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Abstract

Mobile devices, such as sensor nodes, smartphones and smartwatches, are now widely
used in many applications. Localization is a highly important topic in wireless networks
as well as in many Internet of Things applications. In this thesis, four novel localization
schemes of mobile devices are introduced to improve the localization performance in three
different areas, like the outdoor, indoor and underwater environments.

Firstly, in the outdoor environment, many current localization algorithms are based on
the Sequential Monte Monte Carlo Localization (MCL), the accuracy of which is bounded
by the radio range. High computational complexity in the sampling step is another
issue of these approaches. Tri-MCL is presented, which significantly improves on the
accuracy of the Monte Carlo Localization algorithm. To do this, three different distance
measurement algorithms based on range-free approaches are leveraged. Using these,
the distances between unknown nodes and anchor nodes are estimated to perform more
fine-grained filtering of the particles as well as for weighting the particles in the final
estimation step of the algorithm. Simulation results illustrate that the proposed algorithm
achieves better accuracy than the MCL and SA-MCL algorithms. Furthermore, it also
exhibits high efficiency in the sampling step.

Then, in the Global Positioning System (GPS)-denied indoor environment, Twi-Adaboost
is proposed, which is a collaborative indoor localization algorithm with the fusion of
internal sensors such as the accelerometer, gyroscope and magnetometer from multiple
devices. Specifically, the datasets are collected firstly by one person wearing two devices
simultaneously: a smartphone and a smartwatch, each collecting multivariate data rep-
resented by their internal parameters in a real environment. Then, the datasets from
these two devices are evaluated for their strengths and weaknesses in recognizing the
indoor position. Based on that, the Twi-AdaBoost algorithm, an interactive ensemble
learning method, is proposed to improve the indoor localization accuracy by fusing the
co-occurrence information. The performance of the proposed algorithm is assessed on a
real-world dataset. The experiment results demonstrate that Twi-AdaBoost achieves a
localization error about 0.39 m on average with a low deployment cost, which outperforms
the state-of-the-art indoor localization algorithms.

Lastly, the characteristics of mobile Underwater Sensor Networks (UWSNs), such as
low communication bandwidth, large propagation delay, and sparse deployment, pose



challenging issues for successful localization of sensor nodes. In addition, sensor nodes
in UWSNs are usually powered by batteries whose replacements introduce high cost
and complexity. Thus, the critical problem in UWSNs is to enable each sensor node to
find enough anchor nodes in order to localize itself, with minimum energy costs. An
Energy-Efficient Localization Algorithm (EELA) is proposed to analyze the decentralized
interactions among sensor nodes and anchor nodes. A Single-Leader-Multi-Follower
Stackelberg game is utilized to formulate the topology control problem of sensor nodes
and anchor nodes by exploiting their available communication opportunities. In this
game, the sensor node acts as a leader taking into account factors such as ‘two-hop’
anchor nodes and energy consumption, while anchor nodes act as multiple followers,
considering their ability to localize sensor nodes and their energy consumption. I prove
that both players select best responses and reach a socially optimal Stackelberg Nash
Equilibrium. Simulation results demonstrate that the proposed EELA improves the
performance of localization in UWSNs significantly, and in particular the energy cost
of sensor nodes. Compared to the baseline schemes, the energy consumption per node
is about 48% lower in EELA, while providing a desirable localization coverage, under
reasonable error and delay. Based on the EELA scheme, an Adaptive Energy Efficient
Localization Algorithm using the Fuzzy game theoretic method (Adaptive EELA) is
proposed to solve the environment adaptation problem of EELA. The adaptive neuro-fuzzy
method is used as the utility function of the Single-Leader-Multi-Follower Stackelberg
game to model the dynamical changes in UWSNs. The proposed Adaptive EELA scheme
is able to automatically learn in the offline phase, which is required only once. Then,
in the online phase, it can adapt to the environmental changes, such as the densities
of nodes or topologies of nodes. Extensive numerical evaluations are conducted under
different network topologies and different network node densities. The simulation results
demonstrate that the proposed Adaptive EELA scheme achieves about 35 % and 66 %

energy reduction per node on average comparing the state-of-the-art approaches, such as
EELA and OLTC, while providing a desirable localization coverage, localization error and
localization delay.
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Chapter 1

Introduction

1.1 Overview of Localization with Mobile Devices in Wireless
Environment

Positioning or localization systems estimate the location of a person or an object with
the help of the Global Positioning System (GPS) or other sensory information collected
by mobile devices, such as smartphones, smartwatches or sensors. Localization systems
are crucial in many applications, such as habitat monitoring [1], animal tracking [2] and
vehicle tracking [3] for outdoor environment; medical assistance (patient tracking) [4],
elderly care (aged pedestrian tracking) [4] and underground mining safety [5] for indoor
situation; aquatic environment monitoring, target tracking [6], and pollution control for
underwater environment. The requirement for highly-accurate, low-power and low-
cost localization schemes for different applications under different environments have
motivated me to further improve the current localization performance. In this thesis, I
would like to answer several questions. How to improve the performance of current
localization algorithms to achieve a higher accuracy in outdoor or indoor environment?
How to improve the localization energy efficiency without affecting some other aspects of
localization performance, like coverage, localization accuracy and localization delay in
UWSNs?
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1.2 Scope of the Thesis

In this thesis, I propose four novel localization algorithms, i.e., Tri-MCL, Twi-AdaBoost,
EELA and Adaptive EELA, in order to improve the performance of the localization systems.
The proposed Tri-MCL algorithm [6] and Twi-AdaBoost [7] method were published in
IEEE 41st Conference on Local Computer Networks (LCN) in 2016 and Journal of IEEE
Access in 2018, respectively. The proposed EELA algorithm [8] is under the second review
in Journal of IEEE Transactions on Vehicular Technology and I will submit one paper
related to the Adaptive EELA algorithm soon. The four proposed algorithms are used
in three different environments, like indoor, outdoor or underwater scene. In different
localization scenarios, different contents, such as the motivation, the state of the art, the
proposed algorithm and evaluation results are presented. Hence, I introduce them in
detail separately in this thesis.

1.3 Organization

The thesis is structured as follows. Chapter 2 presents one novel localization algorithm
for mobile sensor networks and IoT applications, called Tri-MCL. In detail, I introduce
the motivation and contribution of Tri-MCL in Section 2.1 and 2.2, respectively. Section
2.3 reviews related works of existing MCL-based algorithms. In Section 2.4, the proposed
Tri-MCL scheme is described. Simulation results are shown in Section 2.5. Finally, I draw
conclusions in Section 2.6.

In Chapter 3, a multi-device context indoor localization algorithm, named Twi-AdaBoost,
which uses several kinds of sensors in both smart-phone and smart-watch to purse the
optimal utilization of sensors from multiple devices is proposed. The motivation and
contribution of the proposed Twi-Adaboost are firstly introduced in Section 3.1 and 3.2.
Then, in Section 3.3, the state of the arts are reviewed. Section 3.4 presents the proposed
Twi-AdaBoost fusion strategy and its knowledge background. The datasets analysis and
pre-processing, experimental results as well as performance evaluations are introduced in
Section 3.5. Finally, Section 3.6 summarizes the Chapter 3.

An Energy-Efficient Localization Algorithm (EELA) and Adaptive EELA which are pro-
posed to analyze the decentralized interactions among sensor nodes and anchor nodes
in mobile UWSNs, are discussed in Chapter 4. In detail, Section 4.1 and 4.2 gives the
description about the motivation and contributions. Section 4.3 discusses the related

3



works. Section 4.4 introduces the system model, which consists of the system overview
and propagation model. The detailed description of the proposed EELA model is pre-
sented in Section 4.5, which is composed of the problem formulation and solution as well
as the numerical evaluations of EELA. Based on the EELA scheme, an Adaptive Energy-
Efficient Localization Algorithm (Adaptive EELA) using the fuzzy game theoretic method
is proposed to solve the environment adaptation problem of EELA, which is introduced
in Section 4.6 including the detailed contents of the proposed Adaptive EELA, such as
the problem formulation, the description of Adaptive EELA and numerical evaluations.
Finally, Section 4.7 presents the summary and future work.

Chapter 5 gives the conclusion and future work for all the proposed algorithms in this
thesis.
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Chapter 2

Outdoor Localization with Wireless Sensor
Networks

2.1 Motivation

Node localization plays an important role in Wireless Sensor Networks (WSNs) and
Internet of Things (IoT) applications since it is not only useful in many basic network
applications but also necessary in network operation. Examples are applications such
as habitat monitoring [1], animal tracking [2], vehicle tracking [3], and environment
monitoring [9], as well as network operation methods such as location-based routing
protocols saving significant energy by eliminating the need for route discovery [10–12] [6].

Global Positioning System (GPS) is the straightforward solution for sensor node local-
ization. However, it has disadvantages such as high cost, high power use and no indoor
operation. One reasonable solution is that only a small proportion of sensor nodes is
equipped with a GPS module and the rest get their positions through another localization
scheme. The sensor nodes equipped with a GPS are called seeds or anchors. Many local-
ization algorithms have been proposed not only for static sensor networks [13–16], but
also for mobile sensor networks [17–20] in the past several years [6].

A popular representative of localization algorithms for mobile sensor networks is MCL [18].
The key idea of MCL is that the positions of sensor nodes are determined by a set of
weighted samples and each sample, usually called particle, represents a possible location
of the node. The most important contribution of MCL is that it is especially designed for
mobile WSNs, i.e. all nodes including anchors are allowed to move arbitrarily during
network operation time. However, the sampling phase and filtering phase need to be
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repeated in order to obtain each particle, so it always suffers from high computational cost
which will shorten the network life time significantly [6].

2.2 Contributions

The contributions of the proposed Tri-MCL algorithm are listed as follows [6],

1) The design and an evaluation of a new algorithm, called Tri-MCL, are presented for
mobile sensor networks and IoT applications.

2) In order to improve the localization accuracy and sampling efficiency, Tri-MCL
employs three different, synergistic distance measurements based on range-free
methods and historical information to measure the distances between sensor nodes
and anchor nodes. These distances are then used for filtering and weighting the
particles in a more precise manner in the final estimation step of the algorithm.

3) Tri-MCL is an interactive process operating over multiple distance estimation values
to form a consolidated fusion by interactively exploiting the synergies in these
range-free distance measurement approaches, which is the key difference from the
traditional MCL approach.

4) Numerical evaluation results prove that the proposed Tri-MCL works well compared
with the baseline schemes.

The structure of this chapter is organized as follows: Section 2.3 reviews related works of
existing MCL-based algorithms. In section 2.4, I describe the proposed Tri-MCL scheme.
Simulation results are shown in Section 2.5. Finally, I draw conclusions in section 2.6.

2.3 State of the Art

Many localization algorithms have been designed for mobile sensor networks [18,19,21–27]
[6].

In 2004, the Monte Carlo method is firstly introduced by L. Hu and D. Evans for localizing
nodes in wireless sensor networks, called MCL [18]. MCL-based localization represents
the posterior distribution of a node’s location by a set of weighted particles, and in each
time unit, the particles are updated based on new observations about beacons from
anchor nodes. The authors proposed the localization method for a general network
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environment where nodes and anchors can move arbitrarily. It does not require any
additional hardware. This makes the approach suitable for both mobile ad hoc sensor
networks and IoT applications. The main drawback of the MCL algorithm is that it has to
redo the sampling and filtering phases for each particle. Usually, it will iterate many times
in order to obtain enough valid particles, which is really time consuming. This makes it
less suitable for sensor networks with limited computational abilities. The values of the
particle weights are only 1 or 0, making this part of the algorithm coarse-grained [6].

In [19], A. Baggio and K. Langendoen proposed the Monte Carlo localization Boxed (MCB)
algorithm. The sampling area was generated by building boxes in the intersection of the
anchor nodes’ communication scope, which improves the time efficiency significantly
in the prediction phase of MCL. However, when the particle number of MCB equals to
that of MCL, the localization error will not be improved. Even worse is that the number
of valid particles will increase with the increasing number of the anchor nodes. As a
result, the set of valid particles will be much larger than necessary for estimating a node’s
location [6].

M. Rudafshani and S. Datta [25] proposed the MSL*, MSL to improve the filtering phase of
MCL using the location information of sensor nodes within two hops, but the additional
communication was needed to pass samples or accuracy information. S. Hartung et
al. [28] proposed the Sensor-Assisted Monte Carlo Localization (SA-MCL) method to
solve the problem of temporary connection loss to anchor nodes due to changing network
topologies. They used three different additional sensors to estimate the localization of
sensor nodes. In [23], SMC was proposed to improve the localization accuracy by using
the Angle of Arrival (AoA) measurements. Another range-based scheme [22] assumed
that the distance or angle between anchor nodes and sensor node can be measured based
on signal measurements such as Received Signal Strength Indication (RSSI), Time of
Arrival (ToA), or AoA. However, the authors in [22, 23, 28] all need additional hardware
support to improve the accuracy or solve problems of MCL [6].

In [29], weighted MCL (WMCL) was proposed. WMCL can improve the localization
accuracy and sampling efficiency with low anchor densities, but the communication cost
is much higher than for the original MCL algorithm. The RDMCL method was proposed
in [30], which is based on the Received Signal Strength (RSS), distance and direction of the
moving anchor nodes and MCL. RDMCL used three methods based on the number of
nodes’ one-hop neighbor anchors to build a more effective sampling area. The authors
in [31] proposed a Weighted Monte Carlo Localization based on the Smallest Enclosing
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Circle algorithm to solve the localization problem of node mobility in IoT scenarios. This
algorithm generates the smallest enclosing circle of anchor nodes by using the hop counts
from anchor nodes [6].

2.4 Localization Scheme

In this section, the proposed localization scheme, Tri-MCL, is described in detail. There
are three phases in Tri-MCL: initialization phase, sampling phase and filtering phase.
However, in Tri-MCL, the re-sampling phase is simplified, which effectively reduces the
computational cost. The Tri-MCL filtering phase is also different from that of traditional
MCL-based algorithms, which are given as,

1) Instead of using only the radio range of anchors to do the filtering, I use ring areas
with three different distances around anchors as the filter area to filter particles. This
helps to improve the localization accuracy.

2) Each particle has a different contribution to the final position estimate of the sensor
node, as I weight each particle using a distance error penalty and a range free based
distance estimation method failure penalty.

2.4.1 Symbols

For reference purposes, I list all symbols used in the following description of the proposed
Tri-MCL scheme in Table 2.1.

2.4.2 Initialization

Before the start of the simulation, Tri-MCL is initialized with a set of N particles, dis-
tributed randomly over the simulation area.

2.4.3 Range-Free Distance Estimation

The distances estimated between sensor nodes and anchor nodes are employed to aid
Tri-MCL to imporve the performance of the location model. For this reason, three differ-
ent schemes with different strengths are employed to estimate distances leading to the

9



Symbol Meaning
VMax Maximum possible node speed also the definition of radius around nodes
et HistDR position estimate at time t
Lt Set of particles at time t
N Number of particles in Lt
pk k-th particle
A Set heard anchor nodes
ai i-th heard anchor node
φ Number of distance estimation methods
rRingWidth Filtering ring width parameter
rj,i Distance estimate to anchor i according to method j
d(a, b) Distance between points or particles a and b
pi,k Copy of pk for anchor ai
σ σ > 0, used to avoid dividing by zero
α Weighting factor α = 0.75

ωFail,i,k Penalty factor for pi,k, relating to number of failed methods
ωRange,i,k Penalty factor for pi,k, relating how well the distance estimate matches
ωi,k Weighting factor for pi,k
(xt, yt) Final position estimate at time t

Table 2.1: Table of symbols, c©2016 IEEE.

synergistic qualities of Tri-MCL. Tri-MCL does not require the extra cost of the hardware
due to all of the different schemes based on range-free technology. For a given situation, if
the range estimates made with methods that are unsuitable, each method will return a
failure state to penalize this situation. Otherwise, a good result will be returned.

2.4.3.1 DVH-Dist

Based on the the principles of the well known DV-Hop localization algorithm [32], a
distance estimation algorithm named DVH-Dist is proposed in Tri-MCL. The steps of
DV-Hop are listed as,

1) The minimum hop count from anchor nodes to sensor nodes are determined.

2) The distance between the sensor nodes and anchor nodes are computed by multi-
plying the minimum hop count and average distance of each hop.

10



3) The node estimates its position through triangulation algorithm or maximum likeli-
hood estimators.

It is interesting to notice that I do not use the the costly calculations required to calculate
the positions from the distance estimates in DV-Hop, because only the distances are
relevant in the context of Tri-MCL. DVH-Dist is a simplification method of DV-Hop.

This approach works well in scenarios with a high density of sensor nodes, the same with
that of DV-Hop, so that fine grained multi-hop distance estimates to a smaller number of
anchor nodes can be made.

This method returns a failure state in a given situation, such as no seed nodes having been
heard, even indirectly.

2.4.3.2 Cent-Dist

Based on the Centroid localization scheme, Cent-Dist works by calculating positions
of nodes according to [33]. In Cent-Dist, a location estimate on sensor nodes is calcu-
lated by the center position between the received anchor node beacons, where very little
computational costs results from calculating this position estimate.

For Cent-Dist, this position estimate is calculated and used to determine estimated dis-
tances towards all known anchor nodes (i.e. also those received through DVH-Dist flood-
ing). This approach works best, when there are multiple anchor nodes in the immediate
vicinity of the sensor node attempting to calculate its position.

Cent-Dist returns a failure state in a given situation, such as less than one direct seed
(anchor) node having been heard.

2.4.3.3 HistDR-Dist

Historical Dead Reckoning Distance (HistDR-Dist) is the final method employed in Tri-
MCL to calculate range estimates. For HistDR-Dist, the steps are given as,

1) The last three position estimates made by Tri-MCL are stored.

2) By using the stored information, an estimate of the current acceleration and angular
acceleration of the node can be derived.

11



Anchor

Anchor

Node

Cent-Dist ring
DVH-Dist ring

HistDR-Dist ring

Figure 2.1: Sample situation with two anchor nodes and one sensor nodes. Red are filtered
particles and green are admissible particles, c©2016 IEEE.

3) Using these values, by means of dead reckoning, the current position of the node is
estimated by HistDR-Dist.

The mathematical description of HistDR-Dist is given in the following part. Let et−1 =

(xt−1, yt−1) be the previous estimate generated by Tri-MCL, et−2 = (xt−2, yt−2) the one
before that and so on. Using these values, HistDR will estimate the current position, which
can then be used to determine a distance estimate et = (xt, yt),

vt−1 = d(et−1, et−2), vt−2 = d(et−2, et−3), (2.1)

γt−1 = 6 (et−1, et−2), γt−2 = 6 (et−2, et−3), (2.2)

∆v = vt−1 − vt−2,∆γ = γt−1 − γt−2, (2.3)

xt = xt−1 + (vt−1 + ∆v) cos(γt−1 + ∆γ), (2.4)

yt = yt−1 + (vt−1 + ∆v) sin(γt−1 + ∆γ). (2.5)

This approach can give good results if the previous estimates are reasonably accurate. It is
not reliant on other nodes for the current time step, so it bridges short intervals without
connectivity to the rest of the network.

The mobility model plays the key role in the performance of the approach. I use the random
waypoint mobility model, rather than the random walk mobility model to optimize the
performance of HistDR-Dist. Further research work related to HistDR-Dist can be done by
going one derivation deeper and working with the differential of acceleration and angular
acceleration. In this case, HistDR-Dist can perform well in simulation using a Gaussian
mobility model as well as in a real world implementation.
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Just like DVH-Dist and Cent-Dist, the computational cost of HistDR-Dist is very low due
to the simple computation and fixed number of components. DVH-Dist returns a failure
state in a given situation, for example, less than three samples exist in the history, this
method returns a failure state.

All in all, the computational cost of the three improved distance estimation methods can
be assumed to have less than the computational cost of DV-Hop alone.

2.4.4 Prediction

The maximum speed, which any node in the network can attain is defined by the parameter
VMax given in m s−1. Like the prediction step of the original MCL, the set of particles Lt at
the current time t is determined by iterating over the set of previous particles Lt−1. For
each particle li ∈ Lt−1, a new particle is drawn from its surroundings within a radius of
VMax, reinterpreted in m to describe an area, around it. If the prediction is not performed
once per second, the the radius has to be adjusted correspondingly, both in MCL and in
Tri-MCL, e.g. for a 0.5 s interval, the radius in which particles may move should be halved.

2.4.5 Filtering in MCL

In MCL, filtering is done by discarding particles that do not lie within one radio range
rRange around any of the directly heard anchor nodes and within the ring from one to two
radio ranges around indirectly heard (two-hop) anchor nodes. This means that particles
p ∈ Lt are kept by satisfying the following conditions:

∃a ∈MCLA : d(p, a) ≤ rRange, (2.6)

∧∃a ∈MCLI : rRange < d(p, a) ≤ 2 ∗ rRange. (2.7)

The set of directly heard anchor nodes in MCL and the set of two-hop anchors are rep-
resented by MCLA and MCLI , respectively. As for the re-sampling efficiency, in MCL,
filtering is implemented in the following steps,

1) One particle is drawn from Lt−1.

2) The prediction step is run on this particle.

3) The decision is made by MCL whether to keep the particle or not.
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4) The steps from one to three are repeated until that the new set of particles Lt is full.

This can lead to a high number of iterations of the costly prediction step in order to get
enough admissible particles.

2.4.6 Filtering in Tri-MCL

Regarding Tri-MCL, the first part is eschewed and the second part is extended. Only
particles pk ∈ Lt are kept with the following conditions. Let A be the set of an-
chor nodes heard over any number of hops, ai ∈ A be the ith anchor node and
r{DVHDist, CentDist, HistDRDist}, i ∈ RFi be the corresponding distance estimate ac-
cording to the three different distance estimation methods:

i ∈ {1, ..., |A|} , (2.8)

k ∈ {1, ..., N} , (2.9)

∃ai ∈ A,∃r ∈ RFi : (2.10)

r − rRingWidth ≤ d(pk, ai) ≤ r + rRingWidth, (2.11)

where d(pk, ai) refers to the euclidean distance between the position of the particle’s and
anchor node’s position and rRingWidth is one of the parameters of the algorithm, referring
to the tolerance with which particles are kept, even if their range does not exactly match
that of any range estimates.

After filtering, if the set Lt is less than the required N particles, the following cases are
used to remedy the particles until it reaches to the required N number.

1. If it contains no particles at all, it will be reinitialized with the positions of all directly
heard anchor nodes as particles.

2. If no directly heard anchor nodes are available, the positions of indirectly (two-hop)
anchor nodes are used to seed the set of particles.

3. If still no particles are in the set, it is reset to its state before filtering took place.

If at this point |Lt| < N , until |Lt| = N , a particle pk ∈ Lt is drawn and from it a particle
p′k is sampled from its VMax surroundings, as in the prediction step, and then inserted into
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Lt:

d(p′k, pk) ≤ VMax, (2.12)

Lt := Lt ∪ {p′k}. (2.13)

In Tri-MCL, the re-sampling efficiency is very high, where it only needs to run once the
prediction step on the contents of Lt−1 and once per missing particle. Thus, the number of
re-sampling runs in that case is bounded by N −1. No further re-sampling step is required
to keep the the necessary number of admissible particles in Lt.

In Figure 2.1, a graphical representation of Tri-MCL approach is described, which consist-
ing of one sensor node and two anchor nodes. In this scenario, green particles are kept
while red particles are filtered conversely. Each of the six colored rings, one per method
and anchor node, is one of the admissible areas for particles and corresponds to the three
different types of distance measurement methods I employ. The green particles lie only on
the colored rings.

2.4.7 Position Estimation

The method of weighted average of the particles is used to estimate the position in the
final step. Each particle is used once per anchor node that is heard by the sensor node and
each such instance of a particle is weighted according to two penalty-factors:

∀ai ∈ A,∀pk ∈ Lt, let pi,k := pk. (2.14)

2.4.7.1 Distances estimation method failure penalty

Let ωFail,i,k be the distance estimation method failure penalty factor, which relates to the
number φ of distance estimation methods that succeeded in estimating a distance to an
anchor node associated with certain particles pi,k:

εi,k =
|RFi| − φ
|RFi|

, (2.15)

βi,k =
εi,k + σ

1− εi,k + σ
, (2.16)

ωFail,i,k =
1

βi,k
, (2.17)
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Figure 2.2: Tri-MCL error relative to radio range over varying ring width and VMax, c©2016
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Figure 2.3: Tri-MCL error compared to MCL error over varying VMax with a ring width of
0.25 m, c©2016 IEEE.

with a small σ > 0, used to avoid dividing by zero.

2.4.7.2 Range error penalty

Let ωRange,i,k be the range error penalty factor, which represents how well the particle’s
position matches the estimated ranges. It is computed as the average distance error over
all three of the range free distance estimation methods for the given particle pi,k, as follows:
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ξi,k(r) =

{
1, if r failed

|d(pi,k,ai)−r|
maxDistance , otherwise

(2.18)

ωRange,i,k =
1

3
∗
r∈RFi∑

ξi,k(r). (2.19)

2.4.7.3 Overall weight

Finally, the final weight of the particle pi,k are formed by the combination of two weights:

ωi,k = ωRange,i,k ∗ α+ ωFail,i,k ∗ (1− α), (2.20)

where α is a weighting factor. α selects 0.75 as its value from the experience of different
previous trials.

2.4.7.4 Weighted average

A weighted average over all the particles left in the set is employed to calculate the position
estimation in the final step.

Let pxi,k be the x component of the particle pi,k and pyi,k be the y component, the final
coordinates are given as:

ωΣ =

|A|∑
i=0

N∑
k=0

ωi,k, (2.21)

xt =
1

ωΣ

|A|∑
i=0

N∑
k=0

ωi,kp
x
i,k, (2.22)

yt =
1

ωΣ

|A|∑
i=0

N∑
k=0

ωi,kp
y
i,k. (2.23)

2.5 Evaluation

A set of simulations in an especially built simulation software with varying two simulation
parameters is performed in order to evaluate the effectiveness of the proposed Tri-MCL
approach. The total number of nodes is 150, where 15 are anchor nodes. All nodes are
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randomly distributed over a 100 m× 50 m simulation area. Each simulation is run 50 times
and each time is 300 s. The radio communication range of all nodes is set 20 m.

The modified random waypoint model is utilized to model nodes moving around in
the simulation area. To avoid a loss of velocity as described by Yoon et al. [34], the
model constrains the admissible combinations of newly picked speed and waypoint
combinations in such a way, that the picked combination must be reachable within five
simulation seconds. Otherwise a new speed and waypoint combination is chosen until an
admissible combination is found [34].

The maximum speed VMax, which is attainable by nodes and the Tri-MCL parameter
rRingWidth, is varied over the simulation runs. VMax is varied within [2, 8] with a step size
of 0.5, while rRingWidth is varied within [0.25, 2] with a step size of 0.25.

In order to compare with the baseline schemes, MCL [18] and SA-MCL [28] are used to
run in the same environment of Tri-MCL. After that, the final results are used to prove the
performance of the proposed Tri-MCL algorithm.

2.5.1 Results

In Figure 2.2, it is clear to see that the error values for Tri-MCL over the different simulation
runs. The error is given based on the communication range.

The confidence intervals (99 %) are given for each sample in both Figure 2.3 and 2.4. From
them, we can see that Tri-MCL delivers the highest improvement upon MCL at high values
for VMax and low values for rRingWidth, with a maximum improvement of 28 % during one
simulation run. The highest, average improvement at 25 % over a simulation batch was
found with rRingWidth = 0.25 m and VMax = 5 m s−1. Even in the worst batch, some slight
but significant improvement over MCL can still be obtained, the value of which is 3.5 % at
maximum tested rRingWidth and minimum tested VMax. All in all, it is clear to see that the
lower values of rRingWidth result in better location estimates due to higher precision during
the filtering step.

It is interesting to mention that the best accuracy is achieved with both low values for VMax

and low values for rRingWidth. However, when it has higher speeds, Tri-MCL performs
more robust than MCL and SA-MCL. Besides, the error rate over MCL is higher with
higher values for VMax due to its performance detoriating quickly. We can see that in
Figure 2.4, even with a higher rRingWidth value of 2 m, Tri-MCL performs significantly
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better than MCL.

SA-MCL performs not well in the given scenario, the performance of which is almost
the same with that of MCL, so it has been omitted from Figures 2.3 and 2.4 to enhance
readability.

2.6 Summary and Future Work

In this chapter, a new localization scheme called Tri-MCL is presented, which improves
localization accuracy and increases the efficiency of sampling during the prediction step.
The proposed method employs three different distance measurement approaches based
on range-free methods to estimate distances between sensor nodes and anchor nodes.
These distances are then used to filter out particles not lying within rings around the
anchor nodes with a radius corresponding the distance estimates. The weights of different
particles are also considered, which means that the weight of each particle is related to
the distance between anchor node and sensor node. The results from the simulations
and experiments validate the effectiveness of the proposed algorithms in improving
localization accuracy and reducing computational costs during re-sampling.

In the future, I aim to implement the proposed algorithm in mobile ad hoc networks with
real world deployments.
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Chapter 3

Indoor Localization with Mobile Devices

3.1 Motivation

Typical tasks for indoor localization with mobile devices include many applications, such
as medical assistance (patient tracking) [4], elderly care (aged pedestrian tracking) [4] and
underground mining safety [5], which have attracted many researchers’ attention in recent
time. However, it is challenging to obtain the accurate pedestrian localization in indoor
environment due to multiple reasons. First of all, it is difficult to measure the distance
due to the complexity of human movements in the GPS-denied, crowded and cluttered
indoor environment. Also any sensor system used by a pedestrian should be wearable
and portable, which makes it difficult to use certain sensors, such as laser range scanners
although they can be successfully used in robotic applications [35]. In addition, instead of
localizing a target in some area sporadically or on demand, the localization of pedestrian
should be continuously and possibly in real-time.

With the availability of new small and inexpensive sensors, which enables practical
tracking of individuals (who must carry them at all times), the localization of pedestrian
in indoor environment has been improved significantly. In recent years, there has been
an increasing interest in the development of pedestrian navigation systems for satellite-
denied scenarios. The popularization of smart-phones and smart-watches is an interesting
opportunity to reduce the infrastructure cost of the positioning systems. If these devices
compute their own positions using their internal sensors, it requires very little, if any,
physical infrastructure to function. Moreover, this offers a degree of location privacy since
users can select whether they share the information with any third party or not.
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Some of the existing technological approaches for indoor location systems, such as the
infrared light, ultrasonic sensors, Wireless Local Area Network (WLAN), Radio-Frequency
Identification (RFID), Ultra Wide-band, ZigBee and computer vision, are not suitable
for mobile devices [36] and [37]. Since a dedicated infrastructure or higher processing
capabilities are necessary for these technologies, this hinders the systems miniaturization
and scalability. In addition, the above technologies can lead to sub-optimal positioning
because the communication access points are rarely deployed to provide the optimal
location geometry and coverage overlap. Therefore, mobile devices equipped with a
variety of sensors (e.g., accelerometer, gyroscope, magnetometer) have become popular in
modern indoor localization systems [37].

3.2 Contributions

The contributions of the proposed Twi-Adaboost algorithm are given as follows,

1) Motivated by the lack of a comprehensive approach in multi-device based context
recognition research, I propose a multi-device context indoor localization system,
named Twi-AdaBoost, exploring the accelerometer, gyroscope and magnetometer
sensors on both smart-phone and smart-watch.

2) The proposed Twi-AdaBoost algorithm fuses the co-occurrence information to get
a better performance for the indoor localization based on the real world data. The
indoor localization datasets [38] with the multisource characteristics from the real
world is utilized to support simulations.

3) Twi-Adaboost reduces the mean localization errors of position x (0.387 m) by 51.26 %

as compared to using Generalized Regression Neural Network (GRNN) algorithm
[39] on the combined dataset, where the datasets of smart-phone and smart-watch
are merged by simply combining all the features. As for the mean localization
error of position y (0.398 m), the proposed fusion approach is improved by 62.56 %

compared to GRNN [39]. The other state-of-the-art indoor localization algorithms,
such as Support Vector Regression (SVR) [40] perform worse than Twi-Adaboost
and GRNN on the simply combined dataset.

The rest of this Chapter is organized as follows. In Section 3.3, it reviews related works.
Section 3.4 presents the proposed Twi-AdaBoost fusion strategy and its knowledge back-
ground. The datasets analysis and pre-processing, experimental results as well as per-
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formance evaluations are introduced in Section 3.5. Finally, Section 3.6 summarizes this
Chapter.

3.3 State of the Art

In outdoor environments, GPS is one of the most popular way to localize mobile devices.
However, in indoor environments where the GPS signals are not receivable or usable,
different models were proposed to solve the indoor localization problems.

Chen et al. [41] proposed a Convolutional Neural Network that used the Channel State
Information of only one access point and achieved an average localization error of 1.36 m,
but has a high training complexity. In contrary, a low computational complexity model was
proposed in [42] which achieved a localization error of 2.1 m. In that model, an AdaBoost
algorithm with C4.5 method as a weak classifier was used to combine the Received Signal
Strength (RSS) and orientation information to improve the accuracy of indoor localization.
It included two phases, the offline phase and online phase. In the offline phase, a database
of the RSS from different access points at each reference location for the target environment
was built; in online phase, the localization was determined by means of a sample of RSS
collected in a particular position and an estimation model that used database information.
Although the proposed model was not more accurate than other models, it demonstrated
that it was possible to execute such models on resource-constrained devices. GRNN was
proposed in [39], where RSS data gathered at the access points from the referenced nodes
were used to train the GRNN model and the target node position was calculated by the
weighted centroid method. Wu et al. [40] used the SVR model to solve the missing value
location estimation problem. Utilizing other machine learning technologies, such as Linear
Regression (LR) [43] which is a RSS-based localizaiton method, localization accuracy was
improved by correcting the distance circles using LR model.

In [44], a sensor fusion framework was proposed by combining WiFi, Pedestrian Dead
Reckoning (PDR) and landmarks. It used the linear Kalman filter to simplify the sensor
fusion problem on a smart-phone. The weighted path loss algorithm was used in the WiFi
localization due to its simplicity and effectivity, while in the pedestrian dead reckoning
approach the initial estimation error was amended by landmarks. A Kalman filter was
used to fuse magnetometer and gyroscope records in order to improve the accuracy of
walking direction estimation. The localization accuracy of this approach was 1 m on
an average. However, the additional landmarks with the known positions should be
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provided to help this approach restart when the users went through these landmarks. At
the same time, Ma et al. [45] used the weighted fusion to improve the WiFi-based indoor
localization. There were two steps in this algorithm: the offline acquisition and the online
localization. In the offline acquisition process, the optimal parameters were selected to
complete the signal acquisition. In addition, the fingerprints database was built. In the
online localization process, a pre-match method was employed to select the candidate
fingerprints to shorten the positioning time. Then, two intermediate results were obtained
by using the improved Euclidean distance and the improved joint probability. The final
results were calculated by fusing these two intermediate results with different weights.
More similar work can be found in [46], [47] and [48]. However, the time required to
install, configure and maintain the WiFi systems together with the expense of access points
have limited the general deployment of these indoor algorithms.

Fusing the internal sensors is popular in human activity recognition [49, 50]. For example,
in [49], the data coming from embedded sensors on the smart-phone and environmental
sensors were fused by a decision tree based on multi-sensor data-stream. Then they used
the Recurrent Neural Networks (RNNs) to model the RSS stream.

However, few previous researchers did work on sensor fusion from multi-device in
indoor localization. In this chapter, to use the richer context information, I propose a
Twi-AdaBoost algorithm which combines the data of self-contained sensors from multiple
devices, like smart-phone and smart-watch.

3.4 Methodology

Indoor localization has been an important issue in recent time. To solve this problem, a
Twi-AdaBoost fusion strategy is proposed, exploiting the intrinsic correlation between two
conditional independent datasets from smart-phone and smart-watch to boost the ability
of prediction of the pedestrian’s location from a crowded and cluttered background.

3.4.1 Building a Weak Learner Based on the CART Algorithm

In 1984, Breiman et al. [51] proposed the CART method by building a binary decision
tree according to some splitting rules based on the predictor variables to address the
regression problem. Suppose that the CART method takes a training dataset with instances
(x1, y1), · · · , (xn, yn) as input, where each xi belongs to the features space X (such as
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Figure 3.1: Example of cart regression tree.

accelerometer, gyroscope and magnetometer) and each label yi is in the reference location
dataset and yi ∈ R. Figure 3.1 depicts an example of the cart regression tree based on the
experiment dataset [38]. The subsets created by the splits are named nodes, otherwise,
they will be named by terminal nodes. A regression tree partitions the X-space into
disjoint regions Ak and provides a fitted value E(Y |X ∈ Ak) within each region.

The tree is implemented recursively with the following steps in Algorithm 4.

Algorithm 1: Construction of Cart regression model
Input : Training dataset (x1, y1), · · · , (xn, yn) and y ∈ R; CART .
for Each node xi ∈ X do

Examine every allowable split on each reference location variable yi. Binary
questions, like Is xi > c?, are used to generate the binary splits.

Select and execute the ‘best’ of these splits.
Stop splitting on a node when some stopping rule is reached.

end
Output : CART regression model H(x)

The CART regression method is selected as the weak leaner based on the following two
main reasons:

• It is simple and fast. In addition, it is not significantly impacted by outliers in the
input variables.

• It is nonparametric and does not rely on the dataset distribution.
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3.4.2 AdaBoost.R2 Regression Model

AdaBoost.R2 is one of most popular ensemble learning algorithms, which is designed to
solve the regression problem [52]. In AdaBoost.R2, a set of weak classifiers are trained
to form a strong classifier. Initially, each training instance receives a uniform weight wi,
which indicates the relative importance of each instance. After each iteration, the weight
of the instance with the larger real-valued error ei = |yi−ht(xi)|

maxni=0|ei|
will be increased, otherwise,

the weight will be decreased. In this case, the weaker learner is forced to focus on the
“hard” examples in the training dataset. In particular, three loss functions can be selected
in AdaBoost.R2: e

′
i = ei

D (linear), e
′
i = ( eiD )2 (square), e

′
i = 1− exp(−ei/D) (exponential).

The pseudo code of AdaBoost.R2 is given in Algorithm 5.

Algorithm 2: AdaBoost.R2
Input :Training dataset (x1, y1), ..., (xn, yn) y ∈ R; WeakLearner; Iteration T ;

Initial weight distribution Dti = 1
n , i ∈ [1, n]

for each iteration t ∈ [1, T ] do
Call WeakLearner, providing it with a distribution Dt.
Build the regression model: ht(x)→ y for regression problems.
for each instance xi do

Calculate the adjusted error eti = 1−exp(−|yi−ht(xi)|)
Dt

. Dt = maxnj=1|yj − ht(xj)|.
end
Calculate the adjusted error of ht: εt =

∑n
i=1 e

t
iw

t
i ; if εt ≥ 0.5, stop and set

N = t− 1.
βt = εt

1−εt .

Update the weight vector: wt+1
i =

wt
iβ

1−eti
t
Zt

, where Zt is a normalization factor
selected such that wt+1

i will be a distribution.
end
Output :Strong classifier H(x) is the weighted median of ht(x) for t ∈ [1, T ], using

log 1
βt

as the weight.

3.4.3 Twi-AdaBoost Fusion Strategy

Localization techniques based on individual dataset have their own strengths and weak-
nesses. In this chapter, I investigate the potential of fusing both smart-phone and smart-
watch datasets to better infer the pedestrian’s indoor localization.

Figure 3.2 depicts the proposed Twi-AdaBoost algorithm based on the collaborative
exploitation of smart-phone-smart-watch characteristics. The training datasets are first
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Figure 3.2: Proposed Twi-AdaBoost algorithm based on the collaborative exploitation of
smart-phone and smart-watch.

extracted from smart-phone and smart-watch using their internal sensors, such as the
accelerometer, gyroscope and magnetometer. Then, the Twi-AdaBoost strategy is used
to improve the localization performance. Ultimately, the accurate location is obtained by
combing all generated weak learners.

Figure 3.3 illustrates the interactive ensemble learning process across multiple datasets to
form a consolidated fusion by interactively exploiting the complementary sensor features
from different devices, which is the key difference from the traditional AdaBoost.R2
algorithm. The pseudo-code for Twi-AdaBoost is given in Algorithm 3. Twi-AdaBoost
works by training the weak learner with an initial sample weight and evaluating its
prediction by comparing the results to each other in form of the penalty factor. With this
information new weights are generated and used for the next iteration.

In Algorithm 3, initially, each sample has a uniform weightD1
j (i) = 1/M of the ith training

sample on the jth dataset, which indicates the relative contribution of each sample for
the final prediction result. The weight will be changed after each iteration. The weight
Dt+1
j (xji) of each sample in Twi-AdaBoost is decided by both the real-valued error Ltj(xji)

and the punishment factor P tj (xji), which is introduced to convey the complementary
characteristics across the two datasets into the ensemble learning process. The penalty
degree of the weight is controlled by the scale factor P tj (xji), which is decided by the value
of ptj(xji) of all weak learners f tj (xji) achieving the agreement with both f tk(xji) and yi at
the tth iteration. With exploitation of both datasets from smart-phone and smart-watch,
the “hardest” samples will be punished with the largest weights, which forces the new
weak learners to focus on the “hardest” samples in the next generation and helps this
algorithm to achieve better performance.
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Algorithm 3: Multi-Device AdaBoost Algorithm
Input :The training dataset S = {(xji, yi)j=1, ..., N ; i=1, ..., M}, where N is the

number of different datasets from different devices and M the number of
samples; WeakLearner; Iteration T ; Initial weight of each sample:
D1
j (i) = 1/M .

for t = 1 to T do
for j = 1 to N do

Get a random integer r ∈ [1,M ] and generate a subset R, containing the r
highest weighted samples of S.

Train the weak classifier with R and Dt
j and build the regression model f tj (xj).

end
for j = 1 to N do

Calculate the distance of each sample xji in S and the prediction with
ltj(xji) = |f tj (xji)− yi|.

Calculate the loss function Ltj(xji) for each sample using the exponential loss

function as Ltj(xji) = 1− exp(− ltj(xji)

maxi=1,..., M (ltj(xji))
).

Calculate the weighted loss as L̄tj =
∑M

i=1 L
t
j(xji)D

t
j(xji).

Set βtj =
L̄t
j

1−L̄t
j

.

For each sample xji in S, calculate the punishment factor

P tj (xji) = 1− exp(− ptj(xji)

maxi=1,..., M (ptj(xji))
), where

ptj(xji) = 1
N (|f tj (xji)− yi|+

∑N
k=1(|f tj (xji)− f tk(xji)|).

For each sample xji in S, set Dt+1
j (xji) =

Dt
j(xji)β

(1−Lt
j(xji))(1−Pt

j (xki))

t

Zt where Ztj is
the normalization factor such that Dt+1

j will be a distribution.
end

end
Output :The strong classifier F (x) is the weighted median of

f tj (xj)(t=1, ..., T ; j=1, ..., N), with log( 1
βt
j
) used as the weight.
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Figure 3.3: Interactive training process of Twi-AdaBoost across datasets from both smart-
phone and smart-watch.
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smart-phone smart-watch
Measurement 1 18355 58370
Measurement 2 17787 58370

Table 3.1: Number of total samples recorded.

3.5 Experiments

3.5.1 Dataset Analysis

In the experiment, the indoor localization datasets of paper [38] are employed to test the
proposed algorithm. The datasets with over 36000 continuous samples are collected in a
185.12 m2 real indoor environment. The user was wearing two devices simultaneously,
such as a Sony Xperia M2 smart-phone and a LG W110G smart-watch, to collect the data
in each campaign. Figure 3.4 from paper [38] depicts the overall map, where the data
collection was performed. There are two rooms, two corridors and one small entrance
hall inside this indoor office environment. Each dot in the map corresponds to a detection
point and each dot is 0.6 meters far from another since each dot occupies 0.6 m × 0.6 m.
For each of them, features of sensors in each device were collected. A zig-zag trajectory
was performed by two different users who were wearing the same equipments to cover
the entire map. The walking speed of each user was 0.6 m s−1 on an average. Each sample
was collected about every 100 millisecond and the collection time is very short.

All the recorded datasets include the following features:

• Place ID, Timestamp;

• Accelerometer_X, Accelerometer_Y, Accelerometer_Z, MagneticField_X, Magnetic-
Field_Y, MagneticField_Z, X_Axis Angle (Pitch), Y_Axis Angle (Roll), Z_Axis Angle
(Azimuth), Gyroscope_X, Gyroscope_Y, Gyroscope_Z.

The exact numbers of recorded samples in each measurement can be found in Table 3.1.

3.5.2 Dataset Preprocessing

The datasets [38] were collected by recording the internal sensor data of different devices
about every 100 millisecond when the walking speed of each user was 0.6 m s−1 on an
average. Thus, they might be not perfectly synchronized and have a slight offset in time.
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Figure 3.4: Map of the data collecting environment.

Therefore, I filter the provided data beforehand to enable their suitable for the proposed
algorithm. Furthermore, some samples are not usable, as their precise recording position
is unknown.

The samples of datasets are pre-processed and filtered out according to the following
conditions:

1. As the datasets contain recorded samples that are not uniquely assignable to the
given reference points, some samples are removed in order to assure the correct
labeling of the data.

2. Each sample needs to have a counterpart-sample in all other datasets, which was
recorded within a 50 ms sliding window, in order to make sure that the sample-pairs
were recorded almost simultaneously. For example, a sample pair consists of two
samples, one recorded on the smart-phone and one recorded on the smart-watch
with max time difference of 50 ms.

3. Each sample can only be chosen either once or never to ensure that no sample
is used twice and therefore unintentionally weighted higher than the other ones.
This creates a one-to-one relationship between the selected samples of each dataset,
illustrated in Figure 3.5.

After filtering out the datasets according to the above conditions, there are 14228 samples
and 12608 samples from both smart-phone and smart-watch in the first measurement and
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Dataset 1 Dataset 2

Figure 3.5: Illustration of a valid possible connection between samples of each dataset
after pre-processing.

second measurement, respectively.

Finally, all features are normalized using min-max scaling technique [53]. The definition
of it is given in equation (3.1), where x ∈ X is the original and x

′ ∈ [a, b] is the rescaled
value,

x
′

=
(b− a)(x−min(X))

max(X)−min(X)
. (3.1)

3.5.3 Performance Metrics

In order to evaluate the results of Twi-AdaBoost algorithm, the performance metrics
provided by scikit-learn [54] are employed in this chapter. For example Root Mean Squared
Error (RMSE), which is used to measure the differences between the values estimated by a
model and the values actually observed; Explained Variance Score (EVS), which is used
to compute the explained variance regression score; Mean Absolute Error (MAE), which
is a risk metric corresponding to the expected value of the absolute error loss as well as
the box-and-whiskers plots, which can display the variation in samples of a statistical
population and detect the outliers being plotted as individual points.

The RMSE estimated over nsamples is defined as equation (3.2), where y
′
i is the predicted

value of the i-th sample and yi is the corresponding true value. The smaller the RMSE
value is, the better the performance of the proposed Twi-AdaBoost algorithm. The EVS
is estimated as equation (3.3), where V ar is the variance, i.e. the square of the standard
deviation. The higher the value is, the better the performance. The best possible score is
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1.0. Equation (3.4) depicts the MAE estimated over nsamples,

RMSE(y, y′) =

√√√√ 1

nsamples

nsamples−1∑
i=0

(yi − y
′
i)

2, (3.2)

EVS(y, y′) = 1 − V ar{y − y′}
V ar{y}

, (3.3)

MAE(y, y′) =
1

nsamples

nsamples−1∑
i=0

(|yi − y
′
i|). (3.4)

3.5.4 General Results and Analysis

To verify the performance of the proposed Twi-AdaBoost algorithm, I use 12608 samples
including 6304 samples of smart-phone and 6304 samples of smart-watch in the second
measurement. About 85 % samples are randomly selected as the training set and the
rest samples as testing set. The metrics RMSE, EVS as well as box-and-whiskers plots
are utilized to evaluate the performance. In all the figures, AdaBoost.R2 on SH denotes
AdaBoost.R2 on smart-phone dataset; AdaBoost.R2 on SW denotes AdaBoost.R2 on smart-
watch dataset while AdaBoost.R2 on HW denotes AdaBoost.R2 on the mixed dataset,
where the datasets of smart-phone and smart-watch are merged by simply combining all
the features.

3.5.4.1 Root Mean Square Error

In both Figure 3.6 and Figure 3.7, we can see that with the iteration increase, the RMSE
decreases. At the 50th iteration, both AdaBoost.R2 and Twi-AdaBoost tend to be stable.
Figure 3.6 depicts the RMSE of position x estimation using Twi-AdaBoost and AdaBoost.R2
methods with iteration T on the testing set. It is clear from Figure 3.6 that compared to
AdaBoost.R2 on SH (1.42), the RMSE value achieved by Twi-AdaBoost (0.69) is 51.63 %

lower while the RMSE value obtained by Twi-AdaBoost is about 49.90 % lower than that
of AdaBoost.R2 on SW (1.37) at the 50th iteration. Compared with AdaBoost.R2 on HW,
Twi-AdaBoost achieves 40.54 % improvement. Figure 3.7 shows that RMSE of position
y estimation using Twi-AdaBoost and AdaBoost.R2 methods with iteration T on the
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Figure 3.6: RMSE of position x estimation using Twi-AdaBoost and AdaBoost.R2 methods.

testing set. We notice that the RMSE of AdaBoost.R2 on SW (1.26) is better than that of
AdaBoost.R2 on SH (1.81). However, the RMSE value achieved by Twi-AdaBoost (0.73)
is 42.32 % lower compared to AdaBoost.R2 on SW at the 50th iteration. Compared with
AdaBoost.R2 on HW (1.32), Twi-AdaBoost achieves 45.10 % improvement.

3.5.4.2 Explained Variance Score

As visible in Figure 3.8 and Figure 3.9, the EVS of both position x and y increase with the
increase of iteration. However, after the 30th iteration, the performance of EVS becomes
stable. Figure 3.8 describes that the EVS of position x estimation using Twi-AdaBoost
and AdaBoost.R2 methods with iteration T on the testing set. It is demonstrated that
Twi-AdaBoost outperforms AdaBoost.R2 on SH, SW and HW, respectively. Specifically,
the EVS of position x estimation of it attains 1.19 %, 1.08 % and 0.66 % higher compared to
AdaBoost.R2 on SH, AdaBoost.R2 on SW and AdaBoost.R2 on HW, respectively. In Figure
3.9, it shows the EVS of position y estimation using Twi-AdaBoost and AdaBoost.R2 meth-
ods with iteration T on the testing set. The EVS of position y estimation of AdaBoost.R2
on SH is worse than that of AdaBoost.R2 SW while the EVS of AdaBoost.R2 on HW has
almost same performance with that of AdaBoost.R2 SW.The EVS of y position estimation
attained by Twi-AdaBoost is the highest one with the EVS value 99.55 %.
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Figure 3.7: RMSE of position y estimation using Twi-AdaBoost and AdaBoost.R2 methods.
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Figure 3.8: EVS of position x estimation using Twi-AdaBoost and AdaBoost.R2 methods.
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Figure 3.9: EVS of position y estimation using Twi-AdaBoost and AdaBoost.R2 methods.

3.5.4.3 Box-and-whiskers Plots

Box-and-whiskers plots of the predicted position offsets are shown in Figure 3.10, Fig-
ure 3.12 and Figure 3.13, which is a more complete performance analysis. The boxes refer
to different values of the updated period T based on different datasets using AdaBoost.R2
and Twi-AdaBoost, where the boundaries of the box represent the 25th and 75th percentiles
of the sample data, respectively; the line within the box shows the median; Whiskers
above and below the box indicate the range from the 90th percentiles and 10th percentiles,
respectively; the outliers are shown as dots. Notice that there are more outliers in Figure
3.10 and Figure 3.12, which are obtained from smart-phone and smart-watch dataset using
AdaBoost.R2, respectively. We can see that Figure 3.13 obtains the best performance.

3.5.5 Comparison Results and Analysis

Table 3.2 illustrates the comparison results among the proposed Twi-AdaBoost method
and the state-of-the-art indoor localization algorithms, where XRE denotes the RMSE
on X coordinate; YRE denotes the RMSE on Y coordinates; Twi-Ada is Twi-AdaBoost;
Ada.RT is AdaBoost.RT. It displays the performance of the different models, using the
metrics introduced previously, given the HW dataset, where the datasets of smart-phone
and smart-watch are merged by simply combining all the features. I conduct extensive
numerical studies on randomly selected different initial data. It is clear to see that the
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Figure 3.10: Box-and-whiskers plots of the position offsets using AdaBoost.R2 based on
the smart-phone dataset.
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Figure 3.11: Box-and-whiskers plots of the position offsets using AdaBoost.R2 based on
the smart-watch dataset.
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Figure 3.12: Box-and-whiskers plots of the position offsets using AdaBoost.R2 based on
the mixed dataset.
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Figure 3.13: Box-and-whiskers plots of the position offsets using Twi-AdaBoost based on
the mixed dataset.

37



Table 3.2: Comparison results among Twi-AdaBoost and the state-of-the-art.
XRE YRE XMAE YMAE XEVS YEVS

Twi-Ada 1.073 0.824 0.387 0.398 0.991 0.994
LR [43] 8.658 9.123 6.746 7.729 0.411 0.286
Ada.RT [55] 2.375 2.020 0.862 0.975 0.955 0.965
GRNN [39] 1.905 2.455 0.794 1.063 0.971 0.948
SVR [40] 7.328 7.908 5.071 6.475 0.584 0.464

proposed Twi-AdaBoost outperforms the other algorithms throughout all metrics on both
coordinates. GRNN performs second best on the X coordinate, but worse than Ada.RT on
the Y coordinate.

3.6 Summary and Future Work

In this chapter, I introduce Twi-AdaBoost, an indoor collaborative localization algorithm
that explores the accelerometer, gyroscope and magnetometer sensors on both smart-
phone and smart-watch. The key contribution of the proposed Twi-AdaBoost algorithm is
fusing the co-occurrence information to get a better performance for the indoor localization
based on the real world data. The indoor localization datasets [38] used in this chapter
have the multi-source characteristics, which are supported by the presence of two different
devices collecting data simultaneously from the surrounding environment: a smart-phone
and a smart-watch, respectively. Each device collects multivariate data represented by their
internal sensors, such as acceleration, orientation, and gyroscope. From the experiment
results, it is obvious that Twi-AdaBoost convincingly outperforms the state-of-the-art
indoor localization algorithms, taking advantage of the co-occurrence correlation across
the sensors from multiple devices. Specifically, the localization error of position x and y
achieved by Twi-AdaBoost is 0.387 m and 0.398 m, respectively.

Considering the future work, I plan to utilize the correlation between the position x

and y in the same location to improve the performance of the indoor localization in
this chapter. In addition, I will focus on exploiting the datasets combined by more co-
occurrence information from multiple devices, like the Camera and WiFi, by machine
learning methods to improve the localization accuracy in indoor environment.
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Chapter 4

Underwater Localization with Wireless Sen-
sor Networks

4.1 Motivation

Localization of mobile sensor nodes is indispensable for UWSNs. The gathered data is
useless if it does not refer to a specific position of the sensor node. Many applications,
such as aquatic environment monitoring, target tracking [6], geo-routing protocols [56]
and pollution control, require the location information. GPS cannot be used in UWSNs
because of the high attenuation of radio signal and their power hungry nature. UWSNs
are mostly based on acoustic communication systems which suffer from many problems
because of the aquatic conditions, such as frequency dispersion, multi-path fading, limited
bandwidth and energy [57, 58].

One important challenge is that underwater sensor nodes have limited resources due to the
non-rechargeable batteries, which directly determines the network life time. Considering
about the engineering hardship and monetary cost of battery replacement, the energy-
efficient localization becomes more critical to extend the network lifetime in UWSNs.
The energy of sensor nodes is consumed mainly by transmitting and receiving packets,
which is much larger than that of the idle listening consumption [59], so adjusting the
transmission power by topology control is one possible way to save energy in UWSNs.
In most localization systems of UWSNs [58], multiple anchor nodes are required to help
one sensor node to find its position. The performance of localization methods depend on
the initial reference position, number of sensor nodes, number of anchor nodes, ranging
technique as well as the position of anchor nodes.
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These facts motivate us to pursue solutions to assist the sensor node finding enough anchor
nodes with the minimum power consumption by topology control to extend the network
lifetime. So far, limited number of schemes have been proposed for the localization service
in UWSNs [60], [61], [62], especially for localization in sparse UWSNs by using topology
control [63]. However, the proposed scheme in [63] only considers energy-saving for
anchor nodes. Sensor nodes deployed underwater consume plenty of energy, which is a
major cause of decrease in UWSNs.

In this chapter, unlike above works, such as Opportunity Localization Topology Control
(OLTC) [63] and three-Dimensional Underwater Localization (3DUL) [64], I leverage the
benefits of topology control to achieve a high localization performance and a low energy
consumption. In localization systems of UWSNs, in order to successfully localize a single
sensor node, multiple anchor nodes are required. This motivates us to model this problem
as a Single-Leader-Multi-Follower Stackelberg game. The energy-efficient utilities and
game scheme design make the proposed EELA scheme distinct from the existing state-of-
the-art, such as OLTC [63] and 3DUL [64]. Based on EELA scheme, the Adaptive EELA
scheme is designed by considering the localization scenario with a sensor node (unaware
of its location) and its surrounding neighbor anchor nodes (aware of their locations) as an
oligopoly and a few hours of training with no need for prior knowledge, new equipment,
or extra cost.

4.2 Contributions

In this chapter, I aim to design the EELA scheme and Adaptive EELA scheme by consid-
ering the localization scenario with a sensor node and its surrounding neighbor anchor
nodes as an oligopoly. The sensor node needs the help of its neighbor anchor nodes
to get its position. As for EELA, the Single-Leader-Multi-Follower Stackelberg game is
employed to model this scenario, where the sensor node will act as the leader while the
anchor node will be the follower. As for Adaptive EELA, the Single-Leader-Multi-Follower
Stackelberg game using the adaptive neuro-fuzzy model as its payoff function to model
this scenario, where the sensor node will act as the leader while the anchor node will be
the follower. In both these two proposed schemes, each sensor node attempts to exploit
its maximum opportunities to communicate with potential anchor nodes to get localized
with the minimum localization delay and energy cost. Each anchor node, on the other
hand, exploits its maximum opportunities to interact with the potential sensor nodes with
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its maximum individual utility.

In summary, the contributions of the proposed EELA are given as follows:

1) I propose one novel algorithm, named EELA, which utilizes the Single-Leader-
Multi-Follower Stackelberg game to model the localization scenario and build a
strategic interaction between a sensor node and multiple anchor nodes for solving
the energy-efficient localization problem in UWSNs.

2) As for sensor nodes, ‘two-hop’ anchor nodes and energy consumption are considered
to select an optimal transmission power to find the maximum number of anchor
nodes with minimum overhead consumption.

3) As for anchor nodes, both the ability to localize sensor nodes and the energy cost are
considered to select an optimal transmission power to localize maximum number of
sensor nodes with minimum energy cost.

4) I conduct extensive numerical evaluations to show that the proposed EELA scheme
achieves about 48 % energy reduction for all nodes on average compared to the
state-of-the-art approach.

The contributions of the proposed Adaptive EELA are given as,

1) The Adaptive EELA using an Adaptive fuzzy Single-Leader-Multi-Follower Stack-
elberg game is proposed to model the localization scenario and build a strategic
interaction between a sensor node and multiple anchor nodes. This solves the energy
efficient localization problem in UWSNs.

2) The proposed Adaptive EELA scheme is able to automatically learn in the offline
phase, which is required only once. Then, in the online phase, it can adapt to the
environmental changes or dynamical changes, such as the densities of nodes or
topologies of nodes.

3) I conduct extensive numerical evaluations under different network topologies and
different network node densities. The simulation results demonstrate that the
proposed Adaptive EELA scheme achieves about 35 % and 66 % energy reduction
per node on average comparing the state-of-the-art approaches, such as Fixed-EELA
and OLTC, while providing a desirable localization coverage, localization error and
localization delay.

The rest of the Chapter is organized as follows. Section 4.3 discusses the related works.
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Section 4.4 introduces the system model. The detailed description of the proposed EELA
scheme is presented in Section 4.5. Simulation results and performance evaluation are
shown in Section 4.6.3. Finally, Section 4.7 presents the summary and future work.

4.3 State of the Art

4.3.1 Localization in UWSNs

A set of localization techniques has been proposed for UWSNs in recent years. A detailed
survey about these works was given in [65] and [66]. One localization scheme was
presented in [67], which worked well in high latency networks and improved the energy
efficiency as well. One-way and two-way MAC-layer message delivery were combined
in this paper. However, it is only suitable for static UWSNs due to its assumption of
constant propagation delays among sensor nodes. In [64], 3DUL described a distributed,
iterative and dynamic solution to the localization problem in the underwater acoustic
sensor network with only three anchor nodes at the surface of the water. Trilateration
algorithm was used to estimate the sensor node location. However, the error accumulated
with the iteration increase, leading to inaccurate positioning of the later sensor node in
3DUL. One localization scheme [61] was proposed in a hierarchical underwater sensor
networks consisting of surface buoys, anchor nodes, and ordinary nodes. Sensor nodes
were localized by the trilateration method. However, the node density is assumed to be
high in this scheme due to the long distance acoustic communication between the anchor
node and the surface buoy. In [62], a novel scheme was proposed for long-term maritime
surveillance monitoring tasks in ocean sensor networks. Liu et al. [68] proposed a joint
solution for localization and time synchronization in mobile underwater sensor networks.
The stratification effect of underwater medium was taken into account in localization.
Schemes utilizing Autonomous Underwater Vehicles (AUVs) [69], [70] and [71] as beacon
nodes result in additional cost to the network.

4.3.2 Topology Control

The problem of topology control for WSNs has been extensively studied in recent years.
The topology control scheme presented in [72] and [73] started with neighbor finding,
where all nodes transmit at their maximum transmission power. Later, each node com-
putes the minimum transmission power required to maintain network connectivity. A
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game theoretic model of topology control to analyze the decentralized interactions among
heterogeneous sensors was given in [74]. The connectivity, the success rate and the power
consumption were considered to achieve desirable network performances. Zhu et al. [75]
took into account the signal to interference plus noise ratio and power efficiency to solve
the distributed power control issues in cognitive wireless sensor network with imperfect
information. A game-theoretic power control mechanism based on the Hidden Markov
Model (HMM) was employed to maximize the network lifetime.

Although there are increasing interests in UWSNs in the past several years, few works
have been investigated on approaches for topology control in UWSNs, especially for
the localization by using topology control. In [76], a distributed radius determination
algorithm is designed for the mobility-based topology control problem. However, the
energy consumption of message reception was not considered in this paper. A scale-free
network model for calculating edge probability was employed to generate the initial
topology randomly by Liu et al. [77]. In order to ensure the connectivity and coverage
of the network, two kinds of cluster-heads were constructed by using a topology control
strategy based on complex network theory. A Single-Leader-Multi-Follower Stackelberg
game, called OLTC scheme, was proposed in [63] to build a localization model with
the high coverage and less energy consumption in sparse underwater sensor networks.
Trilateration algorithm was employed to localize the sensor node. However, in this paper,
sensor node always uses the maximum transmission power to broadcast the ‘Request’
message, which results in more energy consumption. Besides, only the energy-saving for
anchor nodes is considered in OLTC. However, in many scenarios of UWSNs, energy-
saving for sensor nodes is much more important, which can directly affect the lifetime of
the whole network. Because they have a limited battery and are deployed underwater,
which leads to engineering hardship and monetary cost of battery replacement.

4.4 System Model

4.4.1 System Overview

The proposed EELA is implemented in the three Dimension (3D) Underwater Sensor
Network (UWSN), where {Na} is the set of anchor nodes deployed on the surface of water
and {Ns} denotes the set of sensor nodes deployed underwater. All nodes move passively
given the water wave and underwater currents. Figure 4.1 depicts the deployment scenario
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Figure 4.1: Deployment scenario of the proposed EELA scheme.

of EELA, where the cylinders represent anchor nodes on the water surface while dotted
circles express sensor nodes which are randomly positioned underwater. Each sensor
node i has multiple neighboring anchor nodes within the current transmission range
under power Pi, which is expressed by nneig(Pi). Both sensor nodes and anchor nodes can
change their transmission power to maximize their own benefits. The transmission power
value for each sensor node is within [0, Pmax], corresponding to different transmission
ranges within [0, Rmax] (see Eq. (4.1)). The transmission power value for each anchor
node is within [0, Qmax], corresponding to different transmission ranges within [0, Rmax]

(see Eq. (4.1)). I set Pmax = Qmax.

For reference purposes, a list of symbols used in the description of the proposed scheme is
given in Table 4.1. I have the following assumptions as in [63] in the design of EELA.

1) All nodes are time-synchronized.

2) Sensor nodes are randomly deployed underwater while anchor nodes randomly
float on the water surface.

3) Sensor nodes are aware of their depth.

4.4.2 Propagation Model

According to the underwater propagation model [78], the transmission power required by
a sending node to a receiving node is given in Eq. (4.1), where P0 is the received signal
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Table 4.1: Symbols used in the proposed EELA scheme.
Parameter Description
{Ns} The set of sensor nodes
{Na} The set of anchor nodes
{Nbrsi } The set of neighboring sensor nodes of ith sensor node
{Nbraj } The set of neighboring anchor nodes of jth anchor node
nreqh Additional number of anchor nodes required by hth sensor node
Etl Total remaining energy per node
Cj Transmission energy cost per unit power of jth anchor node
Ei Transmission energy cost per unit power of ith sensor node
Pi Transmission power of ith sensor node
Qj Transmission power of jth anchor node
Pmax Maximum transmission range of sensor node
Qmax Maximum transmission range of anchor node
OAj Localization ability of jth anchor node
OSi Ability of sensor node i to find anchor nodes
nreqmin Minimum number of required anchor nodes for sensor node to get localized
ñreqh Additional number of anchor nodes required by ith sensor node (fuzzy variable)
Ẽtl Total current energy of one node (fuzzy variable)∑nsrx

h=1 Q̃h Sum-transmission power received from other nodes (fuzzy variable)

ñhd(Qj)
Number of requests that can be resolved by anchor node j
with transmission power Qj (fuzzy variable)

ñneig(Pi) Number of neighbor anchor nodes of ith sensor node (fuzzy variable)
Ẽtl Total energy of the node (fuzzy variable)
ÕAj Localization ability of the jth anchor node (fuzzy variable)

strength,
P = A(R, f) + P0. (4.1)

In general, acoustic communications are used in underwater environment due to the small
attenuation of acoustic signals [79]. The attenuation A(R, f) in an underwater acoustic
channel for a signal with frequency f over a distance R is given as

A(R, f) = AnormR
ka(f)R, (4.2)
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where Anorm is a normalization constant; R is the distance in meters between the sender
and the receiver; f is the frequency; a(f) is the absorption coefficient in dB/m. The
spreading factor k is an expression of the geometry of propagation where typically k = 1.5

[79]. Eq. (4.3) describes the absorption coefficient with values in dB/km [80],

10 log a(f) =



0.003 + 0.11 f2

1+f2 f ≥ 0.4
+44 f2

4100+f2
+ 2.75.10−4f2

0.002 + 0.11 f2

1+f2 f < 0.4
+0.011f2

(4.3)

where T is the Thorp‘s approximation for absorption loss in dB/km, and f is center
frequency in kHz.

Different communication ranges correspond to different bandwidths. For example, if
the distance range is 10 km to 100 km, the bandwidth is limited to few kHz. However,
10 kHz matches the short range (from 1 km to 10 km) and a few hundred kHz bandwidth
is available for ranges below 100 m [81].

4.5 Underwater Localization by Stackelberg Game Theory

4.5.1 Problem Formulation and Solution

4.5.1.1 Proposed Single Leader Multi-Follower Stackelberg Game Formulation

In Stackelberg game [82], two types of players (leader and followers) are used to model
the hierarchy of actions. The leader moves first and selects a strategy. Based on the action
of the leader, the followers choose best response strategies that maximize their utilities.
Then, the leader selects one strategy to maximize its utility based on the strategies of
followers. In a distributed localization scenario, a sensor node can localize itself after
receiving enough location beacons from multiple anchor nodes. However, due to the
random and sparse node deployment, and the mobility of nodes, a sensor node may
not find enough neighbor anchor nodes. A Single-Leader-Multi-Follower Stackelberg
game [82] is employed, where the sensor node acts as the single leader while anchor nodes
are multiple followers. The sensor node acts first and chooses a transmission power to
send a request message, which is similar to the leader releasing a price in Stackelberg
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game. Each anchor node reacts, i.e, it selects a transmission power to send reply message,
after the action of the sensor node.

4.5.1.2 Utility Function of Anchor Nodes

Anchor nodes are followers. They decide their strategies to handle the maximum number
of requests from sensor nodes with minimum energy consumption.

Let nreqi be the additional number of anchor nodes required by sensor node i for localiza-
tion, which is defined by,

nreqi =

n
req
min − |Vi|, if |Vi| < nreqmin

0, otherwise,
(4.4)

where nreqmin represents the number of anchor nodes required for one sensor node to get its
location and Vi is the set of the anchor nodes in the communication range of sensor node i.

The localization abilityOAj(Qj , P1, P2, · · · , Pnarx) of anchor node j is composed of several
terms expressing different effects,

OAj(Qj , P1, P2, · · · , Pnarx) =
nhd(Qj)

narx
+

nhd(Qj)∑narx
k=1 n

req
k

−
∑narx

i=1 Pi
Qj

. (4.5)

In (4.30), the first two terms nhd(Qj)
narx

and nhd(Qj)∑narx
k=1 nreq

k
are similar to those in the utility

function in [63]. nhd(Qj)
narx

is the ‘ability of jth anchor node to resolve sensor requests’,
where nhd(Qj) is the number of requests that can be handled by anchor node j with
transmission power Qj and narx is the total number of request messages received from
sensor nodes. From Proposition 5 below, we can see that nhd(Qj) of a follower (anchor
node) j is non-decreasing with the increase of the transmission powerQj . The second term
nhd(Qj)∑narx
k=1 nreq

k
is the ‘ability of jth anchor node to serve additional demands’. It means that

only nhd(Qj) requests can be served among the total sum demand for additional anchor
nodes

∑narx
k=1 n

req
k from sensor nodes. Finally, the third term

∑narx
i=1 Pi

Qj
expresses the relation

between the sum-transmit power received from sensor nodes and the transmission power
of the anchor node j. If the transmission power

∑narx
i=1 Pi received from sensor nodes

increases, anchor node j has to handle more sensor nodes. Therefore, the localization
ability OAj(Qj , P1, P2, · · · , Pnarx) decreases.
Proposition 1. For each anchor node j, the number of neighboring sensor nodes is higher or at
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least equal with the increase of transmission power Qj .

Proof. Let us assume that there are n sensor nodes uniformly deployed in the area with
size d3. nhd(Qj) can be calculated by,

nhd(Qj) = ρvj =
4πnR3

j

3d3
, (4.6)

where ρ is the density of sensor nodes and vj is the volume of jth anchor node with the
transmission range Rj .

According to Eqs. (4.1) and (4.2), the transmission power Qj of anchor node j is given as,

Qj(Rj) = AnormR
k
j a(f)Rj +Qj0. (4.7)

The inverse function g−1(Qj) = Rj exists and is monotonically strictly increasing with the
transmission power Qj , because ∂Qj(Rj)

∂Rj
= Anorm

(
kRk−1

j a(f)Rj +Rkj a(f)Rj ln a(f)
)
> 0.

Therefore, nhd (Qj) can be represented by Eq. (4.33). Then, the first order partial derivative
of nhd(Qj) is given in Eq. (4.34),

nhd(Qj) =
4πn

(
g−1(Qj)

)3
3d3

, (4.8)

∂nhd(Qj)

Qj
=

4πn

d3

(
g−1(Qj)

)2 ∂g−1(Qj)

∂Qj
. (4.9)

Hence, ∂nhd(Qj)
Qj

> 0, which proves Proposition 5.

Next, I define the payoff function of any anchor node j by considering various factors such
as energy cost, the ability to localize sensor nodes and the transmission power of sensor
nodes as well as anchor nodes. It is hence defined as the weighted sum of the remaining en-
ergy ratio after transmission withQj and its localization abilityOAj(Qj , P1, P2, · · · , Pnarx),

UF (Qj , P1, P2, · · · , Pnarx) = w1j

Etlj − CjQj
Etlj

+ w2jOAj (Qj , P1, P2, · · · , Pnarx) . (4.10)

In the first term of Eq. (4.35), Etlj is the total energy of the jth anchor node and Cj is
the transmission energy cost per unit power. Weights w1j and w2j define the trade-off
between the energy consumption of anchor node and the localization ability of anchor
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node, and satisfy w1j + w2j = 1, wkj ∈ (0, 1).

4.5.1.3 Utility Function of Sensor Nodes

In the considered localization problem, sensor nodes act as leaders. They watch for
the decision of anchors which act as followers, and based on the response of followers,
maximize their profits. The strategy of the leader is to minimize the energy consumption
and to localize the maximum number of sensor nodes during the allowed localization
delay, which is defined in Section 4.5.2.3. A sensor node broadcasts a ‘Request’ message
to explore the maximum number of anchors. After sensor nodes receive enough beacon
locations from neighbor anchor nodes, it will localize itself.

The ‘ability of sensor node i to find anchor nodes’ OSi(Pi, Q1, Q2, · · · , Qnsrx) is composed
of two terms,

OSi(Pi, Q1, Q2, · · · , Qnsrx) =
nneig(Pi)

nsrx
−
∑nsrx

j=1 Qj

Pi
. (4.11)

In Eq. (4.36), the first term nneig(Pi)
nsrx

is the ratio of the number of anchor nodes nneig(Pi)
within ‘one-hop’ and ‘two-hop’ ranges of transmission power Pi and the total number of
anchor nodes nsrx received, where nneig(Pi) is a non-decreasing function of Pi, the proof

of which is similar to that of Proposition 5. The second term
∑nsrx

j=1 Qj

Pi
is the ratio of the

sum-transmission power of received anchor nodes and the transmission power of sensor
node i. If the transmission power of anchor nodes

∑nsrx
j=1 Qj increases, more anchor nodes’

beacon messages are received so less anchor nodes can be reached with a given power Pi.
Therefore, the ‘ability of sensor node i to find anchor nodes’ OSi(Pi, Q1, Q2, · · · , Qnsrx) is
inversely proportional to this ratio.

The payoff of any sensor node i increases with the decrease in energy consumption. Also, it
increases with the increase of the number of neighbor anchor nodes. In addition, the payoff
of the leader decreases with each retry it does to send the ‘Request’ message. Therefore,
the payoff function of sensor node i is defined as Eq. (4.37), which is the weighted sum of
its remaining energy ratio and the ‘ability of sensor node i to find anchor nodes’,

UL (Pi, Q1, Q2, · · · , Qnsrx) = w1i
Etli − EiPi

Etli
+ w2iOSi(Pi, Q1, Q2, · · · , Qnsrx). (4.12)

In the first term of Eq. (4.37), Etli is the total energy in the ith sensor node and Ei is
the transmission energy cost per unit power. Weights w1i and w2i provide a trade-off
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between energy consumption and ‘ability to find anchor nodes’, satisfying w1i + w2i = 1,
w1i, w2i ∈ (0, 1).

4.5.1.4 Existence and Uniqueness of Stackelberg Nash Equilibrium

The considered game achieves equilibrium when the sensor node (leader) selects the
optimal transmission power to get its location with minimum energy consumption while
anchor nodes (followers) choose their optimal transmission power to localize the maxi-
mum number of sensor nodes with minimum energy cost. At equilibrium, the benefit
of each side can not be improved by unilaterally changing its own strategy. To find the
Stackelberg equilibrium, each sensor node calculates the best reaction of anchor nodes to
each of its mixed strategy and selects the mixed strategy that maximizes its own utility.

1. Best Response Strategy of Anchor Nodes: To define the strategy of the jth anchor
node Qj , the transmission power allocation problem can be cast as the optimization
problem formulated below,

max
Qj

UF (Qj , P1, P2, · · · , Pnarx) = w1j
Etl

j −CjQj

Etl
j

+w2j

(
nhd(Qj)
narx

+
nhd(Qj)∑narx
k=1 nreq

k
−

∑narx
i=1 Pi

Qj

)
(4.13)

s.t.

w1j + w2j = 1, w1j , w2j ∈ (0, 1),

Qj ∈ [0, Qmax], Pj ∈ [0, Pmax],

Cj , narx, n
req
k , Etlj > 0.

All anchor nodes are non-cooperative. In Proposition 6, the existence of the best
response strategy of each anchor node is proved and the unique equilibrium point is
computed.
Proposition 2. Let Qj be the strategy of the jth anchor node. The best response Q∗j of each
anchor node is given as,

Q∗j (P1, P2, · · · , Pnarx) = w2jE
tl
j

∑narx
i=1 Pi

w1jCj − Zj(g−1(Q∗j ))
2
∂g−1(Q∗j )

∂Qj

 1
2

, (4.14)
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with w∗F < w1j < 1, w1j + w2j = 1 and w2j ∈ (0, 1), where

Zj =
4(1− w1j)πnE

tl
j

d3

(
1

narx
+

1∑narx
k=1 n

req
k

)
, (4.15)

w∗F =
d3Etlj

∑narx
i=1 Pi +AEtlj Q

2
maxBj

d3Q2
maxCj + d3Etlj

∑narx
i=1 Pi +AEtlj Q

2
maxBj

, (4.16)

where A = 4πn
(

1
narx

+ 1∑narx
k=1 nreq

k

)
and Bj = (g−1(Q∗j ))

2 ∂g
−1(Q∗j )

∂Qj
.

Proof. I prove that problem (4.13) is a standard form of convex optimization and
determine the expression of the optimum.

The first order partial derivative of UF (Qj , P1, P2, · · · , Pnarx) with respect to Qj , for
j ∈ [1, N ], is given as

∂UF (Qj , P1, P2, · · · , Pnarx)

∂Qj
=
−w1jCj

Etlj
+ w2j

(∑narx
i=1 Pi
Q2
j

+
4πn

d3

(
1

narx
+

1∑narx
k=1 n

req
k

)
(g−1(Qj))

2∂g
−1(Qj)

∂Qj

)
.

Let ∂UF (Qj ,P1,P2,··· ,Pnarx )
∂Qj

= 0, and denoting its solution as Q∗j , I get Q∗2j as,

Q∗2j (P1, P2, · · · , Pnarx) =
(1− w1j)E

tl
j

∑narx
i=1 Pi

w1jCj − Zj(g−1(Q∗j ))
2
∂g−1(Q∗j )

∂Qj

,

where Zj =
4(1−w1j)πnEtl

j

d3

(
1

narx
+ 1∑narx

k=1 nreq
k

)
, hence

Q∗j (P1, P2, · · · , Pnarx) =

 (1− w1j)E
tl
j

∑narx
i=1 Pi

w1jCj − Zj(g−1(Q∗j ))
2
∂g−1(Q∗j )

∂Qj

 1
2

. (4.17)

For existence of Q∗j , the condition w1jCj − Zj(g
−1(Q∗j ))

2 ∂g
−1(Q∗j )

∂Qj
> 0 should be
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satisfied. This is guaranteed by the condition w
′
F < w1j < 1, where w

′
F is given by,

w
′
F =

Zj

1−w1j

(
g−1(Q∗j )

)2 ∂g−1(Q∗j )

∂Qj

Zj

1−w1j

(
g−1(Q∗j )

)2 ∂g−1(Q∗j )

∂Qj
+ Cj

. (4.18)

First, I show that the objective function of Eq. (4.13) is concave. The second order
partial derivative of UF (Qj , P1, P2, · · · , Pnarx) is given as

∂2UF (Qj , P1, P2, · · · , Pnarx)

∂Q2
j

=
4πnw2j

d3

(
1

narx

+
1∑narx

k=1 n
req
k

)(
2g−1(Qj)

(
∂g−1(Qj)

∂Qj

)2

+
(
g−1(Qj)

)2 ∂2g−1(Qj)

∂Q2
j

)
−

2w2j
∑narx

i=1 Pi
Q3
j

.

Here, I show that G(Qj) < 0 in order to prove that ∂
2UF (Qj ,P1,P2,··· ,Pnarx )

∂Q2
j

is negative,
where

G(Qj) =

(
2g−1(Qj)

(
∂g−1(Qj)

∂Qj

)2 (
g−1(Qj)

)2 ∂2g−1(Qj)

∂Q2
j

)
. (4.19)

Firstly, I prove ∂2g−1(Qj)

∂Q2
j

< 0. According to Eqs. (4.1) and (4.2), the transmission
power Qj of anchor node j is given as

Qj(Rj) = AnormR
k
j a(f)Rj +Qj0.

The inverse function g−1(Qj) = Rj of anchor node j exists and is strictly mono-
tonically increasing with the transmission power Qj , i.e., ∂g−1(Qj)

∂Qj
> 0, because

∂Qj(Rj)
∂Rj

= Anorm

(
kRk−1

j a(f)Rj +Rkj a(f)Rj ln a(f)
)
> 0 and ∂Qj(Rj)

∂Rj
= 1

∂g−1(Qj)

∂Qj

.
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Then, ∂
2g−1(Qj)

∂Q2
j

can be calculated as

∂2g−1(Qj)

∂Q2
j

= −
∂2Qj(Rj)

∂R2
j

∂g−1(Qj)
∂Qj(

∂Qj(Rj)
∂Rj

)2

= −∂
2Qj(Rj)

∂R2
j

(
∂g−1(Qj)

∂Qj

)3

. (4.20)

Then, I have

∂2Qj(Rj)

∂R2
j

= Anorm

(
k(k − 1)Rk−2

j a(f)Rj

+kRk−1
j a(f)Rj ln a(f) + kRk−1

j a(f)Rj ln a(f)

+Rkj a(f)Rj ln2 a(f)
)
> 0, (4.21)

from which I get for (4.43) ∂
2g−1(Qj)

∂Q2
j

< 0.

Secondly, I have 2g−1(Qj) <
(
g−1(Qj)

)2, because g−1(Qj) = Rj and Rj >> 1.

In order to prove G(Qj) < 0 given in Eq. (4.19), I need to prove
(
∂g−1(Qj)
∂Qj

)2
<∣∣∣∣∂2g−1(Qj)

∂Q2
j

∣∣∣∣. According to Eq. (4.43),

∣∣∣∣∣∂2g−1(Qj)

∂Q2
j

∣∣∣∣∣−
(
∂g−1(Qj)

∂Qj

)2

=

∣∣∣∣∣∂2Qj(Rj)

∂R2
j

(
∂g−1(Qj)

∂Qj

)3
∣∣∣∣∣−
(
∂g−1(Qj)

∂Qj

)2

=

(
∂g−1(Qj)

∂Qj

)2
(∣∣∣∣∣∂2Qj(Rj)

∂R2
j

∂g−1(Qj)

∂Qj

∣∣∣∣∣− 1

)
,

where ∂2Qj(Rj)

∂R2
j

is given by Eq. (4.43) and ∂g−1(Qj)
∂Qj

as,

∂g−1(Qj)

∂Qj
=

1

Anorm

(
kRk−1

j a(f)Rj +Rkj a(f)Rj ln a(f)
) . (4.22)

From Eq. (4.3), I know ln a(f) >> 1, from which I get ∂
2Qj(Rj)

∂R2
j

∂g−1(Qj)
∂Qj

≈ 2k
Rj

+ 1 > 1,
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where k = 1.5 and Rj > 0. Therefore,
(
∂g−1(Qj)
∂Qj

)2
<

∣∣∣∣∂2g−1(Qj)

∂Q2
j

∣∣∣∣ is proved.

Since the value of the second order partial derivative of UF (Qj , P1, P2, · · · , Pnarx)

is negative, the objective function in Eq. (4.13) is concave, and hence achieves its
maximum at Q∗j in Eq. (4.17).

Next, I prove that Q∗j (P1, P2, · · · , Pnarx) is in [0, Qmax]. From Eq. (4.17), I have
Q∗j > 0. I show that Q∗j (P1, P2, · · · , Pnarx)−Qmax < 0 or equivalently,

Q∗j (P1, P2, · · · , Pnarx)−Qmax < 0

⇒

 (1− w1j)E
tl
j

∑narx
i=1 Pi

w1jCj − Zj(g−1(Q∗j ))
2
∂g−1(Q∗j )

∂Qj

 1
2

−Qmax < 0,

which is verified if

w1j > w∗F =
d3Etlj

∑narx
i=1 Pi +AEtlj Q

2
maxBj

d3Q2
maxCj + d3Etlj

∑narx
i=1 Pi +AEtlj Q

2
maxBj

.

To ensure both the existence of Q∗j (P1, P2, · · · , Pnarx), i.e., w
′
F < w1j < 1 and the

requirement that Q∗j (P1, P2, · · · , Pnarx) ∈ [0, Qmax], it is sufficient to set w
′
F < w∗F .

Hence, w
′
F

w∗F
is calculated as,

w
′
F

w∗F
=

Hj

Hj + Cjd6Etlj
∑narx

i=1 Pi
(4.23)

where Hj is defined as,

Hj =
(
AEtlj QmaxBj

)2
+Ad3(Etlj )2

narx∑
i=1

PiBj

+ACjd
3Etlj Q

2
maxBj

where A = 4πn
(

1
narx

+ 1∑narx
k=1 nreq

k

)
and Bj = (g−1(Q∗j ))

2 ∂g
−1(Q∗j )

∂Qj
.

From Eq. (4.23), I confirm that w
′
F

w∗F
< 1. Thus, the maximum value of

UF (Qj , P1, P2, · · · , Pnarx) can be achieved at Q∗j (P1, P2, · · · , Pnarx) in [0, Qmax] pro-
vided w∗F < w1j < 1, proving Proposition 6.
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2. Best Response Strategy of Sensor Node: To define the strategy of the ith sensor
node Pi, the transmission power allocation problem can be cast as the optimization
problem formulated below,

max
Pi

UL (Pi, Q1, Q2, · · · , Qnsrx) = w1i
(Etl

i −EiPi)
Etl

i

+w2i

(
nneig(Pi)
nsrx

−
∑nsrx

j=1 Qj

Pi

)
(4.24)

s.t.

w1i + w2i = 1, w1i, w2i ∈ (0, 1),

Pi ∈ [0, Pmax], Qh ∈ [0, Qmax],

nsrx, Ei, E
tl
i > 0.

The existence and uniqueness of the sensor node’s transmission power at Nash
equilibrium is proved in Proposition 7.
Proposition 3. Let Pi be the strategy of the ith sensor node. The best response P ∗i of each
sensor node is given as,

P ∗i (Q1, Q2, · · · , Qsrx) = w2id
3Etli nsrx

∑nsrx
j=1 Qj

w1iAi − Zi (g−1(P ∗i ))2 ∂g−1(P ∗i )
∂Pi

 1
2

, (4.25)

with w∗L < w1i < 1, w1i + w2i = 1 and w2i ∈ (0, 1), where Ai = d3Einsrx, Zi =

4πnw2iE
tl
i and

w∗L =
1 + 4πnEtli BiP

2
max

d3Etli nsrx
∑nsrx

j=1 Qj +AiP 2
max + 4πnEtli BiP

2
max

, (4.26)

where Ai = d3Einsrx and Bi =
(
g−1(P ∗i )

)2 ∂g−1(P ∗i )
∂Pi

.

Proof. I prove that problem (4.24) is a standard form of convex optimization and
determine the expression of the optimum.

The first order partial derivative of UL (Pi, Q1, Q2, · · · , Qnsrx) with respect to Pi is
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given as

∂UL (Pi, Q1, Q2, · · · , Qnsrx)

∂Pi
= −w1iEi

Etli
+ w2i

(
4πn

d3nsrx

(g−1(Pi))
2∂g

−1(Pi)

∂Pi
+

∑nsrx
j=1 Qj

P 2
i

)
.

Letting ∂UL(Pi,Q1,Q2,··· ,Qnsrx )
∂Pi

= 0, and denoting its solution as P ∗i , I get

P ∗2i (Q1, Q2, · · · , Qsrx) =
w2id

3Etli nsrx
∑nsrx

j=1 Qj

w1iAi − Zi (g−1(P ∗i ))2 ∂g−1(P ∗i )
∂Pi

,

where Ai = d3Einsrx and Zi = 4πnw2iE
tl
i .

To guarantee the existence of P ∗2i (Q1, Q2, · · · , Qsrx), I need to set the condition
w1iAi−Zi

(
g−1(P ∗i )

)2 ∂g−1(P ∗i )
∂Pi

> 0. Then I get w
′
L < w1i < 1, where w

′
L is calculated

as,

w
′
L =

4πnEtli
(
g−1(P ∗i )

)2 ∂g−1(P ∗i )
∂Pi

d3Einsrx + 4πnEtli (g−1(P ∗i ))2 ∂g−1(P ∗i )
∂Pi

. (4.27)

First, I show that the objective function of Eq. (4.24) is concave. The second order
partial derivative of UL (Pi, Q1, Q2, · · · , Qnsrx) is given as

∂2UL (Pi, Q1, Q2, · · · , Qnsrx)

∂P 2
i

=
4πnw2i

d3nsrx

(
2g−1(Pi)(

∂g−1(Pi)

∂Pi

)2

+
(
g−1(Pi)

)2 ∂2g−1(Pi)

∂P 2
i

)

−
2w2i

∑nsrx
j=1 Qj

P 3
i

.

Here, I use the fact that G(Qj) < 0 given in Eq. (4.19) as proved for
Proposition 6. Therefore, the value of the second order partial derivative of
UL (Pi, Q1, Q2, · · · , Qnsrx) is negative.

Next, I prove that P ∗i (Q1, Q2, · · · , Qsrx) is in [0, Pmax]. From Eq. (4.46), I have P ∗i > 0

57



. I show that P ∗i (Q1, Q2, · · · , Qsrx)− Pmax < 0 or equivalently,

P ∗i (Q1, Q2, · · · , Qsrx)− Pmax < 0

⇒

 (1− w1i)d
3Etli nsrx

∑nsrx
j=1 Qj

w1iAi − Zi (g−1(P ∗i ))2 ∂g−1(P ∗i )
∂Pi

 1
2

− Pmax < 0,

where Ai = d3Einsrx and Bi =
(
g−1(P ∗i )

)2 ∂g−1(P ∗i )
∂Pi

, which is verified if

w1i > w∗L =
1 + 4πnEtli BiP

2
max

d3Etli nsrx
∑nsrx

j=1 Qj +AiP 2
max + 4πnEtli BiP

2
max

.

Similarly as for Proposition 2, I can prove that w
′
L

w∗L
< 1 to get the condition

w∗L < w1i < 1 in order to guarantee the existence of P ∗i (Q1, Q2, · · · , Qsrx)

and that P ∗i (Q1, Q2, · · · , Qsrx) ∈ [0, Pmax]. Thus, the maximum value of
UL (Pi, Q1, Q2, · · · , Qnsrx) can be achieved at P ∗i (Q1, Q2, · · · , Qsrx) in [0, Pmax] pro-
vided w∗F < w1i < 1, proving Proposition 7, for the existence and uniqueness of the
Nash equilibrium of the considered Stackelberg game.

4.5.1.5 Algorithm Design

I now design the proposed EELA algorithm, where sensor nodes localize themselves once
they receive enough location beacon information from neighboring anchor nodes. The
proposed algorithm consists of several phases.

• Phase 1: each sensor node builds a neighbor list containing the ‘Wakeup’ (Type, ID,
Time) message received from its neighbor anchor nodes. Each anchor node also
builds its neighbor anchor list with its received ‘Wakeup’ message from its neighbor
anchor nodes.

• Phase 2: anchor nodes which received ‘Wakeup’ messages from neighbor anchor
nodes, broadcast their neighbor anchor list by using ‘AnchorNbr’ (Type, ID, Time,
NbrAnchorNodes) message. Each sensor node updates its neighbor list information
and adds the anchor node’s neighbor information. The game starts at the third phase
of nodes communication.

• Phase 3: to start the opportunistic localization, each sensor node explores its max-
imum opportunities with the consideration of energy consumption and neighbor
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anchor nodes by the procedures described in Algorithm 4. ‘One-hop’ neighbor
anchor nodes are considered first. If the number of ‘one-hop’ neighbor anchor nodes
is enough to localize the sensor node, it will not handle the ‘two-hop’ neighbors. This
is because anchor nodes in ‘one-hop’ neighbor list have more accurate information,
such as the one-way time delay. However, due to the node mobility and random
deployment, ‘two-hop’ anchor nodes should be considered given the few ‘one-hop’
anchor nodes in UWSNs. Figure 4.2 depicts the initial ‘two-hop’ transmission power
calculation, where AN1 and AN2 (black circles), which are ‘one-hop’ and ‘two-hop’
anchor nodes respectively, act as multiple followers. SN3 is the sensor node acting
as the single leader. If SN3 uses the maximum transmission power Pmax to have a
transmission radius of Rmax, OA is the opportunistic localization range. Proposition
4 is used to evaluate the transmission power required to reach the ‘two-hop’ anchor
nodes.
Proposition 4. Let p31 and p32 be the transmission powers of sensor node SN3 required
to send a Request message to anchor nodes AN1 and AN2, respectively. Let q12 be the
transmission power required at AN1 to reach AN2. Then, if anchor nodes AN1 and AN2 are
in the ‘one-hop’ and ‘two-hop’ neighbor list of SN3, respectively, I can set p32 < p31 + q12.
Moreover, node AN2 in the ‘two-hop’ neighbor list of SN3 can be moved to the ‘one-hop’
neighbor list, if I use p3 = p31 + q12 as the transmission power of SN3.

Remark 1: q12 can be known at sensor node SN3 by estimating the distance d12 from
the received anchor nodes’ messages.

Remark 2: The final optimal transmission power of the sensor node will be selected
by Proposition 7.

Proof. From Eq. (4.1), the transmission power P (d) is an increasing function of the
distance d. Given the triangle inequality d32 < d31 + d12, and since q12 and p31 are
sufficient to cover distances d12 and d31 respectively, the ‘two-hop’ neighbor anchor
node AN2 becomes a ‘one-hop’ neighbor anchor node by setting p3 = p31 + q12 as
the new initial transmission power.

If I have multiple ‘two-hop’ anchor nodes, Proposition 4 is applied sequentially,
until the required number of nodes is reached.

• Phase 4: After anchor nodes receive the ‘Request’ (Type, ID, Time, nreq) message
from sensor nodes, an optimal transmission power will be selected by Proposition 6
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Algorithm 4: Topology control of a sensor node (leader)
Input :{Ns}, {Na}, Pini, {Nbrsi }, n

req
min

Output : Optimized action Pi′

P
′
i = 0, Pi = Pini, UL∗i = −∞.

for each message received from an anchor node j ∈ {Nbrsi } do
if j ∈ {Nbrsi }‘one−hop

′
then

Add j to V ‘one−hop′
i .

else
Add j to V ‘two−hop′

i .
end

end
if |V ‘one−hop′

i | ≥ nreqmin then
for each anchor node j ∈ V ‘one−hop′

i do
Calculate the utility ULi .

end
P
′
i ← argmax ULi .

else
if 0 ≤ (|V ‘one−hop′

i |+ |V ‘two−hop′
i |) < nreqmin then

nreqi ← (nreqmin − |Vi|),
P
′
i ← Pmax.

else
for each anchor node j ∈ Vi do

Calculate the utility ULi .
end
Pi ← argmax ULi .
if Pi > Pmax then

P
′
i ← Pmax.

else
P
′
i ← Pi.

end
end

end
Broadcast ‘Request’ message at transmission power P

′
i .
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Figure 4.2: A scenario depicting the ‘two-hop’ transmission power calculation.

to broadcast the ‘Reply’ (Type, ID, Time, Location) message taking into account the
factors of energy consumption and the ability to localize sensor node. The detailed
steps are given in Algorithm 5.

Algorithm 5: Topology control of an anchor node (follower)
Input :{Na}, {Ns}, Qini, {Nbraj }
Output :Optimized action Qj ′

Q
′
j = 0, Qj = Qini.

Broadcast ‘Wakeup’ message at transmission power Qj .
for each ‘Wakeup’ message received from each anchor node do

Build its neighbor anchor list {Na
j }.

end
Broadcast ‘AnchorNbr’ message at the transmission power Qj .
for each ‘Request’ message received from each sensor node g ∈ {Nbraj } do

Calculate the utility U jF .
end
Q
′
j ← argmax U jF .

Broadcast ‘Reply’ message at transmission power Q
′
j .

Finally, after sensor nodes receive the required number of beacon location information
from its neighboring anchor nodes, they execute their localization procedure. Since
the main purpose of this chapter is energy efficiency improvement of localization by
topology control, I will assume the trilateration technique [83] in the next section, for node
localization to illustrate the proposed EELA. In trilateration technique, each sensor node
requires three anchor nodes in order to obtain its location, i.e., nreqmin = 3.
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Parameter Value
Node mobility model Meandering current mobility model [86]
Channel Frequency 22 kHz [63]
Modulation technique FSK [63]
Data rate 500 bps [63]
Speed of sound 1500 m s−1 [63]
Wave propagation model Thorp’s propagation model [85]
Receive and Idle power 0.1 watts
Sleep power 1 × 10−4 watts

Table 4.2: Simulation parameters.

4.5.2 Numerical Evaluations

4.5.2.1 Simulation Settings

I consider a network of 10-50 sensor nodes in a 3D underwater region of 2500 m × 2500 m

× 2500 m with fthe proposed anchor nodes on the water surface. In the proposed sim-
ulation, the transmission range Ri is a continuous number in (0, max_range]. I set the
max_range =

√
25002 + 25002 + 25002m which is the max distance in the simulation re-

gion. Initially, the value of all nodes’ transmission range are Rini. For each simulation,
Underwater Acoustic Network (UAN) models of NS-3 are utilized for generating the
channels, PHY and MAC layers, as they are commonly used for modeling underwater net-
works [84]. The transmission power Pi or Qj (TxPower attribute in UanPhyGen model) is
initially set for a given range Ri or Rj using the Thorp’s propagation model [85]. Weights
of anchor nodes’ utility function are taken as w1j = 0.4 and w2j = 0.6. On the other hand,
sensor nodes’ weights w1i and w2i are set to 0.1 and 0.9. This is because maximizing the
ability of finding anchor nodes is crucial, while setting w1i = 0.1 for energy consumption
still ensures very high energy-efficiency, and as will show by the simulation results. I
select the values of weights in the pre-process step according to the performance of EELA.
Other simulation parameters are listed in Table 4.2.

In the simulations, sensor nodes are randomly deployed under water while anchor nodes
are randomly deployed on the water surface in the simulation area. Any sensor node
gets localized after receiving nreqmin number of replies from anchor nodes. All nodes
move according to the velocity of ocean current, following the Meandering Current
Mobility (MCM) model [86]. In MCM, the effect of the meandering sub-surface currents
and velocities are considered for nodes moving. The sensor nodes mobility (vm) is set
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to 2.0 m s−1, 3.0 m s−1, 4.0 m s−1 [63]. Each simulation runs for 5000 times to obtain the
average results.

4.5.2.2 Baseline Schemes

In the proposed EELA scheme, both anchor and sensor nodes can select their optimal
transmission range to communicate with each other. The performance of the proposed
scheme is compared to the five schemes listed below.

1) OLTC [63]: An anchor node dynamically selects a transmission range from [0, Qmax]

in order to maximize the number of neighbors yet to be localized. Only anchor nodes
can adjust their transmission range while sensor nodes always use the maximum
transmission range to send messages.

2) 3DUL-Min [64]: Surface anchor nodes initiates iterative three-dimensional localiza-
tion scheme. Successful localized sensor nodes transform to anchor nodes to help
other sensor nodes to localize themselves. Both anchor as well as sensor nodes use
the fixed minimum transmission range to broadcast message.

2) 3DUL-Max [64]: Surface anchor nodes initiates iterative three-dimensional localiza-
tion scheme. Successful localized sensor nodes transform to anchor nodes to help
other sensor nodes to localize themselves. Both anchor as well as sensor nodes use
the fixed maximum transmission range to broadcast message.

3) EELA-Min: the scheme without the dynamic transmission power optimization,
i.e., both anchor and sensor nodes use the fixed minimum transmission range to
broadcast message.

4) EELA-Max: the scheme without the dynamic transmission power optimization,
i.e., both anchor and sensor nodes use the fixed maximum transmission range to
broadcast message.

4.5.2.3 Performance Metrics

The following metrics are adopted to evaluate the performance of EELA.

1) Localization coverage: the ratio of the number of localized sensor nodes to the total
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number of sensor nodes,

C =
| {Ns_l} |
| {Ns} |

,

where {Ns_l} is the set of sensor nodes which already have obtained their locations
and the set of sensor node is {Ns}.

2) Average energy consumption per sensor node: the ratio of total energy consumption
of sensor nodes to the number of sensor nodes,

εavg{Ns_l} =

∑|{Ns_l}|
i=1 εi
| {Ns_l} |

.

3) Average energy consumption per anchor node: the ratio of total energy consumption
of anchor nodes to the number of anchor nodes,

εavg{Na} =

∑|{Na}|
j=1 εj

| {Na} |
,

where the set of anchor node is {Na}.

4) Average energy consumption per node: the ratio of the total energy consumption of
all nodes to the number of all nodes,

εavgtl =

∑|{Ns}|
i=1 εi +

∑|{Na}|
j=1

| {Ns} |+ | {Na} |
.

5) Average localization error,

∑|{Ns_l}|
i=1

√
(xi − x

′
i)

2 + (yi − y
′
i)

2 + (zi − z
′
i)

2

| {Ns_l} |
.

where for any localized sensor node node i, (xi, yi, zi) and (x′i, y
′
i, z
′
i) denote the

original and the estimated locations, respectively.

6) Average localization delay: the time duration from a sensor node broadcasting a
‘Request’ message to the time of obtaining its location.
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4.5.2.4 Results and Analysis

I compare the performance of EELA with that of OLTC [63], EELA-min, and EELA-max
for UWSNs. For each simulation, the number of deployed sensor nodes is varied between
10 to 50. Each simulation runs for 5000 times to obtain the average results.

1) Localization Coverage: In Fig. 4.3, the average localization coverage in function of
the number of sensor nodes is presented.

I observe that the average localization coverage of both EELA and OLTC are between
that of EELA-Max and EELA-Min, as expected. 3DUL-Max [64] has the same
performance with that of EELA-Max while 3DUL-Min [64] performs better than
EELA. The proposed EELA scheme outperforms the reference OLTC scheme of [63].
For all schemes, an increased number of sensor nodes results in a better localization
coverage. This is because the increase of the number of sensor nodes entails a higher
spatial density, hence more sensor nodes may be localized by anchor nodes with a
given power.

Compared to OLTC, the localization coverage achieved by EELA is 2.0 % higher on
average. This is because in OLTC scheme, sensor nodes always send request with
the maximum transmission power, which leads to a higher rate of packet collision.
Thus, anchor nodes will receive fewer ‘Request’ messages. However, anchor nodes
use the optimal transmission power Pj < Pmax to reply, so that some sensor nodes
may not receive the required number of anchor nodes, hence decreasing coverage.
By contrast, in EELA, sensor nodes request with the optimal transmission power
Pj < Pmax instead of using the maximum transmission power, so that the required
number of anchor nodes may be reached with minimum energy consumption. On
the other hand, anchor nodes also utilize the optimal transmission power to reply.
Both the optimal transmission power for anchor node and sensor node are selected
to reach Stackelberg Nash Equilibrium in section 4.6.1.4. Hence, both anchor nodes
and sensor nodes cannot improve their individual profit by single-sidedly changing
their transmission power. Therefore, EELA can reduce the rate of packet collision,
and achieve a higher coverage.

Compared to EELA-Min, the localization coverage achieved in EELA is about 54 %

higher on average, because sensor nodes always use the minimum transmission
power to send ‘Request’ messages while anchor nodes also use the minimum trans-
mission power to reply, hence each sensor node receives the fewest beacon location
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Figure 4.3: Localization coverage.

messages to localize itself. Next, the localization coverage achieved in EELA-Max
is about 9 % (on average) higher than that in EELA. For EELA-Max, although the
‘Request’ messages from sensor nodes have higher probability to have collisions,
anchor nodes always use the maximum transmission power to send ‘Reply’ mes-
sages without considering received requests. Therefore, sensor nodes can always
receive more beacon locations than those of other schemes. That is the reason why
EELA-Max always has the highest coverage However, the use of higher transmission
power leads to higher energy consumption, as shown next. In 3DUL-Max and
3DUL-Min, the localized sensor nodes can be used as new anchor nodes to help
other sensor nodes to get their locations, which leads to higher localization coverage.
However, the energy consumption for sensor nodes is very high and the localization
error as well as delay are accumulated due to the iterative localization design in
3DUL.

2) Average Energy Consumption Per Sensor Node: The average energy consumption
results for sensor nodes are given in Fig. 4.4.

I observe that the performance of the proposed EELA scheme is between that of
EELA-Min and EELA-Max, while OLTC has the same consumption as EELA-Max
since all sensor nodes transmit with maximum power. 3DUL-Max consumes the
highest energy for sensor nodes among all the schemes because after sensor nodes
of 3DUL-Max get their locations, sensor nodes can transform to change to anchor
nodes to help other sensor nodes to get their locations in order to achieve high
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Figure 4.4: Average energy consumption per Sensor Node (SN).

coverage. In a similar way, the energy consumption of 3DUL-Min is higher than
that of EELA-Min. In OLTC, EELA-Min, EELA-Max, 3DUL-Min and 3DUL-Max,
the average energy consumption is not affected by the node density of sensor nodes
because of the fixed transmission power. The variations for proposed EELA are also
steady due to the strategy of the proposed game and the constant number of anchor
nodes in this simulation setting.

From Fig. 4.4, I notice that the average energy consumption per sensor node in
EELA (326 J) is about 53 % lower than that in OLTC (693 J). This is thanks to our
transmission power optimization strategy given the ‘one-hop’ and ‘two-hop’ nodes,
which enables to reach the same number of anchor nodes as by OLTC, but with
much lower energy. This mechanism significantly reduces the energy consumption
of sensor nodes, and reduces the collisions of requests at the same time.

3) Average Energy Consumption Per Anchor Node: Fig. 4.5 illustrates the average
energy consumption of anchor nodes in function of the number of sensor nodes.

I observe that the energy cost of proposed EELA and OLTC lies between that of
EELA-Min and EELA-Max, with a higher consumption for EELA compared to OLTC.
3DUL-Max consumes roughly the same energy with EELA-Max while 3DUL-Min
consumes slightly higher energy than EELA-Min. Namely, we can see that the
average energy consumption per anchor node in EELA (about 407 J) is nearly 38 %

higher than that in OLTC (about 295 J). This is because anchor nodes in EELA need
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Figure 4.5: Average energy consumption per Anchor Node (AN).

to broadcast twice in order to build their ‘two-hop’ anchor neighboring list. As for
OLTC, anchor nodes do not need to consider about their ‘two-hop’ anchor neigh-
boring nodes. As shown next, EELA slightly increases the energy consumption of
anchor nodes in order to improve the performance of sensor nodes, which eventually
improves the average energy consumption of all nodes. Note also that saving energy
of underwater sensor nodes is a more crucial issue than that for anchor nodes, since
anchor nodes are specifically deployed at the surface for enabling localization.

4) Average Energy Consumption for Any Node: Fig. 4.6 shows the average energy
consumption over anchor and sensor nodes.

Overall, I observe that 3DUL-Max consumes the highest energy among all the
schemes. The proposed scheme largely reduces the average energy cost per node,
compared to OLTC, i.e., around 48 % reduction. This shows that even if anchor nodes
broadcast twice in the preprocessing phase, the proposed EELA still consumes much
less energy in total, thanks to the energy-efficient power selection of sensor nodes.
This is because in the deployment of practical localization systems, the number of
sensor nodes is much larger than that of anchor nodes.

Note also that as shown in [87], the main source of energy consumption in underwa-
ter sensor nodes is transmission power, compared to any other functionality. Since
the proposed and baseline schemes have similar algorithm complexities as shown in
Section ??, entailing similar power consumption for processing, I can conclude that
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Figure 4.6: Average energy consumption per node.

the proposed EELA enables significant energy savings in a global manner.

5) Average Localization Delay and Error: Table 4.3 represents the Average Localization
Delay (ALD) and Average Localization Error (ALE) of different schemes, where
3DMin and 3DMax are 3DUL-Min and 3DUL-Max, respectively. EMin and EMax
are EELA-Min and EELA-Max, respectively.

I notice that the ALD of EELA is almost the same as that of OLTC. The ALD of
EELA-Min is lower than that of EELA by nearly 11 % on average. This is because in
EELA-Min, the communication distance travelled by the acoustic signal is shorter
than that in other schemes, since it uses the minimum transmission power. As for
EELA-Max, the longer communication distance leads to higher delay since it uses
maximum transmission power. In 3DUL-Min and 3DUL-Max, the ALD is larger due
to the iterative localization design.

Next, for evaluating ALE, each sensor node requires three beacon locations and
three distances from anchor nodes since the trilateration technique is considered. It
is assumed that anchor nodes broadcast their precise coordinates, so the localization
error is generated by the mobility of nodes and depends on the distance between
anchor and sensor nodes. From Table 4.3, we can see that EELA performs slightly
better than OLTC, while the lowest and highest ALE are achieved by EELA-Min and
3DUL-Max, respectively. Overall, the ALEs are at comparable and reasonable levels
for all algorithms.
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Metric EELA OLTC 3DMin 3DMax EMin EMax
ALD (s) 6.87 6.85 6.95 8.96 6.11 7.15
ALE (m) 3.18 3.24 3.29 3.97 3.17 3.30

Table 4.3: Average localization delay and error

Metric 2 m s−1 3 m s−1 4 m s−1

ALC (%) 96.24 96.16 96.26
AEN (J) 249.15 249.44 247.46
ALD (s) 6.90 6.89 6.89

Table 4.4: Average performance of EELA with different speed.

4.5.2.5 Environmental Influences in Simulation

In this section, I change the speed of the current (vm = 2 m s−1, 3 m s−1, 4 m s−1) to observe
the effects of environment changes. The number of anchor nodes is fthe proposed which
are deployed on the surface of water while the number of sensor nodes varies from 10 to
50 which are deployed underwater.

Table 4.4 gives the average performance of EELA with different speed, including the
Average Localization Coverage (ALC), Average Energy per Node (AEN) and Average
Localization Delay (ALD). It is obvious that the average performance of EELA, such as
ALC, AEN and ALD have very similar results with the changing of the current speed (vm
= 2 m s−1, 3 m s−1, 4 m s−1). This proves that the performance of the proposed EELA is
stable with the variation in speed.

Finally, Figure 4.7 shows that, the higher the current velocity (from 2 m s−1 to 4 m s−1),
the higher the average localization error (from 3.2 m s−1 to 8.4 m s−1). This is due to the
delay between the time where anchor nodes’ broadcast their messages used for location
estimation, and the actual. For example, if this transmission delay is between 0 s to 3 s

seconds, the node may move 0 s to 6 s. When the current speed is 2 m s−1, it is reasonable
that the average transmission error is around 3.2 m. Similarly, when the speed of current is
4 m s−1, the average localization error is around 8.4 m. However, the average localization
errors remain constant with the number of sensors, which also shows the stability of the
proposed EELA scheme in terms of ALE.
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Figure 4.7: Average localization error of EELA with different speed.

4.6 Underwater Localization by Adaptive Fuzzy Stackelberg
Game Theory

4.6.1 Problem Formulation

4.6.1.1 Proposed Single Leader Multi-Follower Fuzzy Stackelberg Game
Formulation

In Stackelberg game [88], two types of players (leader and followers) are used to model
the hierarchy of actions. The leader moves first and selects a strategy. Based on the act
of the leader, the followers choose best response strategies that maximize their utilities.
Then, the leader selects one strategy to maximize its payoff based on the strategies of
followers. In a distributed localization scenario, a sensor node can localize itself after
receiving enough location beacons from multiple anchor nodes. However, due to the
random and sparse nodes deployment, and the mobility of nodes, the sensor node may
not find enough neighbor anchor nodes. To model the proposed problem, a Single-Leader-
Multi-Follower Stackelberg game [88] is employed, where the sensor node acts as the
single leader while anchor nodes are multiple followers. The sensor node moves first and
chooses a transmission power to send a request message, which is similar to the leader
releasing a price in Stackelberg game. Anchor nodes move, i.e. selecting a transmission
power to send reply message, after the movement of the sensor node.
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In EELA scheme, the optimal weights in the payoff functions of both sensor and anchor
nodes are required to be selected first in the offline phase, which can only handle one
specific scenario. Besides, different appropriate weights need to be assigned to payoff
functions in different scenarios. If I select some improper weights, the performances of
EELA are poor. Therefore, the adaptive EELA is proposed in this chapter. It selects the
Adaptive Neuro-Fuzzy Inference System (ANFIS) [89] to model its payoff functions. The
adaptive neuro-fuzzy network is used to model the interaction among the leader and
multiple followers in UWSNs. The proposed adaptive EELA adapts in an online learning
approach to the encountered changes in the network topology, the node density and the
environment.

ANFIS [89] is a fuzzy inference system implemented in the multilayer feedforward neural
network with the supervised learning capability. It has some features, such as self-
construction, parameter estimation and rule extraction. In the proposed Adaptive EELA
scheme, the Stackelberg game uses the ANFIS to make a decision and select the optimal
transmission power to interact with other nodes. Due to the adaptability and learning
characteristics of neuro-fuzzy algorithm, it performs much better than the conventional
fuzzy logic algorithm [90].

The original ANFIS structure is not suitable for the proposed design because the proposed
input data is quite large which can produce many possible combination conditions. To
solve this problem, the subtractive fuzzy clustering is used to generate the rule base
relationship between the input and output variables. They have the following type: if (in1
is in1cluster ‘k’) and (in2 is in1cluster ‘k’) and (in3 is in3cluster ‘k’) then (out1 is out1cluster
‘k’). The subtractive fuzzy clustering can automatically determine the number of clusters.
The structure of sensor nodes is given in Figure 4.8, where ñneig(Pi), Ẽtli and

∑nsrx
h=1 Q̃h

are fuzzy variables which are input parameters of subtractive fuzzy clustering of sensor
nodes (See Table 2.1). The output is the value of the payoff. The corresponding structure of
anchor nodes is similar with that of sensor nodes, where fuzzy variables are ñhd(Qj), Ẽtlj
and

∑narx
k=1 P̃k (See Table 2.1) which are input parameters of subtractive fuzzy clustering of

anchor nodes. The output is the value of the payoff.

In ANFIS structure models of both sensor nodes and anchor nodes, firstly, each input
variable, which varies within a range, might be clustered into several class values to build
up the fuzzy rules. Then, the output results are aggregated by some linear membership
functions. For example, in Figure 4.8, three input fuzzy parameters, ñneig(Pi) which is
the number of neighbor anchor nodes of one sensor node, Ẽtli which is the total current
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Figure 4.8: ANFIS structure of sensor nodes.

energy of one node and
∑nsrx

h=1 Q̃h which is the sum of transmission power received from
anchor nodes, are clustered into two clusters in the ‘input mf’ layer. Then, two fuzzy rules
are constructed in ‘Rules’ layer, like if (in1 is in1cluster ‘1’) and (in2 is in2cluster ‘1’) and
(in3 is in3cluster ‘1’) then (out1 is out1cluster ‘1’). The output payoff value of sensor node
is calculated by linear membership functions.

The input Gaussian-type membership functions are given in Eq. (4.28), where ci and ai

are membership function parameters,

ui(x) = exp

{
−x− ci

ai

}
. (4.28)

4.6.1.2 Payoff Function for Anchor Nodes

Anchor nodes are followers. They decide their strategies to handle the maximum number
of requests from sensor nodes with minimum energy consumption. ñreqi (fuzzy variable)
is the additional number of anchor nodes required by sensor node and can be defined by,

ñreqi =

n
req
min − |Vi|, if |Vi| < nreqmin

0, otherwise
(4.29)
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where nreqmin represents the number of anchor nodes required for one sensor node to get its
location; Vi is the set of the anchor nodes in the communication range of the sensor node i.

The localization ability ˜OAj(Qj , P1, P2, · · · , Pnarx) of anchor node j consists of the ‘ability
of jth anchor node to resolve requests’ from sensor nodes, the ‘ability of jth anchor node
to serve demand’ and the ‘ratio of the transmission power between sensor nodes

∑narx
i=1

and anchor node j ’. It can be calculated by,

˜OAj(Qj , P1, P2, · · · , Pnarx) =
ñhd(Qj)

narx
+

ñhd(Qj)∑narx
k=1 n

req
k

−
∑narx

k=1 P̃k
Qj

. (4.30)

In (4.30), ñhd(Qj)
narx

is the ‘ability of jth anchor node to resolve requests’, where ñhd(Qj) is
the number of requests that can be handled by anchor node j with the transmission power
Qj and narx is the total number of request messages received from sensor nodes. From
Proposition 5, we can see that ñhd(Qj) of a follower (anchor node) j is non-decreasing
with the increase of the transmission power Qj . The second term ñhd(Qj)∑narx

k=1 nreq
k

is the ‘ability
of jth anchor node to serve demand’. It means that only ñhd(Qj) requests can be served
among the total demand

∑narx
k=1 n

req
k from sensor nodes. Finally, the third term

∑narx
k=1 Pi

Qj

expresses the relation between the sum-transmit power of sensor nodes narx and the
localization ability of the anchor node j. If the transmission power

∑narx
i=1 Pi of sensor

nodes increase, anchor node j has to handle more sensor nodes. Therefore, the localization
ability ˜OAj(Qj , P1, P2, · · · , Pnarx) decreases.
Proposition 5. For each anchor node j, the number of neighboring sensor nodes is higher or at
least equal with the increase of transmission power Qj .

Proof. Let us assume that there are n number of nodes uniformly deployed in the simula-
tion area with the size d3. ñhd(Qj) can be calculated by,

ñhd(Qj) = ρvj =
4πnR̃3

j

3d3
. (4.31)

According to Eqs. (4.1) and (4.2), the transmission power Qj of anchor node j is given as,

Qj(R̃j) = AnormR̃
k
j a(f)R̃j +Qj0. (4.32)

The inverse function ˜f−1(Qj) = R̃j of anchor node j exists and is strict
monotone increase with the transmission power Qj increase, because ∂Qj(R̃j)

∂R̃j
=

Anorm

(
kR̃k−1

j a(f)R̃j + R̃kj a(f)R̃j ln a(f)
)
> 0. Therefore, ñhd (Qj) can be represented
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by Eq. (4.33). Then, the first order partial derivative of ñhd(Qj) is given in Eq. (4.34),

ñhd(Qj) =
4πn

(
˜f−1(Qj)

)3

3d3
, (4.33)

∂ñhd(Qj)

Qj
=

4πn

d3

(
˜f−1(Qj)

)2 ∂ ˜f−1(Qj)

∂Qj
. (4.34)

Hence, ∂ñhd(Qj)
Qj

> 0, which proves the Proposition 5.

Thus, the payoff function of any anchor node j considers factors, such as energy cost, the
ability to localize sensor nodes and the transmission powers of sensor nodes and anchor
nodes. It is defined as the weighted sum of the ratio of current remaining energy to the
initial total energy of the jth anchor node

(
Ẽtlj − CQj

)
and the ability to localize sensor

nodes ˜OAj(Qj , P1, P2, · · · , Pnarx),

Uf (Qj , P1, P2, · · · , Pnarx) =
(
Ẽtlj − CQj

)
+ ˜OAj (Qj , P1, P2, · · · , Pnarx) . (4.35)

In the first term of Eq. (4.35), Ẽtlj is the total energy of the jth anchor node and C is the
transmission energy cost per unit power. The second term ˜OAj(Qj , P1, P2, · · · , Pnarx)

is the ability to localize sensor node. The value of payoff function increases,
˜OAj(Qj , P1, P2, · · · , Pnarx) increases.

4.6.1.3 Payoff Function for Sensor Nodes

In localization of UWSNs, sensor nodes are leaders. They watch for the decision of anchors
which act as followers, and based on the response of the followers, they maximize their
profits. The strategy of the leader is to minimize the energy consumption and localize
maximum sensor nodes during the localization delay. A sensor node broadcasts ‘Request’
message to explore the maximum number of anchors. After sensor nodes receive enough
neighbor beacon locations, it will localize itself.

The ‘ability of sensor node i to find anchor nodes’ OSi(Pi, Q1, Q2, · · · , Qnsrx) is composed
of the ratio of the number of anchor nodes ñneig(Pi) within ‘one-hop’ and ‘two-hop’ can be
found with the transmission power Pi and the total number of anchor nodes nsrx received
as well as the ratio of the sum of the anchor nodes’ transmission power Qj received by
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sensor node i and the transmission power Pi of sensor node i, which can be defined as,

OSi(Pi, Q1, Q2, · · · , Qnsrx) =
ñneig(Pi)

nsrx
−
∑nsrx

h=1 Q̃h
Pi

. (4.36)

In the first term ñneig(Pi)
nsrx

of Eq. (4.36), ñneig(Pi) of a sensor node i is non-decreasing with the
increase of the transmission power Pi, the prove of which is similar to Proposition 5. The

second term
∑nsrx

h=1 Q̃h

Pi
expresses the relation between the sum-transmit power of anchor

nodes nsrx and the ‘ability of sensor node i to find anchor nodes’. If the transmission
power of anchor nodes

∑nsrx
h=1 Q̃h increase, sensor node i can receive enough anchor nodes

to get its location by a small transmission power. Therefore, the ‘ability of sensor node i to
find anchor nodes’ OSi(Pi, Q1, Q2, · · · , Qnsrx) decreases.

The payoff of any sensor node i increases with the decrease in energy consumption. Also,
it increases with the increase of neighbor anchor nodes number. In addition, the payoff of
the leader (sensor node) i decreases with each retry it does to send the ‘Request’ message.
As with each such retry, the leader has to transmit again. Therefore, the payoff function of
sensor node i is calculated as Eq. (4.37), which is the weighted sum of the ratio of current
remaining energy to the initial total energy of the ith sensor node

(
Ẽtli − EPi

)
and the

‘ability of sensor node i to find anchor nodes’ OSi(Pi, Q1, Q2, · · · , Qnsrx),

Ul (Pi, Q1, Q2, · · · , Qnsrx) =
(
Ẽtli − EPi

)
+OSi(Pi, Q1, Q2, · · · , Qnsrx). (4.37)

In the first term of Eq. (4.37), Ẽtli is the total energy in the ith sensor node and E is the
transmission energy cost per unit power of the ith sensor node.

4.6.1.4 Existence of Stackelberg Nash Equilibrium

1) Preliminaries: Some concepts and properties of fuzzy variable are introduced in
this section, which will be used to prove that the proposed Adaptive EELA scheme
reaches Nash equilibrium.

A triplet (Θ, p(Θ), pos) is used to express a possibility space, where Θ, p(Θ) and
pos denote a nonempty set, the power of Θ and a possibility measure, respectively.
Based on that, the following axioms are given from [91] and [92],
Axiom 1. Pos(Θ) = 1, Pos(φ) = 1.
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Axiom 2. Pos(∪iAi) = supiPos{Ai} for any collection {Ai} in p(Θ), where i =

1, 2, · · · , m.
Axiom 3. Let Θ be nonempty sets on which Posi{·} (i = 1, 2, · · · , n) satisfy the first
two axioms, respectively, and Θ = Πn

i=1. Then

Pos(A) = sup(θ1, θ2,··· , θn)∈APos1{θ1} ∧ Pos2{θ2} ∧ · · · ∧ Posn{θn}, (4.38)

for each A ∈ p(Θ). In that case I can express Pos = ∧ni=1Posi.
Lemma 1. If ξi(i = 1, 2, · · · , n) are a collection of independent fuzzy variables, and
fi : R→ R(i = 1, 2, · · · , n) are a collection of functions, then, fi(ξi)(i = 1, 2, · · · , n)

are also the independent fuzzy variables [92].
Definition 1. Let ξ be a fuzzy variable on the possibility space (Θ, p(Θ), pos) and α ∈ (0, 1].
Then,

ξLα = inf [r|Pos([ξ ≤ r]) ≥ α], ξUα = sup[r|Pos([ξ ≤ r]) ≥ α],

are called the α–pessimistic value and the α–optimistic value of ξ, respectively.
Lemma 2. Let ξi(i = 1, 2, · · · , n) be a collection of independent fuzzy variables defined
on the possibility space (Θi, p(Θ)i, posi) and f : X ⊂ Rn → R be a measurable function.
If f(x1, x2, · · · , xn) is monotonic with respect to xi, respectively, then [93]

(a) fUα (ξ) = f(ξV1α, ξ
V
2α, · · · , ξVnα), where ξViα = ξUiα, if f(x1, x2, · · · , xn) is nondecreas-

ing with respect to xi, then ξViα = ξLiα; Otherwise,

(b) fLα (ξ) = f(ξV̄1α, ξ
V̄
2α, · · · , ξV̄nα), where ξV̄iα = ξUiα, if f(x1, x2, · · · , xn) is nondecreas-

ing with respect to xi, where fUα (ξ) and fLα (ξ) denote the α–optimistic value and the
α–pessimistic value of the fuzzy variable f(ξ), respectively.

Definition 2. Let ξ be a fuzzy variable with a finite expected value. Then [94],

E[ξ] =
1

2

∫ 1

0
(ξLα + ξUα )dα. (4.39)

2) Best Response Strategy of Anchor Nodes: Corresponding to the strategy of the
jth anchor node Q̃j , the transmission power allocation problem can be cast as the
optimization problem in Eq. (4.41). All anchor nodes are non-cooperative. In
Proposition 6, the existence of the best response strategy of each anchor node is
proved and the unique equilibrium point is computed.
Proposition 6. Let Qj be the strategy of the jth anchor node. The best response Q∗j of each
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anchor node is given as,

Q∗j (P1, P2, · · · , Pnarx) =

 d3
∑narx

k=1 E[P̃k]

d3C − 4πnE

[
( ˜f−1(Qj))2 ∂

˜f−1(Qj)
∂Qj

]
N


1
2

, (4.40)

where N =
(

1
narx

+ 1∑narx
k=1 nreq

k

)
.

Proof. The fuzzy variables Ẽtlj , ñhd(Qj) and P̃k in the optimization problem are all
independent and non-negative. The optimization problem is a standard form of
convex optimization problem, which is given as,

max
Qj

E[Uf (Qj , P1, P2, · · · , Pnarx)] =
1

2

∫ 1

0

{
ẼtlLja − CQj

+

(
ñLhdα(Qj)

narx
+

ñLhdα(Qj)∑narx
k=1 n

req
k

−
∑narx

k=1 P̃
U
kα

Qj

)
+ ẼtlUja

−CQj +

(
ñUhdα(Qj)

narx
+

ñUhdα(Qj)∑narx
k=1 n

req
k

−
∑narx

k=1 P̃
L
kα

Qj

)}
dα. (4.41)

According to Lemma 2 and Definition 2, I represent the optimization problem as,

max
Qj

E[Uf (Qj , P1, P2, · · · , Pnarx)] = E[Ẽtlj ]− CQj

+ E[ñhd(Qj)]

(
1

narx
+

1∑narx
k=1 n

req
k

)
−
∑narxE[P̃k]

k=1

Qj

subject to

ẼtlLjα , Ẽ
tlU
jα , ñ

L
hdα(Qj), ñ

U
hdα(Qj) > 0

P̃Lkα, P̃
U
kα > 0, narx, n

req
k , Qj , C > 0.

The first order partial derivative of E[Uf (Qj , P1, P2, · · · , Pnarx)] with respect to the
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jth anchor node, for j ∈ [1, N ], is

∂E[Uf (Qj , P1, P2, · · · , Pnarx)]

∂Qj
= −C +

4πn

d3
E

[
( ˜f−1(Qj))

2∂
˜f−1(Qj)

∂Qj

]
(

1

narx
+

1∑narx
k=1 n

req
k

)
+

∑narx
k=1 E[P̃k]

Q2
j

.

The second order partial derivative of E[Uf (Qj , P1, P2, · · · , Pnarx)] is given as

∂2E [Uf (Qj , P1, P2, · · · , Pnarx)]

∂Q2
j

=
4πn

d3

(
1

narx

+
1∑narx

k=1 n
req
k

)
E

2 ˜f−1(Qj)

(
∂ ˜f−1(Qj)

∂Qj

)2

+
(

˜f−1(Qj)
)2 ∂2 ˜f−1(Qj)

∂Q2
j

]
−

2
∑narx

k=1 E[P̃k]

Q3
j

.

Here, I need to prove Eq. (4.42) feasibility in order to prove that ∂
2Uf (Qj ,P1,P2,··· ,Pnarx )

∂Q2
j

is negative,

2 ˜f−1(Qj)

(
∂ ˜f−1(Qj)

∂Qj

)2

+
(

˜f−1(Qj)
)2 ∂2 ˜f−1(Qj)

∂Q2
j

< 0. (4.42)

Firstly, I prove ∂2 ˜f−1(Qj)

∂Q2
j

< 0. According to Eqs. (4.1) and (4.2), the transmission
power Qj of anchor node j is given as,

Qj(R̃j) = AnormR̃
k
j a(f)R̃j +Qj0.

The inverse function ˜f−1(Qj) = R̃j of anchor node j exists and is strict mono-
tone increase with the transmission power Qj increase, because ∂Qj(R̃j)

∂R̃j
=

Anorm

(
kR̃k−1

j a(f)R̃j + R̃kj a(f)R̃j ln a(f)
)

> 0 and ∂Qj(R̃j)

∂R̃j
= 1

∂
˜

f−1(Qj)

∂Qj

, then
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∂2 ˜f−1(Qj)

∂Q2
j

can be calculated as,

∂2 ˜f−1(Qj)

∂Q2
j

= −

∂2Qj(R̃j)

∂R̃2
j

∂ ˜f−1(Qj)
∂Qj(

∂Qj(R̃j)

∂R̃j

)2

= −∂
2Qj(R̃j)

∂R̃2
j

(
∂ ˜f−1(Qj)

∂Qj

)3

. (4.43)

Due to Eq. (4.44), I get ∂
2 ˜f−1(Qj)

∂Q2
j

< 0,

∂2Qj(R̃j)

∂R̃2
j

= Anorm

(
k(k − 1)R̃k−2

j a(f)R̃j + kR̃k−1
j a(f)R̃j

ln a(f) + kR̃k−1
j a(f)R̃j ln a(f) + R̃kj a(f)R̃j ln2 a(f)

)
> 0. (4.44)

Secondly, I prove Eq. (4.42) feasibility, as 2 ˜f−1(Qj) <
(

˜f−1(Qj)
)2

, where ˜f−1(Qj) =

R̃j and R̃j >> 1. Now, according to Eq. (4.43), I prove
(
∂ ˜f−1(Qj)
∂Qj

)2

<

∣∣∣∣∂2 ˜f−1(Qj)

∂Q2
j

∣∣∣∣ as

follows, ∣∣∣∣∣∣∂
2 ˜f−1(Qj)

∂Q2
j

(
∂ ˜f−1(Qj)

∂Qj

)3
∣∣∣∣∣∣−
(
∂ ˜f−1(Qj)

∂Qj

)2

> 0

⇒

∣∣∣∣∣∂2Qj(R̃j)

∂R̃2
j

∂ ˜f−1(Qj)

∂Qj

∣∣∣∣∣− 1 > 0.

Therefore, I prove that the second order partial derivative
E [Uf (Qj , P1, P2, · · · , Pnarx)] is negative.

Since the value of the second order partial derivative ofE [Uf (Qj , P1, P2, · · · , Pnarx)]

is negative, then the maximum value of E [Uf (Qj , P1, P2, · · · , Pnarx)] can be
achieved at Q∗j (P1, P2, · · · , Pnarx) by (4.45),

∂E [Uf (Qj , P1, P2, · · · , Pnarx)]

∂Qj
= 0. (4.45)

3) Best Response Strategy of Sensor Node: The existence and uniqueness of Nash
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equilibrium of the sensor node is given in Proposition 7, which implies the existence
and uniqueness of the Nash equlibrium of the proposed Adaptive EELA game.
Proposition 7. Let Pi be the strategy of the ith sensor node. The best response P ∗i of each
sensor node is given as,

P ∗i (Q1, Q2, · · · , Qsrx) =

 d3nsrx
∑nsrx

h=1 E[Q̃h]

d3nsrxE − 4πnE

[(
˜f−1(Pi)

)2
∂ ˜f−1(Pi)
∂Pi

]


1
2

.

As for the proof of Proposition 7, the steps are similar to those in Section 4.6.1.4,
hence omitted.

4.6.2 Proposed Adaptive EELA Model

4.6.2.1 Develop an Adaptive Fuzzy Game-theoretic System

The proposed Adaptive EELA scheme is to create a simple, non-iterative, efficient model
to improve the energy-efficient localization in UWSNs. As discussed in Section 4.5, both
the sensor node (leader) and multiple anchor nodes (followers) need to make a decision
to select the optimal transmission power to interact with other nodes. However, in real
environment, many factors can affect their decisions. For example, as for the sensor node,
the number of neighbor anchor nodes with ‘one-hop’ and ‘two-hop’ situations, the energy
cost, the weights of different factors and so on.

An overview architecture of Adaptive EELA is given in Figure 4.9. In the offline stage, the
training data is created by the EELA scheme under different network topologies, which
is used to train Adaptive EELA to build the fuzzy rules and membership functions. The
training process is only needed for one time. In the online stage, each anchor node or
sensor node transmits the collected neighbor information to its own trained Adaptive
EELA scheme, which then returns the optimal transmission power for the anchor or
sensor node. Then, sensor node uses the optimal transmission power to send the ‘Request’
message while the anchor node uses the optimal transmission power to reply. After
sensor nodes get enough anchor node information, they start the localization process by
trilateration or other localization algorithms. It is important to notice that the offline stage
is only used once, then Adaptive EELA can adapt to the dynamic environment in the
online stage.
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Figure 4.9: Architecture of the proposed Adaptive EELA scheme.

The algorithm design of the proposed Adaptive EELA can refer to that of EELA in Section
4.5.1.5.

4.6.3 Numerical Evaluations

4.6.3.1 Simulation Settings

I use NS-3 (http://www.nsnam.org/) simulation platform for evaluating Adaptive EELA.
In order to verify the adaptive capacity of the proposed Adaptive EELA algorithm under
different network topologies, I set three topological regions, A, B.1 and B.2. They are given
in Table 4.5, where SE and ST means the scene and sensor type, respectively. AN and SN are
anchor node and sensor node, respectively. All anchor nodes will be randomly deployed
on the water surface while all sensor nodes will be randomly deployed underwater. The
transmission range is a continuous value in (0, max_range] and the initial transmission
range is Rini.

NS-3 UAN models are utilized for the proposed simulation, which is used to model a
variety of underwater network scenarios and includes three main parts: the channel,
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Table 4.5: Different network topologies used to verify Adaptive EELA.
SE ST Nodes Number Simulation Area max_rang Pini Ocean Speed

A
AN 4

25003m3
√

25002 × 3 max_range
2 {2, 3, 4 m s−1}

SN {10, 20, 30, 40, 50}

B.1
AN 20

100002 m2 × 2500 m 5000 m 2500 m {2, 3, 4 m s−1}
SN {10, 20, 30, 40, 50}

B.2
AN {4, 8, 12, 16, 20}

100002m2 × 2500 m 5000 m 2500 m {2, 3, 4 m s−1}
SN 50

PHY, and MAC models. In addition, both the UanPhyGen model, in which I can change
the transmission power according to the given distance and the UanMacCw model [84]
are employed as the physical layer and MAC layer, respectively. Notice that even if
UanMacCw model provides a collision avoidance mechanism by the contention window, it
cannot completely avoid the collision due to the hidden and exposed node problem. I take
UanPropModelThorp [95] as the propagation model and AcousticModemEnergyModel
[59] as the energy model. TxPowerW in physical layer is changing with different distances.
Other simulation parameters are listed in Table 4.2.

In each simulation, any sensor node gets localized after receiving nreqmin number of replies
from anchor nodes. Since the main purpose of this chapter is energy efficiency improve-
ment of localization by topology control and not for designing new localization algorithm,
I use trilateration technique, as an example, for node localization to illustrate Adaptive
EELA. In trilateration technique, each sensor node requires 3 anchor nodes in order to
obtain its location, i.e. nreqmin = 3. I simulate the process for 1000 times, then take the
average results to reduce impacts from the randomly deployment situation. All nodes
move according to the velocity of ocean current, by following the MCM model [86]. In
MCM, the effect of the meandering sub-surface currents and vortices are considered for
nodes moving.

4.6.3.2 Simulation Models

In the proposed Adaptive EELA scheme, both anchor and sensor nodes can adjust their
transmission power adaptively with fuzzy control algorithm. The performance of Adap-
tive EELA can be proved by comparing with the proposed schemes listed below.

1) Ideal-EELA: Both anchor and sensor nodes can adjust their transmission power with
weights information in payoff functions. Weights will be selected in the offline phase
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in different evaluation scenes. For example, when 10 sensor nodes and 4 anchor
nodes are deployed in 2500 m3 simulation area, the optimal weights will be selected
for this scene in the offline phase.

1) Fixed-EELA [8]: Both anchor and sensor nodes can adjust their transmission power
with weights information. Fixed weights will be used in different evaluation scenes.

2) OLTC [63]: Only anchor nodes can adjust their transmission power while sensor
nodes always use the maximum transmission power to send messages.

3) EELA-Min [8]: Both anchor and sensor nodes use the fixed minimum transmission
power to broadcast message.

4) EELA-Max [8]: Both anchor and sensor nodes use the fixed maximum transmission
power to broadcast message.

4.6.3.3 Performance Metrics

The following metrics are adopted to evaluate the performance of Adaptive EELA.

1) Localization coverage: the ratio of the number of localized sensor nodes to the total
number of sensor nodes.

2) Average energy consumption per node: the ratio of the total energy consumption of
all nodes to the number of all nodes, which is calculated as

εavgtotal =

∑|{Ns}|
i=1 εi +

∑|{Na}|
j=1 εj

|{Ns}|+ |{Na}|
.

3) Average localization error: calculation in Eq. (4.46),

∑|Nsn_l|
i=1

√
(xi − x

′
i)

2 + (yi − y
′
i)

2 + (zi − z
′
i)

2

|Nsn_l|
, (4.46)

where for any localized sensor node node i, (xi, yi, zi) and (x′i, y
′
i, z
′
i) denote the

original and the estimated locations, respectively.

4) Average localization delay: The time from a sensor node broadcasting a ‘Request’
message to the time of obtaining its location.
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4.6.3.4 Results and Analysis

I compare the performance of Adaptive EELA with that of Ideal-EELA, Fixed-EELA [8],
OLTC [63], EELA-Min [8], and EELA-Max [8] for UWSNs in different scenes shown in
Table 4.5. The speed of current is 2 m2.

1) Localization Coverage: In this section, the average localization coverage (percentage
of localized sensor nodes) along with changes of the number of sensor or anchor
nodes in the scene A, B.1 and B.2 given in Table 4.5 are analyzed.

Overall, from Figure 4.10, Figure 4.11 and Figure 4.12, I notice that the average
localization coverage in EELA-Min stays lowest comparing with other models, be-
cause sensor nodes always use the minimum transmission range to send ‘Request’
messages without considering neighbor information while anchor nodes use the
minimum transmission range to reply, which results in fewer sensor nodes with
enough beacon information to localize themselves. In contrast, the average local-
ization coverage in EELA-Max achieves the highest comparing with other models,
especially when the number of sensor nodes is low. However, the use of higher
transmission range leads to higher energy consumption, which will be discussed in
Section 4.6.3.4.

The average localization coverage in Ideal-EELA is higher than that in Adaptive
EELA, Fixed-EELA and OLTC. Adaptive EELA performs better than Fixed-EELA
and OLTC. This is because Ideal-EELA uses the optimal weights in payoff functions
to assist both anchor nodes and sensor nodes to select optimal transmission ranges
for each scene with different node densities and topologies. Adaptive EELA learned
the advantages of Ideal-EELA can achieve a better performance compared to Fixed-
EELA and OLTC. In Adaptive EELA, an existing sensor node can dynamically adapt
to different scenes and select an optimal transmission range Ri < Rmax instead of
using the maximum transmission range, which can reach as many anchor nodes as
possible with the consideration of energy consumption. Similarly, anchor nodes also
utilize the optimal transmission range to reply. Both the optimal transmission range
for anchor node and sensor node are selected by Stackelberg Nash Equilibrium in
section 4.6.1.4. In such a state, both the anchor node and sensor node cannot improve
their individual profit by single-sidedly changing their transmission range.

In Figure 4.10, compared to Adaptive EELA, the localization coverage achieved in
Fixed-EELA and OLTC is respectively about 6 % and 2 % lower, on average, when
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Figure 4.10: Localization coverage of scene A.

the number of sensor nodes is low (e.g. 10 and 20). Figure 4.11 and Figure 4.12
show that in case of scene B.1 and B.2, Adaptive EELA still performs better than
Fixed-EELA and OLTC. Fixed-EELA can not select the optimal transmission range
for different scenes, which affects its performance. In OLTC, sensor nodes always
send request with the maximum transmission range, which leads to a higher rate of
packet collision. Thus, anchor nodes will receive fewer ‘Request’ messages.

Clearly, in Figure 4.10 and Figure 4.11, an increased number of sensor nodes results
in increased localization coverage, i.e. the number of localized nodes in the network.
This observation is attributed to strategies of the game used in this chapter. The
increase in the number of sensor nodes assists in attaining higher transmission range
of anchor nodes, which helps more sensor nodes to find their locations. In Figure
4.12, there are up trends in the localization coverage for all models with the number
of anchor nodes increase. With the number of anchor nodes increase, more sensor
nodes can be localized.

2) Average Energy Consumption Per Node: The results of comparison for the average
energy consumption per node in different scenes are given in Figure 4.13, Figure
4.14, and Figure 4.15. As a whole, the energy consumption of EELA-Min with the
minimum transmission rangeRmin is the lowest among all the six schemes-Adaptive
EELA, Ideal-EELA, Fixed-EELA, OLTC and EELA-Max. In contrast, EELA-Max with
the maximum transmission range Rmax consumes the highest energy. Adaptive
EELA has almost the same performance with Ideal-EELA. Compared to Adaptive
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Figure 4.11: Localization coverage of scene B.1.
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Figure 4.12: Localization coverage of scene B.2.
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EELA and Ideal-EELA, Fixed-EELA and OLTC consume more energy. As I discussed
in Proposition 4, a higher transmission range results in a higher transmission power,
which finally increases the energy consumption of each node.

Figure 4.13 shows the results of simulation scene A described in Section 4.6.3.1. Com-
pared to OLTC (about 623 J) and Fixed-EELA (about 326 J), energy consumption
is nearly 66 % and 35 % lower in Adaptive EELA (about 214 J). In OLTC, sensor
nodes always utilize the maximum transmission range to send ‘Request’ messages,
which occupies the largest proportion of the energy consumption. In Fixed-EELA,
anchor nodes can not perform the trade-off between the energy consumption and
the ability to localize sensor nodes well. Similarly, sensor nodes can not perform
the trade-off between the energy consumption and the ability to find anchor nodes
well. Since for each scene with different node densities and topologies, fixed weights
are employed in EELA. Although Ideal-EELA achieves the best performance in
energy consumption per node, it requires the optimal weights for different scenes.
The optimal weights needs to recalculate in the offline phase for each scene. It is
noteworthy to mention that in Adaptive EELA, anchor nodes need to broadcast two
times in order to build the ‘two hop’ anchor neighboring list, so the average energy
consumption per anchor node in Adaptive EELA (about 382 J) is 30 % higher than
that in OLTC (about 295 J) on average. In addition, the average energy consumption
per sensor node in Adaptive EELA (about 176 J) is 75 % lower than that in OLTC
(about 692 J) on average, respectively. That means even if anchor nodes broadcast
two times in the pre-processing phase, Adaptive EELA still consumes much less
energy than that in OLTC considering all nodes. This is because in localization
systems, the number of sensor nodes is much larger than that of anchor nodes.

Figure 4.14 shows the results of comparison for the average energy consumption per
node with the number of sensor nodes increase. Some characteristics in Figure 4.14,
like the trend of different models, are similar in the explanations in Figure 4.13. Both
in Figure 4.13 and Figure 4.14, as for Adaptive EELA, Ideal-EELA, Fixed-EELA and
OLTC, the higher the density of sensor nodes is, the higher the average energy con-
sumption per node. This is because more sensor nodes result in higher transmission
range of anchor nodes, which finally leads to higher energy consumption of anchor
nodes. As for EELA-Min and EELA-Max, a high density sensor nodes results in a
low energy consumption. Reasons can be found in Eq. (4.46), which calculates the
average energy consumption per node. Anchor nodes consumes much more energy
than sensor nodes and the number of anchor nodes is fixed. With the number of
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Figure 4.13: Average energy consumption per node of scene A.

sensor nodes increase, the average energy consumption per node becomes low.

Figure 4.15 depicts the results of comparison for the average energy consumption per
node with the number of anchor nodes increase. Clearly, compared with Fixed-EELA
and OLTC, the average energy consumption per node is approximately 13 % and
23 % lower in Adaptive EELA. I notice that with increase in the number of anchor
nodes, the average energy consumption per node decreases in Adaptive EELA, Ideal-
EELA and Fixed-EELA. As shown in Eq. , a higher density of anchor nodes results
in a lower transmission range of sensor nodes, which finally reduces the average
energy consumption per node. In addition, we can see that an increased density of
anchor nodes results in increase of average energy consumption per node in OLTC,
EELA-Max and EELA-Min. This is because sensor nodes use the fixed transmission
range in these models, for example, sensor nodes in OLTC and EELA-Max use the
maximum transmission range to send messages. When the number of anchor nodes
increases, the average energy consumption per node increase, due to anchor nodes
consumes more energy than sensor nodes.

3) Average Localization Delay:Table 4.6 depicts the average localization delay along
with changes of the number of sensor or anchor nodes in the scene A, B.1 and
B.2 given in Table 4.5, where AEELA, IEELA, FEELA, EELAn and EELAx denotes
Ada-EELA, Ideal-EELA, Fixed-EELA, EELA-Min and EELA-Max, respectively.

Overall, the average localization delay of EELA-Min is lowest while EELA-Max
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Figure 4.14: Average energy consumption per node of scene B.1.
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Figure 4.15: Average energy consumption per node of scene B.2.
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Scene AEELA IEELA FEELA [8] OLTC [63] EELAn [8] EELAx [8]
A 6.11 5.86 6.88 6.80 5.41 6.95

B.1 28.07 27.14 29.52 29.56 22.75 30.84
B.2 17.08 16.68 18.86 18.78 14.37 18.82

Table 4.6: Average localization delay (s).

reaches the highest value of delay. It is because in EELA-Min, by using the minimum
transmission range, the communication distance traveled by the acoustic signal
is shorter than that in other schemes. In contrast, EELA-Max, due to using the
maximum transmission range, has a longer communication distance than that in
other schemes. Compared with Fixed-EELA and OLTC, Ada-EELA achieves a lower
localization delay. Ideal-EELA performs slightly better than Ada-EELA.

In scene A, Ada-EELA results in 12 % and 11 % less localization delay compared
to Fixed-EELA and OLTC. This behavior is attributed to the design goal of Ada-
EELA-energy-efficient selection of transmission range. The smaller the transmission
range is, the lower the average localization delay. Similarly, in scene B.1 and B.2,
Ada-EELA performs better than Fixed-EELA and OLTC and the reason are the same
with that in scene A.

4) Average Localization Error: Table 4.7 shows the comparison results of the average
localization error induced during localization for Ada-EELA (AEELA), Ideal-EELA
(IEELA), Fixed-EELA (FEELA), OLTC, EELA-Min (EELAn) and EELA-Max (EELAx).
Since I use the trilateration technique for localization, for a sensor node, it requires
three beacon locations and three distances from anchor nodes. As anchor nodes
broadcast their precise coordinates, the localization error is generated by the mobility
of nodes and the distance between anchor node and sensor node. In scene A and B.1,
the average localization error occurring in Ada-EELA is slightly lower than that in
Fixed-EELA and OLTC. The differences are small considering the simulation scene
B.2, so I consider all models have very close performance (about 3.38 m on average)
in this scene.

Although Adaptive EELA does not have much effect on the average localization
error comparing with other schemes, I still discuss and visualize it. Because the
average localization error is an important performance metric in UWSNs localization
models, and I want to show that the performance of Adaptive EELA in this area are
slightly better or at least not worse than other schemes, such as OLTC and Fixed-
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Scene AEELA IEELA FEELA [8] OLTC [63] EELAn [8] EELAx [8]
A 2.80 2.51 3.19 3.24 3.29 3.27

B.1 3.75 3.61 4.01 3.98 3.88 3.72
B.2 3.32 3.25 3.47 3.46 3.46 3.37

Table 4.7: Average localization error (m).

EELA. At the same time, Adaptive EELA improves the energy consumption a lot as
I discussed in Section 4.6.3.4.

4.7 Summary and Future Work

In this Chapter, firstly, I have considered the problem of energy-efficient sensor node
localization using multiple anchor nodes, in underwater sensor networks where battery
saving is essential. A Single-Leader-Multi-Follower Stackelberg game is used to model
the considered localization problem, where anchor nodes act as followers of each sensor
node, which acts as a leader. Considering the trade-off between localization ability and
energy consumption, optimal transmission power strategies are devised for anchor and
sensor nodes, which are shown to achieve Nash Equilibrium. Based on this analysis,
I have proposed the EELA algorithm [8] defining the communication protocol among
anchor and sensor nodes, for enabling energy-efficient localization. Simulation results
demonstrate that compared to baseline schemes, the proposed EELA enables similar or
better performance in terms of localization coverage, errors and delays, while drastically
reducing the amount of consumed energy, i.e., down to half the consumption of reference
OLTC [63].

In order to solve the environment adaptation problem of EELA, an Adaptive Energy-
Efficient Localization Algorithm (Adaptive EELA) based on the Fuzzy game theoretic
method is proposed. Adaptive EELA can adapt the dynamic environment changes, such
as node densities or node topologies. It requires the offline learning only once with no
need for prior knowledge, new equipment, or extra cost. Then, in the online phase, it can
select the optimal transmission range both for anchor nodes and sensor nodes in different
scenes automatically, which builds the energy-efficient localization scheme in UWSNs.
Adaptive EELA works well in both sparse and dense mobile UWSNs. In many scenarios
of UWSNs, sensor nodes with limited battery are deployed underwater which results
in difficulty to replace the battery or to recharge them. Adaptive EELA is well fit this
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kind of scenario and can be implemented in a real word. Numerical evaluation results
demonstrate that Adaptive EELA achieves a high localization coverage compared with
that in other schemes, such as OLTC [63] and EELA [8], by spending low battery power
per node.

In the future works, I would like to consider the multi-path propagation problem caused
by the reflections, temperature or salinity of the water into the proposed Adaptive EELA
model.
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Chapter 5

Conclusion and Future Work

In this thesis, four novel localization algorithms including Tri-MCL, Twi-AdaBoost, EELA
and Adaptive EELA, are proposed to improve the performance of the localization. Firstly,
Tri-MCL is presented to improve the localization accuracy in WSNs. The proposed
method employs three different distance measurement approaches based on range-free
methods to estimate distances between sensor nodes and anchor nodes. These distances
are then used to filter out particles not lying within rings around the anchor nodes with
a radius corresponding the distance estimates. The weights of different particles are
also considered, which means that the weight of each particle is related to the distance
between anchor node and sensor node. The results from our simulations and experiments
validate the effectiveness of our proposed algorithms in improving localization accuracy
and reducing computational costs during re-sampling.

Then, Twi-AdaBoost is introduced to explore the accelerometer, gyroscope and magne-
tometer sensors on both smart-phone and smart-watch. The key contribution of the
proposed Twi-AdaBoost algorithm is fusing the co-occurrence information to get a bet-
ter performance for the indoor localization based on the real world data. The indoor
localization datasets [38] used in this chapter have the multi-source characteristics, which
are supported by the presence of two different devices collecting data simultaneously
from the surrounding environment: a smart-phone and a smart-watch, respectively. Each
device collects multivariate data represented by their internal sensors, such as acceleration,
orientation, and gyroscope. From the experiment results, it is obvious that Twi-AdaBoost
convincingly outperforms the state-of-the-art indoor localization algorithms, taking advan-
tage of the co-occurrence correlation across the sensors from multiple devices. Specifically,
the localization error of position x and y achieved by Twi-AdaBoost is 0.387 m and 0.398 m,
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respectively.

Lastly, I introduced two algorithms named EELA and adaptive EELA. Both of them discuss
the topology control for energy-efficient localization in mobile underwater sensor net-
works using Stackelberg game. In EELA, I have considered the problem of energy-efficient
sensor node localization using multiple anchor nodes, in underwater sensor networks
where battery saving is essential. A Single-Leader-Multi-Follower Stackelberg game is
used to model the considered localization problem, where anchor nodes act as followers
of each sensor node, which acts as a leader. Considering the trade-off between localization
ability and energy consumption, optimal transmission power strategies are devised for
anchor and sensor nodes, which are shown to achieve Nash Equilibrium. Based on this
analysis, I have proposed the EELA algorithm [8] defining the communication protocol
among anchor and sensor nodes, for enabling energy-efficient localization. Simulation
results demonstrate that compared to baseline schemes, the proposed EELA enables
similar or better performance in terms of localization coverage, errors and delays, while
drastically reducing the amount of consumed energy, i.e., down to half the consumption
of reference OLTC [63]. Based on EELA, in order to solve the environment adaptation
problem of EELA, an Adaptive Energy-Efficient Localization Algorithm (Adaptive EELA)
based on the Fuzzy game theoretic method is proposed. Adaptive EELA can adapt the
dynamic environment changes, such as node densities or node topologies. It requires
the offline learning only once with no need for prior knowledge, new equipment, or
extra cost. Then, in the online phase, it can select the optimal transmission range both
for anchor nodes and sensor nodes in different scenes automatically, which builds the
energy-efficient localization scheme in UWSNs. Adaptive EELA works well in both sparse
and dense mobile UWSNs. In many scenarios of UWSNs, sensor nodes with limited
battery are deployed underwater which results in difficulty to replace the battery or to
recharge them. Adaptive EELA is well fit this kind of scenario and can be implemented in
a real word. Numerical evaluation results demonstrate that Adaptive EELA achieves a
high localization coverage compared with that in other schemes, such as OLTC [63] and
EELA [8], by spending low battery power per node.

In the future, I plan to extend Tri-MCL algorithm and implement it in a real world
environment. More co-occurrence information from multiple devices like the Camera or
WiFi, are considered by machine learning methods, such as Adaboost, to improve the
localization accuracy in indoor environment. In addition, I would like to consider the
multi-path propagation problem caused by the reflections, temperature or salinity of the
water into the proposed Adaptive EELA model.
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