
 

 
 

 

Plant diversity and landscape-scale effects  

on multitrophic interactions  

involving invertebrates 

 

 

 

Dissertation 

zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades 

"Doctor rerum naturalium" 

der Georg-August-Universität Göttingen 

 

im Promotionsprogramm Biologische Diversität und Ökologie 

der Georg-August University School of Science (GAUSS) 

 

 

 

vorgelegt von 

Julia Tiede 

aus Hildesheim 

 

Göttingen, 2017  



 

 

Betreuungsausschuss 

Prof. Dr. Christoph Scherber  Arbeitsgruppe Tierökologie und Multitrophische Interaktionen, 

Institut für Landschaftsökologie, Westfälische Wilhelms-

Universität Münster 

Prof. Dr. Teja Tscharntke  Abteilung Agrarökologie, Department für 

Nutzpflanzenwissenschaften, Georg-August-Universität 

Göttingen 

Prof. Dr. Rolf Daniel  Genomische und Angewandte Mikrobiologie und Göttinger 

Genomlabor, Institut für Mikrobiologie und Genetik, Georg-

August-Universität Göttingen 

 

 

 

Mitglieder der Prüfungskommission 

Referent:   Prof. Dr. Christoph Scherber  

Korreferent:   Prof. Dr. Teja Tscharntke 

2. Korreferent:   Prof. Dr. Rolf Daniel 

 

 

Weitere Mitglieder der Prüfungskommission 

Prof. Dr. Stefan Scheu  Arbeitsgruppe Tierökologie, Blumenbach-Institut für Zoologie 

und Anthropologie, Georg-August-Universität Göttingen 

Prof. Dr. Johannes Isselstein Abteilung Graslandwissenschaften, Department für 

Nutzpflanzenwissenschaften, Georg-August-Universität 

Göttingen 

Prof. Dr. Stefan Vidal  Abteilung Agrarentomologie, Department für 

Nutzpflanzenwissenschaften, Georg-August-Universität 

Göttingen 

 

 

 

Tag der Disputation: 15.11.2017   



 

iii 

 

 

 

 

 

 

“What escapes the eye, however, is a much more insidious kind of extinction: the extinction of 

ecological interactions.” 

 

Daniel H. Janzen, 1974, The deflowering of Central America. Nat.  Hist. 83:48–53 

 

 

 

 

 

 

“Round and round as the nature flows 

It's like one big ring 

Caterpillars eat plants 

Small birds eat caterpillars 

Big birds eat small birds 

Bacteria eats the dead- big bird 

From there plants grow 

Again, caterpillar eats the plant! 

How natural, no waste 

It is an endless chain 

What an amazing, wonderful, and excellent! 

How harsh, not careless 

It's an endless chain 

What an amazing, wonderful, and excellent food... food chain!” 

 

The food chain song, Adventure Time, Season 6, Episode 7 
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SUMMARY 
Biodiversity in terrestrial ecosystems is declining due to increasing anthropogenic pressure. 

Urban and agricultural expansion lead to shrinking natural or seminatural habitats. In addition, 

management intensification of existing agricultural land further reduces the quality of 

agroecosystems as habitat for many species. Both, local reduction of plant diversity and the 

regional degradation of seminatural vegetation have consequences for consumer species. The 

consequences of plant species loss for the diversity of consumer species and ecosystem 

functioning have been addressed over the past decades in numerous studies, ranging from 

controlled experiments with manipulated plant communities to systems with natural occurring 

gradients in plant diversity on a local and landscape scale. These studies have found that plant 

and habitat diversity can have cascading effects on the faunal community, shift its trophic 

structure and influence species-mediated ecosystem-processes, such as predation. Although it 

is clear that interspecific interactions are the drivers of such community shifts and ecosystem 

processes, our knowledge on how changing diversity of basal resources impacts species 

interactions is currently still limited. 

The major aim of my thesis was to contribute to a deeper understanding of the impact 

of plant diversity on the multitude of interactions that species in complex communities are 

involved in. This thesis focuses on interactions of mobile generalist omnivores and predators 

that can be found across the whole gradient from natural to strongly modified habitats. 

Although this group of invertebrates may not be particularly threatened by the loss of plant 

diversity, they are of great interest as model organisms, because their dietary plasticity allows 

them to interact with different sets of co-occurring species in their local environment. A further 

aim of my thesis was to expand the focus from trophic to non-trophic interactions by including 

microorganisms in my studies that are, despite their tremendous diversity and importance for 

many ecosystem functions, rarely considered in the analysis of aboveground interactions. 

In the first research chapter (chapter 2), I studied the effects of landscape context on 

the gut bacterial community and body condition of predatory insects (lady beetles) in a 

mensurative experiment in the Midwest of the USA. Insects were sampled across a landscape 

complexity gradient (increasing amount of cropland), and across two field types with a 

pronounced difference in plant diversity (soybean monocultures vs. restored prairies). 

Unexpectedly, predators collected in soybean fields had a more diverse set of gut microbes 

than predators from prairies. However, predators from soybean had lower fat content than 

predators collected in prairies, suggesting greater resource availability in prairies. Whether the 

lady beetle species were native or exotic to the USA influenced the effect of landscape context, 

suggesting differences in foraging preferences between these groups at a landscape scale. 

Another key finding was that lady beetle species have distinct microbial communities. Overall, 

my study highlights complex interactions among gut microbiota, predator identity, and 

landscape context. 

The studies in chapter 3 and 4 were conducted within the framework of a biodiversity 

experiment (The Jena Experiment) with manipulated taxonomic and functional plant diversity 

to study if plant diversity per se has an impact on microbial and trophic interactions involving 

invertebrates. In a pilot study (chapter3), I evaluated metabarcoding of gut contents of 



 

x 

invertebrates as a novel approach to analyze biotic interactions in species-rich communities. In 

an extended study spanning the full experimental design (chapter 4), I subsequently used this 

approach to analyze DNA of plants, animals, fungi, and bacteria in gut contents of three 

invertebrate species that vary in their degree of omnivory. The results the richness and 

composition of detected taxa is only little affected by plant diversity directly and mainly driven 

by indirect effects of plant diversity via the performance of the plant or animal community. A 

key finding was that vegetation cover shifts the trophic position of omnivores but the direction 

of the effects depended on the species identity of the omnivore. Further, the consumers were 

associated with different sets of animal and microbial taxa, reflecting their different food 

preferences. 

The final research chapter (chapter 5) assessed the efficiency of pitfall trapping, which 

is one of the most frequently used approaches to assess aboveground invertebrate diversity, 

under different scenarios by employing an ecological simulation approach. An individual-based 

model for simulating the movement and pitfall trap sampling of arthropods was developed and 

factors that are assumed to affect the trapping efficiency were systematically assessed at the 

species and community level. Body mass, temperature, and pitfall trap number strongly 

increased the sampling efficiency. This has implications on the study of communities, as the 

strong impact of body mass could result in an overestimation of large-sized species in the 

arthropod community and imply wrong conclusions about its trophic structure. It is therefore 

proposed to conduct a bias correction and a correction factor that requires only information 

on species body mass is provided to derive reliable abundance estimates from pitfall trap 

sampling.  

This thesis revealed that species interactions are driven by a multitude of direct and 

indirect effects of plant diversity on a local and landscape scale. This is further complicated by 

the contrasting responses of consumer species that are often treated as one functional group 

and highlights the need to further investigate the response of individual key species instead of 

focusing solely on whole communities. Overall, my thesis is a first step to integrate novel 

approaches that allow the empirical assessment of multi-level species interactions into 

biodiversity research.  
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1.1 General introduction 

The loss of biodiversity and its consequences for associated communities and ecosystem 

processes has become a major concern (Sala et al. 2000; Hooper et al. 2012; Newbold et al. 

2015). How declining diversity affects ecosystem functioning, is studied most often for plant 

diversity loss, including both, systems with already excising diversity gradients (Grace et al. 

2014; Allan et al. 2015) and controlled experiments with manipulated plant communities 

(Haddad et al. 2009; Weisser et al. 2017).  

For decades plant diversity experiments have focused on primary productivity (Hooper 

et al. 2005; 2012), while more recent research investigates the cascading effects from primary 

producer diversity to higher trophic levels (Cardinale et al. 2006; Barnes et al. 2014). These 

studies show, that plant diversity has bottom-up effects on the abundance and richness of 

consumer species (Knops et al. 1999; Koricheva et al. 2000; Borer et al. 2012), induces shifts in 

the functional structure and diversity across trophic levels (Haddad et al. 2009; Ebeling et al. 

2017), and affects ecosystem processes (Scherber et al. 2010; Allan et al. 2015; Hertzog et al. 

2016b; Meyer et al. 2017).  

In addition to plant diversity in the local habitat, the availability and diversity of suitable 

habitats in the surrounding landscape can act as a source and refugium for mobile consumer 

species (Tscharntke et al. 2005; 2012; Bianchi et al. 2013). Landscape context has been shown 

to shape the richness and structure of consumer communities (Gardiner et al. 2009b; Woltz & 

Landis 2014), affect the body condition of predators (Östman et al. 2001) and change, for 

instance predation and parasitism rates (This et al. 2005; Gardiner et al. 2009a; Lire et al. 2015).  

Ecosystem processes on a local or landscape scale are often mediated by trophic 

interactions but only few studies have empirically measured interactions in response to plant 

diversity because appropriate methods were lacking. Direct measurements are usually limited 

to interactions that can be easily observed such as plant-pollinator interactions (Venjakob et al. 

2016) or specialized herbivores feeding on aboveground plant parts (Meyer et al. 2017). 

Resolving feeding links of omnivores and carnivores has remained challenging, especially when 

they are polyphagous. A further complication arises, if organisms are highly mobile, nocturnal, 

or fluid feeders (Traugott et al. 2013). In consequence, the effects of altered resource diversity 

on species interactions are often measured only indirectly as the numerical response of species 

or changes in ecosystem process rates (Thies et al. 2005; Tscharntke et al. 2005; Gardiner et al. 

2009a; Chaplin-Kramer et al. 2011). 

Metabarcoding of gut contents is a promising new approach to study trophic 

interactions. For the last two decades DNA of food items has been widely used as a marker 

molecule to resolve feeding interactions in various ecosystems (e.g., Andrew King et al. 2011; 

Symondson 2012; Traugott et al. 2013). Two basic approaches exist. In the first approach, food-

specific PCR primers are used to test samples for the presence of specific to a priori defined 

species or broader taxonomic groups (Harper et al. 2005; Eitzinger & Traugott 2011; Lundgren 

& Fergen 2014). This approach is highly sensitive but usually limited to a limited number of food 

types of interest and not practical to assess the dietary spectrum of generalist feeders in 

species-rich ecosystems. The second approach uses general PCR primers for all potential food 

types that are in a final step identified based on their DNA sequence. The traditional DNA 
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sequencing (Sanger et al. 1977) of samples with DNA from multiple species, however, requires 

a time-consuming cloning step in which DNA of different species is separated (Zeale et al. 2011). 

Next generation sequencing (NGS) technologies have overcome this limitation and allow to 

sequence samples with mixed DNA types without a priori knowledge on the ingested taxa. In 

combination with primers for common barcoding regions for which extensive sequence 

databases exist, this approach allows the simultaneous detection of feeding events from a wide 

range of potential interaction partners in complex and species-rich ecosystems (Valentini et al. 

2009; Piñol et al. 2013; Pompanon & Samadi 2015).  

Animal guts comprise not only food remains but harbor a vast diversity of microbes 

(Bahrndorff et al. 2016; Engel & Moran 2013; Gibson & Hunter 2010) that can affect host fitness 

in many ways including host nutrition, or protection against predators or pathogens (Dillon & 

Dillon 2004; Douglas 2009; Henry et al. 2015; Ruokolainen et al. 2016). As the gut microbial 

community of many arthropod species is affected by host diet (Broderick et al. 2004; Lundgren 

& Lehman 2010; Mason & Raffa 2014), integrating microbial interaction partners into the study 

of trophic interactions can yield important insights into ecological interactions. Moreover, 

mobile polyphagous consumers encounter a great number of microorganisms in their 

environment and can serve as sampling devices for the local microbial diversity (Boyer et al. 

2015).  
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1.2 Study systems and regions 

1.2.1 Landscape approach - Agroecosystems in the Midwestern USA 

Insect predator communities and pest predation rates are strongly affected by the features of 

the surrounding landscapes, like the availability of suitable habitats (Tscharntke et al. 2005; 

Layman et al. 2007; Bianchi et al. 2013). It is currently, however, neither known how landscape 

context affects the prey spectrum of mobile generalist predators, nor how or whether the 

predators gut microbiota respond to changes in landscape composition. The first part of this 

thesis (chapter 2) was conducted in southern Wisconsin, USA, in 2012. The landscapes across 

southern Wisconsin vary considerably in composition, from dominated by agricultural row 

crops (mainly corn and soybean) to high proportions of seminatural habitat such as forests, 

prairies, and wetlands, thus making this a useful region in which to study the effects of 

landscape context on mobile predators. I selected 10 prairies and 10 conventially managed 

soybean fields as two field types with contrasting diversity of plants and associated consumer 

species (Fig. 1). The fields were positioned along a landscape gradient from seminatural 

dominated to crop-land dominated in the region around Madison on a scale of several 

thousand km². 

 

 

Figure 1. Map of sampling locations. Locations of soybean fields (red points) and prairies (blue points) around 

Madison, Wisconsin, USA, in which the lady beetle specimen included in our study were collected between July 

and August 2012. (right side: Kartendaten © 2017 Google) 

 

 Aphidophagous lady beetles were used as model organism, as they are abundant, 

locally widespread, and important natural enemies of aphids in agricultural crops (Obrycki et 

al. 2009; Snyder 2009) and seminatural habitats (Bianchi et al. 2013). Although aphids are their 

preferred prey, the lady beetles' food spectrum includes a broad range of other arthropods, 

and fungal or plant resources (Dixon 2000; Evans 2009; Hodek & Honěk 1996; Trilitsch 1999; 

Weber & Lundgren 2009). As highly mobile predators, lady beetles may forage on a landscape 

scale and represent a useful study system to examine the effects of landscape context on the 

gut bacterial community and body condition of predatory insects (Fig. 2). 
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Figure 2. Foraging lady beetles and their prey (left column), examples for prairie study sites (middle column), and 

examples for soybean fields and crop dominated regions in southern Wisconsin (right column).  
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1.2.2 Experimental approach - The Jena Experiment 

Biodiversity experiments with an experimentally manipulated gradient of plant species richness 

exclude many confounding factors of descriptive field studies such as management or land-use 

intensity (Loreau et al. 2001; Hooper et al. 2005) and offer a great opportunity to study the 

importance of plant species richness per se on trophic interactions. The second and third study 

(chapter 3 and 4) used the Jena Experiment as a platform to assess how plant diversity shapes 

interspecific interactions involving omnivores. 

The Jena Experiment was established on a former arable field at the flood plain of the 

Saale river in 2002 (Germany, 50°95′ N, 11°63′ E, 130 m above sea level; Roscher et al. 2004).  

I used the experimental plant communities of the Trait-Based Experiment (TBE; Fig. 3; Ebeling 

et al. 2014), that were sown in 2010 and assembled from a total of 20 Central European grass 

and non-legume herbaceous species to cover a gradient of plant species richness (1, 2, 3, 4, 

and 8) and plant functional diversity (1, 2, 3, and 4) on 138 plots (3.5 m x 3.5 m). The gradient 

of plant functional diversity was based on plant traits known to be important for spatial and 

temporal resource use and represents the levels from low (1) to high (4) trait complementarity 

in the plant community. The experimental plots were maintained by biannual mowing and 

weeded three times per year to remove unwanted species and maintain the sown 

communities.  

As model organism to study interspecific interactions three locally abundant, 

geographically wide spread and ecological relevant invertebrate species were used; the ground 

beetles Pterostichus melanarius Illiger, and Harpalus rufipes DeGeer (Coleoptera: Crabidae), 

and the field slugs of the genus Deroceras Rafinesque (Pulmonata: Agriolimacidae). All three 

model organism are polyphagous feeders on a wide range of food types but include varying 

degrees of plant matter in their diet (Thiele 1977; Barker & Efford 2004) with the potential to 

adapt their feeding behavior to changing environmental conditions.  

 



Chapter 1   General introduction and overview of this thesis 

 

7 

 

Figure 3. Experimental plots of the Trait-Based Experiment at the Jena Experiment with invertebrate enclosures in 

the pilot study in 2013 (top left), and in the full study in 2014 (top right and bottom).  
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1.2.3 Virtual ecologist approach - A simulation 

To understand the impact of plant diversity on ecological communities, it is essential to quantify 

animal population densities. Surface-active invertebrates are routinely sampled with pitfall 

traps (Greenslade 1964; Zhao et al. 2013). It is well known that the resulting data are biased by 

arthropod mobility, activity, and environmental factors (Lang 2000, Perner & Schueler 2004, 

Woodcock 2005, Saska et al. 2013, Brown & Matthews 2016), but comprehensive studies that 

analyze which factors are mostly responsible for the bias are yet missing.  

Computational simulations can reduce such knowledge gaps by simulating ground 

arthropods sampling across a range of different scenarios (Crist & Wiens 1995; Perner & 

Schueler 2004; Ellis & Bedward 2014). The “virtual ecologist” (Zurell et al. 2010), is an approach 

in simulation modeling to evaluate an experimental design by simulating data and observer 

models to mimic real species and their sampling. The last chapter (5) applied the virtual 

ecologist approach. We use an allometric individual-based model that simulates movement and 

pitfall sampling of virtual arthropods in simulation experiments (Fig 3) to systematically 

compare the known “true” abundance to the “observed” abundance in trap catches.  

 

 

Figure 3. Simulated movement of 12 ground arthropods within the central  4 x 4 m square of the simulated area 

(20 x 20 m). Individuals are presented as black dot, with a colored tail attached. The tail visualizes the movement 

path across the previous 11 minutes and 40 seconds. A red tail indicates large species, green medium species, and 

blue small species. Red and blue circles represent a spatial arrangement of pitfall traps.  
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1.3 Research objectives and chapter outline 

This thesis comprises one mensurative experiment that I conducted in the Midwest of the USA 

to analyze the effects of landscape context on the bacterial community in the guts of mobile 

predatory insects (chapter 2). The second and the third study (chapter 3, and chapter 4) were 

conducted in the framework of the Jena Experiment (Roscher et al. 2004; Ebeling et al. 2014). 

In chapter 3, I demonstrate in a pilot study that DNA metabarcoding of insect gut contents is a 

valuable tool to simultaneously analyze plant diversity effects on trophic and non-trophic 

interactions of a highly polyphagous consumer. In chapter 4, I use this approach to investigate 

direct and cascading plant diversity effects on interactions involving three invertebrate 

omnivores and a broad range of interaction partners. Measuring the impact of plant diversity 

on higher trophic levels requires methods that reliably quantify invertebrate communities. 

Therefore, in chapter 5 the pitfall trap sampling bias was systematically analyzed with an 

individual-based model in a virtual ecologist approach (Zurell et al. 2010). 

Chapter 2 

I studied the effect of landscape context on the gut microbiome of mobile predatory insects in 

a mensurative field experiment. Landscape context is known to affect predator–prey 

interactions (Layman et al. 2007; Bianchi et al. 2013; Tscharntke et al. 2005) and therefore likely 

influences the diet of individual consumers (Schmid et al. 2016). Diet composition, in turn, is a 

strong predictor for the gut microbial community in many species (Lundgren & Lehman 2010; 

Mason & Raffa 2014; Wang et al. 2011). In this study, I aimed to test if landscape composition 

affects the gut microbiomes of mobile, predatory insects. I tested the effects of landscape 

context at two spatial scales by sampling lady beetles in two field types with contrasting plant 

diversity: (1) plant species-rich prairies and soybean monocultures that (2) were systematically 

selected to be surrounded by landscapes ranging from low to high proportion of land covered 

by annual crops in southern Wisconsin, USA. I used DNA-based community fingerprinting 

techniques to investigate patterns in the gut bacterial community richness and composition. 

Further, gut microbiota are a determinant of physiology and condition (Bahrndorff et al. 2016; 

Borer et al. 2013; Gibson & Hunter 2010; Ruokolainen et al. 2016). I therefore examined 

whether landscape-mediated changes in gut microbiota are associated with differences in body 

condition, assessed using estimates of body fat content. 

Hypothesis for chapter 2 

1. Mobile predators that forage in prairies will have a greater access to a broader range of 

prey types compared to beetles foraging in soybean and will therefore have a richer gut 

community. 

2. Predators will have a relatively simpler gut community when the collection sites are 

surrounded by crop-dominated landscape compared to sites surrounded by more natural 

habitats. 

3. Prairies and landscapes with low proportions of arable land will foster greater body 

condition in mobile predators. 

 



Chapter 1   General introduction and overview of this thesis 

 

10 

Chapter 3 

In this study, I used the framework of a grassland biodiversity experiment to test the potential 

of DNA metabarcoding for the direct and simultaneous assessment of trophic and non-trophic 

interactions. Sequence-based identification of food DNA using next generation sequencing 

(here after NGS) was so far mainly used to describe the dietary spectrum of species (Piñol et al. 

2013; Vesterinen et al. 2013; Clare et al. 2014) but is underexploited in research on biodiversity 

and ecosystem functioning. Most studies on consumer communities in biodiversity 

experiments have measured the numerical response of species or ecosystem process rates 

(Scherber et al. 2010; Ebeling et al. 2014; Allan et al. 2015) but few have empirically analyzed 

species interactions. The recent advances in DNA sequencing offer new possibilities to examine 

interactions empirically (Traugott et al. 2013; Clare 2014; Vacher et al. 2016; Kamenova et al. 

2017). Here, I sampled regurgitates of omnivorous beetles and analyzed DNA of food remains 

and gut microbiota by DNA metabarcoding (Roche 454 sequencing platform) to identify trophic 

and non-trophic interactions and analyze how these interactions are affected by plant 

biodiversity.  

Hypothesis for chapter 3 

1. Metabarcoding of gut contents will allow new insights into different types of interactions in 

biodiversity experiments. 

2. Regurgitates are a good source material to study interactions as they contain only little 

consumer DNA.  

3. An increase in plant species richness will result in a higher number of interactions.  

 

Chapter 4 

Based on the findings described in chapter 3, I empirically assessed trophic and microbial 

interactions of surface-active invertebrates with omnivorous feeding habits in response to 

biodiversity manipulations within a grassland biodiversity experiment (The Jena Experiment; 

Roscher et al. 2004; Ebeling et al. 2014). In particular, I identified DNA in gut contents and feces 

of three model consumer species with varying degree of omnivory by DNA metabarcoding 

(Illumina MiSeq platform) of PCR products from common barcoding regions for plants, animals, 

fungi, and bacteria (Pompanon et al. 2012; Traugott et al. 2013; Tiede et al. 2016). Our study is 

the first to simultaneously examine the direct and indirect impact of plant diversity on the 

multitude of interactions involving omnivores in a controlled grassland biodiversity experiment. 

Hypothesis for chapter 4 

1. Omnivores from plots inhabiting many plant and animal species will interact with a greater 

number of species. 

2. Plant diversity will have greater direct effects on omnivores that consume mostly plant 

material and more indirect effects via the trophic chain on more predatory species. 

3. The ratio of beneficial to harmful microbes (e.g., symbionts, pathogens) increases along the 

plant diversity gradient. 



Chapter 1   General introduction and overview of this thesis 

 

11 

Chapter 5 

This study addressed a major uncertainty in diversity inventories: the difference between the 

experimentally sampled and the real population density (Collins et al. 2003; Hutchison 2007; 

Woodcock 2005). Pitfall traps are routinely used to assess the community of ground arthropods 

although they are known to generate data that are biased by species-specific differences in 

mobility and activity (Lang 2000; Perner & Schueler 2004; Woodcock 2005; Saska et al. 2013; 

Brown & Matthews 2016). In this study, we use an allometric individual-based model that 

simulates movement and pitfall sampling in a simulation experiments to systematically quantify 

the effect of pitfall trap number, spatial trap arrangement, temperature, arthropod body mass, 

and population density on sampling bias. 

Hypothesis for chapter 5 

1. The pitfall trap bias will decrease with increasing arthropod body mass due to a higher 

mobility of larger species. 

2. The pitfall trap bias will decrease with increasing temperature through greater locomotory 

activity of arthropods. 

3. The sampling bias decreases with increasing number of pitfall traps and is affected by their 

spatial arrangement. 
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Abstract 

Landscape context affects predator–prey interactions and predator diet composition, yet little 

is known about landscape effects on insect gut microbiomes, a determinant of physiology and 

condition. Here, we combine laboratory and field experiments to examine the effects of 

landscape context on the gut bacterial community and body condition of predatory insects. 

Under laboratory conditions, we found that prey diversity increased bacterial richness in insect 

guts. In the field, we studied the performance and gut microbiota of six predatory insect species 

along a landscape complexity gradient in two local habitat types (soybean fields vs. prairie). 

Insects from soy fields had richer gut bacteria and lower fat content than those from prairies, 

suggesting better feeding conditions in prairies. Species origin mediated landscape context 

effects, suggesting differences in foraging of exotic and native predators on a landscape scale. 

Overall, our study highlights complex interactions among gut microbiota, predator identity, and 

landscape context. 

 

2.1 Introduction 

Animal guts harbor a vast diversity of microbes, as revealed by modern DNA-based methods 

(Bahrndorff et al. 2016; Engel & Moran 2013; Gibson & Hunter 2010). The gut microbiome may 

affect host fitness in many ways including host nutrition, regulating growth rate and stress 

tolerance, through protection against natural enemies, or by mediating host–pathogen 

interactions (Dillon & Dillon 2004; Douglas 2009; Ferrari et al. 2004; Henry et al. 2015; 

Ruokolainen et al. 2016). Gut microbes can be vertically transmitted or acquired from the 

environment (horizontal transmission; Gibson & Hunter 2010; Mason & Raffa 2014). In 

addition, the total gut community also includes transient species that cannot permanently 

colonize the gut (Dillon et al. 2005; Erkosar & Leulier 2014) but may represent a supplementary 

food source, or contribute to digestion (Bouchon et al. 2016). Understanding factors influencing 

animal gut microbiome composition can thus yield important insights into ecological 

interactions. 

Laboratory studies have found that the gut microbial community of many arthropod 

species is affected by host diet (Broderick et al. 2004; Lundgren & Lehman 2010; Mason & Raffa 

2014; Wang et al. 2011), either through effects of food substrates on the persistence of specific 

microbes, or directly from the acquisition of associated microbes (Bili et al. 2016; Chandler et 

al. 2011). In addition, gut microbiota of wild insect populations vary geographically, suggesting 

that differences in the local environment can shape microbial assemblages (Adams et al. 2010; 

Coon et al. 2016; Toju & Fukatsu 2011; Yun et al. 2014). The gut microbiome of wild insect 

populations likely represents a sample of microbiota from local food and other sources in their 

surrounding environment (Borer et al. 2013). On a local scale (small quadrats of 0.025 m²), 

correlations among gut microbial richness of two ground-dwelling cricket species and prey 

richness in the habitat have been reported (Schmid et al. 2015); yet, the landscape-level 

consequences for mobile organisms such as flying predators have remained largely unexplored. 

Predator–prey interactions have frequently been shown to be influenced by landscape 

composition and structure. A multitude of studies has investigated numerical responses of 

predators to the surrounding landscape (Chaplin-Kramer et al. 2011; Gardiner et al. 2009; Liere 
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et al. 2015), including predator movement (Blitzer et al. 2012; Forbes & Gratton 2011; 

Schellhorn et al. 2014). If predators use multiple prey items located in different habitat types, 

landscape complexity should be positively correlated with diet items consumed (Bianchi et al. 

2013; Bianchi et al. 2009; Layman et al. 2007; Tscharntke et al. 2005), resulting in a greater 

variety of food-related or environmental microbes in the predators′ guts. Yet, systematic 

studies on the effects of landscape context on predator gut microbiota are lacking. 

Ideally, studies investigating landscape configuration and composition are performed in 

experimental landscapes, where landscape attributes are controlled by the experimenter 

(Hadley & Betts 2016, p. 59). However, such studies are often performed within only a single 

habitat type and cover often cover less than 1 km² (Haddad et al. 2015); such scales are 

considerably smaller than the foraging range of many insects, including pollinators or predatory 

beetles. Here, we report results from a mensurative experiment, in which study sites are 

selected a priori on a meaningful biological scale. We present evidence for landscape-level 

effects on insect gut microbiota on a scale of several thousand km². 

Predator fitness may be affected by landscape context directly through variability in 

food quality and quantity. Prior work has shown that landscape context is associated with 

fitness-related measures of body condition, such as body size or fat content, in ground-dwelling 

predators (Bommarco 1998; Öberg 2009; Östman et al. 2001), but this relationship has not 

been examined in mobile arthropod predators and the role of gut microbes has remained 

elusive. As the microbiome can directly affect the nutritional state and health of an organism 

(Bahrndorff et al. 2016; Borer et al. 2013; Gibson & Hunter 2010; Ruokolainen et al. 2016), 

changes in the microbiome associated with the landscape could also have indirect microbe-

mediated effects on body condition. 

In this study, we examined the effects of landscape context on the gut bacterial 

community and body condition of predatory insects. We used aphidophagous lady beetles as 

our study system, as they are locally widespread and important natural enemies of aphids in 

agricultural crops (Obrycki et al. 2009; Snyder 2009) and seminatural habitats (Bianchi et al. 

2013). Although aphids are their preferred prey, the lady beetles' food spectrum includes a 

broad range of other soft-bodied arthropods, as well as fungal or plant resources (Dixon 2000; 

Evans 2009; Hodek & Honěk 1996; Trilitsch 1999; Weber & Lundgren 2009). In a proof-of-

concept laboratory experiment, we first show that even a single meal can increase the richness 

and alter the community composition of gut bacteria in individual beetles, indicating that diet 

diversity can affect gut communities. In a mensurative field experiment (Hadley & Betts 2016), 

we sampled six lady beetle species that differ in their phylogenetic relatedness (including three 

in the same genus), origin (native and exotic), and body size to explore the contribution of host-

specific factors to differences in the gut microbiome and physiological response to landscape 

context. We tested the effects of landscape context at two spatial scales by sampling beetles in 

two field types with contrasting plant diversity: (1) species-rich prairies and soybean 

monocultures that (2) were systematically selected to be surrounded by landscapes ranging 

from low to high proportion of land covered by annual crops in southern Wisconsin, USA. We 

expected that mobile predators that forage in prairies have access to a broader range of prey 

types compared to beetles foraging in soybean and therefore would have a richer gut 

community. Because mobile predators may forage on a landscape scale, we further predicted 



Chapter 2                             Gut microbiomes of mobile predators vary with landscape context and species identity 

 

17 

that lady beetles would have a relatively simpler gut community when the collection sites are 

surrounded by crop-dominated landscape compared to sites surrounded by more natural 

habitats. In addition, we examined whether landscape-mediated changes in predator gut 

microbiota were associated with differences in body condition, assessed using estimates of 

beetle fat content. Fat content reflects the available energy reserves for survival and 

reproduction and resistance to nutritional stress (Arrese & Soulages 2010; Roma et al. 2010). 

We predicted that prairies and landscapes with low proportions of arable land would foster 

greater body condition. We show that changes at the field and landscape scale affected the gut 

bacterial community and physiological response of predators, but the direction of the effect 

differed significantly between exotic and native species, raising the possibility of inherent 

differences in habitat use and foraging preferences among these groups. 

 

2.2 Material and Methods 

2.2.1 Feeding experiment 

In a laboratory feeding experiment, we tested whether a single meal has the potential to alter 

the gut bacterial community of lady beetles. Adult Coleomegilla maculata De Greer (pink 

spotted lady beetle) were collected in April 2012 in Arlington, Wisconsin (USA), from dandelion 

flowers where they commonly aggregate in the spring (Harmon et al. 2000; Figure 1d). Beetles 

were maintained in the laboratory on dandelion flowers and moistened cotton balls for 7 days 

to allow their gut bacteria to equilibrate to similar diet environments. Prior to testing, beetles 

were starved for 48 hr. The beetles were randomly allocated to three treatments: (1) no food 

(control), (2) a meal consisting of one individual of Acyrthosiphon pisum Harris (pea aphid), and 

(3) a meal consisting of five different prey species (one individual each of A. pisum, 

Rhopalosiphum padi L. (bird cherry-oat aphid), Aphis gossypii Glover (cotton aphid), and Aphis 

glycines Matsamura (soybean aphid), and three eggs of Spodoptera frugiperda JE Smith 

([Lepidoptera], beet armyworm). These species represent common prey of lady beetles in 

Wisconsin and the Midwestern USA. Beetles that finished their meal completely within 1 hr 

(n = 19 beetles) were transferred into 1.5-ml microtubes containing 70% ethanol and frozen at 

−20 °C (n = 7 for the control, n = 5 for the 1-species diet, and n = 7 for the 5-species diet). 

 

2.2.2 Field study 

We sampled wild populations of lady beetles in southern Wisconsin, USA, in 2012. The region 

is dominated by agricultural row crops (mainly corn [Zea mays L.] and soybean [Glycine max L.]) 

with remaining patches of seminatural habitat (i.e., forest, grasslands, wetlands). We initially 

selected 10 prairies and 10 conventionally managed soy fields as two field types with 

contrasting diversity of plants and likely associated prey species. The fields were at least 2.6 km 

apart (Fig. S1 in Appendix S1). We analyzed the landscape composition within a 2 km radius of 

each field, which is an ecological meaningful distance for foraging flights in lady beetles (Woltz 

& Landis, 2014). The proportions of land cover types within each sector were analyzed with 

ArcGIS (10.0, ESRI, Redlands, CA, USA) and the Geospatial Modeling Environment software 

(Beyer, 2012) with the Cropland Data Layer (CDL, USDA, NASS 2012). As a metric for landscape 
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complexity, we used the proportion of annual crop monocultures (0.16–0.77; cropland 

hereafter) as it represents a habitat that is frequented by lady beetles but is intrinsically species 

poor and, in contrast to seminatural habitat, is easy to unambiguously categorize. The 

proportion of cropland and seminatural habitat were negatively correlated 

(Pearson's r = −.88, p < .001) and the later produced essentially the same results when used in 

the analysis instead. 

 

 

Figure 1. Examples for field study sites. (a) Restored prairie; (b) soybean field; (d) Harmonia axyridis on aphid-

infested milkweed (Asclepias syriaca L.) in a prairie (photo by J. Dreyer); (c) Coleomegilla maculata on dandelion 

(Taraxacum officinale L.) 

 

We sampled each field multiple times by sweep netting or hand collection from July 

through mid-August. During this time, soybean aphid (A. glycines) populations usually reach 

high densities, but in 2012, they remained exceptionally low likely due to the severe drought in 

the Midwest (Liere et al. 2015). It was also difficult to find lady beetles (compared to our 

previous experience), and we succeeded in only eight soy fields and nine prairies. In total, we 

collected 243 beetles (n = 139 in prairie, n = 104 in soy) belonging to six aphidophagous species 

(Coccinellidae: Coccinellinae: Coccinellini) including the exotic Coccinella septempunctata L. 

(n = 49), Harmonia axyridis Pallas (n = 72), and Hippodamia variegata Goeze (n = 59), and the 

native Cycloneda munda Say (n = 16), Hippodamia convergens Guérin-Méneville (n = 25), 

and Hippodamia parenthesis Dejean (n = 22; Gardiner et al. 2009). Collected beetles were 
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immediately placed separately into microtubes containing 70% ethanol, transported to the 

laboratory on ice and preserved at −20°C until later analysis. 

 

2.2.3 Sample processing 

2.2.3.1 Gut dissections 

For both the beetles from the laboratory experiment and field collected specimens, the analysis 

of gut bacteria was conducted on dissected alimentary tracts. The beetles were carefully 

opened ventrally with sterilized fine-tipped forceps in individual Petri dishes. Complete guts 

were isolated and stored in new 1.5-ml microtubes containing 70% ethanol at −20°C. The 

ethanol was removed before DNA extraction with the PowerSoil Kit (MoBio Laboratories, 

Carlsbad, USA). 

2.2.3.2 Analysis of gut bacteria 

We characterized the total gut bacterial community of lady beetles with Automated Ribosomal 

Intergenic Spacer Analysis (ARISA), a cost- and time-efficient fingerprinting technique. ARISA 

detects bacterial phylotypes based on the length heterogeneity of the intergenic spacer region 

between the 16S and 23S rRNA genes (Fisher & Triplett 1999). ARISA-PCR was performed with 

1406f/23Sr (Borneman & Triplett 1997), a bacteria-specific primer set with high taxonomic 

coverage (Purahong et al. 2015), as previously described (Shade et al. 2007; Yannarell et 

al. 2003). 

We analyzed up to four technical PCR replicates for each sample of the feeding 

experiment due to the low number of biological replications. No technical replications were 

used for wild populations. Reagent-only controls were included from the PCR step onwards. 

The PCR fragments were separated with a capillary sequencer (ABI 3730 DNA Analyzer, Applied 

Biosystems, Foster City, USA). The fragment sizes were determined by comparison with a 

custom internal 100–2,000 bp ROX-labeled standard (BioVentures, Murfreesboro, USA) using 

GeneMarker v 1.5 (Soft Genetics LLC, State College, USA). Fragments were binned into 

operational taxonomic units (OTUs). The bin size was expanded from 1 bp for small fragments 

(200–550 bp) to 2 bp (551–700 bp), 3 bp (701–950 bp) and 5 bp for large fragments (951–

1,200 bp) to account for the decreasing resolution with increasing fragment size (Abdo et 

al. 2006). Peaks that resulted from fluorescently labeled fragments were distinguished from the 

background noise by a custom R script (R Development Core Team 2012) developed by Jones 

and McMahon (2009) based on Abdo et al. (2006). 

Operational taxonomic units were treated as distinct bacterial taxa, and their relative 

fluorescence intensity was used as a proxy for relative taxon abundance within a sample to 

compare bacterial diversity and community structure between samples. ARISA can fail to 

accurately separate bacterial taxa at species level when multiple species have the same 

sequence length of the intergenic spacer and the method tends to underestimate diversity 

when species richness is high. Despite these limitations, other studies have demonstrated that 

patterns detected with ARISA are similar to those observed with sequencing-based analysis at 

a fraction of the cost (van Dorst et al. 2014; Jami et al. 2014). 
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2.2.3.3 Estimation of body fat content 

We visually estimated the fat content in individual beetles during gut dissections. Beetles were 

assigned to the categories low, medium, and high fat content (Anderson 1981): “Low”: little 

visual fat, mainly accumulated in the parietal layer; “Medium”, clearly visible fat accumulations 

also in regions of the gut or reproductive organs; “High”: fat filling and expanding the abdomen. 

Compared to whole body fat extraction, visual estimates of body fat do not provide quantitative 

data but allowed us to distinguish between storage fat and accumulated lipids in reproductive 

organs. Considering the fluctuations in total body fat in females during egg laying, estimates of 

storage fat provide a suitable assessment of the nutritional state. 

 

2.2.4 Statistical analyses 

All statistical analyses were performed in R (version 3.3.1, R Development Core Team, 2016) 

and R-Studio (version 0.99.903, RStudio Team 2015; Data files and R scripts in 

Appendices S2, S3, and S4). Means are reported ±1 SD. 

2.2.4.1 Feeding experiment 

For the feeding experiment, technical replications existed for all but three samples and were 

averaged prior to the analysis. The relationship between bacterial richness and the number of 

prey species in the meal (zero in the control, 1-species diet, 5-species diet) was analyzed with 

linear regression. The number of bacterial taxa in a sample was log-transformed, and the model 

included number of technical replicates per sample as known prior weights, giving more weight 

to samples with more replications. 

We analyzed the gut bacterial community assemblage using bacterial taxon relative 

abundances and calculating Bray–Curtis similarities (vegan: vegdist; Oksanen et al. 2017). We 

tested the effects of meal type (control, 1-species diet, 5-species diet) on community 

composition with permutational multivariate analysis of variance (perMANOVA; adonis; 

Oksanen et al. 2017) and permutation tests for the between group homogeneity in multivariate 

dispersions (vegan: betadisper, permutest; Oksanen et al. 2017; Anderson, 2006; McArdle & 

Anderson, 2001). Similarities between samples were visualized by NMDS (metaMDS; Oksanen 

et al. 2017). 

2.2.4.2 Field study 

2.2.4.2 | .1 Bacterial richness 

We tested the effects of host-specific factors, sex, field type, and proportion of annual cropland 

in the surrounding 2 km on the log-transformed gut bacterial richness using linear mixed-

effects models (nlme: lme; Pinheiro & Bates 2000). Alternative distributions for count data 

(Poisson, negative binomial) had higher AICc values (Akaike's information criterion corrected 

for small sample size; stepAICc function, MASS package, corrected for small sample sizes by 

C. Scherber 2009, http://www.christoph-scherber.de/stepAICc.txt), and we therefore decided 

for a log-transformation of the response. For the host-specific factors, we constructed a custom 

contrast matrix that compared the six species according to three different attributes: origin 

(exotic vs. native), size (small vs. large), and genus (genus Hippodamia vs. non-Hippodamia; 

Table 1). Models further included sex within species within collection site as a random effect. 
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Variance heterogeneity between species was accounted for by introducing a variance function 

with different variances estimated for each species. Models were simplified based on AICc, 

starting with a model including the three-way interaction. For the reported output, parameters 

were estimated based on restricted maximum likelihood (REML). 

 

Table 1. Custom contrast matrix for lady beetle species 

Lady beetle species Genus group Origin Body size 

Coccinella septempunctata non-Hippodamia exotic big 

Cycloneda munda non-Hippodamia native small 

Harmonia axyridis non-Hippodamia exotic big 

Hippodamia convergens Hippodamia native big 

Hippodamia variegata Hippodamia exotic small 

Hippodamia parenthesis Hippodamia native small 

Small versus large body size refers to average measures of species elytron length (small <4.0 mm vs. big >4.5 
mm; Julia Tiede (JT) & Claudio Gratton (CG), unpublished data). 

 

2.2.4.2 | .2 Bacterial community structure 

Bacterial community composition in wild collected species was visualized as in the laboratory 

experiment with NMDS based on Bray–Curtis distances and by mean relative abundance of 

bacterial taxa per beetle species and habitat type (Fig. S2 in Appendix S1). We tested the effect 

of species, and species grouped by genus, origin, and body size on bacterial composition using 

separate (one-way) perMANOVA (adonis; Oksanen et al. 2017). Species, as the best predictor, 

was included in a model testing the interactions between species and field type, and species 

and proportion cropland. Additionally, we tested the interaction between species and sex. All 

models included sex within species within collection site as random effect. Homogeneity of 

sample dispersion was tested (vegan: betadisper, permutest; Oksanen et al. 2017). 

2.2.4.2 | .3 Body fat content 

We analyzed the proportion of beetles in three ordinal categories (low, medium, and high fat 

content) using cumulative link mixed-effects models (ordinal: CLMM; Christensen 2015) as a 

function of beetle species contrasts, field type, proportion cropland, and bacterial richness as 

fixed effects and beetle species within collection site as random effects. The full models 

included all two-way interactions, and models were simplified as described above. To assess 

the effect of sex, three-way interactions with sex were included in the best fit model and 

deleted from maximal models based on AICc. 
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2.3 Results 

2.3.1 Feeding experiment 

In guts of the 19 beetles from the feeding experiment, we found 313 bacterial phylotypes 

(OTUs). The bacterial richness in individual beetle guts increased with the number of prey 

species in the meal (Table 2; Figure 2a) from 28 ± 7 (mean ± SD) in the beetles in the unfed 

(control) diet, to 31 ± 5 in the 1-species diet, and 39 ± 11 in the 5-species diet. Overall, we 

detected a significant but weak effect of the meal type on the bacterial community 

(perMANOVA; Table 2a; Figure 2b). In pairwise tests (Table 2b–d), the gut communities 

between beetles from the 1-species diet and the 5-species diet differed from the control but 

not from each other. Nonsignificant differences in sample dispersion (Table 2) indicated that 

the effects were driven by differences in the group centroids. 

 

Table 2. Laboratory experiment results on the effect of meal type on gut bacteria in the gut of C. maculata 

Linear model   df Estimate ± SE t value p value 

(Intercept) 1 3.301 ± 0.07 45.61 < 2e-16 

Number of prey species 1 0.078 ± 0.02 3.41 0.003 

Residuals 17       

perMANOVA   df SS F value p value 

a) All meal types 2 1.13 1.74 0.014 

  Residuals 16 5.2   [R² = 0.18] 

b) Control vs. 1-species diet 1 0.67 2.13 0.003 

  Residuals 10 3.13   [R² = 0.18] 

c)  Control vs. 5-species diet 1 0.67 2.12 0.008 

  Residuals 12 3.79   [R² = 0.15] 

d)  1-species diet vs. 5-species diet 1 0.35 1 0.393 

  Residuals 10 3.49   [R² = 0.09] 

PERMDISP   df SS F value p value 

Meal type 2 0.01 0.43 0.659 

Residuals 16 0.14     

Horizontal lines separate the different analysis. Linear model parameter estimates and standard errors on the 
effect of meal type on log-transformed bacterial richness. PerMANOVA results on the effect of meal type on gut 
bacterial community in multiple (a) and pairwise contrasts (b–d). PERMDISP results on homogeneity of 
multivariate sample dispersion. p values <.05 are reported in bold numbers. 
df, degrees of freedom; SE, standard errors; SS, sums of squares. 
 
 

17 
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Figure 2. Bacterial (OTU) community richness and composition in feeding experiments. (a) Bacterial richness in 

guts of C. maculata as a function of the number of prey species in the meal (zero in the control, 1-species diet, 5-

species diet). Points represent individual beetles and are scaled based on the number of averaged technical 

replicates, the black line and gray area show the predictions and 95% confidence interval of the linear regression 

model, respectively. (b) Community composition of bacteria in guts of C. maculata shown as NMDS (2D, 

stress = 0.19) based on Bray–Curtis dissimilarities of the relative abundance of bacterial taxa. Symbols represent 

individual beetles; colors and enclosing polygons refer to meal types. 

 

2.3.2 Field study 

3.2.1 Bacterial richness 

In total, we found 551 bacterial taxa (OTUs) in the guts of 243 field collected beetles; the mean 

bacterial richness was 80 ± 20. Most of the variance in richness was explained by the 

differences between beetle species, which was higher in the three exotic species than in the 

three native species (Table 3 and Figure 3a; Table S3 in Appendix S1). Moreover, exotic and 

native species responded differently to landscape context: the bacterial richness in native 

species guts increased with increasing proportion of cropland surrounding the collection side, 

but decreased for exotic species (Tables 3 and Figure 3a; Table S3 in Appendix S1). Further, 

there was an effect of field type with higher bacterial richness in beetles collected in soy than 

in prairies (Table 3; Table S3 in Appendix S1). Sex had no effect. 

2.3.2.2 Bacterial community structure 

The bacterial assemblages were largely associated with beetle species identity (perMANOVA; 

Table 3a and Figure 3b). Origin, genus, and body size, also, had significant effects on the 

community structure, but the fit of the models was weaker (Table 3b–d). Sex, field type (corn 

vs. soy), and proportion cropland did not explain additional variability (Table 3e,f). The detected 

effects on the bacterial community might be partly driven by variances in sample dispersion 

between species (Table 3), but species also had distinct sets of abundant bacteria indicating 

compositional differences among species (Fig. S2 in Appendix S1). 
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Table 3. Field study results on gut bacteria and fat content of wild populations of lady beetles 

Linear mixed model* df denom. df χ2  p value 

Species 3 312 177.55 <0.001 

Field type 1 14 12.22 <0.001 

Proportion crop 1 14 3.04 0.081 

Species x proportion crop 3 31 13.27 0.004 

perMANOVA df SS F value p value 

a) Species 5 27.51 26.89 0.001 
 Residuals 237 48.49  [R² = 0.36] 

b) Origin 1 5.54 18.95 0.001 
 Residuals 241 70.46  [R² = 0.07] 

c) Genus 1 5.39 18.39 0.001 
 Residuals 241 70.61  [R² = 0.07] 

d) Size 1 5.14 17.48 0.001 
 Residuals 241 70.86  [R² < 0.02] 

e) Sex 1 0.31 1.53 0.148 
 Species x sex 5 1.11 1.08 0.413 
 Residuals 231 47.10  [R² = 0.38] 

f) Field type 1 0.56 2.85 1 
 Species x field type 4 1.38 1.78 0.147 
 Residuals 226    

g) Proportion crop 1 0.32 1.66 0.722 
 Species x proportion crop 5 1.25 1.30 0.485 
 Residuals 226 44.04  [R² = 0.42] 

PERMDISP df SS F value p value 

Species 5 1.39 39.02 <.001 

Residuals 237 1.69    

Cumulative link mixed model** df  denom. df χ2 p value 

Bacterial richness (log) 1  153 0.51 0.476 

Species 3 34 12.04 0.007 

Field type 1 13 4.33 0.037 

Proportion cropland 1 13 0.10 0.753 

Bacterial richness (log) x species 3 153 10.32 0.016 

Bacterial richness (log) x proportion crop 1 153 4.20 0.043 

Field type x proportion crop 1  13 2.97 0.085 

Horizontal lines separate the different analysis. Wald chi-square tests from linear mixed model on the effect of 
species contrasts (native vs. exotic origin, small vs. big size; Hippodamia vs. other genera), sex, field type, and 
proportion cropland on log-transformed bacterial richness. PerMANOVA results on the effects of species (a) and 
species grouped by origin, and size, (b–d), and sex (e), field type and proportion cropland after accounting for 
the effect of species and their interactions with species (f) on the bacterial community. PERMDISP results on 
homogeneity of multivariate sample dispersion. Likelihood-ratio tests from cumulative link mixed model results 
on the effect of beetle species contrasts, log-transformed bacterial richness, field type, and proportion cropland 
on beetle fat content. p values <.05 are reported in bold numbers and p <.10 in italics. Details on parameter 
estimates and standard errors are reported in Table S3 and S4 in Appendix S1. 
*Mixed effects model denom. df = 159. 
** Cumulative link mixed model denom. df = 153. 
df, degrees of freedom; denom. df, denominator degrees of freedom; SE, standard errors; SS, sums of squares. 
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Figure 3. Bacterial (OTU) community richness and composition in wild beetle populations. (a) Effect of the 

interaction of beetle species and proportion cropland on the log-transformed bacterial richness (back-transformed 

for illustrative purposes). Lines and shaded regions show response predictions and 95% confidence intervals from 

the mixed-effects model. (b) Community composition of bacteria in gut samples of six wild populations of lady 

beetles visualized as NMDS (2D, stress = 0.20) based on Bray–Curtis dissimilarities of the relative abundance of 

bacterial taxa. Symbols and enclosing polygons represent individuals of different beetle species. 

 

2.3.2.3 Body fat content 

The relative fat content of beetles was associated with species identity (Tables 3 and Table S4 

in Appendix S1). Most beetles of the genus Hippodamia contained low body fat. Fat content of 

the two native Hippodamia species, H. convergens and H. parenthesis, increased with their gut 

bacterial richness, but this pattern was not observed in the exotic H. parenthesis. Conversely, 

in the exotic C. septempunctata and H. axyridis, 3.2.2 Bacterial community structure 

The bacterial assemblages were largely associated with beetle species identity 

(perMANOVA; Table 3a and Figure 3b). Origin, genus, and body size, also, had significant effects 

on the community structure, but the fit of the models was weaker (Table 3b–d). Sex, field type 

(corn vs. soy), and proportion cropland did not explain additional variability (Table 3e,f). The 

detected effects on the bacterial community might be partly driven by variances in sample 

dispersion between species (Table 3), but species also had distinct sets of abundant bacteria 

indicating compositional differences among species (Fig. S2 in Appendix S1). 

2.3.2.3 Body fat content 

The relative fat content of beetles was associated with species identity (Tables 3 and Table S4 

in Appendix S1). Most beetles of the genus Hippodamia contained low body fat. Fat content of 

the two native Hippodamia species, H. convergens and H. parenthesis, increased with their gut 

bacterial richness, but this pattern was not observed in the exotic H. parenthesis. Conversely, 

in the exotic C. septempunctata and H. axyridis, beetles with a low gut bacterial richness were 

fattest (Table 3 and Figure 4a; Table S4 in Appendix S1). Gut bacterial richness also interacted 

with the proportion of cropland to affect variation in beetle fat content. Bacterial richness had 

a negative effect on fat content when the proportion of cropland was low and a positive effect 

http://onlinelibrary.wiley.com/doi/10.1002/ece3.3390/full#ece33390-tbl-0003


Chapter 2                             Gut microbiomes of mobile predators vary with landscape context and species identity 

 

26 

when the beetles were collected in crop-dominated areas (Tables 3 and Figure 4b; Table S4 in 

Appendix S1). Further, beetles collected in prairie had a higher fat content compared to soy 

(Table 3; Table S4 in Appendix S1) and tended to be fatter when the prairie was surrounded by 

cropland, but this interaction was only marginally significant (Table 3 and Figure 4c; Table S4 in 

Appendix S1). When sex was included as a fixed effect in the analysis, the interaction between 

prairie and the proportion of cropland also became significant. Additionally, we found an 

interaction between crop and sex with only females responding positive to increasing 

proportions of cropland. Further, there was an interaction between species and sex (Table S5 

and S6 in Appendix S1). 

 

 

Figure 4. Body fat content in wild beetle populations. (a) Effects of the interactions of beetle species and log-

transformed gut bacterial taxon richness (OTUs), (b) proportion cropland and log-transformed gut bacterial taxon 

richness (cropland was a continuous variable in the model but is shown as low and high for illustrative purposes), 

and (c) field type and proportion cropland on the proportion of beetles with low, medium, or high body fat as 

predicted by a cumulative link mixed model.   



Chapter 2                             Gut microbiomes of mobile predators vary with landscape context and species identity 

 

27 

2.4 Discussion 

We hypothesized that the diversity and composition of gut microbes in mobile arthropod 

predators would be affected by landscape context, both at the local (field) and at broader 

(among field, landscape) scale. Consistent with this prediction, we found that changes in 

landscape composition were associated with changes in richness of bacterial OTUs in the guts 

of beetles, but this effect was strongly species-dependent. In fact, one of the strongest patterns 

observed in this study was the distinct difference in abundance and composition of gut bacteria 

across species of lady beetles. Moreover, a significant amount of bacterial community variation, 

and the response of microbes to landscape composition, was related to whether species were 

native or exotic, an unexpected finding. Native lady beetles had a richer gut bacterial 

community, and this richness increased as the landscape became more crop-dominated; in 

contrast, the gut bacterial richness of exotic beetles was generally lower than that of natives 

and decreased as the amount of cropland increased in the landscape. 

 

2.4.1 Species effects on bacterial richness and composition 

The significant effect of lady beetle species on the gut bacterial community composition raises 

three nonmutually exclusive hypotheses about drivers of the composition the gut microbiome. 

That conspecific beetles had similar gut communities, even if they were sampled in different 

field types at distant collection sites, suggest that there may be a core group of species-specific 

bacteria. Lady beetles are frequently infected with male-killer bacteria (Majerus & Hurst 1997; 

Weinert et al. 2007) but specific associations with gut microbes are largely unexplored, as is 

the case for most predatory insects. Shotgun-sequencing of gut contents of lady beetles 

revealed potential symbionts (Paula et al. 2016). However, facultative gut symbionts were also 

detected in omnivorous ground beetles (Lundgren et al. 2007) and distinct gut communities in 

predatory ants (Anderson et al. 2012) and wasps (Mrázek et al. 2008). 

Another potential explanation is that species-specific chemo-physical characteristics of 

the gut select for colonization by certain bacteria (Dillon & Dillon 2004; Nelson et al. 2012). 

However, if this was a strong influencing factor, then we would expect that shared evolutionary 

history of beetles would result in the gut bacterial communities of closely related species to be 

more similar than distantly related species (Sanders et al. 2014). However, this was not the case 

for the three species of the genus Hippodamia in our study which had distinct bacterial 

assemblages more associated with whether they were exotic or native to the Midwestern USA. 

Although this study was not specifically designed to test for systematic differences in bacterial 

communities as a function of evolutionary relatedness or their exotic vs. native status, the 

patterns found in the most widespread beetle species in this area were strong and warrant 

additional study. 

A third explanation for our findings of species-specific differences in gut bacteria relates 

to differences in their diets, which could result in different sets of prey-related bacteria. The 

laboratory experiment demonstrated that beetle gut communities could change relatively 

rapidly even within one species. Similar to our findings, H. axyridis gut microbes were enriched 

by aphid symbionts shortly after aphid ingestion (Paula et al. 2015). This hypothesis is further 

supported by a study on fruit fly species with distinct feeding habits, whose gut communities 
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were different in wild populations but became similar on the same diet under laboratory 

conditions (Chandler et al. 2011). Thus, it is likely that at least some of the bacterial variation 

between lady beetle species was due to dietary differences maybe as a result of resource 

partitioning through differences in the dietary breadth, prey preferences, the ability to locate 

prey, preferred areas on a plant to forage, and the likelihood of switching habitats (Forbes & 

Gratton 2011; Hodek & Honěk 1996; Iperti 1999; Schellhorn & Andow 2005; Sloggett & Majerus 

2000). Studies that simultaneously identify food remains and microbes in gut contents (Paula 

et al. 2015; Tiede et al. 2016) could further illuminate the relation between diet and the gut 

microbiome. 

 

2.4.2 Landscape effects on bacterial richness and composition 

Other studies have shown that exotic species often dominate lady beetle communities in arable 

land. In this region, native species are mainly found in perennial grasslands and other 

seminatural habitats (Gardiner et al. 2009; Diepenbrock & Finke 2013; Grez et al. 2013). A 

similar pattern was found for native and exotic spider communities. An increasing amount of 

arable land is often associated with seminatural habitat fragmentation and more distant 

remnant patches are expected to harbor more dissimilar communities than close ones 

(Tscharntke et al. 2012). Thus, native beetles might have sampled a greater beta diversity of 

microbes from isolated natural habitat patches when located in landscapes with a high 

proportion of cropland. The preference of exotic beetles for homogenous agricultural habitats 

(i.e., crops fields) could have led to a reduced exposure to bacteria in the environment and 

therefore a lower gut bacterial richness. Additionally, a higher pathogen load in agricultural 

landscapes combined with higher antimicrobial defense in exotic species could contribute to 

the pattern of increasing microbial richness with increasing amount of cropland in native but 

not exotic lady beetles. Along these lines, farmland frogs harbored more potentially harmful 

bacteria in their guts than frogs from natural habitats (Chang et al. 2016). A strong antimicrobial 

defense has been detected in the exotic H. axyridis (Beckert et al. 2015; Gross et al. 2010; 

Vilcinskas et al. 2013) and is suggested as a potential mechanism driving invasive predator 

success (enemy release hypothesis; Roy et al. 2011). 

The specific habitat type in which beetles were collected, soy compared to prairie, was 

another strong predictor for bacterial richness. In contrast, to our expectation that beetles from 

prairie would have a richer gut community, we found more bacterial diversity in the guts of 

beetles from soy. This finding could be partly attributed to a drought that affected the soybean 

plants and aphid populations in southern Wisconsin (Mallya et al. 2013). The low availability of 

soybean aphids, the principal prey of lady beetles in this crop, likely increased the consumption 

of alternative prey (Iperti et al. 2000). A broader diet in soybean would expose the beetles to a 

greater variability of environmental bacteria compared to a diet of mainly aphids. In H. axyridis, 

aphid–symbionts were detected up to 96 hr after aphid consumption (Paula et al. 2015). Prairie 

plant communities were more resilient to the drought than row crops (Joo et al. 2016) and 

likely allowed the aphidophagous lady beetles in our study to be more selective in their prey 

choice. 
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Additionally, differences in local food availability between the two habitat types could 

have led to differences in residency time. The beetles we collected in soybean might have 

switched from another (crop-) habitat not long before (Forbes & Gratton 2011) and carried 

over bacteria and higher food availability in prairie could have increased small-scale foraging. 

The lack of information on how much time a beetle has spent in the field where it was sampled 

may to some degree confound the local and the landscape scale used in our study. 

Studies that compare samples from multiple seasons and years could help to further 

elucidate what shapes the gut community. Our results indicate that the total gut community of 

lady beetles can be divided into a stable and a variable part. The core OTUs that form similar 

gut communities in conspecific beetles collected from different habitats and at distant 

collection sites are likely also relatively stable between seasons and years. More transient, food-

related bacterial taxa should be highly variable and respond to annual and seasonal changes in 

food availability, and the variations might be more extreme in crop-dominated regions with 

many ephemeral food sources. For example, in a year with high aphid abundance in soy we 

would expect the pattern we found to be reversed, with lower bacterial richness found in 

beetles from soy as compared to beetles that forage in prairies. 

 

2.4.3 Microbe and landscape effects on ladybeetle fat content 

We posit that the higher gut bacterial richness in beetles from soy fields compared to prairies 

is an indicator of consumption of mixed alternative resources in absence of soybean aphids. 

This interpretation is consistent with the findings that beetles collected in prairie had a higher 

fat content compared to soy-collected beetles, indicating superior feeding conditions and a 

better outcome for body condition in prairie compared to aphid–depauperate soy. Landscape 

context on a broad scale had no effect itself but mediated the effect of bacterial richness on 

body fat of beetles: As bacterial richness increased, beetles became fatter in agriculturally 

dominated landscapes, while for beetles collected in landscapes with few crops, higher 

bacterial richness was associated with lower fat content. Generalist predators can benefit from 

some proportion of cropland, which periodically provides abundant food resources (Rand & 

Tscharntke 2007) but may benefit more from the inclusion of alternative resource with 

complementary nutrients in simplified landscapes in which they mainly find crop pests. Other 

studies on predatory beetle body condition found positive effects of landscape heterogeneity 

(Östman et al. 2001) and succession-related food supply and diversity of wildflower habitats 

(Barone & Frank 2003). 

Although landscape context clearly had an impact on gut microbiota, and landscape 

context and gut microbial richness together affected the fat content of lady beetles, the 

ultimate causal mechanisms remain to be explored. We propose that food resource abundance 

and diversity in the local habitat could be one of the main drivers for both gut bacterial richness 

and host fat content. Further, diet-related bacteria can potentially affect host fitness directly 

when they serve as a supplemental food source, temporarily contribute to digestion processes 

(Bouchon et al. 2016) or facilitate adaption to novel food sources (Chu et al. 2013). However, if 

and to what extend a predator benefits from a mixed diet (Evans et al. 999; Harwood et 

al. 2009; Lefcheck et al. 2012; Lundgren 2009) and diverse gut bacteria depends on host 
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species: In our study, the two native beetles H. convergens and H. parenthesis had more body 

fat when their guts harbored many different bacterial taxa. In contrast, the 

exotic C. septempunctata and H. axyridis were fatter when their gut bacterial communities 

were species poor. This finding might reflect that exotic species are better adapted to 

homogenous conditions in cropland than native species and therefore often dominate 

coccinellid communities in cultivated habitats (Bahlai et al. 2013). 

 

2.5 Conclusion 

A key finding of this study is that mobile predatory insects have a species-specific set of gut 

bacteria that is stable over a range of environmental conditions. However, landscape and 

habitat-associated differences in where they are collected can alter this base assemblage. 

Although the mechanisms for these patterns are not resolved, the strong differences between 

exotic and native species and the contrasting effects of landscape context on gut bacteria 

suggest inherent differences in habitat and prey use among these groups. Moreover, that 

landscape context can also affect host performance as indicated by fat content, both directly 

and indirectly via gut microbiota, potentially indicates a novel mechanism through which 

human-altered landscapes can affect invertebrate predators. The method we used to analyze 

gut bacterial communities allowed us to rapidly compare samples from multiple species and 

locations but does not provide information on taxon identity. Sequencing-based technologies 

in combination with reference databases for taxon identification are an ideal next step. This 

could help identify the core microbes of different species, their relationship to the host and 

response to environmental factors. We focused on bacterial microbes which are thought to 

comprise the greatest fraction of organisms in the guts of many insect (Engel & Moran, 2013), 

but further studies could expand the range to other potential interaction partners, like fungi, 

protists, and archaea. Overall, our study illustrates the importance of both resource and 

landscape-based influences on gut microbiota and their interactions with species-specific traits 

including foraging behavior and physiology. 
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S1 Additional Figures and tables 

 

Figure S1. Map of sampling locations. Locations of soybean fields (red points) and prairies (blue points) around 

Madison, Wisconsin, USA, in which the lady beetle specimen included in our study were collected between July 

and August 2012.  
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Figure S2. Effect of beetle species and field type on relative abundance of bacterial taxa. Mean relative abundance 

of bacterial taxa represented by operational taxonomic units (OTUs) of different size (base pairs) in different 

species of lady beetles. The blue and red lines represent the bacterial community in beetles from prairie and soy, 

respectively.  
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Table S3. Field study results for effects on gut bacterial richness. Parameter estimates and standard errors from 

the linear mixed model (corresponding to Table 2) on the effect of species contrasts (native vs exotic origin, small 

vs big size; Hippodamia vs other genera), field type, and proportion cropland in 2 km on log-transformed richness 

of gut bacterial taxa. The model included beetle sex within species within collection site as random effect (n = 243 

beetles, n = 17 sites, n = 54 beetles within sites, n = 84 sex within species within sites). The estimated variances of 

the random effects were essentially 0, with a residual variance of (0.26)². Variance heterogeneity between species 

was accounted for by introducing a variance function with different variances estimated for each species 

(C. munda = 1, H. convergens = 1.053, H. axyridis = 1.002, H. parenthesis = 1.467, C. septempunctata = 0.903, and 

H. variegata = 0.778). P-values <0.05 are reported in bold numbers, while P <0.10 are in italics.  

Term Value SS df t value p value 

(Intercept) 4.369 0.035 159 124.609 <0.001 

Species-origin -0.044 0.043 31 -1.039 0.307 

Species-genus 0.018 0.029 31 0.623 0.538 

Species-size 0.084 0.032 31 2.579 0.015 

Field type-soy 0.094 0.027 14 3.495 0.004 

Proportion crop 0.064 0.080 14 0.803 0.435 

Species-origin x proportion crop -0.304 0.088 31 -3.469 0.002 

Species-genus x proportion crop 0.036 0.064 31 0.566 0.576 

Species-size x proportion crop -0.122 0.064 31 -1.891 0.068 

SS= Sums of squares 
df = Degrees of freedom  
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Table S4. Field study results for effects on beetle fat content. Parameter estimates and standard errors from the 
cumulative link mixed model (corresponding to Table 3) on the effect of beetle species contrasts, log-transformed 
bacterial richness, field type, and proportion cropland on fat content of lady beetles. The model included beetle 
sex within species within collection site as random effect (n = 242 beetles, n = 17 sites, n = 54 species within sites, 
n= 84 sex within beetles within sites). The estimated variances of the random effects were 0.601 for sex within 
species within site, 0 for species within site, and 0.510 for site. Model selection was based on stepwise deletion of 
predictors based on AICc. P-values <0.05 are reported in bold numbers, while P <0.10 are in italics.  

Term Estimate SE z value p value 

Low|medium -14.344 7.526 -1.906  

Medium|low -12.122 7.497 -1.617  

Bacterial richness (log) -3.122 1.714 -1.821 0.069 

Species-origin 5.512 4.538 1.215 0.225 

Species-genus 6.280 4.205 1.494 0.135 

Species-size -3.778 4.512 -0.837 0.402 

Field type-soy 0.810 1.384 0.585 0.559 

Proportion crop -28.426 15.685 -1.812 0.070 

Bacterial richness (log) x Species-origin -1.264 1.011 -1.250 0.211 

Bacterial richness (log) x Species-genus -1.232 0.971 -1.268 0.205 

Bacterial richness (log) x Species-size 0.895 1.027 0.872 0.383 

Bacterial richness (log) x Proportion crop 7.322 3.628 2.018 0.044 

Proportion crop x Field type-soy -5.413 2.940 -1.841 0.066 

SE = Standard errors 

  



Chapter 2                             Gut microbiomes of mobile predators vary with landscape context and species identity 

 

35 

Table S5. Field study results for effects on beetle fat content - Likelihood-ratio tests from CLMM model including sex 

as fixed term. Likelihood-ratio tests from cumulative link mixed model results on the effect of beetle species 

contrasts, log-transformed bacterial richness, field type, and proportion cropland on beetle fat content. P-values 

<0.05 are reported in bold numbers. Details on parameter estimates and standard errors reported in Table S6.  

Term df χ2 p value 

Bacterial richness (log) 1 0.58 0.448 

Species 3 13.25 0.004 

Field type 1 4.45 0.035 

Proportion cropland 1 0.17 0.680 

Bacterial richness (log) x species 3 12.78 0.005 

Bacterial richness (log) x proportion crop 1 5.32 0.021 

Field type x proportion crop 1 3.95 0.047 

Species x sex 3 10.51 0.015 

Proportion cropland x sex 1 5.18 0.023 

df = Degrees of freedom  
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Table S6. Field study results for effects on beetle fat content - Parameter estimates from clmm model including 

sex as fixed term. Parameter estimates and standard errors from the cumulative link mixed model (corresponding 

to Table S5) on the effect of beetle species log-transformed bacterial richness, field type, and proportion cropland 

on fat content of lady beetles. The model included beetle species within collection site as random effect (n = 242 

beetles, n = 17 sites, n = 54 species within sites, n= 84 sex within species within site). The estimated variances of 

the random effects were essentially 0. Model selection was based on stepwise deletion of predictors based on 

AICc. P-values <0.05 are reported in bold numbers, while P <0.10 are in italics.  

Term Estimate SE z value p value 

Low|medium -16.102 7.755 -2.076  

Medium|low -13.802 7.724 -1.787  

Bacterial richness (log) -3.554 1.770 -2.008 0.045 

Species-origin 4.973 4.576 1.087 0.277 

Species-genus 7.568 4.310 1.756 0.079 

Species-size -4.829 4.550 -1.061 0.288 

Field type-soy 1.237 1.456 0.849 0.396 

Proportion crop -32.140 16.360 -1.965 0.049 

Bacterial richness (log) x Species-origin -1.212 1.018 -1.190 0.234 

Bacterial richness (log) x Species-genus -1.595 0.997 -1.599 0.110 

Bacterial richness (log) x Species-size 1.069 1.036 1.032 0.302 

Bacterial richness (log) x Proportion crop 8.568 3.802 2.254 0.024 

Proportion crop x Field type-soy -6.581 3.088 -2.131 0.033 

Proportion crop x Sex-male -2.457 0.742 -3.313 0.001 

Species-origin x Sex-male 0.297 0.392 0.758 0.449 

Species-genus x Sex-male 0.951 0.356 2.667 0.008 

Species-size x Sex-male 0.642 0.364 1.763 0.078 

SE = Standard errors 
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Abstract 

Plant diversity affects species richness and abundance of taxa at higher trophic levels. However, 

plant diversity effects on omnivores (feeding on multiple trophic levels) and their trophic and 

non-trophic interactions are not yet studied because appropriate methods were lacking. A 

promising approach is the DNA-based analysis of gut contents using next generation 

sequencing (NGS) technologies. Here, we integrate NGS-based analysis into the framework of 

a biodiversity experiment where plant taxonomic and functional diversity were manipulated to 

directly assess environmental interactions involving the omnivorous ground beetle Pterostichus 

melanarius. Beetle regurgitates were used for NGS-based analysis with universal 18S rDNA 

primers for eukaryotes. We detected a wide range of taxa with the NGS approach in 

regurgitates, including organisms representing trophic, phoretic, parasitic, and neutral 

interactions with P. melanarius. Our findings suggest that the frequency of (i) trophic 

interactions increased with plant diversity and vegetation cover; (ii) intraguild predation 

increased with vegetation cover, and (iii) neutral interactions with organisms such as fungi and 

protists increased with vegetation cover. Experimentally manipulated plant diversity likely 

affects multitrophic interactions involving omnivorous consumers. Our study therefore shows 

that trophic and non-trophic interactions can be assessed via NGS to address fundamental 

questions in biodiversity research. 

 

3.1 Introduction 

Biodiversity in terrestrial ecosystems is declining due to intensified land use and other human-

driven environmental changes (Sala et al. 2000; Hooper et al. 2012; Newbold et al. 2015). How 

such a decline in diversity affects ecosystem functioning is studied most often for plant diversity 

loss, including both natural systems (Grace et al. 2014) and controlled experiments with 

manipulated plant communities (e.g. Hooper et al. 2012). For decades, plant diversity 

experiments have focused on productivity (Hooper et al. 2005; 2012), while more recent 

research investigates how the diversity of primary producers affects higher trophic levels 

(Cardinale et al. 2006; Barnes et al. 2014). These studies show that plant species richness has 

cascading, bottom-up effects on abundance and species richness of higher trophic levels (Knops 

et al. 1999; Haddad et al. 2009; Scherber et al. 2010; Ebeling et al. 2014). However, the 

assignment of organisms to trophic groups (such as herbivores, carnivores, or omnivores) is so 

far mostly based on literature data (Bohan et al. 2016), combined with information on 

morphology and ecology (Gibb et al. 2015). In addition, it is difficult to relate organism 

abundances to process rates such as herbivory or predation, because a species may not 

consume food proportional to its abundance (Wimp et al. 2012; Davey et al. 2013; Wallinger et 

al. 2014). A further complication arises if consumers are omnivores that feed at more than one 

trophic level. While omnivores are abundant in many systems (Wolkovich et al. 2014), their 

responses to plant diversity remain elusive. 

A promising approach to directly assess trophic interactions is the DNA-based detection 

of food remains in gut contents, which is widely used to study trophic interactions in various 

ecosystems (Pompanon et al. 2012; Symondson et al. 2012; Traugott et al. 2013; Lundgren et 

al. 2014; Symondson & Harwood 2014). Sequence-based identification of food DNA using next 
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generation sequencing (NGS), combined with universal primers for common barcoding regions, 

allows simultaneous detection of feeding events from a wide range of potential interaction 

partners (Valentini et al. 2009; Clare 2014; Pompanon & Samadi 2015). In addition to food 

items, NGS-based methods often co-sequence DNA of other organisms encountered in the 

environment (Symondson et al. 2012). Information on interactions involving these organisms 

is usually discarded in dietary studies (O´Rorke et al. 2012; Clare et al. 2014), but may indicate 

non-trophic interactions, such as commensalism or neutralism that are often completely 

ignored in ecological networks (Kéfi et al. 2015). This approach, albeit ideally suited to 

empirically assess interactions in biodiverse communities, has not yet been applied to study 

the effects of plant diversity on trophic and non-trophic processes. 

Here, we use the framework of a grassland biodiversity experiment to test the potential 

of NGS for the direct and simultaneous assessment of trophic and non-trophic interactions and 

analyze how these interactions are affected by plant biodiversity. We use the omnivorous 

ground beetle Pterostichus melanarius Illiger (Coleoptera; Carabidae) as a model species, as it 

is geographically widespread, locally abundant and present in many natural and agricultural 

ecosystems. Pterostichus melanarius primarily feeds on a wide range of invertebrates from 

various trophic levels but its diet also includes plant material (Thiele 1977; Hengeveld et al. 

1979; Lovei et al. 1996). Furthermore, P. melanarius regurgitates its gut content in response to 

mechanical or thermal stress, allowing non-invasive and non-lethal collection of gut contents 

(Waldner & Traugott 2012). Another advantage of using regurgitates instead of whole body 

DNA extracts of beetles is that they may be ideally suited for sequence-based identification of 

ingested organisms using universal primers without the need to include blocking primers 

because only little DNA of the consumer should be present in this sample type (Raso et al. 

2014). Blocking primers are the most commonly used approach to overcome the problem that 

universal primers, which also amplify consumer DNA, primarily generate amplicons of the 

consumer that limit the detection of less abundant and/or highly digested DNA of food remains 

(O´Rorke et al. 2012). Blocking primers are consumer-specific oligonucleotides that inhibit the 

amplification of specific DNA sequences (Vestheim & Jarman 2008). In addition to consumer 

DNA, however, blocking primers can co-block related non-target species (Piñol et al. 2013) and 

testing the specificity of blocking primers is often impractical in field studies with many, also 

unknown, prey species. An alternative approach is to compensate for consumer co-

amplification by increasing sequencing depth (Piñol et al. 2013, 2014). However, if regurgitates 

are used, blocking primers might not be necessary because regurgitates may contain much less 

consumer DNA. Regurgitates of invertebrates are successfully used in combination with prey-

specific primers (Waldner & Traugott 2012; Raso et al. 2014) but their potential for NGS-based 

diet analysis with universal primers is not yet tested. 

The aim of this study is to assess the potential of NGS-based gut content-analysis to 

study multitrophic interactions in response to changes in biodiversity. Within the framework of 

a plant diversity experiment, we test if regurgitates of an abundant omnivore can be analysed 

with NGS by applying universal primers without blocking primers. By simultaneously analysing 

trophic and non-trophic interactions, we exploit the full potential of NGS to assess the impact 

of biodiversity on interspecific interactions.  
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3.2 Material and Methods 

3.2.1 Ethics statement 

Arthropod sampling was conducted with the permission of the city council of Jena, Germany. 

 

3.2.2 Study site 

This study was conducted within the framework of a grassland biodiversity experiment (The 

Jena Experiment; Thuringia, Germany, 50°950 N, 11°630 E, 130 m above sea level) (Roscher et 

al. 2004) in experimental plots of the Trait-Based Diversity Experiment (TBE; (Ebeling et al. 

2014). The species pool in the TBE consists of 20 Central European grass and non-legume 

herbaceous species. Plant communities were manipulated to cover a gradient of plant species 

richness (1, 2, 3, 4, and 8) and plant functional diversity (1, 2, 3, and 4) on 138 plots (3.5 m x 

3.5 m). The gradient of plant functional diversity was based on plant traits known to be 

important for spatial and temporal resource use such as plant height, rooting depth, or 

phenology, and represents the levels from low (1) to high (4) trait complementarity in the plant 

community (Ebeling et al. 2014). The experimental plots were maintained by biannual mowing 

and weeded three times per year to remove unwanted species. In addition to the 

experimentally manipulated variables (plant species richness and plant functional diversity), we 

visually estimated vegetation cover (in percent) in mid-August 2013. For logistic reasons only a 

subset of the 138 plots was used for this study. 33 plots were selected at random: including 10 

monocultures, five two-species mixtures, five three-species mixtures, ten four-species 

mixtures, and all three eight-species mixtures. Thus, our sampling design had more replicates 

at low (1) and high (4,8) plant species richness, which minimizes the standard error of the slope 

in subsequent statistical analyses (Draper & Smith 1998). Plant biomass data from the previous 

year was used to show that the 33 plots selected did not introduce a systematic bias compared 

to the full 138 plots. Every plot was fenced with an enclosure for a period of two weeks in 

August 2013 to prevent inter-plot movement of P. melanarius and other ground-dwelling 

organisms. For the enclosures, transparent construction foil (PE, 20 μ, Rajapack, Ettlingen) was 

wrapped around the four corner poles of each plot (~50 cm height) and sunk into the soil using 

PVC panels (~15 cm depth) (Fig 1A and 1B). 

 

3.2.3 Study organism 

Adult P. melanarius were collected in the weeks preceding the experiment using dry pitfall traps 

at different locations around Göttingen (Germany; 51°550 N, 9°950 E) in July 2013 as well as in 

the surrounding grass margins of the Jena Experiment in August 2013. Beetles were kept in 

plastic containers on a substrate of moist clay pebbles in a dark room at 18°C and maintained 

on cat food (K-Classic Adult, Kaufland AG, Germany) but starved 48 h before the experiment. 

On August 15, five beetles were released per plot; each beetle was marked with an individual 

pattern of colored dots on its elytra (Fig 1C). After allowing the released beetles to acclimatise 

to the plot conditions for four days, we repeatedly recaptured them over a period of 10 days in 

one central dry pitfall trap (4.5 cm diameter). The traps were filled with clay pebbles and 

emptied in the morning and evening to minimize within-trap predation events. If remains of 
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other organisms were found in a trap, all beetles caught in this trap were excluded from 

analyses. To sample the beetles’ gut contents, we placed them individually headfirst in 1.5 mL 

reaction tubes and exposed the tubes for a few seconds to hot water (~60°C) to induce 

regurgitation (Fig 1D). Regurgitates were immediately frozen at -18°C and subsequently stored 

at -80°C. Afterwards, the beetles were released on the original plot. We were not able to 

recapture beetles from all plots because only one trap per plot was used for a comparatively 

short recapture period of 10 days, due to other experiments conducted on the same plots. 

Additionally, some of the beetles failed to regurgitate or the amount of stomach content was 

too low for analysis. Several other samples dropped out during the analysis process, so that our 

final dataset represented 13 plots. 

 

 

Fig 1. Setup of field experiment and regurgitate sampling. (A) Overview of plots of the Trait-Based Experiment with 

enclosures. (B) Enclosures were made of construction foil sunk into the soil using PVC panels. (C) Marked beetles 

were released and recaptured to sample regurgitates (D) sampling regurgitates. Photographs by J. Tiede. 

 

3.2.4 DNA extraction 

Total DNA was extracted from regurgitates in a molecular diagnostic laboratory at the Institute 

of Ecology, University of Innsbruck, Austria. Each regurgitate sample was mixed with 200 μL 

lysis buffer containing 5 μL Proteinase K (10 mg/mL, AppliChem, Darmstadt, Germany) and TES-

buffer (0.1 M TRIS, 10 mM EDTA, 2% SDS, pH 8) and was incubated at 56°C for 3 h. The DNA 

was extracted from the lysate on a BioSprint 96 robotic DNA extraction platform using the 

MagAttract DNA Blood M96 Kit (Qiagen, Hilden, Germany). Four negative extraction controls 

(DNA extraction blanks) were included to monitor for carry-over DNA contamination during the 

extraction process and were subsequently tested in PCR reactions for NGS. 
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3.2.5 Next generation sequencing and sequence processing 

Next generation sequencing of regurgitates was conducted at the Department of Genomic and 

Applied Microbiology (University of Goettingen, Germany). To analyse a broad spectrum of 

ingested organisms from the regurgitates of P. melanarius without a priori decisions on focal 

groups, we used universal primers amplifying a ~600 bp region of the eukaryotic 18S rDNA 

gene: F515 (5’GTGCCAGCMGCCGCGGTAA-3’) and R1119 (5’-GGTGCCCTTCCGTCA-3’) (Bates et 

al. 2012). Taxon coverage of the primer pair was previously tested in silico using Primer 

Prospector (Walters et al. 2011) and reference sequences derived from the SILVA database 

Quast et al. 2012). The primers included a Roche 454 pyrosequencing adaptor, a library key 

sequence, and a multiplex identifier (MID). Each 50 μL PCR reaction contained 10 μL of 5x 

Phusion GC buffer (Finnzymes, Vantaa, Finland), 0.2 mM of each dNTP, 4 μM of each primer, 

1.5 μL dimethyl sulfoxide (DMSO), 1 U Phusion Hot Start DNA polymerase (Finnzymes), 1 μL 

template DNA, and 32 μL diethylpyrocarbonate (DEPC) water. The thermocycling protocol was 

98°C for 30 s, 35 cycles of 98°C for 10 s, 60°C for 20 s, 72°C for 20 s, and 72°C for 5 min once. 

One template-free control was included in every PCR run. Samples that showed PCR products 

on agarose gel were amplified in three technical replicates, purified with the peqGOLD Gel 

Extraction Kit (Peqlab, Erlangen, Germany) and pooled at equal DNA concentrations. DNA 

concentration was quantified using a Qubit fluorometer (Invitrogen, Carlsbad, USA) with the 

Quant-iT dsDNA HS assay kit; 20 regurgitates with a sufficient DNA concentration (≥ 2 ng μl-1) 

were sequenced.  

The sequencing was carried out on a GS-FLX+ 454 pyrosequencer using Titanium 

chemistry (Roche, Branford, CT), with a targeted surveying effort of 5,000 reads per sample. 

Short reads (<200 bp), and low quality reads (homopolymer stretches >8 bp; primer 

mismatches >5 bp) were removed using QIIME v1.6 (Caprosa et al. 2010). The sequences were 

denoised using Acacia v1.52 (Bragg et al. 2012) and cutadapt was used to truncate remaining 

primer sequences (Martin 2011). Chimeric sequences were removed using UCHIME (Edgar et 

al. 2010) in reference mode with SILVA (SSURef 119 NR database as reference data set (Quast 

et al. 2012)). Using the UCLUST algorithm (Edgar 2010), the remaining sequences were 

clustered in operational taxonomic units (OTUs) at 99% genetic similarity. The consensus 

sequences were calculated using USEARCH (v. 7.0.1090). OTUs were subsequently classified by 

blast alignment against the SILVA database (Camacho et al. 2009). The taxonomy of the best 

hit was assigned to the respective OTU. DNA sequences were deposited in the Sequence Read 

Archive (SRA) of the National Center for Biotechnology Information under accession 

SRA282133. 

 

3.2.6 Data processing 

Two samples were excluded because of low numbers of total sequences or high numbers of 

consumer (P. melanarius) sequences. For the analysis of taxa composition in the remaining 18 

regurgitate samples, we removed all OTUs classified as consumer (1 OTU, 1 sample), human (1 

OTU, 7 samples), vertebrate (1 OTU, 1 sample), tree species (5 OTU, 1–5 samples) and aquatic 

species (6 OTU, 1–2 samples). DNA of aquatic species might have originated from a flooding 

event in June 2013 (Wright et al. 2015), and tree DNA likely originated from pollen of trees 

growing nearby in northern and eastern direction. Human and vertebrate DNA (squirrel) likely 
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represented contaminations. In addition, we excluded OTUs that could not be classified to 

order level (4 OTUs, 1–4 samples), singletons and doubletons (46 OTU, 1–4 samples) from the 

analysis. A complete list of removed OTUs is provided in S1 Table. 

For the analysis of interaction types, all remaining OTUs were aggregated at genus level 

and grouped based on literature information on their most likely interaction with P. melanarius 

(Table 1). We differentiated between trophic interactions that are beneficial (+) to 

P. melanarius but negative (-) for the interaction partner, and non-trophic interactions that are 

neutral (0) or negative for the beetle and beneficial or neutral for the interaction partner. 
 

Trophic interactions (+/-): 

• Total feeding interactions:  all organisms that were likely actively consumed by P. melanarius 

• Plant derived food:   higher plant taxa 

• Prey:    all animal taxa except phoretic mites 

• Intraguild predation:  prey with predatory or omnivorous nutrition 
 

Non-trophic interactions: 

• Parasitism (-/+):   organisms that presumably parasitize P. melanarius 

• Phoresy (0/+):  mites that use insects as phoretic carriers and whose DNA could 
either originate from mites or mite remains that have fallen off 
during sampling 

• Neutralism (0/0):  organisms without known interaction with P. melanarius that 
were likely passively consumed together with food 

 

For the analysis of plant diversity effects on taxa detection in regurgitates, the number of OTUs 

in each group was calculated for each sample (S1 R-Script, S1 and S2 Data). Four plots were 

represented by two or three samples. For these, the number of taxa and the number of 

sequences per group were averaged and rounded to the smallest following integer (ceiling 

function). The resulting 13 independent data points represented 13 plots, including three 

monocultures, two two-species mixtures, three three-species mixtures, three four-species 

mixtures, and two eight-species mixtures. 

 

3.2.7 Statistical analysis 

Data were analysed using R (version 3.1.2, R Development Core Team, 2014). We used 

generalized linear models (GLM) with negative binomial or quasipoisson errors to analyse the 

effects of the explanatory variables on the richness of OTUs for each group. Models included 

either plant species richness, functional diversity, or vegetation cover as explanatory 

variables, as these variables were colinear when entered together in single models; this 

resulted in a total of three individual models per OTU group. To account for potential effects 

of the number of sequences per OTU, we additionally ran quasipoisson models with number 

of sequences per OTU as known prior weights, giving more weight to samples with a high 
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number of sequences. Note that the number of sequences cannot be used as a measure of 

consumed biomass as it is affected by the time since consumption and characteristics of the 

prey tissue that affect digestion time (O´Rorke et al. 2012; Deagle et al. 2010; Deagle et al. 

2013; Piñol et al. 2014). 

 

3.3 Results 

With NGS, we found a total of 90 OTUs in regurgitates of P. melanarius, covering a range of five 

kingdoms within the Eukaryotes (Ruggerio et al. 2015): Animalia, Chromista, Fungi, Plantae, and 

Protozoa. 77 OTUs were assigned to family level, covering 73 different families, and 67 to genus 

level, covering 63 different genera (Table 1). 

 

3.3.1 Detection of trophic and non-trophic interactions with NGS 

Of these 90 OTUs, 24 were categorized as feeding interactions, comprising 12 plant and 12 

animal taxa. Four of the identified plant taxa were locally present as part of the Trait-Based 

Experiment: the genera Plantago (Lamiales), Ranunculus (Ranunculales), and Rumex 

(Caryophyllales), and the family Poaceae (Poales). Other plant taxa, such as the stinging nettle 

Urtica (Rosales), were locally present in the vegetation matrix surrounding the plots and were 

occasional weeds in the experimental plots. 

Animal prey detected using NGS included herbivores and detritivores, such as 

gastropods (Stylommatophora: Deroceras, and Xerolenta), mites (Trombidiformes: 

Microtrombidium; Sarcoptiformes: Glcyyphagidae, and Orbitulata), grasshoppers (Orthoptera: 

Gomphocerus), and earthworms (Haplotaxida: Hormogastridae). In addition, we detected 

other predator taxa: DNA of another ground beetle (Coleoptera: Bembidion) was found in four 

plots, a predatory mite (Trombidiformes: Trombiculidae) in three plots, an earwig (Dermaptera: 

Forficulidae), and two spider taxa (jumping spiders; Araneae: Salticidae, and a huntsman spider; 

Sparassidae, likely Micrommata virescens). 

In addition to feeding interactions, we detected organisms that likely interacted 

negatively (parasites) or neutrally (commensalism, neutralism) with P. melanarius (Table 1). 

Two organisms that were presumably parasites of P. melanarius were present in samples from 

five plots: an entomopathogenic fungus (Ascomycota: Hypocreales: Isaria sp.) known to infect 

carabid beetles (Draganova et al. 2010), and a group of parasitic protists (Apicomplexa: 

Eugregarinida) that frequently infects P. melanarius (Sienkiewicz & Lipa 2009). DNA of phoretic 

mites was found in regurgitates from 11 plots, with the family Histiostomatidae (Acariformes) 

represented eight times and the family Acaridae, genus Histiogaster sp. (Acariformes), found 

three times. None of the plots contained both families together. Most OTUs (N = 61) detected 

in the regurgitates of P. melanarius represented neutral interaction partners with no specific 

relation to the beetle (passive consumption, environmental DNA). Most of these organisms 

were fungi (N = 45), and protists (Amoebozoa, and SAR, N = 13), but we also detected terrestrial 

algae (N = 3). 
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3.3.2 Effects of plant biodiversity and vegetation cover on species interactions 

Plant diversity affected the total number of feeding interactions and the taxon richness in all 

food groups including plant-derived food, animal total prey and intraguild prey (Table 1; Fig 2A–

2D): the total number of feeding interactions was significantly positively affected by plant 

species richness and positively but not significantly by functional diversity and vegetation cover. 

The number of plant taxa detected in the regurgitates increased with the number of sown plant 

species in the plot. The total number of total prey species increased with plant species richness 

and vegetation cover, intraguild predation was only affected by vegetation cover. The 

occurrence of parasitic and phoretic interactions was not significantly related to any of the 

explanatory variables (Table 2). The richness of neutral interactions was not affected by plant 

species richness or functional diversity but increased with percentage vegetation cover (Table 

2; Fig 2E). In weighted models, all effects from unweighted models remained significant. 

Additionally, marginal effects became significant.  

Since the identity of OTUs was ignored in the aggregated data analysis, we show in Fig 3 

how abundant individual families from the three kingdoms Animalia, Plantae, and Fungi 

respond to plant species richness and plant functional diversity. 

 

 



 
 
 

 

 

Table 1. Organisms detected with NGS in regurgitates of P. melanarius, sorted by their most likely type of interaction with the beetle.  

Interaction 
type 

Kingdom Phylum Class Order Family Genus 
Nutrition, 
metabolism 

N 

Trophic 
(feeding, 
+/-)  

Plantae Tracheophyta Magnoliopsida Asterales Asteraceae Artemisia autotrophic 1 

Plantae Tracheophyta Magnoliopsida Caryophyllales Polygonaceae Rumex autotrophic 4 

Plantae Tracheophyta Magnoliopsida Dipsacales Caprifoliaceae Triplostegia autotrophic 3 

Plantae Tracheophyta Magnoliopsida Fabales Fabaceae n/a autotrophic 3 

Plantae Tracheophyta Magnoliopsida Gentianales Rubiaceae* Guettarda* autotrophic 1 

Plantae Tracheophyta Magnoliopsida Lamiales Plantaginaceae Plantago autotrophic 2 

Plantae Tracheophyta Magnoliopsida Poales Poaceae Triticum autotrophic 3 

Plantae Tracheophyta Magnoliopsida Poales Restionaceae n/a autotrophic 1 

Plantae Tracheophyta Magnoliopsida Ranunculales Ranunculaceae Ranunculus autotrophic 1 

Plantae Tracheophyta Magnoliopsida Rosales Rosaceae Prunus autotrophic 3 

Plantae Tracheophyta Magnoliopsida Rosales Urticaceae Urtica autotrophic 8 

Plantae Tracheophyta Magnoliopsida Rosales n/a n/a autotrophic 4 

Animalia Annelida Clitellata Haplotaxida Hormogastridae* Hormogaster* detrivorous 1 

Animalia Arthropoda Arachnida Araneae Salticidae Goleba* predatory 1 

Animalia Arthropoda Arachnida Araneae Sparassidae Micrommata+ predatory 1 

Animalia Arthropoda Arachnida Sarcoptiformes Glycyphagidae Alabidopus* fungivorous 1 

Animalia Arthropoda Arachnida Sarcoptiformes Oribatulidae Oribatula detrivorous 1 

Animalia Arthropoda Arachnida Trombidiformes Microtrombidiidae Microtrombidium 
parasitic on 
vertebrates 

1 

Animalia Arthropoda Arachnida Trombidiformes Trombiculidae n/a predatory 3 

Animalia Arthropoda Insecta Coleoptera Carabidae Bembidion predatory 4 

Animalia Arthropoda Insecta Dermaptera Forficulidae n/a detrivorous 1 

Animalia Arthropoda Insecta Orthoptera Acrididae Gomphocerus herbivorous 1 

Animalia Mollusca Gastropoda Stylommatophora Agriolimacidae Deroceras herbivorous 2 

Animalia Mollusca Gastropoda Stylommatophora Hygromiidae Helicella herbivorous 1 



 
 
 

 

Interaction 
type 

Kingdom Phylum Class Order Family Genus 
Nutrition, 
metabolism 

N 

Parasitism 
(-/+)  

Chromista Miozoa Conoidasida Eugregarinorida n/a n/a parasitic on insects 2 

Fungi Ascomycota Sordariomycetes Hypocreales Cordycipitaceae Isaria entomopathogenic 3 

Phoresy 
(0/+)  

Animalia Arthropoda Arachnida Sarcoptiformes Acaridae Histiogaster bacterivorous 3 

Animalia Arthropoda Arachnida Sarcoptiformes Histiostomatidae Anoetus bacterivorous 1 

Animalia Arthropoda Arachnida Sarcoptiformes Histiostomatidae n/a bacterivorous 7 

Neutralism 
(0/0) 

Chromista Cercozoa Gromiidea Reticulosida Gymnophryidae Gymnophrys omnivorous 2 

Chromista Cercozoa Sarcomonadea Cercomonadida Heteromitidae Heteromita bacterivorous 4 

Chromista Cercozoa Sarcomonadea Cercomonadida n/a Cercomonas bacterivorous 3 

Chromista Cercozoa Sarcomonadea Glissomonadida Bodomorphidae Bodomorpha bacterivorous 1 

Chromista Cercozoa Sarcomonadea Glissomonadida n/a n/a bacterivorous 1 

Chromista Cercozoa Thecofilosa Cryomonadida Rhizaspididae Rhogostoma  bacterivorous 3 

Chromista Cercozoa Vampyrellidea Vampyrellida Vampyrellidae n/a omnivorous 1 

Chromista Ciliophora Colpodea Colpodida Colpodidae Exocolpoda bacterivorous 1 

Chromista Miozoa Apicomonadea Colpodellida Colpodellidae Colpodella 
predatory on 
protists 

1 

Chromista Pseudofungi Hyphochytrea Hyphochytriida n/a n/a phytopathogenic 1 

Chromista Pseudofungi Oomycetes Pythiales Pythiaceae Pythium phytopathogenic 1 

Fungi Ascomycota Dothideomycetes Acrospermales Acrospermaceae Acrospermum saprotrophic 1 

Fungi Ascomycota Dothideomycetes Capnodiales n/a n/a phytopathogenic 11 

Fungi Ascomycota Dothideomycetes Pleosporales Didymellaceae Didymella phytopathogenic 1 

Fungi Ascomycota Dothideomycetes Pleosporales Didymellaceae Phoma phytopathogenic 8 

Fungi Ascomycota Dothideomycetes Pleosporales Phaeosphaeriaceae Parastagonospora phytopathogenic 3 

Fungi Ascomycota Dothideomycetes Pleosporales Pleosporaceae Pyrenophora phytopathogenic 1 

Fungi Ascomycota Dothideomycetes Pleosporales Tubeufiaceae Tubeufia saprotrophic 2 

Fungi Ascomycota Dothideomycetes Pleosporales n/a n/a saprotrophic 9 

Fungi Ascomycota Eurotiomycetes Chaetothyriomycetidae Herpotrichiellaceae Coniosporium n/a 1 

Fungi Ascomycota Eurotiomycetes Eurotiales Trichocomaceae Penicillium saprotrophic 1 

Fungi Ascomycota Leotiomycetes Helotiales Helotiaceae Cudoniella saprotrophic 3 



 
 
 

 

Interaction 
type 

Kingdom Phylum Class Order Family Genus 
Nutrition, 
metabolism 

N 

Neutralism 
(0/0) 

Fungi Ascomycota Leotiomycetes Helotiales Vibrisseaceae Phialocephala endophytic 1 

Fungi Ascomycota Leotiomycetes Helotiales n/a n/a n/a 2 

Fungi Ascomycota Pezizomycetes Pezizales n/a n/a saprotrophic 1 

Fungi Ascomycota Saccharomycetales Saccharomycetales Debaryomycetaceae Priceomyces n/a 5 

Fungi Ascomycota Saccharomycetales Saccharomycetales Dipodascaceae Yarrowia n/a 13 

Fungi Ascomycota Saccharomycetales Saccharomycetales Hanseniaspora n/a n/a 1 

Fungi Ascomycota Saccharomycetales Saccharomycetales Saccharomycetaceae Candida n/a 1 

Fungi Ascomycota Sordariomycetes Hypocreales Fusarium Fusarium phytopathogenic 2 

Fungi Ascomycota Sordariomycetes Hypocreales Hypocreaceae Acremonium phytopathogenic 1 

Fungi Ascomycota Sordariomycetes Hypocreales n/a n/a n/a 5 

Fungi Ascomycota Sordariomycetes Sordariales Chaetosphaeriaceae Chaetosphaeria phytopathogenic 1 

Fungi Ascomycota Sordariomycetes Sordariales Sordariaceae Neurospora saprotrophic 1 

Fungi Ascomycota Sordariomycetes Xylariales Hyponectriaceae Microdochium phytopathogenic 2 

Fungi Basidiomycota Agaricomycetes Agaricales Bolbitiaceae Conocybe saprotrophic 1 

Fungi Basidiomycota Agaricomycetes Agaricales Marasmiaceae Baeospora saprotrophic 1 

Fungi Basidiomycota Agaricomycetes Agaricales Physalacriaceae Hymenopellis saprotrophic 1 

Fungi Basidiomycota Agaricomycetes Agaricales Tricholomataceae Clitocybula saprotrophic 1 

Fungi Basidiomycota Agaricomycetes Boletales Hygrophoropsidaceae Leucogyrophana saprotrophic 1 

Fungi Basidiomycota Agaricomycetes Hymenochaetales Tubulicrinaceae Hyphodontia saprotrophic 1 

Fungi Basidiomycota Agaricomycetes Polyporales Polyporaceae Tyromyces saprotrophic 2 

Fungi Basidiomycota Exobasidiomycetes n/a n/a Tilletiopsis phytopathogenic 3 

Fungi Basidiomycota Microbotryomycetes Heterogastridiales Heterogastridiaceae Colacogloea  saprotrophic 3 

Fungi Basidiomycota Microbotryomycetes Heterogastridiales Heterogastridiaceae Heterogastridium saprotrophic 11 

Fungi Basidiomycota Microbotryomycetes Sporidiobolales Sporidiobolaceae Rhodotorula saprotrophic 3 

Fungi Basidiomycota Microbotryomycetes Sporidiobolales Sporidiobolaceae Sporobolomyces  saprotrophic 5 

Fungi Basidiomycota Microbotryomycetes Sporidiobolales n/a n/a n/a 1 

Fungi Basidiomycota n/a Malasseziales Malasseziaceae Malassezia animal-pathogenic 4 

Fungi Basidiomycota Pucciniomycetes Pucciniales Malasseziaceae n/a phytopathogenic 3 



 
 
 

 

Interaction 
type 

Kingdom Phylum Class Order Family Genus 
Nutrition, 
metabolism 

N 

Neutralism 
(0/0) 

Fungi Basidiomycota Tremellomycetes Filobasidiales Filobasidiaceae n/a n/a 1 

Fungi Basidiomycota Tremellomycetes Tremellales Tremellaceae Cryptococcus animal-pathogenic 3 

Fungi Basidiomycota Tremellomycetes Tremellales Tremellaceae Dioszegia parasitic on fungi 1 

Fungi Basidiomycota Tremellomycetes Tremellales n/a n/a n/a 4 

Fungi Zygomycota n/a Mortierellales n/a n/a saprotrophic 3 

Fungi Zygomycota n/a Mucorales Mucoraceae Mucor saprotrophic 4 

Plantae Chlorophyta Chlorophyceae Chlamydomonadales Dunaliellaceae n/a autotrophic 3 

Plantae Chlorophyta Chlorophyceae Chlamydomonadales Haematococcaceae n/a autotrophic 3 

Plantae Chlorophyta Trebouxiophyceae Prasiolales Prasiolaceae Stichococcus autotrophic 2 

Protozoa Amoebozoa Flabellinia Vanellida Vanellidae Vanella bacterivorous 1 

Protozoa Amoebozoa Myxogastrea Physarida Physaridae Physarum saprotrophic 1 

Nutrition and metabolism indicate the most common source of energy uptake for the taxa, with predators and omnivores referred to as intraguild predation.  

“N” indicates the detection frequency. Taxonomy follows a Linnaean classification as proposed by (Ruggiero et al. 2015). 

* The closest match in the SILVA database is not endemic in Thuringia, Germany. In this case we consider the next higher taxonomic level as representative.  

+ Since the spider family Sparassidae is represented only by the genus Micrommata in the sampling region, we added this information to the list of taxa. 
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Table 2. Summary of generalized linear models results on the effect of plant species richness, plant functional 

diversity and percent vegetation cover on the number of OTUs detected in each interaction group.  

Interaction group Parameter Estimate SE Z value p value 

1a) Total feeding interactions 

(Intercept) 0.275 0.25 1.1 0.295 

Plant species richness 0.195 0.048 4.114 0.002 

(Intercept) 0.254 0.457 0.555 0.590 

Plant functional diversity 0.289 0.145 1.996 0.071 

(Intercept) -1.206 1.298 -0.929 0.373 

Vegetation cover [%] 0.028 0.016 1.797 0.100 

1b) Feeding on plant taxa 

(Intercept) 0.209 0.296 0.708 0.494 

Plant species richness 0.138 0.06 2.295 0.042 

(Intercept) 0.435 0.46 0.946 0.365 

Plant functional diversity 0.113 0.155 0.727 0.483 

(Intercept) -0.102 1.201 -0.085 0.934 

Vegetation cover [%] 0.011 0.015 0.711 0.492 

1c) Feeding on prey taxa 

(Intercept) -1.087 0.663 -1.639 0.129 

Plant species richness 0.245 0.119 2.067 0.063 

(Intercept) -1.681 1.041 -1.616 0.134 

Plant functional diversity 0.549 0.306 1.796 0.100 

(Intercept) -5.989 3.045 -1.967 0.075 

Vegetation cover [%] 0.071 0.035 2.04 0.066 

1d) Intraguild predation 

(Intercept) -1.379 0.681 -2.023 0.068 

Plant species richness 0.222 0.125 1.769 0.105 

(Intercept) -2.087 1.076 -1.939 0.079 

Plant functional diversity 0.549 0.316 1.736 0.110 

(Intercept) -6.728 2.899 -2.32 0.041 

Vegetation cover [%] 0.075 0.033 2.266 0.045 

1e) Parasitism 

(Intercept) -1.099 0.699 -1.571 0.144 

Plant species richness 0.041 0.163 0.252 0.806 

(Intercept) -1.063 0.902 -1.178 0.264 

Plant functional diversity 0.042 0.315 0.133 0.897 

(Intercept) -2.562 2.607 -0.983 0.347 

Vegetation cover [%] 0.02 0.032 0.636 0.538 

1f) Phoretic interaction 

(Intercept) -0.153 0.233 -0.656 0.525 

Plant species richness -0.004 0.058 -0.073 0.943 

(Intercept) 0.122 0.282 0.434 0.672 

Plant functional diversity -0.118 0.106 -1.114 0.289 

(Intercept) 0.171 0.682 0.25 0.807 

Vegetation cover [%] -0.004 0.009 -0.501 0.626 

1g) Neutral interaction 

(Intercept) 2.013 0.27 7.456 <0.001 

Plant species richness 0.059 0.065 0.911 0.362 

(Intercept) 2.008 0.355 5.65 <0.001 

Plant functional diversity 0.082 0.125 0.662 0.508 

(Intercept) 0.345 0.82 0.421 0.674 

Vegetation cover [%] 0.023 0.01 2.325 0.020 

2a) Total feeding interactions 
(weighted) 

(Intercept) 0.296 0.251 1.179 0.263 

Plant species richness 0.198 0.039 5.021 <0.001 

(Intercept) -0.08 0.555 -0.145 0.888 

Plant functional diversity 0.44 0.16 2.745 0.019 

(Intercept) -1.084 1.68 -0.645 0.532 

Vegetation cover [%] 0.028 0.019 1.458 0.173 
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Interaction group Parameter Estimate SE Z value p value 

2b) Feeding on plant taxa 
(weighted) 

(Intercept) 0.166 0.254 0.653 0.527 

Plant species richness 0.176 0.043 4.134 0.002 

(Intercept) 0.015 0.552 0.028 0.978 

Plant functional diversity 0.33 0.168 1.969 0.075 

(Intercept) 0.227 1.875 0.121 0.906 

Vegetation cover [%] 0.009 0.022 0.424 0.679 

2c) Feeding on prey taxa 
(weighted) 

(Intercept) 0.242 0.2 1.212 0.251 

Plant species richness 0.104 0.031 3.348 0.007 

(Intercept) -0.112 0.362 -0.311 0.762 

Plant functional diversity 0.276 0.101 2.731 0.020 

(Intercept) -1.25 0.798 -1.566 0.146 

Vegetation cover [%] 0.023 0.009 2.642 0.023 

2d) Intraguild predation 
(weighted) 

(Intercept) -0.076 0.27 -0.28 0.785 

Plant species richness 0.096 0.038 2.529 0.028 

(Intercept) -1.3 0.558 -2.33 0.040 

Plant functional diversity 0.489 0.143 3.416 0.006 

(Intercept) -3.218 1.407 -2.287 0.043 

Vegetation cover [%] 0.041 0.015 2.706 0.020 

2e) Parasitism (weighted) 

(Intercept) -0.006 0.169 -0.034 0.973 

Plant species richness -0.007 0.053 -0.123 0.905 

(Intercept) -0.191 0.335 -0.57 0.580 

Plant functional diversity 0.057 0.114 0.5 0.627 

(Intercept) -0.126 0.686 -0.183 0.858 

Vegetation cover [%] 0.001 0.009 0.146 0.886 

2f) Phoretic interactions 
(weighted) 

(Intercept) 0.001 0.033 0.026 0.980 

Plant species richness -0.002 0.012 -0.142 0.890 

(Intercept) 0.011 0.04 0.274 0.789 

Plant functional diversity -0.008 0.021 -0.391 0.703 

(Intercept) 0.027 0.139 0.198 0.847 

Vegetation cover [%] 0 0.002 -0.223 0.828 

2g) Neutral interactions 
(weighted) 

(Intercept) 2.466 0.04 61.912 <2e-16 

Plant species richness 0.011 0.009 1.178 0.239 

(Intercept) 2.478 0.055 45.236 <2e-16 

Plant functional diversity 0.01 0.019 0.523 0.601 

(Intercept) 0.753 0.128 5.888 <0.001 

Vegetation cover [%] 0.021 0.001 14.068 <2e-16 

All OTUs were assigned to interaction groups (see methods). We tested the effects of three explanatory variables 
on all interaction groups and compared two types of models. Models 1a-g were based on counts of interactions 
per plot, while models 2a-g additionally included a weights argument for the number of sequences. All models 
used 2 degrees of freedom and had 11 residual degrees of freedom. A quasipoisson distribution was used for all 
models except neutral interactions, for which negative binomial models were fitted. SE = standard error. p values 
<0.05 are reported in bold numbers. 
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Fig 2. Effects of plant species richness, plant functional diversity, and percentage vegetation cover on feeding 

interactions and neutral interactions detected in regurgitates of P. melanarius. Points represent individual plots 

and are scaled based on the logarithm of the number of sequences, blue lines show GLM predictions, blue 

polygons show 95% confidence intervals for effects with p<0.05, red lines and red polygons refer to GLMs 

weighted by the number of sequences. A) Total number of feeding interactions including prey and plant taxa, B) 

feeding interactions involving plant taxa, C) feeding interactions involving total prey taxa, D) feeding interactions 

involving intraguild predation, and E) neutral interactions.



 

 

 

 

Fig 3. Effects of plant species richness and plant functional diversity on detection frequency of abundant OTUs detected in regurgitates of P. melanarius. The six panels show the 

three kingdoms (Plantae, Animalia, and Fungi). Points represent OTUs, aggregated at family level, that were detected in at least two levels of plant species richness. Lines (smoother 

span = 1.6) show least-squares fits for illustrative purposes only.
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3.4 Discussion 

3.4.1 Assessment and interpretation of trophic and non-trophic interactions 

NGS of regurgitates of the omnivore P. melanarius with primers targeting a spectrum of 

organisms as broad as eukaryotes allowed us to directly assess trophic and non-trophic 

interactions involving a wide range of taxa. Any sequencing-based list of interactions will 

require further validation, as the quality of reference libraries or databases may affect 

assignment of sequences to taxa. As our study was performed within the framework of a larger 

biodiversity experiment, we had considerable knowledge on the presence of taxa in the study 

area, providing extensive species inventories that we used to validate the results. Additionally, 

for well-studied species such as P. melanarius, feeding interactions identified by NGS were 

compared to a broad body of literature on dietary range, feeding preferences, and behaviour. 

Literature research may also help to reveal which live stage of an animal or type of plant tissue 

has likely been consumed, as this information cannot be provided by DNA-based food 

detection. For example, seeds are a putative source of plant DNA since they are frequently 

consumed by P. melanarius (Petit et al. 2014) and more often found in guts of the carabid 

subfamily Harpalinae than pollen or other plant tissue (Hengeveld et al. 1979). 

Many taxa we detected are well-known prey of P. melanarius, including slugs (Bohan et 

al. 2000; McKemey et al. 2001), earthworms (Symondson et al. 2000), spiders (Davey et al. 

2013), and small beetles (Prasad et al. 2006; Davey et al. 2013). More surprising was the 

detection of grasshopper DNA. Grasshoppers were abundant at the field site during our study 

(see also Specht et al. 2008), and although it is unlikely that the beetle captured an adult 

grasshopper, predation on egg pods (Parker & Wakeland 1957) or scavenging on dead 

specimen can be considered a likely source of DNA in the gut (Foltan et al. 2005). Most 

surprising was the frequent detection of mite DNA, an observation that was supported by mite 

remains in dissected guts of P. melanarius specimens collected from the Jena Experiment (Fig 

4A and 4B). Mites are within the food range of ground beetles (Thiele 1977) but their role in 

the diet of P. melanarius remains unclear. Generally, the broad dietary range of P. melanarius 

reported in the literature (Thiele 1977; Hengveld 1979) is well reflected by our NGS-based 

results on trophic interactions. 

Among the non-trophic interactions revealed in the current study, parasitic interactions 

included an entomopathogenic fungus and a group of parasitic protists. Both could either have 

been parasites of P. melanarius or associated with its prey (Piñol et al. 2013). Despite this 

uncertainty, detecting parasite DNA in regurgitates of P. melanarius proves that the beetles 

were likely exposed to potential antagonists. Mite DNA detected using NGS may also indicate 

phoretic interactions, that is, mites may have used beetles as transporters between habitats 

(Fain et al. 1995). Mite DNA could either originate from mites or their remains, like exuviae, 

that were externally attached to prey or to P. melanarius itself and have fallen off during 

sampling. Additional observations showed that P. melanarius specimens are frequently infested 

by mites (Fig 4C). 
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Fig 4. Mites as prey and parasites of P. melanarius. (A) Predatory mite (Trombidiformes: Trombiculidae) in a plot 

of the Jena Experiment. (B) Mite isolated from a gut of P. melanarius (C). Phoretic mites (Mesostigmata: 

Parasitidae) on P. melanarius. Photographs by C. Scherber. 

 

Most taxa we detected could not be assigned to a specific type of interaction with 

P. melanarius and were assumed to be neutral interactions with organisms that coexist with 

the beetles without affecting them in a particular way. By this simplification, we may have 

included organisms with a more specific but up to date unknown interaction with P. melanarius, 

e.g. yeasts that are beneficial to digestion processes, since the microbiome of ground beetles 

is largely unexplored (Lundgren et al. 2007, Lundgren& Lehman 2010). Most of the organisms 

classified as neutral interaction partners could, however, be identified as phytopathogens or 

saprotrophs for which an effect on P. melanarius is unlikely. Vice versa, the beetle could have 

contributed to the dispersal of spores (Lillekov & Bruns 2005) but information on the taxon-

specific survival through the gut passage is required for assumptions on more specific 

interactions. It is likely that carabid beetles accidentally ingest all kinds of organisms during 

feeding or simply by dwelling in their environment, because even non-nutritional material, such 

as sand, has commonly been reported in their gut contents (Hengveld 1979). Boyer et al. (2015) 

suggest the use of faeces as ‘biodiversity capsules’ for species inventories of the foraging area. 

Similarly, species composition in regurgitates may provide information on species diversity and 

ecosystem processes in the beetles‘ habitat. 

Further studies are essential to supplement the list of interaction partners by expanding 

the analysis to bacteria. Facultative bacterial symbionts have an impact on seed consumption 

by the omnivorous ground beetle Harpalus rufipes (Lundgren & Lehman 2010) and may also 

alter the food choice of field populations of ground beetles. 
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3.4.2 Regurgitates as source material for NGS 

Our study is among the first to use NGS for the analysis of regurgitates to assess species 

interactions. Even without the use of blocking primers, only two samples yielded consumer 

DNA sequences and in one of them there was too much consumer DNA so that the sample had 

to be removed from the analysis. These results demonstrate that regurgitates contain only little 

consumer tissue and are asuitable source material for diet analysis of omnivorous or predatory 

insects because they can be analysed without blocking primers, avoiding drawbacks related to 

this approach (Piñol et al. 2013; 2014). In addition, the DNA recovered from food remains 

regurgitated from the foregut is likely more intact than from posterior gut sections or faeces. 

This allowed us to use primers that target a relative large DNA fragment of about 600 bp, which 

is beyond the recommended size of DNA fragments for molecular gut content analysis (but see 

Waldner et al. 2013), and to assign most sequences to genus or family level. Targeting long DNA 

sequences may also reduce the chance to detect degraded DNA from prey guts (secondary 

predation; (Sheppard et al. 2005)), or environmental sources. In the present study, we further 

avoided an overestimation of feeding events by discarding OTUs with low reads. 

Defensive regurgitation is not only common in Carabidae (Forsythe 1982; Raso et al. 

2014) but also in other coleopteran families commonly occurring in a wide range of ecosystems, 

for example, Chrysomelidae (Gross et al. 1998; Olckers 2000), Staphylinidae (personal 

observation) and Silphidae (Robertson 1992), but also in Orthoptera (Lymbery & Bailey 1980) 

as well as the larval stages of some Lepidoptera (Grant 2006). As regurgitate-sampling is non-

invasive it could even be used to analyse the diet of endangered species or gut content samples 

of an individual at multiple time points. Using regurgitates for NGS based analysis represents a 

straightforward method to assess trophic and non-trophic interactions. Over all, our results 

demonstrate that regurgitates are a suitable source material for diet analysis of omnivorous or 

predatory insects with NGS. 

 

3.4.3 Effects of plant biodiversity and vegetation cover on species interactions 

We conducted our study within the framework of a biodiversity experiment, where aspects of 

plant taxonomic and functional diversity are experimentally manipulated (Ebeling et al. 20149 

to allow testing for the effects of plant diversity per se on trophic and non-trophic interactions, 

as opposed to observational studies (Tilman 1999; Hector et al. 2007). So far, research on plant 

diversity effects on higher trophic levels rarely goes beyond measuring species richness and 

abundance. Although our findings are limited by the small sample size, our study provides 

insights into how plant diversity affects how well species in a community are connected with 

each other. 

Our results indicate that experimentally manipulated plant diversity may indeed affect 

interactions between a generalist consumer and its potential food. Both the number of plant 

and prey taxa detected in regurgitates increased with the number of sown plant species. Plots 

with high plant species richness support a more diverse consumer community in relation to 

species poor plots (Scherber et al. 2010) and may provide more potential food items for the 

omnivorous beetles, thereby facilitating a mixed diet. 
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Prey detection and intraguild predation also increased with vegetation cover. Large 

carabid beetles, as P. melanarius (body size 12–18 mm), prefer structural complexity over open 

plots because it lowers their vulnerability to predation (Brose 2003) and may facilitates 

extensive foraging. The abundance of predators relative to herbivores has been reported to 

increase with plant diversity (Haddad et al. 2009), potentially increasing the chances that P. 

melanarius captures other predators. Hunter suggests that omnivorous consumers 

preferentially feed on other higher order consumers because they are rich in nitrogen (2009). 

In regurgitates of beetles from plots with dense vegetation, we detected more neutral 

interactions with passively consumed organisms. High vegetation cover may provide a more 

humid microclimate that facilitates fungi and protists (Toberman et al. 2008; Stefan et al. 2014) 

and therefore increases the likelihood of encounters with ground-dwelling beetles. 

It should be made clear, however, that more replicates and a greater range of consumer 

taxa will be needed to further elucidate the trends reported here. Nevertheless, our findings 

agree well with a large body of empirical work (Cardinale et al. 2006; Scherber et al. 2010; 

Lefcheck et al. 2015) showing a facilitating effect of plant diversity on trophic interactions. Thus, 

our study presents the intriguing possibility that our understanding of multitrophic food webs 

can be considerably advanced using molecular tools such as NGS. 

NGS-based gut content analysis was so far mainly used to describe the dietary spectrum 

of species (Piñol et al. 2013; Vesterinen et al. 2013; Clare et al. 2014) but is underexploited in 

research on biodiversity and ecosystem functioning and has rarely been applied in plant 

diversity experiments. Expanding the spectrum of applications of NGS to address questions and 

to empirically test theories in biodiversity research is the way forward. With profound 

knowledge of the species pool and the often extensive data on ecological parameters available 

in biodiversity experiments, NGS-based gut content analysis can contribute too a mechanistic 

understanding of diversity effects. Applying very general primers allows assessing trophic 

interactions on various food types and non-trophic interactions simultaneously in one 

approach. By using regurgitates as source material, blocking primers for consumer DNA are no 

longer required and NGS becomes easily applicable even for predators or omnivores. 
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3.6 Data accessibility 

DNA sequences were deposited in the Sequence Read Archive (SRA) of the National Center for 

Biotechnology Information under accession SRA282133. Data used for statistical analyses and 

an R script are provided as Supporting Information files. 
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Abstract 

Plant diversity has been shown to affect species richness and abundance of associated 

consumer communities. Species in diverse communities are likely connected by interspecific 

interactions. Omnivores, in particular, may link multiple trophic levels (e.g., plant and prey) and 

multiple resource channels (e.g., herbivore and detritivore resources) in interaction webs. 

However, it has remained unclear if and how changing plant diversity affects trophic 

interactions of omnivores, because appropriate methods were lacking. Moreover, the effects 

of plant and prey diversity on the gut microbiome of omnivores are largely unexplored. A 

promising approach is the DNA-based analysis of gut contents using next generation 

sequencing (NGS) technologies in combination with universal primers, allowing the detection 

of interactions from a wide range of taxa. 

Here, we use the framework of a grassland biodiversity experiment (The Jena 

Experiment) where plant taxonomic and functional diversity were manipulated to analyze how 

three species of surface-active invertebrates with varying degree of omnivory respond to plant 

biodiversity. We released and recaptured ground beetles (Pterostichus melanarius, and 

Harpalus rufipes) and sampled field slugs (Deroceras sp.) in 138 fenced plots with experimental 

plant communities. Beetle regurgitates and slug feces were collected and DNA from these 

dietary samples was sequenced (Illumina MiSeq). We analyzed trophic and non-trophic 

interactions using general primers for plants, animals, fungi, and bacteria. 

Our results show that omnivores in our study system choose their food independently 

of plant species richness (1 to 8 species). Plant diversity had only weak direct effects on the 

dietary and microbial diversity in gut content and seems to act more indirectly via the bottom-

up food web. We detected strong differences in gut contents among the three omnivores that 

reflect their different food preferences. Overall, metabarcoding is a promising novel approach 

to study multitrophic interactions in biodiversity experiments and ecology in general. 

 

4.1 Introduction 

Species interactions in multitrophic communities are the hidden drivers of ecosystem 

processes and determinants of ecosystem functioning (Scherber et al. 2010; Lefcheck et al. 

2015; Brose & Hillebrand 2016). However, the knowledge on how changing environmental 

conditions affect interactions between species is currently limited. Many studies concerning 

the influence of declining plant diversity in terrestrial ecosystems, have measured the 

numerical response of species at higher trophic levels or measured ecosystem process rates. 

These studies have shown, that producer diversity has cascading effects on the abundance and 

richness of consumer species (Knops et al. 1999; Koricheva et al. 2000; Borer et al. 2012), 

induces shifts in the functional structure and diversity across trophic levels (Haddad et al. 2009; 

Ebeling et al. 2017), and affects consumer-mediated ecosystem processes (Scherber et al. 

2010; Allan et al. 2015; Hertzog et al. 2016b; Meyer et al. 2017). 

Despite the importance of multitrophic interactions for a mechanistic understanding of 

dynamics and processes within ecological communities, few studies have empirically measured 

plant diversity effects on species interactions. Direct measurements are often limited to easily 
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observable interactions between plants and pollinators (Venjakob et al. 2016) or aboveground 

herbivores (Meyer et al. 2017), while resolving feeding interactions at higher trophic levels has 

remained challenging. Non-trophic interactions especially with microbial interaction partners 

like, e.g., gut endosymbionts are usually ignored completely in species interaction webs. Recent 

advances in DNA sequencing offer new possibilities to examine trophic and non-trophic 

interactions empirically (Traugott et al. 2013; Clare 2014; Vacher et al. 2016; Kamenova et al. 

2017) Next generation sequencing (NGS) technologies combined with barcoding primers for 

broad taxonomic groups allows for the detection of multi-level species interactions from a wide 

range of potential interaction partners in complex and species-rich ecosystems (Pompanon & 

Samadi 2015; Tiede et al. 2016) and offers new insights into how the flow of energy and 

nutrients from basal resources translates to ecosystem processes in multitrophic communities. 

Omnivores, are particularly interesting for studying interspecific interactions, as they 

link multiple trophic levels (e.g., plant and prey) and multiple resource channels (e.g., herbivore 

and detritivore resources) (Thompson et al. 2007; Wolkovich et al. 2014). Moreover, they may 

weaken top-down effects via intraguild predation, or strengthen population dynamics in food 

webs by adaptive feeding on abundant resources (McCann & Hastings 1997; Finke & Denno 

2004; Kratina et al. 2012). Previous studies have shown, that plant diversity has no strong 

impact on species richness and abundance of omnivores (Scherber et al. 2010) but increases 

the functional diversity within omnivore communities and shifts the communities towards 

more carnivorous species (Ebeling et al. 2017). However, little is known about how omnivores 

respond trophically to changes in biodiversity. In particular, the adaption of feeding behavior 

within a species or even within individuals are rarely considered even though omnivores and 

other polyphagous feeders are known for their dietary plasticity (Hunter et al. 2009, Wolkovich 

et al. 2014). In a pilot study (n=13 replications), we found that the diet of an omnivorous ground 

beetle became more divers with increasing plant diversity (Tiede et al. 2016), which could 

indicate opportunistic foraging. In this study, we aim to elucidate, if this pattern can be 

generalized for a broader range of omnivores.  

We included interactions between omnivores and bacterial and fungal microbes in our 

analysis. Previous studies have shown, that facultative bacterial symbionts can affect the diet 

of omnivores and vice versa (Lundgren & Lehman 2010), and that gut bacteria of arthropods at 

higher trophic levels respond to local and landscape diversity (Schmid et al. 2015; Tiede et al. 

2017). The guts of invertebrates contain besides host associated microbes also passengers from 

environmental sources that are co-sequenced with the gut community in metabarcoding 

studies. Such environmental DNA (eDNA) can provide considerable information about the 

diversity of microbes and ecological processes in the source environments. Previous studies 

have shown that plant diversity increased the microbial activity and shifted the soil community 

towards more fugal compared to bacterial biomass (Markus Lange 2015; Eisenhauer et al. 

2017). Further, the diversity of co-occurring fungi and protists in beetle guts where indirectly 

affected by plant diversity via vegetation cover (Tiede et al, 2016). Microbial richness has in 

turn positive effects on the multifunctionality of ecosystems (Wagg et al. 2014). Invertebrates 

might affect the soil microbial community via increasing herbivory rates along the plant 

diversity gradient that can speed up nutrient cycling (Meyer et al. 2017) and by distributing 

species that survive the gut passage (Vega & Blackwell 2005). In turn, soil bacteria and fungi 

are connected to aboveground invertebrate omnivores through the detrital food web (Scheu 
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2002). Systematic studies on the response of microbe-invertebrate interactions to changing 

diversity of basal resources are, however, lacking so far. 

Here, we empirically assessed the multitude of trophic and microbial interactions of 

surface-active invertebrates with omnivorous feeding habits in response to biodiversity 

manipulations within a grassland biodiversity experiment (The Jena Experiment; Roscher et al. 

2004; Ebeling et al. 2014). In particular, we identified DNA in gut contents and feces of three 

model consumer species with varying degree of omnivory, the ground beetles 

Pterostichus melanarius Illiger, and Harpalus rufipes DeGeer, and field slugs of the genus 

Deroceras Rafinesque (Pulmonata: Agriolimacidae) by high throughput sequencing (Illumina 

MiSeq) of PCR products from common barcoding regions for plants, animals, fungi, and bacteria 

(Pompanon et al. 2012; Traugott et al. 2013; Tiede et al. 2016).  

We specifically asked the following questions: 

1. Trophic interactions: Will omnivores from a more diverse local environment have a 

more diverse diet? We hypothesize that the direct impact of plant diversity is proportional to 

the amount of plant material in the diet (D. sp. > H. rufipes > P. melanarius). Indirect plant 

diversity effects via the trophic chain will become more important with increasing proportion 

of prey food in the diet (D. sp. < H. rufipes < P. melanarius). 

2. Host associated microbes: Does the ratio of beneficial to harmful microbes change 

along the plant diversity gradient? We assume that an increase in plant diversity results in a 

higher proportion of beneficial organism in consumer guts.  

3. Microbial eDNA: Does plant diversity affect the richness of microbes without direct 

relation to the consumers (e.g., plant pathogens, saprobionts)? Based on previous findings, we 

assume that the taxonomic richness of microbes will increase with plant diversity. Further, we 

hypothesize that microbial communities are more dissimilar in plant monocultures and will 

become more similar with increasing plant diversity. 

 

4.2 Methods 

4.2.1 Experimental field sites 

We conducted this study within the framework of a grassland biodiversity experiment (The Jena 

Experiment, Germany, 50°95′ N, 11°63′ E, 130 m above sea level; Roscher et al. 2004) in 

experimental plots of the Trait-Based Diversity Experiment (TBE; Ebeling et al. 2014). The TBE 

was established in 2010, to study the effects of taxonomic and functional diversity of grassland 

communities on ecosystem functions. The plant communities in the TBE were assembled from 

a total of 20 Central European grass and non-legume herbaceous species. The plant species 

were assigned to three (partially overlapping) species pools with eight species in each pool 

based on six continuous plant functional traits (e.g., plant height, and rooting depth) that are 

known to be important for resource use along a spatial (light, water, nutrients) and temporal 

(phenology) gradient. Pool 1 was comprised of plant species that differ in spatial resource use. 

Plants in pool 2 covered a gradient of temporal resource use, and pool 3 combined both 

gradients but with plants on the extreme ends of the spatial and temporal resource use 



Chapter 4                      Plant diversity effects on multitrophic interactions analyzed by gut content metabarcoding 

  

63 

gradients. On 138 plots (3.5 m x 3.5 m) in three spatial blocks that account for differences in 

soil texture, plant species richness (1, 2, 3, 4, and 8 sown species) and plant functional diversity 

(1, 2, 3, and 4) were manipulated. Plant functional diversity represented the levels from low (1) 

to high (4) trait complementarity in the plant community (Ebeling et al. 2014). The experimental 

plots were maintained by biannual mowing and weeded three times per year to remove 

unwanted species and maintain the sown communities.  

On each plot, we installed an enclosure (3.5 m x 1 m, Fig. 1 A) to prevent inter-plot 

movement of consumers for the time of the experiment (July till September 2014). For the 

enclosures, transparent construction foil (PE, 20 µ, Rajapack, Ettlingen) was wrapped around 

four corner poles up to a height of 40 cm and sunken into the soil about 15 cm depth using 

plastic panels. Additional to the 138 experimental plots (3.5 m x 3.5 m), we installed one control 

plot in each of the three blocks within the plant matrix between the plots. The matrix consists 

of a mix of various plants from the total species pool of the Jena Experiment, including legumes, 

and further common grassland species and is mown frequently.  

 

4.2.2 Plant and invertebrate community measures 

The percentage of the total vegetation cover within each enclosure was visually estimated at 

the end of August 2014. Plant aboveground biomass was measured at the beginning of 

September 2014. Therefore, plant material was cut at two random locations within the plots 

(20 x 50 cm) but outside the enclosed area, dried, and weighted to the nearest 0.1 g. Mean 

values per plot were extrapolated to g per m². 

The invertebrate community was sampled by pitfall trapping and suction sampling in 

each plot outside our experimental enclosures. One pitfall trap containing 3% formaldehyde 

was centrally installed on each plot (outside the enclosed area) and emptied biweekly. For our 

analysis, we used data from four sampling dates within the timeframe of gut content sampling 

from end of July till mid of September 2014. Suction sampling was conducted using a modified 

vacuum cleaner (A2500, Kärcher GmbH, Winnenden, Germany) to sample arthropods from 

caged vegetation (75 x 75 cm). All samples were stored in 70 % ethanol and identified to species 

level for Araneae, Chilopoda, Coleoptera, Dermaptera, Diplopoda, Diptera, Hemiptera, 

Heteroptera, Hymenoptera, Isopoda, Julida, Lithobiomorpha, Orthoptera, and Polydesmida. 

Acari, Clitellata, Diptera, Gastropoda, and Thysanoptera were not further identified. Based on 

literature research, we assigned the identified taxa to trophic levels and trophic positions (TP), 

into herbivores, mycetophages, saprophages (TP 1), omnivores (TP 1.5), carnivores, parasites, 

and parasitoids (TP2). Additionally, we estimated the most likely trophic interaction with the 

consumer species that we used for gut content analysis (e.g., consumption, secondary 

consumption, parasitation). We calculated the mean richness and abundance of invertebrates 

per plot and sampling method for total invertebrates, on class and order level, and on trophic 

level over the different sampling dates for trap and suction catches. For 10 plots no suction 

samples existed, here we used the mean values per plant species richness level.  
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Figure 1. A) Experimental plots with enclosures; B) Release of marked P. melanarius; C) Beetle regurgitates 

 

4.2.3 Gut content sampling of omnivores 

As model organism for consumers we used three locally abundant, geographically wide spread 

and ecological relevant invertebrate species. All are polyphagous feeders on a wide range of 

food types but include varying degrees of plant matter in their diet (Thiele 1977; Kerney et al. 

1983). The two ground beetles Pterostichus melanarius Illiger and Harpalus (Pseudoophonus) 

rufipes De Geer (Coleoptera; Carabidae) are dominant species in many natural and agricultural 

ecosystems. Pterostichus melanarius is primarily carnivorous but its diet also includes plant 

material. H. rufipes is an omnivore with a diet comprised half of plant-derived resources, mainly 

seeds (Thiele 1977; Hengeveld 1979; Lovei & Sunderland 1996; Jørgensen & Toft 1997). Field 

slugs (Deroceras sp. Rafinesque; Pulmonata: Agriolimacidae) forage predominantly above 

ground on living plant material and are pest in many crops and also abundant in temperate 

grasslands (Kerney et al. 1983; Barlow et al. 2013) but occasionally consumes small prey like 

aphids or death animal matter (Barker & Efford 2004).  

Adult P. melanarius and H. rufipes were collected preceding the experiment using dry 

pitfall traps in the surrounding grass margins of the Jena Experiment in June and July 2014 and 

maintained in fauna boxes on a diet of cat food (K-Classic Adult, Kaufland AG, Germany) and 

seeds (Trifolium pretense L., Rosa canina L.). The beetles were marked with an engraving tool 

(AGT Gravurset, Pearl.GmbH, Buggingen, Germany) with an individual pattern on the elytron 
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that allowed us to distinguish the beetles within a plot and between neighboring plots and 

released in the enclosures on July 27-28th (Fig. 1B). After allowing the released beetles to adapt 

to the plot conditions for 9 days, we repeatedly recaptured the marked beetles and additional 

ambient beetles during the period from August 6th to September 3rd, 2014 in three dry pitfall 

traps (6 cm diameter) per plot. The traps were filled with clay pebbles and emptied daily to 

minimize within-trap predation events. Beetles from traps including organism remains were 

excluded from analyzes.  

To sample the beetles’ gut contents, we placed them individually headfirst in 1.5 mL 

reaction tubes and exposed the tubes for a few seconds to hot water (~60°C) to induce 

regurgitation. Regurgitates were immediately frozen at -18°C and subsequently stored at -80°C 

(Fig. 1C). Afterwards, the beetles were released to the plot of origin but from August 25th 

onward kept for additional analysis.  

Slugs were abundant on most plots and were collected by hand from August 27th to 

September 3rd, 2014. Slugs were individually placed in 2 mL microtubes. The tubes were 

checked for feces every couple of hours for up to 24 h. Feces were immediately frozen at -18°C 

and subsequently stored at -80°C. Slugs were kept for additional analyzes. 
 

4.2.4 Sample processing  

4.2.4.1 DNA extraction 

Total DNA was extracted from regurgitates and feces (gut content hereafter) in a molecular 

diagnostic laboratory at the Institute of Ecology, University of Innsbruck, Austria on a BioSprint 

96 robotic DNA extraction platform using the MagAttract DNA Blood M96 Kit (Qiagen, Hilden, 

Germany). Four negative extraction controls (DNA extraction blanks) were included to monitor 

for carry-over DNA contamination during the extraction process and subsequently tested in 

PCR reactions.  

4.2.4.2 Amplification of marker gene sequences 

Amplicon preparation and next generation sequencing of gut contents was conducted at the 

Department of Genomic and Applied Microbiology (University of Göttingen, Germany). We 

analyzed DNA remains in gut content samples of the three consumer species with four sets of 

primers targeting either the trnL intron of plant chloroplasts, the mitochondrial cytochrome c 

oxidase subunit I (COI) of animals, the fungal ITS sequence, or the bacterial 16S rRNA genes. 

Details on primers, PCR reaction mixes and thermal cycling schemes are listed in Table 1. For 

the amplification of fungal ITS sequences, we used a nested PCR approach to suppress co-

amplification of non-fungal taxa. The amplicons from a first PCR with highly specific fungi 

primers were used as template in a second PCR that reduced the size of the amplicons to fit 

the read length of the MiSeq sequencer. 

All PCR runs included one template-free control and one positive control. Samples that 

showed PCR products on agarose gel were purified with the NucleoMag 96 PCR Kit and in the 

case of COI amplicons with the NGS Clean-up Kit (Machery-Nagel, Dueren, Germany). DNA 

concentration was quantified using the QuantiFluor dsDNA System kit (Promega Corporation, 

Madison, USA) with a microplate reader (Synergy™ 2 Microplate Reader, Biotek Synergy HT, 

Winooski, VT, USA). 



 
 
 
 

 

Table 1. Primer sequences and PCR conditions used for amplification of marker genes of animals, plants, fungi, and bacteria. 

Target 

taxa 
Locus 

Length 

(bp) 
Primer name Sequence 5′-3′ Reference PCR reaction mix PCR conditions 

Animals 
COI, 

mtDNA 
300 

S878-S1-DG1 GGDRCWGGWTGAACWGTWTAYCCNCC 
Modified after 

Leray et al. 2013 

Total volume 35 μL: 7 μL DEPC 

watera, 1.8 μL BSA (10 mg*ml-1), 

3.5 μL 10 µM primer mix, 17.5 μL 

2x Master Mixb, 5.3 μL template 

Denaturation 98°C 30 sec; 

35 cycles at 98°C 15 sec, 

55°C 15 sec, 72°C 30 sec; 

Final elongation 72°C 1 min 
A867-

jgHCO21982 
TANACYTCNGGRTGNCCRAARAAYCA Geller et al. 2013 

Plants 
trnL, 

cpDNA 

170-

230 

trnL-c 

(A49325)1 
CGAAATCGGTAGACGCTACG 

Taberlet et al. 

1991, 2007 

Total volume 50 μL: 22.5 μL DEPC 

watera, 10 μL HF bufferc, 1.5 μL 

DSMO, 2 μL BSA (10 mg*ml-1), 1 

μL 10 µM dNTPsc, 5 μL 10 µM 

primer mix, 0.5 μL 1U Phusionc, 

7.5 μL template 

Denaturation 98°C 30 sec; 

35 cycles at 98°C 15 sec, 

55°C 30 sec, 72°C 30 sec; 

Final elongation 72°C 5 min 
trnL-h 

(B49466)2 
CCATTGAGTCTCTGCACCTATC 

Taberlet et al. 

2007 

Bacteria 
16S, 

 rRNA 
460 

341F1 CCTACGGGNGGCWGCAG 
Herlemann et al. 

2011 

Total volume 50 μL: 28 μL DEPC 

watera, 10 μL HF bufferc, 1.5 μL 

DSMO, 1 μL 10µM dNTPsc, 4 μL 10 

µM primer mix, 0.5 μL 1U 

Phusionc, 5 μL template 

Denaturation 98°C 30 sec; 

32 cycles at 98°C 10 sec, 

55°C 15 sec, 72°C 30 sec; 

Final elongation 72°C 5 min 785R2 GACTACHVGGGTATCTAATCC 
 Herlemann et al. 

2011 

Fungi 

ITS,  

rDNA 

  

~800 
ITS1 KYO2 TAGAGGAAGTAAAAGTCGTAA Toju et al. 2012 Total volume 50 μL: 30 μL DEPC 

watera, 10 μL HF bufferc, 1.5 μL 

DSMO, 1 μL 10µM dNTPsc, 4 μL 10 

µM primer mix, 0.5 μL 1U 

Phusionc, 3 μL template 

Denaturation 98°C 30 sec; 

30 cycles at 98°C 15 sec, 

50°C 15 sec, 72°C 30 sec; 

Final elongation 72°C 1 min 

ITS4 TCCTCCGCTTATTGATATGC White et al. 1990 

~350 
ITS3 KYO21 GATGAAGAACGYAGYRAA Toju et al. 2012 

ITS4² TCCTCCGCTTATTGATATGC White et al. 1990 
1 primers included MiSeq adaptor sequence 5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3’ 
2 primers included MiSeq adaptor sequence 5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3’ 
a Sterile-filtered and DEPC-treated water 
b Qiagen Multiplex PCR Master Mix, Qiagen GmbH, Hilden, Germany 
c FermentasTM 10 mM dNTP Mix; Phusion High-Fidelity DNA Polymerase; 5x HF reaction buffer, Thermo Fisher Scientific, Waltham, USA 
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4.2.4.3 Sequencing and sequence processing 

In total 1821 samples were multiplexed using the Nextera XT index kit v2 and sequenced on a 

MiSeq sequencer with the MiSeq Reagent Kit v3 (Illumina, San Diego, CA, USA) using 2 × 300 

bp paired-end reads and a sequencing depth of 20,000 per sample. 

Sequences were processed separately for each primer set. Raw reads were truncated 

with Trimmomatic (version 0.32; Bolger et al. 2014) with a quality cut-off of 20 in a sliding 

window of 10 bp. Datasets were processed as described (Granzow et al. 2017; Wemheuer & 

Wemheuer 2017). In brief, paired-end reads were merged and low-quality reads (expected 

errors >1, and ambitious bases >1) and reads shorter than 200 bp were discarded. Processed 

sequences were clustered in operational taxonomic units (OTUs) at 97 % genetic similarity 

using the UPARSE algorithm in Usearch (version 8.0.1623; Edgar 2010). Clustering included a 

de novo chimera removal step. Remaining chimeric sequences were removed with Uchime in 

reference mode with the most recent RDP training set (version 15; Cole et al. 2009) for bacteria 

and the most recent UCHIME reference data (version 7.1, UNITE database; Kõljalg et al. 2013) 

for fungi. Processed sequences were mapped on OTU sequences to calculate the distribution 

and abundance of each OTU in every sample.  

4.2.4.4 Taxonomic assignment 

Bacterial OTU sequences were taxonomically classified using QIIME (Caporaso et al. 2010) by 

BLAST alignment against the SILVA database (SILVA SSURef 128 NR) and fungal OTUs by the 

QIIME release of the UNITE database (version 7.1; August 2016). Co-amplified non-bacterial or 

non-fungal taxa and hits with e-values > 1e-10 were removed from the respective dataset. In 

addition, we discarded OTUs that could not be classified to class level for fungi and to phylum 

level for bacteria. COI und plant-derived sequences were classified by BLAST against the most 

recent nucleotide database using a e-value cut-off of 1e-20 and a minimum alignment length 

of 200 bp for COI and 150 bp for plants (NCBI nt; January 2017). Information on the closest hit 

in the nt database were retrieved from NCBI using the NCBI e-utilities. Moreover, COI 

sequences were classified by BLAST alignment against the BOLD database (version 6.50). 

Information for each hit were retrieved from the BOLD database using the BOLD API. Obtained 

information was converted using customized PERL scripts. Only hits with at least 93 % identity 

were kept. If the bitscore of the second and third best match was > 30 compared to the best 

match, we kept only the best match. If it was lower, we kept up to three matches in the OTU 

assignment table.  

We compared the assigned plant taxa to a list of the sown plant species and common 

weeds in the Jena Experiment and the additional plots in Göttingen. The assigned OTUs had to 

be at least in a subfamily from the local pool to be kept in the dataset. In the cases that multiple 

taxonomic assignments of the same OTU were left in the dataset, we kept the one that matched 

best with our local species pool and in case of equally good matches we classified the OTU to 

the lowest common taxonomic level. The database derived taxon matches for animals were 

compared to an extensive list of invertebrate taxa that were previously found in the Jena 

Experiment, in Germany and the neighboring countries. We kept only taxa within orders that 

were previously found in the Jena Experiment, families reported from Germany, and genera 

from the European neighbor countries. In the case that multiple assignments per OTU were 

left, we decided for the taxon with the most local reference. Sequences from each of the three 
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consumer taxa were excluded from all samples due to the high risk of cross contamination 

between samples.  

All taxon matches were clustered at genus level or at higher taxonomic levels, 

depending on the taxonomic resolution. A detection threshold for taxa was set at 0.3 % of the 

total reads per sample (post quality filtering). Samples with a low number of total reads 

(< 1500), or high numbers of consumer sequences (> 96%) were excluded from the analysis. 

The remaining 1210 samples represented 47-110 plots depending on the combination of 

consumer and primer (see Table S1 for details). The information for samples for which technical 

replicates excited was combined for the further analysis.  

4.2.4.5 Assignment of interaction types 

Taxa were grouped based on literature information on their most likely interaction with the 

consumers in trophic interactions, interactions with consumer associated microbes, and 

environmental species with unknown relation to the consumer (eDNA).  
 

Trophic interactions: 

• Total food:    plant or animal food 

• Plant food:    plant taxa from the pool of sown species and common weeds 

• Predation:    animal taxa from the orders Annelida, Arthropoda, Gastropoda 

• Intraguild predation:  prey with predatory or omnivorous nutrition 

 

Microbial associations: 

• Microbiome:  microbes (bacteria and fungi) that are associated with 

arthropods or slugs (symbionts and taxa without known function, 

no pathogens) 

• Symbionts:    microbes that are reported as symbionts of arthropods or slugs 

• Pathogens:    microbes that are reported as pathogens of arthropods or slugs 

 

Environmental microbes: 

• Neutral:  microbes without known interaction with the consumer that 

were likely passively consumed together with food (eDNA) 
 

For the analysis of plant diversity effects on the richness of organisms in gut content, we 

calculated the sum of different interaction partners in group and sample. Note that the number 

of sequences per detected taxon cannot be used as a measure of consumed biomass as it is 

affected by the time since consumption and characteristics of the food, e.g., tissue density, or 

copy number of targeted DNA marker (O´Rorke et al. 2012, Deagle et al. 2010, Deagle et al. 

2013, Piñol et al. 2014). 
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4.2.5 Statistical analysis 

We used R 3.3.2 (R Development Core Team, 2016), and R Studio 1.0.153 (RStudio Team 2017) 

for the statistical analysis. Biological replicates were averaged per plot, consumer, and 

interaction type. We accounted for differences in the number per replicates (1 to 4) by giving 

more weight to samples with more replications in statistical models. 

4.2.5.1 Richness of trophic and microbial interactions 

First, we aimed to test if the results from the pilot study (Tiede et al. 2016) can be confirmed in 

an extended study that included all experimental plots from the TBE and three different 

omnivores. We used generalized linear models (GLM) with negative binomial or quasipoisson 

errors, to analyze if the taxa richness in the different interaction groups (total food, plant food, 

prey, IGP, microbiome, symbionts, pathogens, and neutral interactions) responds to plant 

species richness, plant functional diversity, or percent vegetation cover, as these were the 

variables we also used in the pilot study. We did not test these three variables in a single model 

as they were colinear.  

In a first set of models we analyzed the data of all three consumers together. We 

included consumer identity as a factor and tested its interaction with either plant species 

richness, plant functional diversity or vegetation cover at a time. In this all-consumer models, 

samples from D. sp. were excluded from models that tested effects on IGP and on associated 

microbes. 

Due to the strong effect of consumer identity, that might have masked weaker effects 

of plant species richness, plant functional diversity and vegetation cover, we used a second set 

of models in which the data of each consumer were analyzed individually.   

4.2.5.2 Cascading effects of plant diversity on prey richness 

We additionally used structural equation modeling (SEM; lavaan; Rosseel 2012) to test for 

direct and indirect effects of plant species richness via chances in the plant and arthropod 

community on the richness of prey taxa in gut content. In the model, we used the log-

transformed detected prey richness in gut content as a response variable and included 

consumer identity as a grouping factor in the model. As an exogenous variable we included the 

design variable sown plant species richness. As plant species richness has been shown to affect 

plant biomass, vegetation cover and species richness and abundance of animals in the plot 

(Ebeling et al. 2017; Weisser et al. 2017) we included these as independent variables and 

modeled a path from plant species richness to each of these variables.  

4.2.5.3 Average trophic position of food items 

All detected plant and prey taxa were first assigned to trophic modes and trophic positions 

(autotrophs = 0; herbivores, saprophages, and mycetophages = 1, omnivores = 1.5, carnivores, 

and parasitoids = 2). We than calculated the mean trophic position of total food (plant and 

prey) and prey and tested the effects of plant species richness, plant functional diversity, 

percentage vegetation cover, and the richness and abundance of animals in the plot in separate 

GLMs. All models included an interaction with the consumer species (D. sp. was excluded from 

the prey models) and were fitted to a quasipoisson distribution.  
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4.2.5.4 Proportional composition of gut content 

We analyzed the proportional composition of gut content and feces with GLMs with 

quasibinomial errors. The response variables were i) proportion of prey taxa in the diet (prey 

and plant food), ii) proportion of intraguild prey from total prey, iii) proportion of symbiotic 

microbes from the sum of symbionts and pathogens, and iv) proportion of fungi in the total 

microbial community. We tested the interaction between consumer identity (D. sp. was only 

included in model i) and iv)) and plant species richness, plant functional diversity, percentage 

vegetation cover, and richness and abundance of invertebrates in the plot. 

4.2.5.5 Microbial community composition 

We separately analyzed the bacterial and fungal community assemblage with the vegan 

package (Oksanen et al. 2017). The number of sequences per taxon was Hellinger transformed 

(vegan: decostand; Legendre & Gallagher 2001) and Bray–Curtis dissimilarities were calculated 

(vegan: vegdist). We tested the effects of consumer species on community composition with 

permutational multivariate analysis of variance (perMANOVA; vegan: adonis) and permutation 

tests for the between group homogeneity in multivariate dispersions (vegan: 

betadisper, permutest; Oksanen et al. 2017; Anderson 2006; McArdle & Anderson 2001) for all 

three omnivores and for the two beetles only. In a second set of models we tested the effect 

of plant species richness on the community composition and dispersion in separate models for 

each consumer species. Similarities between samples of all three consumers were visualized by 

NMDS (vegan: metaMDS).  

 

4.3 Results 

4.3.1 General composition of detected taxa 

We detected a total number of 946 taxa in the regurgitates of beetles and feces of slugs. An 

overview is given in Table 2.  
 

Table 2. Sample overview on the number (n) of detected taxa per consumer species and represented plots.  

  

Kingdom 

total D. sp. H. rufipes P. melanarius 

n taxa n taxa n plots n taxa n plots n taxa n plots 

Plantae 45 29 55 31 80 31 56 

Animalia 80 16 62 32 61 37 48 

Fungi 226 121 67 134 100 101 108 

Bacteria 595 121 63 462 104 367 112 

total 946 287  659  536  

Kingdoms refer to the targeted group of primers used for DNA detection. 

 

Figure 2 illustrates the most frequently detected taxa (details in Table S1, Supporting 

Information). The plant orders Asterales, Lamiales, and Fabales were most frequently found in 

gut contents of all three omnivores, whereas Rosales were frequently detected only in beetles. 

Although the sown species pool of the TBE does not contain Fabales, legumes are the most 

common weeds in the experiment. Of all animal orders, Hemitera (aphids) were most 
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frequently detected in D. sp. and H. rufipes. Additional morphological gut content analysis 

confirmed the presence of aphids remain in guts of the field slug. Earthworm (Haplotaxida) 

DNA was commonly found in slugs and P. melanarius. Hymenopteran taxa (ants and 

parasitoids) were detected in all three consumers. Spider DNA was only detected in beetles. 

The fungal class Saccharomycetes was found in all consumers but as Agaricomycetes more 

commonly in beetles, whereas Microbotryomycetes were more frequently found in slug 

samples. The bacterial phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria 

were present in almost all samples. In the beetles, Saccharibacteria, and Acidobacteria were 

additionally found in higher frequency.  
 

 

Figure 2. Most frequently detected taxa in slug feces and beetle regurgitates. See Table 2 for details on the number 

of samples and Table S1 for details on sample composition.   
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Figure 2 illustrates the most frequently detected taxa (details in Table S1, Supporting 

Information). The plant orders Asterales, Lamiales, and Fabales were most frequently found in 

gut contents of all three omnivores, whereas Rosales were frequently detected only in beetles. 

Although the sown species pool of the TBE does not contain Fabales, legumes are the most 

common weeds in the experiment. Of all animal orders, Hemitera (aphids) were most 

frequently detected in D. sp. and H. rufipes. Additional morphological gut content analysis 

confirmed the presence of aphids remain in guts of the field slug. Earthworm (Haplotaxida) 

DNA was commonly found in slugs and P. melanarius. Hymenopteran taxa (ants and 

parasitoids) were detected in all three consumers. Spider DNA was only detected in beetles. 

The fungal class Saccharomycetes was found in all consumers but as Agaricomycetes more 

commonly in beetles, whereas Microbotryomycetes were more frequently found in slug 

samples. The bacterial phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria 

were present in almost all samples. In the beetles, Saccharibacteria, and Acidobacteria were 

additionally found in higher frequency.  

 

4.3.2 Richness of trophic and microbial interactions 

We tested the effect of plant species richness, plant functional diversity and percentage 

vegetation cover on the taxonomic richness within the different types of trophic and microbial 

interactions. Consumer identity was included in a first set of models and explained most of the 

variation in taxon richness over all types of interaction groups. The richness of symbionts in 

regurgitates was significantly affected by an interaction between consumer identity and 

percentage vegetation cover; symbiont richness increased in P. melanarius with percentage 

vegetation cover but decreased in H. rufipes (Table S3, Fig. 3). Plant species richness and plant 

functional diversity had no effects on any interaction group. 

A second set of separate models for each consumer (Table 3; Fig. 4-6) confirmed the 

negative effect of vegetation cover on symbiont richness in H. rufipes, although the effect was 

only marginally significant (Fig. 4). The response of symbiont richness in P. melanarius to 

vegetation cover was not confirmed (Fig. 5). Neutral taxa in feces of D. sp. was the only group 

for which significant effects were found. The richness of neutral interactions increased with all 

three plant measures (Fig. 6).  
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Figure 3. Symbiont richness in regurgitates of ground beetles responds species specific to vegetation cover. Effect 

of the interaction of beetle species and percentage vegetation cover on the richness of microbial taxa that are 

potential symbionts. Lines and shaded regions show response predictions and 95% confidence intervals from the 

generalized linear model. 

 

 



 
 
 

 

 

Table 3. Effect of plant species richness (PSR), plant functional diversity (FD), and percent vegetation cover (% Cover) on the number of detected taxa in each interaction group. 

Model Parameter 
Pterostichus melanarius Harpalus rufipes Deroceras sp. 

denom. df Estimate SE t value p value denom. df Estimate SE t value p value denom. df Estimate SE t value p value 

a) Total food 

(Intercept)  1.300 0.191 6.817 <0.001  0.708 0.141 5.031 <0.001  1.093 0.236 4.634 <0.001 

PSR 74 -0.074 0.066 -1.125 0.264 94 0.066 0.045 1.467 0.146 68 -0.045 0.078 -0.580 0.564 

(Intercept)  1.269 0.216 5.866 <0.001  0.862 0.169 5.099 <0.001  1.098 0.268 4.099 <0.001 

FD 74 -0.068 0.083 -0.819 0.415 94 0.010 0.064 0.150 0.881 68 -0.054 0.105 -0.519 0.606 

(Intercept)  0.433 0.482 0.897 0.373  0.840 0.383 2.193 0.031  0.993 0.641 1.548 0.126 

% Cover  74 0.010 0.007 1.434 0.156 94 0.001 0.005 0.118 0.906 68 0.000 0.009 -0.037 0.971 

b) Plants 

(Intercept)   1.361 0.163 8.359 <0.001   0.809 0.109 7.433 <0.001   1.466 0.169 8.652 <0.001 

PSR 54 -0.047 0.056 -0.838 0.406 78 0.057 0.035 1.632 0.107 52 -0.037 0.055 -0.670 0.506 

(Intercept)  1.312 0.195 6.711 <0.001  0.859 0.133 6.466 <0.001  1.605 0.187 8.582 <0.001 

FD 54 -0.030 0.076 -0.397 0.693 78 0.042 0.050 0.840 0.403 52 -0.100 0.072 -1.385 0.172 

(Intercept)  1.078 0.460 2.341 0.023  0.922 0.286 3.230 0.002  1.467 0.481 3.051 0.004 

% Cover  54 0.002 0.006 0.360 0.721 78 0.001 0.004 0.137 0.891 52 -0.001 0.007 -0.216 0.830 

c) Predation 

(Intercept)   0.393 0.261 1.504 0.140   -0.310 0.276 -1.120 0.267   -0.562 0.500 -1.123 0.266 

PSR 45 0.011 0.088 0.125 0.901 59 0.078 0.088 0.886 0.379 58 -0.245 0.193 -1.269 0.210 

(Intercept)  0.453 0.275 1.651 0.106  -0.258 0.331 -0.781 0.438  -0.876 0.507 -1.730 0.089 

FD 45 -0.013 0.102 -0.123 0.903 59 0.065 0.123 0.530 0.598 58 -0.135 0.211 -0.637 0.526 

(Intercept)  -0.012 0.556 -0.022 0.982  -0.915 0.891 -1.027 0.308  -1.758 1.257 -1.399 0.167 

% Cover  45 0.007 0.008 0.803 0.426 59 0.011 0.012 0.934 0.354 58 0.008 0.017 0.472 0.639 

d) IGP 

(Intercept)   -0.342 0.422 -0.810 0.422   -1.525 0.410 -3.716 <0.001           

PSR 45 -0.068 0.149 -0.458 0.649 59 0.145 0.123 1.174 0.245 45     

(Intercept)  -0.509 0.447 -1.138 0.261  -1.827 0.564 -3.237 0.002      

FD 45 -0.005 0.166 -0.032 0.975 59 0.274 0.195 1.410 0.164 45     

(Intercept)  -0.181 0.832 -0.218 0.829  -2.592 1.461 -1.775 0.081      

% Cover  45 -0.005 0.013 -0.416 0.679 59 0.020 0.020 1.029 0.308 45         

 
 

                



 
 
 

 

Model Parameter 
Pterostichus melanarius Harpalus rufipes Deroceras sp. 

denom. df Estimate SE t value p value denom. df Estimate SE t value p value denom. df Estimate SE t value p value 

e) Microbiome 

(Intercept)   2.072 0.054 38.470 <2e-16   2.086 0.107 19.520 <2e-16   1.980 0.080 24.744 <2e-16 

PSR 112 0.012 0.017 0.710 0.478 104 0.015 0.035 0.440 0.661 60 0.001 0.025 0.039 0.969 

(Intercept)  2.130 0.062 34.512 <2e-16  2.163 0.121 17.935 <2e-16  1.920 0.092 20.970 <2e-16 

FD 112 -0.010 0.024 -0.422 0.673 104 -0.014 0.045 -0.318 0.751 60 0.027 0.036 0.757 0.452 

(Intercept)  2.016 0.145 13.864 <2e-16  2.289 0.276 8.291 <0.001  1.834 0.211 8.682 <0.001 

% Cover  112 0.001 0.002 0.629 0.530 104 -0.002 0.004 -0.591 0.556 60 0.002 0.003 0.713 0.479 

f) Symbionts 

(Intercept)   0.277 0.084 3.307 0.001   0.321 0.135 2.379 0.019           

PSR 112 0.043 0.027 1.604 0.110 104 0.016 0.044 0.356 0.723 112     

(Intercept)  0.386 0.098 3.949 <0.001  0.493 0.149 3.305 0.001      

FD 112 0.003 0.037 0.089 0.929 104 -0.053 0.056 -0.931 0.354 112     

(Intercept)  0.223 0.232 0.963 0.336  0.961 0.332 2.891 0.005      

% Cover  112 0.002 0.003 0.752 0.453 104 -0.009 0.005 -1.809 0.073 112         

g) Pathogens 

(Intercept)   -0.392 0.144 -2.712 0.007   -0.353 0.222 -1.594 0.114           

PSR 112 -0.073 0.050 -1.456 0.146 104 -0.056 0.075 -0.738 0.462 112     

(Intercept)  -0.364 0.156 -2.328 0.021  -0.260 0.236 -1.103 0.273      

FD 112 -0.094 0.062 -1.512 0.132 104 -0.101 0.091 -1.105 0.272 112     

(Intercept)  -1.012 0.392 -2.581 0.010  -0.241 0.554 -0.435 0.664      

% Cover  112 0.006 0.005 1.116 0.265 104 -0.004 0.008 -0.479 0.633 112         

h) Neutral 
(eDNA) 

(Intercept)   2.636 0.079 33.551 <2e-16   2.708 0.106 25.526 <2e-16   2.694 0.070 38.682 <2e-16 

PSR 112 -0.013 0.027 -0.467 0.641 104 0.016 0.035 0.472 0.637 63 0.049 0.021 2.335 0.020 

(Intercept)  2.698 0.088 30.830 <2e-16  2.901 0.119 24.415 <2e-16  2.632 0.083 31.708 <2e-16 

FD 112 -0.041 0.034 -1.204 0.229 104 -0.060 0.044 -1.359 0.174 63 0.087 0.032 2.687 0.007 

(Intercept)  2.453 0.205 11.982 <2e-16  2.424 0.276 8.777 <2e-16  2.339 0.204 11.451 <2e-16 

% Cover  112 0.002 0.003 0.745 0.457 104 0.005 0.004 1.206 0.228 63 0.007 0.003 2.463 0.014 

All taxa were assigned to interaction groups (see methods). We tested the effects of three explanatory variables on taxon richness in interaction groups for all consumers (except 

intraguild predation (IGP), symbiotic, and pathogenic interactions for D. sp.). A quasipoisson distribution was used for all models except neutral interactions, for which negative 

binomial models were fitted. p values <.05 are reported in bold numbers and p <.10 in italics. denom. df, denominator degrees of freedom; SE, standard errors 



 
 
 

 

 

Figure 4. Effects of plant species richness, plant functional diversity, and percentage vegetation cover on trophic and microbial interactions detected in regurgitates of P. melanarius. 

Points represent individual plots and are scaled based on number of averaged biological replicates. None of the effects was significant. 

 



 
 
 

 

 

Figure 5. Effects of plant species richness, plant functional diversity, and percentage vegetation cover on trophic and microbial interactions detected in regurgitates of H. rufipes. 

Points represent individual plots and are scaled based on number of averaged biological replicates. Line shows model prediction, polygon shows 95% confidence intervals for effects 

with p<0.1. 



 
 
 

 

 

 

Figure 6. Effects of plant species richness, plant functional diversity, and percentage vegetation cover on trophic and microbial interactions detected in feces of D. sp. Points 

represent individual plots and are scaled based on number of averaged biological replicates. Lines show model predictions, polygons show 95% confidence intervals for effects with 

p<0.05. 
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4.3.3 Cascading effects of plant diversity on prey richness 

We used a structural equation model to highlight pathways between manipulated plant species 

richness, the performance of the plant and animal (invertebrate) community and prey richness 

in gut contents of consumers as response variable (Fig. 7, Table S4). The results indicate that 

the three omnivores respond to a different set of variables. Plant species richness had a direct 

positive effect on prey richness in D. sp. and an indirect positive effect via the animal 

community in the plot. In contrast, plant species richness had direct negative effects on prey 

richness in samples of H. rufipes and no direct effect on P. melanarius. Animal richness and 

abundance were always the strongest predictors for the detected richness of prey species in 

gut contents of the three consumers. The effect of animal richness on prey richness was always 

negative, animal abundance had both, positive or negative effects. Differences between the 

impact of plant species richness on biomass and the arthropod community can be explained by 

a different set of plots for which we succeeded to sample gut contents for each consumer. 

 

4.3.4 Average trophic position of food items 

The average trophic position of food items (plant derived food and prey) was affected by an 

interaction between consumer identity and vegetation cover (Fig. 8, Table 4, Table S5). In 

P. melanarius the average trophic position of food decreased from 1.1 to 0.4 and increased in 

H. rufipes from 0.2 to 0.6 when vegetation cover increased from 40 to 90 percent. The field slug 

was feeding on an average trophic position of 0.2 irrespectively of cover. When only the two 

beetles and only prey as a response was analyzed, the effect stayed basically the same.; the 

average trophic position of P. melanarius dropped from 1.45 to 1.2 and increased in H. rufipes 

from 1.1 to 1.4.  

 

 

Figure 8. Vegetation cover has different effects on the average trophic position of total food items (plant and prey 

food) and prey in gut contents of omnivorous beetles. Lines and shaded regions show response predictions and 

95% confidence intervals from the generalized linear models. 



 
 

 

 

 

Figure 7. SEM showing the direct effects of plant species richness on plant community measures (plant biomass and plant cover) and the invertebrate community in the plot (animal 

abundance and animal richness) on the log-transformed detected richness of prey taxa in the gut of three omnivores (χ2 = 2.2652; p = 0. 519, 3 degrees of freedom). Short black 

arrows are error terms, numbers standardized path coefficients, arrow width shows effect strength, blue color indicates a positive (+), and orange a negative (-) relationship. Arrows 

for effect sizes <0.1 were faded. R² values reported. See Supporting Information Table S4 for detailed results.  
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Table 4. Average trophic position of food items in gut content and feces of three omnivorous consumers.  

Response Term df denom. df χ2  p value 

a) Mean trophic position of 

total food 

Plant species richness 1 216 0.003 0.957 

Consumer identity 2 214 24.843 <0.001 

Plant species richness x consumer identity 2 212 2.550 0.280 

Plant functional diversity 1 216 0.833 0.362 

Consumer identity 2 214 24.971 <0.001 

Plant functional diversity x consumer identity 2 212 2.459 0.292 

Vegetation cover 1 216 0.337 0.562 

Consumer identity 2 214 25.308 <0.001 

Vegetation cover x consumer identity 2 212 9.879 0.007 

Invertebrate species richness 1 216 0.025 0.873 

Consumer identity 2 214 25.393 <0.001 

Invertebrate species richness x consumer identity 2 212 7.332 0.026 

Invertebrate abundance 1 216 0.677 0.411 

Consumer identity 2 214 25.505 <0.001 

Invertebrate abundance x consumer identity 2 212 2.602 0.272 

b) Mean trophic position of 

prey 

Plant species richness 1 75 0.097 0.755 

Consumer identity 1 74 0.877 0.349 

Plant species richness x consumer identity 1 73 1.039 0.308 

Plant functional diversity 1 75 2.338 0.126 

Consumer identity 1 74 0.875 0.350 

Plant functional diversity x consumer identity 1 73 2.418 0.120 

Vegetation cover 1 75 0.052 0.820 

Consumer identity 1 74 0.771 0.380 

Vegetation cover x consumer identity 1 73 4.491 0.034 

Invertebrate species richness 1 75 1.062 0.303 

Consumer identity 1 74 0.685 0.408 

Invertebrate species richness x consumer identity 1 73 0.151 0.697 

Invertebrate abundance 1 75 0.001 0.976 

Consumer identity 1 74 0.857 0.355 

Invertebrate abundance x consumer identity 1 73 0.088 0.767 

We tested the effects of consumer species identity and five explanatory variables on the mean trophic position 

total food (plant and prey) and prey items in separate GLMs using a quasipoisson distribution. (D. sp. was 

excluded from models for the mean trophic position of prey). p values <.05 are reported in bold numbers 

and p <.10 in italics. denom. df, denominator degrees of freedom; SE, standard errors 

 

4.3.5 Proportional composition of gut content 

The proportional composition of animal to prey food in gut contents was affected by species 

identity, with a higher proportion of animal taxa compared to plants in gut contents of beetles 
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(Fig. 9, Table 5, Table S6). The proportion of intraguild prey in total prey slightly increased in 

H. rufipes and decreased in P. melanarius, but the effect was not significant. The proportion of 

fungal taxa in the total microbial community (fungi and bacteria) decreased significantly with 

plant species richness and percentage vegetation cover in all three consumer species. Within 

the subset of microbes with for which beneficial or harmful relations are reported in the 

literature, the proportion of symbionts increased slightly in both beetles, but the effect was not 

significant.  

 

 

Figure 9. Response of the proportional composition of gut content to plant species richness. Lines and shaded 

regions show response predictions and 95% confidence intervals from the generalized linear models.  
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Table 5. Proportional composition of gut content and feces of three omnivorous consumers.  

Response Term df denom. df χ2  p value 

a) Proportion prey / 
total food 

Plant species richness 1 114 0.083 0.773 

Consumer identity 2 112 44.568 <0.001 

Plant species richness x consumer identity 2 110 2.455 0.293 

Plant functional diversity 1 114 0.244 0.621 

Consumer identity 2 112 43.826 <0.001 

Plant functional diversity x consumer identity 2 110 0.110 0.947 

Vegetation cover 1 114 0.157 0.692 

Consumer identity 2 112 46.033 <0.001 

Vegetation cover x consumer identity 2 110 3.125 0.210 

Invertebrate species richness 1 114 0.188 0.665 

Consumer identity 2 112 47.660 <0.001 

Invertebrate species richness x consumer identity 2 110 1.472 0.479 

Invertebrate abundance 1 114 0.755 0.385 

Consumer identity 2 112 47.070 <0.001 

Invertebrate abundance x consumer identity 2 110 3.317 0.190 

b) Proportion IGP / 
total prey 

Plant species richness 1 75 0.000 0.992 

Consumer identity 1 74 0.168 0.682 

Plant species richness x consumer identity 1 73 1.206 0.272 

Plant functional diversity 1 75 0.998 0.318 

Consumer identity 1 74 0.190 0.663 

Plant functional diversity x consumer identity 1 73 1.292 0.256 

Vegetation cover 1 75 0.661 0.416 

Consumer identity 1 74 0.020 0.889 

Vegetation cover x consumer identity 1 73 2.004 0.157 

Invertebrate species richness 1 75 0.483 0.487 

Consumer identity 1 74 0.037 0.848 

Invertebrate species richness x consumer identity 1 73 1.087 0.297 

Invertebrate abundance 1 75 0.214 0.643 

Consumer identity 1 74 0.059 0.808 

Invertebrate abundance x consumer identity 1 73 0.500 0.479 

c) Proportion 
symbionts / 
symbionts + 
pathogens 

Plant species richness 1 204 0.819 0.366 

Consumer identity 1 203 0.089 0.765 

Plant species richness x consumer identity 1 202 0.000 0.988 

Plant functional diversity 1 204 0.046 0.831 

Consumer identity 1 203 0.000 0.984 

Plant functional diversity x consumer identity 1 202 0.158 0.691 

Vegetation cover 1 204 0.257 0.612 

Consumer identity 1 203 0.007 0.935 

Vegetation cover x consumer identity 1 202 0.069 0.792 

Invertebrate species richness 1 204 1.590 0.207 

Consumer identity 1 203 0.005 0.945 

Invertebrate species richness x consumer identity 1 202 0.108 0.742 

Invertebrate abundance 1 204 0.275 0.600 

Consumer identity 1 203 0.000 0.997 

Invertebrate abundance x consumer identity 1 202 0.166 0.683 
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Response Term df denom. df χ2  p value 

d) Proportion fungi 
/ total microbes 

Plant species richness 1 258 6.301 0.012 

Consumer identity 2 256 174.782 <0.001 

Plant species richness x consumer identity 2 254 0.756 0.685 

Plant functional diversity 1 258 1.395 0.238 

Consumer identity 2 256 167.910 <0.001 

Plant functional diversity x consumer identity 2 254 0.048 0.976 

Vegetation cover 1 258 4.865 0.027 

Consumer identity 2 256 173.695 <0.001 

Vegetation cover x consumer identity 2 254 4.194 0.123 

Invertebrate species richness 1 258 1.220 0.269 

Consumer identity 2 256 159.913 <0.001 

Invertebrate species richness x consumer identity 2 254 0.613 0.736 

Invertebrate abundance 1 258 0.093 0.761 

Consumer identity 2 256 160.800 <0.001 

Invertebrate abundance x consumer identity 2 254 2.683 0.261 

We tested the effects of consumer species identity and five explanatory variables on the proportional 

composition of gut content and feces in separate GLMs using a quasibinomial distribution. (D. sp. was excluded 

from models for intraguild prey (IGP), and proportion of symbionts). p values <.05 are reported in bold numbers 

and p <.10 in italics. denom. df, denominator degrees of freedom; SE, standard errors  
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4.3.6 Microbial community composition 

We detected a significant effect of the identity of consumer species on the community 

composition and variances in sample dispersion of bacteria and fungi in the guts of three 

omnivores (perMANOVA; PERMDISP; Fig. 10, Table 6). The effect was weaker but significant 

when only the beetles were compared. No impact of plant species richness was detected in 

separate models for individual consumers.  

 

 

Figure 10. Community composition of bacteria and fungi in gut contents of three omnivores. NMDS plots (2D, 

stress = 0.23 for bacteria, and = 0.28 for fungi) are based on Bray–Curtis dissimilarities of the Hellinger-

transformed taxon abundance (aggregated on genus level). Symbols represent individual samples; colors and 

enclosing polygons refer to consumer identity.  
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Table 6. Community composition of bacteria and fungi analyzed with perMANOVA and PERMDISP.  

perMANOVA    df SS F value p value 

Bacteria 

All consumers Consumer identity 2 12.57 17.33 0.001 

Residuals 437 158.46 0.93 [R² = 0.07] 

P. melanarius and H. rufipes Consumer identity (beetles) 1 3.09 8.15 0.001 

Residuals 351 133.29 0.98 [R² = 0.02] 

P. melanarius Plant species richness 1 0.39 1.02 1 

Residuals 188 71.56 0.99 [R² = 0.01] 

H. rufipes Plant species richness 1 0.35 0.91 1 

Residuals 161 62.06 0.99 [R² = 0.01] 

D. sp. Plant species richness 1 0.48 1.48 1 

Residuals 85 27.53 0.98 [R² = 0.02] 

Fungi 

All consumers Plant species richness 2 12.32 14.60 0.001 

Residuals 455 192.05 0.94 [R² = 0.06] 

P. melanarius and H. rufipes Plant species richness 1 2.20 5.11 0.001 

Residuals 359 154.61 0.99 [R² = 0.01] 

P. melanarius Plant species richness 1 0.40 0.92 1 

Residuals 185 79.92 1.00 [R² < 0.01] 

H. rufipes Plant species richness 1 0.38 0.88 1 

Residuals 172 74.81 0.99 [R² = 0.01] 

D. sp. Plant species richness 1 0.40 1.03 1 

Residuals 95 37.18 0.99 [R² = 0.01] 

PERMDISP    df SS F value p value 

Bacteria 

All consumers Consumer identity 2 0.53 113.93 0.001 

Residuals 437 1.02   

P. melanarius and H. rufipes Consumer identity (beetles) 1 0.01 3.09 0.071 

Residuals 351 0.70   

P. melanarius Plant species richness 4 0.00 0.92 0.461 

Residuals 185 0.23   

H. rufipes Plant species richness 4 0.00 0.35 0.842 

Residuals 158 0.38   

D. sp. Plant species richness 4 0.02 1.41 0.248 

Residuals 82 0.23     

Fungi 

All consumers Consumer identity 2 0.04 4.53 0.014 

Residuals 455 1.94   

P. melanarius and H. rufipes Consumer identity (beetles) 1 0.02 3.69 0.040 

Residuals 359 1.60   

P. melanarius Plant species richness 4 0.04 1.88 0.126 

Residuals 184 0.95   

H. rufipes Plant species richness 4 0.01 0.71 0.592 

Residuals 169 0.49   

D. sp. Plant species richness 4 0.00 0.51 0.744 

Residuals 93 0.17     

PerMANOVA results on the effect of species identity and plant species richness on the community composition. 
PERMDISP results on homogeneity of multivariate sample dispersion. p values <.05 are reported in bold 
numbers. df, degrees of freedom; SE, standard errors; SS, sums of squares.  



Chapter 4                      Plant diversity effects on multitrophic interactions analyzed by gut content metabarcoding 

 

87 

4.4 Discussion 

Our study is the first to simultaneously examine the direct and indirect impact of plant diversity 

on the multitude of interactions involving omnivores in a controlled grassland biodiversity 

experiment. We found that dietary changes were mainly driven by indirect effects of plant 

diversity through differences in the performance of the plant community (percentage 

vegetation cover) or through bottom-up effects on the invertebrate community. Direct effects 

of plant species richness were only found for the microbial community. One of the strongest 

patterns observed in this study were differences in the response of the consumer species, 

indicating that each of the three omnivores interacts with a different subset of species in its 

local habitat. 

 

4.4.1 General composition of detected taxa 

All three omnivores had DNA of mostly the same plant orders in their gut content. This finding 

could be an indicator for non-selective feeding on plant material. Only taxa belonging to the 

Rosales were found in a bigger proportion in beetle samples than slug samples. To these 

belonged Rubus and Urtica. Urtica occasionally grows as a weed on the plots and Rubus is 

mainly found in the hedgerows surrounding the Jena Experiment. Rubus seeds were distributed 

by fruit feeding birds during the sampling period. The detection of Rubus DNA in Carabid gut 

contents could indicate that Carabids may prefer feeding on these relatively large seeds when 

they are available and hence limit the establishment of invasive Rubus species by seed 

predation (Erschbamer & Caccianiga 2016).  

The three omnivores in our study were more selective in the consumption of animal 

prey than in the consumption of plant material. Many of the D. sp. specimen had consumed 

aphids and to a lower proportion also earthworms. Both are common prey types of the 

facultative carnivorous slugs (Barker & Efford 2004). Earthworms were also common prey for 

P. melanarius, confirming previous studies (Symondson et al. 2009). Ant predation was more 

common in beetles (Thiele et al. 1977) than in slugs. DNA of spiders and other beetles was 

exclusively found in beetles, both groups have been previously described as intraguild prey for 

carabids (Prasad & Snyder 2006; Davey et al. 2013). The detection of feeding links that are well 

described in the literature confirms that NGS of gut contents produces biologically meaningful 

results.  

 

4.4.2 Direct and indirect effects of plant biodiversity on trophic interactions 

In our pilot study, we found a general positive trend of plant taxonomic and functional diversity 

and vegetation cover on the richness of food types in gut content of P. melanarius (Tiede et al. 

2016). This trend could not be confirmed with our extended study. In contrary, in plots with 

high plant species richness P. melanarius, fed on fewer food types, although this trend was not 

significant. The other two consumers showed no response to basal diversity either. One 

possible explanation for these differences might result from the low number of replicates in 

the pilot study (18 samples from 13 plots) produced no meaningful result. Considering the 
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general positive trends covering all analyzed interaction groups over different measures of the 

plant community this is unlikely. Alternatively, the different primer sets and nucleotide 

database that we used in the two studies may have detected different subsets of the total 

community of plants and animals (Alberdi et al. 2017). An additional ecological explanation is, 

that the invertebrate community that was present during the sampling campaign for the pilot 

study in August 2013 was not representative for other year. An extreme flood inundated the 

plots in the first weeks of June 2013 (Wright et al. 2015) and resulted in a high mortality of soil 

invertebrates (N. Eisenhauer, personal observation). Although some species, e.g. Lasius niger 

(Hertzog et al. 2016a) were unaffected, it is unlikely that the whole community had fully 

recovered just two months after the water retreated. In conclusion, the present study is more 

likely to have sampled the regular plot community. 

In this study, we did not find a direct correlation between the richness of plant species 

in the plot and the richness of trophic interactions in gut contents of omnivores. This may not 

be too surprising for the two beetles, that are strongly linked to the animal community (Thiele 

et al. 1977). The mainly herbivorous field slugs (Barker & Efford 2004) did, unexpectedly, not 

respond to plant diversity either. The snap shot that gut contents provide might be too short 

to capture effects on the dietary diversity. Specimen can only handle a limited number of food 

items within a certain time range, which may limit the chances to detect increasing dietary 

diversity. Further studies could compare the beta diversity of multiple gut content samples per 

plot between levels of plant diversity to get a broader picture of the diet on a plot instead of 

an individuum level.  

Structural equation modeling revealed that indirect effects of plant species richness 

were more important for prey richness in gut content than direct effects. Different variables 

were important for each consumer but overall, plant species richness increased the availability 

of basal resources, which positively affected the richness of invertebrates in the plot. 

Invertebrate richness strongly increased abundance and both were linked to prey richness in 

gut content, but the directional effects were different for different consumers. Animal 

abundance increased prey richness in gut contents of the more aggressive P. melanarius but 

decreased it in H. rufipes, maybe as a response of the later species to greater competition with 

other predators.  

Vegetation cover mediated at which trophic level the two beetles were feeding. The 

more carnivorous P. melanarius fed at lower trophic levels when the vegetation cover was high. 

In contrast, the true omnivore H. rufipes included more food from higher trophic levels in 

densely covered plots. The proportion of prey taxa in the food was the same for both beetles 

and not changing with vegetation cover. Together these results indicate that intraguild 

predation plays a greater role for P. melanarius in low vegetation cover and vice versa in 

H. rufipes. Indeed, the proportion of intraguild prey increased in H. rufipes and decreased in 

P. melanarius although the effect was not significant.  

 

4.4.3 Host associated microbes 

The richness of microbes with potential beneficial effects for the consumer increased in dense 

vegetation in P. melanarius but decreased in H. rufipes, again highlighting the different 



Chapter 4                      Plant diversity effects on multitrophic interactions analyzed by gut content metabarcoding 

 

89 

response of these two omnivores to vegetation cover. The ratio of potential symbionts to 

potential pathogens was the same in the two species and did not respond to vegetation cover 

or any other variable, not confirming our hypothesis that the ratio of beneficial to harmful 

microbes would change along the plant diversity gradient. Taxonomic richness of pathogens 

and infection rates do not necessarily correlate. Rottstock et al. (2014) found that the richness 

of plant pathogens increased with plant species richness, but the pathogen damage decreased.  

A potential bias in the analysis of associated microbes is the limited knowledge on 

microbe-invertebrate interactions. Entomopathogens are well studied due to their use as 

biological control agents (e.g., Goettel et al. 2005; Parsa et al. 2013) but studies on symbiotic 

interactions are mostly limited to specialized herbivores, while the literature on the 

associations with consumer at higher trophic levels is generally sparse. Further, the role of the 

same microbial taxon can change depending on its co-occurring species, environment, and host 

conditions (Vega & Blackwell 2005).  

 

4.4.4 Microbial eDNA 

We hypothesized that plant diversity will directly or indirectly increase the richness of microbes 

without direct relation to the consumers (e.g., plant pathogens, saprobionts). This assumption 

was based on findings that the richness of plant pathogens, soil microbes, and the soil microbial 

activity increased with plant species richness (Scherber et al. 2010; Lange et al. 2015). Further, 

the richness of fungi and protists in guts of P. melanarius increased with vegetation cover (Tiede 

et al. 2017). Our findings did only partly confirm this pattern. Feces of D. sp. contained indeed 

a greater diversity of microbes when the slugs had fed in plots with high plant species richness 

or dense vegetation, whereas the microbial richness in beetle regurgitates was not affected. 

Interestingly the proportion of fungal taxa in the total microbial community in gut contents of 

all three omnivores decreased with increasing plant species richness and vegetation cover. This 

contrasts previous findings of an increasing richness of soil and plant pathogenic fungi and 

increasing ratio of fungal-to-bacterial biomass with plant diversity (Rottstock et al. 2014; 

Markus Lange 2015; Eisenhauer et al. 2017; Dassen et al. 2017). 

Consumer identity strongly shaped the microbial community composition. Differences 

between the slug and beetle samples might originate from the use of different source material 

(feces, and regurgitates). The differences between the two beetle species might rather result 

from a different set of core microbes as it has been previously found in other omnivorous or 

carnivorous species (Anderson et al. 2012; Mrázek et al. 2008; Tiede et al. 2017). Diet is another 

major determinant for the gut microbiome of many invertebrates (Broderick et al. 2004; 

Lundgren & Lehman 2010; Mason & Raffa 2014; Wang et al. 2011). Differences in the feeding 

behavior between the beetles, that are indicated by the detection of different prey types, might 

further explain variation in the microbial community composition.  

Our assumption that the microbial communities would become more similar with 

increasing plant species richness was not confirmed. In other studies, plant species richness 

was also only a weak predictor for the community composition of soil living bacteria, and fungi 

(Dassen et al. 2017). 
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4.5 Conclusions 

Metabarcoding of gut contents allows new insights into the multitude of interactions between 

species in complex communities. Used in controlled biodiversity field experiments this 

approach can shed light on mechanisms that could not be observed before. In particular, the 

combined study of trophic and microbial interactions can increase our understanding of how 

plant diversity, directly or through cascading effects, shapes processes in the ecological 

communities and the communities themselves. Our results suggest that cascading effects of 

plant species richness via changes in the performance of the plant community and via the 

bottom-up food web are the main drivers for interactions involving omnivores. Overall, this 

study highlights the importance of including multiple trophic levels in empirical biodiversity 

studies to fully understand processes in complex communities.  
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4.7 Supporting Information 

Table S1. Overview over the number of samples per plot, and primer set used for the analysis of plants (trnL), 

animals (COI), fungi (ITS), and bacteria (16S) in regurgitates of beetles or slug feces. 

Experiment Plant community PSR Plot ID 

P. melanarius H. rufipes D. sp. 

trnL  COI ITS 16S trnL  COI ITS 16S trnL  COI ITS 16S 

JE-TBE monoculture 1 B0BA009 0 0 0 0 0 0 0 0 2 2 2 3 

JE-TBE monoculture 1 B0BA015 2 0 2 2 2 0 1 1 0 1 1 1 

JE-TBE monoculture 1 B0BA016 0 1 1 2 1 0 1 1 1 1 1 1 

JE-TBE monoculture 1 B0BA020 1 0 2 2 2 2 2 1 0 1 1 1 

JE-TBE monoculture 1 B0BA027 0 0 0 0 0 0 0 0 0 0 0 0 

JE-TBE monoculture 1 B0BA029 2 0 1 2 0 0 1 1 1 0 1 1 

JE-TBE monoculture 1 B0BA040 1 1 2 2 1 1 1 1 0 0 0 0 

JE-TBE monoculture 1 B0BA043 2 1 1 2 2 0 2 1 0 2 2 1 

JE-TBE monoculture 1 B0BB048 0 0 0 0 0 0 0 0 1 0 1 1 

JE-TBE monoculture 1 B0BB059 0 0 1 1 0 0 0 0 0 0 0 0 

JE-TBE monoculture 1 B0BB060 2 1 2 2 0 0 0 0 2 2 2 2 

JE-TBE monoculture 1 B0BB064 1 1 1 1 1 1 1 1 0 0 0 0 

JE-TBE monoculture 1 B0BB068 0 0 2 2 0 0 0 0 0 0 0 0 

JE-TBE monoculture 1 B0BB072 0 0 2 2 2 1 1 2 1 2 1 1 

JE-TBE monoculture 1 B0BB085 0 0 2 2 0 0 0 0 0 0 0 0 

JE-TBE monoculture 1 B0BB089 1 0 2 2 2 1 2 2 0 0 0 0 

JE-TBE monoculture 1 B0BC097 0 0 0 1 0 1 0 1 0 0 0 0 

JE-TBE monoculture 1 B0BC106 2 0 2 2 2 2 2 2 0 0 0 0 

JE-TBE monoculture 1 B0BC110 0 0 2 2 1 1 2 2 1 1 2 2 

JE-TBE monoculture 1 B0BC117 1 2 2 2 2 0 1 1 0 0 0 0 

JE-TBE monoculture 1 B0BC118 0 1 2 2 0 0 0 0 0 0 0 0 

JE-TBE monoculture 1 B0BC121 1 0 2 2 1 0 2 2 0 0 0 0 

JE-TBE monoculture 1 B0BC131 0 0 2 2 0 1 0 1 0 0 0 0 

JE-TBE monoculture 1 B0BC133 0 0 2 2 1 1 2 2 2 2 2 1 

JE-TBE mixed community 2 B0BA002 0 0 2 2 1 1 2 2 0 0 0 0 

JE-TBE mixed community 2 B0BA004 1 1 2 2 1 0 2 1 0 0 0 0 

JE-TBE mixed community 2 B0BA006 0 0 2 2 2 1 2 1 2 3 2 2 

JE-TBE mixed community 2 B0BA007 1 0 2 2 0 0 0 0 1 1 1 1 

JE-TBE mixed community 2 B0BA008 0 0 0 0 0 3 2 1 1 1 1 1 

JE-TBE mixed community 2 B0BA011 0 0 2 2 0 1 2 2 2 2 2 2 

JE-TBE mixed community 2 B0BA012 1 1 2 2 2 1 2 1 0 0 0 0 

JE-TBE mixed community 2 B0BA013 1 1 1 1 1 1 2 1 1 2 2 1 

JE-TBE mixed community 2 B0BA022 1 1 2 2 1 0 2 1 0 0 0 0 

JE-TBE mixed community 2 B0BA026 0 0 0 0 1 0 1 1 0 0 0 0 

JE-TBE mixed community 2 B0BA028 2 0 2 2 0 0 0 0 0 0 0 0 

JE-TBE mixed community 2 B0BA038 0 0 0 2 2 1 2 2 0 0 0 0 

JE-TBE mixed community 2 B0BA041 0 2 1 1 2 1 2 1 0 0 0 0 

JE-TBE mixed community 2 B0BA042 0 0 0 0 1 1 1 1 1 1 2 2 

JE-TBE mixed community 2 B0BA044 1 1 2 2 0 0 0 0 0 0 0 0 

JE-TBE mixed community 2 B0BA046 0 0 0 0 1 1 2 0 0 2 0 0 

JE-TBE mixed community 2 B0BB050 1 0 0 2 1 0 1 1 1 1 1 1 

JE-TBE mixed community 2 B0BB054 0 0 2 2 1 1 1 1 0 1 1 1 

JE-TBE mixed community 2 B0BB061 1 1 2 2 2 0 1 2 0 0 0 0 

JE-TBE mixed community 2 B0BB063 0 0 0 0 0 0 0 0 0 0 0 0 

JE-TBE mixed community 2 B0BB069 1 0 2 2 2 0 2 2 0 0 0 0 

JE-TBE mixed community 2 B0BB070 1 0 1 2 1 1 2 2 0 0 0 0 

JE-TBE mixed community 2 B0BB071 0 0 2 2 3 0 1 2 0 0 0 0 

JE-TBE mixed community 2 B0BB074 1 0 1 1 0 0 0 0 2 0 2 1 

JE-TBE mixed community 2 B0BB080 2 2 2 2 0 0 1 0 0 0 0 0 
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Experiment Plant community PSR Plot ID 

P. melanarius H. rufipes D. sp. 

trnL  COI ITS 16S trnL  COI ITS 16S trnL  COI ITS 16S 

JE-TBE mixed community 2 B0BB081 0 2 2 2 0 0 2 1 0 0 0 0 

JE-TBE mixed community 2 B0BB083 1 2 1 1 2 0 1 2 0 0 0 0 

JE-TBE mixed community 2 B0BB087 0 1 1 2 1 0 1 1 0 0 0 0 

JE-TBE mixed community 2 B0BB088 2 0 2 2 1 1 2 0 0 0 0 0 

JE-TBE mixed community 2 B0BB090 0 0 2 2 1 0 0 0 0 2 1 1 

JE-TBE mixed community 2 B0BB091 0 0 1 2 3 1 0 1 0 0 0 0 

JE-TBE mixed community 2 B0BB092 1 1 0 1 2 1 1 1 1 1 1 1 

JE-TBE mixed community 2 B0BC093 0 0 0 1 0 1 0 1 1 0 1 1 

JE-TBE mixed community 2 B0BC099 0 0 1 1 0 1 2 2 2 2 2 2 

JE-TBE mixed community 2 B0BC100 1 1 1 2 0 0 1 1 0 1 0 0 

JE-TBE mixed community 2 B0BC102 0 0 0 0 2 0 2 2 0 1 1 0 

JE-TBE mixed community 2 B0BC105 0 0 1 1 0 1 2 2 0 0 0 0 

JE-TBE mixed community 2 B0BC108 0 1 2 2 0 0 0 0 1 1 0 0 

JE-TBE mixed community 2 B0BC114 0 0 1 1 0 0 0 0 0 0 0 0 

JE-TBE mixed community 2 B0BC120 1 1 2 2 2 2 1 1 1 1 1 1 

JE-TBE mixed community 2 B0BC123 0 0 0 0 1 1 2 2 1 1 1 1 

JE-TBE mixed community 2 B0BC125 0 0 0 0 1 1 1 1 2 1 2 2 

JE-TBE mixed community 2 B0BC126 1 0 2 2 2 0 2 2 0 0 0 0 

JE-TBE mixed community 2 B0BC127 0 1 2 2 1 1 2 2 0 0 0 0 

JE-TBE mixed community 2 B0BC132 0 1 2 1 2 3 2 2 1 0 2 1 

JE-TBE mixed community 2 B0BC134 0 0 2 1 1 2 2 2 1 1 1 1 

JE-TBE mixed community 2 B0BC135 0 0 2 1 0 0 0 0 0 2 2 2 

JE-TBE mixed community 2 B0BC137 0 0 2 1 0 0 0 0 0 1 0 0 

JE-TBE mixed community 3 B0BA001 0 1 2 2 1 3 1 1 2 3 2 2 

JE-TBE mixed community 3 B0BA014 0 0 0 0 0 0 1 1 1 1 1 1 

JE-TBE mixed community 3 B0BA017 0 0 2 2 0 0 0 0 0 1 0 0 

JE-TBE mixed community 3 B0BA019 0 1 0 1 1 0 2 1 0 0 0 0 

JE-TBE mixed community 3 B0BA021 1 0 2 2 0 1 2 1 0 0 0 0 

JE-TBE mixed community 3 B0BA024 2 0 2 2 0 1 2 1 0 0 0 0 

JE-TBE mixed community 3 B0BA025 1 0 2 1 2 0 2 1 1 1 1 1 

JE-TBE mixed community 3 B0BA031 1 1 1 2 0 0 0 0 0 2 1 1 

JE-TBE mixed community 3 B0BA033 1 0 1 1 1 0 2 2 1 1 1 1 

JE-TBE mixed community 3 B0BA034 2 0 2 2 2 0 2 2 0 2 2 1 

JE-TBE mixed community 3 B0BA037 0 0 0 0 1 0 1 1 2 2 2 3 

JE-TBE mixed community 3 B0BA039 0 0 0 0 2 0 2 1 1 0 1 1 

JE-TBE mixed community 3 B0BB047 2 1 1 2 1 0 2 1 0 0 0 0 

JE-TBE mixed community 3 B0BB053 0 2 1 2 0 1 2 2 1 2 2 2 

JE-TBE mixed community 3 B0BB055 0 0 1 2 2 1 2 3 0 1 1 1 

JE-TBE mixed community 3 B0BB058 2 0 1 0 0 0 0 0 0 0 0 0 

JE-TBE mixed community 3 B0BB062 0 0 1 2 1 1 2 2 0 0 0 0 

JE-TBE mixed community 3 B0BB065 0 0 0 0 2 1 1 1 0 0 0 0 

JE-TBE mixed community 3 B0BB077 2 1 1 1 0 1 1 2 1 3 2 2 

JE-TBE mixed community 3 B0BB078 0 0 2 2 2 1 2 2 0 0 0 0 

JE-TBE mixed community 3 B0BB079 0 0 1 1 0 0 0 0 0 0 0 0 

JE-TBE mixed community 3 B0BB082 0 2 1 1 1 0 2 2 0 0 0 0 

JE-TBE mixed community 3 B0BB084 0 1 1 1 1 0 0 1 0 0 0 0 

JE-TBE mixed community 3 B0BB086 0 0 1 1 1 0 0 1 0 0 0 0 

JE-TBE mixed community 3 B0BC094 1 2 1 1 0 0 0 2 2 3 2 2 

JE-TBE mixed community 3 B0BC095 1 1 1 0 0 1 2 1 0 0 0 0 

JE-TBE mixed community 3 B0BC096 0 0 0 0 0 0 0 0 0 0 0 0 

JE-TBE mixed community 3 B0BC101 0 0 0 2 0 0 1 2 1 1 1 0 

JE-TBE mixed community 3 B0BC107 0 0 0 0 0 0 0 0 2 1 2 2 

JE-TBE mixed community 3 B0BC113 0 0 0 0 0 0 1 1 1 1 1 1 
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Experiment Plant community PSR Plot ID 

P. melanarius H. rufipes D. sp. 

trnL  COI ITS 16S trnL  COI ITS 16S trnL  COI ITS 16S 

JE-TBE mixed community 3 B0BC116 0 0 1 1 1 0 2 2 0 0 0 0 

JE-TBE mixed community 3 B0BC124 0 0 1 1 2 1 2 2 0 0 0 0 

JE-TBE mixed community 3 B0BC128 0 0 0 0 0 1 1 2 1 2 1 1 

JE-TBE mixed community 3 B0BC129 0 1 2 1 2 0 2 2 0 0 0 0 

JE-TBE mixed community 3 B0BC130 0 0 2 1 1 1 2 2 1 2 1 1 

JE-TBE mixed community 3 B0BC138 0 1 1 0 1 0 2 2 0 0 0 0 

JE-TBE mixed community 4 B0BA003 1 0 2 2 0 0 0 0 2 3 2 2 

JE-TBE mixed community 4 B0BA005 1 2 2 2 0 1 2 1 0 2 1 0 

JE-TBE mixed community 4 B0BA010 0 0 0 0 2 2 2 1 0 0 0 0 

JE-TBE mixed community 4 B0BA023 1 0 2 2 2 0 2 1 0 0 0 0 

JE-TBE mixed community 4 B0BA030 1 0 2 2 1 1 1 1 0 0 0 0 

JE-TBE mixed community 4 B0BA032 0 2 2 2 0 0 0 0 0 0 0 0 

JE-TBE mixed community 4 B0BA035 1 1 2 2 0 0 2 2 0 1 1 1 

JE-TBE mixed community 4 B0BA036 1 1 2 2 2 0 2 1 1 2 1 1 

JE-TBE mixed community 4 B0BA045 1 1 2 2 1 2 2 1 1 1 1 1 

JE-TBE mixed community 4 B0BB049 0 0 0 0 0 0 0 0 1 0 1 1 

JE-TBE mixed community 4 B0BB051 0 0 2 1 0 0 0 0 1 1 2 2 

JE-TBE mixed community 4 B0BB052 1 0 2 2 1 1 2 1 1 1 1 1 

JE-TBE mixed community 4 B0BB056 0 0 0 0 0 0 0 0 0 0 0 0 

JE-TBE mixed community 4 B0BB057 0 1 1 0 1 1 2 1 2 0 2 2 

JE-TBE mixed community 4 B0BB066 0 0 1 2 1 0 2 2 1 1 1 1 

JE-TBE mixed community 4 B0BB067 2 0 2 2 0 0 0 0 1 2 2 2 

JE-TBE mixed community 4 B0BB075 1 0 1 1 0 0 1 1 0 0 0 0 

JE-TBE mixed community 4 B0BB076 0 1 2 2 2 1 2 2 1 1 1 1 

JE-TBE mixed community 4 B0BC103 1 0 0 1 0 1 2 2 2 0 2 2 

JE-TBE mixed community 4 B0BC104 0 0 2 2 2 2 2 2 0 0 0 0 

JE-TBE mixed community 4 B0BC109 0 1 2 2 1 0 1 1 0 0 0 0 

JE-TBE mixed community 4 B0BC111 0 0 0 0 0 0 0 0 0 0 0 0 

JE-TBE mixed community 4 B0BC112 1 2 2 1 1 1 2 2 1 1 1 1 

JE-TBE mixed community 4 B0BC115 0 2 2 2 1 1 2 2 0 0 0 0 

JE-TBE mixed community 4 B0BC119 0 0 2 2 2 1 2 1 0 0 0 0 

JE-TBE mixed community 4 B0BC122 0 0 0 0 0 0 1 1 0 0 0 0 

JE-TBE mixed community 4 B0BC136 0 0 2 1 0 0 0 0 0 0 0 0 

JE-TBE mixed community 8 B0BA018 1 0 1 1 1 0 2 2 1 0 1 1 

JE-TBE mixed community 8 B0BB073 1 1 3 3 3 1 2 2 1 1 3 2 

JE-TBE mixed community 8 B0BC098 1 0 2 2 0 1 2 2 1 2 2 1 

JE-control control matrix 16 B0BA-CA 0 0 0 0 0 0 1 1 0 2 2 0 

JE-control control matrix 16 B0BB-CB 0 1 3 3 0 0 0 0 0 0 0 0 

JE-control control matrix 16 B0BC-CC 0 0 1 1 0 0 0 0 1 1 3 2 

PSR = Plant species richness; JE-TBE = Jena Experiment, Trait-Based Experiment  
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Table S2. Overview on the detection frequency of taxa per consumer and kingdom (primer) in absolute 

numbers (n) and percent of samples (%). 

 Kingdom Phylum/Class/Order 

total D. sp. H. rufipes P. melanarius 

n % n % n % n % 

Plantae 

Asterales (TBE) 148 74.7 46.0 83.6 58.0 72.5 39.0 69.6 

Lamiales (TBE) 122 61.6 40.0 72.7 41.0 51.3 36.0 64.3 

Fabales 71 35.9 29.0 52.7 20.0 25.0 18.0 32.1 

Rosales (TBE) 62 31.3 4.0 7.3 32.0 40.0 22.0 39.3 

Caryophyllales (TBE) 48 24.2 18.0 32.7 18.0 22.5 10.0 17.9 

Poales (TBE) 38 19.2 10.0 18.2 11.0 13.8 12.0 21.4 

Cucurbitales 34 17.2 11.0 20.0 10.0 12.5 11.0 19.6 

Dipsacales (TBE) 34 17.2 8.0 14.5 14.0 17.5 11.0 19.6 

Geraniales (TBE) 17 8.6 2.0 3.6 9.0 11.3 6.0 10.7 

Solanales 14 7.1 4.0 7.3 3.0 3.8 5.0 8.9 

Ranunculales (TBE) 12 6.1 1.0 1.8 3.0 3.8 5.0 8.9 

Brassicales 6 3.0 1.0 1.8 2.0 2.5   
Apiales (TBE) 5 2.5 2.0 3.6   3.0 5.4 

Gentianales (TBE) 2 1.0 1.0 1.8 1.0 1.3   

Animaila 

Hymenoptera 41 22.3 2.0 3.2 12.0 19.7 16.0 33.3 

Hemiptera 38 20.7 10.0 16.1 14.0 23.0 9.0 18.8 

Haplotaxida 23 12.5 4.0 6.5 1.0 1.6 18.0 37.5 

Diptera 18 9.8 1.0 1.6 6.0 9.8 4.0 8.3 

Araneae 13 7.1   4.0 6.6 9.0 18.8 

Coleoptera 13 7.1   6.0 9.8 6.0 12.5 

Stylommatophora 12 6.5 2.0 3.2 4.0 6.6 2.0 4.2 

Entomobryomorpha 7 3.8   3.0 4.9   
Lepidoptera 5 2.7     5.0 10.4 

Sarcoptiformes 5 2.7       
Poduromorpha 4 2.2 2.0 3.2   1.0 2.1 

Thysanoptera 4 2.2 2.0 3.2   2.0 4.2 

Orthoptera 3 1.6     3.0 6.3 

Julida 2 1.1       
Mesostigmata 2 1.1     2.0 4.2 

Fungi 

Saccharomycetes 223 76.4 33.0 49.3 89.0 89.0 91.0 84.3 

Dothideomycetes 199 68.2 65.0 97.0 67.0 67.0 54.0 50.0 

Tremellomycetes 160 54.8 55.0 82.1 60.0 60.0 31.0 28.7 

Agaricomycetes 138 47.3 19.0 28.4 69.0 69.0 35.0 32.4 

Sordariomycetes 95 32.5 40.0 59.7 28.0 28.0 17.0 15.7 

Microbotryomycetes 89 30.5 42.0 62.7 22.0 22.0 17.0 15.7 

Leotiomycetes 43 14.7 21.0 31.3 12.0 12.0 5.0 4.6 

Exobasidiomycetes 27 9.2 13.0 19.4 5.0 5.0 5.0 4.6 

Eurotiomycetes 23 7.9 8.0 11.9 6.0 6.0 3.0 2.8 

Glomeromycetes 21 7.2   12.0 12.0 4.0 3.7 

Mortierellomycotina 21 7.2 3.0 4.5 7.0 7.0 6.0 5.6 

Agaricostilbomycetes 20 6.8 6.0 9.0 9.0 9.0 5.0 4.6 

Cystobasidiomycetes 19 6.5 15.0 22.4 3.0 3.0 1.0 0.9 

Ustilaginomycotina 19 6.5 1.0 1.5 6.0 6.0 7.0 6.5 

Mucoromycotina 18 6.2 4.0 6.0 10.0 10.0 3.0 2.8 

Pezizomycetes 15 5.1 11.0 16.4 2.0 2.0 1.0 0.9 

Ustilaginomycetes 12 4.1 8.0 11.9 1.0 1.0 3.0 2.8 

Pucciniomycetes 11 3.8 2.0 3.0 6.0 6.0 2.0 1.9 

Chytridiomycetes 10 3.4 5.0 7.5 1.0 1.0 2.0 1.9 

Wallemiomycetes 6 2.1       
Lecanoromycetes 3 1.0   3.0 3.0   
Rozellomycota 3 1.0 1.0 1.5   1.0 0.9 

Taphrinomycetes 3 1.0 2.0 3.0 1.0 1.0     
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 Kingdom Phylum/Class/Order 

total D. sp. H. rufipes P. melanarius 

n % n % n % n % 

Bacteria 

Proteobacteria 291 99.3 63.0 100.0 102.0 98.1 112.0 100.0 

Bacteroidetes 274 93.5 52.0 82.5 102.0 98.1 105.0 93.8 

Firmicutes 234 79.9 30.0 47.6 82.0 78.8 110.0 98.2 

Actinobacteria 189 64.5 18.0 28.6 83.0 79.8 74.0 66.1 

Saccharibacteria 112 38.2 6.0 9.5 46.0 44.2 51.0 45.5 

Acidobacteria 89 30.4 4.0 6.3 50.0 48.1 29.0 25.9 

Planctomycetes 85 29.0 8.0 12.7 33.0 31.7 38.0 33.9 

Deinococcus-Thermus 74 25.3 1.0 1.6 27.0 26.0 45.0 40.2 

Verrucomicrobia 70 23.9 7.0 11.1 29.0 27.9 25.0 22.3 

Cyanobacteria 55 18.8   26.0 25.0 24.0 21.4 

Fusobacteria 45 15.4   12.0 11.5 30.0 26.8 

Tenericutes 26 8.9 1.0 1.6 5.0 4.8 14.0 12.5 

CKC4 25 8.5   4.0 3.8 20.0 17.9 

Armatimonadetes 22 7.5 1.0 1.6 14.0 13.5 6.0 5.4 

Chlamydiae 21 7.2   9.0 8.7 11.0 9.8 

Chloroflexi 14 4.8   8.0 7.7 5.0 4.5 

Nitrospirae 9 3.1   5.0 4.8 3.0 2.7 

Chlorobi 4 1.4   3.0 2.9 1.0 0.9 

TM6 4 1.4   1.0 1.0 2.0 1.8 

Elusimicrobia 3 1.0   2.0 1.9 1.0 0.9 

Spirochaetae 3 1.0 1.0 1.6 2.0 1.9   
WCHB1-60 3 1.0     3.0 2.9     

Only taxa with an frequency of detection of ≥1% over all samples are shown. Red coloration of cells marks 

frequently detected taxa. TBE = sown species pool of the Trait-Based Experiment.  



Chapter 4                      Plant diversity effects on multitrophic interactions analyzed by gut content metabarcoding 

 

96 

Table S3. Effect of the interaction between consumer identity and plant species richness, plant functional diversity, 

or percent vegetation cover on the number of detected taxa in each interaction group. 

Model Term df denom. df χ2  p value 

a) Total food 

Plant species richness 1 240 0.121 0.728 

Consumer identity 2 238 3.423 0.181 

Plant species richness x consumer identity 2 236 3.114 0.211 

Plant functional diversity 1 240 0.547 0.460 

Consumer identity 2 238 3.383 0.184 

Plant functional diversity x consumer identity 2 236 0.542 0.763 

Vegetation cover 1 240 0.840 0.359 

Consumer identity 2 238 3.473 0.176 

Vegetation cover x consumer identity 2 236 1.304 0.521 

b) Plants 

Plant species richness 1 188 0.040 0.842 

Consumer identity 2 186 19.514 <0.001 

Plant species richness x consumer identity 2 184 3.108 0.211 

Plant functional diversity 1 188 0.000 0.983 

Consumer identity 2 186 58.713 <0.001 

Plant functional diversity x consumer identity 2 184 0.745 0.689 

Vegetation cover 1 188 1.632 0.201 

Consumer identity 2 186 61.228 <0.001 

Vegetation cover x consumer identity 2 184 0.100 0.951 

c) Predation 

Plant species richness 1 166 0.009 0.927 

Consumer identity 2 164 59.366 <0.001 

Plant species richness x consumer identity 2 162 2.724 0.256 

Plant functional diversity 1 166 0.559 0.455 

Consumer identity 2 164 19.626 <0.001 

Plant functional diversity x consumer identity 2 162 2.577 0.276 

Vegetation cover 1 166 0.026 0.873 

Consumer identity 2 164 19.085 <0.001 

Vegetation cover x consumer identity 2 162 0.203 0.903 

d) IGP 

Plant species richness 1 106 0.178 0.674 

Consumer identity 1 105 5.396 0.020 

Plant species richness x consumer identity 1 104 1.220 0.269 

Plant functional diversity 1 106 0.755 0.385 

Consumer identity 1 105 5.057 0.025 

Plant functional diversity x consumer identity 1 104 1.201 0.273 

Vegetation cover 1 106 0.052 0.820 

Consumer identity 1 105 5.311 0.021 

Vegetation cover x consumer identity 1 104 1.218 0.270 

e) Microbiome 

Plant species richness 1 218 0.338 0.561 

Consumer identity 1 217 3.681 0.055 

Plant species richness x consumer identity 1 216 0.016 0.898 

Plant functional diversity 1 218 1.316 0.251 

Consumer identity 1 217 4.075 0.044 

Plant functional diversity x consumer identity 1 216 0.375 0.540 

Vegetation cover 1 218 0.089 0.766 

Consumer identity 1 217 3.836 0.050 

Vegetation cover x consumer identity 1 216 1.464 0.226 
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Model Term df denom. df χ2  p value 

f) Symbionts 

Plant species richness 1 218 1.127 0.289 

Consumer identity 1 217 12.290 <0.001 

Plant species richness x consumer identity 1 216 0.355 0.551 

Plant functional diversity 1 218 1.348 0.246 

Consumer identity 1 217 13.197 <0.001 

Plant functional diversity x consumer identity 1 216 0.024 0.877 

Vegetation cover 1 218 0.330 0.566 

Consumer identity 1 217 93.152 <0.001 

Vegetation cover x consumer identity 1 216 11.585 <0.001 

g) Pathogens 

Plant species richness 1 218 0.579 0.447 

Consumer identity 1 217 13.194 0.038 

Plant species richness x consumer identity 1 216 11.156 0.830 

Plant functional diversity 1 218 0.808 0.369 

Consumer identity 1 217 4.323 0.038 

Plant functional diversity x consumer identity 1 216 0.298 0.585 

Vegetation cover 1 218 0.780 0.377 

Consumer identity 1 217 4.147 0.042 

Vegetation cover x consumer identity 1 216 2.574 0.109 

h) Neutral 

Plant species richness 1 218 0.008 0.931 

Consumer identity 1 217 6.469 0.011 

Plant species richness x consumer identity 1 216 0.494 0.482 

Plant functional diversity 1 218 3.382 0.066 

Consumer identity 1 217 7.046 0.008 

Plant functional diversity x consumer identity 1 216 0.130 0.719 

Vegetation cover 1 218 1.830 0.176 

Consumer identity 1 217 6.483 0.011 

Vegetation cover x consumer identity 1 216 0.283 0.595 

All taxa were assigned to interaction groups (see methods). We tested the interaction effects of consumer 

identity and three explanatory variables for all interaction groups (D. sp. was included in a) total food, b) plant 

food, c) predation, and h) neutral)). A quasipoisson distribution was used for all models except neutral 

interactions, for which negative binomial models were fitted. p values <.05 are reported in bold numbers 

and p <.10 in italics. denom. df, denominator degrees of freedom  
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Table S4. Summary table for structural equation models for the direct and cascading effects of plant species 

richness on the log-transformed detected richness of prey taxa (Predation) in the guts of three omnivores.  

left-hand-side operator right-hand-side Estimate SE z value p value 

Regressions (H. rufipes):       

log(Predation) ~ Plant species richness 0.174 0.117 1.488 0.137 
log(Predation) ~ Plant cover 0.101 0.108 0.933 0.351 
log(Predation) ~ Plant biomass 0.051 0.125 0.408 0.683 
log(Predation) ~ Animal abundance 0.230 0.152 1.514 0.130 
log(Predation) ~ Animal species richness -0.177 0.153 -1.155 0.248 
Plant cover ~ Plant species richness 0.006 0.096 0.064 0.949 
Plant biomass ~ Plant species richness 0.045 0.129 0.347 0.729 
Animal species richness ~ Plant species richness 0.149 0.109 1.367 0.172 
Animal species richness ~ Plant cover -0.006 0.133 -0.045 0.964 
Animal species richness ~ Plant biomass 0.135 0.081 1.668 0.095 
Animal abundance ~ Plant species richness -0.050 0.096 -0.519 0.603 
Animal abundance ~ Plant cover -0.002 0.080 -0.029 0.977 
Animal abundance ~ Plant biomass 0.053 0.083 0.634 0.526 
Animal abundance ~ Animal species richness 0.602 0.114 5.303 0.000 

Intercepts (H. rufipes):       

log(Predation) ~l  0.000 0.125 0.000 1.000 
Plant cover ~l  0.000 0.128 0.000 1.000 
Plant biomass ~l  0.000 0.128 0.000 1.000 
Animal species richness ~l  0.000 0.127 0.000 1.000 
Animal abundance ~l  0.000 0.102 0.000 1.000 

Variances (H. rufipes):       

log(Predation)   0.912 0.136 6.697 0.000 
Plant cover   0.984 0.180 5.463 0.000 
Plant biomass   0.982 0.279 3.524 0.000 
Animal species richness   0.942 0.194 4.857 0.000 
Animal abundance   0.622 0.164 3.803 0.000 

Regressions (D. sp.):       

log(Predation) ~ Plant species richness -0.134 0.098 -1.373 0.170 
log(Predation) ~ Plant cover 0.106 0.147 0.724 0.469 
log(Predation) ~ Plant biomass 0.050 0.085 0.589 0.556 
log(Predation) ~ Animal abundance -0.110 0.106 -1.036 0.300 
log(Predation) ~ Animal species richness -0.163 0.152 -1.067 0.286 
Plant cover ~ Plant species richness 0.216 0.114 1.889 0.059 
Plant biomass ~ Plant species richness 0.052 0.136 0.383 0.702 
Animal species richness ~ Plant species richness 0.191 0.110 1.736 0.083 
Animal species richness ~ Plant cover 0.103 0.128 0.807 0.420 
Animal species richness ~ Plant biomass 0.013 0.118 0.107 0.914 
Animal abundance ~ Plant species richness 0.082 0.095 0.864 0.388 
Animal abundance ~ Plant cover -0.067 0.141 -0.473 0.636 
Animal abundance ~ Plant biomass -0.087 0.067 -1.307 0.191 
Animal abundance ~ Animal species richness 0.617 0.103 5.965 0.000 

Intercepts (D. sp.):       

log(Predation) ~l  0.000 0.124 0.000 1.000 
Plant cover ~l  0.000 0.129 0.000 1.000 
Plant biomass ~l  0.000 0.129 0.000 1.000 
Animal species richness ~l  0.000 0.128 0.000 1.000 
Animal abundance ~l  0.000 0.100 0.000 1.000 

Variances (D. sp.):       

log(Predation)   0.891 0.199 4.483 0.000 
Plant cover   0.938 0.173 5.412 0.000 
Plant biomass   0.981 0.272 3.603 0.000 
Animal species richness   0.928 0.214 4.344 0.000 
Animal abundance   0.587 0.151 3.877 0.000 
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left-hand-side operator right-hand-side Estimate SE z value p value 

Regressions (P. melanarius):       

log(Predation) ~ Plant species richness 0.002 0.109 0.014 0.988 
log(Predation) ~ Plant cover 0.067 0.146 0.458 0.647 
log(Predation) ~ Plant biomass 0.140 0.132 1.066 0.287 
log(Predation) ~ Animal abundance 0.339 0.177 1.908 0.056 
log(Predation) ~ Animal species richness -0.112 0.184 -0.607 0.544 
Plant cover ~ Plant species richness 0.210 0.150 1.398 0.162 
Plant biomass ~ Plant species richness 0.279 0.131 2.132 0.033 
Animal species richness ~ Plant species richness 0.013 0.124 0.102 0.919 
Animal species richness ~ Plant cover 0.094 0.124 0.757 0.449 
Animal species richness ~ Plant biomass 0.292 0.128 2.276 0.023 
Animal abundance ~ Plant species richness -0.008 0.114 -0.072 0.943 
Animal abundance ~ Plant cover 0.090 0.127 0.711 0.477 
Animal abundance ~ Plant biomass -0.063 0.118 -0.532 0.595 
Animal abundance ~ Animal species richness 0.587 0.149 3.950 0.000 

Intercepts (P. melanarius):       

log(Predation) ~l  0.000 0.137 0.000 1.000 
Plant cover ~l  0.000 0.146 0.000 1.000 
Plant biomass ~l  0.000 0.146 0.000 1.000 
Animal species richness ~l  0.000 0.139 0.000 1.000 
Animal abundance ~l  0.000 0.118 0.000 1.000 

Variances (P. melanarius):       

log(Predation)   0.867 0.168 5.145 0.000 
Plant cover   0.936 0.170 5.497 0.000 
Plant biomass   0.903 0.224 4.036 0.000 
Animal species richness   0.883 0.286 3.089 0.002 
Animal abundance   0.642 0.194 3.304 0.001 

p values <.05 are reported in bold numbers and p <.10 in italics. SE = Standard errors  
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Table S5. Average trophic position of food items in gut contents and feces of three omnivorous consumers. 

Response Term Estimate SE t value  p value 

a) Mean trophic 
position of total 
food 

(Intercept) -0.751 0.432 -1.738 0.084 
Plant species richness -0.223 0.166 -1.342 0.181 
Consumer-H rufipes -0.301 0.487 -0.619 0.537 
Consumer-P. melanarius 0.300 0.480 0.624 0.533 
Plant species richness x consumer-H rufipes 0.273 0.181 1.509 0.133 
Plant species richness x consumer-P. melanarius 0.232 0.180 1.293 0.197 

(Intercept) -0.903 0.428 -2.112 0.036 
Plant functional diversity -0.178 0.176 -1.009 0.314 
Consumer-H rufipes -0.356 0.513 -0.693 0.489 
Consumer-P. melanarius 0.332 0.490 0.676 0.500 
Plant functional diversity x consumer-H rufipes 0.315 0.204 1.545 0.124 
Plant functional diversity x consumer-P. melanarius 0.237 0.197 1.202 0.231 

(Intercept) -1.251 1.054 -1.187 0.237 
Vegetation cover -0.001 0.015 -0.059 0.953 
Consumer-H rufipes -0.934 1.250 -0.747 0.456 
Consumer-P. melanarius 2.021 1.154 1.751 0.082 
Vegetation cover x consumer-H rufipes 0.019 0.017 1.066 0.287 
Vegetation cover x consumer-P. melanarius -0.017 0.016 -1.025 0.307 

(Intercept) 0.352 0.849 0.414 0.679 
Invertebrate richness -0.108 0.056 -1.931 0.055 
Consumer-H rufipes -0.887 0.982 -0.903 0.367 
Consumer-P. melanarius -1.432 0.937 -1.528 0.128 
Invertebrate richness x consumer-H rufipes 0.085 0.063 1.345 0.180 
Invertebrate richness x consumer-P. melanarius 0.147 0.060 2.436 0.016 

(Intercept) -0.048 0.744 -0.065 0.948 
Invertebrate abundance -0.026 0.016 -1.680 0.094 
Consumer-H rufipes -0.732 0.847 -0.864 0.389 
Consumer-P. melanarius -0.370 0.827 -0.447 0.656 
Invertebrate abundance x consumer-H rufipes 0.024 0.017 1.370 0.172 
Invertebrate abundance x consumer-P. melanarius 0.026 0.017 1.542 0.125 

b) Mean trophic 
position of total 
food 

(Intercept) 0.206 0.071 2.919 0.005 
Plant species richness 0.010 0.023 0.451 0.654 
Consumer-P. melanarius 0.137 0.104 1.319 0.191 
Plant species richness x consumer-P. melanarius -0.035 0.034 -1.020 0.311 

(Intercept) 0.059 0.088 0.677 0.501 
Plant functional diversity 0.069 0.032 2.175 0.033 
Consumer-P. melanarius 0.204 0.114 1.789 0.078 
Plant functional diversity x consumer-P. melanarius -0.065 0.042 -1.555 0.124 

(Intercept) -0.065 0.210 -0.310 0.757 
Vegetation cover 0.004 0.003 1.449 0.152 
Consumer-P. melanarius 0.587 0.264 2.225 0.029 
Vegetation cover x consumer-P. melanarius -0.008 0.004 -2.114 0.038 

(Intercept) 0.192 0.185 1.043 0.301 
Invertebrate abundance 0.003 0.011 0.229 0.820 
Consumer-P. melanarius -0.049 0.223 -0.218 0.828 
Invertebrate abundance x consumer-P. melanarius 0.005 0.013 0.389 0.698 

(Intercept) 0.258 0.130 1.987 0.051 
Invertebrate richness 0.000 0.002 -0.192 0.848 
Consumer-P. melanarius -0.011 0.181 -0.062 0.951 
Invertebrate richness x consumer-P. melanarius 0.001 0.003 0.296 0.768 

Parameter estimates and standard errors (SE) from GLMs (corresponding to Table 5) on the effect of consumer 

identity and measures of the plant and animal community in the plot on the mean trophic position of a) food 

items and b) prey (D. sp. excluded). p values <.05 are reported in bold numbers and p <.10 in italics.  
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Table S6. Proportional composition of gut contents and feces of three omnivorous consumers. 

Response Term Estimate SE t value  p value 

a) Proportion prey / 
total food 

(Intercept) -1.921 0.454 -4.236 <0.001 

Plant species richness -0.225 0.174 -1.292 0.199 

Consumer-H rufipes 0.464 0.507 0.917 0.361 

Consumer-P. melanarius 0.556 0.544 1.022 0.309 

Plant species richness x consumer-H rufipes 0.277 0.187 1.478 0.142 

Plant species richness x consumer-P. melanarius 0.265 0.206 1.288 0.200 

(Intercept) -2.458 0.442 -5.557 <0.001 

Plant functional diversity -0.012 0.179 -0.066 0.948 

Consumer-H rufipes 1.009 0.528 1.909 0.059 

Consumer-P. melanarius 1.109 0.554 2.002 0.048 

Plant functional diversity x consumer-H rufipes 0.069 0.209 0.330 0.742 

Plant functional diversity x consumer-P. melanarius 0.047 0.222 0.213 0.831 

(Intercept) -2.975 1.023 -2.909 0.004 

Vegetation cover 0.007 0.014 0.489 0.626 

Consumer-H rufipes 0.812 1.226 0.663 0.509 

Consumer-P. melanarius 2.499 1.232 2.029 0.045 

Vegetation cover x consumer-H rufipes 0.005 0.017 0.290 0.772 

Vegetation cover x consumer-P. melanarius -0.019 0.017 -1.069 0.287 

(Intercept) -1.575 0.909 -1.732 0.086 

Invertebrate richness -0.064 0.058 -1.098 0.275 

Consumer-H rufipes -0.034 1.060 -0.032 0.975 

Consumer-P. melanarius 0.577 1.022 0.565 0.574 

Invertebrate richness x consumer-H rufipes 0.079 0.067 1.183 0.239 

Invertebrate richness x consumer-P. melanarius 0.051 0.064 0.796 0.428 

(Intercept) -1.563 0.773 -2.021 0.046 

Invertebrate abundance -0.021 0.016 -1.304 0.195 

Consumer-H rufipes -0.256 0.871 -0.295 0.769 

Consumer-P. melanarius -0.024 0.899 -0.027 0.979 

Invertebrate abundance x consumer-H rufipes 0.029 0.018 1.669 0.098 

Invertebrate abundance x consumer-P. melanarius 0.028 0.018 1.556 0.123 

b) Proportion IGP / 
total prey 

(Intercept) -1.221 0.327 -3.740 <0.001 

Plant species richness 0.069 0.100 0.684 0.496 

Consumer-P. melanarius 0.576 0.494 1.167 0.247 

Plant species richness x consumer-P. melanarius -0.181 0.166 -1.094 0.278 

(Intercept) -1.644 0.447 -3.676 <0.001 

Plant functional diversity 0.238 0.158 1.504 0.137 

Consumer-P. melanarius 0.681 0.563 1.209 0.231 

Plant functional diversity x consumer-P. melanarius -0.231 0.203 -1.134 0.261 

(Intercept) -1.729 1.149 -1.505 0.137 

Vegetation cover 0.010 0.015 0.619 0.538 

Consumer-P. melanarius 1.933 1.381 1.400 0.166 

Vegetation cover x consumer-P. melanarius -0.027 0.019 -1.401 0.165 

(Intercept) -1.456 0.551 -2.645 0.010 

Invertebrate abundance 0.008 0.009 0.823 0.413 

Consumer-P. melanarius 0.602 0.808 0.745 0.459 

Invertebrate abundance x consumer-P. melanarius -0.010 0.014 -0.706 0.482 

(Intercept) -2.091 0.879 -2.378 0.020 

Invertebrate richness 0.063 0.051 1.242 0.218 

Consumer-P. melanarius 1.090 1.037 1.051 0.297 

Invertebrate richness x consumer-P. melanarius -0.062 0.060 -1.037 0.303 
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Response Term Estimate SE t value  p value 

c) Proportion 
symbionts / 
symbionts + 
pathogens 

(Intercept) -0.411 0.077 -5.328 <0.001 
Plant species richness 0.017 0.025 0.665 0.507 
Consumer-P. melanarius 0.015 0.115 0.126 0.900 
Plant species richness x consumer-P. melanarius 0.001 0.038 0.015 0.988 

(Intercept) -0.384 0.086 -4.477 <0.001 
Plant functional diversity 0.014 0.033 0.425 0.671 
Consumer-P. melanarius 0.047 0.126 0.371 0.711 
Plant functional diversity x consumer-P. melanarius -0.019 0.049 -0.398 0.691 

(Intercept) -0.238 0.209 -1.139 0.256 
Vegetation cover -0.002 0.003 -0.546 0.586 
Consumer-P. melanarius -0.075 0.306 -0.246 0.806 
Vegetation cover x consumer-P. melanarius 0.001 0.004 0.263 0.793 

(Intercept) -0.522 0.154 -3.398 0.001 
Invertebrate richness 0.010 0.009 1.145 0.254 
Consumer-P. melanarius 0.075 0.222 0.337 0.737 
Invertebrate richness x consumer-P. melanarius -0.004 0.013 -0.329 0.742 

(Intercept) -0.358 0.133 -2.694 0.008 
Invertebrate abundance 0.000 0.002 0.059 0.953 
Consumer-P. melanarius -0.072 0.183 -0.391 0.697 
Invertebrate abundance x consumer-P. melanarius 0.001 0.003 0.408 0.684 

d) Proportion fungi / 
total microbes  

(Intercept) -0.862 0.116 -7.408 <0.001 
Plant species richness -0.046 0.036 -1.277 0.203 
Consumer-H rufipes -0.741 0.172 -4.310 <0.001 
Consumer-P. melanarius -1.067 0.178 -6.008 <0.001 
Plant species richness x consumer-H rufipes -0.042 0.056 -0.762 0.447 

(Intercept) -0.913 0.136 -6.701 <0.001 
Plant functional diversity -0.034 0.053 -0.642 0.521 
Consumer-H rufipes -0.849 0.197 -4.309 <0.001 
Consumer-P. melanarius -1.011 0.204 -4.954 <0.001 
Plant functional diversity x consumer-H rufipes 0.000 0.075 0.004 0.997 
Plant functional diversity x consumer-P. melanarius -0.016 0.081 -0.193 0.847 

(Intercept) -1.108 0.336 -3.296 0.001 
Vegetation cover 0.002 0.005 0.348 0.728 
Consumer-H rufipes 0.050 0.467 0.108 0.914 
Consumer-P. melanarius -0.355 0.470 -0.755 0.451 
Vegetation cover x consumer-H rufipes -0.013 0.007 -1.964 0.051 
Vegetation cover x consumer-P. melanarius -0.010 0.007 -1.487 0.138 

(Intercept) -0.870 0.244 -3.574 <0.001 
Invertebrate richness -0.007 0.014 -0.513 0.608 
Consumer-H rufipes -0.666 0.344 -1.934 0.054 
Consumer-P. melanarius -1.156 0.393 -2.939 0.004 
Invertebrate richness x consumer-H rufipes -0.010 0.020 -0.516 0.607 
Invertebrate richness x consumer-P. melanarius 0.007 0.023 0.305 0.760 

(Intercept) -0.963 0.192 -5.018 <0.001 
Invertebrate abundance -0.001 0.004 -0.158 0.875 
Consumer-H rufipes -0.613 0.283 -2.168 0.031 
Consumer-P. melanarius -1.301 0.302 -4.309 <0.001 
Invertebrate abundance x consumer-H rufipes -0.004 0.005 -0.828 0.408 
Invertebrate abundance x consumer-P. melanarius 0.005 0.005 0.913 0.362 

Parameter estimates and standard errors (SE) from GLMs (corresponding to Table 6) on the effect of consumer 

species identity and measures of the plant and animal community in the plot on the proportional composition of 

gut content and feces (D. sp. excluded from b) and c)). p values <.05 are reported in bold numbers and p <.10 in 

italics. 



 

103 

 

CHAPTER 5 

 

 

 

Pitfall trap sampling bias depends on  

body mass, temperature, and trap number: 

insights from an individual-based model 

 

Jan Engel, Lionel Hertzog, Julia Tiede, Cameron Wagg, Anne Ebeling, Heiko Briesen, Wolfgang 

W Weisser 

 

Published in Ecosphere 8(4): e01790. doi:10.1002/ecs2.1790 © 2017 Engel et al. 



Chapter 5                                         Pitfall trap sampling bias depends on body mass, temperature, and trap number 

 

104 

Abstract 

The diversity and community composition of ground arthropods is routinely analyzed by pitfall 

trap sampling, which is a cost- and time-effective method to gather large numbers of replicates 

but also known to generate data that are biased by species-specific differences in locomotory 

activity. Previous studies have looked at factors that influence the sampling bias. These studies, 

however, were limited to one or few species and did rarely quantify how the species-specific 

sampling bias shapes community-level diversity metrics. In this study, we systematically 

quantify the species-specific and community-level sampling bias with an allometric individual-

based model that simulates movement and pitfall sampling of 10 generic ground arthropod 

species differing in body mass. We perform multiple simulation experiments covering different 

scenarios of pitfall trap number, spatial trap arrangement, temperature, and population 

density. We show that the sampling bias decreased strongly with increasing body mass, 

temperature, and pitfall trap number, while population density had no effect and trap 

arrangement only had little effect. The average movement speed of a species in the field 

integrates body mass and temperature effects and could be used to derive reliable estimates 

of absolute species abundance. We demonstrate how unbiased relative species abundance can 

be derived using correction factors that need only information on species body mass. We find 

that community-level diversity metrics are sensitive to the particular community structure, 

namely the relation between body mass and relative abundance across species. Generally, 

pitfall trap sampling flattens the rank-abundance distribution and leads to overestimations of 

ground arthropod Shannon diversity. We conclude that the correction of the species-specific 

pitfall trap sampling bias is necessary for the reliability of conclusions drawn from ground 

arthropod field studies. We propose bias correction is a manageable task using either body 

mass to derive unbiased relative abundance or the average speed to derive reliable estimates 

of absolute abundance from pitfall trap sampling. 

 

5.1 Introduction 

Quantification of animal densities in the field is essential to understand impacts of climate and 

land-use change on community biodiversity (Iknayan et al. 2014). This is particularly true for 

the large group of ground-dwelling arthropods (here referred to as ground arthropods) as they 

are highly responsive to environmental changes and influence a large number of ecosystem 

functions such as predation and decomposition (Finke & Snyder 2010; Chaplin-Kramer et al. 

2011; Prather et al. 2013). The passive sampling of ground arthropods with pitfall traps, that is, 

small containers buried to the ground, was used in many biodiversity and conservation studies 

across the recent decades and is still being used today (Greenslade 1964; Zhao et al. 2013; 

Brown & Matthews 2016). The benefits of pitfall trap sampling are its time efficiency and the 

high probability to detect rare and nocturnal species that other methods might miss (Spence & 

Niemelä 1994; Lang 2000; Cardoso et al. 2008). There are, however, a number of factors that 

produce biases in the species abundance estimated from pitfall trap sampling affecting the 

species-specific sampling efficiency. Sampling bias has been shown to depend on, for example, 

population density and factors that change locomotory activity such as body mass and ambient 

temperature (Halsall & Wratten 1988; Mommertz et al. 1996; Lang 2000; Perner & Schueler 

2004; Woodcock 2005; Saska et al. 2013; Brown & Matthews 2016). Hence, the sampling bias 
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likely varies across species and environmental conditions hampering field experiments to get 

insight into how environmental changes affect arthropod communities. 

Population density of ground arthropods varies across years and habitats; though, 

limited knowledge exists about how accurate the sampled density reflects variation in the real 

density (Collins et al. 2003; Hutchison 2007; Woodcock 2005). Variation in the ambient 

temperature can produce considerable bias in pitfall sampling because the locomotory activity 

of most ground arthropods varies with ambient temperature, and sampled densities are 

proportional to locomotory activity (Thomas et al. 1998; Woodcock 2005). The number of pitfall 

traps and their spatial arrangement have been shown to strongly influence the reliability of 

sampled densities for estimations of real densities (Scheller 1984; Parmenter & MacMahon 

1989; Perner 2003; Zhao et al. 2013). Moreover, only limited knowledge exists about how the 

species-specific sampling bias may impact community-level metrics considering variation in 

community structure across ecosystems, such as the distribution of species body masses across 

the abundance ranks (Topping & Sunderland 1992). 

Previous empirical studies that aimed at analyzing the species-specific pitfall sampling 

bias and providing recommendations for statistical corrections focused on only one or few of 

the confounding factors, mostly covering small ranges of parameter values (e.g., Greenslade 

1964; Spence & Niemelä 1994; Thomas et al. 1998; Work et al. 2002). Today, there is only 

fragmented knowledge about how the pitfall trap sampling bias affects both sampled 

population densities and estimated metrics of community diversity across different 

combinations of, for example, trap number, trap arrangement, species body mass, community 

structure, and climatic conditions. 

Computational simulations can reduce knowledge gaps by simulating ground 

arthropods movement and sampling across many factors, such as trap number, trap 

arrangement, and ambient temperature (Perner & Schueler 2004; Pyke 2015). Nevertheless, 

the simulation of large numbers of different ground arthropod species is limited by the great 

parameterization effort necessary to model realistic movement of many species. This 

parameterization effort, consequently, also proved to be a methodological frontier to analyses 

of how the species-specific sampling bias may affect community-level metrics, such as the 

species rank-abundance distribution (RAD) and Shannon diversity (McGill et al. 2007; Locey & 

White 2013). Recent simulation studies simulated the movement of one or two ground 

arthropod species specifically emphasizing the impact of the spatial arrangement of traps on 

efficiency and reliability of sampled densities (Crist & Wiens 1995; Perner & Schueler 2004; Ellis 

& Bedward 2014). These studies simulated the movement of virtual individuals in a 

homogeneous two-dimensional landscape. The virtually sampled population densities were 

compared to the simulated densities to validate the efficiency of trap arrangements and reveal 

the species-specific sampling bias. The basic idea behind these modeling exercises was to 

simulate data and observer models to mimic real species and their sampling, being in control 

of all conditions and aware of any sampling bias. This basic idea was formalized by Zurell et al. 

(2010) as evaluation framework for the assessment of sampling protocols and analysis in 

ecology, naming it the “virtual ecologist” approach. When applying the virtual ecologist 

approach to ground arthropod pitfall sampling, the effectiveness of sampling designs can be 
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rigorously tested against a simulated known truth, providing a strong basis for future field 

experiments and empirical validation. 

Here, we apply the virtual ecologist approach to investigate the pitfall sampling bias at 

the species and the community level. We developed an individual-based model for simulating 

the movement and pitfall trap sampling across 10 “generic species” of actively hunting ground 

arthropods that differ in body mass ranging from 1 to 330 mg. We parameterized the simulated 

ground arthropod movement applying allometric relationships and empirical sampling data 

integrating knowledge about temperature and body mass effects on arthropod movement 

(e.g., Klazenga & Devries 1994; Thomas et al. 1998; Hurlbert et al. 2008). We conducted 840 

simulation experiments to identify how (1) the species-specific sampling bias, (2) the observed 

RAD, and (3) the estimated community diversity metrics are affected by (i) trap number (1, 2, 

4, 8, and 12), (ii) trap arrangement (Appendix S3: Fig. S1), (iii) body mass, (iv) body temperature 

(15–30°C), (v) population density (0.15–8 individuals/m2), and (vi) community structure 

(sequence of body masses across the abundance ranks). We aimed for simple ways to retrieve 

correction factors that would allow reasonable estimates of unbiased relative and absolute 

species densities from pitfall trap sampling. 

 

5.2 Methods 

The present study used an allometric individual-based model to simulate the movement of 

individuals across 10 generic species of actively hunting ground arthropods. The simulated 

individuals were “virtually” sampled applying different pitfall trap numbers and spatial 

arrangements. The 10 generic species (here referred to as species) differed only in body mass; 

that is, no specific real species were modeled. We applied an empirical relationship between 

movement speed and body mass plus body temperature to adequately simulate the species-

specific movement speed (Hurlbert et al. 2008). Additionally, movement parameters across 

species were improved and validated using a different set of published empirical data (Klazenga 

& Devries 1994; Thomas et al. 1998; Byers 2001). 

The model predicted the number of individuals per species sampled by pitfall traps 

across 14 simulation days. We defined the sampling bias as the species-specific proportion of 

simulated individuals that were not sampled. Multiple simulation experiments were conducted 

modeling all 10 species across various combinations of trap number, trap arrangement, 

population density, and body temperature. 

The following sections describe the simulation model accordingly to the ODD protocol 

(overview, design concepts, and details; Grimm et al. 2010), the simulation experiments with 

the particular parameter values used, and the data analysis. The parameterization and 

validation of arthropod movement as well as the local sensitivity analysis are covered in 

Appendices S1 and S2. The model was implemented using the programming language C++. 
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5.2.1 Model description 

5.2.1.1 Purpose 

The purpose of the model is to predict the number of individuals per species that are sampled 

by pitfall traps during the simulation experiment. The simulation experiments enable reliable 

estimations of the pitfall trap sampling bias for various parameter combinations of body mass, 

population density, body temperature, trap number, and trap arrangement, for which no 

empirical data exist. The sampling of ground arthropod individuals is not imposed but emerges 

from the movement of individuals within the simulated area. The model simulates movement 

patterns of arthropod species that are actively hunting at the ground. 

5.2.1.2 State variables and scales 

Model entities were individuals resembling actively hunting ground arthropods of a distinct 

class of body mass. All state variables characterizing an individual are listed in Table 1. During 

one simulation experiment, the body mass and the body temperature were fixed, but 

individuals were different in their position in the simulated area, their direction of movement, 

and the mortality status. Species-specific activity periods were simplified such that all 

individuals across all species were active at the same time. Body temperature of each individual 

was assumed to exceed ambient temperature by 8°C simplifying effects from variation in 

microhabitat conditions (Casey 1976; Morgan 1985). 

 

Table 1. State variables of simulated individuals 

Variable name Description Possible values Units 

Body mass Fixed species-specific body mass  
of species 1–10 

1, 2, 4, 7, 13, 25,  
48, 91, 173, 330a 

mg 

Body temperature Fixed body temperature across the 
simulation 

288, 291, 294, 297, 
300, 303 (~15–30) 

Kelvin (°C) 

Position x:y coordinate of the grid cell in the area 1–2000:1–2000 … 

Previous direction Direction of movement in the previous time 
step 

0–360 degree 

New direction Direction of movement in the current  
time step 

0–360 degree 

Mortality status Individual is alive or dead following  
a trapping event 

Alive, dead … 

Activity Whether an individual is active and moves Yes, no … 

Start activity period First time step of activity period; assumed 
to equal across individuals 

3601 time step per 
day 

End activity period First time step where the individual is 
inactive following an activity period; 
assumed to equal across individuals 

6481 time step per 
day 

a Values are logarithmically spaced covering a proper subset of the body mass range of ground-dwelling arthropod 
species sampled in two Central European grasslands (Table S1 in Rzanny and Voigt 2012, Gossner et al. 2015); 
species smaller than 1 mg (≤3 mm body length) were not covered in our study. 
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The simulated, homogeneous, and featureless area spanned 20 × 20 m with a resolution of 1 × 
1 cm, resulting in a grid of 2000 × 2000 cells. We assumed that the simulated area is enclosed 
in a very large field with a population density equal to the density within the simulated area 
(Perner & Schueler 2004). The boundaries of the area were simulated as permeable allowing 
individuals to leave and enter the simulated area. In the simulation experiments, an individual 
that left the area immediately re-entered the area at the opposite (i.e., the area was simulated 
as torus). One time step in the model was a discrete event corresponding to 10 s. Simulation 
experiments were run for 14 d, totaling 120,960 time steps, corresponding to the sampling 
period often used in empirical studies (e.g., Topping and Sunderland 1992; Diekotter et al. 
2010). The pitfall traps had a diameter of 5 cm and were located according to the specific trap 
number and trap arrangement (Appendix S3: Figs. S1, S2). 

5.2.1.3 Process overview and scheduling 

At each time step, the processes presented in Fig. 1 were computed in the given order starting 
with “activity.” Per time step the individuals were processed one by one using always the same 
sequence. Changes in state variables were updated immediately. All processes are briefly 
described below and in detail in the “submodels” section. 

1. Activity: Whether an individual was active or not depended on the predefined activity 
period, which spanned eight consecutive hours and was assumed to be equal across species 
(e.g., Brunsting 1982). 

2. Speed: The speed of an individual depended on body mass and body temperature 
(Morgan 1985; Hurlbert et al. 2008) and was calculated by applying the empirical 
relationship presented by Hurlbert et al. (2008). 

3. Displacement: The displacement of an individual per time step depended on the speed of 
the individual and the directional persistence of movement during the particular time step. 

4. Turning angle: The direction of movement of an individual was correlated across successive 
time steps, simulating a correlated random walk (Codling et al. 2008). 

5. New position: The new position at the end of a time step was calculated from the previous 
position, the displacement, and the movement direction. 

6. Trapping event: An individual died and was added to the number of sampled individuals if 
it was caught in a pitfall trap during the movement from the previous to the new position. 

5.2.1.4 Design concepts 

1. Basic principles: Animal movement is a continuous process of changes in speed and 
direction that is generally discretized to a sequence of steps in order to facilitate model 
simulations (Pyke 2015). The movement of ground arthropods at the scale of multiple body 
lengths has been identified as correlated random walk; that is, the movement direction at 
a time step depends on the direction at the previous step (directional persistence; Kareiva 
& Shigesada 1983; Bovet & Benhamou 1988; Wallin & Ekbom 1988; Codling et al. 2008; 
Pyke 2015). The specific assumption about the degree of directional persistence influences 
the simulated movement pattern of ground arthropods and, thus, affects the probability of 
a “trapping event” and the sampling bias, which concerns the purpose of our study (see 
empirical model parameterization in Appendix S1). 

2. Emergence: A trapping event, and thus the number of sampled individuals, emerged purely 
from the movement of ground arthropod individuals across the simulated area with pitfall 
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traps integrated. To limit side-effects of the specific position of each individual at simulation 
start, each simulation experiment with a particular parameter set was repeated 50 times 
and results were averaged for model analysis. 

3. Interaction: No interactions were considered among ground arthropod individuals or 
between ground arthropod individuals and pitfall traps, such as repelling or attraction due 
to preservative type in the trap (simplifying findings from Knapp & Ruzicka 2012 and Brown 
& Matthews 2016). 

4. Stochasticity: Some key processes of ground arthropod movement were modeled by 
assuming they are random and follow a certain probability distribution including speed, 
displacement, and turning angle (see probability distributions within Fig. 1). Considering 
probability in model simulations was important to reflect differences in the specific 
movement path across individuals of one species. 

5. Observation: During simulation experiments, individual and species-level factors were 
observed. This includes the trapping events across individuals and the proportion of 
sampled individuals per species. 

5.2.1.4 Input data 

The model does not use time-varying inputs, that is, input data representing time-varying 
processes in the model (Grimm et al. 2010). 

5.2.1.5 Initialization 

At the start of each simulation experiment, each individual was placed at a random cell of the 
400-m2 simulated area, where x and y coordinates of the cell were each randomly chosen from 
a uniform distribution. In case an individual was placed at a cell defined as pitfall trap, new x 
and y coordinates were drawn. The initial movement direction of each individual was randomly 
chosen from a uniform distribution between 0 and 359, where 0 would create movement along 
the y-axis with a constant x coordinate value. The body mass and body temperature of each 
individual were set at the start of a simulation experiment. Pitfall traps were installed across 
the whole simulation experiment at a position specific to one of the six trap arrangements as 
shown in Appendix S3: Fig. S1. 
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Figure 1. Overview of model processes during one model time step. The processes “speed” and “displacement” 
use a truncated Cauchy probability distribution. The shown Cauchy distributions represent actual distributions 
used in the model (see Appendix S1 for empirical parameterization).   
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5.2.1.6 Submodels 

1. Activity: At the first time step of each full hour, it was checked across all individuals that are 
alive whether the activity period starts or finishes, applying the values of the state variables 
“start activity period” and “end activity period” (Table 1). The activity status of an individual 
may changed or changed not accordingly. During the activity period, resting behavior and 
intermittent movement were excluded; that is, speed was always larger than zero 
(simplifying findings of Firle et al. 1998 & Reynolds et al. 2015). An individual could be active 
only if it is alive (see process “trapping event”). 
 

2. Speed: The speed of a ground arthropod individual depends mostly on the body mass, the 
body temperature, and the behavioral mode (Morgan 1985, Hurlbert et al. 2008, 
Benhamou 2014). In our model, the actual speed Si (cm/s) of an individual i per time step 
was derived by a two-step process. 

First, the potential maximum speed Mi (cm/s) of the individual i was calculated considering both 
body temperature ti (Kelvin) and body mass mi (g) (Hurlbert et al. 2008): 

𝑀𝑖 =  4.3 ×  1011  ×  (𝑚𝑖
0.25) ×  𝑒

(
−𝐸

𝑘 × 𝑡𝑖
)
                       (1) 

where a general temperature effect on biological rates based on reaction kinetics is described 
by a Boltzmann factor e(−E/kT), with T being the temperature in Kelvin, E the average activation 
energy of reactions involved in metabolism (E = 0.65 eV), and k the Boltzmann's constant (8.62 
× 10−5 eV·K−1; Gillooly et al. 2001). This model provides an accurate relationship between 
metabolic rate and temperature over the range of most biological activity (0–40°C). 

Second, Si was drawn randomly from a Cauchy distribution ranging from 0.001 to Mi. To ensure 
a constant shape of the Cauchy distribution across different Mi, the Cauchy distribution was 
truncated to the range from 0.001 to 20 yielding a random value Si,20. The actual speed Si was 
subsequently scaled to have the maximum Mi by Si = Si,20/20 × Mi. 

The Cauchy distribution is characterized by a “fat tail” yielding a low number of high-speed 
values but a high number of low-speed values, which relates to empirical proportions of the 
movement and the search behavioral mode of animals in general (Benhamou 2004, 2014). The 
specific shape of the Cauchy distribution is defined by the two parameters scale (γ) and location 
(x0; see Appendix S1 for empirical parameterization). 

3. Displacement: The air-line displacement Di of an individual i during one time step (10 s) 
does depend on both the speed Si (cm/s) and the degree of directional persistence during 
this time step. The displacement Di was drawn randomly from a Cauchy distribution 
truncated to the range from 0 to 10 × Si. This can result in rare events of either no 
displacement (Di = 0) or moving straight (Di = Si × 10). Similar to the calculation of Si, an 
initial value Di,20 was drawn from a Cauchy distribution truncated to 0-20, and then, Di was 
subsequently scaled to have the maximum 10 × Si by Di = Di,20/20 × 10 × Si (see Appendix S1 
for empirical parameterization). 
 

4. Turning angle: At the beginning of each time step, the movement direction of an individual i 
during the previous time step may be changed by the turning angle Ai. The turning angle Ai 
was randomly chosen from a normal distribution with a certain standard deviation (SD). 
Values outside −180 and 180 degree were rejected and new values drawn, effectively 
creating a wrapped normal distribution. The mean of the normal distribution was set to 
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zero assuming an equal proportion of left and right turns. Individuals change the movement 
direction at scales related to their body length (Pyke 2015) and may increase directional 
persistence across time steps with increased speed. We calculated SD per individual i from 
a linear equation with a negative slope: 

𝑆𝐷𝑖 =  𝑎 ×  𝑀𝑖 + 𝑏                          (2) 

where Mi is the maximum speed at the particular time step and a and b are constants (see 
Appendix S1 for empirical parameterization). SDi decreases with increasing maximum 
speed Mi. Thus, increasing body mass and temperature results in an increasing directional 
persistence across modeled time steps. The new direction of movement (i.e., an absolute 
angle) was calculated by adding the turning angle Ai to the previous direction of movement. To 
ensure 0 ≤ A’i ≥ 360 degree, 360 is either added to A’i if A’i < 0 or subtracted from A’i if A’i > 360. 

5. New position: The new values for the x and y coordinates were calculated as follows: 

𝑋𝑖,𝑛𝑒𝑤 = 𝑋𝑖,𝑝𝑟𝑒𝑤 + (𝐷𝑖 × cos 𝐴′𝑖)                     (3a) 

𝑌𝑖,𝑛𝑒𝑤 = 𝑌𝑖,𝑝𝑟𝑒𝑤 + (𝐷𝑖 × sin 𝐴′𝑖)        (3b) 

Where A’i was converted from degree to radian beforehand (A’I, radian = A’I, degree × π/180). In 
case Xi, new or Yi, new was lower than one or larger than 2000 (outside of the simulated area), the 
value 2000 was either added or subtracted. Positional x and y coordinates were rounded to 
integer values. 

6. Trapping event: A trapping event occurred; namely, an individual was caught in a trap and 
died, if at least one cell of the movement path from the previous to the new position equals 
a cell of the simulated area designated as pitfall trap. The movement path during one time 
step was modeled explicitly, simplified to an almost straight path between the previous and 
the new position using Bresenham's line algorithm (Bresenham 1965). We represented a 
round pitfall trap by means of the quadratic cells assuming a certain catching probability 
per pitfall trap cell (Appendix S3: Fig. S2). The cell-specific catching probability equals the 
proportion of the cell covered by the pitfall trap. In case an individual moves at a cell that 
is defined as trap but covered by the trap <100%, the occurrence of a trapping event was 
drawn randomly from a uniform distribution between 0 and 100. The individual got caught 
if the random number drawn is lower than the proportion of the cell covered by the trap. 

 

5.2.3 Simulation experiments 

We conducted 840 simulation experiments systematically varying pitfall trap number, pitfall 
trap arrangement, body temperature, and population density to assess the species-specific 
sampling bias. In each simulation experiment, the movement and sampling of individuals across 
all 10 species were modeled, covering body masses between 1 and 330 mg (Table 1). 

Five different numbers of pitfall traps were simulated (1, 2, 4, 8, and 12). Simulation 
experiments with pitfall trap numbers 4, 8, and 12 covered four different spatial arrangements 
of pitfall traps (nested cross, two circle, transect, and grid; Appendix S3: Fig. S1). These four 
trap arrangements were either frequently used in field studies or subject of model simulation 
studies aiming to improve the reliability of pitfall trapping (Crist & Wiens 1995; Perner & 
Schueler 2004; Zhao et al. 2013; Chenchouni et al. 2015). 
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Ten different population densities were simulated (0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1, 2, 4, 
and 8 individuals/m2). This range of population densities covers empirical data of arthropod 
taxa obtained by true density measurements, such as mark–release–recapture experiments, 
across arable land and grasslands (Lovei & Sunderland 1996; Thomas et al. 1998; Elliott et al. 
2006). The selected population densities followed a logarithmic curve. 

The particular body temperature across all individuals ranged from 15° to 30°C 
(Table 1). This range fits well the ambient temperatures in places such as Central Europe and 
northeast China throughout the vegetation period (Appendix S4: Fig. S1), assuming that the 
body temperature exceeds the ambient temperature by 8°C (see section 'State variables and 
scales'). We modeled a constant temperature for each simulation experiment, simplifying 
variation between day and night as well as variation across the 14 d of sampling. 

 

5.2.4 Animation of simulated arthropod movement 

In addition to the theoretical description of how the model simulates the movement of ground 
arthropod species, an animation is provided showing in top view the simulated movement of 
three species (see Video S1; details described in Appendix S6, with Appendix S6: Fig. S1 
providing a screenshot of the animation). 

 

5.2.5 Data analysis 

The data analysis covered (1) the simulated movement pattern across species and (2) the 
sampling bias. The latter consisted of two main parts: the species-specific sampling bias and 
correction factor, and the bias in community-level metrics. The R language version 3.2 together 
with the vegan package version 2.3-5 was used for data analysis (R Core Team 2015, Oksanen 
et al. 2016). 

According to the virtual ecologist approach, we differentiate between “simulated,” 
“sampled,” “observed,” and “estimated” values of certain parameters. “Simulated” 
corresponds to the model input parameters, “sampled” corresponds to the individuals that fell 
into a pitfall trap virtually (i.e., trapping event), “observed” corresponds to species-specific 
parameters that were directly derived from the number of sampled individuals, and 
“estimated” corresponds to community-level metrics derived from “observed” parameters. In 
a simulation experiment, for example, the “simulated” abundance of a species may be 400 and 
the number of “sampled” individuals 100, resulting in the “observed” sampling bias of 0.75 
(species-specific proportion of simulated individuals not sampled). Subsequently, the RAD and 
the Shannon diversity could be “estimated” for a particular community of multiple species with 
certain “simulated” abundance and an “observed” sampling bias per member species. 

5.2.5.1 Movement pattern 

We used extra model simulations without pitfall trapping to analyze the species-specific 
movement pattern across 10 species with 1–330 mg body mass at 24°C body temperature. 
Across 8 h of movement, we recorded four key elements of animal movement for 1000 
simulated individuals per species: the movement speed, the turning angle, the displacement at 
each time step, and the air-line displacement after 8 h. 
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5.2.5.2 Species-specific bias 

For each of the simulation experiments, the number of sampled individuals was recorded per 
species and per day. For the data analysis, the averaged results of 50 repetitions per simulation 
experiment were used, essentially eliminating effects of the random start position of 
individuals. The information about the number of sampled individuals was used to calculate per 
simulation experiment the observed pitfall trap sampling bias after 14 d of simulated sampling. 

Analyses covered individual and combined effects on the observed sampling bias from 
variation in pitfall trap arrangement, pitfall trap number, population density, and body 
temperature. Specifically, we analyzed (1) how the mean, the minimum, and the maximum 
sampling bias across species were affected by trap number and trap arrangement, each for 
three different body temperatures (15°C, the average across all body temperatures considered, 
and 30°C); (2) how the sampling bias of each species was affected by its median speed, 
considering each combination of trap number and trap arrangement separately; (3) how the 
sampling bias was affected by (i) body temperature, (ii) simulated population density, and (iii) 
body mass; (4) how species-specific correction factors, for deriving unbiased relative 
abundance, are related to species body mass. 

The observed species-specific sampling bias of species i was defined as: 

𝐵𝑖 = 1 −  
𝑛𝑖

𝑁𝑖
              (4) 

where Ni is the simulated abundance and ni is the sampled abundance of the species i. 
Accordingly, the simulated abundance of species i (the unbiased absolute abundance in the 
field) can be calculated from the sampling bias and the sampled abundance of this species: 

𝑁𝑖 =
𝑛𝑖

1 − 𝐵𝑖
              (5) 

We defined the species-specific correction factors for deriving unbiased relative species 
abundance as proportional to the inverse of the proportion of caught individuals: 

𝛿𝑖 ~ 
𝑁𝑖

𝑛𝑖
=

𝑛𝑖

1 − 𝐵𝑖
             (6) 

where i is the species index, δ is the correction factor, and B is the observed sampling bias 
(Eq. 4). Multiplying the sampled abundance ni of species i by the correction factor δi gives the 
unbiased relative species abundance NR,i (i.e., relative to the simulated number of individuals 
or the unbiased absolute abundance in the field): 

𝑁𝑅,𝑖 = 𝑛𝑖 ×  𝛿                          (7) 

We analyzed the relationship between the correction factor δ and species body mass m, 
which has a high relevance in community ecology and can be easily estimated for each 
species. This relationship we assumed to be of the form: 

𝛿𝑖 ~ 𝑚𝑖
ß                (8) 

where β is the strength of the body mass effect on the correction factor, or rather the slope of 
the relation between correction factors and body mass. 

5.2.5.3 Community-level bias 

Communities were not simulated in extra simulation experiments. Species-specific values of 
simulated and sampled abundance from the above-described simulation experiments were 
used to create virtual communities and calculate community-level metrics. Communities were 
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assembled from 10 differently sized species with 1–330 mg body mass (Table 1) and 
characterized by a specific RAD. In a community, the simulated population densities of the 
10 member species followed a log curve. Species at ranks from 1 to 4 (with 3200, 1600, 800, 
and 400 individuals) were defined as dominant because their population abundance is larger 
than 10% of the most abundant species (sensu Grime 1998). We refer to the remaining species 
at ranks 5–10 as subordinate species. 50,000 random communities of ground arthropods were 
created by arranging the 10 species into different sequences along the abundance ranks. Of 
these communities, 378 were selected for analysis, using the ones with a realistic relationship 
between body mass and population abundance, that is, small species having a higher rank than 
larger species (for details, see Appendix S6). Additionally, we created two communities where 
the body mass across the abundance ranks strictly increases or decreases. 

We calculated for all combinations of trap number and trap arrangement, averaged 
across all simulated body temperatures: (1) the simulated and the estimated relative 
abundance per species, displaying the RAD for the two “strict” communities and the average 
of the 378 random communities. 

Further, we calculated for only the 378 random communities the following metrics 
across the combinations of all trap numbers, all trap arrangements, and three body 
temperatures (15°C, the average across all body temperatures considered, and 30°C): (2) the 
deviation of the estimated from the simulated species-specific abundance rank, (3) the 
proportion of simulated dominant species that were classified as subordinate species based on 
the estimated abundance ranks, and (4) the estimated and simulated Shannon diversity and 
Fisher's alpha. 

 

5.3 Results 

5.3.1 Body mass-related movement pattern 

The relation between maximum speed and body mass was central to our simulations of pitfall 

trapping ground arthropod species (Eq. 1). Appendix S7: Fig. S1 presents the variation in four 

key elements of animal movement across the body masses used in our simulations. The median 

movement speed per time step increased with body mass from 0.2 for small species to 0.85 

cm/s for large species. The median turning angle decreased from 37.9 to 8.4 degree. The 

median displacement during one time step and one day increased from 0.77 to 3.24 cm and 

0.83 to 15.84 m, respectively. The simulated ground arthropod movement included rare events 

of extreme values in speed, displacement, and turning angle across all species, meeting an 

essential property of animal movement in general. 

 

5.3 2 Species-specific sampling bias 

5.3.2.1 Trap number and arrangement 

Our model simulations highlight a strong decrease in the sampling bias with increasing pitfall 

trap number, consistently across trap arrangements (Fig. 2). When increasing the trap number 

from 1 to 2, 4, 8, and 12, the sampling bias decreased from 0.94 to 0.89, 0.82, 0.71, and 0.62 

averaged across all species, temperatures, trap arrangements, and population densities (Fig. 
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2B). Importantly, the difference in the sampling bias between small and large-sized species 

increased with increasing pitfall trap number from 0.13 to 0.23, 0.36, 0.52, and 0.60, 

respectively. Consequently, the increase in trap numbers strongly affected two important 

metrics at the same time: lowering the mean sampling bias and increasing the variation in the 

sampling bias between small and large species. 

We found considerable differences across the four trap arrangements nested cross, two 

circles, transect, and grid only when applying eight or 12 pitfall traps (Fig. 2; Appendix S6; 

animation in Video S2). Notably, eight traps arranged as grid or two circles produced about the 

same average sampling bias as 12 traps arranged as nested cross or diagonal transect. Body 

temperature had a strong impact on the absolute values of the sampling bias, but not on the 

relative differences in the sampling bias across pitfall trap number and arrangement. 
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Figure 2. Species-specific sampling bias, that is, the proportion of simulated individuals not sampled, per pitfall 

trap number and trap arrangement (Appendix S3: Fig. S1) after simulated pitfall trap sampling of 14 d, with 8 h of 

activity per day. Values for 10 different species (1–330 mg body mass) and the mean across these species are 

shown. Values are averaged across simulation experiments with 10 different population densities. The pitfall trap 

arrangement is color-coded (see legend). The minimum and maximum values of the sampling bias per trap number 

and arrangement correspond with the largest and smallest species, respectively. Panels show results for (A) 15°C 

body temperature, (B) averages across six different body temperatures spanning 15–30°C, and (C) 30°C body 

temperature.  
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5.3.2.2 Movement speed 

Our simulation experiments reveal a non-linear relationship between the sampling bias of a 

species and its median movement speed (Fig. 3). The shape of this relationship was 

considerably affected by the number of pitfall traps, but not so much by the specific trap 

arrangement. The sampling bias of very slow-moving species was high across all pitfall trap 

numbers. The sampling bias of fast-moving species varied strongly with changes in trap 

number. 

 

 

Figure 3. The relationship between the species-specific sampling bias and the median speed of the species, shown 

for different combinations of pitfall trap number (color-coded) and trap arrangement (symbols; applicable for 4–

12 traps). Speed values are averaged across individuals per species and cover six different body temperatures 

(Table 1). 

 

5.3.2.3 Temperature, population density, and body mass 

The sampling bias decreased non-linearly with an increasing body temperature (Appendix S8: 

Fig. S1). With an increasing number of pitfall traps, the effect of body temperature on the 

sampling bias increased. A rise in body temperature from 15° to 30°C decreased the average 

sampling bias across species by about 0.1 if one trap was used and 0.5 if 12 traps were used 

(Appendix S8: Fig. S1). 
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Surprisingly, an increase in population density from 0.15 to 8 individuals per m2 had no 

effect on the sampling bias (Appendix S8: Fig. S2). Clearly, the absolute number of sampled 

individuals increased with increasing population density but the proportion of simulated 

individuals that were sampled remained unaffected. This can be explained as a consequence of 

the random distribution of the individuals at the start of each simulation experiment, which 

ensures a certain species-specific probability for an individual to become sampled during the 

simulation experiment. This probability may equal “1 minus the species-specific sampling bias” 

and did not depend on population density because interactions between individuals were not 

considered. 

The body mass of a species had a non-linear negative impact on the sampling bias 

(Appendix S8: Fig. S3, log–log scaled). The sampling bias was non-linearly related to body mass 

due to the non-linear effects of body mass on maximum speed adding to the non-linear effects 

speed on sampling bias (Eq. 1 and Fig. 3). 

5.3.2.4 Correction factor 

The correction factors were linearly related to species body mass on a log–log scale (Fig. 4A; 

see Appendix S9: Fig. S1 for temperature effects). The fitted linear models had very high R2 

values around 0.99. The slopes varied significantly between trap numbers and temperatures 

(Fig. 4B; Appendix S9: Fig. S2). Slopes were steeper and more negative with lower numbers of 

pitfall traps and temperatures indicating larger differences in the sampling bias and the 

correction factor between small and large species. For example, the slope was −0.44 for eight 

and −0.49 for four pitfall traps arranged as nested cross. Realistic estimates of unbiased relative 

species abundance can be obtained by applying the slope (β) to Eq. 8 and the resulting species-

specific correction factor (δ) to Eq. 7. 

Assuming eight traps arranged as nested cross, for example, the correction factor would 

be 0.105 for a species of 100 mg (100−0.49) and 0.712 for a species of 2 mg (2−0.49) yielding 

unbiased relative species abundance when applied to Eq. 7 The nested cross arrangement of 

pitfall traps may be particularly useful for estimations of unbiased relative species abundance 

because of the small 95% confidence interval of the slope, implying that the relation between 

the correction factor and the body mass is more linear than for other trap arrangements. Note 

that the correction factor derived from Eq. 8 is proportional to the sampling bias (see Eq. 6). 
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Figure 4. (A) The relationship between body mass and the correction factor for deriving unbiased relative species 

abundance per trap number and trap arrangement (Appendix S3: Fig. S1), averaged across six different body 

temperatures (15–30°C; see also Appendix S9: Fig. S1). The individual values per species (dots) and the linear 

regression line are shown. (B) The slope of the regression lines from panel A is shown together with the 95% 

confidence interval.  
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5.3.3 Community-level effects of the sampling bias 

5.3.3.1 Rank-abundance distribution 

The estimated RAD generally differed from the simulated RAD across pitfall trap numbers and 

trap arrangements (Fig. 5). Differences between the simulated and estimated RAD were mainly 

driven by the body mass–dominance relationship. The estimated RAD was flatter than the 

simulated RAD for arthropod communities with reasonable species abundance ranks, 

structured in the way that large species were rare and small species abundant (Fig. 5B, C; 

Appendix S5: Fig. S1). Larger, rarer species are relatively over-represented in pitfall trap catches 

from such arthropod communities, thus inflating diversity estimates using Shannon diversity 

and Fisher's alpha (Appendix S10). The opposite pattern, that is, the estimated RAD was steeper 

than the simulated RAD, was found when large species were abundant and small species rare 

(Fig. 5A). Further, the difference between the estimated RAD and the simulated RAD decreased 

with increasing trap numbers (Fig. 5). 

5.3.3.2 Species-specific abundance rank 

Pitfall trap sampling can produce a bias in the estimated abundance rank of a species (Fig. 6). 

We find that generally the estimated rank of small species is higher than the simulated rank, 

while the estimated rank of large species is lower than the simulated rank (notes: Low rank 

means dominance; in Fig. 5, a low rank is consistent with a lower number at the x-axis with the 

highest-abundant species at rank 1). The difference between the estimated and the simulated 

abundance rank decreased with increasing pitfall trap number and body temperature. 

5.3.3.2 Classification of dominant species as subordinate 

Our model simulations revealed that an average proportion of about 25% of the simulated 

dominant species were classified as subordinate species by pitfall trap sampling due to the bias 

in estimated abundance ranks (Fig. 7B). In return, this means that an equal number of simulated 

subordinate species was estimated as dominant species. On average, across 378 random 

communities (Appendix S5), this finding remains valid for changes in pitfall trap number, trap 

arrangement, and body temperature (see median [orange bars] and average [red dots] of 

communities in Fig. 7). For low body temperatures and low pitfall trap numbers in particular, 

the proportion of simulated dominant species that are detected as subordinate strongly varied 

between zero and 75%, thus depending mainly on the community structure in terms of the 

body mass distribution across the abundance ranks. The effect of community structure, 

however, generally diminished with increasing numbers of pitfall traps. 
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Figure 5. The rank-abundance distribution (RAD) of the simulated population abundance (dark blue; logarithmically 

spaced from 8 to 0.15 individuals/m2) and the observed population abundance (see legend for colors). The RAD 

from observed abundance is shown for each of the 14 different combinations of pitfall trap number and trap 

arrangement, but only differences in trap number are color-coded. The y-axis shows relative abundance per 

species and the x-axis the abundance rank where species with rank 1 is the species with highest relative 

abundance. Panels show different community structures, that is, different sequences of species body mass across 

abundance ranks: (A) Body mass decreases with increasing simulated abundance rank—the largest species is most 

abundant (rank 1); (B) body mass increases with increasing simulated abundance rank—the smallest species is 

most abundant; and (C) average of 378 random communities, which are characterized by a reasonable body mass–

abundance relationship (smaller species having generally a higher rank than larger species, Appendix S5). 
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Figure 6. Difference between simulated and estimated abundance rank per species, shown for different 

combinations of pitfall trap number and trap arrangement (full colored symbols for “one trap” and “two traps” 

arrangements; see legend for open symbols). Species are color-coded (orange: species 1 with 1 mg body mass, 

dark blue: species 10 with 330 mg body mass). A positive value means: The estimated abundance rank from pitfall 

trap sampling is higher than the simulated rank; that is, the estimated relative abundance is lower than the 

simulated one. A negative value means the inverse, and zero means no difference between simulated and 

estimated ranks. Values are averaged across 378 random communities (Appendix S5). Panels show results for (A) 

15°C body temperature, (B) averages across six different body temperatures spanning 15–30°C, and (C) 30°C body 

temperature. 
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Figure 7. Boxplot of the proportion of simulated dominant species that are classified as subordinate species based 

on estimated abundance ranks. The values are averaged across 378 random communities (Appendix S5). Values 

are shown for different combinations of pitfall trap number and trap arrangement (see legend for colors). 

Horizontal orange bars indicate the median, and the red dots show the arithmetic mean. The colored box ranges 

from the upper to the lower quartile, and the dotted whiskers cover the maximum and minimum values excluding 

outliers (black dots, if present). For some combinations of trap number and arrangement, the box and the whiskers 

match with the median. Species with one of the simulated abundance ranks 1–4 were defined as dominant species 

(see 'Methods' section). Panels show results for (A) 15°C body temperature, (B) averages across six different body 

temperatures spanning 15–30°C, and (C) 30°C body temperature. 
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5.4 Discussion 

Our study clearly shows that the pitfall trap sampling bias strongly decreases with increasing 

body mass, body temperature, and trap number, while the spatial arrangement of pitfall traps 

has only limited effects (Fig. 2). The population density does not affect the sampling bias; hence, 

a specific parameterization of bias correction across different studies or study years is 

acceptable even if the densities of sampled species vary strongly. We derived species-specific 

correction factors that allow unbiased estimates of relative species abundance to be derived 

knowing only species body mass (Fig. 4). Interestingly, our analyses reveal that the variation in 

the sampling bias between differently sized species scales up to a bias in community metrics 

that is clearly indicated by a less steep RAD, which results in an overestimation of community 

diversity and incorrect identification of species dominance (Figs. 5, 7). We presented an 

allometric individual-based model that can simulate the movement and pitfall trap sampling of 

multiple, actively hunting ground arthropod species across the range of body masses from 1 to 

330 mg. 

 

5.4.1 The species-level bias 

Our model simulations highlight considerable changes in the movement of ground arthropods 

with increasing body mass. Large species move at higher speeds and change their direction of 

movement less often than small species do. Hence, with increasing body mass, species displace 

more and may be considered more active. This is consistent with the commonly known biases 

of activity density measures in pitfall trap sampling toward larger, faster species (Mommertz et 

al. 1996; Lang 2000). 

Our study reveals that the spatial arrangement of pitfall traps has only limited effects 

on the sampling bias (Figs. 2, 3). This is an unexpected result considering the effort of previous 

studies in finding an optimized trap arrangement to provide reliable pitfall trap samples (Crist 

& Wiens 1995; Perner & Schueler 2004; Zhao et al. 2013). Yet, we find that the sampling bias is 

clearly lower for the two-circle arrangement than for the nested cross, which is consistent with 

theoretically and empirically derived findings of Zhao et al. (2013). 

The number of pitfall traps strongly impacts the sampling bias. This effect varies across 

species revealing a trade of concerning the optimal number of pitfall traps: The mean sampling 

bias decreased when the number of traps increased but at the same time the differences in 

sampling bias between small and large species strongly increased (Fig. 2). Thus, a higher 

number of pitfall traps mainly reduces the sampling bias of large species and increases the 

importance of correcting the species-specific sampling bias. Overall, we recommend either the 

grid or two-circle arrangement of 4–8 traps per 400 m2 to both moderate the drawbacks of a 

high pitfall trap number and yield a low average sampling bias. 

Environmental conditions in general and the ambient temperature in particular are 

important factors that constrain arthropod movement and thus affect the pitfall trap sampling 

bias (Melbourne 1999; Hurlbert et al. 2008; Wang et al. 2014). This is because the body 

temperature of ground arthropods is correlated with the ambient temperature (Casey 1976; 

Morgan 1985). We find accordingly that the sampling bias strongly decreases with increasing 
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body temperature (Appendix S8: Fig. S1). Our findings are consistent with field experiments 

and a statistical correlation approach showing that the number of sampled individuals increases 

with mean daily temperature (Brunsting 1981; Thomas et al. 1998; Saska et al. 2013; Wang et 

al. 2014). 

The species-specific sampling bias is strongly related to the movement speed and the 

number of pitfall traps (Fig. 3). Knowledge of this bias could be used to estimate unbiased 

absolute species densities in the field. The movement speed of ground arthropod species can 

either be measured by observations directly in the field or estimated from body mass and body 

temperature. Body mass of species sampled in field studies can be measured or derived from 

the literature. Body temperature can be estimated if the ambient temperature is measured 

frequently (e.g., hourly) and knowledge on species' activity periods is available. For arthropod 

species with known activity periods, we propose using the species-specific median movement 

speed as simplifying proxy for estimating the sampling bias across trap numbers, because the 

movement speed in the field integrates many other factors that shape the sampling bias (Fig. 

3). Further works are needed to test the practicability of this approach in field studies and the 

extent to which the sampling bias can be determined or reduced when compared to population 

densities estimated from, for example, quadrat sampling (Topping & Sunderland 1992; Spence 

& Niemelä 1994). For species with unknown activity periods, we suggest using body mass to 

calculate unbiased relative densities. 

Relative species abundance is of prime importance for community ecology research 

being the basis for metrics such as the RAD. Our study reveals that a species-specific correction 

factor can be derived from species body mass alone, providing reasonable estimates of 

unbiased relative species abundance (similar to Hancock & Legg 2012). This correction factor 

offers a simple method to adjust pitfall trap data, as body mass could be easily measured for 

the species sampled and the sampling bias does not depend on population density (Appendix 

S8: Fig. S2; contrary to Perner & Schueler 2004). Bias correction would work across plots and 

studies along environmental and land-use gradients when taking into account potential 

differences in temperature and trap number and how these may affect the correction factor 

(Appendix S9: Fig. S2). Thus, there is potential to improve real-world data from previous and 

future sampling campaigns enabling much more reliable understanding of the impacts of 

climate and land-use change on community biodiversity. 

 

5.4.2 The community-level bias 

Our study provides one of the first attempts to quantify the impact of the species-specific 

sampling bias on the community-level metrics: RAD, the dominance of species, and the species 

diversity, that is, Fisher's alpha and Shannon diversity. 

The RAD of species is one of the most commonly analyzed patterns in ecology, generally 

showing a few dominant species and many less abundant or rare species in a community 

(McGill et al. 2007; Locey & White 2013). Our model results clearly show that the estimated 

RAD, based on observed species abundance from pitfall trap sampling, can strongly differ from 

the simulated RAD or rather the true RAD of the study community (Fig. 5). We find that the 

simulated distribution of species body masses across the abundance ranks essentially 
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determines whether the estimated RAD is either more or less steep than the simulated, 

unbiased RAD. Generally, our results imply that a RAD estimated from pitfall trap sampling 

campaigns may be less steep than the real RAD (see Fig. 5B, C), because dominant species are 

commonly small, resulting in a high sampling bias, where the less abundant species are rather 

large, resulting in a comparably low bias (Siemann et al. 1999; Gossner et al. 2015). Any factor 

that increases the difference in the sampling bias between species may further increase the 

bias in the estimated RAD, such as elevating temperatures, higher trap numbers, and a larger 

range of body masses. The body masses we considered in our study range from 1 to 330 mg, 

which covers a subset of the body masses of arthropod species found by Gossner et al. (2015) 

in Central European grasslands. Hence, field studies that attempt to include all species 

occurring in a habitat may face an even larger bias in the estimated RAD as estimated from our 

simulations. 

The RAD is clearly related to diversity indices that are important for both evaluating the 

condition of a community and estimating its vulnerability to environmental changes. Our results 

show that the estimated Shannon diversity and Fisher's alpha are generally larger than what 

we would expect from the simulated species abundance (Appendix S10: Figs. S1, S2). We argue 

that real Shannon diversity and Fisher's alpha values are generally lower than suggested from 

pitfall trap sampling campaigns; thus, population abundance within communities is less even 

and follows more the log series distribution than previously estimated. The Shannon diversity 

index, in particular, depends strongly on the body mass distributions across the abundance 

ranks, suggesting a high sensitivity to changes in the community structure. Importantly, this can 

jeopardize conclusions drawn from diversity analysis across communities differing in the 

species composition in general and the community structure in particular. Hence, the Shannon 

diversity of two communities can appear to be significantly different due to variations in body 

mass distributions. To avoid biased conclusions about differences between communities, field 

studies may need to apply species-specific correction factors of the sampling bias of pitfall trap 

data, or should test for differences in the body mass distributions. 

In addition to the RAD of a community, the specific abundance rank is an important 

property of each single species enabling the assessment of the role it might play in ecosystem 

functioning. Dominant species are considered as particularly important for key ecosystem 

functions, while rare species may either work as insurance against future uncertainties or 

provide additional functions (Grime 1998; Mouillot et al. 2013). Our model simulations highlight 

that the estimated abundance rank of species can differ significantly from the simulated, 

unbiased abundance rank (Fig. 6). Generally, the relative population abundance is 

underestimated for small species and overestimated for large species by pitfall trap sampling. 

Empirical studies that analyze the arthropod community structure based on pitfall trap 

sampling may yield a bias in the functional importance of species underestimating small species 

and overestimating large species. 

The classification of species into dominant and rare ones is an important tool in ecology 

to explore relationships between community diversity and functioning (Grime 1998). A 

difference between the estimated and the true abundance rank of species, however, can 

considerably impact the reliability of this classification. Our simulations reveal that a 

considerable proportion (about 25%) of the simulated dominant species are observed as 
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subordinate (Fig. 7). Accordingly, an equal number of subordinate species is observed as 

dominant. This can constitute serious implications for the conclusions of studies on ecosystem 

function that focused on dominant species only. Furthermore, analysis of which species traits 

may drive key functions may need to be tested for reliability against variation in the set of 

species observed as dominant, for example, by statistically testing for effects of the body mass 

in general or its distribution across abundance ranks in particular. 

In summary, pitfall trap sampling in field studies may generally produce flattened RAD 

yielding overestimations of community diversity and likely providing false results for the 

dominance classification of some species. Our findings extend the widely accepted species-

specific bias in pitfall trap sampling campaigns to community-level metrics and urge caution to 

previous conclusions about the diversity and structure of ground arthropod communities when 

solely sampled with pitfall traps without bias correction. 

 

5.4.3 Model assumptions 

We deliberately used a simple model to simulate the movement and pitfall trap sampling of 

ground arthropods. Yet, we expand on previous simulation studies of pitfall trap sampling by 

considering parameter variation of multiple factors important for both ground arthropod 

movement and the design of a pitfall trap sampling campaign. In our simulations, we did not 

cover, however, other factors that were shown to influence the pitfall trap sampling bias of 

individual species, such as precipitation, litter depth, vegetation density, and the design of 

pitfall traps (Greenslade 1964; Spence & Niemelä 1994; Melbourne 1999; Lang 2000; Work et 

al. 2002; Koivula et al. 2003; Thomas et al. 2006; Cheli & Corley 2010; Brown & Matthews 2016). 

Though, our simplifying assumptions of a homogeneous, featureless landscape and plain traps 

are unlikely to affect the conclusions of our study as all simulation experiments were, in this 

respect, equal. Future simulation studies may particularly aim at integration of a plant diversity 

gradient facilitating sampling bias correction of multitrophic diversity studies in grassland 

(Rzanny & Voigt 2012), farmland (Klaus et al. 2013) and forest (Schuldt et al. 2015). Modeling 

the effects of vegetation structure and density on movement of ground arthropods should 

include plant individuals explicitly, so that the movement paths of ground arthropods result 

from a combination of external factors and the internal navigational capacity (Nathan et al. 

2008). 

 

5.4.4 Implications 

The results of our individual-based model simulations help field studies to increase the 

reliability of species-specific data and any community-level metric estimated from pitfall trap 

sampling. The main factors that shape the species-specific sampling bias are body mass, 

temperature, and the number of pitfall traps (Fig. 2). Although the arrangement of traps is of 

minor importance when compared to trap number, the reliability of pitfall trap sampling can 

be increased by distributing traps uniformly within the sampling area. The bias in community-

level metrics is linked to the species-specific biases and additionally shaped by the distribution 

of body masses across the abundance ranks (Fig. 5). To simplify the bias correction, studies 
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should keep constant the trap number and trap arrangement across sampling sites and 

sampling periods whenever possible. Following the call of Brown and Matthews (2016) for 

standardized trap designs, we suggest to use either the nested cross or grid arrangement with 

standard trap numbers and spacing. For data analysis, species may be grouped into size classes 

assuming a similar bias for the species in one class and, thus, lowering the workload for bias 

correction across species. Species size classes may preferably cover logarithmically increasing 

ranges of body mass as body mass non-linearly affects the species-specific sampling bias 

(Appendix S8: Fig. S3). 

Most research in community ecology derives diversity and community metrics based on 

species relative abundance, such as the RAD and species dominance within the community. 

One therefore may not need to correct observed species abundance on an absolute scale but 

rather on a proportional scale. Our analyses of the correction factor showed that species 

relative abundance can be re-set to unbiased values by species body mass when controlling for 

temperature variation, pitfall trap number and arrangement (Fig. 4B, Appendix S9: Fig. S2). For 

instance, a field study using two pitfall traps could correct relative abundance from species 

body mass with two scaling factors from the range between −0.55 and −0.37. The resulting 

interval in diversity and community metrics would be unbiased by pitfall trap sampling and 

could be used as a sensitivity test for conclusions drawn from individual studies or a meta-

analysis across several studies. 

We conclude that (1) the correction of the species-specific sampling bias to derive 

realistic absolute species abundance and (2) the use of body mass-related correction factors to 

derive true relative species abundance are a manageable task and necessary to reliably identify 

changes in species abundance and community diversity across time or habitats. Given that the 

species body masses are easily estimated for ground arthropods, the bias correction for true 

relative abundance should be a simple, practical approach for field studies to be widely adopted 

and tested. Also, the ambient temperatures (as proxy for body temperature) across the 

sampling periods are often available, facilitating estimations of the median movement speed 

and, subsequently, realistic indications of the sampling bias and absolute densities per species 

(Fig. 3). Future studies may attempt to reanalyze available “activity density” data from previous 

pitfall trap sampling campaigns to advance our understanding of arthropod community 

structure both within certain habitats and along environmental gradients. 
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5.6 Supporting Information 

Appendix 1: Parameterization of ground arthropod movement 

Preliminary ‘parameterization simulations’ were used to empirically parameterize the 

movement of ground arthropod species across body mass (1 to 330 mg) and body temperature 

(15 to 30°C). The set of parameter values (Table S1, Appendix 1) that provided the best fit 

between data from parameterization simulations and selected empirical studies was used for 

modeling the ground arthropod movement in the ‘simulation experiments’ of our study. Overall 

3,072 parameterization simulations, each with a different set of parameter values (Table S1, 

Appendix 1), were simulated across the four temperatures: 15, 20, 25, and 30°C. 

 The parameterization simulations covered the movement of 10 species differing in body 

mass, each with 100 individuals across three days (3 · 8h = 24 hours) of movement activity 

(Table S2, Appendix 1). Across the parameterization simulations the values of six model 

parameters were varied that describe the ground arthropod movement in our model: a) the 

parameters γ and x0 of the Cauchy distribution were used to draw the speed Si of an individual i 

per time step (0 < Si ≤ Mi), b) the parameters γ and x0 of the Cauchy distribution were used to 

draw the displacement Di of an individual i per time step (0 ≤ Di ≤ 10·Si), and c) the constants a 

and b determined the relationship between maximum speed (Mi) and the standard deviation 

of the normal distribution used to draw the turning angle Ai of an individual i per time step 

(Eq. 2). 

 No consistent empirical data currently exists for parameterization of ground arthropod 

movement across the ranges of body mass and ground temperature considered in our study. 

Moreover, data on body temperature or ambient temperature, a key parameter in our model, 

is rarely provided by empirical studies that study arthropod movement. Thus, we based our 

parameterization on different studies. We used three empirical studies (Klazenga and Vries 

1994; Thomas et al. 1998; Byers 2001), and additionally tested the simulated mean squared 

displacement, a common measure of the spatial extent over time of random motion in general, 

against predictions for a correlated random walk (Codling et al. 2008). If the body mass of a 

species was not presented by the empirical study, we calculated it from mean body length 

using: Mass[mg] = e(-3.46 + 2.79 · ln size[mm] according to Rogers et al. (1977). 

 Based on the information about the generality of the mean squared displacement and 

the three empirical studies we defined four conditions for the evaluation of the 3,072 

parameter sets (details below). A parameter set was rejected a priori if either condition 1 was 

not met or the proportional difference of the simulated to empirical value was ≥35% for one of 

the other conditions. Subsequently, we identified the parameter set that provided the lowest 

proportional difference of the simulated to empirical data averaged across conditions 2 to 4. 

Specifically, we used the weighted average, giving the condition 2 three times the weight that 

conditions 3 and 4 had because the condition 2 covered three different species, while 

conditions 3 and 4 covered one species each. 
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 Condition 1: The mean squared displacement (denoted E(Rt
2) in Codling et al. (2008)) 

across each of the 10 species and across all four temperatures must increase non-linearly to 

differ from a random walk. Specifically, a correlated random walk is characterized by 1 < μ < 2, 

where E(Rt
2) ~ tμ, and the squared displacement of one individual i and many time steps t is 

calculated as SDi,t = ∑ Di,1
2 + Di,t

2 (Codling et al. 2008). At least 90% of the μ values across all 

species and temperatures must fit the range 1 < μ < 2, otherwise the respective parameter set 

was neglected independent of results for other conditions. 

 Condition 2: Proportional differences between the simulated and the empirical average 

daily displacement of the 25 % fastest individuals per species should be low. The 24 hours 

simulated movement data per species were scaled to 8 hours and averaged across all four 

temperatures. Simulated data for three species with the body mass 5, 32, and 66 mg was 

validated against empirical data presented in Klazenga and Vries (1994) (estimated, average 

displacement per day: Pterostichus diligens 1.6 m, Pterostichus lepidus 4.3 m, and Carabus 

nitens 7.8 m). 

 Condition 3: Proportional differences between the simulated and the empirical average 

daily displacement should be low, considering simulated individuals of the 60 mg species and 

empirical data of Pterostichus melanarius presented in Thomas et al. (1998). We used empirical 

data covering two months June and July excluding data presented for August. We removed 

August-data because movement is quite high when compared to June and July, likely due to 

behavior associated with mating that is not covered in our model. We used simulated daily 

displacement across individuals of the 60 mg species at 15 and 20 °C to approximate the daily 

ambient temperatures at the field site (Thomas et al. 1998). We scaled simulated daily 

displacement from 24 to 8 hours of activity and compared it to the empirical mean dispersal of 

2.6 m as well as the mean coefficient of variation across individuals of 1.53. The proportional 

differences of the simulated to empirical data averaged across mean dispersal and mean 

coefficient of variation was used for validation. 

 Condition 4: Proportional differences between the simulated and the empirical average 

daily displacement should be low, considering simulated individuals of the 97 mg species and 

empirical data of Eleodis extricate calculated from Byers (2001) based on Crist et al. (1992). 

Empirical data were observed at soil-surface temperatures of 20 to 30 °C (Crist et al. 1992), 

suggesting an average daily displacement of 13.95 m (Byers 2001). Accordingly, we used 

simulated daily displacement across individuals of the 97 mg species at 20, 25, and 30 °C 

(assuming soil-surface temperature to be about equal with body-temperature) scaled from 24 

to 8 hours of activity, for model validation. 
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Table S1. Set of parameters that determined the simulated movement of arthropods, and their values tested for 

differences between the simulated and the empirical movement (‘parameterization simulations’) 

Parameter Description Values 

Constants a and b  

(see Eqn. S2, , Appendix 1) 

                            

Combination of slope (a) and y-intercept (b) of the 

linear relationship used for calculating the standard 

deviation of a normal distribution, which was used for 

drawing species-specific turning angles per time step 

(Eqn. A2). 

i)   a: -17.24, b: 70 

ii)  a: -13.79, b: 66 

iii) a: -10.34, b: 62 

Speed x0 The ‘location’ parameter of the Cauchy distribution for 

drawing the actual speed (Si) of an individual i per time 

step between 0.001 cm/s and the maximum speed (Mi); 

x0 is provided as proportion of Mi, e.g. 0.5 means ½ of 

Mi  

0.625, 0.5, 0.375, 

0.25 

Speed γ The ‘scale’ parameter of the Cauchy distribution for 

drawing the actual speed (Si) of an individual i per time 

step 

1, 2, 2.5, 3, 3.5, 4, 

4.5, 5 

Displacement x0 The ‘location’ parameter of the Cauchy distribution for 

drawing the displacement (Di) of an individual i per time 

step between zero and 10·Si; x0 is provided as 

proportion of 10·Si, e.g. 0.5 means ½ of 10·Si 

0.75, 0.625, 0.5, 

0.375 

Displacement γ The ‘scale’ parameter of the Cauchy distribution for 

drawing the displacement (Di) of an individual i per time 

step 

1, 2, 2.5, 3, 3.5, 4, 

4.5, 5 

 

 

Table S2. Species specific parameters and values used for model parameterization (‘parameterization simulations’) 

Parameter Description Values 

Species body mass [mg]  Fixed species-specific body mass of species 1-10; 

some values differ from the logarithmically scaled 

body mass values in Table 1 to match average body 

mass of species from empirical studies we used for 

model validation 

1, 5, 18, 32, 60, 66, 

97, 173, 223, 330 

Body temperature [K (°C)]  

 

Fixed body temperature across the simulation 288, 293, 298, 303 

(~ 15 - 30) 

Number of individuals Number of individuals per species of which we 

simulated the movement 

100 
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Validated model parameter values for ground arthropod movement 

According to the validated model parameters we used for our simulation experiments, most 

individuals move generally at about 25 % of its maximum speed (Fig. S1, Appendix 1; Cauchy 

distribution parameters: scale γ = 1.0 and location x0 = 0.25 · Mi). Contrary, the displacement 

per time step varied strongly between zero and maximum displacement (i.e. moving a straight 

line), with a slightly increased probability for an individual to displace about 37.5 % of its 

maximum displacement capability (Fig. S2, Appendix 1; Cauchy distribution parameters: scale 

γ = 5.0 and location x0 = 0.375 · max displacement). The directional persistence across modeled 

time steps strongly increased with increasing body size and speed, that is, at the temporal scale 

of our model (10 s time steps) larger species move much straighter than smaller species (Eq. 2 

parameters: a = -17.24, b = 70). 

 When applying these parameter values, the simulated movement of ground arthropod 

species differs from empirically observed ground arthropod movement by 26.03 % on average 

across the conditions 2, 3 and 4. This is surprisingly close to empirical data considering the 

simplicity of our model, such as the assumption of a featureless landscape. 

 

 

Figure S1. Cauchy distribution with parameters: scale γ = 1.0 and location x0 = 0.25 · Mi (maximum speed of 

individual i), obtained from empirical parameterization and used to randomly choose a value for the movement 

speed (Si) per model time step and individual (see Eq. 1). 

 

 

Figure S2. Cauchy distribution with parameters: scale γ = 5.0 and location x0 = 0.375 · max displacement (calculated 

as time step length [10 s] multiplied by speed Si), obtained from empirical parameterization and used to randomly 

choose a value for the air-line displacement (Di) per model time step and individual.  
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Appendix 2: Sensitivity analysis of the model 

A local sensitivity analysis of the model was performed varying model parameters that both are 

central for the simulation of ground arthropod movement and were parameterized using 

empirical values from published literature (Table S1, Appendix 1). We varied six parameters by 

+10 % and -10 % of the above reference value (Table S1, Appendix 2). 

 To test the impact of the variation of one of these parameters on the key model 

outcome of our study, the proportion of individuals sampled per species, we performed 84 

different simulation experiments. This set included the following parameter values: i) pitfall 

trap numbers of 1, 2, 4, 8 and 12, ii) all spatial layouts (see Fig. 1A-F), iii) population densities 

of 0.2, 0.8, and 4 individuals/m2, and iv) body temperatures of 291 and 300 K (~18 and 27 °C). 

All parameter possible combinations were simulated for 10 species with a body mass as defined 

in Table 1. Each individual simulation was repeated 50 times and the averaged proportion of 

individuals sampled per species was used for comparison. 

 Per parameter one figure was created showing plotting the results from simulations 

with the original parameter values against the results from simulations with +10 % and -10 % 

variation of the particular parameter (Fig. S1, Appendix 1). 

 

Table S1. Parameters key for the simulation of ground arthropod movement and their values used in the sensitivity 

analysis, plus original value 

Parameter Panel in Figure S1, Appendix 2 Value -10% Original value Value +10% 

Speed x0 A 0.225 0.250 0.275 

Speed γ B 0.900 1.000 1.100 

Displacement x0 C 0.338 0.375 0.413 

Displacement γ D 4.500 5.000 5.500 

Constant a (Eq. 2) E -18.964 -17.240 -15.516 

Constant b (Eq. 2) F 63.000 70.000 77.000 
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Figure S1. Proportion of sampled individuals from simulations using original parameter values against respective 

results from sensitivity simulations, i.e. simulations with variation in parameter values as shown in Table S1, 
Appendix 2. Each panel shows 1680 points, 840 for each red and blue, covering 84 different simulation 

experiments with 10 species (see above text for details).  
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Appendix 3: Spatial pitfall trap arrangement and details on pitfall traps at the simulated area 
 

 

Figure S1. Six spatial arrangements of pitfall traps within a 20 x 20 m area used in this study: A) one-trap, B) two-

traps: diagonally arranged with a distance of 2.0 m, C) nested-cross (Perner and Schueler 2004), D) two-circle: a 

grid of multiple pairs of traps (Zhao et al. 2013), E) transect: traps along a diagonally oriented line, and F) grid: 

individual traps uniformly distributed. Each dot represents the location of a pitfall trap. The number of pitfall 

traps was varied between 4 and 12 for the arrangements c-f (4 traps: black dots; 8 traps: black and dark-grey 

dots; 12 traps: all dots). 

 

 

Figure S2. A round pitfall trap (slate blue circle) at a section of the simulated area. Each cell of the grid represents 

a real area of 1 x 1 cm. The pitfall trap has a diameter of 5 cm. Light gray cells are denoted as pitfall trap, though 

the probability of falling into the trap varies across these cells. The probability of an individual falling into the trap 

when crossing a “grey colored cell” equals about the proportion of the cell covered by the trap (i.e. proportion of 

slate blue circle per cell). An arthropod that moved at one of the four corner cells had a 20% probability to fall into 

the trap, while the probability to fall into the trap was 75 % for all cells at the edges next to the corner cells. At the 

remaining cells the probability to fall into the trap was 100 %.  

 

Pitfall traps with a diameter of 5 cm were simulated, because such traps were suggested 

as cost-effective way to detect meaningful differences in population density across ground 

arthropod species (Work et al. 2002).  
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Appendix 4: Ambient temperatures during the vegetation period in Central Europe 

 

 

Figure S1. Histogram of ambient temperatures from April 1st to September 30th across the years 2012 to 2015 

measured at a grassland biodiversity experiment in Central Europe (Roscher et al. 2004). The temperature was 

measured every 10 minutes yielding about 105,000 individual values for the period April 1st to September 30th 

across 2012-2015. Data files were downloaded at January 25th 2016 from https://www.bgc-jena.mpg.de/wetter/ 

(e.g. mpi_saale_2012a.zip and mpi_saale_2012a.zip for the year 2012) and values from column ‘T (degC)’ were 

used. 

 

The two red vertical lines indicate the 5 % and the 95 % quantiles of the data. The two 

blue vertical lines show the minimum and maximum ambient temperature considered in our 

model simulations. We assumed the body temperature of actively hunting, moving ground 

arthropods exceeds the ambient temperature by 8 °C (Morgan 1985). Accordingly, model 

simulations considered body temperatures 15 to 30 °C (Table 1). 

 Additionally, the green squares show the mean air temperature of seven individual 

sampling periods across one year in a ground arthropod sampling campaign in north-east China 

(temperature on x-axis; y-axis has no meaning for green squares) (values from sampling periods 

T1-T6 and T8-T10; see Table 1 in Wang et al. 2014).  
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Appendix 5: Arthropod communities with reasonable species abundance ranks  

Creation of random communities: For one community, each of the 10 species was assigned 

randomly to an abundance rank using a uniform probability distribution of integer values from 

1 to 10. We repeated this random distribution of species to abundance ranks 50,000 times 

yielding an initial set of 50,000 random communities with a completely random relationship 

between body mass and abundance rank. From this initial set, we selected communities where 

small species have generally a higher rank than larger species. To identify such communities 

the sum of the species numbers (i.e. 1 to 10) across ranks 1 to 4 was subtracted from the sum 

of the species numbers across ranks 7 to 10 yielding a value Kc for each single random 

community c, where 1 ≤ c ≤ 50,000. A large Kc indicates that the small species have, on average, 

a higher rank than large species. We selected all communities with a value of Kc higher than the 

99% quantile of all 50,000 Kc values, yielding 378 communities. 

 

 

Figure S1. Boxplot showing the abundance ranks of the 10 ground arthropod species we covered in our study 

(species 1 to 10 with body mass 1 to 330 mg) across 378 random communities. In these random communities the 

abundance of each species was randomly assigned, though, small species have generally a higher rank than larger 

species accordingly to empirical data (i.e. smaller species are more abundant than larger species). The simulated 

population abundance decreases from 3200 individuals at rank 1 to 60 individuals at rank 10, logarithmically 

spaced (rounded to integer values, Table 1).   
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Appendix 6: Animated movie of ground arthropod movement and pitfall trap sampling  

The Supplement 1 provides a movie showing in top view the simulated movement of 12 ground 

arthropods from three different species within the central 4 x 4 m square of the simulated area 

(20 x 20 m). Individuals are presented as black dot, with a colored tail attached. The tail shows 

the movement path across the previous 11 minutes and 40 seconds (for the purpose of 

visualizing the movement pattern and the speed). A red tail indicates individuals of the large 

species (330 mg), green medium species (13 mg; the classification as ‘medium’ concerns the 

log scale of body mass and the results of the analysis of movement pattern, see Fig. G1) and 

blue small species (1 mg). 

The movie shows the simulated arthropod movement at 20 °C body temperature across 

4 hours in fast motion (runtime of 2 min). Each second of the movie represents 12 simulated 

time steps of 10 seconds each.  

Additionally, the indicates the position of 8 pitfall traps arranged as nested cross (red 

open circles) and two pitfall traps of the grid arrangement (blue) for the purpose of visualization 

only. The traps are neither active in this simulation nor are they sized correctly (size was 

increased as traps with a diameter 5 cm would hardly be visible in the area of 4 x 4 m). 

 

 

Figure S1. Screenshot from the movie provided as Supplement 1. See above text for details. 
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The Supplement 2 provides a movie as in Supplement 1 but showing 10 hours of 

movement, plus some extra statistical analysis. The movie has increased fast motion compared 

to Supplement 1, with 30 model time steps per second of movie runtime (overall runtime of 2 

min). 

The additional statistics were calculated from two different model simulations with 

10 species each (body mass 1 to 330 mg, see Table 1; 20 °C body temperature; activity period 

10 hours). The one simulation applied pitfall trap sampling with 12 traps arranged as nested 

cross and the other 12 traps arranged as grid (Fig. S1, Appendix 3). Each species had a simulated 

population abundance of 800 individuals moving within the 20 x 20 m area. 

The two figures at each side show the population abundance and the mean squared 

displacement (MSD) for three different species over time (red: 330 mg body mass; green: 13 

mg; blue 1 mg; same as in the movie from Supplement 1). The MSD is the most common metric 

for measuring movement in general indicating the average area covered by the individuals of 

one species. The additional counter centered between the two figures at each side show the 

number of sampled individuals across all 10 species across simulation time (i.e. 8000 individuals 

per simulation with either nested cross or grid arrangement of pitfall traps). 

The two movies were created with the R language version 3.2 (R Core Team 2015), 

based on the x and y coordinates of the particular individuals visualized and the information of 

sampled individuals per species in the particular model simulation. 

 

 

Figure S2. Screenshot from the movie provided as Supplement 2. See above text for details.  
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Appendix 7: Body mass related movement pattern 

 

 

Figure S1. Boxplots of four central properties of animal movement across the 10 simulated species, with increasing 

body mass. Per species 1000 individuals were simulated at 24 °C body temperature across 8 hours, i.e. 2880 time 

steps, yielding 2,880,000 data points per species in each panel. A) Speed per individual in centimeter per second, 

for one time step (10 seconds). B) Turning angle per individual in degree, without differentiation between left and 

right turns. C) The air-line displacement per individual during one time step in centimeter. D) The air-line 

displacement per individual during one day, i.e. 8 hours of activity, in meter.  
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Appendix 8: Effects of body temperature, population density and body mass on sampling bias 

 

               

Figure S1 (left side). Sampling bias averaged across species (see Table 1) for the body temperatures considered in 

this study. The number of pitfall traps is color coded, and line types indicate the trap arrangement (for trap 

numbers four to 12. 

Figure S2 (right side). Sampling bias averaged across species (see Table 1) for the population densities considered 

in this study (x-axis is log scaled). The number of pitfall traps is color coded, and line types indicate the trap 

arrangement (for trap numbers four to 12, see legend in Fig. S1, Appendix 8). 

 

 

Figure S3. Boxplot showing the impact of species body mass (log scale) on the sampling bias (log scale) across all 

trap numbers, trap arrangements, population densities and body temperatures considered in this study (see 

section “simulation experiments” in methods). The red point within each boxplot marks the mean body mass.  
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Appendix 9: Correction factor for deriving unbiased relative species abundances 
 

 

Figure S1. The relationship between body mass and the correction factor for deriving unbiased relative species 

abundances per trap number (Fiqs. 6-8), trap arrangement (Fig. S1, Appendix 3), and body temperatures. The 

individual values per species (different symbols per temperature) and the linear regression line are shown. 

 

 

Figure S2. The slope of the regression lines from Fig. S1, Appendix 9 are shown together with the 95% confidence 

interval.  
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Appendix 10: Indices of community diversity: Shannon diversity and Fisher’s alpha  

Our analysis of arthropod diversity shows that pitfall trap sampling may generally lead to 

overestimations of certain community diversity indices. Note that in all simulation experiments 

all simulated species were detected, that is, the observed species richness was always 10. 

Accordingly, differences between the estimated and the simulated diversity resulted from 

changes in species evenness. The two diversity metrics used, Shannon diversity and Fisher's 

alpha, consistently showed a higher estimated diversity compared to the simulated diversity 

(Figs. S1 and S2, Appendix 10). This overestimation of biodiversity can be explained with the 

observed abundance distributions from pitfall trap sampling being more even than the 

simulated abundances that followed a log curve (see Fig. 5). The estimated Shannon diversity 

on average remained relatively unaffected from trap arrangement, trap number and body 

temperature, but varied strongly across the 378 random communities, i.e. the sequence of 

species body masses along the abundance ranks. Fisher’s alpha was quite sensitive to pitfall 

trap number and body temperature but mostly resilient against changes in the community 

structure. 
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Figure S1 (left side). Boxplot of Shannon diversity calculated from the observed population abundances across 

378 random communities (Appendix 6), shown for different combinations of pitfall trap number (blue colors) 

and trap arrangement. The mean values are shown by a red dot. The Shannon diversity of the simulated 

population abundances (green colored vertical line) is equal for all simulation experiments because the 

simulated population abundances were fixed to values logarithmically spaced from 0.15 – 8.0 individuals/m2. 

Panels show results for A) averages across six different body temperatures (15 – 30 °C), B) 15 °C, and C) 30 °C 

body temperature. 

Figure S2 (right side). Boxplot of Fisher’s alpha calculated from the observed population abundances across 378 

random communities (see Fig. S1, Appendix 6), shown for different combinations of pitfall trap number (blue color 

coded) and pitfall trap arrangement. The Fisher’s alpha based on the simulated population abundances is colored 

green. The y-axis is log scaled. Panels show results for A) averages across six different body temperatures (15 – 30 

°C), B) 15 °C, and C) 30 °C body temperature.
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Supplement 1: Animation of simulated movement of three ground arthropod species (for 

details see Appendix 6; mp4 file type). This supporting information is available is available for 

this article online http://onlinelibrary.wiley.com/doi/10.1002/ecs2.1790/full. 

 

Supplement 2: Animation of simulated movement of three ground arthropod species plus 

additional information about number of sampled individuals (considering simulation results for 

10 species with 800 individuals each), population density and displacement (for details see 

Appendix 6; mp4 file type). This supporting information is available is available for this article 

online http://onlinelibrary.wiley.com/doi/10.1002/ecs2.1790/full. 
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6 General discussion 

This thesis aimed to contribute to a better understanding of the impact of biodiversity loss on 

biotic interactions. Trophic and non-trophic interactions of predators and omnivores with 

plants, animals, fungi, protists, and bacteria were assessed in a mensurative large-scale land-

use experiment and in a manipulative grassland biodiversity experiment using a range of 

molecular approaches. In addition, chapter 5 of the thesis may contribute to a better 

assessment of biodiversity by systematically analyzing factors that affect pitfall trap efficiency 

employing an ecological simulation approach.  

In the first study (chapter 2), I analyzed the performance and gut microbiota of flying 

predatory insects in two types of local habitats that differ in their diversity of basal resources 

(soybean monoculture vs. restored prairie) and that were located along a landscape complexity 

gradient. A key finding of this study is that even closely related predators have a species-specific 

set of gut bacteria that is stable over a range of environmental conditions. In a lab experiment 

that provided the base for the interpretation of gut bacterial diversity of field collected beetles, 

I found that prey diversity increased bacterial diversity in guts of predatory insect. In the field, 

I found that insects from soy fields had higher gut bacterial richness and lower fat content than 

those from prairies, suggesting the inclusion of more prey types in soy and better feeding 

conditions that allow a more selective foraging in prairies. Landscape context had contrasting 

effects on gut bacteria and body condition of exotic and native predators, which suggest 

inherent differences in habitat and prey use among these groups. Overall, the study illustrates 

the importance of both local resource and landscape-based influences on gut microbiota and 

their interactions with predator species-specific traits including foraging behavior and 

physiology.  

While mensurative experiments (chapter 2) use environmental gradients, and have a 

high degree of realism, the control of independent variables is limited (McGarigal & Cushman 

2002; Hadley & Betts 2016). In contrast, in biodiversity experiments like the Jena Experiment 

(chapter 3 and 4), the manipulated gradient of plant species richness is not confounded with 

species composition or extrinsic conditions (e.g., soil fertility, land-use management). 

Biodiversity experiments may lack realism to some degree but allow drawing reliable 

conclusions on the importance of plant species richness per se on multitrophic interactions 

(Loreau et al. 2001; Hooper et al. 2005; Weisser et al. 2017).  

Further, in chapter 2 no detailed information was available on the community of plants 

and animals and on other environmental variables that could influence the local pool of 

bacteria and mediate interactions between predators, prey, and bacteria. In contrast, the 

platform of the Jena Experiment (chapter 3 and 4) provides extensive data on the local species 

pool and ecological parameters. Over a decade of research in the Jena Experiment have created 

a great understanding of bottom-up effects from plant diversity to the consumer community 

and consumer mediated processes (e.g., Scherber et al. 2010; Weisser et al. 2017). Yet, the 

studies presented in this thesis are the first to directly and in detail measure interactions 

between higher order consumers and their plant and animal food resources and microbiome 

with next-generation sequencing-based gut content analysis.  
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The methods used to analyze gut bacterial communities in the first study (chapter 2) 

allowed to rapidly compare samples from multiple species and locations but does not provide 

information on taxon identity. In chapter 3 and 4 I therefore tested and employed recent 

metabarcoding approaches to identify microbial organisms and food ingested by consumers. 

In the pilot study (chapter 3), a wide range of taxa was detected using a metabarcoding 

approach in regurgitates, including organisms representing trophic, phoretic, parasitic, and 

neutral interactions with the ground beetle P. melanarius. The results indicate that plant 

diversity and vegetation cover positively affect the richness of interactions.  

A study spanning the full design of the trait-based experiment within the Jena 

Experiment (chapter 4) included three species of surface-active invertebrates with varying 

degree of omnivory as model organisms. The range of analyzed interaction partners was 

expanded from eukaryotes to prokaryotes and included not only measures of the plant 

community but also measures of the animal community in the experimental plots. Trophic 

interactions of omnivores were mainly driven by indirect effects of plant diversity through 

differences in the performance of the plant community or via the bottom-up food web through 

changes in the invertebrate community. A key finding was that the three omnivores interacted 

with different subsets of species in their local habitat. Their preference for different prey types 

was reflected by differences in the gut microbial community. This finding also confirms the 

assumption that dietary differences between the predators in the first study (chapter 2) are 

one of the drivers for the strong differences in their gut microbiome. These findings highlight 

that interactions between invertebrates and microorganisms need to be better integrated into 

community ecology. 

Another key finding of chapter 4 was that the density of the plot vegetation shifted the 

average trophic position at which the two ground beetles in the study fed, but the direction of 

the effect was species-dependent. In chapter 2, similar strong differences in the response of 

lady beetles to vegetation type at field and landscape scale were found. This finding illustrates 

that behavioral differences between species mediate their dietary response to environmental 

factors and that this also affects closely related species and species that are commonly assigned 

to the same trophic guild. Changes in the feeding behavior of higher order consumers can affect 

the plant and animal community via top-down effects but this has so far rarely been included 

in studies on biodiversity effects (Scherber et al. 2010). Metabarcoding of gut contents offers 

insights into the adaption of feeding behavior to changing plant diversity and is a promising 

novel approach to study multitrophic interactions in biodiversity experiments and ecology in 

general. 

Studying plant diversity effects on ecological communities requires methods that 

reliably quantify these communities. Ground arthropods are routinely assessed with pitfall 

traps, although it is well known that the resulting data are biased by arthropod mobility, activity, 

and environmental factors (Lang 2000; Perner & Schueler 2004; Woodcock 2005; Saska et al. 

2013; Brown & Matthews 2016). The virtual ecologist approach (Zurell et al. 2010), that was 

employed in chapter 5, allows the systematic analysis of factors that affect the sampling bias. A 

series of simulation experiments evaluated the effects of body mass and population density of 

differently sized arthropods, number and spatial trap arrangement of pitfall traps, and 

temperature. The sampling bias strongly decreased with increasing body mass, temperature, 



Chapter 6                                    General discussion and implications 

 

150 

and pitfall trap number, while population density had no effect and trap arrangement only had 

little effect. These results implicate that at a community level the species specific-bias can result 

in an overestimation of large-sized species and could lead to wrong conclusions about the 

trophic structure of communities. It is therefore proposed to conduct a bias correction and 

demonstrate how unbiased relative species abundance can be derived using correction factors 

that need only information on species body mass.  

Overall, the results presented in this thesis show that biodiversity on a plot, field, and 

landscape scale can impact the interactions of invertebrates but species-specific traits including 

foraging behavior shape the strength and direction of these effects. Furthermore, I highlight 

that the approach of metabarcoding of gut contents offers novel insights into complex species 

interactions in multilevel communities and is most valuable when used in a well studies system 

with profound knowledge on the species pool. Dropping costs for sample sequencing and ever-

increasing sequence databases will lead to a better integration of metabarcoding approaches 

in many areas of ecology. Moreover, manipulative biodiversity experiments can address 

fundamental questions in biodiversity research but often lack realism. To overcome this 

limitation, I advocate that comparisons with findings from mensurative experiments are 

important to test if the implications of species loss and are also applicable to real-world 

systems.  
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