Das metabolische Syndrom: die Auswirkung von β-Ecdyson auf ausgewählte Körperparameter und Serumlipide des metabolischen Syndroms

INAUGURAL-DISSERTATION
zur Erlangung des Doktorgrades
der Medizinischen Fakultät der
Georg-August-Universität zu Göttingen

vorgelegt von

Dr. med. dent. Sonja Wilma Thole

aus

Oldenburg

Göttingen 2018

Dekan: Prof. Dr. rer. nat. H. K. Kroemer
Referent/in: Prof. Dr. med. W. Wuttke
Ko-Referent/in: Prof. Dr. S. Mihm
Drittreferent/in: Prof. Dr. M. Oppermann

Datum der mündlichen Prüfung: 06.11.2018
Hiermit erkläre ich, die Dissertation mit dem Titel "Das metabolische Syndrom: die Auswirkung von β-Ecdyson auf ausgewählte Körperparameter und Serumlipide des metabolischen Syndroms" eigenständig angefertigt und keine anderen als die von mir angegebenen Quellen und Hilfsmittel verwendet zu haben.

Göttingen, den 26.03.2018 ..
(Unterschrift)
Inhaltsverzeichnis

Abbildungsverzeichnis .. III

Tabellenverzeichnis ... III

Abkürzungsverzeichnis .. IV

1 Einleitung .. 1
 1.1 Das Metabolische Syndrom .. 3
 1.1.1 Definition und Diagnostik ... 3
 1.1.2 Pathophysiologie .. 4
 1.1.3 Therapie .. 8
 1.2 Der Lipidstoffwechsel .. 9
 1.3 Calciferole ... 11
 1.4 β-Ecdyson .. 12
 1.5 Zielsetzung ... 15

2 Material und Methoden .. 16
 2.1 Erfassung des Patientenkollektivs .. 16
 2.2 Erhebung der Anamnese ... 16
 2.3 Diagnostik des metabolischen Syndroms .. 17
 2.4 Ernährungs- und Bewegungsempfehlungen ... 19
 2.5 Ecdyson-haltige Nahrungsergänzungsmittel ... 20
 2.6 Methodik der statistischen Datenaufarbeitung ... 20
 2.7 Statistik ... 21

3 Ergebnisse .. 22
 3.1 Adipositas-bedingte Auswirkungen auf das Serumprofil 22
 3.2 Entwicklung der Körperanalysewaage-Parameter unter Ecd-Einfluss 27
 3.3 Entwicklung der Serumparameter unter Ecd-Einfluss ... 32

4 Diskussion .. 38
 4.1 Adipositas-bedingte Auswirkungen auf das Serumprofil 38
 4.1.1 Das hsCRP-Profil ... 39
 4.1.2 Die Triglyceride ... 40
 4.1.3 Die Calciferole ... 41
 4.2 Entwicklung der Körperparameter unter Ecd-Einfluss .. 45
 4.2.1 Das Körpergewicht und der Fettanteil .. 45
 4.2.2 Die Muskelmasse ... 46
 4.3 Entwicklung der Serumparameter unter Ecd-Einfluss ... 48
 4.3.1 Die Serumlipide ... 48
 4.3.2 Das hsCRP-Profil ... 50
5	Zusammenfassung	52
6	Anhang	54
7	Literaturverzeichnis	61
Abbildungsverzeichnis

Abbildung 1: Dysreguliertes Fettgewebe .. 5
Abbildung 2: Beeinflussung des Lipidstoffwechsels durch die Insulinresistenz 10
Abbildung 3: Syntheseweg der Chole- und Ergocalciferole 11
Abbildung 4: Ecdyson ... 13
Abbildung 5: Korrelation und Entwicklung von hsCRP in Abhängigkeit vom BU 22
Abbildung 6: Korrelation von hsCRP und dem Gesamtfettanteil derselben Patienten 23
Abbildung 7: Korrelation und Entwicklung der TG in Abhängigkeit vom BU 23
Abbildung 8: Korrelation von TG-Serumwerten und Körperfettanteil derselben Patienten 24
Abbildung 9: Korrelation und Entwicklung 25(OH)VD in Abhängigkeit vom BU 25
Abbildung 10: Korrelation und Entwicklung von 1,25(OH)_{2}VD in Abhängigkeit vom BU 26
Abbildung 11: Mittelwerte und Standardfehler der KG-Entwicklung 27
Abbildung 12: Mittelwerte und Standardfehler der Gesamtfett-Entwicklung 28
Abbildung 13: Mittelwerte und Standardfehler der BU-Entwicklung 29
Abbildung 14: Mittelwerte und Standardfehler der Muskelmassen-Entwicklung 30
Abbildung 15: Mittelwerte und Standardfehler der Cholesterin-Entwicklung 32
Abbildung 16: Mittelwerte und Standardfehler der TG-Entwicklung 33
Abbildung 17: Mittelwerte und Standardfehler der LDL-Entwicklung 34
Abbildung 18: Mittelwerte und Standardfehler der HDL-Entwicklung 35
Abbildung 19: Mittelwerte und Standardfehler der hsCRP-Entwicklung 36

Tabellenverzeichnis

Tabelle 1: Übersicht der unterschiedlichen Definitionsvarianten des MetSs 4
Tabelle 2: Aktuelle Definitionsvarianten des MetSs ... 17
Tabelle 3: Übersicht der erhobenen Patientendaten ... 18
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abb.</th>
<th>Abbildung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANGPTL2</td>
<td>angioptein-related protein 2</td>
</tr>
<tr>
<td>ApoA-I</td>
<td>Apolipoprotein A-I</td>
</tr>
<tr>
<td>ApoB</td>
<td>Apolipoprotein B</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BU</td>
<td>Bauchumfang</td>
</tr>
<tr>
<td>BZ</td>
<td>Blutzucker</td>
</tr>
<tr>
<td>CE</td>
<td>Cholesterinester</td>
</tr>
<tr>
<td>CETP</td>
<td>Cholesterinester-Transportprotein</td>
</tr>
<tr>
<td>CG</td>
<td>Comparatorgruppe</td>
</tr>
<tr>
<td>d</td>
<td>Tag bzw. day</td>
</tr>
<tr>
<td>D. m.</td>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>Ecd</td>
<td>Ecdyson</td>
</tr>
<tr>
<td>et al.</td>
<td>et alii</td>
</tr>
<tr>
<td>Fa.</td>
<td>Firma</td>
</tr>
<tr>
<td>FFS</td>
<td>freie Fettsäuren</td>
</tr>
<tr>
<td>HDL</td>
<td>high density lipoprotein</td>
</tr>
<tr>
<td>Homa</td>
<td>homeostatic model assessment</td>
</tr>
<tr>
<td>hsCRP</td>
<td>hochsensitives C-reactives Protein</td>
</tr>
<tr>
<td>IL-1, IL-6, IL-8, IL-10</td>
<td>Interleukin-1, Interleukin-6, Interleukin-8, Interleukin-10</td>
</tr>
<tr>
<td>IR</td>
<td>Insulinrezeptor</td>
</tr>
<tr>
<td>KG</td>
<td>Körpergewicht</td>
</tr>
<tr>
<td>LDL</td>
<td>low density lipoprotein</td>
</tr>
<tr>
<td>MCP-1</td>
<td>monocyte chemoattractant protein 1</td>
</tr>
<tr>
<td>Mean</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>MetS</td>
<td>Metabolisches Syndrom</td>
</tr>
<tr>
<td>NAFLD</td>
<td>nicht-alkoholische Fettlebererkrankung</td>
</tr>
<tr>
<td>N</td>
<td>Anzahl bzw. Stichprobenumfang</td>
</tr>
<tr>
<td>p</td>
<td>Signifikanzniveau</td>
</tr>
<tr>
<td>PAI-1</td>
<td>plasminogen activator inhibitor-1</td>
</tr>
<tr>
<td>RBP4</td>
<td>retinal binding protein 4</td>
</tr>
<tr>
<td>SAA</td>
<td>Serum-amyloid A-Protein</td>
</tr>
<tr>
<td>SD</td>
<td>Standardabweichung bzw. standard deviation</td>
</tr>
<tr>
<td>SD LDL</td>
<td>small dense low density lipoprotein</td>
</tr>
<tr>
<td>SEM</td>
<td>Standardfehler bzw. standard error of the mean</td>
</tr>
<tr>
<td>SFRPS</td>
<td>secreted frizzled related protein</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TG</td>
<td>Triglyceride</td>
</tr>
<tr>
<td>TGE</td>
<td>transforming growth factor</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumor Nekrose-Faktor-α</td>
</tr>
<tr>
<td>VD</td>
<td>Vitamin D</td>
</tr>
<tr>
<td>25(OH)VD</td>
<td>25-Hydroxyvitamin D</td>
</tr>
<tr>
<td>1,25(OH)2VD</td>
<td>1,25-Dihydroxyvitamin D</td>
</tr>
<tr>
<td>VDR</td>
<td>Vitamin D Rezeptor</td>
</tr>
<tr>
<td>VG</td>
<td>Verumgruppe</td>
</tr>
<tr>
<td>VLDL</td>
<td>very low density lipoprotein</td>
</tr>
<tr>
<td>WHO</td>
<td>Weltgesundheitsorganisation</td>
</tr>
<tr>
<td>WHR</td>
<td>waist-to-hip ratio</td>
</tr>
</tbody>
</table>
1 Einleitung

Metabolisches Syndrom - Insulinresistenz-Syndrom

Wohlstands-Syndrom - Syndrom X

Deadly Quartet

Einleitung

Einleitung

1.1 Das Metabolische Syndrom

1.1.1 Definition und Diagnostik

Tabelle 1: Übersicht der unterschiedlichen Definitions kriterien des MetS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzung für das Vorliegen eines MetS</td>
<td>Viszerale Adipositas + mind. 2 Risikofaktoren</td>
<td>mind. 3 von 5 Risikofaktoren</td>
<td>mind. 3 von 5 Risikofaktoren</td>
<td>Vizereale Adipositas + 2 Risikofaktoren</td>
<td>mind. 3 von 5 Risikofaktoren</td>
</tr>
<tr>
<td>(viszerale) Adipositas</td>
<td>BMI > 30 kg/m²</td>
<td>Waist: Frauen ≥ 0,85; Männer ≥ 0,90</td>
<td>Taillemfang: Männer ≥ 102 cm; Frauen ≥ 88 cm</td>
<td>Taillemfang: Männer ≥ 102 cm; Frauen ≥ 88 cm</td>
<td>Taillemfang bei europäischer Herkunft: Männer ≥ 0,94 cm; Frauen ≥ 0,80</td>
</tr>
<tr>
<td>Triglyceride</td>
<td>≥ 1,5 mg/dl</td>
<td>≥ 1,5 mg/dl</td>
<td>≥ 1,5 mg/dl oder Medikation</td>
<td>≥ 1,5 mg/dl oder Medikation</td>
<td>≥ 1,5 mg/dl oder Medikation</td>
</tr>
<tr>
<td>HDL-Cholesterin</td>
<td>Männer ≤ 0,4 mmol/l; Frauen ≤ 0,3 mmol/l</td>
<td>Männer < 0,4 mmol/l; Frauen < 0,3 mmol/l</td>
<td>Männer < 0,4 mmol/l; Frauen < 0,3 mmol/l</td>
<td>Männer < 0,4 mmol/l; Frauen < 0,3 mmol/l</td>
<td>Männer < 0,3 mmol/l; Frauen < 0,2 mmol/l</td>
</tr>
<tr>
<td>Blutdruck</td>
<td>140/90 mmHg</td>
<td>Blutdruck: systolisch ≥ 130 mmHg</td>
<td>Blutdruck: diastolisch ≥ 85 mmHg</td>
<td>Blutdruck: systolisch ≥ 130 mmHg</td>
<td>Blutdruck: diastolisch ≥ 85 mmHg</td>
</tr>
<tr>
<td>Nüchtern-Plasmaspiegel</td>
<td>D. Glucose (Nüchtern > 100 mg/dl)</td>
<td>Glucoseintoleranz (≥ 140 mg/dl)</td>
<td>Insulinresistenz (HOMA-IR)</td>
<td>Nüchtern-Plasmaspiegel</td>
<td>Nüchtern-Plasmaspiegel</td>
</tr>
<tr>
<td>Mikroalbuminurie</td>
<td>30 μg/min/1,73 m²</td>
<td>100 mg/dl</td>
<td>100 mg/dl oder Medikation</td>
<td>100 mg/dl oder Medikation</td>
<td>100 mg/dl oder Medikation</td>
</tr>
</tbody>
</table>

1.1.2 Pathophysiologie

Durch mangelnde Bewegung oder eine exzessive Energieaufnahme in Form von hochkalorischer Nahrung kommt es zur Hypertrophie des Fettgewebes mit Einwanderung von Makrophagen. Diese und Adipozyten sezernieren eine Vielzahl an humoralen Faktoren, den Adipokinen wie beispielsweise Leptin, Interleukin-6 (IL-6), IL-1, Tumornekrosefaktur-α (TNF-α), freie Fettsäuren (FFS) oder auch Angiotsensin. Zeitgleich sinkt das antiinflammatorische Adiponecstin oder IL-10 (vgl. Abb. 1). Diese Dysregulation der Adipokin- und Zytokinproduktion versetzt den Körper in einen proinflammatorischen und prothrombotischen Zustand (Weisberg et al. 2003;
Einleitung

Die Insulinresistenz führt in der Leber zu einer gesteigerten Produktion von C-reaktivem Protein, IL-6 oder auch TNF-α, und auch die Hemmung auf die Glykogenolyse und Glukoneogenese durch Inhibition der Phosphoenolpyruvat Carboxykinase und Glukose-6-Phosphatase entfällt. Die Insulinresistenz beeinflusst neben dem Glukostoffwechsel auch maßgeblich den Lipidmetabolismus (Meshkani und Adeli 2009). Es kommt zu einer hepatischen Überproduktion von very low density lipoprotein (VLDL), die über die Hypertriglyceridämie entscheidend an der Entwicklung des MetSs und D.m. Typ II mitwirkt (Meshkani und Adeli 2009; Lomonaco et al. 2011). Dies wird zum einen durch die gesteigerte Freisetzung von FFS unter Einwirkung der intrazellulären hormonsensitiven Lipase aus dem Fettgewebe und die spätere
Einleitung

Einleitung

1.1.3 Therapie

Einer Modifikation der Lebensstilfaktoren kommt in der Therapie bzw. bereits in der Prävention des MetS die größte Bedeutung zu (König et al. 2007; Goldberg und Mather 2012). Ziel ist die Senkung des einhergehenden kardiovaskulären Risikos und die frühzeitige Beeinflussung des Risikos für Diabetes mellitus. Daten angelegter Diabetes-Studien konnten zeigen, dass durch eine intensive Änderung der Lebensstilmaßnahmen die Inzidenz von D. m. reduziert oder sogar effektiver reduziert werden konnte als durch den Einsatz von Metformin (Knowler et al. 2002; Uusitupa et al. 2011; Goldberg und Mather 2012). Neben der Definition und Pathophysiologie besteht das Kernziel der Therapie darin, insbesondere durch Lebensstilmodifikation eine gezielte Reduktion der viszeralen Adipositas herbeizuführen.

Einleitung

Die Besonderheit dieses Symptomkomplexes liegt in der rechtzeitigen Identifikation von Patienten mit Risikofaktoren und frühzeitige Intervention, um möglichst noch präventiv wirksam zu werden.

1.2 Der Lipidstoffwechsel

Einleitung

1.3 Calciferole

VD umfasst die Stoffgruppe der hormonell aktiven Calciferole mit Sterangerüst. Sie nehmen dabei unter den Vitaminen eine Sonderstellung ein. Bei ausreichendem UVB-Licht (290 bis 315 nm) kann VD vom Körper selbst synthetisiert oder über die Nahrung aufgenommen werden.

Die wichtigsten Vertreter des fettschließlichen Vitamins stellen das Cholecalciferol (VD₃) und das Ergocalciferol (D₂) dar. VD₂ ist Bestandteil von Pflanzen oder auch Speisepilzen. Das Cholecalciferol wird neben der exogenen Aufnahme durch beispielsweise Lebertran zu über 50 % aus Cholesterin über die Zwischenstufe 7-Dehydrocholesterin durch UVB-Strahlung in der Haut synthetisiert (vgl. Abb. 3).

1.4 β-Ecdyson

Einleitung

Abbildung 4: Ecdyson - Spinat (A) enthält große Mengen an Ecd (B). Für die Muskelkraft Popeyes wurde schon damals der Verzehr von Spinat verantwortlich gemacht (C).
Einleitung

Insgesamt liegen interessante Untersuchungsansätze vor, die die weitere Erforschung der Ecd-Wirkung als Unterstützung in der Therapie des MetS rechtfertigen. Auch Lafont und Dinan fassen zusammen, dass Ecd ein breites Spektrum an pharmakologischen Effekten bietet, die jedoch noch intensiverer und standardisierter Forschung bedürfen, um Ecd wirklich als „Universalmedizin“ bezeichnen zu können (Lafont und Dinan 2003; Dinan und Lafont 2006).
1.5 Zielsetzung

2 Material und Methoden

2.1 Erfassung des Patientenkollektivs

2.2 Erhebung der Anamnese

Bei der Erstvorstellung der Patienten in der endokrinologischen Abteilung wurde durch Priv. Doz. Dr. med. D. Seidlóvá-Wuttke oder Prof. Dr. med. W. Wuttke eine umfassende Anamnese unter Erfassung der demographischen Daten erhoben. Neben aktuellen Beschwerden und

2.3 Diagnostik des metabolischen Syndroms

<table>
<thead>
<tr>
<th>Kriterien</th>
<th>Referenzwerte</th>
</tr>
</thead>
</table>
| Taillenumfang als Maß für eine viszerale Obesitas | Taillenumfang*
Männer ≥ 102 cm
Frauen ≥ 88 cm |
| Erhöhte TG | ≥ 150 mg/dl oder Medikation |
| Reduzierte HDL | Männer < 40 mg/dl
Frauen < 50 mg/dl oder Medikation |
| Blutdruck | Systolisch ≥ 130 mmHg
Diastolisch ≥ 85 mmHg oder Medikation |
| Nüchternplasmaglukose | > 100 mg/dl oder Medikation |

* (ethnisch-spezifische Grenzwerte empfohlen, AHA/NHLBI- oder IDF-Grenzwerte für Personen europäischer Herkunft, IDF-Grenzwerte für NichtEuropäer)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deskriptive Charakterisierung</td>
<td>Geburtsdatum</td>
</tr>
<tr>
<td>Geschlecht (m/w)</td>
<td></td>
</tr>
<tr>
<td>Anamnese</td>
<td>Datum der ärztlichen Vorstellung</td>
</tr>
<tr>
<td>Diagnosen</td>
<td></td>
</tr>
<tr>
<td>Medikamente/Therapie</td>
<td></td>
</tr>
<tr>
<td>Ernahrungs- und Bewegungsanamnese</td>
<td></td>
</tr>
<tr>
<td>Sozial- und Familienanamnese</td>
<td></td>
</tr>
<tr>
<td>Körperlicher Befund</td>
<td>Blutdruck (mmHg)</td>
</tr>
<tr>
<td>Körpergröße (cm)</td>
<td></td>
</tr>
<tr>
<td>Taillenumfang (cm)</td>
<td></td>
</tr>
<tr>
<td>Tanita-Körperanalysewaage</td>
<td>Körpergewicht (kg)</td>
</tr>
<tr>
<td>Fettanteil (%)</td>
<td></td>
</tr>
<tr>
<td>Muskelanteil (%)</td>
<td></td>
</tr>
<tr>
<td>Knochengewicht (kg)</td>
<td>≥25 kg/m² übergewichtig ≥30 kg/m² adipös</td>
</tr>
<tr>
<td>Entzündungsmarker</td>
<td>hsCRP (mg/dl) ≤1 mg/dl</td>
</tr>
<tr>
<td>TSH basal (m I.E./l)</td>
<td>0,4 – 4,0 mIU/l</td>
</tr>
<tr>
<td>Kohlenhydratstoffwechselmarker</td>
<td>Glukose nüchtern (mg/dl) <100 mg/dl</td>
</tr>
<tr>
<td>Cholesterin (mg/dl)</td>
<td><200 mg/dl</td>
</tr>
<tr>
<td>HDL (mg/dl)</td>
<td>F: >50 mg/dl M: >40 mg/dl</td>
</tr>
<tr>
<td>LDL (mg/dl)</td>
<td>≤160 mg/dl</td>
</tr>
<tr>
<td>TG (mg/dl)</td>
<td>≤150 mg/dl</td>
</tr>
<tr>
<td>Vitamine</td>
<td>25(OH)VD (µg/l) 20 – 70 µg/l</td>
</tr>
<tr>
<td>1,25(OH)2VD (ng/l)</td>
<td>30 – 70 ng/l</td>
</tr>
</tbody>
</table>

2.4 Ernährungs- und Bewegungsempfehlungen

Material und Methoden

2.5 Ecdyson-haltige Nahrungsergänzungsmittel

2.6 Methodik der statistischen Datenaufarbeitung

Im Weiteren wurden einzelne Parameter der Patientendaten miteinander korreliert, um einen Zusammenhang zwischen zwei metrischen Variablen zu erörtern. Berücksichtigung fanden die

2.7 Statistik

3 Ergebnisse

3.1 Adipositas-bedingte Auswirkungen auf das Serumprofil

Die Abb. 5A verdeutlicht eine positive Korrelation zwischen dem hsCRP und dem BU, die sich als signifikant herausstellte. Zur weiteren Veranschaulichung sind Mittelwerte und Standardfehler der Mittelwerte der hsCRP-Werte in Abhängigkeit vom BU als Säulendiagramm aufgeführt (vgl. Abb. 5B). Bei einem BU < 90 cm liegt der mittlere hsCRP-Wert bei 1,14 mg/dl. Bei größeren BU zeigten sich signifikant höhere hsCRP-Werte von 2,95 mg/dl bei einem BU von 90 – 99 cm bzw. 3,67 mg/dl bei einem BU > 109 cm. Dies unterstützt die positive Korrelation zwischen hsCRP und BU.
Ergebnisse

Abbildung 6: Korrelation von hsCRP und dem Gesamtfettanteil derselben Patienten - Im linksseitigen Kasten sind der Pearson-Korrelationskoeffizient \(r \) und der p-Wert angegeben. Es besteht keine signifikante, positive Korrelation (\(n = 101 \)).

Die Abb. 6 verdeutlicht keinen linearen Zusammenhang zwischen dem hsCRP und dem Gesamtfettanteil des Körpers. Ebenso konnte keine Signifikanz nachgewiesen werden.

Abbildung 7: Korrelation und Entwicklung der TG in Abhängigkeit vom BU - A zeigt die Korrelation von TG und BU derselben Patienten (\(n = 144 \)). Im linksseitigen Kasten sind der Pearson-Korrelationskoeffizient \(r \) und der p-Wert angegeben. Es besteht eine signifikante, positive Korrelation. B gibt Aufschluss über den Mittelwert und den Standardfehler des Mittelwerts der TG-Spiegel in Abhängigkeit vom jeweiligen BU (* \(p < 0.05 \) vs. BU < 90 cm, 32≤n≤44).

Für die Korrelation von TG und den BU besteht ein linearer Zusammenhang, der sich als signifikant herausstellte. Die zusätzliche Darstellung des TG-Spiegels in Abhängigkeit vom BU in
Form eines Säulendiagramms (vgl. Abb. 7B) zeigt bei größeren BU höhere TG-Spiegel mit 112 mg/dl bei einem BU < 90 cm bzw. mit 181,9 mg/dl bei einem BU > 109 cm. Zudem sind die Werte bei einem BU ≥ 90 cm signifikant gegenüber dem BU < 90 cm. Dies unterstützt die signifikante positive Korrelation, die aus Abb. 7A hervorgeht.

Abbildung 8: Korrelation von TG-Serumwerten und Körperfettanteil derselben Patienten - Im rechtsseitigen Kasten sind der p-Wert und der Pearson-Korrelationskoeffizient \(r \) angegeben. Es besteht kein signifikanter, linearer Zusammenhang (n=143).

Die Abb. 8 zeigt eine Korrelation des TG-Spiegels mit dem Gesamtfettanteil der Patienten. Es konnte keine signifikante positive Korrelation zwischen den Parametern aufgezeigt werden.
Abbildung 9: Korrelation und Entwicklung 25(OH)VD in Abhängigkeit vom BU - A zeigt die Korrelation des 25(OH)VD – Spiegels und des BUs. Der Stichprobenumfang beträgt N = 67. Im rechtsseitigen Kasten sind der p-Wert und der Pearson-Korrelationskoeffizient r angegeben. Es besteht eine signifikante, negative Korrelation. In B sind Mittelwerte und Standardfehler des Mittelwerts des 25(OH)VD – Spiegels in Abhängigkeit vom BU ($^* p \leq 0.05 \text{ vs. } <90 \text{ cm, } 19 \leq N \leq 28$) aufgeführt.

Ergebnisse

Abbildung 10: Korrelation und Entwicklung von 1,25(OH)₂VD in Abhängigkeit vom BU - In A sind der 1,25(OH)₂VD-Spiegel und der BU derselben Patienten miteinander korreliert worden (Stichprobenumfang N = 18). Im rechtsseitigen Kasten sind der p-Wert und der Pearson-Korrelationskoeffizient r angegeben. Es besteht eine negative Korrelation ohne Signifikanz. B zeigt Mittelwerte und Standardfehler des Mittelwerts des 1,25(OH)₂VD-Spiegels in Abhängigkeit vom BU (* p ≤ 0,05 vs. < 90 cm, 3≤N≤9).

Die Abb. 10A verdeutlicht bei einem deutlich geringeren Stichprobenumfang eine negative Korrelation ohne Signifikanz zwischen 1,25(OH)₂VD-Spiegel und BU. Die Mittelwerte und Standardfehler der Mittelwerte des 1,25(OH)₂VD-Spiegels in Abhängigkeit vom BU sind in Abb. 10B erkennbar. Es zeigen sich bei höheren BU niedrigere 1,25(OH)₂VD-Spiegel mit 55,27 ng/ml bei einem BU von < 90 cm bzw. mit 42,15 ng/ml bei einem BU > 99 cm. Zudem ist der Wert des 25(OH)₂VD-Spiegels bei einem BU > 99 cm signifikant gegenüber dem Wert bei einem BU von < 90 cm.
3.2 Entwicklung der Körperanalysewaage-Parameter unter Ecd-Einfluss

Im Folgenden ist der Effekt von Ecd auf die Körperparameter KG, Fettanteil, BU und Muskelmasse graphisch dargestellt. Sowohl für die VG als auch die CG diente der Mittelwert zum Startzeitpunkt als 100 %-Referenzwert, anhand dessen die Abweichung im Zeitverlauf dokumentiert werden konnte. Zusätzlich ist für beide Versuchsgruppen die relative prozentuale Veränderung nach 3 und ≥ 6 Monaten (CG) bzw. nach 3, 6 und ≥ 9 Monaten (VG) aufgeführt.

Abbildung 11: Mittelwerte und Standardfehler der KG-Entwicklung - Mittelwerte und Standardfehler (A) der relativen KG-Entwicklung in % zum Startzeitpunkt, nach 3 und ≥ 6 Monaten für die CG (blau) bzw. zum Startzeitpunkt, nach 3, 6 und ≥ 9 Monaten für die VG (grün) (* p > 0,05 vs. Start, 13≤n≤64). B und C zeigen die Mittelwerte und Standardfehler der relativen prozentualen Veränderungen nach 3 und ≥ 6 Monaten für die CG bzw. für die VG nach 3, 6 und ≥ 9 Monaten im Vergleich zum Startwert (* p > 0,05 vs. 3 M).
Im Gegensatz zur CG konnte für die VG ein kontinuierlicher Verlust an KG vom Startpunkt bis ≥ 9 Monate erreicht werden (Abb. 11). Nach 3 Monaten lag der mittlere Verlust an KG bei -2,28 %. Für die Patienten, die ≥ 9 Monate den Ecd-Zusatz erhielten, konnte ein signifikanter Verlust an KG von -12,24 % verzeichnet werden. Für die CG ließ sich im Hinblick auf das KG zum Startpunkt keine signifikante Änderung ermitteln. Nach 3 Monaten erhöhte sich das mittlere KG der CG um 1,18 %. Für die Patienten, die ≥ 6 Monate betreut wurden, reduzierte sich das Gewicht nicht signifikant um -1,62 %.

Abbildung 12: Mittelwerte und Standardfehler der Gesamtfett-Entwicklung - Mittelwerte und Standardfehler (A) der relativen Gesamtfett-Entwicklung in % zum Startzeitpunkt, nach 3 und ≥ 6 Monaten für die CG (blau) bzw. zum Startzeitpunkt, nach 3, 6 und ≥ 9 Monaten für die VG (grün) (13≤n≤57). Der Mittelwert der beiden Patientengruppen zum Startzeitpunkt dient als Referenz für 100 %. B und C zeigen die Mittelwerte und Standardfehler relativen prozentualen Gesamtfett-Veränderung nach 3 und ≥ 6 Monaten für die CG bzw. für die VG nach 3, 6 und ≥ 9 Monaten im Vergleich zum Startwert (* p > 0,05 vs. 3 M).

Abbildung 13: Mittelwerte und Standardfehler der BU-Entwicklung - Mittelwerte und Standardfehler (A) der relativen BU-Entwicklung in % zum Startzeitpunkt, nach 3 und ≥ 6 Monaten für die CG (blau) bzw. zum Startzeitpunkt, nach 3, 6 und ≥ 9 Monaten für die VG (grün) (* p > 0,05 vs. Start, 13≤n≤64). Der Mittelwert der beiden Patientengruppen zum Startzeitpunkt dient als Referenz für 100 %. B und C zeigen die Mittelwerte und Standardfehler der relativen prozentualen BU-Veränderung nach 3 und ≥ 6 Monaten für die CG bzw. für die VG nach 3, 6 und ≥ 9 Monaten im Vergleich zum Startwert (* p > 0,05 vs. 3 M).

Abbildung 14: Mittelwerte und Standardfehler der Muskelmassen-Entwicklung - Mittelwerte und Standardfehler (A) der relativen Muskelmassen-Entwicklung in % zum Startzeitpunkt, nach 3 und ≥ 6 Monaten für die CG (blau) bzw. zum Startzeitpunkt, nach 3, 6 und ≥ 9 Monaten für die VG (grün) (11≤n≤46). Der Mittelwert der beiden Patientengruppen zum Startzeitpunkt dient als Referenz für 100 %. B und C zeigen die Mittelwerte und Standardfehler der relativen prozentualen Muskelmassen-Veränderung nach 3 und ≥ 6 Monaten für die CG bzw. für die VG nach 3, 6 und ≥ 9 Monaten im Vergleich zum Startwert.
Die Abb. 14 zeigt die Entwicklung der Muskelmasse für die VG und CG. Sowohl nach 3 Monaten als auch nach ≥ 6 Monaten lässt sich für die VG eine geringe Zunahme der Muskelmasse von 1,35 % bzw. 0,79 % verzeichnen. Im Zeitraum ≥ 9 Monate kam es zu einer geringfügigen Muskelmassenreduktion von 0,43 %. Die CG zeigt dagegen im Zeitverlauf eine Abnahme der Muskelmasse von -2,71 % bzw. -0,21 %. Allgemein lässt sich an dieser Stelle sowohl für die VG als auch die CG kein signifikanter Effekt auf das Muskelgewebe unter Ecd-Einfluss feststellen.
Ergebnisse

3.3 Entwicklung der Serumparameter unter Ecd-Einfluss

Abbildung 15: Mittelwerte und Standardfehler der Cholesterin-Entwicklung - Mittelwerte und Standardfehler (A) der relativen Cholesterin-Entwicklung in % zum Startzeitpunkt, nach 3 und ≥ 6 Monaten für die CG (blau) bzw. zum Startzeitpunkt, nach 3, 6 und ≥ 9 Monaten für die VG (grün) (36>n>11). Der Mittelwert der beiden Patientengruppen zum Startzeitpunkt dient als Referenz für 100 %. B und C zeigen die Mittelwerte und Standardfehler der relativen prozentualen Cholesterin-Veränderung nach 3 und ≥ 6 Monaten für die CG bzw. für die VG nach 3, 6 und ≥ 9 Monaten im Vergleich zum Startwert.

In Abb. 15 ist der Einfluss auf den Serum-Cholesterinspiegel der VG und CG graphisch dargestellt. Für die VG ergibt sich im Zeitverlauf eine Reduktion des Cholesterinspiegels von 100 % auf 96,64 % nach ≥ 9 Monaten. Die Verringerung fällt mit -6,91 % nach 3 Monaten am höchsten aus. Für die CG stellt sich das Ergebnis umgekehrt dar, denn im 3. Monat wiesen die Patienten im Durchschnitt einen um 11,92 % erhöhten Cholesterin-Spiegel auf.

Abbildung 16: Mittelwerte und Standardfehler der TG-Entwicklung - Mittelwerte und Standardfehler (A) der relativen TG-Entwicklung in % zum Startzeitpunkt, nach 3 und ≥ 6 Monaten für die CG (blau) bzw. zum Startzeitpunkt, nach 3, 6 und ≥ 9 Monaten für die VG (grün) (11≤n≤30). Der Mittelwert der beiden Patientengruppen zum Startzeitpunkt dient als Referenz für 100 %. B und C zeigen die Mittelwerte und Standardfehler der relativen prozentualen TG-Veränderung nach 3 und ≥ 6 Monaten für die CG bzw. für die VG nach 3, 6 und ≥ 9 Monaten im Vergleich zum Startwert (* p > 0,05 vs. 3 M).

Die Abb. 16 zeigt vergleichend die Entwicklung des TG-Serumspiegels der VG und KG. Für die VG konnte ein reduzierender Effekt sowohl nach 3 Monaten (91,26 %) als auch nach 6 Monaten (96,76 %) und am stärksten nach ≥ 9 Monaten (74,69 %) festgehalten werden. Dieser lag bei -8,74 % bzw. -3,24 % und -25,31 %, wobei keine Signifikanz gegenüber dem
Ergebnisse

Abbildung 17: Mittelwerte und Standardfehler der LDL-Entwicklung - Mittelwerte und Standardfehler (A) der relativen LDL-Entwicklung in % zum Startzeitpunkt, nach 3 und ≥ 6 Monaten für die CG (blau) bzw. zum Startzeitpunkt, nach 3, 6 und ≥ 9 Monaten für die VG (grün) (11≤n≤34). Der Mittelwert der beiden Patientengruppen zum Startzeitpunkt dient als Referenz für 100 %. B und C zeigen die Mittelwerte und Standardfehler der relativen prozentualen LDL-Veränderung nach 3 und ≥ 6 Monaten für die CG bzw. für die VG nach 3, 6 und ≥ 9 Monaten im Vergleich zum Startwert.

Abb. 17 stellt die für den LDL-Serumspiegel ermittelten Werte im Zeitverlauf dar. Die VG konnte im 3. Monat eine Reduktion des LDL-Spiegels von -6,26 % erzielen. Allerdings zeigt sich für die

Abbildung 18: Mittelwerte und Standardfehler der HDL-Entwicklung

Die Entwicklung des Serumspiegels von HDL, das umgangssprachlich auch als „gutes Cholesterin“ bezeichnet wird, ist in der Abb. 18 erkennbar. Für die VG konnte eine kontinuierliche Zunahme
Ergebnisse

Abbildung 19: Mittelwerte und Standardfehler der hsCRP-Entwicklung - Mittelwerte und Standardfehler (A) der relativen hsCRP-Entwicklung in % zum Startzeitpunkt, nach 3 und ≥ 6 Monaten für die CG (blau) bzw. zum Startzeitpunkt, nach 3, 6 und ≥ 9 Monaten für die VG (grün) (9≤n≤26). Der Mittelwert der beiden Patientengruppen zum Startzeitpunkt dient als Referenz für 100 %. B und C zeigen die Mittelwerte und Standardfehler der relativen prozentualen hsCRP-Veränderung nach 3 und ≥ 6 Monaten für die CG bzw. für die VG nach 3, 6 und ≥ 9 Monaten.
Für die Patienten unter Ecd-Gabe konnte im gesamten Zeitverlauf eine relativ einheitliche Reduktion des hsCRP-Spiegels auf 72,38 % nach 3 Monaten bzw. 67,0 % nach 6 Monaten und ≥ 9 Monate auf 72,23 % im Vergleich zum Ausgangswert des Startpunktes ermittelt werden (Abb. 19). Allerdings handelt es sich um keine signifikante Erniedrigung des hsCRP-Serumspiegels gegenüber dem Startwert. Im Gegensatz dazu zeigt die CG nach 3 Monaten eine Zunahme des hsCRPs auf 127,2 % im Vergleich zum Startwert. Dies entspricht einer Zunahme von 27,19 %. Im Zeitraum von ≥ 6 Monaten reduzierte sich auch der Serumspiegel der CG um 6,44 % auf 93,56 %. Für diese Werte konnten keine Signifikanzen ermittelt werden.
Diskussion

4 Diskussion

4.1 Adipositas-bedingte Auswirkungen auf das Serumprofil

4.1.1 Das hsCRP-Profil

Mit Blick auf die Untersuchung des hsCRP-Spiegels ist es einerseits von grundsätzlichem Interesse, inwieweit das MetS mit der einhergehenden chronischen Inflammation auf das Serumprofil des hsCRPs Einfluss nimmt und ob Wechselwirkungen zum Fettgewebe, insbesondere zum viszeralen Fettdepot des Körpers, bestehen. Des Weiteren soll später die mögliche Einflussnahme von Ecd auf das Serumprofil des hsCRPs beleuchtet werden.

4.1.2 Die Triglyceride

4.1.3 Die Calciferole

Diskussion

4.2 Entwicklung der Körperparameter unter Ecd-Einfluss

4.2.1 Das Körpergewicht und der Fettanteil

4.2.2 Die Muskelmasse

Es gibt eine Vielzahl an Untersuchungen, die Ecd ein anaboles Potential auf das Muskelgewebe zuschreiben (Gorelick-Feldman et al. 2008; Tóth et al. 2008; Gorelick-Feldman et al. 2010; Seidlova-Wuttke et al. 2010b). Entgegen den bisherigen Veröffentlichungen zeigen die Ergebnisse
4.3 Entwicklung der Serumparameter unter Ecd-Einfluss

4.3.1 Die Serumlipide

Um Auswirkungen eines pathologischen Lipidprofils entgegenzuwirken, ist die mögliche Einflussnahme von Ecd auf die Entwicklung der Laborparameter von großem Interesse. In der Vergangenheit wurde in der Literatur ein hypocholesterolämischer und fettsenkender Effekt bei Tieren beschrieben (Lupien et al. 1969; Mironova et al. 1982; Seidlova-Wuttke et al. 2010b).

Mit Blick auf die Ergebnisse konnte die größte Cholesterinreduktion nach 3 Monaten mit 6,9 % ermittelt werden, im Zeitraum ≥ 9 Monate lag der reduzierende Effekt noch bei 3 % gegenüber
Diskussion

4.3.2 Das hsCRP-Profil

5 Zusammenfassung

Aus unserer retrospektiven Untersuchung wird deutlich, dass der Erhebung des Taillenumfangs eine hohe diagnostische Bedeutung zukommt. Die positive Korrelation zwischen BU als Indikator der viszeralen Adipositas und TG sowie hsCRP im Gegensatz zum Gesamtkörperfett verdeutlicht zum einen die zentrale pathophysiologische Bedeutung und endokrine Funktion des viszeralen Fettgewebes. Zum anderen kann ab einem BU von ≥ 100 cm bzw. ≥ 90 cm von einer Hypertriglycerid bzw. einem erhöhten hsCRP-Serumprofil ausgegangen werden. Demnach kommt der Ermittlung des Taillenumfangs in der Definition des MetS eine begründete Verwendung zu. In der hausärztlichen Praxis könnte der BU ab definierter Grenzwerten laborchemische Untersuchungen beispielsweise des hsCRPs oder der Ermittlung des Lipidstatus vor der Krankenkasse rechtferigen und damit als wesentlicher diagnostischer Parameter zur Detektion des MetS dienen.

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Inhaltsstoffe</th>
<th>Produkt</th>
<th>Inhaltsstoffe</th>
</tr>
</thead>
<tbody>
<tr>
<td>VerdeFit®</td>
<td>900 mg Spinatpulver mit 10 % Ecd (90 mg)</td>
<td>VerdeDry®</td>
<td>600 mg Spinatpulver mit 10 % Ecd (60 mg)</td>
</tr>
<tr>
<td></td>
<td>Zusatzstoffe:</td>
<td></td>
<td>Zusatzstoffe:</td>
</tr>
<tr>
<td></td>
<td>• Mangan</td>
<td></td>
<td>• Cranberryextrakt</td>
</tr>
<tr>
<td></td>
<td>• VD</td>
<td></td>
<td>• VD</td>
</tr>
<tr>
<td>VerdeOx®</td>
<td>500 mg Spinatpulver mit 10 % Ecd (50 mg)</td>
<td>VerdeCor®San</td>
<td>400 mg Spinatpulver mit 10 % Ecd (40 mg)</td>
</tr>
<tr>
<td></td>
<td>Zusatzstoffe:</td>
<td></td>
<td>Zusatzstoffe:</td>
</tr>
<tr>
<td></td>
<td>• Calcium</td>
<td></td>
<td>• Omega-3-Fettsäure</td>
</tr>
<tr>
<td></td>
<td>• VD</td>
<td></td>
<td>• Resveratrol</td>
</tr>
<tr>
<td>VerdeArthroSan®</td>
<td>520 mg Spinatpulver mit 10 % Ecd (52 mg)</td>
<td>VerdeRegenerativ®</td>
<td>800 mg Spinatpulver mit 10 % Ecd (80 mg)</td>
</tr>
<tr>
<td></td>
<td>Zusatzstoffe:</td>
<td></td>
<td>Zusatzstoffe:</td>
</tr>
<tr>
<td></td>
<td>• Glucosaminsulfat</td>
<td></td>
<td>• Vitamin C</td>
</tr>
<tr>
<td></td>
<td>• Vitamin C</td>
<td></td>
<td>• Niacin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Riboflavin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Vitamin B6, B1 und B12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Folsäure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Jod</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Biotin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• VD</td>
</tr>
</tbody>
</table>
Tabelle A-2: Der hsCRP-Spiegel in Abhängigkeit vom BU
- Aufgeführt ist in Abhängigkeit vom BU (cm) der Stichprobenumfang (N), der Mittelwert (Mean in mg/dl), die Standardabweichung (SD) und der Standardfehler (SEM) des hsCRP-Spiegels.

<table>
<thead>
<tr>
<th>BU</th>
<th>< 90 cm</th>
<th>90-99 cm</th>
<th>100-109 cm</th>
<th>> 109 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>20</td>
<td>26</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>Mean</td>
<td>1,137</td>
<td>2,946</td>
<td>2,454</td>
<td>3,670</td>
</tr>
<tr>
<td>SD</td>
<td>1,100</td>
<td>2,758</td>
<td>2,291</td>
<td>3,849</td>
</tr>
<tr>
<td>SEM</td>
<td>0,2460</td>
<td>0,5410</td>
<td>0,3873</td>
<td>0,7028</td>
</tr>
</tbody>
</table>

Tabelle A-3: Der TG-Spiegel in Abhängigkeit vom BU
- Aufgeführt ist in Abhängigkeit vom BU (cm) der Stichprobenumfang (N), der Mittelwert (Mean in mg/dl), die Standardabweichung (SD) und der Standardfehler (SEM) des TG-Spiegels.

<table>
<thead>
<tr>
<th>BU</th>
<th>< 90 cm</th>
<th>90-99 cm</th>
<th>100-109 cm</th>
<th>> 109 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>33</td>
<td>35</td>
<td>32</td>
<td>44</td>
</tr>
<tr>
<td>Mean</td>
<td>112,0</td>
<td>138,7</td>
<td>162,3</td>
<td>181,9</td>
</tr>
<tr>
<td>SD</td>
<td>46,44</td>
<td>49,60</td>
<td>87,54</td>
<td>111,6</td>
</tr>
<tr>
<td>SEM</td>
<td>8,084</td>
<td>8,384</td>
<td>15,47</td>
<td>16,82</td>
</tr>
</tbody>
</table>

Tabelle A-4: Der 25(OH)VD-Spiegel in Abhängigkeit vom BU
- Aufgeführt ist in Abhängigkeit vom BU (cm) der Stichprobenumfang (N), der Mittelwert (Mean in ng/ml), die Standardabweichung (SD) und der Standardfehler (SEM) des 25(OH)VD-Spiegels.

<table>
<thead>
<tr>
<th>BU</th>
<th>80-89 cm</th>
<th>90-99 cm</th>
<th>> 99 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>20</td>
<td>19</td>
<td>28</td>
</tr>
<tr>
<td>Mean</td>
<td>23,35</td>
<td>21,02</td>
<td>17,43</td>
</tr>
<tr>
<td>SD</td>
<td>11,66</td>
<td>7,177</td>
<td>6,553</td>
</tr>
<tr>
<td>SEM</td>
<td>2,608</td>
<td>1,646</td>
<td>1,238</td>
</tr>
</tbody>
</table>

Tabelle A-5: Der 1,25(OH)2VD-Spiegel in Abhängigkeit vom BU
- Aufgeführt ist in Abhängigkeit vom BU (cm) der Stichprobenumfang (N), der Mittelwert (Mean in ng/ml), die Standardabweichung (SD) und der Standardfehler (SEM) des 1,25(OH)2VD-Spiegels.

<table>
<thead>
<tr>
<th>BU</th>
<th>80-89 cm</th>
<th>90-99 cm</th>
<th>> 99 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>6</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Mean</td>
<td>55,27</td>
<td>47,03</td>
<td>42,15</td>
</tr>
<tr>
<td>SD</td>
<td>12,91</td>
<td>8,156</td>
<td>20,44</td>
</tr>
<tr>
<td>SEM</td>
<td>5,271</td>
<td>4,709</td>
<td>6,813</td>
</tr>
</tbody>
</table>

Tabelle A-6: Effekt von Ecd-haltigen Präparaten auf das KG im Vergleich zur CG
- Aufgeführt ist der Stichprobenumfang (N), der Mittelwert (Mean in %), die Standardabweichung (SD) und der Standardfehler (SEM) des KGs zum Startzeitpunkt, nach 3, 6 und ≥ 9 Monaten für die VG bzw. zum Startzeitpunkt, nach 3 und ≥ 6 Monaten für die CG.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Start</th>
<th>Start</th>
<th>3 M</th>
<th>3 M</th>
<th>6 M</th>
<th>≥ 6 M</th>
<th>≥ 9 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
<td>VG</td>
<td>CG</td>
<td>VG</td>
<td>CG</td>
<td>VG</td>
<td>CG</td>
<td>VG</td>
</tr>
<tr>
<td>N</td>
<td>64</td>
<td>28</td>
<td>56</td>
<td>13</td>
<td>16</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>Mean</td>
<td>100,0</td>
<td>100,0</td>
<td>97,72</td>
<td>101,2</td>
<td>95,01</td>
<td>98,38</td>
<td>87,76</td>
</tr>
<tr>
<td>SD</td>
<td>21,30</td>
<td>24,18</td>
<td>3,369</td>
<td>1,597</td>
<td>4,681</td>
<td>2,567</td>
<td>8,515</td>
</tr>
<tr>
<td>SEM</td>
<td>2,662</td>
<td>4,569</td>
<td>0,4502</td>
<td>0,4430</td>
<td>1,170</td>
<td>0,6050</td>
<td>1,858</td>
</tr>
</tbody>
</table>
Tabelle A-7: Effekt von Ecd-haltigen Präparaten auf das KG der VG - Aufgeführt ist der Stichprobenumfang (N), der Mittelwert (Mean in %), die Standardabweichung (SD) und der Standardfehler (SEM) des KGs für die VG zum Startzeitpunkt, nach 3, 6 und ≥ 9 Monaten.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Start</th>
<th>3 M</th>
<th>6 M</th>
<th>≥ 9 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>56</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>-2.281</td>
<td>-4.987</td>
<td>-12.24</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>3.369</td>
<td>4.681</td>
<td>8.515</td>
<td></td>
</tr>
<tr>
<td>SEM</td>
<td>0.4502</td>
<td>1.170</td>
<td>1.858</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle A-8: Effekt von Ecd-haltigen Präparaten auf das KG der CG - Aufgeführt ist der Stichprobenumfang (N), der Mittelwert (Mean in %), die Standardabweichung (SD) und der Standardfehler (SEM) des KGs für die CG zum Startzeitpunkt, nach 3 und ≥ 6 Monaten.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Start</th>
<th>3 M</th>
<th>≥ 6 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>N</td>
<td>13</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1,183</td>
<td>-1,615</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>1,597</td>
<td>2,567</td>
<td></td>
</tr>
<tr>
<td>SEM</td>
<td>0,4430</td>
<td>0,6050</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle A-9: Effekt von Ecd-haltigen Präparaten auf den Gesamtfettanteil im Vergleich zur CG - Aufgeführt ist der Stichprobenumfang (N), der Mittelwert (Mean in %), die Standardabweichung (SD) und der Standardfehler (SEM) des Gesamtfettanteils zum Startzeitpunkt, nach 3, 6 und ≥ 9 Monaten für die VG bzw. zum Startzeitpunkt, nach 3 und ≥ 6 Monaten für die CG.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Start</th>
<th>3 M</th>
<th>6 M</th>
<th>≥ 6 M</th>
<th>≥ 9 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>57</td>
<td>45</td>
<td>17</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>100,0</td>
<td>96,56</td>
<td>96,09</td>
<td>96,96</td>
<td>89,57</td>
</tr>
<tr>
<td>SD</td>
<td>24,93</td>
<td>7,773</td>
<td>8,470</td>
<td>6,294</td>
<td>8,750</td>
</tr>
<tr>
<td>SEM</td>
<td>3,302</td>
<td>1,159</td>
<td>2,054</td>
<td>1,625</td>
<td>1,825</td>
</tr>
</tbody>
</table>

Tabelle A-10: Effekt von Ecd-haltigen Präparaten auf den Gesamtfettanteil der VG - Aufgeführt ist der Stichprobenumfang (N), der Mittelwert (Mean in %), die Standardabweichung (SD) und der Standardfehler (SEM) des Gesamtfettanteils für die VG zum Startzeitpunkt, nach 3, 6 und ≥ 9 Monaten.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Start</th>
<th>3 M</th>
<th>6 M</th>
<th>≥ 9 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>45</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>-3,436</td>
<td>-3,910</td>
<td>-10,43</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>7,773</td>
<td>8,470</td>
<td>8,750</td>
<td></td>
</tr>
<tr>
<td>SEM</td>
<td>1,159</td>
<td>2,054</td>
<td></td>
<td>1,825</td>
</tr>
</tbody>
</table>

Tabelle A-11: Effekt von Ecd-haltigen Präparaten auf den Gesamtfettanteil der CG - Aufgeführt ist der Stichprobenumfang (N), der Mittelwert (Mean in %), die Standardabweichung (SD) und der Standardfehler (SEM) des Gesamtfettanteils für die CG zum Startzeitpunkt, nach 3 und ≥ 6 Monaten.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Start</th>
<th>3 M</th>
<th>≥ 6 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>N</td>
<td>13</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0,6739</td>
<td>-3,040</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>3,157</td>
<td>6,294</td>
<td></td>
</tr>
<tr>
<td>SEM</td>
<td>0,8756</td>
<td>1,625</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle A-12: Effekt von Ecd-haltigen Präparaten auf den BU im Vergleich zur CG
Aufgeführt ist der Stichprobenumfang (N), der Mittelwert (Mean in %), die Standardabweichung (SD) und der Standardfehler (SEM) des BUs zum Startzeitpunkt, nach 3, 6 und ≥ 9 Monaten für die VG bzw. zum Startzeitpunkt, nach 3 und ≥ 6 Monaten für die CG.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Start</th>
<th>Gruppe</th>
<th>3 M</th>
<th>6 M</th>
<th>≥ 6 M</th>
<th>≥ 9 M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>VG</td>
<td>CG</td>
<td>VG</td>
<td>CG</td>
<td>VG</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>64</td>
<td>25</td>
<td>57</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>100,0</td>
<td>100,0</td>
<td>97,49</td>
<td>101,6</td>
<td>94,91</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>15,02</td>
<td>17,31</td>
<td>3,135</td>
<td>3,973</td>
<td>4,599</td>
</tr>
<tr>
<td>SEM</td>
<td></td>
<td>1,877</td>
<td>3,461</td>
<td>0,4153</td>
<td>1,102</td>
<td>1,187</td>
</tr>
</tbody>
</table>

Tabelle A-13: Effekt von Ecd-haltigen Präparaten auf den BU der VG
Aufgeführt ist der Stichprobenumfang (N), der Mittelwert (Mean in %), die Standardabweichung (SD) und der Standardfehler (SEM) des BUs für die VG zum Startzeitpunkt, nach 3, 6 und ≥ 9 Monaten.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>3 M</th>
<th>6 M</th>
<th>≥ 9 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>N</td>
<td>57</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td>Mean</td>
<td>-2,507</td>
<td>-5,089</td>
<td>-10,50</td>
</tr>
<tr>
<td>SD</td>
<td>3,135</td>
<td>4,599</td>
<td>13,58</td>
</tr>
<tr>
<td>SEM</td>
<td>0,4153</td>
<td>1,187</td>
<td>2,773</td>
</tr>
</tbody>
</table>

Tabelle A-14: Effekt von Ecd-haltigen Präparaten auf den BU der CG
Aufgeführt ist der Stichprobenumfang (N), der Mittelwert (Mean in %), die Standardabweichung (SD) und der Standardfehler (SEM) des BUs für die CG zum Startzeitpunkt, nach 3 und ≥ 6 Monaten.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>3 M</th>
<th>≥ 6 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>N</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>Mean</td>
<td>1,571</td>
<td>-1,588</td>
</tr>
<tr>
<td>SD</td>
<td>3,973</td>
<td>2,088</td>
</tr>
<tr>
<td>SEM</td>
<td>1,102</td>
<td>0,5392</td>
</tr>
</tbody>
</table>

Tabelle A-15: Effekt von Ecd-haltigen Präparaten auf die Muskelmasse im Vergleich zur CG
Aufgeführt ist der Stichprobenumfang (N), der Mittelwert (Mean in %), die Standardabweichung (SD) und der Standardfehler (SEM) der Muskelmasse zum Startzeitpunkt, nach 3, 6 und ≥ 9 Monaten für die VG bzw. zum Startzeitpunkt, nach 3 und ≥ 6 Monaten für die CG.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Start</th>
<th>Gruppe</th>
<th>3 M</th>
<th>6 M</th>
<th>≥ 6 M</th>
<th>≥ 9 M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>VG</td>
<td>CG</td>
<td>VG</td>
<td>CG</td>
<td>VG</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>46</td>
<td>23</td>
<td>37</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>100,0</td>
<td>100,0</td>
<td>101,3</td>
<td>97,29</td>
<td>100,8</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>35,24</td>
<td>48,66</td>
<td>8,145</td>
<td>8,669</td>
<td>9,657</td>
</tr>
<tr>
<td>SEM</td>
<td></td>
<td>5,195</td>
<td>10,15</td>
<td>1,339</td>
<td>2,404</td>
<td>2,414</td>
</tr>
</tbody>
</table>

Tabelle A-16: Effekt von Ecd-haltigen Präparaten auf die Muskelmasse der VG
Aufgeführt ist der Stichprobenumfang (N), der Mittelwert (Mean in %), die Standardabweichung (SD) und der Standardfehler (SEM) der Muskelmasse für die VG zum Startzeitpunkt, nach 3, 6 und ≥ 9 Monaten.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>3 M</th>
<th>6 M</th>
<th>≥ 9 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>N</td>
<td>37</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>Mean</td>
<td>1,350</td>
<td>0,7896</td>
<td>-0,4322</td>
</tr>
<tr>
<td>SD</td>
<td>8,145</td>
<td>9,657</td>
<td>16,59</td>
</tr>
<tr>
<td>SEM</td>
<td>1,359</td>
<td>2,414</td>
<td>3,805</td>
</tr>
</tbody>
</table>
Tabelle A-17: Effekt von Ecd-haltigen Präparaten auf die Muskelmasse der CG - Aufgeführt ist der Stichprobenumfang (N), der Mittelwert (Mean in %), die Standardabweichung (SD) und der Standardfehler (SEM) der Muskelmasse für die CG zum Startzeitpunkt, nach 3 und ≥ 6 Monaten.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>3 M</th>
<th>≥ 6 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>N</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>Mean</td>
<td>-2,707</td>
<td>-0,2067</td>
</tr>
<tr>
<td>SD</td>
<td>8,669</td>
<td>1,656</td>
</tr>
<tr>
<td>SEM</td>
<td>2,404</td>
<td>0,4993</td>
</tr>
</tbody>
</table>

Tabelle A-18: Effekt von Ecd-haltigen Präparaten auf das Cholesterin im Vergleich zur CG - Aufgeführt ist der Stichprobenumfang (N), der Mittelwert (Mean in %), die Standardabweichung (SD) und der Standardfehler (SEM) des Cholesterin-Spiegels zum Startzeitpunkt, nach 3, 6 und ≥ 9 Monaten für die VG bzw. zum Startzeitpunkt, nach 3 und ≥ 6 Monaten für die CG.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Start</th>
<th>Start</th>
<th>3 M</th>
<th>3 M</th>
<th>6 M</th>
<th>≥ 6 M</th>
<th>≥ 9 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
<td>VG</td>
<td>CG</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>CG</td>
<td>VG</td>
</tr>
<tr>
<td>N</td>
<td>36</td>
<td>19</td>
<td>20</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Mean</td>
<td>100,0</td>
<td>100,0</td>
<td>93,09</td>
<td>111,9</td>
<td>100,5</td>
<td>93,23</td>
<td>96,64</td>
</tr>
<tr>
<td>SD</td>
<td>17,36</td>
<td>25,53</td>
<td>13,26</td>
<td>26,19</td>
<td>11,43</td>
<td>16,66</td>
<td>12,84</td>
</tr>
<tr>
<td>SEM</td>
<td>2,894</td>
<td>5,856</td>
<td>2,965</td>
<td>3,301</td>
<td>3,562</td>
<td>3,562</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle A-19: Effekt von Ecd-haltigen Präparaten auf das Cholesterin der VG - Aufgeführt ist der Stichprobenumfang (N), der Mittelwert (Mean in %), die Standardabweichung (SD) und der Standardfehler (SEM) des Cholesterin-Spiegels für die VG zum Startzeitpunkt, nach 3, 6 und ≥ 9 Monaten.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>3 M</th>
<th>6 M</th>
<th>≥ 9 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>N</td>
<td>20</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Mean</td>
<td>-6,912</td>
<td>0,4518</td>
<td>-3,364</td>
</tr>
<tr>
<td>SD</td>
<td>13,26</td>
<td>11,43</td>
<td>12,84</td>
</tr>
<tr>
<td>SEM</td>
<td>2,865</td>
<td>3,301</td>
<td>3,562</td>
</tr>
</tbody>
</table>

Tabelle A-20: Effekt von Ecd-haltigen Präparaten auf das Cholesterin der CG - Aufgeführt ist der Stichprobenumfang (N), der Mittelwert (Mean in %), die Standardabweichung (SD) und der Standardfehler (SEM) des Cholesterin-Spiegels für die CG zum Startzeitpunkt, nach 3 und ≥ 6 Monaten.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>3 M</th>
<th>≥ 6 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>N</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Mean</td>
<td>11,92</td>
<td>-6,773</td>
</tr>
<tr>
<td>SD</td>
<td>26,19</td>
<td>16,66</td>
</tr>
<tr>
<td>SEM</td>
<td>7,559</td>
<td>5,023</td>
</tr>
</tbody>
</table>

Tabelle A-21: Effekt von Ecd-haltigen Präparaten auf die TG im Vergleich zur CG - Aufgeführt ist der Stichprobenumfang (N), der Mittelwert (Mean in %), die Standardabweichung (SD) und der Standardfehler (SEM) des TG-Spiegels zum Startzeitpunkt, nach 3, 6 und ≥ 9 Monaten für die VG bzw. zum Startzeitpunkt, nach 3 und ≥ 6 Monaten für die CG.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Start</th>
<th>Start</th>
<th>3 M</th>
<th>3 M</th>
<th>6 M</th>
<th>≥ 6 M</th>
<th>≥ 9 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
<td>VG</td>
<td>CG</td>
<td>VG</td>
<td>CG</td>
<td>VG</td>
<td>CG</td>
<td>VG</td>
</tr>
<tr>
<td>N</td>
<td>30</td>
<td>18</td>
<td>14</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Mean</td>
<td>100,0</td>
<td>100,0</td>
<td>91,26</td>
<td>113,4</td>
<td>96,76</td>
<td>84,62</td>
<td>74,69</td>
</tr>
<tr>
<td>SD</td>
<td>64,55</td>
<td>60,68</td>
<td>25,88</td>
<td>30,44</td>
<td>39,31</td>
<td>25,20</td>
<td>18,68</td>
</tr>
<tr>
<td>SEM</td>
<td>11,78</td>
<td>14,30</td>
<td>6,916</td>
<td>9,178</td>
<td>11,85</td>
<td>7,599</td>
<td>5,180</td>
</tr>
</tbody>
</table>
Tabelle A-22: Effekt von Ecd-haltigen Präparaten auf die TG der VG - Aufgeführt ist der Stichprobenumfang (N), der Mittelwert (Mean in %), die Standardabweichung (SD) und der Standardfehler (SEM) des TG-Spiegels für die VG zum Startzeitpunkt, nach 3, 6 und ≥ 9 Monaten.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>3 M</th>
<th>6 M</th>
<th>≥ 9 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>N</td>
<td>14</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Mean</td>
<td>-8,743</td>
<td>-3,236</td>
<td>-25,31</td>
</tr>
<tr>
<td>SD</td>
<td>25,88</td>
<td>39,31</td>
<td>18,68</td>
</tr>
<tr>
<td>SEM</td>
<td>6,916</td>
<td>11,85</td>
<td>5,180</td>
</tr>
</tbody>
</table>

Tabelle A-23: Effekt von Ecd-haltigen Präparaten auf die TG der CG - Aufgeführt ist der Stichprobenumfang (N), der Mittelwert (Mean in %), die Standardabweichung (SD) und der Standardfehler (SEM) des TG-Spiegels für die CG zum Startzeitpunkt, nach 3 und ≥ 6 Monaten.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>3 M</th>
<th>≥ 6 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>N</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Mean</td>
<td>13,36</td>
<td>-15,38</td>
</tr>
<tr>
<td>SD</td>
<td>30,44</td>
<td>25,20</td>
</tr>
<tr>
<td>SEM</td>
<td>9,178</td>
<td>7,599</td>
</tr>
</tbody>
</table>

Tabelle A-24: Effekt von Ecd-haltigen Präparaten auf das LDL im Vergleich zur CG - Aufgeführt ist der Stichprobenumfang (N), der Mittelwert (Mean in %), die Standardabweichung (SD) und der Standardfehler (SEM) des LDL-Spiegels zum Startzeitpunkt, nach 3, 6 und ≥ 9 Monaten für die VG bzw. zum Startzeitpunkt, nach 3 und ≥ 6 Monaten für die CG.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Start</th>
<th>Start</th>
<th>3 M</th>
<th>3 M</th>
<th>6 M</th>
<th>≥ 6 M</th>
<th>≥ 9 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
<td>VG</td>
<td>CG</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>N</td>
<td>34</td>
<td>20</td>
<td>20</td>
<td>13</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Mean</td>
<td>100,0</td>
<td>100,0</td>
<td>93,74</td>
<td>106,4</td>
<td>105,9</td>
<td>94,87</td>
<td>101,5</td>
</tr>
<tr>
<td>SD</td>
<td>24,17</td>
<td>39,25</td>
<td>19,63</td>
<td>20,42</td>
<td>20,59</td>
<td>19,58</td>
<td>27,02</td>
</tr>
<tr>
<td>SEM</td>
<td>4,146</td>
<td>8,778</td>
<td>4,389</td>
<td>5,664</td>
<td>6,512</td>
<td>5,904</td>
<td>7,800</td>
</tr>
</tbody>
</table>

Tabelle A-25: Effekt von Ecd-haltigen Präparaten auf das LDL der VG - Aufgeführt ist der Stichprobenumfang (N), der Mittelwert (Mean in %), die Standardabweichung (SD) und der Standardfehler (SEM) des LDL-Spiegels für die VG zum Startzeitpunkt, nach 3, 6 und ≥ 9 Monaten.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>3 M</th>
<th>6 M</th>
<th>≥ 9 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>N</td>
<td>20</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>Mean</td>
<td>-6,264</td>
<td>3,496</td>
<td>1,521</td>
</tr>
<tr>
<td>SD</td>
<td>19,63</td>
<td>23,86</td>
<td>27,02</td>
</tr>
<tr>
<td>SEM</td>
<td>4,389</td>
<td>5,086</td>
<td>7,800</td>
</tr>
</tbody>
</table>

Tabelle A-26: Effekt von Ecd-haltigen Präparaten auf das LDL der CG - Aufgeführt ist der Stichprobenumfang (N), der Mittelwert (Mean in %), die Standardabweichung (SD) und der Standardfehler (SEM) des LDL-Spiegels für die CG zum Startzeitpunkt, nach 3 und ≥ 6 Monaten.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>3 M</th>
<th>≥ 6 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>N</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>Mean</td>
<td>6,424</td>
<td>-5,133</td>
</tr>
<tr>
<td>SD</td>
<td>20,42</td>
<td>19,58</td>
</tr>
<tr>
<td>SEM</td>
<td>5,664</td>
<td>5,904</td>
</tr>
</tbody>
</table>
Tab. A-27: Effekt von Ecd-haltigen Präparaten auf das HDL im Vergleich zur CG - Aufgeführt ist der Stichprobenumfang (N), der Mittelwert (Mean in %), die Standardabweichung (SD) und der Standardfehler (SEM) des HDL-Spiegels zum Startzeitpunkt, nach 3, 6 und ≥ 9 Monaten für die VG bzw. zum Startzeitpunkt, nach 3 und ≥ 6 Monaten für die CG.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Start</th>
<th>3 M</th>
<th>3 M</th>
<th>6 M</th>
<th>≥ 6 M</th>
<th>≥ 9 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
<td>VG</td>
<td>CG</td>
<td>VG</td>
<td>CG</td>
<td>VG</td>
<td>CG</td>
</tr>
<tr>
<td>N</td>
<td>38</td>
<td>19</td>
<td>21</td>
<td>12</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>Mean</td>
<td>99.98</td>
<td>100.0</td>
<td>100.0</td>
<td>99.17</td>
<td>108.6</td>
<td>98.63</td>
</tr>
<tr>
<td>SD</td>
<td>32.01</td>
<td>26.42</td>
<td>25.31</td>
<td>8.738</td>
<td>25.99</td>
<td>16.48</td>
</tr>
</tbody>
</table>

Tab. A-28: Effekt von Ecd-haltigen Präparaten auf das HDL der VG - Aufgeführt ist der Stichprobenumfang (N), der Mittelwert (Mean in %), die Standardabweichung (SD) und der Standardfehler (SEM) des HDL-Spiegels für die VG zum Startzeitpunkt, nach 3, 6 und ≥ 9 Monaten.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>3 M</th>
<th>6 M</th>
<th>≥ 9 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>N</td>
<td>21</td>
<td>27</td>
<td>14</td>
</tr>
<tr>
<td>Mean</td>
<td>0.0295</td>
<td>8.992</td>
<td>9.374</td>
</tr>
<tr>
<td>SD</td>
<td>25.31</td>
<td>28.98</td>
<td>32.50</td>
</tr>
<tr>
<td>SEM</td>
<td>5.523</td>
<td>5.578</td>
<td>8.686</td>
</tr>
</tbody>
</table>

Tab. A-29: Effekt von Ecd-haltigen Präparaten auf das HDL der CG - Aufgeführt ist der Stichprobenumfang (N), der Mittelwert (Mean in %), die Standardabweichung (SD) und der Standardfehler (SEM) des HDL-Spiegels für die CG zum Startzeitpunkt, nach 3 und ≥ 6 Monaten.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>3 M</th>
<th>6 M</th>
<th>≥ 6 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>N</td>
<td>12</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Mean</td>
<td>-0.8328</td>
<td>-1.368</td>
<td>-1.368</td>
</tr>
<tr>
<td>SD</td>
<td>8.738</td>
<td>16.48</td>
<td>16.48</td>
</tr>
<tr>
<td>SEM</td>
<td>2.522</td>
<td>4.970</td>
<td>4.970</td>
</tr>
</tbody>
</table>

Tab. A-30: Effekt von Ecd-haltigen Präparaten auf das hsCRP im Vergleich zur CG - Aufgeführt ist der Stichprobenumfang (N), der Mittelwert (Mean in %), die Standardabweichung (SD) und der Standardfehler (SEM) des hsCRP-Spiegels zum Startzeitpunkt, nach 3, 6 und ≥ 9 Monaten für die VG bzw. zum Startzeitpunkt, nach 3 und ≥ 6 Monaten für die CG.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Start</th>
<th>3 M</th>
<th>3 M</th>
<th>6 M</th>
<th>≥ 6 M</th>
<th>≥ 9 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
<td>VG</td>
<td>CG</td>
<td>VG</td>
<td>CG</td>
<td>VG</td>
<td>CG</td>
</tr>
<tr>
<td>N</td>
<td>25</td>
<td>26</td>
<td>16</td>
<td>11</td>
<td>9</td>
<td>17</td>
</tr>
<tr>
<td>Mean</td>
<td>99.89</td>
<td>100.0</td>
<td>72.38</td>
<td>127.2</td>
<td>67.00</td>
<td>93.56</td>
</tr>
<tr>
<td>SD</td>
<td>111.7</td>
<td>115.1</td>
<td>52.47</td>
<td>68.99</td>
<td>36.68</td>
<td>45.46</td>
</tr>
<tr>
<td>SEM</td>
<td>22.34</td>
<td>22.58</td>
<td>13.12</td>
<td>20.80</td>
<td>12.23</td>
<td>11.03</td>
</tr>
</tbody>
</table>

Tab. A-31: Effekt von Ecd-haltigen Präparaten auf das hsCRP der VG - Aufgeführt ist der Stichprobenumfang (N), der Mittelwert (Mean in %), die Standardabweichung (SD) und der Standardfehler (SEM) des hsCRP-Spiegels für die VG zum Startzeitpunkt, nach 3, 6 und ≥ 9 Monaten.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>3 M</th>
<th>6 M</th>
<th>≥ 9 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td>N</td>
<td>16</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Mean</td>
<td>-27.62</td>
<td>-33.00</td>
<td>-27.77</td>
</tr>
<tr>
<td>SD</td>
<td>52.47</td>
<td>36.67</td>
<td>53.61</td>
</tr>
<tr>
<td>SEM</td>
<td>15.12</td>
<td>12.22</td>
<td>17.87</td>
</tr>
</tbody>
</table>
7 Literaturverzeichnis

Boden G (1997): Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 46, 3–10

Gorelick-Feldman J, Cohick W, Raskin I (2010): Ecdysteroids elicit a rapid Ca2+ flux leading to Akt activation and increased protein synthesis in skeletal muscle cells. *Steroids* 75, 632–637

Lomonaco R, Chen J, Cusi K (2011): An Endocrine Perspective of Nonalcoholic Fatty Liver Disease (NAFLD). *Ther Adv Endocrinol Metab* 2, 211–225

Rabenberg M, Scheidt-Nave C, Busch MA, Rieckmann N, Hintz Peter B, Mensink GBM (2015): Vitamin D status among adults in Germany – results from the German Health Interview and Examination Survey for Adults (DEGS1). *BMC Public Health* **15**

Syrov VN, Nabiev AN, Sultanov MB (1986): Action of phytoecdysteroids on the bile-secretory function of the normal liver and in experimental hepatitis. Farmakol Toksikol 49, 100–103

Wojdasiewicz P, Poniatowski LA, Szu

van der Zee PM, Biró E, Trouw LA, Ko Y, de Winter RJ, Hack CE, Sturk A, Nieuwland R (2010): C-reactive protein in myocardial infarction binds to circulating microparticles but is not associated with complement activation. *Clin Immunol Orlando Fla* 135, 490–495

Dank

Auch meiner Familie insbesondere meiner Schwester, Dr. K. Thole, gilt besonderer Dank für das unermüdliche und sorgfältige Korrekturlesen dieser Dissertation.