under various K and Mg supplies. They were surveyed for biomass production, 

CO2 net assimilation, leaf sugar concentrations, and transcript levels of H+/sucrose symporters in leaves. Both K- and 

Mg-deficiency reduced CO2 net assimilation and biomass production, with stronger reductions in case of K-deficiency. 

Sugars accumulated in leaves of K- and, more importantly, of Mg-deficient plants. Low K supply resulted in increased 

transcript levels of H+/sucrose symporters, with less expression under Mg-deficiency. The latter case probably was 

caused by an impaired sucrose transport already at an earlier step, namely the efflux of sucrose from mesophyll cells 

into the apoplasm. Thus, we assume that K- and Mg-deficiency caused sugar accumulation in seperated cell 

compartments of source leaves leading to a different impact on the gene expression of sucrose transport systems. Tuber 
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sugar and starch concentrations, however, remained unaffected under the various treatments. Nevertheless, the total 

amount of tuber sugar and starch per plant decreased significantly upon K- and Mg-deficiency.  

 

Abbreviations  

Ct, cycle threshold; DAP, days after planting; E, primer efficiency; G6P-DH, glucose-6-phosphate dehydrogenase; 

HEPES, hydroxyethylpiperazine-ethanesulfonic acid buffer; HK, hexokinase; INV, invertase; OD, optical density; 

PGI, phosphoglucose isomerase; rpm, rotations per minute; StSUT, Solanum tuberosum sucrose transporter 

 

Introduction 

Potato (Solanum tuberosum L.) can produce a more nutritionally important biomass in a shorter period of time than 

cereals, which makes potatoes one of the most important non-grain foods in the world (Rajiv and Kawar 2016). 

Furthermore, potato tubers offer excellent nutritional value with the potential to contribute to global food and nutrition 

security (Camire et al. 2009).  

To ensure the successful cultivation of potatoes, careful consideration of cultivar choice and agronomic management 

are essential (Firman and Allen 2007; Kirkman 2007). In particular, a balanced fertilization is crucial for the mineral 

nutrition of that crop (Firman and Allen 2007). Among macronutrients, nitrogen (N) (Silva et al. 2013), phosphorus 

(P) (Rosen et al. 2014), potassium (K) (Panique et al. 1997) and, magnesium (Mg) (Mondy and Ponnampalam 1986) 

are of central importance to ensure a better productivity and quality in potato. While there is an abundance of literature 

on the effects of N and P, knowledge on the interaction between K and Mg nutrition is limited. Potassium acts as the 

main osmoticum to maintain a better cell growth and turgor pressure (Mengel and Arneke 1982; Anschütz et al. 2014), 

hydraulic conductance (Oddo et al. 2011; Chen et al. 2016), leaf expansion (Jordan-Meille and Pellerin 2004), root 

elongation (Song et al. 2017), transport of photoassimilates between source and sink organs (Cakmak et al. 1994b; Hu 

et al. 2017), and regulation of stomatal guard cells (Raschke 1975). Additionally, K is crucial for maintaining 

photosynthesis (Tränkner et al. 2018) by facilitating CO2 diffusion through the leaf mesophyll (Jákli et al. 2017). 

Magnesium is important for the energy metabolism, light harvesting (Verbruggen and Hermans 2013), and 

photoassimilate allocation (Cakmak et al. 1994a). Due to greater sensitivity of sink organs to low Mg supply, 

significant impairments occur in development of sink organs in different plant species such as in root growth (Cakmak  

et al. 1994b; Farhat et al. 2016) and seed development (Ceylan et al. 2015). 
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In many crop species with sink organs that are of agronomical interest (e.g. tuber and taproot), a critical component of 

the photoassimilate partitioning between source and sink is the proton-driven sucrose symport (Van Bel 2003). This 

active transport system in the phloem couples sucrose translocation across the plasma membrane to the proton motive 

force generated by the H+-ATPase, which requires Mg-ATP to function (Cowan 2002; Hermans et al. 2005). During 

Mg-deficiency, phloem loading is impaired and sucrose accumulates in the apoplasm (Hermans et al. 2005). As sucrose 

concentration builds up in leaves, greater expression levels of genes encoding H+/sucrose symporters are observed in 

several plant species (Hermans et al. 2004; Hermans et al. 2005). A similar scenario is possible under K limitation, as 

K is necessary for not only phloem-loading but also the transport of sucrose within the phloem. The activity of the H+-

ATPases is dependent on a finely tuned pH value, for which K is needed. Furthermore, K establishes an osmotic 

potential within the phloem, which is needed to translocate sucrose from source to sink organs (Hayashi and Chino 

1990; Cakmak et al. 1994a). Consequently, low K supply leads to the accumulation of sucrose in source leaves due to 

impaired sucrose-loading into the phloem and/or due to limited osmotic effects of K in the phloem sieve tubes. Besides, 

a reduction in phloem transport of sucrose could also be a consequence of a limited symplastic unloading of sucrose 

into the sink cells due to reduced sink strength (Hütsch et al. 2016). 

Mineral elements can compete for root uptake (Fageria 2001). For example, an antagonistic interaction is reported 

between K and Mg. This can be attributed to different transport systems that are responsible for the uptake of these 

two elements. While putative transporters for Mg are unspecific and take up cations other than Mg, K transporters are 

very specific and the uptake of K is ensured under both low and high K concentrations in the soil solution (Senbayram 

et al. 2015). Nonetheless, there are also reports on the synergy between K and Mg. For instance, Ding et al. (2006) 

showed a synergistic mechanism of increasing Mg supply on K uptake and translocation in rice. Similar results were 

demonstrated by Narwal et al. (1985) in cowpea (Vigna unguiculata L. Walp.).  

As potato tubers are strong sink organs, it seems that tuber yield and starch formation must be highly dependent on 

photosynthesis and the export of photoassimilates from source leaves. Owing to the indispensable functions of K and 

Mg in photosynthesis and translocation of photoassimilates in plants, this study focuses mainly on the impact of varied 

applications of K and Mg on CO2 net assimilation and on parameters that provide indications about the partitioning of 

photoassimilates, such as soluble sugar concentrations and gene expression of H+/sucrose symporters in source leaves, 

in potato. In light of this, plant shoot and root growth, tuber yield, and tuber sugar and starch formation were 

investigated. Furthermore, the changes in tissue concentrations of K and Mg were studied under different combined 

applications of K and Mg in order to collect further information about K and Mg interactions in potato plants. 
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Materials and methods 

Plant growth conditions 

Potato plants (Solanum tuberosum L.) of the cultivar “Laura” were grown for a period of 98 days individually in pots 

(capacity 11 L) filled with nutrient-poor sandy soil. The experimental design was completely randomized. For inducing 

germination, the tubers were stored for 10 days in darkness at room temperature. Tuber slices with one germ bud (~1 

cm length) were planted. Plants were first cultivated in a greenhouse with an average temperature of 20°C, 48% relative 

humidity, and 12 h light (300 µmol m-2 s-1; MASTER Agro 400 W, Philips, Netherlands) and 12 h darkness. After 27 

days, the plants were transferred to an outdoor installation (mean temperature, precipitation, and irradiance are shown 

in under supplementary material (SM) SM_1). Five fertilization regimes of K and Mg were applied (Table 1) to 10 

biological replicas: low K with sufficient Mg supply (K1+Mg), moderate K supply with sufficient Mg supply (K2+Mg) 

or low Mg supply (K2-Mg), high K supply with sufficient Mg supply (K3+Mg) or low Mg supply (K3-Mg). The two 

elements were applied in the form of K2SO4 or MgSO4.7. H2O (Table 1). All quantities of other mineral elements 

applied to the soil are presented in SM_2. The soil K and Mg status before the fertilization treatment was 1.5 mg K 

100 g-1 soil and < 1 mg Mg 100 g-1 soil. 

 

Table 1: Overview of the K and Mg supply (mg kg-1 soil) before planting of the different fertilization treatments. * 

signifies additional 5 mg K kg-1 soil 27 DAP. 

Fertilization treatment 
 

K  Mg  

K1+Mg 30 (+5*) 100 

K2+Mg 300 100 

K2-Mg 300 5 

K3+Mg 600 100 

K3-Mg 600 5 

 

Phenotypic observation, shoot and root biomass recording, and root scanning 

The whole plant phenotype was documented by taking pictures throughout the treatment. Changes in growth were 

recorded by measuring plant height and counting the internodes. At harvest, biomasses of leaves, roots, and tubers 

were measured separately and roots were stored at ‒20°C. Root scanning was conducted using a flat-bed scanner 
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(Epson Perfection V700 Photo, Epson, Germany) and analyzed with the software WinRhizo 2016 (Regent Instruments 

Inc., Québec City, Canada). Only half of each root was used and the total root length was calculated for the whole root 

on the basis of the determined dry weight of the scanned root part and the non-scanned root part.  

 

Mineral analysis in plant tissues 

Leaf and root samples were dried for four days at 60°C and crushed into fine powder. Tubers were cut into pieces and 

freeze-dried for four days in a freeze-dryer (EPSILON 2-40, Christ, Germany). Subsequently, the residual moisture 

was assessed by determining the weight of a subsample of the freeze-dried potato flour before and after drying for 12 

hours at 105°C. Root samples were dried at 60°C for four days and later ground into 0.5 mm flour in a hammer mill 

(DFH 48, Culatti, Switzerland). Mineral concentrations were determined according to an adjusted method, as described 

by Wheal et al. (2011). 100 mg of each sample were digested in 4 ml of 65% (v/v) nitric acid and 2 ml of 30% (v/v) 

hydrogen peroxide for 75 min at 200°C and 40 bar in a microwave (Ethos 660; MWT AG, Switzerland). Afterward, 

the samples were filled up to 25 ml with distilled water. The element concentrations were measured with inductively 

coupled plasma optical emission spectrometry (Vista-PRO CCD Simultaneous ICP-OES; Varian Inc., USA). 

 

Gas-exchange measurements and chlorophyll determinations in fully expanded leaves 

Net CO2 assimilation of fully expanded leaves (4 cm2) was quantified by using a portable gas-exchange device (GFS-

3000, Heinz Walz GmbH, Germany) under ambient temperature, relative humidity, and CO2 concentration (~390 

ppm), and light intensity of 400 μmol m-2 s-1 (cloudy condition) or 1,000 μmol m-2 s-1 (sunny condition).  

For chlorophyll determination about 20 mg of leaf tissue was ground in liquid nitrogen and extracted successively 

twice with 80% (v/v) and a third time with 50% (v/v) ethanol. The samples were shaken in a heat block at 95°C for 30 

minutes. After the third extraction step, the supernatants were combined, the pellet discarded, and the samples stored 

at ‒20°C until further analysis.  

Chlorophyll was examined as described by Arsovski et al. (2018). For the results, the sum of chlorophyll a and b was 

considered.  

 

Soluble sugar quantification in fully expanded leaves 

The soluble sugars were determined following the procedure developed by Stitt et al. (1989) after some modifications. 

The same ethanolic extract as for chlorophyll extraction was used. Sugars were converted by the added enzymes 
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hexokinase (HK; Roche Diagnostics GmbH, Germany and Merck, Germany; EC number 2.7.1.1), phosphoglucose 

isomerase (PGI; Roche Diagnostics GmbH, Germany; EC number 5.3.1.9), and invertase (INV; Sigma Aldrich, USA; 

EC number 3.2.1.26). For dissolving the enzymes, a 100 mM hydroxyethylpiperazine-ethanesulfonic acid (HEPES) 

buffer (Roth, Germany) and a 3 mM MgCl2 buffer (adjusted with KOH to pH 7) was used. Half of the samples were 

prepared with HK in suspension (Roche Diagnostics GmbH): 72 μl (108 units) HK was centrifuged for three min at 

11 000 rpm and the pellet was dissolved in 120 µl HEPES-MgCl2 buffer. The other half of the samples was prepared 

with HK in solid form (Merck, Germany): 0.50 mg was dissolved in 120 µl HEPES-MgCl2 buffer. For preparation of 

PGI 36 μl (25.2 units), PGI was centrifuged for three minutes at 11 000 rpm and the pellet was dissolved in 120 μl 

HEPES-MgCl2 buffer. For the preparation of INV, 8.3 mg (2,500 units) INV was dissolved in 120 μl HEPES-MgCl2 

buffer. A further needed enzyme was glucose-6-phosphate dehydrogenase (G6P-DH) (Roche Diagnostics GmbH, 

Germany; EC number 1.1.1.49), which was prepared together with 100 mM ATP (Sigma-Aldrich, USA) and 45 mM 

nicotinamide adenine dinucleotide phosphate (NADP) (Roche Diagnostics GmbH, Germany) to form a solution. For 

this, 85 μl (60 units) G6P-DH was centrifuged for three minutes at 11 000 rpm and the pellet was dissolved in 15.5 ml 

HEPES + MgCl2 buffer, 480 μl ATP, and 480 μl NADP solution. Next, 50 µl of the ethanolic extract plus 160 µl of 

the G6P-DH‒ATP-NADP solution was added per well on a 96-well plate and shaken for 10 minutes. The converted 

NADPH was quantified by measuring the OD at 340 nm in a plate reader (Epoch, 1402203, Biotek, USA) after 

reaching stable values.  

NADPH was calculated with the help of ∆ OD (used formula: μM NADPH = Δ OD/(2.85*6.22)). 

The calculated values were: 

1 M NADPH derived from glucose/fructose = 1 M glucose/fructose. 

1 M NADPH derived from sucrose = 0.5 M sucrose (1 mole glucose equivalent).  

 

RNA extraction and quantitative real-time polymerase chain reaction 

Total RNA was isolated from 100 mg leaf tissue using the innuPREP Plant RNA Kit (Analytic Jena AG, Germany) 

and cDNA was synthesized from 75 ng of the total RNA using the iScript cDNA Synthesis Kit (Bio-Rad Laboratories, 

Germany), according to the manufacturer’s instructions. Prior to cDNA synthesis, the extracted RNA was quantified 

by using a Qubit® RNA HS Assay Kit and the samples were measured in a fluorimeter (Qubit 3.0 Fluorimeter, 

ThermoFisher Scientific, Germany). A real-time PCR detection system (CFX96, Bio-Rad Laboratories, Germany) was 

used to quantify the expression levels of StSUT1 and StSUT4. For quantitative real-time PCR (qRT-PCR), 4 µl of 
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diluted cDNA was used for the reaction, together with 50 µM target-specific primers (SM_3) and the fluorescent 

intercalating dye SYBR Green (SsoAdvancedTM Universal SYBR® Green Supermix, Bio-Rad Laboratories, Germany). 

The protocol is shown detailed in SM_4 and the primers listed in SM_3. The relative gene copy number of cDNA was 

normalized to the St_UBIQUITIN gene and relative quantification was performed using the ΔΔ Ct-method after Pfaffl 

(2007). The K2+Mg plants were used as the control. The relative expression levels of the K2+Mg plants were set to 

one.  

 

Sugar and starch examination in tubers 

Prior to starch and sugar determination, tubers were prepared as described for mineral analysis.  

Starch was quantified according to ICC standard no. 123 (modified). In 100 ml flasks, 25 ml of hydrochloric acid was 

added twice to 1 g of potato flour, placed for 15 minutes in a scalding water bath (Memmert, Germany), and shaken 

for the first eight minutes. The flasks were filled up to 90 ml with distilled water and cooled to room temperature. 

Following this, 5 ml of tungstophosphoric acid (H3PW12O40) was added and panned. Finally, the flasks were filled up 

to 100 ml with distilled water and the optical rotation was examined in polarized light in a polarimeter (Zeiss, Germany) 

at 589 nm.  

Sugars were quantified by high-performance liquid chromatography (HPLC). For extraction, 0.4 g of potato flour was 

shaken with 4 ml of distilled water in 15 ml centrifugal tubes horizontally for one hour. To precipitate proteins, 0.5 ml 

Carrez I (3.6 g K4Fe(CN)6 in 100 ml distilled water) and 0.5 ml Carrez II (7.2 g H14O11SZn in 100 ml distilled water) 

solutions were added in order, then mixed and centrifuged for 20 minutes at 5000 rpm. Supernatants were transferred 

in 10 ml flasks and the pellet was again dissolved in distilled water, shaken for one hour, and centrifuged for 20 minutes 

at 5000 rpm. Finally, the supernatants were combined. The flasks were filled up to 10 ml with distilled water. The 

samples were filtered with filter paper (Type 615, Macherey-Nagel, Germany) in screw cap tubes and stored at ‒20°C 

until the measurement.  

For HPLC measurement, the samples were thawed. Next, 5 ml was vaporized using a rotary vacuum concentrator 

(RVC 2-25 CD plus, Christ, Germany) and filled with 1 ml of distilled water. The fivefold concentrated solution was 

filled using a 13 mm syringe filter holder (VWR International, USA) in 2 ml vials and the extract was quantified 

through HPLC (Jasco, Japan) (injection volume = 20 µl; eluent = 80% acetonitrile and 20% water; flow rate = 1 

ml/min; column = LiChrospher 100; column temperature = 22°C; refractive index detector). 
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All biological replicates of tubers of K1+Mg plants were pooled to four samples as the tuber yields of the single plants 

were not sufficient. Tubers of all remaining treatments were not pooled.  

 

Tuber dry matter and sugar and starch yield  

An average of three to five tubers per treatment (the tuber quantity used was dependent on tuber size—e.g. three bigger 

tubers or five smaller tubers) was used. These were cut into pieces and the fresh sample weight of a subsample was 

determined. Afterward, the sample was dried at 60°C for 24 hours and subsequently at 105°C for four hours and the 

weight was determined. The tuber sugar and starch yields (g sugar or starch, respectively, per plant in dry matter [DM]) 

were calculated based on the tuber DM, the sugar and starch concentrations, and the tuber yield per plant. 

 

Statistical treatment 

Statistical analysis was performed using R software version 3.4.0 (R Core Team 2016). All data were checked for 

normal distribution and homoscedasticity. Then, ANOVA was performed to detect differences between treatments 

followed by multiple contrast tests. A non–parametric Kruskal-Wallis test was performed in the case that normality 

and/or homoscedasticity were not verified. All tests were performed on a significance level of p < 0.05 (unless 

otherwise indicated). 

 

Results  

Signs of nutrient deficiencies 

The experimental plants were affected differentially in terms of expression of leaf symptoms under given experimental 

conditions. In K1+Mg plants, firs spot-like and leaf-edge necrosis and chlorosis became visible on the oldest leaves, 

which quickly developed into severe necrosis and chlorosis or total necrotic material (Fig. 1a). The K2 and K3+Mg 

plants appeared lush green and only their oldest leaves were senescent (Fig. 1b and d). For K2 and K3-Mg plants, clear 

chlorosis and flat spot-like necrosis were noted, especially on older leaves (Fig. 1c and e).  
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Figure 1: Plant phenotypes during K and Mg treatments. Pictures of whole potato plants were taken 61 days after 

planting (DAP) and close-ups of most recently expanded leaves on 46 and 69 DAP. Treatment description as in Table 

1. 

 

Plant growth and tuber yield  

Shoot and root DM as well as total root length were significantly reduced in plants supplied with low K (K1+Mg), as 

compared to K2 and K3+Mg plants (Fig. 2a, b and c). Root DM and total root length were further reduced under low 

Mg supply (K2 and K3-Mg), but the difference was significant for root length only (Fig. 2b and c). The number of 

internodes (Fig. 2d) and plant height (Fig. 2e) were also significantly decreased in K1 compared to K2 and K3+Mg 

plants whereas Mg-deficient plants did not show a significant reduction in quantity of internodes as well as in plant 

height (data not shown). The shoot-to-root biomass ratio was increased especially in K-deficient (K1+Mg) and also in 

Mg-deficient plants (K2 and K3-Mg) (Fig. 2b). Both K- and Mg-deficient plants exhibited a significant reduction in 

tuber yield. However, low K supply reduced tuber yield by 89%, whereas low Mg supply led to only 14–16% of tuber 

yield reduction in K2 and K3 treatments (Fig. 2f). 
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Figure 2: Effects of K and Mg treatment on biomass production and plant morphology. Shoot biomass (n = 8—

10) (a), root biomass with shoot-to-root biomass ratios (mean ± SE values above bar plot; n = 5) (b), total root length 

(n = 5) (c), and tuber yield (n = 8—10) (f) at harvest. Number of internodes (d) and plant heights (e) (n = 8—10) on 

seven sampling dates after planting. Mean ± SE values. Capitals = significant differences between K treatments of 

+Mg plants. Small letters = significant differences between differing Mg treatments of K2 plants. Greek letters = 

significant differences between differing Mg treatments of K3 plants. No indication = no significant effect. p < 0.05; 

* = p < 0.01. 

 

Potassium and magnesium status of fully expanded leaves 

The K concentrations in leaves of K2 and K3+Mg plants were at least two times higher compared to those that received 

a low K supply (K1+Mg) (Table 2). On 69 days after planting (DAP), K1+Mg plants even exhibited seven times lower 

K concentrations compared to K2+Mg plants and nine times lower K concentrations compared to K3+Mg plants. 
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Plants fed with moderate or high K supplies (K2 and K3+Mg) did not show significant differences in this regard. The 

Mg concentrations of the same plants behaved in the opposite way: the plants with the highest K supply (K3+Mg) 

showed the lowest significant Mg concentrations while the plants with the lowest K supply (K1+Mg) showed the 

highest Mg concentrations (Table 2). The Mg concentrations of the K2 and K3-Mg plants were nearly one-tenth 

(K2+Mg vs. K2-Mg at 69 DAP) compared to the K2 and K3+Mg treatments (Table 2).  

 

Potassium and magnesium status of plant organs  

Leaves, tubers and roots of K-deficient (K1+Mg) plants had significantly lower K concentrations compared to K2 and 

K3+Mg plants, and Mg-deficient (K2 and K3-Mg) ones significantly lower Mg concentrations compared to K2 and 

K3+Mg plants (Fig. 3). These decreases were much more severe in leaves than in roots or tubers (Fig. 3). Considering 

Mg concentrations of K1+Mg plants, leaves revealed the highest significant Mg concentrations, while tubers and roots 

showed the lowest significant (one-tenth lower) Mg concentrations compared to leaves (Fig. 3b). 

 

 

Figure 3: Effect of K and Mg treatments on element concentrations in leaves, tubers, and roots. K (a) and Mg 

(b) concentrations of fully expanded leaves (mean ± SE values averaged over all sampling dates; for data, see Table 2; 

n = 4—5) and tubers and roots after harvest (mean ± SE values; n = 8—10). Capitals = significant differences between 

K treatments of +Mg plants within one plant organ (leaves, tubers, or roots). Small letters = significant differences 

between differing Mg treatments of K2 plants of one plant organ. Greek letters = significant differences between Mg 

treatments of K3 plants within one plant organ. No indication = no significant effect.  
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Table 2: Effect of K and Mg treatments on element concentrations (mg g-1 DM) in leaf tissues on five sampling dates from day 34 until day 69 after planting (n = 

4—5). Mean ± SE values. Capitals = significant differences between differing K treatments of +Mg plants. Asterisks = significant differences between K2 and K3-

Mg plants. Small letters = significant differences in K2-Mg plants compared to K2+Mg plants. Greek letters = significant differences in K3-Mg plants compared to 

K3+Mg plants. No indication = no significant effect. DAP signifies days after planting. 

                      K 

Fertilization treatment 
 
DAP   K1+Mg 

 
      K2+Mg         K2-Mg       K3+Mg           K3-Mg 

34  21.61 ± 5.29 A 56.46 ± 1.69 B   54.37 ± 4.78 

 

 52.81 ± 4.31 B  44.12 ± 11.85 

 

41 16.33 ± 0.69 A 32.66 ± 2.36 B   35.10 ± 1.98   36.51 ± 1.29 B     38.46 ± 4.47  

48 8.29 ± 0.71 A 35.10 ± 4.20 B   38.16 ± 0.78   40.46 ± 2.37  B     41.96 ± 4.46  

55 14.42 ± 1.45 A 40.62 ± 2.04 B   40.73 ± 2.81 *  46.68 ± 3.28 B     51.51 ± 3.71 * 

69 4.26 ± 0.51 A 33.11 ± 3.36 B   40.66 ± 5.26   41.59 ± 3.59 B     49.77 ± 1.98  

 
 

Mg 

 

    

34 8.64 ± 2.05 AB 5.55 ± 0.22 Bb    1.44 ± 0.12 a 4.62 ± 0.25 Aβ     2.79 ± 2.39 α 

41 6.93 ± 0.85 B 4.43 ± 0.61 Ab    1.58 ± 0.08 a 3.99 ± 0.08 Aβ      1.52 ± 0.16 α 

48 13.77 ± 0.78 C 7.01 ± 0.63 Bb    1.41 ± 0.14 a 5.73 ± 0.31 Aβ      1.48 ± 0.28 α 

55 8.92 ± 1.32 B 7.99 ± 1.32 Bb    0.97 ± 0.12 a 4.95 ± 0.45 Aβ      0.74 ± 0.92 α 

69 12.62 ± 1.46 B 10.74 ± 1.27 Bb    0.77 ± 0.23 a 7.09 ± 0.79 Aβ      0.75 ± 0.13 α 
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CO2 assimilation rate and chlorophyll concentrations of fully expanded leaves 

On 40 DAP, the CO2 net assimilation rate of K1+Mg plants showed the lowest values while the CO2 assimilation rate 

was the highest in the leaves of K2-Mg plants, but both were not significant (Fig. 4a). On 47 DAP, the CO2 net 

assimilation rate of the leaves of K1+Mg plants was significantly lower compared to that of the K3+Mg plants. In 

addition, the leaves of the K3-Mg plants exhibited a lower CO2 net assimilation compared to the K3+Mg plants, but 

without significance. On 83 and 84 DAP, further determinations of the CO2 net assimilation rate between K2 and 

K3+Mg and K2 and K3-Mg plants were performed. The CO2 assimilation rate decreased in K2-Mg as well as in the 

K3-Mg plants, but with a significant decrease only in the K3 plants.  

The plants treated with a low K supply (K1+Mg) exhibited higher chlorophyll concentrations compared to the plants 

that received moderate (K2+Mg) or high (K3+Mg) levels of K on 41 and 55 DAP (Fig. 4b). However, the chlorophyll 

concentrations showed a significant decrease in K1+Mg-treated plants compared to the K2- and K3+Mg-treated plants 

on 69 DAP. There was no significant difference in the chlorophyll concentrations of leaves between the plants that 

received moderate (K2+Mg) or high (K3+Mg) supplies of K, but an increase in the chlorophyll concentrations was 

observed from 41 till 69 DAP. Lower chlorophyll concentrations were detected in the K2 and K3-Mg plants (Fig. 4c). 

However, these differences were not significant. 
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Figure 4: Effect of K and Mg treatments on CO2 net assimilation and leaf chlorophyll concentrations. 

CO2 net assimilation rate of fully expanded leaves over time (a) of K2+Mg plants compared to K1+Mg and K2-Mg 

plants on day 40 after planting, of K3+Mg plants compared to K1+Mg and K3-Mg plants on day 47 after planting, and 

of K2+Mg/K3+Mg plants compared to K2-Mg/K3-Mg plants on days 83/84 after planting (K2 and K3+Mg were 

measured on day 83 and K2 and K3-Mg plants were measured on day 84 after planting), and chlorophyll concentrations 

in fully expanded leaves on days 41, 55, and 69 after planting of K1, K2, and K3+Mg (b) and K2 and K3-Mg plants 

(c) (n = 4—5). Mean ± SE values. Capitals = significant differences between differing K treatments of +Mg plants. 

Greek letters = significant differences between differing Mg treatments in K3 plants. No indication = no significant 

effect.  

 

 

 

 

 

 

0

200

400

600

800

38 43 48 53 58 63 68 73

C
h

lo
ro

p
h

y
ll

 (
µ
g

 g
-1

 F
M

)

K1+Mg K2+Mg K3+Mg

0

5

10

15

20

K1+Mg K2+Mg K2-Mg
0

5

10

15

20

K1+Mg K3+Mg K3-Mg

0

5

10

15

20

K2+Mg K2-Mg K3+Mg K3-Mg

A

B

β

α

C
O

2
a

ss
im

il
a

ti
o

n
(µ

m
o

l
m

-2
s-

1
)

40 days after 

planting
47 days after 

planting
83/84 days after 

planting

Fertilization treatment

a

Days after planting

b

A

B
B

c

0

200

400

600

800

38 43 48 53 58 63 68 73

K2-Mg K3-Mg



Chapter 4: Differential effects of varied potassium and magnesium nutrition on production and partitioning of photoassimilates in potato plants 

 

55 

 

Soluble sugars in fully expanded leaves 

The total soluble sugars increased in the leaves of K1+Mg and of K2 and K3-Mg plants compared to K2 and K3+Mg 

plants (Fig. 5a). While this observation was not significant on 41 DAP, the total soluble sugars significantly increased 

in leaves of K1+Mg-treated plants compared to K2 and the K3+Mg-treated plants, and in the leaves of K2 and K3-

Mg-treated plants compared to K2 and K3+Mg-treated plants on 69 DAP. At the same time, the sum of hexose sugars 

(glucose and fructose) was higher in K1+Mg plants and in K2 and K3-Mg plants but significant only on 69 DAP.  

 

Relative gene expression of the H+-sucrose cotransporters StSUT1 and StSUT4  

The relative transcript levels of the sucrose cotransporter StSUT1 and StSUT4 in leaves showed an up-regulation in K1 

and K3+Mg plants compared to control plants (K2+Mg) on 41 and 69 DAP (Fig. 5b). In the first case, the sucrose 

cotransporter StSUT4 showed a more than 150-fold increase on 69 DAP. The increase of transcript levels of both genes 

was more modest in Mg-deficient plants (K2 and K3-Mg) (Fig. 5c) compared to both low K (K1+Mg) and high K 

supplied plants (K3+Mg) (Fig. 5b). The relative transcript levels of the sucrose cotransporter StSUT4 were higher 

compared to the relative transcript levels of the sucrose cotransporter StSUT1 in K low (K1+Mg), in K high (K3+Mg) 

and in Mg deficient plants (K2 and K3-Mg) on 41 and 69 DAP (Fig. 5b and c).  

 

Tuber DM, sugar and starch 

The sugar and starch yields per plant revealed significant differences between the various fertilization treatments. First, 

K2 and K3+Mg showed significant higher yields of hexose sugars (glucose and fructose) as well as of the sum of all 

sugars (glucose, fructose and sucrose) per plant compared to K1+Mg plants (Fig. 6a). Second, K2 and K3+Mg plants 

exhibited significant higher starch yields per plant in comparison to K1+Mg plants (Fig. 6b). Besides, plants with 

sufficient Mg supply (K2 and K3+Mg) showed significant higher starch yields compared to Mg-deficient plants (K2 

and K3-Mg) (Fig. 6b). However, the concentrations of the sum of sugars (glucose, fructose, and sucrose) as well as of 

the sum of hexose sugars (glucose and fructose) and of starch in tubers did not show significant differences across the 

fertilization treatments (SM_5b and SM_5c). Only a slight tendency can be reported in the form of lower 

concentrations of hexose sugars in plants with high K and sufficient Mg supply (K3+Mg) compared to the other 

treatments (SM_5). Besides, there was no effect of the different K and Mg treatments on tuber DM (SM_5a).  
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Figure 5: Effect of K and Mg treatments on soluble sugar concentrations and transcript levels of genes encoding 

H+/sucrose symporters in leaves. Total soluble and hexose sugar concentrations in fully expanded leaves of all 

fertilization treatments on day 41 and 69 after planting (a) (n = 4—5). Mean ± SE values. Capitals = significant 

differences between differing K treatments of +Mg plants. Small letters = significant differences between differing Mg 

treatments of K2 plants. Greek letters = significant differences between differing Mg treatments in K3 plants. Non-

italic letters = significant differences between total soluble sugars. Italic letters = significant differences between 

hexose sugars. Transcript levels of the H+/sucrose symporters StSUT1 and StSUT4 in fully expanded leaves of K-

depleted plants (K1+Mg) (b) and of Mg-depleted plants in the medium (K2-Mg) and high (K3-Mg) K levels (c) 

compared to control plants (K2+Mg) on day 41 and 69 after planting (n = 1—5). Mean ± SE values. Asterisks = 

significant differences to control plants. Capitals = significant differences between K1+Mg and K3+Mg plants. Small 

letters = significant differences between transporters at one sampling date and of one fertilization treatment. Greek 

letters = significant differences between 41 and 69 days after planting of one transporter and fertilization treatment. 

No indication = no significant effect. 
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Figure 6: Effects of K and Mg treatments on tuber sugar and starch yields per plant. Yields of sugar (glucose, 

fructose, and sucrose) (a) and starch (b) in tubers of all fertilization treatments at harvest (n = 8—10). Mean ± SE 

values. Non-italic capitals = significant differences in the sum of sugars (glucose, fructose, and sucrose) between 

differing K treatments of +Mg plants. Italic capitals = significant differences in the sums of hexose sugars (glucose 

and fructose) between differing K treatments of +Mg plants. Small letters = significant differences between differing 

Mg treatments of K2 plants. Greek letters = significant differences between differing Mg treatments in K3 plants. No 

indication = no significant effect. 
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Our experimental set-ups were suitable to impose K and Mg deficiencies in potato plants. Indeed, the K concentrations 

in leaves of K1+Mg plants were below levels which are considered to ensure a sufficient supply with K of the potato 

plant (Table 2), which should be above 30 mg K g-1 DM (Bergmann 1993; von Wulffen et al. 2008). The same is true 

for Mg concentrations in leaves of Mg-limited plants (K2 and K3-Mg) (Table 2), which should be higher than 2 mg 

Mg g-1 DM (Bergmann 1993; von Wulffen et al. 2008).  

 

Shoot and root growth decreased under Mg- and especially under K-deficiency 

Plants fed with low K supply showed decreased shoot and root biomasses, plant heights, and internode numbres 

compared to those with sufficient or high K supplies (Fig. 2). Such decreases under low K supply are well known, as 

shown by Cakmak et al. (1994a) in bean (Phaseolus vulgaris L.) and Jákli et al. (2016) in spring wheat plants (Triticum 
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2b). Moreover, the root length significantly decreased in K- as well as in Mg-deficient plants (Fig. 2c). Likewise, 

Kellermeier et al. (2013) documented a strong reduction of root elongation in K-deficient Arabidopsis thaliana; Silva 

et al. (2005) demonstrated increasing root lengths with increasing supply of Mg in soybean (Glycine max. L. Merr.). 

Similar to our results, Mengutay et al. (2013) noted a higher sensitivity of the root compared to the shoot growth in 

Mg-deficient wheat (Triticum aestivum ev. Adana 99) and maize plants (Zea mays ev. Shemal).  

 

K showed an antagonistic effect on Mg in shoots but a synergistic effect on Mg in roots and tubers  

While Mg concentrations decreased in leaves, there was no Mg decrease in the roots and tubers under high K supply 

(Fig. 3b). Conversely, the highest significant Mg leaf concentrations were determined in K-deficient plants (Table 2 

and Fig. 3b). When faced with restriction of major cationic nutrients like K, plants usually absorb higher amounts of 

other cationic nutrients than the one under restriction (Kirkby and Mengel 1967). This could explain why the K-

deficient plants revealed higher Mg (Table 2 and Fig. 3b) as well as higher Calcium concentrations in the leaves 

(SM_6). The lower Mg concentrations in the leaves, especially in K3+Mg plants, might have resulted from an 

antagonistic interaction between K and Mg during root uptake. The occurrence of an Mg-deficiency risk in plants due 

to high K supply has often been reported (Ding et al. 2006; Senbayram et al. 2015). However, tubers and roots do not 

show any significant decrease in the Mg concentrations in plants with a high K supply (Fig. 3b). This is probably due 

to the usually much lower amounts of K in roots compared to shoots (Fig. 3a) (White 1997; Karley and White 2009). 

Both effects, antagonism and synergism, seem related: Increasing K concentrations led to a depletion in Mg leaf 

concentrations while the Mg root and tuber concentrations increased compared to the Mg leaf concentrations.  

Interestingly, under K- and Mg-deficiency, the quantitative highest proportion of decreasing K and Mg concentrations 

can be allocated to the leaves, while the decrease in K and Mg concentrations in tubers was quantitatively less (Fig. 

3). It is conceivable that the plant strives to save its reproductive organs by investing higher amounts of nutrients in 

the tubers rather than in the roots and leaves.  

 

Potassium-deficiency reduced photosynthesis while Mg-deficiency caused a reduction only late in growth stage 

During K-deficiency, lower photosynthetic rate is mirrored by lower shoot biomass production (Fig. 2a and 4a). This 

confirms earlier reports on cotton (Zhao et al. 2001) and sunflower (Jákli et al. 2017) plants fed with a low K supply. 

Mg-deficient plants did not show a significantly decreased CO2 net assimilation rate at the earlier growth stages (40 

and 47 DAP). However, there was a decrease in CO2 net assimilation in Mg-deficient leaves at a later growth stage 
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(Fig. 4a). Similar findings were presented by Hermans et al. (2005), who detected a decrease in photosynthetic electron 

flux in the photosynthetic reaction centers PS II and I in Mg-deficient sugar beet plants (Beta vulgaris L. ev. Adonis). 

The fact that CO2 net assimilation was not restricted under Mg-deficiency in the early growth stages may explain why 

these plants did not suffer the same loss of photosynthetic active biomass compared to the K-deficient plants (Fig. 2a).  

Interestingly, higher concentrations of chlorophyll were found in the lowest K-treated plants compared to the medium 

and high K-treated plants on the early sampling dates (Fig. 4b). This is probably because leaf expansion in the K-

depleted plants was restricted, which resulted in higher chlorophyll concentrations compared to plants given higher K 

treatments. Moreover, chlorosis and necrosis were less developed at these earlier growth stages (Fig. 1a).  

 

Soluble sugars accumulated in K- and especially in Mg-deficient fully expanded leaves 

The total soluble sugar concentrations showed a sharp increase in the leaves of Mg-depleted plants compared to Mg-

adequate plants (Fig. 5a). Similarly, K-deficient plants also showed increased concentrations of soluble sugars in their 

leaves, but the results were less severe than found under Mg-deficiency. The reason for the significant differences in 

total soluble sugar concentrations on 69 DAP but not yet on 41 DAP might be related to increased tuber sink demand 

due to a progressed tuber development stage on 69 DAP (approximately 50% of full tuber development), as shown, 

for instance, by Kolbe and Stephan-Beckmann (1997). On 41 DAP, there could be a lower need for sucrose export to 

tubers for starch synthesis, which resulted in overall higher soluble sugar concentrations in leaves and, therefore, no 

significant differences in the sugar concentrations across the differently treated plants. Furthermore, plants with low 

Mg showed an accumulation of soluble sugars in leaves before any reduction of the CO2 net assimilation occurred. 

These observations strengthen the idea that during Mg-deficiency the translocation of assimilates to sink organs is 

adversely affected prior to photosynthesis (Hermans et al. 2004; Cakmak and Kirkby 2008). 

A possible impairment of phloem export could mark the origin of sucrose accumulation and subsequent hydrolysis 

into glucose and fructose (Fig. 5a). Indeed, Huber (1984) indicated that the accumulation of hexoses in K-deficient 

leaves was linked to increased INV activity. Recently, Farhat et al. (2016) showed that INV activity is affected in Sulla 

carnosa plants and concentrations of hexose sugars increased in source leaves through Mg-deficiency. Mg-sufficient 

plants exhibited comparably higher INV activity in the shoots while low-Mg plants showed increased INV activity in 

source leaves, possibly due to impaired loading of the phloem as a result of Mg-deficiency.  
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K- and Mg-deficiency caused sugar accumulations in different cell compartments and thus differentially affected the 

gene expression of sucrose transport systems 

The transcript levels of StSUT1 and StSUT4, both genes encoding H+/sucrose symporters, were more abundant in 

leaves during K-deficiency (K1+Mg) compared to control plants (K2+Mg) (Fig. 5b). Concomitantly, sucrose 

accumulated in these leaves (Fig. 5a), possibly leading to—besides a breakdown into hexose units—increased gene 

expression of the H+/sucrose symporter StSUT1 and StSUT4. The transcript level increase, in particular StSUT1, was 

not as marked during Mg-deficiency as during K-deficiency (Fig. 5c). Nonetheless, sugar accumulation was more 

pronounced in source leaves of Mg-deficient than of K-deficient plants (Fig. 5a). Therefore, we assume that the 

accumulation of sucrose and the following breakdown into hexose sugar units by INV occurred in different leaf 

compartments under the situation of K- or Mg-deficiency. Magnesium is required by H+-ATPases, which are pumping 

protons across the plasma membrane into the apoplasm. Under Mg-deficiency, this proton extrusion may be hampered. 

Thus, we argue that fewer protons are pumped into the apoplasm and in consequence less sucrose is loaded into the 

companion cell-sieve element complex. Following our initial assumption, this would result in an accumulation of 

sucrose in the apoplasm affecting the relative transcript abundance of H+/sucrose symporters. However, as an 

alternative scenario, it is feasible that an impaired function of H+-ATPases already affects an earlier step of sucrose 

transport, namely the efflux of sucrose from mesophyll cells into the apoplasm what is carried out via SWEET 

transporters (Manck-Götzenberger and Requena 2016). We hypothesize that these SWEET transporters are forced to 

reduce the export of sucrose from the mesophyll into the apoplasm as a consequence of a reduced activity of H+/sucrose 

symporters due to a decreased loading of protons by H+-ATPases into the apoplasm caused by Mg-deficiency. Sucrose 

would then accumulate mainly in mesophyll cells. Meanwhile, the increased transcript abundance of the sucrose 

cotransporter StSUT4 on 69 DAP could be a later response of the plant to a decreased import of sucrose into sink 

organs.  

The major role of K in the partitioning of photoassimilates can be referred to establish an osmotic potential within the 

phloem which helps to translocate sucrose from source to sink tissues (Hayashi and Chino 1990; Cakmak 2005). 

Therefore, under K-deficiency sucrose translocation from source to sink organs might be restricted and sucrose may 

accumulate in the apoplasm or in cells of the companion cell-sieve element complex. Since sugars accumulate in the 

close vicinity of H+/sucrose symporters in the case of K-deficiency, it is likely that this results in a more pronounced 

increase of the transcript abundance of the H+/sucrose symporters StSUT1 and StSUT4. Moreover, the expression levels 
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of StSUT4 were more abundant than those of StSUT1. This fits to the assumption made by Weise et al. (2000) that 

StSUT4 is a low-affinity transporter, being mainly active at higher sucrose concentrations.  

Finally, the increased expression levels of the sucrose cotransporters in high K supplied plants (K3+Mg) (Fig. 5b and 

c) could be due to comparatively higher sugar concentrations in these leaves (Fig. 5a). It is conceivable that the plant 

produced temporally more sugars via photosynthesis under K luxury supply than actually needed by the plant´s sink 

organs what in turn could have led to a slight accumulation of sucrose in source leaves.   

 

K- and Mg-deficiency decreased tuber starch and sugar yield but not starch and sugar concentrations 

The tuber sugar and starch yields per plant (amount of sugar and starch per plant) revealed clear differences due to the 

various K and Mg treatments. Plants with deficient K (K1+Mg) and Mg (K2 and K3-Mg) supply showed significant 

lower sugar and starch yields compared to plants with sufficient K and Mg (K2 and K3+Mg) supply (Fig. 6a and b). 

Contrary to the initial expectations that an impairment of photosynthesis and photoassimilate translocation due to K- 

or Mg-deficiency would adversely affect tuber sugar and starch concentrations, no significant influence of K- or Mg-

deficiency on tuber sugar and starch concentrations was detectable (SM_5b and SM_5c). With respect to tuber sugar 

concentrations, the present findings are in agreement with the results of Stanley and Jewell (1989), who also could not 

find a significant change in hexose sugar concentrations under conditions of varying K supply in potato. However, 

Gerendás et al. (2007) determined a decrease in the level of hexose sugars with increasing K supply in potato. The 

present results coincide only in tendency with the findings of Gerendás et al. (2007) (SM_5b). The significant 

differences in tuber starch and sugar yields may be a reference to the significant effects of treatments on the tuber yield 

(Fig. 2f). 
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Supplementary material 

 

  
SM_1: Mean temperature, precipitation, and irradiance over the vegetation period (outdoor installation). 

 

 

SM_2: Applied amounts (in mg kg-1- soil) and used form of nutrients besides K and Mg. 

 

Element Applied amount of salt Salt formulation 
 

Nitrogen 300 Ca(NO)3 

Phosphorus 100 Ca(PO4)2 . H2O 

Calcium 1,300 CaCO3 

Boron 2 H3BO3 

Zinc 2 ZnSO4 . 7H2O 

Molybdenum 0.01 Na2MoO4 . 2 H2O 

Copper 2 CuSO4 . 5H2O 

Manganese 

Iron 

6 

3 

MnSO4 . H2O 

Fe(III) EDTA (13% Fe) 
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SM_3: Gene short names, PCR primer sequences (forward and reverse), Genbank accession numbers, amplicon sizes (bp), and PCR efficiencies (%) 

with R2 of PCR efficiency. 

Gene Forward primer Reverse primer Accession no. Amplicon 
size  

PCR 
efficiency 
 

R2 PCR 
efficiency 
  

StSUT1 CAT GGG ATG ATT TGT TTG GA TGG CAA CAT TGT GAG TGC TA X69165 
 

98 98.4 0.973 

StSUT4 GCA GCC TCT AGA TCC CAG TC CAG GAT CAC CCA AAC AAC AC NM_001288141 
XM_006364904 
 

139 111.4 0.987 

StUBIQUITIN CAC CAA GCC AAA GAA GAT CA TCA GCA TTA GGG CAC TCC TT Z11669 S45502 
 

120 94.5 0.966 

 

 

 

 

SM_4: Thermal cycling protocol. 

 Amplification   

Initial denaturation Denaturation Annealing Extension Cycles Melting curve analysis 

98°C for 30 sec 95°C for 10 sec 55°C for 15 sec 72°C for 15 sec 44 65°C to 95°C, 0.5°C, 5 sec/step 
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SM_5: Tuber DM and sugar (glucose, fructose and sucrose) and starch concentrations of all five fertilization treatments at harvest (n = 8—10). Mean ± SE values. 

Treatments had no significant effect.  
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SM_6: Calcium (Ca) concentrations (mg g-1 DM) in fully expanded leaves on five sampling dates from day 34 until day 69 after planting (n = 4—5). Mean ± SE 

values. Capitals = significant differences between differing K treatments of +Mg plants. Small letters = significant differences between differing Mg treatments in K2 

plants. No indication = not significant. 

                         Ca 

Fertilization treatment 

DAP* 
 

  K1+Mg        K2+Mg        K2-Mg        K3+Mg        K3-Mg 

34 19.69 ± 3.07 C 10.65 ± 0.73 B 11.92 ± 2.21 

 

8.46 ± 0.42 A 10.18 ± 2.59 

 

41 15.64 ± 1.93 B 7.65 ± 1.09 Aa 10.31 ± 0.61 b 6.62 ± 0.46 A 8.16 ± 0.89  

48 33.74 ± 2.26 B 13.18 ± 1.48 A 16.01 ± 1.49  10.07 ± 1.55  A 11.75 ± 2.99  

55 21.37 ± 1.68 C 12.73 ± 2.08 B 16.12 ± 1.76  8.52 ± 0.82 A 10.64 ± 1.92  

69 38.04 ± 2.51 C 21.13 ± 1.96 B 25.89 ± 2.37  14.69 ± 2.50 A 17.91 ± 1.79  

                    * DAP = days after planting. 
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fertilization on potato (Solanum tuberosum L.) root growth 

Mirjam Koch, Marcel Naumann
 

and Elke Pawelzik 

           Department for Crop Sciences, Division Quality of Plant Products, Carl-Sprengel-Weg 1, 

37075 Göttingen, University of Göttingen.  

Abstract  

Potato roots have a shallower and less extended root system compared to other crops what makes them less efficient 

in the acquisition of water and nutrients. As the ability for water and nutrient acquisition is mainly determined by 

root morphological characteristics such as root length, optimal root growth is of high importance for potato plants. 

The development and growth of plant roots can be affected by various factors. One of these factors is the supply 

of the plant with nutrients. Based on the pivotal roles of magnesium (Mg) for photosynthesis and the partitioning 

of photoassimilates within the plant, Mg is expected having a pivotal influence on the development of plant roots. 

A negative impact of Mg deficiency on root growth has been demonstrated in other plants. To our knowledge, the 

effect of Mg deficiency on root growth in potato (Solanum tuberosum L.) has never been investigated as well as 

the effect of a resupply of Mg to Mg-deficient potato plants. A hydroponic culture system with potato plants was 

conducted with three levels of Mg supply ('Mg low', 'Mg med', 'Mg high') in order to identify a dose that is 

sufficient for ensuring appropriate root growth and two Mg complementary fertilization treatments (Mg foliar 

application or increase of Mg concentrations via addition into the nutrient solution). 'Mg low' plants exhibited a 

sharp decrease in root biomass and root length whereas 'Mg med' and 'Mg high' plants developed twice as much 

root biomass and doubled root length. Besides, an accumulation of soluble sugars occurred in source leaves of 'Mg 

low' treated plants. This is indicative for a restricted phloem loading which is supposed having negative effects on 

root growth. On the other hand, a restricted sink demand due to reduced root growth may lead to an accumulation 

of soluble sugars in source leaves. The results indicate that the Mg supply of 'Mg med' plants represented already 

a sufficient supply of Mg for potato with respect to root growth. The Mg foliar application demonstrated only 

negligible effects on potato root growth, whereas the rise of the Mg nutrient solution concentrations of 'Mg low' 

plants showed more distinct effects, especially in form of an increased Mg nutrient status and increased root length 

development.  

 

Keywords 

Root length, root-to-shoot ratio, Mg foliar application, Mg resupply, chlorophyll, phloem loading, hydroponic 

culture system 
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Introduction 

Plant roots are crucial for the acquisition of water and nutrients and thus, determine plant growth and performance 

(Gruber et al. 2013). The ability of plant roots for acquisition of nutrients mainly is affected by the size of absorbing 

surface and the ability to explore the soil for nutrients (Sattelmacher et al. 1993; Sattelmacher et al. 1994). Hence, 

root morphological characteristics such root length, diameter and number highly determine a plant´s nutrient 

efficiency (Sattelmacher et al. 1994). However, potato roots are known to have a shallower and less extended root 

system compared to other crops and are classified as poor rooting efficient (Hopkins et al. 2014). Tanner et al. 

(1982) found that 90 % of potato root length is located in the upper 25 cm of the soil. This might contribute to the 

fact that potato is a very sensitive crop for water shortages and can be (in comparison with other crops) classified 

as inefficient in the acquisition of nutrients (van Loon 1981; Hopkins et al. 2014). Therefore, ensuring an 

unrestricted and optimal root growth of potato gains high importance, especially for nutrients which are mainly 

taken up by the plant via mass flow such as nitrogen and magnesium (Mg) (Strebel and Duynisveld 1989; Barber 

1995). The development and architecture of plant roots can be affected by various reasons. Several studies 

demonstrated a positive relation between the plant´s mineral nutrition and root growth (Sattelmacher et al. 1993; 

López-Bucio et al. 2003; Gruber et al. 2013). However, studies related to the impact of mineral nutrition on root 

growth in potato are rare.  

Mg is one of the essential elements in plants and is involved in several physiological and biochemical processes 

of plant development and growth. For instance, Mg is the central atom of the light harvesting pigments chlorophyll 

(Braumann et al. 2014). In addition, Mg is needed for the activation and function of several enzymes (Senbayram 

et al. 2015) - for example for the activation of the CO2 fixing enzyme ribulose-1,5-bisphosphate (RuBP) 

carboxylase (Belknap and Portis 1986). The earliest response of Mg deficiency is reported to be an accumulation 

of sucrose in Mg deficient source leaves (Cakmak and Kirkby 2008), as has been shown in sugar beet (Beta 

vulgaris L. cv. Adonis) (Hermans et al. 2004). This sucrose accumulation can be referred to an impaired phloem 

loading process and thus, a restricted translocation of photoassimilates from source to sink organs. Mg interacts 

with ATP of H+-ATPases which balance charges and are providing energy and therefore are needed by H+/sucrose 

symporters, which are loading the phloem with sucrose (Hermans et al. 2005). Marschner et al. (1996) stated that 

the extent, to which a nutrient is affecting the root growth and development, is mainly dependent on translocation 

processes of the needed minerals and photoassimilates within the plant. Based on the presented roles of Mg in 

photosynthesis and for the partitioning of photoassimilates, a strong impact of Mg on the root development can be 

expected as roots are important sink organs for photoassimilates.  
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This study focused on the impact of Mg deficiency on the root growth of potato plants (Solanum tuberosum L.). 

Due to the indispensable functions of Mg for the production and partitioning of photoassimilates in plants, it is 

hypothesized that Mg deficiency will lead to a significant reduction of root biomass and total root length, what is 

regarded as an important morphological parameter for nutrient acquisition (Sattelmacher et al. 1994). Thus, it is 

aimed to screen three different Mg supplies to identify a dose that is sufficient to allow appropriate root growth. 

A further aim of this study is to examine, how a resupply of Mg via the roots and via the leaves, respectively, may 

affect an existing deficiency of Mg and related symptoms such as depressed root growth. Beside root growth, leaf 

sugar concentrations were determined as indicator for a potential impaired phloem loading process.  

 

Material and methods 

Experimental design and growth conditions 

Potato plants (Solanum tuberosum L.) of the variety 'Laura' were grown in nutrient solution in a climate chamber 

for a period of 60 days. The plants grew under an alternate day/night cycle of 12 hours with a photosynthetic 

photon flux density of 180 µmol m-2 s-1 (MASTER Agro 400 W; Philips, Netherlands) during illumination. 

Average air temperature was 20 °C during the day and 16 °C during the dark period and relative humidity was 60 

%. Before onset of the experiment, plants were propagated in a soil culture system under low Mg supply (plants 

which were later grown under nutrient solution concentrations of 5 or 100 µM Mg) or sufficient Mg supply (plants 

which were later grown under nutrient solution concentrations of 500 µM Mg) (supplementary material (SM)_1). 

For planting only potato pieces with a germ bud instead of whole tubers were used to avoid nutrient delivery from 

the whole tuber. When the plants reached a height of approximately 10 cm, they were transferred into a nutrient 

solution with stepwise increasing nutrient concentrations (20% - 50% - 100%) over the first seven days. The full 

nutrient solution concentration was: 2.75 mM Ca(NO3)2.4 H2O, 0.25 mM NH4NO3, 2 mM K2SO4, 0.25 mM 

Ca(H2PO4)2.H2O, 0.1 mM Fe(III) EDTA (13% Fe), 10 µM H3BO3, 1 µM ZnSO4.7 H2O, 1 µM MnSO4.H2O, 0.2 

µM CuSO4 .5 H2O and 0.14 µM H24Mo7N6O24.4 H2O. Besides, the plants were treated with three different Mg 

supplies: A low (5 µM Mg), a medium (100 µM Mg) or a high (500 µM Mg) Mg level, following designated as 

'Mg low', 'Mg med' and 'Mg high'. Mg was given as Mg2SO4.7 H2O. The low and the medium Mg supply were 

represented each by 12 plants. The high Mg level was represented by four plants throughout the whole experiment. 

After nine days after onset of the experiment (DAO) four plants of the low and four plants of the medium Mg level 

received three times (10, 17 and 24 DAO) a Mg foliar application with Mg2SO4.7 H2O (together with the wetting 

agent Silwet® Top (0.1% (v/v); BASF, Austria), following designated as '+ f'. The concentration of the Mg spraying 

solution was 200 mM Mg2SO4.7 H2O. Each plant received approximately 28 mg Mg by one Mg foliar application. 
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Plants, which did not receive an foliar application were sprayed only with distilled water plus the wetting agent. 

Furthermore, four plants of the low and the medium Mg level received an additional Mg supply via the nutrient 

solution by increasing the Mg nutrient solution concentration from 5 and 100 µM Mg, respectively, to 500 µM 

Mg, following designated as 'to Mg high'. The schematic experimental setup is shown in figure 1. The plants were 

grown in 5 liter plastic pots with one plant per pot. The nutrient solution was aerated and changed every 3-5 days 

in dependence on plant growth and water consumption. 

 

Figure 1: Schematic setup of experiment with three levels of Mg supply ('Mg low' = 5 µM Mg; 'Mg med' = 100 

µM Mg; 'Mg high' = 500 µM Mg) and complementary fertilizations (Mg foliar application and change of Mg 

concentration in nutrient solution from 'Mg low' or 'Mg med', respectively, 'to Mg high'). Plants 1-4 ('Mg low'), 

13-16 ('Mg med') and 25-28 ('Mg high') remained unchanged throughout the whole experiment. After 9 DAO 

plants 5-8 ('Mg low') and 17-20 ('Mg med') received three times an Mg foliar application while plants 9-12 ('Mg 

low') and plants 21-24 ('Mg med') were raised in their Mg concentration of nutrient solution 'to Mg high'.  
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Mg determination in fully expanded leaves and roots 

Leaf and root samples were dried at 60°C for four days. Afterward, leaves were ground with a mortar and pestle 

and root samples were ground into 0.5 mm flour in a hammer mill (DFH 48, Culatti, Switzerland). Leaves, which 

received an Mg foliar application, were washed prior drying to get rid of Mg residues on the leaf surface. Minerals 

were determined according to an modified method as described by Wheal et al. (2011) and carried out as follows: 

100 mg of prepared leaf or root sample was digested with 4 ml of 65% (v/v) nitric acid and 2 ml of 30% (v/v) 

hydrogen peroxide at 200°C and 40 bar for 75 minutes in a microwave (Ethos 660; MWT AG, Switzerland). The 

samples were filled up to 25 ml with distilled water and stored in screw cap tubes until analysis. The concentrations 

of Mg were examined using inductively coupled plasma optical emission spectrometry (Vista-PRO CCD 

Simultaneous ICP-OES; Varian Inc., USA).  

 

Chlorophyll quantification in fully expanded leaves 

Leaves were grounded with mortar and pestle in liquid nitrogen and 20 mg was weighed in 2 ml screw cup micro 

tubes and stored in liquid nitrogen until further use. The plant material was extracted twice with 80% (v/v) ethanol 

and a third time with 50% (v/v) ethanol. The samples were shaken in a heat block at 95°C for 30 minutes. After 

the third extraction step, the supernatants were combined, the pellet discarded, and the samples stored at -20°C 

until further analysis.  

Chlorophyll was examined by preparing a mix of 50 µl ethanolic extract (or 70% (v/v) ethanol as blank) and 120 

µl 98% ethanol per well on a 96‒well plate. The optical density (OD) was measured at 645 nm and 665 nm in a 

plate reader (Epoch, 1402203; Biotek, USA), and chlorophyll a and b were calculated according to the following 

formulas:  

Chlorophyll a (μg/well) = 5.48A665 – 2.16A645. 

Chlorophyll b (μg/well) = 9.67A645 – 3.04A665. 

For the results, the sum of chlorophyll a and b was considered.  

 

Soluble sugar determination in fully expanded leaves 

The soluble sugars glucose, fructose, and sucrose were determined according to Stitt et al. (1989) (modified as 

described following). The same ethanolic extract as prepared for chlorophyll extraction was used. The method is 

based on the conversion of the sugars by the added enzymes Hexokinase (HK) (Roche Diagnostics GmbH, 



Chapter 5: Effect of magnesium deficiency and magnesium complementary fertilization on potato root growth 

73 

 

Germany; Merck, Germany), Phosphoglucose isomerase (PGI) (Roche Diagnostics GmbH, Germany), and 

Invertase (INV) (Sigma Aldrich, USA). Thereby electrons are released and are transferred to nicotinamide adenine 

dinucleotide phosphate (NADP+) (Roche Diagnostics GmbH, Germany) forming NADPH + H. For dissolving the 

enzymes a 100 mM hydroxyethylpiperazine-ethanesulfonic acid (HEPES) buffer (Roth, Germany) + 3 mM MgCl2 

buffer (adjusted with KOH to pH 7) was used. Half of the samples were prepared with HK in suspension (Roche 

Diagnostics GmbH): 72 μl (108 units) HK was centrifuged three minutes at 11,000 rotations/minute and the pellet 

was dissolved in 120 µl HEPES-MgCl2 buffer; the other half of the samples was prepared with HK in solid form 

(Merck, Germany): 0.50 mg was dissolved in 120 µl HEPES-MgCl2 buffer. For preparation of PGI 36 μl (25.2 

units) PGI was centrifuged for three minutes at 11,000 rotations/minute and the pellet was dissolved in 120 μl 

HEPES-MgCl2 buffer. For preparation of INV 8.3 mg (2,500 units) INV was dissolved in 120 μl HEPES-MgCl2 

buffer. A further needed enzyme was Glucose-6-phosphat dehydrogenase (G6P-DH) (Roche Diagnostics GmbH, 

Germany) which was prepared together with 100 mM ATP (Sigma-Aldrich, USA) and 45 mM NADP to a solution. 

For this, 85 μl (60 units) G6P-DH were centrifuged for three minutes at 11,000 rotations/minute and the pellet was 

dissolved in 15.5 ml HEPES + MgCl2 buffer, 480 μl ATP, and 480 μl NADP solution. Next, 50 µl of the ethanolic 

extract plus 160 µl of the G6P-DH - ATP-NADP solution was added per well on a 96-well plate and shaken for 

10 minutes. The converted NADPH was quantified by measuring the OD at 340 nm in a plate reader (Epoch, 

1402203; Biotek, USA) after reaching stable values.  

NADPH was calculated with the help of ∆ OD by using the following formula: 

μM NADPH = Δ OD/(2.85*6.22). 

The calculated values were indicated as: 

1 M NADPH derived from glucose/fructose = 1 M glucose/fructose. 

1 M NADPH derived from sucrose = 0.5 M sucrose (1 mole glucose equivalent).  

 

Phenotype, shoot and root growth and root scanning   

The phenotype was documented by taking photos of representative leaflets and roots. Morphological changes of 

the shoot were recorded by measuring the plant height with a common tapeline and counting the internodes per 

plant. At harvest the complete shoots were cut off and the total shoot biomasses were assessed. Roots were 

separated from the shoots and stored at -20°C until root scan analysis. Immediately prior root scanning the roots 

were thawed, stolons were discarded and the roots were placed in a shell and completely covered with water. Only 
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the half of each root was used and the total root length was calculated for the whole root on the basis of the 

determined dry weight of the scanned root part and the non-scanned root part. Root scanning was conducted with 

a flat-bed scanner (Epson perfection V700 photo, Epson, Germany) and analyzed with the software WinRhizo 

2016 (Regent Instruments Inc. Québec City, Canada). Besides, the total root biomasses were examined and based 

on the dry weights of shoots and roots the shoot-to-root ratios were determined.  

 

Statistics 

Statistical analysis were performed using R software version 3.4.0 (R Core Team 2016). All data were checked 

for normal distribution and homoscedasticity. Then, ANOVA was performed to detect differences between 

treatments followed by multiple contrast tests. Non-parametric Kruskal-Wallis test was performed if normality 

and/or homoscedasticity were not given. All tests were performed on a significance level of p < 0.05.  

 

Results 

Mg status of fully expanded leaves 

The 'Mg low' treated plants exhibited the significant lowest Mg concentrations throughout the experiment (Fig. 

2a). A complementary fertilization of Mg via Mg foliar application led to increasing Mg leave concentrations of 

'Mg low' plants only at the second and third sampling date while an Mg foliar application of 'Mg med' plants only 

led to significant increasing Mg concentrations at the second sampling date (Fig. 2b). More distinct effects were 

detected by a complementary fertilization via the nutrient solution: Immediately after change of the Mg 

concentration in the nutrient solution from 5 and 100 µM Mg, respectively, up to 500 µM Mg (9 DAO), the Mg 

leave concentrations increased four to five times compared to 'Mg low' treated plants and up to two times compared 

to 'Mg med' treated plants (Fig. 2b). The significant highest Mg leave concentrations throughout all sampling dates 

were determined in 'Mg high' treated plants, closely followed by 'Mg low to Mg high' treated plants (Fig. 2a).  

 

Chlorophyll concentrations of fully expanded leaves 

The chlorophyll concentrations did not show any significant differences between the treatments, only tendencies 

can be described (Fig. 3): 14 DAO the highest chlorophyll concentrations were quantified in 'Mg low +f' and 'Mg 

low to Mg high' treated plants. 35 DAO all treatments showed equal chlorophyll concentrations but with lower 

values compared to 14 and 56 DAO. At the last sampling date (56 DAO) 'Mg low' treated plants exhibited the 

highest chlorophyll concentrations.  
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Figure 2: Mg leave concentrations in 'Mg low', 'Mg med' and 'Mg high' treated plants (a) and impact of complementary fertilization treatments ('+f' and 'to Mg high') (n = 4) on 

Mg leave concentrations (b). 'Mg low' = 5 µM Mg; 'Mg med' = 100 µM Mg; 'Mg high' = 500 µM Mg; '+f' = with Mg foliar application; 'to high' = change of the Mg nutrient solution 

concentration from 5 or 100, respectively, to 500 µM Mg. Mg foliar application was conducted on 10, 17 and 24 DAO. Mean ± SE values. Capitals = significant differences between 

'Mg low', 'Mg med' and 'Mg high' plants. Small letters = significant differences between 'Mg low', 'Mg low +f' and 'Mg low to Mg high' plants. Greek letters = significant differences 

between 'Mg med', 'Mg med +f' and 'Mg med to Mg high' plants. No indication = no significance. 
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Figure 3: Chlorophyll concentrations in fully expanded leaves of all fertilization treatments at days 14 (a), 35 (b) 

and 56 (c) after onset of treatment (n = 4). 'Mg low' = 5 µM Mg; 'Mg med' = 100 µM Mg; 'Mg high' = 500 µM 

Mg; '+f' = with Mg foliar application; 'to high' = change of the Mg nutrient solution concentration from 5 or 100, 

respectively, to 500 µM Mg. Mean ± SE values. Treatments had no significant effect.  
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were determined as on 35 DAO: 'Mg low' plants showed significant higher soluble and hexose sugar concentrations 

compared to 'Mg med' and 'Mg high' plants (Fig. 4c). Moreover, 'Mg low +f' plants exhibited significant lower 

total soluble sugar concentrations compared to plants which did not receive Mg foliar applications ('Mg low' 

plants).  

 

 

Figure 4: Total soluble and hexose sugar concentrations in fully expanded leaves of all fertilization treatments at 

days 14 (a), 35 (b) and 56 (c) after onset of treatment (n = 2 - 4). 'Mg low' = 5 µM Mg; 'Mg med' = 100 µM Mg; 

'Mg high' = 500 µM Mg; '+f' = with Mg foliar application; 'to high' = change of the Mg nutrient solution 

concentration from 5 or 100, respectively, to 500 µM Mg. Mean ± SE values. Capitals = significant differences of 

total sugar sums between 'Mg low', 'Mg med' and 'Mg high' plants. Italic capitals = significant differences of hexose 

sugars between 'Mg low', 'Mg med' and 'Mg high' plants. Small letters = significant differences of total sugar sums 

between 'Mg low', 'Mg low +f' and 'Mg low to Mg high' plants. No indication = no significance. 
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Shoot and root growth 

Shoot and root biomass were significantly reduced in 'Mg low' compared to 'Mg med' and 'Mg high' plants (Fig. 

5a and b). Additionally, root biomass was more reduced than shoot biomass in 'Mg low' plants what is also reflected 

in the higher shoot-to-root ratio of 'Mg low' compared to 'Mg high' plants (Fig. 5b). This biomass reduction is 

pictured in figure 6: Root biomass of 'Mg low' plants appeared smaller compared to roots of 'Mg med' and 'Mg 

high' treated plants. The complementary fertilization did not affect significantly on shoot as well as on root biomass 

(Fig. 5 and SM_2), although slight increases due the complementary fertilization treatments of 'Mg low' plants 

were recorded. 'Mg low' plants showed the lowest quantity of internodes (Fig. 5c) and plant heights (Fig. 5d) but 

at the last two sampling dates there were no significant differences in quantity of internodes and plant height 

between 'Mg low', 'Mg med' and 'Mg high' plants.  

 

 

Figure 5: Effect of Mg deficiency ('Mg low') and complementary fertilization of Mg ('+f' and 'to Mg high') on 

total shoot (a) and total root biomass at harvest with shoot-to-root ratios (mean ± SE values above bar plot) (b), on 

quantity of internodes (c) and on plant heights (d) at eight various sampling dates (n = 4). 'Mg low' = 5 µM Mg; 

'Mg med' = 100 µM Mg; 'Mg high' = 500 µM Mg; '+f' = with Mg foliar application; 'to high' = change of the Mg 

nutrient solution concentration from 5 or 100, respectively, to 500 µM Mg. Mean ± SE values. Capitals = 

significant differences between 'Mg low', 'Mg med' and 'Mg high' treated plants. No indication = no significance.  
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Figure 6: Illustration of potato roots at harvest, which were grown in hydroponic culture systems under low (a), 

medium (b) and high (c) Mg supply.  

 

Total root length and Mg root status 

Total root length was significantly reduced in 'Mg low' compared to 'Mg high' treated plants. 'Mg med' treated 

plants exhibited comparable total root lengths as 'Mg high' treated plants, but the differences compared to 'Mg low' 

treated plants were not significant (Fig. 7). Similar results are presented for the Mg root concentrations: The 

significant lowest Mg concentrations were quantified in roots of 'Mg low' treated plants (Fig. 7). The 

complementary fertilization treatments did not show a significant impact on the total root length and root Mg 

concentrations but tendencies can be stated: Total root length increased by rising the Mg nutrient solution 

concentrations from 5 to 500 µM Mg and the root Mg concentrations increased by rising the Mg nutrient solution 

concentrations from 5 and 100 µM Mg, respectively, to 500µM Mg. Also an Mg foliar application to 'Mg low' 

plants could increase total root length, but to a less extent compared to a raise of the Mg nutrient solution 

concentration.  

 

Mg low Mg med Mg high

a b c
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Figure 7: Total root length and root Mg concentrations in 'Mg low', 'Mg med' and 'Mg high' treated plants and 

impact of complementary fertilization treatments ('+f' and 'to Mg high') (n = 4). 'Mg low' = 5 µM Mg; 'Mg med' = 

100 µM Mg; 'Mg high' = 500 µM Mg; '+f' = with Mg foliar application; 'to high' = change of the Mg nutrient 

solution concentration from 5 or 100, respectively, to 500 µM Mg. Mean ± SE values. Capitals = significant 

differences of total root length between 'Mg low', 'Mg med' and 'Mg high' plants. Italic capitals = significant 

differences of Mg root concentrations between 'Mg low', 'Mg med' and 'Mg high' plants. No indication = no 

significance. 

 

Discussion 

Following, first results of the Mg plant status and chlorophyll and sugar leaf concentrations are discussed. 

Afterwards, in light of these results, the shoot and root growth – with special focus on the root development – is 

elucidated.   

 

Mg status of the plant 

Mg leave concentrations below 2 mg g-1 DM are considered critical to ensure optimal plant growth (Bergmann 

1993; von Wulffen et al. 2008). Hence, 'Mg low' plants exhibited Mg leave concentrations below values which are 

presumed to be required for optimal plant growth and development (Fig. 2a). This deficient Mg status of 'Mg low' 

plants led to the emergence of typical Mg deficiency symptoms on fully expanded leaves of 'Mg low' treated plants: 

First, moderate and unclear segregated chlorosis became visible (Fig. 8a) which developed into interveinal leave 

chlorosis and flat spot-like necrosis (Fig. 8b). Usually, Mg deficiency symptoms first occur on older fully expanded 

leaves, as Mg is phloem mobile and therefore translocated to younger developing leaves under scarcity of Mg 

(Karley and White 2009), what likewise has been observed in the present study. 
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Figure 8: Visual symptoms of Mg deficiency [(a), (b)] of potato leaflets compared to Mg-non-deficient leaflets [(c) – (f)] 30 (above) and 60 (below) days after onset of treatment. 

30 DAO Mg low 30 DAO Mg med 30 DAO Mg high

60 DAO Mg low 60 DAO Mg med 60 DAO Mg high

a

b

c e

d f



Chapter 5: Effect of magnesium deficiency and magnesium complementary fertilization on potato root growth 

 

82 

 

 'Mg med' and 'Mg high' treated plants did not show any visible Mg deficiency symptoms (Fig. 8c – f), although at the 

first two sampling dates also 'Mg med' plants showed Mg leave concentrations in a critical range (Fig. 2a).  

An Mg foliar application could not ameliorate a deficient Mg status of the plant, although a short increase of the Mg 

leave concentrations in 'Mg low' and to a less extend in 'Mg med' plants due to the foliar applications was detectable 

(Fig. 2b). This effect was significant only after the first and the second Mg foliar application (10 and 17 DAO) in 'Mg 

low' and only after the first Mg foliar application (10 DAO) in 'Mg med' plants. However, a more efficient effect to 

restore a limited Mg nutritional status was realized by raising the Mg supply via the nutrient solution. Mg leave 

concentrations increased up to a level far above values of a critical Mg supply. Furthermore, these Mg leave 

concentrations remained stable throughout all sampling dates.  

 

Leaf chlorophyll and soluble sugar concentrations under Mg restriction 

The actual distribution of Mg in the plant strongly depends on the plant´s Mg supply (Michael 1941). Between 10 to 

20% of the total Mg pool is supposed to be bound to chlorophyll (Mayland 1990; Verbruggen and Hermans 2013) 

while the proportion can be even higher in Mg depleted plants (Scott and Robson 1990). Chlorophyll concentrations 

of fully expanded leaves did not show any significant differences between the various Mg supplied plants in the present 

study (Fig. 3). This might be due to the fact that in Mg limited plants an higher proportion of the available Mg was 

shifted in the synthesis of chlorophyll rather than into other processes or plant structures requiring Mg, as was likewise 

detected by Scott and Robson (1990) in subterranean clover (Trifolium subterraneum L.).  

As described earlier and is illustrated in Fig. 8b chlorosis and necrosis appeared in between the leave veins or were 

spread spot-like over the leaf surface. Therefore, chlorophyll degradation due to Mg deficiency (Cakmak and Kirkby 

2008) might be segregated to leaf parts which show clear symptoms of chlorosis and necrosis while leaf parts without 

these symptoms do not show degradation of chlorophyll. Such an inequality in chlorophyll distribution of leaves might 

have affected the outcomes of chlorophyll determination. 

Beside chlorophyll, soluble sugars in fully expanded leaves were determined. 'Mg low' plants exhibited a distinct 

accumulation of soluble sugars in leaves with proceeded plant development (Fig. 4b and c). A lack of available Mg 

might have led to an impaired phloem loading process in these plants what resulted in an accumulation of soluble 

sugars in source leaves. Moreover, beside an increase in total soluble sugars, we determined an increase of hexose 

sugars in the same leaves (Fig. 4b and c). This indicates a raised breakdown of sucrose into hexose sugar units. Similar 

outcomes were recorded by Huber (1984) in soybean plants (Glycine max L. Merr.) under potassium deficiency. Next 
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to Mg also potassium is essential for the loading of and the distribution within the phloem of photoassimilates (Cakmak 

et al. 1994a). Huber (1984) argues the increasing breakdown of sucrose into hexose sugars with an increased activity 

of the sucrose hydrolyzing enzyme invertase following an accumulation of sucrose. Beside, Farhat et al. (2016) 

detected an accumulation of sugars in Mg deficient Sulla carnosa plants what the authors likewise refer to an increased 

activity of the enzyme invertase due to an impaired phloem loading process.  

The fact, that soluble sugar concentrations did not reveal significant differences between the treatments on 14 DAO 

(Fig. 4a), can be referred to an less pronounced sink demand of roots at this early growth stage. However, with 

progressed plant development (35 and 56 DAO) (Fig. 4b and c), an increase of sink demand of developing roots 

resulted in significant differences between Mg treatments due to the above described reasons.     

 

Root growth as affected by the Mg supply  

Root growth showed a more severe reduction compared to shoot growth (Fig. 5a–d). For instance, the shoot growth 

parameters 'quantity of internodes' and 'plant height' did not show any significant difference compared to the higher 

Mg supplied plants at the end of the growing period (after 49 DAO) (Fig. 5c and d). While the total root biomass 

decreased up to 50%, the total shoot biomass was at most reduced up to 35% in 'Mg low' compared to 'Mg med' and 

'Mg high' plants (Fig. 5a and b). Also Mengutay et al. (2013) recorded a higher sensitivity of the root compared to the 

shoot growth in Mg limited maize (Zea mays) and wheat plants (Triticum aestivum) as well as Neuhaus et al. (2014). 

A higher sensitivity of the roots compared to the shoots to Mg deficiency is also reflected in the shoot-to-root ratios 

(Fig. 5b): 'Mg low' plants showed the highest shoot-to-root ratios while 'Mg high' plants exhibited the lowest ratio. 

However, the shoot-to-root ratio of 'Mg med' plants was similar high as of 'Mg low' plants. This is due to the fact that 

these plants showed a very high shoot biomass production, even higher than 'Mg high' plants (Fig. 5a). By comparison 

of our outcomes with other studies, our results are in accordance with Cakmak et al. (1994b) and Mengutay et al. 

(2013) who both demonstrated a severe reduction of root biomass and an increase of the shoot-to-root ratio under Mg 

deficiency. Besides, Gruber et al. (2013) found decreased root lengths in Mg deficient Arabidopsis plants. We 

confirmed these findings for potato in this study: Similar to the total root biomass the total root length showed a 

reduction up to 50% in 'Mg low' compared to 'Mg med' and 'Mg high' treated plants (Fig. 7). Cakmak et al. (1994b) 

and Marschner et al. (1996) refer a reduced root growth mainly to a hampered translocation of photoassimilates under 

Mg deficiency. However, Marschner et al. (1996) supposed that a further reason for a sucrose accumulation in source 

leaves might be a depressed sink demand. As discussed previously, our results showed a distinct accumulation of 



Chapter 5: Effect of magnesium deficiency and magnesium complementary fertilization on potato root growth 

 

84 

 

soluble sugars in fully expanded leaves of Mg deficient plants (Fig. 4b and c) what could indicate an impaired loading 

of the phloem with sucrose and thus, a restricted export of photoassimilates from source (fully expanded leaves) to 

sink organs (roots). On the other hand, it is possible that a reduced sink demand (reduced root growth), likely because 

of a reduced production of photoassimilates via photosynthesis due to Mg deficiency, lead to an accumulation of 

sucrose in source leaves.  

Opposite to our findings are the results stated by Hermans and Verbruggen (2005) who intended that Mg deficiency 

does not markedly reduce the root development. Hermans and Verbruggen (2005) argue their findings with differential 

distributions of photoassimilates in dependence on the position of the source leave. Based on the outcomes of 14C-

labelled sucrose analysis they could draw conclusions about the exact location of source and sink tissue. They 

illustrated that upper most expanded leaves are mainly translocating sucrose to young developing leaves while older 

leaves, located closer to the roots, are mainly exporting sucrose to the roots. Furthermore, the upper most expanded 

leaves were the first plant organs exhibiting symptoms of Mg deficiency while the older leaves with proximity to the 

roots did not suffer under Mg scarcity yet. Thus, the authors conclude that the latter leaves still were able to export 

enough photoassimilates to the roots. Explanation for the divergent findings of the mentioned studies might be the 

different experimental setups. While Cakmak et al. (1994b) as well as Mengutay et al. (2013) grew their plants under 

Mg deficiency starting at an early growth stage, Hermans and Verbruggen (2005) grew their plants for a period of 

three weeks under a sufficient supply of Mg, before setting them into a Mg-free nutrient solution. Hence, it is 

presumable that the Arabidopsis (Arabidopsis thaliana) seedlings in the experiment of Hermans and Verbruggen 

(2005) were able to establish already an adequate root biomass in the first weeks of growing under sufficient Mg 

supply. Therefore, the above mentioned studies do not oppose each other but results are the outcome of different 

experimental designs. Moreover, the results presented by Hermans and Verbruggen (2005) may indicate that Mg 

particularly affects the root development in the first weeks of plant growth. 

With view on the previous discussed results, it can be stated that a supply of 100 µM Mg can be considered as sufficient 

for potato root growth as these plants revealed similar results in root biomass (Fig. 5b), total root length (Fig. 7) and 

no accumulation of soluble sugars in source leaves (Fig. 4b and c) as did plants with 500 µM Mg supply.  

The complementary fertilization treatments ('+f' as well as 'to high') did not show significant impacts on the root 

development, although a clear tendency became evident that an additional Mg supply via the nutrient solution to 'Mg 

low' plants increased Mg leaf and root concentrations and total root lengths (Fig. 2b and 7). An Mg foliar application 

led, compared to an Mg complementary fertilization via the roots, to an only slight and temporally restricted increase 
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of Mg leaf concentrations and of the total root length (Fig. 2b and 7). This indicates that an Mg foliar application is 

not an effective tool to restore an Mg deficient nutrient status and depressed root growth of Mg deficient plants. By 

comparison, Neuhaus et al. (2014) showed more distinct effects by an Mg foliar application on Mg leaf concentrations 

and demonstrated a significant increase on root biomass. However, similarly to our findings, a raised supply of Mg via 

the nutrient solution resulted in a significant higher root biomass development compared to an Mg supply via leaves 

(Neuhaus et al. 2014). 

 

Conclusions 

Mg deficient plants revealed significant reduced root biomass and total root lengths. This might be referred to an 

hampered translocation of photoassimilates from source (leaves) to sink organs (roots) due to Mg deficiency as Mg 

deficient plants exhibited a sucrose accumulation in source leaves, what indicated an impaired loading of the phloem 

with sucrose. On the other hand, it is presumable that a reduced root growth due to Mg deficiency resulted in a 

decreased sink demand what in turn may shift the direction of sugar fluxes within the plant and results in an 

accumulation of soluble sugars in source leaves. Furthermore, our results demonstrated that an Mg supply of 100µM 

Mg represents a sufficient supply of Mg for potato root growth. The Mg complementary fertilization treatments in 

form of Mg foliar applications or Mg resupply via the nutrient solution did not show significant impacts on potato root 

growth. However, an additional Mg supply via the nutrient solution resulted in a clear increase of Mg leaf and root 

concentrations and of the total root lengths. Thus, an Mg resupply via the nutrient solution can partly represent an 

appropriate tool to ameliorate an Mg deficient nutrient status and reduced root growth due to Mg deficiency in potato.  
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Supplementary material 

SM_1: Used form and applied amounts (mg kg-1 soil) of nutrients under low and sufficient Mg supply of the soil 

culture system for plant propagation before transfer into nutrient solution. 

Nutrient [Form of nutrient] 
 

Applied amounts 
low Mg supply 

 

Applied amounts 
sufficient Mg supply 

 

Magnesium [Mg2SO4 x 7 H2O] 5 100 

Potassium [K2SO4] 300 300 

Nitrogen [Ca(NO)3] 300 300 

Phosphorus [Ca(PO4)2 x H2O] 100 100 

Calcium [CaCO3] 1300 1300 

Boron [H3BO3] 2 2 

Zinc [ZnSO4 x 7H2O] 2 2 

Molybdenum [Na2MoO4 x 2 H2O] 0.01 0.01 

Copper [CuSO4 x 5H2O] 2 2 

Manganese [MnSO4 x H2O] 

Iron [Fe(III) EDTA (13% Fe)] 

6 

3 

6 

3 
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SM_2: Effect of Mg complementary fertilizations ('+f' and 'to Mg high') on quantity of internodes and on plant heights 

in cm at eight various sampling dates (n = 4). Mean ± SE values. Treatments had no significant effect. 

             Internodes 

Days after 
treatment 

Mg low +f  
 

Mg low to 
Mg high 

 

Mg med +f Mg med to Mg 
high 

  9   7 ± 1   9 ± 1   9 ± 1   9 ± 1 

14   8 ± 1   9 ± 1 10 ± 2 10 ± 1 

21 11 ± 1 11 ± 1 12 ± 2 12 ± 1 

28 13 ± 2 12 ± 0 15 ± 2 14 ± 1 

35 13 ± 2 13 ± 0 15 ± 2 15 ± 1 

42 15 ± 1 14 ± 1 15 ± 1 16 ± 0 

49 15 ± 1 14 ± 1 15 ± 1 16 ± 0 

56 15 ± 1 14 ± 1 17 ± 2 16 ± 0 

 

Plant heights 

    

  9 16 ± 2 18 ± 1 22 ± 1 21 ± 2 

14 18 ± 1 19 ± 1 29 ± 5 25 ± 4 

21 35 ± 2 29 ± 3 37 ± 5 38 ± 2 

28 53 ± 3 48 ± 8 52 ± 5 53 ± 3 

35 66 ± 3 61 ± 7 68 ± 6 65 ± 3 

42 80 ± 3  76 ± 12 83 ± 7 82 ± 2 

49 87 ± 2  80 ± 22 91 ± 9 91 ± 2 

56 88 ± 4  80 ± 22 91 ± 5 90 ± 2 
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Running title: Cracking and fracture properties of potato tubers (Solanum tuberosum L.) 

 

Abstract 

BACKGROUND: Potato disorders lead to significant reductions of yield and quality of marketable tubers. 

Thumbnail cracks are non-infectious physiological disorders of the skin of tubers, which can significantly reduce 

the tuber appearance and hence, the overall quality. Next to thumbnail cracks, we aimed to characterize fracture 

properties of the tuber skin. Knowledge regarding physiological reasons that influence the susceptibility of potato 

tubers towards mechanical impacts and thus towards cracking and fracturing is limited. Tuber dry matter (DM) 

and starch content were demonstrated to correlate with the rheological properties of tubers, which, in turn, might 

affect the susceptibility of the tuber towards cracking and fracturing. Aside from this, divalent cations, such as 

calcium (Ca) and magnesium (Mg), and their distribution in the tuber, might affect the tuber susceptibility for 

mechanical impacts via cell wall stabilizing properties.  

 

RESULTS: Tubers with higher DM, starch and Ca concentrations, respectively, exhibited the highest resistances 

against mechanical impacts. 

 

CONCLUSIONS: The reason for the increased resistance of tubers against mechanical impacts with higher DM 

and starch concentrations is assumed to be related to a certain cell structure of these tubers, why a higher strength 

is needed to damage cell structures. Besides, the relation between higher Ca concentrations and the improved 

resistance of tubers against mechanical impacts is supposed to be linked with the role of Ca for linking cell wall 

polymers and thus stabilizing the cell wall.  
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Introduction 

A majority of the world´s potato production is used for fresh consumption; however, in industrial nations there has 

been a decrease in the consumption of fresh potatoes in recent years (Camire et al. 2009; Lange et al. 2014). At 

the same time, the demand for a high quality of food products, including vegetables and fruits, has sharply 

increased (Ali et al. 2010). Visual appearance is a major sensory quality attribute of fruits and vegetables (Zhang 

et al. 2014). It has been shown that the external appearance of potato tubers is one of the most important factors 

that influences consumer preferences (Fiers et al. 2010). A symptom that is likely to negatively impact consumer´s 

purchase behavior is the 'thumbnail crack', which is a small curved and few millimeter deep crack of the tuber skin 

(Fig. 1). These small injuries can significantly decrease the appeal of tubers (Hiller et al. 1985;  Bohl and Thornton 

2006). Furthermore, such small damage areas can serve as entrance points for secondary infections (Hide et al. 

1992) and hence might additionally reduce the quality and quantity of marketable tubers (Šaøec et al. 2006). 

Thumbnail cracks are classified as non-infectious physiological disorders as they are caused by abiotic factors like 

unfavorable environmental conditions—for instance, a rapid change of humidity or temperature, or inappropriate 

agricultural practices causing mechanical impacts during or after harvest (Sparks 1970; Dean and Thornton 1989).  

 

Figure 1: Typical occurrence of the 'thumbnail crack' symptom. 

 

Aside from the tuber´s susceptibility for thumbnail cracking, the further characterization of rheological properties 

of the tuber skin, especially its fracturability due to an applied force was focused in the present study. Determinants 

of the rheological properties, which, in turn, might affect the susceptibility for cracking or fracturing of the tuber 

skin are the cultivar (Peters 1996; Kaur et al. 2007), storage conditions (Kaur et al. 2007), soil type (Hesen et al. 

1960), or the status of nutrient supply (Hesen et al. 1960; Peters 1996; McNabnay et al. 1999). However, 

knowledge with respect to the physiological reasons that affect the susceptibly of potato tubers cracking and 

fracturing is rare. There are indications that the tuber dry matter (DM) and starch concentrations are determinants 
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that are correlated with the tuber´s rheological properties (Bordoloi et al. 2012). The tuber´s DM and starch 

concentrations may vary considerably between cultivars (Vakis 1978; Jansen et al. 2001). Furthermore, the 

potassium (K) and magnesium (Mg) status of the plant are both known to affect on the tuber´s DM and starch 

concentrations—but with divergent outcomes (Laughlin 1966; Miča 1979; Panique et al. 1997; Poberezny et al. 

2011). To our knowledge, the impact of K and Mg nutrition on the tuber´s DM and starch concentrations in relation 

to the formation of thumbnail cracks and fracture properties of the tuber skin has never been investigated.  

Moreover, the stability of cell wall and thus of the tissue that forms the tuber periderm, can be affected by divalent 

cations, such as Ca and Mg. These divalent cations are supposed to stabilize the cell wall via cross-linking cell 

wall polymers (Pooviah 1986; Andersson et al. 1994; Weiler and Nover 2008), which might affect the 

susceptibility of tubers towards cracking or to fracture. In addition, the distribution patterns of DM, starch, and 

minerals within the tubers themselves might affect the susceptibility of tubers towards forming thumbnail cracks 

or fractures.  

The assumptions of the present study are as follows: 

First, a hypothesis is drawn that the tuber´s susceptibility to form thumbnail cracks and to fracture will correlate 

with the tuber DM and starch concentrations, which are, in turn influenced by the K and Mg supply and the cultivar. 

Second, based on the relations between Ca, and likely also Mg, and the cell wall stability, a decreasing 

susceptibility of the tubers to form thumbnail cracks and to fracture with increasing Ca and Mg tuber 

concentrations are expected. Finally, it is assumed, that distinct distribution patterns of DM, starch, and minerals 

within the tuber can correlate to the occurrence of thumbnail cracks and on the susceptibility to fracture.  

 

Material and Methods 

Plant Growth Conditions  

In 2015, a field trial with two sites (Müncheberg and Uedem, Germany), four different K and Mg fertilization 

treatments (Table 1), and two cultivars, Omega and Laura, was conducted. Both cultivars are assigned to a 

medium-early maturity group, but are different in their intended use, cooking type, and tuber shape. While Omega 

is used as a table potato and a crisp potato, falling under the mealy cooking type with a round–oval tuber shape, 

Laura is only used as a table potato, with a waxy cooking type and an oval tuber shape (Europlant 2014; Federal 

Plant Variety Office 2016). Each combination of the fertilization treatment and cultivar was replicated four times. 

The trial at the site in Müncheberg (following designated as ꞌMünchebergꞌ) was conducted in a completely 

randomized block design, while at the trial of the site Uedem (following designated as ꞌUedemꞌ) two cultivars were 

grown in two separated blocks, which were themselves completely randomized. The different K and Mg supplies 
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(F1–F3, control = Ctr) are shown in Table 1. ꞌF1ꞌ represents a fertilization regime without K and without Mg. The 

fertilization treatment ꞌF2ꞌ was supplied with K, but without Mg. The fertilization treatment ꞌF3ꞌ received Mg, but 

no K. The 'Ctr' treatment was supplied with K as well as with Mg, according to common agricultural practice. K 

was applied as K2O via potassium sulphate (50% K2O; 45 %SO3) and Mg was applied as MgO via kieserite (25% 

MgO; 50% SO3). All the other nutrients were provided as shown in Table 1.  

Further field trials were performed in 2016 with the two cultivars Omega and Laura, and four different K and Mg 

fertilization treatments at three sites (Müncheberg and Uedem, Germany; Kościan, Poland). The experimental 

design for the sites ꞌMünchebergꞌ and ꞌUedemꞌ were the same as the trials conducted in 2015 and the design of the 

trial at the site Kościan (following designated as ꞌKościanꞌ) was the same as the design employed in ꞌMünchebergꞌ 

in 2015 and 2016. The climate conditions throughout the vegetation periods (supplementary material (SM), SM_1) 

and the soil types and the K and Mg soil status (SM_2) were documented for all three sites.  

 

Table 1: Nutrient supply (in kg ha-1) of the four fertilization treatments (F1, F2, F3, and Control). 

 

K2O MgO  
 

SO3  
 

N 
 

P2O5 

F1 x x 535 x 120 

F2 300 x 266 92 120 

F3 x 130 271 90 120 

Control 
 

300 130 x 185 120 

 

 

Tuber Handling after Harvest and Assignment of Analyses  

After harvest, the tubers were stored at 4°C and 70% relative humidity. All the analyses were conducted across a 

period of eight weeks after harvest. In 2015, only whole tubers were analyzed. Aside from this, the evaluation of 

the thumbnail cracks was performed only with tubers from ꞌMünchebergꞌ, while fracturability was assessed only 

with tubers from ꞌUedemꞌ. DM, starch, K, Mg and Ca concentrations were assessed in tubers from both trials. In 

2016, evaluations for the thumbnail crack occurrence were performed with tubers from ꞌMünchebergꞌ and 

ꞌKościanꞌ. The determination of fracturability were performed with whole tubers from ꞌMünchebergꞌ, ꞌUedemꞌ, and 

ꞌKościanꞌ and with bud- and the stem-ends with tubers from ꞌMünchebergꞌ and ꞌKościanꞌ. Dry matter, starch, K, 

Mg, and Calcium (Ca) concentrations and their distributions were assessed in whole tubers from ꞌMünchebergꞌ, 

ꞌUedemꞌ, and ꞌKościanꞌ and with the tuber segments bud-end, stem-end, middle, flesh, and skin with tubers from 

ꞌMünchebergꞌ and ꞌKościanꞌ.  
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Dry Matter and Starch Concentrations 

For DM and starch analyses, an average of 3–5 tubers or tuber segments of 3–5 tubers per treatment was formed. 

The used tuber quantity was chosen on the basis of tuber size, e.g., three bigger tubers or five smaller tubers. For 

DM determination, tubers were cut into pieces and the fresh sample weight of the subsample was determined. 

Afterwards, the sample was dried at 60°C for 24 hours and, subsequently, at 105°C for four hours and the dry 

weight was determined.  

For starch analysis, tubers were cut into pieces and the samples were freeze-dried for four days in a freeze-dryer 

(EPSILON 2-40, Christ, Germany). Afterwards, the tubers were grinded to 0.5 mm of flour in a hammer mill (DFH 

48, Culatti, Switzerland). Following this step, the residual moisture was assessed by determining the weight of a 

subsample of freeze-dried potato flour before and after drying for 12 hours at 105°C. Starch was quantified 

according to ICC standard no. 123 (modified). In 100 ml flasks, 25 ml of hydrochloric acid was added twice to 1 

g of potato flour and placed for 15 minutes in a scalding water bath (Memmert, Germany); it was then shaken for 

the first eight minutes. The flasks were filled up to 90 ml with distilled water and cooled to room temperature. 

Following this, 5 ml of tungstophosphoric acid (H3PW12O40) was added and panned. Finally, the flasks were filled 

up to 100 ml with distilled water and the optical rotation was examined in a polarimeter (Kreipo 0.05, Zeiss, 

Germany) at 589 nm.  

 

Mineral Concentrations  

Prior analyses, samples were prepared as described for starch determinations. The tuber skin was peeled with a 

common peeler with an average thickness of peel of 1.2 mm. In 2016, the tubers of the four biological replicates 

per fertilization treatment were pooled to form three technical replicates when enough tubers were not available. 

The minerals were assessed following an adjusted method as described by Wheal et al. (2011). From each sample, 

100 mg was digested in 4 ml of 65% (v/v) nitric acid and 2 ml of 30% (v/v) hydrogen peroxide for 75 minutes at 

200°C and 40 bar in a microwave (Ethos 660; MWT AG, Switzerland). Subsequently, the samples were filled up 

to 25 ml with distilled water. The concentrations of K, Mg, and Ca were examined by using inductively coupled 

plasma optical emission spectrometry (Vista-PRO CCD Simultaneous ICP-OES; Varian Inc., USA).  

 

Thumbnail Crack Evaluation 

To evaluate the susceptibility to form thumbnail cracks, the tubers were damaged in a controlled way with the help 

of a drum (Flottwerk H. J. Dames GmbH & Co. KG, Rotenburg an der Fulda, Germany). Here, the mechanical 

impacts on the potato tubers were simulated, which might also occur during or after harvest. Each sample was 
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assessed to a volume of 6 liters and damaged in the drum for 50 seconds. A continuous tuber temperature of 4°C 

was preserved throughout the analysis. Subsequently, the tubers were stored for five days at room temperature, 

followed by an evaluation of the thumbnail cracks with grades ranging from 1–9 (1 = very severe occurrence; 3 = 

severe occurrence; 5 = medium occurrence; 7 = slight occurrence; 9 = almost no occurrence) according to a 

standard procedure as has been described by Meyer et al. (2014). The thumbnail cracks were only analyzed on 

tubers from ꞌMünchebergꞌ in both the experimental years and, furthermore, as shown in the supporting information 

in 2016 from ꞌKościanꞌ.  

 

Tuber Skin Fracturability Measured by Penetration Test 

Fracturability of the tuber skin was assessed by using a texture analyzer (Stable Micro Systems Ltd., TA.XT.plus, 

UK). 'Fracturability' is defined as the complete loss of resistance of the tuber skin due to a certain applied force 

that causes a destruction of the potato peel and the subjacent soft tissue (SM_3). The measurement was carried out 

at a speed of 2 mm per second and a 5-kg measuring cell was used. A stamp of 5 mm Ø penetrated the potato tuber 

with a depth of 10 mm. To preserve a tuber temperature of approximately 4°C throughout the measurement, the 

tubers were stored in a freezer cabinet immediately after removal from the storage device prior to analysis for one 

hour (at most).  

For assessment of fracturability of the whole potato, at least 20 tubers per treatment were considered for the 

analyzed potato bud- and the stem-ends of at least 12 tubers were taken. Furthermore, in 2016, the tubers of the 

four biological replicates per fertilization treatment were pooled into three technical replicates due to the restricted 

availability of tubers per treatment. 

 

Statistics 

The statistical software R (R Core Team 2016) was used to evaluate the data. The data evaluation was split into 

two main steps. In a first step, the values from 2015 were considered. Here, the focus was set on the effect of the 

fertilization treatment and the cultivar. A statistical mixed model was separately defined for each site with 

fertilization treatment and the cultivars, and the interaction of fertilization treatment and cultivar as fixed effects. 

The splitting, according to the sites, was necessary because of further influence factors, which were not orthogonal 

for all sites. The block and the plots (nested in block) were regarded as random factors. The data were assumed to 

be normally distributed and heteroscedastic due to the different sites. These assumptions are based on graphical 

residual analyses. Based on these models, Pseudo R2 was calculated and the analyses of variances (ANOVA) were 

conducted, followed by multiple contrast tests in order to compare the several fertilization treatments and the 
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cultivars, respectively. In the second step, the values from 2016 were considered, with a focus on the cultivar and 

the tuber segment. Only the fertilization treatment ꞌCtrꞌ was investigated. The statistical procedure and the 

assumptions about the data were the same as in the first step. All tests were performed at a significance level of p 

< 0.05. 

 

Results 

Tuber Cracking and Fracturability and DM, Starch, and Mineral Concentrations based on the Fertilization 

Treatment and the Cultivar (2015) 

The fertilization regime and the cultivar did not show any impact on the occurrence of thumbnail cracks (SM_4a). 

The fracturability was not influenced by the fertilization treatment as well, but it was significantly different in the 

cultivars in form of a higher fracturability in Omega compared to Laura (SM_4b).  

The fertilization treatment did not affect the DM and starch concentrations in the present study (Table 2). However, 

there was a significant impact of the cultivar on DM: Tubers of the cultivar Omega from ꞌMünchebergꞌ revealed a 

significantly higher DM in comparison to Laura (Table 2). Similar findings were assessed in tubers from ꞌUedemꞌ 

(Table 2). 

Likewise, for the DM and starch concentrations, the fertilization treatment did not cause a significant variation in 

the tuber K as well as in the tuber Ca concentrations. The fertilization treatment ꞌF1ꞌ, however, exhibited 

significantly lower Mg concentrations in comparison to the ꞌCtrꞌ fertilization treatment in tubers from ꞌMünchebergꞌ 

(Table 2). Moreover, Omega showed significantly lower Mg concentrations in comparison to Laura in tubers from 

this site (Table 2). According to the ANOVA test, there was a significant influence of the cultivar on the Ca 

concentrations in tubers from both trials (Table 2, below Table). However, the results of multiple contrast tests 

revealed significantly higher Ca concentrations only in tubers of the fertilization treatment ꞌF2ꞌ from ꞌUedemꞌ 

(Table 2). 
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Table 2: Dry matter (%), starch (% in DM), K, Mg, and Ca (mg g-1 DM) concentrations of the whole tubers of the 

cultivars Omega and Laura from ꞌMünchebergꞌ and ꞌUedemꞌ under different K- and Mg-fertilization treatments 

(F1, F2, F3, and Ctr) in 2015. Mean ± SE values (n = 3−4). Levels of significance for cultivar, fertilization, and 

its interaction tested via the ANOVA test are shown below the table with *, **, and *** for p < 0.05, 0.01, and 

0.001, respectively. ns = not significant. Capitals = significant differences between the cultivars of one fertilization 

treatment, small letters = significant differences between the fertilization treatments, and no indication = no 

significant differences. 

Müncheberg 
 
 
    Omega 

              F1 
 

F2              F3              Ctr 

    DM 24.03 ± 0.39 B 23.69 ± 1.23 B 23.67 ± 1.77 B 24.30 ± 0.88 B 

    Starch 63.96 ± 1.92  66.06 ± 2.36  65.45 ± 1.09  63.88 ± 2.31  

    K 23.29 ± 1.86  25.29 ± 0.95  24.52 ± 2.15  26.16 ± 1.60  

    Mg 

    Ca 

0.90 ± 0.07 

0.29 ± 0.06 

Aa 1.03 ± 0.03 

0.23 ± 0.03 

Aab 1.05 ± 0.12 

0.26 ± 0.05 

Aab 1.07 ± 0.03 

0.27 ± 0.07 

Ab 

Laura                          

   DM 20.85 ± 1.01 A 20.39 ± 1.09 A 20.46 ± 0.53 A 19.90 ± 0.99 A 

   Starch 61.18 ± 1.94   61.87 ± 3.76  62.23 ± 1.64  65.47 ± 2.62  

   K 25.05 ± 2.60  27.66 ± 1.72  24.87 ± 1.15  27.29 ± 0.94  

   Mg 1.18 ± 0.13 B 1.25 ± 0.03 B 1.21 ± 0.01 B 1.21 ± 0.04 B 

   Ca 0.21 ± 0.06  0.25 ± 0.11  0.19 ± 0.05  0.20 ± 0.05  

Uedem 

 
   Omega 

 

   

   DM 20.64 ± 1.94  21.14 ± 2.28  23.12 ± 1.65 B 21.69 ± 0.68  

   Starch 68.19 ± 2.05  67.91 ± 2.44  69.88 ± 1.02  69.05 ± 2.46  

   K 27.17 ± 2.86  29.23 ± 6.75  25.96 ± 0.62  26.76 ± 1.10  

   Mg 

   Ca 

1.11 ± 0.08 

0.47 ± 0.03 

 1.27 ± 0.23 

0.56 ± 0.15  

 

B 

1.17 ± 0.05 

0.45 ± 0.08 

 1.21 ± 0.04 

0.45 ± 0.06 

 

Laura                          

   DM 18.75 ± 1.23  19.06 ± 0.40  19.35 ± 1.72 A 18.31 ± 0.76  

   Starch 65.56 ± 1.07  66.42 ± 2.41  66.46 ± 1.26  65.89 ± 1.48  

   K 28.53 ± 2.22  27.81 ± 1.13  26.79 ± 2.26  23.76 ± 4.92  

   Mg 1.20 ± 0.06  1.20 ± 0.02  1.14 ± 0.07  1.12 ± 0.08  

   Ca 0.37 ± 0.03  0.38 ± 0.01 A 0.38 ± 0.05  0.36 ± 0.01  

DM Müncheberg: Cultivar ***, fertilization  ns, cultivar x fertilization  ns; Starch Müncheberg: Cultivar **, fertilization  ns, cultivar x fertilization  ns; K 

Müncheberg: Cultivar *, fertilization **, cultivar x fertilization  ns; Mg Müncheberg: Cultivar ***, fertilization *, cultivar x fertilization  ns; Ca Müncheberg: 

Cultivar *, fertilization  ns, cultivar x fertilization  ns; DM Uedem: Cultivar **, fertilization  ns, cultivar x fertilization  ns; Starch Uedem: Cultivar *, 

fretilization  ns, cultivar x fertilization  ns; K Uedem: Cultivar  ns, fertilization  ns, cultivar x fertilization  ns; Mg Uedem: Cultivar  ns, fertilization  ns, 

cultivar x fertilization  ns; Ca Uedem: Cultivar **, fertilization  ns, cultivar x fertilization  ns. 
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Tuber Cracking and Fracturability and DM, Starch, and Mineral Concentrations based on the Fertilization 

Treatment (2016) 

Likewise as in the experimental year 2015, in 2016, there was no impact of fertilization treatment on the 

investigated parameters. Therefore, in 2016, the focus was set on the impact of the cultivar and of the different 

tuber segments. Here, unless otherwise mentioned, tubers from ꞌKościanꞌ (SM_5 and 6) showed negligible 

deviation in comparison to tubers from ꞌMünchebergꞌ and ꞌUedemꞌ. Thus, the following results focus on analyses 

done with tubers from ꞌUedemꞌ and ꞌMünchebergꞌ.  

 

Tuber Cracking and Fracturability and DM, Starch, and Mineral Concentrations based on the Cultivar and their 

Distribution in the Tuber (Müncheberg, 2016) 

The influence factors cultivar and tuber segment, respectively, did not affect the occurrence of thumbnail cracks, 

although there was a tendency for a higher occurrence of thumbnail cracks in the cultivar Laura in comparison to 

Omega (Fig. 2a). However, the influence factors cultivar and tuber segment demonstrated more distinct effects on 

fracturability: first, Omega showed significantly higher fracturability in comparison to Laura; second, the stem-

ends demonstrated a significantly higher fracturability in comparison to the bud-ends (Fig. 2b).  

 
Figure 2: Thumbnail crack occurrence of whole tubers, tuber stem, and bud-ends of the cultivars Omega and 

Laura from ꞌMünchebergꞌ for the control fertilization treatment in 2016 (n = 4) (a). Thumbnail score: 1 = very 

severe occurrence, 3 = severe occurrence, 5 = medium occurrence, 7 = slight occurrence, and 9 = almost no 

occurrence. Fracturability of whole tubers, the tuber stem, and bud-ends of the cultivars Omega and Laura from 

ꞌMünchebergꞌ for the control fertilization treatment in 2016 (n = 3) (b). Mean ± SE values. Levels of significance 

tested via the ANOVA test are shown in the right lower corner with ** and *** for p < 0.01 and 0.001, respectively. 

ns = not significant. Capitals = significant differences between the cultivars of one tuber segment, small letters = 

significant differences between tuber segments of one cultivar and the storage period, and no indication = no 

significant differences.  
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Tubers revealed significantly higher DM and starch concentrations in Omega in comparison to Laura when the 

DM and starch concentrations were averaged over all the tuber segments of one cultivar (Table 3). The significant 

lowest DM as well as starch concentrations were examined in the tuber skin (Table 3). There was a tendency of 

ascertainable lower DM in the bud- in comparison to the stem-ends of the tubers (Table 3).  

Opposite to the DM and starch concentrations, the significant highest K, Mg, and Ca concentrations were assessed 

in the tuber skin (Table 3). Furthermore, K showed higher concentrations in the bud- in comparison to the stem-

ends (Table 3). Omega revealed in tendency higher Ca concentrations than Laura, however, these differences were 

not significant: For instance, the Ca concentrations were up to one-third higher in the tuber skin of Omega in 

comparison to Laura (Table 3); Due to significant interactions of the influence factors cultivar and the tuber 

segment, a statistical contrast test between the cultivars of the averaged Ca concentrations over all the tuber parts 

was unfeasible. Nevertheless, according to the ANOVA test, the cultivar exhibited a significant impact on the Ca 

concentrations (Table 3, below Table). However, tubers from ꞌKościanꞌ revealed significantly higher Ca 

concentrations in Omega in comparison to Laura when the Ca concentrations were averaged over all the tuber 

segments of one cultivar (SM_5), as there were no significant interactions between the influence factors cultivar 

and tuber segment in tubers from this site (SM_5, below Table). 
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Table 3: Dry matter (%), starch (% in DM), K, Mg, and Ca (mg g-1 DM) concentrations of whole tubers and the tuber segments stem- and bud-end, middle, skin, and flesh of the 

cultivars Omega and Laura from ꞌMünchebergꞌ during control fertilization treatment in 2016. Mean ± SE values (n = 3–4). Levels of significance tested via the ANOVA test are 

shown below the table with *, **, and *** for p < 0.05, 0.01, and 0.001, respectively. ns = not significant. Capitals = significant differences between cultivars, and small letters = 

significant differences between tuber segments of one cultivar.  

 

 
 
  
    Omega 

  whole tuber 
 

        stem-end           middle         bud-end              skin               flesh  Average over  
tuber segments 
 

    DM 24.65 ± 0.49  24.45 ± 0.71 b 24.49 ± 1.29 b     22.54 ± 0.46 ab   17.99 ± 0.47    a     23.80 ± 1.88     b   22.65 ± 2.73     B 

    Starch 68.79 ± 2.15  70.28 ± 2.34 b 72.52 ± 3.03 b 68.76 ± 2.67 b   46.18 ± 3.35    a  74.27 ± 1.66     b   64.43 ± 11.49   B 

    K 26.04 ± 0.61  21.17 ± 0.72 a 23.09 ± 0.62 ab     28.16 ± 1.39 b       35.62 ± 1.45    c        22.04 ± 0.83     ab      26.02 ± 6.01      

    Mg 

    Ca 

1.19 ± 0.08 

0.24 ± 0.01 

 0.96 ± 0.05 

0.28 ± 0.04 

a 

a 

1.02 ± 0.05 

0.20 ± 0.01 

a 

a 

      1.12 ± 0.01 

      0.30 ± 0.01 

ab 

a 

      1.37 ± 0.03     b 

      0.93 ± 0.07     b 

         0.97 ± 0.01     a 

         0.13 ± 0.01     a 

    1.09 ± 0.17    

    0.37 ± 0.32   

 

 

  Laura 

    DM 23.66 ± 5.71   20.93 ± 1.17 bc 18.96 ± 1.23 abc 17.23 ± 0.98 ab    14.75 ± 0.91   a 20.59 ± 0.29     b        18.49 ± 2.56     A 

    Starch 58.90 ± 1.06  64.37 ± 1.16 bc 62.59 ± 0.18 bc 60.88 ± 0.89 bc 44.64 ± 3.06    a 68.13 ± 0.11     c   60.12 ± 9.06    A 

    K 25.93 ± 2.94  20.63 ± 3.31 ab 22.05 ± 1.58 ab 27.08 ± 1.66 b        36.87 ± 1.46    c       19.75 ± 1.27     a         25.28 ± 7.07  

    Mg 

    Ca 

1.16 ± 0.07 

0.19 ± 0.03 

 

 

1.14 ± 0.04 

0.27 ± 0.04 

ab 

a 

1.04 ± 0.04 

0.20 ± 0.04 

a 

a 

1.07 ± 0.04 

0.24 ± 0.04 

a 

a 

         1.34 ± 0.03    b 

         0.63 ± 0.05    b 

        1.05 ± 0.07     a 

        0.14 ± 0.05     a 

    1.13 ± 0.12 

    0.29 ± 0.19 

        DM: Cultivar **, tuber segment ***, cultivar x tuber segment  ns; Starch: Cultivar *, tuber segment ***, cultivar x tuber segment  ns; K: Cultivar  ns, tuber segment ***, cultivar x tuber segment  ns;  

        Mg: Cultivar  ns, tuber segment ***, cultivar x tuber segment **; Ca: Cultivar *, tuber segment ***, cultivar x tuber segment  ***. 

 



Chapter 6: Cracking and fracture properties of potato tubers and their relation to dry matter, starch and mineral distribution 

100 

 

Fracturability and DM, Starch, and Mineral Concentrations based on the Cultivar (Uedem, 2016) 

Omega demonstrated a significant higher fracturability as well as significant higher DM and Ca concentrations in 

comparison to Laura (Figs. 3a, 3e, and 3f). Aside from this, there was an impact of the cultivar on the starch 

concentrations that was detected by the ANOVA test, but without the significant effects put forward by a detailed 

contrast test.  

 

Figure 3: Dry matter (a), starch (b), K (c), Mg (d), and Ca (e) concentrations in relation to the tuber´s fracturability 

(f) of whole tubers of the cultivars Omega and Laura from ꞌUedemꞌ with respect to control fertilization treatment 

in 2016. Mean (shown inside the bars) ± SE values (n = 4). Levels of significance tested via the ANOVA test are 

shown in the left upper corner with *, **, and *** for p < 0.05, 0.01, and 0.001, respectively. ns = not significant. 

Capitals = significant differences between the cultivars, and no indication = no significant differences.  

 

Discussion 

Effect of Fertilization Treatment 

The fertilization treatment did not show a clear impact on the occurrence of thumbnail cracks and on the 

fracturability as well as on the DM, starch, and mineral concentrations in both years of the experiment and at all 

the three field sites. An already sufficient supply of K and Mg in the soils of the field sites in the present study is 

probably reasonable for the lack of a response to the fertilizer application (SM_2). This assumption is strengthened 

by the fact that even the tuber yield remained unaffected by the K and Mg fertilization treatments (SM_7). 

Therefore, we conclude that a luxury supply of K and Mg, which goes well beyond a sufficient supply, does not 
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have any impact on the investigated parameters. Consequently, the following discussion focuses on the influence 

of the cultivar and tuber segments on the occurrence of thumbnail cracks and the fracturability as well as on their 

relationship to the tuber DM, starch, and mineral concentrations. 

 

Thumbnail Crack Occurrence and Fracturability in Relation to the DM, Starch, and Mineral Concentrations 

and Distributions 

The thumbnail crack evaluations did not show any significant influence by the different treatments, except a slight 

effect due to the cultivar in form of a higher occurrence of thumbnail cracks in Laura in comparison to Omega 

(Fig. 2a and SM_6a). The sensitivity of Laura to tuber skin damage may be related to its typical tuber shape, which 

is long-oval—such a trait is more prone to damage (Šaøec et al. 2006)—Omega is round-oval (Europlant 2014; 

Federal Plant Variety Office 2016). In contrast to the thumbnail evaluations, more distinct differences due to the 

cultivar and tuber segment became obvious during fracturability. The tubers of Omega exhibited a higher 

fracturability in comparison to those of Laura (Figs. 2b, 3f, SM_4b, and SM_6b). This might be related to the 

higher DM and starch concentrations (Fig. 3a and b, Table 2 and 3, and SM_5) of Omega in comparison to Laura. 

Singh et al. (2008) explored rheological parameters like the fracturability and hardness of potato tubers based on 

their DM and starch concentrations. The authors determined the highest fracturability and hardness in the cultivars 

that also exhibited the highest DM and starch concentrations. Equally, Bordoloi et al. (2012) demonstrated clear 

differences in textural characteristics, such as hardness and cohesiveness, between mealy and waxy potato 

cultivars, in which the authors refer to microstructural features such as cell size and structure, which, in turn, were 

closely related to the cultivars’ DM and starch concentrations. They argue that mealy cultivars, possessing higher 

amounts of DM and starch, show smaller cell sizes and a more well-defined cell structure. Similar results were 

already published by Hudson (1975), who showed that bruising susceptibility of tubers was highest, which had 

low specific gravity but large cell sizes. Larger cells are thought to be the ones that are first damaged 

(Konstankiewicz et al. 2001; 2002), while smaller cells exhibit greater surface area per unit volume and thus may 

need greater strength to be separated or damaged (Šaøec et al. 2006).  

Furthermore, the stem-ends of tubers illustrated a superior fracturability compared to bud-ends (Fig. 2b and 

SM_6b). Meanwhile, the stem-ends exhibited higher DM concentrations in comparison to the bud-ends (Table 3 

and SM_5). This might have led to higher resistances of the stem- in comparison to the bud-ends owing to the 

previously described reasons.  

While our results showed increasing DM from the bud- to the stem-end, it was the opposite for K (Table 3 and 

SM_5). These outcomes are in accordance with Johnston et al. (1968), who also noted increasing DM, but 
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decreasing K concentrations, from the bud-end to the stem-end in potato tubers; the work of Westermann et al. 

(1994) contained the same observations. Likewise, LeRiche et al. (2009) assessed higher K concentrations at the 

bud-end compared to the stem-end of potato tubers. On the one hand, K is supposed to have an positive effect on 

tuber DM and starch formation, which can be referred to the roles of K in photosynthesis and the translocation of 

the assimilates from source, such as photosynthetic active leaves, to sink organs, which are in the case of potato 

especially roots and tubers. This issue is, for example, described in the reviews by Römheld and Kirkby (2010) or 

Zörb et al. (2014). On the other hand, K is mainly responsible for regulating the osmotic potential of cell sap, and 

therefore, of central importance for the maintenance of turgor pressure or cell growth (Mengel and Arneke 1982; 

Zörb et al. 2014). Thus, we suppose that there is a relationship between decreasing DM, while increasing K 

concentrations from the stem to the bud-end due to the osmotic properties of K. K can lead to an increase of cell 

and tuber water content, which, in turn, can result in a reduction of DM (Schippers 1968; Westermann et al. 1994).  

Apart from higher DM in Omega in comparison to Laura, Omega showed a clear trend of higher Ca concentrations, 

especially in the tuber skin (Fig. 3e, Table 2 and 3, SM_5). Our findings are in accordance with Subramanian et 

al. (2011), who also found markedly high Ca concentrations in the tuber´s surface layers in contrast with the tuber´s 

flesh. The plant cell wall has several main constituents; these include pectin, hemicellulose, and cellulose. With 

approximately 60%, pectin is the main component of the cell walls of potato (van Dijk et al. 2002; Sila et al. 2009). 

Pectin mainly consists of a complex mixture of polysaccharides, which are cross-linked by the binding of divalent 

cations, such as Ca2+, on the free carboxyl groups (Pooviah 1986; Weiler and Nover 2008). Thus, Ca can contribute 

to improve the cell wall stability of plant-based foods (Pooviah 1986). For instance, Conway et al. (1994) 

demonstrated increased fruit firmness and reduced decay in apples (Malus domestics Borkh.) through postharvest 

treatment with Ca. Likewise, Glenn and Poovaiah (1990) displayed that Ca-untreated apples (Malus domestics 

Borkh.) showed in the regions of the middle lamella distended or even separated regions, while cell-to-cell contact 

was maintained in Ca-treated apples during storage. Based on these relations between Ca and cell wall stability, 

we assume that Omega showed superior cell wall stability in comparison to Laura, which has contributed to the 

higher resistance of Omega. Aside from Ca, Mg is also supposed to increase cell wall stability via linkage to cell 

wall polymers (Andersson et al. 1994). However, the results of the present study did not indicate such an effect by 

Mg. 

 

Conclusions 

The occurrence of thumbnail cracks and fracturability of the tuber were investigated based on the (i) varying K 

and Mg supply, (ii) the cultivar, (iii) the DM and starch, and the (iv) mineral concentrations. Contrary our initial 
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presumption, no clear effect of the fertilization treatment on the investigated rheological properties and on the DM, 

starch, and mineral concentrations was detectable, likely due to a sufficient supply of K and Mg in the soils of the 

field sites in the present study. However, the present study allowed drawing following conclusions: 

1. The cultivar ꞌOmegaꞌ and the tuber segment ꞌstem-endꞌ, which both revealed higher DM and starch 

concentrations, exhibited a higher resistance against the caused mechanical impacts. The relationship of 

higher DM and starch concentrations and increased resistance against mechanical impacts might be 

referred to certain cultivar characteristics of mealy cultivars, which are usually accompanied by higher 

DM and starch concentrations. 

2. The cultivar ꞌOmegaꞌ, which exhibited higher Ca concentrations, demonstrated a higher resistance against 

the caused mechanical impacts. This effect due to higher Ca concentrations can be traced to the role of 

Ca in stabilizing cell walls via linking cell wall polymers. A balanced Ca supply, especially of tubers 

exhibiting lower Ca concentrations, therefore might be of importance to maintain a higher resistance of 

tubers against mechanical impacts.   
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Supplementary material 

 

 
SM_1: Climate conditions (average day temperature in °C and precipitation in mm) of the sites Müncheberg (a) 

and Uedem (b) throughout the vegetation period in 2015 and of the sites Müncheberg (c), Uedem (d), and Kościan 

(e) throughout the vegetation period in 2016. 
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SM_2: Soil type and soil nutrient status of K and Mg (in mg 100 g-1 soil) in the field sites before fertilization 

treatments. 

Date of soil sampling: † 
February 2015; 

‡
 April 2015; 

§
 August 2016 

 

 

 

 

 

SM_3: Schemes for the conduction of tuber skin penetration analyses and of used tuber parts for determination of 

fracturability, and DM, starch, and mineral analyses. During penetration of the potato tuber (a), the needed force 

(N) for fracturability is recorded. This is the point of the highest force (N) on a force-deformation curve (point of 

tuber skin fracture, b), which is characterized by a subsequent decline of force. A sand pillow was placed below 

the tuber or tuber segment, respectively, which served as a counter bearing. For the measurements of the whole 

tuber, the stamp penetrated in the middle of the tuber (a). For measurements of the tuber bud- and stem-ends, the 

tubers were cut the middle and each half of the tuber was placed with its sliced side on the sand pillow, while the 

stamp penetrated the opposite bud- or stem-end, respectively (c). 
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Soil type loamy sand sandy clay luvisol 

K   11.7 11.0 12.5 

Mg  3.8 6.5 7.4 
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SM_4: Thumbnail crack occurrence of whole tubers of the cultivars Omega and Laura from ꞌMünchebergꞌ (a) and 

the fracturability of whole tubers of the cultivars Omega and Laura from ꞌUedemꞌ (b) under different K and Mg 

fertilization treatments in 2015. Mean ± SE values (n = 4). Levels of significance tested via ANOVA are shown 

in the right lower corner with * and *** for p < 0.05 and 0.001, respectively. ns = not significant. Capitals = 

significant differences between the cultivars of one fertilization treatment, and no indication = no significant 

differences.  
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SM_5: Dry matter (%), starch (% in DM), K, Mg, and Ca (mg g-1 DM) concentrations of whole tubers and the tuber segments stem- and bud-end, middle, skin, and flesh of the 

cultivars Omega and Laura from ꞌKościanꞌ during control fertilization treatment in 2016. Mean ± SE values (n = 3–4). Levels of significance tested via the ANOVA test are shown 

below the table with *, **, and *** for p < 0.05, 0.01, and 0.001, respectively. ns = not significant. Capitals = significant differences between cultivars, and small letters = significant 

differences between tuber segments of one cultivar.  

 

 
 
  
    Omega 

  whole tuber 
 

        stem-end           middle         bud-end              skin               flesh  Average over  
tuber segments 
 

    DM 23.61 ± 1.19  26.89 ± 0.73 b 24.41 ± 1.14 ab     24.01 ± 1.43 ab   20.63 ± 0.79    a     26.11 ± 0.95     b   24.41 ± 2.42     B 

    Starch 68.77 ± 1.41  70.02 ± 0.86 b 69.95 ± 1.83 b 65.37 ± 2.38 b   46.64 ± 1.06    a  66.68 ± 8.88     b   63.74 ± 9.78     B 

    K 22.97 ± 1.39  19.12 ± 1.32 a 21.98 ± 3.52 ab     25.49 ± 2.96 b       33.30 ± 2.09    c        21.27 ± 0.97     ab      24.23 ± 5.56      

    Mg 

    Ca 

1.24 ± 0.14 

0.32 ± 0.03 

 

 

1.18 ± 0.07 

0.36 ± 0.08 

a 

a 

1.14 ± 0.07 

0.34 ± 0.07 

a 

a 

      1.16 ± 0.07 

      0.41 ± 0.03 

a 

a 

      1.48 ± 0.06     b 

      0.93 ± 0.12     b 

         1.12 ± 0.06     a 

         0.27 ± 0.01     a 

    1.21 ± 0.15    

    0.46 ± 0.27     B 

 

 

  Laura 

    DM 21.65 ± 1.49   22.69 ± 1.24 b 20.43 ± 1.17 ab 20.37 ± 1.34 ab    16.68 ± 0.62   a 21.96 ± 1.27     b        20.43 ± 2.32     A 

     Starch 63.89 ± 2.73  66.21 ± 2.13 b 65.08 ± 2.28 b 64.89 ± 2.12 b 46.20 ± 1.18    a 70.06 ± 1.53     b   62.49 ± 9.34    A 

    K 19.99 ± 1.55  16.01 ± 1.14 a 21.55 ± 2.51 bc 24.66 ± 1.99 c        37.35 ± 4.55    d       19.21 ± 2.02     b         23.76 ± 8.23  

    Mg 

    Ca 

1.09 ± 0.06 

0.23 ± 0.03 

 

 

1.20 ± 0.07 

0.27 ± 0.01 

a 

a 

1.12 ± 0.01 

0.20 ± 0.02 

a 

a 

   1.17 ± 0.05 

   0.26 ± 0.04 

a 

a 

         1.52 ± 0.07    b 

         0.68 ± 0.15    b 

        1.06 ± 0.02     a 

        0.17 ± 0.04     a 

    1.21 ± 0.18 

    0.32 ± 0.21    A 

        DM: Cultivar ***, tuber segment ***, cultivar x tuber segment  ns; Starch: Cultivar **, tuber segment ***, cultivar x tuber segment  ns; K: Cultivar  ns, tuber segment ***, cultivar x tuber segment **;  

        Mg: Cultivar  ns, tuber segment ***, cultivar x tuber segment **; Ca: Cultivar *, tuber segment ***, cultivar x tuber segment ns. 
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SM_6: Thumbnail crack occurrence of whole tubers, tuber stem- and bud-ends of the cultivars Omega and Laura 

from ꞌKościanꞌ in 2016 (n = 4) (a). Thumbnail score: 1 = very severe occurrence, 3 = severe occurrence, 5 = 

medium occurrence, 7 = slight occurrence, and 9 = almost no occurrence. Fracturability of whole tubers and tuber 

stem and bud ends of the cultivars Omega and Laura from ꞌKościanꞌ the trial at the site in Kościan in 2016 (n = 3) 

(b). Mean ± SE values. Levels of significance tested via the ANOVA test are shown in the right lower corner with 

** and *** for p < 0.01 and 0.001, respectively. ns = not significant. Capitals = significant differences between the 

cultivars of one tuber segment, small letters = significant differences between stem- and bud end, and no indication 

= no significant differences.  
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SM_7: Effect of fertilization on the tuber yield (dt ha-1) of all the fertilization treatments from ꞌMünchebergꞌ and 

ꞌUedemꞌ in 2015 and ꞌMünchebergꞌ, ꞌUedemꞌ, and ꞌKościanꞌ in 2016. Mean ± SE values (n = 4). The treatments had no 

significant effect.  

2015 

 
 
 

  

             F1                 F2              F3             Ctr 

Müncheberg Omega 293.1 ± 51.6 ns 307.6 ± 52.3 ns 299.5 ± 52.9 ns 307.2 ± 49.1 ns 

 Laura 318.3 ± 20.1 ns 325.9 ± 11.9 ns 318.9 ± 17.2 ns 331.7 ± 22.1 ns 

Uedem Omega 431.9 ± 79.5 ns 456.9 ± 45.8 ns 467.9 ± 36.6 ns 451.0 ± 38.9 ns 

 Laura 544.6 ± 23.4 ns 556.3 ± 4.5 ns 536.7 ± 41.9 ns 537.4 ± 84.2 ns 

2016 

Müncheberg Omega 331.8 ± 51.6 ns 348.5 ± 37.5 ns 313.4 ± 36.6 ns 371.2 ± 58.9 ns 

 Laura 340.3 ± 55.3 ns 370.0 ± 52.3 ns 351.7 ± 44.6 ns 362.3 ± 43.8 ns 

Kościan Omega 497.4 ± 45.2 ns 267.5 ± 12.7 ns 519.3 ± 48.1 ns 558.5 ± 28.1 ns 

 Laura 553.2 ± 38.7 ns 186.3 ± 59.6 ns 545.8 ± 53.8 ns 617.2 ± 54.7 ns 

Uedem Omega 270.4 ± 27.4 ns 267.5 ± 12.7 ns 234.6 ± 31.1 ns 253.3 ± 22.5 ns 

 Laura 183.2 ± 47.0 ns 186.3 ± 59.6 ns 217.4 ± 74.9 ns 158.4 ± 62.9 ns 
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General discussion 

A central factor of influence on potato development and quality is the supply of the plant with nutrients (Westermann 

2005). The presented research aimed to investigate the effect of various K and Mg supply on potato plant development 

and quality-related tuber attributes. With regard to this, four research objectives were stated (see chapter 1, section 1.8) 

whose outcomes are discussed following.  

 

Effect of K and Mg deficiency on (i) production and partitioning of photoassimilates, (ii) above and 

belowground biomass development, and (iii) tuber quality of potato  

The roles of K and Mg for photosynthesis and the translocation of photoassimilates from source to sink organs have 

been demonstrated in various crop species (Dreyer et al. 2017; Farhat et al. 2016; Jákli et al. 2017; Tränkner et al. 

2016). However, the impact of a K and Mg deficiency on photosynthesis and the partitioning of photoassimilates in 

potato were unclear. It could be shown that K deficiency in potato significantly reduced shoot biomass (what equals a 

decrease in photosynthetic active biomass), CO2 net assimilation rate, and leave chlorophyll concentrations (Chapter 

4, Fig. 1a, 2a and 4b; Chapter 7, Fig. 1) and thus severely impaired photosynthesis. Meanwhile, Mg deficiency did not 

significantly reduced shoot growth (and thus photosynthetic active biomass), CO2 net assimilation rate (at an early 

growth stage) nor decreased chlorophyll concentrations. Lastly, it did not severely impair photosynthesis (Chapter 4, 

Fig. 1c and e, 2a and 4c; Chapter 7, Fig. 1). 

 

Figure 1: Scheme summarizing the impact of K (- K) and Mg (- Mg) deficiency on photosynthesis, translocation of 

photoassimilates, root biomass, total root length and tuber yield and quality in potato. 
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Besides, both K and Mg deficiency lead to a significant increase of soluble sugars and to an increased transcript level 

of H+/sucrose symporters in fully expanded leaves, which indicated a hampered allocation of photoassimilates from 

source to sink organs (Chapter 4, Fig. 5; Chapter 7, Fig. 1). Thereby, the increase of soluble sugars was much more 

pronounced in Mg- compared to K-deficient plants. However, the transcript levels of H+/sucrose symporters were less 

increased under Mg-deficiency. The latter case probably was caused by an impaired sucrose transport due to Mg-

deficiency already at an earlier step, namely the efflux of sucrose from mesophyll cells into the apoplast, what is carried 

out via SWEET transporters (Manck-Götzenberger and Requena 2016). Thus, it is assumed that K-deficiency lead to 

a sucrose accumulation in the apoplast resulting in an increased transcript level of H+/sucrose symporters. Meanwhile, 

Mg-deficiency caused sugar accumulation in mesophyll cells, why Mg-deficient plants did not show pronounced 

increases of transcript levels of H+/sucrose symporters but likely affected another sugar transport system.  

Furthermore, it has been shown that the partitioning of photoassimilates was hampered before any impact on 

photosynthesis under Mg deficiency (Chapter 4). This is in compliance with results shown e.g. by Hermans et al. 

(2004). Furthermore, the latter assumption may lead to the presumption that Mg is of higher relevance for the 

translocation of photoassimilates rather than for the production of photoassimilates via photosynthesis.   

K and Mg deficiency caused a reduction of root biomass and total root length (Chapter 4, Fig. 2b and c; Chapter 5, 

Fig. 5b and 7). This coincided with a significant increase of soluble sugars in source leaves of K and especially Mg 

deficient plants (Chapter 4, Fig. 5a; Chapter 5, Fig. 4b and c), indicating a restricted translocation of photoassimilates 

from source leaves to sink organs (roots in this case). Thus, a relation between the translocation of photoassimilates 

and root growth is assumed, as plants, which exhibited a distinct sugar accumulation in source leaves also revealed 

decreased root growth. Moreover, both studies (Chapter 4 and 5) imply a higher sensitivity of root compared to shoot 

growth under Mg deficiency whereas K deficiency led to an equivalent reduction of root as well as of shoot growth 

(Chapter 7, Fig. 1). It is likely, that this also can be referred to the previous made assumption that Mg is of greater 

relevance for the translocation of photoassimilates rather than for photosynthesis while it is the opposite for K.  

Another aim of this thesis was to test whether a resupply of Mg (via leaves or roots) can ameliorate deficiency 

symptoms such as depressed root growth or lack in Mg. A Mg foliar application led to a very temporally increase of 

Mg leave concentrations with a subsequent decrease to equal Mg concentrations as before the application of Mg 

deficient plants (Chapter 5, Fig. 2b). Shoot and root biomass and total root length revealed also a very slight increase 

upon Mg foliar application (Chapter 5, Fig. 5a, b, and 7). Meanwhile, a complementary fertilization of Mg via the roots 

exhibited much more pronounced effects, especially in form of increased Mg leaf (Chapter 5, Fig. 2b) and root 
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concentrations (Chapter 5, Fig. 7) and in form of an increase of the total root length compared to the Mg deficient 

plants (Chapter 5, Fig. 7). By comparison, Jezek et al. (2015) demonstrated that an Mg foliar application sufficiently 

improved the Mg status of the plant but the authors did not investigate root growth. Though, Neuhaus et al. (2014) 

could show an significant increase of a Mg foliar application on root biomass. However, a rise of the Mg supply via 

the nutrient solution exhibited much more distinct effects – similarly to our findings.  

K deficient plants showed a more severe reduction of tuber yield compared to Mg deficient plants (Chapter 4, Fig. 2f; 

Chapter 7, Fig. 1) and a greater reduction of photosynthesis compared to the partitioning of photoassimilates, while it 

was the opposite for Mg deficient plants. This indicates that a hampered photosynthesis impairs tuber yield more severe 

compared to the translocation of photoassimilates. However, it is also conceivable that not a decrease of photosynthesis 

resulted in reduced sink growth but a decreased sink demand in form of reduced tuber yield and/or root growth resulted 

in a decrease of photosynthesis as has been argued by Marschner et al. (1996).  

Surprisingly, with respect to our initial expectation that K and Mg deficiency will negatively affect tuber quality, we 

could not determine significant differences in tuber sugar and starch concentrations of various K and Mg supplied 

plants (Chapter 4, SM_5b and c). Only a slight tendency in form of a decrease of hexose sugars (glucose and fructose) 

was revealed in plants with high K and sufficient Mg supply (Chapter 4, SM_5b, K3+Mg plants). However, the total 

amount of tuber sugar and starch per plant showed significant differences: Medium and high K supplied plants showed 

significant higher sugar and starch yields per plant compared to low K supplied plants and Mg sufficient supplied 

plants (K2 and K3+Mg) exhibited significant higher starch yields compared to Mg deficient supplied plants (K2 and 

K3-Mg) (Chapter 4, Fig. 6). These findings can be referred to the significant reduction of tuber yields due to K and 

Mg deficiency, respectively (Chapter 4, Fig. 2f).  

 

Influence of K and Mg interactive effects on K and Mg concentrations of different plant tissues and biomass 

development  

Nutrient interactions between ions often have been research issue – however with contradictory outcomes. With respect 

to interactions between K and Mg there have been reports about antagonistic (Hossner and Doll 1970), synergistic 

(Ding et al. 2006) and neutral (Allison et al. 2002) interactive effects. One aim of the present study was to clarify the 

nature of interactive effects between K and Mg in potato. Antagonism between K and Mg usually is referred to 

competitive uptake mechanism of K and Mg from the soil solution. While Mg transporters are highly unspecific and 

take up other cations than Mg, K transporters are very specific (with the expectation of sodium as has been shown by 
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Castillo et al. (2015)) and the uptake of K is ensured under low as well as under high K concentrations in the soil 

solution (Britto and Kronzucker 2008; Karley and White 2009; Mayland 1990). Indeed, our results demonstrated 

significant decreased Mg concentrations in leaves with increasing K supply (Chapter 4, Table 2), indicating an 

antagonistic effect of K on Mg. However, tubers and roots exhibited significant higher Mg concentrations with higher 

K supply (Chapter 4, Fig. 3b), indicating a synergistic effect of K on the tuber and root Mg concentrations. These 

outcomes can be argued by the following reasons. Usually, plants show higher K concentrations in the shoot compared 

to the roots (Karley and White 2009; White 1997) what likewise is reflected in our results (Chapter 4, Fig. 3a). As the 

plant strives to preserve a balance between cations and anions (Kirkby and Mengel 1967), it is likely that the higher K 

concentrations in the shoot led to lower Mg concentrations while lower K concentrations in roots and tubers led to 

higher Mg concentrations. Likewise, the significant highest Mg concentrations were determined in leaves of plants 

with the lowest K supply (Chapter 4, Table 2; K1+Mg plants). Moreover, it is feasible that an antagonistic interaction 

mechanism is located in the translocation from root to shoot (and probably not in the uptake from soil solution into the 

roots) as has been suggested by Ohno and Grunes (1985). This antagonistic interaction mechanism may have led to a 

depletion of Mg in leaves whereas Mg enriched in roots and tubers compared to leaves. Lastly, it cannot be validated 

an overall antagonistic effect between K and Mg in potato. Likewise, although increasing K supply revealed a 

synergistic effect on the tuber and root Mg concentrations, it cannot be confirmed an overall synergistic effect of K on 

Mg in potato.  

 

Relation between tuber DM and mineral concentrations and distributions on the one hand and resistance of 

the tuber skin against mechanical impacts on the other hand 

Inappropriate agricultural practices causing mechanical impacts during or after harvest or adverse environmental 

conditions can result e.g. in cracking of tuber skin (Dean and Thornton 1989; Sparks 1970). Such cracks can 

significantly reduce the quality of the tubers and the appeal to consumers (Bohl and Thornton 2006). Beside those 

abiotic reasons which might cause tuber cracking, further causes can be, for instance, the cultivar, the soil type or 

storage conditions. However, there is only little information about physiological parameters which affect the tuber 

resistance against mechanical impacts and thus their susceptibility for cracking. In the present thesis (Chapter 6), a 

focus was set on the elucidation of factors that correlate with the symptom 'thumbnail crack' what is a few millimeter 

deep crack of the tuber skin. Besides, the fracturability of the tuber skin was investigated in order to further characterize 

the susceptibility of the tuber skin against mechanical impacts. The results suggest that DM and starch concentrations 
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might be associated with the resistance against mechanical impacts. The higher the DM and starch concentrations, the 

higher was the resistance of the tuber skin towards mechanical impacts (e.g. Chapter 6, Fig. 3). A relation between 

DM and starch on the one hand and rheological parameters in form of increasing values for fracturability, hardness 

and cohesiveness (meaning improved resistance against mechanical impacts) on the other hand also has been reported 

by Bordoloi et al. (2012) and Singh et al. (2008). Bordoloi et al. (2012) elucidate this relation by the observation that 

tubers which exhibit higher DM and starch concentrations showed smaller cell sizes and a more advantageous cell 

structure. Larger cells are the first to be damaged whereas smaller cells show a greater surface area per unit volume 

why a greater strength would be needed to separate or damage smaller compared to larger cells (Konstankiewicz et al. 

2002; Šaøec et al. 2006).  

A further parameter which positively correlated with the resistance against mechanical impacts on the tuber skin was 

the tuber Ca concentration. Divalent cations like Ca are known to improve cell wall stability as they are binding to cell 

wall polymers and thus stabilize the cell walls (Poovaiah 1986; Weiler and Nover 2008). This relation between Ca and 

cell wall stability has been well proven in apple, for example (Conway et al. 1994; Glenn and Poovaiah 1990). Beside 

Ca, likewise for Mg an improving impact on the cell wall stability is discussed (Andersson et al. 1994). However, our 

outcomes (Chapter 6) cannot confirm such a contribution of Mg.  

Another research objective of the present thesis was to test how K and Mg supply might affect physiological parameters 

which in turn affect the resistance of the tuber against mechanical impacts (Chapter 6). Various studies reported about 

an impact of the K and Mg supply on DM and starch of potato tubers (Miča 1979; Panique et al. 1997; Poberezny and 

Wszelaczynska 2011; Westermann et al. 1994). In the field trials there was no influence of different K and Mg 

treatments on the DM and starch concentrations (e.g. Chapter 6, Table 2). Besides, there was no impact of the different 

K and Mg treatments on the tuber yield in the field trials (Chapter 6, SM_7). Likewise, in the pot experiment presented 

in chapter 4, no impact of different K and Mg supply on the DM and starch concentrations were assessed (Chapter 4, 

SM_5a). Though, significant higher tuber starch amounts per plant with increasing K and Mg supply were examined 

in this study (Chapter 4, Fig. 6). However, these differences in tuber starch yield can be rather referred to the differences 

of tuber yield resulted from the different treatments of K and Mg (Chapter 4, Fig. 2f), as discussed previously in section 

7.1, than to a direct effect of K and Mg supply on starch. The reason for no effect of the different K and Mg supply on 

tuber yield in the field trials (Chapter 6) but for an effect in the pot experiment (Chapter 4) can be referred to an already 

sufficient soil K and Mg status of the field sites soils (Chapter 6, SM_2) compared to a deficient soil K and Mg status 

of the soil used in the pot experiment (Chapter 4).  
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Clear relations between DM and the cultivar and the tuber segment have been identified: The cultivar Omega revealed 

a significant higher resistance against mechanical impacts on the tuber skin compared to Laura (Chapter 6, e.g. Fig. 2 

and 3) while Omega exhibited significant higher DM compared to Laura (Chapter 6, e.g. Fig. 3 and Table 3). Besides, 

the tuber segment 'stem end' showed a higher resistance against mechanical impacts compared to the 'bud end' (Chapter 

6, e.g. Fig. 2) with coincident higher DM in the stem compared to the bud end (Chapter 6, e.g. Table 3). The higher 

DM in stem ends might be related with the distribution pattern of K within the tuber that was lower in the stem 

compared to the bud end (Chapter 6, e.g. Table 3). K is known for its osmotic properties (Mengel and Arneke 1982) 

why decreasing K concentrations may lead to an decrease of cell and tuber water content while DM is increasing 

(Schippers 1968; Westermann et al. 1994). This might explain why the bud ends were more prone for damages. As 

mentioned before, Omega revealed a higher resistance against mechanical impacts compared to Laura. A similar 

relation as for DM and the cultivar Omega with respect to the tuber resistance against mechanical impacts was 

examined between Ca and the cultivar Omega: Next to higher DM, Omega revealed higher Ca concentrations (Chapter 

6, e.g. Fig. 3 and Table 3).  

 

Appropriate K and Mg supply for the potato crop 

A search of the ISI web of Science (see chapter 1, section 1.5) demonstrated that there is little awareness about both 

the importance of Mg supply and about a suitable combined supply of K and Mg for potato plant development and 

tuber quality. The present research contributes to improve the current knowledge regarding the roles of K and Mg for 

potato plant development and tuber quality formation. While for Mg a higher importance for the partitioning of 

photoassimilates within the plant was indicated, K showed a higher relevance for the production of photoassimilates 

(Fig. 1). But only under sufficient supply of both nutrients an appropriate tuber and starch yield and root development 

was realized (e.g. Chapter 4, Fig. 2a, b, c and f, and 6b). Results of the present study could not examine a definite 

antagonistic or synergistic effect between K and Mg. However, it is likely that the antagonistic effect is also causing a 

synergistic effect (as described in section 7.2) and thus, both effects are related with each other. Nevertheless, although 

plants with the highest K supply (K3+Mg, Chapter 4) showed the lowest Mg concentrations in leaves (Chapter 4, Table 

2), there was no indication for an adverse effect on plant development (e.g. shoot and root biomass, total root length 

and tuber yield; Chapter 4, Fig. 2). Based on the outcomes of this study it can be concluded that an appropriate 

combined supply of K and Mg for potato production and tuber quality is reflected in a ratio of K and Mg of 3 : 1 (300 

mg K kg-1 soil : 100 mg Mg kg-1 soil). This ratio was, for instance, represented by K2+Mg plants (Chapter 4, Table 1). 
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The doubled supply of K (K3+Mg plants, representing a K to Mg ratio of 6 : 1) did not exhibit a significant increase 

in biomass development (including root and shoot biomass, total root length and tuber yield) and no improvement of 

important tuber quality attributes such as tuber sugar and starch concentrations and yields.  
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Summary  

Knowledge regarding the importance of K and Mg for potato plant development and tuber quality is limited. K and 

Mg are nutrients, besides other crucial roles, for photosynthesis and the partitioning of photoassimilates within the 

plant. Hence, a negative effect of a K and Mg deficiency on tuber yield and quality can be expected as tubers are strong 

sink organs being highly dependent on the production of photoassimilates and its translocation down to the tubers. 

This thesis aimed to examine the extent to which a K and Mg deficiency may affect potato plant development, tuber 

yield and tuber quality with view on the roles of K and Mg for photosynthesis and the partitioning of photoassimilates.  

Both K- and Mg-deficiency lead to reduced CO2 net assimilation and photosynthetic active biomass production, with 

stronger reductions in K-compared to Mg-deficient plants. Low K- as well as low Mg supply resulted in accumulation 

of sugars in source leaves, especially in Mg-deficient plants. This is indicative for a restricted phloem loading. Besides, 

K and Mg restricted plants exhibited an impaired root length development what is supposed to be a result of a restricted 

source to sink transport of photoassimilates. However, while low K-deficiency resulted in a sharp increase of transcript 

levels of H+/sucrose symporters, which are responsible to load the phloem with sucrose, this was less pronounced 

under Mg-deficiency. The latter case is probably the result of an impaired sucrose transport due to Mg-deficiency 

already at an earlier step, namely the efflux of sucrose from mesophyll cells into the apoplast. Therefore, it is assumed 

that K- and Mg-deficiency caused sugar accumulation in seperated cell compartments of source leaves leading to a 

different impact on the gene expression of sucrose transport systems. Tuber sugar and starch concentrations, however, 

remained unaffected under the various treatments. Nevertheless, the total amount of tuber sugar and starch per plant 

decreased significantly upon K- and Mg-deficiency.  

A further research objective of this thesis was the external appearance of potato tubers what is an important quality 

attribute of potato tubers. The external appearance of potato tubers has been shown to mainly influence the customer´s 

purchase behavior. Thus, external blemishes, such as cracks of the tuber skin, significantly reduce the quality and the 

appeal of tubers for consumers. One factor, which is influencing on the development of cracks is the susceptibility of 

the tuber skin for mechanical impacts. Knowledge regarding physiological parameters which influence the resistance 

of the tuber skin towards mechanical impacts is rare. The present thesis revealed that tuber DM and starch 

concentrations can be considered as such parameters. The cultivar, which exhibited higher DM and starch 

concentrations, demonstrated higher resistance against mechanical impacts. Tuber DM and starch concentration were 

shown to correlate with the rheological characteristics of tubers due to related characteristics of tubers exhibiting higher 
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DM and starch concentrations such as smaller cell sizes (as smaller cells need a greater strength to be separated or 

damaged) and an advantageous cell structure (Bordoloi et al. 2012). Besides, tubers with higher Ca concentrations 

showed an increased resistance against mechanical impacts. This may be related to the contribution of Ca for cell wall 

stability. Ca is binding to cell wall polymers of the plant cell wall and thus is stabilizing the cell wall and therefore the 

tuber periderm that is forming the tuber skin.  
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